-
Notifications
You must be signed in to change notification settings - Fork 195
/
mp_exptmod.c
78 lines (63 loc) · 2.12 KB
/
mp_exptmod.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include "tommath_private.h"
#ifdef MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* this is a shell function that calls either the normal or Montgomery
* exptmod functions. Originally the call to the montgomery code was
* embedded in the normal function but that wasted a lot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
int dr;
/* modulus P must be positive */
if (mp_isneg(P)) {
return MP_VAL;
}
/* if exponent X is negative we have to recurse */
if (mp_isneg(X)) {
mp_int tmpG, tmpX;
mp_err err;
if (!MP_HAS(MP_INVMOD)) {
return MP_VAL;
}
if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) {
return err;
}
/* first compute 1/G mod P */
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
goto LBL_ERR;
}
/* now get |X| */
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
goto LBL_ERR;
}
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
err = mp_exptmod(&tmpG, &tmpX, P, Y);
LBL_ERR:
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
/* modified diminished radix reduction */
if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) &&
mp_reduce_is_2k_l(P)) {
return s_mp_exptmod(G, X, P, Y, 1);
}
/* is it a DR modulus? default to no */
dr = (MP_HAS(MP_DR_IS_MODULUS) && mp_dr_is_modulus(P)) ? 1 : 0;
/* if not, is it a unrestricted DR modulus? */
if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) {
dr = (mp_reduce_is_2k(P)) ? 2 : 0;
}
/* if the modulus is odd or dr != 0 use the montgomery method */
if (MP_HAS(S_MP_EXPTMOD_FAST) && (mp_isodd(P) || (dr != 0))) {
return s_mp_exptmod_fast(G, X, P, Y, dr);
}
/* otherwise use the generic Barrett reduction technique */
if (MP_HAS(S_MP_EXPTMOD)) {
return s_mp_exptmod(G, X, P, Y, 0);
}
/* no exptmod for evens */
return MP_VAL;
}
#endif