This file contains the LaTeX snippets which the OmniGraffle document includes via LaTeXiT. Unless noted otherwise, the font size in LaTeXiT is 9 pt.
\begin{tabular}{ll}
\textsc{Algebra} & $\langle S,\Phi \rangle$\\
\textsc{Carrier Set} & $S$\\
\textsc{Operator Set} & $\Phi = \{f_1,\ldots,f_n\}$\\
\textsc{Operator} & $f_i: S^m \to S$\\
\textsc{Arity} & $m \in \mathbb{N}_0$\\
%\textsc{Arity} & $\mathbb{A}(f_i) = m \in \mathbb{N}_0$\\
%\textsc{Signature} & $\{\mathbb{A}(f_i) \mid f_i \in \Phi\}$
\end{tabular}
Font size: 12pt
&\langle S,\{\circ\}\rangle\\
&\circ:S\times S \to S\\
%&\mathbb{A}(\circ) = 2
\centering
\textsc{Associativity}\\
$(x \circ y) \circ z = x \circ (y \circ z)$
\centering
\textsc{Identity}\\
$1 \circ x = x \circ 1 = x$
\centering
\textsc{inverse}\\
${-x} \circ x = x \circ {-x} = 1$
\centering
\textsc{Commutativity}\\
$x \circ y = y \circ x$
&\langle S, \{\oplus,\odot\} \rangle\\
&\oplus: S \times S \to S\\
&\odot: S \times S \to S\\
%&\mathbb{A}(\oplus) = 2\\
%&\mathbb{A}(\odot) = 2
1.\; & \textsc{Commutative Monoid}\;\langle S, \oplus\rangle\\
&\textsc{Additive Identity}\;0\in S\\
2.\; & \textsc{Monoid}\;\langle S, \odot\rangle\\
&\textsc{Multiplicative Identity}\;1\in S\\
3.\; & \textsc{Distributivity}\\
& x \odot (y \oplus z) = (x \odot y) \oplus (x \odot z)\\
& (y \oplus z) \odot x = (y \odot x) \oplus (z \odot x) \\
\centering
\textsc{Commutative Group}\\
$\langle S, \oplus \rangle$
\centering
\textsc{Commutative Monoid}\\
$\langle S, \odot \rangle$
\centering
\textsc{No Zero Divisors}\\
$\forall x,y \in S\setminus\{0\}: xy \ne 0$
\centering
\textsc{Commutative Group}\\
$\langle S, \odot \rangle$