-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_training.py
296 lines (257 loc) · 12.2 KB
/
run_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import comet_ml
import yaml
import torch
import os
import argparse
from lightning import pytorch as pl
from models.lightning_wrapper import PyramidViGLT, ResNetLT
from models.vit_lightning import ViTLT
from torchgeo.datasets import RESISC45, PatternNet, BigEarthNet
from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint
from lightning.pytorch.loggers import CometLogger
from pathlib import Path
from torch.utils.data import random_split
from torch.utils.data.dataloader import DataLoader
from functools import partial
from typing import Dict, List, Tuple, Optional, Union
def parse():
parser = argparse.ArgumentParser(description='Train a model on BigEarthNet/RESISC45/PatternNet')
parser.add_argument('-n', type=int, default=50, help='Number of training epochs')
parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate')
parser.add_argument('--batch', type=int, default=2, help='Batch size')
parser.add_argument('--model-config', type=str, default=None, help='Model config path (yaml file)')
parser.add_argument('--comet-logger', dest='comet', default=False, action='store_true', help='Enable CometML logging')
parser.add_argument('--dataset', type=str, help='Dataset used for training. Must be either {"patternnet", "resisc45", "bigearthnet"}')
parser.add_argument('--split', type=str, default=None, help='Dataset split, valid only for patternnet dataset. Must be in format x,y,z, e.g. 70,15,15')
parser.add_argument('--seed', type=int, default=47, help='Random seed. Default is 47.')
parser.add_argument('--split-seed', type=int, default=None, help='Random seed. Default is None.')
parser.add_argument('--pretrained-checkpoint', type=str, default=None, help='Path to pretrained checkpoint from which encoder weights are imported. If none, simple supervised training is done')
parser.add_argument('--resume', type=str, default=None, help='Resume training. Path to ckpt file must be specified')
parser.add_argument('--experiment-key', type=str, default=None, help='Experiment key for cometML logging')
parser.add_argument('--checkpoint-folder', type=str, help='Checkpoint folder used to log this run')
parser.add_argument('--exp-name', type=str, help='Experiment name postfix for comet')
parser.add_argument('--debug', action='store_true', default=False, help='Fast debug run mode. Default is False')
parser.add_argument('--test', type=str, default=None, help='If specified, the model checkpoints specified is loaded and a simple test evaluation is performed.')
parser.add_argument('--val-batch', type=int, default=None, help='Validation batch size. If None, it is the same as --batch value')
parser.add_argument('--model-class', type=str, default='vig', help='Model to be instantiated')
return parser.parse_args()
def compute_split_sizes(split: str, size: int) -> List[int]:
all_perc = tuple(int(x) if x.isdigit() else float(x) for x in split.split(','))
if split.split(',')[0].isdigit():
total = sum(all_perc)
sizes = [x / total for x in all_perc]
else:
sizes = all_perc
print(f'Sizes computed: {sizes}')
return sizes
def normalize_image(data: Dict[str, torch.Tensor], mean: torch.Tensor, std: torch.Tensor) -> Dict[str, torch.Tensor]:
if len(mean.shape) == 1:
mean = mean.reshape(-1, 1, 1)
if len(std.shape) == 1:
std = std.reshape(-1, 1, 1)
data['image'] = (data['image'] - mean) / std
data['image'].clip(min=-5, max=5)
return data
def parse_train_string(entry: str) -> List[str]:
fields = entry.split('+')
return fields
def export_model_path(folder: Path, path_to_save: str) -> None:
count = 1
output = {'best_model_path': path_to_save}
while True:
filename = f'checkpoint_savepath-v{count}.yaml' if count > 1 else 'checkpoint_savepath.yaml'
p = folder / filename
if p.is_file():
count += 1
continue
with open(p, 'w') as fp:
yaml.safe_dump(output, fp)
break
return
def load_checkpoint_from_file(f: Path) -> Path:
with open(f, 'r') as fp:
d = yaml.safe_load(fp)
return Path(d['best_model_path'])
def get_encoder_state(d: Dict) -> Dict:
return {x[8:]: d[x] for x in d if x.startswith('encoder')}
if __name__ == '__main__':
args = parse()
EPOCHS = args.n
LR = args.lr
BATCH = args.batch
MODEL_CONFIG = Path(args.model_config) if not args.model_config is None else None
MODEL_CLS = args.model_class
COMET = args.comet
DATASET = args.dataset
SPLIT = args.split
SEED = args.seed
SPLIT_SEED = args.split_seed if not args.split_seed is None else args.seed
PRETRAINED_CKPT = args.pretrained_checkpoint
CKPT_FOLDER = args.checkpoint_folder
EXP_NAME = args.exp_name
DEBUG_RUN = args.debug
TEST = args.test
VAL_BATCH = args.val_batch
RESUME = args.resume
EXP_KEY = args.experiment_key
if RESUME and EXP_KEY is None:
raise ValueError(f'Invalid experiment key! {EXP_KEY}')
if VAL_BATCH is None:
VAL_BATCH = BATCH
ckpt_path = Path(CKPT_FOLDER)
pretrained_ckpt = Path(PRETRAINED_CKPT) if not PRETRAINED_CKPT is None else None
if TEST is None and not ckpt_path.is_dir():
ckpt_path.mkdir(parents=True)
pl.seed_everything(SEED)
basepath = Path.home() / 'datasets'
dataset_folder = basepath / DATASET
dataset_folder = str(dataset_folder)
if MODEL_CONFIG is None:
model_config = {
'in_channels': 3,
'out_channels': [128, 256, 512],
'heads': 16,
'n_classes': 1,
'input_resolution': (256, 256),
'reduce_factor': 2,
'pyramid_reduction': 4,
'act': 'relu',
'k': 9,
'overlapped_patch_emb': True,
}
else:
with open(MODEL_CONFIG, 'r') as fp:
model_config = yaml.safe_load(fp)
model_config['lr'] = LR
# create dataset
other_params = {}
if DATASET == 'patternnet':
model_config['n_classes'] = 38
model_config['metric_args'] = {
'task': 'multiclass',
'num_classes': 38,
'average': 'micro'
}
mean_val = torch.tensor([91.6640, 91.9425, 81.3333])
std_val = torch.tensor([49.9692, 47.3929, 45.5676])
dataset = PatternNet(root=dataset_folder, download=False, transforms=partial(normalize_image, mean=mean_val, std=std_val))
assert not SPLIT is None
sizes = compute_split_sizes(SPLIT, len(dataset))
print(f'Split seed is set to {SPLIT_SEED}')
train_dataset, val_dataset, test_dataset = random_split(dataset, sizes, generator=torch.Generator().manual_seed(SPLIT_SEED))
del dataset
other_params['drop_last'] = True
elif DATASET == 'resisc45':
model_config['n_classes'] = 45
model_config['metric_args'] = {
'task': 'multiclass',
'num_classes': 45,
'average': 'micro'
}
mean_val = torch.tensor([93.8935, 97.1123, 87.5696])
std_val = torch.tensor([51.8668, 47.2381, 47.0614])
train_dataset = RESISC45(root=dataset_folder, download=False, split='train', transforms=partial(normalize_image, mean=mean_val, std=std_val))
val_dataset = RESISC45(root=dataset_folder, download=False, split='val', transforms=partial(normalize_image, mean=mean_val, std=std_val))
test_dataset = RESISC45(root=dataset_folder, download=False, split='test', transforms=partial(normalize_image, mean=mean_val, std=std_val))
elif DATASET == 'bigearthnet' or 'bigearthnet' in DATASET:
model_config['n_classes'] = 43
model_config['metric_args'] = {
'task': 'multilabel',
'num_labels': 43,
'average': 'micro',
'multidim_average': 'global'
}
mean_val = torch.tensor([352.7397, 441.2881, 624.5734, 601.4513, 960.7608, 1796.2574, 2076.4163, 2219.6677, 2265.7920, 2245.8081, 1585.1255, 1004.8402])
std_val = torch.tensor([584.2036, 617.6658, 623.5845, 712.4464, 750.9664, 1096.1512, 1265.7113, 1373.5614, 1345.8695, 1289.3424, 1073.6807, 811.9662])
if DATASET != 'bigearthnet':
# this is a path
dataset_folder = Path(DATASET)
train_dataset = BigEarthNet(root=dataset_folder, download=False, bands='s2', split='train', num_classes=43, transforms=partial(normalize_image, mean=mean_val, std=std_val))
val_dataset = BigEarthNet(root=dataset_folder, download=False, bands='s2', split='val', num_classes=43, transforms=partial(normalize_image, mean=mean_val, std=std_val))
test_dataset = BigEarthNet(root=dataset_folder, download=False, bands='s2', split='test', num_classes=43, transforms=partial(normalize_image, mean=mean_val, std=std_val))
print(f'Length of training dataset {len(train_dataset)}')
print(f'Length of validation dataset {len(val_dataset)}')
print(f'Length of test dataset {len(test_dataset)}')
if MODEL_CLS == 'vig':
model_config['enable_pos_encoding'] = True
model = PyramidViGLT(**model_config)
elif MODEL_CLS.startswith('resnet'):
model = ResNetLT(resnet=MODEL_CLS, **model_config)
elif MODEL_CLS == 'vit':
model = ViTLT(**model_config)
else:
raise ValueError(f'Invalid model class {MODEL_CLS}')
if not pretrained_ckpt is None:
if pretrained_ckpt.suffix == '.yaml' or not str(pretrained_ckpt).endswith('ckpt'):
if not str(pretrained_ckpt).endswith('yaml'):
pretrained_ckpt = pretrained_ckpt / 'checkpoint_savepath.yaml'
pretrained_ckpt = load_checkpoint_from_file(pretrained_ckpt)
if not DEBUG_RUN:
ckpt = torch.load(pretrained_ckpt)
if MODEL_CLS == 'vig':
incom_keys = model.model.encoder.load_state_dict(get_encoder_state(ckpt['state_dict']), strict=False)
else:
incom_keys = model.load_state_dict(ckpt['state_dict'], strict=False)
print(f'Incompatible keys: {incom_keys}')
del ckpt
# create dataloaders
train_loader = DataLoader(train_dataset, BATCH, shuffle=True, num_workers=8, **other_params)
val_loader = DataLoader(val_dataset, VAL_BATCH, shuffle=False, num_workers=8, **other_params)
test_loader = DataLoader(test_dataset, VAL_BATCH, shuffle=False, num_workers=8, **other_params)
if COMET:
logger_config = {
'api_key': os.environ.get('COMET_API_KEY'),
'project_name': 'ssl-vig',
}
if not RESUME:
logger_config['experiment_name'] = f'{DATASET}-train-{EXP_NAME}'
else:
logger_config['experiment_key'] = EXP_KEY
else:
logger_config = None
callbacks = [
EarlyStopping(monitor='val_loss', min_delta=1e-4, patience=10, mode='min'),
ModelCheckpoint(
monitor='val_loss',
mode='min',
save_top_k=1,
dirpath=ckpt_path,
save_last=True
)
]
trainer_args = {
'accelerator': 'gpu',
'devices': [0],
'max_epochs': EPOCHS,
'check_val_every_n_epoch': 1,
'callbacks': callbacks,
'fast_dev_run': DEBUG_RUN
}
if COMET:
trainer_args['logger'] = CometLogger(**logger_config)
trainer = pl.Trainer(**trainer_args)
if TEST is None:
fit_args = {}
if RESUME:
fit_args['ckpt_path'] = RESUME
print(f'Setting ckpt path to {RESUME}')
trainer.fit(model, train_loader, val_loader, **fit_args)
trainer_args['logger'].experiment.log_model(
'best model', trainer.checkpoint_callback.best_model_path
)
best_model_path = callbacks[1].best_model_path
export_model_path(ckpt_path, best_model_path)
test_args = {}
if not TEST is None:
if MODEL_CLS == 'vig':
model = PyramidViGLT(**model_config)
elif MODEL_CLS.startswith('resnet'):
model = ResNetLT(MODEL_CLS, **model_config)
elif MODEL_CLS == 'vit':
model = ViTLT(**model_config)
state = torch.load(TEST)
model.load_state_dict(state['state_dict'])
else:
test_args['ckpt_path'] = 'best'
model.eval()
trainer.test(model, test_loader, **test_args)