forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 171
/
machine_rtc.c
271 lines (222 loc) · 9.26 KB
/
machine_rtc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Josef Gajdusek
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "shared/timeutils/timeutils.h"
#include "user_interface.h"
#include "modmachine.h"
typedef struct _pyb_rtc_obj_t {
mp_obj_base_t base;
} pyb_rtc_obj_t;
#define MEM_MAGIC 0x75507921
#define MEM_DELTA_ADDR 64
#define MEM_CAL_ADDR (MEM_DELTA_ADDR + 2)
#define MEM_USER_MAGIC_ADDR (MEM_CAL_ADDR + 1)
#define MEM_USER_LEN_ADDR (MEM_USER_MAGIC_ADDR + 1)
#define MEM_USER_DATA_ADDR (MEM_USER_LEN_ADDR + 1)
#define MEM_USER_MAXLEN (512 - (MEM_USER_DATA_ADDR - MEM_DELTA_ADDR) * 4)
// singleton RTC object
STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}};
// ALARM0 state
uint32_t pyb_rtc_alarm0_wake; // see MACHINE_WAKE_xxx constants
uint64_t pyb_rtc_alarm0_expiry; // in microseconds
// RTC overflow checking
STATIC uint32_t rtc_last_ticks;
void mp_hal_rtc_init(void) {
uint32_t magic;
system_rtc_mem_read(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
if (magic != MEM_MAGIC) {
magic = MEM_MAGIC;
system_rtc_mem_write(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
uint32_t cal = system_rtc_clock_cali_proc();
int64_t delta = 0;
system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
uint32_t len = 0;
system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
}
// system_get_rtc_time() is always 0 after reset/deepsleep
rtc_last_ticks = system_get_rtc_time();
// reset ALARM0 state
pyb_rtc_alarm0_wake = 0;
pyb_rtc_alarm0_expiry = 0;
}
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return constant object
return (mp_obj_t)&pyb_rtc_obj;
}
void pyb_rtc_set_us_since_epoch(uint64_t nowus) {
uint32_t cal = system_rtc_clock_cali_proc();
// Save RTC ticks for overflow detection.
rtc_last_ticks = system_get_rtc_time();
int64_t delta = nowus - (((uint64_t)rtc_last_ticks * cal) >> 12);
// As the calibration value jitters quite a bit, to make the
// clock at least somewhat practically usable, we need to store it
system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
};
uint64_t pyb_rtc_get_us_since_epoch() {
uint32_t cal;
int64_t delta;
uint32_t rtc_ticks;
system_rtc_mem_read(MEM_CAL_ADDR, &cal, sizeof(cal));
system_rtc_mem_read(MEM_DELTA_ADDR, &delta, sizeof(delta));
// ESP-SDK system_get_rtc_time() only returns uint32 and therefore
// overflow about every 7:45h. Thus, we have to check for
// overflow and handle it.
rtc_ticks = system_get_rtc_time();
if (rtc_ticks < rtc_last_ticks) {
// Adjust delta because of RTC overflow.
delta += (uint64_t)cal << 20;
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
}
rtc_last_ticks = rtc_ticks;
return (((uint64_t)rtc_ticks * cal) >> 12) + delta;
};
void rtc_prepare_deepsleep(uint64_t sleep_us) {
// RTC time will reset at wake up. Let's be preared for this.
int64_t delta = pyb_rtc_get_us_since_epoch() + sleep_us;
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
}
STATIC mp_obj_t pyb_rtc_datetime(size_t n_args, const mp_obj_t *args) {
if (n_args == 1) {
// Get time
uint64_t msecs = pyb_rtc_get_us_since_epoch() / 1000;
timeutils_struct_time_t tm;
timeutils_seconds_since_epoch_to_struct_time(msecs / 1000, &tm);
mp_obj_t tuple[8] = {
mp_obj_new_int(tm.tm_year),
mp_obj_new_int(tm.tm_mon),
mp_obj_new_int(tm.tm_mday),
mp_obj_new_int(tm.tm_wday),
mp_obj_new_int(tm.tm_hour),
mp_obj_new_int(tm.tm_min),
mp_obj_new_int(tm.tm_sec),
mp_obj_new_int(msecs % 1000)
};
return mp_obj_new_tuple(8, tuple);
} else {
// Set time
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[1], 8, &items);
pyb_rtc_set_us_since_epoch(
((uint64_t)timeutils_seconds_since_epoch(
mp_obj_get_int(items[0]),
mp_obj_get_int(items[1]),
mp_obj_get_int(items[2]),
mp_obj_get_int(items[4]),
mp_obj_get_int(items[5]),
mp_obj_get_int(items[6])) * 1000 + mp_obj_get_int(items[7])) * 1000);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime);
STATIC mp_obj_t pyb_rtc_memory(size_t n_args, const mp_obj_t *args) {
uint8_t rtcram[MEM_USER_MAXLEN];
uint32_t len;
if (n_args == 1) {
// read RTC memory
system_rtc_mem_read(MEM_USER_LEN_ADDR, &len, sizeof(len));
system_rtc_mem_read(MEM_USER_DATA_ADDR, rtcram, (len + 3) & ~3);
return mp_obj_new_bytes(rtcram, len);
} else {
// write RTC memory
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
if (bufinfo.len > MEM_USER_MAXLEN) {
mp_raise_ValueError(MP_ERROR_TEXT("buffer too long"));
}
len = bufinfo.len;
system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
int i = 0;
for (; i < bufinfo.len; i++) {
rtcram[i] = ((uint8_t *)bufinfo.buf)[i];
}
system_rtc_mem_write(MEM_USER_DATA_ADDR, rtcram, (len + 3) & ~3);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_memory_obj, 1, 2, pyb_rtc_memory);
STATIC mp_obj_t pyb_rtc_alarm(mp_obj_t self_in, mp_obj_t alarm_id, mp_obj_t time_in) {
(void)self_in; // unused
// check we want alarm0
if (mp_obj_get_int(alarm_id) != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid alarm"));
}
// set expiry time (in microseconds)
pyb_rtc_alarm0_expiry = pyb_rtc_get_us_since_epoch() + (uint64_t)mp_obj_get_int(time_in) * 1000;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_rtc_alarm_obj, pyb_rtc_alarm);
STATIC mp_obj_t pyb_rtc_alarm_left(size_t n_args, const mp_obj_t *args) {
// check we want alarm0
if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid alarm"));
}
uint64_t now = pyb_rtc_get_us_since_epoch();
if (pyb_rtc_alarm0_expiry <= now) {
return MP_OBJ_NEW_SMALL_INT(0);
} else {
return mp_obj_new_int((pyb_rtc_alarm0_expiry - now) / 1000);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_left_obj, 1, 2, pyb_rtc_alarm_left);
STATIC mp_obj_t pyb_rtc_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_trigger, ARG_wake };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_trigger, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_wake, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// check we want alarm0
if (args[ARG_trigger].u_int != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid alarm"));
}
// set the wake value
pyb_rtc_alarm0_wake = args[ARG_wake].u_int;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq);
STATIC const mp_rom_map_elem_t pyb_rtc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_datetime), MP_ROM_PTR(&pyb_rtc_datetime_obj) },
{ MP_ROM_QSTR(MP_QSTR_memory), MP_ROM_PTR(&pyb_rtc_memory_obj) },
{ MP_ROM_QSTR(MP_QSTR_alarm), MP_ROM_PTR(&pyb_rtc_alarm_obj) },
{ MP_ROM_QSTR(MP_QSTR_alarm_left), MP_ROM_PTR(&pyb_rtc_alarm_left_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&pyb_rtc_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_ALARM0), MP_ROM_INT(0) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
pyb_rtc_type,
MP_QSTR_RTC,
MP_TYPE_FLAG_NONE,
make_new, pyb_rtc_make_new,
locals_dict, &pyb_rtc_locals_dict
);