-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
177 lines (150 loc) · 6.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from typing import Tuple, List, Text, Dict, Any, Iterator, Union, Sized, Callable, cast
from datetime import datetime
import argparse
import sys
sys.path.append("/usr/local/Cellar/opencv3/3.2.0/lib/python3.5/site-packages/") # mac opencv path
import cv2
import numpy as np
np.random.seed(2017) # for reproducibility
import os
#os.environ['KERAS_BACKEND'] = 'theano'
#os.environ["THEANO_FLAGS"] = "exception_verbosity=high,optimizer=None,device=cpu"
#os.environ['THEANO_FLAGS']='mode=FAST_RUN,device=cpu,floatX=float32,optimizer=fast_compile'
os.environ['KERAS_BACKEND'] = 'tensorflow'
from keras.backend import set_image_data_format
# keras.backend.backend()
# keras.backend.set_epsilon(1e-07)
# keras.backend.epsilon()
# keras.backend.set_floatx('float32')
# keras.backend.floatx()
# set_image_data_format('channels_first') # theano
set_image_data_format("channels_last")
# keras.backend.image_data_format()
from keras.models import model_from_json
from keras.callbacks import ModelCheckpoint, Callback, TensorBoard
from keras.optimizers import SGD, Adam
from keras.backend import tensorflow_backend
import keras.backend as K
from chainer.iterators import MultiprocessIterator, SerialIterator
from model_unet import create_unet
from mscoco import get_iter as get_coco
def convert_to_keras_batch(iter: Iterator[List[Tuple[np.ndarray, np.ndarray]]]) -> Iterator[Tuple[np.ndarray, np.ndarray]] :
while True:
batch = iter.__next__() # type: List[Tuple[np.ndarray, np.ndarray]]
xs = [x for (x, _) in batch] # type: List[np.ndarray]
ys = [y for (_, y) in batch] # type: List[np.ndarray]
_xs = np.array(xs) # (n, 480, 360, 3)
_ys = np.array(ys) # (n, 480, 360, n_classes)
yield (_xs, _ys)
def dice_coef(y_true: K.tf.Tensor, y_pred: K.tf.Tensor) -> K.tf.Tensor:
y_true = K.flatten(y_true)
y_pred = K.flatten(y_pred)
intersection = K.sum(y_true * y_pred)
return (2. * intersection + 1.) / (K.sum(y_true) + K.sum(y_pred) + 1.)
def dice_coef_loss(y_true: K.tf.Tensor, y_pred: K.tf.Tensor) -> K.tf.Tensor:
return -dice_coef(y_true, y_pred)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='U-net trainer from mscoco')
parser.add_argument("--epochs", action='store', type=int, default=1000, help='epochs')
parser.add_argument("--resume", action='store', type=str, default="", help='*_weights.hdf5')
parser.add_argument("--initial_epoch", action='store', type=int, default=0, help='initial_epoch')
parser.add_argument("--ker_init", action='store', type=str, default="glorot_uniform", help='conv2D kernel initializer')
parser.add_argument("--lr", action='store', type=float, default=0.001, help='learning late')
parser.add_argument("--optimizer", action='store', type=str, default="adam", help='adam|nesterov')
parser.add_argument("--filters", action='store', type=int, default=64, help='32|64|128')
parser.add_argument("--dice_coef", action='store_true', help='use dice_coef for loss function')
parser.add_argument("--dir", action='store', type=str, default="./", help='mscoco dir')
parser.add_argument("--data_aug", action='store_true', help='use data augmentation')
args = parser.parse_args()
name = args.dir
name += datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
name += "_fil" + str(args.filters)
name += "_" + args.optimizer
name += "_lr" + str(args.lr)
name += "_" + args.ker_init
if args.dice_coef: name += "_dice_coef"
else: name += "_crossentropy"
if args.data_aug: name += "_data_aug"
print("name: ", name)
resize_shape = (512, 512)
train, valid = get_coco(resize_shape, args.dice_coef, args.dir, data_aug=args.data_aug) # type: Tuple[Iterator[np.ndarray], Iterator[np.ndarray]]
train_iter = convert_to_keras_batch(
#SerialIterator(
MultiprocessIterator(
train,
batch_size=8,
n_processes=12,
n_prefetch=120,
shared_mem=1000*1000*5
)
) # type: Iterator[Tuple[np.ndarray, np.ndarray]]
valid_iter = convert_to_keras_batch(
#SerialIterator(
MultiprocessIterator(
valid,
batch_size=8,
#repeat=False,
shuffle=False,
n_processes=12,
n_prefetch=120,
shared_mem=1000*1000*5
)
) # type: Iterator[Tuple[np.ndarray, np.ndarray]]
old_session = tensorflow_backend.get_session()
with K.tf.Graph().as_default():
session = K.tf.Session("")
tensorflow_backend.set_session(session)
tensorflow_backend.set_learning_phase(1)
loss = "" # type: Union[Callable, str]
metrics = [] # type: List[Union[Callable, str]]
input_shape = (resize_shape[0], resize_shape[1], 3)
if args.dice_coef:
output_ch = 1
loss = dice_coef_loss
metrics = [dice_coef]
filename = "_weights.epoch{epoch:04d}-val_loss{val_loss:.2f}-val_dice_coef{val_dice_coef:.2f}.hdf5"
else:
output_ch = 2
loss = "categorical_crossentropy"
metrics = ['accuracy']
filename = "_weights.epoch{epoch:04d}-val_loss{val_loss:.2f}-val_acc{val_acc:.2f}.hdf5"
model = create_unet(input_shape, output_ch, args.filters, args.ker_init)
if args.optimizer == "nesterov":
optimizer = SGD(lr=args.lr, momentum=0.9, decay=0.0005, nesterov=True)
else:
optimizer = Adam(lr=args.lr)#, beta_1=0.5, beta_2=0.999, epsilon=1e-08, decay=0.0)
model.compile(
optimizer=optimizer,
loss=loss,
metrics=metrics
)
if len(args.resume) > 0:
model.load_weights(args.resume)
with open(name+'_model.json', 'w') as f: f.write(model.to_json())
callbacks = [] # type: List[Callback]
callbacks.append(ModelCheckpoint(
name+filename,
verbose=1,
save_best_only=False,
save_weights_only=True,
period=1,
))
callbacks.append(TensorBoard(
log_dir=name+'_log',
histogram_freq=1,
write_graph=False,
write_images=False,
))
hist = model.fit_generator(
generator=train_iter,
steps_per_epoch=int(len(cast(Sized, train))/8),
epochs=args.epochs,
verbose=1,
callbacks=callbacks,
validation_data=valid_iter,
validation_steps=30,
initial_epoch=args.initial_epoch,
)
model.save_weights(name+'_weight_final.hdf5')
with open(name+'_history.json', 'w') as f: f.write(repr(hist.history))
tensorflow_backend.set_session(old_session)