-
Notifications
You must be signed in to change notification settings - Fork 26
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
create custom device map for FLUX pipeline
- Loading branch information
1 parent
0f5b66f
commit c244538
Showing
3 changed files
with
100 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .flux import LPFluxPipeline |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import inspect | ||
import logging | ||
import os | ||
import time | ||
from typing import List, Optional, Tuple | ||
|
||
import PIL | ||
import torch | ||
from diffusers import FluxPipeline | ||
from diffusers.pipelines import ImagePipelineOutput | ||
|
||
from app.pipelines.base import Pipeline | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
class LPFluxPipeline(Pipeline): | ||
def __init__(self, model_id: str, device_map: str, torch_device: any, **kwargs): | ||
self.lp_device_map = device_map | ||
self.ldm = None | ||
self.ldm2 = None | ||
if self.lp_device_map == "FLUX_DEVICE_MAP_2_GPU": | ||
#setup transformer for GPU 0 | ||
self.ldm = FluxPipeline.from_pretrained(model_id, text_encoder=None, text_encoder_2=None, tokenizer=None, tokenizer_2=None, vae=None, **kwargs).to("cuda:0") | ||
#setup pipeline for all other components on GPU 1 | ||
self.ldm2 = FluxPipeline.from_pretrained(model_id, unet=None, transformer=None, **kwargs).to("cuda:1") | ||
elif self.lp_device_map == "FLUX_DEVICE_MAP_1_GPU": | ||
self.ldm = FluxPipeline.from_pretrained(model_id, **kwargs) | ||
self.ldm.enable_model_cpu_offload() | ||
elif "device_map" in kwargs: | ||
self.ldm = FluxPipeline.from_pretrained(model_id, **kwargs) | ||
else: | ||
self.ldm = FluxPipeline.from_pretrained(model_id, **kwargs).to(torch_device) | ||
|
||
def __getattr__(self, name): | ||
# Redirect attribute access to self.ldm if it exists there | ||
try: | ||
if name not in dir(self): | ||
return getattr(self.ldm, name) | ||
else: | ||
return super().__getattr__(name) | ||
|
||
except AttributeError: | ||
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'") | ||
|
||
def __setattr__(self, name, value): | ||
# Handle setting attributes | ||
if name not in dir(self): | ||
# Redirect to ldm if attribute doesn't exist in this instance | ||
setattr(self.ldm, name, value) | ||
else: | ||
super().__setattr__(name, value) | ||
|
||
def __call__( | ||
self, prompt: str, **kwargs | ||
) -> Tuple[List[PIL.Image], List[Optional[bool]]]: | ||
outputs = None | ||
if self.lp_device_map == "FLUX_DEVICE_MAP_2_GPU": | ||
with torch.no_grad(): | ||
#generate prompt embeddings on GPU 1 | ||
start = time.time() | ||
prompt_embeds = pooled_prompt_embeds = text_ids = None | ||
encode_prompt_kwargs = inspect.signature(self.ldm2.encode_prompt).parameters.keys() | ||
prompt_2 = kwargs.pop("prompt_2", "") | ||
prompt_embeds, pooled_prompt_embeds, text_ids = self.ldm2.encode_prompt(prompt, prompt_2, **{k: v for k, v in kwargs.items() if k in encode_prompt_kwargs}) | ||
logger.info(f"encode_prompt took: {time.time()-start} seconds") | ||
#generate the image with transformer, return latents | ||
start = time.time() | ||
prompt_embeds = prompt_embeds.to(self.ldm._execution_device) | ||
pooled_prompt_embeds = pooled_prompt_embeds.to(self.ldm._execution_device) | ||
logger.info(f"prompt embeds conversion took: {time.time()-start} seconds") | ||
start= time.time() | ||
ldm_kwargs = inspect.signature(self.ldm.__call__).parameters.keys() | ||
latents = self.ldm(prompt=None, prompt_2=None, | ||
prompt_embeds=prompt_embeds.to(self.ldm._execution_device), | ||
pooled_prompt_embeds=pooled_prompt_embeds.to(self.ldm._execution_device), | ||
output_type="latent", return_dict=False, | ||
**{k: v for k, v in kwargs.items() if k in ldm_kwargs}) | ||
logger.info(f"transformer took: {time.time()-start} seconds") | ||
#use the VAE on GPU 1 to process the image | ||
#copied from diffusers/pipelines/flux/pipeline_flux.py L760 | ||
start = time.time() | ||
latents = latents[0].to(self.ldm2._execution_device) | ||
logger.info(f"latents conversion took: {time.time()-start} seconds") | ||
start = time.time() | ||
latents = self.ldm2._unpack_latents(latents, kwargs["height"], kwargs["width"], self.ldm2.vae_scale_factor) | ||
latents = (latents / self.ldm2.vae.config.scaling_factor) + self.ldm2.vae.config.shift_factor | ||
image = self.ldm2.vae.decode(latents, return_dict=False)[0] | ||
image = self.ldm2.image_processor.postprocess(image) #only support default output_type="pil" | ||
logger.info(f"vae decode took: {time.time()-start} seconds") | ||
|
||
outputs = ImagePipelineOutput(images=image) | ||
else: | ||
outputs = self.ldm(prompt=prompt, **kwargs) | ||
|
||
return outputs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters