|
4 | 4 | # @GitHub : https://github.com/lartpang
|
5 | 5 |
|
6 | 6 | import os
|
| 7 | +import sys |
| 8 | +from pprint import pprint |
7 | 9 |
|
8 | 10 | import cv2
|
9 |
| -from tqdm import tqdm |
10 | 11 |
|
11 |
| -# pip install pysodmetrics |
| 12 | +sys.path.append("..") |
12 | 13 | from py_sod_metrics import MAE, Emeasure, Fmeasure, Smeasure, WeightedFmeasure
|
13 | 14 |
|
14 | 15 | FM = Fmeasure()
|
|
21 | 22 | mask_root = os.path.join(data_root, "masks")
|
22 | 23 | pred_root = os.path.join(data_root, "preds")
|
23 | 24 | mask_name_list = sorted(os.listdir(mask_root))
|
24 |
| -for mask_name in tqdm(mask_name_list, total=len(mask_name_list)): |
| 25 | +for i, mask_name in enumerate(mask_name_list): |
| 26 | + print(f"[{i}] Processing {mask_name}...") |
25 | 27 | mask_path = os.path.join(mask_root, mask_name)
|
26 | 28 | pred_path = os.path.join(pred_root, mask_name)
|
27 | 29 | mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
|
|
50 | 52 | "maxFm": fm["curve"].max(),
|
51 | 53 | }
|
52 | 54 |
|
53 |
| -print(results) |
54 |
| -# 'Smeasure': 0.9029763868504661, |
55 |
| -# 'wFmeasure': 0.5579812753638986, |
56 |
| -# 'MAE': 0.03705558476661653, |
57 |
| -# 'adpEm': 0.9408760066970631, |
58 |
| -# 'meanEm': 0.9566258293508715, |
59 |
| -# 'maxEm': 0.966954482892271, |
60 |
| -# 'adpFm': 0.5816750824038355, |
61 |
| -# 'meanFm': 0.577051059518767, |
62 |
| -# 'maxFm': 0.5886784581120638 |
| 55 | +default_results = { |
| 56 | + "v1_2_3": { |
| 57 | + "Smeasure": 0.9029763868504661, |
| 58 | + "wFmeasure": 0.5579812753638986, |
| 59 | + "MAE": 0.03705558476661653, |
| 60 | + "adpEm": 0.9408760066970631, |
| 61 | + "meanEm": 0.9566258293508715, |
| 62 | + "maxEm": 0.966954482892271, |
| 63 | + "adpFm": 0.5816750824038355, |
| 64 | + "meanFm": 0.577051059518767, |
| 65 | + "maxFm": 0.5886784581120638, |
| 66 | + }, |
| 67 | + "v1_3_0": { |
| 68 | + "Smeasure": 0.9029761578759272, |
| 69 | + "wFmeasure": 0.5579812753638986, |
| 70 | + "MAE": 0.03705558476661653, |
| 71 | + "adpEm": 0.9408760066970617, |
| 72 | + "meanEm": 0.9566258293508704, |
| 73 | + "maxEm": 0.9669544828922699, |
| 74 | + "adpFm": 0.5816750824038355, |
| 75 | + "meanFm": 0.577051059518767, |
| 76 | + "maxFm": 0.5886784581120638, |
| 77 | + }, |
| 78 | +} |
63 | 79 |
|
64 |
| -# version 1.2.3 |
65 |
| -# 'Smeasure': 0.9029763868504661, |
66 |
| -# 'wFmeasure': 0.5579812753638986, |
67 |
| -# 'MAE': 0.03705558476661653, |
68 |
| -# 'adpEm': 0.9408760066970631, |
69 |
| -# 'meanEm': 0.9566258293508715, |
70 |
| -# 'maxEm': 0.966954482892271, |
71 |
| -# 'adpFm': 0.5816750824038355, |
72 |
| -# 'meanFm': 0.577051059518767, |
73 |
| -# 'maxFm': 0.5886784581120638 |
| 80 | +pprint(results) |
| 81 | +pprint({k: default_value - results[k] for k, default_value in default_results["v1_3_0"].items()}) |
0 commit comments