@@ -1553,6 +1553,57 @@ func.func @test_mod_int64_no_fmod(%arg0: !torch.vtensor<[6],si64>, %arg1: !torch
1553
1553
1554
1554
// -----
1555
1555
1556
+ // CHECK-LABEL: func.func @test_meanvarnorm(
1557
+ func.func @test_meanvarnorm (%arg0: !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >) -> !torch.vtensor <[3 ,5 ,2 ,2 ],f32 > attributes {torch.onnx_meta.ir_version = 3 : si64 , torch.onnx_meta.opset_version = 13 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
1558
+ // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[3,5,2,2],f32>) -> !torch.vtensor<[3,5,2,2],f32> attributes {torch.onnx_meta.ir_version = 3 : si64, torch.onnx_meta.opset_version = 13 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
1559
+ // CHECK: %[[VAL_0:.*]] = torch.constant.bool true
1560
+ // CHECK: %[[VAL_1:.*]] = torch.constant.bool false
1561
+ // CHECK: %[[VAL_2:.*]] = torch.constant.none
1562
+ // CHECK: %[[VAL_3:.*]] = torch.constant.int 0
1563
+ // CHECK: %[[VAL_4:.*]] = torch.constant.int 2
1564
+ // CHECK: %[[VAL_5:.*]] = torch.constant.int 3
1565
+ // CHECK: %[[VAL_6:.*]] = torch.prim.ListConstruct %[[VAL_3]], %[[VAL_4]], %[[VAL_5]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
1566
+ // CHECK: %[[VAL_7:.*]] = torch.aten.mean.dim %[[ARG0]], %[[VAL_6]], %[[VAL_0]], %[[VAL_2]] : !torch.vtensor<[3,5,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[1,5,1,1],f32>
1567
+ // CHECK: %[[VAL_8:.*]] = torch.aten.var.dim %[[ARG0]], %[[VAL_6]], %[[VAL_1]], %[[VAL_0]] : !torch.vtensor<[3,5,2,2],f32>, !torch.list<int>, !torch.bool, !torch.bool -> !torch.vtensor<[1,5,1,1],f32>
1568
+ // CHECK: %[[VAL_9:.*]] = torch.constant.int 1
1569
+ // CHECK: %[[VAL_10:.*]] = torch.constant.float 1.000000e-09
1570
+ // CHECK: %[[VAL_11:.*]] = torch.aten.add.Scalar %[[VAL_8]], %[[VAL_10]], %[[VAL_9]] : !torch.vtensor<[1,5,1,1],f32>, !torch.float, !torch.int -> !torch.vtensor<[1,5,1,1],f32>
1571
+ // CHECK: %[[VAL_12:.*]] = torch.aten.sqrt %[[VAL_11]] : !torch.vtensor<[1,5,1,1],f32> -> !torch.vtensor<[1,5,1,1],f32>
1572
+ // CHECK: %[[VAL_13:.*]] = torch.aten.sub.Tensor %[[ARG0]], %[[VAL_7]], %[[VAL_9]] : !torch.vtensor<[3,5,2,2],f32>, !torch.vtensor<[1,5,1,1],f32>, !torch.int -> !torch.vtensor<[3,5,2,2],f32>
1573
+ // CHECK: %[[VAL_14:.*]] = torch.aten.div.Tensor %[[VAL_13]], %[[VAL_12]] : !torch.vtensor<[3,5,2,2],f32>, !torch.vtensor<[1,5,1,1],f32> -> !torch.vtensor<[3,5,2,2],f32>
1574
+ // CHECK: return %[[VAL_14]] : !torch.vtensor<[3,5,2,2],f32>
1575
+ // CHECK: }
1576
+ %0 = torch.operator " onnx.MeanVarianceNormalization" (%arg0 ) : (!torch.vtensor <[3 ,5 ,2 ,2 ],f32 >) -> !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >
1577
+ return %0 : !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >
1578
+ }
1579
+
1580
+ // -----
1581
+
1582
+ // CHECK-LABEL: func.func @test_meanvarnorm_axes(
1583
+ func.func @test_meanvarnorm_axes (%arg0: !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >) -> !torch.vtensor <[3 ,5 ,2 ,2 ],f32 > attributes {torch.onnx_meta.ir_version = 3 : si64 , torch.onnx_meta.opset_version = 13 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
1584
+ // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[3,5,2,2],f32>) -> !torch.vtensor<[3,5,2,2],f32> attributes {torch.onnx_meta.ir_version = 3 : si64, torch.onnx_meta.opset_version = 13 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
1585
+ // CHECK: %[[VAL_0:.*]] = torch.constant.bool true
1586
+ // CHECK: %[[VAL_1:.*]] = torch.constant.bool false
1587
+ // CHECK: %[[VAL_2:.*]] = torch.constant.none
1588
+ // CHECK: %[[VAL_3:.*]] = torch.constant.int 1
1589
+ // CHECK: %[[VAL_4:.*]] = torch.constant.int 3
1590
+ // CHECK: %[[VAL_5:.*]] = torch.prim.ListConstruct %[[VAL_3]], %[[VAL_4]] : (!torch.int, !torch.int) -> !torch.list<int>
1591
+ // CHECK: %[[VAL_6:.*]] = torch.aten.mean.dim %[[ARG0]], %[[VAL_5]], %[[VAL_0]], %[[VAL_2]] : !torch.vtensor<[3,5,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2,1],f32>
1592
+ // CHECK: %[[VAL_7:.*]] = torch.aten.var.dim %[[ARG0]], %[[VAL_5]], %[[VAL_1]], %[[VAL_0]] : !torch.vtensor<[3,5,2,2],f32>, !torch.list<int>, !torch.bool, !torch.bool -> !torch.vtensor<[3,1,2,1],f32>
1593
+ // CHECK: %[[VAL_8:.*]] = torch.constant.int 1
1594
+ // CHECK: %[[VAL_9:.*]] = torch.constant.float 1.000000e-09
1595
+ // CHECK: %[[VAL_10:.*]] = torch.aten.add.Scalar %[[VAL_7]], %[[VAL_9]], %[[VAL_8]] : !torch.vtensor<[3,1,2,1],f32>, !torch.float, !torch.int -> !torch.vtensor<[3,1,2,1],f32>
1596
+ // CHECK: %[[VAL_11:.*]] = torch.aten.sqrt %[[VAL_10]] : !torch.vtensor<[3,1,2,1],f32> -> !torch.vtensor<[3,1,2,1],f32>
1597
+ // CHECK: %[[VAL_12:.*]] = torch.aten.sub.Tensor %[[ARG0]], %[[VAL_6]], %[[VAL_8]] : !torch.vtensor<[3,5,2,2],f32>, !torch.vtensor<[3,1,2,1],f32>, !torch.int -> !torch.vtensor<[3,5,2,2],f32>
1598
+ // CHECK: %[[VAL_13:.*]] = torch.aten.div.Tensor %[[VAL_12]], %[[VAL_11]] : !torch.vtensor<[3,5,2,2],f32>, !torch.vtensor<[3,1,2,1],f32> -> !torch.vtensor<[3,5,2,2],f32>
1599
+ // CHECK: return %[[VAL_13]] : !torch.vtensor<[3,5,2,2],f32>
1600
+ // CHECK: }
1601
+ %0 = torch.operator " onnx.MeanVarianceNormalization" (%arg0 ) {torch.onnx.axes = [1 : si64 , 3 : si64 ]} : (!torch.vtensor <[3 ,5 ,2 ,2 ],f32 >) -> !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >
1602
+ return %0 : !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >
1603
+ }
1604
+
1605
+ // -----
1606
+
1556
1607
// CHECK-LABEL: func.func @test_not_2d
1557
1608
func.func @test_not_2d (%arg0: !torch.vtensor <[3 ,4 ],i1 >) -> !torch.vtensor <[3 ,4 ],i1 > attributes {torch.onnx_meta.ir_version = 3 : si64 , torch.onnx_meta.opset_version = 1 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
1558
1609
// CHECK: torch.aten.bitwise_not %arg0 : !torch.vtensor<[3,4],i1> -> !torch.vtensor<[3,4],i1>
0 commit comments