-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsicp.lisp
250 lines (201 loc) · 6.92 KB
/
sicp.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
; Copyright © 2018 The ELPS authors
; basic examples adapted from SICP
(in-package 'sicp)
(use-package 'testing)
(export 'remainder)
(defun remainder (a b)
(mod a b))
(export 'gcd)
(defun gcd (a b)
(cond
((< a 0) (gcd (math:abs a) b))
((< b 0) (gcd a (math:abs b)))
((= a 0) b)
((= b 0) a)
(:else (gcd b (remainder a b)))))
(assert= 1 (gcd 5 3))
(assert= 1 (gcd 3 5))
(assert= 2 (gcd 4 2))
(assert= 2 (gcd 2 4))
(assert= 2 (gcd 2 4))
(assert= 20 (gcd 60 80))
(defun square (x)
(* x x))
(defun divides? (n d)
(= 0 (remainder n d)))
(defun smallest-divisor (n)
(find-divisor n 2))
(defun find-divisor (n test-divisor)
(cond
((> (* test-divisor test-divisor) n) n)
((divides? n test-divisor) test-divisor)
(:else (find-divisor n (+ 1 test-divisor)))))
(export 'prime?)
(defun prime? (n)
(= n (smallest-divisor n)))
(defun accumulate-iter (combiner null-value term a next done? &optional match?)
(if (done? a)
null-value
(let [(curr (term a))
(match? (if (nil? match?) (lambda (_) true) match?))]
(accumulate-iter combiner
(if (match? curr)
(funcall combiner null-value curr)
(:else null-value))
term
(next a)
next
done?
match?))))
(defun sum (term a next b)
(accumulate-iter '+ 0
term a
#^(+ 1 %)
#^(> % b)))
(assert= 6 (sum identity 1 #^(+ 1 %) 3))
(assert= 6 (sum identity 1 #^(+ 1 %) 3))
(defun make-rat (numer denom)
(rat-norm (list numer denom)))
(defun rat-norm (r)
(cond
((< (rat-denom r) 0)
(rat-norm (list (- (rat-numer r))
(- (rat-denom r)))))
((> (rat-denom r) 1)
(let [(c (gcd (rat-numer r) (rat-denom r)))]
(list (to-int (/ (rat-numer r) c))
(to-int (/ (rat-denom r) c)))))
(:else
r)))
(defun rat-numer (r)
(first r))
(defun rat-denom (r)
(second r))
(defun rat-neg (r)
(make-rat (- (rat-numer r)) (rat-denom r)))
(defun rat-add (a b)
(make-rat (+ (* (rat-numer a) (rat-denom b))
(* (rat-numer b) (rat-denom a)))
(* (rat-denom a) (rat-denom b))))
(defun rat-sub (a b)
(make-rat (- (* (rat-numer a) (rat-denom b))
(* (rat-numer b) (rat-denom a)))
(* (rat-denom a) (rat-denom b))))
(defun rat-mul (a b)
(make-rat (* (rat-numer a) (rat-numer b))
(* (rat-denom a) (rat-denom b))))
(defun rat-div (a b)
(make-rat (* (rat-numer a) (rat-denom b))
(* (rat-denom a) (rat-numer b))))
(defun rat= (a b)
(and (= (rat-numer a) (rat-numer b))
(= (rat-denom a) (rat-denom b))))
(defun rat-string (r)
(format-string "{}/{}" (rat-numer r) (rat-denom r)))
(assert= 1 (rat-numer (make-rat 1 2)))
(assert= 2 (rat-denom (make-rat 1 2)))
(assert= -1 (rat-numer (make-rat -1 2)))
(assert= 2 (rat-denom (make-rat -1 2)))
(assert= -1 (rat-numer (make-rat 1 -2)))
(assert= 2 (rat-denom (make-rat 1 -2)))
(assert (rat= (make-rat 1 2)
(make-rat 30 60)))
(assert (rat= (make-rat -1 2)
(make-rat 1 -2)))
(assert (rat= (make-rat 1 2)
(make-rat 1 2)))
(assert-string= "1/1" (rat-string (make-rat 1 1)))
(assert-string= "1/2" (rat-string (make-rat 1 2)))
(assert-string= "1/2" (rat-string (make-rat -1 -2)))
(assert-string= "-1/2" (rat-string (make-rat -1 2)))
(assert-string= "-1/2" (rat-string (make-rat 1 -2)))
(assert-string= "1/2" (rat-string (make-rat 3 6)))
(assert-string= "-1/2" (rat-string (make-rat -3 6)))
(assert-string= "-1/2" (rat-string (make-rat 3 -6)))
(assert-string= "5/6" (rat-string (rat-add (make-rat 1 2)
(make-rat 1 3))))
(assert-string= "1/6" (rat-string (rat-mul (make-rat 1 2)
(make-rat 1 3))))
(assert-string= "2/1" (rat-string (rat-div (make-rat 1 2)
(make-rat 1 4))))
(defun filter (predicate seq)
(cond ((nil? seq) ())
((predicate (car seq))
(cons (car seq)
(filter predicate (cdr seq))))
(:else (filter predicate (cdr seq)))))
(defun accumulate (op initial seq)
(if (nil? seq)
initial
(funcall op
(car seq)
(accumulate op initial (cdr seq)))))
(defun map (p seq)
(accumulate (lambda (x ys) (cons (p x) ys))
()
seq))
(defun append (lis1 lis2)
(accumulate 'cons lis2 lis1))
(defun length (lis)
(accumulate '+ 0 seq))
(assert-equal '(2 4 6 8) (map #^(* 2 %) '(1 2 3 4)))
(assert-equal '(1 2 3 4) (append '(1) '(2 3 4)))
(defun horner-eval (x coefficient-list)
(accumulate (lambda (a higher) (+ a (* x higher)))
0.0
coefficient-list))
(assert= 7 (horner-eval 2 (list 1 3)))
(assert= 79 (horner-eval 2 (list 1 3 0 5 0 1)))
(defun fold-right (op initial seq) (accumulate op initial seq))
(defun fold-left (op initial seq)
(if (nil? seq)
initial
(fold-left op
(funcall op initial (car seq))
(cdr seq))))
(assert= 1.5 (fold-right / 1 (list 1 2 3)))
(assert= (/ 1 6) (fold-left / 1 (list 1 2 3)))
(assert-equal (list 1 (list 2 (list 3 ()))) (fold-right 'list () (list 1 2 3)))
(assert-equal (list (list (list () 1) 2) 3) (fold-left 'list () (list 1 2 3)))
(defun flatmap (proc seq)
(accumulate 'append () (map proc seq)))
(defun enumerate-tree (tree)
(let [(enumerate-subtrees (lambda (tree)
(cond ((nil? tree) ())
((not (list? tree)) (list tree))
(:else (enumerate-tree tree)))))]
(flatmap enumerate-subtrees tree)))
(assert-equal '(1 2 3 4 5) (enumerate-tree (list 1 (list 2 3) (list 4 (list 5)))))
; inclusive enumeration
(defun enumerate-interval (a b)
(if (> a b)
()
(cons a (enumerate-interval (+ 1 a) b))))
(defun unique-pairs (a b)
(flatmap (lambda (i) (map #^(list i %)
(enumerate-interval (+ i 1) b)))
(enumerate-interval a (- b 1))))
(assert-equal (list (list 1 2) (list 1 3) (list 2 3)) (unique-pairs 1 3))
(defun prime-sum? (pair)
(prime? (+ (first pair) (second pair))))
(defun prime-sum-pairs (n)
(filter prime-sum?
(unique-pairs 1 n)))
(assert-equal (list (list 1 2)
(list 1 4)
(list 1 6)
(list 2 3)
(list 2 5)
(list 3 4)
(list 5 6))
(prime-sum-pairs 6))
(defun ordered-triples (a b)
(flatmap (lambda (i) (map #^(cons i %) (unique-pairs (+ i 1) b)))
(enumerate-interval a (- b 2))))
(assert-equal () (ordered-triples 1 2))
(assert-equal (list (list 1 2 3)) (ordered-triples 1 3))
(assert-equal (list (list 1 2 3)
(list 1 2 4)
(list 1 3 4)
(list 2 3 4))
(ordered-triples 1 4))