Skip to content

Latest commit

 

History

History
102 lines (80 loc) · 28.6 KB

classList.md

File metadata and controls

102 lines (80 loc) · 28.6 KB

FUNCTION CALLS

Calls METRIC | DISTANCE

Class Description Language Constructor ()-Operator Default Parameters
Sorensen Distance Python f = distance.sorensen result = f(dataA, dataB)
C++ auto f = metric::sorensen auto result = f(dataA, dataB)
Euclidean Distance Metric Python f = distance.Euclidean() result = f(dataA, dataB)
C++ auto f = metric::Euclidean() auto result = f(dataA, dataB)
Manhatten Distance Metric Python f = distance.Manhatten() result = f(dataA, dataB)
C++ auto f = metric::Manhatten() auto result = f(dataA, dataB)
Minkowski (L general) Metric (P_norm) Python f = distance.P_norm(p=1) result = f(dataA, dataB) defaults: p=1
C++ auto f = metric::P_norm(1) auto result = f(dataA, dataB) defaults: p=1
Euclidean Metric Threshold Python f = distance.Euclidean_thresholded(thres=1, factor=3) result = f(dataA, dataB) defaults: thres=1000, factor=3000
C++ auto f = metric::Euclidean_thresholded(1, 3) auto result = f(dataA, dataB) defaults: thres=1000, factor=3000
Cosine Metric Python f = distance.Cosine() result = f(dataA, dataB)
C++ auto f = metric::Cosine() auto result = f(dataA, dataB)
Chebyshev Distance Metric (Maximum value distance) Python f = distance.Chebyshev() result = f(dataA, dataB)
C++ auto f = metric::Chebyshev() auto result = f(dataA, dataB)
Earth Mover's Distance Metric (EMD) Python f = distance.EMD(cost_mat, extra_mass_penalty) result = f(dataA, dataB) defaults: cost_mat={}, extra_mass_penalty=-1
C++ auto f = metric::EMD(cost_mat, max_cost) auto result = f(dataA, dataB) defaults: extra_mass_penalty=-1
Edit Distance Metric Python f = distance.Edit() result = f("asdsd", "dffdf")
C++ auto f = metric::Edit auto result = f("asdsd", "dffdf")
Structural Similarity Index (SSIM) Python f = distance.SSIM(dynamic_range=100, masking=1) result = f(img1, img2) defaults: dynamic_range=255, masking=2
C++ auto f = metric::SSIM<double, std::vector>(100, 1) auto result = f(img1, img2)
Time Warp Edit Distance (TWED) Python f = distance.TWED(penalty=1, elastic=2) result = f(dataA, dataB) defaults: penalty=0, elastic=1
C++ auto f = metric::TWED(1, 2) auto result = f(dataA, dataB)
Kohonen Distance Metric Python f = distance.Kohonen(train_data, w, h) result = f(sample1, sample2) defaults: start_learn_rate=0.8, finish_learn_rate=0.0, iterations=20
C++ auto f = metric::kohonen_distance(train_data, w, h) auto result = f(sample1, sample2) defaults: start_learn_rate=0.8, finish_learn_rate=0.0, iterations=20
Riemannian Distance Metric C++ auto rd = metric::RiemannianDistance<void, metric::Euclidean>() auto result = rd(ds1, ds2) defaults: metric=metric::Euclidean

Calls METRIC | SPACE

Class Description Language Constructor ()-Operator Parameters
Distance matrix Python f = space.Matrix(data, Euclidean()) result = f(i, j) Default Parameters: data = {}, metric=Euclidean()
Distance matrix C++ auto f = metric::Matrix<std::vector>(data) auto result = f(i, j) constructor defaults: d = Metric() /template argument/
A Search Tree works like a std-container to store data of some structure. Basically a Metric Search Tree has the same principle as a binary search tree or a kd-tree, but it works for arbitrary data structures. This Metric Search Tree is basically a Cover Tree Implementation. Additionally to the distiance (or similarity) between the data, a covering distance from level to level decides how the tree grows. Python f = space.Tree() auto result = f(i, j)
C++ auto f = metric::Tree<std::vector>() auto result = f(i, j)

Calls METRIC | MAPPING

Class Description Language Constructor ()-Operator Encode Decode Default Parameters
Domain split principle components compressor Python f = mapping.DSPCC(dataset, n_features=1) - f.encode(data) result = f.decode(codes) defaults: n_features=1, n_subbands=4, time_freq_balance=0.5, n_top_features=16
C++ auto f = metric::DSPCC<vector, void>(dataset, 1) defaults: n_features=1, n_subbands=4, time_freq_balance=0.5, n_top_features=16
Kohonen Distance Clustering is one of the Neural Network unsupervised learning algorithms. This algorithm is used in solving problems in various areas, especially in clustering complex data sets. Python f = mapping.KOC_factory(w, h) koc = f(samples, num_clusters) - - defaults: nodes_width=5, nodes_height=4, anomaly_sigma=1.0, start_learn_rate=0.8, finish_learn_rate=0, iterations=20, distribution_min=-1, distribution_max=1, min_cluster_size=1, metric=distance.Euclidean()
C++ auto f = mapping::KOC_factory<std::vector, metric::Grid6, metric::Euclidean>(w, h) auto koc = f(samples, num_clusters) - - defaults: nodes_width=5, nodes_height=4, anomaly_sigma=1.0, start_learn_rate=0.8, finish_learn_rate=0, iterations=20, distribution_min=-1, distribution_max=1, min_cluster_size=1
Autoencoder is an unsupervised artificial neural network that learns how to efficiently compress and encode data then learns how to reconstruct the data back from the reduced encoded representation to a representation that is as close to the original input as possible. It reduces data dimensions by learning how to ignore the noise in the data. Python f = mapping.Autoencoder() - result = f.encode(sample) result = f.decode(sample)
C++ auto f = metric::Autoencoder<uint8_t, double>() - auto result = f.encode(sample) result = f.decode(sample)
dbscan (Density-based spatial clustering of applications with noise) is a data clustering non-parametric algorithm. Given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature. Python f = mapping.dbscan assignments, seeds, counts = f(matrix, eps, minpts) - -
dbscan C++ auto f = mapping::dbscan<std::vector> auto result = f(matrix, eps, minpts)
ESN (echo state network) is a recurrent neural network with a sparsely connected hidden layer (with typically 1% connectivity). The connectivity and weights of hidden neurons are fixed and randomly assigned Python f = partial(mapping.ESN(w_size=400).train(slices, target).predict) result = f(slices) - - defaults: w_size=500, w_connections=10, w_sr=0.6, alpha=0.5, washout=1, beta=0.5
ESN C++ auto f = metric::ESN<std::vector, Euclidean>() - - defaults: w_size=500, w_connections=10, w_sr=0.6, alpha=0.5, washout=1, beta=0.5
affprop (Affinity propagation) is a clustering algorithm based on message passing between data points. Similar to K-medoids, it looks at the (dis)similarities in the data, picks one exemplar data point for each cluster, and assigns every point in the data set to the cluster with the closest exemplar. Python f = partial(mapping.affprop, preference=1.0, maxiter=100); result = f(data) - - defaults: preference=0.5, maxiter=200, tol=1.0e-6, damp=0.5
affprop C++ auto f = mapping.affprop<std::vector> auto result = f(data) defaults: preference=0.5, maxiter=200, tol=1.0e-6, damp=0.5
kmeans clustering is a method of vector quantization, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. Python f = partial(mapping.kmeans, maxiter=100, distance_measure='manhatten') result = f(data, k) - - defaults: maxiter=200, distance_measure='euclidean', random_seed=-1
kmeans C++ auto f = metric::kmeans auto result = f(data, k) defaults: maxiter=200, distance_measure='euclidean', random_seed=-1
kmedoids is a classical partitioning technique of clustering, which clusters the data set of n objects into k clusters, with the number k of clusters assumed known a priori (which implies that the programmer must specify k before the execution of the algorithm). Python f = mapping.kmedoids result = f(data, k) - -
kmedoids C++ auto f = metric::kmedoids<std::vector> auto result = f(data, k)

Calls METRIC | TRANSFORM

Class Description Language Constructor ()-Operator
Discrete wavelet transform(DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information. Python f = partial(transform.dwt, wavelet_type=3) result = f(a)
C++ auto f = metric::dwt<std::vector> auto result = f(a)
The idwt command performs a single-level one-dimensional wavelet reconstruction. Python f = partial(transform.idwt, wavelet_type=1, lx=3) result = f(a, b)
C++ auto f =metric::idwt<std::vector> auto result = f(a, b)
wmaxlev returns the maximum level L possible for a wavelet decomposition of a signal or image of size size_x. The maximum level is the last level for which at least one coefficient is correct. Python f = partial(transform.wmaxlev, wavelet_type=t) result = f(size_x)
C++ auto f = metric::wmaxlev auto result = f(size_x)

Calls METRIC | CORRELATION

Class Description Language Constructor ()-Operator Estimate Parameters
Use MGC (Multiscale Graph Correlation) as correlation coefficient to find nonlinear dependencies in data sets. It is optimized for small data set sizes. C++ auto f = metric::MGC<void, Euclidean,void, Manhatten>() auto result = f(dataA, dataB) auto result= f.estimate(dataA, dataB) Default parameters constructor: metric1=Euclidean(), metric2=Euclidean() Default parameters estimate: b_sample_size=250, threshold=0.05, max_iterations=1000
Python f = correlation.MGC() auto result = f(dataA, dataB) auto result= f.estimate(dataA, dataB) Default parameters constructor: metric1=Euclidean(), metric2=Euclidean(); Default parameters estimate: b_sample_size=250, threshold=0.05, max_iterations=1000
Calculate metric entropy, which gives a measure of instrinsic local dimensionality C++ auto f = metric::Entropy<void, Manhatten>(metric, k, p, exp) auto result = f(dataA) auto result= f.estimate(data) Default parameters constructor: metric=Euclidean(), k=7, p=25, exp=False Default parameters estimate: samples_size=250, threshold=0.05, max_iterations=1000
Python f = distance.Entropy(metric=Manhatten(), k=3, p=30) result = f(dataA) result = f.estimate(data) Default parameters constructor: metric=Euclidean(), k=7, p=25, exp=False Default parameters estimate: samples_size=250, threshold=0.05, max_iterations=1000
VMixing C++ auto f = metric::VMixing<void, metric::Euclidean>(metric::Euclidean(), 7, 50) auto result = f(dataA, dataB) auto result = f.estimate(dataA, dataB) defaults: constructor: metric=metric::Euclidean(), k=3, p=25; .estimate: sampleSize = 250, threshold = 0.05, maxIterations = 1000
VMixing_simple C++ auto f = metric::VMixing_simple<void, metric::Euclidean>(metric::Euclidean(), 7) auto result = f(dataA, dataB) auto result = f.estimate(dataA, dataB) defaults: constructor: metric=metric::Euclidean(), k=3; .estimate: sampleSize = 250, threshold = 0.05, maxIterations = 1000

Calls METRIC | UTILS

Class Description Language Constructor ()-Operator Parameters
The goal of resistance sparsification of graphs is to find a sparse subgraph (with reweighted edges) that approximately preserves the effective resistances between every pair of nodes. C++ auto f = metric::sparsify_effective_resistance auto result = f(data) Default params: ep=0.3, max_conc_const=4.0, jl_fac=4.0
Python f = partial(utils.sparsify_effective_resistance, ep=0.1) result = f(data) Default params: ep=0.3, max_conc_const=4.0, jl_fac=4.0
A minimum spanning tree is a graph consisting of the subset of edges which together connect all connected nodes, while minimizing the total sum of weights on the edges. This is computed using the Kruskal algorithm. C++ auto f = metric::sparsify_spanning_tree auto result = f(data) Default params: minimum=true
Python f = partial(utils.sparsify_spanning_tree, minimum=False) result = f(data) Default params: minimum=True