-
Notifications
You must be signed in to change notification settings - Fork 0
/
uber_pickups.py
58 lines (45 loc) · 1.49 KB
/
uber_pickups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 27 17:16:03 2023
https://docs.streamlit.io/library/get-started/create-an-app
@author: weinkaufm
"""
# Import packages
import streamlit as st
import pandas as pd
import numpy as np
# Set up dashboard title
st.title('Uber pickups in NYC')
# Fetch data
DATE_COLUMN = 'date/time'
DATA_URL = ('https://s3-us-west-2.amazonaws.com/'
'streamlit-demo-data/uber-raw-data-sep14.csv.gz')
@st.cache_data
def load_data(nrows):
data = pd.read_csv(DATA_URL, nrows=nrows)
def lowercase(x): return str(x).lower()
data.rename(lowercase, axis='columns', inplace=True)
data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN])
return data
# Put data into dashboard
# Create a text element and let the reader know the data is loading.
data_load_state = st.text('Loading data...')
# Load 10,000 rows of data into the dataframe.
data = load_data(10000)
# Notify the reader that the data was successfully loaded.
data_load_state.text('Done! (using st.cache_data)')
# Show data
if st.checkbox('Show raw data'):
st.subheader('Raw data')
st.write(data)
# Plot data
st.subheader('Number of pickups by hour')
hist_values = np.histogram(
data[DATE_COLUMN].dt.hour, bins=24, range=(0, 24))[0]
st.bar_chart(hist_values)
# Map data
# min: 0h, max: 23h, default: 17h
hour_to_filter = st.slider('hour', 0, 23, 17)
filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter]
st.subheader(f'Map of all pickups at {hour_to_filter}:00')
st.map(filtered_data)