-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathvisualize.py
27 lines (20 loc) · 836 Bytes
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import tensorflow as tf
import numpy as np
import util
import config
from model import *
netG = Generator()
z = tf.placeholder(tf.float32, [config.batch_size, config.nz])
train = tf.placeholder(tf.bool)
x = netG(z, train, config.nsf, config.nvx)
t_vars = tf.trainable_variables()
varsG = [var for var in t_vars if var.name.startswith('G')]
saver = tf.train.Saver(varsG + tf.moving_average_variables())
config_proto = tf.ConfigProto()
config_proto.gpu_options.allow_growth = True
with tf.Session(config=config_proto) as sess:
saver.restore(sess, config.params_path)
batch_z = np.random.uniform(-1, 1, [config.batch_size, config.nz]).astype(np.float32)
x_g = sess.run(x, feed_dict={z:batch_z, train:False})
for i, data in enumerate(x_g):
util.save_binvox("out/{0}.binvox".format(i), data[:, :, :, 0] > 0.9)