forked from Arturus/kaggle-web-traffic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeeder.py
123 lines (103 loc) · 4.53 KB
/
feeder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from collections import UserList, UserDict
from typing import Union, Iterable, Tuple, Dict, Any
import tensorflow as tf
import numpy as np
import pandas as pd
import pickle
import os.path
def _meta_file(path):
return os.path.join(path, 'feeder_meta.pkl')
class VarFeeder:
"""
Helper to avoid feed_dict and manual batching. Maybe I had to use TFRecords instead.
Builds temporary TF graph, injects variables into, and saves variables to TF checkpoint.
In a train time, variables can be built by build_vars() and content restored by FeederVars.restore()
"""
def __init__(self, path: str,
tensor_vars: Dict[str, Union[pd.DataFrame, pd.Series, np.ndarray]] = None,
plain_vars: Dict[str, Any] = None):
"""
:param path: dir to store data
:param tensor_vars: Variables to save as Tensors (pandas DataFrames/Series or numpy arrays)
:param plain_vars: Variables to save as Python objects
"""
tensor_vars = tensor_vars or dict()
def get_values(v):
v = v.values if hasattr(v, 'values') else v
if not isinstance(v, np.ndarray):
v = np.array(v)
if v.dtype == np.float64:
v = v.astype(np.float32)
return v
values = [get_values(var) for var in tensor_vars.values()]
self.shapes = [var.shape for var in values]
self.dtypes = [v.dtype for v in values]
self.names = list(tensor_vars.keys())
self.path = path
self.plain_vars = plain_vars
if not os.path.exists(path):
os.mkdir(path)
with open(_meta_file(path), mode='wb') as file:
pickle.dump(self, file)
with tf.Graph().as_default():
tensor_vars = self._build_vars()
placeholders = [tf.placeholder(tf.as_dtype(dtype), shape=shape) for dtype, shape in
zip(self.dtypes, self.shapes)]
assigners = [tensor_var.assign(placeholder) for tensor_var, placeholder in
zip(tensor_vars, placeholders)]
feed = {ph: v for ph, v in zip(placeholders, values)}
saver = tf.train.Saver(self._var_dict(tensor_vars), max_to_keep=1)
init = tf.global_variables_initializer()
with tf.Session(config=tf.ConfigProto(device_count={'GPU': 0})) as sess:
sess.run(init)
sess.run(assigners, feed_dict=feed)
save_path = os.path.join(path, 'feeder.cpt')
saver.save(sess, save_path, write_meta_graph=False, write_state=False)
def _var_dict(self, variables):
return {name: var for name, var in zip(self.names, variables)}
def _build_vars(self):
def make_tensor(shape, dtype, name):
tf_type = tf.as_dtype(dtype)
if tf_type == tf.string:
empty = ''
elif tf_type == tf.bool:
empty = False
else:
empty = 0
init = tf.constant(empty, shape=shape, dtype=tf_type)
return tf.get_local_variable(name=name, initializer=init, dtype=tf_type)
with tf.device("/cpu:0"):
with tf.name_scope('feeder_vars'):
return [make_tensor(shape, dtype, name) for shape, dtype, name in
zip(self.shapes, self.dtypes, self.names)]
def create_vars(self):
"""
Builds variable list to use in current graph. Should be called during graph building stage
:return: variable list with additional restore and create_saver methods
"""
return FeederVars(self._var_dict(self._build_vars()), self.plain_vars, self.path)
@staticmethod
def read_vars(path):
with open(_meta_file(path), mode='rb') as file:
feeder = pickle.load(file)
assert feeder.path == path
return feeder.create_vars()
class FeederVars(UserDict):
def __init__(self, tensors: dict, plain_vars: dict, path):
variables = dict(tensors)
if plain_vars:
variables.update(plain_vars)
super().__init__(variables)
self.path = path
self.saver = tf.train.Saver(tensors, name='varfeeder_saver')
for var in variables:
if var not in self.__dict__:
self.__dict__[var] = variables[var]
def restore(self, session):
"""
Restores variable content
:param session: current session
:return: variable list
"""
self.saver.restore(session, os.path.join(self.path, 'feeder.cpt'))
return self