Skip to content
This repository has been archived by the owner on Sep 10, 2024. It is now read-only.

Latest commit

 

History

History
82 lines (71 loc) · 3.9 KB

README.md

File metadata and controls

82 lines (71 loc) · 3.9 KB

TrackNet

Pytorch implementation based on TrackNetv2.


Supported logging options:

Installation

git clone https://github.com/mareksubocz/TrackNet
cd /TrackNet
pip install -r requirements.txt

Training

python train.py --dataset PATH_TO_DATASET --device cuda

Prediction

python predict.py PATH_TO_VIDEO --weights PATH_TO_TRAINED_WEIGHTS --device cuda

Dataset Labelling

Keybindings:

  • l / : next frame
  • h / : previous frame
  • v : annotate well-visible ball
  • o : annotate occluded ball
  • m : annotate ball in motion (blurred)
  • f : fast-forward/pause video
  • n : go to next annotated frame
  • x : remove annotation
  • = / + : enlarge the annotation mark size
  • - : reduce the annotation mark size
  • q : finish annotating and save results
python labellingTool.py video.mp4

animated

Labelling tool in use. Fast-forward function is distorted due to gif compression.

train.py Parameters cheatsheet

Argument name Type Default value Description
weights str None Path to initial weights the model should be loaded with. If not specified, the model will be initialized with random weights.
checkpoint str None Path to a checkpoint, chekpoint differs from weights by to including information about current loss, epoch and optimizer state.
batch_size int 2 Batch size of the training dataset.
val_batch_size int 1 Batch size of the validation dataset.
shuffle bool True Should the dataset be shuffled before training?
epochs int 10 Number of epochs.
train_size float 0.8 Training dataset size.
lr float 0.01 Learning rate.
momentum float 0.9 Momentum.
dropout float 0.0 Dropout rate. If equals to 0.0, no dropout is used.
dataset str 'dataset/' Path to dataset.
device str 'cpu' Device to use (cpu, cuda, mps).
type str 'auto' Type of dataset to create (auto, image, video). If auto, the dataset type will be inferred from the dataset directory, defaulting to image.
save_period int 10 Save checkpoint every x epochs (disabled if <1).
save_weights_only bool False Save only weights, not the whole checkpoint
save_path str 'weights/' Path to save checkpoints at.
no_shuffle - - Don't shuffle the training dataset.
tensorboard - - Use tensorboard to log training progress.')
one_output_frame - - Demand only one output frame instead of three.')
no_save_output_examples - - Don't save output examples to results folder.
grayscale - - Use grayscale images instead of RGB.')
single_batch_overfit - - Overfit the model on a single batch.')

Arguments without type or default value are used without an additional value, e.x.

python train.py --dataset dataset/ --grayscale --one_output_frame