-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimports.py
262 lines (206 loc) · 8.33 KB
/
imports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import pandas as pd
import re
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.font_manager
from xgboost import XGBRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.linear_model import LinearRegression, LogisticRegression
from eli5.sklearn import PermutationImportance
from sklearn.metrics import mean_squared_error
from pdpbox import pdp, get_dataset, info_plots
from sklearn.feature_selection import f_regression
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.tree import DecisionTreeRegressor
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV, PredefinedSplit
from scipy.interpolate import interp1d
from matplotlib.lines import Line2D
from category_encoders.target_encoder import TargetEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.cluster import KMeans
from scipy.stats import mode
def rmse(y_real, y_pred):
return np.sqrt(mean_squared_error(y_real, y_pred))
def compr(list_it, remove_it):
return [x for x in list_it if x not in remove_it]
def ppl_to_df(ppl, name, X, y, fit=True):
if fit:
trans = ppl.fit_transform(X, y)
else:
trans = ppl.transform(X)
ndf = pd.DataFrame(
trans, columns=ppl[name].get_feature_names(), index=X.index
).astype("float")
return ndf.rename(columns=lambda x: re.findall("\_\_(.*)\Z", x)[0])
def feat_importance(m, df, plot=False, top=10):
imp_df = pd.DataFrame({"cols": df.columns, "imp": m}).sort_values(
"imp", ascending=False
)
if plot:
fig, axbo = plt.subplots(1, 1, figsize=(10, 6))
sns.barplot(x="cols", y="imp", data=imp_df[:top], palette="Blues_d", ax=axbo)
plt.show()
return imp_df.set_index("cols")
def clean_split(struct_cleaned, beg, fin, y_name):
ids = struct_cleaned["Flight_instance_ID"].unique()[beg:fin]
cleaned = struct_cleaned[struct_cleaned["Flight_instance_ID"].isin(ids)]
return (cleaned.drop(columns=y_name), cleaned["FF"])
def mix_split(df, sort, target, ids, size):
sorteddf = df.sort_values(by=sort)
top = sorteddf[:size]
X = top.drop(columns=target)
y = top[target]
rest = sorteddf[size:]
return X, y, rest[~rest[ids].isin(X[ids])]
def drop_unvariance(traine):
z_cols = traine.columns[traine.var() == 0]
return traine.drop(columns=z_cols)
def smart_subsample(df, ids, sam):
dfs = df.reset_index()
grouped = dfs.groupby([ids])["index"]
reserve = grouped.min().append(grouped.max())
mask = dfs["index"].isin(reserve.values)
takesamp = lambda d: d.sample(sam)
todrop = dfs[~mask].groupby(ids).apply(takesamp)
return df.drop(todrop["index"].values)
def remove_rows_val(df, val, col):
return df[df[col] != val].astype("float")
def elapsed(df, beg, fin):
df["elapsed"] = pd.to_datetime(df.iloc[:, beg:fin]).astype("int") / 1000000000
return df.sort_values(by=["elapsed"])
def search_by_line(model, params, X, y, sub_pr=False):
finp = {}
for grid in params:
gr = GridSearchCV(model, grid, n_jobs=-1)
gr.fit(X, y)
model.set_params(**gr.best_params_)
if sub_pr:
print(gr.best_params_)
finp.update(gr.best_params_)
print(finp)
def FFpart(X, y, step, colors):
forplot = X
forplot["FF"] = y
forplote = forplot[forplot["PH"] != 0]
counter = 0
grouped = forplote.groupby("part")
types = grouped["PH"].max()
cons = grouped["FF"].mean()
fins = pd.DataFrame(columns=["type", "cons", "part"])
while counter < 1:
maskc = np.logical_and(types.index >= counter, types.index < counter + step)
fins = fins.append(
{
"type": mode(types[maskc])[0][0],
"cons": cons[maskc].mean(),
"part": counter,
},
ignore_index=True,
)
counter += step
fins["type"] = fins["type"].replace(colors)
return fins
class DoNothing(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, x=None, y=None):
self.params = x.columns
return self
def transform(self, x=None):
return x
def get_feature_names(self):
return list(self.params)
class FlightPart(BaseEstimator, TransformerMixin):
def __init__(self, elapsed, ids):
self.elapsed = elapsed
self.ids = ids
pass
def fit(self, x=None, y=None):
self.params = x.columns
return self
def transform(self, X=None):
strats = X.groupby(self.ids)[self.elapsed].min()
finishes = X.groupby(self.ids)[self.elapsed].max()
X["from_beg"] = X[self.elapsed] - strats[X[self.ids]].values
X["duration"] = finishes[X[self.ids]].values - strats[X[self.ids]].values
X["part"] = X["from_beg"] / X["duration"]
X.drop(columns=self.ids, inplace=True)
self.params = X.columns
return X
def get_feature_names(self):
return list(self.params)
class MintoMean(BaseEstimator, TransformerMixin):
def __init__(self, miss):
self.miss = miss
self.minv = {}
self.mean = {}
def fit(self, x=None, y=None):
self.params = x.columns
self.minv = x.apply(lambda cval: cval.min(), axis=0) + self.miss
self.mean = x.apply(lambda cval: cval[cval > cval.min()].mean(), axis=0)
return self
def transform(self, x=None):
for col in x.columns:
x[col + "_out"] = x[col] < self.minv[col]
x[col].where(x[col] > self.minv[col], other=self.mean[col], inplace=True)
self.params = x.columns
return x
def get_feature_names(self):
return list(self.params)
class ClustTarg(BaseEstimator, TransformerMixin):
def __init__(self, n_clust):
self.n_clust = n_clust
pass
def fit(self, x=None, y=None):
self.params = x.columns
self.kmn_mod = {}
self.trg_mod = {}
for col in x.columns:
tmp = pd.DataFrame([])
self.kmn_mod[col] = KMeans(n_clusters=self.n_clust[col])
self.kmn_mod[col].fit(np.reshape(x[col].values, (-1, 1)))
tmp[col] = self.kmn_mod[col].predict(np.reshape(x[col].values, (-1, 1)))
self.trg_mod[col] = TargetEncoder()
self.trg_mod[col].fit(tmp[col].astype("category"), train_y)
return self
def transform(self, X=None):
for col in X.columns:
X[col] = self.kmn_mod[col].predict(np.reshape(X[col].values, (-1, 1)))
X[col] = self.trg_mod[col].transform(X[col].astype("category"))
return X
def get_feature_names(self):
return list(self.params)
class CorrCount:
def __init__(self, dataset, coeff):
correlation = dataset.corr()
correlation.dropna(axis=0, how="all", inplace=True)
correlation.dropna(axis=1, how="all", inplace=True)
col1 = (
pd.Series(correlation.index).repeat(correlation.iloc[0].size).reset_index()
)
col2 = pd.concat(
[pd.Series(correlation.index)] * correlation.iloc[0].size
).reset_index()
col3 = pd.Series(np.squeeze(correlation.values.reshape(-1, 1))).reset_index()
corrtab = pd.DataFrame({"col1": col1[0], "col2": col2[0], "coef": col3[0]})
corrtab = corrtab[corrtab["col1"] != corrtab["col2"]]
self.correlation = correlation
self.highcorrtab = corrtab[
((corrtab["coef"] > coeff) | (corrtab["coef"] < coeff * -1))
]
def betterval(self, impor, feat_X):
def to_remove(feat, imortance):
if (imortance.loc[feat["col1"]] < imortance.loc[feat["col2"]]).bool():
return feat["col1"]
else:
return False
rem = self.highcorrtab.apply(lambda x: to_remove(x, impor), axis=1).unique()
rem = rem[rem != False]
return feat_X.drop(columns=rem)