-
Notifications
You must be signed in to change notification settings - Fork 61
/
netlist_sim.c
714 lines (625 loc) · 19 KB
/
netlist_sim.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
/*
Copyright (c) 2010,2014 Michael Steil, Brian Silverman, Barry Silverman
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
/************************************************************
*
* Libc Functions and Basic Data Types
*
************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "types.h"
/* the smallest types to fit the numbers */
typedef uint16_t transnum_t;
typedef uint16_t count_t;
/* nodenum_t is declared in types.h, because it's API */
/************************************************************
*
* Main State Data Structure
*
************************************************************/
#if 1 /* faster on 64 bit CPUs */
typedef unsigned long long bitmap_t;
#define BITMAP_SHIFT 6
#define BITMAP_MASK 63
#define ONE 1ULL
#else
typedef unsigned int bitmap_t;
#define BITMAP_SHIFT 5
#define BITMAP_MASK 31
#define ONE 1U
#endif
/* list of nodes that need to be recalculated */
typedef struct {
nodenum_t *list;
count_t count;
} list_t;
/* a transistor from the point of view of one of the connected nodes */
typedef struct {
transnum_t transistor;
nodenum_t other_node;
} c1c2_t;
static inline c1c2_t
c1c2(transnum_t tn, nodenum_t n)
{
c1c2_t c = { tn, n };
return c;
}
typedef struct {
nodenum_t nodes;
nodenum_t transistors;
nodenum_t vss;
nodenum_t vcc;
/* everything that describes a node */
bitmap_t *nodes_pullup;
bitmap_t *nodes_pulldown;
bitmap_t *nodes_value;
nodenum_t **nodes_gates;
c1c2_t *nodes_c1c2s;
count_t *nodes_gatecount;
count_t *nodes_c1c2offset;
nodenum_t *nodes_dependants;
nodenum_t *nodes_left_dependants;
nodenum_t **nodes_dependant;
nodenum_t **nodes_left_dependant;
/* everything that describes a transistor */
nodenum_t *transistors_gate;
nodenum_t *transistors_c1;
nodenum_t *transistors_c2;
bitmap_t *transistors_on;
/* the nodes we are working with */
nodenum_t *list1;
list_t listin;
/* the indirect nodes we are collecting for the next run */
nodenum_t *list2;
list_t listout;
bitmap_t *listout_bitmap;
nodenum_t *group;
count_t groupcount;
bitmap_t *groupbitmap;
enum {
contains_nothing,
contains_hi,
contains_pullup,
contains_pulldown,
contains_vcc,
contains_vss
} group_contains_value;
} state_t;
/************************************************************
*
* Main Header Include
*
************************************************************/
#define INCLUDED_FROM_NETLIST_SIM_C
#include "netlist_sim.h"
#undef INCLUDED_FROM_NETLIST_SIM_C
/************************************************************
*
* Algorithms for Bitmaps
*
************************************************************/
#define WORDS_FOR_BITS(a) (a / (sizeof(bitmap_t) * 8) + 1)
static inline void
bitmap_clear(bitmap_t *bitmap, count_t count)
{
memset(bitmap, 0, WORDS_FOR_BITS(count)*sizeof(bitmap_t));
}
static inline void
set_bitmap(bitmap_t *bitmap, int index, BOOL state)
{
if (state)
bitmap[index>>BITMAP_SHIFT] |= ONE << (index & BITMAP_MASK);
else
bitmap[index>>BITMAP_SHIFT] &= ~(ONE << (index & BITMAP_MASK));
}
static inline BOOL
get_bitmap(bitmap_t *bitmap, int index)
{
return (bitmap[index>>BITMAP_SHIFT] >> (index & BITMAP_MASK)) & 1;
}
/************************************************************
*
* Algorithms for Nodes
*
************************************************************/
/*
* The "value" propertiy of VCC and GND is never evaluated in the code,
* so we don't bother initializing it properly or special-casing writes.
*/
static inline void
set_nodes_pullup(state_t *state, transnum_t t, BOOL s)
{
set_bitmap(state->nodes_pullup, t, s);
}
static inline BOOL
get_nodes_pullup(state_t *state, transnum_t t)
{
return get_bitmap(state->nodes_pullup, t);
}
static inline void
set_nodes_pulldown(state_t *state, transnum_t t, BOOL s)
{
set_bitmap(state->nodes_pulldown, t, s);
}
static inline BOOL
get_nodes_pulldown(state_t *state, transnum_t t)
{
return get_bitmap(state->nodes_pulldown, t);
}
static inline void
set_nodes_value(state_t *state, transnum_t t, BOOL s)
{
set_bitmap(state->nodes_value, t, s);
}
static inline BOOL
get_nodes_value(state_t *state, transnum_t t)
{
return get_bitmap(state->nodes_value, t);
}
/************************************************************
*
* Algorithms for Transistors
*
************************************************************/
static inline void
set_transistors_on(state_t *state, transnum_t t, BOOL s)
{
set_bitmap(state->transistors_on, t, s);
}
static inline BOOL
get_transistors_on(state_t *state, transnum_t t)
{
return get_bitmap(state->transistors_on, t);
}
/************************************************************
*
* Algorithms for Lists
*
************************************************************/
static inline nodenum_t
listin_get(state_t *state, count_t i)
{
return state->listin.list[i];
}
static inline count_t
listin_count(state_t *state)
{
return state->listin.count;
}
static inline void
lists_switch(state_t *state)
{
list_t tmp = state->listin;
state->listin = state->listout;
state->listout = tmp;
}
static inline void
listout_clear(state_t *state)
{
state->listout.count = 0;
bitmap_clear(state->listout_bitmap, state->nodes);
}
static inline void
listout_add(state_t *state, nodenum_t i)
{
if (!get_bitmap(state->listout_bitmap, i)) {
state->listout.list[state->listout.count++] = i;
set_bitmap(state->listout_bitmap, i, 1);
}
}
/************************************************************
*
* Algorithms for Groups of Nodes
*
************************************************************/
/*
* a group is a set of connected nodes, which consequently
* share the same value
*
* we use an array and a count for O(1) insert and
* iteration, and a redundant bitmap for O(1) lookup
*/
static inline void
group_clear(state_t *state)
{
state->groupcount = 0;
bitmap_clear(state->groupbitmap, state->nodes);
}
static inline void
group_add(state_t *state, nodenum_t i)
{
state->group[state->groupcount++] = i;
set_bitmap(state->groupbitmap, i, 1);
}
static inline nodenum_t
group_get(state_t *state, count_t n)
{
return state->group[n];
}
static inline BOOL
group_contains(state_t *state, nodenum_t el)
{
return get_bitmap(state->groupbitmap, el);
}
static inline count_t
group_count(state_t *state)
{
return state->groupcount;
}
/************************************************************
*
* Node and Transistor Emulation
*
************************************************************/
static inline void
addNodeToGroup(state_t *state, nodenum_t n)
{
/*
* We need to stop at vss and vcc, otherwise we'll revisit other groups
* with the same value - just because they all derive their value from
* the fact that they are connected to vcc or vss.
*/
if (n == state->vss) {
state->group_contains_value = contains_vss;
return;
}
if (n == state->vcc) {
if (state->group_contains_value != contains_vss)
state->group_contains_value = contains_vcc;
return;
}
if (group_contains(state, n))
return;
group_add(state, n);
if (state->group_contains_value < contains_pulldown && get_nodes_pulldown(state, n)) {
state->group_contains_value = contains_pulldown;
}
if (state->group_contains_value < contains_pullup && get_nodes_pullup(state, n)) {
state->group_contains_value = contains_pullup;
}
if (state->group_contains_value < contains_hi && get_nodes_value(state, n)) {
state->group_contains_value = contains_hi;
}
/* revisit all transistors that control this node */
count_t end = state->nodes_c1c2offset[n+1];
for (count_t t = state->nodes_c1c2offset[n]; t < end; t++) {
c1c2_t c = state->nodes_c1c2s[t];
/* if the transistor connects c1 and c2... */
if (get_transistors_on(state, c.transistor)) {
addNodeToGroup(state, c.other_node);
}
}
}
static inline void
addAllNodesToGroup(state_t *state, nodenum_t node)
{
group_clear(state);
state->group_contains_value = contains_nothing;
addNodeToGroup(state, node);
}
static inline BOOL
getGroupValue(state_t *state)
{
switch (state->group_contains_value) {
case contains_vcc:
case contains_pullup:
case contains_hi:
return YES;
case contains_vss:
case contains_pulldown:
case contains_nothing:
return NO;
}
}
static inline void
recalcNode(state_t *state, nodenum_t node)
{
/*
* get all nodes that are connected through
* transistors, starting with this one
*/
addAllNodesToGroup(state, node);
/* get the state of the group */
BOOL newv = getGroupValue(state);
/*
* - set all nodes to the group state
* - check all transistors switched by nodes of the group
* - collect all nodes behind toggled transistors
* for the next run
*/
for (count_t i = 0; i < group_count(state); i++) {
nodenum_t nn = group_get(state, i);
if (get_nodes_value(state, nn) != newv) {
set_nodes_value(state, nn, newv);
for (count_t t = 0; t < state->nodes_gatecount[nn]; t++) {
transnum_t tn = state->nodes_gates[nn][t];
set_transistors_on(state, tn, newv);
}
if (newv) {
for (count_t g = 0; g < state->nodes_left_dependants[nn]; g++) {
listout_add(state, state->nodes_left_dependant[nn][g]);
}
} else {
for (count_t g = 0; g < state->nodes_dependants[nn]; g++) {
listout_add(state, state->nodes_dependant[nn][g]);
}
}
}
}
}
void
recalcNodeList(state_t *state)
{
for (int j = 0; j < 100; j++) { /* loop limiter */
/*
* make the secondary list our primary list, use
* the data storage of the primary list as the
* secondary list
*/
lists_switch(state);
if (!listin_count(state))
break;
listout_clear(state);
/*
* for all nodes, follow their paths through
* turned-on transistors, find the state of the
* path and assign it to all nodes, and re-evaluate
* all transistors controlled by this path, collecting
* all nodes that changed because of it for the next run
*/
for (count_t i = 0; i < listin_count(state); i++) {
nodenum_t n = listin_get(state, i);
recalcNode(state, n);
}
}
listout_clear(state);
}
/************************************************************
*
* Initialization
*
************************************************************/
static inline void
add_nodes_dependant(state_t *state, nodenum_t a, nodenum_t b)
{
for (count_t g = 0; g < state->nodes_dependants[a]; g++)
if (state->nodes_dependant[a][g] == b)
return;
state->nodes_dependant[a][state->nodes_dependants[a]++] = b;
}
static inline void
add_nodes_left_dependant(state_t *state, nodenum_t a, nodenum_t b)
{
for (count_t g = 0; g < state->nodes_left_dependants[a]; g++)
if (state->nodes_left_dependant[a][g] == b)
return;
state->nodes_left_dependant[a][state->nodes_left_dependants[a]++] = b;
}
state_t *
setupNodesAndTransistors(netlist_transdefs *transdefs, BOOL *node_is_pullup, nodenum_t nodes, nodenum_t transistors, nodenum_t vss, nodenum_t vcc)
{
/* allocate state */
state_t *state = malloc(sizeof(state_t));
state->nodes = nodes;
state->transistors = transistors;
state->vss = vss;
state->vcc = vcc;
state->nodes_pullup = calloc(WORDS_FOR_BITS(state->nodes), sizeof(*state->nodes_pullup));
state->nodes_pulldown = calloc(WORDS_FOR_BITS(state->nodes), sizeof(*state->nodes_pulldown));
state->nodes_value = calloc(WORDS_FOR_BITS(state->nodes), sizeof(*state->nodes_value));
state->nodes_gates = malloc(state->nodes * sizeof(*state->nodes_gates));
for (count_t i = 0; i < state->nodes; i++) {
state->nodes_gates[i] = calloc(state->nodes, sizeof(**state->nodes_gates));
}
state->nodes_gatecount = calloc(state->nodes, sizeof(*state->nodes_gatecount));
state->nodes_c1c2offset = calloc(state->nodes + 1, sizeof(*state->nodes_c1c2offset));
state->nodes_dependants = calloc(state->nodes, sizeof(*state->nodes_dependants));
state->nodes_left_dependants = calloc(state->nodes, sizeof(*state->nodes_left_dependants));
state->nodes_dependant = malloc(state->nodes * sizeof(*state->nodes_dependant));
for (count_t i = 0; i < state->nodes; i++) {
state->nodes_dependant[i] = calloc(state->nodes, sizeof(**state->nodes_dependant));
}
state->nodes_left_dependant = malloc(state->nodes * sizeof(*state->nodes_left_dependant));
for (count_t i = 0; i < state->nodes; i++) {
state->nodes_left_dependant[i] = calloc(state->nodes, sizeof(**state->nodes_left_dependant));
}
state->transistors_gate = calloc(state->transistors, sizeof(*state->transistors_gate));
state->transistors_c1 = calloc(state->transistors, sizeof(*state->transistors_c1));
state->transistors_c2 = calloc(state->transistors, sizeof(*state->transistors_c2));
state->transistors_on = calloc(WORDS_FOR_BITS(state->transistors), sizeof(*state->transistors_on));
state->list1 = calloc(state->nodes, sizeof(*state->list1));
state->list2 = calloc(state->nodes, sizeof(*state->list2));
state->listout_bitmap = calloc(WORDS_FOR_BITS(state->nodes), sizeof(*state->listout_bitmap));
state->group = malloc(state->nodes * sizeof(*state->group));
state->groupbitmap = calloc(WORDS_FOR_BITS(state->nodes), sizeof(*state->groupbitmap));
state->listin.list = state->list1;
state->listin.count = 0;
state->listout.list = state->list2;
state->listout.count = 0;
count_t i;
/* copy nodes into r/w data structure */
for (i = 0; i < state->nodes; i++) {
set_nodes_pullup(state, i, node_is_pullup[i]);
state->nodes_gatecount[i] = 0;
}
/* copy transistors into r/w data structure */
count_t j = 0;
for (i = 0; i < state->transistors; i++) {
nodenum_t gate = transdefs[i].gate;
nodenum_t c1 = transdefs[i].c1;
nodenum_t c2 = transdefs[i].c2;
/* skip duplicate transistors */
BOOL found = NO;
for (count_t j2 = 0; j2 < j; j2++) {
if (state->transistors_gate[j2] == gate &&
((state->transistors_c1[j2] == c1 &&
state->transistors_c2[j2] == c2) ||
(state->transistors_c1[j2] == c2 &&
state->transistors_c2[j2] == c1))) {
found = YES;
}
}
if (!found) {
state->transistors_gate[j] = gate;
state->transistors_c1[j] = c1;
state->transistors_c2[j] = c2;
j++;
}
}
state->transistors = j;
/* cross reference transistors in nodes data structures */
/* start by computing how many c1c2 entries should be created for each node */
count_t *c1c2count = calloc(state->nodes, sizeof(*c1c2count));
count_t c1c2total = 0;
for (i = 0; i < state->transistors; i++) {
nodenum_t gate = state->transistors_gate[i];
state->nodes_gates[gate][state->nodes_gatecount[gate]++] = i;
c1c2count[state->transistors_c1[i]]++;
c1c2count[state->transistors_c2[i]]++;
c1c2total += 2;
}
/* then sum the counts to find each node's offset into the c1c2 array */
count_t c1c2offset = 0;
for (i = 0; i < state->nodes; i++) {
state->nodes_c1c2offset[i] = c1c2offset;
c1c2offset += c1c2count[i];
}
state->nodes_c1c2offset[i] = c1c2offset;
/* create and fill the nodes_c1c2s array according to these offsets */
state->nodes_c1c2s = calloc(c1c2total, sizeof(*state->nodes_c1c2s));
memset(c1c2count, 0, state->nodes * sizeof(*c1c2count));
for (i = 0; i < state->transistors; i++) {
nodenum_t c1 = state->transistors_c1[i];
nodenum_t c2 = state->transistors_c2[i];
state->nodes_c1c2s[state->nodes_c1c2offset[c1] + c1c2count[c1]++] = c1c2(i, c2);
state->nodes_c1c2s[state->nodes_c1c2offset[c2] + c1c2count[c2]++] = c1c2(i, c1);
}
free(c1c2count);
for (i = 0; i < state->nodes; i++) {
state->nodes_dependants[i] = 0;
state->nodes_left_dependants[i] = 0;
for (count_t g = 0; g < state->nodes_gatecount[i]; g++) {
transnum_t t = state->nodes_gates[i][g];
nodenum_t c1 = state->transistors_c1[t];
if (c1 != vss && c1 != vcc) {
add_nodes_dependant(state, i, c1);
}
nodenum_t c2 = state->transistors_c2[t];
if (c2 != vss && c2 != vcc) {
add_nodes_dependant(state, i, c2);
}
if (c1 != vss && c1 != vcc) {
add_nodes_left_dependant(state, i, c1);
} else {
add_nodes_left_dependant(state, i, c2);
}
}
}
#if 0 /* unnecessary - RESET will stabilize the network anyway */
/* all nodes are down */
for (nodenum_t nn = 0; nn < state->nodes; nn++) {
set_nodes_value(state, nn, 0);
}
/* all transistors are off */
for (transnum_t tn = 0; tn < state->transistors; tn++)
set_transistors_on(state, tn, NO);
#endif
return state;
}
void
destroyNodesAndTransistors(state_t *state)
{
free(state->nodes_pullup);
free(state->nodes_pulldown);
free(state->nodes_value);
for (count_t i = 0; i < state->nodes; i++) {
free(state->nodes_gates[i]);
}
free(state->nodes_gates);
free(state->nodes_c1c2s);
free(state->nodes_gatecount);
free(state->nodes_c1c2offset);
free(state->nodes_dependants);
free(state->nodes_left_dependants);
for (count_t i = 0; i < state->nodes; i++) {
free(state->nodes_dependant[i]);
}
free(state->nodes_dependant);
for (count_t i = 0; i < state->nodes; i++) {
free(state->nodes_left_dependant[i]);
}
free(state->nodes_left_dependant);
free(state->transistors_gate);
free(state->transistors_c1);
free(state->transistors_c2);
free(state->transistors_on);
free(state->list1);
free(state->list2);
free(state->listout_bitmap);
free(state->group);
free(state->groupbitmap);
free(state);
}
void
stabilizeChip(state_t *state)
{
for (count_t i = 0; i < state->nodes; i++)
listout_add(state, i);
recalcNodeList(state);
}
/************************************************************
*
* Node State
*
************************************************************/
void
setNode(state_t *state, nodenum_t nn, BOOL s)
{
set_nodes_pullup(state, nn, s);
set_nodes_pulldown(state, nn, !s);
listout_add(state, nn);
recalcNodeList(state);
}
BOOL
isNodeHigh(state_t *state, nodenum_t nn)
{
return get_nodes_value(state, nn);
}
/************************************************************
*
* Interfacing and Extracting State
*
************************************************************/
unsigned int
readNodes(state_t *state, int count, nodenum_t *nodelist)
{
int result = 0;
for (int i = count - 1; i >= 0; i--) {
result <<= 1;
result |= isNodeHigh(state, nodelist[i]);
}
return result;
}
void
writeNodes(state_t *state, int count, nodenum_t *nodelist, int v)
{
for (int i = 0; i < 8; i++, v >>= 1)
setNode(state, nodelist[i], v & 1);
}