-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain_confignet.py
76 lines (62 loc) · 4.06 KB
/
train_confignet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Script for starting the training of the ConfigNet"""
import numpy as np
import argparse
import os
import sys
import json
import training_utils
import confignet
from confignet.confignet_first_stage import DEFAULT_CONFIG
def parse_args(args):
parser = argparse.ArgumentParser(description="ConfigNet training")
parser.add_argument("--output_dir", help="Path to the directory where the output will be stored", required=True)
parser.add_argument("--log_dir", help="Directory where tensorboard logs will be written", default=None)
parser.add_argument("--data_dir", help="Optional path to which the dataset paths are appended", default=None)
parser.add_argument("--real_training_set_path", help="Path to the real training set file", required=True)
parser.add_argument("--synth_training_set_path", help="Path to the synthetic training set file", required=True)
parser.add_argument("--validation_set_path", help="Path to the validation set file", required=True)
parser.add_argument("--attribute_classifier_path", help="Path to attribute classifier that will be used in metrics", required=True)
parser.add_argument("--batch_size", type=int, help="Batch size used in training ", default=DEFAULT_CONFIG["batch_size"])
parser.add_argument("--stage_1_training_steps", type=int, help="Number of training steps in first stage training", default=50000)
parser.add_argument("--stage_2_training_steps", type=int, help="Number of training steps in second stage training", default=100000)
parser.add_argument("--n_samples_for_metrics", type=int, help="Number of samples used in training-time metrics", default=1000)
args = parser.parse_args(args)
aml_run = confignet.azure_ml_utils.get_aml_run()
confignet.azure_ml_utils.log_job_params(aml_run, args)
training_utils.initialize_random_seed(0)
if args.data_dir is not None:
args.real_training_set_path = os.path.join(args.data_dir, args.real_training_set_path)
args.synth_training_set_path = os.path.join(args.data_dir, args.synth_training_set_path)
args.validation_set_path = os.path.join(args.data_dir, args.validation_set_path)
args.attribute_classifier_path = os.path.join(args.data_dir, args.attribute_classifier_path)
if args.log_dir is None:
args.log_dir = args.output_dir
real_training_set = confignet.NeuralRendererDataset.load(args.real_training_set_path)
synth_training_set = confignet.NeuralRendererDataset.load(args.synth_training_set_path)
validation_set = confignet.NeuralRendererDataset.load(args.validation_set_path)
# if checkpoint not loaded
config = {
"batch_size": args.batch_size,
"output_shape": real_training_set.imgs.shape[1:]
}
config = confignet.confignet_utils.merge_configs(DEFAULT_CONFIG, config)
synth_training_set.process_metadata(config, True)
### first stage training
first_stage_model = confignet.ConfigNetFirstStage(config)
first_stage_output_dir = os.path.join(args.output_dir, "first_stage")
first_stage_model.train(real_training_set, synth_training_set, first_stage_output_dir,
args.log_dir, n_steps=args.stage_1_training_steps,
n_samples_for_metrics=args.n_samples_for_metrics, aml_run=aml_run)
first_stage_weights = first_stage_model.get_weights()
### end of first stage training
### second stage training
config["image_loss_weight"] *= 10 # increase image loss weight
second_stage_model = confignet.ConfigNet(config)
confignet.ConfigNetFirstStage.set_weights(second_stage_model, first_stage_weights)
second_stage_model.train(real_training_set, synth_training_set, validation_set, args.attribute_classifier_path,
args.output_dir, args.log_dir, n_steps=args.stage_1_training_steps,
n_samples_for_metrics=args.n_samples_for_metrics, aml_run=aml_run)
if __name__ == "__main__":
parse_args(sys.argv[1:])