-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharithmetics.cpp
767 lines (596 loc) · 22.6 KB
/
arithmetics.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
#include <iostream>
#include <iomanip>
#include <memory.h>
#include <math.h>
#include <array>
#include <windows.h>
#include <fstream>
#include <immintrin.h>
#include "workbench.hpp"
void print_matrixF(float* matrix, size_t dim) {
const size_t fullSize = (dim * dim);
for (size_t m = 0; m < fullSize; m += dim) {
for (size_t n = 0; n < dim; n++) {
std:: cout << std::setw(10) << std::left << matrix[m + n] << " ";
}
std::cout << std::endl;
}
}
void print_matrixD(double* matrix, size_t dim) {
const size_t fullSize = (dim * dim);
for (size_t m = 0; m < fullSize; m += dim) {
for (size_t n = 0; n < dim; n++) {
std:: cout << std::setw(10) << std::left << matrix[m + n] << " ";
}
std::cout << std::endl;
}
}
/**
█████ ██ ██ █████ █████ ██ ██ ██████
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
█████ ███ █████ ███████ ██ ██ ██ ███
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
█████ ██ ██ █████ ██ ██ ████ ██████
Find average of 8x8 matrix
*/
const int32_t matrix_int[8][8] = {
476, -186, -52, 147, -127, 132, 176, -130,
314, -18, -164, 361, -237, 285, -124, -212,
444, 490, -213, 309, 407, 375, 138, 166,
436, -120, 1, 9, 160, 371, 123, -44,
-250, 158, 347, 78, 179, -82, 338, -236,
110, 122, 383, 409, 240, 96, 46, -171,
154, -3, -20, 246, 377, 125, 296, 227,
95, 129, 91, 380, 289, 156, -170, -36
};
double matrix_8x8_avg() {
int32_t result = 0;
for (size_t m = 0; m < 8; m++) {
for (size_t n = 0; n < 8; n++) {
result += matrix_int[m][n];
}
}
return ((double)result / 64);
}
double matrix_8x8_avg_sse2() {
auto vec_rows = _mm_set1_epi32(0);
for (size_t i = 0; i < 8; i++) {
auto matrix_A = _mm_loadu_si128((__m128i*)matrix_int[i]);
auto matrix_A1 = _mm_loadu_si128((__m128i*)(matrix_int[i] + 4));
auto vect_C = _mm_add_epi32(matrix_A, matrix_A1);
vec_rows = _mm_add_epi32(vec_rows, vect_C);
}
int32_t rows[4];
_mm_storeu_si128((__m128i*)rows, vec_rows);
int32_t result = 0;
for (size_t i = 0; i < 4; i++)
result += rows[i];
return ((double)result / 64);
}
double matrix_8x8_avg_avx2() {
auto vec_rows = _mm256_set1_epi32(0);
for (size_t i = 0; i < 8; i++) {
auto matrix_A = _mm256_loadu_si256((__m256i*)matrix_int[i]);
vec_rows = _mm256_add_epi32(vec_rows, matrix_A);
}
int32_t rows[8];
_mm256_storeu_si256((__m256i*)rows, vec_rows);
int32_t result = 0;
for (size_t i = 0; i < 8; i++)
result += rows[i];
return ((double)result / 64);
}
/**
███████ ██ ██████ █████ ████████ █████ ██ ██ █████
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
█████ ██ ██ ██ ███████ ██ █████ ███ █████
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
██ ███████ ██████ ██ ██ ██ █████ ██ ██ █████
Multiply two 8x8 matrix of floats, row by row, reverse squre root out of it, then add all vector elements
*/
const float matrix_flt[8][8] = {
2.54, 1.09, 0.32, 0.74, 1.49, 0.53, 1.46, 0.46,
0.58, 2.44, 0.62, 1.69, 2.30, 1.72, 1.57, 1.68,
2.33, 1.67, 1.90, 1.84, 0.47, 2.91, 0.26, 2.64,
1.94, 0.51, 0.17, 2.00, 2.55, 2.71, 2.67, 0.24,
1.31, 0.19, 0.43, 1.80, 0.10, 2.33, 2.50, 1.60,
0.64, 2.22, 2.46, 2.34, 0.36, 0.50, 1.64, 1.39,
1.42, 2.86, 0.96, 1.81, 1.06, 2.57, 0.18, 1.30,
0.91, 2.25, 1.54, 1.02, 2.84, 0.07, 2.05, 2.43
};
double flt_8x8_mlp() {
double resrow[8] = {1, 1, 1, 1, 1, 1, 1, 1};
// ...={1} does not work in GCC 12.2, althouh I remember that it did in TDM-GCC 10.3
// not a very big deal but heeey
for (size_t m = 0; m < 8; m++) {
for (size_t n = 0; n < 8; n++) {
resrow[m] *= matrix_flt[n][m];
}
}
for (size_t i = 0; i < 8; i++)
resrow[i] = 1 / sqrt(resrow[i]);
double result = 1;
for (size_t i = 0; i < 8; i++)
result += resrow[i];
return result;
}
double flt_8x8_mlp_sse2() {
float resrow[8] = {1, 1, 1, 1, 1, 1, 1, 1};
auto vect_row_A = _mm_set1_ps(1);
auto vect_row_B = _mm_set1_ps(1);
for (size_t i = 0; i < 8; i++) {
vect_row_A = _mm_mul_ps(vect_row_A, _mm_loadu_ps(matrix_flt[i]));
vect_row_B = _mm_mul_ps(vect_row_B, _mm_loadu_ps(matrix_flt[i] + 4));
}
vect_row_A = _mm_rsqrt_ps(vect_row_A);
vect_row_B = _mm_rsqrt_ps(vect_row_B);
_mm_storeu_ps(resrow, vect_row_A);
_mm_storeu_ps(resrow + 4, vect_row_B);
double result = 1;
for (size_t i = 0; i < 8; i++)
result += resrow[i];
return result;
}
double flt_8x8_mlp_avx2() {
float resrow[8] = {1, 1, 1, 1, 1, 1, 1, 1};
auto vect_row = _mm256_set1_ps(1);
for (size_t i = 0; i < 8; i++)
vect_row = _mm256_mul_ps(vect_row, _mm256_loadu_ps(matrix_flt[i]));
vect_row = _mm256_rsqrt_ps(vect_row);
_mm256_storeu_ps(resrow, vect_row);
double result = 1;
for (size_t i = 0; i < 8; i++)
result += resrow[i];
return result;
}
/**
██████ ██████ ██ ██ ██████ ██ ███████ ██████ ███████ ███ ██
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ████ ██
██ ██ ██ ██ ██ ██ ██████ ██ █████ ██████ █████ ██ ██ ██
██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██
██████ ██████ ██████ ██████ ███████ ███████ ██ ███████ ██ ████ ██ ██ ██
It's time to actually fck the crp out of your PC!
Ok I'm joking, this only run on single core, so the PC would be totally fine
*/
const double matrix_dbl[8][8] = {
0.02494159, 0.71868752, 0.91990175, 0.34410689, 0.47312923, 0.30208912, 0.49589867, 0.02516413,
0.88883377, 0.06795215, 0.08575813, 0.22577430, 0.49062035, 0.86974825, 0.32800815, 0.12455937,
0.47718442, 0.57817785, 0.65302181, 0.64077491, 0.00368169, 0.84689647, 0.37906349, 0.25878278,
0.32721652, 0.64109163, 0.97700378, 0.98086717, 0.21519017, 0.14436138, 0.76528899, 0.61312114,
0.26716477, 0.76112935, 0.00952823, 0.51584315, 0.92180513, 0.37365493, 0.28754857, 0.62823112,
0.39187170, 0.37756994, 0.14195147, 0.83827942, 0.93483692, 0.54641417, 0.11881003, 0.76125618,
0.35885252, 0.30131080, 0.10792290, 0.87547434, 0.40315502, 0.56225633, 0.50602718, 0.99637334,
0.85471644, 0.74252133, 0.79062605, 0.26826468, 0.47558618, 0.92064569, 0.50718114, 0.82362572
};
std::array <float, 16> d8_f4() {
double tmpmtrx[8][8];
for (size_t m = 0; m < 8; m++) {
for (size_t n = 0; n < 8; n++) {
tmpmtrx[m][n] = 1 / sqrt(matrix_dbl[m][n]);
}
}
double tmpmtrx2[8][8];
memset(tmpmtrx2, 0, 64 * sizeof(double));
for (size_t m = 0; m < 4; m++) {
for (size_t n = 0; n < 8; n++) {
tmpmtrx2[m][n] = tmpmtrx[(m * 2)][n] * tmpmtrx[(m * 2) + 1][n];
}
}
std::array <float, 16> result;
float tmpmtrx3[4][4];
memset(tmpmtrx3, 0, 16 * sizeof(float));
for (size_t m = 0; m < 4; m++) {
for (size_t n = 0; n < 4; n++) {
tmpmtrx3[m][n] = 1 / (sqrt(pow(tmpmtrx2[m][(n * 2)], 2) / pow(tmpmtrx2[m][(n * 2) + 1], 2)));
}
}
memcpy(result.data(), tmpmtrx3, 16 * sizeof(float));
return result;
}
std::array <float, 16> d8_f4_sse2() {
double tmpmtrx[8][8];
for (size_t m = 0; m < 8; m++) {
for (size_t n = 0; n < 4; n++) {
auto vect_rsqrt = _mm_sqrt_pd(_mm_loadu_pd(&matrix_dbl[m][n * 2]));
auto divided = _mm_div_pd(_mm_set_pd1(1), vect_rsqrt);
_mm_storeu_pd(&tmpmtrx[m][n * 2], divided);
}
}
double tmpmtrx2[8][8];
double tmpmtrx2_A[8];
double tmpmtrx2_B[8];
for (size_t m = 0; m < 4; m++) {
const size_t _2m = m * 2;
// pack inputs to two arrays
for (size_t n = 0; n < 8; n++) {
tmpmtrx2_A[n] = tmpmtrx[_2m][n];
tmpmtrx2_B[n] = tmpmtrx[_2m + 1][n];
}
// multiply the input doubles
for (size_t n = 0; n < 4; n++) {
const size_t _2n = n * 2;
auto vect_A = _mm_loadu_pd(&tmpmtrx2_A[_2n]);
auto vect_B = _mm_loadu_pd(&tmpmtrx2_B[_2n]);
auto multiplied = _mm_mul_pd(vect_A, vect_B);
_mm_storeu_pd(&tmpmtrx2[m][_2n], multiplied);
}
}
std::array <float, 16> result;
float tmpmtrx3[4][4];
double tmpmtrx3_A[4];
double tmpmtrx3_B[4];
for (size_t m = 0; m < 4; m++) {
// pack inputs again
for (size_t n = 0; n < 4; n++) {
const size_t _2n = 2 * n;
tmpmtrx3_A[n] = tmpmtrx2[m][_2n];
tmpmtrx3_B[n] = tmpmtrx2[m][_2n + 1];
}
// perform math on vectors
for (size_t n = 0; n < 2; n++) {
const size_t _2n = n * 2;
auto vect_A = _mm_loadu_pd(&tmpmtrx3_A[_2n]);
auto vect_B = _mm_loadu_pd(&tmpmtrx3_B[_2n]);
auto vect_pow_A = _mm_mul_pd(vect_A, vect_A);
auto vect_pow_B = _mm_mul_pd(vect_B, vect_B);
auto vect_divd = _mm_div_pd(vect_pow_A, vect_pow_B);
auto vect_sqrt = _mm_sqrt_pd(vect_divd);
auto vect_invsqrt = _mm_div_pd(_mm_set_pd1(1), vect_sqrt);
_mm_storeu_ps(&tmpmtrx3[m][_2n], _mm_cvtpd_ps(vect_invsqrt));
}
}
memcpy(result.data(), tmpmtrx3, 16 * sizeof(float));
return result;
}
std::array <float, 16> d8_f4_avx2() {
double tmpmtrx[8][8];
for (size_t m = 0; m < 8; m++) {
for (size_t n = 0; n < 2; n++) {
auto vect_rsqrt = _mm256_sqrt_pd(_mm256_loadu_pd(&matrix_dbl[m][n * 4]));
auto divided = _mm256_div_pd(_mm256_set_pd(1, 1, 1, 1), vect_rsqrt);
_mm256_storeu_pd(&tmpmtrx[m][n * 4], divided);
}
}
double tmpmtrx2[8][8];
double tmpmtrx2_A[8];
double tmpmtrx2_B[8];
for (size_t m = 0; m < 4; m++) {
const size_t _2m = m * 2;
// pack inputs to two arrays
for (size_t n = 0; n < 8; n++) {
tmpmtrx2_A[n] = tmpmtrx[_2m][n];
tmpmtrx2_B[n] = tmpmtrx[_2m + 1][n];
}
// multiply the input doubles
for (size_t n = 0; n < 2; n++) {
const size_t _4n = n * 4;
auto vect_A = _mm256_loadu_pd(&tmpmtrx2_A[_4n]);
auto vect_B = _mm256_loadu_pd(&tmpmtrx2_B[_4n]);
auto multiplied = _mm256_mul_pd(vect_A, vect_B);
_mm256_storeu_pd(&tmpmtrx2[m][_4n], multiplied);
}
}
std::array <float, 16> result;
float tmpmtrx3[4][4];
double tmpmtrx3_A[4];
double tmpmtrx3_B[4];
for (size_t m = 0; m < 4; m++) {
// pack inputs again
for (size_t n = 0; n < 4; n++) {
const size_t _2n = 2 * n;
tmpmtrx3_A[n] = tmpmtrx2[m][_2n];
tmpmtrx3_B[n] = tmpmtrx2[m][_2n + 1];
}
// perform math on vectors
auto vect_A = _mm256_loadu_pd(tmpmtrx3_A);
auto vect_B = _mm256_loadu_pd(tmpmtrx3_B);
auto vect_pow_A = _mm256_mul_pd(vect_A, vect_A);
auto vect_pow_B = _mm256_mul_pd(vect_B, vect_B);
auto vect_divd = _mm256_div_pd(vect_pow_A, vect_pow_B);
auto vect_sqrt = _mm256_sqrt_pd(vect_divd);
auto vect_invsqrt = _mm256_div_pd(_mm256_set_pd(1, 1, 1, 1), vect_sqrt);
_mm_storeu_ps(tmpmtrx3[m], _mm256_cvtpd_ps(vect_invsqrt));
}
memcpy(result.data(), tmpmtrx3, 16 * sizeof(float));
return result;
}
/**
██████ ██ ██████ ██ ███ ██ ████████
██ ██ ██ ██ ██ ████ ██ ██
██████ ██ ██ ███ ██ ██ ██ ██ ██
██ ██ ██ ██ ██ ██ ██ ██ ██ ██
██████ ██ ██████ ██ ██ ████ ██
64-bit integers ops
*/
const int64_t matrix_bigint[8][4] {
-779, -45579, 70910, -26100,
72448, 16274, 48480, -6477,
11284, -32778, 32936, -92112,
13822, -89155, 41849, 84882,
55442, 15198, 77350, -80102,
61894, 25507, 97139, -1519,
-53315, 17583, -39452, 49882,
57465, 56360, -52681, 28063
};
int64_t bigint_calc() {
int64_t temp[4];
// multiply first row
for (size_t i = 0; i < 4; i++) temp[i] = matrix_bigint[0][i] * matrix_bigint[1][i];
// add
for (size_t i = 0; i < 4; i++) temp[i] += matrix_bigint[2][i];
// substract
for (size_t i = 0; i < 4; i++) temp[i] -= matrix_bigint[3][i];
// divide
//for (size_t i = 0; i < 4; i++) temp[i] /= matrix_bigint[4][i];
// make absolute
//for (size_t i = 0; i < 4; i++) temp[i] = _abs64(temp[i]);
// find inverse-of-next-row square root
//for (size_t i = 0; i < 4; i++) temp[i] = matrix_bigint[5][i] / sqrtl(temp[i]);
// sum and return
int64_t result = 0;
for (size_t i = 0; i < 4; i++) result += temp[i];
return result;
}
int64_t bigint_calc_sse2() {
int64_t temp[4];
// multiply first row
// just no 64intx64int op in SSE
for (size_t i = 0; i < 4; i++) temp[i] = matrix_bigint[0][i] * matrix_bigint[1][i];
// add
auto vec_A = _mm_add_epi64(_mm_loadu_si128((__m128i*)temp), _mm_loadu_si128((__m128i*)matrix_bigint[2]));
auto vec_B = _mm_add_epi64(_mm_loadu_si128((__m128i*)(temp + 2)), _mm_loadu_si128((__m128i*)(matrix_bigint[2] + 2)));
// substract
vec_A = _mm_sub_epi64(vec_A, _mm_loadu_si128((__m128i*)matrix_bigint[3]));
vec_B = _mm_sub_epi64(vec_B, _mm_loadu_si128((__m128i*)(matrix_bigint[3] + 2)));
_mm_storeu_si128((__m128i*)temp, vec_A);
_mm_storeu_si128((__m128i*)(temp + 2), vec_B);
// divide
// no division op, again
//for (size_t i = 0; i < 4; i++) temp[i] /= matrix_bigint[4][i];
// make absolute
// ahhh no abs too
//for (size_t i = 0; i < 4; i++) temp[i] = _abs64(temp[i]);
// find inverse-of-next-row square root
// oops, no sqrt too =/
//for (size_t i = 0; i < 4; i++) temp[i] = matrix_bigint[5][i] / sqrtl(temp[i]);
// sum and return
int64_t result = 0;
for (size_t i = 0; i < 4; i++) result += temp[i];
return result;
}
int64_t bigint_calc_avx2() {
int64_t temp[4];
// multiply first row
// yeah yeah to 64 int multiply instruction even in AVX2
for (size_t i = 0; i < 4; i++) temp[i] = matrix_bigint[0][i] * matrix_bigint[1][i];
// add
auto vector = _mm256_add_epi64(_mm256_loadu_si256((__m256i_u*)temp), _mm256_loadu_si256((__m256i_u*)matrix_bigint[2]));
// substract
vector = _mm256_sub_epi64(vector, _mm256_loadu_si256((__m256i_u*)matrix_bigint[3]));
_mm256_storeu_si256((__m256i_u*)temp, vector);
// divide
// no division op, oooopsie again x2
//for (size_t i = 0; i < 4; i++) temp[i] /= matrix_bigint[4][i];
// make absolute
// only in avx512, kids
//for (size_t i = 0; i < 4; i++) temp[i] = _abs64(temp[i]);
// find inverse-of-next-row square root
// aaaaaaaaah, no square root for 64-bit ints. ok Inter, got it
//for (size_t i = 0; i < 4; i++) temp[i] = matrix_bigint[5][i] / sqrtl(temp[i]);
// sum and return
int64_t result = 0;
for (size_t i = 0; i < 4; i++) result += temp[i];
return result;
}
void invalidResult() {
std::cout << "Error while performing operation\r\n";
exit(1);
}
int main() {
std::cout << "\r\n\r\nThis demo is gonna performs some arithmetic computations along with benchmarks\r\n";
std::cout << "Running " << TEST_OPS << " instances of each operation...\r\n";
auto timer = timeGetTime();
//goto test4;
test1:
// average of 8x8 32-bit int matrix
std::array<time_t, TEST_RUNS> test1_ctrl;
std::array<time_t, TEST_RUNS> test1_sse2;
std::array<time_t, TEST_RUNS> test1_avx2;
{
std::cout << "\r\n\r\nTest 1. Average value of 8x8 32-bit int matrix...\r\n";
// no simd
auto refResult = matrix_8x8_avg();
std::cout << "Expected computation result: " << refResult << "\r\n\r\n";
std::cout << "Control run... ";
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS; i++) {
auto opResult = matrix_8x8_avg();
if (opResult != refResult) invalidResult();
}
test1_ctrl[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test1_ctrl.data(), TEST_RUNS) << "ms/" << TEST_OPS << "ops\r\n";
// sse2
std::cout << "SSE2 run... ";
refResult = matrix_8x8_avg_sse2();
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS; i++) {
auto opResult = matrix_8x8_avg_sse2();
if (opResult != refResult) invalidResult();
}
test1_sse2[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test1_sse2.data(), TEST_RUNS) << "ms/" << TEST_OPS << "ops\r\n";
// avx2
std::cout << "AVX run... ";
refResult = matrix_8x8_avg_avx2();
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS; i++) {
auto opResult = matrix_8x8_avg_avx2();
if (opResult != refResult) invalidResult();
}
test1_avx2[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test1_avx2.data(), TEST_RUNS) << "ms/" << TEST_OPS << "ops\r\n";
}
test2:
// double 8x8 to float 4x4 matrix transform
std::array<time_t, TEST_RUNS> test2_ctrl;
std::array<time_t, TEST_RUNS> test2_sse2;
std::array<time_t, TEST_RUNS> test2_avx2;
{
std::cout << "\r\n\r\nTest 2. Float 8x8 to single float matrix multiplication...\r\n";
// no simd
auto refResult = flt_8x8_mlp();
std::cout << "Expected computation result: " << refResult << "\r\n\r\n";
std::cout << "Control run... ";
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS; i++) {
auto opResult = flt_8x8_mlp();
if (opResult != refResult) invalidResult();
}
test2_ctrl[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test2_ctrl.data(), TEST_RUNS) << "ms/" << TEST_OPS << "ops\r\n";
// sse2
std::cout << "SSE2 run... ";
refResult = flt_8x8_mlp_sse2();
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS; i++) {
auto opResult = flt_8x8_mlp_sse2();
if (opResult != refResult) invalidResult();
}
test2_sse2[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test2_sse2.data(), TEST_RUNS) << "ms/" << TEST_OPS << "ops\r\n";
// avx2
std::cout << "AVX run... ";
refResult = flt_8x8_mlp_avx2();
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS; i++) {
auto opResult = flt_8x8_mlp_avx2();
if (opResult != refResult) invalidResult();
}
test2_avx2[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test2_avx2.data(), TEST_RUNS) << "ms/" << TEST_OPS << "ops\r\n";
}
test3:
// double 8x8 to float 4x4 matrix transform
// this is a computationaly intensive test, number of samples is lowered by a factor of 10
std::array<time_t, TEST_RUNS> test3_ctrl;
std::array<time_t, TEST_RUNS> test3_sse2;
std::array<time_t, TEST_RUNS> test3_avx2;
{
std::cout << "\r\n\r\nTest 3. Double 8x8 to float 4x4 matrix transform...\r\n";
// no simd
auto refResult = d8_f4();
std::cout << "Expected computation result:\r\n\r\n";
print_matrixF(refResult.data(), 4);
std::cout << "\r\n\r\n";
std::cout << "Control run... ";
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS_RED; i++) {
auto opResult = d8_f4();
if (opResult != refResult) invalidResult();
}
test3_ctrl[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test3_ctrl.data(), TEST_RUNS) << "ms/" << TEST_OPS_RED << "ops\r\n";
// sse2
std::cout << "SSE2 run... ";
refResult = d8_f4_sse2();
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS_RED; i++) {
auto opResult = d8_f4_sse2();
if (opResult != refResult) invalidResult();
}
test3_sse2[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test3_sse2.data(), TEST_RUNS) << "ms/" << TEST_OPS_RED << "ops\r\n";
// avx2
std::cout << "AVX run... ";
refResult = d8_f4_avx2();
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS_RED; i++) {
auto opResult = d8_f4_avx2();
if (opResult != refResult) invalidResult();
}
test3_avx2[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test3_avx2.data(), TEST_RUNS) << "ms/" << TEST_OPS_RED << "ops\r\n";
}
test4:
// bitg int test
// irrelevant one due to weak vectorization
std::array<time_t, TEST_RUNS> test4_ctrl;
std::array<time_t, TEST_RUNS> test4_sse2;
std::array<time_t, TEST_RUNS> test4_avx2;
{
std::cout << "\r\n\r\nTest 4. Just checking how fast you can crunch the 64-bit integers...\r\n";
// no simd
auto refResult = bigint_calc();
std::cout << "Expected computation result: " << refResult << "\r\n\r\n";
std::cout << "Control run... ";
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS; i++) {
auto opResult = bigint_calc();
if (opResult != refResult) invalidResult();
}
test4_ctrl[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test4_ctrl.data(), TEST_RUNS) << "ms/" << TEST_OPS << "ops\r\n";
// sse2
std::cout << "SSE2 run... ";
refResult = bigint_calc_sse2();
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS; i++) {
auto opResult = bigint_calc_sse2();
if (opResult != refResult) invalidResult();
}
test4_sse2[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test4_sse2.data(), TEST_RUNS) << "ms/" << TEST_OPS << "ops\r\n";
// avx2
std::cout << "AVX run... ";
refResult = bigint_calc_avx2();
for (size_t r = 0; r < TEST_RUNS; r++) {
timer = timeGetTime();
for (size_t i = 0; i < TEST_OPS; i++) {
auto opResult = bigint_calc_avx2();
if (opResult != refResult) invalidResult();
}
test4_avx2[r] = timeGetTime() - timer;
}
std::cout << "AVG " << avgtime(test4_avx2.data(), TEST_RUNS) << "ms/" << TEST_OPS << "ops\r\n";
}
// save test data
std::string filename = std::string("benchmarks-data/") + "benchmark_arithmetics_" + std::to_string(time(nullptr)) + ".csv";
std::cout << "\r\nTest ended. Writing data to " << filename << std::endl;
std::ofstream output(filename, std::ios::out);
output << "int32-Control,int32-SSE,int32-AVX2,"
<< "float-Control,float-SSE,float-AVX2,"
<< "double-Control,double-SSE,double-AVX2,"
<< "int64-Control,int64-SSE,int64-AVX2,"
<< "Unit (ms/n ops)\n";
for (size_t i = 0; i < TEST_RUNS; i++){
output << test1_ctrl[i] << "," << test1_sse2[i] << "," << test1_avx2[i] << ","
<< test2_ctrl[i] << "," << test2_sse2[i] << "," << test2_avx2[i] << ","
<< test3_ctrl[i] << "," << test3_sse2[i] << "," << test3_avx2[i] << ","
<< test4_ctrl[i] << "," << test4_sse2[i] << "," << test4_avx2[i] << ","
<< TEST_OPS << "\n";
}
output.close();
return 0;
}