-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclass_cat_model.py
442 lines (351 loc) · 19.7 KB
/
class_cat_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import pandas as pd
import os
import gc
import joblib
import lightgbm as lgb
import xgboost as xgb
from catboost import CatBoostRegressor
from sklearn.linear_model import SGDRegressor, LinearRegression, Ridge, BayesianRidge
from sklearn.preprocessing import MinMaxScaler
from gensim.models import Word2Vec
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from scipy import sparse
from scipy.sparse.linalg import svds
import math
import numpy as np
from tqdm import tqdm
from sklearn.model_selection import StratifiedKFold, KFold, GroupKFold
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, log_loss
import matplotlib.pyplot as plt
import time
import warnings
warnings.filterwarnings('ignore')
from tools import *
train_s1 = pd.read_csv('DATA/s1/train.tsv', sep='\t')
train_5core_s1 = pd.read_csv('DATA/s1/train_5core.tsv', sep='\t')
valid_qrel_s1 = pd.read_csv('DATA/s1/valid_qrel.tsv', sep='\t') # 验证集 正样本
valid_run_s1 = pd.read_csv('DATA/s1/valid_run.tsv', sep='\t', header=None) # 验证样本
valid_run_s1.columns = ['userId','itemIds']
train_s2 = pd.read_csv('DATA/s2/train.tsv', sep='\t')
train_5core_s2 = pd.read_csv('DATA/s2/train_5core.tsv', sep='\t')
valid_qrel_s2 = pd.read_csv('DATA/s2/valid_qrel.tsv', sep='\t')
valid_run_s2 = pd.read_csv('DATA/s2/valid_run.tsv', sep='\t', header=None)
valid_run_s2.columns = ['userId','itemIds']
train_s3 = pd.read_csv('DATA/s3/train.tsv', sep='\t')
train_5core_s3 = pd.read_csv('DATA/s3/train_5core.tsv', sep='\t')
valid_qrel_s3 = pd.read_csv('DATA/s3/valid_qrel.tsv', sep='\t')
valid_run_s3 = pd.read_csv('DATA/s3/valid_run.tsv', sep='\t', header=None)
valid_run_s3.columns = ['userId','itemIds']
train_t1 = pd.read_csv('DATA/t1/train.tsv', sep='\t')
train_5core_t1 = pd.read_csv('DATA/t1/train_5core.tsv', sep='\t')
valid_qrel_t1 = pd.read_csv('DATA/t1/valid_qrel.tsv', sep='\t') # 验证集 正样本
valid_run_t1 = pd.read_csv('DATA/t1/valid_run.tsv', sep='\t', header=None) # 验证样本
valid_run_t1.columns = ['userId','itemIds']
test_run_t1 = pd.read_csv('DATA/t1/test_run.tsv', sep='\t', header=None) # 测试样本
test_run_t1.columns = ['userId','itemIds']
train_t2 = pd.read_csv('DATA/t2/train.tsv', sep='\t')
train_5core_t2 = pd.read_csv('DATA/t2/train_5core.tsv', sep='\t')
valid_qrel_t2 = pd.read_csv('DATA/t2/valid_qrel.tsv', sep='\t') # 验证集 正样本
valid_run_t2 = pd.read_csv('DATA/t2/valid_run.tsv', sep='\t', header=None) # 验证样本
valid_run_t2.columns = ['userId','itemIds']
test_run_t2 = pd.read_csv('DATA/t2/test_run.tsv', sep='\t', header=None) # 测试样本
test_run_t2.columns = ['userId','itemIds']
# 构建训练数据和测试数据
#### t1
valid_t1_df = []
for items in valid_run_t1[['userId','itemIds']].values:
uid = items[0]
its = items[1].split(',')
for i, it in enumerate(its):
valid_t1_df.append([uid,it])
valid_t1_df = pd.DataFrame(valid_t1_df)
valid_t1_df.columns = ['userId','itemId']
valid_t1_df = valid_t1_df.merge(valid_qrel_t1, on=['userId','itemId'], how='left')
valid_t1_df.columns = ['userId','itemId','label']
valid_t1_df['label'] = valid_t1_df['label'].fillna(0)
test_t1_df = []
for items in test_run_t1[['userId','itemIds']].values:
uid = items[0]
its = items[1].split(',')
for i, it in enumerate(its):
test_t1_df.append([uid,it])
test_t1_df = pd.DataFrame(test_t1_df)
test_t1_df.columns = ['userId','itemId']
#### t2
valid_t2_df = []
for items in valid_run_t2[['userId','itemIds']].values:
uid = items[0]
its = items[1].split(',')
for i, it in enumerate(its):
valid_t2_df.append([uid,it])
valid_t2_df = pd.DataFrame(valid_t2_df)
valid_t2_df.columns = ['userId','itemId']
valid_t2_df = valid_t2_df.merge(valid_qrel_t2, on=['userId','itemId'], how='left')
valid_t2_df.columns = ['userId','itemId','label']
valid_t2_df['label'] = valid_t2_df['label'].fillna(0)
test_t2_df = []
for items in test_run_t2[['userId','itemIds']].values:
uid = items[0]
its = items[1].split(',')
for i, it in enumerate(its):
test_t2_df.append([uid,it])
test_t2_df = pd.DataFrame(test_t2_df)
test_t2_df.columns = ['userId','itemId']
# 合并数据集
data_t1_df = pd.concat([valid_t1_df,test_t1_df], axis=0, ignore_index=True)
data_t2_df = pd.concat([valid_t2_df,test_t2_df], axis=0, ignore_index=True)
def base_feature(df1_, df2_, df3_, flag):
df1 = df1_.copy() # train_t1
df2 = df2_.copy() # data_t1_df
df3 = df3_.copy() # train_5core_t1
print('count/nunique...')
# train_t1
userId_feat = df1.groupby(['userId'])['itemId'].agg({'count','nunique'}).reset_index()
userId_feat.columns = ['userId','userId_cnts','userId_itemId_nunique']
itemId_feat = df1.groupby(['itemId'])['userId'].agg({'count','nunique'}).reset_index()
itemId_feat.columns = ['itemId','itemId_cnts','itemId_userId_nunique']
df2 = df2.merge(userId_feat, on='userId', how='left')
df2 = df2.merge(itemId_feat, on='itemId', how='left')
# train_5core_t1
userId_feat = df3.groupby(['userId'])['itemId'].agg({'count','nunique'}).reset_index()
userId_feat.columns = ['userId','userId_cnts','userId_itemId_nunique']
itemId_feat = df3.groupby(['itemId'])['userId'].agg({'count','nunique'}).reset_index()
itemId_feat.columns = ['itemId','itemId_cnts','itemId_userId_nunique']
df2 = df2.merge(userId_feat, on='userId', how='left')
df2 = df2.merge(itemId_feat, on='itemId', how='left')
print('rating feat...')
userId_feat = df1.groupby(['userId'])['rating'].agg({'mean'}).reset_index()
userId_feat.columns = ['userId','userId_rating_mean']
itemId_feat = df1.groupby(['itemId'])['rating'].agg({'mean'}).reset_index()
itemId_feat.columns = ['itemId','itemId_rating_mean']
df2 = df2.merge(userId_feat, on='userId', how='left')
df2 = df2.merge(itemId_feat, on='itemId', how='left')
print('word2vec...')
df2 = df2.merge(emb_feature(df1, 'userId', 'itemId'), on='userId', how='left')
df2 = df2.merge(emb_feature(df1, 'itemId', 'userId'), on='itemId', how='left')
df2 = df2.merge(emb_feature(df3, 'userId', 'itemId'), on='userId', how='left')
df2 = df2.merge(emb_feature(df3, 'itemId', 'userId'), on='itemId', how='left')
print('word2vec similar feat...')
vec = emb_feature2(df1, 'userId', 'itemId')
tmp = df2[['userId','itemId']].drop_duplicates(subset=['userId','itemId'], keep='last')
tmp = tmp.merge(vec, on='itemId', how='left')
# 聚合历史交互itemId
tmp1 = df1.merge(vec, on='itemId', how='left')
tmp1 = tmp1.groupby(['userId'])['itemId_w2v_emb'].agg({list}).reset_index()
tmp1.columns = ['userId','emb_list']
tmp = tmp.merge(tmp1, on='userId', how='left')
tmp['similar_itemId_mean'] =tmp.apply(lambda index: similar_get(index['itemId_w2v_emb'], index['emb_list']), axis=1)
tmp['similar_itemId_max'] = tmp['similar_itemId_mean'].apply(lambda x: x[1])
tmp['similar_itemId_min'] = tmp['similar_itemId_mean'].apply(lambda x: x[2])
tmp['similar_itemId_std'] = tmp['similar_itemId_mean'].apply(lambda x: x[3])
tmp['similar_itemId_sum'] = tmp['similar_itemId_mean'].apply(lambda x: x[4])
tmp['similar_itemId_median'] = tmp['similar_itemId_mean'].apply(lambda x: x[5])
tmp['similar_itemId_percentile_25'] = tmp['similar_itemId_mean'].apply(lambda x: x[6])
tmp['similar_itemId_percentile_75'] = tmp['similar_itemId_mean'].apply(lambda x: x[7])
tmp['similar_itemId_percentile_5'] = tmp['similar_itemId_mean'].apply(lambda x: x[8])
tmp['similar_itemId_percentile_95'] = tmp['similar_itemId_mean'].apply(lambda x: x[9])
tmp['similar_itemId_mean'] = tmp['similar_itemId_mean'].apply(lambda x: x[0])
del tmp['itemId_w2v_emb'], tmp['emb_list']
df2 = df2.merge(tmp, on=['userId','itemId'], how='left')
### embedding2
for i in range(32):
vec['itemId_w2v_emb_'+str(i)] = vec['itemId_w2v_emb'].apply(lambda x:x[i])
del vec['itemId_w2v_emb']
df2 = df2.merge(vec, on='itemId', how='left')
df2 = reduce_mem_usage(df2)
if flag == 't1':
### new dota feature
df3['rating'] = df3['rating'].values * 5
df_all = pd.concat([df1, df3], axis=0, ignore_index=True)
df_all['ui'] = df_all['userId'] + '_' + df_all['itemId']
user_feats = user_features(df_all, df_all)
item_feats = item_features(df_all, df_all)
ui_feats = df_all[["ui"]].drop_duplicates().reset_index(drop=True)
ui_feats['ui_cnt'] = ui_feats["ui"].map(df_all['ui'].value_counts())
ui_feats['ui_rsum'] = ui_feats["ui"].map(df_all.groupby('ui')['rating'].sum())
ui_feats['ui_rmean'] = ui_feats["ui"].map(df_all.groupby('ui')['rating'].mean())
ui_embs = embs_ui_scores(user_feats, item_feats)
df2['ui'] = df2['userId'] + '_' + df2['itemId']
df2 = df2.merge(ui_embs, on='ui', how='left')
df2 = df2.merge(user_feats, on='userId', how='left')
df2 = df2.merge(item_feats, on='itemId', how='left')
del df2['ui']
return df2
print('====================================== t1 ======================================')
data_t1_df = base_feature(train_t1, data_t1_df, train_5core_t1, 't1')
print('====================================== t2 ======================================')
data_t2_df = base_feature(train_t2, data_t2_df, train_5core_t2, 't2')
valid_t1_df = data_t1_df[~data_t1_df.label.isnull()].reset_index(drop=True)
test_t1_df = data_t1_df[data_t1_df.label.isnull()].reset_index(drop=True)
valid_t2_df = data_t2_df[~data_t2_df.label.isnull()].reset_index(drop=True)
test_t2_df = data_t2_df[data_t2_df.label.isnull()].reset_index(drop=True)
data_t1_df = data_t1_df[['userId','itemId']]
data_t2_df = data_t2_df[['userId','itemId']]
gc.collect()
for i in range(0,10):
print('====================================== {} ======================================'.format(str(i)))
recom_valid_t1_df = pd.read_csv('./recall_feature_data/recom_valid_t1_feat{}.csv'.format(str(i)))
recom_test_t1_df = pd.read_csv('./recall_feature_data/recom_test_t1_feat{}.csv'.format(str(i)))
recom_valid_t2_df = pd.read_csv('./recall_feature_data/recom_valid_t2_feat{}.csv'.format(str(i)))
recom_test_t2_df = pd.read_csv('./recall_feature_data/recom_test_t2_feat{}.csv'.format(str(i)))
print(recom_valid_t1_df.columns)
# merge
valid_t1_df = valid_t1_df.merge(recom_valid_t1_df, on=['userId','itemId'], how='left')
test_t1_df = test_t1_df.merge(recom_test_t1_df, on=['userId','itemId'], how='left')
valid_t2_df = valid_t2_df.merge(recom_valid_t2_df, on=['userId','itemId'], how='left')
test_t2_df = test_t2_df.merge(recom_test_t2_df, on=['userId','itemId'], how='left')
if i < 4:
print('====================================== swing {} ======================================'.format(str(i)))
recom_valid_t1_df = pd.read_csv('./recall_feature_data/recom_valid_t1_swing_feat{}.csv'.format(str(i)))
recom_test_t1_df = pd.read_csv('./recall_feature_data/recom_test_t1_swing_feat{}.csv'.format(str(i)))
recom_valid_t2_df = pd.read_csv('./recall_feature_data/recom_valid_t2_swing_feat{}.csv'.format(str(i)))
recom_test_t2_df = pd.read_csv('./recall_feature_data/recom_test_t2_swing_feat{}.csv'.format(str(i)))
print(recom_valid_t1_df.columns)
# merge
valid_t1_df = valid_t1_df.merge(recom_valid_t1_df, on=['userId','itemId'], how='left')
test_t1_df = test_t1_df.merge(recom_test_t1_df, on=['userId','itemId'], how='left')
valid_t2_df = valid_t2_df.merge(recom_valid_t2_df, on=['userId','itemId'], how='left')
test_t2_df = test_t2_df.merge(recom_test_t2_df, on=['userId','itemId'], how='left')
# LightGCN stacking
nn_valid_t1_df = pd.read_csv('./merge/t1/LightGCN_with_w2v_valid.tsv', sep='\t')
nn_test_t1_df = pd.read_csv('./merge/t1/LightGCN_with_w2v_test.tsv', sep='\t')
nn_valid_t2_df = pd.read_csv('./merge/t2/LightGCN_with_w2v_valid.tsv', sep='\t')
nn_test_t2_df = pd.read_csv('./merge/t2/LightGCN_with_w2v_test.tsv', sep='\t')
###
valid_t1_df = valid_t1_df.merge(nn_valid_t1_df, on=['userId','itemId'], how='left')
test_t1_df = test_t1_df.merge(nn_test_t1_df, on=['userId','itemId'], how='left')
valid_t2_df = valid_t2_df.merge(nn_valid_t2_df, on=['userId','itemId'], how='left')
test_t2_df = test_t2_df.merge(nn_test_t2_df, on=['userId','itemId'], how='left')
# LightGCN stacking
nn_valid_t1_df = pd.read_csv('./merge/t1/LightGCN_without_w2v_valid.tsv', sep='\t')
nn_test_t1_df = pd.read_csv('./merge/t1/LightGCN_without_w2v_test.tsv', sep='\t')
nn_valid_t2_df = pd.read_csv('./merge/t2/LightGCN_without_w2v_valid.tsv', sep='\t')
nn_test_t2_df = pd.read_csv('./merge/t2/LightGCN_without_w2v_test.tsv', sep='\t')
###
valid_t1_df = valid_t1_df.merge(nn_valid_t1_df, on=['userId','itemId'], how='left')
test_t1_df = test_t1_df.merge(nn_test_t1_df, on=['userId','itemId'], how='left')
valid_t2_df = valid_t2_df.merge(nn_valid_t2_df, on=['userId','itemId'], how='left')
test_t2_df = test_t2_df.merge(nn_test_t2_df, on=['userId','itemId'], how='left')
for col in ['userId','itemId']:
valid_t1_df[col] = label_encode(data_t1_df[col], valid_t1_df[col])
test_t1_df[col] = label_encode(data_t1_df[col], test_t1_df[col])
valid_t2_df[col] = label_encode(data_t2_df[col], valid_t2_df[col])
test_t2_df[col] = label_encode(data_t2_df[col], test_t2_df[col])
def cv_model(clf, train_x, train_y, test_x, clf_name, seed=2021):
kf = KFold(n_splits=10, shuffle=True, random_state=seed)
train = np.zeros(train_x.shape[0])
test = np.zeros(test_x.shape[0])
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
print('************************************ {} {}************************************'.format(str(i+1), str(seed)))
trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
if clf_name == "lgb":
train_matrix = clf.Dataset(trn_x, label=trn_y)
valid_matrix = clf.Dataset(val_x, label=val_y)
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'min_child_samples': 10,
'num_leaves': 2**3-1,
'lambda_l2': 10,
'feature_fraction': 0.8,
'bagging_fraction': 0.8,
'learning_rate': 0.03,
'seed': seed,
'n_jobs':-1,
'verbose': -1,
}
model = clf.train(params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix],
categorical_feature=[], verbose_eval=200, early_stopping_rounds=200)
val_pred = model.predict(val_x, num_iteration=model.best_iteration)
test_pred = model.predict(test_x, num_iteration=model.best_iteration)
if clf_name == "xgb":
train_matrix = clf.DMatrix(trn_x , label=trn_y)
valid_matrix = clf.DMatrix(val_x , label=val_y)
test_matrix = clf.DMatrix(test_x)
params = {'booster': 'gbtree',
'objective': 'binary:logistic',
'eval_metric': 'auc',
'gamma': 1,
'min_child_weight': 5,
'max_depth': 3,
'lambda': 10,
'subsample': 0.7,
'colsample_bytree': 0.8,
'colsample_bylevel': 0.8,
'eta': 0.04,
'tree_method': 'exact',
'seed': seed,
'n_jobs': -1
}
watchlist = [(train_matrix, 'train'),(valid_matrix, 'eval')]
model = clf.train(params, train_matrix, num_boost_round=50000, evals=watchlist, verbose_eval=200, early_stopping_rounds=200)
val_pred = model.predict(valid_matrix, ntree_limit=model.best_ntree_limit)
test_pred = model.predict(test_matrix , ntree_limit=model.best_ntree_limit)
if clf_name == "cat":
params = {'learning_rate': 0.02, 'depth': 5, 'l2_leaf_reg': 10, 'bootstrap_type':'Bernoulli',
'od_type': 'Iter', 'od_wait': 50, 'random_seed': seed, 'allow_writing_files': False}
model = clf(iterations=20000, **params)
model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
cat_features=[], use_best_model=True, verbose=500)
val_pred = model.predict(val_x)
test_pred = model.predict(test_x)
train[valid_index] = val_pred
test += test_pred / kf.n_splits
cv_scores.append(roc_auc_score(val_y, val_pred))
print(cv_scores)
print("%s_scotrainre_list:" % clf_name, cv_scores)
print("%s_score_mean:" % clf_name, np.mean(cv_scores))
print("%s_score_std:" % clf_name, np.std(cv_scores))
return train, test
def cat_model(x_train, y_train, x_test, seed):
cat_train, cat_test = cv_model(CatBoostRegressor, x_train, y_train, x_test, "cat", seed)
return cat_train, cat_test
random_list = [1,10,100,1000,2021]
print('====================================== t1 ======================================')
cols = [f for f in valid_t1_df.columns if f not in ['label']]
lgb_train_t1 = np.zeros(valid_t1_df.shape[0])
lgb_test_t1 = np.zeros(test_t1_df.shape[0])
for sd in random_list:
lgb_train, lgb_test = cat_model(valid_t1_df[cols], valid_t1_df['label'].astype(int), test_t1_df[cols], sd)
lgb_train_t1 += lgb_train / len(random_list)
lgb_test_t1 += lgb_test / len(random_list)
print('====================================== t2 ======================================')
cols = [f for f in valid_t2_df.columns if f not in ['label']]
lgb_train_t2 = np.zeros(valid_t2_df.shape[0])
lgb_test_t2 = np.zeros(test_t2_df.shape[0])
for sd in random_list:
lgb_train, lgb_test = cat_model(valid_t2_df[cols], valid_t2_df['label'].astype(int), test_t2_df[cols], sd)
lgb_train_t2 += lgb_train / len(random_list)
lgb_test_t2 += lgb_test / len(random_list)
for col in ['userId','itemId']:
valid_t1_df[col] = label_encode2(data_t1_df[col], valid_t1_df[col])
test_t1_df[col] = label_encode2(data_t1_df[col], test_t1_df[col])
valid_t2_df[col] = label_encode2(data_t2_df[col], valid_t2_df[col])
test_t2_df[col] = label_encode2(data_t2_df[col], test_t2_df[col])
valid_t1_df['score'] = lgb_train_t1
valid_t1_df = valid_t1_df.sort_values(['userId','score'], ascending=False)
recom_t1_df = valid_t1_df.groupby(['userId'])['itemId'].agg(list).reset_index()
recom_t1_df.columns = ['userId','pred_itemIds']
valid_t2_df['score'] = lgb_train_t2
valid_t2_df = valid_t2_df.sort_values(['userId','score'], ascending=False)
recom_t2_df = valid_t2_df.groupby(['userId'])['itemId'].agg(list).reset_index()
recom_t2_df.columns = ['userId','pred_itemIds']
def mkdir(d):
if not os.path.exists(d):
os.makedirs(d)
mkdir('./merge/result_cat/t1/')
mkdir('./merge/result_cat/t2/')
#### 提交结果
### t1
test_t1_df['score'] = lgb_test_t1
test_t1_df = test_t1_df.sort_values(['userId','score'], ascending=False)
test_t1_df[['userId','itemId','score']].to_csv('./merge/result_cat/t1/test_pred.tsv', sep='\t', index=False)
valid_t1_df[['userId','itemId','score']].to_csv('./merge/result_cat/t1/valid_pred.tsv', sep='\t', index=False)
### t2
test_t2_df['score'] = lgb_test_t2
test_t2_df = test_t2_df.sort_values(['userId','score'], ascending=False)
test_t2_df[['userId','itemId','score']].to_csv('./merge/result_cat/t2/test_pred.tsv', sep='\t', index=False)
valid_t2_df[['userId','itemId','score']].to_csv('./merge/result_cat/t2/valid_pred.tsv', sep='\t', index=False)