@@ -779,7 +779,7 @@ def runMinos(mObj, yFitIC, constrFunc, wsName):
779
779
minosAutoErr = list (np .zeros (np .array (minosManErr ).shape ))
780
780
781
781
if yFitIC .showPlots :
782
- fig .canvas .set_window_title (wsName + "_Manual_Implementation_MINOS" )
782
+ fig .canvas .manager . set_window_title (wsName + "_Manual_Implementation_MINOS" )
783
783
fig .show ()
784
784
785
785
return parameters , values , errors , minosAutoErr , minosManErr
@@ -801,7 +801,7 @@ def runAndPlotManualMinos(minuitObj, constrFunc, bestFitVals, bestFitErrs, showP
801
801
# Output plot to Mantid
802
802
fig , axs = plt .subplots (height , width , tight_layout = True , figsize = figsize , subplot_kw = {
803
803
'projection' :'mantid' }) #subplot_kw={'projection':'mantid'}
804
- # fig.canvas.set_window_title("Plot of Manual Implementation MINOS")
804
+ # fig.canvas.manager. set_window_title("Plot of Manual Implementation MINOS")
805
805
806
806
merrors = {}
807
807
for p , ax in zip (minuitObj .parameters , axs .flat ):
@@ -926,7 +926,7 @@ def plotAutoMinos(minuitObj, wsName):
926
926
figsize = (12 , 7 )
927
927
# Output plot to Mantid
928
928
fig , axs = plt .subplots (height , width , tight_layout = True , figsize = figsize , subplot_kw = {'projection' :'mantid' })
929
- fig .canvas .set_window_title (wsName + "_Plot_Automatic_MINOS" )
929
+ fig .canvas .manager . set_window_title (wsName + "_Plot_Automatic_MINOS" )
930
930
931
931
for p , ax in zip (minuitObj .parameters , axs .flat ):
932
932
loc , fvals , status = minuitObj .mnprofile (p , bound = 2 )
@@ -1314,7 +1314,7 @@ def groupDetectors(ipData, yFitIC):
1314
1314
1315
1315
if yFitIC .showPlots :
1316
1316
fig , ax = plt .subplots (tight_layout = True , subplot_kw = {'projection' :'mantid' })
1317
- fig .canvas .set_window_title ("Grouping of detectors" )
1317
+ fig .canvas .manager . set_window_title ("Grouping of detectors" )
1318
1318
plotFinalGroups (ax , ipData , idxList )
1319
1319
fig .show ()
1320
1320
return idxList
@@ -1420,7 +1420,7 @@ def formIdxList(clusters):
1420
1420
def plotDetsAndInitialCenters (L1 , theta , centers ):
1421
1421
"""Used in debugging."""
1422
1422
fig , ax = plt .subplots (tight_layout = True , subplot_kw = {'projection' :'mantid' })
1423
- fig .canvas .set_window_title ("Starting centroids for groupings" )
1423
+ fig .canvas .manager . set_window_title ("Starting centroids for groupings" )
1424
1424
ax .scatter (L1 , theta , alpha = 0.3 , color = "r" , label = "Detectors" )
1425
1425
ax .scatter (centers [:, 0 ], centers [:, 1 ], color = "k" , label = "Starting centroids" )
1426
1426
ax .axes .xaxis .set_ticks ([]) # Numbers plotted do not correspond to real numbers, so hide them
@@ -1591,7 +1591,7 @@ def plotGlobalFit(dataX, dataY, dataE, mObj, totCost, wsName):
1591
1591
tight_layout = True ,
1592
1592
subplot_kw = {'projection' :'mantid' }
1593
1593
)
1594
- fig .canvas .set_window_title (wsName + "_Plot_of_Global_Fit" )
1594
+ fig .canvas .manager . set_window_title (wsName + "_Plot_of_Global_Fit" )
1595
1595
1596
1596
# Data used in Global Fit
1597
1597
for i , (x , y , yerr , ax ) in enumerate (zip (dataX , dataY , dataE , axs .flat )):
0 commit comments