-
Notifications
You must be signed in to change notification settings - Fork 1
/
binary-heatmap.py
executable file
·268 lines (224 loc) · 9.22 KB
/
binary-heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/usr/bin/env python3
# Script vizualize heat map of a binary
# Step to run:
# Link a program with -Wl,-M,-Map,mapfile.txt,--no-demangle
# That will create a .text subsection map file that can be later used
# for visualization of a binary
# $ perf record -F 10000 -- ./my_binary
# $ perf script -F time,ip,dso > data
# $ ./binary-heatmap.py data gcc10-reorder-heatmap.png cc1plus --title 'GCC 10-reorder' --mapfile mapfile.txt
#
# Sample of perf script file:
# 2415.281677: e18b08 (/tmp/gcc10-cc1plus)
# 2415.281763: e35e7f (/tmp/gcc10-cc1plus)
# 2415.281857: dee2fd (/tmp/gcc10-cc1plus)
import argparse
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import subprocess
import re
from itertools import chain
from matplotlib.lines import Line2D
from itertools import dropwhile, takewhile
class MapComponent:
def __init__(self, name, lines):
self.name = name
self.lines = lines[1:]
self.addresses = []
self.start = None
self.end = None
for l in self.lines:
parts = [x for x in l.split(' ') if x]
if len(parts) >= 1 and parts[0].startswith('0x0'):
self.addresses.append(int(parts[0], 16))
def get_address_range(self):
if self.start and self.end and self.name and self.start != self.end:
return (self.name, self.start, self.end)
else:
return None
def get_symbol_for_sample(symbols, address):
mid = round(len(symbols) / 2)
item = symbols[mid]
a = item['address']
s = item['size']
if (a <= address and address < (a + s)):
return item
elif len(symbols) == 1:
return None
elif address < a:
return get_symbol_for_sample(symbols[:mid], address)
else:
return get_symbol_for_sample(symbols[mid:], address)
def parse_gold_mapfile(filename, sample_addresses):
text_start = None
text_unlikely_start = None
text_startup_start = None
text_hot_start = None
text_hot_end = None
text_end = None
lines = open(filename).read().splitlines()
for i, line in enumerate(lines):
parts = line.split()
if line.startswith('.text '):
text_start = int(parts[1], 16)
elif line.startswith(' .text.unlikely.') and not text_unlikely_start:
text_unlikely_start = int(lines[i + 1].split()[0], 16)
elif line.startswith(' .text.startup.') and not text_startup_start:
text_startup_start = int(lines[i + 1].split()[0], 16)
elif line.startswith(' .text.hot.'):
addr = int(lines[i + 1].split()[0], 16)
if not text_hot_start:
text_hot_start = addr
text_hot_end = addr
elif line.startswith('.fini '):
text_end = int(parts[1], 16)
break
result = []
c = MapComponent('.text.unlikely', [])
c.start = text_unlikely_start
c.end = text_startup_start
result.append(c)
c = MapComponent('.text.startup', [])
c.start = text_startup_start
c.end = text_hot_start
result.append(c)
if text_hot_start:
c = MapComponent('.text.hot', [])
c.start = text_hot_start
c.end = text_hot_end
result.append(c)
c = MapComponent('.text', [])
c.start = text_hot_end if text_hot_end else text_startup_start
c.end = text_end
result.append(c)
return [c.get_address_range() for c in result if c.get_address_range()]
def parse_bfd_mapfile(filename, sample_addresses):
components = []
map_components = [
(' *(.text.unlikely .text.*_unlikely .text.unlikely.*)', '.text.unlikely'),
(' *(.text.exit .text.exit.*)', '.text.exit'),
(' *(.text.startup .text.startup.*)', '.text.startup'),
(' *(.text.hot .text.hot.*)', '.text.hot'),
(' *(SORT_BY_NAME(.text.sorted.*))', '.text.sorted'),
(' *(.text .stub .text.* .gnu.linkonce.t.*)', '.text.normal'),
(' *(.gnu.warning)', None),
('.gnu.attributes', None)
]
lines = [l.rstrip() for l in open(filename)]
# filter map_components to existing one
map_components = [mc for mc in map_components if mc[0] in lines]
lines = list(dropwhile(lambda x: x != map_components[0][0], lines))
for i in range(0, len(map_components) - 1):
chunk = list(takewhile(lambda x: x != map_components[i+1][0], lines))
components.append(MapComponent(map_components[i][1], chunk))
lines = lines[len(chunk):]
components[-1].start = components[-1].addresses[0]
end = components[-1].start
for i in reversed(range(len(map_components) - 1)):
components[i].end = end
if len(components[i].addresses):
components[i].start = components[i].addresses[0]
end = components[i].start
unlikely_symbols = []
pattern = re.compile(r'\ {16}(0x\w+)\ {16}(.+)')
for l in components[0].lines:
m = pattern.match(l)
if m:
unlikely_symbols.append({'name': m.group(2), 'address': int(m.group(1), 16)})
start = 0
for i, s in enumerate(unlikely_symbols):
assert s['address'] >= start
start = s['address']
if i != len(unlikely_symbols) - 1:
s['size'] = unlikely_symbols[i + 1]['address'] - s['address']
else:
s['size'] = 0
print('Found %d symbols in .text.unlikely subsection' % len(unlikely_symbols))
unlikely_accesses = 0
unlikely_dict = {}
for address in sample_addresses:
symbol = get_symbol_for_sample(unlikely_symbols, address)
if symbol != None:
if not symbol['name'] in unlikely_dict:
unlikely_dict[symbol['name']] = 0
unlikely_dict[symbol['name']] += 1
unlikely_accesses += 1
N = 20
print('Total accessses in .text.unlikely: %d' % unlikely_accesses)
print('Top %d accessses in .text.unlikely section:' % N)
for k, v in list(reversed(sorted(unlikely_dict.items(), key = lambda x: x[1])))[:N]:
print(' %s: %d' % (k, v))
return [c.get_address_range() for c in components if c.get_address_range()]
def parse_mapfile(filename, sample_addresses):
if '.note.gnu.gold-version' in open(filename).read():
print('Parsing ld.gold format mapfile')
return parse_gold_mapfile(filename, sample_addresses)
else:
print('Parsing ld.bfd format mapfile')
return parse_bfd_mapfile(filename, sample_addresses)
@ticker.FuncFormatter
def major_formatter(x, pos):
return '%d' % (x / 1024**2)
parser = argparse.ArgumentParser(description = 'Generate heat map of perf report')
parser.add_argument('perf_stat_file', help = 'Output of perf stat')
parser.add_argument('output_image', help = 'Output image')
parser.add_argument('needle', help = 'Name of the binary in perf stat')
parser.add_argument('--title', help = 'Title')
parser.add_argument('--max-x', help = 'Maximum value on x axis', type = int)
parser.add_argument('--max-y', help = 'Maximum value on y axis', type = int)
parser.add_argument('--mapfile', help = 'ld mapfile')
parser.add_argument('--pointsize', help = 'graph point size', type = float, default = 0.2)
parser.add_argument('--pointalpha', help = 'graph point alpha', type = float, default = 0.2)
args = parser.parse_args()
values = [l.strip() for l in open(args.perf_stat_file).readlines()]
print('Reading perf events for binary name: %s' % args.needle)
x = []
y = []
for value in values:
parts = [p for p in value.split(' ') if p]
time = float(parts[0][:-1])
address = int(parts[1], 16)
binary = parts[2]
if args.needle in binary:
x.append(time)
y.append(address)
assert len(parts) == 3
print('Found %d events' % len(x))
if len(x) == 0:
print('Error: no events')
exit(1)
first_time = x[0]
for i in range(len(x)):
x[i] -= first_time
fig, (ax1, ax2) = plt.subplots(1, 2, sharey='row', gridspec_kw={'hspace': 5, 'wspace': 0.05}, figsize=(10, 5))
fig.suptitle(args.title)
ax1.scatter(x, y, s = args.pointsize, c='green', alpha=args.pointalpha, edgecolors='none', marker='s')
ax1.grid(True, linewidth = 0.5, alpha = 0.3)
ax1.set_ylabel('Address (in MB)')
ax1.set_xlabel('Time')
ax1.yaxis.set_major_formatter(major_formatter)
ax1.yaxis.set_major_locator(ticker.MultipleLocator(2 * 1024**2))
ax1.set_title('Executed instruction address')
ax2.hist(y, 300, orientation='horizontal', color='green')
ax2.set_title('Virtual address histogram')
ax2.set_xlabel('Sample count')
if args.max_x:
ax1.set_xlim(0, args.max_x)
if args.max_y:
ax1.set_ylim((0, args.max_y))
if args.mapfile:
ranges = parse_mapfile(args.mapfile, y)
colors = 'cmrkby'
custom_lines = []
print('Found ELF .text subsections: %s' % str(ranges))
alpha = .1
for i, r in enumerate(ranges):
samples = len([a for a in y if r[1] <= a and a <= r[2]])
fraction = (100.0 * samples / len(x))
size = 1.0 * (r[2] - r[1]) / (1024**2)
custom_lines.append(Line2D([0], [0], color=colors[i], alpha=0.1, lw=4, label= r[0] + ' (size: %.2f MB; samples: %d (%.2f%%))' % (size, samples, fraction)))
ax1.axhspan(r[1], r[2], facecolor=colors[i], alpha=alpha)
ax2.axhspan(r[1], r[2], facecolor=colors[i], alpha=alpha)
fig.legend(handles=list(reversed(custom_lines)), loc = 'upper left', prop={'size': 6})
plt.savefig(args.output_image, dpi = 800)