-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpretrain_vae.py
151 lines (118 loc) · 5.24 KB
/
pretrain_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from pickletools import optimize
import torch
import torch.utils.data as data
import numpy as np
from imageio import imread
from path import Path
import random
import argparse
from tqdm import tqdm
from torchsummary import summary
from datasets import custom_transforms
from datasets.sequence_folders import SequenceFolder
from models.generator import VAE
import argparse
parser = argparse.ArgumentParser(description='GANVO training on KITTI-formatted Dataset',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--sequence-length', type=int, metavar='N', help='sequence length for training', default=3)
parser.add_argument('--seed', default=0, type=int, help='seed for random functions, and network initialization')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=16, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--lr', '--learning-rate', default=2e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default=0.999, type=float, metavar='M',
help='beta parameters for adam')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay')
parser.add_argument('--rotation-mode', type=str, choices=['euler', 'quat'], default='euler',
help='rotation mode for PoseExpnet : euler (yaw,pitch,roll) or quaternion (last 3 coefficients)')
parser.add_argument('--init-mode', type=str, choices=['kaiming_uniform', 'kaiming_normal', 'xavier_uniform', 'xavier_normal', 'gaussian'], default='kaiming_uniform',
help='Weight initialization: kaiming or xavier, uniform or normal')
def reconstruction_loss(y_hat, y):
return (y_hat - y).abs().mean()
class VaeTrainer:
def __init__(self, dataloader, model: VAE, ):
self.train_loader = dataloader
self.model = model
def compile(self, loss, optimizer, device):
self.loss = loss
self.optimizer = optimizer
self.device = device
self.model.to(device)
def train_step(self, x, y):
"""
Arguments: x: A tensor of shape [B, 3, H, W]
y A tensor of shape [B, 3, H, W]
"""
y_hat = self.model(x) # [B, 3, H, W]
batch_loss = self.loss(y_hat, y)
batch_loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
return batch_loss.item(), y_hat
def train(self, epochs: int):
print("Start training")
for epoch in range(epochs):
print(f'epoch {epoch} ---------------------')
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv) in enumerate(tqdm(self.train_loader)):
# Training on a single batch
batch_size = tgt_img.size(0)
tgt_img = tgt_img.to(self.device)
reconstruction_loss, generated_img = self.train_step(tgt_img, tgt_img)
if i%100 == 0 and i !=0 :
print(f'Reconstruction loss: {reconstruction_loss}')
print(tgt_img[0, 2, 100, 100])
print(generated_img[0, 2, 100, 100])
def save_model(self, save_path: str):
torch.save(self.model.state_dict(), save_path)
def main(args):
# Configure device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# Datasets
normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]) # Normalize into [-1,1]
train_transform = custom_transforms.Compose([
custom_transforms.RandomHorizontalFlip(),
custom_transforms.RandomScaleCrop(),
custom_transforms.ArrayToTensor(),
normalize
])
train_set = SequenceFolder(
args.data,
transform=train_transform,
seed=args.seed,
train=True,
sequence_length=args.sequence_length
)
#Dataloader
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
#Network
vae = VAE()
#Trainer
trainer = VaeTrainer(
dataloader = train_loader,
model = vae
)
#Optimizer
optmizer = torch.optim.Adam( params=[{'params':trainer.model.parameters(), 'lr': args.lr}],
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay)
# Keras-like Compilation
trainer.compile(loss=reconstruction_loss, optimizer = optmizer, device=device)
#Train and save model
trainer.train(args.epochs)
trainer.save_model('../pretrained_vae.pt')
return
if __name__=='__main__':
args = parser.parse_args()
main(args)