forked from EndlessCheng/codeforces-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbits.go
932 lines (852 loc) · 38.1 KB
/
bits.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
package copypasta
import (
. "fmt"
"math"
"math/bits"
"slices"
)
/*
从集合论到位运算,常见位运算技巧分类总结!
https://leetcode.cn/circle/discuss/CaOJ45/
有关二进制枚举、枚举子集的子集、枚举大小固定集合等写法,见 search.go
运算符优先级 https://golang.org/ref/spec#Operators
Precedence Operator
5 * / % << >> & &^
4 + - | ^
3 == != < <= > >=
2 &&
1 ||
标准库 "math/bits" 包含了位运算常用的函数,如二进制中 1 的个数、二进制表示的长度等
注意:bits.Len(0) 返回的是 0 而不是 1
bits.Len(x) 相当于 int(Log2(x)+eps)+1 x>0
或者说 2^(Len(x)-1) <= x < 2^Len(x) x>0
### 基础题
- [1486. 数组异或操作](https://leetcode.cn/problems/xor-operation-in-an-array/) 1181
- [2595. 奇偶位数](https://leetcode.cn/problems/number-of-even-and-odd-bits/) 1207
- [231. 2 的幂](https://leetcode.cn/problems/power-of-two/)
- [342. 4 的幂](https://leetcode.cn/problems/power-of-four/)
- [476. 数字的补数](https://leetcode.cn/problems/number-complement/) 1235
- [191. 位 1 的个数](https://leetcode.cn/problems/number-of-1-bits/)
- [338. 比特位计数](https://leetcode.cn/problems/counting-bits/) 也可以 DP
- [1356. 根据数字二进制下 1 的数目排序](https://leetcode.cn/problems/sort-integers-by-the-number-of-1-bits/) 1258
- [461. 汉明距离](https://leetcode.cn/problems/hamming-distance/)
- [2220. 转换数字的最少位翻转次数](https://leetcode.cn/problems/minimum-bit-flips-to-convert-number/) 1282
- [868. 二进制间距](https://leetcode.cn/problems/binary-gap/) 1307
- [2917. 找出数组中的 K-or 值](https://leetcode.cn/problems/find-the-k-or-of-an-array/) 1389
- [693. 交替位二进制数](https://leetcode.cn/problems/binary-number-with-alternating-bits/)
### 与或(AND/OR)的性质
TIPS: & 和 | 在区间求和上具有单调性;^ 的区间求和见 strings.go 中的 trie.maxXor
** 代码和题目见下面的 bitOpTrick 和 bitOpTrickCnt
- [2980. 检查按位或是否存在尾随零](https://leetcode.cn/problems/check-if-bitwise-or-has-trailing-zeros/) 1234
- [1318. 或运算的最小翻转次数](https://leetcode.cn/problems/minimum-flips-to-make-a-or-b-equal-to-c/) 1383
- [2419. 按位与最大的最长子数组](https://leetcode.cn/problems/longest-subarray-with-maximum-bitwise-and/) 1496
- [2871. 将数组分割成最多数目的子数组](https://leetcode.cn/problems/split-array-into-maximum-number-of-subarrays/) 1750
- [2401. 最长优雅子数组](https://leetcode.cn/problems/longest-nice-subarray/) 1750
- [2680. 最大或值](https://leetcode.cn/problems/maximum-or/) 1912 可以做到 $\mathcal{O}(1)$ 额外空间
- [2411. 按位或最大的最小子数组长度](https://leetcode.cn/problems/smallest-subarrays-with-maximum-bitwise-or/) 1938
- [898. 子数组按位或操作](https://leetcode.cn/problems/bitwise-ors-of-subarrays/) 2133
- [1521. 找到最接近目标值的函数值](https://leetcode.cn/problems/find-a-value-of-a-mysterious-function-closest-to-target/) 2384
两数 OR 的最小值:只需要知道区间内最小的 bits.Len(U) + 1 个数 https://codeforces.com/problemset/problem/1665/E
### 异或(XOR)的性质
- [1720. 解码异或后的数组](https://leetcode.cn/problems/decode-xored-array/) 1284
- [2433. 找出前缀异或的原始数组](https://leetcode.cn/problems/find-the-original-array-of-prefix-xor/) 1367
- [1310. 子数组异或查询](https://leetcode.cn/problems/xor-queries-of-a-subarray/) 1460
- [2683. 相邻值的按位异或](https://leetcode.cn/problems/neighboring-bitwise-xor/) 1518
- [1829. 每个查询的最大异或值](https://leetcode.cn/problems/maximum-xor-for-each-query/) 1523
- [2997. 使数组异或和等于 K 的最少操作次数](https://leetcode.cn/problems/minimum-number-of-operations-to-make-array-xor-equal-to-k/) 1525
- [1442. 形成两个异或相等数组的三元组数目](https://leetcode.cn/problems/count-triplets-that-can-form-two-arrays-of-equal-xor/) 1525
- [2429. 最小异或](https://leetcode.cn/problems/minimize-xor/) 1532
- [2527. 查询数组异或美丽值](https://leetcode.cn/problems/find-xor-beauty-of-array/) 1550
- [2317. 操作后的最大异或和](https://leetcode.cn/problems/maximum-xor-after-operations/) 1679
- [2588. 统计美丽子数组数目](https://leetcode.cn/problems/count-the-number-of-beautiful-subarrays/) 1697
- [2564. 子字符串异或查询](https://leetcode.cn/problems/substring-xor-queries/) 1959
- [1734. 解码异或后的排列](https://leetcode.cn/problems/decode-xored-permutation/) 2024
- [2857. 统计距离为 k 的点对](https://leetcode.cn/problems/count-pairs-of-points-with-distance-k/) 2082
https://codeforces.com/problemset/problem/1895/D
https://codeforces.com/problemset/problem/1790/E
### 利用 lowbit
https://codeforces.com/problemset/problem/1689/E
交互 https://codeforces.com/problemset/problem/1780/D
### 拆位 / 贡献法(部分题目排序很有用)
- [477. 汉明距离总和](https://leetcode.cn/problems/total-hamming-distance/)
- [1863. 找出所有子集的异或总和再求和](https://leetcode.cn/problems/sum-of-all-subset-xor-totals/) 可以做到 $\mathcal{O}(n)$ 时间
- [2425. 所有数对的异或和](https://leetcode.cn/problems/bitwise-xor-of-all-pairings/) 1622 可以做到 $\mathcal{O}(n+m)$ 时间
- [2275. 按位与结果大于零的最长组合](https://leetcode.cn/problems/largest-combination-with-bitwise-and-greater-than-zero/) 1642
- [1835. 所有数对按位与结果的异或和](https://leetcode.cn/problems/find-xor-sum-of-all-pairs-bitwise-and/) 1825 也有恒等式做法
- [2505. 所有子序列和的按位或](https://leetcode.cn/problems/bitwise-or-of-all-subsequence-sums/)(会员题)
《灵茶八题》完整题目列表 & 题解
https://www.luogu.com.cn/blog/endlesscheng/post-ling-cha-ba-ti-ti-mu-lie-biao
+ 表示元素和
^ 表示异或和
所有子数组的 + 的 + https://www.luogu.com.cn/problem/U360300
所有子数组的 ^ 的 ^ https://www.luogu.com.cn/problem/U360487
所有子数组的 ^ 的 + https://www.luogu.com.cn/problem/U360489
所有子数组的 + 的 ^ https://www.luogu.com.cn/problem/U360500
所有子序列的 + 的 + https://www.luogu.com.cn/problem/U360640
所有子序列的 ^ 的 ^ https://www.luogu.com.cn/problem/U360641
所有子序列的 ^ 的 + https://www.luogu.com.cn/problem/U360642 LC1863 https://leetcode.cn/problems/sum-of-all-subset-xor-totals/
所有子序列的 + 的 ^ https://www.luogu.com.cn/problem/U360643
所有子数组的 ^2 的 + 的 + https://www.nowcoder.com/feed/main/detail/857f180290cd402ea2461b85e94b3db9
- 这里 ^2 表示子数组中任意两个数的异或
所有子序列的 + 的 | LC2505 https://leetcode.cn/problems/bitwise-or-of-all-subsequence-sums/
https://www.lanqiao.cn/problems/10010/learning/?contest_id=157
https://codeforces.com/problemset/problem/1777/F
https://codeforces.com/problemset/problem/981/D
https://codeforces.com/problemset/problem/1895/D 1900
https://atcoder.jp/contests/abc281/tasks/abc281_f
https://atcoder.jp/contests/arc127/tasks/arc127_d
考虑贡献 https://codeforces.com/problemset/problem/1362/C 1400
### 试填法
- [3007. 价值和小于等于 K 的最大数字](https://leetcode.cn/problems/maximum-number-that-sum-of-the-prices-is-less-than-or-equal-to-k/) 2258
- [421. 数组中两个数的最大异或值](https://leetcode.cn/problems/maximum-xor-of-two-numbers-in-an-array/),[试填法题解](https://leetcode.cn/problems/maximum-xor-of-two-numbers-in-an-array/solution/tu-jie-jian-ji-gao-xiao-yi-tu-miao-dong-1427d/)
- [2935. 找出强数对的最大异或值 II](https://leetcode.cn/problems/maximum-strong-pair-xor-ii/) 2349
- [3022. 给定操作次数内使剩余元素的或值最小](https://leetcode.cn/problems/minimize-or-of-remaining-elements-using-operations/) 2918
https://codeforces.com/contest/1918/problem/C 1400
加法拆位(进位拆位):涉及到加法进位的题目,可以按照 mod 2^k 拆位
https://atcoder.jp/contests/abc091/tasks/arc092_b
所有 a[i]+a[j] 的异或和 https://codeforces.com/problemset/problem/1322/B 2100
变形:减法拆位(借位拆位)https://www.luogu.com.cn/problem/P3760
拆位再合并相同位 https://codeforces.com/problemset/problem/1874/B
### 恒等式
结合律:(a&b)^(a&c) = a&(b^c) 其他符号类似
- [1835. 所有数对按位与结果的异或和](https://leetcode.cn/problems/find-xor-sum-of-all-pairs-bitwise-and/) 1825
集合论公式的二进制等价形式:
popcount(a&b) + popcount(a|b) = popcount(a) + popcount(b)
- [2354. 优质数对的数目](https://leetcode.cn/problems/number-of-excellent-pairs/) 2076
https://oeis.org/A006234 (n+2) * 3^(n-2) [0,2^n) 内任意两数 popcount(x) + popcount(y) - popcount(x+y) = 1 的数对个数
- https://codeforces.com/problemset/problem/1761/D
进位与分类讨论 https://codeforces.com/problemset/problem/1761/D https://www.luogu.com.cn/blog/linyihdfj/solution-cf1761d https://www.cnblogs.com/linyihdfj/p/16893607.html
a|b = (a^b) + (a&b)
a&b = (a|b) - (a^b)
a^b = (a|b) - (a&b)
a+b = (a|b) + (a&b)
= (a&b)*2 + (a^b)
= (a|b)*2 - (a^b)
(a^b) & (a&b) = 0 恒成立
https://codeforces.com/problemset/problem/76/D
https://codeforces.com/problemset/problem/1325/D
https://codeforces.com/problemset/problem/1368/D
https://codeforces.com/problemset/problem/1790/E
https://atcoder.jp/contests/abc050/tasks/arc066_b
a|b = (^a)&b + a
+ 与 ^ https://codeforces.com/problemset/problem/1732/C2
进位的本质 https://atcoder.jp/contests/arc158/tasks/arc158_c
max(a,b) = (a + b + abs(a-b)) / 2
min(a,b) = (a + b - abs(a-b)) / 2
### 思维题(贪心、脑筋急转弯等)
- [2546. 执行逐位运算使字符串相等](https://leetcode.cn/problems/apply-bitwise-operations-to-make-strings-equal/) 1605
- [1558. 得到目标数组的最少函数调用次数](https://leetcode.cn/problems/minimum-numbers-of-function-calls-to-make-target-array/) 1637
- [2571. 将整数减少到零需要的最少操作数](https://leetcode.cn/problems/minimum-operations-to-reduce-an-integer-to-0/) 1649 巧妙结论
- [2568. 最小无法得到的或值](https://leetcode.cn/problems/minimum-impossible-or/) 1754
- [2939. 最大异或乘积](https://leetcode.cn/problems/maximum-xor-product/) 2128
- [2749. 得到整数零需要执行的最少操作数](https://leetcode.cn/problems/minimum-operations-to-make-the-integer-zero/) 2132
- [2835. 使子序列的和等于目标的最少操作次数](https://leetcode.cn/problems/minimum-operations-to-form-subsequence-with-target-sum/) 2207
- 相似题目 https://codeforces.com/problemset/problem/1918/C
- [2897. 对数组执行操作使平方和最大](https://leetcode.cn/problems/apply-operations-on-array-to-maximize-sum-of-squares/) 2301
- [810. 黑板异或游戏](https://leetcode.cn/problems/chalkboard-xor-game/) 2341
https://codeforces.com/problemset/problem/309/C 1900
### 其它
- [136. 只出现一次的数字](https://leetcode.cn/problems/single-number/)
- [287. 寻找重复数](https://leetcode.cn/problems/find-the-duplicate-number/)
- [260. 只出现一次的数字 III](https://leetcode.cn/problems/single-number-iii/)
- [137. 只出现一次的数字 II](https://leetcode.cn/problems/single-number-ii/)
- [645. 错误的集合](https://leetcode.cn/problems/set-mismatch/)
- [190. 颠倒二进制位](https://leetcode.cn/problems/reverse-bits/)
- [371. 两整数之和](https://leetcode.cn/problems/sum-of-two-integers/)
- [201. 数字范围按位与](https://leetcode.cn/problems/bitwise-and-of-numbers-range/)
- [2154. 将找到的值乘以 2](https://leetcode.cn/problems/keep-multiplying-found-values-by-two/) 可以做到 $\mathcal{O}(n)$ 时间
- [2044. 统计按位或能得到最大值的子集数目](https://leetcode.cn/problems/count-number-of-maximum-bitwise-or-subsets/) 1568
- [2438. 二的幂数组中查询范围内的乘积](https://leetcode.cn/problems/range-product-queries-of-powers/) 1610
- [1680. 连接连续二进制数字](https://leetcode.cn/problems/concatenation-of-consecutive-binary-numbers/) 1630
- [982. 按位与为零的三元组](https://leetcode.cn/problems/triples-with-bitwise-and-equal-to-zero/) 2085
- [1611. 使整数变为 0 的最少操作次数](https://leetcode.cn/problems/minimum-one-bit-operations-to-make-integers-zero/) 2345
### 位运算与字符串
LC3019 https://leetcode.cn/problems/number-of-changing-keys/
https://codeforces.com/contest/691/problem/B
https://codeforces.com/contest/1907/problem/B
构造 2^n-1,即 n 个 1 的另一种方法: ^(-1<<n)
https://oeis.org/A060142 每一段连续 0 的长度均为偶数的数:如 100110000100
Ordered set S defined by these rules: 0 is in S and if x is in S then 2x+1 and 4x are in S
0, 1, 3, 4, 7, 9, 12, 15, 16, 19, 25, 28, 31, 33, 36, 39, 48, 51, 57, 60, 63, 64, 67, 73, 76, 79, 97, 100
https://oeis.org/A086747 Baum-Sweet sequence
相关题目:蒙德里安的梦想 https://www.acwing.com/problem/content/293/
https://oeis.org/A048004 最长连续 1 为 k 的长为 n 的二进制串的个数
相关题目:https://codeforces.com/problemset/problem/1027/E
https://oeis.org/A047778 Concatenation of first n numbers in binary, converted to base 10
相关题目 LC1680 https://leetcode.cn/problems/concatenation-of-consecutive-binary-numbers/
钱珀瑙恩数 Champernowne constant https://en.wikipedia.org/wiki/Champernowne_constant
https://oeis.org/A072339
Any number n can be written (in two ways, one with m even and one with m odd) in the form n = 2^k_1 - 2^k_2 + 2^k_3 - ... + 2^k_m
where the signs alternate and k_1 > k_2 > k_3 > ... >k_m >= 0; sequence gives minimal value of m
https://codeforces.com/problemset/problem/1617/E
异或和相关
https://atcoder.jp/contests/abc171/tasks/abc171_e
https://oeis.org/A003987 异或矩阵
https://oeis.org/A003815 0^1^2^3^...^n: a(0)=0, a(4n+1)=1, a(4n+2)=4n+3, a(4n+3)=0, a(4n+4)=4n+4
- https://codeforces.com/problemset/problem/1493/E
- https://codeforces.com/problemset/problem/460/D
- https://atcoder.jp/contests/abc121/tasks/abc121_d
- https://atcoder.jp/contests/arc133/tasks/arc133_d
https://oeis.org/A145768 异或和 i*i
https://oeis.org/A126084 异或和 质数
https://oeis.org/A018252 异或和 合数?
https://oeis.org/A072594 异或和 质因数分解 是积性函数 a(p^k)=p*(k&1)
- https://oeis.org/A072595 满足 A072594(n)=0 的数
https://oeis.org/A178910 异或和 因子
- https://oeis.org/A178911 满足 A178910(n)=n 的数 Perfex number
异或与 mex
[1800·hot10] https://codeforces.com/problemset/problem/1554/C
异或与 <
a < b,无法通过两边异或同一个数来做式子变形
此时可以枚举高 k 个比特位是相等的,而第 k+1 个比特位 a 中是 0,b 中是 1
人为地创造出「相等」这个条件
https://codeforces.com/problemset/problem/1720/D2
路径点权异或 https://codeforces.com/problemset/problem/1709/E
https://oeis.org/A038712 a(n) = n^(n-1) = 1, 3, 1, 7, 1, 3, 1, 15, 1, ...
https://oeis.org/A080277 A038712 的前缀和 => a(n) = n + 2*a(n/2)
https://oeis.org/A055944 a(n) = n + (reversal of base-2 digits of n) (written in base 10)
二进制长度
https://oeis.org/A029837 Binary order of n: log_2(n) rounded up to next integer
https://oeis.org/A001855 A029837 的前缀和
https://oeis.org/A070939 a(0)=1, a(n)=bits.Len(n)
https://oeis.org/A083652 A070939 的前缀和
OnesCount 相当于二进制的 digsum
https://oeis.org/A000120 wt(n) = OnesCount(n)
https://oeis.org/A000788 前缀和 a(0) = 0, a(2n) = a(n)+a(n-1)+n, a(2n+1) = 2a(n)+n+1
https://oeis.org/A121853 前缀积 https://www.luogu.com.cn/problem/P4317
https://oeis.org/A092391 n+OnesCount(n)
https://oeis.org/A010061 二进制自我数/哥伦比亚数(A092391 的补集)
https://oeis.org/A011371 n-OnesCount(n) Also highest power of 2 dividing n!
a(n) = floor(n/2) + a(floor(n/2))
这同时是前 n 个数的质因子分解的 2 的幂次之和
https://oeis.org/A027868 Number of trailing zeros in n!; highest power of 5 dividing n!
a(n) = (n-A053824(n))/4, 其中 A053824(n) = Sum of digits of (n written in base 5)
推广至任意数:n! 的质因子分解中,p 的幂次为 (n-digsum_p(n))/(p-1),其中 digsum_p(n) 表示 n 的 p 进制的数位和
https://oeis.org/A245788 n*OnesCount(n)
https://oeis.org/A049445 OnesCount(n)|n
- n/OnesCount(n)
https://oeis.org/A199238 n%OnesCount(n)
https://oeis.org/A010062 a(0)=1, a(n+1)=a(n)+OnesCount(a(n))
https://oeis.org/A096303 从 n 出发不断执行 n+=OnesCount(n),直到 n 在 A010062 中,所需要的迭代次数
Number of iterations of n -> n + (number of 1's in binary representation of n) needed for the trajectory of n to join the trajectory of A010062
https://oeis.org/A229743 Positions of records
https://oeis.org/A229744 Values of records
相关题目 https://www.luogu.com.cn/problem/P5891 https://class.luogu.com.cn/classroom/lgr66
https://oeis.org/A180094 Number of steps to reach 0 or 1, starting with n and applying the map k -> (number of 1's in binary expansion of k) repeatedly
https://oeis.org/A023416 Number of 0's in binary expansion of n
a(n) = a(n/2) + 1 - n&1
https://oeis.org/A059015 A023416 的前缀和
十进制 digsum
一点点数学 https://codeforces.com/problemset/problem/817/C
https://oeis.org/A007953 digsum(n)
https://oeis.org/A062028 n+digsum(n) 质数 https://oeis.org/A047791 合数 https://oeis.org/A107743
https://oeis.org/A003052 自我数/哥伦比亚数 Self number / Colombian number
https://en.wikipedia.org/wiki/Self_number
1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, ...
https://oeis.org/A006378 自我质数 Self primes
https://oeis.org/A066568 n-digsum(n)
https://oeis.org/A057147 n*digsum(n)
https://oeis.org/A005349 digsum(n)|n Niven (or Harshad) numbers
https://oeis.org/A065877 digsum(n)∤n Non-Niven (or non-Harshad) numbers
https://oeis.org/A001101 Moran numbers: n such that (n / digsum(n)) is prime
https://oeis.org/A016052 a(1)=3, a(n+1)=a(n)+digsum(a(n))
https://oeis.org/A051885 Smallest number whose digsum = n
(n%9+1) * int(math.Pow10(n/9)) - 1
相关题目 https://codeforces.com/contest/1373/problem/E
https://oeis.org/A077196 Smallest possible sum of the digits of a multiple of n https://oeis.org/A077194 https://oeis.org/A077195
相关题目(0-1 最短路)https://atcoder.jp/contests/arc084/tasks/arc084_b
https://oeis.org/A118137 digsum(n)+digsum(n+1)
https://oeis.org/A003132 Sum of squares of digits of n
https://oeis.org/A003621 Number of iterations until n reaches 1 or 4 under x goes to sum of squares of digits map
https://oeis.org/A055012 Sum of cubes of digits of n
https://oeis.org/A055013 Sum of 4th powers of digits of n
https://oeis.org/A055014 Sum of 5th powers of digits of n
https://oeis.org/A055015 Sum of 6th powers of digits of n
相关题目 https://www.luogu.com.cn/problem/P1660
https://oeis.org/A031286 Additive persistence: number of summations of digits needed to obtain a single digit (the additive digital root)
https://oeis.org/A031346 Multiplicative persistence: number of iterations of "multiply digits" needed to reach a number < 10
https://oeis.org/A014837 Sum of all the digits of n in every base from 2 to n-1
https://oeis.org/A043306 Sum of all the digits of n in every base from 2 to n
回文数
https://oeis.org/A002113 十进制回文数
https://oeis.org/A043269 digsum(A002113(n))
https://oeis.org/A070199 Number of palindromes of length <= n
https://oeis.org/A002779 回文平方数
https://oeis.org/A002778 Numbers whose square is a palindrome
https://oeis.org/A002781 回文立方数
https://oeis.org/A002780 Numbers whose cube is a palindrome
https://oeis.org/A002385 回文素数
https://en.wikipedia.org/wiki/Palindromic_prime
https://oeis.org/A006567 反素数 emirp (primes whose reversal is a different prime)
https://en.wikipedia.org/wiki/Emirp
https://oeis.org/A003459 绝对素数/可交换素数 Absolute primes (or permutable primes): every permutation of the digits is a prime
https://en.wikipedia.org/wiki/Permutable_prime
https://oeis.org/A007500 Primes whose reversal in base 10 is also prime
https://oeis.org/A006995 二进制回文数
https://oeis.org/A007632 既是二进制回文数又是十进制回文数
https://oeis.org/A090994 Number of meaningful differential operations of the n-th order on the space R^9
a(k+5) = a(k+4) + 4*a(k+3) - 3*a(k+2) - 3*a(k+1) + a(k)
相关题目 LC1215 https://leetcode.cn/problems/stepping-numbers/
二进制字符串
https://oeis.org/A052944 a(n) = 2^n + n - 1 Shortest length of bit-string containing all bit-strings of given length n
https://math.stackexchange.com/questions/4509158/length-of-the-shortest-binary-string-that-contains-as-substrings-all-unique-n-le
https://en.wikipedia.org/wiki/De_Bruijn_sequence
应用 https://codeforces.com/problemset/problem/1469/E
套路题 https://codeforces.com/problemset/problem/1415/D
按位归纳 https://codeforces.com/problemset/problem/925/C
todo O(1) https://codeforces.com/contest/520/submission/205035892
*/
// Bitset
// 有时候也可以用 big.Int 代替
// 部分参考 C++ 的标准库源码 https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-3.4/bitset-source.html
// NOTE: 若要求方法内不修改 b 而是返回一个修改后的拷贝,可以在方法开头加上 b = append(Bitset(nil), b...) 并返回 b
// NOTE: 如果效率不够高,可以试试 0-1 线段树,见 segment_tree01.go
//
// https://codeforces.com/problemset/problem/33/D(也可以用 LCA)
// https://codeforces.com/contest/1826/problem/E
// https://atcoder.jp/contests/abc258/tasks/abc258_g
const _w = bits.UintSize
func NewBitset(n int) Bitset { return make(Bitset, n/_w+1) } // (n+_w-1)/_w
type Bitset []uint
func (b Bitset) Has(p int) bool { return b[p/_w]&(1<<(p%_w)) != 0 } // get
func (b Bitset) Flip(p int) { b[p/_w] ^= 1 << (p % _w) }
func (b Bitset) Set(p int) { b[p/_w] |= 1 << (p % _w) } // 置 1
func (b Bitset) Reset(p int) { b[p/_w] &^= 1 << (p % _w) } // 置 0
func (b Bitset) SetAll1() {
for i := range b {
b[i] = math.MaxUint
}
}
// 遍历所有 1 的位置
// 如果对范围有要求,可在 f 中 return p < n
func (b Bitset) Foreach(f func(p int) (Break bool)) {
for i, v := range b {
for ; v > 0; v &= v - 1 {
j := i*_w | bits.TrailingZeros(v)
if f(j) {
return
}
}
}
}
// 返回第一个 0 的下标,若不存在则返回一个不小于 n 的位置
func (b Bitset) Index0() int {
for i, v := range b {
if ^v != 0 {
return i*_w | bits.TrailingZeros(^v)
}
}
return len(b) * _w
}
// 返回第一个 1 的下标,若不存在则返回一个不小于 n 的位置(同 C++ 中的 _Find_first)
func (b Bitset) Index1() int {
for i, v := range b {
if v != 0 {
return i*_w | bits.TrailingZeros(v)
}
}
return len(b) * _w
}
// 返回下标 >= p 的第一个 1 的下标,若不存在则返回一个不小于 n 的位置(类似 C++ 中的 _Find_next,这里是 >=)
func (b Bitset) Next1(p int) int {
if i := p / _w; i < len(b) {
v := b[i] & (^uint(0) << (p % _w)) // mask off bits below bound
if v != 0 {
return i*_w | bits.TrailingZeros(v)
}
for i++; i < len(b); i++ {
if b[i] != 0 {
return i*_w | bits.TrailingZeros(b[i])
}
}
}
return len(b) * _w
}
// 返回下标 >= p 的第一个 0 的下标,若不存在则返回一个不小于 n 的位置
func (b Bitset) Next0(p int) int {
if i := p / _w; i < len(b) {
v := b[i]
if p%_w > 0 {
v |= ^(^uint(0) << (p % _w))
}
if ^v != 0 {
return i*_w | bits.TrailingZeros(^v)
}
for i++; i < len(b); i++ {
if ^b[i] != 0 {
return i*_w | bits.TrailingZeros(^b[i])
}
}
}
return len(b) * _w
}
// 返回最后第一个 1 的下标,若不存在则返回 -1
func (b Bitset) LastIndex1() int {
for i := len(b) - 1; i >= 0; i-- {
if b[i] != 0 {
return i*_w | (bits.Len(b[i]) - 1) // 如果再 +1,需要改成 i*_w + bits.Len(b[i])
}
}
return -1
}
// += 1 << i,模拟进位
func (b Bitset) Add(i int) { b.FlipRange(i, b.Next0(i)) }
// -= 1 << i,模拟借位
func (b Bitset) Sub(i int) { b.FlipRange(i, b.Next1(i)) }
// 判断 [l,r] 范围内的数是否全为 0
// https://codeforces.com/contest/1107/problem/D(标准做法是二维前缀和)
func (b Bitset) All0(l, r int) bool {
i := l / _w
if i == r/_w {
mask := ^uint(0)<<(l%_w) ^ ^uint(0)<<(r%_w)
return b[i]&mask == 0
}
if b[i]>>(l%_w) != 0 {
return false
}
for i++; i < r/_w; i++ {
if b[i] != 0 {
return false
}
}
mask := ^uint(0) << (r % _w)
return b[r/_w]&^mask == 0
}
// 判断 [l,r] 范围内的数是否全为 1
func (b Bitset) All1(l, r int) bool {
i := l / _w
if i == r/_w {
mask := ^uint(0)<<(l%_w) ^ ^uint(0)<<(r%_w)
return b[i]&mask == mask
}
mask := ^uint(0) << (l % _w)
if b[i]&mask != mask {
return false
}
for i++; i < r/_w; i++ {
if ^b[i] != 0 {
return false
}
}
mask = ^uint(0) << (r % _w)
return ^(b[r/_w] | mask) == 0
}
// 反转 [l,r) 范围内的比特
// https://codeforces.com/contest/1705/problem/E
func (b Bitset) FlipRange(l, r int) {
maskL, maskR := ^uint(0)<<(l%_w), ^uint(0)<<(r%_w)
i := l / _w
if i == r/_w {
b[i] ^= maskL ^ maskR
return
}
b[i] ^= maskL
for i++; i < r/_w; i++ {
b[i] = ^b[i]
}
b[i] ^= ^maskR
}
// 将 [l,r) 范围内的比特全部置 1
func (b Bitset) SetRange(l, r int) {
maskL, maskR := ^uint(0)<<(l%_w), ^uint(0)<<(r%_w)
i := l / _w
if i == r/_w {
b[i] |= maskL ^ maskR
return
}
b[i] |= maskL
for i++; i < r/_w; i++ {
b[i] = ^uint(0)
}
b[i] |= ^maskR
}
// 将 [l,r) 范围内的比特全部置 0
func (b Bitset) ResetRange(l, r int) {
maskL, maskR := ^uint(0)<<(l%_w), ^uint(0)<<(r%_w)
i := l / _w
if i == r/_w {
b[i] &= ^maskL | maskR
return
}
b[i] &= ^maskL
for i++; i < r/_w; i++ {
b[i] = 0
}
b[i] &= maskR
}
// 左移 k 位
// LC1981 https://leetcode.cn/problems/minimize-the-difference-between-target-and-chosen-elements/
func (b Bitset) Lsh(k int) {
if k == 0 {
return
}
shift, offset := k/_w, k%_w
if shift >= len(b) {
for i := range b {
b[i] = 0
}
return
}
if offset == 0 {
// Fast path
copy(b[shift:], b)
} else {
for i := len(b) - 1; i > shift; i-- {
b[i] = b[i-shift]<<offset | b[i-shift-1]>>(_w-offset)
}
b[shift] = b[0] << offset
}
for i := 0; i < shift; i++ {
b[i] = 0
}
}
// 右移 k 位
func (b Bitset) Rsh(k int) {
if k == 0 {
return
}
shift, offset := k/_w, k%_w
if shift >= len(b) {
for i := range b {
b[i] = 0
}
return
}
lim := len(b) - 1 - shift
if offset == 0 {
// Fast path
copy(b, b[shift:])
} else {
for i := 0; i < lim; i++ {
b[i] = b[i+shift]>>offset | b[i+shift+1]<<(_w-offset)
}
// 注意:若前后调用 lsh 和 rsh,需要注意超出 n 的范围的 1 对结果的影响(如果需要,可以把范围开大点)
b[lim] = b[len(b)-1] >> offset
}
for i := lim + 1; i < len(b); i++ {
b[i] = 0
}
}
// 借用 bits 库中的一些方法的名字
func (b Bitset) OnesCount() (c int) {
for _, v := range b {
c += bits.OnesCount(v)
}
return
}
func (b Bitset) TrailingZeros() int { return b.Index1() }
func (b Bitset) Len() int { return b.LastIndex1() + 1 }
// 下面几个方法均需保证长度相同
func (b Bitset) Equals(c Bitset) bool {
for i, v := range b {
if v != c[i] {
return false
}
}
return true
}
func (b Bitset) HasSubset(c Bitset) bool {
for i, v := range b {
if v|c[i] != v {
return false
}
}
return true
}
// 将 c 的元素合并进 b
func (b Bitset) UnionFrom(c Bitset) {
for i, v := range c {
b[i] |= v
}
}
func (b Bitset) IntersectionFrom(c Bitset) {
for i, v := range c {
b[i] &= v
}
}
// 注:有关子集枚举的位运算技巧,见 search.go
func _(x int) {
// 利用 -v = ^v+1
lowbit := func(v int) int { return v & -v }
// 最低位的 1 变 0
x &= x - 1
// 最低位的 0 变 1
x |= x + 1
// x 是 y 的子集
isSubset := func(x, y int) bool { return x|y == y } // x 和 y 的并集是 y
isSubset = func(x, y int) bool { return x&y == x } // x 和 y 的交集是 x
// 1,2,4,8,...
isPow2 := func(v int) bool { return v > 0 && v&(v-1) == 0 }
// 是否有两个相邻的 1 有 https://oeis.org/A004780 没有 https://oeis.org/A003714
hasAdjacentOnes := func(v uint) bool { return v>>1&v > 0 }
// 是否有两个相邻的 0(不考虑前导零) 有 https://oeis.org/A004753 没有 https://oeis.org/A003754
hasAdjacentZeros := func(v uint) bool {
v |= v >> 1 // 若没有相邻的 0,则 v 会变成全 1 的数
return v&(v+1) > 0
}
bits31 := func(v int) []byte {
bits := make([]byte, 31)
for i := range bits {
bits[i] = byte(v >> (30 - i) & 1)
}
return bits
}
_bits31 := func(v int) string { return Sprintf("%031b", v) }
_bits32 := func(v uint) string { return Sprintf("%032b", v) }
// https://www.acwing.com/problem/content/293/
initEvenZeros := func(n int) {
mask := 1 << n
// 在 i 的长为 n 二进制表示中,如果所有连续 0 的个数都是偶数(包括前导零),则 evenZeros[i] 为 true,否则为 false
evenZeros := make([]bool, mask)
next:
for i := range evenZeros {
for s, pre := uint(mask|i), -1; s > 0; s &= s - 1 {
p := bits.TrailingZeros(s)
if (p-pre)%2 == 0 { // 开区间 (pre,p) 中有奇数个连续 0
continue next
}
pre = p
}
evenZeros[i] = true
}
}
// 返回最小的非负 x,其满足 n^x >= m
// https://codeforces.com/problemset/problem/1554/C
leastXor := func(n, m int) (res int) {
for i := 29; i >= 0; i-- { // 29 for 1e9
bn, bm := n>>i&1, m>>i&1
if bn == 1 && bm == 0 { // 后面都填 0
break
}
if bn == 0 && bm == 1 { // 必须填 1
res |= 1 << i
}
// bn = bm 的情况填 0
}
return
}
// 对于数组 a 的所有区间,返回 op(区间元素) 的全部运算结果 logTrick
// 利用操作的单调性求解
// 时间复杂度:O(fnlogU),其中 f 为 op(x,y) 的时间复杂度,一般是 O(1),n=len(a),U=max(a)
// 空间复杂度:O(logU),返回值不计入
// |: LC898 https://leetcode.cn/problems/bitwise-ors-of-subarrays/ 2133
// - 原题 https://codeforces.com/problemset/problem/243/A 1600
// LC2411 https://leetcode.cn/problems/smallest-subarrays-with-maximum-bitwise-or/ 1938
// https://www.luogu.com.cn/problem/P8569
// - 做法见下面的 bitOpTrickCnt
// - 题目源于这场比赛 https://www.luogu.com.cn/contest/65460#problems
// - 其它做法 https://www.luogu.com.cn/blog/203623/sol-The-seventh-district
// &: LC1521 https://leetcode.cn/problems/find-a-value-of-a-mysterious-function-closest-to-target/
// GCD: 原理:固定右端点时,向左扩展,GCD 要么不变,要么至少减半,所以固定右端点时,只有 O(log U) 个 GCD
// LC2447 https://leetcode.cn/problems/number-of-subarrays-with-gcd-equal-to-k/
// LC2654 https://leetcode.cn/problems/minimum-number-of-operations-to-make-all-array-elements-equal-to-1/
// https://www.dotcpp.com/oj/problem2709.html
// LC2941 https://leetcode.cn/problems/maximum-gcd-sum-of-a-subarray/
// https://codeforces.com/edu/course/2/lesson/9/2/practice/contest/307093/problem/G
// https://codeforces.com/problemset/problem/891/A
// https://codeforces.com/problemset/problem/475/D (见下面的 bitOpTrickCnt)
// https://codeforces.com/problemset/problem/1632/D (见下面的 bitOpTrickCnt)
// 已知所有 GCD 还原数组 a https://codeforces.com/problemset/problem/894/C
// (子数组长度 * 子数组 GCD) 的最大值 https://www.luogu.com.cn/problem/P5502
// LCM: LC2470 https://leetcode.cn/problems/number-of-subarrays-with-lcm-equal-to-k/
// https://codeforces.com/contest/1834/problem/E
bitOpTrick := func(a []int, op func(x, y int) int) map[int]struct{} {
ans := map[int]struct{}{}
opRes := []int{} // 以 a[i] 结尾的所有子数组,在 op 操作下的所有结果
for _, v := range a {
for j, x := range opRes {
opRes[j] = op(x, v) // 每个都和新遍历到的 a[i] 算一下
}
opRes = append(opRes, v) // a[i] 单独组成一个子数组
opRes = slices.Compact(opRes) // 去重
for _, w := range opRes {
// 统计 w... 根据题目改动
ans[w] = struct{}{}
}
}
return ans
}
// 进阶:对于数组 a 的所有区间,返回 op(区间元素) 的全部运算结果及其出现次数
// 甚至还可以做到把每个运算结果对应的每个区间长度的出现次数求出来(需要差分)
// https://codeforces.com/problemset/problem/475/D
// https://codeforces.com/problemset/problem/1632/D
// 与单调栈结合 https://codeforces.com/problemset/problem/875/D
// CERC13,紫书例题 10-29,UVa 1642 https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=825&page=show_problem&problem=4517
// https://www.luogu.com.cn/problem/P8569
bitOpTrickCnt := func(a []int, op func(x, y int) int) map[int]int {
cnt := map[int]int{}
// 视情况,r 可以省略
type result struct{ v, l, r int } // [l,r)
opRes := []result{}
for i, v := range a {
for j, p := range opRes {
opRes[j].v = op(p.v, v)
}
opRes = append(opRes, result{v, i, i + 1})
// 去重(合并 v 相同的 result)
j := 0
for _, q := range opRes[1:] {
if opRes[j].v != q.v {
j++
opRes[j] = q
} else {
opRes[j].r = q.r // 如果省略 r 的话,这行可以去掉
}
}
opRes = opRes[:j+1]
// 此时我们将区间 [0,i] 划分成了 len(set) 个左闭右开区间
// 对 ∀p∈set,∀j∈[p.l,p.r),op(区间[j,i]) 的计算结果均为 p.v
for _, p := range opRes {
// do p... [l,r)
cnt[p.v] += p.r - p.l
}
}
return cnt
}
//(接上)考虑乘法
// 输入:数组 a,元素均为正整数
// 输出:满足【元素和等于元素乘积】的非空连续子数组的个数
// 我们来考虑对每个区间右端点,有多少个合法的区间左端点
// 核心思路是,对于每个满足题目要求的区间,其区间积不会超过 sum(a)
// 由于乘积至少要乘 2 才会变化,所以对于一个固定的区间右端点,不同的区间积至多有 O(log(sum(a))) 个
// 同时由于元素均为正数,所以对一个固定的区间右端点,区间左端点也至多有 O(log(sum(a))) 个
// 据此我们只需要在加入一个新的数后,去重并去掉区间积超过 sum(a) 的区间,就可以暴力做出此题
// 注:根据以上推导过程,我们还可以得出总的答案个数至多为 O(nlog(sum(a)))
// https://www.dotcpp.com/oj/problem2622.html
// https://codeforces.com/problemset/problem/1872/G 2000
// 变形·面试题:把「区间和」改成「区间异或和」
countSumEqMul := func(a []int) (ans int) {
tot := 0
for _, v := range a {
tot += v
}
// 每个前缀和互不相同
posS := map[int]int{0: 0}
sum := 0
type result struct{ v, l, r int }
muls := []result{}
for i, v := range a {
sum += v
for j := range muls {
muls[j].v *= v
}
muls = append(muls, result{v, i, i + 1})
// 去重
j := 0
for _, q := range muls[1:] {
if muls[j].v != q.v {
j++
muls[j] = q
} else {
muls[j].r = q.r
}
}
muls = muls[:j+1]
// 去掉超过 tot 的,从而保证 muls 中至多有 O(log(tot)) 个元素
for muls[0].v > tot {
muls = muls[1:]
}
// 此时我们将区间 [muls[0].l,i] 划分成了 len(muls) 个(左闭右开)区间,对 ∀j∈[muls[k].l,muls[k].r),[j,i] 的区间积均为 muls[k].v
for _, p := range muls {
// 判断左端点前缀和对应下标是否在范围内
if pos, has := posS[sum-p.v]; has && p.l <= pos && pos < p.r {
ans++
}
}
posS[sum] = i + 1
}
return
}
// 找三个不同的在 [l,r] 范围内的数,其异或和为 0
// 考虑尽可能地小化最大减最小的值,构造 (x, y, z) = (b*2-1, b*3-1, b*3), b=2^k
// 相关题目 https://codeforces.com/problemset/problem/460/D
zeroXorSum3 := func(l, r int) []int {
for b := 1; b*3 <= r; b <<= 1 {
if x, y, z := b*2-1, b*3-1, b*3; l <= x && z <= r {
return []int{x, y, z}
}
}
return nil
}
// 在 [low,high] 区间内找两个数字 A B,使其异或值最大且不超过 limit
// 返回值保证 A <= B
// 复杂度 O(log(high))
maxXorWithLimit := func(low, high, limit int) (int, int) {
n := bits.Len(uint(high ^ low))
maxXor := 1<<n - 1
mid := high&^maxXor | 1<<(n-1)
if limit >= maxXor { // 无约束,相关题目 https://codeforces.com/problemset/problem/276/D
return mid - 1, mid
}
if limit >= 1<<(n-1) { // A 和 B 能否在第 n-1 位不同的情况下,构造出一个满足要求的解?
a, b := mid&(mid-1), mid
for i := n - 2; i >= 0; i-- {
bt := 1 << i
if limit&bt > 0 { // a 取 1,b 取 0 总是优于 a 取 0,b 取 1
a |= bt
} else if high&(bt<<1-1) > ^low&(bt<<1-1) { // high 侧大,都取 1
if high&bt == 0 { // b 没法取 1
goto next
}
a |= bt
b |= bt
} else { // low 侧大,都取 0
if low&bt > 0 { // a 没法取 0
goto next
}
}
if (a^low)&bt > 0 { // a 不受 low 的约束
a |= limit & (bt - 1)
break
}
if (b^high)&bt > 0 { // b 不受 high 的约束
a |= bt - 1
b |= ^limit & (bt - 1)
break
}
}
return a, b
}
// A 和 B 在第 n-1 位上必须相同
next:
f := func(high int) (int, int) {
n := bits.Len(uint(high ^ mid))
maxXor := min(1<<n-1, limit)
// 只有当 maxXor 为 0 时,返回值才必须相等
if maxXor == 0 {
return mid, mid
}
// maxXor 的最高位置于 B,其余置于 A
mb := 1 << (bits.Len(uint(maxXor)) - 1)
return mid | maxXor&^mb, mid | mb
}
if high-mid > mid-1-low { // 选区间长的一侧
return f(high)
}
a, b := f(2*mid - 1 - low) // 对称到 high
return 2*mid - 1 - b, 2*mid - 1 - a
}
_ = []interface{}{
lowbit, isSubset, isPow2, hasAdjacentOnes, hasAdjacentZeros, bits31, _bits31, _bits32, initEvenZeros,
leastXor,
bitOpTrick, bitOpTrickCnt, countSumEqMul,
zeroXorSum3,
maxXorWithLimit,
}
}
// https://halfrost.com/go_s2_de_bruijn/
// LC137 https://leetcode.cn/problems/single-number-ii/
// 除了某个元素只出现一次以外,其余每个元素均出现了三次。返回只出现了一次的元素
// 定义两个集合 ones 和 twos,初始为空
// 第一次出现就放在 ones 中
// 第二次出现就在 ones 中删除并放在 twos
// 第三次出现就从 twos 中删除
// 这样最终 ones 中就留下了最后的结果
func singleNumber(a []int) int {
ones, twos := 0, 0
for _, v := range a {
ones = (ones ^ v) &^ twos
twos = (twos ^ v) &^ ones
}
return ones
}