|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +# @Time : 2021/1/4 |
| 3 | +# @Author : Lart Pang |
| 4 | +# @GitHub : https://github.com/lartpang |
| 5 | + |
| 6 | +import numpy as np |
| 7 | + |
| 8 | +from py_sod_metrics import Emeasure, Fmeasure, MAE, Smeasure, WeightedFmeasure |
| 9 | + |
| 10 | + |
| 11 | +def ndarray_to_basetype(data): |
| 12 | + """ |
| 13 | + 将单独的ndarray,或者tuple,list或者dict中的ndarray转化为基本数据类型, |
| 14 | + 即列表(.tolist())和python标量 |
| 15 | + """ |
| 16 | + |
| 17 | + def _to_list_or_scalar(item): |
| 18 | + listed_item = item.tolist() |
| 19 | + if isinstance(listed_item, list) and len(listed_item) == 1: |
| 20 | + listed_item = listed_item[0] |
| 21 | + return listed_item |
| 22 | + |
| 23 | + if isinstance(data, (tuple, list)): |
| 24 | + results = [_to_list_or_scalar(item) for item in data] |
| 25 | + elif isinstance(data, dict): |
| 26 | + results = {k: _to_list_or_scalar(item) for k, item in data.items()} |
| 27 | + else: |
| 28 | + assert isinstance(data, np.ndarray) |
| 29 | + results = _to_list_or_scalar(data) |
| 30 | + return results |
| 31 | + |
| 32 | + |
| 33 | +class CalTotalMetric(object): |
| 34 | + def __init__(self): |
| 35 | + """ |
| 36 | + 用于统计各种指标的类 |
| 37 | + https://github.com/lartpang/Py-SOD-VOS-EvalToolkit/blob/81ce89da6813fdd3e22e3f20e3a09fe1e4a1a87c/utils/recorders/metric_recorder.py |
| 38 | + """ |
| 39 | + self.mae = MAE() |
| 40 | + self.fm = Fmeasure() |
| 41 | + self.sm = Smeasure() |
| 42 | + self.em = Emeasure() |
| 43 | + self.wfm = WeightedFmeasure() |
| 44 | + |
| 45 | + def step(self, pre: np.ndarray, gt: np.ndarray): |
| 46 | + assert pre.shape == gt.shape |
| 47 | + assert pre.dtype == np.uint8 |
| 48 | + assert gt.dtype == np.uint8 |
| 49 | + |
| 50 | + self.mae.step(pre, gt) |
| 51 | + self.sm.step(pre, gt) |
| 52 | + self.fm.step(pre, gt) |
| 53 | + self.em.step(pre, gt) |
| 54 | + self.wfm.step(pre, gt) |
| 55 | + |
| 56 | + def get_results(self, num_bits: int = 3, return_ndarray: bool = False) -> dict: |
| 57 | + """ |
| 58 | + 返回指标计算结果: |
| 59 | +
|
| 60 | + - 曲线数据(sequential): fm/em/p/r |
| 61 | + - 数值指标(numerical): SM/MAE/maxE/avgE/adpE/maxF/avgF/adpF/wFm |
| 62 | + """ |
| 63 | + fm_info = self.fm.get_results() |
| 64 | + fm = fm_info["fm"] |
| 65 | + pr = fm_info["pr"] |
| 66 | + wfm = self.wfm.get_results()["wfm"] |
| 67 | + sm = self.sm.get_results()["sm"] |
| 68 | + em = self.em.get_results()["em"] |
| 69 | + mae = self.mae.get_results()["mae"] |
| 70 | + |
| 71 | + sequential_results = { |
| 72 | + "fm": np.flip(fm["curve"]), |
| 73 | + "em": np.flip(em["curve"]), |
| 74 | + "p": np.flip(pr["p"]), |
| 75 | + "r": np.flip(pr["r"]), |
| 76 | + } |
| 77 | + numerical_results = { |
| 78 | + "SM": sm, |
| 79 | + "MAE": mae, |
| 80 | + "maxE": em["curve"].max(), |
| 81 | + "avgE": em["curve"].mean(), |
| 82 | + "adpE": em["adp"], |
| 83 | + "maxF": fm["curve"].max(), |
| 84 | + "avgF": fm["curve"].mean(), |
| 85 | + "adpF": fm["adp"], |
| 86 | + "wFm": wfm, |
| 87 | + } |
| 88 | + if num_bits is not None and isinstance(num_bits, int): |
| 89 | + numerical_results = {k: v.round(num_bits) for k, v in numerical_results.items()} |
| 90 | + if not return_ndarray: |
| 91 | + sequential_results = ndarray_to_basetype(sequential_results) |
| 92 | + numerical_results = ndarray_to_basetype(numerical_results) |
| 93 | + return {"sequential": sequential_results, "numerical": numerical_results} |
| 94 | + |
| 95 | + |
| 96 | +if __name__ == "__main__": |
| 97 | + data_loader = ... |
| 98 | + model = ... |
| 99 | + |
| 100 | + cal_total_seg_metrics = CalTotalMetric() |
| 101 | + for batch in data_loader: |
| 102 | + seg_preds = model(batch) |
| 103 | + for seg_pred in seg_preds: |
| 104 | + mask_array = ... |
| 105 | + cal_total_seg_metrics.step(seg_pred, mask_array) |
| 106 | + fixed_seg_results = cal_total_seg_metrics.get_results() |
0 commit comments