-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathCMS3.py
167 lines (129 loc) · 4.11 KB
/
CMS3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import cv2
import numpy as np
import time
import math as m
cap = cv2.VideoCapture('video//prvi.mkv')
cascade = cv2.CascadeClassifier('myhaar.xml')
cv2.namedWindow('Detecting', cv2.WINDOW_AUTOSIZE)
# cv2.namedWindow('Tracking', cv2.WINDOW_AUTOSIZE)
cv2.moveWindow('Detecting', 100, 100)
# cv2.moveWindow('Tracking', 500, 100)
cv2.startWindowThread()
frame_counter = 0
# corners = []
green = (0, 200, 0)
blue = (200, 0, 0)
red = (0, 0 , 200)
LK_parameters = dict(winSize = (15, 15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
def find_distance(r1, c1, r2, c2):
d = m.sqrt(m.pow(r2 - r1, 2) + m.pow(c2 - c1, 2))
return d
def detect(frame):
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
detected = cascade.detectMultiScale(gray_frame, 1.1, 13, 0, (24, 24))
return detected
def find_center(corners):
x, y = 0, 0
for corner in corners:
y += corner[0][1]
x += corner[0][0]
center_row = int(1.0 * y / len(corners))
center_col = int(1.0 * x / len(corners))
return center_row, center_col
def detect_features(x, y, w, h):
ret, frame = cap.read()
if type(frame) == type(None):
return None
corners = []
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ROI = gray_frame[x:x + w, y:y + h]
corners = cv2.goodFeaturesToTrack(ROI, 50, 0.01, 5)
if type(corners) == type(None):
return None
corners[:, 0, 0] += x
corners[:, 0, 1] += y
return corners
def track_features(old_frame, old_corners):
old_frame_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
found = 0
while True:
ret, frame = cap.read()
if type(frame) == type(None):
break
frame = cv2.resize(frame, (640, 360))
img = frame.copy()
if len(old_corners) > 0 and found == 0:
new_frame_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
corners, st, err = cv2.calcOpticalFlowPyrLK(old_frame_gray, new_frame_gray, old_corners, None, **LK_parameters)
center_row, center_col = find_center(corners)
cv2.circle(frame, (center_col, center_row), 5, blue, 5)
corners_update = corners.copy()
toDelete = []
for i in range(len(corners)):
if find_distance(corners[i][0][1], corners[i][0][0], center_row, center_col) > 90:
toDelete.append(i)
corners_update = np.delete(corners_update, toDelete, 0)
for corner in corners_update:
cv2.circle(frame, (int(corner[0][0]), int(corner[0][1])), 5, green)
if len(corners_update) < 5:
cars = detect(frame)
for x, y, w, h in cars:
found += 1
if found == 1:
corners_update = detect_features(x + 4, y + 4, w -7, h - 7)
if type(corners_update) == type(None):
break
center_row, center_col = find_center(corners_update)
break
# break
# track_features(frame, new_corners)
if type(corners_update) != type(None):
if len(corners_update) > 0:
for corner in corners_update:
if corner[0][0] > 640 or corner[0][0] < 0 or corner[0][1] > 360 or corner[0][1] < 0:
return
if len(corners_update) > 0:
ctr, rad = cv2.minEnclosingCircle(corners_update)
cv2.circle(frame, (int(ctr[0]), int(ctr[1])), int(rad), red, 5)
else:
return
old_frame_gray = new_frame_gray.copy()
old_corners = corners_update.copy()
cv2.imshow('Detecting', frame)
found = 0
if cv2.waitKey(33) == 27:
break
def main():
frame_counter = 0
found = 0
corners = np.array([])
while True:
ret, frame = cap.read()
if type(frame) == type(None):
break
frame = cv2.resize(frame, (640, 360))
if not (frame_counter % 10):
cars = detect(frame)
for x, y, w, h in cars:
found += 1
if found == 1:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
corners = detect_features(x, y, w, h)
if type(corners) == type(None):
break
for corner in corners:
cv2.circle(frame, (int(corner[0][0]), int(corner[0][1])), 3, green, thickness = 2, lineType = 4)
else:
break
if found:
track_features(frame, corners)
else:
cv2.imshow('Detecting', frame)
frame_counter += 1
found = 0
if cv2.waitKey(33) == 27:
break
if __name__ == '__main__':
main()
cv2.destroyAllWindows()
cap.release()