-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathibea-hypervolume.py
526 lines (434 loc) · 21.3 KB
/
ibea-hypervolume.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#!/usr/bin/env python
"""Python script for the COCO experimentation module `cocoex`.
Usage from a system shell::
python example_experiment.py bbob
runs a full but short experiment on the bbob suite. The optimization
algorithm used is determined by the `SOLVER` attribute in this file.
python example_experiment.py bbob 20
runs the same experiment but with a budget of 20 * dimension
f-evaluations.
python example_experiment.py bbob-biobj 1e3 1 20
runs the first of 20 batches with maximal budget of
1000 * dimension f-evaluations on the bbob-biobj suite.
All batches must be run to generate a complete data set.
Usage from a python shell::
>>> import example_experiment as ee
>>> ee.suite_name = "bbob-biobj"
>>> ee.main(5, 100, 100) # doctest: +ELLIPSIS
Benchmarking solver...
runs the last of 100 batches with budget 5 * dimension.
Calling `example_experiment` without parameters prints this
help and the available suite names.
"""
from __future__ import absolute_import, division, print_function, unicode_literals
del absolute_import, division, print_function, unicode_literals
try: range = xrange
except NameError: pass
import os, sys
import time
import numpy as np # "pip install numpy" installs numpy
import cocoex
from cocoex import Suite, Observer, log_level
verbose = 1
import math
try: import cma # cma.fmin is a solver option, "pip install cma" installs cma
except: pass
try: from scipy.optimize import fmin_slsqp # "pip install scipy" installs scipy
except: pass
try: range = xrange # let range always be an iterator
except NameError: pass
import random
def default_observers():
"""return a map from suite names to default observer names"""
# this is a function only to make the doc available and
# because @property doesn't work on module level
return {'bbob':'bbob',
'bbob-largescale':'bbob', # todo: needs to be confirmed
'bbob-constraint':'bbob', # todo: needs to be confirmed
'bbob-biobj': 'bbob-biobj'}
def print_flush(*args):
"""print without newline and flush"""
print(*args, end="")
sys.stdout.flush()
def ascetime(sec):
"""return elapsed time as str.
Example: return `"0h33:21"` if `sec == 33*60 + 21`.
"""
h = sec / 60**2
m = 60 * (h - h // 1)
s = 60 * (m - m // 1)
return "%dh%02d:%02d" % (h, m, s)
class ShortInfo(object):
"""print minimal info during benchmarking.
After initialization, to be called right before the solver is called with
the respective problem. Prints nothing if only the instance id changed.
Example output:
Jan20 18h27:56, d=2, running: f01f02f03f04f05f06f07f08f09f10f11f12f13f14f15f16f17f18f19f20f21f22f23f24f25f26f27f28f29f30f31f32f33f34f35f36f37f38f39f40f41f42f43f44f45f46f47f48f49f50f51f52f53f54f55 done
Jan20 18h27:56, d=3, running: f01f02f03f04f05f06f07f08f09f10f11f12f13f14f15f16f17f18f19f20f21f22f23f24f25f26f27f28f29f30f31f32f33f34f35f36f37f38f39f40f41f42f43f44f45f46f47f48f49f50f51f52f53f54f55 done
Jan20 18h27:57, d=5, running: f01f02f03f04f05f06f07f08f09f10f11f12f13f14f15f16f17f18f19f20f21f22f23f24f25f26f27f28f29f30f31f32f33f34f35f36f37f38f39f40f41f42f43f44f45f46f47f48f49f50f51f52f53f54f55 done
"""
def __init__(self):
self.f_current = None # function id (not problem id)
self.d_current = 0 # dimension
self.t0_dimension = time.time()
self.evals_dimension = 0
self.evals_by_dimension = {}
self.runs_function = 0
def print(self, problem, end="", **kwargs):
print(self(problem), end=end, **kwargs)
sys.stdout.flush()
def add_evals(self, evals, runs):
self.evals_dimension += evals
self.runs_function += runs
def dimension_done(self):
self.evals_by_dimension[self.d_current] = (time.time() - self.t0_dimension) / self.evals_dimension
s = '\n done in %.1e seconds/evaluation' % (self.evals_by_dimension[self.d_current])
# print(self.evals_dimension)
self.evals_dimension = 0
self.t0_dimension = time.time()
return s
def function_done(self):
s = "(%d)" % self.runs_function + (2 - int(np.log10(self.runs_function))) * ' '
self.runs_function = 0
return s
def __call__(self, problem):
"""uses `problem.id` and `problem.dimension` to decide what to print.
"""
f = "f" + problem.id.lower().split('_f')[1].split('_')[0]
res = ""
if self.f_current and f != self.f_current:
res += self.function_done() + ' '
if problem.dimension != self.d_current:
res += '%s%s, d=%d, running: ' % (self.dimension_done() + "\n\n" if self.d_current else '',
ShortInfo.short_time_stap(), problem.dimension)
self.d_current = problem.dimension
if f != self.f_current:
res += '%s' % f
self.f_current = f
# print_flush(res)
return res
def print_timings(self):
print(" dimension seconds/evaluations")
print(" -----------------------------")
for dim in sorted(self.evals_by_dimension):
print(" %3d %.1e " %
(dim, self.evals_by_dimension[dim]))
print(" -----------------------------")
@staticmethod
def short_time_stap():
l = time.asctime().split()
d = l[0]
d = l[1] + l[2]
h, m, s = l[3].split(':')
return d + ' ' + h + 'h' + m + ':' + s
# ===============================================
# prepare (the most basic example solver)
# ===============================================
def random_search(fun, lbounds, ubounds, budget):
"""Efficient implementation of uniform random search between `lbounds` and `ubounds`."""
lbounds, ubounds = np.array(lbounds), np.array(ubounds)
population = lbounds + (ubounds - lbounds) * np.random.rand(alpha, len(lbounds))
F = np.array([fun(x) for x in population])
budget -= len(population)
maxGenerationNumber = 0
while True:
if fun.number_of_objectives == 2:
if (maxGenerationNumber==max_geretation or budget<=0):
pareto = non_dominated_selection(population,indicator)
break
else:
t1 = time.time()
FN,fitness,indicator,max_indicator = fitness_assignment(F)
t2 = time.time()
#print("time step2:",t2-t1)
t1 = time.time()
population,F,FN,fitness,indicator = environmental_selection(population,F,FN,fitness,indicator,max_indicator);
t2 = time.time()
#print("time step3:",t2-t1)
t1 = time.time()
parent_population = binary_tournament_selection(population, F, fitness)
t2 = time.time()
#print("time step5:",t2-t1)
t1 = time.time()
mutationBabyPopulation = variation(parent_population);
F2 = [fun(x) for x in mutationBabyPopulation];
budget -= len(mutationBabyPopulation);
F = np.concatenate((F,F2),axis=0);
population = np.concatenate((population, mutationBabyPopulation),axis=0);
t2 = time.time()
#print("time step6:",t2-t1)
# return (population, F,FN, fitness, indicator);
maxGenerationNumber += 1
return pareto
def fitness_assignment(F):
minf1,minf2 = np.amin(F, axis=0)
maxf1,maxf2 = np.amax(F, axis=0)
FN = np.array(F,dtype=float)
fitness = np.zeros(len(FN))
FN[:,0] = (F[:,0]-minf1)/(maxf1-minf1)
FN[:,1] = (F[:,1]-minf2)/(maxf2-minf2)
indicator= np.zeros((len(FN),len(FN)));
max_indicator = 0;
indicator = [(indicator_value(FN[x],FN[y],referencePointZ)) for x, y in np.ndindex(len(indicator),len(indicator))]
indicator = np.reshape(indicator, (math.sqrt(len(indicator)), math.sqrt(len(indicator))));
max_indicator = np.amax(np.absolute(indicator))
fitness = np.array([-np.exp(-indicator[x,y]/((max_indicator * k_factor))) for x,y in np.ndindex(len(indicator),len(indicator))])
fitness = fitness.reshape(len(indicator),len(indicator));
fitness = fitness.sum(axis=0)
'''
for f1 in range(len(FN)):
for f2 in range(len(FN)):
if (f1 != f2):
fitness[f1] -= np.exp(-indicator[f2,f1] / (max_indicator * k_factor));
'''
return FN,fitness,indicator,max_indicator
def indicator_value(x1, x2, referencePointZ):
ix2 = abs(referencePointZ[0]-x2[0])*abs(referencePointZ[1]-x2[1]);
ix1 = abs(referencePointZ[0]-x1[0])*abs(referencePointZ[1]-x1[1]);
ix12 = abs(referencePointZ[0]-min(x1[0],x2[0]))*abs(referencePointZ[1]-min(x1[1],x2[1]))-(max(x1[0],x2[0])-min(x1[0],x2[0]))*(max(x1[1],x2[1])-min(x1[1],x2[1]));
if(x1[0]<x2[0] and x1[1]<x2[1]):
return ix2-ix1;
elif(x1[0]>x2[0] and x1[1]>x2[1]):
return ix2-ix1;
else:
return ix12-ix1;
def environmental_selection(population,F,FN,fitness,indicator,max_indicator):
while (len(F) > alpha):
index_min_fitness = np.argmin(fitness);
F=np.delete(F,index_min_fitness,0)
FN=np.delete(FN,index_min_fitness,0);
for i in range(len(fitness)):
fitness[i] = fitness[i] + np.exp((-indicator[index_min_fitness,i]) / (max_indicator * k_factor));
population=np.delete(population,index_min_fitness, 0)
fitness=np.delete(fitness,index_min_fitness, 0)
indicator = np.delete(np.delete(indicator,index_min_fitness,1),index_min_fitness,0)
return (population, F,FN, fitness, indicator);
def binary_tournament_selection(population, F, fitness):
maxParentPopulation = int(len(population)/2);
#print("max parent pop ", maxParentPopulation)
parentPopulation = np.zeros((maxParentPopulation,len(population[0])));
parentPopulationCounter = 0;
#print(pArray);
while parentPopulationCounter < maxParentPopulation:
parentIndex = np.random.randint(len(fitness), size= 2);
#print('parent index: ',parentIndex)
if(fitness[parentIndex[0]] <= fitness[parentIndex[1]]):
#print('parent 1: ',pArray[parentIndex[1]])
parentPopulation[parentPopulationCounter] = population[parentIndex[1]];
else:
#print('parent 2: ',pArray[parentIndex[0]])
parentPopulation[parentPopulationCounter] = population[parentIndex[0]];
parentPopulationCounter += 1;
#print('parents',parentPopulation)
return parentPopulation;
def variation(parentPopulation):
recombinationBabyPopulation = recombination(parentPopulation);
mutationBabyPopulation = mutation(recombinationBabyPopulation);
return mutationBabyPopulation
def recombination(parentPopulation):
recombinationBabyPopulation = np.zeros((0,len(parentPopulation[0])));
while len(parentPopulation) >= 2:
parents = random.sample(range(len(parentPopulation)), 2);
#print("parents",parents)
a1 = random.uniform(-0.25,1.25);
a2 = random.uniform(-0.25,1.25);
baby1 = np.zeros(len(parentPopulation[parents[0]]));
baby2 = np.zeros(len(parentPopulation[parents[0]]));
for k in range(len(parentPopulation[parents[0]])):
baby1[k]= parentPopulation[ parents[0] ][k]*a1 + parentPopulation[ parents[1] ][k]*(1-a1);
baby2[k]= parentPopulation[ parents[1] ][k]*a2 + parentPopulation[ parents[0] ][k]*(1-a2);
recombinationBabyPopulation = np.append(recombinationBabyPopulation, [baby1], axis = 0);
recombinationBabyPopulation = np.append(recombinationBabyPopulation, [baby2], axis = 0);
parentPopulation = np.delete(parentPopulation,parents, 0)
#print(recombinationBabyPopulation);
return recombinationBabyPopulation
def mutation(babyPopulation):
#mutationBabyPopulation = np.zeros((0,len(babyPopulation[0])));
possibilityThreshold = 0.01;
for baby in babyPopulation:
possibility = np.random.random();
if (possibility < possibilityThreshold) :
normalisation = random.normalvariate(0, 1);
normalisationArray = [random.normalvariate(0,1) for i in babyPopulation];
sigmaValueArray = [pow(10,-2) for i in babyPopulation];
t1 = 1/ math.sqrt(2*len(babyPopulation));
t2 = 1/ math.sqrt(2*math.sqrt(len(babyPopulation)))
for i in range(len(sigmaValueArray)):
sigmaValueArray[i] = sigmaValueArray[i]* math.exp(t1*normalisation + t2*normalisationArray[i]);
babyPopulation[i] = babyPopulation[i] + sigmaValueArray[i]*normalisationArray[i];
return babyPopulation;
def non_dominated_selection(population, indicator):
paretoSetApproximation = np.array(population)
listDominatedPoint = []
for i in range(indicator.shape[1]):
if(indicator.min(0)[i]<0):
listDominatedPoint.append(i)
paretoSetApproximation=np.delete(paretoSetApproximation, listDominatedPoint,0)
return paretoSetApproximation
# ===============================================
# loops over a benchmark problem suite
# ===============================================
def batch_loop(solver, suite, observer, budget,
max_runs, current_batch, number_of_batches):
"""loop over all problems in `suite` calling
`coco_optimize(solver, problem, budget * problem.dimension, max_runs)`
for each eligible problem.
A problem is eligible if
`problem_index + current_batch - 1` modulo `number_of_batches`
equals to zero.
"""
addressed_problems = []
short_info = ShortInfo()
for problem_index, problem in enumerate(suite):
if (problem_index + current_batch - 1) % number_of_batches:
continue
observer.observe(problem)
short_info.print(problem) if verbose else None
runs = coco_optimize(solver, problem, budget * problem.dimension, max_runs)
if verbose:
print_flush("!" if runs > 2 else ":" if runs > 1 else ".")
short_info.add_evals(problem.evaluations, runs)
problem.free()
addressed_problems += [problem.id]
print(short_info.function_done() + short_info.dimension_done())
short_info.print_timings()
print(" %s done (%d of %d problems benchmarked%s)" %
(suite_name, len(addressed_problems), len(suite),
((" in batch %d of %d" % (current_batch, number_of_batches))
if number_of_batches > 1 else "")), end="")
if number_of_batches > 1:
print("\n MAKE SURE TO RUN ALL BATCHES", end="")
return addressed_problems
#===============================================
# interface: ADD AN OPTIMIZER BELOW
#===============================================
def coco_optimize(solver, fun, max_evals, max_runs=1e9):
"""`fun` is a callable, to be optimized by `solver`.
The `solver` is called repeatedly with different initial solutions
until either the `max_evals` are exhausted or `max_run` solver calls
have been made or the `solver` has not called `fun` even once
in the last run.
Return number of (almost) independent runs.
"""
range_ = fun.upper_bounds - fun.lower_bounds
center = fun.lower_bounds + range_ / 2
if fun.evaluations:
print('WARNING: %d evaluations were done before the first solver call' %
fun.evaluations)
for restarts in range(int(max_runs)):
remaining_evals = max_evals - fun.evaluations
x0 = center + (restarts > 0) * 0.8 * range_ * (
np.random.rand(fun.dimension) - 0.5)
fun(x0) # can be incommented, if this is done by the solver
if solver.__name__ in ("random_search", ):
solver(fun, fun.lower_bounds, fun.upper_bounds,
remaining_evals)
elif solver.__name__ == 'fmin' and solver.__globals__['__name__'] in ['cma', 'cma.evolution_strategy', 'cma.es']:
if x0[0] == center[0]:
sigma0 = 0.02
restarts_ = 0
else:
x0 = "%f + %f * np.random.rand(%d)" % (
center[0], 0.8 * range_[0], fun.dimension)
sigma0 = 0.2
restarts_ = 6 * (observer_options.find('IPOP') >= 0)
solver(fun, x0, sigma0 * range_[0], restarts=restarts_,
options=dict(scaling=range_/range_[0], maxfevals=remaining_evals,
termination_callback=lambda es: fun.final_target_hit,
verb_log=0, verb_disp=0, verbose=-9))
elif solver.__name__ == 'fmin_slsqp':
solver(fun, x0, iter=1 + remaining_evals / fun.dimension,
iprint=-1)
############################ ADD HERE ########################################
# ### IMPLEMENT HERE THE CALL TO ANOTHER SOLVER/OPTIMIZER ###
# elif True:
# CALL MY SOLVER, interfaces vary
##############################################################################
else:
raise ValueError("no entry for solver %s" % str(solver.__name__))
if fun.evaluations >= max_evals or fun.final_target_hit:
break
# quit if fun.evaluations did not increase
if fun.evaluations <= max_evals - remaining_evals:
if max_evals - fun.evaluations > fun.dimension + 1:
print("WARNING: %d evaluations remaining" %
remaining_evals)
if fun.evaluations < max_evals - remaining_evals:
raise RuntimeError("function evaluations decreased")
break
return restarts + 1
# ===============================================
# set up: CHANGE HERE SOLVER AND FURTHER SETTINGS AS DESIRED
# ===============================================
######################### CHANGE HERE ########################################
# CAVEAT: this might be modified from input args
alpha = 100 # population size
max_geretation = 150 # max number of generations
possibilityThreshold = 0.1;
k_factor = 0.05 # fitness scaling factor
budget = 1000 # maxfevals = budget x dimension ### INCREASE budget WHEN THE DATA CHAIN IS STABLE ###
max_runs = 1e9 # number of (almost) independent trials per problem instance
number_of_batches = 1 # allows to run everything in several batches
current_batch = 1 # 1..number_of_batches
referencePointZ = np.array([2,2]);
##############################################################################
SOLVER = random_search
#SOLVER = my_solver # fmin_slsqp # SOLVER = cma.fmin
suite_name = "bbob-biobj"
# suite_name = "bbob"
suite_instance = "year:2016"
suite_options = "dimensions: 2,3,5,10,20" # "dimensions: 2,3,5,10,20 " # if 40 is not desired
observer_name = default_observers()[suite_name]
observer_options = (
' result_folder: %s_on_%s_budget%04dxD '
% (SOLVER.__name__, suite_name, budget) +
' algorithm_name: %s ' % SOLVER.__name__ +
' algorithm_info: "A SIMPLE RANDOM SEARCH ALGORITHM" ') # CHANGE THIS
######################### END CHANGE HERE ####################################
# ===============================================
# run (main)
# ===============================================
def main(budget=budget,
max_runs=max_runs,
current_batch=current_batch,
number_of_batches=number_of_batches):
"""Initialize suite and observer, then benchmark solver by calling
`batch_loop(SOLVER, suite, observer, budget,...`.
"""
observer = Observer(observer_name, observer_options)
suite = Suite(suite_name, suite_instance, suite_options)
print("Benchmarking solver '%s' with budget=%d*dimension on %s suite, %s"
% (' '.join(str(SOLVER).split()[:2]), budget,
suite.name, time.asctime()))
if number_of_batches > 1:
print('Batch usecase, make sure you run *all* %d batches.\n' %
number_of_batches)
t0 = time.clock()
batch_loop(SOLVER, suite, observer, budget, max_runs,
current_batch, number_of_batches)
print(", %s (%s total elapsed time)." % (time.asctime(), ascetime(time.clock() - t0)))
# ===============================================
if __name__ == '__main__':
"""read input parameters and call `main()`"""
if len(sys.argv) < 2 or sys.argv[1] in ["--help", "-h"]:
print(__doc__)
print("Recognized suite names: " + str(cocoex.known_suite_names))
exit(0)
suite_name = sys.argv[1]
observer_name = default_observers()[suite_name]
if len(sys.argv) > 2:
budget = float(sys.argv[2])
if observer_options.find('budget') > 0: # reflect budget in folder name
idx = observer_options.find('budget')
observer_options = observer_options[:idx+6] + \
"%04d" % int(budget + 0.5) + observer_options[idx+10:]
if len(sys.argv) > 3:
current_batch = int(sys.argv[3])
if len(sys.argv) > 4:
number_of_batches = int(sys.argv[4])
if len(sys.argv) > 5:
messages = ['Argument "%s" disregarded (only 4 arguments are recognized).' % sys.argv[i]
for i in range(5, len(sys.argv))]
messages.append('See "python example_experiment.py -h" for help.')
raise ValueError('\n'.join(messages))
main(budget, max_runs, current_batch, number_of_batches)