title | abstract | section | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Byzantine-Robust Online and Offline Distributed Reinforcement Learning |
We consider a distributed reinforcement learning setting where multiple agents separately explore the environment and communicate their experiences through a central server. However, |
Regular Papers |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
chen23b |
0 |
Byzantine-Robust Online and Offline Distributed Reinforcement Learning |
3230 |
3269 |
3230-3269 |
3230 |
false |
Chen, Yiding and Zhang, Xuezhou and Zhang, Kaiqing and Wang, Mengdi and Zhu, Xiaojin |
|
2023-04-11 |
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics |
206 |
inproceedings |
|