-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
114 lines (91 loc) · 4.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import time
import argparse
import random
import torch
import numpy as np
from tensorboardX import SummaryWriter
from utils import load_config, save_checkpoint, load_checkpoint
from dataset import get_crohme_dataset
from models.backbone import Model
from training import train, eval
parser = argparse.ArgumentParser(description='model training')
parser.add_argument('--dataset', default='CROHME', type=str, help='数据集名称')
parser.add_argument('--config', default='config.yaml', type=str, help='数据集名称')
parser.add_argument('--check', action='store_true', help='测试代码选项')
parser.add_argument('--val', action='store_true', help='测试代码选项')
parser.add_argument('--val-checkout', default='', help='测试代码选项')
args = parser.parse_args()
if not args.dataset:
print('请提供数据集名称')
exit(-1)
"""加载config文件"""
params = load_config(args.config)
params.update({"val_checkout": args.val_checkout})
"""设置随机种子"""
random.seed(params['seed'])
np.random.seed(params['seed'])
torch.manual_seed(params['seed'])
torch.cuda.manual_seed(params['seed'])
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
params['device'] = device
train_loader, eval_loader_14, eval_loader_16, eval_loader_19 = get_crohme_dataset(params)
model = Model(params)
now = time.strftime("%Y-%m-%d-%H-%M", time.localtime())
model.name = f'{params["experiment"]}_{now}_decoder-{params["decoder"]["net"]}'
print(model.name)
model = model.to(device)
if args.check:
writer = None
else:
writer = SummaryWriter(f'{params["log_dir"]}/{model.name}')
optimizer = getattr(torch.optim, params['optimizer'])(model.parameters(), lr=float(params['lr']),
eps=float(params['eps']), weight_decay=float(params['weight_decay']))
if params['finetune']:
print('加载预训练模型权重')
print(f'预训练权重路径: {params["checkpoint"]}')
if params["checkpoint"]:
load_checkpoint(model, optimizer, params['checkpoint'])
if not args.check:
if not os.path.exists(os.path.join(params['checkpoint_dir'], model.name)):
os.makedirs(os.path.join(params['checkpoint_dir'], model.name), exist_ok=True)
os.system(f'cp {args.config} {os.path.join(params["checkpoint_dir"], model.name, model.name)}.yaml')
os.system(f'cp {params["word_path"]} {os.path.join(params["checkpoint_dir"], model.name)}')
min_score = 0
min_step = 0
rate_2014, rate_2016, rate_2019 = 0.55, 0.54, 0.55
rate_2014, rate_2016, rate_2019 = 0.54, 0.54, 0.54
if args.val:
params.update({"val": args.val})
epoch = 1
state_dict = torch.load(args.val_checkout, map_location="cpu")['model']
for k, v in model.state_dict().items():
if k not in state_dict:
state_dict[k] = v
model.load_state_dict(state_dict, strict=False)
print()
eval_loss, eval_word_score, eval_expRate = eval(params, model, epoch, eval_loader_14)
print(f'2014 Epoch: {epoch + 1} loss: {eval_loss:.4f} word score: {eval_word_score:.4f} ExpRate: {eval_expRate:.4f}')
eval_loss, eval_word_score, eval_expRate = eval(params, model, epoch, eval_loader_16)
print(f'2014 Epoch: {epoch + 1} loss: {eval_loss:.4f} word score: {eval_word_score:.4f} ExpRate: {eval_expRate:.4f}')
eval_loss, eval_word_score, eval_expRate = eval(params, model, epoch, eval_loader_19)
print(f'2014 Epoch: {epoch + 1} loss: {eval_loss:.4f} word score: {eval_word_score:.4f} ExpRate: {eval_expRate:.4f}')
exit()
init_epoch = 0
for epoch in range(init_epoch, params['epochs']):
train_loss, train_word_score, train_exprate = train(params, model, optimizer, epoch, train_loader, writer)
if epoch >= params['valid_start']:
for best_rate, time_tag, loader in zip([rate_2014, rate_2016, rate_2019], [2014, 2016, 2019], [eval_loader_14, eval_loader_16, eval_loader_19]):
eval_loss, eval_word_score, eval_expRate = eval(params, model, epoch, loader)
# if writer:
# writer.add_scalars("eval_ratio", {
# "eval_loss": eval_loss,
# "eval_word_score": eval_word_score,
# "eval_expRate": eval_expRate
# }, global_step=epoch)
print(f'{time_tag} Epoch: {epoch + 1} loss: {eval_loss:.4f} word score: {eval_word_score:.4f} ExpRate: {eval_expRate:.4f}')
if eval_expRate >= best_rate and not args.check:
best_rate = eval_expRate
save_checkpoint(model, optimizer, eval_word_score, eval_expRate, epoch + 1,
optimizer_save=params['optimizer_save'], path=params['checkpoint_dir'], tag=f'{time_tag}_')