-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransformer.py
57 lines (42 loc) · 1.97 KB
/
Transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from __future__ import division
from __future__ import print_function
import copy
import math
import torch
import torch.nn as nn
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=1000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer("pe", pe)
def forward(self, x):
# [T, N, F]
return x + self.pe[: x.size(0), :]
class Transformer(nn.Module):
def __init__(self, d_feat=6, d_model=8, nhead=4, num_layers=2, output_size=1, dropout=0.5, device=None):
super(Transformer, self).__init__()
self.feature_layer = nn.Linear(d_feat, d_model)
self.pos_encoder = PositionalEncoding(d_model)
self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dropout=dropout)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
self.decoder_layer = nn.Linear(d_model, output_size)
self.device = device
self.d_feat = d_feat
def forward(self, src):
# src [N, T, F], [512, 60, 6]
src = self.feature_layer(src) # [512, 60, 8]
# src [N, T, F] --> [T, N, F], [60, 512, 8]
src = src.transpose(1, 0) # not batch first
mask = None
src = self.pos_encoder(src)
output = self.transformer_encoder(src, mask) # [60, 512, 8]
# [T, N, F] --> [N, T*F]
output = self.decoder_layer(output.transpose(1, 0)[:, -1, :]) # [512, 1]
return output.squeeze()