Skip to content

LogQL Plugins

Lorenzo Mangani edited this page Jun 11, 2022 · 11 revisions


qryn Plugins

  • WORK IN PROGRESS!

Missing a LogQL function in qryn? Extend functionality in in no time using qryn Plugins Need to alias a complex query? Use macros to turn complex queries into easy to use queries

Overall plugin structure

Plugins are supported via plugnplay module https://github.com/e0ipso/plugnplay . To create a plugin you have to create a nodejs project with subfolders for each plugin or add them into your qryn plugins folder:

/
|- package.json
|- plugin_name_folder
|  |- plugnplay.yml
|  |- index.js
|- plugin_2_folder
   |- plugnplay.yml
   ...

Different types of plugins

There is a number of different types of plugins supported by qryn. Each type extends particular functionality:

  • Log-range aggregator over unwrapped range: unwrap_registry type (vanilla LogQL example: avg_over_time)
  • Custom macro function to wrap or shorten an existing request statement: macros type

Plugin implementation

plugnplay.yml file

In order to initialize the plugin we need the plugnplay.yml file:

id: derivative
name: Derivative Plugin
description: Plugin to test pluggable extensions
loader: derivative.js
type: unwrap_registry
  • id of the plugin should be unique.
  • type of the plugin should be unwrap_registry.
  • loader field should specify the js file exporting the plugin loader class.

The js module specified in the loader field should export a class extending PluginLoaderBase class from the plugnplay package.

const {PluginLoaderBase} = require('plugnplay');
module.exports = `class extends PluginLoaderBase {
    exportSync() { return {...}; }
}

The exporting class should implement one function: exportSync() {...}. The exportSync function should return an object representing API different for each type of plugin.

Finally, you have to add the path to your plugin root folder to the env variable PLUGINS_PATH. Different paths should be separated by comma sign ,.

Unwrapped Range Aggregation (unwrap_registry)

In this example we will add a new unwrapped range aggregator derivative:

derivative=(last_unwrapped_value_in_range - first_unwrapped_value_in_range) / (last_time_in_range - first_time_in_range)

You need to init a plugin with the following loader:

const {PluginLoaderBase} = require('plugnplay');
module.exports = `class extends PluginLoaderBase {
    exportSync(api) {
        return {
            derivative = {
                run: () => {},
                approx: () => {}
            }
        }
    }
}

exportSync is a function returning an object with the function name as key and two methods: run and approx.

The run method is called every time new unwrapped value accepted by the stream processor. Its declaration is:

        /**
         *
         * @param sum {any} previous value for the current time bucket
         * @param val {{unwrapped: number}} current values
         * @param time {number} timestamp in ms for the current value
         * @returns {any}
         */
        const run = (sum, val, time) => {
            sum = sum || {};
            sum.first = sum && sum.first && time > sum.first.time ? sum.first : {time: time, val: val.unwrapped};
            sum.last = sum && sum.last && time < sum.last ? sum.last : {time: time, val: val.unwrapped};
            return sum;
        }

So the run function accepts the previous aggregated value. The initial value is 0. The second is an object with current unwrapped value. And the time when the unwrapped value appeared in the database. The run function should return the new sum. Data immutability is preferred but optional.

The approx method is called for each bucket at the end of processing. Its declaration is:

        /**
         * @param sum {any} sum of the time bucket you have created during "run"
         * @returns {number}
         */
        const approx = (sum) => {
            return sum && sum.last && sum.first && sum.last.time > sum.first.time ?
                (sum.last.val - sum.first.val) / (sum.last.time - sum.first.time) * 1000 : 0;
        }

The only argument is the result of the latest run call for the bucket. The function should return number as result of the operator calculation for the provided time bucket.

Example

The full code of the derivative plugin:

plugnplay.yml

id: derivative
name: Derivative Plugin
description: Plugin to test pluggable extensions
loader: derivative.js
type: unwrap_registry

derivative.js:

const {PluginLoaderBase} = require('plugnplay');

module.exports = class extends PluginLoaderBase {
    exportSync(api) {
        return {
            derivative: {
                /**
                 *
                 * @param sum {any} previous value for the current time bucket
                 * @param val {{unwrapped: number}} current values
                 * @param time {number} timestamp in ms for the current value
                 * @returns {any}
                 */
                run: (sum, val, time) => {
                    sum = sum || {};
                    sum.first = sum && sum.first && time > sum.first.time ? sum.first : {
                        time: time,
                        val: val.unwrapped
                    };
                    sum.last = sum && sum.last && time < sum.last ? sum.last : {time: time, val: val.unwrapped};
                    return sum;
                },
                /**
                 * @param sum {any} sum of the time bucket you have created during "run"
                 * @returns {number}
                 */
                approx: (sum) => {
                    return sum && sum.last && sum.first && sum.last.time > sum.first.time ?
                        (sum.last.val - sum.first.val) / (sum.last.time - sum.first.time) * 1000 : 0;
                }
            }
        };
    }
}

Parser plugin implementation (like json, regexp, etc)

If you want to create your own parser of log lines or fix some of unsupported ones, you can create a plugin of "parser_registry" type.

plugnplay.yml file

The plugnplay.yml file of a plugin should have "parser_registry" type. No other requirements.

id: label_to_row
name: Label to Time Series
description: Convert label to  extra time series
loader: index.js
type: parser_registry

The plugin API

The plugin loader class should implement exportSync method returning an object with the special structure:

exportSync (options) {
  return {
    <your parser function name>: {
      /**
      * @param parameters {string[]} stringified (!but not unquoted!) generic parameters array like 
      *   ['parameter1', 'label2="parameter2"']  
      */
      map: (parameters) => {
        /**
        * @param entry {{labels: Object<string, string>, string: string, timestamp_ms: number}}
        * @returns {{labels: Object<string, string>, string: string, timestamp_ms: number}}
        */ 
        return (entry) => {
          ... here goes the parser ...
        }
      },
      /**
      * @param parameters {string[]} stringified (!but not unquoted!) generic parameters array like 
      *   ['parameter1', 'label2="parameter2"']  
      */
      remap: (parameters) => {
        /**
        * @param emit {function({labels: Object<string, string>, string: string, timestamp_ms: number})}
        * @param entry {{labels: Object<string, string>, string: string, timestamp_ms: number}}
        */ 
        return (emit, entry) => {
          ... here goes the parser ...
        }
    }
  }
}

Your parser function should implement one of map and remap functions. Use map if you want to exactly an incoming entry (one entry incoming to generate one entry). Remap can afford you to generate more than one entry on one incoming or to filter out some incoming entries. Use the emit function if you want to output an entry down to the pipeline in that case.

Example

Here is an example of plugin that extract labels from incoming entry and creates multiple entries like {label: <extracted label>}: value of the label

plugnplay.yml

id: label_to_row
name: Label to Time Series
description: Convert label to  extra time series
loader: index.js
type: parser_registry

index.js

const { PluginLoaderBase } = require('plugnplay')

module.exports = class extends PluginLoaderBase {
  exportSync (options) {
    return {
      label_to_row: {
        /**
         *
         * @param parameters {string[]}
         */
        remap: (parameters) => {
          const labelsToRemap = parameters.length
            ? JSON.parse(parameters[0]).split(',').map(p => p.trim())
            : undefined
          return (emit, entry) => {
            if (labelsToRemap) {
              for (const l of labelsToRemap) {
                if (entry.labels[l]) {
                  const rm = {
                    ...entry,
                    labels: { label: l },
                    string: entry.labels[l]
                  }
                  emit(rm)
                }
              }
              return
            }
            for (const [l, v] of Object.entries(entry)) {
              emit({
                ...entry,
                labels: { label: l },
                string: v
              })
            }
          }
        }
      }
    }
  }
}

Macro plugin implementation (macros)

qryn parses logql requests using the bnf package https://github.com/daKuleMune/nodebnf#readme

You can provide a custom bnf token representation and map it to a relevant logql request via a plugin with macros type.

The raw ABNF description: https://github.com/metrico/qryn/blob/master/parser/logql.bnf .

If you are unfamiliar BNF rules, here is a good resource to get a quick introduction: http://www.cs.umsl.edu/~janikow/cs4280/bnf.pdf

Custom BNF requirements

A bnf description in your plugin should follow the requirements:

  • one bnf rule on a string
  • no multiline rules
  • no comments supported
  • bnf rule name should start with MACRO_ prefix
  • no bnf rule name collisions

Plugin API

A plugin should export two fields:

const exports = {
    bnf: "... bnf rules ...",
    /**
     *
     * @param token {Token}
     * @returns {string}
     */
    stringify: (token) => {}
}

The bnf field should contain bnf rules.

The stringify function should convert a parsed query token into a legit logQL request.

The Token type

Token type is a request parsed by the BNF package. It has the following fields:

Field Header Description
value token.value:string part of the request expression corresponding to the token
Child token.Child(child_type: string): Token function returning the first token child with the specified type.
Children token.Children(child_type: string): Token[] function returning all the token children with the specified type.

Example

Let's review an example of macro translating test_macro("val1") to {test_id="val1"}

The plugnplay.yml file

id: test_macro
name: test macro
description: A macro to test
loader: index.js
type: macros

The BNF description of the macro: MACRO_test_macro_fn ::= "test_macro" <OWSP> "(" <OWSP> <quoted_str> <OWSP> ")"

The complete loader code:

const {PluginLoaderBase} = require('plugnplay');
module.exports = class extends PluginLoaderBase {
    exportSync() {
        return {
            bnf: `MACRO_test_macro_fn ::= "test_macro" <OWSP> "(" <OWSP> <quoted_str> <OWSP> ")"`,
            /**
             *
             * @param token {Token}
             * @returns {string}
             */
            stringify: (token) => {
                return `{test_id=${token.Child('quoted_str').value}}`;
            }
        };
    }
}

Commonly used tokens defined by the core BNF

You can use the common rules already defined in the core BNF description.

The raw ABNF description with all the rules: https://github.com/metrico/qryn/blob/master/parser/logql.bnf .

The rules defined in the BNF package are here: https://github.com/daKuleMune/nodebnf#readme

Commonly used LogQL rules:

Rule name Example Description
log_stream_selector {label1 = "val1", l2 =~ "v2"} |~ "re1" log stream selector with label selectors and all pipeline operators
log_stream_selector_rule label1 = "val1" one label selector rule
label label1 label name
operator = / != / =~ / !~ label selector operator
quoted_str "qstr\"" one properly quoted string
line_filter_expression |~ "re1" one line filter expression
line_filter_operator |= / |= / !~ / != string filter operator
parser_expression | json jlbl="l1[1].l2" one parser expression
label_filter_expression | jlbl = "val1" one label filter in the pipeline part
line_format_expression | line_format "l1: {{label1}}" line format expression
labels_format_expression | line_format lbl1="l1: {{label1}}" label format expression
log_range_aggregation rate({label1="val1"} [1m]) log range aggregation expression
aggregation_operator sum(rate({label1="val1"} [1m])) by (lbl1, lbl2) aggregation operator expression
unwrap_expression {label1="val1"} |~ "re1" | unwrap lbl2 line selector with pipeline ending with the unwrap expression
unwrap_function rate(rate({label1="val1"} | unwrap int_lbl2 [1m]) by (label3) unwrapped log-range aggregation
compared_agg_statement rate(rate({label1="val1"} | unwrap int_lbl2 [1m]) by (label3) > 5 wrapped or unwrapped log-range aggregation comparef to a numeric const
Clone this wiki locally