forked from tuzhucheng/Castor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
129 lines (112 loc) · 4.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.rnn as rnn_utils
import data
class ConvRNNModel(nn.Module):
def __init__(self, word_model, **config):
super().__init__()
embedding_dim = word_model.dim
self.word_model = word_model
self.hidden_size = config["hidden_size"]
fc_size = config["fc_size"]
self.batch_size = config["mbatch_size"]
n_fmaps = config["n_feature_maps"]
self.rnn_type = config["rnn_type"]
self.no_cuda = config["no_cuda"]
if self.rnn_type.upper() == "LSTM":
self.bi_rnn = nn.LSTM(embedding_dim, self.hidden_size, 1, batch_first=True, bidirectional=True)
elif self.rnn_type.upper() == "GRU":
self.bi_rnn = nn.GRU(embedding_dim, self.hidden_size, 1, batch_first=True, bidirectional=True)
else:
raise ValueError("RNN type must be one of LSTM or GRU")
self.conv = nn.Conv2d(1, n_fmaps, (1, self.hidden_size * 2))
self.fc1 = nn.Linear(n_fmaps + 2 * self.hidden_size, fc_size)
self.fc2 = nn.Linear(fc_size, config["n_labels"])
def convert_dataset(self, dataset):
dataset = np.stack(dataset)
model_in = dataset[:, 1].reshape(-1)
model_out = dataset[:, 0].flatten().astype(np.int)
model_out = torch.from_numpy(model_out)
indices, lengths = self.preprocess(model_in)
if not self.no_cuda:
model_out = model_out.cuda()
indices = indices.cuda()
lengths = lengths.cuda()
lengths, sort_idx = torch.sort(lengths, descending=True)
indices = indices[sort_idx]
model_out = model_out[sort_idx]
return ((indices, lengths), model_out)
def preprocess(self, sentences):
indices, lengths = self.word_model.lookup(sentences)
return torch.LongTensor(indices), torch.LongTensor(lengths)
def forward(self, x, lengths):
x = self.word_model(x)
x = rnn_utils.pack_padded_sequence(x, lengths, batch_first=True)
rnn_seq, rnn_out = self.bi_rnn(x)
if self.rnn_type.upper() == "LSTM":
rnn_out = rnn_out[0]
rnn_seq, _ = rnn_utils.pad_packed_sequence(rnn_seq, batch_first=True)
rnn_out.data = rnn_out.data.permute(1, 0, 2)
x = self.conv(rnn_seq.unsqueeze(1)).squeeze(3)
x = F.relu(x)
x = F.max_pool1d(x, x.size(2))
out = [t.squeeze(1) for t in rnn_out.chunk(2, 1)]
out.append(x.squeeze(-1))
x = torch.cat(out, 1)
x = F.relu(self.fc1(x))
return self.fc2(x)
class WordEmbeddingModel(nn.Module):
def __init__(self, id_dict, weights, unknown_vocab=[], static=True, padding_idx=0):
super().__init__()
vocab_size = len(id_dict) + len(unknown_vocab)
self.lookup_table = id_dict
last_id = max(id_dict.values())
for word in unknown_vocab:
last_id += 1
self.lookup_table[word] = last_id
self.dim = weights.shape[1]
self.weights = np.concatenate((weights, np.random.rand(len(unknown_vocab), self.dim) / 2 - 0.25))
self.padding_idx = padding_idx
self.embedding = nn.Embedding(vocab_size, self.dim, padding_idx=padding_idx)
self.embedding.weight.data.copy_(torch.from_numpy(self.weights))
if static:
self.embedding.weight.requires_grad = False
@classmethod
def make_random_model(cls, id_dict, unknown_vocab=[], dim=300):
weights = np.random.rand(len(id_dict), dim) - 0.5
return cls(id_dict, weights, unknown_vocab, static=False)
def forward(self, x):
return self.embedding(x)
def lookup(self, sentences):
raise NotImplementedError
class SSTWordEmbeddingModel(WordEmbeddingModel):
def __init__(self, id_dict, weights, unknown_vocab=[]):
super().__init__(id_dict, weights, unknown_vocab, padding_idx=16259)
def lookup(self, sentences):
indices_list = []
max_len = 0
for sentence in sentences:
indices = []
for word in data.sst_tokenize(sentence):
try:
index = self.lookup_table[word]
indices.append(index)
except KeyError:
continue
indices_list.append(indices)
if len(indices) > max_len:
max_len = len(indices)
lengths = [len(x) for x in indices_list]
for indices in indices_list:
indices.extend([self.padding_idx] * (max_len - len(indices)))
return indices_list, lengths
def set_seed(seed=0, no_cuda=False):
np.random.seed(seed)
if not no_cuda:
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
random.seed(seed)