This repository was archived by the owner on Jun 13, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathreplay_memory_test.py
executable file
·183 lines (138 loc) · 5.19 KB
/
replay_memory_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python
import numpy as np
import random
import tensorflow as tf
import time
import unittest
from util import StopWatch
from replay_memory import ReplayMemory
class TestReplayMemory(unittest.TestCase):
def setUp(self):
self.sess = tf.Session()
self.rm = ReplayMemory(self.sess, buffer_size=3, state_shape=(2, 3), action_dim=2, load_factor=2)
self.sess.run(tf.initialize_all_variables())
def assert_np_eq(self, a, b):
self.assertTrue(np.all(np.equal(a, b)))
def test_empty_memory(self):
# api
self.assertEqual(self.rm.size(), 0)
self.assertEqual(self.rm.random_indexes(), [])
b = self.rm.batch(4)
self.assertEqual(len(b), 5)
for i in range(5):
self.assertEqual(len(b[i]), 0)
# internals
self.assertEqual(self.rm.insert, 0)
self.assertEqual(self.rm.full, False)
def test_adds_to_full(self):
# add entries to full
initial_state = [[11,12,13], [14,15,16]]
action_reward_state = [(17, 18, [[21,22,23],[24,25,26]]),
(27, 28, [[31,32,33],[34,35,36]]),
(37, 38, [[41,42,43],[44,45,46]])]
self.rm.add_episode(initial_state, action_reward_state)
# api
self.assertEqual(self.rm.size(), 3)
# random_idxs are valid
idxs = self.rm.random_indexes(n=100)
self.assertEqual(len(idxs), 100)
self.assertEquals(sorted(set(idxs)), [0,1,2])
# batch returns values
# internals
self.assertEqual(self.rm.insert, 0)
self.assertEqual(self.rm.full, True)
# check state contains these entries
state = self.rm.sess.run(self.rm.state)
self.assertEqual(state[0][0][0], 11)
self.assertEqual(state[1][0][0], 21)
self.assertEqual(state[2][0][0], 31)
self.assertEqual(state[3][0][0], 41)
def test_adds_over_full(self):
def s_for(i):
return (np.array(range(1,7))+(10*i)).reshape(2, 3)
# add one episode of 5 states; 0X -> 4X
initial_state = s_for(0)
action_reward_state = []
for i in range(1, 5):
a, r, s2 = (i*10)+7, (i*10)+8, s_for(i)
action_reward_state.append((a, r, s2))
self.rm.add_episode(initial_state, action_reward_state)
# add another episode of 4 states; 5X -> 8X
initial_state = s_for(5)
action_reward_state = []
for i in range(6, 9):
a, r, s2 = (i*10)+7, (i*10)+8, s_for(i)
action_reward_state.append((a, r, s2))
self.rm.add_episode(initial_state, action_reward_state)
# api
self.assertEqual(self.rm.size(), 3)
# random_idxs are valid
idxs = self.rm.random_indexes(n=100)
self.assertEqual(len(idxs), 100)
self.assertEquals(sorted(set(idxs)), [0,1,2])
# fetch a batch, of all items
batch = self.rm.batch(idxs=[0,1,2])
self.assert_np_eq(batch.reward, [[88], [68], [78]])
self.assert_np_eq(batch.terminal_mask, [[0], [1], [1]])
def test_large_var(self):
### python replay_memory_test.py TestReplayMemory.test_large_var
s = StopWatch()
state_shape = (50, 50, 6)
s.reset()
rm = ReplayMemory(self.sess, buffer_size=10000, state_shape=state_shape, action_dim=2, load_factor=1.5)
self.sess.run(tf.initialize_all_variables())
print "cstr_and_init", s.time()
bs1, bs1i, bs2, bs2i = rm.batch_ops()
# build a simple, useless, net that uses state_1 & state_2 idxs
# we want this to reduce to a single value to minimise data coming
# back from GPU
added_states = bs1 + bs2
total_value = tf.reduce_sum(added_states)
def random_s():
return np.random.random(state_shape)
for i in xrange(10):
# add an episode to rm
episode_len = random.choice([5,7,9,10,15])
initial_state = random_s()
action_reward_state = []
for i in range(i+1, i+episode_len+1):
a, r, s2 = (i*10)+7, (i*10)+8, random_s()
action_reward_state.append((a, r, s2))
start = time.time()
s.reset()
rm.add_episode(initial_state, action_reward_state)
t = s.time()
num_states = len(action_reward_state)+1
print "add_episode_time", t, "#states=", num_states, "=> s/state", t/num_states
i += episode_len + 1
# get a random batch state
b = rm.batch(batch_size=128)
s.reset()
x = self.sess.run(total_value, feed_dict={bs1i: b.state_1_idx,
bs2i: b.state_2_idx})
print "fetch_and_run", x, s.time()
def test_soak(self):
state_shape = (50,50,6)
rm = ReplayMemory(self.sess, buffer_size=10000,
state_shape=state_shape, action_dim=2, load_factor=1.5)
self.sess.run(tf.initialize_all_variables())
def s_for(i):
return np.random.random(state_shape)
import random
i = 0
for e in xrange(10000):
# add an episode to rm
episode_len = random.choice([5,7,9,10,15])
initial_state = s_for(i)
action_reward_state = []
for i in range(i+1, i+episode_len+1):
a, r, s2 = (i*10)+7, (i*10)+8, s_for(i)
action_reward_state.append((a, r, s2))
rm.add_episode(initial_state, action_reward_state)
i += episode_len + 1
# dump
print rm.current_stats()
# fetch a batch, of all items, but do nothing with it.
_ = rm.batch(idxs=range(10))
if __name__ == '__main__':
unittest.main()