-
Notifications
You must be signed in to change notification settings - Fork 17
/
community.py
executable file
·538 lines (448 loc) · 17.2 KB
/
community.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
This module implements community detection.
"""
__all__ = ["partition_at_level", "modularity", "best_partition", "generate_dendogram", "induced_graph"]
__author__ = """Thomas Aynaud ([email protected])"""
# Copyright (C) 2009 by
# Thomas Aynaud <[email protected]>
# All rights reserved.
# BSD license.
__PASS_MAX = -1
__MIN = 0.0000001
import networkx as nx
import sys
import types
import array
def partition_at_level(dendogram, level) :
"""Return the partition of the nodes at the given level
A dendogram is a tree and each level is a partition of the graph nodes.
Level 0 is the first partition, which contains the smallest communities, and the best is len(dendogram) - 1.
The higher the level is, the bigger are the communities
Parameters
----------
dendogram : list of dict
a list of partitions, ie dictionnaries where keys of the i+1 are the values of the i.
level : int
the level which belongs to [0..len(dendogram)-1]
Returns
-------
partition : dictionnary
A dictionary where keys are the nodes and the values are the set it belongs to
Raises
------
KeyError
If the dendogram is not well formed or the level is too high
See Also
--------
best_partition which directly combines partition_at_level and generate_dendogram to obtain the partition of highest modularity
Examples
--------
>>> G=nx.erdos_renyi_graph(100, 0.01)
>>> dendo = generate_dendogram(G)
>>> for level in range(len(dendo) - 1) :
>>> print "partition at level", level, "is", partition_at_level(dendo, level)
"""
partition = dendogram[0].copy()
for index in range(1, level + 1) :
for node, community in partition.iteritems() :
partition[node] = dendogram[index][community]
return partition
def modularity(partition, graph) :
"""Compute the modularity of a partition of a graph
Parameters
----------
partition : dict
the partition of the nodes, i.e a dictionary where keys are their nodes and values the communities
graph : networkx.Graph
the networkx graph which is decomposed
Returns
-------
modularity : float
The modularity
Raises
------
KeyError
If the partition is not a partition of all graph nodes
ValueError
If the graph has no link
TypeError
If graph is not a networkx.Graph
References
----------
.. 1. Newman, M.E.J. & Girvan, M. Finding and evaluating community structure in networks. Physical Review E 69, 26113(2004).
Examples
--------
>>> G=nx.erdos_renyi_graph(100, 0.01)
>>> part = best_partition(G)
>>> modularity(part, G)
"""
if type(graph) != nx.Graph :
raise TypeError("Bad graph type, use only non directed graph")
inc = dict([])
deg = dict([])
links = graph.size(weight='weight')
if links == 0 :
raise ValueError("A graph without link has an undefined modularity")
for node in graph :
com = partition[node]
deg[com] = deg.get(com, 0.) + graph.degree(node, weight = 'weight')
for neighbor, datas in graph[node].iteritems() :
weight = datas.get("weight", 1)
if partition[neighbor] == com :
if neighbor == node :
inc[com] = inc.get(com, 0.) + float(weight)
else :
inc[com] = inc.get(com, 0.) + float(weight) / 2.
res = 0.
for com in set(partition.values()) :
res += (inc.get(com, 0.) / links) - (deg.get(com, 0.) / (2.*links))**2
return res
def best_partition(graph, partition = None) :
"""Compute the partition of the graph nodes which maximises the modularity
(or try..) using the Louvain heuristices
This is the partition of highest modularity, i.e. the highest partition of the dendogram
generated by the Louvain algorithm.
Parameters
----------
graph : networkx.Graph
the networkx graph which is decomposed
partition : dict, optionnal
the algorithm will start using this partition of the nodes. It's a dictionary where keys are their nodes and values the communities
Returns
-------
partition : dictionnary
The partition, with communities numbered from 0 to number of communities
Raises
------
NetworkXError
If the graph is not Eulerian.
See Also
--------
generate_dendogram to obtain all the decompositions levels
Notes
-----
Uses Louvain algorithm
References
----------
.. 1. Blondel, V.D. et al. Fast unfolding of communities in large networks. J. Stat. Mech 10008, 1-12(2008).
Examples
--------
>>> #Basic usage
>>> G=nx.erdos_renyi_graph(100, 0.01)
>>> part = best_partition(G)
>>> #other example to display a graph with its community :
>>> #better with karate_graph() as defined in networkx examples
>>> #erdos renyi don't have true community structure
>>> G = nx.erdos_renyi_graph(30, 0.05)
>>> #first compute the best partition
>>> partition = community.best_partition(G)
>>> #drawing
>>> size = float(len(set(partition.values())))
>>> pos = nx.spring_layout(G)
>>> count = 0.
>>> for com in set(partition.values()) :
>>> count = count + 1.
>>> list_nodes = [nodes for nodes in partition.keys()
>>> if partition[nodes] == com]
>>> nx.draw_networkx_nodes(G, pos, list_nodes, node_size = 20,
node_color = str(count / size))
>>> nx.draw_networkx_edges(G,pos, alpha=0.5)
>>> plt.show()
"""
dendo = generate_dendogram(graph, partition)
return partition_at_level(dendo, len(dendo) - 1 )
def generate_dendogram(graph, part_init = None) :
"""Find communities in the graph and return the associated dendogram
A dendogram is a tree and each level is a partition of the graph nodes. Level 0 is the first partition, which contains the smallest communities, and the best is len(dendogram) - 1. The higher the level is, the bigger are the communities
Parameters
----------
graph : networkx.Graph
the networkx graph which will be decomposed
part_init : dict, optionnal
the algorithm will start using this partition of the nodes. It's a dictionary where keys are their nodes and values the communities
Returns
-------
dendogram : list of dictionaries
a list of partitions, ie dictionnaries where keys of the i+1 are the values of the i. and where keys of the first are the nodes of graph
Raises
------
TypeError
If the graph is not a networkx.Graph
See Also
--------
best_partition
Notes
-----
Uses Louvain algorithm
References
----------
.. 1. Blondel, V.D. et al. Fast unfolding of communities in large networks. J. Stat. Mech 10008, 1-12(2008).
Examples
--------
>>> G=nx.erdos_renyi_graph(100, 0.01)
>>> dendo = generate_dendogram(G)
>>> for level in range(len(dendo) - 1) :
>>> print "partition at level", level, "is", partition_at_level(dendo, level)
"""
if type(graph) != nx.Graph :
raise TypeError("Bad graph type, use only non directed graph")
#special case, when there is no link
#the best partition is everyone in its community
if graph.number_of_edges() == 0 :
part = dict([])
for node in graph.nodes() :
part[node] = node
return part
current_graph = graph.copy()
status = Status()
status.init(current_graph, part_init)
mod = __modularity(status)
status_list = list()
__one_level(current_graph, status)
new_mod = __modularity(status)
partition = __renumber(status.node2com)
status_list.append(partition)
mod = new_mod
current_graph = induced_graph(partition, current_graph)
status.init(current_graph)
while True :
__one_level(current_graph, status)
new_mod = __modularity(status)
if new_mod - mod < __MIN :
break
partition = __renumber(status.node2com)
status_list.append(partition)
mod = new_mod
current_graph = induced_graph(partition, current_graph)
status.init(current_graph)
return status_list[:]
def induced_graph(partition, graph) :
"""Produce the graph where nodes are the communities
there is a link of weight w between communities if the sum of the weights of the links between their elements is w
Parameters
----------
partition : dict
a dictionary where keys are graph nodes and values the part the node belongs to
graph : networkx.Graph
the initial graph
Returns
-------
g : networkx.Graph
a networkx graph where nodes are the parts
Examples
--------
>>> n = 5
>>> g = nx.complete_graph(2*n)
>>> part = dict([])
>>> for node in g.nodes() :
>>> part[node] = node % 2
>>> ind = induced_graph(part, g)
>>> goal = nx.Graph()
>>> goal.add_weighted_edges_from([(0,1,n*n),(0,0,n*(n-1)/2), (1, 1, n*(n-1)/2)])
>>> nx.is_isomorphic(int, goal)
True
"""
ret = nx.Graph()
ret.add_nodes_from(partition.values())
for node1, node2, datas in graph.edges_iter(data = True) :
weight = datas.get("weight", 1)
com1 = partition[node1]
com2 = partition[node2]
w_prec = ret.get_edge_data(com1, com2, {"weight":0}).get("weight", 1)
ret.add_edge(com1, com2, weight = w_prec + weight)
return ret
def __renumber(dictionary) :
"""Renumber the values of the dictionary from 0 to n
"""
count = 0
ret = dictionary.copy()
new_values = dict([])
for key in dictionary.keys() :
value = dictionary[key]
new_value = new_values.get(value, -1)
if new_value == -1 :
new_values[value] = count
new_value = count
count = count + 1
ret[key] = new_value
return ret
def __load_binary(data) :
"""Load binary graph as used by the cpp implementation of this algorithm
"""
if type(data) == types.StringType :
data = open(data, "rb")
reader = array.array("I")
reader.fromfile(data, 1)
num_nodes = reader.pop()
reader = array.array("I")
reader.fromfile(data, num_nodes)
cum_deg = reader.tolist()
num_links = reader.pop()
reader = array.array("I")
reader.fromfile(data, num_links)
links = reader.tolist()
graph = nx.Graph()
graph.add_nodes_from(range(num_nodes))
prec_deg = 0
for index in range(num_nodes) :
last_deg = cum_deg[index]
neighbors = links[prec_deg:last_deg]
graph.add_edges_from([(index, int(neigh)) for neigh in neighbors])
prec_deg = last_deg
return graph
def __one_level(graph, status) :
"""Compute one level of communities
"""
modif = True
nb_pass_done = 0
cur_mod = __modularity(status)
new_mod = cur_mod
while modif and nb_pass_done != __PASS_MAX :
cur_mod = new_mod
modif = False
nb_pass_done += 1
for node in graph.nodes() :
com_node = status.node2com[node]
degc_totw = status.gdegrees.get(node, 0.) / (status.total_weight*2.)
neigh_communities = __neighcom(node, graph, status)
__remove(node, com_node,
neigh_communities.get(com_node, 0.), status)
best_com = com_node
best_increase = 0
for com, dnc in neigh_communities.iteritems() :
incr = dnc - status.degrees.get(com, 0.) * degc_totw
if incr > best_increase :
best_increase = incr
best_com = com
__insert(node, best_com,
neigh_communities.get(best_com, 0.), status)
if best_com != com_node :
modif = True
new_mod = __modularity(status)
if new_mod - cur_mod < __MIN :
break
class Status :
"""
To handle several data in one struct.
Could be replaced by named tuple, but don't want to depend on python 2.6
"""
node2com = {}
total_weight = 0
internals = {}
degrees = {}
gdegrees = {}
def __init__(self) :
self.node2com = dict([])
self.total_weight = 0
self.degrees = dict([])
self.gdegrees = dict([])
self.internals = dict([])
self.loops = dict([])
def __str__(self) :
return ("node2com : " + str(self.node2com) + " degrees : "
+ str(self.degrees) + " internals : " + str(self.internals)
+ " total_weight : " + str(self.total_weight))
def copy(self) :
"""Perform a deep copy of status"""
new_status = Status()
new_status.node2com = self.node2com.copy()
new_status.internals = self.internals.copy()
new_status.degrees = self.degrees.copy()
new_status.gdegrees = self.gdegrees.copy()
new_status.total_weight = self.total_weight
def init(self, graph, part = None) :
"""Initialize the status of a graph with every node in one community"""
count = 0
self.node2com = dict([])
self.total_weight = 0
self.degrees = dict([])
self.gdegrees = dict([])
self.internals = dict([])
self.total_weight = graph.size(weight = 'weight')
if part == None :
for node in graph.nodes() :
self.node2com[node] = count
deg = float(graph.degree(node, weight = 'weight'))
if deg < 0 :
raise ValueError("Bad graph type, use positive weights")
self.degrees[count] = deg
self.gdegrees[node] = deg
self.loops[node] = float(graph.get_edge_data(node, node,
{"weight":0}).get("weight", 1))
self.internals[count] = self.loops[node]
count = count + 1
else :
for node in graph.nodes() :
com = part[node]
self.node2com[node] = com
deg = float(graph.degree(node, weigh = 'weight'))
self.degrees[com] = self.degrees.get(com, 0) + deg
self.gdegrees[node] = deg
inc = 0.
for neighbor, datas in graph[node].iteritems() :
weight = datas.get("weight", 1)
if weight <= 0 :
raise ValueError("Bad graph type, use positive weights")
if part[neighbor] == com :
if neighbor == node :
inc += float(weight)
else :
inc += float(weight) / 2.
self.internals[com] = self.internals.get(com, 0) + inc
def __neighcom(node, graph, status) :
"""
Compute the communities in the neighborood of node in the graph given
with the decomposition node2com
"""
weights = {}
for neighbor, datas in graph[node].iteritems() :
if neighbor != node :
weight = datas.get("weight", 1)
neighborcom = status.node2com[neighbor]
weights[neighborcom] = weights.get(neighborcom, 0) + weight
return weights
def __remove(node, com, weight, status) :
""" Remove node from community com and modify status"""
status.degrees[com] = ( status.degrees.get(com, 0.)
- status.gdegrees.get(node, 0.) )
status.internals[com] = float( status.internals.get(com, 0.) -
weight - status.loops.get(node, 0.) )
status.node2com[node] = -1
def __insert(node, com, weight, status) :
""" Insert node into community and modify status"""
status.node2com[node] = com
status.degrees[com] = ( status.degrees.get(com, 0.) +
status.gdegrees.get(node, 0.) )
status.internals[com] = float( status.internals.get(com, 0.) +
weight + status.loops.get(node, 0.) )
def __modularity(status) :
"""
Compute the modularity of the partition of the graph faslty using status precomputed
"""
links = float(status.total_weight)
result = 0.
for community in set(status.node2com.values()) :
in_degree = status.internals.get(community, 0.)
degree = status.degrees.get(community, 0.)
if links > 0 :
result = result + in_degree / links - ((degree / (2.*links))**2)
return result
def __main() :
"""Main function to mimic C++ version behavior"""
try :
filename = sys.argv[1]
graphfile = __load_binary(filename)
partition = best_partition(graphfile)
print >> sys.stderr, str(modularity(partition, graphfile))
for elem, part in partition.iteritems() :
print str(elem) + " " + str(part)
except (IndexError, IOError):
print "Usage : ./community filename"
print "find the communities in graph filename and display the dendogram"
print "Parameters:"
print "filename is a binary file as generated by the "
print "convert utility distributed with the C implementation"
if __name__ == "__main__" :
__main()