forked from mtlynch/crfpp
-
Notifications
You must be signed in to change notification settings - Fork 4
/
tagger.h
224 lines (195 loc) · 6.81 KB
/
tagger.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//
// CRF++ -- Yet Another CRF toolkit
//
// $Id: tagger.h 1588 2007-02-12 09:03:39Z taku $;
//
// Copyright(C) 2005-2007 Taku Kudo <[email protected]>
//
#ifndef CRFPP_TAGGER_H_
#define CRFPP_TAGGER_H_
#include <iostream>
#include <vector>
#include <queue>
#include "param.h"
#include "crfpp.h"
#include "scoped_ptr.h"
#include "feature_index.h"
namespace CRFPP {
static inline double toprob(Node *n, double Z) {
return std::exp(n->alpha + n->beta - n->cost - Z);
}
class Allocator;
class ModelImpl : public Model {
public:
ModelImpl() : nbest_(0), vlevel_(0) {}
virtual ~ModelImpl() {}
bool open(int argc, char** argv);
bool open(const char* arg);
bool openFromArray(int argc, char** argv,
const char *buf, size_t size);
bool openFromArray(const char* arg,
const char *buf, size_t size);
Tagger *createTagger() const;
const char* what() { return what_.str(); }
unsigned int nbest() const { return nbest_; }
unsigned int vlevel() const { return vlevel_; }
FeatureIndex *feature_index() const { return feature_index_.get(); }
const char *getTemplate() const;
private:
bool open(const Param ¶m);
bool openFromArray(const Param ¶m,
const char *buf, size_t size);
whatlog what_;
unsigned int nbest_;
unsigned int vlevel_;
scoped_ptr<DecoderFeatureIndex> feature_index_;
};
class TaggerImpl : public Tagger {
public:
explicit TaggerImpl() : mode_(TEST), vlevel_(0), nbest_(0),
ysize_(0), Z_(0), feature_id_(0),
thread_id_(0), feature_index_(0),
allocator_(0) {}
virtual ~TaggerImpl() { close(); }
Allocator *allocator() const {
return allocator_;
}
void set_feature_id(size_t id) { feature_id_ = id; }
size_t feature_id() const { return feature_id_; }
void set_thread_id(unsigned short id) { thread_id_ = id; }
unsigned short thread_id() const { return thread_id_; }
Node *node(size_t i, size_t j) const { return node_[i][j]; }
void set_node(Node *n, size_t i, size_t j) { node_[i][j] = n; }
// for LEARN mode
bool open(FeatureIndex *feature_index, Allocator *allocator);
// for TEST mode, but feature_index is shared.
bool open(FeatureIndex *feature_index,
unsigned int nvest, unsigned velvel);
// for TEST mode
bool open(const Param ¶m);
bool open(const char *argv);
bool open(int argc, char **argv);
bool set_model(const Model &model);
int eval();
double gradient(double *);
double collins(double *);
bool shrink();
bool parse_stream(std::istream *is, std::ostream *os);
bool read(std::istream *is);
void close();
bool add(size_t size, const char **line);
bool add(const char*);
size_t size() const { return x_.size(); }
size_t xsize() const { return feature_index_->xsize(); }
size_t dsize() const { return feature_index_->size(); }
const float *weight_vector() const { return feature_index_->alpha_float(); }
bool empty() const { return x_.empty(); }
size_t ysize() const { return ysize_; }
double cost() const { return cost_; }
double Z() const { return Z_; }
double prob() const { return std::exp(- cost_ - Z_); }
double prob(size_t i, size_t j) const {
return toprob(node_[i][j], Z_);
}
double prob(size_t i) const {
return toprob(node_[i][result_[i]], Z_);
}
void set_penalty(size_t i, size_t j, double penalty);
double penalty(size_t i, size_t j) const;
double alpha(size_t i, size_t j) const { return node_[i][j]->alpha; }
double beta(size_t i, size_t j) const { return node_[i][j]->beta; }
double emission_cost(size_t i, size_t j) const { return node_[i][j]->cost; }
double next_transition_cost(size_t i, size_t j, size_t k) const {
return node_[i][j]->rpath[k]->cost;
}
double prev_transition_cost(size_t i, size_t j, size_t k) const {
return node_[i][j]->lpath[k]->cost;
}
double best_cost(size_t i, size_t j) const {
return node_[i][j]->bestCost;
}
const int *emission_vector(size_t i, size_t j) const {
return const_cast<int *>(node_[i][j]->fvector);
}
const int* next_transition_vector(size_t i, size_t j, size_t k) const {
return node_[i][j]->rpath[k]->fvector;
}
const int* prev_transition_vector(size_t i, size_t j, size_t k) const {
return node_[i][j]->lpath[k]->fvector;
}
size_t answer(size_t i) const { return answer_[i]; }
size_t result(size_t i) const { return result_[i]; }
size_t y(size_t i) const { return result_[i]; }
const char* yname(size_t i) const { return feature_index_->y(i); }
const char* y2(size_t i) const { return yname(result_[i]); }
const char* x(size_t i, size_t j) const { return x_[i][j]; }
const char** x(size_t i) const {
return const_cast<const char **>(&x_[i][0]);
}
const char* toString();
const char* toString(char *, size_t);
const char* parse(const char*);
const char* parse(const char*, size_t);
const char* parse(const char*, size_t, char*, size_t);
bool parse();
bool clear();
bool next();
unsigned int vlevel() const { return vlevel_; }
float cost_factor() const {
return feature_index_ ? feature_index_->cost_factor() : 0.0;
}
size_t nbest() const { return nbest_; }
void set_vlevel(unsigned int vlevel) {
vlevel_ = vlevel;
}
void set_cost_factor(float cost_factor) {
if (cost_factor > 0 && feature_index_) {
feature_index_->set_cost_factor(cost_factor);
}
}
void set_nbest(size_t nbest) {
nbest_ = nbest;
}
const char* what() { return what_.str(); }
private:
void forwardbackward();
void viterbi();
void buildLattice();
bool initNbest();
bool add2(size_t, const char **, bool);
struct QueueElement {
Node *node;
QueueElement *next;
double fx;
double gx;
};
class QueueElementComp {
public:
const bool operator()(QueueElement *q1,
QueueElement *q2)
{ return(q1->fx > q2->fx); }
};
enum { TEST, TEST_SHARED, LEARN };
unsigned int mode_ ;
unsigned int vlevel_;
unsigned int nbest_;
size_t ysize_;
double cost_;
double Z_;
size_t feature_id_;
unsigned short thread_id_;
FeatureIndex *feature_index_;
Allocator *allocator_;
std::vector<std::vector <const char *> > x_;
std::vector<std::vector <Node *> > node_;
std::vector<std::vector<double> > penalty_;
std::vector<unsigned short int> answer_;
std::vector<unsigned short int> result_;
whatlog what_;
string_buffer os_;
scoped_ptr<std::priority_queue <QueueElement*, std::vector <QueueElement *>,
QueueElementComp> > agenda_;
scoped_ptr<FreeList <QueueElement> > nbest_freelist_;
};
}
#endif