-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_bb.py
252 lines (198 loc) · 7.37 KB
/
visualize_bb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import numpy as np
from PIL import Image, ImageDraw
# total_images = 1984
img_width = 28
img_height = 28
resize_factor = 10
base_path = '../XCS-IMG/cmake-build-release/output-mnist/mnist-02/60000'
# base_path = '../remote/output/XCS-IMG/output-10-digit/10-digits-07/3800000'
filter_file_path = base_path + '/filter.txt'
cf_file_path = base_path + '/code_fragment.txt'
cl_file_path = base_path + '/classifier.txt'
max_condition_length = 25
visualization_file_path = base_path + '/visualization.txt'
image_file_path = '../XCS-IMG/data/mnist/mnist_test.txt'
# image_file_path = '../XCS-IMG/data/fei_1/fei_1_train.txt'
img_file = np.loadtxt(image_file_path)
def get_image(img_id, denormalize):
item = img_file[img_id]
img_class = int(item[-1])
data = item[:-1]
# denormalize
if denormalize:
data = data * 255
data = data.reshape(28, 28)
return img_class, data
def get_blank_image(val):
data = np.zeros((img_height, img_width))
data += val
return data
cl_data = {}
def load_cl_data():
f = open(cl_file_path)
line = f.readline()
line = f.readline()
while line:
tokens = line.strip().split()
cl_id = int(tokens[0])
cf_count = int(tokens[3])
fitness = float(tokens[4])
num = int(tokens[1])
exp = int(tokens[2])
accuracy = float(tokens[5])
prediction = float(tokens[6])
error = float(tokens[7])
action = int(tokens[10])
cf_list = []
for i in range(max_condition_length):
id = int(tokens[i+11])
if id != -1:
cf_list.append(id)
cl_data[cl_id] = (cl_id, action, fitness, num, exp, accuracy, prediction, error, cf_list)
line = f.readline()
load_cl_data()
cl_data_sorted = sorted(list(cl_data.values()), key=lambda tup: tup[2], reverse=True)
cl_data_sorted = np.array(cl_data_sorted, dtype=object)
cf_data = {}
def load_cf_data():
f = open(cf_file_path)
line = f.readline()
line = f.readline()
while line:
tokens = line.strip().split()
cf_id = int(tokens[0])
cf_num = int(tokens[1])
cf_fit = int(tokens[2])
cf_x = int(tokens[3])
cf_y = int(tokens[4])
cf_size_x = int(tokens[5])
cf_size_y = int(tokens[6])
pattern = []
pattern_start_index = 8
for y in range(cf_size_y):
row = []
for x in range(cf_size_x):
row.append(float(tokens[pattern_start_index + y*cf_size_y + x]));
pattern.append(row)
line = f.readline()
cf_data[cf_id] = (cf_id, cf_num, cf_fit, cf_x, cf_y, cf_size_x, cf_size_y, pattern)
load_cf_data()
cf_data_sorted = sorted(list(cf_data.values()), key=lambda tup: tup[2], reverse=True)
cf_data_sorted = np.array(cf_data_sorted, dtype=object)
visualization_data = {}
def load_visualization_data():
# load visualization data
actual_class = -1
predicted_class = -1
f = open(visualization_file_path)
line = f.readline()
while line:
tokens = line.strip().split()
read_img_id = int(tokens[0])
actual_class = int(tokens[1])
predicted_class = int(tokens[2])
line = f.readline() # read list of action set classifiers
tokens = line.strip().split()
cl_ids = []
for id in tokens:
cl_ids.append(int(id))
visualization_data[read_img_id] = (actual_class, predicted_class, cl_ids)
line = f.readline()
f.close()
load_visualization_data()
def update_pixel_data(img_sum, img_count, cf_id):
cf_id, cf_num, cf_fit, cf_x, cf_y, cf_size_x, cf_size_y, pattern = cf_data[cf_id]
for y in range(cf_size_y):
for x in range(cf_size_x):
img_sum[cf_y + y, cf_x + x] += pattern[y][x]
img_count[cf_y + y, cf_x + x] += 1
def get_pixel_color(img_sum, img_count, x, y):
if img_count[y, x] == 0:
return '#FF0000'
c = int(img_sum[y, x]/img_count[y, x] * 255)
color = (c, c, c)
return color
def visualize_intervals(img_sum, img_count, dc):
for y in range(img_height):
for x in range(img_width):
dc.point((x, y), get_pixel_color(img_sum, img_count, x, y))
def get_concat_h(im1, im2):
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
def visualize_cf(cf_id_list, original_img=None):
print('Code Fragments: (' + str(len(cf_id_list)) + ') ' + str(cf_id_list))
# initialize bounds to see if they are updated lower = 1, upper = 0
img_sum = get_blank_image(0)
img_count = get_blank_image(0)
base_img = Image.new("RGB", (img_width, img_height), "#000000")
dc = ImageDraw.Draw(base_img) # draw context
for cf_id in cf_id_list:
cf_id, cf_num, cf_fit, cf_x, cf_y, cf_size_x, cf_size_y, pattern = cf_data[cf_id]
update_pixel_data(img_sum, img_count, cf_id)
visualize_intervals(img_sum, img_count, dc)
base_img = base_img.resize((img_width * resize_factor, img_height * resize_factor))
all_img = base_img
if original_img is not None:
all_img = get_concat_h(base_img, original_img)
all_img.show()
input("press any key to continue")
def visualize_cl(cl_ids, original_img=None):
print('Classifiers: (' + str(len(cl_ids)) + ') ' + str(cl_ids))
cf_id_list = []
for cl_id in cl_ids:
# if promising and cl_data[cl_id][7] >= 10 or cl_data[cl_id][4] < 10:
# if promising and cl_data[cl_id][2] < 0.01:
# continue
for cf_id in cl_data[cl_id][8]:
cf_id_list.append(cf_id)
visualize_cf(cf_id_list, original_img)
def visualize_promisinng_cf():
for cf in cf_data_sorted[:, 0]:
cf_id = int(cf)
visualize_cf([cf_id])
def visualize_promising_cl():
for cl in cl_data_sorted[:, 0:2]:
cl_id = int(cl[0])
print("Classifier: " + str(cl_id) + " Class: " + str(cl[1]))
visualize_cl([cl_id])
def visualize_all_cl(action):
print('Visualizing all classifiers for action: ' + str(action))
cl_id_list = []
for cl in cl_data_sorted[:, 0:2]:
if cl[1] == action:
cl_id = int(cl[0])
cl_id_list.append(cl_id)
visualize_cl(cl_id_list)
def filter_cls(cl_ids):
filtered_ids = []
for cl_id in cl_ids:
# if promising and cl_data[cl_id][7] >= 10 or cl_data[cl_id][4] < 10:
if cl_data[cl_id][2] >= 0.1:
filtered_ids.append(cl_id)
return filtered_ids
def get_original_image(img_id):
digit, image = get_image(img_id, True)
image = np.copy(image)
original_image = Image.fromarray(image).convert("RGB")
original_image = original_image.resize((img_width * resize_factor, img_height* resize_factor))
return original_image
def visualize_action_set():
print("Visualizing action set for validation images")
for img_id in visualization_data.keys():
actual_class, predicted_class, cl_ids = visualization_data[img_id]
print('Image: ' + str(img_id) + ' Actual: ' + str(actual_class) + ' Predicted: ' + str(predicted_class))
# cl_ids = filter_cls(cl_ids)
visualize_cl(cl_ids, get_original_image(img_id))
def show_original_image(img_id):
img = get_original_image(img_id)
img.show()
# visualize_cl([1892])
# visualize_promisinng_cf()
# visualize_promising_cl()
# visualize_all_cl(1)
visualize_action_set()
# visualize_cf([3868])
# show_original_image(9107)
print('done')