Skip to content
This repository was archived by the owner on Aug 21, 2024. It is now read-only.

Commit efe0b98

Browse files
authored
Fin rendering in LinearAlgebra
1 parent 7faa5cd commit efe0b98

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

tutorials/LinearAlgebra/LinearAlgebra.ipynb

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -405,8 +405,8 @@
405405
"\n",
406406
"Another, equivalent definition highlights what makes this an interesting property. For any matrices $B$ and $C$ of compatible sizes:\n",
407407
"\n",
408-
"$$A^{-1}(AB) = A(A^{-1}B) = B \\\\\n",
409-
"(CA)A^{-1} = (CA^{-1})A = C$$\n",
408+
"$$A^{-1}(AB) = A(A^{-1}B) = B$$\n",
409+
"$$(CA)A^{-1} = (CA^{-1})A = C$$\n",
410410
"\n",
411411
"A square matrix has a property called the **determinant**, with the determinant of matrix $A$ being written as $|A|$. A matrix is invertible if and only if its determinant isn't equal to $0$.\n",
412412
"\n",
@@ -948,8 +948,8 @@
948948
" A_{n-1,0} \\cdot \\color{blue} {\\begin{bmatrix}B_{0,0} & \\dotsb & B_{0,l-1} \\\\ \\vdots & \\ddots & \\vdots \\\\ B_{k-1,0} & \\dotsb & B_{k-1,l-1} \\end{bmatrix}} & \\dotsb &\n",
949949
" A_{n-1,m-1} \\cdot \\color{red} {\\begin{bmatrix}B_{0,0} & \\dotsb & B_{0,l-1} \\\\ \\vdots & \\ddots & \\vdots \\\\ B_{k-1,0} & \\dotsb & B_{k-1,l-1} \\end{bmatrix}}\n",
950950
"\\end{bmatrix}\n",
951-
"= \\\\\n",
952-
"=\n",
951+
"=$$\n",
952+
"$$=\n",
953953
"\\begin{bmatrix}\n",
954954
" A_{0,0} \\cdot \\color{red} {B_{0,0}} & \\dotsb & A_{0,0} \\cdot \\color{red} {B_{0,l-1}} & \\dotsb & A_{0,m-1} \\cdot \\color{blue} {B_{0,0}} & \\dotsb & A_{0,m-1} \\cdot \\color{blue} {B_{0,l-1}} \\\\\n",
955955
" \\vdots & \\ddots & \\vdots & \\dotsb & \\vdots & \\ddots & \\vdots \\\\\n",

0 commit comments

Comments
 (0)