-
Notifications
You must be signed in to change notification settings - Fork 12
/
spaceship_generator.py
1329 lines (1241 loc) · 51.4 KB
/
spaceship_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#+
# spaceship_generator.py
#
# This is a Blender script that uses procedural generation to create
# textured 3D spaceship models. Tested with Blender 2.82.
#
# [email protected], Lawrence D'Oliveiro
# https://github.com/ldo/SpaceshipGenerator
#-
import os
import bpy
import bmesh
import math
from mathutils import \
Matrix, \
Vector
from random import \
Random
import enum
from colorsys import \
hls_to_rgb
deg = math.pi / 180 # angle unit conversion factor
DIR = os.path.dirname(os.path.abspath(__file__))
def resource_path(*path_components) :
return os.path.join(DIR, *path_components)
#end resource_path
def load_image(filename, use_alpha, is_colour) :
name = os.path.splitext(filename)[0]
filepath = resource_path("textures", filename)
image = bpy.data.images.load(filepath)
image.alpha_mode = ("NONE", "STRAIGHT")[use_alpha]
image.colorspace_settings.name = ("Non-Color", "sRGB")[is_colour]
image.pack()
# wipe all traces of original addon file path
image.filepath = "//textures/%s" % filename
image.filepath_raw = image.filepath
for item in image.packed_files :
item.filepath = image.filepath
#end for
return image
#end load_image
class NodeContext :
"convenience class for assembling a nicely-laid-out node graph."
def __init__(self, graph, location, clear = False) :
"“graph” is the node tree for which to manage the addition of nodes." \
" “location” is the initial location at which to start placing new nodes." \
" clear indicates whether to get rid of any existing nodes or not."
self.graph = graph
self._location = [location[0], location[1]]
if clear :
for node in self.graph.nodes :
self.graph.nodes.remove(node)
#end for
#end if
#end __init__
def step_across(self, width) :
"returns the current position and advances it across by width."
result = self._location[:]
self._location[0] += width
return result
#end step_across
def step_down(self, height) :
"returns the current position and advances it down by height."
result = self._location[:]
self._location[1] -= height
return result
#end step_down
@property
def pos(self) :
"the current position (read/write)."
return (self._location[0], self._location[1])
#end pos
@pos.setter
def pos(self, pos) :
self._location[:] = [pos[0], pos[1]]
#end pos
def node(self, type, pos) :
"creates a new node of type “type” at position “pos”, and returns it."
node = self.graph.nodes.new(type)
node.location = (pos[0], pos[1])
return node
#end node
def link(self, frôm, to) :
"creates a link from output “frôm” to input “to”."
self.graph.links.new(frôm, to)
#end link
#end NodeContext
def deselect_all(material_tree) :
for node in material_tree.nodes :
node.select = False
#end for
#end deselect_all
def scale_face(bm, face, scale_x, scale_y, scale_z) :
# Scales a face in local face space. Ace!
face_space = get_face_matrix(face)
face_space.invert()
bmesh.ops.scale \
(
bm,
vec = Vector((scale_x, scale_y, scale_z)),
space = face_space,
verts = face.verts
)
#end scale_face
def extrude_face(bm, face, translate_forwards = 0.0, extruded_face_list = None) :
# Extrudes a face along its normal by translate_forwards units.
# Returns the new face, and optionally fills out extruded_face_list
# with all the additional side faces created from the extrusion.
new_faces = bmesh.ops.extrude_discrete_faces(bm, faces = [face])["faces"]
if extruded_face_list != None :
extruded_face_list += new_faces[:]
#end if
new_face = new_faces[0]
bmesh.ops.translate \
(
bm,
vec = new_face.normal * translate_forwards,
verts = new_face.verts
)
return new_face
#end extrude_face
def ribbed_extrude_face(bm, face, translate_forwards, num_ribs = 3, rib_scale = 0.9) :
# Similar to extrude_face, except corrigates the geometry to create "ribs".
# Returns the new face.
translate_forwards_per_rib = translate_forwards / num_ribs
new_face = face
for i in range(num_ribs) :
new_face = extrude_face(bm, new_face, translate_forwards_per_rib * 0.25)
new_face = extrude_face(bm, new_face, 0.0)
scale_face(bm, new_face, rib_scale, rib_scale, rib_scale)
new_face = extrude_face(bm, new_face, translate_forwards_per_rib * 0.5)
new_face = extrude_face(bm, new_face, 0.0)
scale_face(bm, new_face, 1 / rib_scale, 1 / rib_scale, 1 / rib_scale)
new_face = extrude_face(bm, new_face, translate_forwards_per_rib * 0.25)
#end for
return new_face
#end ribbed_extrude_face
def get_face_matrix(face, pos = None) :
# Returns a rough 4x4 transform matrix for a face (doesn't handle
# distortion/shear) with optional position override.
x_axis = (face.verts[1].co - face.verts[0].co).normalized()
z_axis = -face.normal
y_axis = z_axis.cross(x_axis)
if not pos :
pos = face.calc_center_bounds()
#end if
# Construct a 4x4 matrix from axes + position:
# http://i.stack.imgur.com/3TnQP.png
mat = Matrix()
mat[0][0] = x_axis.x
mat[1][0] = x_axis.y
mat[2][0] = x_axis.z
mat[3][0] = 0
mat[0][1] = y_axis.x
mat[1][1] = y_axis.y
mat[2][1] = y_axis.z
mat[3][1] = 0
mat[0][2] = z_axis.x
mat[1][2] = z_axis.y
mat[2][2] = z_axis.z
mat[3][2] = 0
mat[0][3] = pos.x
mat[1][3] = pos.y
mat[2][3] = pos.z
mat[3][3] = 1
return mat
#end get_face_matrix
def get_face_width_and_height(face) :
# Returns the rough length and width of a quad face.
# Assumes a perfect rectangle, but close enough.
if not face.is_valid or len(face.verts[:]) < 4 :
return -1, -1
#end if
width = (face.verts[0].co - face.verts[1].co).length
height = (face.verts[2].co - face.verts[1].co).length
return width, height
#end get_face_width_and_height
def get_aspect_ratio(face) :
# Returns the rough aspect ratio of a face. Always >= 1.
if not face.is_valid :
return 1.0
#end if
face_aspect_ratio = max(0.01, face.edges[0].calc_length() / face.edges[1].calc_length())
if face_aspect_ratio < 1.0 :
face_aspect_ratio = 1.0 / face_aspect_ratio
#end if
return face_aspect_ratio
#end get_aspect_ratio
def is_rear_face(face) :
# is this face pointing behind the ship
return face.normal.x < -0.95
#end is_rear_face
class MATERIAL(enum.IntEnum) :
"names for material slot indices. Must be densely-assigned from 0."
HULL = 0 # Plain spaceship hull
HULL_LIGHTS = 1 # Spaceship hull with emissive windows
HULL_DARK = 2 # Plain Spaceship hull, darkened
HULL_METALLIC = 3 # Metallic parts (antennas)
EXHAUST_BURN = 4 # Emissive engine burn material
GLOW_DISC = 5 # Emissive landing pad disc material
@property
def name(self) :
"returns the material name used to identify the item in the colour scheme."
return \
{
MATERIAL.HULL : "Hull Base",
MATERIAL.HULL_LIGHTS : "Hull Emissive",
MATERIAL.HULL_DARK : "Hull Dark",
MATERIAL.HULL_METALLIC : "Metallic",
MATERIAL.EXHAUST_BURN : "Exhaust Burn",
MATERIAL.GLOW_DISC : "Glow Disc",
}[self]
#end name
#end MATERIAL
grunge_socket_name = "Grunge"
def create_materials(parms) :
# Creates all our materials and returns them as a list.
# needed for defining viewport appearance of materials with Workbench renderer
shiny_amt = 0.1
shiny_rough = 0.5
metallic_rough = 0.4
hull_dark_colour = None
metallic_colour = None
def define_colour_scheme() :
# defines the common colour scheme.
nonlocal hull_dark_colour, metallic_colour
hull_dark_colour = tuple(parms.hull_darken * x for x in parms.hull_base_colour[:3])
metallic_colour = hls_to_rgb(h = 0.091, l = 0.9, s = 0.1) + (1,)
colour_scheme = bpy.data.node_groups.new("SpaceShip.ColourScheme", "ShaderNodeTree")
ctx = NodeContext(colour_scheme, (100, 0))
group_output = ctx.node("NodeGroupOutput", ctx.step_across(-300))
ctx.step_down(round(-100 * len(MATERIAL.__members__)))
for i, (mat, colour) in \
enumerate((
(MATERIAL.HULL, parms.hull_base_colour),
(MATERIAL.HULL_LIGHTS, parms.hull_emissive_colour),
(MATERIAL.HULL_DARK, hull_dark_colour),
(MATERIAL.HULL_METALLIC, metallic_colour),
(MATERIAL.EXHAUST_BURN, parms.glow_colour),
(MATERIAL.GLOW_DISC, parms.glow_colour),
)) \
:
colour_node = ctx.node("ShaderNodeRGB", ctx.step_down(200))
colour_node.label = mat.name
colour_node.outputs[0].default_value = tuple(colour)[:3] + (1,)
colour_scheme.outputs.new("NodeSocketColor", mat.name)
ctx.link(colour_node.outputs[0], group_output.inputs[i])
#end for
for i, (val, name) in \
enumerate((
(parms.grunge_factor, grunge_socket_name),
)) \
:
val_node = ctx.node("ShaderNodeValue", ctx.step_down(200))
val_node.label = name
val_node.outputs[0].default_value = val
colour_scheme.outputs.new("NodeSocketFloat", name)
ctx.link(val_node.outputs[0], group_output.inputs[i + len(MATERIAL.__members__)])
#end for
deselect_all(colour_scheme)
return colour_scheme
#end define_colour_scheme
colour_scheme = define_colour_scheme()
def define_tex_coords_common() :
# creates a node group that defines a common coordinate system
# for all my image textures.
tex_coords_common = bpy.data.node_groups.new("SpaceShip.TexCoordsCommon", "ShaderNodeTree")
ctx = NodeContext(tex_coords_common, (-100, 0))
tex_coords = ctx.node("ShaderNodeTexCoord", ctx.step_across(200))
group_output = ctx.node("NodeGroupOutput", ctx.step_across(200))
tex_coords_common.outputs.new("NodeSocketVector", "Coords")
ctx.link(tex_coords.outputs["Generated"], group_output.inputs[0])
group_output.inputs[0].name = tex_coords_common.outputs[0].name
deselect_all(tex_coords_common)
return tex_coords_common
#end define_tex_coords_common
tex_coords_common = define_tex_coords_common()
def define_hull_colour_common() :
# creates a node group that applies the grunge factor to
# an input colour to produce an output colour.
hull_common = bpy.data.node_groups.new("SpaceShip.HullColourCommon", "ShaderNodeTree")
ctx = NodeContext(hull_common, (-400, 0))
group_input = ctx.node("NodeGroupInput", ctx.step_down(100))
hull_common.inputs.new("NodeSocketColor", "Colour")
save_pos = ctx.pos
colours = ctx.node("ShaderNodeGroup", ctx.step_across(200))
colours.node_tree = colour_scheme
ctx.step_down(150)
strength_fanout = ctx.node("NodeReroute", ctx.step_across(100))
ctx.link(colours.outputs[grunge_socket_name], strength_fanout.inputs[0])
ctx.pos = save_pos
ctx.step_down(250)
dirty = ctx.node("ShaderNodeTexNoise", ctx.step_across(200))
dirty.inputs["Scale"].default_value = 20
dirtier = ctx.node("ShaderNodeBrightContrast", ctx.step_across(200))
ctx.link(dirty.outputs[0], dirtier.inputs[0])
dirtier.inputs[2].default_value = 2
grunge_fanout = ctx.node("NodeReroute", ctx.step_across(100))
ctx.link(dirtier.outputs[0], grunge_fanout.inputs[0])
ctx.pos = (ctx.pos[0], save_pos[1])
save_pos = ctx.pos
mix = ctx.node("ShaderNodeMixRGB", ctx.step_down(200))
mix.blend_type = "MULTIPLY"
ctx.link(strength_fanout.outputs[0], mix.inputs[0])
ctx.link(group_input.outputs[0], mix.inputs[1])
ctx.link(grunge_fanout.outputs[0], mix.inputs[2])
invert1 = ctx.node("ShaderNodeMath", ctx.step_across(200))
invert1.operation = "SUBTRACT"
invert1.inputs[0].default_value = 1
ctx.link(grunge_fanout.outputs[0], invert1.inputs[1])
scalarize = ctx.node("ShaderNodeMath", ctx.step_across(200))
scalarize.operation = "MULTIPLY"
ctx.link(strength_fanout.outputs[0], scalarize.inputs[0])
ctx.link(invert1.outputs[0], scalarize.inputs[1])
scalarize.inputs[2].default_value = 1
invert2 = ctx.node("ShaderNodeMath", ctx.step_across(200))
invert2.operation = "SUBTRACT"
invert2.inputs[0].default_value = 1
ctx.link(scalarize.outputs[0], invert2.inputs[1])
ctx.pos = (ctx.pos[0], save_pos[1])
group_output = ctx.node("NodeGroupOutput", ctx.step_across(200))
hull_common.outputs.new("NodeSocketColor", "Colour")
ctx.link(mix.outputs[0], group_output.inputs[0])
hull_common.outputs.new("NodeSocketFloat", "Grunge")
ctx.link(invert2.outputs[0], group_output.inputs[1])
group_input.outputs[0].name = hull_common.inputs[0].name
group_output.inputs[0].name = hull_common.outputs[0].name
group_output.inputs[1].name = hull_common.outputs[1].name
deselect_all(hull_common)
return hull_common
#end define_hull_colour_common
hull_colour_common = define_hull_colour_common()
def create_texture(ctx, filename, use_alpha, is_colour) :
# Creates an image texture node given filename relative to my
# “textures” subdirectory. Returns the output terminal to be linked
# to wherever the texture colour is needed.
img = load_image(filename, use_alpha, is_colour)
coords = ctx.node("ShaderNodeGroup", ctx.step_across(200))
coords.node_tree = tex_coords_common
tex = ctx.node("ShaderNodeTexImage", ctx.step_across(300))
tex.image = img
tex.projection = "BOX"
ctx.link(coords.outputs[0], tex.inputs[0])
return tex.outputs["Color"]
#end create_texture
def define_normals_common() :
# defines a node group for the normal-mapping texture to be used
# across different hull materials.
normals_common = bpy.data.node_groups.new("SpaceShip.NormalsCommon", "ShaderNodeTree")
ctx = NodeContext(normals_common, (-300, 0))
tex_out = create_texture \
(
ctx,
filename = "hull_normal.png",
use_alpha = True,
is_colour = False
)
normal_map = ctx.node("ShaderNodeNormalMap", ctx.step_across(200))
ctx.link(tex_out, normal_map.inputs["Color"])
normal_map.inputs["Strength"].default_value = 1
group_output = ctx.node("NodeGroupOutput", ctx.step_across(200))
normals_common.outputs.new("NodeSocketVector", "Normal")
ctx.link(normal_map.outputs["Normal"], group_output.inputs[0])
group_output.inputs[0].name = normals_common.outputs[0].name
deselect_all(normals_common)
return normals_common
#end define_normals_common
normals_common = define_normals_common()
def define_hull_mat_common() :
# defines a common node group defining characteristics of most hull materials.
hull_mat_common = bpy.data.node_groups.new("SpaceShip.HullCommon", "ShaderNodeTree")
ctx = NodeContext(hull_mat_common, (-350, 0))
group_input = ctx.node("NodeGroupInput", ctx.step_across(200))
hull_mat_common.inputs.new("NodeSocketColor", "Colour")
save_pos = ctx.pos
colour_mix = ctx.node("ShaderNodeGroup", ctx.step_down(200))
colour_mix.node_tree = hull_colour_common
ctx.link(group_input.outputs[0], colour_mix.inputs["Colour"])
normal_map = ctx.node("ShaderNodeGroup", ctx.step_across(200))
normal_map.node_tree = normals_common
ctx.pos = (ctx.pos[0], save_pos[1])
save_pos = ctx.pos
ctx.step_down(200)
normals_fanout = ctx.node("NodeReroute", ctx.step_across(100))
ctx.link(normal_map.outputs[0], normals_fanout.inputs[0])
ctx.pos = (ctx.pos[0], save_pos[1])
save_pos = ctx.pos
colour_shader = ctx.node("ShaderNodeBsdfDiffuse", ctx.step_down(200))
ctx.link(colour_mix.outputs[0], colour_shader.inputs["Color"])
ctx.link(normals_fanout.outputs[0], colour_shader.inputs["Normal"])
grunge_mix = ctx.node("ShaderNodeMath", ctx.step_down(200))
grunge_mix.operation = "MULTIPLY"
ctx.link(colour_mix.outputs[1], grunge_mix.inputs[0])
grunge_mix.inputs[1].default_value = shiny_amt
shiny = ctx.node("ShaderNodeBsdfGlossy", ctx.step_across(200))
shiny.inputs["Roughness"].default_value = shiny_rough
ctx.link(normals_fanout.outputs[0], shiny.inputs["Normal"])
ctx.pos = (ctx.pos[0], save_pos[1])
mix_shader = ctx.node("ShaderNodeMixShader", ctx.step_across(200))
ctx.link(grunge_mix.outputs[0], mix_shader.inputs[0])
ctx.link(colour_shader.outputs[0], mix_shader.inputs[1])
ctx.link(shiny.outputs[0], mix_shader.inputs[2])
group_output = ctx.node("NodeGroupOutput", ctx.step_across(200))
hull_mat_common.outputs.new("NodeSocketShader", "Shader")
ctx.link(mix_shader.outputs[0], group_output.inputs[0])
deselect_all(hull_mat_common)
return hull_mat_common
#end define_hull_mat_common
hull_mat_common = define_hull_mat_common()
def set_hull_mat_basics(mat, base_colour, viewport_colour) :
# Sets some basic properties for a hull material.
ctx = NodeContext(mat.node_tree, (-200, 0), clear = True)
colours = ctx.node("ShaderNodeGroup", ctx.step_across(200))
colours.node_tree = colour_scheme
mat_base = ctx.node("ShaderNodeGroup", ctx.step_across(200))
mat_base.node_tree = hull_mat_common
ctx.link(colours.outputs[base_colour.name], mat_base.inputs[0])
material_output = ctx.node("ShaderNodeOutputMaterial", ctx.step_across(200))
ctx.link(mat_base.outputs[0], material_output.inputs[0])
deselect_all(mat.node_tree)
mat.diffuse_color = tuple(viewport_colour)[:3] + (1,)
mat.specular_intensity = shiny_amt
mat.roughness = shiny_rough
#end set_hull_mat_basics
def set_metallic(mat, colour) :
ctx = NodeContext(mat.node_tree, (-200, 0), clear = True)
colours = ctx.node("ShaderNodeGroup", ctx.step_across(200))
colours.node_tree = colour_scheme
colour_mix = ctx.node("ShaderNodeGroup", ctx.step_across(200))
colour_mix.node_tree = hull_colour_common
ctx.link(colours.outputs[colour.name], colour_mix.inputs["Colour"])
shiny = ctx.node("ShaderNodeBsdfGlossy", ctx.step_across(200))
ctx.link(colour_mix.outputs[0], shiny.inputs["Color"])
shiny.inputs["Roughness"].default_value = metallic_rough
material_output = ctx.node("ShaderNodeOutputMaterial", ctx.step_across(200))
ctx.link(shiny.outputs[0], material_output.inputs[0])
deselect_all(ctx.graph)
mat.diffuse_color = tuple(metallic_colour)[:3] + (1,)
mat.metallic = 1.0
mat.roughness = metallic_rough
#end set_metallic
def setup_hull_lights(mat, viewport_colour) :
ctx = NodeContext(mat.node_tree, (-600, 0), clear = True)
save1_pos = ctx.pos
colours = ctx.node("ShaderNodeGroup", ctx.step_across(200))
colours.node_tree = colour_scheme
mat_base = ctx.node("ShaderNodeGroup", ctx.step_across(200))
mat_base.node_tree = hull_mat_common
ctx.link(colours.outputs[MATERIAL.HULL.name], mat_base.inputs[0])
ctx.pos = save1_pos
ctx.step_down(250)
# Add an emissive layer that lights up the windows
window_light = create_texture \
(
ctx,
filename = "hull_lights_emit.png",
use_alpha = False,
is_colour = True
)
save2_pos = ctx.pos
ctx.step_down(300)
ctx.step_across(-200)
grunge_source = ctx.node("ShaderNodeGroup", ctx.step_across(200))
grunge_source.node_tree = hull_colour_common
ctx.pos = (ctx.pos[0], save2_pos[1])
grunge_mix = ctx.node("ShaderNodeMath", ctx.step_across(200))
grunge_mix.operation = "MULTIPLY"
ctx.link(window_light, grunge_mix.inputs[0])
ctx.link(grunge_source.outputs[1], grunge_mix.inputs[1])
brighter = ctx.node("ShaderNodeMath", ctx.step_across(200))
brighter.operation = "MULTIPLY"
ctx.link(grunge_mix.outputs[0], brighter.inputs[0])
brighter.inputs[1].default_value = 2.0
light_shader = ctx.node("ShaderNodeEmission", ctx.step_across(200))
ctx.link(colours.outputs[MATERIAL.HULL_LIGHTS.name], light_shader.inputs["Color"])
ctx.link(brighter.outputs[0], light_shader.inputs["Strength"])
ctx.pos = (ctx.pos[0], save1_pos[1])
add_shader = ctx.node("ShaderNodeAddShader", ctx.step_across(200))
ctx.link(mat_base.outputs[0], add_shader.inputs[0])
ctx.link(light_shader.outputs[0], add_shader.inputs[1])
material_output = ctx.node("ShaderNodeOutputMaterial", ctx.step_across(200))
ctx.link(add_shader.outputs[0], material_output.inputs[0])
deselect_all(ctx.graph)
mat.diffuse_color = tuple(viewport_colour)[:3] + (1,)
mat.specular_intensity = shiny_amt
mat.roughness = shiny_rough
#end setup_hull_lights
def set_hull_mat_emissive(mat, colour, strength, viewport_colour) :
# does common setup for very basic emissive hull materials (engines, landing discs)
ctx = NodeContext(mat.node_tree, (-300, 0), clear = True)
colours = ctx.node("ShaderNodeGroup", ctx.step_across(200))
colours.node_tree = colour_scheme
emit = ctx.node("ShaderNodeEmission", ctx.step_across(200))
ctx.link(colours.outputs[colour.name], emit.inputs["Color"])
emit.inputs["Strength"].default_value = strength
material_output = ctx.node("ShaderNodeOutputMaterial", ctx.step_across(200))
ctx.link(emit.outputs[0], material_output.inputs[0])
deselect_all(mat.node_tree)
mat.diffuse_color = tuple(viewport_colour)[:3] + (1,)
#end set_hull_mat_emissive
#begin create_materials
materials = []
for material in MATERIAL :
mat = bpy.data.materials.new(material.name.lower())
mat.use_nodes = True
materials.append(mat)
#end for
# Build the hull texture
set_hull_mat_basics(materials[MATERIAL.HULL], MATERIAL.HULL, parms.hull_base_colour)
setup_hull_lights(materials[MATERIAL.HULL_LIGHTS], parms.hull_emissive_colour)
# Build the hull_dark texture
set_hull_mat_basics(materials[MATERIAL.HULL_DARK], MATERIAL.HULL_DARK, hull_dark_colour)
# build the metallic material
set_metallic(materials[MATERIAL.HULL_METALLIC], MATERIAL.HULL_METALLIC)
# Build the exhaust_burn texture
set_hull_mat_emissive(materials[MATERIAL.EXHAUST_BURN], MATERIAL.EXHAUST_BURN, 1.0, parms.glow_colour)
# Build the glow_disc texture
set_hull_mat_emissive(materials[MATERIAL.GLOW_DISC], MATERIAL.GLOW_DISC, 1.0, parms.glow_colour)
return materials
#end create_materials
class ALIGN_TO(enum.Enum) :
"Aligning the orientation of a newly-created spaceship."
NONE = "nothing"
WORLD = "world"
VIEW = "view"
CURSOR = "cursor"
@property
def idstr(self) :
return \
self.value
#end idstr
#end ALIGN_TO
class parms_defaults :
"define parameter defaults in a single place for reuse."
geom_ranseed = ""
align = ALIGN_TO.NONE.idstr
mat_ranseed = ""
num_hull_segments_min = 3
num_hull_segments_max = 6
create_asymmetry_segments = True
num_asymmetry_segments_min = 1
num_asymmetry_segments_max = 5
create_face_detail = True
allow_horizontal_symmetry = True
allow_vertical_symmetry = False
add_bevel_modifier = True
create_materials = True
hull_base_colour = (0.5, 0.5, 0.5)
hull_darken = 0.3
hull_emissive_colour = (0.75, 0.75, 0.75)
glow_colour = (1, 1, 1)
grunge_factor = 0.5
#end parms_defaults
def randomize_colours(parms, mat_random) :
# Choose a base colour for the spaceship hull
parms.hull_base_colour = hls_to_rgb \
(
h = mat_random.random(),
l = mat_random.uniform(0.05, 0.5),
s = mat_random.uniform(0, 0.25)
)
parms.hull_emissive_colour = hls_to_rgb \
(
h = mat_random.random(),
l = mat_random.uniform(0.5, 1),
s = mat_random.uniform(0, 0.5)
)
# Choose a glow colour for the exhaust + glow discs
parms.glow_colour = hls_to_rgb(h = mat_random.random(), l = mat_random.uniform(0.5, 1), s = 1)
#end randomize_colours
def generate_spaceship(parms) :
# Generates a textured spaceship mesh and returns the object.
# Just uses global cube texture coordinates rather than generating UVs.
# Takes an optional random seed value to generate a specific spaceship.
# Allows overriding of some parameters that affect generation.
geom_random = Random()
if parms.geom_ranseed != "" :
geom_random.seed(parms.geom_ranseed)
#end if
def add_exhaust_to_face(bm, face) :
# Given a face, splits it into a uniform grid and extrudes each grid face
# out and back in again, making an exhaust shape.
if not face.is_valid :
return
#end if
# The more square the face is, the more grid divisions it might have
num_cuts = geom_random.randint(1, int(4 - get_aspect_ratio(face)))
result = bmesh.ops.subdivide_edges \
(
bm,
edges = face.edges[:],
cuts = num_cuts,
fractal = 0.02,
use_grid_fill = True
)
exhaust_length = geom_random.uniform(0.1, 0.2)
scale_outer = 1 / geom_random.uniform(1.3, 1.6)
scale_inner = 1 / geom_random.uniform(1.05, 1.1)
for face in result["geom"] :
if isinstance(face, bmesh.types.BMFace) :
if is_rear_face(face) :
face.material_index = MATERIAL.HULL_DARK
face = extrude_face(bm, face, exhaust_length)
scale_face(bm, face, scale_outer, scale_outer, scale_outer)
extruded_face_list = []
face = extrude_face(bm, face, -exhaust_length * 0.9, extruded_face_list)
for extruded_face in extruded_face_list :
extruded_face.material_index = MATERIAL.EXHAUST_BURN
#end for
scale_face(bm, face, scale_inner, scale_inner, scale_inner)
#end if
#end if
#end for
#end add_exhaust_to_face
def add_grid_to_face(bm, face) :
# Given a face, splits it up into a smaller uniform grid and extrudes each grid cell.
if not face.is_valid :
return
#end if
result = bmesh.ops.subdivide_edges \
(
bm,
edges = face.edges[:],
cuts = geom_random.randint(2, 4),
fractal = 0.02,
use_grid_fill = True,
use_single_edge = False
)
grid_length = geom_random.uniform(0.025, 0.15)
scale = 0.8
for face in result["geom"] :
if isinstance(face, bmesh.types.BMFace) :
material_index = (MATERIAL.HULL, MATERIAL.HULL_LIGHTS)[geom_random.random() > 0.5]
extruded_face_list = []
face = extrude_face(bm, face, grid_length, extruded_face_list)
for extruded_face in extruded_face_list :
if abs(face.normal.z) < 0.707 : # side face
extruded_face.material_index = material_index
#end if
#end for
scale_face(bm, face, scale, scale, scale)
#end if
#end for
#end add_grid_to_face
def add_cylinders_to_face(bm, face) :
# Given a face, adds some cylinders along it in a grid pattern.
if not face.is_valid or len(face.verts[:]) < 4 :
return
#end if
horizontal_step = geom_random.randint(1, 3)
vertical_step = geom_random.randint(1, 3)
num_segments = geom_random.randint(6, 12)
face_width, face_height = get_face_width_and_height(face)
cylinder_depth = \
(
1.3
*
min
(
face_width / (horizontal_step + 2),
face_height / (vertical_step + 2)
)
)
cylinder_size = cylinder_depth * 0.5
for h in range(horizontal_step) :
top = face.verts[0].co.lerp \
(
face.verts[1].co,
(h + 1) / (horizontal_step + 1)
)
bottom = face.verts[3].co.lerp \
(
face.verts[2].co,
(h + 1) / (horizontal_step + 1)
)
for v in range(vertical_step) :
pos = top.lerp(bottom, (v + 1) / (vertical_step + 1))
cylinder_matrix = \
(
get_face_matrix(face, pos)
@
Matrix.Rotation(90 * deg, 3, "X").to_4x4()
)
bmesh.ops.create_cone \
(
bm,
cap_ends = True,
cap_tris = False,
segments = num_segments,
radius1 = cylinder_size,
radius2 = cylinder_size,
depth = cylinder_depth,
matrix = cylinder_matrix
)
#end for
#end for
#end add_cylinders_to_face
def add_weapons_to_face(bm, face) :
# Given a face, adds some weapon turrets to it in a grid pattern.
# Each turret will have a random orientation.
if not face.is_valid or len(face.verts[:]) < 4 :
return
#end if
horizontal_step = geom_random.randint(1, 2)
vertical_step = geom_random.randint(1, 2)
num_segments = 16
face_width, face_height = get_face_width_and_height(face)
weapon_size = \
(
0.5
*
min
(
face_width / (horizontal_step + 2),
face_height / (vertical_step + 2)
)
)
weapon_depth = weapon_size * 0.2
for h in range(horizontal_step) :
top = face.verts[0].co.lerp \
(
face.verts[1].co,
(h + 1) / (horizontal_step + 1)
)
bottom = face.verts[3].co.lerp \
(
face.verts[2].co,
(h + 1) / (horizontal_step + 1)
)
for v in range(vertical_step) :
pos = top.lerp(bottom, (v + 1) / (vertical_step + 1))
face_matrix = \
(
get_face_matrix(face, pos + face.normal * weapon_depth * 0.5)
@
Matrix.Rotation(geom_random.uniform(0, 90) * deg, 3, "Z").to_4x4()
)
# Turret foundation
bmesh.ops.create_cone \
(
bm,
cap_ends = True,
cap_tris = False,
segments = num_segments,
radius1 = weapon_size * 0.9,
radius2 = weapon_size,
depth = weapon_depth,
matrix = face_matrix
)
# Turret left guard
bmesh.ops.create_cone \
(
bm,
cap_ends = True,
cap_tris = False,
segments = num_segments,
radius1 = weapon_size * 0.6,
radius2 = weapon_size * 0.5,
depth = weapon_depth * 2,
matrix =
face_matrix
@
Matrix.Rotation(90 * deg, 3, "Y").to_4x4()
@
Matrix.Translation(Vector((0, 0, weapon_size * 0.6))).to_4x4()
)
# Turret right guard
bmesh.ops.create_cone \
(
bm,
cap_ends = True,
cap_tris = False,
segments = num_segments,
radius1 = weapon_size * 0.5,
radius2 = weapon_size * 0.6,
depth = weapon_depth * 2,
matrix =
face_matrix
@
Matrix.Rotation(90 * deg, 3, "Y").to_4x4()
@
Matrix.Translation(Vector((0, 0, weapon_size * -0.6))).to_4x4()
)
# Turret housing
upward_angle = geom_random.uniform(0, 45) * deg
turret_house_mat = \
(
face_matrix
@
Matrix.Rotation(upward_angle, 3, "X").to_4x4()
@
Matrix.Translation(Vector((0, weapon_size * -0.4, 0))).to_4x4()
)
bmesh.ops.create_cone \
(
bm,
cap_ends = True,
cap_tris = False,
segments = 8,
radius1 = weapon_size * 0.4,
radius2 = weapon_size * 0.4,
depth = weapon_depth * 5,
matrix = turret_house_mat
)
# Turret barrels L + R
bmesh.ops.create_cone \
(
bm,
cap_ends = True,
cap_tris = False,
segments = 8,
radius1 = weapon_size * 0.1,
radius2 = weapon_size * 0.1,
depth = weapon_depth * 6,
matrix =
turret_house_mat
@
Matrix.Translation(Vector((weapon_size * 0.2, 0, -weapon_size))).to_4x4()
)
bmesh.ops.create_cone \
(
bm,
cap_ends = True,
cap_tris = False,
segments = 8,
radius1 = weapon_size * 0.1,
radius2 = weapon_size * 0.1,
depth = weapon_depth * 6,
matrix =
turret_house_mat
@
Matrix.Translation(Vector((weapon_size * -0.2, 0, -weapon_size))).to_4x4()
)
#end for v in range(vertical_step)
#end for h in range(horizontal_step)
#end add_weapons_to_face
def add_sphere_to_face(bm, face) :
# Given a face, adds a sphere on the surface, partially inset.
if not face.is_valid :
return
#end if
face_width, face_height = get_face_width_and_height(face)
sphere_size = geom_random.uniform(0.4, 1.0) * min(face_width, face_height)
sphere_matrix = get_face_matrix \
(
face,
face.calc_center_bounds() - face.normal * geom_random.uniform(0, sphere_size * 0.5)
)
result = bmesh.ops.create_icosphere \
(
bm,
subdivisions = 3,
radius = sphere_size,
matrix = sphere_matrix
)
for vert in result["verts"] :
for face in vert.link_faces :
face.material_index = MATERIAL.HULL
#end for
#end for
#end add_sphere_to_face
def add_surface_antenna_to_face(bm, face) :
# Given a face, adds some pointy intimidating antennas.
if not face.is_valid or len(face.verts[:]) < 4 :
return
#end if
horizontal_step = geom_random.randint(4, 10)
vertical_step = geom_random.randint(4, 10)
for h in range(horizontal_step) :
top = face.verts[0].co.lerp \
(
face.verts[1].co,
(h + 1) / (horizontal_step + 1)
)
bottom = face.verts[3].co.lerp \
(
face.verts[2].co,
(h + 1) / (horizontal_step + 1)
)
for v in range(vertical_step) :
if geom_random.random() > 0.9 :
pos = top.lerp(bottom, (v + 1) / (vertical_step + 1))
face_size = math.sqrt(face.calc_area())
depth = geom_random.uniform(0.1, 1.5) * face_size
depth_short = depth * geom_random.uniform(0.02, 0.15)
base_radius = geom_random.uniform(0.005, 0.05)
material_index = MATERIAL.HULL_METALLIC
# Spire
num_segments = geom_random.randint(3, 6)
result = bmesh.ops.create_cone \
(
bm,
cap_ends = False,
cap_tris = False,
segments = num_segments,
radius1 = 0,
radius2 = base_radius,
depth = depth,
matrix = get_face_matrix(face, pos + face.normal * depth * 0.5)
)
for vert in result["verts"] :
for vert_face in vert.link_faces :
vert_face.material_index = material_index
#end for
#end for
# Base
result = bmesh.ops.create_cone \
(
bm,
cap_ends = True,
cap_tris = False,
segments = num_segments,
radius1 = base_radius * geom_random.uniform(1, 1.5),
radius2 = base_radius * geom_random.uniform(1.5, 2),
depth = depth_short,
matrix = get_face_matrix(face, pos + face.normal * depth_short * 0.45)
)
for vert in result["verts"] :
for vert_face in vert.link_faces :
vert_face.material_index = material_index
#end for
#end for
#end if geom_random.random() > 0.9
#end for v in range(vertical_step)
#end for h in range(horizontal_step)
#end add_surface_antenna_to_face
def add_disc_to_face(bm, face) :
# Given a face, adds a glowing "landing pad" style disc.
if not face.is_valid :
return