This repository was archived by the owner on Jun 13, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathddpg_cartpole.py
executable file
·446 lines (384 loc) · 20.3 KB
/
ddpg_cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#!/usr/bin/env python
import argparse
import bullet_cartpole
import collections
import datetime
import gym
import json
import numpy as np
import replay_memory
import signal
import sys
import tensorflow as tf
import time
import util
np.set_printoptions(precision=5, threshold=10000, suppress=True, linewidth=10000)
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--num-eval', type=int, default=0,
help="if >0 just run this many episodes with no training")
parser.add_argument('--max-num-actions', type=int, default=0,
help="train for (at least) this number of actions (always finish current episode)"
" ignore if <=0")
parser.add_argument('--max-run-time', type=int, default=0,
help="train for (at least) this number of seconds (always finish current episode)"
" ignore if <=0")
parser.add_argument('--ckpt-dir', type=str, default=None, help="if set save ckpts to this dir")
parser.add_argument('--ckpt-freq', type=int, default=3600, help="freq (sec) to save ckpts")
parser.add_argument('--batch-size', type=int, default=128, help="training batch size")
parser.add_argument('--batches-per-step', type=int, default=5,
help="number of batches to train per step")
parser.add_argument('--dont-do-rollouts', action="store_true",
help="by dft we do rollouts to generate data then train after each rollout. if this flag is set we"
" dont do any rollouts. this only makes sense to do if --event-log-in set.")
parser.add_argument('--target-update-rate', type=float, default=0.0001,
help="affine combo for updating target networks each time we run a training batch")
parser.add_argument('--use-batch-norm', action='store_true',
help="whether to use batch norm on conv layers")
parser.add_argument('--actor-hidden-layers', type=str, default="100,100,50", help="actor hidden layer sizes")
parser.add_argument('--critic-hidden-layers', type=str, default="100,100,50", help="critic hidden layer sizes")
parser.add_argument('--actor-learning-rate', type=float, default=0.001, help="learning rate for actor")
parser.add_argument('--critic-learning-rate', type=float, default=0.01, help="learning rate for critic")
parser.add_argument('--discount', type=float, default=0.99, help="discount for RHS of critic bellman equation update")
parser.add_argument('--event-log-in', type=str, default=None,
help="prepopulate replay memory with entries from this event log")
parser.add_argument('--replay-memory-size', type=int, default=22000, help="max size of replay memory")
parser.add_argument('--replay-memory-burn-in', type=int, default=1000, help="dont train from replay memory until it reaches this size")
parser.add_argument('--eval-action-noise', action='store_true', help="whether to use noise during eval")
parser.add_argument('--action-noise-theta', type=float, default=0.01,
help="OrnsteinUhlenbeckNoise theta (rate of change) param for action exploration")
parser.add_argument('--action-noise-sigma', type=float, default=0.05,
help="OrnsteinUhlenbeckNoise sigma (magnitude) param for action exploration")
util.add_opts(parser)
bullet_cartpole.add_opts(parser)
opts = parser.parse_args()
sys.stderr.write("%s\n" % opts)
# TODO: if we import slim _before_ building cartpole env we can't start bullet with GL gui o_O
env = bullet_cartpole.BulletCartpole(opts=opts, discrete_actions=False)
import base_network
import tensorflow.contrib.slim as slim
VERBOSE_DEBUG = False
def toggle_verbose_debug(signal, frame):
global VERBOSE_DEBUG
VERBOSE_DEBUG = not VERBOSE_DEBUG
signal.signal(signal.SIGUSR1, toggle_verbose_debug)
DUMP_WEIGHTS = False
def set_dump_weights(signal, frame):
global DUMP_WEIGHTS
DUMP_WEIGHTS = True
signal.signal(signal.SIGUSR2, set_dump_weights)
class ActorNetwork(base_network.Network):
""" the actor represents the learnt policy mapping states to actions"""
def __init__(self, namespace, input_state, action_dim):
super(ActorNetwork, self).__init__(namespace)
self.input_state = input_state
self.exploration_noise = util.OrnsteinUhlenbeckNoise(action_dim,
opts.action_noise_theta,
opts.action_noise_sigma)
with tf.variable_scope(namespace):
opts.hidden_layers = opts.actor_hidden_layers
final_hidden = self.input_state_network(self.input_state, opts)
# action dim output. note: actors out is (-1, 1) and scaled in env as required.
weights_initializer = tf.random_uniform_initializer(-0.001, 0.001)
self.output_action = slim.fully_connected(scope='output_action',
inputs=final_hidden,
num_outputs=action_dim,
weights_initializer=weights_initializer,
weights_regularizer=tf.contrib.layers.l2_regularizer(0.01),
activation_fn=tf.nn.tanh)
def init_ops_for_training(self, critic):
# actors gradients are the gradients for it's output w.r.t it's vars using initial
# gradients provided by critic. this requires that critic was init'd with an
# input_action = actor.output_action (which is natural anyway)
# we wrap the optimiser in namespace since we don't want this as part of copy to
# target networks.
# note that we negate the gradients from critic since we are trying to maximise
# the q values (not minimise like a loss)
with tf.variable_scope("optimiser"):
gradients = tf.gradients(self.output_action,
self.trainable_model_vars(),
tf.neg(critic.q_gradients_wrt_actions()))
gradients = zip(gradients, self.trainable_model_vars())
# potentially clip and wrap with debugging
gradients = util.clip_and_debug_gradients(gradients, opts)
# apply
optimiser = tf.train.GradientDescentOptimizer(opts.actor_learning_rate)
self.train_op = optimiser.apply_gradients(gradients)
def action_given(self, state, add_noise=False):
# feed explicitly provided state
actions = tf.get_default_session().run(self.output_action,
feed_dict={self.input_state: [state],
base_network.IS_TRAINING: False})
# NOTE: noise is added _outside_ tf graph. we do this simply because the noisy output
# is never used for any part of computation graph required for online training. it's
# only used during training after being the replay buffer.
if add_noise:
if VERBOSE_DEBUG:
pre_noise = str(actions)
actions[0] += self.exploration_noise.sample()
actions = np.clip(1, -1, actions) # action output is _always_ (-1, 1)
if VERBOSE_DEBUG:
print "TRAIN action_given pre_noise %s post_noise %s" % (pre_noise, actions)
return actions
def train(self, state):
# training actor only requires state since we are trying to maximise the
# q_value according to the critic.
tf.get_default_session().run(self.train_op,
feed_dict={self.input_state: state,
base_network.IS_TRAINING: True})
class CriticNetwork(base_network.Network):
""" the critic represents a mapping from state & actors action to a quality score."""
def __init__(self, namespace, actor):
super(CriticNetwork, self).__init__(namespace)
# input state to the critic is the _same_ state given to the actor.
# input action to the critic is simply the output action of the actor.
# even though when training we explicitly provide a new value for the
# input action (via the input_action placeholder) we need to be stop the gradient
# flowing to the actor since there is a path through the actor to the input_state
# too, hence we need to be explicit about cutting it (otherwise training the
# critic will attempt to train the actor too.
self.input_state = actor.input_state
self.input_action = tf.stop_gradient(actor.output_action)
with tf.variable_scope(namespace):
if opts.use_raw_pixels:
conv_net = self.simple_conv_net_on(self.input_state, opts)
# TODO: use base_network helper
hidden1 = slim.fully_connected(conv_net, 200, scope='hidden1')
hidden2 = slim.fully_connected(hidden1, 50, scope='hidden2')
concat_inputs = tf.concat(1, [hidden2, self.input_action])
final_hidden = slim.fully_connected(concat_inputs, 50, scope="hidden3")
else:
# stack of hidden layers on flattened input; (batch,2,2,7) -> (batch,28)
flat_input_state = slim.flatten(self.input_state, scope='flat')
concat_inputs = tf.concat(1, [flat_input_state, self.input_action])
final_hidden = self.hidden_layers_starting_at(concat_inputs,
opts.critic_hidden_layers)
# output from critic is a single q-value
self.q_value = slim.fully_connected(scope='q_value',
inputs=final_hidden,
num_outputs=1,
weights_regularizer=tf.contrib.layers.l2_regularizer(0.01),
activation_fn=None)
def init_ops_for_training(self, target_critic):
# update critic using bellman equation; Q(s1, a) = reward + discount * Q(s2, A(s2))
# left hand side of bellman is just q_value, but let's be explicit about it...
bellman_lhs = self.q_value
# right hand side is ...
# = reward + discounted q value from target actor & critic in the non terminal case
# = reward # in the terminal case
self.reward = tf.placeholder(shape=[None, 1], dtype=tf.float32, name="critic_reward")
self.terminal_mask = tf.placeholder(shape=[None, 1], dtype=tf.float32,
name="critic_terminal_mask")
self.input_state_2 = target_critic.input_state
bellman_rhs = self.reward + (self.terminal_mask * opts.discount * target_critic.q_value)
# note: since we are NOT training target networks we stop gradients flowing to them
bellman_rhs = tf.stop_gradient(bellman_rhs)
# the value we are trying to mimimise is the difference between these two; the
# temporal difference we use a squared loss for optimisation and, as for actor, we
# wrap optimiser in a namespace so it's not picked up by target network variable
# handling.
self.temporal_difference = bellman_lhs - bellman_rhs
self.temporal_difference_loss = tf.reduce_mean(tf.pow(self.temporal_difference, 2))
# self.temporal_difference_loss = tf.Print(self.temporal_difference_loss, [self.temporal_difference_loss], 'temporal_difference_loss')
with tf.variable_scope("optimiser"):
# calc gradients
optimiser = tf.train.GradientDescentOptimizer(opts.critic_learning_rate)
gradients = optimiser.compute_gradients(self.temporal_difference_loss)
# potentially clip and wrap with debugging tf.Print
gradients = util.clip_and_debug_gradients(gradients, opts)
# apply
self.train_op = optimiser.apply_gradients(gradients)
def q_gradients_wrt_actions(self):
""" gradients for the q.value w.r.t just input_action; used for actor training"""
return tf.gradients(self.q_value, self.input_action)[0]
# def debug_q_value_for(self, input_state, action=None):
# feed_dict = {self.input_state: input_state}
# if action is not None:
# feed_dict[self.input_action] = action
# return np.squeeze(tf.get_default_session().run(self.q_value, feed_dict=feed_dict))
def train(self, batch):
tf.get_default_session().run(self.train_op,
feed_dict={self.input_state: batch.state_1,
self.input_action: batch.action,
self.reward: batch.reward,
self.terminal_mask: batch.terminal_mask,
self.input_state_2: batch.state_2,
base_network.IS_TRAINING: True})
def check_loss(self, batch):
return tf.get_default_session().run([self.temporal_difference_loss,
self.temporal_difference,
self.q_value],
feed_dict={self.input_state: batch.state_1,
self.input_action: batch.action,
self.reward: batch.reward,
self.terminal_mask: batch.terminal_mask,
self.input_state_2: batch.state_2,
base_network.IS_TRAINING: False})
class DeepDeterministicPolicyGradientAgent(object):
def __init__(self, env):
self.env = env
state_shape = self.env.observation_space.shape
action_dim = self.env.action_space.shape[1]
# for now, with single machine synchronous training, use a replay memory for training.
# this replay memory stores states in a Variable (ie potentially in gpu memory)
# TODO: switch back to async training with multiple replicas (as in drivebot project)
self.replay_memory = replay_memory.ReplayMemory(opts.replay_memory_size,
state_shape, action_dim)
# s1 and s2 placeholders
batched_state_shape = [None] + list(state_shape)
s1 = tf.placeholder(shape=batched_state_shape, dtype=tf.float32)
s2 = tf.placeholder(shape=batched_state_shape, dtype=tf.float32)
# initialise base models for actor / critic and their corresponding target networks
# target_actor is never used for online sampling so doesn't need explore noise.
self.actor = ActorNetwork("actor", s1, action_dim)
self.critic = CriticNetwork("critic", self.actor)
self.target_actor = ActorNetwork("target_actor", s2, action_dim)
self.target_critic = CriticNetwork("target_critic", self.target_actor)
# setup training ops;
# training actor requires the critic (for getting gradients)
# training critic requires target_critic (for RHS of bellman update)
self.actor.init_ops_for_training(self.critic)
self.critic.init_ops_for_training(self.target_critic)
def post_var_init_setup(self):
# prepopulate replay memory (if configured to do so)
if opts.event_log_in:
self.replay_memory.reset_from_event_log(opts.event_log_in)
# hook networks up to their targets
# ( does one off clobber to init all vars in target network )
self.target_actor.set_as_target_network_for(self.actor, opts.target_update_rate)
self.target_critic.set_as_target_network_for(self.critic, opts.target_update_rate)
def run_training(self, max_num_actions, max_run_time, batch_size, batches_per_step,
saver_util):
# log start time, in case we are limiting by time...
start_time = time.time()
# run for some max number of actions
num_actions_taken = 0
n = 0
while True:
rewards = []
losses = []
# run an episode
if opts.dont_do_rollouts:
# _not_ gathering experience online
pass
else:
# start a new episode
state_1 = self.env.reset()
# prepare data for updating replay memory at end of episode
initial_state = np.copy(state_1)
action_reward_state_sequence = []
done = False
while not done:
# choose action
action = self.actor.action_given(state_1, add_noise=True)
# take action step in env
state_2, reward, done, _ = self.env.step(action)
rewards.append(reward)
# cache for adding to replay memory
action_reward_state_sequence.append((action, reward, np.copy(state_2)))
# roll state for next step.
state_1 = state_2
# at end of episode update replay memory
self.replay_memory.add_episode(initial_state, action_reward_state_sequence)
# do a training step (after waiting for buffer to fill a bit...)
if self.replay_memory.size() > opts.replay_memory_burn_in:
# run a set of batches
for _ in xrange(batches_per_step):
batch = self.replay_memory.batch(batch_size)
self.actor.train(batch.state_1)
self.critic.train(batch)
# update target nets
self.target_actor.update_weights()
self.target_critic.update_weights()
# do debug (if requested) on last batch
if VERBOSE_DEBUG:
print "-----"
#print "state_1", state_1
print "action\n", batch.action.T
print "reward ", batch.reward.T
print "terminal_mask ", batch.terminal_mask.T
#print "state_2", state_2
td_loss, td, q_value = self.critic.check_loss(batch)
print "temporal_difference_loss", td_loss
print "temporal_difference", td.T
print "q_value", q_value.T
# dump some stats and progress info
stats = collections.OrderedDict()
stats["time"] = time.time()
stats["n"] = n
stats["mean_losses"] = float(np.mean(losses))
stats["total_reward"] = np.sum(rewards)
stats["episode_len"] = len(rewards)
stats["replay_memory_stats"] = self.replay_memory.current_stats()
print "STATS %s\t%s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
json.dumps(stats))
sys.stdout.flush()
n += 1
# save if required
if saver_util is not None:
saver_util.save_if_required()
# emit occasional eval
if VERBOSE_DEBUG or n % 10 == 0:
self.run_eval(1)
# dump weights once if requested
global DUMP_WEIGHTS
if DUMP_WEIGHTS:
self.debug_dump_network_weights()
DUMP_WEIGHTS = False
# exit when finished
num_actions_taken += len(rewards)
if max_num_actions > 0 and num_actions_taken > max_num_actions:
break
if max_run_time > 0 and time.time() > start_time + max_run_time:
break
def run_eval(self, num_episodes, add_noise=False):
""" run num_episodes of eval and output episode length and rewards """
for i in xrange(num_episodes):
state = self.env.reset()
total_reward = 0
steps = 0
done = False
while not done:
action = self.actor.action_given(state, add_noise)
state, reward, done, _ = self.env.step(action)
print "EVALSTEP r%s %s %s %s %s" % (i, steps, np.squeeze(action), np.linalg.norm(action), reward)
total_reward += reward
steps += 1
print "EVAL", i, steps, total_reward
sys.stdout.flush()
def debug_dump_network_weights(self):
fn = "/tmp/weights.%s" % time.time()
with open(fn, "w") as f:
f.write("DUMP time %s\n" % time.time())
for var in tf.all_variables():
f.write("VAR %s %s\n" % (var.name, var.get_shape()))
f.write("%s\n" % var.eval())
print "weights written to", fn
def main():
config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
# config.log_device_placement = True
with tf.Session(config=config) as sess:
agent = DeepDeterministicPolicyGradientAgent(env=env)
# setup saver util and either load latest ckpt or init variables
saver_util = None
if opts.ckpt_dir is not None:
saver_util = util.SaverUtil(sess, opts.ckpt_dir, opts.ckpt_freq)
else:
sess.run(tf.initialize_all_variables())
for v in tf.all_variables():
print >>sys.stderr, v.name, util.shape_and_product_of(v)
# now that we've either init'd from scratch, or loaded up a checkpoint,
# we can do any required post init work.
agent.post_var_init_setup()
# run either eval or training
if opts.num_eval > 0:
agent.run_eval(opts.num_eval, opts.eval_action_noise)
else:
agent.run_training(opts.max_num_actions, opts.max_run_time,
opts.batch_size, opts.batches_per_step,
saver_util)
if saver_util is not None:
saver_util.force_save()
env.reset() # just to flush logging, clumsy :/
if __name__ == "__main__":
main()