forked from YuxiChen25/TF-MDP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_probe_data.py
74 lines (62 loc) · 2.98 KB
/
parse_probe_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import re
import numpy as np
from collections import defaultdict
def parse_probe_data(input_file_path, output_file_path, t):
substrings = []
with open(input_file_path, 'r') as file:
lines = file.readlines()
for line in lines:
parts = re.split(r'(Layer)', line.strip())
for i in range(1, len(parts), 2):
substring = parts[i] + parts[i + 1]
substrings.append(substring)
last_occurrence = {}
prefix_pattern = re.compile(r"^(Layer \d+ Seed \d+ Mode \d+ losses:)")
#print(substrings)
for line in substrings:
match = prefix_pattern.match(line)
if match:
prefix = match.group(1)
last_occurrence[prefix] = line.strip()
data = defaultdict(lambda: {'a': [], 'b': []})
pattern = re.compile(r"Layer (\d+) Seed \d+ Mode (\d+) losses: ([\d\.]+),\s*([\d\.]+)")
for line in last_occurrence.values():
match = pattern.match(line.strip())
if match:
layer = int(match.group(1))
mode = int(match.group(2))
a = float(match.group(3))
b = float(match.group(4))
data[(layer, mode)]['a'].append(a)
data[(layer, mode)]['b'].append(b)
else:
print(line)
#print(data.items())
with open(output_file_path, 'w') as output_file:
for (layer, mode), values in data.items():
mean_a = np.mean(values['a'])
std_a = np.std(values['a'], ddof=1)
mean_b = np.mean(values['b'])
std_b = np.std(values['b'], ddof=1)
output_file.write(f"Layer {layer} Mode {mode} MCTS {t} Linear: Mean={mean_a:.6f}, Std={std_a:.6f}, "
f"Nonlinear: Mean={mean_b:.6f}, Std={std_b:.6f}\n")
def main():
for t in [True, False]:
for m in range(2):
if t:
input_file_path = rf'transformers_trained_mcts/mcts_mode{m}/probe_data/test_losses.txt'
output_file_path = rf'transformers_trained_mcts/mcts_mode{m}/probe_data/test_losses_parsed_mode_{m}_mcts_{t}.txt'
else:
input_file_path = rf'transformers_trained/RL_mode{m}/probe_data/test_losses.txt'
output_file_path = rf'transformers_trained/RL_mode{m}/probe_data/test_losses_parsed_mode_{m}_mcts_{t}.txt'
parse_probe_data(input_file_path, output_file_path, t)
if t:
input_file_path = rf'transformers_trained_mcts/mcts_mode{m}/probe_data/test_losses_mse.txt'
output_file_path = rf'transformers_trained_mcts/mcts_mode{m}/probe_data/test_losses_parsed_mode_{m}_mcts_{t}_mse.txt'
else:
input_file_path = rf'transformers_trained/RL_mode{m}/probe_data/test_losses_mse.txt'
output_file_path = rf'transformers_trained/RL_mode{m}/probe_data/test_losses_parsed_mode_{m}_mcts_{t}_mse.txt'
parse_probe_data(input_file_path, output_file_path, t)
if __name__ == "__main__":
main()