-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathpredict.py
194 lines (173 loc) · 6.7 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
import os
import time
import torch
import subprocess
import numpy as np
from typing import List
from transformers import CLIPImageProcessor
from diffusers import (
StableDiffusionXLPipeline,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
PNDMScheduler,
KDPM2AncestralDiscreteScheduler,
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
UNET = "sdxl_lightning_4step_unet.pth"
MODEL_BASE = "stabilityai/stable-diffusion-xl-base-1.0"
UNET_CACHE = "unet-cache"
BASE_CACHE = "checkpoints"
SAFETY_CACHE = "safety-cache"
FEATURE_EXTRACTOR = "feature-extractor"
MODEL_URL = "https://weights.replicate.delivery/default/sdxl-lightning/sdxl-1.0-base-lightning.tar"
SAFETY_URL = "https://weights.replicate.delivery/default/sdxl/safety-1.0.tar"
UNET_URL = "https://weights.replicate.delivery/default/comfy-ui/unet/sdxl_lightning_4step_unet.pth.tar"
class KarrasDPM:
def from_config(config):
return DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True)
SCHEDULERS = {
"DDIM": DDIMScheduler,
"DPMSolverMultistep": DPMSolverMultistepScheduler,
"HeunDiscrete": HeunDiscreteScheduler,
"KarrasDPM": KarrasDPM,
"K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler,
"K_EULER": EulerDiscreteScheduler,
"PNDM": PNDMScheduler,
"DPM++2MSDE": KDPM2AncestralDiscreteScheduler,
}
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
start = time.time()
print("Loading safety checker...")
if not os.path.exists(SAFETY_CACHE):
download_weights(SAFETY_URL, SAFETY_CACHE)
print("Loading model")
if not os.path.exists(BASE_CACHE):
download_weights(MODEL_URL, BASE_CACHE)
print("Loading Unet")
if not os.path.exists(UNET_CACHE):
download_weights(UNET_URL, UNET_CACHE)
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
SAFETY_CACHE, torch_dtype=torch.float16
).to("cuda")
self.feature_extractor = CLIPImageProcessor.from_pretrained(FEATURE_EXTRACTOR)
print("Loading txt2img pipeline...")
self.pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_BASE,
torch_dtype=torch.float16,
variant="fp16",
cache_dir=BASE_CACHE,
local_files_only=True,
).to("cuda")
unet_path = os.path.join(UNET_CACHE, UNET)
self.pipe.unet.load_state_dict(torch.load(unet_path, map_location="cuda"))
print("setup took: ", time.time() - start)
def run_safety_checker(self, image):
safety_checker_input = self.feature_extractor(image, return_tensors="pt").to(
"cuda"
)
np_image = [np.array(val) for val in image]
image, has_nsfw_concept = self.safety_checker(
images=np_image,
clip_input=safety_checker_input.pixel_values.to(torch.float16),
)
return image, has_nsfw_concept
@torch.inference_mode()
def predict(
self,
prompt: str = Input(description="Input prompt", default="self-portrait of a woman, lightning in the background"),
negative_prompt: str = Input(
description="Negative Input prompt", default="worst quality, low quality"
),
width: int = Input(
description="Width of output image. Recommended 1024 or 1280", default=1024, ge=256, le=1280
),
height: int = Input(
description="Height of output image. Recommended 1024 or 1280", default=1024, ge=256, le=1280
),
num_outputs: int = Input(
description="Number of images to output.",
ge=1,
le=4,
default=1,
),
scheduler: str = Input(
description="scheduler",
choices=SCHEDULERS.keys(),
default="K_EULER",
),
num_inference_steps: int = Input(
description="Number of denoising steps. 4 for best results",
ge=1,
le=10,
default=4,
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance",
ge=0,
le=50,
default=0,
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
disable_safety_checker: bool = Input(
description="Disable safety checker for generated images",
default=False,
),
) -> List[Path]:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(4), "big")
print(f"Using seed: {seed}")
generator = torch.Generator("cuda").manual_seed(seed)
# OOMs can leave vae in bad state
if self.pipe.vae.dtype == torch.float32:
self.pipe.vae.to(dtype=torch.float16)
sdxl_kwargs = {}
print(f"Prompt: {prompt}")
sdxl_kwargs["width"] = width
sdxl_kwargs["height"] = height
pipe = self.pipe
pipe.scheduler = SCHEDULERS[scheduler].from_config(
pipe.scheduler.config, timestep_spacing="trailing"
)
common_args = {
"prompt": [prompt] * num_outputs,
"negative_prompt": [negative_prompt] * num_outputs,
"guidance_scale": guidance_scale,
"generator": generator,
"num_inference_steps": num_inference_steps,
}
output = pipe(**common_args, **sdxl_kwargs)
if not disable_safety_checker:
_, has_nsfw_content = self.run_safety_checker(output.images)
output_paths = []
for i, image in enumerate(output.images):
if not disable_safety_checker:
if has_nsfw_content[i]:
print(f"NSFW content detected in image {i}")
continue
output_path = f"/tmp/out-{i}.png"
image.save(output_path)
output_paths.append(Path(output_path))
if len(output_paths) == 0:
raise Exception(
"NSFW content detected. Try running it again, or try a different prompt."
)
return output_paths