forked from SesameAILabs/csm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwatermarking.py
79 lines (57 loc) · 2.43 KB
/
watermarking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
import silentcipher
import torch
import torchaudio
# This watermark key is public, it is not secure.
# If using CSM 1B in another application, use a new private key and keep it secret.
CSM_1B_GH_WATERMARK = [212, 211, 146, 56, 201]
def cli_check_audio() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("--audio_path", type=str, required=True)
args = parser.parse_args()
check_audio_from_file(args.audio_path)
def load_watermarker(device: str = "cuda") -> silentcipher.server.Model:
model = silentcipher.get_model(
model_type="44.1k",
device=device,
)
return model
@torch.inference_mode()
def watermark(
watermarker: silentcipher.server.Model,
audio_array: torch.Tensor,
sample_rate: int,
watermark_key: list[int],
) -> tuple[torch.Tensor, int]:
audio_array_44khz = torchaudio.functional.resample(audio_array, orig_freq=sample_rate, new_freq=44100)
encoded, _ = watermarker.encode_wav(audio_array_44khz, 44100, watermark_key, calc_sdr=False, message_sdr=36)
output_sample_rate = min(44100, sample_rate)
encoded = torchaudio.functional.resample(encoded, orig_freq=44100, new_freq=output_sample_rate)
return encoded, output_sample_rate
@torch.inference_mode()
def verify(
watermarker: silentcipher.server.Model,
watermarked_audio: torch.Tensor,
sample_rate: int,
watermark_key: list[int],
) -> bool:
watermarked_audio_44khz = torchaudio.functional.resample(watermarked_audio, orig_freq=sample_rate, new_freq=44100)
result = watermarker.decode_wav(watermarked_audio_44khz, 44100, phase_shift_decoding=True)
is_watermarked = result["status"]
if is_watermarked:
is_csm_watermarked = result["messages"][0] == watermark_key
else:
is_csm_watermarked = False
return is_watermarked and is_csm_watermarked
def check_audio_from_file(audio_path: str) -> None:
watermarker = load_watermarker(device="cuda")
audio_array, sample_rate = load_audio(audio_path)
is_watermarked = verify(watermarker, audio_array, sample_rate, CSM_1B_GH_WATERMARK)
outcome = "Watermarked" if is_watermarked else "Not watermarked"
print(f"{outcome}: {audio_path}")
def load_audio(audio_path: str) -> tuple[torch.Tensor, int]:
audio_array, sample_rate = torchaudio.load(audio_path)
audio_array = audio_array.mean(dim=0)
return audio_array, int(sample_rate)
if __name__ == "__main__":
cli_check_audio()