-
Notifications
You must be signed in to change notification settings - Fork 23
/
train_full.py
474 lines (400 loc) · 18.1 KB
/
train_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
"""
Use this file to train the network. It is compatible with both semantic.py
and scannet.py accessors to the datasets semantic-8 and scannet.
Training results are stored as .ckpt files. Training records are stored as well.
Training is done by tensorflow, with a queue separating CPU and GPU computations
and multi-CPU support.
"""
import os
import sys
import importlib
import argparse
import json
from datetime import datetime
import numpy as np
import tensorflow as tf
import utils.metric as metric
import multiprocessing as mp
import time
# Uncomment to shut down TF warnings
# os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
PARSER = argparse.ArgumentParser()
PARSER.add_argument('--config', type=str, default="semantic.json", metavar='N',
help='config file')
ARGS = PARSER.parse_args()
JSON_DATA_CUSTOM = open(ARGS.config).read()
CUSTOM = json.loads(JSON_DATA_CUSTOM)
JSON_DATA = open('default.json').read()
PARAMS = json.loads(JSON_DATA)
PARAMS.update(CUSTOM)
BATCH_SIZE = PARAMS['batch_size']
NUM_POINT = PARAMS['num_point']
MAX_EPOCH = PARAMS['max_epoch']
BASE_LEARNING_RATE = PARAMS['learning_rate']
GPU_INDEX = PARAMS['gpu']
MOMENTUM = PARAMS['momentum']
OPTIMIZER = PARAMS['optimizer']
DECAY_STEP = PARAMS['decay_step']
DECAY_RATE = PARAMS['learning_rate_decay_rate']
DATASET_NAME = PARAMS['dataset']
# Fix GPU use
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = str(GPU_INDEX)
NUM_GPUS = len(GPU_INDEX.split(","))
assert(BATCH_SIZE % NUM_GPUS == 0)
DEVICE_BATCH_SIZE = BATCH_SIZE / NUM_GPUS
# Import model
MODEL = importlib.import_module('models.'+PARAMS['model'])
LOG_DIR = PARAMS['logdir']
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
# Batch normalisation
BN_INIT_DECAY = PARAMS['bn_init_decay']
BN_DECAY_DECAY_RATE = PARAMS['bn_decay_decay_rate']
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = PARAMS['bn_decay_clip']
# Import dataset
data = importlib.import_module('dataset.' + DATASET_NAME)
TRAIN_DATASET = data.Dataset(npoints=NUM_POINT, split='full', box_size=PARAMS['box_size'], use_color=PARAMS['use_color'],
dropout_max=PARAMS['input_dropout'], path=PARAMS['data_path']
, z_feature=PARAMS['use_z_feature'])
NUM_CLASSES = TRAIN_DATASET.num_classes
# Start logging
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
EPOCH_CNT = 0
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
# update_progress() : Displays or updates a console progress bar
## Accepts a float between 0 and 1. Any int will be converted to a float.
## A value under 0 represents a 'halt'.
## A value at 1 or bigger represents 100%
def update_progress(progress):
barLength = 10 # Modify this to change the length of the progress bar
status = ""
if isinstance(progress, int):
progress = round(float(progress),2)
if not isinstance(progress, float):
progress = 0
status = "error: progress var must be float\r\n"
if progress < 0:
progress = 0
status = "Halt...\r\n"
if progress >= 1:
progress = 1
status = "Done...\r\n"
block = int(round(barLength*progress))
text = "\rProgress: [{0}] {1}% {2}".format( "#"*block + "-"*(barLength-block), progress*100, status)
sys.stdout.write(text)
sys.stdout.flush()
def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
From tensorflow tutorial: cifar10/cifar10_multi_gpu_train.py
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
#for g, _ in grad_and_vars:
for g, v in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def get_learning_rate(batch):
"""Compute the learning rate for a given batch size and global parameters
Args:
batch (tf.Variable): the batch size
Returns:
scalar tf.Tensor: the decayed learning rate
"""
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
"""Compute the batch normalisation exponential decay
Args:
batch (tf.Variable): the batch size
Returns:
scalar tf.Tensor: the batch norm decay
"""
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def get_batch(split):
np.random.seed()
if split=="train":
return TRAIN_DATASET.next_batch(BATCH_SIZE,True,True)
def fill_queues(stack_train,maxsize_train):
pool = mp.Pool(processes=mp.cpu_count())
launched_train = 0
results_train = []
# Launch as much as n
while True:
if stack_train.qsize()+launched_train<maxsize_train:
results_train.append(pool.apply_async(get_batch,args=("train",)))
launched_train += 1
for p in results_train:
if p.ready():
stack_train.put(p.get())
results_train.remove(p)
launched_train -= 1
# Stability
time.sleep(0.01)
def init_stacking():
with tf.device('/cpu:0'):
# Queues that contain several batches in advance
num_train_batches = TRAIN_DATASET.get_num_batches(BATCH_SIZE)
stack_train = mp.Queue(num_train_batches)
stacker = mp.Process(target=fill_queues, args=(stack_train,num_train_batches))
stacker.start()
return stacker, stack_train
def train_single():
"""Train the model on a single GPU
"""
with tf.Graph().as_default():
stacker, stack_train = init_stacking()
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl, smpws_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, hyperparams=PARAMS)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
print ("--- Get model and loss")
# Get model and loss
pred, end_points = MODEL.get_model(pointclouds_pl, is_training_pl, NUM_CLASSES, hyperparams=PARAMS, bn_decay=bn_decay)
loss = MODEL.get_loss(pred, labels_pl, smpws_pl, end_points)
tf.summary.scalar('loss', loss)
# Compute accuracy
correct = tf.equal(tf.argmax(pred, 2), tf.to_int64(labels_pl))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE*NUM_POINT)
tf.summary.scalar('accuracy', accuracy)
# Computer mean intersection over union
mean_intersection_over_union, update_iou_op = tf.metrics.mean_iou(tf.to_int32(labels_pl), tf.to_int32(tf.argmax(pred, 2)), NUM_CLASSES)
tf.summary.scalar('mIoU', tf.to_float(mean_intersection_over_union))
print ("--- Get training operator")
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
# Init variables
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer()) # important for mIoU
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'smpws_pl': smpws_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch,
'end_points': end_points,
'update_iou': update_iou_op}
training_loop(sess, ops, saver, stacker, train_writer, stack_train)
def train_multi():
"""
Train the model on multiple GPUs
"""
with tf.Graph().as_default():
stacker, stack_train = init_stacking()
with tf.device('/cpu:0'):
pointclouds_pl, labels_pl, smpws_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, hyperparams=PARAMS)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
#batch = tf.Variable(0)
batch = tf.get_variable('batch', [],
initializer=tf.constant_initializer(0), trainable=False)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
print ("--- Get training operator")
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
# -------------------------------------------
# Get model and loss on multiple GPU devices
# -------------------------------------------
# Allocating variables on CPU first will greatly accelerate multi-gpu training.
# Ref: https://github.com/kuza55/keras-extras/issues/21
print ("--- Get model")
# Get model
pred, end_points = MODEL.get_model(pointclouds_pl, is_training_pl, NUM_CLASSES, hyperparams=PARAMS, bn_decay=bn_decay)
tower_grads = []
pred_gpu = []
total_loss_gpu = []
for i in range(NUM_GPUS):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
with tf.device('/gpu:%d'%(i)), tf.name_scope('gpu_%d'%(i)) as scope:
# Evenly split input data to each GPU
pc_batch = tf.slice(pointclouds_pl,
[i*DEVICE_BATCH_SIZE,0,0], [DEVICE_BATCH_SIZE,-1,-1])
label_batch = tf.slice(labels_pl,
[i*DEVICE_BATCH_SIZE,0], [DEVICE_BATCH_SIZE,-1])
smpws_batch = tf.slice(smpws_pl,
[i*DEVICE_BATCH_SIZE,0], [DEVICE_BATCH_SIZE,-1])
pred, end_points = MODEL.get_model(pc_batch, is_training_pl, NUM_CLASSES, hyperparams=PARAMS, bn_decay=bn_decay)
MODEL.get_loss(pred, label_batch, smpws_batch, end_points)
losses = tf.get_collection('losses', scope)
total_loss = tf.add_n(losses, name='total_loss')
for l in losses + [total_loss]:
tf.summary.scalar(l.op.name, l)
grads = optimizer.compute_gradients(total_loss)
tower_grads.append(grads)
pred_gpu.append(pred)
total_loss_gpu.append(total_loss)
#print(tower_grads)
# Merge pred and losses from multiple GPUs
pred = tf.concat(pred_gpu, 0)
total_loss = tf.reduce_mean(total_loss_gpu)
# Get training operator
grads = average_gradients(tower_grads)
train_op = optimizer.apply_gradients(grads, global_step=batch)
# Compute accuracy
correct = tf.equal(tf.argmax(pred, 2), tf.to_int64(labels_pl))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE)
tf.summary.scalar('accuracy', accuracy)
# Computer mean intersection over union
mean_intersection_over_union, update_iou_op = tf.metrics.mean_iou(tf.to_int32(labels_pl), tf.to_int32(tf.argmax(pred, 2)), NUM_CLASSES)
tf.summary.scalar('mIoU', tf.to_float(mean_intersection_over_union))
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
# Init variables
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer()) # important for mIoU
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'smpws_pl': smpws_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': total_loss,
'train_op': train_op,
'merged': merged,
'step': batch,
'end_points': end_points,
'update_iou': update_iou_op}
training_loop(sess, ops, saver, stacker, train_writer, stack_train)
def training_loop(sess, ops, saver, stacker, train_writer, stack_train):
# Train for MAX_EPOCH epochs
try:
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
# Train one epoch
train_one_epoch(sess, ops, train_writer, stack_train)
# Save the variables to disk.
if epoch % 10 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
log_string("Model saved in file: %s" % save_path)
finally:
# Kill the process, close the file and exit
stacker.terminate()
LOG_FOUT.close()
sys.exit()
def train_one_epoch(sess, ops, train_writer, stack):
"""Train one epoch
Args:
sess (tf.Session): the session to evaluate Tensors and ops
ops (dict of tf.Operation): contain multiple operation mapped with with strings
train_writer (tf.FileSaver): enable to log the training with TensorBoard
compute_class_iou (bool): it takes time to compute the iou per class, so you can disable it here
"""
is_training = True
num_batches = TRAIN_DATASET.get_num_batches(BATCH_SIZE)
log_string(str(datetime.now()))
update_progress(0)
# Reset metrics
loss_sum = 0
confusion_matrix = metric.ConfusionMatrix(NUM_CLASSES)
# Train over num_batches batches
for batch_idx in range(num_batches):
# Refill more batches if empty
progress = float(batch_idx)/float(num_batches)
update_progress(round(progress,2))
batch_data, batch_label, batch_weights = stack.get()
# Get predicted labels
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['smpws_pl']: batch_weights,
ops['is_training_pl']: is_training,}
summary, step, _, loss_val, pred_val, _ = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred'], ops['update_iou']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 2)
# Update metrics
for i in range(len(pred_val)):
for j in range(len(pred_val[i])):
confusion_matrix.count_predicted(batch_label[i][j], pred_val[i][j])
loss_sum += loss_val
update_progress(1)
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
log_string("Overall accuracy : %f" %(confusion_matrix.get_overall_accuracy()))
log_string("Average IoU : %f" %(confusion_matrix.get_average_intersection_union()))
iou_per_class = confusion_matrix.get_intersection_union_per_class()
for i in range(1,NUM_CLASSES):
log_string("IoU of %s : %f" % (TRAIN_DATASET.labels_names[i],iou_per_class[i]))
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
if NUM_GPUS==1:
train_single()
else:
train_multi()