-
Notifications
You must be signed in to change notification settings - Fork 0
/
Nucleus.pde
426 lines (356 loc) · 8.35 KB
/
Nucleus.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
class Nucleus
{
ArrayList nucleons;
int x,y;
float vx, vy;
boolean debug = true;
int protons;
int neutrons;
int radius;
int type;
// hue and saturation
int nucleusHue;
int nucleusSaturation;
int nucleonRadius = 2;
Nucleus(int _x, int _y, int _protons, int _neutrons)
{
x = _x;
y = _y;
vx = 0;
vy = 0;
protons = _protons;
neutrons = _neutrons;
nucleons = new ArrayList();
// The setType() method looks up the isotope based on the number of protons and neutrons
// and then sets the type and color variables accordingly
this.setType();
radius = (protons+neutrons)*nucleonRadius/2;
for(int i=0; i<protons; i++)
{
float r = random(radius);
float angle = random(2*PI);
nucleons.add(new Nucleon(int(r*cos(angle)), int(r*sin(angle)), nucleonRadius, nucleusHue, nucleusSaturation, true));
}
for(int i=0; i<neutrons; i++)
{
float r = random(radius);
float angle = random(2*PI);
nucleons.add(new Nucleon(int(r*cos(angle)), int(r*sin(angle)),nucleonRadius, nucleusHue, nucleusSaturation, false));
}
}
Nucleus(int _x, int _y, ArrayList _nucleons)
{
x = _x;
y = _y;
vx = 0;
vy = 0;
nucleons = _nucleons;
protons = 0;
neutrons = 0;
int nNucleons = nucleons.size();
for(int i=0; i<nNucleons; i++)
{
Nucleon n = (Nucleon)nucleons.get(i);
if(n.isProton) protons++;
else neutrons++;
}
// The setType() method looks up the isotope based on the number of protons and neutrons
// and then sets the type and color variables accordingly
this.setType();
int nucleonRadius = 4;
radius = (protons+neutrons)*nucleonRadius/2;
}
void draw()
{
int nNucleons = nucleons.size();
for(int i=0; i<nNucleons; i++)
{
Nucleon n = (Nucleon)nucleons.get(i);
n.move(radius);
n.draw(x,y);
}
}
void move() {
// Implementing a pseudo-gravitational pull toward the center of the screen
// 0,0 is in top left corner
float gravity = 0.03;
if(x>width/2) vx -= gravity;
else vx += gravity;
if(y>height/2) vy -= gravity;
else vy += gravity;
x += vx;
y += vy;
}
int collide(ArrayList _otherNuclei, int _thisIndex)
{
// the return value will indicate the outcome of the collision:
// 0: nothing happens
// i (positive integer): This nucleus will merge with nucleus i-1
// -1: The nucleus will split into two nuclei
// -2: beta decay
int outcome = 0;
int nNuclei = _otherNuclei.size();
for (int i = 0; i < nNuclei; i++)
{
// A nucleus can't collide with itself!
if(i == _thisIndex) continue;
Nucleus otherNucleus = (Nucleus)_otherNuclei.get(i);
float dx = float(otherNucleus.x - x);
float dy = float(otherNucleus.y - y);
float distance = sqrt(dx*dx + dy*dy);
float minDist = float(otherNucleus.radius + this.radius);
if (distance < minDist)
{
// test to see if the two nuclei will react
if(this.react(otherNucleus)) return i+1;
// Kinematics of one nucleus bouncing off another
float angle = atan2(dy, dx);
float targetX = x + cos(angle) * minDist;
float targetY = y + sin(angle) * minDist;
float spring = 0.05;
float ax = (targetX - otherNucleus.x) * spring;
float ay = (targetY - otherNucleus.y) * spring;
vx -= ax;
vy -= ay;
otherNucleus.vx += ax;
otherNucleus.vy += ay;
}
}
outcome = this.decay();
return outcome;
}
int decay()
{
if(type==5) // Be7->Li7
{
if(random(1)>.990)
{
for(int i=0; i<protons+neutrons; i++)
{
Nucleon nuc = (Nucleon)nucleons.get(i);
if(nuc.isProton==true)
{
nuc.isProton=false;
neutrons++;
protons--;
this.setType();
return -2;
}
}
}
}
if(type==6) // B8-> He4+He4
{
if(random(1)>.80)
{
for(int i=0; i<protons+neutrons; i++)
{
Nucleon nuc = (Nucleon)nucleons.get(i);
if(nuc.isProton==true)
{
nuc.isProton=false;
neutrons++;
protons--;
this.setType();
return -1;
}
}
}
}
return 0;
}
boolean react(Nucleus _other)
{
int t1 = -1;
int t2 = -1;
// H1
if(type == 0)
{
t1 = type;
t2 = _other.type;
}
else if(_other.type == 0)
{
t1 = _other.type;
t2 = type;
}
if(t1 == 0)
{
if(t2 == 0) // H1+H1 = H2
{
// One of the protons must be converted to a neutron first!
Nucleon proton = (Nucleon)this.nucleons.get(0);
proton.isProton = false;
this.protons = 0;
this.neutrons = 1;
return true;
}
if(t2 == 1) // H1+H2 = He3
{
return true;
}
if(t2 == 4) // H1+Li7 = H4 + H4
{
return true;
}
if(t2 == 5) // H1+Be7
{
return true;
}
return false;
}
// He3
if(type ==2)
{
t1 = type;
t2 = _other.type;
}
else if(_other.type == 2)
{
t1 = _other.type;
t2 = type;
}
if(t1==2)
{
if(t2 == 2) // H3 + H3
{
return true;
}
if(t2 == 3) // H3 + H4
{
return true;
}
return false;
}
return false;
}
void merge(Nucleus _otherNucleus)
{
this.protons += _otherNucleus.protons;
this.neutrons += _otherNucleus.neutrons;
int nAddedNucleons = _otherNucleus.protons+_otherNucleus.neutrons;
for(int i=0; i<nAddedNucleons; i++)
{
this.nucleons.add(_otherNucleus.nucleons.get(i));
}
radius = (protons+neutrons)*nucleonRadius/2;
this.setType();
if(debug==true && this.type == -1)
{
println("Neutrons: " + this.neutrons + " Protons: " + this.protons);
}
}
Nucleus divide(int _nProtons, int _nNeutrons)
{
if(_nProtons>this.protons || _nNeutrons>this.neutrons)
return null;
int nNucleons = protons+neutrons;
int countProtons = 0;
int countNeutrons = 0;
ArrayList newNucleons = new ArrayList();
int i=0;
while(i<nNucleons)
{
Nucleon n = (Nucleon)nucleons.get(i);
if(n.isProton && countProtons<_nProtons)
{
newNucleons.add(n);
nucleons.remove(n);
countProtons++;
protons--;
nNucleons--;
continue;
}
else if(!(n.isProton) && countNeutrons<_nNeutrons)
{
newNucleons.add(n);
nucleons.remove(n);
countNeutrons++;
neutrons--;
nNucleons--;
continue;
}
i++;
}
radius = (protons+neutrons)*nucleonRadius/2;
this.setType();
Nucleus newNucleus = new Nucleus(x, y, newNucleons);
return newNucleus;
}
void setType()
{
this.type = -1;
this.nucleusHue = 0;
this.nucleusSaturation = 0;
int nTypes = 7;
// Hydrogen (H)
if(this.protons == 1)
{
if(this.neutrons == 0)
{
this.type = 0;
}
else if(this.neutrons==1)
{
this.type = 1;
}
}
// Helium (He)
if(this.protons == 2)
{
if(this.neutrons == 1)
{
this.type = 2;
}
else if(this.neutrons == 2)
{
this.type = 3;
}
}
// Lithium (Li)
if(this.protons == 3)
{
if(this.neutrons == 4)
{
this.type = 4;
}
}
// Beryllium (Be)
if(this.protons == 4)
{
if(this.neutrons == 3)
{
this.type = 5;
}
if(this.neutrons == 4)
{
this.type = 7;
}
if(this.neutrons == 2)
{
// not a "real" nucleus, just an intermediate state
// in He3+He3-> He4 + H1 + H1
this.type = 8;
}
}
// Boron (B)
if(this.protons == 5)
{
if(this.neutrons == 3)
{
this.type = 6;
}
}
if(type >= 0)
{
this.nucleusHue = ((type*1000)/(nTypes+1))+(1000/(2*nTypes));
this.nucleusSaturation = 1000;
}
// Actually set the colors of the individual nucleons
for(int i=0; i<nucleons.size(); i++)
{
Nucleon n = (Nucleon)nucleons.get(i);
n.setColor(nucleusHue, nucleusSaturation);
}
}
}