forked from philipperemy/keras-attention
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention_lstm.py
86 lines (69 loc) · 3.35 KB
/
attention_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from keras.layers import merge
from keras.layers.core import *
from keras.layers.recurrent import LSTM
from keras.models import *
from attention_utils import get_activations, get_data_recurrent
INPUT_DIM = 2
TIME_STEPS = 20
# if True, the attention vector is shared across the input_dimensions where the attention is applied.
SINGLE_ATTENTION_VECTOR = False
APPLY_ATTENTION_BEFORE_LSTM = False
def attention_3d_block(inputs):
# inputs.shape = (batch_size, time_steps, input_dim)
input_dim = int(inputs.shape[2])
a = Permute((2, 1))(inputs)
a = Reshape((input_dim, TIME_STEPS))(a) # this line is not useful. It's just to know which dimension is what.
a = Dense(TIME_STEPS, activation='softmax')(a)
if SINGLE_ATTENTION_VECTOR:
a = Lambda(lambda x: K.mean(x, axis=1), name='dim_reduction')(a)
a = RepeatVector(input_dim)(a)
a_probs = Permute((2, 1), name='attention_vec')(a)
output_attention_mul = merge([inputs, a_probs], name='attention_mul', mode='mul')
return output_attention_mul
def model_attention_applied_after_lstm():
inputs = Input(shape=(TIME_STEPS, INPUT_DIM,))
lstm_units = 32
lstm_out = LSTM(lstm_units, return_sequences=True)(inputs)
attention_mul = attention_3d_block(lstm_out)
attention_mul = Flatten()(attention_mul)
output = Dense(1, activation='sigmoid')(attention_mul)
model = Model(input=[inputs], output=output)
return model
def model_attention_applied_before_lstm():
inputs = Input(shape=(TIME_STEPS, INPUT_DIM,))
attention_mul = attention_3d_block(inputs)
lstm_units = 32
attention_mul = LSTM(lstm_units, return_sequences=False)(attention_mul)
output = Dense(1, activation='sigmoid')(attention_mul)
model = Model(input=[inputs], output=output)
return model
if __name__ == '__main__':
N = 300000
# N = 300 -> too few = no training
inputs_1, outputs = get_data_recurrent(N, TIME_STEPS, INPUT_DIM)
if APPLY_ATTENTION_BEFORE_LSTM:
m = model_attention_applied_before_lstm()
else:
m = model_attention_applied_after_lstm()
m.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
print(m.summary())
m.fit([inputs_1], outputs, epochs=1, batch_size=64, validation_split=0.1)
attention_vectors = []
for i in range(300):
testing_inputs_1, testing_outputs = get_data_recurrent(1, TIME_STEPS, INPUT_DIM)
attention_vector = np.mean(get_activations(m,
testing_inputs_1,
print_shape_only=True,
layer_name='attention_vec')[0], axis=2).squeeze()
print('attention =', attention_vector)
assert (np.sum(attention_vector) - 1.0) < 1e-5
attention_vectors.append(attention_vector)
attention_vector_final = np.mean(np.array(attention_vectors), axis=0)
# plot part.
import matplotlib.pyplot as plt
import pandas as pd
pd.DataFrame(attention_vector_final, columns=['attention (%)']).plot(kind='bar',
title='Attention Mechanism as '
'a function of input'
' dimensions.')
plt.show()