|
1 | 1 | (* testing enriched categories *)
|
2 | 2 |
|
| 3 | +From HB Require Import structures. |
| 4 | +From Coq Require Import ssreflect ssrfun. |
| 5 | + |
| 6 | +HB.mixin Record isQuiver Obj := { hom : Obj -> Obj -> Type }. |
| 7 | + |
| 8 | +HB.structure Definition Quiver := { Obj of isQuiver Obj }. |
| 9 | + |
| 10 | +HB.mixin Record isMon A := { |
| 11 | + zero : A; |
| 12 | + add : A -> A -> A; |
| 13 | + addrA : associative add; |
| 14 | + add0r : left_id zero add; |
| 15 | + addr0 : right_id zero add; |
| 16 | + }. |
| 17 | + |
| 18 | +HB.structure |
| 19 | + Definition Monoid := { A of isMon A }. |
| 20 | + |
| 21 | +(**) |
| 22 | +HB.mixin Record hom_isMonT T of Quiver T := |
| 23 | + { private : forall A B, isMon (@hom T A B) }. |
| 24 | + |
| 25 | +HB.structure |
| 26 | + Definition Monoid_enriched_quiverT := |
| 27 | + { Obj of isQuiver Obj & hom_isMonT Obj }. |
| 28 | + |
| 29 | +(**) |
| 30 | + |
| 31 | + |
| 32 | +Fail HB.structure |
| 33 | + Definition Monoid_enriched_quiver := |
| 34 | + { Obj of isQuiver Obj & |
| 35 | + (forall A B : Obj, isMon (@hom (Quiver.clone Obj _) A B)) }. |
| 36 | + |
| 37 | +(* Step 0: define a wrapper predicate in coq-elpi *) |
| 38 | +(* 5 lines of documentation + 1 line of elpi code in structure.v |
| 39 | + `pred wrapper-mixin o:mixinname, o:gref, o:mixinname` |
| 40 | +*) |
| 41 | +(* Step 1: add a wrapper attribute to declare wrappers, |
| 42 | + they should index: |
| 43 | + - the wrapped mixin (`isMon`) |
| 44 | + - the wrapper mixin (`hom_isMon`) |
| 45 | + - the new subject (`hom`) |
| 46 | + This attribute will add an entry in the `wrapper-mixin` database. |
| 47 | + As an addition substep, we should check that the wrapper has |
| 48 | + exactly one field, which is the wrapped mixin. |
| 49 | + *) |
| 50 | +#[wrapper] |
| 51 | +HB.mixin Record hom_isMon T of Quiver T := |
| 52 | + { private : forall A B, isMon (@hom T A B) }. |
| 53 | + |
| 54 | +(* Step 2: at structure declaration, export the main and only projection |
| 55 | + of each declared wrapper as an instance of the wrapped structure on |
| 56 | + its subject *) |
| 57 | +HB.structure |
| 58 | + Definition Monoid_enriched_quiver := |
| 59 | + { Obj of isQuiver Obj & hom_isMon Obj }. |
| 60 | + |
| 61 | +HB.instance Definition _ (T : Monoid_enriched_quiver.type) (A B : T) : |
| 62 | + isMon (@hom T A B) := @private T A B. |
| 63 | + |
| 64 | + (* each instance of isMon should be tried as an instance of hom_isMon *) |
| 65 | + |
| 66 | +(* Step 3: for each instance of a wrapped mixin on a subject known |
| 67 | + to be wrapped, automatically produce an instance of the wrapper mixin too. *) |
| 68 | +HB.instance Definition _ := isQuiver.Build Type (fun A B => A -> B). |
| 69 | +Fail HB.instance Definition homTypeMon (A B : Quiver.type) := isMon.Build (hom A B) (* ... *). |
| 70 | +(* This last command should create a `Monoid_enriched_quiver`, in order to do so it should |
| 71 | + automatically instanciate the wrapper `hom_isMon`: |
| 72 | + HB.instance Definition _ := hom_isMon.Build Type homTypeMon. |
| 73 | + *) |
3 | 74 |
|
0 commit comments