forked from SubmissionsIn/MFLVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
72 lines (59 loc) · 2.55 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import torch.nn as nn
import math
class Loss(nn.Module):
def __init__(self, batch_size, class_num, temperature_f, temperature_l, device):
super(Loss, self).__init__()
self.batch_size = batch_size
self.class_num = class_num
self.temperature_f = temperature_f
self.temperature_l = temperature_l
self.device = device
self.mask = self.mask_correlated_samples(batch_size)
self.similarity = nn.CosineSimilarity(dim=2)
self.criterion = nn.CrossEntropyLoss(reduction="sum")
def mask_correlated_samples(self, N):
mask = torch.ones((N, N))
mask = mask.fill_diagonal_(0)
for i in range(N//2):
mask[i, N//2 + i] = 0
mask[N//2 + i, i] = 0
mask = mask.bool()
return mask
def forward_feature(self, h_i, h_j):
N = 2 * self.batch_size
h = torch.cat((h_i, h_j), dim=0)
sim = torch.matmul(h, h.T) / self.temperature_f
sim_i_j = torch.diag(sim, self.batch_size)
sim_j_i = torch.diag(sim, -self.batch_size)
positive_samples = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1)
mask = self.mask_correlated_samples(N)
negative_samples = sim[mask].reshape(N, -1)
labels = torch.zeros(N).to(positive_samples.device).long()
logits = torch.cat((positive_samples, negative_samples), dim=1)
loss = self.criterion(logits, labels)
loss /= N
return loss
def forward_label(self, q_i, q_j):
p_i = q_i.sum(0).view(-1)
p_i /= p_i.sum()
ne_i = math.log(p_i.size(0)) + (p_i * torch.log(p_i)).sum()
p_j = q_j.sum(0).view(-1)
p_j /= p_j.sum()
ne_j = math.log(p_j.size(0)) + (p_j * torch.log(p_j)).sum()
entropy = ne_i + ne_j
q_i = q_i.t()
q_j = q_j.t()
N = 2 * self.class_num
q = torch.cat((q_i, q_j), dim=0)
sim = self.similarity(q.unsqueeze(1), q.unsqueeze(0)) / self.temperature_l
sim_i_j = torch.diag(sim, self.class_num)
sim_j_i = torch.diag(sim, -self.class_num)
positive_clusters = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1)
mask = self.mask_correlated_samples(N)
negative_clusters = sim[mask].reshape(N, -1)
labels = torch.zeros(N).to(positive_clusters.device).long()
logits = torch.cat((positive_clusters, negative_clusters), dim=1)
loss = self.criterion(logits, labels)
loss /= N
return loss + entropy