-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
426 lines (365 loc) · 15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset, random_split
from torchvision import datasets, transforms, models
import pandas as pd
import seaborn as sn
import numpy as np
import matplotlib.pyplot as plt
import os
from sklearn.metrics import f1_score, classification_report, confusion_matrix
from tqdm import tqdm
from PIL import Image
from sys import platform
import math
import boto3
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
EPOCHS = 3
LR = 0.001
DATASET_PART = 1
DRY = False
INPUT = "/kaggle/input/bone-marrow-cell-classification/bone_marrow_cell_dataset"
BUCKET_NAME = "mateuszwozniak-thesis-experiments"
CLASSES = [
'NGS',
'EBO',
'LYT',
'PMO',
'BLA',
'NGB',
'PLM',
'MYB',
'EOS',
'MON',
'PEB'
]
BATCH_SIZE = 16
if platform == "darwin":
DEVICE = "mps"
if os.path.isdir('dataset'):
INPUT = 'dataset'
if 'kaggle' in INPUT and 'IS_DOCKER' not in os.environ:
from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient()
aws_access_key_id = user_secrets.get_secret("aws_access_key_id")
aws_secret_access_key = user_secrets.get_secret("aws_secret_access_key")
print(f"Using AWS Access Key ID: {aws_access_key_id}")
aws_session = boto3.Session(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
)
else:
aws_session = boto3.Session()
names = {
'ABE': 'Nieprawidłowy eozynofil',
'ART': 'Artefakt',
'BAS': 'Bazofil',
'BLA': 'Blast',
'EBO': 'Erytroblast',
'EOS': 'Eozynofil',
'FGC': 'Fagocyt',
'HAC': 'Włochata komórka',
'KSC': 'Cienie komórkowe',
'LYI': 'Niedojrzały limfocyt',
'LYT': 'Limfocyt',
'MMZ': 'Metamielocyt',
'MON': 'Monocyt',
'MYB': 'Mielocyt',
'NGB': 'Krwinka biała pałeczkowata',
'NGS': 'Segmentowany neutrofil',
'NIF': 'Brak rozpoznania',
'OTH': 'Inna komórka',
'PEB': 'Proerytroblast',
'PLM': 'Komórka plazmatyczna',
'PMO': 'Promielocyt',
}
class CustomDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.classes, self.class_to_idx = self.find_classes()
self.images = self.load_images()
def find_classes(self):
classes = [d for d in os.listdir(self.root_dir) if os.path.isdir(
os.path.join(self.root_dir, d))]
if len(CLASSES) > 0:
classes = CLASSES
classes = sorted(classes)
class_to_idx = {cls: idx for idx, cls in enumerate(classes)}
return classes, class_to_idx
def load_images(self):
images = []
for class_name in self.classes:
class_path = os.path.join(self.root_dir, class_name)
for root, _, filenames in os.walk(class_path):
for filename in filenames:
if '0000' in filename or '0001' in filename:
print(f'Skipping {filename}')
continue
images.append((os.path.join(root, filename),
self.class_to_idx[class_name]))
return images
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
try:
img_path, label = self.images[idx]
image = Image.open(img_path).convert('RGB')
if self.transform:
image = self.transform(image)
return image, label
except Exception as e:
img_path, label = self.images[0]
image = Image.open(img_path).convert('RGB')
if self.transform:
image = self.transform(image)
return image, label
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomEqualize(1),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[
0.229, 0.224, 0.225]),
])
def upload_to_s3(experiment_name):
s3 = aws_session.client('s3')
for root, dirs, files in os.walk(f'./experiments/{experiment_name}'):
for file in files:
s3.upload_file(os.path.join(root, file), BUCKET_NAME,
f'experiments/{experiment_name}/{file}')
print(f'Uploaded experiment {experiment_name} to S3')
def train(experiment_name, model_name, epochs=EPOCHS):
for c in CLASSES:
print(f'Using {c}: {names[c]}')
experiment_path = f'./experiments/{experiment_name}'
if not os.path.exists(experiment_path):
os.makedirs(experiment_path)
log_file = open(f'{experiment_path}/log.txt', 'w')
def log(text):
print(text)
log_file.write(text + '\n')
log_file.flush()
log(f'Experiment: {experiment_name}')
dataset = CustomDataset(root_dir=INPUT, transform=transform)
log(f'Classes: {dataset.classes}')
log(f'Number of images: {len(dataset)}')
operating_size = int(DATASET_PART * len(dataset))
operating_rest_size = len(dataset) - operating_size
operating_dataset, _ = random_split(
dataset, [operating_size, operating_rest_size])
train_size = int(0.8 * len(operating_dataset))
val_size = len(operating_dataset) - train_size
train_dataset, val_dataset = random_split(
operating_dataset, [train_size, val_size])
train_loader = DataLoader(
train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE,
shuffle=False, num_workers=4)
if model_name == 'efficientnet_b0':
model = models.efficientnet_b0(weights='DEFAULT')
num_ftrs = model.classifier[1].in_features
model.classifier = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'efficientnet_b1':
model = models.efficientnet_b1(weights='DEFAULT')
num_ftrs = model.classifier[1].in_features
model.classifier = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'efficientnet_b2':
model = models.efficientnet_b2(weights='DEFAULT')
num_ftrs = model.classifier[1].in_features
model.classifier = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'efficientnet_b3':
model = models.efficientnet_b3(weights='DEFAULT')
num_ftrs = model.classifier[1].in_features
model.classifier = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'efficientnet_b4':
model = models.efficientnet_b4(weights='DEFAULT')
num_ftrs = model.classifier[1].in_features
model.classifier = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'efficientnet_b5':
model = models.efficientnet_b5(weights='DEFAULT')
num_ftrs = model.classifier[1].in_features
model.classifier = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'resnet18':
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'resnet50':
model = models.resnet50(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'resnet101':
model = models.resnet101(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'inception_v3':
model = models.inception_v3(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'densenet121':
model = models.densenet121(pretrained=True)
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'densenet169':
model = models.densenet169(pretrained=True)
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'densenet201':
model = models.densenet201(pretrained=True)
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'vgg16':
model = models.vgg16(pretrained=True)
num_ftrs = model.classifier[6].in_features
model.classifier[6] = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'vgg19':
model = models.vgg19(pretrained=True)
num_ftrs = model.classifier[6].in_features
model.classifier[6] = nn.Linear(num_ftrs, len(dataset.classes))
if model_name == 'alexnet':
model = models.alexnet(pretrained=True)
num_ftrs = model.classifier[6].in_features
model.classifier[6] = nn.Linear(num_ftrs, len(dataset.classes))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=LR)
device = torch.device(DEVICE)
model.to(device)
x1 = []
x2 = []
training_loss_history = []
validation_loss_history = []
training_f1_history = []
validation_f1_history = []
for epoch in range(epochs):
model.train()
running_loss = 0.0
running_correct = 0
if not DRY:
y_true_train = []
y_pred_train = []
for inputs, labels in tqdm(train_loader):
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
running_correct += (predicted == labels).sum().item()
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
y_true_train.extend(labels.cpu().numpy())
y_pred_train.extend(predicted.cpu().numpy())
running_loss += loss.item()
training_loss_history.append(running_loss)
running_accuracy = running_correct / len(train_dataset)
x1.append(epoch+1)
f1_train = f1_score(y_true_train, y_pred_train, average='weighted')
training_f1_history.append(f1_train)
log(f'Epoch {epoch+1}/{EPOCHS}, Training Loss: {running_loss/len(train_loader)}')
model.eval()
val_loss = 0.0
val_correct = 0
y_true_val = []
y_pred_val = []
with torch.no_grad():
for inputs, labels in tqdm(val_loader):
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs, 1)
val_correct += (predicted == labels).sum().item()
y_true_val.extend(labels.cpu().numpy())
y_pred_val.extend(predicted.cpu().numpy())
validation_loss_history.append(val_loss)
x2.append(epoch+1)
val_loss /= len(val_loader)
val_accuracy = val_correct / len(val_dataset)
f1_val = f1_score(y_true_val, y_pred_val, average='weighted')
validation_f1_history.append(f1_val)
log(classification_report(y_true_val,
y_pred_val, target_names=dataset.classes))
log(f'Epoch {epoch+1}/{EPOCHS}, Validation Loss: {val_loss}, Val Accuracy: {val_accuracy}, F1: {f1_val}')
plt.clf()
plt.figure(figsize=(5, 7))
plt.title('Wykres funkcji straty od epoki')
plt.plot(x1, training_loss_history, label='Strata treningu')
plt.plot(x2, validation_loss_history, label='Strata walidacji')
plt.legend()
plt.xticks(range(math.floor(min(x2)), math.ceil(max(x2))+1))
plt.xlabel('Epoka')
plt.ylabel('Strata')
plt.savefig(f'{experiment_path}/loss.eps',
bbox_inches="tight", format='eps')
plt.clf()
plt.figure(figsize=(5, 7))
plt.title('Wykres F1 od epoki')
plt.plot(x1, training_f1_history,
label='F1 dla danych treningowych')
plt.plot(x2, validation_f1_history,
label='F1 dla danych walidacyjnych')
plt.legend()
plt.ylim(0, 1)
plt.xticks(range(math.floor(min(x2)), math.ceil(max(x2))+1))
plt.xlabel('Epoka')
plt.ylabel('F1')
plt.savefig(f'{experiment_path}/f1.eps',
bbox_inches="tight", format='eps')
fig, ax = plt.subplots(1, 2, figsize=(12, 7))
ax[0].plot(x1, training_loss_history, label='Strata treningu')
ax[0].plot(x2, validation_loss_history, label='Strata walidacji')
ax[0].legend()
ax[0].set_title('Wykres funkcji straty od epoki')
ax[0].set_xlabel('Epoka')
ax[0].set_ylabel('Strata')
ax[0].set_xticks(range(math.floor(min(x2)), math.ceil(max(x2))+1))
ax[1].plot(x1, training_f1_history,
label='F1 dla danych treningowych')
ax[1].plot(x2, validation_f1_history,
label='F1 dla danych walidacyjnych')
ax[1].legend()
ax[1].set_title('Wykres F1 od epoki')
ax[1].set_xlabel('Epoka')
ax[1].set_ylabel('F1')
ax[1].set_ylim(0, 1)
ax[1].set_xticks(range(math.floor(min(x2)), math.ceil(max(x2))+1))
plt.savefig(f'{experiment_path}/combined.eps',
bbox_inches="tight", format='eps')
cf_matrix = confusion_matrix(y_true_val, y_pred_val)
df_cm = pd.DataFrame(cf_matrix / np.sum(cf_matrix, axis=1)[:, None], index=[
f'{names[i]} ({i})' for i in dataset.classes], columns=[f'{names[i]} ({i})' for i in dataset.classes])
plt.clf()
plt.figure(figsize=(12, 7))
sn.heatmap(df_cm, annot=True, fmt='.3f')
plt.title('Macierz pomyłek')
plt.savefig(f'{experiment_path}/confusion_matrix.eps',
bbox_inches="tight", format='eps')
torch.save(model.state_dict(), f'{experiment_path}/model.pth')
result_file = open(f'{experiment_path}/result.txt', 'w')
result_file.write(classification_report(
y_true_val, y_pred_val, target_names=[
f'{names[i]} ({i})' for i in dataset.classes]))
result_file.close()
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, f'{experiment_path}/checkpoint.pt')
log_file.close()
upload_to_s3(experiment_name)
print("Training complete.")
if __name__ == '__main__':
train('efficientnet_b0', 'efficientnet_b0')
train('efficientnet_b1', 'efficientnet_b1')
train('efficientnet_b2', 'efficientnet_b2')
train('efficientnet_b3', 'efficientnet_b3')
train('efficientnet_b4', 'efficientnet_b4')
train('efficientnet_b5', 'efficientnet_b5')
# train('densenet121', 'densenet121')
# train('densenet169', 'densenet169')
# train('densenet201', 'densenet201')
# train('resnet18', 'resnet18')
# train('resnet50', 'resnet50')
# train('resnet101', 'resnet101')
# train('vgg16', 'vgg16')
# train('vgg19', 'vgg19')
# train('inception_v3', 'inception_v3')
# train('alexnet', 'alexnet')