-
Notifications
You must be signed in to change notification settings - Fork 1
/
nips2019_preview.txt
3626 lines (2180 loc) · 116 KB
/
nips2019_preview.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
http://arxiv.org/pdf/1908.02265v1
Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers
http://arxiv.org/pdf/1905.10630v1
Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video
http://arxiv.org/pdf/1908.10553v1
Zero-shot Learning via Simultaneous Generating and Learning
Ask not what AI can do for you, but what AI should do: Towards a framework of task delegability
http://arxiv.org/pdf/1902.03245v1
Stand-Alone Self-Attention in Vision Models
http://arxiv.org/pdf/1906.05909v1
High Fidelity Video Prediction with Large Neural Nets
Unsupervised learning of object structure and dynamics from videos
TensorPipe: Easy Scaling with Micro-Batch Pipeline Parallelism
Meta-Learning with Implicit Gradients
http://arxiv.org/pdf/1909.04630v1
Adversarial Examples Are Not Bugs, They Are Features
Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks
http://arxiv.org/pdf/1907.03395v2
FreeAnchor: Learning to Match Anchors for Visual Object Detection
http://arxiv.org/pdf/1909.02466v1
Differentially Private Hypothesis Selection
New Differentially Private Algorithms for Learning Mixtures of Well-Separated Gaussians
http://arxiv.org/pdf/1909.03951v1
Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation
http://arxiv.org/pdf/1906.02830v1
Multi-Resolution Weak Supervision for Sequential Data
DeepUSPS: Deep Robust Unsupervised Saliency Prediction via Self-supervision
The Point Where Reality Meets Fantasy: Mixed Adversarial Generators for Image Splice Detection
You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle
http://arxiv.org/pdf/1905.00877v5
Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance
http://arxiv.org/pdf/1906.04516v1
Generalized Sliced Wasserstein Distances
http://arxiv.org/pdf/1902.00434v1
First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise
http://arxiv.org/pdf/1906.09069v1
Blind Super-Resolution Kernel Estimation using an Internal-GAN
http://arxiv.org/pdf/1909.06581v3
Noise-tolerant fair classification
http://arxiv.org/pdf/1901.10837v2
Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection
http://arxiv.org/pdf/1908.07882v3
Joint-task Self-supervised Learning for Temporal Correspondence
http://arxiv.org/pdf/1909.11895v1
Provable Gradient Variance Guarantees for Black-Box Variational Inference
http://arxiv.org/pdf/1906.08241v1
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
http://arxiv.org/pdf/1906.10115v1
Experience Replay for Continual Learning
Deep ReLU Networks Have Surprisingly Few Activation Patterns
http://arxiv.org/pdf/1906.00904v1
Chasing Ghosts: Instruction Following as Bayesian State Tracking
http://arxiv.org/pdf/1907.02022v1
Block Coordinate Regularization by Denoising
http://arxiv.org/pdf/1905.05113v2
Reducing Noise in GAN Training with Variance Reduced Extragradient
http://arxiv.org/pdf/1904.08598v2
Learning Erdos-Renyi Random Graphs via Edge Detecting Queries
http://arxiv.org/pdf/1905.03410v2
A Primal-Dual link between GANs and Autoencoders
muSSP: Efficient Min-cost Flow Algorithm for Multi-object Tracking
Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation
Invert to Learn to Invert
Equitable Stable Matchings in Quadratic Time
Zero-Shot Semantic Segmentation
http://arxiv.org/pdf/1906.00817v1
Metric Learning for Adversarial Robustness
DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction
http://arxiv.org/pdf/1905.10711v1
Batched Multi-armed Bandits Problem
http://arxiv.org/pdf/1904.01763v2
vGraph: A Generative Model for Joint Community Detection and Node Representation Learning
http://arxiv.org/pdf/1906.07159v2
Differentially Private Bayesian Linear Regression
Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos
AGEM: Solving Linear Inverse Problems via Deep Priors and Sampling
CPM-Nets: Cross Partial Multi-View Networks
Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis
Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling
SySCD: A System-Aware Parallel Coordinate Descent Algorithm
Importance Weighted Hierarchical Variational Inference
RSN: Randomized Subspace Newton
http://arxiv.org/pdf/1905.10874v1
Trust Region-Guided Proximal Policy Optimization
http://arxiv.org/pdf/1901.10314v1
Adversarial Self-Defense for Cycle-Consistent GANs
http://arxiv.org/pdf/1908.01517v1
Towards closing the gap between the theory and practice of SVRG
http://arxiv.org/pdf/1908.02725v1
Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control
http://arxiv.org/pdf/1906.01376v1
ETNet: Error Transition Network for Arbitrary Style Transfer
No Pressure! Addressing the Problem of Local Minima in Manifold Learning Algorithms
http://arxiv.org/pdf/1906.11389v1
Deep Equilibrium Models
http://arxiv.org/pdf/1909.01377v1
Saccader: Accurate, Interpretable Image Classification with Hard Attention
Multiway clustering via tensor block models
http://arxiv.org/pdf/1906.03807v2
Regret Minimization for Reinforcement Learning on Multi-Objective Online Markov Decision Processes
NAT: Neural Architecture Transformer for Accurate and Compact Architectures
Selecting Optimal Decisions via Distributionally Robust Nearest-Neighbor Regression
Network Pruning via Transformable Architecture Search
http://arxiv.org/pdf/1905.09717v2
Differentiable Cloth Simulation for Inverse Problems
Poisson-randomized Gamma Dynamical Systems
Volumetric Correspondence Networks for Optical Flow
Learning Conditional Deformable Templates with Convolutional Networks
http://arxiv.org/pdf/1908.02738v1
Fast Low-rank Metric Learning for Large-scale and High-dimensional Data
http://arxiv.org/pdf/1909.06297v1
Efficient Symmetric Norm Regression via Linear Sketching
RUBi: Reducing Unimodal Biases in Visual Question Answering
http://arxiv.org/pdf/1906.10169v1
Reducing Scene Bias of Convolutional Neural Networks for Human Action Understanding
NeurVPS: Neural Vanishing Point Scanning via Conic Convolution
DATA: Differentiable ArchiTecture Approximation
Learn, Imagine and Create: Text-to-Image Generation from Prior Knowledge
Memory-oriented Decoder for Light Field Salient Object Detection
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition
Correlated Uncertainty for Learning Dense Correspondences from Noisy Labels
Powerset Convolutional Neural Networks
http://arxiv.org/pdf/1909.02253v1
Optimal Pricing in Repeated Posted-Price Auctions with Different Patience of the Seller and the Buyer
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums
http://arxiv.org/pdf/1905.11394v2
Efficient 3D Deep Learning via Point-Based Representation and Voxel-Based Convolution
Deep Learning without Weight Transport
http://arxiv.org/pdf/1904.05391v3
Combinatorial Bandits with Relative Feedback
General Proximal Incremental Aggregated Gradient Algorithms: Better and Novel Results under General Scheme
Joint Optimizing of Cycle-Consistent Networks
Explicit Disentanglement of Appearance and Perspective in Generative Models
http://arxiv.org/pdf/1906.11881v1
Polynomial Cost of Adaptation for X-Armed Bandits
http://arxiv.org/pdf/1905.10221v1
Learning to Propagate for Graph Meta-Learning
http://arxiv.org/pdf/1909.05024v1
Secretary Ranking with Minimal Inversions
http://arxiv.org/pdf/1811.06444v1
Nonparametric Regressive Point Processes Based on Conditional Gaussian Processes
Learning Perceptual Inference by Contrasting
Selecting the independent coordinates of manifolds with large aspect ratios
http://arxiv.org/pdf/1907.01651v2
Region-specific Diffeomorphic Metric Mapping
http://arxiv.org/pdf/1906.00139v1
Subset Selection via Supervised Facility Location
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations
http://arxiv.org/pdf/1906.01618v1
Reconciling λ-Returns with Experience Replay
Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence
Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs
http://arxiv.org/pdf/1905.03814v1
A Graph Theoretic Framework of Recomputation Algorithms for Memory-Efficient Backpropagation
http://arxiv.org/pdf/1905.11722v1
Combinatorial Inference against Label Noise
Value Propagation for Decentralized Networked Deep Multi-agent Reinforcement Learning
http://arxiv.org/pdf/1901.09326v3
Convolution with even-sized kernels and symmetric padding
http://arxiv.org/pdf/1903.08385v2
On The Classification-Distortion-Perception Tradeoff
http://arxiv.org/pdf/1904.08816v1
Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up
http://arxiv.org/pdf/1905.03135v1
Online sampling from log-concave distributions
http://arxiv.org/pdf/1902.08179v3
Envy-Free Classification
http://arxiv.org/pdf/1809.08700v1
Finding Friend and Foe in Multi-Agent Games
http://arxiv.org/pdf/1906.02330v1
Computer Vision with a Single (Robust) Classifier
Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
http://arxiv.org/pdf/1906.04651v1
Model Compression with Adversarial Robustness: A Unified Optimization Framework
Neuron Communication Networks
CondConv: Conditionally Parameterized Convolutions for Efficient Inference
Regression Planning Networks
Twin Auxilary Classifiers GAN
http://arxiv.org/pdf/1907.02690v3
Conditional Structure Generation through Graph Variational Generative Adversarial Nets
Distributional Policy Optimization: An Alternative Approach for Continuous Control
http://arxiv.org/pdf/1905.09855v1
Sampling Sketches for Concave Sublinear Functions of Frequencies
http://arxiv.org/pdf/1907.02218v1
Deliberative Explanations: visualizing network insecurities
Computing Full Conformal Prediction Set with Approximate Homotopy
http://arxiv.org/pdf/1909.09365v1
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
http://arxiv.org/pdf/1810.11953v3
Hierarchical Reinforcement Learning with Advantage-Based Auxiliary Rewards
Multi-View Reinforcement Learning
Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution
http://arxiv.org/pdf/1909.06720v1
Neural Diffusion Distance for Image Segmentation
Fine-grained Optimization of Deep Neural Networks
http://arxiv.org/pdf/1905.09054v1
Extending Stein’s Unbiased Risk Estimator To Train Deep Denoisers with Correlated Pairs of Noisy Images
http://arxiv.org/pdf/1902.02452v2
Wibergian Learning of Continuous Energy Functions
Hyperspherical Prototype Networks
http://arxiv.org/pdf/1901.10514v2
Expressive power of tensor-network factorizations for probabilistic modelling
HyperGCN: A New Method For Training Graph Convolutional Networks on Hypergraphs
http://arxiv.org/pdf/1809.02589v4
SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points
http://arxiv.org/pdf/1904.09265v2
Efficient Meta Learning via Minibatch Proximal Update
Unconstrained Monotonic Neural Networks
http://arxiv.org/pdf/1908.05164v2
Guided Similarity Separation for Image Retrieval
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
http://arxiv.org/pdf/1906.07413v1
Strategizing against No-regret Learners
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Hierarchical Optimal Transport for Document Representation
http://arxiv.org/pdf/1906.10827v1
Multivariate Sparse Coding of Nonstationary Covariances with Gaussian Processes
Positional Normalization
http://arxiv.org/pdf/1907.04312v1
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Quadratic Video Interpolation
ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies
http://arxiv.org/pdf/1811.10745v2
Incremental Scene Synthesis
http://arxiv.org/pdf/1811.12297v3
Self-Supervised Generalisation with Meta Auxiliary Learning
http://arxiv.org/pdf/1901.08933v2
Variational Denoising Network: Toward Blind Noise Modeling and Removal
http://arxiv.org/pdf/1908.11314v2
Fast Sparse Group Lasso
Learnable Tree Filter for Structure-preserving Feature Transform
Data-Dependence of Plateau Phenomenon in Learning with Neural Network --- Statistical Mechanical Analysis
Coordinated hippocampal-entorhinal replay as structural inference
Cascaded Dilated Dense Network with Two-step Data Consistency for MRI Reconstruction
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
http://arxiv.org/pdf/1812.04529v1
On the Curved Geometry of Accelerated Optimization
http://arxiv.org/pdf/1812.04634v1
Multi-marginal Wasserstein GAN
Better Exploration with Optimistic Actor Critic
Importance Resampling for Off-policy Prediction
http://arxiv.org/pdf/1906.04328v1
The Label Complexity of Active Learning from Observational Data
http://arxiv.org/pdf/1905.12791v1
Meta-Learning Representations for Continual Learning
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
http://arxiv.org/pdf/1907.10764v3
Visualizing the PHATE of Neural Networks
http://arxiv.org/pdf/1908.02831v1
The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers
http://arxiv.org/pdf/1906.07282v1
Nonconvex Low-Rank Tensor Completion from Noisy Data
Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization
http://arxiv.org/pdf/1905.12776v2
Channel Gating Neural Networks
http://arxiv.org/pdf/1805.12549v1
Neural networks grown and self-organized by noise
http://arxiv.org/pdf/1906.01039v1
Catastrophic Forgetting Meets Negative Transfer: Batch Spectral Shrinkage for Safe Transfer Learning
Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting
http://arxiv.org/pdf/1902.07379v5
Variational Structured Semantic Inference for Diverse Image Captioning
Mapping State Space using Landmarks for Universal Goal Reaching
http://arxiv.org/pdf/1908.05451v1
Transferable Normalization: Towards Improving Transferability of Deep Neural Networks
Random deep neural networks are biased towards simple functions
XNAS: Neural Architecture Search with Expert Advice
http://arxiv.org/pdf/1906.08031v1
CNN^{2}: Viewpoint Generalization via a Binocular Vision
Generalized Off-Policy Actor-Critic
http://arxiv.org/pdf/1903.11329v6
DAC: The Double Actor-Critic Architecture for Learning Options
http://arxiv.org/pdf/1904.12691v7
Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models
Controlling Neural Level Sets
http://arxiv.org/pdf/1905.11911v1
Blended Matching Pursuit
http://arxiv.org/pdf/1904.12335v2
An Improved Analysis of Training Over-parameterized Deep Neural Networks
http://arxiv.org/pdf/1906.04688v1
Controllable Text to Image Generation
http://arxiv.org/pdf/1909.07083v1
Improving Textual Network Learning with Variational Homophilic Embeddings
Rethinking Generative Coverage: A Pointwise Guaranteed Approach
http://arxiv.org/pdf/1902.04697v6
The Randomized Midpoint Method for Log-Concave Sampling
http://arxiv.org/pdf/1909.05503v1
Sample-Efficient Deep Reinforcement Learning via Episodic Backward Update
http://arxiv.org/pdf/1805.12375v2
Fully Neural Network based Model for General Temporal Point Processes
http://arxiv.org/pdf/1905.09690v1
Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks
http://arxiv.org/pdf/1909.08174v1
Discrimination in Online Markets: Effects of Social Bias on Learning from Reviews and Policy Design
Provably Powerful Graph Networks
http://arxiv.org/pdf/1905.11136v2
Order Optimal One-Shot Distributed Learning
Information Competing Process for Learning Diversified Representations
http://arxiv.org/pdf/1906.01288v2
GENO -- GENeric Optimization for Classical Machine Learning
http://arxiv.org/pdf/1905.13587v1
Conditional Independence Testing using Generative Adversarial Networks
http://arxiv.org/pdf/1907.04068v1
Online Stochastic Shortest Path with Bandit Feedback and Unknown Transition Function
Partitioning Structure Learning for Segmented Linear Regression Trees
A Tensorized Transformer for Language Modeling
http://arxiv.org/pdf/1906.09777v2
Kernel Stein Tests for Multiple Model Comparison
Disentangled behavioural representations
More Is Less: Learning Efficient Video Representations by Temporal Aggregation Module
Rethinking the CSC Model for Natural Images
http://arxiv.org/pdf/1909.05742v1
Integrating Generative and Discriminative Sparse Kernel Machines for Multi-class Active Learning
Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity
http://arxiv.org/pdf/1902.05546v1
Perceiving the arrow of time in autoregressive motion
DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections
http://arxiv.org/pdf/1906.04733v1
Hyper-Graph-Network Decoders for Block Codes
http://arxiv.org/pdf/1909.09036v1
Large Scale Markov Decision Processes with Changing Rewards
http://arxiv.org/pdf/1905.10649v1
Multiview Aggregation for Learning Category-Specific Shape Reconstruction
http://arxiv.org/pdf/1907.01085v1
Semi-Parametric Dynamic Contextual Pricing
http://arxiv.org/pdf/1901.02045v4
Nearly Linear-Time, Deterministic Algorithm for Maximizing (Non-Monotone) Submodular Functions Under Cardinality Constraint
http://arxiv.org/pdf/1902.06179v2
Initialization of ReLUs for Dynamical Isometry
http://arxiv.org/pdf/1806.06362v2
Gradient Information for Representation and Modeling
SpiderBoost and Momentum: Faster Variance Reduction Algorithms
Minimax rates of estimating approximate differential privacy
http://arxiv.org/pdf/1905.10335v1
Backprop with Approximate Activations for Memory-efficient Network Training
http://arxiv.org/pdf/1901.07988v1
Training Image Estimators without Image Ground Truth
http://arxiv.org/pdf/1906.05775v1
Deep Structured Prediction for Facial Landmark Detection
Information-Theoretic Confidence Bounds for Reinforcement Learning
Transfer Anomaly Detection by Inferring Latent Domain Representations
Total Least Squares Regression in Input Sparsity Time
Park: An Open Platform for Learning-Augmented Computer Systems
Adapting Neural Networks for the Estimation of Treatment Effects
http://arxiv.org/pdf/1906.02120v1
Learning Transferable Graph Exploration
Conformal Prediction Under Covariate Shift
http://arxiv.org/pdf/1904.06019v2
Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
http://arxiv.org/pdf/1902.00744v2
Positive-Unlabeled Compression on the Cloud
http://arxiv.org/pdf/1909.09757v1
Direct Estimation of Differential Functional Graphical Model
On the Calibration of Multiclass Classification with Rejection
Third-Person Visual Imitation Learning via Decoupled Hierarchical Control
Stagewise Training Accelerates Convergence of Testing Error Over SGD
http://arxiv.org/pdf/1812.03934v3
Learning Robust Options by Conditional Value at Risk Optimization
http://arxiv.org/pdf/1905.09191v3
Non-asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems
On Learning Over-parameterized Neural Networks: A Functional Approximation Prospective
Drill-down: Interactive Retrieval of Complex Scenes using Natural Language Queries
Visual Sequence Learning in Hierarchical Prediction Networks and Primate Visual Cortex
Dual Variational Generation for Low Shot Heterogeneous Face Recognition
http://arxiv.org/pdf/1903.10203v1
Discovering Neural Wirings
http://arxiv.org/pdf/1906.00586v3
On the Optimality of Perturbations in Stochastic and Adversarial Multi-armed Bandit Problems
Knowledge Extraction with No Observable Data
PAC-Bayes under potentially heavy tails
http://arxiv.org/pdf/1905.07900v1
One-Shot Object Detection with Co-Attention and Co-Excitation
Quaternion Knowledge Graph Embeddings
http://arxiv.org/pdf/1904.10281v2
Glyce: Glyph-vectors for Chinese Character Representations
http://arxiv.org/pdf/1901.10125v4
Turbo Autoencoder: Deep learning based channel code for point-to-point communication channels
Heterogeneous Graph Learning for Visual Commonsense Reasoning
Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning
Classification-by-Components: Probabilistic Modeling of Reasoning over a Set of Components
Identifying Causal Effects via Context-specific Independence Relations
Bridging Machine Learning and Logical Reasoning by Abductive Learning
Regret Minimization for Reinforcement Learning by Evaluating the Optimal Bias Function
http://arxiv.org/pdf/1906.05110v2
On the Global Convergence of (Fast) Incremental Expectation Maximization Methods
A Linearly Convergent Proximal Gradient Algorithm for Decentralized Optimization
http://arxiv.org/pdf/1905.07996v1
Regularizing Trajectory Optimization with Denoising Autoencoders
http://arxiv.org/pdf/1903.11981v2
Learning Hierarchical Priors in VAEs
http://arxiv.org/pdf/1905.04982v4
Epsilon-Best-Arm Identification in Pay-Per-Reward Multi-Armed Bandits
Safe Exploration for Interactive Machine Learning
Addressing Failure Detection by Learning Model Confidence
Combinatorial Bayesian Optimization using the Graph Cartesian Product
Fooling Neural Network Interpretations via Adversarial Model Manipulation
http://arxiv.org/pdf/1902.02041v2
On Lazy Training in Differentiable Programming
http://arxiv.org/pdf/1812.07956v4
Quality Aware Generative Adversarial Networks
Copula-like Variational Inference
http://arxiv.org/pdf/1904.07153v1
Implicit Regularization for Optimal Sparse Recovery
http://arxiv.org/pdf/1909.05122v1
Locally Private Gaussian Estimation
http://arxiv.org/pdf/1811.08382v1
Multi-mapping Image-to-Image Translation via Learning Disentanglement
http://arxiv.org/pdf/1909.07877v1
Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs
http://arxiv.org/pdf/1907.08350v1
Structured Decoding for Non-Autoregressive Machine Translation
Learning Temporal Pose Estimation from Sparsely-Labeled Videos
http://arxiv.org/pdf/1906.04016v1
Greedy InfoMax for Biologically Plausible Self-Supervised Representation Learning
http://arxiv.org/pdf/1905.11786v1
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
http://arxiv.org/pdf/1905.07645v4
Meta-Reinforced Synthetic Data for One-Shot Fine-Grained Visual Recognition
Real-Time Reinforcement Learning
Robust Multi-agent Counterfactual Prediction
http://arxiv.org/pdf/1904.02235v1
Approximate Inference Turns Deep Networks into Gaussian Processes
http://arxiv.org/pdf/1906.01930v1
Deep Signatures
http://arxiv.org/pdf/1905.08494v1
Individual Regret in Cooperative Nonstochastic Multi-Armed Bandits
http://arxiv.org/pdf/1907.03346v2
Convergent Policy Optimization for Safe Reinforcement Learning
Augmented Neural ODEs
http://arxiv.org/pdf/1904.01681v2
Thompson Sampling for Multinomial Logit Contextual Bandits
Backpropagation-Friendly Eigendecomposition
http://arxiv.org/pdf/1906.09023v2
FastSpeech: Fast, Robust and Controllable Text to Speech
http://arxiv.org/pdf/1905.09263v4
Ultrametric Fitting by Gradient Descent
http://arxiv.org/pdf/1905.10566v1
Distinguishing Distributions When Samples Are Strategically Transformed
Implicit Regularization of Discrete Gradient Dynamics in Deep Linear Neural Networks
Deep Set Prediction Networks
http://arxiv.org/pdf/1906.06565v1
DppNet: Approximating Determinantal Point Processes with Deep Networks
http://arxiv.org/pdf/1901.02051v1
Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control
http://arxiv.org/pdf/1909.02682v1
Neural Lyapunov Control
Fully Dynamic Consistent Facility Location
A Stickier Benchmark for General-Purpose Language Understanding Systems
http://arxiv.org/pdf/1905.00537v2
A Flexible Generative Framework for Graph-based Semi-supervised Learning
http://arxiv.org/pdf/1905.10769v1
Self-normalization in Stochastic Neural Networks
Optimal Decision Tree with Noisy Outcomes
Meta-Curvature
http://arxiv.org/pdf/1902.03356v2
Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for Reinforcement Learning
http://arxiv.org/pdf/1906.03735v1
KerGM: Kernelized Graph Matching
Transfusion: Understanding Transfer Learning for Medical Imaging
http://arxiv.org/pdf/1902.07208v2
Adversarial training for free!
http://arxiv.org/pdf/1904.12843v1
Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients
http://arxiv.org/pdf/1909.07588v1
Implicitly learning to reason in first-order logic
http://arxiv.org/pdf/1906.10106v1
Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods
PC-Fairness: A Unified Framework for Measuring Causality-based Fairness
Arbicon-Net: Arbitrary Continuous Geometric Transformation Networks for Image Registration
Assessing Disparate Impact of Personalized Interventions: Identifiability and Bounds
http://arxiv.org/pdf/1906.01552v1
The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the XAUC Metric
http://arxiv.org/pdf/1902.05826v2
HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models
http://arxiv.org/pdf/1904.01121v3
First order expansion of convex regularized estimators
Capacity Bounded Differential Privacy
http://arxiv.org/pdf/1907.02159v1
Universal Boosting Variational Inference
http://arxiv.org/pdf/1906.01235v1
SGD on Neural Networks Learns Functions of Increasing Complexity
The Landscape of Non-convex Empirical Risk with Degenerate Population Risk
http://arxiv.org/pdf/1907.05520v1
Making AI Forget You: Data Deletion in Machine Learning
http://arxiv.org/pdf/1907.05012v1
Practical Differentially Private Top-k Selection with Pay-what-you-get Composition
http://arxiv.org/pdf/1905.04273v2
Conformalized Quantile Regression
http://arxiv.org/pdf/1905.03222v1
Thompson Sampling with Information Relaxation Penalties
http://arxiv.org/pdf/1902.04251v1
Deep Generalized Method of Moments for Instrumental Variable Analysis
Learning Sample-Specific Models with Low-Rank Personalized Regression
Dance to Music
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask
http://arxiv.org/pdf/1905.01067v3
Implicit Generation and Modeling with Energy Based Models
Who Learns? Decomposing Learning into Per-Parameter Loss Contribution
Predicting the Politics of an Image Using Webly Supervised Data
Adaptive GNN for Image Analysis and Editing
Ultra Fast Medoid Identification via Correlated Sequential Halving
http://arxiv.org/pdf/1906.04356v1
Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD
http://arxiv.org/pdf/1810.04723v3
Asymptotics for Sketching in Least Squares Regression
MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies
http://arxiv.org/pdf/1905.09808v1
Exact inference in structured prediction
http://arxiv.org/pdf/1906.00451v1
Coda: An End-to-End Neural Program Decompiler
Bat-G net: Bat-inspired High-Resolution 3D Image Reconstruction using Ultrasonic Echoes
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
http://arxiv.org/pdf/1905.09997v1
Scalable Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data
http://arxiv.org/pdf/1909.04570v1
Privacy-Preserving Classification of Personal Text Messages with Secure Multi-Party Computation
Efficiently Estimating Erdos-Renyi Graphs with Node Differential Privacy
http://arxiv.org/pdf/1905.10477v1
Learning Representations for Time Series Clustering
Variance Reduced Uncertainty Calibration
A Normative Theory for Causal Inference and Bayes Factor Computation in Neural Circuits
Unsupervised Keypoint Learning for Guiding Class-conditional Video Prediction
Subspace Attack: Exploiting Promising Subspaces for Query-Efficient Black-box Attacks
http://arxiv.org/pdf/1906.04392v1
Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction
Learning Latent Process from High-Dimensional Event Sequences via Efficient Sampling
Cross-sectional Learning of Extremal Dependence among Financial Assets
http://arxiv.org/pdf/1905.13425v1
Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG
Compression with Flows via Local Bits-Back Coding
http://arxiv.org/pdf/1905.08500v2
Exact Rate-Distortion in Autoencoders via Echo Noise
http://arxiv.org/pdf/1904.07199v2
iSplit LBI: Individualized Partial Ranking with Ties via Split LBI
Self-Supervised Active Triangulation for 3D Human Pose Reconstruction
MetaQuant: Learning to Quantize by Learning to Penetrate Non-differentiable Quantization
Improved Precision and Recall Metric for Assessing Generative Models
http://arxiv.org/pdf/1904.06991v2
A First-order Algorithmic Framework for Distributionally Robust Logistic Regression
PasteGAN: A Semi-Parametric Method to Generate Image from Scene Graph
http://arxiv.org/pdf/1905.01608v1
Concomitant Lasso with Repetitions (CLaR): beyond averaging multiple realizations of heteroscedastic noise
Joint Optimization of Tree-based Index and Deep Model for Recommender Systems
http://arxiv.org/pdf/1902.07565v1
Learning Generalizable Device Placement Algorithms for Distributed Machine Learning
http://arxiv.org/pdf/1906.08879v1
Uncoupled Regression from Pairwise Comparison Data
http://arxiv.org/pdf/1905.13659v2
Cross Attention Network for Few-shot Classification
A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution
http://arxiv.org/pdf/1908.10776v2
SCAN: A Scalable Neural Networks Framework Towards Compact and Efficient Models
http://arxiv.org/pdf/1906.03951v1
Revisiting the Bethe-Hessian: Improved Community Detection in Sparse Heterogeneous Graphs
http://arxiv.org/pdf/1901.09715v2
Teaching Multiple Concepts to a Forgetful Learner
http://arxiv.org/pdf/1805.08322v3
Regularized Weighted Low Rank Approximation
Practical and Consistent Estimation of f-Divergences
Approximation Ratios of Graph Neural Networks for Combinatorial Problems
http://arxiv.org/pdf/1905.10261v1
Thinning for Accelerating the Learning of Point Processes
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models
Differentially Private Markov Chain Monte Carlo
http://arxiv.org/pdf/1901.10275v2
Full-Gradient Representation for Neural Network Visualization
http://arxiv.org/pdf/1905.00780v3
q-means: A quantum algorithm for unsupervised machine learning
Learner-aware Teaching: Inverse Reinforcement Learning with Preferences and Constraints
http://arxiv.org/pdf/1906.00429v1
Limitations of the empirical Fisher approximation
http://arxiv.org/pdf/1905.12558v1
Flow-based Image-to-Image Translation with Feature Disentanglement
Learning dynamic semi-algebraic proofs
Shape and Time Distorsion Loss for Training Deep Time Series Forecasting Models
http://arxiv.org/pdf/1909.09020v1
Understanding attention in graph neural networks
Data Cleansing for Models Trained with SGD
http://arxiv.org/pdf/1906.08473v1
Curvilinear Distance Metric Learning
Semantically-Regularized Logic Graph Embeddings
http://arxiv.org/pdf/1909.01161v3
Modeling Uncertainty by Learning A Hierarchy of Deep Neural Connections
http://arxiv.org/pdf/1905.13195v1
Efficient Graph Generation with Graph Recurrent Attention Networks
Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms
http://arxiv.org/pdf/1905.09050v1
Learning Deep Bilinear Transformation for Fine-grained Image Representation
Practical Deep Learning with Bayesian Principles
http://arxiv.org/pdf/1906.02506v1
Training Language GANs from Scratch
http://arxiv.org/pdf/1905.09922v1
Pseudo-Extended Markov chain Monte Carlo
http://arxiv.org/pdf/1708.05239v2
Differentially Private Bagging: Improved utility and cheaper privacy than subsample-and-aggregate
Propagating Uncertainty in Reinforcement Learning via Wasserstein Barycenters
On Adversarial Mixup Resynthesis
http://arxiv.org/pdf/1903.02709v3
A Geometric Perspective on Optimal Representations for Reinforcement Learning
http://arxiv.org/pdf/1901.11530v2
Learning New Tricks From Old Dogs: Multi-Source Transfer Learning From Pre-Trained Networks
Understanding and Improving Layer Normalization