From d4acba44d2d3a4f0b06415374d48e6f531062753 Mon Sep 17 00:00:00 2001 From: Gabriela Barrozo Guedes Date: Sun, 5 May 2019 21:11:36 -0300 Subject: [PATCH 1/5] Adds a better description to the problems found in intents notebook Signed-off-by: Gabriela Barrozo Guedes --- notebooks/intents/intents-analysis.ipynb | 4849 +++------------------- 1 file changed, 648 insertions(+), 4201 deletions(-) diff --git a/notebooks/intents/intents-analysis.ipynb b/notebooks/intents/intents-analysis.ipynb index 21792e87..ea48c8d0 100644 --- a/notebooks/intents/intents-analysis.ipynb +++ b/notebooks/intents/intents-analysis.ipynb @@ -18,12 +18,292 @@ "source": [ "## Instalação\n", "\n", - "### Configurando jupyter" + "### Configurando jupyter e instalando as dependências do bot" ] }, { "cell_type": "code", "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: rasa-nlu==0.14.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 1)) (0.14.6)\n", + "Requirement already satisfied: rasa-core==0.13.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 2)) (0.13.1)\n", + "Requirement already satisfied: rasa-nlu==0.14.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 1)) (0.14.6)\n", + "Requirement already satisfied: rasa-core==0.13.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 2)) (0.13.1)\n", + "Requirement already satisfied: sklearn-crfsuite==0.3.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 3)) (0.3.6)\n", + "Requirement already satisfied: nltk==3.3 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 4)) (3.3)\n", + "Requirement already satisfied: sklearn-crfsuite==0.3.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 3)) (0.3.6)\n", + "Requirement already satisfied: nltk==3.3 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 4)) (3.3)\n", + "Requirement already satisfied: rocketchat-py-sdk==0.0.8 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 5)) (0.0.8)\n", + "Requirement already satisfied: elasticsearch==6.3.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 6)) (6.3.1)\n", + "Requirement already satisfied: tqdm~=4.19 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (4.31.1)\n", + "Requirement already satisfied: six~=1.11 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.12.0)\n", + "Requirement already satisfied: matplotlib~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.2.4)\n", + "Requirement already satisfied: rocketchat-py-sdk==0.0.8 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 5)) (0.0.8)\n", + "Requirement already satisfied: elasticsearch==6.3.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 6)) (6.3.1)\n", + "Requirement already satisfied: tqdm~=4.19 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (4.31.1)\n", + "Requirement already satisfied: six~=1.11 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.12.0)\n", + "Requirement already satisfied: matplotlib~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.2.4)\n", + "Requirement already satisfied: future~=0.17.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.17.1)\n", + "Requirement already satisfied: coloredlogs~=10.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (10.0)\n", + "Requirement already satisfied: requests~=2.20 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.21.0)\n", + "Requirement already satisfied: boto3~=1.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.9.136)\n", + "Requirement already satisfied: gevent~=1.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.4.0)\n", + "Requirement already satisfied: future~=0.17.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.17.1)\n", + "Requirement already satisfied: coloredlogs~=10.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (10.0)\n", + "Requirement already satisfied: requests~=2.20 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.21.0)\n", + "Requirement already satisfied: boto3~=1.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.9.136)\n", + "Requirement already satisfied: gevent~=1.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.4.0)\n", + "Requirement already satisfied: cloudpickle~=0.6.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.6.1)\n", + "Requirement already satisfied: scikit-learn~=0.20.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.20.3)\n", + "Requirement already satisfied: simplejson~=3.13 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (3.16.0)\n", + "Requirement already satisfied: ruamel.yaml~=0.15.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.15.91)\n", + "Requirement already satisfied: cloudpickle~=0.6.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.6.1)\n", + "Requirement already satisfied: scikit-learn~=0.20.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.20.3)\n", + "Requirement already satisfied: simplejson~=3.13 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (3.16.0)\n", + "Requirement already satisfied: ruamel.yaml~=0.15.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.15.91)\n", + "Requirement already satisfied: typing~=3.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (3.6.6)\n", + "Requirement already satisfied: numpy>=1.13 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.16.3)\n", + "Requirement already satisfied: jsonschema~=2.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.6.0)\n", + "Requirement already satisfied: packaging~=18.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (18.0)\n", + "Requirement already satisfied: klein~=17.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (17.10.0)\n", + "Requirement already satisfied: pika~=0.12.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.12.0)\n", + "Requirement already satisfied: python-socketio~=3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.1.2)\n", + "Requirement already satisfied: pymongo~=3.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.8.0)\n", + "Requirement already satisfied: typing~=3.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (3.6.6)\n", + "Requirement already satisfied: numpy>=1.13 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.16.3)\n", + "Requirement already satisfied: jsonschema~=2.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.6.0)\n", + "Requirement already satisfied: packaging~=18.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (18.0)\n", + "Requirement already satisfied: klein~=17.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (17.10.0)\n", + "Requirement already satisfied: pika~=0.12.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.12.0)\n", + "Requirement already satisfied: python-socketio~=3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.1.2)\n", + "Requirement already satisfied: pymongo~=3.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.8.0)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: pydot~=1.4 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.4.1)\n", + "Requirement already satisfied: fakeredis~=0.10.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.10.3)\n", + "Requirement already satisfied: twilio~=6.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (6.26.2)\n", + "Requirement already satisfied: mattermostwrapper~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.1)\n", + "Requirement already satisfied: pytz~=2018.9 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2018.9)\n", + "Requirement already satisfied: python-telegram-bot~=11.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (11.1.0)\n", + "Requirement already satisfied: flask-jwt-simple~=0.0.3 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.0.3)\n", + "Requirement already satisfied: pydot~=1.4 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.4.1)\n", + "Requirement already satisfied: fakeredis~=0.10.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.10.3)\n", + "Requirement already satisfied: twilio~=6.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (6.26.2)\n", + "Requirement already satisfied: mattermostwrapper~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.1)\n", + "Requirement already satisfied: pytz~=2018.9 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2018.9)\n", + "Requirement already satisfied: python-telegram-bot~=11.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (11.1.0)\n", + "Requirement already satisfied: flask-jwt-simple~=0.0.3 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.0.3)\n", + "Requirement already satisfied: rocketchat-API~=0.6.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.6.31)\n", + "Requirement already satisfied: flask~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.2)\n", + "Requirement already satisfied: slackclient~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.3.1)\n", + "Requirement already satisfied: flask-cors~=3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.0.7)\n", + "Requirement already satisfied: rocketchat-API~=0.6.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.6.31)\n", + "Requirement already satisfied: flask~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.2)\n", + "Requirement already satisfied: slackclient~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.3.1)\n", + "Requirement already satisfied: flask-cors~=3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.0.7)\n", + "Requirement already satisfied: colorhash~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.2)\n", + "Requirement already satisfied: keras-applications==1.0.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.6)\n", + "Requirement already satisfied: scipy~=1.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.2.1)\n", + "Requirement already satisfied: rasa-core-sdk~=0.12.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.12.2)\n", + "Requirement already satisfied: terminaltables~=3.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.1.0)\n", + "Requirement already satisfied: networkx~=2.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.3)\n", + "Requirement already satisfied: colorhash~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.2)\n", + "Requirement already satisfied: keras-applications==1.0.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.6)\n", + "Requirement already satisfied: scipy~=1.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.2.1)\n", + "Requirement already satisfied: rasa-core-sdk~=0.12.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.12.2)\n", + "Requirement already satisfied: terminaltables~=3.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.1.0)\n", + "Requirement already satisfied: networkx~=2.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.3)\n", + "Requirement already satisfied: colorclass~=2.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.2.0)\n", + "Requirement already satisfied: questionary>=1.0.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.1)\n", + "Requirement already satisfied: webexteamssdk~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.1)\n", + "Requirement already satisfied: colorclass~=2.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.2.0)\n", + "Requirement already satisfied: questionary>=1.0.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.1)\n", + "Requirement already satisfied: webexteamssdk~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.1)\n", + "Requirement already satisfied: keras-preprocessing==1.0.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.5)\n", + "Requirement already satisfied: pykwalify~=1.7.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.7.0)\n", + "Requirement already satisfied: fbmessenger~=5.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (5.6.0)\n", + "Requirement already satisfied: python-dateutil~=2.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.8.0)\n", + "Requirement already satisfied: redis~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.10.6)\n", + "Requirement already satisfied: tensorflow~=1.12.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.12.2)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: keras-preprocessing==1.0.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.5)\n", + "Requirement already satisfied: pykwalify~=1.7.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.7.0)\n", + "Requirement already satisfied: fbmessenger~=5.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (5.6.0)\n", + "Requirement already satisfied: python-dateutil~=2.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.8.0)\n", + "Requirement already satisfied: redis~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.10.6)\n", + "Requirement already satisfied: tensorflow~=1.12.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.12.2)\n", + "Requirement already satisfied: apscheduler~=3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.6.0)\n", + "Requirement already satisfied: apscheduler~=3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.6.0)\n", + "Requirement already satisfied: jsonpickle~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1)\n", + "Requirement already satisfied: python-crfsuite>=0.8.3 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from sklearn-crfsuite==0.3.6->-r ../../docker/bot/requirements.txt (line 3)) (0.9.6)\n", + "Requirement already satisfied: tabulate in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from sklearn-crfsuite==0.3.6->-r ../../docker/bot/requirements.txt (line 3)) (0.8.3)\n", + "Requirement already satisfied: python-ddp==0.1.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (0.1.5)\n", + "Requirement already satisfied: DateTime==4.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (4.2)\n", + "Requirement already satisfied: pyee==5.0.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (5.0.0)\n", + "Requirement already satisfied: urllib3>=1.21.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from elasticsearch==6.3.1->-r ../../docker/bot/requirements.txt (line 6)) (1.24.1)\n", + "Requirement already satisfied: jsonpickle~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1)\n", + "Requirement already satisfied: python-crfsuite>=0.8.3 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from sklearn-crfsuite==0.3.6->-r ../../docker/bot/requirements.txt (line 3)) (0.9.6)\n", + "Requirement already satisfied: tabulate in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from sklearn-crfsuite==0.3.6->-r ../../docker/bot/requirements.txt (line 3)) (0.8.3)\n", + "Requirement already satisfied: python-ddp==0.1.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (0.1.5)\n", + "Requirement already satisfied: DateTime==4.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (4.2)\n", + "Requirement already satisfied: pyee==5.0.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (5.0.0)\n", + "Requirement already satisfied: urllib3>=1.21.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from elasticsearch==6.3.1->-r ../../docker/bot/requirements.txt (line 6)) (1.24.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from matplotlib~=2.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from matplotlib~=2.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from matplotlib~=2.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.4.0)\n", + "Requirement already satisfied: humanfriendly>=4.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from coloredlogs~=10.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (4.18)\n", + "Requirement already satisfied: idna<2.9,>=2.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from requests~=2.20->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.8)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from requests~=2.20->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2019.3.9)\n", + "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from requests~=2.20->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (3.0.4)\n", + "Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.9.4)\n", + "Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.2.0)\n", + "Requirement already satisfied: botocore<1.13.0,>=1.12.136 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.12.136)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from matplotlib~=2.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from matplotlib~=2.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from matplotlib~=2.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.4.0)\n", + "Requirement already satisfied: humanfriendly>=4.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from coloredlogs~=10.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (4.18)\n", + "Requirement already satisfied: idna<2.9,>=2.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from requests~=2.20->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.8)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from requests~=2.20->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2019.3.9)\n", + "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from requests~=2.20->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (3.0.4)\n", + "Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.9.4)\n", + "Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.2.0)\n", + "Requirement already satisfied: botocore<1.13.0,>=1.12.136 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.12.136)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: greenlet>=0.4.14; platform_python_implementation == \"CPython\" in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from gevent~=1.2->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.4.15)\n", + "Requirement already satisfied: incremental in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (17.5.0)\n", + "Requirement already satisfied: Twisted>=15.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (19.2.0)\n", + "Requirement already satisfied: greenlet>=0.4.14; platform_python_implementation == \"CPython\" in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from gevent~=1.2->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.4.15)\n", + "Requirement already satisfied: incremental in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (17.5.0)\n", + "Requirement already satisfied: Twisted>=15.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (19.2.0)\n", + "Requirement already satisfied: werkzeug in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.15.2)\n", + "Requirement already satisfied: python-engineio>=3.2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-socketio~=3.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.5.1)\n", + "Requirement already satisfied: werkzeug in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.15.2)\n", + "Requirement already satisfied: python-engineio>=3.2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-socketio~=3.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.5.1)\n", + "Requirement already satisfied: PyJWT>=1.4.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from twilio~=6.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.7.1)\n", + "Requirement already satisfied: pysocks; python_version >= \"3.0\" in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from twilio~=6.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.6.8)\n", + "Requirement already satisfied: cryptography in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.6.1)\n", + "Requirement already satisfied: Jinja2>=2.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.10)\n", + "Requirement already satisfied: PyJWT>=1.4.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from twilio~=6.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.7.1)\n", + "Requirement already satisfied: pysocks; python_version >= \"3.0\" in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from twilio~=6.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.6.8)\n", + "Requirement already satisfied: cryptography in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.6.1)\n", + "Requirement already satisfied: Jinja2>=2.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.10)\n", + "Requirement already satisfied: itsdangerous>=0.24 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.0)\n", + "Requirement already satisfied: click>=5.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (7.0)\n", + "Requirement already satisfied: websocket-client<0.55.0,>=0.35 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from slackclient~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.54.0)\n", + "Requirement already satisfied: h5py in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from keras-applications==1.0.6->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.9.0)\n", + "Requirement already satisfied: ConfigArgParse~=0.13.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core-sdk~=0.12.1->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.13.0)\n", + "Requirement already satisfied: decorator>=4.3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from networkx~=2.2->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (4.4.0)\n", + "Requirement already satisfied: prompt-toolkit~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from questionary>=1.0.1->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.0.9)\n", + "Requirement already satisfied: requests-toolbelt in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from webexteamssdk~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.9.1)\n", + "Requirement already satisfied: PyYAML>=3.11 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from pykwalify~=1.7.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (5.1)\n", + "Requirement already satisfied: docopt>=0.6.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from pykwalify~=1.7.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.6.2)\n", + "Requirement already satisfied: tensorboard<1.13.0,>=1.12.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.12.2)\n", + "Requirement already satisfied: itsdangerous>=0.24 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.0)\n", + "Requirement already satisfied: click>=5.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (7.0)\n", + "Requirement already satisfied: websocket-client<0.55.0,>=0.35 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from slackclient~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.54.0)\n", + "Requirement already satisfied: h5py in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from keras-applications==1.0.6->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.9.0)\n", + "Requirement already satisfied: ConfigArgParse~=0.13.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core-sdk~=0.12.1->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.13.0)\n", + "Requirement already satisfied: decorator>=4.3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from networkx~=2.2->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (4.4.0)\n", + "Requirement already satisfied: prompt-toolkit~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from questionary>=1.0.1->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.0.9)\n", + "Requirement already satisfied: requests-toolbelt in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from webexteamssdk~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.9.1)\n", + "Requirement already satisfied: PyYAML>=3.11 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from pykwalify~=1.7.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (5.1)\n", + "Requirement already satisfied: docopt>=0.6.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from pykwalify~=1.7.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.6.2)\n", + "Requirement already satisfied: tensorboard<1.13.0,>=1.12.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.12.2)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: astor>=0.6.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.7.1)\n", + "Requirement already satisfied: wheel>=0.26 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.33.1)\n", + "Requirement already satisfied: protobuf>=3.6.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.7.1)\n", + "Requirement already satisfied: grpcio>=1.8.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.20.1)\n", + "Requirement already satisfied: termcolor>=1.1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.0)\n", + "Requirement already satisfied: gast>=0.2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.2.2)\n", + "Requirement already satisfied: absl-py>=0.1.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.7.1)\n", + "Requirement already satisfied: setuptools>=0.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from apscheduler~=3.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (40.8.0)\n", + "Requirement already satisfied: tzlocal>=1.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from apscheduler~=3.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.5.1)\n", + "Requirement already satisfied: meteor-ejson in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-ddp==0.1.5->rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (1.1.0)\n", + "Requirement already satisfied: astor>=0.6.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.7.1)\n", + "Requirement already satisfied: wheel>=0.26 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.33.1)\n", + "Requirement already satisfied: protobuf>=3.6.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.7.1)\n", + "Requirement already satisfied: grpcio>=1.8.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.20.1)\n", + "Requirement already satisfied: termcolor>=1.1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.0)\n", + "Requirement already satisfied: gast>=0.2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.2.2)\n", + "Requirement already satisfied: absl-py>=0.1.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.7.1)\n", + "Requirement already satisfied: setuptools>=0.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from apscheduler~=3.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (40.8.0)\n", + "Requirement already satisfied: tzlocal>=1.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from apscheduler~=3.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.5.1)\n", + "Requirement already satisfied: meteor-ejson in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-ddp==0.1.5->rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (1.1.0)\n", + "Requirement already satisfied: ws4py in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-ddp==0.1.5->rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (0.5.1)\n", + "Requirement already satisfied: zope.interface in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from DateTime==4.2->rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (4.6.0)\n", + "Requirement already satisfied: docutils>=0.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from botocore<1.13.0,>=1.12.136->boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.14)\n", + "Requirement already satisfied: attrs>=17.4.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (19.1.0)\n", + "Requirement already satisfied: ws4py in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-ddp==0.1.5->rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (0.5.1)\n", + "Requirement already satisfied: zope.interface in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from DateTime==4.2->rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (4.6.0)\n", + "Requirement already satisfied: docutils>=0.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from botocore<1.13.0,>=1.12.136->boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.14)\n", + "Requirement already satisfied: attrs>=17.4.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (19.1.0)\n", + "Requirement already satisfied: Automat>=0.3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.7.0)\n", + "Requirement already satisfied: hyperlink>=17.1.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (19.0.0)\n", + "Requirement already satisfied: PyHamcrest>=1.9.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.9.0)\n", + "Requirement already satisfied: constantly>=15.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (15.1.0)\n", + "Requirement already satisfied: cffi!=1.11.3,>=1.8 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from cryptography->python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.12.3)\n", + "Requirement already satisfied: asn1crypto>=0.21.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from cryptography->python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.24.0)\n", + "Requirement already satisfied: MarkupSafe>=0.23 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Jinja2>=2.10->flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.1)\n", + "Requirement already satisfied: wcwidth in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from prompt-toolkit~=2.0->questionary>=1.0.1->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.1.7)\n", + "Requirement already satisfied: markdown>=2.6.8 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorboard<1.13.0,>=1.12.0->tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.1)\n", + "Requirement already satisfied: pycparser in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from cffi!=1.11.3,>=1.8->cryptography->python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.19)\n", + "Requirement already satisfied: Automat>=0.3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.7.0)\n", + "Requirement already satisfied: hyperlink>=17.1.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (19.0.0)\n", + "Requirement already satisfied: PyHamcrest>=1.9.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.9.0)\n", + "Requirement already satisfied: constantly>=15.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (15.1.0)\n", + "Requirement already satisfied: cffi!=1.11.3,>=1.8 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from cryptography->python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.12.3)\n", + "Requirement already satisfied: asn1crypto>=0.21.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from cryptography->python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.24.0)\n", + "Requirement already satisfied: MarkupSafe>=0.23 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Jinja2>=2.10->flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.1)\n", + "Requirement already satisfied: wcwidth in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from prompt-toolkit~=2.0->questionary>=1.0.1->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.1.7)\n", + "Requirement already satisfied: markdown>=2.6.8 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorboard<1.13.0,>=1.12.0->tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.1)\n", + "Requirement already satisfied: pycparser in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from cffi!=1.11.3,>=1.8->cryptography->python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.19)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mYou are using pip version 19.0.3, however version 19.1 is available.\n", + "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", + "\u001b[33mYou are using pip version 19.0.3, however version 19.1 is available.\n", + "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install -r ../../docker/bot/requirements.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": { "scrolled": true }, @@ -49,7 +329,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "scrolled": true }, @@ -58,7 +338,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "rasa_nlu: 0.14.1\n" + "rasa_nlu: 0.14.6\n", + "rasa_nlu: 0.14.6\n" ] } ], @@ -82,14 +363,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Na celula abaixo todas as intents na pasta `../data/intents/` serão utilizadas para gerar a matrix de confuzão para de avaliação do bot.\n", - "\n", - "Ela irá treinar o modelo e executar a avaliação que pode ser verificada na saída da célula abaixo." + "Abaixo será feito o treinamento do Rasa NLU com as intents do coach. Em seguida será feita a avaliação das intents treinadas." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": { "colab": { "autoexec": { @@ -120,68 +399,136 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/captacao.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/processo.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/processo.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 43 (3 distinct intents)\n", - "\t- Found intents: 'captacao_quando_captar', 'captacao_como_captar', 'captacao'\n", + "\t- intent examples: 240 (19 distinct intents)\n", + "\t- Found intents: 'processo_analise_de_resultados', 'processo_como_funciona', 'processo_prazo_desistir_recurso', 'processo_prazo_apresentar_proposta', 'processo_prazo_analise_tecnica', 'processo_execucao', 'processo_definicao_etapas', 'processo_prazo', 'processo_prazo_analise_proposta', 'processo_preenchimento', 'processo_prazo_desarquivar', 'processo_admissibilidade', 'processo_prazo_periodo_captacao', 'processo_reativacao_de_proposta', 'processo_prazo_envio_cnae', 'processo_prazo_prestacao_contas', 'processo_prazo_diligencias', 'processo_aprovacao', 'processo_prazo_readequacao'\n", "\t- entity examples: 0 (0 distinct entities)\n", "\t- found entities: \n", "\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/salic.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 144 (14 distinct intents)\n", - "\t- Found intents: 'salic_cadastro_proponente', 'salic_preenchimento_campo_custo_auditoria', 'salic_erros_achar_proposta', 'salic_recuperacao_de_senha', 'salic_preenchimento', 'salic_preenchimento_cadastro_agencia_bancaria', 'salic_preenchimento_vinculo_cpf_proposta', 'salic_erros_vinculo_cpf_cnpj', 'salic_erros_salvamento_de_proposta', 'salic_erros', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'salic_cadastro_usuario', 'salic_erros_planilha_desapareceu', 'salic_preenchimento_valor_ingresso'\n", + "\t- intent examples: 240 (19 distinct intents)\n", + "\t- Found intents: 'processo_analise_de_resultados', 'processo_como_funciona', 'processo_prazo_desistir_recurso', 'processo_prazo_apresentar_proposta', 'processo_prazo_analise_tecnica', 'processo_execucao', 'processo_definicao_etapas', 'processo_prazo', 'processo_prazo_analise_proposta', 'processo_preenchimento', 'processo_prazo_desarquivar', 'processo_admissibilidade', 'processo_prazo_periodo_captacao', 'processo_reativacao_de_proposta', 'processo_prazo_envio_cnae', 'processo_prazo_prestacao_contas', 'processo_prazo_diligencias', 'processo_aprovacao', 'processo_prazo_readequacao'\n", "\t- entity examples: 0 (0 distinct entities)\n", "\t- found entities: \n", "\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/lei_rouanet.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/lei_rouanet.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/lei_rouanet.md is md\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 467 (25 distinct intents)\n", + "\t- Found intents: 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'lei_rouanet_o_que_eh', 'lei_rouanet_comercializacao_de_ingressos', 'lei_rouanet_valor_maximo_geral', 'lei_rouanet_valor_maximo_pessoa_fisica', 'lei_rouanet_origem_do_dinheiro', 'lei_rouanet_quem_pode_incentivar', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_analise_tecnica', 'lei_rouanet_valor_maximo_projeto', 'lei_rouanet_promocao_de_marca', 'lei_rouanet_quem_pode_ser_proponente', 'lei_rouanet_quantidade_de_projetos', 'lei_rouanet_valor_maximo_pessoa_juridica', 'lei_rouanet_denuncia', 'lei_rouanet_democratizacao', 'lei_rouanet_valores_pagamento_caches', 'lei_rouanet_apresentacao_de_proposta', 'lei_rouanet_decisao_final', 'lei_rouanet_etapas_aprovacao_projeto', 'lei_rouanet_divulgacao_patrocinio', 'lei_rouanet_analise_pela_cnic', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'lei_rouanet_analise_de_admissibilidade', 'lei_rouanet_receber_incetivo_de_parentes'\n", + "\t- entity examples: 17 (1 distinct entities)\n", + "\t- found entities: 'lei_rouanet'\n", + "\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 405 (23 distinct intents)\n", - "\t- Found intents: 'lei_rouanet_analise_tecnica', 'lei_rouanet_quem_pode_incentivar', 'lei_rouanet_valor_maximo_pessoa_fisica', 'lei_rouanet_valor_maximo_pessoa_juridica', 'lei_rouanet_analise_de_admissibilidade', 'lei_rouanet_apresentacao_de_proposta', 'lei_rouanet_origem_do_dinheiro', 'lei_rouanet_analise_pela_cnic', 'lei_rouanet_valor_maximo_geral', 'lei_rouanet_quantidade_de_projetos', 'lei_rouanet_etapas_aprovacao_projeto', 'lei_rouanet_o_que_eh', 'lei_rouanet_valores_pagamento_caches', 'lei_rouanet_decisao_final', 'lei_rouanet_denuncia', 'lei_rouanet_valor_maximo_projeto', 'lei_rouanet_quem_pode_ser_proponente', 'lei_rouanet_comercializacao_de_ingressos', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'lei_rouanet_divulgacao_patrocinio', 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_promocao_de_marca'\n", + "\t- intent examples: 467 (25 distinct intents)\n", + "\t- Found intents: 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'lei_rouanet_o_que_eh', 'lei_rouanet_comercializacao_de_ingressos', 'lei_rouanet_valor_maximo_geral', 'lei_rouanet_valor_maximo_pessoa_fisica', 'lei_rouanet_origem_do_dinheiro', 'lei_rouanet_quem_pode_incentivar', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_analise_tecnica', 'lei_rouanet_valor_maximo_projeto', 'lei_rouanet_promocao_de_marca', 'lei_rouanet_quem_pode_ser_proponente', 'lei_rouanet_quantidade_de_projetos', 'lei_rouanet_valor_maximo_pessoa_juridica', 'lei_rouanet_denuncia', 'lei_rouanet_democratizacao', 'lei_rouanet_valores_pagamento_caches', 'lei_rouanet_apresentacao_de_proposta', 'lei_rouanet_decisao_final', 'lei_rouanet_etapas_aprovacao_projeto', 'lei_rouanet_divulgacao_patrocinio', 'lei_rouanet_analise_pela_cnic', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'lei_rouanet_analise_de_admissibilidade', 'lei_rouanet_receber_incetivo_de_parentes'\n", "\t- entity examples: 17 (1 distinct entities)\n", "\t- found entities: 'lei_rouanet'\n", "\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/geral.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/captacao.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/captacao.md is md\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 43 (3 distinct intents)\n", + "\t- Found intents: 'captacao_como_captar', 'captacao_quando_captar', 'captacao'\n", + "\t- entity examples: 0 (0 distinct entities)\n", + "\t- found entities: \n", + "\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 43 (3 distinct intents)\n", + "\t- Found intents: 'captacao_como_captar', 'captacao_quando_captar', 'captacao'\n", + "\t- entity examples: 0 (0 distinct entities)\n", + "\t- found entities: \n", + "\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/definicoes.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/definicoes.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 180 (11 distinct intents)\n", - "\t- Found intents: 'negar', 'tudo_bem', 'despedir', 'elogios', 'out_of_scope', 'cumprimentar', 'o_que_sei_falar', 'tem_wpp', 'afirmar', 'diga_mais', 'quem_eh_a_tais'\n", + "\t- intent examples: 86 (9 distinct intents)\n", + "\t- Found intents: 'definicao_tais', 'definicao_proponente', 'definicao_sefic', 'definicao_salic', 'definicao_minc', 'definicao_cnic', 'definicao_proposta', 'definicao_projeto', 'definicao_vinculada'\n", "\t- entity examples: 0 (0 distinct entities)\n", "\t- found entities: \n", "\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/definicoes.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 67 (9 distinct intents)\n", - "\t- Found intents: 'definicao_minc', 'definicao_tais', 'definicao_salic', 'definicao_proponente', 'definicao_proposta', 'definicao_sefic', 'definicao_cnic', 'definicao_vinculada', 'definicao_projeto'\n", + "\t- intent examples: 86 (9 distinct intents)\n", + "\t- Found intents: 'definicao_tais', 'definicao_proponente', 'definicao_sefic', 'definicao_salic', 'definicao_minc', 'definicao_cnic', 'definicao_proposta', 'definicao_projeto', 'definicao_vinculada'\n", "\t- entity examples: 0 (0 distinct entities)\n", "\t- found entities: \n", "\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/processo.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/geral.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/geral.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 212 (18 distinct intents)\n", - "\t- Found intents: 'processo_reativacao_de_proposta', 'processo_como_funciona', 'processo_prazo', 'processo_preenchimento', 'processo_definicao_etapas', 'processo_prazo_desistir_recurso', 'processo_prazo_analise_tecnica', 'processo_analise_de_resultados', 'processo_aprovacao', 'processo_prazo_envio_cnae', 'processo_prazo_diligencias', 'processo_prazo_desarquivar', 'processo_admissibilidade', 'processo_prazo_prestacao_contas', 'processo_prazo_readequacao', 'processo_execucao', 'processo_prazo_periodo_captacao', 'processo_prazo_analise_proposta'\n", + "\t- intent examples: 512 (13 distinct intents)\n", + "\t- Found intents: 'negar', 'quem_criou_a_tais', 'out_of_scope', 'elogios', 'o_que_sei_falar', 'diga_mais', 'expressoes_indesejadas', 'cumprimentar', 'afirmar', 'tem_wpp', 'erro_resposta_utter', 'tudo_bem', 'despedir'\n", "\t- entity examples: 0 (0 distinct entities)\n", "\t- found entities: \n", "\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 1051 (78 distinct intents)\n", - "\t- Found intents: 'negar', 'lei_rouanet_valor_maximo_pessoa_juridica', 'salic_preenchimento_campo_custo_auditoria', 'processo_como_funciona', 'lei_rouanet_origem_do_dinheiro', 'lei_rouanet_analise_pela_cnic', 'afirmar', 'definicao_vinculada', 'lei_rouanet_quantidade_de_projetos', 'definicao_tais', 'processo_prazo_envio_cnae', 'lei_rouanet_quem_pode_ser_proponente', 'lei_rouanet_divulgacao_patrocinio', 'salic_erros_planilha_desapareceu', 'definicao_minc', 'out_of_scope', 'definicao_salic', 'processo_reativacao_de_proposta', 'salic_erros_achar_proposta', 'salic_erros_vinculo_cpf_cnpj', 'processo_prazo_analise_tecnica', 'lei_rouanet_etapas_aprovacao_projeto', 'lei_rouanet_valores_pagamento_caches', 'tudo_bem', 'processo_prazo_desarquivar', 'lei_rouanet_decisao_final', 'salic_cadastro_proponente', 'o_que_sei_falar', 'captacao_como_captar', 'salic_recuperacao_de_senha', 'processo_prazo_analise_proposta', 'salic_preenchimento_cadastro_agencia_bancaria', 'diga_mais', 'definicao_projeto', 'lei_rouanet_analise_tecnica', 'lei_rouanet_quem_pode_incentivar', 'lei_rouanet_valor_maximo_pessoa_fisica', 'captacao_quando_captar', 'tem_wpp', 'lei_rouanet_apresentacao_de_proposta', 'processo_prazo', 'processo_preenchimento', 'processo_prazo_desistir_recurso', 'definicao_cnic', 'salic_erros_salvamento_de_proposta', 'lei_rouanet_valor_maximo_geral', 'processo_analise_de_resultados', 'salic_cadastro_usuario', 'salic_preenchimento_valor_ingresso', 'cumprimentar', 'processo_prazo_prestacao_contas', 'lei_rouanet_denuncia', 'lei_rouanet_valor_maximo_projeto', 'lei_rouanet_comercializacao_de_ingressos', 'definicao_proponente', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'captacao', 'processo_prazo_readequacao', 'definicao_sefic', 'salic_preenchimento_vinculo_cpf_proposta', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_promocao_de_marca', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'quem_eh_a_tais', 'despedir', 'elogios', 'lei_rouanet_analise_de_admissibilidade', 'salic_preenchimento', 'definicao_proposta', 'processo_definicao_etapas', 'processo_aprovacao', 'lei_rouanet_o_que_eh', 'processo_prazo_diligencias', 'processo_admissibilidade', 'processo_execucao', 'processo_prazo_periodo_captacao', 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'salic_erros'\n", + "\t- intent examples: 512 (13 distinct intents)\n", + "\t- Found intents: 'negar', 'quem_criou_a_tais', 'out_of_scope', 'elogios', 'o_que_sei_falar', 'diga_mais', 'expressoes_indesejadas', 'cumprimentar', 'afirmar', 'tem_wpp', 'erro_resposta_utter', 'tudo_bem', 'despedir'\n", + "\t- entity examples: 0 (0 distinct entities)\n", + "\t- found entities: \n", + "\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/salic.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/salic.md is md\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 144 (14 distinct intents)\n", + "\t- Found intents: 'salic_cadastro_proponente', 'salic_recuperacao_de_senha', 'salic_erros_vinculo_cpf_cnpj', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'salic_cadastro_usuario', 'salic_preenchimento_campo_custo_auditoria', 'salic_preenchimento_vinculo_cpf_proposta', 'salic_erros', 'salic_erros_planilha_desapareceu', 'salic_preenchimento_cadastro_agencia_bancaria', 'salic_erros_achar_proposta', 'salic_erros_salvamento_de_proposta', 'salic_preenchimento_valor_ingresso', 'salic_preenchimento'\n", + "\t- entity examples: 0 (0 distinct entities)\n", + "\t- found entities: \n", + "\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 144 (14 distinct intents)\n", + "\t- Found intents: 'salic_cadastro_proponente', 'salic_recuperacao_de_senha', 'salic_erros_vinculo_cpf_cnpj', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'salic_cadastro_usuario', 'salic_preenchimento_campo_custo_auditoria', 'salic_preenchimento_vinculo_cpf_proposta', 'salic_erros', 'salic_erros_planilha_desapareceu', 'salic_preenchimento_cadastro_agencia_bancaria', 'salic_erros_achar_proposta', 'salic_erros_salvamento_de_proposta', 'salic_preenchimento_valor_ingresso', 'salic_preenchimento'\n", + "\t- entity examples: 0 (0 distinct entities)\n", + "\t- found entities: \n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 1492 (83 distinct intents)\n", + "\t- Found intents: 'processo_analise_de_resultados', 'salic_cadastro_proponente', 'lei_rouanet_o_que_eh', 'processo_prazo_desistir_recurso', 'lei_rouanet_comercializacao_de_ingressos', 'salic_preenchimento_campo_custo_auditoria', 'processo_prazo_analise_tecnica', 'lei_rouanet_origem_do_dinheiro', 'salic_erros_planilha_desapareceu', 'expressoes_indesejadas', 'tem_wpp', 'processo_prazo_desarquivar', 'definicao_proponente', 'lei_rouanet_quantidade_de_projetos', 'lei_rouanet_valor_maximo_pessoa_juridica', 'lei_rouanet_denuncia', 'quem_criou_a_tais', 'out_of_scope', 'salic_cadastro_usuario', 'processo_reativacao_de_proposta', 'captacao', 'salic_erros_achar_proposta', 'processo_prazo_diligencias', 'salic_preenchimento_valor_ingresso', 'lei_rouanet_valor_maximo_pessoa_fisica', 'processo_execucao', 'lei_rouanet_quem_pode_incentivar', 'tudo_bem', 'processo_prazo_analise_proposta', 'processo_admissibilidade', 'lei_rouanet_quem_pode_ser_proponente', 'processo_prazo_periodo_captacao', 'lei_rouanet_decisao_final', 'lei_rouanet_divulgacao_patrocinio', 'salic_preenchimento_cadastro_agencia_bancaria', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'erro_resposta_utter', 'salic_erros_salvamento_de_proposta', 'lei_rouanet_analise_de_admissibilidade', 'processo_aprovacao', 'processo_prazo_readequacao', 'lei_rouanet_receber_incetivo_de_parentes', 'definicao_sefic', 'processo_prazo_apresentar_proposta', 'definicao_minc', 'lei_rouanet_valor_maximo_geral', 'definicao_cnic', 'elogios', 'lei_rouanet_valor_maximo_projeto', 'definicao_projeto', 'processo_preenchimento', 'despedir', 'definicao_tais', 'salic_erros_vinculo_cpf_cnpj', 'lei_rouanet_etapas_aprovacao_projeto', 'o_que_sei_falar', 'salic_erros', 'diga_mais', 'cumprimentar', 'afirmar', 'lei_rouanet_analise_pela_cnic', 'definicao_proposta', 'captacao_como_captar', 'negar', 'processo_como_funciona', 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'definicao_salic', 'salic_preenchimento_vinculo_cpf_proposta', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_analise_tecnica', 'lei_rouanet_promocao_de_marca', 'processo_definicao_etapas', 'processo_prazo', 'salic_preenchimento', 'lei_rouanet_democratizacao', 'salic_recuperacao_de_senha', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'lei_rouanet_valores_pagamento_caches', 'lei_rouanet_apresentacao_de_proposta', 'processo_prazo_envio_cnae', 'processo_prazo_prestacao_contas', 'captacao_quando_captar', 'definicao_vinculada'\n", + "\t- entity examples: 17 (1 distinct entities)\n", + "\t- found entities: 'lei_rouanet'\n", + "\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 1492 (83 distinct intents)\n", + "\t- Found intents: 'processo_analise_de_resultados', 'salic_cadastro_proponente', 'lei_rouanet_o_que_eh', 'processo_prazo_desistir_recurso', 'lei_rouanet_comercializacao_de_ingressos', 'salic_preenchimento_campo_custo_auditoria', 'processo_prazo_analise_tecnica', 'lei_rouanet_origem_do_dinheiro', 'salic_erros_planilha_desapareceu', 'expressoes_indesejadas', 'tem_wpp', 'processo_prazo_desarquivar', 'definicao_proponente', 'lei_rouanet_quantidade_de_projetos', 'lei_rouanet_valor_maximo_pessoa_juridica', 'lei_rouanet_denuncia', 'quem_criou_a_tais', 'out_of_scope', 'salic_cadastro_usuario', 'processo_reativacao_de_proposta', 'captacao', 'salic_erros_achar_proposta', 'processo_prazo_diligencias', 'salic_preenchimento_valor_ingresso', 'lei_rouanet_valor_maximo_pessoa_fisica', 'processo_execucao', 'lei_rouanet_quem_pode_incentivar', 'tudo_bem', 'processo_prazo_analise_proposta', 'processo_admissibilidade', 'lei_rouanet_quem_pode_ser_proponente', 'processo_prazo_periodo_captacao', 'lei_rouanet_decisao_final', 'lei_rouanet_divulgacao_patrocinio', 'salic_preenchimento_cadastro_agencia_bancaria', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'erro_resposta_utter', 'salic_erros_salvamento_de_proposta', 'lei_rouanet_analise_de_admissibilidade', 'processo_aprovacao', 'processo_prazo_readequacao', 'lei_rouanet_receber_incetivo_de_parentes', 'definicao_sefic', 'processo_prazo_apresentar_proposta', 'definicao_minc', 'lei_rouanet_valor_maximo_geral', 'definicao_cnic', 'elogios', 'lei_rouanet_valor_maximo_projeto', 'definicao_projeto', 'processo_preenchimento', 'despedir', 'definicao_tais', 'salic_erros_vinculo_cpf_cnpj', 'lei_rouanet_etapas_aprovacao_projeto', 'o_que_sei_falar', 'salic_erros', 'diga_mais', 'cumprimentar', 'afirmar', 'lei_rouanet_analise_pela_cnic', 'definicao_proposta', 'captacao_como_captar', 'negar', 'processo_como_funciona', 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'definicao_salic', 'salic_preenchimento_vinculo_cpf_proposta', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_analise_tecnica', 'lei_rouanet_promocao_de_marca', 'processo_definicao_etapas', 'processo_prazo', 'salic_preenchimento', 'lei_rouanet_democratizacao', 'salic_recuperacao_de_senha', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'lei_rouanet_valores_pagamento_caches', 'lei_rouanet_apresentacao_de_proposta', 'processo_prazo_envio_cnae', 'processo_prazo_prestacao_contas', 'captacao_quando_captar', 'definicao_vinculada'\n", "\t- entity examples: 17 (1 distinct entities)\n", "\t- found entities: 'lei_rouanet'\n", "\n", "INFO:rasa_nlu.model:Starting to train component tokenizer_whitespace\n", + "INFO:rasa_nlu.model:Starting to train component tokenizer_whitespace\n", + "INFO:rasa_nlu.model:Finished training component.\n", "INFO:rasa_nlu.model:Finished training component.\n", "INFO:rasa_nlu.model:Starting to train component ner_crf\n", + "INFO:rasa_nlu.model:Starting to train component ner_crf\n", + "INFO:rasa_nlu.model:Finished training component.\n", "INFO:rasa_nlu.model:Finished training component.\n", "INFO:rasa_nlu.model:Starting to train component ner_synonyms\n", + "INFO:rasa_nlu.model:Starting to train component ner_synonyms\n", + "INFO:rasa_nlu.model:Finished training component.\n", "INFO:rasa_nlu.model:Finished training component.\n", "INFO:rasa_nlu.model:Starting to train component intent_featurizer_count_vectors\n", + "INFO:rasa_nlu.model:Starting to train component intent_featurizer_count_vectors\n", + "INFO:rasa_nlu.model:Finished training component.\n", "INFO:rasa_nlu.model:Finished training component.\n", "INFO:rasa_nlu.model:Starting to train component intent_classifier_tensorflow_embedding\n", + "INFO:rasa_nlu.model:Starting to train component intent_classifier_tensorflow_embedding\n", + "INFO:rasa_nlu.classifiers.embedding_intent_classifier:Accuracy is updated every 10 epochs\n", "INFO:rasa_nlu.classifiers.embedding_intent_classifier:Accuracy is updated every 10 epochs\n", - "Epochs: 100%|██████████| 300/300 [00:41<00:00, 5.76it/s, loss=0.157, acc=0.999]\n", - "INFO:rasa_nlu.classifiers.embedding_intent_classifier:Finished training embedding classifier, loss=0.157, train accuracy=0.999\n", + "Epochs: 100%|██████████| 300/300 [01:41<00:00, 2.14it/s, loss=0.144, acc=0.998]\n", + "INFO:rasa_nlu.classifiers.embedding_intent_classifier:Finished training embedding classifier, loss=0.144, train accuracy=0.998\n", + "\n", + "INFO:rasa_nlu.classifiers.embedding_intent_classifier:Finished training embedding classifier, loss=0.144, train accuracy=0.998\n", + "INFO:rasa_nlu.model:Finished training component.\n", "INFO:rasa_nlu.model:Finished training component.\n", - "INFO:rasa_nlu.model:Successfully saved model into '/work/notebooks/intents/models/nlu/default/current'\n" + "INFO:rasa_nlu.model:Successfully saved model into '/Users/gabibs/Documents/Lappis/tais/notebooks/intents/models/nlu/default/current'\n", + "INFO:rasa_nlu.model:Successfully saved model into '/Users/gabibs/Documents/Lappis/tais/notebooks/intents/models/nlu/default/current'\n" ] } ], @@ -193,39 +540,13 @@ "from rasa_nlu import config\n", "\n", "\n", - "intents_directory = '../../bot/data/intents/'\n", - "\n", - "intents = {}\n", - "\n", - "for intent_file in os.listdir(intents_directory):\n", - " intent_file_path = os.path.join(intents_directory, intent_file)\n", - "\n", - " intents[intent_file] = {}\n", - "\n", - " intent_list = []\n", - " intent_name = None\n", - "\n", - " with open(intent_file_path) as f:\n", - " lines = f.readlines()\n", - "\n", - " for line in lines:\n", - " line = line.strip()\n", - "\n", - " if line.startswith('##'):\n", - " if intent_name is not None:\n", - " intents[intent_file][intent_name] = intent_list\n", - " intent_name = line.replace('## intent:', '') \n", - " intent_list = []\n", - "\n", - " elif line.startswith('- '):\n", - " intent_list.append(line.replace('- ', ''))\n", - "\n", + "intents_directory = '../../coach/data/intents/'\n", "\n", "# loading the nlu training samples\n", "training_data = load_data(intents_directory)\n", "\n", "# trainer to educate our pipeline\n", - "trainer = Trainer(config.load(\"../../bot/nlu_config.yml\"))\n", + "trainer = Trainer(config.load(\"../../coach/nlu_config.yml\"))\n", "\n", "# train the model!\n", "interpreter = trainer.train(training_data)\n", @@ -236,71 +557,228 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:tensorflow:Restoring parameters from /work/notebooks/intents/./models/nlu/default/current/intent_classifier_tensorflow_embedding.ckpt\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/captacao.md is md\n", + "INFO:tensorflow:Restoring parameters from /Users/gabibs/Documents/Lappis/tais/notebooks/intents/./models/nlu/default/current/intent_classifier_tensorflow_embedding.ckpt\n", + "INFO:tensorflow:Restoring parameters from /Users/gabibs/Documents/Lappis/tais/notebooks/intents/./models/nlu/default/current/intent_classifier_tensorflow_embedding.ckpt\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/processo.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/processo.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 43 (3 distinct intents)\n", - "\t- Found intents: 'captacao_quando_captar', 'captacao_como_captar', 'captacao'\n", + "\t- intent examples: 240 (19 distinct intents)\n", + "\t- Found intents: 'processo_analise_de_resultados', 'processo_como_funciona', 'processo_prazo_desistir_recurso', 'processo_prazo_apresentar_proposta', 'processo_prazo_analise_tecnica', 'processo_execucao', 'processo_definicao_etapas', 'processo_prazo', 'processo_prazo_analise_proposta', 'processo_preenchimento', 'processo_prazo_desarquivar', 'processo_admissibilidade', 'processo_prazo_periodo_captacao', 'processo_reativacao_de_proposta', 'processo_prazo_envio_cnae', 'processo_prazo_prestacao_contas', 'processo_prazo_diligencias', 'processo_aprovacao', 'processo_prazo_readequacao'\n", "\t- entity examples: 0 (0 distinct entities)\n", "\t- found entities: \n", "\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/salic.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 144 (14 distinct intents)\n", - "\t- Found intents: 'salic_cadastro_proponente', 'salic_preenchimento_campo_custo_auditoria', 'salic_erros_achar_proposta', 'salic_recuperacao_de_senha', 'salic_preenchimento', 'salic_preenchimento_cadastro_agencia_bancaria', 'salic_preenchimento_vinculo_cpf_proposta', 'salic_erros_vinculo_cpf_cnpj', 'salic_erros_salvamento_de_proposta', 'salic_erros', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'salic_cadastro_usuario', 'salic_erros_planilha_desapareceu', 'salic_preenchimento_valor_ingresso'\n", + "\t- intent examples: 240 (19 distinct intents)\n", + "\t- Found intents: 'processo_analise_de_resultados', 'processo_como_funciona', 'processo_prazo_desistir_recurso', 'processo_prazo_apresentar_proposta', 'processo_prazo_analise_tecnica', 'processo_execucao', 'processo_definicao_etapas', 'processo_prazo', 'processo_prazo_analise_proposta', 'processo_preenchimento', 'processo_prazo_desarquivar', 'processo_admissibilidade', 'processo_prazo_periodo_captacao', 'processo_reativacao_de_proposta', 'processo_prazo_envio_cnae', 'processo_prazo_prestacao_contas', 'processo_prazo_diligencias', 'processo_aprovacao', 'processo_prazo_readequacao'\n", "\t- entity examples: 0 (0 distinct entities)\n", "\t- found entities: \n", "\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/lei_rouanet.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/lei_rouanet.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/lei_rouanet.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 405 (23 distinct intents)\n", - "\t- Found intents: 'lei_rouanet_analise_tecnica', 'lei_rouanet_quem_pode_incentivar', 'lei_rouanet_valor_maximo_pessoa_fisica', 'lei_rouanet_valor_maximo_pessoa_juridica', 'lei_rouanet_analise_de_admissibilidade', 'lei_rouanet_apresentacao_de_proposta', 'lei_rouanet_origem_do_dinheiro', 'lei_rouanet_analise_pela_cnic', 'lei_rouanet_valor_maximo_geral', 'lei_rouanet_quantidade_de_projetos', 'lei_rouanet_etapas_aprovacao_projeto', 'lei_rouanet_o_que_eh', 'lei_rouanet_valores_pagamento_caches', 'lei_rouanet_decisao_final', 'lei_rouanet_denuncia', 'lei_rouanet_valor_maximo_projeto', 'lei_rouanet_quem_pode_ser_proponente', 'lei_rouanet_comercializacao_de_ingressos', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'lei_rouanet_divulgacao_patrocinio', 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_promocao_de_marca'\n", + "\t- intent examples: 467 (25 distinct intents)\n", + "\t- Found intents: 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'lei_rouanet_o_que_eh', 'lei_rouanet_comercializacao_de_ingressos', 'lei_rouanet_valor_maximo_geral', 'lei_rouanet_valor_maximo_pessoa_fisica', 'lei_rouanet_origem_do_dinheiro', 'lei_rouanet_quem_pode_incentivar', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_analise_tecnica', 'lei_rouanet_valor_maximo_projeto', 'lei_rouanet_promocao_de_marca', 'lei_rouanet_quem_pode_ser_proponente', 'lei_rouanet_quantidade_de_projetos', 'lei_rouanet_valor_maximo_pessoa_juridica', 'lei_rouanet_denuncia', 'lei_rouanet_democratizacao', 'lei_rouanet_valores_pagamento_caches', 'lei_rouanet_apresentacao_de_proposta', 'lei_rouanet_decisao_final', 'lei_rouanet_etapas_aprovacao_projeto', 'lei_rouanet_divulgacao_patrocinio', 'lei_rouanet_analise_pela_cnic', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'lei_rouanet_analise_de_admissibilidade', 'lei_rouanet_receber_incetivo_de_parentes'\n", "\t- entity examples: 17 (1 distinct entities)\n", "\t- found entities: 'lei_rouanet'\n", "\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/geral.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 180 (11 distinct intents)\n", - "\t- Found intents: 'negar', 'tudo_bem', 'despedir', 'elogios', 'out_of_scope', 'cumprimentar', 'o_que_sei_falar', 'tem_wpp', 'afirmar', 'diga_mais', 'quem_eh_a_tais'\n", + "\t- intent examples: 467 (25 distinct intents)\n", + "\t- Found intents: 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'lei_rouanet_o_que_eh', 'lei_rouanet_comercializacao_de_ingressos', 'lei_rouanet_valor_maximo_geral', 'lei_rouanet_valor_maximo_pessoa_fisica', 'lei_rouanet_origem_do_dinheiro', 'lei_rouanet_quem_pode_incentivar', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_analise_tecnica', 'lei_rouanet_valor_maximo_projeto', 'lei_rouanet_promocao_de_marca', 'lei_rouanet_quem_pode_ser_proponente', 'lei_rouanet_quantidade_de_projetos', 'lei_rouanet_valor_maximo_pessoa_juridica', 'lei_rouanet_denuncia', 'lei_rouanet_democratizacao', 'lei_rouanet_valores_pagamento_caches', 'lei_rouanet_apresentacao_de_proposta', 'lei_rouanet_decisao_final', 'lei_rouanet_etapas_aprovacao_projeto', 'lei_rouanet_divulgacao_patrocinio', 'lei_rouanet_analise_pela_cnic', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'lei_rouanet_analise_de_admissibilidade', 'lei_rouanet_receber_incetivo_de_parentes'\n", + "\t- entity examples: 17 (1 distinct entities)\n", + "\t- found entities: 'lei_rouanet'\n", + "\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/captacao.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/captacao.md is md\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 43 (3 distinct intents)\n", + "\t- Found intents: 'captacao_como_captar', 'captacao_quando_captar', 'captacao'\n", + "\t- entity examples: 0 (0 distinct entities)\n", + "\t- found entities: \n", + "\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 43 (3 distinct intents)\n", + "\t- Found intents: 'captacao_como_captar', 'captacao_quando_captar', 'captacao'\n", + "\t- entity examples: 0 (0 distinct entities)\n", + "\t- found entities: \n", + "\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/definicoes.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/definicoes.md is md\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 86 (9 distinct intents)\n", + "\t- Found intents: 'definicao_tais', 'definicao_proponente', 'definicao_sefic', 'definicao_salic', 'definicao_minc', 'definicao_cnic', 'definicao_proposta', 'definicao_projeto', 'definicao_vinculada'\n", + "\t- entity examples: 0 (0 distinct entities)\n", + "\t- found entities: \n", + "\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 86 (9 distinct intents)\n", + "\t- Found intents: 'definicao_tais', 'definicao_proponente', 'definicao_sefic', 'definicao_salic', 'definicao_minc', 'definicao_cnic', 'definicao_proposta', 'definicao_projeto', 'definicao_vinculada'\n", "\t- entity examples: 0 (0 distinct entities)\n", "\t- found entities: \n", "\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/definicoes.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/geral.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/geral.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 67 (9 distinct intents)\n", - "\t- Found intents: 'definicao_minc', 'definicao_tais', 'definicao_salic', 'definicao_proponente', 'definicao_proposta', 'definicao_sefic', 'definicao_cnic', 'definicao_vinculada', 'definicao_projeto'\n", + "\t- intent examples: 512 (13 distinct intents)\n", + "\t- Found intents: 'negar', 'quem_criou_a_tais', 'out_of_scope', 'elogios', 'o_que_sei_falar', 'diga_mais', 'expressoes_indesejadas', 'cumprimentar', 'afirmar', 'tem_wpp', 'erro_resposta_utter', 'tudo_bem', 'despedir'\n", "\t- entity examples: 0 (0 distinct entities)\n", "\t- found entities: \n", "\n", - "INFO:rasa_nlu.training_data.loading:Training data format of ../../bot/data/intents/processo.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 212 (18 distinct intents)\n", - "\t- Found intents: 'processo_reativacao_de_proposta', 'processo_como_funciona', 'processo_prazo', 'processo_preenchimento', 'processo_definicao_etapas', 'processo_prazo_desistir_recurso', 'processo_prazo_analise_tecnica', 'processo_analise_de_resultados', 'processo_aprovacao', 'processo_prazo_envio_cnae', 'processo_prazo_diligencias', 'processo_prazo_desarquivar', 'processo_admissibilidade', 'processo_prazo_prestacao_contas', 'processo_prazo_readequacao', 'processo_execucao', 'processo_prazo_periodo_captacao', 'processo_prazo_analise_proposta'\n", + "\t- intent examples: 512 (13 distinct intents)\n", + "\t- Found intents: 'negar', 'quem_criou_a_tais', 'out_of_scope', 'elogios', 'o_que_sei_falar', 'diga_mais', 'expressoes_indesejadas', 'cumprimentar', 'afirmar', 'tem_wpp', 'erro_resposta_utter', 'tudo_bem', 'despedir'\n", "\t- entity examples: 0 (0 distinct entities)\n", "\t- found entities: \n", "\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/salic.md is md\n", + "INFO:rasa_nlu.training_data.loading:Training data format of ../../coach/data/intents/salic.md is md\n", "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", - "\t- intent examples: 1051 (78 distinct intents)\n", - "\t- Found intents: 'negar', 'lei_rouanet_valor_maximo_pessoa_juridica', 'salic_preenchimento_campo_custo_auditoria', 'processo_como_funciona', 'lei_rouanet_origem_do_dinheiro', 'lei_rouanet_analise_pela_cnic', 'afirmar', 'definicao_vinculada', 'lei_rouanet_quantidade_de_projetos', 'definicao_tais', 'processo_prazo_envio_cnae', 'lei_rouanet_quem_pode_ser_proponente', 'lei_rouanet_divulgacao_patrocinio', 'salic_erros_planilha_desapareceu', 'definicao_minc', 'out_of_scope', 'definicao_salic', 'processo_reativacao_de_proposta', 'salic_erros_achar_proposta', 'salic_erros_vinculo_cpf_cnpj', 'processo_prazo_analise_tecnica', 'lei_rouanet_etapas_aprovacao_projeto', 'lei_rouanet_valores_pagamento_caches', 'tudo_bem', 'processo_prazo_desarquivar', 'lei_rouanet_decisao_final', 'salic_cadastro_proponente', 'o_que_sei_falar', 'captacao_como_captar', 'salic_recuperacao_de_senha', 'processo_prazo_analise_proposta', 'salic_preenchimento_cadastro_agencia_bancaria', 'diga_mais', 'definicao_projeto', 'lei_rouanet_analise_tecnica', 'lei_rouanet_quem_pode_incentivar', 'lei_rouanet_valor_maximo_pessoa_fisica', 'captacao_quando_captar', 'tem_wpp', 'lei_rouanet_apresentacao_de_proposta', 'processo_prazo', 'processo_preenchimento', 'processo_prazo_desistir_recurso', 'definicao_cnic', 'salic_erros_salvamento_de_proposta', 'lei_rouanet_valor_maximo_geral', 'processo_analise_de_resultados', 'salic_cadastro_usuario', 'salic_preenchimento_valor_ingresso', 'cumprimentar', 'processo_prazo_prestacao_contas', 'lei_rouanet_denuncia', 'lei_rouanet_valor_maximo_projeto', 'lei_rouanet_comercializacao_de_ingressos', 'definicao_proponente', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'captacao', 'processo_prazo_readequacao', 'definicao_sefic', 'salic_preenchimento_vinculo_cpf_proposta', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_promocao_de_marca', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'quem_eh_a_tais', 'despedir', 'elogios', 'lei_rouanet_analise_de_admissibilidade', 'salic_preenchimento', 'definicao_proposta', 'processo_definicao_etapas', 'processo_aprovacao', 'lei_rouanet_o_que_eh', 'processo_prazo_diligencias', 'processo_admissibilidade', 'processo_execucao', 'processo_prazo_periodo_captacao', 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'salic_erros'\n", + "\t- intent examples: 144 (14 distinct intents)\n", + "\t- Found intents: 'salic_cadastro_proponente', 'salic_recuperacao_de_senha', 'salic_erros_vinculo_cpf_cnpj', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'salic_cadastro_usuario', 'salic_preenchimento_campo_custo_auditoria', 'salic_preenchimento_vinculo_cpf_proposta', 'salic_erros', 'salic_erros_planilha_desapareceu', 'salic_preenchimento_cadastro_agencia_bancaria', 'salic_erros_achar_proposta', 'salic_erros_salvamento_de_proposta', 'salic_preenchimento_valor_ingresso', 'salic_preenchimento'\n", + "\t- entity examples: 0 (0 distinct entities)\n", + "\t- found entities: \n", + "\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 144 (14 distinct intents)\n", + "\t- Found intents: 'salic_cadastro_proponente', 'salic_recuperacao_de_senha', 'salic_erros_vinculo_cpf_cnpj', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'salic_cadastro_usuario', 'salic_preenchimento_campo_custo_auditoria', 'salic_preenchimento_vinculo_cpf_proposta', 'salic_erros', 'salic_erros_planilha_desapareceu', 'salic_preenchimento_cadastro_agencia_bancaria', 'salic_erros_achar_proposta', 'salic_erros_salvamento_de_proposta', 'salic_preenchimento_valor_ingresso', 'salic_preenchimento'\n", + "\t- entity examples: 0 (0 distinct entities)\n", + "\t- found entities: \n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 1492 (83 distinct intents)\n", + "\t- Found intents: 'processo_analise_de_resultados', 'salic_cadastro_proponente', 'lei_rouanet_o_que_eh', 'processo_prazo_desistir_recurso', 'lei_rouanet_comercializacao_de_ingressos', 'salic_preenchimento_campo_custo_auditoria', 'processo_prazo_analise_tecnica', 'lei_rouanet_origem_do_dinheiro', 'salic_erros_planilha_desapareceu', 'expressoes_indesejadas', 'tem_wpp', 'processo_prazo_desarquivar', 'definicao_proponente', 'lei_rouanet_quantidade_de_projetos', 'lei_rouanet_valor_maximo_pessoa_juridica', 'lei_rouanet_denuncia', 'quem_criou_a_tais', 'out_of_scope', 'salic_cadastro_usuario', 'processo_reativacao_de_proposta', 'captacao', 'salic_erros_achar_proposta', 'processo_prazo_diligencias', 'salic_preenchimento_valor_ingresso', 'lei_rouanet_valor_maximo_pessoa_fisica', 'processo_execucao', 'lei_rouanet_quem_pode_incentivar', 'tudo_bem', 'processo_prazo_analise_proposta', 'processo_admissibilidade', 'lei_rouanet_quem_pode_ser_proponente', 'processo_prazo_periodo_captacao', 'lei_rouanet_decisao_final', 'lei_rouanet_divulgacao_patrocinio', 'salic_preenchimento_cadastro_agencia_bancaria', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'erro_resposta_utter', 'salic_erros_salvamento_de_proposta', 'lei_rouanet_analise_de_admissibilidade', 'processo_aprovacao', 'processo_prazo_readequacao', 'lei_rouanet_receber_incetivo_de_parentes', 'definicao_sefic', 'processo_prazo_apresentar_proposta', 'definicao_minc', 'lei_rouanet_valor_maximo_geral', 'definicao_cnic', 'elogios', 'lei_rouanet_valor_maximo_projeto', 'definicao_projeto', 'processo_preenchimento', 'despedir', 'definicao_tais', 'salic_erros_vinculo_cpf_cnpj', 'lei_rouanet_etapas_aprovacao_projeto', 'o_que_sei_falar', 'salic_erros', 'diga_mais', 'cumprimentar', 'afirmar', 'lei_rouanet_analise_pela_cnic', 'definicao_proposta', 'captacao_como_captar', 'negar', 'processo_como_funciona', 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'definicao_salic', 'salic_preenchimento_vinculo_cpf_proposta', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_analise_tecnica', 'lei_rouanet_promocao_de_marca', 'processo_definicao_etapas', 'processo_prazo', 'salic_preenchimento', 'lei_rouanet_democratizacao', 'salic_recuperacao_de_senha', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'lei_rouanet_valores_pagamento_caches', 'lei_rouanet_apresentacao_de_proposta', 'processo_prazo_envio_cnae', 'processo_prazo_prestacao_contas', 'captacao_quando_captar', 'definicao_vinculada'\n", "\t- entity examples: 17 (1 distinct entities)\n", "\t- found entities: 'lei_rouanet'\n", "\n", + "INFO:rasa_nlu.training_data.training_data:Training data stats: \n", + "\t- intent examples: 1492 (83 distinct intents)\n", + "\t- Found intents: 'processo_analise_de_resultados', 'salic_cadastro_proponente', 'lei_rouanet_o_que_eh', 'processo_prazo_desistir_recurso', 'lei_rouanet_comercializacao_de_ingressos', 'salic_preenchimento_campo_custo_auditoria', 'processo_prazo_analise_tecnica', 'lei_rouanet_origem_do_dinheiro', 'salic_erros_planilha_desapareceu', 'expressoes_indesejadas', 'tem_wpp', 'processo_prazo_desarquivar', 'definicao_proponente', 'lei_rouanet_quantidade_de_projetos', 'lei_rouanet_valor_maximo_pessoa_juridica', 'lei_rouanet_denuncia', 'quem_criou_a_tais', 'out_of_scope', 'salic_cadastro_usuario', 'processo_reativacao_de_proposta', 'captacao', 'salic_erros_achar_proposta', 'processo_prazo_diligencias', 'salic_preenchimento_valor_ingresso', 'lei_rouanet_valor_maximo_pessoa_fisica', 'processo_execucao', 'lei_rouanet_quem_pode_incentivar', 'tudo_bem', 'processo_prazo_analise_proposta', 'processo_admissibilidade', 'lei_rouanet_quem_pode_ser_proponente', 'processo_prazo_periodo_captacao', 'lei_rouanet_decisao_final', 'lei_rouanet_divulgacao_patrocinio', 'salic_preenchimento_cadastro_agencia_bancaria', 'lei_rouanet_beneficios_incentivo_projetos_culturais', 'erro_resposta_utter', 'salic_erros_salvamento_de_proposta', 'lei_rouanet_analise_de_admissibilidade', 'processo_aprovacao', 'processo_prazo_readequacao', 'lei_rouanet_receber_incetivo_de_parentes', 'definicao_sefic', 'processo_prazo_apresentar_proposta', 'definicao_minc', 'lei_rouanet_valor_maximo_geral', 'definicao_cnic', 'elogios', 'lei_rouanet_valor_maximo_projeto', 'definicao_projeto', 'processo_preenchimento', 'despedir', 'definicao_tais', 'salic_erros_vinculo_cpf_cnpj', 'lei_rouanet_etapas_aprovacao_projeto', 'o_que_sei_falar', 'salic_erros', 'diga_mais', 'cumprimentar', 'afirmar', 'lei_rouanet_analise_pela_cnic', 'definicao_proposta', 'captacao_como_captar', 'negar', 'processo_como_funciona', 'lei_rouanet_porcentagem_de_deducao_do_imposto', 'definicao_salic', 'salic_preenchimento_vinculo_cpf_proposta', 'lei_rouanet_remuneracao_proponente', 'lei_rouanet_analise_tecnica', 'lei_rouanet_promocao_de_marca', 'processo_definicao_etapas', 'processo_prazo', 'salic_preenchimento', 'lei_rouanet_democratizacao', 'salic_recuperacao_de_senha', 'salic_preenchimento_cadastro_rubrica_advogado_contador', 'lei_rouanet_valores_pagamento_caches', 'lei_rouanet_apresentacao_de_proposta', 'processo_prazo_envio_cnae', 'processo_prazo_prestacao_contas', 'captacao_quando_captar', 'definicao_vinculada'\n", + "\t- entity examples: 17 (1 distinct entities)\n", + "\t- found entities: 'lei_rouanet'\n", + "\n", + "INFO:rasa_nlu.evaluate:Intent evaluation results:\n", "INFO:rasa_nlu.evaluate:Intent evaluation results:\n", - "INFO:rasa_nlu.evaluate:Intent Evaluation: Only considering those 1051 examples that have a defined intent out of 1051 examples\n", - "INFO:rasa_nlu.evaluate:F1-Score: 0.999044390165034\n", - "INFO:rasa_nlu.evaluate:Precision: 0.999080241040279\n", - "INFO:rasa_nlu.evaluate:Accuracy: 0.9990485252140818\n", + "INFO:rasa_nlu.evaluate:Intent Evaluation: Only considering those 1492 examples that have a defined intent out of 1492 examples\n", + "INFO:rasa_nlu.evaluate:Intent Evaluation: Only considering those 1492 examples that have a defined intent out of 1492 examples\n", + "INFO:rasa_nlu.evaluate:F1-Score: 0.9986595174262735\n", + "INFO:rasa_nlu.evaluate:F1-Score: 0.9986595174262735\n", + "INFO:rasa_nlu.evaluate:Precision: 0.9986595174262735\n", + "INFO:rasa_nlu.evaluate:Precision: 0.9986595174262735\n", + "INFO:rasa_nlu.evaluate:Accuracy: 0.9986595174262735\n", + "INFO:rasa_nlu.evaluate:Accuracy: 0.9986595174262735\n", + "INFO:rasa_nlu.evaluate:Classification report: \n", + " precision recall f1-score support\n", + "\n", + " afirmar 1.00 1.00 1.00 20\n", + " captacao 1.00 1.00 1.00 3\n", + " captacao_como_captar 1.00 1.00 1.00 21\n", + " captacao_quando_captar 1.00 1.00 1.00 19\n", + " cumprimentar 1.00 1.00 1.00 16\n", + " definicao_cnic 1.00 1.00 1.00 7\n", + " definicao_minc 1.00 1.00 1.00 10\n", + " definicao_projeto 1.00 1.00 1.00 6\n", + " definicao_proponente 1.00 1.00 1.00 5\n", + " definicao_proposta 1.00 1.00 1.00 4\n", + " definicao_salic 1.00 1.00 1.00 5\n", + " definicao_sefic 1.00 1.00 1.00 8\n", + " definicao_tais 1.00 1.00 1.00 29\n", + " definicao_vinculada 1.00 1.00 1.00 12\n", + " despedir 1.00 1.00 1.00 19\n", + " diga_mais 1.00 1.00 1.00 15\n", + " elogios 1.00 1.00 1.00 4\n", + " erro_resposta_utter 1.00 1.00 1.00 12\n", + " expressoes_indesejadas 1.00 1.00 1.00 328\n", + " lei_rouanet_analise_de_admissibilidade 1.00 1.00 1.00 4\n", + " lei_rouanet_analise_pela_cnic 1.00 1.00 1.00 4\n", + " lei_rouanet_analise_tecnica 1.00 1.00 1.00 10\n", + " lei_rouanet_apresentacao_de_proposta 1.00 1.00 1.00 4\n", + " lei_rouanet_beneficios_incentivo_projetos_culturais 1.00 1.00 1.00 21\n", + " lei_rouanet_comercializacao_de_ingressos 1.00 1.00 1.00 19\n", + " lei_rouanet_decisao_final 1.00 1.00 1.00 4\n", + " lei_rouanet_democratizacao 1.00 1.00 1.00 20\n", + " lei_rouanet_denuncia 1.00 1.00 1.00 21\n", + " lei_rouanet_divulgacao_patrocinio 1.00 1.00 1.00 21\n", + " lei_rouanet_etapas_aprovacao_projeto 1.00 1.00 1.00 15\n", + " lei_rouanet_o_que_eh 1.00 1.00 1.00 20\n", + " lei_rouanet_origem_do_dinheiro 1.00 1.00 1.00 28\n", + " lei_rouanet_porcentagem_de_deducao_do_imposto 1.00 1.00 1.00 24\n", + " lei_rouanet_promocao_de_marca 1.00 1.00 1.00 22\n", + " lei_rouanet_quantidade_de_projetos 1.00 1.00 1.00 20\n", + " lei_rouanet_quem_pode_incentivar 1.00 1.00 1.00 24\n", + " lei_rouanet_quem_pode_ser_proponente 1.00 1.00 1.00 45\n", + " lei_rouanet_receber_incetivo_de_parentes 1.00 1.00 1.00 22\n", + " lei_rouanet_remuneracao_proponente 1.00 1.00 1.00 22\n", + " lei_rouanet_valor_maximo_geral 1.00 1.00 1.00 17\n", + " lei_rouanet_valor_maximo_pessoa_fisica 1.00 1.00 1.00 13\n", + " lei_rouanet_valor_maximo_pessoa_juridica 1.00 1.00 1.00 12\n", + " lei_rouanet_valor_maximo_projeto 1.00 1.00 1.00 35\n", + " lei_rouanet_valores_pagamento_caches 1.00 1.00 1.00 20\n", + " negar 1.00 1.00 1.00 20\n", + " o_que_sei_falar 1.00 1.00 1.00 16\n", + " out_of_scope 1.00 1.00 1.00 10\n", + " processo_admissibilidade 1.00 1.00 1.00 8\n", + " processo_analise_de_resultados 1.00 1.00 1.00 18\n", + " processo_aprovacao 1.00 1.00 1.00 13\n", + " processo_como_funciona 0.94 0.94 0.94 18\n", + " processo_definicao_etapas 1.00 1.00 1.00 6\n", + " processo_execucao 1.00 1.00 1.00 10\n", + " processo_prazo 1.00 1.00 1.00 10\n", + " processo_prazo_analise_proposta 1.00 1.00 1.00 11\n", + " processo_prazo_analise_tecnica 1.00 1.00 1.00 12\n", + " processo_prazo_apresentar_proposta 0.95 0.95 0.95 22\n", + " processo_prazo_desarquivar 1.00 1.00 1.00 6\n", + " processo_prazo_desistir_recurso 1.00 1.00 1.00 24\n", + " processo_prazo_diligencias 1.00 1.00 1.00 13\n", + " processo_prazo_envio_cnae 1.00 1.00 1.00 11\n", + " processo_prazo_periodo_captacao 1.00 1.00 1.00 9\n", + " processo_prazo_prestacao_contas 1.00 1.00 1.00 15\n", + " processo_prazo_readequacao 1.00 1.00 1.00 12\n", + " processo_preenchimento 1.00 1.00 1.00 6\n", + " processo_reativacao_de_proposta 1.00 1.00 1.00 16\n", + " quem_criou_a_tais 1.00 1.00 1.00 18\n", + " salic_cadastro_proponente 1.00 1.00 1.00 9\n", + " salic_cadastro_usuario 1.00 1.00 1.00 10\n", + " salic_erros 1.00 1.00 1.00 8\n", + " salic_erros_achar_proposta 1.00 1.00 1.00 8\n", + " salic_erros_planilha_desapareceu 1.00 1.00 1.00 12\n", + " salic_erros_salvamento_de_proposta 1.00 1.00 1.00 10\n", + " salic_erros_vinculo_cpf_cnpj 1.00 1.00 1.00 9\n", + " salic_preenchimento 1.00 1.00 1.00 8\n", + " salic_preenchimento_cadastro_agencia_bancaria 1.00 1.00 1.00 17\n", + "salic_preenchimento_cadastro_rubrica_advogado_contador 1.00 1.00 1.00 11\n", + " salic_preenchimento_campo_custo_auditoria 1.00 1.00 1.00 7\n", + " salic_preenchimento_valor_ingresso 1.00 1.00 1.00 11\n", + " salic_preenchimento_vinculo_cpf_proposta 1.00 1.00 1.00 8\n", + " salic_recuperacao_de_senha 1.00 1.00 1.00 16\n", + " tem_wpp 1.00 1.00 1.00 23\n", + " tudo_bem 1.00 1.00 1.00 11\n", + "\n", + " micro avg 1.00 1.00 1.00 1492\n", + " macro avg 1.00 1.00 1.00 1492\n", + " weighted avg 1.00 1.00 1.00 1492\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "INFO:rasa_nlu.evaluate:Classification report: \n", " precision recall f1-score support\n", "\n", - " afirmar 1.00 0.95 0.97 20\n", + " afirmar 1.00 1.00 1.00 20\n", " captacao 1.00 1.00 1.00 3\n", " captacao_como_captar 1.00 1.00 1.00 21\n", " captacao_quando_captar 1.00 1.00 1.00 19\n", @@ -312,18 +790,21 @@ " definicao_proposta 1.00 1.00 1.00 4\n", " definicao_salic 1.00 1.00 1.00 5\n", " definicao_sefic 1.00 1.00 1.00 8\n", - " definicao_tais 1.00 1.00 1.00 10\n", + " definicao_tais 1.00 1.00 1.00 29\n", " definicao_vinculada 1.00 1.00 1.00 12\n", " despedir 1.00 1.00 1.00 19\n", " diga_mais 1.00 1.00 1.00 15\n", " elogios 1.00 1.00 1.00 4\n", + " erro_resposta_utter 1.00 1.00 1.00 12\n", + " expressoes_indesejadas 1.00 1.00 1.00 328\n", " lei_rouanet_analise_de_admissibilidade 1.00 1.00 1.00 4\n", " lei_rouanet_analise_pela_cnic 1.00 1.00 1.00 4\n", - " lei_rouanet_analise_tecnica 1.00 1.00 1.00 4\n", + " lei_rouanet_analise_tecnica 1.00 1.00 1.00 10\n", " lei_rouanet_apresentacao_de_proposta 1.00 1.00 1.00 4\n", - " lei_rouanet_beneficios_incentivo_projetos_culturais 1.00 1.00 1.00 22\n", + " lei_rouanet_beneficios_incentivo_projetos_culturais 1.00 1.00 1.00 21\n", " lei_rouanet_comercializacao_de_ingressos 1.00 1.00 1.00 19\n", " lei_rouanet_decisao_final 1.00 1.00 1.00 4\n", + " lei_rouanet_democratizacao 1.00 1.00 1.00 20\n", " lei_rouanet_denuncia 1.00 1.00 1.00 21\n", " lei_rouanet_divulgacao_patrocinio 1.00 1.00 1.00 21\n", " lei_rouanet_etapas_aprovacao_projeto 1.00 1.00 1.00 15\n", @@ -332,8 +813,9 @@ " lei_rouanet_porcentagem_de_deducao_do_imposto 1.00 1.00 1.00 24\n", " lei_rouanet_promocao_de_marca 1.00 1.00 1.00 22\n", " lei_rouanet_quantidade_de_projetos 1.00 1.00 1.00 20\n", - " lei_rouanet_quem_pode_incentivar 1.00 1.00 1.00 25\n", - " lei_rouanet_quem_pode_ser_proponente 0.97 1.00 0.98 29\n", + " lei_rouanet_quem_pode_incentivar 1.00 1.00 1.00 24\n", + " lei_rouanet_quem_pode_ser_proponente 1.00 1.00 1.00 45\n", + " lei_rouanet_receber_incetivo_de_parentes 1.00 1.00 1.00 22\n", " lei_rouanet_remuneracao_proponente 1.00 1.00 1.00 22\n", " lei_rouanet_valor_maximo_geral 1.00 1.00 1.00 17\n", " lei_rouanet_valor_maximo_pessoa_fisica 1.00 1.00 1.00 13\n", @@ -341,27 +823,28 @@ " lei_rouanet_valor_maximo_projeto 1.00 1.00 1.00 35\n", " lei_rouanet_valores_pagamento_caches 1.00 1.00 1.00 20\n", " negar 1.00 1.00 1.00 20\n", - " o_que_sei_falar 1.00 1.00 1.00 15\n", + " o_que_sei_falar 1.00 1.00 1.00 16\n", " out_of_scope 1.00 1.00 1.00 10\n", " processo_admissibilidade 1.00 1.00 1.00 8\n", " processo_analise_de_resultados 1.00 1.00 1.00 18\n", " processo_aprovacao 1.00 1.00 1.00 13\n", - " processo_como_funciona 1.00 1.00 1.00 17\n", + " processo_como_funciona 0.94 0.94 0.94 18\n", " processo_definicao_etapas 1.00 1.00 1.00 6\n", " processo_execucao 1.00 1.00 1.00 10\n", " processo_prazo 1.00 1.00 1.00 10\n", " processo_prazo_analise_proposta 1.00 1.00 1.00 11\n", " processo_prazo_analise_tecnica 1.00 1.00 1.00 12\n", + " processo_prazo_apresentar_proposta 0.95 0.95 0.95 22\n", " processo_prazo_desarquivar 1.00 1.00 1.00 6\n", " processo_prazo_desistir_recurso 1.00 1.00 1.00 24\n", " processo_prazo_diligencias 1.00 1.00 1.00 13\n", " processo_prazo_envio_cnae 1.00 1.00 1.00 11\n", " processo_prazo_periodo_captacao 1.00 1.00 1.00 9\n", - " processo_prazo_prestacao_contas 1.00 1.00 1.00 10\n", + " processo_prazo_prestacao_contas 1.00 1.00 1.00 15\n", " processo_prazo_readequacao 1.00 1.00 1.00 12\n", " processo_preenchimento 1.00 1.00 1.00 6\n", " processo_reativacao_de_proposta 1.00 1.00 1.00 16\n", - " quem_eh_a_tais 1.00 1.00 1.00 27\n", + " quem_criou_a_tais 1.00 1.00 1.00 18\n", " salic_cadastro_proponente 1.00 1.00 1.00 9\n", " salic_cadastro_usuario 1.00 1.00 1.00 10\n", " salic_erros 1.00 1.00 1.00 8\n", @@ -379,9 +862,9 @@ " tem_wpp 1.00 1.00 1.00 23\n", " tudo_bem 1.00 1.00 1.00 11\n", "\n", - " micro avg 1.00 1.00 1.00 1051\n", - " macro avg 1.00 1.00 1.00 1051\n", - " weighted avg 1.00 1.00 1.00 1051\n", + " micro avg 1.00 1.00 1.00 1492\n", + " macro avg 1.00 1.00 1.00 1492\n", + " weighted avg 1.00 1.00 1.00 1492\n", "\n" ] }, @@ -390,4084 +873,104 @@ "output_type": "stream", "text": [ "INFO:rasa_nlu.evaluate:Model prediction errors saved to errors.json.\n", + "INFO:rasa_nlu.evaluate:Model prediction errors saved to errors.json.\n", + "INFO:rasa_nlu.evaluate:Entity evaluation results:\n", "INFO:rasa_nlu.evaluate:Entity evaluation results:\n", "INFO:rasa_nlu.evaluate:Evaluation for entity extractor: ner_crf \n", - "INFO:rasa_nlu.evaluate:F1-Score: 0.9990477271303264\n", - "INFO:rasa_nlu.evaluate:Precision: 0.9990781351200625\n", - "INFO:rasa_nlu.evaluate:Accuracy: 0.9990772779700116\n", + "INFO:rasa_nlu.evaluate:Evaluation for entity extractor: ner_crf \n", + "INFO:rasa_nlu.evaluate:F1-Score: 0.9991955868865754\n", + "INFO:rasa_nlu.evaluate:F1-Score: 0.9991955868865754\n", + "INFO:rasa_nlu.evaluate:Precision: 0.9992211877261385\n", + "INFO:rasa_nlu.evaluate:Precision: 0.9992211877261385\n", + "INFO:rasa_nlu.evaluate:Accuracy: 0.9992205767731879\n", + "INFO:rasa_nlu.evaluate:Accuracy: 0.9992205767731879\n", "INFO:rasa_nlu.evaluate:Classification report: \n", " precision recall f1-score support\n", "\n", " lei_rouanet 1.00 0.88 0.94 33\n", - " no_entity 1.00 1.00 1.00 4302\n", + " no_entity 1.00 1.00 1.00 5099\n", + "\n", + " micro avg 1.00 1.00 1.00 5132\n", + " macro avg 1.00 0.94 0.97 5132\n", + "weighted avg 1.00 1.00 1.00 5132\n", "\n", - " micro avg 1.00 1.00 1.00 4335\n", - " macro avg 1.00 0.94 0.97 4335\n", - "weighted avg 1.00 1.00 1.00 4335\n", + "INFO:rasa_nlu.evaluate:Classification report: \n", + " precision recall f1-score support\n", + "\n", + " lei_rouanet 1.00 0.88 0.94 33\n", + " no_entity 1.00 1.00 1.00 5099\n", + "\n", + " micro avg 1.00 1.00 1.00 5132\n", + " macro avg 1.00 0.94 0.97 5132\n", + "weighted avg 1.00 1.00 1.00 5132\n", "\n" ] - }, - { - "data": { - "text/plain": [ - "{'intent_evaluation': {'predictions': [{'text': 'quero falar sobre captacao',\n", - " 'intent': 'captacao',\n", - " 'predicted': 'captacao',\n", - " 'confidence': 0.8940427899360657},\n", - " {'text': 'tenho duvidas sobre captacao',\n", - " 'intent': 'captacao',\n", - " 'predicted': 'captacao',\n", - " 'confidence': 0.9412751793861389},\n", - " {'text': 'você sabe falar sobre captacao',\n", - " 'intent': 'captacao',\n", - " 'predicted': 'captacao',\n", - " 'confidence': 0.8843073844909668},\n", - " {'text': 'quando poderei efetuar a captação de recursos do meu projeto',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9809207320213318},\n", - " {'text': 'captação de recursos, quando fazer',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.982875645160675},\n", - " {'text': 'qual é o momento para fazer a captação de recursos',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9643611311912537},\n", - " {'text': 'quando fazer a captação de recursos do projeto',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9791415929794312},\n", - " {'text': 'quando posso começar a captação de recursos da minha proposta',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9646371006965637},\n", - " {'text': 'quando começa a captação',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9795434474945068},\n", - " {'text': 'a partir de quando posso começar a captar recursos',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9836456775665283},\n", - " {'text': 'quando a captação estará liberada',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9752793908119202},\n", - " {'text': 'captar recursos do projeto',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9653926491737366},\n", - " {'text': 'quero captar, quando posso iniciar',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9699324369430542},\n", - " {'text': 'quando começa a arrecadação de dinheiro',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9528385996818542},\n", - " {'text': 'quando eu começo a captar',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.972841739654541},\n", - " {'text': 'já enviei meu projeto, já posso captar',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9309737086296082},\n", - " {'text': 'quando preciso me preocupar com a captação',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9657280445098877},\n", - " {'text': 'quando se iniciará a fase de captação',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9712667465209961},\n", - " {'text': 'a captação já pode ser feita',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9170927405357361},\n", - " {'text': 'em quanto tempo posso captar',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9371913075447083},\n", - " {'text': 'eu submeti um projeto e quero saber quando posso começar a captar dinheiro',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9445741176605225},\n", - " {'text': 'como posso fazer para captar recursos',\n", - " 'intent': 'captacao_quando_captar',\n", - " 'predicted': 'captacao_quando_captar',\n", - " 'confidence': 0.9587873220443726},\n", - " {'text': 'o próprio proponente do projeto pode captar os recursos para a sua execução',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9240317940711975},\n", - " {'text': 'o proponente pode captar o dinheiro para execucao',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9562884569168091},\n", - " {'text': 'quem pode ir captar o dinheiro para fazer o projeto',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9085014462471008},\n", - " {'text': 'pode contratar alguém pra captar dinheiro',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9590733051300049},\n", - " {'text': 'depois de aprovado quem vai pegar o dinheiro liberado',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9400261640548706},\n", - " {'text': 'posso contratar alguém pra captar pra mim',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9475927352905273},\n", - " {'text': 'quero contratar alguem pra captar recurso',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9349128007888794},\n", - " {'text': 'posso terceirizar a captacao de recursos',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9181540012359619},\n", - " {'text': 'o proponente pode receber dinheiro',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9418054223060608},\n", - " {'text': 'quanto o proponete pode ser pago',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9085838794708252},\n", - " {'text': 'como funciona a captação',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.8905994892120361},\n", - " {'text': 'proponente captação',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9147239923477173},\n", - " {'text': 'proponente dinheiro',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9476328492164612},\n", - " {'text': 'terceirizar captacao',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.8933660984039307},\n", - " {'text': 'proponente pagamento',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9012728929519653},\n", - " {'text': 'pagamento proponente',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9012728929519653},\n", - " {'text': 'proponente recebimento',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9280938506126404},\n", - " {'text': 'proponente captar',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9122163653373718},\n", - " {'text': 'contratar captação',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.9378585815429688},\n", - " {'text': 'proponente receber',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.8707051277160645},\n", - " {'text': 'proponente ser pago',\n", - " 'intent': 'captacao_como_captar',\n", - " 'predicted': 'captacao_como_captar',\n", - " 'confidence': 0.797606885433197},\n", - " {'text': 'como me cadastro no salic',\n", - " 'intent': 'salic_cadastro_usuario',\n", - " 'predicted': 'salic_cadastro_usuario',\n", - " 'confidence': 0.9443475604057312},\n", - " {'text': 'como criar login no salic',\n", - " 'intent': 'salic_cadastro_usuario',\n", - " 'predicted': 'salic_cadastro_usuario',\n", - " 'confidence': 0.9409348368644714},\n", - " {'text': 'como entrar no salic',\n", - " 'intent': 'salic_cadastro_usuario',\n", - " 'predicted': 'salic_cadastro_usuario',\n", - " 'confidence': 0.9207118153572083},\n", - " {'text': 'qual o endereço do salic',\n", - " 'intent': 'salic_cadastro_usuario',\n", - " 'predicted': 'salic_cadastro_usuario',\n", - " 'confidence': 0.9175578355789185},\n", - " {'text': 'o que eu preciso para cadastrar no salic',\n", - " 'intent': 'salic_cadastro_usuario',\n", - " 'predicted': 'salic_cadastro_usuario',\n", - " 'confidence': 0.9143118262290955},\n", - " {'text': 'me cadastre no salic',\n", - " 'intent': 'salic_cadastro_usuario',\n", - " 'predicted': 'salic_cadastro_usuario',\n", - " 'confidence': 0.9287989139556885},\n", - " {'text': 'como realizar cadastro de usuários',\n", - " 'intent': 'salic_cadastro_usuario',\n", - " 'predicted': 'salic_cadastro_usuario',\n", - " 'confidence': 0.9014707207679749},\n", - " {'text': 'como realizar cadastro de usuario',\n", - " 'intent': 'salic_cadastro_usuario',\n", - " 'predicted': 'salic_cadastro_usuario',\n", - " 'confidence': 0.9042141437530518},\n", - " {'text': 'cadastro',\n", - " 'intent': 'salic_cadastro_usuario',\n", - " 'predicted': 'salic_cadastro_usuario',\n", - " 'confidence': 0.9306001663208008},\n", - " {'text': 'usuarios',\n", - " 'intent': 'salic_cadastro_usuario',\n", - " 'predicted': 'salic_cadastro_usuario',\n", - " 'confidence': 0.9188874959945679},\n", - " {'text': 'como cadastrar o proponente via salic ?',\n", - " 'intent': 'salic_cadastro_proponente',\n", - " 'predicted': 'salic_cadastro_proponente',\n", - " 'confidence': 0.9700349569320679},\n", - " {'text': 'o que devo fazer para cadastrar um proponente ?',\n", - " 'intent': 'salic_cadastro_proponente',\n", - " 'predicted': 'salic_cadastro_proponente',\n", - " 'confidence': 0.9440494179725647},\n", - " {'text': 'cadastro de proponente ?',\n", - " 'intent': 'salic_cadastro_proponente',\n", - " 'predicted': 'salic_cadastro_proponente',\n", - " 'confidence': 0.9681118130683899},\n", - " {'text': 'como fazer cadastro de proponente?',\n", - " 'intent': 'salic_cadastro_proponente',\n", - " 'predicted': 'salic_cadastro_proponente',\n", - " 'confidence': 0.9752387404441833},\n", - " {'text': 'como fazer cadastro de um proponente?',\n", - " 'intent': 'salic_cadastro_proponente',\n", - " 'predicted': 'salic_cadastro_proponente',\n", - " 'confidence': 0.9722220301628113},\n", - " {'text': 'cadastrar proponente',\n", - " 'intent': 'salic_cadastro_proponente',\n", - " 'predicted': 'salic_cadastro_proponente',\n", - " 'confidence': 0.9735845327377319},\n", - " {'text': 'cadastro de proponente',\n", - " 'intent': 'salic_cadastro_proponente',\n", - " 'predicted': 'salic_cadastro_proponente',\n", - " 'confidence': 0.9681118130683899},\n", - " {'text': 'como faço para cadastrar um proponente?',\n", - " 'intent': 'salic_cadastro_proponente',\n", - " 'predicted': 'salic_cadastro_proponente',\n", - " 'confidence': 0.9689419269561768},\n", - " {'text': 'como realizar cadastro de proponentes',\n", - " 'intent': 'salic_cadastro_proponente',\n", - " 'predicted': 'salic_cadastro_proponente',\n", - " 'confidence': 0.8931512832641602},\n", - " {'text': 'não me recordo da senha de acesso',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.978817880153656},\n", - " {'text': 'esqueci a senha do salic',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9425285458564758},\n", - " {'text': 'como recuperar senha',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.982505738735199},\n", - " {'text': 'recuperação de senha',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9652273654937744},\n", - " {'text': 'perdi minha senha do salic',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9261653423309326},\n", - " {'text': 'esqueci minha senha no salic',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9369475841522217},\n", - " {'text': 'gostaria de saber como mudar minha senha',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9579200744628906},\n", - " {'text': 'mudança de senha',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9770509600639343},\n", - " {'text': 'como realizo a mudança de senha?',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9843877553939819},\n", - " {'text': 'como mudo a senha?',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9815946221351624},\n", - " {'text': 'como troco minha senha?',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9482153058052063},\n", - " {'text': 'esqueci a senha',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9783099889755249},\n", - " {'text': 'perdi minha senha',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9638351798057556},\n", - " {'text': 'recuperar senha',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9758242964744568},\n", - " {'text': 'mudar senha',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9807175993919373},\n", - " {'text': 'senha',\n", - " 'intent': 'salic_recuperacao_de_senha',\n", - " 'predicted': 'salic_recuperacao_de_senha',\n", - " 'confidence': 0.9811427593231201},\n", - " {'text': 'sobre erros de sistema',\n", - " 'intent': 'salic_erros',\n", - " 'predicted': 'salic_erros',\n", - " 'confidence': 0.9345946907997131},\n", - " {'text': 'erros do salic',\n", - " 'intent': 'salic_erros',\n", - " 'predicted': 'salic_erros',\n", - " 'confidence': 0.930599570274353},\n", - " {'text': 'erro no salic',\n", - " 'intent': 'salic_erros',\n", - " 'predicted': 'salic_erros',\n", - " 'confidence': 0.8986851572990417},\n", - " {'text': 'problemas de sistema',\n", - " 'intent': 'salic_erros',\n", - " 'predicted': 'salic_erros',\n", - " 'confidence': 0.9369016289710999},\n", - " {'text': 'problemas no salic',\n", - " 'intent': 'salic_erros',\n", - " 'predicted': 'salic_erros',\n", - " 'confidence': 0.912807285785675},\n", - " {'text': 'erros salic',\n", - " 'intent': 'salic_erros',\n", - " 'predicted': 'salic_erros',\n", - " 'confidence': 0.9193917512893677},\n", - " {'text': 'problemas salic',\n", - " 'intent': 'salic_erros',\n", - " 'predicted': 'salic_erros',\n", - " 'confidence': 0.9152355194091797},\n", - " {'text': 'erros',\n", - " 'intent': 'salic_erros',\n", - " 'predicted': 'salic_erros',\n", - " 'confidence': 0.9266112446784973},\n", - " {'text': 'perdi minhas alterações na proposta',\n", - " 'intent': 'salic_erros_salvamento_de_proposta',\n", - " 'predicted': 'salic_erros_salvamento_de_proposta',\n", - " 'confidence': 0.9272412061691284},\n", - " {'text': 'não salvou minhas alterações na proposta',\n", - " 'intent': 'salic_erros_salvamento_de_proposta',\n", - " 'predicted': 'salic_erros_salvamento_de_proposta',\n", - " 'confidence': 0.9484121799468994},\n", - " {'text': 'proposta não foi salva',\n", - " 'intent': 'salic_erros_salvamento_de_proposta',\n", - " 'predicted': 'salic_erros_salvamento_de_proposta',\n", - " 'confidence': 0.9123475551605225},\n", - " {'text': 'alteração não foi salva após fechar',\n", - " 'intent': 'salic_erros_salvamento_de_proposta',\n", - " 'predicted': 'salic_erros_salvamento_de_proposta',\n", - " 'confidence': 0.919714629650116},\n", - " {'text': 'o salic não salvou minhas alterações na proposta',\n", - " 'intent': 'salic_erros_salvamento_de_proposta',\n", - " 'predicted': 'salic_erros_salvamento_de_proposta',\n", - " 'confidence': 0.9335942268371582},\n", - " {'text': 'houve um erro ao gravar minha proposta',\n", - " 'intent': 'salic_erros_salvamento_de_proposta',\n", - " 'predicted': 'salic_erros_salvamento_de_proposta',\n", - " 'confidence': 0.9326692223548889},\n", - " {'text': 'salic não salvou minha proposta',\n", - " 'intent': 'salic_erros_salvamento_de_proposta',\n", - " 'predicted': 'salic_erros_salvamento_de_proposta',\n", - " 'confidence': 0.8685293197631836},\n", - " {'text': 'não salvou minha proposta',\n", - " 'intent': 'salic_erros_salvamento_de_proposta',\n", - " 'predicted': 'salic_erros_salvamento_de_proposta',\n", - " 'confidence': 0.9049174189567566},\n", - " {'text': 'não foi salva',\n", - " 'intent': 'salic_erros_salvamento_de_proposta',\n", - " 'predicted': 'salic_erros_salvamento_de_proposta',\n", - " 'confidence': 0.9300712943077087},\n", - " {'text': 'erro ao salvar proposta',\n", - " 'intent': 'salic_erros_salvamento_de_proposta',\n", - " 'predicted': 'salic_erros_salvamento_de_proposta',\n", - " 'confidence': 0.9353659152984619},\n", - " {'text': 'minha planilha sumiu',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.8986380696296692},\n", - " {'text': 'minha planilha desapareceu',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.9248732924461365},\n", - " {'text': 'não acho minha planilha',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.9398422241210938},\n", - " {'text': 'não encontro minha planilha',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.9470536708831787},\n", - " {'text': 'planilha sumiu',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.8761849403381348},\n", - " {'text': 'planilha desapareceu',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.9112950563430786},\n", - " {'text': 'como recuperar minha planilha que sumiu?',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.9171933531761169},\n", - " {'text': 'a planilha orçamentária sumiu',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.8780538439750671},\n", - " {'text': 'a planilha orçamentária não aparece',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.924793004989624},\n", - " {'text': 'perdi a planilha orçamentária',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.9048737287521362},\n", - " {'text': 'planilha sumiu',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.8761849403381348},\n", - " {'text': 'planilha desapareceu',\n", - " 'intent': 'salic_erros_planilha_desapareceu',\n", - " 'predicted': 'salic_erros_planilha_desapareceu',\n", - " 'confidence': 0.9112950563430786},\n", - " {'text': 'solicitação de vínculo pendente',\n", - " 'intent': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'predicted': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'confidence': 0.9317742586135864},\n", - " {'text': 'o sistema acusou como solicitação de vínculo pendente',\n", - " 'intent': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'predicted': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'confidence': 0.9465082883834839},\n", - " {'text': 'vinculo um cpf a um cnpj?',\n", - " 'intent': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'predicted': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'confidence': 0.914192795753479},\n", - " {'text': 'vincular cpf cnpj',\n", - " 'intent': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'predicted': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'confidence': 0.9616597890853882},\n", - " {'text': 'associar cpf a pessoa jurídica',\n", - " 'intent': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'predicted': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'confidence': 0.958991289138794},\n", - " {'text': 'associar pessoa fisica a pessoa jurídica',\n", - " 'intent': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'predicted': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'confidence': 0.9189790487289429},\n", - " {'text': 'associar pessoa fisica a cnpj',\n", - " 'intent': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'predicted': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'confidence': 0.943156898021698},\n", - " {'text': 'associar pessoa física',\n", - " 'intent': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'predicted': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'confidence': 0.9542502760887146},\n", - " {'text': 'vincular cpf',\n", - " 'intent': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'predicted': 'salic_erros_vinculo_cpf_cnpj',\n", - " 'confidence': 0.9515357613563538},\n", - " {'text': 'não consigo achar minha proposta no sistema',\n", - " 'intent': 'salic_erros_achar_proposta',\n", - " 'predicted': 'salic_erros_achar_proposta',\n", - " 'confidence': 0.9240332245826721},\n", - " {'text': 'como encontrar a minha proposta',\n", - " 'intent': 'salic_erros_achar_proposta',\n", - " 'predicted': 'salic_erros_achar_proposta',\n", - " 'confidence': 0.9261428117752075},\n", - " {'text': 'não sei achar minha proposta',\n", - " 'intent': 'salic_erros_achar_proposta',\n", - " 'predicted': 'salic_erros_achar_proposta',\n", - " 'confidence': 0.9173104763031006},\n", - " {'text': 'não acho minha proposta',\n", - " 'intent': 'salic_erros_achar_proposta',\n", - " 'predicted': 'salic_erros_achar_proposta',\n", - " 'confidence': 0.9384568333625793},\n", - " {'text': 'não consigo buscar minha proposta',\n", - " 'intent': 'salic_erros_achar_proposta',\n", - " 'predicted': 'salic_erros_achar_proposta',\n", - " 'confidence': 0.9505581855773926},\n", - " {'text': 'não encontro minha proposta',\n", - " 'intent': 'salic_erros_achar_proposta',\n", - " 'predicted': 'salic_erros_achar_proposta',\n", - " 'confidence': 0.9454795122146606},\n", - " {'text': 'encontrar proposta',\n", - " 'intent': 'salic_erros_achar_proposta',\n", - " 'predicted': 'salic_erros_achar_proposta',\n", - " 'confidence': 0.9223228693008423},\n", - " {'text': 'perdi a proposta',\n", - " 'intent': 'salic_erros_achar_proposta',\n", - " 'predicted': 'salic_erros_achar_proposta',\n", - " 'confidence': 0.9035542607307434},\n", - " {'text': 'instruções de preenchimento',\n", - " 'intent': 'salic_preenchimento',\n", - " 'predicted': 'salic_preenchimento',\n", - " 'confidence': 0.8862956762313843},\n", - " {'text': 'quero preencher proposta',\n", - " 'intent': 'salic_preenchimento',\n", - " 'predicted': 'salic_preenchimento',\n", - " 'confidence': 0.8668408393859863},\n", - " {'text': 'instruir preenchimento',\n", - " 'intent': 'salic_preenchimento',\n", - " 'predicted': 'salic_preenchimento',\n", - " 'confidence': 0.8765524625778198},\n", - " {'text': 'preencher proposta',\n", - " 'intent': 'salic_preenchimento',\n", - " 'predicted': 'salic_preenchimento',\n", - " 'confidence': 0.9431398510932922},\n", - " {'text': 'como preencho uma proposta',\n", - " 'intent': 'salic_preenchimento',\n", - " 'predicted': 'salic_preenchimento',\n", - " 'confidence': 0.9147859215736389},\n", - " {'text': 'como preencher uma proposta',\n", - " 'intent': 'salic_preenchimento',\n", - " 'predicted': 'salic_preenchimento',\n", - " 'confidence': 0.9184747338294983},\n", - " {'text': 'como preencher propostas',\n", - " 'intent': 'salic_preenchimento',\n", - " 'predicted': 'salic_preenchimento',\n", - " 'confidence': 0.9254639148712158},\n", - " {'text': 'preencher proposta',\n", - " 'intent': 'salic_preenchimento',\n", - " 'predicted': 'salic_preenchimento',\n", - " 'confidence': 0.9431398510932922},\n", - " {'text': 'campo custo de auditoria',\n", - " 'intent': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'predicted': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'confidence': 0.9203939437866211},\n", - " {'text': 'como preencher o campo custo de auditoria',\n", - " 'intent': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'predicted': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'confidence': 0.8528377413749695},\n", - " {'text': 'custo de auditoria',\n", - " 'intent': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'predicted': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'confidence': 0.9307243824005127},\n", - " {'text': 'o que colocar no custo de auditoria',\n", - " 'intent': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'predicted': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'confidence': 0.9012495279312134},\n", - " {'text': 'prencher custo de auditoria',\n", - " 'intent': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'predicted': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'confidence': 0.9312672019004822},\n", - " {'text': 'custo de auditoria',\n", - " 'intent': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'predicted': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'confidence': 0.9307243824005127},\n", - " {'text': 'custo auditoria',\n", - " 'intent': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'predicted': 'salic_preenchimento_campo_custo_auditoria',\n", - " 'confidence': 0.9134942889213562},\n", - " {'text': 'cadastrar as rubricas de advogado e contador',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.9103346467018127},\n", - " {'text': 'cadastro de rubricas de advogado',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.9126991629600525},\n", - " {'text': 'cadastro de rubricas de contador',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.884406566619873},\n", - " {'text': 'incluir rubricas',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.9290094375610352},\n", - " {'text': 'rubricas de contador',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.9213095307350159},\n", - " {'text': 'rubricas de advogado',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.9405490159988403},\n", - " {'text': 'como enviar rubricas de advogados',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.8849971294403076},\n", - " {'text': 'cadastrar rubricas',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.9031676054000854},\n", - " {'text': 'cadastro de rúbricas',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.9196276664733887},\n", - " {'text': 'rubricas',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.9206839203834534},\n", - " {'text': 'rúbricas',\n", - " 'intent': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'predicted': 'salic_preenchimento_cadastro_rubrica_advogado_contador',\n", - " 'confidence': 0.9300652742385864},\n", - " {'text': 'ultrapassar o valor do ingresso',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.95905601978302},\n", - " {'text': 'não irei comercializar ingressos',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.8923158645629883},\n", - " {'text': 'ingresso não ultrapassa o valor citado',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.9556339383125305},\n", - " {'text': 'não vou comercializar ingressos',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.9134373664855957},\n", - " {'text': 'ingresso não ultrapassa o máximo por beneficiário',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.9041500091552734},\n", - " {'text': 'meu ingresso ultrapassa o valor permitido',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.9530265927314758},\n", - " {'text': 'não vou vender ingresso no meu projeto',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.906105637550354},\n", - " {'text': 'valor do ingresso excedeu o permitido',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.9440562129020691},\n", - " {'text': 'como calcula o valor do ingresso',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.9407604932785034},\n", - " {'text': 'o ingresso do evento pode ser gratuito',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.9054946303367615},\n", - " {'text': 'valor do ingresso',\n", - " 'intent': 'salic_preenchimento_valor_ingresso',\n", - " 'predicted': 'salic_preenchimento_valor_ingresso',\n", - " 'confidence': 0.914012610912323},\n", - " {'text': 'vincular uma proposta ao cpf do responsável',\n", - " 'intent': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'predicted': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'confidence': 0.9384666085243225},\n", - " {'text': 'vincular proposta ao cpf',\n", - " 'intent': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'predicted': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'confidence': 0.932776153087616},\n", - " {'text': 'como vincular proposta a pessoa fisica',\n", - " 'intent': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'predicted': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'confidence': 0.9144463539123535},\n", - " {'text': 'vincular pessoa física e proposta',\n", - " 'intent': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'predicted': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'confidence': 0.9488449096679688},\n", - " {'text': 'vincular proposta a pessoa',\n", - " 'intent': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'predicted': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'confidence': 0.955829381942749},\n", - " {'text': 'vinculo de proposta',\n", - " 'intent': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'predicted': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'confidence': 0.8969686031341553},\n", - " {'text': 'vincular proposta',\n", - " 'intent': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'predicted': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'confidence': 0.961471676826477},\n", - " {'text': 'vínculo de proposta',\n", - " 'intent': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'predicted': 'salic_preenchimento_vinculo_cpf_proposta',\n", - " 'confidence': 0.9528307914733887},\n", - " {'text': 'agência bancária inválida',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9118479490280151},\n", - " {'text': 'o sistema indica agência inválida',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.8810880780220032},\n", - " {'text': 'cadastrar minha agência bancária',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9337282180786133},\n", - " {'text': 'como eu cadastro a agência',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.8635513186454773},\n", - " {'text': 'o campo de agência possui hífen',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9248719215393066},\n", - " {'text': 'qual o formato do campo de agência bancária',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9333862066268921},\n", - " {'text': 'deu erro ao cadastrar a agência',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9336516857147217},\n", - " {'text': 'tenho duvidas sobre o formato do campo de agencia bancaria',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9300985336303711},\n", - " {'text': 'como é o formato do campo da agência bancária',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.8964385986328125},\n", - " {'text': 'qual banco',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.8888925313949585},\n", - " {'text': 'cadastrar agência bancária',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9327685236930847},\n", - " {'text': 'campo de agência',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9247493147850037},\n", - " {'text': 'agência inválida',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9212157726287842},\n", - " {'text': 'cadastro de agência',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9020333886146545},\n", - " {'text': 'como cadastrar minha agência',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.934342622756958},\n", - " {'text': 'agencia bancaria',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9162270426750183},\n", - " {'text': 'agência bancária',\n", - " 'intent': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'predicted': 'salic_preenchimento_cadastro_agencia_bancaria',\n", - " 'confidence': 0.9105128049850464},\n", - " {'text': 'o que é lei rouanet',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.938606858253479},\n", - " {'text': 'o que significa ruane',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.8588238954544067},\n", - " {'text': 'Explique a lei ruanê',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9582805633544922},\n", - " {'text': 'o que é lei ruanet',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9334291219711304},\n", - " {'text': 'o que significa lei rouanet',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9341464042663574},\n", - " {'text': 'Explique a lei ruane',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9568257927894592},\n", - " {'text': 'o que é lei rouane',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9349833130836487},\n", - " {'text': 'o que significa lei ruanet',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9343809485435486},\n", - " {'text': 'Explique a lei ruanê',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9582805633544922},\n", - " {'text': 'o que é lei rouanet',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.938606858253479},\n", - " {'text': 'o que significa lei rouanet',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9341464042663574},\n", - " {'text': 'Explique a lei rouanet',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9611760377883911},\n", - " {'text': 'o que é lei rouanet',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.938606858253479},\n", - " {'text': 'o que significa lei rouanê',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9365746378898621},\n", - " {'text': 'Explique a lei rouanet',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9611760377883911},\n", - " {'text': 'fale sobre a lei ruanê',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.952343225479126},\n", - " {'text': 'lei rouanet',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.8995445966720581},\n", - " {'text': 'Lei de Incentivo a Cultura',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.939286470413208},\n", - " {'text': 'Gostaria de saber curiosidades sobre a lei',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.9331868290901184},\n", - " {'text': 'como funciona a lei rounet?',\n", - " 'intent': 'lei_rouanet_o_que_eh',\n", - " 'predicted': 'lei_rouanet_o_que_eh',\n", - " 'confidence': 0.8756349682807922},\n", - " {'text': 'quem pode se inscrever na lei rouanet',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9581286311149597},\n", - " {'text': 'quem pode participar',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9514235258102417},\n", - " {'text': 'quem pode submeter projetos?',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9620165228843689},\n", - " {'text': 'quero me inscrever na lei rouanet',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9506033062934875},\n", - " {'text': 'posso me inscrever na lei rouanet',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9488530158996582},\n", - " {'text': 'Quem pode iniciar um projeto na lei rouanet',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9559586048126221},\n", - " {'text': 'quero participar da lei',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9465375542640686},\n", - " {'text': 'Quem pode apresentar proposta cultural',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9488064050674438},\n", - " {'text': 'quero me inscrever',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9352649450302124},\n", - " {'text': 'eu posso usar a lei',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9525654911994934},\n", - " {'text': 'quem pode se aplicar',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.961747944355011},\n", - " {'text': 'Tenho uma banda de musica posso propor um projeto',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9266237020492554},\n", - " {'text': 'Posso inscrever uma proposta como pessoa fisica',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9087549448013306},\n", - " {'text': 'Como pessoa fisica eu posso inscrever uma proposta',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9112350940704346},\n", - " {'text': 'quero me tornar um proponente',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.8981424570083618},\n", - " {'text': 'eu posso participar da lei rouanet',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9369183778762817},\n", - " {'text': 'quero ser proponente',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9035263657569885},\n", - " {'text': 'agente publico pode enviar propostas',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9420868754386902},\n", - " {'text': 'pessoa fisica pode ser proponente',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9004757404327393},\n", - " {'text': 'Qualquer pessao pode apresentar um projeto',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9540082812309265},\n", - " {'text': 'como ser proponente',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9009734392166138},\n", - " {'text': 'quem pode propor',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.966301441192627},\n", - " {'text': 'como me inscrever',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.903041660785675},\n", - " {'text': 'como me tornar proponente',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.886959433555603},\n", - " {'text': 'elegibilidade',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9306864738464355},\n", - " {'text': 'inscrever',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9229366779327393},\n", - " {'text': 'participar',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9304764270782471},\n", - " {'text': 'aplicar',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9547480344772339},\n", - " {'text': 'usar a lei',\n", - " 'intent': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.9427921772003174},\n", - " {'text': 'quanto dinheiro a lei movimenta',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9536581635475159},\n", - " {'text': 'quanto dinheiro a lei rouanet arrecada',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9518918991088867},\n", - " {'text': 'de onde vem o dinheiro da lei rouanet',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9538406729698181},\n", - " {'text': 'de onde vem o dinheiro usado na Lei',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9448767900466919},\n", - " {'text': 'o dinheiro da lei rouanet é público',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9414089322090149},\n", - " {'text': 'por que os cidadãos tem que pagar pelos projetos',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.8886786699295044},\n", - " {'text': 'a lei rouanet usa dinheiro de empresas',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9609487056732178},\n", - " {'text': 'eu como cidadão posso contribuir para um projeto',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9018597602844238},\n", - " {'text': 'quanto a lei ja arrecadou',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9524232149124146},\n", - " {'text': 'o dinheiro da lei é privado ou público',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9478830099105835},\n", - " {'text': 'como funciona a isenção fiscal',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9261202216148376},\n", - " {'text': 'como funciona o recolhimento de dinheiro para os projetos',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.938251793384552},\n", - " {'text': 'quanto custa isso pro governo',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9123011231422424},\n", - " {'text': 'O Ministério da cultura é que dá o dinheiro?',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9430245161056519},\n", - " {'text': 'o ministerio da dinheiro',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9150956869125366},\n", - " {'text': 'o Minc da dinheiro para lei',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9421226382255554},\n", - " {'text': 'dinheiro',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.8965808153152466},\n", - " {'text': 'arrecadou',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9449805617332458},\n", - " {'text': 'arrecadar',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9367365837097168},\n", - " {'text': 'arrecadado',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9359959363937378},\n", - " {'text': 'isenção fiscal',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9300495982170105},\n", - " {'text': 'isencao fiscal',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9346964359283447},\n", - " {'text': 'pagar',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9071478843688965},\n", - " {'text': 'de onde vem',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9251995086669922},\n", - " {'text': 'quem paga',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9151169061660767},\n", - " {'text': 'quem patrocina',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.941825807094574},\n", - " {'text': 'pecúnia',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9581853151321411},\n", - " {'text': 'capital',\n", - " 'intent': 'lei_rouanet_origem_do_dinheiro',\n", - " 'predicted': 'lei_rouanet_origem_do_dinheiro',\n", - " 'confidence': 0.9337498545646667},\n", - " {'text': 'tem beneficio para quem incentiva projeto',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9749401807785034},\n", - " {'text': 'tem algum benefício em incentivar projetos',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9261318445205688},\n", - " {'text': 'Quais são as vantagens de ter seu projeto incentivado',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9524105787277222},\n", - " {'text': 'que tipo de beneficios recebe ao incentivar',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9697802662849426},\n", - " {'text': 'que beneficios tem para quem incentiva',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9709373712539673},\n", - " {'text': 'um incentivador pode receber beneficio',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9599281549453735},\n", - " {'text': 'qual é a vantagem de incentivar',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.953518807888031},\n", - " {'text': 'quem pode patrocinar um proejto',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9557517766952515},\n", - " {'text': 'quais as vantagens de ser incentivador',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9561663269996643},\n", - " {'text': 'quais as vantagens para o patrocinador',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9483358263969421},\n", - " {'text': 'quais os beneficios de ser incentivador',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9722748398780823},\n", - " {'text': 'quais os beneficios de um patrocinador',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9729766845703125},\n", - " {'text': 'como financiar um projeto cultural',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9624143838882446},\n", - " {'text': 'empresas ganham alguma coisa ajudando meus projetos',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9689723253250122},\n", - " {'text': 'incentivo fiscal federal',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9217426180839539},\n", - " {'text': 'beneficiados',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9555549621582031},\n", - " {'text': 'benefício',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9479916095733643},\n", - " {'text': 'patrocínio',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9543262720108032},\n", - " {'text': 'patrocinio',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9390094876289368},\n", - " {'text': 'incentivador',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9425820708274841},\n", - " {'text': 'patrocinador',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9525799751281738},\n", - " {'text': 'vantagem',\n", - " 'intent': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'predicted': 'lei_rouanet_beneficios_incentivo_projetos_culturais',\n", - " 'confidence': 0.9543207883834839},\n", - " {'text': 'incentivadores de projetos podem deduzir quanto de impostos de renda',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9334911704063416},\n", - " {'text': 'quanto de imposto de renda incentivadores conseguem deduzir de impostos',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9219955205917358},\n", - " {'text': 'qual valor um incentivador consegue deduzir de imposto de renda',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9038323163986206},\n", - " {'text': 'caso eu incentive um projeto quanto eu vou abater do meu IR',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9365878105163574},\n", - " {'text': 'quanto é o abatimento no IR caso haja algum incentivo',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.8907179832458496},\n", - " {'text': 'qual a porcentagem do imposto que vou abater após incentivar projetos',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9450469017028809},\n", - " {'text': 'qual é o desconto que recebo no IR ao incentivar um projeto',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9108834266662598},\n", - " {'text': 'qual a dedução de imposto de renda para incentivadores',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9317382574081421},\n", - " {'text': 'se eu incentivar eu vou ter dedução no meu imposto de renda',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.929710865020752},\n", - " {'text': 'sou incentivador quanto posso receber como dedução de imposto de renda',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.8982210159301758},\n", - " {'text': 'imposto de renda',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9394791126251221},\n", - " {'text': 'imposto',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9274977445602417},\n", - " {'text': 'dedução',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9245953559875488},\n", - " {'text': 'deduzir',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9378677606582642},\n", - " {'text': 'inferir',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9405837655067444},\n", - " {'text': 'porcentagem',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9390457272529602},\n", - " {'text': 'desconto',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9457991123199463},\n", - " {'text': 'abatimento',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9217219352722168},\n", - " {'text': 'abater',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9377641081809998},\n", - " {'text': 'taxa',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9534704685211182},\n", - " {'text': 'inseção fiscal',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9066842198371887},\n", - " {'text': 'insecao fiscal',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9152342081069946},\n", - " {'text': 'isencao',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9104986190795898},\n", - " {'text': 'isenção',\n", - " 'intent': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'predicted': 'lei_rouanet_porcentagem_de_deducao_do_imposto',\n", - " 'confidence': 0.9179150462150574},\n", - " {'text': 'quantos projetos foram aprovados',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.966619610786438},\n", - " {'text': 'quantos projetos foram incentivados',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9543933272361755},\n", - " {'text': 'quantos projetos participaram',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9354217052459717},\n", - " {'text': 'quantos projetos passaram pela lei',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9732426404953003},\n", - " {'text': 'quantos projetos usam a lei rouanet',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9506951570510864},\n", - " {'text': 'quantos projetos ja tiveram incentivo',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9587066769599915},\n", - " {'text': 'quantos projetos a lei rouanet aprovou',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9539273977279663},\n", - " {'text': 'quantidade de projetos incentivados',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9712758660316467},\n", - " {'text': 'quantidade de projetos aprovados',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9704062342643738},\n", - " {'text': 'qual estatistica de projetos participantes',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9499258399009705},\n", - " {'text': 'estatistica de projetos',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9587651491165161},\n", - " {'text': 'projetos que captaram recursos',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9160337448120117},\n", - " {'text': 'projetos participantes',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9207770228385925},\n", - " {'text': 'projetos incentivados',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9312055706977844},\n", - " {'text': 'projetos aprovados',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9655093550682068},\n", - " {'text': 'projetos agraciados',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9423474669456482},\n", - " {'text': 'projetos em execução',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.8772950768470764},\n", - " {'text': 'media de projetos',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9437767267227173},\n", - " {'text': 'numero de projetos',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9401959180831909},\n", - " {'text': 'aprovados',\n", - " 'intent': 'lei_rouanet_quantidade_de_projetos',\n", - " 'predicted': 'lei_rouanet_quantidade_de_projetos',\n", - " 'confidence': 0.9350424408912659},\n", - " {'text': 'Qualquer empresa pode se beneficiar de incentivos fiscais, apoiando projetos culturais',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9403381943702698},\n", - " {'text': 'Quais empresas podem se beneficiar ao apoiar projetos culturais',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9502661824226379},\n", - " {'text': 'Que tipos de empresas podem se beneficiar ao apoiar projetos culturais',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9553675055503845},\n", - " {'text': 'Apoiando projetos culturais, qualquer empresa se beneficia',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9275907278060913},\n", - " {'text': 'Empresas que se beneficiam ao apoiar projeto culturais',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9371752142906189},\n", - " {'text': 'como pessoa fisica como posso patrocinar',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9050424098968506},\n", - " {'text': 'Quem pode incentivar um proejto cultural',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9096447229385376},\n", - " {'text': 'Quem pode incentivar projetos culturais',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9376826286315918},\n", - " {'text': 'quem pode propor um projeto',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9028260707855225},\n", - " {'text': 'quem pode ser proponente de um projeto',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.8065435886383057},\n", - " {'text': 'Tenho uma empresa e quero particiar da lei rouanet, como eu sei se posso',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.8730329275131226},\n", - " {'text': 'qual o critério de elegibilidade para pessoas jurídicas',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9073448777198792},\n", - " {'text': 'toda empresa pode usar a lei rouanet',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9355159401893616},\n", - " {'text': 'tem alguma execeção para uma empresa não utilizar a lei rouanet',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9000645279884338},\n", - " {'text': 'quais a regras de elegibilidade no caso de empresas',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9106044173240662},\n", - " {'text': 'empresa',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9583178162574768},\n", - " {'text': 'elegibilidade como pessoa juridica',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.8385295867919922},\n", - " {'text': 'participação empresa',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9687883853912354},\n", - " {'text': 'corporação',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9331666827201843},\n", - " {'text': 'organização',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9546453356742859},\n", - " {'text': 'firma',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9371322393417358},\n", - " {'text': 'estabelecimento',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9454138875007629},\n", - " {'text': 'instituição',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9308187961578369},\n", - " {'text': 'firma',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.9371322393417358},\n", - " {'text': 'companhia',\n", - " 'intent': 'lei_rouanet_quem_pode_incentivar',\n", - " 'predicted': 'lei_rouanet_quem_pode_incentivar',\n", - " 'confidence': 0.8881514072418213},\n", - " {'text': 'quero denunciar um projeto',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9346377849578857},\n", - " {'text': 'quero registrar uma denuncia',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9621036052703857},\n", - " {'text': 'como faço uma denuncia',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9714475274085999},\n", - " {'text': 'como funciona a denuncia',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9211577773094177},\n", - " {'text': 'qual o processo de denuncia',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9705592393875122},\n", - " {'text': 'uso do dinheiro de forma ilegal',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9350506663322449},\n", - " {'text': 'tenho um projeto para denuncia',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9460053443908691},\n", - " {'text': 'identifiquei uma irregularidade',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9529340267181396},\n", - " {'text': 'tem algo errado no projeto',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9477857947349548},\n", - " {'text': 'gostaria de saber como denunciar',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9063729047775269},\n", - " {'text': 'denuncia via ouvidoria',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9602591395378113},\n", - " {'text': 'denunciar fraude',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9505198001861572},\n", - " {'text': 'denunciar dirigente',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9577898979187012},\n", - " {'text': 'denunciar projeto',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9569178819656372},\n", - " {'text': 'dinheiro ilegal',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.950605571269989},\n", - " {'text': 'dinheiro indevido',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.966041088104248},\n", - " {'text': 'processo de denuncia',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9762372374534607},\n", - " {'text': 'mecanismo de denuncia',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9608341455459595},\n", - " {'text': 'registrar denuncia',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9746533036231995},\n", - " {'text': 'projeto ilegal',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.9737444519996643},\n", - " {'text': 'como Denúncia de projetos',\n", - " 'intent': 'lei_rouanet_denuncia',\n", - " 'predicted': 'lei_rouanet_denuncia',\n", - " 'confidence': 0.8461792469024658},\n", - " {'text': 'o proponente autor do projeto é remunerado',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9513065814971924},\n", - " {'text': 'ha limite para remuneração do proponente',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9144917130470276},\n", - " {'text': 'existe remuneração para o proponente',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9362706542015076},\n", - " {'text': 'quanto e a remuneraçao do proponente',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9525327682495117},\n", - " {'text': 'o proponente recebe algo',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9549782872200012},\n", - " {'text': 'o proponente ganha alguma coisa',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9631651043891907},\n", - " {'text': 'qual o valor que recebe o proponente',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9643088579177856},\n", - " {'text': 'o proponente tem remuneracao',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9364640116691589},\n", - " {'text': 'o proponente recebe um salario',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9503999352455139},\n", - " {'text': 'o proponente tem direito a honorários',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9170382618904114},\n", - " {'text': 'qual limite para Remuneração do proponente',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9294751882553101},\n", - " {'text': 'quanto o proponente pode se remunerar',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9681789875030518},\n", - " {'text': 'qual a remuneração do proponente',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9569427371025085},\n", - " {'text': 'remuneração',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9183140993118286},\n", - " {'text': 'remunerado',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9457406997680664},\n", - " {'text': 'honorário',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9305972456932068},\n", - " {'text': 'salário',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9458146095275879},\n", - " {'text': 'pagamento',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.877746045589447},\n", - " {'text': 'valor',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9377113580703735},\n", - " {'text': 'recebe',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.8942959308624268},\n", - " {'text': 'ordenado',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9305658340454102},\n", - " {'text': 'rendimento',\n", - " 'intent': 'lei_rouanet_remuneracao_proponente',\n", - " 'predicted': 'lei_rouanet_remuneracao_proponente',\n", - " 'confidence': 0.9382544755935669},\n", - " {'text': 'os ingressos podem ser comercializados',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9432809352874756},\n", - " {'text': 'há um limite de preço a ser executado por produto realizado',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9399060606956482},\n", - " {'text': 'por quanto devo vender os ingressos do meu projeto',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9556109309196472},\n", - " {'text': 'como funciona a comercialização de ingressos',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9404028058052063},\n", - " {'text': 'qual deve ser o preço dos ingressos',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9309861660003662},\n", - " {'text': 'como estabelecer preços de ingressos',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9468638896942139},\n", - " {'text': 'há um limite de preço das entradas',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9385200142860413},\n", - " {'text': 'qual o limite de valor das entradas',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9523705244064331},\n", - " {'text': 'venda de ingresso',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9558693170547485},\n", - " {'text': 'valor da entrada',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9563738107681274},\n", - " {'text': 'comercialização do ingresso',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9385430216789246},\n", - " {'text': 'como vender a entrada',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9500889778137207},\n", - " {'text': 'qual deve ser o preço da entrada',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9454140663146973},\n", - " {'text': 'por qual valor devo vender a entrada',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9526075720787048},\n", - " {'text': 'pode ter entradas gratuitas',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9643841981887817},\n", - " {'text': 'como devo distribuir os ingressos',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9592953324317932},\n", - " {'text': 'quantos ingressos podem ser de graça',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9560189247131348},\n", - " {'text': 'há um limite de preço das entradas',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9385200142860413},\n", - " {'text': 'qual o limite de valor das entradas',\n", - " 'intent': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'predicted': 'lei_rouanet_comercializacao_de_ingressos',\n", - " 'confidence': 0.9523705244064331},\n", - " {'text': 'é possível que o patrocinador faça a prospecção da sua marca em um projeto realizado com incentivo fiscal',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9580436944961548},\n", - " {'text': 'como o patrocinador pode ativar a sua marca no projeto',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9592512845993042},\n", - " {'text': 'em que condições a marca do patrocinador pode ser divulgada',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9124706983566284},\n", - " {'text': 'o patrocinador pode promover a sua marca',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.967141330242157},\n", - " {'text': 'a marca do patrcinador pode ser promovida',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9119765758514404},\n", - " {'text': 'a marca do patrocinador pode ser divulgada',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9146688580513},\n", - " {'text': 'como o patrocinador pode usar o projeto para promover a sua marca',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9540777802467346},\n", - " {'text': 'a logo do patrocinador pode ser divulgada',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.899824321269989},\n", - " {'text': 'posso divulgar a logo do patrocinador',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.889925479888916},\n", - " {'text': 'a logo do patrocinador pode ficar visivel',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.944182813167572},\n", - " {'text': 'posso colocar a logo do patrocinador no banner',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.931222140789032},\n", - " {'text': 'a marca do patrocinador pode ser divulgada junto com o projeto',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9609882235527039},\n", - " {'text': 'a logo do patrocinador pode ser associada ao projeto',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9221886396408081},\n", - " {'text': 'como deve ser feita a divulgação da marca do patrocinador',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.8933743238449097},\n", - " {'text': 'como a logo do patrocinador deve ser divulgada',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.8603004217147827},\n", - " {'text': 'como promover a logo do patrocinador',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.900210440158844},\n", - " {'text': 'há limites para a promoção da marca do patrocinador',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9364964365959167},\n", - " {'text': 'como a marca do patrocinador deve ser promovida',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.8337424993515015},\n", - " {'text': 'há regras para a divulgação da marca do patrocinador no projeto',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9626317620277405},\n", - " {'text': 'como a marca do patrocinador deve aparecer na divulgação',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.8855215907096863},\n", - " {'text': 'marca',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.940344512462616},\n", - " {'text': 'divulgar marca',\n", - " 'intent': 'lei_rouanet_promocao_de_marca',\n", - " 'predicted': 'lei_rouanet_promocao_de_marca',\n", - " 'confidence': 0.9379388093948364},\n", - " {'text': 'quais os valores para pagamento de cachês em projetos realizados com incentivo fiscal',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9184354543685913},\n", - " {'text': 'há limites nos valores de pagamentos de cachês',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9154268503189087},\n", - " {'text': 'existe limite de pagamento de cachê',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9409071803092957},\n", - " {'text': 'qual o limite de pagamento de cachês',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9445338249206543},\n", - " {'text': 'quanto posso dar de cache para os artitas',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9360090494155884},\n", - " {'text': 'posso dar quanto de cache para meus funcionarios',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.932132363319397},\n", - " {'text': 'como funciona o pagamento de cache',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9260348677635193},\n", - " {'text': 'pagamento de cache para artista solo',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9331561326980591},\n", - " {'text': 'quanto cada artista do grupo pode receber de cache',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9336931705474854},\n", - " {'text': 'existe limite de pagamento para artistas',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9574190378189087},\n", - " {'text': 'valor de pagamento para artista solo e grupos artisticos',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9299440383911133},\n", - " {'text': 'quanto cada artista da peça pode receber',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9096817970275879},\n", - " {'text': 'valor cache',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9456062316894531},\n", - " {'text': 'pagamento cachê',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.909558117389679},\n", - " {'text': 'limite de cache',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.959392786026001},\n", - " {'text': 'cache artista',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9346622824668884},\n", - " {'text': 'cachê projeto',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9419604539871216},\n", - " {'text': 'pagamento artista solo',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.939577579498291},\n", - " {'text': 'cache orquestra',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9150840640068054},\n", - " {'text': 'limite cache artista solo',\n", - " 'intent': 'lei_rouanet_valores_pagamento_caches',\n", - " 'predicted': 'lei_rouanet_valores_pagamento_caches',\n", - " 'confidence': 0.9318336248397827},\n", - " {'text': 'quais as etapas de aprovação de um projeto',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9453644156455994},\n", - " {'text': 'Andamento do projeto',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.939799964427948},\n", - " {'text': 'o que tenho que fazer pra aprovar meu projeto',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9592105746269226},\n", - " {'text': 'que passos tenho que fazer durante a criação do projeto',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9445525407791138},\n", - " {'text': 'o que eu tenho que fazer pra ser aprovado na lei rouanet',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.918472945690155},\n", - " {'text': 'quais sao os passos pra mandar um projeto para avaliacao',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9389264583587646},\n", - " {'text': 'como faco pra aprovar um projeto no salic',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9510708451271057},\n", - " {'text': 'quero mandar um projeto na lei rouanet, o que eu tenho que fazer',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9019538760185242},\n", - " {'text': 'como funciona o processe de analise da proposta',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9235382676124573},\n", - " {'text': 'por onde a proposta passa para ser aprovada',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.8930600881576538},\n", - " {'text': 'quem analisa a proposta de projeto ate a decisão final',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9621350765228271},\n", - " {'text': 'etapas projeto',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.897278904914856},\n", - " {'text': 'passos submissao',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9392642974853516},\n", - " {'text': 'decisao final proposta',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9534556865692139},\n", - " {'text': 'etapas analise proposta',\n", - " 'intent': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'predicted': 'lei_rouanet_etapas_aprovacao_projeto',\n", - " 'confidence': 0.9066134095191956},\n", - " {'text': '#apresentaçãodeproposta',\n", - " 'intent': 'lei_rouanet_apresentacao_de_proposta',\n", - " 'predicted': 'lei_rouanet_apresentacao_de_proposta',\n", - " 'confidence': 0.9395171403884888},\n", - " {'text': '#apresentcaodeproposta',\n", - " 'intent': 'lei_rouanet_apresentacao_de_proposta',\n", - " 'predicted': 'lei_rouanet_apresentacao_de_proposta',\n", - " 'confidence': 0.9163934588432312},\n", - " {'text': 'apresentaçãodeproposta',\n", - " 'intent': 'lei_rouanet_apresentacao_de_proposta',\n", - " 'predicted': 'lei_rouanet_apresentacao_de_proposta',\n", - " 'confidence': 0.9395171403884888},\n", - " {'text': 'apresentcaodeproposta',\n", - " 'intent': 'lei_rouanet_apresentacao_de_proposta',\n", - " 'predicted': 'lei_rouanet_apresentacao_de_proposta',\n", - " 'confidence': 0.9163934588432312},\n", - " {'text': '#análisedeadmissibilidade',\n", - " 'intent': 'lei_rouanet_analise_de_admissibilidade',\n", - " 'predicted': 'lei_rouanet_analise_de_admissibilidade',\n", - " 'confidence': 0.9182586669921875},\n", - " {'text': '#analisedeadmissibilidade',\n", - " 'intent': 'lei_rouanet_analise_de_admissibilidade',\n", - " 'predicted': 'lei_rouanet_analise_de_admissibilidade',\n", - " 'confidence': 0.9452109336853027},\n", - " {'text': 'análisedeadmissibilidade',\n", - " 'intent': 'lei_rouanet_analise_de_admissibilidade',\n", - " 'predicted': 'lei_rouanet_analise_de_admissibilidade',\n", - " 'confidence': 0.9182586669921875},\n", - " {'text': 'analisedeadmissibilidade',\n", - " 'intent': 'lei_rouanet_analise_de_admissibilidade',\n", - " 'predicted': 'lei_rouanet_analise_de_admissibilidade',\n", - " 'confidence': 0.9452109336853027},\n", - " {'text': '#análisetécnica',\n", - " 'intent': 'lei_rouanet_analise_tecnica',\n", - " 'predicted': 'lei_rouanet_analise_tecnica',\n", - " 'confidence': 0.8906223773956299},\n", - " {'text': '#analisetecnica',\n", - " 'intent': 'lei_rouanet_analise_tecnica',\n", - " 'predicted': 'lei_rouanet_analise_tecnica',\n", - " 'confidence': 0.8978681564331055},\n", - " {'text': 'análisetécnica',\n", - " 'intent': 'lei_rouanet_analise_tecnica',\n", - " 'predicted': 'lei_rouanet_analise_tecnica',\n", - " 'confidence': 0.8906223773956299},\n", - " {'text': 'analisetecnica',\n", - " 'intent': 'lei_rouanet_analise_tecnica',\n", - " 'predicted': 'lei_rouanet_analise_tecnica',\n", - " 'confidence': 0.8978681564331055},\n", - " {'text': '#análisepelacnic',\n", - " 'intent': 'lei_rouanet_analise_pela_cnic',\n", - " 'predicted': 'lei_rouanet_analise_pela_cnic',\n", - " 'confidence': 0.928705632686615},\n", - " {'text': '#analisepelacnic',\n", - " 'intent': 'lei_rouanet_analise_pela_cnic',\n", - " 'predicted': 'lei_rouanet_analise_pela_cnic',\n", - " 'confidence': 0.9064989686012268},\n", - " {'text': 'análisepelacnic',\n", - " 'intent': 'lei_rouanet_analise_pela_cnic',\n", - " 'predicted': 'lei_rouanet_analise_pela_cnic',\n", - " 'confidence': 0.928705632686615},\n", - " {'text': 'analisepelacnic',\n", - " 'intent': 'lei_rouanet_analise_pela_cnic',\n", - " 'predicted': 'lei_rouanet_analise_pela_cnic',\n", - " 'confidence': 0.9064989686012268},\n", - " {'text': '#decisãofinal',\n", - " 'intent': 'lei_rouanet_decisao_final',\n", - " 'predicted': 'lei_rouanet_decisao_final',\n", - " 'confidence': 0.9136379361152649},\n", - " {'text': '#decisaofinal',\n", - " 'intent': 'lei_rouanet_decisao_final',\n", - " 'predicted': 'lei_rouanet_decisao_final',\n", - " 'confidence': 0.9201803207397461},\n", - " {'text': 'decisãofinal',\n", - " 'intent': 'lei_rouanet_decisao_final',\n", - " 'predicted': 'lei_rouanet_decisao_final',\n", - " 'confidence': 0.9136379361152649},\n", - " {'text': 'decisaofinal',\n", - " 'intent': 'lei_rouanet_decisao_final',\n", - " 'predicted': 'lei_rouanet_decisao_final',\n", - " 'confidence': 0.9201803207397461},\n", - " {'text': 'tem valor maximo de projetos',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9587467908859253},\n", - " {'text': 'qual e o valor maximo de projetos',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9419609904289246},\n", - " {'text': 'minha proposta pode atingir qual valor',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9364405870437622},\n", - " {'text': 'maior valor para um projeto',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9280635118484497},\n", - " {'text': 'maior valor de um projeto',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9419680833816528},\n", - " {'text': 'posso ter quantas propostas apresentadas',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9111803770065308},\n", - " {'text': 'quantos projetos posso ter',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9486743211746216},\n", - " {'text': 'tem limite de abertura de projetos',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.918799638748169},\n", - " {'text': 'quantos projetos posso ter em meu nome',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9556052684783936},\n", - " {'text': 'ha um valor maximo por projeto',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9476190209388733},\n", - " {'text': 'existe valor maximo para minha proposta',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9378612637519836},\n", - " {'text': 'meu projeto pode chegar a que valor',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9556901454925537},\n", - " {'text': 'valor maximo de projeto',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9663873910903931},\n", - " {'text': 'valor maximo de proposta',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9383806586265564},\n", - " {'text': 'quantidade maxima de projetos',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9340641498565674},\n", - " {'text': 'quantidade maxima de propostas',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9387646913528442},\n", - " {'text': 'total de projetos em meu nome',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9664443135261536},\n", - " {'text': 'Quantos projetos o proponente pode inscrever',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.8110523223876953},\n", - " {'text': 'valor maximo por ano',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9494932889938354},\n", - " {'text': 'quantidade maxima',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9252511858940125},\n", - " {'text': 'valor maximo',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9188496470451355},\n", - " {'text': 'valor por ano',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.8735255599021912},\n", - " {'text': 'quantidade por ano',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.8765038847923279},\n", - " {'text': 'limite de projetos por ano',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9479274749755859},\n", - " {'text': 'limite de projetos por proponente',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.8954132795333862},\n", - " {'text': 'ultrapassar o limite',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9509696960449219},\n", - " {'text': 'limite pode ser ultrapassado',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.8703022003173828},\n", - " {'text': 'quantidade máxima de projetos pode ser ultrapassada',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9200603365898132},\n", - " {'text': 'ultrapassar limite de projetos',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9710526466369629},\n", - " {'text': 'aumentar limite de projetos',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9505261182785034},\n", - " {'text': 'valor minimo de projeto',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9590966105461121},\n", - " {'text': 'Valor minimo pra projeto',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9565748572349548},\n", - " {'text': 'projeto valor mínimo',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9568337798118591},\n", - " {'text': 'qual e o valor minimo pra projeto',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9473154544830322},\n", - " {'text': 'qual e o valor minimo de projetos',\n", - " 'intent': 'lei_rouanet_valor_maximo_projeto',\n", - " 'predicted': 'lei_rouanet_valor_maximo_projeto',\n", - " 'confidence': 0.9371488094329834},\n", - " {'text': 'pessoa fisica',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9145314693450928},\n", - " {'text': 'MEI',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9129058122634888},\n", - " {'text': 'sou uma pessoa fisica',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9009751677513123},\n", - " {'text': 'sobre pessoa fisica',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9284515380859375},\n", - " {'text': 'sou um artista',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9107965230941772},\n", - " {'text': 'microempresario individual',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.8839111328125},\n", - " {'text': 'primeira opção',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9486864805221558},\n", - " {'text': 'primeiro tópico',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9295742511749268},\n", - " {'text': 'se encaixa na 1',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9293559789657593},\n", - " {'text': 'um',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.7816870212554932},\n", - " {'text': 'de pessoa fisica',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9422051906585693},\n", - " {'text': 'opção um',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9275078773498535},\n", - " {'text': 'categoriga um',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_fisica',\n", - " 'confidence': 0.9028669595718384},\n", - " {'text': 'pessoa juridica',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.8929890394210815},\n", - " {'text': 'sou uma pessoa juridica',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9105358719825745},\n", - " {'text': 'sou empresario individual',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9665603637695312},\n", - " {'text': 'empresario individual',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9551994800567627},\n", - " {'text': 'empresa individual de responsabilidade limitada',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9556241035461426},\n", - " {'text': 'EIRELI',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9026023745536804},\n", - " {'text': 'segunda opção',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9551727771759033},\n", - " {'text': 'segundo tópico',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9284572601318359},\n", - " {'text': 'sociedade limitada',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9431589245796204},\n", - " {'text': 'acho que na 2',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9295364022254944},\n", - " {'text': 'opção 2',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9408077001571655},\n", - " {'text': 'na segunda',\n", - " 'intent': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'predicted': 'lei_rouanet_valor_maximo_pessoa_juridica',\n", - " 'confidence': 0.9256143569946289},\n", - " {'text': 'terceira opção',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9121190905570984},\n", - " {'text': 'terceiro tópico',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9040043354034424},\n", - " {'text': 'todas as opcoes',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9334650039672852},\n", - " {'text': 'geral',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9275511503219604},\n", - " {'text': 'quero saber de tudo',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.8995780944824219},\n", - " {'text': 'todas as empresas',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9192192554473877},\n", - " {'text': 'todos os perfis',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.939640998840332},\n", - " {'text': 'sobre os dois perfis',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9475716948509216},\n", - " {'text': 'escolha 3',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.8775684833526611},\n", - " {'text': 'na 3',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.8149272203445435},\n", - " {'text': 'opção três',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9192348718643188},\n", - " {'text': 'três',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.940556526184082},\n", - " {'text': 'sobre todos',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9113829731941223},\n", - " {'text': 'todos os perfis',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.939640998840332},\n", - " {'text': 'os dois perfis',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9337143898010254},\n", - " {'text': 'sobre todos os perfis',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9435350298881531},\n", - " {'text': 'de todos',\n", - " 'intent': 'lei_rouanet_valor_maximo_geral',\n", - " 'predicted': 'lei_rouanet_valor_maximo_geral',\n", - " 'confidence': 0.9173111915588379},\n", - " {'text': 'como é feita a divulgação de patrocínio',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9153003692626953},\n", - " {'text': 'como e feita a divulgacao de patrocinio',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9113270044326782},\n", - " {'text': 'como promover marca do patrocinador',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.8877732753753662},\n", - " {'text': 'como promover minha marca',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9226201176643372},\n", - " {'text': 'como fazer promoção de marca',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9052606225013733},\n", - " {'text': 'como fazer promocao de marca',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9119663834571838},\n", - " {'text': 'como fazer divulgação de marca',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9311329126358032},\n", - " {'text': 'como fazer divulgacao de marca',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9278117418289185},\n", - " {'text': 'como divulgar marca',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9001134037971497},\n", - " {'text': 'promover marca do patrocinador',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.8842296600341797},\n", - " {'text': 'promoção de marca',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.8982987999916077},\n", - " {'text': 'promocao de marca',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9352585673332214},\n", - " {'text': 'divulgacao de marca',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9387194514274597},\n", - " {'text': 'divulgação de marca',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9437886476516724},\n", - " {'text': 'marcas e produtos',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9050377011299133},\n", - " {'text': 'divulgação de patrocínio',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9084177017211914},\n", - " {'text': 'divulgacao de patrocinio',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.891115665435791},\n", - " {'text': 'prospecção comercial',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9383922219276428},\n", - " {'text': 'prospeccao comercial',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9119760990142822},\n", - " {'text': 'divulgação',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.9084828495979309},\n", - " {'text': 'divulgacao',\n", - " 'intent': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'predicted': 'lei_rouanet_divulgacao_patrocinio',\n", - " 'confidence': 0.903430700302124},\n", - " {'text': 'onde está o diheiro',\n", - " 'intent': 'out_of_scope',\n", - " 'predicted': 'out_of_scope',\n", - " 'confidence': 0.9252400398254395},\n", - " {'text': 'onde está o pablo vittar',\n", - " 'intent': 'out_of_scope',\n", - " 'predicted': 'out_of_scope',\n", - " 'confidence': 0.9359396696090698},\n", - " {'text': 'vagabundos',\n", - " 'intent': 'out_of_scope',\n", - " 'predicted': 'out_of_scope',\n", - " 'confidence': 0.9285768866539001},\n", - " {'text': 'bandidos',\n", - " 'intent': 'out_of_scope',\n", - " 'predicted': 'out_of_scope',\n", - " 'confidence': 0.9255276918411255},\n", - " {'text': 'corrupção',\n", - " 'intent': 'out_of_scope',\n", - " 'predicted': 'out_of_scope',\n", - " 'confidence': 0.9179350137710571},\n", - " {'text': 'deus é fiel',\n", - " 'intent': 'out_of_scope',\n", - " 'predicted': 'out_of_scope',\n", - " 'confidence': 0.9413219690322876},\n", - " {'text': 'qual é o seu sexo',\n", - " 'intent': 'out_of_scope',\n", - " 'predicted': 'out_of_scope',\n", - " 'confidence': 0.9160112142562866},\n", - " {'text': 'você esta aonde?',\n", - " 'intent': 'out_of_scope',\n", - " 'predicted': 'out_of_scope',\n", - " 'confidence': 0.9123349189758301},\n", - " {'text': 'voce torce pra qual time',\n", - " 'intent': 'out_of_scope',\n", - " 'predicted': 'out_of_scope',\n", - " 'confidence': 0.9010410308837891},\n", - " {'text': 'como esta o tempo',\n", - " 'intent': 'out_of_scope',\n", - " 'predicted': 'out_of_scope',\n", - " 'confidence': 0.8886721134185791},\n", - " {'text': 'Tchau obrigada',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9495381116867065},\n", - " {'text': 'Tchau',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9385173916816711},\n", - " {'text': 'até logo',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9396079182624817},\n", - " {'text': 'namaste',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9397234916687012},\n", - " {'text': 'sayonara',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9415673017501831},\n", - " {'text': 'até mais',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9516493082046509},\n", - " {'text': 'até breve',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9487853050231934},\n", - " {'text': 'falou, valeu',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9356170892715454},\n", - " {'text': 'flw vlw',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9392751455307007},\n", - " {'text': 'blza',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9270905256271362},\n", - " {'text': 'blz',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9304990172386169},\n", - " {'text': 'valeu',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9178992509841919},\n", - " {'text': 'massa',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9293020367622375},\n", - " {'text': 'de boa',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9097222685813904},\n", - " {'text': 'obrigada',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9364942312240601},\n", - " {'text': 'obrigado',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9443498849868774},\n", - " {'text': 'obj',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9228301048278809},\n", - " {'text': 'obrigada, tais',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9482269287109375},\n", - " {'text': 'tais, obrigado',\n", - " 'intent': 'despedir',\n", - " 'predicted': 'despedir',\n", - " 'confidence': 0.9445779323577881},\n", - " {'text': 'oi',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9450163841247559},\n", - " {'text': 'olá',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9075061678886414},\n", - " {'text': 'oie',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9077898859977722},\n", - " {'text': 'oiee',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9535720944404602},\n", - " {'text': 'ola boa tarde',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9700810313224792},\n", - " {'text': 'oi tais',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.947868824005127},\n", - " {'text': 'ola tais, tudo bom',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9703183770179749},\n", - " {'text': 'ola tais, que saudade de vc',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9592933058738708},\n", - " {'text': 'oi tais saudades',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9700614809989929},\n", - " {'text': 'oi, como vai você',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9021359086036682},\n", - " {'text': 'posso falar com voce',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.8773128390312195},\n", - " {'text': 'pode me tirar uma duvida',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9191869497299194},\n", - " {'text': 'gostaria de tirar uma duvida',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.8996825218200684},\n", - " {'text': 'bom dia',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.7596171498298645},\n", - " {'text': 'boa tarde',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.9243963360786438},\n", - " {'text': 'boa noite',\n", - " 'intent': 'cumprimentar',\n", - " 'predicted': 'cumprimentar',\n", - " 'confidence': 0.8834283351898193},\n", - " {'text': 'Tais, você é muito educada!',\n", - " 'intent': 'elogios',\n", - " 'predicted': 'elogios',\n", - " 'confidence': 0.9061513543128967},\n", - " {'text': 'Adorei',\n", - " 'intent': 'elogios',\n", - " 'predicted': 'elogios',\n", - " 'confidence': 0.8889858722686768},\n", - " {'text': 'Me ajudou muito',\n", - " 'intent': 'elogios',\n", - " 'predicted': 'elogios',\n", - " 'confidence': 0.8950067162513733},\n", - " {'text': 'vc eh linda',\n", - " 'intent': 'elogios',\n", - " 'predicted': 'elogios',\n", - " 'confidence': 0.9161876440048218},\n", - " {'text': 'se não for incomodo',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9199330806732178},\n", - " {'text': 'claro que sim',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9329385757446289},\n", - " {'text': 'posso sim',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9268244504928589},\n", - " {'text': 'gostaria sim',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9332859516143799},\n", - " {'text': 'sei bastante',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.8803272247314453},\n", - " {'text': 'preenchi sim',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9399335980415344},\n", - " {'text': 'gostaria de saber mais',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.8827956914901733},\n", - " {'text': 'gostaria de mais detalhes',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9057735800743103},\n", - " {'text': 'ja preenchi uma proposta',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.8902532458305359},\n", - " {'text': 'sim, preenchi minha proposta',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.8911084532737732},\n", - " {'text': 'quero',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'lei_rouanet_quem_pode_ser_proponente',\n", - " 'confidence': 0.6433234214782715},\n", - " {'text': 'por favor',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9080842733383179},\n", - " {'text': 'ja',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9279277324676514},\n", - " {'text': 'já',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9057300090789795},\n", - " {'text': 'sim',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9294460415840149},\n", - " {'text': 'ta',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9173327684402466},\n", - " {'text': 'ok',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.8292926549911499},\n", - " {'text': 'claro',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9008420705795288},\n", - " {'text': 'confirmo',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.8805714845657349},\n", - " {'text': 'mais ou menos',\n", - " 'intent': 'afirmar',\n", - " 'predicted': 'afirmar',\n", - " 'confidence': 0.9232947826385498},\n", - " {'text': 'não sei onde a minha pergunta se encaixa',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9307069778442383},\n", - " {'text': 'nao quero saber mais',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9185152649879456},\n", - " {'text': 'quero falar sobre outra coisa',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9128117561340332},\n", - " {'text': 'não quero saber de mais nada',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9405221939086914},\n", - " {'text': 'nao era isso, me enganei',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9081859588623047},\n", - " {'text': 'não quero falar sobre isso',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9120919108390808},\n", - " {'text': 'ainda nao sei escolher um tópico',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9614132642745972},\n", - " {'text': 'ainda não pensei sobre isso',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9376702308654785},\n", - " {'text': 'nao sei do que quero falar',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9279929995536804},\n", - " {'text': 'não sei do que quero conversar',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9403306841850281},\n", - " {'text': 'nunca',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9311043620109558},\n", - " {'text': 'nao',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9134542942047119},\n", - " {'text': 'não',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9001680016517639},\n", - " {'text': 'nao conheco',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9312798976898193},\n", - " {'text': 'não quero',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9073455333709717},\n", - " {'text': 'escolhi errado',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9490307569503784},\n", - " {'text': 'falei errado',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9520057439804077},\n", - " {'text': 'duvida',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.8644564151763916},\n", - " {'text': 'ainda não sei',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9392362236976624},\n", - " {'text': 'nenhum',\n", - " 'intent': 'negar',\n", - " 'predicted': 'negar',\n", - " 'confidence': 0.9163627624511719},\n", - " {'text': 'como funciona',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9084725379943848},\n", - " {'text': 'me diga mais',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9334043264389038},\n", - " {'text': 'como',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.8817075490951538},\n", - " {'text': 'não entendi',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9462873339653015},\n", - " {'text': 'nao entendi',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9465685486793518},\n", - " {'text': 'não é isso',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9597824811935425},\n", - " {'text': 'nao eh isso',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9426864385604858},\n", - " {'text': 'como assim',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.8984559178352356},\n", - " {'text': 'e como funciona',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9084725379943848},\n", - " {'text': 'e como faco isso',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9193329811096191},\n", - " {'text': 'como cadastra',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9283310174942017},\n", - " {'text': 'nao tenho certeza',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9345698952674866},\n", - " {'text': 'não sei',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9643769860267639},\n", - " {'text': 'por onde solicitar',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9208300113677979},\n", - " {'text': 'como ter acesso',\n", - " 'intent': 'diga_mais',\n", - " 'predicted': 'diga_mais',\n", - " 'confidence': 0.9369814991950989},\n", - " {'text': 'sobre o que você sabe falar',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.8999084830284119},\n", - " {'text': 'quais assuntos você fala',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.9416283369064331},\n", - " {'text': 'o que você sabe',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.8847930431365967},\n", - " {'text': 'lista de assuntos possiveis',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.922766387462616},\n", - " {'text': 'quais as perguntas vc responde',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.8967563509941101},\n", - " {'text': 'quais as perquisar você responde',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.9544035196304321},\n", - " {'text': '#MEAJUDA',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.9380227327346802},\n", - " {'text': 'MEAJDA',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.940743088722229},\n", - " {'text': '#meajuda',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.9380227327346802},\n", - " {'text': '# me ajuda',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.9429182410240173},\n", - " {'text': 'MEAJUDA',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.9380227327346802},\n", - " {'text': 'meajuda',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.9380227327346802},\n", - " {'text': 'me ajuda',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.9429182410240173},\n", - " {'text': 'ajuda',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.9460859298706055},\n", - " {'text': 'menu',\n", - " 'intent': 'o_que_sei_falar',\n", - " 'predicted': 'o_que_sei_falar',\n", - " 'confidence': 0.9493501782417297},\n", - " {'text': 'Tudo bem',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.9229090213775635},\n", - " {'text': 'Como vocês esta',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.9045653343200684},\n", - " {'text': 'como vc ta',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.9363014698028564},\n", - " {'text': 'joia',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.9421886801719666},\n", - " {'text': 'joinha',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.9142394065856934},\n", - " {'text': 'tudo bom',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.9181636571884155},\n", - " {'text': 'bom dia flor do dia',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.8978613018989563},\n", - " {'text': 'Tudo bem e você',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.9144315123558044},\n", - " {'text': 'como vc esta',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.9219900369644165},\n", - " {'text': 'como vai vc',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.9089887738227844},\n", - " {'text': 'esta tudo bem com você, Tais',\n", - " 'intent': 'tudo_bem',\n", - " 'predicted': 'tudo_bem',\n", - " 'confidence': 0.9135146141052246},\n", - " {'text': 'Quem te criou?',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9365997314453125},\n", - " {'text': 'Quem te desenvolveu?',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9302060604095459},\n", - " {'text': 'quem é voce',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9202609658241272},\n", - " {'text': 'quem e vc',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9076114296913147},\n", - " {'text': 'você tem pai',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.8930513858795166},\n", - " {'text': 'Como faço pra ter um chatbot maneiro assim?',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9170796871185303},\n", - " {'text': 'me conte mais sobre voce',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9523944854736328},\n", - " {'text': 'o que significa uma assistente virtual',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.8891562223434448},\n", - " {'text': 'assistente virtual',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.928520143032074},\n", - " {'text': 'chatbot',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9188199639320374},\n", - " {'text': 'o que e um chatbot',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9018428325653076},\n", - " {'text': 'o que um chatbot faz',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9167840480804443},\n", - " {'text': 'qual o seu papel no ministerio da cultura',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.8947077989578247},\n", - " {'text': 'qual o seu papel no ministerio',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.8819912075996399},\n", - " {'text': 'o que faz para o minc',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.897804856300354},\n", - " {'text': 'me fale sobre voce',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.8848079442977905},\n", - " {'text': 'Tais, me fale sobre vc',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9147122502326965},\n", - " {'text': 'qual sua tecnologia',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9198637008666992},\n", - " {'text': 'qual seu pai',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9059469699859619},\n", - " {'text': 'onde voce nasceu',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9166886806488037},\n", - " {'text': 'quando vc nasceu',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.8882967829704285},\n", - " {'text': 'vc é homem ou mulher',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9120593667030334},\n", - " {'text': 'você é um robo',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9209144711494446},\n", - " {'text': 'Tais',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.8366104364395142},\n", - " {'text': 'Taís',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.8971455097198486},\n", - " {'text': 'vc é um humano',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9139097929000854},\n", - " {'text': 'você eh um robo',\n", - " 'intent': 'quem_eh_a_tais',\n", - " 'predicted': 'quem_eh_a_tais',\n", - " 'confidence': 0.9199674129486084},\n", - " {'text': 'vamos conversar pelo whatsapp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9720173478126526},\n", - " {'text': 'vamos conversar pelo wpp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9713993668556213},\n", - " {'text': 'vamos falar pelo wpp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9673905968666077},\n", - " {'text': 'podemos conversar pelo whatsapp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9715197682380676},\n", - " {'text': 'podemos conversar pelo zap',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9717613458633423},\n", - " {'text': 'podemos conversar pelo wpp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.975053071975708},\n", - " {'text': 'me passa seu whatsapp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9708843231201172},\n", - " {'text': 'me manda teu wpp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9659750461578369},\n", - " {'text': 'me passa seu wpp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9660499095916748},\n", - " {'text': 'me passa seu zap',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9538769721984863},\n", - " {'text': 'vc tem whatsapp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9570112228393555},\n", - " {'text': 'você ta no whatapp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9455056190490723},\n", - " {'text': 'voce ta no whatsapp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9578789472579956},\n", - " {'text': 'vc tá no whatsapp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9672174453735352},\n", - " {'text': 'você tem whatsapp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.971194326877594},\n", - " {'text': 'você tem zap',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9613780975341797},\n", - " {'text': 'vc tem zap',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9652594327926636},\n", - " {'text': 'vc tem wpp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9661036729812622},\n", - " {'text': 'você tem wpp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.966422975063324},\n", - " {'text': 'vc ta no wpp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.947913408279419},\n", - " {'text': 'whatsapp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9711000919342041},\n", - " {'text': 'wpp',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9660168290138245},\n", - " {'text': 'zap',\n", - " 'intent': 'tem_wpp',\n", - " 'predicted': 'tem_wpp',\n", - " 'confidence': 0.9571150541305542},\n", - " {'text': 'o que é Tais',\n", - " 'intent': 'definicao_tais',\n", - " 'predicted': 'definicao_tais',\n", - " 'confidence': 0.8389952778816223},\n", - " {'text': 'o que significa Tais',\n", - " 'intent': 'definicao_tais',\n", - " 'predicted': 'definicao_tais',\n", - " 'confidence': 0.8415303230285645},\n", - " {'text': 'quem é você',\n", - " 'intent': 'definicao_tais',\n", - " 'predicted': 'definicao_tais',\n", - " 'confidence': 0.8629926443099976},\n", - " {'text': 'por que esse nome',\n", - " 'intent': 'definicao_tais',\n", - " 'predicted': 'definicao_tais',\n", - " 'confidence': 0.848647952079773},\n", - " {'text': 'da onde surgiu Tais',\n", - " 'intent': 'definicao_tais',\n", - " 'predicted': 'definicao_tais',\n", - " 'confidence': 0.8466800451278687},\n", - " {'text': 'qual significado de Tais',\n", - " 'intent': 'definicao_tais',\n", - " 'predicted': 'definicao_tais',\n", - " 'confidence': 0.8421121835708618},\n", - " {'text': 'por que seu nome é Tais',\n", - " 'intent': 'definicao_tais',\n", - " 'predicted': 'definicao_tais',\n", - " 'confidence': 0.9096294045448303},\n", - " {'text': 'qual é seu nome',\n", - " 'intent': 'definicao_tais',\n", - " 'predicted': 'definicao_tais',\n", - " 'confidence': 0.8937960863113403},\n", - " {'text': 'definição de Tais',\n", - " 'intent': 'definicao_tais',\n", - " 'predicted': 'definicao_tais',\n", - " 'confidence': 0.8277633786201477},\n", - " {'text': 'defina tais',\n", - " 'intent': 'definicao_tais',\n", - " 'predicted': 'definicao_tais',\n", - " 'confidence': 0.8857876062393188},\n", - " {'text': 'o que é Minc',\n", - " 'intent': 'definicao_minc',\n", - " 'predicted': 'definicao_minc',\n", - " 'confidence': 0.9129717350006104},\n", - " {'text': 'o que significa Minc',\n", - " 'intent': 'definicao_minc',\n", - " 'predicted': 'definicao_minc',\n", - " 'confidence': 0.9125776886940002},\n", - " {'text': 'MinC é o ministério',\n", - " 'intent': 'definicao_minc',\n", - " 'predicted': 'definicao_minc',\n", - " 'confidence': 0.9283621907234192},\n", - " {'text': 'o que a sigla Minc significa',\n", - " 'intent': 'definicao_minc',\n", - " 'predicted': 'definicao_minc',\n", - " 'confidence': 0.9300503134727478},\n", - " {'text': 'qual o trabalho do Ministerio da Cultura',\n", - " 'intent': 'definicao_minc',\n", - " 'predicted': 'definicao_minc',\n", - " 'confidence': 0.8917701840400696},\n", - " {'text': 'qual o trabalho do Ministério da Cultura',\n", - " 'intent': 'definicao_minc',\n", - " 'predicted': 'definicao_minc',\n", - " 'confidence': 0.8720206618309021},\n", - " {'text': 'Ministerio',\n", - " 'intent': 'definicao_minc',\n", - " 'predicted': 'definicao_minc',\n", - " 'confidence': 0.8445441722869873},\n", - " {'text': 'Minc',\n", - " 'intent': 'definicao_minc',\n", - " 'predicted': 'definicao_minc',\n", - " 'confidence': 0.9319995045661926},\n", - " {'text': 'Minitério da Cultura',\n", - " 'intent': 'definicao_minc',\n", - " 'predicted': 'definicao_minc',\n", - " 'confidence': 0.9299644231796265},\n", - " {'text': 'quais as funções do Minc',\n", - " 'intent': 'definicao_minc',\n", - " 'predicted': 'definicao_minc',\n", - " 'confidence': 0.9426278471946716},\n", - " {'text': 'o que é CNIC',\n", - " 'intent': 'definicao_cnic',\n", - " 'predicted': 'definicao_cnic',\n", - " 'confidence': 0.9121271371841431},\n", - " {'text': 'o que significa CNIC',\n", - " 'intent': 'definicao_cnic',\n", - " 'predicted': 'definicao_cnic',\n", - " 'confidence': 0.9158250689506531},\n", - " {'text': 'quem é a CNIC',\n", - " 'intent': 'definicao_cnic',\n", - " 'predicted': 'definicao_cnic',\n", - " 'confidence': 0.9121206998825073},\n", - " {'text': 'o que significa a sigla CNIC',\n", - " 'intent': 'definicao_cnic',\n", - " 'predicted': 'definicao_cnic',\n", - " 'confidence': 0.9151709675788879},\n", - " {'text': 'qual o papel da cnic',\n", - " 'intent': 'definicao_cnic',\n", - " 'predicted': 'definicao_cnic',\n", - " 'confidence': 0.8883954286575317},\n", - " {'text': 'o que faz a cnic',\n", - " 'intent': 'definicao_cnic',\n", - " 'predicted': 'definicao_cnic',\n", - " 'confidence': 0.9170945286750793},\n", - " {'text': 'quem participa da cnic',\n", - " 'intent': 'definicao_cnic',\n", - " 'predicted': 'definicao_cnic',\n", - " 'confidence': 0.9131202697753906},\n", - " {'text': 'o que é Sefic',\n", - " 'intent': 'definicao_sefic',\n", - " 'predicted': 'definicao_sefic',\n", - " 'confidence': 0.904546856880188},\n", - " {'text': 'o que significa Sefic',\n", - " 'intent': 'definicao_sefic',\n", - " 'predicted': 'definicao_sefic',\n", - " 'confidence': 0.89566969871521},\n", - " {'text': 'Sefic é um orgão',\n", - " 'intent': 'definicao_sefic',\n", - " 'predicted': 'definicao_sefic',\n", - " 'confidence': 0.8548237085342407},\n", - " {'text': 'Sefic é do ministério',\n", - " 'intent': 'definicao_sefic',\n", - " 'predicted': 'definicao_sefic',\n", - " 'confidence': 0.9227730631828308},\n", - " {'text': 'o que é a sigla Sefic',\n", - " 'intent': 'definicao_sefic',\n", - " 'predicted': 'definicao_sefic',\n", - " 'confidence': 0.8896780014038086},\n", - " {'text': 'o que é SEFIC?',\n", - " 'intent': 'definicao_sefic',\n", - " 'predicted': 'definicao_sefic',\n", - " 'confidence': 0.904546856880188},\n", - " {'text': 'qual o papel da sefic',\n", - " 'intent': 'definicao_sefic',\n", - " 'predicted': 'definicao_sefic',\n", - " 'confidence': 0.8816235661506653},\n", - " {'text': 'quem é a sefic',\n", - " 'intent': 'definicao_sefic',\n", - " 'predicted': 'definicao_sefic',\n", - " 'confidence': 0.8783916234970093},\n", - " {'text': 'o que é Projeto',\n", - " 'intent': 'definicao_projeto',\n", - " 'predicted': 'definicao_projeto',\n", - " 'confidence': 0.9060305953025818},\n", - " {'text': 'o que significa Projeto',\n", - " 'intent': 'definicao_projeto',\n", - " 'predicted': 'definicao_projeto',\n", - " 'confidence': 0.9101783037185669},\n", - " {'text': 'como caracteriza um projeto',\n", - " 'intent': 'definicao_projeto',\n", - " 'predicted': 'definicao_projeto',\n", - " 'confidence': 0.9410110712051392},\n", - " {'text': 'por que é um projeto',\n", - " 'intent': 'definicao_projeto',\n", - " 'predicted': 'definicao_projeto',\n", - " 'confidence': 0.9368565678596497},\n", - " {'text': 'projeto cultural',\n", - " 'intent': 'definicao_projeto',\n", - " 'predicted': 'definicao_projeto',\n", - " 'confidence': 0.9351321458816528},\n", - " {'text': 'projeto',\n", - " 'intent': 'definicao_projeto',\n", - " 'predicted': 'definicao_projeto',\n", - " 'confidence': 0.9271749258041382},\n", - " {'text': 'o que é Proposta',\n", - " 'intent': 'definicao_proposta',\n", - " 'predicted': 'definicao_proposta',\n", - " 'confidence': 0.8660344481468201},\n", - " {'text': 'o que significa Proposta',\n", - " 'intent': 'definicao_proposta',\n", - " 'predicted': 'definicao_proposta',\n", - " 'confidence': 0.8705499172210693},\n", - " {'text': 'como caracteriza uma proposta',\n", - " 'intent': 'definicao_proposta',\n", - " 'predicted': 'definicao_proposta',\n", - " 'confidence': 0.8435453176498413},\n", - " {'text': 'o que e uma proposta',\n", - " 'intent': 'definicao_proposta',\n", - " 'predicted': 'definicao_proposta',\n", - " 'confidence': 0.8688704371452332},\n", - " {'text': 'o que é Proponente',\n", - " 'intent': 'definicao_proponente',\n", - " 'predicted': 'definicao_proponente',\n", - " 'confidence': 0.9100185632705688},\n", - " {'text': 'o que significa Proponente',\n", - " 'intent': 'definicao_proponente',\n", - " 'predicted': 'definicao_proponente',\n", - " 'confidence': 0.9073695540428162},\n", - " {'text': 'o que um proponente faz',\n", - " 'intent': 'definicao_proponente',\n", - " 'predicted': 'definicao_proponente',\n", - " 'confidence': 0.9163832068443298},\n", - " {'text': 'quem é proponente',\n", - " 'intent': 'definicao_proponente',\n", - " 'predicted': 'definicao_proponente',\n", - " 'confidence': 0.939717173576355},\n", - " {'text': 'qual o papel do proponente',\n", - " 'intent': 'definicao_proponente',\n", - " 'predicted': 'definicao_proponente',\n", - " 'confidence': 0.8903006315231323},\n", - " {'text': 'o que é SALIC',\n", - " 'intent': 'definicao_salic',\n", - " 'predicted': 'definicao_salic',\n", - " 'confidence': 0.9332548379898071},\n", - " {'text': 'o que significa Salic',\n", - " 'intent': 'definicao_salic',\n", - " 'predicted': 'definicao_salic',\n", - " 'confidence': 0.9391279220581055},\n", - " {'text': 'Salic é sigla de que',\n", - " 'intent': 'definicao_salic',\n", - " 'predicted': 'definicao_salic',\n", - " 'confidence': 0.9398735761642456},\n", - " {'text': 'o que é SALIC',\n", - " 'intent': 'definicao_salic',\n", - " 'predicted': 'definicao_salic',\n", - " 'confidence': 0.9332548379898071},\n", - " {'text': 'salic',\n", - " 'intent': 'definicao_salic',\n", - " 'predicted': 'definicao_salic',\n", - " 'confidence': 0.9103126525878906},\n", - " {'text': 'o que é Vinculada',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.9166783094406128},\n", - " {'text': 'o que significa Vinculada',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.9089496731758118},\n", - " {'text': 'sobre vinculada',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.9249032735824585},\n", - " {'text': 'o que sao vinculadas',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.9268660545349121},\n", - " {'text': 'o que são vinculada',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.9071241617202759},\n", - " {'text': 'Vinculada',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.9249939918518066},\n", - " {'text': 'o que faz a vinculada',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.9127652645111084},\n", - " {'text': 'qual o papel das vinculadas',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.912541925907135},\n", - " {'text': 'Funarte',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.9193904995918274},\n", - " {'text': 'Iphan',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.9173526763916016},\n", - " {'text': 'o que a Funarte faz',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.8918521404266357},\n", - " {'text': 'qual o papel do iphan',\n", - " 'intent': 'definicao_vinculada',\n", - " 'predicted': 'definicao_vinculada',\n", - " 'confidence': 0.8992122411727905},\n", - " {'text': 'como funciona o processo',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9187925457954407},\n", - " {'text': 'como funciona a lei rouanet',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.8916401267051697},\n", - " {'text': 'como faço para enviar um projeto',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9429617524147034},\n", - " {'text': 'como é o processo de envio de projeto',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9276966452598572},\n", - " {'text': 'como criar um projeto',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9378035068511963},\n", - " {'text': 'como mandar um projeto',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9231895208358765},\n", - " {'text': 'como faço a proposta',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9271668195724487},\n", - " {'text': 'como fazer uma proposta cultural',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.8727231621742249},\n", - " {'text': 'inscrevo uma proposta',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9456751942634583},\n", - " {'text': 'inscrever uma proposta',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9427118301391602},\n", - " {'text': 'enviar proposta',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9617082476615906},\n", - " {'text': 'como faço para colocar um projeto na lei de incentivo',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9406063556671143},\n", - " {'text': 'como incluir um projeto',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.8961477875709534},\n", - " {'text': 'como faço para incluir um projeto na lei',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9337150454521179},\n", - " {'text': 'como posso propor um projeto',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9440378546714783},\n", - " {'text': 'como propor um projeto',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9461007714271545},\n", - " {'text': 'enviar projeto',\n", - " 'intent': 'processo_como_funciona',\n", - " 'predicted': 'processo_como_funciona',\n", - " 'confidence': 0.9323413968086243},\n", - " {'text': 'fale sobre a definição das etapas',\n", - " 'intent': 'processo_definicao_etapas',\n", - " 'predicted': 'processo_definicao_etapas',\n", - " 'confidence': 0.903011679649353},\n", - " {'text': 'quantas etapas tem',\n", - " 'intent': 'processo_definicao_etapas',\n", - " 'predicted': 'processo_definicao_etapas',\n", - " 'confidence': 0.9326760172843933},\n", - " {'text': 'me fale sobre as etapas',\n", - " 'intent': 'processo_definicao_etapas',\n", - " 'predicted': 'processo_definicao_etapas',\n", - " 'confidence': 0.9215860366821289},\n", - " {'text': 'quais as etapas da lei',\n", - " 'intent': 'processo_definicao_etapas',\n", - " 'predicted': 'processo_definicao_etapas',\n", - " 'confidence': 0.8748435974121094},\n", - " {'text': 'etapas da lei',\n", - " 'intent': 'processo_definicao_etapas',\n", - " 'predicted': 'processo_definicao_etapas',\n", - " 'confidence': 0.8535256385803223},\n", - " {'text': 'quais etapas existem',\n", - " 'intent': 'processo_definicao_etapas',\n", - " 'predicted': 'processo_definicao_etapas',\n", - " 'confidence': 0.8835163712501526},\n", - " {'text': 'o que é preenchimento',\n", - " 'intent': 'processo_preenchimento',\n", - " 'predicted': 'processo_preenchimento',\n", - " 'confidence': 0.85054612159729},\n", - " {'text': 'defina preenchimento',\n", - " 'intent': 'processo_preenchimento',\n", - " 'predicted': 'processo_preenchimento',\n", - " 'confidence': 0.8829392194747925},\n", - " {'text': 'o que devo fazer no preenchimento',\n", - " 'intent': 'processo_preenchimento',\n", - " 'predicted': 'processo_preenchimento',\n", - " 'confidence': 0.6800434589385986},\n", - " {'text': 'documentos necessários',\n", - " 'intent': 'processo_preenchimento',\n", - " 'predicted': 'processo_preenchimento',\n", - " 'confidence': 0.8880894184112549},\n", - " {'text': 'quais documentos anexar',\n", - " 'intent': 'processo_preenchimento',\n", - " 'predicted': 'processo_preenchimento',\n", - " 'confidence': 0.8198165893554688},\n", - " {'text': 'o que anexar no preenchimento',\n", - " 'intent': 'processo_preenchimento',\n", - " 'predicted': 'processo_preenchimento',\n", - " 'confidence': 0.863848090171814},\n", - " {'text': 'o que é admissibilidade',\n", - " 'intent': 'processo_admissibilidade',\n", - " 'predicted': 'processo_admissibilidade',\n", - " 'confidence': 0.9263975024223328},\n", - " {'text': 'sobre admissibilidade',\n", - " 'intent': 'processo_admissibilidade',\n", - " 'predicted': 'processo_admissibilidade',\n", - " 'confidence': 0.9421638250350952},\n", - " {'text': 'defina admissibilidade',\n", - " 'intent': 'processo_admissibilidade',\n", - " 'predicted': 'processo_admissibilidade',\n", - " 'confidence': 0.9478533267974854},\n", - " {'text': 'o que acontece na admissibilidade',\n", - " 'intent': 'processo_admissibilidade',\n", - " 'predicted': 'processo_admissibilidade',\n", - " 'confidence': 0.9300681352615356},\n", - " {'text': 'admissibilidade',\n", - " 'intent': 'processo_admissibilidade',\n", - " 'predicted': 'processo_admissibilidade',\n", - " 'confidence': 0.936811625957489},\n", - " {'text': 'fase admissibilidade',\n", - " 'intent': 'processo_admissibilidade',\n", - " 'predicted': 'processo_admissibilidade',\n", - " 'confidence': 0.9050407409667969},\n", - " {'text': 'etapa admissibilidade',\n", - " 'intent': 'processo_admissibilidade',\n", - " 'predicted': 'processo_admissibilidade',\n", - " 'confidence': 0.9393519759178162},\n", - " {'text': 'qual a definição de admissibilidade',\n", - " 'intent': 'processo_admissibilidade',\n", - " 'predicted': 'processo_admissibilidade',\n", - " 'confidence': 0.9151573777198792},\n", - " {'text': 'o que é aprovação',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.9068280458450317},\n", - " {'text': 'sobre aprovação',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.9291180968284607},\n", - " {'text': 'defina aprovação',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.9275168180465698},\n", - " {'text': 'o que acontece na aprovação',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.9390881061553955},\n", - " {'text': 'aprovação',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.9336235523223877},\n", - " {'text': 'fase aprovação',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.9247971177101135},\n", - " {'text': 'etapa aprovação',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.9339116215705872},\n", - " {'text': 'qual prazo para aprovação do projeto',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.917691707611084},\n", - " {'text': 'como são aprovados os projetos',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.8944507837295532},\n", - " {'text': 'quanto tempo leva para ter um projeto aprovado',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.925326943397522},\n", - " {'text': 'como aprovar um projeto',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.9096634387969971},\n", - " {'text': 'aprovar projeto',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.933247447013855},\n", - " {'text': 'projeto aprovado',\n", - " 'intent': 'processo_aprovacao',\n", - " 'predicted': 'processo_aprovacao',\n", - " 'confidence': 0.8328146934509277},\n", - " {'text': 'o que é execução',\n", - " 'intent': 'processo_execucao',\n", - " 'predicted': 'processo_execucao',\n", - " 'confidence': 0.9342190623283386},\n", - " {'text': 'sobre execução',\n", - " 'intent': 'processo_execucao',\n", - " 'predicted': 'processo_execucao',\n", - " 'confidence': 0.950564444065094},\n", - " {'text': 'defina execução',\n", - " 'intent': 'processo_execucao',\n", - " 'predicted': 'processo_execucao',\n", - " 'confidence': 0.942026674747467},\n", - " {'text': 'o que devo fazer no execução',\n", - " 'intent': 'processo_execucao',\n", - " 'predicted': 'processo_execucao',\n", - " 'confidence': 0.5706406831741333},\n", - " {'text': 'fase de execução',\n", - " 'intent': 'processo_execucao',\n", - " 'predicted': 'processo_execucao',\n", - " 'confidence': 0.9235699772834778},\n", - " {'text': 'fase execução',\n", - " 'intent': 'processo_execucao',\n", - " 'predicted': 'processo_execucao',\n", - " 'confidence': 0.9451019763946533},\n", - " {'text': 'etapa execução',\n", - " 'intent': 'processo_execucao',\n", - " 'predicted': 'processo_execucao',\n", - " 'confidence': 0.9422680735588074},\n", - " {'text': 'execução',\n", - " 'intent': 'processo_execucao',\n", - " 'predicted': 'processo_execucao',\n", - " 'confidence': 0.9389778971672058},\n", - " {'text': 'o que acontence em execução',\n", - " 'intent': 'processo_execucao',\n", - " 'predicted': 'processo_execucao',\n", - " 'confidence': 0.9077996015548706},\n", - " {'text': 'execucao',\n", - " 'intent': 'processo_execucao',\n", - " 'predicted': 'processo_execucao',\n", - " 'confidence': 0.8828158974647522},\n", - " {'text': 'o que é análise de resultados',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.8748674988746643},\n", - " {'text': 'o que é prestação de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9305970668792725},\n", - " {'text': 'sobre análise de resultados',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9050723314285278},\n", - " {'text': 'sobre prestação de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9367867708206177},\n", - " {'text': 'defina análise de resultados',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.903168797492981},\n", - " {'text': 'defina prestação de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9338837265968323},\n", - " {'text': 'o que devo fazer no análise de resultados',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.8780992031097412},\n", - " {'text': 'o que devo fazer no prestação de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.8930153846740723},\n", - " {'text': 'tenho algumas duvidas sobre prestaçao de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9226362705230713},\n", - " {'text': 'prestaçao de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9404774904251099},\n", - " {'text': 'prestacao de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9120259284973145},\n", - " {'text': 'analise de resultados',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9139082431793213},\n", - " {'text': 'o que é prestação de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9305970668792725},\n", - " {'text': 'como prestar contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9246108531951904},\n", - " {'text': 'fazer prestação de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.924496054649353},\n", - " {'text': 'como funciona a prestação de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9239553213119507},\n", - " {'text': 'prestar contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9387295842170715},\n", - " {'text': 'prestação de contas',\n", - " 'intent': 'processo_analise_de_resultados',\n", - " 'predicted': 'processo_analise_de_resultados',\n", - " 'confidence': 0.9128342866897583},\n", - " {'text': 'posso encaminhar pedido de reativação',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9626691341400146},\n", - " {'text': 'como encaminhar pedido de reativação',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9519623517990112},\n", - " {'text': 'como refazer a reativação de pedido',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9581881761550903},\n", - " {'text': 'refazer o encaminhamento do pedido de reativação',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9599122405052185},\n", - " {'text': 'pedido de reativação',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.957146942615509},\n", - " {'text': 'reativar proposta',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.969616711139679},\n", - " {'text': 'proposta indeferida como reativar',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9584403038024902},\n", - " {'text': 'posso reativar uma proposta indeferida',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.953191876411438},\n", - " {'text': 'existe um meio de reativar uma proposta indeferida?',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9545756578445435},\n", - " {'text': 'minha proposta foi rejeitada, como reativar ela?',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9429101943969727},\n", - " {'text': 'posso fazer o pedido de reativação?',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9521075487136841},\n", - " {'text': 'como reativar uma proposta?',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9401900768280029},\n", - " {'text': 'desarquivamento de proposta',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9535449743270874},\n", - " {'text': 'proposta arquivada',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9395413994789124},\n", - " {'text': 'reativação de proposta',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9620944857597351},\n", - " {'text': 'desarquivamento',\n", - " 'intent': 'processo_reativacao_de_proposta',\n", - " 'predicted': 'processo_reativacao_de_proposta',\n", - " 'confidence': 0.9183167219161987},\n", - " {'text': 'tenho duvida sobre o prazo',\n", - " 'intent': 'processo_prazo',\n", - " 'predicted': 'processo_prazo',\n", - " 'confidence': 0.9294758439064026},\n", - " {'text': 'fale sobre o prazo',\n", - " 'intent': 'processo_prazo',\n", - " 'predicted': 'processo_prazo',\n", - " 'confidence': 0.9105240106582642},\n", - " {'text': 'qual e o prazo',\n", - " 'intent': 'processo_prazo',\n", - " 'predicted': 'processo_prazo',\n", - " 'confidence': 0.9187592267990112},\n", - " {'text': 'sabe o prazo',\n", - " 'intent': 'processo_prazo',\n", - " 'predicted': 'processo_prazo',\n", - " 'confidence': 0.9061522483825684},\n", - " {'text': 'prazos',\n", - " 'intent': 'processo_prazo',\n", - " 'predicted': 'processo_prazo',\n", - " 'confidence': 0.9082834720611572},\n", - " {'text': 'prazo',\n", - " 'intent': 'processo_prazo',\n", - " 'predicted': 'processo_prazo',\n", - " 'confidence': 0.9048509001731873},\n", - " {'text': 'deadline',\n", - " 'intent': 'processo_prazo',\n", - " 'predicted': 'processo_prazo',\n", - " 'confidence': 0.9344964027404785},\n", - " {'text': 'como prorogar prazo',\n", - " 'intent': 'processo_prazo',\n", - " 'predicted': 'processo_prazo',\n", - " 'confidence': 0.9375333189964294},\n", - " {'text': 'prorrogação de prazo',\n", - " 'intent': 'processo_prazo',\n", - " 'predicted': 'processo_prazo',\n", - " 'confidence': 0.926975667476654},\n", - " {'text': 'solicitar prorrogação de prazo',\n", - " 'intent': 'processo_prazo',\n", - " 'predicted': 'processo_prazo',\n", - " 'confidence': 0.9292805194854736},\n", - " {'text': 'tenho duvida sobre o prazo de envio cnae',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.9341155290603638},\n", - " {'text': 'envio do cnae, qual é o prazo',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.939073920249939},\n", - " {'text': 'envio do cnae, qual é o prazo limite',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.9238800406455994},\n", - " {'text': 'qual é o prazo limite para envio do cnae',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.9307262301445007},\n", - " {'text': 'até quando posso enviar o cnae',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.912747859954834},\n", - " {'text': 'tem algum prazo para enviar o cnae',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.916234016418457},\n", - " {'text': 'prazo cnae',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.9384710192680359},\n", - " {'text': 'envio do cnae',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.9131684303283691},\n", - " {'text': 'prazo para enviar cnae',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.9276398420333862},\n", - " {'text': 'prazo de envio de cnae',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.9488925933837891},\n", - " {'text': 'cnae',\n", - " 'intent': 'processo_prazo_envio_cnae',\n", - " 'predicted': 'processo_prazo_envio_cnae',\n", - " 'confidence': 0.944477379322052},\n", - " {'text': 'qual é o prazo da analise de proposta',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.9590994715690613},\n", - " {'text': 'sobre analise de propostas, qual é o prazo',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.9602580070495605},\n", - " {'text': 'qual é o periodo de analise de proposta',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.9564251899719238},\n", - " {'text': 'período análise de proposta',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.9658694267272949},\n", - " {'text': 'periodo analise de proposta',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.9632721543312073},\n", - " {'text': 'prazo de análise de proposta',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.9534596800804138},\n", - " {'text': 'prazo de analise de proposta',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.9642845988273621},\n", - " {'text': 'data avaliação de proposta',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.96574467420578},\n", - " {'text': 'data avaliacao de proposta',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.9502418041229248},\n", - " {'text': 'análise de proposta',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.9646140336990356},\n", - " {'text': 'analise de proposta',\n", - " 'intent': 'processo_prazo_analise_proposta',\n", - " 'predicted': 'processo_prazo_analise_proposta',\n", - " 'confidence': 0.9635693430900574},\n", - " {'text': 'qual é o prazo da analise tecnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.9083853960037231},\n", - " {'text': 'sobre analise técnica, qual é o prazo',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.9275525808334351},\n", - " {'text': 'qual é o periodo de analise tecnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.9291383028030396},\n", - " {'text': 'saber sobre analise tecnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.9448798894882202},\n", - " {'text': 'périodo técnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.924033522605896},\n", - " {'text': 'periodo analise tecnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.949773907661438},\n", - " {'text': 'prazo análise técnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.9115138649940491},\n", - " {'text': 'prazo analise tecnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.9370296001434326},\n", - " {'text': 'data avaliação técnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.9307040572166443},\n", - " {'text': 'data avaliacao tecnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.9129323363304138},\n", - " {'text': 'análise técnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.9409784078598022},\n", - " {'text': 'analise tecnica',\n", - " 'intent': 'processo_prazo_analise_tecnica',\n", - " 'predicted': 'processo_prazo_analise_tecnica',\n", - " 'confidence': 0.9573570489883423},\n", - " {'text': 'posso saber sobre o periodo de readequacao',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.9666567444801331},\n", - " {'text': 'sobre o prazo de readequaçao',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.9031079411506653},\n", - " {'text': 'qual é o periodo de readequacao',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.9189579486846924},\n", - " {'text': 'qual é o prazo de readequacao',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.897449254989624},\n", - " {'text': 'périodo readequação',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.9423562288284302},\n", - " {'text': 'periodo readequacao',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.9347365498542786},\n", - " {'text': 'prazo readequação',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.9003879427909851},\n", - " {'text': 'prazo readequacao',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.9048591256141663},\n", - " {'text': 'data readequação',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.9391236305236816},\n", - " {'text': 'data readequacao',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.9442640542984009},\n", - " {'text': 'readequação',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.925489068031311},\n", - " {'text': 'readequacao',\n", - " 'intent': 'processo_prazo_readequacao',\n", - " 'predicted': 'processo_prazo_readequacao',\n", - " 'confidence': 0.9376451969146729},\n", - " {'text': 'periodo de captacao',\n", - " 'intent': 'processo_prazo_periodo_captacao',\n", - " 'predicted': 'processo_prazo_periodo_captacao',\n", - " 'confidence': 0.9193304777145386},\n", - " {'text': 'prazo de captacao',\n", - " 'intent': 'processo_prazo_periodo_captacao',\n", - " 'predicted': 'processo_prazo_periodo_captacao',\n", - " 'confidence': 0.9382498860359192},\n", - " {'text': 'captacao, qual é o prazo',\n", - " 'intent': 'processo_prazo_periodo_captacao',\n", - " 'predicted': 'processo_prazo_periodo_captacao',\n", - " 'confidence': 0.9287609457969666},\n", - " {'text': 'périodo captacao',\n", - " 'intent': 'processo_prazo_periodo_captacao',\n", - " 'predicted': 'processo_prazo_periodo_captacao',\n", - " 'confidence': 0.9374583959579468},\n", - " {'text': 'periodo captacao',\n", - " 'intent': 'processo_prazo_periodo_captacao',\n", - " 'predicted': 'processo_prazo_periodo_captacao',\n", - " 'confidence': 0.9156374335289001},\n", - " {'text': 'prazo captacao',\n", - " 'intent': 'processo_prazo_periodo_captacao',\n", - " 'predicted': 'processo_prazo_periodo_captacao',\n", - " 'confidence': 0.9291441440582275},\n", - " {'text': 'prazo captacao',\n", - " 'intent': 'processo_prazo_periodo_captacao',\n", - " 'predicted': 'processo_prazo_periodo_captacao',\n", - " 'confidence': 0.9291441440582275},\n", - " {'text': 'data captacao',\n", - " 'intent': 'processo_prazo_periodo_captacao',\n", - " 'predicted': 'processo_prazo_periodo_captacao',\n", - " 'confidence': 0.9540942311286926},\n", - " {'text': 'data captacao',\n", - " 'intent': 'processo_prazo_periodo_captacao',\n", - " 'predicted': 'processo_prazo_periodo_captacao',\n", - " 'confidence': 0.9540942311286926},\n", - " {'text': 'qual é o periodo para prestar contas',\n", - " 'intent': 'processo_prazo_prestacao_contas',\n", - " 'predicted': 'processo_prazo_prestacao_contas',\n", - " 'confidence': 0.8509122133255005},\n", - " {'text': 'qual é o prazo de prestação de contas',\n", - " 'intent': 'processo_prazo_prestacao_contas',\n", - " 'predicted': 'processo_prazo_prestacao_contas',\n", - " 'confidence': 0.9100315570831299},\n", - " ...],\n", - " 'report': ' precision recall f1-score support\\n\\n afirmar 1.00 0.95 0.97 20\\n captacao 1.00 1.00 1.00 3\\n captacao_como_captar 1.00 1.00 1.00 21\\n captacao_quando_captar 1.00 1.00 1.00 19\\n cumprimentar 1.00 1.00 1.00 16\\n definicao_cnic 1.00 1.00 1.00 7\\n definicao_minc 1.00 1.00 1.00 10\\n definicao_projeto 1.00 1.00 1.00 6\\n definicao_proponente 1.00 1.00 1.00 5\\n definicao_proposta 1.00 1.00 1.00 4\\n definicao_salic 1.00 1.00 1.00 5\\n definicao_sefic 1.00 1.00 1.00 8\\n definicao_tais 1.00 1.00 1.00 10\\n definicao_vinculada 1.00 1.00 1.00 12\\n despedir 1.00 1.00 1.00 19\\n diga_mais 1.00 1.00 1.00 15\\n elogios 1.00 1.00 1.00 4\\n lei_rouanet_analise_de_admissibilidade 1.00 1.00 1.00 4\\n lei_rouanet_analise_pela_cnic 1.00 1.00 1.00 4\\n lei_rouanet_analise_tecnica 1.00 1.00 1.00 4\\n lei_rouanet_apresentacao_de_proposta 1.00 1.00 1.00 4\\n lei_rouanet_beneficios_incentivo_projetos_culturais 1.00 1.00 1.00 22\\n lei_rouanet_comercializacao_de_ingressos 1.00 1.00 1.00 19\\n lei_rouanet_decisao_final 1.00 1.00 1.00 4\\n lei_rouanet_denuncia 1.00 1.00 1.00 21\\n lei_rouanet_divulgacao_patrocinio 1.00 1.00 1.00 21\\n lei_rouanet_etapas_aprovacao_projeto 1.00 1.00 1.00 15\\n lei_rouanet_o_que_eh 1.00 1.00 1.00 20\\n lei_rouanet_origem_do_dinheiro 1.00 1.00 1.00 28\\n lei_rouanet_porcentagem_de_deducao_do_imposto 1.00 1.00 1.00 24\\n lei_rouanet_promocao_de_marca 1.00 1.00 1.00 22\\n lei_rouanet_quantidade_de_projetos 1.00 1.00 1.00 20\\n lei_rouanet_quem_pode_incentivar 1.00 1.00 1.00 25\\n lei_rouanet_quem_pode_ser_proponente 0.97 1.00 0.98 29\\n lei_rouanet_remuneracao_proponente 1.00 1.00 1.00 22\\n lei_rouanet_valor_maximo_geral 1.00 1.00 1.00 17\\n lei_rouanet_valor_maximo_pessoa_fisica 1.00 1.00 1.00 13\\n lei_rouanet_valor_maximo_pessoa_juridica 1.00 1.00 1.00 12\\n lei_rouanet_valor_maximo_projeto 1.00 1.00 1.00 35\\n lei_rouanet_valores_pagamento_caches 1.00 1.00 1.00 20\\n negar 1.00 1.00 1.00 20\\n o_que_sei_falar 1.00 1.00 1.00 15\\n out_of_scope 1.00 1.00 1.00 10\\n processo_admissibilidade 1.00 1.00 1.00 8\\n processo_analise_de_resultados 1.00 1.00 1.00 18\\n processo_aprovacao 1.00 1.00 1.00 13\\n processo_como_funciona 1.00 1.00 1.00 17\\n processo_definicao_etapas 1.00 1.00 1.00 6\\n processo_execucao 1.00 1.00 1.00 10\\n processo_prazo 1.00 1.00 1.00 10\\n processo_prazo_analise_proposta 1.00 1.00 1.00 11\\n processo_prazo_analise_tecnica 1.00 1.00 1.00 12\\n processo_prazo_desarquivar 1.00 1.00 1.00 6\\n processo_prazo_desistir_recurso 1.00 1.00 1.00 24\\n processo_prazo_diligencias 1.00 1.00 1.00 13\\n processo_prazo_envio_cnae 1.00 1.00 1.00 11\\n processo_prazo_periodo_captacao 1.00 1.00 1.00 9\\n processo_prazo_prestacao_contas 1.00 1.00 1.00 10\\n processo_prazo_readequacao 1.00 1.00 1.00 12\\n processo_preenchimento 1.00 1.00 1.00 6\\n processo_reativacao_de_proposta 1.00 1.00 1.00 16\\n quem_eh_a_tais 1.00 1.00 1.00 27\\n salic_cadastro_proponente 1.00 1.00 1.00 9\\n salic_cadastro_usuario 1.00 1.00 1.00 10\\n salic_erros 1.00 1.00 1.00 8\\n salic_erros_achar_proposta 1.00 1.00 1.00 8\\n salic_erros_planilha_desapareceu 1.00 1.00 1.00 12\\n salic_erros_salvamento_de_proposta 1.00 1.00 1.00 10\\n salic_erros_vinculo_cpf_cnpj 1.00 1.00 1.00 9\\n salic_preenchimento 1.00 1.00 1.00 8\\n salic_preenchimento_cadastro_agencia_bancaria 1.00 1.00 1.00 17\\nsalic_preenchimento_cadastro_rubrica_advogado_contador 1.00 1.00 1.00 11\\n salic_preenchimento_campo_custo_auditoria 1.00 1.00 1.00 7\\n salic_preenchimento_valor_ingresso 1.00 1.00 1.00 11\\n salic_preenchimento_vinculo_cpf_proposta 1.00 1.00 1.00 8\\n salic_recuperacao_de_senha 1.00 1.00 1.00 16\\n tem_wpp 1.00 1.00 1.00 23\\n tudo_bem 1.00 1.00 1.00 11\\n\\n micro avg 1.00 1.00 1.00 1051\\n macro avg 1.00 1.00 1.00 1051\\n weighted avg 1.00 1.00 1.00 1051\\n',\n", - " 'precision': 0.999080241040279,\n", - " 'f1_score': 0.999044390165034,\n", - " 'accuracy': 0.9990485252140818},\n", - " 'entity_evaluation': {'ner_crf': {'report': ' precision recall f1-score support\\n\\n lei_rouanet 1.00 0.88 0.94 33\\n no_entity 1.00 1.00 1.00 4302\\n\\n micro avg 1.00 1.00 1.00 4335\\n macro avg 1.00 0.94 0.97 4335\\nweighted avg 1.00 1.00 1.00 4335\\n',\n", - " 'precision': 0.9990781351200625,\n", - " 'f1_score': 0.9990477271303264,\n", - " 'accuracy': 0.9990772779700116}}}" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ "from rasa_nlu.evaluate import run_evaluation\n", - "run_evaluation('../../bot/data/intents/', model_directory)" + "evaluation = run_evaluation('../../coach/data/intents/', model_directory)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Lista de Problemas\n", + "## Problemas encontrados:\n", "\n", - "O arquivo `erros,json` mostra os erros encontrados após executar o comando `rasa_nlu.evaluate.run_evaluation`.\n", + "Veja o relatorio gerado pela célula abaixo, nele é possível identificar facilmente as intents com problemas de na previsão, isso significa que os exemplos dos textos de usuário dessas intents não estão bem definidos o que faz o bot entrar em confusão.\n", "\n", - "Normalmente os erros mostrados são textos repetidos nos exemplos de diferrentes `intents`.\n", - "\n", - "Caso o arquivo não seja gerado significa que não foram encontrados erros." + "Para uma intent ser confundida com outra, significa que estão muito siilares entre si, uma melhor forma de concertar este erro é definido exemplos mais distintos para cada uma delas." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[\r\n", - " {\r\n", - " \"text\": \"quero\",\r\n", - " \"intent\": \"afirmar\",\r\n", - " \"intent_prediction\": {\r\n", - " \"name\": \"lei_rouanet_quem_pode_ser_proponente\",\r\n", - " \"confidence\": 0.6433234214782715\r\n", - " }\r\n", - " }\r\n", - "]" + "Intent com erros de previsão: processo_como_funciona\n", + "Intent com qual está sendo confundida: processo_prazo_apresentar_proposta\n", + "Texto em que ocorre o erro: enviar projeto\n", + "Confiança da previsão: 0.7439970374107361\n", + "\n", + "Intent com erros de previsão: processo_prazo_apresentar_proposta\n", + "Intent com qual está sendo confundida: processo_como_funciona\n", + "Texto em que ocorre o erro: enviar proposta\n", + "Confiança da previsão: 0.7762123942375183\n", + "\n", + "Intent com erros de previsão: processo_como_funciona\n", + "Intent com qual está sendo confundida: processo_prazo_apresentar_proposta\n", + "Texto em que ocorre o erro: enviar projeto\n", + "Confiança da previsão: 0.7439970374107361\n", + "\n", + "Intent com erros de previsão: processo_prazo_apresentar_proposta\n", + "Intent com qual está sendo confundida: processo_como_funciona\n", + "Texto em que ocorre o erro: enviar proposta\n", + "Confiança da previsão: 0.7762123942375183\n", + "\n" ] } ], "source": [ - "%cat errors.json" + "import json\n", + "\n", + "try:\n", + " f = open('errors.json', 'r')\n", + " errors_list = json.load(f)\n", + "\n", + " for error in errors_list:\n", + " print('Intent com erros de previsão: {}'.format(error['intent']))\n", + " print('Intent com qual está sendo confundida: {}'.format(error['intent_prediction']['name']))\n", + " print('Texto em que ocorre o erro: {}'.format(error['text']))\n", + " print('Confiança da previsão: {}'.format(error['intent_prediction']['confidence']))\n", + " print()\n", + "except(FileNotFoundError):\n", + " print('Não foi encontrado nenhum erro de confusão entre as intents')\n", + " \n" ] }, { @@ -4484,68 +987,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\n", - " \"intent\": {\n", - " \"name\": \"captacao_como_captar\",\n", - " \"confidence\": 0.8698407411575317\n", - " },\n", - " \"entities\": [],\n", - " \"intent_ranking\": [\n", - " {\n", - " \"name\": \"captacao_como_captar\",\n", - " \"confidence\": 0.8698407411575317\n", - " },\n", - " {\n", - " \"name\": \"captacao_quando_captar\",\n", - " \"confidence\": 0.479306161403656\n", - " },\n", - " {\n", - " \"name\": \"processo_prazo_desarquivar\",\n", - " \"confidence\": 0.28130394220352173\n", - " },\n", - " {\n", - " \"name\": \"processo_prazo_desistir_recurso\",\n", - " \"confidence\": 0.2702309787273407\n", - " },\n", - " {\n", - " \"name\": \"lei_rouanet_valores_pagamento_caches\",\n", - " \"confidence\": 0.23853060603141785\n", - " },\n", - " {\n", - " \"name\": \"salic_preenchimento_valor_ingresso\",\n", - " \"confidence\": 0.22552567720413208\n", - " },\n", - " {\n", - " \"name\": \"lei_rouanet_beneficios_incentivo_projetos_culturais\",\n", - " \"confidence\": 0.21107304096221924\n", - " },\n", - " {\n", - " \"name\": \"lei_rouanet_quem_pode_ser_proponente\",\n", - " \"confidence\": 0.2074146419763565\n", - " },\n", - " {\n", - " \"name\": \"salic_recuperacao_de_senha\",\n", - " \"confidence\": 0.2049984633922577\n", - " },\n", - " {\n", - " \"name\": \"processo_prazo\",\n", - " \"confidence\": 0.20099180936813354\n", - " }\n", - " ],\n", - " \"text\": \"posso terceirizar a capta\\u00e7\\u00e3o de recursos?\"\n", - "}\n" - ] - } - ], + "outputs": [], "source": [ - "pprint(interpreter.parse('posso terceirizar a captação de recursos?'))" + "a = input(\"Escreva uma frase para testar a previsão do bot: \")\n", + "pprint(interpreter.parse(a))" ] }, { @@ -4591,7 +1038,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.6.6" } }, "nbformat": 4, From 0ca4816b738d2e7584bb91ad4d08eea9fbdf3e1e Mon Sep 17 00:00:00 2001 From: Gabriela Barrozo Guedes Date: Mon, 6 May 2019 02:43:04 -0300 Subject: [PATCH 2/5] Refactors and add description os how to analyse stories matrix Signed-off-by: Gabriela Barrozo Guedes --- notebooks/stories/stories-analysis.ipynb | 12499 ++++++++++++++++++++- 1 file changed, 12037 insertions(+), 462 deletions(-) diff --git a/notebooks/stories/stories-analysis.ipynb b/notebooks/stories/stories-analysis.ipynb index 81fff256..d5b1f366 100644 --- a/notebooks/stories/stories-analysis.ipynb +++ b/notebooks/stories/stories-analysis.ipynb @@ -16,13 +16,158 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Configurando jupyter" + "### Configurando jupyter e instalando as dependências do bot" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: rasa-nlu==0.14.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 1)) (0.14.6)\n", + "Requirement already satisfied: rasa-core==0.13.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 2)) (0.13.1)\n", + "Requirement already satisfied: sklearn-crfsuite==0.3.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 3)) (0.3.6)\n", + "Requirement already satisfied: nltk==3.3 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 4)) (3.3)\n", + "Requirement already satisfied: rocketchat-py-sdk==0.0.8 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 5)) (0.0.8)\n", + "Requirement already satisfied: elasticsearch==6.3.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from -r ../../docker/bot/requirements.txt (line 6)) (6.3.1)\n", + "Requirement already satisfied: coloredlogs~=10.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (10.0)\n", + "Requirement already satisfied: gevent~=1.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.4.0)\n", + "Requirement already satisfied: numpy>=1.13 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.16.3)\n", + "Requirement already satisfied: scikit-learn~=0.20.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.20.3)\n", + "Requirement already satisfied: klein~=17.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (17.10.0)\n", + "Requirement already satisfied: ruamel.yaml~=0.15.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.15.91)\n", + "Requirement already satisfied: jsonschema~=2.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.6.0)\n", + "Requirement already satisfied: boto3~=1.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.9.136)\n", + "Requirement already satisfied: future~=0.17.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.17.1)\n", + "Requirement already satisfied: cloudpickle~=0.6.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.6.1)\n", + "Requirement already satisfied: six~=1.11 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.12.0)\n", + "Requirement already satisfied: tqdm~=4.19 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (4.31.1)\n", + "Requirement already satisfied: packaging~=18.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (18.0)\n", + "Requirement already satisfied: requests~=2.20 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.21.0)\n", + "Requirement already satisfied: matplotlib~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.2.4)\n", + "Requirement already satisfied: typing~=3.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (3.6.6)\n", + "Requirement already satisfied: simplejson~=3.13 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (3.16.0)\n", + "Requirement already satisfied: python-socketio~=3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.1.2)\n", + "Requirement already satisfied: redis~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.10.6)\n", + "Requirement already satisfied: terminaltables~=3.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.1.0)\n", + "Requirement already satisfied: mattermostwrapper~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.1)\n", + "Requirement already satisfied: questionary>=1.0.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.1)\n", + "Requirement already satisfied: keras-preprocessing==1.0.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.5)\n", + "Requirement already satisfied: pydot~=1.4 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.4.1)\n", + "Requirement already satisfied: flask~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.2)\n", + "Requirement already satisfied: python-dateutil~=2.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.8.0)\n", + "Requirement already satisfied: pika~=0.12.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.12.0)\n", + "Requirement already satisfied: webexteamssdk~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.1)\n", + "Requirement already satisfied: rocketchat-API~=0.6.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.6.31)\n", + "Requirement already satisfied: keras-applications==1.0.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.6)\n", + "Requirement already satisfied: twilio~=6.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (6.26.2)\n", + "Requirement already satisfied: pymongo~=3.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.8.0)\n", + "Requirement already satisfied: python-telegram-bot~=11.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (11.1.0)\n", + "Requirement already satisfied: apscheduler~=3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.6.0)\n", + "Requirement already satisfied: rasa-core-sdk~=0.12.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.12.2)\n", + "Requirement already satisfied: colorhash~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.0.2)\n", + "Requirement already satisfied: networkx~=2.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.3)\n", + "Requirement already satisfied: fbmessenger~=5.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (5.6.0)\n", + "Requirement already satisfied: scipy~=1.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.2.1)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: jsonpickle~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1)\n", + "Requirement already satisfied: flask-jwt-simple~=0.0.3 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.0.3)\n", + "Requirement already satisfied: slackclient~=1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.3.1)\n", + "Requirement already satisfied: pykwalify~=1.7.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.7.0)\n", + "Requirement already satisfied: fakeredis~=0.10.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.10.3)\n", + "Requirement already satisfied: tensorflow~=1.12.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.12.2)\n", + "Requirement already satisfied: colorclass~=2.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.2.0)\n", + "Requirement already satisfied: flask-cors~=3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.0.7)\n", + "Requirement already satisfied: pytz~=2018.9 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2018.9)\n", + "Requirement already satisfied: tabulate in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from sklearn-crfsuite==0.3.6->-r ../../docker/bot/requirements.txt (line 3)) (0.8.3)\n", + "Requirement already satisfied: python-crfsuite>=0.8.3 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from sklearn-crfsuite==0.3.6->-r ../../docker/bot/requirements.txt (line 3)) (0.9.6)\n", + "Requirement already satisfied: DateTime==4.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (4.2)\n", + "Requirement already satisfied: pyee==5.0.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (5.0.0)\n", + "Requirement already satisfied: python-ddp==0.1.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (0.1.5)\n", + "Requirement already satisfied: urllib3>=1.21.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from elasticsearch==6.3.1->-r ../../docker/bot/requirements.txt (line 6)) (1.24.1)\n", + "Requirement already satisfied: humanfriendly>=4.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from coloredlogs~=10.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (4.18)\n", + "Requirement already satisfied: greenlet>=0.4.14; platform_python_implementation == \"CPython\" in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from gevent~=1.2->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.4.15)\n", + "Requirement already satisfied: werkzeug in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.15.2)\n", + "Requirement already satisfied: Twisted>=15.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (19.2.0)\n", + "Requirement already satisfied: incremental in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (17.5.0)\n", + "Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.2.0)\n", + "Requirement already satisfied: botocore<1.13.0,>=1.12.136 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.12.136)\n", + "Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.9.4)\n", + "Requirement already satisfied: pyparsing>=2.0.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from packaging~=18.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.4.0)\n", + "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from requests~=2.20->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (3.0.4)\n", + "Requirement already satisfied: idna<2.9,>=2.5 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from requests~=2.20->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2.8)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from requests~=2.20->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (2019.3.9)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from matplotlib~=2.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from matplotlib~=2.0->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.10.0)\n", + "Requirement already satisfied: python-engineio>=3.2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-socketio~=3.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.5.1)\n", + "Requirement already satisfied: prompt-toolkit~=2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from questionary>=1.0.1->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.0.9)\n", + "Requirement already satisfied: click>=5.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (7.0)\n", + "Requirement already satisfied: Jinja2>=2.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.10)\n", + "Requirement already satisfied: itsdangerous>=0.24 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.0)\n", + "Requirement already satisfied: requests-toolbelt in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from webexteamssdk~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.9.1)\n", + "Requirement already satisfied: h5py in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from keras-applications==1.0.6->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.9.0)\n", + "Requirement already satisfied: PyJWT>=1.4.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from twilio~=6.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.7.1)\n", + "Requirement already satisfied: pysocks; python_version >= \"3.0\" in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from twilio~=6.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.6.8)\n", + "Requirement already satisfied: cryptography in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.6.1)\n", + "Requirement already satisfied: tzlocal>=1.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from apscheduler~=3.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.5.1)\n", + "Requirement already satisfied: setuptools>=0.7 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from apscheduler~=3.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (40.8.0)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: ConfigArgParse~=0.13.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from rasa-core-sdk~=0.12.1->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.13.0)\n", + "Requirement already satisfied: decorator>=4.3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from networkx~=2.2->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (4.4.0)\n", + "Requirement already satisfied: websocket-client<0.55.0,>=0.35 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from slackclient~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.54.0)\n", + "Requirement already satisfied: docopt>=0.6.2 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from pykwalify~=1.7.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.6.2)\n", + "Requirement already satisfied: PyYAML>=3.11 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from pykwalify~=1.7.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (5.1)\n", + "Requirement already satisfied: absl-py>=0.1.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.7.1)\n", + "Requirement already satisfied: gast>=0.2.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.2.2)\n", + "Requirement already satisfied: protobuf>=3.6.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.7.1)\n", + "Requirement already satisfied: termcolor>=1.1.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.0)\n", + "Requirement already satisfied: tensorboard<1.13.0,>=1.12.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.12.2)\n", + "Requirement already satisfied: wheel>=0.26 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.33.1)\n", + "Requirement already satisfied: astor>=0.6.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.7.1)\n", + "Requirement already satisfied: grpcio>=1.8.6 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.20.1)\n", + "Requirement already satisfied: zope.interface in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from DateTime==4.2->rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (4.6.0)\n", + "Requirement already satisfied: ws4py in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-ddp==0.1.5->rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (0.5.1)\n", + "Requirement already satisfied: meteor-ejson in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from python-ddp==0.1.5->rocketchat-py-sdk==0.0.8->-r ../../docker/bot/requirements.txt (line 5)) (1.1.0)\n", + "Requirement already satisfied: attrs>=17.4.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (19.1.0)\n", + "Requirement already satisfied: Automat>=0.3.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.7.0)\n", + "Requirement already satisfied: PyHamcrest>=1.9.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (1.9.0)\n", + "Requirement already satisfied: constantly>=15.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (15.1.0)\n", + "Requirement already satisfied: hyperlink>=17.1.1 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Twisted>=15.5->klein~=17.10->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (19.0.0)\n", + "Requirement already satisfied: docutils>=0.10 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from botocore<1.13.0,>=1.12.136->boto3~=1.5->rasa-nlu==0.14.6->-r ../../docker/bot/requirements.txt (line 1)) (0.14)\n", + "Requirement already satisfied: wcwidth in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from prompt-toolkit~=2.0->questionary>=1.0.1->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.1.7)\n", + "Requirement already satisfied: MarkupSafe>=0.23 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from Jinja2>=2.10->flask~=1.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.1.1)\n", + "Requirement already satisfied: asn1crypto>=0.21.0 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from cryptography->python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (0.24.0)\n", + "Requirement already satisfied: cffi!=1.11.3,>=1.8 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from cryptography->python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (1.12.3)\n", + "Requirement already satisfied: markdown>=2.6.8 in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from tensorboard<1.13.0,>=1.12.0->tensorflow~=1.12.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (3.1)\n", + "Requirement already satisfied: pycparser in /Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages (from cffi!=1.11.3,>=1.8->cryptography->python-telegram-bot~=11.0->rasa-core==0.13.1->-r ../../docker/bot/requirements.txt (line 2)) (2.19)\n", + "\u001b[33mYou are using pip version 19.0.3, however version 19.1 is available.\n", + "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install -r ../../docker/bot/requirements.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", @@ -38,14 +183,14 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "rasa_nlu: 0.13.7 rasa_core: 0.11.12\n" + "rasa_nlu: 0.14.6 rasa_core: 0.13.1\n" ] } ], @@ -77,12 +222,12 @@ "### Gerando imagens de fluxo\n", "\n", "Gerando os arquivos de imagem para a visualização e avaliação do fluxo das stories. A célula abaixo gera uma imagem para cada arquivo de stories. \n", - "Para ver as imagens geradas acessa a pasta `img` deste notebook." + "Para ver as imagens geradas acessa a pasta `img` deste notebook. As imagens são geradas em html." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 27, "metadata": { "colab": { "autoexec": { @@ -113,478 +258,11039 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:apscheduler.scheduler:Scheduler started\n", - "/usr/local/lib/python3.6/site-packages/pykwalify/core.py:99: UnsafeLoaderWarning: \n", - "The default 'Loader' for 'load(stream)' without further arguments can be unsafe.\n", - "Use 'load(stream, Loader=ruamel.yaml.Loader)' explicitly if that is OK.\n", - "Alternatively include the following in your code:\n", - "\n", - " import warnings\n", - " warnings.simplefilter('ignore', ruamel.yaml.error.UnsafeLoaderWarning)\n", - "\n", - "In most other cases you should consider using 'safe_load(stream)'\n", - " data = yaml.load(stream)\n", - "Processed Story Blocks: 100%|██████████| 20/20 [00:00<00:00, 336.84it/s, # trackers=1]\n" + "Processed Story Blocks: 100%|██████████| 58/58 [00:00<00:00, 409.43it/s, # trackers=1]\n", + "Processed Story Blocks: 100%|██████████| 35/35 [00:00<00:00, 394.72it/s, # trackers=1]\n", + "WARNING:rasa_core.training.dsl:Skipping line 82. No valid command found. Line Content: 'manter_conversa'\n", + "Processed Story Blocks: 100%|██████████| 17/17 [00:00<00:00, 393.81it/s, # trackers=1]\n", + "Processed Story Blocks: 100%|██████████| 15/15 [00:00<00:00, 437.15it/s, # trackers=1]\n", + "Processed Story Blocks: 100%|██████████| 16/16 [00:00<00:00, 413.77it/s, # trackers=1]\n", + "Processed Story Blocks: 100%|██████████| 53/53 [00:00<00:00, 385.79it/s, # trackers=1]\n", + "WARNING:rasa_core.training.dsl:Skipping line 82. No valid command found. Line Content: 'manter_conversa'\n", + "Processed Story Blocks: 100%|██████████| 194/194 [00:00<00:00, 400.25it/s, # trackers=1]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "definicoes\n" + "Imagens salvas\n" + ] + } + ], + "source": [ + "from IPython.display import Image\n", + "from rasa_core.agent import Agent\n", + "from rasa_core.policies.keras_policy import KerasPolicy\n", + "from rasa_core.policies.memoization import MemoizationPolicy\n", + "\n", + "from os import listdir\n", + "from os.path import isfile, join\n", + "\n", + "agent = Agent(\"../../coach/domain.yml\", policies=[MemoizationPolicy(), KerasPolicy()])\n", + "\n", + "# Adds all stories files in a list\n", + "stories_files = [f for f in listdir(\"../../coach/data/stories\") if isfile(join(\"../../coach/data/stories\", f))]\n", + "\n", + "# Generate the image for each file\n", + "for file in stories_files:\n", + " \n", + " new_img_file = './img/story_graph_' + file[:-3] + '.html'\n", + " \n", + " agent.visualize('../../coach/data/stories/' + file,\n", + " output_file = new_img_file,\n", + " max_history = 2)\n", + "\n", + "print(\"Imagens salvas\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Abrir as imagens\n", + "\n", + "Para abrir todas as imagens de fluxo geradas, rode a célula abaixo, elas serão abertas em uma nova guia" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "import webbrowser\n", + "import os\n", + "\n", + "for file in stories_files:\n", + " webbrowser.open('file://' + os.path.realpath(\"./img/story_graph_\"+file[:-3]+\".html\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Como analisar as stories\n", + "\n", + "Para analisar as historias, veja como está funcionando o fluxo pelas imagens geradas, veja se está como o esperado, caso contrário deve ser feitas auterações nas stories para ajusta-lo.\n", + "\n", + "O ajuste de uma história consiste na chamada das utters e intents." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Treinando as stories e gerando o gráfico\n", + "\n", + "Na celula abaixo é feito o treinamento das stories e é gerado o gráfico da matriz de confusão para a avaliação das stories. Para melhor visualização, após rodar o código, abra o arquivo `story_eval.pdf` que será gerado e salvado na pasta `img` deste notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:rasa_core.training.dsl:Skipping line 82. No valid command found. Line Content: 'manter_conversa'\n", + "\n", + "Processed Story Blocks: 0%| | 0/194 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 42%|████▏ | 82/194 [00:00<00:00, 160.65it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 52%|█████▏ | 101/194 [00:00<00:00, 167.92it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:00<00:00, 171.72it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 72%|███████▏ | 140/194 [00:00<00:00, 177.31it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:00<00:00, 174.15it/s, # trackers=1]\u001b[A\n" + ] }, { "name": "stderr", "output_type": "stream", "text": [ - "Processed Story Blocks: 100%|██████████| 10/10 [00:00<00:00, 408.00it/s, # trackers=1]" + "Processed Story Blocks: 81%|████████ | 157/194 [00:01<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:01<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:01<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:01<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:01<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 81%|████████ | 157/194 [00:01<00:00, 174.15it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 176/194 [00:01<00:00, 177.71it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 100%|██████████| 194/194 [00:01<00:00, 176.24it/s, # trackers=1]\u001b[A\n", + "Processed Story Blocks: 0%| | 0/194 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed Story Blocks: 9%|▉ | 18/194 [00:00<00:02, 81.93it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 9%|▉ | 18/194 [00:00<00:02, 81.93it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 14%|█▍ | 27/194 [00:00<00:02, 83.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 14%|█▍ | 27/194 [00:00<00:02, 83.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 14%|█▍ | 27/194 [00:00<00:02, 83.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 14%|█▍ | 27/194 [00:00<00:02, 83.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 14%|█▍ | 27/194 [00:00<00:02, 83.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 14%|█▍ | 27/194 [00:00<00:02, 83.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 14%|█▍ | 27/194 [00:00<00:02, 83.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 14%|█▍ | 27/194 [00:00<00:02, 83.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 14%|█▍ | 27/194 [00:00<00:02, 83.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 14%|█▍ | 27/194 [00:00<00:02, 83.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 19%|█▊ | 36/194 [00:00<00:01, 83.26it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 19%|█▊ | 36/194 [00:00<00:01, 83.26it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 19%|█▊ | 36/194 [00:00<00:01, 83.26it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 19%|█▊ | 36/194 [00:00<00:01, 83.26it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 19%|█▊ | 36/194 [00:00<00:01, 83.26it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 19%|█▊ | 36/194 [00:00<00:01, 83.26it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 19%|█▊ | 36/194 [00:00<00:01, 83.26it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 19%|█▊ | 36/194 [00:00<00:01, 83.26it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 19%|█▊ | 36/194 [00:00<00:01, 83.26it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 23%|██▎ | 44/194 [00:00<00:01, 81.55it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 23%|██▎ | 44/194 [00:00<00:01, 81.55it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 23%|██▎ | 44/194 [00:00<00:01, 81.55it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 23%|██▎ | 44/194 [00:00<00:01, 81.55it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 23%|██▎ | 44/194 [00:00<00:01, 81.55it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 23%|██▎ | 44/194 [00:00<00:01, 81.55it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 23%|██▎ | 44/194 [00:00<00:01, 81.55it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 23%|██▎ | 44/194 [00:00<00:01, 81.55it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 23%|██▎ | 44/194 [00:00<00:01, 81.55it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 23%|██▎ | 44/194 [00:00<00:01, 81.55it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 27%|██▋ | 53/194 [00:00<00:01, 80.63it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 27%|██▋ | 53/194 [00:00<00:01, 80.63it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 27%|██▋ | 53/194 [00:00<00:01, 80.63it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 27%|██▋ | 53/194 [00:00<00:01, 80.63it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 27%|██▋ | 53/194 [00:00<00:01, 80.63it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 27%|██▋ | 53/194 [00:00<00:01, 80.63it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 27%|██▋ | 53/194 [00:00<00:01, 80.63it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 27%|██▋ | 53/194 [00:00<00:01, 80.63it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 27%|██▋ | 53/194 [00:00<00:01, 80.63it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 31%|███▏ | 61/194 [00:00<00:01, 80.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 31%|███▏ | 61/194 [00:00<00:01, 80.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 31%|███▏ | 61/194 [00:00<00:01, 80.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 31%|███▏ | 61/194 [00:00<00:01, 80.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 31%|███▏ | 61/194 [00:00<00:01, 80.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 31%|███▏ | 61/194 [00:00<00:01, 80.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 31%|███▏ | 61/194 [00:00<00:01, 80.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 31%|███▏ | 61/194 [00:00<00:01, 80.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 31%|███▏ | 61/194 [00:00<00:01, 80.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 31%|███▏ | 61/194 [00:00<00:01, 80.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 36%|███▌ | 70/194 [00:00<00:01, 82.85it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 36%|███▌ | 70/194 [00:00<00:01, 82.85it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 36%|███▌ | 70/194 [00:00<00:01, 82.85it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 36%|███▌ | 70/194 [00:00<00:01, 82.85it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 36%|███▌ | 70/194 [00:00<00:01, 82.85it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 36%|███▌ | 70/194 [00:00<00:01, 82.85it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 36%|███▌ | 70/194 [00:00<00:01, 82.85it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 36%|███▌ | 70/194 [00:00<00:01, 82.85it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 36%|███▌ | 70/194 [00:00<00:01, 82.85it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 36%|███▌ | 70/194 [00:00<00:01, 82.85it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 41%|████ | 79/194 [00:00<00:01, 84.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 41%|████ | 79/194 [00:00<00:01, 84.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 41%|████ | 79/194 [00:00<00:01, 84.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 41%|████ | 79/194 [00:00<00:01, 84.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 41%|████ | 79/194 [00:00<00:01, 84.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 41%|████ | 79/194 [00:01<00:01, 84.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 41%|████ | 79/194 [00:01<00:01, 84.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 41%|████ | 79/194 [00:01<00:01, 84.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 41%|████ | 79/194 [00:01<00:01, 84.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 41%|████ | 79/194 [00:01<00:01, 84.44it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 45%|████▌ | 88/194 [00:01<00:01, 85.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 45%|████▌ | 88/194 [00:01<00:01, 85.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 45%|████▌ | 88/194 [00:01<00:01, 85.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 45%|████▌ | 88/194 [00:01<00:01, 85.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 45%|████▌ | 88/194 [00:01<00:01, 85.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 45%|████▌ | 88/194 [00:01<00:01, 85.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 45%|████▌ | 88/194 [00:01<00:01, 85.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 45%|████▌ | 88/194 [00:01<00:01, 85.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 45%|████▌ | 88/194 [00:01<00:01, 85.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 45%|████▌ | 88/194 [00:01<00:01, 85.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n" + ] }, { "name": "stderr", "output_type": "stream", "text": [ - "Processed Story Blocks: 100%|██████████| 4/4 [00:00<00:00, 349.60it/s, # trackers=1]\n" + "Processed Story Blocks: 50%|█████ | 97/194 [00:01<00:02, 41.25it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 55%|█████▌ | 107/194 [00:01<00:01, 49.78it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 60%|██████ | 117/194 [00:01<00:01, 58.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 60%|██████ | 117/194 [00:01<00:01, 58.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 60%|██████ | 117/194 [00:01<00:01, 58.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 60%|██████ | 117/194 [00:01<00:01, 58.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 60%|██████ | 117/194 [00:01<00:01, 58.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 60%|██████ | 117/194 [00:01<00:01, 58.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 60%|██████ | 117/194 [00:01<00:01, 58.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 60%|██████ | 117/194 [00:01<00:01, 58.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 60%|██████ | 117/194 [00:01<00:01, 58.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 60%|██████ | 117/194 [00:01<00:01, 58.27it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 65%|██████▍ | 126/194 [00:01<00:01, 63.54it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 65%|██████▍ | 126/194 [00:01<00:01, 63.54it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 65%|██████▍ | 126/194 [00:01<00:01, 63.54it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 65%|██████▍ | 126/194 [00:01<00:01, 63.54it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 65%|██████▍ | 126/194 [00:01<00:01, 63.54it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 65%|██████▍ | 126/194 [00:01<00:01, 63.54it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 65%|██████▍ | 126/194 [00:01<00:01, 63.54it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 65%|██████▍ | 126/194 [00:01<00:01, 63.54it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 65%|██████▍ | 126/194 [00:01<00:01, 63.54it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 65%|██████▍ | 126/194 [00:01<00:01, 63.54it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 70%|██████▉ | 135/194 [00:01<00:00, 66.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 70%|██████▉ | 135/194 [00:01<00:00, 66.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 70%|██████▉ | 135/194 [00:01<00:00, 66.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 70%|██████▉ | 135/194 [00:02<00:00, 66.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 70%|██████▉ | 135/194 [00:02<00:00, 66.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 70%|██████▉ | 135/194 [00:02<00:00, 66.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 70%|██████▉ | 135/194 [00:02<00:00, 66.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 70%|██████▉ | 135/194 [00:02<00:00, 66.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 70%|██████▉ | 135/194 [00:02<00:00, 66.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 70%|██████▉ | 135/194 [00:02<00:00, 66.99it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 74%|███████▍ | 144/194 [00:02<00:00, 71.30it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 74%|███████▍ | 144/194 [00:02<00:00, 71.30it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 74%|███████▍ | 144/194 [00:02<00:00, 71.30it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 74%|███████▍ | 144/194 [00:02<00:00, 71.30it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 74%|███████▍ | 144/194 [00:02<00:00, 71.30it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 74%|███████▍ | 144/194 [00:02<00:00, 71.30it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 74%|███████▍ | 144/194 [00:02<00:00, 71.30it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 74%|███████▍ | 144/194 [00:02<00:00, 71.30it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 74%|███████▍ | 144/194 [00:02<00:00, 71.30it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 74%|███████▍ | 144/194 [00:02<00:00, 71.30it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 153/194 [00:02<00:00, 74.89it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 153/194 [00:02<00:00, 74.89it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 153/194 [00:02<00:00, 74.89it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 153/194 [00:02<00:00, 74.89it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 153/194 [00:02<00:00, 74.89it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 153/194 [00:02<00:00, 74.89it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 153/194 [00:02<00:00, 74.89it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 153/194 [00:02<00:00, 74.89it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 153/194 [00:02<00:00, 74.89it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 153/194 [00:02<00:00, 74.89it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 75.67it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 75.67it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 75.67it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 75.67it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 75.67it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 75.67it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 75.67it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 75.67it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 75.67it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 75.67it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 171/194 [00:02<00:00, 77.51it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 171/194 [00:02<00:00, 77.51it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 171/194 [00:02<00:00, 77.51it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 171/194 [00:02<00:00, 77.51it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 171/194 [00:02<00:00, 77.51it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 171/194 [00:02<00:00, 77.51it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 171/194 [00:02<00:00, 77.51it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 171/194 [00:02<00:00, 77.51it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 171/194 [00:02<00:00, 77.51it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 171/194 [00:02<00:00, 77.51it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 93%|█████████▎| 180/194 [00:02<00:00, 78.84it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 93%|█████████▎| 180/194 [00:02<00:00, 78.84it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 93%|█████████▎| 180/194 [00:02<00:00, 78.84it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 93%|█████████▎| 180/194 [00:02<00:00, 78.84it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 93%|█████████▎| 180/194 [00:02<00:00, 78.84it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 93%|█████████▎| 180/194 [00:02<00:00, 78.84it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 93%|█████████▎| 180/194 [00:02<00:00, 78.84it/s, # trackers=19]\u001b[A\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "captacao\n" + "Processed Story Blocks: 93%|█████████▎| 180/194 [00:02<00:00, 78.84it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 93%|█████████▎| 180/194 [00:02<00:00, 78.84it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 93%|█████████▎| 180/194 [00:02<00:00, 78.84it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 97%|█████████▋| 189/194 [00:02<00:00, 78.77it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 97%|█████████▋| 189/194 [00:02<00:00, 78.77it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 97%|█████████▋| 189/194 [00:02<00:00, 78.77it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 97%|█████████▋| 189/194 [00:02<00:00, 78.77it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 97%|█████████▋| 189/194 [00:02<00:00, 78.77it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 97%|█████████▋| 189/194 [00:02<00:00, 78.77it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 100%|██████████| 194/194 [00:02<00:00, 71.50it/s, # trackers=19]\u001b[A\n", + "Processed Story Blocks: 0%| | 0/194 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed Story Blocks: 34%|███▎ | 65/194 [00:00<00:01, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 34%|███▎ | 65/194 [00:00<00:01, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 38%|███▊ | 74/194 [00:00<00:01, 81.60it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 38%|███▊ | 74/194 [00:00<00:01, 81.60it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 38%|███▊ | 74/194 [00:00<00:01, 81.60it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 38%|███▊ | 74/194 [00:00<00:01, 81.60it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 38%|███▊ | 74/194 [00:00<00:01, 81.60it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 38%|███▊ | 74/194 [00:01<00:01, 81.60it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 38%|███▊ | 74/194 [00:01<00:01, 81.60it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 38%|███▊ | 74/194 [00:01<00:01, 81.60it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 38%|███▊ | 74/194 [00:01<00:01, 81.60it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 38%|███▊ | 74/194 [00:01<00:01, 81.60it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 43%|████▎ | 83/194 [00:01<00:01, 82.69it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 48%|████▊ | 93/194 [00:01<00:01, 85.46it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 48%|████▊ | 93/194 [00:01<00:01, 85.46it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 48%|████▊ | 93/194 [00:01<00:01, 85.46it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 48%|████▊ | 93/194 [00:01<00:01, 85.46it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 48%|████▊ | 93/194 [00:01<00:01, 85.46it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 48%|████▊ | 93/194 [00:01<00:01, 85.46it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 48%|████▊ | 93/194 [00:01<00:01, 85.46it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 48%|████▊ | 93/194 [00:01<00:01, 85.46it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 48%|████▊ | 93/194 [00:01<00:01, 85.46it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 48%|████▊ | 93/194 [00:01<00:01, 85.46it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 53%|█████▎ | 102/194 [00:01<00:01, 85.74it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 53%|█████▎ | 102/194 [00:01<00:01, 85.74it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 53%|█████▎ | 102/194 [00:01<00:01, 85.74it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 53%|█████▎ | 102/194 [00:01<00:01, 85.74it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 53%|█████▎ | 102/194 [00:01<00:01, 85.74it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 53%|█████▎ | 102/194 [00:01<00:01, 85.74it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 53%|█████▎ | 102/194 [00:01<00:01, 85.74it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 53%|█████▎ | 102/194 [00:01<00:01, 85.74it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 53%|█████▎ | 102/194 [00:01<00:01, 85.74it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 53%|█████▎ | 102/194 [00:01<00:01, 85.74it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 57%|█████▋ | 111/194 [00:01<00:00, 86.59it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 57%|█████▋ | 111/194 [00:01<00:00, 86.59it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 57%|█████▋ | 111/194 [00:01<00:00, 86.59it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 57%|█████▋ | 111/194 [00:01<00:00, 86.59it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 57%|█████▋ | 111/194 [00:01<00:00, 86.59it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 57%|█████▋ | 111/194 [00:01<00:00, 86.59it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 57%|█████▋ | 111/194 [00:01<00:00, 86.59it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 57%|█████▋ | 111/194 [00:01<00:00, 86.59it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 57%|█████▋ | 111/194 [00:01<00:00, 86.59it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 57%|█████▋ | 111/194 [00:01<00:00, 86.59it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:01<00:00, 82.83it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:01<00:00, 82.83it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:01<00:00, 82.83it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:01<00:00, 82.83it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:01<00:00, 82.83it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:01<00:00, 82.83it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:01<00:00, 82.83it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:01<00:00, 82.83it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:01<00:00, 82.83it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 62%|██████▏ | 120/194 [00:01<00:00, 82.83it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 66%|██████▋ | 129/194 [00:01<00:00, 83.27it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 66%|██████▋ | 129/194 [00:01<00:00, 83.27it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 66%|██████▋ | 129/194 [00:01<00:00, 83.27it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 66%|██████▋ | 129/194 [00:01<00:00, 83.27it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 66%|██████▋ | 129/194 [00:01<00:00, 83.27it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 66%|██████▋ | 129/194 [00:01<00:00, 83.27it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 66%|██████▋ | 129/194 [00:01<00:00, 83.27it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 66%|██████▋ | 129/194 [00:01<00:00, 83.27it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 66%|██████▋ | 129/194 [00:01<00:00, 83.27it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 66%|██████▋ | 129/194 [00:01<00:00, 83.27it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 71%|███████ | 138/194 [00:01<00:00, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 71%|███████ | 138/194 [00:01<00:00, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 71%|███████ | 138/194 [00:01<00:00, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 71%|███████ | 138/194 [00:01<00:00, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 71%|███████ | 138/194 [00:01<00:00, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 71%|███████ | 138/194 [00:01<00:00, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 71%|███████ | 138/194 [00:01<00:00, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 71%|███████ | 138/194 [00:01<00:00, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 71%|███████ | 138/194 [00:01<00:00, 78.63it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 75%|███████▌ | 146/194 [00:01<00:00, 74.87it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 75%|███████▌ | 146/194 [00:01<00:00, 74.87it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 75%|███████▌ | 146/194 [00:01<00:00, 74.87it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 75%|███████▌ | 146/194 [00:01<00:00, 74.87it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 75%|███████▌ | 146/194 [00:01<00:00, 74.87it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 75%|███████▌ | 146/194 [00:01<00:00, 74.87it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 75%|███████▌ | 146/194 [00:01<00:00, 74.87it/s, # trackers=18]\u001b[A\n" + ] }, { "name": "stderr", "output_type": "stream", "text": [ - "Processed Story Blocks: 100%|██████████| 29/29 [00:00<00:00, 201.80it/s, # trackers=1]\n" + "Processed Story Blocks: 75%|███████▌ | 146/194 [00:01<00:00, 74.87it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 75%|███████▌ | 146/194 [00:01<00:00, 74.87it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 154/194 [00:01<00:00, 74.53it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 154/194 [00:01<00:00, 74.53it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 154/194 [00:01<00:00, 74.53it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 154/194 [00:01<00:00, 74.53it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 154/194 [00:01<00:00, 74.53it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 154/194 [00:02<00:00, 74.53it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 154/194 [00:02<00:00, 74.53it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 154/194 [00:02<00:00, 74.53it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 79%|███████▉ | 154/194 [00:02<00:00, 74.53it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 71.82it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 71.82it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 71.82it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 71.82it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 71.82it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 71.82it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 71.82it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 71.82it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 84%|████████▎ | 162/194 [00:02<00:00, 71.82it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 170/194 [00:02<00:00, 69.30it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 170/194 [00:02<00:00, 69.30it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 170/194 [00:02<00:00, 69.30it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 170/194 [00:02<00:00, 69.30it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 170/194 [00:02<00:00, 69.30it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 170/194 [00:02<00:00, 69.30it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 170/194 [00:02<00:00, 69.30it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 88%|████████▊ | 170/194 [00:02<00:00, 69.30it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 177/194 [00:02<00:00, 68.23it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 177/194 [00:02<00:00, 68.23it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 177/194 [00:02<00:00, 68.23it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 177/194 [00:02<00:00, 68.23it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 177/194 [00:02<00:00, 68.23it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 177/194 [00:02<00:00, 68.23it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 177/194 [00:02<00:00, 68.23it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 91%|█████████ | 177/194 [00:02<00:00, 68.23it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 95%|█████████▍| 184/194 [00:02<00:00, 67.64it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 95%|█████████▍| 184/194 [00:02<00:00, 67.64it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 95%|█████████▍| 184/194 [00:02<00:00, 67.64it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 95%|█████████▍| 184/194 [00:02<00:00, 67.64it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 95%|█████████▍| 184/194 [00:02<00:00, 67.64it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 95%|█████████▍| 184/194 [00:02<00:00, 67.64it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 95%|█████████▍| 184/194 [00:02<00:00, 67.64it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 95%|█████████▍| 184/194 [00:02<00:00, 67.64it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 98%|█████████▊| 191/194 [00:02<00:00, 65.68it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 98%|█████████▊| 191/194 [00:02<00:00, 65.68it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 98%|█████████▊| 191/194 [00:02<00:00, 65.68it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 98%|█████████▊| 191/194 [00:02<00:00, 65.68it/s, # trackers=18]\u001b[A\n", + "Processed Story Blocks: 100%|██████████| 194/194 [00:02<00:00, 75.20it/s, # trackers=18]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=1]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=2]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=3]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=4]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=5]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=6]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=7]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=8]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=9]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=10]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=11]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=12]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=13]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=14]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=15]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=16]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=17]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=18]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=19]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=20]\u001b[A\n", + "Processed actions: 0it [00:00, ?it/s, # examples=21]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=21]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=22]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=23]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=24]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=25]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=26]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=27]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=28]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=29]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=30]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=31]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=32]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=33]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=34]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=35]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=36]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=37]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=38]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=39]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=40]\u001b[A\n", + "Processed actions: 21it [00:00, 205.86it/s, # examples=41]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=41]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=42]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=43]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=44]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=45]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=46]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=47]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=48]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=49]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=50]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=51]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=52]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=53]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=54]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=55]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=56]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=57]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=58]\u001b[A\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "incentivo\n" + "Processed actions: 41it [00:00, 201.61it/s, # examples=59]\u001b[A\n", + "Processed actions: 41it [00:00, 201.61it/s, # examples=60]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=60]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=61]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=62]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=63]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=64]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=65]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=66]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=67]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=68]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=69]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=70]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=71]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=72]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=73]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=74]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=75]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=76]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=77]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=78]\u001b[A\n", + "Processed actions: 60it [00:00, 196.38it/s, # examples=79]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=79]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=80]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=81]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=82]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=83]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=84]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=85]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=86]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=87]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=88]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=89]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=90]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=91]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=92]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=93]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=94]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=95]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=96]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=97]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=98]\u001b[A\n", + "Processed actions: 79it [00:00, 193.88it/s, # examples=99]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=99]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=100]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=101]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=102]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=103]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=104]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=105]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=106]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=107]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=108]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=109]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=110]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=111]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=112]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=113]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=114]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=115]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=116]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=117]\u001b[A\n", + "Processed actions: 99it [00:00, 195.14it/s, # examples=118]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=118]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=119]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=120]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=121]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=122]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=123]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=124]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=125]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=126]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=127]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=128]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=129]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=130]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=131]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=132]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=133]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=134]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=135]\u001b[A\n", + "Processed actions: 118it [00:00, 190.98it/s, # examples=136]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=136]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=137]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=138]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=139]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=140]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=141]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=142]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=143]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=144]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=145]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=146]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=147]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=148]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=149]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=150]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=151]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=152]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=153]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=154]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=155]\u001b[A\n", + "Processed actions: 136it [00:00, 186.66it/s, # examples=156]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=156]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=157]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=158]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=159]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=160]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=161]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=162]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=163]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=164]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=165]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=166]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=167]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=168]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=169]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=170]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=171]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=172]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=173]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=174]\u001b[A\n", + "Processed actions: 156it [00:00, 188.30it/s, # examples=175]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=175]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=176]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=177]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=178]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=179]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=180]\u001b[A\n" ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAEPMAAAmbCAYAAACMPywQAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde5SkeV3n+U/cI+MemRkRGRmZWVVZ3VVNV9ONY0MPjMAs4jnqIgjr4IURWW+j4+jMaRhd3T3jwT0KjozuCkdnvdIsDKxHFJGDO7quNM2MwLDHppuu7qquyq6qvGdGZtwjMu77R/Xv4YnIyGtlZWRVvV/n/M5zf+L3REXG8zxZ+f08jm632xUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAW+YcdgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAuwVhHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMARIcwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCLuYXcAAAAAAAAAAAAAx2NjY0MbGxsqlUoqFArqdDpqt9sqFouSJLfbrXA4LEkaGRlRIBDQ2NiYxsbGFAwGh9l1AAAAAAAAAAAAAAAAAACAOwZhHgAAAAAAAAAAAHeBVqulF154QZcuXdJLL72kl156SVevXdWVa1e0sb6hwkZB3U730Pv3+r2KjkWVyWR0/+n7NXtmVmfOnNHs7KweeughpdPpIzwaAAAAAAAAAAAAAAAAAACAO5ej2+0e/q82AQAAAAAAAAAAcOza7baeeeYZfelLX9LTTz+trz79VV167pKa9aYcToc8kx51T3fVPNOUZiUlJI2/PByTFJYUf3lnTknRl8dbkkovj9cllSVlJW3Y2rzkfMkpzzWP2i+11Sq0JEnxZFyveuRVevRVj+rRRx/V61//egI+AAAAAAAAAAAAAAAAAADAPYkwDwAAAAAAAAAAgDvAM888o89//vP6wlNf0FNfekrVYlXumFv6Vqn1SEt6RNLDkl4hyXeMHctKekbS128279e9an6jqW6rq1P3n9Kbvu1NetOb3qTv+q7v0tjY2DF2DAAAAAAAAAAAAAAAAAAAYDgI8wAAAAAAAAAAADiB2u22nnzySf3FX/yF/vSzf6qla0vypDxq/dOWut/Wld4o6YIk57B7OkBZ0n+V9JTk+aJH7S+3pbb02m97rd7x1nfo7W9/u86cOTPsXgIAAAAAAAAAAAAAAAAAANwWhHkAAAAAAAAAAACcIJcuXdInP/lJ/f4Tv6+la0tyz7rVektL+meSXqeTGd6xl6qkv5Wcn3PK/RduNVYbetW3vko//ZM/rR/8wR9UOBwedg8BAAAAAAAAAAAAAAAAAACODGEeAAAAAAAAAAAAQ9bpdPTZz35WH/wPH9RXvvQVeaY8av5wU/oRSeeH3bsj1pL0V5LzCaf0Ocnr9uo9736P3vv4e3XfffcNu3cAAAAAAAAAAAAAAAAAAAC3jDAPAAAAAAAAAACAIWk0GnriiSf0gQ99QNeuXJPzLU61/1Vb+nZJzmH37hhsSPq45Pltj1rXWnrb29+mX/qFX9KrX/3qYfcMAAAAAAAAAAAAAAAAAADg0AjzAAAAAAAAAAAAOGbdblef/vSn9b5ffJ/m5+fV/edddd/blV4x7J4NSVvSpyXPhzxqfa2ld3zfO/TrH/h1nT17dtg9AwAAAAAAAAAAAAAAAAAAOLB74ZluAAAAAAAAAAAAJ8bTTz+tx/7JY3rn979T84/Nq3Opo+4f3MNBHpLkkvROqfnVprp/3tVnn/2sHnjwAT3+3sdVqVSG3TsAAAAAAAAAAAAAAAAAAIADIcwDAAAAAAAAAADgGDSbTb3//e/Xo695VP/g/gd1/1tXnY93pFPD7tkJ8zap+WxTrf+9pQ//8Yf14CMP6qmnnhp2rwAAAAAAAAAAAAAAAAAAAPbN0e12u8PuBAAAAAAAAAAAwN3spZde0tu+7226+MJFtX+tLf2siFzfjyXJ9S9c6ny+o5//tz+vX/3VX5XL5Rp2rwAAAAAAAAAAAAAAAAAAAHZFmAcAAAAAAAAAAMBt9OSTT+p7v+97VZmqqPknTen+YffoDvSHkvNfOfXmN71Zf/Kf/kTRaHTYPQIAAAAAAAAAAAAAAAAAANgRYR4AAAAAAAAAAAC3ySc+8Qn9yP/4I9JbpfYTbSk47B7dwb4ied7u0anYKX3xb7+odDo97B4BAAAAAAAAAAAAAAAAAAAMRJgHAAAAAAAAAADAbfDpT39a7/yBd6r7r7vq/kZXcgy7R3eBRcnzZo9OO0/rv3zhvyiRSAy7RwAAAAAAAAAAAAAAAAAAANsQ5gEAAAAAAAAAAHDE/uZv/kbf/ZbvVvsn2+p+mP+KOVKLkueNHp2PnNeXn/qygsHgsHsEAAAAAAAAAAAAAAAAAADQgzAPAAAAAAAAAACAI7S8vKyHXvWQ8m/Kq/OfOpJj2D26C12T3K92613f8y599I8+OuzeAAAAAAAAAAAAAAAAAAAA9HAOuwMAAAAAAAAAAAB3i263qx/64R9SOVpW5/eOIMijK+ljkv6xpDFJI5IekfRLkr5hW8+xj9avJikm6Y27vP6g/cRf7s+f7HP9vfpxGKel1h+39MRHn9CnPvWpI9opAAAAAAAAAAAAAAAAAADA0SDMAwAAAAAAAAAA4Ij86Z/+qZ78uyfV+GRDCh/BDt8v6f+S9HuSFiUtS/rfJP2VpFf2rdu1tUHT2zor6TFJlyW9uMM6/ftq6maIyL+U9LOSPrzDNgfpx2G9RXL8C4d+7r0/p1qtdsQ7BwAAAAAAAAAAAAAAAAAAODxHt9s96j+dBAAAAAAAAAAAuOd0Oh1deNUFXX7lZXU+0TmanaYkPSsp2Tf/oqQL+mZAhkO9YRl7TUvSP5X0ryX9vSSXpA/s0IdB20rS/yPpJyXNHeB1d9rXYa1L7lm3fv39v67HH3/8CHcMAAAAAAAAAAAAAAAAAABweIR5AAAAAAAAAAAAHIHPfe5zeuvb3qruxa50/oh2GpaUleQ74HZ7hWZckfRtkuZ1M4zjv5N0Q5L7APsq6mbIyNYt9OMo/LyU+ERCK/Mrcjqdt/nFAAAAAAAAAAAAAAAAAAAA9sZfNAIAAAAAAAAAAByBz/zFZ+R+zH10QR6S9D2S/idJuSPcpyT9oaQfluTRzf7OSvr8AffxVUmnj7Zbh/LD0vrSur72ta8NuycAAAAAAAAAAAAAAAAAAACSCPMAAAAAAAAAAAA4Ep/53GfU/J7m0e70D14e3ifpuyX9jqTFW9xnW9LHJP2Ybd6P62bAx362XZL0f+pmGMgv3WJfjsIrJe+sV5/73OeG3RMAAAAAAAAAAAAAAAAAAABJhHkAAAAAAAAAAADcsnw+r42VDenVR7zjgKTfkjQn6d2SvizpVZLeJalwyH1+XtIZSQ/Y5v0zSU9JWtlhG8fLzS0pI+kXdDPQ492H7MMRaz7a1PMvPD/sbgAAAAAAAAAAAAAAAAAAAEgizAMAAAAAAAAAAOCWLS0t3RxJ36YXiEr6AUkfk3RN0paknzvkvv5A0o/1zQtK+j5JH91hm66t5ST9mqSffLkvJ0A33dX1pevD7gYAAAAAAAAAAAAAAAAAAIAkwjwAAAAAAAAAAABuWalUujkSOoYXC0r6LUmfOcS2K5I+L+lHJTn62u9L+qN97CMm6T0vt18+RB9uh4iUL+SH3QsAAAAAAAAAAAAAAAAAAABJknvYHQAAAAAAAAAAAMPV6XRUKBQGLtva2lKtVhu4rFAoqNPpbJvfarW+GW7Rp1qtql6vD1yWy+V27WelUlGj0dh1nXK5rGazues6pVJJrVZr13WKxaLa7fau69iPv1wu35y5JunUrpsdjEPSS5JO98336HDBIU/oZpDH/7HD8gclfVHSG/axr38p6T5Jm5JGD9GXo7QqTaWnhtwJAAAAAAAAAAAAAAAAAACAmxzdbrc77E4AAAAAAAAAAHBQ7XZbxWJx2/xBgRCDghkGhT7UajVtbW31zGs0GqpUKifmtY18Pq9Bv+LfbZv9BF0MUygUksfj2XG52+1WOBzecXm325Xb7dbIyIg6nY46nY663e62cZfLJbf7Zt55u922lnc6HWva4XD0LG+32z1NkrWNCSdxOBzqfrorvf2o3hHdDPP4Nkn/XtJDklySnpf0C7oZuPHvdtlu0P8AnZf0cUmv3mG735T0tKSP7WNfkvTDkl4l6b0H7McRc73Zpe7fdeVwOOR0OuV0Oq1/Z4fDIZ/PJ5fLJZfLpZGREblcLvl8Pvl8Pnm9Xvn9fgUCATkcDo2NjcnpdCoYDCocDmtkZEQjIyOKx+Py+/2KRqPW5zQWi8nhcPR8Nv1+v0ZGRiTt/ZkGAAAAAAAAAAAAAAAAAAB3J8I8AAAAAAAAAOAO1R/+UK/XVa1Wrelms6lyuWxNt1otlUola7rT6ahQKPTssz+MolAoqNPpWNOlUkmtVsua7g+HqFarVrCBJG1tbalWq1nT/UET/X0cdFyDtjtOTqdT0Wh023xTxG8XiUTkcrl65gWDQXm93p559mJ/w+PxKBQK7eu1pZ1DAhwOh2Kx2MBtBr3ubn2Xdg/QCAQC8vl8A5eZ96fT6ahYLKper6tWq6lWq8nlcqlUKlmfl1wuZ/0bl8tlNRoN5fN56/NTLBbVaDRULBatbUyYSf9ndD9M38wxm/dyZGREfr9fPp9PgUDA+jdxuVyKRCI97200GpXT6VQ4HJbb7VYwGNT7fvF9ev71z0sfOVB3dvdlSX8k6e8k3dDNMI8HJP2opJ/RzbCMfvZ53R3m/7mk7+3b7v+W9F192+60L+PvJb3u5fF1SeP76MdRq0vucbde8/BrNDo6qkajYX3eGo2Gms2marWaWq2WWq2W6vW6Op2OGo2GOp2OWq2Wut1uz3fb7RAMBiXd/JkKBAJyOp1WUIjL5VI4HLZ+nuLxuLXuoJAQ87k7inXN5x4AAAAAAAAAAAAAAAAAABwd97A7AAAAAAAAAAC3S7vdVrFYtKaLxaLa7bak3pCJ/lALe2CFPSCj2+0qn89b69mDLPqDMvpfu39bSVYYwaD+9e9fkiqVihqNxkHfhgPpD3ToD4zoD2/oLwI3IQhGOBxWOp22pk0ogjEorOIgoRbHEahxtzM/C/l8Xo1GQ+VyWZVKxQrMMD8DpVJJ9XpdxWLRClwpFAqq1+vWNo1GoyeYoz/8ZSexWExer1ehUMj6t4rH4/J6vQoGg8pkMvJ6vYpGo9a/W38Qh/lsmuVmWxNasFvIyWE1m01ls1lls1ltbGzoofMP6cqfX1Hzw83BIRuH8Y9fbgexU3DGXoEa3zlgnb22ee0tvN5R+TupXWnrzW9+s86ePavR0VGNjo5qbGzMGjqdzn3tynxXm+9w891uPtPFYlG5XE6lUkmlUkmFQsH6/JvPfLVa1dbWlsrlsra2tqyfIRMyImlbkJKdz+eT0+mU2+2Wy+WS0+mUy+VSt9uVw+GQy+Wyzg0Oh0O1Wk0Oh0OtVmtbENJBDQr+sH8vmp8z+8+T/TxgtrGfC0zwjfmZlL75PW3ft/lZtp8nBn13AwAAAAAAAAAAAAAAAABwJ3B07X8pDgAAAAAAAAA6+qALUwRt5HI5a9weUNFsNlUul61l9rCLarVqFUH3B2cUCgV1Oh1JskIGjooJAjBMUbLUW8A8KCjAFDUP2lbqLZqWthct9wdl9IdP2AujB/W1PwBjUB8HhWHgZKvVasrlctbPaf/4XtP28c3NTevnajfms+f3+xWPxweO73de//L+n4th6Xa72tjYsII5TEjH+vp6T2CHGV9bW+sJ7JFk/Sx1/6wrfe8wjuLe5PrvXYr9t5j8Xr82Nzet85ddLBbT+Pj4wKCPQfPGxsaOPPzFKJVK2traUqlUUqVSsYJxzHkul8upVqupXC6rVCopn8+rXC5bLZ/Pq1QqWdP9n0M7E6oRCoUUCoWsab/fb/0MmlCNYDCobrcrr9crn8+ndrstv98vp9NpnWPNud0eWGXO4/brBfs525zz7dcWB2U/nw0KD7GfH815bVCgiD08xJyD7efOQYEiewWYAAAAAAAAAAAAAAAAAAAwCGEeAAAAAAAAwDGxF7Hagy5MYIU9oGKndU1BrH1de3iFCdqwB2vYAzLs69oLcSWpWCyq3W4f2fHaC13tRbGSFIlE5HK5JPUW4PaHT9jDLuxFuf2hFKb4VtoecGEP1LCHZdgLeqXeUAtTuAsclWKxqGKxqFKppFKppGKxqFwu1zNdKpVUKBRUKBR65pn51Wp110J485mORqMKBoMKBoOKRCIKh8MKBoMKBAKKx+PWMvu6JmTD/PyEQiF5vd7bFmZwHOxhJrlcTsvLy1paWtpxXjabtb5rDfO+mDY5Oal0Or3jvGQyqe//oe/XXz7/l2p+vSkNP6Pk7vdfJf0T6a//+q/1Hd/xHZK2/9vv1sxnYKdgG/tnYNC//6CWTqePPSTJnN/7j/0gQT/2eYP0/zz0h/Ts1sbGxradV+19Nq+527zDbHOYeYdhDy8y1zQHnXdU++EaBgAAAAAAAAAAAAAAAABOBsI8AAAAAAAAcFewF2GaUAp7oEWj0VClUpHU+7R4s679afL2dc3T5iWpUCio0+n0rFuv11WtVretawI6+gMzDsNelGmeLG8PvbCHV9jDKsy69iCNow66sD/N3v6awN1ia2tL+XzeCtkw4yaIoz9wI5/PbwvoMN9Dg4TDYStwIxwOKxqNKhaLWdORSGTfAR3m5/dutLW1pc3NzR2DGPrnLS4ubgtm2ClwYKeAjkwmc6iC+IsXL+rhRx5W+zfb0s8e1TuAgRqS53UevSb0Gn3pC1+65d3tFQIy6PM2KARGuvl522/4RzweVyaTOTHhOVtbWz3fd2Y8l8sNnN8/z1wj9QsEAtZ3nH0YjUYVj8cHzo/FYhodHdXo6OixBFSY60J7EJoJSrNf05lrPvs1obm+tF9/2sPZzLWh/drRXFvarz3N69mD2w7DXJPZr/1MSJr9+s0EotmvF821nj08zZxn7NeI5vrQrG/fb/8yAAAAAAAAAAAAAAAAALjXEOYBAAAAAACAAzMFjKbw0F7IaIoSTUGjWcde2GgKJe0BHLlcTpJ6Chfty01ho30/9kLLwzIFjNI3iw7thYj2J56bAkjpmyEY9nXNE9Lt69qLIO3Fj/Z1I5GIXC5Xz7r9oRsADmc/hef5fL6n2ef3B0IY8Xi8J4QjEokoEolYQRz2ZaYw3b5uOBzuCdO519RqtYHBCDsFJqysrKj/vzN2C0sYND+dTluhRLfbr/zKr+j9v/Z+df6+I33Lsbzkvel9kv8/+vX0//e0zp8/P7RuDAoB2enzbdra2pra7XbPfnYKnNnt8z0+Pn4ig3x2CkYx4Ra7haZsbm4O/O7d7/vT/17dDd+15XJZzWZzYKCI/dp40LX1oEARe3jIbgEm9utyM88eRnIQ9mtmEzRiroftQSLmuthcg++2zB5uZ669fT6fAoFAz3W1ud43ywAAAAAAAAAAAAAAAADgOBDmAQAAAAAAcAc5SECGvSDPFPOZIjxT1Gcv0DPFfaZY0BTq2YsGTVDHQdgL8ExYhnmyt72gzhTn2Yvy7IEWZhvpmwWA9nXt+7Kva17T3g97QAeAk63Vamlzc7OnyHvQuD2IwwzNd18/n89nBWxEo1HFYrGeZp9vH9rH8U32wvxBAQb98/YKMRgUxNE/L5VKyeVyDemI99Zut/XGb3+jvrr4VTWfakoTw+7RXeiTkt4lPfHRJ/Tud7972L05lL1+dga1nYJt9hP8YW/JZNIKKDuJKpWK9T2+ubm5a9vY2LDGzXWt3cjIiEZHRwe2sbGxHZcRqrY/5t6jfziMZQdl7gn6h8e1zB7uBwAAAAAAAAAAAAAAAODuQ5gHAAAAAADAPh2kmOyo1rEvO0yQxq0Wnd3qOvZQDQD3tnw+3xPAsZ+Ajp0Ks71er1WQPjo6qng83hPEYYbxeHxgGAeFszuzhwvsJ6BjY2NDjUajZx+DggV2C+gYHx+/K88Vq6uret0bX6d5z7yaf9eUxofdo7vIn0uOdzr0+L95XB/6jQ8NuzfHLpfL7Sv4w/6zOijsYL8/q/Y2MTEhp9M5hKPen2azuWf4x6AgkEKhsG1fPp9vx6CPRCKhZDKp8fFxq6VSKSs4DsNxkPutg66/32UmIPGghhUoYl9mQhABAAAAAAAAAAAAAAAAHA3CPAAAAAAAwB3FFEflcjl1u11rOp/Pq9PpqFAoqN1uq1gsWsNWq6VSqaRms6lyuaxGo6FKpWIN6/W6qtWqtdzsT5JKpZJardaB+uhwOBSLxSRJkUhELpfLKpTyeDwKhUI964TDYbndbmsdt9utcDgsSYrH45KkUCgkj8djFVu5XC6rWNAUXZngDJ/Pp0AgcCTvNwD0K5VK2tjYUDab1cbGxsBmiqTtoRz9v4p2OBzbAjn2Ox4KhYZ09HeenYr+BwV0LC0tWec/u3g8PrC4f1DRfyaTsc5vkBYWFvTaN7xWq5FVNf+yKU0Pu0d3gU9Izh916qd+4qf0kQ9/hMLzfRoU1LPX98KgsB7pmyEgewV/9H9fnGTtdvtAISDr6+taX19XuVzu2Y/X69X4+LgSicS2wI9EIqFUKtUTADI+Ps5n+C51XOEhuy0z98QHdRKCRcx9NAAAAAAAAAAAAAAAAHAnI8wDAAAAAAAcWj6fV6vVUrFYtAIxTAFRfzFRtVpVvV7vCdFoNBoql8tqNptWaIYZmsKjQqFghXR0Op199csEZZih0+lUNBq1AjDM0IRmmICN/QRkmH1JUjQaldPpVCAQkM/nk9frVTAYvG3vNwAcpW63u2MYx25hHf2F3R6PR2NjYz3NBG/sFcyBgzHF+IOCOAbNW11d3Xbu3K0If9C8iYkJOZ3OIR3x3eH69ev6zrd8p66uX1Xzz5rS64bdoztUR9L/LOnXpccff1wf+o0PEYJwDHYLARn0vZPL5bS+vr4tDM989+w3+COdTmtsbEw+n29IR74/W1tbPeFVe30/r62tbQtX8Pv9275/d/qOnpqaktfrHdLR4k5k7sdN0KX0zZAPc79u7rf3Wmbu1c29vz0E09zXm3v9QcsOyoR79N+v24MxzT25Ccg09+Y7bSt9MzDTbGuCM822hGMCAAAAAAAAAAAAAADgqBDmAQAAAADAXcgepJHL5QY+qXe/6+y07CDhGjs9cfd2DEdHR+X3+2/zOwwAJ48pEs5ms1pfX7faoECOzc1NbWxsqP/Xw4FAwArkGB8f1/j4+LaQjv7lpjASB9NfIL9XAfh+iuP3CuhIJpNyu91DOuJ7W6lU0g/+8x/UX/3nv1LnVzvSv5HkGnav7iALkuvHXXJ+wanf+4+/p/e85z3D7hH2sJ/vuP62WwDRfsI/zHQikZDH4xnSke+u1WpZ5+lsNqvV1VVls1mrra2tWedy0/rDP8wxJhIJ61ycSqWs8fHxcaXTaaVSKSWTSblcfNngZDBBH9LN61ZJVshns9lUuVyWdDM0tNvtWoGg5vcQZh17MInZj/n9hAkOMdua4BH7/vfLBIHYAz33GwSy27YmYNRsa36XYbY1oaMAAAAAAAAAAAAAAAC48xHmAQAAAADAMTHFI5VKRfV6Xfl83iosKRaLajQaKhaLVqGKKULJ5/NqtVoqFovW+qYwpVgsqtVqKZ/PH6g4xRSLmKfXxuNxq2DEBGMEg0F5vV5Fo1G53W5Fo1F5vV4Fg0GrUCUSicjtdisWi1nFKmYdMwQAHE5/OIe9wHfQdP8Tz6PRqBKJRE8Yh73ZwzpMSMfIyMiQjvbOtrW1pc3NzW2F6TsFdCwuLqper/fsY6eC9Z0COjKZjHw+35COGIfR6XT0wQ9+UL/8/l+W41GHmn/clM4Nu1d3gD+W3I+7NZWc0qc+9ik99thjw+4RbqNarbav4I/+79V+B/lONS2VSp3I4AsTjNL/vgyaHnR+icfj1jGb47e/D2Z8YmJCTqdzSEcJHB8TUGofP+jwVrfdL/P7Gfv4QYeH2daMAwAAAAAAAAAAAAAA4NYQ5gEAAAAAwMtMYUU+n1ej0VC5XFa5XFaj0VA+n7eKL0yoRqlUskI1crmc9ZTZUqmkRqOhQqFg7dM8JXY3DodDsVhs18CM/sAN8yRXsywSiVhPczWBGoMCNwAAx+8gxbgLCwtqNBo925vC5P5C5EHTU1NT8nq9QzrSO18+n7eCUkxbW1vT+vp6z7zV1VVls1nrKfOG2+22AlPMMJFIWOEq9vnJZFLj4+MEYN1DnnvuOb3rPe/Ss888q85PdaT3S4oNu1cn0Nck9791q/1kWz/xEz+h3/zN3+TnBAOZ8+t+gz+Wlpa0ubm5LfRC6g0B2S34w97S6bQcDscQjnywYrGo5eVlra2taXl5WSsrK1pbW9PS0tK2ea1Wy9rO5/MpmUxqcnJSyWTSCvhIJpPKZDJKJpOamJjQxMSEAoHAEI8QuPMNK0Qkn8/roH8echzhIYO2jcViJ+q7FQAAAAAAAAAAAAAA4DAI8wAAAAAA3FGKxaJqtZoqlYry+bxqtZpVvGXG7cEbhUJBjUZDpVJJlUpFjUZDuVxO9Xpd1WpVpVJJ9XpdxWJxz9c2IRuhUEg+n0/RaNQqMohGo/J6vQqHw1aIRjwet4I1wuGwFcxhChVMcEcoFLJCOQAAd5b19XWtra1pdXXVKpxdWVnRysqK1tfXtbi4qGw2q/X1dTWbzZ5to9GoUqlUT9BDKpVSIpGw5tmnCec4nFarNTCAY7d5/f9WoVBIiUTCCt4wLZlMWv8+JpxjfHxco6OjQzpa3CmazaZ+53d+R7/8v/6yqo6qmv9LU/pJSSPD7tkJcEVy/junOp/q6DWve41++z/8th577LFh9wp3ob1CQPrDtnK53MBzhHSz+Hy/4R/xeFyZTEax2PBTfGq1mnWc9uPtn7e6utoTTtkfMGY/dvu86elp7nOBE+i4wkP65xWLRbXb7QP19bhDRMwwEonI5XId4bsOAAAAAAAAAAAAAADuRYR5AAAAAABui3K5rFqtplKppFKppFqtpnK5rEKhoFqtpmq1ui2Mo1qtWgEclUpFtVpNxWKxZ/vdmOCMWPkfzPMAACAASURBVCwmn8+nYDCocDgsr9eraDRq/VF+NBqVz+dTKBRSMBiUz+eztgkEAopEIvJ6vYpEIgoEAtZynggKAPeGfD6v5eVlra+va3l5WaurqwPDOtbW1noKej0ej5LJpFKplNLptBKJhCYnJ62gDhPOYYI6COc4nP7i60HF1vZ5a2tr24oGdyq6HjRvampK0Wh0SEeLu10+n9cHPvAB/dZv/5YUlpo/05R+RtL4sHs2BH8vuT7kUuczHZ2+77Q+9IEP6R3veMewewVsMygEZNC5yN52OhftJ/jDfm4aVrhXo9HQ2tqadV20srJiXReZsA9zrVSpVHq2TSaTSiaTSqfTmpiYUDKZ1OTkpDVMp9Oanp5WKBQ69uMCcPyq1arq9boV8tFoNFSpVNRut1UsFtXtdpXP5yVJhUJBnU5HpVJJrVZr27bNZlPlctnaVpJyuVzPtuVyWc1m09r2IMzvBM3vCz0ej0KhkFwulyKRiCQpHo9LuhnU6HQ6rbDenbZ1Op3WvYXZ1vzOsX8IAAAAAAAAAAAAAADufIR5AAAAAACUy+VULpdVqVRULpeVz+d7wjiKxaJqtZoqlcq2MA4TwGEfLxQKu76e1+tVMBhUNBpVIBDQyMiI4vG4RkZGNDIyolgsZs2PRqMKBoMKBAIKh8MKh8MaGRlRKBRSJBLRyMiItS+n03lM7xgA4E5jCm93e+p8LpfTwsKCVQhmxOPxbU+bH/Q0+lQqxdObD2HQv81OxdFLS0tWcZ/h8/k0Ojq6ZyiHmZdMJuV2u4d0tMBgq6ur+shHPqIP/+6HVa6V1fn+jrrv6Uqvl3Q313IWJf2J5PlDj5pfbupbXvMt+sX3/aLe8Y538H2Ku449BGSv8A/TVlZW1P9fubuFgAw6/8Xj8WM99/Wf13e69lpYWFCj0eg5rv5rq/7hqVOnCP0AcMtqtZoVCGIf7rZsr+F+tq1UKj3fe/vh9/utcOLjGBIkAgAAAAAAAAAAAADA0SLMAwAAAADuQPY/BjdFPoedHvSEYDtTKGT+sPsw4/bp0dFR+f3+Y3y3AAB3s2q1qsXFRa2srGh+fl6rq6uan5/XysqKFhYWtLKyosXFRVWr1Z7tksmkEomEJiYmrKfEm0AO+xPjk8kkYVEHZEI3ditYNvOy2ayazWbP9vbrh91COcx0Op2m4Ax3jUqloieeeEK/+we/q2/8wzfknfWq8e6G9D9IemjYvTsiNUn/r+T4pEOOP3PI1XXp7d/7dv3MT/+M3vCGNwy7d8CJ039e3a2Z86spLLcbFAKyU/iHaRMTE7f1Omhtbc26hjPXbsvLy1pcXNTi4qKWl5e1urraE2iSTCY1MTGhqakppdNpazg5OalMJqN0Oq2JiQmuDQCcSK1WS6VSSZ1OR4VCwRp2u13l8/lbHko3zxuDhvsViUTkcrmObBgOh+V2u/ccAgAAAAAAAAAAAABwNyLMAwAAAACOQbVaVblcVrlcVi6XU6VSUblcVqVSUS6Xs8bL5bLy+by1brlcVqFQUKlUstYpFAo7vo75A+hYLKZgMKhQKKRQKKRYLGaNB4NBxeNxa3zQ8lgsxh9SAwCGqtFo9ARymOLOpaUlqy0uLvacF91ut1KplDKZjCYmJjQ9Pa1UKqXp6WklEgmruDORSMjj8Qzx6O4c9iCw3UI5zPTq6qo6nU7PPvx+/7Zi4Z1COqampuT1eod0tMDJ8swzz+ijH/2oPvbJj2ljZUPeM1413tqQvkfS6ySNDLuHB7Ao6T9Lrr90SX8jdaod/aPH/pF+/Ed+XD/wAz+gWCw27B4CdxX7+Xuv4A8zvbGxoUajsW1fJgRkr+APezvqoK1cLqe5uTktLS1Z/e4frqysWKEfHo9H4+Pjmpyc1OzsrBX2YYazs7OamZnhdx4A7ikmHNo+fruHJmhkv/x+vxUIfRxDEzgCAAAAAAAAAAAAAMDtQpgHAAAAAOxhUBGM+aPkQQUx/ct2KogxTGGM+UNiU/xymOlYLMbTZwEAJ555wvxOxZjLy8u6fv262u22tY0pDLUXYvYPKcrcW61W21coRy6X08LCgorFYs/29muP3UI5zLxUKkVxFHCLOp2OvvKVr+izn/2sPv2Xn9aLz70op9cp12tcar6hKb1e0qOSxofd05e1JV2R9GXJ8QWHPE951LjakMfv0Zve9Ca9/a1v11ve8hZlMplh9xRAn91CQAZdK+RyOa2vr6vVavXsp/96Ya82OTmpTCYjn8936L5Xq1UrBO7GjRtaXFzU4uKirl+/bo2vrKxY67vdbqXTac3MzCiTySiTyWhmZkZTU1PW+MTEBNcxAHCLTKBHoVBQp9O55WGxWFS73d5zuF/BYFBer9camoBrE/Rhft8ej8fldDoVjUatQG2Px6NQKCSfz6dAIGCFhAQCAfl8vh33CQAAAAAAAAAAAAC4dxDmAQAAAOCu1Gw2VSwWVSgUlM/nVSqVVCwWe1oul7PG7cvz+bwKhYKKxaKazebA/QcCAUUiEavFYjFFo1FFIhGFw2FrfjQaVSwWUygUUigUUjAYVDwet8aDweAxvzMAANw+jUZDS0tLWlhYsAonzfjKyooWFha0trbWU/AZi8U0OTlptUwmo3Q6rUwmo4mJCU1PTyuVSsnr9Q7xyE6mZrOpbDar9fV1ra+va3V1VdlsVtlsVmtra1pbW7OmTev/dfDo6KgSiYTGx8etlkqleqYTiYSSyaTGx8cVCASGdLQAjBs3bujJJ5/UF7/4Rf3tU3+rly69JEnyTnrVfqSt9sNt6UFJs5LOSJqUdDvy/rYkvfRyuyrpWcn7da/a32irXW3L6/fq0cce1be/4dv1hje8Qa997Wu5/wHuUv0hIDsFf9jb6uqqOp1Oz372EwLSHySWSCTk8Xj21c9Go2Fdn87Pz1vjJvzDhIGY6yWXy6WJiQkr8GNqakqnT5/W9PS0ZmZmrOtUAMDJs1fYR6lUUqvV2jY0oSH5fN4amu3Meo1GQ5VKRfV6XdVqVbVaTVtbW/vuWywWk9PptIa3EhASjUZ79jVonwAAAAAAAAAAAACA4SHMAwAAAMCJ02g0rECNfD5vtVwup3w+vy2Uo1Qq9QRzFItF1Wq1gfv2+XxW2EY8Hu8J5DBBHPZgjv4Wj8etP5QFAOBe0m63tby8rBs3bmhhYcEqfJyfn7cKIu3Fjx6Px3ra+fT0tBXMMTExoampKWs4MjIy5CM7ORqNhhXOsbq6qvX1dSuEw0ybeWtra8rlcj3bu93ungCO3UI5TOOaBrjzra2t6emnn9bTTz+trz/zdX3tma/ppcsvqVm/GUzo9DnlOe1RN9lVc6yp7lhXSkqKSgpI8r28o5huhn5sSTK3U6WXxzduNteGS66sS5qXGssNqw+RsYhe+dAr9a2PfKsefvhhPfLII3rlK18pn88nANhJrVbbV/BHf1BIv51CQPqDP+wtlUrJ5XJt21ez2dTS0pJ1jbu4uKj5+fmea157H/x+v3W9Oz09rVOnTmlmZsaaNzMzw/UuANxDTLDHoGEul9tx2WGG+Xx+W2DnTkwoyEGG8Xj8wNuMjIwoEokMPMcCAAAAAAAAAAAAwL2IMA8AAAAAR86EcdhboVCwwjgGLbNPV6vVgfuNx+OKxWIDQzZMAIcJ6jAtGo32bEMxGQAAg+VyOc3NzWlpaUnLy8vbxm/cuKFWq2WtH4/HNTs7q3Q6rcnJyW3jMzMz93xQRL1e18bGxq5PqbfPG/SE+ng83lOE2l+Uap/eqSgVwL2n2+1qcXFRL730ktWy2aw2Nja0urGqlfUVFQoFbdW2VN+qS5Iq+Yq63a48Po98gZv3TeFoWD6fT+Nj40qNpZQYS2hsbEyZTEZnzpzR6dOndebMGUWj0WEeLoB7yNbWljY3N/cd/LG0tKTNzU3V6/Vt+7KHgOwW/GFvExMTarVaymaz1nVy/3XzlStXVCgUrNcx13PmOrn/uvnUqVNcwwEADiWXy6nb7Sqfz6vdbqtYLKrVaqlUKqnRaKhSqaher6tarVohIJVKRY1GQ+VyWc1mU8ViUe12W4VCQZ1OZ9d97lcoFJLH47GC0aPRqJxOp2KxWM8wGo3K7XYrHA7L6/UqGAzK5/MpEAhYASGBQEA+n8/aZywWk8vlUjQalcfjUSgUuo3vMAAAAAAAAAAAAADcGsI8AAAAAAxknhR3kGaeCreysjLwiXA7PSnVNPsT3/pbMpm85wuCAQA4rLW1NS0sLGhhYUHXr1+3njJuxpeWltRoNCRJDodDExMTmp6eViaTsZ4qPjU1pampKc3MzCidTt+T5+X+4tH+cI7+6UHXRIRzADipPv7xj+vHfuzHBha8A8Cdbq/fcw0KXctms2o2m9v25ff79wz/cLvdqtfrqlQqqlarymazunHjhubn53X9+nUtLy9bIW4+n08zMzM6deqUTp8+bQ1NYFI6nZbT6TzutwwAgIFMKMhBhvb/PzrI0ASN7Iff77f+j8n+f039825lHRMsAgAAAAAAAAAAAAD7RZgHAAAAcJdqtVrK5XLa3NzsaYPm5fP5nlar1bbtz+FwKBaLKR6PKxaLKRqNKhaLbWu7zQcAALdHLpcb+FTwubk5vfjiiyoWi9a6/U8G7x8/ffq0gsHgEI/m+NxqOIfP59Po6OiuT3S3z5uYmKAQE8CJRZgHAGw3KARkUPCHva2trW0rPO4Pr43FYvJ6vXK5XGq321bwR6lUUjab1fLyshUk4vV6e8I+TODHmTNndPr0aU1OTnKNCQC4a5XLZTWbTRWLRbVaLeXzebVaLZVKJdXrdVWrVVWrVdXrdZVKJev/xtrttorFohqNhiqVihUQYvZXKBTUarVUKBTUbDZVLpf31R+Px6NQKGSFfQSDQXm9XkUiEbndbsViMbndboXDYfl8PgUCASsEJBwO96wTiUTk9XoVDAat4JBQKCSPx6NoNMr5HQAAAAAAAAAAALgLEOYBAAAAnHC1Wm3HEI5B80yzF+0apuDU3uxFBLsFcxDGAQDA8KysrOjatWu6fv26rl27tm3cBHG53W5lMpltBX6nTp3S9PS0pqam5Pf7h3w0t4+92HJQkeWgsA67/iLL/nCO/ul0Oi2HwzGkowWAo0WYBwAcnb2uSwe1/uA46WaQRyAQkNfrlcPhUKfT0dbWlqrVqhUY4na7lUqlND09rdOnT+uBBx7Q7Oyszpw5o1OnTimTyVAMDADAPpnQD/swl8ttm3eYdcxwc3Nz3/ddJjRkt2E8Hr/ldQgPAQAAAAAAAAAAAG4PwjwAAACAYzLoSZ57teXlZeVyuW376i803W+j4BQAgJMpl8tpbm5Oc3NzWlpa0vLysjV9+fJllUola914PK7Z2dmBbWZmRm63e4hHcrR2K4IcNN1/3UQ4BwDsH2EeADB8uVxuX8EfuVxOi4uLWlpaUqPR2HWfDodDIyMjisfjmpiY0OTkpGZmZnT27Fm94hWv0PT0tLWMIl4AAI5Hs9lUuVy2Aj4qlYoajYaKxaLa7bZyuZxarZZKpZLq9bqq1aqq1arq9bpKpZJarZby+bza7bYKhYIajYYqlYoVGlIul9VsNlUoFNTpdPbVp2g0KpfLpVgsJo/Ho1AoZIV9BINBeb1eRSIRuVwuxeNxuVwuRSIR+Xw+BQIBBQIB+Xw+hcNheTwexWIxeb1eBYNBaxmhIQAAAAAAAAAAALjXEOYBAAAAHEIul9P6+rqy2aw2Njas4dra2rZ5m5ub1h/d2TkcDsXjcY2Ojva0/czzeDxDOnIAAHAYy8vLunbtmtWuX7/eM9za2pIkeTweTU1N6dSpUzp9+vS2lslk7uiwjoOEcywuLqpQKPRsf9BwjsnJySEdKQDceQjzAIA706AA4c3NTV2/fl3Xr1/XwsKCVldXtb6+rnw+r3q9rna7PXBfbrdbwWBQqVRKU1NTmpyctH43SXgwAAB3LhPysdswl8vd8jr7DQ8xISH2YTwe39e8/SwbHx+X1+s9hncWAAAAAAAAAAAA2B1hHgAAALjnlcvlniAOexhHNpsdGNrRH8wRDAY1Pj6uRCKh8fFxjY+Pa2xsTGNjY7uGcgAAgLtDq9XSjRs3NDc3t61dvnxZpVJJ0s2wjvHxcU1OTmp2dnZbm5mZuaPCOkqlklZWVqzrpWw2q5WVlZ5rKFM4mM1mrdASIxQKKZFIKJVKWddQZtpcV9mXBwKBIR0pANz9CPMAgHtHo9HQlStX9Oyzz+r555/XlStXdO3aNS0uLmplZcW6bnc4HPL5fHK5XOp2u9ra2tpWoNsfuLdXm5ycVCaTkc/nG8ahAwCA2+ygYSC7BYTstCyXy+2rL7cSDLKf9cPh8B31u1wAAAAAAAAAAAAcP8I8AAAAcFep1+va2NjY9jTK/ie97/bEd0nWUyV3e/K7aZlMRrFYbAhHCwAAjlOtVtPVq1d19epVXblyxRq/evWqrl+/boV9jY6O6uzZs9va6dOnlclk5HK5hnwkO9va2tLm5ubAa6j+66mFhQUVi8We7e2FfP3XTv3TU1NTikajQzpSAEA/wjwAAEYulxsYVDg3N6cbN25Y9z7hcFiJREKRSETBYFA+n09Op1OdTkf1et26d1hdXT1UCEj/PUQikZDH4xnGWwIAAE6Yg4R/HCZIZHNzc9/3x7crLMTMi0ajcjqdt/kdBQAAAAAAAAAAwO1AmAcAAABOtFarpfX1da2trWl5eVlra2taX1+3xrPZrDY2Nqzxcrncs73L5dLY2JjGx8etoXnCuxk38828cDg8pKMFAADDtlvR2rVr16wCtHg8rtnZ2W3twoULSqfTQz6KbzLXUuZ6anV1VdlsVuvr61pZWdm2rP9aamRkRIlEQhMTE0okElabmJiwrp9SqZSSyaTGx8fl9/uHdKQAgFtFmAcAYD8ajYZu3Lihubk5XblypafNzc1Z55FoNKr77rvPajMzM4rFYvL7/XI4HNtClwe15eXlba+/UwjITkHM8XhcqVTqRIcqAgCAk+t2hYWYZaVSyQpK282g0I+jCgvx+/0aHR3ld7sAAAAAAAAAAAC3AWEeAAAAOHZbW1tWOIc9qGPQ+Pr6es+2fr9fiURC6XTaKhrdKZzDjAMAANjtFNjx3HPPWcVibrdbMzMzAwM7zp07N9Twr1qtpuXlZS0tLfUUuQ2aXltbU7vd7tk+Ho/3FLnZi976C+DS6bQcDseQjhQAcJwI8wAAHIVcLqfnnntOFy9e7LnfunTpkhUe6PP5lMlkNDs7qwcffFAXLlyw7rdOnz5tPXl+a2tLm5ub+w7+WFpa0ubm5sBzWX8IyG7hH6ZNTExYfQEAALidbldYiJlXKBSsoOrdHCQkZL8hImZeJBIhYA0AAAAAAAAAANxzCPMAAADAkTB/FGQvJN1pfGVlRfbLUPNHPDsVktrHKSgFAAD7sb6+rhdeeEGXLl3S5cuXdfnyZV29elVXr15VrVaTJI2MjOjs2bM6e/as7rvvPmv87NmzOnXqlNxu97H0ddB11E7T8/PzajabPdv7/f5thWg7XUvxRGoAwE4I8wAA3E7dblcLCwu6evWqrly5sq1VKhVJN+/T7rvvPt1///26//77de7cOZ0/f17nzp1TIpHY12uZe6y9gj/s87LZ7LZ7LWnw/dZuLZPJKBaLHel7BwAAcBQKhYKazaaKxaLq9bqq1arK5bKazaZyuZwajYYqlYrK5bLq9boKhYIVCGK2KZVKqlarqtfryufzqtfr1jaDrqX6RSIReb1eRSIRBQIB+Xw+xWIxeb1ehUIhhUIheb1exWIx+Xw+BQKBnm1MQIh9m2AwaO0HAAAAAAAAAADgpCHMAwAAADuqVCpaWFjQ6uqq9WT39fV1LS8vbxs3RbHG2NiYksmkEomE0un0tvFkMqmJiQklk0kFAoEhHSEAALiTNRoNvfjii1Zgx6VLl6wAj1wuJ0kKBoNW4Zc9rOO+++7T5OTkbelX/9Ojdwo4y+VyWlxcVKFQ6Nl+UNDZTtPT09PyeDy35TgAAPcWwjwAAMO0vLysF198sSfgwwQzmt89x+NxnTt3rifgwwR+HMXvmHcKARkU/mHa2tqa2u12z37MPd1ezX6PNz4+Lq/Xe8vHAAAAMEy1Ws0KAMnlctb4rcwz46VSSa1Wa88++P1+K/QjHo8PHN/vvP7lsViMB48AAAAAAAAAAIADIcwDAADgHlSv17WxsWH9EfJuQ7t4PD7wCe/941NTU/zhMQAAODK5XE5zc3N67rnndPHiRWv80qVLVtFUOp3WhQsXNDs7q9nZWT344IO6cOGCTp8+LafTeSR9sBdv7RbQsbKyIvuv3PoLuXa6jorH45qenlYkErnl/gIAcFCEeQAATqpcLtdzPzjonjAej1v3gfb7wvPnz8vtdt/W/tlDQHYL/rC3/vtGae8QkP77x3g8rmQyeduPDwAA4CQ5SADIYUJD9mIP/jjq0JBQKER4NwAAAAAAAAAAdxnCPAAAAO4i9XpdKysrWlxc1PLysjW0B3SYPyQ2nE6nUqmUJicnrT8Gto9nMhml02klk8kjKYQFAAAYpNFoaGFhYVtgxze+8Q0VCgVJks/n09mzZ63iLFOodf78eYVCoQO9Xq1W21ZktdP0oCct20PO9groSKfTPK0PAHDiEeYBALjTNBoNXblyRZcuXdKLL76oy5cv69KlS7p8+bLW1tYkSV6vV2fPntX58+d17tw53X///Tp37pxe8YpXKJFIDLX//aGRuzVzfzqowHRQCMig4A97S6VScrlcQzhqAACAk6vZbKpcLqtSqajRaCiXy6ler6tarapUKqnRaKhQKFiBIIVCQY1GQ6VSqWebRqOhSqXSs40JDdlLIBCQz+dTPB6X1+tVMBhUKBSSz+dTNBq1AkEikYh8Pp/C4bACgYD8fr9isVhPQIhZNxaLye/3KxAIHMO7CAAAAAAAAAAA7AjzAAAAuEOYP+xdXl7W3NxcT0CHGa6urqrT6VjbmOJRe0hH/3B6epqnuwAAgGOznycqp9PpbYEds7OzOnPmzI6hGDs9CXlQQMf8/LyazWbP9n6/f1ux004BHRQ9AQDuRoR5AADuJvl8XlevXu2577x48aIuX76sUqkk6ebvz/vvOx988EE98MADJ/aez37vu5/wj1wup42NDTUajW37MkWeewV/2BthlQAAALfGHgBSrVZVr9d7AkDK5bLq9XpPAEixWFS9Xu/ZJp/Pq16vW9tsbW2pWCzu+fomECQYDCoSicjv9ysUCikcDsvv9yscDisUCsnv9ysSiSgYDMrv9ysaje4ZGgIAAAAAAAAAALYjzAMAAGDIms2mFhYWND8/r+vXr2t+ft5qi4uLWllZ0erqquyXbePj45qYmFAmk9HExISmpqasYSqV0vT0tFKpFCEdAABgKLrdrq5du6bnnnuup126dEmVSkXSzaKpc+fO6YEHHrCekHz+/Hndf//98vl8qtfr2tjY2FdAx+LiogqFQk8fdipKGjRNuBkAAIR5AADuHfPz87p06ZKef/55Pf/883rhhRf0/PPPa2VlRZI0MjJi3auacA8z7fV6h9z7w9ktBKT/Htu09fV1tVqtbfsyoR77Cf+YnJxUJpORz+cbwlEDAADcm8y1nwkDuZVxM8xms9tC0vuZUA/z/zODxvdaPmg8Go3K6XQe07sHAAAAAAAAAMDRIswDAADgNstms7px40ZPWId9emVlRZ1OR5Lk9Xo1NTWl6elpzczMaHJy0mrpdFqZTEbpdJo/fAUAACfG/Py8Ll68qGeffVbPP/+8NSyXy5Kk6elpPfjgg3rooYc0PT2tsbExRSIRNRoNraysaH19XWtra9vGzZOSjZGRESvQLJFIWM1Mj4+PK5VKKZVKaXx8XH6/fxhvBwAAdyzCPAAA97pCoaArV65obm5Ozz33nC5evGgFU7bbbUlSOp3WhQsX9OCDD+rChQuanZ3Vww8/rGQyOeTe3x79ISA7BX/Y2+rqqvV/HoYpxtwr+MMeEpJIJAjeBAAAOGFOclDIYUJDCAoBAAAAAAAAANxuhHkAAADcgkajoYWFBS0tLWl5eVlzc3Oam5uzpl988UUVi0VrffPEusnJSc3Ozmp2drZn+tSpU3K5XEM8IgAAgMFyuVxPMdPFixf19a9/Xevr65KkUCikdDqtsbEx/f/s3Xl0G/W9//+Xd3lfYkuWnYTEZLUDieMEAjYJCSZQiKGnNGz3Fgo9pUApcAsUWr6/Xm7pRrmUtiy97YXyLbRsabmhMeUCJiHETshibAfiLICze7cl76vk3x8c6SvZsi0ntseOn49zPkczI83oPeMINKP5vD4REREKDg6W0+lUY2OjampqVFdXp+7ubvf2AgICvEI5rFarkpKSZDabvQI7zGazLBaLoqKijNp1AACmBMI8AADwraurSwcPHtTBgwe1f/9+7d+/XwcOHNDBgwfV0dEhSUpJSdGCBQu0YMECpaenu0Mtk5KSDK7eGK6Omv6Ef3gGhfQ3WAhI/+APz2Y2mxUcHGzAXgMAAOB0TJagEH9DQ+Li4hQQEDBORw8AAAAAAAAAMFER5gEAADAEm83mFc7RP6zjyJEj7hHmwsLClJqaOmhYx7x58xQdHW3wHgEAAAyturpaH330kUpLS7V3714dOnRIx48fdweUhYSEKCwsTE6nU52dnV6j7YaFhSkhIcFn55r+0zNmzGCEXQAAJhDCPAAAGBmn06mjR4/qwIEDKi8v14EDB9zTjY2NkqSkpCQtWrTIHe6RkZGhjIwMJSQkGFz9xNPZ2anGxka/gz8qKyvV2Njo87tL/xCQocI/XC05OZlR2QEAAM5AbW1t6uzsVFNTk9rb29XZ2Sm73e4O/fAMAbHb7ers7FR7e7uamprU2dmptrY2NTc3q7OzU62trWppaVFnZ6daWlqGfN+AgADFxcV5hXy4AkDi4uJkMpkUERGh2NhYmUwmRUZGKjY2VhEREQoPD1d8i2BL7wAAIABJREFUfLx7OjY2VlFRUQoPD+e+IwAAAAAAAACYZAjzAAAAU1pdXZ0OHz6sw4cPq6Kiwj195MgRHT9+3H0TaGBgoJKTk3XWWWdpxowZmjFjhmbOnOk1P1VH2AMAABNfR0fHgNFwDx8+rAMHDuj48eM6efKkGhoa1N7eLofD4bVuUFCQIiIiZLFYNHPmTKWmpg4a0kHHFwAAJi/CPAAAGD02m0379u1TeXm5+3Hv3r2qra2VJMXHxys9PV0ZGRnux8WLF/M7wylwjcI+XPCH57LBRmg3mUx+BX94hoTEx8cbsNcAAACYCFpbW9XZ2anm5mav0JBTDQpxrdve3j7k+8bExCgiIkIRERHuwBDXtGt5TEyMoqKiFBERoaioKMXGxrpfFx8f756OjY1VZGSkQkNDx+moAQAAAAAAAMDUQpgHAAA4o7W3tw8I6vCcb21tlSQFBwdrxowZmj17ttLS0jRr1ix3WIer0yojxwMAgInEZrO5O6N4dkzpP33ixAl1d3d7rRsQECDXJaHg4GAlJCRo+vTpmjlzphYtWqSlS5dq3rx5mj59umJjY43YPQAAMM4I8wAAYOy5Qj6Ki4vdQR979+51j+rtCvnIyspyB30sXryY0bfHwGAhIL7CP1yttrZ2QAiqa5R1f8M/rFarEhMT6SwJAACAIbkCQVzfWz2n+8/7M+2aH4rru214ePiIpgd7ju+9AAAAAAAAAECYBwAAOAPYbDZ9/vnnXu2zzz5TRUWFampq3K8zm81KS0vT7Nmz3c01P2PGDAUHBxu4FwAAYKrr7OxUY2PjsOEclZWVAzqPhIWFKSEhQdHR0YqKipIktbW1yWazqaGhQQ6HQ6GhoZo3b54yMzN1zjnnaNGiRUpPT9dZZ51l1C4DAIAJhDAPAACM0dfXp6NHj2rfvn1erby8XB0dHQoICNCsWbOUnp6uRYsWKSMjQ+eee64WLlxIxzgDeHaGHCr4w7NVV1er/605w4WAuII/PJclJSURPA8AAIDTcioBIEO9rq6uTr29vUO+50gCQPx5XUxMjIKCgsbpiAEAAAAAAADA6SHMAwAATAqNjY367LPPvMI6XNMNDQ2SpJCQEM2aNUtz5szRnDlzdPbZZ3uFd0RGRhq8FwAAYKrp6OgYNpjDswOIJ9dNaZ6dN1zTMTExCg4OVnNzsyoqKnTw4EHt379fFRUVkrxH8nWN5rto0SKFhYUZcRgAAMAkQJgHAAATi9Pp1OHDh/Xpp5+qvLzc/VheXq7u7m6FhIRowYIFOuecc3Tuuee6W2pqqtGlwwebzeZX8IerVVZWym63D9iOrxAQX8Efns1isdDZEQAAAGOmo6PDr3CQkQSF2O32AYF4nkwm04gCQIabTkhIkMlkGsejBgAAAAAAAGCqIMwDAABMGF1dXTp06JAOHjyogwcP6sCBAzp06JA+//xzNTY2SpJCQ0PdgR1z5851B3fMnTtXZ511loKDgw3eCwAAcKbz7HwxVFDHiRMn1N3d7bWuyWTyGc7Rf3r69OmKjY2VJLW2tqqsrEwlJSX6+OOPVVZWpk8//dTdcSc9PV3nnnuuFi9e7G5JSUlGHBoAADCJEeYBAMDk0Nvbq2PHjmnfvn0qLi5WeXm59u3bp/3796uvr0+xsbFatGiRMjIy3EGfmZmZBJ5PQp4dHYdqntekGhoaBlyPknyHxg7XrFarAgICDNhzAAAATHVOp1NNTU1qbW1VR0eHWlpa1NzcrI6ODrW1tclut6ujo0Pt7e2y2+1qb29Xe3u7mpub1draqvb2drW2tqq5udn93HABIaGhoYqMjFRcXJzCw8MVERGhuLg4RUREKCIiQjExMYqKilJERISioqIUExPjfs71usjISMXExCgmJkaRkZEKDw8fx6MGAAAAAAAAYCIizAMAAIy76upqHThwwCu04+DBgzp69KgcDoeCgoJ01llnaf78+VqwYIE7sGPOnDk666yzGD0MAACMKs+OEUOFc1RWVqq2tlYOh8O9blhYmBISEoYM5nDNz5w5c9jgMZvNpo8//tgd3FFSUqJDhw7J6XQqPj5emZmZyszMdId3pKenKyQkZKwPEQAAmAII8wAAYHJramrSJ5984g73KC4uVllZmVpbWyVJVqtVWVlZXiEfCxcuVGBgoMGVY7QNFQLieb3Ls9XV1am3t3fAtlyhHv6Ef6SkpCg1NVVhYWEG7DUAAADgH9f35c7OTq/vzp7z/ky75pubm71+P+7PFawXHh7unh5ufrDnzGYzA10BAAAAAAAAkwxhHgAAYEz09fXp6NGj2rdvn7u5QjuampokSbGxsZo3b54WLFigBQsWaN68eZo/f77mzZvHjX4AAOC0dHR0DBvM4Zq22Wxe6/oaqXSw6dMZodRms7k717iaaxTd+Ph4d8caV0tPT2c0VAAAMGYI8wAA4MzjdDr1xRdfaO/evdq7d68++eQTlZWV6fDhw+rr61N0dLTOOeccnXPOOVq8eLHOOeccnXvuuYqJiTG6dBigfwjIYMEfnq2mpkZOp9NrO56dDocK/vAMCUlMTFRoaKhBew4AAACcnqamJrW3t6utrU1NTU1qaWlRW1ubWltbvebb2tpkt9vV2trqnrfZbO7p1tZW2e12DXVrf2xsrCIjIxUZGamYmBjFxMQoMjJSUVFRXvORkZGKjY1VdHS0ez4uLk5RUVHu+fj4+HE8SgAAAAAAAMDURJgHAAA4bSdOnFB5ebl7xLdPP/1U+/fvV0tLiyRp5syZSk9P18KFC91hHQsWLJDVajW4cgAAMJnU1dWptrZWtbW1qqysVF1dnaqqqlRTU+O1rK6uTj09Pe71AgMDlZSUJLPZLIvFIovFoqSkJFksFiUnJ7ufc02bTKZRr726ulp79uxxt+LiYlVXV0uSZs+eraVLlyozM9Pd+J4EAADGG2EeAABMHS0tLTp06JA7ZLS8vFxlZWWqq6uTJFmtVq+A0YyMDKWlpRlcNSYqVwiIP+EfnkEh/Q0WAtI/+MOzMTI5AAAAzlSeYXudnZ2nPT8Uz+/i4eHhpzyfkJAwJr+1AwAAAAAAAJMZYR4AAMBvdrtdZWVlKisr0759+9zNbrdL+vLmzoyMDHdbtGiR0tPTFRsba3DlAABgorLZbKqurlZtba3PYI7q6mr3854BHSEhIUpKSlJycrKSk5NlNptltVplNpvdy12hHUlJSQoMDBy3fWpoaPAK7tizZ49OnDihgIAAzZkzR8uWLVNWVpYyMzO1dOlSxcXFjVttAAAAgyHMAwAAHDlyRGVlZSotLVVpaalKSkp09OhRSZLFYlFmZqaWLFniDiM9++yzx/WaC84cnZ2damxs9Dv4o7KyUo2NjT6/q/YPARkq/MPVkpOT+bcLAACAKcUV7jEawSBNTU1yOp2DvtdgYR+nEhQSFxengICAcTxSAAAAAAAAwOgizAMAAAzQ19enw4cPq7S01B3eUVZWpiNHjkiSpk2bpnPOOUfp6enux0WLFikhIcHYwgEAwITQfzROz1E5PaePHz+ulpYWr3Xj4+PdN9t73njvmnY9WiwWBQUFGbSH/09LS4vKyspUXFzsbvv371dfX9+AUWwvuOACJSYmGl0yAACAT4R5AAAAX5qamvTJJ5+4r3uUl5fr008/VVdXl6KiojR//nylp6d7XQMJDw83umycoTw7EQ4V/OG5rL6+3isk2MVkMvkV/OEZEhIfH2/AXgMAAAATz6mEgwz2XF1dnXp7ewd9r9MJA+m/7kS5zwAAAAAAAABTB2EeAABMcZ2dnfrkk0+8gjv27t2r5uZmBQYGas6cOVqyZImWLFmic889V4sXL9b06dONLhsAAIyz/gEdg4V1nDx5Uk1NTV7ret4Y7yugwzU9c+ZMBQcHG7SHw+vp6VFpaal27typnTt3avfu3Tp06JD6+vqUkpKiZcuWebWkpCSjSwYAAPAbYR4AAMBfPT09OnTokFe4aWlpqdra2hQcHKx58+YpKytLGRkZSk9PJ+AUhhssBMRX+Ier1dbWyuFweG3Hs2OgP+EfVqtViYmJCg0NNWjPAQAAgMmhqalJbW1tamtrU3Nzs5qbm93zTU1NamlpUWtrq9e863m73e5+rq2tTTabbcj3iouLU2RkpCIjIxUdHa3Y2FhFRkYqKipK0dHRiouLU3R0tHs+JiZGsbGxio6Odi+PjY1VbGysAgMDx+kIAQAAAAAAYLIizAMAgCnE4XDowIEDXjdXFhcXq7Oz0+foaUuWLFFUVJTRZQMAgDHS2dmpxsZGnwEdntOVlZWy2+1e6/YfuXKwsI4ZM2YoJCTEoD08PUePHtWOHTu0a9cu7dy5Ux9//LE6OzsVFxen888/X+edd547uCMlJcXocgEAAE4LYR4AAOB0OBwOHTp0SCUlJSotLVVJSYlKSkrU0NCggIAApaWlaenSpcrMzHRfT4mPjze6bGBIniEgQwV/eLbq6mr1vxVruBAQz2uqrpaUlDRpr6sCAAAARnMFe7S2tsput7vnW1pa3MEhra2tXvOuIBFXOIgrQKT/YCaeIiIi3AEfcXFxiomJcYeAeAaDeIaDxMfHu6ejoqIUExOjuLg4BQQEjOMRAgAAAAAAwHghzAMAgDNUX1+fDh06pD179mj37t3as2ePSkpK1N7ersjISGVmZmr58uVavny5li1bprPPPpukeAAAzgBdXV1qaGjwusF8sLCO/jeWDxbQ0T+sY/r06WfcaJKtra0qLS1VcXGxioqK9OGHH6qmpkZBQUGaP3++srKylJOTo+zsbC1cuJDvTQAA4IxDmAcAABgLx48f9wr4+Pjjj3Xs2DFJUlpamjvYwxU0Hxsba3DFwOmz2Wx+BX+4mq8wZcl3CIiv4A/PZrFYFBQUZMBeAwAAAGeujo4OdXZ2egX+2Wy2ES+rra2Vw+Hw+R4mk0nh4eEDzgP6LxvuNQQDAgAAAAAATCyEeQAAcIZoaWnRRx99pO3bt6uoqEi7du1SU1OTQkJCtHjxYndox/Lly5Wens5NXAAATCLd3d2qr68fEMbhK6zDV0BH/zAOX2EdM2fOVHR0tIF7OX76+vp08OBBbd++Xdu3b9fOnTtVXl4up9Op6dOn6/zzz9eKFSt0/vnnKysrSxEREUaXDAAAMOYI8wAAAOPFbrfr008/VXFxsbuVl5dLkqxWqzvYIysrS9nZ2UpISDC4YmDs9e/sN1jzvBbc0NCg7u7uAdvqf014sOAPz2a1WhkJHAAAABgHru/+/gSBjHUwyHBhIQSDAAAAAAAAnD7CPAAAmKSOHz+uwsJCd3jH3r175XA4NHv2bGVnZ2vFihVavny5Fi9erLCwMKPLBQAAPniO0OgrmMM1XVNTI6fT6V7P183YvsI6pk+fzmim+vJmmD179ri/N+3YsUP19fUKDw/XsmXLtGLFCnd4R2pqqtHlAgAAGIIwDwAAYKSqqirt2bPHHe6xZ88eVVdXS/IO+MjJydEFF1ygyMhIgysGJoahQkA8rzV7trq6OvX29g7YlivUw5/wj5SUFKWmpvI7NAAAAGCgkQSDDLWsqanJ654UT6cTDOK5zGw2Kzg4eJyPEAAAAAAAgPEI8wAAYJIoLy/X5s2btX37dhUWFur48eMKDg5WZmamLrzwQmVnZys7O1spKSlGlwoAwJTmK6DDV1hH/1FShgro8JxOTU1VXFycgXs48dXU1GjXrl0qLi5WUVGRCgsL1dnZqeTkZC1btkw5OTnKzs7W8uXLudkcAABMSX19fbriiit04sQJ97KWlhZVV1dr7ty57mUBAQG66667dNtttxlRJgAAmOIqKyvd4R7FxcXavXu3ampqFBQUpPnz57sDPrKysrR06VJFREQYXTIwafTvwDdY8Idn6x86LWlAR73Bgj88Q0ISExMVGhpq0J4DAAAA8GW8gkF8hX6MNBjEYrEoKChonI8QAAAAAADAqSHMAwCACer48eN6//333a2qqkoxMTHKzs7WBRdcoJycHJ133nmMPAYAwDjo6OgYEMbhK6zj2LFjXiMahoWFKSEhweuG5cHCOqxWqwICAgzcy8mpr69P5eXlKiwsVFFRkbZv364vvvhCQUFBysjIUHZ2tjv4bPbs2UaXCwAAMGHMmTNHX3zxxbCve/zxx3X//fePQ0UAAADDO3LkiIqLi7Vnzx7t2bNHxcXFstlsCg4OVkZGhpYvX64VK1bovPPOU3p6Op17gFHm6qznT/iHZ1BIf0OFgPQP/3A1RvIGAAAAJj6Hw6Hm5mbZ7Xa1traqpaVFra2tampqUlNTk3u+paVFTU1Nam5u9lpmt9vV0tKilpYWdXZ2Dvo+8fHxioqKUnR0tKKiohQTE6P4+HjFxMQMaLGxsYqLi1NsbKzX8qioqHE8MgAAAAAAYKoizAMAgAmipaVFO3fuVEFBgQoKClRcXKzg4GAtXrxYubm5ys3N1cqVKxmlCACAUdLY2Kjq6mrV1NSosrJSdXV1qqqqUk1NjWpra1VZWana2lrV1dV5BXSEhobKbDbLarXKYrHIbDYrJSVFSUlJSk5OVnJysvv52NhYA/fwzORwOHTgwAEVFRWpoKBAW7ZsUX19vSIjI7VkyRLl5OQoOztb2dnZSkhIMLpcAACACesnP/mJfvrTn6qnp2fQ1wQEBOjYsWOaPn36OFYGAAAwMl988YU73GPXrl0qLi5WW1uboqOjlZWVpfPPP9/dUlJSjC4XmHI6OzvV2Njod/BHZWWlGhsb1dXVNWBb/UNABgv+8GzJyckKDAw0YM8BAAAAnI6enh61trbKZrN5BX54hn64ljU3N8tms6m5uXlAa2pq8rn9wMBAd9CHrwCQwZ6LiYnxCgcJCQkZ5yMDAAAAAAAmE8I8AAAwUElJifLz87Vp0yYVFxcrICBAy5Yt0yWXXKI1a9YoOztbJpPJ6DIBAJg0uru7VV9f73XTb/9Hm82m48ePq6WlxWvd+Ph4902/rhuAPW8Edk1z4+/46unp0e7du/Xhhx9q27ZtKiwsVHNzs6ZNm6acnBytWrVKK1eu1JIlSxhpFQAAYAS++OILzZ07V4P9TBQYGKgVK1aoqKhonCsDAAA4Pa4w2OLiYhUXF6uoqEglJSVyOp2yWq3Kyspyt4suukhxcXFGlwzAh46ODr/DP1zz9fX1PgMLTSaTX8EfniEh8fHxBuw1AAAAgLHgeX7R2dnp83xjsOWu52w226Db7x886Grh4eF+PWc2mxUcHDyORwQAAAAAAIwXwjwAABhHHR0d2rJlizZt2qT8/HydOHFCqampuvLKK3XFFVfo4osvVmxsrNFlAgAw4TQ0NKi6ulo1NTWqrKxUbW2tTp48qdraWlVWVqqmpkbV1dVqaGjwWi8uLk5Wq1UWi0UpKSkym81KSUlRcnKykpOTZbVaZTabZTabDdoz9NfT06O9e/eqoKBAhYWF+vDDD9Xc3CyLxaLly5crJydHubm5yszMJFQFAADgNGVmZqqsrMxnoEdQUJCeeeYZfec73zGgMgAAgNHV2tqq0tJSd8DHtm3bdOTIEQUFBWn+/PnucI+cnByuOwGT3GCd7/oHf3i22tpaORwOr+0M1uFusPAPq9WqadOmKSwszKA9BwAAADDWTiUExPO5wQIIJe9zEH9DQDxbQkICgwcCAAAAADABEeYBAMAYa2xs1BtvvKFNmzapoKBAHR0dysrK0rp165SXl6fMzEwFBAQYXSYAAOOuq6tLDQ0NXjfR9n+02Ww6fvy4WlpavNaNj4+X1Wp13yDrOaKea3rGjBmKiYkxaO/gr66uLu3YsUNbtmzR5s2btWvXLnV3d+uss87SypUrtWrVKl100UWaN2+e0aUCAACccZ588kn94Ac/UG9v74DngoKCVFNTo2nTphlQGQAAwNirrKx0h3sUFRVp+/btam9vV1RUlBYvXuwO+Fi5cqVmzZpldLkAxphnB7uhgj88W3V19YBwxOFCQDx/z3C1pKQkhYSEGLTnAAAAAMaT69xjJCEg/Z+z2+0+g9ol3+ckIwkH4fwEAAAAAIDRRZgHAABjoK2tTW+++aZeeeUVvfvuuwoODlZubq7WrVundevWyWq1Gl0iAABjpqOjw2coR/9lNTU1cjqd7vVMJpPPUI7+jxaLRUFBQQbuIU5Hb2+vdu/e7Q7v2L59uzo6OjR79mytXr1aF198sVatWqWZM2caXSoAAMAZr6qqStOnT/f6Xi59GeRx6aWX6u233zaoMgAAgPHX09OjTz75RB999JF27dqlnTt36uDBg+rr69NZZ52lFStW6IILLtCFF16ozMxMBQcHG10ygAnAZrP5FfzhapWVlbLb7QO246tjna/gD8/G7yUAAADA1OUr7GOwEBBfyxsaGtTd3e1z267zk5GEgPR/Li4ujoEOAQAAAAAQYR4AAIwah8OhLVu26MUXX9TGjRvV3t6uFStW6KabbtINN9yg6Ohoo0sEAOCUdXV1qaGhwWcoh2dgx7Fjx9Ta2uq1bnx8vM9QDs8bUWfMmKGYmBiD9g5jraKiQgUFBSooKNB7770nu90ui8WilStXKjc3V9nZ2crIyDC6TAAAgClp1apVKiws9Ar0CAwM1EsvvaQbb7zRwMoAAACMZ7fb3cEeO3fu1I4dO9TY2KiIiAgtX75cOTk57oCP+Ph4o8sFMEkMNsJ2/+b5+8tgHe08O88NF/7halarlU51AAAAANTa2qrm5mY1NzerqalJzc3Nstvt7un+zWazDXh9W1ubz22HhIQoNjZWMTExio+PV0xMzIAWGxur+Ph4xcXFKTY21usxLi5OJpNpnI8IAAAAAACjjzAPAABOU3l5uZ599lm98sorstvtys7O1g033KD169crMTHR6PIAABhSa2urTpw4odraWp04cUI1NTWqrKxUdXW1+7G6ulqNjY1e67lu9rRYLEpJSZHZbFZKSoosFousVqusVqvMZrOSkpIM2jMY6cCBA3r//fe1efNmbd26VQ0NDUpMTNTFF1+s1atXa82aNVqwYIHRZQIAAEDSc889p9tvv10Oh8O9LCwsTPX19YqKijKwMgAAgImpoqJChYWFKioqUmFhofbv36++vj6lpaUpOztbOTk5ys7OVnp6Op3lAYyqoUJAPIM/PFtdXZ16e3sHbMv1O89wwR+ukJCUlBQ60gEAAAAYwOFwDAj68GxNTU2DBoQ0NTXJZrPJbrfLV7emsLCwAQEfQwWA9H8dgzACAAAAACYCwjwAADgFvb292rhxo5599ll98MEHSktL07e//W3dcMMNmjlzptHlAQBG2fbt25WSkqJZs2YZXYrf6uvr3cEcVVVV7uYZ0nHy5Em1t7e71wkODnaHclitViUnJ7sDOlyBHampqTKbzdywCS+tra3asmWL8vPz9e677+rIkSOKjIzUBRdcoNzcXOXm5iozM1OBgYFGlwoAAIB+bDabLBaLenp6JH15XvC1r31Nr732msGVAQAATA7Nzc3atWuXO+CjqKhIHR0dio2N1fLly70CPsLDw40uF8AU5CsEZLDwD1erqamR0+n02o7JZPIr+MMzJCQxMVGhoaEG7TkAAACAyaL/eUtnZ+eQgYaerbGxUV1dXT63O9x5THh4+KCvSUpKUkhIyDgfCQAAAADAmYYwDwAARqCqqkr//d//rT/+8Y+qqqrSFVdcoTvvvFOXXXYZnVMB4AzT19ent956Sz/5yU+0e/du3XrrrXr++eeNLks2m80d0OH56Hnj5bFjx9Ta2upeJywsTAkJCe4bKD1vpPRcNnPmTAUHBxu4d5gsHA6HSktLVVBQoIKCAm3dulVOp1NLlixxh3esXLmSG3QBAAAmiauuukpvv/22ent7FRAQoI0bN+qqq64yuiwAAIBJqbe3V2VlZSosLFRxcbE+/PBDHT16VMHBwVq8eLGys7OVlZWliy++mEECAExoro5zwwV/9A8J6W+oznP9wz9czWw285sVAAAAAL91dHSMKACkf2hIdXW1fHWt8nU+M1QAiGebNm2awsLCDDgaAAAAAICJhDAPAAD8UFdXpyeeeEK//e1vZTKZdNNNN+nee+/V7NmzjS4NADDKent79frrr+unP/2p9u/fr+DgYPX29mrNmjV6//33x+Q9u7u7VV9f73VDpK/HY8eOqbe3172e60fB/iEd/R+Tk5MJncJpq6iocId3vPfee7Lb7bJarcrNzVVeXp5yc3MVHx9vdJkAAAA4Ba+99ppuuOEG9fX1KTo6WnV1ddxcCAAAMIq++OILbd++Xdu3b1dRUZH27dsnp9OpOXPm6MILL9SFF16onJwcpaenKyAgwOhyAeCUdXZ2qrGx0e/gj8rKykFH0e7fOW6w4A/Pxm9iAAAAAE6Vv0EgvkJDamtr5XA4BmzTdV7jbwBI/9CQuLg4rhUBAAAAwCRHmAcAAENoaGjQr371Kz399NOKi4vTww8/rFtvvVUmk8no0gAAo6y7u1uvvvqqHnnkER05ckQBAQFyOp3u5+fMmaPPPvtsRNt03bA4VEBHZWXlgB/zTCbTsAEdrpsWgbHS3t6uzZs365///KfeffddffHFF4qOjtbq1au1du1arV27VnPnzjW6TAAAAIyC9vZ2JSYmqqOjQ9/61rf03HPPGV0SAADAGa21tVWlpaUqKipSYWGhioqKZLPZFBMTo/POO0+5ubnKzs7W+eefr5CQEKPLBYAx50+nOdfvaq75+vp69fT0DNiW5+9s/naS4zc3AAAAAKdrqPMaXwEgnq2hoUHd3d0+tzuSEJD+oSEWi0VBQUHjfCQAAAAAAJ4I8wAAwIfW1lY9/vjjevLJJ2UymfTQQw/pjjvuUHh4+KDrHDlyRLt37x7HKgEAp2r58uWaNWuWpC//m//888/r5z//uerr69XX1ydfp0mRkZFqbW11r3PixAlVV1fr5MmTqqmp0YkTJ1RbW+t+PHnypJqbm93rBwQEyGKxyGKxKDU1dcjHV3b+AAAgAElEQVRHQqNglIqKCv3zn//UW2+9pQ8++EBdXV3KysrSZZddprVr1+qCCy6g8wAAADhtHR0devvtt32OTgXj/O53v1NhYaH+/d//XRkZGUaXAw8pKSnKzs42ugwAADCGHA6HSkpKtG3bNm3dulWFhYVqaGhQTEyMLrroIndbvnw51+cAwMNgneH6B38MN2L2SDrHuYJCpk2bprCwMIP2HJictm7dqtraWqPLACaF4OBgXXnllQoNDTW6FADAOOl/fjNcAIivwBBfhjrf6R/+0b8lJSVxLQoAAAAAThNhHgAA9POPf/xDd911l1pbW3XffffpnnvuUVRU1LDr3XDDDXr11VfHoUIAwOm6/vrr9dRTT+npp5/Wk08+qfb2dvX29g673ty5c1VZWam2tjb3spCQEFksFqWkpCg5Odn9aLVa3S0lJUVms1nBwcFjuVvAiDkcDu3YsUP5+fkqKChQcXGxIiMjtXr1auXl5enKK69Uamqq0WUCAIAzzKuvvqobbrjB6DKASSM8IkLtHuehAABgaqioqFBBQYEKCwu1detWHTt2TBEREcrMzFROTo5yc3OVnZ095GAEAADfPDvEDRX84dmqq6sHDAgwXAiIK/iDznCA1NPTI5PJJKfTaXQpwKSRn5+vK6+80ugyAACTREdHh+x2u+x2u5qamrwePZvnMs/XtQ3yW1RsbKxiY2MVHx+vuLg4r/Mbz3lf0wxqBgAAAACEeQAA4FZVVaUHH3xQL730ktavX6+nn35aZrPZ7/WvvfZanWzp1H2/+cMYVgkAOF2/vPMW2Y9X6Pjx43I4HOrp6fF73e9///tatGiRLBaLpk+fLovFIovFMobVAqOvrq5OH3zwgTZt2qRNmzbJbrcrLS1N69atU15enlauXMnoPgAAYEz95S9/0a23fkuvfnLE6FKACe/Df/xdz/6f+9Td1WV0KQAAwGAVFRUqLCxUUVGRCgsLVV5eruDgYC1evFjZ2dnugI/4+HijSwWAM1ZHR4ff4R82m02VlZWy2+0DtuMrBMRX8Idns1gsCgoKMmCvgdHR1dUlk8mkB595QeddcpnR5QATWk93t64/d5Y2btyoq6++2uhyAABTRE9Pz5ABIK7zHLvd7nO6u7t7wDbDw8MHDfwYLgwkOjragKMAAAAAAKOPYaEBAFOe0+nUc889pwceeEBJSUl65513tHbtWqPLAgCMEVtttT7/7DNJGvGoV+vWrdPq1avHoixgTJWVlWnjxo36xz/+oZKSEplMJq1evVo/+9nPdMUVV2jWrFlGlwgAAAAAAABgCGlpaUpLS9NNN90kSaqsrHQHexQVFempp55SYGCg5s+f7w72WL16tRITEw2uHADOHOHh4e7/Hvuro6PDr+APV2iTzWZTQ0ODz45wniEgw4V/uJrValVAQMBoHgYAAAAAZ6CQkBAlJSUpKSnplNYf7Nyns7NzwHOHDx/Wxx9/7J6vrq6Wr3GqfQUh+tPMZrOCg+kuBwAAAGBi4OwEADClHThwQDfddJPKysr0gx/8QA8//LBMJpPRZQEAxpB5+kwtnD1T3/72t1VUVKTNmzerpKREvb29CgkJUW9vr88fhgIDA3Xy5EkDKgZGzuFwaNu2bXrzzTf15ptv6vDhw0pNTdVVV12lRx99VKtXr1Z4eLjRZQIAAAAAAAA4RSkpKVq/fr3Wr18vSaqurtaHH36obdu2aevWrXruueckSRkZGVq1apVWr16tiy++WAkJCUaWDQBTTnh4uMLDw5WSkjKi9YYKAamqqlJlZaU7BMS1vK6uTr29vQO25Qr18KfTW0pKilJSUrh3BgAAAMCInOq5jyR1d3fLbre7z208p/vPnzx5Up9++ql7ud1u97nNuLg493nOYNMJCQk+HwEAAABgNBHmAQCYsv70pz/p7rvvVkZGhkpKSpSenm50SQCAcWIymZSXl6e8vDxJUktLi3bs2KHCwkJt3bpVO3fuVFdXl0JDQ+VwOORwOAjzwITX0dGhgoIC5efn6x//+Ieqq6uVlpamvLw8rV+/XtnZ2Yy8BgAAAAAAAJyhkpOTde211+raa6+VJDU2NrqveW/dulXPPvusJGnJkiVas2aN1qxZo4suukhRUVFGlg0AGMRohoB4hn+4mmcISE1NjZxOp9d2/B0BOyUlxR0UkpiYqNDQ0NE8DAAAAACmgNDQUJnNZpnN5hGv29fXN2wAiGv+2LFjKisrcz/X2Ng44FxI0qAhH8M9RkREjMbhAAAAAHCGIcwDADDlNDc3684779TLL7+s733ve3r88ce5mQAAprjo6GitXbtWa9eulST19PSouLhYRUVF2rp1q7Zt2zZkijtglIaGBr311lvKz8/X22+/rfb2dmVmZuo73/mOrrvuOi1cuNDoEgEAAAAAAAAYICEhQVdddZWuuuoqSVJra6s++ugjFRQUqKCgQE888YQCAwO1ZMkS5ebmKjc3Vzk5OTKZTAZXDgA4HacbAuIr+GOwEJCqqqoB2xkqBMQz+MOzmc1mBQdzKysAAACAkQsICFBCQoISEhJOaX1fgYi+2vHjx7V3794hQxGlL8+JBjv3GawlJSUpJCTkdA8FAAAAgAmKX0AAAFPK7t27dcMNN6ilpUVvvfWWvvKVrxhdEgBgAgoJCdGKFSu0YsUK3Xffferr69Nnn30mq9VqdGmAKisr9fe//11/+9vfVFRUpJCQEF1yySV68sknlZeXJ4vFYnSJAAAAAAAAACaYqKgod2iHJNXW1mrr1q0qKCjQpk2b9Nhjjyk8PFxLly5VTk6OcnNztXLlSgZFAIApwjMEJCsry691Ojs71djY6FfHt4qKCuXn5+vkyZPq6uoasK3+ISD+dH5LTk5WYGDgaB8KAAAAAFPIqQYiSr6DQHwFJHqGIjY2Nvp1TuRv47wIAAAAmPgI8wAATBmPP/64fvSjHyk3N1d//vOfZTabjS4JADBJBAQEaN68eUaXgSnMFeCxYcMGFRUVKTIyUuvWrdOrr76qyy+/XFFRUUaXCAAAAAAAAGASMZvNWr9+vdavXy9JqqqqUmFhoQoKCvTyyy/rscceU2RkpC644AJ3CEhmZiadAwAAbq4Rp0fa6c2fka+rqqpUXFzsnq+vr1dPT8+gNYxk1OtT6aQHAAAAAP2dahBIS0uLO9jD16NrurKyUvv27XMvb2pqGrCtkJAQJSQkDGjTpk0bMO+5LDo6erQOAwAAAIBhEOYBADjjdXZ26tvf/rZeeeUV/fKXv9R9992ngIAAo8sCAAAYUn19vf75z39qw4YN+t///V+FhoZqzZo1euGFF3TNNdcoMjLS6BIBAAAAAAAAnCGsVqtXuEdFRYUKCgpUUFCgxx9/XA899JCSkpJ0/vnnKycnR7m5uVq6dCm/uwIARuxUO7wNFgLSf+Rrz1Gva2tr5XA4vLYzkhGvXUEh06ZNU1hY2GgeBgAAAABTVHR0tKKjozVz5swRredwOAYNAXG1hoYG1dXV6eDBg17LnU6n17b6h4D0D/8gBAQAAAAYPYR5AADOaHV1dfr617+ukpISbdy4UevWrTO6JAAAgEGdPHlSf/vb37Rhwwbt2LFDJpNJa9as0fPPP0+ABwAAAAAAAIBxk5aWpttuu0233XabnE6nSktLtXnzZm3evFk//elP9dBDD2nGjBlas2aNLr30Ul166aUym81Glw0AOIONRghI/+APz+YZAlJdXa2+vj6v7QwXAuIK/vBclpSUpJCQkNE8DBNCaWmpfve73+nWW29VTk6O0eUAAAAAU0JQUJASExOVmJg44nUHC0f0PE+qr6/XZ5995l5eX1+vnp6eAdtynRv5OgcarCUnJyswMHA0DgMAAAAw6RDmAQA4Y5WVlenqq69WSEiIdu7cqYULFxpdEgAAwAB1dXV67bXX9Oqrr2rHjh2Kjo5WXl6efvCDH2jt2rUymUxGlwgAAAAAAABgCgsMDNTSpUu1dOlS3X///erp6dHOnTvd4R633HKLent7lZmZqbVr12rt2rXKzs5WaGio0aUDAOAVApKRkeH3eh0dHUOGf/QPAamsrJTdbh+wHV8hIMN1erNYLAoKChrNwzCqtmzZohdeeEEvvPCCMjIydP/99+v666/nd00AAABggjrVcMTGxkZ3a2ho8Jr3XH7o0CGvZf3DEUNDQ5WQkDCgTZs2zWs6MTHRvWzatGkKDw8fzcMAAAAAGIIwDwDAGWnDhg365je/qQsvvFCvv/664uPjjS4JAADArb29XRs3btTLL7+sd999V2FhYfrqV7+qBx98UGvXrlVYWJjRJQIAAAAAAACATyEhIcrJyVFOTo5+/OMfq729Xdu3b1dBQYHee+89/fKXv1RERIQuvPBC5ebmKjc3V1lZWUaXDQDAiISHhystLU1paWl+rzPUaNf9A0AKCwtls9nU0NCg7u7uAdvyDAHxd8Rrq9WqgICA0TwMPjU2NiosLExdXV0qLy/Xt771Ld177726/fbbdeedd2rmzJljXgMAAACAsecK2hipwc6NPAMT6+vr9dlnn7mfq6urU29vr9d2fIUjDneelJycrMDAwNE6BAAAAMBpI8wDAHDGeeqpp3Tvvffqzjvv1JNPPqngYP53BwAAjOd0OrV9+3a99NJLeuWVV9Te3q7Vq1frueee09e+9jVFRUUZXSIAAAAAAAAAjFhERIQ7tEOSqqqq9N577yk/P1+PPfaYHnroISUnJ+vSSy9VXl6eLrnkklPqBAAAwER3qqNdDxUC4tnZraKiYsiObpLcoR7DBX+4Or+lpKTIZDKNqN7GxkY5nU5JUl9fn/r6+tTU1KRf//rXevzxx3XZZZfp+9//vvu7AQAAAICpZTTOjTzPhXwFJObn5+vkyZPq6uoasB2TyTRsKKLn80lJSQoJCRmt3QcAAAC80LsZAHBGeeyxx/TDH/5QP/7xj/XII48YXQ4AAID27dunl156SX/+859VXV2trKwsPfroo7r++utlsViMLg8AAAAAAAAARpXVatVNN92km266SQ6HQ6WlpSooKFBBQYH+5V/+RU6nU0uWLHEHgKxatYqb5QEAU9qpdHTr6+tTY2OjGhsb1dDQMGDa9VhbW6v9+/ervr5ejY2Nam5uHrCtyMhIJSQkaNq0ae5HV3ONxO05XVVV5TNIpKenR5JUUFCgt99+W+ecc47uuusufeMb32BkbAAAAADD8jw3ysjI8GudwcIR+4eBeIYjVldXq6+vz2s7JpNp0LAPX0EgqampCgsLG4vDAAAAgDMMYR4AgDNCX1+fHnjgAf3mN7/Rf/3Xf+m2224zuiQAADCFHT58WC+++KJefvllHTp0SPPnz9edd96pG2+8UWeffbbR5QEAAAAAAADAuAgKClJWVpaysrL04IMPqrW1VVu2bFF+fr5ee+01PfbYY4qKitKKFSu0bt06XX311Zo1a5bRZQMAMOEFBAS4Azfmzp07onVdnd2GGun6xIkT+uSTT3x2douNjR3Q8c2TK9Rj3759uuOOO/TDH/5Qt99++6nvLAAAAAAM4lTCETs7O9XQ0OAOQayvr1d9fb17mavt2rXL63X9RUVFKSEhQYmJiUpMTNS0adO8HhMTE2U2m72WhYaGjubuAwAAYBIgzAMAMOk5HA595zvf0UsvvaS//vWvuu6664wuadz8x63X6d//9JrRZQAAAH1509sbb7yhP/3pT/rggw9kNpt1/fXX669//auWLVtmdHkAAABTGtdQAAAAgIkhKipKeXl5ysvLkyQdOHBA7777rt555x09/PDDuvfeezV//nytXbtWl112mVavXq2IiAiDqwYA4Mzi2dktKyvLr3U6OzvV2NiohoYGrV+/Xk1NTcOu43Q6JUmNjY36+c9/flo1nwquCQIAAADwxWQyKTU1VampqX6v43Q6B4R9uJpnGEhJSYl7WUNDg/u8yCUmJkZJSUlKSkryCv9wLesfDJKYmDjauw8AAIBxRpgHAGBS6+7u1nXXXad3331Xb775pi6//HKjSxqRaxZ8mQD79wOVp7T+UKNc4EvXLEg55eOL03e6/8Yx9fCZxWRUXFysF198UX/9619lt9u1evVqvfrqq/rqV7+qkJAQo8sDAAA4I3ANZexxPjY6uBYCAAAwMgsWLNCCBQt09913q7e3V2VlZdq0aZPy8/P1zDPPKDQ0VDk5OcrNzdVXv/pVzZ8/3+iSAQCYkkwmk1JSUpSSkqL29vZhXx8SEqKenh6FhYXp4osv1tq1a3XfffeN6D25Jjj2uCY4OrgmCAAAcOYLDAx0B26MREdHh2w2m6qqqlRZWSmbzeZurmWff/65e1lNTc2AABDX+ZjValV8fLxX87XcarUqICBgNHcfAAAAp4EwDwDApNXb26vrr79emzdv1jvvvKOcnByjSxqxvx+odP+YdyoeeeH1UawGGH2n+28cACYqm82mDRs26Pe//71KS0u1YMECPfDAA/rmN78pi8VidHkAAABnHK6hYLLgWggAAMCpCw4OVlZWlrKysvTII4+orq5OH3zwgTZt2qRf/OIXeuihh5SWlqZ169YpLy9Pq1atIlAZAAAD2Gy2ActCQkLkcDjkdDo1d+5cfe1rX1Nubq4uuugihYWFqaura8RhHlwTxGTBNUEAAAAMJjw8XOHh4UpJSVFWVpZf69hstkGDP1zzFRUVstlsOnnypJqamrzWDwsLU0JCgl/BHykpKUpNTVVYWNhY7D4AAABEmAcAYJJyOBy6+eab9c477+if//znpAzyAAAAk4vT6dTmzZv1xz/+UW+++aZMJpOuvvpqPf7447rkkktIMgcAAAAAAACAUZSUlKT169dr/fr1cjgc2rFjh/Lz81VQUKDf/e53ioqK0sUXX6y8vDzl5eXJarUaXTIAAGc8p9Op9vZ2BQQEKCgoSL29vUpKStKVV16pyy67TJdccsmIR6oGAAAAAPw/rqANf7W2tqq+vl61tbWqr69XQ0OD6uvrVV9fr7q6OtXV1enIkSPas2eP+3mn0+m1jejoaJnNZiUlJSkpKUmJiYkym80ym81KTExUUlKS13x4ePho7zYAAMAZizAPAMCk09fXpzvuuEP/8z//o/z8fK1atcrokkbdsc8O6KX//JnKd38kSVqwdLlufvDHmjl3gfs1rjT/vx+o9Hu7rnWeeXe7Xnz8UX26s0htzc1e2zn22QG99PhPVb5npyQpfdn5+sYD/8ev9x5s+e7N7+p//vtpVezbq7hEs86/9Cu6/u4HFB4ZNWDdP2zZo+ce/ZE++ahIYeHhWnzhSt368KOKjvO+IDWSY+Q58sElX79Bd/70Cb+O1/HPD+rFXz2qfbs/UmBgoOYtydKtP/wP3bPuYq/9HOnxGEntv31rq57+0b/p6MFynZ1xru76xW/U092lZ370fR377KDmnLNEdz/2WyVaU/3aJ69t53+gF375iA6W7JHT6VTGeRfo5h/8WNPPnjuw3mH+TQw4XkFBOmdFtr718KM+a/DnGAynvaVZrz39hHa9/45stdWKjInTkpyLdfmNN2vuuZkjei9/PhtDGckxHe3P4Wj+Hcfyc+jPNof7zI7GvxvgVFRXV+vPf/6zfv/73+vo0aPKysrSU089pRtvvFFRUVHDbwAAAABjhmsoE+Mair/XDoZj5LUYv/fTz+3UV1X69fcBAACAf4KCgpSTk+Me5KGiokIFBQXatGmT7r77bt1xxx3KzMzUunXrlJeXp6VLlxLADADAGOjr69OcOXN01lln6Stf+YrWrl2rjIyMca2Ba4JcE/TENUEAAABMdVFRUYqKitKsWbP8en1fX59X4Idrura2VnV1daqvr1dVVZVKS0vd852dnQPes3/YR1JSkiwWixITE91hIK55wj8AAMBUFtDX19dndBEAAPirr69P3/3ud/X888/rjTfe0JVXXml0SW7XXnutTrZ06r7f/GFE612zIMXrx8TqY0f08I1f1bV3fV8XrL1SAYGBKvlws1596j/16EtvaFqyddB1/X2/xReu1HXfu1+zFy7Sp7u262e3/av+fqBS1ceO6Mc3XaPrv/eAlq2+VH19fdq9+V299vSX7508c9aw7+1r+TULUnT7T36llVddo47WFr30nz+TFKDv/fI3A2vLXqW8b96mhVnnqbWpSX/6+f+niKgY3fWLJ8ftGLne499v/rquu+t+LVt9qQICA1VW9KHe+MPvdPTQfp/76M/xGGntF37lKl13131KMFv08m8e0+eflmmaxaob7vmBEswW/eXXv1BzY4Pu/+0fR7R/1yxI0cy5C3TN7fdocfZKOR0O7d78rjY8+6Qe/csbMqfOcNfrz7+J/sdLAQEq3bZF//vy/9XB0uJTPgZDeey7t2j2wkVae8NNioyO1YnPD+m5nz6sAx/vdr/fSI/3YJ+N0Tymw73XSD+Ho/l3dNc2Bp9Df7bpeq2vYz5a/24k6Yl7v6PUaJNef/11v9fB1NPX16cPPvhAv//977Vx40bFxsbq1ltv1W233aazzz7b6PIAAAAmtb/85S+69dZv6dVPjoxoPa6h9KttAl1D8fdYDLcdo6/FDFff6ZwH//mx/1BYeMSA8+DhfPiPv+vZ/3Ofuru6RrQeAADAVNLe3q73339f+fn5euutt3Ty5EmZzWZddtllysvL0+WXX67o6GijywQAYErr6uqSyWTSg8+8oPMuuczv9bgm2K82rglOiWuCPd3duv7cWdq4caOuvvrqEa0LAAAAjIWOjg7ZbDbZbDZVVVWpsrJy0PmTJ0+qqanJa32TyaT4+HjFx8crJSVFVqt10PnU1FTFxcUZtKcAAACjL9joAgAAGIl/+7d/03PPPacNGzZMqCCP0fTaU/+pvG/epsuuv8m9bOVV16i3p0dvPv+sbn340dN+j2tuv1vzM5dJkpauXOP+MfO1p/5TV996h9Zcc737tbnrb1RHa4tee/oJ3fOrp07p/Tx/LA0zheuWH/1E3730Ap+vvfzGbyrzotWSJFNEpP71+z/Sv9/8da/XjMcxeu3pJ3TVLbd7HYucK7/8cfTJ++449e2OsPbLb7xZ08+eK0n62nfu1rdXZuobL/3dveya79ytB67x/yYHT1+/415lX3GVe979t37qCfcNAf7+m/B1vFZedY0cjl4dLC0+rWMwmL07CvXdnz+pqNgvL9bNTl+ke371lO7IXXHK7zXYZ8Nf/hzT4d5rpJ/D0fw7uozF59CfbQ5lPD73gCQ1Nzfr1Vdf1dNPP61PPvlEWVlZevrpp/Wv//qvioiIMLo8AAAAeOAaygS5hjJKx2KiXIsZre30//t84/6H9fCN3HgPAAAwFiIiIpSXl6e8vDxJ0r59+5Sfn69Nmzbp+uuvV2hoqHJycpSbm6urr75aCxaMbDR2AAAwcXBNkGuC/tbHNUEAAABg9ISHhys8PFwpKSnKyMgY9vX+hH9UVFSMSvhHSkqK4uPjx2rXAQAATlug0QUAAOCvX/3qV3rqqaf00ksvndGJ83u3b/PqmO+y9OJLVLb9w1F5jznnZg763uflXj5g+fmXfkV7t28blfeWpKiYWLU22X0+l758hdd8UuoM2epqB9Q51sdob9GHPo/F4uyVp7fdEdaeln6Oezo+MWnAsgSzRc2NDadUy7kXXjRg2fmXfkVlRVu96vXn38Rgx8v1A7Wn0fr7zV+SpV/ccbNKtm2Rw9ErSTJPn+l1k8NI32uwz4a//Dmmw73XSD+Ho/l3dBmLz6E/2xzKeHzuMbXt379f99xzj1JTU3XPPfdoyZIl+vjjj7Vnzx7ddtttBHkAAABMQFxDmSDXUEbpWEyUazGjtZ3+f59Ea+qIzoMBAABw6jIyMvTggw+qsLBQlZWVevbZZxUbG6uf//znWrhwoRYtWqSWlhajywQAAKeAa4JcE/S3Pq4JAgAAAMbxDP7Izc3VTTfdpHvuuUePPPKI/vCHP2jTpk0qLCzUvn37ZLfb1d7erpMnT+rTTz/Ve++9pz/84Q968MEHtX79eqWlpclms6m4uFgbNmzQgw8+qKuuukoXXXSRFi1apISEBK/3u/TSS93v99hjj+nFF1/Upk2bVFxcrMrKSjkcDqMPDwAAmGKCjS4AAAB/vP766/rhD3+oJ554Qtddd53R5YypFrtNt685z+dzoSbTqLxHmCnc5/Jme6PiEs0DlscnWdRiazyl92pubNBffv1zlWzbInt9nZzDXPyIion1mg8JDVVfX5/XsvE4RoMdi+i400ttHWnt4ZFR7umAwECfy/ofH3/52pf4JO9wEH//TQz2Ol/LRuvvd/9v/6jXn/m1/vsnP1JzY4Nmpy/Sikuv0OU33qyg4JBTeq/BPhv+8ueYDvdeI/0cjubf0WUsPof+bHMo4/G5x9TT09OjDRs26JlnntH27du1YMEC/exnP9PNN9+s2NjY4TcAAAAAQ3ENZWJfQxnpsZgo12JGazv9/z6BQUGnfA0HAAAAp85iseiWW27RLbfcou7ubm3btk179uxRdHS00aUBAIBTwDVBrgn6g2uCAAAAwOQSHh7uFcgxnLa2NtXW1qq2tlZ1dXWqr69XdfX/z969x0VVJ/4ff3NHERRQYQAVxhSEvI6iOaipaG5pV8uudlXTMkst3NVMU9v8llptN7P6ZWrt5u7WrpXpkpYCXvEOYhrecAbExAsCwgC/P3adjVUTFTgIr+fjcR5znD1n5v05w2xzzsx5n2zl5OQoNzdXdrtd27ZtU25urnJzcysUeLi7u6tZs2Zq1qyZgoOD1bx5czVr1kxBQUEKCgpyzgcHB6tZs2by8vKqzqEDAIB6gDIPAECtt3btWg0fPlyjRo3Ss88+a3ScaufrH6A3v/3xvC/3aoJfkwDl5eaoeWiLCvfn5ebI1z+gwn0uLi4qKS6Wh6en874LXRXizRfGKjSitWZ99g8FBpvk5vbvjx93RYVccc6a2EZ+TQJ04thRNQsJqxwvCGkAACAASURBVHD/iWMXvlpCZbeHka/v/zrxS66aBDarcF9ebo78AgKd/67s38TFtld1boOGvn56ZNI0PTJpmk7lHdfOdUn6euECpW/eoOffWlClz1VZldmml3I578PKPuflPmZl1PS2rU3vHVz78vLytGDBAv3pT39Sdna2br/9dq1atUo33nijXFxcjI4HAACASuIYyqXV1DGUqtjnrO3HYtgvBQAAuPZ5enqqf//+6t+/v9FRAADAFeKY4KVxTJBjggAAAEBd5+Pjo4iICEVERFRq+cLCQtntdtlsNuXl5Z03v3HjRuXl5clms+nEiYr7GN7e3vL391dISIhMJtNvzgcHB8v1PxdwBQAAOIdPBwCAWm337t26/fbbNXDgQP3pT38yOk6N6BR3o9I2pJx3/+7NG/T8nTdV63N36NlLG1Z+e979G/61XB169qpwX5OmzXXMfqTCfemb1p+37p6tmzVs7PNqHtrC+YVzcVHRVeW8nG10pSdld4zro42J3513/7akHy64fGW3h5Gv7//atvaH8+7b8K/l6mjt4/x3Zf8mLra9dqSsOe++qtoGd0WF6JdsuyTJzz9A1ptv1eQPFml78o9V/lyVVZlteimX8z6s7HNe7mNWRnVt24u9Z2vTewfXrszMTE2aNElms1kzZ87UnXfeqX379mnp0qXq27cvRR4AAADXGI6hXFpNHEOpqn3O2n4shv1SAACAuiM3N1eurq5q1qyZJkyYoKKr/NwNAABqDscEL41jghwTBAAAAFBRgwYNZDabFRcXpyFDhmjkyJGaNm2a3nzzTX3xxRdKSkpSWlqa8vLylJ+fr3379ik5OVlfffWV3nrrLY0ePVo9e/aUj4+PDh06pGXLlmnmzJl6+OGHNWDAAF1//fUKDQ1Vw4YN1aJFC3Xt2lW33HKLHnnkEb3wwguaO3euFi1apBUrVmjHjh2y2+1yOBxGbxYAAFBD3I0OAADAxWRnZ+vmm29WVFSU/vKXv8jNzc3oSDVi2NgJenX0IyorK9X13a1y9/BQ2qZ1mv9Sgka8+Eq1Pvc9T0/Q1OF3qUEjX3XrN1AuLi7atGql/vnJfM1Y9PcKy3a09taSuX/Uo7+fLh8/P2Vs2aQVf/70vMeM7NxVi16foTtHPaOA5sE6Zj+ipe/Ou6qcl7ONAoKCtWdbqq67voN2bUjRu1MmaP7qzZd+jnPbwqeRuvYdIBdXV21P/lEr/7L4gstXdnsY+fr+r5V/WSQ3d3d1irtR5WVl2rRqpb7+9EPNWPzf17qyfxP/u71c3dy0I2WN/jb/rfOetyq3wbtTJuiRSS8puGWEzpw+qW8WfljhRwE1vb0rs00v5XLeh5V9zst9zMqorm17sfdsbXrv4NqTmpqqN998U59//rnCwsI0adIkjRw5Uv7+/kZHAwAAwFXgGMql1cQxlKra56ztx2LYLwUAAKg7srOzFRwcrOzsbM2dO1dz585V8+bNNXz4cD377LMKDQ01OiIAALgIjgleGscEOSYIAAAA4Mr5+PiodevWat26daWWz8vLk81mU15enux2+3nz+/btU15eng4fPqzTp09XWNfb21shISEymUzOW39///PuCwoKqjfnUwEAUBe5lJeXlxsdAgCA/3X27Fn17dtXx44dU0pKipo2bWp0pEu65557dOR0kSa8Mb/S69wVFeKc/1uGzTlvP7hfi+e8oh3r1qrU4VCL69rqzpFj1X3A7y65bmWf72LrHfxptxa9NlPpmzdIkqK7dtdDz09Rq7btKix3Ku+4Pp71oranrNHZwkK172HViKl/1Ki+XSs89slfjmnh/72sbUk/6MypkwoJb627xzyrOc89WWG5i43naraRJKV8t0yLXp+l4zl2NTWF6pFJ09St38BKba/D+/bo0/+bobRN6+Xq6qqYbjfo8RdnanT/7udtu8puj8pmv9C4K3tfZdwVFaL3vt+gj2ZMUdqmdSorK1NMtx56OOElhbVuU2HZyv5N/Hp7ubi4KLJzVz32++kaN/jGK9oGl7JzXZK+XfKxdm/eoMIz+QoIMql7/CANGztRDXwaXdZzVea9cSmV3aZV+T6s6texOt6Hl/uYv/WerYq/G0ma8+wohfp664svvris9XBtKSsr0zfffKM//vGPWrdunSwWi5555hndf//9cnen1xIAAMBIixcv1mOPPa4/7zxQ6XU4hlK7j6FUdltcipHHYiqjOvaDL2XNP/+md6dMUPHZs5eVFQAAAJdWVlamN998U3PnzlVWVpbzfn9/f910000aPXq0evXqdcVXrAcAAP919uxZeXt7K+Gd/6fY/jdVah2OCXJMsL4eEywpLta9HcL11Vdf6bbbbrusvAAAAABqrxMnTig7O1u5ubnKycmR3W5Xbm6ubDabcnJynPcdPXpUxcXFzvU8PDzUvHlzBQcHKzg4WM2bN1dISIjzPpPJpGbNmikkJER+fn4GjhAAAFwIZR4AgFpp5MiR+vOf/6x169YpJibG6DiVciVlHrg23RUVckVlD7VJXRhDbWPENuV1vDKUedRtBQUFWrBggebMmSObzaY777xT48ePV48ePYyOBgAAgP+4kjIP1G/1ef+XMg8AAICacfDgQf3hD3/QF198ofLycpWWlkqSGjZsqP79++uhhx7STTfdxA+hAQC4QldS5oH6rT4fE6TMAwAAAEBhYaHsdrtsNpvy8vKc8/9736FDh+RwOJzreXl5KSAgQCEhITKZTPL397/gfFhYmBo3bmzgCAEAqD+4HDEAoNZ555139OGHH2rp0qXXTJEHAAAw1unTp/Xee+9pzpw5ys/P1xNPPKHnnntO4eHhRkcDAAAAAAAAANRyrVq10pIlSzRjxgw9/fTT+u6779ShQwcdPnxYy5Yt09dffy03Nzf17NlTN998s26//XZFRkYaHRsAAAAAAAAAUAc1aNBAZrNZZrP5ksvm5eX9ZulHenq6bDabcnJyVFZW5lzP29u7QsHHhUo/QkJCFBYWJk9Pz+ocLgAAdRplHgCAWiUlJUXjx4/X9OnTdddddxkdBzjPXVEhzttr9eoPdWEMtY0R25TXEfi306dP691339X//d//qbi4WI899pgmTZokk8lkdDQAAAAAVYD9XwAAANQks9msb7/9VkuWLNHIkSNltVo1btw4ffbZZ/ryyy+1du1apaSkaNKkSYqJidHgwYM1aNAgWa1WeXh4GB0fAACgTuCYIAAAAABUnr+/v/z9/S+53NmzZ/XLL79ctPQjMzNTSUlJstvtysvLO+85LlT08evbli1bytfXt7qGCQDANYsyDwBArWG323X33Xfrd7/7naZMmWJ0nGvOuS8xL4YvNv/rarZVbd+OlRlbbR+DVLv+nmvrNr0WXkegOh07dkxvv/223nzzTZWVlWn06NF64YUXFBAQYHQ0AAAA1HK1aZ+ztquqbVXbj8XwNwEAAID/9cADD6hdu3a67bbbNH36dK1evVoffvih/vnPf+rTTz/Vd999p/379+uDDz7Q7Nmz5efnp/j4eP3ud7/ToEGDFBYWZvQQAADAr3D8p/I4JlhzGQAAAACgJnl5eSkkJEQhISGKiYn5zWXPnDkjm82mnJwc5eTkyGazKTs7W0eOHFFOTo4yMjKUk5Ojo0ePVlgvICBAJpOpwhQSEqLg4GDnbWhoqBo2bFidQwUAoFahzAMAUCsUFxfr9ttvV5MmTbRo0SK5uLgYHemawxeIlVeXt1VdGVttGkdtygJAOnr0qN59913NmzdPnp6eGjdunJ599lk1adLE6GgAAAC4RrCfV3lVta1q+zav7fkAAABgjC5duuiHH35Qz549NWzYMH311VcaNmyYhg0bJrvdrk8//VTvv/++8vLy5O/vr6ysLI0fP14jRoyQ2WzW4MGDNWTIEPXu3Vuenp5GDwcAgHqN4z+VxzFBAAAAAICPj4/atGmjNm3aXHLZvLw82Ww22e32826Tk5Nlt9t16NAhORwO5zre3t4KCQmRyWSSv7+/c/5/b00mE+eXAQCueZR5AABqhd///vdKT09XamqqfH19jY4DAABqmdzcXL3yyit6//33FRAQoOnTp2vkyJE0MwMAAAAAAAAAqk3r1q21bNky9enTR2+88YYmTpwoSTKZTEpISNDEiRO1fPlyffDBB/r2228VGBiom2++Wf7+/kpOTtZbb70lHx8f3XDDDRo8eLDuuOMOtWzZ0uBRAQAAAAAAAABQNfz9/eXv76+YmJjfXO63Sj/S0tKUmJiow4cPq6SkxLmOt7f3b5Z9nLsNDg6Wq6trdQ8VAIArQpkHAMBwy5cv17x587Rw4UK1bdvW6DgAAKAWOXXqlObOnau5c+fKx8dHr7/+up544gl5eXkZHQ0AAAAAAAAAUA/Exsbq97//vV566SXdddddioiIcP5vbm5uGjx4sAYPHqysrCx9+OGH+uijj2S323Xrrbdq4sSJOnXqlBITEzV16lQ9++yzMpvNGjx4sIYMGaJevXpxvBsAAAAAAAAAUOdVpvSjvLxcR48eVU5OjrKysnT06FFlZWUpJydHR44c0a5du7RixQplZ2fr7NmzzvW8vLxkMpkUGhqq0NBQhYSEKCwsTCaTSS1atFBISIhCQ0Pl7e1dE0MFAKACyjwAAIY6cuSIhg8frocfflgPPfSQ0XEAAEAtUVxcrE8++URTp05VQUGBxowZo8mTJ8vX19foaAAAAAAAAACAembSpElatGiRZs+erffff/+Cy4SFhWnatGmaOnWqvvnmG7311lu677771KlTJ40ePVrz58/Xpk2btHz5ci1fvlxvvfWWfH19FR8fr0GDBmngwIEKDw+v2YEBAAAAAAAAAFBLuLi4KCgoSEFBQerQocNvLvvLL78oOztbNptNdrtddrtdNptNhw8f1vr163X48GHl5OTI4XA41wkMDHQWfPy66OPX5R9BQUHVPUwAQD1DmQcAwDBlZWUaPny4/P399dZbbxkdBwAA1AJlZWX629/+poSEBOXk5Gjs2LFKSEiQv7+/0dEAAAAAAAAAAPWUp6enxo4dq8mTJ2v27Nlq3LjxRZd1dXXVkCFDNGTIEG3dulXvv/++xo0bpxdffFGPPvqoJkyYoHnz5mn//v3OYo/x48frzJkzatu2rQYOHKiBAweqb9++atSoUQ2OEgAAAAAAAACAa0NgYKACAwMVExPzm8vl5eU5Cz8yMzOd8zabTdu3b3f++xxPT08FBgYqJCREJpOpwq3ZbHaWgPj5+VX3EAEAdQRlHgAAw7z88stKSUnR+vXr5evra3QcAABgoPLycv31r3/VlClTtH//fj366KN66aWXFBISYnQ0AAAAAAAAAAA0fPhwJSQk6B//+IeGDx9eqXU6d+6s+fPna9q0aXr33Xc1f/58vfHGG3rggQf0wgsvaMyYMRozZowcDoe2b9+uZcuW6euvv9a7774rFxcXderUSfHx8YqPj9eNN94od3d+6gUAAAAAAAAAQGX5+/vL39//N0s/ioqKZLPZKhR9nLvNzMxUYmKiDh8+rJKSEuc63t7eFQo+LlT+ER4eLldX15oYJgCgFuMbXgCAIVJSUjRz5ky99dZb6tixo9FxAACAgVJSUjRu3Dht2bJF999/v5YvXy6z2Wx0LAAAAAAAAAAAnJo0aaLY2FitXbu20mUe55hMJs2YMUOTJ0/WkiVL9Nprryk6Olq33367Jk2apG7duslischisWjatGk6duyYVq9ercTERH322WeaPXu2AgMD1a9fP8XHx2vQoEFq2bJlNY0UAAAAAAAAAID6w9vbW2az+Td/v15WVqbs7GwdOXJEdrtdhw8fdt7abDalpqYqKytLp06dcq7j5eUlk8mk0NBQhYWFKTQ0VC1btlRYWJjCwsLUokULBQcHU/gBAHUcZR4AgBpXUFCgRx99VP369dPo0aONjgMAAAySlZWlhIQEff755+rfv7+2bdum9u3bGx0LAAAAAAAAAIAL6tWrl7788ssrXt/b21uPP/64Hn30UX3zzTd65ZVXFBsbK6vVqoSEBA0ePFguLi5q2rSp7r77bt19992S5LzyX2JioiZOnKhRo0bJbDYrPj5e8fHxuummm+Tn51dVwwQAAAAAAAAAAL/i6uqqkJAQhYSE/OZyZ86ccRZ8HDlyREeOHJHNZtPhw4e1du1aZWVlKTs7W+Xl5ZIkDw8PhYSEqEWLFmrZsqWz+KNVq1bO+eDg4JoYIgCgmlDmAQCocRMnTtTRo0f1/fffy8XFxeg4AACghhUXF+u9997Tiy++qCZNmuiTTz657KsYAgAAAAAAAABQ01q3bq0DBw5c9eO4urpqyJAhGjJkiFatWqVXX31Vt956q7p06aKEhAQNHTq0wpX4zGazRo4cqZEjR6qwsFBr167VypUrtXLlSn3wwQfy8vJSXFycBg4cqPj4eHXq1Ikr+QEAAAAAAAAAUMN8fHwUFRWlqKioiy5TXFysY8eOyW63KzMzUzabzTmfkpIiu92uAwcOqKysTJLk6empwMBAhYSEyGw2y2QynTcfHh7O9wIAUEtR5gEAqFH/+te/9P777+vzzz9XWFiY0XEAAEANW7ZsmcaNG6ecnBw9//zzmjRpkry9vY2OBQAAAAAAAADAJQUHB6ugoECnT5+Wr69vlTxmv3791K9fP23fvl1z5szR/fffr2nTpmnSpEl64IEH5ObmVmH5Bg0aaODAgRo4cKAkyW63O4s95syZo4SEBDVt2lR9+/ZVfHy8+vfvr9atW1dJVgAAAAAAAAAAcHU8PT0VEhKikJAQWSyWCy5z9uxZ/fLLL86Sj1+XfiQnJ8tmsyk7O1vl5eWSJC8vL4WGhl6w6OPcvMlk4qLcAGAAyjwAADXmxIkTevzxx3XHHXdo2LBhRscBAAA1KCMjQ88++6xWrlypoUOH6vXXX1fLli2NjgUAAAAAAAAAQKU1atRIkpSfn19lZR7ndOzYUZ9++qmmTZum2bNn6/HHH9f06dOVkJCgxx9//LxSj3NMJpMefvhhPfzww5KkzMxMJSYmKjExUS+88IJOnjwpk8mkuLg4xcfH65ZbblFoaGiVZgcAAAAAAAAAAFXHy8vrkoUfBQUFOnTokLKysnTkyBEdPHhQWVlZysrK0tdff62srCydPHnSuXzDhg3VqlUrhYWFKTQ01DnfokULtWrVSq1atVKDBg1qaogAUG9Q5gEAqDFPP/20HA6HPvjgA6OjAACAGnL69GlNnjxZ7777rrp06aKUlBT16NHD6FgAAAAAAAAAAFw2h8Mh6d9XzasuZrNZ8+fPV0JCgmbPnq2nnnpKs2fPvmSpx6/XHzlypEaOHCmHw6Ht27c7yz3Gjh2rUaNGyWw2Kz4+XvHx8Ro4cKAaN25cbeMBAAAAAAAAAABVr2HDhoqKilJUVNRFlykqKpLNZpPNZpPdbldmZqYyMzNls9m0c+dO/fzzzzpx4oRzeX9/f5nNZplMJoWEhMhsNjunc/cBAC4PZR4AgBrxzTffaMmSJVq2bJkCAwONjgMAAGrAsmXL9NRTT6mgoEALFizQww8/LFdXV6NjAQAAAAAAAABwRYqLiyVJHh4e1f5c50o9xo8fr5kzZ2rMmDGaN2+eXnzxRd17772VOt7u7u4ui8Uii8WihIQEnTlzRuvWrXOWeyxYsEBubm7q2LGjs9yjd+/e1VpWAgAAAAAAAAAAaoa3t7ezjONiCgsLKxR9nJvS0tKUmJio/fv3q7y83Pl4Fyv5MJvNCg8P53wBAPgflHkAAKpdQUGBxo4dq3vvvVeDBw82Og4AAKhmOTk5ev7557Vo0SLdfffdevvtt9W8eXOjYwEAAAAAAAAAcFWysrLk4+MjPz+/GnvOyMhILVq0SFOmTNHMmTM1fPhwzZ49W7Nmzbrs7999fHycpR2SlJ2drcTERH3//fdasmSJZs+eLT8/P/Xp00fx8fHq27evrr/+erm4uFTH0AAAAAAAAAAAgMEaNGjwm4UfZ8+e1ZEjR5SZmSmbzVah+CMxMVGHDh2Sw+GQJHl6eiosLKxCwcevp5YtW8rdndPaAdQv/L8eAKDa/eEPf9DJkyf1xhtvGB0FAABUs6VLl2rMmDHy8vLSl19+qdtvv93oSAAAAAAAAAAAVInDhw+rZcuWhjz3uVKPyZMna+rUqbr11lvVvXt3vfLKK+rbt+8VPWZwcLAefPBBPfjgg5KkPXv2OMs9pk2bpnHjxqlZs2a68cYb1bdvX/Xt21dRUVFVOSwAAABcxI4dO9S1a1eFhoYaHQUAAAAAUI95eXn9ZtlHSUmJcnNzK5R8nCv+SExM1J49e5Sfn+9c3t/fv0LBx6+LP9q2bStfX9+aGhoA1AjKPAAA1WrTpk16++23tWDBAgUFBRkdp9ods9uU8t0yo2MAAH7DMbtNob4XPpCEK5eZmalRo0Zp1apVeuKJJ/T6669zIA0AAAAXVVZexjEUoBL27thqdAQAAAD8yt69exUREWFohqioKH3xxRfatGmT/vCHP6hfv36Kj4/X7Nmz1aVLl6t67MjISEVGRuqpp55SWVmZdu/ereTkZCUmJuoPf/iDTpw4oaCgIPXu3Vvx8fGyWq2KiYmpopEBAOqDPVs3yVFSbHQMoFYr/c/VjGfOnKmpU6cqNDRU3bp1U2xsrLp3766uXbvKz8/P4JQAAAAAAPybh4eHQkJCFBISIovFcsFl7Ha7Dh48qEOHDjlvDxw4oG+//VYHDx7UqVOnnMsGBQUpIiJCZrNZERERFeZbtGghNze3mhoaAFQJl/Ly8nKjQwAA6iaHw6HY2Fj5+flp9erVcnFxMTpStRo/frzmzZtndAwAQCU899xzmjt3rtEx6oTS0lK9/vrrmj59utq0aaMPP/xQ3bp1MzoWAAAAarFVq1Zp4MCBKi0tNToKcE2IiDArM/Nno2MAAABAUnR0tO644w7NmjXL6ChO54o2Nm/erGHDhmnGjBm67rrrqvx5SktLtW3bNiUmJiopKUlr1qzRqVOnZDKZFBcXp/j4eA0YMMDwshMAQO1UWlqq0LAw5WRnGx0FuCa4u7vrX//6l9zd3ZWamuqc0tPTJUlms1lWq1UWi0UWi0Vdu3aVt7e3wakBAAAAALgyJ06ccJZ87N+/X5mZmdq/f79z/syZM5L+XRzSsmXL80o+zs03bdrU4JEAwPko8wAAVJvZs2dr+vTp2r59u9q0aWN0HABX6ZFHHlFubq6++eYbo6MAqCUOHjyohx56SBs3btRLL72kiRMnysPDw+hYAAAAAK7A4sWL9fjjj+vs2bNGRwEAAABqpYKCAjVu3FhLlizRPffcY3ScCsrLy/Xll19qypQp+vnnnzVmzBhNmTJFgYGB1facDodD27dvV2JiorPgo6ioqEK5x6BBg9SyZctqywAAAFDf2O12bd682VnusW7dOv3yyy/y8PBQmzZtFBcX5yz5iI6OrvMXYAMAAAAA1A95eXnKzMy84HTo0CE5HA5Jkre3t0JCQmQ2m8+b2rZtK19fX4NHAqA+oswDAFAtsrKy1K5dOyUkJGjKlClGxwFQBaZOnaovv/xSO3fuNDoKgFpg6dKlGjVqlIKDg7VkyRJ17tzZ6EgAAAAArgJlHgAAAMBvW7lypW666SYdPnxYYWFhRse5oLKyMi1evFgJCQk6e/asEhISNG7cuBq5SnthYaFSUlK0evVqrV69Whs3bpTD4VC7du104403qnfv3urTp49MJlO1ZwEAAKhPMjMzlZSU5Cz4SE1NVVFRkfz8/NS+fXtZLBbFxcWpd+/eCgoKMjouAAAAAABVyuFw6OjRo7Lb7Rcs+9i/f7/OnUbv7+9/waIPs9msVq1ayc3NzeDRAKiLKPMAAFSLYcOGKTU1Vbt27aqRHwYBqH4LFizQhAkTdOrUKaOjADDQqVOn9Pzzz2vBggUaMWKE5s2bp4YNGxodCwAAAMBVoswDAAAA+G3jx4/XypUrtWvXLqOjXNKZM2f09ttva+bMmQoICNCMGTP00EMP1eiV2fPz85WUlKTVq1frhx9+0JYtW+RwOBQZGak+ffo4p9DQ0BrLBAAAUB+UlJTop59+UnJysrPkIyMjQ2VlZTKZTLJYLM6CjxtuuEE+Pj5GRwYAAAAAoNrk5+dr//79zmKPX89nZmaqsLBQkuTp6alWrVopIiJCERERMpvNuu6665wT50wAuFKUeQAAqtzatWvVp08f/fOf/9TgwYONjgOgiqxYsUKDBg3SiRMn1LhxY6PjADDA+vXr9eCDD+r06dP66KOP+O88AAAAUIdQ5gEAAAD8tpiYGA0aNEhz5swxOkqlZWVlacqUKVq0aJG6d++uOXPm6IYbbjAky5kzZ7Ru3TolJSUpOTlZa9eu1dmzZ2UymRQXF6f4+HgNGDBAERERhuQDAACoy06dOqUdO3YoNTVVycnJWrNmjXJycuTm5qbIyEhnwYfFYlFsbKw8PT2NjgwAAAAAQI3Izs6+aNFHVlaWysrKJEmhoaHOYo82bdpUKPqgKBPAb6HMAwBQpRwOh7p06aLw8HD985//NDoOgCqUnp6umJgY7dixQ+3btzc6DoAa5HA4NHPmTM2cOVP9+/fXJ598IpPJZHQsAAAAAFWIMg8AAADg4rKystSiRQutWLFCAwcONDrOZUtLS9MLL7ygb7/9VoMHD9bbb7+tVq1aGZqpoKBAW7ZsUXJyshITE5WUlKSioqIK5R5Wq1UxMTGG5gQAAKirbDabUlNTnVNSUpJOnDghHx8fderUqULBR3R0tFxcXIyODAAAAABAjSouLlZWVpYyMzOdU1pamtLT03Xw4EGVlpZKkvz9/WU2m51TdHS0YmJi1KZNG/n5+Rk8CgBGo8wDAFCl5syZo8mTJ2vnzp1q06aN0XEAVKH8/Hz5+vrq66+/1i233GJ0HAA1xG63a+jQodq6davmzJmjJ598kh9oAAAAAHUQZR4A5Kx+hAAAIABJREFUAADAxX300Ud6+umndfz4cTVo0MDoOFcsMTFRzzzzjA4ePKjnn39ekyZNkre3t9GxJEmFhYXOK8VT7gEAAFDzSktLlZGRUaHgY9OmTSouLlaTJk3UtWtXWa1WWSwW3XDDDWratKnRkQEAAAAAMExJSYkOHz5M0QeAS6LMAwBQZY4ePao2bdpo3Lhxevnll42OA6AaBAQEaNasWRo9erTRUQDUgJSUFA0dOlS+vr76+9//zg9kAQAAgDqMMg8AAADg4oYOHar8/Hx99913Rke5aiUlJXr33Xc1depU+fn5adasWRo+fLjRsc7jcDi0fft2Z7HHmjVrdOrUKQUHB6tr166Ki4uT1WpV9+7d5eHhYXRcAACAOunMmTPaunVrhYKP3bt3q7y8XCaTSRaLxfm5zGKxXNPFdwAAAAAAVJWrLfq47rrr1LhxY4NHAaCqUOYBAKgyo0eP1rJly7Rnzx75+PgYHQdANejUqZNuvvlmvfLKK0ZHAVDNPvjgA40dO1YDBgzQ4sWL1aRJE6MjAQAAAKhGlHkAAAAAF3b69GkFBQXpzTff1IgRI4yOU2XsdrumTZumDz/8UH369NEbb7yhDh06GB3rooqLi7Vx40atXbtWSUlJSklJ0YkTJ+Tn5yer1Sqr1apevXqpW7dunEQKAABQjU6cOKHNmzcrKSlJqampWr9+vY4dOyZ3d3e1bdu2QsFHu3bt5OrqanRkAAAAAABqjeLiYmVmZmrv3r3at2+f9u3b55w/dOiQs+gjKChIUVFRioyMVGRkpNq1a6fIyEiFh4ezrw1cYyjzAABUiYyMDLVv314LFizQI488YnQcANXk1ltvlZ+fnxYvXmx0FADV5OzZs3r66af10Ucf6YUXXtArr7zCwR4AAACgHqDMAwAAALiwhQsXauTIkbLZbAoMDDQ6TpVbt26dnnnmGW3btk1PPfWUXn75Zfn5+Rkdq1IyMzOVmJiopKQkJSUlaf/+/XJ3d1fHjh1ltVoVFxenvn37qmnTpkZHBQAAqNNsNptSU1OVnJyspKQkbdmyRYWFhfL19VWHDh1ksVhksVjUq1cvRUREGB0XAAAAAIBaqbi4WPv379fevXu1d+9e7dmzR3v27NHu3buVk5MjSfL29lbbtm2dJR/R0dGKjIxU27Zt1ahRI4NHAOBCKPMAAFSJwYMHKysrS1u2bOGEX6AOe+qpp7Rr1y79+OOPRkcBUA2OHDmioUOHKi0tTQsXLtQdd9xhdCQAAAAANYQyDwAAAODCBg0aJC8vL/3jH/8wOkq1KSsr08cff6zf//738vDw0Ouvv67777/f6FiXzWazOU8gTU5O1tatW1VWViaz2ews97BarYqJiTE6KgAAQJ3mcDi0Z8+eCgUfGRkZKisrk8lkcpZ7WCwWWa1WBQQEGB0ZAAAAAIBa7eTJk9q3b58yMzOVlpam9PR0ZWZmKj09XYWFhZIkf39/RUdHKyYmRmaz2TkfHh7O+Z6AgSjzAABctdWrV6tfv35auXKlBgwYYHQcANXo1Vdf1fz587V//36jowCoYmvWrNE999yjwMBAffnll2rbtq3RkQAAAADUIMo8AAAAgPPl5uYqJCREixYt0r333mt0nGqXl5enadOm6Z133lFcXJzeeeeda7r44vTp09qwYYOz3CMpKUlFRUUymUzOYo+4uDh17tyZH7ECAABUs9OnT2v79u1KTU1VamqqkpKSnL9BO1e+dq7go1u3bvLy8jI4MQAAAAAAtZ/D4dChQ4fOK/nYtWuXsrOzJUleXl5q3br1eSUf7dq1U8OGDQ0eAVD3UeYBALgqZWVlio2NVXBwsL7++muj4wCoZp999pkeeeQRFRYWys3Nzeg4AKrIF198oeHDh+uWW27RJ598Il9fX6MjAQAAAKhhlHkAAAAA53v77bc1adIk5eTkyMfHx+g4NWbLli0aPXq0tm7dqtGjR2vmzJl14ruDkpIS7dixQ4mJic6Cj7y8PPn6+qp79+7Oco+4uDh5e3sbHRcAAKDOs9lsznKP1NRUpaSk6Pjx4/Lw8FCHDh0qFHxER0fLxcXF6MgAAAAAAFwzcnNztXv3bu3Zs0d79uxxzh84cEClpaVyc3NTeHi4oqKi1K5dO0VGRioqKkoxMTHy9/c3Oj5QZ1DmAQC4KkuWLNHDDz+sHTt2KDo62ug4AKpZUlKSevXqpaysLIWGhhodB0AVeOedd/TMM8/oqaee0htvvMGV5wAAAIB6ijIPAAAA4HxWq1URERFavHix0VFqXGlpqd577z29+OKL8vPz05/+9CfdeuutRseqUqWlpcrIyFBycrKSkpK0Zs0aHTx4UO7u7urYsaOz3KN///4KCAgwOi4AAEC9kJmZqaSkJGfBx+bNm3X27Fk1btxY119/veLi4mS1WtW9e3c1b97c6LgAAAAAAFxzSkpKdPjwYaWlpSk9PV2ZmZlKS0vTzp07derUKUmSv7+/oqOjZbFYFBMTo+joaHXq1EmNGjUyOD1w7aHMAwBwxUpKStSuXTv17t1bH3/8sdFxANSAgwcPKjw8XCkpKbrhhhuMjgPgKpSXl2v69Ol6+eWXNXXqVE2bNs3oSAAAAAAMRJkHAAAAUFFGRobatWun7777TjfddJPRcQyTk5OjiRMnavHixbrnnnv01ltvKSgoyOhY1cZmsznLPZKTk7VlyxaVl5fLbDYrPj5eVqtVvXr1UkREhNFRAQAA6oWSkhLt2LGjQsHH7t27VV5eLpPJJIvFIovFori4OPXs2VMNGzY0OjIAAAAAANesw4cPKz09XTt27FBaWpp27dql9PR0FRYWytXVVREREWrfvr1iYmKct5GRkfLw8DA6OlBrUeYBALhi7733np599lllZGTwQxWgnnA4HPL29tZnn32me+65x+g4AK5QaWmpRo8erY8//ljvv/++nnjiCaMjAQAAADAYZR4AAABARc8//7z+/Oc/68CBA3JzczM6juF++OEHjRw5Urm5uZo9e7ZGjBghFxcXo2NVu9zcXCUnJ2vt2rVKTk5WamqqHA6HwsPD1atXL8XFxSkuLk5RUVFydXU1Oi4AAEC9cPLkSe3cudNZwrZx40YdPXpU7u7uatu2bYWCj06dOvF5HgAAAACAq2Sz2ZSamqr09HSlpaU5b4uKiuTu7q6WLVsqOjpaFotFMTExio6OVlRUFPvkgCjzAABcoaKiIrVp00Z33nmn3nzzTaPjAKhBoaGhmjBhgsaPH290FABXoKioSA888IBWrFihv/zlL7rllluMjgQAAACgFqDMAwAAAPgvh8OhFi1aaNSoUZo2bZrRcWqNgoICvfzyy3r99ddltVr1wQcfKDIy0uhYNaqgoEBbtmxxnjialJSkEydOyNfXVx06dFBcXJysVqt69uypwMBAo+MCAADUG+dOKkpNTVVycrJSUlJUUFCgRo0aqWPHjs6Cj3MnFQEAAAAAgKtTUlKiw4cPKy0trULRR0ZGhsrKyuTp6anrrrvOWe5xbp88IiKiXhTGA+dQ5gEAuCKvvfaapk+frn379ik4ONjoOABqUGxsrHr16qU5c+YYHQXAZcrLy9Mtt9yivXv36uuvv1b37t2NjgQAAACglqDMAwAAAPivL7/8UkOHDlVmZqZatWpldJxaZ+vWrRoxYoTS09P1wgsvaPLkyfLw8DA6liEcDod27NihlJQUrV+/XuvWrVNmZqZcXV3Vrl073XDDDc4pKiqKH6cCAADUkNLSUmVkZDgLPlJTU7Vx40aVlJTIZDJVKPegiA0AAAAAgKqTn5+v9PR07dy5U2lpadq5c6d27dql7OxsSZK/v7/at2+vmJgYdejQQZ06dVKHDh3UsGFDg5MD1YMyDwDAZTt16pTMZrNGjRqlWbNmGR0HQA2788475enpqT//+c9GRwFwGY4fP64BAwbo2LFjWrlyZb27Uh4AAACA30aZBwAAAPBfgwcPVklJiVasWGF0lFrL4XBozpw5mjZtmiIjI7VgwQJ169bN6Fi1Qk5OjjZu3HjeVeF9fX3VoUMHxcXFyWq1ymq1KiAgwOi4AAAA9UZ+fr62bdtWoeAjPT1dkmQymZyf0ywWi7p27Spvb2+DEwMAAAAAUHf88ssv5xV87Nq1SydPnpSbm5siIyPVuXPnCpO/v7/RsYGrRpkHAOCyzZw5U3PmzNH+/fvVpEkTo+MAqGHPPPOMtmzZoqSkJKOjAKikEydOaODAgcrOztbq1avVunVroyMBAAAAqGUo8wAAAAD+7ciRI2rVqpU+++wz3XPPPUbHqfV+/vlnjRw5UmvWrNGYMWP0yiuvyMfHx+hYtcq5q8InJycrKSlJqamp2r17t8rLy2U2m50njMbFxalz585ydXU1OjIAAEC9YbfbtXnzZme5x/r163Xs2DG5u7urbdu2zs9pVqtV7dq147MaAAAAAABVzGazVSjeTE1Nld1ul/Tv8k2LxSKLxaKYmBhFR0crJibG4MTA5aHMAwBwWfLz8xUREaExY8Zo+vTpRscBYIDZs2frvffe04EDB4yOAqASjh8/rvj4eB0/flyrV69WRESE0ZEAAAAA1EKUeQAAAAD/NmvWLM2bN09HjhyRl5eX0XGuCeXl5Vq0aJGee+45NWnSRPPnz1d8fLzRsWq1nJwcbdy4UampqUpOTlZKSooKCgrk6+urDh06OE8YtVqtCggIMDouAABAvWKz2SoUsaWmpqqoqEh+fn5q3769s+CjV69eCg4ONjouAAAAAAB1Tl5entLS0ioUfGRkZKisrExNmjRRTEyMs+TDYrFQwIlajTIPAMBl+eMf/6hXX31V+/fv5wcjQD21ePFiPfbYYyoqKmJHB6jlzpw5owEDBigrK0s//vgjRR4AAAAALooyDwAAAODfpRRt27bV4MGDNW/ePKPjXHOys7M1duxY/e1vf9ODDz6oefPmKTAw0OhY1wSHw6E9e/ZUOGl09+7dKi8vl9lsltVqdZ402rlzZ76nBQAAqEHnPqudK2JLSkpynkD06ysEn/u85u/vb3RkAAAAAADqnFOnTmnHjh1KTU1Venq60tLStHnzZp09e9ZZlh4TE6Po6GhZLBZ17dpV3t7eRscGKPMAAFTemTNnFBERoZEjR2rmzJlGxwFgkB9++EF9+/aV3W7nygJALVZcXKzbb79dmzZt0po1a9SuXTujIwEAAACoxSjzAAAAAKRVq1apf//+2rZtmzp27Gh0nGvWX//6V40dO1YuLi6aP3++hgwZYnSka1J2drY2bdrkPGk0OTlZhYWFzivCx8XFyWq1ymq1cjEWAACAGnb69Glt377d+Vlt7dq1ys7OlpubmyIjIysUfMTGxsrT09PoyAAAAAAA1DmFhYXauXOntm7d6px27typwsJCeXl56frrr1eXLl3UtWtXxcbG6vrrr5e7u7vRsVHPUOYBAKi02bNna8aMGdq/f7+aNWtmdBwABtm3b5/atGmjzZs3y2KxGB0HwAWUlZXp3nvv1YoVK7Rq1SreqwAAAAAuiTIPAAAAQHrggQe0b98+bdiwwego17y8vDw999xzWrhwoR577DHNmzdPfn5+Rse6pp27Ivy5q8Gfu/KcJJnNZlmtVmfBR7t27eTq6mpwYgAAgPrFZrMpNTXVOSUnJysvL08eHh7q0KGDrFars+AjOjpaLi4uRkcGAAAAAKDOcTgcysjIcJZ7bNmyRampqcrPz1fDhg3VuXNnxcbGqlu3boqNjVXr1q2Njow6jjIPAEClFBYWKjw8XI8++qheffVVo+MAMFBhYaEaNmyor776SrfddpvRcQBcwIQJE/TOO+9oxYoV6tOnj9FxAAAAAFwDKPMAAABAfXfy5EmFhIRo3rx5GjlypNFx6ozly5friSeekLu7uz7++GP179/f6Eh1it1u17p165xTamqqioqKFBAQUOGHqLGxsWrevLnRcQEAAOqV0tJSZWRkVCj42Lx5s86ePavGjRurW7duzoKPHj16cJE9AAAAAACqSWlpqXbv3q1NmzZp48aN2rhxo3bu3KmSkhIFBgae950K++ioSpR5AAAq5b333tNzzz2nAwcOKDg42Og4AAwWGBioGTNmaMyYMUZHAfA/FixYoFGjRunTTz/Vgw8+aHQcAAAAANcIyjwAAABQ373zzjtKSEiQzWaTn5+f0XHqlNzcXI0ePVp///vfNWLECM2dO1c+Pj5Gx6qTSkpKtGXLFm3YsMH5Y9S9e/dKksLDw50/Qo2NjVWXLl14HQAAAGpYSUmJduzYoaSkJGfBx+7du1VeXi6TySSLxaK4uDhnyUeDBg2MjgwAAAAAQJ1UUlKin376ScnJyc799F/vo5/bP4+Li1Pnzp3l6upqdGRcoyjzAABcUllZmaKiotS3b1/Nnz/f6DgAaoGOHTtq8ODBmjVrltFRAPzK8uXLdeutt2ratGmaPHmy0XEAAAAAXEMo8wAAAEB916VLF3Xs2FH/7//9P6Oj1FlLly7Vk08+qSZNmuiTTz5Rr169jI5UL5w6dUo7duxQamqqkpOTtWbNGuXk5MjNzU2RkZGyWCzOKTY2Vp6enkZHBgAAqFdOnjypTZs2OU8c2rBhg3Jzc+Xu7q62bds6P6tx8hAAAAAAANXr+PHj2rBhg9atW6eUlBRt2LBB+fn58vPzU48ePXTDDTeoZ8+e6tGjBxcHQKVR5gEAuKS///3vGjp0qNLS0tSuXTuj4wCoBW655RY1bdpUCxcuNDoKgP/Yu3evYmNjddttt+mTTz4xOg4AAACAawxlHgAAAKjPdu7cqQ4dOujHH39U7969jY5Tp2VnZ2vEiBFavny5Jk6cqOnTp8vLy8voWPWOzWZzXgn+XMlHXl6efHx81KlTpwoFH9HR0XJxcTE6MgAAQL1y7vPauasDb9myRYWFhWrUqJE6duxYoeDDbDYbHRcAAAAAgDqptLRUO3fuVEpKirPgIzMzU66uroqJiZHValVcXJz69OmjsLAwo+OilqLMAwBwST179lTz5s311VdfGR0FQC0xcuRI/fzzz/r++++NjgJA0pkzZ9SjRw+5u7srJSVFDRo0MDoSAAAAgGsMZR4AAACozxISEvSXv/zF+eM7VK/y8nItWLBAEyZMUHh4uBYuXKguXboYHateKy0tVUZGRoWCj02bNqm4uFiNGzdWt27dZLVaZbFY1KNHDzVr1szoyAAAAPWKw+HQnj17KpSxbd26VWVlZTKZTBXK2KxWqwICAoyODAAAAABAnZSdna3169crOTlZKSkp2rRpk0pKShQeHq7evXurd+/e6tWrl9q2bWt0VNQSlHkAAH5TcnKy4uLitHbtWsXFxRkdB0AtMX36dH3++efKyMgwOgoASffdd58SExOVmpqqli1bGh0HAAAAwDWIMg8AAADUV2VlZQoPD9fw4cM1c+ZMo+PUKwcOHNAjjzyilJQUjR8/XjNmzJCHh4fRsfAfJSUl2rFjh5KSkpwnje7evVvl5eXOE0bj4uKcJR+UzQMAANSs/Px8bdu2rUIhW3p6uiTJbDY7P6dZLBZ17dpV3t7eBicGAAAAAKDuKSgo0Pr167V27VqtWbNG69evV0FBgYKDg9WrVy/16tVLvXv3Vvv27bmoQD1FmQcA4DfdcccdOnLkiDZu3Gh0FAC1yEcffaRx48YpPz/f6ChAvff+++/r6aef1nfffaf4+Hij4wAAAAC4RlHmAQAAgPpq1apV6t+/v3bt2qWYmBij49Q7ZWVlmjNnjqZOnapOnTpp4cKFXKmsFjt58qR27typ5ORkJSUlaePGjTp69Kjc3d3Vtm1b58micXFx6ty5Mz9KBQAAqGF2u12bN292lnusW7dOv/zyizw8PNSmTZsKZWzR0dFycXExOjIAAAAAAHWKw+HQ9u3blZSUpOTkZH3//fc6fvy4fH191b17d8XHxys+Pl5dunRhv7yeoMwDAHBRe/fuVVRUlL744gvdddddRscBUIusWLFCgwYNUl5enpo0aWJ0HKDeSk9PV7du3ZxXqwMAAACAK0WZBwAAAOqrxx9/XNu3b9fmzZuNjlKvpaena/jw4UpPT9cf//hHjRs3zuhIqKSff/5ZGzdudE5bt25VYWGhfH191bVrV8XGxio2NlZdu3ZVy5YtjY4LAABQ72RmZiopKclZ8JGamqqioiL5+fmpffv2zjK23r17KygoyOi4AAAAAADUKWVlZdq+fbtWrVqlVatWac2aNcrPz1dYWJj69eun/v37q1+/fgoLCzM6KqoJZR4AgIt68skntXLlSu3du1dubm5GxwFQi+zatUvt27fXzp07df311xsdB6iXioqK1KNHD3l5eSkpKUkeHh5GRwIAAABwDaPMAwAAAPVRUVGRTCaTpk6dqueee87oOPVeSUmJXnzxRb322mu688479cEHH8jf39/oWLhMDodDe/bscZ4ompycrG3btqm0tFRNmjRRTEyMLBaLc4qJiTE6MgAAQL1SUlKin376ScnJyc6Sj927d6u8vFwmk8n5OS0uLk49e/ZUw4YNjY4MAAAAAECd4XA4tGHDBme5x7p163T27Fm1bdtW/fv310033aT+/furUaNGRkdFFaHMAwCgAwcO6P7779edd96pRx99VIGBgcrNzVWrVq302muv6amnnjI6IoBaJi8vTwEBAVq5cqUGDBhgdBygXpowYYI++ugjbdu2TeHh4UbHAQAAAHCNo8wDAAAA9dHSpUt13333KSsrS8HBwUbHwX+sXr1aDz30kFxdXbV48WL17t3b6Ei4Svn5+dq6das2b97sLPn46aefVFZWpqCgIFksFnXt2tV54mhoaKjRkQEAAOqVU6dOaceOHc4ytjVr1ignJ0dubm6KjIysUMYWGxsrT09PoyMDAAAAAFAnFBQUKDk5WatWrVJiYqK2bNkid3d3Wa1WDRo0SIMGDVKHDh2MjomrQJkHAEDfffedfve738nNzU2urq66++675eXlpX/84x86dOiQfHx8jI4IoBZq2LCh3nvvPT388MNGRwHqnQ0bNshqtWr+/Pl6/PHHjY4DAAAAoA6gzAMAAAD10X333afc3FwlJiYaHQX/48SJE3ryySe1dOlSPf3003r99dfl4eFhdCxUofz8fG3bts1Z7pGamqqMjAyVlZXJ399f0dHRzivCx8XFyWQyGR0ZAACgXrHZbM7PacnJyVq3bp3OnDkjHx8fderUqULBR3R0tFxcXIyODAAAAADANe/YsWNavXq1EhMT9fXXX8tms6l58+bq06ePBg8erCFDhsjf39/omLgMlHkAALR06VINGzZM5/6T4OnpqeLiYjVt2lQTJ07UiBEjFBAQYHBKALVNRESERo0apUmTJhkdBahXiouL1aVLFwUFBSkxMZEvwgEAAABUCco8AAAAUN+UlJSoefPmmj59up555hmj4+AiPv3/7N15XJVl/v/x92ETTHYEwSXEHdxBM7fUicmlIvcyNVvGbF9csmVGbWxa9VtZZpNZqS0uZZo1aZbmkhtuKLijpoKC7K6svz/m5xkRkAOcww2H1/Px4AHd517e13Vf9x1yX+dz5s/X448/rrCwMH311Vdq0qRJkXUKCgo0Z84cDR06VH5+fgakhLVkZWVpz549xRb4CAwMLPSG0U6dOqlevXpGRwYAAKgx8vLydODAgUK/q23fvl3Z2dny8vJSRESEunXrpvDwcN166638bg4AAAAAgBXExsZq5cqVWrNmjX7//Xfl5+erS5cuuuuuu3TPPfeoRYsWRkdEKSjmAQDQvHnz9Oijjyo3N7fQcpPJJAcHBzk7O2vkyJGaNGmSmjVrZlBKAFVNt27dFBERoffee8/oKECN8uqrr+rtt99WTEyMGjdubHQcAAAAAHaCYh4AAACoadasWaPIyEjFx8fz9/Yqbv/+/RoxYoTi4+M1e/Zs3X///YVef/vttzVp0iQNHDhQ3333nUEpYSsU+AAAAKi6Lly4oF27dhX6XW3//v0qKChQYGCgunfvbi7wER4eLjc3N6MjAwAAAABQbaWlpWn16tVavny5/vOf/yg9PV1t2rRRVFSUoqKiFB4ezgcGV0EU8wAA6P3339fEiROVnZ19w/UefPBBzZs3r5JSAajqhgwZIgcHBy1evNjoKECNcfLkSbVq1Ur/+Mc/NGnSJKPjAAAAALAjFPMAAABATfPMM89o7dq1iomJMToKLHD58mW98MILmjVrlkaOHKnZs2erTp062rRpk2677Tbl5eVJkhYvXqyhQ4canBa2lpmZqZiYmBLfNHptgY/OnTsrICDA6MgAAAA1Rnp6uqKjo7Vx40bt2LFDW7Zs0blz5+Tk5KTmzZsrPDzcXOSjVatWcnBwMDoyAAAAAADVTk5OjtavX6/ly5drxYoVOnHihOrXr6+77rpLgwcPVu/eveXo6Gh0TIhiHgAASdOnT9f06dNLnKjv7OyswMBAbd++Xf7+/pWcDkBV9dRTT2n37t3asGGD0VGAGmPIkCHas2eP9u3bp1q1ahkdBwAAAIAdoZgHAAAAapqQkBCNGDFC06dPNzoKymD16tV64IEH5OrqqtmzZ2vMmDFKSUlRXl6eTCaTPDw8dOjQIeY21ECpqanasWOHoqOjzQU+jh8/Lkm6+eabFR4eroiICIWHh6tjx47y8/MzNjAAAEANkpCQoB07dmjTpk3auHGjdu7cqUuXLsnd3V1t27Y1F2Lr0aOHGjdubHRcAAAAAACqnd27d2vFihVavny5du7cKX9/fw0ePFjDhg1Tz549KaZpIIp5AAD0wgsv6L333it2or6jo6Pc3d21bds2NWvWzIB0AKqqf/3rX5o3b56OHDlidBSgRli7dq369Omjn376Sf369TM6DgAAAAA7QzEPAAAA1CR79+5V27ZttWXLFt1yyy1Gx0EZJSYmatSoUVq3bp1MJpNyc3PNrzk7OysqKkpLliwxMCGqioyMDO03N9x1AAAgAElEQVTdu9dc3GPHjh3av3+/CgoKFBgYqPDwcIWFhSk0NFTh4eEKDQ2VyWQyOjYAAIDdy83N1cGDBwsV+Dhw4IDy8/PNv6dd/erevbu8vb2NjgwAAAAAQLVx4sQJff/991qyZIk2bdokPz8/9evXT6NHj1afPn0o7FHJKOYBANDjjz+uuXPnKicnp9Byk8kkFxcXrVu3Tl26dDEoHYCq6rPPPtMTTzyhixcvGh0FqBG6dOkib29v/ec//zE6CgAAAAA7RDEPAAAA1CSvvfaa3n//fSUmJjJZrZqaOnWqXn31VZU09W3p0qUaPHhwJadCdZCcnKxdu3Zp165d2rlzp3bt2qWjR48qPz9fvr6+6tChgzp27KgOHTqoQ4cOatasmU3uEydOnFBaWprat29v9X0DAABUR1lZWdqzZ4+5CNvGjRt17NgxOTo6qkWLFoUKfHTq1Em1atUyOjIAAAAAAFXegQMHtHjxYi1atEhxcXFq2LChRo4cqTFjxqh58+ZGx6sRKOYBANDo0aP15ZdfKj8/v9ByBwcHfffdd4qKijIoGYCq7Oeff1a/fv2Unp4uT09Po+MAdm358uUaOHCgtmzZos6dOxsdBwAAAIAdopgHAAAAapLbbrtNISEh+uyzz4yOgnJYu3atbr/99iJzHK5ycHCQp6enDh48qLp161ZyOlRHV984GhcXp9jYWPMbSC9fvqw6deqoRYsWCg0NNb95NCIiQq6urhU65vDhw7VkyRKNGDFCb775purXr2+l1gAAANiPhIQE8+9mO3bs0B9//KHU1FQ5Ozurbdu26tatm/l3tNDQUJlMJqMjAwAAAABQZe3du1dff/21FixYoFOnTqlbt24aM2aMhg0bJg8PD6Pj2S2KeQAAFBUVpRUrVhRZ/sEHH+iJJ54wIBGA6iAmJkbt2rXT/v371bJlS6PjAHYrPz/f/KlfS5cuNToOAAAAADtFMQ8AAADUFJcvX5a3t7c+/vhjjR492ug4KKOEhAS1bdtW6enpysvLK3E9JycnDRkyRF9//XUlpoM9ycnJ0aFDhwq9eXT37t26cOGCnJyc1Lx5c/MbR8PCwtSxY0f5+PhYvP/GjRvr+PHjcnZ2loODg1555RWNHz9ebm5uNmwVAABA9RcfH6+NGzeaf0eLjo7WlStX5OnpqdatW6t79+7q1q2bbrnlFvn7+xsdFwAAAACAKic/P1+//PKLvvjiCy1btkwODg4aNGiQHnzwQfXu3ZtimVZGMQ8AgG677TatX7/e/N8mk0mvvPKKXn31VQNTAajqkpOT5e/vr99++029e/c2Og5gt5YvX66BAwdq7969CgsLMzoOAAAAADtFMQ8AAADUFGvXrlWfPn10/Phx3XzzzUbHQRk99dRT+uCDD2QymWTJtLfly5fr7rvvroRkqAny8vJ04sQJxcbGmt88unXrViUnJ0uSAgMDzQU+wsPD1blzZwUEBBTZz4ULF+Tu7l5oDDs5OcnX11dvvfWWRo0axURZAAAAC+Xk5CgmJqZQgY/9+/eroKCg0O9n3bt3V9euXVW7dm2jIwMAAAAAUGVkZGRo+fLlWrBggX799Vc1bdpUDz/8sMaOHStvb2+j49kFinkAANS+fXvt2bNHkuTo6KihQ4fqq6++YmIAgBsqKChQrVq19Pnnn2vEiBFGxwHsVrdu3eTn56fly5cbHQUAAACAHaOYBwAAAGqKadOm6fPPP9exY8eMjoJySE5O1oIFC7Ro0SJt375djo6Oys/PV35+fpF1TSaT/Pz8dPDgQSYbwqYSEhLMbxzdsWOH4uLiFB8fL+l/BT7CwsIUGhqq8PBwZWRkqFu3bkX24+DgoIKCAnXo0EEffPCBbr311spuCgAAgF3IyMjQ3r17tWnTJm3cuFHbtm1TUlKSnJyc1Lx580IFPtq3by9HR0erHPezzz5T7dq1NXz4cKvsDwAAAACAyrR37159+OGHWrhwoRwdHfXAAw/oiSeeUIsWLYyOVq1RzAMAoCZNmig+Pl5OTk669dZbtWbNGrm4uBgdC0A10LBhQz3zzDOaMGGC0VEAu7Rx40b16NFDGzZsUPfu3Y2OAwAAAMCOUcwDAAAANUW/fv3k4+OjL7/80ugoqKBz587pp59+0ldffaU1a9ZI+m8Bj9zcXPM6zs7OuvfeezV//nyjYqKGOnv2rHbu3Kldu3aZv+Lj41VQUKDWrVvrwIEDhcbqtZycnJSXl6dBgwZp5syZatSoUSWnBwAAsD/XFmDbtGmT/vjjD128eFF16tRRu3btzAU+rhZiK4+6devq3Llz6tGjh+bMmaPQ0FArtwIAAAAAANtLT0/XvHnzNHv2bMXHxysyMlITJ07U7bffbnS0aoliHgAA1atXT2fPnlVYWJg2b94sd3d3oyMBqCY6d+6sHj16aMaMGUZHAezS0KFDderUKW3evNnoKAAAAADsHMU8AAAAUFPUq1dPkyZN0vPPP290FFjRuXPntHz5ci1evFi//fab8vPz5eDgYC6W8OOPP6p///4Gp0RNl5GRoV27dmnmzJn6+eeflZOTc8P1nZ2d5ejoqBdeeEGTJ0+Wq6trJSUFAACwf7m5uTp48GChAh+7d+9WXl6eAgMDCxX36Nq1q3x9fW+4v1OnTqlhw4aS/lucraCgQM8//7z+8Y9/qE6dOpXRJAAAAAAArCo/P18//fST3nvvPa1Zs0ZdunTRK6+8ov79+8tkMhkdr9qgmAds5vjx49q+fbvRMQBYYPTo0XJzc9Mbb7whb29vo+MAdq9Tp04KDg42OoZV3HPPPapdu7a++uoro6MAdufcuXNq0KCBPvnkE40aNcroOAAAAADsHMU8AAAAUBOcPHlSjRo10u+//66ePXsaHaeQo0ePaufOnUbHsAsXL17Ujh07tHnzZu3evVu5ubny8vLShx9+KGdnZ6PjoZpxcnLSgAED5OLiYrV9hoeHl+l6d3BwkJeXlx555BFFRERYLQcAXMsW9zsAqG7Onz+v3bt3mwt87NixQ3FxcZKkwMBAde/eXd26dVN4eLgiIiIKFVv77rvvNGTIEF379hxnZ2d5enpqxowZGjVqFG90uk5BQYHS09MlSXl5ecrMzJQk5eTk6Pz588WudyPp6ekq7e1RDg4O8vT0LHVf18+nd3d3l5OTkyTJ09NTDg4Oxa4HAAAAAPZq9+7d+te//qWlS5eqTZs2Gj9+vO6//345OjoaHa3Ko5gHbOa+++7TN998Y3QMAACqnHvvvVdff/210TGs4rHHHtOBAwe0du1ao6MAduftt9/Wa6+9poSEBNWuXdvoOAAAAADsHMU8AAAAUBP88MMPioqKUnp6ujw8PIyOU8igQYO0bNkyo2MAKMbKlSs1YMAAq+wrPz9fN910ky5fvmyV/QGANVnzfgcA9iIxMVHbtm0zf23fvl0ZGRmqVauWOnTooE6dOqlz587avHmz5s6dq+zs7ELbOzg4qKCgQN26ddOcOXMUFhZmUEssl5WVpczMTPNXVlaWsrKylJOTo/T0dGVnZ+vChQu6cOGCsrOzlZaWZi7AcfHiRV25ckXp6enKyclRVlaWeZ+5ubmSpIyMDOXn5xvZRKtzdHQ0/53B2dlZderUkSR5eHiYi7q4urrKzc1N7u7ucnZ2lpeXl2rVqqXatWurTp06cnZ2lre3t3l7Dw+PQl9X9wkAAAAARtq9e7emT5+uZcuWqXXr1poxY4Zuv/12o2NVaU5GB4D9ysvLU9e+d2n8ux8bHQUAgCpjxrOPKi8vz+gYVhMYGEghD8BGPv30U40aNYpCHgAAAAAAAAAAWMmBAwdUv379KlfIQ5Jy8/LU8+7BeuatWUZHAfD/5WRn6962weY3HVrD4cOHixTycHR0VH5+vvlTxOt4eqtBk6Zq1Kylgho3UYMmzRQUHCL/+g1l+v+fAA4A1mSL+x0A2IvAwEBFRUUpKirKvCwhIUGbNm3Sxo0btWPHDn3yyScKCAhQTk5Oke2vFq3YunWr2rVrpyeeeELTp0+Xu7u7zTJnZmYqNTVVycnJSk1NVUpKilJTU5WRkaHMzEylp6ebf75arCMzM1MZGRlKT09XSZ8X7ODgIE9PT3MBiptuukkuLi7y8vKSs7Oz3N3d5evrK1dX10JFLCSpdu3aqlWrliTJ3d1dTk7/fSuTp6enHBwcZDKZ5OXlJalwYYyrrha7uJFrj1GSy5cv69KlSzdc52qxkmtdW4AkLS1N0n/fL5OZmSlJ5mIm1x/j2qImly5d0uXLl3X69Gnl5OQoIyNDV65c0cWLF3X+/Hnl5OSY912cq/3v5eVlLvDh7u5u/tnb21seHh7y9PSUr6+vfHx85OfnZ/7ZlmMOAAAAQM3Rvn17LV26VLGxsXrppZcUGRmpO++8U++8845atGhhdLwqiWIeAAAAKLfAwEAlJiYaHQOwO7t379bBgwc1f/58o6MAAAAAAAAAAGA3Dh8+rGbNmhkdA0ANdvX5urOzs4KDg3X48GF1juyvzn3+qqDGTRQUHKLa7lWv4BAAAAD+JygoSEOHDtXQoUMl/bd4g5+fX4lFMCSZC3189NFH+vrrr/XOO+9o9OjRpR4rJydHSUlJOnPmjM6cOWP++WqRjquFOq4t2nF9UREnJyf5+vrK09NTHh4e8vLykqenp+rVq6fmzZubi0FcLQhxbYGIawtGODo6VqDXqgZXV1e5uroaHeOGcnNzzQVWrv/KyMgoVIjl6ld8fLzS0tLM66SkpBT54EEXFxf5+PiYi3tc+93X11cBAQHy9/dXYGCg+eerRVcAAAAA4HphYWFavny5fv31Vz3//PNq06aNHn/8cU2ZMkXe3t5Gx6tS+JcVAAAAyi0wMFCZmZk6f/686tSpY3QcwG4sXrxYwcHB6tSpk9FRAAAAAAAAAACwG4cOHVLLli2NjgGgBuvVq5cSEhLMn9zu6uqqnncNUue/3GF0NAAAAJTTiRMndOHCBYvWzcnJ0blz5/TAAw9o9uzZeuKJJ2QymZSUlKTTp08XKdyRlJRUaPubbrpJAQEB8vPzMxdiuPnmm4sUZvDx8ZGfn598fX3l4UGxuOrEyclJ3t7eFX7zW0ZGhs6dO1eo6Mv130+fPq29e/cqOTlZSUlJunjxonl7k8kkf3//QgU+AgICFBQUZF5Wv359NWrUSG5ubhVtNgAAAIBq6i9/+Yt27dqlhQsX6oUXXtA333yjjz/+WFFRUUZHqzIo5gEAAIByCwwMlCSdOXNGTZs2NTgNYD++++47DRkyRCaTyegoAAAAAAAAAADYjePHj6tfv35GxwBQw119zg4AAAD7sH37djk4OCg/P/+G6zk4OKigoEAFBQWSpK1bt2rr1q2SJG9vbwUGBiooKEiBgYEKDw9XYGCgvL29zcuCgoL4dGNYzNPTU56enmrSpInF21y6dElpaWlKTExUQkKC+fvVZZs3b1ZiYqJOnjypnJwc83bXjt+QkJBCP4eEhKhhw4Zydna2RTMBAAAAVAEODg4aPXq0oqKiNGnSJN1zzz0aOnSoPv74Y/4dK4p5AAAAoAICAgIkSWfPnqWYB2AlBw4c0MGDBzVv3jyjowAAAAAAAAAAYFeSkpJUr149o2MAAAAAAKq5lJQUHTlyREePHtWHH35oLtBhMpnMP1/l5OSkOnXqyN/fX/Xr11eTJk0UFhamiIgItWzZUn5+fkY0ASjCzc1Nbm5uCgoKUnh4+A3XTUpKUkJCgk6ePKkTJ07o1KlTOnXqlOLi4rRq1SolJCSYC344ODioXr16atKkiZo0aaKmTZsW+pk39wEAAAD2wdPTUx9//LH69u2rcePGqUOHDlqwYIF69OhhdDRDUcwDAAAA5ebv7y+TyaSkpCSjowB245dffpGXl5c6d+5sdBQAAAAAAAAAAOxGVlaWLl26pLp16xodBQAAAABQDWRkZCguLk4HDhzQ0aNHzcU7jhw5ovT0dEmSi4uLPDw85O7uroCAAN18881q1qyZWrdurYiICHXs2FFOTrxtB/bH399f/v7+at++fbGv5+fn68yZM/rzzz916tQp/fnnn4qPj9eRI0e0YcMGnThxQrm5uZIkHx8fc4GPq99btWqlVq1ayd3dvTKbBQAAAMAKBg4cqO7du+tvf/ubbr/9dn388ccaM2aM0bEMw18FAAAAUG4uLi7y8vLS2bNnjY4C2I01a9aod+/ePMQFAAAAAAAAAMCKzp07J+m/bzYBAAAAAOCqzMxMHT58WLGxsYqLizN/P3bsmAoKCuTi4qIGDRooJCREHTt21JAhQxQSEqLQ0FC1aNGCeV5AMRwcHBQUFKSgoKBiX8/NzTUX+Lj266efftKBAwd04cIFSVJgYKDCwsIUGhpq/t6uXTuKfAAAAABVXN26dbVs2TJNmzZNDz74oHbt2qX/+7//k4ODg9HRKh1/NQAAAECF+Pv7KykpyegYgF3Iy8vTunXr9K9//cvoKAAAAAAAAAAA2JWsrCxJkoeHh8FJAAAAAABGOX78uKKjo7V9+3bFxMRo//79OnHihCSpdu3aatWqlcLCwvToo4+aCwcEBwfLZDIZnBywL05OTgoJCVFISEiR1/Lz83Xs2DFzYZ19+/Zpw4YN+ve//63Lly/LZDIpODjYXNgjIiJCERERatiwoQEtAQAAAFASk8mkqVOnKjg4WI8++qiSkpK0YMGCGlcUs2a1FgAAAFYXEBBAMQ/ASuLi4pSZmanu3bsbHQUAAAAAAAAAALuSnZ0tSXJ2djY4CQAAAACgMiQkJCg6Otr8tX37dp07d06Ojo5q1aqV2rdvr3HjxiksLExhYWEKDg6ukZ8QDFQ1Dg4OatKkiZo0aaK7777bvDwvL0/Hjh3Tvn37zEU+li1bpjfeeEP5+fmqV6+eubBHRESEOnXqJH9/fwNbAgAAAECSxowZo0aNGumuu+7Sgw8+qC+++KJG/fubYh4AAACoEH9/f4p5AFaybds21a5dW2FhYUZHAQAAAAAAAADAruTk5EiSXFxcDE4CAAAAALC2goICxcbGau3atVq3bp22bt2q06dPy2QyqXnz5oqIiNDLL7+siIgIdejQQTfddJPRkQGUkaOjo5o2baqmTZvqnnvuMS/PysrSzp07zYV7FixYoKlTp0qSGjVqpC5duqhXr17q1auXWrVqZVB6AAAAoGbr06ePvv/+e915550KCQnRtGnTjI5UaSjmAQAAgArx9/dXbGys0TEAu7B9+3Z17NhRTk78Uw0AAAAAAAAAAGu6WszD0dHR4CQAAAAAgIoqKChQXFycuXjH+vXrlZycLC8vL/Xs2VNPP/20IiIiFB4eLk9PT6PjArAhd3d33XbbbbrtttvMy9LS0hQdHa3t27frjz/+0AsvvKCsrCzVq1fPXNijV69eatGihYHJAQAAgJolMjJSs2bN0rhx43Trrbeqb9++RkeqFLxDDAAAABXi7++v3377zegYgF2IiYlRRESE0TEAAAAAAAAAALA7rq6ukqTLly8bnAQAAAAAUB4XLlzQzz//rGXLlumXX35RUlKSPD091bNnT02ePFm9evVSu3btKOIIQN7e3oqMjFRkZKQkKTc3Vzt37tS6deu0bt06TZgwQefPn1dgYKD69u2re+65R5GRkXJzczM4OQAAAGDfxo4dq3Xr1mns2LGKjY2Vu7u70ZFsjmIeAAAAqBB/f38lJSUZHQOwC4cOHdKIESOMjgEAAAAAAAAAgN3x8PCQJGVmZhqcBAAAAABgqdTUVK1cuVLLli3TqlWrlJ2dre7du2vixInq1auXOnToQPEOAKVycnJS586d1blzZ02aNEm5ubmKjo7W2rVrtXLlSg0cOFBubm7q16+fBg4cqAEDBsjT09Po2AAAAIBdev/999WsWTPNnDlTU6ZMMTqOzTkYHQAAAADVW0BAgNLS0pSTk2N0FKBaS0tLU0pKipo3b250FAAAAAAAAAAA7M7VN2BQzAMAAAAAqraLFy9q/vz5ioyMVEBAgMaOHaucnBzNmjVLiYmJWrdunSZMmKCIiAgKeQAoFycnJ3Xp0kUvvviiNm3apFOnTumdd95RRkaGxowZI39/f/Xv31/ffPONrly5YnRcAAAAwK74+fnp+eef17vvvqtLly4ZHcfmKOYBuzLtoeFGR4AdMnpcGX18W7DHNpWmJra5uuOcWc7f318FBQVKTk42OgpQrR06dEiSKOYBAAAAAAAAAIANeHl5SfrvpzoDMA7P4o1F/1cPnCfbq4p9XBUzAUBl279/v8aNG6fAwED97W9/k4eHhxYuXKikpCStXLlSDz/8sOrWrWt0zBojMjLS6AhApQkMDNS4ceO0evVqnT17VnPnzpWjo6NGjRqloKAgPfvss4qPjzc6JgAAAGA3xo4dq/Pnz+uHH34wOorNUcwDVcrglkEa3DKo3NsXFBRYMY19Km//VvTcVKbUs2f03sQn9UiPDhoS2qDajyujj19eN+rz6tqmisjLzSvXdtXluiuLkq7JqtbWmjhOy8vf31+SdPbsWYOTANVbQkKCTCaT6tevb3QUAAAAAAAAAADsjpubm/z9/XX8+HGjowCV5uSRg5rywFDd37FZlZn7w7P4iqnu86CqA64T2zHiPlTSMSvSx7Zqh72edwCwxJYtW3TXXXcpLCxMa9eu1ZQpU3Tq1Cl9++23Gj58uDw8PIyOWCKTyVSu1yqDyWSqUAb+31Q6o8+xvajoWLU2b29vjRo1Sj/88IP+/PNPTZw4UStWrFDz5s01dOhQ7dq1y+iIAAAAQLUXEBCgLl266NdffzU6is1RzANVyrcHEiq0/dTPFlspCa5X0XNTmd6f/LQCb26sd1eu1de74zVx1twK7c/ocWX08W3BHttUmlfnLzU6QpVRXe4nNXGclldAQIAkKSkpyeAkQPV29uxZeXt7y9nZ2egoAAAAAAAAAADYpSZNmujo0aNGxwAqzazJz+qO+0br8y2xmjJvkdFxJPEsvqKYX1cz2Ot5MmLOUEnHrEgf26od9nreAeBGDh06pEGDBunWW29VWlqali1bpv379+v5559X3bp1jY5X7VW0GMeaNWuslAS4sapcOCYwMFCTJ0/W4cOH9dVXX+n48eOKiIjQ/fffrxMnThgdDwAAAKjWwsPDFRMTY3QMm6OYBwC7c2DHNg0c+5TqeHrJ2cVFXSL7V5viAQBQHXl6esrV1ZViHkAFJSUlmYvjAAAAAAAAAAAA6wsJCVF8fLzRMYBKc3x/rLpE9pezi4vadu3B/BkAAABUCXl5eZoxY4bat2+vI0eO6Mcff9TGjRsVFRUlBwfe4gKg6nF0dNSwYcO0bds2LV68WNHR0WrTpo0++uijKl2MBAAAAKjK/P39lZKSYnQMm+MvHagW/jx8QK89Okr3d2ym+zs20z8fGaE/Dx8otM7glkEa3DKoTPu9us2ZP4/rrace1ujOLYvs58/DB/Ta2JHmY782dqTFxy5p+fbfVuul++7WvW2DNa5PZ332+hRdunC+2G3PJSbojcfH6P6OzfRQt7Z6b+KTykpPK3cfXbvvwS2DNPuV8ZZ3mKRziaf15pMPaWREC43o0FSvPTpKp44eLnceW7QxJztb97YNLtTOks7F8QNxevWhezWifRONDG+u6X+7X7s3riuSsdgspYyLi1mZ+uz1KXrs9i66t22wHu7eXrMmP6vDMbtu2MfF9VFF+q20NprbY8XzdaOxdn2brl0ndtsfkqSNPy4v9rxZ0u+W9umpI4f0z0dGaGR48xLHsi3vEda4ZitrHErlv1YsvTeXZczcaN+WnLOy3IOvZa2+tFd169bV2bNnjY4BVGupqany8fExOgYAAAAAAAAAAHarZcuW2rdvn9ExrMaI59+S9eYhWPIM1tLntNaYT1Cmtlk4T+DU0cOaPPxO3dc+RK/cf4/O/HlcJ48c1ORhAzSiQ1P9Y/QQnUs8XSSHteZH5OXlamhYQw1uGaSFM14rlK249W09R6Ui83DKmsWSuQH2hPl1VWN+XVn6oqQ+LalPTh45qNfGjtSIDk01Mry5Xn34Pp06cqhC85Iqcp8qTaG8ES305pMPlbgfa93DLT2mNe53kqw+9sozD8pafQcAlen8+fMaNGiQXnzxRT399NPasWOH+vfvb3QsM5PJJJPJZNHyq/999TWTyaRHHnmk1Nckad++fRowYIDc3d3l7u6uvn37Fvn36tXtjh49qkGDBsnb27vEfGVRlmOXhSV59+3bp/79+5uP3b9/f4uPXdLyFStWqFu3bnJ1dVVwcLCee+45ZWVlFbvtyZMnFRUVJXd3dwUEBGjkyJHFvnHM0j66dt/Xn+PSWNIXloiNjVX//v1Vp04deXh46I477lBcXFyR/iprv1rSB5Yoy34sPT9GMplMGjx4sPbt26eXX35ZzzzzjIYNG6ZLly4ZHQ0AAACodi5fvixXV1ejY9gcxTxQ5Z3587imPXivInpH6qM1WzTnt2267e7BeuPxB5VyJtG8Xnk+OeLqNv+eOllRDz2muet36+V/Lyx07Ol/u1+33nGnPlqzRbN/2axbIvvrn4+M0Jk/j5d67JKWv/H4GPUeOExfbNuvNxav1PmMdM395yvFbjv7lfG6474H9OnG3Xpr6c+6cvmSvnjz1ULrlrWPvj2QYP56fPoMC3vrv2Y+N063/nWAZv+yWR+t2aJbbu+nfz4yQkmnT5Y7j63bePXregnH4zXjuUd1zyNP6LMt+/TGopW6fOmi/vnIiCL7uz6LJeNi1uRndJO7h15f9IMWRB/SK/9eqDN/HtPkYQMs7u/ijl+WfrOkjbY4Xzcaa9e3aUnsSdVrFKwvtu1XWOeukqTuA6I0d8Mu1fHw1Fe7jpSp3y3t0xnPjVPvgcP10a9bSxzLtrpHWOOarcxxWN5r5UbLS1rPkjFzo32Xds6kst2Dr2WNvrRn/v7+Sk5ONjoGUK1dunRJbm5uRscAAAAAALi24LwAACAASURBVAAAAMBudenSRcePH1dCQtnnmFRFRjz/tuY8BEuewVqyjrXmE1jatrLME1j0wQw9+a//06cbdiu4ZZjenfikvnn/HT35+ruau36nGjRpps/fmFYoh7XnR1x9Bj9y/MuFlpe0fnHLrDVHpSLzcMqSRbJsboC9YH5d1ZhfV9a+KKlPS7tO5vy6VR/9ulV9Bt2rmc8/VmSbsra1PPepsvTFnF+3avYvm3XrXwdo5nPjyt1v1jxmRe93V12/bm5OToXHXnGZKnr9AUBVcvnyZUVGRmrr1q3asGGD3njjDTk7Oxsdq5CCggKLl19dVlBQYP6aO3duqa8dOXJEkZGRuuuuuxQfH6/jx49r5MiRioqK0qlTp4rs/7HHHtOECROUkJCgn376qULtK+uxy6K0vEeOHFG/fv00ZMgQxcfHm4t+9O3bV0eOHCn12CUtj4qK0gMPPKDU1FRt2bJFqampeuqpp4rd9pFHHtFjjz2mxMRERUdH6+LFi5owYUKhdcvaR8Wd49JY2helOXr0qHk/x44d07Fjx/Tggw/q3nvvLZTx+p+L65vy9IEl7SzLfq4/P9nZ2UXOT1Xh7OysF154QatWrdKvv/6qu+++Wzk5OUbHAgAAAKqV+Ph4NWjQwOgYNkcxD1R5i2a9o7vGjNUd946Wh4+v3L281fPuwRoy7hkt/3S2VY4xeNzTatEhQi6ururYs8//HlTNekdRDz2mPoPvlYePrzx9/XT70BG6e8yjWvRB2YpgXOvbAwmKHDZStVzd5OXnrwdfelXRa1cXu27fEWPUoUdvuda+SX6BQRr5/Evas2ldoXUqo4+uihw+Uj3vHiwPbx9zf9w5+hEtmvW//ihrHqPauGjWOxoy7hm17dpDtVzd1KBpcz3+z3cs2s6ScRGzeaP6j3pYXr515eziosahrfXMW7PKlbU4lvZbaW20xfkqCwdHR3Xte5c2/PBdoeXrli1Rt/5RquVW25zTmtfjkMeeVfcBUXL38i5xLF9l7XuENcZzZY7D8l4rRirpnElluwdfy9bXdHUXEBCgs2fPGh0DqNauXLmiWrVqGR0DAAAAAAAAAAC7dcstt8jR0VFbtmwxOopVVebzb2vOQ7DkGawl61hrPoGlbSvLsfqOeEANmjRTbXcPDXr0aR3es1P9Rz1kXjb40acVF72lQseoDNaao1KcsvepZfNWyjs3oDpifl3VmF9X1r640dyWIvv+YIbufnCced/uXt7qPiBKgx59utgcZZsLVvb7VKl9cV1eD28f9bx7sCKHj6xwv1njmDdSlrlx1687asLLNhl7lX39AYAtPf300zp06JA2bNigW265xeg4hpk6daqee+45jRs3TnXr1pWvr69Gjhypl19+WW+//XaR9V966SV17dpVbm5u6tevX7kKbZT32OVRUt6pU6dqwoQJeuihh1S3bl35+/vrkUce0fPPP69p08pWPOxaBQUFGjt2rGrXrq169erp3Xff1Q8//FDsuo8//rj69u2rOnXqqGHDhnr99de1enXh3zMro4+s1RdTp07V+PHjzfvx9fXVvffeq5deeqnC+azRB2Xdz/Xn58033yxyfqqa3r1767ffftOWLVsq3O8AAABATVJQUKCNGzfWiL8PUMwDVV7MHxvUrf/dRZZ37PUX7fljvVWO0bRthxKP3fn2vkWW3xLZTzF/bLDKsSWpjoenzmekF/taaKcuhf67bv2GSktOKpLT1n10VYeefYosuyWyn/Zs+r3ceYxq474tm9Tm1h6FlgU1blLqp1BYOi5atA/X6489oF0b1iovL1eS5N+gUbk+5aI4lvSbJW20xfkqqz6D79Xa7xYVWvbrt18rctj/HqZa+3ps27VHkWXXj+WrrH2PsMZ4rsxxWN5rxUglnbPi3OgefC1bX9PVnb+/v5KSKnYvAGo6inkAAAAAAAAAAGBb7u7uCg0NVVxcnNFRrKoyn39bcx6CJc9gLVnHWvMJLG1bWY4VEtrG/LO3X90iy3z8A5SZmlJom8qar1QW1pqjUpyytre881YsnRtQHTG/rmrMrytrX5RlbkvMpvXF7rtdt57F5ihLW8tznypv3g49eheb1xpjqCzHvJGy3GOuX9cvsL5Nxp7R1x8AWMvBgwc1b948zZ49W82aNTM6jqHWrFmj4cOHF1k+YMAA/fLLL0WWd+7c2bBjl0dJedesWaN77rmnyPKBAwdqzZo1Vjm2JHl7eys1NbXY13r2LPz7U3BwsBITE4vktHUfWasvfvnll2L3ExkZWeF81uiDsu7n+vPTqFGjIuenKmrfvr1mzJihWbNm6dSpU0bHAQAAAKqFw4cPKyEhQVFRUUZHsTknowMApclKT9O4PsX/QcfF1dUqx6jl6lbs8sz0VHn5+RdZ7l03QFlpxf+BpzSZqSlaOPNf2rVhrdLPJSs/L++G69fx8Cz0384uLkWq6VZGH13l5Vu3yDLvuoUf2JU1j1FtzExPlYe3T7m2s2RcTHjv31r84Ux98upLykxNUePQ1uoS2V99RzwgRyfncmW+liX9ZkkbbXG+yirw5sZycXXV8QNxCm4ZqrjtW1S7jrsah7Y2r2Pt69Hdy7vYfRX38Nna9whrjOfKHIflvVaMVOI5K+M9+Fq2vqaru4CAAO3du9foGEC1lpeXJ0dHR6NjAAAAAAAAAABg1zZs2CBPT8/SV6xGKvP5tzXnIVjyDNaSdaw1n8CStpX1WG431TH/bHJwKHZZcXM9rD1fqaKsNUelOGVtr0VZKjA3oDpifl3VmF9X1r4oqU/Lsu/i7v9lbWt57lPlzVvcMmvewy095o2UZW7c9es6ODraZOxV5vUHALa0atUq+fn5aejQoUZHMVxKSoqCg4OLfc3Nreh9v3bt2oYduzxKynvu3DnVq1evyPLAwECdO3euXMdKTk7Wiy++qJ9//llnzpxRXim/O3p7F/79qVatWkX+/10ZfWStvihpP76+vhXKZ60+KOt+rj8/jsX8flVVPfjggxo/frzWrFmjMWPGGB0HAAAAqPKaN2+ukydPKiAgwOgoNkcxD1R57t4+eu+n34s8+KgMHl4+Sks+K//6DQstT0s+K/frHj6bTCblZGfL2cXFvKy4TwN4b9JTqt+4iV77arl86wXK0fG/l+HglkHlzlmZfXQ+I111PL0KLUtLPisPn//9wccWeWyyTy9vZaalyse/bDd7S8dFbXcPjZk8VWMmT1VmWqr2bt6olV98orjorZr4/idWaUNpLGmjkdfYtfoMule/ffu1Hnr5n/r1268VOXxkodfLcj1aIj0luUhxmuvHcmnKm8kafV6Z49DSa8XS+2B5WGvfFbkHV4VruiqrW7euzp49a3QMAAAAAAAAAAAA4IbsrZCHVLnPv605D8GSZ7CWrGOt+QSWtM3acxeMOoYtnu/beh5OWdhiflZVxvy60lVGH9ny2vXw8lH6uSTVDWpQaHn6uaQi61aFuWAl5S3ufFur38pyzMpky/NRGf+/AABrOnv2rOrVqyeH/188qiozmUy6cuWKatWqZV6Wmmq9Qkl+fn6Ki4srUrigMhh97MTExCLFHRITE+Xn51domaXnYNSoUWrRooU2btyoBg0ayMnJybx9RXLauo/K0hel7efMmTO6+eabCy0/c+ZMsetb2q/W6gMjx1tlc3Z2lr+/f4l9DwAAAKComlDIQ5Kq/l9CUOO1795LsVv/KLJ8f/RWTRx0h02P3bZrD21d/VOR5Vt/+Y/adu1RaJmXn7/OJZ4utCxu+5Yi2x7cFa3hT02Uf/2G5geN2ZcvVyhnWfqoIn+YkqSYP9YXWbb1l/+oXbfbypXHUrbYZ1jnrkXac/xAnJ4ZcFsJW/yXpeNicMsgpZxJlCR5ePuoW/+79fK/F2jPpt/Llbc8LGmjra6xso61rv3u0rZfVykzNUW7NqxV9wH3FHq9LNejJXZvWFfsvq4dy6UpbyZrXLOVOQ4tvVYsvQ+W5EZjpqL7vqoi9+CqcE1XZQEBAUpKSqo2FbABAAAAAAAAAABQM3300UcaMWKE0TGsqjKff1tzHoIlz2AtWcda8wksaZu15y4UpzKOYa1n8Ney9TycsrDF/KyqjPl1pauM+XW2vHbbdb9N29b8XGT57o3riiwzcjxcVVLe4uYeWqvfynLMymTL81EZ/78AAGtq0aKFDh8+rPR0YwstWaJevXr6888/Cy1bv774/6fc6HeHkl674447tG7duiLLN2zYoPDwcMuDloORx7799tv13XffFVm+bNky3X777YWWWXoO/vjjD02bNk3BwcHmQh6XLl2qUM6y9FF5f3csS1/cyF//+ld9//33RZavWrWq2PUt7VdrjRMjx1tlS0xM1IkTJ9SqVSujowAAAADVwsmTJ/XQQw/pypUrRkexOYp5oMob/tR4LZr1jjavWqms9DRdunBe0et+0czxj2no48/Z9NjDnhyvFZ9/rDVLvlJGyjllpqbo16Vfa8XnH2v4k+MLrduuW099OfN1pZxJ1OWLF7R74zqt+mZ+kX226BChBe/8U0mnTyo3J0dn/jyuj6e+UKGcZekjn4B6Orh7h/Jyc7Rn0+96tHdEmY717cfv64//rFBWepq5P1bOn6vhT/2vP2xxzmyxzyGPPaMls/9PMX9s0JVLF3Xi4H59+NJz6j/yoRtuV5ZxMfuV8Tp55KBysrOVnpKs5Z9+VKkPyixpo62usbKONdfaN6n1Ld307sQn1anPX+V2U51Cr5el3y2xetECbVi57IZjuTTlzWSNa7Yyx6Gl14ql98GS3GjMVHTfV1X0Hmz0NV2V1a1bV9nZ2crMzDQ6CgAAAAAAAAAAAFCit956S19//bWys7ONjmI1lfn829rzECx5BlvaOtaaT2BJ26w9d6E4lXEMaz2Dv1ZlzMOxlC3mZ1VlzK8rXWXMr7PltTv8yfFa8dkc/fbtN8pMTVFWepo2/vi9Vi9aWKG22sr1ec9npOuP/6zQtx+/X2Rda/VbWY5ZmWx5Pirj/xcAYE2DBg1S7dq1NW3aNKOjlCoyMlIvvfSSTp06pfPnz2vVqlWaM2dOsevWr19fmzdvVk5OjlavXq1GjRqV+trUqVM1ZcoULV26VCkpKcrKytLKlSt133336e9//7tN22bksadMmaKZM2dq7ty5SkpKUnJysj799FPNnDlTU6ZMKbSupeega9eumjRpko4fP67s7GwdOXJE48aNq1DOsvTRjc7/jZSlL0rLOmPGDM2bN0/JyclKSUnR119/rX//+9/Frm9pv1prnBg53irbSy+9pKCgIPXt29foKAAAAEC1sHv3bn322Wf68ssvjY5ic6YCPj4dNjJs2DCdzrqs8e9+bPE2g1sGmX/+9kCC+efEE8e0cMa/FLN5g/Jyc9WwaXMNGvuUbonsV+q2lh6vpO1OHNqvBW9PV1z0VklSaMQtGjXxFd3cvHDFzMy0VM177e/a88d6Xbl0SW26dNPf/vG6+WHe1X1npJzTF2+9qt0b1+lCZoaCgpto6OPPasZz4wqtV1J7KtJHkvTHzz9owTuvKfVsovwC62vM5Knq1OevFvfVeyvXad7rU3RwV7QKCgoU1qmLHnhhiho0aVZo/YqcM1uMg5KWH9y9Q/PfelVHY2Pk6eOrvveN0cCxT5a6nSXjYu/mjfrpy3naH71Vly6cl09AoG65va+GPzWhSKGKkhR3fGu3UbJN35Y01m50re6P3qpXRg7UG4t/VLO2HYr0h6XXY2kGtwzSR79u1af/fEWx2zcrPz+/2LFsrXtEQX6+hrW5WUtiT5qXWeOaraxxKFk2jiy9D5Z1zJR339fvX6rYPdhafTnj2UdV391Vixcvtnib6mDHjh2KiIjQ0aNHFRISYnQcoFoaNmyYJNnd/QEAAABA9bBw4UI9/PDDNaLSPQAAAGq2CRMmaMaMGZozZ44effRRo+OY3R0VpQw565m3ZpVpu8p+/i1Zbx6CJc9gLX1Oa635BJa0zZJjWTrfoyLzUkpzo3Ne0ef7RszDKUsWS+cGlCYnO1v3tg3W999/r6ioKIu2KYsrV67I1dVVL3z4mTr/5Q6LtmF+XdWdX2dpX5TWpyXlP3nkoOa/9U/Fbt8iBwcHhXW6VQ++NE1P9u2upXGnCu2jvOOhLPep0lyb12QyqUWHCD304jQ9c2evIvuy1j3c0mNWdE5eZc17tOb1Vxpb3+8A4Kovv/xSo0aN0ocffqjHHnvM6DglOnfunJ555hn98ssvunjxovr06aMPP/zQXKjh2rfgLFmyRC+88IJOnz6tRo0aacaMGbr77rtLfe3w4cN68cUXtWbNGuXm5io0NFQvvviiBg4caN63yWQqlKusb/25dvtrty3rsS09riV59+7dq0mTJmnDhg2SpB49euitt95SmzZtCq1n6TlISkrShAkTtGrVKqWnp6t58+b6+9//ruHDhxdar6T2VKSPpBuf49JY2heliY2N1cSJE7V+/Xo5ODjotttu06xZs9S4ceMi56AsY9vSPihNRcZbecahEd5880299NJLWrZsmcXnHwAAAKjpCgoK5OzsrD59+mj16tVGx7EpinnAZspTzAMAKsPglkFlerhcHmuXLVLPuwbJ0clZqUln9fKIKH20ZotNj4nqwV6LeRw/flyNGzfWtm3b1KlTJ6PjANUSxTwAAAAAGIliHgAAAKgpTp8+rQYNGigsLEz79u0zOo5ZRYp52Pr5N1BTVcViHsC1Th45qNfGjtKc37YZHQXVHMU8AFSm1157TX//+981ceJETZ8+Xc7OzkZHAuySyWSq0gUw7MHly5c1fvx4zZkzR++9956efPLJ0jcCAAAAYBYSEqK0tDSlpaUZHcWmHIwOAACAPfrgxef03b8/0KUL5/Xj/E/UvT8POWHffH19JUkpKSkGJwEAAAAAAAAAAABKVr9+fbm4uCguLk6JiYlGxwEAwCKDWwbpx/lzdT4zQznZ2Tq2P1Zz/jFJ/e4fY3Q0AADK5OWXX9bnn3+uDz74QJ07d9bOnTuNjgQAZbZp0yZ17NhRCxcu1JIlSyjkAQAAAJRDnz59lJ6erjNnzhgdxaYo5gEAqFEGtwwq9N1Wxk55Xau+nq/Hb++ii1lZGvr4czY9HmA0d3d3ubi4UMwDAAAAAAAAAAAAVV7z5s0lSbNnzzY4ScVU1vNvAIDxXpzzhbb/tlqP9orQg13b6KNXxity2P2Kevhxo6MBAFBmo0eP1u7du+Xu7q5OnTpp5MiRio+PNzoWYDdMJlOh77CeAwcOaPDgwerRo4caNWqkvXv3atCgQUbHAgAAAKqlhx56SJL02WefGZzEtpyMDgDYSmkTFb49kFBJSao++soY9Lv1WdKnldWvd9z3gO6474FKOVZFMA5hTT4+PhTzAAAAAAAAAAAAQJV36623at++ffrggw/07LPPytfX1+hI5cLzXMvZ27Nxe2sPjME4slxV6KuIXpGK6BVp8+OUxoi+qAr9DwCwvmbNmun333/X0qVL9corr6hFixYaPHiwxo8fr06dOhkdr8orrUhDQUFBtT5edWatvqrIfirjfNS0MbFx40bNmDFDK1asUFhYmH744QcNGDDA6FgAAABAtdalSxc5OjpqxYoVevHFF42OYzMU84Dd4gGN5egrY9Dv1keflh19Bmvy8fFRamqq0TEAAAAAAAAAAACAG+rdu7c++eQTSdK0adP0/vvvG5wItmZvz8btrT0wBuPIcvTV/xjRF/Q/ANgvk8mkoUOHauDAgVqyZIlmzJihzp07q1OnTnr44Yd13333ycPDw+iYVVJlF0qwt8IMtmStvqrqfV7V81lDamqqFi5cqE8//VQxMTHq2rWrlixZonvuuUcODg5GxwMAAACqPQcHBwUEBCgmJkb5+fl2+3u2fbYKAAAAlc7X11cpKSlGxwAAAAAAAAAAAABuqH379ubvc+bM0YEDBwxOBAAAAAA1l5OTk+677z5FR0dr/fr1atmypZ577jkFBgZq0KBBmj9/Ph80BqBSJCcna+7cubrzzjsVFBSkl19+WZ06ddLWrVu1adMmDRo0yG7fYAgAAAAYISwsTBcvXlRMTIzRUWyGf0EAAADAKijmAQAAAAAAAAAAgOqgcePGMplMunLlitq0aaOHH35YeXl5RscCAAAAgBqvR48emj9/vhISEvTee+/pypUrGjt2rAICAhQZGanZs2fr9OnTRscEYEdOnDihd999V7169VJgYKCefvppOTo6as6cOUpISNDcuXPVuXNno2MCAAAAdikiIkJOTk5au3at0VFshmIeAAAAsAqKeQAAAAAAAAAAAKA6cHV1VZ06dXT06FEtWLBAO3fu1DvvvGN0LAAAAADA/+fl5aVHHnlEP/74o5KSkrRw4UL5+Pho8uTJatiwocLDwzVhwgStXLlSmZmZRscFUI2kpqbq+++/17PPPqt27dopODhY06ZNU4MGDbRo0SIlJydr+fLlGjNmjNzd3Y2OCwAAANi15s2bq6CgQL/99pvRUWzGyegAAAAAsA++vr7avXu30TEAAAAAAAAAAACAUt10001KSkpScHCwpk6dqilTpuiOO+5Q+/btjY4GAAAAALiGh4eHhg8fruHDh+vy5cv69ddftXr1aq1evVozZ86Ug4ODOnbsqF69eqlXr17q0aMHb8AHYJaenq7169dr3bp1Wrt2rWJiYiRJ7dq101/+8he9/fbb6t27t5ydnQ1OCgAAANQ8TZs2VV5entatW6fc3Fw5Odlf6Qv7axEAAAAM4evrq5SUFKNjAAAAAAAAAAAAAKVyd3fXmTNnFBsbqwkTJmj16tUaOHCgoqOj5evra3Q8AAAAAEAxXF1dNWDAAA0YMECSdO7cOf3+++9at26dfvrpJ73zzjtydHRUmzZtFBERoYiICHXq1EmtW7fmjfpADZCdna09e/YoOjra/BUbG6uCggK1adNGvXr10tSpU9WzZ095e3sbHRcAAACo8a7+Xn7+/Hnt2LFDt9xyi8GJrI9iHgAAALAKinkAAAAAAAAAAACgunB3d5ezs7NiYmLUqVMnLVmyRJ06ddLw4cP1888/2+WnPgEAAACAvfHz89PgwYM1ePBgSVJSUpJ+//13bdmyRdHR0frmm2+UlZUlV1dXtWvXzlzgIyIiQi1btuTffkA1lpOTo7i4uEKFO2JiYpSdnS1PT0917NhRffv21bRp09SjRw+KtwIAAABVkJubmySpbt26Wrt2LcU8AAAAgJL4+voqKytL2dnZcnFxMToOAAAAAAAAAAAAUCIXFxf5+Pho3759kiQfHx8tXbpU3bt315NPPqk5c+YYnBAAAAAAUFb+/v4aOnSohg4dal4WHx+vjRs3aseOHdqxY4c+++wzXbx4Uc7OzmrWrJnCwsIUGhpq/t6yZUs5Ojoa2AoA18rLy9OJEycUGxuruLg48/e4uDhdunRJzs7Oatu2rbp166annnpK4eHhatWqlRwcHIyODgAAAKAUtWvXliS1a9dOa9eu1eTJkw1OZH0U8wAAAIBVXK1YnZaWpoCAAIPTAAAAAAAAAAAAACVLT0+Xv7+/jh49al7WoUMHLVq0SAMHDpSfn5+mT59uYEIAAAAAgDWEhIQoJCREo0ePliTl5uZq3759iomJUWxsrGJjY/XFF1/oxIkTKigokJubm1q1aqXQ0FC1bt1aLVq0UNOmTdWkSRPzJwYDsL6LFy/qyJEjOnr0qA4cOKB9+/YpLi5O+/fv15UrV+Tg4KDg4GC1bt1akZGReu6559S2bVuFhoZSgAcAAACopq7+O7t169b65JNPlJubKycn+yp/YV+tAQAAgGF8fHwkSSkpKRTzAAAAAAAAAAAAQJV25swZde3aVceOHSu0/M4779Qnn3yihx56SL6+vnruuecMSggAAAAAsAUnJye1b99e7du3L7T8/Pnz2r9/v/bu3Wv+Pnv2bP3555+SJJPJpPr166tJkyZq0qSJucDH1e+enp5GNAeoVtLS0nT06FFz0Y5rvycmJkr677V28803KzQ0VH/961/17LPPqnXr1mrVqpX5U7sBAAAA2IerxTxCQkJ04cIF7dmzR+Hh4Qansi6KeQAAAMAqfH19Jf23mAcAAAAAAAAAAABQVV2+fFnp6ekKCQnR77//XuT1MWPGKC0tTePH/z/27jyuygLR//iHVfYdFNxxIUFzObjjUh7GLIkWQVukzMLmzkxnmqkwm7nRNN303prJpk2zpsA0obSkVc+kJpoFpCVgVpiaCIqsKrKe8/vj3s5vHKtpAR6W7/v1Oq/Jw8PzfB5fU2Fwvuf3tLa2ctdddxlQKSIiIiIiIh3Jx8eH8ePHM378+POer6+vP2904Ju/3rZtG0ePHqW1tRWA0NBQIiMj6d+/P/369WPgwIGOvx4wYAB9+vTBycnJiFsT6RA2m42ysjKOHj3K119/zbFjxzh69ChHjx7l2LFjlJSUUFVVBfzvqM7AgQMZOnQoo0aN4qqrrjpvHMfDw8PguxERERERkY5w7tw5AIYNG0ZQUBC7du3SmIeIiIiIyLcJDg7GyclJYx4iIiIiIiIiIiIiIiLSqZWWlgJw0UUXcfbsWU6dOkVISMh5x9x55514enryq1/9ilOnTrF8+XIjUkVERERERMRgXl5ejBo1ilGjRl3wsaamJg4fPuwY+Th06BBff/01e/bsISsri/Lycmw2GwDu7u707dv3vKGPiIgIIiIi6N27N7179yY8PBxvb++OvkWRf+vMmTMcP36ckydPUl5eTllZGceOHTtvsKOsrIzm5mYAXFxc6NOnj+P/69OnT+fmm292DHYMHDgQV1e9pE1EREREpKf75nWIISEhTJ48mV27dnHHHXcYXNW29CcfEREREWkTbm5u+Pj4aMxDREREREREREREREREOrU9e/bg7u7O9OnTATh8+PAFYx4At99+Oy4uLtx+++00Njby6KOP4uzs3NG5zbUDKgAAIABJREFUIiIiIiIi0km5u7szfPhwhg8f/q0fb25uprS0lK+//pojR45w7Ngxvv76a44ePcqnn35KWVkZFRUV532Ot7c34eHhjoGPiIgIQkNDCQ8Pp0+fPoSFhREUFERISAiBgYEdcZvSTVVWVjoeFRUVlJWVUV5ezsmTJ88b7igvL6e+vt7xeU5OToSGhtK3b1/69+/PmDFjSEhIoF+/fgwYMIABAwYQERGhsQ4REREREfm3/nnMY8qUKTz55JMGF7U9/clIRERERNpMcHCwxjxERERERERERERERESkU3v//feZMGECF110ES4uLnz11VfExsZ+67G33XYbfn5+3HzzzRw+fJiXXnoJLy+vDi4WERERERGRrsjNzY1BgwYxaNAgpk2b9q3HNDc3nzeacPLkSUpLS6moqKC8vJxPPvmEiooKjh8/Tl1d3Xmf6+zsTHBwsOMRFBR03l+HhIQQEhJCUFAQ/v7++Pv7ExAQgK+vL25ubh3xWyDtrKmpidOnT1NbW0tNTQ21tbVUVlZy6tQpKisrqaqqOm+0459/bbfbzztXQEAA4eHhhIaGEhERwfjx4+nduzfh4eGEhYU5RmbCwsI01CEiIiIiIm3im9chBgcHM3XqVO677z6OHDnCwIEDDS5rO/rTk4iIiIi0GY15iIiIiIiIiIiIiIiISGe3Y8cOrr32Wtzc3IiIiODw4cPfe/z8+fPp168fV111FTNmzOD1118nIiKiY2JFxHAtLS1GJ4iIiIhIN+bm5kbfvn3p27fvvz323LlzVFRUnDfW8K8DDSdPnuTAgQOOY2pqar71XJ6envj5+TkeAQEB5/3a19cXPz8/AgMD8fDwwNPT0zECEhAQgLu7O97e3nh7e+Pu7k5AQABOTk5t/dvTrdhsNmpra2lsbKS+vp4zZ87Q3NxMdXU1zc3NnDlzhrNnz9LY2OgY5qirq+P06dPU1dVRV1dHbW2t4/m6ujoaGhq+9VrfNu4ydOjQ854PCQlxfDw0NBQPD48O/h0REREREZGerrKyEnd3d3x8fBg/fjxubm7s2rVLYx4iP9SpsuPsfifH6AwREZFO41TZcfr6Rhqd0W6Cg4OpqqoyOkNERERERERERERERETkWxUVFXHw4EFmzZoFQP/+/SktLf23nzd16lQ++OAD5s6di8lk4uWXX2bGjBlt2lZx/Jh+zkakE2n9vxGP+fPnExUVhclkcjzGjh2Lt7d3m1zn4N48Wpqb2uRcIvLTtba0UFt5iqDefYxO6XCtGi0SEekyPD09GTBgAAMGDPjBn9Pa2kpVVZVjBKKmpua8cYjTp087nq+rq6OyspKvvvrK8fGamhoaGhqor6//t9dydXXF19cXT09PPDw88Pf3x9nZGRcXF/z8/ID/HS/x8fEBcIyEAHh5edGrVy8AfHx8cHNzu+De/93YxPcNinwzpPF9zp07d8E4RlNTE2fPngWgoaGBc+fOAVBfX09jYyMAp0+fdowA1tbWYrPZaG1tpa6uznHOuro6Wltbv/f6AN7e3o7fO39///PGVfr06YO/vz8BAQGOsRU/Pz9sNhtvvPEGW7Zs4dixY4wcOZLrr7+e66+/vlu9AE5ERERERLqfAwcOMHToUJycnPDy8mL06NF89NFHXH/99UantRmNeUi76devH9nZ2Tz62yVGp4iIiHQqV1w63eiEdhMcHExlZaXRGSIiIiIiIiIiIiIiIiLfatWqVQwZMoSZM2cCEBoaSkVFxQ/63KFDh5KXl8fixYsxm838+c9/5p577mmTdx7u368fOZs3cyD/w599LhFpO66urvzxj3+ktraWvXv3kpOTQ01NDS4uLkRFRTF27FjGjRvH2LFjGTt2LAEBAT/q3L379OG1NU+14x2IiPwwrq6u9OnT84ZMRER6AhcXF0JDQwkNDf3Z5zpz5gxNTU3U1NQ4Ri7Onj1LU1MT1dXVNDc3c+bMGcdzNTU12O12x/Nw/iBGVVWVYxDjzJkzNDc3A/9/EOOffdtz/+yfr/FdfH19cXX97pdR/fPoyLc95+7u7hj1++chkt69ezuGSL65hrOzM/7+/vTq1QsvLy98fX1xc3MjICDA8ZyPjw/u7u4EBAScd+6f4uqrrwagoKCAjIwMHnvsMZYtW4bJZGLhwoVcd911hIWF/eTzi4iIiIiItIe9e/cyduxYx69jY2PJz883sKjtOdntdrvRESIi0raWLFnCF198wXvvvWd0ioj0ML/+9a8pKipi27ZtRqeIdDnJyckAZGVlGVwiIiIiIiI90dq1a1m8eLHjByZFRERERLqjc+fO0bdvX+69917uvvtuAG677TYOHz7M1q1bf/B57HY7jzzyCMuWLeOKK65gzZo1hISEtFe2iHQyx48fp6CgwPHIz8+nvLwcgPDwcEwmk+Mxfvx4vThepItobW1l3759WK1WrFYrO3bswGazMWbMGMxmM2azmRkzZuDm5mZ0qoiIiPwAiYmJ+Pn5kZmZaXSKIVpbW9m2bRsZGRls2rSJc+fOcckll7Bw4UKuvfbanzUcIiIiIiIi0lbCw8O56667+P3vfw/AmjVrsFgs1NbWfu8YY1fibHSAiIi0veLiYqKjo43OEJEeyM/Pj9raWqMzRERERERERERERERERC7w5JNP0tDQwKJFixzPhYaGUlFR8aPO4+TkxN13380//vEP9u7dy8UXX/yjxkBEpGuLiIggISGB9PR0cnJyKCsro7S0lK1bt5KWlkZgYCDZ2dkkJiYSHh5OREQE8fHxWCwWMjIyKCoqQu/BJtL5uLi4YDKZSEtLY+vWrVRVVbFp0yZMJhMvv/wy8fHxBAUFkZCQwOrVqzly5IjRySIiIiLfycXFBbPZTEZGBidPnmT9+vV4eHhw6623EhoaSnJyMjk5ObS0tBidKiIiIiIiPdSJEycoLy9n7NixjufGjx9PfX09Bw4cMLCsbWnMQ0SkGyouLmbEiBFGZ4hID+Tv768xDxEREREREREREREREel0ysvLefDBB1m6dCkhISGO53/KmMc3pk+fzieffMKMGTOYPXs2d955J/X19W2VLCJdSEREBGaz+bzBjurqanbu3ElaWhrh4eFYrVYWLVrEyJEjCQoKIi4u7rzjbTab0bchIv/Ex8eHhIQEVq1axeHDhykpKeHRRx/F09OTu+++m0GDBjFkyBCWLFlCdnY2p0+fNjpZRERE5Ft5enqSlJRETk4O5eXlPPbYYxw/fpzExET69OnDkiVLyM3N1eigiIiIiIh0qA8//BAnJyfGjBnjeC4mJgZPT0/y8/MNLGtbrkYHiIhI2yovL6eqqoro6GijU0SkB9KYh4iIiIiIiIiIiIiIiHRGFouF0NBQ7rnnnvOeDwsL49SpU9jtdpycnH70eQMCAli/fj2XX345d9xxB2+88QbPPvssM2fObKNyEemq/P39iYuLIy4uzvHc6dOn+eSTTygoKKC4uJiCggKeeeYZmpqa8PX15eKLL8ZkMmEymYiJiWHUqFG4u7sbeBci8o3IyEhSU1NJTU2lpaWFPXv28MYbb2C1Wnn22WdxcXFh4sSJJCQkYDabGTdu3E/62kJERESkPQUFBTm+pjly5Agvv/wyzz//PKtXr2bgwIEsWLCAW265heHDhxudKiIiIiIi3dzmzZuZOHEiQUFBjudcXV0ZM2YM+fn5LFq0yMC6tuNsdICIiLSt4uJiAI15iIghNOYhIiIiIiIiIiIiIiIinc2aNWvIzs7miSeewMPD47yPhYaG0tTURF1d3c+6xsKFCykqKmLEiBFceuml/PKXv/zZ5xSR7sfX15e4uDgsFgurVq0iNzeXM2fOUFhYyBNPPIHJZKKgoIDbb7+d2NhYfHx8iImJISUlhZUrV5Kbm8u5c+eMvg2RHs/V1ZW4uDiWL19Ofn4+5eXlrFu3jpiYGB5//HFiY2Pp06cPycnJrF69mrKyMqOTRURERC4wcOBA0tLSOHjwIIWFhSxYsIAXX3yRqKgoYmJiWLFiBeXl5UZnioiIiIhIN2Sz2XjzzTe56qqrLvjYN98r6S405iEi0s0UFRURHBxM7969jU4RkR7I39+flpYW6uvrjU4RERERERERERERERERYffu3fz617/mj3/8I5dddtkFHw8ODgagsrLyZ18rIiKCzZs3s2HDBl599VUuuugiMjIysNvtP/vcItJ9ubm5XTDYUVdXR2FhIWvWrMFsNnPo0CHuu+8+pk2bhp+f3wXHnz171ujbEOnRwsLCSEpKYtWqVZSWllJYWMjvfvc7qqur+c1vfkO/fv2IjY1l6dKlWK1WmpqajE4WEREROU9MTAzLly+ntLSUnTt3EhcXx0MPPUS/fv2Ii4tj9erVnD592uhMERERERHpJnJzcykvL//WMY+LL76YwsJCbDabAWVtT2MeIiLdzIEDB4iOjjY6Q0R6KD8/PwBqa2sNLhEREREREREREREREZGe7sCBA1xzzTXMmTOH+++//1uP8fHxAWjTF8InJSVx8OBBkpKSuOWWW5g5cyaFhYVtdn4R6f5cXV0vGOw4c+YMpaWlbNy4kaSkJKqrq3nooYeYNm0a/v7+DBkyhISEBNLT08nJyeHUqVNG34ZIjxUTE0NaWhpbt26lqqqKd999F7PZTE5ODvHx8QQFBREfH8+KFSs4cOCA0bkiIiIiDs7OzsTFxbFq1SpOnjzJpk2biIiI4De/+Q1hYWEkJCSQnZ1Nc3Oz0akiIiIiItKFvfbaa1x00UVERUVd8LFRo0Zx9uxZDh8+3PFh7UBjHiIi3UxxcbHGPETEMP7+/oDGPERERERERERERERERMRYeXl5TJ8+naFDh5KZmYmz87f/mJS3tzfQtmMeAIGBgaxcuZJdu3Zx9uxZxo0bxx133EFFRUWbXkdEepaIiIjzBjtOnjxJaWkpmzZtYuHChQCsWrWKK6+8ktDQ0AuOLy8vN/gORHoeb29vzGYzy5cvp6ioiJKSEv7yl78QGBjIww8/THR0NEOGDGHJkiVkZ2frZ25ERESk0/Dw8CAhIYGsrCzKy8tZtWoVDQ0NzJ8/n969e5OSkoLVasVutxudKiIiIiIiXUhDQwMvvfQS8+fP/9aPjxw5EicnJ/bv39/BZe1DYx4iIt2MxjxExEga8xARERERERERERERERGjvfvuu8yaNYsJEyawZcsWfHx8vvNYLy8voO3HPL4xceJEPvzwQ/72t7+RnZ3N0KFD+fOf/9xu1xORnudfBzvKysooLS1l69atpKWlERgYSHZ2NomJiYSHhzuOX7p0KRkZGRQVFenFdyIdKDIyktTUVLKysqisrCQ/P5/U1FSKiopYsGABISEhxMbGkp6eTkFBATabzehkEREREQIDA0lJSWHr1q0cOXKE+++/n8LCQuLj4xk0aBAWi4V9+/YZnSkiIiIiIl3A2rVrqa2t5fbbb//Wj/v4+DBo0CAKCws7uKx9aMxDRKQbOXXqFBUVFRrzEBHDfDPmUVdXZ3CJiIiIiIiIiIiIiIiI9DQtLS0sW7aMyy+/nKuvvprXXnvNMdbxXby9vYH2G/MAcHFxYcmSJZSUlLBs2TIeeeQRBg0axIoVK2hqamq364pIzxUREYHZbMZisTgGO6qrq9m5c6dj4CMnJ4dFixYxcuRIgoKCiIuLO+94DQiItD8XFxdMJhNpaWnk5uZy4sQJ1q1bh8lk4rnnniM2NpbevXuTnJzM6tWrOXbsmNHJIiIiIvTv3x+LxcLHH39MYWEhixYtIicnh7FjxxITE0N6ejqHDx82OlNERERERDqpv/3tb1x//fX06dPnO48ZNWqUxjxERKTzKSoqAtCYh4gYxtfXF2dnZ2pra41OERERERERERERERERkR6kpKSE6dOns3LlSp555hlefPFF3Nzc/u3n9erVC1dX13Yd8/iGl5cXaWlplJSUsHjxYtLT0xk1ahTZ2dnY7fZ2v76I9Gz+/v4XDHbU1NSwc+dO0tPTiYmJoaCggNtuu42RI0cSEBBw3vEFBQUaIBJpZyEhISQlJbFq1Sq+/vprSkpK+MMf/kB1dTUWi4X+/fszZMgQLBYLVquVxsZGo5NFRESkh/tmvOPLL79k586dmM1mnnzySYYMGUJcXBwrV66ksrLS6EwREREREekktmzZwqefforFYvne4y6++GL279/fQVXtS2MeIiLdSHFxMf7+/kRERBidIiI9lLOzMz4+PhrzEBERERERERERERERkQ5x9uxZ7rvvPkaOHEl9fT15eXncdtttP+ocXl5eHTLm8Y3g4GCWL19OUVERJpOJ+fPnM2XKFLZt29ZhDSIi8L9v2PHNYMeqVavIzc3lzJkzFBYW8sQTT2AymSgoKOD2228nNjYWX19fYmJiSElJYeXKleTm5tLQ0GD0bYh0W5GRkVgsFrZu3UpVVRVbt24lKSmJXbt2ER8fT1BQEPHx8axYsYKCggKjc0VERKQHc3Z2dox3HDt2jNdee43IyEiWLVtG3759SUhIICMjg/r6eqNTRURERETEIHa7nT//+c/MmjWL0aNHf++xUVFRfPHFF7S2tnZQXfvRmIeISDdy4MABYmJijM4QkR7O399fYx4iIiIiIiIiIiIiIiLSrlpaWnjxxReJioriqaeeYvny5eTn5xMdHf2jz+Xt7d2hYx7fiIyMZN26deTn5+Pr68ull17KlClTyMnJwW63d3iPiAiAm5vbBYMddXV1FBYW8uyzz2I2mzl06BD33Xcf06ZN+9aBDyP+mSrS3Xl6emI2mx1f85SVlfH0008TGBjIihUriI2NJSIigpSUFLKzs6murjY6WURERHqoXr16OcY7jh8/zurVqwG45ZZb6Nu3LykpKeTk5HSLF+WJiIiIiMgPl5WVxa5du3j44Yf/7bHDhw+nqamJI0eOdEBZ+9KYh4hIN1JcXPyTfjBJRKQtacxDRERERERERERERERE2ktjYyOrVq1i+PDh3HrrrVx++eUcPHgQi8WCq6vrTzqnq6srLS0tbVz6w40bN44tW7bw8ccf069fPxITE7n44ovJyMgwtEtE5Buurq4XDHacOXOG0tJSNm7cSFJSEtXV1Tz00ENMmzYNf3//8463Wq0aFhBpY3369CElJYWsrCwqKirIz8/HYrFQVlbGDTfcQGhoKLGxsSxduhSr1Upzc7PRySIiItID+fv7O8Y7jhw5Qnp6OocOHeLKK69k0KBBWCwWCgoKjM4UEREREZF2du7cOZYuXcpNN93E+PHj/+3xUVFRAHzxxRftndbuNOYhItKNFBcXM2LECKMzRKSH05iHiIiIiIiIiIiIiIiItLVjx47xwAMPEBkZicViYfbs2Xz++eesXr2asLCwn3VuFxeXTvFusGPHjiUrK4tPP/2UsWPHsnjxYoYNG8bKlSs5d+6c0XkiIheIiIggISGB9PR0cnJyOHnyJCUlJbz88stceeWVnDhxggcffJD4+HhCQ0OJiYlh4cKFPPbYY7z//vucPn3a6FsQ6RZcXFwwmUykpaWxdetWqqqq2LRpEyaTifXr1xMfH094eDjJycmsXr2ao0ePGp0sIiIiPVDfvn2xWCzk5uZSVFTE4sWLefPNN4mNjSUmJsYx9CEiIiIiIt3PI488wqlTp3jooYd+0PH+/v6Ehoby+eeft3NZ+9OYh4hIN1FTU0NZWRnR0dFGp4hID6cxDxEREREREREREREREWkLTU1N5OTkON6t9amnnmLhwoUcOnSIp59+msGDB7fJdZydnbHZbG1yrrYwcuRIMjIy+OKLL7jyyiu59957GTRoEOnp6fo+nIh0epGRkcybN4+HH36Yd999l1OnTlFaWsqmTZtISkqipqaGFStWMGPGDPz8/C4YBDl16pTRtyDS5fn4+JCQkMCqVas4cuQIJSUl/Nd//RcAd911FwMHDmTIkCEsWbKE7OxsDeuIiIhIh4uOjiY9PZ0vv/yS/Px8zGYzTz/9NMOGDSMuLo6VK1dSUVFhdKaIiIiIiLSBzz//nBUrVrBs2TLCw8N/8OcNGzaML774oh3LOoaT3W63Gx0hIiI/365du4iLi+PIkSMMGDDA6BwR6cGuv/56Ghoa2Lhxo9EpIl1KcnIyAFlZWQaXiIiIiIhIT7R27VoWL15MY2Oj0SkiIiIi0sO1tLTw3nvvsWHDBjZt2kRNTQ2XXnopqampXHXVVbi7u7f5NYcNG8aiRYtYtmxZm5+7LZw8eZKnnnqKxx57DLvdzoIFC7BYLHqzDxHp0o4fP05BQcF5j7KyMgDCw8MxmUyOx6RJkwgNDTW4WKR7aGhoIDc3F6vVitVq5eOPP8bDw4OpU6diNpsxm82MGzcOJycno1NFRER+lsTERPz8/MjMzDQ6RX6g1tZWtm3bRkZGBhs3bqS5uZlf/OIXJCUlce211+Lt7W10ooiIiIiI/EjNzc1MmzaNlpYWdu/e/aO+17to0SLKysp455132rGw/TkbHSAiIm2juLgYHx8f+vfvb3SKiPRw/v7+ekcwERERERERERERERER+cFqamrIysoiJSWF8PBwZs+ezf79+7nvvvs4cuQIVquV5OTkdhnyAHBxcaG1tbVdzt0WwsLCSE9P59ChQyxbtox3332XUaNGMWfOHN58801sNpvRiSIiP1pERAQJCQmkp6eTk5PD8ePHKS0tZfPmzaSmpuLp6Ul2djZXXnklYWFhFxx/8uRJo29BpEvy8PDAbDazfPly8vPzKS8v58UXXyQyMpKVK1cSGxtLeHg4ycnJZGRkUFVVZXSyiIiI9BAuLi6YzWYyMjKoqKhg7dq1ACxevJi+ffuSkpJCTk4OLS0tBpeKiIiIiMgPdd9991FYWMhLL730o7/XO3jwYL766qt2Kus4rkYHiIhI2zhw4ADR0dFaxBcRw2nMQ0RERERERERERERERL5Pa2srBQUF/OMf/2Dr1q3k5uZit9uZOnUq99xzD9dccw1DhgzpsB5nZ+cuMYgRFBREWload999N++99x4rV64kISGBwYMHk5qayq233kpwcLDRmSIiP1lERIRjtOMb1dXVFBUVUVBQQEFBAdnZ2TzwwAMAhIeHYzKZHI8JEybQu3dvo/JFuqSwsDCSkpJISkri6aefZu/evVitVqxWK7fddhstLS2MHTsWs9mM2Wxm+vTp7TawJiIiIvINT09Px9colZWVvPrqq2RkZJCYmEh4eDjz5s0jKSmJuLg4o1NFREREROQ7bN++nUcffZQ1a9YQFRX1oz9/wIABHD16FLvd3qVfN60xDxGRbqKoqIjo6GijM0RE8PPzo66uzugMERERERERERERERER6SRaWlrYt28fu3fvZtu2bWzfvp2amhrCw8Md77g6e/ZsAgMDDelzcXGhtbXVkGv/FM7Ozo4X1H7xxRc899xzrFixgvvvv5/k5GR+//vfM3r0aKMzRUTaRGBgIHFxcee9SK+mpobCwsLzBj7+9Kc/YbfbLxj4GD9+PH369DHwDkS6DmdnZ8ffO2lpaZw9e5YPPvgAq9XK5s2bWbFiBd7e3kyePJm5c+eSmJjIoEGDjM4WERGRbi44OJjU1FRSU1M5fPgwGzZs4Pnnn+fxxx/noosuYv78+dxwww0MGzbM6FQREREREfk/X331FfPnz2fevHksWrToJ51jwIABNDQ0UFFRQVhYWBsXdhwnu91uNzpCRER+vv79+/Ob3/yGe+65x+gUEenhnnzySf70pz9x4sQJo1NEupTk5GQAsrKyDC4REREREZGeaO3atSxevJjGxkajU0RERESkG6iuruaDDz7ggw8+IDc3l7y8PM6ePUtgYCDTpk1j1qxZzJo1i5iYGKNTAYiOjmb+/Pncf//9Rqf8ZKdPnyYzM5Mnn3yS4uJiJk+ezM0338z8+fPx9/c3Ok9EpN2dOnWKgoICPv74Y8f/fvXVVwD069ePcePGOUYKYmNj6d27t8HFIl3PoUOHsFqtWK1WtmzZQm1tLZGRkY6RsdmzZ+Pn52d0poiICACJiYn4+fmRmZlpdIq0k6KiIjIzM3nxxRcpLy/HZDKxcOFCFixYoK/3RUREREQMVFdXx9SpU3Fzc+P999/Hx8fnJ53nyy+/ZNiwYeTl5REbG9vGlR1HYx4iIt1AXV0dAQEBbN68mblz5xqdIyI93Nq1a7n11ltpaGgwOkWkS9GYh4iIiIiIGEljHiIiIiLyU9lsNg4ePMhHH33Erl272L17NwcOHMBmszF8+HCmTJnC1KlTmTJlCiNGjMDJycno5AsMHTqUW265hWXLlhmd8rPZ7Xa2b9/Oc889x8aNGwG49tprufnmm7nkkktwdnY2uFBEpONUVVU5xj2+GfgoKSkB/nfgIzY21jHuERsbS0hIiMHFIl1HS0sLn3zyCTk5Obzxxhvs3bsXZ2dnRo8ezdy5c0lISGDcuHGd8ms/ERHpGTTm0XO0trbywQcfkJmZyfr166mvr+eSSy5h4cKFXHPNNT/5hYMiIiIiIvLjNTc3M2fOHA4cOMCePXvo37//Tz5XY2Mjnp6evPLKK1xzzTVtWNmxXI0OEBGRn6+4uBi73d5p3rVIRHo2f39/GhsbaWxspFevXkbniIiIiIiIiIiIiIiISBsqLy8nLy/P8cLoDz74gMrKSlxdXRk9ejSzZs3i/vvvZ8aMGYSFhRmd+4M0Nzfj7u5udEabcHJy4pJLLuGSSy6hrq6O1157jczMTOLj44mIiODGG2/k1ltvZejQoUanioi0u6CgIMxmM2az2fFcXV0dn376qePfY+vXr+c///M/sdvthIeHYzKZHI9JkyYRGhpq4B2IdF6urq6Ov1fS09OpqKhg+/btWK1W1qxZwwMPPEBoaCgzZ87EbDZzxRVX0LdvX6OzRUREpBtycXEhLi6OuLg4Vq5cydatW8nMzOTWW2/l9ttvZ+7cuSxcuJDLLrsMNzc3o3NFRERERLotu93O4sWLyctgCml6AAAgAElEQVTLY+fOnT9ryAOgV69e9OnTh6NHj7ZRoTE05iEi0g0UFxfj5eXFwIEDjU4REcHf3x+A2traLvMDmiIiIiIiIiIiIiIiInKhs2fPkp+fz0cffcSHH37IRx99xNdff42TkxNRUVFMmDCBBx54gAkTJjBmzJgu+4KI5ubmLtv+ffz8/EhJSSElJYWDBw+yfv16/v73v7NixQpMJhOpqalcf/31eodaEelR/Pz8HC/0+0ZtbS379+93DHxkZ2fzwAMPAFww8DF58mRCQkKMyhfptEJDQ0lKSiIpKQmAQ4cOkZOTwxtvvMEdd9zBkiVLiI6OJiEhAbPZzLRp0/QmQSIiItLmPDw8SEhIICEhgerqanJycsjMzCQxMZHAwEDmzZvHwoULmTp1Kk5OTkbnioiIiIh0GzabjSVLlrBhwwY2b97MxRdf3CbnDQ8Pp6ysrE3OZRQnu91uNzpCRER+nrvvvptt27aRn59vdIqICPn5+YwfP55Dhw4xePBgo3NEuozk5GQAsrKyDC4REREREZGeaO3atSxevJjGxkajU0RERETEQMePH2fXrl3k5uZSUFBAXl4eTU1N9OnTh9jYWMcLmadMmUJwcLDRuW0mJCSEBx98kF/+8pdGp7Q7m83Ge++9x+rVq3n99ddxcXFh1qxZJCUlMW/ePLy8vIxOFBHpFGpqaigsLHQMfOzatYtDhw4BFw58TJ06laCgIIOLRTqv+vp6du/ejdVqxWq1UlBQgJeXF1OmTMFsNmM2mzGZTEZniohIN5OYmIifnx+ZmZlGp0gncPToUTZt2sQLL7zAvn37GDBgANdddx2LFi0iKirK6DwRERERkS6ttbWVW2+9lXXr1pGVlUViYmKbnfvyyy8nLCyMF154oc3O2dFcjQ4QEZGfr7i4mOjoaKMzREQAHD/gV19fb3CJiIiIiIiIiIiIiIiIfJfq6mo+/PBD9uzZw4cffsiHH35IdXU1Hh4emEwmJk6ciMViYdKkSfTv39/o3HbV3NyMm5ub0RkdwtnZ2fGi2YqKCrKystiwYQOLFi3CYrFw9dVXM3/+fGbNmoWrq360TER6roCAAOLi4oiLi3M8d/z4cce4R0FBAatWraK8vBz4/wMfcXFxTJ06lbFjx+Lt7W1Uvkin4uXl5fj6A+Crr75i69atWK1Wli9fztKlSxk8eDDx8fGYzWbi4+MJCAgwuFpERES6kwEDBmCxWLBYLBQVFZGdnc2LL77IihUriI6OJiUlhZSUFMLDw41OFRERERHpUlpbW7nlllvYsGEDr7zyCgkJCW16/t69ezv+O3xX5WS32+1GR4iIyM8zePBgUlNTuffee41OERHh8OHDDB48mLy8PGJjY43OEekykpOTAcjKyjK4REREREREeqK1a9eyePFiGhsbjU4RERERkXZy4sQJ3n//fXbs2MH27dspLi7GbrczdOhQJk6cyMSJE5k0aRJjxozpMcMW3/Dy8uLpp5/mpptuMjrFMKWlpbzyyitkZ2eze/duAgMDueKKK0hKSmLOnDka9hAR+Q7/OvDx0UcfcfLkSVxcXIiKisJkMjke48aNc7xBioj8r9bWVvbt24fVasVqtbJ9+3bsdjtjxoxxDIDMnDlTX4uIiMiPlpiYiJ+fH5mZmUanSCdls9nYvXs32dnZvPTSS1RXVzN58mRSUlJYsGABfn5+RieKiIiIiHRq9fX13HDDDWzZsoXNmzcza9asNr/G0qVL2bJlCx9//HGbn7ujaMxDRKSLq6+vx9fXl40bN5KYmGh0jogIJ0+epHfv3uzYsYPp06cbnSPSZWjMQ0REREREjKQxDxEREZHup7y8nB07djgexcXFuLq6Mm7cOGbMmMH06dOZOHEioaGhRqcaymaz4erqyoYNG0hKSjI6p1MoKSlhw4YNbNiwgU8//ZS+ffuSnJxMcnIyEyZMwNnZ2ehEEZFO7fDhw+Tn55Ofn09BQQH5+fnU1NTg6upKTEwMsbGxxMbGYjKZGD16NO7u7kYni3QalZWVvPfee1itVt5++22+/vprgoODufTSSzGbzcyZM4f+/fsbnSkiIl2Axjzkx2hsbGTLli1kZ2fz6quvYrPZMJvNpKSkkJiYqK/ZRURERET+xfHjx7nyyis5cuQIr732GlOnTm2X6/z1r3/lkUceobS0tF3O3xE05iEi0sXl5+czfvx4Pv/8c4YNG2Z0jogIZ86cwdfXl7fffpvLLrvM6ByRLkNjHiIiIiIiYiSNeYiIiIh0fZWVlY53M9+xYwcHDhzA1dUVk8nEjBkzmDFjBtOmTcPX19fo1E7l9OnT+Pn58dZbbzFnzhyjczqd4uJisrKy2LBhA5999hkhISHMmTOHpKQkfvGLX9CrVy+jE0VEuoTjx49TUFDgeHzwwQdUVlbi6urK8OHDMZlMmEwm4uLiGDt2rIaTRP7PoUOHsFqtjnGPM2fOEBkZidlsZu7cucTHx+Ph4WF0poiIdEIa85Cfqqamhs2bN5OZmcl7772Hn58fCQkJpKSkMGvWLJycnIxOFBEREREx1KeffkpCQgK9evUiJyeHqKiodrvWSy+9xKJFi2hqamq3a7Q3V6MDRETk5ykuLsbDw4PIyEijU0REAPD09ASgvr7e4BIREREREREREREREZHuy2azsXfvXseLG3fs2IHNZmPMmDHEx8fzwAMPEB8fT0BAgNGpndqZM2cANHLyHaKjo0lPTyc9PZ1Dhw6Rk5NDdnY2iYmJeHp6cumll5KUlERiYiL+/v5G54qIdFoRERFERESQkJAAgN1u5/PPPycvL8/xyM7OpqGhAV9fX0wmE+PHj2fChAmMHz+egQMHGnwHIsaIjIwkNTWV1NRUzp07x65duxxf/z777LN4eHgwdepUzGYzZrOZcePG6QW2IiIi8rMEBASQkpJCSkoKx44d49VXXyUzM5P4+Hj69evHNddcw0033cS4ceOMThURERER6XCvvPIKN998M1OmTCErK6vdvxcdGBhIc3Mz9fX1eHl5teu12ouT3W63Gx0hIiI/3b333svbb7/Nvn37jE4REXHw8PBgzZo13HjjjUaniHQZycnJAGRlZRlcIiIiIiIiPdHatWtZvHgxjY2NRqeIiIiIyPdoaGhgy5YtbNq0iTfffJOKigr69+/PZZddxuzZszGbzRpU+JG++OILhg8fzt69exkzZozROV3G0aNHeeedd8jJyeHdd9/F2dmZadOmMXfuXJKSkoiIiDA6UUSky2lpaeHgwYMUFBQ4Hnl5eTQ1NREQEEBsbCxTp07FZDIxceJEwsLCjE4WMdSJEyd4//33ycnJ4c0336SqqorevXszffp05s6dy9y5cwkKCjI6U0REDJKYmIifnx+ZmZlGp0g3UVRURHZ2NpmZmRw6dIjo6GiSkpJISUnRG7OKiIiISLfX0NDA73//e5566il+/etf89e//hVXV9d2v+6uXbuIi4ujtLS0y37/UWMeIiJdXGJiIt7e3qxbt87oFBERh6CgIJYvX05qaqrRKSJdhsY8RERERETESBrzEBEREem86urqePPNN9m0aRNvv/029fX1TJo0iauuuoo5c+YwcuRIoxO7tI8//hiTycQXX3zB0KFDjc7pkiorK3njjTd4/fXXeffdd2loaGDy5MlcccUVzJkzh9GjR+Pk5GR0pohIl3T27Fn27t173sDHgQMHsNvthIeHYzKZHI+4uDgCAwONThYxhM1mY+/evVitVqxWKzt27MBmszFmzBjMZjNms5kZM2bg5uZmdKqIiHQQjXlIe7HZbOzevZvs7GzWr19PZWUlkydPJikpiRtuuIGQkBCjE0VERERE2tRnn33Gddddx6FDh1i1ahULFizosGsXFhYyatQoiouLGTFiRIddty1pzENEpIsbNmwYKSkp/PGPfzQ6RUTEoV+/ftx111389re/NTpFpMvQmIeIiIiIiBhJYx4iIiIinUtrayvbtm0jIyODjRs30tDQwKRJk0hKSmLevHn07dvX6MRu4/3332fGjBmUl5fTu3dvo3O6vPr6erZs2UJOTg5vvfUW5eXlREREMGfOHObMmUN8fDx+fn5GZ4qIdGm1tbXs37+fgoICdu3axc6dOykvL8fFxYWoqKjzBj5iY2Px8PAwOlmkw505c4Y9e/aQk5PD5s2bOXz4MD4+PsycOZOEhARmz57NwIEDjc4UEZF2pDEP6QiNjY1s2bKF7OxsNm7cSEtLC/Hx8Y7/hufl5WV0ooiIiIjIz/Lcc89hsVgYNWoU69evZ9CgQR16/WPHjtG/f38++OADJk2a1KHXbisa8xAR6cIaGhrw8fFhw4YNXHvttUbniIg4DB8+nJtvvplly5YZnSLSZWjMQ0REREREjKQxDxEREZHOYc+ePWRmZrJhwwaqqqqIi4vjxhtvZN68eQQFBRmd1y1ERUVx4sQJAgMDCQ0Nxdvbm7KyMi6//HIiIiIIDg4mJCSECRMmaNyjDRQVFfHGG29gtVrZsWMHNpuNMWPGMHfuXBISEhg3bhxOTk5GZ4qIdHnHjx+noKDA8di9ezdVVVW4ubkxbNgwTCYTcXFxTJ06lREjRuDs7Gx0skiHOnToEFarFavVyrvvvktdXR2RkZGYzWbMZjOzZ8/W4JiISDejMQ/paLW1tbz++utkZ2fzzjvv4O3tzZVXXklSUhJz5szB1dXV6EQRERERkR/syJEj3H777WzZsoW7776bBx98EDc3tw7vOH36NH5+frzzzjvMnj27w6/fFjTmISLShe3bt4+xY8dSXFzMiBEjjM4REXEYM2YMCQkJPPjgg0aniHQZGvMQEREREREjacxDRERExDinT59m/fr1PP300+zbt48RI0aQnJzMwoULGTJkiNF53Y7JZOLjjz8+7zlXV1dcXFwAaGlpobW1lf/4j//gySefNCKx26qqqmLLli289dZbvPPOO1RUVDBgwADmzJnDnDlzmDlzJv7+/kZnioh0Czabjc8++4y8vDw++ugj8vLy+OSTT2hqasLf35/Y2FgmTpzIpEmTmDRpEqGhoUYni3SYlpYW9uzZ4xgc+/jjj3FxcWHixIkkJCRgNps1OCYi0g1ozEOMdPz4cbKzs8nOzmbXrl1EREQwb948kpKSiIuLMzpPREREROQ72e12nn32We666y569+7Ns88+y8yZMw3rsdlsuLi48Morr3Dttdca1vFzaNZPRKQLKyoqws3NjaFDhxqdIiJyHi8vL+rr643OEBERERERERERERER6bQ++eQTnn76adatW0dLSwvz58/n6aefZtKkSUandWuXXXYZhYWFNDU1OZ5raWmhpaXlvOOuu+66jk7r9oKCgliwYAELFizAZrORn5/P22+/zVtvvcWzzz6Ls7Mz48ePx2w2YzabmTRpEu7u7kZni4h0Sc7OzkRHRxMdHc1NN90EQFNTE/v27SMvL4+8vDw2btzIww8/jN1uZ8iQIUyePJmJEycyefJkRo8erXcOl27L1dWVuLg4xwtpKyoq2L59O1arlccff5ylS5cSFhbGjBkzMJvNzJ07l4iICIOrRUREpCuJiIjAYrFgsVj47LPPePnll1m3bh2PP/64Y8j3xhtv1OtARERERKRTKS4uJjU1lY8++oi0tDT+8Ic/0KtXL0ObnJ2dcXd3p6GhwdCOn8PZ6AAREfnpDhw4wPDhw3FzczM6RUTkPBrzEBERERERERERERER+Xa5ubkkJCQwduxYtm3bxn333cfRo0f5+9//riGPDjBr1qzzhjz+lbOzMxdffLHeJbWdOTs7M2HCBO6//34+/PBDampqePvtt5k+fTpvvfUWM2bMIDAwkPj4eFasWEFBQQF2u93obBGRLs3d3Z0JEybwq1/9ihdeeIEDBw5QW1vLzp07ue2226ipqSE9PZ3Y2Fi8vLyIjY3FYrGQkZHB4cOHjc4XaTehoaEkJSWxatUqSktLKSws5He/+x3V1dXccccd9O3bl5iYGJYuXYrVav3eryVFRERE/tVFF11Eeno6n3/+Ofn5+cTHx/PMM88wbNgwYmNjWblyJSdPnjQ6U0RERES6IZvN9oO+v1ZdXY3FYmHMmDE0NjaSl5fHgw8+aPiQxzc8PDw05iEiIsYoLi4mOjra6AwRkQt4enpqzENEREREREREREREROT/2Gw2cnJymDhxItOmTaO6uprXX3+dzz77jLS0NEJCQoxO7DHi4uLw8PD43mPS0tI6qEa+4evri9lsZvny5eTn53Po0CEee+wxgoKCeOSRR4iNjSU8PJwbbriBv//97xw9etToZBGRbsHX15e4uDjS0tLIycnh1KlTlJSUsGbNGqZOncquXbtYtGgRgwcPJiIigoSEBFasWEFubm6X/uFpke8TExNDWloaW7dupaqqiq1bt5KQkIDVaiU+Pp6goCDH4FhxcbHRuSIiItKFmEwmVq5cSWlpKVu3biU6Opo//OEPREREEB8fT0ZGBmfOnPnR562rq6O1tbUdikVERESkqzp+/DijRo1iyZIl33mMzWYjIyODiy66iJdeeon/+Z//Yc+ePYwePboDS/89jXmIiIhhNOYhIp2Vl5eXxjxERERERERERERERKTHs9lsrF27lmHDhnH11VczePBg8vPzyc3NJSEhAScnJ6MTexx3d3emTJmCs/O3/9hUcHAw8+bN6+Aq+VeDBw/mtttuY8OGDVRUVFBSUsKf/vQnmpubsVgsDBw4kIiICJKTk1m9ejVFRUVGJ4uIdBuRkZGkpKSwcuVK8vPzqa2tZefOnaSlpeHp6cmjjz7KtGnT8PX1JTY2FovFQkZGhv5ZLN2Sl5fXeYNjJSUl/OUvfyEwMJDly5cTExPDkCFDWLJkCdnZ2dTW1hqdLCIiIl2Ai4sLZrOZjIwMTp48yfr16/Hw8ODWW28lLCyM5ORkcnJyaG5u/kHnmzJlCrGxsXz99dftXC4iIiIiXUFJSQmTJk3is88+44UXXuDkyZMXHPPOO+8wevRobrvtNhYuXEhJSQkWiwUXFxcDir+fh4cH586dMzrjJ9OYh4hIF9XU1ERJSYnGPESkU9KYh4iIiIiIiIiIiIiI9HQ5OTmMGTOGm2++mRkzZvD555/z8ssvYzKZjE7r8WbPnv2tP4jm5ubGnXfeibu7uwFV8n0iIyNJTU0lKyuLkydPsm3bNpYsWcKpU6f47W9/y8iRIxkwYAALFy5kzZo1fP755z/7mseOHeOGG27gk08+aYM7EBHpunx8fIiLi8NisTj+OfzZZ5/x3HPPMWHCBN5//30WL17MyJEj6d+/P0lJSfzlL39h9+7dXfrdEkW+zT9/TXLq1Cny8/NJTU2lqKiIBQsWEBwcTGxsLEuXLiU3NxebzWZ0soiIiHRynp6eJCUlkZOTQ3l5OY899hjHjx8nMTGRPn36sGTJEnJzc7Hb7d/6+Z9++ilFRUXs37+f0aNHs2PHjg6+AxERERHpTIqKipgyZQrl5eXYbDbsdjvPPPOM4+Pbt29n2rRpzJkzh8jISPbv388jjzyCv7+/gdXfr1evXjQ1NRmd8ZNpzENEpIs6ePAgLS0tGvMQkU5JYx4iIiIiIiIiIiIiItJT5ebmMnXqVBITExk2bBj79+/n+eefJzIy0ug0+T9ms/lb39nUycmJ1NRUA4rkx/Dw8GDmzJncf//9vPfee1RXV/P++++TmppKeXk5v/3tb4mKiiIiIoLrrruOZ555huLi4u980ct3eeutt1i3bh3jxo3jzjvv5PTp0+10RyIiXU9UVBQpKSk89dRT7N27l5qaGnbu3Mldd92Fk5MT//3f/83UqVPx9fUlNjYWi8VCdnY2lZWVRqeLtBkXFxdMJhNpaWnk5uZy4sQJ1q9fj8lkYt26dUybNo3evXuTnJzM6tWrOXbs2E+6zpdffsncuXPZv39/G9+BiIiIdDZBQUGkpqaSm5vL4cOHueeee9ixYwfTpk1j8ODBLF269IIB03Xr1uHm5kZrayu1tbVceumlrFixwqA7EBEREREjffTRR0yZMoWqqirH90JbWlp47LHH2LlzJwkJCVxyySXY7Xa2b9/O66+/zvDhww2u/vdsNhtOTk5GZ/xkGvMQEemiiouLcXV1ZdiwYUaniIhcQGMeIiIiIiIiIiIiIiLS05w4cYKUlBSmT5+Op6cne/bs4dVXX2XEiBFGp8m/GDNmDAEBAec95+bmxs0330xwcLBBVfJT9erVi2nTpvGHP/yBrVu3UlNTQ35+PmlpabS2tnLvvfcSExNDQEAA8fHxpKenY7VaOXfu3Peed8+ePbi5uWGz2XjiiSeIjIwkIyOjg+5KRKRr8fb2Ji4uDovFQlZWFuXl5ZSUlPD8889jMpmwWq3Mnz+fsLAwLr74Yn71q1+xbt26nzxuINIZhYSEkJSUxKpVqzh69CglJSU89NBDnDt3DovFQv/+/RkyZAgWiwWr1UpDQ8MPOu+6det48803GTduHI888gg2m62d70REREQ6gwEDBpCWlsZnn31GYWEhCxYsICMjg6ioKGJiYlixYgVlZWVkZmY6Xqhps9mw2Wzce++9XHfddfpZbhEREZEe5B//+AczZszg7NmztLS0nPexmpoapk+fTk1NDdu2bSM3N5cZM2YYVPrj2Ww2nJ277iSGk/3HvuWAiIh0Cun/j707j4uq6v8A/hn2fYt1RAExQBAld8VdcX9EM3PJJfdyeaxHrWhxKbW0tOzJxzRTS1tMzVyyUjIT0UwzNB1EQUGQRWRXkXV+f/RjcmSAe2Fm7gx83q/XvIA7997zPeeec++cy8x3li3Drl27EB8fL3UoRETVLF26FN9++y2/EYJIhKeffhoA8M0330gcCRERERERNUU7d+7E9OnTUVJSInUoREREREansrISO3fuxH/+8x9YWVlh1apVmDx5stRhUR3GjBmD7777TvVmNplMhsuXLzP5SiNUXl6O8+fP49SpU4iNjUVsbCwyMjJgYWGBDh06oHv37ujRowe6desGDw8P1XatWrVCUlKS6m8TExMolUr06tULmzZtQmBgoBTVISIyWnfu3EFsbCxiYmIQGxuLP/74A2VlZfDx8UGfPn3Qr18/9O/fH82aNZM6VCKtKy4uRmxsLKKjoxEdHY3z58/DysoK4eHhGDBgAAYMGIAOHTpo3LZz5844d+4clEolTExM0KFDB3z11Vfw9/fXcy2IiIxLZGQkHBwcsGPHDqlDIdKaiooK/Pzzz/jiiy+wb98+PHjwQJXI41FmZmYIDAzEoUOH4Ovrq99AiYiIiEivvvrqK0yaNAlKpVJjIlgTExP4+vqq/d/LmPj6+mLu3LlYvHix1KHUi/GmISEiauIUCgWCg4OlDoOISCNra2tmcyYiIiIiIiIiIiIiokbvjz/+QKdOnTBz5kzMnDkTCQkJTORhJCIiIlD1HUhmZmbo378/E3k0UmZmZujcuTNeeOEF7N69G+np6UhKSsKWLVvQrl07HDlyBKNHj4anpycCAgLw7LPPYv369bh+/brafiorK6FUKnHq1Cm0bdsWy5YtY0JEIiIRXF1dERkZiffeew+nT59Gfn4+fv75Z0ydOhXJycmYNWsWvL29ERQUhDlz5mDPnj3IycmROmwirbC2tsaAAQPwzjvv4Ny5c0hPT8fHH38MZ2dnrF69Gh07doSXlxcmT56M3bt3Iy8vD8Df35p6/vx51evWyspKxMXFoW3btti8ebOUVSIiIiIJmJqaYuDAgfjss8+QlZWFoUOHwtzcXOO65eXluHr1KsLCwhAdHa3nSImIiIhIXzZu3IhnnnkGlZWVGhN5AH/fU7p+/TpiY2P1HJ12VFZWwsTEeFNiGG/kRERNHJN5EJEhs7GxYTIPIiIiIiIiIiIiIiJqtCoqKrBy5Up069YNDg4OuHDhAt5++23Y2tpKHRoJNGDAAFRUVAD4+8MNixYtkjgi0qeWLVti0qRJ2LhxIy5evIiCggLExMRg+vTpyMnJwapVq1Qfmn1UWVkZSktLsXLlSgQGBuLIkSN6jp6IqHGwsbFBv379sHTpUhw/fhy5ubk4cuQIRo0ahT/++APjxo2Du7s7OnbsiOXLl6slNCAydp6enpg8eTK++eYbZGdnIzY2FrNmzcK1a9cwfvx4uLu7o0ePHnjzzTerfQijrKwM9+/fx3PPPYeRI0fizp07EtWCiIiIpGRubo4TJ06grKysxnXKyspw9+5dDBo0CKtXr9ZjdERERESkD6tXr8acOXOgVCrrvHdqbm6OdevW6Sky7WIyDyIi0ruysjJcu3aN3wpERAaLyTyIiIiIiIiIiIiIiKixSk5ORr9+/bBixQq89dZb+PnnnxEUFCR1WCRSy5Yt4e3tDQB4/PHHMXDgQIkjIinZ2dmhR48eePnll3Hw4EHMmTMHFhYWtW5TXl6OtLQ0DBo0CMOGDUNaWpqeoiUiapxsbGwQERGBt99+G2fOnEFOTg727duHzp07Y8uWLejQoQN8fHwwZ84cHDt2jIk9qNEwNTVF9+7dsXz5cpw+fRq3b9/Gl19+iaCgIMTFxcHMzEzjdkqlEj/88AMCAwNx4MABPUdNREREUjty5Ajy8vLqXK+iogKVlZV49dVXMW7cOL6/m4iIiKgRUCqVeOGFFxAVFSV4m7KyMuzfvx+pqak6jEw3jD2Zh+a7e0REZNASExNRWlqK4OBgqUMhItKIyTyIiIiIiIiIiIiIiKgx2rZtGxYsWAA/Pz+cPXsWbdq0qXX9X3/9Fbdv39ZTdCRWYGAg0tLS0LdvX+zZs0fqcJo0uVyO8PBwne0/KSkJ58+fF7z+vn37av1m2yoVFRUAgB9//BGPP/44Jk2ahIiIiHrHSUREQJcuXdCiRQs4OjpixIgRGDFiBDZs2IA///wTBw8exIEDB7Bx40a0atUK7733HiIjI6UOmUirXFxcMGbMGIwZMwbe3t61viYpLS1Ffq+h3XkAACAASURBVH4+IiMjMXHiRGzcuBF2dnZ6jLbhSktLce/ePdXfDx48QHFxserve/fuobS0tNp2+fn5opL61LSf2lhaWsLGxkbw+iYmJnB0dKxzPzY2NrC0tFT9bWdnB3Nzc1GxEZFxKi4uxg8//KCaSxI1xEcffQQTExNUVlYKWr+yshK7du3CqVOnEBUVBVdXVx1HSESkWdW8XxfE3gcmIjJGSqUSGzZswIkTJwAAMpkMpqamkMlkUCqVqKioqHbPRCaTwcHBAe7u7igoKEDz5s2lCL3emMyDiIj0TqFQwMTEBIGBgVKHQkSkkaWlJcrLy1FRUQFTU1OpwyEiIiIiIiIiIiIiImqQ0tJSzJs3D59++in+85//YMWKFWofvtKkrKwM/fr1E/yGepLO5s2bsXnzZqnDaNKsbWxw/6EPcWrb4sWLsW/fPp3tv7KyEg8ePMAnn3yCTz75RGflEBE1BVOmTMH27dvVlslkMrRv3x7t27fH0qVLoVAo8N5772HUqFHYsmULpk2bJk2wRDp05coV3Lp1q871quYbX3/9NY4fP44vv/wSPXv2rHH9kpIS3L9/H4WFhSgpKUFRUZEq0cXdu3dRVlamWqeyshIFBQUAgMLCQlRUVKC4uBgPHjxAeXk5ioqKAPyTWKNqPw8n6FAqlcjPz1eVX1FRgcLCwnq3S1Pg6Oio9gEVZ2dn1e9ViT+qEoQ8nEDEwcEBpqamsLa2hpWVFczMzGBvbw8AcHJygkwmg62tLSwsLFTbV/10cHCAlZUV7OzsmFyESIf279+P8ePHSx0GNXGpqamYM2eO1GEQUROmad6vLbq+D0xEZIiUSiXKy8vrXGfkyJE6O//qWkVFBZN5EBGRfikUCrRs2RLW1tZSh0JEpJGFhQWAv9+kymQeRERERERERERERERkzLKzszFmzBicP38ee/bswahRowRtV1lZicrKSry8YRs69x+k4yiJjNeJA3vxv9cX6rSM8ooK9BoxGgvW/LfOdTNvJmPuwO4wMTGBiakpKsrLVd9gZmpmBmc3D7g184bctyXc5N5wb9Yc7s2aw62ZN1zcPWHC/48SEdXb6jlTBX1TfXBwMLZu3YrmzZtj1qxZsLGxwbhx4/QQIZH+HDlyBGZmZnV+GKNKeXk50tLS0Lt3b7Ru3RoODg4oKSlBQUGBKgFHXl6eoH2Zm5vDzs4OwD+JJGpLItGiRYsak0gAtSenMDU1hYODg+pvCwsL2Nraqv62srLS+F7ZmpbX5NFyhCgoKBCVnPH+/fsoKSmpc3lRUZHacX24nLqSn9SWVOXmzZsak6poSspSl6rjW3VMnZycYGlpCVtbW9jb28PS0hIODg6qhCDOzs6wsrKCg4MD7O3t4eTkpPq96lHVX4iasvLycpibW+Drv5KlDoWIiEgSQuf99SXmPjARUVOi6/OvrlVWVhr15xOZzIOIyAgpFAoEBwdLHQYRUY2qMvOXlpbCyspK4miIiIiIiIiIiIiIiIjq5/z58xg1ahQsLCxw+vRphISESB0SEemYta0dug4cBkeXx+Am94ZbM2+4NWsON7k3nN3cIZPJpA6RiIj+3/Lly3H//n1MnjwZ9vb2GDZsmNQhEancvXsXubm5yMvLU/uZm5uLwsJCFBUVqR75+fmqZQ//rItMJoOpqSnMzMxgYWEBGxsb2NjYwNfXF0FBQbC0tKwxIYOdnV2156t+0t/EJp94OEmJoatKBlL1Mz8/HyUlJbh37x6KiopQWlqqlghG0/PXr19Xe764uFjVp2vi6OhYLcmHs7Oz2t8ODg5wcXGBi4sLnJ2d1X5/ONELERERERERETUNSqVSLVGssWEyDyIiI6RQKDB06FCpwyAiqpGFhQUAoKysTOJIiIiIiIiIiIiIiIiI6mf//v0YN24c+vXrhy+++AJOTk5Sh0REeuD4mCsWf/iJ1GEQEZFAa9asQUFBAcaMGYPDhw+jT58+UodEjcz9+/eRnZ2NzMxMVTIOTQk6Hv29tLS02r4cHR3h4uKilszAwcEBLVu2hKOjo1pCg4SEBGRlZcHV1RXu7u7w9PSEl5cXmjdvDmdnZzg7O8PS0lKCFqHGwNraGtbW1jpLQJKXl6dK7FGVoKagoAAFBQXVlufl5SE9PV21vKCgAHl5eRoT2lhaWqol+Xg02cfDvz/22GPw8PCAm5sbrK2tdVJPIiIiIiIiItK9+/fvG/Xcnsk8iIiMTEVFBa5evYqFCxdKHQoRUY3Mzc0BMJkHEREREREREREREREZp88++wwzZszAjBkz8NFHH8HU1FTqkIiIiIhIA5lMho0bNyIvLw+jRo3C77//jscff1zqsMiAlZSUICcnB3l5ecjLy0NGRgbS09Nr/ftRVlZWqoQazs7OkMvlaNmypdqyRx9ubm6q91QRNXZV/b6hiouLVWPx4cfD4zQnJweJiYmq53Jycqol03l4zMrlcnh5eWn8Wy6Xw9vbW/VlZkREREREREQkrQcPHqCkpASOjo5Sh1JvTOZBRGRkkpKS8ODBA4SEhEgdChFRjar+8azpGyaIiIiIiIiIiIiIiIgM2YYNG/Dvf/8bixcvxttvvw2ZTCZ1SERERERUC1NTU+zYsQO9e/fGiBEjcObMGTg4OEgdFulZSUkJ0tPTkZ6ejlu3bql+ZmRkIDU1FVlZWcjIyEBhYaHadpaWlnBzc4Obmxs8PT3h6uqKLl26wMPDA+7u7nB1dVU95+LiAnt7e4lqSNT0WFtbw9raGnK5XNR2hYWFyMnJQVZWFrKzs3Hnzh1kZmYiOzsb2dnZuH37Ni5evKh67tH3OTo7O8PDwwNeXl5o1qwZ5HK56mdVwg9PT08m/SAiIiIiIiLSsap7ecZ8v5fJPIiIjIxCoYBMJkNgYKDUoRAR1ajqn1RlZWUSR0JERERERERERERERCTc2rVrsXjxYrz77rtYuHCh1OEQERERkUBWVlb47rvv0KFDB0yePBn79u1jUrZG5O7du0hOTkZycrIqUUdaWhoyMzORmpqq+pB+FRMTE3h4eKBZs2bw8vJCSEgIBgwYAA8PD3h4eKgl6DDmDwIQkWYODg5wcHCAn5+foPXz8/OrJf6oSgB069YtXL58GRkZGcjKyoJSqVRt5+HhAU9PT3h7e6sSf1Ql/fD19YWfnx9sbGx0VU0iIiIiIiKiRq+goAAA4OjoKHEk9cdkHkRERkahUMDX1xd2dnZSh0JEVCNzc3MATOZBRERERERERERERETGY/v27UzkQURERGTEvLy8sGfPHvTt2xerVq3Ca6+9JnVIJNCDBw+Qnp6O69evqz3S09ORkZGBGzduqD5Ab2VlBblcDi8vL8jlcvTt2xdyuRwtW7ZULWvevLnq/UtERHVxcnKCk5OToC9azMvLUzs/Pfzzzz//VP1dxdnZWe381LJlS9Xj8ccfZ0IhIiIiIiIioloUFhYCgFHPn5nMg4jIyMTHxyM4OFjqMIiIalX1z/DS0lKJIyEiIiIiIiIiIiIiIqrb3r17MWPGDCxfvpyJPIiIiIiMWPfu3bF27VosWLAAnTt3RkREhNQh0f/Lzs7GlStXkJCQgKtXryIpKQnJyclISUlBTk6Oaj03Nzf4+vrCx8cH3bp1g4+PD3x9feHn5wcfHx9+ERoRScrZ2RkdOnRAhw4dalynsLAQKSkpSE5Oxo0bN1S/nzt3Dnv37q3xnOfv74/AwEAEBQUhICAAjz32mD6qRERERERERGSwCgoKAACOjo4SR1J/TOZBRGRkFAoF+vfvL3UYRES1srCwAACUlZVJHAkREREREREREREREVHtjhw5ggkTJmDu3Ll44403pA6HiIiIiBpo3rx5iI2NxdSpU/HXX3/B2dlZ6pCajJKSEly7dk2VsCMhIUH1yMvLAwDY2toiMDAQ/v7+6N+/vypZR9XD1tZW4loQETWMg4MDQkNDERoaqvH5oqIipKSk4MaNG6qkRsnJyfjxxx/x4Ycfori4GADg6uqKwMBABAYGIiAgQJXoo2XLlqr3aBIRERERERE1ZoWFhQD+nmsbKybzICIyIpWVlUhISMC8efOkDoWIqFbm5uYAmMyDiIiIiIiIiIiIiIgM2y+//ILIyEiMHz8eH3zwgdThEBEREZGWbNy4EW3btsX8+fOxc+dOqcNpdCorK5GUlIS4uDjExcXhwoULiI+PR0pKCioqKmBiYgIfHx8EBASgc+fOmDx5MgICAhAQEIDmzZtLHT4RkaTs7e3Rpk0btGnTptpzSqUSN2/eVCVEunLlCq5evYqff/4ZN2/ehFKphJmZGfz8/BAcHIx27dqhXbt2CAsLg5+fH2QymQQ1IiIiIiIiItKNwsJCWFlZGXVSSybzICIyIsnJybh37x6Cg4OlDoWIqFZVyTxKS0sljoSIiIiIiIiIiIiIiEizM2fOIDIyEpGRkfj000/5gRciIiKiRsTJyQmffvopBg0ahMjISIwZM0bqkIxWcXEx/vrrL7XEHRcvXsTdu3dhZmaGgIAAhIWFYfr06aqEHYGBgbC0tJQ6dCIioyOTyeDj4wMfHx9ERESoPXf//n1cvXpV9fjrr7+wa9curFixApWVlXB0dETbtm0RFhamSvDRpk0bno+JiIiIiIjIaBUUFMDR0VHqMBqEyTyIiIyIQqGATCZDUFCQ1KEQEdXKxMQEwN/fwkFERERERERERERERGRoLly4gCFDhqBXr17YsWMHTE1NpQ6JiIiIiLQsIiICM2fOxJw5c9CzZ094enpKHZJRSEhIQGxsLGJiYnDmzBlcvXoVFRUVsLe3V31I/Nlnn1V9SNza2lrqkImImgQbGxuEhYUhLCxMbfm9e/fUki79/vvv2Lp1K+7duwczMzMEBQWha9eu6NmzJ3r06IGWLVtKVAMiIiIiIiIicQoLC5nMg4iI9EehUMDb29voLz5E1PgxmQcRERERERERERERERmqa9euYfDgwQgLC8Pu3bthbm4udUhEREREpCNr165FdHQ0FixYgF27dkkdjsEpLy9HXFwcTp48iZiYGMTGxiIrKws2Njbo3LkzRo0ahSeeeAJhYWHw9/eHTCaTOmQiInqEra0tunbtiq5du6qWVVRU4Nq1a7hw4QLOnz+PU6dOYceOHSgpKYFcLkePHj3Qo0cP9OzZE6GhoUxySkRERERERAYpJycHLi4uUofRIEzmQURkROLj4xEcHCx1GEREdWIyDyIiIiIiIiIiIiIiMkRXrlxBREQE/Pz8cODAAX6LOBEREVEjZ2dnh40bN2LQoEF47rnn0LdvX6lDktylS5fwww8/4OjRozh9+jTu3r2Lxx57DOHh4Vi0aBHCw8PRsWNHJr0jIjJipqamCAoKQlBQEMaOHQsAKCkpwdmzZ1XJm5YsWYL8/Hw4ODggPDwcERERGDp0KAIDAyWOnoiIiIiIiOhvGRkZ8PLykjqMBjGROgAiIhJOoVAwmQcRGQUm8yAiIiIiIiIiIiIiIkMTFxeH3r17o0WLFjh8+DDs7OykDknrlk8bK3UI1Eixb4nHNiMiMhwDBw7EsGHDMH/+fJSXl0sdjt6Vl5fj6NGjeO6559CiRQuEhobi3XffhZubG9577z1cunQJ2dnZ2L9/PxYtWoRu3boxkYeEIiIipA6BBOBx0j1DbGNDjEkMS0tL9OjRA1FRUTh06BBycnJw8eJFrFq1Cvb29lixYgWCgoLg7++P+fPn49dff+V7QBsBzk2JiHSL51liHyAh2E+MH4+hdDIzM+Hp6Sl1GA3CZB5EREZCqVQiPj4erVu3ljoUIqI6MZkHEREREREREREREREZktOnT6Nfv34IDQ3FkSNH4OTkJHVIGo0OkmN0kLze2yuVSi1G0zg1pH1r2p+292mImmLf4njUvaYwdgxZUzl/kfYYe39Zv349EhMT8fHHH0sdit7ExsZi9uzZ8PLywsCBA3Hu3DlMmzYNZ86cQWZmJr744gvMnj0bISEhkMlkUocrSm3xSl0XmUzWoBj4GqJuUh9joPEep4b2X22W2ZA21lU9GttxNzExQWhoKObOnYtdu3bh9u3bOHnyJMaNG4dff/0Vffr0gbe3N+bPn49z585JHW6Txbmp7hn761x9YTv9TYq5tC7KbEr3BHRd18Zynm0q/UETXmt1r6n0r9rqKbSfNJZzfmO8zlSUV9Rru8bWDlLIyMhgMg8iItKPmzdvoqioCMHBwVKHQkRUJybzICIiIiIiIiIiIiIiQ/H555+jX79+6NmzJw4dOgRbW1upQ6rR3ivpDdp+2bZvtBQJCdXQY2YsmmLf4nikxq6pnL+Iqvj7++OFF17AkiVLkJ2dLXU4OnP37l18+OGHaNOmDXr06IEzZ85g4cKFSExMxLlz57Bs2TJ07txZ9d4e0r6GfpArOjpaS5GQLjXW4yTFBxFrKrMhbayrejTW417F1NQU4eHhWLlyJS5evAiFQoHnnnsOx44dQ6dOndChQwds2rQJxcXFUofapHBuSmRYpJhL66LMpnRPQNd15XnW+PFaS/ogtJ80lnN+Y7zOvPn5HqlDaLIyMzOZzIOIiPRDoVAAAFq3bi1xJEREdWMyDyIiIiIiIiIiIiIiklpFRQVeeeUVTJkyBZMnT8bevXthZWUldVhEREREJJHXX38d1tbWWLlypdShaF1RURHefvtt+Pn54bXXXkP37t1x9uxZxMXF4ZVXXoG/v7/UIRIRkZFp3bo1lixZgsuXL+PkyZNo06YNXnzxRfj7++P9999nUg8iIiIiIiLSqQcPHqCgoIDJPIiISD8UCgW8vLzg4uIidShERHViMg8iIiIiIiIiIiIiIpJSVlYWhgwZgg8//BA7d+7Epk2bYGZmJnVY9Xbz2hWsnD0Jz7R/HM+0fxxvzZiAm9euqK0zOkiO0UFyUfut2ibzZjLWzJ+OyZ2Dqu3n5rUrWDlroqrslbMmCi67puVnjx3Bq+NHYFxbXzzXrzO2vb0Uxffuatz2TkY63pnzLJ5p/zimhbfF+sXzUJSfV+82enjfo4Pk+N/rCwW3V2piAlbOmogJT7TCxI6BWD1vGu5k3NK4rphjJqSOYtpYbNslX1HgzWnjMCHMHxM7BGDFzGcQd/J4nWULOY6NEcejAY7HDgF4c/p4pCVerVZPse0h5vimJV3DK2OHY3xYS7z+zEhk3kxGamICXnl6GCY80QpLJj9V4zmiJqp9J17FWzMmYGKHAEx4ohVWzp6EtKRrmuOto09Uay8tnL/qcr+oENveXornB3TFuLa+mN4jDP995QVcu/in6LKEjI3aiGlTbY9DbR5HXY1DMdehh7d5dMxqo9/og52dHaKiorBp0ybcuiVufBqygwcPIiQkBKtWrcKECROQmJiIzZs3o2PHjlKHJphMJoNMJhO0vOrvqudkMhlmzJhR53MAcOnSJQwbNgz29vawt7fH4MGDcenSJY1lJiUl4cknn4Szs3ON8YkhpmwxhMR76dIlDB06VFX20KFDBZdd0/IDBw4gPDwcVlZW8PX1xYsvvoiioiKN26ampiIyMhL29vbw8PDAxIkTkZOTU+82enjfjx7juohpi5ratKY2uXz5MoYOHQo7Ozs4ODhg0KBBUCgUGtcX0x/i4+PRtWtX2NjYoGfPnkhMTMTly5fRpUsX2NnZoW/fvrh586bgNtAUr6OjI0aNGlXjfoS0mzbLrGnsi+lPALTe92qKqaHjzxiEh4fjs88+Q0pKCmbNmoVly5YhJCQEP/30k9ShNVmcm0o/N9Xl6/7a2r+u+zhi6q6t+YDQe0RC5/Ji66CL+Xm1ePUwl9ZVmUL3KXbcCumLQvuG0PsbdRHdfg0ss7Z7s/Xpl7o4rwi5RyNozq+F42NseK2V/loL6O4+sLbbo7Z61hSDmHNWva61Rnztqo2U93vF1kUb51eh99obq4yMDACAl5eXxJE0DJN5EBEZifj4eISEhEgdBhGRIEzmQUREREREREREREREUvn2228RGhqKxMRExMTE4JlnnpE6pAbJvJmM5VPHoWPfCGyM/g0fH/sdvUeMxjtzpiInM0O13t4r6aL3XbXN5mWvIHLa89hyIg6vbd6pVvaKmc+g26Dh2Bj9G/539DS6RAzFWzMmIPNmcp1l17T8nTnPou+op/HZ7/F455tDuFuQjy1vva5x2/+9vhCDxk/BpyfjsGbPjyh5UIzPVr+ptq7YNtp7JV31mLNiraC2ergtPv75DP539DS6DRyGdS8+p3FdMfEIqaOYNhaz3/Tk61j74myMnDEX2367hHd2HcKD4vt4a8aEOssWchwbG45HwxyPG38+g35PjsO6/zxfra5i2kNs7Ls+Wot5q97HpzFx8A0KwQeL5+HrD9/DvLc/wJYT5+Ht/zi2v7NcUJ0e3ffaF59D31FjsfHnM9gY/Ru6DBiCt2ZMwO1bqRrbobY+oYvzV13++8oC2No74O1dB7Hj3FW8vnknMm/ewCtPDxNdVl1jQ5ttqu1xqM3jqMtxKOY6pGnMaqvf6MvMmTPh6uqKNWvWSB1Kg5WXl2P27NmIjIxE//79kZycjPXr18PDw0Pq0ERTKpWCl1ctUyqVqseWLVvqfC4xMRERERH417/+hevXryM5ORkTJ05EZGQk0tLSqu3/+eefx6JFi5Ceno7Dhw83qH5iyxajrngTExMxZMgQPPXUU7h+/boq6cDgwYORmJhYZ9k1LY+MjMSUKVOQm5uL3377Dbm5uZg/f77GbWfMmIHnn38eGRkZOHfuHO7fv49FixaprSu2jTQd47qIbYua2lRTmyQlJan2fePGDdy4cQNTp07FuHHjqm0jtq7Lli3Dtm3bkJGRgXbt2mHixIlYunQptm/fjlu3bqF169ZYuFD4h+E0xZuUlITRo0er4q1Pu2mzzNrGvpD+VOXRdUtLSxvc9zTF1NDxZ0zc3NywbNkyXLlyBR07dsTgwYOxePHiep2/qP44NzWMuakuX/fX1P5C7uPoez4ACDt+YubyhjA/l2IurYsyxexTzLgV0hcB8X2jtvFRF7Htp40ya7s3W59+qYvzipB7NHXN+bXRVsaG11rDuNbq6j6wLtqjtnrWdC9a6DlLaLyN5dpVFynv94qtizbOr0LO441ZVTIPT09PiSNpGJmSs2YiIqPQvXt3dOrUCevXr5c6FCKiOpWXl8Pc3Bx79+7Fk08+KXU4REbh6aefBgB88803EkdCRERERERN0c6dOzF9+nSUlJRIHQoRERFRvRUWFmLx4sXYvHkzJk2ahA0bNsDe3l6yeEpKSmBlZYWXN2xD5/6DBG83Okiu9qaw9YvnwScwGCNnzFFb79jer5F85TKmvfZWjdsKLe/Nz/cgpHP3as+tXzwPrULDMGyy+jddH9y2CdfjL2HBmv/WWbaQmO4WFmBuRDd8dkZRbdtH2y/9RhKWTnkKn5z45xundN1GALD+pflo1aZdtbb4Zd8ufBT1YoOOmZA61ha7puVC9/v+wjlo36sfekc+pbbe/CE91fbZkONYlxMH9uJ/ry9EqQ7nIyMiI1EAc7U+KwTHo/q2hj4eT36/H+8vfF7jeBDSHmJjf3PHXoR06gYAyL2dhZm9nlBblpOZgcWjB2Fr7EVR9RsdJMd/1n2M8KEj1JYf3LYJyQnxmP/OB6p4hfQJXZ2/avNM+8ex6ZezsHN0Ui27nXYTzw/oqipPdHvXMDaEENqmdZUldhxq8zhW7VMX47Ch1yFt9RsAWD1nKgLkbtixY4fgbepjw4YNWLRoEa5duwZvb2+dlqVL48aNw6FDh/DVV1/hX//6l9ThNJhMJtP4YXBNy2tat7bnJk6ciLZt2+Kll15SW75161ZcuHBB7b2ZMpkMv/zyC/r06VOPmlSPQWzZYt/eX1u8EydORKdOnbBgwQK15evWrcOff/6pNt7EHINH5eXloVWrVsjJyam27XfffYfIyEjVsoSEBPTr1w+3bv3zTb26bqOqMsS0RW194NEYJk2ahI4dO1bb99dff43x48c3qD8cP34cvXv3BgCkp6ejWbNmasvS0tLQoUMHZGVlCW6LmuLdvn07pk6dWi1eoe2mrTKBmse+kP5U07o3btxAjx49tNr3tDX+jNWXX36JadOmYcqUKdi0aZPU4aiJjIyEg4ODQbXzzp07MW3adHz9V7Ko7Tg3Vd/WUOamVdvq4nV/Te0v5D6OvucDmmg6fmLm8oYwP5diLq2LMsXsExA+boXeU3yUxr4hYnzURmz7aaNMoOZ7s/Xtl9o+rwi5R1NTPcSUI5Su5/28Dyw8JmO41urqPrAmDW2Pusqp1sdEnp+FxNtYrl1CSHW/t76vtxpyfhV6Hq+Lvu67atu3336Lp556Cg8ePICFhYXU4dSbidQBEBGRMFeuXEHr1q2lDoOISBBTU1MAQGVlpcSREBERERERERERERFRU6BUKtGnTx/s378fBw4cwOeffy5pIg9tungqptqb0QCgfZ/+uHDqhFbKaNX2iRrL7jxgcLXlXSKG4OKpGK2UDQB2Do64W5Cv8bngTl3V/nZr1hx52berxanrNroYe0JjWzzRs2/1dUXGI6SO9SFkv5d+i0Vot55qy+R+/vV6Y21tx7Gx4Hg07PHYLrxXw/YrMvaWwaGq351d3aotc3H3QGFuTrXthGjbvWe1ZV0ihuBC7K9q8QrpE7o8f9UkMKwD3n5+Cv6M+QUVFeUAAHfvFmrnFrFl1TQ2hBLSpnWVJXYcavM4VtHFOGzodUgf417bZsyYAVdXV6xZs0bqUOptx44d2LNnDw4dOtQoEnnoQ3R0NMaOHVtt+bBhw3D06NFqyzt37ixZ2fVRU7zR0dEYOXJkteWjRo1CdHS0VsoGAGdnZ+Tm5mp8rlcv9Wu0r6+v6ptVH45T120kti3E9IGjR49q3HdERITGOMTUtX379qrfq76J9uFlcrkc2dnZgmOtLd7Bg6tfk7TVh8SUWRsh/ammdVu0aKGTvif1+JPShAkTsHv3Yw86BgAAIABJREFUbnzyySc4ePCg1OE0GZybGsbctIouXvfX1P5C7uMYwn0pTcdPzFzeEObnUsyldVGmmH2KUd97ihr7hpbOK2LbT9fnsob0S22eV4Tco6mNvs77hobXWsO41urqPrAmDW0PsRp6fhZzrTW2a5dQUtzvfXi7htZFX+dxY5eRkQEXFxejTuQBAGZSB0BERHW7desW8vLyEBwcLHUoRESCyGQyAEzmQURERERERERERERE+iGTybBu3TqEhITAzc1N6nC0qig/D8/10/zBIAsrK62UYWllrXF5YX4unFzdqy13dvNAUZ7mD+rVpTA3BzvXrcKfMb8g/042Kisqal3fzsFR7W9zC4tq34SsjzaqqS00LRMbj5A61oeQ/Rbm58LB2UX0vsUex8aC49Gwx6O9k3OD9is2dmtbO9XvMhMTjcvqO5Y11cXZTf1DHkL7hC7PXzVZtH4zvtmwDp+8+SoKc3PgF9wGXSOGYvCEKTA1M69XWTWNDaGEtGldZYkdh9o8jlV0MQ4beh3Sx7jXNktLS0RFRWHhwoV4/fXX4e5e/RgYuh07dmDChAno06eP1KEYjZycHPj6+mp8ztq6+ri3sbGRrOz6qCneO3fuqBJAPMzLywt37typV1nZ2dmIiorCjz/+iMzMTFTU8RrC2Vn9fGhpaVntPKOPNhLbFmL6QE37fuyxx6otE1vXhxNVmvz/a45Hl4l9zVFTvJqWaasPiSmzNkL6U03rmpqa6qTv6XP8GaJ//etfGD58OD7//HMmmNITzk0NY25aRRev+2tr/7ru4+h7PiD0+ImZyxvC/FyKubQuyhSzTzGE9MWG9g2x5xUxddXFuexRDemX2jyvCLlHUxt9tJUh4rXWMK61uroPrIv2EB2DmHNWA8+nxnbtEkqK+71VtFEXfZ3HjV16ejrkcrnUYTQYk3kQERkBhUIBAEzmQURERERERERERERERERUg8b6QUZ7ZxesP/xrtTcL6oODkwvysrPg3qy52vK87CzYP/JmbZlMhrLSUpg/9M1Imr7FbP1L89HMzx8rv9yPxzy9YGr699uXRgfV/41Y+mgjBycX5N+5DTe5t9pyTXXUVTxC21gMeydnFOblwsXdQ9R2ujiOxoDjsW5Sjsf8O5q/DVFoe0h5fB+Vn5MNp8fUk1PlZWfBweWfDwQL7RNSnL9s7B3w7CvL8Owry1CYl4u/Tp/Eoc8+geLcGSz+8BOtliWUkDati5hxKLRMsfsUQt9ta0hjR4ypU6diyZIl2LRpE9544w2pwxEtJSUFvXpp/5topSSTyVBSUgJLS0vVstxc7X04zNXVFQqFotqH+/VB6rIzMjKqJSvIyMiAq6ur2jKhx2DSpEkIDAzEyZMn4e3tDTMzM9X2DYlT120kpi3qs+/MzEz4+PioLc/MzNS4rlT94eEYNMWr6Xhrq93ElKlPujweuuxzhiYwMBC//lr9G7BJNzg3rZs+20ifr/uF3MfRd/8QevzEzOUNYY4hxVxaF2WK2Scg4h6KgL4opm9oY3yIqasu5uLapM3zipB7NLUx9LbSFV5r62bM94EN4f8bYs5ZDb3WGtu1Sygp7vdW0UZd9HUeN3bJyck1JuA0JiZSB0BERHVTKBRwd3dvdDduiYiIiIiIiIiIiIiIiIgaKj09HW3atMG2bdukDkUnwnr0weUzp6otjz93BoufHKTTstt274kzRw5XW37m6A9o272n2jInV3fcybiltkxx9rdq2yb8eQ5j5y+Ge7Pmqjcclj540KA4xbRRfT9g2K5Hb/we/WO15RdPnWhQPGIIbWMxQjp3r1aH5CsKLBjWu9btdHEcjQHHY92kHI9xJ49rXF9oe0h5fB8VF3O82rIzR39Au/B/xqbQPiHF+Wt0kBw5mRkAAAdnF4QPHYHXNu/Ahdh/PuCp7/YW0qZ1ETMOhZYpdp9C6KptaxqzhjR2xLC2tsbMmTOxceNGlJaWSh2OaB07dsTBgwdRWVkpdSha4+npiZs3b6otO3Gi+rkKqP0aUtNzgwYNwvHjx6stj4mJQYcOHYQHWg9Slj1gwAB8++231Zbv27cPAwYMUFsm9BicOnUKy5cvh6+vryqRR3FxcYPiFNNG9X0NIaYtxBo4cCC+++67ast/+umnasuk7A9Vaoo3Ojq62jJttZuYMvVJl8dDl33OkJSWluLw4cPo2LGj1KE0GZyb1k0fc9Mq+nzdL+Q+jr7nA0KPn5i5vCHMMaSYS+uiTDH7BISPWyF9UWjf0Nb4EFNXXczFtUmb5xUh92iAmse4obeVrvBaWzdjvg+sq/9viKmnmHNWQ6+1xnbtEkqK+71VtNH/tX0eb6xSUlKqJQU1RkzmQURkBOLj4xEcHCx1GEREREREREREREREREREBkOpVGLFihXw8fFBfHw8bt26VfdGRmjs/IXY9d/3cPqnQyjKz0Pxvbs4d/wo1i18HmPmvKjTsp+etxAHtm9C9O4vUZBzB4W5Ofh5z1c4sH0Txs5bqLZuu/Be+GLd28jJzMCD+/cQd/I4fvr682r7DHyiI3a89xZu30pFeVkZMm8mY9OylxsUp5g2cvHwRELcH6goL8OF2F8xu6+wDxuNnbcQB7Z9jGN7v0Zhbg7uFuTj1A8HsHfThw2KRwyhbSzGU88vwO7/vY+Lp2JQUnwfKQnx2PDqixg6cVqt2+niOBoDjse6STEei/LzcPL773Bk106N6wttDymP76OO7NqBmEP7UJSfpzrWhz7fgrHz/znWQvuEVOev/72+EKmJCSgrLUV+Tjb2f7pR7U3I+m5vIW1aFzHjUGiZYvcphK7atqYxa0hjR6x58+bhzp072LNnj9ShiPbaa6/hwoULePnll6FUKqUORysiIiLw6quvIi0tDXfv3sVPP/2Ejz/+WOO6zZo1w+nTp1FWVoYjR46gRYsWdT63bNkyLF26FHv27EFOTg6Kiopw6NAhjB8/Hm+88YZO6yZl2UuXLsW6deuwZcsW3L59G9nZ2fj000+xbt06LF26VG1docege/fueOmll5CcnIzS0lIkJibiueeea1CcYtqotuNfGzFtUZ/4165di61btyI7Oxs5OTn46quvsHnz5gbVVVcejTc3NxfffPMNVq1aVW1dbbWbmDL1SZfHQ5d9zlBUVFRg3rx5SE1NxUsvvSR1OE0G56Z108fctIo+X/cLuY+j7/mA0OMnZi5vCHMMKebSuihTzD4B4eNWSF8U2je0NT7E1FUXc3Ft0vZ5pa57NEDNY9zQ20pXeK2tmzHfB9bV/zfE1FPMOau+11pjvXYJJcX93vrURRvnVyHn8cYqOTm5USTzkCkbyx1cIqJGrFevXggNDcWGDRukDoWISDCZTIZdu3bh6aefljoUIqNQNVa++eYbiSMhIiIiIqKmaOfOnZg+fTpKSkqkDoWIiIhIkKtXr+LJJ5/E5cuX4eHhgaNHjyI0NFTqsNSUlJTAysoKL2/Yhs79hX2j1Ogguer3vVfSVb9npNzAzrWrcPF0DCrKy9G8VQCenDUfXSKG1Lmt0PJq2i7lajx2vLsCinNnAADBHbtg0uLX4RPQWm29wrxcbF35Bi6cOoGS4mKEdg3HzCVvq96UVrXvgpw7+GzNm4g7eRz3Cgsg9/XHmDkvYO2Lz6mtV1N9GtJGAHDqx4PY8d5K5GZlwNWrGZ59ZRk69RsoqL1SExPw+Zq3cPnsb5DJZAh8oiOmRS3HguF96hWP2DoKbWOx+02I+wOfr3kTSZcvwtHlMQwe/yxGzZpX63ZCj6MQJw7sxf9eX4hSHc5HRkRGogDmWLDmv4K34Xg0nvFoYmKCkE7dMP2NFXi+f5dqbSe0PYTGrqneQpcJMTpIjo0/n8Gnb72Oy2dPo7KyEiGdumLKy0vh7f+42rpC+4S2z191+ev0SRz+Yiviz51B8b27cPHwQpcBgzF2/iJY29qJKkvI2KiL0DbV5jjU9nHUxTgUu8/axqw2+g0ArJ4zFQFyN+zYsUPUdg0xduxYJCUl4dy5c3orU1u++OILTJ06FU899RQ2bNgAZ2dnqUNqkDt37mDBggU4evQo7t+/j379+mHDhg2qRA0Pv+V99+7dePnll3Hr1i20aNECa9euxYgRI+p87tq1a4iKikJ0dDTKy8sRHByMqKgojBo1SrXvR78xVexb7R/e/uFtxZYttFwh8f7111946aWXEBMTAwDo2bMn1qxZU20OJfQY3L59G4sWLcJPP/2E/Px8BAQE4I033sDYsWPV1qupPg1pI6D2Y1wXIW1RV5vWFP/ly5exePFinDhxAiYmJujduzc++OADBAQEoKKiQm0f9e0PQpcJ8XC8MpkM3bt3x/vvv4+QkJBq+xLah7RVpph6NnRdQDvH49F9VtFW2xmi27dvY+bMmTh69Ci+/vprweNQXyIjI+Hg4KDX1xV12blzJ6ZNm46v/0oWvA3npoY9N9Xl6/5H61Olrvs4QuuurfmAmHtEmubyU19djnmDe2CPIk0rddDm/Fzfc2ldlSlmn2LuodTVF8X0DaHnFW22nzbKbEgfrG0MavO8IvQeTW3nQm0dH0D3837eB25811pd3AfWVXvUVM+a1hd6zqrvtdaYr1110ff9XmVlJZ4O9cHuy6mi69LQ86vQ83hdpLjv2lClpaWwtrbGrl278NRTT0kdToMwmQcRkRFwc3PD0qVLMW/evLpXJiIyEEzmQSQOk3kQEREREZGUmMyDiIiIjEVxcTFWr16NFStWoKKiAs888wy2b98OMzMzqUOrpj7JPIiaIkNN5kHGaXSQvF7JHgxJY6iDoZGiTXkc60eKN5XHxsaiR48e+P3339GpUye9lastR48exZQpU6BUKrFmzRpMmDABpqamUodFRP/v8uXLGDZsGJKTk6UOhUhrysrKsG3bNkRFRcHe3h5ffPEFwsPDpQ6rmsaSzIMMG1/3N1xqYgJWzpqEj4/9LnUoRAahsZ9XDDGZBxmnxj5WqHb6OP6/7NuFXv96EqZm5si9nYXXJkRiY/RvOi1Tl4wxmUdSUhJatWqFs2fPomPHjlKH0yAmUgdARES1y8rKwp07dxAcHCx1KEREREREREREREREREREktm/fz+Cg4OxZs0aVFZWYvXq1di5c6dBJvIgIiIiIuMQHh6O0NBQbN++XepQ6iUiIgIKhQIjRozAtGnTEBwcjO3btzNpL5EEZDIZ1q9fj7y8PJSUlCAuLg6zZ8/G3LlzpQ6NSCvu37+Pjz/+GAEBAZg/fz4mT56MS5cuGWQiDyIyTKOD5Pj+8y24W1iAstJS3Ii/jI+XvIQhzzwrdWhEREREaj6KehHfbv4Ixffu4vvPP0GPoZFSh9TkpKSkAAB8fHwkjqThmMyDiMjAKRQKAGAyDyIiIiIiIiIiIiIiIiJqkq5cuYLBgwdj1KhRcHZ2RmlpKTZt2oSXXnpJ6tCIiMiAjA6Sq/00Ro2hDoZGijblcTQ+EydOxNdff220CTCcnJywadMmxMfHo3v37pg1axaaNWuGhQsXqt5/SES6d/DgQRw4cAAtWrSAu7s7ZsyYgZkzZ2Lx4sVSh0bUIHFxcZg7dy7kcjleeOEFDBkyBNeuXcP7778POzs7qcMjkgxf94sX9fFnOHvsCGb36Yip3UOx8fWFiHj6GUROnyN1aEQGgecVImE4Vpo2fR3/WUvfxk9ffY45A7riflERxsx5UaflUXXJycmwsbGBm5ub1KE0GL+ahIjIwCkUCjg7O8PT01PqUIiIiIiIiIiIiIiIiIiI9ObevXt499138c4776B169ZYvXo1oqKisG7dOsycOVPq8AxeXW9i23slXU+RGD62Feka+5hwDWkrQ29HIXUz9DoAhtWfDbVNjeE4krqJEyfi1Vdfxffff48nn3xS6nDqrVWrVti2bRtWrVqFbdu2YcuWLVi3bh1CQ0Px9NNPY8yYMQgMDJQ6TKMmk8lqfV6pVBp1ecbMENpq+PDhGD58uM7LqYsUbWEI7U/a9ddff2H37t3YvXs3rly5gsDAQLzxxhuYMmUKXF1dpQ6P6smQXssbOkOdaxi7jn0i0LFPhNRhSDIWOP4apqkcM/YD48exLlxjvg/cWBjquVdfx3/Q+CkYNH6KXsoizVJSUuDr6yt1GFrBZB5ERAZOoVAgJCRE6jCIiIiIiIiIiIiIiIiIiPRCqVRix44dePnll1FSUoLVq1ejX79+6NmzJyZPnox///vfUodoFPhmRuHYVqRr7GPCNea2aix1M6R6GFIsZNzkcjn69++Pzz77zKiTeVTx8vLCq6++ildeeQUxMTHYvXs3NmzYgDfeeAMBAQEYOnQohg4dil69esHS0lLqcI2KvhMSMAGCcGyrf0jRFmx/41dcXIzjx4/j+++/x+HDh3Hjxg14e3vjqaeewtatW9G1a9c6k7aQ4ePrZ+HYVo0bkz4aHx4zMhbsN8KxrQwfz70ktZSUFPj4+EgdhlYwmQcRkYFTKBQIDg6WOgwiIiIiIiIiIiIiIiIiIp07e/Ys5s+fj3PnzmH27Nl46623YGtriyeeeAJhYWHYtGmT1CESERERUSM0ZcoUPPvss8jOzoabm5vU4WiFiYkJevfujd69e2P9+vU4efIkDh8+jMOHD+ODDz6AjY0NunTpgp49eyI8PBzdunWDvb291GETEZEeFBQUIDY2FrGxsYiJicHZs2dRUlKCsLAwjB8/HsOHD0eXLl1gYmIidahERERERETUBN24cQMhISFSh6EVTOZBRGTgFAoFRo4cKXUYREREREREREREREREREQ6k5aWhrfeegtbtmxBjx498Mcff6Bdu3YAgCVLluDmzZv4/vvvYW5uLnGkRERERNQYjRw5EhYWFti3bx9mzZoldThaZ2pqqkrssXr1aty8eRNHjx5FTEwMvvjiC7z55pswNTVFWFgYevTooXp4enpKHToREWlBWloaTp48iZMnTyImJgaXLl1CZWUlAgMDER4ejunTpyMiIgJyuVzqUImIiIiIiIiQmJiIyMhIqcPQCibzICIyYDk5Obh9+zaCg4OlDoWIiIiIiIiIiIiIiIiISOvu3buHd999F2vWrIGbmxu2bduGSZMmQSaTAQCuXLmCNWvW4N1334Wfn5/E0RIRERFRY2VjY4NBgwY12mQej2rRogWmT5+O6dOnAwAyMjLUPuT90UcfoaKiAn5+fmjfvj3atWuHsLAwtGvXDi1atJA4eiIiqs2NGzcQFxeHCxcuIC4uDn/++Sdu3rwJMzMztG/fHv3798eyZcsQHh4Od3d3qcMlIiIiIiIiUlNcXIyMjAz4+/tLHYpWMJkHEZEBu3z5MgAwmQcRERERERERERERERERNSqVlZXYuXMnXn75ZZSUlGDp0qV44YUXYGlpqbbe3Llz8cQTT2Du3LkSRUpERERETcWoUaMwbdo05Ofnw8nJSepw9MrLywtjxozBmDFjAABFRUU4ffo0zpw5g7i4OGzfvh03btyAUqmEi4sLnnjiCbUEH61bt4a5ubnEtSAialpKS0tx+fJltcQdFy5cQH5+PkxMTODv74+wsDDMnj0bXbt2RZcuXWBrayt12ERERERERES1un79OpRKJZN5EBGR7ikUCjg4OEAul0sdChERERERERERERERERGRVkRHR2PhwoWIj4/H1KlTsWLFCri5uVVbLzY2FseOHcOvv/4KExMTCSIlIiIioqZk+PDhkMlk+OGHHzB+/Hipw5GUvb09Bg4ciIEDB6qWFRYWqn1Y/Ndff8WGDRtQUlICCwsLBAUFISAgAAEBAQgMDERgYCACAgLg7OwsYU2IiIxfTk4Orl69iitXruDq1atISEhAQkICrl27hrKyMlhbWyM0NBRhYWEYO3Ys2rVrh7Zt28LOzk7q0ImIiIiIiIhES0pKgkwmg5+fn9ShaAWTeRARGbD4+HiEhIRAJpNJHQoRERERERERERERERERUYP8/vvviIqKwrFjxzB8+HDs3bsXrVq1qnH9JUuWoE+fPujVq5ceoyQiIiKipsrJyQm9evXCvn37mnwyD00cHBzQs2dP9OzZU7WsvLwc8fHxuHDhAuLj45GQkICDBw9i7dq1KCkpAQC4u7urJfeo+t3Pzw8WFhZSVYeIyKCUlJQgKSkJCQkJuHr1qip5R0JCAnJycgAA1tbWqnPpk08+iZCQELRr1w4BAQEwNTWVuAZERERERERE2pGUlARPT0/Y2tpKHYpWMJkHEZEBUygUCA4OljoMIiIiIiIiIiIiIiIiIqJ6UygUeO2117B//36Eh4fj5MmTCA8Pr3Wb3377DceOHcOxY8f0FCURERERETBy5EhERUWhtLSUiSYEMDMzQ2hoKEJDQ6s9l56eDoVCgevXr+P69eu4fPkyjh07huTkZFRWVgIAnJ2d0bJlS7WHl5cX5HI5WrduDRsbG31XiYhIJ0pLS5GWlob09HRkZGSozo1Vj5SUFFRUVAD4+9wYHByMNm3aYMSIEQgODkZISAh8fX1hYmIicU2IiIiIiIiIdCspKQn+/v5Sh6E1TOZBRGTAFAoFBg8eLHUYRERERERERERERERERESipaamYsWKFdi6dSsCAgKwa9cujBkzRtC2W7ZsQbt27dC3b18dR0lERERE9I9BgwZh3rx5OHPmDHr27Cl1OEZNLpdDLpdXW37v3j0kJCTg+vXrSE5OVj0OHTqE5ORk3Lt3DwBgYmICuVwOX19f+Pn5wdfXFz4+PmjWrBm8vb3h5eWFxx57TN/VIiLSKDs7G5mZmUhNTcWtW7eQkpKiOr/duHEDGRkZUCqVAAB7e3v4+vrC19cXrVu3xpAhQ+Dr6wt/f38EBATA2tpa4toQERERERERSYfJPIiISC/y8/ORnp6O4OBgqUMhIiIiIiIiIiIiIiIiIhIsJycH7777LtavXw93d3ds2LAB06dPh6mpqaDti4uLsXfvXixdulTHkRIRERERqWvVqhX8/PwQHR3NZB46Ymtri/bt26N9+/Yan8/OzlZL8lH1gfg//vgDycnJuH//vmpdKysrVdKQZs2awcvLC97e3vD09ETz5s3h6ekJb29v2NjY6Kt6RNTI3Lt3D6mpqcjMzERaWhoyMjJw69YtpKenIz09Hbdu3UJGRgZKSkpU29jZ2amSdbRv3x6jRo1S/e3r68tERERERERERES1SEpKQvfu3aUOQ2uYzIOIyEApFAoAYDIPIiIiIiIiIiIiIiIiIjIKubm5WLduHT788EPY2trivffew8yZM2FhYSFqP99++y3u3r2LcePG6ShSIiIiIqKa9e/fH0ePHsXy5culDqVJcnNzg5ubGzp16qTx+fz8fNUH6TMyMpCWlobMzEykpqbit99+Q2pqKrKyslBeXq7axsnJCXK5HO7u7vDw8IC7uztcXV1Vf1eV6eHhAScnJ31VlYgkkpOTg+zsbNUjMzNT9fvt27eRlZWF7OxspKWloaioSLWdhYUFPDw8VMmCOnTogOHDh6NZs2ZqiYUcHBwkrB0RERERERGR8aqoqEBKSgr8/f2lDkVrmMyDiMhAKRQK2NnZoUWLFlKHQkRERERERERERERERERUo/z8fLz//vv44IMPYG5ujldffRXz58+Hra1tvfa3d+9eREREwNPTU8uREhERERHVbcCAAdi+fTsKCgrg6OgodTj0CCcnJzg5OSEkJKTGdSorK5GVlYWMjAxV4o/09HTVh/b//PNP3LlzB1lZWcjLy1Pb1sLCAq6urnBzc4Onp6cq0UdVAhBnZ2e4uLiofrq4uMDOzk7X1SaiGhQWFiIvLw+5ublqP2/fvo07d+5US9Bx584dlJWVqe2jasxXPUJDQ+Hm5qaWoMPLywseHh4S1ZKIiIiIiIioaUhNTUVpaSlatmwpdShaw2QeREQGKj4+Hq1bt4ZMJpM6FCIiIiIiIiIiIiIiIiKiau7evYsNGzZg9erVKC8vx5w5cxAVFdWgDzxWVFTg+PHj/BZ0IiIiIpJM//79UVlZiePHjyMyMlLqcKgeTExM4OXlBS8vL7Rv377WdcvKypCdnY3s7GxkZWWpEgA8/OH/xMRE3L59Gzk5OSgoKKi2D3Nzc7UEH5oSfjy8zMHBAfb29rC3t4ezs7OumoHIKCiVSuTn56OwsBCFhYUoKiqqlphD08+q38vLy6vt08nJCa6urqokPC1atEDnzp3VkvN4eHiokniYmfFjNURERERERESGICkpCQCYzIOIiHRPoVAgODhY6jCIiIiIiIiIiIiIiIiIiNQUFRVh/fr1eP/991FZWYkXX3wRCxYs0Mq3lp85cwZ5eXmIiIjQQqREREREROK5urqiTZs2OHHiBJN5NAHm5uaQy+WQy+WC1q+oqKgzuUDVz+vXr6v9XVJSonGfVck9Hv75f+zdeVTVdeL/8ReXfQcVZXNfUFwyMf2maMvoZIstmlZqNGVpmYmVJlY2truUiY4VWubQqtZk0UwLzkylZplmueCSoiJK4HLZd7i/P/rdO7gvAW+W5+McjnLv5fLUFLy3+3l9AgICTrnc399f/v7+jvc9PT0VEBAgd3d3eXt7y8fHR66urtX52wOcVmlpqQoKCpSfn6+SkhLl5OSosLBQeXl5jlEO+0BHXl6e4/KcnBzl5OSccHleXt5pP4eHh8cpgzjNmzdXRETEWcdzAgMDZbFYavl3BAAAAAAAVIfU1FT5+PioefPmplOqDWMeAFBHbd++XVdeeaXpDAAAAAAAAAAAAACQJOXm5uq1117TnDlzVFpaqgcffFDTpk2r1jNJr169Wi1btlTnzp2r7T4BAACAC9WvXz+tX7/edAbqIGdnZzVr1kzNmjW74I8tKCiQ1Wp1DBvk5eWd8n7VIYSMjAzt2rXLMXiQnZ2tnJwcVVZWnvFzWCwW+fv7y8PDQ56envL395e7u7t8fHzk7e0td3d3xwCIl5eX/Pz85ObmJj8/Pzk5OSkgIEDS7wMjzs7O8vSrcDJpAAAgAElEQVT0lIeHh1xcXOTr6ytJjseAjIfUHfZxDZvNpuzsbEm/P4avqKhQUVGRiouLVVZWpvz8fEmS1WqVJOXk5Ki0tFR5eXkqKChQSUmJsrOzVVJSosLCQuXm5qq0tFS5ubkqLCx0XG+z2c7Y4uzsLD8/PwUGBsrX1/eEQZp27dopICDglMvt4zX29wMDA+Xl5VXzv3EAAAAAAKBO2bdvn9q3b286o1ox5gEAdVB+fr7S09MVGRlpOgUAAAAAAAAAAABAI5eVlaVXXnlFixYtkouLiyZNmqRJkyapSZMm1f65fvzxR/Xv37/a79ekXZt/VHlZqekMoM76dcvmWvk8Rw6n67svkmrlcwEALs7xrN+k0CDTGZKkyy+/XG+99ZaKi4vl4eFhOgcNhLe3t7y9vf/w/RQUFCg3N1dFRUXKyclRSUmJ8vPzlZ+fr5KSEuXk5DgGHE53fWpq6mmvLy8vV15e3gX32IdD7CMOkuTv7y+LxSJJcnV1lY+Pj+P29iEROy8vL7m7uzveP3kkpOp9ncw+OnI+3Nzczvv3Pz8/X2VlZed127P9vlVUVCg3N9fxvn10w664uFhFRUWO9wsKClRa+r/Hj/ZBjpPvyz7qcvLtz5f999TX11fu7u7y8/Nz/Hewj20EBwef8Xp3d3d5e3ufcr39RwBnVmmr5LEpgGpVUVEui8VZTk5OplOAc6qNx/08DwzUQTabigoL5Ontc+7bokbUpeddzyU1NVXt2rUznVGtGPMAgDpo+/btstlsjHkAAAAAAAAAAAAAMCYzM1OvvPKKFi5cKG9vbz3yyCOaPHmy40zNNeHnn3/WxIkTa+z+a5OLi4taBAdr1Ruvmk4B6ry2bWv2RXktw8OV9Omn2rHxhxr9PACAP+7WG641nSBJ6tevn0pKSrR582ZdfvnlpnOAE1TXKMjZZGdny2azOcYiSkpKVFhYqMrKSuXk5Ej639BEYWGhSkpKVFZWpvz8fEmS1Wp13NfJgxX229tlZmaqvLzc8b59qEKSbDabsrOzT9tY9fOdj7y8vBM+z9mcPEBSlc1mU35+vjw9PeXi8vvhGL6+vo6fnywwMNDx86qDJ9KpAyNNmzaVp6en431vb2+5ublJkpycnByPx+2fz9PTUx4eHnJxcZGvr68kKSAgQE5OTo5RFPt4isVikb+//3n9+gHUjNDQUMlm08uTx5tOAQDAmJp83M/zwABwZnXleddzSU1N1cCBA01nVCvGPACgDkpJSZGnp6fatGljOgUAAAAAAAAAAABAI5Oamqo5c+Zo2bJlCgoK0gsvvKD77ruvxs+ue/z4caWnp6tHjx41+nlqi7Ozs37LyDCdgT9g5syZev3117Vv374TDqhD/bNo0SItWrTIdAbgkJCQoIkTJ+r7779XVFSU6RwAp9GhQwe1aNFC3333HWMeaJTsoxFVhyjwP4MGDdKRI0e0ceNGubq6ms4BUE9cffXV5z0qBADna+fOnZo/f77efvttubi46O6779ZDDz2k9u3bm04Dah3PAwN1U2FhoRYuXKjZs2fLYrFo6tSpio2NlYeHh+k01EGpqam66667TGdUK4vpAADAqXbs2KEuXbrI2dnZdAoAAAAAAAAAAACARmLTpk26/fbb1alTJyUnJ2vBggXau3evYmNja3zIQ5K2bdsmSQ1mzAP134QJE5Sbm6s333zTdAqABiQjI0NxcXF65JFHGPIA6ri+ffvqhx84my+AU7322mvavXu3FixYYDoFAAA0cp07d9brr7+ujIwMPfPMM/rkk0/UqVMnDR48WElJSbLZbKYTAQCNnJeXl6ZNm6a9e/fq3nvv1dNPP62OHTtq8eLFjN3hBDk5OTp27FiDGyVjzAMA6qCUlBRFRkaazgAAAAAAAAAAAADQCKxdu1ZDhw7VZZddpp07d2rp0qXatWuXxo0bJzc3t1rr2Ldvnzw8PBQaGlprnxM4m+bNm2vs2LGaM2eOSktLTecAaCAmTJigwMBAPfXUU6ZTAJxDr169tHnzZtMZAOqgjh07avr06XrqqaeUmppqOgcAAEB+fn6KjY3V3r17tWrVKknSjTfeqM6dOys+Pl4FBQWGCwEAjV1gYKBmzZqlAwcOaPTo0XrooYfUvXt3rVy5kvEpSJL27t0rSWrXrp3hkurFmAcA1EEpKSnq0qWL6QwAAAAAAAAAAAAADVRlZaWSkpLUp08fDRgwQFarVZ988ok2b96smJgYubi41HpTenq6wsPD5eTkVOufGziTxx57TJmZmXrvvfdMpwBoAFasWKFPPvlEixcvlre3t+kcAOdwySWXaO/evcrNzTWdAqAOiouLU5s2bfTggw+aTgEAAHCwWCwaOnSokpOTtXnzZl155ZWaPn26wsLCFBsbqwMHDphOBAA0ckFBQZo1a5a2bt2qHj166LbbbtPAgQP1888/m06DYampqbJYLGrdurXplGrFmAcA1DGFhYU6cOCAIiMjTacAAAAAAAAAAAAAaGByc3P1yiuvqF27dho2bJjat2+vn376SWvXrtXQoUONDmnYxzyAuqRly5YaNWqUZs2apcrKStM5AOqx48ePa9KkSRo7dqwGDRpkOgfAeejZs6dsNpu2bdtmOgVAHeTm5qbXX39dX375pVauXGk6BwAA4BQ9e/ZUQkKC9u/fr+nTp+vjjz9Wu3btNHToUK1evdp0HgCgkevUqZOWL1+uDRs2qKKiQr1799bEiRNltVpNp8GQ1NRUhYeHy93d3XRKtWLMAwDqmB07dqiyspIxDwAAAAAAAAAAAADVJjU1VQ8//LBatmypp556SjfeeKN2796t999/X5deeqnpPEnS4cOHFRYWZjoDOEVcXJx+/fVX/eMf/zCdAqAee+SRR+Tk5KQ5c+aYTgFwnlq3bq3AwEDOCgrgjAYMGKB77rlHkyZN4mAjAABQZzVv3lzTpk3Tnj179MEHH8hqtWrw4MHq1auXFi9erKKiItOJAIBGrHfv3lq3bp2WLl2qDz/8UB06dFB8fLwqKipMp6GW7du3T+3atTOdUe0Y8wCAOiYlJUXu7u4N8psOAAAAAAAAAAAAgNq1adMmxcTEKCIiQsuXL9fDDz+sAwcOaMGCBWrbtq3pvBPk5ubK39/fdAZwioiICA0fPlzPP/+8bDab6RwA9dB//vMfJSYmatGiRQoMDDSdA+A8OTk5qUePHvrll19MpwCow+bMmaPKyko98cQTplMAAADOys3NTSNGjNDatWu1ceNGdevWTRMnTlSbNm0UFxen9PR004kAgEbKyclJMTEx2rlzp+677z499thj6tOnj9avX286DbUoNTW1QR5XzZgHANQxO3bsUEREhFxcXEynAAAAAAAAAAAAAKiHSktL9d577+myyy5T7969tXv3br3zzjtKS0vTzJkz1aRJE9OJp5Wfny9vb2/TGcBpPfHEE/rll1/0xRdfmE4BUM8UFhZq3LhxGjZsmIYNG2Y6B8AF6tatm7Zv3246A0Ad1qRJE82bN08JCQlat26d6RwAAIDzEhUVpcTERKWlpemBBx7Qm2++qfbt22vkyJEcOA0AMCYgIECzZs3Sxo0b5evrq+joaI0bN07Hjh0znYZawJgHAKBWpKSkKDIy0nQGAAAAAAAAAAAAgHrm8OHDmj17ttq3b68777xTwcHBSk5O1vfff6/bbrutzp9QoKCggDEP1FmXXHKJhgwZomeffdZ0CoB65oknntDRo0cVHx9vOgXARYiIiNCuXbtMZwCo40aPHq0hQ4bo/vvvV1lZmekcAACA8xYcHKyZM2cqPT1dS5Ys0a5du9SvXz/17t1biYmJ/NsGAGBE9+7d9fXXX2vVqlX68ssvFRkZqY8++sh0FmpQRUWF0tLSGPMAANS8lJQUdenSxXQGAAAAAAAAAAAAgHqgsrJSX3zxhW666Sa1atVK8+fP11133aX9+/crKSlJgwYNMp143goLC+Xl5WU6AzijGTNmaP369VqzZo3pFAD1xIYNG7Rw4ULNmzdPYWFhpnMAXISIiAgdPXqUs38COKcFCxZo7969mjNnjukUAACAC+bu7q6YmBj98ssvWrNmjdq1a6exY8eqdevWmjlzpo4ePWo6EQDQCA0dOlRbt27VzTffrBEjRmjkyJF8T2qg0tLSVFpaypgHAKBmFRcXKzU1VZGRkaZTAAAAAAAAAAAAANRh2dnZWrx4sbp166Zrr71Whw4d0tKlS5WWlqbnnntOLVu2NJ0INDiXX365BgwYoBdffNF0CoB6oLS0VGPHjtWAAQN09913m84BcJEiIiIkSbt37zZcAqCua9++vZ5++mk9++yz2r59u+kcAACAixYdHa0VK1Zo9+7diomJ0cKFCxUeHq6YmBht2bLFdB4AoJHx8/NTQkKCPv/8c33//ffq1q2b/vGPf5jOQjVLTU2VJMY8AAA1a9euXaqoqGDMAwAAAAAAAAAAAMBpbdq0SePHj1dYWJimTp2qAQMGaMuWLdq4caNiYmLk6upqOvGiOTs7q6KiwnQGcFbTp0/X559/rk2bNplOAVDHvfjii0pNTdWSJUvk5ORkOgfARWrZsqW8vLy0a9cu0ykA6oFHH31UUVFRGjt2LI9vAQBAvde2bVvNmjVLBw4c0IIFC/TTTz/pkksuUXR0tFauXMm/dwAAteqaa67R1q1bddNNN2n48OEaOXKkjh07ZjoL1SQ1NVW+vr4KCgoynVLtGPMAgDokJSVFrq6u6tChg+kUAAAAAAAAAAAAAHVEcXGxEhMT1atXL/Xu3Vtr1qzRCy+8oEOHDikhIUHdu3c3nVgtGPNAfXDttdcqKipKs2fPNp0CoA7bvXu3XnzxRT399NO8Dgio5ywWizp27MiYB4DzYrFY9Oabb+qXX37RK6+8YjoHAACgWvj4+GjcuHHaunWrkpOTFRgYqNtuu02dOnXS7NmzZbVaTScCABoJf39/JSQk6PPPP9f69evVtWtXrVq1ynQWqsG+ffvUrl070xk1gjEPAKhDUlJS1LFjR7m5uZlOAQAAAAAAAAAAAGDY7t27FRcXp7CwMI0bN04dOnRQcnKyUlJSFBsbKx8fH9OJ1crFxUXl5eWmM4BzmjZtmj766COlpKSYTgFQR02ePFkdO3ZUbGys6RQA1aB169Y6cOCA6QwA9UTnzp31+OOP68knn9SOHTtM5wAAAFQbJycnDRo0SElJSdq9e7duuOEGPffcc2rVqpXGjx/P86UAgFozZMgQbdmyRYMHD9Ytt9yi+++/X0VFRaaz8Aekpqaqffv2pjNqBGMeAFCHpKSkKDIy0nQGAAAAAAAAAAAAAEOKior07rvv6qqrrlJERIQ+/PBDxcXFKT09XStWrNCgQYNMJ9YYX19f5eXlmc4Azmn48OHq0qWL5s6dazoFQB30wQcf6IsvvlBCQoJcXV1N5wCoBox5ALhQ06dPV7du3TR27FhVVlaazgEAAKh2HTp0UHx8vA4dOqTnnntOycnJ6t69uwYPHqykpCTZbDbTiQCABi4wMFBvv/22PvzwQy1fvlx9+/ZlVLMeS01NVbt27Uxn1AjGPACgDmHMAwAAAAAAAAAAAGic1q9fr/HjxyskJER/+ctf5O/vr88//1y7d+/W1KlT1axZM9OJNS4wMFBWq9V0BnBOFotFU6ZM0bvvvqv9+/ebzgFQh+Tl5WnKlCkaO3as+vXrZzoHQDVp1aoVYx4ALoiLi4vefPNNbdy4Ua+++qrpHAAAgBrj5+en2NhY7dmzR19++aU8PDx00003KSIiQvHx8SooKDCdCABo4IYPH67NmzfL29tbl112mZYtW2Y6CRdh7969atu2remMGsGYBwDUEWVlZdq7dy9jHgAAAAAAAAAAAEAjkZGRofj4ePXs2VP9+vXTmjVrNH36dB08eFCrVq3SkCFDZLE0npd2BAYGKjs723QGcF5Gjx6tsLAwvfzyy6ZTANQhM2bMUFFRkV544QXTKQCqUevWrZWRkaHS0lLTKQDqkUsuuUSPPfaY4uLitHfvXtM5AAAANcpisWjQoEFKSkrSjh07dO211+rxxx9XaGioYmNjGUUGANSoNm3aaM2aNY6x7ZiYGBUVFZnOwnnKy8vT8ePHGfMAANSsXbt2qaysjDEPAAAAAAAAAAAAoAErLS1VUlKSRo4cqdatW+uvf/2r+vbtqzVr1iglJUXTpk1TcHCw6UwjAgICZLVaTWcA58XV1VWPPvqo3njjDWVkZJjOAVAHbN26VYsWLdKcOXMUFBRkOgdANWrdurUqKyuVnp5uOgVAPTNjxgy1adNG48aNk81mM50DAABQKyIiIhQfH69Dhw7pmWee0apVq9S+fXsNHTpUq1evNp0HAGigXFxcNHPmTH366adKSkpSdHQ0Y1L1xMGDByVJLVu2NFxSMxjzAIA6IiUlRS4uLurUqZPpFAAAAAAAAAAAAADVbPv27YqLi1N4eLhuvvlmWa1WvfHGGzp8+LASEhIUHR1tOtG44OBgRhFQr9x7770KDAzUggULTKcAMKyyslLjx49Xr169dPfdd5vOAVDNwsPDJUmHDh0yXAKgvnF3d9ebb76pb775Rm+++abpHAAAgFoVEBCg2NhYpaamatWqVSouLtbgwYN16aWXavHixSoqKjKdCABogK6//nr98MMPKi4uVt++ffX111+bTsI52EeU7c/DNjSMeQBAHZGSkqL27dvL3d3ddAoAAAAAAAAAAACAamC1WrV48WJFRUWpW7duWrVqlSZMmKC9e/cqOTlZMTEx8vLyMp1ZZ4SHh3O2c9QrHh4emjRpkl599VVZrVbTOQAMeuONN/Tjjz8qISFBFgsvywQamubNm8tisSgzM9N0CoB6qG/fvpo8ebIeffRRx5lmAQAAGhNnZ2cNHTpUycnJ2rhxo/r06aPY2Fi1adNGcXFx/BsJAFDtOnXqpB9++EEDBw7Un//8Z73xxhumk3AW6enp8vb2VkBAgOmUGsH/NQKAOmLHjh2KjIw0nQEAAAAAAAAAAADgDygpKdGqVat0yy23qEWLFnrssccUFRWldevWaefOnZo5c6batGljOrNOCgsLU35+vnJyckynAOdtwoQJcnZ21qJFi0ynADDk2LFjeuKJJzRp0iT17NnTdA6AGuDi4qKmTZvqt99+M50CoJ565pln1KJFC02YMMF0CgAAgFFRUVFKSEjQ/v379cgjj+jtt99Whw4dNHLkSK1bt850HgCgAfHx8dGKFSv07LPPaty4cYqNjVVlZaXpLJzGwYMH1bJlS9MZNYYxDwCoI1JSUhjzAAAAAAAAAAAAAOqhiooKffXVV7rnnnsUHBys4cOHKy8vT0uXLlVGRoYWL16sfv36mc6s88LDwyX9fuYdoL7w8/PTgw8+qPnz5ys/P990DgADpk6dKldXVz311FOmUwDUoODgYGVmZprOAFBPeXl56c0339S//vUvLV261HQOAACAcS1atNC0adO0b98+vfPOOzp48KCio6PVu3dvJSYmqqyszHQiAKABcHJy0rRp05SYmKiEhATdeuutKiwsNJ2Fkxw6dMjxWoGGiDEPAKgDysvL9euvv6pLly6mUwAAAAAAAAAAAACcp02bNik2Nlbh4eG65ppr9MMPPyg2NlZ79uzR6tWrNWbMGHl6eprOrDfatm0rJycnpaammk4BLsjkyZNVUlKiJUuWmE4BUMvWrVunZcuWKT4+Xv7+/qZzANSgFi1aMOYB4A8ZMGCAHnnkEU2aNEl79uwxnQMAAFAnuLm5acSIEVq/fr02btyoyMhIjR07Vq1atdLMmTN15MgR04kAgAZgzJgxWr16tdasWaNBgwbp+PHjppNQRXp6OmMeAICatWfPHpWUlCgyMtJ0CgAAAAAAAAAAAICz2L59u2bOnKkOHTqod+/eWr16tcaPH69du3Y5rmvbtq3pzHrJ29tboaGh2r17t+kU4II0bdpU9957r15++WWVlJSYzgFQS8rLy/Xggw9q0KBBGjFihOkcADWsefPmysrKMp0BoJ577rnn1L59e/3lL39RRUWF6RwAAIA6JSoqSomJiTpw4IDGjx+vv/3tb2rZsqViYmL0yy+/mM4DANRz0dHR+v7775WVlaXo6GgdPHjQdBL+P8Y8AAA1LiUlRRaLRREREaZTAAAAAAAAAAAAAJxk//79mj17trp06aJu3brprbfe0vXXX681a9Y4Bjw6depkOrNB6NSpE2MeqJemTJmio0ePKjEx0XQKgFoyf/587dy5UwsXLjSdAqAW+Pv7Ky8vz3QGgHrO3d1diYmJ+vHHHzVv3jzTOQAAAHVSaGioZs6cqfT0dC1evFibN29Wz549FR0drZUrV6q8vNx0IgCgnmrfvr3WrFkjV1dXDRgwQLt27TKdBP0+5hEWFmY6o8Yw5gEAdUBKSoratm0rLy8v0ykAAAAAAAAAAAAA9PsLRuLj4xUdHa22bdtq7ty5GjhwoNasWaP9+/c7rkP1ioiI4EVTqJfCwsIUExOjWbNm8WJyoBFIT0/X008/rbi4OE7eAzQSfn5+ys3NNZ0BoAG45JJLNHPmTM2YMUNbtmwxnQMAAFBneXh4KCYmRlu3btWaNWsUGhqqO+64Q506ddLs2bN1/Phx04kAgHooJCRE//3vfxUaGqqBAwdq69atppMatYKCAlmtVoWHh5tOqTGMeQBAHbBjxw5FRkaazgAAAAAAAAAAAAAatf379+uVV15RdHS0WrVqpWeeeUaRkZH6z3/+o6ysLCUkJCg6OlpOTk6mUxusbt26acuWLbLZbKZTgAsWFxentLQ0rVy50nQKgBo2efJkBQcHKy4uznQKgFri6+vLmAeAajNt2jT17dtXo0aNUnFxsekcAACAOi86OlorVqzQrl27NHLkSM2aNUutW7fW+PHjtX37dtN5AIB6pkmTJkpOTlZkZKT+9Kc/MbZpUHp6uiQx5gEAqFnbt29nzAMAAAAAAAAAAAAwICUlRc8//7yioqLUtm1bPfPMM2rbtq0+/fRTZWRkaPHixbrqqqtksfASi9oQFRUlq9WqvXv3mk4BLli7du00YsQIPffcc6qsrDSdA6CGJCcn66OPPtLChQvl4eFhOgdALWHMA0B1slgsWrZsmdLS0vT000+bzgEAAKg32rdvr1mzZiktLU0vv/yyvv32W3Xv3l2DBw9WUlISQ+EAgPPm7e2tf/7zn+rRo4euvPJKbdy40XRSo8SYBwCgxlVUVGj37t3q0qWL6RQAAAAAAAAAAACgUdi+fbtmzpyprl27qmvXrpo/f766du2qTz/9VJmZmXr77bd1ww03yM3NzXRqo9OzZ0+5urpq06ZNplOAi/Lkk09q586d+uc//2k6BUANKC8v1yOPPKKbb75ZQ4YMMZ0DoBb5+fkx5gGgWrVt21YvvfSS5syZo2+++cZ0DgAAQL3i6+urcePGafv27frqq6/k4eGhm266SZ06ddLs2bOVnZ1tOhEAUA94eXnp008/1aWXXqohQ4Zo69atppMand9++01ubm5q2rSp6ZQaw5gHABiWmpqqoqIiRUZGmk4BAAAAAAAAAAAAGqTKykqtXbtWcXFx6tixo7p166a33npLgwYNUnJysjIyMpSYmKihQ4cy4GGYh4eHIiMjGfNAvRUZGanrr79ezz33nOkUADVgwYIF+vXXXzVnzhzTKQBqmZ+fnwoLC1VWVmY6BUADMm7cOF177bW6++67lZeXZzoHAACg3rFYLBo0aJCSkpK0c+dOXXfddXrmmWfUunVrjR8/Xrt27TKdCACo47y8vJSUlKRu3brpmmuuUWpqqumkRiUrK0tBQUFycnIynVJjGPMAAMNSUlLk5OSkzp07m04BAAAAAAAAAAAAGoyKigqtXbtWsbGxCg8P14ABA7Ry5Updd911WrNmjfbv36/4+HgNGjRILi4upnNRRe/evbVx40bTGcBFe+KJJ7Rhwwb95z//MZ0CoBplZWXp2Wef1dSpU9WxY0fTOQBqmZ+fnyRxsD2Aard06VIVFBRoypQpplMAAADqtU6dOik+Pl6HDx/WM888oy+++EKRkZEaPHiwkpKSZLPZTCcCAOooLy8vffrppwoNDdXgwYOVkZFhOqnROHLkiIKCgkxn1CjGPADAsJSUFLVu3Vq+vr6mUwAAAAAAAAAAAIB6LTs7WytWrNDo0aPVtGlTDRw4UOvXr9ekSZO0c+dO7d27V/Hx8YqOjm7QZ3ap76KiorRp0yZVVlaaTgEuSt++fXXVVVfpxRdfNJ0CoBpNnz5dPj4+iouLM50CwAD7mEdubq7hEgANTfPmzZWQkKAlS5bos88+M50DAABQ7/n7+ys2Nlb79u3TqlWrJEk33nijunTpovj4eBUWFhouBADURX5+fvr888/l6uqqIUOGyGq1mk5qFBjzAADUuB07digyMtJ0BgAAAAAAAAAAAFAvpaSkaO7cubrqqqsUFBSk0aNHO866duDAAW3YsEFxcXGKiIgwnYrz1Lt3b+Xm5mrPnj2Sfn8BzwcffKCXX37ZcBlw/qZPn67Vq1dr/fr1plMAVIOffvpJy5Yt09y5c+Xt7W06B4ABjHkAqEk333yzRo8erbFjxyorK8t0DgAAQINgsVg0dOhQJScna9OmTbriiisUFxensLAwxcbGKi0tzXQiAKCOCQoK0ldffaXjx4/r1ltvVVlZmemkBi8rK6vBj3k42Ww2m+kIAGjMevfurauuukpz5841nQIA1crJyUnLly/XyJEjTacA9YL978qKFSsMlwAAAABojN555x2NHTtWJSUlplMAADin4uJirV27VqtXr9Ynn3yinTt3qmnTprr66qt1ww03aOjQoQoMDDSdiT8gNzdXzZo104033qjdu3dr27ZtstlscnJyUnl5uSwWzl2D+qFv374KCQlxnP0RQP1ks9k0cOBA2Ww2rVmzRk5OTqaTANSCd999V99++61yc1hOeTMAACAASURBVHNVUVGh0tJSbd26VREREfLx8ZEkHTt2TJdeeqleeuklw7UAGoLs7Gz16NFDvXr10scff8y/OYALsG7dOg0dOvSEA+3Ky8vl5OQkZ2dnx2Vubm7697//rZ49e5rIBADUAZmZmVq2bJkWLlyo3377Tddee61iY2M1aNAg02kAgDpk+/bt6tevn4YPH66lS5eazmnQ+vXrpz59+mj+/PmmU2qMi+kAAGjMKisrtXPnTk2YMMF0CgAAAAAAAAAAAFBnZWZm6ssvv9Rnn32mL774Qnl5eYqMjNRNN92khQsX6sorr5SLCy+BqM927NihL7/8Up9//rm+/fZblZWV6bPPPjthbMzb25shD9Qrjz/+uG655RZt2bJFPXr0MJ0D4CIlJibqu+++04YNGzioFmhEvvzyS73zzjtycnJSZWWl4/LU1NQTbldYWFjbaQAaqICAAL377ru66qqrtGjRIk2cONF0ElBvhISEKDs7W+c617HFYlFISEgtVQEA6qIWLVpo2rRpevjhh/XJJ5/olVde0eDBgxUVFaVx48YpJiZGHh4epjMBAIZ17dpVH3zwgYYOHarIyEhNmTLFdFKDdeTIEQUFBZnOqFG8wgEADDpw4IAKCgoUGRlpOgUAAAAAAAAAAACoMyorK7Vp0ybNnDlTvXv3VkhIiB544AFZrVY9++yzSktL0/bt2zVr1iwNGjSIIY967scff1TXrl01depUrV69WsXFxZJ0wpCHJPn7+5vIAy7ajTfeqO7du+uFF14wnQLgIuXn5+vxxx/XuHHjFBUVZToHQC0aPXq0bDbbCUMeJ3NxcdGYMWNqsQpAQzdgwADNmDFDU6ZM0ebNm03nAPVGu3bt1KtXr7OO7zk7O+vKK69UixYtarEMAFBXubm5acSIEfruu++0ceNGRUZG6sEHH1SbNm0UFxenQ4cOmU4EABh27bXXas6cOZo2bZo+++wz0zkN1pEjR9S8eXPTGTWKMQ8AMCglJUWS1KVLF8MlAAAAAAAAAAAAgFmHDh3SsmXLNGrUKDVv3ly9e/fWO++8o/79++uLL77Q8ePHlZycrNjYWLVs2dJ0LqrRpZdeqksvvfSUs56frEmTJrVYBfxxTk5OeuKJJ7Ry5Upt377ddA6AizB79mzl5+dr5syZplMA1LLBgwef84yQFRUVuuWWW2qpCEBjMWPGDPXv31+33Xab8vLyTOcA9UZMTIycnZ3PeL3NZtOdd95Zi0UAgPoiKipKiYmJSktL0/3336833nhD7dq108iRI/X999+bzgMAGPTII4/orrvuUkxMjPbt22c6p8EpLS1Vbm7uOZ+Hre8Y8wAAg1JSUhQeHs4ZpAAAAAAAAAAAANDoFBQU6J///KcmT56srl27Kjw8XA888ICOHDmi6dOna+fOndqzZ4/i4+P15z//We7u7qaTUUNcXFy0YsWKsx5wIanBn5EHDdOtt96qLl26aM6cOaZTAFygQ4cOad68eZoxYwZn7wYaIYvFojvvvFOurq5nvL5///4KDQ2t5TIADZ3FYlFiYqKsVqtiY2NN5wD1xu23337WkVhnZ2dGuAAAZxUSEqKZM2fq0KFDWrJkiXbu3KnLL79cvXv3VmJiosrLy895HxkZGYqLi2OUDQAakFdffVVt27bVLbfcoqKiItM5DcrRo0dls9kY8wAA1JwdO3YoMjLSdAYAAAAAAAAAAABQ4yorK7Vp0ybNnj1bgwcPVtOmTXXDDTcoKSlJ0dHRWrFihbKyspScnKxHH31UERERppNRi9q3b685c+bIYjn9S1mcnJwY80C9ZLFYNG3aNL377rv69ddfTecAuABxcXFq0aKFHnroIdMpAAwZPXq0ysrKTnudk5OTxowZU8tFABqLsLAw/f3vf9eyZcv0zjvvmM4B6oXmzZvriiuuOO1YrIuLi66//npOwAkAOC/u7u6KiYnRli1btGbNGrVr10733HOPWrdurZkzZ+rYsWNn/NiXXnpJs2fP1sCBA3XkyJFarAYA1BQPDw8tX75cBw4c0OTJk03nNCj275WMeQAAakxKSgpjHgAAAAAAAAAAAGiwMjIylJiYqJEjRyooKEi9e/fWvHnzFBgYqAULFujgwYPau3evEhISNGLECPn6+ppOhkETJ07Un/70p9Oe/dzFxUVNmjQxUAX8caNGjVK7du00d+5c0ykAztPmzZv13nvvae7cuXJ3dzedA8CQXr16nXVk8JZbbqnFGgCNzXXXXaeHHnpIDzzwgHbv3m06B6gX7rzzTtlstlMur6ioYIQLAHBR7GP0u3bt0p133qkFCxYoPDxcMTEx2rZt2wm3zc/P1+LFiyVJ27Zt0+WXX660tDQT2QCAatahQwe99dZbWrJkiVasWGE6p8HIysqSxJgHAKCG2Gw27dy5U126dDGdAgAAAAAAAAAAAFSL48eP6+OPP9aDDz6oTp06KTQ0VBMmTFB+fr5mzJihbdu2KTMzUytWrNC4ceMUHh5uOhl1iJOTk9566y15enrKycnphOssFgtjHqi3nJ2d9dhjj2nZsmU6cOCA6RwA5yE2NlZ9+/bVsGHDTKcAMOyuu+6Si4vLCZc5OzvriiuuUPPmzQ1VAWgs5syZo06dOmnUqFEqLS01nQPUecOHDz/l+7YkeXp66rrrrjNQBABoKNq3b69Zs2bpwIEDio+P18aNG9W9e3dFR0dr5cqVqqio0N///ncVFRVJksrLy5WWlqaoqCht3brVcD0AoDrcfPPNuv/++zV+/HgdPHjQdE6DcOTIEbm6uiogIMB0So1izAMADElPT1dOTo4iIyNNpwAAAAAAAAAAAAAXJS8vT6tXr1ZcXJx69+6toKAg3Xrrrfrhhx80bNgwJScn69ixY/rXv/6lyZMnq2vXrqaTUceFhYVp0aJFp5xF1WazKTAw0FAV8MfdddddCg0N1UsvvWQ6BcA5rFy5UmvXrlV8fPwp41IAGp/Ro0eroqLitJcDQE1zd3fX8uXLtXv3bj3++OOmc4A6z8/PT9dee+0Jgx6urq669dZb5enpabAMANBQ+Pr6aty4cdq2bZuSkpLk6emp2267TZGRkZozZ44qKysdty0rK1N2drb69++v9evXG6wGAFSXl156Sc2bN9fYsWNP+f/ZuHDZ2dkKCAho8P8vhjEPADAkJSVFkhjzAAAAAAAAAAAAQL1x8nhHQECABg8erJUrVyoqKkoffPCBsrKytHHjRs2aNUuDBg2Su7u76WzUM2PGjNGtt94qV1dXx2UVFRVq0qSJwSrgj3F1ddXUqVP1xhtv6PDhw6ZzAJxBaWmpHn/8cY0ZM0aXXXaZ6RwAdUCrVq3Uv39/WSwnvuT65ptvNlQEoLHp0KGDFi5cqHnz5ikpKcl0DlDnjRkz5oQhrrKyMka4AADVzmKx6IYbblBycrK2bt2qyMhIpaWlnXJgd3l5uQoLC3X11Vfryy+/NFQLAKguXl5eeu+99/T111/r9ddfN51T7+Xl5cnX19d0Ro1jzAMADNm+fbuCg4N5wRkAAAAAAAAAAADqrNONd1xzzTVKSkpyjHccPXpUe/fuVUJCgkaMGKGmTZuazkYD8Nprr8nPz89x0CRjHmgI7r33XjVp0kTz5s0znQLgDBYsWKDDhw/r+eefN50CoA75y1/+4jg7pLOzswYNGsS/TQHUqrvuuktjxozR2LFjGQcEzuGGG26Ql5eX4/3AwEBdffXVBosAAA1d165dVVRUdMJAeVUVFRUqLS3VDTfcoBUrVtRyHQCgukVFRWnq1Kl67LHHdPDgQdM59RpjHgCAGrVjxw5FRkaazgAAAAAAAAAAAAAcMjMz9dFHH2nSpEnq0aOH/P39NWTIECUnJ2vgwIH6+OOPdfToUW3fvp3xDtSoZs2a6d133z3hLHb8WUN95+7urkcffVSvv/66srKyTOcAOMnx48f1wgsv6JFHHlHLli1N5wCoQ0aMGCFnZ2dJks1m06hRowwXAWiMXn31VTVp0kSjRo1SRUWF6RygzvLw8NCwYcPk6uoqNzc3jRkzRi4uLqazAAAN2K+//qqvvvpKZWVlZ7xNZWWlysvLdccddyghIaEW6wAANeGpp55SWFiYJk+ebDqlXmPMAwBQo1JSUhjzAAAAAAAAAAAAgFGpqalKTEzU+PHj1bVrV4WEhGjkyJH697//rcsvv1zLly9XVlaWNm3apHnz5unGG29UYGCg6Ww0Etdcc43uuecex1nQ+bOHhuD++++Xt7e34uPjTacAOMnzzz8vFxcXTZ061XQKgDrGz89PQ4cOlZOTk5ydnXXjjTeaTgLQCPn4+Oi9997T999/r1mzZpnOAeq0UaNGqaysTKWlpbr99ttN5wAAGri//e1v5z0cVVlZqfvvv1/PP/98DVcBAGqSu7u7Fi5cqH/84x9KSkoynVNv5ebmNooxD+YlAcCQHTt2aMyYMaYzAAAAAAAAAAAw6ptvvuHM9LgooaGh6t+/v+mMeqWsrExbtmzR2rVrtW7dOv33v//V0aNH5e3trZ49e2ro0KGaNWuW+vfvryZNmtRaV1FRkT7//HPOKovTGjhwoD755BMdPXpU69at07Zt20wnoYGr6e8vXl5emjx5smbNmqUpU6YwUgPUEQcOHNCiRYv00ksvyc/Pz3QOgPNUUFCg0tJSSVJxcbGKiook/f7YJz8//4TbFhYWqqSk5Jz3WfV+qmrfvr1sNpt69Oih5ORkSb9/X3d3dz/nfXp4eMjT0/OEy3x9fR0He1W9H3d3d3l5eZ3zPgE0Tr169dLs2bM1ZcoU9e/fX1deeaXppBqxd+9e/fTTT6YzUI9VVFTI29tb7u7uSk9P18qVK00noR7r27evWrVqZToDQB323nvvqaysTC4uLnJ2dpb0+/ei8vLyM37Mk08+qSNHjuiVV15xDJpLZ37smp2dLZvNdsJlpaWlKigoOGub1Wq9kF/KadlsNmVnZ//h+7Hz8fGRq6trjd/PmR5fV308bufs7MxzggAu2ODBg3X77bdr4sSJuvrqq+Xt7W06qd7Jy8trFGMeTraTv4sDAGrc4cOHFRYWpq+//lpXXHGF6RwAqBFOTk5avny5Ro4caToFqBfsf1dWrFhhuAQAAABAY/TOO+9o7Nix53VAA1CdysrK5OHhocrKStMpqIc8vbxUeI4XqDV2mZmZ2rBhg9atW6e1a9dq48aNKikpUUhIiKKiohQdHa3+/furT58+cnNzM9b5wQcf6I477jD2+QGgqtr4/pKbm6u2bdtq0qRJ+utf/1qjnwvA+bnzzju1bt067dy50+i/i4D6qrS0VPn5+crOzlZeXp7y8/NVVFSk3NxcVVRUKDs7W5WVlcrOzlZFRYVyc3MdgxslJSUqLCxUUVGRiouLHQMdeXl5jgOfqh58ZL/PxsDFxcXxYnYnJycFBARIklxdXeXj4+M4MMnT01MeHh7y9vaWm5ub48Akf39/WSwWBQYGymKxyN/f33Gf3t7e8vHxkbe3twIDA6vtYCoAtWPkyJH69ttvtWnTJoWFhZnOqXbDhg3Txx9/bDoDACRJd911l5YtW2Y6A8BpVB1ytI9d2B9TVr2u6mhjZWWlcnJyHPdR9bGn/fGpdOqARX5+vsrKyk57u4yMDBUXF6uiokKFhYUqKytTRUWFKioqVFlZqbKyMlVWVp4yxoG6z/54+2T2x9t2VR+zSycOjbi5uZ1wgH/VgW/743jpf4/1L+R29ucF7I/5pf+NlZxuWBRA9cvIyFDnzp316KOP6qmnnjKdU+9cc801atmypd544w3TKTXK5dw3AQBUt5SUFElSZGSk4RIAAAAAAAAAAMyprKxUZWWlpi16S33+dI3pHNQj3376kV598lHTGXVKaWmpfv75Z23YsEEbNmzQd999p71798rZ2Vldu3ZVdHS0HnjgAfXv319t2rQxnXuC8vJyubq66YOt+02nAGjkauv7i5+fnx566CHNnz9fkydPdrzIFoAZW7Zs0Xvvvaf333+fIQ80OpWVlbJarbJarcrOznb83P5+bm6u8vPzVVBQoNzcXOXk5Cg/P9/xZrVaHQdKnY2fn5+cnZ0VEBAgi8WigIAAx1lv7QehBAQEnHaYourHSycewFL1oJqqB8ec7oy6VYcxzubkA3DO5nRnRj6dnJycU4ZMq15W9aCwqmdhrnqAWHl5ufLy8k64/OQBlN9++03l5eWO+7ZarY4D1ap+/Jm4u7vLx8dH/v7+8vX1lY+Pj3x8fOTn5yd/f3/H+Ievr68CAwNPeQsICFBgYOAJZ5UGUDOWLl2qPn36aMSIEfrmm28a3BhPeUWFBt44XLFzFppOAdDIzZ5wd6MZkgMuln1w0Wq1Oh532Mcz7I9VcnJyHEOP0v8eD9kf/1R9vGJ/nHU+112sgIAAx+MWLy8vubu7Szr1cWPVwYaqt/P29lZwcLDjdr169XLc7nTjD1U/tqysTAUFBSooKJCzs7Pat29/wvNRJw8/2J1ugLHqgMOZnDwQcbHO1HWhqj7Oren7OdPzFVUHQ891f1XHXuzsI6Vnu6zqEKn9sbv9dqmpqae93fmOzlyoqn9O7M+v2Ic+znZd1edW7NfZn5Px9/d3PM9j/zNm/zj7n9WTB0+AhiokJETTpk3Tiy++qPvuu08hISGmk+qVvLy883rOtr5jzAMADEhJSVGzZs0UFBRkOgUAAAAAAAAAAAD1jM1m06+//uoY7tiwYYN+/vlnlZSUyN/fX3369NHo0aPVr18/XX755accxAYAMO/hhx9WfHy8XnvtNcXFxZnOARq1qVOnKioqSiNGjDCdAvwhx48fV1ZWlo4ePaojR44oMzNTx48fP2Gg4+TRjqoHhtg5OTk5hhn8/PwcAw5+fn5q1aqVvL295ePjI19fXwUEBDje9/HxUWBgoON9+48N7QDzqs539KPq2XRNKy0tVUFBwQmjLDk5OcrLy3MMt+Tk5Jwy5JKWlub4uLy8PMefodOxj3qcPPJhf2vatKmaN2+uoKAgNWvWTC1atDjv30sAv/Px8dGKFSv0f//3f3r88cc1d+5c00kAAKAOKisrc/ybv7CwUIWFhcrOzlZBQYEKCwuVl5ennJwclZWVKTc31/F4wT6WYR8QsFqtjrEC++jBhQxq+Pr6ysXFxTGiYX/f3d1dXl5eJwwKtGzZUi4uLhc9NmAf06h6XXUNWuCPc3d3dwyb4OJUHf043ejNhYzl2L9GVL3u2LFjKi0tPe11Vb8mnA/731/7GIz972fVrwkuLi7y8/Nz3MY+fuPv7y8vLy95eXk5nn+yP9dkv87T07O6f3uBi/Lwww8rISFBTz/9tF5//XXTOfUKYx4AgBqzY8cOde3a1XQGAAAAAAAAAAAA6oGcnBz9+OOPWrt2rTZt2qQffvhBR44ckYuLizp16qSoqCjdc8896t+/v7p06cJZjgCgHvD399cDDzygl19+WRMnTuTF5IAhX3/9tb766iv9+9//dpyRFagrSktLlZGRoUOHDunIkSPKyspSZmamY6wjKytLWVlZOnLkiI4ePaqysrITPr5JkyZq2rTpCSMKERERJ7x/urEFRhUaNjc3N7m5uVXbwMjZxmKqvqWlpemXX36R1WrVkSNHThmScXNzc5wgrUWLFgoKCnKMfYSEhDiuCw8PV3BwcIMeiQHOV7du3bRkyRKNHj1a//d//6fhw4ebTgIAAH9QUVGRcnNzHQN72dnZys/PV2Fh4RlHOeyje6e7rrS09Iyfyz524evrK1dXV8dB9b6+vo6xjODgYLm5ucnf31/Ozs4KCAhwDGPYb2MfcfT395eLi8tpD9wHUH08PDwcf69MjoeeaeAnNzdX5eXlys7OdgyJ2AdI7F+XcnJyVFFRoezsbBUXF+vo0aOO2+Tn56usrExWq/Wco0FOTk6OoQ8vLy/5+vqedgTEfp2fn5/jfft1/v7+8vPzk7+/f6MYFEDN8PT01NNPP6377rtPDz/8sCIiIkwn1RuMeQAAakxKSgpjHgAAAAAAAAAAADhFTk6Ofv75Z23atEkbNmzQDz/8oP3798vJyUkdO3ZUnz59NGPGDF122WW69NJLOXsVANRjjz76qBYuXKglS5bo4YcfNp0DNDo2m01TpkzR9ddfr6uvvtp0DhoZq9Wqw4cPKyMj45QfU1NTdfjwYWVmZqqystLxMR4eHgoMDFRoaKhCQkIUEhKiyMhIx/v2MY7Q0FCFh4fLzc3N4K8QjYX9z93FsP89sFqtjr8D9vGPjIwM/fjjj473f/vtN9lsthM+b0hIiOPP/+l+bN26tZydnavrlwrUSXfccYe++eYb3X333eratas6d+5sOgkAgEarqKhIVqvVcUD66Ubuznad/fozsT8mtA9kVP25/fHh6a6z/5v95OsCAgIYNgVw0ZydnWttTOR0X19P/np6uusOHz582tvl5OSc8JxbVVW/bp7ua+nJbydfHxQUxABpIxUTE6OXX35Zzz33nN5++23TOfVGbm4uYx4AgJqRkpKiW2+91XQGAAAAAAAAAAAADDp+/Lh++umnE9727Nkjm82mFi1a6LLLLtM999yjPn36qE+fPkbPrgQAqH5NmzbVuHHjNGfOHN1///3y9PQ0nQQ0Ku+//75+/vlnbd682XQKGpjS0lKlpaVp//79p33LzMxUeXm54/b+/v4KCwtTaGioQkND9ec//1khISEKDw9XcHCwWrZsqaCgIIb80OBcyBBIcXGxsrKylJ6eroyMDB06dEiHDx/W4cOHdejQIW3cuFHp6enKy8tzfIyrq6uCg4PVunVrtW3bVm3atDnhrWXLlhxggwZh/vz52rhxo26//XZ999138vLyMp0EAEC9VVJSouPHj5/z7dixYzp+/Liys7OVnZ191gPDAwMD5e/vLz8/vxN+DA8PV9euXRUYGHjKdX5+fvLz81NAQIB8fHz4dyuARs3T07Pa//+J1WpVQUGBcnNzlZOT4/jR/jW96mW5ublKT09XSkqKrFar47KysrLT3rf9a7m/v7+aNGlyylvTpk3VtGnTUy739vau1l8japfFYtH06dMVExOjJ598UhEREaaT6oX8/HzGPAAA1S8rK0tHjx5VZGSk6RQAAAAAAAAAAADUkuzsbG3btk2bNm1yvO3YsUM2m00hISGKiorSsGHDFBkZqaioKHXt2tV0MgCgFkydOlWvvfaa3nrrLU2YMMF0DtBolJWV6a9//avGjBmj7t27m85BPZSRkaFdu3YpNTXVMdKxb98+7d+/X4cPH3YcxOXj4+MYDujVq5duvvlmhYSEqGXLlgoODlZ4eDgHXQPnwcPDQ61atVKrVq3OeruCggIdPHhQv/32m9LT03X48GEdOHBA+/fv16ZNm7Rv3z4VFRVJ+v0swmFhYY6/o/bBj3bt2qlz585q3rx5bfzSgD/Mw8NDH374oS677DKNHTtW77//vukkAADqhOzsbGVmZurIkSM6evSoY4Dj5EGOqm8FBQWn3I+Pj88pB1x36NBBTZo0UUBAgAICAhwHbZ9ulAMAUPdcyMDomRQWFp4yBmK1WpWbm6vc3FxZrVbH95dDhw5p69atju8/2dnZp9yfu7v7acc/Tn5r3ry5mjVrpqCgIAUFBclisfyhXweqz2233aZnn31Wzz//vBITE03n1HnFxcUqKytjzAMAUP1SUlIkiTEPAAAAAAAAAACAWnTo0CG5uLioRYsWNfp5KisrlZqaql9++UVbtmzR5s2b9dNPP+nQoUOS5DiIb9SoUerVq5d69epV400AgLorODhY99xzj2bNmqV7771Xbv+PvfsOi+La/wf+XpqgFFE6CIJIVVGwBKxgAayxRI0lajSx67VrNDEajX6tMdaY5Gqi8Wq6mqhB7IV4ragsqCiIsIAgCIrSXH5/5MdeV9os7DILvF/Pw6OcnZ3zOWf6YeYzBgZih0RUJ+zatQsPHz7EX3/9JXYopMXy8/ORmJiIqKgoSKVSPHjwAFFRUbh16xays7MB/HOTvb29PVxcXODl5YW+ffvC1tYWdnZ2cHFxgbOzMyQSicgtIao7GjRoAA8PD3h4eJQ5TWZmJh48eIAHDx5AJpMhOTkZDx48wB9//IG7d+/i2bNnAAAzMzO4urrCxcVFsY17e3vD3d0dxsbG1dUkIkGaNm2KAwcOIDg4GH5+fpg7d67YIREREaldbm4uMjIykJmZieTkZMhkMmRmZpb4PTk5GYmJicjPz1f6vqGhoeLh7eIfBwcHtGzZskS5nZ0dbG1t0bhxY9SrV0+kFhMRkTarX78+6tevDxsbm0p9/+XLl4rjWGnHs8zMTKSlpeHu3btKvxcWFirNx9DQUHHcev0Y9uYxzdzcHDY2Nkz+oUG6urpYuHAhPvjgA6xatQr29vZih6TVisfgmMyDiIjUTiqVomHDhrC1tRU7FCIiIiIiIiIiIiIiolovIyMDn3/+Ob788kv07dsXv/76q9rmnZWVhVu3buHmzZuK5B23b9/G8+fPoaOjg2bNmqFNmzaYPn26InFH48aN1VY/ERHVDgsWLMDXX3+NPXv2YPz48WKHQ1Tr5ebmYsWKFfjggw/g4uIidjikBV68eIHbt2/jxo0buHnzJmJiYnD37l08evQIAKCnpwdnZ2e4u7vjrbfewnvvvQc3Nze4u7vzHjCiGsjc3Bx+fn7w8/Mr9fPExETcvXtX8RMTE4Off/4Z8fHxePXqFSQSCRwdHeHu7g4PDw+0atUKrVu3hre3NwwNDau5NUT/ExQUhNWrV2PBggVo0aIFQkJCxA6JiIioQnK5HKmpqZDJZJDJZEhMTFQk40hLS0N6ejpSUlKQlpaGnJwcpe82aNAAVlZWsLa2hqWlJSwtLdGyZUvF/y0tLWFjY6P4v76+vkitJCIiKsnIyAhGRkaws7MT/J2ioiKkp6cjLS0NaWlpSE1NxePHjxW/p6SkQCqV4uzZs0hNTUVmZqbSzmXPNAAAIABJREFU9w0MDEocI21sbGBvbw87OzvY2dnBwcEBtra2TD5fSe+++y4WLlyIbdu2YeXKlWKHo9Vyc3MBoE6MpzGZBxFRNYuOjoa3t7fYYRAREREREREREREREdVqL1++xJdffokVK1YgLy8PBQUFuHHjRqXnJ5PJcPXqVVy9ehVSqRRRUVGIiYmBXC6HqakpmjdvDi8vLwwfPhx+fn5o3bo139RLRESCNGnSBO+99x5WrVqFMWPGQE+Pt3QRadKOHTuQlpaGRYsWiR0KiSApKUmRjO/GjRuIjIzEvXv38OrVK5iYmKBly5bw8vJCcHAw3Nzc4OHhARcXFz70RVSHODg4wMHBAUFBQUrl+fn5iI2NxZ07dxSJPi5duoRvv/0WOTk50NPTg7u7O3x8fODj44PWrVvDx8cH1tbWIrWE6qI5c+bg1q1bGDlyJC5fvszEZUREJKpnz54hMTERMpkMSUlJSEpKUiTqSE5OxqNHj5CamorCwkLFd8zNzWFnZwd7e3tYW1ujefPmsLa2hpWVVYmHj+vXry9i64iIiKqfRCJRHA+FKCgoUEr0Ufz/x48fIzU1FWlpaZBKpZDJZEhNTYVcLld819raGjY2NnBwcFAcm99M+GFlZaWpptZYBgYGmDRpErZs2YIlS5bAyMhI7JC0VvE5YF0Ye+dffomIqllUVBS8vLzEDoOIiIiIiIiIiIiIiKhWksvl+OWXXzBr1iykpKTg1atXis8SEhKQn59f5ltk5HI54uPjERUVpUjYIZVKER0djRcvXkBXVxfNmzdHq1atMHLkSLRq1QotW7aEk5NTdTWPiIhqqUWLFmH37t3Yv38/Ro0aJXY4RLVWTk4OVq9ejWnTpsHBwUHscEjDsrKyEBERgYiICPz999+4du0a0tPTAQBOTk7w8fHBO++8o3jo3sXFBRKJROSoiUhbGRgYwMvLq8T9n3K5HPfu3VMkCbp58yY2b96MxMREAP88/OLr64u33noLHTt2RPv27WFiYiJGE6iO2L59O27fvo1Bgwbh4sWLfNCZiIg0RiaTIS4uDvHx8Ur/ymQyPHr0CDk5OYpp69WrB1tbW9jb28Pe3h5vvfUWhgwZAltbWzRp0kTxsDAfeCUiIlIffX19RQIOHx+fcqctKChAamoqHj16hJSUFKWEXPfv38f58+fx6NEjPH/+XPEdAwMD2NrawsHBAU5OTnB2dkbTpk3h7OwMZ2dnNGnSpE4kanjTxIkTsWLFChw8eBDDhw8XOxytVVBQAAB14iUHtb+FRERaRiqVol+/fmKHQUREREREREREREREVOuEh4dj5syZiImJQVFREYqKipQ+f/XqFWJjY+Hh4YH4+HilhB1RUVGKpB0A4OjoCE9PTwQGBmLKlCnw8fGBl5cXbyQlIiKNcHFxwbvvvouVK1dixIgR0NHRETskolrpyy+/RE5ODubNmyd2KKQB9+7dw8WLFxU/UqkUcrkcrq6uCAgIwJIlS+Dj4wMfHx+Ym5uLHS4R1RI6Ojpwd3eHu7s7hg4dqih/8uQJbty4gcjISFy7dg27du3C0qVLoauri5YtW6Jjx47w9/dHQEAAnJ2dRWwB1TZGRkb46aef0LZtW3zwwQf44YcfxA6JiIhqqPT0dEWCjjeTdsTHxyM3NxfAPw8KOzo6omnTpnBxcUGXLl1gb2+vSNRha2sLS0tLkVtDRERE5dHX14eDg0OFSbCfP3+OR48eITk5GUlJSUhKSlIk+Dp48CDi4uIUCb10dXXh4OCgSPDxeqIPZ2dn2NnZ1cq/h9nY2CA4OBh79uxhMo9yFBYWAmAyDyIiUrPMzEykpqaWyMxORERERERERERERERElXf58mXMmTMH586dg46ODuRyeanTSSQS9OvXDykpKYqkHU2aNIGXlxe6deuGyZMno0WLFvD09ISpqWl1NoGIiAgfffQRvL298csvv+Cdd94ROxyiWicrKwvr1q3D7NmzYWVlJXY4pAYymQxHjx7F0aNHcfbsWaSlpcHQ0BBt27ZFaGgoVqxYAX9/fy5vIhJF48aN0b17d3Tv3l1RJpPJEBERgQsXLiAiIgJff/018vPzYWtri65duyI0NBQhISHcb1GVOTs7Y//+/ejduzdatmyJhQsXih0SERFpqdzcXMTExCAmJgZRUVGIiYnBnTt3EB8fj2fPngH4J3mZvb294iHcDh06KD2Qa29vD11dXZFbQkRERNXB2NgYnp6e8PT0LHOatLQ0pURgxf+/ePEiHj58iLy8PACAgYEBnJyc0KxZM3h7e8PDwwOenp7w8vKq8cmY33vvPYwcORIpKSmwsbEROxytVFBQAOCfRDK1HZN5EBFVo9u3bwMAvL29RY6EiIiIiIiIiIiIiIio5nv48CEWL16Mffv2Kd7WUVYiD+CfmwBsbW2xaNEiRdIOMzOz6gqXiIioXB4eHhgyZAhWrlyJIUOGQCKRiB0SUa2ybt06yOVy/Otf/xI7FKqkwsJCREREKBJ4REZGwtDQEIGBgVi0aBH8/f3h6+sLAwMDsUMlIiqVnZ0dBg8ejMGDBwP45+HZK1eu4OLFiwgPD8eHH36IgoIC+Pr6IjQ0FL1790a7du34cCxVSs+ePRWJzDw9PTFgwACxQyIiIhFlZWUhJiYGUqlU8W90dDTi4uIgl8uhr6+veJC2b9++cHZ2ViTscHR05HUWERERCWZpaQlLS0u0b9++xGdFRUWQyWRKyT7u3buHM2fO4KuvvsLz588BANbW1vDy8oKHh4ci0YeXlxdsbW2ruzmV0r9/fxgYGODQoUP48MMPxQ5HKxUWFgKA4l6f2qz2t5CISItIpVKYmprC3t5e7FCIiIiIiIiIiIiIiIhqrKKiIrx69QrNmjVDUVERioqKFG/tKE9hYSGaNGmCCRMmVEOUREREqvvkk0/QqlUrHD58GP379xc7HKJaIz09HZs2bcLixYtr/Bv96prc3FwcOXIEBw4cQFhYGJ4+fQpXV1eEhoZi1apV6Nq1K4yMjMQOk4ioUgwNDdGpUyd06tQJ8+fPR05ODk6ePImjR49iz549+Oyzz9C4cWOEhIRg2LBhCA4O5oO0pJKZM2ciJiYGo0aNwoULF9CqVSuxQyIiIg2Ty+W4e/curl27hmvXriEyMhIxMTFITEwEABgZGcHDwwMeHh4YN24cPDw84OnpiebNm9eJt6ITERGRuCQSCezt7WFvb49OnTopfVZUVISEhATExMQgKioKMTExuHnzJg4cOICMjAwAQMOGDeHp6YmWLVvC19cXvr6+aNmyJQwNDcVoTpkMDQ0RFBSEI0eOMJlHGYqTedSFc1AdsQMgIqpLoqOj4eXlxbfnEBERERERERERERFRCcveHyZ2CDWG/NUrFMnl0NXVhVwuh0QiQb169Sr8G4xcLkdkZGQ1RUnajNtbzcDlpHna2MfaGFN18vb2Rr9+/bBs2TIUFRWJHQ5RrbFmzRo0aNAA06ZNEzsUEuj8+fMYO3YsrK2tMXToUKSnp2PZsmW4e/cu7t27hy+//BIhISFM5EFUB/Ts2VPsEKpNgwYN0K9fP2zbtg1xcXGQSqVYtGgREhIS8Pbbb8PW1hYTJ07E5cuXxQ6VapAvv/wS7du3R//+/fH48WOxw9Fadf1atKbgctI8bexjbYxJmyQlJeHHH3/ErFmz0LlzZ5iZmcHT0xNjx47FiRMn0KRJE8yYMQN//PEH7t+/j+fPn+PatWvYt28fFi9ejMGDB8PLy6tOPERZU9Wl82EiIjFwP6s9JBIJnJycEBwcjNmzZ2Pnzp04f/48njx5gpSUFJw8eRKff/45/Pz8EBMTg3nz5qF9+/YwNTVF69at8f777+Prr79GVFSUVvyNrU+fPggPD0deXp7YoWil4hf26OnpiRyJ5tX+FhIRaRGpVAovLy+xwyAiIiIiIiIiIiIiIi2kDTcTVGSwhx1+iZGJHQZ09fSgp6+PFy9eIDY2Fjdv3sStW7cQGRmJa9euISkpCUVFRdDT04Oenh5yc3MV371//z7kcjl0dPjui5pssIcdAFR6fawJ25vYtGF7r63LqarrrzrrrEofa6odtXW5q2Lp0qXw8/NDWFgYgoODxQ6HqMZLT0/H9u3bsWzZMjRo0EDscKgcubm52L17N7Zu3Yrbt2/Dz88Py5cvx9ChQ2Frayt2eIJJJJIyj2flfUakDaKiojB9+nRcvnwZz58/ByD++ZnY9YvJ09MTnp6emDNnDhISEnDgwAF8//332LlzJ/z8/DB16lSMGjWKD99SufT19fHTTz+hQ4cOGDRoEE6cOIF69eqJHZbacaxI8zhWpDkcKypfbV3ulXX//n0cP34c586dw4ULF/Dw4UPo6emhVatWaNeuHUaPHq14Q31t3N+XRZuvw4oT0Vc2Bm4DFRN7GdcU7Kd/VHWb1JY6xWiHWDTd1trSh7V9G7e2toa1tTUCAwMVZXK5HLGxsbh27RquXbuGK1eu4Mcff0ROTg7Mzc0REBCAjh07okePHvDz86v2e0QCAwORk5ODyMhItG/fvlrrrgkKCwsB1I1kHrw7iYioGkmlUnh6eoodBhERERERERERERERaaFPd/0odgg1jq6uLtzd3fHOO+9g+fLlOHjwIB49eoSsrCxcvHgRW7duxfjx4+Hv7w9jY2MAQH5+Pt9CWgtU9YZwbm81Q21dTmI8+FJWnVXpY021o7Yud1W0adMGwcHBWLZsmdihENUKa9euhaGhIT788EOxQ6Ey5ObmYsOGDXBxccGsWbPQoUMH/Pe//8WVK1cwc+bMGpXIg6imGzt2LCZPnoz09HQcP35c7HAAAOHh4WKHoBUcHR0xb9483Lp1C+fOnYOnpycmTZqE5s2bY/v27Yq3mRKVplGjRjh8+DCioqIwceJEscPRCI4V1Q21dTlxrKh8tXW5C5Wbm4tDhw5hypQpcHV1haurK+bNm4cnT57g/fffR3h4ODIzM3H16lXs2LEDH374Idq2bVunEnlou6o+WM3zYSL1EiPZgSbqrM1JG96k6bZyP1tz6ejowM3NDcOHD8eaNWtw8uRJPH36FFeuXMGnn34KY2NjbN68Ge3bt4eVlRWGDRuGb7/9FmlpadUSn5ubG8zNzXH58uVqqa+mKU7mUReS1Nb+dCVERFoiOzsbMpkMXl5eYodCRERERERERERERERUq5mYmMDf3x/+/v5K5QkJCUhNTYWNjY1IkREREQmzdOlS+Pv74/Tp0+jWrZvY4RDVWE+ePMH27duxdOlSRXI30i5HjhzBzJkzkZycjEmTJmHu3Lk8XycS0Y0bNzBo0CDo6uqiR48ederhoJqkU6dO6NSpE1auXIm1a9di9uzZ2Lp1K7Zs2cJzRyqTh4cHfvjhB/Tv3x+enp5YsGCB2CEREVEZCgoKcOzYMfz44484dOgQnj9/jrZt22L48OHo2bMnAgIC6sRDj0RERESq0tPTg5+fH/z8/DBjxgwAwO3btxEWFobjx49jxowZmDhxIoKCgjB06FAMHjwY5ubmGolFIpGgbdu2uHLlikbmX9MVJ6bV06v9qS50xA6AiKiuiIqKQlFREZN5EBERERERERERERFVUXyMFMvfH44RrZthlJ8bVnwwEjfOn1Z8PtjDDoM97Ep8r7Ty4rLE+/ewcFhfvNvaBUtGvo2UhHg8ir2DhUP7YEQbV3zy3hCkJyeV/t3Yu/hswgiM8nPDiDauWDlxNBLv3yt12pSEeKyZPh7vtfdQikfdsQFAwr0YrJw4GiN9m2Okb3N8NmEEEu7FlFpHerIMq6eMxUjf5ni/YytsmjcNz55mlpj29e8M9rDDtiVzFJ9fPhmGj97tj+GtmmJSUHvsWrUUL3Oeq9QPmubo6Ih27dpVS10kDlXWe1UIWXcT7sVg5YejFHWv/HCU4LrLKldluxKyHavSR6/P+83tvSKq9IUq+0UAeBR7Bys/HIURbVwxys8Ny8e/i8TYu6VOr8r6UNl9bUWU4m3rjv+b9n6Z8xHSb+qss7xjj9D1CYDa172yYqrq9lfTvPXWWwgMDMSKFSvEDoWoRlu7di3q1atXa99AX5Pl5eVh5syZ6NOnDzw8PCCVSrFu3TqtTOQhkUggkUgElRf/XvyZRCLBhAkTKvwM+Oem8j59+sDExAQmJiYICQnB7du3S63z/v37GDRoEMzNzcuMr7y2SKVShISEwNTUFMbGxujTpw+io6NVruv27dvo3bu3IubevXuXiBkAIiMj0atXLzRo0ACmpqYIDQ3FX3/9pTSNkPZnZWVh1qxZcHFxgaGhIWxtbTF27Fj897//VWkaVWKviNC2VVRXcd9GR0fjrbfeQv369dG5c2fExsYiKioKHTp0gLGxMQIDA5GQkFAiDnW0RyKRoLCwEHp6epBIJFi4cKFSbKVNX9o2IJFI8OjRIwwYMAAmJiawtrbGqFGj8OTJE5X7r6y6VelTobEcOnQIHTt2hKGhIZo2bYpZs2bh2bNnwjpPJI6Ojti8eTOioqLg7OyMoKAgzJw5U/EwBNGbevfuja1bt2LRokX44YcfxA6nWnCsiGNFlWkrx4pKlnGsqHo8ffoUmzZtQrNmzdC/f39ER0dj+fLlePToES5duoQVK1aga9eudSKRR226DiuLKnWrQl3XcqosA0DY+bSq5+hC++j1eb+5jIX0lZBr5OJ4hPZbef2vrmtkVfqzon4Sej0UFRWF3r17w9jYGKampggODoZUKi11vVClDZW9Fq7I6/GamZlh4MCBZc5HSLxi1Sl0nqput0LWRaHrhrrGWVTtP3WMhZQ1tlGZ9VIT+xUhY11CjnfqWD41VYsWLTB79mwcPXoU6enp+O2332BjY4N//etfsLW1xXvvvYdbt25ppG43Nzfcv39fI/Ou6QoLCwEwmQcREamRVCpF/fr14ejoKHYoREREREREREREREQ1liz+AdbPmoi3J0zFrr9vY/WBP5D78gU+mzBCMc0vMbJSv1taeXHZgS3rMe3zjfj23A009fDGF/OmYf+X6zBt1Rf45uw1ODRrjt2rl5X63fWzJiFw4DBsP3EJ28P/Roceofhswgg8TnpUYtqdny7EgPcn45uzN7B4516NxZaSEI9l44ajbWBPbA//GztO/hdd+w/G6inj8CQluUQd25bMQfC7Y/Dt+RtY8/Mx5OW+xHf/t7zUeH6JkSl+pqxYr/h89ZSxCBw4FN/9Nxqrf/wDz7Oe4pvPlpQ6j7L6gagqVF3vVVHRupuSEI8VH4yEf3BfbA//G9uOR6BDz974bMIIpCTEV1h3WeWqbFdCtmNV+6is7b08qvaFKvvF1+e948QlbD9xCUGDhmPD7MklvqNqWyuzr1WlL3acuIRtxyPg36sPNsyaVOl+U2ed5R17hKxPxd6ctrCgoMrrXmkxVXX7q4k+/vhjnDhxAufPnxc7FKIa6cmTJ9i2bRvmz58PY2NjscOh1+Tm5iIkJAS7d+/Gzz//jMOHD2v1PVVFRUWCy4vLioqKFD/ffPNNhZ/FxsaiZ8+e6NevHx48eID4+HiMGjUKAwYMQGJiYon5T548GXPnzoVMJsORI0dUbsuwYcMwduxYxMXF4cGDBxg4cCBCQkIQHx8vuK7Y2FiEhoZiyJAhePDggeJBpZCQEMTGxiqmu3v3LoYNG4b58+cjLS0Nf//9N3JychASEqI0LyHtHzNmDBo2bIiIiAhkZWXhyJEjiI2NRYcOHVSaRmjsFRHaNiF1Fff3p59+il27diE5ORk+Pj4YNWoUli5dit27dyMpKQmenp6YM0f54Wl1tefNdXT16tVK5WVNX1rZhAkTMHnyZCQnJ+PKlSt48eIF5s6dq3L/lVaHqn0qJBYAGDBgAMaMGYOMjAz8/fffyMjIwPTp08vtM23h4uKCw4cPY9euXfjmm28wePBgxQMRRG+aOHEiZs6ciQkTJuDChQtih6NRHCviWBHHijhWVFPGivLz87Fy5UrY29tj+fLlePfddxEXF4crV65g5syZsLOrnoTo2qQ2XYeVRtW6VaGuazlVlgEg7HxalXN0VfuotGUstK+EXCOr2m9l9b86r5FV6c+K+knI8rt//76iD+Li4hAXF4dx48Zh+PDhSnVUpg2VuRauyJvx3r9/H4MHD1bE+zqh8YpRpyrzVGW7FbIuAsLWDXWNS6jaf+ocCymtrDLrpSb2K0LGuio63qmjr2oLIyMj9OvXD99//z2Sk5Oxfv16XLp0CT4+PhgxYgSSk5MrnokKnJyc8PDhQ7XOs7YoHruqE4nqiipzVkdERCqbO3cuzpw5g8uXL4sdChFRtZBIJDhw4ACGDh0qdihENULxtvLjjz+KHAkREREREdVFe/fuxfjx45GXlyd2KFTH5OXlwdDQEAu27kL77sGCvrNxzhT4dglC1wFDFGWyuPuYHtpZ6abOwR52pd7kWVr5YA87LN/zC7zb+QMAMh6n4oMubZTKnqQkY97gYPz7ws0S3529YQc69u6vVH5411eIvxON6au/UK7n+5/h3T6g1LapM7ZN86bByd0Lb0+YojS/k7/sR3xMFN5f/JlSHW8uA1ncfSwdMwRfn71eYYxleZ6dhak9/fHdJWnJNpXTD0KcPfQLti2Zg3zut2qFvXv34v33x2P/rXiVvvfm+qjqeq/qgxrlrbub5k2Da8vW6POe8tveDu/6Cg+ib2Pmms0V1i0kpvK2KyHbsab7qLgOVfpClf3ipvnT4drCp8S8z/95EBvnTK7S+lDZ40C5fVFGvKd+O4Ati2aViFdov6mrTqDsY48qx4U3p32cmIDFIwaodd1T1/ZXEW08vnTu3Bmmpqb4888/xQ6FqMZZtGgRvvnmG8TFxTGZh5YZMWIEwsLCcPr0abRo0ULscASRSCSl3txfWnlZ05b32ahRo9CqVSvMnz9fqfzf//43IiMjsWnTJqV5nDp1Ct26datES/75/v79+zFs2DCl8g0bNuDmzZvYvXu3oLpGjRqFdu3aYebMmSXmc/36dezZswfAP8s7NDQUo0ePVkxz584deHh4KPpCaPtNTEzw8OFDNGrUSDFNXFwcXFxcFPMSMo3Q2CsitG1C65JIJDh9+jS6du0KAJDJZLC3t1cqS0xMhJ+fH1JTUxXfU1d7imMQuq6XVS6RSPD7779jwIABirI7d+4gKCgISUlJijIh/VdaHar2qZBYSpOZmQlXV9dS3xCuzS5duoQePXpg9OjR2LZtm9jhkJaSy+V45513cObMGVy8eBFubm5ih6Sk/4AByIK+StdzAMeK3vwux4o4VqRqnQDHit70f1PGwc3OUqXzKVU9fPgQoaGhSEhIwCeffIJp06ahfv36GquvJqlt12FvntOqUreqj3+q41quvLqFxFTW+bTQc3RN99Hr3xVyjaxqv5XV/+q8Ri6uS+g1jyr9VNryGz16NNq2bVuiD/bv34933323Sut4Za6FK1JWvLt378a4ceMqHW9116nKPAHh263Qa/I3lbZuqGtcQtX+0+RYSFXWS3XvV4SMdZXVDlXqqcuKiopw8OBBzJ49GxkZGfjhhx/Qp08ftcz7wIEDGDlyJPLz86Gjo6OWedYWP/74I4YNGwa5XA6JRCJ2OBrFJU9EVE2kUim8vLzEDoOIiIiIiIiIiIiIqEa7/fcFtPTvrFRm59ysUjcRv87Fq6Xi/+YWliXKGllZIzuj9Ic3WgV0LlHWoWcoIi+cKVHu2qpNtcR28+K5EglGAMC3W3dEXjxbotyr3VtKv1vaN0Fm2mOVY32dsakZnmc9LfWzyvQDUUVUXe8ro6x19+bFc2jfI6REeYeeobh58Zxa6gbK366EbMfV0Ueq9oUq+4ObF86WOm+fjl1KjUOVtlblOKBqvG06B5YarzrWIVXqLI8qx4U3p7WwtdfIuif29ieWxYsX48iRI3xxCJGKnjx5gq1bt2LevHlM5KFlzp07h//85z/Yt29fjUnkUR3Cw8NL3OAPAH369MHx48dLlLdv375K9fXo0aNE2cCBAxEWFia4rvDwcLz99tulzic8PFzx+8mTJ9G9e3eladzd3ZUeLhDafn9/f/Tv3x/Hjh1TvLnR2dlZaV5CphEae0WEtk2Vunx9fRX/t7GxKVFmZ2eHtLQ0pe+oqz3q1KWL8jl606ZNS7zZVEj/lUbV9gqJpTTm5ubIyMiocDpt06FDB3z77bf46quvEBkZKXY4pKV0dHSwd+9euLm5ITQ0FI8fV20cUFtxrIhjRW/GwbGi8ussD8eKNOPx48fo3r07jIyMIJVKMX/+fCbyqEbVfR1Wlboro6rXclVV3vm0kHP06uijYkKukVXtt7L6X53XyMUqe81TntKW3/Hjx0vtg549e5YoU7UNlbkWrkhZ8YaElDxGqGt900SdqsxTFZW9Ji9t3VDXfkXV/tP0vqwq66U69ytCxrrKo43jRtpGIpHg7bffxu3btzFkyBAMGTIEp06dUsu8jY2N8erVK+Tm5qplfrVJYWEh9PT0an0iDwDQEzsAIqK6QiqVYtKkSWKHQURERERERERERERUo2U/zYCpeaOKJ1SRUYP/PeAn+f9vw3izrKybIUwampcoM7cs/UbeeoZG1RLbs6eZmBRU+k1iBoaGJcqMTc2Uftc3MFDpDVbZGU+wd8PnuH7uFJ6mp0H+6lW501emH4gqoup6XxllrbvZTzPQ0MKqRLm5pTWeZVbu4S9Vtysh23F19JGqfaHK/qCseZe2H1a1rVU5Dqgab2ll6lqHVKmzPKocF96cVkdXVyPrXnVuf9okJCQE7dq1w6pVq/Drr7+KHQ5RjbF+/XoYGBhg8uTJYodCb/jtt9/Qtm1b9OrVS+xQtMqTJ0/QtGnTUj8zMip5DKzqA36NGzcuUWZra1vqAwhl1ZWenq54kOHN+aSnpytNZ2FhUW48Qtv/008/YdmyZZg6dSrS0tLQpk0bDBo0CFOmTIG+vr7gaYTGXhEhbVO1LhMTE8X/i9/aVE3jAAAgAElEQVTW+WbZm+da6mqPOpmbK5+j16tXr9S4K+q/0qjaXiGxpKWlYdGiRTh27BhSUlLwqoLrL233zjvvYMmSJfj999/h4+MjdjikpYyMjHDo0CH4+/ujb9++OH36dK17gJxjRRwreh3HiiquszwcK9KML774Avn5+Th+/DgaNVL/376ofNV9HVaVuiujqtdyqlD1fFrIOXp19FExIdfIqvZbef2vrmvkYkL6szxCl19ZfVBa/6nahspcC1ekrHhLK1PX+qaJOlWZpyqErItVXTcqM84itK3VMRZSlfVSnfsVIWNd5dHGcSNtVb9+fXz99dfIyMjAvHnzcOXKlSrPs3h7fvnyZa275q4quVyu2LZqOybzICKqBs+fP0dCQgK8vLzEDoWIiIiIiIiIiIiIqEYzaWiO7MwMNLKyLnc6iUSCgvx86BsYKMrKekNhVT19koaGjS2VyjLTUmHaqOQNGtXFxLwRNh05U+KmWU3ZNH867J2bYeW+g2hsYwtd3X/+FD3Yw65a6icCqn+9f51pw0bITEuFlX0TpfLMtFSYvJGASOj+SRPbVXX0kSp9UZl5P01/DEs7B6Xyp+kl3wIq5vpQrKx4S1ve6uo3VeqsTppcHppc57TF4sWLMXDgQNy8eROtWrUSOxwirZeRkYEtW7bgo48+Urq5mrRDcnIyHB0dxQ5DZRKJBHl5eahXr56irKw3DFeGhYUFpFJpiQdwNCU1NRXW1srX1cnJybC0tCzjGyVZWFggOTm5xIMnycnJSg+DNG7cGOnp6bCzK/s8Vmj7zczMsGHDBmzYsAHp6ek4ceIEvvjiC5w7dw4///yz4GmExl4RoW1TR13lqY46NLENCOm/0miivaNHj4a7uzvOnz8PBwcH6On9c/1VU98MKpFI4OjoCJlMJnYopOUsLCxw6NAhdOzYEWPGjMGBAwdq1YM0HCuqGMeKqhfHiv6HY0X/iI+PR5s2bZjIowy17TpMm+oWej4tdBlo4ny6OvtIyDVydV9HVuf6IXT5WVhYICUlBU5OTkrlKSkpJeYp5jr+egylxVvaOqyueDVRpyrzBIRvt0LWRVXWDXVsH6r2n6bHQqpCnfsVIWNd5dH2vtI2EokE3bt3xyeffKKW+enq6gJAjU8cS1VTe0ZaiIi0mFQqRVFREZN5EBERERERERERERFVkXf7ANy8eFapLD5Gipl9uiqVNbSwQnpyklKZ9PLfGonpxrnTJcouHT8Kn45dS05cTVp36oaoSxdLlEdfuYR5g4IrPd+ybrq7c/0Khk2fByv7JoqbyPNzcytdD1FlaGq9F6JVQGdcCjtSovzS8aNoFdBZqUzo/kkT25UqfVTZm2xV6QtV+XTqiv+GHytRfuP86RJlYq4PxcqK983jGKC+flOlzuqkyeWhyXVOW/Tv3x8tW7bEqlWrxA6FqEbYsmUL9PX1MXXqVLFDoVJ4e3vj0qVLyMvLEzsUldjY2CAhIUGp7OzZ0o+v5Z1HlfVZcHAwTp8+XaL83Llz8PPzEx6oQH/99VeJst9++w29evUSPI8ePXrg119/LXU+PXr0UPzerVs3hIeHK00TGRmpdC+d0PZLJBIkJiYC+OdBhGHDhuHPP/9EWFiYStMIjb0iQtqmrrrKUx11qLINCCWk/0qjifZevHgRy5YtQ9OmTRUPJ718+bJS89IGz549w7Vr19CyZUuxQ6EawNPTE7/99hv++OMPTJ8+Xexw1IpjRRXjWBHHisTCsaJ/dO/eHX/99RdOnDghdihaqbZdh2lL3aqcTwtdBpo4n1alj6qahE/INXJ1Xkdqav0oq5+ELr9evXrh999/L1FeWv+JuY4XKyveN/sfUF+8mqhTlXkCwrdbIeui0HVDXduHKm2tjrGQqlDnfkXIWFfxdKXR9r7SNjKZDBs3blRb32RnZwMATE1N1TI/qpn0xA6AiKgukEqlMDQ0hLOzs9ihEBERERERERERERHVaEMmz8SaaePRyMoG7m38kJLwEFs/moXeo95Xms6nYxf8sGEVxi1ahgampoi5dhl/7f9eIzGFHdgDXT09tO7UDUVyOS6fDMMf33+Dz/aWvCGiugybPgerJ4+FXP4KLTp0hJ6+PqIuR+CrpQvwwcefV3q+jaxtcOfGVbi2aIXbly5i25I5+OrUFbi3aYs96z7DoIkz0MjKBunJSfhp20Y1toioYppa74UYOm0OPnlvMIyMTdAuqBckEgkunwzDod1f4bM9yvsCofsnTWxXqvRRWdu7OvtC5fiL593AGG0De0Kio4PIC2cQdmBvldqqKW/Gq6Ori5sXz+KXr74sMa26+k2VOquTJpeHJtc5bSGRSLB48WKMGDECn376Kdzd3cUOiUhrvXjxAlu2bMHUqVNhYmIidjhUivHjx+P//u//sHz5cqxcuVLscATr2bMnPvroI2zcuBENGzbEhQsXsGPHjlKntbe3R0REBNq2bYtTp05hwoQJiocoyvrs008/Rf/+/fHq1SsEBgbCwMAAZ86cwaRJk7Blyxa1t+err76Cnp4egoODIZfLcejQIWzatAlnzpwRPI+lS5ciMDAQpqam6N+/PyQSCQ4dOoQNGzYoPYyyZMkSDBw4EHZ2dvD398f9+/fx/vvvKz0wrkr7J0yYgPXr18PV1RVPnz7Fpk2bStxcX9E0QmOviJC2qauu8lRHHapsA0IJ6b/SaKK9AQEBmD9/Pj766CPY2dkhISEBn332WaXmpQ0WLFgAHR0djBo1SuxQqIbo2rUrDhw4gMGDB8PKygpLly4VOyS14FhRxThWxLEisXCs6B/jxo3D+fPn0b9/f6xevRpTpkxRvL2dat912OvErFuV82mhy0AT59Oq9FF5y18IIdfI1Xkdqan1o6x+Err8Pv30U3Tr1g0mJibo168fdHR0EBYWhp07d5Y6rVjreFnx6urqIjw8HJ9/XvI4o654NVGnKvMEhG+3QtZFoeuGurYPVdpaHWMhVaHu/YqQ8bCytnFt7yttcvLkSXzwwQeoX78+tm7dqpZ5ZmdnQ19fH4aGhmqZH9VMkqKioiKxgyAiqu0WLFiAsLAwXL9+XexQiIiqjUQiwYEDBzB06FCxQyGqEYq3lR9//FHkSIiIiIiIqC7au3cvxo8fX+Peiks1X15eHgwNDbFg6y607y78TWt3blzF92uW437UTZg1aoyQd8di4IfTlKbJzszAv1d+jMiLZ5H38iVavtURH3yyChMD2wIAfomRAQAGe9gpvqNqWXH59hOX8O1nSxB1OQJyuRze7d7CmAVL4dCsudJ0r3t9HlWNo6zYkh/GYe/6z3Ez4hxeFRaiiasbBn04HR16hpZbb3nlF48dxp51K5GRmgwLW3uMXfgp2gX1QtaTdHy3ZjlunD+NnOws2DVthnem/AvrZ00qM9bS+kGos4d+wbYlc5DP/VatsHfvXrz//njsvxUv+DuaWO+F1lfW9x7ejcaetSsgvXIJAODVtgNGz1sCJzdPpemE7p8qs10J2Y6F9BFQ9vYuhJC+qMx+EQAexd7B92s+Q9Tlv6GjowPvdv4Y99EyTAvphJ+liUrzqOz6oMq+tiKvxyuRSODepi3eX7QMM/t2KzEvoeuQuupU9XhXlWkB9SyPN+dZTF19p83HF7lcjlatWqFt27bYvXu32OEQaa1Nmzbho48+Qnx8PCwtLcUOh8qwa9cujB8/HqtWrcKCBQvEDkeQ9PR0zJw5E8ePH8eLFy8QFBSErVu3wtHREQDw+q24P/30ExYsWICkpCQ4Ojpi/fr16N+/f4Wf3bt3D4sWLUJ4eDgKCwvh5eWFRYsWYeDAgYp5v/mGzcrcAiyRSBAXF4fp06fjzJkzkMvl6NKlC9avXw9PT0+l6Sqq69atW5g/fz7OnTsHAOjcuTPWrFmDli1bKk0XERGBefPm4erVq7C0tMSUKVOwcOFCpWmEtP/EiRPYsmULzp07h2fPnsHe3h5vv/02li1bpkjgI2QaVWKviJC2Canr9f4u7muhZepqT3nLXOg2UFZ8ZZVX1H9Vaa8qsTx+/Bhz587FX3/9hadPn8LNzQ0ff/wxhg0bVuL72kwul2Px4sVYu3atIjEDkSq+//57jB07Fl988QVmzJghWhz9BwxAFvQxc81mwd/hWBHHijhWVPU6OVZU0v9NGQc3O0vs2bNHpe+p4tWrV1i6dCnWrl2LFi1aYPHixRgwYACTeqD2XIeVdV6qat1C61XntZzQZSD0fFrV6wUhfQSUv4yF9JeQa2Sh/Sak/9V1jaxqf5bVT6pcD0VFRWHevHk4e/YsdHR00LVrV3zxxRdwc3PDq1ev1NIGVa6FK/J6vBKJBAEBAdi4cSO8vb1LzEvo+iZGnarMU5V9Z0XroirrhrrGWVRpq7rHQlRdB8vbBtW5XxE61lXevlBdy6e2unLlCtasWYOffvoJAwYMwM6dO2FlZaWWea9duxabN29WKclUXVGX7ldkMg8iomrQr18/mJmZYe/ekll+iYhqKybzIFINk3kQEREREZGY6tIfx0i7VDaZhzYZ7GFX6YQUVHna/LA1qa4yyTyIXvco9g5WfjgaO07+V+xQqIbT9uPLnj17MG7cOERHR6N58+YVf4GojikoKEDz5s0xYMAAbNq0SexwqAKbN2/G7Nmz8fbbb2P79u2wsLAQO6Q6QyKR1JjEBEQknEwmw4QJE3Dy5El89dVXGDNmjNghUQ21YsUKLF26FPv378c777wjSgyVSeZB9DqOFZG6VEcyj2IxMTFYsGAB/vjjDzg6OmLy5MkYPny44uFrItIMXiNXXVRUFPr06YP4+HixQyHSCtyv1AzZ2dk4dOgQvvrqK5w/fx6tW7fG8uXL0a9fP7XWM3HiRNy7dw8nT55U63xrg7p0v6KO2AEQEdUFUqm0ROY0IiIiIiIiIiIiIiIiIiJSzWAPO/z5/Td4np2Fgvx8xEVHYccn8xE6cqzYoRFp3IgRI+Di4oJ169aJHQqRVtq3bx9kMhlmz54tdigkwPTp03H8+HFERETA3d0d27ZtQ0FBgdhhERHVOLm5uVi3bh08PDwQExODs2fPMpEHVcmSJUswY8YMjBo1CsePHxc7HKIKcayIagsPDw8cPHgQd+7cQf/+/bF69Wo0bdoUAQEB+OKLLxAbGyt2iEREkEgk2LRpEzIzM5GXl4cbN25g4sSJmDp1qtihERFVKD09Hfv27cPAgQNhbW2N8ePHw9LSEidPnsT169fVnsgDAGJjY9GsWTO1z5dqFibzICLSsBcvXiA+Ph5eXl5ih0JERERERERERERERGo02MNO6V8iItK8RTu+w+WTYZjYrS3GBbTE9iVz0HPoSAwYP0Xs0Ig0TldXF/Pnz8euXbvw8OFDscMh0ipFRUVYu3Yt3n33XTg5OYkdDgnUrVs3xMTEYPz48Zg1axaaN2+Obdu24eXLl2KHVmtJJBKlf4mo5nr+/Dk2bNgAFxcXfPLJJ5g9ezaioqLQvn17sUOjWmD9+vUYOHAghgwZgmvXrokdDlG5OFZEtY2rqys2bdqElJQUHD58GG5ubli2bBmaN28OFxcXTJo0Cb/88gvS09PFDpWoxuM1suoOHz6MQ4cOwdHREVZWVpgwYQI++OADzJs3T+zQiLQC9yva5eXLlzh16hQ++ugjtGvXDtbW1hg7dixyc3Oxbds2pKSk4Ndff0VgYKBG6pfL5bh69SratGmjkflTzaEndgBERLVdTEwM5HI5k3kQEREREREREREREdUyv8TIxA6BiNSgooQ83Nb/Rxv6qm23nmjbrafG66mIGH2hDf1P4hszZgxWrlyJdevWYfPmzWKHQ6Q1Dh48CKlUiv3794sdCqnI2NgYa9aswbRp07BmzRrMmTMHH3/8McaMGYOJEyfC3d1d7BBrjIoeEigqKkJRUVE1RVPzCenPmqS2tacuu3XrFnbs2IG9e/fi1atXmDRpEubMmQNbW1uxQ6NaREdHB99//z369euH4OBgnD59Gt7e3mKHVW14/S2cNvQVx4qqt06qPgYGBujTpw/69OmDwsJCREREICwsDMePH8c333wDuVwOd3d3BAQEoFOnTvD394e7uzsfHq5m1X2ezfN64XiNrBl9+/ZF3759xQ5DlG2B21/V1JVlxvVAXMnJyYiIiMD58+cRERGBq1evoqCgAK6urujVqxeWLFmCwMBAmJqaVks8UqkUWVlZCAgIqJb6SHsxmQcRkYZJpVIYGBigWbNmYodCRERERERERERERERERG/gTe3Csa/+R4y+YP8TAOjr62Pu3LmYO3cuFi1aBDu78h/cIaor1q5di/79+6NFixZih0KV5OjoiC1btuDjjz/Gv//9b+zcuRMbN25Ehw4dMGLECAwdOhQ2NjZih6nV+LCAetW2/qxt7alrEhMTsX//fuzbtw/Xr1+Hu7s7li5dirFjx6JRo0Zih0e1lIGBAX7//Xf07t0bQUFBOHPmDDw8PMQOq1rw+ls49tX/cKyINElPTw+dO3dG586d8dlnnyEzMxMXLlzAxYsXceHCBfznP//By5cvYWZmhjZt2sDPzw9+fn7w9fVF8+bNoaOjI3YTaq3qPs/meb1w7KvaTYzly3WqarjMSN2Sk5Nx9epVXL16FdeuXcPVq1eRlJQEXV1deHt7o1OnTpg2bRo6deoEJycnUWK8cOECjI2N+XcLYjIPIiJNi46Ohru7O/T0uMslIiIiIiIiIiIiIiIiIiKiqhk/fjw+//xzrF+/HuvXrxc7HCLRnT59WvEAE9V81tbWWLRoERYsWIDw8HDs27cPH3/8MWbPno0OHTogNDQUoaGh8PX15RuniajWksvluHz5Mo4cOYJjx47hypUrMDMzw5AhQ7Bx40Z06dKF+0CqFkZGRjh48CB69uyJnj174uzZs3B2dhY7LCKiOs/c3Bx9+/ZF3759AQAFBQW4fv264oHWEydO4Msvv0RBQQEaNGgADw8PeHp6wsvLCx4eHvDy8kKzZs34jAsRERFpvUePHiEmJgbR0dGQSqWIiYmBVCpFWloaAKBZs2bw9fXF9OnT4efnh/bt28PU1FTkqP/x559/onv37jznIibzICLSNKlUCi8vL7HDICIiIiIiIiIiIiIiIiIiolrA0NAQ8+bNw+LFi7FgwQJYWVmJHRKRqNasWYOuXbsiICBA7FBIjXR0dNCrVy/06tUL27dvx9GjR3HkyBHs2LEDH3/8MaytrRESEoLQ0FD07NkTjRo1EjtkIqIqSUtLw19//YWjR48iLCwM6enpcHJyQkhICJYsWYLg4GAYGBiIHSbVQaampggLC0NQUJAioYednZ3YYRER0Wv09fXRvn17tG/fXlGWl5eHmzdvIjIyEjExMYiKisLOnTvx8OFDFBUVwcDAAM2bN4enp6dSog8PDw8YGhqK2BoiIiKqa169eoW4uDhIpVJER0crfmJiYpCdnQ0AsLCwgJeXFzw9PTFw4EC0aNECfn5+aNiwocjRly4vLw+nTp3Chg0bxA6FtACTeRARaZhUKsWIESPEDoOIiIiIiIiIiIiIiIiIiIhqiUmTJmHt2rVYt24d1qxZI3Y4RKK5c+cOjh07hsOHD4sdCmmQkZERBg0ahEGDBgEAIiMjcfToURw7dgyjRo1CUVERfH19ERAQAH9/f3Ts2BEODg4iR01EVL74+HhcuHABERERuHDhAm7evAk9PT107twZCxcuRGhoKF8kR1rDzMwMx44dQ7du3RAYGIgzZ87AxsZG7LCIiKgc9erVQ7t27dCuXTul8pycHNy5c0fp7fY//fQT7t+/j4KCAujo6MDJyQnOzs5o2rSp0r/Ozs6wtbWFRCIRqVVERERUU2VmZiIuLg5xcXGIj49X+vf+/fvIy8sDADg6OsLDwwMBAQEYP348PDw84OXlBQsLC5FboJqwsDDk5OQgNDRU7FBICzCZBxGRBuXl5eHBgwf8gwoRERERERERERERERERERGpjaGhIWbPno2lS5di7ty5sLKyEjskIlGsX78ezZs35w2xdYyPjw98fHywcOFCZGVlITw8HGfPnsWFCxewdetWFBYWokmTJujYsSP8/f0REBCA1q1bQ0+Pt8wSkTjy8/Nx7do1ReKOiIgIyGQyGBgYwNfXF4GBgVi2bBmCgoJgbGwsdrhEpbK0tERYWBi6du2KkJAQnDhxAo0bNxY7LCIiUlGDBg3g6+sLX19fpfKCggLcu3cP0dHRuHv3ruIB27NnzyIhIQH5+fkA/kkS8maSj9eTfdS0B22JiIhIPXJychTJOkpL2JGVlQUAkEgksLOzU5w7+Pn5oVmzZvDy8oK7uztMTExEbol67NmzB126dGHSaQLAZB5ERBp1584dFBYWMpkHERERERERERERERERERERqdXkyZOxZs0abNy4EatWrRI7HKJql5aWhr1792LDhg3Q0dEROxwSiZmZGQYPHozBgwcD+Oem8cuXLysell+2bBkyMjJQv359tGrVCj4+PmjdujV8fHzQsmVLPjRPRGqXnZ2NmzdvIjIyEpGRkbhx4wZu3bqF3NxcWFpawt/fHzNmzEDHjh3h5+cHIyMjsUMmEsze3h7h4eHo1q0bunfvjvDwcD60TURUS+jr68PLy6vUZ1/kcjmSkpKUHsiNi4uDVCrFn3/+iaSkJMjlcgCAsbExmjRpAjs7O9jb28POzg52dnZwcHCAra0tHBwcYGNjw2SLRERENUhqaipSUlKQmJgImUyGpKQkyGQyyGQyRVlaWppiektLS0XCr+DgYKXkX05OTqhXr56IrdG8rKws/PHHH9i8ebPYoZCW4JkvEZEGSaVS6Ovro3nz5mKHQkRERERERERERERERERERLVI/fr1MWfOHCxfvhyzZ8+GpaWl2CERVasdO3bA0NAQo0ePFjsU0iINGjRAt27d0K1bNwBAUVERYmJiEBERgevXr+PmzZvYv38/srKyoKOjAxcXF0VyDx8fH7Rq1QpOTk7iNoKIaoSioiLEx8fjxo0bSsk74uLiUFRUBHNzc7Ru3RoBAQGYOnUq/P394ebmJnbYRFXWtGlTnD17FkFBQejSpQtOnDgBW1tbscMiIiIN0tHRQZMmTdCkSRN06dKlxOf5+flISEhAfHw84uPjkZiYiKSkJCQnJ+PGjRtISUnB48ePleZnbW2tlOjDxsYGTZo0UUr4wYRRREREmpWTk4PExESkpKTg0aNHSE5OLpGoIzk5Gfn5+YrvmJiYKJJ02dvbo2XLlrC1tYWzs7MiaUddT6D8ww8/AACGDBkiciSkLZjMg4hIg6RSKVxdXWFgYCB2KERERERERERERERERERERFTLTJ06FevWrcOmTZuwYsUKscMhqjb5+fnYvn07Jk2ahAYNGogdDmkxiUQCT09PeHp6KpXLZDJcvXoVUqkUUVFR+M9//oOlS5dCLpejXr16aNasGby9veHi4gIXFxd4eXmhVatWMDU1FaklRCSWvLw8xMbGQiqV4sGDB4iKioJUKsWdO3fw/PlzAICtrS38/PwwevRoeHt7K95qL5FIRI6eSDMcHR1x6tQpBAUFISgoCCdOnICdnZ3YYRERkUgMDAzg6uoKV1fXMqfJz89Heno6kpOTIZPJlP69d+8ezpw5g6SkJGRlZSl9z9zcHLa2tjA3N4e5uTns7OwUv7/5f3Nzc003lYiISOtlZmZCJpMhMzNTcbzNzMws8btMJsPTp0+Vvmtubg4XFxfY2trC29sbPXr0UBxv7ezs4OLiwuOtANu3b8fIkSNhZmYmdiikJZjMg4hIg6RSKby8vMQOg4iIiIiIiIiIiIiIiIiIiGqhBg0aYNasWVi9ejVmz56NRo0aiR0SUbXYt28f0tPTMWXKFLFDoRqq+A3Q/fr1U5RlZ2fj1q1biI6Oxt27d3H37l38/vvvePDgAQoKCgAADg4OcHNzg5ubG9zd3eHq6oqmTZvyjZNENVx2drbiTfKxsbG4c+cO7t69izt37iA5ORnA/x5SdXd3R48ePTB16lR4enqiRYsW3P6pTmrSpAnOnTuH7t27IygoCCdPnmRCDyIiKpOBgYHiOszPz6/M6bKyspCUlITk5GSkpKQgLS1NkQQkLS0Nt27dQnh4OFJTU5GTk6P03fr168PKygo2NjawtLSEhYUFbGxsYGVlBQsLCzRu3Bjm5uZo1KiR4kdHR0fTTSciIqq07OxsZGRkICMjA0+ePEFGRobi2JiWlqY4PqanpyM1NRWZmZlK369Xrx4sLCyUjo8dOnRQOj4WJ+uwtrZmUlI1CA8Px+3bt/Hdd9+JHQppESbzICLSIKlUiiFDhogdBhEREREREREREREREREREdVS06dPx4YNG7Bp0yYsW7ZM7HCIqsWmTZswbNgwODg4iB0K1SKmpqbo2LEjOnbsqFReUFCAuLg43LlzR/GAv1Qqxa+//orHjx8rprOwsICTk5MiucebP3zYn0g8ryfrePPn4cOHyMjIUExra2sLDw8PuLu7o1+/fvDw8ICbmxucnZ2hq6srYiuItI+NjQ1OnjyJ7t27IzAwECdPnoS9vb3YYRERUQ1mZmYGMzMzQS/VffnyZakPMqempioSgFy/fh1paWlIS0tDfn5+iXk0bNgQjRs3VkrwIeRHT4+PZBIRkXDFCTlK+8nMzCzzs8LCQqX5SCQSWFpaKn6sra3Rpk0bxe9vJrQyMzMTqcV11xdffIHOnTvD19dX7FBIi/DMkYhIQwoKChAbGytoEIGIiIiIiIiIiIiIiIiIiIioMoyNjTFz5kysW7cO//rXv2Bubi52SEQadfLkSdy4cQM7d+4UOxSqI/T19eHm5gY3Nzf069dP6bOcnBzEx8cjLi5OkRQgPj4eZ86cwXfffYf09HTFtBYWFnB0dIS9vT3s7e1ha2sLBwcH2NjYoEmTJoqb7YlINampqUhJSUFiYiKSk5ORlJSkeJt7YmIiHj58qPRmWisrK0WSnYNH6TcAACAASURBVJ49e6Jp06aKRDzOzs4wMjISsTVENY+1tTXCw8MRFBSEwMBAHD9+HE5OTmKHRUREdYCRkREcHR3h6OgoaPrnz5+X+qD0kydPlB6mvn37ttLnL1++LDEvU1NTmJubo1GjRmjYsCFMTU1hZmam9G/Dhg3RsGHDEuVmZmYwMTFRd3cQEZGGvHz5EtnZ2cjKykJ2djaePn2Kp0+fKsqKy9/8PCsrS3EsKSoqUpqnnp5eqcmiXF1dSy03NzdH48aN+fcfLXft2jUcOXIEf/zxh9ihkJZhMg8iIg25e/cuCgoKmMyDiIiIiIiIiIiIiIiIiIiINGrGjBnYsGEDNm/ejE8++UTscIg0auPGjejSpQvatWsndihEaNCgAby9veHt7V3q58+fP0d8fLzi5+HDh0hJSUF0dDROnTqFR48e4cWLF4rp69WrB1tb2xIJP6ysrGBhYQErKytYW1vDwsKCCQeoVnvx4gXS09ORkpKi9Jb1NxN1pKSkKL1h3djYWJEcx8HBAd7e3nB0dFQk72CyDiLNsLGxwalTpxASEoKOHTsiLCyM908TEZHWMTY2hrGxseDkH8VevnxZahKQ4p/ih7czMjIQHx9f4mHuNx/gBgCJRKJI9lFaIhAzMzNFIpD69eujfv36aNiwIRo0aID69evDxMQEpqamis+IiEhZfn4+cnJy8PTpU7x48QIvX77E06dPkZOTgxcvXuDZs2dKCThe/zcrK0uRjCM7O1tp3OF1pv+PvTsPq7pO2D9+H3YBWdTEVMzdQM0SWyw0S8hJoxo3zCZSLKhmXHpyBKwpaoZyaXqkHiscTYZxCtE20TaXNCnLTK30oOISmiau7CAH4ffH/DiDhaYJfFjer+vyuliO+NbkxPfI5z5eXjXeh3ft2tV+H159kKNqjKNVq1by8vKq5z8R1If4+Hj1799fd955p+kUNDCMeQBAHbFarXJ0dFTPnj1NpwAAAAAAAAAAAAAAgCbMy8tLU6dO1UsvvaQpU6bIx8fHdBJQJ7KysvTBBx9o+fLlplOAi+Lp6ak+ffqoT58+571Nfn6+fvzxR/300086fPiwjhw5oiNHjujw4cPavHmz3nnnHR0/flylpaW/+Nht27a1D31cccUV9tevuOIK+9t8fX3tPywWS13/loFfOHv2rE6fPm3/ceLEiXMGOo4fP25/vWq8o/rIjfSfZ11v27atOnbsqCuvvFIDBgzQPffco/bt258zfOPp6WnodwnAz89P69evV1hYmIKDg7Vy5UrdfPPNprMAALhsLVq0sA8u/hYFBQU1HhavOij+8wPkR44cOef9VYfQL8TX11ctWrSQu7u7vL295enpKXd3d3l6etY4CNKiRQt5eXmpZcuWcnd3t4+EuLq6ysvLS46OjvL19f1Nv18AuBSFhYWy2WzKzc1VeXm58vPzdebMGRUXF9uHOIqLi5WXl6fCwkIVFxersLBQeXl5KikpUXFxsU6fPm2/XX5+vgoKClReXn7eX9PZ2dl+//jzQQ4/P79zBpWq3vfzl318fHicDefYtm2bVq5cqfT0dP5u4BcY8wCAOmK1WtWtWze5ubmZTgEAAAAAAAAAAAAAAE3ctGnTNG/ePM2fP19PPvmk6RygTrz++uvq2LGj7r77btMpQK3x8vJSYGCgAgMDL3i7wsJC5eTk6NixYzpx4oR9CKHq9Z9++knbt2+3jyL8fPxDknx8fM4Z9/i1Hy1btpSHh4c8PDw4yNWMVVZWKjc3V4WFhSoqKlJBQcE54xzn+3Hq1CmdPn1a+fn5v/iYLVq0UJs2beTn52cfpOnVq9c5r1cfqPHw8DDwOwdwqby9vbV69WqNHz9ed9xxh5YvX67f/e53prMAADCqZcuWatmy5WV9jKqvyYuKilRcXKyCggLl5+fbD6/XdJC9uLhYRUVFys7OPu9h+F/j5OSkli1bys3NTS1atJCnp6ecnZ3l4+MjJycneXl5ydXV1T4I4uLiIm9vbzk6OsrHx8d+YL5FixZyc3NTy5Yt5eTkZH/d0dFRXl5ekmQfEQFgVm5uriorK1VcXKwzZ86ovLxcBQUF9vf9fHCjqKhIZWVlysvLU3l5ufLy8lRWVma/vzpz5ox9XOP06dP2j1daWvqrQ0WS7Pcxvr6+9vuali1b2kc42rVrZ3+fu7v7L4aKfHx87O+rGjtydnau6z9GNEPx8fG67rrrNHz4cNMpaIAY8wCAOpKZmfmr/8AKAAAAAAAAAAAAAABQG7y9vTV58mS99NJLmjJlymUfEgAampKSEiUnJ2v69Okc7kCz5OnpKU9PT3Xr1u2ibl9QUKATJ0786uDCDz/8oG3btp3ztsrKyvM2eHh4yNPTUz4+PjW+XvW26ge3qg5+VT3Tc9XBiarDWjyb6eWrqKiwH5wpKCiwH5wpKSlRaWmp/XBN9QM0VeMcp06d0oEDB+Tu7m4/1Fd9vKOoqKjGX9PBwaHGEZiePXtecCSmTZs28vT0rOc/IQD1xdXVVWlpaYqKitI999yjf/3rXxo7dqzpLAAAGjWLxWL/ero25eXlqbi4WCUlJSosLJTNZjvnsP7PD+Tn5+ervLxcubm5stls9muHo0ePnnOtcfbs2XMO+1+KqutHBwcHeXt7S5J9BKTqUL/FYpGPj48k2a8vXVxc5OHhUeP7JNmvR6X/jpRUqX5NWjVKIsl+TVuFkUtcrqrPE0nnfH5UXdPXdLvqoxdVn1vSf0d+JNk/f6s+ZyXp9OnTkmR/PKDqc1a68GDHxTrfWI+vr6/9c6xVq1Zq0aLFOWM/Tk5O8vb2tn/OVn1uenl5ycnJ6ZzHkxj5QWOxbds2paena8WKFTzGiRox5gEAdcRqtSosLMx0BgAAAAAAAAAADd7ubV+r3FZmOgONSNZ320wnoJZVVFboi4/STWcAaOaawv9f/ud//kevvPKK5s+fr9jYWNM5QK1aunSpCgsLFRkZaToFaBSqnv25S5cul/xzc3Nz7WMPVT+qxh2qBh5yc3NVUFCgoqIiFRYWav/+/crPz7e/np+ff9HPsirJfuCq6sBH1aEOSee8XP2Zm6VzD1NVP+RR/QBWdd7e3nJwcLhgS9UBsQupOgxzIdUP2VRX/cBO9QMz1Q/iSP85WFdRUSHpvwdzqr9c9f6qAzoXo/oBmqrxlaKiIn3//ffy8PBQYGCgbrjhBnXu3Nk+1PLzsRZPT0/5+vraD9YBwM85Ojpq4cKF8vT01Pjx45Wbm6uoqKhL+hjHj/zIY0Vo0CoqKn71awo0fqeOHZXaX2E6A6gz3t7e9fJ1fdX1U9U1zKWOC1T9vKqxwurXWocPHz7v+/Lz83X27FlJ544j1Ibq15zVr1mlmkc/qg+LVKk+PFJd1aDJz9U0bPDzYZILudwhzeoDK79F1X/by3Gx/x2r/j78XPXr7CrV/x5Wd77r/pquwatfs1e/5v/5dX5tqP73q+q/adUgRvW/D1WPf7Rp00Zubm7nPJ5S9XfpUsdzqg9uAPivZ599Vtddd51GjBhhOgUNFGMeAFAHysvLtWfPHgUEBJhOAQAAAAAAAACgwXJycpJfu3Z6b+GrplPQCHXp0tV0AmpJ+/btpcpK/X1atOkUAGj0/3/x8fHRY489phdffFF//OMfL/obuYHG4LXXXtPIkSPl5+dnOgVo8nx8fGr1YEZxcbFOnDihxMRELVy4UJIUGxurG264QRUVFcrNzbUfuKp6FtnqQyDVD+FUf5bZs2fPav/+/fZfp/qBmuqHtqqc74DOz13M4aCfP0Pz+VQdgqmu+uGanx/eqj420qFDB/thr6pnupX++4zSVR+76uf4+vraD+D8fBSl+s+vyZ49e/Tmm29q8eLFSkpK0s0336yIiAiNGTPmnENpAHCxLBaLEhMT1aZNGz3yyCPau3evXnjhhYt6Zm3/jh2VvmKFMrd8VQ+lAHBho++603QC0Oh5eHjIw8OjxpELE6qPLVRUVCgvL8/+vurXg9WvS39+u+rXnNVvd75Rx6qxkurOd4164sQJ+zBElfONQlzsiGZ9DmlcSH0Nipzvmr2m4c/zjaq0atWqxqHPmq7zq67TpV8OrFT/PVe/3c8bq9+ueufFPv4AwIxNmzZpxYoVWrFixWXdv6Fps1T+/KsAAMBl2717t66++mp988036t+/v+kcADDCYrFo6dKlGjt2rOkUoFGo+lxJS0szXAIAAACgOVqyZIkmTZp02d+8AeDSde7cWRMmTFB8fLzpFABAI/Ptt9/qqaee0qpVqxQQEKDp06fr/vvvr/EZ6NG8nDx5Ul26dNFf/vIX/fnPfzadA9SK7du367rrrtOGDRs0ePBg0zkALkFRUZEWLlyo559/XiUlJXrssccUGxvbqJ7F9cMPP9Tw4cNVUFDQ5A/QVFRUaN26dVqwYIHef/99ubm5ady4cXrggQcUHBxsOg9AI7V06VJNnDhRt956q1JTUy/rGd2BhiIlJUUTJkzQnDlzNH36dNM5AAAY9f777+vee+9VaWmpfawCAJq6yspKDRo0SC4uLlq3bp3pnEanOX2/ooPpAABoiqxWqxwcHNSrVy/TKQAAAAAAAAAAoIHavn27srOzNWLECNMpAIBGqF+/fkpPT9fu3bsVEhKixx57TJ06dVJ8fHyNz9CH5qN169Z67LHHNGfOnBqf2RFojP7v//5PAQEBGjRokOkUABepqKhIiYmJ6tatm5566ilNnDhR2dnZmjVrVqMa8pAkR0dHSbI/63JT5uDgoJCQEKWlpeno0aOaO3euvvrqKw0aNEiBgYGaPXu2jh07ZjoTQCMTHh6udevWafv27QoODtaBAwdMJwGXLSIiQomJiZoxY4YWLlxoOgcAAKPKy8slSU5OToZLAKD+vPnmm9q0aZPmzp1rOgUNHGMeAFAHrFarOnfuLA8PD9MpAAAAAAAAAACggVq5cqXatm2roKAg0ykAgEasR48eSkxM1IEDB/TII48oMTFRnTp10tSpU3X48GHTeTDkz3/+s0pLS7VgwQLTKcBly8vLU2pqqv74xz/KYrGYzgHwK4qLi5WYmKgePXroySefVHh4uPbu3atZs2bJ19fXdN5v0pzGPKrz9fVVVFSUtm/fri1btig0NFRz5syRv7+/wsLCtGzZMvuBLQD4NTfddJO2bNkiNzc3XX/99Vq/fr3pJOCyTZ48WU8++aQeeeQRpaWlmc4BAMCY8vJyWSwW+/UzADR1JSUlevLJJxUZGcn3/OBXMeYBAHUgMzNTgYGBpjMAAAAAAAAAAEADtmrVKoWFhcnBgX+2BQBcvnbt2ik+Pl7Z2dn661//qrfffltdu3ZVRESEMjMzTeehnrVu3VqPPPKI5syZo+LiYtM5wGVJTk6WxWLRH/7wB9MpAC6grKxMCxYssI94jBkzRnv37lViYqL8/PxM512W5jrmUV1QUJASExN1+PBhLVmyRKWlpQoPD1enTp0UGxurrKws04kAGoEOHTpo/fr1uvXWWzVs2DDGB9Ek/PWvf9WUKVP0wAMP6MMPPzSdAwCAEeXl5XJycjKdAQD15sUXX9TJkyf13HPPmU5BI8B3hQFAHbBarYx5AAAAAAAAAACA8zp+/Lg2b96sESNGmE4BADQxXl5emjp1qvbu3auXX35ZX375pfr06aORI0fq66+/Np2HejR9+nQVFBToH//4h+kU4LL84x//0Pjx4+Xt7W06BUANqkY8unbtqilTpuiuu+5SVlaWEhMT1a5dO9N5tYIxj/9yc3PTmDFjtHr1amVnZ2vq1KlaunSpevbsqQEDBmjBggUqLCw0nQmgAfPw8NDy5csVGxurRx99VKNHj9apU6dMZwGX5e9//7v+8Ic/aPTo0crIyDCdAwBAvWPMA0BzkpOTo7lz5youLk5XXnml6Rw0Aox5AEAtq6io0O7duxUQEGA6BQAAAAAAAAAANFCrVq2Ss7OzQkJCTKcAAJooNzc3RUdHa9euXUpLS9OPP/6oG264QcOHD9eXX35pOg/1wM/PT9HR0Zo1a5ZKSkpM5wC/yfr167Vz50498sgjplMA/EzViEe3bt00efJkjRgxQvv371dSUlKT+yZ2xjxq5u/vr5iYGO3bt0+rV69WYGCgpk2bpg4dOigiIkJr1qxRZWWl6UwADZDFYtGzzz6rNWvW6KuvvlLv3r310Ucfmc4CfjOLxaKkpCQNHTpU99xzj3bs2GE6CQCAesWYB4DmJC4uTt7e3po2bZrpFDQSjHkAQC3bv3+/iouLFRgYaDoFAAAAAAAAAAA0UKtWrdJtt92mli1bmk4BADRxDg4OGjVqlDZv3qyNGzeqtLRUAwcOVHBwsD799FPTeahjM2bMUF5enhYtWmQ6BfhNFi1apOuvv17XXXed6RQA/5/NZlNKSooCAgI0efJkDR8+3D7i0b59e9N5dYIxjwtzcHBQSEiIUlJSdOTIEc2dO1c7duxQaGioAgICNHv2bOXk5JjOBNAA3XbbbdqxY4duu+02DR8+XFOnTtWZM2dMZwG/iZOTk9LS0tSnTx/deeedOnTokOkkAADqDWMeAJqLzZs365///KfmzJkjd3d30zloJBjzAIBaZrVaZbFYFBAQYDoFAAAAAAAAAAA0QDabTatXr9aIESNMpwAAmpng4GCtW7dOGzdulKurq26//Xb729A0tWvXTg8//LCef/55lZaWms4BLkl+fr7eeecdTZw40XQKAP13xCMwMFAPPfSQQkJCtG/fPiUlJalDhw6m8+oUYx4Xz8fHR1FRUdq6dat27Nihe++9Vy+++KI6dOig0NBQLVu2TDabzXQmgAbE29tbb775pv7xj3/ojTfe0M0336zvvvvOdBbwm7i5uSk9PV2tW7fW7373O506dcp0EgAA9YIxDwDNQXl5uR555BENGjRI48aNM52DRoQxDwCoZVarVf7+/jyTHgAAAAAAAAAAqNGGDRuUl5fHmAcAwJjg4GCtXbtWGzdulJubm4YOHarg4GCtWbPGdBrqQGxsrHJzc7V48WLTKcAlWbp0qSoqKvimWMCwiooKLVu2TL1799ZDDz2kgQMHKjMzU0lJSerYsaPpvHrBmMdv07t3b82aNUs//vij3nrrLbm5uem+++5Tp06dNHXqVA7rAzjHpEmTtHXrVrm4uCgoKEj/8z//o4KCAtNZwCXz8vLSBx98oKKiIg0fPlzFxcWmkwAAqHOMeQBoDhITE2W1WvXaa6/JYrGYzkEjwpgHANSyzMxM9e7d23QGAAAAAAAAAABooFauXKk+ffqoS5cuplMAAM1c1YDHxo0b5evrq9DQUAUHBys9Pd10GmrRlVdeqcjISL3wwgsqKysznQNctMWLF+v3v/+9fH19TacAzVLViEdAQIDuv/9+3XTTTbJarUpJSVG3bt1M59Urxjwuj6urq8aMGaP09HT98MMPmjZtmlauXKl+/fppwIABWrBgAQf2AUiSevTooS+++EKLFi3SkiVL1KtXL6WkpKiystJ0GnBJ2rdvrw8++EBZWVkaN24cX0MAAJo8xjwANHWHDh1SfHy84uLiFBAQYDoHjQxjHgBQy6xWqwIDA01nAAAAAAAAAACABmrVqlW66667TGcAAGBXNeCxYcMGubm56e6779bgwYO1Zs0a02moJTExMTp27JiSk5NNpwAXZc+ePfryyy81ceJE0ylAs1M14tG7d2+NGzdO/fr1086dO5WSkqLu3bubzjOCMY/a07FjR8XExCgrK0sbN25UUFCQHn/8cbVt21Zjx47VmjVrOLQPNHMWi0URERGyWq0aPny4JkyYoDvuuEO7du0ynQZcksDAQH3wwQdau3at/vjHP5rOAQCgTjHmAaCpmzx5sq688krFxMSYTkEjxJgHANSiyspK7dq1i3UtAAAAAAAAAABQo8zMTO3du1cjRowwnQIAwC9UDXh8/vnn8vb2VmhoqG655RZt3LjRdBouk7+/vyZOnKjnn39eZWVlpnOAX7Vo0SJ16NBBt99+u+kUoNmorKxUenq6goKCNG7cOPXt21dWq1VpaWnq0aOH6TyjGPOofQ4ODgoODlZSUpKOHDmixMREHTlyRKGhobr66qsVHx+v7Oxs05kADGrTpo0WLlyor7/+Wvn5+erdu7fGjh2rvXv3mk4DLtqNN96o1NRULVq0SAkJCaZzAACoM4x5AGjK3n33Xb3//vt67bXX5ObmZjoHjRBjHgBQi7Kzs1VYWKjAwEDTKQAAAAAAAAAAoAFauXKlWrVqpZtuusl0CgAA53XzzTcrPT1dGzdulIODg2699VaNHDlSmZmZptNwGWbOnKmjR48qOTnZdApwQeXl5VqyZIkmTJhgP0APoO5UH/G499571aNHD+3cuVNpaWnq1auX6bwGgTGPuuXt7a2oqChlZGRo586d+v3vf69XX31VXbt2VWhoqJYtW8YYGdCMBQUFadOmTUpNTdX27dsVGBio6OhoHT582HQacFHCwsL0yiuv6C9/+QvX4wCAJosxDwBNVUFBgaZMmaIHH3xQQ4cONZ2DRooxDwCoRVarVZJ09dVXGy4BAAAAAAAAAAAN0apVqzR8+HC+mQkA0CgEBwdr48aN+uSTT/TDDz+oT58+Gjt2rA4cOGA6Db+Bv7+/Jk6cqISEBA7EokH7+OOP9dNPP+nBBx80nQI0eWvWrNH111+ve+65Rx06dNA333yjtLQ0vv/tZxjzqD+BgYGaNWuWDh06pPfee0++vr4aP3682rVrp+joaG3fvt10IgADHBwcNGbMGO3cuVPz58/XRx99pB49eujxxx/XwYMHTecBv+qRRx7Rk08+qaioKK1du9Z0DgAAte7s2bP8+zeAJik2NlYlJSWaO3eu6RQ0Yox5AEAtslqt6tChg3x9fU2nAAAAAAAAAACABiYvL09ffPGFRowYYToFAIBLEhISoi1btig1NVXbtm3T1VdfrejoaOXk5JhOwyWaOXOmcnJyeDZgNGiLFy/WoEGD1L17d9MpQJNVNeJxxx136Morr9SWLVuUnp6ua6+91nRag8SYR/1zdXVVWFiY0tLSlJ2drZiYGK1du1bXXXedBgwYoMTERJ08edJ0JoB65uzsrIcfflh79uzR7NmztWzZMnXr1k3jxo3TV199ZToPuKDnnntO48aN08iRI7Vjxw7TOQAA1Kry8nLGPAA0OWvXrtVrr72m+fPn64orrjCdg0aMMQ8AqEWZmZkKDAw0nQEAAAAAAAAAABqgDz74QJWVlRo2bJjpFAAALlnVMyFbrVa98sorSk9PV/fu3RUbG6v8/HzTebhI/v7+mjhxohISElRWVmY6B/iFkydPauXKlZo4caLpFKBJWrNmjW688UaFhobKx8dHX3/9tdLT09W/f3/TaQ0aYx5mtW/fXjExMdq7d6+2bNmioKAgPfnkk+rYsaPGjh2rNWvWqLKy0nQmgHrk6uqqyZMn68CBA0pOTta+fft000036eabb9ayZctks9lMJwK/YLFYtHDhQvXv319hYWEMpAIAmhTGPAA0NXl5eYqMjNS9996r8PBw0zlo5BjzAIBaZLVaGfMAAAAAAAAAAAA1WrVqlYKDg+Xr62s6BQCA38zZ2VlRUVHKysrSU089paSkJHXr1k2zZ8/WmTNnTOfhIsycOVM5OTlKTk42nQL8QlpampycnDR69GjTKUCTkpGRoSFDhig0NFReXl7avHmzVq9eraCgINNpjQJjHg1HUFCQkpKSdOTIESUlJen06dMKDQ3VVVddpdjYWP3www+mEwHUI2dnZ91///36+uuvtWXLFnXv3l3jx4+Xn5+foqOj9d1335lOBM7h4uKi5cuXy9nZWWFhYSouLjadBABArWDMA0BTM2XKFJWUlOj11183nYImgDEPAKhFmZmZCggIMJ0BAAAAAAAAAAAamLNnz+qjjz7SXXfdZToFAIBa4eHhoZiYGGVlZSkiIkLx8fEKDAzUv//9b1VUVJjOwwX4+/tr4sSJSkhIUFlZmekc4BypqakKCwuTp6en6RSgScjIyNDtt9+uQYMGydnZWV999ZVWr16t66+/3nRao8KYR8Pj5eWliIgIrV69WlarVePHj9fixYvVrVs3hYaGKiUlRSUlJaYzAdSjoKAgpaSkaO/evZoyZYo+/vhj9evXT8HBwUpOTlZBQYHpRECS1Lp1a6Wnp2vv3r2aMGECj6EAAJoExjwANCUrVqxQSkqKXn/9dbVt29Z0DpoAxjwAoJb8+OOPysvLU2BgoOkUAAAAAAAAAADQwHz++ec6efIkYx4AgCanTZs2+vvf/66srCyFhIRowoQJuuGGG5SRkWE6DRcwc+ZM5eTkKDk52XQKYPfTTz8pIyND4eHhplOARu/zzz9XSEiIBg0apLKyMq1fv16rV6/WDTfcYDqtUWLMo2ELCAjQrFmzdOTIEX388cfy9fXVpEmT1L59e0VHR2vr1q2mEwHUo6uuukrx8fHav3+/Vq9era5du+qxxx5T27ZtFRYWppSUFBUVFZnORDPXq1cvvffee1qxYoWeeeYZ0zkAAFw2xjwANBUnTpxQdHS0IiMjNXLkSNM5aCIY8wCAWmK1WiX95x+GAAAAAAAAAAAAqlu1apW6deumXr16mU4BAKBOdOzYUUlJSfr+++/Vtm1bDR48WGPHjlV2drbpNNTA399fEydOVEJCgsrKykznAJKk1NRUeXp66ne/+53pFKDR+uKLLxQWFqbg4GCVlpZq3bp1ysjI0K233mo6rVFjzKNxcHR0VEhIiNLS0vTDDz9oxowZ+vTTTxUUFKQBAwbo1VdfVW5urulMAPXEwcFBISEhSklJ0ZEjR5SUlCRJmjRpkjp06KCIiAilp6fLZrMZLkVzNXjwYL3++uv629/+pgULFpjOAQDgsjDmAaCpePTRR+Xi4qKXXnrJdAqaEMY8AKCWWK1W+fn5qU2bNqZTAAAAAAAAAABAA7Ny5UrdfffdpjMARqFn/gAAIABJREFUAKhzV199tT744AO9//772rp1qwIDAxUbG6vCwkLTafiZmTNnKicnR8nJyaZTAEnS0qVLNXLkSLm5uZlOARqdL7/8UmFhYbrlllt0+vRprVmzRhkZGbrttttMpzUJjHk0Ph06dFBcXJx2796tzz77TH369NGMGTPUvn17PfDAA/r0009VWVlpOhNAPfHx8bGPdxw9elRz5szR/v37dc8996hdu3aKiIjQmjVruF9AvZswYYLi4uI0efJkrV+/3nQOAAC/GWMeAJqChQsX6p133tEbb7whb29v0zloQhjzAIBaYrVaFRgYaDoDAAAAAAAAAAA0MAcOHJDVatWIESNMpwAAUG/CwsKUmZmp559/Xq+99poCAgKUkpLC4agGxN/fXxMnTlRCQoLKyspM56CZO3jwoDZv3qzw8HDTKUCj8u2332rs2LEaOHCgTp06pRUrVigjI0NDhw41ndakMObReFksFg0aNEjJyck6cuSIXn/9dR09elS33367OnXqpNjYWP3www+mMwHUo9atWysqKkoZGRnKysrS448/rm+++UahoaHq0qWLZs6cqZ07d5rORDOSkJCge+65R6NHj9aBAwdM5wAA8Jsw5gGgsdu5c6emTp2qmJgYHltFrWPMAwBqCWMeAAAAAAAAAACgJunp6fLy8tKgQYNMpwAAUK+cnZ01depU7du3TyNHjlRkZKRuuukmffnll6bT8P/NnDlTOTk5Sk5ONp2CZu7NN99U69at+SZZ4CJ9//33Gjt2rK677jodOnRIK1as0Oeff66wsDDTaU0SYx5Ng5eXlyIiIrR69WplZmbq/vvv1+LFi9WtWzeFhoYqJSVFJSUlpjMB1KNu3brpqaee0s6dO/Xtt99q3Lhx+ve//60+ffro2muv1YsvvqjDhw+bzkQTZ7FY9M9//lNdunTRiBEjlJ+fbzoJAIBLxpgHgMastLRU999/v/r06aNnn33WdA6aIMY8AKCWZGZmMuYBAAAAAAAAAAB+YdWqVRo2bJhcXFxMpwAAYESbNm2UmJiozZs3y9XVVTfffLMiIiJ09OhR02nNnr+/vyZOnKiEhASVlZWZzkEztnTpUo0aNUrOzs6mU4AGbceOHRo7dqz69eunPXv2aOnSpdq0aRMjHnWMMY+m5+qrr9asWbN06NAhvffee/L19dWkSZPUoUMHRUdHa/v27aYTAdSza665RrNmzVJ2dra2bNmiW2+9VXPmzFGnTp0UGhqqZcuWyWazmc5EE9WiRQu9/fbbOnnypB588EFVVFSYTgIA4JIw5gGgMZs8ebKys7O1dOlS/o0CdYIxDwCoBT/99JNOnTrFmAcAAAAAAAAAADhHYWGhNmzYoBEjRphOAQDAuP79++uzzz7T+++/r40bN6p79+6Kj49XaWmp6bRmbebMmcrJyVFycrLpFDRTu3fv1vbt2xUeHm46BWiwdu7cqYiICPXr10+7du3S0qVLtW3bNo0ZM8Z0WrPAmEfT5eLiorCwMKWlpSk7O1sxMTFau3atrrvuOg0YMECJiYk6deqU6UwA9SwoKEiJiYk6dOiQli5dKkdHR40bN06dOnVSXFyc9u3bZzoRTVCnTp30zjvv6IMPPtBf//pX0zkAAFwSxjwANFbLli3TokWL9MYbb6hz586mc9BEMeYBALXAarVKEmMeAAAAAAAAAADgHJ988olsNpt+97vfmU4BAKDBCAsL086dOzV9+nTNnTtX11xzjT788EPTWc2Wv7+/Jk6cqISEBJWVlZnOQTOUmpqqdu3aafDgwaZTgAbHarXaRzy2bdum1NRUffvttxozZowsFovpvGbDYrHIYrEw5tHEtW/fXjExMdq7d6+2bNmioKAgPfnkk+rQoYPGjh2rNWvWqLKy0nQmgHrk6uqq0aNH66OPPtLBgwc1bdo0paamqmfPngoLC9Pnn39uOhFNzC233KJ58+bp2Wef1bJly0znAABw0RjzANAY7du3Tw8//LD+9Kc/6fe//73pHDRhjHkAQC2wWq1q3bq12rZtazoFAAAAAAAAAAA0ICtXrtSNN94oPz8/0ykAADQo7u7uio+P165du3Tttddq+PDhGj16tH788UfTac3SzJkzlZOTo+TkZNMpaIaWL1+uMWPGyNHR0XQK0GDs379f0dHRuuaaa7R161a98cYbjHgY5ujoyJhHMxIUFKSkpCQdPnxYiYmJOnLkiEJDQ9WrVy/Fx8fr4MGDphMB1LMOHTrYB3+WLl2q48ePKzg4WMHBwXr33XdVUVFhOhFNxKOPPqqoqChFRkbq+++/N50DAMBFYcwDQGNTWlqq8PBwde3aVXPnzjWdgyaOMQ8AqAWZmZnq3bu36QwAAAAAAAAAANCAVFRU6MMPP9Rdd91lOgUAgAbL399faWlpWrdunXbu3Gk/IFlWVmY6rVnx9/dXZGSkEhIS+LNHvdq3b5927NjBs94B/9+BAwcUHR2tXr16KSMjwz7iERERIQcHvuXXJMY8midvb29FRUUpIyNDO3fu1MiRI/Xqq6+qS5cuCg0N1bJly2Sz2UxnAqhHjo6OGj16tL788kt99tlnat26tUaPHq2+fftqxYoVpvPQRLzyyisKCgrS3XffrRMnTpjOAQDgVzHmAaCxiY6O1v79+5WWliZXV1fTOWjieGQfAGqB1WpVYGCg6QwAAAAAAAAAANCAfP311zp69ChjHgAAXITbbrtN3333nZ5++mnNnj1b119/vT7//HPTWc1KXFyccnJylJycbDoFzciKFSvk4+Oj4OBg0ymAUdnZ2YqOjlbPnj21Zs0azZ8/X999950iIiLk6OhoOg9izANSYGCgZs2apUOHDik1NVVubm6677771KlTJ02dOlXfffed6UQA9WzQoEF6//33tWPHDgUGBuree+/VoEGDtGnTJtNpaOScnZ319ttvy2KxaNy4cSovLzedBADABTHmAaAxmTdvnpYsWaIlS5aoe/fupnPQDDDmAQC1wGq1KiAgwHQGAAAAAAAAAABoQFatWiV/f3/17dvXdAoAAI2Cs7OzYmJi9N1338nPz0+DBg3Sww8/rNOnT5tOaxb8/f0VGRmphIQElZWVmc5BM5Genq4RI0bI2dnZdApgxMGDBxUdHa3u3btr9erVmj9/vnbv3q2oqChGPBoYxjxQxdXVVWPGjFF6erqys7M1bdo0rVy5Uv369dOAAQO0YMECFRYWms4EUI8CAgK0bNkybdq0SY6Ojrr55ps1cuRI7d2713QaGrHWrVtr+fLl2rRpk2bMmGE6BwCAC2LMA0BjkZGRoRkzZuj555/X8OHDTeegmWDMAwAu04kTJ3T8+HEFBgaaTgEAAAAAAAAAAA3IypUrFRYWJovFYjoFAIBGpUePHvrkk0/05ptvKj09XYGBgVq+fLnprGYhLi5OOTk5Sk5ONp2CZiA3N1cZGRkKCwsznQLUu0OHDmnq1Knq2bOnPvnkE82fP1979uxRVFQUh18aKMY8UJMOHTooJiZGWVlZ2rhxo4KCgvT444+rbdu2Gjt2rNasWaPKykrTmQDqyY033qj169dr5cqVysrK0jXXXKM5c+aovLzcdBoaqf79+2vBggWaN2+eli1bZjoHAIDzYswDQGNw8OBBjRw5UmFhYQzmoV4x5gEAl2nnzp2SxJgHAAAAAAAAAACwO3LkiLZv364RI0aYTgEAoNEaN26cdu3apbvvvltjx45VWFiYDh06ZDqrSfP391dkZKQSEhJUVlZmOgdN3KpVqyRJw4YNM1wC1J8ff/zRPuLx3nvv6eWXX1ZWVhYjHo0AYx64EAcHBwUHByspKUmHDx/WvHnztG/fPoWGhiogIECzZ89WTk6O6UwA9WTEiBHatm2bnnnmGT3zzDMaMGCAvvnmG9NZaKTuv/9+Pfroo4qMjFRmZqbpHAAAasSYB4CGrqSkRKNGjdKVV16plJQUnpQH9YoxDwC4TFarVT4+Pmrfvr3pFAAAAAAAAAAAYMC+ffv0zDPPKCMjw36wJz09XW5ubhoyZIjZOAAAGjkfHx8lJSVp/fr1ysrKUt++fZWYmKiKigrTaU1WXFyccnJylJycbDoFTVx6erqGDBkiHx8f0ylAnTt27JhiY2PVs2dPvfvuu5o1a5b27NnDiEcjwpgHLpaPj4+ioqL0zTffaMeOHbr33ns1d+5cdejQQaGhoVq2bJlsNpvpTAB1zMnJSTExMdq2bZs8PT01cOBA/eUvf9GZM2dMp6ERmjdvnq655hqNHTtWRUVFpnMAAPgFxjwANGSVlZV66KGHtH//fr377rvy8PAwnYRmhjEPALhMmZmZCgwMNJ0BAAAAAAAAAAAM+fTTT/Xcc89p0KBBatWqlf7whz/oH//4h4YMGSJ3d3fTeQAANAmDBw/W1q1bFRUVpenTp2vIkCHKysoyndUk+fv7KzIyUgkJCSorKzOdgybKZrPp448/VlhYmOkUoE4dP35csbGx6ty5s/7973/rhRde0J49ezR16lS5urqazsN5fPjhh7r99ts1ZMgQDRkyRNdee60KCws1a9Ys9ejRQx07dlTHjh3Vp08fFRcXm85FA9a7d2/NmjVLhw8f1ltvvSVJCg8P11VXXaXY2Fjt3bvXcCGAunb11Vfrs88+00svvaR58+Zp8ODBOnjwoOksNDLOzs5KTU3V0aNH9fDDD5vOAQA0c++//76uuuoqdevWTX379lXfvn21d+9eLV682P56cHCwRowYodzcXNO5AKDnnntOaWlpWrp0qbp27Wo6B80QYx4AcJmsVitjHgAAAAAAAAAANGMeHh6yWCySpPz8fKWlpWnr1q36+OOPddNNN2n27NmyWq2GKwEAaPzc3d01Z84cffXVVyooKNC1116refPmqaKiwnRakxMXF6ecnBwlJyebTkETtX79euXm5uquu+4ynQLUiRMnTthHPBYvXqxnnnnGPuLh5uZmOg+/4tChQ/r000+1YcMGbdiwQd9++62Ki4t1+PBh7d27V4cPH9bhw4d1/Phx/nviori6umrMmDFavXq1srOzNXXqVC1dulQ9evTQgAEDtGDBAhUVFZnOBFBHHBwc9Kc//Ulbt25VSUmJ+vfvr48//th0FhoZf39/vfXWW0pLS1NSUpLpHABAM+bg4KCDBw9q//792rFjh3bs2KGCggIdPXrU/vrnn3+udevWycnJyXQugGYuNTVVzz77rBITExUSEmI6B80UYx4AcJl27typgIAA0xkAAAAAAAAAAMAQT09PVVZW2l+32WyqrKxURUWFNm/erKeeekq9e/fWyJEjDVYCANB09O/fX19//bWefvppxcTEaNCgQdqzZ4/prCbF399fkZGRSkhIUFlZmekcNEHp6em65ppr1KVLF9MpQK06efKk4uPj1a1bN73xxht6+umn9cMPPygmJkYtWrQwnYeLFB4eLhcXlwvextnZWePGjZODA9+KjUvj7++vmJgY7du3T6tXr1bXrl01efJktW/fXhEREVqzZo3pRAB1pEePHvrqq6909913684771RsbCzjlLgkISEhmjlzpqZOnaotW7aYzgEANFPDhg1Ty5YtL3gbZ2dn/f73v5enp2c9VQHAL3322WeaMGGCZsyYoccee8x0DpoxHkEGgMtw+vRpHT16VIGBgaZTAAAAAAAAAACAIRf6JqTKykqVl5fLYrFowIAB9VgFAEDT5uTkpJiYGG3ZskWlpaW69tprNXv2bA5C1aK4uDjl5OQoOTnZdAqaoJUrVyosLMx0BvCrzp49q+jo6F999vNTp07ZRzzmz5+vmTNnMuLRiHl7e+uee+6Rs7PzeW9js9k0atSoeqxCU+Pg4KCQkBClpaXp6NGjmjt3rr777juFhoYqMDBQs2fP1rFjx0xnAqhlLVq00BtvvKHExET97//+r+69917l5+ebzkIjEh8fryFDhmjUqFE6efKk6RwAQDPk4uKikSNH/uo1c0RERD1WAcC5du3apXvvvVdhYWF6/vnnTeegmWPMAwAuw86dOyWJMQ8AAAAAAAAAAJoxDw+PC77f2dlZAwcOVExMTD0VAQDQfPTt21ebNm3SE088oaeeekpDhw7VgQMHTGc1Cf7+/oqMjFRCQoLKyspM56AJycrK0oEDB3TnnXeaTgEuqLKyUpMmTdKCBQv0xBNP6PTp07+4TUFBgWbPnq1u3brp//7v/zRt2jTt27dPMTExcnd3N1CN2jJx4kTZbLbzvr9Vq1a65ZZb6rEITZmvr6+ioqK0fft2bdmyRaGhoZozZ478/f0VFhamZcuWqby8/KI+VmVlpebNm6eDBw/WcTWAyzF58mStX79eW7Zs0W233cZ4Dy6ag4OD3nzzTVksFj344IOMmgIAjAgPD7/gNbOvr69CQkLqsQgA/uvEiRMKCwtT9+7d9c9//lMODkwpwCz+BgLAZbBarfL09JS/v7/pFAAAAAAAAAAAYIinp+d53+fg4CA3Nze99dZbcnR0rMcqAACaDxcXF/31r3/Vpk2bdOLECfXr10/Jycmms5qEuLg45eTk8OeJWrVmzRq1bNlSN9xwg+kU4IKeeOIJ/etf/5IklZWV6aWXXrK/r7CwULNnz9ZVV12lOXPmaOrUqdq3b5/i4+Pl5eVlKhm16I477lDbtm1rfJ+zs7PGjRvHdT7qRFBQkBITE3X48GEtWbJEpaWlCg8P11VXXaXY2Fjt27fvgj//888/1+OPP67rrrtOX375ZT1VA/gtBg4cqC+++EIFBQUaOHDgr35+A1VatWqlN998U5988olmz55tOgcA0AyFhISc9/EPFxcXTZgwQU5OTvVcBQBSSUmJwsLCVFlZqVWrVjG4jAaBMQ8AuAyZmZnq3bu3LBaL6RQAAAAAAAAAAGDIhcY8Kisr9a9//UudOnWqxyIAAJqnAQMGaMuWLXrsscc0adIkjRo1SidPnjSd1aj5+/srMjJSCQkJKisrM52DJmLdunUaPHiwnJ2dTacA5xUXF6d58+bZn+ncZrPp73//uw4cOKDZs2erU6dOSkhIUFRUlH3Ew9vb23A1apOjo6MefPDBGu+rbDabRo0aZaAKzYmbm5vGjBmj1atXa9euXXr44Yf11ltvqWfPngoODtaCBQtUXFz8i5/3xhtvyNnZWbm5uRo8eLDeeustA/UALlbnzp21ceNGeXl5adCgQfr+++9NJ6GRuPnmmzV79mw9/fTT2rRpk+kcAEAz4+zsrDFjxtR4zVxWVqY//OEPBqoANHc2m01jx45VVlaWVq1apSuuuMJ0EiCJMQ8AuCxWq1WBgYGmMwAAAAAAAAAAgEHnG/NwcnLSo48+qnvuuaeeiwAAaL5cXV01a9YsffLJJ9q8ebN69+6tDz74wHRWoxYXF6ecnBwtXrzYdAqagIqKCq1fv15Dhw41nQKc13PPPadZs2apsrLynLfbbDZde+21euGFFzRlyhQdOnRIs2bNko+Pj6FS1LUJEybIZrP94u3e3t4aPHiwgSI0Vz179lR8fLz279+vjz/+WO3bt9ef/vQntW/fXtHR0crIyJAkFRUVKTU1VTabTRUVFbLZbBo/frxiY2Pt40QAGh4/Pz99+umn6tatm4YMGcIwAy7atGnTdOeddyo8PFynT582nQMAaGbCw8NrvGbu3r27+vfvb6AIQHNWWVmp6OhorVu3Tu+//7569eplOgmwY8wDAC6D1WpVQECA6QwAAAAAAAAAAGBQTWMeTk5O6tq1q1588UUDRQAAYOjQodqxY4dCQkJ01113KTo6usZnLsev8/f316RJk/T888/rzJkzpnPQyH377bc6ceKEbr/9dtMpQI1efvllPfPMMzW+r7y8XKWlpdq8ebPi4+Pl7e1dz3Wob4GBgerXr58sFov9bVXPPuzk5GSwDM2Vo6OjQkJClJaWpoMHD2rmzJnasGGDBg0apP79++vRRx+t8eu1uXPnavTo0Xw9DDRgPj4++vjjj3XTTTdp2LBh+uKLL0wnoRGwWCxatGiRysvLFR0dbToHANDM3H777fL19T3nbc7OzoqMjDRUBKA5e+KJJ/Tvf/9b77zzjm655RbTOcA5GPMAgN8oPz9fhw8fVmBgoOkUAAAAAAAAAABgkIuLixwdHc95m8Vi0bJly9SiRQtDVQAAwNvbW0uWLFFycrJSU1M1cOBAZWZmms5qlJ566ikdP35cixYtMp2CRm7t2rVq3bq1+vbtazoF+IXFixdr2rRpF7xNZWWlXnvttXoqQkPw0EMPycHhv99ubbPZNHr0aINFwH+0a9dOM2bM0K5du7Rx40b169dPq1atOmd8pkpFRYVWrlypG2+8UYcOHTJQC+BiuLu767333tPQoUN11113aceOHaaT0AhcccUVSk5O1vLly5WSkmI6BwDQjDg6Oio8PFwuLi72t5WXl+u+++4zWAWgOXr66af18ssva8mSJRo2bJjpHOAXGPMAgN/IarWqsrKSMQ8AAAAAAAAAAHDOaIfFYtHLL7+sa665xmARAACoEhERoe3bt8vDw0PXX3+9Fi9ebDqp0bnyyiv10EMP6W9/+5tKSkpM56ARW7t2rYYOHXrOwXigIViyZIkmTZqkysrKC97OZrNp/vz5+vHHH+upDKaNHz/+nPssT09P3XbbbQaLgF8KDg7W008/rdOnT+vs2bM13sZms2n37t0aMGCAvvnmm3ouBHCxnJ2dtXTpUg0YMEDDhg3TgQMHTCehEbjjjjv0+OOP67HHHtOePXtM5wAAmpHw8HCVlZVJkhwcHDRw4EB17tzZbBSAZmX+/Pn629/+ptdff11jxowxnQPUiH8RA4DfyGq1yt3dXVdddZXpFAAAAAAAAAAAYJiHh4ek/3yzdVhYmB555BHDRQAAoLouXbros88+0/Tp0/XQQw9pzJgxysvLM53VqMTFxSkvL08LFy40nYJGqqysTBkZGRo6dKjpFOAc77zzjiZMmHDRty8vL9cLL7xQd0FoUFq1aqXhw4fLyclJzs7OGj169DnPOgw0FG+88YacnJwueBubzaaTJ08qODhY7733Xj2VAbhULi4uWr58udq1a6fQ0FAdPXrUdBIageeff149e/bU+PHj7YeqAQCoa4MHD9YVV1wh6T9PeDFx4kTDRQCak5SUFE2ePFlz5szRQw89ZDoHOC/GPADgN8rMzFRAQADPFAIAAAAAAAAAAOxjHq1atdLixYsN1wAAgJo4OTkpPj5en3zyiTIyMnTDDTdo27ZtprMajSuvvFLR0dF64YUXVFxcbDoHjdBXX32lwsJCxjzQoHz00UcKDw9XRUWFKisrf/F+Z2dnubi4yGKx2N/m7e1dn4loACIjI3X27FnZbDaNGjXKdA7wCxUVFVq0aJFsNtuv3vbs2bM6c+aMRo4cqfj4+LqPA/CbeHl56aOPPpKTk5OGDRum06dPm05CA+fq6qq0tDTt2bNHTz/9tOkcAEAz4eDgoPDwcPvLo0ePNlwEoLlITU1VZGSk4uLiNH36dNM5wAVdeH4XAHBeVqtVgYGBpjMAAAAAAAAAAMCvsNlsKiwsVEVFhfLy8iRJubm59oNahYWF5z3sUFBQoPLy8hrf5+zsLE9PT/vrFotFM2bM0NatW+Xi4mIf+HBwcLAf9vLx8ZHFYlHLli1/9dlSAQBA3Rg6dKi+/fZbPfDAAxo4cKBmz56tKVOmnHNQGzWLiYlRUlKSkpKS9Pjjj5vOQSOzdu1aderUSd26dbvon7NhwwYdO3asDqvQnO3bt09/+ctfVF5eLgcHB/s1osVikbe3t9q3b6/27dvLz89P7dq1k5+fn/z8/NSiRQtJ0rJly0zmX5b27dvrlltuqbOPv2/fPm3durXOPn59O3v2rNzd3VVeXq78/PxG/d/+55ycnDRixAi5uLjUycfnfrx+WK1W/fTTT3J0dJTFYrHfn51vqKjqbc8++6w2bNigRx99lK+FgXp2Mfe/V1xxhT788EMFBwdr5MiR+vDDD+Xm5laPlWhsunfvrpdeeknR0dEKCQlRSEiI6SQAdaSkpEQffvihzp49azoFUNu2bSVJ/fv31+rVqw3XAHX/uBfMW758uR544AFNmTJFCQkJpnOAX2WprOkROgDAr+rSpYuioqIUFxdnOgUAGiSLxaKlS5dq7NixplOARqHqcyUtLc1wCQAAAIDmaMmSJZo0aZLOnDljOgWQJBUVFenkyZM6deqUTp48qby8PBUWFqqwsFAFBQXKzc1VQUGB/W15eXnKz89XYWGhSktLVVRUpLKyMpWWlqqkpMT0b+eC3N3d5erqKldXV7m7u6tFixby9PRUy5Yt5ePjY3/Z09NT3t7e8vLykqenp/311q1bq1WrVmrdurXc3d1N/3YAAGhUKisrNWfOHD355JMKCwtTcnKyfYAL5/fnP/9Z//rXv7R//36+/sAlue2229S5c2ctXrz4om5vs9nk5uamioqKOi4Dmp8W7u4qLiqqs48/cuRIvfvuu3X28VG7Vq5cqREjRtT6x+V+HAAu7GLvf7///nsNHjxYYWFhSklJqYcyNHb33XefPv30U3377bfy8/MznQOgDqSmpuq+++4znQEADVJdP+4Fs95++22NGzdOf/rTn/S///u/pnNwGZrT9yvyVE8A8BsUFRUpOztbgYGBplMAAAAAAAAAAGjwTp06paNHj+ro0aM6cuSIjh07ppMnT+rEiRM6ceKEfbSjasCjtLT0Fx+jppGLqh9du3a1v1w1iOHm5iYXFxd5eHjI0dFRXl5ekiRfX19JkpeXlxwdHSXJPqRREzc3N/uzLv9ccXHxef9RuWpQRJLKy8tVUFCgyspK5ebmSpLy8vJUUVGhwsJC2Ww2lZSU2IdICgsLVVRUpNOnTysnJ0f79u2rcbSkpj+jqmGPqh9t2rSxv9y2bVt16NBBfn5+at++PYeVAQDNnsViUUxMjAYMGKD77rtPt9xyi95++21W9sIrAAAgAElEQVT16tXLdFqDFhMTo6SkJL366quaPn266Rw0EjabTZs3b9YDDzxw0T+noqJCFRUVipm/WDcMHVaHdUDz8tmKt/XqU0/U6a9RfvasBt89SlPnvFKnvw4uj62sTOOu6azy8vI6+fjcjwNAzS71/rdv375KS0vTnXfeqX79+umJJ+r2/+No/F599VVde+21io6O1nvvvWc6B0AdKC8vl7Ozi1K//8F0CgA0KPXxuBfMeeedd3Tffffpj3/8I0MeaFQY8wCA3yAzM1OVlZWMeQAAAAAAAAAAmrWysjIdOnRI2dnZys7O1qFDh5STk6PDhw/r2LFjOnLkiI4ePXrO4IWLi4vatm1rH5lo06aNAgMDfzFCUf11b29v+/BGQ+Lu7n7eEZCq0ZC6Ul5erry8PPsIStUQSvWXT5w4od27d9tfPnbsmGw2m/1jtGjx/9i787ia0/5/4K/TQrSpkBKSFKWSLNnGTsbYt7GNZShSEkljGVnLPk3I1nBjFjNjzD0zZizNMENk6EZ0opJkKUspFUXL74/56aupdE6d03Wq1/Px6IFPn3Ndr+v6LOdS57xPPTRp0gQmJiYwNjZG06ZN0bhxYzRv3hwtWrRAixYtYGZmBk1NTaWOhYiISLR+/frhf//7H8aOHYtOnTrhiy++wJgxY0THUlkNGzaEu7s71q9fDzc3N+jq6oqORNXAlStX8OLFC3Tr1k10FCIiIiKiamfAgAEICAiAr68v2rZti/fff190JFJhBgYGOHDgAPr27YuDBw/KVVSRiIiIiEgVHT16FB9++CGmT5/OQh5U7bCYBxFRBUilUmhpacHCwkJ0FCIiIiIiIiIiIiIipcnPz0diYiLi4+OLCnbcvXsXiYmJSExMRHJyMgoKCgD8UxiiefPmRUUhunTpAhMTEzRp0gRNmjSBqakpjI2N0ahRI8Gjqhk0NDSKip3IqrCwEI8fP8bjx4/x4MEDPHr0qKjgSkpKCq5du4aUlBTcu3cPOTk5AAB1dXU0bdoULVq0gLm5eVGRD3Nzc1haWqJ58+ZQU1NT1jCJiIiqjJmZGc6cOQNfX1+MGzcOnp6e2LRpE4talWHRokXYsWMHduzYgcWLF4uOQ9XA+fPnYWRkBGtra9FRiIiIiIiqpUWLFuHmzZuYPHkyLl68iNatW4uORCqsV69e8PDwgKenJ/r06QMzMzPRkYiIiIiIKuTo0aMYP348XF1dERwcDIlEIjoSkVxYzIOIqAKkUimsra1V8lMAiYiIiIiIiIiIiIjk9ezZMyQkJCAhIQHR0dGQSqVISEhATEwMXrx4AQDQ0tKCqakpLCwsYGtri6FDh8LExKRom7m5OYs6qDiJRAJjY2MYGxvDzs7unfu+fU48fPgQycnJSEhIwG+//Yb4+HhkZGQAAOrUqQMzMzNYWFjAxsYGtra2ReeIiYlJVQyLiIhIYerWrYugoCA4OjrC3d0dN27cwDfffMNiZKUwMjLCvHnzsHHjRri7u0NXV1d0JFJx4eHh6NatG19kS0RERERUCdu2bUNUVBRGjhyJixcvQltbW3QkUmEBAQH47bffMGPGDJw4cYL/HyMiIiKiaufQoUOYPn06C3lQtcZiHkREFSCVSmFjYyM6BhERERERERERERGRXLKzs3Hjxg1cu3YNV69eRVRUFKRSKZ49ewYA0NbWRuvWrWFlZYXBgwdj/vz5sLKyQuvWrWFgYCA4PVUlAwMDODk5wcnJqdTvp6amIi4uDrdu3UJsbCxiY2Nx5swZ7N69Gzk5OQD+eZOvra0tHBwcYG9vj/bt28PW1hb16tWryqEQERHJbdq0aXBwcMDo0aPRuXNn/Pe//4W9vb3oWCrHx8cH27dvx+eff46lS5eKjkMq7sKFC/Dw8BAdg4iIiIioWqtXrx6OHj0KR0dHeHh4YN++faIjkQqrX78+/vOf/6Bnz57Yv38/pk+fLjoSEREREZHMdu7ciblz52LRokUICAhgIQ+qtljMg4ioAqRSKaZNmyY6BhERERERERERERFRmZ48eYKLFy/i2rVrRV/x8fEoKCiAnp4e7Ozs4ODggEmTJsHKygpWVlZo1qyZ6NhUTRgZGcHIyAjOzs7FthcWFiIpKamowMf169dx6dIl7Nu3D1lZWVBXV4eVlVVRcQ8HBwd06dIFhoaGgkZCRERUOkdHR1y+fBljx45F9+7dceDAAYwcOVJ0LJXSoEEDzJs3D5s2bcLcuXPRoEED0ZFIRSUmJuLBgwfo3r276ChERERERNWemZkZDhw4gCFDhqBv376YMmWK6Eikwrp27Yp58+bB29sb/fr1Q/PmzUVHIiIiIiIq1/r16/HJJ5/A19cXgYGBouMQVQqLeRARySknJweJiYmwsbERHYWIiIiIiIiIiIiICACQl5eHW7duITIyEuHh4Th37hxiYmJQWFgIExMTODk5YeTIkbCxsYGTkxPatm0LNTU10bGpBpJIJGjRogVatGiBAQMGFPvew4cPERkZicjISEilUhw8eBBLliwpOk979OiB7t27w8nJCZ07d0adOnUEjYKIiOgfhoaGOHHiBBYsWIDRo0fD19eXn/z1LwsWLEBwcDA+//xzfPrpp6LjkIoKDw+HpqYmnJycREchIiIiIqoRBg8ejPnz58Pd3R2dO3eGtbW16EikwtatW4cTJ07g448/xsmTJ/lzDSIiIiJSaW8KeWzZsgXz588XHYeo0ljMg4hITjExMcjPz2cxDyIiIiIiIiIiIiISJjc3F+Hh4QgLC8O5c+cQGRmJFy9eQF9fH87Ozhg7diycnZ3h7OzMT0gnlWFqagpTU1MMHTq0aFtqaioiIiIQERGBCxcuYPny5cjMzISOjg46duyInj17on///ujatSs0NTUFpiciotpKQ0MDn3/+Odq1awcPDw8kJCRg//79qF+/vuhoKkFfXx9eXl7YsmULPD09YWBgIDoSqaDz58+jQ4cOvG6IiIiIiBRo/fr1uHDhAsaNG4eLFy9CS0tLdCRSUVpaWggNDUWPHj0QGhqKmTNnio5ERERERFRCYWEhvL29sW3bNoSGhmL69OmiIxEpBD9ui4hITlKpFJqammjVqpXoKERERERERERERERUSxQWFiIqKgqbN2+Gi4sLDA0N0a9fPxw5cgTW1tYIDg5GdHQ00tLScPz4cfj7+8PFxYWFPEjlGRkZYciQIVi9ejXCwsLw7NmzonO9ZcuWOHToEHr16gVDQ0MMHToUQUFBkEqlomMTEVEt5Orqit9++w2///47evXqhQcPHoiOpDK8vb2hrq6Ozz77THQUUlHh4eHo3r276BhERERERDWKpqYmDh06hMTERCxdulR0HFJxzs7OWLBgARYuXIikpCTRcYiIiIiIinn16hUmTZqEnTt34vvvv2chD6pRWMyDiEhOMTExsLa25qe/EREREREREREREZFSvXr1CseOHcP06dNhYmICBwcHBAQEQF9fH0FBQUhMTMStW7ewZ88ezJgxAzY2NlBT46//qHpTV1eHnZ0dXF1d8cUXXyAhIQFxcXHYuHEj6tSpA39/f9ja2sLMzAyurq44deoU8vLyRMcmIqJaol+/frh48SKys7PRtWtXXL9+XXQklaCnp4cFCxbgs88+Q1pamug4pGIyMzNx48YNdOvWTXQUIiIiIqIap1WrVvj888/x2Wef4ezZs6LjkIpbvXo1mjVrhunTp6OwsFB0HCIiIiIiAEBGRgZcXFxw7NgxHDt2DCNGjBAdiUih+Go+IiI5SaVS2NjYiI5BRERERERERERERDVQbm4ufvnlF0ydOhXGxsYYOnQoYmJiMH/+fFy+fBmPHz/G4cOHMXPmTLRo0UJ0XKIqYWlpidmzZ+PIkSN4+vQpLly4ADc3N0RGRmLgwIFo0qQJZs2ahRMnTuD169ei4xIRUQ1naWmJ8PBwtGrVCt26dcPx48dFR1IJXl5eqFu3LrZs2SI6CqmYv//+G/n5+ejatavoKERERERENdLUqVMxYsQITJ06FZmZmaLjkAqrW7cuQkND8eeff2L37t2i4xARERER4eHDh+jduzdu3ryJM2fOoF+/fqIjESkci3kQEclJKpWibdu2omMQERERERERERERUQ1y5coVzJo1C8bGxhg2bBji4+Px6aefIjExEREREfDz84OTkxPU1PjrPard1NXV4ezsjOXLlyMyMhK3b9/GokWLcPXqVbi4uKBJkyaYO3cuoqOjRUclIqIazMDAACdOnMDw4cMxdOhQ7NmzR3Qk4XR0dLBgwQIEBQXhyZMnouOQCvn7779hZmYGU1NT0VGIiIiIiGqsnTt3IisrC35+fqKjkIrr0qULFi5cCD8/P6SkpIiOQ0RERES1WHR0NLp27YpXr14hIiICjo6OoiMRKQVf7UdEJIdXr17h9u3bsLGxER2FiIiIiIiIiIiIiKq5V69e4auvvkL37t3RoUMHXLhwAStXrkRSUhLCw8Ph7e2N5s2bi45JpNIsLCywePFiXLp0CXfu3MHixYtx6tQptGvXDn379sX333+PvLw80TGJiKgGqlOnDg4ePIilS5fCzc0N/v7+oiMJ5+npifr162PLli2io5AKuXTpEjp16iQ6BhERERFRjdaoUSMEBQUhJCQEJ06cEB2HVNyKFStgaGiIBQsWiI5CRERERLXU6dOn0aNHDzRt2hR//fUXXx9FNRqLeRARyeHWrVvIy8tjMQ8iIiIiIiIiIiIiqrDs7GysXbsWzZs3x9SpU2FqaorTp0/jxo0b8PLygpmZmeiIRNWSubk5fH19cevWLRw/fhy6urr48MMPYW5ujs2bNyM3N1d0RCIiqmEkEgn8/f2xfft2rFmzBrNmzarVRaS0tbXh4+OD4OBgPH78WHQcUhEs5kFEREREVDUmTJiAUaNGYfbs2cjOzhYdh1RY/fr1sX37dnz99df49ddfRcchIiIiolrmyy+/hIuLCwYNGoTTp0/DyMhIdCQipWIxDyIiOUilUmhoaKB169aioxARERERERERERFRNZOfn4+9e/fCysoKGzZswKxZs5CYmIjvvvsOvXv3Fh2PBBowYIDoCDWKRCLBoEGD8N///hfx8fGYOHEiVqxYAWtra3z55ZcoLCwUHZGIiGqYOXPm4OjRo/j6668xZswY5OTkiI4kjIeHB/T19bFx40bRUUgFpKSk4P79+zWumMfKGeNFR6AajueYbGrTPNWmsVYW54pkwfOk+uMxLNv27duRkZGBVatWiY5CKs7FxQWjRo2Cl5dXrf45BhHJjs+/JAueJ9UfjyEpU2FhIZYvX44pU6bA09MTX331FerWrSs6FpHSsZgHEZEcYmJiYGlpyUUCEREREREREREREcklLCwMDg4OcHd3x6hRoxAfH4/Vq1ejadOmoqMVI5FIKvQ9qpzqUFyiuh5/c3NzbNiwAbGxsRgwYACmTp2KTp06ITw8XHQ0IiKqYYYOHYrTp0/j3LlzcHFxwfPnz0VHEqJevXrw8fHB9u3b8fDhQ9FxSLBLly5BIpGgQ4cOoqNUyOg2phjdxrTE9uqwfi9NWeNRdB9UedX1HFOWmnYtVkRtGmtl71W1aa4qqrbcq981TlnPE2U8d1bF87Eq9Kls+Xn5FXpcTZuH0hgbG2Pt2rXYsmULrl69KjoOqbht27bhyZMnCAgIEB2FiKoA19rKVxvWGgDX2qL7VDautUlZcnJyMHnyZAQGBiI4OBibNm2CmhpLHFDtwDOdiEgOUqkUNjY2omMQERERERERERERUTWRm5sLLy8vDBw4ENbW1oiOjkZwcDAaNWokOhqpkLCwMNERajxTU1Ps2bMH165dQ6NGjdCrVy8sW7YMeXl5oqMREVEN0qlTJ/z555+Ii4tD37598eTJE9GRhJgzZw4MDQ2xadMm0VFIsEuXLsHS0hKGhoaio1TIkZulF6Tx3/dtFSdRjLLGQ6qnup5jylLTrsWKqE1jrey9qjbNFVWcrOeJMp47RTwf18Q1wKoD34uOoNLc3NzQqVMnuLm5oaCgQHQcUmEmJiZYsWIFAgMDERMTIzoOESkZ19pUFbjWrv641iZlePjwIXr27Injx4/j5MmTmDt3ruhIRFWKxTyIiOQQHR3NYh5EREREREREREREJJNnz55h0KBB2L9/Pw4ePIgjR46gdevWomMR1Wq2trb47bffsGPHDmzduhUjRoxAVlaW6FhERFSD2Nra4ty5c0hPT0evXr1w//590ZGqnJaWFnx9fRESEoIHDx6IjkMCXbp0CZ06dRIdg4iIiIioVlFTU8OuXbtw5coVhIaGio5DKm7evHlo164dZs+ejcLCQtFxiIiIiKiGuXLlCpydnfH8+XOcP38effr0ER2JqMqxmAcRkYxev36N+Ph4tG3bVnQUIiIiIiIiIiIiIlJx2dnZGDRoEBISEnDu3DlMmjRJSA6JRAKJRCLT9jf/fvM9iUSCmTNnlvs9ALhx4waGDBkCXV1d6OrqwsXFBTdu3Ci1z9u3b2PUqFEwMDAoM19Zrl27hoEDB0JbWxt6enoYPHgwTpw4UeHxSiQSxMTEwNnZGfXr10fPnj0RHx+P6OhodOnSBTo6OujTpw+SkpJKfaxUKoWLiwv09PSgo6ODIUOGlPj0uvLGrehsgHzH4969exg+fDh0dXVhbGyMyZMnIzU1tcS+bz/m38f/p59+Qvfu3aGlpQVzc3N4e3sjMzNTrnmoaq6urjh9+jQuX76MoUOHIjc3V0gOIiKqmVq2bImzZ89CQ0MDPXr0QFxcnOhIVc7NzQ0NGzbEhg0bREchgSIjI6u8mMeLzOfYF7ACc/o740N7c3zcoz2C/eYjLupKsf0u/XESSyYMw4f25pjdtzP2BazAy+zyi7yNbmOK0W1MS2xPvCnFqhkfYmL7VpjsZIU1sybh6rkzcmWXpQ1Zc9+Lv4W1rpMx0dESkztaY73HDDxNLr24jixtyjKvb+blzRyNbmOKHcsWFtuWkpSIDZ4f46PObUrMZVLcTax1nYxJHVpjUofWWOs6GUlxN+Waw7KOT2nbZR2TrO0Bss1leXNRVtuKmJ/qQNZzt6x5KvZ4Jyus+ngC7sfHlrp/Re8DpeW4fzsOfuM/wIT2Flg2aQRSkhJxL/4W/MYNwURHS3z60ZhSxyHPOfM2We91NUlS3E2sdZtSdA2snjmxxDVQ1nnxLoq6PynzfvE0+SEC3adhUofWmNHdHkGLPJCZ/qzCc/R222/fq2Uh6zUmej5keU5659gU8Nwpb5uyHD9ZVHWfRffB+FisnjkRk52sMNHREmvdpuD+7bhS91XG9aaI81+WvqvT/dfOzg7z5s3D4sWL8fTpU9FxSIWpq6tj165dCA8Px6FDh0THISIBuNbmWptrbdlwrc21Nsnvq6++Qrdu3WBnZ4dLly7B2tpadCQiIVjMg4hIRnFxcXj16hVsbGxERyEiIiIiIiIiIiIiFffxxx/j7t27OH36NOzs7ITlKOtT1Erb/mZbYWFh0dfevXvL/V58fDwGDBiAoUOHIiEhAYmJiZg8eTKGDx9e7JPo37QxZ84c+Pj44OHDh/j1119lHktsbCzGjx8PX19fPHnyBBEREcjOzoaLi0ulxuvv7499+/YhOTkZDg4OmDx5MlasWIH9+/fjwYMHaNu2LRYuXFjqY8ePH49p06bhzp07SEhIwMiRI+Hi4oLExESZx63obPIej5kzZ2LOnDlITk7G5cuX8eLFC/j4+JSap7TjDwDDhw/H1KlTkZaWhoiICKSlpcHT07PUNip6/JWhc+fOOHXqFK5cuYJ58+YJzUJERDWPiYkJ/vjjDzRq1Ai9evXCzZs17w3X71K3bl34+flh165dxdYgVHvcuXMHT548qfJiHsF+XtDW1UPA4Z9x8HIslu0+hJSkO/AbN6TYfoHu09Bn5Dj85+8YBH77C7Iy0rF39bJy2z9y82GJbQ8TE7DZ2w0jZs7FvogbCDz8C3JevsDqmRNlzi1rG7LkTklKxJpZk9B10AfY+ftF7Dh1AV0HDsEW79ml9i1Lm7LM65u5OXLzYdGX+5rNxb63298Pw2fMwd6/rmLp7v97o+DbmUPCIrDj1AV0GfA+Vs+ciJSkRJnnsbTjU9Z2ecYkaz+yzGV5c1Fa24qaH1Unz7lb3jzt/P0iQn6/iL6jPsSWBXNKfUxF7wOl5Ti8bTM81m1F6NmrMG9ji88WeeCbzzfBI+Az7P3rfzBr1Rr7A1eWeLw858zbZL3X1RQpSYlYOf1DdOwzACFhEdj5x9/oNWw0At2nIzUluWi/sq7Nd1HU/UmZ94sdyxZi0ISpCD13FRu+P47cnJf4z/pVxfaVd45Ku1eXR55rTPR8yPKc9K6xKeK5U542ZT1+5RHR55v53Ow9G31GjkfI7xcREhaBLv0HY/XMiXj84F6JfRV9vSni/Je17+p2/12xYgW0tLSwYsUK0VFIxXXs2BFubm7w9vZm8ReiWoZrba615Z0PrrW51uZam2SRl5cHHx8fTJ48GXPnzsVPP/0EPT090bGIhNEQHYCIqLqQSqVQV1dnBTAiIiIiIiIiIiIieqeTJ0/i8OHDOHnyJFq1aiU6jtL5+/vD29sbs2f/3wtVJk+ejFevXmHjxo0ICgoqtv+SJUvQrVs3AMDgwYPLLMBRWj9Lly5F//79AQA2NjbYs2cP2rRpU6n87u7uaNu2bVG2pk2bYv369cW2OTk5lfrYZcuWYfz48UX/njlzJp4/fw5/f3/s37+/2L4VGXdFssl7PNzd3YsKoujo6CAgIAB9+/YtN9vb3h5L/fr18dlnn8HS0rLUfSt6/JXFzs4Oe/bswfjx4zF9+nQ4OzsLzUNERDVLw4YN8fvvv2Pw4MHo06cPTp8+Xem1S3Uya9YsbNq0CQEBAdi+fbvoOFTFLl++DHV1dbRv375K+426cA5z122Fjn4DAEBLm3bw2hCMOf2Lr/PefmF6Xa16mL5kFeYO6FqhPg8Hb8KY2V6w79YTAGBmaQX31ZvgObinwtuQJffhbZsxbPps9B39YdG294aNRn5+Hm5djSzRtyxtyjqv5Rk9ex6sHTsCADq81/f/CiEEb8LwGXOKZe4/diJeZmXi8LbN8NoQLFc/slDUmN4mz3lV1lyURsT8iCDvuSvL43sMGQ4A2LpwTon9FXkfcJk4FWatWgMARrnNw6z3HDHl4JGibaPd5mHR6EEKy6CM81eVHQ7ehKHTXDHow4+Ktr03bDTyXr/Gf0N3YMbS1ZXuo6rvT/Ice5eJ0+DYsw8AQKu+NiYvWIIVU8cU26cq5kjea0weip4PeSnjuVOeNhV1/ET0+caYOfPR/f1hRf8uuk6CN8Mz8LNi+yr6elPEWGTtu7rdf3V1dbFmzRq4urpi9uzZQguPk+oLCAjAjz/+iCVLlmD37t2i4xBRFeFam2vtt3GtrZhxcK1dso2auNamsj19+hQTJkzAuXPnEBoaiunTp4uORCScmugARETVhVQqhYWFBerVqyc6ChERERERERERERGpsB07dmDAgAEYMGCA6ChVIiwsrFhBizeGDBmCU6dOldjeuXPnCvXzxx9/oF+/fsW2WVtbV7oYRIcOHYr+3qRJkxLbTE1N8eTJk1If+6awyNtGjhyJkydPlthekXFXJJu8x+O9994r9m9zc3MkJ8v+iUClMTAwQFpaWqnfq+jxV6axY8eic+fOCAkJER2FiIhqID09PZw8eRLW1tbo1asXoqOjRUeqMnXq1IGfnx/27t2LxMRE0XGoil29ehXW1tbQ1tau0n6t2zshYM5UXDl7Gvn5eQCAxmbNy/0EWR09fWRlpFeozxsR4bDrWrzohmnLVnJ9am1F2ygtd1T4X+jc36XEvm/ejFGe0tqs6Lz+m6W9Y6nbo86fLTVzlwGDEXX+rFx9yEpRY3qXd51XZc1FaUTMjwiVPXfLerxD9/dK2bukytwHLGz+783RBg0bldhm2NgYz9NSFZahKs5fVRJ1/myxNy690aF3P1w7/5dC+hB9f3rXsbfpVPyNS42aNsOzJ49L5FT2HFX2GpNHZedDXsp47pSnTUUdPxF9vvGmINnbugwYjGvhf5bYrujrTRFjkbXv6nj/nTZtGhwdHTF//nzRUUjF6enpYfPmzQgNDUVERIToOERURbjW5lr7bVxrl41r7eK41qayREZGomPHjoiNjcXZs2dZyIPo/9MQHYCIqLqIiYmBjY2N6BhEREREREREREREpOLOnTuHlStXio5RZVJTU2Fubl7q90orkF2/fv0K9fP06VM0bNiwQo99F11d3aK/q6mplbqtrIIhRkZGJbaZmJiUWvyjIuOuSDZ5j4eBgUGxf9etW1euAilPnjzBJ598guPHjyMlJQX5+fnv3L+ix1/Zhg8fjr1794qOQURENZS2tjaOHTuGIUOGoG/fvvjjjz9ga2srOlaVmDFjBtavX4/AwEDs3LlTdByqQlFRUbC3t6/yfn2CduPb7VuwZ9USPE9LRUubdnAe8D5cJk6FuoYmAOB5WioObVmHK2dPI/3pExSUs4Ytz/P0NOgZGCq9DVlzP09PQ4OGjUtsL22brG3KMq+yqKtV+ocolZXZoJExMp+VXiiwshQ1pjfkPa/KmotS2xYwPyLIc+7K83jdBgYl91XwfaCetk7R3yX////v/9727/9rVyaDos9fVZeZ/gyz+5ZeHLSOlpZC+qjK+5O8x15HT7/YvzXr1ClxPlXFHMlzjcnVrhLmQ+4MSnjulKdNRR0/EX2+Udp5YNCo9EJGir7eFDEWWfuujvdfNTU1BAUFoUePHvjll1/wwQcfiI5EKuzDDz/Erl274O3tjfPnz0MikYiORERKxrU219pv41q7bFxrl8S1Nv3bgQMHMHv2bPTu3RtffvllideiENVmLOZBRCQjqVSKIUOGiI5BRERERERERERERCqsoKAA6enpSik6UVESiQS5ubmoW7du0ba0NMLwSy0AACAASURBVMW92adhw4aQSqVK/0W8kZERnj59ClNT03fup+zxvu3Ro0cwNjYuti05ORmNGjVSSn+yqKrj8caUKVNgbW2Nc+fOwczMDBoa//wKurq9yLdhw4ZITS3/U5KJiIgqqrYW9NDU1MTSpUsxZ84cLF68GC1bthQdiapIVFQUZs+eXeX91tfVwzQ/f0zz88fzZ2m4fuEcfvnPHkgvX8Siz/cAAIJ8PdG0ZSus/eq/MGpiAnX1f9awo9u8+/8aZdFtYIDnz9Jg2Ni4/J0r0YasufUaGCL96WM0MjUrtr20T12VtU1Z5rUy9BoY4tmTR2jctFmx7c+ePIKunIVSJBIJXr96Bc06dYq2lTZ2Wccka3uKPq/epsj5UWXynLvyPD79aclPEVbm8ZJVZTIo+5pUNboGhgj69c8SbyyrCvJcfyLvF1UxR/JcY4Bq3D9lpYznTnnaVNTxE9HnG+mpT9DAqPjPRJ89eQQ9w5LFkMtS0ec7RYxF1r6r6/23W7duGD16NHx8fODi4lL0M1yi0mzduhVOTk44fPgwPvzwQ9FxiEjJuNYuH9falcO1duVxra3aa20CcnNz4eHhgdDQUPj6+mLdunVFH1ZDRP/gFUFEJIP8/HzExsaibdu2oqMQERERERERERERkQpTU1NDs2bNcPPmTdFRijRp0gRJSUnFtv3111+l7vuuAgxlfW/QoEE4c+ZMie1nz56Fk5OT7EHL0bt3b4SFhRXbdu3aNdjY2BTbJs94K+vEiRMlth09ehQDBw5USn+yUNbxKOv4nz9/HitXroS5uXnRi8BfvnxZ4X5EiYmJgbm5uegYRERUw2lra+Onn36CpaUl+vfvr1JrRmWaNm0aWrZsidWrV4uOQlUkPT0d9+7dg729fZX3PbqNKVJTkgEAegaG6P7+MCzdfRDXwv8s2ufWlcsY77kIjZs2K3pTwKucnAr3adu5G6LOF/8/R+JNKbyG9FJoG7LmdujRC3+HHS+x/d/ty9OmLPMKVLyon323nrh48tcS2y+e+g323XrK1VaDho3xNPlBsW3SSxEl9pN1TLK2p+jz6m2KnB9VJs+5K8/jr547U2KbMo+XrCqTQdbzt6Zo36M3oi+eL7E95vJFLBo1SKl9y3P9ibxfyDNHFb1Xy3ONAeLvn/KMUxnPnfK0qahzXESfb1w9e6bEtounfoNDd9nXQxV9vlPE+S9r39X5/rt+/XrcuXMHoaGhoqOQimvfvj0++ugj+Pr64sWLF6LjEJGSca1dPq61S+Jau2r6fINrbdVfa9dmsbGxcHZ2xrfffosjR44gMDCQhTyISsGrgohIBrdv30ZOTk6JFwQTEREREREREREREf3biBEjcODAAbx69Up0FADAgAEDsGTJEty/fx9ZWVk4ceIEdu7cWeq+TZs2xYULF/D69WucPHkSzZs3L/d7/v7+WLFiBb7//nukpqYiMzMTv/zyCyZMmIDly5crbBzLli3DqlWrEBYWhuzsbERFRWHGjBnw9PSs8Hgra9euXfjqq6+QmpqKJ0+eIDQ0FEFBQfD391dKf7JQ1vEo6/h369YNvr6+SExMxKtXrxAfHy/kE9grIzs7G19//TVGjBghOgoREdUCenp6OH78OFq2bImBAweWKEJWE6mrq2Pp0qU4cOBArSlgUttFRUWhsLBQSDEPANixbCHuxd/C61evkJ76BP8NDSn2wnBrx444uGk1Hj+4h7zXr5GSlIhd/osr3N+YOV74bsdWRJ0/i9yXL3D3Vgy2L/HG+5NnKLQNWXOP91iIn/btxB9HvsHztFRkZaTj/G8/4ciuz0vsK89clDevAGBo3AS3rkYiP+81roX/Cbc+HWUa/ziPhfhp/y6EffcVMlKf4nlaKn7//mv8tH8XxnsslKmNNxy6v4cvtwQgNSUZOS+ycfXcGZz45kCFxyRre4o+r96myPlRZfKcu7I8PjP9Gc4d+xEnDx8qsa8yj5esKptBlvO3phjvuRCHgzfhwolfkJn+DC+zs3D5zClsWTgHY929ldq3PNefyPuFPHNU0Xu1PNcYIP7+Kc84lfHcKU+bijrHRfT5xsnDB3H2l6PITH9WdJ38cmAvxnvK/jxV0ec7RZz/8vRdXe+/FhYWmDVrFlatWsUCDVSutWvXIi0tDZ9/Lts6jIiqL661y8e1dklca3OtzbU2AcCXX36Jjh07QkNDA1euXMHIkSNFRyJSWZLCwsJC0SGIiFTdjz/+iNGjR+P58+fQ1tYWHYeIqFqQSCQ4fPgwxo0bJzoKUbXw5lr59ttvBSchIiIiIqLa6NChQ/j444+Rm5srOkqNcPfuXdja2sLb21slPn386dOn8PLywqlTp/DixQv07dsX27dvLyrG8PavC7/77jssXrwYDx48QPPmzbF582YMGzas3O/FxcXhk08+QVhYGPLy8mBjY4NPPvmk2C/r//1JLBX5NeWFCxewaNEiREZGolGjRnB3d4efn1+Fxvt2Hnm3vdl+584deHp64s8//0RBQQHee+89bN68GW3btpV53JXJUVY2eY/Hv8dV2vayjv/jx4/h4+ODEydOID09HVZWVli+fDnGjx9fZtbS5kEkT09PfPXVV4iJiUHjxo1FxyEioloiIyMDffr0QWZmJs6ePYsmTZqIjqRU+fn5sLOzg6OjI7788kvRcUjJtm3bhhUrViA1NbVS7eTm5kJLSwuLt+9D536yfWrl9Qvn8OuXXyDm8kW8zM6CobEJuvR3wXhPH9TT1gEAZKQ+xX82rMLVc2eQ/TwDpuatMNZ9PjZ7/1OU7sjNhwD++TTIN961DQBuXY3EgQ2rcDs6CvqGRnCZMA0jXT3kGm95bciaGwDuxd/CgQ2rEX0pAhKJBNaOHTHjk5Xw+qB3sX1lbVOWeQWA88d/xsFNa5H2KBkNTZpimp8/OvUdWGze/p31jbuxMTi4cQ2kly8CAGw6dsGURcvQwqptiX3f5fmzNHyxdjmunf8LuS9fws65O2Z9GlD0BgJ5xyRrexU5r0qbi7LOMUXNDwD89dMR7Fi2EK+U+HOgYcOHIwOa8NoQLNfjZD13y5qntx+vpqYG205dMX3JSni49MD30vtF+8lzPb2LrPeJ0rZV5l4k6/lbntevXuFDe3P8+OOPGD58uMyPk1VF7uNlHdvku3dwaPM6RF04i/y8PDSztMIoV090GTC43MfK2l9Zj5P1+lPm/eLtXJWZI6Dse7UsSrvGPl6+BnP6dSkxd6LnQ5bnJGU+d8rTJiD78SuPiD5HtzFFyO8XEbp6GaIvXUBBQQFsOzlj6uIVMGvVuth+b6vo9VZYUIBxdi3wXfQ9ucfyrvNflr6ry/23LI8fP4alpSWWL1+ORYsWVVm/VD35+/tjy5YtiI2NrfE/syCqjg4dOoQZMz7GN9cTZX4M19pca3OtzbV2bVhrV8XPvWq7ly9fws/PD8HBwfD09MTGjRtRp04d0bGoGqpNr1dkMQ8iIhmsW7cOe/fuRUJCgugoRETVBot5EMmHxTyIiIiIiEik2vTLsaqye/duzJ49G1988QWmTZsmOg4pgUQiUamCFFQxQUFB8Pb2xjfffMOfZRIRUZV7/Pgx3nvvPdStWxdnzpyBgYGB6EhKdfjwYUycOBFXrlyBvb296DikRK6uroiLi8Pp06cr1U5F3gROROVT5WIeynAv/hbWuk7Bzj/+Fh1F5ahiMQ+qnka3MZX5TZ1U81TF8T999DDeGzoK6hqaSHv8CEsnDkdIWIRS+1QmUcU8AGDp0qUICQnB7du3a/z/QalyXr58CWtrawwZMgQhISGi4xDRv1SkmAdVT1xr125ca8uPxTyUKyYmBuPHj0dSUhL27t2LMWPGiI5E1Vhter2imugARETVQUxMDGxsbETHICIiIiIiIiIiIqJqwtXVFcuWLcOMGTOwYcMGFn0gUjEFBQVYunQpvL29sWHDBhbyICIiIRo3boxTp04hPT0d77//PrKzs0VHUqpx48bBzs4Oq1atEh2FlCwqKooFW4hIiNFtTHHswF5kPc/A61evcCcmGjs/9cXgSdNERyMiokrY9ok3fti9DS+zs3DswB70eL9qC2DUJIsWLQIAbNmyRXASUnX16tXDqlWrsGfPHty4cUN0HCIiIlISrrVJVnv37oWTkxP09fVx/fp1FvIgkgOLeRARyUAqlbKYBxERERERERERERHJZdWqVQgKCsKSJUswbNgwPHr0SHQkUhCJRFLsT6pekpKS0K9fP2zatAlffPEFfHx8REciIqJarFmzZjh16hQSEhIwcuTIGv3pUxKJBP7+/vjhhx9w6dIl0XFISQoKChAdHc1iHkQkxCc7/4NLf5yEW++OmN7NDiHLFmLAuEkY/rG76GhENdboNqbF/qTapaqOv+uKAJz4+gDc+zvjRWYmxrp7K7W/mqxBgwbw9fVFUFAQUlNTRcchFffRRx+hffv28PX1FR2FiKhW4lq7duNam1RFeno6Jk2aBFdXV8yaNQt//PEHmjVrJjoWUbWiIToAEZGqKygowK1bt+Dh4SE6ChERERERERERERFVM56enujcuTMmT54MS0tLLFy4EIsXL0a9evVER1Mp5RXFKCwsrKIkslG1PCSb7OxsbNu2DWvXrkXTpk1x4cIFdOjQQXQsIiIiWFlZ4eeff0b//v0xc+ZMHDhwoMYWDRsxYgQ6deqEVatW4eeffxYdh5Tg7t27yMrKQrt27URHURnlveD+yM2HVZSkeuM8kiw69h6Ajr0HKKQtnnPVH4+h7CozV5zHqiHifJalz6o6/oMmTMWgCVOrpK/awNPTE1u2bEFQUBBWrVolOg6pMDU1NWzatAl9+vTBiRMnMGjQINGRiEhFcK0tO661VR/X2lxrU9nCwsIwbdo05Ofn49dff4WLi4voSETVEot5EBGVIzExEdnZ2bCxsREdhYiIiIiIiIiIiIiqoS5duuDatWsIDg7GunXrsHfvXnz66af4+OOPoa6uLjqeSmBxDFKmgoICHDp0CH5+fsjMzMTChQvh5+cHLS0t0dGIiIiKdO7cGd9//z0++OADWFhYYOXKlaIjKY2/vz/ef/99REREwNnZWXQcUrBbt24B+KdIDf2Db7xQDM4jVTWec9Ufj6HsOFeqT8Qx4nlRc2lra8PLywsbNmyAt7c3DAwMREciFda7d28MHz4c3t7eiIqKgoYG34ZGRFwnyINzpfq41iYqKScnB/7+/ti4cSNGjRqFXbt2wdDQUHQsompLTXQAIiJVJ5VKIZFI0KZNG9FRiIiIiIiIiIiIiKiaql+/PhYvXoxbt27hgw8+wNy5c2Fra4vPP/8cGRkZouMR1UhpaWnYtGkTWrdujVmzZmH8+PFITEyEv78/C3kQEZFKGjhwIHbu3InVq1fjP//5j+g4SjN48GC89957+PTTT0VHISWIjY1F48aN+YZAIiIiIiIV5unpCXV1dQQHB4uOQtXAhg0bEB8fj3379omOQkRERERKFh0dDWdnZ4SEhCAkJATfffcdC3kQVRKLeRARlSM6OhpmZmbQ19cXHYWIiIiIiIiIiIiIqrkmTZpg586duH79Onr37o2lS5fCzMwMs2fPRlRUlOh4RDXC5cuXMWPGDJiZmWHNmjX44IMPEBMTg61bt8LIyEh0PCIioneaMWMGfH19MWvWLPz++++i4yjNmjVrcOrUKZw5c0Z0FFKwuLg4WFlZiY5BRERERETvoKenh3nz5mHr1q1IT08XHYdUnJWVFVxdXbFq1Srk5OSIjkNERERESpCfn4+NGzfCyckJ+vr6iIqKgqurq+hYRDUCi3kQEZUjJiYGNjY2omMQERERERERERERUQ3Spk0b7Ny5E/fv38e6devw559/wsHBAc7Ozti8eTPu3r0rOiJRtRIfH4+AgAB06NABnTp1QmRkJLZu3Yr79+8jKCgIFhYWoiMSERHJLCAgAOPGjcPo0aNx48YN0XGUomfPnujTpw+WLVsmOgop2K1bt1jMg4iIiIioGpg/fz4KCwuxc+dO0VGoGli6dCnS0tJ4vhARERHVQDdv3kTPnj2xbNkyrFy5EqdPn0aLFi1ExyKqMVjMg4ioHFKplMU8iIiIiIiIiIiIiEgp9PX14enpCalUirCwMNjY2GDt2rVo2bIlunTpgo0bN+LOnTuiYxKppNjYWKxbtw6Ojo5o3bo1tm7dik6dOuHs2bO4du0a3NzcoKOjIzomERGR3CQSCfbu3QtbW1sMGzYMjx49Eh1JKdasWYPw8HCcOnVKdBRSoNjYWLRu3Vp0DCIiIiIiKkeDBg0we/ZsfPbZZ8jJyREdh1SciYkJ3N3dsW7dOmRmZoqOQ0REREQKUFBQgN27d6Njx4548eIFIiIisHjxYqipsfQAkSLxiiIieofCwkLcvHmTxTyIiIiIiIiIiIiISKkkEgn69euHL774Ao8ePcKvv/6Kdu3aITAwEBYWFmjfvj0WLVqEEydO4MWLF6LjEgmRlZWFY8eOYf78+bC1tYW1tTWCgoLQpUsXhIWFITk5Gbt27UKPHj1ERyUiIqo0LS0t/Pjjj1BTU8PYsWPx+vVr0ZEUrlu3bnBxccGSJUtQWFgoOg4pQE5ODu7duwcrKyvRUYiIiIiISAbe3t7IyMjAl19+KToKVQN+fn7Izc3Ftm3bREchIiIiokq6ffs2+vTpAw8PD3h4eODSpUtwdHQUHYuoRmIxDyKid0hKSkJmZiaLeRARERERERERERFRldHU1ISLiwtCQ0ORkpKC48ePo1evXjh27BhcXFxgZGSE/v37IzAwEJGRkSgoKBAdmUgp8vLyEBERgTVr1qBXr14wNDTE0KFDcfr0abi4uOD333/Hw4cPsXPnTvTr1w/q6uqiIxMRESlUo0aN8Msvv+DatWtYuHCh6DhKsWbNGkRGRuLXX38VHYUUIC4uDgUFBSzmQURERERUTRgbG2PChAnYuHEjf9dA5TIyMoKXlxc2bNiAZ8+eiY5DRERERBVQUFCA3bt3w97eHhkZGfj7778RGBgITU1N0dGIaiwW8yAiegepVAoAaNu2reAkRERERERERERERFQbaWpqYtCgQQgKCoJUKkVKSgoOHDiAVq1aYfv27ejYsSP09fXRo0cP+Pn54eeff8bTp09FxyaqkIyMDISFhcHf3x9Dhw5Fo0aN0LVrV2zbtg3GxsbYtm0bkpKScO3aNWzevBl9+/ZlAQ8iIqrx2rRpg/3792Pbtm3Yt2+f6DgK5+TkhGHDhuHTTz9FYWGh6DhUSbGxsVBTU4OlpaXoKEREREREJCNfX1/ExcXh2LFjoqNQNbBw4UKoqakhKChIdBQiIiIiklNUVBS6du2KefPmYdmyZbh8+TLat28vOhZRjachOgARkSqTSqUwNTWFgYGB6ChERERERERERERERDA2NsbYsWMxduxYFBYW4vr16zh37hwiIiLwww8/YP369ZBIJLC2toazszOcnZ3RoUMH2Nraon79+qLjExXJysrCjRs38L///Q8RERGIiIhAXFxcsfN3/fr16NGjB2xsbETHJSIiEmrkyJHw8fGBu7s77Ozs0LFjR9GRFGrNmjVwcHDA0aNHMWrUKNFxqBISEhJgZmYGLS0t0VGIiIiIiEhGbdq0weDBg7Fx40YMHTpUdBxScfr6+vDy8sKWLVswf/58NGjQQHQkIiIiIirHy5cvsWrVKmzevBmdOnVCZGQkbG1tRcciqjVYzIOI6B1iYmL4AlEiIiIiIiIiIiIiUkkSiQT29vawt7eHu7s7AODp06dFhRHOnz+PI0eOIDMzE+rq6rC0tISDg0PRl729PZo1ayZ4FFQbJCYm4tq1a4iKikJUVBSuXr2KhIQEFBQUQF9fH126dMGECROKCtCwyDoREVFJgYGBuH79OkaPHo3Lly+jUaNGoiMpTLt27TBmzBh8+umnGDFiBNTU1ERHogpKSkpC8+bNRccgIiIiIiI5LViwAP369cPVq1f5ydxULi8vL2zduhU7duzAkiVLRMchIiIionf466+/4ObmhocPH2Ljxo3w8PCAurq66FhEtQqLeRARvYNUKkWnTp1ExyAiIiIiIiIiIiIikknDhg3xwQcf4IMPPgAAFBQUICEhAVevXi0qpLB3717cuXMHAGBgYAA7OztYWVkVfbVp0wYtW7ZEnTp1RA6Fqpnc3FzEx8cjNja26OvmzZuIjo5GRkYGJBIJLCws4ODggMmTJ8Pe3h4ODg5o2bIlJBKJ6PhEREQqT01NDQcPHkTHjh0xceJEHD9+vEa92HL16tWwtbXF4cOHMWHCBNFxqILu3bvHgoFERERERNVQ3759YWtri5CQEOzatUt0HFJx+vr68PDwwJYtW+Dp6QldXV3RkYiIiIjoX549ewY/Pz/s2bMHQ4YMwcmTJ/nzeyJBWMyDiOgdYmJi8NFHH4mOQURERERERERERERUIWpqarC0tISlpSXGjBlTtD0jI6OouEd0dDRiY2Nx4sQJ3Lt3DwCgoaEBc3NzWFtbw9raGpaWlmjRogXMzc3RokULaGtrixoSCZSZmYm7d+8iMTERd+/eRVxcHG7duoXY2FjcvXsX+fn5UFNTQ7NmzWBlZQVHR0dMmTIF9vb2sLOz4wt6iYiIKqlhw4b44Ycf0L17d6xevRr+/v6iIymMlZUVJkyYgBUrVmDs2LHQ0ODL2qqjpKQkDBw4UHQMIiIiIiKqAFdXV3zyyScIDAyEgYGB6Dik4ry9vREUFIRdu3bBx8dHdBwiIiIi+v8KCwtx6NAhLFy4EHXq1MEPP/yAESNGiI5FVKvxt55ERGV48OAB0tPTYWNjIzoKEREREREREREREZFC6evro2fPnujZs2ex7dnZ2YiNjUVsbCzi4uJw8+ZNnD17Fvv27cOzZ8+K9mvYsCFatGiBFi1aoHnz5kVFPpo1awYTExM0btyYb8CsZl6/fo3Hjx/jwYMHuH//frGiHXfv3kVSUhLS0tKK9m/YsCFatWoFa2tr9OzZE1ZWVkVfWlpaAkdCRERUs3Xo0AEbN26El5cXevfujd69e4uOpDArVqxA27ZtcejQIUybNk10HKqAe/fu8ZP9iIiIiIiqqalTp2LJkiU4dOgQPD09RcchFWdoaIg5c+Zg06ZNcHd3R/369UVHIiIiIqr1rl+/Dg8PD5w7dw5z5szBunXroKenJzoWUa3HV9AREZVBKpUCAIt5EBEREREREREREVGtoa2tDUdHRzg6Opb43vPnz5GUlITExMRiRR4uXLiAb775BikpKUX7qqmpoXHjxjA2NkbTpk3RuHFjmJmZwdjYGKampmjSpAmMjIxgZGQEQ0NDqKmpVeUwa438/HykpaUhNTUVqampSE5ORnJyMlJSUvDgwQM8fvwY9+/fx+PHj/Ho0aOix0kkEjRp0qSoSMugQYOKFW4xNzeHtra2wJERERHVbnPnzkVYWBimTJmCa9euwdDQUHQkhWjVqhWmTp0Kf39/TJw4EXXq1BEdieSQk5OD1NRUFvMgIiIiIqqm9PX1MWnSJISEhMDDwwMSiUR0JFJxCxcuRHBwMPbv3w93d3fRcYiIiIhqrezsbGzcuBEBAQGws7NDeHg4nJ2dRcciov+PxTyIiMoglUrRuHFjNGzYUHQUIiIiIiIiIiIiIiLh9PT00K5dO7Rr167U7+fk5ODevXt49OgRHj58iJSUlKLiEcnJyYiMjMSjR4/w+PHjEo81NDQsVtzj7T+NjIygp6cHHR0d6OjowMDAoOjvOjo60NfXV/bQhUpPT0dWVhaysrKQmZmJjIwMPH/+HFlZWXj+/HlRsY5///n06VOkp6cXa0sikRQrsmJsbIwOHToUK7JiYmKCpk2bom7duoJGTEREROWRSCTYu3cvHBwcMGvWLBw5ckR0JIVZvnw5Dh48iH379sHNzU10HJJDUlISCgsLWcyDiIiIiEhGHh4e2LVrF8zNzdGyZctif4p6/bq7uzt2796NP//8E7179xaSgaqPxo0bY9q0adi0aRPc3Nygrq4uOhIRERFRrfPzzz/D3d0dL168wIYNG+Dh4cF1GZGKYTEPIqIySKVS2NjYiI5BRERERERERERERFQtaGlpoXXr1mjduvU793v9+jUePXpUVHji6dOnSE1NLVGQ4vbt20X/zszMRE5OTpltvl3sQ1dXF+rq6tDT0wMAGBgYFO2jrq4ObW1t1KlTB1paWqhXr15RG/Xq1YOWllap7b9p422FhYUlimW88fLly2J5X7x4gdzcXOTm5uLFixfIy8tDZmZmsTYyMjJQUFBQVKjjTfGOstSrVw+6urrFCp8YGxvDxsamqAjKvwukGBsbQ0ODvyImIiKqCRo2bIivvvoK/fr1w969ezFz5kzRkRSiefPmmDlzJlatWoWPPvqo2HqNVNu9e/cAQCnFPG5duYS8168U3i5RbRUXdaVK+nny8D7OH/+5Svqid8vPz4O6esmfB+Tn5VVJ/7yPExEV9+b+26NHD9StWxfR0dE4duwYHjx4gPz8fACArq5usQIfb77e/FtXV1cp2RwcHNC1a1eEhISwmAfJxMfHB7t378bRo0cxZswY0XGIapWCwgL+n4uI6F+q6udeqiAqKgoeHh44f/48XF1dsWbNGhgaGoqORUSl4Cu1iIjKIJVKYW9vLzoGEREREREREREREVGNoqmpCTMzM5iZmcn1uNevXyMrKwvPnj0rKnSRlZWF58+fIyMjo2hbdnZ20b4FBQXIyMgA8H+fFJ6ZmYm8vLyiAhtvPH/+vOiF0gCQl5eHvLw8qKurIysrq9RMurq6pRbH0NDQKPZi6jeFQzQ1NaGjowM1NTXo6+tDIpGgZcuWkEgkRW29KUiio6MDPT096OvrF/1bR0cHDRo0KLNfIiIiql169eoFHx8feHl5oXv37mjbtq3oSAqxdOlS7Nu3D3v27MG8efNExyEZPXjwAFpaWjAyMlJYmxoaGjBuU3hbOAAAIABJREFU0gQ/7t2hsDaJ6B8tW1ootf1mZmb4+aefEHP5olL7ocrT0NBAkyZNlNY27+NERKXT0NDA/Pnz0aVLl6Jtr1+/xr179/Dw4UMkJycjISEBCQkJiI6Oxs8//4zExEQUFBQA+KcAtYWFBUxMTGBqagoLC4uiL2tra+jo6FQ425w5czBjxgw8fPgQpqamlR4r1WwWFhYYNmwYNmzYwGIeRFXI1NQUKCzE5vluoqMQEakcZf/cS7S0tDSsXLkSO3bsgIODA8LDw4v9v4KIVA9f4UVEVIaYmBiMHz9edAwiIiIiIiIiIiIiIsI/RUAMDAxgYGBQJf3NnTsXV69eRXh4eJX0R0RERFQRq1evxh9//IGPPvoIFy5cqBEFv0xMTODm5oaAgADMnDkT9evXFx2JZPD48WM0btwYEolEYW2qq6sjJTlZYe2R6ggICEBgYCDu3r2LBg0aiI5DSrB9+3Zs375ddAwCkJOTg5CQEGzYsAHPnz/HnDlz4Ovri8aNGyu9b97HiYjko6mpWVSQozS5ubl48OBBUZGPt4t9hIWFISEhoWjfN8U+/v1lYmICCwsL1KtXr8wc48aNg4+PD0JDQ7F8+XKFj5NqHj8/P3Tp0gVnz55Fz549RcchqhX69u2LvLw80TGIAACTJ09GVlYWfvzxR9FRiGq0V69eITg4GGvWrIG2tjZCQ0MxZcoUhf5MnoiUQ010ACIiVZSSkoLU1FTY2tqKjkJERERERERERERERAJcunQJHTt2FB2DiIiI6J00NTVx8OBB3LhxA1u2bBEdR2GWLFmC7OxsvhG8GklNTYWRkZHoGFRNzJ07F2pqaggJCREdhajG09LSgre3NxITE7F161Z8/fXXaNmyJby8vJDMQhtERNVK3bp1YWFhgf79+8PV1RWBgYH49ttvce7cOdy+fRsvX77E7du3cerUKQQGBqJ///4AgLCwMPj6+mLAgAFo164d6tevD0NDQ3Ts2BHjxo2Dn58fdu/eXVQQRENDA9OmTcPu3bv5RnGSSefOndGtWzds2rRJdBQiIhIgLy8P6urqomMQ1WhhYWFwdHTE8uXL4ebmhpiYGHz00Ucs5EFUTVT/j2IgIlICqVQKALCxsRGchIiIiOj/sXfnYVHVi//A38MwMOwMoDIDomBu4JKClde0vu5m5ZZb2s209FqamhW4VFq5Vm437appJWmW9VUzs6uT997q1i1Bu98CtHRYhBkTcYZFWYYZfn/UnN8AA6LAfGDm/Xqe88jMORzfxwfPMpzP+xARERERERGRs5nNZvz000+YP3++6ChEREREN9S1a1e88MILePHFF3H//fe7xL0OYWFheOqpp7Bu3Tr85S9/QUBAgOhIdAMs86CbERgYiDlz5mDTpk1YuHBhvU+GJ6Km4e3tjdmzZ+PRRx/Fe++9h5UrV+Ltt9/G448/jqSkJKjVatERiYiokZRKJWJiYhATE+NwvtFohE6ng06ng16vh8FggE6ng1arxblz51BSUgLg99LI8PBw5OXlYdiwYbjzzjul9cbExCA6OpqDBqmWxYsXY+LEibhw4QI6deokOg4RETlRZWUlPD05TJmoOZw9exaLFy/G559/jvvvvx+fffYZoqOjRcciopvkIToAEVFLlJ6eDpVKhXbt2omOQkRERERERERERERETvZ///d/KCsrQ0JCgugoRERERA3y/PPPo0ePHnj88cdhtVpFx2kSiYmJsFgs2Lx5s+go1AAs86CbtWjRIhQXF+Pdd98VHYXIrdhKPXQ6HTZu3IiPP/4YnTt3xoIFC2AwGETHIyKiZqRSqRAfH4+JEydiwYIFWLt2LT766COkpKSguLgYV69eRUpKCvbu3YunnnoKERERSEtLw4EDB/DUU09h2LBh6NSpE3x8fNCpUycMGzYMc+bMwbp163DgwAGkpqbCaDSK3kwSZMyYMYiKisJbb70lOgoRETkZyzyIml5eXh7mzJmDnj174rfffsNXX32FI0eOsMiDqJVimQcRkQMZGRno0aOH6BhERERERERERERERCRASkoKAgIC0LVrV9FRiIiIiBrE09MTu3fvRkpKCrZu3So6TpMIDg7GggUL8Prrr3NAWCtQUFCAsLAw0TGoFWnXrh0effRRvPbaa6isrBQdh8jt2Jd6bNiwgaUeRERUrewjMTERq1evRmFhIb7//nuYzWap7CM5ORmzZ89GTEwMdDodduzYgalTpyIhIQEhISH1ln0UFRWJ3kxqJnK5HHPmzMGuXbtw7do10XGIiMiJWOZB1HQKCwuxdOlSdO7cGcePH8c777yDH374AQMHDhQdjYgagWUeREQOpKenIzY2VnQMIiIiIiIiIiIiIiISICUlBfHx8fDw4K9TiYiIqPXo1asXEhMTkZSUhAsXLoiO0yQWLVoEuVyOjRs3io5CN1BQUIDQ0FDRMaiVee6553Dx4kV89NFHoqMQua2apR4HDhyQSj0uXbokOh4REQk0fvx4eHl54cCBAwBql31s374dJ06cwIULF3D9+nVcuHABJ06cwObNm/HII49UK/uYPHkyEhISEBQUhJCQECQkJGDSpElISkrC5s2bpbIPlkC0bo8//jjKysqwd+9e0VGIiMiJWOZB1Hhmsxk7duxAly5dsH37drz00kvIyMjA9OnTed8KkQvgUZKIyIH09HSMHTtWdAwiIiIiIiIiIiIiIhIgJSUFQ4cOFR2DiIiI6KYtX74cBw8exLx583Ds2DHRcRotKCgIzz77LFavXo158+ahbdu2oiNRHa5cucIyD7ppMTExeOihh7Bu3TpMnToVMplMdCQit2Ur9Zg+fTp27tyJdevWYdeuXZg1axaWLFmC8PBw0RGJiMjJ/Pz8MGbMGCQnJ2Pu3Ln1Luvl5YWYmBjExMQ4nF9eXo68vDzodLpqk1arxYULF2AymaRlVSqVtK6aU1RUFAcLt2BhYWGYMmUKtmzZgieeeILn90REbsJisfD4THSLrFYr9u/fj+XLl+PSpUt4+umnkZSUhODgYNHRiKgJ8ShJRFRDQUEBLl++jNjYWNFRiIiIiIiIiIiIiIjIycrKypCWlobExETRUYiIiIhumre3N7Zv346BAwfi008/xYMPPig6UqPNnz8fmzZtwuuvv47169eLjkN1MJlMCAkJER2DWqGkpCT06dMHx44dw3333Sc6DpHb8/X1xYIFC/DEE0+w1IOIiPDII49g5MiR+OWXX9ClS5dbXo+3t3e9ZR9GoxF6vR4Gg6FW2ccvv/yC4uJiAIBCoUBYWBg0Go3Dso+OHTvyyeWCzZs3DwkJCfjqq69wzz33iI5DREROUFlZyTIPolug1WqRmJiIH3/8ERMmTMC6desQHR0tOhYRNQMeJYmIakhLSwMAlnkQEREREREREREREbmhH3/8EWazGf369RMdhYiIiOiWDBgwAFOmTMGiRYswfPhwKJVK0ZEaxd/fH0lJSVi+fDkWLVoEtVotOhLVYLFYUFZWBj8/P9FRqBXq3bs3Ro4cibVr17LMg6gFYakHEREBwLBhwxAREYF9+/ZhxYoVzfb3qFQqqFQqxMXFOZxvNBqrlXzodDro9XpotVpkZGTg+vXrAAAvLy9ERkbWKvlQq9XQaDSIjo6GTCZrtu0gID4+HnfeeSd27NjBMg8iIjfBMg+im/Pll19i+fLl+P777zF27Fjs2bOnzvNgInINPEoSEdWQnp6OwMBAaDQa0VGIiIiIiIiIiIiIiMjJTp06BZVKVecTAomIiIhag9deew3dunXDhg0bsHTpUtFxGm3u3LnYuHEjVq1ahTfffFN0HKqhtLQUAODj4yM4CbVWiYmJuPfee/Hvf/8bAwYMEB2HiOzYSj0ef/xxvP322yz1ICJyMx4eHpg8eTLee+89vPTSS8KKMFQqFeLj4xEfH+9wvqOyD51OB61Wi+zsbFgsFgCAUqmERqOpVfYRExOD2267DUFBQc7cLJc1a9YsPP300zAajVCpVKLjEBFRM2OZB1HD/Oc//8Hy5cvx5ZdfYujQofj+++/5kBkiN8GjJBFRDRkZGYiLi2PrLhERERERERERERGRG0pNTUVCQgJ/T0BEREStWkREBJKSkrBq1SpMnz4dUVFRoiM1ilKpxLJlyzB//nw888wzLF5rYWxlHkqlUnASaq3uuece/OlPf8K6devw6aefio5DRA74+fmx1IOIyE098sgj2LBhA7777jv86U9/Eh3HofrKPsxmMy5evAidTge9Xg+DwVCt7CMrKwtWq1VaT0xMDNRqda3Sj65du8Lf39/Zm9YqTZ06FYsXL8bevXsxb9480XGIiKiZscyDqH6nT5/Giy++iKNHj2LQoEH4+uuvcffdd4uORUROxKMkEVEN6enpiI2NFR2DiIiIiIiIiIiIiIgEOHXqFMaMGSM6BhEREVGjPffcc3jvvfewZMkS7N27V3ScRps5cyZee+01vPLKK3jnnXdExyE7tjIPHx8fwUmoNUtMTMTYsWPx888/o0ePHqLjEFEdWOpBROR+br/9dvTs2RPJyckttsyjPgqFQirkcKS8vBx5eXlSwYdtSk1NxZEjR2AwGKRlbWUfjqaoqCgOZP6Dv78/Jk6ciJ07d7LMg4jIDbDMg8ixlJQUvPzyy/jss8+QkJCAv//97xg+fLjoWEQkAI+SREQ1pKenY+TIkaJjEBERERERERERERGRk5WUlODcuXNISEgQHYWIiIio0by8vPDaa69h3LhxePLJJzFgwADRkRpFoVBgxYoVmDFjBp5//nl0795ddCT6A8s8qCk88MADiIuLw7p165CcnCw6DhHdQM1Sj7Vr17LUg4jIhU2bNg3r1q3Dpk2b4O3tLTpOk/L29q637KOsrAx6vb5W2YdWq8Wvv/6KoqIiadn6yj46dOgAuVzurM0SbtasWdi9ezdSU1MRHx8vOg4RETUjlnkQVffjjz9i9erV+Pjjj9GrVy98+OGHeOihhyCTyURHIyJBeJQkIrJjMpmg1+sRGxsrOgoRERERERERERERETnZ6dOnYbFYWOZBRERELmPMmDEYPHgwkpKS8PXXX4uO02gPP/wwXn/9daxYsQIffvih6Dj0h7KyMgCAUqkUnIRaM5lMhueeew4zZ87EihUr0KlTJ9GRiKgB6iv1WLp0Kdq1ayc6IhERNYFp06Zh6dKlOHbsGMaOHSs6jlMplcp6yz6MRqNU8KHX62EwGKSyj7Nnz+LatWsAfi/cjIyMlNalVquh0Wik19HR0S41wPNPf/oTYmNj8fbbb7PMg4jIxVVWVrpVYRVRXb777jusXr0an332Gfr374/Dhw/j/vvvd6lzPCK6NSzzICKyk5aWBgAs8yAiIiIiIiIiIiIickMpKSlo06YNoqKiREchIiIiajJr1qzBnXfeib///e8YMWKE6DiN4uHhgZdeegkTJkxAUlIS+vTpIzoSASgtLQUA+Pj4CE5Crd3UqVPx4osvYtOmTfjrX/8qOg4R3QSWehARubbIyEgMGDAAn3zyiduVedyISqVCfHx8nYUV9mUf9pNWq0VOTg4qKysBAN7e3oiIiJDKPeynTp06ITg42Jmb1SRmzJiBNWvWYPPmzfDy8hIdh4iImkllZSU8PTlMmdzXyZMnsXr1anz55Ze4++67cfz4cQwbNkx0LCJqQXiUJCKyk56eDn9/f96kS0RERERERERERETkhlJSUnDHHXeIjkFERETUpPr164fRo0dj2bJlGD58eKt/Cty4ceNwxx134IUXXsBnn30mOg4BKC8vBwAOzqJGUygUWLx4MZ5//nksW7YM4eHhoiMR0U1yVOqxe/duzJw5k6UeRESt3Lhx47By5UpUVFTw3P8m1Ff2YTabkZ+fD4PB4LDsIysrC1arFQCgVCqh0Wgcln106dIFAQEBzt60G5o2bRqWLFmCY8eOYcyYMaLjEBFRM2GZB7kjq9WKTz/9FGvXrsX333+P//mf/8GXX36JwYMHi45GRC0Qj5JERHYyMjLQvXv3Vn/jChERERERERERERER3byUlBQ8/PDDomMQERERNbnVq1fj9ttvx6effuoSA2hefvlljBgxAl999RUGDRokOo7b43021JRmzZqFV155BW+++SZeffVV0XGI6Bax1IOIyPWMHz8eixcvxsmTJzFy5EjRcVyCQqGARqOBRqNxWPZRUVGB3NzcaiUfer1eKvvIzMxEVVUVgN9LQ2qWfKjVamg0GnTv3h2+vr7O3jxoNBoMHDgQ+/btc4nPIoiIyDGWeZA7sVqt+OSTT7By5Uqkp6dj9OjR+Pbbb9G/f3/R0YioBeNRkojITnp6OuLi4kTHICIiIiIiIiIiIiIiJyssLMT58+cd3jBLRERE1Nr17NkT48ePx/Lly/HAAw/Aw8NDdKRGGT58OO69914sX74cX331leg4bs9W5mF7YjRRY/j6+mL+/Pl444038NxzzyEoKEh0JCJqBJZ6EBG5jg4dOqBv3744ePAgyzycxMvLSyrmcKSsrEwq97CftFotLly4AJPJJC3rqOzDNnXo0AFyubxZtuHhhx/G008/jcLCQp7bExG5KJZ5kDsoLS3F7t278frrryM3NxdTpkzBhx9+yHGoRNQgPEoSEdlJT0/H4MGDRccgIiIiIiIiIiIiIiInS0lJQVVVFRISEkRHISIiImoWK1euRK9evfDRRx9hypQpouM02quvvoq7774bJ06cwLBhw0THcWu2chiWeVBTmTdvHl577TXs2LEDzz33nOg4RNQEWOpBROQaxo0bhy1btmDbtm3NVv5ADadUKust+zAajdDr9TAYDLXKPs6dO4eSkhIAgEKhQPv27aFWq6HRaGqVfXTs2PGWS0EfeughzJ8/H4cOHcKjjz56y9tKREQtF8s8yJX99ttveOutt7B161YUFxdj0qRJeOGFF9C5c2fR0YioFeFRkojoDyUlJcjNzUVsbKzoKERERERERERERERE5GSnTp1CZGQk1Gq16ChEREREzSI2NhZTp07Fyy+/jMmTJ0Mmk4mO1CgDBgzAqFGjsHTpUgwdOrTVb09rZhvUVVVVJTgJuQqVSoU5c+Zgw4YNmD9/PpRKpehIRNRE6ir1eOqpp/D8888jJCREdEQiIqrHxIkTsXz5cnz77bcYOHCg6Dh0AyqVCiqVqs4nxhuNxmolH7bpyJEjyMzMRGlpKQDA29sbERERtUo+YmJipAKQ+jKMGjUKe/fuZZkHEZGLYpkHuaIzZ85g06ZN2L9/P4KDgzFv3jzMnTsXbdu2FR2NiFohHiWJiP6QlpaGqqoqlnkQEREREREREREREbmh1NRUJCQkiI5BRERE1KySkpLQs2dPfP755xg9erToOI22du1a9OnTB4cPH8bYsWNFx3FbtiIVq9UqOAm5ksWLF+PNN99EcnIynnjiCdFxiKiJ1Sz1WLNmDbZu3cpSDyKiFq5Lly7o3r07Dh48yDIPF6BSqRAfH4/4+HiH8+sq+9BqtcjOzobFYgEAKJVKaDQah2Uft912G6ZMmYLp06ejoKAAoaGhztxEIiJyApZ5kKuwWq04efIkNm/ejKNHj6Jz585Yv349Zs+eDR8fH9HxiKgV41GSiOgP6enp8PX1RceOHUVHISIiIiIiIiIiIiIiJzt16hQHiBEREZHLi4uLw4gRI7BhwwaXKPPo1asXxo8fj+XLl+PBBx+Eh4eH6EhuyfbvzjIPakrh4eGYPn061q5di5kzZ0Iul4uORETNgKUeREStz/jx4/H+++/jjTfekIr9yDXVV/ZhNptx8eJF6HQ66PV6GAyGamUfWVlZ0jVicHAwrFYrRo0ahf79+1cr/ujWrRv8/PycvWlERNSEWOZBrV1ZWRk++ugjrF27FmfPnsWQIUNw+PBh3H///TzfJaImwaMkEdEfMjIy0K1bN97YQURERERERERERETkZq5cuYLs7GwkJCSIjkJERETU7J555hkMHz4cZ86cQZ8+fUTHabRVq1YhLi4OH3zwAaZNmyY6jluy3WtTVVUlOAm5mqSkJLzzzjv45JNPMGnSJNFxiKgZ2Uo9Zs2ahV27drHUg4ioBRs3bhxWrVqF06dPOyx5IPegUCikQg5HysvLkZeXJxV8rF+/Hnl5efj3v/8NnU4Ho9EoLatSqaR11ZyioqI4QJyIqIVjmQe1VpcuXcLf/vY3vPnmmygpKcGkSZNw4MABxMXFiY5GRC6GR0kioj+kp6cjNjZWdAwiIiIiIiIiIiIiInKyU6dOAQD69u0rOAkRERFR8xs2bBh69+6NjRs3Ys+ePaLjNFqXLl0wbdo0rFixApMmTYJCoRAdye14eXkB+H2wFlFT6tSpE8aPH4/Vq1dj4sSJfBImkRvw9/dnqQcRUQvXt29fdOzYEQcPHmSZB9XJ29u7WtmHXC7HvHnzcPbsWQQEBKC0tBQGg0Eq+7BNWq0Wv/76K4qKiqR11Vf20aFDB8jlclGbSUREACwWC8s8qFU5ffo0Nm3ahP379yMkJATz5s3DvHnzEBYWJjoaEbkoHiWJiP6Qnp6Oxx9/XHQMIiIiIiIiIiIiIiJyspSUFERHR6NNmzaioxARERE5xcKFCzF79mysWrUK7du3Fx2n0VauXImuXbvi3XffxRNPPCE6jtvx8/MDAFy7dk1wEnJFS5cuRd++fXHixAkMHz5cdBwicpL6Sj0SExOhUqlERyQiclsymQxjxozBkSNH8Oqrr4qOQ63E2LFj8Ze//AXHjx/HhAkT4OPjU63soyaj0Vit5EOv18NgMECr1eLs2bPS9aeXlxciIyOrFXyo1WpoNBrExMQgOjqapYBERM2osrISVVVVLPOgFq+8vBwHDx7E1q1b8c0336Bv377YvXs3Jk2aJJVVExE1Fx4liYgAXL9+HdnZ2YiNjRUdhYiIiIiIiIiIiIiInCwlJQX9+vUTHYOIiIjIaR5++GEsXboU27Ztw5o1a0THabQOHTpg1qxZWLFiBaZPnw4fHx/RkdyKv78/AJZ5UPO4/fbbMXToUKxdu5ZlHkRuiKUeREQt06hRo7B582ZcvHjRJQoiqfmFhoZiwIABOHjwICZMmHDD5VUqFeLj4xEfH+9wfs2yD9uk1WqRk5ODyspKAIBSqZSKPWpOnTp1QnBwcJNuJxGRu7Htb1nmQS3V+fPnsXPnTrzzzjswGo144IEH8M9//hP33HOP6GhE5EZ4lCQiApCRkQGr1coyDyIiIiIiIiIiIiIiN5SSkoIFCxaIjkFERETkNF5eXpg7dy42b96MlStXusST55YvX453330X27dvx8KFC0XHcSt+fn4AWOZBzScpKQlDhgzBd999h/79+4uOQ0QCsNSDiKhlueeee+Dr64vjx49j1qxZouNQKzFmzBi8+uqrsFgskMvljVpXfWUfZrMZ+fn5MBgMDss+srKyYLVapfWo1WqHhR9dunRBQEBAo3ISEbk6lnlQS2SxWPCPf/wDO3bswP/+7/+iXbt2mDlzJubOnYsOHTqIjkdEbohHSSIiAOnp6fD29kZMTIzoKERERERERERERERE5ESXLl2CXq9HQkKC6ChERERETjVz5kysXLkSR44cadBTcVs6tVqNp556CqtWrcKsWbM44MaJ/Pz8IJPJUFJSIjoKuajBgwejf//+WL9+PQ4ePCg6DhEJZF/qsXXrVqxfvx7btm3Dk08+yVIPIiInUiqVuPfee3Hs2DGWeVCDjRw5Es888wxOnTqFu+66q9n+HoVCAY1GA41G47Dso6KiArm5ubWKPtLS0qDVapGZmYmqqioAv5d91Cz5sJV/dO/eHb6+vs22HURErQHLPKglycvLw/vvv4+tW7ciLy8PgwcPxgcffIBx48bxZ5SIhOIeiIgIv5d5dO3alSdmRERERERERERERERu5ocffoBMJkPfvn1FRyEiIiJyqoiICAwdOhTvvvuuS5R5AEBiYiK2b9+OLVu2YNmyZaLjuA2ZTAZfX19cu3ZNdBRyYc8++yweeughpKWlIS4uTnQcIhLM398fiYmJeOqpp1jqQUQkyKhRo7Bs2TKYzWYoFArRcagV6N69Ozp06IAvvviiWcs8bsTLy0sq5nCkrKwMer2+VtmHVqvF+fPnUVhYKC3rqOzDNnXo0AFyudxZm0VEJATLPEg0q9WKkydPYseOHTh48CDCwsLw6KOPYs6cOYiOjhYdj4gIAMs8iIgA/F7mERsbKzoGERERERERERERERE5WUpKCrp06YLg4GDRUYiIiIicbsaMGXjkkUdgMBigVqtFx2m00NBQLFq0CK+99hrmzp2LkJAQ0ZHchp+fH8s8qFmNGzcO3bt3x+uvv4533nlHdBwiaiFY6kFEJM7o0aMxf/58fPvtt7jnnntEx6FWYsSIEfj73/+OFStWiI5SJ6VSWW/Zh9FohE6ng16vh8FgqFb2ce7cOZSUlAAAFAoF2rdvj5iYGKjVamg0mmplHx07doSHh4czN42IqMmxzINEMRgM2LNnD/72t78hOzsbQ4YMwb59+zB27FgWzRFRi8OjJBERfi/zeOSRR0THICIiIiIiIiIiIiIiJ0tJSUFCQoLoGERERERCjB07FgEBAXj//ffx3HPPiY7TJJ599lm89dZbeOONN7Bq1SrRcdxGQEAAiouLRccgFyaTyfDss89izpw5WLFiBTp06CA6EhG1ICz1ICJyvujoaHTu3BnHjh1jmQc12IgRI7Br1y4UFBQgNDRUdJxbolKpEB8fj/j4eIfzbWUfNad///vfyMnJkQa+e3t7IyIiolrBh22ylX8QEbV0LPMgZzKbzTh27Bh2796No0ePIiQkBDNmzMDs2bPRqVMn0fGIiOrECj8icntlZWXIzMxEXFyc6ChERERERERERERERORkqampLPMgIiIit6VUKjFlyhTs2rVLdJQm4+/vj2effRabN2/Gb7/9JjqO2wgJCcHVq1dFxyAXN31af+LeAAAgAElEQVT6dKjVamzcuFF0FCJqoWylHtnZ2Vi2bBl27tyJDh06ICkpCUajUXQ8IiKXM2rUKBw7dkx0DGpFhg4dCg8PD5w4cUJ0lGZjK/uYOHEiEhMTsX37dpw4cQIXLlyA2WzG1atXkZKSguTkZMyePRsxMTHQ6XTYsWMHpk6dioSEBERERMDHxwedOnXCsGHDMGfOHKxbtw4HDhxAamoqioqKRG8mEREAlnmQc5w5cwYLFy5EREQExo0bh+LiYiQnJ+PixYtYt24dizyIqMXjUZKI3M5LL70Ei8WCuLg4dOvWDRUVFbBYLIiNjRUdjYiIiIiIiIiIiIiInCgrKwuXL19mmQcRERG5tcceewxvvfUWfvjhB9xxxx2i4zSJ+fPnY8uWLVizZg02bdokOo5bCAsLQ35+vugY5OIUCgUWLlyI5cuXY9myZWjTpg0AoLi4GHv37sWoUaPQoUMHwSmJqCWwlXo89dRT2Lp1K9atW4dt27bhySefRGJiIlQqleiIREQuYdSoUdiyZQsuXryI9u3bIz8/H9988w2ys7Px9NNPw8ODzx+m6gIDA3HXXXdBq9ViypQpouMIYSv7iI+PrzWvoqICubm50Ol00Ol00Ov1MBgM0Ol00Gq1yMzMRFVVlbSemJgYaVKr1dBoNIiJiUG3bt3g5+fn7E0jIjfEMg9qLlevXsXHH3+M7du34/Tp04iKisLMmTOlIiwiotaER0kicjtbtmyRmkitVitkMhl8fX2xaNEi9O7dG927d0dsbCz69OkDhUIhOC0RERERERERERERETWXlJQUyOVy9OnTR3QUIiIiImH69euH7t27Y//+/S5T5qFUKrFkyRIsWrQICxYsQHR0tOhILq9Nmza4cuWK6BjkBmbPno3Vq1dj69atePrpp7FlyxZs3LgRRUVFWL16NZYsWSI6IhG1IPWVeiQlJSE4OFh0RCKiVq1z587w8vLCrFmzkJmZiQsXLkhFAzNmzOB+lhwaNGgQDhw4IDpGi+Tl5SWVczhSXl6OvLw8qezDNmm1Wly4cAEmk0latmbZh/0UFRXFgfdEdEvmzJmDo0ePIiAgAJ6enqioqICXlxemTJkCb29vyOVyBAcHY8CAAVi1apXouNTKlJeX4/jx40hOTsahQ4fg6+uLBx98EOvWrcOQIUMgk8lERyQiuiU88yYit9OzZ098/fXX0uuqqipcv34dx48fxz//+U9UVlbCYrFg7dq1SExMFJiUiIiIiIiIiIiIiIiaU2pqKrp3786nkxEREZHbGzt2LD744ANs2LBBdJQm88QTT+CNN97A6tWrsXPnTtFxXF5YWBjOnTsnOga5AT8/Pzz66KPYtm0b1q9fj8rKSpjNZnh6eiI3N1d0PCJqoWylHk8++SS2bdvGUg8ioltkNpuxd+9e/Otf/8LJkyeRk5MDDw8PfPXVVygvL5eW8/Ly4r6V6jRw4ECsWrUKer0eGo1GdJxWxdvbu96yj9LSUhgMBodlH7/88guKi4sBAAqFAmFhYdBoNA7LPjp27AgPDw9nbhoRtRLXr1+HwWBAXl5etfd//fVX6WuZTIbQ0FBnR6NWLDU1FXv27MG+fftw9epVDB48GG+//TYmTJjAezmIyCWwzIOI3E7fvn3x/fffo6Kiotr7VVVV0oeInp6emDhxooh4RERERERERERERETkJKdOnUK/fv1ExyAiIiISbsyYMVizZg1++ukn9OzZU3ScJqFQKPDiiy9i1qxZWLx4Mbp16yY6kksLCwtDfn6+6Bjk4rKzs/HGG29g+/btqKqqgtlsluZVVlYiJydHYDoiag0CAgJY6kFE1Ag//vgjHnvsMcjlclgsFgCA1WqtVuQB/H59QFSXAQMGwNPTE9988w0mTZokOo5L8fHxqbfsw2g01ir60Ov10Gq1yMjIwPXr1wH8XsgTGRlZreBDrVZL5R/R0dGQyWTO3DQiaiGmTJmC999//4bL/fnPf3ZCGmrNLl68iOTkZOzZswfnzp1DXFwcnn/+eUybNo1lX0TkcljmQURup2fPntKHh44oFArMnTu3zg8wiIiIiIiIiIiIiIio9auqqkJqairGjRsnOgoRERGRcHfccQciIiJw+PBhlynzAIDp06dj/fr1ePnll7Fv3z7RcVxamzZtcOXKFdExyEWZTCY8/fTT2LdvHzw8PKqVeNjLzMx0cjIiaq1Y6kFEdGv69euHsWPH4ujRo/Xejx8REeHEVNTa+Pv74/bbb8fXX3/NMg8nU6lUiI+PR3x8vMP5jso+dDodtFotcnJyUFlZCQBQKpVSsUfN6bbbbkNQUJAzN4uInGj48OEICAhAcXFxncsEBARg5MiRTkxFrUVBQQGOHj2K5ORknDx5EkFBQZg4cSLefvtt3H333aLjERE1G5Z5EJHbaUiZx7Jly5yYiIiIiIiIiIiIiIiInO38+fMwmUxISEgQHYWIiIhIOJlMhtGjR+Pw4cNYvny56DhNRi6XY+XKlZg8eTKef/553H777aIjuaywsDAUFRWhvLwc3t7eouOQi8nLy8MHH3wAq9Va731fer3eiamIyBU0ptTjn//8J5KTk7F161YolUonpiYiEuutt95Cly5dUFlZiaqqqlrzZTIZOnToICAZtSaDBg2CVqsVHYNqqK/sw2w24+LFi9Dr9TAYDLXKPrKysmC1WqX1xMTEQK1W1yr96Nq1K/z9/Z29aUTURBQKBSZMmIC9e/c6LFtVKBSYPn06Px8kSUFBAT755BN8+OGH+Ne//gVfX188+OCDOHToEEaMGAEvLy/REYmImh3LPIjI7cTFxUEmkzn88NDT0xPLli1D27ZtBSQjIiIiIiIiIiIiIiJnSUlJgUKhQK9evURHISIiImoRxowZg507dyI3NxeRkZGi4zSZCRMmICEhAS+99BIOHz4sOo7LatOmDQAgPz/fpX5+qGWIi4vDp59+ijFjxsBisUgDxGoymUwoKyvjoHoiummOSj3eeustzJ0712GpR1VVFebNm4e0tDTk5eXh8OHDHKxGRG4jPDwcmzZtwuOPP+5wvkKhgEajcXIqam0GDhyITZs2wWQy1VueRS2HQqGQCjkcKS8vR15eXrWSD51Oh7S0NGi1Wuh0OmlZW9lHzUmtViMmJgY+Pj7O2iwiugVTpkzBu+++63Ce2WzG9OnTnRuIWpzCwkIcPnwYBw4cwPHjx+Hh4YGhQ4di9+7dGD9+PEudiMjtsMyDiNyOn58f2rdvj5ycnGrvy2QyqFQqLFy4UFAyIiIiIiIiIiIiIiJylpSUFPTs2ZM3BBIRERH9YciQIfD398eRI0cwd+5c0XGajEwmw4oVK3DffffhP//5D+666y7RkVxSREQEALhcGQy1HKNGjcKhQ4cwduxYAHBY6FFVVQW9Xl/n4DIiohtpaKnHp59+irS0NADAl19+iQkTJuDgwYNQKBQi4xMROc1jjz2GvXv34uuvv4bZbK42TyaTQa1WC0pGrcUdd9wBq9WK06dPY/DgwaLjUBPw9vaut+yjrKwMer2+VtmHVqvF+fPnUVhYKC1bV9lHTEwMOnToALlc7qzNIiIHhgwZApVKBaPRWGteVFQUP391U6WlpdBqtThw4AA++eQTWCwWDBs2DDt37sS4ceMQEBAgOiIRkTAs8yAit9SnTx/k5uZW+6WuTCbDmjVr4OvrKzAZERERERERERERERE5Q0pKChISEkTHICIiImoxvL29MWTIEHzxxRcuVeYB/F4CcM899+CFF17AiRMnRMdxSREREfDw8EBubq7oKOTC7rvvPhw8eBDjxo0D4LjQ4+LFiyzzIKJGc1TqsXPnTsyfPx8LFy7EihUrIJfLYbFYUFlZiS+++AIPPfQQPv74YxZ6EJFbkMlk2LVrF2JjY2uVeVRWVrLMg25Io9FArVYjJSWFZR5uQqlU1lv2YTQapYIPvV4Pg8EglX2cPXsW165dAwB4eXkhMjJSWpdarYZGo5FeR0dHQyaTOXPTiNyOp6cnJk6ciHfffRcVFRXS+wqFAo899hj/D7YyV69eRUhIyC19b2lpKT7//HPs378fR48eRWVlJYYOHYpt27Zh7NixCAoKauK0REStE8s8iMgt9e7dG1988QXKy8sBAHK5HB07dsSjjz4qOBkRERERERERERERETU3q9WKM2fOYPr06aKjEBEREbUogwYNwquvvgqr1QoPDw/RcZrUyy+/jHvuuQcnT57kQKFmoFAo0K5dO5Z5ULMbPXo09u/fj0mTJkEmk6Gqqkqax0IZImpqtlKP2bNnY9OmTdi0aRM2bNiA4uLiastZLBZ8/vnnmDx5Mj766CN4evIWfSJyfR07dsSqVavw7LPPVitZs1gs0Gg0ApNRa5GQkIDU1FTRMaiFUKlUiI+PR3x8vMP59mUf9pNWq0VOTg4qKysB/F5WGxERIZV71JxUKpUzN4vIZU2aNAk7duyo9p7ZbMbDDz8sKBHdrPLyciQmJuKvf/0rfvjhhzr3vzUZjUZotVocOXIEhw4dwrVr19C/f3+sWbMGU6ZMQbt27Zo5ORFR68NPConILfXs2bNa+5/FYsHGjRv5CxQiIiIiIiIiIiIiIjeQkZGB4uJiJCQkiI5CRERE1KIMGjQIV69eRUZGBuLi4kTHaVKDBg3CyJEjkZSUhO+//55PiGwGkZGRyMvLEx2D3MD48ePx0UcfYdKkSbBarVKhh6enJ8s8iKhZqFQqrFy5EgsXLkSfPn1QWloqDRi1qaysxKeffoqpU6figw8+4P2oROQWFixYgP379+PMmTMwm83S+2q1WmAqai3i4+ORnJwsOga1Eo0p+8jOzobFYgEAKJVKaDQah0UfnTt3RmBgoDM3i6jVuvfeexESEoKrV68CAGQyGfr27YsuXboITkYNkZ6ejkmTJuHcuXOQyWQ4dOhQvWUeFy9exOHDh3Ho0CH861//glwux+DBg/H6669jzJgxLPAgIroBfkpIRG6pV69e1X6J269fPzzwwAOCUxERERERERERERERkTOkpKRAqVSiR48eoqMQERERtSi33347goKC8NVXX7lcmQcArFu3Dn369MHBgwcxfvx40XFcTmRkJIsUyGnqKvRgoQwRNafvvvsO2dnZdc63WCw4ePAgZs6ciXfffRceHh5OTEdE5HweHh5477330LNnz2rvazQaQYmoNYmPj8fKlStx9epVhISEiI5DrVx9ZR8VFRXIzc2tVvKh1+ulso/MzEzpmlKlUlUr+FCr1VL5R/fu3eHr6+vsTSNqkeRyOaZMmYK3334bFRUV8PDwwGOPPSY6FjXAnj17MGfOHFRWVkollQcPHsQrr7xSbTmdTocjR47gwIED+Pbbb+Hj44PBgwdj165dGDNmDIKCgkTEJyJqlVjmQURuqVOnTvDy8kJFRQUsFgs2bNggOhIRERERERERERERETlJamoqevfuDYVCIToKERERUYsil8vRv39/fP3115g7d67oOE2uV69emDhxIpYuXYoHH3wQnp68fa4pRUZG4syZM6JjkBsZP348PvzwQ0yePBlWqxVmsxk5OTmiYxGRC3v55Zfh6ekpDXhyxGKxYN++fZDL5di1axcLPYjI5XXr1g3Lli3Dq6++CovFAoVCAZVKJToWtQIJCQmoqqrCmTNnMGTIENFxyIV5eXlJ5RyOlJeXIy8vr1rZh63o48KFCzCZTNKyNcs+7KeoqCh+1kRuZfLkydi2bZv0euLEiQLT0I3k5+fjsccew+effy4VGNmkp6cjLy8PJpMJBw4cwIEDB5Ceno6wsDCMGjUKiYmJGD58OLy9vQWlJyJq3XiGSERuSS6Xo2vXrvjpp58wduxY3HXXXaIjERERERERERERERGRk5w6dQr9+vUTHYOIiIioRRo4cGC1m7BdzSuvvIK4uDgkJyfzaZFNLCIiAkeOHBEdg9zMhAkTsG/fPkydOhVWqxWZmZmiIxGRizp+/Di+//77Bi1rsViwZ88eKJVKbNu2DTKZrJnTERGJtXTpUuzfvx/nzp1DWFgY93vUIOHh4QgLC0N6ejrLPEgob2/vess+jEYj9Ho9DAZDrbKPX375BcXFxQAAhUKB9u3bQ61WQ6PR1Cr76Nixo9OL3vbv349t27YhKSkJ9913n1P/bnJ9d999N9q0aYP8/HyMGDECbdu2FR2J6qDVajFt2jQYjcZaRR4A4OHhgR49esBkMqFTp04YN24cduzYgf79+7OgkoioCbDMg4huSnl5Oa5fv17r/ZKSEpjN5lrvG43Getd3/fp1lJeXNzpXWVkZSktLb+p7QkND4eHhgXvvvRcHDhyoNi8oKKhJTjYDAgLqbdb08vKCn59frff9/Pzg5eVV6/3g4GB+uElERERERERERERE1AiVlZX473//izlz5oiOQkRERNQiDRw4EMuWLUNmZiaio6NFx2lynTt3xsyZM7FixQo8/PDDfJpgE2rfvj30ej0sFgvkcrnoOOQCzGYzSkpKAAClpaUoKysDABQXF6OyslJaLjw8HEuWLMGaNWuQlZUFrVZba11FRUWwWCz1/n2enp4ICAiodxlvb2/4+vpKrxUKBfz9/QEAPj4+UCqVAG583xgRtT5nz56Fp6entP/x8PCAQqGAxWKptk+ysVqt2LFjBxQKBbZs2dKkWRq6f7x27RoqKirqXRf3j+RKLly4gNOnT4uO4bb+/Oc/Y/ny5fDx8al1bz61LJ6enhg9erTD8QrO1q1bN2RkZIiOQVQvlUoFlUqFuLg4h/ONRmO1kg+dTge9Xg+tVouMjAxpDJaXlxciIyNrlXzYl380tX/84x/45ptvMHr0aPTu3RsrV67Egw8+yHFJrVzNMXw1x9RVVlZKJTM1mUwmh2UO9amoqMC1a9cczktISMCxY8fQtWtXh8d/f39/KBSKm/r7PDw8EBQU5HBeYGBgtc8dfX19q32+W9c4PXdVXl6Ol156CevXr4dMJoPVaq1z2fDwcHz11Vfo2bOnExMSEbkHWdXNHn2JqMFsH4Lbf2huO+m1L7GwP4mueYJrf5Js/z01T6ztP0y3PwmvqqqCyWSSlnNUulHzw3tH30ctl/0vPOzVvCABqpeE1Pw++wIT+1+c1LwIsv9FSs1fvqhUKod/l+17bMvLZDIEBwcDuLULMyJqHWQyGT788ENMmjRJdBSiVsH2f+Wjjz4SnISIiIiIiNzR+++/j1mzZjVJ+TJRS/fjjz+iT58++Omnn9CjRw/RcYiIiIhanPLycgQFBWHXrl2YNm2a6DjNwmAw4LbbbsOqVauwcOFC0XFcxrfffosBAwYgOzsbUVFRouNQM7JYLCgsLITJZEJhYSEKCwtx/fp1XLt2DSUlJaioqIDJZJIeHFVcXIyKigoUFhZKg84LCwtRUVEh3QNnu//NFe9bs91TZT8YPjAwEF5eXggMDJTu1QoODoaXlxf8/f2le69UKpU0ECUgIAA+Pj4ICgpCYGAgVCpVkz20iogaxmKxIC8vD9nZ2cjKykJWVhays7Nx4cIF6HQ6GAwG6R5d2wDJqqoqTJ48GSNGjOD+sQbuH6mpjR8/HgcPHhQdg6hV+OyzzzB69GjRMTB79mycP38eJ0+eFB2FqNk4KvuwTdnZ2dJYMKVSKZV61Jxuu+22OssN6jN06FB8+eWXAAC5XA6r1YouXbpg6dKlmDZtGstY62Abv1dUVITKykqYTCZpbKDVakVhYWG15ezP1e3L9mwPyLYf52cbJ+joPcBxEceNHrRNdbMfv2ZjXwgil8sRGBgI4P+Pg7MfR2cbm2e/Hvsxd7ZrGqVSCR8fHwD//0HetrF0KpVKuuaxX665ZWRkYPLkycjIyHBYQFmTj48PjEYjy6+JyGnc6X5F1tqSS7OdANsKLEwmk/SLRNtJtO3k11a8YXttf3JtK7uwfXhuf5JtW7d9CUdjTpLtTwKB6ieI9sUJNU8maxYnqNVqaV5dJQ02jt6r+XfXlc+mrpPJhjRoN9UH5k3V1m1fmtIYNZsNHbG/SLNXWFhYq+3OYrGgqKiowetw1JZu/57t5xmoXd6Sn58v/ULJvowGqH6RaP9315WvoezbD20XM7afa/viEdtFje2CyP6XOLafJdv3BQUFQS6XIzg4WFrO9v/I9v2Ofs6JiIiIiIiIiIiIyHWlpKTA19cX3bp1Ex2FiIiIqEXy9vZG165dkZaWJjpKs1Gr1Zg3bx5WrVqFmTNnOrwXhm6e7QmyOp2OZR6tQHFxMQoKCnDlyhVcuXIFBQUFKCgokMo5ioqKYDKZYDKZUFRUJL1XWFhY59NYgd8f7OPl5YXg4GDpPp2AgADpXh6VSgUfH59q79m+z/ZAINv9Qfb3qtnfO1fzIUd1PQzJXkMGSzTkvrGaD86yv0fM/kFbtnus7O+psr/H0GQyoaKiAiUlJdK9i1lZWbXeMxqN9T4BF/j93842gN3+T5VKJX0dFBSE0NBQhIaGok2bNtLXN/p3I3JHjdk/2j9sz/55mx9++CGOHj3K/SO4f6TmVWmxYNCDE7Bg/V9FRyFqscwVFZjSq2ODBvU6Q/fu3XHkyBHRMYialUqlQnx8POLj42vNM5vNuHjxInQ6HfR6PQwGg1T0odVqkZWVJY0tUqlUiImJgVqtrlX60bVrV4fnL5mZmdLXtrFEv/76K2bMmIFXXnkFL7zwAh5++OEmGYvlTOXl5bh27RpMJpN0jnjt2jUYjUbpa/tzx8LCQlRWVkrFedeuXatW2GE2m6vNayhHBQ725+e2MU7246WioqIgl8urnavbj4dzVD5Rc7xczXGANc/7Ha3DpuZDnRvqVsZeOSomaQhHDzK3qTlms+Z1SM0xdjXHxNVch/1827rsc1++fBlms7na9Yvt58pRsUtD1Vf0YbsGtI2FCwwMrHYN6efnBz8/PwQHB0uFh/7+/tJrhUKBPXv2YM6cOdL2NERpaSm++eYbDBkypMHbQUREDdO6zrTIpdhObIqKinD9+nVcv34dRqNR+rqoqAjFxcVSCYdteVsBge0kx3aiZDQapROjmzl5tp0Q205k6ysU8Pf3R3h4OICGFQrY1mn/obnt5NX+hL3mh+cklq3ogRrH/oLIVk5iuyiyv4ixFYzcbJGO7YLIUZGO7fvsi0duRKVSSf9Xa+4XbBdJwcHBkMvlCAoKki52bT8vgYGBCAgIgK+vr3RRZJt3Kw2oRERERERERERERNQ8UlJSEB8f3+puSiMiIiJypri4OPz888+iYzSrJUuW4O2338aGDRuwYsUK0XFcQnh4OPz9/aHT6XDvvfeKjuN2TCYTDAYDfvvtN+Tl5eHy5cvSQHT7wei2qaKiotr3KxQKhIaGIjg4WBrwHBwcjI4dO1Yb8Gw/IDo4OBjBwcEIDAyEn59fq7/nqiH3jdnuKRShpKREureysLAQRqOxWolAzT91Op30tclkQkFBQa0BHN7e3tLA9dDQUISFhSEsLEz6um3btoiIiEC7du2g0WhYfkStEvePjcf9I/ePRETNpVu3brh06RKMRqPQYwmRKAqFQirkcKS0tBSZmZnSlJWVhczMTJw6dQoHDhyQxtDIZDKo1WpER0dLU8eOHZGXl1drnbZyEJ1OhxkzZmDZsmV44YUX8Nhjj0klcs3Fdv5l+9N+KikpQVFREYqKiqRCjsLCQhQXF0uvbcvVVfQA/F504efnh8DAwFpjglQqFXx9fdGuXbtaxQkNLVUAxJ77tia2f/Ob1Zr/fe3Hvd1siYz9vMrKSmRmZkplI7bxeLaSXUcPBbeRy+VSeY9MJoNMJpOy1Ucul+O9995Dly5dpGtbIiJqGrxDjRrMdlJs+zCzIUUc169fl06WbfNsJw01P+y2Z2uAs5VoOBpAHxISIp1g2xqo5XK5dIIcEBAgtY7ZyjJsRRr2g/aJqHnYym0AsRdSNUt+bBcwtgt4k8kEi8UiteKXlJRIxSL2LZwWiwWZmZm1ioVsvwSq2dRYk+0XcgEBAQgMDJT2TbYPAxpSCGL75V5QUBC8vLyc9C9IRERERERERERE5FpSUlIwaNAg0TGIiIiIWrS4uDjs2rVLdIxmFRwcjMWLF2PNmjV48skn0bZtW9GRXELHjh2h0+lEx3ApV69eRU5ODnJzc/Hbb79Br9fj8uXLyM3NxeXLl6HX63Hp0qVqN/ErFAq0bdtWGnTcpk0bxMXFVRuUbJvatGmD0NBQ3kvXCvj7+8Pf379R+6vCwkLk5+fXKi+wTVeuXMG5c+ekry9fvlxtgLuPjw/UajXUajXCw8Oh0WikAe1t27ZF+/btERUVVecTgImaEvePZMP9IxFR69W9e3cAwNmzZ9G/f3/BaYhaHh8fH8TGxiI2Ntbh/LKyMuj1euh0umrT559/jl9++QXl5eV1rttW6pGXl4e5c+di5cqVeP755zFnzhwolUqH31NZWVntHKlmIUddk9ForPNhvT4+PggODkZAQIA03sbPzw9+fn6IiYlBQECA9Do4OBj+/v7Sa9t4HD8/PwQEBEgP5yYSRSaTSWPomnMsnW2sXM3ym5KSEpw/fx6pqakwmUzSfNsY37KyMpSXl8NsNsNiscBqtUr/Ly0WC5KTk5GcnAwA8PDwkIoqVSqV9HV9k/01tVwub7btJyJqbVjm4SZKS0thNBqlyTZQ3f69+uY5apq2p1QqoVKppMY6lUolvQ4MDERsbGy1eY6Ws5/Hk2ciaiq2Ah9nsBWF2PahNfendc27fv06CgoKai139erVej88sd+P2k8197F1zWvXrh0vjoiIiIiIiIiIiMitlJeX4+eff8YzzzwjOgoRERFRi9ajRw9kZWWhuLi42sM8XM2iRYuwbds2rF27Fhs2bBAdxyV06tSJZR43wWw2Iz8/HwaDQRpwo9frpdfnz59HYWGhtLztng+NRgO1Wo0ePXpg2LBh0mvbn7wnhOoSFBSEoKAg3HbbbQ3+HqPRCL1eD6PRCIPBIP2M6kOuPegAACAASURBVPV6ZGRk4Msvv4Rer5eePAv8/rOq0WikJ0zbfj5tr6OiouDpyVuYqW7cP5Kzcf9IRCRGVFQUvLy8cOHCBZZ5EN0CpVIpnUfUdPr0acTHx99wHVVVVaiqqoJer8fChQvx4osv4qGHHoK/v790bmMb63L58mVYLBaHOWqOXYmIiECPHj0cjmuxTSEhIXUWhxBR3Wxj5ZpqvJzRaMSVK1dgtVpRWVnpcMyxbfrtt99w9uzZWuORa7LfL9iuyR3tB2zz2rRpA4VC0STbQ0TU0vCTnlbEZDKhoKAAV69exdWrV2E0GqWv7Sfb+7b2rJKSEofr8/LyQmBgIAIDA6FSqRAUFCS9Dg8PR+/evREYGIjg4GDpA0rb/MDAQDbWERHV4OPjAx8fH+lioimUlZVJDYm2/XpRUREKCwurfW0ymVBYWIiCgoJayxiNRofrlslk0j7e1pQYEhKCkJAQhIaGIiQkpNp79pOvr2+TbB8RERERERERERGRM/33v/9FeXk5EhISREchIiIiatF69OiBqqoqpKen48477xQdp9n4+PhgyZIleOaZZzB//nxER0eLjtTqxcTE4NtvvxUdo0W5fv06zp8/j19//bXan+fPn4fBYJCehOvt7Y327dujffv2iIqKwujRoxEVFSW9bt++Pfz8/ARvDbmjhg4OKSkpQU5ODnJycnDx4kXk5OQgOzsb586dw4kTJ5CXlyc9VE4ulyMiIgKdOnXCbbfdhs6dO1f7k4O53AP3j9Tacf9IRNR4Hh4eiIyMRE5OjugoRC7BbDbj8uXLMBgMOHTo0C2to6KiAv/5z38QHR2N0NBQ3HHHHQgNDUVYWBjatGkjfR0aGorg4GCenxC5gMYWg5SWlkpjn69cuYKCggLk5+dLX9umc+fO4cqVK7hy5QqKiopqrSckJARt2rRB27ZtER4ejvDwcLRt2xYRERFo27Yt1Gq19B5LEImoNeEeS4DS0lLk5+fj0qVLyM/Pb3A5h+1DaRu5XF5rcLVKpUJ0dDRCQkIQHByMwMBAqYRDpVJJRRxBQUE8WSYiagWUSiWUSiVCQ0MbtZ4blYCYTCbpmJOVlYXU1FTpOOToAsnb29thyUfN8o82bdpIU1hYGC+WiIiIiIiIiIiISKiUlJSbfsImERERkTuKjo6Gn58ffv75Z5cu8wCA2bNnY+PGjXjllVewe/du0XFavejoaLz//vuiYzidxWKBTqfDzz//XGtQem5uLoDfB6m1b98enTt3Rvfu3fHAAw8gKipKmsLDwyGTyQRvCdGt8/f3R2xsLGJjYx3Ot1qtuHTpErKzs6VB7bbihi+++AK5ubmoqqqCTCZD+/btqw1e79KlC+Li4hAdHc0H0LUy3D8Scf9IRHQjUVFRuHjxougYRC1aWVkZcnJykJubC71ej8uXLyMvL08q7rh06RIuX76M/Pz8G65LLpfDYrEAAIKCgtC7d28MHDgQQ4cORf/+/eHt7d3cm0NELsb2cGy1Wt3g76moqKhW9HHlyhXk5+cjPz9f2redOXMGly5dgsFgwLVr16TvlclkUumHreCjXbt20Gg0UvlHZGQk2rdvz30aEbUIHFHbBMrLy1FQUACj0Qij0QiDwQC9Xl/v65pUKhXUarXUYhUWFobOnTtLrx1N7dq1g1wuF7DFRETU2tjKnCIjI2/p+0tLS6XjWF3Ht/z8fPzyyy/S6ytXrsBsNldbj1KphEajqXbMq+s1mxKJiIiIiIiIiIioqaWmpiI+Pp43thMRERHdgIeHB2JjY5GWliY6SrNTKBRYsWIFZsyYgWeffbbOQZbUMJ06dUJ+fj6KiooQGBgoOk6zMBqNSEtLQ2pqKtLT05GWloYff/xRuqFcpVIhJiYGsbGxGDlyJGJiYhATE4Nu3brBz89PcHoicTw8PKDRaKDRaNC/f/9a8ysqKpCbmwudToe0tDSkp6fjwoULOHHiBLKysmC1Wv8fe3ceF2W5/4//NeyIgCDLsMoqw6qyuyvuC26QaVlpcvpVHq1Otp+OlS12LPvaSc1PpR7zmJZmpra45alcQBQXNhVk3xEUV0C4f3/4YI4jA8zAzNwz8Ho+HvMYuOe+7+t9Xfd9X3MPXNd7YGZmBj8/P0RERCA4OBhBQUEIDg6Gj4+PCDWiB7F/JOoc9o9E1NN5enqisLBQ7DCIRNPQ0IDq6mqUlZXh8uXLKC0tbfVzy3t+i5Z5iC33EJGRkfI5GS3zMT7//HOsWbMGRkZGaGpqgrm5OQYNGoQRI0Zg8ODBiI2NhVQqFbHmRNSTmZmZwcXFReUEIC3z2lrmst0/p62srAzHjx9HWVkZiouL0dDQIN/u/v7Sx8dH4WcfHx94eHjA1NRUW9UkIgLAZB5tEgQBFRUVKC8vR3FxMcrKylBSUoKysjJUVFSgqqoK1dXVKC8vR11dncK25ubmcHBwgJOTE5ydneHo6Ijo6GiF3x0cHODs7AwnJyf+AZqIiPReS5ZEV1dXtbZryYxYXV2NyspKhffQyspKFBYW4tSpU/L1BEGQb2tkZCR/z3R0dIRUKoWTk5P8D05ubm5wcXGBu7s7rK2tNV1lIiIiIiIiIiIi6oZOnjyJyZMnix0GERERkUHw9vbuMZNpHnnkEXz88cd48803sXPnTrHDMWh+fn4AgEuXLiEiIkLkaLqmubkZ2dnZSElJwcmTJ3H+/Hmkp6ejtrYWAODi4oKQkBDExMTgySefRGhoKIKCgjgekKiTzMzM5BMpxo4dq/Da9evXkZGRgfPnzyMjIwPp6en49ddfUVlZCQDo27cvQkNDERYWhqioKERHR8Pf3x8SiUSMqnR77B+JdIv9IxF1d56enkhLSxM7DCKtaWxsRH5+PnJzc+WPgoICFBcXo6ioCOXl5fJ5FGZmZnB1dYW7uzv69euHoUOHyn92d3eHu7s7nJycVCp35MiRqK2tRUxMDAYPHowBAwZwwjoRGaz757V19HfnljnhxcXFKCwsRFFREUpKSpCRkYFffvkFZWVl8i+vNjIyglQqhaenJ9zd3eHl5QVfX1/5w9PTk19UTURd1iN7kbq6OoUEHaWlpSgtLZUn6yguLkZ5ebm8QwYAGxsb+aRhqVQKLy8vhYQcLZONpVJpt/1GASIiInU5ODjAwcFBpXWbm5tRVVWlkDDrwUQgp06dwu7du1FeXo76+nr5tlZWVvDw8IBUKoW7uztcXFzg5ubWKvGHubm5tqpKREREREREREREeu7WrVvIysrCm2++KXYoRERERAbB1dUVycnJYoehE0ZGRli+fDni4+Nx4sQJxMbGih2SwfLx8YGZmRmys7MNLplHaWkpUlJSkJKSguTkZKSmpqKurg4WFhYYOHAgBgwYgIcffhjBwcEIDQ1F3759xQ6ZqMewtrZGbGxsq/65qqoK586dk09gP378OD7//HM0NDTAzs4O0dHR8snr0dHRcHZ2FqkGho39I5H+Yv9IRN2Bh4cHCgoKxA6DqEtu3rypkKzj/kdhYSHu3r0L4F6iLV9fX3h7e2PYsGHw9PSEh4cH3N3d5fMhNJV0KzExEYmJiRrZFxGRIZFKpZBKpYiMjFT6enNzM8rLy1FQUICSkhIUFxfLkywdOXIEX331lTxhqampKfr166eQ4OP+h6WlpS6rRkQGqtsl82hqakJpaSny8vKQn58vf87Pz0dZWRmKiopw69Yt+frm5uYKE36jo6Mxa9YsSKVShUnBzAZNRESkXUZGRnB2dlb5n0KVlZUoLy+XZ6O9P1FXZmYmSktLUVFRIc9SCwCOjo6QSqXo168fvLy8Wj34j2QiIiIiIiIiIqLuKy0tDXfv3m1zwAYRERERKXJ1dUVJSYnYYejM1KlTMXLkSLz66qs4cuSI2OEYLBMTE/j6+uLChQtih9Khixcv4vDhwzh8+DCOHTuGkpISGBkZQSaTITo6GgkJCYiJiUFYWBi/uZZITzk6OmLMmDEYM2aMfFl9fT3OnDkjTz7x7bff4r333oMgCPJvto6Li0NcXBy8vb1FjF5/sX8kMnzsH4nIkLi5uaGurg43btxA7969xQ6HqF3l5eXIyMiQP7KysnDp0iWUl5cDACQSCdzc3OSTvEeNGgU/Pz/573369BG5BkREZGRkJP/y6LbU1NQgJydHITnT+fPnsWvXLpSVlcnXc3Nzg5+fHwIDAxESEoKgoCCEhITA0dFRF1UhIgNhcMk8BEFAWVmZ0mQd+fn5KCwsRGNjI4B7iTpaJuv2798fo0ePhru7u0KiDnaKREREhsnJyQlOTk4ICwtrc53GxkZUVFSguLhYnvijJblXWloadu3ahdLSUnnCDxsbG3liD29vb4VnLy8v2Nra6qp6REREREREREREpGGpqamwt7eHl5eX2KEQERERGQRXV1eUlZWhubkZRkZGYoejE++++y6GDx+OAwcOYNy4cWKHY7BkMhmys7PFDqOV4uJiHD58GIcOHcLhw4dRXFyM3r17Y8SIEfjrX/+KmJgYREREwMbGRuxQiagLzM3NERMTg5iYGPmyq1evyiev//HHH1iyZAlu3boFb29v+cT1uLg4SKVSESMXD/tHop6B/SMR6auWL2OsqalhMg/SG9XV1UhPT0dmZqbC85UrVwDcO29DQkIQEhKCmTNnypN1+Pr6wsLCQuToiYioq+zt7REdHY3o6OhWr926dUshycelS5eQnp6O7du3o7a2FsC9BIuhoaHy5B4tz3Z2drquChHpAb1N5lFTU4OsrCxkZWUhOzsbmZmZyM3NRUFBAerr6wEAZmZm8PDwgLe3N7y9vTF69GiFCbguLi6QSCQi14SIiIjEYmpqCnd3d7i7u7e5Tn19PQoKChSSg+Xn58szz9+fMdHOzk6eJCwoKAiBgYGQyWTo378/zM3NdVElIiIiIiIiIiIi6qTU1FRER0fz/4dEREREKnJzc0NjYyOqq6vh5OQkdjg6MWzYMEyePBmvvfYaxo4dy3vHTpLJZNi3b5/YYUAQBCQnJ2PHjh3Ys2cPLl68CHNzcwwePBhPPfUUxowZg+joaJiY6O0wSiLSkD59+mD8+PEYP348gHvjhU6cOIHDhw/j8OHD2Lx5MxobGxEcHIxp06YhMTER4eHhIketPewfiagF+0ci0gf3J/Pw9PQUORrqiSoqKpCcnCxPcHX27FlUVlYCuPdeGRwcjODgYMyaNQvBwcEICQmBs7OzyFETEZFYevXqhdDQUISGhrZ6rbS0FBkZGfJEUKmpqdi8eTPq6uoA3EuiHhYWJk8UEhMTAwcHB11XgYh0TPS/shYVFSE7O7tV4o6Wm97evXsjICAAgYGBiI2NlSfq8PLygpubW4/51gciIiLSDnNzc/Tv3x/9+/dX+vqdO3eQl5cnT/KRl5eHCxcuYMuWLbh8+TKamppgbGwMb29vBAUFQSaTQSaTyX+2tbXVcY2IiIiIiIiIiIhImdTUVCQmJoodBhEREZHBcHV1BXBv8GlPSeYBACtWrMDAgQOxc+dO3j92UkBAAD755BP5/9N1qbm5GceOHcOOHTvw/fffo6ioCP7+/pg1axbGjh2LoUOHwtLSUqcxEZH+MTc3x8iRIzFy5Ei8/fbbuHHjBv744w8cOHAA33zzDT744AN4e3sjMTERiYmJiIqKMvgET+wfiUgVPbF/JCLx2dvbA7iXzINI227duoXTp08jJSUFycnJSE5ORkFBASQSCfr374+YmBhMnDgRISEhCA4Ohpubm9ghExGRAXF1dYWrqyvGjRunsLygoACZmZlIT0/HmTNnsHXrVrzzzjsAAF9fX8TExMgTfAwaNAgWFhZihE9EWqKzZB43btzAmTNncPr0aZw5cwbp6enIzs7G9evXAQAODg7ySa/Tp0+Xf9O9p6cn/8BDREREorGwsEBgYCACAwNbvVZfX4+LFy8qJCbbv38/Pv30U9y5cwfAvW+rkslkCAsLQ3h4OAYNGgSZTKbzAUtEREREREREREQ92fXr13Hx4kVERkaKHQoRERGRwWiZrFBSUoKBAweKHI3uhIaG4uGHH8Ybb7yBGTNmwMRE9O/LMjgymQx37txBQUEBfHx8dFJmRkYGvvjiC3z33XcoLS1FYGAgnnjiCSQmJmLAgAE6iYGIDFfv3r0xadIkTJo0CatWrcLJkyexc+dO7NixAytXroSnpyfmzJmDpKQk+Pv7ix2uWtg/ElFXdOf+kYj0h52dHYyMjHDlyhWxQ6FuqLa2FkeOHMHhw4dx9OhRnD9/Hnfv3oWTkxOio6OxcOFC+QTqPn36iB0uERF1U/369UO/fv0wadIk+bIrV64gOTkZKSkpSElJwfLly3HlyhWYmppi4MCBGDJkCMaMGYORI0fCxsZGxOiJqKu08p/GxsZGpKWl4fjx40hOTsbp06dx6dIlNDc3w97eHuHh4Rg2bBiSkpLkk2MdHBy0EQpp0bhx43DgwAGxw6BuRuzzSuzytaE71qkjPbHOhs5Qj5m5uTlCQ0MRGhqqsLy5uRn5+fnIzs5GZmYmsrOz8fvvv2PNmjVoaGhAr169EBYWhoiICMTGxmLIkCE6G8BERERERERERETUE6WmpqK5uZnJPIiIiIjUYGVlBSsrK1RVVYkdis699957kMlk+Pe//42FCxeKHY7BkclkAIDs7Gyt/i+8qakJO3bswL/+9S8cPXoUPj4+eOqpp5CYmIjg4GCtlUskNjHH2RjqGB91RUVFISoqCitWrMCZM2ewY8cObN68GStXrsTo0aOxZMkSxMfHw8jISOxQlWL/SD0V+0ftM/T+URvefvJhLNuwXewwqBvqSeeWkZERbG1tUVNTI3Yo1A00NzfjxIkT2LNnDw4ePIi0tDQIgoBBgwZh1KhRePnllxETEwNvb2+xQ6UH9JT7KeoanieGj8fwf/r27YvJkydj8uTJ8mWXLl2SJ/c4cuQIPv30UxgbGyMyMhLjxo1DfHw8IiMjIZFIRIyciNSlkWQet2/fxh9//IHffvsNx44dw8mTJ3H79m307dsXMTExeOihh+TfRO/l5aWJIg2GRCKBIAhqv6YLLR12Z2MQM3ZD0dlj3NVjo0slJSV45ZVXcPjwYVRUVKC5uRmA4Z5XYpffWe2da4Zap664e/dup7YTu1/Whrb6E32rqz7FoglGRkbw8fGBj4+PwoeqxsZGpKenIy0tDadPn8apU6fwxRdfoKGhAVKpFIMHD8bw4cMxZswYhIaG8sMVERERERERERGRhqSmpkIqlcq/XZ6IiIiIVGNpaYnbt2+LHYbOeXt7Y+HChVi2bBkeeeQRWFpaih2SQbG1tYVUKsWFCxcU/meuKXfv3sXGjRvx4YcfIj8/HzNmzMD+/fsxZswYvZ84qs/jCXVBF+PiulM7ttVeYtZP1bINaQxkRwYOHIiBAwfi7bffxs8//4zPP/8cM2fORGBgIF577TU88sgjetP3sH80XOwf1cP+UT8YUv/YngSZKwBgZ3Zpp7bvDsdS2xJkrp1u37b2B3T+mBmKnnZu2dvbo7a2VuwwyEA1NjZi//792LlzJ/bu3Yuqqir4+flh4sSJeP311zFy5EjY29uLHaZG6PN9M+cpap/Yx1hXNDFHThv33WLcy3enzw8tOOevff7+/vD398ejjz4KAKiqqsKRI0dw6NAhbN68GcuXL4eLiwumTp2Khx56CHFxcTA2NhY5aiLqiEToZA+WmZmJvXv34sCBA/jzzz9x584dyGQyDB06FEOHDsXgwYMREBDQ4yeh6vNNsr7E0J11pX0N5diMHTsWw4cPx+LFi2FlZYV9+/YhISHBIGLvTgzlfNF33bUdldWru9bVEN25cwepqak4duwYjh07hj///BNXrlyBVCrFuHHjMH78eEyZMgV2dnZih6o2iUSC7du3Y/bs2WKHQmQQWq6Vb7/9VuRIiIiIiIioJ9qyZQsWLlyI+vp6sUMh0oo5c+bg1q1b+PHHH8UOhYiIiMigeHp64vnnn8ff/vY3sUPRubKyMvj5+eGdd97Biy++KHY4Bmf06NEICAjA559/rtH9/vTTT1i6dClyc3OxYMECLF26FH5+fhotQ5v0fTyhLmi7nt2tHQ25PoYce0cyMjKwcuVK/Oc//0FoaChWrVqFUaNGiRoT+0fDx/5RPYZcH0OOvSNi94/Tpk/HNZjiuX/+S63tNJ1sghRpo315zDqvsaEBc8K88MMPP2D69OlihyMXEhKCxMREvPXWW2KHQgYkLS0NGzduxLZt21BdXY3Bgwdj2rRpmDZtGgIDA8UOTyv0/b5ZH2LoznpK+2qqntpoLzGOQU857h1hO9xz9uxZ7N27F7t378bJkyfh6uqKuXPn4sknn0RQUJDY4RGppSeNV1Qr1enFixexfPlyhIaGIjg4GB999BEcHR2xdu1aFBUVISsrC19++SUWLFgAmUzW4xN5EPUEf/75J1599VXY29vD3Nwcs2bN4o0REZEaLCwsMGzYMLz88sv44YcfUFlZiZMnT+K5555DSUkJkpKSIJVKMWXKFGzatAnXrl0TO2QiIiIiIiIiIiKDc/LkSURGRoodBhEREZHBsbS0xO3bt8UOQxQuLi5YsmQJPvjgA9TV1YkdjsGRyWTIzs7W2P7q6uqwYMECTJkyBcHBwcjMzMTnn39uUBPViaj7CA4OxqZNm3D27Fm4uLggLi4Oixcvxq1bt3QeC/tHItIn+tQ/EpFhMTc3R0NDg9hhkAEQBAH79u3DmDFjEB4ejgMHDmDJkiW4fPkyjh49ildeeaXbJvIgIiIaMGAA3njjDaSkpODixYtISkrCrl27EBISgsmTJ+PgwYNih0hESnSYzKO5uRkHDx5EfHw8ZDIZVq9ejUGDBuHHH39EaWkptm7digULFsDd3V0X8YpOIpEoTVKibHnL7y2vSSQSJCUldfgaAKSnp2PKlCmwtraGtbU1Jk6ciPT0dKVl5ubmYtasWbCzs2szPnWoU7Y6VIk3PT0dkydPlpc9efJklctua/mPP/6IoUOHwsLCAl5eXnjhhRdw/fp1pdsWFRVh+vTpsLa2hrOzM+bNm4crV650uo3u3/eDx1gVhYWFmDlzJmxtbdG7d29MmTIFWVlZnY5HG3Wsr6+HhYWFQj3bOhZnz57F+PHjYWVlBRsbG0yaNAm//vprqxiVxdLReXHt2jW88MIL8PHxgYWFBVxcXDB//nykpKS038hK2qgr7dZRHVvqo8nj1VFfc3+d7l/nyJEjAIBt27YpPW6qtLuqbZqZmYmJEyfCxsamzXNZm32EJq5ZXZ2HQOevFVX7ZnXOmfb2rcoxU6cPvp+m2tIQGRkZITIyEq+++ioOHTqEmpoa7NixA3379sWiRYsglUrx+OOPq309EhERERERERER9VQ1NTXIy8tjMg8iIiKiTrCwsOixyTwA4JVXXoEgCPj444/FDsXgBAQEaCyZR0lJCYYPH459+/Zh165d+O677+Dr66uRfXdVdxtPqMrYJ1XGggBARkYGJk+ejN69e8PW1hYzZ85EYWGh0nJV2acqY0lUGRPT1bFJHVF1zIuq7figzo7NU2WfHY0pa6tsdY61Kudyy3pdPRa6EBQUhH379mH79u345ptvMHjwYJSUlOisfPaP7B8B9o/315H9o/4Qu3/UhMJL2Xjv/3sMj4b749FwfyxPegSFlxTvbxNkrkiQuaq135Ztygvz8c/FC/F4tKzVfgovZeO9p+bJy37vqXkql93W8pOH9+P1udMwJ8wLT8dFY+MHy3D75g2l21aXlWLFs/PxaLg/nhwahtUv/RXXr9Z2uo3u33eCzBVr//6iyu1VlHMB7z01D48M8sO8yAB8+NcnUV2m/FxS55ipUkd12ljdtsvPzsQ7T87BIwN9MS+iP979y6M48+eRDstW5TgaKjMzMybzoA6dOnUKI0eOxNSpU1FfX48ff/wRmZmZ+Pvf/w4vLy+xw+uU7nbfrAznKerHPMX7701tbGwwYcIEZGZmtqqn2O3RmflOmv6Mpe4+Vb2X74iuy2xpT875M9x5av7+/nj77beRk5OD/fv3w9jYGOPHj0dcXBzOnj0rdnhEdJ92k3n897//RVhYGMaPH4+7d+9i7969qKiowObNmxEfHw8TExNdxak3BEFQeXnLMkEQ5I8vv/yyw9dycnIwbtw4xMfH4/Lly8jPz8e8efMwffp0FBcXt9r/M888g6VLl6K0tBQ//fRTl+qnbtnq6CjenJwcTJo0CYmJibh8+bL8zX3ixInIycnpsOy2lk+fPh1PPPEEampqcOLECdTU1GDx4sVKt01KSsIzzzyDsrIypKam4tatW1i6dKnCuuq2kbJjrKo5c+YgISEBubm5uHz5MmbOnImJEyciPz+/0/Fou44tjwddvHgRDz/8MF5++WVUVVXhxIkTuHnzJiZOnNhqfw/Gosp58cQTT6BPnz44fvw4rl27hp9++gk5OTmIiYlRub3bu45VaTdV6qiN46VKX9Pi7t278PX1RU1NDUaNGgXg3nlWWloKOzs73LhxQ612V7VNH374YcyfPx95eXltnsva6iM0cc3q8jzs7LXS3vK21lPlnGlv36q8D6nTB99PE23ZXfTq1Qvx8fHYvHkzSktLsWLFCpw4cQJhYWGYN28eysvLxQ6RiIiIiIiIiIhIr6WmpkIQBCbzICIiIuoES0vLHp3Mo0+fPnjppZewatUqVFRUiB2OQZHJZKioqEBtbeuJa+ooKytDbGwsJBIJ0tLSMGPGDA1FqBndaTyhKmNWANXGguTm5srH2uTl5SE3NxcJCQmYM2eO0rJV2acqY0lUaeOujk3qiKpjXlSpszKdHZvXHlXHlCkrW51jreq5rKljoUsPPfQQUlJScOfOHcTFxXW571MF+0f2jy3YPyrW8X7sH8UnRv+oCeWF+Xh7wRxEjh6HdQdP4PPDKRg5LQErnl2AK+Vl8vV2Zpeqve+Wbf7vrVcx/cln8OXvZ/DG/21RuJqcOQAAIABJREFUKPvdvzyKwROmYt3BE1h74Dhixk3G8qRHUF6Y32HZbS1f8ex8jJ45G/9OycKKb/fixrWr+HL535Vuu/bvL2LC3Cfw1Z9n8M8dv6D+zm38+8N3FNZVt412ZpfKH8++q1qyxPvb4vNDyVh74DgGj5+CVS88rXRddeJRpY7qtLE6+y3Nv4yPX/j/MCNpETaeSMeK7Xtx5/YtLE96pMOyVTmOhsrMzAz19fVih0F6qrm5GW+88Qaio6MhkUhw6tQp/Pnnn4iPj+9yogmxdaf7ZmU4T1E/5ik+eG+al5eHBQsWyO9N76+r2O2h7nwnbXzG0sa9fEfEKJNz/rrPPDWJRIKxY8diz549OHr0KG7evImIiAisWLGiU/0rEWmeRFByNTY3N2PJkiVYu3YtpkyZgo8++ggBAQFixKeXJBKJ0k5M2fK21m3vtXnz5iEsLAwvv/yywvINGzbg7NmzWL16tcI+fvvtN/kfCNX1YAzqlq1uZ95evPPmzUNUVBSee+45heWrVq1CWloavv766w7LViWm2tpa+Pn5Kc3c9sMPP2D69OnyZRcuXEBcXJxCJmBtt9H9227cuBHz589XWL5q1SqcO3cOmzZt6lQ8uqrjg8sfeeQRTJo0CY899phC2TKZTGE9ZeekKueFtbU1CgoKYG9vL18nLy8PPj4+ah2Dtq5jVdpNlTpq43i1FXdbr73++utwc3PDokWL5MtWrFiBgoICrFu3Th6nqtdjRyQSCbZt24aHH3641b7uP5db1tV0H6GJ81mX52Fnr5X2lmvq/amt/ajzPtReH3z/vjV1TXdXzc3N+OGHH7B06VLU1NRgy5YtmDp1qthhtSKRSLB9+3bMnj1b7FCIDELLtfLtt9+KHAkREREREfVEW7ZswcKFCzlIjrql999/H+vXr0dBQYHYoRAREREZnNGjRyMwMBBr164VOxTR3L59G/3798esWbMUxhhQ+/Lz8+Ht7Y3jx48jNja20/sZMWKEfPKtra2tBiPUnO4ynlDVMSsPUjYW5LHHHkNkZGSrsTabNm3CggULOjXGT9WxJB21sSbGJrWns2NeVB1To2xZZ4/d/VQZU6asbHWOtarnsibHrulaRUUFoqOjMWDAAPz4449aLYv9I/vHFuwf217G/lF/6Kp/nDZ9Oq7BFM/9819qbZcgc1VInrD6pb+iX0AQZiQ9q7De4Z3bkJ+dgSffWN7mtqqW987mHQiOHtLqtdUv/RV+oQMx5fEkheV7Nq7H5ax0hbq1VbYqMd2ou4ZF4wbj38mZrbZ9Zc1GRI+ZIF9WmpeLZU8k4ovf0xTi1GYbAcDqlxfDL2RAq7b4bdd2fPbaC106ZqrUsb3YlS1Xdb+fvPgswkfEYeT0RIX1Fk8arrDPrhzH9jQ2NGBOmFereQpiGzduHHx8fLB+/XqxQyE9IwgC5syZg927d2PNmjVYuHCh2CFpXHe5b1YWA+cp6sc8xbbuTbdt24a5c+eqfJ7poj06Kqcr992qxquNe/mOiFEmwDl/3XWemiAI+PTTT7F06VLMnz8fX3zxhdghESnVk8YrKk3m8eyzz2Ljxo34+uuvkZiYqGy7Hk3bN8lSqRTJycno16+fwvKKigqMHj0amZn/+6AtkUhw8+ZN9OrVqzNVaRWDumV35ia5rXjbKjsvLw9DhgxBWdn/MqJ25aawrfUkEglqampgZ2cnX1ZfXw9LS0s0Nzd3GKem2uj+bcvLy+Hs7KywPC8vD0OHDkVpaWmn4tFVHZWdW6dPn4arq2uH9VblnHzwvBg/fjxu3bqFv//97xg7dixMTEzaLUfV8luWqdpuHdVRG8errbjbeu3SpUuYO3cuUlNT5cv69++P7du3Y9CgQe3Gqex67IhEIkF1dTX69u3bal/3n8st62q6j9DE+azL87Cz10p7y7WdzEPd9yFV4tHUNd3d3b59G8899xw2b96MPXv2YNy4cWKHpIDJPIjUw2QeREREREQkpp70zzHqeWbNmgUjIyPs2LFD7FCIiIiIDM7kyZPh7OyMjRs3ih2KqNatW4fnn38eWVlZ8PHxETscg9Dc3Axra2usWbOm1ZcZqerXX3/FpEmTkJqaivDwcM0GqEHdZTyhqmNWVIm9rZjLy8vh4uLSqTF+qo4l6aiNNTE2qT1dGfPS2XE/XTl2LVQZU9ZW2aoea1XPZU2OXRPD4cOHMWbMGJw4cUJr3+7K/vEe9o/3sH9sexn7R/2ii/5RU8k8Fg4dgBXf7YOjq7vCelevVGHZ44lYve+/bW6ranlbz+TC3MKy1WttlV1ZXIjX5kzDV3+e6bBsVWNqKyHFv1Oy0Nvmf4miGhsaMHeAN3Zk/W+irbbbqN0yqiuxcNjALh0zVerYXuxdbbuVu/bD3klxnogqZXRlvftj0sdkHlOmTIGjo6PCpGEiAPLJyAcPHsSIESPEDkcrust9s7IYOE9RP+YptlXGlStX4ODgoNFkHm2tp605ctr4jKWNe/mOiFEmwDl/3d1PP/2E+Ph4bNiwAU888YTY4RC10pPGKxo9uCAzMxPr1q3Dli1bmMhDJFeuXIGXlxckEonCQyqVIj8/v9X6nb1B1kTZndFWvNXV1ZBKpa2Wu7i4oLq6ulNlVVVVISkpCe7u7jAxMZHXpy333xACgLm5eas3eV20UYsHE3kA99qjqqqq0/GIVcfq6mo4ODh0ajtVzovvvvsO0dHRWLRoEezt7TFy5EisXr0ajY2NnYr3Qaq0myp11MbxUpe/vz8sLS1x9uxZAMDvv/8OGxsbhX8qaPp6fPCmvmVf95/LLTTdR2jifNbledjZa0VMbR0zdfvg+2n7mu4uLC0tsX79ekyfPh1Lly4VOxwiIiIiIiIiIiK9lJqaioiICLHDICIiIjJIpqamuHv3rthhiC4pKQmenp545513xA7FYBgZGcHf3x8XLlzo9D5+/vlnREdH6/VEdV3Q1XhCVcasqDoWpK2xNsqWqbpPTY0l0fb4RVXi7MqYmrZi7+p4I1XGlLVVtqrHWtVzWRtjSXUpLi4OMpkMP//8s9bKYP94D/vHe9g/to39o37RRf+oKdev1uLpuGgkyFwVHguHDkBlSZFGylCWyAMA6q7WoI+DU6vldo7OuF5b06my6mquYO3fX8RfRobjoWAPeX3acn8yCgAwNTNrNX5dF23UVlsoW6ZuPKrUsTNU2W/d1RrY2NlDXeoeR0NjYmKCpqYmscMgPfTFF19gyZIl3TaRhy5wnqKinjhPsa22UDbXSx3aaA91aeMzljbu5TVZD02fM5zz133nqU2ePBlPP/00Vq5cKXYoRD1eq2QeLZ2cvn2zuz6RSCStMr3U1HTuDyPKODg4oKamBoIgtHrcunVLY+XoY9nKMgKXlZW1+kOqqsfgscceg5WVFf7880/cuXNHXpeuxqmrNlJWp7KyMjg6Omo1Hm3ss2/fvp36sKPqeWFra4tVq1YhNzcXly9fxrPPPott27Zh7ty5nYq3M1Spo5jX2P0WLFiADRs2AAC++uorPPXUU63iVPV6VEVFRYXSfd1/LnekszFpos11eR6qeq1o871IU/vuSh+sD9e0oZBIJBg7diwuX74sdihERERERERERER6p6KiAkVFRYiKihI7FCIiIiIyYKampnj77bfx9ddfyydyUsdkMhmys7M7vX1lZSVcXFw0GJF2dJfxhKqMWVF1LIiDgwPKy8tbLe/KGD9tjyXR1HgpVeLU9LjGzo7Ne1BHY8qUUedYq3oua3rsmhhcXV2VtoumsH+8h/3jPewf28b+Uf9ou3/UFGs7e/w7JQs7s0tbPb45o92xmjZ97FFb1XrcdW1VBawfSAAhkUjQ2NCgsOzGtauttl398mJYWPbCe1t3Y9u5PHldukIXbWTTxx5XqytbLVdWR23Fo2obq8O6jx3qOpGYRRvHkUjfCYKAvLw8hISEiB2KVnWX+2Z9LJvzFP9XhrJ7sLbuy8RsD3Vp4zOWNu7lNVkPTZ8znPPXveephYWFobi4WOwwiHq8Vsk8YmJi0Lt3b7z00ks6f/M0FFKpFIWFhQrLfv/9d6XrtpdNrK3XJkyYgCNHjrRa/scff2j9W8PELHvs2LH4/vvvWy3ftWsXxo4dq7BM1WNw7NgxvP322/Dy8oKJiQkA4Pbt212KU5026ko2aAA4ePBgq2W7du3C+PHjOxWPqrSxz1GjRrWqz9mzZxEUFNTudqqeFxKJRH5j4eDggIcffhj79u3D/v37OxVvZ6hSR21dY+qea7Nnz8bu3btRVVWFX375pdWNpzrXoyp+/fVXpfu6/1zuSGdj0sQ1q8vzUNVrRZ33ImXaO2e6uu8WXemD9eGaNhTl5eVYuXJlp65NItI//AxGREREREREpFknT56ERCLp8d9US0RERERdN3fuXAwYMADLli0TOxSD0dVkHv3790daWprefztzdxlPqMqYFVXHgowfPx4//PBDq+XKxsOpuk9Vx5J0dsyepsZLqRKnpsc1dnZs3oM6GlOmjDrHWtVzWdNj13Ttzp07OHfuHGQymdbKYP94D/vHe9g/to39o37RRf+oKQOHjUJG8rFWy7NSk/HSrAlaLTtsyHAk7/+p1fLkAz8jbMhwhWV9HJxQXVaisCzz5IlW215IS8XDi1+Ck5sHjI3vXVsNd+50KU512qiz/c+AYSORcvCXVsvPHWv9XqKtY6ZqG6sjOHpIqzrkZ2fiuSkj291OG8eRSN9JJBLExsbim2++6dbja7vLfbO+lc15iv/T1r2psrlegLjtAahXT218xtLGvXxHxCizBef8dd95ak1NTdi8eTNiYmLEDoWIBCX27dsnmJubCwkJCUJJSYmyVXq0xx9/XEhMTBSKioqE69evC7/88oswYcIEQVlzuru7C8eOHRMaGhqEX3/9VfDw8Ojwtby8PCE0NFT47rvvhOrqaqGurk7Ys2eP4ObmJuzatUth/20cQpU9uL22y25vm4sXLwpubm7CF198IVRUVAiVlZXCl19+Kbi5uQmXLl1SWFfVYzBhwgThL3/5i5CXlyfU19cLly5dEh5//HGlcbQVW1faqL3j3xEAwoABA4Tt27cL1dXV8vbw9PQU8vLyOhWPNuqo6j7PnTsn+Pr6CgcOHBBu3LghnD17VggPDxfWrl3b7naqnhcAhAkTJgjp6enCnTt3hPLycuG1114TZs6cqTS+tnTl3FCljtpoW0Fo/1xraz/z588Xxo8fLyQlJbV6TZ3rsSMAhCFDhgj/+c9/2j2X24tV3Zju348mrlldnoeqXivqvBepe850dd8tutIHa+qa7u4OHTok+Pn5CUFBQUJFRYXY4bQCQNi+fbvYYRAZjDlz5gizZs0SOwwiIiIiIuqhvv76a8HMzEzsMIg0btmyZYKfn5/YYRAREREZrGnTpgnz5s0TOwy9sW/fPgGAcPToUbFDMQjffPONYGpqKjQ0NHRq+9zcXMHExERYt26dhiPTrO4ynlCVMSuqjgXJzc0VPDw8hK+++kqorKwUrly5Imzfvl0YMGBAp8f4qTqWpDPjqARBc+OlVImzq+MaOzs2TxXtjSlTVrY6x1rVc1mTY9fE8MEHHwiWlpZCeXm51spg/8j+8cG6sX9Uvoz9o37RRf8YP22aMGJagrAzu1StBwCF39cdShb69Q8Ulq7+P2HTiQxhy6mLwmuf/1uwd5YKr3y2od1tO1Pe/Y/Pfj0q2DtLhWeWfyRsOHpO2HjsvPDsux8L9s5SYc3+YwrrjprxkDB4wlTh/46cEv5z+pLw5pdbhYHDRrXa/8Bho4Rxsx8V1h1KFrafLxDW7D8mjJrxkNI42oqtK23UV+oivL9tj/BteoHwj6++ERxcXFVqp7UHjgsOLq7CovdWCRuPnRf+nZwpvPjJ54KXLEgrx0zZclXbWJ39rvrxkCD19BKWbdgubE3LEVbtPiT4BIUKTy37oN3t1DmO7T22ncsXAAg//PCD1q7FzuDfH6gtKSkpgpmZmfDCCy8Id+/eFTscregu983Ktuc8xY5j1sU8xQfvTaurq4WtW7cKQ4YMURqnmO3RUT118RlLG/fyHRGjTEHgnL/uPE+toaFBSEpKEnr16iVkZGSIHQ6RUj1pvGKbPeihQ4cEX19fwdraWnjrrbe0+kcTQ1NVVSU88sgjgqOjo2BlZSXEx8cLhYWFAoBWb0rffvut4O3tLZiZmQl+fn7C7t27VXrt4sWLQkJCgmBraytYWVkJUVFRwvfff6+w75bylJWrira2VbfszpTX1nbnzp0TJk6cKFhZWQlWVlbCxIkThXPnzrVaT9VjUFFRITz22GOCk5OTYGZmJoSEhAjbt29vtV5bcXWljQSh/WOsSltlZGQI48ePF3r37i1YWVkJkyZNEjIzM1ut35Vjpo3zoK3lx44dE4YOHSpYWFgIHh4ewgcffKDSdqqcFwcPHhRmzJgh9O3bVzAzMxO8vb2FF154Qairq2vVXm1RVr6m6ygI2mnbts619q6533//XQAgJCcnK20PVa/HjgAQ8vLyhKlTpwrW1tZtnsua6iOampoEY2NjhWWauGZ1dR4Kgmrnkar9oLrnTGf3reyYdaUP1lRbdlfJyclCYmKiAECYMWOG3t6nAUzmQaSOefPmCdOmTRM7DCIiIiIi6qF60j/HqGeZOnWqMGfOHLHDICIiIjJYnEzT2qhRo4Thw4eLHYZBOHPmjHwMVGe98cYbgoWFhfDbb79pLjAN6y7jCQWh4zErqo4FEQRBSE9PFyZNmiRYWVkJvXv3FsaPHy9kZGR0eoyfqmNJVBlH1dXxi+1RJc6ujKnpyrg1VbQ3pqytslU91oKg+jguTY1d07Xdu3cLJiYmwkcffaT1stg/3sP+kf1je8sEgf2jvtBV/9iZZB73H78Hk2rEjp8i9LK2Ecwtewl+oQOFl//1lUrbqlpeW9ut+vGQMGj4aMHcspdgbtlLGDR8tLDqx0Ot1tt4PF0YPnWmYGPfVzC37CVEjh4nrP8ttdW+Nxw9J4ycnijY9nUQTExNBU9/mfDiJ5+3Wq+tuLrSRjuzS4UX/996wcndUzAxNRWknl7Cq2s3qdxe/2/vb0L4iDjB3LKXYNHLShgwdKSweu8RjR+ztpar2sbq7vf9bXsEWXiUYGpuLji4uArz/vZ6h9upehyZzIO6o23btgmWlpbCuHHjhJycHLHD0bjuct/c1racp6iZNhKEzs9TFATFe1Nra2th6tSpQl5entK2E7s91J0jp+nPWOrsUxBUP34dEaNMgHP+uuM8tczMTGHYsGGCtbW18OOPP4odDlGbetJ4RYkgCALacOfOHaxcuRKffvoprl+/jtmzZ+OJJ57AqFGjYGxs3NZmREREchKJBO281WjEpk2b8Oijj8LU1BSlpaUYNmwYLl++rNUyiXSttrYWu3fvxvr163HixAmEh4dj+fLlmDx5stihtUkikWD79u2YPXu22KEQGYQFCxagsrIS+/btEzsUIiIiIiLqgbZs2YKFCxeivr5e7FCINMrV1RUvvvgiXnzxRbFDISIiIjJI06dPh42NDb7++muxQ9EbR48exbBhw/DLL79gwoQJYoej1+rr69G7d29s3boVDz30UKf20dzcjEcffRS7du3Cl19+iXnz5mk4SiIizVi3bh2WLFmCpKQkrFu3TuvlsX8kIkOhy/5x2vTpuAZTPPfPf2m1HCJD1tjQgDlhXvjhhx8wffp0scOR498fqCOpqal44oknkJubi+eeew5/+9vf4OzsLHZYRAZPF3O+SH9xzl/3UlxcjJUrV2LdunUICQnB119/jeDgYLHDImpTTxqvaNTeixYWFnjzzTdRVFSENWvWIDMzE2PHjoWLiwuefvpp7N+/H7dv39ZVrEREREotWLAAK1aswPXr17F69WrMmTNH7JCINKKsrAwbNmzAlClTIJVK8fTTT8PDwwO///47Tp06pdeJPIhIfSYmJrh7967YYRARERERERF1G0VFRSgrK0NkZKTYoRARERFRNzJ06FBMnToVr732Gpqbm8UOR6+Zm5vDx8cHmZmZnd6HkZER/vOf/2Dx4sV4/PHHMXfuXFRVVWkwSiKirikpKUF8fDz++te/4s0339RJIg+A/SMR6T+x+kciIuqeIiMjcfbsWaxcuRKbNm1Cv379sHDhQpw+fVrs0IiIqB2c86d9x48fx6OPPgofHx/s2LEDa9euRWpqKhN5EOmRdpN5tLCwsMDChQuRmpqKixcv4vnnn0dycjImTJgAe3t7jBs3Dv/85z9x+vRpNDU1aTtmIiIyEBKJROFZW9auXYt169bBx8cH165dw5tvvqnV8oi05fr16/j555/x4osvIjQ0FK6urnj22WdhbGyML7/8EhUVFfj2228xfPhwsUMlIi1gMg8iIiIiIiIizUpNTYWRkREGDRokdihERERE1M188MEHOHfuHLZt2yZ2KHovODgYGRkZXdqHkZERVq5ciZ9//hl//vkn/P398eGHH/KLyIhIVDdu3MCyZcsQEBCArKwsHDlyBP/4xz90GgP7RyLSR/rQPxIRUfdkYmKCxYsXo6CgAJ999hlOnDiBiIgIhISEYMWKFcjPzxc7RCKDoqs5X6SfOOfPsF26dAlvv/02+vfvjyFDhiAzMxNffvkl8vLykJSUBCMjlVIHEJGOmKi7gb+/P15//XW8/vrrKCoqwsGDB3HgwAF89NFHeOWVV2BtbY3o6GgMHToUgwcPRmxsLPr06aON2KkdHb2JCoJg0OUZMraVONjumqdKm+qqXZ955hk888wzOimrK3ge0oMuX76MY8eO4fjx4zh69CjS09PR1NSEkJAQebK0ESNGwMrKSuxQiUgHTExM0NjYKHYYRERERERERN1GamoqAgICYGNjI3YoRERERNTNhISE4LHHHsMbb7yBhIQEmJubix2S3goODsb333+vkX1NmDAB2dnZWLlyJZYvX45Vq1ZhyZIlePbZZ2FnZ6eRMrorjlnRDENtR0ONW19VVVXh008/xdq1a9HU1IR//OMfWLJkCSwsLESLif1j5/H60AxDbUdDjVtf6WP/qGsJMtd2X9+ZXaqjSPQf24qIusLCwgJJSUlISkrCiRMnsGXLFnz88cd47bXXMGDAAMTHx2PatGmIiIjgZGYN4TxF/dWVtmI76oYY5zPn/HU/TU1NOHHiBPbs2YM9e/YgMzMTUqkUc+bMwbx58xARESF2iETUDrWTedzPw8MDCxYswIIFC9Dc3IyMjAwcPXoUx48fx9atW/HOO+9AIpHAx8cH4eHhiIiIQHh4OMLDw9G3b19N1YGU0PXNFG/eVMe2EgfbXfPYpupjm/VcgiAgNzcXp0+fxqlTp3D69GmcPn0aNTU1MDMzQ3h4OOLi4vDmm29iyJAhcHFxETtkIhKBiYkJ7t69K3YYRERERERERN1GamoqoqKixA6DiIiIiLqpd999F/7+/li/fj2WLFkidjh6KygoCB9++CEaGhpgZmbW5f1ZWVnhrbfewrPPPovVq1fjo48+wvvvv485c+bgqaeeQkxMjAai7n44ZkUzDLUdDTVuffPHH39g/fr12LlzJ6ytrfH8889j0aJFsLe3Fzs0AOwfO4vXh2YYajsaatz6Rt/7R11iAgrVsa2ISFNiY2MRGxuLTz75BEeOHMGePXuwZcsWvPvuu3BwcMDo0aMxZswYjBkzBn5+fmKHa7A4T1F/sa30nxjHiOdF95CdnY1Dhw7h0KFDOHLkCGpra+Hn54dp06bhs88+w4gRI2BsbCx2mESkgi4l87ifkZERQkNDERoaiqeffhoAUFlZieTkZPmE1c8++wzFxcUAAFdXV8hkMshkMgQFBUEmkyEwMBCuru1n2CQiIiLSV42Njbh8+TIyMzORnZ2NrKwsZGVl4cKFC7h+/TpMTEwQGBiI8PBwxMfHIyIiAhERET0q8zwRtc3U1JTJPIiIiIiIiIg0RBAEnDp1Cv/4xz/EDoWIiIiIuik3NzcsWrQIy5cvx/z582FjYyN2SHopODgYjY2NyMnJQVBQkMb26+TkhPfeew+vvvoqNm/ejPXr12PDhg0IDAxEYmIiEhISMGDAAI2VR0Q9U2pqKnbu3IkdO3YgJycHUVFR+OyzzzB37lz06tVL7PCUYv9IRLpgiP0jERF1b6amphg3bhzGjRuHTz/9FOfPn8eBAwdw6NAhLF26FDdu3ICrqyuio6MRHR2N2NhYRERE8O85RESkF65evYqTJ08iOTkZKSkpSElJQUVFBWxsbDBq1Ci89dZbGD9+PGQymdihElEnaCyZhzJOTk6Ij49HfHy8fFllZSXS0tJw/vx5XLhwAWfOnMG2bdtQU1MDALC1tZUn9mh5DgwMhI+PD7MEERERkV64ceMGLly4IE/W0ZK4IycnB42NjZBIJOjXrx9kMhlGjBiBp556CmFhYQgLC4OlpaXY4RORnjIxMWEyDyIiIiIiIiINycvLw5UrVxAVFSV2KERERETUjb3++uvYsGEDPvroI7zzzjtih6OXAgICYGJigoyMDI0m82hhbW2NRYsWYdGiRTh+/Di2b9+OTZs2Yfny5fD390dCQgISExMRERGh8bKJqPsRBAEnTpzAzp07sXPnTuTn58Pb2xuJiYmYM2cOwsPDxQ5RZewfiUiTulP/SEREPUPLF5b/7W9/Q2NjI5KTk3H06FEkJydjzZo1eP3112FkZITAwEB5go+YmBiEhobCxESr0y2JiKiHa2xsxJkzZ+RJO1JSUnDhwgUIggBPT0/ExMTgpZdewpAhQxAVFcX3JaJuQOdXsZOTEyZMmIAJEyYoLK+srGz1LfaHDx9GYWEhAMDMzAy+vr7w8vKCl5cXvL295T97eXnB0dFR11UhIiKiburu3bsoLi5Gfn6+/JGXl4e8vDzk5+ejqKgIwL37E39/fwQGBiIhIQFBQUGQyWQICAhgdnkiUhuTeRARERERERFpzsl0xLSpAAAgAElEQVSTJ2FsbMxvmiUiIiIirbKzs8NLL72Ed999F8888wxcXFzEDknvmJubw9fXFxkZGXjooYe0WtbgwYMxePBgfPLJJ0hOTsbOnTuxbds2rFixAp6enhg7dizGjBmDuLg4SKVSrcZCRIajqKgIhw8fxuHDh3HgwAGUlZWhf//+mDt3LhITE7vFBHX2j0TUGT2hfyQiop7B1NQUw4YNw7Bhw+TLSkpKkJKSguTkZCQnJ2PHjh24fv06evXqheDgYISEhCAoKEj+7OnpKWINiIjIEAmCgIKCAmRkZCA9PR0ZGRnyR319PWxtbREVFYWEhAR5Yin+XYaoe9KblDxOTk5wcnLCqFGjFJbfuHFDnuAjNzcXeXl5yMjIwN69e1FaWoqmpiYAgJWVlTzJx4OJPry9vWFnZydCrYiIiEgfNTc3o7S0tFWSjpZHUVGRfEK9paWl/H4iNDQU8fHx6N+/P4KCguDt7c0Mh0SkMcbGxkzmQURERERERKQhp06dQkhICJPuEhEREZHWPf/881i7di2WL1+OtWvXih2OXgoKCkJGRobOypNIJIiNjUVsbCxWrlyJU6dOYc+ePTh06BC+/vprNDY2IigoSD5xfdSoUejTp4/O4iMicVVXV+PIkSM4dOgQDh8+jIsXL8LCwgKDBw/GokWLEB8fj7CwMLHD1Ar2j0TUnp7cPxIRUc/j5uaGmTNnYubMmQCApqYmZGVlISUlBefPn0d6ejp++eUXlJWVAQBsbW3lyT2Cg4PlDyZ2JSIiACguLkZmZibOnz+PrKws+fP169cBAO7u7ggKCsLo0aPx3HPPISoqCgEBATAyMhI5ciLSBb2ffdq7d29ERkYiMjKy1WuNjY0oLCyUT8RtmYB7+vRp7Ny5E2VlZRAEAQBgY2MDd3d3uLm5wcXFBe7u7pBKpfDw8ICzs7P82dTUVNdVJCIiIg26efMmiouLUV5ejqKiIpSXl6O4uBhlZWUoKSlBaWkpSkpK0NDQAODetwB5enrC29sb/v7+GDdunDx5h5eXF7MaEpHOmJiYMJkHERERERERkYakpqYq/f8iEREREZGmWVhYYNmyZXj66aexePFiBAYGih2S3gkODsb3338vWvkRERGIiIjAW2+9hZs3b+KPP/6QT1Jds2YNJBIJQkJCEB0djZiYGERFRSE4OBjGxsaixUxEmtHY2Ijz588jJSUFKSkpOHnyJDIzMyGRSBAZGYmEhATExcVh6NChsLS0FDtcnWP/SNRzsX8kIiJSZGxsjJCQEISEhCgsr6mpQXp6OjIzM+XPu3btQnV1NQDA3t4efn5+8PX1VXj4+fkx0QcRUTciCAJKSkqQm5vb6pGTk4OrV68CAJydnRESEoLY2FgsXLgQISEhCAoKYrJUoh5O75N5tMfU1FR+k6tMfX29PMFHfn4+SktL5ZN709LSUF5ejqqqKvn6EokEzs7OcHFxgZubG1xdXeHq6toqAYiTkxMkEomuqklERES4975eWVnZZoKOliQddXV18m1MTU3lSbukUinCw8MxZcoUuLu7w9vbG97e3nBxcWEmQyLSC0zmQURERERERKQZgiAgLS0Ns2fPFjsUIiIiIuoh5s+fj08++QTLli3Dt99+K3Y4eic4OBgffvghGhoaYGZmJmosVlZWmDhxIiZOnAjg3qScI0eO4NixY0hJScHWrVtx8+ZNWFlZITw8HNHR0fKHl5eXqLETUfsEQUBubq7CxPS0tDTcvn0b1tbWiIyMxJQpU/D+++9jxIgRsLW1FTtkvcL+kaj7Yv9IRETUefb29hgxYgRGjBihsLyyshLp6enIyspCTk4OcnNz8f333+Py5cu4c+cOAKBXr16tEny0/Ozh4cEvJCci0jMNDQ0oKChQmrAjNzdXoX/38fGBr68vRowYgSeffBJBQUEICQlB3759Ra4FEekjg07m0RFzc3MEBAQgICCgzXUaGhpQXV2NsrIylJaWtno+deqU/Pf7WVhYwNXVFS4uLrCzs1P4+cHfpVIpJwkTEREpUVtbi9LSUtTW1qK2tlb+/qvs94qKCjQ3N8u3tbOzg4uLizz5VmRkpPz3lud+/frxmyCIyGAwmQcRERERERGRZly4cAFXr15FZGSk2KEQERERUQ9hbGyM9957DzNnzsTx48cxePBgsUPSK0FBQWhsbMSlS5cQHBwsdjgK7O3tMWvWLMyaNQsA0NTUhOzsbJw6dQqnTp3CiRMn8K9//QsNDQ2wsbGBv78/goKCEBERgeDgYISGhsLZ2VnkWhD1PLW1tcjIyEBmZqb8+cyZM6iuroaJiQn69++PiIgIzJ49G8OGDcOgQYM4jldN7B+JDBP7RyIiIt1wcnJCXFwc4uLiWr1WW1uLy5cvKzzOnj2LrVu3KsxPtLOzg4+Pj3zuw4M/e3p6wsSkW0/9JCLSqZb+uWW+eEsf3fJ7QUEBmpqaAPyvj/bx8cHUqVPlP/v4+MDLy4ufo4hILT3+js7MzEw+CTgiIqLN9W7cuIHi4mJUVFSgrKwMVVVV8kd5eTkyMzPx3//+F5WVlaitrW1VhqOjIxwcHCCVSuHo6Ch/SKVS2Nvbw87ODvb29vKHhYWFtqtORESkUXV1daipqUFNTQ1qa2tx5coVVFVVobq6GlVVVaioqEBlZaXCsvuZmJjAwcEBjo6OcHJygrOzM4KCgjBy5Eg4OzvDyckJjo6O8PDwgLOzs+jf1kNEpGmmpqZobGwUOwwiIiIiIiIig5eamgozMzOEhoaKHQoRERER9SDTp0/HkCFD8Oqrr+K///2v2OHolYCAAJiYmCAjI0Pvknk8yNjYGMHBwQgODsbjjz8OALh58ybS0tJw/vx5nDt3Dunp6dizZw+uXr0KAHB1dUVISAhCQ0MRHByMgIAA+Pn5wcnJScyqEHUL5eXluHTpEi5evIj09HSkp6fj/PnzqKioAHAv4URYWBiCg4ORmJiIsLAwDBo0iGNwtYD9I5F+Yf9IRESkv+zs7BAREaF0nmJNTQ1yc3NRUFCA4uJi+fO5c+ewd+9elJeXy78A1dTUFK6urvDw8ICnpyfc3d3h7u4ODw8PODk5QSqVQiqVolevXrquIhGRXrl58ybKyspQUVGBiooKFBcXo6ioSP5cWFiIsrIy+RevGhsbQyqVol+/fnB3d0dMTAw8PT3h4eGBfv36wdfXF3369BG5VkTUnfT4ZB6q6t27N2QyGWQyWYfrNjQ0yCcpl5eXyyctV1ZWoqKiAlVVVcjNzZVPar5x40arfVhaWiok91CW8EPZ6zY2NtqoPhER9RBNTU2ora2VJ+VoScyhyu8tH2ru15K8ysHBAU5OTggNDW0zwZWDg4MINSYi0h+9evXCrVu3xA6DiIiIiIiIyOClpqYiLCwM5ubmYodCRERERD3Mxx9/jMGDB+Pnn3/GpEmTxA5Hb5ibm8PX1xeZmZlih9IpVlZWGDZsGIYNG6awvKioCBkZGTh//jzS09Px22+/Yc2aNbhz5w4AwNbWFn5+fvD395c/tzw4RoLofyoqKnDp0iVcunQJOTk5yMnJkf98/fp1APf+nx4UFITQ0FBMnDhRPkHd1dVV5Oh7NvaPRNrF/pGIiKj7aZkDGBUVpfT1xsZGlJaWyiefFxcXy5N+HDx4EMXFxaisrFTYpnfv3nBzc1NI8OHk5KR0mampqS6qSUTUZQ0NDaisrFRI0lFaWqp02c2bNxW2lUql8gRIERERmDFjhjwZkqenJ1xcXGBiwqn1RKQ77HG0wMzMDK6urnB1dcWAAQM6XL+hoUGlCdMlJSVIT09XeP1BJiYm8ht7W1tb2NjYoE+fPrC1tZX/bmNjI//Z1tZW/nrLa5aWltpoFiIi0oG6ujpcu3YNdXV1Cj9fvXoV165dU/ratWvX5O8r165da7VPMzOzVomlHBwc0L9//1aJph78nYiIVNe7d2/cuHEDgiBAIpGIHQ4RERERERGRwUpNTW1zABwRERERkTbFxMRg2rRpeOWVVzBhwgQYGRmJHZLeCA4ORkZGhthhaJSHhwc8PDwwceJE+bLm5mYUFRUpTLbNycnB999/j9zcXNTX1wMA+vTpA19fX3h6esLT0xNeXl7yweSenp5wdnYWq1pEGiUIAsrLy1FYWIjCwkIUFRWhoKAABQUFKCwsRG5uLurq6gAAFhYW8uQOY8eOxTPPPAM/Pz/4+fnB3d2d/0c3IOwfiTrG/pGIiIiUMTU1Rb9+/dCvX78213lwgnt5eTnKysrky9LS0tqc4O7k5AQnJyc4ODjAwcEBjo6O6Nu3L/r27QsHBwf5zy1f1mptba3tKhNRD1FXV4eqqipUV1fjypUr8ueWn6uqquQ/V1RUoLq6WmH7BxMXDRo0iImLiMhgMJmHHjAzM5O/Wajr/2fvvsOjLPO2j58zk94DSUgndEEQqaJRpLmughXBtqCsSnnXugIGFAxNgri6oOjKI664Vnx0V2yrFGmCQqJi6EgLkpACJKTXef/wnXkTCAiS5Mok389x5JApGc7B5D7umbl+51W92OPU8o/qA9xpaWmnDXAXFBScMY+j2CM4OLjWEhBHSYivr6+8vb0VEBAgf39/+fj4yNfXV4GBgfLx8aEYBADOQV5enoqKilRcXKwTJ044/+w4VhcVFTmP3Y5SjlMLOU6ePKkTJ07U+vgWi0VBQUEKCgo67XgeHh6uwMDAM5ZxBAcHy8/Pr4H/RQCgefL391dVVZWKi4vl4+NjOg4AAAAAAC6psrJSP/74o8aMGWM6CgAAAJqpefPmqWvXrnr77bc1atQo03EajYsvvlj/+7//azpGvbNarc6hm8GDB9e4zTHI7hhi37dvn9LS0rR582Z98MEHysjIkN1ul/Tr0K5jcD0mJkatW7dWdHS0WrVqpYiICEVERCgsLIwdJGFUeXm5srKylJ6erqNHj+ro0aM6cuSIDh486BxMP3z4sLOkwWq1KiIiQnFxcYqNjdU111yj8ePHOwfUGUhv2jg+ojnh+AgAAOqTh4eHoqOjFR0d/Zv3LSwsdJZ+OAo+srKylJOTo5ycHO3atavGQL3j/KT631W95KN6AUhISIhzk/HqX4GBgQoODq6vpw/AILvdrtzc3DN+nVrMUb20o7y8vMZjeXl5nXZs6dq1q1q2bFlrSQfzFQBcGe9UujjHsPXvUVVVVetgePXh8BMnTjgvHz9+XAcPHqxRElJUVHTaiXp1jgFyHx8f+fj4KCAgQH5+fvLx8ZGfn58CAwPl7e0tHx8fBQcHO/8cGBgoPz8/eXt7y9/fX15eXvL29pavr688PDwUGBjIzhUAGlRJSYmKi4tVUFCg8vJy5eXlqaKiQnl5eSosLFRRUZHy8/OVn5+voqIiFRYWKjc3V8XFxSoqKnIeMx3FHPn5+c7HOxt/f39naZLjTY2AgACFhYWpffv2NUqWzlTARBsqALgGR3lSfn4+bzYBAAAAAPA77dixQ4WFherTp4/pKAAAAGimOnXqpHvuuUfTpk3TyJEj5enpaTpSo9ClSxft3btXpaWlzfbfpPog+5AhQ067vayszDncm5aWVmPgd9OmTTp8+HCNHXUtFovCwsLUqlUr5+L2yMhI5wL3iIiIGgvibTZbQz5duKjy8nLnsMWxY8d05MgRZWZmKiMjwzmQ7hj+ysrKqvG9/v7+iomJUWxsrDp06KBBgwY5f+ZjY2MVFRXFzqioFcdHuAKOjwAAwBX5+vqqffv2at++/Tndv6CgwDmIX73kwzGQf2oBiGNOpjanlnw4ij7OdL1jBsbX11e+vr4KCAioy38KAJJzBq6goED5+fk1ZotrK+c49fq8vLxaH9cxJ1y9mOPiiy8+rQyo+pevr28DP3sAMIcyj2bMarUqODj4gtvuKisrnYPpjgH2vLw859B6bm6uCgsLVVxcfNr9Dh06VGPQvfpA/G9xFIW4u7vLz8/PWfjh5+cnd3d3BQYGys3NTYGBgfLw8JCvr6+8vb3l5eUlf39/ubm5KSgoSG5ubgoICHDex2q1KjAwUJKcj+W4DUDjceLECUlylgpVVFQ4jx25ubmqqKjQyZMnVVZW5jy2lJaW6uTJk6qsrNSJEyec31NaWuo8LpWVlSkvL0+VlZXKzc1VeXn5bxZuSHIeO6oXFgUEBDjLjNq2bSsfHx95e3ufdr/AwEDnbcHBwTUKkAAAzYejzKOgoECtWrUynAYAAAAAANe0ZcsW+fj4qEuXLqajAAAAoBmbOXOm3n33XS1atEh//etfTcdpFC6++GJVVFRo79696tq1q+k4jZKHh4fatWundu3anfE+hYWFSk9Pdw4PO3bXdQwP//jjj8rMzFRWVpaqqqpqfG9wcLBzAX31hfQtW7ZUaGio87rAwEDnV1BQkCwWS30/ddSDUzd7y8vL07Fjx04byKr+5+zs7NOGMmw2m3MX1MjISEVFRalv3761liOwaQXqC8dH1CWOjwAAAGfm5+cnPz8/xcXFnfP3lJeX11oCUNtXTk6Ofv755xrXVS/mO1VAQICz3CMwMFD+/v7y8/Orcdlxe1BQkDO/47JjHtDHx0eenp7OeUKgsXPMshUXF6ukpMS5MfWJEyecZRyFhYXOy47rHL9TBQUFNS4XFhaedV7Xz8+v1qKdmJiYWq8/9YvfKwA4O46SuGA2m61OSkFOVb30wzGEn5+fr4qKCp04ccJZIuIYwq9tUL+srEz79+9XSUmJiouLax3UP1+O5+k4kXdzc5O/v7+kX18k2Gw2Z7HIbxWDVP83CwwMlNVqlSTn90uq8RiSarxw8PT0dL7B6yg3AS7UqeUVubm5stvtkv5/cYakGuUZkpy/e5Kcv3OSnGUa0tkLOPLy8lRVVeX8XscHJpKcv/vVH+tcnUvhj5+fn8LDw52FP4771Fb4c+qL+ODgYOf3AQBwIRznlOdSIgUAAAAAAGqXkpKiSy+9lMUiAAAAMCoyMlIPPfSQZs+erTFjxtT5uipX1KlTJ7m5uWnHjh2UeVwAX19fdejQQR06dDjr/SorK5WVlVVjB93ahpR3797tvO1Ma+n8/f2dO+Q6dskNCAhQcHBwjcve3t4KCgpyrmnz9/eXh4eHAgMDnet2HOvrcDrHOirHuirH+kfHAEZZWZlyc3Odm6rl5eXp5MmTNYbRT5486bztTJ87t2jRokZZQWhoqC666KLTSgscX2FhYc51jUBjxvGx6eL4CAAA0Li5u7srNDRUoaGhv+v7KyoqlJub6zxnc5zn/dbl/fv313q7Y67pbIKDg53zgOeyubhjjujUuUFJzqK/2q6rPvdHIaDrccyuSnLOpFafdavtulPn5Rwzco4yjt/avNrx+/BbHD+/jpk4X19f5+WQkBC1bt36jLefejkoKIjXowBQz1jFhkbL39/fOdBYnxzFBY6To3MtF3CcRJ2tqMBRJvJbj1X9e+uK40WEpBoFIpJqXSDg6+srDw+P066v7cWCoxzhVI4XJ6eqXlRyNnVRiHChj3GuL9zq4jGqF15U5yiuqM5ut9d6Mu4oszmV4+ezulOLMKr/zDleQNSV6j9z1QtvHD8LtRXeREdHy83NrdbCm9rKc872WAEBAXJzc6PgBgDgUhznV2drvQUAAAAAAGeXnJysfv36mY4BAAAAKCEhQa+99pqee+45zZkzx3Qc4zw8PNS+fXtt377ddJRmwWazKSIiQhEREef8PRUVFTp27FiNIejqwzSnDkM7hmYcl0tKSs5pDZzNZnMOt3t5eTnXAFVfF1R9AKb6OjjHWjbHY1R36qZZtTnbsPypGxvVpvqmSA6OdYHV1wNWX6dVffMkx7oyxzCIY3dVx2OcjWOzL29v7xrlAUFBQWrduvVpZQKOP1cvFWjZsiXDGWj2XP34WH3jP46Pv+L4iFNlp/+ijf/9xHQMoNGqPGVOAQBMc3NzU0hIiEJCQurk8UpKSpzlHqcWKeTl5amiokJ5eXm1FimcaXPx6kUMdru9xrns+ape8OE4569+nfTrTFh0dLRznq+2c/pTZ/VOnQs8dZbwVGeaATybc50PlGoWYZyrM83ZOZw6K3fq/Wv7O099rXLqYzgu11bc8Xs43tNyvDarrRDGzc1Nbdu2PePm1WfbmDooKEi+vr7n/f8OAGAWZR5o9tzd3Rvd7hfVT/ocZSMO1U8iq5/8n/pmefU3sB1vaktnPhmu7Q3vM9335MmTysrKqvX6U0ssTi0tOZPfc5JeH49R/YMMu92ukpISeXl5nVf7YW0fhtSm+gcs1Z2pkKS2D0t8fHwUHh5+2n2rf6B9plzVH6/6/U99kefv7+/cwbD6C8TqHwpJNT8YAgAA589xXnCmHUAAAAAAAMDZlZeX66efftKDDz5oOgoAAACgoKAgJSQkaPr06ZowYYKio6NNRzKua9eu2rZtm+kYOAM3Nze1atVKrVq1uqDHcQzDFBQUqLS01DnIXlxcrJMnT6q0tFT5+fnOtW+OAffqmxpVXz935MiR04bBT11TJ/32wMe5rC37raGU2gZdqq+tcqxDrL5OKzg42LneyjFY41if5VizFRAQIE9PT/n7+9cYzvD09JSvry/rsgDDGsvxMSsrS59//rl69Oih2NjYZnd8XLt2rf72t78pNjZWL7zwgvr168fxEaeJiY7WJ8uXa2fyd6ajAI2am5tbrTMIANAUeHl5ycvLq87KQc6m+rm44zy++mbOtV1XfcbPcc7vuG7fvn1av369srKy1L59e0VFRUk6/Tzfbrfr4MGDNbKcOtNX/e85W+5zdabNqM/mTBuPn01tm5I7nDpvV9tc3qkzojExMc7XJdLp83aOx6w+I1f973E8Xm3XVX+sxjabCgBoXCjzABohX1/fGu13YWFhBtM0X44XP0888YQSEhJMxwEAAE2cr6+vLBbLb+5mAgAAAAAAavfTTz+ppKREvXv3Nh0FAAAAkCQ9+OCDevHFFzVr1iy9+uqrpuMY17VrV7399tumY6CeeXh4yMPDw6WGGAIDAzV//nyNHTvWdBQATdiFHB9XrlypW2+9Vddee63ee++9Grt2NxdDhgzRfffdp/vuu0833nijHn/8cc2YMcN0LDQyixYt0qJFi0zHaJKGDx+uHTt2KDU1tcZALAAAzZnVanWe31/I+yAbN27Uk08+qTVr1mjIkCF69tln1aNHj7qKWS/Wrl2rAQMG6OjRoxdcfAgAQFN35opcAGjmwsLC9Oijj2revHk6duyY6TgAAKCJs1qt8vHxOW2HFAAAAAAAcG6Sk5Pl5+enTp06mY4CAAAASPp1d8YZM2ZoyZIl2rFjh+k4xnXr1k379u1TYWGh6ShADdHR0Tp8+LDpGABQq7feekvXX3+9brnlFn344YfNssjDIS4uTitXrnQWNvTu3VspKSmmYwFN3ubNm/Xvf/9b8+fPp8gDAIA6lJqaqpEjRyo+Pl7l5eVat26dVqxY0eiLPCQpJydHFotFLVu2NB0FAIBGjzIPADiLyZMny9PTU/PmzTMdBQAANAP+/v6UeQAAAAAA8DslJyerV69eslr5CBQAAACNx+jRo9WtWzdNmzbNdBTjunXrpqqqKopN0OjExMRQ5gGgUVq4cKHuueceTZgwQW+88Ybc3d1NRzLOYrFo7Nix+umnnxQaGqp+/fopISFBZWVlpqMBTVZCQoKuvPJKDRs2zHQUAACahJ07d2rkyJHq3r270tLStHLlSm3YsEFXXXWV6WjnLDs7W0FBQRR9AQBwDljJBgBn4efnpylTpujFF19UWlqa6TgAAKCJ8/PzU35+vukYAAAAAAC4pOTkZPXp08d0DAAAAKAGq9WqWbNm6aOPPtLGjRtNxzGqXbt28vX1VWpqqukoQA2UeQBobOx2uxITE/Xoo48qKSlJCxYskMViMR2rUWnTpo1WrVqlRYsWadGiRerdu7dSUlJMxwKanOXLl2vNmjVKSkoyHQUAAJd36NAhjRs3Tt26ddOOHTv0/vvva9OmTRo8eLDpaOctJydHoaGhpmMAAOASKPMAgN8wYcIERUVFKTEx0XQUAADQxPn7+6uwsNB0DAAAAAAAXE5JSYm2b9+uXr16mY4CAAAAnGbYsGEaOHCgEhISTEcxymq1qkuXLpR5oNGhzANAY1JZWamxY8dqzpw5eu211zRp0iTTkRoti8WisWPH6vvvv1dAQIAuv/xyPfPMM6qsrDQdDWgSKisrNXXqVN1222264oorTMcBAMBlZWVlKSEhQZ06ddJXX32ll19+WVu3btWIESNctrTv2LFjCgkJMR0DAACXQJkHAPwGDw8PzZgxQ2+++aa2bdtmOg4AAGjC/P39dfLkSdMxAAAAAABwOT/++KPKy8vVp08f01EAAACAWiUlJWnDhg369NNPTUcxqlu3bpR5oNFxlHnY7XbTUQA0c6WlpRo5cqTeffddLV++XH/+859NR3IJHTp00Lp16zR37lzNnDlTAwYM0MGDB03HAlze66+/rj179mjOnDmmowAA4JKOHTumhIQExcXF6Z133tHChQu1d+9ejR07VjabzXS8C5KdnU2ZBwAA54gyDwA4B3feeae6d++uqVOnmo4CAACasBYtWuj48eOmYwAAAAAA4HK2bNmi4OBgtW3b1nQUAAAAoFZ9+/bVLbfcosmTJ6uiosJ0HGO6deumn376yXQMoIaYmBiVlJTo2LFjpqMAaMZOnDihIUOGaM2aNfrqq6903XXXmY7kUqxWqx5//HGlpKQoPz9f3bt31+LFi03HAlxWcXGxZs6cqbFjx6pDhw6m4wAA4FIKCgo0b948tWvXTkuWLNHTTz+tPXv2aOzYsXJzczMdr07k5OQoNDTUdAwAAFwCZR4AcA6sVqvmzJmjTz75RGvWrDEdBwAANFEhISHKyckxHQMAAAAAAJeTkpKi3r17y2KxmI4CAAAAnNHcuXO1d+9e/etf/zIdxZhu3bopOztbmZmZpqMATjExMZKkw4cPG04CoF9gBrEAACAASURBVLnKyMjQgAEDtH//fq1Zs0ZXXHGF6Ugu6+KLL9a3336rCRMmaMKECRoxYgQb6wC/w/PPP6/c3Fw99dRTpqMAAOAyioqKtGDBArVr105z5szR+PHjtW/fPj3xxBPy8vIyHa9O5eTkKCQkxHQMAABcAmUeAHCO/vjHP2rw4MFKSEiQ3W43HQcAADRBlHkAAAAAAPD7JCcnq3fv3qZjAAAAAGfVsWNH/fnPf9a0adNUVFRkOo4RXbt2lSSlpqYaTgL8f5R5ADBp165d6tevn8rLy/Xtt9+qW7dupiO5PC8vLyUlJenLL7/Upk2bdOmll+rrr782HQtwGTk5OZo/f74mTZqk8PBw03EAAGj0ysvLtXjxYnXo0EFPPvmkxowZo0OHDikpKUkBAQGm49WL7OxsyjwAADhHlHkAwHlISkrS5s2b9fHHH5uOAgAAmqCWLVtS5gEAAAAAwHkqKCjQrl27KPMAAACAS0hMTFRubq4WLVpkOooRrVq1Unh4uLZu3Wo6CuDk4+OjFi1aUOYBoMFt2bJF/fv3V3h4uNatW+csF0LdGDJkiLZt26Yrr7xSgwcP1iOPPKLS0lLTsYBGb9asWfL09NRjjz1mOgoAAI1aVVWVPvjgA3Xu3FkPPfSQhg0bpp9//llJSUkKDg42Ha9e5eTkUOYBAMA5oswDAM5D7969ddtttykhIUEVFRWm4wAAgCYmJCRE2dnZpmMAAAAAAOBSvv/+e1VWVlLmAQAAAJcQERGhRx55RM8884yOHz9uOo4RPXv21Pfff286BlBDTEwMZR4AGtSqVas0ePBgXXbZZfr6668ZhKsnQUFBeuedd/TGG2/o9ddfV+/evfXTTz+ZjgU0WgcOHNCrr76qmTNnyt/f33QcAAAaJbvdrk8++UQ9evTQXXfdpSuuuEK7du3Sq6++qvDwcNPx6l1xcbGKiop4DQMAwDmizAMAztOcOXO0f/9+LV261HQUAADQxISEhDjf4AQAAAAAAOcmOTlZoaGhio2NNR0FAAAAOCcJCQny8PDQs88+azqKET169NAPP/xgOgZQA2UeABrSO++8o+uuu0433XSTPvroI/n4+JiO1OSNHj1aP/zwg/z8/NSvXz+99tprpiMBjdLUqVPVunVr/fnPfzYdBQCARmnlypXq06ePbrrpJnXq1Enbt2/Xm2++qTZt2piO1mAcG1eGhoYaTgIAgGugzAMAzlOHDh10//33a/r06QzaAgCAOuVoKM7JyTGcBAAAAAAA15GcnKw+ffqYjgEAAACcM39/fyUkJGjBggXNsjygR48e2r17twoKCkxHAZwo8wDQUF588UWNGjVKEyZM0NKlS+Xu7m46UrPRvn17rV+/Xo899pjGjRunu+++W/n5+aZjAY3Gjz/+qGXLlikpKYljEwAAp9i4caMGDhyoa665RsHBwUpJSdGyZcvUsWNH09EanKPMw7HuHQAAnB1lHgDwOyQmJio/P18vvvii6SgAAKAJocwDAAAAAIDzR5kHAAAAXNFf/vIXRUZGasaMGaajNLiePXuqqqpKW7duNR0FcKLMA0B9s9vtSkxM1COPPKK5c+dqwYIFslpZyt/Q3NzcNGfOHK1YsUKrV69W79699eOPP5qOBTQKEydO1GWXXaabb77ZdBQAABqN1NRUjRw5UvHx8SovL9fatWu1YsUK9ejRw3Q0Yxzr3CnzAADg3PAOIAD8DmFhYXrkkUeUlJSkY8eOmY4DAACaCMo8AAAAAAA4P3l5efr555/Vq1cv01EAAACA8+Lh4aHExES98cYb2r59u+k4DSouLk4tWrTQ999/bzoK4BQTE6MjR46oqqrKdBQATVBlZaXGjRun2bNn63/+5380efJk05GavUGDBmnr1q1q3bq1Lr/8ci1YsMB0JMCo1atXa9WqVZo3b54sFovpOAAAGLdz506NHDlS3bt3V1pamlauXKkNGzaof//+pqMZl5OTI3d3dwUEBJiOAgCAS6DMAwB+p8mTJ8vDw0Pz5s0zHQUAADQRgYGBcnd3p8wDAAAAAIBzlJycLLvdrt69e5uOAgAAAJy3u+++W127dtXUqVNNR2lQFotFPXr00A8//GA6CuAUGxur8vJyZWZmmo4CoIkpLS3V7bffrrffflsff/yx7rvvPtOR8P+EhYXpiy++0BNPPKHHH39cw4cPV25urulYgBGJiYm69tprddVVV5mOAgCAUYcOHdK4cePUrVs37dixQ++//742bdqkwYMHm47WaGRnZyskJIQCMAAAzhFlHgDwO/n7+2vKlCl68cUXlZaWZjoOAABoAiwWi1q0aEGZBwAAAAAA52jLli2Kjo5WRESE6SgAAADAebNarZo3b56WL1+udevWmY7ToHr27EmZBxqVmJgYSdLhw4cNJwHQlOTm5uqaa67R6tWr9dVXX2no0KGmI+EUNptNiYmJWrFihTZt2qQePXrou+++Mx0LaFCff/651q9frxkzZpiOAgCAMVlZWUpISFCnTp301Vdf6eWXX9bWrVs1YsQISitOcezYMYWEhJiOAQCAy6DMAwAuwP/5P/9HUVFRvHkJAADqTEhIiI4dO2Y6BgAAAAAALiElJUW9e/c2HQMAAAD43a699lr94Q9/0MSJE2W3203HaTA9evTQ9u3bVVJSYjoKIEmKioqS1WqlzANAncnIyNCAAQP0888/a82aNYqPjzcdCWcxcOBAbd26VZ06ddLVV1+tBQsWmI4ENJgZM2boxhtv1GWXXWY6CgAADe7YsWNKSEhQXFyc3nnnHS1cuFB79+7V2LFjZbPZTMdrlI4eParw8HDTMQAAcBmUeQDABfDw8FBiYqKWLl2qbdu2mY4DAACagNDQUGVnZ5uOAQAAAACAS0hOTqbMAwAAAC5v/vz5SklJ0fvvv286SoPp2bOnysvLWW+DRsPDw0NhYWGUeQCoE/v27dNVV12lsrIyffvtt7rkkktMR8I5CA0N1WeffaYpU6bo8ccf14gRI5Sfn286FlCv/vOf/2jLli1sbAkAaHYKCgo0b948tWvXTkuWLNHTTz+tPXv2aOzYsXJzczMdr1HLzMxUq1atTMcAAMBlUOYBABforrvu0qWXXqrJkyebjgIAAJqAiIgIpaenm44BAAAAAECjl5OTo4MHD1LmAQAAAJd3ySWXaNSoUZoyZYpKS0tNx2kQHTt2VFBQkDZv3mw6CuAUExNDmQeAC5acnKzLL79cLVq00Lp16xQbG2s6Es6DzWbT008/rRUrVmjDhg267LLLtHv3btOxgHpht9uVmJio4cOH69JLLzUdBwCABlFUVKQFCxaoffv2mjNnjsaPH699+/bpiSeekJeXl+l4LiErK0thYWGmYwAA4DIo8wCAC2S1WvXcc8/piy++0IoVK0zHAQAALi4qKkpHjhwxHQMAAAAAgEZvy5Ytkn7d0RsAAABwdXPmzFFWVpYWLVpkOkqDsFgs6t27N2UeaFQo8wBwoVavXq3Bgwere/fuWrVqlUJCQkxHwu80cOBApaSkKCgoSH369NGHH35oOhJQ55YtW6bU1FRNmzbNdBQAAOpdeXm5Fi9erA4dOujJJ5/Uvffeq0OHDikpKUkBAQGm47mUzMxMtWrVynQMAABcBmUeAFAHBgwYoKFDh2rSpEmqqqoyHQcAALiwyMhIpaenm44BAAAAAECjl5ycrDZt2ig0NNR0FAAAAOCCRUVF6eGHH9bs2bN1/Phx03EaRN++fSnzQKNCmQeAC/HRRx9p6NChuvHGG/X555/L39/fdCRcoMjISH399dcaM2aMRowYoYSEBNYIo8morKzUjBkzdOedd+qSSy4xHQcAgHpTVVWlDz74QF26dNFDDz2kYcOG6eeff1ZSUpKCg4NNx3NJWVlZCgsLMx0DAACXQZkHANSR5557Ttu3b9ebb75pOgoAAHBhkZGRyszMVEVFhekoAAAAAAA0asnJyerdu7fpGAAAAECdmTp1qjw8PDR37lzTURpEnz59tGvXLuXm5pqOAkiizAPA7/fSSy9pxIgRGjt2rJYuXSp3d3fTkVBHPD09tWDBAr3xxhtauHChhg0bphMnTpiOBVyw9957T3v37tX06dNNRwEAoF7Y7XZ98skn6tGjh+644w716NFDO3fu1Kuvvqrw8HDT8VxWfn6+ioqK1KpVK9NRAABwGZR5AEAdueiii3TffffpqaeeUmFhoek4AADARUVFRamyslKZmZmmowAAAAAA0KhR5gEAAICmxt/fX08++aQWLlyoffv2mY5T7y677DLZ7XalpKSYjgJI+rXM4+jRoyovLzcdBYCLsNvtSkxM1MMPP6xp06ZpwYIFslpZnt8UjR49Whs2bNCOHTvUt29fpaammo4E/G5VVVVKSkrSHXfcoY4dO5qOAwBAnVu5cqX69u2rm266SZ06ddLOnTu1bNkytW3b1nQ0l+dY306ZBwAA5453CwGgDs2cOVP5+fn6+9//bjoKAABwUZGRkZKkI0eOGE4CAAAAAEDjdfToUaWnp1PmAQAAgCZn/Pjxat26dbPYITsiIkIxMTH67rvvTEcBJP1a5lFZWamMjAzTUQC4gMrKSo0fP16zZ8/W4sWLlZiYaDoS6lnPnj21ZcsWxcbG6oorrtCyZctMRwJ+l//93//Vjh079MQTT5iOAgBAndq4caMGDRqka665RkFBQUpJSdGyZcsor6pDWVlZkqSwsDDDSQAAcB2UeQBAHQoLC9PEiROVlJSko0ePmo4DAABcUGRkpCwWi9LT001HAQAAAACg0dq8ebMsFot69uxpOgoAAABQp9zd3TV37ly9++67Sk5ONh2n3vXt21ebN282HQOQ9GuZhyQdPnzYcBIAjV1paanuuOMOLV26VMuWLdP9999vOhIaSGhoqL788kv95S9/0e23365x48apoqLCdCzgnNntds2ZM0cjRoxQ165dTccBAKBOpKamauTIkYqPj1dZWZnWrl2rFStWqEePHqajNTmZmZmyWCwKDQ01HQUAAJdBmQcA1LGJEycqODhYM2fONB0FAAC4IC8vL7Vo0UJHjhwxHQUAAAAAgEYrOTlZHTt2VFBQkOkoAAAAQJ0bPny4rrjiCk2cONF0lHrXp08ffffdd6ZjAJKkiIgIubm5UeYB4Kxyc3P1hz/8QatWrdLKlSt16623mo6EBubm5qakpCQtXbpUb775pq6//nodP37cdCzgnHz88cdKTU3V1KlTTUcBAOCC7dy5UyNHjlT37t2VlpamlStXasOGDerfv7/paE1WZmamgoKC5OnpaToKAAAugzIPAKhj3t7eSkxM1OLFi7V9+3bTcQAAgAuKiopSenq66RgAAAAAADRaycnJ6t27t+kYAAAAQL3529/+pnXr1unTTz81HaVeXXbZZTp69CjlCWgUbDabIiIi+HkEcEZHjx7VwIEDtXfvXq1Zs0ZXXnml6UgwaPTo0frmm2+0e/duXX755dq7d6/pSMBveuaZZ3TzzTfrkksuMR0FAIDfLS0tTePGjVO3bt20Y8cOvf/++9q0aZMGDx5sOlqTl5WVpVatWpmOAQCAS6HMAwDqwb333qtLLrlEU6ZMMR0FAAC4oMjISMo8AAAAAAA4i5SUFMo8AAAA0KRddtlluvXWWzVp0iRVVFSYjlNv+vTpIzc3N23cuNF0FECSFBMTQ5kHgFrt379fV111lUpKSvTtt98yCA9JUs+ePfXdd98pKChI/fr105o1a0xHAs7os88+05YtWzR16lTTUQAA+F2ysrKUkJCgjh076quvvtLLL7+srVu3asSIEbJYLKbjNQuZmZkKCwszHQMAAJdCmQcA1AOr1arnnntOn3zyiVatWmU6DgAAcDFRUVE6cuSI6RgAAAAAADRKhw4dUlZWFmUeAAAAaPKeffZZ7d+/X6+//rrpKPXG19dX3bt31zfffGM6CiCJMg8AtUtJSdHll1+u4OBgrVu3TrGxsaYjoREJDw/X2rVr9cc//lHXXnutli5dajoSUKu5c+dq6NChvLcOAHA5x44dU0JCguLi4vTOO+9o4cKF2rt3r8aOHSubzWY6XrOSmZmpVq1amY4BAIBLocwDAOrJoEGDdO2112rixImqqqoyHQcAALiQqKgo/fLLL6ZjAAAAAADQKG3ZskU2m009evQwHQUAAACoV23bttW4ceM0bdo05efnm45Tb+Lj4ynzQKNBmQeAU3399dcaNGiQunXrplWrVik0NNR0JDRCXl5eeuuttzRlyhTde++9euSRR1g7jEZlxYoV+uabbzRlyhTTUQAAOGcFBQWaN2+e2rVrpyVLlujpp5/Wnj17NHbsWLm5uZmO1yxlZWVR5gEAwHmizAMA6tH8+fOVmpqqd955x3QUAADgQlq3bq2DBw/KbrebjgIAAAAAQKOTkpKizp07y9fX13QUAAAAoN5Nnz5dpaWlev75501HqTfx8fHaunVrky4sgeugzANAdf/+9791/fXXa9iwYfriiy/k7+9vOhIaMYvFosTERP3zn//UP/7xD40cOVJFRUWmYwGSpGeeeUbXXHON4uPjTUcBAOA3lZaWavHixWrfvr3mzJmj8ePHa9++fXriiSfk5eVlOl6zlpmZqbCwMNMxAABwKZR5AEA96tatm+655x5NmTKFN+QBAMA5i4uLU3FxsbKzs01HAQAAAADAqHXr1mnatGn697//7Rym2rJli3r37m04GQAAANAwQkJC9MQTT+i5555TRkaG6Tj14sorr1RlZaU2b95sOgqgmJgYZWdnq6SkRJKUm5urrVu36tChQ4aTAWhoixYt0m233aYHHnhA//rXv+Tu7m46ElzEvffeq9WrV2vdunUaNGiQjh49ajoSmrnNmzdrzZo1mjJliukoAACcVXl5uRYvXqy2bdvqr3/9q+69914dOnRISUlJCggIMB0P+rXMo1WrVqZjAADgUijzAIB6NmvWLJ04cUIvvvii6SgAAMBFxMXFSZIOHDhgNggAAAAAAIZ98sknmjNnjoYPH67Y2Fi1bNlS33zzjbKysvTZZ58pMzPTdEQAAACg3j322GNq0aKFEhMTTUepF5GRkYqLi9M333xjOgqaofz8fG3cuFHvvfeenn32Wb377rvy9vZWly5d5Ovrq+DgYF166aW6++67TUcF0IDmzZunhx56SNOmTdPChQtltbLkHucnPj5emzZtUl5ennr37q0ffvjBdCQ0Y3PnzlWfPn00cOBA01EAAKhVVVWVPvjgA3Xp0kUPPfSQhg0bpr179yopKUnBwcGm4+H/KS0t1cmTJynzAADgPPHOIgDUs8jISD3++OOaM2cOi4oBAMA5iY2NlZubmw4ePGg6CgAAAAAARrVt21Y2m012u12SdPz4cZWWlmrlypUaNmyYwsPDFR4erokTJxpOCgAAANQfLy8vzZw5U0uWLNH27dtNx6kX8fHxlHnAiDvuuEPx8fG6++67NX36dP3nP/9RUVGRDhw4oKKiIkmSm5ubunbtajgpgLq0aNEiJSQknHZ9ZWWlxo8fryeffFKvvvpqky3SQsNo166dvvnmG3Xo0EH9+/fXp59+ajoSmqHdu3dr+fLltR7zAAAwzW6365NPPlHPnj11xx13qEePHtq5c6deffVVRUREmI6HU2RlZclutyssLMx0FAAAXAplHgDQACZNmiQ/Pz/NmTPHdBQAAOAC3NzcFBUVRZkHAAAAAKDZa9eunSoqKmpcZ7fbVVZW5ryclZWl9PT0ho4GAAAANKhRo0ape/fuTXYILz4+Xt9++60qKytNR0EzM2LECFksFlVVVam0tFTl5eWn3cdut+vyyy83kA5AfcjIyNDEiRM1b948TZs2zXl9aWmp7rzzTr3xxht6//339cADDxhMiaaiRYsW+vLLLzV8+HDdcsstevXVV01HQjPz7LPPqkOHDrr55ptNRwEAoIaVK1eqb9++uummm9SxY0ft3LlTy5YtU9u2bU1Hwxk4Nrhu1aqV4SQAALgWyjwAoAH4+fkpMTFR//jHP7Rnzx7TcQAAgAuIi4ujzAMAAAAA0Oydy2ItLy8vzZ8/vwHSAAAAAOZYrVY999xz+vTTT7Vq1SrTcepcfHy8Tp48qdTUVNNR0MzcfffdioqKksViOeN9KisrKfMAmpDExERnedTs2bP1/PPPq6CgQDfccINWrFihFStWaPjw4YZToinx8PDQG2+8oWnTpmnChAmaNWuW6UhoJo4cOaK33npLkyZNktXK6BAAoHHYtGmTBg0apGuuuUZBQUFKTk7WsmXL1LFjR9PR8BscZR5hYWGGkwAA4Fp4RQ4ADeS+++5Tp06dNGXKFNNRAACAC6DMAwAAAACAX18f22y2M95us9k0Y8YMRUVFNWAqAAAAwIyBAwfq2muv1cSJE1VVVWU6Tp3q2rWrWrRooXXr1pmOgmbG3d1d06ZNO2uZR0BAgDp06NCAqQDUl71792rJkiUqLy93Xjdx4kR16dJFO3bs0Pr163XVVVcZTIimbPr06Xr99dc1c+ZMPfjgg03ufA6NzwsvvKDQ0FCNGjXKdBQAQBO2bds2ffXVV795v9TUVI0cOVJXXHGFysrKtHbtWq1YsUI9e/ZsgJSoC+np6QoICJCfn5/pKAAAuBTKPACggdhsNiUlJemjjz7S+vXrTccBAACNHGUeAAAAAABIbm5uCg8Pr/U2m82mmJgYPfzwww2cCgAAADBn/vz5Sk1N1XvvvWc6Sp2yWq268sortXbtWtNR0AyNGTNGERERtRZ6WCwWXXHFFWct+wDgOqZOnSqrtebyebvdriNHjmjWrFnq2rWroWRoLu6991598MEHWrJkiUaNGlWjWAaoS3l5eXrttdf06KOPysPDw3QcAEATtXPnTl111VW6+eablZmZecb7jBw5Ut27d1daWppWrFihDRs2qH///g2cFhcqPT1dERERpmMAAOByKPMAgAY0dOhQDRkyRBMnTpTdbjcdBwAANGKOMg/OGQAAAAAAzd2Zdj+urKzUK6+8Ik9PzwZOBAAAAJjTrVs3jR49Wk8++aRKSkpMx6lTV199tdasWcMu9Whw7u7utQ74O26Lj483kApAXUtJSdGHH35Ya3mC3W7X+PHj2agNDeLmm2/W559/rk8//VTXXXed8vPzTUdCE/TSSy9Jkh544AHDSQAATdWhQ4c0cOBAFRQUqKKiQnPmzKlxe1pamsaNG6du3bppx44dev/997Vp0yYNGTLEUGJcqIyMDEVGRpqOAQCAy6HMAwAa2HPPPafk5GQtW7bMdBQAANCItWnTRiUlJTp69KjpKAAAAAAAGNWpUye5u7vXuM7d3V233nqr/vjHPxpKBQAAAJgze/ZsZWdnOwf0mooBAwbo+PHj2r59u+koaIbuu+8+tWzZ8rTry8rK1K9fPwOJANS1SZMmyc3Nrdbb7Ha7Kisrdd111+nHH39s4GRojgYOHKjVq1crNTVVgwcPVk5OjulIaEJKSkr04osv6i9/+YsCAwNNxwEANEHZ2dkaPHiwjh8/roqKCpWXl+uVV17R/v37lZ2drYSEBHXs2FFfffWVXn75ZW3dulUjRoyQxWIxHR0XICMjQxEREaZjAADgcijzAIAG1r17d/3pT3/S1KlTVVpaajoOAABopOLi4iRJBw8eNJoDAAAAAADT2rVrd9rCLqvVqueff95QIgAAAMCsyMhIPfroo5ozZ46OHTtmOk6d6d69u4KCgrR27VrTUdAMeXp6aurUqbJaay6rtVgs6tOnj6FUAOrKqlWr9PXXX6u8vPyM96msrFRRUZFuvPHGBkyG5qxXr17atGmTjh8/rv79++vw4cOmI6GJePvtt5Wbm6uHHnrIdBQAQBN08uRJDRkyRGlpaTXOry0Wi0aPHq3WrVvrnXfe0UsvvaS9e/dq7NixstlsBhOjrqSnpysyMtJ0DAAAXA5lHgBgwOzZs5WRkaGFCxeajgIAABqp6Ohoubu7U+YBAAAAAGj22rVrV2MhmM1m09NPP63WrVsbTAUAAACYlZCQIC8vLz3zzDOmo9QZm82mK6+8kjIPGDNu3Di1bNmyxnUdO3ZkR3vAxdntdk2cOFFubm5nvI9juLB9+/aaPXt2Q0UD1LZtW61fv17u7u666qqrtHv3btOR0AQsXLhQd911l8LDw01HAQA0McXFxbruuuu0c+fO04ryysvLtXHjRj3yyCPau3ev7r///rOeg8P1ZGRkKCIiwnQMAABcDmUeAGBATEyMJk2apFmzZuno0aOm4wAAgEbIZrMpOjpaBw4cMB0FAAAAAACj2rZtK7vdLkmyWq2Kjo7WX//6V8OpAAAAALP8/Pw0bdo0vfTSS9q3b5/pOHXm6quv1tq1a52vAYCG5OXlpcmTJzuH+t3d3dW/f3/DqQBcqA8++EBbt25VRUXFabe5u7vLYrGof//+Wr58uXbv3q3Ro0cbSInmLCIiQmvWrFF0dLSuuOIKffvtt6YjwYWtWLFCP/30kx5++GHTUQAATUx5ebluvfVWbd68+bQiDwc3Nzft2LFDnp6eDZwO9a2qqkqZmZmUeQAA8DtQ5gEAhiQkJCg4OFhPP/206SgAAKCRatOmjQ4dOmQ6BgAAAAAARrVv397556qqKr388sssAAMAAAAkjR07Vu3bt9dTTz1lOkqdGTBggLKzs7Vjxw7TUdBMTZgwQQEBAZJ+fQ3ar18/w4kAXIiKigpNnTpVFovFeZ3FYpHNZpO3t7fGjBmj7du3a/Xq1brhhhtq3A9oSMHBwfryyy/Vt29f/eEPf9Dq1atNR4KL+vvf/66BAwfq0ksvNR0FANCE2O123X///VqxYkWtJXkO5eXlWr58OeVkTVBWVpYqKioUGRlpOgoAAC6HMg8AMMTb21uzZs3Sa6+9ppSUFNNxAABAIxQXF6eDBw+ajgEAAAAAgFF+fn4KDg6WJN1www26/vrrDScCAAAAGgc3Il3YBwAAIABJREFUNzfNnj1b77//vjZt2mQ6Tp3o0aOHAgMD9fXXX5uOgmbK19dXkydPlsViUWVlJWUegItbsmSJ9u/fr6qqKrm5uUn6dS3GggULlJWVpVdffVWdO3c2nBL4la+vr5YvX65hw4Zp6NCh+uKLL0xHgovZu3ev/vvf/+rRRx81HQUA0MQ8+OCDeuutt1RZWfmb93Vzc9OUKVMaIBUaUkZGhiQpIiLCcBIAAFyPm+kAANCcjRo1SosWLdKkSZNo0QYAAKeJi4vT+vXrTccAAAAAAKBOnDhxQoWFhSooKFBhYaHKyspUWFh42n2q8/DwkK+vr0JCQlRQUKDbb79dKSkpslgsCgoKkp+fn/z8/OTj49OQTwUAAABoNG655RbFx8crISFBa9euNR3ngtlsNl199dVatWqVHnzwQdNxUM/Wrl2rrKws0zFOExkZKS8vL9ntdm3btk3bt283HemcuLm5aejQofLw8DAdBQYVFxfriy++OKchu6autLRUkydPlt1ul8ViUZcuXTRs2DB1795dFovlnIsSIiMjFR8fX89pgV+5u7vrrbfe0gMPPKCbb75Z7733nm655RbTseAiXnjhBbVt21bDhg0zHQUAmpzy8nIVFBRIkk6ePKnKykqVlpaqqKjIeZ/8/HxVVFSc8TFyc3Nlt9vPeLuXl5e8vb3PeLuvr2+N13uOzRC8vb3l5eXl/Py0rk2fPl2vvPLKWbNLv36uW1VVpYqKCq1fv17Hjx9XixYt6jwPzEhPT5f06+sjAABwfijzAACDLBaL/v73vys+Pl7/+c9/dPPNN5uOBAAAGpG4uDgdOnRIVVVVslqtpuMAAAAAAOB08uRJpaWl6fDhw8rOzlZOTo6ysrKUlZWlnJwc5eTkKDs7WydPnlRhYeFppR2/15/+9Kdar69e7hEQEKCQkBCFhYUpLCxMISEhCg0NVVhYmMLDwxUTE6OoqCi5u7vXSSYAAADAtL/97W/q16+fli9frhtvvNF0nAs2ZMgQTZs2TRUVFXJzY4ljU1VeXq5BgwapqqrKdJSzuv32201HOC+ffvqphg4dajoGDPr444915513mo7R6Njtdv3000/66aefzvt7vX18VFRH720B58Jqteq1116Tj4+Pbr/9dr377rsaPny46Vho5E6cOKE333xTc+fOZZ0ZgGaroqJCJ06ccH7l5+crNzdXxcXFKioqUm5uroqKilRcXKy8vDwVFBSouLhY+fn5ys/PV1FRkQoLC1VRUaH8/HxJv13Q0Vg5ij9sNpsCAgKcn6X6+PjIx8dHAQEB8vPzk7e3t/z9/RUQECBvb2/5+voqMDBQPj4+8vPz0+eff67nnnvO+bhubm6yWq0qKyuT9Ot5S2RkpDp37qyLL75YHTt2VMeOHdWlSxeKPJqYjIwM50YbAADg/PBJFwAYdvnll+v222/X448/ruuuu06enp6mIwEAgEYiLi5OZWVlysjIUFRUlOk4AAAAAIBmpKKiQgcOHNDOnTu1Z88epaWl6eDBg0pLS1NaWppOnDjhvK+Xl5ezMKNVq1YKDQ1V+/btFRISosDAQPn6+srX11dBQUHOP/v7+8tqtSowMLDG3xsQECCbzea8XFxcrJKSkhq58vPzVVlZqZMnTyo/P99ZFpKbm6uCggKdPHlS2dnZyszMVGpqqrNYJCcnx7ljlM1mU0REhFq3bq3WrVsrNjZWbdq0UadOndS5c2eFhYXV878wAAAAUHf69u2r2267TZMnT9Z1113n8sV1Q4YM0cMPP6zk5GT169fPdBzUk6qqKlVVVemJRf9U38HXmo7j8srLynTHJXEuOWSGulVRUSF3dw+9l3rQdJQmYd3yD/XyU4+bjoFmyGKxaOHChbLZbLr99tv1z3/+U6NGjTIdC43Y4sWLZbPZdM8995iOAgAXzG63Oz/bc3zml5WVpePHjys3N7dGYUf1ywUFBbU+nre3t7y9vZ1lFt7e3s7PML29vRUaGlqj2MJRfCGdXoohSX5+fnJ3d5e7u3uNYgNPT0/5+Pic8Xn5+PicdV7ot4pDcnNznZ91VlVVKS8vT5JUWFiosrKyWktIysvLVVBQ4PxstXqBSUZGhoqLi52frxYXF6uwsFB5eXlnLN602Wzy8/NTcHCwwsLCFBkZqRYtWig4OFgtWrSQp6enioqKdOjQIZWUlCgsLEy+vr5nfE5wHenp6YqMjDQdAwAAl0SZBwA0AvPnz1enTp304osvauLEiabjAACARqJNmzaSpIMHD1LmAQAAAACoF1VVVdqzZ49SUlK0bds27d69W7t27dK+ffucOypFR0crLi5OrVu31vXXX6/Y2FjFxsaqdevWiomJcS5cqw+OxXXVhYaG/q7HqqysVFZWlg4dOuQsJXGUlHzxxRfav3+/c4FbcHCws9ijU6dOuvTSS9WrVy+FhIRc8HMCAAAA6sO8efPUuXNnLVmyROPHjzcd54J07txZ0dHRWrlyJWUeAACg2bJYLHrhhRdktVo1ZswYSaLQA7WqqKjQokWL9MADD9Tr+/UAcKHy8vL0yy+/6JdfftGRI0eUnp6u7OzsGoUdjgKPyspK5/dZrVaFhIQ4SyMcX9HR0TUuBwUF1bjs7++v4OBgg8/4/Pj7+5/19oZ8LqWlpcrPz9fWrVsl/fo565lKVPbt26fc3FwdP35c2dnZp5Wq+Pj4KCQkRBEREc4NIsLCwhQeHq6IiAhFR0crJiZGERER8vDwaLDniPOTkZFBmQcAAL8TZR4A0AhER0frr3/9q2bOnKk//elPCg8PNx0JAAA0ApGRkfL09NTBgwcVHx9vOg4AAAAAoAnYtWuXNm/erO+//14pKSn68ccfVVBQIHd3d3Xu3FkXXXSRbrvtNl100UXq1KmTOnXqVGNHKVdms9kUERGhiIiIMw4EHjlyRLt27dKePXu0c+dO7d69WytXrtThw4clSbGxserZs6d69eqlnj176vLLL3epRYAAAABoutq0aaPx48fr6aef1l133eXyQ3yDBw/WypUr9dRTT5mOAgAAYIzFYtHzzz8vd3d3jRkzRjabTXfddZfpWGhkPvzwQ6Wnp+vBBx80HQVAM1ZYWKj9+/fr0KFD+uWXX5Senq60tDQdOXJER44c0eHDh2uUPPj4+Cg6OlqhoaEKDQ1V+/btFR8f7yx7qF78EBoaKqvVavDZNT+enp7y9PTU4MGDz/t7i4uLaxS0OApbjh496rx+69atysrK0tGjR53FLRaLRa1atVJ0dLQiIyMVGxurqKgoRUVFKSYmRnFxcYqJiZHNZqvrp4tzkJGRoYiICNMxAABwSZR5AEAjMWXKFC1dulQzZszQK6+8YjoOAABoBKxWq2JiYnTgwAHTUQAAAAAALqiqqko7d+7UN998ow0bNmjNmjU6fPiw3N3d1aFDB/Xq1Uu33XabevXqpV69esnb29t0ZOMcC8JOXZiWm5urbdu2KSUlRSkpKXr33Xc1ffp02e12tW3bVkOGDFF8fLwGDBig2NhYQ+kBAADQ3E2bNk1Lly7V/PnzNWvWLNNxLsiQIUN03333qaCgoMkUDAIAAPxe8+bNk9Vq1ejRo2WxWHTnnXeajoRGZNGiRbrxxhsVFxdnOgqAJu7EiRPav39/rV8HDhyQ3W6XJHl5eSkyMlJt27ZVRESEevXqpYiIiBrXRUREyGKxGH5GqA/e3t6KjY09589MHT9X6enpysjIcP53165dWr16tdLS0pxFMO7u7oqJiVHbtm1P+2rXrp2CgoLq86k1a+np6erfv7/pGAAAuCTKPACgkfDx8dHMmTN1//33a8KECbrkkktMRwIAAI1AmzZtdPDgQdMxAAAAAAAuIisrS5999pk+++wzrVq1Srm5uQoODlZ8fLweeughXXXVVerVq5fc3d1NR3UpQUFBuvLKK3XllVc6r8vJydE333yjdevWad26dXr99ddVUVGhTp066frrr9fQoUPVv39//q0BAADQYFq2bKknn3xS06dP1wMPPODSRXPXXHONysvLtW7dOl1//fWm4wAAABg3d+5cVVZWatSoUbJarbr99ttNR0IjsGPHDm3YsEFfffWV6SgAmoiioiLt3LlTO3fu1I4dO7Rr1y7t2LFDBw4cUFlZmaRfyxocBQoXX3yxbrjhBufluLg4+fj4GH4WcCXBwcHOzSfOJDMzUwcPHqxRILNnzx7997//1S+//KKqqipJUosWLdShQwd16dJFnTt3dv43Li5OVqu1oZ5Sk5SRkaGIiAjTMQAAcEmUeQBAIzJ69Gi9/PLLeuyxx7Rq1SrTcQAAQCMQFxenffv2mY4BAAAAAGjEUlNT9fHHH+uTTz5RcnKyPDw8NGDAAM2YMUMDBgxQ165dWZxUD0JCQnTTTTfppptukiTl5+dr48aNWr16tT777DO98ML/Ze++46qs//+PPw/jsJeyDkOGCyRRRii4ciSuRATcaeLKHGThJleammRuS0vNXUqm5jb9uM1CUwMxTRDwHDaiIMo6vz/6eb6RW8abc3jeb7dz45zrXIfzOBdSwHWd1/UlTE1N0blzZ/To0QM9e/aEhYWF4GoiIiIi0nTjx4/HmjVrEBUVhY0bN4rOeW02Njbw8PDA0aNHOcyDiIiI6P9buHAhHjx4gHfffRcGBgbo2bOn6CQSbMWKFahfvz46duwoOoWI1MyjR49w9epVXL58WTWw49q1a0hKSoJSqYRUKkWjRo3g7u6Ovn37okGDBqqBHXxDP1U3Gxsb2NjYoEWLFk/cV1RUVG7Qx/Xr1xEfH4/Dhw/jzp07AP4ZQOPm5gZ3d3d4eHjAzc0NXl5ecHFxqe6XopbKysqQnp7O730iIqLXxGEeREQ1iJaWFpYuXYpWrVphz549/CM7ERERwcXFBUePHhWdQURERERERDVMamoqYmJisGPHDpw5cwbW1tYIDAxEZGQkAgMDYWpqKjqx1jExMUFgYCACAwOxcOFCJCUl4fDhwzh69CjGjh2LUaNG4e2330ZYWBhCQkJgZGQkOpmIiIiINJBUKsVnn32GPn36YNy4cXjzzTdFJ722zp074+DBg6IziIiIiGoMiUSC5cuXo6ioCH369MFPP/2ELl26iM4iQfLz87FlyxbMmjULEolEdA4R1WBFRUW4ceMGYmNjy10ePnwIqVSKBg0awMPDA4MHD4aHhwdcXV3h4eEBfX190elEL/R48EyjRo2euO/evXu4ceMGbt26hbi4OMTHx2PLli24fv06SktLYWpqiqZNm8LHx0d1cXd354ky/iMzMxPFxcWws7MTnUJERKSWOMyDiKiG8ff3R1hYGD766CMEBgZCT09PdBIREREJ5OLigpSUFJSUlEBHh7/CERERERER1WZFRUX4/vvv8c033+D06dOwsLBAWFgYFixYgFatWvFg3RrG2dkZI0eOxMiRI3Hv3j3s2rULmzdvRnh4OMaPH4/Q0FCMGTMGXl5eolOJiIiISMOEhoaidevWiIiIwJkzZ9T2d4UuXbpg8eLFuH37NpycnETnEBEREdUIEokEX331FYqLixESEoKDBw+iTZs2orNIgI0bN6K4uBhDhgwRnUJENUhZWRni4uJw6tQpnD17FhcvXsRff/2F0tJSWFhYwNvbGwEBARgzZgy8vb3RsGFDDi4gjWVqaqoa0hEWFqZaXlBQgMuXL+PixYu4ePEiTpw4gdWrV6O4uBgmJiZo3rw5fH190aZNG7Ru3RpWVlYCX4V4crkcACCTyQSXEBERqSe+E4yIqAaKjo6Gm5sbVq5ciY8++kh0DhEREQnk4uKCkpISpKamwtnZWXQOERERERERCZCeno6vv/4aq1evRnZ2Nnr16oWffvoJgYGBkEqlovPoJZiammLIkCEYMmQIFAoFtm/fjnXr1uHbb79F27ZtMX78ePTq1Qva2tqiU4mIiIhIQyxduhS+vr748ccfERISIjrntbRt2xbGxsY4ePAgRo0aJTqHiIiIqMbQ0tLCN998gwcPHqBHjx44duwYfHx8RGdRNfvqq6/Qv39/1KlTR3QKEQlUXFyM33//HadPn8apU6dw+vRp5ObmwtTUFP7+/ggODoa3tze8vb3h4uIiOpeoRjAyMkJAQAACAgJUyx4+fIirV6+qBnwcO3YMS5cuRVlZGdzd3dG6dWu0adMGbdq0qXXHcysUCgCAnZ2d4BIiIiL1xNF5REQ1kKOjIz788EPMnj0b6enponOIiIhIIFdXVwBAYmKi4BIiIiIiIiKqbqmpqRg5ciScnJywfPlyDB06FImJifjhhx/wzjvvcJCHmpLJZJgwYQKuXr2Ko0ePwszMDH369EGDBg2wZs0alJSUiE4kIiIiIg3g5eWFAQMGYNKkSXj06JHonNeip6eHt956CwcOHBCdQkRERFTjaGtrY9OmTWjVqhW6dOmCa9euiU6ianTy5ElcvXoVo0ePFp1CRAIkJCQgOjoanTp1grm5OQICAvDFF19AKpVi5syZiI2NRU5ODg4ePIh58+YhJCSEgzyIXkBfXx9vvvkmRo0aha+//hp//PEHcnJysG/fPgQFBSE+Ph4jRoyAi4sLHB0dMXToUOzYsQN5eXmi06ucXC6HsbExTExMRKcQERGpJQ7zICKqoaZOnQpjY2PMnj1bdAoREREJZGVlBWNjYw7zICIiIiIiqkWys7MxceJENGrUCEeOHMHy5cuRnJyMzz77DPb29qLzqBJ17NgRe/bswfXr19GtWzeMGzcOHh4e2LlzJ5RKpeg8IiIiIlJzCxYsQFpaGlasWCE65bV17doVR48eVduBJERERERVSSqVYufOnXB3d8fbb7+NpKQk0UlUTVavXg0/Pz/4+vqKTiGiavDw4UMcOnQI48aNQ/369eHu7o4FCxbAxsYGy5YtQ0JCAtLS0rBz505ERETA29sb2traorOJ1J6ZmRm6deuG+fPn4/Tp07h79y5OnDiBUaNG4datWxgwYAAsLS3RoUMHREdHa+xwNYVCATs7O9EZREREaovDPIiIaihjY2PMnTsXa9aswdWrV0XnEBERkUDOzs4c5kFERERERFQLKJVKrFixAvXr18d3332H+fPn4/r16xgxYgQMDAxE51EVatCgAVauXIlr167B19cXffv2RcuWLbl/gIiIiIgqxN7eHh999BHmzp2LrKws0TmvpVu3bigoKMCZM2dEpxARERHVSIaGhti9ezfq1q2LwMBAZGRkiE6iKpaZmYldu3Zh9OjRolOIqAoVFxdj9+7dCAkJgaWlJbp06YLTp0+jX79+OHPmDNLT07FlyxYMGzYMjRs3Fp1LVCvo6+ujbdu2iIqKwokTJ5CRkYFNmzbB3t4eCxcuRJMmTVC/fn1MnTpVowZ7KBQKyGQy0RlERERqi8M8iIhqsCFDhsDb2xsffvih6BQiIiISyMXFhcM8iIiIiIiINNzt27fRqVMnTJgwAWPGjMHff/+NiIgISKVS0WlUjVxdXbFlyxZcvHgRurq68PX1xbx581BSUiI6jYiIiIjU1OTJk2FgYIA5c+aITnktzs7OcHNzw4EDB0SnEBEREdVYFhYWOHToEMrKytC9e3fk5+eLTqIqtGbNGhgYGKBPnz6iU4ioCly8eBERERGwt7dH7969kZeXh8WLFyMlJQWXLl3CvHnzEBAQAG1tbdGpRLWehYUF+vXrh02bNiEtLQ1nz55Fnz59sHXrVjRp0gQtWrTAypUrkZ2dLTq1QpKTk+Ho6Cg6g4iISG1xmAcRUQ2mpaWFJUuW4Pjx49i7d6/oHCIiIhKEwzyIiIiIiIg02/bt2+Hp6Yn09HScP38e8+bNg4mJiegsEqhZs2Y4ceIE5s2bh7lz5yIgIAApKSmis4iIiIhIDRkbG2POnDlYvXo14uLiROe8lq5du3KYBxEREdEL2Nra4vDhw0hJSUFQUBCKiopEJ1EVKCsrw7fffouhQ4fC0NBQdA4RVZKCggKsWrUKTZs2hY+PDw4dOoSIiAgkJSXh6NGjGDlyJBwcHERnEtFzaGtrw9/fH/Pnz0diYiJ++eUXuLu7Y8qUKbCzs0NoaChOnTolOvO1pKamcpgHERFRBXCYBxFRDRcQEIDQ0FBMmDABjx49Ep1DREREAnCYBxERERERkeZauHAhBgwYgPDwcMTGxsLHx0d0EtUQ2traiIyMxMWLF1FYWAh/f39cvXpVdBYRERERqaHw8HB4enpi6tSpolNeS7du3RAXF4ekpCTRKUREREQ1mouLC/bt24cLFy4gPDwcSqVSdBJVsuPHjyMxMRHvvfee6BQiqgR3797FjBkz4OTkhMjISAQEBODs2bNISEjA9OnT+eZ5IjWlpaWFDh06YMOGDVAoFFi7di3S0tLQtm1btGjRAnv27BGd+EpSUlI4UIiIiKgCOMyDiEgNLFy4EHfu3MGqVatEpxAREZEA9erVQ1paGgd7ERERERERaRClUomxY8di+vTpWLZsGb788kvo6ekJ65FIJK91H1U9d3d3nDp1Co0aNUKbNm1w8uRJ0UlEREREpGa0tLQQHR2NvXv34siRI6JzXlm7du1gbm6udm90ILFy0tOwdOJYDG/jhdAmDghxs0OIm53oLCK1x+8toprPx8cHP/zwA77//nvMnDlTdA5VsvXr18PPzw+enp6iU4ioAoqKivD555+jfv36WLlyJcaPH4/k5GR8/fXX8Pf3F533VNyX+Gq4TegxY2NjDB48GKdPn8a5c+dgb2+PXr16wd/fH2fOnBGd90IPHjxATk4OhwsRERFVAId5EBGpARcXF0yYMAFz5sxBVlaW6BwiIiKqZo6OjlAqlbhz547oFCIiIiIiIqokixYtwpo1a7Bjxw6MHTtWdA7VcObm5jhw4ADefvttBAcH49atW6KTiIiIiEjNtG/fHj169MDEiRNRWloqOueV6OrqonPnzti7d6/oFFIjy6aMh8zJBUt+Po5tf9zCxOXfiE4i0gj83iJSD127dsX69esxd+5crFixQnQOVZK8vDzs2rULQ4cOFZ1CRBVw9uxZeHt7Y/bs2fjggw9w69YtzJgxA5aWlqLTiKiKtWzZEj/++CMuXLgAY2NjtGnTBiNHjkReXp7otGdKSUkBAA7zICIiqgAO8yAiUhPTpk2DgYEBZs2aJTqFiIiIqlm9evUAAMnJyYJLiIiIiIiIqDIcO3YM06dPx6JFixAcHCw6h9SEnp4eNm3ahPr16yM4OBgFBQWik4iIiIhIzURHRyM+Ph4bNmwQnfLKevbsiRMnTuDu3buiU0hNJMReQPDIcTA2M4euVIqWb3dDTIJcdBaR2uP3FpH6GDRoEGbOnIkPP/wQBw4cEJ1DlWDbtm1QKpXo16+f6BQieg1KpRKLFy9Gu3bt4OjoiD///BOffvopzMzMRKcRUTXz9fXFkSNHsHXrVuzZswe+vr64cuWK6KynSk1NBQA4ODgILiEiIlJfHOZBRKQmjI2N8emnn+Krr77C1atXRecQERFRNbK2toa+vj6HeRAREREREWmA/Px8DBw4EH369EFERESVPY9EIoFEInmp5Y9vP75PIpFg+PDhL7wPAP788090794dJiYmMDExQZcuXfDnn38+9Tn//vtv9O7dGxYWFs/se95ruXbtGlq2bAlDQ0O0adMGN2/eRFxcHFq0aAFjY2O0b9/+qb87v0pjSkoKgoKCYGJiAhsbGwwaNAjZ2dmvvW0rm76+Pnbu3Am5XI6oqKgqfS4iIiIi0jyNGzfGqFGjMH36dNy7d090zivp3r07AODgwYOCS0i0344dxrT+PdHP0xnvd/DD+vkzUViQX26dEDc7FBcVoZ+nM0Lc7J64/HfdEDc7pCUn4fNxwzDYz63ceo+vp/59A1P69kD/5q6IGtgLaclJSLl5HVP6dMcArwaYMTgUWYo7r937vAai6sDvLSLNNHPmTISHh6Nv37489lgDrF+/HiEhITA3NxedQkSvSKlU4sMPP8SkSZMwd+5c7N+/Hy4uLkKbuC/x/+zZswetWrWCvr4+nJ2dMWHCBNy/f/+pz/Gy+xJFbxMAuHz5Mjp37gwjIyOYmpqia9euOHToULl1/vzzT3Tr1k3V0q1bt9fej/rv1/u///0PALB9+/ZyyytzG+Tl5WHChAlwdXWFvr4+ZDIZ3nvvPVy4cKHc53mZr68o/fr1w9WrV+Hs7IyAgADVdqtJUlJSoK+vj7p164pOISIiUlsc5kFEpEaGDh0KLy8vTJgwQXQKERERVSOJRAIHBwcO8yAiIiIiItIAy5Ytw8OHD7Fs2bIqfR6lUvnSyx8vUyqVqss333zzwvtu3ryJt99+G++88w5u3bqFpKQkDBo0CEFBQaoz9Pz7c4wePRqRkZGQy+XYv3//K7+WWbNmYf369VAoFGjWrJnqzJIbNmzAnTt34O7ujo8//rjcY1+1cfjw4Rg9ejQUCgV+//13PHjwAJGRkS/chs9bXtnq1auHuXPnYtWqVeVeAxERERHRy5g9ezaKi4sRHR0tOuWVmJubo3Xr1ti7d6/oFBJswQfvoX1wH3x34RoW/PAz8vPu4ptPyw87jEmQqz7+9/Jfj5etmTUFQeGj8c3JPzB9zeYn7v9+xRcY+9mX+PbUH3B288CSiWOxfVk0xs5fgm9OXoRD/YbYsGB2hXqf1UBUHfi9RaS5Vq5cCR8fH/Ts2RMZGRmic+g1xcXF4cKFCxg6dKjoFCJ6DXPmzMHq1avxww8/YPLkyVU+HP5lcF/i/wkKCsKQIUOQk5OD8+fPIycnB+PGjXvqc7zKvkSR2+Svv/5C3759MWnSJGRmZuL8+fMoKChAly5dVOvcvHkTXbt2RWhoKG7duqUamtGlSxfcvHnzlV97SUkJ6tevj5ycHLz11lsA/hlWIZfLYWFhgfz8/ErdBkOGDIG5uTnOnTuHvLw87N+/Hzdv3kSLFi3KbYuX+fqKZGVlhf379yMwMBA9e/bE9evXRSezNzGwAAAgAElEQVSVk5KSAkdHxxrx3y0iIiJ1JVFW11FlRERUKc6cOYM2bdpg7969qrOOEBHVRBKJBN9//z369OkjOoVII3Ts2BENGjTA119/LTqFiIiIiIg00ObNmzFs2DA8evRIdIrGc3V1RUhICBYtWlTlzyWRSJ56wN3Tlj9r3efdN2jQIHh6emLSpEnllq9btw6XL1/G0qVLy32O48ePqw7celWPz+DUrl07AIBcLoe9vX25ZampqfDx8UF6evprN/70008ICgpSLbt+/To6dOiAO3fKnwH2VbZtVSgqKoKjoyPGjx+P6dOnV/nzERERUe0VFBQEU1NTbNq0SXQKVaLo6GjMmDEDCQkJqFevnuicl/bll19i9uzZyMzMhK6urugcqqBHjx5BX18fk1euh1/HwNf+PPn38jDmbX9892t8ueUhbnZPHTDwtOUhbnaYs3EnPPwCnvocIW52mLMpBh5v+gMAcjLSMaKtV7ll2WkKTAwJxLozV16793kNL1JcVIR+ns5P/F5Ltc/mzZsRHj4M268mVejz8HvrHyf3xGBV1Mco4t9NSc1lZ2ejZcuWsLGxwS+//AI9PT3RSfSKIiMjERMTg7///htaWjynL2keTf77Q2xsLFq0aIHly5dj9OjRonPK4b7Ep8vNzUWDBg2QnZ39xHNUdF9idW2TAQMGoGvXrnj33XfLtbq5uam6Bg0ahDfffBMRERHlHrt48WJcunSp3Pfjy772adOmwd7eHmPGjFEtW7BgAW7fvo3Vq1dX6jYwMTHB7du3UadOHdWyxMREuLq6Pnd/7bO+vqIVFxejdevWUCqV+PXXX2vM8IxRo0bh5s2b+OWXX0SnEBGRhqlNxyvyt3giIjXTqlUr9O7dG5GRkSguLhadQ0RERNXE0dERKSkpojOIiIiIiIioAm7cuIHExET07t1bdEqlOHr0KPr27fvE8u7du+PIkSNPLPfz86vQ83l7e6uu29raPrHMzs4OmZmZFWps27ZtudvOzs5QKBQV6q4KUqkUPXr0wNGjR0WnEBEREZEaGj9+PBwcHBAVFSU65ZUEBQUhLy8Pp06dEp1CNYixqRny8+5W+PM08PR67v2uTZqqrltYWj2xrI61De7lvPiNQM/rfVEDUXXi9xaRZqlbty727t2LuLg4DBkypFoGElPlKSkpwZYtW/Dee+9xkAeRGoqOjoaPjw/ef/990SnVTh32JT6NhYUFcnJynnpfRfclVtc2OXbsGDp27FhuWePGjcv9DHD06FH06tXriccGBwc/dR/ky7z2oUOHYv369eWWrVu3DiNHjiz3vJWxDfz9/dGzZ08cPHgQJSUlAAAXF5cX/pzzvK+vSLq6ulizZg1+++03HD9+XHSOSkpKChwcHERnEBERqTX+Jk9EpIY+//xzJCUlYfny5aJTiIiIqJrUq1cPycnJojOIiIiIiIioAq5fvw4A8PT0FFxSObKzs+Hs7AyJRFLuYmtri6SkpCfWNzQ0rNDzmZiYqK4/PmD5v8v+e3DWqzZaWFiUu62np1djD2xv3rw5EhISRGcQERERkRqSSqX47LPPsHnzZvz222+ic16aq6srPDw8sHv3btEpJMi9nGysivoYI9p5I8zDESFudghxs6uUz62nb/Dc+w2MjFXXJf//d9L/Lvvv74+v2vuiBqKqwu8totrBzc0N27dvR0xMDBYsWCA6h17Bzz//jPT0dLz77ruiU4joNRw/fhwDBw6ERCIRnVLt1GFfYmZmJoYPHw4HBwfo6OioGp+lovsSq2ubZGVlwdLS8oXrPB568m8ymQxZWVlPLH+Z196wYUMYGBjg8uXLAICTJ0/C1NQUXl7/N2CvsrbBjh074OfnhzFjxqBOnTpo164dli5dWu6kya/69RWtWbNmeOONN/DLL7+ITlFJTU2Fo6Oj6AwiIiK1xmEeRERqyNXVFR9//DFmzZpVI88ISERERJXP0dERt2/fFp1BREREREREFfDgwQNoaWlV+EC0lyWRSPDo0aNyyyrzLEOWlpbIycmBUql84vLgwYNKe56KqKrGqt62L8PY2Bj5+fnV+pxEREREpDlCQ0PRunVrRERE1NgBdk8TEhKCHTt2oKysTHQKCbB00jjoGxhi3tbd2H4lETEJcsQkyEVnPZO69VLtpW7/VtWtl6gmCQwMxBdffIGoqCgcPHhQdA69pPXr16Njx45wdXUVnUJEr0ipVCI7OxvW1taiU56K+xKBd999F0ZGRjh9+jQePnyo6qsq1bVN6tat+9SBHP9tedr7kRQKxQsHgTzP0KFDsW7dOgDAt99+i5EjRz7xvJWxDczMzLB48WL8/fffuHXrFj744ANs374d/fv3V61T3V/fymBjY/PCr111SklJ4TAPIiKiCuIwDyIiNTV9+nTUqVMHU6dOFZ1CRERE1cDR0RH5+fm4e/eu6BQiIiIiIiJ6TXXr1kVZWRkyMzOr5flsbW2RnJxcbtnJkyefuu7zzkD0rPsCAwPxv//974nlp06dgo+Pz8uHVqGqanyVbVtVFAoFrKysqvU5iYiIiEizLF26FL/++it+/PFH0SkvLSwsDAqFAufOnROdQgJcv/Q7+o6bCGt7R2hr6wAAih4+FFz1bOrWS7WXuv1bVbdeoppm/PjxGDJkCAYMGICbN2+KzqEXyMrKwoEDBzB06FDRKURVrqa/wf51SCQSuLi44MqVK6JTnor7EoGzZ89i9uzZcHZ2ho7OPz9bFhYWVvjzit4mb731Fo4ePVpu2eXLl9GkSRPV7U6dOj31b0K7du1Cp06dXvu5+/Tpg927dyMzMxMHDx4sN1wDqLxtIJFIkJqaCuCfASF9+/bFvn37cPjwYdU6VfX1rSolJSWIi4tDgwYNRKcAgOq4dQcHB9EpREREao3DPIiI1JSBgQE+//xzbNy4EadPnxadQ0RERFXM1tYWAJCeni64hIiIiIiIiF6Xl5cXtLS0cObMmWp5vrfffhvTpk1Damoq8vPzcejQIXz11VdPXdfe3h7nzp1DcXExDh8+jHr16r3wvlmzZmHmzJnYuXMnsrOzcf/+ffz888/o378/Pvnkk2p5jS9SVY2vsm2rypkzZ2rMgY5EREREpJ68vLwwYMAATJo06Ykz8dZUb7zxBtzd3bFjxw7RKSRAYy9fbIr+FBl3UlBSXIy05CR8PWuy6KxnUrdeqr3U7d+quvUS1USrVq1C/fr10bt3bxQUFIjOoef44YcfIJVK0bNnT9EpRFVKW1sbpaWlojOqRP/+/bFu3boaeSI37ksEAgICMGnSJCQlJaGoqAg3b97E+++/X+HPK3qbREVFYc6cOTh69CgKCgpw5coVhIeHY9y4cap1Zs6cicWLF+Obb75BRkYGMjMz8e2332Lx4sWYOXPmaz+3sbEx2rdvj0GDBqFnz54wMTEpd39lboPhw4cjLi4Ojx49Qnp6OqKjo8sNIqmqr29V2bp1KzIzMxEWFiY6BQCQkpIC4J8TUhIREdHr4zAPIiI11qdPH7z11luIiIhAWVmZ6BwiIiKqQjY2NgCAjIwMwSVERERERET0uurUqYN27drhu+++q5bn++KLLyCVSuHt7Q1bW1usXLkSa9euBfDk2aAWL16MgQMHwtjYGGPGjMGKFSteeJ+zszNiYmKwfft21K9fHzKZDHPmzMHy5cvRq1cv1eMfP5dEInnuWbue5d+Pf9Vlr9P4oucGXm3bVgW5XI4jR44gODi4yp+LiIiIiDTbggULkJaWVu53gJouNDQUO3fu5LEytdD4hctQ9OgRpvTpjoHeDbBwTDh82nUEAIS42anWe3z938uetfzfy/67/ss85nnLXqf3aQ1EVY3fW0S1j76+PmJiYpCWlobBgwdDqVSKTqJn2LZtG4KCgmBsbCw6hahK6erqori4WHRGlRg/fjy0tbUxbNiwGjewhPsSgY0bN+Lhw4do0aIFTExMEBwcjO7du7/UY5+3XPQ2adq0KTZt2oRZs2bB0tISPXr0QFhYGEaPHq1ap2HDhjhw4ABiYmLg6uoKFxcX7Ny5EwcOHECDBg1e+7UDQHh4OA4fPowRI0Y8cV9lbYOjR4/CwMAA7dq1g6mpKfz9/fHw4cNy++Jf9utbE/z111+IiIjABx98AGdnZ9E5AIDU1FQAHOZBRERUURIl//JCRKTW4uPj0bx5c6xatQrDhw8XnUNEpCKRSPD999+jT58+olOINEJJSQn09PTw/fffIzQ0VHQOERERERFpmM2bN2PYsGFqcyZmdbZ7924EBwfj/Pnz8PPzE51Daur999/H/v378ddff0FfX190DhEREWmwoKAgmJqaYtOmTaJTqAp98sknWLFiBW7cuAFLS0vROS909epVeHp64syZMwgICBCdQ6/p0aNH0NfXx+SV6+HXMVB0jtorLipCP09n/PTTTwgKChKdQwJt3rwZ4eHDsP1qkugUjXByTwxWRX2MIv7dlDTUsWPHEBgYiIULF+Kjjz4SnUP/kZycDGdnZ+zZswc9evQQnUNUpQYNGoT8/Hz89NNPolOqxMmTJ9GlSxf07t0b69atg1QqFZ1ERDVIXFwcOnfujHr16uH48eM1Zv/vunXrMH78eOTn54tOISIiDVSbjlfUEh1AREQV06RJE4wePRpTpkxBdna26BwiIiKqIjo6OqhTpw7S09NFpxAREREREVEFBAUFoWPHjhg0aBDu3r0rOofU0K5du7BmzRp8/vnnNeZALiIiIiJSb5MnT4aBgQHmzJkjOuWlNG3aFO7u7tixY4foFCIiIiK11qFDB3z22WeYPHkyTp06JTqH/mPr1q2wsLBA586dRacQVTkdHR0UFxeLzqgybdu2xZ49e7Bnzx60a9cOycnJopOIqIbYunUrWrZsCVdXVxw6dKhG7f9NSUmBo6Oj6AwiIiK1x2EeREQa4NNPP4Wuri5mz54tOoWIiIiqkI2NDYd5EBERERERaYAtW7agsLAQffv2RWlpqegcUiPXr1/HoEGD0KpVK5SUlODQoUO4fPky7ty5g6KiItF5RERERKSmjI2NMWfOHKxevRpxcXGic15KSEgIdu7cCaVSKTqFiIiISK1FRkbinXfewYABA5CVlSU6h/5l27Zt6NOnD6RSqegUoiqnq6ur0cM8AKBTp064cOEC7t+/Dw8PDyxZsgQlJSWis4hIkOTkZAQFBWHQoEEYNmwYjh07BlNTU9FZ5aSmpsLBwUF0BhERkdrjMA8iIg1gamqKuXPnYtWqVbh8+bLoHCIiIqoitra2HOZBRERERESkAaytrbFz506cOHECgwcPrtVDGCQSyXMv9H+uXLmCjh07ok6dOvj7778xbNgwdOnSBc2bN4eDgwP09PRgbm6Oxo0bo3Xr1ujVqxdGjBiBqKgoLF26FFu2bMGRI0dw5coVyOVyjT8oloiIiIheTXh4ODw9PTF16lTRKS8lLCwMqampOH/+vOgUIiIiIrUmkUiwbt066OrqYvDgwRyWVkNcu3YNV65cQf/+/UWnEFWL2jDMAwDc3Nxw6dIlREVFYcqUKWjYsCHWrFmDsrIy0Wk1FvclPonbRL1lZ2djypQpcHNzQ3x8PA4fPowlS5ZAV1dXdNoTUlNT4ejoKDqDiIhI7emIDiAiosoxdOhQrF27FmPHjsXJkyf5SzgREZEGsrGx4TAPIiIiIiIiDdGiRQscOHAAwcHB6NKlC3bt2gUzMzPRWdWOB4a/nOPHjyM4OBheXl7YtWsXzM3NAQB3795Feno6srKykJWVhYyMDNXtzMxMJCUl4cKFC8jMzERWVtYTB8JaWFjA2toaVlZWsLS0hI2NDaysrMrdtra2hqWlJaysrKCjw93LRERERJpKS0sL0dHR6NChA44cOYK3335bdNJzeXp6ws3NDTt27IC/v7/oHCIiIiK1Zm5uju3bt6NNmzaIjo7GxIkTRSfVeps3b4ajoyNat24tOoWoWujq6qKkpER0RrXQ1dXF5MmTERYWhpkzZ2L06NFYunQpPv74YwwcOBB6enqiE2sU7kt8EreJekpKSsKXX36JdevWwcjICAsXLsSoUaMglUpFpz1TSkoK/Pz8RGcQERGpPR5tRUSkIbS0tLBy5Ur4+fnhhx9+QN++fUUnERERUSWzsbHBuXPnRGcQERERERFRJWnfvj1OnjyJbt26oWXLltiwYQNatGghOotqkNLSUkRHR2PmzJkIDg7Ghg0byh3EaW5uDnNzczRu3PilPl9hYSFyc3OhUCggl8uRm5tb7vadO3fw559/QqFQICUl5YnhH/r6+rCzs4NMJoOFhcUzrzs4ONTK4TRERERE6q59+/Z45513MHHiRMTGxkJbW1t00nOFhITgu+++wxdffMGT3hARERFVkJ+fH+bOnYtp06YhICAArVq1Ep1UaymVSmzbtg39+/eHlpaW6ByiaqGjo/PEPglN5+rqik2bNmHq1KmIjo7G6NGjMXXqVPTv3x9DhgyBl5eX6EQiqqCHDx9i9+7d2LhxIw4dOgQHBwd8+umnGDFiBIyMjETnvVBKSgocHBxEZxAREak9DvMgItIgPj4+GDJkCCIjI9GjRw+1+OWOiIiIXp6NjQ3S09NFZxAREREREVEl8vT0xK+//orw8HC0bt0akZGRmDVrFs+6RUhISMB7772Hy5cvY86cOYiMjKzwgdsGBgYwMDCAnZ0dfHx8Xrh+VlYWMjMzkZWVhYyMDKSlpSEjI0N1PS4uDsePH4dCoUB+fn65xxobG0Mmk8Ha2hpWVlblrtva2sLGxkZ1nYM/iIiIiGqORYsWoWnTptiwYQOGDRsmOue5wsLCMG/ePPz6669o2bKl6BwiIiIitRcZGYkTJ05g4MCBuHTpEiwsLEQn1Urnzp1DYmIi+vfvLzqFqNro6urWumEejzVp0gTr1q3DvHnz8O2332LTpk1YunQpmjZtisGDB2PgwIGQyWSiM4noJSmVSpw5cwYbN27Ejh07kJ+fj8DAQGzbtg3BwcHQ0VGPt/Pev38f9+7dg6Ojo+gUIiIitace//cnIqKXtmDBAuzatQvz58/H3LlzRecQERFRJbKyskJmZqboDCIiIiIiIqpk9vb2OHjwINauXYvIyEjs3r0b8+fPR1BQkOg0EuDu3bv4/PPP8eWXX6Jp06aIjY1FkyZNhLRYWlrC0tLypdYtLCxERkYGFAoFMjMzy13PzMzEtWvXcOLECdXtf9PT03vhwI/H162trXnWdSIiIqIq1LhxY7z//vuYPn06wsLCYGpqKjrpmZo1awY3Nzfs2LGDwzyIiIiIKoFEIsGGDRvQvHlzvP/++/j+++9FJ9VK27Ztg5ubG5o3by46haja1OZhHo/JZDJERUUhKioK586dw8aNG/HZZ59hypQpaNu2Lbp164bu3bvD3d1ddCoR/cfDhw9x4sQJ7Nu3Dz///DMSExPRrFkzzJgxA/3794etra3oxFeWkpICABzmQUREVAk4zIOISMNYW1tjxowZmDJlCgYPHoxGjRqJTiIiIqJKYmZmhoKCApSWlkJbW1t0DhEREREREVUiiUSC9957Dw4ODpgzZw569eoFb29vLF68GO3atROdR9WgsLAQK1euxPz58yGRSPDZZ59h3LhxanN2JgMDAzg5OcHJyeml1s/NzYVcLkdubi4UCsUT12/cuAGFQoHU1FQUFRWVe6yFhQVkMhns7Owgk8lgYWGhuv7fZURERET06mbPno0tW7YgOjoac+bMEZ3zXCEhIdi4cSOio6M59I2IiIioElhaWmLDhg3o3LkzevbsiYEDB4pOqlXKysoQExOD999/X3QKUbXS19dHYWGh6Iwaw9/fH/7+/vjyyy/x888/Y/fu3Vi4cCEmTpwIV1dXdOvWDT169EC7du2gr68vOpeoVrpz5w7279+Pffv24ejRoygoKEDz5s3Rv39/9O3bF56enqITK+TxMA8HBwfBJUREROpPPY78IiKiVzJu3DisX78ekZGR2LNnj+gcIiIiqiQmJiZQKpXIz8+HmZmZ6BwiIiIiIiKqgDt37uDKlSuqy9WrV5GQkIDi4mJIpVI0btwYOjo6eOutt9ChQwdERESgR48e0NLSEp1OlSwrKwtr167FihUrkJeXhw8//BATJ07U+N/9LSwsYGFh8VLrZmVlISMjAxkZGZDL5cjIyIBCoUBaWhrS09Pxxx9/qO5XKpWqxxkaGkImk8HW1hY2Njaws7ODtbV1uWUymQzW1taQSqVV9VKJiIiI1I6FhQWmTZuGTz75BMOHD0e9evVEJz1TWFgY5s2bh19//RUtW7YUnUNERESkETp16oRx48ZhzJgxaN269UsP8KWKO3fuHBQKBUJDQ0WnEFUrU1NT3Lt3T3RGjaOvr4/Q0FCEhoaitLQUv/76K/bt24f9+/djxYoVMDIygr+/P9q0aYM2bdqgRYsWMDQ0FJ1NpJFSU1Nx8uRJnD59GqdOnUJcXBwMDAzQsWNHfPHFF+jevbtGDb5ISUmBiYmJxu+zJiIiqg4c5kFEpIF0dHSwZMkSdOzYEfv370e3bt1EJxEREVElMDU1BQDcu3ePfxwlIiIiIiJSE0VFRbhx4wZiY2MRHx+PuLg4/Pbbb0hPTwcAyGQyeHh4oH379oiMjISHhwc8PDxUZ9E6duwYFi1ahF69esHV1RVjx45FeHi46ndEUl9Xr17FsmXLsGXLFujp6WH48OH46KOPIJPJRKfVOJaWlrC0tESTJk1euG5ubi7kcjkUCgXkcjlyc3NV1xMSEnDs2DHk5uYiLS2t3OAPfX192NnZQSaTqT5aWFg8sczGxgba2tpV+XKJiIiIaoRx48bh66+/RlRUFDZu3Cg655maNWsGNzc37Nixg8M8iIiIiCrRwoULcezYMbz77rv43//+x0HT1WTXrl1o0KDBS/0tlEiTcJjHi2lrayMgIAABAQGYN28eUlNTcfDgQZw4cQLr1q3DzJkzoaurC19fX7Ru3Rpt2rRBq1atUKdOHdHpRGpHqVQiISEBp06dUg3vSEpKUn2PdenSBYsWLcJbb72l2q+vaRITE+Hi4iI6g4iISCNwmAcRkYbq0KEDQkJCEBERgY4dO0JPT090EhEREVWQiYkJAHCnFRERERERUQ0ll8tVAztiY2MRGxuL69evo7S0FFKpFA0aNICPjw8mTJiAJk2aoEWLFrC2tn7u5+zQoQM6dOiAmzdvYvny5fjkk08wdepUdOrUCYMHD0avXr2gq6tbTa+QKionJwc7d+7Exo0bcfbsWdSvXx/z58/H8OHDYWRkJDpPI1hYWMDCwgIeHh7PXe/BgwdIS0uDQqFARkYG5HI5MjIyoFAokJaWhvPnz6uWFRUVqR6nq6sLa2tr2NnZwdbW9olhH/8e+sE3OBAREZE6k0qlmD9/PsLCwjBu3Di8+eabopOeKSQkBN999x0WLVrEn8GIiIiIKom+vj42btyIli1bYsmSJfjoo49EJ9UKe/bsQe/evUVnEFU7U1NTPHz4EEVFRZBKpaJz1IKDgwOGDx+O4cOHAwAUCgVOnz6N06dP49ixY/jiiy9QVlYGmUwGHx8f1cXPzw82NjaC64lqFrlcrtq/Hxsbi/PnzyMrKwtGRkZo3rw5+vbti1atWqFt27a15mSMSUlJcHZ2Fp1BRESkETjMg4hIg3355Zdwd3fHkiVLMHnyZNE5REREVEGPz7p8//59wSVERERERES12/379/HXX3+phnbEx8fjjz/+QFZWFgCoDop75513MHnyZPj4+MDNzQ3a2tqv/ZwNGjTA0qVLMXv2bGzbtg1btmxB3759YWlpib59+yIsLAytWrWq0HNQ1cjOzsb+/fuxbds2HDlyBIaGhggODsbs2bPRoUMHSCQS0Ym1kqGhIVxdXeHq6vrCdbOyspCeno709HTI5XJkZmbizp07SE9Px/Xr13Hy5EmkpqaW+5uNjo4OrK2tYW9vD1tbW9jb2z916Ie1tTXfcEpEREQ1VkhICFq3bo0JEybg1KlTNfZn18GDB2PevHk4duwYOnXqJDqHiIiISGN4eXlhxowZmD59OgIDA184QJcq5sqVK7hx4waCg4NFpxBVu38fG1m3bl3BNepJJpMhLCwMYWFhAP7ZP3X+/HnExsbi4sWLWLduHWbPng0AcHR0hLe3N7y9vdGsWTN4eHjAxcWF+xlJ492/fx8JCQmIi4vDpUuXEBsbi8uXLyM/Px+6urp444034OPjgzlz5sDX1xdeXl7Q0amdb79NTEyEn5+f6AwiIiKNUDt/miAiqiUcHR0xadIkzJ07F4MGDYK9vb3oJCIiIqoAExMTAMC9e/cElxAREREREdUej8/CEx8frxrekZCQgLKyMpiamqJhw4Zo0qQJevToAQ8PD3h5eVXpQYbm5uYYPXo0Ro8ejaSkJGzZsgVbt27FihUrUKdOHXTu3Bk9evRAly5deLCjQFeuXMH+/fuxb98+nDt3Dtra2ggMDMTmzZvRs2dPGBgYiE6kV2BpaQlLS8sXvlnh4cOHyMnJgUKhgFwuL/cxNTUVv/32m+r2v1lYWDx10Me/Pzo5OfEgWiIiIhJi2bJl8PX1xfbt29G/f3/ROU/VqFEj+Pn5YePGjRzmQURERFTJpkyZgr1792LYsGE4c+YM/0ZVhXbt2gVbW1u+cZZqpcfDPO7du8f9W5Wkbt266N69O7p3765alpmZiYsXL6ou3333HW7dugUA0NPTQ+PGjeHm5oYmTZrA3d0d7u7uaNy4MaRSqaiXQfRasrOzER8fj2vXruHatWuIj49HQkICkpOTAQD6+vrw9PSEt7c3hgwZAm9vbzRt2pT/1v8lKSkJffr0EZ1BRESkETjMg4hIw02aNAkbNmzA5MmTsXnzZtE5REREVAEmJiaQSCQc5kFERERERFQF8vLycPXq1XJDO/744w8UFBQA+OdsVj4+PggLC4OHh4fqIDYtLS1hzc7Ozpg+fTqmT2zi2J8AACAASURBVJ+OGzdu4Oeff8a+ffsQHh6O0tJS+Pn5oV27dmjTpg1at26tOhCSKt/Nmzdx6tQpnDhxAsePH0dycjJsbGzQtWtXREREoHPnztz+tYC+vj7s7OxgZ2cHHx+fZ673vKEft27dQmxsLBQKBXJzc8s9jkM/iIiISITmzZtj6NChmDRpEnr27AkjIyPRSU81ZMgQTJo0CStXrlQNyCciIiKiitPW1saGDRvQvHlzLFu2DBMmTBCdpLF27dqF4OBgofsdiET59zAPqjpWVlYIDAxEYGCgall+fj4SEhLKDT7YsmULbt26hdLSUujo6MDFxQUNGzaEq6vrE5ea+ncC0nxpaWn4+++/cevWrXKX69evIzMzE8A/x10/HlDToUMHuLu7o0mTJnBxceH+tOd4+PAh0tLS4OLiIjqFiIhII3CYBxGRhtPX18fixYvRu3dvjBgxAu3atROdRERERK9JW1sbhoaGuH//vugUIiIiIiIitVVSUoLk5GTVwI7Y2FjEx8cjMTERSqUS5ubm8PDwgIeHB8LCwuDj4wMvL68afyBaw4YNMWHCBEyYMAH37t3D4cOHceTIEezevRsLFiyAtrY2mjVrhrZt28Lf3x/e3t6oX78+JBKJ6HS1U1hYiCtXruD333/H6dOncfLkScjlchgYGKBFixYIDw9H165d4evry4Ou6aleduhHYWHhUwd+PP4YGxsLuVyOu3fvlnuchYUFXF1dVQM+/n1dJpPByckJxsbGVf0yiYiISIPMmzcPO3bswKJFizBr1izROU/Vr18/fPTRR4iJicF7770nOoeIiIhIo7i5uWHKlCmIiopCz549Ub9+fdFJGicpKQmXL1/GokWLRKcQCcFhHuIYGxvD19cXvr6+5ZY/evQI169fR0JCAhISEnDz5k1cunQJMTExUCgUqvVsbGzKDfdwdnaGvb09HBwc4ODgADMzs+p+SaQBSktLkZ6ejpSUFMjlcqSkpCAxMbHc0I4HDx4AAPT09ODs7AxXV1c0a9YMoaGhcHd3h7u7OxwdHQW/EvWUlJQEpVIJZ2dn0SlEREQagcM8iIhqgV69eqFLly4YO3YsLl26BB0d/uefiIhIXZmamnKHFRERERER0UvKzc1VDe2Ij49HXFwcLl68iMLCQujo6KBRo0bw8PDAu+++Cx8fH3h4eMDFxUXtB1yYmpoiNDQUoaGhAICMjAycOnUKJ0+exPHjx7FixQqUlJTAzMwM3t7eqounpycaNWoEqVQq+BXUHNnZ2YiPj8elS5dw8eJFXLx4EdeuXVNtP39/f4wdOxZt27bFm2++yW1HlcrAwEB18Ovz3L9/H6mpqUhPT0dqairkcjnu3LmDlJQUXLlyBfv27UNaWhpKS0tVj7GxsYGdnZ3qYFqZTIZ69erBzs4O9vb2cHR05BntiYiISMXa2hpRUVGYMWMGhg4dCicnJ9FJT6hTpw66d++OjRs3cpgHERERURWYNm0aYmJiMGLECPzyyy9q/3f0mubHH3+Eubk5T9pItRaHedQ8enp68PT0hKen5xP3FRYWlhuq8PgSExOD27dvo6CgQLWuoaEhnJycIJPJVPsk7Ozs4OjoCJlMBltbW1haWsLAwKA6Xx4JlJOTg4yMDGRmZqqGdaSmpqr2cSUnJyM9PR0lJSUAAIlEAhsbG9XAjl69epUbIGNvb88TLFSyxMREAOAwDyIiokrCd3MTEdUSS5cuRdOmTbF27VqMHj1adA4RERG9JhMTE9y/f190BhERERERUY1SXFyMv/76SzWwIzY2FrGxsaqzQllYWKBJkybw8fHB4MGDVddry0Fh1tbWCAkJQUhICIB/DrC7fPmyajjFsWPHsGzZMhQXF0NbWxsuLi5wd3eHm5sbGjdujMaNG8PFxQUymUwjD4QqLCzE7du3kZiYiPj4eNVZxq5du4asrCwA/7wx0MfHB926dUNUVBS8vb1Rv359HrBONYKJiYnqDGPPk5ubi1u3bkEul0OhUKg+3rhxAydOnEBqamq5A6X19fVhZ2cHmUwGOzs7uLq6qq4//ujk5ARtbe2qfolERERUA4wfPx5r167FlClTsG3bNtE5TzVkyBD06tULiYmJcHFxEZ1DREREpFGkUim+/fZbBAQEYMOGDRg6dKjoJI3y008/oUePHhwYTbWWkZERdHR0eGykmjAwMICHhwc8PDyeen9eXt4Twxnu3LkDuVyOS5cuQS6XIzs7u9xjjI2NYWtrC2tra1hZWcHa2ho2NjawsrKClZUVZDIZLCwsVBcOJK8ZSktLkZubi7t37yInJweZmZnIzMxERkYG0tPTVbcVCgUyMzORlZWFoqIi1eN1dXVha2sLR0dH2Nvbo0WLFggNDS03kN7Ozo7/f6xmSUlJqFOnDszMzESnEBERaQQO8yAiqiUaNmyIcePGYfr06QgLC4OlpaXoJCIiInoNOjo6qmnTREREREREtZFcLi83tCM+Ph5//vknHj16BF1dXTRs2BA+Pj6IiIhAkyZN8Oabb8LW1lZ0do1iYGCAli1bomXLlqplRUVFSEhIKDfI4pdffsGqVatUZ8/S1dWFg4MDHB0d4eTkBCcnJ9jb26vOmPX4wDoLCwtRL62c4uJiZGVlqQ4Ye3zQ2O3bt5GcnIzk5GSkpKQgIyND9RiZTAZ3d3e88cYbCAsLUw00qVevnsBXQlQ5LCws4OPjAx8fn2euU1hYCIVC8dShH0ePHoVcLkdaWhqUSiWAf97EUbdu3ecO/XB2doaRkVF1vUwiIiKqIlKpFNHR0ejZsydGjx6Ntm3bik56Qrdu3WBtbY0tW7YgKipKdA4RERGRxvHz88O4cePw8ccfo1u3brCxsRGdpBEyMjJw9uxZREREiE4hEsrMzAx3794VnUGVwMzMDGZmZs8c9gH83/6I9PR0ZGVlISMjA2lpaarhD7du3cL58+dVt0tLS8s9XltbWzXYw9zcvNzHf183MjKCoaEhTExMYGJiAgMDAxgbG8PU1BSGhoYwNDSs6s1RY+Xm5qKwsBAPHjxAXl4eCgoKUFhYiHv37iE/Px/5+fm4e/cucnNzVQM7/vvx30PiHzM0NISVlRVsbW1Vg1i8vLxgbW0NS0tLWFtbq+6zsbHRyJNJqDsOyiUiIqpcHOZBRFSLzJgxA1u3bsWMGTOwatUq0TlERET0GrS0tFRvliAiIiIiItJkRUVFuHHjhmpgR1xcHC5cuKAavCCTyeDh4YFWrVph/Pjx8PDwwBtvvAE9PT3B5epJKpXC09MTnp6e5ZYrlUqkpqbi9u3buH37NlJSUlSDMC5evAi5XI7c3Nxyj9HV1YWVlRUsLS1hYmICIyMjmJmZqa4bGRnB3NwcwD8Hc/37a2ZgYAB9fX3V7Xv37pU7OO/x7aKiIhQUFCA3NxcFBQUoKChQHVCWn5+PjIwM5OTklOvS0dGBtbU1nJyc4OjoiPbt26NevXpwdnaGo6MjXFxceHYhqvUMDAzg6uoKV1fXZ67z4MED1dn0UlJSVGfTS05Oxh9//IGff/4ZaWlpKCsrAwBIJBLY2NjA3t4eDg4Oqu/BxxcnJyfIZDIerElERKQG3nnnHXTp0gUffvghfv/99xr3/28dHR3069cP3333HaZPnw6JRCI6iV7C9Uu/oaS46MUr1nJKpfK5/6ZLeUII+pcyZRnOHtwrOkMj3LhySXQCUY0zd+5cxMTEYMqUKVi/fr3oHI2wd+9eSKVSBAYGik4hEsrKyqrcAHbSbC+zP+IxpVKJzMzMpw6U+O+ymzdvlruvoKAARUXP/53T3NwcBgYGMDAwUJ20wNjYGLq6utDR0YGJiQkAwMTEBDo6OpBKpaoh5mZmZuX+PqKnp/fMASESiUS1j/S/iouLkZ+f/8zG/+6PLSwsxMOHD6FUKlVDcB48eIBHjx6htLRUNWQjPz8fxcXFePToER48eIC7d++isLAQhYWFz90mj/fr/ndAir29/RPDU/69jpWVFQe8a4CkpCQ4OzuLziAiItIYHOZBRFSLmJiYYP78+Rg6dCjCw8Ph6+srOomIiIhekZaWluqNEERERERERJpCLpeXG9oRGxuLhIQElJWVQSqVokGDBvDx8cG0adPg4eGBZs2awcrKSnR2rSCRSFRvuG/duvVT1ykqKkJWVhYyMzORkZGBjIwM1e38/HwUFBQgLy8Pd+7cUQ3eyMvLAwDcv38fRUVFKCsrg46OjuqAsseMjIwglUqfuK2rqwtjY2OYm5urBoRYW1vD3NwcxsbGqjM5PR4qYmVlhbp161btxiKqJQwNDdGoUSM0atTomeuUlJQgLS0NycnJUCgUSE1NVV1+//13xMTEIC0tTTWsR1dXF/b29qrhHv8d9uHo6PjMA1yJiIioei1evBjNmjXD+vXrMWzYMNE5Txg8eDCWLl2K8+fPw9/fX3QOPYeOjg5sbG3x0zc8IVFl0dHRga2treiM/8fencdFVS/+H38PM8MqIKXoICIg6zmgwBHNC7gvmbilmF4Bt0TMfV+voWmauWvdaLOw6832sluaZrlV10REnAEZNpfQi95QRFFZ5vdHX+cXad0y4TMM7+fjMY8LM+R9jY9HNs6c8z4kmIeHB2AyYd2MiaJTrIaPz/8+wZSoMXFycsLatWsxYsQIJCUl8TXXA/D555+jW7duaNKkiegUIqHc3d1x6dIl0RlkgVQqFdzd3eHu7n5f//ydcYtr166hoqIC5eXluHr1KioqKnDjxg2Ulpaav77zGeYvLzAAAOfOnYPJZMLNmzfNYxi/HNn45WedP/fzX+te7gyJ3MsvPzP9+WhI06ZNoVKpYG9vDwcHB6jVavNIyp0LKdz5bNXFxQWOjo5wdHRE06ZN4ejoCAcHB/Nnrg4ODnBxcflfv6Vk5QoLC9GtWzfRGURERFaDYx5ERI1MQkICXn31VUyfPh2HDx/mVUiIiIgaGI55EBERERFRQ1ZWVgaj0Wge7EhPT0dmZqb5KkM6nQ6KomDAgAGYP38+FEVBcHCwxV3tmWqztbWFh4fHTyeL3Ic33ngDkyZNQmlpKdRq9QOuIyIRNBoNPD094enp+Zs/V1paioKCAhQUFKC4uBgXLlxAQUEBvvjiCxQXF+PixYswmUwAAHt7e3h4eMDX1xc6nc789Z3vvb29ebU3IiKiehAcHIxJkyZh0aJFGDZsGFxdXUUn1RIREYF27drhzTff5ImlFk6tVuPihQuiMxqMtLQ0PPXUUwgODsZbb72FwMBA0UlkoXr06IGqqqoH+mveGXBKS0tDfHz8A/21iahhGj58OF5//XVMmTIFR48e5fu6f0J1dTX279+Pp59+WnQKkXDu7u4oKSkRnUFWSK1Ww83N7TfHMupTr1694O/vj7///e+iU4juqaioCN7e3qIziIiIrAbHPIiIGhmVSoVNmzYhMjISO3bswKhRo0QnERER0R/AMQ8iIiIiImoIqqurcebMGfNoh8FggF6vR3Z2NkwmE1xdXRESEgJZlhEXFwdFURAWFsarzjVSWVlZkCSJB3wTNUJubm5QFAWKotzz8Zs3b6K4uPiusY+CggKkp6fj7Nmz5kGoO7/er419eHh4wNvbmwNRRERED0BKSgp27NiBlStXYs2aNaJz7hIfH4+VK1diw4YNcHBwEJ1D9EAkJiaiY8eOSEhIQHh4OFatWoVp06bxQk5U577++mskJydj0aJFHPIgolrWr1+PsLAwvPrqq5g4caLonAbru+++Q2lpKR599FHRKUTCubu7Q6/Xi84gqnNlZWVwcXERnUF0T9euXcPly5fh4+MjOoWIiMhqcMyDiKgRCg8Px/jx4zFnzhwMGDCAbwQQERE1IBzzICIiIiIiS3PlyhWcOnXKPNiRnp6OjIwM3LhxAxqNBl5eXpAkCXFxcZBlGZIkQZIknmxCZllZWQgNDRWdQUQWyN7e3jzI8WsuXryIc+fOmW9nzpzBuXPnkJmZiV27duHixYswmUwAADs7O7Ru3dp8a9OmjflrLy8v+Pj48IRfIiKi38HNzQ0pKSmYNWsWnnzySQQEBIhOqiUxMRGLFi3Cp59+iri4ONE5RA9MUFAQvv32W6xYsQKzZ8/GZ599hm3btsHDw0N0GlkpvV6PIUOGYMiQIXjmmWdE5xCRhZEkCdOmTcOiRYswdOhQNGvWTHRSg7Rnzx54e3sjMDBQdAqRcM2bN0dJSYnoDKI6V1ZWBmdnZ9EZRPdUVFQEAPD29hbaQUREZE045kFE1EitWrUK77//PlauXInnnntOdA4RERH9ThzzICIiIiIiUaqqqnD69Olaox0GgwEFBQUAfjqZS5IkKIqCxMRESJKEiIgIODo6Ci4nS5eVlYW+ffuKziCiBqply5Zo2bIlIiMj7/l4ZWUlLl26hAsXLqCgoAAFBQUoLi7GhQsX8Nlnn6GgoAClpaXmn3dzczMPiOh0Onh4eJi/DwwMRJMmTerrqREREVm05ORkvPzyy5g7dy4+/vhj0Tm1tGjRAr169cKbb77JMQ+yOhqNBikpKXj00UeRkJCAsLAwvPLKKxg0aJDoNLIyxcXFeOyxx9CuXTu8+eabHOYlontaunQpduzYgaVLl+LFF18UndMg7d69m++PE/0fd3d3jnlQo1BWVsYL8pLFKiwsBAC0adNGcAkREZH14JgHEVEj9dBDD2HZsmWYNWsWxo0bx0VnIiKiBoJjHkREREREVB9KS0trDXbc+frmzZvQarXw9/eHLMtISEiAoiiQZRm+vr6is6kBunz5Mi5evIjQ0FDRKURkpbRaLTw8PODh4QFFUe75M1evXsXZs2dRVFSEwsJCFBUVoaioCIcOHUJRUVGtsQ+dTgdvb+973tq0aQM7O7v6empERERCqdVqbNiwAT179sSePXss7gTE0aNHIyEhARcvXkTLli1F5xA9cI888giOHz+OOXPmYPDgwUhISMCLL77I8Tl6IK5du4b+/fvD0dERH330Ef+eQ0S/ysXFBc8++ywmTJiAadOmISgoSHRSg3L58mWkp6dj4cKFolOILIK7uzt+/PFHVFZWQqvVis4hqjMc8yBLVlRUhBYtWsDJyUl0ChERkdXgmAcRUSOWnJyMV155BdOnT8fu3btF5xAREdHvwDEPIiIiIiJ6kCorK5Gbm4vDhw+juroaAwYMwLFjx3Dx4kUAgJubGyRJgqIoSEpKgizLkGUZ9vb2gsvJWpw8eRIA0K5dO8ElRNSYubq6IjQ09FeHhW7evIni4mIUFBTUun3xxRfIz8/HlStXzD/r5uYGX1/fWjedTgcPDw8EBwfD0dGxvp4WERFRnevRowcGDx6MmTNnIjMz06JOtho0aBCaNGmCtLQ0zJs3T3QOUZ1wdnZGamoq+vbti4kTJ6Jdu3ZIS0tDdHS06DRqwKqrqxEfH4/z58/j22+/hZubm+gkIrJwiYmJ2Lx5MxYtWoQPPvhAdE6DsnfvXtjY2KBHjx6iU4gsgru7O0wmEy5fvgydTic6h6hOVFdX48aNGxzzIItVVFQEb29v0RlERERWhWMeRESNmFqtxgsvvICYmBh88MEHePzxx0UnERER0f/AMQ8iIiIiIrpfxcXFMBgM0Ov1SE9PR3p6Ok6fPo3q6mpoNBrU1NTAzc0NM2bMgCRJ6NixI1q0aCE6m6xcVlYWmjVrxitlE5FFs7e3Nw9z3EtFRQUuXLhw19jHvn37kJeXh6tXr5p/9l5jH3duXl5e0Gh4GAcRETUs69atgyRJSE1NxZQpU0TnmDk4OCAxMRGpqamYM2cObGxsRCcR1ZnHH38cUVFRGD9+PLp3747Zs2fjmWeesaiBHWo4pk2bhr1792L//v3w8/MTnUNEDYCNjQ1WrFiB/v3748iRI4iKihKd1GDs2bMHf/nLX+Dq6io6hcgiuLu7AwBKSko45kFWq6ysDCaTiWMeZLEKCwvh4+MjOoOIiMiq8CgQIqJGLioqCgkJCZgxYwb69OmDJk2aiE4iIiKi31BdXc2DDYmIiIiI6Dddu3YNubm55tEOg8GAEydO4PLlywAAnU4HWZbRq1cvzJ8/H4qiID09HRMmTEBaWprgempssrKyEBoaKjqDiOhPcXBw+M2xj8uXL6OoqOiu265du1BUVIQbN24AADQaDVq1agVvb294e3vDx8en1teenp58b5CIiCyOr68vZsyYgaVLl2LEiBFo1qyZ6CSz5ORkbNmyBfv27UOfPn1E5xDVqRYtWmDXrl145ZVXMGvWLHz11VfYvn07AgICRKdRA7Jq1Sq89NJLeO+99/DII4+IziGiBuSxxx5Dz549MWfOHHzzzTdQqVSikyyeyWTC3r17MXnyZNEpRBbjzkUGSkpKBJcQ1Z2ysjIA4JgHWazCwkL069dPdAYREZFV4ZgHERHh+eefR1BQEFauXIlVq1aJziEiIqLfUF5eDicnJ9EZRERERERkIYqLi82DHXfGO3JyclBTUwNnZ2cEBARAkiTExsZClmWEhYXd88SqjIwMAfVEP415dO7cWXQGEVGdatasGZo1a4YOHTrc8/HS0lIUFBSgoKAAxcXFuHDhAgoKCrBr1y7k5ubi2rVrAABbW1t4enqah0N+fpMkCQ4ODvX5tIiIiMwWL16MtLQ0LFu2DFu2bBGdYxYcHIyYmBikpqZyzIMaBZVKhaSkJMTExCA+Ph5hYWFYtWoVpk2bxpOq6X965513sGTJEmzYsAFDhgwRnUNEDdCqVavQqVMnfPLJJxg0aJDoHIt38uRJFBcXo2/fvqJTiCyGm5sbHB0d8cMPP4hOIaozHPMgS1dUVAQfHx/RGURERFaFYx5ERAR3d3csX74cs2fPRmJiIoKDg0UnERER0a+4fv06xzyIiIiIiBqhq1evIisrq9ZoR2ZmJsrLywEAOp0OiqIgLi4OsixDkiQEBwfDxsZGcDnRr6upqYHBYEBSUpLoFCIiodzc3KAoChRFuefjFy5cQGFhIfLz85GXl4f8/HxkZmbigw8+wOXLlwEAarUaXl5e8PPzQ9u2bdG2bdtaXzs6OtbnUyIiokbG2dkZK1euxIQJE5CUlITQ0FDRSWYTJ07E6NGj8cMPP6BVq1aic4jqRXBwMP79739jxYoVmD17Nnbv3o3XX38dOp1OdBpZqEOHDiExMREzZszAtGnTROcQUQMVGRmJuLg4LFy4ELGxsVCr1aKTLNru3bvRvHlzhIeHi04hsiienp44e/as6AyiOsMxD7JkpaWluHr1Kry9vUWnEBERWRWOeRAREQDgqaeewvbt25GcnIyvv/6aV2MgIiKyUNevX0eTJk1EZxARERERUR2pqqrC2bNnzYMdd8Y7srOzYTKZ4OrqipCQEMiyjLi4OCiKgvDwcI7+UYNUWFiI8vJyizrRj4jIEul0Ouh0OvzlL3+567GbN28iPz8fBoMBBQUFKCgoQF5eHr744gsUFRWhpqYGwE+DIb6+vnfdZFnmSZ1ERPRAjB49Gi+99BJmzJiBL7/8UnSO2bBhwzBz5ky89tprWLp0qegconqj0WiQkpKCvn37IiEhAWFhYXjllVcwcOBA0WlkYfLz8zF06FD07t0ba9asEZ1DRA3cihUrIEkS/vnPfyI+Pl50jkX78ssv0adPH46yE/1C69atce7cOdEZRHWGYx5kyQoLCwEAPj4+gkuIiIisC8c8iIgIAGBjY4OtW7fikUcewc6dOzFixAjRSURERHQP169f50l6RERERERWorS09K7RjuPHj6OiogIajQZeXl6QJMk82iHLMnx8fDjES1bj5MmTsLGxgSRJolOIiBose3t7yLIMWZbveuz27ds4f/68eeTjzm3fvn3Q6/W4efMmgF8f+vD19YW3tzdPKiEiot/FxsYGGzduRFRUFD7++GMMGjRIdBIAwNbWFmPGjMErr7yCxYsX8wrx1Oh07twZx48fx9y5czFo0CAkJCTgxRdf5AUkCABw+fJl9OvXD97e3nj77bf5ZyQR/Wn+/v4YMWIEnn32Wfz1r3/lewq/oqqqCt9++y3Wr18vOoXI4nh5eXHMg6xaWVkZbGxseBwwWaTCwkLY2NjAy8tLdAoREZFV4ZgHERGZRUZGYty4cZg5cyb69esHV1dX0UlERET0MyaTCRUVFXwTn4iIiIiogamsrERubq55sCM9PR3p6em4cOECgJ9OoJUkCYqiIDEx0fy1g4OD4HKiupWVlQUfHx+eQEREVEdsbW3Noxy/VFVVhbNnz95z6OP06dMoLy8HANjZ2aFVq1a1Bj4kSYIsy2jTpg1P9iMiolo6d+6MESNGYNasWXj00UdhZ2cnOgkAMHHiRKxduxb/+te/MHDgQNE5RPXOxcUFqamp6N27N5KTk9G+fXukpaUhKipKdBoJVFFRgYEDB6Kqqgq7du3icQhE9MAsXboUwcHBeO+99zB8+HDRORYpIyMD5eXliImJEZ1CZHG8vLzw3Xffic4gqjNlZWVwcXHhBTzIIhUVFUGn01nMe3pERETWgmMeRERUy3PPPYePPvoIy5cvx7p160TnEBER0c/cvHkT1dXVPIiGiIiIiMiCFRcX1xrtMBgMOHXqFG7dugWtVgt/f3/IsoykpCQoioIOHTpAp9OJziYSIisrC+3atROdQUTUKGk0ml8d+jCZTDh//jzy8/ORn5+PvLw85Ofn49ixY3j77bdRVlYG4KexEB8fH/j5+SEwMBD+/v4ICAhAQEAAPD096/spERGRhVizZg2CgoKwadMmzJs3T3QOAMDX1xe9evVCamoqxzyoURs2bBiio6Mxfvx4dOvWDbNnz8YzzzwDrVYrOo3qWU1NDeLj45Gbm4sjR46gRYsWopOIyIr4+/tj2LBhWL58OYYNGwYbGxvRSRbn0KFDaNasGQIDA0WnEFmc1q1b49y5c6IziOrMnTEPIktUVFQEHx8f0RlERERWh2MeRERUy0MPPYSVK1di8uTJSExMRPv27UUnERERSuVtmAAAIABJREFU0f+5fv06AHDMg4iIiIjIAty+fRtGo9E82KHX63H06FGUlJQAAHQ6HWRZRlRUFKZNmwZZlhESEsIrmBD9TFZWFp544gnRGURE9AsqlQqtW7dG69at0a1bt7sev3TpUq2Rj9zcXBw6dAivvfYarl69CuCn9zADAgLMAx+BgYHmoY+mTZvW8zMiIqL65Onpiblz52LFihVISEiwmAHLiRMnIi4uDoWFhTwpgRq1li1b4tNPP8Urr7yCmTNn4uuvv8b27dvh7+8vOo3q0axZs/Dpp59i9+7dPJGciOrE0qVLERoaio8//hhDhgwRnWNxDh06hOjoaKhUKtEpRBandevWKC8vR2lpKdzc3ETnED1w165d45gHWazCwkJ4e3uLziAiIrI6HPMgIqK7PPnkk9i2bRumTJmCgwcP8s1iIiIiC8ExDyIiIiIiMYqLi2uNdqSnp+P06dOorq6Gra0t/Pz8oCgKFi1aBFmW0a5dO7i7u4vOJrJoN2/eRF5eHkJDQ0WnEBHRH9S8eXM0b94cjzzyyF2PlZaWoqCgAAUFBdDr9TAYDPj888+xfv163LhxAwDg5uYGX19f+Pr6QpIkyLIMX19fBAcHw9HRsb6fDhER1YF58+Zh27ZtWLJkCV577TXROQCAgQMHQqfT4dVXX8XKlStF5xAJpVKpkJSUhOjoaMTHx0NRFKxduxZJSUmi06gebNy4EZs3b8b27dvRvXt30TlEZKUkScLgwYOxfPlyDB48mMch/4zJZMI333yD+fPni04hskheXl4AgLNnz3LMg6xSWVkZxzzIYhmNRvz1r38VnUFERGR1OOZBRER3sbGxwdatW9GpUye89dZbSEhIEJ1ERERE4JgHEREREVFdKysrg9FoNA92GAwGZGRk4L///S8AQKfTQVEUDBgwAPPnz4eiKAgODoaNjY3gcqKGJzs7G9XV1QgJCRGdQkRED5CbmxsURYGiKIiLizPfX11djaKiIuTm5uL06dPIzc1Fbm4utm3bhnPnzsFkMkGtVsPb2xtBQUEIDg42/29wcDAP3CciamAcHBywevVqjBo1CsnJyYiMjBSdBI1Gg/HjxyM1NRVPP/00bG1tRScRCSdJEv79739j5cqVmDRpEnbv3o2XX34ZzZo1E51GdeTTTz/FnDlz8Nxzz2HUqFGic4jIyi1ZsgQRERHYu3cv+vTpIzrHYuTk5KCkpAQxMTGiU4gs0p0xj3PnzqF9+/aCa4gePI55kKW68zmOv7+/6BQiIiKrwzEPIiK6J0VRkJSUhLlz52LAgAFo2rSp6CQiIqJGj2MeREREREQPRnV1Nc6cOVNrtEOv1yMnJwc1NTVwcXGBv78/JElCbGwsFEVBWFgYmjRpIjqdyGro9XrY2dnBz89PdAoREdUDtVqNtm3bom3btujXr1+tx27cuIHc3FwYjUacPn0aBoMB+/fvx4svvogbN24AANzd3SFJUq2Bj8DAQPPB/UREZHlGjBiBv//975g+fTqOHDliEVdjnzBhAlauXImPPvoIw4cPF51DZBG0Wi1SUlLQpUsXjBkzBiEhIXj11VcRGxsrOo0esGPHjmHEiBEYO3Ys5s6dKzqHiBqB8PBwdO/eHZs2beKYx88cOnQITk5OCAsLE51CZJEcHR3x8MMP4+zZs6JTiOoExzzIUhUVFeH27dsc8yAiIqoDHPMgIqJftXLlSrz//vv429/+hi1btojOISIiavSuXLkCAHB1dRVcQkRERETUcFy5cgWnTp0yD3akp6fjxIkTuH79OtRqNdq0aQNJkhAXFwdZliFJEiRJsoiTjIismV6vR2BgIDQaflxJRNTYOTo6Iiws7J4nsRQXF8NgMKCgoAB6vR4GgwFffPEFCgoKAAB2dnZo27at+XWcLMvw9fWFJElwcHCo76dCRES/sHHjRnTo0AE7d+7EiBEjROfA09MT/fv3R2pqKsc8iH6hR48eyMrKwtSpUzFw4EBMmDAB69ev54UmrERhYSFiY2PRpUsX/P3vfxedQ0SNyPTp0zFkyBDk5OQgKChIdI5FOHz4MDp37gytVis6hchieXl5ccyDrFZZWRlat24tOoPoLrm5uQDAi3EQERHVAR4dR0REv8rNzQ2rV6/Gk08+icTERERGRopOIiIiatRKSkqg1WrRtGlT0SlERERERBanqqrKfCX3O6MdBoMBhYWFMJlMaNq0KWRZhizLiIuLg6IoiIiIgKOjo+h0okZJr9dDkiTRGUREZOE8PDzg4eFx1/3//e9/kZ2djZycHOTk5MBgMGD79u0oKipCTU0NtFot/P39za//7tz8/Px4sgwRUT0KDw/H2LFjMXfuXAwYMMAiRgEmTpyI2NhYZGdnIzg4WHQOkUVxdXVFWloaBgwYgOTkZBw8eBD/+Mc/EBERITqN/oQff/wR/fr1Q6tWrfDOO+9wWJWI6tWAAQPg6+uLrVu3YuvWraJzLMKhQ4cwZswY0RlEFq1t27bIz88XnUFUJ8rKyuDi4iI6g+guRqMRzZs3h5ubm+gUIiIiq8N3ZImI6DeNGTMGb775JiZPnozvvvsONjY2opOIiIgarZKSEri7u/MK4URERETU6JWWltYa7NDr9Th+/DgqKiqg0WgQEBAAWZaRkJAARVHMV2gnIsuh1+sxduxY0RlERNRAPfzww4iOjkZ0dHSt+ysqKnD69Gnk5ORAr9fDYDBgx44dyM/PR3V1NWxtbREYGAhJkhASEoLg4GCEhISgbdu2PKmRiKiOPPvss3jvvffw/PPPIyUlRXQO+vXrh8DAQGzcuBGpqamic4gsUlxcHDp16oQxY8agU6dOWLx4Mf72t79BrVaLTqM/6Pbt24iLi0N5eTn27duHJk2aiE4iokbGxsYGU6ZMweLFi7F8+XI89NBDopOE+uGHH1BUVISYmBjRKUQWzc/PD59//rnoDKI6UVZWBmdnZ9EZRHcxGo3w9/cXnUFERGSVeCQCERH9JpVKha1btyI8PBzbtm3D+PHjRScRERE1WpcuXULz5s1FZxARERER1ZvKykrk5ubWGu04duwYLl68CABwc3ODJElQFAVJSUnmK67b29sLLiei33Ljxg0UFRVBlmXRKUREZGUcHBwQFhaGsLCwWvffeV155zWlwWDAP//5T5w+fRrV1dXQarVo3bq1+bWlLMuQJAlBQUE8aZWI6E9yd3fHokWLkJKSgrFjx6JNmzZCe1QqFaZOnYo5c+Zg5cqVaNasmdAeIkvl5eWFL7/8Eps3b8b8+fPxxRdfYPv27Wjbtq3oNPqdTCYTxo8fj2PHjuHQoUPw9PQUnUREjdT48eORkpKCbdu2Yfbs2aJzhDp48CC0Wi06deokOoXIorVt2xZ5eXkwmUy88BlZnbKyMri4uIjOILoLxzyIiIjqDsc8iIjofwoJCcHkyZOxYMECDB48GA8//LDoJCIiokappKQE7u7uojOIiIiIiOpEcXGx+eTKO+Mdp06dwq1bt2Braws/Pz8oioIZM2ZAkiR07NgRLVq0EJ1NRPchOzsbNTU1HPMgIqJ6o9VqzcNvcXFx5vsrKiqQnZ0NvV5vvqWlpaGoqAgmkwkODg6QJAnt27dHaGgo2rVrh/bt2/PzUiKiP2jGjBl47bXXsHDhQuzYsUN0DsaMGYOlS5ciNTUVixcvFp1DZLFUKhWmT5+OXr16YdSoUYiIiMDzzz+PpKQk0Wn0OyxcuBA7d+7Ev/71L7Rr1050DhE1Ys7Ozhg9ejReeOEFzJw5EzY2NqKThPnuu+8QFhYGJycn0SlEFs3Pzw/Xr1/HxYsXodPpROcQPVAc8yBLZTQaERMTIzqDiIjIKnHMg4iIfpfly5fj3Xffxfz58/Hqq6+KziEiImqULl26xKuDEREREVGDd/v2bRiNRqSnp5tHOzIzM3Hp0iUAgE6ngyzLiIqKwrRp06AoCq+ITmRlDAYD7Ozs4OvrKzqFiIgaOQcHB0RERCAiIqLW/devX0d2djZOnTqFrKwsnDx5Ert27TK/ZvXw8DAPe7Rr1w6hoaEICgqCVqsV8TSIiCyera0tnn/+eQwaNAjJycno0qWL0B5HR0c8+eSTeOGFFzB37lzY2toK7SGydLIs47vvvkNKSgomTZqEL774AqmpqRw4s2CvvfYa1qxZg23btqF3796ic4iI8NRTT2Hz5s346quv0LNnT9E5wqSnp0NRFNEZRBbPz88PAJCXl8cxD7IqJpMJ5eXlHPMgi3P79m2cPXsW/v7+olOIiIisEsc8iIjod3FxccH69esxcuRIxMfHo1u3bqKTiIiIGp3z58+jV69eojOIiIiIiH634uJi82CHXq9Heno6cnJyUFNTA2dnZwQEBECSJMTGxkKWZYSFhXHAjqgR0Ov1CAoKgkbDjyqJiMgyOTk5oUOHDujQoUOt+0tLS82vaw0GAw4fPoxNmzbh5s2b0Gq18Pf3hyzLkCQJiqJAlmWOVxER/Z+BAweib9++mDFjBo4dOyb8iuxTp07F+vXrsXPnTiQkJAhtIWoI7O3tsXr1avTu3RtjxoxBSEgIXnvtNTz22GOi0+gXdu/ejeTkZDz99NMYPXq06BwiIgBAYGAgOnXqhG3btjXaMY+amhqcPHkSiYmJolOILF6rVq3g5OSEvLw8xMTEiM4hemDKy8tRXV3NMQ+yOIWFhaiqquKYBxERUR3hEXJERPS7PfHEE0hLS8OUKVOQkZHBK0sRERHVs/Pnz6NVq1aiM4iIiIiI7nL16lVkZWXVGu3IzMxEeXk5AECn00FRFAwYMADz58+HoigIDg4WfuIOEYmh1+shy7LoDCIioj/Mzc0N0dHRiI6ONt9XWVmJ7OxsnDx5EllZWThx4gRefvllXLhwAQDg7u6OsLAwhIeHIyIiAuHh4Wjbti1fCxNRo7Rhwwa0b98eb7zxBsaNGye0pVWrVhg2bBjWrl3LMQ+iP6Bnz544deoUJk+ejNjYWEyYMAEbNmyAo6Oj6DQCcOrUKYwYMQJxcXFYunSp6BwiolrGjh2LGTNmYMuWLXBzcxOdU+9yc3Nx7do1REREiE4hsngqlQq+vr7Iy8sTnUL0QJWVlQEAxzzI4uTm5gIA/Pz8BJcQERFZJ455EBHRH7Jp0yaEhoZi48aNmDt3rugcIiKiRuPWrVu4dOkSWrduLTqFiIiIiBqxqqoqnD17ttbVyPV6PbKzs2EymeDq6oqQkBDIsoy4uDgoioLw8HA4OTmJTiciC6LX6zF+/HjRGURERA+EVqtFu3bt0K5du1r3X7p0CSdPnsTJkydx4sQJfPbZZ1i3bh2qqqrg7Ox818BHcHAwL6ZARFYvODgYEydOxKJFizB06FC4uroK7Zk9ezY6dOiAAwcOoGvXrkJbiBoSV1dXvPXWWxg0aBAmTpyIw4cP46233kJ4eLjotEbthx9+wGOPPYbw8HBs27YNKpVKdBIRUS0jR47ErFmzsHPnTiQnJ4vOqXd3LqIYEhIiOoWoQfDz8+OYB1kdjnmQpTIajdDpdHB2dhadQkREZJU45kFERH+In58fFixYgJSUFMTFxcHb21t0EhERUaPwww8/wGQywdPTU3QKERERETUSpaWld412ZGRk4MaNG9BoNPDy8oIkSebRDlmW4ePjw4PEieg33bhxA2fOnIEsy6JTiIiI6lTz5s3Rs2dP9OzZ03xfZWUlcnNzkZ6ebr69+uqruHHjBrRaLfz9/aEoivkWERHBq9wTkdVZvnw5du7cieXLl2PdunVCWxRFQVRUFDZs2MAxD6L7EBcXh44dO2L06NHo1KkTFi1ahL/97W9Qq9Wi0xqdsrIy9O/fH87Ozvjwww9hZ2cnOomI6C4uLi4YOnQotm3b1mjHPCRJgr29vegUogbBz88PX375pegMogeKYx5kqYxGI/z9/UVnEBERWS2OeRAR0R+2cOFCvP3225g5cyY+/PBD0TlERESNwvnz5wEArVu3FlxCRERERNbmzgmFdwY77ox3FBQUAADc3NwgSRIURUFiYqL5awcHB8HlRNQQGQwG1NTUcMyDiIgaJa1WC1mWIcsyEhMTAQBVVVXIzs5GRkYGMjIycPz4cXz88ccoKyuDRqNBUFAQwsPD0aFDB3Ts2BFhYWE88YeIGjQ3NzesWLECkydPxpgxYxAaGiq0Z+bMmRg+fDhOnz6NwMBAoS1EDVGbNm3w1VdfYfPmzZg3bx727t2L7du3w9fXV3Rao1FZWYlhw4ahpKQE3377LZo2bSo6iYjoV40dOxY9evTAqVOnEBISIjqnXh0/fhwRERGiM4gaDD8/P7z00kuiM4geKI55kKXimAcREVHd4pgHERH9Yba2tnjppZfQvXt3fPLJJxg4cKDoJCIiIqt3/vx52Nrawt3dXXQKERERETVgpaWl5sGOO6Mder0eN2/eNF8JXJZlJCQkQFEUdOjQATqdTnQ2EVkRg8EAe3t7ntRDRET0fzQaDUJDQxEaGmoe+DCZTMjPzzePe2RkZGDZsmX48ccfodVqERoaio4dOyIyMhKRkZGQJAlqtVrwMyEi+v2efPJJvPbaa5g8eTIOHDgAlUolrGXw4MHw8fHBCy+8gM2bNwvrIGrIVCoVpk+fjh49eiA+Ph7h4eF4/vnnkZSUJDqtUUhKSsKRI0fw1VdfoU2bNqJziIh+U7du3dCmTRvs2LEDzz77rOicepWRkYFBgwaJziBqMAIDA3Ht2jX88MMPaNWqlegcogeirKwMKpUKzs7OolOIajEajejdu7foDCIiIqvFMQ8iIrovXbt2xciRIzF16lT06NEDTZo0EZ1ERERk1fLz89GmTRvY2NiITiEiIiKiBuD27dswGo21Bju+//57/Oc//wEA6HQ6yLKMqKgoTJs2DbIsIyQkBHZ2doLLicja6fV6BAUF8YRjIiKi36BSqeDn5wc/Pz/ExcWZ7y8uLjYP8x05cgRpaWm4ceMGnJycEBYWBkVRzDdJkoSeHE9E9FtsbGzwwgsvoFOnTnjvvfdq/VlX39RqNaZMmYIlS5YgJSUFDz30kLAWooYuNDQU//73v5GSkoJJkyZh3759eOmll/jvVR1avnw5tm/fjvfffx8dO3YUnUNE9D+pVCoMHToU7733XqMa8ygqKsKPP/6IiIgI0SlEDYYsywB+GonnmAdZi7KyMjg5OfFzUrIoN2/exPnz5+Hv7y86hYiIyGpxzIOIiO7b+vXrERwcjBUrVmD16tWic4iIiKxafn4+/Pz8RGcQERERkQW6c0LfndGO9PR0nD59GtXV1bC1tYWfnx8URcHMmTMhSRI6deoEd3d30dlE1Ejp9XrzAZhERET0x3h4eMDDwwMDBgwAAFRVVUGv1+Po0aM4evQoDhw4gBdffBFVVVVo1qwZIiMj0bFjR0RGRqJz5848kZaILEqHDh0wevRozJo1C4899hicnJyEtYwfPx4pKSl4/fXXMWfOHGEdRNbA3t4eq1evRs+ePTF27FiEhYXhzTffRPfu3UWnWZ23334bKSkp2LJlCwYNGiQ6h4jodxs6dCjWr1+PrKwshIaGis6pFxkZGbCxsUG7du1EpxA1GM2aNUPz5s1hMBjQu3dv0TlED0RZWRlcXFxEZxDVkpeXh5qaGo55EBER1SGOeRAR0X1r0aIFVqxYgenTp2PkyJFo37696CQiIiKrlZeXh/DwcNEZRERERCTQtWvXkJubax7sMBgMOHHiBC5fvgwA0Ol0UBQFAwYMwPz586EoCoKCgnhVFyISJisrCwUFBQgJCYGPjw9sbGyg1+uRlJQkOo2IiMgqaDQatG/fHu3bt8eECRMAAJWVlTh58iQOHz6M9PR0vPvuu1i+fDlMJhN8fX0RFRUFRVEQHR2N8PBw2NjYCH4WRNSYrV69Gh9++CFWrVqFFStWCOtwdnbGuHHjsGnTJkyfPh1arVZYC5G16N27N06dOoWnnnoKPXv2xNSpU7FmzRrY2dmJTrMKBw4cwJgxYzBv3jxMnjxZdA4R0R/SuXNneHp64v33329UYx4BAQFwdnYWnULUoEiSBIPBIDqD6L7dvHkT9vb25u855kGWyGg0QqVSoW3btqJTiIiIrBbHPIiI6E9JTk7G9u3bMWXKFBw8eBAqlUp0EhERkVXKy8vDsGHDRGcQERERUT0pLi5Genq6ebRDr9cjJycHNTU1cHFxgb+/PyRJQmxsLBRFQfv27XkAIBFZnGXLluH9998HANjZ2cHf3x8//vgjjEYjPv/8c0iShDZt2giuJCIisi5arRaKokBRFPN9ZWVlOHr0KA4fPowjR45g0aJFuHHjBlxcXNCxY0fzwEeXLl3g6uoqsJ6IGht3d3ekpKRg3rx5SExMREBAgLCWqVOnYsuWLXjnnXcwatQoYR1E1qRp06bYsWMHHn30UUyZMgVffvkl3nrrLYSFhYlOaxCOHDmCvLw8jB49utb9BoMBQ4YMwcCBA/Hss88KqiMiun8qlQqDBw/G+++/j5SUFNE59eL48eO8iBPRfZBlGZmZmaIziO5LXl4eAgMDYTKZ4OTkBBcXF1RVVaGqqgoDBw6Em5sbXF1d0bRpUyQlJcHT01N0MjVSRqMRnp6ecHR0FJ1CRERktTjmQUREf4qNjQ1SU1OhKAreeOMNjB07VnQSERGR1SkvL0dJSQlXj4mIiIis0JUrV3Dq1CnzYEd6ejpOnDiB69evQ61Wo02bNpAkCXFxcZBlGZIkQZIkDqoSUYMQEBAAW1tb3L59G7du3cKpU6eg0Wjwj3/8A9u2bQMAODo6Yvz48di8ebPgWiIiIuvl4uKCXr16oVevXgCAqqoqnD59GkeOHMHhw4eRlpaGZcuWQa1WIzAwENHR0YiKikJ0dDR8fX0F1xORtZsyZQpef/11TJ06FXv27BHW4ePjgyeeeALPPvssRo4cCRsbG2EtRNYmMTERXbp0wejRo9G5c2ekpKRg7ty5/Pfsf5g8eTIyMzORnp6ODRs2QK1W48KFC3jssccgyzLS0tL4e0hEDdbQoUOxdetW5OTkICgoSHROncvKysJTTz0lOoOowZEkCTt27BCdQXRfPD09odVqcevWLZSXl6O8vNz82K5du6BWq6FSqVBVVYXw8HCOeZAwRqMR/v7+ojOIiIisGsc8iIjoT2vXrh2eeuopzJ07F7GxsWjevLnoJCIiIquSn58Pk8nEMQ8iIiKiBqyqqgpnz541D3akp6fDYDCgsLAQJpMJTZs2hSzLkGUZcXFxUBQFERERvPIFETVosiyjqqqq1n2//L6iogJOTk71mUVERNToaTQa898/kpKSAABnz57FkSNH8O233+Kbb77B66+/jqqqKnh5eaFbt27o1q0bunbtynEPInrg1Go1XnjhBXTp0gWffvopYmNjhbUsXrwYISEh+Ne//oUBAwYI6yCyRt7e3ti/fz/Wrl2LpUuXYu/evXjjjTd+9YQ1g8EABwcH+Pj41HOpZTh+/Lj5KvQvvvgiCgsLsW3bNgwZMgQajQYffPAB7O3tBVcSEd2/mJgYuLu746OPPsKCBQtE59Sp69ev49y5cwgODhadQtTgSJKEK1eu4MKFC9DpdKJziP4Qe3t7dO3aFfv27UNNTc1dj1dXVwMAHn74YfTv37++84jMjEZjoxhXIyIiEoljHkRE9ECsWLEC77//PhYuXIhXX31VdA4REZFVMRgM0Gg0HPMgIiIiaiBKS0vNox0GgwF6vR7Hjx9HRUUFNBoNAgICIMsyEhISoCgKZFnmCXFEZJVkWb7nwWk/5+LiYvUHaxMRETUEXl5e8PLywsiRIwH8dLLR0aNHcejQIRw4cACTJ09GRUUFxz2IqE5ER0fjiSeewIwZM9CrVy9hJ6gHBwejf//+WLlyJcc8iOqAWq3G/Pnz0bNnT8THxyMkJARbt25FfHx8rZ8rKSlBTEwMmjRpgqysLLi4uAgqFic1NRVarRaVlZWorq7Gnj170LFjR5SXl+Pbb7/lxbaIqMFTq9Xo27cv9uzZY/XvD+fk5MBkMvEkWaL7IMsyAECv13PMgxqk2NhY7N+//1c/L9VqtZg8eTJsbW3ruYzo/zMajXwfjIiIqI5xzIOIiB4IZ2dnrF+/HiNGjEB8fDy6desmOomIiMhqZGdnw8/PD3Z2dqJTiIiIiOhnKisrkZubW2u0Iz09HRcuXAAAuLm5QZIkKIqCxMRESJKEDh068IqJRNRoBAcHQ61Wm68s9UtqtRrPPPMMXF1d67mMiIiI/hcnJyd0794d3bt3BwBUVVUhMzMT+/btw759+8zjHjqdDtHR0ejVqxeioqLMJ1kQEf1Ra9euRVBQENauXYslS5YI61i8eDEeeeQRfP311zz2haiOdOjQARkZGViwYAESExPxySefIDU1FW5ubgCAcePG4dq1a7h27RqSk5OxY8cOwcX1q7y8HG+99RYqKyvN91VWVuL8+fNo3rw5bt++LbCOiOjB6dWrFyZMmIDr16/DyclJdE6dyc7Ohq2tLccwie6Du7s7mjVrBoPBgF69eonOIfrD+vfvj2nTpv3q4zU1NZgwYUI9FhHVdv36dVy4cAH+/v6iU4iIiKwaxzyIiOiBGT58ONLS0jBlyhRkZGRAq9WKTiIiIrIKBoOBB0ATERERCVZcXFxrsMNgMODUqVO4desWtFot/P39oSgKpk+fDkmSEBkZiZYtW4rOJiISys7ODq1bt0ZRUdFdj9nY2MDDwwMTJ06s/zAiIiL6wzQaDRRFgaIomD9/Pm7duoWjR4/iq6++woEDBzBjxgxUVFTAy8sL3bp1Q/fu3dGnTx94eHiITieiBqJVq1ZYvHgxli9fjvj4eHh7ewvp6NSpE7p164ZVq1ZxzIOoDjk4OGDTpk147LHHMG7cOISFheHNN9+E0WjEZ599BpPJBAD45z//iX79+iEhIUFwcf3ZsWMHbt26ddf9lZWVKCkpQadOnbBr1y507dpVQB0R0YPTp0/8aOPOAAAgAElEQVQfVFZW4tChQ3j00UdF59SZnJwc+Pv7Q6PhqTtE90OSJBgMBtEZRPfF19cXXl5eOHv27F2PaTQaDBw4EJ6engLKiH5iNBphMpk45kFERFTH+I4AERE9UJs2bUJoaCg2btyIuXPnis4hIiKyCgaDAcOGDROdQURERNQo3L59G0ajEenp6ebRjszMTFy6dAkAoNPpIMsyoqKiMG3aNMiyjNDQUNja2gouJyKyTGFhYTh79ixqampq3W8ymbBx40b++UlERNRA2dnZISYmBjExMQBw17jHpEmTcPPmTYSGhqJv377o06cPYmJiYG9vL7iciCzZrFmz8MYbb2Du3Ll49913hXUsXLgQffv2xbFjx9ChQwdhHUSNQd++fZGRkYEJEyagX79+UKlU5iGPO5KSktCxY0cEBgYKqqxfL7744l2/B3dUVVXh+vXr6N27N3bs2MHjCIioQWvZsiUkScLevXutfswjKChIdAZRgxUSEoLMzEzRGUT3beDAgXj55Zdx+/btWvdXVVVh2rRpgqqIfmI0GmFjYwMfHx/RKURERFaNYx5ERPRAtW3bFgsXLsSyZcsQFxcn7EopRERE1qKyshJ5eXkIDg4WnUJERERkdYqLi82DHXq9Hunp6cjJyUFNTQ2cnZ0REBAASZIQGxsLWZbRvn17NG/eXHQ2EVGD0q5dO3z++ee1riir0WgQFhaGIUOGCCwjIiKiB+mX4x4VFRU4cuQI9u3bh3379mHdunWwt7dHVFQUevXqhV69eiEiIgIqlUpwORFZEltbW2zZsgV9+vTBnj170LdvXyEdffr0QYcOHbB69Wq89957QhqIGhN3d3d8+OGHUBQFer3+rserq6sxfPhwfP/991Y/Cnr8+PHfdbJqZWUldu/ezTEPImrwevfujb1794rOqFNGoxH9+/cXnUHUYLVv3x5paWmoqamBjY2N6ByiP6xfv37YunVrrftUKhX8/PzQpUsXQVVEPzEajfDy8uIINxERUR3jmAcRET1w8+fPx9tvv41Jkybh888/F51DRETUoBmNRlRWVkKSJNEpRERERA1WWVkZjEajebAjPT0dmZmZKC8vBwDodDooioIBAwZg/vz5UBQFwcHBPBiIiOgBkGX5ritNVVdXY+PGjTx5l4iIyIo5ODiYRzsA4D//+Q8OHjyIXbt2Yc2aNViwYAFatGiBLl26IDY2FrGxsXjooYcEVxORJejduzcGDRqEmTNnIjMzE1qtVkjHggULMHz4cOj1esiyLKSBqDFZvXo1Tp48iZqamrseq6yshMFgwJIlS7BmzRoBdfUnNTUVWq0WlZWV93xcrVajefPmeO6555CQkFDPdURED17v3r2xadMmXLhwATqdTnROnSgsLISvr6/oDKIGKywsDOXl5cjPz4e/v7/oHKI/rHv37rC1ta31eamNjQ1mzpzJz0pJOKPRyD9biYiI6gHHPIiI6IGztbXFSy+9hK5du+Ldd99FXFyc6CQiIqIG6+TJk9BqtQgMDBSdQkRERGTxqqurcebMGfNoh8FggF6vR3Z2NkwmE1xdXRESEgJZlhEXFwdFURAWFoYmTZqITicislqyLMNkMpm/12q1GDhwIKKiogRWERERUX1r0aIF4uLiEBcXh+rqanz//ffYs2cP9uzZg3HjxgEAOnfujEGDBmHw4MHw8/MTXExEIm3evBnBwcHYvHkzZs+eLaTh8ccfR3BwMNauXYtt27YJaSBqLDIyMvD000/fc8jjjqqqKqxduxZdu3ZF//7967Gu/pSXl+Ott96655CHVquFWq3G/PnzsWDBAl41mYisRteuXaHRaHDgwAGMGDFCdM4Dd+nSJVy7do1jHkR/QmhoKDQaDU6cOMETzqlBcnBwQJcuXbB//37z33lsbW0xatQowWVEQHZ2Njp16iQ6g4iIyOrxsoJERFQnYmJiMG7cOEybNg1XrlwRnUNERNRgHT9+HJIk8WAcIiIiol+4cuUKDh8+jE2bNmHixImIjo6Gi4sL2rZti8cffxzbt29HRUUF4uLisHPnTpw6dQqlpaU4fPgwUlNTMX36dERHR3PIg4iojgUEBECj+f/XFzCZTFi9erXAIiIiIhJNrVbjkUcewdNPP41vvvkGly5dwttvvw1fX1+sWrUK/v7+CA0NxZIlS3Ds2LFaw2BE1Dh4eXlhzpw5WLZsGYqLi4U0qFQqzJkzB//4xz9w5swZIQ1EjYHJZMLIkSNRXV39P39WpVJh9OjRKCkpqYey+rdjxw7cunWr1n0ajQYqlQpPPPEECgsLkZKSwmMHiMiqODk5ITQ0FEePHhWdUicKCgoAAD4+PoJLiBouBwcHBAQEIDMzU3QK0X3r378/bGx+OoVTq9Vi/PjxcHFxEVxFBOTk5CA4OFh0BhERkdXjmAcREdWZNWvWoKamBosWLRKdQkRE1GBlZGQgPDxcdAYRERGRMJWVldDr9Xj33XeRkpKCAQMGoG3btnBzc0NMTAyWLVsGvV4PRVGwYcMGHDp0CFevXkV+fj527dqFlJQUxMXFQZZlqFQq0U+HiKjR0Wq15gOVtVotpkyZAj8/P8FVREREZEnc3NwwbNgwvPnmmygpKcGhQ4fQv39/vPPOO4iMjETLli2RmJiIXbt24fbt26JziaieLFiwAM2aNcPChQuFNYwaNQoeHh5Yt26dsAaixqBPnz5o1qwZgJ/eO7hzktsv1dTUoKysDPHx8VY59vXCCy+Yn5eNjQ1UKhU6d+6M48ePY/v27WjZsqXgQiKiuhEZGYnvv/9edEadKCwshEajQevWrUWnEDVo4eHhyMjIEJ1BdN/69euHqqoqAD8dA5OcnCy4iAgoLi7G1atXOeZBRERUDzjmQUREdeahhx7CunXrkJqaim+++UZ0DhERUYN04sQJjnkQERFRo1FaWorDhw9j06ZNSExMRIcOHeDi4oKQkBCMGjUK7777LhwcHJCQkIBPPvkE+fn5+PHHH83/TFJSEqKjo+Ho6Cj6qRAR0c9EREQAAOzs7LBkyRLBNURERGTJ1Go1oqOjsXr1auTm5iI9PR3JycnIzMzEwIED0bJlSyQkJOC9995DRUWF6FwiqkMODg5Yu3Yttm/fjoMHDwpp0Gq1mD17Nl555RVcvHhRSAORtVOpVNi8eTNKSkqQn5+PrVu3YtCgQXBwcAAA2Nra1vr5yspKfPnll9i0aZOI3Dpz/PhxnDx5EjU1NVCr1fD09MQHH3yAgwcPIiwsTHQeEVGdioyMRHp6OiorK0WnPHAFBQXw8vKCRqMRnULUoLVv3x4nTpwQnUF03wIDA+Hp6QkA6NKlC2RZFlxEBBgMBgDgmAcREVE94LsCRERUp+Lj45GWloaJEyfi+PHj0Gq1opOIiIgajHPnzuHy5csc8yAiauBu3ryJzz77DNXV1aJTyApERkbC29tbdMafdvv2bRiNRqSnp8NgMECv1+P777/Hf/7zHwCATqeDLMuIiorCtGnTIMsyZFmGvb294HIisjQVFRX4/PPP+d/ZBmLIkCHYv3+/6IxGzcPDA1FRUaIziIiIfreIiAhERERg2bJlOHPmDD766CN8+umn+Otf/wqNRoPY2FgkJCSgX79+PDmKyAo9/vjjePTRRzFjxgx8//33UKvV9d4wfvx4rFixAhs3bsTq1avr/f+fqDHx9fVFUlISkpKSUFFRgQMHDuCLL77Arl27kJeXB7VaDZVKhaqqKsybNw9du3b91c/SS0tLAQD/j737Doviet8Gfi8dpSpIsWMBaVIUEqxJ0ChGsUSxEBsaEVsIolhiTaxoolET6zdRk6gx0WhijKiJomJDQSliQUUFpIqAlKW8f/jCTwRkF5edXbg/17WX6zB7zj1nB2fdM/NMaWkpnj17Vul5mdzcXBQWFr4xV3FxMZ4/fy7RNujr60NF5c33WdTU1KxUkDo4OBgA0KhRI8ybNw+TJ0+GpqamRH0SESk7FxcX5OXlITo6ut4VMEpISKgXc7tEQnNwcEBiYiKePn0KExMTufZ97949XLt2Ta59Uv1kY2ODx48fo2vXrvj111+FjkNKytXVFa1atZJJW7GxsWjatCmaNWsmk/aIiIioeqLS0tJSoUMQEVH99uDBA9ja2mLhwoUICgoSOg4RyYlIJML+/fsxYsQIoaMQKa0jR45g8ODByMzMhL6+vtBxiIioln7//XcMGzZM6BhUT4wcORK//PKL0DGkkpiYWF6wIzw8HOHh4YiLi0NxcTE0NDTQvn17ODs7w8bGBtbW1nB1deVEMZEA9u7dCx8fHxQUFAgdRSr79u3DqFGjhI5BpDS0GzXCi9xcoWMQERG9tZSUFOzfvx8//fQTLl26BDMzM4wcORLe3t5wcnISOl694unpCT09PezZs0foKNRA3blzB3Z2dli/fj38/PwEyRAcHIwlS5YgPj6e31sR1VJWVhays7PLH8+fPy8vpJGVlYWioiJkZWWhsLAQubm5ePHiBQoKCvD8+XMUFRUhOTkZqampSElJQVZWFkpKSioVxSgr4FEfiUQiGBgYVHqura0NLS0t6OrqQk1NDYaGhlBTU4Ouri60tLSgra0NHR0dqKurw8DAAGpqatDT0yv/mb6+PnR1daGnpwddXV3o6uoKuZlE1ECVlJTAwMAAwcHB+PTTT4WOI1MfffQRmjRpgt27dwsdhUippaenw8jICP/88w/69u0r176HDh2KQ4cOybVPIqLqjBs3Dj/88INM2vLz80NUVBTOnj0rk/aIiIikpaznK9YGb0lBRER1rk2bNpg/fz6WLVuG4cOHo127dkJHIiIiUgrXr19Hu3btWMiDiEjJFRUVAQB+u5UocBJSdus+m4Li4mKhY1QrOzsbt2/fLi/aERMTg4iICKSlpQEAzMzM4OzsjIEDB2Lu3LlwdnaGlZWVIHdUJaL6o6ioCOrqGth384HQUYgU3tkjv2HLwgChYxAREclEs2bNMGPGDMyYMQMPHz7Evn37sGvXLnz99dewsrKCl5cXvL290b59e6GjEtFb6tChA2bOnImFCxdixIgRMDIyknsGPz8/BAcHIzg4GGvWrJF7/0RCe/HiBTIyMpCZmYmMjIwKj+fPn1co0pGZmVmpaEdWVtYb29fX14eamhr09fWhoaGBxo0bo1GjRtDU1CwvUmFtbV1epEJTUxNpaWkQi8VwdHQs/45ZX18fKioqb3xuYGAAkUhU3re6ujp0dHRqHIOyHG8iFouRk5NTY1vZ2dnlc0fAy4vYy8aouLgYz58/r/S8qKgI2dnZlZ6/XvTk2bNnyMvLQ2pqKvLz85GXl4ecnByIxWI8e/YMRUVF5W1Wx9DQsLywR9nDwMCgQsEPPT09NGnSpNLD0NAQ2traNY4BEdGrVFRU4OTkhCtXrtS7Yh5PnjyBnZ2d0DGIlF7Tpk3RvHlzREREyL2YR1FxMXoOGoZZa76Va79ERK9b7TdBpueNxcbGolOnTjJrj4iIiKrHYh5ERCQXc+bMwYEDBzBt2jQcP35c6DhERERK4eLFi3B1dRU6BhERESmh3NxcrFmzBseOHUNYWFiNJxlLKzExEeHh4eVFO6Kjo3Hr1i2UlJRAT08PHTp0gLW1NT766CPY2NjA0dERTZs2lWkGIiIiIiIiIgBo3bo15s6di7lz5+LSpUv46aef8N1332HZsmVwc3PD2LFjMWrUKN5pnkiJffHFF/j555+xcOFCfP/993Lvv1GjRpgzZw4WLVqEgIAAmJiYyD0Dkazk5eXh6dOnSE5ORkpKSvmjrDhHVQU78vPzK7VTVsyhrMBD2Z8WFhYVij7o6upCX18f+vr6FZbp6elBR0cH6urqAoxC3VBXV4ehoWGN60myTl0rLCxEbm4usrKyKhVfefbsWYVlZUVaHj9+XGG9jIyM8qIir9LW1q620EeTJk1gYmKCZs2awdjYGObm5jA2NoaWlpYAo0BEisTR0RHnz58XOobMPXnyBM2bNxc6BlG94ODggIiICKFjEBHVGzExMfD09BQ6BhERUYPAYh5ERCQXampq2Lp1K9zc3PDLL79g1KhRQkciIiJSaKWlpbhy5QoWL14sdBQiIiJSIqWlpfj5558xe/ZspKSkoKSkBLdu3YKtrW2t2svKysLNmzfLC3aEh4cjIiICubm5AAAzMzM4Oztj+PDhsLGxgbW1NTp16lR+l0MiIiIiIiIieXJ1dYWrqyvWr1+PEydO4KeffsJnn32G2bNnY9SoUZgyZQqcnJyEjklEUtLV1cXq1asxduxYTJw4ES4uLnLP4Ofnh3Xr1mHt2rUIDg6We/9EbyIWi5GUlIRHjx4hJSUFSUlJSElJQWpqKhITE5Gamlq+PCcnp8Jr9fT00KxZswpFF1q0aFFlEYZXH7IuIE3ypaGhAQ0NjbcuLCIWiysVf6mqKMzjx49x48YNpKenIyUlpcr90MzMDMbGxjAxMYGpqSmaNWuGZs2alS9v1aoVTE1Nue8R1VNWVlbYtWuX0DFkqqCgAGlpaSzmQSQjXbp0wc8//yx0DCKieiEjIwMpKSno1KmT0FGIiIgaBH6jSUREcuPq6orJkyfD398f/fr1U4i7DBARESmqO3fuID09Ha6urkJHISIiIiVx9epVTJ8+HZcvXwbwsrCHiooKIiIiaizmUVRUhISEhPKCHeHh4YiJicH9+/dRWloKAwMD2NjYwMbGBsOHD4ezszMcHR3RuHFjeWwaERERERERkVTU1NTg4eEBDw8PZGZmYvfu3di2bRu2bduGLl26wM/PD6NHj4ampqbQUYlIQmPGjMH27dsxbdo0XLp0Se7FZLW0tBAYGIh58+bh888/h7m5uVz7p4arsLAQaWlpSEpKQnx8PBITEys9f/jwIYqLi8tfo6WlBXNzc5iZmcHQ0BA2NjZwd3eHoaFhheUtW7aEnp6egFtHyk5dXR0mJiYwMTGR6nX5+fnlRT+SkpKQmJhY4XlcXBz+/fdfZGZm4unTpygpKSl/raGhISwsLGBmZgZzc/MKz83MzNCmTRvOXRApIUtLSzx//hzJyckwNTUVOo5MJCYmorS0FC1atBA6ClG90LVrVyxbtgzp6elo2rSp0HGIiJRaTEwMAMDa2lrgJERERA0Di3kQEZFcrVmzBkePHkVQUBC2bt0qdBwiIiKFdfHiRWhqaqJz585CRyEiIiIFl5iYiMWLF2Pnzp1QU1NDaWlp+c/U1NQQGRkJb2/v8mWZmZnlRTtiYmIQHR2Na9euIS8vD2pqaujYsSNsbGzwySefwNnZGTY2Nmjbti1EIpEQm0dERERERET0VgwNDTFr1izMmjUL586dw/fffw9fX1/MmzcPU6dOha+vr9QXoBKRMDZt2gRHR0fs3r0b48ePl3v/vr6+CA4Oxtq1a/H111/LvX+qn4qLi/H48WPEx8dXeNy7dw+PHj1CcnJy+brq6uowMzNDy5Yt0aJFC7i6upY/Nzc3R+vWrWFsbAwNDQ0Bt4ioZmUFZ8zNzWFjY/PGdQsKCvD06VM8evQIjx8/RmJiIhISEvDkyRNERUXh2LFjSE5ORlFREQBAJBLB1NQUrVu3hoWFRaVH8+bN5V4QiohqZmlpCQCIi4urN8U8nj59CgD8/yaRjLi4uKC0tBTh4eHo27ev0HGIiJRabGwsdHR0WHSMiIhITljMg4iI5EpPTw/r16/HqFGjMHLkSLz33ntCRyIiIlJIly5dgqOjI+8KSERERNXKy8vDxo0bsWzZMojFYpSWlkIsFldYp7CwEGfPnkVAQABu3LiBGzduICUlBQBgZmYGOzs7uLm5wdfXF3Z2dujUqRNP9CYiIiIiIqJ6q3v37ujevTvWrl2LzZs3Y9OmTVi5ciW8vb0xd+5cdOjQQeiIRPQGtra28PX1xdy5czF48GAYGBjItX8tLS3MmTMHc+fOxezZs9G8eXO59k/KSywW4969e4iNja1UsOPhw4coLCwEAOjo6JQXHOjRowfatGmDli1bonnz5mjRogVMTExYhIAaHE1NTbRq1QqtWrWqdp3i4mI8ffoUCQkJSExMxKNHj/DgwQPEx8fj0KFDiI+PR15eXnl7bdu2rVTko1OnTrCwsICaGk+tJxKCmZkZ9PT0EBcXh169egkdRyZSU1MBAMbGxgInIaofjI2N0aZNG1y+fJnFPIiI3lJsbCw6derEGzsRERHJCb9xJCIiufPy8sLevXsxdepUREZG8iJlIiKiKly6dAk9evQQOgYREREpqKNHj8LPzw9JSUkoLi5+47rR0dEoLi6Gvb09PDw8YG9vj86dO8PIyEhOaYmIiIiIiIgUi5mZGb788kssWLAAe/fuRXBwMH744QcMHz4c8+fPh52dndARiagay5Ytw/79+7F06VJ8/fXXcu//008/xdq1a7FmzRps2LBB7v2TYissLMSdO3cQExOD+Ph4REdHIyYmBjExMeWFBAwNDcuLBwwdOrRCMYG2bdvyQhqiWlBVVYW5uTnMzc2rXSczM7NCMZ34+HjcunULx44dw4MHD1BSUgJ1dXW0bNkS1tbWsLGxKf/TysoKjRs3luMWETVMHTt2RFxcnNAxZCYtLQ2NGjWCtra20FGI6o2uXbviypUrQscgIlJ6ZcU8iIiISD5YzIOIiASxadMm2NraIjg4GAsWLBA6DhERkUJ58eIFbty4gdmzZwsdhYiIiBRMZmYm3NzcEBYWBhUVFZSUlNT4mtzcXPzxxx+8UygRERERERHRa7S1tTF58mT4+Pjg119/xYoVK9C5c2cMHjwYX375JaytrYWOSESvMTQ0xIoVKzB16lRMmDAB9vb2cu1fS0sLc+fORWBgIAIDA9GiRQu59k+KobS0FPfu3UN4eDiuXbuGqKgoxMbG4uHDh+UFATp06IBOnTqhX79+CAgIgJWVFaysrHhBL5FADA0N4ezsDGdn50o/y83Nxa1btxAbG4uYmBjcunULhw4dwrp161BUVARVVVW0bdsWnTp1gp2dHZycnODk5IS2bdsKsCVE9ZeVlVW9KuaRnp7OmysQyVjXrl2xfv16oWMQESm9mJgY9O7dW+gYREREDQaLeRARkSBat26NL774AosWLcLHH38MS0tLoSMREREpjLCwMIjFYnTr1k3oKERERKRAUp48wt2bEeV/l6SQR5mIiAgW8yAiIiIiIiKqhoqKCry8vDBixAgcPXoUixYtgr29PcaNG4clS5agZcuWQkckoldMnDgRO3bswLRp03D27FmIRCK59j958mSsXr0aq1atwqZNm+TaN8lfSUkJbt++XV6449q1a7h+/TqysrKgpqaGTp06wd7eHpMmTYKVlRWsra3Rrl07qKurCx2diCTUuHHjKgt9FBYW4s6dO4iNjS0v9HH48GGsXr0axcXFMDQ0hJOTE5ydncsLfLRv317uxyWi+qJt27aIjIwUOobMsJgHkey5uLggOTkZjx494nc1RES1lJWVhUePHsHW1lboKERERA0Gi3kQEZFgPv/8c+zbtw++vr44ffo0J7GIiIj+v9DQUFhYWHDCiYiIiCrQ1TeEpaUlLC0tERUVhYSEBBQVFQEANDU1UVpaisLCwkqv09DQQGRkJAYMGCDvyERERERERERKRSQSYdCgQfjoo4/w888/Y9GiRfjll1/w+eefY/78+WjUqJHQEYkILwvwbN68GS4uLjhw4AC8vLzk2r+mpibmzZsHf39/BAYGonXr1nLtn+rW8+fPce7cufLH9evXkZOTA3V1ddja2sLJyQkjRoyAk5MT7O3toa2tLXRkIqojGhoasLGxgY2NTYXlubm5iIiIKC/wc/z4caxfvx5FRUXQ09ODk5MTevTogR49euDdd9+Fjo6OQFtApFxMTEyQnJwsdAyZSUtLYzEPIhlzdnaGqqoqLl++zHMriYhqKSoqCqWlpSzmQUREJEcs5kFERIJRU1PDd999Bzc3N+zZswdjx44VOhIREZFCCA0NRc+ePYWOQURERApGW0cH7c3sceDAAQCAWCzG/fv3cevWLcTFxSEuLg5RUVG4desWsrKyAACqqqoQi8WIiIgQMjoRERERERGRUlFRUYG3tzdGjBiBzZs3Y+nSpfjpp5+wYcMGDBo0SOh4RISXF3FNmDABs2fPxoABA+R+obSPjw9Wr16NVatW4bvvvpNr3yRbqampOHfuHM6cOYPQ0FBERkaiuLgYVlZW6N69O7y9veHs7Aw7OztoaGgIHZeIFEDjxo3RrVs3dOvWrXxZfn4+IiMjce3aNVy5cgW//PILli9fDjU1tfLiHj179kT37t3RpEkTAdMTKS5TU1OkpaVBLBZDXV1d6Dhv7dmzZzAwMBA6BlG9oqOjAysrK1y5cgXDhg0TOg4RkVKKioqCrq4uWrVqJXQUIiKiBoPFPIiISFCurq6YNm0aAgIC0L9/fxgbGwsdiYiISFBisRgXL17EmDFjhI5CRERECk5dXR0dO3ZEx44dK/0sIyMDcXFxiI2Nxe3bt+Hs7CxAQiIiIiIiIiLlpqGhAX9/f4wcORKBgYEYPHgwPD09sXXrVjRr1kzoeEQN3urVq3H48GGsWLECK1askGvfmpqaWLBgAWbMmIHAwEBYWFjItX+qveLiYpw7dw5HjhzB8ePHERsbC5FIBHt7e/Ts2RPz589H9+7dYWJiInRUIlIiWlpacHV1haurK6ZOnQoASExMxNmzZxEaGop//vkH69evh0gkgq2tLfr3749BgwbhnXfegYqKisDpiRSDiYkJSktLkZqaCnNzc6HjvLWcnBw0b95c6BhE9Y6LiwuuXLkidAwiIqUVFRUFW1tbiEQioaMQERE1GPz2j4iIBLdy5Uro6urC399f6ChERESCu3LlCl68eIGePXsKHYWIiIiUWJMmTfDuu+9i4sSJWLVqFYYPHy50JCIiIiIiIiKlZWZmhr179+LUqVOIiIiAnZ0djhw5InQsogavadOmWLRoEdatW32w5OgAACAASURBVIe4uDi59+/j4wMLCwssXrxY7n2TdLKzs3Hw4EGMHTsWJiYm6N27N44dOwYPDw8cPXoU6enpuH79OjZs2IBhw4axkAcRyYS5uTlGjhyJzZs34+bNm0hNTcXvv/+O9957DwcPHkS3bt1gZmYGHx8f/PHHH3jx4oXQkYkEZWpqCgBITk4WOIls5OTkQEdHR+gYRPWOq6srLl26hKKiIqGjEBEppaioKNjZ2Qkdg4iIqEFhMQ8iIhJc48aNsXnzZvz00084evSo0HGIiIgEFRoaClNTU7Rv317oKERERERERERERERE9Ir33nsPkZGR8PDwgKenJ6ZPnw6xWCx0LKIGzc/PD1ZWVpg1a5bc+1ZVVcXixYvx888/IyIiQu7905vl5uZiz5498PDwgLGxMUaOHImHDx8iKCgIt2/fRmxsLNauXYsBAwbAwMBA6LhE1AA0bdoUnp6e+Oabb3D37l1ERUXB398fsbGxGDp0KIyMjODp6Yn9+/cjPz9f6LhEcldWzOPp06cCJ5ENFvMgqhtubm7Izc3FzZs3hY5CRKSUoqOjYWtrK3QMIiKiBoXFPIiISCH0798fXl5emD59OnJycoSOQ0REJJizZ8+iZ8+eQscgIiKSytKJXkJHICIikhse94iIiIgaNj09Pfzvf//DgQMH8OOPP8Ld3R2pqalCxyJqsNTU1LBlyxacOHECv/76q9z79/LygoODA7744gu5901VCw8Px8SJE2FmZoZJkyZBQ0MD27ZtQ3JyMs6cOYPZs2ejQ4cOQsek1/Tp00foCFTPKeI+ZmNjg6CgIFy4cAGJiYn49ttvUVRUBG9vb5iZmcHPzw9RUVFCxySSGx0dHTRu3BjJyclCR5GJ7OxsNG7cWOgYRPWOjY0NDA0NceHCBaGj1BnORSoHvk91TxHHWBEzSSMpKQmpqaks5kFERCRnLOZBREQKY9OmTXjx4gVPcCAiogarqKgIoaGheP/994WOQkRECmqYlTmGWZnX+vUZT5OxIXA6JvVwxMfWLd66vTKlpaVv3YayqauxJCKiuve2/2Y3xOOetHhMlA1+viAiIlJsw4cPx4ULF/D48WO4uLjg7t27QkciarC6deuGCRMmYObMmcjKypJr3yKRCF999RX+/PNPnDlzRq590/8pLS3F4cOH0aNHD3Tp0gXXrl3DV199hSdPnuDw4cMYO3YsjIyMhI75RiKRqFY/UzYikajK7VHW71uq2x5Z90FvT9H3MRMTE/j4+OCvv/7Co0ePsHDhQvz777+wt7eHu7s7jh8/LnREIrnQ19fH8+fPhY4hEzk5OSzmQVQHVFRU4OLigrCwMKGjVItzkXVPEebP6uv7JMT8ZHV9vs0Y19V2KPv7XlYskMU8iIiI5IvFPIiISGEYGRlhzZo12Lhxo0J/wUZERFRXwsLCkJ2dDXd3d6GjEBGRgvrtVuJbvX5j0EyYtW6Lb/78F79ExCPw2x0yybXkfwdk0o4yqauxJCKiuve2x9OGeNwjYbztvkpERER1z87ODpcvX4axsTF69+6NO3fuCB2JqMFau3YtioqKsHTpUrn33a9fP7z//vtYuHCh3Psm4MSJE3BxccHQoUNhZGSEf//9FxEREZgxY4bCF/BoiKq78OnkyZNyTiIbyn4hV0OiTPuYqakpAgICEBMTg7///hvq6uro378/unfvjtDQUKHjEdUpLS0t5OfnCx1DJvLz86GtrS10DKJ6yc3NDefPnxc6RrU4F9kw1Nf3SYj5yer6fJsxrqvtUPb3PSoqCiYmJjA2NhY6ChERUYPCYh5ERKRQJkyYgA8++ABTpkyBWCwWOg4REZFcnTp1Cq1bt0a7du2EjkJERPXUrfDLGPLpDOjoG0BdQwPv9PHgRaK1xLEkIiIiIiIiIgBo2rQpQkJC0KJFC/Tu3RuPHj0SOhJRg9SkSROsXLkSGzduxPXr1+Xe/8qVK3H+/HkcO3ZM7n03VCkpKRg9ejQ+/PBDmJub4/r16zh06BB69+4tdDQiIpkQiUT48MMP8ffff+PixYvQ1tZGr169MGnSJGRmZgodj6hO1KdiHkVFRVBTUxM6BlG95ObmhgcPHuDJkydCRyEiUipRUVGws7MTOgYREVGDw2IeRESkcLZt24b4+HisWbNG6ChERERydfLkSbi7uwsdg4iIFMSju3H46lNvjHZsD+8ullg9fSLSkqo+ESHhzi18NeUTjHHqgDFOHbB80mgk3LlVYZ1hVuYQFxZipH0bDLMyr/R4fd1hVuZIS0rEKr/xGOPUARO72WND4HRkP8usct3XPbgVg2UTR2K0Qzt4O3fEl5PHIOLcfxXWuXL6BOaPGoSR9m3g+74L/rdyMfJyc6revk+9y7fvq0+9K21fTV5kP8f/Vi7GVPd3MNK+DXy6O+DboM9w50bFE/tlPZaSjgUREQlP0mNAVf/Wv0nZa5ITHmDNDB+MdbGq1I4kx7rq+q5uuSTHWWmO+dKM0attD7Myx5aFARKPlyyO+8Brn6WcO2KZzyg8vnu70nhJO66SjIEkpGlH0veHiIiIhKOvr48TJ06gSZMmGDp0aL25+IxI2fj4+MDV1RVTpkxBSUmJXPt2cXHBoEGDEBQUJPe+G6Lr16+ja9euOHPmDA4dOoQ//vgDnTt3FjpWBSKRCCKRSKLlZX8v+5lIJMKkSZNq/Bnw8kKcAQMGQFdXF7q6uujXrx+ioqKq7PPevXsYOnQoDA0Nq81XlaysLPj7+8PCwgJaWlowMzPD+PHjcfny5QrrHTlyBN26dYOWlhbatGkDf39/ZGdn19h+dVkiIyPRt29fNG7cGHp6eujfvz/++ecfiTJL04akuaOjo+Hh4QEdHR3o6+tjyJAhSEhIqLJfSdqUZFxr2jdqel+joqLg4eFRvn94eHhU2j9qIs2+LOk2SdoeINlY1jQW1bUti/GRF1dXV4SEhOCPP/7A8ePH0blzZ1y7dk3oWEQyp6WlhYKCAqFjyASLeRDVHVdXV6iqqiIsLEzoKFLhXKTyzEXWNKbVjYmk85PSbOswK3M8vncHQV4fYZSDBRaOGYzkhAd4dDcOQSMGYLRjeywa+3G155S9idTnpsl6DvcNfb7t+WxlZL3vVZfpbX//5OXmzZuwtbUVpG8iIqKGjMU8iIhI4bRp0waLFi3C8uXLERsbK3QcIiIiucjOzsbly5fxwQcfCB2FiIgUQHLCA3w5eQze/fAjfH/qEraEhOHdvgOw3t+3ynWXThiJLu/1wXcnL+L705fRa9AwrPKbgPTkpPL1fruVWP7n64/XlS3bsjAAH44ah53nIrDm4HEU5Ofhx9XLqlz3VYkP4rHOfwoGT5qG/12Mwqr9fyI/7wWWTxpdYb1VfuPx3pAR+PFyLFYd+BM5Wc+wY/nCasfiu5MXsSUkDK59PLB80mgkJzyQbEABfBs0C4119bBy/1HsuXobC7ftRXLCfQSNGFCnYynpWBARkbCkPQZIo+w125YEwXPiVOw4G4EF2/ZW6FuSY111fVe3XJLjrDTH/Lc5Tvp9uU6isZLVcf/1z1LfnbqE94eOxPrPp1bI+Przqsbm9XYlGQNJ8knTzuvvT5FYXOn9ISIiIuHp6enh0KFDuHv3Lj777DOh4xA1SCKRCN9//z0iIiKwa9cuufe/atUqxMbGYt++fXLvuyE5c+YM3NzcYGNjg+joaAwePFjoSFUqLS2VeHnZstLS0vLHjh07avzZ3bt30adPHwwcOBDx8fF48OABvL294enpicePH1dqf+rUqZg9ezYSExNx7Ngxibdl3LhxMDAwQFhYGLKysnDs2DHcvXsXrq6uFdbz9PTEuHHjkJGRgYsXLyIjIwMzZsyosf2qxuT27dvw8vLCnDlzkJqaiosXLyI3Nxf9+vWTOLekbUiS+969e+jfvz8+/vhj3L9/H/fu3cOwYcMwcuTIKvuWpE1JxlWSfaO69/Xu3bvlmePj48sLXfTr1w93796VeByl2Zel2SZJ+5FkLGsai6raltX4yNvAgQNx/fp1WFhYoHfv3ggPDxc6EpFMaWlp1ZviiCzmQVR3dHV1YWdnp1TFPDgXqVxzkTWNaXXziJLOT0q7rfs3rcP0FV9jZ2gE2ljZ4JvA6di3MRjTV36DHWevoUW7Dvhh1VKJxqC6vDWdm1YXc7hv6vNtz2crI8k869v8fsrq908eSkpKEBMTw2IeREREAuC3A0REpJA+//xzHDhwAL6+vvjvv/8kvhMEERGRsjpz5gyKiorw3nvvCR2FiIgUwP5N6zBogi/eH/Z/J4H2HDQMxcVFiIuoeFLe/m+DMXD8p/hw5NgK6xaJxfhj5xZMXLC81jn6jR4Pxx4vj01ajRrD+/P5WDzu45rzfxuMj31nwd6tBwCgRfuO8FsejBn9e1RY79VJTk0tbUyYvwzT+rxbqS3PiVMrjIX78NHIy8nG/k3rMGvNtxJty42wc5i24mvo6BsAANpa22LWmm8x1f2dCn3JeiwlHQsiIhJWXR5PywzznQlLxy4AAKee7//fyVcyOta9TpLjbBlJjvnyGCNZjUVVn6W6D/AEAHwdMPWt8sliDKRt5/X355PZC7BgtGett4OIiIjqTvv27bF161aMHDkSEyZMqHSRMxHVPTs7O0yfPh1z586Fp6cnjI2N5da3lZUVxowZg4ULF+Ljjz+GhoaG3PpuKJ48eYKhQ4di4MCB+OWXX6Cqqip0JEEtWbIE/v7+8PX9vwufvL29UVhYiLVr12LDhg0V1p8/fz7c3NwAAP3796+2eMLrTp06hV27dqFJkyYAAEdHR+zZswcWFhYV1nu1vUaNGuGbb75B+/bta71tCxYsgLu7OwDA2toa27dvh5WVlczbkCT3kiVLEBAQgIkTJ5Yv8/b2RlFRUZUXkUrSpqTjWpPq3tclS5Zg9uzZFTJPmjQJz58/x9KlS7Fnzx6p+pGErLbpVdLsV9Ls40KMj6wYGxsjJCQEgwYNwsCBA3Hz5k00bdpU6FhEMlFfinmUlpaiuLiYxTyI6pCbmxsuXLggdAyJcS5SOeciqxvTKtuWYn5S+rnCcWjRrgMAYOiUmZjc0xGf7PmtfNmwKTMROOxDicehurxvOjetruZwq+vzTaQ5n02SeVZZ7Hvy/v2rjfv37yM3Nxc2NjZy65OIiIheUhE6ABERUVXU1NSwc+dOhIWFYfv27ULHISIiqnPh4eGwtbWFqamp0FGIiEgB3Dh/Fi7ule8uVza5WGHdC6Ho5jGo0nKn3h8g8sLZt8ph3fWdCn83bt4SmakpNb4u6uJ52L1bsViFedt2Nd5BREdPHzlZzyosu3EhtMqxcO3THzcuhNaYpYylgzNWTh2H66H/ori4CADQrEWrCpnqYixrOxZERCRfdXk8LdPe3rHavmVxrKtJVcfZMpIc8+UxRrIai+o+S3Xu1vOt88liDKRt5/X3x8isuUSfyYiIiEgYI0aMQK9evbBmzRqhoxA1WEuXLoW2tjaCgoIE6TsxMRE7d+6Ue98NwVdffQU9PT38+OOPDb6QBwCcPHkSXl5elZYPGDAAISEhlZa7uLjUqp93330XgwYNwvHjx1FU9PL79bZt29ZYDMTQ0BAZGRm16vP06dP44IMPKiyztLSUuADJ27RRVe6QkBAMHjy40rr9+lX+/kHSNms7rq+r7n09efJklZmHDBmCkydPStWHpGS1TW/ypv1Kmn1ciPGRJXV1dezfvx8lJSUIDg4WOg6RzGhpaSEvL0/oGG+t7N9AFvMgqjtubm64du2a0vybwblI5ZyLrG5Mq2xbivlJabfVwtqu/LmhkXGlZU2ameB5RrrEWd+Ut7pz0+pyDreqPt9EmvPZJJlnlcW+J/TvnyQiIiKgoqICW1tbufZLREREAL8dICIihdW5c2d89tlnCAwMxIABA9C8eXOhIxEREdWZxYsX47PPPhM6BhERKYjnzzJgYNSs0vKqlmU/y4Tv+1WfnKihpfVWOXT09Cv8XV1DQ6ITLp8/y4CeYZM3r5ORjr3rV+B66L94lpaKkuLiatuqarsNjU2QnSn5ScCzN2zDgc3rsX3ZfDzPSEdba1u808cD/UaPg6qaOoC6GUtJxoKIiIRXl8fTMppa2lUul9WxrkKbEh5ny0hyzJfHGMlqLKprR9fA8K3yyWoMpG3n9fdHRVVVphfBEBERkezt378fBgYGQscgarB0dXXx9ddfw8vLC5988gl69+4tt75bt24NX19fLF++HGPHjkXjxo3l1ndDcPToUcycORPa2lX/H7uhSU9PR5s2bar8WVVj1KhRo1r18+uvv2Lp0qWYNm0aUlNT4ejoiKFDh8LPzw/q6i+/X09NTcW8efNw/PhxJCcno7iG7yJqkpaWBiMjozpvQ9LcaWlpVd6Yo6plkrYpybhKorr3tbrMZmZmSEtLk7h9achqm8pIu19Js48LMT6ypqenh0mTJuHQoUNYuXKl0HGIZEJNTa28EIYyKykpAQCoqPDeu0R1pWfPnigsLMTly5fRq1cvoePUiHORyjkXWd2YStN2VfOT0m6rdmOd8uei/39seX2ZtHOH0pybVtdzuFUtexNpzmeTZJ5VFvuePH//aisyMhIdO3aEjo5OzSsTERGRTLGYBxERKbSlS5fi0KFD8PX1xdGjR4WOQ0REVKf09fVrXomIiBoEPYMmeJaWAmPzFhWWV3UHC13DJthw7EylyUch6RoY4nlmBpo0M6l2nQ1zZqB523b46uc/0NTUDKqqL7+qHGZlXmE9PYMmyEx9imbNW1ZYnpn6FLpSFMlopKuH8UFLMD5oCZ5nZuBm2Dn8+eN2xFy9hMCN21/mroOxlGQsiIhIeEIeT6U51olEIogLC6GuoVG+rKrPB5IeZ6UhjzGS1XG/us9Sz9KqviOTpOMqqzFQxM9vREREJFvNmkl3AjoRyd7w4cPxww8/YPr06bh+/XqtLiKvrfnz52PXrl3YsGED5s+fL7d+67uSkhKkpKQo1c2ARCIRCgoKoKmpWb4sI0N2F+sYGRkhJiYGhoZvV7yyJvr6+li/fj3Wr1+PtLQ0nDp1Ct988w1CQ0Nx8OBBAMAnn3wCS0tLnDt3Di1atICa2svvIkQiUa36bNq0KdLS0mBuXvvvMiRpQ9LcRkZGSE5ORuvWrSssr+r9lLRNScb1bRgZGSEpKalSwZekpCSpC6VIui9Luk2Stifr/epVshwfIbVs2RLJyclCxyAiIpK7li1bonXr1jhz5oxSFPPgXGTNlGkusrq2JZ2fVIS5QmnOTavrOdyq+pSnunw/6nKfk1ZERAQcHBzk2icRERG9xFKfRESk0LS1tbF9+3b89ddfOHTokNBxiIiI6kxQUBBCQkKEjkFERAqic/deuHzyeKXlNy6crbTMoXtvRF+6UGl57NVLCBz6YZ3kq4mNi1ulrA9uxWDWgP87gSLu+lV4zQhEs+Ytyyf1C/PzK7Vl79YDl04cq7T8UsjfsHfrIXGmYVbmSE9OAgDoGTZBN49BWLBtDyLPnylfpy7GUpKxICIi4Ql5PJXmWGdg1AxpSU8qLIu5crHSayU9zkpDmjGq7QUVsjruV/dZKuLcf1WuL+m4ymo/UcTPb0RERCRbDx8+ROvWrXHr1i2ho7w1ae/qSaRINmzYgHv37mHjxo1y7bdZs2YIDAzEqlWr8PTpU7n2XZ+pqKjAysoKYWFhQkeRmKmpKRISEiosO3u28vf8wJv/L13dzz788EP8999/lZaHhobC2dlZ8qA1EIlEePz4MYCXBRC8vLzw119/4cSJE+XrXLhwAUuXLkWbNm3KCy7k5eXVus/evXvj5MmTFZZFRkbC2tpapm1Imrtv3744fPhwpeWvty9Nm5KMa9l6teHu7o7ff/+90vJDhw7B3d1dqrYk3Zcl3SZJ25P1fvUqWY6PkM6fPy/V7wUREVF90qtXr2o/XysazkXWTJnmIqsizfykIswVSnNuWl3P4VbVpzzV5ftRl/uctCIiItC5c2e59klEREQvsZgHEREpvN69e2PcuHGYNm0aMjMzhY5DRBIoKSkB8PJkGiKqWV5eHtasWYMtW7YIHYWIiBSE1/QAHPnf9zj92z48z0hHTtYzXPj7CH7bWvmkc68ZAdj/bTDC/vkT2c8ykZebg6v/hWB9wFQM9/MXID3w8dRZ+HXL17hxIRQFeS/wMC4Wm+f7w8N7Yvk6lo5dsCd4OVKePEKRWIzkhAfYumRupbZGTA/AkR+24uSvPyMrPQ3PM9Jx6uAvOPLDVnhND5Aq15aFAXh0Nw7iwkI8S0/FHzu/qzAxWhdjKclYEBGR8IQ8nkpzrOvcrSd+Wr8S6clJyH+Ri4hz/+GffbsrtSnpcVYa0oxRExNTxEWEo7hIjMjzZzDlvS4S9SGr4/7rn6Wyn2Xi3F+HcWL/3irXl3RcZbWfKOLnNyIiIpKt2NhYJCQk4P333xc6ylsrLi4uv3iWSNm0b98eQUFBWLRoER48eCDXvmfPng0DAwMsX75crv3Wd76+vtixYweioqKEjiKRPn36YP78+Xj8+DFycnLwzz//4Pvvv69y3ebNmyMsLAxisRgnTpxAq1atavzZkiVLsHjxYhw8eBDp6enIzs7Gn3/+iVGjRuGLL76Q6bZMmjQJ0dHRKCgowNOnTxEcHFyh4IGbmxvmzJmDBw8eoLCwEHfv3oWvr2+t+1u4cCGWLVuGkydPIjc3Fzdu3MDEiRMxY8YMmbYhae4lS5Zg3bp12LVrF1JTU5GRkYEDBw5gxYoVldaVZixqGlfgzfvGmyxevBjr16/Hjh07kJKSgtTUVOzcuRPr16/H4sWLJWqjjDT7siTbJGl7st6vXiXL8RHK5cuX8csvv2Dq1KlCRyEiIhJEz549ERYWhsLCQqGj1IhzkTVTprnIKvNLMT+pCHOF0pybVldzuG/qU57q8v2oy31OGunp6Xj06BEcHBzk1icRERH9H1Epb59ARERKICMjA9bW1hg8eHC1E4FEpDjKTur77bffMHToUKHjECm8devWYfbs2QgJCVGqO7wQEZFkDhw4AC8vL/x2K1Gq1z26G4fda5Yj+spFiEQiWDp2wcR5SzHro94AUKG9pIf3sXfdCtwIC0VxURFatu+IoZ/OgGuf/uXrDLMyL3/+6murWi6LdeMiwrF7zTLci74B/SZN0W/UeAz5dHr5z7PS0/DjmmWIOPcfcp9nwbxNOwz3+wzr/H0rtfXwdiz2rP0SMVcvAQCsu7jik8CFaN2x05sH8RU3w87h2E+7EHv1EvJyc9DExAyu7v3gNWM2tBvrlK8n67GUZCwkte6zKWiuq4UDBw5I/Voioprs3bsXPj4+KCgoEDqKVPbu3YuJE32w7+YDiV9T3b/Xb3MMkLS/6l4n6bHueWYGdn31BSIvnEVBXh7s3umGyYtWlp+gVta2pMdZaY9pkowRAFw4fhR7gr9CxtMkGJk1x/igJej6fl+JxksWx32g4mcpFRUV2HR9Fz5ffImpH7hWeg8kHVdpxqAmdfGZoyZnj/yGLQsDUKhkv+dERETKSktLCwUFBTh79ix69JDvXRZl6cMPP0SrVq2wfft2oaMQ1UpBQQE6d+4MW1tbHDx4UK5979y5E76+voiMjIS1tbVc+66vCgsL0bdvXzx48ACnTp1Cu3bthI70RmlpaZg1axZCQkLw4sULvP/++9i8eXN5MYZXT9/99ddfMXfuXDx58gStWrXCunXrMGjQoBp/dufOHcybNw8nT55EUVERrK2tMW/ePAwZMqS87dfvWi3tacOnTp3Cpk2bEBoaiuzsbDRv3hyDBw/G0qVLoaurCwBISUnB7Nmz8c8//+DZs2fo2LEjvvjiC3h5eVXo89Usb1oGAGFhYQgMDER4eDiMjY3h5+eHoKAgqbLX1IakuQEgOjoagYGBOHv2LEQiEdzc3PD111/DxsamwrqStinJuALVv/+SvK83b97EnDlzEBoaCgDo0aMH1qxZAzs7O6nGUdJ9WdJtkrS92uxXVY1FdfuYrMZHCFFRUXB3d0eXLl1w5MgR3nCJ6g1PT0/o6elhz549Qkd5KwUFBdDS0sLhw4fh6ekpdByieuvu3bvo0KEDzp8/Dzc3tzrpY5CnJ7KgjllrvpX4NZyLVP65yJrGtLr8Vc1PTpi/FNP7dcfBmMcV2qjt/iDNuVs1kebctLqYw31Tn3V1Ppusfz9l+ftXk9V+E9DR3LhWn5NOnToFd3d3JCUlwdTUVOrXExER1QVlPV+xNljMg4iIlMa+ffswevRonDx5sl7cwYioPhOLxdDQ0MDvv/9e4QQRIqqag4MDYmNjkZ+fX+kkEyIiUn61LeZB9DoW8yCiuqSsk2O1KeZBDdswK/MG+7mMxTyIiIjka/r06di8eTPMzMzw+PFjpb3A8oMPPkDHjh3x3XffCR2FqNZCQkLQt29fHD16FB999JHc+i0pKUGXLl3QunVrHDp0SG791ncZGRno168f7t27hz179sDDw0PoSEREcnXw4EFMnDgRTk5O+PPPP6Gjo1Pzi4iUBIt5EJG0WrRogWnTpmHevHl10n5tinkQverR3Th89ekn+P70ZaGjkJJ7m2IewcHBWLt2LZ4+fVoHyYiIiGpHWc9XrA3lnCUmIqIGaeTIkRg4cCCmTp2K/Px8oeMQ0RuU1YtT1pMSieQpPz8f0dHRcHBwYCEPIiIiIiIiIiIiIqJ6wt/fHwCQlJSEbdu2CZym9oqKiqCmpiZ0DKK30qdPH4wYMQLTp0/Hixcv5NaviooKVqxYgcOHD+P06dNy67e+a9KkCc6cOYMBAwZgwIAB+OSTT3gxChE1CI8ePcKwYcMwYsQIeHt748SJEyzkQUREDV7Pnj1x5swZoWMQAXh5U4G/du9AzvMsiAsLcT82Gt8vmoP+Y8YLHY0auMjISDg5OQkdg4iIqMHi1ZVERKRUNm3ahKSkJCxfvlzoKET0BiUlJQDAwgREEvj9+mFQsgAAIABJREFU999RVFQEb29voaMQERERERER1WvDrMwr/ElERERUl9q1awdtbW0AQGBgIFJSUgROVDss5kH1xYYNG/Ds2TOsWrVKrv3269cPffr0wbx588pvikFvT1tbG7t378aRI0dw5swZtGvXDkFBQUhPTxc6GhGRzCUnJ2PWrFno2LEjbty4gZCQEGzZsgUaGhpCRyMiIhJcr169cP78eRQVFQkdhQjzvv8RV06fwJTeXTDBzQ7fLQxAnxFj4OnjJ3Q0auAiIiLg4OAgdAwiIqIGizOtRESkVFq2bImVK1fC398fw4cP538oiRRUWTEPFRXWjiOqyY4dOwAAQ4YMETgJERHJilgsRkJCAuLj43H//n38/fffQkeq92q6IPe3W4lySkJERA0Nj0GSk9VYvU078ng/uE8QERHRq0xNTXH//n3k5+dj/Pjx+Ouvv5SuGD6LeVB9YWpqiiVLlmDu3LkYPXo0rKys5Nb32rVr4eTkhP3792PkyJFy67chGDhwINzd3bFlyxasXr0a3377Lby9vTFjxgzY2toKHU8p1HRcUtQiNMqaW9FwHBVbeHg4Nm7ciP3798PIyAjr16+Hj48Pi3gQERG9olevXsjJycH169fRtWtXoePIHOedJKcIY9Wldx906d2nzvupiRBjoQjjT1UrKChAXFwcFixYIHQUIiKiBoszrUREpHSmTp2KAwcOYPz48bhy5QrU1dWFjkRErymbzGcxD6I3e/HiBc6fPw99fX20aNFC6DhERCSFp0+flhfruH//fvnz+Ph4PH78GMXFxQAAfX19GBoaCpy2/uOELxERCYXHIMnJaqwUfcwVPR8RERHJl5GRERISElBSUoITJ07g22+/xcyZM4WOJRUW86D6ZMaMGdi9ezd8fX3x77//yq24TufOnfHJJ59g3rx5GDJkCDQ1NeXSb0Ohra2NgIAA+Pr64scff8TGjRuxbds2vPvuuxg3bhy8vLxgYGAgdEyFpazFGpQ1t6LhOCqe9PR0/Pzzz/jhhx9w7do12NvbY/PmzRgzZgy0tLSEjkdERKRwLC0tYWJign///bdeFvPgvJPkOFb/R4ix4Pgrrps3b0IsFvNGykRERALi1ZVERKR0VFRUsH37dty+fRvBwcFCxyGiKpSUlACo+Q4eRA3dsWPHIBaL4ebmJnQUIiJ6TUFBAeLj43Hy5Els27YNQUFBGDFiBLp06QJ9fX2YmprCzc0N48ePx65du5CQkIAOHTpg/Pjx2LJlC0JCQnDv3j08e/YMq1evFnpziIiIiIiIiIhIACKRCGZmZmjTpg2aNGmCOXPmICIiQuhYUsnPz2fhAao3VFVVsXXrVoSGhmL//v1y7furr75CSkoKNm3aJNd+G5LGjRvDz88PsbGxCAkJgYWFBfz9/WFmZoYBAwZg69atePLkidAxiYgqefjwITZt2oS+ffvC3Nwc8+fPh729Pc6ePYvIyEj4+PiwkAcREVE1RCIR3n//fZw8eVLoKERECikiIgKNGjVChw4dhI5CRETUYPG2CUREpJQ6duyIJUuWYNGiRfD09IS1tbXQkYjoFWV37lBRYe04ojf59ddfoampie7duwsdhYioQSooKMDdu3cRFxeHO3fu4Pbt24iLi8Pdu3fx9OnT8vVMTU3Rtm1btG3bFv3794efnx8sLCzQtm1btGjRAqqqqgJuBRERERERERERKaoHDx7AwcEB9+7dQ3p6OmxsbDBmzBhcuXIFjRo1EjqeRHJycqCjoyN0DCKZ6dq1K3x8fODv749+/frBwMBALv02b94cs2bNwpdffonx48ejadOmcum3IRKJRHB3d4e7uzuysrJw6NAhHDlyBAEBAZg6dSqcnZ0xcOBADBw4EI6OjkLHJaIGqLS0FFevXsWRI0dw9OhRREZGQk9PD/369cOuXbswePBgNG7cWOiYRERESqNPnz7w8/NDXl4etLW1hY5DRKRQIiMjYW9vz3MciYiIBMRiHkREpLQCAgJw8OBB+Pj44Ny5c/zPJZECKSkpAfDyJBkiqtqLFy/w559/Ij8/Hy4uLkLHISKqt0pLS5GQkIDbt2/jzp07iIuLKy/e8fDhQxQXF0MkEqFVq1bo2LEjOnfujOHDh8PCwqK8YIeyXFhBRERERERERESKIzs7G6mpqbCyssL58+cxcOBA3Lt3D0lJSfD398fWrVuFjigRFvOg+mjVqlU4fPgwFi9ejA0bNsit33nz5mHXrl1YsWIF1q1bJ7d+GzJ9fX2MHz8e48ePR35+Pk6fPo0jR45g69atWLx4MVq0aIHevXujR48e6NGjBzp16iR0ZCKqh0pLSxEdHY2zZ88iNDQU//33H5KTk9G6dWsMHDgQa9euRa9evaChoSF0VCIiIqXUt29f5Ofn48KFC/jggw+EjkNEpFCuX78OBwcHoWMQERE1aCzmQURESktVVRU7d+5Ely5dsHnzZsycOVPoSET0/5UV81BRURE4CZHiOnr0KAoKCgAAzs7OAqchIlJ+mZmZiI+PL39ER0cjJiYGcXFxyMnJAQAYGBigXbt2sLCwwPDhw2FtbQ0bGxtYWlryggQiIiIiIiIiIpKp06dPQyQSoUePHti4cSOmTZuGvn37YsGCBVixYgVcXFzg4+MjdMwasZgH1UdNmjTB6tWrMXnyZIwbNw5OTk5y6VdXVxdffPEFAgIC4Ofnh3bt2smlX3pJS0sLHh4e8PDwwHfffYfw8HD8/fffOHv2LD7//HPk5uaiWbNm6NGjB3r27ImePXvC3t6e5z0QkdSKiooQERGB0NBQnDlzBufOnUN6ejp0dXXRvXt3zJw5E/379+cFdURERDLSvHlzWFlZISQkhMU8iIheUVxcjIiICEyYMEHoKERERA0ai3kQEZFSs7OzQ1BQEObNm4cBAwbwRAciBVFaWgqAxTyI3mTv3r3o2LEjMjMzYWhoKHQcIiKlUFpaigcPHiA6OhrR0dGIi4tDXFwcbt++jbS0NACApqYm2rdvD0tLS/Tp0wd+fn6wtLSEpaUljIyMBN4CIiIiIiIiIiJqKP766y+4uLjA0dERwMviAR4eHjh+/Djmz5+PqVOnol27dujdu7ewQd9ALBajsLCQxTyoXho/fjx2796NKVOm4NKlS3Kb254yZQq+//57zJ49G4cOHZJLn1SZSCRCly5d0KVLFwAvL7y/evUqQkNDcfbsWSxZsgSZmZnQ19eHs7MznJycyh8dOnTguRBEVK64uBhxcXG4du0arl27hvDwcFy/fh3Z2dkwMjJC9+7dsXDhQvTo0QMODg5QVVUVOjIREVG95O7ujpCQEKxatUroKERECiM6Ohq5ubnl338QERGRMFjMg4iIlN6CBQvw+++/Y/LkyTh16hREIpHQkYgavOLiYgAs5kFUndTUVPzzzz/o2bMnmjVrJnQcIiKF9OjRI8TExODmzZuIiYlBVFQUYmNjkZOTAwBo2bIlrKys4ODgAC8vL1haWqJjx45o1aoVT4IjIiIiIiIiIiJB5eTk4LfffkNgYCBatmwJkUiER48eYdmyZejatSuWLl2KIUOG4OOPP8bly5dhYWEhdOQqlX0Xx2IeVB+JRCJs2rQJjo6O2L59O6ZMmSKXftXU1PDNN9/A3d0dJ06cQN++feXSL72Zmpoa3nnnHbzzzjsIDAxESUkJoqKiEBoaimvXruHkyZPYsGEDxGIxdHV14eDgACcnp/JCH5aWllBT4+m4RPWdWCxGTExMeeGOa9euITIyErm5udDQ0ICdnR2cnJwwevRodO/eHdbW1jyXkYiISE769OmDLVu2IDU1FcbGxkLHISJSCFevXoWWlhasra2FjkJERNSgcfaAiIiUnoaGBnbu3Ak3Nzfs2rULPj4+QkciavCKiooAAOrq6gInIVJM+/btg4aGBsRiMaysrISOQ0QkqMzMTERHRyMmJqb8zxs3biAlJQUAYGhoCGtrazg6OmLMmDGwsbFB586dOfFOREREREREREQKa+fOncjPz8fkyZOhoaEB4OXFn87Ozvjoo4+wePFi/Pvvv+jRowcGDhyIsLAw6OnpCZy6MhbzoPrOxsYGs2bNwrx58zBkyBC5FeH/4IMPMGDAAPj7+yMyMpJFIBSQiooK7O3tYW9vX75MLBbj9u3bCA8PR3h4OK5evYpt27YhLy8P6urqaNmyJaytrWFjY1P+Z6dOndCoUSMBt4SIaqOwsBB37txBTEwM4uPjK8xl5ufnQ11dHR06dICzszNGjBgBZ2dndOnSBVpaWkJHJyIiarDee+89qKqq4vTp0/Dy8hI6DhGRQggPD4ejoyOv6SAiIhIYZ4GIiKhecHFxwWeffYaAgAB8+OGHaNGihdCRiBo0sVgMgMU8iKqzd+9efPzxxwgJCYGnp6fQcYiI5OLZs2e4d+8eoqOjER4ejpiYGERFRSE5ORkAYGBggHbt2sHa2hofffQRbGxsYGtrC1NTU4GTExERERERERERSe7FixdYv349fHx80LRpUwBAaWlp+V3Zly5dCmdnZ5w5cwZ//PEHXFxcMG7cOPz2229QUVERMnol2dnZAABdXV2BkxDVnaVLl+LgwYOYM2cOfvjhB7n1+80338DGxgY7duyAr6+v3Pql2lNXV4eNjQ1sbGwwduxYAC/PjYiOjkZUVBRiYmJw69YtHDp0COvWrUNRURFUVVXRtm1bWFtbo1OnTrCyskL79u1hYWEBc3NzgbeIqGErLS3FkydPEB8fj7t37+LWrVuIiYlBbGwsHjx4gJKSEqirq6N9+/awtv5/7N13VFR33gbwhyJNKRaaNMUCAiooKHZFsSNBRbFArGBExQ4JWSnqLsQGBjFgUENiViXiKtii0RDsghoF7IpIVSx0kPb+sStvjA2UmQvM8zlnzoG59/6+zySHQGbufa4JRo0ahWXLlsHMzAxdunRhERMREVEDo6ysjF69euH48eMs8yAi+p+EhAT07t1b6BhEREQSj+8kEhFRk7F69WocPHgQ8+bNQ2xsrNBxiCTaqzIPfnBN9KY7d+7g0qVL+PrrrxEZGYnOnTsLHYmIqF6VlZXh+vXruHLlCpKTk2tOYv1raYeJiQnMzMxgZ2dXU9qhqakpcHIiIiIiIiIiIqJPt2bNGrx48QJeXl6vPf+qzMPCwgLjxo2Dj48PEhISsG/fPgwdOhQrV67E+vXrhYj8Tk+ePAEAtGnTRuAkRKKjpKSEDRs2YOLEifj8888xZMgQsczt2LEj5s+fD29vb0yaNAmtWrUSy1yqX82aNYO5uTnMzc1fe/7ly5e4ffs2bty4gRs3biAlJQVHjx5FUFAQysrKAAAKCgowNDR849GhQwcYGhpCQUFBiJdE1KQUFRXh/v37b308ePCg5udRUVERxsbGMDY2xqxZs2BsbAwTExN07NiRNzIiIiJqRGxtbbF9+3ahYxARNQjl5eW4du0a5s+fL3QUIiIiicerK4mIqMlQVFTEtm3bMGTIEOzevRtOTk5CRyKSWBUVFQDAD7SJ3uLHH3+EtrY2DA0NUV1dDX19faEjERF9tLy8PFy9ehVXr17FlStXcOXKFaSkpKCiogItWrRAly5d0LVrV4wcORJmZmYwNTWFrq6u0LGJiIiIiIiIiIhEIjk5GRs2bMDGjRvRtm1bAP+96/vfrV69Gubm5jh48CDs7e2xc+dOTJ8+HW3atHmjBERIubm5kJKSYskANXnjx4/HmDFjsGDBAly9elVsn3P7+Pjgp59+wtq1a7FhwwaxzCTxkJOTg5mZGczMzF57vrq6GhkZGW+UCly6dAl79uxBTk5Ozb5t27ZFu3btoKuri7Zt28LAwAA6OjrQ0dGBvr4+tLS0eIMVkmjl5eXIzMxEeno6Hj16hIyMDDx69Ajp6enIyMjAgwcPXvuZenWehqGhIaysrF4r0Xn1dxsRERE1bsOGDYOvry/u3LmDTp06CR2HiEhQSUlJKC0thaWlpdBRiIiIJB7fyScioiZl0KBBcHNzw8KFC2FjYwMNDQ2hIxFJpPLycgDgiSNEf1NdXY1du3Zh6tSpNXez09LSEjgVEVHtPH/+HMnJyUhMTKx53Lx5E1VVVVBTU4OpqSkGDx6MZcuWoWfPnjA2NoaMjIzQsYmIiIiIiIiIiMSisLAQkydPhqWlJebNm1fz/OPHjwEArVu3rnmua9eusLe3xz/+8Q/Y2dlhypQpePHiBdzd3dGqVSu4urqKPf/b5ObmQk1NjQX+JBFCQkJgamqKTZs2YeXKlWKZqaamBn9/f3h4eMDV1RVGRkZimUvCkZKSgq6uLnR1dTFw4MA3thcVFb1W8vHw4UOkp6fj/Pnz2Lt3L3JyclBZWQkAkJGRgaamJvT09KCjowM9PT3o6upCU1MTGhoa0NbWhrq6OjQ0NPh5DTUq5eXlePLkCR4/foysrCw8efIE2dnZr5V2pKenIzs7u6Y0TVZWFlpaWtDX14eOjg6sra3h5OT0WmGHoqKiwK+MiIiIRK13795QVVXF8ePHWeZBRBIvISEBSkpKMDY2FjoKERGRxOPVlURE1OQEBgbi8OHDWLx4MX7++Weh4xBJpIqKCgDgiX1Ef3PmzBncv38f06dPx40bNyArK4s2bdoIHYuI6A2ZmZmvlXakpKTg/v37AP5716qePXvC0dERpqamMDExgYmJCaSkpAROTUREREREREREJJz58+cjKysLsbGxr100nZqaCgBo167da/v7+/uje/fuOHDgABwcHPDFF1/gyZMn+OKLL6CmpoZJkyaJMf3b5ebm8nMMkhgGBgbw8vKCn58fHB0d0b59e7HMdXV1xdatW7F8+XLExMSIZSY1XM2bN0fXrl3RtWvXt26vqKhAdnY20tLSkJ6ejoyMDKSlpSEjIwOXLl3Cvn378OTJE5SVldUcIyUlVVPqoaGhAS0trZqvXxV+qKuro1WrVjUPovpUXV2NZ8+e1Tz+WtTx+PFjPHny5LWvX90Y5RUFBQVoampCV1cXenp6GDBgAPT19aGrq4u2bdtCX18fWlpaLK0hIiIiyMrKYtCgQTh+/Djmz58vdBwiIkElJiaiZ8+e/H8lIiKiBoBlHkRE1OSoqKjgu+++w+jRozFp0iR89tlnQkcikjjl5eUAWOZB9Hc//fQTTE1N0b17d5w6dQoaGhqQlpYWOhYRSbCKigrcunULKSkpSE5ORmJiIs6fP4/c3FzIyMjAwMAAJiYmcHZ2Rs+ePdG7d29oaGgIHZuIiIiIiIiIiKhB8ff3x88//4yjR4++UdqRmpoKWVlZ6Orqvva8mZkZHBwcsGrVKtjb20NaWhqrVq1CXl4enJ2doaKigpEjR4rxVbzp6dOnaN26taAZiMRp5cqV2LVrF5YuXYr9+/eLZaaMjAyCgoIwdOhQHD16VPCfe2rYXv0++fvvlL97/vw5cnJy8OTJE2RnZyMnJwePHz9GTk4OcnJycOHChZqvi4qKXjtWSkoKrVq1QuvWrV8r+HjXQ0VFBcrKylBWVoaqqqooXz4J7MWLFygoKEBBQQHy8/NfK+j4++Pp06evff93LVq0gJaWFjQ1NaGuro4uXbpg0KBBUFdXh7a2NjQ0NGq+VlFREeDVEhERUWNla2sLb29vlJeX8xxmIpJoCQkJGDhwoNAxiIiICCzzICKiJmrUqFFwdnbG/PnzMWjQILRs2VLoSEQS5VWZh6ws/9wkeqWsrAxRUVHw9PQEAOTk5EBLS0vgVEQkScrLy5GUlISLFy/i8uXLuHz5MpKSklBaWgoFBQWYmZnBwsIC/v7+sLCwQLdu3aCkpCR0bCIiIiIiIiIiogZty5Yt8PX1xdatWzFs2LA3tj948AC6urpv/dzM19cX3bt3R3R0NCZOnAgAWLduHR4/fgxHR0ccP34c1tbWIn8N75Kbm4s2bdoINp9I3OTk5PDdd99hyJAhiImJgZ2dnVjm2tjYYNy4cVi6dCmGDh3KC87ok7Vs2RItW7aEsbHxB/ctKirCkydP3lnC8OqRmpr62vcvX75863qqqqo15R4tWrSAqqrqa88pKytDRUUFampqkJOTQ4sWLaCoqAgFBQUoKytDVlYWLVu2hKysLJSVlaGgoABFRcX6/kfUpBUXF6OsrAz5+fmoqKjAixcvUF5ejsLCQpSUlKC0tBQFBQV4+fIl8vLykJeXV1PS8aqo48WLFygsLHztubeRl5d/o+BFS0sLJiYmNd+3bt36tXIYdXV1/jslIiIikbG1tcXChQuRkJCAPn36CB2HiEgQL1++RFJSEpYsWSJ0FCIiIgLLPIiIqAkLCgqCiYkJPD09ER4eLnQcIolSUVEBADzJiOgvoqOjkZ+fj+nTpwPg3eyISLSqq6tx+/ZtXLp0qeZx5coVlJaWQllZGT169ED//v2xcOFCmJubw8TEhCVcYnD2aIzQEaiRy83KhI6yodAxiIganKrqKon/PVtdXQ0pKSmhY1ADd+faFaEjEBERNTnff/89Fi5ciICAALi5ub11n2vXrr3zYmozMzM4OjrCx8cHDg4OkJGRgbS0NLZv3478/HyMGDECR44cQd++fUX5Mt7p6dOnUFdXF2Q2kVAGDRoEJycnLFiwADY2NmjevLlY5m7cuBGmpqYICwvDggULxDKTCACaN2+O5s2bo127dnU6rrCwEM+ePUN+fn5N4UNeXt5r3796Li8vD48fP8a9e/dQWFhY89zLly9RUFBQq3ktWrRAs2bNoKamBllZWaioqAD4bwnPq59TeXn5mqL6v37910KQt5WDSElJQU1N7b3zpaWloaqq+t59Xrx4gerq6vfu8/z58zeee1W+Afy3XOVVUcq7vi4sLKy5yU5eXh4qKipq/nkWFRW9d/4rKioqkJOTqylWeVW+oqysDENDw5rn/vpo2bJlzT4qKipo1aqV2P4bSURERFRbRkZG0NPTw/Hjx+utzONJZrrEfxbZWPEzVGpKnj3OBtrW7r3aP//8E2VlZbC0tBRxKiIiIqoNXqVBRERNVqtWrRASEoJJkybB0dERtra2QkcikhivThrgRcFE/y8iIgKjR49G27ZtAfz3ZBue2EJE9SUzMxOJiYk1j/PnzyM3NxeysrLo3LkzevbsicmTJ6N///6wsLCAtLS00JElira2NmRlZbFh8dsv6CCqizE2A4WOQETUoLRt2xaorubvWaJaat+exWBERET1Zd26dfD09ISvry9Wrlz5zv1Onz6NefPmvXO7v78/TE1NsWvXLri4uAD4b2F+VFQUnJycMHz4cMTExGDIkCH1/ho+JCMjA927dxf7XCKhbdiwAV26dIGvry/WrVsnlpkdOnTAwoULsWrVKkyZMoU3BaAGr0WLFmjRokW9rFVSUoLS0lIUFBSgoqICz58/R3l5OQoLC9+77a/H/v3r58+fIzs7G8DrZRl//fqVsrIyFBcXvzNfWVkZysvLa86FeRclJSXIy8u/d5/mzZtDTk7utefeVTaiqKgIBQUFAECbNm1qvv7r88rKyjUlJ82aNUOLFi1qtquoqEBWVvat24iIiIiasmHDhuH48eNYtWrVJ6+lp6uLmIMHcSPhQj0kIyL6NBPHjqrVfpcuXYKqqio6deok4kRERERUG7y6koiImrSJEydi/PjxcHV1xfXr1+vtQ2Qier9XJzA0a9ZM4CREDcODBw9w6tQp7N+/v+a5oqIi/l4ioo9SXFyMhIQEnD9/HufOncPFixeRmZkJaWlpGBkZoVevXvD19YWVlRXMzc3fOCGQxG/AgAEfPMGTiIiIPo6NjQ0qKiqEjiGI58+fw8vLC9u2bcOYMWMQGhoKPT09oWMRERERNXnV1dXw8vLC+vXrERwcjIULF75z3wcPHuDRo0cYMGDAO/fp3LkzXFxc4OPjAycnp5r38+Tk5LBnzx44OTlh7NixiImJgY2NTb2/nvdJT0+Hjo6OWGcSNQTa2tpYt24d5s2bh/Hjx9fb3Zw/ZNWqVfjpp5/g7++P4OBgscwkaggUFRWhqKiIli1bCh3lrezs7KCsrIyff/5Z6ChEREREVAu2trb48ccfkZ+fDxUVlU9aa8uWLdiyZUs9JSNxiIqKwrx586CmpoaIiAgMHjxY6EhEYvfHH3+gb9++vOkbERFRA8HfyERE1OSFhIQgPz8f3t7eQkchkhivLqKRlWV3HBEAbN++HRoaGhg16v8bkYuLi6GkpCRgKiJqLB48eICff/4ZCxcuhJWVFVRVVTFo0CAEBQVBSkoKHh4eOHnyJJ4/f46UlBTs3LkT7u7u6NWrF4s8iIiIiJqoqKgoGBkZISYmBnv37kVMTAyLPIiIiIjEoKCgAA4ODggKCkJkZOR7izwAID4+HvLy8rCysnrvfj4+PsjKysL333//2vPNmjXD3r174eDgADs7O5w4ceKTX0NtlZaW4tmzZ9DV1RXbTKKGZM6cORg6dCjc3Nzw8uVLscxUVlaGn58fQkNDkZSUJJaZRPRhKSkpMDExEToGEREREdXSsGHDUFVVhbi4OKGjkBhlZWVh3LhxcHJywsSJE3Ht2jUWeZDEOnPmzHsLpomIiEi8WOZBRERNnpaWFoKCghASEsI35YjEpKSkBFJSUlBQUBA6CpHgqqqqEBkZiZkzZ6JZs2Y1zxcVFaF58+YCJiOihqi8vByJiYkIDg6Gi4sL2rVrB0NDQ3z++ec4efIkevTogYiICCQlJSEzMxPR0dFYuXIlhgwZ8sl3kiAiIiKihu/+/fsYMWIEnJyc4ODggJs3b2LixIlCxyIiIiKSCHfv3kWfPn1w5swZHDt2DNOmTfvgMUeOHEGfPn0++JmZvr4+5s2bhzVr1qC4uPi1bTIyMvjhhx8wYcIEjBs3DsePH/+k11FbmZmZqK6uho6OjljmETU0UlJSCA8Px4MHDxAQECC2uXPmzEH37t2xZMkSsc0koncrLi5GamoqTE1NhY5CRERERLWkrq4OCwsLHDlyROgoJAa3wGxFAAAgAElEQVTV1dWIjIyEqakpUlJScOrUKYSFhfH8XJJY9+/fR3p6Oss8iIiIGhCWeRARkURwdnaGvb09Zs6cicLCQqHjEDV5JSUlUFBQgJSUlNBRiAR35MgRPHr0CDNnznzt+Vc/J0Qk2bKzs/HLL79g8eLFsLKygpKSEiwtLfHNN9+gqKgICxYsQHx8PPLz85GcnIywsDC4uLjwhEEiIiIiCVNRUYHg4GB069YNWVlZOHPmDMLCwljoRkRERCQm+/btQ69evSAnJ4eEhIRa3dWzqKgIMTExmDx5cq1meHt7o7CwECEhIW9sk5GRwY4dO2oKPQ4cOFDXl1Bn6enpAMAyD5Jo7dq1g6+vL9auXYukpCSxzJSWlsb69etx4sQJHD58WCwziejdbty4gaqqKpiYmAgdhYiIiIjqYOzYsYiNjUV1dbXQUUiEHj58iOHDh2PmzJlwdHTEtWvXMHDgQKFjEQkqPj4e8vLysLS0FDoKERER/Q/LPIiISGJs2bIFeXl58Pb2FjoKUZNXUlICRUVFoWMQNQgREREYNGgQOnXq9MY2Ft4QSZ6bN28iIiICM2bMQKdOnaCtrQ0nJyecPn0affv2xY8//oiHDx8iIyMD+/btw/Lly9G/f3/+XiUiIiKSYJcvX4a1tTW+/PJLLF++HAkJCbC2thY6FhEREZFEKCwsxKxZs+Do6IipU6fi7NmzMDAwqNWx//nPf/Dy5UtMnDixVvurq6tj0aJF+Ne//oXnz5+/sV1GRgY7d+7EjBkzMHHiRERERNTptdRVRkYGZGVloaGhIdI5RA3dkiVLYGlpidmzZ6OyslIsMwcPHozx48dj2bJlKC8vF8tMInq75ORkyMvLo0OHDkJHISIiIqI6GDNmDB49eoTr168LHYVEoLq6GuHh4ejatSsyMzNx7tw5hIWFQUlJSehoRIKLj49Hr169eMNJIiKiBoRlHkREJDG0tbURFBSEkJAQxMXFCR2HqEkrLS3lG0BEAHJychAbG4vZs2e/sU1aWlpsJ/wRkTAqKyuRnJyM8PBwTJo0CZqamujSpQsWLVqEu3fvYsKECTh48CCePHmChIQEBAcHw8nJCfr6+kJHJyIiIqIGoKioCF5eXujVqxdatGiBK1euwNfXF3JyckJHIyIiIpIIZ86cQc+ePRETE4P//Oc/CAkJqdPnX//+978xfPhwtGnTptbHrFixAtLS0ti0adNbt8vIyGDr1q1Ys2YN5s6dC19f31qvXVeZmZnQ1taGjIyMyGYQNQbS0tIICwvD1atXsXnzZrHNXb9+PVJTUxEaGiq2mUT0ppSUFBgZGUFWVlboKERERERUB5aWlmjbti1iY2OFjkL1LDU1Fba2tnB3d8f8+fNx+fJl9OrVS+hYRA1GfHw8Bg4cKHQMIiIi+guWeRARkURxdnaGvb09Zs6cicLCQqHjEDVZJSUlUFRUFDoGkeAiIyOhpKSE8ePHv7FNRkaGZR5ETUxJSQlOnToFHx8f2NjYQFVVFWZmZvj6669RXl4OT09PnD9/Hi9evMDp06cREBAAOzs7tGzZUujoRERERNTAxMTEwMTEBOHh4QgNDcWpU6dgZGQkdCwiIiIiiVBYWIhFixZh4MCB6NChA/7880+MGzeuTmukp6fj119/xdSpU+t0nKqqKpYvX45NmzYhJyfnnft5enoiJCQEq1evxqJFi1BVVVWnObWRmprK4mGi/zEzM4O3tze8vb1x8+ZNscxs3749PDw84Ofnh9zcXLHMJKI3JScnw9TUVOgYRERERFRHUlJSGDVqFMs8mpDq6mqEh4eja9euyM7OxtmzZxEQEAB5eXmhoxE1GOnp6bhz5w7LPIiIiBoYlnkQEZHE2bJlC/Ly8uDt7S10FKImi2UeRP/94CAiIgLTpk2DkpLSG9tZ5kHU+JWUlODkyZPw8fHBwIED0bJlS9jY2OCnn36Cvr4+goKCcOPGDTx+/Bj79+/H0qVL0bt3bzRr1kzo6ERERETUQGVlZcHFxQXjxo1D7969cevWLbi6ukJKSkroaEREREQS4ciRI+jatSt27dqFnTt34vDhw2jbtm2d1wkODoaGhgYmTpxY52MXL14MVVVVBAYGvne/+fPn45dffsG2bdvg7OyM8vLyOs96n7t376Jjx471uiZRY/bVV1+ha9eumDZtWr3/vL2Lt7c3FBQU4OPjI5Z5RPSmlJQUmJiYCB2DiIiIiD7CmDFjcOHChfcWplLj8ODBAwwdOhTu7u5wd3dHYmIirKyshI5F1OAcOnQISkpKLPMgIiJqYFjmQUREEkdbWxtBQUEICQlBXFyc0HGImiSWeRABJ0+exK1bt+Dm5vbW7TIyMiK5Ux4RiU55eTkSExMRGBgIW1tbtGrVCkOHDsW2bdugpaWFzZs34/79+7h37x527tyJOXPmwNjYWOjYRERERNQIvLqTlLGxMc6cOYNff/0Ve/fuhbq6utDRiIiIiCRCamoqPvvsM4wePRq9evVCSkoKnJ2dP2qtgoICfP/991i0aBHk5OTqfLyioiK8vLywdetWpKWlvXdfBwcHxMTE4ODBgxg3bhwKCws/KvPb3Lt3Dx06dKi39YgaO1lZWfzwww+4ceMGAgICxDJTWVkZa9asQVhYGK5fvy6WmUT0/8rKypCamsrP+4iIiIgaqeHDh0NOTg5Hjx4VOgp9pFefoXbr1g25ubk4d+4cAgICIC8vL3Q0ogbp8OHDsLGxgYKCgtBRiIiI6C9Y5kFERBLJ2dkZ9vb2mDlzZr2e0ERE/8UyDyJgy5YtGDBgALp16/bW7YqKiiguLhZzKiKqi5KSEpw8eRI+Pj4YOHAglJWVYWlpiW3btkFfXx/h4eFIS0tDZmYm9u7dC1dXV7Rv317o2ERERETUyFy/fh39+vWDu7s7ZsyYgWvXrsHW1lboWEREREQSobi4GP7+/jAxMcGtW7dw/Phx7NmzB5qamh+9Znh4OCorK+Hq6vrRa7i6ukJbWxs+Pj4f3HfYsGE4efIkLl++jAEDBiAjI+Oj575SWVmJhw8fssyD6G+MjY2xdu1a+Pv749KlS2KZOWPGDPTo0QOLFy8Wyzwi+n/37t1DVVUVOnXqJHQUIiIiIvoIzZs3x6BBg3Do0CGho9BHuH//PmxsbODu7g53d3ckJCTA0tJS6FhEDVZZWRlOnjyJ0aNHCx2FiIiI/oZlHkREJLG2bNmCvLw8eHt7Cx2FqMkpLS1lmQdJtMzMTMTGxmL+/Pnv3EdVVRV5eXliTEVEH1JZWYnExEQEBgbC1tYWrVq1wtChQ7Ft2zZoaWlh8+bNuH//Pu7evYuIiAg4OztDT09P6NhERERE1EiVlpbC19cXlpaWKCsrw4ULFxAcHIzmzZsLHY2IiIioySsvL0dYWBg6deqEdevWwdfXF9euXcOwYcM+ad2ioiJs3LgRc+bMgZqa2kevIycnh7Vr1yIyMhJXr1794P5WVlY4f/48Xr58CSsrKyQkJHz0bABIS0vDy5cvWeZB9BYeHh4YMGAAPv/8c5SUlIh8nrS0NDZs2IBTp07h4MGDIp9HRP/vzp07kJKS4u9DIiIiokZszJgxOHbsGF6+fCl0FKqlqqoqhIeHo1u3bnj27BkuXLiAgIAAyMnJCR2NqEGLi4tDYWEhRo0aJXQUIiIi+huWeRARkcTS1tbGpk2bEBISgri4OKHjEDUpJSUlLPMgibZ161aoqanBwcHhnfuoqanhxYsXYkxFRG9z48YNhISEwMHBAW3atIGlpSU2b94MbW1thIWF4dGjR8jMzMTevXvh6uqK9u3bCx2ZiIiIiJqAP/74AxYWFli/fj38/f1x8eJF9OjRQ+hYRERERE1edXU1oqKiYGpqioULF2Ls2LG4ffs2Vq5ciWbNmn3y+uvXr0dBQQE8PT0/eS0nJydYWFjU+uYU7du3x/nz52FhYYHBgwfjwIEDHz373r17AMCLl4neQlpaGtu3b0dGRgZWrVollpkDBgyAo6Mjli1bhrKyMrHMJCLg7t270NbWRosWLYSOQkREREQfaezYscjPz0d8fLzQUagW7t27hyFDhmDBggVYsGABLl26xM9QiWrp8OHD6Nq1KwwMDISOQkRERH/DMg8iIpJoLi4usLe3x8yZM1FYWCh0HKImg2UeJMnKy8uxfft2uLm5QV5e/p37qampIS8vT4zJiAgAcnJyEBUVBTc3NxgYGMDExAReXl4oLCyEl5cXEhISkJ6ejsjISLi4uEBXV1foyERERETUhDx//hxubm4YPHgwOnbsiBs3bsDT0xMyMjJCRyMiIiJq8k6cOAFLS0s4OTnB3NwcN27cQFhYGLS1tetl/ZycHGzYsAFfffUVNDU1P3k9KSkprF+/HocPH8Zvv/1Wq2OUlZVx4MABzJgxAw4ODvD19f2o2Xfv3oWKigratGnzUccTNXXt2rXDxo0bsXHjRrHdPGbDhg3IyspCUFCQWOYREXDnzh106tRJ6BhERERE9Anat28PU1NTHDp0SOgo9B4VFRUIDg5Gt27dkJeXhwsXLiAgIABycnJCRyNqNA4dOoTRo0cLHYOIiIjegmUeREQk8bZs2YK8vLxa39GIiD6MZR4kyfbt24ecnBzMmTPnvfupqqqyzINIDAoKCnDgwAEsXLgQJiYm0NLSgrOzM27fvg1XV1ecO3cOeXl5OH78ODw9PdGzZ09ISUkJHZuIiIiImqCoqCgYGRkhJiYGe/bsQUxMDPT09ISORURERNTkXbhwATY2NrC1tUWrVq2QmJiIvXv3okOHDvU65+uvv4aqqioWLVpUb2sOHjwYI0aMwJdffonq6upaHSMrK4uQkBBs2rQJq1evxty5c1FeXl6nubx4mejDZs+ejc8++wwzZ85EQUGByOfp6upixYoVWLNmDTIzM0U+j4j4+5CIiIioqRg7diwOHjwodAx6h+TkZPTr1w8rVqzAwoULcenSJVhYWAgdi6hRuXr1Ku7evQt7e3uhoxAREdFbsMyDiIgknra2NjZt2oSQkBCx3TGFqKljmQdJstDQUIwbNw4GBgbv3a9ly5Z49uyZmFIRSY7q6mpcvXoVAQEBGDJkCFq3bo3x48fj7NmzGDt2LI4dO4Znz57h1KlT8Pb2hrW1Ne+CTkREREQidf/+fYwcORKTJ0+Gg4MDbt68CUdHR6FjERERETV5p06dwqhRo2BtbY2qqiqcPXsWx48fh7m5eb3PunjxInbs2IGAgAAoKSnV69rffPMNEhMTERUVVafjPDw88Msvv+Dnn3/G2LFj8fz581ofm5ycDFNT07pGJZI4W7ZsQUFBAZYuXSqWeStXrkSbNm3w1VdfiWUekaS7e/cuyzyIiIiImoAxY8bg3r17uHXrltBR6C8qKioQGBhYc/OtV+f8NWvWTOhoRI3O7t27oa+vD2tra6GjEBER0VuwzIOIiAiAi4sL7O3tMXPmTBQWFgodh6jRKykpgYKCgtAxiMQuOTkZp0+fxhdffPHBfdu2bYvc3FyUlZWJIRlR0/b06VNERUXBzc0N+vr6sLCwwIYNG6Curo6QkBA8evQIiYmJ+OabbzB8+PB6P5meiIiIiOhtKioqEBwcjO7duyMzMxNnzpxBWFgYVFRUhI5GRERE1GRVVlYiKioKVlZWsLGxQWlpKY4ePYrff/8dffr0EcnMly9fYvbs2Rg0aBCmTp1a7+t369YN06ZNg5eXF16+fFmnYx0cHPDHH3/gxo0b6NWrF5KTk2t1XEpKCkxMTD4mLpFE0dLSQnh4OL7//ntER0eLfJ6ioiK++eYbREZG4sKFCyKfRyTJSktLkZ6ezjIPIiIioiagb9++aN26NWJjY4WOQv+TlJSEvn37wtfXF35+fjhz5gzfiyL6SNXV1dizZw+mTp0KKSkpoeMQERHRW7DMg4iI6H+2bNmCvLw8fP3110JHIWr0SktLoaioKHQMIrELCQlBhw4dMHTo0A/uq6Ojg+rqamRmZoohGVHTUllZicTERAQGBsLW1hZaWlqYMmUKEhMTMW3aNMTHxyMnJwd79+6Fq6sr2rZtK3RkIiIiIpIwV65cQZ8+feDl5YVly5YhISFBZBePEhERERFQVlaGyMhImJqawsnJCVpaWjh79ixOnTqFESNGiHT22rVrcf/+fYSHh4vsZOnVq1cjKysL27Ztq/OxPXv2xOXLl6Gnpwdra2vs27fvvfvn5+cjPT0dpqamHxuXSKI4ODhgzpw5mDNnDtLS0kQ+z9HREYMGDYK7uzuqqqpEPo9IUt27dw9VVVXo2LGj0FGIiIiI6BPJyMhg5MiROHTokNBRJF5FRQUCAwNhaWkJWVlZXLlyBZ6enpCRkRE6GlGjdf78eaSmpmLy5MlCRyEiIqJ3YJkHERHR/2hra2PTpk349ttvERcXJ3QcokatpKSEZR4kcV68eIGffvoJ8+fPh7T0h/9XS1dXFwCQkZEh6mhETUJOTg62b9+OyZMnQ11dHZaWlti6dSsMDQ2xd+9ePHv2DAkJCQgICED//v1r9XNIRERERFTfiouL4eXlBSsrKygpKeHKlSvw9fWFnJyc0NGIiIiImqS8vDwEBwejffv2cHV1Ra9evZCcnIyYmBixlKldv34dAQEBWLt2LTp06CCyOQYGBnB3d4efnx/y8/PrfHybNm3w66+/wt3dHY6OjvDy8npnCUBKSgqqq6t5N1SiOggKCoKmpiacnZ1RWVkp8nkhISH4888/8eOPP4p8FpGkunv3LqSkpET6+52IiIiIxGfMmDGIj4/HixcvhI4isa5fvw5ra2v4+fnBz88P8fHxMDY2FjoWUaO3Z88eGBkZwdzcXOgoRERE9A68soWIiOgvXFxcMG7cOMycOROFhYVCxyFqtFjmQZLo1R33Zs2aVav9NTU1ISsri/T0dBEnI2qcqqurcfnyZfj7+6NXr15o27YtFixYgLy8PPzjH/9ASkoKUlNTERYWBgcHB6ioqAgdmYiIiIgkXGxsLLp06YLw8HCEhobi999/5wloRERERCKSnJwMd3d36OjowN/fH7NmzUJaWhoiIyPF9jdYSUkJpk+fjp49e2LRokUin+ft7Y3Kykps2LDho46XlZVFQEAAfvjhBwQHB8POzu6tF7CkpKRASUkJ7dq1+8TERJKjefPm2LVrF86fP4+NGzeKfJ6pqSnmzJkDT09P5OXliXwekSR68OABNDU1oaSkJHQUIiIiIqoHI0eOBAAcO3ZM4CSSp7y8HIGBgbC0tIS8vDyuXLkCT09PyMjICB2NqNGrqqrCL7/8AicnJ6GjEBER0XuwzIOIiOhvQkNDkZeXh6+//lroKESNFss8SNJUVFRgy5YtmDt3LlRVVWt1jIyMDLS1tZGRkSHidESNR0lJCU6cOAEPDw/o6+ujZ8+e2LJlC4yNjbF7927k5OTg6NGjWLJkCbp06SJ0XCIiIiIiAEB2djZcXFxgZ2eH3r1749atW3B1dYWUlJTQ0YiIiIialJcvX+Lf//43Bg0aBDMzM/z6669Ys2YNHj58iDVr1kBDQ0OseZYsWYK0tDTs2rUL0tKiPwWrZcuW8PT0xMaNG5GVlfXR6zg7O+O3337DlStX0LdvX9y+ffu17cnJyejSpYtYXhNRU9KjRw/4+/vD29sbFy9eFPm8tWvXoqKiAv/6179EPotIEqWlpcHAwEDoGERERERUT1q2bIn+/fvjwIEDQkeRKNeuXYO1tTX8/Pzg7++PP/74A0ZGRkLHImoyfvvtN2RkZLDMg4iIqIHjp65ERER/o62tjY0bN+Lbb79FXFyc0HGIGiWWeZCk2bt3LzIyMuDu7l6n49q1a4d79+6JKBVR4/Dw4UOEh4dj0qRJ0NDQwIgRI3DmzBlMmzYN8fHxyM7ORmRkJBwdHaGsrCx0XCIiIiKiGtXV1YiMjISpqSnOnDmDY8eOYe/evVBXVxc6GhEREVGTkpGRgcDAQHTo0AHTp0+HnJwc9u7di5s3b2Lx4sVo0aKF2DNFRUUhPDwcERERaN++vdjmLlq0CK1bt/7kG1P07dsXly5dgoqKCqysrBAdHV2zLTk5Gaampp8alUgirVixAgMHDsS0adNQWFgo0lmtWrWCj48PNm3a9EYpDxF9uocPH0JfX1/oGERERERUj8aPH4/Y2FiUlpYKHaXJKy8vR2BgIKysrKCoqIirV6/C09MTMjIyQkcjalK2bduG/v37w9jYWOgoRERE9B4s8yAiInqLzz//HKNHj8bs2bNRVFQkdByiRqe0tJRlHiRRgoODMWHCBBgaGtbpOCMjI9y6dUtEqYgapsrKSpw5cwZffvklunXrhnbt2mH58uWoqqrC5s2bkZWVhYSEBAQEBKB///68mzkRERERNUi3b9/G0KFDMXv2bEyfPh3Xrl3D8OHDhY5FRERE1GRUVVXhxIkTmDRpEtq1a4egoCBMmzYN9+/fx/Hjx+Ho6CjYyf93797FnDlz4O7ujvHjx4t1toKCAgIDA7Fz504kJCR80lo6OjqIi4vDjBkzMGHCBLi5ueHly5e4fPkyLCws6ikxkWSRlpbGDz/8gOfPn2PZsmUinzd//nwYGRlh+fLlIp9FJGnS0tJgYGAgdAwiIiIiqkfjx49HYWEhfvvtN6GjNGl//vknevfuDX9/f/j7++OPP/5A586dhY5F1OTk5ubi4MGDmDt3rtBRiIiI6ANY5kFERPQO4eHhePHiBVasWCF0FKJGpaysDFVVVSzzIIkRFxeHixcvYsmSJXU+lmUeJCnKyspw4sQJeHh4QE9PD/3798eePXvQp08fHDx4EE+ePMEvv/yCmTNnQkNDQ+i4RERERETvVFpaCl9fX3Tr1g0vXrzA+fPnERwcjObNmwsdjYiIiKhJePToEdauXYsOHTpg+PDhePbsGXbv3o20tDQEBAQIflFtfn4+7O3t0blzZ6xfv16QDJMnT0bfvn3r5eJ9eXl5BAcHY9euXdi1axd69eqFJ0+eoEePHvWQlEgy6ejoYNu2bQgPD0dUVJRIZ8nIyCAoKAgxMTE4cuSISGcRSZqHDx9CX19f6BhEREREVI90dHTQq1cvREdHCx2lSXr1OaqVlRVatGiBq1evwtPTE9LSvHSRSBR27NgBBQUFTJw4UegoRERE9AH8i5iIiOgdtLW1ERISgu+++44nPRDVQWlpKQCwzIMkxqZNm9CvXz9YW1vX+VgjIyNkZmaioKBABMmIhJWXl4fdu3dj8uTJUFdXx/Dhw3H+/HksXLgQKSkpuH//PsLCwmBnZwd5eXmh4xIRERERfVB8fDwsLCywbt06+Pn54dKlS+jZs6fQsYiIiIgavaKiIkRGRmLo0KFo164dgoKC4ODggJs3b+LEiROYMGECmjVrJnRMVFVVYfr06Xj27Bmio6MFfV8zODgY8fHx2L9/f72sN3XqVCQkJOD58+cAgKdPn9bLukSSysHBAbNnz4abmxsePXok0lk2Njb47LPPsHTpUpSXl4t0FpGkKCkpQW5uruAlYkRERERU/8aPH48DBw6goqJC6ChNyoULF9CjRw+sW7cOq1evxu+//45OnToJHYuoSduxYwecnZ2hpKQkdBQiIiL6AJZ5EBERvYeTkxMcHR0xd+7cmhOXiOj9SkpKAAAKCgoCJyESvTt37iAmJgZLliz5qOONjIxQXV2NO3fu1HMyImHk5uYiMjISdnZ20NTUxPTp05GRkYHVq1cjLS0NFy5cwJdffokuXboIHZWIiIiIqNZevHgBNzc3DBo0CB07dsSNGzfg6ekJGRkZoaMRERERNVpVVVU4ffo03NzcoK2tjVmzZkFaWhq7d+9GRkYGNm7ciM6dOwsd8zWenp44fvw49u/fDz09PUGz9OjRA1OmTMHy5ctRVlZWL2saGxtj6tSpUFZWxoQJE+Dl5YWqqqp6WZtIEgUHB0NDQwPOzs4i/1nasGEDUlNTERISItI5RJLi4cOHqK6uZpkHERERURPk6OiIp0+fIi4uTugoTUJpaSm8vLzQr18/6Onp1XyOKi3NyxWJRCkuLg43btzA7NmzhY5CREREtcC/jomIiD4gNDQUlZWVWLx4sdBRiBqFV2UeioqKAichEr3g4GAYGBjgs88++6jjDQ0NoaCggKSkpHpORiQ+Dx48QHBwMGxtbaGtrY158+YBADZv3ozMzEycPn0aHh4e0NXVFTgpEREREVHdRUVFwcjICAcPHsTOnTsRExMDfX19oWMRERERNVppaWkIDAxEp06dMGDAAJw+fRre3t7IzMzE8ePH4ejoCDk5OaFjviEiIgIbNmxAREQErK2thY4DAAgMDEROTg6+/fbbelszKSkJY8aMQXBwMDZt2gQ7Ozvk5ubW2/pEkqR58+bYtWsXzp07h40bN4p0lqGhIZYuXQpfX19kZ2eLdBaRJHj48CEA8D0gIiIioiaoffv26NatG6Kjo4WO0uidO3cOFhYW2Lp1K0JDQ3H06FH+DU0kJqGhoejduzfMzc2FjkJERES1wDIPIiKiD2jdujXCw8MRGRmJffv2CR2HqMHLz88HACgrKwuchEi0nj17hp07d8LDw+Oj78YsKyuLrl274sqVK/Wcjki0kpKS4OPjg65du8LQ0BBr1qyBnp4e9u3bh6dPnyImJgaurq7Q0NAQOioRERER0Ud58OABRo4cicmTJ2PEiBFITk6Gi4uL0LGIiIiIGqWcnByEhoaiX79+MDAwwLfffouJEyciOTkZycnJ8PT0bNDvJR44cADz5s3DqlWrMHXqVKHj1NDR0cGyZcvg7++PnJycelnz8uXLsLCwwMKFCxEXF4fk5GSYm5vzbrVEH6lnz57w8/PDV199hUuXLol0lre3N9TU1LBq1SqRziGSBGlpaVBWVkbLli2FjkJEREREIjB+/HhER0ejqqpK6CiNUklJCby8vDBgwAAYGBggKSkJrq6ukJKSEjoakUR4+PAhoqOj4eHhIXQUIjFeFD4AACAASURBVCIiqiWWeRAREdWCnZ0dZs6ciS+++KLeToQiaqpelXmoqqoKnIRItLZs2QJ5eXnMmjXrk9bp0aMHLl++XE+piETn+vXrWLVqFbp06YKuXbti+/btGDp0KE6dOoXs7Gxs374d48aNg6KiotBRiYiIiIg+WkVFBYKDg9GtWzc8ePAAv/32GyIjI9GqVSuhoxERERE1Krm5uQgPD8fQoUOho6MDT09PtGvXDkePHsXDhw8RGBgIExMToWN+UFxcHJycnDBnzhz4+voKHecNXl5eUFNTg5+f3yevlZ2djczMTPTo0QMAYG1tjWvXrqF///6wsbGBh4cHysvLP3kOkaRZuXIlBgwYgKlTp6KwsFBkc5SUlPDPf/4TERERIi8OIWrqHj58CAMDA6FjEBEREZGITJgwAdnZ2Th//rzQURqds2fPwsLCAt999x1CQ0Nx5MgR6OnpCR2LSKIEBwdDS0sLEydOFDoKERER1RLLPIiIiGopKCgIioqKcHNzEzoKUYOWl5cHAFBRURE4CZHoFBcX49tvv8WCBQugrKz8SWtZWFjg8uXLbHmnBik5ORm+vr4wMTFBt27dsGPHDgwfPhzx8fFIS0tDUFAQBg8eDBkZGaGjEhERERF9sqtXr6JPnz7w8vLCsmXLcO3aNQwZMkToWERERESNxosXLxAZGQk7Ozu0bdsWHh4eUFJSwvbt25GVlYVdu3ZhxIgRjeb9xOvXr8PBwQEjR45ESEiI0HHeSlFREatXr0Z4eDiuX7/+SWudO3cO0tLSsLKyqnlORUUFu3fvxo4dO/D999/D1tYWGRkZnxqbSKJIS0sjMjISz58/x4oVK0Q6a+rUqejXrx8WL16M6upqkc4iasrS09N5QSIRERFRE2ZmZgYjIyNER0cLHaXRKCkpgZeXFwYOHAhDQ0MkJSXB1dUVUlJSQkcjkij5+fnYvn07PDw80KxZM6HjEBERUS2xzIOIiKiWVFRUsGPHDhw8eBC7du0SOg5Rg5Wfn49mzZpBUVFR6ChEIhMeHo6ioiIsWLDgk9fq0aMHCgsLcffu3XpIRvTp/lrgYWZmhoiICNja2tYUeAQHB6N///78II6IiIiImozi4mJ4eXnB0tISSkpKuHLlCnx9fSEvLy90NCIiIqIGr7i4GFFRUbCzs4OmpiZcXV0BAN9//z0eP36MmJgYuLi4oEWLFgInrZukpCQMGzYMPXv2xJ49exp0AYmzszN69OiBJUuWfNI6586dg4mJCVRVVd/Y5uLigkuXLuHp06cwNzdHbGzsJ80ikjQ6OjoIDw9HWFgYDhw4ILI5UlJSCAoKwvnz57F7926RzSFq6rKysqCtrS10DCIiIiISIQcHB+zbt49FiLVw5swZmJubIywsDKGhoTh8+DB0dXWFjkUkkcLDw1FVVYU5c+YIHYWIiIjqgGUeREREdWBjYwN3d3csWLAAjx49EjoOUYOUn58PFRUVoWMQiUx5eTk2bdoEV1dXqKurf/J6Xbt2RbNmzZCQkFAP6Yg+zt8LPLZv384CDyIiIiKSCIcOHYKJiQnCw8MRGhqK33//HcbGxkLHIiIiImrQcnNzsWPHDtjb26NVq1aYPn06ACAiIuK1Ag9lZWWBk36cmzdvYvjw4ejUqROio6MhJycndKT3kpaWRlBQEE6ePInDhw9/9Drnzp1Dnz593rndxMQEFy9exNSpUzFu3Dh4eHigrKzso+cRSZrx48dj5syZmDNnDjIzM0U2p0ePHpgxYwZWrlyJoqIikc0hasqys7OhpaUldAwiIiIiEqHx48cjNTUVV65cETpKg/XqhggDBw5Ex44dkZSUVFPkS0TiV1FRgW+//RazZs2Cmpqa0HGIiIioDljmQUREVEeBgYHQ0NDA7Nmz2cZL9BYs86CmLjIyEllZWZ98h7tXFBQUYG5ujrNnz9bLekS1defOHfj5+cHY2BhmZmbYsWMHRo0ahXPnzuHhw4cs8CAiIiKiJi07OxsuLi4YO3YsevXqhZs3b8LV1ZV//xIRERG9w4MHD7Bp0yYMHjwYWlpamD9/PqqqqvDdd98hJycHMTExmD59eqP/jOjWrVuwsbGBoaEhjhw50mgKSfr27YsJEyZg2bJlKC8vr/Px5eXluHz58nvLPABAUVERwcHBiIyMxI4dO9CvXz/cunXrY2MTSZzNmzejdevWmDFjBqqqqkQ251//+hcKCgoQGBgoshlETVlOTg40NTWFjkFEREREImRpaQkDAwNER0cLHaVBio+Ph7m5OcLCwrB161YcOnQIOjo6Qscikmg///wzMjMz4eHhIXQUIiIiqiOWeRAREdWRkpISdu7ciZMnT2Lbtm1CxyFqcPLz86Gqqip0DCKRqKqqwjfffAMXFxfo6+vX27oDBgzA6dOn6209onfJzs5GcHAwevfujc6dOyMsLKymwCM1NRUbNmyAtbU1L2AkIiIioiaruroakZGRMDMzw+nTp3H06FHs3bsXGhoaQkcjIiIianCSk5MRGBiI/v37o0OHDli9ejU0NDSwffv2mgKPGTNmNJm7ACYlJWHQoEHo0KEDjh492miKPF755ptvkJqairCwsDofe/XqVRQXF3+wzOOV6dOnIzExEdLS0ujRo8dHzSSSRM2bN8euXbsQFxeHoKAgkc3R0NDAP/7xD6xbtw4PHjwQ2RyipqiyshK5ubnQ0tISOgoRERERiZCUlBQcHBwQFRVV81xiYiK8vLzg4+MjYDJhFRcXw8vLC4MHD4aRkRGSk5Ph6uoqdCwiiVdZWYl//vOfmD59Otq3by90HCIiIqojWaEDEBERNUZ9+vTB8uXLsXTpUtjY2KBjx45CRyJqMPLz8xv9XdeI3mXfvn24e/cuYmJi6nXd/v37IygoCM+ePUOrVq3qdW2i4uJiHDp0CJGRkTh27BiUlJQwbtw4fP311xg1ahRkZfnWABEREZEkWrRoEbKzs2u+z8zMhLy8PCZNmvTaflOmTIGDg4O444nEnTt34Obmhvj4eMyfPx9r165FixYthI5FRERE1GBUVlbi3LlziI2NRXR0NO7cuQM9PT2MGjUKnp6eGDFiBOTk5ISOKRIXLlzA6NGjYWZmhtjY2Eb5d2L79u2xaNEirFq1ClOmTEHr1q1rfey5c+egpqaGzp071/qYTp064ezZs1izZg3c3d2xf/9+7NixA9ra2h8Tn0hi9OzZEz4+Pvjqq69gY2MDc3NzkcxZuHAhtm3bhpUrV752cRoRvd+TJ09QWVkJTU1NoaMQERERkYiNHz8eQUFBmDt3Lo4dO4ZHjx5BSkoK7dq1g5+fn9DxxO7XX3/F3LlzUVBQgK1bt7LEg6gB2b17N+7evYsDBw4IHYWIiIg+glR1dXW10CGIiIgao7KyMlhZWUFFRQVxcXGQkZEROhJRg/D555/j2bNn9V52QNQQWFpaokOHDtizZ0+9rpubmwsNDQ3ExsZi9OjR9bo2SaaysjL8+uuviIqKQnR0NCoqKmBrawtHR0dMmDABzZs3FzoiEREREQlMW1v7tTKPd/H19W30d58qLy/Hxo0b4ePjAxMTE4SHh8PS0lLoWEREREQNQm5uLk6dOoWYmBjExsbi+fPnMDQ0xNixY+Ho6Ih+/fpBSkpK6Jgi9fvvv8Pe3h4DBgxAVFQUFBUVhY700QoKCtC5c2dMmTIFGzdurPVxU6ZMQV5eHg4fPvxRc8+fP4/p06ejoKAAERERGDt27EetQyQpqqqqYGtri6ysLCQkJEBJSUkkc2JjY2FnZ4e4uDgMHDhQJDOImpqrV6/CwsICN2/ehJGRkdBxiIgkjr29PVRUVPDjjz8KHeWTlJWVQUFBAf/5z39gb28vdBwi+pvk5GRERUXhhx9+QGpqKuTl5VFWVlazvVOnTrh9+7aACcUrPz8fK1aswLZt2zBx4kRs2bIF6urqQsciov+pqqpC9+7dYW5u3uj/RiIiIvqrn376CbNnz37tb/GmSlroAERERI2VvLw8IiMjcenSJWzevFnoOEQNRn5+PlRVVYWOQVTvjh07hsTERHh6etb72m3atIGxsTHi4+PrfW2SHFVVVTh9+jQ8PDygp6eHzz77DPfv38fatWuRnp6OmJgYuLi4sMiDiIiIiAAALi4uaNas2Qf3c3JyEkMa0YmPj0f37t3h7+8PPz8/XLp0iUUeREREJNGqqqqQkJAAPz8/9O7dG5qamnB2dkZOTg58fHxw9+5d3Lt3D8HBwejfv3+TKPI4deoUHj9+/NZt+/fvx8iRIzFmzBjs37+/URd5AICysjJ8fX0REhJSp4tO/vjjj0+60N/a2hqXL1/GiBEjMG7cOLi5uaG4uPij1yNq6qSlpfHDDz8gJycHK1asENmcsWPHYsSIEVi8eDGqqqpENoeoKcnJyQEAaGlpCZyEiIiIiOrbzZs3YWBggP9j787jakz//4G/TnvRKkklJBQhZJc91CCM7EKWrJMkDEPZsza2aWTsfKbJNpYxluyNMSZ7IhVKq/Ys7Z3fH/PrfKWkOHV38no+HudR577vc12v+z7ncDrXfb8vCwsLrFmzBi9evACAYhcPKigoCJBO+nJycuDn51fq34Pnzp2DhYUFfv/9d/j7+8Pf35+FPIiqmCNHjiAkJKRCzl8nIiKiysFiHkRERF/A0tISixcvxvfff49Hjx4JHYeoSsjIyICGhobQMYikbvny5bC1tUWbNm0qpP0ePXrg4sWLFdI2VW+PHz/GwoULYWxsDGtrawQGBmLhwoWIioqSFPfQ1dUVOiYRERERVTGjRo1Cbm7uR9eLRCK0bNmyys5A+vfff8PExARPnjwpcX1aWhpcXFzQo0cPmJiYSE5ukZeXr+SkRERERMJ7+/YtTp06BWdnZxgbG6Ndu3bw8fFB06ZN4efnh1evXuHcuXNwcXFBo0aNhI4rVXfu3IGNjQ0GDhxY7POvj48PHBwc4OTkhIMHD5ap2J0smDx5MszNzctcIODJkyeIjY1Fjx49vqhfDQ0N7N+/HwcOHMBvv/2GDh064MGDB1/UJlF1ZmRkhJ9//hk+Pj44efJkhfXj7e2Nhw8fYt++fRXWB1F1Eh8fDxUVFU5iQ0RERFQNaWhoID09HXJycsjJyfnodtVlPHHevHkYNWoUNm/eXGxdeno6nJ2dYWtri44dO+LRo0cYNmyYACmJqDQFBQVYuXIlHBwcYGFhIXQcIiIi+kws5kFERPSFFi1ahFatWsHR0bHUCyCIvhYs5kHV0blz53Djxg14eHhUWB99+/bF7du3kZiYWGF9UPWRmpoKHx8fdOzYEc2aNYOfnx+cnJzw+PFj3L59G3PnzoWhoaHQMYmIiIioCrO0tETjxo0/ul5BQQGOjo6VmKjs4uLiYG9vj+fPn2Py5MkQi8VF1p86dQoWFhbw9/fHnj17cPr0adSvX1+gtERERESVTywW4969e1i3bh169uwJLS0tDB06FI8fP8asWbNw//59xMfHY//+/XBwcKi24zp5eXkYP348AEi+NwX+Oz6enp6YOXMmfvjhB/z000+Qk6s+p1DJy8vD29sbJ0+exIULFz65/eXLl1GzZk20bdtWKv2PGTMG9+7dg5aWFtq3b4+1a9ciPz9fKm0TVTcODg6YOHEinJycEB0dXSF9mJubY+rUqfj++++RkZFRIX0QVSfx8fHQ19cXOgYRERERVQADAwMcPXr0k9spKSlVQpqKdfjwYWzduhUA8P333yM8PFyy7s8//4SFhQVOnDiBI0eOwN/fn5OFEVVR//vf/xASEoKlS5cKHYWIiIi+QPUZiSYiIhKIgoIC9u3bh8ePH2Pt2rVCxyESXHp6erU96ZO+XitXroSdnR06dOhQYX307t0b8vLyCAgIqLA+SLYVFBQgICAAjo6OMDIywty5c2FsbIyTJ08iIiICy5cvh5mZmdAxiYiIiEiGjBs37qOzj+fl5WHEiBGVnOjTcnNz8e233yItLQ0AcOPGDezduxcA8OLFC9ja2sLe3h69evVCcHBwlS1IQkRERCRtsbGx2LdvH8aMGQN9fX20bt0aGzduRL169XDw4EG8evUK165dw8KFC9GyZUuh41aK9evXIyQkBPn5+cjPz8e2bduwe/dujB07FmvWrMH+/fvh6ekpdMwK0atXLwwYMACurq7Iy8srddsrV67A2tr6o38bfI4GDRrg6tWrWLt2LTw8PNC1a1c8ffpUau0TVSdbtmyBnp4eRo8eXWGFb1asWIHc3FysW7euQtonqk4SEhJYzIOIiIioGuvduzeWLl1aamFXBQWFSkwkfWFhYZgwYQJEIhGA/847HDNmDFJSUuDs7Aw7Ozt06tQJwcHBGDp0qMBpiehjcnJy4OHhgQkTJqBZs2ZCxyEiIqIvwGIeREREUmBmZoYVK1Zg2bJlCAoKEjoOkaAyMjJYzIOqlbNnzyIwMLDCqxqrq6ujY8eOOHfuXIX2Q7LnyZMn8PT0hImJCWxsbBASEgJvb2+8evUK/v7+GDhwIOTl5YWOSUREREQyaPTo0SVe2CcnJ4fOnTvDyMhIgFSlmzFjBv7991/k5uZKls2ZMwerVq1CixYtEBERgYsXL2L//v2oVauWgEmJiIiISpabm4sjR44gKyvri9rJzMxEQEAAFi5cCCsrKxgZGWHy5MmIjIzE3LlzERQUhLi4OOzfvx8jRoyAtra2lPZANjx9+hSenp4oKCiQLBOJRJg2bRr++OMPnDt3DmPHjhUwYcXz9vZGWFgY9uzZ89FtxGIxrl69ip49e0q9fzk5Obi4uOD27dvIycmBpaUlNm/eDLFYLPW+iGRZjRo14O/vj6CgIKxcubJC+tDR0cHixYuxceNGvHjxokL6IKouXr16BT09PaFjEBEREVEFWrJkCfr06fPRwqayXMwjKysLQ4cORW5uruQ7mNzcXAQFBcHMzAynT5/GyZMn4e/vD11dXYHTElFptm/fjtjYWHh4eAgdhYiIiL4Qi3kQERFJiaurK7p06YLx48d/8cl3RLKMxTyouvH09MQ333yDDh06VHhf/fr1w7lz53giKyEtLQ2+vr7o2rUrzM3NsWvXLowcORJhYWEICgrC1KlToa6uLnRMIiIiIpJxjRo1gqWlZbGZp0QiERwdHQVK9XE+Pj745ZdfihQgEYvFePfuHZYtW4b58+cjODi4Qi5EJCIiIpKGf//9F5aWlnBwcMDx48fL9diCggLcuXMHXl5e6N27N7S1tWFjY4MzZ86gR48e+PPPP5GRkYHAwEAsWLAAbdu2LXWG0epMLBZjypQpxb5rF4vFEIvF0NTUROvWrQVKV3lMTU0xbdo0LFmyBBkZGSVuExISgoSEhAr9DN28eXPcvHkT8+fPh5ubG/r164fo6OgK649IFllYWGD9+vVYvnw5Ll26VCF9zJ49G8bGxli4cGGFtE9UXSQnJ/OiRiIiIqJqTk5ODn5+fqhTp06JhTtkuZiHs7Mznjx5UmRiBOC/7xbT09Nx+vRpDBw4UKB0RFRWr1+/hpeXF1xcXFCvXj2h4xAREdEX+jpH7YmIiCqAnJwcdu/ejaioKHh6egodh0gQubm5yMzMZDEPqjbOnDmDf/75B0uXLq2U/mxtbREfH487d+5USn9UteTn5+PMmTNwcHCAvr4+3NzcYGpqisuXLyMqKgpeXl4wNTUVOiYRERERVTOOjo4lXuT57bffCpDm4/7++2989913Ja7Ly8tDbm4uOnfuDCUlpUpORkRERPRpb9++xdy5c9GxY0eEhYVBQUEBgYGBn3zcs2fP4Ovri+HDh0NPTw9t27bFpk2bUKtWLWzZsgVRUVF48OABNmzYgH79+kFVVbUS9qbq+/nnnxEYGFjsogXgv8+OcXFxGDNmzFdRWNvDwwN5eXlYtmxZiesvX75cKcVNFBUV4enpib/++gtRUVGwsLCAr69vhfZJJGtmzpwJe3t7ODo6IikpSertKyoqYv369fjtt99w/fp1qbdPVF2kpaVBW1tb6BhEREREVMG0tbVx6tSpEsdJFRUVBUj05Xbt2oX9+/cXmRjhfWKxGC4uLl/Fd2JEsm7dunXIycnB/PnzhY5CREREUsBiHkRERFJkYmKCjRs3YsOGDTz5gb5K6enpAABNTU2BkxBJx7JlyzBw4EC0b9++Uvpr3bo1jI2N8fvvv1dKf1Q1REdHY/ny5TAxMcGAAQOQmJiIn3/+GXFxcdi7dy969OgBkUgkdEwiIiIiqqZGjBiBgoICyX15eXnY2NigVq1aAqYqKi4uDvb29qWeWCYvL4/JkycjKyurEpMRERERfdrVq1fRokULbN26FQUFBcjNzUVeXh4uXrxYbNuIiAj88ssvGD16NOrWrYtGjRrB3d0dWVlZWLx4Me7du4eEhAT4+/tj6tSpnJGvBLGxsZg/f36Rz7gfys3NxZ9//on169dXYjJh6OjoYNWqVdiyZQsePnxYbP358+fRs2dPyMvLV0qeDh064M6dOxg7diymTZuGESNGIDExsVL6JpIFu3fvhqKiIsaPH18hF1cNGjQIffv2hYuLS6n/ThJ9zVJTU3nOCxEREdFXwtLSElu2bCl2bp4sFvN4+PAhZs6cWeo2ubm5+Ouvv7Bz585KSkVEnyM6OhqbNm3CokWLoKOjI3QcIiIikgIW8yAiIpKyqVOnws7ODo6OjsjIyBA6DlGlKnzNa2hoCJyE6MudPn0at27dwpIlSyqtT5FIBHt7exw/frzS+iRhFBQUICAgAMOHD0fDhg3x448/on///nj48CGuXLmCCRMmoGbNmkLHJCIiIqKvQN26dWFtbS25eE8sFmPcuHECp/o/2dnZGDBgANLS0pCfn//R7fLz8/Hy5UusXbu2EtMRERERfVxqaiqmTJmCnj17IjIystiMmE+fPsWTJ09w+PBhODs7w8TEBKampnBxcUFiYiKcnZ1x4cIFJCYm4uTJk3B1dUWrVq1Y+PcTpkyZguzs7DJtu2jRoq+ikMSUKVPQpk0bzJw5s0hxgJycHFy+fBn9+vWr1DxqamrYtm0bzp07h7///hsWFhbw9/ev1AxEVZWWlhb8/Pxw4cIFbN26tUL68Pb2xsOHD3HgwIEKaZ9I1qWlpUFLS0voGERERERUSZydneHo6AgFBQXJMlkr5pGRkYFBgwaVOpZaqKCgAK6uroiPj6+EZET0OebPnw99fX189913QkchIiIiKWExDyIiogqwa9cuZGZmYs6cOUJHIapULOZB1YVYLIanpycGDRqEdu3aVWrfQ4YMwaNHj/D06dNK7ZcqR0xMDNauXQsTExP07dsXsbGx2L59O2JiYrBjxw40b95c6IhERERE9BV6v3iHoqIiBg0aJGCaopydnfHgwQPk5uaWafvVq1eX+eJNIiIioopy+PBhmJqaYt++fRCLxSgoKCi2jVgshrm5OcaNG4cnT55g/PjxuHbtGlJTU3HhwgV4enqiT58+UFJSEmAPZJOfnx/OnDnz0c+O8vLyEIlEUFJSgr29PY4cOYLatWtXcsrKJycnh+3bt+Ovv/7C4cOHJcsDAwPx5s0b9O3bV5BcNjY2CA4OxsiRIzFq1CgMHDgQMTExgmQhqko6dOiApUuXYv78+bhz547U22/WrBkmTZqERYsW4e3bt1Jvn0jWpaWlQVtbW+gYRERERFSJfv75Z5ibm0uKeMhSMQ+xWIyJEyciJiamWDHhQiKRSLJPSkpKsLKyKvH7SiIS3t9//w0/Pz9s3LgRysrKQschIiIiKWExDyIiogpQu3Zt7NixA3v27ClyQhRRdVdYzENTU1PgJERf5tixY7hz5w48PT0rve9u3bpBV1cXJ06cqPS+qWLk5+cjICAAw4cPR4MGDeDt7Y2RI0ciLCwMgYGBmDp1KlRVVYWOSURERERfsaFDh0JOTg4ikQj29vaoWbOm0JEAANu3b8f+/ftLPPFMXl5eMkOWsrIyOnXqBHd3d5w+fZontRAREZFgYmNjMWjQIAwfPhypqamlFiRTUlLCiBEjkJKSgqtXr8LDwwPW1tYs3vGZkpOTMXPmTIhEoiLL5eXlIScnB0VFRfTt2xd79+5FUlISjh07hsGDBwuUtvJZWVlhwoQJcHNzw5s3bwAA586dQ9OmTWFiYiJYLg0NDWzevBlXrlxBaGgoLCws4OvrK1geoqpi0aJFsLa2xogRIyRj8NK0fPlyvHnzBhs2bJB620SyLDMzE9nZ2dDS0hI6ChERERFVIhUVFRw7dkzyvVzhGKQs2Lx5M44fP17se8jCfZCXl0fLli0xd+5cXLhwAenp6bh69SoMDAyEiEtEpSgoKMCcOXPQs2fPr+q7ayIioq+B7PyFQUREJGPs7e0xadIkzJgxA127dkXdunWFjkRU4dLT0wH8d+IdkazKz8/HkiVLMGLECLRu3brS+5eXl8eAAQNw7NgxuLu7V3r/JD3R0dE4dOgQfvrpJ0RHR6NXr1743//+h8GDB8tU9X4iIiIiqjrevHkjORErIyMD+fn5AIDU1NQi271+/fqjMy8VevfuHbKzsyX3W7VqhaCgIDRs2LBIcVp1dfVPnrBWo0aNIhedKisrQ01NDQCgqqoKFRUVAEDNmjXL/Fn42rVrcHFxgVgsBvDfDFh5eXkQi8XQ19dH9+7d0aVLF3Tq1AmWlpYydVIdEdGXuHr1Kl69eiV0DCL6gL6+Ph4/fow5c+ZIPocVfo75mJycHDx//lzyuak0ERERuHPnjlSyVle//vor0tPTIRaLIS8vj4KCAigoKKB///4YOXIkBg4cCHV1daFjCmrdunU4ceIEVq1ahTVr1uDs2bPo37+/0LEAANbW1rh37x6WL1+O6dOn4/fff4evry+MjIyEjkYkCDk5ORw8eBCWlpaYPXs29u3bJ9X29fT0sGDBAqxZswZTp07l+SxE/19aWhoAsJgHERERURX39u1b5OTkSO6/P24KFB87BYDc3FxJgdOP/nFIOwAAIABJREFUmT9/Pjw8PJCUlISAgIAS2/mU8oyHAv8VEilpIrAPx2g1NTUhJ/fffN4ikQhaWlq4efMm5s2bB7FYDAUFBeTl5UFRURHt2rWDjY0NevbsiQ4dOkjGaomoatu/fz9u377NsQAiIqJqSCT+1NkDRERE9Nnevn2L1q1bo2HDhjh79myxmaCIqptDhw7BycmpyMVARLJm586dmDlzJkJCQmBqaipIhj///BN2dnYICwsTLAN9nvz8fPzxxx/Yvn07AgICoK+vj4kTJ2Ly5Mlo0KCB0PGIiIiIqAJkZ2cjIyMDGRkZSEtLQ3p6OjIzM/Hu3Tu8efMGOTk5SEtLQ05ODt6+fSs5uaxw2Zs3bySFNdLT01FQUIDs7Gy8e/cOQPGiG9WFhoYG5OXlAQDa2toA/u9kNQ0NDdy4cQPZ2dmQk5NDrVq1YGxsDGNjY5ibm0NXVxc1atSQnAynra0teVzhTUtLi9/FEVG1k5ubCxUVFRQUFAgdhYg+ICcvj4L3LhgoK0VFRaSnp5d4wv77hg4diuPHj39uvK+KgoIC+vbti1GjRmHQoEEsQP+Bbdu2wc3NDRcvXkS3bt3wxx9/wNbWVuhYRdy4cQNOTk6Ij4/HunXrMGXKFH62p6/W2bNnYWdnh3379mHcuHFSbTsrKwtNmzZFv3794OvrK9W2iWRVSEgImjdvjuDgYDRv3lzoOEREXyV7e3toaGjgwIEDQkf5ItnZ2VBRUcHvv/8Oe3t7oeMQfbE3b95IxjIzMzORlZWFtLQ0iMViScGLwkkJsrKykJmZifz8fGRkZACAZAy0cNzz/cIaHz4egGRctVBhn1QykUgEZWVlKCoqQl5eHsrKyqhRo4ZkfeFYbOHYauGYrLy8vOS7s8JiIWpqapK2atasWeLj1dXVoaysDA0NDcn2hdsQ0edJT0+Hubk57O3t4ePjI3QcIiKiSnHw4EFMmjSpWp4b+SFOU0ZERFSBatSogb1796Jbt27YsWMHpk2bJnQkogqVkZHBkyJJpmVlZWHFihWYPHmyoEU0bGxsUKdOHfz2229YvHixYDmo7JKTk7Fr1y74+PggMjISffv2xdGjRzFgwADOEE5ERERUxWVlZSE5ORkpKSnFfqanp0sKdbx/S01NRUZGBl6/fl3qYJK6ujoUFRWhpaUFJSUl1KhRAzVq1ICSkhK0tLSgqqoKPT09qKqqQkVFRTLD0vsnRykrK0tmay/cDig6q9P7hTEASPoqjYKCwidnJi8oKEB6evonj+GHs1K9f0Ld+yfevT8rVuFj3u/j/aImioqKyMvLg6qqKrKzs/H69WtERkbi/v37xQqjfIy6unqRAh+FRT40NTWhoaEBdXV1aGpqolatWtDR0Sn2s3B2KyKiqqKgoAAFBQVYsH0P2vfuJ3QcIvr/rp08im2LXDF+/HjExMQgMjIS8fHxeP36tWQbkUgEJSUlAP8V5iksypObm4tbt26he/fupfaRl5+PboO+hcu6rRW3IzJswTBbZKYmYfXq1bC3t4empqbQkaqs6dOnY9euXXB2doaysvInX3tC6Ny5M+7evYtly5ZhxowZOHbsGHx9fWFsbCx0NKJK179/f7i6umL69Olo164dzMzMpNa2iooKVqxYAScnJ8yePRstWrSQWttEsiotLQ0AoKWlJXASIiIios+Tl5cnmYCgcCyz8Jaenl5kUoKMjAzJGNzbt2+RnZ2NtLQ0STGO9PR0ZGdnS4pufEpZikAUFpFQUVGBnp4egOJFJAAUKTIBFB/7fH/MFIBk/LXQh2OnhQrHYsuqMG9Z5eXlFflOsCwKi6KUtlwsFks+q77fT25urmSbjxU/eX8s9sOiKllZWUhKSgJQvKhK4eQTZR0vBv5vXFtDQwPKyspQV1dHjRo1oKysDC0tLcnx1NTUhIqKCmrUqCEZsy28aWpqQktLS3K/PMefSJYtXLgQubm5WLFihdBRiIiIqALwiiIiIqIK1rlzZyxYsABubm7o2bMnmjZtKnQkogqTlpbGkxpIpm3duhVJSUmCF9BQUFCAg4MDDh06JHgWKt2dO3ewY8cOHDx4EAoKChg5ciS+++47ztREREREJKCkpCQkJCQgISEBcXFxePXqFZKTk4vdCot2vHv3rlgbWlpa0NHRkRR9KLwZGBhAQ0MD2traxYpEaGhoQFNTE5qamlBTU6sWJxbJycmVaRYloWdaSktLQ2ZmpqTYSnp6uuQkxQ9vaWlpePnyZZH7KSkpyMzMLNZuYWGPD4t86OjoQFdXFwYGBtDT00PdunWhr69fLZ5zIiIi+jxycnLYu3dvkWWZmZmIjo5GXFwcXr58ifj4eERHRyMmJgYvXrxATEwMUlJSJDOU0ufT0dNHE8sWcHR0FDpKlScvL49t27aha9euaNOmjaRwYFWjqqoKLy8vDB48GE5OTmjRogWWL1+O2bNns+gefXW8vLxw48YNDB8+HLdu3SpywdqXGjt2LLZs2YIFCxbgzJkzUmuXSFaxmAcREREJSSwWIzU1FSkpKZKfhb+/X6Dj/SIdhcsL75c03gX8X3GMwskGCgsqKCkpQV1dHXp6eiUWXChc/7GCDHJycpKf9N95n+UdNxV6nLU8CidueL/Qy6cKwby/Pi0tDXFxcUXWF76OPzaBRuEEFdra2pICH+9P2qCpqSlZpqOjA21tbcl4buHvhRNkEFVVt27dgq+vL/bv3w9dXV2h4xAREVEFYDEPIiKiSrBs2TJcuHABY8aMwd9//80vhajaSkpKQq1atYSOQfRZ0tPTsXbtWri6usLQ0FDoOBg1ahS2bduGe/fuwdLSUug49J6cnBycOHECvr6+CAgIQNOmTbF69WpMmjRJMqsAEREREUlXbm4u4uLiEBUVhYSEBMTGxiIxMRGxsbHFCnfk5ORIHqeoqAg9PT3o6upKijE0adKkSGGGkn6WNFMTVV1aWlrQ0tJC3bp1P7uNd+/eSQq8FP5MSkqS/F64PCIiAikpKUhMTERycnKRNtTV1YsV+NDT05MsMzQ0hJGREU/AISIi+kqoqqqicePGaNy4sdBRiIpo06YNFBQU8Pz5c7x9+7bIzLZVTceOHXHnzh14eXnB3d0dR48exa5du/i+oq+KoqIiDh48iDZt2uD777+Ht7e31NqWk5PDhg0b0LNnT5w/fx59+/aVWttEsigtLQ2KiopV+v9GIiIikg0pKSl49eoVEhMTixTn+LBIx4e/f6iwOERh0YL3CxcYGhpKCnQUFjcovL2/TENDo8oW8yTZoqGhAaBiCpDk5OTg9evXSE9PR3p6uqTIR2GhmtTUVMnvheuePXtWZNuUlBRkZWUVa7tmzZrFCnwU/l6rVq0iy3R1dVG7dm3Url2b5wxQpcjLy4OzszO6d++O0aNHCx2HiIiIKgiLeRAREVUCBQUF7Nu3D23btsXq1avh4eEhdCSiCpGcnMxiHiSz1q1bh4KCAri5uQkdBQDQqVMnmJiY4NChQyzmUUXExcVh//792LZtG2JjY2FnZ4cLFy6gd+/eEIlEQscjIiIikmmpqamIjY1FXFwcnj17hmfPnhW5HxUVhby8PMn2KioqMDAwQN26dWFgYIBOnTpBW1u7yLK6deuiTp06PMmGykRNTQ1qamowMjIq82NycnKQlJSE1NRUxMXFSV6zsbGxSE1NRUhICAICAhAXF4fU1FTJ45SVlWFoaCh5rZqYmMDExERy39TUFJqamhWxm0RERERECAgIQH5+PvLy8rB27VosX75c6EilUlFRgaenJ4YMGYKJEyfC0tISS5cuhbu7O2f+pa9Go0aNsHPnTowcORI9evSAvb291Nru0aMHvvnmG7i7u6NPnz58X9FXLT09nd/JEBERUYkyMzORmppaZEzow98L70dHRxeZfAD4729bbW3tIjc9PT00bdq02PL3bxzrpK+FkpISatWq9cXnoL//Xi3tFhcXh5CQEMn9V69eIT8/v0hb75+TUPie/Nh9vlfpc61fvx6hoaF4+PAhz0MmIiKqxljMg4iIqJKYm5vDy8sLbm5u6N+/Pzp06CB0JCKpYzEPklVxcXHYvHkzPDw8oKOjI3QcAIBIJMK4ceOwY8cOrF69GoqKikJH+mrdvn0bmzdvhp+fH7S1tTFx4kRMnz4d9evXFzoaERERkczIyspCREQEwsPDi/x89uwZXr58iezsbAD/fQ7W19eHkZER6tWrh+bNm8PW1hZGRkYwMjJC/fr1oaenx8/HVCUoKSnBwMAABgYGaN68eanbvn37Fi9fvkR0dDRevnyJqKgoyf1Tp04hKioKb968kWyvra2NBg0aoFGjRjA1NUWjRo0kvxsZGfFEHiIiIiL6bCdPnkS7du0wYsQILFq0CGPHjkWTJk2EjvVJrVq1wj///INNmzZh6dKlOHnyJHbv3o2mTZsKHY2oUgwfPhxnz57FxIkTce/ePRgbG0ut7Q0bNqBFixbYv38/JkyYILV2iWTNmzdvULNmTaFjEBERUSVKT09HTEwMYmNjERsbi5iYGMTFxeHly5eIj49HTEwMEhMTkZWVVeRx6urqqFOnDvT09KCrq4s6deqgVatWqF27tuS+np4eateuDR0dHSgrKwu0h0RfF1VVVaiqqsLAwKBcjysoKEBKSgoSExMlt/j4eCQlJSExMREJCQmIjIxEUFCQZNn7FBQUJO99IyMj1K1bF4aGhpKxZCMjI+jr60NfX1+au0sy7sWLF1i1ahWWLFmCRo0aCR2HiIiIKhCLeRAREVWi2bNn4+zZsxgzZgzu3bvHAWCqdpKTk2Fqaip0DKJyW7FiBbS0tDBr1iyhoxQxadIkrFy5En/88QcGDx4sdJyvSnZ2Ng4ePIgff/wRwcHB6NixI/bs2QMHBwcoKSkJHY+IiIioSsrNzUVoaCgeP35crHBHTEwMxGIxAMDAwEBSnKBbt24wNjZG/fr1YWRkBENDQ57MRtVSjRo1YGZmBjMzs49uk5qaiujoaERGRiI6OhovXrxAeHg4zp49i/DwcEmxDxUVFZiYmEjeR6ampmjcuDGaNWsGQ0PDytolIiIiIpJBBQUFOH36NGbNmoXvvvsO+/btw3fffYezZ88KHa1MFBUVsWDBAvTt2xdOTk5o06YNVqxYARcXF85+Sl+FrVu34ubNmxg3bhwuXboktde9mZkZJk2ahB9++AEODg6oUaOGVNolkjVZWVlQUVEROgYRERFJSXx8PCIjIxEVFYXY2FhER0cjPj5eUqjj5cuXePfunWR7FRUVyYX3hoaG6NixIwwNDYsU7Cgs0MHPDETVi5ycHHR1daGrqwtzc/NPbp+Xlycp6vHq1SskJCQgKSlJUgTo+fPn+OuvvxATE4OMjAzJ45SUlFCnTh3Uq1evWMGPevXqoUGDBjAyMoKCAi/3/BrMmjULDRs2xLx584SOQkRERBWMn+6IiIgqkUgkwi+//IKWLVti/vz5+Omnn4SORCRVycnJqFWrltAxiMolJCQEO3fuxI4dO6Cqqip0nCLq1auHXr16YdeuXSzmUUmSkpLg4+OD7du3IzU1FaNGjcLevXvRtm1boaMRERERVRl5eXmIiorCo0ePEBISUuRn4axU2traMDExQbNmzdC/f3+YmJjAxMQETZo0gbq6usB7QFQ1aWtrQ1tbGy1atChxfWpqKp49e1bk9vDhQ/j5+SEuLg4AoKmpCVNTUzRr1gzNmzeX/GzYsCFEIlFl7g4RERERVUH//PMP4uPjYW9vDwUFBWzbtg3du3fH6dOnMWDAAKHjlVnr1q1x69YteHl54fvvv4efnx927tyJVq1aCR2NqELVqFED/v7+aN++PVauXAkPDw+ptb18+XL8+uuv8Pb2xg8//CC1dolkSXZ2Ni/MJSIikiHvj5vExsYiLi5Ocv/p06d4/fq1ZFttbW3UrVsXBgYGMDY2RseOHSX3TUxMULduXejr60NOTk7APSIiWaGgoAB9fX3o6+t/ctusrCzExsZK/p16/2dISAgCAgIQFRUlmdgB+L/zLUq6GRsbs9hHNXDo0CH8+eefuHbtGhQVFYWOQ0RERBWMn96IiIgqmYGBAXx9fTFs2DB88803+Oabb4SORCQ1LOZBssjNzQ0WFhaYMGGC0FFKNGnSJIwZMwYvX75EvXr1hI5TbUVERGDLli345ZdfoKCggAkTJsDd3R1GRkZCRyMiIiISVFpaGm7fvo1///0Xd+/eRUhICJ4+fYqcnBzIy8ujYcOGsLCwQL9+/eDm5gZzc3OYm5tDWVlZ6OhE1Y62tjbatm1bYrHBpKQkBAcHIyQkBMHBwXj8+DH+/PNPJCUlAQB0dHTQvHlzWFhYwMrKClZWVmjWrBlP9CIiIiL6ypw4cQImJiawsLAAAFhbW2PEiBFwcXFBnz59ZOoCZkVFRSxZsgQjR46Es7MzrKysMGPGDKxatQo1a9YUOh5RhbGwsMC6devg4uICa2tr9OrVSyrt6unpYd68eVi7di0mT55cpguSiKqb7Oxsfq9JRERUheTn5yMyMhKhoaF48uQJwsLC8Pz5c7x48QIvXryQTDKgoKAAQ0NDNGjQAPXr18eAAQMkvzdo0ABGRka8UJqIBKOioiIpxFGauLg4vHjxApGRkUV+njhx4qP/5jVo0ABNmjSR3Jo2bcq/aWRASkoK3Nzc4OzsjC5duggdh4iIiCoBz9AjIiISwNChQzFmzBg4OTnh4cOH0NPTEzoS0RcrKChAWloadHV1hY5CVGYXL17E2bNnceHChSpbVX/w4MHQ1tbGgQMHsGjRIqHjVDuBgYHYsmULjh07hvr162P16tWYPHkyatSoIXQ0IiIiokr39u1b3L17F//++y+CgoIQFBSEsLAwiMViGBoaom3bthg4cCCaN2+OZs2awdzcXKYu9CKqznR1ddGjRw/06NGjyPJXr15Jinw8evQI9+/fx759+/Du3TuoqanB0tIS7dq1kxT4aNKkSZX9+5iIiIiIvtzRo0cxdOjQIsu8vb3RtGlTrFu3DkuXLhUo2edr3LgxLl68iAMHDsDV1RWnTp2Cj48P+vXrJ3Q0ogoza9YsXLp0CePHj8fdu3elNkbv5uaGHTt2YOXKldi2bZtU2iSSJVlZWfy+k4iISACpqamSgh1Pnz5FaGgoQkNDER4ejuzsbABAnTp1YGZmhgYNGqBDhw5o2LBhkWIdLF5ORLKubt26qFu3Ljp16lTi+vj4+CJFPgpv169fR2RkJPLz8yEnJ4f69etLCnuYmZlJCn1wMsGqY/78+RCJRFi1apXQUYiIiKiS8C9WIiIigWzbtg2tWrWCs7Mzjh8/LnQcoi+WlpaG/Px81KpVS+goRGWSn5+POXPmYPDgwejTp4/QcT5KWVkZjo6O8PX1xYIFCyAvLy90JJlXUFCAP/74A6tXr8bNmzfRtm1b7N69G2PGjOHxJSIioq9KfHw8rly5gitXruCvv/7C48ePkZ+fj9q1a8PKygojR46UXOBft25doeMS0WfQ09NDr169iszUnJeXh5CQEEnRnhs3bsDHxwc5OTnQ0NCAlZUVunfvjh49eqBDhw6cvYmIiIiomrhz5w7Cw8Ph4OBQZLm+vj4WLVqEZcuWYdy4cWjYsKFACT+fSCSCo6Mj+vbti/nz56N///5wcHDA9u3bUbt2baHjEVWI3bt3o3Xr1hg/fjxOnz4NkUj0xW2qqalh6dKlmDVrFlxdXdGoUSMpJCWSHVlZWfwehIiIqAJlZmYiODgY9+7dw/379/HgwQM8efIEiYmJAAAVFRXJBeiDBw9G06ZN0bRpUzRp0gRaWloCpyciEpa+vj709fXRsWPHYuuys7MRFhaG0NBQSVGkW7du4cCBA0hNTQUA1KxZE02aNIGFhQVatWoFS0tLWFpaQkdHp7J35at2+fJl7N69G35+ftDW1hY6DhEREVUSFvMgIiISiKamJg4cOICePXti7969mDBhgtCRiL5IUlISALCYB8kMX19fhIaG4ujRo0JH+aQZM2bgxx9/xMmTJzFkyBCh48is169fY/fu3di0aROio6NhZ2eHv/76C507dxY6GhEREVGlSEhIwNWrVyUFPB4/fgwFBQW0a9cOdnZ28PT0hJWVFerXry90VCKqQAoKCmjZsiVatmwJJycnAEBOTg4ePHiAoKAg3Lx5E7t374aHhwdUVVXRqVMn9OjRAz179kT79u2hpKQk8B4QERER0ec4fPgw6tWrh3bt2hVb5+rqir1792Lu3LkyPRGFvr4+9u/fj+HDh2PmzJlo2rQpvLy8MGXKFKkUOiCqSrS0tODn5wdra2ts3boV3333nVTanTRpEn788Ud4eHjg4MGDUmmTSFZkZWVBRUVF6BhERETVwqtXr3D//n3cvXsX9+/fx7179/D06VPk5eWhZs2aaNmyJVq1agUHBwdJwQ5jY2PIyckJHZ2ISOYoKyvDwsICFhYWxdYlJiYiNDRUcnvw4AHWrVuHhIQEAICxsTFatWpVpMCHiYkJv0urAG/fvsWUKVMwcOBADB8+XOg4REREVIlYzIOIiEhA1tbWmDNnDmbPno2uXbvC1NRU6EhEny05ORkAi3mQbHj9+jWWL1+OWbNmoUmTJkLH+aRGjRrB1tYW27dvZzGPzxAVFQVvb2/s2rULIpEIkyZNwnfffYcGDRoIHY2IiIioQonFYvzzzz84fvw4Tp8+jZCQECgoKMDKygr29vbw9vZGly5dULNmTaGjEpHAlJSUYGVlBSsrK0ybNg0A8Pz5c0nxn507d2Lp0qVQU1ODtbU1Bg8eDHt7e9StW1fg5ERERERUVkeOHMHIkSNLPBFfSUkJW7duhY2NDc6cOQM7OzsBEkrPgAED0KtXLyxfvhwzZszA//73P+zYsQNNmzYVOhqRVHXo0AFLlizB/PnzYW1tjdatW39xm/Ly8vD09MSoUaPg5uYmlTaJZEV2djaLeRAREX2GnJwcBAUFITAwENevX8ft27cRFxcHADA0NISlpSUGDx4suUi8UaNGLNpBRFRJateujdq1a6Nr165FlsfHx+PevXuS25EjR7BmzRrk5+dDQ0MDrVq1QteuXdGlSxd06dIFWlpaAu1B9TFv3jykpaXB19dX6ChERERUyVjMg4iISGCrVq3ChQsXMGHCBFy9ehXy8vJCRyL6LCzmQbJk5cqVyM7OxuLFi4WOUmYzZ86EnZ0dgoODS6yeTcWFhobCy8sLhw4dgr6+PpYuXYopU6ZAU1NT6GhEREREFSYvLw9Xr17FsWPHcOLECcTExMDU1BSDBw/Ghg0b0LVrV6irqwsdk4hkQMOGDdGwYUNMnDgRABAREYGrV6/i7NmzcHd3x8yZM9GhQwcMGTIEQ4YMYaFiIiIioirszp07CA8Ph4ODw0e36dOnD4YOHQoXFxf07t0bysrKlZhQ+tTU1ODl5YXhw4dj6tSpaN26NebPn49FixZBSUlJ6HhEUrN48WJcu3YNw4cPx507d6TyvY+DgwM2bdqEJUuW4PTp01JISSQbsrKyeIEaERFRGWRkZODGjRuS4h3//vsvMjMzoa+vj65du2Lu3LmSwh26urpCxyUiohLo6+ujf//+6N+/v2TZu3fv8PDhQ9y7dw9BQUH4/fffsWbNGsjJyaF58+bo1q0bunTpAmtraxgZGQmYXvZcunQJO3bswK+//oo6deoIHYeIiIgqGctZEhERCUxZWRn/+9//cPv2bWzYsEHoOESfLTk5GaqqqlBVVRU6ClGpnj9/ji1btsDDw0Omis/069cPpqam8PHxETpKlffgwQM4OjqiefPmuHbtGtavX4+wsDDMmzePhTyIiIioWhKLxbh+/TqcnJxQp04d9OnTBzdu3MDUqVPx4MEDhIWFYf369bC1tWUhDyL6bI0aNYKTkxP8/f2RmJiI48ePo2nTpli7di0aN26Mli1bYs2aNYiNjRU6KhERERF94PDhw2jQoAGsrKxK3W7Tpk2IjY3Fxo0bKylZxWvTpg1u3ryJNWvWYMOGDbCyssLNmzeFjkUkNXJycjh48CBev36N2bNnS6VNkUiEFStW4I8//sCVK1ek0iaRLMjKyoKKiorQMYiIiKqc7OxsBAQEwM3NDa1bt4aOjg5sbW1x+PBhmJqa4qeffsLTp08RFxeHw4cPY968eejTpw8LeRARyRg1NTV06NABzs7O2LlzJ0JCQvDq1SscPXoUNjY2CAoKgqOjI+rVq4eGDRti/Pjx8PPzQ0pKitDRq7SMjAxMnDgRgwYNwogRI4SOQ0RERAJgMQ8iIqIqoHnz5li+fDmWLl2Ku3fvCh2H6LMkJyfLVGEE+nq5ubmhfv36mDFjhtBRykVOTg6zZ8/Gvn37kJSUJHScKikwMBADBw6EpaUl7t+/j927d+Pp06dwcXGR+RkEiYiIiEqSnp6ODRs2wMzMDN26dcODBw+waNEiRERE4O7du1i6dClatGghdMyvio2NjdARiCqFiooKBg0ahD179iA+Ph4BAQGwtrbGhg0bUL9+fQwaNAgXLlyAWCwWOioREcmgZU48mZVImsRiMY4cOYJhw4ZBJBKVum39+vXxww8/YOXKlXj27FklJax4CgoKcHFxwYMHD6Cvr48uXbrA2dkZr1+/FjoakVTUqVMHe/bswf79+3HgwAGptGljY4PevXtj4cKF/NuOvhpZWVkcVyYiIvr/UlNTsWfPHtjb26NWrVqwsbHBuXPn0KNHD/j7+yM+Ph6hoaHYtWsXJkyYgMaNGwsd+avGMUrZwOep4lXFY1wVM5VH7dq1MXjwYGzcuBE3b95EWloaLl68iAkTJiAyMhLjxo2Dnp4eunTpAi8vL0RERAgducpxc3PDu3fvsGPHDqGjEBERkUBYzIOIiKiKcHNzg7W1NYYPH443b94IHYeo3FjMg2RBQEAAjh8/Dm9vbygqKgodp9wmT54MVVVVbN26VegoVUpgYCD69OkDa2trpKYhLb0KAAAgAElEQVSm4sSJE7h37x4cHR0hLy8vdDwiIiIiqUtISMC8efNgbGyM5cuXo2/fvrh79y6CgoLg5uYGExMToSOWqrSLxz51YVlFE4lEX5SBF7d8mtDPcXXxpa9VaVJQUEDv3r2xfft2xMbG4uDBg3j37h369u0LS0tLHDp0CAUFBULHJCKij3gZHgqP8Q4Y06YxvjUzwLdmBkJH4mcqIin7559/EB4ejlGjRpVpe3d3dzRu3FjmiqKXhYmJCc6fPw8/Pz8cO3YMZmZmOHr0qNCxiKTC1tYWrq6umDFjBkJDQ6XSppeXF27duoXTp09LpT2iqi47OxsqKipCxyAiIhJMVlYWDh48iG+++Qb6+vqYMWMGxGIxNm7ciBcvXiA4OBje3t4YOnQo6tSpI3TccuMY5ddN6OcYqL7PkxDjlh/r80uOcUXtR3V73mvUqIFevXrBw8MDV65cQVJSEvz8/GBmZoaNGzfC1NQUVlZWWL9+PRISEoSOK7iAgADs2rULPj4+Mvl/JxEREUkHi3kQERFVEXJycti3bx9SU1Ph7u4udByicmMxD6rqcnJyMHv2bAwZMgS2trZCx/ksampqmDVrFrZt2/bVzxZXUFCAU6dOoX379rC2tkZWVhYCAgIQGBiIgQMHVonBNyIiIiJpe/fuHTw8PGBqaopff/0VP/zwA16+fImtW7fC0tJS6HjVwpeeSBMQECClJESlq6onfSkrK2PEiBEICAjA3bt30bJlS4wfPx6tW7fG+fPnhY5HREQl2LpwDvqNcsTem4/gsfs3oeMAADz3+AsdgahaOXDgAMzNzdGmTZsyba+goIDt27fj/Pnz8Pevnu9HBwcHhIaGYsCAAXBwcMDAgQMRHR0tdCyiL7ZmzRqYmZlh9OjRyM7O/uL2rKysMHToUCxatAj5+flSSEhUtWVnZ0NJSUnoGERERJUuLCwMc+bMgaGhIZycnKCgoIBdu3YhISEBJ0+ehLOzM+rXry90zGqNY5Rfh+r6PAkxbvmxPr/kGFfUflTX572QpqYmhg0bhl27diEuLg7nz59HmzZtsGbNGtSrVw8ODg64dOmS0DEFkZ6ejkmTJmHEiBEYNmyY0HGIiIhIQCzmQUREVIUYGhpi586d+Pnnn3H48GGh4xCVC4t5UFXn7e2NyMhIbNy4UegoX2T27NnIycnBzp07hY4iiNzcXOzfvx/NmzfH4MGDUadOHdy6dQuBgYHo3bu30PGIiIiIKsz169fRqlUrbNmyBYsXL0ZYWBjc3d2hqakpdDQiohJZWlriwIEDePjwIUxMTNCvXz+MHz8eqampQkcjIqL3vHj8CB1t7KCopISWna1x9Ems0JGISIpyc3Ph7+8PR0fHcj2ua9eumDhxIlxcXJCWllZB6YSlo6ODHTt24NKlS3j69CksLCywefNmFiwgmaakpIRff/0V4eHhmD9/vlTaXL16NZ48eYJDhw5JpT2iqo6TRhAR0dckNDQU48aNg7m5OU6dOgV3d3e8fPkSJ06cwNixY6GhoSF0RCIikiEKCgqwsbGBr68vYmNjsWvXLsTHx6N3797o0qULzp07J3TESuXq6orMzExs3rxZ6ChEREQkMBbzICIiqmKGDBmCSZMmYcaMGYiN5QmTJDtYzIOqsvj4eKxevRoLFixAw4YNhY7zRXR0dDBlyhRs2rQJOTk5QsepNDk5OfDx8YGpqSmmTJmCzp074/Hjxzh16hTatWsndDwiIiKiCuXr64tevXqhcePGePjwIRYuXAg1NTWhY0mIRKIST3IvaXnh/cJ1IpEIkydP/uQ6AAgODsY333wDdXV1qKuro3///ggODi6xz4iICAwdOhTa2tofzVce5em7PMqSNzg4GHZ2dpK+7ezsytz3x5afPHkSXbp0gYqKCho0aABXV1e8fv26xMe+fPkS9vb2UFdXR506dTB27FgkJyd/9jF6v+0Pn+NPKcuxKItHjx7Bzs4ONWvWhIaGBvr164eQkJBix6u8x7Usx6AsytNOWZ8fIZmbm+P48eM4c+YMLl26BCsrKzx+/FjoWERfjW/NDPCtmQGiw59ixeTRGNu2CUa3NsUq53GIjggrcdv4qBdYN3sSHNubSZYVigp7glVTx2JMm8YY06YxVk0di6iwJ8X6ffEkBMudRmK0ZSOMbdsEK6eMwb3AK0W2iQp7glXO4yRtrZg8ulhb715nYM8aD0zv0xEjWzbApK6W2LpwDsIe3C3XNuXJ/ill3rdP9CV5biLCsHDEAIyyNMEPYwYjPuoFXoaHYuHwbzC6tSmWOg5DUlxMsRzS2J9vzQyQn58Hh+b18K2ZAQ5uXFUkW0nbf7i8cFlSXCy8ZkzAmDaN4dSlJTa7z8LrtOIFnD51/D7Wd3mOaVmz/HvpPBaNGoSRLRtgWq/22LPGA5lv35Tp2MmC8h6PsrwnAeBleChWTR2L0a1NMbZtEyyfNArR4U9LfO7KcozL8m8Pfb4///wTycnJGDlyZLkfu379ehQUFGDJkiUVkKzq6NGjB+7evYtp06bB3d0dnTp1wp07d4SORfTZTE1NsXPnTmzduhXHjx//4vaaNGmC8ePHY+nSpcjOzpZCQqKqS05ODgUFBULHICIiqnBZWVnw9PREy5Ytcfv2bezevRtPnz7FwoULUadOHaHjlRnHKEs/DqXhGKX0xyg/dUw/dkzKOm5Znn0ViUR4/PgxOnbsCDU1NVhbWyM8PByPHj1Chw4dULNmTfTs2RNRUVFlPgYl5dXU1MSQIUM+2k5FjO2W1ufH3vvleT0BZR9//dz3p7Tef1WdiooKxo0bh+vXr+Pu3bswNDSEra0tBgwYgMjISKHjVbgzZ85gz5492LFjB/T09ISOQ0RERAJjMQ8iIqIqaPPmzahVqxYmTJjAQWKSGSzmQVXZ3LlzoaWlBXd3d6GjSIWbmxsSExNx4MABoaNUuNzcXOzcuRNNmjSBq6sr7O3tER4ejl27dqFJkyZCxyMiIiKqcKtXr8b06dOxatUqnDlzBkZGRkJHKkYsFpd5eeEysVgsuf3yyy+fXBceHg4bGxsMHDgQz549w4sXLzB27FjY29sjOjq6WPvTp0/HvHnzEBsbizNnznzR/pW37/L4VN7w8HDY2tpi2LBhePbsmeSEnv79+yM8PPyTfX9sub29PcaPH4+UlBTcvHkTKSkpmD17domPnTx5MqZPn464uDgEBQXh3bt3mDdvXpFty3uMSnqOP6Wsx+JTIiIiJO08f/4cz58/x8SJEyUXN75/zMpzXMt6DMqyn+Vp58PnJycnp9jzU1XY2trizp070NfXR9euXREaGip0JKKvwtEn/xUN3+g6DT2HjIDPxX/gE3ATHfrYYsXk0XgV87LYtr6eC2HvNB2/XLuHxb4HJevjo15g5ZQx6NRvAHwCbuKnC3+jg40dVkwejfioF5LtYl88w0ZXZwyePBN7bgbD67fTyMp8hxWTRxdpa9nEkbDqaQOfgJv4+dItdB/0LbxmTERyfJxku60LXVBDXQNrfjuFA0FP8YPvQcRHPcfC4d+Ua5uyZv+Usu5bWfoqPN6/bduIWau9sev6PTQwa44f3WfBb8sGzFrzI365dgdGjRpjr9eyIjmktT+FGY4+icXRJ7EY67a4yPKPbV/Ssp9+cEO/UeOxK/Ae1h05i+ysTOxbu7zcx6+kPsp7TMuSBQC8ZkxAzyHDse/WY3j5n8ab9DT8suKH0g6ZTCnP8Sjre/L95+Lni//A5+I/6DV0JDbNnV6kz0JlOcaf+reHvsyBAwfQvXt3NGjQoNyP1dHRwbp16/DTTz/h5s2b0g9XhaipqcHLywvBwcHQ1NREu3bt4OzsjIyMDKGjEX2W4cOHY8qUKXBycsLz58+/uD0PDw8kJCTA19dXCumIqi6RSMTztIiIqNp7+fIlrKys8OOPP8Lb2xvBwcFwdHSEvLy80NHKjWOUpR+H0nCMUvpjlJ86piUdk/KMW5Z3Xz09PbFnzx7ExcWhVatWGDt2LDw8PLB3717ExMTA3Nwcbm5uZToGH8sbERGBb7/9tsQishU1tltan6W998vyeipUlvHXL3l/Suv9J0ssLS3h7++Py5cvIzw8HC1btsT58+eFjlVhUlJSMGXKFIwZMwZDhgwROg4RERFVASLx5/zlRkRERBXu9u3b6Ny5M1avXl3uL8uIhGBkZAQ3Nze4uroKHYWoiMDAQHTr1g3Hjx+Hvb290HGkZtKkSbh69SpCQ0NlcjD1UwoKCnD06FEsWrQIkZGRGDlyJJYtW4aGDRsKHY2IiIio0pw7dw52dnbYvn07pk2bJnScUolEohJPRClp+ce2LW3d2LFj0bJlS8yfP7/I8t27d+P+/fvYvHlzkTYuX76MHj16fMaeFM9Q3r7LO+xSWt6xY8eiXbt2cHFxKbJ806ZNuHv3bpECf+V5Dj6UmpoKU1PTYjMKiUQi/P7770X+lgoNDUWvXr0QExNTJGdFHqPCPsp6LEozbtw4WFlZFWvHz88Po0aNKvPr9UteJ6Up77H88Pl5/vw5unbtWuT5qWqysrLQq1cvJCcn48GDB1BWVhY6EpHMyM7OhoqKChZs34P2vfuV+XHfmhlg7qaf0cVuUJHlp/bswIvQx5jt9WORbZfvP4Lm7TsXa2ez+yyYtrDEN45FZyw8tWcHnj0Ohsu6rQAAb7cZaNOtF7rbD5NsE/s8ArNtrSUX7W92n4X6TZth8OQZRdq6dNQPL548gtPiFQCAMW0aY8flf1FTU0uyzavoKEzv01HSVlm2KWv2TynrvpW1r2/NDLD8wFE0b9cJAJDyKgFTurUusiw5Pg7u3/bD7r8eSB4nrf0pzFBSAY3yLP/WzKDY6zL2eQQ8xg/Dzmt3JcvKcvxK6qO8x7QsWUryJiMdM206Yd8/IaVu96FrJ4/ipx/ckJOdXa7Hlccge3ukQ7Fczy1Q9uNR1vfk5vmzYWrRqthzEfjHCXi7Tf9oIZhCHzvGpf3bUxZrZ0xEE4PaX0UB7PLIyMiAvr4+tm7dikmTJn1WG2KxGH369EFSUhJu374NBQUFKaesesRiMQ4cOAB3d3fIyclh7dq1cHR0FDoWUbllZWWhU6dOUFJSwvXr16GkpPRF7c2dOxd+fn6IiIiAqqqqlFISVS3t2rVDr169sHbtWqGjEBF9tezt7aGhoSHzf98Vfo/34Xf4QouNjUX79u2hq6uL06dPV8lJBMqLY5Sl5/9Ufxyj/LTyHovSXgMfZijPuGV59/XKlSvo3r07gP/e+4aGhkWWRUdHo23btkhISPh/7N13WFNn/wbwOwEEgbBEQIaKCwVUFMRXXLjqqqPWUWe1DhRB6mK4QK0oat17VrS+Vq3VYq1VXHW0DgpaB06oKFOJCA5W+P3RH3lBQIIGDgn357q4gJNznnOfJwmaPE++j8J9UVLe7777DmPGjCmStzzHdos7J1Dyc1+Rx1NJ+xY3/vqxjz1lPf9U0du3b+Hh4YH//ve/OHz4MHr16iV0JKX74osvcP78efz9998wMTEROg4REVGltWfPHowdOxaZ5TjOXlmIhQ5ARERExXN2dsb8+fMxe/ZsREa+f3IhUWWQmpqKGjVqCB2DqJCcnBx4enqie/fulWpgVBl8fX0RExODQ4cOCR1FqWQyGQ4cOIAmTZpg+PDhaNOmDe7cuYPQ0FAW8iAiIqIqJyAgAAMGDKj0hTwqQnh4OIYMGVJke+/evXHy5Mki211dXQU794coKW94eDj69+9fZPtnn32G8PBwpZwbAIyNjZGamlrsbR06dCj0e926dZGQkFBoW0X0kbL64uTJk8W2061bt4/Op4w+KGs7794/tWvXLnL/VDY6Ojo4ePAg4uLisH37dqHjEFUZzdzaF9nWultPXL94rsj2Bs1aFNvGjUvn4dq1R7Ht3Lh0Xv77zT8vommbwueztK1f6EP+Ny6dL1JcBABaunfB9Uu/y3+3c3LG4klfIvL8GeTm5gAAzKxrF2pLkX0UzV4aRa+tLOeqZ99U/rOxac0i20zMzPEytfBkdmVdjzLZt/pPod9rWtlAmpJcaJsi/Vecsl6vIlmKo29giIy0F6Xup2oU6Q9Fn5M3Lv5e7H3RvG2HItuK874+LulvD324H374AXl5eRg4cGDpO5dAJBJh48aNuHfvHtatW6fEdJWXSCTCqFGjEB0djcGDB2PMmDHo3LkzoqOjhY5GVCY6OjrYv38/7ty5gzlz5nx0ewEBAUhPT8fmzZuVkI6ochKLxZDJZELHICIiKjeTJk2Cvr4+zp07pxaFPCoCxygL4xjl/5TUF2V5DJRl3LKs19qyZUv5zxYWFkW2WVpaIiUlReGs78vbo0fR9wvLe2y3uHO+jyKPp5L2LW78VRmPPaGff0LR0dHBd999h6FDh2LcuHF48UK93pM/dOgQ9u/fj23btrGQBxEREcmp/3IJREREKszX1xcnT57E8OHDce3aNejq6godiahYr1+/xps3b1jMgyqdNWvW4N69ezh48KDQUZTOzs4On332GYKDgzFw4ECIRCKhI30UmUyGH3/8EfPmzcO9e/fw+eef4+jRo2jYsKHQ0YiIiIgEER8fj8jISKxYsULoKJXC8+fPUbdu3WJvK241WGW+h1LWc3+IkvI+e/ZMPrmqoFq1auHZs2cfdK6UlBQEBATg+PHjSExMRG5u7nv3NzY2LvS7trZ2kZWDKqKPlNUXJbXzse9pKKsPytrOu/ePhobGB60qVtEsLS0xYMAA/PLLL/D09BQ6DlGVIDEyLrLNuGbRIhEAoK1T/N+tly9SYWRqVmw76dLUQvsZGL9/gmL6Cykmdi5+omo1HR35zzNWb8H+9SuwdcEsvEx9Dlt7R/ynWy/0GPYlNDS1FN5H0eylUeTaynqu6nr68p9FYnGx2979266s61EmfQPDQr9rVatWbO7S+q84Zb1ehbKkPseeFcGIPH8GL56lQFbK/4lUmSL9oehzsqT7ori/MWXt45L+9tCH2759OwYMGABDQ8PSd36PRo0aYebMmZgzZw769+9f4v9X1Y2xsTFWr16NwYMHY9KkSWjevDmmTp2KoKAg6BR4XhBVZg0bNsTmzZsxfPhwtGvXDn37Fi3cpKiaNWvCw8MDISEhmDBhAuevkFoSiUQs5kFERGpLKpUiLCwMhw8f/ujXiVUJxygL4xjl/5TUF2V5DJRl3LKs1yqRSOQ/i///fed3t5V1TLGkvMVtK++x3eK2vY8ij6eS9i1u/FUZj72KfP5VNiKRCGvWrIG5uTlOnDiBwYMHCx1JKRISEjBhwgRMmjQJPXv2FDoOERERVSJioQMQERFRycRiMUJDQ5GcnIzp06cLHYeoRM+f/zvhmxVkqTKJi4tDYGAg/P390ahRI6HjlAt/f39ERUXhxIkTQkf5YHl5eQgLC4OzszO++OILNG3aFHfu3MH+/ftZyIOIiIiqtOTkf1fKtrKyEjiJYkQiETIzMwttK2kVpQ9hamqK1NRU5OXlFfl6/fq10s5TGc9d3IpACQkJMDU1LbRN0ftg5MiR0NPTw4ULF/D27Vv5tXxszvLuo7L0RWntJCYmFtle3DZA8X5VVh8I+XiraNbW1khKShI6BlGV8eJ50RX2pClJMDBRvJiRgZEJpClFn7fSlCRIChRokBgZ42UpBSUkxibYdeUOfoyOL/L136hH8v10JQYY7R+EDSf/wIbwP9Fj6Ghc+OUIVkzzLNM+imYvjSLXpqxzCX0OkUiE7KysQtsy0j5uhTxF+q845XG9q329oVNdF4v2HsG+GzHyx19Vpehz0sDIBC+eJRc5vrht7GNh3bp1C5cvX8bYsWOV0t7s2bNhbW2NadOmKaU9VdK2bVv89ddfWLp0KTZs2ICmTZvit99+EzoWkcKGDh2KUaNGYcyYMXj8+PFHteXv74+MjAxs2rRJSemIKpcP+UAjERGRqoiLi0NeXp7azaPjGGX5nZtjlP87hzLGKEtqW9Fxy8owhlhS3pLGTstzbFeZz/MPUZ73R3k+5ioTQ0ND1KpVC7GxsUJHUZrx48fD0NAQISEhQkchIiKiSobFPIiIiCo5KysrbNmyBZs3b8aRI0eEjkNUrPwPmZmZFV2NjUgo3t7eqFWrFvz9/YWOUm5cXFzwySefICgoSCUnFYWHh8PFxQX9+/dHw4YNcevWLezfv1/tBo2JiIiIPkSDBg2goaGBK1euCB1FIRYWFkU+EPL7778Xu69IJCqxnZJu6969O86ePVtk+/nz5+Hs7Kx40A8g5Lm7du2KQ4cOFdn+008/oWvXroW2KXofXLp0CfPnz0fdunWhqakJAHjz5s1H5SxLH73v/n+fsvTF+3zyySc4fPhwke0lfRhP0X5V1uNEyMdbRfvzzz/RuHFjoWMQVRlR588W2Xb55K9o3rajwm00c2uPyyeOFdtOM7f28t8dXN1w41Lhv5Wx0bfh0/t/53Jq545bly8VaevOtcuYOaC7/PfPG1vieeK/k1YNjE3QtldfzN6yG9cvnivTPopmL40i16asc71PRZzDyNQMzxKeFtp2++qfH9WmIv1XnPK43ruR1zDEeybMrGygofHv/4my3r79oLbUgaLPyebtOuJK+PEi+0VdOFtkG/tYWNu3b4etrS3c3d2V0p62tjY2bdqEw4cP4+eff1ZKm6pEU1MTPj4+iI6ORps2bdCjRw/06dMHT548EToakULWr18Pc3NzjBgxAjk5OR/cjqmpKTw9PbF48WJkZGQoMSFR5SAWiyGTyYSOQUREVC6aNGkCXV1dtXtNxzHK8sExyv9R1hhlccoyblkZxhBLyhseHl5kW3mP7RZ3zopUnvdHeT7mKpO//voL//zzD1q1aiV0FKXYsmULfv31V+zcuRP6+vpCxyEiIqJKRlPoAERERFS6AQMGYMyYMRg3bhxatWoFS0tLoSMRFZJf9djCwkLgJET/OnToEI4cOYLw8HDo6OgIHadcLVq0CK6urjhy5Aj69+8vdByF/PbbbwgICMD169fx+eefIzQ0FA4ODkLHIiIiIqpU9PX1MXToUCxcuBD9+vWr9IP93bp1w6xZs7By5UoYGRnh4sWLJa7SamVlhT/++AMuLi44c+YMxo0bJ5/gVdJtQUFB6Nu3L3Jzc9GpUydUq1YN586dw8SJE7Fu3bpyvTYhzx0YGIhOnTrBwMAAffv2hUgkws8//4wVK1YUmRyk6H3g5uYGX19fzJo1C5aWlnj8+DEWLlz4UTnL0kfvu/+V1RelZXV3d4dEIkGfPn0gFotx4sQJbNmypdj9Fe1XZT1OhHy8VaRjx47h3LlzZbrviOjjnPhhNzQ0NeHUzh15Mhmunj6Bo6HbsHBP0QmhJRnsNR3zRn2O6voStOr8CUQiEa6ePoGfv9uMhbv/187AST5Y6jUWJmYWsGvhjMTH/2D9rKnoNeIr+T5DvKdjyaTRkMly4di6LTS1tHDr6h/YHOiH8XODC513w5zpGO0fCIvatniVnoZfdm0rUsChtH0UzV4aRa5NWed6n4o4R/O2HfD9isUYEzAfegYGiP7rKn7bF/pRbSrSf8Upj+u1a+GC3csXYoDHFJiYWeBZwlMc2LDyg9pSB4o+J4fk3xd6+nDp1A0isRjXL57DiR/2FGmTfSycrKws7NmzB1OmTIFYrLx1ntzd3TF06FB4e3ujc+fOlf51anmwtLREaGgoBg0ahClTpsDR0RHz58+Hl5cXNDQ0hI5HVCI9PT3s378frVu3xvz58z/qfQBfX19s3LgRmzZtwowZM5SYkkh4IpGIxTyIiEhtaWlpYe7cuQgKCoKrq6vSij8KjWOU5YNjlB/WFx+SX9Fxy8owhvhuXg0NDYSHhyM4OLjIvuU1tvu+c1ak8rw/yvMxV1nEx8dj+PDh6Ny5s1r8exQTE4MZM2Zg5syZ6NChg9BxiIiIqBIS5ani8s1ERERV0KtXr+Ds7IzatWvj+PHjSp14RfSxduzYgSlTpnD1HaoU0tPTYW9vjy5duuC7774TOk6FGDRoEP7++2/cvHlTXrW+Mrp27Rr8/Pxw+vRp9O3bFwsXLkSzZs2EjkVERERUacXFxaFVq1ZwcXHBgQMHUL16daEjlejZs2fw8fHByZMn8fr1a3Tu3Bnr169H7dq1AQAFhyIOHDgAPz8/PH36FLVr18a3336Lvn37lnrb/fv3ERAQgPDwcOTk5MDe3h4BAQH47LPP5G2/u6JSWYdACh5f8NiynlvR8yqS9++//4avry/Onz8PAGjfvj2WLl2Kpk2bFtpP0fsgOTkZM2bMwG+//YYXL16gUaNGmDt3LoYMGVJov5Ku52P6CHj/fVwaRfuiNLdu3cLMmTPx+++/QywWo2PHjli7di1sbW2L3AdleWwr2gel+ZjH24c8DivaX3/9hS5duqBfv35V5nU7kbJkZmZCR0cHfut3wrVLd4WP+7yxJTaeuoztC+fg1tU/IJPJ4NDqP/jSLxDW9RsW2q+gH6Pji7T1z7072L3sG9y+dhkAYO/SGiNnzkGdRk0K7Xc3KgKhSxfg4a0bMDSpgR5DR+OzCV6F9kn4JwZ7vg3GjT/OIzcnBzYNGmHABG+07tZTvs/ff1zAse934M61y3jzKgMm5rXQumsPDPGegep6+grvU5bspVHk2hQ5V8H+zu9rRbcp63red5+/lKZix6K5uH7pd2S+eYOm/2mL8fMWw6OTi0L5StpeWv99zPWWJUva82fYtXQBoi6cxauXabCsWx+DPL/Gt1MnFjm+NL///CM2zJmOrMxMhY8pq779+iENWvBZulbhY8p63yjynASAuAd3Ebp0IW5d/RNisRgOrdpgzKz58OrRDgdvP5Hvp2gfK/K3pzQhnmPQyLImdu/eXeZj1dHBgwcxZMgQxMbGwsbGRqltJyUloUmTJhg7diyWLVum1LZVzevXr7F06VIsXrwYDg4O2LRpE1xdXYWORfRemzdvhqenJ44fP2lZ6kEAACAASURBVI5u3bp9cDsBAQHYtm0bHj16BIlEosSERMLq2LEjmjVrhrVrFf8/FxERKVe/fv1gYGCg8q/v8t/HO3z4MPr16yd0HLmcnByMHDkSP/30E1atWgUPD48iY1WqhmOUHKOsLGOUpfVpSfmLG7dctWoVGjVqhNzc3EJtfOjjQdFtiiiYVyQSwc3NDStXrpQv5lawrfIY233fOctynR+7L6Cc++PdNvMpq+8qo4sXL2LYsGHQ19fHiRMnYGVlJXSkjyKTydC5c2ekpKQgIiJC7RegJCIiUqY9e/Zg7NixyCzHcfbKgsU8iIiIVEhERATc3NywePFiTJs2Teg4RHLBwcHYsWMHHjx4IHQUIvj4+GDPnj24c+cOzMzMhI5TIe7duwcHBwds2bIFY8aMETpOEf/88w+Cg4Oxbds2tGrVCiEhIejYsaPQsYiIiIhUwuXLl9GrVy80atQIBw4cgLW1tdCRiNSWSCSqtAUw1MXBgwcxevRotGvXDkeOHIG2trbQkYhUyscU8/iQD8cTkWIqazGPihT34C4WTRiJTaevCHJ+FvMorGfPnhCLxfjll1/Kpf3NmzfDy8sLV69ehZOTU7mcQ5Xcu3cPnp6e8lV9ly1bBgMDA6FjEZVoxIgROHnyJKKiolCrVq0PauP58+ewtbXFnDlz4Ovrq+SERMLp1KkT7O3tsX79eqGjEBFVWSzmUf5kMhnmzZuHkJAQuLm5YdWqVWjRooXQsYiogFu3bqF3796IjY0VOgqR0iQmJmL+/PnYsmULevTogT179sDY2FjoWB9txYoVCAgIwOXLl/leKRERURlVpWIeYqEDEBERkeKcnZ0RFBSEWbNmISoqSug4RHJJSUkwNzcXOgYRIiIisH79eixbtqzKFPIAgEaNGmHMmDGYO3cu3rx5I3QcuWfPnsHf3x92dnb4/fffsW/fPvzxxx8s5EFERERUBq1bt8alS5cglUrh6OiIbdu2QSaTCR2LiKhMkpKSMGzYMAwaNAijRo3C0aNHWciDiIhIRX3e2BK/hG5Dxss0ZGdlIebOLWya54uew0cLHY3wb3HtkydPYuzYseV2jvHjx8PV1RUeHh58fYp/x2hOnjyJnTt34qeffkLjxo0RGhrKQoFUaW3atAnGxsYYNmxYkVWeFVWjRg14e3tj6dKlSE9PV3JCIuGIRCL+20ZERGpPLBbjm2++wZUrV/D27Vs4Ozujb9++uHTpktDRiKokkUiE1atXQyqVIjMzE1FRUfDw8MDkyZOFjkakFLGxsfDx8UG9evVw5MgR7N69G7/88otaFPK4e/cu5syZg3nz5rGQBxEREb0Xi3kQERGpGD8/P7Rt2xbDhg3D69evhY5DBODfD2RYWFgIHYOquNzcXHh4eKBt27YYM2aM0HEqXFBQEKRSKTZt2iR0FLx69QohISGoX78+9uzZgzVr1uDvv//GoEGDIBKJhI5HREREpHLs7OwQGRmJcePGYeLEiWjZsiV+/fVXoWMRqZX81yp8zaJc6enpmD9/Pho0aIALFy7g2LFj2LBhAzQ1NYWORlRlfN7YstB3IqKPFbBpF66ePgEPdxeMcWuKjXOmo9vg4eg31lPoaIR/P6RvZmaGPn36lNs5xGIxNm/ejMjISGzdurXczqNKRCIRRo0ahdu3b6NXr14YPXo0unXrhrt37wodjagIfX197N+/H3/++SeCg4M/uJ2ZM2ciNzcX69evV2I6ImFpaGh8cJEbIiIiVdOiRQtcvnwZYWFhSE5ORtu2bdG8eXOsW7cOUqlU6HhEVUZYWBh+/vln1K5dG2ZmZhg3bhzGjx+PmTNnCh2N6INlZWXh8OHD6NWrF+rXr49Dhw4hJCQEjx49wrBhw4SOpxQymQzjxo2DnZ0dfH19hY5DRERElRxnyhEREakYsViMXbt2oXnz5pgxYwY2bNggdCQiJCUloUmTJkLHoCpu5cqVuHnzJiIjI6vkh68sLS3h5eWF4OBgjB07FgYGBhWeITs7Gzt37kRgYCAyMjIwefJkzJ49GxKJpMKzEBEREamb6tWrY/ny5fjqq68wa9Ys9OrVCy1atMD06dMxePBgaGlpCR2x0ivtdYKyV02u6POpMmX11ce0UxH3R1V6TDx9+hRr1qzBli1bAACzZs2Cj48PdHV1BU5GVPX8GB0vdASVUVrBE1XrS3W7Hqo8XNy7wcW9m9AxqBhZWVnYsWMHPD09y/01oqOjI77++mv4+fmhT58+sLRk0SgAMDU1xbZt2zBp0iRMmjQJTZs2xaRJk7Bo0SLo6+sLHY9IrlmzZggJCcHUqVPRtm1bdO7cucxtGBkZwcvLC8uXL4enp6cgY5NEyqarq8uFlYiIqMrp3bs3evfujStXrmDLli3w9/fH9OnT0bVrVwwaNAj9+vWDsbGx0DFVGscoK6/K0FeffvopPv3003I/T2mE6IvK0P+kPFlZWTh16hT279+PI0eOIC0tDZ988gkOHjyIPn36qN1iD6tXr8aff/6JK1eucL4OERERlUosdAAiIiIqO2tra2zduhWbNm3Czz//LHQcIiQmJsLc3FzoGFSF3bt3D/PmzcPcuXOrdGGZgIAAyGQyfPvttxV63ry8PBw4cAD29vbw9vZG37598fDhQyxZsoSFPIiIiIiUzN7eHocPH8a1a9fQuHFjjB49GrVr14a/vz/u378vdLxKLS8v771fqn4+VaasvqrsfV7Z832s3NxcHD16FP3790fdunWxZ88e+Pn54dGjRwgICGAhDyKq9H6Mjn/vl6pRt+shotIdOHAAqampGDduXIWcLygoCCYmJlwpthjOzs74888/sW7dOuzatQuNGzdGaGio0LGICpkyZQr69++P4cOHIykp6YPamDZtGnJycrBu3TolpyMShr6+PjIyMoSOQUREJAhXV1ds27YNCQkJ2LFjBzQ1NTFx4kSYmZnB3d0dS5cuxd9//y10TJXEMcrKi331P0L0Bftf9eX/mzFw4EDUrFkTvXv3xp07dzBnzhzExMTg119/xWeffaZ2hTxiYmLkc9ZbtGghdBwiIiJSASzmQUREpKIGDBiA0aNHY+zYsUhISBA6DlVxSUlJLOZBgpHJZBg/fjwaNWoEX19foeMIysjICDNmzMCKFSs+eNJdWZ0+fRqtWrXCF198ATc3N9y7dw+bN2+GmZlZhZyfiIiIqKpydnbG3r178fDhQ3h4eGDv3r2ws7ODq6srlixZgujoaKEjElEVkJWVhePHj8PDwwNWVlbo27cv0tPTERoaipiYGPj7+3PFPiIiIqIKsnHjRvTv3x9WVlYVcj5dXV2sX78ee/fuxbFjxyrknKpELBZjwoQJiI6ORufOnTF69Gj06dMHMTExQkcjktu+fTuqV6+OMWPGQCaTlfl4Y2NjeHl5YfXq1Xj9+nU5JCSqWBKJBOnp6ULHICIiEpREIsHw4cNx5MgRJCUlYffu3ahduzaWL1+OZs2awdLSEoMHD8aaNWsQGRmJ3NxcoSMTEVEFiYmJwe7du+Hh4QEHBwdYWVnBy8sLr1+/xqJFixATE4M///wT06ZNQ+3atYWOWy5kMhnGjBmDevXqwd/fX+g4REREpCJYzIOIiEiFrV27FiYmJvjyyy9ZgZYEk5mZiRcvXsDCwkLoKFRFbdy4EZcuXcL27duhpaUldBzB+fj4QCKRYNGiReV6nocPH2LAgAHo0qULzM3NERkZiV27dqFOnTrlel4iIiIiKqx27doICgpCbGwsfv31Vzg5OWHlypVo0qQJ7O3tMXv2bFy7do3vGxCR0mRkZODAgQMYNmwYzMzM0KtXL0RERMDb2xv379/HqVOnMHToUFSrVk3oqERERERVxo0bN3Dx4kVMmjSpQs/bs2dPfP7555gyZQrevHlToedWFRYWFggNDcXZs2cRExMDBwcHBAUF4e3bt0JHI4KRkRF++OEHnDp1CsuXL/+gNqZMmYKMjAzs2LFDyemIKp5EIkFGRobQMYiIiCoNQ0NDfPHFFwgNDUViYiIuX74sf/0XFBSEli1bwtjYGD169MDChQtx9uxZFnkjIlITubm5iIqKwrp16/DFF1/A2toa9erVw/jx43Hr1i306dMHR48exbNnz3Ds2DF4eXlVifnD69evx8WLF7Fjxw6OhxMREZHCNIUOQERERB9OT08Pe/fuhZubG1atWoWpU6cKHYmqoOTkZOTl5cHc3FzoKFQF/fPPPwgICICvry+cnZ2FjlMp6OrqIigoCF5eXpg4cSLs7e2V2v6rV6+wbNkyhISEoE6dOjh69Ch69+6t1HMQERERUdmJxWJ0794d3bt3lxe8++mnn/Df//4XwcHBsLKyQpcuXeDu7g53d3fY2toKHZmIVER2djauXLmCs2fP4uzZs7hw4QKys7PRvn17LFiwAP3791fblZWIiIiIVMWGDRvQuHFjdOrUqcLPvXbtWnmBipCQkAo/v6ro0KEDIiMjsWHDBsydOxfff/891qxZg549ewodjaq4Vq1a4ZtvvsGsWbPQtm1btG3btkzHm5mZ4auvvsLSpUvh4eHBxRdIpenr6yM9PV3oGERERJWSWCyGq6srXF1dAQAymQy3b9/G+fPncfHiRWzbtg3z5s2DlpYWmjVrhubNm8PJyQlOTk5o1qwZDA0NBb4CIiIqSVZWFm7duoXr168jKioKUVFRiIyMxMuXL2FkZAQ3NzdMnjwZ7dq1Q6tWraCjoyN0ZEHExsZi1qxZ8Pf355x1IiIiKhMW8yAiIlJxzs7OCAwMREBAANzd3dGiRQuhI1EVk5iYCODfVaWIKpqHhwcsLS0xd+5coaNUKuPGjcO2bdswZcoUhIeHK6XNvLw87N69G35+fsjMzERQUBCmTp3KytJERERElZCGhgbat2+P9u3bY8WKFYiMjMQvv/yCM2fOYPLkyXjz5g3q1KkDd3d3dOrUCe7u7lVihRQiUkxOTg6uXr0qL95x8eJFvHr1CtbW1ujUqRM2bdqE3r17w9TUVOioRERERARAKpViz549CA4OhkgkqvDz16pVC4sXL4aXlxcGDx7MiezvoaWlBR8fHwwaNAj+/v7o1asXPv30U6xfv54F8khQM2bMwMWLFzF06FBERkaiRo0aZTre19cXmzdvxr59+zBy5MhySklU/iQSCTIyMoSOQUREpBLEYjEcHR3h6OiISZMmAQDi4uJw/vx5RERE4Pr16zh8+DBSU1MhEolga2srL+7h5OSE5s2b83UQEZEApFIpoqKiChXuuH37NrKzs1G9enU4OjrCyckJQ4YMQdu2beHo6AixWCx0bMHl5eVhwoQJsLGxwezZs4WOQ0RERCqGxTyIiIjUgL+/P86cOYPBgwfjr7/+gkQiEToSVSFJSUkA/l1xh6gi7dy5EydPnsS5c+eqbJXnkojFYqxatQrt2rXDoUOHMGDAgI9q7+rVq/Dx8cHly5cxfPhwLF++nM95IiIiIhXSokULtGjRAnPmzEFmZiYuX76MM2fO4OzZs5g4cSLevn2LOnXqoFWrVnBxcYGLiwucnZ1hZGQkdHQiqgAPHjzAtWvX5F8RERHIyMiApaUlOnXqhFWrVsHd3R0NGjQQOioRERERFWPLli0Qi8UYPXq0YBkmTJiAAwcOYOzYsbh69Sq0tLQEy6IKLC0tERoaitGjR2Py5Mlo0qQJZs6ciVmzZrGIOglCJBJh586daNGiBb788kuEhYWVqTiQjY0NvvjiCyxevBjDhw/nh3xIZenr6yM9PV3oGERERCrLxsYGw4YNw7Bhw+Tb4uLiCn1ofNeuXQgMDEReXh5MTExgZ2eHxo0bo1GjRmjUqBEaN26MBg0a8LUREdFHkMlkePz4Me7du4e7d+8iOjpa/nNcXByAf+f9N2/eHN27d4evry+cnJxgZ2cHDQ0NgdNXTlu2bMGZM2dw6dIlzlknIiKiMmMxDyIiIjUgFouxZ88eNG/eHN7e3vjuu++EjkRVSGJiIiQSCfT09ISOQlVIfHw8pk+fDm9vb7Rr107oOJWSm5sbhg8fjq+//hrdu3f/oOfo06dPERAQgD179sDd3R2RkZFo1qxZOaQlIiIiooqira2NDh06oEOHDggMDMTbt2/x559/4uLFi7h27RrWrl2Lp0+fQiQSoUGDBoUKfLRo0QL6+vpCXwIRfYTHjx8XKtxx7do1SKVSaGpqwtHRES4uLhgxYgTat28POzs7oeMSERERUSlycnKwYcMGjB8/HgYGBoLlEIlE2LhxI5o3b44VK1bAz89PsCyqpHPnzrh+/TpWrlyJoKAg7Nu3D+vWrUPXrl2FjkZVkLGxMXbv3o3OnTtjzZo18PHxKdPxAQEBcHR0xNGjR9G3b99ySklUviQSCTIyMoSOQUREpFZsbGxgY2ODPn36yLe9fPkSN27cwI0bNxAdHY27d+/izJkzePz4MWQyGTQ0NFC3bl15cY9GjRrBzs4OjRo1gpWVlYBXQ0RUuUilUty/f79QwY78r7dv3wIAatasCTs7O9jZ2aFbt25o2rQpmjdvDktLS4HTq47ExET4+/tj6tSpaNWqldBxiIiISAWxmAcREZGaMDc3x86dO9G7d2906dIFI0eOFDoSVRFJSUkwNzcXOgZVIXl5eRg/fjxq1KiBRYsWCR2nUlu+fDns7OywbNkyBAUFKXzcmzdvsGbNGixatAjGxsb47rvvMGrUqPILSkRERESC0dHRgbu7O9zd3eXbpFIpIiIicOHCBURERCAkJARJSUkAgFq1asHBwQH29vby705OTizyQVTJSKVS3Lp1C7dv35Z/v3HjBpKTkwEA9erVQ9u2bREYGAhnZ2e0bNkSurq6AqcmIiIiorL68ccf8fTpU0yePFnoKGjYsCHmzp2LwMBA9OvXD40bNxY6kkqoVq0a/Pz8MHDgQHh7e+OTTz7ByJEjsWzZMpiZmQkdj6qY9u3bIzAwEDNnzkTr1q3xn//8R+FjmzRpgk8//RSLFi1iMQ9SWRKJBDk5OXjz5g2qV68udBwiIiK1ZWBggHbt2hVZxCsrKwtPnjyRj2s8evQIf//9N/bu3Ssfq6xWrRqsra1Rr1491KpVC5aWlqhXr578q27duhCLxUJcFhGR0r19+xbx8fF49OhRsV9SqRQAoKWlBRsbG9SrVw/u7u6YPHky6tWrB0dHR1hYWAh8Farv66+/hoGBAQIDA4WOQkRERCqKxTyIiIjUSM+ePfH111/D09MTrq6uXD2TKgSLeVBF27JlC44fP44zZ85AT09P6DiVmrm5OWbPno3AwEB8+eWXsLW1LfWYsLAwTJkyBSkpKZgxYwb8/f2ho6NTAWmJiIiIqLIwNjZG165dC60E/M8//yAyMhK3b9/GzZs3ce7cOWzatAlZWVkQi8WwtbWFo6Mj7O3tYW9vj4YNG6J+/fowNTUV8EqI1FtOTg4eP36Mhw8f4t69e7h586b8OZqamgoAMDU1lT83BwwYAEdHR7Ro0YIFeIiIiIjUxOrVq9G/f3/Uq1dP6CgAgJkzZ+LgwYOYOHEizpw5A5FIJHQklVG/fn0cO3YMhw4dwtSpU2FnZ4dFixbBw8MDGhoaQsejKmTWrFk4f/48RowYgYiICBgaGip87OzZs9G6dWucO3cOHTt2LMeUROUj//2SjIwMFvMgIiISQLVq1eRFOfr06VPotqSkJNy9exexsbGIiYlBbGwsYmNjcf78eTx58gQ5OTkA/l3IoG7duqhTpw7q1q2LunXronbt2rCxsYGFhQWsra357zwRVQrZ2dlISkpCXFwcEhMT8fjxY8TExOCff/6R/4178eKFfH8LCwv537Vu3brJf27YsCHq1KnD94/KyYkTJ/DDDz/g559/5px1IiIi+mAs5kFERKRmQkJCcOnSJQwfPhwXL16Etra20JFIzSUlJbFqL1WYmJgYzJw5E76+vujQoYPQcVSCj48PduzYgenTp+PQoUMl7nfjxg1MnjwZly5dwpdffong4GA+t4mIiIhIrk6dOqhTpw769+8v35aTk4OHDx8WKiDw888/Y/ny5cjOzgYAGBkZoX79+qhfvz4aNGhQ6LuVlZVQl0OkMjIzMxETE4MHDx7gwYMHePjwofx7bGys/LlmbGwMBwcHODg4YNCgQbC3t4ejoyNX8iYiIiJSY9euXcMff/yB8+fPCx1FTlNTE9u3b0erVq2wfft2jBs3TuhIKmfAgAHo0aMHli5dimnTpmHbtm3YsGED/vOf/wgdjaoIsViM3bt3w8nJCePGjcOBAwcUPtbV1RXu7u5YsmQJi3mQSpJIJACA9PR01KxZU+A0REREVJC5uTnMzc2LnTOYk5ODp0+fyj/8nl/wIzo6Gr/99luhYh/Av+OXVlZWsLS0hKWlJaysrFCrVq1CBT/Mzc2hqcmPWxHRh0lOTkZiYqK8UMeTJ0+QkJCAp0+fIj4+HvHx8UhKSkJeXp78GHNzc3mBju7duxcqTGRra8tF+QTw5s0beHp6YuDAgUWKTBERERGVBV9dEhERqRktLS18//33aNmyJQICArBixQqhI5GaS0xMhKOjo9AxqAqQyWQYM2YMbGxsEBgYKHQclVGtWjWsXbsW3bp1w/Hjx9GjR49Ct2dkZCAoKAirV6+Gi4sLLl++DBcXF4HSEhEREZEq0dTUhJ2dHezs7PD555/Lt+fm5uLx48fyggP5xQfCwsLw8OFDvH79GgBQvXp11KtXD3Xr1oW1tTVsbGxgY2MjXx3L2tqaRUpJ7aWmpuLJkyd4/PgxHj9+jCdPniAuLg6PHz9GbGwsnjx5AplMBuDfCVz5xXDc3NwKFcqpUaOGwFdCRERERBVtxYoVcHZ2Rrt27YSOUoiTkxN8fHwwY8YM9OzZk4UcP4Curi6CgoIwfPhweHl5wc3NDSNGjMCKFStgamoqdDyqAszMzLB371507doVmzZtwsSJExU+1t/fHz169EBERAScnZ3LMSWR8uUX88jIyBA4CREREZWFpqamfGGC4orKyWQyJCUlyT9A//TpUyQkJODJkydITEzEX3/9hcTERKSkpMiPEYvFMDc3h4WFBSwsLFCzZk2YmprKf87/yv+9evXqFXnJRFTBsrOz8ezZM6SkpCApKQnJyclISUlBSkqK/O/Hs2fPEB8fj4SEBGRlZcmP1dPTK1QsqEmTJsUWFOLciMonJCQEKSkpWLVqldBRiIiISMWxmAcREZEaql+/PrZs2YKhQ4fC3d0dffv2FToSqbGkpCR06dJF6BhUBXz77be4dOkS/vjjD1aYLqOuXbuiX79+mDZtGrp06QItLS0AQFhYGLy9vZGWlobly5fDy8sLGhoaAqclIiIiIlWnoaEBW1tb2Nraolu3bkVuj4+Plxf4iImJwT///IN79+7h1KlTiIuLQ2Zmpnzf/AktBQt9mJubo1atWrCwsICZmRlXyaRKKSsrC8nJyfJVlZKTk+VFOwoW7Hj16pX8GBMTE/njvGnTpujdu7e8WEf9+vWhr68v4BURERERUWUSGxuLAwcOYNeuXUJHKdaCBQtw+PBh+Pj44ODBg0LHUVkNGzbEb7/9hrCwMHh6esLOzg7z5s2Dt7c3xGKx0PFIzbm7u2PWrFmYOnUqWrdujRYtWih0XPfu3eHs7IylS5fihx9+KOeURMqV/95Lenq6wEmIiIhImcRiMWrVqoVatWq9t+BcZmYmEhIS8PTpU3nhj4SEBCQlJSElJQV3795FQkICnj17Jl+8IJ+enh7Mzc1hbm4OU1PTQoU+jI2NYWJiAhMTE/nPxsbG/OA+kUBkMhlSU1MhlUoLfU9NTZUX7Mgv0JH/9fz580JtaGlpyYv6mJubw8zMDPXr15f/rbG2toaFhQVsbGw4xqui4uLisGzZMsyfP5/FiomIiOijsZgHERGRmhoyZAiOHTuGcePGISoqCpaWlkJHIjWVmJgICwsLoWOQmrtz5w7mzZuHoKAgruD0gVauXAl7e3usWLECI0aMgI+PD3788UcMGjQI69atg5mZmdARiYiIiKiKyF9hpn379sXenpiYKC92kF/wIC4uDteuXcOPP/6I5ORkZGdny/fX0tKCmZmZfGUsMzMzWFlZwczMTF74o0aNGjAxMUGNGjXkxe2IyiojIwOpqal4/vy5fAJXYmIiEhIS5IU7kpOTkZSUVGRCl76+vrwwjbW1Ndq0aYPatWvLt9WpUwe6uroCXRkRERERqZrly5fDxsYGgwcPFjpKsXR1dbF161Z06dIFhw4dwoABA4SOpNL69OmDDh06YN68eZg+fTr27NmDjRs3wsXFRehopOaCgoJw6dIlDB48GBERETAwMFDoOD8/PwwdOhQPHjxAgwYNyjklkfIYGxsDAFJTUwVOQkRERELQ1tZG3bp1Ubdu3VL3ffXqlXxMKCUlBc+ePSv04f+nT58iIiICz549Q2pqKt68eVOkDT09vULFPYor+GFiYgKJRIIaNWrAyMgIBgYGkEgk0NPTK4ceIFIdmZmZSE9Px8uXL/HixQu8fPkSUqkU169fR1ZWFgAUKtJRsGhHWlpakfa0tLRgbGyMmjVrwtTUFObm5mjevLm8YEd+cR5TU1OYmZnBxMSkoi+ZKtj06dNRq1YteHt7Cx2FiIiI1ACLeRAREamxDRs2wMXFBcOGDcOpU6egoaEhdCRSM2/fvkVaWhrMzc2FjkJqLCcnB19++SWcnJzg5+cndByVZWtri1mzZmHOnDlYsGABrKyscOLEiWJXSiciIiIiElJ+UY73fSgpJSUFycnJSExMRGJioryQQlJSEuLj43Ht2jUkJycjJSUFMpms0LF6enrySW46OjqQSCRo1apVoYIf+T8bGhrCwMAABgYGLLSgRqRSKV6+fIn09HSkpaXh+fPneP78ubxQx7Nnz+TbCm7PzMws1I6Ojg7Mzc1haWkJMzMz2NnZoWPHjjAzM5Nvy3888/FDRERERMry/PlzfPfddwgJF6TifAAAIABJREFUCYGmZuWd+tWpUyeMHj0akydPRqdOneQfkKYPY2hoiNWrV+Orr76Cp6cn2rRpA09PTyxcuFDhAgtEZSUWi/H999/DyckJEyZMwL59+xQ6bsCAAahTpw7WrFmDNWvWlHNKIuWpXr069PX1kZKSInQUIiIiquT09PRga2sLW1tbhfZ/+/ZtoWICBX8u+D0uLg5XrlxBcnIy0tLS8Pbt22LbE4vFMDQ0hJGRESQSibzIh0QigZGREQwNDYtsNzY2hoGBAXR0dKCvrw89PT1oa2vDyMhImV1DVKJXr14hMzMTL168wNu3b/HmzRu8ePEC6enp8sIc6enpePHiBdLS0opsLzjG++64bT5NTU3k5OSgWrVqMDExgZWVFerVqwdnZ+dii+Xk/yyRSCq4N6gyu3jxIg4ePIiwsDBoa2sLHYeIiIjUQOUd0SUiIqKPpqenh/3798PV1RWLFy/GnDlzhI5EaiYpKQkAWMyDylVgYCBu3bqFyMhIFiX6COfPn8cPP/wAmUyGmjVr4saNG9DR0RE6FhERERHRB8lfAcfBwQHAv69PN23ahMzMTHnxDi0tLejo6EAqlSIjI0O+/dWrV3j16pW8LV1dXWhpaRUq3JCdnV3knBoaGjAwMJBPdMuf/Jb/c8GJcTo6OjA0NIS2tjZ0dXWhr68vX81HS0tLPkGuWrVqFdBbqi09PR3Z2dl48eIFMjMz8fr1a2RkZCA7OxtSqRTZ2dnIyMgoNJkr/yt/Fab8r/zbi6Onpycv5FKjRg2YmprCwcGhUHGXgrebmZnxA3NEREREJIhVq1ZBR0cHo0ePFjpKqVauXInffvsNfn5+2LJli9Bx1ELz5s1x4cIF7N69GzNmzMCBAwewZMkSjBw5EiKRSOh4pIbMzc2xc+dO9O7dG927d8eYMWNKPUZDQwNeXl4IDAzEwoULYWhoWAFJiZSjZs2aLOZBRERESqejowNLS0tYWlrKt719+xY3btxAREQEEhMTER0djZs3byI7OxsSiQSurq5wdnZG48aN4ezsDE1NzUKFDdLS0pCWllZoDCw9PR2PHj0qMjaWnp5ear7q1avDwMAA2trakEgk0NXVhba2NoyNjVGtWjX5ggnVqlWDoaEhqlevDh0dHfl4aH6BEeDfgpRisVjeRv74qEgkYvGQSiR/zDV/DFYmkyEtLQ0AkJaWBplMhtevXyMzMxNZWVl49eoVcnJykJ6eLt8ulUrlt6WnpyMrKwtpaWl48+aNfMHIzMxMZGRkvDdL9erV5WPvhoaG8nF3Q0NDWFtby8fjC47R53/PL8aRX0j2+vXrCA8Px4ULF3D+/HlERETAzMwMrq6uaNeuHVq2bIkWLVpALBaXex+T6pHJZPD29kb37t3Ru3dvoeMQERGRmmAxDyIiIjXXtGlTLFmyBDNmzECnTp3Qtm1boSORGklMTATw76rJROXhwoULCAkJwfr169GoUSOh46ik1NRUzJ8/H+vWrYO7uzu++eYbDBo0CHv27MG4ceOEjkdEREREpBRRUVEICgqCpqYmZDKZvHDH+2hpaaFu3bo4ffo0rK2tC9328uVLPH/+vNhCEAVX/Mm/LSUlRb795cuX8hWFFGFkZAQtLS1IJBL5pDcAMDAwkBc0NDIygkgkKjQJTlNTU75CUP4kuYLyi4+8T2kFRdLT05GTk1Pi7fmTtd4llUoBoNCEr/yiGwDkE8IAyCd6Af9OCsvOzsbLly/lqzGVpuDkwXcLrNja2hb6Pf/2ggVZDAwMUKNGDa6oQ0Qq5W7kVeRkZwkdg4j+3/0bkRVynpT4J7h0PKxCzqVqUpMTAcuaQseoEK9evcLGjRvh4+MDPT09oeOUytDQECtXrsQXX3yBIUOGoEuXLkJHUgsikQijRo1Cnz59EBQUhDFjxmDnzp1Yv3497O3thY5HaqhHjx6YMWMGPD094ezsjGbNmpV6zLhx4xAUFIQdO3Zg6tSpFZCSSDlYzIOIiIjKQ3Z2Nu7du4eIiAj517Vr15CZmQmJRIJmzZqhffv2+Prrr+Hs7IwmTZoovdCAVCpFeno63r59i/T0dLx69Uo+ppk/dpc/zvnu7enp6UhKSipye1ZWlrxoQ1lJJBJoamrKC4kUHPsEIC8E8u7++fILhgAoUiTk3bYKUmQMtSBFF2jIy8tTeHwYwHv77d3b8vs638uXL5Gbmyv/PX9sFig8PluwrYLjui9evEBeXp7CWYH/9Vv+eHX+uHb+Ahf6+vqoVasWtLW1YWhoKL9fC96ur69f5HYjIyNIJBJoaWmVKc/7ODs7w9nZGX5+fsjOzsa1a9dw/vx5/P777wgODoa/vz9MTEzQvn17dOzYER07doSTkxOLexAAYN++fbhx4wauX78udBQiIiJSI6K8sv4PnIiIiFROXl4ePvvsM0RERCAqKgo1atQQOhKpiUOHDmHgwIF48+YNP/RCSvfixQs4OTnBwcEBR48e5WpiZZSXlydflU1TUxNLlizBqFGjAAAzZszAtm3bcOvWLVhZWQmclIiIiIjo48lkMtja2iIuLk6hiUeamppo2rQpTpw4AVNT03LLlb8KUf6qRgVXJsqfdCWVSuWFLgpOxCquIEbBSVYFC2IUN9lLkYlzBSd2Fae4IiHvKjhRrrht+SsgFSxEkr/61rvnKLiaV/52fX19VKtWDUZGRvLCHfr6+tDS0pK3TURUVeTm5sLK2hpJ/19kmYgqD1vbenj06GG5tT958mRs2LCh3NpXB/7+/li8eLHQMcrdypUrMXfuXMTGxpbraxll++yzz3Dr1i1cv34d1atXFzqO2omIiICnpyciIyMxadIkLFq0SP6ai0hZcnJy4O7ujhcvXuDKlSulvl8AAN7e3jh69CgePHggL1hKVNl9+umnqFGjBnbt2iV0FCKiKqlfv34wMDDA7t27hY7yUTIzM6Gjo4PDhw+jX79+QsehCpaVlYX79+8XW7jDwMAATZs2lRcbKK/CHUIoWNg/fwwyf4w0v4h/bm4uXr58CeDfIv8ymUw+Ppo/hprv3UUHChageLdwxrsLELzbVkHvFsZ4n3cLY5Tm3QIk7/NuAZKC8sdE8xVcEAIoWmCk4CIRwP8WigD+NxZbcKw2f//8vAXHbvPHX98ttqIucnNzER0djYsXLyI8PBxnzpzBs2fPIJFI0Lp1a3Tt2hVdu3ZFy5YtOWe5CsrOzkaTJk3QsWNHbN++Xeg4REREam/Pnj0YO3asfCEwdcZiHkRERFWEVCqFk5MTXFxc8OOPPwodh9TE2rVr8c033yApKUnoKKSGhg0bhtOnT+P69eswNzcXOo5KuX37NiZMmIDLly/Dy8sLCxYsKFRp/vXr12jevDkaN26MsDCu5EhERERE6mHFihXw8/MrNKmrOJqamnBzc8PRo0dLXJGpKqpKg2NERESV3bp16zBr1iykpqYWWm2SqLI7e/YsOnXqhIcPH6JevXpCx1E7WVlZaNCgAQYMGIBVq1YJHadM4uPj4eDggIkTJ1aJoitCkMlk2LZtG3x9faGvr4/g4GB5kXciZYmLi0OLFi3w2WefYevWraXuf//+fTRu3BiHDh3ih1hJZYwZMwZJSUk4duyY0FGIiKokFvMgVZORkYGoqChERETg9u3buHXrFq5evYqsrCwYGhrC0dFRLQt3EKmTR48eITw8XP4llUphbm6ODh06oGvXrujWrRtsbW2FjkkVYN26dZg+fTqio6N5nxMREVWAqjRfka8CiYiIqghjY2Ps3r0bR44cwcaNG4WOQ2ri6dOnsLS0FDoGqaHvvvsO+/btw44dO1jIowxycnIQHByMli1bIisrC1evXsXKlSuLfEBRV1cXW7duxS+//MICT0RERESkNr766qtSP+yqoaGBXr164cSJEyzkQURERJVW586dkZ6ejoiICKGjEJWJm5sb9PT0EB4eLnQUtbRz504kJiZi6tSpQkcpM0tLSwQHB2P58uX821ZOxGIxJkyYgOjoaHTu3BmjR49Gnz59EBMTI3Q0UiM2NjbYtWsXtm/frtAHbBs2bIiePXti9erVFZCOSDlq1qyJ5ORkoWMQERFRJZSeno4LFy5g9erVGDVqFBwcHGBkZIT27dsjMDAQt27dgrOzM7Zu3YqbN29CKpUW2Z+FPIgqn3r16mHChAnYv38/UlJScO3aNUydOhVSqRRff/016tWrB0tLSwwePBhbtmzBkydPhI5M5eDVq1dYtGgRvLy8WMiDiIiIlI6vBImIiKqQDh06YNasWZg2bRquX78udBxSA0+fPoWVlZXQMUjNPHr0CD4+Ppg2bRp69eoldByVcfPmTbi5uWHhwoWYP38+/vjjDzg5OZW4v7u7O0aPHg0vLy9IpdIKTEpEREREpHzPnj3DqlWroK2tDS0trWL3EYvFGD9+PH766Sdoa2tXcEIiIiIixdnb28PS0hKnT58WOgpRmVSrVg3t27fHqVOnhI6idrKzsxESEoKxY8eiTp06Qsf5IB4eHmjTpg3Gjh2L7OxsoeOoLQsLC4SGhuLs2bOIiYmBg4MDgoKCqsSqZlQxevfujSlTpmDy5Mm4e/duqfv7+PjgzJkznKNCKsPS0hLx8fFCxyAiIiKBva9wR1BQEB49eoSuXbtix44dJRbuEIlEQl8GEZWRhoYGnJ2d4efnh5MnTyI1NRWnTp3CV199hSdPnmDy5MmoXbs2nJyc4Ovri1OnTvE9FzWxceNGZGRkwN/fX+goREREpIZYzIOIiKiKCQoKQps2bTBs2DC8fv1a6Dik4ljMg5QtJycHI0aMQO3atfHNN98IHUcl5OTkICQkBC4uLtDU1ERkZCT8/PygoaFR6rErV66EhoYGZs6cWQFJiYiIiIiULzY2Ft7e3qhTpw7Wr1+PL7/8Ejk5OcXuO3PmTGzcuJErXhEREZFKcHd3x5kzZ4SOQVRmXbt2xalTpyCTyYSOolZ2796NJ0+ewNfXV+goH0wsFmPr1q24e/cuVq5cKXQctdehQwdERkZi8eLFWLFiBRwdHXH8+HGhY5GaWLZsGRwdHTFw4MBS551069YNTZs2xZo1ayooHdHHsba2RlJSErKysoSOQkRERBXk5cuXJRbumD9/vrxwx86dO1m4g6iK0dHRQefOnfHNN9/g0qVLSE1NRVhYGDp27IiwsDB07doVJiYm6N27N1avXo3o6GihI9MHyMzMxMqVK+Hh4YGaNWsKHYeIiIjUEGesEhERVTFisRihoaFISkqCj4+P0HFIxcXHx7OYBylVUFAQrl+/jv3790NHR0foOJXejRs30Lp1a8yfPx/z58/H+fPn0bhxY4WPNzQ0xKpVq7Bjxw6cPHmyHJMSERERESnXzZs3MWrUKDRq1AhhYWEIDg5GbGwsVq9ejU6dOkFTU1O+r0gkwooVK7BkyRIBExMRERGVTadOnXDx4kWu6kcqp2vXrnj+/DmioqKEjqI2cnNzERISglGjRsHW1lboOB/Fzs4Oc+fORVBQEO7evSt0HLWnpaUFHx8f3LlzB23atEHPnj3Rp08fPH78WOhopOK0tLSwb98+xMfHY+rUqaXuP3nyZHz//fdISkqqgHREH8fa2hoymQwJCQlCRyEiIqJykJaWVmLhjpCQEEilUgwaNAj79u3DzZs3kZqaWmR/Iqq6JBKJvHDHnTt3kJCQgI0bN0JPTw8LFixAkyZNUKtWLQwePBihoaFITU0VOjIpYNeuXXj+/LlC73EQERERfQgW8yAiIqqCrK2tsWvXLmzfvh179+4VOg6pMBbzIGUKDw/H4sWLsXLlSjRp0kToOJVadnY2QkJC0KpVK1SvXh2RkZHw8/ODhoZGmdsaOHAgBg4ciK+++gpSqbQc0hIRERERKc+FCxfQp08fNGvWDJGRkdi2bRvu378PHx8f6OnpAQCmTp2KnJwciEQiaGpq4r///S8nXRAREZHK6dSpE16/fo3Lly8LHYWoTJo1awYLCwsWkFaivXv34uHDh/Dz8xM6ilL4+vrCwcEBo0ePRm5urtBxqgQrKyuEhoYiPDwcDx48gL29PYKCgpCVlSV0NFJhtWvXxq5du7B161bs3r37vfuOHDkS+vr62LZtWwWlI/pw1tbWAICnT58KnISIiIg+VnGFO4yNjYsU7jhy5Aji4+MRHx+PsLAwBAUFYdCgQSzcQUSlsrCwwKhRo7B//34kJyfj0qVL8PDwwJMnT/DVV1/BzMwMbm5umD9/Pq5evQqZTCZ0ZHpHbm4uli9fjlGjRvEzEURERFRuWMyDiIioiurduzc8PT3h6emJmJgYoeOQCnr58iXS09NhaWkpdBRSA8nJyRg1ahQGDhyICRMmCB2nUouKioKrqysWLFiABQsW4Pfff4ednd1HtbllyxaIRCKMHz9eSSmJiIiIiJTr3Llz6NixI9q3bw+pVIojR47gxo0bGDVqFLS0tArt26tXL9SpUwfa2tr45ZdfMGTIEIFSExEREX24+vXro27dujh9+rTQUYjKRCQSoXPnzjh16pTQUdRCbm4ugoODMWzYMDRs2FDoOEqhqamJ7du346+//sLatWuFjlOldOnSBZGRkZgxYwZCQkLQrFkzPlfpo3z66aeYMmUKPD09cefOnRL309XVxdix/8fevcflfD/+H392uDqXylnJISGdnJpRzSpts0mbQ4Vp5rAmlBw+mWOMqTW2mKGGVZu1bFHY+CinylmkEpoo5JxSOl/1++Pz1W/EiOp11fW8325ut8317roe75vbPh9dva/nexJ++OEHjsiQzGvfvj2UlJRw/fp10SlERERUB/n5+S893HHz5s0nhjucnZ3Rvn170adARE2ckpISBg4cCH9/fxw5cgR3795FZGQkzM3NsWnTJrzxxhswMDDApEmTEB0djaKiItHJBCA6OhpZWVmYO3eu6BQiIiJqxjjmQUREJMdWrVqFLl26wM3NjRdMUJ09vgsJV2jpdVVVVeHjjz+GhoYGQkNDRefIrNLSUsybNw/9+/eHtrY2UlJS4OfnB0XF1/+2TldXF5s2bUJ0dDR+/fXXeqglIiIiIqofR44cwZAhQ/D2229DIpHg8OHDSExMhLOzMxQUFJ75NYqKioiJicGpU6fwzjvvNHIxERERUf2xt7fHgQMHRGcQ1ZmjoyMSEhJQUlIiOqXJ27p1KzIzMzF//nzRKfXK0tIS8+fPx4IFC5CZmSk6R66oqanB398faWlpMDY2hpOTEzw8PHDnzh3RadREBQUFwcLCAq6uriguLn7ucd7e3rh79y5+//33RqwjqjslJSW0a9eOYx5EREQy7MGDBy893HHr1q1awx3t2rUTfQpEJAf09PQwatQohISEICcnB5cvX8a8efOQk5MDNzc36OnpwdbWFoGBgbhw4YLoXLn1/fffw9nZudkMKRMREZFs4pgHERGRHFNVVcXWrVtx/vx5LFiwQHQONTEc86D6snz5chw+fBhRUVHQ0dERnSOTjh49ij59+mD9+vX44YcfcOjQIXTr1q1eX8PJyQlTp06Fl5cXcnJy6vW5iYiIiIjq6ty5c3B1dYWNjQ1KSkoQFxeHuLg42NnZvdTXW1lZwczMrIEriYiIiBqWvb09jh07xkEEanLeeecdlJaWIikpSXRKk1ZRUYGlS5fCw8MDPXv2FJ1T7xYsWABTU1NMmDABVVVVonPkjrGxMXbv3o2YmBgcPnwYPXr0QHBwMKRSqeg0amIkEgkiIyORm5sLX1/f5x5nYGAAFxcX/PDDD41YR/RqOnbsiGvXronOICIiIuCJIQ5XV1eYmZlBX1+/1nBHbGwsbt++XWu4o23btqJPgYgIANC1a1f4+Phg3759uHXrFrZu3YquXbsiICAApqamMDY2ho+PD+Li4niT1kaSkZGBhIQETJ06VXQKERERNXMc8yAiIpJzpqamCA0NxapVqxATEyM6h5qQGzduQE1NDfr6+qJTqAk7fPgwli1bhqCgIPTt21d0jsyprKyEv78/7Ozs0LlzZ6SmpuKzzz577h3IX1dQUBDatm2LSZMmobq6ukFeg4iIiIjo36SlpcHV1RW9e/fGtWvXEBsbi6SkJDg6OopOIyIiImp0tra2KC8vx8mTJ0WnENWJoaEhunfvjvj4eNEpTVpISAiuXbuGRYsWiU5pEMrKyti0aRNOnjzJD/cL5OzsjPPnz8PHxwf/+c9/YG1tjWPHjonOoibGyMgIYWFhCA0NRURExHOPmzJlCpKSkpCent6IdUR116VLF2RlZYnOICIikjtPD3F06NABBgYGGD58OEJCQlBSUlIz3HH37t1ax7dp00b0KRARvZSWLVti9OjRCA8Px507d7B//3589NFH2LNnD5ycnNCuXTuMGzcOv//+Ox49eiQ6t9lat24dunbtiiFDhohOISIiomaOYx5ERESEMWPG4JNPPsGnn36Kq1evis6hJuLGjRvo0KFDg40KUPN39+5djB07FkOHDsX06dNF58icCxcuYMCAAfjmm2+wfv16/PXXXzAyMmrQ19TQ0MAvv/yCQ4cOYe3atQ36WkRERERE/5Seno5Ro0bB0tISWVlZ2LlzJ44ePQpnZ2fRaURERETCdOnSBYaGhkhMTBSdQlRnTk5OiIuLE53RZJWUlGDlypWYOnUqunTpIjqnwVhZWcHPzw9+fn64fPmy6By5paGhAX9/f6SmpqJVq1awsbGBh4cH7t27JzqNmpBhw4bB29sbXl5eyMjIeOYxTk5OMDY2xqZNmxq5jqhujI2NOeZBRETUwJ4e4mjfvv0Twx0A8NlnnyE2Nhb37t2rdXyrVq0EnwERUf2QSCSwt7fHN998g4sXL+LSpUtYtGgRcnNz4e7ujtatW+PDDz9EWFgY8vLyROc2G0VFRfj5558xdepUKCry47VERETUsPi3DSIiIgIA/PDDDzAyMoKbmxvKy8tF51ATkJubCwMDA9EZ1ERVVVXBw8MDEokE4eHhHIV5Snh4OPr37w8lJSUkJydjypQpjfba/fr1w/z58+Hn54e0tLRGe10iIiIikk+3b9+Gp6cnrKyskJmZiejoaJw8eRIffPCB6DQiIiIimTBo0CAkJSWJziCqM0dHRyQnJ3MM4BUFBwejoKAAX3zxheiUBrdo0SIYGxtjypQpqK6uFp0j17p37469e/fip59+wn//+1+YmZkhIiKCfy700oKCgmBhYQFXV1cUFxfXelxBQQETJkxAeHg4SktLBRQSvZyuXbsiKyuL//tHRERUT54e4mjbtm2t4Q5PT0/Exsbi/v37tY5v2bKl4DMgImo8JiYm8PX1xYEDB3Dnzh1s2LABUqkUnp6eaNOmDWxtbREcHIwbN26ITm3Stm/fjpKSEkyYMEF0ChEREckBjnkQERERAEBdXR1RUVHIyMjAggULROdQE3Djxg106NBBdAY1UStWrMD+/fsRGRkJPT090Tky486dOxg+fDgmTpyI6dOnIzExEd27d2/0joULF8LKygqffPIJB56IiIiIqEGUlJQgMDAQ3bt3x+7du/HDDz8gOTkZH374Icf+iIiIiP7BxsYGSUlJqKqqEp1CVCf29vZQUFDAgQMHRKc0OQUFBQgKCoKvry/atm0rOqfBqaioICwsDImJidi4caPoHLmnoKCA8ePH48KFCxg9ejQmTJgAJycnZGZmik6jJkAikSAyMhK5ubnw9fV95jGTJk1CQUEBduzY0ch1RC/P2NgYxcXFuHXrlugUIiKiJufpIY42bdrAwMAAH330EbZt2wY9PT3Mnz8f+/btQ15eXq3j9fX1RZ8CEZHM0NfXh4eHB3bu3Im8vDxs374dXbt2xeLFi2FoaAgzMzP4+/vjwoULolObnN9++w3vvPMOB6OIiIioUXDMg4iIiGp0794dGzduxKpVq3jhBL3QjRs3YGBgIDqDmqD9+/dj6dKl+PbbbzFgwADROTJj79696N27N86dO4f9+/cjICAAKioqQlqUlZXx008/4cKFC1i8eLGQBiIiIiJqnqqrq7Ft2zb06tULX375JaZOnYqMjAx89tlnUFJSEp1HREREJHNsbW1RUFCA9PR00SlEdaKrq4v+/fsjPj5edEqT8/XXX6O6uvq5H4Rvjvr06YNZs2Zhzpw5yMrKEp1D+N9/w99//z1OnjyJgoICmJmZYd68eSgrKxOdRjLOyMgIYWFhCA0NRURERK3H27dvj6FDhyI0NFRAHdHL6dq1KwDg8uXLgkuIiIhk29NDHK1bt6413LFgwQIkJCTUvL8VHh4OHx8fDBkyhDcBIyKqAw0NDTg7OyM8PBy3b99GTEwM3njjDaxduxampqbo3bs3vvrqK1y5ckV0qszLz8/Hvn374ObmJjqFiIiI5ATHPIiIiOgJY8aMwYQJEzBx4kS+mUP/imMe9CquX78Od3d3jB49Gl5eXqJzZEJJSQl8fHwwdOhQ2Nra4syZM3jrrbdEZ6Fnz54IDg7G119/jZ07d4rOISIiIqJm4NixY7C1tYW7uzvs7OyQmZmJgIAAaGtri04jIiIikllWVlZo0aIFEhMTRacQ1ZmTkxPi4uJEZzQpd+/exdq1a/HFF1/I3Yeali5dis6dO2PKlCmorq4WnUP/p2/fvjh69CiCgoKwbt06WFhYcKSHXmjYsGHw9vaGl5cXMjIyaj0+ZcoUHDhwAJmZmQLqiF7MwMAA6urqHPMgIiL6h6eHO1q1agUDAwOMGDGiZrhj4cKFSEhIwMOHD58Y7rC1tYWmpqboUyAiajbU1NQwfPhwbNmyBbdv30ZcXBwGDRqEb7/9FsbGxhg4cCCCg4Nx8+ZN0akyKTo6GoqKinB2dhadQkRERHKCYx5ERERUyw8//AAjIyO4u7ujvLxcdA7JIKlUitu3b3PMg+qkoqIC7u7u0NfXR0hIiOgcmXDq1Cn06dMHYWFhiIiIQFRUlExdnDt58mSMGzcOkyZNQm5urugcIiIiImqiMjMz8dFHH2EnnxamAAAgAElEQVTgwIHQ1tZGSkoKwsPD0b59e9FpRERERDJPSUkJAwYMQFJSkugUojpzdHTE5cuXkZWVJTqlyfjyyy+hpaWFadOmiU5pdKqqqti0aRMOHTqEzZs3i86hf1BWVoaPjw8uXLgACwsLODk5wcPDA/fu3ROdRjIsKCgIFhYWcHV1RXFx8ROPvf/++zA0NOR/6ySzFBQUYGxsjEuXLolOISIiEuLp4Y6WLVvWGu5YtGjRc4c7NDQ0RJ8CEZHcUFZWhqOjI3744QfcunULhw8fhqWlJRYvXgxDQ0PY2toiODgYd+/eFZ0qM37//Xe89957aNGihegUIiIikhMc8yAiIqJa1NTUEBUVhYyMDMyfP190DsmgW7duQSqVcsyD6mT27NlISUlBdHS03N95u7q6GsHBwbCxsYGBgQHS0tIwbtw40VnPtH79eujr62Ps2LGQSqWic4iIiIioCSktLcWSJUtgYWGBv//+G3v27MGePXtgbm4uOo2IiIioSbGxsUFiYqLoDKI6GzRoEDQ1NREXFyc6pUnIzs5GSEgIlixZIrcffBowYABmzpyJWbNm4dq1a6Jz6CkGBgb4448/EBMTg4MHD6JHjx4ICQlBdXW16DSSQRKJBJGRkcjNzYWvr+8TjykpKeGTTz7Bli1bUFFRIaiQ6N+Zmpri/PnzojOIiIgalFQqrTXEoaWlBQMDA4wcObJmuGPx4sXPHe5QV1cXfRpERPR/lJSUYGtri40bN+LOnTvYsWMHunbtigULFqB9+/ZwcnJCeHg4CgsLRacKU1paioMHD8LFxUV0ChEREckRjnkQERHRM3Xv3h0hISFYvXo1duzYITqHZExubi4AoEOHDoJLqKmIiorC2rVrsX79evTq1Ut0jlDZ2dkYPHgw/Pz8sGLFCuzbtw+Ghoais55LS0sLUVFROHHiBJYvXy46h4iIiIiaiAMHDqBPnz745ptvMG/ePCQnJ+Pdd98VnUVERETUJNnY2CA7O5sfbKcmR0VFBXZ2doiPjxed0iQsWbIEHTp0wKeffio6RagVK1bAwMAAn3/+uegUeg5nZ2ekpqbi448/hpeXF+zt7XHhwgXRWSSDjIyMEBYWhtDQUERERDzx2JQpU3Dv3j3s2rVLUB3Rv+vVqxfHPIiIqFmprKysNcTRokULmJubY/LkyYiLi0PXrl2xYsUKDncQETUDqqqqcHZ2Rnh4OG7evIktW7ZARUUFkydPRrt27TB27Fjs3bsXVVVVolMbVVJSEkpKSmBvby86hYiIiOQIxzyIiIjoudzd3fHpp59i4sSJuHLliugckiE3btyAgoICxzzopZw/fx6TJ0+Gt7c3Pv74Y9E5Qu3cuRN9+vRBXl4ejh8/jjlz5kBRUfa/LbO0tERgYCCWLVvGi66JiIiI6F/dvHkTHh4ecHBwQLdu3ZCRkQF/f39IJBLRaURERERN1oABA6CkpIRjx46JTiGqsyFDhiA+Pl7uLgqvq4sXL+KXX37BihUroKKiIjpHKFVVVWzatAl79+5FWFiY6Bx6jhYtWiA4OBgnTpzAo0eP0KdPH/j7+6OsrEx0GsmYYcOGwdvbG15eXsjIyKj5fSMjIzg6OiI0NFRgHdHz9erVC5cvX0ZpaanoFCIiojqr63BHYWFhrePV1NREnwYREdUTbW1tjB8/Hrt378bNmzexatUqXLt2DUOHDkWnTp2wcOFC/P3336IzG0V8fDy6d++OTp06iU4hIiIiOSL7nxojIiIiodatW4dOnTrBzc0N5eXlonNIRuTm5kJfX58/sKEXysvLg4uLC6ysrBAUFCQ6R5jKykr4+/vjww8/xLBhw3D8+HFYWVmJzqqTGTNmwMXFBePGjcOtW7dE5xARERGRjKmqqkJISAh69uyJpKQk7N69Gzt37oSRkZHoNCIiIqImT0tLC6ampjh16pToFKI6c3Jywv3793H27FnRKTJt/vz5MDU1hZubm+gUmTBw4EBMnz4dPj4+uH79uugc+hd9+/bF0aNHERAQgFWrVsHCwoLD8FRLUFAQLCws4OrqiuLi4prfnzJlCvbu3Yvs7GyBdUTPZmZmBqlUikuXLolOISIi+lfPGu7Q0dGBubk5pkyZUjPc8dVXXyEhIQFFRUW1jldVVRV9GkRE1EhatmyJzz//HAkJCbh48SImTZqEX375BSYmJujfvz9CQkJQVFQkOrPBxMXFYciQIaIziIiISM5wzIOIiIj+lZqaGqKionDhwgV88cUXonNIRuTk5KBjx46iM0jGSaVSfPzxxygvL8cff/wht3eSu3PnDt577z0EBgZi/fr1CA8Ph6ampuisV7J582ZoaGjg008/5V0UiYiIiKhGcnJyzQetJkyYgHPnzuH9998XnUVERETUrFhbW+PkyZOiM4jqzMLCAm3btsX+/ftFp8ispKQkbN++HStXroSiIi/lemzFihVo1aoVpk2bJjqFXkBZWRk+Pj44d+4cunXrBicnJ3h4eODevXui00hGSCQSREZGIjc3F76+vjW/7+LigtatW2PLli0C64ierXv37pBIJEhPTxedQkREVKOioqLWEIe2tjbMzc0xbdo0nD59Gv369cOGDRuQlpaG4uLiWsfL6zV8RERUm4mJCfz9/XH58mXs27cPvXr1gq+vL9q0aQNXV1fExcWhurpadGa9efjwIZKTk+Hg4CA6hYiIiOQMfwJMREREL2RiYoKQkBB8++232L59u+gckgE5OTm8uzK90Ny5c3HgwAH8/vvvaNOmjegcIQ4cOAArKytcu3YNx48fx2effSY66bXo6upi69atiI+PR2BgoOgcIiIiIhKspKQEvr6+sLa2hqamJs6dO4fg4OAmO15HREREJMusra1x6tQpjuxSk6OgoIDBgwcjPj5edIpMqqqqgq+vLxwcHPDBBx+IzpEpmpqa2LRpE3bt2oWwsDDROfQSunTpgj///BMxMTE4cOAAzMzMEB4eLjqLZISRkRHCwsIQGhqKiIgIAP8b+Rg/fjwiIiKa1YeDqHmQSCQwMTHB+fPnRacQEZGcetZwh46ODszNzTF9+vSa4Y6NGzciLS0NBQUFSExMRHBwMDw8PGBmZgYlJSXRp0FERE2AoqIihgwZgvDwcFy7dg2BgYH4+++/4eTkhJ49e2LlypW4efOm6MzXdu7cOUilUlhbW4tOISIiIjnDMQ8iIiJ6Ke7u7pg0aRImTpyIK1euiM4hwa5du8YxD/pXERER+O6777B582a5fNOzuroagYGBcHJywsCBA3HixAlYWlqKzqoXb775Jr7++mssWrQI+/btE51DRERERIIcO3YMffr0wU8//YTNmzcjPj4ePXv2FJ1FRERE1GxZW1ujsLAQly5dEp1CVGcODg44fPgwysvLRafInLCwMCQnJ+Pbb78VnSKTBg8eDG9vb/j4+CAnJ0d0Dr0kZ2dnpKamwtnZGRMmTMDIkSNx69Yt0VkkA4YNGwZvb294eXkhIyMDADB27FhkZWXh2LFjguuIarO0tERKSoroDCIikgPPGu7Q1tZ+7nBHfn5+reEORUV+NIiIiF6fvr4+ZsyYgeTkZJw9exbvvfceVq9ejc6dO2PMmDFISkoSnfjKzp49C11dXXTs2FF0ChEREckZfsdOREREL23t2rXo3Lkz3NzceLGdnMvJyeEbWfRcycnJ8PT0hJ+fH8aMGSM6p9Hdu3cPQ4cOxZIlS7Bq1SpER0ejRYsWorPq1cyZMzFu3Di4u7tz4ImIiIhIzlRUVCAwMBBvvfUWjIyMcO7cOXzyySdQUFAQnUZERETUrFlaWkJVVRUnT54UnUJUZ46OjiguLsaJEydEp8iUwsJCLFiwAFOnToWFhYXoHJm1cuVKGBgYYOLEiaiurhadQy9JV1cXP/74Iw4ePIjU1FSYmpoiJCSEf4aEoKAgWFhYwNXVFcXFxejTpw/MzMzw66+/ik4jqqVPnz44ffq06AwiImpmysvLaw13aGlpwdzcHDNmzKgZ7ggJCeFwBxERCWVlZYXg4GDcuHEDP//8M65duwZbW1v07dsXISEhePTokejEOklJSYGVlRWvbyEiIqJGx+/iiYiI6KWpqakhKioKFy9exLx580TnkCBSqRS5ubkwMjISnUIy6NatW3BxcYGdnR2WL18uOqfRJSQkwMrKChkZGTh48CB8fHxEJzWYDRs2oFOnThgxYgRKSkpE5xARERFRI0hNTcWAAQOwbNkyBAUFYe/evRx6JCIiImokKioqsLCw4JgHNUndunVD586dER8fLzpFpqxYsQKlpaVYsmSJ6BSZpqamhk2bNuHgwYPYuHGj6Byqo7feegtnz56Fp6cnvLy88P777yMnJ0d0FgkkkUgQGRmJ3Nxc+Pr6AgDc3NwQGRmJyspKwXVET+rbty9yc3Nx69Yt0SlERNRElZaW1hri0NDQgLm5Oby9vWuGO0JDQzncQUREMktFRQWjR49GYmIiTp06BWtra8ycORMGBgbw8fFpMjcFTElJQe/evUVnEBERkRzid/ZERERUJyYmJggJCcF3332H6Oho0TkkQG5uLiorK/mBLaqlvLwcrq6u0NDQwG+//QYlJSXRSY2muroawcHBcHR0RL9+/XD27Fm8+eaborMalLq6OqKionD16lV4enqKziEiIiKiBlRZWYnAwED0798f6urqOHv2LHx8fHi3EiIiIqJGZm1tjVOnTonOIHol9vb22L9/v+gMmZGVlYXg4GAsXboUrVq1Ep0j8958803MnTsXc+bMwd9//y06h+pIQ0MDAQEBOHz4MK5evQpTU1MEBgaiqqpKdBoJYmRkhLCwMISGhiIiIgJjx47FvXv3OPpEMqdfv35QUFBAcnKy6BQiImoCCgsLa4Y4Jk6cCAAYM2YM7Ozs4O/vj6ysLAwZMgSbN29GWloaHjx4UGu4gz97IyIiWdevXz9s3LgRV69exRdffIGYmBh069YNTk5O2LlzJ6qrq0UnPteFCxdgZmYmOoOIiIjkEMc8iIiIqM7c3NwwefJkTJo0qcksqVL9eXynJCMjI8ElJGumTZuGs2fPIjo6Grq6uqJzGk1BQQFGjx6NOXPmYP78+dixYwf09PREZzWKbt26ISIiAr/88gtCQkJE5xARERFRA8jIyMCgQYOwdOlSBAQEICEhASYmJqKziIiIiOSStbU1zpw5g4qKCtEpRHXm4OCAY8eO4dGjR6JTZMLs2bPRpUsXfP7556JTmgx/f38YGxtjwoQJkEqlonPoFQwaNAhnzpzB3LlzsWjRIgwePBgXL14UnUWCDBs2DN7e3vDy8kJ5eTkGDBiArVu3is4ieoKenh46derEMQ8iIqrl4cOHtYY4dHV1a4Y7Hl9X6+3tjbS0NOTl5XG4g4iImpU2bdrAz88Pf//9N6KiolBZWYnhw4ejZ8+eCA0NRVlZmejEJxQUFKCwsJCffyAiIiIhOOZBREREr2TNmjXo0qUL3NzcUF5eLjqHGtG1a9egrKyM9u3bi04hGfLdd99h8+bN2Lp1q1ytFqempqJPnz44fvw4Dh48CH9/fygqyte3WcOGDcOCBQswffp0JCUlic4hIiIionoUHh4Oa2vrmrtP+vr6yt3fd4mIiIhkibW1NUpLS5Geni46hajOHB0dUV5ezveRARw4cAA7duzA6tWrIZFIROc0GaqqqggLC8PJkyexZs0a0Tn0itTU1ODv74+TJ0+iuLgYffr0QWBgIAda5FRQUBAsLCzg6uqKkSNHYvv27SguLhadRfSEvn374syZM6IziIhIoGcNd+jp6cHOzg5Lly5FVlYWhgwZgi1btiAtLQ0PHjzAgQMHAAD29vYc7iAiomZNWVkZI0eOxIEDB5Camoq33noLM2bMgLGxMVavXo2ioiLRiQCAGzduAAAMDAwElxAREZE84lW3RERE9ErU1NQQFRWFixcv4j//+Y/oHGpEOTk56NChA5SVlUWnkIyIj4/H3LlzsWLFCgwbNkx0TqPZvn07Bg0ahI4dOyI5ORk2Njaik4Tx9/eHk5MTRo8ejZs3b4rOISIiIqLXVFxcjE8//RQTJkyoGW3r2bOn6CwiIiIiuWdqagpNTU2cPHlSdApRnbVv3x49e/ZEfHy86BShpFIpZs6cCWdnZ7z33nuic5qc3r17Y8GCBfjiiy84bNTEWVlZ4fjx41iyZAmWLFkCW1tbnD9/XnQWNTKJRILIyEjk5ubi3LlzKCkpwa5du0RnET2hb9++OH36tOgMIiJqJAUFBbWGO3R1dWFnZ4fAwEA8ePAAo0ePxo4dO5Cbm4u8vLxaxxMREckrc3NzhIaGIjs7G5MnT8ayZctgYGCAefPm4f79+0LbcnNzAQAdOnQQ2kFERETyiWMeRERE9Mq6deuGDRs2YM2aNYiOjhadQ43k2rVrMDIyEp1BMuLq1atwd3eHi4sL/Pz8ROc0iurqagQGBmLUqFEYO3Ys9u3bh9atW4vOEkpRURERERFQV1eHu7s7ysvLRScRERER0Su6dOkSBg4ciO3bt2Pbtm0ICAjgmCMRERGRjFBSUoKVlRVSUlJEpxC9EkdHR+zfv190hlAhISG4cOECvvnmG9EpTdb8+fNhaWmJTz75BBUVFaJz6DUoKyvDz88Pp0+fRlVVFXr37o158+bx50xyxsjICGFhYfj5559hamqKrVu3ik4iesLAgQORnZ2N69evi04hIqJ6lp+fX2uIQ09Pr9ZwR0xMDG7evInc3Fzs3LkT/v7+cHZ2Rvv27UWfAhERkUxq27Yt/P39kZOTg/nz5+PHH39Ep06d4OPjI+x7qxs3bkBdXR36+vpCXp+IiIjkG8c8iIiI6LWMGTMGnp6e+PTTT3Hp0iXROdQIcnJyOOZBAICioiIMHz4choaGCAsLg4KCguikBvfo0SOMHj0aCxcuxFdffYWNGzdCRUVFdJZM0NfXx65du5CSkgJPT0/ROURERET0CrZv34433ngDEokEycnJGDlypOgkIiIiInqKhYUFzp07JzqD6JU4ODjgzJkzyMvLE50iRH5+PhYvXowZM2age/fuonOaLGVlZYSFhSE9PR1BQUGic6gemJmZ4ciRI/jqq6+wZs0avPnmm0hLSxOdRY1o2LBh8Pb2RmZmJv7880/hd+sl+qcBAwZAWVkZR44cEZ1CRESv4VnDHfr6+s8c7rh161at4Y527dqJPgUiIqImR0dHB35+fsjOzsaKFSsQHR0NY2NjeHh44OLFi43acv/+fbm/cSMRERGJwzEPIiIiem1r1qyBubk5Ro4ciUePHonOoQZ27do1jnkQqqqq4OHhgdu3byMmJgaampqikxrc9evXMXjwYBw8eBB79+6Fn5+f6CSZY2pqil9//RUREREIDg4WnUNEREREL6msrAw+Pj4YMWIE3NzccOTIEXTt2lV0FhERERE9g4WFBVJTU1FdXS06hajOHBwcAACHDh0SXCLG0qVLoaCggIULF4pOafJMTU2xdOlSLF26lANHzYSSkhLmzJmDlJQUqKmpoX///ggKCkJVVZXoNGokQUFBsLS0hFQqRWRkpOgcohqampqwtLREUlKS6BQiInpJubm5iIuLe2K4Q09P75nDHbdv36413NG2bVvRp0BERNSsaGpqwsfHB5cvX0ZoaChOnDiBXr16wdXVFZcvX26UhrKyMt68kYiIiIThmAcRERG9NolEgsjISNy6dQtTpkwRnUMNLCcnBx07dhSdQYJ98cUX2L17N37//Xe5GHdJSkpC//79UV5ejpMnT9ZccEy1DR06FMuXL8fs2bOxe/du0TlERERE9AI5OTl4++23sWXLFkRGRmLjxo28gIGIiIhIhllaWiI/Px/Xr18XnUJUZ7q6uujduzf2798vOqXRXbhwAevWrcPy5cuhq6srOqdZmDNnDt588014eHigvLz8icfKysqQmZkpqIxeh4mJCRITExEYGIhFixbB1taWf5ZyQiKRYNu2bVBWVsZXX30lOofoCTY2NhzzICKSUU8PcXTo0AEGBgZwcnJ6YrgjNjYWd+7cqXV8mzZtRJ8CERGR3FBRUYGHhwfS09MRFhaG5ORk9OrVC97e3rh161aDvnZ5eTkkEkmDvgYRERHR83DMg4iIiOpFx44dERkZiaioKGzYsEF0DjWQ4uJi3L9/n2Mecm7Tpk0ICgpCaGgo7OzsROc0uJCQEDg4OMDa2hqJiYno0qWL6CSZN2/ePEyYMAFjx45Fenr6E4+dPn0aNjY2uHLliqA6IiIiInps79696N27N0pLS3H69Gm4ubmJTqJGUl1djaFDh8LCwqLm18KFC6GgoPDE71laWiIkJER0LhEREf2DhYUFFBQUkJqaKjqF6JU4ODjI3ZhHdXU1pk2bBnNzc0yaNEl0TrOhqKiILVu24PLly1i+fHnN758+fRqWlpawsrJCaWmpwEJ6VYqKivDx8cGpU6dQWlqK3r17Izg4GNXV1aLTqIEZGRlh7ty5yM3NRXBwsOgcoho2NjZISUlBUVGR6BQiIrn29BBH+/btYWBggOHDh9f8LOOzzz5DbGws7t69W+v41q1bCz4DIiIiAgAlJSV8/PHHyMjIwJo1axAdHY1u3bphwYIFePjwYYO8ZkVFBW9sQ0RERMJwzIOIiIjqjaOjIxYuXAhvb28cOXJEdA41gJycHAD/u4iG5NPevXvx+eefY/HixfDw8BCd06AqKysxb948fP755/D19UVMTAx0dHREZzUZ33//PXr16oXhw4fj3r17AIBdu3bBzs4OR44cwbp16wQXEhEREcm37777Dh988AE++OADHD16FCYmJqKTqBEpKCggMzMTaWlpNb+ys7NRVlb2xO+lpqY22MUyRERE9Gp0dXVhaGiIc+fOiU4heiWOjo44f/48bty4ITql0fz88884ePAg1q1bByUlJdE5zUrXrl3x1VdfYeXKlThy5AiWLFmCAQMGICsrCyUlJfyZdRNnbm6Oo0ePYsaMGZg9ezaGDRvW4HdpJfEWL14MVVVV+Pn5ISMjQ3QOEQDA1tYWlZWVOHHihOgUIiK58fQQR7t27WoNd3h6eiI2Nhb37t2rdXyrVq0EnwERERG9iEQigaenJzIzM7F06VJs2LABJiYm2LhxIyorK+v1tSoqKiCRSOr1OYmIiIheFsc8iIiIqF4tXrwYQ4YMgbu7e82Ht6n54JiHfEtPT4e7uztGjRqFJUuWiM5pUPfv38e7776LdevWYdu2bQgICICiIr99qgs1NTVs374dFRUVGDNmDEJCQuDi4oKysjIAwI8//ljzz0RERETUeCorKzF9+nTMmjULCxcuRHh4ONTU1ERnkQAeHh4vvFhFQUEB7u7ujVREREREL8vS0hKpqamiM4heiZ2dHVRVVXHw4EHRKY0iLy8Pc+bMwdSpUzFw4EDROc3S9OnT0a9fPwwfPhwrVqyAVCpFZWUlVFRUEB8fLzqPXpOqqioCAgJw6NAhXLx4EVZWVti9e7foLGpAKioqGDFiBFRVVeHq6ori4mLRSUQwMDBA586dcejQIdEpRETN0j+HOI4fP47ff/8dBgYG+OijjxAREQEA+PzzzxEbG4v79+/XGu5o2bKl4DMgIiKi16Guro7Zs2cjMzMTY8eOhbe3N3r37o09e/bU22tUV1fX23MRERER1RU/jUZERET1SlFRET///DOUlZXh7u4OqVQqOonq0bVr16ClpQU9PT3RKdTIbt68iffffx8WFhb46aefoKCgIDqpwZw7dw79+/fHlStXkJSUhJEjR4pOarLatWuHHTt2ICUlBZ6enqiqqkJVVRUAoLCwENu3bxdcSERERCRf7t+/DwcHB4SHhyMmJgb+/v7N+u/29O/GjRv3r3ezUVRUxMCBA2FoaNiIVURERPQyLCwsOOZBTZaGhgbeeOMN7N+/X3RKo/Dz84OioiKWL18uOqVZqqqqwpo1a3D69GkUFBQ88bPp8vJy/PnnnwLrqD7Z2NjgzJkz+PDDDzFs2DB4eHhw5KEZ++ijj/Do0SPcuHEDvr6+onOIAACOjo4ciSIiqgdPD3G0adOmZrhj27ZtkEgkMDc3R0JCAgoKCnD58uUnjtfX1xd9CkRERNRA9PX18e233yI9PR29evXC+++/D2dnZ1y5cuW1n1tHRwcPHz6sh0oiIiKiuuOYBxEREdU7fX19/Pbbb0hMTOSFac3MtWvXYGRkJDqDGllxcTE+/PBDSCQSREdHQ1VVVXRSg4mLi4OdnR06deqEEydOwNLSUnRSk1ZWVoavv/4a9+/fr/WYgoIC1q9fL6CKiIiISD5duXIFNjY2yMnJwZEjR+Ds7Cw6iQQzNjaGlZXVcwddFBQU4OHh0chVRERE9DIsLCxw4cIFlJeXi04heiWOjo6Ii4sTndHgjh8/js2bNyM4OBi6urqic5qdrKws2NnZYdasWaisrHzmWOG5c+eQl5cnoI4agra2NjZu3Iht27Zh165dsLa2RkpKiugsagBDhw6FRCLBhAkTEBoaioiICNFJRBgyZAiOHz+OgoIC0SlERE3G08MdrVu3hoGBAUaMGIFt27ZBT08PCxYsQEJCAh4+fIj09HT07dsXPXv2hK2tLTQ1NUWfAhEREQnQrVs3REVFIT4+HpcvX4a5uTlWrFiBsrKyV35OXV1d5Ofn12MlERER0cvjmAcRERE1CGtra6xevRrLli3DX3/9JTqH6klOTg7HPORMVVUVxo4di6ysLPz1119o1aqV6KQGExERgffffx/vvPMO9uzZ06zPtTHk5eXB3t4ef/zxB6qqqmo9LpVKkZCQgEuXLgmoIyIiIpIv586dg52dHVRUVJCYmAhzc3PRSSQjPDw8oKSk9NzHR40a1Yg1RERE9LIsLS1RUVGBixcvik4heiUODg7IycnB5cuXRac0mMrKSnh6esLJyQmurq6ic5qdR48ewdzcHEePHn3mzyAeq66uxsGDBxsvjBrFqAFQd1wAACAASURBVFGjkJycDD09PQwcOBDr1q1DdXW16CyqR1paWnj77beRnZ0Nb29veHl5ISMjQ3QWybkhQ4agqqoKhw4dEp1CRCSTnh7uaNWqVa3hjoULFyIhIQEFBQVIT09HeHg4fHx8YGtrCw0NDdGnQERERDLG3t4eKSkpWLx4MVauXAkrK6tXfq+PYx5EREQkEsc8iIiIqMF4eXlh/Pjx+Pjjj3HlyhXROVQPOOYhf2bOnIm9e/ciJiYGJiYmonMaTHBwMD755BNMnToVv/32G9TU1EQnNWlFRUXo168fTpw48cw74T2mrKyMH3/8sRHLiIiIiOTPX3/9BRsbG5ibmyMpKQmGhoaik0iGuLu7P/ODb0pKSnByckLLli0FVBEREdGL9OzZE6qqqjh37pzoFKJXMmDAAGhpaWH//v2iUxrMN998g0uXLmHdunWiU5olTU1NrFy5EkpKSlBWVn7uccrKyoiLi2vEMmosnTt3xqFDh+Dn54eZM2di1KhRKCgoEJ1F9cjFxQV79uzB0qVLYWFhAVdXVxQXF4vOIjnWqlUrWFlZIT4+XnQKEZFQUqkU6enp2LZtW81wR8uWLWsNdyxatAgJCQl4+PAhhzuIiIjolUkkEvj5+eH8+fPo0aMHHBwcMG3aNBQWFtbpeXR1dVFeXs73FoiIiEgIjnkQERFRg1q/fj06deoENzc3lJWVic6h13T9+nV+8EuOfPfdd/j++++xadMmDBo0SHROg5BKpfDy8sLs2bOxdu1aBAcHQ1GR3ya9LolEAgsLC0il0n+9iLaiogI//vgjysvLG7GOiIiISH5ERkbCxcUFo0aNws6dO6GtrS06iWRM+/btYWtrW+v7oOrqaowfP15QFREREb2IsrIyevTogfT0dNEpRK9ERUUFtra2zXbMIzs7G8uXL8eiRYtgbGwsOqfZ8vHxwfHjx2FgYACJRPLMYyoqKvDXX381chk1FiUlJSxZsgTx8fE4duwYrKyscPz4cdFZVE+GDx+OkpISJCQkIDIyErm5ufD19RWdRXJuyJAh2Ldvn+gMIqJG83i4459DHC1atIC5uTnGjRtXM9yxePFiJCQkoLCwsNbx6urqok+DiIiImgEjIyPExMTgt99+w7Zt22BhYVGn78/09PQAAHl5eQ2VSERERPRc/JQaERERNSh1dXX89ttvuHTpEmbNmiU6h15DdXU1cnJy0KlTJ9Ep1Ah2796NOXPmICAgAGPHjhWd0yCKi4vx0UcfYfPmzfj1118xbdo00UnNhqqqKmJjYxEfH4/u3btDUVERCgoKzzw2Pz8fO3bsaORCIiIiouYvPDwc48ePh6enJzZv3vzcDzYRjR8/vtbf1yUSCYYPHy6oiIiIiF6GiYkJMjMzRWcQvTIHBwfs378f1dXVolPq3fTp02FoaMifjTaCvn37IjU1FSNGjHjuMVevXsXVq1cbL4oa3VtvvYWzZ8+iR48eGDx4MIKDg0UnUT3o0KED+vfvj5iYGBgZGSEsLAyhoaGIiIgQnUZybMiQIcjIyMD169dFpxAR1bvKyspaQxw6OjowNzfH5MmTERcXh65du2LFihVISEjAw4cPax2vpqYm+jSIiIiomRs9ejTS0tLwxhtv4N1338WMGTNQWlr6wq/r3LkzACArK6uBC4mIiIhq45gHERERNTgTExOEhYVh/fr1CAsLE51Dr+j27dsoKSmpeTOLmq/k5GS4ublhwoQJ+M9//iM6p0Hcv38f77zzDpKSkhAXF4fRo0eLTmqWHBwckJqaii1btkBPTw/Kysq1jlFUVMT69esF1BERERE1X2vXrsWECRMwe/ZsrF279rnDakQAMHLkSCgq/v8fFykrK8PFxQVaWloCq4iIiOhFOOZBTZ2joyPu3LmDtLQ00Sn1KioqCrt378b69euhqqoqOkcuaGtrIzIyEmFhYVBVVa31swglJSXs379fUB01ltatW+PPP/+En58fZs2ahbFjx6KwsFB0Fr0mFxcXxMbGoqqqCsOGDYO3tze8vLyQkZEhOo3k1ODBg6GtrY1du3aJTiEiei3PGu5o0aJFreGOr776CgkJCSgsLORwBxEREcmMNm3aICoqClu3bkVERAQGDBiA8+fP/+vXdOjQAVpaWrh06VIjVRIRERH9fxzzICIiokbh4uKCWbNmYerUqThz5ozoHHoFj+9Y1alTJ7Eh1KBu3LgBFxcX2NraYsOGDaJzGkRWVhYGDRqE3NxcHDlyBLa2tqKTmjVFRUV4eHggOzsbCxYsgEQieeKu8FKpFIcOHeIHD4iIiIjqydKlS+Hj44PvvvsOAQEBonOoCdDT08N7771X84E3qVSKcePGCa4iIiKiFzExMcHff/+N6upq0SlEr6R3797Q19dHfHy86JR68/DhQ8yaNQsTJ06Evb296By54+HhgeTkZBgbG9ca9Ni3b5+gKmpMSkpKWLp0Kfbs2YO4uDgMHDgQf//9t+gseg0ffvgh7ty5g+PHjwMAgoKCYGFhAVdXVxQXFwuuI3mkqqoKJycnxMTEiE4hInppzxru0NHRgbm5OaZNm4bTp0/DzMysZrijqKio1vEcKiQiIiJZ5O7ujrNnz0JTUxPW1tYICQl57rEKCgro1q0br1UmIiIiITjmQURERI0mICAA1tbWcHNzQ0FBgegcqqOrV69CWVkZBgYGolOogeTn5+O9996Dnp4eoqKial3o2BycOHECAwcORIsWLXD06FH06NFDdJLc0NLSgr+/P86fPw9nZ2cA/7uoEvjfnb83b94sMo+IiIioWfjyyy+xbNkyhIaGwtvbW3QONSHjxo2DVCoF8L+/u7/77ruCi4iIiOhFTExM8OjRI9y8eVN0CtErUVRUxODBg3Hw4EHRKfVm/vz5KC0t5bCiQL169cKZM2fw+eefA/jfRfpSqRR79+7l+JEccXJywpkzZ6CpqYl+/fph586dopPoFZmZmcHExKRmOEEikSAyMhK5ubnw9fUVXEfyysXFBQcOHMDDhw9FpxAR1VJRUVFriENbW/uJ4Y5+/fphw4YNSEtLQ35+PhITE7Fx48aa41VUVESfBhEREdFL69y5Mw4fPgxfX19MnToVkydPRllZ2TOP7d69O8c8iIiISAiOeRAREVGjUVZWRlRUFB49eoRPPvmEF0w1MdnZ2TA0NGyWAw8ElJaWwsXFBQ8ePMDu3buho6MjOqnexcbGwt7eHr1790Z8fDzatm0rOkkudevWDX/88Qfi4+PRo0cPKCoqoqKiAiEhISgvLxedR0RERNRkBQUFYcmSJfj+++8xadIk0TnUxDg7O0NNTQ0A4OrqyrvsERERNQEmJiYAwAtPqUl7++23cejQoZphuabs+PHj2LBhA1avXo1WrVqJzpFr6urqWLt2LX766SeoqqpCUVERDx48QGpqqug0akQGBgY4dOgQRowYgY8++giBgYGik+gVOTs714x5AICRkRHCwsIQGhqKiIgIgWUkr4YNG1YzFEVE9LJKSkqwbNky6Onp4fz58/XynP823DF9+vSa4Y6NGzciLS0NBQUFSExMRHBwMDw8PGBmZlZzEx4iIiKipkxZWRnLly/Hrl278Mcff2DQoEHIycmpdVz37t1x8eJFAYVEREQk7/hJTCIiImpUbdu2xbZt2/D2229j9erVmD17tugkeknZ2dno3Lmz6AxqAFKpFB9//DFSUlJw6NAhdOzYUXRSvduwYQOmT5+OSZMmYd26dS8cpSktLcWff/7ZLC4glmWLFy/GgQMH8MsvvyAvLw/z58/HgAEDRGeRjLO2tub/HxERET0lICAA8+fPx/r16+Hp6Sk6hxpJRUUFioqKAAAPHz6EVCpFWVkZiouLa44pLCxEZWXlc58jPz+/Zmy1X79+SExMhKGhIbZt2wYAUFNTg7q6+nO/XlNT84m79Onp6QH434fn1NTUoKCgAF1d3Vc/SSIiInqudu3aQVtbG5mZmRg8eLDoHKJXYm9vDx8fH6SkpKBv376ic15ZaWkpPv30Uzg4OGD8+PGv/XyXL19GcnJyPZTJNw0NDaxcuRKrVq3C9evXsXr1anzwwQeis6geKSsr44MPPnju3ePV1NSwZcsWmJmZYd68eUhLS0NoaGjNmCU1DS4uLli9ejUuXryIHj16APjfmIK3tze8vLzQv39/mJqaCq4keaKvrw8bGxvExsZi9OjRonOomXr06BHKy8shlUrx8OFDAEBRUREqKioAAFVVVSgoKHju11dWVqKwsPBfX0NHR+dfhxx0dXWhoKAAAFBRUYGmpiYAoEWLFlBUVISqqio0NDTqdF7yKjo6Gt7e3rh9+zaqqqqQmJiIXr161ek5ysvLkZmZidOnT9f8OnXqFMrKyqCjowMLCwv069cPn332Gfr16wdTU1MoKvKer0RERCRfhg4diqNHj+LDDz/Em2++idjYWPTv37/mcQsLCwQEBODRo0c1f78lIiIiagwc8yAiIqJGN2jQICxfvhzz5s2DtbU13nrrLdFJ9BKuXr2KTp06ic6gBjBz5kz8+eef2Lt3L6ysrETn1LugoCD4+flh2bJlWLhw4Ut9zZ9//omRI0c2cBk9bdWqVaITqAlwd3fHr7/+KjqDiIhIZqxfvx7z58/H999/zyEPGVRZWYkHDx7U/CosLER+fj5KSkpQXFyM/Px8FBcXo6SkBAUFBSgqKkJJSQkKCwtRWFiI4uJiPHr06ImLr1800PG6li5d2iDP+3j4Q0lJCTo6OjVDHxoaGtDQ0ICOjg60tLSgrq4ObW1t6OjoQF1dHZqammjRogU0NDSgpaUFPT096OnpQVdXFy1atGiQViIioqaiW7duyMzMFJ1B9MrMzc3Rpk0bHDx4sEmPeSxatAg3btzAnj17aj7w+Drmzp2L7du310MZ/VNYWBjCwsJEZ1A927Vr1wtHWubMmQMLCwuMGTMG9vb22L59O9q1a9dIhfS6bGxs0KpVK8TGxmLu3Lk1vx8UFIQTJ07A1dUVx48f5wfKqVENHz4cX375JSoqKiCRSETnkCDFxcU17/vm5+ejsLAQRUVFePjwIYqLi2ve/33ee8GPBztKSkpQWlr6woEOWfZ4+OPxyPPjoQ9dXV2oq6vX/LOGhgbU1dXRokWLJ94Lfvzr8fu+enp6/zoy3VRcvHgR3t7e+O9//wtFRUVUVVVBIpG8cLivqKgIZ8+exenTp3H+/Hmkp6fj5MmTKC8vR4sWLWBubs7hDiIiIqLn6NmzJ44fPw43NzfY29sjOjoaTk5OAP73HkNlZSVOnDgBe3t7waVEREQkTzjmQURERELMnTu35sKK5ORkdOjQQXQSvUB2djbeeOMN0RlUzxYtWoT169cjKioKdnZ2onPq3ddff4158+bh22+/hY+Pz0t/3eMPxv1xIbeh0ojoFaya6QmpVCo6g4iISGbExMRgxowZWL58Oby8vETnNGvV1dW4e/cu7t27h7t37+L27du4c+cO8vLykJ+f/8Rgxz//vaio6JnPp66uDnV19VoXMGtqakJdXR2tW7d+4mLmx8MXQO1RDADQ0tKCRCKBRCKBlpZWzeu86O6IGhoaUFVVfe7jLxoOyc/PR3V1NYAn7wb5+EL0Z42QVFRUoKioqOaukv8cMLl58yZKSkpqLnovKSnBo0ePUFBQgKqqqlqvr6io+MS4x9P/rK+vj1atWqF169Zo3bo12rZtizZt2vAuO0RE1GyYmJhwzIOaNAUFBbz11ls4cOAAZs2aJTrnlRw7dgzffvstNm7cCCMjo3p5zkqpFG8NHwmfr9fWy/MRNUcV5eVwt+z80mOX7777Lk6cOAFnZ2f0798fsbGxTXpESJ4oKSnh/fffx+7du58Y85BIJIiMjESfPn3g6+uLjRs3CqwkeePi4oLZs2fj4MGDNR8Ko6arrKys5n3fW7du4e7du7h79+4T7/k+/b5vfn4+ysrKnvl8Ojo6NQPGj8cs1NXVoaenh5YtWz7xvrCqquoT7+E+PYrxz/eFn34vV1tbG8rKz/8YwOPnepYXDYc8fg/3sdLSUpSUlAAAHjx4AADPHCF5/L7w4+MfPHiAkpISlJSUICsrq2bk5On3hZ9FTU3tifd8n34PWE9Pr+Z933bt2tX8sywM7OTn5yMgIACrVq2q+TN4/P52RUUFjh07VnPsP4c7Hv+6ePEipFLpM4c7evXqVS8DgkRERETNWYsWLbBr1y54enpi2LBh2LJlC8aOHQsDAwMYGRkhKSmJYx5ERETUqDjmQUREREIoKChgy5YteOONNzB27FjExcX96w8YSbzs7Gx06tRJdAbVow0bNmDFihUIDQ3FiBEjROfUu8DAQHzxxRdYs2YNpk+fLjqHiIiIiKheHTx4EO7u7vjss88wf/580TlNVkFBAa5fv47r16/jxo0byM3NrblY+/Fgx+MLuf85KqaoqIhWrVpBX1//iYuHDQ0N//Xi4sd3F2wqtLW1//XxxjyXsrIyFBYWPvPi+af//fLly8jPz0deXh7u3r1ba1RFQ0MDrVq1Qvv27WvGPtq0aYN27dqhffv2MDQ0RMeOHdG+fXuoqKg02jkSERHVlYmJCWJiYkRnEL2Wt99+GwsWLIBUKoWSkpLonDopKyvDpEmTYG9vj4kTJ4rOIaIX6NatG44cOYJRo0Zh8ODB+Pnnn+Hi4iI6i17Cu+++iwkTJuDhw4c1w6bA/2PvzuNqzv4/gL8uSpYiW1pVtgqhItJCgwpTspSlyD6ypNFgMHYz9sEwdqKxL2MwdkKphIyoEO2JUslS2n9/+Lq/aYpuuvVpeT0fjx6jcz/3c16fc2Nu53Pu+wAaGhrYu3cvbG1tYWpqCmdnZwFTUnXSsmVLdO3aFQcPHmQxjwoqPz8fL168QHx8POLj4xETE4OkpCQkJibi5cuX4sLNL168KFTUonbt2mjatGmBuV8lJSXo6Oh8dt63YcOGkJeXL1BouSL7VCT5S5o1a1ZOaT4Wgv409/uled/U1FTExsYiNTVVPPeblZVV4FyfXq9P876fCn00a9YMGhoaUFVVhYqKCpo3by7168jPz4eXlxfc3d3x5s2bzxYdCw0NxbBhw/DPP/8gPDwceXl5aNasGQwNDWFvbw9DQ0MYGhpKrVggERERUXVUq1Yt7Ny5E4qKinB2dkZ6ejrGjx8PExMT+Pn5CR2PiIiIqhl+YpaIiIgEIy8vj8OHD6N79+6YN28eVq5cKXQk+oykpCS8f/+exTyqkJMnT2Lq1KlYvnw5xo0bJ3QcqVu4cCGWLl2KTZs2cYdyIiIiIqpyHjx4AHt7e9jZ2WHTpk1Cx6mw3r9/j4iICERHRyMuLg7Pnz9HTEyMeAF3bGxsgSIPdevWhZqamngHv1atWqFHjx7iRb//LvzQtGlT1KhRQ8Crq34+7VLZpEmTEj83IyOjQIGWTwVbPu20+fLlS9y/fx+JiYl48eKFuHCLSCSCkpIS1NTUoKKiIl7sraqqCnV1dWhqakJdXb3SfeiUiIiqjtatW+PZs2fIy8vjexOqtHr27Im0tDTcu3cPRkZGQscpkXnz5iEuLg7nzp3j7thElYSioiIuXLiAGTNmwN7eHgsWLMCiRYuEjkXF6Nu3L3Jzc3Ht2jXY2toWeGzAgAGYPn06XF1dYWRkBF1dXYFSUnUzfPhwLFy4EJs3b0adOnWEjlPtvHz5EhEREeIizTExMXj+/Dni4uIQGxuLhIQEZGdni49v2rQplJSUxMUdDA0N0aRJEygpKRUq/PDvokFUPuTl5SEvLw8VFZUSP/f169eFCrR8KtKdmJiI0NBQcXtycrL4ebVr14aKiop4rldVVRVqamriQs9aWlpo2rSpxDnu3LkDV1dX3L17F/n5+cjPz//ssdnZ2Xj16hUcHR1hYGAAQ0NDqKmplfjaiYiIiOjLRCIR1qxZA3l5eUyaNAmysrIwMTHBggULeF+FiIiIyhWLeRAREZGg9PX1sWXLFri4uKBLly4YMmSI0JGoCFFRUQAATU1NQXOQdHzawXvSpEn48ccfhY4jdfPnz8eKFSuwe/duuLi4CB2HiIiIiEiqIiIi0LdvX3Tu3Bl79+6t9osLUlNTERERUeRXZGSkeMGsnJwcVFRUoK2tDWVlZRgaGkJZWblAm7KyMj+AV0XVqVMHGhoaEu9k+Onn6vnz50hISBD/99GjR7h69SpiYmLEhWBkZGSgrq4ObW3tQl8tW7ZEw4YNy/LSiIiommvdujUyMjIQHx8PdXV1oeMQfRU9PT0oKSnB29u7UhXzCAgIwPr167F9+3bumE1UydSqVQubNm2Cvr4+pkyZgtjYWGzZsgWysrJCR6PPaNKkCTp16oSLFy8WKuYBAKtXr0ZgYCAcHBxw69Yt1K1bV4CUVN04OjrCw8MD586dw6BBg4SOU+VkZWUhLi6uyHnf8PBwvHnzRnysoqKieI63Xbt26N27d4F5Xw0NDcjLywt4NVSWGjZsiIYNG6Jt27bFHpuZmYnk5GQkJCQUmP+NiIiAv78/EhISEB0dLS72/O/7Cv/90tHRQb169ZCQkIAFCxZg165dqFmzJvLy8orNUbNmTYwYMQJjx44t9fUTERERUfEWLlyIrKwsjB07FkuWLMHr16/x8OFD6OvrCx2NiIiIqgkW8yAiIiLBjRo1Crdv38aYMWOgo6OD9u3bCx2J/iM6Oho1a9bkYuAqIDg4GPb29rC3t8dvv/0mdBypys/Px/fff4/ffvsNe/bsgbOzs9CRiIiIiIikKikpCf369UOzZs1w4sQJ1K5dW+hI5SI9PR1hYWEICwtDaGgoHj16hNDQUERGRiIrKwvAx2INnxbRtmvXDt9++634e01NTX6Ig0pEUVERhoaGMDQ0/OwxL1++RFRUVIEPEjx58gTnz59HXFyceNF2o0aN0Lp1a+jp6UFXV1f8X01NzWpfjIeIiEqvdevWAIDw8HDO31OlJRKJYGFhgWvXruGHH34QOo5EMjMzMW7cOFhaWmLMmDFCxyGirzRx4kRoaGhg2LBhePz4Mf788080bdpU6Fj0GVZWVjh69GiRj8nIyODQoUPo3Lkz3N3dsW3btnJOR9WRsrIyLCwscPDgQRbzKIXExESEhITg0aNHCAkJQVhYGB4/foznz5+LCzU3bdpUPNdrbW0NV1dXaGlpQVtbG6qqqqhVi0vhSTK1a9eGiooKVFRUPjv3m52dXWQhmaCgIBw7dgwpKSkAgBo1akBJSQmJiYni4h85OTkS5ahZsyaCgoJYzIOIiIioHC1fvhwZGRlYtGgRGjVqhDNnzrCYBxEREZUbzmASERFRhbBu3To8ePAAgwYNQmBgIHctrWCioqKgoqICGRkZoaNQKURERMDKygoGBgbw9PSsUh8ays/Px7Rp07B9+3YcPHgQQ4cOFToSEREREZFUvX37FjY2NsjJycG1a9eq5O/NmZmZePDgAe7fvy8u2BEWFoaoqCjk5+dDVlYWbdq0ga6uLhwdHdGqVSvxIm5lZWWh41M1o6SkBCUlJRgbGxd6LCsrq0Chj8ePHyM0NBQXL15EfHw8gI8FaHR0dKCrq4t27dpBR0cHnTt3hpaWVnlfChERVWJNmzZF3bp1ERsbK3QUolLp2bMnZs+ejezs7EpxL2ru3LmIj4/H+fPnIRKJhI5DRKVgbW0NX19ffPvtt+jevTtOnz4NXV1doWNREfr27YtffvkFERER0NbWLvS4hoYG9u7dC1tbW5iamnLjByoXw4cPx7Rp05CWloYGDRoIHadCS05ORlBQkLhgR2hoKEJDQ8WFERo2bCieJ7OxsUHLli3Fc7/y8vICp6fqREZGBlpaWtDS0sI333xT6PHXr1+L533DwsJw8uRJREdH4/Xr1+KiHp/UrFkT+fn54sLPn2RlZSEgIKBMr4OIiIiIClu7di0SEhLw559/4vDhw5g7d67QkYiIiKiaYDEPIiIiqhBkZGRw+PBhGBkZwdHREWfPnkXNmjWFjkX/Ex0djRYtWggdg0ohKSkJNjY2UFNTw8mTJ6vcDt4//fQTtm3bhiNHjsDe3l7oOEREREREUpWdnQ17e3vEx8fj5s2baN68udCRSi0rKwvh4eG4e/duga8PHz5AVlYWrVq1Qrt27TBq1Ci0a9cO2traaNeuHeTk5ISOTlSsT4Vn2rRpU+ixN2/eIDw8HBEREQgJCUFoaCj279+Px48fIzc3FwoKCujQoQMMDQ3FX7q6ulWqICcREUmXiooK4uLihI5BVCq9evXC27dvERQUVGSxtIrE398fGzZswM6dO6Guri50HCKSgvbt2+P27dsYPHgwjI2NcfDgQfTv31/oWPQfJiYmkJeXx8WLF/Hdd98VecyAAQMwffp0uLq6wsjIiIVZqMwNHjwYU6ZMwYkTJzBmzBih41QYqampCAkJKTDvGxYWhvz8fCgqKkJbWxt6enoYMGAA9PT00K5dO2hpabFIGlUKDRs2hIGBAQwMDAB8XK/0SWpqKgICAuDj44OgoCCEh4cjISEBGRkZhc7z8OFDvHjxokrc7yEiIiKqLEQiEXbt2oXbt28jODgYjx49go6OjtCxiIiIqBpgMQ8iIiKqMJSUlHDs2DFYWFhgyZIlWLx4sdCR6H+io6OhqakpdAz6Sm/fvoW1tTVyc3Nx5syZKrdrye+//46ff/4ZO3fuZCEPIiIiIqqSpk+fjlu3buHGjRtF7jxa0eXl5SEkJAQ+Pj7w8/NDUFAQnjx5gtzcXCgqKsLAwAAmJiaYMmUKDAwM0Lp1axYuoCpLQUFBXKRj6NCh4vb379/j/v37CAoKQlBQEK5fv44tW7YgOzsb8vLy6NSpE4yMjGBmZgZTU1M0bdpUwKsgIqKKRE1NDfHx8ULHICoVHR0dqKiowNvbu0IX80hPT4eLiwssLS0xevRooeMQkRQ1adIEFy9exIQJE2BnZ4dff/0V06ZNEzoW/YusrCwsLCxw6dKlzxbzAIDVw6CcagAAIABJREFUq1cjMDAQDg4OuHXrFurWrVuOKam6UVRUhJ2dHXbt2lVti3mkp6eL564DAwMRFBSEFy9eAAC0tbXRuXNnjBw5Ulz8oFmzZgInJio7ioqKsLGxgY2NTYH2hIQEBAUFwdfXF35+fggJCUFycjKUlZWhpqYGAwMDGBsbw8zMDF26dGFRcyIiIqIyVLduXVy8eBGtWrXC2LFj4efnJ3QkIiIiqgZYzIOIiIgqFGNjY2zbtg1jxoyBvr4+Bg8eLHQkAhAVFQVbW1uhY9BXyMzMxMCBA5GQkICbN29CSUlJ6EhSdeDAAUybNg2rVq3C2LFjhY5DRERERCR1np6e2LZtGw4fPozOnTsLHUci2dnZuHPnDnx9feHj4wNfX1+kpqZCQUEB3bt3h729vXjxtpaWltBxiSqEevXqwcTEBCYmJuK2Dx8+4MGDB+ICH1evXsWGDRuQl5cHXV1dmJqawszMDGZmZizCSkRUjampqSEuLk7oGESlZmFhgWvXrmHOnDlCR/msefPm4eXLl7h8+TJ3jieqgmrXro29e/eiXbt2mDFjBh4+fIjNmzejVi0usawoLC0tsWzZMuTl5X22EKyMjAwOHToEAwMDuLu7Y9u2beWckqqbCRMmoG/fvnj48CHat28vdJwyl5qaWmDe986dO8jOzkaLFi1gYmKCmTNnwsDAAJ07d4aioqLQcYkqBGVlZfTv3x/9+/cXt7169Qr37t1DUFAQ7t69i99//x3z5s1D7dq10aVLF5ibm8PU1BQ9evSAgoKCgOmJiIiIqh5tbW2YmJjg5s2bOHr0aIFNOIiIiIjKAu80ERERUYUzevRo3Lx5E2PGjIGuri709PSEjlTtRUdHo0WLFkLHoBLKycnBiBEjcPfuXVy/fr3KfUju8uXLGDNmDDw8PODh4SF0HCIiIiIiqfP398d3332Hn376qcIvHnj06BHOnDmD8+fPw9/fH+np6VBSUoKpqSkWLlwIMzMzdOzYETVr1hQ6KlGlIScnhy5duqBLly7itrS0NNy8eRM+Pj7w8fHBvn37kJmZCTU1NfTu3Rv9+vVD37590aBBAwGTExFReVJVVUVoaKjQMYhKrWfPnnB3d0dWVhZkZWWFjlOIr68vNm7ciF27dkFdXV3oOERURkQiEWbPno2WLVti9OjRiIqKwpEjR/g7VgXRq1cvfP/99wgODkanTp0+e5yGhgY8PT1ha2sLU1NTODs7l2NKqm569+6NVq1aYefOnVi/fr3QcaQuOzsbPj4+OHv2LC5evIiQkBDk5+dDT08PZmZmmDJlCszNzfn+iKiEmjRpgj59+qBPnz7itsjISPG874kTJ/Dzzz+jZs2a0NfXh5WVFfr16wcTExPeZyEiIiKSgokTJyIgIACurq6wsLBAs2bNhI5EREREVRiLeRAREVGFtHnzZoSFhWHQoEG4desWF8cIKCUlBW/evOEOr5VMfn4+vvvuO5w/fx7nzp1Dx44dhY4kVYGBgbC3t4eDgwNWrFghdBwiIiIiIqlLSEjAkCFDYGVlhYULFwodp5APHz7g+vXrOHPmDM6ePYuIiAg0btwYVlZW2LhxI0xNTdG2bVuhYxJVOQ0aNEC/fv3Qr18/AB//LgYGBuLGjRu4dOkSRowYAQAwMzNDv3790L9/f+jq6goZmYiIypiqqiri4uKEjkFUaj179kR6ejru3LkDExMToeMU8ObNG4waNQr9+/eHi4uL0HGIqBwMGTIErVq1gq2tLbp27YrTp0+jTZs2Qseq9vT19dGkSRN4e3t/sZgHAAwYMABubm5wdXWFkZERfzemMiMSiTB27FisWrUKP//8M+rWrSt0pFJ7+fIlzp49Ky7g8ebNG+jq6sLGxgbLli1Djx490LhxY6FjElU5Wlpa0NLSwqhRowAAiYmJ8PX1xfXr13Hs2DGsWLECjRo1gpWVFfr37w9ra2v+XSQiIiL6SoMGDcKUKVOQk5ODBQsWYOvWrUJHIiIioiqshtABiIiIiIoiIyODo0eP4u3btxg9ejTy8/OFjlRtRUdHAwCLeVQyHh4e8PLywrFjx2Bubi50HKkKDQ2FjY0NevbsiT179kAkEgkdiYiIiIhIqj58+ICBAwdCXl4e+/btQ40aFWMqPzs7G3/99RcGDx6MJk2awNraGr6+vhg2bBhu3ryJly9fYv/+/Rg3bhwLeRCVEzk5OZibm2P+/Pm4fv06EhMT4eXlBVVVVaxcuRJ6enpo2bIlfvzxR4SFhQkdl4iIyoCamhqSkpKQmZkpdBSiUmnTpg1UVVXh7e0tdJRCXF1d8f79e2zfvl3oKERUjjp16oSAgAAoKCjAxMQE169fFzpStVejRg2Ym5tL/P+KVatWoUOHDnBwcEB6enoZp6PqbOzYsXj//j1OnDghdJSvlpSUhA0bNsDY2BgqKipwdXXFu3fvsHz5cjx79gyhoaFYu3YtbG1tWTyAqJw0a9YMgwYNwoYNGxAeHo7Hjx9j/vz5SExMxNixY6GkpAQzMzNs3boVqampQsclIiIiqlTq16+PoUOHQl5eHjt37kRISIjQkYiIiKgKqxgrgImIiIiK0Lx5cxw9ehTnzp3Dzz//LHScaisqKgoikQjq6upCRyEJzZ07Fxs2bICXlxdsbGyEjiNVcXFxsLGxQZs2bXDo0CHUqlVL6EhERERERFI3depUPHr0CCdOnECDBg2EjoOgoCC4ublBVVUVgwYNQlpaGtatW4fY2Fjcu3cPy5cvh4mJCWrWrCl0VKJqT1FREcOGDYOXlxdevHgBPz8/ODg44MCBA9DT04OxsTE2b96M5ORkoaMSEZGUqKqqIj8/H8+fPxc6ClGp9ezZE9euXRM6RgFHjx7FgQMHsGvXLjRv3lzoOERUzlRUVHDt2jWYm5vDysoKe/fuFTpStderVy/cuHEDubm5xR4rIyODQ4cOISEhAe7u7uWQjqorJSUl2NraVrrCX1lZWfjzzz8xcOBAqKqqYsGCBWjfvj1OnjyJ5ORknDt3DlOnToW2trbQUYkIHwsguru74/Lly3j16hUOHz4MTU1NzJw5E8rKynBwcMCZM2eQk5MjdFQiIiKiSmHcuHGIjY1Fq1atMHfuXKHjEBERURXGYh5ERERUoZmYmGDt2rVYsGAB/v77b6HjVEvR0dFo3rw55OTkhI5CEli/fj1WrFiBbdu2wcHBQeg4UpWamoo+ffqgYcOGOHfuHOrVqyd0JCIiIiIiqduwYQP27Nkj/uC9UN6/f4/ff/8dHTp0gKGhIS5cuAA3NzdERUXh8uXLmDhxItTU1ATLR0TFq1mzJrp3745ffvkFkZGRuHLlCnR1dTFnzhyoqKhgyJAh8PHxETomERGV0qf3ZHFxcQInISq9nj17ws/PD5mZmUJHAQDExsZi0qRJmD59OgYMGCB0HCISSL169XD8+HHMmTMHLi4ucHNzQ15entCxqq1evXohLS0NQUFBEh2voaEBT09P7NixA15eXmWcjqqzyZMnw8fHB3fv3hU6SrEiIyPh7u4unh/KyMjAnj17kJCQgF27duHbb79F3bp1hY5JRF8gLy+PwYMHi4s6b9myBYmJibC1tYWamhpmz57NeQIiIiKiYvTo0QO6urpo2bIlTp8+jfDwcKEjERERURXFYh5ERERU4U2dOhUuLi5wdnbG06dPhY5T7URGRkJLS0voGCSBPXv24Pvvv8eaNWswbtw4oeNIVU5ODhwcHPDu3TucO3cODRs2FDoSUZWweKyj0BGIiIjoX65fvw4PDw8sW7YM/fv3FyTD69evsWDBArRo0QIeHh4wMTGBn58fHj16hHnz5kFdXV2QXERUOjVq1IClpSU8PT2RkJCAHTt24MWLFzA3N4exsTFOnToldEQiIvpKzZs3R61atRAfHy90FKJS69WrF9LT0xEYGCh0FOTl5cHZ2RkqKir45ZdfhI5T5jhXTGWlqvxsiUQiLFq0CAcPHsT27dsxdOhQvH//XuhY1ZKenh6UlJTg7e0t8XMGDBgANzc3uLq6IiwsrAzTUXX2zTffoHPnzli7dq3QUT7rwYMHcHBwQOvWrfHnn3/Cw8MD0dHRuHDhAkaOHMkCHkSVlLy8PMaMGYNr164hIiICrq6u+OOPP6CtrY1Ro0bhyZMnQkckIiIiqrDGjBmDmzdvokWLFti6davQcYiIiKiKYjEPIiIiqhQ2b96MVq1awdbWFm/evBE6TrXCYh6Vw/79+zF+/HgsW7YM33//vdBxpM7NzQ03b97EiRMnoKKiInQcoq8S+/QxFo4eipEGrTFYRwWDdYT/Wc7Pzxc6AhEREf1PSkoKnJycYGtrizlz5pR7/1lZWVi1ahVatmyJzZs3Y/r06YiJicG2bdvQvXv3cs8jCZFI9FWPVVccE/qkfv36GDVqFHx9feHv7w9VVVUMHDgQ3bt3x82bN4WOR0REJVSjRg0oKytzx12qElq2bIkWLVrg2rVrQkfB0qVLERAQgAMHDqBOnTpCxylWaeecOVdcPGnP6VeU+wRlrar9bA0bNgxXrlyBr68vevTogZiYGKEjVTsikQimpqbw9fUt0fNWrVqFDh06wMHBAenp6WWUjqq777//HkePHq1w/zbExsbC2dkZnTp1Qnh4OPbv34+nT59izpw5UFNTEzpeIZz3LRmOCf2bpqYmFixYgMjISOzcuRN3795Fu3btMHHiRLx8+VLoeEREREQVzqhRo5Ceng4jIyN4enriw4cPQkciIiKiKojFPIiIiKhSkJOTw7Fjx/Dq1Su4uLhUuUU/FRmLeVR8p06dgouLC6ZNm4a5c+cKHUfqNm/ejC1btmDPnj3o0qWL0HGIvtpvc2bAavgoeAaEYOHuw0LHAQAs2nNE6AhERET0P5MnT0Z+fj62b99e7otv/fz8YGBggMWLF8PV1RURERFYsGABmjRpUq45iKj8devWDSdOnEBgYCDq168PMzMzTJw4EWlpaUJHIyKiElBTU0N8fLzQMYikwsLCAt7e3oJmuH37NpYvX45Vq1ZBX19f0CySOv7oeamez7ni8lfa16yyqIo/WyYmJvD390d2dja6deuG27dvCx2p2unRowdu3rxZonUjMjIyOHToEBISEuDu7l6G6ag6c3R0hLKyMjZu3Ch0FAAfCypt2LAB7dq1Q0BAAA4ePIigoCA4OjqiVq1aQscjojIkKyuLUaNGITg4GDt37sSFCxegq6uLXbt2CR2NiIiIqEJRUlKCo6Mj/vnnH6SkpJS4eCgRERGRJFjMg4iIiCoNDQ0NHD58GKdPn8aaNWuEjlNtREVFQVNTU+gY9BlXr16Fo6MjnJ2d8euvvwodR+ouXbqEGTNmYOnSpXB0dBQ6DlGpRIWFoFuffpCRlYW+iVm1WahLRERExdu+fTuOHTuGffv2oXHjxuXWb35+PtatWwcLCwuoq6vj4cOHWLp0KRo0aFBuGYioYjAyMsKlS5dw4MABnDp1CkZGRggODhY6FhERSUhFRQXPn3OuiaqGnj17wt/fX7AdEN+9e4eRI0fC0tIS06ZNEyQDEVV82traCAgIgKGhIczNzXHgwAGhI1UrpqamSElJwaNHj0r0PA0NDXh6emLHjh3w8vIqo3RUncnIyGDq1KnYvn274IVSU1NTYWtri1mzZsHd3R0PHjyAg4NDuReSJiJh1axZE6NHj0ZoaCjGjBmDSZMmYdiwYXj37p3Q0YiIiIgqjFmzZuHZs2dQV1fHpUuXhI5DREREVRCLeRAREVGl0qtXL6xYsQJz5szB+fPnhY5T5SUlJeHdu3fQ0tISOgoV4datW7Czs8PgwYOxc+fOKrfo4vHjx3B0dIS9vT3mzp0rdJxiDdZRwWAdFcQ9fYKl40fAybANRnRuheWTnBH3LLzIY1/ERGHVtHEY1VVH3PZJTPgjLJ/ohJEGrTHSoDWWT3RCTHjhBWlRj0KxZOwwjOjUEk6GbbBswkj843utwDEx4Y+wfJKz+FxLx48odK70t2+w55eFmNy7G4bpa2KcaSf8NmcGwoPvleiYkmQvjsTXVkxf4tfmWTjmOA7A8E7amD9yIF7ERCH26WPMceiPEZ1bYcGoIXiVUHgHU2lcz2AdFeTm5mBoO3UM1lHBH2uXF8hW1PH/bf/U9irhOVa4umCkQWuM7aGPDT9MxdvXqSUev8/1XZIxlTTL7asXMXe4LYbpa+I7y67Y88tCZLzn4hAiIiIAePr0KWbOnInZs2fD0tKy3PrNz8/HjBkzMGvWLCxbtgxnz54V/Hc/kUhU5O81RbV/+v7TYyKRCOPHjy/2MQB4+PAh+vfvD3l5ecjLy8Pa2hoPHz4sss9nz55h0KBBUFRU/Gy+L11LWFgYunXrhrp168LMzAxPnz5FSEgIjI2NUb9+ffTq1QsxMTGFnn/q1Cn06NEDcnJy0NTUhLu7O96+fVtkH7GxsbCzs4O8vDyUlJTg5OSE5ORkicervMYEAO7fv4++ffuiXr16UFBQgI2NDS5cuFDgmIcPH6Jfv37iLP369ftsluKu/d/Xe+3aNQDAoUOHCrRLcwzS0tLg7u4ObW1tyMnJQVlZGS4uLggMDCxwHkleX6EMGzYMDx48gKamJkxMTMTjRkREFVujRo2Qmlp4ToaoMvrmm2/w4cMH3Lp1S5D+XV1d8fr1a3h6elaJ+y6S3B/43Fzxl0jrPkdJ5sgByeaaSzp/LekY/fvcg3VU8Pv8mRKPV+zTx1g+0QkjOreCk1FbrJw6tsj7ESXJI+k1VsT7EFXlnoG8vDxOnjwJNzc3ODk5YdGiRcjPzxc6VrXQuXNn1K9fHzdv3izxcwcMGAA3Nze4uroiLCysDNJRdTdx4kQAwI4dOwTLkJSUBAsLC9y7dw/Xrl3D4sWLIScnJ1gezvv+P877ct5XKPXq1cPatWtx5coVXL9+HRYWFkhJSRE6FhEREVGF0KFDB1hbWyMvL4/FPIiIiKhMsJgHERERVTozZ86Es7MzRo4ciYiICKHjVGmRkZEAIPgHuqiwBw8eoF+/frC0tMSePXtQo0bVemv/aZcYbW3tSrNg9vijjztfrnX/Dr3sHbHlyi1suRwA4942WDp+BBLjYwsdu33RHNiNnYydN/7BvO1/iB9/EROFZRNGorvVAGy5HIDfL/nDuE8/LB0/Ai9iosTHPY+KwFr3SRg4fgr2BDzEisNn8CEjHUvHjyhwrsVjhsGoVx9suRyArVcDYWE7GCtcxyD5RYL4uN/muKGevAJ+OXwaXneeYP72P/AiJhJzHPqX6BhJsxdH0muTpK9P431401pM/flX7PL5B5o67bD+h6k4tHENpv6yHjtvBEGtZWt4rlhcIIe0rudThuOPnuP4o+dwmjmvQPvnji+q7ff5M2E1fDR2+f6DVcfOI/NDBvauXFLi8Suqj5KOqSRZAGCFqwt62Ttgb2AYVhw5g3dpr7Fz6fwvDRkREVG1kJ2djZEjR6Jt27ZYtGhRufa9ZMkSbNmyBUeOHMHs2bMrxHvuz33gpaj2T235+fnir507dxb72NOnT9GnTx98++23iIiIQFRUFJycnGBnZ4e4uLhC5588eTI8PDzw/PlznD17tsTXsmjRIuzZswcJCQno2LEjnJycsHDhQnh6eiI+Ph66urqYObPwB8Ds7OwwevRopKSkICAgACkpKYV2Bf/Ux/jx4zF58mQkJCTgzp07SE9Ph4eHh8TjVV5j8uTJEzg6OmLWrFlISkpCQEAA3r9/D2tra/ExT58+hY2NDYYMGYKIiAjx4mlra2s8ffq0xNeek5ODli1bIiUlBT179gTwsVjF8+fPoaioKN59UFpjMHr0aDRs2BD+/v5IS0vD2bNn8fTpUxgbGxcYC0leXyE1bdoUZ8+ehZWVFWxtbfH48WOhIxERUTEUFRX5IRyqMjQ0NKCpqQlvb+9y7/vYsWP4448/sGvXLjRv3rzc+5c2Se8PfG6e+kukdZ+jJHPkgGRzzSWZvy7pGH2a4z/+6Dlcl62VaKz+PRZbr9zC75f80b1vf6xz/67IY0uSR5JrrGj3IYCqdc+gZs2aWLFiBbZu3Yqff/4Zw4cPR0ZGhtCxqrxatWqhS5cuX1XMAwBWrVqFDh06wMHBAenp6VJOR9Vdw4YNMXHiRKxbt06Qn6/MzExYW1sjIyMDAQEB6N69e7ln+C/O+/4/zvty3ldoFhYW8PHxQWJiIuzt7ZGbmyt0JCIiIqIKYdasWYiPj8fDhw/5HomIiIikTpTPcvBERERUCWVkZMDU1BS5ubnw8/ND3bp1hY5UJR0+fBhOTk5IT0+HjIyM0HHof548eQJzc3O0b98eZ86cEXQHlbKQk5MDa2trhIWFITAwEKqqquWe4ciRI3B0dCzxAtbBOir4ft1W9OhnW6D99J5tiHochmkr1hc4dsm+Y2jX1aTQeTb8MBWtOnRC/1HjC7Sf3rMNEWEP4bbqNwDArzNdYWBuCQu7IeJjnkc+wzQbM3H2DT9MRYu2ehg43rXAua4eP4SoRyEYO28pAGCkQWts876N+g0aio9JjIvB5N7dxOeS5BhJsxdH0muTtK/BOipY4nUc7bp8XKyUkvgSE8w7F2hLfpGAHwZbYffNYPHzpHU9nzIU9TNVkvbBOiqYvXkPun5jJW57HvkMC0cPwY4b98RtkoxfUX2UdEwlyVKUd2/SMKVPd+y9FfrF4/5r7YxJUJWXw5EjR0r0PCIioorKw8MDW7duRVBQENq0aVNu/d69exfGxsb47bffMHny5HLrVxIikajIRdxFtX/u2C895uTkBH19fcyaNatA++7du3H//n1s2LChwDm8vb3Fi4FL6tOugBYWFgCA58+fQ1VVtUBbXFwcDA0N8fLlyy+eKzU1Fa1atSpy58WTJ0/Czs5O3Pb48WNYWloiPj6+0LFCjsmIESNgY2MDZ2fnAll1dHTEuZycnNClSxe4ubkVeO66detw7949eHl5lfja586dC1VVVUyZMkXctmLFCkRHR2PLli1SHQN5eXlER0ejUaNG4rbIyEhoa2t/cXfmz72+QsvOzoapqSny8/Nx69atClH0h4iIirZixQrs2LEDz549EzoKkVSMGTMGkZGR4l22y0NcXBw6duyIESNG4LffJJ/3LQu2dnZIg0yJ5p+Boud7Jbk/UNRzJe2vtPc5vtS3JJk+N9cs6fx1WY8RAGyYNQ2t2ncsNBbefx7Gph/dS/WaSTpHX5HuQxTla+4ZZGdlYZi+ZqHfC4V06dIlODg4QEdHBydPnoSSkpLQkaq0n376CYcOHUJ4ePhXPT8mJgYGBgYYPHgwtm3bJuV0VN0lJSVBW1sbixYtKrKgQ1maN28eNm3ahHv37kFbW7tc+/4SzvsWjfO+nPcVysOHD9GlSxcsXry40PgIzc7ODgoKCgV+LiqjzMxMyMnJVaj3q0RERPRl7du3R0hICGJiYqCuri50HCIioirvjz/+wLhx45CZmSl0lDJXtbbvJiIiomqjTp06OHHiBOLj4zFhwgSh41RZUVFRUFNTYyGPCiQiIgLffPMNtLW1cfLkySpXyAMApk+fDj8/P5w8eVKQQh6lpW9iVqjNuI8N7t+8Xqi9lX7nIs8R7OeDrr2tC7Ub97FBsJ+P+PuHATfRoXvB/lS0WhZYFBns51OouAgAGPT8Bvf9boi/b9vJEL9MHo17Pt7Izc0BADRT0yhwLkmOkTR7cSS9tpL0pa3XQfxnxSZNC7U1aqaENykFF1FI63qkSa9LtwLfN1VVR2pSYoE2ScavKCW9XkmyFKW+QgO8S3td7HFERERV2aVLl/Drr79i06ZN5VrIAwDWrFkDQ0NDfPdd4V2Aq7rLly/D0dGxUHv//v1x6dKlQu1du3YtVX8GBgbiP3/a2fvfbSoqKkhKSir2PIqKikhJSSnyMXNz8wLfa2pqIiEhochji1JeY3L16lV88803Bdratm1bYLHz5cuXMXDgwELPtbe3x+XLlwu1S3LtY8aMwZ49ewq07d69GxMnTizQrzTGoHv37rC1tcX58+eRk/PxdyYtLa0vLugGvvz6CklGRgbbt2/H7du34e3tLXQcIiL6AkVFRaSmpgodg0hqevbsCX9//3LbzT43NxcjRoyAsrIyVq1aVS59lgdJ7w+URmnvc5TWl+aaJZm/Lo8xCr55o8ix6GzWq/CxJczztXP0xSnL+xBFqSr3DPr06YPAwECkpqbCyMgI9+59ufA5lU6PHj3w9OnTEs2B/JuGhgY8PT2xY8eOSv9hYap4mjZtCldXV6xYsQJv374tt37fvXuHzZs3Y/78+RWqkEd54LxvYZz35bzvl7Rv3x4zZ87Er7/+iqysLKHjEBEREVUI7u7uAIDg4OBijiQiIiIqmVpCByAiIiL6Wi1atMDBgwdhbW2Nrl27FqreT6UXGRkJLS0toWPQ/8TFxaF3795o0qQJzpw5g/r16wsdSep27NiBbdu24dixY+jSpYvQcb6KfEPFQm2KTQsXiQCA2nJ1ijzHm9cpaNikWZHneZuaUuA4BcVGhY77t7evU/GdZdELDmT/VQzGY8N2HNm8DjuWzMWblGRo6bVHtz79YD1iNGrWkpH4GEmzF0eSaytpX3Xq/f/fGVGNGkW2/XexhbSuR5rqKzQo8L2MrGyRuYsbv6KU9HolypKSjD/W/Yx7Pt54/SoJebm5Jc5FRERU1aSmpsLFxQVDhgyBi4tLuffv7e2NuXPnQiQSlXvfQktOToampmaRj9WpU/j9ed26dUvVn7y8vPjPNf73HvS/bf99/5SUlIQff/wR58+fx4sXL5BbzPsnRcWCv4PUrl272EXE/1ZeY/Lq1Ss0adKk2GM+LX7/N2VlZbx69apQuyTX3rp1a9SpUwf3799Hx44dcePGDSgoKKBz5///0KG0xuDo0aNYvHgxpkyZgqSkJHTu3BmDBg2Cq6uruFBqSV9foXXs2BHt27fHlStXYGlpKXQcIiL6DEVFRaSzXxpiAAAgAElEQVSlpSEvL0/8noOoMrO0tERWVhYCAgLK5T3IwoULcfv2bQQEBBT5/q+ykvT+QGmU9j5HSZR0rlmS+evyGKPPjUVRbSXNI8k1fo0yvQ9Rxe8ZtG7dGn5+fhg8eDDMzc2xf/9+2NoWLtBCpdetWzfUqFEDgYGBX73b/YABA+Dm5gZXV1cYGRlBV1dXyimpOps1axa2bNmC33//HbNnzy6XPoOCgpCWloaRI0eWS38VCed9C+O8L+d9i+Pk5ITly5cjNDQUnTp1EjoOERERkeDGjBkDGxsbqKioCB2FiIiIqhiu4iAiIqJKrXfv3li6dCk8PDxw7do1oeNUOSzmUXG8fPkSffr0Qf369XH58mU0alTyxXEV3f379+Hm5oa5c+fC3t5e6Dhf7XVy4d1VUpNeQqFRY4nPodCwEVKTXhZ5Hvl/LYyUb6iIN8UsepVXbIS9gWE4/uh5oa+D/0SIj6srrwCXOYvw+yV//H45ANbDXeD7919Y971riY6RNHtxJLk2afUldB8ikQjZ/9nppLQ70EkyfkUpi+vdMGsa5OrUxfIDf+FQcKT454+IiKg6mz17NnJzc7F169Zy7zs/Px/Jyclo1qzwh4YqApFIhMzMzAJt0ty5rkmTJkhJSUF+fn6hr/La9bs4zs7OqFevHnx9ffHhwwdxvrJSXmPSuHHjIhdm/zdLUbtLJiQkFLsg/EvGjBmD3bt3AwB27dpVYHfGT/1KYwwaNGiAdevW4dmzZ4iIiICrqysOHTqE4cOHi48p79dXGpSUlIp97YiISFiKiorIy8tDWlqa0FGIpEJdXR0tW7aEt7d3mfd15coVrFixAhs2bEDHjh3LvL/yJOn9gbJQkrlmSefIy2KuuTzGSKFhI7x+lViovahrLKs8Fek+RHW4Z9CoUSNcuHABQ4cOxaBBg7By5UqhI1VJDRs2RJs2bRAYGFiq86xatQodOnSAg4NDhZkboqqhcePGmD59OlavXo03b96US5+vXr2CSCRC06ZNy6W/kuC8L+d9Oe9b8SgpKQEA536JiIiI/qdGjRos5EFERERlgsU8iIiIqNKbM2cO7Ozs4OjoiOjoaKHjVCmRkZGf3aGAyk9SUhIsLS2Rl5eHixcvonFjyYtCVBapqakYNGgQunXrhkWLFgkdp1T+8blWqO3WpXPo2MNC4nPom5jh1sWzRZ5H38RM/H27riYI9rtR4JioR6Fw6///fXUy7YmQW36FzhV25xZ+GGQl/n6wjgqSX3xcPKGg2Ag9+tli3nYv3L95vUTHSJq9OJJcm7T6+pLy6KNhk2Z4lRBfoC30dkCpzinJ+BWlLK738b07cJz2A5qpqqNmzVoAgKwPH77qXERERFWBr68vdu7cifXr1xfaXa48iEQiaGlpITg4uNz7lkTz5s0RExNToO3GjRtFHisSiT57ns89ZmVlVWQxUB8fHxgaGkoetAz5+flh8eLF0NTURK1aH98/ZWRklPq8Qo9Jz549cfny5QJt9+/fh56envj73r1748SJE4We++eff6J3795f3beDgwP++usvJCUl4fz58wUWWQPSGwORSIS4uDgAHxeKOzo64u+//8bFixfFx5TV61tWcnJyEBISglatWgkdhYiIvuDT+8rU1FSBkxBJj4WFBa5fv178gaUQFxeHYcOGYciQIYU++FcVSHp/oCyUZK5Z0jnysphrLskYfel30C/paGqBwMvnC7X/dw6/pHlKoiLdh6gu9wxkZWWxe/durF27FnPnzsWECROQnZ0tdKwqp2vXrrh9+3apziEjI4NDhw4hISEB7u7uUkpG9NHMmTORk5ODjRs3lkt/LVu2RH5+Ph4+fFgu/ZUE530578t534rn/v37AD7+20FEREREHzfHOX78uPi9HxEREZG0sJgHERERVXoikQienp5o3rw57Ozs8P79e6EjVQl5eXmIiYmBlpaW0FGqtdevX8PKygpZWVnw9vZG8+bNhY4kdfn5+Rg7diyysrJw+PBh1KxZU+hIpXLxsBd8zvyJt69T8SYlGVeOHcSZfTvhOG2mxOdwmDoTpzy34fLRA0hLfiU+zynPbXCc+v/nGTLZDUd//xXBfj7IzEhH9OMwbJ7rjn5OY8XHOE6bicO/rYH/hTN4+zoVGe/f4c61S1g3czKGuhZckPb7/JmIffoY2VlZeJ2chL92bSm0qLa4YyTNXhxJrk1afX1JefTRsYc59q/7BckvEvAh/T3+8b2GC4f2leqckoxfUcriett2NoLXmqVIjI9FTnY2XsREYdui2V91LiIiosouKysLkyZNgpWVFYYNGyZYjuHDh2P37t14/bp0u/CWhT59+mDu3LmIi4vDu3fvcOHCBWzdurXIY1VVVeHv74/s7GxcvHgRGhoaxT62aNEiLFy4EMeOHUNycjLevn2LM2fOYPjw4fjpp5/K5RqLY2JiglmzZiEqKgpZWVl4+vQpvvvuu1KfV+gxmT9/PpYsWYLLly/j/fv3CA4OxtixYzFt2jTxMQsXLsS6deuwc+dOJCYmIikpCbt27cK6deuwcOHCr+67fv366NWrF5ycnGBrawt5efkCj0tzDMaPH4+QkBBkZmbi5cuXWLNmTYEF6WX1+paVAwcOICkpCUOHDhU6ChERfQGLeVBVZG5ujsDAwDL7AFxOTg6GDx+ORo0aYfv27WXSh9BKcn9A2koy1yzpHHlZzDWXZIwaKTXH43/uIjcnG/dvXsekXkaS9TF1Jk7t2Yqrxw/hTUoy3qW9ht+5Uzi+rfAHu8vqNatI9yGq2z0DNzc3nDlzBkeOHIGlpSV3vpeyLl26IDAwEHl5eaU6j4aGBjw9PbFjxw54eXlJKR3Rx/fpM2fOxOrVq/HixYsy709fXx96enpYu3ZtmfdVUpz35bwv530rnrVr16Jbt25cG0hERET0PyKRCMOGDYOvr6/QUYiIiKiKEeXn5+cLHYKIiIhIGqKjo9GlSxeYmZnh2LFjX707En0UFxcHdXV1+Pr6okePHkLHqZbS0tLQu3dvJCYm4vr169DU1BQ6UplYvnw5Fi9ejKtXr8LU1FToOACAI0eOwNHREccfPS/R8wbrqGDLlVvYtXQ+Qm77Iy8vD+26dMPo2Quh1rJ1geP+rah+op+EwWv1MoTeuQUA0DMyhvMP89GijW6B4x7/cxf7Vi3Bs5BgNGjUGNbDXWA/cWqBYxKiI/HH2p8R7O+D3JwcqLdqg0ETp8G4j434mAf+vji7fzfC7txCxvt3aKSkDOPe1nCc5oE69epLfExJshdHkmuTpK9/j/ensZa0TVrX86XX/E1qCnYv/wn3/W4gMyMDHbr1wIQFv4gXAheX73PtxY1faa63JFnSkl9h76ol+Mf3Gt6/SYOKZksMdZ2Bte7fFXp+cdbOmARVeTkcOXJE4ucQERFVJEuWLMHKlSvx4MEDaGtrC5YjOTkZ+vr66NatG44cOVKhCuq9evUKbm5uuHTpEtLT02FpaYnNmzeLFyD/+5bG0aNHMXv2bMTHx0NDQwNr166Fra1tsY+Fh4fjxx9/xOXLl5GTkwM9PT38+OOPsLe3F5/7v3MKJb2V8u/nf3qupG2JiYnw8PDAhQsX8Pr1a7Rp0wY//fQTHB0di33ul9qFHhMA8Pf3xw8//IC7d++iadOmcHV1xZw5cwoc8+DBA8yaNQs+Pj4AADMzM6xatQodOnQo9ho/1w583G3R3Nwct27dQteuXQtlk8YYXLlyBZs2bYKPjw/evn0LVVVVDBw4EIsXLxYvJJf09a0Injx5AmNjYzg7O5fbDrJERPR1UlJS0LhxY1y6dKlUuxoTVSSRkZHQ1tbGtWvXYGFhIfXz//DDD9i0aRMCAgLQsWNHqZ+/NGzt7JAGGbit+k3i53xuzlaS+wOfe66k/X3ueZLOrUs6Ry7pXHNJ59IlGSMA8Dt/Gl5rliPlZQKaKKvCZc4idLHsK9F4xT59jH2rliLkdgBEIhHadjbC2B8Xw21Az6/KU9JrrEj3IaR1zyA7KwvD9DVx8uRJ2NnZSfQcIQUHB8PW1hYyMjI4ffo0dHR0hI5UJQQGBsLY2BiPHj1C27ZtS30+d3d37Ny5E4GBgdDVLdl9TaLPycjIgK6uLnr37o2dO3eWeX+nT5+GnZ0d9u3bBycnpzLvT1Kc9+W8L+d9K868LwBs3rwZ06dPx5UrV9CzZ0+h4xRgZ2cHBQWFSl9gKzMzE3JycpXm/SoRERF9pKioiFWrVmHChAlCRyEiIqry/vjjD4wbNw6ZmZlCRylzLOZBREREVYqvry+++eYbzJs3DwsWLBA6TqX26WZnfHw8VFRUin8CSdWbN2/Qt29fxMfH4/r164J+0K8seXt7o0+fPli3bh2mT58udByx0hTzKOlziEhyLOZBRESVWXh4OPT19bF06VJ4eHgIHQc3btyAtbU1Bg0ahN27d0NWVlboSERUgYSEhKBv377Q0NCAt7c35OTkhI5ERERfkJeXBxkZGRw8eBAODg5CxyGSmhYtWmD8+PFS3039zJkzsLW1xe7du+Hi4iLVc0vD1xTzIKpuKlsxDwBISEjAwIEDER4ejmPHjsHS0lLoSJVeVlYWFBQUsGPHDjg7O5f6fNnZ2bCwsMDbt29x69Yt1K1bVwopiYADBw7A2dkZt27dgpGRUZn3N2vWLPz666/Yu3cvRowYUeb9EVHlsm3bNri6umLp0qWYO3eu0HEKYTEPIiIiEpKGhgbc3Nwwc+ZMoaMQERFVedWpmEcNoQMQERERSZOpqSnWr1+PRYsW8YO+pRQVFQU5OTk0b95c6CjVTnp6OmxtbREVFYVLly5V2UIeL168wIgRIzB48OAKVciDiIiIiEja8vPzMXnyZLRp0wZubm5CxwEAmJub49SpUzh16hQsLCwQExMjdCQiqiAOHDiAbt26QVtbGxcuXGAhDyKiSqBGjRpQUFBAamqq0FGIpMrc3Bw3btyQ6jljYmLg4uKCsWPHVshCHkRUdSkrK+PGjRvo378/rKyssHnzZqEjVXqysrLo2LEjbt++LZXzycjI4NChQ0hISIC7u7tUzkkEAMOHD4eJiQnc3NxQHvsvrly5EjNmzICTkxM8PDyQlZVV5n0SUcWXkZGBSZMmYfLkyVi0aFGFLORBREREJDR5eXm8fftW6BhERERUxbCYBxEREVU5kydPxqRJkzBu3DgEBwcLHafSioyMRIsWLVCjBt8ylqeMjAx8++23CA0NxZUrV6CjoyN0pDKRnZ2NoUOHindKqgoG66gU+C8RERER0Sd79uyBt7c3tm3bBhkZGaHjiPXu3RuBgYF4+/Yt2rVrh/Xr1yMnJ0foWEQkkJiYGNjZ2cHJyQnjxo3D1atXoaCgIHQsIiKSkKKiIot5UJVjbm4OPz8/qX0ANTs7G8OGDYOysjI2btwolXMSEZVE7dq1sW/fPixbtgzTpk3DpEmTOBdTSl27dpVaMQ/g4w68np6e2LFjB7y8vKR2XqreRCIRNmzYgICAABw/frxc+lu9ejX27duHrVu3onPnzvDx8Snzfomo4rpw4QLat2+PI0eO4MSJE/jpp5+EjkRERERUIbGYBxEREZWFWkIHICIiIioLGzduxOPHj2Fra4vbt2+jadOmQkeqdCIjI6GlpSV0jGolKysLQ4cORVBQEK5cuYJ27doJHanMeHh44N69e7h161aV+WDQ8UfPhY5QaRRX8KSyjWVVux4iIiKSrtevX2PWrFmYNm0aunXrJnScQnR0dHDv3j2sW7cOc+bMwYYNG/Djjz9i/PjxLO74GSKR6IuPl8fumhUNx6RyS05OxurVq7Fx40aoqqri4sWL6N27t9CxiIiohBo2bIjXr18LHYNIqszNzZGeno67d++ie/fupT7fzJkz8eDBAwQGBqJu3bpSSFg1cc5bchwr+hoikQizZ8+GtrY2Ro8ejejoaBw+fBgNGjQQOlqlZGhoiF27diEnJwe1aklnOeyAAQPg5uYGV1dXGBkZQVdXVyrnperNwMAAI0eOxA8//ID+/fujTp06Zd6nk5MTevXqhenTp8Pc3By9e/fG6tWr0alTpzLvuzLiHGdhHJPK78GDB1i6dCmOHj2KAQMGYMuWLVBTUxM6FhEREVGFxWIeREREVBZYzIOIiIiqJBkZGRw9ehTGxsYYNGgQrly5AllZWaFjVSqRkZFclFKOsrOzMXToUPj6+uLy5cswMDAQOlKZOXr0KH777Tfs37+/Shcsoc+raotXq9r1EBERkXQtX74cIpEIixcvFjrKZ8nIyGD27NkYOnQoFi5ciMmTJ2PDhg2YOXMmRo4cidq1awsdsULhAuXCOCaVU1RUFH799Vfs3r0b9erVw8qVKzFp0iTOoRERVVJ16tTBhw8fhI5BJFVt27aFiooKbty4UepiHp/uTXh5efH+VzE45y05jhWVxtChQ6GhoYGBAwfC1NQUp0+fhqamptCxKp1OnTohIyMDT548gZ6entTOu3LlSvj5+WHYsGEICAgol8ILVPWtWLECenp6WLRoEVauXFkufaqqquL48eM4e/Ys5s+fD0NDQ3z77bfw8PCAqalpuWSoLDjHWRjHpPK6cuUK1qxZgwsXLqBbt264evUqevXqJXQsIiIiogqPxTyIiIioLHBbPSIiIqqyGjdujFOnTiE4OBiTJ08WOk6lExkZCS0tLaFjVAs5OTkYPnw4vL29cf78eRgZGQkdqcxER0dj4sSJ+O677zB8+HCh4xARERERlamoqChs2rQJCxYsqBS7q2pra8PLywsPHjyAsbExJk+eDA0NDcyYMQP37t0TOh4RScGHDx9w+PBh9O/fH61atcJff/2FpUuX4tmzZ5g2bRoLeRARVWJ16tRBRkaG0DGIpM7U1BQ3btwo1TmePn2KCRMmwNXVFU5OTlJKRkRUesbGxrhz5w5kZWXRpUuXUv97Vx3p6elBVlZW6nNXsrKyOHz4MGJjYzF9+nSpnpuqLxUVFaxcuRJr167FnTt3yrXvfv364e7duzh27BiSkpJgZmaGzp07Y/369Xj58mW5ZiGishEfH49Vq1ahffv26N27NzIzM/H333/Dz8+PhTyIiIiIJMRiHkRERFQWWMyDiIiIqjQ9PT3s3bsXnp6e2LJli9BxKo3s7GzEx8ezmEc5yM3NhZOTE86fP4+///4b3bp1EzpSmcnLy4OLiwtUVFSwZs0aoeMQEREREZW5uXPnQkVFBZMmTRI6Sono6elh9+7diIqKwrRp03Du3DkYGBhAX18fa9asQUJCgtARiagE8vPz4evri4kTJ0JZWRlOTk4QiUQ4ePAgnj59ihkzZqBevXpCxyQiolKSk5PDhw8fhI5BJHVmZmbw9fVFbm7uVz0/IyMDQ4cORcuWLbFu3ToppyMiKj1VVVVcv34dPXr0QN++fbFv3z6hI1UqsrKy0NPTw/3796V+bk1NTezbtw+7du2Cl5eX1M9P1dPEiRPRs2dPjBs3DtnZ2eXat0gkgr29PW7evAl/f38YGRlh0aJFUFNTw7fffoujR48iMzOzXDMRUemkp6dj//79sLKyQosWLbBy5UpYWFjg7t27uHr1KmxsbISOSERERFSpsJgHERERlQUW8yAiIqIqb+DAgViwYAHc3Nzg7e0tdJxKITY2Frm5uSzmUcZyc3Ph4uKC06dP49SpUzAzMxM6UplasmQJ/P39ceDAAdStW1foOEREREREZerevXs4fPgwVq9eDVlZWaHjfBVlZWXMnz8fjx8/hp+fH3r06IGff/4Z6urqsLS0xJo1axAWFiZ0TCIqwocPH3DhwgVMnz4dLVu2hJmZGQIDA7FgwQLExsbizJkzGDp0KGrVqiV0VCIikpI6deogIyND6BhEUmdhYYE3b9589Ye0J06ciOjoaBw9ehS1a9eWcjoiIumoX78+/o+9O4+Lutr/OP4eZtAZ2QVlV5bcGEsUVJQlr+KGDC4ELhWZcjXFJNEb7UJlaqWGN9NCEimBJBcYSk2vXXXMJXBJQa4p4IYLCLKrbL8/7nV+WVouwIHh/Xw8eGjAzPc1Xe3C4Xw/Z8uWLXjttdcwdepUvPbaa6ivrxed1Wq4urri6NGjTfLc/v7+CA8Px6xZs7gORo1CIpFg9erV+PXXX4UeguLh4YHY2FhcvnwZCQkJqKurw+TJk2FlZYUpU6Zgw4YNuH79urA+Irq/q1evIj4+HkFBQbCyssKLL74IuVyOjRs3oqCgAKtWrUK/fv1EZxIRERG1ShzmQURERE2BwzyIiIioTXjnnXcwYcIEBAUF4ezZs6JzWry8vDwA4DCPJlRfX49p06Zh06ZNSEtLw9ChQ0UnNSmNRoP3338fH3/8Mfr06SM6h4iIiIioyS1YsAADBgzA+PHjRac0ikGDBmH16tUoKChAcnIybG1tsXTpUri4uMDZ2Rkvv/wyduzYwdPgiQS6dOkSYmNjMW7cOFhYWGDUqFHYt28fJk+ejOPHj+PYsWOYN28erKysRKcSEVETkMvl/FqMdFLv3r1hbm6OPXv2PPRjV6xYgcTERHz99ddwcnJqgjoiosYjkUgQFRWFtWvXYsWKFQgODkZVVZXorFahKYd5AMCHH36IPn368H8TajTdunXDwoULER0dLXxIjEKhwOTJk/H999/jwoULWLhwIa5du4Zp06bB0tISXl5eWLx48SMPViOix9fQ0IDMzEy8++67GDhwIGxsbDBr1ixUVFRgyZIluHTpElJTUzFhwgQOMCQiIiJ6TBzmQURERE2BwzyIiIioTZBIJFi3bh0cHR0REBCAsrIy0UktWl5eHoyMjGBubi46RSc1NDRg9uzZSE5ORkpKCoYNGyY6qUnduHEDzz//PEaMGIGwsDDROURERERETS41NRW7d+/Gxx9/DIlEIjqnUcnlcjzzzDP46quvcOXKFezfvx+TJk2CRqPBqFGjYGFhgeHDh+Pdd9/Fjz/+yBsciJrQxYsXkZiYiNmzZ+PJJ5+Evb09XnnlFdTX12PZsmW4cOECjh49ikWLFuGpp54SnUtERE1MoVBwmAfpJIlEAi8vL+zdu/ehHvfjjz/i1VdfxQcffAA/P78mqiMianzTpk3D7t27sXfvXnh6euLChQuik1o8V1dXXL9+HRcvXmyS59fX10dycjIuX76M8PDwJrkGtT3z58+HUqlEaGgoamtrRecAAKytrfHKK69g165dKCwsxDfffIMePXogJiYGrq6usLW1xZQpU/DZZ5/hxIkTqK+vF51MpJPq6upw9OhRrFy5EsHBwbC2toa7uztiY2Ph6uqKLVu2oKioCNu2bcPs2bPRqVMn0clEREREOoPDPIiIiKgpyEQHEBERETUXhUKBTZs2oX///njhhRewadMm6Olxttm95OXlwcHBQXSGTmpoaEBYWBjWrVuHb7/9FmPGjBGd1ORmz56N6upqrFu3TuduZCQiIiIi+r3a2lq8/vrrCAoKgqenp+icJiWVSjF48GAMHjwYixYtwsWLF7F9+3bs2bMHX375JRYuXAh9fX24u7vDy8sL3t7e8PT0RMeOHUWnE7U6DQ0NyMnJwb59+6DRaLBv3z7k5+dr/46NGjUKH330EYYMGQK5XC46l4iIBGjXrh1u3bolOoOoSfj4+GDRokWor69/oJ/tnT9/HhMnToRKpcKrr77aDIVERI3L09MTBw4cgEqlgoeHB1JTU+Hu7i46q8VydXWFRCLBsWPHYGdn1yTXsLe3R3x8PAICAuDt7Y2QkJAmuQ61HTKZDAkJCRgwYADee+89REdHi066i7GxMQIDAxEYGIj6+nocOXIEP/zwAzQaDV5//XWUlZXBzMwMnp6e8Pb2hre3N9zc3NCuXTvR6UStzs2bN/Hzzz9r1373799/19+xiIgIjBgxAq6urqJTiYiIiHQeh3kQERFRU+AwDyIiImpTunTpgi1btmDo0KGIjo5ucT8Mbyny8vLg6OgoOkPnNDQ04OWXX0ZcXBxSUlKgUqlEJzW5uLg4fPPNN9ixYwcsLS1F5xARERERNbnExEScOXMGaWlpolOanZ2dHUJDQxEaGgoAuHz5MjQaDTQaDXbv3o1ly5ahvr4e1tbWcHNz074NGDCA3y8Q/U5BQQEyMzO1bwcPHkRRUREMDAzg6uqKiRMnwtPTEz4+PjAxMRGdS0RELYBUKuXJ2KSznn76acyfPx/Z2dno3bv3n37uzZs3ERgYCAsLC8THx3PIOBG1Ws7Ozjh48CAmT56MIUOG4KuvvsL48eNFZ7VIJiYmsLOzQ1ZWFvz9/ZvsOv7+/njllVcwe/Zs9O/fH7169Wqya1HboFQq8fHHH2POnDl4+umnMXToUNFJ96Snpwd3d3ftUKG6ujrk5ORg//790Gg0WLVqFSIjIyGTydC9e/e71n779euHDh06CH4FRC1HTU0NTp8+fdfab0ZGBm7dugUrKyu4u7vjjTfegK+vL/r27cuDyoiIiIiamZGREaqqqlBbWwuZjLfdEhERUePgVxVERETU5gwePBhr1qzBtGnT4OLigokTJ4pOanHy8vIwcOBA0Rk6paGhAeHh4fjiiy+wceNGBAQEiE5qcmfOnMG8efOwYMEC+Pr6is4hIiIiImpy9fX1+PDDDzFlyhQ88cQTonOEs7a2RlBQEIKCggAA169fx8GDB5GZmYkjR47gyy+/1A7ZtLe3R79+/dCvXz/06dMHSqUSjo6OkEqlIl8CUZMrLy9HTk4OsrKycPToUWRmZuL48eOoqKiAvr4+evfuDTc3N7z77rtwd3dH3759uWmIiIjuSU9PD3V1daIziJqEq6srTExMsHfv3r8c5jF79mycPXsWhw8fhrGxcTMVEhE1DWNjY6SmpmLevHkIDAzEO++8g6ioKNFZLZJSqURWVlaTX2fp0qU4dOgQgoODcejQIQ4poMc2a9Ys7NmzByEhITh+/DjMzc1FJ/0lqVQKpVIJpVKJGTNmAABOn/GHkJcAACAASURBVD6Nw4cP48iRIzhy5AhSU1NRVlYGmUwGFxcX7dpv79694eLiwuHO1CYUFBTg1KlTOHHihPbvRk5ODurq6mBqaop+/fph0KBBCAsLw8CBA+Hk5CQ6mYiIiKjNMzIyAgBUVlbyUA0iIiJqNNztR0RERG3S1KlTkZmZiRdffBHOzs7a0yPov/Lz8zFp0iTRGTrl9ddfx2effYavv/4a48aNE53T5GpqavDss8+ie/fueO+990TnEBERERE1i82bN+PUqVP45ptvRKe0SObm5hgzZgzGjBmjfV9hYaF2E+uRI0ewfv165ObmAgDat2+PHj16oGfPnnBxcdH+2qNHD7Rr107UyyB6JNevX0d2djZOnTqFU6dOITs7Gzk5OTh//jwAQC6X46mnnkK/fv3wwgsvoF+/fnjyySf5Z52IiB6YVCpFfX296AyiJiGVSjF48GDs3bsXs2fPvu/nffLJJ1i/fj3UajUHLBKRzpDJZPjnP/+JJ598EmFhYfjPf/6DdevWQS6Xi05rUZRKJX788ccmv46+vj6Sk5PRt29fzJ07F2vXrm3ya5LuW7NmDVxdXfHCCy9ArVZDIpGITnpo3bt3R/fu3fHcc88B+O+BN2fOnLlr7Tc1NRUlJSUAgI4dO6JXr17adV+lUomePXuiS5curfL1U9tVX1+P/Px85OTkaNd8s7KykJOTgxs3bgAALCws0K9fP6hUKkRFRaFfv34c3EFERETUQt0Z5lFeXs5hHkRERNRoOMyDiIiI2qwVK1bg1KlTCAwMxM8//4zOnTuLTmoRqqurcfXqVTg6OopO0RlvvPEGPv74YyQkJLSZISmvv/46srOzceTIEd54RERERERtxtKlSzFhwgQolUrRKa1Gp06dMHLkSIwcOVL7voqKCmRkZGDXrl04dOgQDhw4gNTUVNy+fRsNDQ2QyWRwdHREt27d4OTk9Ic3AwMDga+I2rIrV67g7NmzyM3NvevtP//5DwoLCwH8d/PPncE0Q4cO1d604OjoCKlUKvgVEBFRa6anp4e6ujrRGURNxsfHBzExMff9uEajQWRkJBYtWgQ/P79mLCMiah4zZsyAg4MDgoODMWzYMGzZsoV7HH7DxcUFq1evRn19PfT09Jr0Wvb29li/fj1UKhV8fHwQEhLSpNcj3WdqaoqvvvoKf/vb3/DZZ58hLCxMdNJjk0gk6NatG7p164aJEydq33/58uU/DDxIS0vD1atXAQCGhobo0aPHPdd9u3TpApmM296p+dXU1ODcuXN/WPc9e/Ys/vOf/6C6uhoAYGNjAxcXF7i7uyMkJEQ7qIb/f01ERETUetzZb1JeXi64hIiIiHQJVzWJiIiozZLJZNi4cSMGDhyI8ePHY/fu3Wjfvr3oLOHy8/PR0NDAYR6N5K233sKHH36I+Ph4TJkyRXROs9izZw9WrFiBtWvXolu3bqJziIiIiIiaxbZt25CRkYHVq1eLTml1zp07h6NHj+LYsWPaX8+fPw8AsLKyQt++feHq6gp3d3c88cQTyMnJQU5ODs6cOYOjR49i06ZNuHz5svb5LC0t79rk7eDgAFtbW9jZ2cHOzo6np9Ajqaurw9WrV3HhwgUUFBTgwoULyMvLu2vzdlVVFQCgffv2cHBwgJOTE/r06YNnnnkGvXr1Qq9evWBvby/4lRARka6SSqWor68XnUHUZJ5++mm8/vrrOH36NLp3737Xxy5cuIDAwED4+fkhMjJSUCERUdMbMWIENBoNAgIC4OHhAbVazaGy/6NUKlFVVYW8vDw4Ozs3+fXGjBmDefPmYfbs2XB3d4eLi0uTX5N0m7e3NxYuXIiIiAg89dRT8Pb2Fp3UJKytrWFtbY1hw4bd9f7i4mKcOnUK2dnZOH36NHJzc7Fjxw7k5uairKwMAKCvr48uXbrctfZrZ2cHe3t72NrawtbWlvu+6JHcvHkTFy9eREFBAc6fP4+LFy9qh3Xk5ubiwoUL2uGZpqam2j9/I0aMwMsvvwylUomePXvyZw9EREREOkChUAD479eIRERERI2FwzyIiIioTevYsSPUajU8PDzw0ksvYd26daKThMvLywMAODg4iA3RAW+//TYWL16M+Ph4PPfcc6JzmkVlZSVCQ0MxZswYvPjii6JziIiIiIiazeLFizF69Gi4u7uLTmmx6urqcO7cOWRlZSEzMxOZmZk4fPgwrl27BuC/G7nd3Nzw4osvws3NDUqlEk5OTn94nqeeeuoP76uurv7DqXi5ubnYtGkTzp07h8rKSu3ndujQAV27doW1tbV2wIeNjQ3s7e1hbW0NKysrWFhYaDdpkO4rLi7GtWvXUFhYiJycHBQVFeHq1at3beC+evUqamtrAfz3ZFFLS0vtwI5x48bddROBra1tk58CTERE9HtSqVR7cxGRLnJ3d4eBgQH27t171zCPmzdvIjAwEB07dsT69eshkUgEVhIRNb3evXvj559/RmBgIAYNGoTExET4+/uLzhJOqVRCIpEgKyurWYZ5AMCSJUtw8OBBBAcH4/Dhw+jQoUOzXJd011tvvYWTJ09i/PjxOHz48D3XRnVVx44d4enpCU9Pzz98rKio6A/rvqdPn8b27dtRUFCAmpoa7ed27twZNjY2d637dunSBTY2NrCyskKnTp3QqVMnSKXS5nx5JEhtbS0KCwtRWFiIgoIC7ZDmS5cuaX9fUFCAoqIi7WPatWsHOzs7ODo6wtnZGcOHD79r7bdjx44CXxERERERNTW5XA6AwzyIiIiocXGYBxEREbV5PXv2RHJyMvz9/eHm5oY5c+aIThIqLy8P5ubmMDIyEp3SqkVHR+ODDz5AXFwcnn/+edE5zSYiIgI3btzAF198ITqFiIiIiKjZHDhwAPv27cPevXtFp7QYNTU1OH36tHZoR2ZmJo4ePYqqqirIZDJ0794dbm5uiIiIgIuLCwYPHgxzc/NHvp5CoYBSqbzvabSlpaW4ePHiXcMZ7mzYPXr0KAoKCnD9+vW7HmNoaAgrKyt07twZnTp1QufOnWFpaand8G1tbQ0zMzPtG7+Pbhnq6upQUlKCGzduoLi4WLtZ+9q1a7h69ar2ny9fvozCwkIUFRXh9u3b2sfr6emhoaEBxsbGcHR0hLu7O5555pk/3ATQrl07ga+SiIjoj+rq6jhMinSavr4+PDw8sHfvXoSGhmrfHxYWhjNnzuDw4cMwNjYWWEhE1HzMzc2xY8cOzJw5E+PGjcOiRYsQGRkpOksoQ0ND2NvbIysrCwEBAc1yTX19fSQnJ6Nv376YO3cu1q5d2yzXJd0lkUgQFxcHT09PTJgwAfv374eBgYHoLOEsLCxgYWGBAQMG/OFj9fX1fxjKW1BQgEuXLiEnJwe7d+/GhQsXUF1drX2MRCLRrvF26tTpriEflpaW2jXgO+u+pqam2hv6SKzq6mrcuHEDJSUlKCkpQWFhIa5cuaId1Hzt2jVcuXIFRUVF2nXg3+rQoYN2uIudnR369OmjHfhia2urHfpCRERERG3XnUNffvs9BBEREdHj4jAPIiIiIgCjRo1CdHQ05s2bh549e8LX11d0kjB5eXlwdHQUndGqffzxx4iOjsZnn32GqVOnis5pNrt27UJsbCySk5P5w20iIiIialPee+89eHt7w9vbW3SKEKWlpThx4oR2aEd2djZOnDiB27dvw8jICN27d4eLiwuCgoLg5uYGNzc37QaI5mJiYgITE5P7DvsA/rsZ4/Lly7h69SqKioq0G3/vbPrNzc3FwYMHtf9cV1d31+OlUuldG7x/++tvf29gYIAOHTrAyMgIRkZGUCgUMDQ0hLGxMTp06NCmT3EtKSlBdXU1qqqqUFpaisrKSlRXV6OsrAwVFRWoqKi4a7P2nd//9teysrI/PG+HDh3u2phvbW2Nvn37onPnzrCwsEDnzp21H2toaMD3338PtVqNXbt24fjx43B3d4dKpULPnj3h4ODQ/P9iiIiIHkBNTQ309fVFZxA1KR8fn7tulF6+fDni4+ORnp6OJ554QmAZEVHza9++PeLj49G3b19EREQgNzcXn376aZv+ekCpVCI7O7tZr2lvb4/169dDpVLB29sbL7zwQrNen3SPoaEh0tLS0L9/f4SEhODbb7+FRCIRndVi6enpwdraGtbW1n/6ecXFxdohD1evXr1r6O+VK1dw9OhRFBYW4urVq7hx48YfHq9QKB5o3dfMzAwKhQIdOnSAiYkJDAwMoFAoYGxsDENDwzb73+jbt2+jsrISpaWl2vXfO2vBdwZ0VFRU/Om6b0lJyT1PR+/YsaN2IHenTp3w5JNPwsLCQrsefOdjVlZWMDU1FfDqiYiIiKg1uTPI715fexIRERE9Kg7zICIiIvqfN954A9nZ2QgKCsKBAwfQs2dP0UlC5Ofnc5jHY1i+fDleffVVfPrpp3jppZdE5zSb0tJSTJs2DRMnTkRwcLDonEbz03a16AQi+o2iywWwNXISnUFERHSX06dPY/v27UhLSxOd0iwKCgq0AzuysrKQmZmJU6dOoaGhAWZmZnBxcYGnpyfmzp0LNzc39OrVq9WcEK9QKODk5AQnp7/+eqOhoQGFhYX33FD8+/edOXPmro9VVlbi9u3bf/r8pqamUCgU2k3iALSbvWUyGYyMjAAARkZGkMlkaNeunfaUThMTk7v+nbdv3/6+A0IkEsl9NzDX1NSgoqLivo0lJSV3/XN1dTVu3ryJhoYG7Yb3qqoq3Lp1C3V1ddohGxUVFaipqcGtW7dQVVWFGzduaDdt/xkjIyMYGBj8YaO8ra3tHzbR//ZzOnXq9NAnmIaGhiI0NBQ3b96ERqOBWq3GF198gXfeeQedO3fGyJEjoVKp4Ofnx9NRiYioxaitrW2zN4ZR2+Hj44OFCxciPz8fp06dwquvvooPP/wQo0ePFp3W6AoLLvJnFER/oq62VnRCixEeHg57e3s8//zzyM3NRUpKSpu9WblHjx746aefmv26Y8aMQUREBMLCwtC/f3+4uLg0ewPplq5du2Ljxo0YMWIE3n//fbz99tuik1q9jh07omPHjg/0ubdu3UJRUZF2PffPhkucO3dO+/vKyso/rJn+3p21XWNjYygUChgYGNy1Rnvn43p6ejAxMQEAGBgYoF27dnetC99xZ334Xv5sXfjP1qjvtS5cVlaGuro67ZouANy4cQMNDQ24efMmqqur71oXrqioQHV1NcrLy7WPvZ87r9XIyOiu9d3OnTuje/fu9133vbP2y++DiYiIiKgx3TmY5q/2LxARERE9DA7zICIiIvofiUSCuLg4DBs2DH5+fjh06BA6deokOqvZ5eXlwdfXV3RGq/TJJ59gwYIFWLlyJWbPni06p1m9/PLLuHXrFmJiYkSnNApra2vIZDIse2Wm6BQi+p0xQ31EJxAREd1l9erVsLe317mbx+rq6nDu3DntwI7MzEwcPnwY165dA/Dfr5nd3NwQFBQENzc3KJXKBxqCoSskEgk6d+6Mzp07P9Lj7wy3KC8vR3V1NSoqKu55KmFVVRVKS0sB/P+G6TunGALAhQsX7towDfxxyMad4RkAUF9fj/r6eu0G798+173cGSRyL3c2kd/x283hpqamkEgkkMvlUCgUkEql2j8fCoUCcrkc+vr6MDQ0hLGxMTp06IAOHTrA1NQUO3fuxPLly+Hp6YmVK1fC0dERxsbGD/Xvt7HI5XL4+vrC19cXMTExyMrKQnp6OtRqNSZOnAi5XI5hw4ZBpVLB398fNjY2QjqJiIiA/95wdb+buIh0hYeHB+RyOZKSkrB06VKEhIRg/vz5orManb2dHdRpaTiVcUh0ClGLJpPJYGVlJTqjRZgwYQKcnZ0REBCA/v37Iz09HT169BCd1ey6deuG9evXC7n2kiVLcPDgQQQHB+Pw4cP3vYGe6EENGTIEMTExCAsLg4ODA55//nnRSW1G+/btYWtrC1tb20d6/G/XdSsrK1FVVYXy8nKUl5ejqqoKlZWVKC0tRVVVFaqrq7VrxT///DN+/fVXjBgxArW1tcjNzQVw73VhAHcNz7iX364L/95vh0Pfy+/Xhe81aNrY2BhSqRTGxsawtrYG8P+Dpu+s9xobG8PQ0BAdOnT4w1qwmZmZdq2YiIiIiKilkEql0NfXx82bN0WnEBERkQ7hTg4iIiKi35DL5UhNTYWHhwcmTJiAXbt2oX379qKzmlVeXh4cHR1FZ7Q6K1euREREBBYvXow5c+aIzmlWaWlp+Oqrr7B58+ZHvpGtpfH29r7vpgYS7+OPP8b777+PS5cu8RRsIiIiEqq6uhoJCQn4xz/+AalUKjrnkdXU1OD06dPaoR2ZmZk4evQoqqqqIJPJ0L17d7i5uSEiIgIuLi4YPHgwzM3NRWe3alKpVHt6YHOaP38+tm3bhuzs7Ga97sMYPnw4nnnmGTz//PMYMmQI/vnPf+K5554TnQUAUCqVUCqViIyMxLVr17B9+3akp6dj/vz5mDVrFvr27Qt/f3+oVCr069cPEolEdDIREbUhNTU1PJGYdJ5cLkefPn3wwQcfoG/fvlizZo3opCaxatUqrFq1SnSGzouLi8Ps2bNx/vx5WFpais4hemx9+vTBgQMHMG7cOAwePBjffvst/va3v4nOalbdunVDSUkJioqKYGFh0azXlslkSEpKQr9+/fDyyy8jLi6uWa9PumnWrFnIz8/H9OnTYWFhoXMDpXWVQqGAQqF4qDX0hQsX4tixY/j888/x97//vQnriIiIiIjorygUCu1hKkRERESNgcM8iIiIiH7HwsICarUagwcPxowZM4Sd3CJCaWkpSkpK4ODgIDqlVVm7di1eeeUVLFq0CJGRkaJzmlVRURFmzpyJF198EePHjxedQ21AQ0MDYmNj8dxzz3GQBxEREQmXmJiIiooKTJs2TXTKAystLcWJEye0Qzuys7Nx4sQJ3L59G0ZGRujevTtcXFwQFBQENzc3uLm5QaFQiM6mRpKeno6xY8eKzvhLAwYMwLFjx/Daa68hJCQEaWlpWLNmDTp27Cg6Tatz584ICQlBSEgIqqursX//fqjVaqxduxbR0dHo2rUrRo4cCX9/f4wYMaLNDYslIqLmx2Ee1BbcvHkTFy9exK1bt7B582a0a9dOdBK1YqtXr8bEiRM5yIN0io2NDfbu3Yvp06djxIgRWLlyJWbNmiU6q9l0794dAPDrr782+zAPALC3t8f69evh7+8PHx8fvPDCC83eQLpnyZIluHr1KoKDg/Gvf/0LAwYMEJ1Ejeyjjz7Ce++9h9WrV3OQBxERERFRCyCXyznMg4iIiBoVh3kQERER3UOvXr2QnJwMf39/9OzZE6+//rropGaRl5cHAHB0dBRc0np8+eWXmDlzJt5777028+fkt8LCwiCVSrFs2TLRKdRG/Pjjjzh9+jS++eYb0SlEREREWLNmDYKDg9G5c2fRKfdUUFCgHdiRlZWFzMxMnDp1Cg0NDTAzM4OLiws8PT0xd+5cuLm5oVevXtDT0xOdTU3k7NmzOH36NMaMGSM65YEoFArExMRgzJgxmDZtGlxdXREfH4+hQ4eKTvsDhUIBX19f+Pr6IiYmBllZWUhPT4darUZsbCwUCgWGDh0KlUqFgIAAWFlZiU4mIiIdxGEepOsaGhowffp0lJWVoaamBrdv3xadRK3YTz/9hMzMTKxatUp0ClGjk8vl+Prrr9GtWzeEhYUhJycHK1asaBNrPvb29pDL5fj1118xaNAgIQ1+fn6YP38+wsLC0L9/f7i4uAjpIN0hkUgQGxuLoqIijBo1Cv/617/Qt29f0VnUSJYvX47IyEh8+umnmDlzpugcIiIiIiLCf3/+f/PmTdEZREREpEN0/yc0RERERI9o5MiRWL16Nd58800kJSWJzmkWeXl5kEgk6Nq1q+iUViE+Ph5///vfERUVhTfffFN0TrNLTk5GSkoK1q5dCzMzM9E51EZ88cUXGDRoEFxdXUWnEBERURt3+PBhZGRktIjTTevq6pCbmwu1Wo2oqCioVCpYWlrC1tYWAQEBiImJQUlJCYKCgpCamoqzZ8+iuLgYGo0GMTExCAkJgVKpbBM3dbRlqampMDMzg6enp+iUhzJixAicPHkSPj4+8PX1xcyZM1FVVSU6608plUpERkZCo9EgPz8fK1asAADMnTsXtra2cHd3R1RUFDIzMwWXEhGRLqmsrISBgYHoDKImEx0djZSUFCQmJkJfXx979+4VnUSt2KpVq9C3b18MHDhQdApRk5BIJIiKikJSUhJiY2Ph7++PsrIy0VlNTk9PD87Ozvj111+FdixevBiurq4IDg5u8WsY1Dro6+tj8+bNGDRoEIYNG4YjR46ITqJG8Mknn2DBggX45z//idmzZ4vOISIiIiKi/5HL5aiurhadQURERDqEO3OJiIiI/kRoaCjCwsIwffp0HDp0SHROk8vPz4e1tTXkcrnolBbvm2++QWhoKObPn4+3335bdE6zu3LlCubMmYOXXnoJo0aNEp1DbURRURG2bt2KGTNmiE4hIiIiwurVq9GnTx8MHjy4Wa9bU1ODrKwsJCQkIDw8HF5eXjA2NoazszMmTJiAlJQUmJmZISIiAmlpaSgqKkJBQcFdgz6cnJyatZlahu+++w6jRo2CTCYTnfLQTE1N8fXXX+Obb77Bt99+C3d391YzCKNLly6YMWMG1Go1iouLsXXrVri5ueGLL76Au7s7nJycMHPmTKjVap4uT0REj6WyshKGhoaiM4iaREpKCt59912sXLkS/v7+6NevH4d50CMrLCzEpk2bMHfuXNEpRE1u4sSJ2LlzJzIyMuDj44MLFy6ITmpy3bp1w+nTp4U2yGQyJCUl4erVq5gzZ47QFtId7dq1Q0pKClxdXTF69GgcPXpUdBI9hpiYGMybNw9LlixBWFiY6BwiIiIiIvoNhUKBmzdvis4gIiIiHcJhHkRERER/4ZNPPoGvry/GjRuH8+fPi85pUvn5+XBwcBCd0eKlpKTgueeewyuvvIIPP/xQdI4Qc+bMgbGxMT766CPRKdSGJCUlQSaT4ZlnnhGdQkRERG1caWkpvvnmG8yaNavJr6PRaBATE4OQkBC4u7vD0NAQvXv3xpw5c7B//344OTnhgw8+wL59+1BWVqYd9BEZGQmVSgVzc/MmbaTWoaysDBqNBv7+/qJTHktQUBCOHj0KKysreHh4ICoqCnV1daKzHliHDh2gUqnw+eef4+LFi8jIyEBISAgyMzMxduxYdOzYESqVCl988QWuXr0qOpeIiFqZiooKDvMgnZSRkYGpU6ciIiICL730EgDAx8eHwzzokX3++ecwNDTEpEmTRKcQNQtPT08cOnQIdXV1GDBgAA4fPiw6qUl1794dv/76q+gM2NvbY/369YiPj8f69etF55CO6NChA9RqNfr06YMhQ4Zg9+7dopPoEcTGxmLevHlYvHgxXn31VdE5RERERET0OxzmQURERI2NwzyIiIiI/oJUKsWGDRvQuXNn+Pn5oaysTHRSk8nPz4ejo6PojBZt06ZNmDJlCubMmYOPP/5YdI4Q6enp2Lx5M9asWQMDAwPROdSGJCQkICgoiDclEBERkXCbNm1CQ0MDJk6c2GjPWVBQALVajaVLlyIkJARKpRJmZmbw9vZGdHQ0cnNz4enpidjYWJw8eRI3btxARkYGEhISEB4eDi8vLygUikbrId2yfft21NXVYeTIkaJTHluXLl3wr3/9C6tWrcJHH30ET09P4SfuPgo9PT24ubkhKioKGRkZyM3NxfLlywEAL7/8MmxtbeHl5YWlS5ciOztbcC0REbUGlZWVXK8lnXPu3Dn4+/vj6aefxtKlS7Xv9/HxQXZ2NgoLCwXWUWtUW1uLzz//HKGhoZDL5aJziJqNo6MjDhw4gP79+8PHxwcbNmwQndRknJyckJubKzoDAODn54cFCxYgLCwMWVlZonNIRxgYGCA9PR3+/v4YPXo0kpOTRSfRQ4iLi8NLL72E999/H6+99proHCIiIiIiuge5XI7q6mrRGURERKRDOMyDiIiI6AEYGRkhLS0NRUVFmDRpUqs69fVh5Ofnw8HBQXRGi7VlyxZMnjwZYWFhWLFihegcIcrKyvDSSy9h6tSpGDFihOgcakOys7O1p1YTERERiZaYmAh/f3+Ympo+9GPr6uqQm5sLtVqNqKgoqFQqWFpawtbWFgEBAYiJiUFJSQmCgoKQmpqKs2fPori4GBqNBjExMdpBH3p6XN6nB5eeng5PT0+Ym5uLTmkUEokEM2bMwM8//4yamhq4uroiJiYGDQ0NotMemYODA2bMmAG1Wo3i4mJs2bIFSqUSn3zyCZRKJZydnREeHo5du3ahpqZGdC4REbVAFRUVHOZBOqW8vBwBAQGwsLBAUlISpFKp9mNeXl6QSCTYv3+/wEJqjbZu3YqCggLMnDlTdApRszM0NMSWLVvwyiuv4Pnnn8drr73Wqr+Pvh8HBweUlpaipKREdAoA4IMPPoCrqysmTJiA8vJy0TmkI9q1a4evv/4a4eHhmDJlCpYtWyY6iR7AunXrMGPGDERHR+ONN94QnUNERERERPehUCg4zIOIiIgalUx0ABEREVFr0bVrV6Snp+Ppp5/Gq6++qpM/DD937hy6du0qOqNF2rZtGyZPnoypU6e22UEeALBgwQLcunULH374oegUamPWr1+Prl274umnnxadQkRERG3c5cuX8e9//xsbN278y8+tqanB6dOnkZmZqX07duwYKisrIZPJ0L17d7i5uSEiIgIuLi4YPHiwzgxboJajvr4eO3bswPz580WnNDoXFxccOnQI77//PubPn49t27bhyy+/hI2Njei0x2JgYACVSgWVSoXPPvsMx44dg1qtRnp6OlauXImOHTti2LBh8Pf3R0BAwCMNFiIiIt1TUVEBQ0ND0RlEjaK2thYTJ07EtWvXcOjQIZiYmNz1cVNTS9vYBAAAIABJREFUUyiVSuzfvx/jxo0TVEmt0apVq+Dv7w9HR0fRKURCSKVSLFmyBE5OTpgzZw7y8vIQHx8PhUIhOq3R3Dm8JD8/H2ZmZmJjAMhkMiQnJ6Nv376YOXMmEhMTRSeRjpBIJPjwww9ha2uLiIgInD9/Hp988gkkEonoNLqH9evXIzQ0FG+//Tbeeust0TlERERERPQn5HI5bt68KTqDiIiIdAiHeRARERE9BHd3d8THx2PixIl44oknMGvWLNFJjaa4uBilpaXazS30/3bs2IHx48fj2WefxZo1a9rs5oc9e/Zg7dq1SE5OhoWFhegcakPq6uqwYcMGTJ06lSfQExERkXBJSUkwMDDA6NGj73p/aWkpTpw4oR3akZ2djRMnTuD27dswMjJC9+7d4eLigqCgILi5ucHNzU2nbpSgluvAgQO4du0a/P39Rac0CZlMhqioKIwaNQohISHo06cPvvzyS6hUKtFpjUIqlWr/mxEVFYW8vDzs3LkTarUaf//73zFt2jR4eHhApVJh7Nix6Nmzp+hkIiISpLy8HMbGxqIziBrFrFmzsHfvXvz444/o0qXLPT/Hy8sLGo2mmcuoNcvOzsaePXuwfft20SlEws2YMQOOjo4IDg7G0KFDsXXrVlhaWorOahRdu3aFRCJBfn4++vbtKzoHAGBnZ4f169fD398fI0aMwNSpU0UnkQ4JDw+HmZkZQkNDcfXqVcTFxcHAwEB0Fv3Gxo0bERoaioiICERFRYnOISIiIiKivyCXy1FZWSk6g4iIiHQI74IiIiIiekhBQUFYuHAhwsPDsWvXLtE5jSY/Px8AOMzjd3744QeMGzcOU6ZMQWxsbJsdJHDr1i289NJLGD16NIKDg0XnUBuzd+9eXLp0Cc8//7zoFCIiIiIkJSVhzJgx2LVrF5YuXYqQkBAolUqYmZnB29sb0dHRyM3NhaenJ2JjY3Hy5EncuHEDGRkZSEhIQHh4OLy8vDjIg5rNd999B0dHR7i4uIhOaVIeHh44cuQI/P39MXbsWISHh+vkaTmOjo6YMWMG1Go1rly5gqSkJDg5OWHp0qXo1asXnJ2dtWtWtbW1onOJiKiZVFZWorq6Gubm5qJTiB5bdHQ01q1bhw0bNqB///73/TxPT09kZmaiqqqqGeuoNfv000/h7OwMX19f0SlELcLw4cNx+PBhFBcXw93dHceOHROd1CjkcjmsrKy0+x9aCj8/PyxYsACzZs3C8ePHReeQjgkJCcH27duxe/duDBo0CGfOnBGdRP/z7bff4tlnn8XcuXPx0Ucfic4hIiIiIqIHIJPJUFdXJzqDiIiIdEjbvBORiIiI6DG98847mDhxIgIDA5GVlSU6p1Hk5+dDIpHA3t5edEqLsWvXLowbNw4TJ07E2rVr2+wgDwBYuHAhCgoKsGbNGtEp1AYlJyfD1dUVPXr0EJ1CREREbUxdXR1yc3OhVqsRFRWFoUOHIiMjA0lJSQgICEBMTAxKSkoQFBSE1NRUnD17FsXFxdBoNIiJidEO+mjL30uQeOnp6VCpVKIzmoWhoSHWrVuHlJQUfPXVV3Bzc8Mvv/wiOqvJmJmZISgoCAkJCSgsLMS+ffsQFBSEnTt3Yvjw4bCyskJwcDASEhJQWloqOpeIiJrQ9evXAQAWFhaCS4gez4YNGxAdHY2YmBiMHTv2Tz/Xy8sLNTU1+Pnnn5upjlqz8vJybNiwAXPmzOH36ES/0a1bN/z0009wdnaGt7c31Gq16KRG4eDg0OKGeQDABx98AHd3dwQHB6O8vFx0DumYO2vX7dq1Q//+/ZGSkiI6qc3bvHkzJk+ejDlz5mDZsmWic4iIiIiI6AHJZDIenEFERESNij+dJCIiInoEEokEsbGx6N27N1QqFQoLC0UnPbb8/HzY2NhALpeLTmkRNBoNxo8fD5VK1eYHefzyyy9Yvnw5lixZwmEv1Oxqa2uxdetWBAcHi04hIiIiHVdTU4OsrCwkJCQgPDwcXl5eMDExgbOzMyZMmICUlBRcv34dRkZG2Lp1K4qKilBQUKAd9KFSqeDk5CT6ZRDd5fz58zhx4gT8/f1FpzSrwMBAHDt2DObm5hg4cCBiYmLQ0NAgOqtJSaVSeHl5YcmSJcjOzsbZs2fx9ttvo6SkBKGhobCwsICXlxeWLl2K06dPi84lIqJGVlRUBAAwNzcXXEL06Hbv3o1p06bhzTffRFhY2F9+fteuXWFvbw+NRtMMddTaxcfHo7a2FiEhIaJTiFocc3Nz/PDDDwgMDMT48eOxdOlS0UmPraUO85DJZEhKSkJxcTFmzpwpOod0UJcuXaDRaDB58mQEBwcjNDQUlZWVorPapK1bt2LSpEmYPXs2VqxYITqHiIiIiIgeglQq5TAPIiIialRt945EIiIiosckl8uRmpoKqVSKCRMm4NatW6KTHsu5c+fg4OAgOqNF2L9/P0aPHo1Ro0Zhw4YNkMlkopOEqa2txbRp0+Dm5sYNRSTE7t27ce3aNQQFBYlOISIiIh1SWloKjUaDmJgYhISEwN3dHYaGhujduzfCwsKwf/9+ODk5YdGiRdi3bx/KysqQlZWF2tpaTJ8+HWPHjuWNktQqqNVqGBoawsfHR3RKs+vSpQt2796NyMhIzJ8/H+PHj8f169dFZzUbJycnhIeHY+fOnbhy5QoSExPh5OSExYsXo0ePHnB2dkZ4eDg0Gg3q6+tF5xIR0WO6M8zDwsJCcAnRozlx4gQmTJiAwMBAvPvuuw/8OE9PT+zfv78Jy0gXNDQ0YPXq1XjuuedgZmYmOoeoRWrXrh3i4+OxbNkyvPHGG5g5cyZqampEZz2yljrMAwDs7OyQkJCA5ORkrFu3TnQO6SC5XI7PPvsMW7duxdatW+Hq6oqdO3eKzmpTtm/fjkmTJuGFF17AJ598IjqHiIiIiIgekkwmQ11dnegMIiIi0iEc5kFERET0GCwsLJCWloaTJ09ixowZonMeS35+Pod5ADhw4ABGjx6NESNGIDExsU0P8gCA5cuX4+TJk4iLi4OeHr99oOa3ceNGuLu744knnhCdQkRERK1UQUEB1Go1li5dipCQECiVSpiZmcHb2xvR0dHIzc2Fp6cnYmNjcfLkSZSWliIjIwMJCQkIDw+Hl5cXFAoFcnNzkZ2djbFjx4p+SUQPLD09HSNHjkT79u1Fpwghk8kQFRUFjUaDEydOQKlUYseOHaKzml3Hjh0RFBSEhIQEXL9+Hfv27UNQUBB27NgBb29vWFpaIiQkBCkpKSgrKxOdS0REj+D69euQyWQwMTERnUL00C5evAg/Pz/069cP69atg0QieeDH3hnmwY3V9Gf27duHU6dOYdasWaJTiFq88PBwbNy4EV9//TXGjBmDGzduiE56JC15mAcAjB49Gv/4xz8we/ZsHD9+XHQO6aixY8fil19+QZ8+fTBixAg899xzuHbtmugsnffDDz9g/PjxePbZZ/H5558/1Ne2RERERETUMshkMtTW1orOICIiIh3Cu/GIiIiIHlOvXr2QnJyMxMRELF68WHTOI+MwD+DgwYMYNWoUvLy8kJiYCH19fdFJQuXl5eHdd9/FW2+9BRcXF9E51AbV1NRg69atCAoKEp1CRERErUBdXR1yc3OhVqsRFRUFlUoFS0tL2NraIiAgADExMSgpKUFQUBBSU1Nx9uxZFBcXQ6PRICYmRjvo435D7FJTU2FqagpPT89mfmVEj6ayshL//ve/MWbMGNEpwnl4eODIkSMYOnQoRo8ejfDwcNy+fVt0lhBSqRReXl5YsmQJcnJycPbsWbz11lu4fPkypkyZAktLSwwfPhwxMTG4cOGC6FwiInpARUVFMDc3541i1OqUlpbCz88Ppqam2Lx580MPofPy8kJZWRmysrKaqJB0QVxcHNzd3eHq6io6hahVCAwMxE8//YScnBwMGDAAp0+fFp300GxtbVFWVoby8nLRKfe1aNEiuLu7Izg4uEV3UutmY2ODb7/9Funp6dBoNOjRowdiYmJQX18vOk0n7dy5E2PHjsWkSZMQGxvLA3OIiIiIiFopDvMgIiKixsaVQiIiIqJGMHLkSKxevRpvvvkmkpKSROc8knPnzqFr166iM4Q5evQo/Pz8MHjwYGzZsqXNnlp8R0NDA0JDQ+Hk5ITIyEjROdRGaTQaXL9+HRMmTBCdQkRERC1MTU0NsrKykJCQgPDwcHh5ecHExATOzs6YMGECUlJSYGZmhoiICKSlpaGwsBAFBQV3DfpwcnJ6qGuq1Wr4+fm1+aF/1Hrs3LkTt2/fxujRo0WntAgmJiZITExEfHw8vvzyS3h5eeHMmTOis4RzcnJCeHg4du7ciStXriAhIQHW1tZ455130KVLFyiVSrz22mvQaDRoaGgQnUtERPdx7do1dOrUSXQG0UO5ffs2AgMDUVxcjO+//x6mpqYP/RxPPfUUTExMoNFomqCQdEFpaSm+/fZbTJ8+XXQKUavSp08fHDx4EMbGxhg8eDD27NkjOumh2NraAgAKCgoEl9yfTCZDUlISiouLMWPGDNE5pOPGjBmDkydPYtq0aViwYAF8fHywf/9+0Vk6Zd++fRg/fjzGjh2LtWvXcpAHEREREVErJpVKOcyDiIiIGhVXC4mIiIgaSWhoKObMmYPp06fj0KFDonMeSnFxMUpLS+Hg4CA6RYhjx47B19cX/fv35yCP/0lMTMS///1vfPHFF7xZkYRJS0uDi4sLnnjiCdEpREREJFBpaSk0Gg1iYmIQEhICd3d3GBoaonfv3ggLC8P+/fvh5OSERYsWYd++fdpTmRMSEhAZGQmVSgULC4tGaVCpVI30qoia3nfffYf+/fvDyspKdEqLEhISgoyMDNTW1qJfv3746quvRCe1GObm5ggKCkJCQgKuX7+Offv2wdfXF0lJSfD29oalpSVCQkKQkpKCiooK0blERPQbFy5cgL29vegMogfW0NCA6dOn4+eff8b333//yH9+9fT04OHhwZtR6b6SkpLQ0NCASZMmiU4hanVsbGywZ88eeHt7Y8SIEVi/fr3opAd2Z5jHpUuXBJf8OTs7OyQkJGDjxo348ssvReeQjjM0NMSyZctw+PBhSKVSeHl5YeTIkTh48KDotFZPo9HAz88Pfn5++PrrryGVSkUnERERERHRY5DJZBzmQURERI2KwzyIiIiIGtGKFSswZMgQjB8/HufPnxed88Dy8/MBoE0O8/jll1/g6+sLNzc3pKamQi6Xi04SrqysDK+++ipCQ0Ph4eEhOofasO+++443zBIREbUxBQUFUKvVWLp0KUJCQqBUKmFmZgZvb29ER0cjNzcXnp6eiI2NxcmTJ1FaWoqMjAwkJCQgPDwcXl5eUCgUjd61bds2NDQ0YOTIkY3+3ERNoaGhAdu2bcOYMWNEp7RIPXr0wKFDhxAREYGpU6ciODgYN27cEJ3VoshkMnh5eSEmJgbnzp3DyZMnMX/+fOTm5mLSpEno3Lkzhg8fjpiYmBZ/cxQRUVtw6dIl2NnZic4gemALFizAxo0bsWnTJjz11FOP9Vyenp4c5kH3FRcXh6CgIJiamopOIWqVDAwMsHnzZrz++uuYOnUqwsPDUV9fLzrrL1lYWKB9+/YoKCgQnfKXRo8ejX/84x8ICwvD8ePHRedQG9C3b1/s2bMH+/btQ01NDQYNGoThw4fj8OHDotNapZ9++gl+fn4YOXIkEhMTIZPJRCcREREREdFjkslkqKurE51BREREOoTDPIiIiIgakVQqRXJyMjp16gQ/P79WcyNIfn4+JBJJmzu5LycnB8OHD8dTTz3FQR6/8eabb+LWrVtYtGiR6BRqw06dOoVff/2VwzyIiIh0VF1dHXJzc6FWqxEVFQWVSgVLS0vY2toiICAAMTExKCkpQVBQEFJTU3H27FkUFxdDo9EgJiZGO+hDT695lrjVajV8fHxgZmbWLNcjelyZmZm4dOkS/P39Rae0WPr6+oiKisKOHTug0Wjg6urKm0D/hFKpRGRkJDQaDa5cuYI1a9bAzMwMb7/9Nuzs7KBUKvHaa69Bo9GgoaFBdC4RUZtz8eJF7Qn0RC3d8uXLsWLFCsTHx8PX1/exn8/Lywvnzp3DhQsXGqGOdMmJEyeQkZGB6dOni04hatUkEgmioqIQFxeHNWvWIDg4GFVVVaKz/pREIoGVlVWrGT75/vvvo3///ggODkZ5ebnoHGojvLy8sHv3bmzfvh3l5eUYOHAgfH19sXHjRty+fVt0Xqtw4MABjBo1CsOHD0dSUhIHeRARERER6QipVIra2lrRGURERKRDOMyDiIiIqJEZGxtj27ZtKC8vx7hx43Dr1i3RSX8pPz8fNjY2bWqYxfnz5zFq1Cg4OTkhNTW1SU7vbo0yMzOxevVqfPTRR7CwsBCdQ22YWq2Gubk5PDw8RKcQERHRY6qpqUFWVhYSEhIQHh4OLy8vmJiYwNnZGRMmTEBKSgrMzMwQERGBtLQ0FBYWoqCg4K5BH05OTsL66+rqsH37dg5FoFYlPT0dNjY2cHV1FZ3S4vn6+uL48ePo3bs3hgwZgqioKJ6y8xc6deqEkJAQbNy4EdeuXcPOnTvh6+uLDRs2wNvbG1ZWVggJCUFKSgoqKytF5xIRtQmXLl2CnZ2d6Ayiv7R+/XosWLAAy5Ytw+TJkxvlOT08PNCuXTtoNJpGeT7SHbGxsXBycoK3t7foFCKdMG3aNOzevRt79+6Fp6dnix+iZGtr22qGechkMiQmJqK4uBgzZswQnUNtzMiRI3Hw4EFs27YNCoUCU6ZMgb29PSIjI3HmzBnReS3WkSNHMGbMGHh5eSExMRH6+vqik4iIiIiIqJHIZDIO8yAiIqJGxTHARERERE3AxsYG33//Pby8vDB16lQkJiZCIpGIzrqvc+fOwcHBQXRGs7l06RL+9re/wdTUFN999x2MjIxEJ7UI9fX1mDNnDgYNGoSpU6eKzqE27rvvvoOfnx+kUqnoFCIiInoIpaWlOHHiBDIzM5GZmYns7GycPHkSt27dgqGhIXr06AEXFxcEBQXBzc0Nbm5uLX6wXmZmJoqLizFy5EjRKUQPLD09HQEBAS16LaIl6dSpE9RqNVauXInIyEjs3bsXGzZsgLW1tei0Fk8ul8PX1xe+vr6IiYlBVlYW0tPToVarMXHiRMjlcgwbNgwqlQr+/v6wsbERnUxEpHNKS0tRXl4OW1tb0SlEf0qtViM0NBRvvPEG5s2b12jPq1Ao4Orqiv379zfagBBq/W7fvo2kpCTMnz+f3xcRNSJPT08cOHAAKpUKHh4eSEtLg5ubm+ise7K1tUVBQYHojAdmZ2eHhIQE+Pv7w9fXF9OnTxedRG3MqFGjMGrUKFy4cAFxcXGIi4vDRx99hCFDhiAwMBAqlQpdunQRndkiHDt2DMOHD8fAgQOxZcsWtG/fHtXV1SgsLERJSQlKS0u1bzdu3EBlZSXKyspQV1eH6upq3Lx5E7W1tSgvL4eBgQHatWt31/ObmJjA1NRU+2ZmZgZTU1NYWVnBzs6Og0OIiIiIiJoYh3kQERFRY+MwDyIiIqImolQqsWXLFowcORJvv/023n//fdFJ95Wfn99mhnkUFhZi+PDh0NfXx44dO9CxY0fRSS3G559/joyMDGRkZHBjIwlVXl6OAwcOYNasWaJTiIiI6E8UFBRoB3ZkZWUhMzMTp06dQkNDA8zMzODi4gJPT0/MnTsXbm5u6NWrF/T09ERnP7Qff/wRlpaW6NWrl+gUogdy+fJlHDlyBFFRUaJTWhWJRILw8HB4e3sjODgY7u7uSExMxNNPPy06rVVRKpVQKpWIjIzE/7F352FR1vv/x18zgIBsosjqkpBaYLmMCgiiIuAGogjuYBt0Oi6jWampRNtRTmVix92OiVuCCTgoLrglCCaEEnjcQxQE0djVAQZ+f/SLc/yW5QJ8ZobX47q8rmRm7s9zUKfhnvt+37dv38aBAweQmJiI+fPn46233kLfvn3h6+sLPz8/9OvXj/sfiIiawG9XnOcwD1Jnx48fx8SJE/H66683y+dl7u7uOHr0aJNvlzTXd999h7KyMoSEhIhOIdI6Dg4OSE1NRVBQEIYMGYJt27Zh3LhxorN+x87ODunp6aIznsioUaPw3nvvYdasWZDJZOjTp4/oJGqFOnfujIiICCxduhRJSUmIjo7GokWLMGvWLPTt2xd+fn7w8/ODTCZrFft1iouLcevWLdy8eROFhYXIysrC5s2bYWpqil9++QWOjo4oLi5GdXX17x5rYGAAMzMzGBkZwczMDFKpFIaGhjAwMICOjg5MTU1x69YtqFSqxsfU19c/NAiktLT0odt1dHRgZ2eH5557rvGXk5MT+vbti+eff75V/JkQERERETU3HR2dh96HExERET0rDvMgIiIiakZDhw7F5s2bMX36dNja2uLvf/+76KQ/lJeXBz8/P9EZza6srAwjR45EbW0tTpw4ASsrK9FJauPOnTtYunQp5s6di969e4vOoVbuxIkTqKurw7Bhw0SnEBEREQCVSoXr1683DuzIzMzEmTNnUFxcDACwsbGBTCZDUFAQZDIZnJycYG9vL7i66Rw7dgyenp48CJY0RmJiIgwMDODp6Sk6RSP169cPP/74I8LCwjB8+HAsWbIE4eHhGjmMSDRLS0uEhIQgJCQE9+/fR2pqKhQKBTZt2oQPP/wQXbt2xYgRI+Dr6wsfHx/o6+uLTiYi0khXr16FRCJpNQO7SfNkZ2dj/PjxGDlyJFavXt0sa7i5uWHlypUoLy+HmZlZs6xBmuXrr7/G6NGjYWtrKzqFSCuZm5vjwIEDmDt3LgICAhAeHq52Q0VtbGxQVFQkOuOJffzxx0hNTcXEiRORmZkJExMT0UnUSuno6MDX1xe+vr5QKpU4ceIE9u7di2+++QYfffQROnToABcXl8ZfAwcOhKmpqejsx1ZdXY2bN2+iuLgYN27cQFFRUePAjoKCAty8eRO3bt1CTU1N42OMjIzw4MEDmJmZwcvLC9bW1ujYsSOsra1hYWGBjh07on379jAzM4OZmRkMDAyapLWyshJlZWUoLCzE9evXkZeXh7y8PFy/fh0//PADrly5grq6OpiYmKBPnz7o27cvZDIZhg4dii5dujRJAxERERFRa6Krq4u6ujrRGURERKRFOMyDiIiIqJlNnToVly9fxpw5c9CpUyeMHTtWdNLvXL9+Xes/wK2oqICPjw9KSkrw/fff8+C9/2P+/PkwNDTEBx98IDqFCEeOHMFLL73EgTtEREQC1NbW4tKlS41DOzIzM3H27FlUV1dDV1cXPXr0gEwmw7x58+Do6AhXV1dYWFiIzm42dXV1OHXqFL744gvRKUSPbd++fRg+fDjatm0rOkVjmZqa4ttvv8WGDRswe/ZsnDx5Ejt27ODPKM/A0NAQXl5e8PLyQlRUFHJzc5GYmAiFQoGNGzfC0NAQnp6e8PPzw9ixY2FtbS06mYhIY1y+fBk2NjY80ZPU0pUrV+Dj4wOZTIZvv/0WOjo6zbKOm5sb6uvrkZ6ejhEjRjTLGqQ58vLycOzYMcTFxYlOIdJqurq6+Ne//oWXX34ZM2fOxI0bN7B27Vq0adNGdBoAoGPHjrh9+7bojCemq6uLHTt2oF+/fggLC8POnTtFJxFBX18fPj4+8PHxwb/+9S+cPXsWJ06cQHp6OjZt2oSlS5dCKpXC0dERjo6O6N69O55//nn06NED3bt3R8eOHVustbS0FCUlJSgpKUFhYWHjr1u3buHmzZuNQzsqKysbH6OrqwsrKyt07ty5cXi5n58fbG1t0alTJ9jY2ODBgwcYNWoU+vXrh6SkJBgZGbXYczIxMYGJiQk6d+4MZ2fn391+//59/PTTT8jKykJWVhbS09OxYcMGPHjwAD179oS3tze8vb0xbNgw/txIRERERPQYOMyDiIiImhqHeRARERG1gA8++ABFRUWYMmUKjh49+ocfropSVlaG8vJydO3aVXRKs7l37x7Gjh2L69ev48SJE7xC4f+RkpKCrVu3IjY2FsbGxqJziHDkyBF4eXmJziAiItJ65eXl+OmnnxqHdpw/fx45OTlQKpUwNjZGz5494ejoiKCgIMhkMshkMhgaGorOblE//PADKisrMWzYMNEpRI9FqVTiyJEj+Oyzz0SnaIWwsDDIZDJMnDgR/fv3x86dO+Hu7i46Sys4OTnByckJCxYsQH5+Pg4cOACFQoE5c+bgrbfeQt++feHr6ws/Pz/IZDLRuUREau3y5cvo3r276Ayi3ykoKIC3tze6du2K+Ph46OvrN9taVlZW6N69O1JTUznMg/Dvf/8blpaWGDVqlOgUolYhLCwMXbp0waRJk3Dx4kXExcW16In7j2JpaYl79+6hqqpK4z4D79SpE6KjozFmzBgMHz4cb7zxhugkoof06dMHffr0gVwuBwDcunUL6enp+OGHH3Dx4kUkJCTgypUrePDgAQDA2NgYlpaWsLS0RMeOHWFhYQFLS0uYm5sDANq1aweJRAJDQ0MYGBgAAFQqFSoqKhrXVCqVqKqqQnl5OcrLy1FVVYXKykqUlZXh7t27uHPnDu7cufPQCXdSqRRWVlawsbGBra0tunfvjiFDhsDW1hY2Njaws7ODjY0NLC0tIZVKH/l8L126hNGjR8PBwQH79+9v0UEej8PQ0BADBw7EwIEDG7+mVCqRkpKCw4cP4/Dhw1izZg2kUinc3d0xdepUBAYGNn7/iYiIiIjoYRKJBA0NDaIziIiISItIGvjugoiIiKhF1NbWws/PD9nZ2UhLS1Ob4RnZ2dno3bs3zp8/jxdffFF0TpOrqanBuHHjcObMGRw/fhxOTk6ik9RKXV0dZDIZrK2tcfDgQdE5RLh9+zasra2hUCgwZswY0TlERERao7CwsHFgR25uLjIzM/Gf//wHDQ0NMDc3h6OjY+PADplMhhdffPFPD15tLT5/gITlAAAgAElEQVT99FOsWbMGBQUFolOIHktSUhJGjx6NvLw8tdnvoA0qKirw+uuvIz4+HosXL0Z4eDhfI5vJvXv3cOTIESQmJkKhUODWrVvo1q0bvL294evrixEjRqjNVZ6JiNSFl5cXunXrho0bN4pOIWp09+5deHh4QCKR4MSJE+jQoUOzr/naa68hLy8PR48ebfa1SH3V19ejW7dumDp1KpYtWyY6h6hV+emnn+Dn5wddXV0oFArhxx6cOXMGAwcOxNWrV2Fvby+05Wm9//77+PLLL5GWloY+ffqIziF6IvX19bhx4wauXLmC69evo6ioqHHgxp07d1BcXIyysjIAvw4er6+vx/379xsHgAB4aNiEnp4eTExM0K5dO5iamsLExAQmJiYwMzODhYUFLCws0KFDh8ZBIR07doSVlRV0dZ/tmpeXL1/G0KFD8dxzz+HAgQMwMTF5pu2JUlJSguTkZCQkJGDv3r2or6/HmDFjMH36dIwePbpZB+8RPSl/f3+Ymppi69atolOeiVKphIGBAeLj4+Hv7y86h4iIiJ7AV199hU8//RRFRUWiU4iIiLTatm3b8Prrr0OpVIpOaXbPtpeSiIiIiB6bnp4eYmNj4eHhgVGjRiE1NVUtrnKQn58PAOjcubPgkqZXW1uLoKAgnDp1CkeOHOEgjz+wYsUKXLx4EbGxsaJTiAAAR44cgY6ODgYPHiw6hYiISCOpVCpcv369cWBHZmYmzpw5g+LiYgCAjY0NZDIZgoKCIJPJ4OTkpLEHs7eEY8eOYfjw4aIziB7bvn370KdPHw7yaGKmpqaIiYnBqlWr8N577yEzMxNbtmxB+/btRadpnbZt28LPzw9+fn5Yu3YtsrKyoFAokJiYiA0bNsDIyAjDhg2Dn58f/P39YWVlJTqZiEi4y5cvw8fHR3QGUaN79+7B398flZWVSElJaZFBHgDg5uaGb7/9FjU1NRz+1YodPHgQ+fn5mDFjhugUolbnpZdeQkZGBsaPHw83NzfExsYK3a9maWkJ4NcT2DV1/+fHH3+M06dPY+LEicjIyICpqanoJKLHJpVK0bVrV43eT3nlyhUMGzYMXbp0QVJSksYO8gCAjh07YsqUKZgyZQoqKiqwZ88ebNu2DYGBgTAzM0NwcDDmzZuH5557TnQqEREREZFwDQ0NkEgkojOIiIhIi/CyYUREREQtyMTEBPv27UN1dTXGjRunFtPj8vPz0b59exgbG4tOaVIqlQozZsxAcnIyFAoFZDKZ6CS1c+PGDXz00UdYtGgRevToITqHCABw8uRJ9O/fnwejERERPYba2lrk5uYiOjoacrkc7u7uMDMzg4ODAwICAhAbGwtzc3PMmzcPe/fuRUlJCQoLC6FQKBAREQE/Pz+NPZC9JdTW1uLUqVMYOnSo6BSix7Zv3z74+vqKztBKEokEcrkcKSkpyM3NRZ8+fXDq1CnRWVpNKpVCJpMhIiICGRkZ+Pnnn7FixQoAwOzZs2FnZwd3d3dERkbi/PnzgmuJiMRQKpW4efMmunfvLjqFCABQU1ODCRMm4NKlSzh8+DC6dOnSYmu7ubnh/v37OHv2bIutSern66+/hoeHB1544QXRKUStkoWFBZKTkzFmzBiMHDkSq1evFtby2zCP27dvC2t4Vjo6Oti+fTsqKysRFhYmOoeoVcnPz4e3tzcsLS2xf/9+rTp+wdTUFK+88gqSk5ORn5+PhQsXIj4+Ht27d8fUqVORlZUlOpGIiIiISCgO8yAiIqKmxmEeRERERC3M1tYW+/fvR3Z2NmbMmIGGhgahPTdu3GjRgylbQkNDA9544w3Ex8dj3759GDx4sOgktfTOO+/AxsYGCxYsEJ1C1CgtLQ2DBg0SnUFERKR2ysvLkZKSgqioKISEhKB///4wMTFBr169MHPmTKSmpsLe3h6ffvopTp48iYqKisZBHwsWLICfnx8sLCxEPw2Ncu7cOdy/f5/vTUhjZGdnIy8vj8M8mtmAAQNw5swZvPTSSxgyZAgiIyOF79tpLZ577jmEhYVBoVDgl19+QVxcHJycnLBy5Uo4OTnBwcEBcrkcycnJqK2tFZ1LRNQiLl26hPr6eg7zILWgUqkwffp0pKWl4eDBg+jZs2eLrt+zZ09YWloiJSWlRdcl9XH37l0kJibi9ddfF51C1Krp6+sjOjoan3zyCWbPng25XA6VStXiHYaGhjAxMdHoYR4AYG1tje3bt2P37t3YtGmT6ByiVuHGjRsYOnQo2rVrh+TkZJibm4tOajZ2dnZ47733cOXKFXzzzTc4f/48+vXrBx8fHxw+fFh0HhERERGREBzmQURERE2NwzyIiIiIBHByckJcXBzi4+OxePFioS35+flaN8xj/vz52LFjB7777jteRfsRUlJSEBsbiy+//BIGBgaic4gAANXV1cjJyYGzs7PoFCIiIqEKCwuhUCgQGRmJkJAQODk5wdzcHIMHD0ZERASuXbsGNzc3bNiwATk5OSgvL0dGRgaio6Mhl8vh7u4OQ0ND0U9D450+fRpmZmbo0aOH6BSix5KYmAhLS0sMGDBAdIrW69ChAxITE/H5559j6dKlGDduHEpLS0VntSpGRkbw8/PD+vXrcfPmTWRkZCA4OBipqanw9vaGtbU1Jk6ciOjoaJSVlYnOJSJqNufOnUObNm34npWEa2hoQGhoKBITE5GQkIC+ffu2eINEIsGgQYOQmpra4muTevjmm29gYGCAwMBA0SlErZ5EIsGCBQvw7bffYuPGjfD19UVFRUWLd1haWmr8MA8A8PT0xIIFCzB79mxkZWWJziHSajdv3sSwYcNgamqK5ORktG/fXnRSi9DT08O0adNw9uxZnDx5Evr6+hgxYgQ8PT1x9uxZ0XlERERERC2KwzyIiIioqXGYBxEREZEgQ4cOxebNm7F8+XKsXr1aWIe2DfP49NNPERUVhejoaIwaNUp0jlpSqVSYNWsWvLy8eMVmUisZGRmoq6uDi4uL6BQiIqIWoVKpcO3aNSgUCkRERMDPzw/W1taws7PD2LFjERUVhdLSUgQFBSEhIQFXr15FaWkpUlJSEBUV1TjoQyrlbt7mcPr0aTg7O/P7Sxpj3759GDNmDP/OthCJRAK5XI7k5GRkZGSgT58+SE9PF53VKuno6EAmkyEiIgIZGRm4evUqli1bhvv37yM0NBQWFhZwd3dHZGQkLly4IDqXiKhJZWdnw9HREW3atBGdQq1YQ0MDZs2ahe3btyM2NhZDhgwR1uLm5oaUlBRh65NY33zzDaZMmYK2bduKTiGi/2/ixIk4evQosrKy4O7ujuvXr7fo+h07dkRJSUmLrtlcPvroIwwaNAiTJk0SMhiFqDUoLi6Gt7c39PT0cPDgQXTo0EF0khDu7u5QKBRITU3FvXv30L9/f4SGhqK4uFh0GhERERFRi+AwDyIiImpqPKKTiIiISKApU6YgIiICcrkcCQkJQhry8/PRuXNnIWs3tfXr12PJkiVYsWIFJk2aJDpHba1btw7/+c9/8NVXX4lOIXpIeno6bGxstGrAEBER0W9qa2uRm5uL6OhoyOVyuLu7w8zMDA4ODggICEBsbCzMzc0xb9487N27FyUlJSgsLHxo0Ie9vb3op9Gq/DbMg0jdNDQ04OOPP0ZMTAzKy8sBAHfv3sXp06cxZswYwXWtj4eHB86dOwdHR0d4eHggMjISDQ0NorNaNXt7e4SFhUGhUKCoqAg7d+6Evb09IiMj8eKLL8LBwaFxEEtdXZ3oXCKiZ5KdnY3evXuLzqBWbtGiRVi/fj22bt0q/P2om5sbbt++jcuXLwvtoJaXlZWFnJwchISEiE4hov/DxcUFGRkZ0NXVRf/+/Vt06JKFhQXu3r3bYus1Jx0dHWzfvh2VlZUICwsTnUOkdYqLi+Hp6YmGhgYcO3YMVlZWopOEc3V1RVpaGnbu3Ink5GQ4ODggIiICDx48EJ1GRERERNSsOMyDiIiImpqu6AAiIiKi1i48PBxFRUWYOnUqjh492qIni6lUKhQWFmrFifPx8fGYOXMmPvroI8jlctE5aqu0tBQRERGYM2cOevbsKTqH6CGnT5+Gi4uL6AwiIqJnVl5ejp9++gmZmZnIzMzE+fPnkZOTA6VSCWNjY/Ts2ROOjo4ICgqCTCaDTCaDoaGh6Gz6H2VlZbh8+TKHeZBaqqysRHh4OIBfT+Rwd3eHnZ0dpFIpfHx8BNe1ThYWFti3bx8++eQTLF68GBkZGfj6669hamoqOq3VMzc3R1BQEIKCgqBSqZCWlobExETs3bsXq1atQocOHeDp6QlfX1/4+/vDzMxMdDIR0RPJzs6Gt7e36AxqxcLDw/HZZ59h69atmDhxougc9O/fH23btkVKSgq6d+8uOoda0NatW+Hg4MDPGIjUVKdOnfD9999j6tSp8PLywtdff41p06Y1+7rt2rVDWVlZs6/TUqytrbF9+3b4+Phg48aNCA0NFZ1EpFHi4+Px4osv/u5Ymdu3b2P48OGoq6vD8ePHYW1tLahQ/UgkEgQFBWHMmDH45z//ic8++ww7duzAli1b4OrqKjqPiIiIiKhZ1NfXQyqVis4gIiIiLcJ3FkRERERqICoqCoMHD4afnx+uXLnSYusWFhairq5O44d5HD16FJMnT8abb76JpUuXis5Ra0uWLIGOjg6WLFkiOoXod86cOYOBAweKziAiInoihYWFUCgUiIyMREhICJycnGBubo7BgwcjIiIC165dg5ubGzZs2ICcnByUl5cjIyMD0dHRkMvlcHd35yAPNXT69Gk0NDRgwIABolOIfsfIyKjxv1UqFb7//nvExMSgtrYWjo6OkMvlSE5ORm1trcDK1kcqlSI8PByHDh3CyZMnMXDgQJw/f150Fv2P34bfLF++HOfPn8fVq1exdOlSlJaW4o033oCFhQXc3d0RGRmJS5cuic4lIvpLJSUluHXrFnr37i06hVqpFStW4JNPPsHatWsxdepU0TkAAD09PQwYMACpqamiU6gFqVQq7Ny5E9OnT+cVM4nUmLGxMeLi4jB37lwEBwdj4cKFaGhoaNY1zc3NUVpa2qxrtDRPT08sXLgQc+bMQVZWlugcIo1RUFCAoKAguLi44Ny5c41fLykpwfDhw1FTU4Njx47BxsZGYKX6atu2LSIiInDhwgU4ODhg8ODBWLJkCfdBExEREZFWamho4H5GIiIialIc5kFERESkBvT09BAbGws7OzuMHTsWv/zyS4usm5+fDwAaPczjzJkz8Pf3x4QJE/DVV1+JzlFrubm52LBhA5YvX84rzZLaKS0txc2bN3nyARERqS2VSoVr165BoVAgIiICfn5+sLa2bnwPHxUVhdLSUgQFBSEhIQFXr15FaWkpUlJSEBUV1Tjog1du0Azp6emwt7eHpaWl6BSi39HR0UGbNm0af9/Q0IC6ujoAwM2bN7Fu3Tp4e3vD1tYWRUVFojJbLU9PT/z444/o0KEDnJ2dERMTIzqJHsHe3h5yuRyHDx9GUVERduzYAXt7eyxbtgw9e/aEg4MD5HI5UlJSUF9fLzqXiOh3srOzAQAvvfSS4BJqjb766ivMnz8fn3/+OcLCwkTnPMTNzY3DPFqZ5ORkFBUVqc1QGSJ6NB0dHSxfvhzr16/HihUrMHnyZNy/f7/Z1mvXrh3KysqabfuifPTRR3Bzc8PEiRNRUVEhOodII3zxxReQSCSorKyEh4cHsrKyUFZWhpEjR6KyshKHDx+Gra2t6Ey117lzZ+zfvx9r1qxBVFQUZDLZQ8NRiIiIiIi0AYd5EBERUVPjkeNEREREasLExAT79u1DdXU1xo0bB6VS2exr5ufnQ1dXV2OvLHH58mX4+vrC1dUVmzdv5omRf2HWrFno3bs3QkJCRKcQ/U5OTg4AwMnJSXAJERERUFtbi9zcXERHR0Mul8Pd3R1mZmZwcHBAQEAAYmNjYW5ujnnz5mHv3r0oKSlBYWHhQ4M+7O3tRT8NegZZWVno37+/6AyiR2rbtu0jb6upqYGuri7s7OzQoUOHFqyi39ja2uLEiROYOXMmJk2ahDfffJNXqVRz7du3R1BQEKKjo3H37l2cPHkSQUFBOHjwIAYPHgwrKyuEhIQgNjaWJ0oRkdrIyMiAra0trKysRKdQK7N582bI5XIsX74cb7/9tuic33Fzc8PFixdx+/Zt0SnUQrZu3QpXV1f06NFDdAoRPabQ0FDs378fhw4dgqenJ4qLi5tlHXNzc5SWljbLtkWSSqXYvn07qqqqEBoaKjqHSO398ssvWLt2LWpra6FSqVBdXY3BgwfDxcUFpaWl+P7779G1a1fRmRpDIpEgLCwM2dnZaNeuHVxcXBAZGclhuERERESkNTjMg4iIiJqarugAIiIiIvovW1tbJCUlwd3dHSEhIdi5c2ezDqjIz8+HnZ0ddHR0mm2N5nLz5k14e3vD3t4ecXFxD12VmH4vJiYGJ06cQFpaGoeekFrKzc2FiYkJOnfuLDqFiIhamfLycvz000/IzMxEZmYmzp8/j5ycHCiVShgbG6Nnz55wdHREUFAQZDIZZDIZDA0NRWdTMzt37hwPhCe1Zmho+KdXltXV1cWuXbugp6fXglX0v3R1dbF8+XK89NJLCAsLw4ULFxATE8MTrjWAjo4O3N3d4e7ujuXLl+PatWtQKBRITEzE1KlToaurC3d3d/j6+iIgIIA/xxKRMKdOncKgQYNEZ1Ars3XrVrzxxhuIiIjAggULROf8ITc3N0ilUqSlpcHf3190DjWz6upqJCQkIDIyUnQKET0hLy8v/PDDD/Dz80P//v2xd+9e9O3bt0nXaNeu3Z/uP9FkVlZW2L59O3x8fLBhwwaEhYWJTiJSW6tWrUJdXV3j71UqFR48eIBr165h165d6NKli8A6zdWtWzccPXoUX3zxBcLDw3HixAls374d5ubmotOIiIiIiJ4Jh3kQERFRU+NZfERERERqxtHREXFxcUhISMDixYubda0bN25o5IfSd+7cgY+PD0xMTLBv3z4YGRmJTlJr9+/fx4IFCzBjxgw4OzuLziH6Q7m5uejVqxd3gBMRUbMqLCyEQqFAZGQkQkJC4OTkBHNzcwwePBgRERG4du0a3NzcsGHDBuTk5KC8vBwZGRmIjo6GXC6Hu7s7B3m0AuXl5bh+/Tp69+4tOoXokYyNjf/09vXr16Nnz54tVEN/Ztq0aUhNTcXNmzfRv39/pKeni06iJ2Rvbw+5XI7Dhw+jqKgI0dHRsLGxQXh4OLp06QInJycsXLgQKSkpaGhoeOLt//3vf8f27duboZyItN3p06fh6uoqOoNakT179uC1116DXC5HeHi46JxHMjMzg6OjI1JTU0WnUAvYs2cPlEolJk6cKDqFiJ5C9+7dcerUKTz//PPw8PCAQqFo0u2bm5ujqqoKNTU1TbpddeHp6YmFCxdCLpcjKytLdA6RWqqursbKlSsfGuYB/DrQo76+HsHBwUhLSxNUp/l0dXWxYMECnDhxAtnZ2RgwYACys7NFZxERERERPRMO8yAiIqKmxmEeRERERGpoyJAh2LhxIyIjI7FmzZpmWyc/P1/jhnlUVlZi1KhRUCqVOHToENq3by86Se0tX74cd+/exT/+8Q/RKUSPlJubCycnJ9EZRETUgoqKivDll19CqVQ2+bZVKhWuXbsGhUKBiIgI+Pn5wdraGnZ2dhg7diyioqJQWlqKoKAgJCQk4OrVqygtLUVKSgqioqIaB31Ipdx92hplZ2ejoaEBL7/8sugUokd61DAPPT09BAYGIiQkpIWL6M/06dMHZ86cQa9evTB06FBERUWJTqKn1KFDBwQFBSE6Ohp3797FyZMn4eXlhZ07d2Lw4MGwsrJCSEgIYmNjUVVV9Zfbu3LlCtauXYvp06cjODgYlZWVLfAsiEgbXLlyBcXFxRzmQS3m4MGDmDp1Kv72t79hxYoVonP+kru7O1JSUkRnUAvYunUrRo8eDQsLC9EpRPSU2rdvj4MHDyIwMBDjx49HZGRkk227Xbt2AH4d3qutPvroI7i5uWHixImoqKgQnUOkdtatW/fIfTQqlQoPHjyAp6cnjh8/3rJhWsbFxQWZmZmws7ODq6sr4uLiRCcRERERET01DvMgIiKipsaj0YmIiIjUVHBwMD755BPMnj0bsbGxzbKGpg3zqKmpQWBgIPLz85GUlAQbGxvRSWrvxo0b+PzzzxEeHs7vF6k1DvMgImo9lEolIiMjYW9vj7fffhunTp16pu3V1tYiNzcX0dHRkMvlcHd3h5mZGRwcHBAQEIDY2FiYm5tj3rx52Lt3L0pKSlBYWPjQoA97e/smenakDc6dO4f27dujc+fOolOIHsnExOR3X9PR0YG1tTW+/vprAUX0V9q3b4/ExES88847mDdvHt58802tvTJwa6Grqwt3d3dERUXh+vXryMnJwfz583Ht2jVMnjwZlpaW8Pb2RlRUFAoKCv5wGwqFArq6ugCAXbt24cUXX3zm90ZE1DqkpaVBX18fffv2FZ1CrUBSUhL8/f0RHByMVatWic55LG5ubsjMzMSDBw9Ep1AzunXrFo4ePYpp06aJTiGiZ9SmTRts3rwZX3zxBd5//32EhYWhtrb2mbdrbm4OACgtLX3mbakrqVSK7du3o6qqCqGhoaJziNSKUqnEP//5T6hUqkfeR6VSQalUwtfXl0NWn5GVlRWOHDmC4OBgBAYGasQQQCIiIiKiP1JfXw8dHR3RGURERKRFdEUHEBEREdGjvf/++7hz5w6mT58OMzMz+Pj4NOn28/PzNeYEtfr6egQHB+OHH37A8ePH0aNHD9FJGmH+/Pno1KkT5syZIzqF6JEqKipw+/Zt/rsmImoF4uLiMHfuXBQUFEClUkFPTw9nz57FsGHDHuvxFRUVyM7ORmZmJs6fP4/c3FxkZGRAqVTC2NgYPXv2hKOjI4KCgiCTySCTyWBoaNjMz4q0TXZ2Nl5++WXRGUR/yszM7A+/vmvXLpiamrZwDT0uHR0dfPLJJxgwYACCg4Nx/vx57N69G1ZWVqLTqAk4OTnByckJCxYsQElJCZKSkpCYmIilS5di7ty5cHR0hJ+fH3x9feHm5gaJRIL4+HjU19cD+HVAWXFxMTw8PLBkyRKEh4dDKuV1GYjoj6WlpaFv374wMDAQnUJa7uDBgwgICMCUKVOwfv16jbkaoYuLC2pqavDjjz9i0KBBonOomcTExMDY2Bh+fn6iU4ioicjlcnTu3BnBwcHIy8tDTEwM2rVr99Tb+20fSUVFRVMlqiUrKyvs2LED3t7eWL9+Pd58803RSURqYevWrbhz586f3kcqlaJDhw744IMPYGxs3EJl2ktXVxfr1q3D888/j3fffRfXrl3DqlWruI+LiIiIiDSKUqlEmzZtRGcQERGRFuEwDyIiIiI198UXX+Du3bsIDAzE8ePH0a9fvybZblVVFUpLSzVmmMd7772HuLg4JCUloXfv3qJzNEJKSgpiY2OhUCi4U5HUWn5+PgCga9eugkuIiKi5XLhwAXK5HIcOHYJUKm08abWhoQFZWVl/+JjCwsLGgR2ZmZnIzMzEf/7zHzQ0NKBdu3ZwcnKCTCZDWFgYZDIZXnzxRR4MSE0iOzsbLi4uojOI/pSpqelDr6dSqRSffvopXF1dBZfR4/D390dGRgb8/f0hk8kQFxeHAQMGiM6iJtSxY0eEhIQgJCQE9+/fx5EjR6BQKLBt2zZERkaiS5cu8Pb2RmpqauO/YwCoq6sDAHz88cc4duwYdu7cCVtbW1FPg4jUWFpaGoYOHSo6g7TcgQMHMH78eEyZMgWbNm3SqJ+5HRwcYGVlhfT0dA7z0GLffvstxo0bx8FGRFomICAADg4O8PPzw8CBA5GYmPjUFwT47cT8qqqqpkxUS8OGDcOiRYswd+5cDBgwoMmOKyHSVCqVCp9++ukf3iaRSCCRSGBpaYmFCxciLCyMg+Gb2DvvvINu3bph+vTp+OWXX7Blyxbo6emJziIiIiIieiw1NTU87p6IiIialOZ80k5ERETUSkkkEmzatAmDBg3CyJEjcenSpSbZ7o0bNwAAXbp0aZLtNaf169djxYoV+PrrrzF8+HDRORqhoaEBCxYswLBhw+Dr6ys6h+hP/fZ6pCnDhYiI6PH98ssvmDNnDnr16oVjx44BwO9OWD1z5gwKCwuhUCgQEREBPz8/WFtbw87ODt7e3oiMjERpaSmCgoKQkJCAq1evorS0FCkpKYiKikJISAicnJw06qQiUl/19fXIycnBSy+9JDqF6E8ZGRlBR0cHAKCnp4dBgwbhnXfeEVxFT6JHjx5ITU2Fo6MjPDw8sGXLFtFJ1EwMDQ3h6+uL9evX48aNG8jIyMCrr76Ko0ePPvS+6H/V19cjLS0NTk5OSExMbOFiIlJ3d+7cQXZ2NoYNGyY6hbSYJg/y+I2zszPS09NFZ1Azyc/Px+nTpzFp0iTRKUTUDHr37o309HSYmZlh0KBBOH78+FNtx8jICEDrGOYBAB9++CHc3d0xadIkVFRUiM4hEmr37t24fv36Q/teJBIJpFIpbGxssGLFCvz888+Qy+Uc5NFMJkyYgKSkJOzbtw/jx4/H/fv3RScRERERET2Wmpoa6Ovri84gIiIiLaJ5n7YTERERtUJ6enrYs2cPnn/+eYwaNQpFRUXPvM2CggIAgJ2d3TNvqzklJiZi5syZ+Mc//oHg4GDRORpj586dSE9Px+effy46hegv3bhxAyYmJjA1NRWdQkRETaSurg4bNmyAg4MD1q1bB5VKhdra2j+876VLl2BnZ4eAgADExsbC3Nwc8+bNw969e1FSUvK7QR/29vYt/GyoNcnPz0d1dTUcHR1FpxD9KWNj48YrSBoZGWHXrl2Nwz1Ic7Rv3x5JSUmQy+V45ZVXIJfLoVKpRGdRM5JIJJDJZIiIiMCgQYOgq6v7yPvW1taioqICfn5+mMiqki0AACAASURBVDNnDpRKZQuWEpE6S05OhlQqxZAhQ0SnkJbShkEeAODi4oLU1FTRGdRMdu7ciXbt2vEiAERazNbWFsePH4eHhwdGjBjxVEMwDQ0NoaOjg+rq6mYoVD9SqRTbtm1DdXU1QkNDRecQCfXpp582vo+VSqWQSCSws7PD2rVrkZeXB7lcDgMDA8GV2m/o0KE4dOgQ0tLS4Ovri3v37olOIiIiIiL6S0qlEm3atBGdQURERFpEMz9xJyIiImqF2rZti71790JPTw8+Pj4oKyt7pu0VFhZCX18f7du3b6LCppeRkYHJkyfjtddew8KFC0XnaIwHDx7g/fffxyuvvIJ+/fqJziH6Szdu3ECXLl1EZxARURM5cuQIevXqhbfeegtlZWWPHOLxm/r6emzbtg1VVVXIzc1FdHQ0FixYAD8/P1hYWLRQNdGvLly4AADo2bOn4BKiP2dsbNz4+rpt2zbY2toKLqKnpaOjg+XLl2PHjh3YuHEjfH19n3mfD6k/lUqFxMTEx3qfBABr165F7969kZOT0xJ5RKTmkpOT4ezsDDMzM9EppIW0ZZAH8Oswj8LCQty8eVN0CjWDXbt2ITAwkAfVE2k5IyMjfPfdd1i0aFHjEMzffk56HL8NQa2qqmrGSvViZWWF7du347vvvsO6detE5xAJkZSUhJ9++gn19fWQSCTo1q0btm7diry8PISFhUFPT090Yqvi7OyMo0eP4ty5c/D398f9+/dFJxERERER/amamhrudyQiIqIm9ejLPRERERGR2rGwsMDhw4fh5uaG8ePHIykp6amvFFFQUABbW1tIJJImrmwaP//8M3x9fTFkyBCsWbNGdI5G+fLLL3H79m1ERESITiF6LC0xzCMvLw9nzpxp1jWIiFq78vJyrF69GmfPnoVEIkFDQ8NjPU4qlSI1NZUfggoyYMAAPPfcc6Iz1MaFCxdgZWWl1kMP/8rVq1fx448/is6gZnbt2jU0NDRg5MiRuHfvHmJjY0Un0V/Q1dXFmDFjHvn/uylTpsDBwQEBAQFwcXFBQkJCqx4sdOLECdy+fVt0RrO5ePEiysvLH/v+dXV1uHjxIvr164e33noL7u7uzVhHRP/rr16/RThy5AhmzJghOoO0kDYN8gCAgQMHQldXF+np6QgMDBSdQ03o6tWryMrKwmeffSY6hYhagEQiQUREBLp27Yq//e1vuHnzJrZu3Yq2bds+1uNb2zAPABg2bBjef/99zJ07FwMHDtSqC4Bo+/4Cahq/HStja2uLiRMnwsXFBRKJBHv27BEbpsVsbW3h5ub2yNt79+6Nw4cPw8vLC+PGjUNCQsJTH+9GRERERNTcampqoK+vLzqDiIiItAiHeRARERFpmM6dO2P//v3w8PDA5MmT8d1330FHR+eJt1NQUAA7O7tmKHx2d+/exahRo9CpUyfs2rULurp82/q4SkpKEBkZiQULFqBz586ic4geS0FBQbOfRLxo0SJ8++23zboGERH91+MO8gB+veL82rVrsXbt2mYsokeZPHkydu7cKTpDbVy4cAEvvPCC6Ixn8u677yIuLk50BrWQAwcO4MCBA6Iz6DElJiZizJgxj7x94MCBOHPmDCZMmABXV1fs2bMHQ4cObblANVFbWwtPT88nutpya1FbW4tVq1Zh1apVolOIWpW/ev1uSZcuXUJeXh68vLxEp5CW+W2Qx9SpU7Fx40aNH+QB/Hrydq9evZCWlsZhHlpmx44d6NixI4YMGSI6hYha0KuvvooePXpg/PjxGDRoEBQKxWN9Hm5sbNzqhnkAvw4zSEtLw6RJk5CRkQEzMzPRSc+M+wvoSRUUFODLL78UndEqGLZti3vV1X96n759++LQoUPw8vLC5MmTsXv3bh4PRkRERERqqaamRq2GvBMREZHm414wIiIiIg3Uq1cvxMfHY8SIEZg5cybWrVv3xNtQ12EeDx48gL+/P5RKJY4fPw5jY2PRSRolPDwcRkZGeOedd0SnED22srIytG/fvlnXUKlUGDTSD/NXrm/WdYiICKiuqEBh3lUU/nwVBdeuoODnK7hx5RKKb1xHXW0tAEBHVw9SHSlqlUoAQI/e/bBsV6LI7Fbpi7lvQqVSic5QK9owzKNOpYLH2AmQ//Mr0SlE9P/V1tRg8svPoa6u7i/va2Njg2PHjuG1117DiBEjsHHjRoSEhLRApfqor69HfX09FqzejIHDR4jOaRZXc87hxxNH0MbAAG1NTGHQ1ght9A1gaGQMQ2NjtDEwgIFhWxiZmqGNvgHa8EqlREI8yet3S0lOToaJiQmcnZ1Fp5AW0cZBHr9xdXVFenq66AxqYrt27cKkSZN48idRK+Tm5oa0tDT4+fnBxcUFCQkJ6N+//58+xtjYGNV/cYK5NpJKpdi2bRv69u2L0NBQxMTEiE56Zq1hfwGRJvp+73dYs2T+Y91XJpPhwIEDGD58OF599VVs2bJFq37+ICIiIiLtoFQqYWRkJDqDiIiItAg/1SQiIiLSUB4eHti1axcmTJgAW1tbhIeHP9HjCwoKMHjw4Gaqezr19fWYPn06cnJykJKSAmtra9FJGuXChQvYtGkTNm7cyJ2IpFEqKipgYmIiOoOIiJqIkakpur/cF91f7vvQ1xvq61FyqwC38q6h4P8P+rhx5RIKrl2GRMID9Ug9XLhwAePGjROdQUStnL6+PrZt24bu3btjxowZyMzMxMqVKyGRSESnURNx6NUbDr16i84gIg2UmJiI4cOHQ09PT3QKaQltHuQBAC4uLvj3v/8NpVIJfX190TnUBHJycpCbm/tUFzogIu3g4OCA06dPY/LkyRg6dCi2bdv2p/vzjI2NUVVV1YKF6sPKygrbt2+Ht7c31q5di7feekt0EhERnJ2dER8fD19fX7Rr1w5ffcXB5ERERESkXmpqapr9AoVERETUunCYBxEREZEGGzt2LNasWYOwsDCYm5tj9uzZj/3YwsJC2NnZNWPdk3vnnXegUCiQlJSEXr16ic7ROPPnz4eTk1Oru2Ivab6KigqYmpqKziAiomYmkUphadcZlnad0dttiOgcot8pKytDcXExXnjhBdEpRESQSCSIiIhAly5d8Le//Q1FRUXYsmULDAwMRKcREZEg5eXlOHLkCDZt2iQ6hbREQkICJk2ahOnTp2PDhg1aN8gD+HWYh1KpxNmzZ+Hs7Cw6h5rArl270KlTJwwaNEh0ChEJZGJigvj4eMyePRsTJkzAsmXL8N577/3hfY2MjFrtMA8AGDZsGBYvXox58+bB2dkZ/fr1E51ERAQvLy9s3rwZ06dPh62tLRYtWiQ6iYiIiIioUU1NDdq0aSM6g4iIiLQIh3kQERERabjQ0FDcunULc+fOhY2NDQIDA//yMSqVCsXFxWo1zGPdunVYuXIloqOj4enpKTpH4xw7dgz79+/HoUOHtPKAW9JulZWVMDExEZ1BRERErdzFixcBAD169BBcQkT0X6+99hq6dOmCwMBADB8+HAkJCbCwsBCdRUREAuzbtw8NDQ3w9fUVnUJaICYmBtOnT8err76KtWvXau3nCt27d4eFhQXS09M5zENL7N69G4GBgVr7d5aIHp+enh7WrVuHnj174t1338Xly5exZs0a6OnpPXQ/fX19KJVKQZXq4YMPPsCpU6cwadIkZGRkwMzMTHQSERGmTJmCsrIyzJw5Ex06dEBYWJjoJCIiIiIiAIBSqeQwDyIiImpS/GSTiIiISAuEh4dj9uzZmDZtGpKTk//y/sXFxairq4OtrW0L1P21uLg4zJw5E5GRkZg+fbroHI1TX1+Pd955B76+vvD29hadQ/REVCoV7t27B1NTU9EpRERE1MpduXIFenp66Nq1q+gUIqKHeHl5ISUlBQUFBXB1dcWlS5dEJxERkQBxcXEYNmwYzM3NRaeQhtuxYwemTZuG0NBQrFu3TquHIkgkEjg7OyM9PV10CjWB3NxcXLhwARMmTBCdQkRqZN68eUhMTERMTAxGjRqFsrKyh27nMA9AKpVi27ZtqK6uRmhoqOgcIqJGb731Fj744AO89dZbiImJEZ1DRERERAQAqKmp4TAPIiIialLa+4k8ERERUSuzYsUKjBs3DhMmTEBWVtaf3regoAAAYGdn1xJpf+rs2bMIDg7Gm2++iXfffVd0jkbavHkzzp07h+XLl4tOIXpiFRUVaGho4DAPIiIiEu7q1avo1q0bdHR0RKcQEf1Or169cOrUKZiamsLd3R2nT58WnURERC3owYMHOHjwIMaPHy86hTTcxo0bERwcjPnz52P16tWQSCSik5qdi4sL0tLSRGdQE9izZw+srKzg6uoqOoWI1MzIkSNx8uRJXLp0CW5ubsjLy2u8jcM8fmVlZYUdO3Zgz549WLNmjegcIqJGH3zwAeRyOYKDg3HgwAHROUREREREqKmpgb6+vugMIiIi0iIc5kFERESkJaRSKbZu3QoXFxeMHDkSly9ffuR9CwoKIJFIYGtr24KFv3f37l1MmDAB/fr1w8qVK4W2aKqqqiosXboUb775JpycnETnED2xmpoaAOCObyIiIhLu6tWrcHBwEJ1BRPRItra2+P777+Hs7Izhw4dj//79opOIiKiFHDx4ENXV1fD39xedQhpszZo1jYPVW9NwcBcXF1y/fr1x0D1prri4OIwfP55DOInoD7388stIT0+HgYEBBgwYgJSUFAAc5vG/hg4diiVLluDtt9/Gjz/+KDqHiKjRF198gWnTpmHChAlITU0VnUNERERErZxSqYSenp7oDCIiItIiHOZBREREpEXatGmD3bt3o1OnThg1ahSKi4v/8H4FBQVo3749DAwMWrjwv2praxEYGIj6+nrs2bMHbdq0Edaiyb788ktUV1fjgw8+EJ1C9FR0dXUBAHV1dYJLiIiIqLXjMA8i0gRGRkaIj4/H1KlTMXbsWGzatEl0EhERtYDdu3fD1dUVNjY2olNIQ0VGRmLWrFn4/PPPW9UgDwBwdnaGjo4OTp8+LTqFnkFeXh7Onj2LgIAA0SlEpMZsbW1x4sQJuLq6wsvLCzt37uQwj/8jPDwcHh4emDhxIsrLy0XnEBEBACQSCdavX49hw4bB398f58+fF51ERERERK2YUqkUeo4FERERaR8O8yAiIiLSMiYmJjhw4AB0dHQwZswYVFZW/u4+hYWFsLOzE1D3X7NmzUJmZiYUCgUsLCyEtmiqO3fu4PPPP8e7774LS0tL0TlET+W36dUc5kFERESiXblyhcM8iEgj6OjoYP369ViyZAnCwsIQEREhOomIiJpRVVUV4uPjERwcLDqFNFRkZCQWLVqElStX4u233xad0+JMTEzg6OiI9PR00Sn0DHbv3g0zMzMMGTJEdAoRqTljY2PExcUhLCwM06ZNw48//shhHv9DKpVi69atuHfvHkJDQ0XnEBE10tPTQ2xsLBwdHeHj44O8vDzRSURERETUSlVVVcHY2Fh0BhEREWkRDvMgIiIi0kIdO3ZEUlISCgoK4O/v/7uDUwoKCoQO81i1ahU2bdqEbdu2oVevXsI6NN3HH38MAwMDyOVy0SlET01XVxcAUFtbK7iEiIiIWrOqqircvn0bzz//vOgUIqLHIpFIEBERgVWrVuHjjz+GXC5HfX296CwiImoGMTExqKurw8SJE0WnkAZaunQpFi9ejE2bNmHOnDmic4RxcXHhMA8NFxcXB39/f7Rp00Z0ChFpAB0dHaxatQpffvkl0tPTcfnyZX4W+T+srKywY8cO7NmzB6tXrxadQ0TUyNDQEAqFApaWlvD29kZRUZHoJCIiIiJqhaqqqmBkZCQ6g4iIiLQIh3kQERERaSl7e3scOnQIWVlZeOWVVx46oUPkMI8jR45g/vz5+OSTTzB27FghDdogLy8P69evR0REBExMTETnED01PT09AEBdXZ3gEiIiImrNrl27hoaGBjg4OIhOISJ6IrNmzUJsbCw2bNiAiRMn8mrDRERaaMuWLRg7dizMzc1Fp5AGaWhowNy5c7Fs2TL8+9//xmuvvSY6SSgXFxdkZGSgpqZGdAo9haKiIqSnpyMgIEB0ChFpGLlcjmnTpqGsrAyjR49GWVmZ6CS1MXToUCxZsgTz589HZmam6BwiokZmZmY4ePAgdHR0MGLECL52ExEREVGLamhowP3792FsbCw6hYiIiLQIh3kQERERabGXXnoJ3333HeLi4jBv3rzGr4sa5vHzzz9j8uTJGDduHBYuXNji62uTpUuXws7ODq+//rroFKJnoqurCwC8GhYREREJ9fPPP0MikaBr166iU4iInlhAQAD27duHw4cPY/To0aioqBCdRERETSQvLw8nT57EjBkzRKeQBlGpVHjjjTewdu1axMTEICQkRHSScK6urrh//z6ys7NFp9BT2LNnD9q2bQtvb2/RKUSkgZycnGBra4uLFy/C3d0deXl5opPURnh4ODw8PDBp0iSUl5eLziEiatSxY0fs378fJSUlCAgI4FA+IiIiImox1dXVaGhogJGRkegUIiIi0iIc5kFERESk5Tw9PbFt2zasXr0aH374IYBfh3nY2tq2aEdlZSXGjh2Lzp07Y8uWLZBIJC26vjb56aefsGPHDixbtgxt2rQRnUP0TCQSCfT09HjwBREREQmVl5cHKysrtG3bVnQKEdFT8fT0xNGjR5GTk4Phw4fj9u3bopOIiKgJbNmyBZaWlvDx8RGdQhqipqYGU6ZMwc6dOxEXF4eAgADRSWrhhRdeQPv27ZGeni46hZ7Cnj17MHr0aBgaGopOISINpKenB4lEgvT0dOjr62PAgAFISUkRnaUWpFIptm3bhnv37uGNN94QnUNE9BB7e3skJSUhIyMDoaGhaGhoEJ1ERERERK1AdXU1AMDY2FhwCREREWkTDvMgIiIiagUCAwPx9ddf48MPP8SyZctQUVEBGxubFlu/vr4e06ZNw507d5CQkMAT5J7RggUL0K9fPwQFBYlOIWoSHTt25IlmREREJNT169fRtWtX0RlERM9EJpMhPT0d5eXlcHV1xZUrV0QnERHRM6ivr8eWLVswffp06Orqis4hDXDv3j34+/sjKSkJe/fuxejRo0UnqQ2JRIKBAwciLS1NdAo9odLSUpw4cQLjx48XnUJEGkoqlaK+vh62trY4ceIEXFxc4O3tjW+//VZ0mlqwtLTEjh07EBcXh9WrV4vOISJ6SO/evREbG4sdO3bg448/Fp1DRERERK3Ab8M8jIyMBJcQERGRNuEwDyIiIqJWYsaMGVi5ciUWL14MALC2tm6xtRcvXoyDBw8iJiYGnTt3brF1tdH333+PpKQkLFu2DBKJRHQOUZOwsbHBrVu3RGc0uQ9fmyQ6gbSQ6L9XotdvDtr4nP5Ka3zOmo5/Zs0vLy8Pzz33nOgMInoCfG38Y926dcP3338PMzMzeHh4IDs7W3SSRuDfJ83AP6fmp47fY3VsaikKhQJ5eXkIDQ0VnUIaoKysDD4+Pvjhhx+QnJwMLy8v0Ulqx8XFBenp6aIz6Ant378fEokEI0eOFJ1CRBpKR0cHKpUKwK9X1Y2Pj0doaCimTp2KiIgIsXFqYujQoVi6dCnmz5+PzMxM0TlErV5r/jn4j4wY8f/Yu++wps7+f+DvsARZCSIKiihW68BVQFEQUQsKiAtFVNzWbV212tZaR4ezautqtUXRKu69cGFduKq1WuVpv6KtVcFC2OAAfn88P3hEQBJIcme8X9eVi+Tk5Nzvc+ecO8nh5JMuWLt2LebMmYOoqCjRcYiIiIhIz2VmZgL47zEEIiIiIlVhMQ8iIiIiA/L+++9j2LBhAIBLly5ppM0dO3Zg4cKFWLVqFdq3b6+RNvXZzJkzERAQwBNxSa9oazGP0EZOCG3kVOHHFxQUqDCNfqpo/1b2udGklMQnWDF9Aka2b4U+TWrr/HYluv2KelOf6+o6VUbey7wKPU5X9jtllLVPatu6GuJ2qmkPHjxgMQ+iN/j7z3h8NqQvBr7TQGvei3FsLFvNmjURGxuLhg0bws/PzyC+tKrr77N1Afd79RExrpbVZmX6WF3roa/PuyJWrFiBoKAgvP3226KjkJZLTEyEn58fEhIScObMGbRp00Z0JK3k5eWFe/fu4cmTJ6KjkBIOHjwIX19fSKVS0VGISEcZGRkhPz+/6LaxsTG++eYbLFu2DJ9//jlGjBiBFy9eCEyoHT799FP4+vqiX79+SEtLEx2HSGN43FM3jBgxAh988AFGjhyJkydPio5DRERERHosKysLAGBpaSk4CREREekTFvMgIiIiMjA9evQAAEydOhWHDh1Sa1tXr17FkCFDMGXKFIwcOVKtbRmC3bt3Iy4uDl9++aXoKEQqVbNmTa0s5rHr7qNKPX5O5HYVJaHXVfa50aRvZr4PR5d6WH7wNLbeuIfp366v1PJEb1ei21cHfVyn8syL2ik6gtbQlfHEELdTTbt//z5cXFxExyDSWt/OnIwu/QdjQ9xtfPbjNtFxAHBsLI+NjQ2OHTsGPz8/vPvuu4iJiREdSa34+c0w6OvzJOI9aVltVqaP1bUe+vq8l+f27duIjY3F+++/LzoKabn79++jffv2yM3NxcWLF+Hm5iY6ktZq06YNjIyMNFbsniovLy8PMTEx6Natm+goRKTDXi/mUWjSpEk4ePAgduzYgaCgIKSmpgpIpz2MjIywefNm5OTkYPDgwSwmQAaDxz11x8KFC9G3b1+EhYUhPj5edBwiIiIi0lMs5kFERETqwGIeRERERAYmKSkJNjY2GDp0KPr27YvY2Fi1tJOcnIw+ffrAx8cHixYtUksbhiQvLw+ffvopwsPD4e7uLjoOkUo5OjpqZTEPIlW4e+0yeo2aCCtbKUzNzODlH6QzxQOIiAxFRkYGUlJSWMyD6A3u37kNL/8gmJqZoXm79nw/oyOqVKmC7du3o0+fPggJCcGuXbtERyIiIgUtX74cDRo0gL+/v+gopMXu3LmD9u3bw9raGj///DPq1KkjOpJWk0qlaNSoEeLi4kRHIQWdPXsWKSkpCA4OFh2FiHSYsbEx8vLySr2va9euOHfuHOLj4+Hj44P79+9rNpyWcXBwwJYtW3Do0CGsWrVKdBwijeBxT90hkUjwww8/oFGjRggMDERiYqLoSERERESkhwqLeVhZWQlOQkRERPrERHQAIiIiItKsxMREODg4YM2aNcjIyECPHj1w4sQJeHp6qqyN/Px8REREID8/H1u2bIGxsbHKlm2ofvzxR/zxxx/Yt2+f6ChEKqdrxTz++uMuNi35Ar9f+e9J343e8cSQGbNRp0GjonlCGzkBUO5XaQsfsyrmAqIWz8etS+eRlZ5ebDl//XEXmxZ/jt+v/vfXI5t4tMGg6bMUarus6VdOxWDPupW4d/smpPYOaOMfiPD3p8PC0qrEY787fRXr53+M3+LOo4qFBVq088XwT+bDWiqrcB8V/gWAzn36Y9znSxXus38f/4MfvvgUv8WdR35eHpq2boshH85G7foNKpxHHesY3rxuqflffy7u3/0dUYvm4e4vV2BkbIxG73ii25D30NLHr9jyXn+cIttFdkY6tq1cissnj0Ge9ASWNlK09PFD1wFD0KB5qzJ6uLjS2le238pbx6L1UeHz9aZt7fV1enWeeVE70bR1O5w7tA/Lpo0tmq7M/qhon644GIvIBXMQf/0q8vPzS92W1TlGqGKf1dR2CFR8X1F0bFZmm3nTshV5zpQZg19dtqr6kv6r8CT9unXrCs0hkojxCFDd64Ii+4Si+40qxnel1k3BcXvFoTNY+fEUPIj/HfWbNseEr5bjxfNnWPXxVPz1RzzeatYS7y9cAXvHWsVyqPL1qm9TZwBAr/fGI2LaJxUaE1X1nqEy74uUzaLIWK3NTExMEBkZCVtbW/Tr1w/r1q3DsGHDRMfSGH5+047Pb8r0RVl9Wlaf/P1nPKIWzcftK3EwMjJCw5buGP7RXEzq5ldifmXWtaLjbnmK5TU2RjMvb4z4ZH6F+02Vbapi/AaAfx8/Uvm2p+z7bFX1nShyuRxbtmzBkiVLIJFIRMchLXX16lUEBgaiSZMm2L9/P2xtbUVH0gleXl4s5qFDDh06hEaNGqFBgwblz0xEVAYjIyPk5+eXeX/z5s0RFxeHkJAQeHp6Yu/evfD29tZgQu3SoUMHzJ49G1OnToWHhwe8vLxER6oUHvfkcc834XFP3TvuaW5ujn379qFdu3YICQlBbGwsqlatKjoWEREREemRzMxMmJmZwdTUVHQUIiIi0iNGogMQERERkWYlJSWhRo0aMDY2RlRUFNq3b4+AgADcuHFDZW189tlnOH36NHbt2gV7e3uVLddQ5ebmYv78+Rg9ejTeeust0XGIVK5evXpISUlBSkqK6CjlevLXfcwdFg6Pjv5YcyIOa09dRofuoVgwbhiSn/yvIElFfrGn8DHfz5mJHsPHYv3PN/DJ95uLtf35ewPRtks3rDkRh9XHL6KNfxDmjxyAJ3/dL7ftsqYvGDcUHXuFYePlO1iw/SAy01Kxfv6sUh+7etY0dOk/BD+cu4FFO4/iWW4ONi6cV2xeZfto191HRRdlCnkAwNdTxqBtQDBWH7+INSfi0ObdQMwfOQBJ//xd4TzqXsfCy+se3b+HpVNGo+fI8YiMu4UF2w4iNycb80cOKLG817Mosl18O3MSLK1t8NW2A9h09T+Y9f1mPPkrATPDFP9Vy9LaV6bfFFlHdTxfb9rWXl+nHbf/Rs06dbHx8h00bd0OAOAT3APrz16HlY0ttlz/U6l+V7RPl04Zg469+mHNyUtlbsvqGiNUsc9qcjus6L7ypullzafINvOmZZf3nAHKjcGvUkVf0v8UFvNwcXERG0QgEeORKl8XFNknFJlHVeO7ouumzLi9beVSTPhyGX44ewN1GzXF8ukTEP3NEkz4ajnW//wLatdvgA0L5hbLoerXq8IxMWLayrI+yAAAIABJREFUJ8WmlzV/adNU9Z6hMu+LlMkCKDZWazuJRILly5dj2rRpGDFiBJYvXy46kkbw85t2fH5Tti/K6tPy9vu1Jy9hzclL6NQ7HF9PHVviMcqua0XGXWX6Yu3JS1h9/CLaBgTj6yljKtxvqmyzsuN3odfnffniRaW3vdIyVXb/02Zr1qyBmZkZBg0aJDoKaanY2Fh06tQJbdq0wdGjR1nIQwleXl64cuUKXr58KToKKeDAgQPo1q2b6BhEpOOMjY2Rl5f3xnmcnJxw5swZeHl54d1330V0dLSG0mmnWbNmoWPHjggPD9eJ/9++CY97Kpe9PDzuyeOe2sDe3h5HjhxBQkIChgwZ8saCTUREREREysrKyoKlpaXoGERERKRnWMyDiIiIyMAkJSXBwcEBAGBqaoodO3agZcuW6NKlC+Lj4yu9/EOHDuHLL7/Et99+C09Pz0ovj4AVK1ZALpfjk08+ER2FSC2aNGkCALhz547gJOXb9u0ShAwdhS7hg2FjVw3WUhl8u4eiz5hJ2PfDapW0ETrmfbzdygNm5uZ4x7fT/05k+nYJegwfi06h4bCxqwbbavZ4t+8AdB86GttWKlcE41W77j6Cf1gEqphbQGrvgGEfz8PV0zGlztt1wFC0at8R5lUtYe/ohIipH+PX87HF5tFEHxXy7xcB3+6hsJHZFfVHt8Ejse3b//WHsnlEreO2b5egz5hJaN6uPaqYW6D2Ww0xbv4ShR6nyHZx8+I5BA0aAWm16jA1M0O9Jm6YtOjbCmUtjaL9Vt46quP5UoaRsTHadQ3B2QO7i02P3bMD3kE9UMWialFOVe6PfcZOhk9wD1hLZWVuy4VUPUaoYnvW5HZY0X1FpLKeM0C5MfhV6t6nDc39+/dRvXp1/jMemh2PVPm6oMg+ocg8qhrfFV03ZdrqOmAIatdvgKrWNug9+n388esvCBo0vGha6Oj38fvVuEq1oQmqes9QGuX7VLH3ERUdq7WNRCLBwoUL8dVXX2HKlCmYOXOm6Ehqx89v2vH5Tdm+eNN7pxLLXrkU3YeNKVq2tVQGn+Ae6D36/VJzKPdZQ/lxt9y+eC2vjcwOvt1D4d8votL9poo230SZz16vzzvog0/Usu1pev/TlKysLCxfvhzjx4+HlZX2/hoyibN792507doV3bt3x549e2BhYSE6kk5p27YtsrKy8Ntvv4mOQuX4v//7P8THx7OYBxFVmpGRkUJf9LayssLevXsxcuRIDBgwAHPmzFF/OC1lZGSETZs24cWLFxg6dCgKCgpER6o0HvfkcU9143FPzapfvz52796NAwcO4KOPPhIdh4iIiIj0CIt5EBERkTqwmAcRERGRgXm1mAcAWFhYYN++fXBxcYG/vz8ePHhQ4WU/ePAAQ4YMwYABA/Dee++pIq7BS0tLw6JFizB58mTUrFlTdBwitXB2doa1tTVu3bolOkq5bl44C++g7iWmv+PXGb9e+FklbbzVvFWZbbd+t2uJ6W38A3HzwlmVtA0AVja2yExLLfW+Jp5exW5Xr+UM+dOkEjnV3UeFWvl2KjGtjX8gfj1/psJ5RK3jrbjzaNa2fbFpTvXql/sr4YpuF2+3dMdXY4fg+tnTyMv77y+POtSuU6FfIS+NIv2myDqq4/lSVqfQcJzeva3YtJO7tsI/7H9fdlP1/ti8XfsS017flgupeoxQxfasye2wovuKSGU9Z6V50xj8KnXv04bmwYMHqFu3rugYWkGT45EqXxcU2ScUmUdV47ui66ZMW65NmhVdl9lXLzHNzqEG0lOSiz1GU+8flaGq9wylUXZ9K/o+QtGxWlvNmDEDq1evxuLFizFp0iS9+EJOWfj5TTs+vynbF8q8d7p5/udSl93C27fUHMqsa0XG3YrmbdW+Y6l5VbENKdPmmygzZr4+r71jLbVse6L3P3VZuXIlcnJyMGnSJNFRSAt9//33CAsLw8iRIxEVFQVTU1PRkXROkyZNYGtri4sXL4qOQuXYv38/bG1t0a5dO9FRiEjHGRsbIy8vT+F5v/32Wyxbtgzz58/HyJEj8eLFCzUn1E4ODg746aefcPjwYaxcuVJ0nErjcU8e91Q3HvfUvPbt22PDhg1YvHgxVq9W7Y+KEBEREZHhysrKYrF1IiIiUjkT0QGIiIiISLMSExPh4+NTbJqNjQ1iYmLQsWNH+Pv74+zZs6hRo4ZSy83NzUWvXr3g7OyM77//XpWRDdqyZcuQn5+PqVOnio5CpDYSiQTNmzfH9evXRUcpV0aqHGM6tS71PjNzc5W0UcW89F/TTE9NgdTeocR0WfUayJCnVKit9JRkbP76S1w/exqp/z5FfjknM1rZ2Ba7bWpmVuLLf5roo0LSatVLTJNVL35Cl7J5RK1jemoKbGR2FXqcItvFByu+x/ZVX2PdvI+RnpKMek3c4OUfhK4DhsDYpPJf/FCk3xRZR3U8X8pydKkHM3Nz3L/7O+o2aoLfr8ShqpU16jVxK5pH1fujtVRW6rJK+3KgqscIVWzPmtwOK7qviFTmc6bkGPwqde/ThobFPP5Hk+ORKl8XFNknFJlHVeO7IuumbFsWlv87WURiZFTqtNJee1X9/rGyVPWeoTTKrq9CWSoxVmuzsWPHwtbWFkOHDsWzZ8+wevVqGBnpX/1/fn7Tjs9vyvZFWX2qzLJLez1Tdl0rMu5WNG9p01T5mqRom2+izGev1+c1MjZWy7anyf1PU7KysvD1119j4sSJqF695DEPMmwLFy7EzJkzMWPGDCxYsEB0HJ1lZGQET09PxMXFYdy4caLj0BscPHgQQUFBLFpDRJUmkUiUfu8+adIkNGzYEP369cODBw+wc+dO2Nralv9APePn54fZs2dj2rRp8PT0hJeXV/kP0lI87snjnurG455ihIeHIz4+Hu+//z6cnZ0REhIiOhIRERER6Ti5XA6pVCo6BhEREekZFvMgIiIiMjBJSUlwcCjlBG6pFMeOHYOvry8CAgIQGxsLmazkCQ1lmTJlChISEnDt2jVYWCh+0j2VLTk5GcuWLcOMGTOUei6IdJGXlxdOnDghOka5rGV2WHH4TIkTYDTBRmoH+dNEONRyLjZd/jQR1q+d9CORSPDi+XOYmpkVTSvtV3RWfDgRterVxxdb9qFaTUcYG//3MEFoI6cK59RkH2WmpcLKtvg/TuRPE2FjV02tedSyTKkM6fIU2DkoV0xL0e2iqrUNhs6cg6Ez5yBdnoLfLp7DwY3r8PvVS5j+zTqVrEN5FFlHkfvYqzr1DsepXVsx/JP5OLlrK/z7RRS7X5n9URGpyU9LFKd5fVsuT0UzqaLPNbkdKrqvKDoOVoSqll2ZMVgb9ml9cv/+ffj5+YmOoRU0OR6p8nVBkX1CkXlUNb4rsm6qfi0R1YY6xlt1vy9ShjreL2uLAQMGwMbGBn379kVaWhqioqL07ouS/PxWPk30kTrHIhupHVL/TUJ1p9rFpqf+W/LXZrXhs0ZZeUt7vlXVb8q0qUnqfD408fqnLqtXr0ZWVhamTJkiOgppkby8PEyYMAHr1q3D2rVrMXr0aNGRdF7btm0RHR0tOga9QXp6Os6dO4fIyEjRUYjIgAUGBuLUqVPo3r07fHx8cOjQIdSpU0d0LI2bNWsWzp07h4iICFy7dk1ni5rwuCePeyqLxz11x+zZs5GQkICIiAicP38ebm5u5T+IiIiIiKgMcrmc5+wTERGRyunfz2wRERERUZny8vKQnJxcajEPAHBwcMDx48eRlpaGoKAgZGZmKrTcnTt3Yu3atVi9ejVcXV1VGdmgLV68GGZmZpg4caLoKERq5+XlhVu3biE9PV10lDdq6eOH25culJh+5+olTO/dRa1tN2/XHpdiDpeYfun4ETRv177YNKm9A/59/E+xab9fiSvx2PjrV9Fv4nQ41HIuOkHneW5upXIq00cSiaRSbd288HOJaZeOH0EL7w4VyqModSyzaet2Jdbn/t3fMSm4QxmP+C9Ft4vQRk5IfvIYAGAjs4N3UHd88v0m/Hr+TIXyVoQi66iufUzZba1dYAgunzyG9JRkXD97Gj7BPYvdr8z+qIgbZ2NLXdar23J5KppJFfusJrdDRfcVRcfBsrxpm6nssgtVZgzWhn1an9y/fx8uLi6iY2gFTY5HqnxdUGSfUGQeVY3viqybql9LSqOJNlQ1Jr5K3e+LlKGO98vapFu3bjhy5AgOHTqEXr16IScnR3QkleLnt/Jp4vObOseiFj4dcPnE0RLTb5yLLTFN5PZQqKy8pX22VVW/KdOmJqnz+dDE6586ZGdnY8mSJZg4cSKqV69e/gPIIDx79gz9+/dHZGQkoqOjWchDRby8vPDnn3/i6dOnoqNQGWJiYpCXl4euXbuKjkJEBs7DwwNxcXGQSCRo27Ytrl+/LjqSxhkZGWHz5s3Izs7GyJEjRcepMB735HFPZfG4p+6QSCT4/vvv0bJlS/Ts2RMpKSmiIxEVU9nzYoiIiEizWMyDiIiI1IHFPIiIiIgMyNOnT5Gfn48aNcr+lQdnZ2ccP34cCQkJ6NmzJ3LL+WftvXv3MHLkSIwfPx79+/dXdWSD9fTpU6xatQofffQRrK2tRcchUjtvb2/k5+fjwoWSJy1pk34Tp2Hbt0tw8dhBZKTKkZOViauxx/H1tLHoO069v5oaNmEa9m/4Did2bEFa8r9IT0nGyZ1bsX/Dd+g3YVqxeVt4++Knr79C8pPHyM3Owo1zsTgWHVVimW+38sCmJfOR9M/fePniBZ78dR/fzZlRqZzK9JFdjZqIv3ENeS9f4NfzZzC6o4dSbe367htcOLIfGanyov44GLUe/Sb+rz/U8ZypY5l9xk7CjtXLcPPCWTzLycaD+DtY9fEUBEUMf+PjlNkuVs+ahr//jMeL58+RmvwU+35Yo9EvMimyjurax5Td1syrWsKtjTeWT58Az04BsLC0Kna/Mv2uiJhtm3D24J43bsvlqWgmVeyzmtwOFd1XFB0Hy/Kmbaayyy5U2TFY9D6tL7KysvDvv/+ibt26oqNoBU2OR6p+XVBknyhvHlWN74qsm6pfS0qjiTZUNSa+ShPvixSljvfL2sbPzw8nT55EXFwcunbtqvUFFpXBz2/l08TnN3WORf0mTMP+yLU4tSsa6SnJyEiV49yhvYjZtrlS66our+fNTEvFhSP7seu7b0rMq6p+U6ZNTVLn86GJ1z91+Oabb5CdnY2pU6eKjkJaIjU1FQEBAThx4gSOHz+OPn36iI6kN7y8vAAAly5dEpyEyhITE4PWrVvDzq5ivzRPRKRKderUwYULF9CiRQv4+vri0KFDoiNpnIODA7Zs2YI9e/ZgzZo1ouNUCI978rinsnjcU7eYmZlh9+7dyM/PR79+/ZCXlyc6EhFevnwJADA2NhachIiIiJTBYh5ERESkDpKCgoIC0SGIiIiISDNu3ryJFi1a4M6dO2jUqFG58/r5+cHX1xc7d+6EiYlJiXlevHgBX19fZGVl4dKlS7CwsFBXdIMzefJkbN++HX/++SeqVq0qOg6RRri5uaFr165YsmSJypcdFhaGfzJyMW35dwo/JrSRU9H1XXcfFV1//CABm5d+iZsXzyLv5Us4v9UQvUdNRBv/wHIfq2h7ZT3uwX/uYNPiz/H71f+eaN7Eow0GTZ8Fl4aNi82XLk/Bj198il8v/IxnOTlo5uWN92Z/VfRlq8JlpyX/i42L5uHGuVhkpafBqW599B03GUunjCk2X1nrU5k+AoALRw9g05IvkJL4GPaOtTB05hx4dgpQuK9WHIzFj199hvjrV1FQUICmnl4YMuMz1K7foNj8lXnO1LEdlDU9/sY1RC2ah/+7fRO2dtXQtf9Q9Bo1odzHKbJd/HbxHA7/9CPuXL2EnKxM2NVwRJt3u6LfxA9KFKooS2ntq3odAfX0bVnb2pv21TtXL2FWRC8s2H4IDZq3KtEfiu6P5Qlt5IQ1Jy/hh/mzcPvKReTn55e6LatqjCjIz0dYMxfsuP130TRV7LOa2g4BxbYjRcdBZbeZii779eUDlRuDVdWXSyePRi1rc2zfvl3hx+ibW7duoVmzZrh16xaaNm0qOo5KdO/RA2kwxaRF3yr1OE2PR4DqXhcU2ScU3W9UNb4rsm6KtKXo629l3ieU503PeWXHWxHvi5TJouhYXZ4Xz58jvHld7N27Fz169FDoMZr2+++/w9/fH46Ojjh69Cjs7e2FZXn27BnMzc0xY1UkWnfuUv4DwM9vr86nbZ/fFO2L8vq0rPx//xmPqEXzcftKHIyMjNDUsy2GfTwXE7r6YOfvD4sto6LbgzLjbnlezSuRSPB2Kw8M/2guJnXzK7EsVb0mKdpmZT/zaepztSr3v/JoavxOTExEw4YN8cEHH+DTTz9VWzukOx4/fozAwEAkJSXhyJEjaNGihehIeqdRo0bo06cPPv/8c9FRqBSurq4YPHgw5syZIzoKEemBzZs3Y8SIEXj27FmllvPy5UuMGzcOP/74I1auXIkxY8aoKKHu+Oyzz7Bw4UJcuHAB77zzjsbbr8jxAoDHPZXNXh4e9+Rxz9f9vH8XVs+ahueVHGdV4caNG/D29saECROwcOFC0XGognr06AEbGxts2rRJdJRKSUtLg1QqxdGjR9Gli+KvW0RERCRWixYt0L17d8yfP190FCIiIr2nquP3uoDFPIiIiIgMyIkTJ+Dv74/k5GSFfs0qLi4O/v7+6NmzJzZu3AgjI6Ni90+ZMgXr16/HlStXyi0OQop79OgR3nrrLSxZsgTjxo0THYdIY6ZOnYoTJ07g5s2bKl92RYp5EBFpQmgjJ6VOiKuI03u2wTekN4xNTJGSlIhPBvTAmhNxam2TdAOLeQAHDhxA9+7dkZmZCUtLS9FxVKIyxTzUPR4RGSpdKOYBAAkJCfD394eZmRmOHz+OWrVqCclR0S/nEBX6+894fDFqENaeuiw6Cuk4TY3fI0aMQExMDOLj41nYmXDnzh107doVlpaWOHr0KOrUqSM6kl4aPHgwEhMTcezYMdFR6DV3795F48aNcf78ebRr1050HCLSA6o8GbigoABz587FvHnzMHHiRCxbtqzEORT6LD8/H126dMH9+/dx7do12NjYaLT9yhTz4HFPIvXRpmIewH/H/cGDB2PLli0IDw8XHYcqQF+KeSQnJ8Pe3h4nTpxA586dRcchIiIiBdWpUweTJk3CtGnTREchIiLSe4ZUzMNw/pNAREREREhMTISpqSlkMplC83t5eWHPnj3YuXMnJk6cWOy+/fv3Y8WKFVi7di0LeajYvHnzUL16dYwYMUJ0FCKNCgwMxK1bt5CQkCA6ChGRXln50RTs/n4lcrIycShqHXyCtPdLxESadu/ePdSoUUNvCnkQEVVGvXr1cPbsWRgbG8PHxwd//vmn6EhE5Qpt5IRDUeuRmZ6GF8+fI+HObayd/SECBw4VHY1IIdevX8eGDRuwePFiFvIgXL58Gb6+vnB0dMTPP//MQh5q5OnpicuXL4O/f6R9YmJiIJVK0bp1a9FRiIhKkEgkmDNnDn788UesWbMG4eHhyM3NFR1LY4yMjLB582ZkZmbivffe03j7eXl5Gm+TiHRPREQEJk2ahOHDh+PatWui45ABe/nyJQDAxMREcBIiIiJShlwuV/h7FkRERESK4tEBIiIiIgOSlJQEBwcHSCQShR/z7rvvIjo6Gn369IFUKsUXX3yBR48eYfjw4Rg2bBgGDhyoxsSG5/79+4iMjMTq1atRpUoV0XGINKpjx46wt7fHjh078OGHH4qOQ0SkdqGNnIr+qvNX4UZ99hV2rF6Ow5t+gFdAMIZ9NFdtbRHpmoSEBNSrV090DOE0NR4RkfZzdHTEmTNnEBgYiPbt2yMmJgbNmjUTHYuoTB+t3YiDG9Zhy/KFkBgZwcmlHoIGDYdfzzDR0YgUMnnyZLRp0wb9+vUTHYUEO3DgAMLDw4v+J2NhYSE6kl5r3bo1UlNT8eeff6JBgwai49ArYmJi0LlzZ37hjYi02tChQ+Hs7IzQ0FAEBQVh9+7dkEqlomNpRI0aNbBlyxb4+/vj+++/x6hRo0qdLycnB7m5ucjJyYFcLlfoennzpaamKp2Xxz2JDNOSJUtw584dhIaG4sqVK6hevbroSGSAWMyDiIhI97x8+RJZWVks5kFEREQqx6MDRERERAaksJiHsnr06IHIyEgMGTIEVlZWOHv2LKRSKZYvX66GlIZtzpw5qFOnDoYMGSI6CpHGmZiYoEePHnpZzKPwRLGy8OSx/2FficF+Vz1F+lRT/dql/xB06a/97y24HZIICQkJcHV1FR1DOO5fitO3sUrf1odUw87ODjExMejWrRs6dOiAw4cPw8vLS3QsjeF+oTht6CsPP394+PmrvZ3yiOgLbeh/qpzt27fj7NmziIuLU6oAN+mfNWvWYOLEiRg+fDjWrFkDY2Nj0ZH0XsuWLVGlShVcvnyZxTy0yPPnz3HmzBksWbJEdBQionJ17twZ586dQ1BQELy9vXH48GG4uLiIjqW03NxcZGdnIzU1FdnZ2cjOzkZ6ejoyMzORk5ODjIwMpKenIycnB1lZWUhNTUVOTg4aNGiAsWPHYvXq1ZBIJCUe8yaWlpawsLCAjY0NrK2tYWFhASsrK9ja2sLCwgIymQxNmzaFhYUFqlatCltbW1haWsLU1FTpInj8XKQ4ffuMqW/rQ8oxNjbGli1b4Onpif79++Po0aMsqEAax2IeREREuic1NRUFBQUs5kFEREQqx6MDRERERAbk33//rfCvDURERCA9PR3jx4+HkZERLly4AGtraxUnNGz/+c9/8NNPP2HDhg38Rx4ZrPDwcKxfvx63b99G06ZNRcdRGZ4MpDj2lRjsd9VjnyqPfUYiJCQkoHv37qJjkA7Rt7FK39aHVMfW1hbHjh1DaGgo/P39sWfPHrz77ruiY2kE9wvFsa/+R0RfsP91W1paGqZNm4bBgwejdevWouOQIAUFBZg7dy7mzZuH2bNnY86cOaIjGYwqVaqgWbNmuHLlCgYOHCg6Dv1/58+fR2ZmJvz9xRfqIiJShJubG+Li4hAcHIy2bdviwIEDcHd3V1t7OTk5yM3NRU5ODuRyOeRyebHbilx/9XZKSgqePXv2xjbNzc0hk8lgYWFR7Hr9+vWRmpqK+/fvo3///qhRo0ap871+vXr16jA1Na3Q+peXlSpH3z5j6tv6kPLs7Oywe/dueHt7Y8aMGVi6dKnoSGRgWMyDiIhI98jlcgBgMQ8iIiJSOR4dICIiIjIgKSkpsLOzq/DjO3ToABMTE+Tl5eHu3bto06aNCtPR7Nmz8fbbb6N///6ioxAJ06lTJ7z11ltYv349li1bJjoOERER6bmEhATUq1dPdAwiIq1UtWpV7Nu3DxEREejWrRuio6PRs2dP0bGIiPTC9OnTkZubi0WLFomOQoI8e/YMw4cPx86dOxEVFYWIiAjRkQyOp6cnrly5IjoGvSImJgYNGzaEq6ur6ChERApzcnLC2bNnERYWBj8/P0RHR6NTp06VKrJR2vXCXwcui7m5eZmFNAovrq6uChXckMlksLOzg7m5+RvX/Z9//kGrVq0gl8uxZs0aVXctEVGltWjRAuvWrcOAAQPg5uaGYcOGiY5EBoTFPIiIiHQPi3kQERGRuvDoABEREZEBkcvlaNSoUYUem5ubiwEDBsDLywu+vr4YMWIETExM+ItlKnLr1i3s2LED27dvh5GRkeg4RMJIJBKMGDECixcvxpdffgkLCwvRkYiIiEhPPX36FJmZmSzmQUT0BmZmZti6dStGjx6Nvn374ocffsDgwYNFxyIi0mmxsbFYv349oqOj4eDgIDoOCZCSkoJevXrht99+w7Fjx+Dn5yc6kkHy9PREZGQkXrx4AVNTU9FxCP8t5hEQECA6BhEZIGULbZR2OycnB/n5+ejWrVu57b1aZOP1YhqFRTfeVJjj9ftsbGxgbGysgZ4qrlatWoiKikJwcDACAgIwfPhwjWcgIipP//798csvv2DcuHFwc3ODp6en6EhkIFjMg4iISPcUFvOQSqWCkxAREZG+4dEBIiIiIgMil8srXC12+vTpePDgAX799Ve4uLgAAIYMGQIALOihArNmzULLli3Ru3dv0VGIhBs2bBjmzp2LyMhIjBs3TnQcIiIi0lP37t0DABbzICIqh7GxMdatWwepVIrhw4fj2bNneO+990THIiLSSdnZ2XjvvffQrVs3hIWFiY5DAiQkJCAoKAgZGRk4ffo0WrRoITqSwWrdujVyc3Nx69YttGrVSnQcg/fvv//ixo0bmDNnjugoRKTlXr58iYyMDKSlpSEzMxNZWVlFt7OyspCVlYX09HSkp6cjKysLv/76K16+fInAwEBkZWUhMzMTaWlpyMjIQFZWFrKzs8tsy8zMDJaWlpDJZLC0tISlpSWsrKwglUphaWkJBwcHNG3atOh21apVcezYMezcuROhoaH48MMPYWdnh6pVq8LCwkIvvwzUtWtXTJ8+HePHj4e7uzvf2xCRVlq4cCFu376NPn364MqVKyysSRrBYh5ERES6Ry6Xw9jYGNbW1qKjEBERkZ7h0QEiIiIiAyKXyyt0gsixY8ewatUq/PTTT0WFPL744gvk5eVhyJAhMDY2Rnh4uKrjGoxffvkF+/fvx/79+yGRSETHIRKuRo0aGDZsGJYsWYJRo0bxH9tERESkFgkJCTAxMYGzs7PoKEREWk8ikWDJkiWoXr06Ro8ejdTUVEyfPl10LCIinfPxxx/j6dOniI2NFR2FBLh8+TJCQkJQs2ZNxMXFoXbt2qIjGbTGjRvDxsYGly9fZjEPLXD8+HEYGxvDz89PdBQiUoOcnBzI5XLI5XLk5uYqfLu0+1JTU1FQUFBmW+bm5pDJZJDJZLCwsEBGRgYAoHr16qhTp06J+8u6bWdnB3Nzc6XXdcSIEdiwYQNGjRoFiUSCqKjkRsm8AAAgAElEQVSoCi1Hl3z++ec4f/48wsLCcPXqVX7piYi0jpGRETZt2oTWrVsjPDy86L0nkTqxmAcREZHuSU1NhVQq5bn8REREpHI8OkBERERkQORyOWQymVKPSUtLw6hRoxAeHo7+/fsXu2/BggXIz8/H4MGDYW5ujp49e6oyrsGYO3cuWrVqheDgYNFRiLTGBx98gHXr1mHr1q0YNGiQ6DhERESkhxISEuDs7MyT6IiIlDBjxgxUqVIFU6dORUZGBubNmyc6EhGRzjh37hxWrlyJdevWoVatWqLjkIbt3bsXAwcORPv27bFjxw5+yVULGBkZ4Z133sGVK1cwevRo0XEM3unTp9G6dWvuG0RaICcnp9yCGoreTklJwbNnz8psy9zc/I0FNV6//ab77O3tYWZmVqKNzZs3Y8SIEYiKilJntxUzdOhQODs7IzQ0FEFBQdi9e3eFfnRFV5iYmGDr1q1o1aoV3n//fURGRoqORERUQrVq1bB79254eXlh3rx5mDt3ruhIpOcKi3mwcAwREZHuSEpKQvXq1UXHICIiIj3Es5SJiIiIDEReXh4yMjKULuYxefJk5OTkYPny5aXev3DhQmRnZyMsLAw7d+5E9+7dVRHXYNy4cQMHDhzA/v37WcmX6BWurq4YPHgwPvvsM4SFhaFKlSqiIxEREZGeSUhIgKurq+gYREQ6Z/LkybC2tsaoUaOQnZ2NxYsX85gGEVE5kpOTMWDAAAQGBmLo0KGi45CGrVixAlOnTsXw4cOxZs0aFhTUIq1bt8aRI0dExyAAsbGxCAsLEx2DSCe9XnyjMgU4kpOT8fz58zLbKq/4hqurq8LFOapXrw5TU1MN9pRmde7cGefOnUNQUBC8vb1x+PBhuLi4iI6lNrVr18bGjRvRrVs3+Pn5YciQIaIjERGV0KJFC3z99deYMGECfHx84O/vLzoS6bHCYh48BkBERKQ7kpKS4ODgIDoGERER6SEeHSAiIiIyEGlpaSgoKFCqmMfBgwexYcMG7Nq1q8yDUxKJBN9++y3y8/PRt29f7Ny5EyEhIaqKrffmzp2LVq1aITg4WHQUIq0zf/58NGjQACtXrsS0adNExyEiIiI9c+/ePdSrV090DCIinTRixAhYWlpi8ODByMzMxOrVq2FkZCQ6FhGRViooKMCIESMAAJGRkSyAZEDy8vIwdepUrFy5EgsWLMD06dNFR6LXeHp6YunSpcjMzISVlZXoOAbr8ePH+OOPP9ChQwfRUYg0Ij8/H2lpaUhPT0dGRkbR5fVpmZmZSE1NLZqWmZlZNC0rKwtZWVnIyMgosx1jY2PY2NjAxsYGlpaWsLS0hK2tbdHtatWqoWnTprC2ti66XyqVwsrKqui2TCaDpaVl0TRSjpubG+Li4hAcHIy2bdviwIEDcHd3Fx1LbYKCgjB16lSMHz8enp6eaNKkiehIREQljB07FufOncOgQYNw/fp1ODo6io5EeorFPIiIiHQPi3kQERGRuvDoABEREZGBkMvlAACpVKrQ/KmpqRg7diwGDRqE3r17v3FeiUSCVatWIT8/H3369MHu3btZnEIBt27dwv79+7F3716ewE1UCicnJ0yePBlffPEFIiIiUKNGDdGRiIiISI8kJCSgU6dOomMQEems8PBwWFpaom/fvsjMzMSGDRt4YjIRUSkWL16MQ4cOITY2Fvb29qLjkIZkZGSgf//+OHXqFKKjo9G3b1/RkagUnp6eyMvLwy+//AJfX1/RcQxWbGwsTExM4OXlJToK0RulpaUVK76Rnp5ebFpmZibS0tKKpmVmZhYV6UhLSyu6nZWVVWYbtra2sLKygrW1NaytrYuKb9jb26Nu3bqwsrKCVCotKrDx6m1LS8uix1haWsLc3FyDvUNlcXJywtmzZxEWFgY/Pz9ER0fr9bkUCxYsQFxcHMLCwnD58mVUrVpVdCQiohLWrl0LDw8PDBw4EMePH4exsbHoSKSHWMyDiIhI9yQlJcHNzU10DCIiItJDPDpAREREZCAKi3nIZDKF5h8/fjzy8vKwfPlyheaXSCRYvXo1cnJy0LdvXxw4cACdO3eucF5D8Nlnn6FFixbo1q2b6ChEWuuTTz5BdHQ0Jk+ejK1bt4qOQ0RERHri5cuX+Pvvv1GvXj3RUYiIdFpISAj27NmD0NBQvHz5Eps2bYKpqanoWEREWuPy5cv49NNP8dVXX8Hb21t0HNKQf/75B927d8dff/2FmJgY+Pj4iI5EZXBxcYGjoyOuXLnCYh4CnTlzBp6enrC2thYdhfRQTk4OcnNzkZOTA7lcXnRRdtrTp0+LvpD5OnNzc1hYWMDc3BwymazoYmFhgVq1asHNza3YtNLmMzc3h4ODA7/sqaesrKywf/9+jB8/Hj169MDKlSsxZswY0bHUwsTEBFu3bkWrVq3w/vvvY/369aIjERGVYG1tjZ9++gne3t5YuHAhPv74Y9GRSA/l5eUBYDEPIiIiXZKYmIiOHTuKjkFERER6iEcHiIiIiAyEMsU89u7diy1btuDgwYOws7NTuA0jIyP8+OOPyM/PR/fu3XHw4EEe1CrD7du3sXfvXuzevRsSiUR0HCKtVbVqVaxcuRJBQUEYOHAgi98QERGRSty7dw8vXrxAw4YNRUchItJ5gYGBOHLkCEJCQtC7d2/s2LGDvwBNRAQgOTkZffv2RUBAAKZNmyY6DmnI5cuX0aNHD9jb2+Pq1atwcXERHYnK4eHhgStXroiOYdBiY2PRu3dv0TFIy1S2+IZcLkdycjKeP39eZhtlFdWQyWRwdXUtt/iGTCaDvb09zMzMNNgzpKtMTEywdu1aODo6Yty4cbhz5w6WLVsGIyMj0dFUztnZGRs3bkRISAg6dOiAQYMGiY5ERFSCh4cHFixYgA8//BC+vr4swkgqV1gIjsU8iIiIdEdSUhIcHBxExyAiIiI9xKMDRERERAYiNTUVRkZGsLGxKXe+cePGYciQIQgODla6HWNjY2zYsAH5+fno1q0bDh8+jA4dOlQ0tt767LPP0Lx5c3Tv3l10FCKtFxgYiIiICLz33nu4ceMGatSoIToSERER6bj//Oc/AIAGDRoITkJEpB86dOiAw4cPIzg4GL1798auXbtgYWEhOhYRkTDPnz9HaGgojIyMsHHjRhZ0NhC7du3C4MGD0b59e2zbtg22traiI5ECPD09ERkZKTqGwUpKSsJ//vMf/i9RT7xaWKMixTfkcjlSUlLw7NmzMtt4tbDG64U2XF1dyy2+IZPJYGdnxwKEJIREIsGcOXNQt25djBo1Co8fP0ZUVJRebo/BwcGYNGkSxo4dCw8PDzRu3Fh0JCKiEiZPnoyff/4Z/fv3x/Xr12Fvby86EukRFvMgIiLSLS9fvoRcLmcxDyIiIlILHh0gIiIiMhByuRy2trbl/rLLhx9+iBcvXmDJkiUVbsvY2BhRUVGIiIhAcHAwDh8+DF9f3wovT9/cvn0be/bswc6dO3kSN5GC1qxZA3d3d/Tv3x8nTpzQy1+pIiIiIs2Jj4+Hk5NTucUOiYhIcT4+Pjh16hS6dOmCwMBAHDhwANbW1qJjEREJ8d577+GXX37BuXPnYGdnJzoOacCKFSswdepUjBw5EqtWreKXdXSIp6cnZs+ejadPn6J69eqi4xic06dPw9jYGO3atRMdxWAVFtKoaPGNwmmpqakoKCgotY3CQhqKFNp40zSpVMr/rZJeGDp0KJycnNC3b18EBwdj9+7delkEbNGiRbh06RLCwsJw+fJlFv0kIq0jkUjw448/4p133sGQIUNw8OBBvtcglXnx4gUAwNTUVHASIiIiUkRSUhIKCgr4Y4NERESkFjx7gIiIiMhAyOVySKXSN87z888/Y/369diyZUulf22gsKBH3759ERISguPHj6N169aVWqa+mDt3Lpo0aYIePXqIjkKkM6ysrLB582b4+Pjgyy+/xKxZs0RHIiIiIh0WHx+Pt99+W3QMIiK94+7ujjNnzsDf3x+BgYE4fPgwCycRkcH5/PPP8dNPP2Hv3r1o3ry56DikZs+fP8eoUaOwefNmLF++HBMnThQdiZTUunVrSCQSXLt2DV27dhUdx+CcOXMG7u7uLAKnpKysLKSnpxdd0tLSkJaWhoyMDGRkZCAzM7PYtMzMTGRkZBRNK7ydlZVVZhu2trawsrKCtbU1rK2tYWtrWzStRo0aaNasGWxtbWFjY1M0j5WVFaRSabFplpaWGuwZIt0REBCAn3/+GUFBQfD19cWRI0fg5OQkOpZKmZqaIjo6Gq1atcKUKVOwdu1a0ZGIiEqQyWSIjo5G+/btsWzZMkydOlV0JNITWVlZMDc3h7GxsegoREREpICkpCQAgIODg+AkREREpI9YzIOIiIjIQKSmpkImk5V5/7NnzzBmzBh07doV4eHhKmnT1NQU27dvR58+fRAQEIDjx4/D09NTJcvWVb///jt27dqFHTt2wMjISHQcIp3i6emJpUuXYtKkSWjcuDFCQ0NFRyIiIiIdFR8fjyZNmoiOQUSkl5o2bYpTp07h3XffRadOnXDs2DFUq1ZNdCwiIo3YsWMHZs+ejW+//RbdunUTHYfULCUlBaGhobh27Rr27t3L51xH2dnZwcXFhcU8BDlz5gxCQkJEx9ConJwcyOXyYpfc3FyFpycnJ+P58+elLtvc3BwWFhYwNzeHTCYrulhYWKBWrVpwc3MrNq20+czNzeHg4AATE55WSKRuLVq0wJUrV9C1a1e0a9cOR48eRaNGjUTHUqk6depgw4YN6NGjB3x8fBARESE6EhFRCW3atMHcuXMxc+ZMtG3bFm3bthUdifRAdnY2qlatKjoGERERKSgxMREAi3kQERGRevC/bkREREQGQi6Xv7GYx/z58/HXX3/h0KFDKm3XzMwMO3fuRGhoKAICAnDixAm4u7urtA1dMm/ePDRu3Bg9e/YUHYVIJ02YMAHx8fEYPHgwHBwc0LZtW4VPKP338SNcOHpAzQmJiIh0x7+PH6GWtavoGELEx8ejV69eomOozdNHD/m+h0iL5L18KTqCxjVq1Ahnz55F586d4evrixMnTsDR0VGpZcRfv4KXL0r/kiKR3iooQH5BAYsAawllx+/z589j8ODBmDx5MsaPH6+mVKQt7ty5g5CQEOTn5+PixYto2rSp6EhUCe7u7rh27ZroGAbn6dOnuHPnDpYsWSI6Srny8vKQnp4OuVyO9PR0pKenIyMjo+h6amoq0tLSim6/epHL5UXzPnv2rNTlW1hYwMbGpugik8lgbW0NGxsb1KxZEy1atICNjQ2kUilsbW2LzWttbQ1bW1tIpVJIJBIN9wwRVZaTkxPOnDmD7t27o127dti/fz98fHxEx1KpkJAQjB8/HmPHjoWHh0elC5bweAGRdvnj5nXREVRi5syZuHjxIsLDw3H9+nXY2dmJjkQ6jsU8iIiIdEtSUhLMzMxga2srOgoRERHpIRbzICIiIjIQbyrm8dtvv2HRokVYunQp6tWrp/K2Cwt69O7dG/7+/jhx4gTeeecdlbej7e7cuYMdO3Zg27ZtPCGfqBKWLVuG5ORkBAcHIysrCzVr1kStWrXg5OSEOnXqwNnZGbVq1Sq67uTkhNq1a2PHjh1YOnm06PhERERaJbiTr+gIGpeWlobExES8/fbboqOohXPt2jiwfz/uXL0kOgoRvcLExAQ1a9YUHUOj6tWrh9jYWHTu3BmdOnXCiRMnUKtWrXIfZ2Jigho1a2Lv+tUaSElE9Gbljd8FBQU4f/48Nm7ciI0bN6J79+5YvHixBhOSCIcOHcKAAQPQrFkz7N69m7/Upwfc3d2xZs0a0TEMzrlz5yCRSODt7a3WdnJyciCXy5Gbm1t0/fVLWfcVTk9MTER+fn6pyzc3N4dMJiu6WFhYwNzcHLVr1y42/dX7Xp1mZ2cHc3NztfYBEWk3mUyGEydOICIiAv7+/ti8eTNCQ0NFx1KpJUuW4OLFiwgLC8OlS5dgYWGh9DJ4vIBIe9Wrp/uF4yUSCdavX49WrVph3LhxiI6OFh2JdFx2djYsLS1FxyAiIiIFJSUlwcHBgcVyiYiISC1YzIOIiIjIQMjlctStW7fE9Pz8fIwePRru7u5q/bXAKlWqYOfOnejWrRu6du2KU6dOwc3NTW3taaN58+ahUaNG6N27t+goRDrNxMQEW7ZsQUFBARISEvDrr7/it99+w927d3H9+nXs27cPjx8/xosXLwAARkZGqFmzJry8vFC7dm3Url0bderUQa1atYoujo6OqFKliuA1I9IuW7ZsQUREBFauXIlx48aJjkNEpDK3b98GADRu3FhwEvVYtWoVVq1aJToGqcHZs2fh6+uLv/76C87OzqLjECmkTp06OHv2LPz9/dG+fXucPHmy3EKyxsbGePL4sYYSEmmXBw8eYN68eYiKioKrqytmz56N/v37szCwlnn48CFOnz6N06dP4+TJk/jrr7/QrFkzrF+/HoMGDeKJnnpuxYoVmDZtGvr164f169dX6IuopH08PDzw999/48mTJwZXgE2kixcvws3NDTY2NqXe/+LFC6SlpSE9PR1yuRxpaWlFt1+9Xnh/4fVXL2lpaWW2L5PJYGNjU+Li5OSEJk2awMbGBtbW1sXue/0xHAOISFWqVKmC6OhojB8/Hv369cOqVaswerT+/EhBlSpVsG3bNri7u+ODDz6o0PFLHi8gInVzcHBAVFQU/P390atXL/Tr1090JNJh2dnZqFq1qugYREREpKCkpCTUqFFDdAwiIiLSUyzmQURERGQgMjIyYG1tXWJ6ZGQkLl++jKtXr6r9pHALCwscOHAAwcHB6Ny5M06fPo0mTZqotU1tcffuXezYsQNbtmzhyfdEKiKRSODq6gpXV1f06tWr2H35+fl48uQJHjx4gIcPH+Kff/4puh4XF4ft27fjyZMnxX5Jr3r16nB0dISzszNq1qyJ2rVrw8nJCU5OTqhduzYcHR15sJ4MxunTpzF8+HB88MEHLORBRHrnt99+g7W1NVxcXERHIVJKYUHMW7dusZgH6ZSaNWvi5MmTCAgIgJ+fH06ePIm33npLdCwireTi4oIffvgBs2fPxpdffomhQ4fiiy++wMyZMzFw4EAYGxuLjmiQnjx5gtjY2KICHn/88QeqVKmCNm3aYPjw4ejVqxeaN28uOiap2bNnzzBmzBhs2rQJX3zxBWbMmCE6EqmQu7s7JBIJrl+/jsDAQNFx9EJhIY60tDSkpqYWXX+1CMfWrVthZWWFsLCwYvMUFuHIzs4uddlVq1aFra1t0cXGxgZSqRTOzs4lim/Y2tpCKpWWKNhR2v9MiYhEMzY2xtq1a1GvXj2MGTMGCQkJWLBggehYKlO/fn2sX78effv2hbe3NwYMGCA6EhFRCZ07d8aYMWMwZswYeHt7o3bt2qIjkY5iMQ8iIiLdkpSUhOrVq4uOQURERHqKxTyIiIiIDER2djYsLS2LTZPL5fjoo48wYcIEtGzZUiM5qlatioMHDyIoKAidOnXC6dOn9fYXsV+1YMECNGzYEH369BEdhcggGBkZFRXieBO5XI5Hjx7h8ePHuHfvXtH1R48e4caNG0W3C5mZmaFatWpwcnKCo6NjqX/r168PqVSq7lUkUpubN2+iV69e6N27t16dJEpEVOi3335Ds2bN+IvppHNkMhlq1aqFW7du8QuGpHMcHBxw+vRpBAYGon379jh+/HhRgRoiKsnFxQXfffcdZs6ciQULFmD48OFYuHAhZsyYgYiICBYLVqPMzEzcuHED165dK7rcuXMHRkZGaNmyJXr37g1vb2906NABNjY2ouOShjx+/Bi9e/fG7du3sWfPHoSEhIiORCpmZ2eHunXr4urVq3yv/f/l5ORALpeXuOTm5pZ536vzpKamoqCgoMRyzc3NYWFhAXNzcyQmJsLV1RU5OTmoWbMmGjduDJlMVnS/TCYrcalWrRqqVKkioEeIiDRnxowZcHBwwKhRo/D06VN89913MDHRj1N9+/Tpg7Fjx2LMmDHw8PBAw4YNRUciIiph8eLFOHHiBEaMGIGjR4/y/0lUIaWdq0lERETa6+HDh6hbt67oGERERKSn9OMIPxERERGVKzs7GxYWFsWmffzxxzAyMsKcOXM0msXS0hIHDhxAQEAAAgICEBsbi/r162s0gyb99ddf2Lp1K9atW8cT7Ym0TOEJwE2bNi1zntzcXDx69KhYoY/Cv/fu3cO5c+fw4MEDZGVlFT3G3Ny81EIfrq6uRdednZ1hamqqidUkUti9e/fQpUsXuLu7IzIykq9bRKSXbt68iWbNmomOQVQhbm5uuH37tugYRBUik8lw7NgxBAUFoXPnzoiJiUGLFi1ExyLSavXq1cN3332HyZMn46uvvsLw4cOxePFizJ49G3369OGXSSopJycHN27cwJUrV3D16lVcvXoV8fHxyM/PR40aNeDp6YmwsDC0adMGPj4+sLKyEh2ZBLhx4wZ69OgBMzMzXLp0ySCKkxsqDw8PXLt2TXQMldBEIY7Xi2y4uroWXS9rnlcLcVy7dg0eHh7Yt28fmjRpoukuIiLSesOGDYOdnR369++P5ORkbN26tcT5Hrpq2bJluHTpEgYMGIDz58+zSBMRaR1LS0ts2LABvr6+iIyMxPDhw0VHIh2UnZ2NqlWrio5BRERECnr48CG8vb1FxyAiIiI9xWIeRERERAbi9X8QXbt2DevWrcOGDRsglUo1nsfGxgbHjh1DQEAAOnbsiFOnTuGtt97SeA5NWLhwIWrWrIn+/fuLjkJEFWBubg5XV1e4urq+cT65XF5qwY/Hjx/j/PnzePToERITE5Gfn1/0GJlM9saCH46OjnB0dOSXc0gj/v33XwQGBqJWrVrYt28fT54kIr11+/Zt9OvXT3QMogpxc3NDbGys6BhEFWZra4uYmBj07NkTHTt2xJEjR9CmTRvRsYi0XuPGjREVFYWZM2diwYIFCA8Ph5ubG2bNmsWiHgqSy+X49ddfcfPmTfz666+4du0abt++jZcvX0Imk8HDwwO9evWCh4cHPDw84OzsLDoyaYHt27dj2LBh8PHxQXR0NGQymehIpEbu7u5YuXKl6BiQy+VITU1FWlpamX8LL6mpqUhNTUV6enrRtNzc3FKXa2VlBVtbW9ja2sLGxqboupOTExo3blzqfTY2NpBKpZBKpbC1tYWxsbHK1jMuLg5SqRSNGjVS2TKJiPRNjx49cOrUKYSEhKBTp044cOAA7O3tRceqtCpVqmDbtm1wd3fHhx9+iBUrVoiORERUQrt27TBlyhRMmTIFnTt3houLi+hIpGOysrJgaWkpOgYREREp6J9//kHt2rVFxyAiIiI9xWIeRERERAYiJyen6Jda8vPzMWHCBLRt2xYDBw4UlqnwCxxdunRB+/btcfLkSb379a3ExERERkZi6dKlMDU1FR2HiNSo8NcFmzZtWuY8z549w+PHj/HPP//gn3/+waNHj/Dw4UM8efIEDx48QFxcHB4+fIicnJyix1hYWKBWrVqoWbNm0d9Xi38U/hVRmIn0R3Z2NkJCQpCXl4dDhw7x14aJSG89fPgQKSkpaNasmegoRBXStGlTrF69Gnl5eSr9Ih2RJln+P/buPCyqenED+DvsIAgDssrmKAoMLohb4pIKKi6YuOCOS2pqmmlXSU0tvUqall5xL81K0/JmqWiGCwrXyjUThCxI2RUYcGNnfn/0MD8QBFTgywzv53nOc4bDmTPvUR+ZM3y/72nSBMeOHcPo0aMxYMAAhIWFoXv37qJjEakFd3d37Nu3D4sWLcIHH3yAwMBAdOnSBUuXLsXQoUNFx2sQSkpK8Oeff+K3335TLTdu3MDdu3cBABYWFmjfvj18fHwQHByMTp06aWzJNL04pVKJdevW4d1338X06dMRGhoKHR0Or9F0Xl5eqs9qbWxsXugYBQUFFYo3alrOUfq4MkZGRjA1NVWVapQuMplMte3pEo7Sx1KpFE2bNm1w1w8///wzunbtCi0tLdFRiIgatG7duiEiIgJ+fn7o3bs3Tpw4AUdHR9GxXlqrVq2wa9cujBkzBr1790ZAQIDoSEREFaxevRonT57E1KlTER4ezjJVei45OTmws7MTHYOIiIhqIDs7Gw8fPmSZBxEREdUZjjYgIiIiaiSePHkCIyMjAMDu3btx+fJlXL58WfgvGk1NTfHjjz9i4MCB6Nu3L06fPl3lRHh1s2HDBjRt2hSTJ08WHYWIGgB9fX04OzvD2dm5yv2ys7NVhR+pqamqQeTJycn49ddfkZycjPT0dOTn56ueY2hoWK7g41mPzc3N6/gsSd0UFhYiICAAf/31FyIjI2FtbS06EhFRnfn9998BQKOuOahx8fDwQG5uLuLj4+Hi4iI6DtEL09fXxzfffIOxY8eif//+OHLkCHx8fETHIlIbHh4eOHToEG7cuIHVq1dj2LBh6NatG959991GVerx8OFD/PHHH4iOjsaVK1dw5coVXL9+HY8fP4a2tjacnJzg7u6OKVOmwMvLC3K5HC1atBD+mTg1bA8ePMDEiRPx448/4tNPP8WUKVNER6J64uXlBYlEgvDwcHTv3h25ublQKBQ1XvLy8pCdnQ2lUlnh2AYGBqoy6NLF0NAQzs7OFbY/vVhYWEBfX1/An0jd+vnnn4XecICISJ24u7vj4sWLGDRoEF555RWEhYWhffv2omO9tNGjR+P06dOYNm0aPD090aJFC9GRiIjK0dfXx759+9C1a1ds2bIFc+fOFR2J1MiDBw/QtGlT0TGIiIioBpKSkgCAZR5ERERUZ1jmQURERNQIFBcXIz8/H0ZGRsjOzsbSpUsxd+7cBjPAw9TUFOHh4RgyZIiq0MPDw0N0rJeWlZWF7du347333oOhoaHoOESkRszMzGBmZlbtROPc3FykpqYiJSWlwjomJgbh4eFITEzEw4cPVc/R19eHubm5qpsDKgwAACAASURBVNzjWWsbGxveFbERUCqVmD59Ov73v//h3LlzaN26tehIRER16rfffoO9vT0sLCxERyF6IXK5HFpaWrh58ybLPEjt6enp4dChQ5gyZQqGDBmCQ4cOwd/fX3QsIrXSrl07HDp0CL/88gtWr14Nf39/eHt74/3330e/fv1Ex6s1BQUFuH37NmJiYhAdHa1ax8bGoqSkBE2bNkXbtm0hl8sxatQoeHl5wdPTE02aNBEdndRMXFwcXnvtNeTk5ODMmTPo3r276Ej0nJ5VwJGXl1dtOUdmZiaUSiUmTpxY4biVlXFIpVLIZLJy5RyV7WdlZQUdHQ7PKiszMxN//fUXunbtKjoKEZHasLOzw7lz5zBs2DD06dMH33//PXr27Ck61kvbtGkTLl26hMDAQERGRkJPT090JCKicjw9PbFkyRIEBwdjwIAB/H061VhOTg7LPIiIiNREaZmHg4OD4CRERESkqfjbYiIiIqJG4MmTJwAAQ0NDrFq1ChKJBMuXLxecqrwmTZrg2LFjGDp0KPr164fw8HC0bdtWdKyX8p///Ae6urp44403REchIg1laGgImUwGmUxW5X5VlX7Ex8cjMjISSUlJePDggeo5enp6sLCwqLb0w9raGtra2nV9qlRH/vWvf2H//v04evQoOnbsKDoOEVGdu3TpEjp37iw6BtELMzIyQosWLXDz5k0MHz5cdByil6atrY09e/ZAR0cHo0aNwoEDBxAQECA6FpHa6dq1K44ePYqLFy9izZo18PHxgbe3N1atWoU+ffqIjldj+fn5uHXrFmJiYnDz5k1ER0cjOjoaCQkJKCkpgYGBAdzc3ODu7o6JEydCLpejXbt2cHJyEh2dNEBYWBjGjx8PmUyGH3/8EY6OjqIjNTrFxcXIzs6GQqFAdnZ2hcc5OTnPXJculTEyMoKZmRlMTU3LrZs3bw65XA6pVKratnXrVgDA9u3bVfuyGKj2Xbx4EQDQpUsXwUmIiNSLmZkZTp06hUmTJsHX1xdffPEFRo0aJTrWSzEwMMDBgwfRqVMnBAcHY+PGjaIjERFVsGzZMoSFhSEoKAiRkZEcH0E18uDBA5Z5EBERqYmkpCSYmJjA1NRUdBQiIiLSUCzzICIiImoEcnNzAQDZ2dkIDQ3Fxx9/DDMzM8GpKqqs0KNdu3aiY72Qx48fY8uWLZg7dy5MTExExyGiRq42Sz+Sk5PLDYyvrvRDKpXCzs4OTk5OHNTSwISGhmLjxo3Ys2cPBgwYIDoOEVG9+PXXXzF79mzRMYheioeHB6Kjo0XHIKo12tra+PTTT2FsbIzRo0djz549mDhxouhYRGrplVdewdGjRxEVFYUVK1agb9++8Pb2xpo1a9CrVy/R8VSKiopw9+5dREdHIyYmRrW+efMm8vPzoaurCwcHB7i7u2PkyJFwd3eHl5cXXF1d+dkC1TqlUol169ZhyZIlGDduHHbu3AlDQ0PRsdRWbm4uFApFpUteXl6V309PT0dJSUmFYxoYGEAqlZZbDA0NK2yrbLGwsIC+vn6N89+9exebN2+Gu7t7bf6x0FN++eUXtG7dGhYWFqKjEBGpHX19fezfvx/z5s3D2LFjkZGRgVmzZomO9VJcXFywc+dOjB07Fr169cJrr70mOhIRUTk6Ojr4/PPP0bFjR6xfvx7BwcGiI5EayMnJYZkHERGRmkhKSoK9vb3oGERERKTBWOZBRERE1Ag8efIEALBjxw7IZDJMnz5dcKJnMzIywtGjRzFs2DC8+uqrOHXqFDp16iQ61nPbtm0bcnNz8eabb4qOQkRUY7VZ+pGSkoLs7Oxyz5NKpZUWfpRds/Sjfnz99deYN28ePvroIwQFBYmOQ0RUL9LS0pCUlITOnTuLjkL0Ujw8PHDkyBHRMYhqlUQiwaZNm6Crq4spU6agqKgIU6ZMER2LSG15e3sjPDwckZGRWL58OXr37g0fHx+sWbOmXt8LFRQU4Pbt24iJiUF8fHy58o68vDzo6OjA0dER7u7u8PHxwbx58yCXyyGXy2FgYFBvOanxevToESZPnozvv/8ea9asweLFi0VHahCqKtyoasnMzERBQUGF45WWcRgaGlYo5pDJZFWWcVhZWUFHp/6GNnl5eSE5ORmpqamwtbWtt9dtbH755Rd07dpVdAwiIrWlra2N0NBQODo6Ys6cObhz5w7Wrl0LiUQiOtoLCwwMxKlTpzB16lR06NABzs7OoiMREZXj5uaG999/H8uXL8fgwYPRtm1b0ZGoASsoKEB+fj5MTU1FRyEiIqIaSE5OZpkHERER1SmWeRARERE1AqVlHhEREThx4kS9Dnx8EUZGRvjhhx8wbNgw+Pr64scff0SXLl1Ex6qx/Px8fPzxx5g1axaaNWsmOg4RUa2rjdKP1NRUXLly5YVLPxwdHRv8z7OG6uzZs5g8eTIWLFiABQsWiI5DRFRvfv31V0gkErUsCyQqSy6X48MPP0R+fv5z3WWcqKGTSCTYsGEDTExMMG3aNDx69Ahz584VHYtIrfXo0QNnzpxBZGQkli5dii5dusDHxwchISHw8vKqtdfJysrCrVu3EBMTg7i4OERHRyM2NhZ37tyBUqmEnp4eWrduDTc3NwwaNAjvvPMO3N3d4erqCj09vVrLQfQ8/vzzTwwfPhxpaWk4deoU+vTpIzpSrXmRMo68vDzVZ3mVebqEo6ZlHBYWFmr1nrVTp06QSCS4evUqBg8eLDqOxrp69SpWrFghOgYRkdpbvHgxbGxsMH36dKSnp2PXrl1q/buz0NBQXLlyBYGBgbhw4QKvFYiowVm4cCGOHDmC6dOn43//+x+0tLRER6IGKicnBwDQtGlTwUmIiIioJpKSkljmQURERHVKfT+5JyIiIqIae/ToEQCge/fuGDhwoOA0NWNoaIijR49i5MiRGDBgAE6ePKk2d+n67LPPkJmZibffflt0FCIioWqj9EOhUCAmJka1rSyWfjy/GzduYPjw4QgICMCHH34oOg4RUb26dOkSWrduDTMzM9FRiF6Kh4cHioqK8Mcff/Duf6SRVq5cCUNDQ7z11lsoKiri5ytEtaBHjx6IiIhAeHg4lixZgs6dO2Pw4MH44IMP4OnpWePjKBQKREdHIyYmRrWOj49HfHw8AEBfXx8tW7aEXC5HUFAQ5HI5ZDIZ5HI5DAwM6ur0iJ7biRMnMH78eDg7O+Py5ctwcnISHamcp8s4Sos2alLKcf/+fRQVFVU4ZnVlHIaGhs/cx8bGptFMUjM1NUXLli1x+fJllnnUkbt37yIzM/O5fv4QEdGzBQUFwc7ODiNGjEBmZia+/vprGBkZiY71QgwMDHDo0CF06tQJy5Ytw7p160RHIiIqR1tbG7t27YKnpyd27NiBWbNmiY5EDdSDBw8AsMyDiIhIXSQlJaFz586iYxAREZEG42wWIiIiokbgu+++AwCsWbNGcJLno6+vj2+++QYBAQEYOHCgWhR6FBcXY+PGjZg6dSrs7OxExyEiUgs1Lf3Iy8tDVlbWM4s/Xqb0w8HBAbq6unV5msLFx8djwIAB8PLywp49exrNJAwiolKXLl3iL99JI7i6ukJPTw83b95kmQdprMWLF0NXVxcLFy5EQUEBFi9eLDoSkUbw8fGBj48PwsPDERwcDC8vLwwePBirV69G+/btAQD5+fm4ffs24uLi8McffyAuLg63bt1CbGysaiKChYUF3Nzc4ObmhkGDBsHd3R2urq5wdHSERCIReYpEVVIqlVizZg2WL1+OiRMnYvv27XVWNPPw4UMoFApkZWXVqIRDoVAgOzsb2dnZKCwsrHA8AwMDmJmZQSqVwszMTPXY0dER7dq1q/R7Zb/m50A117FjR1y9elV0DI11/fp1SCQStGvXTnQUIiKN4evri/DwcAwZMgR9+vTBsWPHYGlpKTrWC2ndujU2b96MqVOnwtvbG8OGDRMdiYioHLlcjrfffhvBwcEYNmwYx4ZRpRQKBQDwBgNERERqIikpCc2bNxcdg4iIiDQYyzyIiIiINFxeXh52794NAGp5lysDAwN89913GDlyJPr3749jx46hZ8+eomM90/79+5GQkICFCxeKjkJEpHEMDAxgZ2cHOzs7eHl5PXO/mpZ+pKWlQalUqp6nyaUfGRkZGDRoEJo3b44jR45AX19fdCQionqlVCpx+fJlLF++XHQUopemq6sLFxcXREdHi45CVKcWLFiAJk2aYPbs2VAoFAgJCREdiUhj+Pj44Pvvv8fnn3+O7du3w9PTE9bW1tDV1UVKSgqKi4uhpaUFR0dHtG7dGt26dcOUKVPg6uoKuVyuthMDqXFTKBQICgrCyZMn8fHHH2PevHnVPufRo0eVlm7UpKCjqKiowvGaNm2qKtkoXezt7dG2bdsKRRylj0u/rqvSEarI09MTW7duFR1DY12/fh0ymYx3qCYiqmVdunTBxYsXMXDgQPTu3RsnTpyAk5OT6FgvZPLkyTh37hymTJmCa9euqe15EJHmWrFiBb799lu888472L9/v+g41ABlZGQAAD9DIyIiUgOPHz9GdnY2HBwcREchIiIiDcYyDyIiIiINFxoaqrpjopGRkeA0L0ZfXx+HDx/G+PHjMXDgQBw5cgS+vr6iY1WgVCqxbt06jB8/Hi1bthQdh4io0WLpR3lPnjyBv78/CgsLcezYMZiYmIiORERU72JiYpCZmQlvb2/RUYhqhYeHB27evCk6BlGdmzlzJrS1tTFz5kwAYKEH0XMqKChAUlISoqOjERMTg/j4eERHR+P3339XfWasr68Pe3t7PHz4EOnp6ejcuTOCg4Ph6+sLY2NjwWdA9PJyc3MRGRmJadOmIS8vD6tXr4aZmRk2bdpUZRlHVlYW8vPzKxzPwMCgQiGHpaUlWrduXWF72aVZs2bQ09MT8CdAz8vT0xOJiYnIyMhAs2bNRMfROL/99hs6dOggOgYRkUZq2bIlIiIi4OfnB29vb/z444+Qy+WiY72Q0NBQXLp0CYGBgbhw4UKD+Z0bERHwz/i70NBQ+Pn5YcKECRg0aJDoSNTAZGZmQldXl5+tERERqYE7d+4AAMs8iIiIqE6xzIOIiIhIgz169Ajr1q3DgAEDcPLkSejoqO/bPz09PXz99deYNm0ahg4dioMHD2LYsGGiY5Xz/fffIyYmBgcPHhQdhYiIaqCmpR/5+fnIzMystvQjPT0dJSUlquc9q/RDKpWqHjs5OdXpAI7CwkKMGDECf/75JyIjI2FjY1Nnr0VE1JCdO3cOpqamnDBEGkMul+Pzzz8XHYOoXrz++uswMjJCUFAQiouLsX79etGRiBochUJRobAjJiYGf//9t+o61dbWFnK5HHK5HKNGjYJcLodMJkOLFi0gkUhQUlKCw4cP47333kNgYCDGjBmD5cuXo1WrVoLPjuifQo6qijeqWvLy8soda/HixZUWckilUshksioLOSwsLKCvry/oT4Hqi6enJwDg+vXr8PHxEZxG81y/fh2TJ08WHYOISGPZ2dnh/Pnz8Pf3R69evRAWFoauXbuKjvXcmjRpgoMHD6Jr165Yvnw51q5dKzoSEVE5AwcOREBAAN566y306dMHhoaGoiNRA5KZmQkLCwtIJBLRUYiIiKga8fHxAIAWLVoITkJERESaTH1ncxIRERFRtdavX4+CggL07dsX58+fFx3npWlra+Ozzz6Djo4ORo8ejf3792PEiBGiY6msW7cO/v7+cHd3Fx2FiIhqkb6+fp2WfpSWilRW/PEypR9KpRIzZsxAVFQUzp49i9atW7/wnwERkbqLiIhAjx49oK2tLToKUa3w8PBAQkICHj9+jCZNmoiOQ1Tnxo0bB21tbUyYMAGPHz9GaGgoB0JTo5Ofn48///yzQmFHXFwcHj16BAAwMzNDy5YtIZPJMHHiRFVhh5ubG4yMjKo8vpaWFkaNGoURI0bg8OHDWLp0Kdzd3TFmzBisXLkSMpmsPk6TNFxNSjlKP0epqpADQLWFHMbGxjh+/DgiIiIwYsQILFu2DJaWlizkoGpZWVnBzs4O165dY5lHLXvw4AESEhJYtElEVMdMTU1x6tQpjB07Fv369cPhw4cxYMAA0bGem4eHBzZv3owZM2bg1VdfVctzICLNtmXLFri5uWHt2rX44IMPRMehBqS0zIOIiIgavvj4eFhZWdXpDdmIiIiIWOZBREREpKEyMjLwySefIDg4GFpaWhpzBwAtLS3s2rULxsbGCAwMxKeffoqgoCDRsXD+/HlcvHgRUVFRoqMQEZEgNS39KCgoQEZGxjNLP6KiopCSkoJ79+6huLhY9byalH44OjrCxMQEALBo0SJ89dVXOHr0aJV5iIg0nVKpxPnz57Fw4ULRUYhqjYeHB0pKShATE4POnTuLjkNULwIDA6GlpYXx48ejuLgY27Ztg5aWluhYRLWutAwyPj6+XGnH33//jZKSEujo6MDR0REymQze3t6YMWMGZDKZanlZpaUer732Gg4cOIBVq1bBzc0NkydPxvLly9G8efNaOEtSZ48ePUJWVlaFJTMzEwqFotLvKRQKPHnypMKxnlXI4eXlBalUCnNz80q/L5VKYWBg8MyMd+/exciRIxEXF4dvvvmmQZWCk3rw9PTEtWvXRMfQONevX4dSqWSZBxFRPdDX18c333yD6dOnw9/fH19++SVGjRolOtZzmzZtGs6dO4eJEyfi+vXrsLOzEx2JiEjF1tYW77//PhYtWoSxY8fCzc1NdCRqIFjmQUREpD4SEhJYaE9ERER1jmUeRERERBrq3//+NwwMDPDmm29ix44d0NPTEx2p1kgkEnzyyScwMTHB1KlTUVRUhGnTpgnNtH79evTo0QPdu3cXmoOIiBo+PT29Gpd+pKenIykpqcL63r17OHv2LO7du4f09PRyz7OwsICenh5SU1Ph7e2Nc+fOIS4uDra2tuWW6u7KTESkKW7duoX09HT07t1bdBSiWtOyZUs0adIEN2/eZJkHNSqjRo2CoaEhRo4ciZKSEuzYsYOFHqSWcnJy8Oeff1Yo7IiNjcXjx48BAFKpFDKZDO7u7uUKO+RyeZUlBrVFV1cXkyZNwtixY3HgwAG8//772Lt3LyZPnowVK1ZwEp0GyMnJKVfEUbZ4o7JCjtKloKCgwrFKizfKLh4eHqrHZUs4yn5dFyXkx44dw6RJk+Dk5ISrV6+iZcuWtf4apPk8PT3x7bffio6hca5fvw4LCws4ODiIjkJE1Choa2vj008/hZmZGcaOHYvs7GxMnz5ddKzntm3bNnTu3Bnjxo3D6dOnoa2tLToSEZHKm2++iX379uGNN97AuXPnIJFIREeiBiAzMxPNmjUTHYOIiIhqID4+nmUeREREVOdY5kFERESkge7evYvt27dj/fr1MDExQVFREXR0NO+t36pVq2BsbIzp06fj0aNHeOutt4TkiI2NRVhYGL777jshr09ERJpJT08PDg4O1Q5uLywsLFf28f3332Pv3r3o0qULzMzMcOLECaSnpyM9PR1KpVL1vKZNm6J58+awsrKCvb09rKys0Lx5c1hbW6vWdnZ2MDMzq+tTJSKqUxERETA2NkbHjh1FRyGqNVpaWnB1dUV0dLToKET1bsiQIfjuu+8QEBCAx48fY9++fRr5uRepv/z8fPz111+4ffs2bt++jT/++AN//PEHbt26hXv37gH4527ZLi4uaNOmDfr374+5c+fC1dUVrVu3hlQqFXwG/ygt9RgzZgz27t2LDz74AJ9//jmCgoKwcuVK2Nraio7Y6OXm5kKhUFS6pKamIiUlpcL2zMzMSks5DAwMyhVvSKVStGjRAt7e3rC1ta3wPalUCktLS+jq6go48/KKi4uxatUqrFq1CuPHj8f27dtZZEovzNPTE2vWrMGjR49gbGwsOo7G+O2339ChQwfRMYiIGhWJRIKNGzfC2toaM2fOhEKhwKJFi0THei7GxsY4dOgQunbtitWrV2PFihWiIxERqWhra2PHjh3o1q0b9u3bh6CgINGRqAHIyMhAixYtRMcgIiKiGkhISIC/v7/oGERERKThOLKNiIiISAOtXbsWNjY2mDFjBgBobJkHACxevBgSiQTz58/Hw4cPsWzZsnrP8OGHH8LFxQVDhgyp99cmIiLS1dWFvb097O3tcfbsWezfvx+zZ8/Gli1bKuyrUCiQkpKimsxTdv3rr78iNTUVSUlJ5Sb06Ovrw9zcHHZ2drC1ta2wlkqlsLOzg5OTE++GRkQNUkREBHr06KGx10TUeHl4eODmzZuiYxAJ4efnhyNHjmD48OGYMGECvvzyS/4/T0IUFhbi77//VpV1lBZ33L59G3fv3kVJSQkAwN7eHi4uLnB1dcWwYcNUhR3Ozs5qcx2lp6eHGTNmYPLkydi7dy/ef/99fPXVV5g2bRqWLFkCa2tr0RHV3tOlHM8q4ii73L9/H0VFRRWOVbaUo/T6XSaTVVrGUbpYW1urzb/Hp2VkZGDcuHG4cOECtm3bpvrdCNGL8vT0RElJCX7//Xe88sorouNojOvXr6NPnz6iYxARNUqLFy+GsbEx5s2bh6ysLKxduxYSiUR0rBpr27YtPvzwQ8yfPx89evRAv379REciIlLp1KkTZs2ahYULF2LQoEGwtLQUHYkEy8rKgpeXl+gYREREVAMJCQks4SIiIqI6x1FtRERERBomMTERe/bswebNm6GnpwdAs8s8AGDRokUwNjbGm2++iUePHiEkJKTeXjs5ORn79+/Htm3boKWlVW+vS0RE9LTff/8dAQEBGD58ODZv3lzpPqUTdORyeZXHys3NrbTwIyUlBfHx8YiMjERycjJycnIqHL+ywo+yawcHhwZxx14iahyKi4tx+vRptbvbJFFNyOVyhIeHi45BJMyAAQNw4sQJDBkyBGPHjsX+/fv5PpPqTEpKCmJiYhAfH19uiY6ORl5eHoB/rodkMhlkMhkCAwPh7u4OuVyO1q1bw8TERPAZ1J7SUo+goCB8/vnnWLFiBT777DPMmTMHixYtgrm5ueiIwpW9pq6qiKPscu/ePRQXF5c7TtlCjrJLdaUcNjY2jeqz6kuXLmHUqFFQKpWIiIhAly5dREciDeDs7AypVIpr166xzKOWFBUVISYmBm+99ZboKEREjdacOXNgZmaGKVOmIC0tDbt371arcSRz587FuXPnMH78eFy/fh02NjaiIxERqfz73//Gf//7XyxZsgS7du0SHYcES0tL488pIiIiNZCeno5Hjx5BJpOJjkJEREQaTn0+iSciIiKiGvnwww9hZWWFyZMnq7YVFxer1SCMFzF79mxoaWlhzpw5kEgkWLt2bb287qZNmyCVSjFu3Lh6eT0iIqLKJCQkoH///vD09MTevXtfetKOoaGhahJaVSor/Sh79+CYmBikpKQgLS0NSqVS9TwDA4MqCz9sbW1hb28PU1PTlzoPIqJffvkFGRkZGDx4sOgoRLXOw8MDycnJyMrK4sRparR69+6NEydOYNCgQRg+fDgOHz4MfX190bFITSkUClVBR9nijlu3buHJkycAyhd2+Pj4YMaMGXB3d0fbtm0b3fWLvr4+ZsyYgfHjx2P37t1Yu3YtQkNDMWfOHAQHB8PMzEx0xJeiVCqRmZmJrKwsZGZmVnhcumRkZCArK0u1PH78uMKxmjRpAnNz83KLra0t5HJ5he1lFyMjIwFnrl527tyJuXPnon///ti3bx+kUqnoSKQhJBIJ2rVrh2vXromOojESEhKQl5dXbckwERHVrfHjx8PU1BSjR49GTk4ODhw4AAMDA9GxauzTTz9Fx44dMWXKFBw/frxRldgRUcPWtGlTrFu3DpMmTcLs2bPh6ekpOhIJUlJSgvv378Pa2lp0FCIiIqpGQkICALDMg4iIiOqcZs/oJCIiImpkUlNT8dlnn2HDhg3Q09NTbS8qKtL4Mg8AeOONN2BoaIhp06bhwYMH+M9//lOngzcePHiAnTt34t1331WrAS5ERKRZMjIy4OfnBysrK3z33Xf1OnmxpqUf+fn5yMzMrFD8Ubq+cuUKjh07hjt37pS7E3FlpR9SqbTCNltbW0gkkro+XSJSQ8ePH0eLFi3g7u4uOgpRrfPw8AAAREdHo2fPnoLTEInTo0cPnDx5En5+fhg+fDj++9//8nMaeqbSwo6nSzvi4uLw6NEjAP+UVLRs2RJyuVxV2FF63cPBfBU1adIEb731FqZNm4bQ0FB8+OGH2Lp1K2bPno133323QZSc5ObmVijjyMjIKFfKUVlpR9lSSuCfa2ALCwuYm5vDwsICzZo1Q5s2baos5DA3N2fJUB149OgRXn/9dXz77bdYtmwZli9fzomcVOs8PT1x4cIF0TE0RlxcHADAxcVFcBIiIhoyZAhOnDgBf39/DB48GEeOHIGJiYnoWDViZmaGgwcPokePHvjoo4+waNEi0ZGIiFTGjRuH7du3480330RkZCR/f91IZWZmorCwEDY2NqKjEBERUTXi4+Ohq6sLe3t70VGIiIhIw2n+jE4iIiKiRiQkJARmZmaYMmVKue2NpcwDAIKCgiCVShEYGIjs7Gzs3bsXurq6dfJa27ZtQ0lJCWbOnFknxyciIqrOkydP4O/vj8LCQpw7d65BTJKqjL6+Puzs7GBnZwcvL68q91UoFJUWfqSmpuLKlStITU1FYmIiCgsLyx3f3Ny8QsnH02tra2toa2vX9ekSUQNy/PhxDB48WHQMojrh4OAAMzMz3Lx5k2Ue1Oh1794dZ86cQf/+/TFs2DAcOXIEhoaGomORIGULO8oWd9y8eRM5OTkAAD09Pdjb20Mmk8Hb27tcYUeLFi042eIFGBsbY/HixZgzZw5CQ0MREhKC3bt3480338SCBQvQtGnTWnmd3NxcKBQK1VJ6zVh229NLampqheMYGBhAKpWqFjs7O3Tu3LnctqcXOzu7WjkHejmxsbEYOXIk0tPTceLECfj6+oqOWSj3jAAAIABJREFURBrK09MT27ZtQ2FhYZ39nqkxiYuLg52dXa39PCAiopfTu3dvnDlzBn5+fvDx8UFYWBgsLCxEx6qRzp07Y/Xq1ViyZAl69OiB7t27i45ERAQAkEgk2LRpEzp37oxvv/0Wo0aNEh2JBEhLSwMAWFtbC05CRERE1YmPj4eTkxPHExIREVGdaxwzOomIiIgagbS0NOzatQvr1q2rcPfRxlTmAQD+/v4ICwuDv78/RowYgUOHDtX6HVnz8/OxefNmvPHGGzAzM6vVYxMREdVEYWEhRowYgdu3byMqKkpj7uxSOklKLpdXuV9p6UfZyVul6/j4eERGRiI5OVk1Wa/s8asq/LCzs4ODgwMnaRBpgKSkJNy4cQMhISGioxDVGblcjujoaNExiBoELy8vhIeHo3///hg4cCCOHz8OY2Nj0bGojuTl5eGvv/5CTExMhdKO0uIGXV1dODg4QCaTQS6XY9SoUZDL5ZDJZHB2doaWlpbgs9BMpaUes2fPxtatW7F27VqEhobinXfewdy5c2FkZATgn7/DrKysaks4yhZ1ZGRklCt2BCqWcpQuMpmsXAmHra2t6mtLS0te86mpAwcOYPr06XB3d8fly5fh5OQkOhJpME9PT+Tn5+PWrVto166d6DhqLy4uDq6urqJjEBFRGV5eXjh//jwGDBiAXr164dSpU2jevLnoWDXyzjvvIDIyEmPGjMG1a9fUpoiEiDRfx44dMWHCBCxcuBCDBw9WfQ5CjUdpmYemjN8gIiLSZAkJCWjRooXoGERERNQINJ4ZnUREREQabv369TA1NcW0adMqfK+4uLjRtcb26dMHp0+fhp+fH/z8/PDDDz/AxMSk1o7/5Zdf4v79+5g7d26tHZOIiKimlEolZsyYgfPnz+P06dNo3bq16Ej1rnQSVnVyc3MrlH2UnRQWExODlJQUpKWlQalUljt+6WSvZxV/ODg48G6iRA3YsWPHYGRkhFdffVV0FKI64+HhgZs3b4qOQdRgeHp6Ijw8HL6+vvDz80NYWFitfh5E9Ss/Px/JycmIjo6uUNqRkJAApVIJHR0dODo6QiaTQSaTwcfHBzKZDO7u7nB1dW10n4mKkpubW2kJR25uLgIDA/Hzzz9j2bJleO+99yCVSqGlpYX09PRy12BAxWIOOzs7eHl5VVrWUbrY2tpCIpEIOnOqL7m5uXj77bexY8cOzJ8/H+vWrWMhC9U5Nzc3GBgY4Nq1ayzzqAWxsbHw8PAQHYOIiJ7i6uqKCxcuoH///ujZsydOnTqFVq1aiY5VLYlEgj179sDT0xOTJ0/GDz/8wOsCImow1q1bh9atW+Pjjz/G0qVLRcehepaeng49Pb0ajWUgIiIiseLj49GmTRvRMYiIiKgRYJkHERERkQbIzMzEjh07sHr1ahgaGla6z9MDoxuDLl26IDw8HAMGDEC/fv1w4sSJWrkji1KpxMaNGzFhwgQ4ODjUQlIiIqLns3jxYnz11Vf44Ycf0K1bN9FxGjRDQ0PVxL6qlN4V+unij9J1VFQUUlJScO/ePRQXF6ueZ2Bg8Myyj7JFIJxgRlT/jh8/jn79+sHAwEB0FKI6I5fL8c0334iOQdSgtG/fHufPn0e/fv3Qt29fnDp1igOnG7DHjx/jzz//rHRJSkoCAGhra8PR0REuLi5o3bo1hgwZAhcXF7i4uMDZ2ZkT+mtRUVERMjMzkZGRoVqXLllZWcjMzERmZma5x5mZmSgpKSl3HH19fVhYWKiWVq1aoUOHDrh9+zYuX74MQ0NDTJo0CUFBQbC1tVXtp6WlJejMqSGLiYnBmDFjkJiYiMOHDyMgIEB0JGokdHR04OHhgWvXriEoKEh0HLUXFxeHESNGiI5BRESVcHR0xP/+9z8MGjQIPXv2xMmTJ9G+fXvRsaplbm6OL774An379sWWLVt4IxYiajCsra2xaNEihISE4PXXX4e1tbXoSFSP0tLSYG1tzbEBREREauCvv/6Cn5+f6BhERETUCLDMg4iIiEgDhIaGQl9fH6+//nql32/Mvxzy9PTE+fPn0b9/f/Tu3Rs//fQTbG1tX+qYP/zwA27duoVDhw7VUkoiIqKa27p1Kz766CPs2bMHAwcOFB1HY5SWcpTe+bkqCoWi0sKP1NRUXLlyBceOHUNiYiIKCwvLHb9sucez1tbW1rx7OFEtePz4Mc6cOYOPP/5YdBSiOuXh4aEqo3rZa10iTeLq6oozZ86gX79+8PX1xY8//lgrBa/0Yh48ePDMwo7U1FQAgJaWFhwcHNCyZUu0bt0agwcPVpV3yGQy6OvrCz4L9ZSbmwuFQgGFQqG6bin9urJtT5cXAv9/LVN2kcvlqgLDypaqygzv37+PDRs2YPPmzThz5gwWLlyImTNnssiDKrVv3z7Mnj0b7u7uuHLlSrVFnUS1zdPTE9euXRMdQ+1lZ2fj3r17vMslEVEDZm5ujvDwcAwfPhx9+vTBsWPH0L17d9GxqtWrVy8sX74c//rXv+Dt7Y2OHTuKjkREBABYsGABduzYgffffx9bt24VHYfqUXp6OgtciIiI1MDjx4+RlJQEV1dX0VGIiIioEWCZBxEREZGay8/Px7Zt2zB79mwYGxs/cz+lUlmPqRoWV1dXXLhwAb6+vujTpw9++uknODg4vPDx1q9fj8GDB0Mul9diSiIiouodPHgQc+fOxbp163hHUIHKTmCrSmnpR9lJcqXr+Ph4REZGIikpCQ8ePKhw/KoKP+zs7ODg4MA7kBNV4YcffkBBQQFee+010VGI6lTbtm0BADdv3mSZB9FT2rRpgwsXLqBv377w8fHBTz/9hGbNmomOpbEUCgXi4+MrXRISElSfTdra2kIul8PNzQ2DBw+GTCaDTCaDq6srmjRpIvgsGrayxRzPKucouz0jI6NcwSBQ82KO0msPS0vLWr/usLS0REhICBYsWICNGzciODgYGzduxIIFC/DGG2+wuIUAAA8fPsSsWbOwf/9+zJ07F+vXr4eenp7oWNQIdejQAYcOHYJSqWzUxfkvKzY2FgA4MJ6IqIEzNjbGsWPHMG7cOPTv3x+HDx/GgAEDRMeq1rJly3DhwgUEBgbiypUraNq0qehIREQwNDTEihUr8MYbb2Du3Llwc3MTHYnqSXJyMpo3by46BhEREVUjLi4OSqWSn1kSERFRvWCZBxEREZGa27t3LxQKBebMmfPMfSQSSaMu8wAAJycnXLhwAf3790ePHj0QHh4OFxeX5z7Ozz//jKioKERERNRBSiIiomc7e/YsgoKCMGvWLLzzzjui41ANlE6Eq05ubm6Fso+yE/NiYmKQkpKCtLS0cu/pni79KDvprnTt4ODAgavUKB04cAA+Pj6wsrISHYWoTjVr1gzW1ta4efMmfH19RcchanBatGiBc+fOoW/fvujVqxdOnz7N4puXUFVhR3x8PABAV1cXDg4OqpIOHx8f1WN3d3cYGhoKPouGo2z5X3UFHcnJycjJyalwjNJrgurKOaRSKezt7WFqairgTCtnZWWFkJAQzJkzBx999BGCg4Px8ccfY8mSJZg6dSp0dDiUobG6evUqAgMDkZOTg+PHj8PPz090JGrE2rdvj5ycHNy5cwfOzs6i46ituLg4GBgYvFTRPhER1Q99fX0cOnQIM2bMgL+/P7744guMHj1adKwqaWlp4csvv0SHDh0wffp0HDx4UHQkIiIAwOTJk/HJJ5/gvffew7fffis6DtWTxMREtG/fXnQMIiIiqkZsbCx0dXXRokUL0VGIiIioEeAIGCIiIiI1plQqsWnTJkyaNAk2NjbP3I93C/uHtbU1zp49Cz8/P/Tq1QunTp1S3cW4pjZs2AAvLy/06tWrjlISERFV9PvvvyMgIADDhw/H5s2bRcehWmZoaKia4FiVvLw8ZGVlPbP4o7T04969eyguLlY9z8DAoELJR2UFILa2tnzfSBpBoVDgxx9/xK5du0RHIaoXHh4eiI6OBgAUFBQgNjYWcXFx6NWrF6ytrQWnIxLPyckJZ8+eRb9+/dC3b1+cPn0adnZ2omM1WJUVdkRHRyM6OhrZ2dkAnl3Y4e7ujjZt2jTKEoayBX1PF3FUtv3poj6g/Pv20gIOmUxW7j172XIOTXn/7uDggE2bNmHhwoXYsGED5s2bh5CQEAQHB2PatGnQ1tYWHZHqiVKpxObNm7F48WJ0794dERER/P+ahGvXrh0kEglu3LjBMo+XEBcXBxcXF/6fTkSkJrS1tbF7926YmZlh3LhxyMnJwfTp00XHqpK1tTX2798PX19f7N69G6+//rroSERE0NbWxtq1azF06FBERUXB29tbdCSqB0lJSRgyZIjoGERERFSNuLg4tGrVCrq6uqKjEBERUSPQ+EZSEREREWmQ77//HrGxsTh8+HC1+z49OLyxMjc3R3h4OPz9/dG7d28cO3YM3bt3r9Fz79y5gyNHjmDfvn11nJKIiBqjqKgoKJVK9OjRo9z2hIQE9O/fH56enti7dy+0tLQEJSTRSif32dnZwcvLq8p9S+/yXVnxx5UrV3Ds2DEkJiaisLCw3PHLThR81tra2pqTL6hB+/bbb6GlpYVhw4aJjkJUZ4qKinD79m3cvHkT+fn5CA8Ph0wmw927d1WFTlu2bMGcOXMEJyVqGBwdHXHhwgX069cPffr0wZkzZ9C8efNy+zx48AA//PADJkyYIChl/Slb2BEdHY2YmBjEx8fj9u3bePDgAQBAT08P9vb2kMlkkMvlGDp0KNzd3SGXy+Hk5KTR7wdzc3OrLOJ4evv9+/dRVFRU7hil763Lvr8uLeZ4ertUKoWVlVWjLEEpy9HREZs2bcKCBQuwZs0azJkzB5988gmCg4Mxfvx4jf43R0BGRgamTJmCkydPYunSpXjvvff4d04NgomJCZydnXHjxg34+/uLjqO24uLi4OrqKjoGERE9B4lEgg0bNsDKygozZ85EVlYWFi9eLDpWlfr06YNFixZh7ty56Ny5M9q3by86EhERhgwZgt69e+Pdd9/F+fPnRcehOlZSUoKUlBQ4ODiIjkJERETViI2NRZs2bUTHICIiokaicY8IIiIiIlJzH330Efz9/eHm5lblfhKJhGUeZZiYmODkyZOYMGECfH198c0332DQoEHVPm/z5s2wtrbGyJEj6yElERE1JiUlJRgzZgxSU1Px2WefYdKkSQD+mczi5+cHKysr/Pe//4W+vr7gpKQuSicIyuXyKvd7uvSj7MTE+Ph4REZGIikpSTWpE/hnYqeFhUW1xR8ODg68ewEJceDAAQwZMgSmpqaioxDVuqKiInh7e+Pq1asoKiqCRCKBnp4eCgsLUVJSUm5fFxcXQSmJGiYbGxucOXMGPj4+6NGjB86cOYMWLVoAAB4+fAgfHx9cunQJFhYW8PPzE5z25ZUWdpQt64iPj0dcXBwePXoEANDX10fz5s0hk8ng7e2NGTNmQCaTQSaTwdnZWSOKBIuLi3H//n1kZGQgIyMDaWlp5b5OT09HRkYGMjMzVeuyhXcAYGRkhGbNmqFZs2awtLREs2bNIJfL0atXr3LbShcLCwu+D34JTk5O2LFjB4KDgxESEoKpU6fiww8/xOLFizFhwgSN+HdJ5Z0/fx7jxo2DlpYWzpw5g549e4qORFROu3btcOPGDdEx1Noff/zBwk0iIjW1ePFiGBkZYf78+VAoFFi7di0kEonoWM/0wQcf4MKFCxg3bhwuXboEIyMj0ZGIiBASEoJXXnkFp06dQv/+/UXHoTqUnp6OgoIC2Nvbi45CRERE1YiLi9OI3wkTERGRemCZBxEREZGa+vnnnxEVFVWj1n6WeVSkr6+Pr7/+GrNmzcKwYcOwc+dOTJky5Zn7P3z4EJ9++imWLFnCwfhERFTrwsLCkJSUBAAICgpCWloa3nzzTfj7+6OwsBDnzp2DmZmZ4JSkiWpa+pGbm6sq+Xh6rVAoEBMTo9r29PHLlnxUVgDi6OgIExOTujxNakRSU1Nx/vx5HDp0SHQUojqho6ODoqIiVXGHUqlEfn5+pftW9387UWNkbW2N06dPw9fXF6+++irOnDkDGxsb9O/fH9evX4eWlhaWL1+uNgO3UlJSyhV1lC6xsbF4/PgxAMDAwAAymQxyuRw+Pj5qX9hRVFSkKuK4f/8+0tPTVeUclX2dkZFR7vlaWlqq8g1LS0tYWlpCLperSjhK11ZWVqpyDkNDQ0Fn27i1aNECO3bswPz587F27VpMnToV69evx/LlyzFy5MgGPYGQ/l9YWBi++uorfP7559DRKT88RalUYvPmzfjXv/4FPz8/7NmzB+bm5oKSEj1b+/btcfDgQdEx1NqdO3fg7OwsOgYREb2guXPnQiqVYsqUKXj48CG2bNnSYN+P6+jo4MCBA+jQoQPmzZuH3bt3i45ERIRu3bph4MCBWLlyJcs8NFzpmA8HBwfBSYiIiKgqJSUluH37NubPny86ChERETUSLPMgIiIiUlNbtmxBp06danSXOm1tbRQXF9dDKvWira2NHTt2wNzcHNOmTUNWVhYWLlxY6b67d+9GYWEhXn/99XpOSUREjcGmTZtUk3MBIDg4GDt27MCjR48QFRUFGxsbwQmpsTM0NFRN+qxKXl4esrKynln8UVr6ce/evXLvTw0MDCqUfDy9Li0CIarKwYMH0aRJE7WZhE30IrZs2QJvb+8q9zExMUHz5s3rKRGRerGyslIVevTp0we2tra4evWq6r345cuX8dNPP8HX11dw0n/eW8XHx+Ovv/6qsCQkJKCwsBAAYG5ujpYtW6JVq1YYNGgQ5s2bBxcXF7Rq1QqWlpaCz6J6CoVCVRKnUCjKlcY9/fXT7yOB8u8lpVIpnJ2d0b17d9XXZQvlrKysKhQKUMPm5uaGffv2ITg4GCEhIRgzZgzkcjnee++9GpV65OXlQSKRQF9fv54SU6mUlBSMHz8e2dnZcHFxwcqVK1XfS09Px6RJkxAREYH169dj3rx5DXZCKFHbtm3x73//G0+ePIGRkZHoOGonOzsbDx8+hKOjo+goRET0EiZMmAAzMzOMGjUKOTk52Lt3b4O9trK3t8fnn3+OoUOHonfv3pg4caLoSEREWLVqFbp06YJTp06x0EODJSYmQiKR8HfaREREDdzdu3fx5MkTuLq6io5CREREjUTD/DSdiIiIiKp0//59fPvtt9ixY0eN9tfV1VUN7qfyJBIJQkJCYGtri7fffhv3799HSEhIuX2Ki4uxZcsWTJs2jXcGJCKiWvfXX3/h9OnTUCqVqm1KpRJ///03evbsCXt7e4HpiJ5P6URKOzs7eHl5PXO/goIC3Lt3D0lJSUhPT0dycjLS09ORkpKCtLQ0REVFITU1Fenp6eUmazZp0gR2dnawsbFRrW1tbWFra6vaZm1trRaTVqlu7Nq1C6NHj4ahoaHoKER15pVXXsHQoUNx4sSJZ17ru7u713MqIvXSrFkzHD9+HN26dStX5AH8U/66dOnSeivzyMrKUhV0PF3ckZycrLpOsLa2RsuWLdGyZUt069YNrVq1Ui0N7fOq2i7nsLW1hZeXF8s5Gjl3d3fs27cPixYtwgcffIDAwEB06dIFS5cuxdChQ5/5PD8/P2RmZuL8+fMwMzOrx8SNm1KpxJQpU/D48WMA/0xaGjBgAF555RWEh4dj4sSJaNq0KS5evAhPT0/BaYmq1r59exQXFyM6OhqdO3cWHUft3L17FwDvTE1EpAmGDBmC7777DgEBASgqKsIXX3wBXV1d0bEqNXjwYLz11luYPXs2OnfuzAlaRCRcp06dMGDAAKxcuZJlHhosMTER1tbWLJUlIiJq4GJjYwEAbdq0EZyEiIiIGguObCIiIiJSQ9u3b4eJiQkCAwNrtD/LPKr31ltvwdzcHFOnTkVOTg5CQ0OhpaUFADhy5Aj+/vtvzJs3T3BKIiLSRFu3boWOjk6Fn9UlJSWIiopC//79cfToUZiamgpKSFT79PT0YG9vX21ZTUlJCe7du4e0tDQkJyerCkDu3buH5ORkXLp0SVUEkpeXV+74VlZWaN68OaytrZ9Z/GFlZdVgBxvT8zt37hxiYmKwb98+0VGI6tzGjRsRFhZW6fd0dXU5KZaoGgUFBZg2bRpSU1PLFXkA/5S6Xrp0CWfPnkWfPn1q5fUUCgXi4+MrLNHR0UhNTVXtZ2trC7lcjjZt2sDPzw8ymQwymQwuLi5o2rRprWR50fws56CGwsPDA4cOHcLvv/+OVatWYdiwYejWrRvefffdCqUe586dw7lz56CtrQ0fHx+cPXsWJiYmgpI3Lhs2bMBPP/2kKiSSSCQIDAxEQEAANm/ejPHjx2Pr1q38+yC10LJlSxgbG+PGjRss83gBiYmJAMDCYiIiDTFw4ECcPHkSQ4YMQUBAAL755hsYGBiIjlWpdevW4eeff8bo0aPxyy+/sACaiIRbtWoVunTpglOnTrHQQ0MlJibC0dFRdAwiIiKqRmxsLKytrSGVSkVHISIiokaCI6GIiIiI1ExRURF27tyJadOm1XhQhJ6eHgoKCuo4mfqbOHEizMzMEBgYiLS0NBw4cAAGBgb4+OOP4e/vj1atWomOSEREGubJkyfYtWvXM0u3ioqKcPHiRXh7eyM8PBw2Njb1nJBILC0tLdjY2MDGxgYdOnSoct/c3FzVRNKn10lJSbh06RJSUlKQlpammlAGlJ9c+qx18+bNeRdvNbBt2zZ069YNXl5eoqMQ1bmWLVti5syZ2LlzZ6XvI+RyuYBUROqhoKAAw4cPR3h4eIUij1I6OjpYsWJFjcs8CgsLkZiYWGlhR2xsLB4/fgwA0NfXR/PmzVUlHT4+PqrH7u7u9TaxiOUcpAnatm2LQ4cO4ZdffsHq1avh7+8Pb29vvP/+++jXrx8AYNmyZdDR0UFRURFu3LgBX19fnD59Gk2aNBGcXrPdvHkTS5YsKXfdVVxcjLS0NEREROCzzz7D5MmTxQUkek5aWlqQy+W4ceOG6Chq6e7du5BKpSzvISLSIL169cKJEycwaNAgBAQE4PDhww2yKENXVxdfffUVOnbsiEWLFuE///mP6EhE1Mh16tQJAwcOxMqVK1nmoaHi4+PRokUL0TGIiIioGnFxcXB1dRUdg4iIiBoRjpwiIiIiUjNHjhxBSkoKZs6cWePn6OrqPnOSMJU3dOhQnDhxAsOGDcOgQYOwYsUKREVFISIiQnQ0IiLSQAcOHFBN7HuW4uJiREdHY+fOnVi+fHk9JSNSP4aGhqrJsFXJy8tDVlbWM4s/rly5gmPHjuHu3bvlJvgaGBiUm5j6rLWNjQ20tLTq+nTpKWlpaThy5Ah27dolOgpRvVm5ciX27t1b4Xq/sLCQZR5EVZg1axbCwsKq3KeoqAgXLlzAhQsX0LNnTwD/vIdISUlBdHQ0YmJiyhV23LlzR1V4IZVKy5V1zJgxQ/W1s7NznbxPyM7ORlpaGu7fv4/09HTV43v37iEtLQ0ZGRnIyMjAvXv3kJWVVe652trasLS0RLNmzWBpaQlra2u4ubmhZ8+eqq9Lv1+6D1FD0rVrVxw9ehRRUVFYsWIFfHx80K9fPwwbNgxRUVGq/QoLC3H16lUMHToUYWFhDfbu4eouLy8Po0aNKlfkUaqwsBDXr1+HkZGRgGREL6ddu3Ys83hBiYmJcHBwEB2DiIhqmbe3N86cOYMBAwbAz88PR48ebZDFTTKZDLt378aoUaPg7e2NMWPGiI5ERI3cqlWr0LlzZ5w6dYqFHhooPj4egwYNEh2DiIiIqhEXF4c2bdqIjkFERESNCMs8iIiIiNRMaGgohgwZ8lwt7izzeD69e/dGZGQkBgwYgICAALRr1w69evUSHYuIiDTQ5s2bq/y+jo4OjI2NsXLlSsyZM6eeUhFpttI7ydvZ2cHLy6vKfUvvWv904YdCoUB8fDwiIyORmJiIhw8fqp6jp6cHCwuLaos/HBwcoKurW9en22h8+umnaNKkCUaOHCk6ClG9adasGZYtW4Zly5apSgRKeXh4CEpF1PD5+vrixIkTSE9PBwCUlJRUup+WlhbGjBkDd3d3VWlHqdLCDnd3d/j4+KjKOlq1agVTU9OXzlhSUoL79+9XKOd41uP8/Pxyz7eysoKlpSUsLS1ha2sLT09PVRGHjY1NuWKOZs2avXReoobA29sb4eHhqlKPdevWQUdHp1xBX2FhIS5cuAB/f38cPXoU+vr6AhNrpvnz5+PPP/8s9+delkQiweuvv45XXnmFk/tJrbRr1w6HDx8WHUMtJSYmwtHRUXQMIiKqA15eXjh//jx8fHzg5+eHsLAwNG3aVHSsCkaOHImZM2di1qxZ6Nq163ONtSEiqm1eXl4YOHAgVq5cyTIPDZSQkMCfM0RERGogOjoa/v7+omMQERFRI8IyDyIiIiI1cuvWLURERODkyZPP9TxdXV0UFBTUUSrN5OHhgYMHD6JXr14wMDDAnTt34OTkJDoWERFpkIsXLz7zjp66urrQ0tLC/PnzsWTJkgY5+JGoMZBKpZBKpZDL5VXul5v7f+zdeVwTd/4/8Fe4z0C4Ei5FVMCioFJFQa0HKKjFa9V622rtZat2e9nufq3bbbVuvda1rbbaA6u22mqVar3ZerXFW0AQRO5wJgHkhszvD38zm5AEAgQmwPv5eORBmExm3jOZzHwyyec11RqBH6rBH8nJycjPz0dBQYHaFapFIhHc3d2bDf7w8vIySKfg7qyxsRFffvklli1bRlf5Jj3O6tWrsWPHDhQUFHCBBA4ODnB1deW5MkKMU319PYYPH469e/fihx9+wNGjRyGXyyEQCNSO0cDjQI38/Hw8+eSTWLFiBRfYMWDAgDYdb+rq6lBSUgK5XA65XK7WVmh6Pzs7W6MjfNN2Q1hYmFobgr1PgWGkpwsPD8dbb72FSZMmaX28oaEB58+fx9y5c3H48GGYmdFPJgzl2LFj2L17t8b+VBXDMKieQewqAAAgAElEQVSpqcGSJUtw7tw5CASCTqyQkLYLCgqCTCZDTk4OBdG0Uk5ODp544gm+yyCEENJBnnjiCZw/fx4REREYP348Tp06BWdnZ77L0rBt2zb88ccfmDt3Li5dugQLCwu+SyKE9GAffPABhg0bhtOnT1OgRzdSWlqK8vJyCvMghBBCjFxBQQGKiooQFBTEdymEEEII6UHolymEEEIIIV3IZ599hn79+iEyMrJVz7OwsEB9fX0HVdV9HTt2DG5ubnB2dkZYWBh+/fVXDBo0iO+yCCGEdBM7duyAubm52jHa3NwcDQ0NmDt3LjZt2gR3d3ceKySE6Mva2prr4NucmpoayGQyncEf169fR1xcHLKystDY2Mg9z8rKSqOjrrbgD4lEAhMTk45eXKNz4sQJZGVlYcWKFXyXQkins7KywsaNG7FkyRJuGH1uJT1dTU0N8vPzkZGRgYyMDCQlJSE5ORkZGRlqIRkikQi+vr6wsrLCgwcPUFBQAFNTU7VjsLm5Oaqrq/H2229rnVd1dXWLwRzs/cLCQi50B3j8/mWDw9hjua+vr9ZjvlgshqmpaceuOEK6kXXr1sHMzEwjFIfV2NiIuLg4LFmyBLGxsT2yDW1oUqkUS5Ys0RqOpM2FCxdw48YNhISEdEJ1hLRfUFAQBAIB7ty5Q2EerZSdna0zYIkQQkj3EBAQgEuXLmH8+PEYM2YMzp49a3Tfb1lZWeGHH35ASEgI/va3v2HTpk18l0QI6cFCQkIQFRWF999/n8I8upGMjAwAoDAPQgghxMixF1+j31UQQgghpDNRmAchhBBCSBdRV1eHAwcO4I033mj11eosLCxQV1fXQZV1T5WVldizZw/efPNNrFy5ErNmzUJYWBh+/PFH+iKVEEJIuxUXF+Pw4cNckAfbyWjUqFHYvn07fVlESDfFhnJ4eHi02GlNLpdrDfyQSqVISkrCpUuXkJ2djUePHnHPsbS0hJOTU4vBH97e3jA3N+/oxe00W7ZswaRJk9C/f3++SyGEFwsWLMDmzZuRlJQEExMTDBkyhO+SCOlwcrmcC+toenv48CHXkZwN7PD19cXs2bPh6+uLJ554AgMHDoSjo6PaNC9duoQPP/wQp06dgqmpKRoaGlBfX48zZ87g+eefh42NjUZQh1wuV5sGG9DBHnfd3d0REhKicVwWiURwd3dv9Tk+QkjLTp48id9//73F8RobG/H999/DwsICe/fupfdjOzAMg0WLFqGyslIttIhlamoKhmHAMAwGDRqEadOmYcqUKRTkQboUR0dHeHt7486dO5gyZQrf5XQZSqUSeXl56NWrF9+lEEII6WA+Pj6Ij4/HhAkTMH78eJw9exaenp58l6Wmf//+2L17N+bPn49Ro0YhJiaG75IIIT3YBx98gGHDhuH06dP0O7Ru4uHDhzA1NaXPP4QQQoiRu3v3Ltzd3eHq6sp3KYQQQgjpQSjMgxBCCCGki/jpp5+gUCiwaNGiVj/XxsYGNTU1UCqVdJVBPe3duxc1NTV4/vnnYWdnh+PHj2PJkiV4+umn8c033+CZZ57hu0RCCCFd2JdffomGhgaYmJiAYRgEBQVh27ZtGD16NN+lEUKMhEgkgkgkQmBgYLPjVVdXaw38YP9ev36d63DcdPqqIR/agj+8vLzg4ODQkYvZbr///jvi4+MRHx/PdymE8MbExARbtmzBhAkTIBAIWtxvENIVNDQ0IDs7W2tYR1paGsrLywE8DrD18vLiAjsiIiK4+wEBAbC1tQXwv5As9pioenxUHZ6bmwuGYdDQ0KBWz/79+zFkyBDu2KwtnKNXr16wt7fv9HVFCFH3z3/+EwKBgAv1aU5jYyO+/fZbODg4YNu2bZ1QXfe0detWXLhwQS3Igw0ttbe3x8SJEzFx4kRMmTLF6Dp0EtIawcHB3FUbiX4KCwtRV1cHb29vvkshhBDSCXr16oWLFy8iMjISo0aNwvnz59GnTx++y1LzzDPP4OTJk3j22Wdx8+ZN6nBNCOFNSEgIoqKi8NFHH1GYRzeRkZHR7S6oQAghhHRHd+/epQutEUIIIaTTUZgHIYQQQkgX8dVXXyE6OhoeHh6tfq6NjQ0YhkF1dTXXiYHoplQq8e9//xtLliyBs7MzgMedQ/bv34+3334b8+fPR25uLt544w2eKyWEkK7j0aNHqK+vVxvGMAwUCoXGuHV1daisrGx2egqFQq+OOS2pqKjQ6KjXVmZmZnp13lMqlfjkk0/AMAxcXV2xYsUKjBkzBrW1tTh79iwEAoHGVcKbsrW1hYWFhcZwkUikMczc3Bx2dnb6LwghpEuxtrbmOi03p6amBjKZTGfwR3JyMvLz81FUVITGxkbueVZWVs0GfrB/JRIJL8GBH3zwAUaMGIGnnnqq0+dNSFvV19fj0aNHAB53ImZDCYDHgQO6xm1OY2MjBg8ejFu3bqGoqAiHDh3SOa6+bRYTExONQB9LS0vY2NhoTEef9gsxHg0NDTAz4/8rwtraWuTl5WkN7EhKSkJNTQ2Ax21c1bCOFStWwMfHB0KhEObm5igoKEBRUREKCgoglUpx584dFBQUoLCwEMXFxSguLlb77GBubg57e3s4OjrCwcEBQqEQLi4u6NevH4RCIRwcHODo6Ijq6mqcP38ev/32G6qqqjBz5kytHVGlUimkUimSk5M7bd11tNDQUOrQRLqs5cuXw9fXF2lpaXjw4AFKSkq4xywsLCAQCFBXV8ftF5RKJbZv3w4bGxt89NFHes+nsrISdXV13P/l5eVq7eimx3RA/+O6Km3TaYmdnV2rOo5YWVnB2tpaY7i9vb3a8cLBwYFr87PH/tu3b+Odd97hgsQZhsGgQYMwbdo0REdHY/jw4TA1NW31MhBijIKCgnDkyBG+y+hS8vLyAICCfAghpAeRSCQ4d+4cJk6ciLFjx+LcuXPo168f32Wp+fTTT5GQkICFCxfiwoUL1F4lhPDmr3/9KyIiIpCQkIBhw4bxXQ5pp/T0dPTt25fvMgghhBDSgjt37mDChAl8l0EIIYSQHkbAGKLnCyGEEEII6VC5ubnw8fHBoUOHMGPGjFY/Pz4+HuPGjUNRURFcXV07oMLuJS4uDjExMUhOTkZAQIDG49u3b8frr7+OlStXYuvWrbx0WiSEdG9sRw22Y4hqZw82xKJpEIZqWEbTziGqwRfV1dVcp7imnUdVgy1qa2tRVVWlURNLqVSirKxMo/amzyPGy8bGBpaWlhrDVTvnsFRDQlSf17QzsFAo5H70qNoZqGlnYNWORRYWFmphY46OjhAIBGqdgtnxVcfVFlxCCDEMuVyuNfBD9W9ubq5a50VLS0s4OTm1GPzRq1cvg3Ugv337NoYMGYJffvkF0dHRBpkm6XnkcjkePXrE3crKyrj2UlVVFWpra7l2FttJV6FQQKlUQqFQcO0ptv2l2hZS7eRbU1OD6upqPhe1U6m2J1SP+yKRiGsXsO0I9vjOth2sra1hZWXFhZexHYkdHBxgaWkJOzs7iEQi2NnZwdbWlkJLW+H8+fN48803kZmZiR9++KFTfqQkl8u1hnVkZGQgMzMTSqUSwP8CO3x8fODm5gahUMiF0yqVSuTl5XFhHVKpVCN8ytbWFmKxGGKxGG5ublrvu7q6QiKRYNmyZdQRtwVLlizB119/zXcZhKhhj7Oqx2r2fAd7zoI9ZrPH3cbGRshkMigUCuTn56OsrAwymQxlZWWoqKhAVVUVtx8CHnc2Zz/vNg0aVT2fQjQJBALY2NjA3NwcAoFA47M++xmebRewx31TU1MIhUIA/2s/sOcdVMNJmz7f3t4elpaW3PHC0tKSzhOQDvf9999j4cKFqKys1BqySzT9+uuviI6ORllZGfdeJ4SQzrZv3z4sW7YMtbW1fJfSo8jlckRHRyMrKwtnzpzBwIED+S5JTWJiIoYPH44333wT69ev57scQkgPNnjwYAQFBeHbb7/luxSjMW3aNAiFQsTGxvJdSquMHj0aQUFB2LlzJ9+lEEIIIUSHhoYG2NvbY9euXVi8eDHf5RBCCCE9Xk86f8//ZbcIIYQQQkiL9u7dC5FIhClTprTp+eyPZisrKynMQw87duzAxIkTtQZ5AMCqVavg7OyM5557DjKZDHv37m3VlQ4JIcavrKyM66jZ0NCAiooKriMI2ymT7czJdhhh/2fHUw27YEMy2M6dqkEcbEeTpp1EWovt9AhoBieoXklVV2cK4PHVstgfojcNadAW8KAa3MBS7YShStdVXrVNQ9tV4JvS94ryLTHkVeRVQ1PaQzVURZeysjK1DkcAuG21KV0djppeNRjQDHjRNqy50JesrCzuvmoH5qa1qdbf3s7NbEdf1U4+bCAI26FHdXtht2X2PaO6zYpEIu5/9r3CToN9Hzk6OsLU1LTFbZSQrkwkEkEkEiEwMLDZ8aqrq5sN/Lh+/TqkUqlGIJRIJFIL+dAW/OHt7d1iR59//vOfCAoKQlRUVLuXmXQ9FRUVkMvl3E2hUHD3Kyoq8OjRI5SXl6OsrAyVlZV49OgRKioqoFAouOCOltpebPuFPRawnUfZ9oujoyPMzMzg6+vLHT9Uj0eq7TPVNljT9pJqe0xb20hbO0wb1TZfc1SP0c3R1oZgA04A9XaA6rG+aegce9xn28fsuGz7t7y8HIWFhc2GpzTXxmLbc/b29rCzs4OdnR2EQiGEQiH3v729PTeOo6Mjt59TvXXnDpm//fYb3njjDSQkJHDDvvnmG4OFecjlciQlJSE5OVktrCM9PZ37TGRubg4PDw+IxWKIRCIMHjwYISEhaGxsRFVVFYqLi5Gfn4+bN2+qtXOtrKzUjhGjRo3SGhbVmg7cDY2NGBMzC6s27TDI8nc3H7/8rMbnBEJao6GhAeXl5VAoFCgvL0dFRQV3Kysr48I4qqqqUF5ejtraWlRUVKCyshK1tbVQKBTc58SysjLu2KCPlkIgbGxs4OTkpBYiwZ7DefToEQICArjxmx6vm55PUT3OA//7bMrSdkwH9D9es3SdT9FF17mB5ug61qoOb3p8b3rsr6+v1xl+onqOjG0XsMf9mpoalJSUAIBGKAvb1tAVKKuNpaUlbGxsIBQKuc/ytra2sLS0hKOjI7c+HRwcuPAwoVAIe3t77ubg4MC1G+zt7Vu1/kn35ufnh4aGBjx8+BD+/v58l9MllJaWcgE8hBBCehaRSIRTp05h8uTJmDBhAk6fPo3g4GC+y+IMHDgQW7ZswSuvvIJRo0YhMjKS75IIIT3UqlWr8MILL+Cjjz6Cl5cX3+WQdkhNTcXs2bP5LoMQQgghzbh//z5qamowaNAgvkshhBBCSA9DYR6EEEIIIUaOYRh8++23WLJkSZs7lqiGeZDmpaWl4ezZszh27Fiz4y1cuBDu7u6YOXMmoqOj8dNPP9FVxQjpJFVVVVyHD/YqqpWVlVAoFKiqqkJ1dTUUCgXXOZDtPMAGELBXUC8rK+OuoM6Ow3YW0AfbmZPtXMl22lDt3MF2AGFDMgwRNqDaGUTfjp2kcxgqFKQnX0lWtYOOaoiIIcNyMjMzAfyvIzP7GDtNdr+gD/Y9zb5XVfcLbCdvdhy2wxC7r3B0dISNjQ1sbGzg4ODABYfY29tzVxa2sbEx5OolxOCsra3h6+sLX1/fZserrq6GXC7XGfyRnJyM/Px8FBUVqXUebtqBWzX4o7GxET/99BM+//zzjl5M0sHYTvwFBQUoKSlBcXExSkpKIJPJNEI6VIM7tAVf2dnZQSQScaEOQqEQDg4OcHJyQq9evbjOmWzAg52dHRwdHWFnZwdbW1vu+U0763Y3tra2ei2fsbVJ5HI5amtrubY/G9pSWVmJsrIylJeXc8EtbJCLTCZDdnY214Gc7VyuLczExsZGI+BDNfjDyckJLi4ukEgkcHV1hYuLC1xdXbV21DYWV69exdq1a/Hf//5X47GUlBS9p1NXV4fc3Fy1oA72lpyczAWzWVhYcCEqVlZWkEgkEAqFKC0tRVVVFbKyspCVlQUTExOIxWJIJBJ4eHjAw8MDw4YNg1gshqenp9pfS0tLg60PQkjLGIaBXC7njsMymYy7rxrQoRrSwQ5n/9cV1sie23B0dIS1tTUXqGBhYQF7e3u4ublpDVxgH9cVyMAGgtL5kcfMzMxafQw3tmN+c9jzA6pBLy0Fwag+rlAoIJVK1R5nt2NdV/thz9mx7Uz2czvbtnRwcOCGOTk5ce0G1fsUBt49+Pn5QSAQ4P79+xTmoSeZTAYnJycIBAK+SyGEEMIDBwcHnD59GtOnT8e4ceNw8uRJhIaG8l0W58UXX8TFixexaNEi3Lx5E+7u7nyXRAjpgebPn493330Xn3/+Of75z3/yXQ5pI7lcjuLiYvqsSAghhBi5u3fvwszMDAMGDOC7FEIIIYT0MBTmQQghhBBi5C5cuIAHDx5g8eLFbZ4G20mHvWIu0W379u3o06cPoqOjWxx3woQJOH/+PKZMmYIJEybgl19+gZubWydUSUjXwXaqZzvOlZWV6RXEUVlZiaqqKu7H9GyAB3uFTl3Yq2+KRCLuh/bsMLYDfa9evWBqagqRSMR1JGE7bLLBGuxVUh0dHWFqasp1HrG1tdW48iohxHBMTEzUOhG5uLjwVgvbAYgNBCkrK0NjYyPXgbyiooILEGGDQdhORXK5nAsjefToEYqKirirDldUVKC+vp7b7+nqLMQSiURcsAfbWYjdp7UUCMJeYZjtzM6GCBHS2djOmh4eHggJCWl2XLlcrjXwQyqV4vr165BKpcjJyeHCt1asWIFXX30VTk5OOoM/2GG9evVq1VXQO4tUKsWECRMwe/ZsrFy5Eq6urnyX1C4Mw6CwsBAFBQWQSqVcOEdBQQGKi4s1/m/6OdXGxgaurq5qgQpeXl4YNGiQRrhC09AF6iTZvRmyo3FlZaVGSIy28JjS0lKkp6dDoVBAJpOhuLhYLXQIgFqwh6urK8RiMTfMzc0NYrEYYrEY3t7enRYS88cff+CNN97ApUuXdI6TlZWl9r9cLtcI6khPT0d6ejpyc3OhVCoB/O8zl6mpKReMxmLvC4VCeHt7w9PTk7uJxWJun+zm5mbUISiEdBcymQxFRUUoLi5WC+doGtLR9H5TbDgEG1qgGlzg6enJBXSwn1fYm+owNrCQkPZiw247IoCkrq6OCwArKyvjzkuyQTVyuZy7zz6WkZGhNq5MJkNNTY3GtO3s7DQCPtj7zs7OasNU2xV0vDQutra28PDwwP379/kupcsoLS2Fs7Mz32UQQgjhka2tLeLi4jBnzhxMmjQJJ06cQFhYGN9lcXbt2oWQkBAsWLAAZ86cofYXIaTTWVpa4qWXXsL27duxdu3abh003p2lpqYCAIV5EEIIIUbu7t278PPzo9//EkIIIaTTGd8vlwkhhBBCiJrY2FgMGzYMQUFBbZ4G+0Np9or0RLuKigrExsZi/fr1el/JMSQkBJcvX8akSZMQHh6OkydPol+/fh1cKSGdp7q6WmsnN7aTe0uPFRUVaXR2Y7FXUbWysoJIJFK7b2try/2Qveljuu47OTnRSXZCiMFYWVlx+5eOxu4zVfefuu6r/i+VSrWOV1xcjIaGBp3L1XT/2fTW0mNd6arNpOtht7XAwECd46SlpSEwMBAfffQRRowYoRH8kZGRgUuXLiE/Px8KhUJj+qqBH9qCP3r16gV7e/uOXlROSkoK7t27hw8//BAbN27E8uXL8de//hW+vr6dVoO+2H2PrsCVjIwMtbAV4PEPUdmOiux6Dg0NVfuffQ3Y/wnpaLa2trC1tYWXl1ern6v6PmCPzar/Z2dn448//kB+fr7GMdnKykpj/9P0b+/evWFnZ9em5bpz5w7WrFmD8+fPtzhuSUkJoqOj8eDBA+Tl5XHBOiYmJlwwjmromImJCRdKwgYkeXp6cvc9PDzg5eVFn8kI6UCqnwlU9zva9km5ublqYTsAtLbx3dzc4O/vr7Xtz97EYjF1aCM9goWFBZydndsdPKDrnGnTm1QqRXJyMve/tvOoqm2H5trP7u7u9F7tJH5+fhTm0QoymQxOTk58l0EIIYRnlpaWOHToEObNm4eJEyfi6NGjiIiI4LssAI9D17777juEh4dj06ZNWLt2Ld8lEUJ6oJdeegkbN27Evn378MILL/BdDmmD1NRUWFtbo1evXnyXQgghhJBm3LlzB4MGDeK7DEIIIYT0QBTmQQghhBBixGpqanDkyBGsX7++XdNhU/spzKN5e/fuRUNDA5YsWdKq5/Xt2xeXL1/G008/jZEjR+LYsWMYOXJkB1VJSOvU19drvdqq6q3pcIVCgfLyco1OHyw7OzsIhULu5uDgAEdHR0gkEvj5+XHD2McdHR25K7eyV2Jlr6JJCCEEsLa2hrW1tUGnWV5ejqqqKpSXl3NXFWb37+ww1ftSqRSpqalqw3S1HS0sLLj9OnvlYG1XGNY2nO0cTEh7vPXWW+jXrx9Wr14NM7PmT3GzHel0BVAkJycjPz8fhYWFUCqV3POa63Cv2mHO3d0dAoGgXcsjlUphYmKCxsZGNDY24osvvsBnn32G6OhorFu3DsOHD2/X9Ftby8OHD5GZmal2y8rKQm5uLtfZH3i8jtj14unpicDAQEyaNAkSiQTe3t6QSCTw8PDo1GAUQjqDtbU1fH199QrcUSqVKC4uhlQqRV5eHvLz85Gfn4+8vDxIpVL89ttvKCgoQGFhIRiG4Z7n5uYGLy8v+Pj4qN369OkDHx8fjbCPxMREvPrqq4iPj9d7OZRKJX799VcAgJmZGZycnODh4YGAgAB4eHio7ft8fX3h7e1Nx3FCOkhZWZnWfUROTg4KCgqQl5eH4uJi1NTUqD3P3t4eYrEYbm5ucHFxgVgsRnBwMFxdXbn/3dzc4OrqCicnJ1haWvK0hIT0LOxn/NaG1CmVSshkMhQXF3O3goIClJSUoLi4GIWFhcjKysK1a9e4YarMzMy4976Xlxfc3d254C02dEsikUAikRhycXscX19fZGZm8l1GlyGTydodkEMIIaR7sLCwwA8//IClS5di6tSp+OGHHxATE8N3WQCAJ598Ehs3bsRbb72F0aNHY9SoUXyXRAjpYVxdXTF//nxs2bIFzz//vN4XoCLGIzU1Ff3796fXjhBCCDFyd+7cwfPPP893GYQQQgjpgSjMgxBCCCHEiP3yyy+oqKjA7Nmz2zUdGxsbmJubo7y83ECVdT8Mw+Czzz7D0qVL23S1ebFYjAsXLmD+/PkYN24cvv76azzzzDMdUCnpydgrNBYXF6OkpERrMEfTW0VFhcZ0rK2tNTpce3h4YODAgXBycoKjo6NaUAd7XyQSQSgU0hUeCSGkC2D33e3ppNPY2Ijy8nLI5XKNAJDy8nIoFAq1Y05ubq5aUFR1dbXGNO3t7bWGfTS9ubi4wNXVFW5ubm1qm5Hu6+rVq/j5559x4sSJFoM8APWOdCEhITrHq6urQ0lJic7gj+vXryMuLg45OTmor6/nnsde4b6l4I9evXrprFcqlcLMzIwLUmOnf+bMGZw4cQKhoaF47733MHXq1HYHh1RUVOD+/ftIT0/XCO3IysriOgmbm5urBQmMGjWKC+hg/7q4uLSrFkJ6AhMTE4jFYojFYgwePFjnePX19SgoKEBubi4X/JGdnY3MzExcvHgRsbGxah12XVxcuPfnjRs3kJGR0ab69u/fj/Hjx0MsFrfp+YSQlhUUFCArKwvZ2dnIz89Hbm4uCgoKuKCOnJwcjbAstuO9p6cnRowYAU9PT7XADjagw8rKisclI4QYmomJCVxcXODi4oIBAwa0OH5DQwMX6lFUVITCwkKUlJRwIUAPHz7E5cuXkZeXp/bdkIWFBcRiMby9vTUCP7y9veHj4wMvLy+9Pm/1RF5eXrh69SrfZXQZpaWlrQ62IYQQ0n2Zmpri66+/hrm5OWbPno0DBw5g5syZfJcFAFi9ejV+++03zJs3Dzdv3qRzn4SQTrdmzRrs3bsXp06dQnR0NN/lkFZKTU2Fn58f32UQQgghpBllZWXIzs7GoEGD+C6FEEIIIT0QfftOCCGEEGLEDhw4gHHjxhnkh24ODg5QKBQGqKp7+vXXX5GamorDhw+3eRq2trb46aefsHr1asyfPx8pKSl4//33DVck6XbYK8Wrdhptep/9Pzc3l+vgyWI7j6rePDw8EBgYqDG86TiEEEJIS0xNTbljR1uoHueau+Xl5SExMZH7v7CwEEqlUm1aIpGIC0ZQDU5oep8dr72BB8Q4MQyDVatWYdy4cYiKijLotC0sLLgObIGBgc3WwHaUy8vLQ1FREfLy8lBYWIj8/HwkJyfj/PnzyM/PV+uYa2ZmBjc3N7i7u8Pd3R0SiQQeHh4Qi8VISEjQOi821OP69euIiYnBE088gbfffhvz589vsWMdW0tGRgaSkpK4+5mZmdz7SyQSwdfXF76+vpg+fTp339fXt9nwEUKI4Zmbm8Pb2xve3t46x6mtrUVeXh4yMjLUbnK5vM3ztbW1pSAPQtpJLpdz70c2BIz9//79+2ohq2xblQ36GjFiBPe/r68v10agK3gSQvRhZmYGiUSiV4hnTU0N8vPzNUIL2c8NZ8+eRXZ2Nh49esQ9R/XzQtNbT/684OnpiZycHL7L6DJkMhkGDhzIdxmEEEKMiKmpKb788kuYm5vjmWeeQWxsLObOnct3WRAIBNi7dy+GDh2KJUuWIC4ujr5nIIR0qsDAQERERGDr1q0U5tEFJSUl0UW/CCGEECN3/fp1MAzT7IWACCGEEEI6Ss/8dp0QQgghpAuoqKjAiRMnsGPHDoNMj8I8mrdjxw5ERka2+0eFpqam2LFjB/r164fXX38dcrkcW7ZsgampqYEqJcaurq6Ou5Iy+wPpvLw8FBQUaFwlkb3yOcve3h5isRiurq5wdXWFm5sbgoOD4eLiwg1Tfdzc3JynpSSEEEJaZm1tDWtr61aHSNXX19qvQCAAACAASURBVKO4uBjFxcUoLCzk7peUlEAqlaKkpAR3797F+fPnUVBQoNbZCHgcdsUeR9mrlrOdJD09PeHu7g4vLy9IJBJYWFgYcpFJB9u/fz+uX7+uM/yiMwgEAojFYojFYgQFBTU7bnV1tdbANvbvzZs3kZ+fDzMzMzQ0NOicDvtYSkoKli5dinfffRdvvvkmli1bhvz8fNy6dQu3b9/GvXv3kJKSggcPHnAhcBKJBAEBAfDz80NUVBT8/f3h7++PPn369NjOd4R0VZaWllwHWm0SEhLw+eef4+LFi8jJydH4vKnN2bNnER4eDmdnZ0OXS0i30djYiKysLKSmpiIlJQVpaWl4+PAhMjMzkZmZyb3XzMzM4OnpCR8fH/Tu3RtTp07l7vv4+MDLy4vO4xBCeGNlZdVsO4IllUqRmZmJrKwstb8///yzzn2ej48P/Pz8uJu/vz8sLS07Y7F44eXlhYqKCpSVlcHBwYHvcoxeaWkptTUJIYRoMDExweeffw5ra2ssWLAASqUS8+bN47ssiEQiHDx4EKNHj8b27duxevVqvksihPQwa9asweTJk3Hnzp0Wv4MixqOmpgbp6ekUZEgIIYQYuWvXrkEikcDT05PvUgghhBDSA9GvdQkhhBBCjNSRI0fQ2NiIGTNmGGR6jo6OKCsrM8i0upv09HScOnUKR48eNdg0V61aBW9vbyxcuBDZ2dn47rvvYGNjY7Dpk87HMAx3xXU2oEMqlSI3NxcFBQXIyclBQUEBioqKuOewnT3ZDsRisRgDBw6ERCLhAjpUOxpbWVnxuISEEEKIcTA3N4eHh4feISA1NTVcYFZRUZHWIJC7d+9CKpWisLAQDMNwzxWLxZBIJPDy8oK7uzs8PT25ebPBH2KxmK7AZwRqamrw3nvv4dlnn8XQoUP5Lkcv1tbWenWYGzNmjF5XdlYqlQCAvLw8rF69Gq+//jqUSiXMzMzg7++PgQMH4i9/+QsX3uHn5wehUGiQZSGEGL9hw4Zh2LBh3P8VFRU4efIkfv75Z1y6dAm5ubncfoS1Y8cO7NixA15eXggKCkJwcDAGDx6M4OBg9OvXj4JJSY8il8u5wI779+8jNTUVqampSE9PR21tLYDHbceAgAD4+PggNDQUffr0UQvroKAsQkhX5+7uDnd3d4wcOVLr4wUFBWohH+zt4sWLyMrKQmNjI0xMTNC7d28u2EP184m3t3cnL5HheXl5AQByc3MpzEMPpaWlcHJy4rsMQgghRkggEGDbtm2wtrbGokWL0NjYiIULF/JdFkJDQ/H+++/jrbfewogRIzBixAi+SyKE9CBRUVEICAjAzp07sWvXLr7LIXpKTk5GY2MjhXkQQgghRu769etq36cTQgghhHQm+kURIYQQQoiROnDgAKKjow32IzdHR0coFAqDTKu72bFjB7y9vTF58mSDTnfmzJk4f/48YmJiMG7cOBw/fhxubm4GnQcxnJqaGrUrq7K37Oxs5ObmorCwEPX19dz4Dg4Oah1+g4KC4O7uDi8vL0gkEnh7e0MsFtNVVwkhhJAOZmVlBW9vb706BdXX16OwsJAL4crNzYVUKkVeXh4ePnyIK1euIDc3F+Xl5dxzzM3NIRaLuXmwVx728fFBnz594OPjQ4FcnWDbtm0oKirC+++/z3cpBpefn9+q8a2trdG/f39MmDABCxYsQGBgIG2DhBAN9vb2mDNnDubMmQPgcSBQUlISjh8/jlOnTiExMREvv/wyRo8ejVu3buH27ds4duwY/vWvf6GhoQE2NjYYNGgQQkNDERYWhvDwcK7zKiFdWXV1NRITE7nt/s6dO0hJSUFxcTGAx21LtgP69OnT4e/vD39/f/j5+cHR0ZHn6gkhhF8SiQQSiURrp9ba2lqkpaUhNTWVC0X6888/ERsbC7lcDgCws7ODn58fBg4cyIWIDR48uEuFPbi7uwMACgsLERgYyHM1xq2xsRHl5eVwdnbmuxRCCCFGbMOGDQCApUuXAoBRBHq88847+O9//4sFCxbgxo0bFOBFCOk0AoEAzz//PNavX48tW7bA1taW75KIHhITE2FpaYl+/frxXQohhBBCmnHt2jUsXryY7zIIIYQQ0kNRmAchhBBCiBEqLi7G2bNnsW/fPoNNk8I8tKuoqMA333yDv//97x1yxdkRI0bg6tWrmDx5MkaOHIkTJ07A39/f4PMhLautrUV2drbWwI7MzExIpVJuXJFIxHXSHTFiBDw9PeHu7g5vb29IJBJ4eXnBxsaGx6UhhBBCSFuYm5vDy8urxc7IVVVVWgM/srKycPr0aWRmZqq1rd3d3bWGfPj4+KB3796wsLDo6EXr1goLC7Fx40a89dZb3bIjuWo7tCmBQACRSIQnn3wSMTExmDt3LlxcXDqxOkJId2FiYoJBgwZh0KBBePfdd9UemzhxIne/pqYGSUlJuHXrFm7duoUrV67g008/RUNDA7y9vREWFoawsDCMHDkSQ4YMgZkZfdVIjFdRURFu376Nmzdv4vbt27h16xbu37+PhoYG2NnZISgoCMHBwZg9ezYX2NGrVy+YmJjwXTohhHQ5lpaWGDhwoNYrERcXFyM1NZW73blzB5s2bUJhYSEAoFevXggODlYL+PD19YVAIOjsxWiRSCSCQCDgAkqIbhUVFVAqldQBmhBCSIuMLdDDxMQEsbGxGDJkCJYvX45Dhw7xWg8hpGdZsmQJ3n33XRw+fBhLlizhuxyih8TERDzxxBN0rpwQQggxYjKZDA8fPsSTTz7JdymEEEII6aHorAEhhBBCiBE6cuQILC0tMXXqVINN09HREbm5uQabXnfxzTffoL6+Hs8++2yHzaNv3764cuUKpk+fjrCwMBw9ehSjR4/usPn1ZAzDICsrCykpKUhOTkZKSgpSUlKQkZGB/Px8MAwDABAKhVwH22HDhmHOnDlqHXDpSquEEEJIz2ZjY8NdhV0XhUKhFgz28OFDPHz4EHFxccjMzERFRQWAxz/8dXd3R9++fREQEICAgAA88cQT8Pf3R+/evY2yc5KxWbVqFUQiEd58802+SzGIqqoqxMfH48SJEzh79iyqqqq4xwQCAXr16oWIiAhMnz4dY8aMgVAo5LFaQkhPY2VlhZCQEISEhHDDKisrkZCQgCtXruDKlStYv349ZDIZbGxsEBoaiqioKERFRSEoKIjHyklPV1dXh2vXruHSpUu4ePEirl+/zgVmeXp6YvDgwZg+fTrXSbxv374U2kEIIZ3E1dUVrq6uGDVqlNrwgoICLkDs1q1bOHz4MDZs2IDGxkYIhUIEBwdj1KhRCA8PR3h4uFGctzc1NYW9vT2FeeihtrYWwOOgF0IIIaQlqoEeAoEACxYs4LUeNzc3xMbGIjIyErt378aKFSt4rYcQ0nM4Oztj6tSp2Lt3L4V5dBF3797VGmxJCCGEEONx7do1MAyj9h04IYQQQkhnojAPQgghhBAjdOTIEURFRcHW1tZg03R0dERiYqLBptcdMAyDnTt3YtGiRXBycurQeTk7O+PUqVNYsGABJk6ciG+//RazZ8/u0Hl2Z/X19UhLS8O9e/c0gjvYzpASiQQDBgzAwIEDMW3aNC6oo0+fPh3+ehNCCCGk+3N0dOQ6g2pTWlqqFvbx4MEDpKSk4Oeff+auPmxrawt/f38u4IP9269fP5ibm3fm4hitEydO4Pvvv8fx48cN+vmos6WlpeHkyZM4efIk4uPjUVtbiyFDhmDGjBlISEjA4MGDMWnSJISFhXXp5SSEdE+2trYYO3Ysxo4dC+Dx+ZSUlBRcvXoV8fHx2Lx5M95++214eXkhOjoa0dHRiIiIgL29Pb+Fk26tvLwcV65c4cI7EhISUF1dDYlEglGjRuH111/n2mouLi58l0sIIUQLiUTChYKxqqqqcPfuXdy6dQvXrl3D0aNHsWHDBpiYmCAwMBBjxoxBeHg4Ro8eDS8vL17qFolEFOahBwrzIIQQ0lpsoAfbeZ3vQI/x48fj3XffxapVqxAaGorg4GBe6yGE9BzPPfccpkyZgpSUFAQEBPBdDmlBYmIiXn31Vb7LIIQQQkgzrl27Bm9vb0gkEr5LIYQQQkgPRWEehBBCCCFGpqKiAhcuXMAXX3xh0Ok6OjrSjwubOHPmDFJSUnDo0KFOmZ+NjQ0OHz6Mv/71r5g7dy7S09Oxdu3aTpl3V5aXl4ebN2/ixo0buH37NpKSkvDgwQM0NDTAxMQEPj4+GDBgAMaPH4+XX36Z6wgrEon4Lp0QQgghPZizszOcnZ21XtVBLpfj3r17asFke/fuRWZmJpRKJczNzeHr64vAwEAEBwdj6NChGDp0KDw8PHhYEv5UVFTgxRdfxMKFCzF16lS+y2m1hIQEHDx4EMeOHUN6ejocHR0RGRmJTz/9FNHR0fQjAUJIlyUQCDBgwAAMGDAAzz33HJRKJa5fv86FFu3duxcmJiYYPXo0Zs6ciTlz5sDV1ZXvskkXV1tbi4sXL+LkyZM4f/487t69i8bGRvj5+WHUqFF49tlnER4ejv79+/NdKiGEkHawsbFBaGgoQkND8cILLwAAiouLcfnyZVy8eBGXL1/Grl270NDQAB8fH4wZMwbR0dGYOHFip4V4U5iHfurq6gAAFhYWPFdCCCGkK9mwYQMYhjGaQI9169YhPj4e8+fPR0JCAmxsbHithxDSM0RFRcHb2xvffPMNF3REjJNMJkNubi4GDhzIdymEEEIIacb169fx5JNP8l0GIYQQQnowCvMghBBCCDEyv/zyCxoaGhAdHW3Q6bq6uqK4uNig0+zqPvvsM4wdO7ZTv1AzNTXFtm3b8MQTT2DlypW4c+cOvvrqK1hZWXVaDcZMoVDg6tWruHr1KhISEnDz5k3uyvW+vr4YOnQo5syZwwV2BAQE0LrrYiIjI3HmzBm+yyDdDN/bFd/z7wjdcZla0hOXuavryq+ZSCRCWFgYwsLC1IZXV1cjNTWVC/i4d+8evvnmG6xbtw4AIBaLMXToUDz55JMYOXIkRo4cCUdHRz4WoVOsXbsWVVVV2Lx5M9+l6C03NxdffvklvvvuO6Snp6N///74y1/+gsmTJ2PkyJEwM6NT8oT0JF35WNUaJiYmGDZsGIYNG4b/+7//Q0lJCU6fPo24uDi88847WL16NSIiIrB06VLMmDGDOnQSvcnlchw9ehRHjx7FuXPnUFlZicDAQERGRuLvf/87wsPDIRaL+S6T/H89ZZ/X1dHr1PGMcR0bY02t4erqiunTp2P69OkAgMrKSvzxxx+4ePEiLly4gEWLFoFhGISGhuLpp5/G7Nmz0bdv3w6rh8I89FNbWwsAsLS05LkSQgghXc3GjRsBwCgCPczMzHDgwAEMHjwYa9aswa5du3irhRDSc5iYmGDx4sXYs2cPPvjgA/puyYjduHEDADB06FCeKyGEEEJIc65du4YVK1bwXQYhhBBCejA6u0MIIYQQYmR+/vlnPPXUU3BxcTHodN3c3KBQKFBXV0edJgDk5OTg+PHjOHDgAC/zX7FiBXx8fDBnzhxERETgyJEjPfIqtQUFBThz5gx+++03XL16Fffu3YNSqYSfnx+GDRuGt956C0OGDMGQIUO6dUfVpgQCARiGafVjnUEgEABAm2vgs/auoq2vcXtfm86Ul5eHt99+G+fPn0dhYSGUSiWArrtd8T3/tmpuW+uqy9QeDQ0NbXoe3/vljqBrf2Jsy2pMtRiKtbU1Bg8ejMGDB6sNVygUuHnzJm7cuIGbN2/i4MGD+OCDD2BiYoIBAwYgLCwMY8aMQUREBCQSCU/VG9Yff/yBzz//HF9//TXc3Nz4LqdFFy5cwPbt2xEXFwcXFxcsWLAA8+bN63JX9jDmdighLUlKSsKrr76KhIQEPHr0CAD/xwq+588XFxcXzJ8/H/Pnz0dVVRWOHTuG/fv3Y8GCBXBxccFzzz2H1157rdscs4hh1dTU4PDhwzhw4ADOnj0LExMTREZGYvPmzYiKikLv3r35LrFdjPlYS+d8Oh7frzHQfV8nPs6L6Zpne2roqOXobq+7ra0txo8fj/Hjx2PdunUoKyvDmTNncPLkSWzevBlr165FSEgI5s6di8WLFxs8+InCPPTDhnnQd5KEEELaQjXQQyAQYP78+bzV4uXlha+//hoxMTEYO3Ys5s2bx1sthJCeY9myZdiwYQN+/fVXTJ06le9yiA43btyAh4cHnesmhBBCjFhxcTGys7O73O93CCGEENK9CJju9q09IYQQQkgXVl9fDzc3N6xfvx6vvfaaQad9+fJljBo1Crm5ufD09DTotLuiv//97/jyyy+RnZ0Nc3Nz3upITEzE008/DVNTU8TFxSEgIIC3WjpDQ0MDLly4gF9//RVnzpxBYmIizM3NMXz4cISFhSE8PBwjR47skcEmqoy5Y4ex1NCdtWf9dpXXJiIiAqNHj8arr74KW1tb/PLLL5g1a1aXqL076Srbi7HrrutR23J112XtqoqKinD16lVcvnwZV69exZ9//on6+noEBQUhMjISUVFRGDt2LExNTfkutdXq6uowdOhQiMVinD17luvQZoxOnz6N9evX48qVK3jqqafw0ksvYcaMGV22s5Kxt0MJaQ4bCBkTE4OLFy8iMjKStlkjk5ubiy+++AK7d+9GWVkZli1bhrVr18LDw6NT64iZNg1lMMeqTTs6db5dxccvPws/D1fExsZ26nzT0tKwc+dOxMbGoqKiAtHR0Zg9ezZiYmIgFAo7tZaOZOzHWmOooTuj9dux+Fi/HTFP2k7ah/0O4tChQzh8+DAePXqEadOm4aWXXsL48eMNMo/ly5cjJycHp06dMsj0uqvff/8dI0eORHZ2Nry9vfkuhxDSg+3btw/Lli3jQoZI18EwDNasWYP//Oc/+Pbbb3kN9ACAlStXYt++fbh58yb69OnDay2EkJ5h/PjxcHBwwJEjR/gupVNNmzYNQqGw089PtsUzzzzDBVoTQgghxDidPHkSkydPRlFRUY//bTohhBBibHrS+XsTvgsghBBCCCH/c+7cOSgUCjz99NMGnzZ7NeuioiKDT7uraWhowN69e7F8+XJegzwAYODAgUhISIC7uzvCwsJw4cIFXuvpCEqlEmfPnsWKFSvg7u6OiRMn4tSpU5gwYQLi4uIgk8lw8eJFfPzxx4iJiaGTpYT0AJcuXcI777wDJycnWFpaYubMmdRJgRBCWsnNzQ3Tpk3Dpk2bcPHiRchkMsTFxWHcuHE4efIkIiIi4O7ujhdeeAHnzp2DUqnku2S9bdiwAZmZmdizZ4/RBnlkZmZi+vTpmDRpEkQiEa5cuYL4+HjMnTu3ywZ5ENLV3bp1CzNnzoSlpSUiIiKofWmEvLy8sH79ejx8+BD/+te/cOzYMQQEBGDz5s2or6/nuzzCk9TUVCxatAgDBgzA8ePH8eabbyInJwc///wzFi5c2K2CPAghhHQ8MzMzREZGYvfu3cjPz8eePXtQUFCACRMmIDw83CABHCKRCHK53ADVdm/sj+4sLS15roQQQkhXJRAIsHXrVqxcuRKLFy/G/v37ea1n8+bN6NOnD+bOnYu6ujpeayGE9AzPPfcc4uLiIJVK+S6F6HDjxg0MHTqU7zIIIYQQ0ozr16/Dx8eHfptOCCGEEF5RmAchhBBCiBE5evQohg4d2iFX8WBPQlGYB3DkyBEUFhZi+fLlfJcCAHBxccHZs2cRHR2NiRMn4vPPP+e7JIMoLy/H7t27ERgYiMjISFy+fBmvvPIKUlNTkZiYiK1bt2Ly5MmwtbXlu9QOJxAItHZE1Tac/Z99TCAQcNtqc48BQGJiIqZMmQJ7e3vY29sjKioKiYmJWuf54MEDzJw5EyKRSGd9rdGaebeGPvUmJiZi8uTJ3LwnT56s97x1DT927BjCw8NhZWUFHx8frFmzBhUVFVqfm5OTg2nTpsHe3h5isRgLFy5EaWlpm9eR6rSbvsb6yM7OxowZM+Dg4AA7OztMmTIF9+7da3M9HbGMtbW1sLKyUltOXa/F7du3MXHiRNja2kIoFCI6OlrtR/e6nqfPdlFWVoY1a9bA19cXVlZWcHd3x9KlS/Hnn382v5K1rKP2rLeWlpFdHkO+Xi3ta1SXSXWc+Ph4AMDBgwe1vm76rHd912lycjKioqIgFAp1bssduY8wxHu2s7ZDoO3vFX33za3ZZpqbtj6vWWv2waoMtS67KltbW0yePBlbt25FYmIiMjMz8d577yEpKQmRkZHo378/Pv74Y8hkMr5Lbdbvv/+ODz/8EB9++CF8fHz4Lkern3/+GUOGDEFycjJ+/fVXxMXFYeTIkXyXpVV3aofycXwADHec1mcfpe9+zBDH29Ysm77H0Xv37mHEiBGwsbHB6NGjkZ6ejqSkJISGhsLOzg7jxo1Ddna2Rh2Gaj80NDTAzMwMAoEA77zzjlpt2sbv6DZce9qpra1Fn2OnMbGyssIrr7yClJQUvPfee1i3bh3CwsKQlZXFd2k6zQrwwKwAD5RI87Hx5aVYMLQ/ngsPwvY3V6JCodmZNzstBR++sAgLhvbHgqH98cHy+chOS9EYLyc9FR+uWIj5Q/phYYgf/rFsHnLT73PzU5Vw/jTenReDZ4J88OL44fhqwzpUVz7SWmdBdiY2vboMi4cHaJ2WMaipqcH777+PoKAgXL9+HXv37sX9+/fxzjvvQCwW812e3rrTsVYXOudjHOd8WrMudK1TXeskKSkJkydPhp2dHYRCISZNmoTk5OR2fVZuT9ugJar1Ojg4YMaMGTqnY6h2k77zNEQbA4DBt722fDY31Lrjk5WVFRYtWoSLFy/i5s2b8PT0RHR0NKZOndqudodIJIJCoTBgpd0T28mZAi8JIYS0h0DwONDjlVde4T3Qw9LSEj/88ANSUlKwbt063uoghPQcs2bNgr29Pfbt28d3KUSL8vJyPHjwAEOGDOG7FEIIIYQ04+rVqxgxYgTfZRBCCCGkp2MIIYQQQohRUCqVjIeHB7N+/foOm4elpSXz7bffdtj0u4px48YxMTExfJehQalUMuvWrWMAMK+99hrT2NjId0ltUl9fz2zevJmxt7dn7O3tmZUrVzL37t3juyze6fr4pW14cx/VdD2WlpbGSCQS5rPPPmOKioqYkpISJjY2lvH19WVycnI0phEZGclcvnyZqaqqYk6cONHsPFuqobXzbq3m6k1LS2O8vLyYPXv2MEVFRUxhYSHzxRdfMJ6enkxaWppe89b1GuzatYuprKxkpFIps3jxYmbJkiVax5s4cSJz8uRJpqKigsnOzmZmzJjBLF26VG28jl5Hqs8dOXIkExsbyxQXF3Pro1evXszDhw/bXE9nLWPT4ampqYy/vz9z5swZprKykklKSmJGjx6tMZ62bVKf7WLatGnM+++/zxQUFDA1NTXMjRs3mPDw8Fa/Brq2IX3Wmz7L2BGvl666tT3W0NDA9O3bl5HJZGrj5OfnMyKRiHn06BFXp77vx5YAYAYOHMgcOHCAKSkp0bkts+Maeh9hiO25M7fDtr5XmhtuqOOTruk0dxxqzT5YlaHe093RvXv3mJUrVzL29vaMUChktm7dytTX1/NdlgaFQsH06dOHiYqKYpRKJd/laPXJJ58wAoGAWblyJVNbW8t3OXrpbu3Qzjw+GPI4rc8+Sp9xDHW81XfZWnMcnTNnDpOcnMwoFArmlVdeYUJDQ5lZs2Zxw1566SXmL3/5i9rzDN1+aO9wQ7bhtM2jteu0Ne06fY6dxio5OZkZMGAAI5FImPv373f4/J6OiWHGxMxifkzJb9UNABMc/hTzty++Y767kcbsunCNCY2MZsbNmKs23s7TVxhHFzdmxfsbma+u3GW+/j2JWbVpByP27s3sjr+uNp6LuwfzyodbuPHWbP6M6e03gAGgdf4v/mMTs//WA2bPpVvM2OmzmbHT52ivM2wM89GBY8yBWxnMe7v3aZ2ertvw8ZOYhQsXduhrkJ2dzQQGBjIODg7Mzp07u+w5MFZ3O9a2Z96tRed89NPaddHS5y1V6enpjLe3NzftkpIS5sCBA8ygQYPavT20pW3Qkqb1FhcXM7GxsczIkSPbddw11DzZZdc2rDXH9abjzp492+DbnqHef11NfHw84+/vzwiFQubUqVNtmsann37KuLi4GLiy7uf48eMMAKaqqorvUgghPVxsbCxjYWHBdxmknZRKJfPaa68xpqamzP79+3mtZc+ePYyJiUmb2xKEENIaL730EjNgwAC+y+hUMTExHX5+0hDi4+MZABqfwQkhhBBiPJRKJePk5MRs376d71IIIYQQokVPOn9Pv2QnhBBCCDESN2/eZAAw165d67B5eHl5MZ988kmHTb8ruHfvHiMQCJiTJ0/yXYpOX331FWNhYcHMmjWLqays5LucVsnLy2OCg4MZKysrZt26dUxZWRnfJRmNju7YsWDBAubjjz/WGL5nzx7mtdde05jGhQsXmqm2eU1raO282zI/XfUuWLCA2bZtm8bwzZs3a3y539rOfapkMhnj5OSk9blHjx5VG5aSksJ4eHho1NmR60j1uV999ZXG8M2bN6t1TGltPZ21jE2Hz5s3TyOEKiUlpcVOkvpuF3Z2dkxpaanaOBkZGQYL89BnvemzjB3xeumqW9dja9euZf7zn/+oDduwYQPz4osvqtWp7/uxJQCYgwcPap1W005WHbGPMMT23JnbYVvfK80N7+gwj9Ych5rbB6sy1Hu6OysrK2P+7//+j7GysmIGDx7M5Ofn812Smnnz5jFisZiRSqV8l6LVjz/+yAgEgi73JX93a4d25vHBkMdpffZR+oxjqOOtvsvWmuNofHw8939eXp7GsJycHMbNzU3teYZuP7R3uCHbcNrm0dp1qm+7rildx05jVl5ezowYMYLp06cPU15e3qHzak+Yx9s7v1IbtuPkRcbJTaw2bMzTM5lFb/xN4/mvfLiFmbJo2f/Gi5nFPPfu1PF6cQAAIABJREFUPzTGW7P5M73CN7758x5j5+Cotc5/fHu41cvXWWEeeXl5jKenJxMcHNxtfuje3Y617Zl3W+ZH53xa1tp10dw20LSGhQsXap32gQMH2r09tKVt0BJd9X711VftOu4aap4M0742hq5xMzIyDL7tGer91xVVV1czixcvZszNzZlffvml1c8/cOAAY2ZmZrQhlMbixx9/ZAAwDQ0NfJdCCOnhetKPgbs7Ywr0WLBgAePm5mZ059gJId3PpUuXGADMnTt3+C6l03SVMI+tW7cyrq6ufJdBCCGEkGYkJSUxAJiEhAS+SyGEEEKIFj3p/L2AYRgGhBBCCCGEdx9//DE++eQTFBYWwsTEpEPmERISgsjISGzcuLFDpt8VrFq1CnFxcUhLS+uw9WwI8fHxmDVrFvr27YujR4/Cw8OD75JaVFpailGjRsHMzAxHjx5F3759+S7JqAgEAmj7+KVtuK5xm3tMIpHgjz/+QO/evdWGFxYWYty4cUhOTlabRmVlJWxsbNqyKBo1tHberf0Y2ly9uub98OFDhIWFQSqVtjhvfWvS9VrJZDKIRCJuWG1tLaytraFUKlus01DrSPW5BQUFEIvFasMfPnyI8PBw5Ofnt6mezlpGbdvWjRs3WtwH6rtNNt0uJk6ciKqqKvztb39DREQEzMzMmp2PvvNnh+m73lpaxo54vXTVreuxtLQ0zJs3D9euXeOG+fn54fvvv8eQIUOarVPb+7ElAoEAJSUlcHZ21piW6rbMjmvofYQhtufO3A7b+l5pbrihjk+6ptPa45A+9RjqPd0TpKenY/r06VAqlbh06RKcnJz4Lgm7du3Cyy+/jFOnTiEiIoLvcjTU1tbC398fEydOxO7du/kup1W6Wzu0M48PhjxO67OP0mccQx1v27Nsuo6j5eXlsLe3BwAolUqYmppqDDMzM9OrDdnW9kNr2vsd3YbTNo/WrlN923X6zLsrKC0thb+/P1566SV88MEHHTafmGnTUAZzrNq0o1XPmxXggW/+vAc7oQM3rL6uDvOC++DwvTxu2LLwYGw89AtcPbzUnq8oLca6xX/B9l/+2+x4FQo5lo4IxI8p+WjJrAAPjfFmBXhg/60HsLSybtXysT5++Vn4ebgiNja2Tc9vybRp05Camoo//vgDDg4OLT+hC+hux1o65/O/YcZyzqe166K5bUDf17i0tBQuLi7t2h7a0jZo67ooKCiAu7t7m4+7hpon0L7tSde4jY2NMDc3N+i2Z6j3X1fFMAyWLl2KM2fOIDk5GY6Ojno/99ixY5g2bRpqa2thYWHRgVV2bQcOHMCiRYvQ0NDAdymEkB5u3759WLZsGWpra/kuhRgAwzBYvXo1du7cidjYWMybN4+XOh49eoSQkBB4enri7NmzRv3bE0JI18YwDHx8fLBkyRL84x//4LucTjFt2jQIhcIOOz9pKPPmzUNFRQXi4uL4LoUQQgghOnz55Zd47bXXUFZWBnNzc77LIYQQQkgTPen8PZ1BJoQQQggxEqdOnUJUVFSHfsnv7u6u1rmpp6murkZsbCxeeOEFo/8xxdixY3H16lWUl5dj+PDhap2njdV//vMfKBQKnDt3joI8eFBaWgofHx8IBAK1m0QiQWZmpsb4be3UYYh5t4WuektKSiCRSDSGu7u7o6SkpE3zKi4uxvLly+Hl5QUzMzNueXRR/WE9AFhaWmr8OL4z1hGraZAH8Hh9FBcXt7kevpaxpKQELi4ubXqePtvFoUOHMHz4cLzyyitwcnLCU089he3bt6O+vr5N9Talz3rTZxk74vVqrf79+8Pa2hq3b98GAPz2228QCoVckAe7LIZ8PzbtqM1OS3VbZhl6H2GI7bkzt8O2vlf4pOs1a+0+WFVHv6e7k379+uHcuXOQyWTYuXMn3+UgKSkJr7/+Ot59912jDPIAgBs3biArKwtr167luxSj09nt0M48PhjyOK3PPkqfcQx1vNVn2Vo7L7ZjLgDuM3fTYdraQoZuz7eXodpw2rR2efWppT3HTmPj7OyMF154AT/99BPfpeikGuQBAOYWFhqvSYVCjhfHD8esAA+127LwYBTl5XDjlStkcHRx05iHvaNIY1i5rBSf/u2veP6poZgd6M1NU5e2Bnl0NLlcjuPHj2PTpk3dJsijM9A5H3U98ZxPa9dFa7YBXdPW1uZq7bK2pW3Q1nq1DTNku0nfeTanNedrmo5ramraIdteZ77/jI1AIMC///1vyGQynD59ulXPtbS0BADU1NR0RGndRmNjI0xNTfkugxBCSDcjEAiwbds2vPzyy1i0aBEOHjzISx12dnbYv38/Ll++jH/961+81EAI6RkEAgFmzJiBH374ge9SSBO///47QkND+S6DEEIIIc24evUqQkNDKciDEEIIIbwz7h6MhBBCCCE9RGVlJa5cuYJJkyZ16Hy8vLyQm5vbofMwZvv370dlZSWWLl3Kdyl68fPzQ0JCAoYMGYLRo0cb/RUHMjMzERwcDDc3zY4o5PEX7E0TI2UymcGm7+LiAplMBoZhNG5VVVUGm48xzlvblSClUqlG5zp9X4NFixbB1tYWly5dQk1NDbcs7a2zs9aRtmWSSqVwdXXt0Ho6YprOzs5t6iCg73bh4OCALVu24MGDB8jIyMDLL7+MgwcPdupVvPRZRj7fY6qeffbZ/8fefYdFdebtA7+ZoddBgaEqotJEwS6CCgHBgprEGksSo8aYZJPd5F1T3qxJXE3Z9F01icbExKjRxGg0dixYUHwVBEVAd8ECSFOYoUg/vz/ym7ODFEGZOTDcn+uaC6ad53sOM+d55jDPffDtt98CANavX49nn322UZ2tfT+2Rn5+fpPL0n4t38+D1tQe21yfr8PWvld02Re117IfZh/cEd7TnYlSqcSAAQOQmZkpaR2VlZWYM2cO+vfvj2XLlklaS0tyc3Mhk8ng7u4udSltZmjjUH32D+3ZT7dmH9Wax7RXf9vadWvPvl2qNnTxHtD1OLUtdPH5RUo9e/bs9EG0Nvbd8P3ZNGxPz2102XLhv/2uraIbSooKGj2/qdu+WPonmFtYYuXm3/BTSpa4vM7m5s2bEAQB3t7eUpfSrgytr+1IbfOYz3/b0FV/6eDggLy8vEa3N3VbRzg+0Vy9Tf2922u7taVNfdLl30MfY7SOwM7ODi4uLm0O3jE3NweALnGGKCIioo7IyMgIX3zxBZ5//nnMnTtXskCPwYMH47333sNbb72F+Ph4SWogoq5h+vTpyMjIwKVLl6Quhf6/goICXLt2DSNGjJC6FCIiImpBfHw8Ro4cKXUZRERERAzzICIiIuoIjhw5gurqakREROi0HTc3N+Tk5Oi0jY7sq6++wvTp0ztV2ISNjQ127tyJl19+GU899RRef/111NfXS11WkyIiInDkyBHs3btX6lI6JGdnZ9y4caPBbcePH2/ysS2dEbS5+6Kjo3Hs2LFGt584cQKDBw9ufaEPQMq2IyMjmzxr844dOxAZGdngttb+DeLj4/Huu+/C09MTxsbGAIC7d+8+VJ1t2UYPexbt2NjYRrft2LEDUVFRD1RPa+limWFhYY3WJzk5Gf7+/i0+r7WvCyMjIzHkysHBATNnzsSePXvafDbOh9GaddTVe6ytr7UZM2bgt99+Q2FhIfbv398oIKEt78fWOHDgQJPL0n4t38+D1tQe71l9vg5b+15pS1/UlJZeMw+7bI2H2Qd3hPd0Z/L777/j6NGjGDt2rKR1vPzyy7h+/Tp++umnDn0mjICAANTX1+PkyZNSl9JmhjYO1Wf/0J79dGv2Ua15THv1t61Zt/bu25uijzbaq4/Sputxalvo4vOLlOLi4tC/f3+py3goQaFhSE1oPIkn7VwC/vr4f4N8A0PH4Gzs/kaPu3DyWKPbMpLOYeaf/gonNw/I5X/8nasrK9uvaD3x8/ODpaUldu3aJXUp7crQ+tqO0jaP+fyXLvvLqKgo7Ny5s9HtTY25pHw9aDRXb1PHw9pru7WlTX3S5d9DH2O0jiAxMRHXr1/H0KFD2/Q8MzMzAH+EUxIREZE0OkqgxyuvvILx48dj1qxZkoe9EZHhGjlyJDw8PPDzzz9LXQr9f6dPn4aRkRGGDBkidSlERETUjNu3byMjIwPBwcFSl0JEREQECEREREQkuRdeeEEYNGiQztv59ttvBUtLS5230xGdPXtWACCcPHlS6lIe2Lp16wRTU1Nh4sSJgkqlkrqcRurr64XnnntOMDMzEz7++GOhurpa6pI6lCeffFKYNm2acPPmTaG0tFTYv3+/EB0dLTT1sczd3V2Ij48XqqurhQMHDggeHh73vS8rK0vo37+/8PPPPwtFRUWCWq0Wdu/eLbi5uQk7duxosPyH/Sh47/N13XZLz7ly5Yrg5uYmrFu3TsjPzxcKCgqEb775RnBzcxOuXr3a4LGt/RtER0cLixYtErKysoSqqirh6tWrwpNPPtlkHc3V9jDbqKW///0AEAIDA4WtW7cKRUVF4vbo0aOHkJWV9UD16GIdW7vMlJQUoXfv3sKhQ4eEsrIyITk5WRg0aJCwZs2aFp/X2tcFACE6Olq4dOmSUFlZKeTl5QlvvPGG8NhjjzVZX3Me5rXRmnXUxbYVhJZfa80t5+mnnxaioqKEhQsXNrqvLe/H+wEgjBw5Uti0aVOLr+WWam1rTdrLaY/3rD5fh619r7SlL2rra+Zhl63xMPvg9npPG7rq6mrhH//4h2BmZiY8//zzQn19vWS1fPfdd4KRkZHw66+/SlZDW4wbN04YOHCgUFZWJnUpbWJo41B99g/t2U+3Zh/Vmse0V3/bmnV70H60Lbe19/ihKe3RR+l7nNqWWtrSd3Z0hw8fFmQymfDLL7/otJ1JkycLoydPFban57bpAqBVt395OEHo6e0n/M8Xa4UNZ1KFH89fEd746nuhm9JZeG3Vt+Lj1hw6LTi4uAovrPxU+C7+orDhTKrwl0/WCD4DhzRaZlBomDB2xhzhy8MJwtaL14XVB+OFsEenN1lTc3W29jLskWhh7ty5Otv+77//vmBhYSEcPXpUZ23om6H1tdp4zOf+NevjmE979B/N3f+f//xH8PDwENavXy8UFBQIRUVFwubNm4WRI0e2++uhrZ8Pm3Jvvbdv3xa2bt0qBAYG6myc0ZY227qe+nrttXXbt+cYraPKyckRfH19hYiIiDZ/Lk5KShIACFeuXNFRdYZh48aNgqmpqdRlEBFxf2Tg6uvrhT/96U+CXC4XtmzZIkkNBQUFgqurqzBt2jRJ2ieiruGll14SfHx8pC5DLyZPnqzT45Pt4Y033hD8/f2lLoOIiIhasHv3bsHIyEgoLCyUuhQiIiJqRlc6ft/5vslHREREZIB69+4tvPnmmzpv5+DBgwIA4fbt2zpvq6OZP3++MGDAAKnLeGgnT54UlEqlMGDAgEaT1TqC+vp6YcWKFYKFhYXQr18/YfPmzUJVVZXUZXUIhYWFwuzZswVHR0fByspKmDRpknDjxg0BQKMvTm/btk3o1auXYGpqKvTp00f47bffWnXflStXhKlTpwp2dnaClZWVMHTo0EaTYzXtNdVuazT33La2/SDtNfe8lJQUYdy4cYKVlZVgZWUljBs3TkhJSWn0uNb+DfLz84V58+YJTk5OgqmpqRAQECBs3bq10eOaq+thtpEgtPw3bs22Sk1NFaKiogRra2vByspKGD9+vHD58uVGj3+Yv5kuXgfN3R4fHy+EhIQI5ubmgoeHh/D++++36nmteV3ExsYKjz76qNC9e3fB1NRU6NWrl/CXv/xFUKvVjbZXc5pqv73XURB0s22be6219J47fvy4AEBISEhocnu09v14PwCErKwsISYmRrCxsWn2tdxe+4i6ujpBLpc3uK093rP6eh0KQuteR63dD7b1NfOgy27qb/Yw++D22paGqqqqSti0aZPg7+8vWFhYCCtXrpQ0yOPUqVOCmZmZXj4HtZd///vfglKpFCIiIoTi4mKpy2k1QxmHapahz/5BENqvn27NPqq1+7H26m9bs26taau146GHGbfdT0t/84ft/6QYp7alltb2nR3d0aNHBRsbG2H27Nk6758eJMxDe9u35vZVB04JI6ImCpY2toKZhaXQp3+QsPRf6xst9/PfjwqDRj8imFlYChZW1sKQsLHC6oPxgpFM1uBx355KEcZMmSbYdXcQjE1MhB59fYVXP/uqUdv3vhc6YphHTU2NMGvWLMHMzEz48ssvJR2PtBdD6Wt18Vm/te09bH9t6Md8Wrst7rdNm7vv0qVLwvjx4wUrKyvBxsZGiImJEf79738LMpms0TIe9PXQlrHB/WjXa21tLURFRQmpqak6G2e0pc22rOfDPlYQ2ufv8bDvv87o5MmTQo8ePQR/f38hOzu7zc+/fPmyAEC4ePGiDqozHF3py3dE1LFxf2T4NIEeJiYmkgVHHzt2TJDL5cLXX38tSftEZPhOnDghABAuXbokdSk61xnCPMLDw4VnnnlG6jKIiIioBW+++abg6+srdRlERETUgq50/N5IEAQBRERERCSZrKwseHl5IS4uDqNHj9ZpW2lpafD390dycjIGDBig07Y6kpKSEri5ueGTTz7Bc889J3U5Dy07OxtTpkzBjRs38Msvv2DMmDFSl9RIZmYm3nzzTWzfvh2Ojo5YvHgxZs2aBR8fH6lLIyKiTsDIyAi6PmS1YcMGzJkzByYmJsjNzUVoaCgyMzN12iaRFDIyMrBlyxasXbsWhYWFmD59OlauXIlevXpJVtP169cxfPhwBAcHY/v27ZDJZJLV0lYXLlxATEwMzM3N8eOPP2LEiBFSl9Sl6KN/ICL9qqmpwccff4xly5bh8ccfx48//ggTExOdtjl5yhSoYIKX//EvnbbzoG7+OwMrn52Hr46claT9D5+fD29XR2zcuFFnbdTX12PZsmX48MMPMXLkSHz++ecYOHCgztojorZLTU3FxIkTce3aNalLIWo3eXl5ePfdd7F27VqMGzcOP/74I+zt7du8HM3/9f7v//4PQ4YM0UGlhuHHH3/EggULUFVVJXUpRNTFcX/UNQiCgBdffBHr1q3Dtm3b8Oijj+q9hrfeeguffPIJEhISutT3cYhIP+rr69GjRw8sXLgQ77zzjtTl6NSUKVNga2ur0+OTD6Ourg7dunXDRx99hGeffVbqcoiIiKgZ4eHh8PLywvr166UuhYiIiJrRlY7fd55vSRMREREZqIMHD8La2hrBwcE6b8vd3R3AH2EQXcmGDRsgl8sxe/ZsqUtpF+7u7oiLi0NoaCiio6Px3XffSV1SI15eXvjpp5+QmZmJp556Cl9++SV8fX0RGBiIFStWIDk5mZPwiIhIUvPnz8cHH3yA0tJSfPHFF5g1a5bUJRG1C0EQcOHCBfz9739HYGAgfH198dVXX+Hpp59GVlYWNm/eLGmQR1lZGSZPnozu3bvj+++/71RBHgAQFBSExMREeHl5ISQkBAsXLkReXp7UZRERdUqxsbEYOHAgli9fjg8//BA//fSTzoM8Opqpvq7Y88M3KFOrUFNdjay0VHy1bCnGz3la6tJ0SiaTYcWKFTh79iwqKysxePBgTJ48GfHx8VKXRtQlGRkZ4YsvvkBxcTGqqqpw4cIFLF68GC+88ILUpRG1i2vXruHll1+Gl5cXfvvtN2zcuBF79ux5oCAPADAzMwOALvGlMiIios7CyMgIq1atwsKFCzFz5kzs3btX7zW88847GDx4MGbPno2Kigq9t09Ehk0mk2Hq1KnYunWr1KV0eSkpKVCr1Xr5ricRERE9mNraWpw7d479NREREXUYneub0kREREQGKC4uDiEhIXqZrGBjYwM7O7suF+axbt06zJ49G7a2tlKX0m6sra3x66+/4vXXX8eCBQuwePFi1NbWSl1WIx4eHnj//feRk5ODI0eOICQkBKtWrUJQUBBcXFwwd+5cfP/997h586bUpRIRUQdhZGTU4KeurFmzBl9++SW8vLygUqnwt7/9TaftEenSjRs3sGHDBsyZMwcuLi4YOHAgVq9ejZCQEBw5cgQ5OTl47733xHA/qdTX12Pu3LnIzc3F7t27O+343MnJCQcPHsSmTZtw4MABeHl54aWXXsKNGzekLs2g6at/ICLdEgQB+/btQ2hoKMaOHQsvLy9cunQJr7zySpd8f7/x1ff4vyMHsThsCOaP7I8v33oVY2fMwZQFz0tdml4MHDgQCQkJ2L17NwoKChASEoLAwECsWrUKxcXFUpdH1GXs3r0bu3btQo8ePeDk5ISFCxdi0aJF+Otf/yp1aUQPrLq6Gjt37sSECRPQu3dv/Prrr/jwww+RmZn50MHv5ubmAIDKysr2KJWIiIjaiZGREVavXo358+fjsccew759+/TavrGxMX766Sfk5eXhlVde0WvbRNQ1TJ8+Henp6bh8+bLUpXRpx48fR7du3dCvXz+pSyEiIqJmJCcno6ysjGEeRERE1GEYS10AERERUVd3/PhxvZ7hzsPDo0sFJ5w6dQqXL1/Gxo0bpS6l3RkZGeGdd96Bn58fnnnmGVy/fh1btmx54LPJ6ZJcLkd4eDjCw8OxatUqJCUl4dChQzh06BAWL16MqqoquLu7IyQkBMHBwRg5ciSCgoK63Bl5pXa/iVOCIHTq9jozbitpcLu3v9ZsU31t1yVLlmDJkiV6aeth8HVI96qpqUFSUhJOnz6N+Ph4xMfHIzs7G+bm5ggJCcFf/vIXREZGYuDAgZDJOlaW8//+7/9i7969OHToELy8vKQu56HNmjULjz76KNavX49//OMfWLNmDWJiYrB48WJER0d3uO3fkXWk/sEQGFrfYWjr01Xdvn0bGzZswNq1a3HlyhVMmDAB8fHxXf4LVEPCxmJI2Fipy5DcxIkTMXHiRJw9exZr167F66+/jldffRWRkZGYPn06pkyZ0iGPd3UmPObTcXWEbRUTE4OYmBidt3M/UmyLjrD9qf1UV1fj8OHD2LZtG3777TeoVCpERUXhl19+waRJk2Bs3D5fkTIzMwPAMA8iIqKOyMjICGvWrEF5eTmmTZuGPXv2ICwsTG/tu7u7Y8OGDZg8eTLGjBmDJ554Qm9tE5HhGzlyJFxdXfHzzz/j7bfflrqcLuv48eMYNWoU/w9IRETUgcXFxaF79+7w8/OTuhQiIiIiAAzzICIiIpLUv//9b+Tk5GDMmDF6a9PLywuZmZl6a09q69atQ2BgIAYNGiR1KTozc+ZMeHl54fHHH8ewYcOwY8cOBAQESF1Ws2QyGQYPHozBgwfj9ddfR0VFBc6ePYtTp07h9OnTWL58Oe7cuQMzMzP0798fgwYNEi8DBgwQvyhL7U/fX07nl+Fbj9tKGtzu7Y/btO24zbq2qqoqpKSkIDExEYmJiTh//jwuXryI6upqdOvWDcHBwXjuuecQEhKCYcOGwdLSUuqSm7Vt2zZ8+OGHWLt2rV4//+iaubk5XnjhBSxatAg7duzA119/jYkTJ8LV1RWzZs3C7NmzDfqzSHvhvq59Gdr2NLT16Uru3r2L3bt3Y/Pmzdi3bx8sLCwwd+5cbN++vUMftyDpDBs2DMOGDcNnn32GXbt2Ydu2bXjuueewaNEihISEYMKECRg/fjz69+8vdamdDo/5dFzcVv8lxbbg9u/8bt26hX379onBkaWlpRg2bBjeeustTJs2DT169Gj3Ns3NzQH88ZmdiIiIOh6ZTIYNGzagtrYWMTEx2LdvH0aNGqW39mNiYrBkyRI8//zzGDFiBHr16qW3tonIsMlkMkyePBl79+5lmIdEBEHAyZMnsXTpUqlLISIiohYcO3YMYWFhDN8iIiKiDoNhHkREREQSOn78OCwsLDBkyBC9tenl5YXTp0/rrT0pqVQq/Pzzz/jkk0+kLkXnhg4diqSkJMyYMQPBwcH47rvvMG3aNKnLahVLS0uEhYWJZ8QRBAHp6ek4d+4czp8/j8TERGzZsgWlpaUwNjaGl5cX/P394evrCz8/P/j5+cHX1xc2NjbSrggRERHRA1Kr1cjIyEBaWhrS0tKQnp6Oy5cvIzMzE7W1tbCxscHAgQMxatQovPzyyxgyZAh8fX3vexbpjuLEiRN46qmn8Oqrr2LhwoVSl6MTpqammDlzJmbOnImMjAxs2rQJmzdvxieffAIvLy+MGzcOEyZMQHh4eIcOXSEieljXrl3D/v37sW/fPhw+fBiVlZWIjIzEunXrMHXqVFhZWUldInUCNjY2mDNnDubMmQOVSiVO0v7444/x2muvwcXFBaGhoQgNDcWoUaMwYMAAyOVyqcsmIiI9yMrKwsmTJ8VLWloazM3NERYWhpUrV2LSpEno2bOnTmuQy+UwNjZGZWWlTtshIiKiByeXy/HDDz9g2rRpmDRpEg4dOoShQ4fqrf1PP/0U8fHxmDlzJk6ePAlTU1O9tU1Ehi06Ohpr165FQUEBnJycpC6ny0lLS0NBQYFBnbiAiIjI0NTV1eHEiRNYvny51KUQERERiRjmQURERCShuLg4BAcH6/Uf915eXti0aZPe2pPSpk2bIAgCZs2aJXUpeuHg4ICDBw/irbfewowZM7B06VK89957nS5Z2MjISAzpmDdvHgCgvr4eV69exYULF3D58mWkp6dj7969+Oyzz8Sz33l4eMDX1xe+vr7w9/eHj48P/P39oVQqpVwdIiIiIlFeXp4Y1qEd3JGdnQ0AMDMzg4+PD3x9ffHEE0/Az88PAwcORJ8+fTrdmE7j4sWLmDx5MiZMmIAPPvhA6nL0wsfHB8uXL8fy5ctx9uxZ7Nq1C/v27cOXX34JMzMzjB49GuPHj8eECRPg7e0tdblERA+lqqoKJ06cwP79+7F3716kpaXB2toakZGR+OSTT/Doo4/yczk9FDs7O8yaNQuzZs1CfX09zp07hyNHjuDUqVN45513UFxcDBsbG4wcORIhISEYNWoUhg3a0iVNAAAgAElEQVQbxvAsIiIDUFdXh4sXLzYI78jJyYGZmRmGDBmCSZMm4aOPPkJYWJje9/vm5uYM8yAiIurgTExM8PPPP+Pxxx9HVFQUDh8+jEGDBumlbTMzM2zbtg2DBw/G22+/jffff18v7RKR4YuIiICxsTFiY2Mxe/Zsqcvpco4fPw5ra2sEBQVJXQoRERE148KFCygpKUF4eLjUpRARERGJGOZBREREJKG4uDg888wzem2zd+/eKCwshFqthq2trV7b1rdvvvkGM2fOhEKhkLoUvTE2NsYHH3yAgIAAPPvss0hJScGmTZtgb28vdWkPRSaTwcfHBz4+Pg1ur6urQ1ZWljgZNiMjA2fPnsXGjRtRUlICALC3t4eXlxd69eoFT09P8aK5zskdRERE1F4qKiqQlZWFa9euiT81l8zMTBQXFwMAFAqFGEAWFRUlBpl5enoa1Fnlb968iYkTJyIoKAibNm0yqHVrrWHDhmHYsGFYsWIF8vPzsW/fPuzfvx/Lly/HX/7yF3h6eiI0NBTBwcEICQlBQEBAl9xORNR5qFQqnDlzBvHx8YiPj8fp06dRXl6Ofv36YeLEiVi1ahVCQ0N5xlnSCZlMJvatwB/hr5cvX8aJEydw6tQpfPPNN1i2bBlMTEwwYMAABAYGIigoCEFBQRgwYADs7OwkXgMiImpOdXU1UlNTkZycjAsXLuDChQtISkqCWq2GQqHAyJEj8cILLyA0NBRDhw6Fubm5pPUaGxujtrZW0hqIiIjo/kxNTfHzzz8jJiYG48aNw9GjR9GvXz+9tN23b1989tlnePbZZ/HII49g7NixemmXiAybJtT2wIEDDPOQwIkTJxAaGgpjY07BISIi6qiOHj2K7t27w9/fX+pSiIiIiEQ8kkBEREQkkZs3b+L69esYM2aMXtv18vICAGRmZhp0Svz58+eRlJSEVatWSV2KJObOnQt/f3889thjGDZsGHbu3Km3L6Xok1wuR58+fdCnTx9MmjSpwX23bt0SAz4yMzORlZWFo0eP4tq1a7h9+7b4OKVS2SDkQzvoo2fPnpJ/KZiIiIg6jsrKygYBHZqLJrijoKBAfGz37t3FMUV4eDgWLFgAHx8f+Pv7w9nZWcK10I+CggJERETAwcEBv/32G8dU+GPc+fTTT+Ppp59GXV0dzpw5g9jYWJw+fRpvvvkmVCoVbGxsMHz4cIwcORLBwcEIDg7mxGMiktTVq1dx+vRpMbwjNTUV9fX16NOnD0aOHInPPvsM0dHR6NGjh9SlUhckk8kQEBCAgIAALFmyBMAfx1xPnDiB8+fPIzk5GTt37sSdO3dgZGSEXr16ieEeQUFBCAwM5GuXiEgCxcXFuHDhQoPgjsuXL6OmpgYWFhYICAhAUFAQZs6cKYYeymQyqctuQCaTob6+XuoyiIiIqBUsLCywe/duTJgwARERETh27Bh8fX310vaCBQtw9OhRzJ07FxcuXICLi4te2iUiwxYdHY3PP/8cgiDAyMhI6nK6DEEQcOzYMbz44otSl0JEREQtiIuLQ3h4eIc7pkxERERdG8M8iIiIiCRy7NgxmJmZYfjw4Xptt1evXpDJZAYf5rFu3Tr4+voiODhY6lIkM2jQIJw7dw4zZszAiBEjsGHDBkydOlXqsvTGxcUFLi4ueOSRRxrdV1pa2mDirebn/v37ce3aNahUqgbLcXV1haurK9zc3ODi4gJ3d3c4OzvDw8MDzs7OcHR01OeqERERkQ4UFBQgPz8fN2/eRF5eHrKzs3Hr1i3k5OQgNzcXubm5uHXrlvh4Ozs7Maxj5MiRmDNnjnjd09MTNjY2Eq6NtIqLixEdHY36+nrs27cPtra2UpfU4cjlcoSEhCAkJAQAUF9fj9TUVHGy/ObNm7F8+XLIZDL4+PhgwIAB4qTjwMBAuLq6SrwGRGRoampqkJ6ejuTkZKSkpIgTawsLC2Fubo7Bgwdj3Lhx+Pvf/47g4GA4OTlJXTJRkzw8PDB79uwGZya9efNmg0nj33//Pd5++20IgoBu3brBx8cHvr6+8Pb2hre3N3x9fdGnTx+YmppKuCZERJ1bfX09bty4gStXriAjIwPp6eni7zdv3gQAODk5ITAwENHR0Vi6dCmCgoLg4+MDuVwucfX3J5fLUVdXJ3UZRERE1EqWlpbYtWsXoqKiMHbsWMTFxYknwtG1r776CoMHD8acOXMQGxvLCWVE9NDGjRuHN954A0lJSRg0aJDU5XQZly9fRm5uLiIjI6UuhYiIiJpRV1eHkydPYsWKFVKXQkRERNQAwzyIiIiIJBIfH48hQ4bo/QzVZmZmcHV1xX/+8x+9tqtP5eXl2LJlC959990ufwYCR0dHHDp0CK+++iqmT5+OpUuX4r333uvyXxCxsbFB//790b9//ybvLy4uFkM+bty4gZycHNy6dQtpaWk4evQosrOzUV5eLj7ezMwMLi4ucHNzaxT8of2zK0/qJSIikkppaanYl2sHc2huy87ORl5eHqqqqsTnWFlZNQjv8vHxgbu7O3r06CGGddjb20u4Vh2XWq3GuHHjUFRUhOPHj0OpVEpdUqcgk8nE8enixYsB/BEwc/r0aZw7dw7Jycn48ssvcePGDQB/jPMDAwMRFBSEAQMGIDAwEL6+vpx0TEStcufOHSQnJ4vBHcnJybh06RKqq6thamqKfv36ITAwEBMmTMDw4cMxePBg7l+oU/Pw8ICHhwcmTZok3qZWq5GSkoKUlBSkp6cjIyMDR48exY0bN1BfXw+5XA5PT08x3MPb2xs+Pj7w9vaGm5ubhGtDRNSxFBcX4+rVqw0COzSXyspKAH98fvHx8YGPjw/Gjh2L/v37d/qQQplMhvr6eqnLICIiojawtbXFgQMHEBkZifDwcMTFxcHT01Pn7VpbW2PTpk0ICQnBxx9/jKVLl+q8TSIybJrPU/v372eYhx7FxsZCoVBwmxMREXVgiYmJKCkpQVhYmNSlEBERETXAMA8iIiIiiZw5cwYRERGStN2nTx+DDvPYunUrKisrMWfOHKlL6RCMjY3xxRdfwN/fHy+99BLS0tLwww8/wM7OTurSOix7e3vY29tj4MCBzT7m7t27uHXrFnJzcxv9TE1NxaFDh3D9+vVGoR/dunUTl+/q6goXF5dGv9vb28PNzQ0KhUIfq0tERNSpVFZW4s6dOyguLhb73uLi4iav5+TkQKVSic81NTVF9+7dxX63X79+iIyMFK9r/6S2q6iowOTJk3H9+nUcO3YMvXr1krqkTs3JyQlTpkzBlClTxNtUKhUuXryIy5cvIzU1FadPn8bq1atx9+5dGBsbo0ePHvDy8oKXlxf8/f3Rr18/eHl5oVevXl0+6JCoq6mtrcWNGzeQmZmJ1NRUXL58GZmZmeIFABQKBfr164fQ0FAsXrwY/v7+kgTPEknB1tYWoaGhCA0NbXB7dXU1srOzG7xvLl68iM2bNyM/Px/AH2NKd3d3eHl5iWNHTf/r5eUFT0/PLh+kS0SGo7KyErm5uQ3GEdqX4uJiAICJiQk8PDzg5eWFsLAwvPDCC/Dy8kJAQACcnZ0lXov2xzAPIiKizsnOzg779u3DI488gqioKBw/flwvY5UhQ4Zg5cqVeOONNzBq1CgEBwfrvE0iMlxGRkaIiorCgQMH8Oabb0pdTpcRGxuLiIgIyOVyqUshIiKiZhw7dgyOjo7w9/eXuhQiIiKiBhjmQURERCSBiooKXLp0SbJ/qHl7eyM9PV2StvVh3bp1mDp1KhwdHaUupUNZvHgxAgICMH36dAwdOhTbt29H//79pS6r07KwsBAnabQkPz8feXl5yMnJQVFREQoLC5Gfn4+CggIUFRXhzJkzyMvLQ2FhIe7evdvgudbW1nBycoJSqYSDgwMcHR2hVCrh5OQEBwcHdOvWrcHF3t6e/zQmIqJOpa6uDsXFxbhz506DS1FREQoKCpCfn4/CwkIUFhaioKAABQUFKCsra7AMCwsLODo6wtnZGY6OjnBwcICfnx+USiUcHR3h6OgIV1dXODs7Q6lUSrSmhk8T5JGWloZjx47B19dX6pIMkp2dXaOJx7W1tUhPT8fly5fFs2EnJibip59+glqtFp/n7e0Nb29v+Pr6om/fvvD09ISnpyffF0SdWHV1NW7cuIHr168jMzMTV65cQXp6OjIyMpCVlYXa2loAQI8ePcR9wOTJk+Hj44P+/fvDxcVF4jUg6nhMTU3F4z2TJk1qcF9+fj4yMjJw7do1ZGVl4dq1a7h27RpOnDiB7Oxs8T1nbm4OT09P9OzZU+xve/ToAQ8PDzg7O8Pd3R0WFhZSrB4RUQM1NTXIz8/HzZs3kZeXhxs3biArKwvXr18X93ElJSXi452dncX92tixY8Xf+/bti549e3apY9NyuRx1dXVSl0FEREQPwMHBAYcOHcKYMWMwduxYHDt2DN27d9d5u6+++iqOHz+OWbNmISkpCd26ddN5m0RkuKKjozFv3jyoVCqezEkPamtrcfz4cXzwwQdSl0JEREQtOHbsGMLCwniyGyIiIupwGOZBREREJIHz58+jtrYWw4cPl6R9Pz8/7Ny5U5K2dS0tLQ1nzpzBypUrpS6lQwoJCUFycjKeeOIJDBs2DKtXr8YzzzwjdVkGTalUQqlUIjAw8L6PLS8vbzBxuaioSAz6KCwsRE5ODs6fPy+GglRXVzdahp2dXaOQD+2wj+au88zLRET0MCorK8UgjqbCOZq67c6dO1CpVI2WZWpqKoZyaAI6+vTpIwZ23BtwZWVlJcEak7by8nJMmjQJFy9eRGxsLPz8/KQuqUsxNjZGQEAAAgICGt1369YtpKen48qVK+Ik/++//x7Xrl0TJxxbWFiIk/A0F+3Jxwz7IJKOJqzj2rVrDSbVai65ubniGeFtbGzEwI65c+fCx8dHvM6+kqh9aI7xjB49utF9tbW1yMnJafAezcrKQnp6Og4cONAg7AMAFAoF3Nzc4OrqCldXV7i5ucHFxaVB4IdSqYSxMf+dT0QPpqCgAHl5eWJQR3Z2Nm7duoWcnBzk5uYiNzcX+fn5EARBfI5SqRQ/B0RHRzf4bNCrVy8eQ9Yik8nEcRgRERF1PkqlErGxsRg9ejQiIyNx5MgR2Nvb67RNIyMjrF+/HkFBQVi8eDF+/vlnnbZHRIYtOjoagiDgyJEjeOyxx6Qux+CdOXMGarUakZGRUpdCREREzaitrcXJkyfx/vvvS10KERERUSP89g8RERGRBBISEuDk5IQePXpI0r6fnx8KCgpw+/ZtvZxhRJ++/vpreHl5ISwsTOpSOixHR0fs378fb731FhYuXIiEhAT861//gqmpqdSldXlWVlbo1asXevXq1arHl5WVNZocrbl++/Zt8Xp6enqD+8vKyhoty9LSUgz3sLOzg52dHWxtbWFrawuFQgGFQiFe177Pzs4O9vb2sLW17VJnXiQiMiR1dXVQq9UoLi6GSqWCWq2GWq1u8HtJSQlKSkoa3KdSqcS+paKiotFyra2tGwVJ9ezZEwMHDkT37t2bDZqytraWYCvQg9IEeaSmpuLw4cMYMGCA1CWRFhcXF7i4uCA8PLzB7bW1tbh582aDcICsrCykpqZiz549yMnJEc8yrQn70Ew4dnd3h7OzszjZ2MPDA05OTjAxMZFiFYk6rbKyMnFSbVOTa2/cuNEgrMPKykqcSBsUFIQpU6Y0COFxcHCQeI2IujZjY2P07NkTPXv2xJgxYxrdX19fj/z8fPE9npOTI77/8/LykJiYKAa6ashkMiiVSjg7O4shd9qBd5qL5rqFhYU+V5mI9KympkYMec7Pz0dBQYEYAq3ZfxQVFSE3Nxe3bt1qEARtZWXVICzIz8+vyUAhMzMzCdewc2GYBxERUefn7u6OQ4cOYfTo0Zg4cSIOHjyo8/9PODo6YvPmzYiIiMC6deuwaNEinbZHRIbL3t4eQ4cOxf79+xnmoQexsbHo0aMH+vbtK3UpRERE1Izz589DrVZz/gARERF1SAzzICIiIpJAQkICgoODJWvf398fAJCeno6QkBDJ6mhvVVVV2LRpE1599VXIZDKpy+nQjI2N8cEHHyA4OBhPPfUUEhMT8csvv6Bnz55Sl0ZtYG1tDWtra3h4eLTpedXV1Y3CP7SvayZoq9VqFBQUNJrAXVVV1eRyraysGgV9KBQK8TbNT0tLSygUClhaWsLS0hJ2dnawsrKCpaUlbGxsGAxCRNQKtbW1KC0tRWlpKSoqKlBeXg6VSoWKigpUVFSgpKQEFRUVjcI5iouLG4V1lJeXN9mGmZmZuP/W7NNtbW3h4OCA3r17i4FO94ZxaH5nUJjhU6lUGD9+PDIzM3H48GEEBARIXRK1krGxcYshcjU1NcjOzhaDPq5fvy6e0TspKanZycYuLi4NJgW6uLjAyckJDg4OcHR0hJOTExQKhb5Wk0jvamtrxYm0BQUFyM/PFyfVak/ev3nzZoOQRVNTU3FyrYuLC4YMGYLHHnsMnp6e6NmzJzw9PeHo6CjhmhmG2tpa/P7778i+eRM2Hl5Sl0NdjEwmE0O2Bg8e3OzjqqqqGoX73Lp1C/n5+SgsLERGRgZu3bqFoqKiRoF6VlZWUCqVUCqVYt+rCfrQHqdrfre3t+fEfSKJ1NfXNzg2q32MVhPYoRlzay63b99usAwTExMx1EepVMLJyQm9e/cW9zXaIXwMzWx/crlcDEAkIiKizqt37944evQoRo8ejcceewy7d++Gubm5TtscM2YMXnvtNbz00ksYPnw4A7KJ6IFFRkZi69atUpfRJRw8eBBRUVFSl0FEREQtOHDgANzc3ODn5yd1KURERESNMMyDiIiISAIJCQlYsmSJZO27u7vDxsYGaWlpBhXmsX37dpSUlODJJ5+UupROY8qUKTh79iymTp2KIUOGYPPmzRg7dqzUZZGOaSaKOTs7P9DzKysrG0wELykpaTRZXPN7cXExbty4IV7XTBovKSmBIAgt1mhlZQWFQgELCwsxAMTKygoWFhawtbWFjY0NLC0txRARS0tLWFhYwN7eHpaWljAzM4ONjQ2MjY1hb28PuVwOW1vbB91sREQPRK1Wo66uDsXFxWIAR2VlJe7evYvi4mLcvXtXDN0oKyvD3bt3UVpaCrVa3SiY4+7duygpKUF5eXmDM+zey8jISNxnagcs2drawsvLq9FtzQUwcWIftaSoqAjjx4/HrVu3EBcXBx8fH6lLonZkYmLSYtgH0PRkY01QQUZGBuLi4pCbmwu1Wt3geaampuIEY6VSKU5AdHBwECccOzg4wN7eXrxwf0RS0Xym0Vzy8vLECbaFhYXi5HrNbfdOsjU2NoaDg4MYdNOnTx+MHj0abm5uDSbZKpVKidawa8jMzMT69evx3XffIT8/H66urgzzoA7LzMwMnp6e8PT0vO9jy8vLxeAgzb5Ie/J/Tk4Ozp8/j6KiIty5cwd3795ttAwrK6sG4R5NBX5o/9SEsNrY2MDKykoHW4Co86iqqhI/v2uCkO8N52gqSPnOnTtQqVSNlmdiYgJ7e3txPKxUKhEYGCiOl7XHyk5OTujWrZsEa00aMpkM9fX1UpdBRERE7cDb2xsHDhxAeHg4Zs2ahV9++QXGxrr9avW7776LuLg4zJ49G2fPnoWlpaVO2yMiwxQaGooVK1YgLy/vgb//Q/dXVFSEs2fPYunSpVKXQkRERC04ePAgoqOjYWRkJHUpRERERI0wzIOIiIhIzzRnYB0+fLhkNRgZGcHHxwdpaWmS1aAL3377LWJiYuDq6ip1KZ2Kt7c3Tp8+jQULFmD8+PF46623sGzZMshkMqlLow7K3Nwc5ubmcHJyeqjl3L17t8HE9IqKimYnsN870T0zM7PB4zQT4isrK+/brpmZGSwtLcXAD1tbWxgbG0OhUMDY2Bg2NjYwNzeHhYUFrKysYGpqCjs7O8jlcigUCpiYmMDa2lp8jLW1NUxMTMTlaibRAxDvI6KOoaamBmVlZQAghgpVVFSgqqpKvE+zLykrK0NNTQ1KSkpQV1cHlUqF6upqlJeXi48pLS1FbW0tiouLUVdXB7VajaqqKnHfVFVVdd+azM3NxcAizb5JMznOxsYGzs7OYmDR/YKNNAFIFhYWut6U1MXdvHkT0dHRqKqqQlxcHHr37i11SSSB1k42rqqqEoMO7g0+0AQjZGVliddLS0sbLcPS0rJBuMf9LpoJxvb29hyPdXFlZWUoLy9HWVkZSkpKUFpa2iCcQzOptrnLvWdbl8vl4iRaTQDNwIEDGwXUaK47ODhItOZ09+5d7N69G9988w0OHz4MZ2dnLFiwAAsWLMBLL7+MxlOoiTofKyur+4ZvaausrGwULtBU8EB2djYuXrzY4PamAlllMpkYCqgd8mFjYyMGBd57u729PWxtbWFubg5ra2tYWVnBzMxMPI5CpGvl5eWoqqpCSUmJGLSpGSNojkuWlpaK4cX33l5cXCz+3txnfltb20ZBOL169cLgwYObDMnR/G5jY6PnrUEPQy6XNxorEhERUecVGBiIvXv3YuzYsZg/fz6+//57nX5fwtjYGFu2bMHAgQPxyiuv4KuvvtJZW0RkuIKDgyGXyxEfH4/HH39c6nIM1r59+yCXyxERESF1KURERNQMtVqNs2fP4k9/+pPUpRARERE1iWEeRERERHqWkJAAmUyGIUOGSFqHn5+fQYV5XL9+HUePHsWOHTukLqVTsra2xtatW7F27Vq8+OKLSExMxA8//MAv0pNOaSact+dZJOvr68XQj5qaGqhUKtTW1kKlUrU4Ub+2thZqtVqcqH/nzh3x7JrNTdRvC00ACAAoFAoYGRnBwsIC5ubmkMvlsLW1BfDHl/3lcnmLwSDay9J+rvbzAYhhI8B/J9ho2NjYiGeU0rRF9LC0wytqa2sbTMZWqVTi2Uq1g3c07ysNtVotToTQvEdbCuDQfr7muZrJOIIgoKSkpMGy2kI78Ecul8Pe3l4M/NG8b5ydnVsd+GNnZwdjY2PY2dnB1NQUVlZWsLOzY3gWdTqZmZkYO3YszM3NERcXB3d3d6lLog7OzMwMbm5ucHNza9XjNeEfLQUsFBcXo6ioCFevXm1wW3MTKk1NTWFtbQ2FQiFOHDYyMoJMJkPfvn3F2zT3a86KrhlDafb/mv23Zh+v6Svo4WjG3CqVCnV1dWKQllqtFscBmjG4JpyjvLwcxcXFzV7XhHc0RzOhXPvi5uaGgICABhNs770wnKNjq6urw5EjR7Bp0ybs2LED5eXlGDduHH799VdMnDhR52fVJerozM3N4erq+kBByCUlJbhz506jYAOVSgWVSiVe1/zUhLDee/v96tOEFpqZmYnBhWZmZrC3txf7YU2fbGdnJx5b0XxG0z7+ofm8pVmG5rOa9rEWkp7m87qmr9cc2wP+eyxBcwxAc9xOc8xBc3txcbF4X2lpKaqrq6FSqcTjDyqVClVVVeKxheZYWFiIATR2dnZiII2dnR3c3d1ha2sLhUIhBtRo/9SEcWiOHZDhk8lk4rEuIiIiMgwjRozAzp07ERMTAxMTE6xfv16nZ3T28PDA2rVrMXXqVIwZMwZPPPGEztoiIsNka2uL/v3749SpUwzz0KG9e/dizJgxDOEkIiLqwA4fPoy6ujo88sgjUpdCRERE1CR+i4CIiIhIz5KSktC3b98Gk6+l4Ofnh7Vr10paQ3v6/vvv4eDggPHjx0tdSqf27LPPwtfXFzNnzsSIESOwfft29OvXT+qyiFpNJpOJE+10TTNhQBMg8KDhAk0FFRQXFyMvL6/FZQEQJyq0l3sntGifyV4zaeZemnASbdqBI9qam/CqWUZdXR2qq6thYWEhTpptjfYIRNAOQmmrewMpdL0MzYRXbdqTXbQ1Fz7TVLiF9uuzucdqv16B/75m24uVlRVMTU0B/Pf10lTgjWaSl7GxMby8vAA0HXijeW21Zlma+xhwQ9S8xMREjB8/Hl5eXtizZ0+7BnIRabQ1/ENbRUUFiouLUVpa2mS4Q15eHs6ePYukpCTcunUL9vb2sLa2RllZGcrKysRJx5pQuNbSBKVpxiTaY1Ht37XHG9p9nmYiMtD8mEv7Mc1pzeTke/vy5mgHbGncO1bQDuvSHi9oB3dpj0U0v2vuLy8vR3V19X1rAf47vrS0tBQncisUClhZWcHa2hpKpRL29vbidSsrK/Hvq7lNoVBwkq0Bqq+vR0JCArZu3YqtW7ciLy8Pw4YNw/LlyzFz5kw4Ozs3+bzC3GzE79+t52o7hzsFeYCro9RlUAejUCjaFIAhCAJSU1Nx5MgRHDlyBHFxcQAAJycnBAcHY/jw4YiKikJ5eTmqqqpQUlIi9hOaIFVNf665v7S0FPn5+Y3ur66ubtD3tIWmD9f+jKl9LOLe4xja4ahAw+MR9/bDLR3XuDec9X60xw0tae5zfXNa2m733ndvv33vWKG4uFj8/d5jFJplaQd/PsjxBM1204S2aMZHdnZ2MDMzg7W1NVxcXGBmZgY7Ozvx76p9v7W1daP7NWMEzTEwotZgmAcREZFhioiIwNatWzFt2jTY2tri888/12l7jz/+OJYsWYLnn38eI0aMQK9evXTaHhEZnpCQEJw8eVLqMgxWXV0dDh06hLfeekvqUoiIiKgFBw8exJAhQ+DoyP9xEhERUcfEbysSERER6dmFCxcQFBQkdRkICAjA9evXUVJS0unPRCgIAn744QfMmzePX7htB6NHj8b58+cxc+ZMDBs2DKtWrcL8+fOlLouow7G0tISlpaVegkNaS3vihPYki5YCGLQnZ9wbKKE9MUM7RERDexKGtuYmg2gCSrRp2lSr1bh58yYsLCzg5eXVZHtNedAJO+29DM0EEH0so7nJvE2FmjQ3QcjBwaHJtpoKNdFu797laT9eu37tsyEDLQfDdKT3EBE1b+fOnZg3bx5GjhyJX3/9tcmwASKpacZn2urr6xEfH4+NGzdi05R5K0IAACAASURBVKZNqK2txeTJkzFv3jyMHz++xVAHzVhHE6CmGZ9oQtw0ARaaUIvi4uIGk1fvHVtpj9Vu3boljou0x23NjYFaM+G1uRCvezUVxnav5sYl2s/VntCsPdlZoVCIfwfticyaQA5NcJZmjKGZoKxZnkKhgEwmg0KhaPNkZ+oaKioqcOjQIezevRu///478vPz4e3tjeeeew6zZ89G3759W3y+h7s7du/ahbRzCXqquPOZFsOwXGq73NxcnDp1CrGxsdi7dy+ys7NhbW2NESNG4PXXX0dkZCQGDRqk0zNbax//0PS7mv5a08dq98+aPlzTF98bmnpvmKZ2fywIAq5duybed+8xkpYCWNsSaNVceGdzLC0tIZfLIZPJ7ht82lIQ2L2f3e89FnFvwEjPnj0bHE/QHjNo+n7tYwWa4wmaMYR2MKfmOMG9YStEHYlcLmeYBxERkYGaPHkytmzZgpkzZ6Jbt25YtmyZTtv79NNPcfr0acycOROnTp3id16IqE1CQkKwdu1aVFRU8IQVOhAfH4/bt29j4sSJUpdCRERELTh48CBmz54tdRlEREREzWKYBxEREZGepaSkYNGiRVKXgYEDB0IQBKSkpGD06NFSl/NQjh8/jv/85z948sknpS7FYLi6uuLo0aNYsWIFFi5ciKNHj2LNmjXiF6qJqGNq7izwHVlubi5ef/11bNy4ETExMfjXv/4FT09PqctqlkKhwIcffojFixdLXQoRkd588cUXeOWVV7BgwQKsXr2aXyamTuHmzZvYvHkz1q5di8zMTAwePBgrV67EnDlz4ODg0KplGBsbd5oxFZGhKyoqwt69e/H7779j3759qKiowMCBA/Hcc89h0qRJbQoIWL16NVavXq3jiokMX0FBAeLi4hAbG4tDhw4hKysLlpaWGDlyJBYsWIDQ0FCMGTNGr2NHExMTse/uyn24p6cnnn76abzzzjtSl0JksGQyGcM8iIiIDNjUqVPxzTff4JlnnoGFhQX++te/6qwtc3NzbNu2DYMGDcLbb7+N9957T2dtEZHhGT16NGpqapCQkIDw8HCpyzE4e/bsQd++fe8bIE1ERETSuXr1KjIzMxEVFSV1KURERETNYpgHERERkR6pVCpcv34dgYGBUpcCd3d3ODg4ICkpqdOHeWzYsAFDhgzBgAEDpC7FoBgbG+Odd97BqFGjMHfuXAwZMgRbt27tEK9fIur8ampqsGbNGvztb3+Dk5MT9uzZgwkTJkhd1n317dsXV65ckboMIiK9qKqqwuLFi/Hjjz/ivffew2uvvSZ1SUQtqqysxO7du7F27VocPnwYSqUSM2bMwPz58xEUFCR1eUTUBrW1tTh79iyOHDmC3bt349y5czA3N8fYsWPx+eefIyYmBkqlUuoyibqU0tJSJCQkIDY2FrGxsUhMTIRcLkdgYCBmzJiByMhIjBo1CmZmZlKX2uVNmDABu3fvZpgHkQ7V19e3OkiMiIiIOqenn34aJSUleOWVV6BQKHR60p6+ffvis88+w+LFixEeHo6xY8fqrC0iMixubm7o0aMHTp06xTAPHfjtt98wadIkqcsgIiKiFhw8eBA2NjYYMWKE1KUQERERNYthHkRERER6lJKSAkEQOkzoRFBQEJKTk6Uu46GUl5dj+/bteP/996UuxWBFRETg3LlzmD17NoKDg/Hpp59i8eLF/KIqET2wuLg4vPjii/jPf/6DpUuX4vXXX4e5ubnUZbWKt7c3MjIypC6DiEjnioqKMG3aNCQmJmLnzp2IiYmRuiSiZp0/fx5r167Fli1bUFFRgfDwcGzduhWPPvooTExMpC6PiFqhtrYW586dw7Fjx3Ds2DGcOnUKZWVlcHNzw4QJE/C3v/0NERERsLCwkLpUoi6joqIC8fHxiI2NxcmTJ5GQkID6+nr4+voiNDQUr732GqKiomBnZyd1qXSPSZMm4auvvkJ2djbc3d2lLofIYPF/JERERIbvz3/+M9RqNZYsWQJ7e3tMmzZNZ20tXLgQx44dw9y5c5GcnAxnZ2edtUVEhiU0NBSnTp2SugyDk5aWhvT0dKxbt07qUoiIiKgFBw4cQEREBL8bQkRERB0awzyIiIiI9CglJQUKhaLDfIE2KCgIhw8flrqMh7Jt2zZUVVVh5syZUpdi0Nzc3HDkyBG8++67ePHFF7Fnzx588803PAsuEbXJrVu38Nprr+HHH3/ExIkTsWvXLvTq1UvqstrE29sbmzZtkroMIiKdOnr0KJ588kmYm5sjISEBfn5+UpdE1Ehubi42btyI9evX4+rVq/D398f//u//Yv78+XBycpK6vC7r7t27KC8vh1qtRmlpKSoqKlBeXg6VSoX6+noAgCAIKCkpafA8U1NTWFlZwdjYGDY2NjAyMoJCoQAAKBQK2NjYwNbWttMEwNH9VVdXIzExEXFxcTh27BhOnjyJsrIyuLi4ICwsDJ988gnCwsLg7e0tdalEXUZtbS2Sk5MRGxuL2NhYnDhxAlVVVfDy8kJkZCRefvllREREoFu3blKXSvfxyCOPwNraGnv27MHixYulLofIIAmCIHUJREREpCfLli2DSqXCnDlzYG1tjXHjxumsrTVr1mDQoEF4+umnsW/fPoaHEVGrhISE4I033kBdXR3kcrnU5RiMX3/9FUqlEsHBwVKXQkRERM2oqalBXFwcPvjgA6lLISIiImoRwzyIiIiI9CglJQVBQUEd5h/uQUFB+Oc//4nq6mqYmppKXc4D2bBhA6ZMmQIHBwepSzF4crkcy5cvx4QJEzBv3jz0798f33zzDSZPnix1aUTUwdXW1mL16tVYtmwZbG1tsWHDBjz55JNSl/VAfHx8kJWV1an7TiKi5tTU1GDZsmX4xz/+gcceewzr1q2Dvb291GURiaqqqrBr1y788MMP2L9/P6ytrTFjxgx8++23CA0Nlbo8g6dSqXDlyhVkZGTgxo0byM/PR35+PnJzc1FYWIicnByUlpa2alkymQx2dnbi9aqqKlRUVNz3eWZmZrC1tYWtrS0UCgUUCgWcnJzg4OAgXpydncXfHR0d4eDg0GGOw3RVNTU1uHjxIs6fPy9eUlJSUF1dDaVSibCwMHz00UcICwuDr6+v1OUSdRl1dXW4cOECTp48iVOnTuHAgQNQq9VwcXFBaGgo/vnPf2L8+PHw8PCQulRqIzMzM0RERGD37t0M8yDSEUEQOMYkIiLqQj7++GMUFxdj6tSpOHjwIEJCQnTSjq2tLTZv3ozQ0FB8+umnePXVV3XSDhEZltDQUKjValy8eBFBQUFSl2MwduzYgSlTpjAghYiIqAOLj4+HWq1GVFSU1KUQERERtYhhHkRERER6lJycjOHDh0tdhigoKAjV1dVIS0tDYGCg1OW0WVZWFk6cOIHff/9d6lK6lBEjRiAxMRH/8z//gylTpmDevHlYs2YNrK2tpS6NiDqgEydO4MUXX0RaWhqWLFmClStXdur9hbe3N2pra5GZmcmJhkRkUK5du4Y5c+YgKSkJn376KV5++WWpSyISpaamYuPGjVi/fj3u3LmDRx55BOvXr8f06dNhYWEhdXkGp6ysDOfOnUNiYiIyMjJw5coVpKenIy8vD8AfE4Q9PDygVCqhVCoRGBgIJycnuLi4QKlUwsbGRrxYWFjA2toatra2rfrCa21tLUpLSyEIAkpKSgD8ESKiVqvFi+Z6SUkJSkpKUFBQgKSkJBQVFaGwsBC3b99usEyZTCaGejg4OMDJyUm8ODs7w8XFBU5OTnBzc4OTkxMD2x7SnTt3kJGRgUuXLjUK7rC2tkZQUBBCQkLw0ksvYejQoRxTE+lZZmYmYmNjERsbi8OHD+POnTtwcnLCmDFj8NFHHyEkJAT9+vWTukxqB5MmTcKLL76I8vJyWFlZSV0OkUFimAcREVHXYWRkhHXr1kGlUmHKlCk4fvw4/P39ddLWsGHDsHz5crzxxhsYNWoUhg0bppN2iMhwBAQEwNbWFgkJCQzzaCfZ2dlITEzEihUrpC6FiIiIWrBnzx54e3ujd+/eUpdCRERE1CKGeRARERHpSX19PVJTU7Fo0SKpSxH5+vrC0tISSUlJnTLM47vvvoOTkxMTdSVgY2ODr7/+GmPHjsXixYsxaNAgng2biBq4ffs23nzzTaxbtw7h4eFITk6Gn5+f1GU9NB8fHxgZGeHKlSuceEhEBkEQBHz33Xf485//jL59+yIpKQk+Pj5Sl0WEO3fu4JdffsGXX36JCxcuwMfHBy+88AKeeeYZ9OjRQ+ryDIYgCEhPT0dCQgLOnDmD06dPIzU1FXV1dVAqlfD394ePjw8mTZoEPz8/eHt7w9PTU2dnojM2Noa9vT0AoFu3bg+0jNraWhQVFYnhHvn5+eLvRUVFyM/Px8WLF1FQUIDc3Fyo1eoGz+/evTuUSmWTQR8uLi5wdnYWg0GMjbvmv9lqamqQlZWFtLQ0XLlyBRkZGcjIyEB6ejqKiooAoFFwx+DBg+Hj48OzGBLpWW5uLk6dOoXY2Fjs3bsX2dnZsLa2xogRI7B06VJERkZi0KBBnJBugGJiYrBo0SLExsZiypQpUpdDZHAEQZC6BCIiItIzuVyOH3/8EePGjUNUVBROnjwJT09PnbS1dOlSHD58GHPmzEFiYiJsbGx00g4RGQaZTIbAwEBcuHBB6lIMxq+//gpra2uEh4dLXQoRERG1YNeuXZg8ebLUZRARERHdV9f8luH/Y+/Ow6Iu9/+Pv1hlXxURAQUXUFBEcQcxBRd0xDJQ1HA7QaZGRcetTlFqwdFMzFPJzxVXwAUblZRRQ3ErEFRccEFQQAQEFEQQhvn98f3Gdfrmlg7cDLwe1+V1jjJz30/sEoaZz/0eIiIiIgFu3bqFiooK9OjRQ3RKPQ0NDfTo0QPnzp3D9OnTRef8LQqFAlu3bsW0adNa7OGZpuDtt9/GoEGDEBQUBE9PT8ybNw9ff/019PT0RKcRkSB1dXXYunUrPv74Y+jo6GDTpk0IDAwUnaU0+vr6sLKyQmZmpugUIqLXdvHiRcyZMwenTp3Cxx9/jKVLl0JbW1t0FrVgcrkcx44dQ1RUFOLj46Gnp4dx48Zh+fLlGD58OA8aK0lxcTEOHTqEAwcO4PDhw7h//z50dXXRp08feHt741//+hcGDBgAa2tr0amvRFNTE5aWlrC0tHyp2z9+/BgFBQW4e/du/YCPe/fu1f/ZjRs3kJ+fj8LCQlRXV//pvqampmjTpk39cI/WrVujTZs2z/wzVTh48fjxY9y9exd5eXm4c+cO7t69izt37iAvLw/5+fm4ffs2CgoKUFtbCwCwsbGBg4MDevbsCX9/fzg4OMDBwQG2trb8N0skQGFhIZKSkiCTyZCYmIhbt25BT08PgwYNwqxZs+Du7g5PT09oaWmJTqUGZmFhgX79+kEqlXKYB1EDUCgUfKxDRETUAunq6kIqlWLo0KHw9vZGcnIy2rZtq/R91NXVsXnzZri4uODDDz/E+vXrlb4HETUvvXr1wu+//y46o9nYu3cvxowZg1atWolOISIiome4efMmMjMzERUVJTqFiIiI6IV46pGIiIiokVy9ehUA4OjoKLjkz/r374/Tp0+Lzvjbjh49ilu3bqncEJLmyMrKCvv370dcXBxmz56Nn3/+GevXr+e7ExC1QCkpKZgzZw7S0tIwe/ZsLF26VCUOLP5djo6O9d/XiYhU0aNHj7B8+XJ88803cHZ2xsmTJ9G/f3/RWdSCXb58GdHR0di4cSOKi4sxcOBArFmzBlOmTIG+vr7oPJWnUCiQnp6OgwcP4sCBA/jtt9+goaGBIUOG4NNPP8WQIUPQs2fPFnuwW1dXF3Z2drCzs3vhbe/fv4979+6huLgYxcXFKCwsrP//xcXFyM/PR3p6OoqKilBcXIzHjx//6f6tWrWCiYkJjIyMYGRkBBMTExgaGsLIyAiGhoYwMDCAqakpAMDY2Bjq6uowNDSEpqYmDAwMnvvfSE1NDSYmJigtLQUAVFRUoKamBlVVVXj8+DFqa2tRXl6O6upqlJaWoqSkBKWlpX/59d/NfwxGsbW1hZWVFfr27Yu33noL1tbW6NKlCxwcHPhvlEiwiooKnDlzBjKZDDKZDOfOnYOGhgZcXFzg7+8PLy8veHh48OBBCyWRSBAZGYm6ujqoq6uLziFqdjjMg4iIqGUyMjLCoUOH4OHhgREjRiApKQkmJiZK38fKygrR0dEYM2YMvLy8EBAQoPQ9iKj56NWrF9avXw+5XA4NDQ3ROSrt7t27OHHiBHbt2iU6hYiIiJ4jPj4eZmZmGDRokOgUIiIiohfiMA8iIiKiRpKZmYl27drByMhIdMqf9O/fHz/++CMeP34MXV1d0TkvbdOmTejfvz+6desmOoX+l5+fHwYPHozg4GB4eXlh3rx5WLp0KQwMDESnEVEDKykpwZdffok1a9ZgyJAhSE9PR/fu3UVnNRgnJyecPXtWdAYR0d+mUCgQExODTz75BFVVVfj+++/xj3/8gwf7SIiysjLExsYiOjoaJ0+ehI2NDWbMmIHg4OCXGqpAL3br1i1ER0djy5YtuHnzJtq1awcfHx988skn8Pb2bpZD1xqaubk5zM3NX/r2jx49wv3791FYWFg/4OPBgwd4+PAhHj58iNLSUpSXl+P+/fu4desWKioq8ODBAwCoH8pRVlYGhULxys06OjrQ1dWFlpYWDAwM0KpVK5iamsLMzAympqaws7ODqanpn35ZWlqiffv2sLS05PcIoiamsrISp06dgkwmQ3JyMn777TfI5XI4OjrC3d0dCxYswIgRI2BsbCw6lZoAiUSCTz/9FCkpKejXr5/oHKJm5XUenxEREZHqa9OmDQ4ePAgPDw+8+eabSEhIgI6OjtL3GT16NGbPno3Zs2dj4MCB6Nixo9L3IKLmoVevXqisrMS1a9d4Ld1r2rlzJ/T19TFq1CjRKURERPQcUqkUo0ePhqYmj8YSERFR08dHLERERESN5Nq1a3BwcBCd8Rf9+/dHTU0N0tPTMXDgQNE5L+Xhw4fYs2cPvv32W9Ep9H9YWVlBKpUiOjoaH330Efbu3YsffvgBY8aMEZ1GRA2grq4OW7duRWhoKLS1tbFx40YEBgaKzmpwTk5O2LBhAxQKBd+Bk4hUgkKhwM8//4wvvvgCFy9exIwZMxAeHo7WrVuLTqMWpq6uDkePHkV0dDR27doFhUIBiUSCxMREDB8+nN9XlaC8vBy7d+/Gpk2bcPz4cVhYWGDy5MmYMmUKevfuzb/jRqavrw99fX3Y2tq+9loPHz6EXC5/5sf/GP5hbGwMdXV1GBgYQEtL67X3JSKxamtrcf78echkMshkMpw4cQLV1dWwt7eHl5cXQkJCMHz4cJiZmYlOpSaoR48esLOzg1Qq5TAPIiXj84JERERkb2+PQ4cOwdPTE/7+/tizZ0+DHCL79ttvcfLkSUydOhW//vorD6oR0VM5OztDW1sb6enpHObxmnbs2IG33nqrQYY0ERERkXKUlpbi5MmT2Lp1q+gUIiIiopfCt9MiIiIiaiSZmZlNcphHp06dYGFhgTNnzohOeWlxcXGoq6vDxIkTRafQMwQGBuL69esYNWoUxo4dC4lEgtzcXNFZRKRE586dw+DBgzFr1ixMnjwZV65caRGDPID/uRCmoqICOTk5olOIiF5IJpOhX79+ePPNN2FjY4OUlBSsW7eOgzyoUWVmZiIsLAz29vbw9vbG5cuXsWrVKhQWFiI2NhZeXl48CPeazp8/j+nTp6Ndu3Z477330Lp1a+zbtw+5ublYuXIl+vTpw79jFWdkZARTU9Nn/rK3t4e9vT3Mzc1hamrKQR5EKkoulyM1NRWRkZHw9/eHubk53NzcEBkZCVNTU6xevRq3b9/GzZs3sXbtWvj5+XGQBz3X2LFjIZVKRWcQERERETVLzs7OOHjwII4dO4YZM2ZAoVAofQ8dHR1s27YN586dw9KlS5W+PhE1D9ra2nB0dMT58+dFp6i0rKwspKSkYNKkSaJTiIiI6DkSEhKgpqaGkSNHik4hIiIieikc5kFERETUSDIzM9G1a1fRGU/Vr18/nD17VnTGS9u6dSskEglMTU1Fp9BzmJmZYe3atUhISEBGRgZ69OiBqKioBrmAhYgaT2lpKUJCQtCvXz9oa2sjLS0NkZGRMDIyEp3WaJydnaGmpoaMjAzRKURET1VdXY1t27ahX79+GDFiBNq3b4+0tDRIpVK4urqKzqMW4uHDh4iOjoa3tze6deuGdevWYdKkSbh+/TpSUlIQFBQEQ0ND0Zkq7+jRoxg1ahRcXV1x7tw5REREID8/H7t27YJEIuE7dRIRqYCsrCxERUXB398fFhYWcHNzw9dffw0AWL58OTIyMpCfn4/Y2FgEBQXBxsZGcDGpEolEgvPnzyM7O1t0ClGzolAoOCyPiIiIAAD9+/fH3r17ERcXh5CQkAbZw8nJCcuXL8eSJUtw7NixBtmDiFSfq6sr0tLSRGeotB07dqB169YYPny46BQiIiJ6DqlUiiFDhsDExER0ChEREdFL4TAPIiIiokZQXl6OgoICODg4iE55qv79+6vMMI+8vDwcP34cU6dOFZ1CL2nUqFG4fPkyQkJCMHfuXPTt2xenT58WnUVEf5NCoUB0dDQcHBwQGxuLDRs24Ndff4Wzs7PotEZnZGQEa2trDvMgoiYnOzsbixYtgo2NDWbMmIEOHTogJSUF8fHxcHFxEZ1HLUBdXR2Sk5MRHBwMKysrBAUFwdTUFPv27UN2djbCw8PRuXNn0Zkqr66uDlKpFAMHDsTw4cNRUVGBffv24fz585gzZw7MzMxEJxIR0XPk5+cjLi4OwcHBsLW1RadOnRAaGorS0lLMnz8fKSkpKCgoqB/e4eTkJDqZVNjQoUNhbGyMAwcOiE4halY4zIOIiIj+m5eXFzZu3Ij//Oc/CA8Pb5A95syZA4lEgsDAQJSUlDTIHkSk2lxcXDjM4zXFxMTg7bff5qB0IiKiJqympga//PILJBKJ6BQiIiKil8ZhHkRERESNIDMzEwqFokkP88jOzkZBQYHolBfasmULTExMMGrUKNEp9Dfo6uoiLCwMKSkpMDAwgLu7O2bNmoV79+6JTiOil5Cenl7/7zYgIACZmZkIDAxs0ResOzs749KlS6IziIhQUVGBnTt3YuzYsejUqRO2bNmCOXPmIDs7G3Fxcejdu7foRGoB7ty5g4iICHTp0gUeHh5ITU3FsmXLkJeXh9jYWEgkEl74qAR1dXXYsmULHBwcMH78eFhZWeHMmTNITk6GRCJp0Y/NiIiassLCwvrhHfb29mjfvj2mT5+OrKwszJw5E4mJiSgpKUFiYiIWLFiAPn368Gs6KY2Wlha8vb0hlUpFpxARERERNWsBAQFYs2YNFi9ejKioqAbZY+PGjVBXV8e7777bIOsTkWpzdXVFUVER8vPzRaeopPPnz+PixYsICAgQnUJERETPceLECZSVlWHMmDGiU4iIiIheGq+eJSIiImoEmZmZ0NbWRseOHUWnPFW/fv2grq6OM2fOYPz48aJznmv79u2YNGkStLW1RafQK+jZsyd+/fVXSKVSfPDBB+jcuTNCQ0OxePFi/jclaoLKysrwxRdf4D//+Q8GDRqE1NRU9OzZU3RWk+Ds7IzExETRGUTUQpWXl2P//v2Ii4vDL7/8gpqaGnh5eSE2Nha+vr4cmkCNoqqqClKpFFFRUThy5Ajatm0Lf39/zJw5Ey4uLqLzmp2kpCSEhoYiPT0d06ZNw4EDB9C1a1fRWURE9BQVFRU4c+YMZDIZZDIZzp07Bw0NDbi4uMDf3x9eXl7w8PBAq1atRKdSCyGRSBAUFITy8nIYGhqKziFqFhQKBQcvERER0V/Mnj0bhYWFmD17NkxMTODv76/U9U1NTREdHY3hw4dj/fr1mDVrllLXJyLV1qtXL6ipqSE9PR1WVlaic1TOpk2bYGdnB3d3d9EpRERE9BxSqRROTk7o3Lmz6BQiIiKil6YuOoCIiIioJbh27Rrs7e2b7KE6Y2Nj9OzZE8ePHxed8lzp6em4ePEipkyZIjqFXpNEIsGlS5cQGhqKiIgI9OjRAwkJCaKziOh/KRQKREdHw9HREdu2bcO3336LX3/9lYM8/ouTkxOuXLmC2tpa0SlE1ALI5XL89ttvCA8Px8iRI2FhYYHAwEA8evQIq1evRkFBARISEjBhwoQm+zMHNR+pqakIDg6GhYUFpk6dCh0dHcTExOD27duIjIzkIA8lu379Ovz9/TF06FCYmpoiNTUV69ev5yAPIqImpLKyEjKZDAsXLoS7uzvMzMwwcuRISKVS9OnTBzExMSguLkZKSgrCw8Ph5eXFQR7UqMaMGQO5XM6hpERKxGEeRERE9CxffPEFQkJC8M477+DQoUNKX9/T0xP//Oc/ERISgqtXryp9fSJSXSYmJujQoQPOnz8vOkXl1NbWYufOnZg+fTp/1iMiImri9u3bB4lEIjqDiIiI6G/hld1EREREjeDmzZtNfgKsp6cnkpKSRGc819atW9GxY0cMHDhQdAopgZ6eHsLCwjBr1ix8+umn8PHxwdixYxEZGQl7e3vReUQt1oULF/D+++/j9OnTmDJlCr777juYm5uLzmpynJ2dUV1djZs3b8LBwUF0DhE1M0VFRUhLS0NaWhpOnjyJ48eP48GDB7C0tMQbb7yBH374AePGjePXZ2o0+fn52LJlC9avX4/r16+je/fu+PTTTzFjxgxYWFiIzmuWSktLERERgVWrVsHOzg6xsbHw8/MTnUVERPifi/vPnz8PmUwGmUyGEydOoLq6Gvb29vDy8kJISAiGDx8OMzMz0alEAABzc3MMGDAAUqkUb731lugcomaBwzyIiIjoeb799luUlpbirbfeQmJiIgYNGqTU9ZcsWYJff/0V/v7++O2336Cjo6PU9YlIdTk4Alwy6AAAIABJREFUOODatWuiM1ROQkIC7t27h6lTp4pOISIioudISUnBrVu38Pbbb4tOISIiIvpbOMyDiIiIqBHk5OSgV69eojOey9PTE99//z3KyspgYmIiOucv6urqsHPnTsyaNYsXSDYzNjY2iI6OxvTp0/HBBx+gW7dueO+997Bs2TIYGBiIziNqMR49eoQlS5bg22+/hYuLC06fPo1+/fqJzmqyunfvDg0NDVy4cIHDPIheU01NDQoLC/HgwYP6X2VlZXj48CEAoLq6GpWVlU+9b6tWraCnpwcdHR3o6urCyMgI2traMDIygq6uLnR0dGBsbAxtbW0YGho25qf1QrW1tbhz5w6ysrJw69Yt3Lp1CxkZGTh37hxyc3MBANbW1ujbty+WLFmCYcOGwcnJSXA1tSTV1dX4+eefER0djV9++QWGhobw8/PDjh070KdPH9F5zdqOHTswb948aGpqIjIyEv/4xz+goaEhOouIqMWSy+VIT09HcnIyTp48iUOHDuHhw4do164d3N3dsXr1aowePRo2NjaiU4meSSKRYMWKFZDL5XxcQURERETUwNTU1BAVFYWioiKMGzcOx48fR/fu3ZW2vqamJrZt2wZXV1csXrwYK1euVNraRKTaunbtitTUVNEZKmfz5s3w9PTkm08RERE1cbt370bHjh3Ru3dv0SlEREREfwuHeRARERE1guzsbPj6+orOeC5PT08AQHJyMsaOHSu45q+OHDmCvLw8TJ48WXQKNZBhw4YhLS0Nq1evxldffYX4+HgsW7YMkydPhrq6uug8omZNKpVizpw5ePToEVasWIF58+bx390L6OrqwsHBAWlpafDz8xOdQ9Tk3b9/HxkZGbh8+TKuXr2K27dvIy8vD7m5uSgoKIBCofjT7dXU1OoHzGlqaj5zEMejR4/w5MkTVFZWorq6+oUdxsbG0NfXh4GBAQwNDWFsbAwDAwPo6+vX/15HRwf6+vp/ajA0NISmpmb90BANDQ0YGRkBAMrLy1FbW1u/x+PHj1FVVYUHDx7gyZMnKC8vR1FREYqLi1FUVISioiLcu3cP+fn59fczNDSEvb09HB0dMXfuXLi6usLV1RVt2rT5+3/ZRK8pNTUV0dHR2L59O0pKSjBs2DCsX78efn5+0NXVFZ3XrBUUFOD9999HfHw83nvvPYSHh9d/rSEiosaVlZUFmUwGmUyGI0eOoKSkBBYWFvD09MTy5csxePBgDlojlSKRSLBgwQKcPXtW6e8KTtQSKRQKDp4nIiKi59LS0kJcXBxGjhyJESNGIDk5GR07dlTa+vb29lizZg2mTZuGYcOGNcnrfIio8XXp0gU7d+4UnaFSSkpKsH//fvz000+iU4iIiOgF9u7diwkTJvC5WSIiIlI5HOZBRERE1MBqampw9+5ddOjQQXTKc5mZmaF79+5ISkpqki/yb9u2Df369YODg4PoFGpAWlpaCA0NxZQpU/DZZ59h+vTpWL58Ob755hv4+PiIziNqdq5du4a5c+dCJpNh6tSpWLlyJVq3bi06S2X07t0baWlpojOImpzKykqcPXsWJ06cwMmTJ3HhwgUUFBQAAExMTNC9e3fY2tpiyJAhsLGxgbW1Ndq1awdjY2MYGRnV/++r+O8BGv89VKOmpgYPHz7Ew4cPUVFRgUePHuHhw4d48OABHj16hEePHqGoqOhP9weA0tJSAH8d2PEyjIyM0KpVKxgaGqJ169Zo06YN2rRpg27duqFt27awsbGBnZ0d7O3tObSDhCspKcGuXbvw448/Ij09HY6OjpgzZw5mzpwJW1tb0XktQlxcHN5//30YGBggMTERw4cPF51ERNSi5Ofn4+TJk5DJZEhISMCdO3dgYGCAAQMGYP78+fDy8kLv3r15cSCprG7duqFLly6QSqUc5kGkBBzmQURERC9DV1cXUqkUb7zxBry9vZGcnIy2bdsqbf133nkHhw8fxqxZs3D+/HlYWloqbW0iUk1du3ZFUVERSkpKYGZmJjpHJWzfvh2ampqYMGGC6BQiIiJ6jgsXLiAzMxMbN24UnUJERET0t3GYBxEREVEDy83NhVwub/LDPABg6NChSEpKEp3xF48fP0Z8fDyWLFkiOoUaiaWlJdatW4dPPvkEn3/+OcaOHYsBAwYgPDwcQ4YMEZ1HpPIqKyvx73//G9988w2cnZ1x6tQpDBgwQHSWynF1dUVERIToDKIm4dy5c4iPj8eRI0eQkpKCJ0+eoGPHjvDw8MA///lPODs7w8nJCe3bt2/QDmNjYwBosOEYfwwIqampQUVFBQCgVatW0NPTq7+Njo4OdHV1G2R/ImWSy+U4duwYoqKiEB8fDz09PYwbNw7Lly/H8OHDeTCtkdy7dw/vv/8+9u7di3fffRcrVqyAoaGh6CwiomavsLAQSUlJkMlkSExMxK1bt6Cnp4dBgwZh5syZcHd3h6enJ7S0tESnEinN2LFjIZVK8c0334hOISIiIiJqMYyNjfHLL7/Aw8MDI0eOxK+//goTExOlrf/jjz+id+/emD59OhISEvi8LlEL16VLFwDAjRs30K9fP8E1qmH9+vUICAjgazNERERN3O7du9G+fXte50pEREQqicM8iIiIiBpYTk4OAKjEMA9PT0/8+OOPePDgQf1ByKYgPj4ejx49gr+/v+gUamSOjo6IjY3Fb7/9hoULF8LT0xNeXl749ttv0bNnT9F5RCpJKpVi7ty5KC8vx7///W/MnTsXGhoaorNUkqurKwoLC5Gfnw8rKyvROUSNqq6uDsnJydi7dy/i4+ORnZ0NW1tbjB49Gu+//z48PT1hbW0tOlPpdHV16wd1WFhYCK4hejWXL19GdHQ0Nm7ciOLiYgwcOBBr1qzBlClToK+vLzqvRfn5558xY8YMGBsb48iRI3jjjTdEJxERNVsVFRU4c+YMZDIZZDIZzp07Bw0NDbi4uMDf3x9eXl7w8PBAq1atRKcSNRiJRILvvvsON27cQOfOnUXnEKk0hULBg7JERET00iwsLJCQkAB3d3e8+eabSEhIgI6OjlLWNjAwwLZt2zB48GCsWrUKH330kVLWJSLV1LFjR7Rq1QrXrl3jMI+XcOrUKaSnpyMqKkp0ChEREb3Arl27MGHCBD4vS0RERCpJXXQAERERUXOXk5MDHR0dlTjsN2TIkPqDmU3Jtm3bMHLkSLRt21Z0CgnSr18/HD16FImJibh//z5cXV3h7++PW7duiU4jUhnXr1/HqFGj4OvrC09PT1y9ehUhISEc5PEaXF1doaamhnPnzolOIWo0ZWVliIqKQo8ePeDp6Ymff/4Z48aNw4kTJ5CdnY2ffvoJU6ZMaZaDPIhU2R//dt3d3eHk5ITt27djxowZuHHjBpKTkxEUFMRBHo1ILpdj8eLFGD9+PMaPH48LFy5wkAcRkZJVVlZCJpNh4cKFcHd3h5mZGUaOHAmpVIo+ffogJiYGxcXFSElJQXh4OLy8vDjIg5o9Dw8PmJqa4sCBA6JTiFQeh3kQERHR32Vvb4/Dhw/jwoULmDhxImpra5W2dt++fREWFoZFixYhLS1NaesSkepRV1eHvb09rl+/LjpFJURFRaFnz57o27ev6BQiIiJ6jszMTFy+fBkTJkwQnUJERET0SjjMg4iIiKiB5eTkwNbWViUu6rOwsECPHj2QmJgoOqVeUVERDh8+jClTpohOoSbAy8sLqamp2LlzJ86dOwdHR0cEBwejsLBQdBpRk1VZWYmwsDD06NED9+7dQ3JyMqKjo1ViyFRTZ2JiAjs7O14URy3C77//jmnTpqFdu3aYP38+hg0bhosXL+LmzZuIjIyEu7u7SjzeJWpJ6urqIJPJEBgYCCsrK3z44YewsrJCYmIicnJyEB4eDjs7O9GZLU5xcTF8fHywcuVKfPfdd1i/fj0MDAxEZxERqbza2lqkpqYiIiIC3t7eMDMzg7e3N+Li4uDk5IRt27ahqKgIly5dwtq1a+Hn5wdjY2PR2USNSlNTs36oDRERERERNT5nZ2ccOHAAR44cwcyZM6FQKJS29h/DLP39/VFeXq60dYlI9XTt2pXDPF5CWVkZ4uLiMHv2bNEpRERE9AKxsbFo27YtBg8eLDqFiIiI6JVoig4gIiIiau5ycnLQoUMH0RkvraldzLtz505oa2tj3LhxolOoiVBTU4Ofnx98fX3x448/YtmyZYiNjcXHH3+MDz74gAcxiP6LVCrFvHnz8ODBA0RERGDu3LnQ0NAQndWsuLq6cpgHNWsZGRn46quvsGvXLjg6OiI8PByzZs3iwXOiJiwzMxM7duzApk2bkJOTgz59+mDVqlUICAiAoaGh6LwWLSUlBX5+fpDL5Th+/Dj69esnOomISGXJ5XKkp6cjOTkZJ0+exKFDh/Dw4UO0a9cO7u7uWL16NUaPHg0bGxvRqURNikQiwfTp01FWVgYTExPROUQqS6FQcKgpERERvZIBAwYgNjYW48ePR/v27fHNN98oZV11dXVs3rwZLi4u+Pjjj/H//t//U8q6RKR6unTpgmPHjonOaPKio6OhpqaGyZMni04hIiKiF9i9ezfefPNNXvtKREREKktddAARERFRc6eKwzyuXr2KnJwc0SkAgO3bt2PChAnQ19cXnUJNjLa2NkJCQnDz5k2EhIRg5cqV6NixI7744guUlJSIziMS6saNGxgzZgx8fX0xZMgQXL16FSEhIXwxowFwmAc1V1euXEFgYCBcXFyQmZmJmJgYXL58GSEhIRzkQdQEPXz4ENHR0fD29ka3bt2wbt06TJo0CdevX0dKSgqCgoI4yEOwqKgoDB48GN27d0d6ejoHeRARvYKsrCxERUXB398fFhYWcHNzw9dffw0AWL58OTIyMpCfn4/Y2FgEBQVxkAfRU/j4+AAADh8+LLiESLVxmAcRERG9Dh8fH2zevBkRERFYvXq10tZt3749Nm/ejPXr12Pnzp1KW5eIVEuXLl1w7do10RlNmkKhQFRUFAICAmBkZCQ6h4iIiJ4jKysL58+fx4QJE0SnEBEREb0yDvMgIiIiamB5eXmwtrYWnfHSPDw8YGBg0CQu5r116xbOnj3LCfj0XIaGhggLC8Pt27excOFCrFmzBh06dEBISAgKCgpE5xE1qsePHyMsLAw9evRAbm4ujh8/jujoaLRt21Z0WrPVu3dvZGdnc4gQNRsPHjzA+++/D2dnZ5w/fx579uxBeno6/Pz8RKcR0f9RV1eH5ORkBAcHw8rKCkFBQTA1NcW+ffuQnZ2N8PBwdO7cWXRmi1dTU4Pp06dj9uzZ+OyzzyCVSmFmZiY6i4hIJeTn5yMuLg7BwcGwtbVFp06dEBoaitLSUsyfPx8pKSkoKCioH97h5OQkOpmoyTMxMcHgwYMhlUpFpxARERERtWgBAQFYtmwZPvroI+zevVtp644ZMwbBwcGYPXs2srOzlbYuEakOBwcHlJeX4+7du6JTmqyjR4/i0qVLeO+990SnEBER0QvExMSgdevWGDp0qOgUIiIiolfGYR5EREREDezu3buwtLQUnfHStLW1MWTIEBw6dEh0CmJiYmBubo5hw4aJTiEVYGhoiAULFiAnJwdLly5FXFwcOnfujJCQEL5ATS2CVCqFk5MTVqxYgQULFuD333+Hu7u76Kxmr3fv3gCAtLQ0wSVEr2/Pnj3o3r07du/ejc2bNyMtLQ2+vr58p1miJubOnTuIiIhAly5d4OHhgdTUVCxbtgx5eXmIjY2FRCKBpqam6EwCUFFRgXHjxmH37t3Yv38//vWvf0FdnS/LEBE9S2FhYf3wDnt7e7Rv3x7Tp09HVlYWZs6cicTERJSUlCAxMRELFixAnz59+FiV6BVIJBIcPHgQtbW1olOIVJZCoeD3ICIiInptixYtwty5czF16lQkJycrbd3vvvsOtra2eOeddyCXy5W2LhGpBjs7OwDgQJ/n+P777+Hh4YE+ffqITiEiIqIX2L59O/z8/HgdDBEREak0XjVKRERE1ICqqqrw4MEDlRrmAQAjRozAkSNHhF/MGxMTgwkTJkBLS0toB6kWAwMDhISE4Pr161i2bBl27doFOzs7BAcHIy8vT3QekdJlZWVBIpFg3LhxcHJywpUrVxAWFgZtbW3RaS1C27ZtYWVlhdTUVNEpRK8sNzcX48ePx9tvv40RI0bgypUrmDp1Kg+cEzUhVVVViIuLg7e3Nzp06IDIyEiMHTsW6enpSElJQUhICMzNzUVn0n+5f/8+RowYgd9//x2HDx/G6NGjRScRETU5FRUVkMlkWLhwIdzc3GBpaYnJkycjNTUV/v7+fxreERYWBi8vLz5PSKQEvr6+KCkpwalTp0SnEKksDvMgIiIiZfnuu+8wZswYjB07FhcvXlTKmjo6Oti+fXv9IGgialmsrKygoaGB3Nxc0SlNUk5ODvbv34958+aJTiEiIqIXuHDhAjIyMjB58mTRKURERESvhVfkExERETWggoICAFC5YR4jR45EWVkZfvvtN2EN165dQ3p6OiZOnCisgVSbvr4+QkJCcOPGDURERGD//v3o3Lkz5s2bxxesqVl48uQJIiMj0bNnT1y7dg2HDx+GVCqFjY2N6LQWp3///jh79qzoDKJXcuDAAbi4uODixYs4dOgQNm7cCDMzM9FZRPS/UlNTERwcDAsLC0ydOhU6OjqIiYlBTk4OIiMj4eLiIjqRnuLWrVsYNGgQCgoKcOrUKQwcOFB0EhFRk1BZWVk/vMPd3R1mZmYYOXIkpFIp+vTpg5iYGBQXFyMlJQXh4eHw8vJCq1atRGcTNTudOnWCg4MDpFKp6BQiIiIiohZPXV0dW7duRY8ePeDj44M7d+4oZV0nJydERETgyy+/xK+//qqUNYlINWhqasLS0pLXRj3DmjVr0LZtW4wfP150ChEREb3Ajh07YGtri8GDB4tOISIiInotHOZBRERE1IBUdZiHo6MjOnTogF9++UVYw86dO2FpaYkhQ4YIa6DmQVdXFyEhIbh16xbWrl2LhIQE2Nvbw9/fH7///rvoPKJXcuTIEbi4uGDx4sX45JNPcPHiRXh7e4vOarH69++P06dPi84g+ltqa2uxaNEiSCQS+Pr6IiMjg19HiJqIvLw8REREoGvXrnBzc0NycjI+/fRT3LlzB1KpFH5+ftDS0hKdSc9w8eJFeHh4wNDQEKdPn0bXrl1FJxERCVNbW4vU1FRERETA29sbZmZm8Pb2RlxcHJycnLBt2zYUFRXh0qVLWLt2Lfz8/GBsbCw6m6hFkEgkHOZBRERERNRE6OjoYP/+/TA1NYWPjw/KysqUsu7cuXMxduxYBAYGoqSkRClrEpFqsLa25jCPp6isrMSGDRswZ84cvtZGRETUxCkUCuzcuROTJ0+Gmpqa6BwiIiKi18JhHkREREQN6I9hHm3bthVc8vf5+Phg//79wvaPjY2Fn58fNDQ0hDVQ86KtrY3AwEBcvnwZUVFRuHLlCvr3749Ro0ZBJpOJziN6KXl5eQgMDISXlxc6d+6MK1euICwsDNra2qLTWrQBAwbg7t27uH37tugUopdSWFiI0aNHY9WqVfjuu++wYcMG6Orqis4iatGqq6sRFxcHiUSCjh07IiIiAm+88QZSU1Nx6dIlLFiwABYWFqIz6QWOHj0Kd3d3ODo64ujRoyr5XAAR0euQy+VITU1FZGQk/P39YW5uDjc3N0RGRsLU1BSrV6/G7du3cfPmzfrhHWZmZqKziVokiUSCzMxMXLt2DQDw6NEj7Nu3D59//jmqqqoE1xERERERtTzGxsY4ePAgHjx4gDfffBPV1dWvvaaamhrWr18PuVyOoKAgJVQSkargMI+n27p1KyorK/Huu++KTiEiIqIXOHnyJLKzsxEQECA6hYiIiOi1cZgHERERUQMqKCiAqakpdHR0RKf8bb6+vkhLS8OtW7cafe+LFy/i0qVLmDhxYqPvTc2ftrY2pk+fjosXL+L48ePQ0tLCiBEj4OLigqioKKVcFEOkbDU1NYiMjISjoyPOnDmDhIQESKVS2Nraik4jAH379oWmpibOnDkjOoXohVJSUuDi4oLbt2/j7NmzCAkJEZ1E1KKlpqYiJCQE1tbWCAgIQFVVFbZv346CggKsXbsWvXv3Fp1IL+nQoUPw8fHBuHHjkJCQACMjI9FJRESNIisrC1FRUfD394eFhQXc3Nzw9ddfAwCWL1+OjIwM5OfnIzY2FkFBQbCxsRFcTEQAMHjwYJiZmWHRokUYOXIkTE1NMX78eCxZsoTDSomIiIiIBLG2tsbBgweRnp6OadOmoa6u7rXXbN26NbZv3474+Hhs2LBBCZVEpAqsra1x584d0RlNSl1dHVauXIkpU6agTZs2onOIiIjoBXbs2IFu3bqhZ8+eolOIiIiIXhuHeRARERE1oIKCAlhaWorOeCXDhg2DiYkJ9u/f3+h7x8TEwNraGgMHDmz0vallcXd3h1QqRVpaGlxcXDB37lx07NgRYWFhKC0tFZ1HBAA4duwYevXqhcWLFyM0NBQXL17EqFGjRGfRf9HT00OPHj1w9uxZ0SlEzyWTyTBs2DC4urri999/54udRIIUFBQgMjISvXr1gpubGw4fPow5c+YgKysLiYmJ8PPzg7a2tuhM+hsSExMxfvx4TJ48GZs3b4aWlpboJCKiBpOfn4+4uDgEBwfD1tYWnTp1QmhoKEpLSzF//nykpKSgoKCgfniHk5OT6GQi+l91dXVITU1FWFgYXF1dUVJSgn379kEmk6Gmpqb+dgYGBgIriYiIiIhaNmdnZ+zduxfx8fFYsGCBUtb09PREaGgoPvjgA1y9elUpaxJR02ZtbY3c3FzRGU1KfHw8rl27htDQUNEpRERE9AK1tbXYtWsXpk6dKjqFiIiISCk0RQcQERERNWf37t1T2WEeWlpaGDlyJPbt24d58+Y16t6xsbGYOHEi1NU5e44ah4uLC6KjoxEREYG1a9ciMjISK1euxIwZMxAaGgpbW1vRidQC5efnY+HChdiyZQvGjh2LAwcOoGPHjqKz6BkGDBiAM2fOiM4geqb4+HgEBATgrbfewqZNm3jQnKiRPXnyBIcOHcKWLVsQHx8PPT09jBs3DitWrICXl5foPHoNJ06cwJtvvomJEydi3bp1/DmWiJqdwsJCJCUlQSaTQSaTISsrC3p6ehg0aBBmzpwJd3d3eHp68vElURNXWVmJLl26ID8/H9ra2njy5AkAQC6X/+W2HOZB9GJqampQKBSiM4iIiKiZGjp0KDZt2oQpU6bAysoKH3300WuvuXTpUiQlJWHKlCk4ffo0B0oTNXPW1tbIz8+HXC6HhoaG6JwmYcWKFfD19UW3bt1EpxAREdELHD58GEVFRQgICBCdQkRERKQUvKqUiIiIqAEVFBSo7DAPAPD19UVSUhJKS0sbbc/U1FRcv34dEydObLQ9if7Qrl07hIWFITs7G5999hl2796Nzp07IyAgAMnJyaLzqJlYv349jh079syP19TUIDIyEo6Ojjh16hQOHDgAqVTKQR5NXP/+/XHu3Ln6wzBETckPP/yACRMm4N1338WWLVt40JKoEV26dAkLFy6EjY0Nxo8fj/z8fKxZswZ5eXmIjo7mIA8Vd/LkSfj4+MDHx4eDPIio2aioqIBMJsPChQvh5uYGS0tLTJ48GampqfDz80NiYiJKSkqQmJiIsLAweHl58fElkQrQ09ODk5MTNDU1n/vchZqaGvT19RuxjIiIiIiInmbSpEkIDw9HaGgotm7d+trraWlpYdu2bbhx4wYWL16shEIiasqsra0hl8tRUFAgOqVJOHHiBE6fPo1//vOfolOIiIjoJezYsQMDBw6EnZ2d6BQiIiIipeCVpUREREQNqLi4GG3atBGd8cp8fHygrq6OgwcPNtqeMTExsLOzg5ubW6PtSfR/GRsbY/78+cjKysKGDRuQlZUFDw8P9OrVC+vWrUNlZaXoRFJRsbGxePfddzFx4kSUl5f/5eNJSUlwdXXFokWL8PHHHyMjIwM+Pj4CSunvGjBgAKqqqnD+/HnRKUR/smLFCsydOxdLly7F6tWredCcqBGUlZUhKioK7u7ucHZ2xo4dOzBjxgzcuHEDycnJCAoK4gHJZuD06dMYPXo0Ro4cie3bt0NTU1N0EhHRK6msrKwf3uHu7g4zMzOMHDkSUqkUffr0QUxMDIqLi5GSkoLw8HB4eXmhVatWorOJ6BVs3boVxsbGz/25UFtbm+/YS/QS1NTUoFAoRGcQERFRM/fPf/4TISEhmDVrFmQy2Wuv16lTJ6xevRorV67EgQMHlFBIRE2VjY0NAODOnTuCS5qG5cuXY/DgwRg0aJDoFCIiInqByspK7Nu3DwEBAaJTiIiIiJSGV+8TERERNaCSkhKYmZmJznhlxsbGGDp0KPbt29co+ykUCsTFxWHSpElQU1NrlD2JnkdbWxtTp07F2bNnkZKSgv79+yMkJATt2rVDcHAwrly5IjqRVEhqaioCAwMBAKWlpQgLC6v/2N27dxEYGIg33ngDdnZ2uHTpEsLCwqCjoyOolv6url27wtzcHGfOnBGdQlRv3bp1mD9/PlatWoVFixaJziFq1urq6iCTyRAYGAgrKyt8+OGHsLKyQmJiIrKzsxEeHs53DGlGzp07hzFjxmD48OHYsWMHB3kQUaO4d+8eqqurX3ud2tpapKamIiIiAt7e3jAzM4O3tzfi4uLg5OSEbdu2oaioCJcuXcLatWvh5+cHY2NjJXwGRCSahYUFtm3b9twBBHp6eo1YREREREREL/Ltt9/C19cXEyZMUMqbCkybNg0BAQGYOXMmCgoKlFBIRE2RlZUV1NXVkZubKzpFuCtXruDAgQP45JNPRKcQERHRS9i7dy+qqqowceJE0SlERERESsNhHkREREQNqLS0FCYmJqIzXouvry8SEhJQVVXV4HudOXMG2dnZfAKOmqQ+ffpg7docD7x3AAAgAElEQVS1yMvLw1dffYXDhw/D2dm5/sCLXC4XnUhNWEFBAcaOHQu5XA6FQoHa2lqsWrUK586dQ2RkJBwdHXHy5En8/PPPkEqlPOyrgtTU1NC3b1+cPXtWdAoRgP95YXP27NkICwvDBx98IDqHSCXcuHHjbw9lunr1KsLCwmBnZwdvb29cvnwZq1atQmFhIWJjY+Hl5cVBhc1MWloahg8fDnd3d8TExEBLS0t0EhE1c3V1dVi1ahU6dOiAL7/88m/fXy6XIzU1FZGRkfD394e5uTnc3NwQGRkJU1NTrF69Grdv38bNmzfrh3eo8nBiInq+kSNH4qOPPnrmMDIO8yAiIiIialrU1dWxdetW9O3bFz4+Prh9+/Zrr/nDDz9AX18fM2bMeO6wPyJSXVpaWrCwsEBeXp7oFOG+/vprODo6Yty4caJTiIiI6CVs2rQJY8aMQZs2bUSnEBERESkNh3kQERERNaDS0lKYmpqKzngtvr6+qKysxOHDhxt8r5iYGDg4OMDFxaXB9yJ6VSYmJggJCcGNGzewe/duAMDEiRPh4OCAlStXorS0VHAhNTVVVVWQSCS4f/8+amtr6/9cXV0dkyZNwsKFC/Hhhx8iIyMDY8eOFVhKr6t///5/+xA4UUOQyWQICAjAe++9h88//1x0DpFKOHToEHr16oUxY8agpqbmubd98OABoqOj4e3tje7du2PdunUICAjA9evXkZKSgqCgIBgYGDRSOTWmO3fuYOzYsXBzc0NcXBy0tbVFJxFRM3fjxg24u7sjNDQU1dXVOHDgwEvdLysrC1FRUfD394eFhQXc3Nzw9ddfAwCWL1+OjIwM5OfnIzY2FkFBQbCxsWnIT4OImpjw8HD06NHjqUPJ+DiW6OWoqanx4CsRERE1Gm1tbezZswdt2rTB6NGjX/uaBGNjY8TExODIkSNYvXq1kiqJqKlp06YNiouLRWcIdfPmTezcuROfffYZ1NV5bIaIiKipy83NxbFjxzB9+nTRKURERERKxWcliIiIiBpIdXU1qqqqVH6YR/v27TF48GDExMQ06D4KhQK7d++Gv79/g+5DpCwaGhoYP348EhMTkZmZibfffhtLly5Fu3bt4O/vD5lM9lIX8+7cuRO2trY4e/ZsI1STCDNnzkR6evpfDgbX1tbixo0b+Oabb/Dll19CV1dXUCEpy6BBg3Dz5k3cvXtXdAq1YKdPn8b48eMxadIkXoBJ9JLWrFkDHx8fPH78GKWlpTh48OBfblNXV4fk5GQEBwejffv2CA4OhqmpKfbt24ecnByEh4ejc+fOAuqpsZSXl0MikcDExARxcXFo1aqV6CQiasYUCgWioqLQs2dPpKSkoK6uDgCQkZHx1AM7+fn5iIuLQ3BwMGxtbdGpUyeEhoaitLQU8+fPR0pKCgoKCuqHdzg5OTX2p0RETYiWlhZiY2Ohqan5l48ZGhoKKCIiIiIiohcxMjLCgQMHUFFRgfHjx6Oqquq11uvbty8+//xzLFiwABcuXFBSJRE1Ja1bt27xwzyWLVuGjh07ws/PT3QKERERvYRNmzbB3NwcPj4+olOIiIiIlIrDPIiIiIgayB8X1qv6MA8AmDhxIvbt24dHjx412B5nzpxBbm4uXzwjldSlSxeEh4cjJycH33//PXJycuDt7Q0HBwdERESgoKDgmff9/vvvkZubCw8PD2zZsqURq6kxfPPNN9i5cydqa2ufeZslS5agrKysEauooQwaNAhaWlo4ceKE6BRqofLy8vDmm29i+PDhWLduHdTU1EQnETVpcrkcISEhmDdvHurq6lBXVwcNDQ2sW7eu/jZ37txBREQEOnfuDA8PD6SmpmLZsmXIzc1FbGwsJBIJNDQ0BH4W1BjkcjmmTJmCe/fu4eDBgzAxMRGdRETNWHZ2Njw9PTF79mw8fvz4T4MhFQoFkpKSUFhYWD+8o1OnTmjfvj2mTZuGrKwszJw5E4mJiSgpKUFiYiIWLFiAPn368LEhEf1J586dsWbNmr98bTAyMhJUREREREREL9K+fXscPHgQFy9eRGBgYP3wz1e1ePFiDBw4EAEBAXj8+LGSKomoqTA3N8f9+/dFZwhz+/ZtbNu2DZ999tlTB5oSERFR07N161ZMmTIFWlpaolOIiIiIlIrDPIiIiIgayB/DPJrDIR9/f39UV1c/9R2qlWXPnj3o3LkzevTo0WB7EDU0Q0NDvPvuuzh79iwuX76Mt956CytWrIC1tTW8vb0RFxf3p6EOOTk5OH36NBQKBWpqahAYGIigoKDnDn4g1ZGQkIDPPvsMCoXimbdRKBR4+PAhPv/880Yso4ZiYGAAV1dXJCUliU6hFqimpgaTJk2CiYkJtmzZwguSiF6gvLwcY8aMwZo1a/7057W1tTh48CAiIyPh6emJDh06IDIyEn5+frh8+TJSUlIQEhICc3NzQeUkwgcffACZTIb4+Hh06NBBdA4RNVMKhQJRUVHo3r07zpw589QDOZqampg1axbatm2LKVOm4PLly3jnnXeQlJSEsrIyJCYmIiwsDF5eXrzIjYheaObMmZg4ceKffn5sDq9nEDUGNTW15z7vS0RERNRQnJycEB8fD6lUirlz577WWurq6oiOjsbdu3exePFiJRUSUVPRunVrFBcXi84Q5uuvv4alpSUmT54sOoWIiIhewokTJ5CZmYlp06aJTiEiIiJSOg7zICIiImogfwzzMDU1FVzy+tq0aYOhQ4ciJiamwfbYu3cvJkyY0GDrEzW2bt26ITw8HLm5udixYwcAYOLEiejQoQMWLlyIrKyspx623rBhA0aNGoWysjIR2aQkFy9efOmvabW1tfjPf/6DjIyMBq6ixuDp6clhHiTEnDlzcP78eezZs4fvpEz0AllZWXBzc8PRo0efelBaXV0dCxcuhJGREWJiYpCTk4OIiAh069ZNQC2J9u9//xs//fQTtm/fjv79+4vOIaJmKicnB2+88QZmz56Nx48fo6am5qm3q6mpgbq6OhISElBaWooTJ04gLCwMQ4YMgba2diNXE1Fz8NNPP8HS0hKamprQ0NCAoaGh6CQiIiIiInqBIUOGYPPmzVi7di1WrFjxWmvZ2NggMjISkZGRSEhIUFIhETUFrVu3xv3790VnCHHnzh1s2rQJn376KYceExERqYhNmzbB1dUVLi4uolOIiIiIlI7DPIiIiIgayB8H8ZvDMA/gf4YQHDhwAA8ePFD62mlpabh58ybeeustpa9NJFqrVq3g5+eHxMREZGZm4p133sHmzZvRpUsXrFmz5i8HdORyOY4fPw5XV1dcuXJFUDW9jqKiIowePRo1NTVPPSAMAFpaWtDQ0AAAaGtrw83Nje/k2Ex4enri8uXLKCwsFJ1CLcjmzZuxbt06bNy4Ed27dxedQ9SknTx5Em5ubsjKynrmQWm5XA5ra2tIpVL4+fnxIr8WbNeuXVi0aBG+++47jB8/XnQOETVDCoUCUVFR6NatG06dOvXMnyH/2/379+Hi4gJ9ff1GKCSi5s7Y2BgxMTGoq6tDXV0dv7YQvSQ1NTU+n0tERERC+fv74/vvv8f8+fMRHR39Wmu98847mDhxIv7xj3+02IP/RM2Rubk5iouLRWcI8dVXX8HS0hLTp08XnUJEREQv4dGjR4iLi+P3biIiImq2NF98EyIiIiJ6FaWlpdDW1oaenp7oFKWYMGEC5syZg59//hnvvPOOUtfes2cPrK2t0bdvX6WuS9TUdOnSBeHh4ViyZAlWrlyJhQsXPvV2NTU1yM3NhZubG3bu3AmJRNLIpQ2jpqYGFRUVAICHDx9CLpfjyZMnePToUf1tysvLUVtb+8w1Hjx48NzDTTo6OtDV1X3mx/X09NCqVav63/8xcElXVxc6OjpQU1ODiYnJS39O/9eTJ0/g6+uLgoICyOVyAICGhgbU1dVRU1MDDQ0NdO7cGR4eHujXrx/69u0LZ2dnaGryx/Pmwt3dHerq6khOTuaQKmoUZ8+eRXBwMD777DNMmDBBdA41otLSUgDA48ePUVVVBYVCUT9QEACqq6tRWVn5zPtXVlaiurr6mR9XV1eHsbHxMz+upaUFAwOD+t/r6+tDW1sbmpqa9e/mbWho2KS+x23YsAHBwcFQKBT136efRqFQ4MaNG0hJSYGbm1sjFlJTcvr0aQQGBmLOnDn44IMPXuo+SUlJHOhFRC+tpKQE33//PS5duvS37xseHg53d/cGqGoZNDU1MWbMGGhr/3/27jsqiutvA/izdBAQlCqgiKgodmwo2KIS0WDBLrHHKPZeYqIYW9QQS9TYQKMmMWoUsaHYsVewKyqCCghI7+39Iy/7kwCyi7vMLjyfczjC7MydZ+7u7JVl7nc05NI+xwNSRgMGDMC+ffvw9u1b7N+/X+g4ROVC3uMBERERkbx5enri5cuXGDt2LMzNzdGtW7cyt7V582Y0bdoUY8eOxaFDh2SYkoiEUr169UpZoCc0NBS7du3C1q1b+fseERGRkjh48CAyMzMxZMgQoaMQERERyYXiXElNREREVMEkJiZ+cvKbsjE0NES3bt2wb98+uRTzcHd3h0gkkmm7RIpKXV0dERERUFdXL/GO8Dk5OcjLy0OfPn2wfPlyzJ07t1yy5eTkID4+HvHx8UhISEBSUhISEhKQnp6O9PR0xMfHIy0tDenp6UhMTERqairS0tKQnJyM5ORkpKenIyUlBbm5uUhKSgJQeoEORVVQ+ENVVRX6+voA/n0v1NHRgba2NqpWrYoqVapAR0cHenp60NPTw+nTp3H16lVxGyYmJmjevDlatWoFJycnODs7V5giT1S8qlWromnTprhw4QKLeZDcJScnY8iQIfjiiy+wePFioeNQMRISEsRjanx8PFJSUpCWloakpCSkpKQgPT0dycnJSEpKQnp6OlJTU5GYmCgeawsKdhQUsyqtQIei+rjwh76+PlRVVaGrqwsdHR3o6upCX18f2traqFKlCgwMDKCtrQ1tbe0i466+vj4MDQ3FX6qqqhLtPz8/H4sXL8aSJUukyuzr68tiHpVUVFQU3N3d0bVrV/zyyy8SbZOdnY0uXbp8svAcEZEs5OfnY/369Vi/fr3QUZTa0aNH0bNnT5m3y/GAlJ2fnx/8/PyEjkFUbso6HohEIuTn58shEREREZF0Vq9ejffv36N///64cOECmjVrVqZ2DAwMsGfPHnTu3Bm+vr4YNWqUjJMSUXkzMjJCZmYmUlJSChXor+gWLVqE2rVrw8PDQ+goREREJKFdu3ahV69eMDY2FjoKERERkVywmAcRERGRnCQnJ4vvSF1RDB48GKNHj0ZMTIzMPjB79uwZHj16hM2bN8ukPSJlkJ2djT179pRYyKNAwcSPBQsW4O7du/D19YW2trbE+4mJiUFMTAxiY2MRHR2N6OhocaGOjycWf/xzcnJysW1paWmJJ9Vqa2tDR0dHXMxCW1sbxsbG0NXVhba2NvT09CASiWBgYACg+KIYurq6UFdXh5qaWqH3Sk1NzU8WuyhoqySlFQ5JSEgQX2Sdl5eHxMREAEBqaiqysrKKLUKSnZ2NlJQU8fqpqalIT09HUlISoqOjxROxk5OTERsbC21tbWRkZCA/Px/v379HQEAAAgICAAAqKiowMDAQT0L++PuCL2NjYxgbG8PIyAimpqYwMTGpVBdWVAQdO3bE2bNnhY5BlcD06dORnJwMHx8fqKioCB2nQktJSUF0dDTev38vHl9jYmKKHU8/XlbcxJ6C8fDjcVNPTw/a2trQ1dWFlZWVuLBF1apVoaKiAj09PaipqRVbFOPjsdPAwEBcIE9FReWTxQU/bqs4GRkZSE9PL/HxgrGzQMG4mZWVhdTUVADFFyEpKFDy3wImycnJiI6OLlJELD09HRkZGcVm0NPTK3FMNTAwQLVq1WBgYICNGzcWKrYliezsbOzevRu//PIL79pVyeTk5GDQoEHQ1dXF7t27JS4ak5eXh7y8PMzd6IvWX7jIOSURVRRZGRlIiv+ApPg4JMTGIDn+w78/f4hDQlwMEuPikBATjcQPcUiKj0PW/4+JdZs0x8q/jwmcXjllZ2VhcBNruRUd5XhARKQcPnc8UFFRYeEmIiIiUggikQg7duxAVFQUevbsiStXrqBWrVplasvZ2RnTp0/H5MmT4eTkhLp168o4LRGVp+rVqwMAYmNjK801Jw8fPsRff/2FP//8E2pqnCZDRESkDF69eoXz58/j0KFDQkchIiIikht+SkFEREQkJ+np6Z+ckK6M+vbtC09PT/zxxx+YOnWqTNrcv38/TE1N0b59e5m0R6QMTpw4IS4iIYm8vDzs378foaGh+OOPP5CTk4M3b97g7du3ePv2rbhgR1RUVKEJxrm5ueI2RCIRjI2NUa1atUITXi0sLD45CVZfX7/QxGBFV1oRJUNDw3JKAmRmZiI5ObnYoin//fnly5eIj4/Hhw8fEBMTg5SUlEJtFRRMMTMzExf7KPjZ3NwcVlZWsLS0RI0aNTjhWAF07NgR69atQ1xcnPgCGSJZO3bsGHbs2IF//vkHpqamQsdRSpmZmeKxNCIiAlFRUYiMjBSPo+/fv0d0dDRiYmKKFJPQ09ODsbFxoXHTxsamxEJNBcv09PSU5n1aS0sLWlpaJT5enmNqfn4+EhISkJSUVOqYGhUVhcePH4vH1djY2CJFVVRUVKCqqgpVVVVoaWlBVVVVXExFQ0MDpqam0NXVhZmZGQvlVELz5s3DzZs3cfny5U8WxCEikgUNLS0YmdeAkXkNidbPzspCcvwHaGpXrM8ciYiIlI2amprcCkMRERERSUtdXR0HDhxAx44d0aNHDwQFBaFatWplamvp0qUIDAzEsGHDcPnyZairq8s4LRGVFyMjIwBAXFwcrK2thQ1TThYuXAh7e3v0799f6ChEREQkoe3bt8PExAQ9evQQOgoRERGR3LCYBxEREZGcpKWlVbhiHlWqVMGAAQOwY8cOmRXz+Oeff9CnTx+J73ZMVBFcv35d6m3y8vJw+/Zt1K9fX7xMR0cHFhYWMDExgZGREWxtbdGuXbtChR4KvjcyMuJ5Vs40NTWhqakpvkBCGhkZGYiJiSlSoKXg5+joaISEhCA6OhrR0dGFLhw3MzODhYUFLCwsYGVlBQsLC1haWsLS0hLW1tawsrLiHUjkzNnZGQBw+fJluLm5CZyGKqKMjAxMmTIFQ4YMQd++fYWOo5BycnIQHh6OsLAwvHnzBhEREXj37h0iIiLw5s0bvHv3DtHR0eL11dXVYWpqCjMzM5iYmMDY2BgNGzYUj6VGRkYwNTUVP/apIhckeyKRSFwYRdo7Cubm5hZboKWgENr79+8RGxuL9+/f4/Xr10hPTxdvq6+vjwsXLsDS0rLQuGphYQFra2vY2NhAW1tb1odLAjp16hS8vb2xc+dONG/eXOg4RERFqGtooJqpmdAxiIiIKj1VVdVCxbSJiIiIhKavr4+jR4+iXbt26N27N06fPl2mv2Voampi7969aNmyJVasWIEffvhBDmmJqDwU3HgkNjZW4CTl49q1a/Dz88ORI0dYrJ+IiEhJ5OTkYOfOnRg7diwLCRIREVGFxtk7RERERHJSEYt5AMDIkSPh4+ODe/fuoVmzZp/VVlhYGO7evYsVK1bIKB2R4ouPj0efPn1gaWmJsLAwhIeHIyIiAuHh4Xj79i3y8vIAABoaGjA2Noa5uTkMDAxQvXp1VK9eHfXr10f79u1hbm4Oc3NziEQigY+I5EFLSwtWVlawsrKSaP34+Hi8fPkS7969Q2RkpPjfp0+f4ty5c4iIiEBycjKAfyesW1lZwcbGptgvQ0NDeR5apVCtWjXY29vj4sWLLOZBcvHzzz8jKioKK1euFDqKoAre+4r7Cg8PFxc60tTURLVq1VCjRg3Y2NjA2dlZ/L25uTlq1KiBmjVrstBRBaWqqgozMzOYmUk28Tk9PR2RkZGFxtWC70NCQsTLChgaGpY4ptaqVYvF1JRIYmIivvnmGwwaNAjDhw8XOg4RERERESkwNTU1FvMgIiIihWNhYYHjx4/DyckJI0eOxJ9//lmm6wkaNmyIFStWYNasWejevTvatm0rh7REJG/6+vpQVVVFfHy80FHKxezZs+Hs7IxevXoJHYWIiIgk5Ofnh6ioKIwZM0boKERERERyxSvUiYiIiOSkohbzcHZ2Rv369bFz506sXbv2s9o6ePAgqlatik6dOskmHJGCSEtLw5MnT/DkyRM8fPgQT548waNHj/Dq1StkZmYC+LdYQ8FETwcHBwwYMED8c+3atSvk+wfJj6GhIRwcHODg4FDiOu/fv0dYWFihye7Pnz9HQEAA3rx5I7743NDQEHXr1kXDhg3RoEEDNGjQAA0bNkTt2rV59xIpdOzYERcuXBA6BlVABUU85s+fj5o1awodR+5yc3Px6tUrPHr0CI8fP8ajR4/w6NEjhIaGIiEhAcC/xRo+LlLUpUsX8ffW1tYwNjYW+ChImWhra4tfPyVJTU3Fq1evihSROXLkCF69eoWMjAwA//v/3sfjaYMGDWBnZ1emOyKSfE2dOhXp6elYt26d0FGIiIiIiEjBqaqqiouIEhERESkSe3t7+Pn5oXv37vjuu++wfPnyMrUzZcoUnDp1CsOGDcO9e/egp6cn46REJG8ikQhVqlRBSkqK0FHk7tChQ7h8+TIuX74sdBQiIiKSwpYtW/Dll1/C2tpa6ChEREREcsViHkRERERyUlGLeQCAh4cH1q5di59++gmampplbueff/6Bm5sbNDQ0ZJiOqPxkZWXh/v37CA4OFhfsePz4McLCwpCXlwcNDQ3UrVsXDRo0QP/+/VG3bl3x5NAaNWoIHZ8qGRMTE5iYmKB169ZFHsvKysLr16/Fk5GfPn2KR48e4cyZM4iIiADw74RkOzu7QpORmzdv/snJzpVZp06dsHnzZiQmJqJq1apCx6EKZM2aNdDT08PMmTOFjiJT+fn5ePHiBe7du4fHjx+Li2E9efJEXAirVq1asLOzg7OzM8aMGSMeU2vVqgV1dXWBj4AqkypVqqBRo0Zo1KhRkcfy8/Px7t27QoWznjx5goMHD+Knn35CdnY2VFRUULt27UJjapMmTdCoUSP+biSQwMBA7Nq1C35+fjAxMRE6DhERERERKTg1NTVxcWQiIiIiRdOhQwf4+vpi2LBhsLKywoQJE6RuQyQSwdfXF40bN8bMmTOxdetWOSQlInnT09Or8MU8cnJysHDhQgwcOBCOjo5CxyEiIiIJvXz5EmfOnMGhQ4eEjkJEREQkdyzmQURERCQnaWlpMDAwEDqGXIwcORKLFy/G8ePH0bdv3zK1ERUVhWvXrmHu3LkyTkckH1lZWXj+/Dlu375d6CsjIwMaGhqwtbWFvb09BgwYgIYNG8Le3h729va86zophYLCM3Xr1i3yWGZmJkJDQ/Ho0SM8fPgQjx49wp9//omnT58iNzcX+vr6aNy4MRwcHMRfdnZ2UFVVFeBIFEeXLl0AAGfPni3zWEn0X3FxcdiyZQu8vLygra0tdJwyy83NxevXr/Hw4UPxeHrt2jXExsYCAMzNzWFvb4+OHTvC09MTDRs2RNOmTXnXN1IKIpEIFhYWsLCwgLOzc6HHcnJyEB4eLh5PX758icuXL2Pjxo1ITU2Fmpoa6tWrV2hMbdGiRYUtEqkocnJyMGPGDPTp0wdubm5CxyEiIiIiIiWgqqqKnJwcoWMQERERlWjIkCF4/Pgxpk6dijp16qB79+5St2FiYoItW7agb9++6NatGwYMGCCHpEQkT7q6uhW+mMfWrVsRGhoKPz8/oaMQERGRFLZt2wZTU1O4uroKHYWIiIhI7ljMg4iIiEhO0tLSUKNGDaFjyIWlpSW6dOmCnTt3lnmC8qFDh6Cjo4Nu3brJOB3R58vPz8ejR49w8eJFXL16Fbdv3xYXLjAwMECLFi3Qtm1beHp6okWLFqhXrx5UVFSEjk0kF5qamuLiNB9foJWWlobg4GDcuXMHd+7cwcWLF7F582ZkZ2dDV1cXzZo1Q8uWLeHk5AQnJyeYmpoKeBTlz9DQEA4ODggICGAxD5KZ9evXQ1tbG99++63QUaQSGRmJS5cuISgoCLdv30ZwcDBSU1OhoaGBRo0aoUWLFliyZAlatGiBJk2aKHWhEqJPUVNTg42NDWxsbPDVV1+Jl+fm5uLp06e4c+cO7t69izt37uDIkSNITEyEmpoa7Ozs4ODggHbt2sHZ2Rl2dnYQiUQCHknF8uuvv+Lp06c4ePCg0FGIiIiIiEhJqKmpITc3V+gYRERERJ/k5eWFsLAw9O/fH0FBQWjSpInUbfTp0wdjxoyBp6cnnJycYG5uLoekRCQvurq6SE1NFTqG3CQnJ2PJkiWYMGECbG1thY5DREREEsrOzsauXbvwzTffQE2NU1uJiIio4uP/eIiIiIjkJC0trULfQXnUqFEYPnw4IiMjy/THej8/P7i4uHCyJimEnJwc3L59G0FBQbh48SIuX76MuLg46OnpwdHREb1790aLFi3QokUL2NjYCB2XSCHo6OjA0dERjo6O4mWZmZl48OABbt++jTt37uDChQvYsGEDcnNzUb9+fTg5OaFDhw5wcnKqFOeSi4sLdu/eLXQMqiBycnKwY8cOjBs3DlWqVBE6zic9f/5cPKYGBQUhNDQUampqaNasGVq3bo1Ro0ahRYsWaNSoETQ0NISOSyQ4VVVVNGzYEA0bNoSHhweAf4vLvXjxQlw069atW5gxYwZSU1NhbGyM9u3bi8fU5s2b8+KGMkpKSsKSJUswc+ZM1K1bV+g4RERERESkJFRVVZGTkyN0DCIiIqJPEolE2LFjB96+fQtXV1dcu3YNlpaWUrezbt06XLp0CSNHjsTJkydZbJpIiejq6iI5OVnoGHKzbNkyZGVlYeHChUJHISIiIikcPnwY0dHRGD16tNBRiIiIiMoFr/AlIq2iB0IAACAASURBVCIikpOKXsyjX79+mDZtGrZv347vv/9eqm1TUlJw/vx5bN26VU7piEr37NkzHD16FCdPnsSVK1eQmpoKExMTODk5YeHChXB2dkazZs2gqqoqdFQipaGpqQkHBwc4ODiIlyUlJeHy5csICgrCpUuXsHfvXmRkZMDCwgJdunRBz5490b17dxgaGgqYXD5cXFzw448/4tmzZ6hXr57QcUjJHT9+HO/evcOoUaOEjlJEXFwcAgICcOzYMZw7dw6RkZHQ1tZG69atMWTIEDg5OcHR0RF6enpCRyVSGiKRCLa2trC1tcXAgQMB/FvU586dO+JiOcuXL0dsbCx0dXXRvn17uLq6wtXVlXcek8LGjRuRm5uL2bNnCx2FiIiIiIiUiJqaGnJzc4WOQURERFQqdXV17N+/H+3atUPv3r1x4cIF6OrqStVGlSpVsHfvXrRr1w6//vorJk+eLKe0RCRrurq6SElJETqGXLx48QJr167F6tWrYWRkJHQcIiIiksKWLVvg6uqKWrVqCR2FiIiIqFywmAcRERGRnKSlpUFbW1voGHKjqamJESNGYOvWrZg/f75Ud4I+efIkcnJy4OrqKseERIVlZmbi4sWLOHbsGI4dO4bQ0FBUq1YN3bt3xy+//AJnZ2fY2dkJHZOowtHX10ePHj3Qo0cPAP+eizdv3sTFixdx+vRpeHh4AADatWuHnj17omfPnrC3txcyssy0bdsWhoaGCAgIYDEP+mw+Pj744osvUKdOHaGjAACCg4Nx/PhxHDt2DNeuXYOKigqcnZ0xZcoUODs7o1WrVtDQ0BA6JlGFoqamhtatW6N169aYMWMG8vPz8fjxY1y6dAlnz57FokWLMHXqVNSvXx89e/aEq6srOnToAHV1daGjK6S0tDSsXbsWkydPrpBFxYiIiIiISH5UVVWRk5MjdAwiIiIiiVSrVg0nTpxA27ZtMWjQIBw5ckTqm5q0bNkSCxYswJw5c9CpUyc0btxYTmmJSJYqcjGPadOmoU6dOhg/frzQUYiIiEgKoaGhOHv2LPz8/ISOQkRERFRuVIQOQERERFRRZWdnV/hJU+PHj8e7d+9w7Ngxqbbz9/eHo6Mjq+KT3OXk5MDf3x8DBw6EkZERunfvjnPnzqF///64ePEi3r9/jz///BPffPMNC3kQlRNNTU04OTlhwYIFOHfuHGJiYrB3715YW1tjzZo1aNSoEWrXro05c+bg4cOHQsf9LKqqqujcuTMCAgKEjkJKLiUlBQEBARg6dKigOYKDgzF9+nRYWVmhWbNmWL9+PerXr499+/YhNjYWZ86cwbx589C+fXsW8iAqByKRCA0bNsS3336Lffv2ISYmBufOnYObmxtOnjyJrl27wsjICEOHDsWJEyd41+j/2LlzJ1JSUjB16lShoxARERERkZJRU1Pj71hERESkVGrXro2jR4/i/PnzmDhxYpnaWLhwIZo3b46hQ4ciIyNDxgmJSB4qajGPwMBAHD16FN7e3hX++kwiIqKKZvPmzbCysuINQYmIiKhSYTEPIiIiIjnJzc2V+k4WysbGxgbdu3fH5s2bJd4mNzcXx48fx1dffSXHZFTZBQcHY8aMGbC0tESfPn0QExOD1atX4/Xr1wgODsaKFSvg7Oxc4c9RImVgYGCAgQMHYteuXYiKisK1a9cwbNgw7N+/H40aNULLli2xfv16xMbGCh21TFxcXHD+/HlkZmYKHYWU2IkTJ5CdnY1evXqV+76jo6Pxyy+/oFmzZmjWrBmOHj2KMWPG4ObNm3j37h127NgBd3d36Ovrl3s2IipMTU0NnTp1wqpVq/Dw4UO8evUKy5cvR0REBHr27AkrKyvMnj0bDx48EDqqQti+fTsGDRoEY2NjoaMQEREREZGSUVVVRU5OjtAxiIiIiKTSqlUr7Ny5E9u2bcP69eul3l5NTQ179uzB69evsWjRIjkkJCJZ09XVRXJystAxZCo7OxuTJ09Gv3794OLiInQcIiIikkJaWhp27twJT09PXr9NRERElQqLeRARERHJSU5OTqX4oGnChAk4deoUnj17JtH6V69eRWxsLNzc3OScjCqb9PR0bNmyRTzZ2N/fHxMnTsSLFy9w7tw5jB8/HjVr1hQ6JhF9goqKCtq0aYOlS5fi5cuXOH/+PJo0aYKFCxeiRo0a6Nu3L86fPy90TKm4uLggNTUVly9fFjoKKTF/f384OzuX64TzwMBAuLm5wdLSEl5eXmjdujWCgoLw7NkzLF68GC1btoRIJCq3PEQkPWtra0ycOBGXLl3C8+fPMW7cOBw8eBCNGzeGg4MDtm/fXmmLTYWEhODu3bsYPXq00FGIiIiIiEgJqampITc3V+gYRERERFIbMGAAli1bhunTp+Pw4cNSb29jY4NffvkFa9aswdmzZ+WQkIhkSVdXFykpKULHkKn169cjLCwMa9asEToKERERSen3339HamoqRo0aJXQUIiIionLFYh5EREREcpKbmws1NTWhY8hdz549UbNmTWzbtk2i9f39/VGnTh3Y2dnJORlVFklJSfDy8kLNmjUxbdo0tGzZUjzZ+Pvvv4e1tbXQEYmoDEQiETp27AgfHx9ERUXBx8cHHz58QOfOndGyZUscOnQI+fn5QscsVa1atVCvXj0EBAQIHYWU2Pnz59G1a1e57ycvLw9//fUXmjZtim7duiE1NRW7d+9GZGQktm7divbt27OAB5GSqlOnDhYvXowXL17gwoULaNy4MSZNmoRatWphxYoVFe5CztLs3LkT9erVQ/v27YWO8lm8Rg8SOgIRESkAjgdEROVPVVUVOTk5QscgIiIiKpN58+bh22+/xdChQ3H9+nWptx8zZgz69++PESNG4MOHD3JISESyUqVKlQr1N6A3b95g8eLFmDdvHmrXri10HCIiIpLSpk2bMGzYMJiYmAgdhYiIiKhcsZgHERERkZzk5uZCVVVV6Bhyp6qqirFjx8LX1xcZGRmlru/v7w83N7dySEYVXXZ2Nn755RfUqVMHa9euhaenJ16/fo3t27cr7GTjT2VSxLxCY59QAR0dHXh4eODChQu4ceMGateuDXd3d7Rp0wYXLlwQOl6pXFxcWMyDyuzVq1eIiIhAhw4d5Lqf06dPw8HBAcOGDUOjRo1w584dnDlzBoMHD4a2trZc910WHFOlwz6hAiKRCB06dMDOnTsRFhaGMWPGYOXKlbC1tcWvv/5aae4sffz4cfTt21fwc8Pdrgbc7WqUeXtlKGwmtM/pX/p8n/sap8qnsr5eOB7IX2V9bSkKjgckLWV4vaiqqlaa35+IiIioYtqwYQO++OIL9OnTB69fv5Z6+99++w0ikQjjxo2TQzoikpUqVaogLS1N6BgyM3XqVJiZmWHu3LlCRyEiIiIpnTt3Dvfv34enp6fQUYiIiIjKHYt5EBEREclJZSnmAQBjx45FUlIS/v7770+u9+LFCzx+/BhfffVVOSWjiurGjRto2bIlvvvuO3zzzTd4+fIlvLy8WK2ZqBJo1aoV9u/fjzt37qB69ero3LkzRo8ejfj4eKGjlcjFxQUhISGIjIwUOgopocuXL0NTUxOtWrWSS/sxMTEYNmwYunfvjpo1ayI4OBh79+5F8+bN5bI/IlIcZmZmWLZsGV68eAEPDw/MmjULbdq0wd27d4WOJldhYWF4+vQpXFxchI6Cg0/efdb2i30//Ts4kdA+9zVOVFlwPKCKjuMBVUQaGhrIysoSOgYRERFRmamqquKPP/6AqakpXF1dkZCQINX2hoaG2LFjB/755x/s3btXTimJ6HOpq6sjOztb6BgyERAQgH/++Qfr1q2DlpaW0HGIiIhIShs2bICTkxMcHByEjkJERERU7ljMg4iIiEhOKlMxDzMzM/Tv3x9r16795HpHjhxB1apV4eTkVE7JqCIq+EDXxMQEISEhWL58OQwNDYWORUTlrFmzZjhx4gT279+PkydPwsHBAXfu3BE6VrE6deoEDQ0NBAYGCh2FlFBwcDDs7e3lckHS9evX4eDggKCgIPj7+8PPzw+NGjWS+X6ISLEZGRlhzZo1uHv3LnR0dODo6IgtW7YIHUtuAgMDoauri/bt2wsdhYiIiIiIlJS2tjYyMjKEjkFERET0WfT09HDs2DEkJSWhb9++Uhcr69atG6ZMmYKJEyciLCxMPiGJ6LNUlGIe6enpmDhxIgYNGgRXV1eh4xAREZGUwsPD4e/vj8mTJwsdhYiIiEgQLOZBREREJCeVqZgHAMycORN3797F2bNnS1zH398frq6uUFdXL8dkVJEsWLAAU6dOxYwZMxAQEABbW1tB84hEIohEIomWF/xc8JhIJMLYsWNLfQwAHjx4gJ49e0JPTw96enr48ssv8eDBg2L3+eLFC/Tr1w+GhoYl5vvUsTx+/Bht27aFjo4OnJ2dERoaiocPH6JNmzbQ1dVF586dER4eXmT7I0eOoH379tDS0oK1tTWmT5+O5OTkYvcRERGB3r17Q09PD6ampvDw8EBcXJzE/VVefQL8O4m+e/fuqFKlCvT19dGjRw8EBAQUWufBgwdwdXUVZ3F1dS0xS2nH/vHxnj9/HgDw119/FVouyz5ITEzE9OnTYWNjAy0tLZibm2PkyJG4ceNGoXYkeX6F4u7ujpCQENStWxfOzs44c+aM0JGKqFKlCpycnHDixAmho5ASun//vlwKbJw6dQqdO3dG48aNcffuXfTq1Uvm+5AGx9T/4ZjKMVUoDRo0wIULF+Dl5QVPT0/MmTNH6EhycffuXTRr1gwaGhpCRylR+PMnWPbt1xjWoi6GtaiLH8cORfjzJ4XWcberAXe7GlK1W7BNVHgYVk0eg+Gt7Yq0E/78CZaN8xDve9k4D4n3XdLym2dPYcEQNwxuYo3xXVrDd8UipKemFLttbOQ7rPQciWEt6mJ0+yZYN3sSkhPiy9xHH7ftblcDmxbOlLi/IkKfYtk4DwxtbgsPh3pYMmYI3oQ+K3Kc0vaHNM/vmxfPMW9QLwxpZoOFw/ogKjwMEaFPMW9gTwxtbosfhvdHbORbiY+pUNuhz/Dj2KHwcKiHoc1tsezbr/HmxfPi85bymijSXy3r46dJo0vMJkkflCYtOQm+KxZhQte2GNzEGmOcmmHDvGl4HnJX6n1Jcm58ijR9KuvzUJbPo7zOQ0nbLO2clcXrRtlwPOB4wPGgdBwPOB4INR5oaWmxmAcRERFVCBYWFvDz88OtW7cwYcIEqbf/6aefUKtWLXz99dfIzc2VQ0Ii+hzq6upSF+pRRMuXL0dMTAy8vb2FjkJERERlsGnTJpiYmKBv375CRyEiIiISBIt5EBEREclJZSvm4eDggI4dO+Lnn38u9vHExEQEBQXhq6++KudkVFGsXLkSq1evxh9//IGVK1dCRUX4X2fy8/MlXl6wLD8/X/y1ffv2Uh8LDQ1Ft27d8NVXX+Hly5cICwuDh4cHevfujTdv3hRpf8KECZg1axbevXuH48ePS30sixcvhq+vLyIjI9G0aVN4eHhg0aJF2LlzJ96+fYsGDRpg5syiEx569+6NESNG4MOHD7h27Ro+fPhQpIp2wT7Gjh2LCRMmIDIyErdu3UJaWhpmzZolcX+VV588e/YMgwYNwpw5cxATE4Nr164hNTUVX375pXid0NBQ9OjRA/3798fLly/FE3y//PJLhIaGSn3sOTk5qFOnDj58+IBOnToBAAYPHox3797B0NAQKSkpMu2DESNGwMDAAFevXkViYiKOHz+O0NBQtGnTplBfSPL8CsnIyAjHjh3DV199BTc3tyITsBVBr169cPz48QpxoQyVr0ePHsHe3l6mbd65cwe9e/fGoEGD4O/vj2rVqsm0/bLgmPo/HFM5pgpJJBJh7ty58PHxwc8//4y1a9cKHUnm7t+/j8aNGwsdo0RR4WHwGjUYLTt3w+bAa/jt7A10dHPHSs9RiIuKFK938Mk7qdsu2Gbr4nnoPXoCtl+8h++27im076XfDIOjSy9sDryGTaevok03V/w4diiiwsNK3XdJy1d6jkTnvgOx68ZjrPz7KFISE7D9x4XFbrtp4Uy4DBmBHUH3sOrASWRmpGPXT0sKrSttHx188k785bm0+M8s/uvjvvjtzHVsPnMdXfoNhveMCUWOVZr+kDb7vl9/xqTlv2DHpXuwtrPH2tmT8Nf6NZi0Yi22X7wDyzp1sXOll0TH9N+2f54+Hp37DsLmM9exOfAa2nTtgR/HDsX7txHF9sOnXhP/7a9Np6/CsXtPeE8fX+Y+KM2GeVNRRU8fK/b5Y/etZ1i4dQ+iwl9h3sCeUu+rtHNDln0q6/NQls+jPM9DSdr81Dkrq9eNMuF4wPHg4205HpSM4wHHA6HGA21tbaSnp5frPomIiIjkpUWLFti3bx9+//13rFixQqptNTU18ccff+DWrVtYvXq1nBISUVlpaGggOztb6BifJSQkBKtWrcKPP/6IGjWkK2pLREREwsvMzISvry8mTJjAm4ESERFRpSXKL+lKeSIiIiL6LOrq6ti1axeGDh0qdJRyc+TIEfTp0wcPHjxAw4YNCz32559/Yvjw4Xj//j0MDQ0FSkjKKiQkBC1btsSqVaswbdo0oeMUIhKJip1oXNzyktb91GMeHh5o0qRJkTuj+/j4IDg4GOvWrSvUxrlz58QTVqVVcOf6jh07AgDevXsHCwuLQsvevHkDBwcHREdHf7Kt+Ph42NraIi4ursg+Dh8+jN69e4uXPX36FF26dMHbt2+LrCtknwwdOhQ9evTA119/XSirnZ2dOJeHhwdatWqFqVOnFtrW29sbd+/exe7du6U+9gULFsDCwgITJ04UL1u5ciVev36NzZs3y7QP9PT08Pr160IT+V+9egUbG5sSX6tAyc+v0HJyctCpUyekpKTgzp07ClH0p8Dr169hbW2NU6dOoVu3bkLHISWRnZ0NbW1t/PXXX+jfv79M2szJyUHjxo1haWmJgIAAhTpPOKYWj2Mqx1ShrFixAl5eXrh37x7s7OyEjiMzxsbGWLRoESZNmiTTdjMzM6GlpYW5G33R+gsXibdzt6tRaJLvutmTUKt+Q/QZ61lovbMH/0LYk4cY/d2PJW4r6f6W/H4A9q3bFXls3exJsG3cDD2Hjy203N93C14+foCpqzaUum9JMqUkJWJiN0fsuv6oyLb/7b93r15g0Yj+2HbxbqGc8uwjAFg3ZzJsGzUt0hdBx/zwy8wJRdqUtD+kzb5k90HYt3IEAHx4H41vOjQvtCwuKhKz3V3gczlEquNzt6uBGd6/ob2rW6Hl/r5bEPb0MSavXCvOK8lroqT+OndoH36dP73MffApw1rUxZZzN6Fb1UC87P2bcEzo2la8P6n7u4RzQxKS9mlp+5L2PJTl81jQpjzOQ0naLFi3uHNJVq8bAMjOysLgJtZF/i8hKxwPJM/E8YDjAccDjgfKPB4sXrwY+/fvx8OHD6XetrLYs2cPxowZg8zMTKGjEFElx/cjIslt3boV48ePx++//w4PDw+ptl2zZg3mz5+Py5cvo3Xr1nJKSETSOnDgAAYMGIDc3FyF+rvwp/Tu3Rv6+vrYvXs3cnJy4OjoCHV1dVy6dKlS3ViNiIioovDx8cGECRMQHh4OU1NToeMQERGRAqlMn98rx6cyREREREooNze30v0B6auvvoKdnV2xd2/29/eHs7MzC3lQmXh7e8Pe3r7I5M7KIDAwEIMGDSqyvGfPnjh9+nSR5Z97YUyLFi3E35uZmRVZVqNGDcTExJTajqGhIT58+FDsYx06dCj0s7W1NSIjJb9zYnn1ydmzZ/HFF18UWla/fv1CE3IDAwPRp0+fItv27dsXgYGBRZZLcuyjRo2Cr69voWU+Pj4YN25cof3Kog8cHR3h5uaGkydPIicnBwBQu3btT046Bj79/ApJTU0N27ZtQ0hICAICAoSOU0itWrXQtGlT+Pn5CR2FlEhkZCRyc3NhaWkpszaPHDmC58+fY8uWLUpzwZascEwtimMqx9RPmTt3LmxsbIr9/U5Z5ebmIi4uTqHv3BZy5VKRiZgA0KLTFwi+clEm+7Bt0rzEfbfu+mWR5W269UDIlUsy2TcA6OpXRUpiQrGPNWzVttDPxhZWiI95XySnvPso5PLFYvuiafsOxawtRbtSZrdp2Fj8vaGRcZFl1UxMkfShbMWAmrRzLrKsTbceCL58oVBeSV4TJfVXc+fORZbJ6vmr38wBKyaMwN1L55Cb++/7rollzUITf6XdV0nnhqQk6dPS9iXteSjL57GAPM5DSdr8lPI47xUNxwOOBx/jeFAyjgeS75PjgWxpa2sjIyOjXPdJREREJG/jxo3DlClTMGbMGJw7d06qbWfMmIGOHTtixIgRSEtLk1NCIpKWhoYGACArK0vgJGXz008/4f79+9ixY0eluw6TiIiootiwYQMGDhzIQh5ERERUqakJHYCIiIioosrPz4dIJBI6RrkSiUSYPHkypk+fjiVLlognLebm5iIgIAALFiwQOCEpq3PnzmHSpEmV7pwCgLi4OFhbWxf7mLa2dpFlOjo6n7U/PT098fcFk7z/u+y/k1JjYmIwf/58nDx5ElFRUcjNzf3kPv5b1EdTU7PUia4fK68+iY2NhZGRUanrFLzXfczc3ByxsbFFlkty7HXr1oW2tjaCg4PRtGlTXLx4Efr6+mje/H8X98uqD/bv3w8vLy9MnDgRMTExaN68Ofr16wdPT0+oq6sDkP75FVqDBg3QokULnDlzBj169BA6TiF9+vTB9u3bsWHDhkr5fkbSe/fu38lHspx0fvbsWTg6OsLGxkZmbSoLjqlFcUzlmPopKioqGDJkCHbv3i10FJlJSEhAfn4+DAwMSl9ZIMkJ8RjfpfiiMRpaWjLZh6ZW0dc2ACQlfICBkUmR5YbGpkiOL1vRmaQPcdjjvRx3L51DQmwM8kp53evqVy30s7qGRpFzuzz6qKS+0DP4vAKl0mbXrqIr/l70/2PJf5dJ877/seKOxdC48GRwSV8TJa1X3DJZPX+z1m3F3xu9sW3JAiR9iEPtho3Qtpsrvhw6Aqpq6mXaV0nnhqQk6dPS9iXteSjL57GAPM5DSdr8lPI47xUNxwOOBx/jeFAyjgeS75PjgWxpaWkhPT29XPdJREREVB68vb0RHh6OAQMG4MqVK6hXr55E26moqGDXrl1o0qQJZs+ejY0bN8o5KRFJouBvVNnZ2dBSss/Rnjx5gqVLl2LZsmVo0KCB0HGIiIioDAIDA3Hv3j34+PgIHYWIiIhIUCzmQUREREQyNWLECPzwww/47bffsHjxYgDAjRs38OHDB4WbVE3KIzY2FiYmRS80VgQikQiZmZnQ1NQUL5Pl3dWNjIzw6NGjIhNWFcnXX3+N+vXrIygoCJaWllBT+/dXTXkVKyivPqlevTpiY2M/OYneyMgIkZGRRSYBR0ZGljpp+VNGjRoFHx8frFu3Djt27MC4ceOK7FcWfVC1alV4e3vD29sbsbGxOHPmDNauXYtLly7hwIEDAMr/+ZUFU1PTYid+C613797w8vLCrVu30KpVK6HjkBIoGE+qV68uszbj4uI4pnJMFeOYyjG1NKampoiJiRE6hswkJiYCAPT19QVOUjI9w2pYd/xCkYmO5UHfoBriY6JhYmFVaHl8TDT0DKsVWiYSiZCdlQX1/7+rHwCkJCYUaXPdnMmwqF0Hy/7wQ3Uzc6iq/vu6d7cre6Gq8ugjfYNqSIh9D+MaloWWJ8QWf+d4SftDyOf3vxLiYmBQ3bjQsviYaOhX+9//OyR9TZTUX/LsAx09fYyctxgj5y1GUvwH3L8ahKO7tuHRreuYvX6bTPclKUn6tDTSnIeS7lPaNiVR3n2rSOdOeeF4UDqOB7LB8UD2OB7IjyKdO1paWsjIyBA6BhEREZHMqaioYO/evejSpQt69OiBa9euwdjYuPQNAVhYWGDbtm3o378/evTogV69esk5LRGVRuP/P6PIysoSOIl08vPzMWLECDRt2hTTpk0TOg4RERGV0c8//4wuXboUuukOERERUWWkInQAIiIiIqpYdHR0MH78eGzatEl8V7KAgABYWlqiYcOGAqcjZWVjY4OQkBChYxTLzMwM4eHhhZZdvHix2HU/NVGzpMdcXFxw/vz5IssvXboEBwcHyYPK0ZUrV+Dl5QVra2vxpFRZ3JVQ6D7p1KkTAgMDCy0LDg4u9F7WtWtX/PPPP0W2PXToELp27VrmfQ8cOBB+fn6IiYnByZMnMWTIkEKPy6oPRCIR3rx5A+DfycyDBg3CsWPHcOrUKfE68np+5SUvLw8PHjyAra2t0FGKaN68OWrXrg0/Pz+ho5CSSE5OhoqKCnR0dGTWpo2NDe7fv1/muzbLE8dUjqkcUxVPcHCwQo6pZVVwB7qcnByBk5SsmVMnPLx+pcjyx7euY3Y/F7nuu0k7Z1w/dbzI8uunT6BJO+dCywyMTBAb+bbQskc3rxXZ9undWxg0eTZMLKzEE7ezPnPSozR9VNZiOU2dOuJG4Mkiy+8FnS92fUn7Q8jn97/uXTpfZNn10yfQtH1H8c+SviZK6q+QK0XHcVn1gbtdDcRFRQIA9A2rob2rG77buhvBly/IfF+SkqRPSyPNeSjpPqVtUxLy6tuSzllFOnfKC8eD0nE8kA2OBxwPOB6Ujba2Not5EBERUYWlra2NQ4cOITc3F/369ZPq/z39+vWDh4cHRo8ejejoaDmmJCJJFPxdJDs7W+Ak0nn06BGCg4OxY8cOqKqqCh2HiIiIyuDBgwcICAjAzJkzhY5CREREJDgW8yAiIiIimZs4cSJSUlLg4+MDADh58iRcXV0FTkXKbMiQIdi1axdiY2OFjlJEt27dsGDBArx58wYpKSkICAjAb7/9Vuy6FhYWuHr1KrKzs3Hq1CnUrFmz1McWL16MRYsW4cCBA4iLi0NycjKOHj2KIUOG4Pvvvy+Xf6Wu2wAAIABJREFUYyxNu3btMGfOHISFhSErKwuhoaEYP378Z7crdJ8sXLgQS5YsQWBgIFJTUxESEoLRo0dj8uTJ4nUWLVoEb29vbN++He/fv0dMTAx27NgBb29vLFq0qMz71tXVRefOneHh4QE3Nzfo6ekVelyWfTB27Fg8fPgQmZmZiI6Oxpo1awpNmpbX8ysvf//9N968eYNBgwYJHaVYbm5uOHz4sNAxSEkkJydDV1e3zBPPijN48GA8f/4c/v7+MmtTVjimckzlmKpYoqKisHfv3iIFUJRZQXGktLQ0gZOUbNDkmdi3YQ2uBhxFckI80lNTcOv8aXjPnIABntPluu+Bk2biyM4tCNz/BxLjYpH0IQ5nDvyJIzu3YNCkwhfYNG3fAXu9VyAuKhIZaam4F3QeAX/9XqTN+s1bYveaH/H+bQRysrMRFR6GLYvnflZOafqomqkZnt67jdycbARfvoBvO7eUbB+TZuKI7284e/AvJH2IQ3JCPIKOHcapfXuKXV/S/hDy+f2vU/t249LRQ0hOiBc/10d/345Bk//3XEv6mvhvf6UkJuDKiSM4uGV9kf3Ksg82LZyJiNCnyM7KQkJcDPx2bC40Gbm8+1uSPi2NNOehpPuUtk1JyKtvSzpnFencKS8cD0rH8UA2OB5wPOB4UDZaWlrIyMhQyGKpRERERLJgZmaG48eP48GDBxgxYoRU/+/ZtGkTqlatilGjRvH/S0QC09DQAKBcxTxSUlIQEhKCxYsXw97eXug4REREVEbe3t6oV68evvzyS6GjEBEREQlOlM9PSomIiIjkQiQSYd++fRg4cKDQUQQxefJk+Pn54caNG7C0tMTff/+Nfv36CR2LlFRCQgKaNm2KJk2a4NChQ+I7mSuC2NhYTJ06FadPn0ZaWhq6dOmCjRs3iifJfvwr1/79+zF37ly8ffsWNWvWxM8//ww3N7dSH3v+/Dnmz5+PwMBA5OTkoGHDhpg/fz769u0rbvu/E72l/VXv4+0LtpV02fv37zFr1iwEBAQgISEB9erVw/fffy8upvCpbT+1XOg+AYCrV69i9uzZuH37NoyNjeHp6Yl58+YVWuf+/fuYM2cOLl26BABwdnbGqlWr0Lhx41KPsaTlAHDp0iV06NAB169fR+vWrYtkk0UfnDlzBr/++isuXbqE5ORkWFhYoE+fPvDy8hJPdpb0+VUEL1++ROvWreHu7o4tW7YIHadY586dQ5cuXfD06VPUq1dP6Dik4DZv3owffvgBMTExMm13+PDhOH36NG7cuAErKyuZtv05OKZyTOWYqjhjalZWFnr16oVXr17h7t270NXVFTqSTGRkZEBbWxuHDx9G7969Zdp2ZmYmtLS0MHejL1p/Idldwd3taoi/P/jknfj7yNevsOfn5Qi5egm5OTmwsq2HfuMmo023HqVuK+n+Stru9bPH2L16KR7dug4AaNiyDb6evRC16jUotF5S/Af4LPsewVcuIjM9HY3btsc3P6wQT7QsaDsxLha7Vi3BvaDzSE1KRA3rOhjgOQ0/Tx9faL2Sjudz+ggArpz0x+41y/AhOhJG5hYYOW8xWnXpLlF/RYQ+xe+rfsTDm9egoqIC+1aOGPP9Ukz4ok2RvpO0PyTNXtxxS7pMEu52NbD5zHXs+HEhHt68iry8PNi3aosRcxfBsk7dQutK+pr4uL9EIhHqN2+J0fO9MLVXpzL1QWnuXw3C8b0+eHzrOtJTU1DN1Bxtun6JQZNnQbvK/96zpO3v/2aVlKR9KsvzUNbPozzOQ2nb/NQ5K4vXDQBkZ2VhcBNruYwFAMcDjgccDzgecDyoLOOBv78/3NzckJGRAU1NTam3rwz27NmDMWPGIDMzU+goRFTJ8f2I6POcP38eLi4umD17NpYuXSrxdkFBQejUqRM2btyIb7/9Vo4JiehTbt++jZYtWyI0NBR16tQROk6p8vLyYGxsDODfovPq6uoCJyIiIqKyeP/+PWrVqoUNGzZg7NixQschIiIiBVWZPr9nMQ8iIiIiOansxTwiIiJga2uLkSNHwsfHB7GxsahatarQsUiJXb16Fd26dYOrqyt+//13aGlpCR2JiBTI06dP0a1bN5iamuL8+fOoUqWK0JGKlZubCzMzM8ydOxezZs0SOg4puN9++w3fffcd4uLiZNpuUlISnJ2dkZKSgtOnT8PGxkam7RORcktPT8eQIUNw7tw5nD17Fg4ODkJHkilzc3PMmTMH06fL9s7dZZm8TcrJ3a5GmSb3KpKKcAyKRog+5fNYNopYzIOUU0U4ByvCMSgajgfK43PHg9OnT6N79+6Ij4+HgYGBHBIqv8p08R0RKTa+HxF9Pl9fX4wePRqbN2/G+PHjJd7uu+++w7p163Dv3j3Y2trKMSERlSQ4OBjNmjXDkydPUL9+faHjlMrb2xuzZ8+Gq6sr/P39hY5DREREZbRw4UJs27YNYWFh0NbWFjoOERERKajK9Pm9itABiIiIiKhisrKywvDhw/Hnn3/C0dGRhTzoszk6OuLYsWM4deoUnJ2d8erVK6EjEZGCOHDgAFq3bg0LCwucOnVKYQt5AICqqipcXV3h5+cndBRSAioqKsjLy5N5u/r6+jhz5gwMDAzQsmVLXghFRGLPnj2Do6MjLl26hJMnT1a4Qh4AUL9+fTx79kzoGEREREREpMQKio1nZGQInISIiIhI/kaNGoUFCxZgypQpOH36tMTbeXl5oWHDhhg+fDhyc3PlmJCIKoJXr17hhx9+QL169Vg0kYiISImlpaVhy5YtmDRpEgt5EBEREf0/FvMgIiIiIrmZN28ekpOTYW5uLnQUqiA6duyIW7duITs7G40aNcLq1auRnZ0tdCwiEsjbt2/h7u6OAQMGwMPDA+fPn4ehoaHQsUrVu3dvXLlyBVFRUUJHIQWnpaUlt2rDRkZGCAoKQp8+feDm5oZhw4bxNUlUiWVlZWHp0qVo2rQpNDQ0cPv2bTg6OgodSy7s7Ozw4MEDoWOQknK3q1HoX2VUEY5B0QjRp3weiYRVEc7BinAMiobjQeVScBE6i3kQERFRZbF06VIMGjQI/fv3R0hIiETbqKmpYdeuXbh79y5Wr14t54REpMxyc3MxYsQI1K1bF7a2tkLHISIios/g6+uL1NRUTJgwQegoRERERApDTegARERERFRxJSUlAQBu3ryJvLw8qKiwlhx9PltbW9y8eRObNm3Cd999h40bN2LBggUYM2YMVFVVhY6nkEQi0Scfz8/PL6ckioN9otw+fPiA9evXw9vbG8bGxggICED37t2FjiWxL7/8ElpaWjh69CjGjh0rdBxSYFWrVkV6ejqysrKgoaEh8/a1tbXh4+OD/v37Y+LEibC1tcWkSZMwb9483u2oBBw/imKfKLe8vDwcPHgQ8+fPx7t37zB37lwsWLBALu85isLJyUl88UiVKlWEjiMzpU3gPPjkXTklUXyf01eK3o+SHJuiHwOgWK9nRe1TZXgeSRiKdP4oOo4Hin0MgGK9nhW1T5XheayotLS0ALCYBxEREVUeIpEI27dvR9euXeHm5obr16/D1NS01O0aNGiAJUuWYOHChejRoweaNm1aDmmJSNksX74cN2/exPXr1/H9998LHYeIiIjKKC8vD2vXrsWIESNgZGQkdBwiIiIihcFiHkREREQkNydPnkS1atXw+vVrHDp0CO7u7kJHogpCXV0dU6dORe/evbF48WJ4enrC29sbM2bMwPDhw8UX0tK/OIm2KPaJcgoPD8e6deuwbds2aGlpwcvLCxMmTFC6c15HRwddu3aFn58fi3nQJ1WtWhXAvwXS5PkHTldXVzx8+BAbNmzAqlWr8Ntvv+Hbb7/FlClTYGFhIbf9KiOOH0WxT5RTWloadu3aBW9vb4SFhWHUqFH44YcfYGlpKXQ0uevatSuys7MRFBQEFxcXoePIDCdySq4i91VFOTZFOg5FykIkCb5mJVeR+6qiHJsiHYciZSHFUPB5ZHp6usBJiIiIiMqPpqYmDh8+jLZt26JPnz44d+6cRH+nnTlzJo4dO4ahQ4fi9u3bSve3XSKSrxs3buDHH3/Ezz//jCZNmggdh4iIiD7D4cOH8fLlS0ybNk3oKEREREQKhbdGJyIiIiK5CQgIQK9evdCvXz8sXbqUE/1I5qytrbFz5048ePAAzs7OmDJlCqysrDBlyhTcunVL6HhEJAOZmZk4cOAA3NzcUKdOHezfvx+LFi3CixcvMH36dKW92Mvd3R2nTp1CfHy80FFIgRkaGgIA4uLi5L4vHR0dzJ07Fy9fvsS8efOwe/du2NjYoG/fvjh8+DCysrLknoGI5O/atWuYOHEirKysMHPmTHTt2hWPHz/G1q1bK0UhDwAwMzODvb09jh07JnQUIiIiIiJSUlWqVAEApKamCpyEiIiIqHxVr14dR48exdOnTzF8+HCJrgNSUVGBr68vIiIi4OXlVQ4piUhZJCQkYNCgQejatSsmTZokdBwiIiL6TKtXr0afPn1Qv359oaMQERERKRQW8yAiIiIiuUhOTsaVK1fg4uKChQsXIjg4GH5+fkLHogrKzs4O27ZtQ1hYGGbMmIHTp0+jVatWsLe3x6pVq/D27VuhIxKRlK5evYoJEybA3NwcgwcPRnZ2Nnbv3o0XL15g5syZ0NPTEzriZ+nbty9UVVVx4MABoaOQAiuYWP/mzZty22fVqlUxb948hIWFwcfHBykpKXB3d0eNGjUwefJk3Lx5s9yyEJFshIeHY9myZbCzs4OjoyMuXLiAuXPn4vXr19i8eTNsbW2FjljuhgwZgj/++AOZmZlCRyEiIiIiIiVkYGAAAEhMTBQ4CREREVH5q1+/Pg4dOgQ/Pz8sXbpUom1q166NNWvWYNWqVbh48aKcExJRAZFIJHSET/L09ER6ejp8fX0VPisRERF9WmBgIK5du4bZs2cLHYWIiIhI4bCYBxERERHJRWBgIHJzc9G1a1c0bdoU/fv3x/fff4+8vDyho1EFZmZmhvnz5+Px48e4du0aOnXqhJ9++gm1atVCx44dsWrVKjx8+FDomERUjMzMTJw+fRrTpk1DnTp10K5dOwQFBWHBggWIiIjAiRMnMHjwYKirqwsdVSb09PTQq1cv/Pnnn0JHIQVWvXp16OjoICIiotz3raGhgWHDhuH06dN4/fo1Zs2ahTNnzqB169aoX78+Zs2ahbNnzyI7O7vcsxFR6UJCQrBixQo4OTmhdu3aWLduHVxcXHDr1i08ePAAc+bMgbGxsdAxBTNixAgkJCTg6NGjQkchIiIiIiIlpK2tDU1NTSQkJAgdhYiIiEgQHTt2xKZNm7Bo0SKJ/945btw49OjRA6NGjUJycrKcExLRx/Lz84WOUMT27duxb98+7NmzB6ampkLHISIios+0YsUKdO3aFW3bthU6ChEREZHCYTEPIiIiIpKLgIAAODg4wMTEBACwdOlSPHnyhJOWqdy0adMGGzduxLt377B//35YW1tjzZo1aNSoEWrXro2JEyfixIkTSE9PFzoqUaUVGRmJ7du3o1+/fjAyMkL37t1x9uxZDBw4EHfu3MH9+/cxa9YsmJubCx1VLoYMGYIL/8fenYdFVT5uA79HGIZlmBkQEHCDIREYUYFEFNBMzVyQ1JTKrcQlw91Ky0zURM2lyD1FSy3XrDS/tpgm4lIKIpsKCoqgLOqw78v7Ry/zk0AzBc4A9+e6uIbOnDnnPoTzzAznuc+pU0hJSRE6CmmxNm3aIDk5WfAM8+fPR1xcHP7880/4+vri2LFj6Nu3L8zMzDBy5Ejs2LED6enpguYkas4KCgrw008/YerUqWjXrh26dOmC4OBg2Nvb4/vvv0dqaiqCg4Ph5uYmdFSt0Lp1a7z00kvYtGmT0FGIiIiIiKiRkslkyM7OFjoGERERkWD8/f0xbdo0TJgwAefPn3+ix2zduhXZ2dmYN29ePacjIm12/fp1zJkzB++//z769esndBwiIiJ6RhcuXMCJEycwf/58oaMQERERaSVdoQMQERERUdN0/PhxvPbaa5r/tre3x5gxY7Bw4UKMHDkSenp6Aqaj5kQikWDYsGEYNmwYKioq8Ndff+Ho0aM4evQoNm3aBAMDA3h4eMDb2xve3t7w8PCAkZGR0LGJmqTU1FScPn0aYWFhCA0NRUxMDPT19fHiiy9i1apVGDRoENq1ayd0zAYzePBgKBQK7Nu3D3PnzhU6DmkpJycnxMTECB1Dw93dHe7u7vj000+RlJSkGVPfeecdlJSUoHPnzvD29oaXlxe8vb2bbBkPkdDy8vJw7tw5zZj6559/oqioCG5ubpgwYQIGDx4MNzc3tGjBPu9Hef/999GnTx+cPn0a3t7eQschIiIiIqJGRqFQICsrS+gYRERERIL67LPPkJSUhGHDhuGvv/5C27ZtH7u+lZUVtm7dihEjRsDHxwcDBw5soKREpC2Ki4sxatQodOzYEYsXLxY6DhEREdWBoKAgdOvWDX379hU6ChEREZFWYpkHEREREdW55ORk3Lhxo8aHcoGBgejYsSO++uorTJ48WaB01Jy1aNECHh4e8PDwwNKlS3Hnzh0cO3YMoaGh2LlzJxYvXgxdXV24ubnBy8sLvXr1Qs+ePWFmZiZ0dKJGp7KyEteuXUNYWJimwCMxMVHzb+yll17CihUr0KdPHxgYGAgdVxB6enoYNmwYvv32W5Z50CM5OzvjwIEDQseola2tLaZNm4Zp06YhPz8fJ06cwIkTJxAWFoZNmzahrKwMzz33nGZM9fT0hL29vdCxiRqljIwMnDlzBqdPn8bp06cRGRlZ7d/Y+PHj8fLLL8PS0lLoqI3GCy+8gF69euGTTz7BL7/8InQcIiIiIiJqZORyObKzs4WOQURERCQoHR0dfPvtt/D09MTQoUNx+vRpSKXSxz5m2LBh8PPzw8SJExEdHQ1TU9MGSktE2mDevHlISEhAeHg4LwZGRETUBFy5cgWHDx/GwYMHhY5CREREpLVY5kFEREREde7333+Hvr4+PDw8qi1v3749Jk6ciMWLF2Ps2LHNdvI2aQ9ra2v4+/vD398fAJCWloYLFy7gzJkzOH78OD777DNUVFTAysoKbm5umq9u3bpxoiTRP9y5cwfh4eGar/Pnz+PevXswNDSEi4sLRo4cCU9PT/Tq1QtyuVzouFrjjTfeQEhICOLi4uDk5CR0HNJCzs7OCAoKQmFhoVa/djIyMoKPjw98fHwAAPn5+bh06ZJmTA0ICEBhYSFkMhmcnZ2rjauOjo5o0aKFwEdApD3UajWio6Nx6dIlzbh65coViEQiODg4wMvLC9OnT0fv3r3Rvn17oeM2aosWLULfvn3x22+/oX///kLHISIiIiKiRkShULDMg4iIiAiAsbExDh8+jO7du8PPzw+HDx+Gjo7OYx+zadMmdO7cGdOnT8c333zTQEmJSGg///wzvvjiC+zcuZMXgSAiImoili9fDnt7e/j6+godhYiIiEhrscyDiIiIiOrcyZMn0bNnz1onnC5YsAA7duzA5s2bMXv2bAHSET2apaVltYnIarUa586dQ0REBCIiIvDVV19h8eLFAIA2bdrA1dUVrq6u6NKlC1QqFWxtbaGry7dZ1LTl5eXh6tWriI2NxaVLlxAREYHIyEjk5uZCLBZDpVLB1dUVgYGBeP755+Hq6gqxWCx0bK31wgsvoHXr1ti3b5/m+YXoYc7OzigvL0dcXBzc3NyEjvPEjIyM4OXlBS8vL8ybNw8lJSUIDw/HxYsXERERgT/++AMbN25EWVkZZDIZXFxc4OrqChcXFzg5OcHBwQFGRkZCHwZRvSorK8ONGzcQFxeHy5cvIzw8HBEREbhz5w4AQCQSwcjICFZWVnjttdcwcuRIdOnSBba2thCJRAKnbxpefPFFDBs2DAEBAYiKioK+vr7QkYiIiIiIqJGQy+XIysoSOgYRERGRVrCxscGhQ4fQt29fLFiwACtWrHjs+gqFAiEhIRgwYAB8fX0xatSoBkpKREK5e/cuxo0bh7Fjx2LMmDFCxyEiIqI6cPv2bezduxdbt27lhZyIiIiIHoOzzIiIiIiozp08eRJTpkyp9T4rKytMnz4dQUFBmDhxIoyNjRs4HdGTMzExwaBBgzBo0CDNsvv372vKPcLDw7Fr1y4sXrwYlZWV0NPTQ8eOHeHo6AhHR0fNZOSOHTtCIpEIeCRE/92DBw8QFxeHK1eu4MqVK4iLi8PVq1eRnJyMyspKSCQSODs7w9XVFWPGjIGrqyucnZ35u/4ftWjRAn5+fvjmm28QGBjIydlUQ4cOHWBgYIDo6OhGVebxT3p6eujRowd69OihWVZUVISoqCjNuBoaGooNGzagpKQEIpEI7du3h4ODA1QqFRwcHODk5ARHR0eYmJgIeCRE/11RURGuXr2Kq1evVhtbExISNL/vzz33HFxdXTFz5kxUVFTgjz/+wPXr13H37l0kJCQgISEBe/bsAQCIxWKYm5tDqVSiS5cu6NGjB5ydnfma8ykFBwfDyckJq1atwsKFC4WOQ0REREREjYRCoUBqaqrQMYiIiIi0hqenJ7788kuMHz8ednZ2mDRp0mPX79+/PyZPnox33nkH3t7esLKyaqCkRM1HWVkZAAh+AZbS0lL4+flBoVBg/fr1gmYhIiKiurNy5UpYWlri9ddfFzoKERERkVZjmQcRERER1an4+HikpKTgxRdffOQ677//PjZv3oy1a9di0aJFDZiO6Nm1bNkS/fv3R//+/TXL8vPza0zO3LNnDxITE1FWVgYdHR3Y2tqiQ4cOUCqVNb6kUqmAR0TNWVpaGhITE2t8Xbt2DRkZGQAAqVSqmUT/wgsvaIpqlEoldHR0BD6CpuH111/H2rVrceHCBbi7uwsdh7SMjo4OnJycEBUVJXSUOqevrw93d/dqv/dlZWVITExEbGysZmz9448/sHnzZuTn5wMALC0tYW9vDzs7uxpjqoWFhVCHQ81cbm5urWNqQkICbt68ifLycujq6sLOzg4qlQq+vr6aghoHBwcYGhpW2978+fM13xcXF+P69eu4cOECzp07h8jISCQnJ+PcuXMICwvDhg0bNOsaGhqiTZs26NChA1xdXdGrVy8olUrY2tqyMOoR2rZti8DAQCxYsAA+Pj7o2rWr0JGIiIiIiKgRkMvliI2NFToGERERkVYZN24crly5goCAADz33HPo06fPY9dfs2YNTpw4gTfffBM///wzP8cmqmOlpaUAAF1dYaeMzJ07FxERETh//jwv/EVERNREpKWlYfv27Vi5ciX09PSEjkNERESk1VjmQURERER16sSJE5BKpejWrdsj1zE1NcX8+fOxZMkSTJgwAW3btm3AhER1z8jICG5ubnBzc6u2vKSkBNeuXdNcif369eu4fPkyvv/+e9y5c0eznoWFhWYSsp2dHWxsbGBtbY22bduidevWUCgUDX1I1ARUVFQgLS0NKSkpuHPnDm7fvo2kpKRqE4yrJsbr6enBxsYGSqUSzs7OGDZsGJycnODg4ID27dsLfCRN3/PPP4+OHTvi22+/ZZkH1apbt244e/as0DEahK6uLuzt7WFvb19teWVlJW7duoWrV68iNjYW169fR2JiIk6fPo1bt25pTkSTSqXVyj1sbGzQrl07WFtbo02bNmjVqhVatGghxKFRI/fgwQPcuXMHycnJuHPnDm7evFltTM3MzAQAiEQiWFtba34HPT094eDgAEdHR3To0OGpTmCQSCRQqVRQqVR48803NcvLysqQnJyM+Ph4nD17Fn/99ReuXr2KmzdvIj4+HkePHtWsq6Ojg5YtW8LOzg5OTk7w8vKCs7MzHBwcYGRk9Mw/n8Zu9uzZOHbsGEaOHImIiAieSEpERERERP9KLpcjKytL6BhEREREWicoKAhJSUkYOXIkzp8/j+eee+6R6xoZGWH79u3o3bs3duzYgQkTJjRgUqKmr6ysDAAgFosFy/Dtt99i/fr12LNnDzp16iRYDiIiIqpbq1atglwuh7+/v9BRiIiIiLQeyzyIiIiIqE6dPHkS3t7e//pHwFmzZmHLli1YtGgRtm/f3kDpiBqWnp4enJ2d4ezsXOO+oqKiWq/efujQIdy6dQt5eXmadQ0NDatNRG7Tpo2m7MPS0hKWlpYwNzeHgYFBQx4eCUitViM9PR2ZmZm4ffs27t69i9u3byM1NVUz0TgtLU1zYgYAWFpaon379lAqlRg6dGi1ye5t2rTh5HaBvf7669i4cSNWr14t+FVxSPv06dMHW7duRVZWVrMteBKJRLCxsYGNjQ1efvnlaveVl5fXWlgUFhaG3bt3IyMjQ7OuWCyGpaWlpjCrdevWaNu2rWaMNTc3h6WlJeRyeUMfIgmkoKAAmZmZSEtLQ1pamqasIzU1Fbdv39YUYhUWFmoeY2xsrCnB6tGjB0aPHq0ZU21tbaGvr98g2XV1dTX7/ee/C7VajdjYWFy8eBGRkZG4fPkybt68iXPnzuHcuXMICQnRrCuVStG+fXt07NgRHh4ecHFx0RxLc7kKYosWLbBz50507doV06ZNw9dffy10JCIiIiIi0nIKhQLZ2dlCxyAiIiLSOiKRCDt27MALL7wAHx8fnDt37rF/3/Ly8sLs2bMxe/Zs9OvXD+3atWvAtERNW9UFEYQ6ByEqKgqTJk3C3Llz4efnJ0gGIiIiqnv37t3Dl19+iSVLlsDQ0FDoOERERERaj7NDiIiIiKjOVFZW4tSpU5g7d+6/rquvr4+goCCMGTMGAQEBcHNza4CERNpDX18fTk5OcHJyqvX+nJwc3L59GykpKZpJpKmpqUhNTUVkZCTu3LmDe/fuVXuMVCqFpaUlLCwsYGZmhlatWqFVq1YwNzfXTE42NTWFiYkJFAoFZDJZQxwq/Yvy8nJkZWVBrVZDrVYjMzMTmZmZyMjIQFpaGjIzM3Hv3j3cvXtXc19JSYnm8bpp4GOqAAAgAElEQVS6urC0tNQUvnTr1g3Dhw/XFL5UTVbX09MT8Cjp34wZMwaLFy/GyZMn0b9/f6HjkJbp27cvKisrERoaiqFDhwodR+vo6Ohoij769OlT4/7i4mLNGFpVzpCSkoKUlBT8+eefOHDgANLS0lBeXq55jEQigbm5OSwsLGqMpVXjrLm5OUxNTaFQKGBiYsJSJC2Rk5OjGVMfPHigGUurCjuqvk9PT0d6ejry8/OrPd7c3Fwzhjo4OODFF1/UjLFV5S/GxsYCHd2TMzExgZeXF7y8vKotz87OxvXr15GQkIBz584hPDwcN2/exNWrVxEbG4tDhw5p1tXR0YG5uTns7e3h7OwMd3d3qFQqODg4wMjIqKEPqd5ZW1vjq6++go+PD9zc3DBjxgyhIxERERERkRaTy+XIysoSOgYRERGRVjIwMMAPP/wAd3d3+Pn54ejRo48tE1i2bBmOHTsGf39//Prrr82maJqovlVdAEaIMg+1Wo3hw4eje/fuWL58eYPvn4iIiOrPihUrYGRkhClTpggdhYiIiKhRYJkHEREREdWZmJgYpKen48UXX3yi9V977TVs2LAB7777Lk6ePFnP6YgaF5lMBpVKBZVK9ch1ioqKcPfuXaSnp1ebpJqRkYF79+4hKSkJ58+f19z38CRl4O8JmlUTkKsKPmr73sjICAYGBpDJZJBKpTA0NIRUKoVMJoOBgUGTnMz5pNRqNQoLC1FYWIisrCwUFBSgoKAAOTk5yMvLQ35+PtRqdbWyjqrvq25zcnJqbNfAwADm5uawsrLSTB7v0qULLCwsNBPKraysYGZmBktLS04gbwLs7OzQrVs37N69m2UeVEPLli3h7OyMEydOsMzjKUgkEiiVSiiVykeuU15erhlPHy5PSk9PR0ZGBjIzM3H16lVNGURhYWGNbcjlcs34WduYqlAoIJVKYWRkBLlcDgMDAxgaGkKhUMDQ0BAGBgaPvTJdU5efn4+CggLk5uYiNzcXhYWFyMvLQ05ODgoKCh45pt66dQslJSXIzc2FWq1GRUVFte3q6upqxs5WrVrBwsICSqUSFhYWsLS0hLm5uWY8tbS0hL6+vkA/gYYhl8vh5uYGNzc3vPbaa5rlJSUlSEhIwNWrV3Hp0iVERETgypUruHPnDkJDQxEaGooNGzZo1pfJZLCzs4ODgwPc3d3RqVMnKJVK2NraNuqTrAcNGoRly5Zh9uzZsLGx4XMuERERERE9kkKhQGFhIYqLiyGRSISOQ0RERKR1rKys8OOPP6JXr16YPXs21q1b98h1JRIJQkJC4OXlhZCQEEycOLEBkxI1XaWlpQAAsVjcoPutqKjAmDFjUFBQgG+++UaQMhEiIiKqH/fu3cOWLVuwePFiGBoaCh2HiIiIqFHgJyNEREREVGdOnDgBhUKBrl27PtH6IpEIq1evRs+ePXHkyBH4+PjUc0KipkVfXx+2trawtbV9ovUzMzM1k19rK5Wour1x40a19fLz81FSUvLYbcvlcs1EZBMTEwCAkZER9PT0oKurq7mCvbGxMXR1dSEWiyGVSjWPfbiMQiKRPPJDfpFI9MiJzqWlpcjLy3tkxqysLFRWVmr+u6ioSDMZW61WAwAKCgpQXFyMiooKZGdnA4Dm+EtKSpCfn4/s7GwUFBTUOpH7YVUTtv85mdva2rrG5O6qW1NTU5iZmWl+NtS8jB8/Hu+++y6Cg4Ob9YR+ql3fvn3x66+/Ch2jydLR0YG1tTWsra3RpUuXf10/Ly+v2rj6z7G06vs7d+4gLi5O89/5+fmPHasAaMbTqsIPfX196OnpacqzFAoFRCIR9PX1YWBgAACasbdq/SqPGzeB/xuXa1M1Ntbmn68NysvLNeVUeXl5KC0trTYu5+TkoLy8XDOWVlZWakqwCgsLNWPuo0gkEs2Y+nBRio2NDS5duoSsrCz06NEDr776Kjp27FhjXKV/p6enpymSGzFiRLX71Go1YmNjER0djT///BORkZG4ffs2Ll26hEuXLmHPnj2adXV0dGBlZQUHBwd07doVzs7OUKlUcHBwaDQFcPPnz0dCQgJGjx6N06dPP/H72yrXLl1AWenjXzsTEZFwyv//1UjrG8cDImpuCnJzUFxUBEVLM4gaQfFwXYwHcrkcwN/vec3NzZ95e0RERERNkaurK3bu3ImRI0fCwcEBAQEBj1zXw8MDs2fPxty5c/HSSy+hXbt2DZiUqGkq+//vfRq6TCMwMBC//fYbTp48CSsrqwbdNxEREdWvTz/9FPr6+pg8ebLQUYiIiIgaDZZ5EBEREVGdOXnyJF544QXo6Og88WM8PDwwYsQIvPfee3j55Zcb/EoARM1J1VXpn0bVJN3c3FwUFhYiLy8P2dnZKCwsREFBAdRqteb7qgm5/5y4CwApKSmoqKiotUijStUk4No8vK3aVE1mrk1VuUiVhydGVxWKVE2MbtGiBZRKJYD/mxhdVUoik8lgYGAAIyMjKBQKGBgYwNDQEAqFAoaGhjA0NIRMJvu3HylRDaNHj8Z7772H/fv3849dVMOLL76Izz77DGlpabC0tBQ6TrMnlUohlUqfuFDrnx43hubn56OgoADx8fHYsWMHPD090aFDBxQVFWlKMADgwYMHNQqo/jmGFhcXo6CgoNYMD2/rUcf4qNfmD4+hQPXSEENDQ0gkErRo0UIzscna2hpisbhawVfVuGlgYACFQgEjIyMYGBhAJpPB2NgYBgYGkEqlNUq//mn9+vXYu3cvgoKCMHv2bAwaNAgff/wx7O3tH/kY+m9MTEzg5eUFLy8vTJ06VbNcrVbjypUriIuLQ2RkJC5duoT4+HikpKQgJSUFv//+OwBoytRMTEzQsWNHdOrUCZ06dYJKpYJSqYStrS1EIpEgx/Yomzdvxq1btzBw4ECcOnXqiX6fdHV10crSEj9s29gACYmI6Fno6urW22tqjgdERI3Hs44HVe+Ds7KyWOZBRERE9BjDhw/H4sWLMXPmTNjY2GDw4MGPXPeTTz7BsWPHMGHCBPz2229a99kxUWNT9XfDhjwf78iRI1i2bBk2b94MT0/PBtsvERER1b/79+9j8+bNWLRoES9YR0RERPQfsMyDiIiIiOpEeXk5QkNDERgY+J8f++mnn8LR0RFbtmzBtGnT6j4cET0zHR0dmJiYPLYso6Ht378ffn5+mgmiRI2dXC7HK6+8gu3bt7PMg2ro1asXxGIxfv31V4wbN07oOPSM5HK5puiiNr/++is+/PBDODs74+uvv+akoMfQ09PDuHHjMGbMGBw9ehRLly6Fu7s7PD09MW/ePPj4+AgdsckyMTFBz5490bNnz2rLS0pKkJCQgLi4OERHRyM8PBzR0dFITU3F+fPn8eeff0IkEqGiogLA3xPo2rRpAxcXF9jb28PJyQkqlQoODg7VSmMaklgsxo8//oiBAweib9++OHXqlKbo7VF0dHSQdvduAyUkatzu3bsHJycn9O7dG/v37+ekDGpSOB4QUXP18PuA2NhYze21a9dQXl4OsViMtm3bal7vV9126tQJEolE6PhPxdTUFMDfJ7B36NBB4DRERERE2m3BggWIj4/HG2+8gTNnzqBTp061rieRSBASEgJPT09s3bqVfzMlekZlZWUA8J8uzPUsEhISMG7cOIwePRqTJk1qkH0SERFRw1m1ahUkEgmmTJkidBQiIiKiRoVlHkRERERUJyIjI6FWq9GnT5///FhbW1tMmzYNixcvxujRo7WqLICIiKgh+fv7o2/fvoiKikLnzp2FjkNaxNjYGP3798eBAwdY5tHEffnllwgICMCYMWOwZcsW6OnpCR2pUWjRogV8fHzg4+ODsLAwrFy5EkOHDoWrqytmzpyJ0aNHN9iJis2dnp4eVCoVVCoVRo4cqVleWlqK27dvayb2Xbp0CVFRUbhx4wZu3ryJmzdvQldXF+Xl5ZqyNlNTU3Tq1AkODg6ayX5KpRK2trb1PvnfyMgIhw8fxosvvoj+/fvj1KlTaNOmTb3uk6i5MDMzw6FDh9C3b18EBQVhwYIFQkciIiKiZ/So9wG1lXwcOXIEq1evfmzJh0qlgr6+voBH9O8sLCwAAOnp6QInISIiItJ+IpEI27ZtQ3JyMoYOHYo///zzkUXm3bt3x9y5czFnzhz069fvX4uWiejRysrKoKur2yCFynl5eRg+fDhsbW2xZcuWet8fERERNaz79+9j48aNWLhwIaRSqdBxiIiIiBoVlnkQERERUZ0ICwuDiYkJVCrVUz3+o48+wq5du7Bw4UKsX7++jtMRERE1Dn369IGdnR2++uorrF27Vug4pGVGjhyJyZMnQ61Ws/ysCSovL8eCBQvw6aef4uOPP8aiRYsa5MS6psjLywteXl6IiIjA559/jgkTJmDp0qV477338NZbb0EsFgsdsVkSi8VQKpVQKpXw8fHRLC8rK0NycjISExMRGxuLmJgYXLp0CbGxsXjw4AFCQ0Nx9uxZVFZWory8XLOt9u3bw8XFBUqlUjPhz8HBAUZGRnWWWaFQ4Ndff0WfPn3Qu3dvHD9+HLa2tnW2faLmzMvLC2vWrMHMmTPRuXPnas8LRERE1HQ05ZIPfX19yOVyZGRkCB2FiIiIqFHQ09PDwYMH4eHhgeHDh+P48eOQSCS1rrtkyRIcPXoUkyZNwvHjx/n3EqKnVFpa2iB/F6uoqMDYsWORnp6OixcvwsDAoN73SURERA1rzZo1kEgkmDp1qtBRiIiIiBodlnkQERERUZ04c+YMPD090aJFi6d6vEKhwIoVKzBp0iT4+/vDxcWljhMSERFpP5FIhPHjxyM4OBjLly9/5Als1Dz5+vpi8uTJ+OmnnzB27Fih41Adys/PxxtvvIFffvkFu3btwujRo4WO1CS4urpi586d+Pjjj7Fq1SpMmzYNQUFBmD17NiZNmgRDQ0OhIxIAXV1dTclHv379qt13586dapP7rl27hujoaDx48ADXr19HcnIyWrRogeLiYlRWVgL4++rYnTt3rlbyoVQqYWtr+1QnfJuZmeHUqVMYNGgQevbsiV9//RXOzs51cuxEzd20adMQFRWF0aNH49y5c09dEEtERESNz6NKPkpLSxEfH//Ikg9dXV20a9euRsmHk5OTIJPFLCwskJ6e3uD7JSIiImqszMzMcPjwYfTs2RNTpkzBV199Vet6EokEO3fuhIeHB7Zs2YK33367YYMSNRFlZWXQ1a3/6SLvv/8+/ve//+GXX35Bu3bt6n1/RERE1LAyMzOxfv16fPTRR5BKpULHISIiImp0RJVVZ7gSERERUZ0SiUTYt28fRo0aJXSUBtG2bVsEBARg/vz5T72NyspKeHp6QiQSISwsjFfWIKLH2r9/P/z8/MC3tdTU3L59G7a2tvjmm2/g5+cndBzSMoMHD4aOjg4OHz4sdBSqI3fu3MHQoUNx8+ZNfP/99/D29hY6UpN169YtrF27Ftu2bYOhoSECAgIwY8YMmJqaCh2N/iO1Wq2Z2BcbG4uYmBjEx8cjJSUFACAWi6Gnp4eSkhKUlpYCAKRSKRwdHdGxY0c4ODjA3t5ec/sk5VnZ2dkYPHgw4uPj8fPPP8PV1bVej5GouSguLkafPn1w//59XLhwATKZTOhIREREpIUeLvlITEzUvB+IiYlBcXGxYCUf3t7ecHFxwRdffFFv+2isdu/eDX9/fxQXFwsdhYiaOT4fEWmnX375BUOGDEFQUBDee++9R673wQcfYN26dbh8+TLs7OwaMCFR07Bx40YsWrQImZmZ9baPkJAQTJo0CTt37sSYMWOeeXu+vr6QyWTYtWtXHaQjIiKiujB37lzs2rULiYmJLPMgIiKiOtOcPr+v/6pVIiIiImrykpKSkJKSAk9Pz2fajkgkwoYNG9CtWzfs3LkT48ePr6OEREREjUfbtm0xePBgbN68mWUeVMPIkSPx9ttvIzs7G3K5XOg49IyioqIwZMgQ6Ovr49y5c+jQoYPQkZq09u3bIzg4GAsXLsT69euxbt06rFmzBhMmTMB7772HNm3aCB2RnpCJiQm8vLzg5eVVbfm9e/cQGxuLq1evIi4uTlP2cffuXeTl5SEyMhLXr1/HkSNHkJubi4qKCgCAlZUVVCoVlEqlZtKfSqWClZWVZttyuRy//PILhg8fjt69e2Pv3r0YPHhwgx43UVMkkUhw8OBBuLm5YcKECThw4ADLXYmIiKgGsViseZ3+sNLSUty+fbta2d/x48cRHByMoqKiR5Z8ODo6wtDQ8JlzWVhYID09/Zm3Q0RERNTcDBgwAKtWrcLcuXPRoUMHvPLKK7WuFxgYiJ9++gmTJk3C77//zs+NiP6joqIi6Ovr19v2//jjD7zzzjtYtGhRnRR5EBERkfa5e/cuNm/ejOXLl7PIg4iIiOgpscyDiIiIiJ7ZmTNnIBaL4ebm9szbcnFxwZQpU/D+++/D19cXCoWiDhISERE1LlOnTsXAgQMRGxtbY5ICNW++vr6YMmUKfvzxR4wbN07oOPQMfv75Z/j5+aFbt244ePAgX/c2IDMzMwQGBuLdd99FSEgIVq9erSlQ+uCDD+Do6Ch0RHpKZmZm6N27N3r37l1teXZ2Nq5evYrY2FhcuXIF0dHRiIuLw+3btwEA9+/fR0REBC5duoSvvvoKJSUlmu05OjrCwcEBHTt2hKOjI9avX481a9bA19cXn332GaZPn97gx0nU1FhbW2Pv3r3o168fPv/8c8yePVvoSERERNRIiMViKJVKKJVK+Pj4aJY3VMlHq1atcOXKlfo4NCIiIqImb9asWYiPj8cbb7yBU6dOoVu3bjXWkUgk2LlzJ7p3745NmzbhnXfeESApUeNVn2UeV65cwbBhwzBs2DB8/PHH9bIPIiIiEt7SpUthYmKCSZMmCR2FiIiIqNFimQcRERERPbMzZ87Azc2tTq5iBgCffPIJDh48iEWLFiE4OLhOtklERNSYDBgwAB06dMCXX37JsZCqMTExwZAhQxASEsIyj0YsODgYc+fOxfjx47F582aIxWKhIzVLUqkUM2fOxNSpU7F3716sWLECnTp1wqBBg/DRRx+he/fuQkekOiKXy9G9e/ca/09zcnKQkJBQbYJfXFwckpKSUFlZiby8PFy7dg3Xr1/Hd999B7VajcrKSojFYsjlcsyYMQM7d+6Ev78/OnXqhK5du/JKNERPqXfv3li6dCnef/99PP/88/D29hY6EhERETViT1vyAQBWVlbVCj6cnJzg4uICIyOjGvuxsLDAH3/80VCHRURERNTkBAcHIz4+Hq+88gr++usvtG7dusY6Li4ueO+99zBv3jwMHDgQtra2AiQlapyKi4vrpczj3r17GDp0KDp16oSvv/4aIpGozvdBREREwrt16xZCQkKwYcMGGBgYCB2HiIiIqNFimQcRERERPbMzZ85gwIABdbY9ExMTLF++HJMnT8Zbb72Frl271tm2iYiIGgORSISJEyciKCgIQUFBtU4WoOZr0qRJGDhwIOLi4uDk5CR0HPoPysvLMWvWLGzYsAEff/wxAgMDhY5EAPT09DBu3DiMGTMGR48exbJly+Dh4QFPT0/Mmzev2sQvalpkMhnc3Nzg5uZWbXl2djauX79eo+RDrVYDAHR1dSGRSGBmZobw8HBERESgoqICwN/vZ/95dW+lUglbW1uezEr0L+bNm4e//voLo0aNQkREBKysrISORERERE3Mo0o+ysrKkJycXO09wJkzZ7B161YUFhYCqL3kw8zMDCkpKUIdDhEREVGjJxaLceDAAfTo0QO+vr4IDQ2t9UJCH3/8MX788UdMmjQJv/32Gz9rJXpCRUVFdV7mUVRUhKFDh6K8vBzfffcdJBJJnW6fiIiItMeiRYvQrl07jB8/XugoRERERI0ayzyIiIiI6Jnk5OQgLi4OS5YsqdPtvvXWW9i2bRumT5+O0NBQ/iGeiIianQkTJmDRokXYu3cv/P39hY5DWmTAgAGws7PDtm3bsHbtWqHj0BPKy8vD66+/juPHj+Pbb7/Fa6+9JnQk+ocWLVrAx8cHPj4+CAsLw8qVKzF06FB07doVs2fPxujRo6GjoyN0TGoAcrm81pKPrKws3Lhxo9oEv8jISM3kPQMDA0ilUmRkZCA9PR379u1Ddna2ZpvPPfcclEpltZIPlUpVL1fFI2qMRCIRQkJC8Pzzz2Ps2LH45Zdf+LxLREREDUJXV/epSz4AoE+fPujcubOm5KNr166QSqVCHAoRERFRo2NiYoL//e9/6N69O8aPH4/9+/fXOEdIIpFg+/bt6NmzJ3bs2IEJEyYIlJaocanrMo/Kykr4+/sjLi4OZ86cgYWFRZ1tm4iIiLRLfHw8vvnmG3z11VcQi8VCxyEiIiJq1FjmQURERETP5MyZMygvL4eHh0edblckEmH9+vVwd3dHSEgIJk6cWKfbJyIi0nZmZmZ49dVXsWnTJpZ5UDUikQhvvfUWPvvsMwQFBXESeCOQmpoKHx8fpKWlITQ0FN26dRM6Ev0LLy8veHl5ITIyEmvXrsWECROwZMkSTJ8+HVOmTOG/u2ZKoVDUWvKRmJiI119/HZcuXYKdnR10dXURExOjKfKQSqVQKBQoKipCTEwMTp8+jYyMDFRUVEBXVxft2rWrUfLRuXNnngRLzZKJiQkOHDiAnj17YsWKFViwYIHQkYiIiKgZ+7eSj//973+YPn06jI2NcebMGWzbtg0FBQUAACsrK025B0s+iIiIiB5PqVTi0KFD6NevHxYvXozAwMAa67i7u2P69OmYM2cOBgwYgNatWzd8UKJGpq7LPBYuXIgDBw7g2LFjUKlUdbZdIiIi0j4fffQROnbsiNdff13oKERERESNXguhAxARERFR43bmzBl06NABlpaWdb5tV1dXzJo1C++++y5SU1PrfPtERETa7p133kF4eDjOnTsndBTSMv7+/sjJycHBgweFjkL/IjIyEh4eHigtLcW5c+dY5NHIdO3aFTt37sS1a9cwePBgzJ8/HzY2NggMDNQUNRAplUqcPXsWCxYswOnTp2FoaIjo6Gg8ePAAp0+fxpo1a+Dr6wsrKys8ePAAaWlpqKiogEwmg52dHczMzJCdnY1jx45h1qxZ6N+/P1q1agVTU1N4eXlhypQpWLlyJY4cOYLExERUVFQIfchE9crV1RXLly9HYGAgXwcTERGRVqoq+RgzZgwAICAgABcvXkR2djZu3LiBw4cPY+bMmVAqlQgPD8fs2bPh7e0NY2NjWFtbo3///pg5cya+/PJLhIWFITc3V+AjIiIiIhKet7c3Nm/ejCVLluCbb76pdZ1ly5bBzMwMU6dObeB0RI1TXZZ5fP311wgKCsKWLVvQt2/fOtkmERERaafo6Gh89913WLp0KVq04NRTIiIiomclqqysrBQ6BBEREVFTJBKJsG/fPowaNUroKPWqT58+sLGxwY4dO+pl+wUFBejcuTNcXFxw4MCBetkHETVO+/fvh5+fH/i2lpo6Dw8PtG/fHvv27RM6CmmZESNGICMjA6dPnxY6Cj3CoUOHMHbsWHh5eWH//v2Qy+VCR6JnlJ6ejk2bNuHzzz9HZWUl3nzzTXzwwQf1Um5IjVNYWBhGjx6N8vJyfP3117We0Hrnzh3ExsYiNjYWcXFxiImJQVxcnKYgxtzcHK1bt4ZUKkVlZSVyc3ORkpKCBw8eAACkUik6duwIBwcHODk5wcHBAY6OjnjuuecgFosb9HiJ6ktlZSWGDh2K2NhYREZGQiaTCR2JiIiIqFYymQyfffYZ/P39H7venTt3EBcXp3kfUPU6Jz8/HwBgZWUFlUoFJycnzW2XLl1gbGzcEIdR53bv3g1/f38UFxcLHYWImjk+HxE1PnPmzMGmTZtw4sQJ9OjRo8b9J0+eRN++fXHw4EEMHz5cgIREjYefnx8qKiqe+Zy7n3/+GUOHDsW7776LoKCgOkpXO19fX8hkMuzatate90NERESP5uPjg7t37+LChQsQiURCxyEiIqImqjl9fq8rdAAiIiIiarzKyspw8eJFjB49ut72YWhoiC+//BL9+vXDDz/8gFdeeaXe9kVERKSNZsyYgfHjxyM5ORnt2rUTOg5pkalTp6J///4IDw+Hm5ub0HHoH4KDgzFnzhz4+/tjw4YNnGDfRLRq1QqBgYGYM2cOduzYgRUrVmDLli0YP348FixYwOdpgpeXFyIjIzFlyhT0798fU6dOxcqVKyGVSjXrWFtba67G/TC1Wl1tYl94eDiioqI0V+lu1aoV2rRpA7lcDolEgqSkJJw5cwbJycmoqKiAWCyGnZ2dpuCj6tbBwQFGRkYN+nMgelYikQjbt29H586dMWnSJBbbERERkdZq06YNbt++/a/rVb0P6NevX7Xl/yz5CA8PR0hISJMt+SAiIiL6N6tWrUJCQgKGDx+Ov/76C23btq12f58+ffDmm28iICAAffr0gYmJiUBJibRfUVHRMxcl//XXXxg5ciT8/PywbNmyOkpGRERE2iosLAw//fQTjh07xiIPIiIiojoiquQljImIiIjqhUgkwr59+zBq1Ciho9Sb8PBwPP/884iNjYWTk1O97mvcuHE4fvw44uLioFAo6nVfRNQ47N+/H35+fuDbWmrqSktLoVQqMXr0aKxYsULoOKRl3Nzc0KFDB+zdu1foKPT/lZWVYcaMGfjyyy+xbNkyzJs3T+hIVI/y8/Oxbds2rF27Fnfv3sVrr72G+fPn1/v7I2ocDhw4gICAABgaGmLbtm01Ju09qZs3byImJgYxMTGIiopCTEwMrl69itLSUojFYjg4OKBdu3aQy+XQ09NDTk4Obt26hbi4OBQWFgL4vwmASqVSMwlQpVLBysqqLg+ZqM798ssvGDhwIL7++muMHTtW6DhERERENbz00kto3749tm7dWqfb/WfJR2xsLC5fvoy8vDwAtb/G79KlC8zNzes0x9NqTlfSIgkGpV0AACAASURBVCLtxucjosYpNzcXnp6e0NHRQVhYWI2y4uzsbKhUKgwYMAAhISECpSTSfgMGDEDbtm2xbdu2p3p8QkICvLy84O7uju+//x66uvV/HVlfX1/IZDLs2rWr3vdFRERENXl5eUFXVxd//PGH0FGIiIioiWtOn9/X/ycqRERERNRkXbhwAcbGxnBwcKj3fX322WdwcnLChx9+iI0bN9b7/oiIiLSFWCzG22+/jTVr1mDhwoU1Tlaj5u3dd9/F2LFjcePGDdjZ2Qkdp9nLzc2Fn58fQkNDcejQIQwdOlToSFTPjIyMMHPmTLzzzjvYs2cPVq5ciU6dOmHw4MH48MMP0aNHD6EjkoBGjhyJ3r17IyAgAC+99BLeeustrFy5EmZmZv9pOzY2NrCxscGQIUM0y8rKypCcnIzY2FiEh4cjLi4OkZGRuHLlCiorKyGTyeDo6Ij27dtrCjtyc3MRGxuLPXv2IDc3FwBgYmJSbfJf1a2NjQ1atGhRdz8Moqc0YMAAzJo1CwEBAfD09IRSqRQ6EhEREVE17du3x82bN+t8u9bW1rC2tq5RClhbyce3336rKfkwMTGp8fq+c+fOsLCwqPOMRERERPXF2NgYhw8fhru7O8aPH48DBw5Uuyq4XC5HcHAwRo4ciddeew39+/cXMC2R9ioqKoK+vv5TPTY1NRX9+/eHra0t9u7d2yBFHkRERCSs77//HmfPnsXZs2eFjkJERETUpIgqeQljIiIionohEomwb98+jBo1Sugo9WbSpElISEhosPbd3bt3Y/z48Th16hS8vLwaZJ9EpL32798PPz8/8G0tNQcPHjxA27ZtsWbNGrz99ttCxyEtUl5ejo4dO2LgwIFYt26d0HGataSkJAwZMgRZWVk4fPgw3NzchI5EAqisrMRPP/2E5cuX49y5c/D09MS8efMwZMiQaicaU/Pz3XffYebMmSgsLMTy5csxceLEeinLyMnJQUJCQrWSj6ioKGRkZAD4v6t329nZQSaTAQDy8/MRHx+PxMREJCYmAgAkEgns7OyqTQBUKpVQqVRPfeIv0dMqLi5Gt27d0LJlS/z+++8smiEiIiKtsnz5cmzdulXzWlootZV8REVFVSvya8iSj+Z0JS0i0m58PiJq3E6fPo1+/fph4cKF+Oijj2rcP2LECERERCA6OhpSqVSAhETarXv37vD29sbq1av/0+Pu37+PXr16QSQSITQ0FKampvWUsCZfX1/IZDLs2rWrwfZJREREf5+D1rlzZzg7O2Pv3r1CxyEiIqJmoDl9fs+KVCIiIiJ6ahcvXkTfvn0bbH9jxozBvn37MHHiRERGRnICERERNRumpqYYPXo0vvjiC0yZMoUTwklDR0cHM2bMwAcffICPP/4Y5ubmQkdqls6fP49XXnkFrVq1wrlz59CuXTuhI5FARCIRfHx84OPjg7CwMKxcuRK+vr5wdnbG3Llz8cYbb/DKZc3UiBEjMGDAAAQGBiIgIADbt2/HF198AXd39zrdj0wmg5ubG9zc3DBu3DjN8n9O7IuJiUFERAQKCwuhq6uLdu3awcnJCSNHjoSJiQkqKiqQlZWFpKQkHDhwAEuXLkVFRQXEYjHatm1breDDyckJXbt25cnyVG8kEgl27twJd3d3bNiwAdOnTxc6EhFRk5OdnY2ioiLk5+ejoKAAxcXFKCkpQX5+PioqKpCdnQ0AyMrKQmVlJfLy8lBaWorCwkIUFRWhtLQUeXl5AP4uuMvKytJs++H7AGgeU6VqW3VBoVDU+MxEJpNBR0en2jITExMAf1/Nu0WLFpBKpRCLxTA0NIREIoG+vj4MDAygp6cHIyMj6OjoQCaTQSqVQiqVwsjICAqFAsbGxnx9T7Czs0NycjJKSkqgp6cnWA5ra2tYW1ujX79+1ZbXVvKxZ8+ex5Z8ODs7o1WrVkIcBhEREVE13t7eWLt2LaZPnw57e/saF1TasGEDnJycsGjRIqxZs0aglETaKz8/H0ZGRv/pMQUFBfD19UVOTg7Onj3boEUeREREJJyQkBAkJCTghx9+EDoKERERUZPDswqIiIiI6KkUFRUhNjYW77//foPud926dejUqROWLl2KZcuWNei+iYiIhDRr1ixs27YNR44cwdChQ4WOQ1pk4sSJWLp0KTZu3IhFixYJHafZOXjwIMaNG4fevXtj3759kMlkQkciLeHl5QUvLy9cvnwZa9asgb+/PwIDAzFz5kxMnjwZBgYGQkekBiaVSrF69WqMHz8e06dPh4eHB15//XUsX7683kuAapvYV1ZWhuTkZMTGxiI8PBxxcXE4cuQIrl69ioqKChgbG8Pe3h5ubm7w9/fXPL/dv38fsbGxOH78OOLi4lBYWAgAsLKyqlbwoVKp0KlTJ1haWtbrsVHz0LVrV3zwwQeYP38+Xn75ZXTo0EHoSEREgsnNzUVOTo7mKzc3F2q1utqywsJCqNVqFBcXo6CgADk5OSguLkZubi7y8/NRXFyMrKwsFBUVacbyJ1FVjFFVeiGRSGBoaKgpu6hSVZIB/F3KZGFhobmvqiCjStW2ntXDpSMPU6vVj1zv5s2bAICcnByUl5drikWqCk2e5Oejr68PIyMjyOVyTeGHkZERZDIZ5HI5TExM0LJlS5iZmcHU1BQtW7asdlsXx07CsrOzQ3l5OW7duqWVr1H+S8nH3r17kZOTA6D2kg++viciIiIhBAQEICYmBv7+/nBwcEDnzp0191laWmLVqlWYPHkyRowYgZ49ewqYlEj7/Ncyj9LSUrz66qu4du0aTp8+jbZt29ZjOiIiItIWhYWFWLp0KaZMmaKVn3ESERERNXaiysrKSqFDEBERETVFIpEI+/btq3FViKbizz//hIeHB+Lj4xv8g7sNGzZg1qxZCAsLQ/fu3Rt030SkPfbv3w8/Pz/wbS01J76+vkhPT8f58+eFjkJaJjAwEOvXr8eNGzcgl8uFjtNsBAcHY86cOZg2bRrWrl1b42rPRA9LSkrC559/jq1bt8LY2BhTp07FrFmzoFAohI5GAjl06BDmzZuHlJQUzJ49G/PmzdOK5/CcnBwkJCRUK/mIiopCRkYGgP+b1Ofm5gZHR0eYmprCyMgI169f10wCjIqKqnal74cLPqpubWxsNJN8iZ5EWVkZPDw8IJFIEBoaynGXiBqdwsLCaoUb/yzgqCrpyMrKQnZ2do37srOzkZWV9cjPwqrKJIyNjWFoaAiFQgF9fX0YGBhALpdDT08PxsbGMDIygkQigUKh0JRxyGQySCQSGBsba5bp6urC2NgYwN/jeXNWUlKC/Px85ObmIi8vD/n5+Zr/R/n5+cjLy9P8v6q6PycnB9nZ2VCr1bh37x7u37+vKUl4mFQq1ZR7tGzZEhYWFmjVqhVat26tubW0tIS1tbVWvFakmrKysmBiYoJjx47h5ZdfFjrOM1Or1dUKPuLi4nD58mVkZmYCePKSj927d8Pf3x/FxcVCHAYRkQafj4iahtLSUgwYMACJiYm4cOECzM3NNfdVVlZiwIABSEtLw8WLF6GnpydgUiLtYm5ujsDAQAQEBPzrupWVlZgwYQL279+P48ePo0ePHg2QsCZfX1/IZDLs2rVLkP0TERE1R0FBQVi+fDkSEhJY5ktEREQNpjl9fs8yDyIiIqJ60tTLPDZu3IgPP/wQDx48aPDJN5WVlRg0aBCSkpJw6dIlXtGaqJlimQc1R1VlWqGhofD29hY6DmmR7OxsKJVKzJgxA4sWLRI6TpNXUlKCyZMnY/fu3fj8888xbdo0oSNRI5KRkYGNGzciODgY5eXleOuttzBv3jxYW1sLHY0EUFJSgo0bN2Lp0qUAgLlz52LGjBmQSqUCJ6spJSUFMTExiIqKQnR0NGJiYhAXF4eSkhLo6urC3t4enTp1QufOndGlSxfY2tpCrVZXmwSYmJiIxMREAIBEIoGdnV21SYBOTk5wdHRkyQc90uXLl+Hu7o6VK1di1qxZQschomaouLgYDx48eOTX/fv3NbdqtVpTwJGTk4OysrJat2lkZASZTKYp4lAoFJpijn9+mZiYwNjYuMZyFsQ1DmVlZbh//36135OHbzMzM5GZmYn09HSkpKQgIyMDJSUlmscbGBjAyspK82VtbQ0rKyu0b98eNjY2sLW15YnWAmnZsiWWLFnyRBPkGqvaSj5qK/2rel2flpaGNWvWVPsdJiISQnM6GZioqbt//z66d+8OKysr/P7779VKOxITE+Hs7IwFCxbgww8/FDAlkXYxNDTEpk2bMH78+H9dd+7cuVi3bh2OHDmCAQMGNEC62rHMg4iIqGGp1WrY2dlhxowZCAwMFDoOERERNSPN6fN7lnkQERER1ZOmXubh7++PpKQknDhxQpD9p6amwtnZGW+99RbWrFkjSAYiEhbLPKi56tWrF2QyGX766Seho5CW+eSTT7B69WokJibC1NRU6DhNllqtxvDhw3Hx4kXs2bMHQ4YMEToSNVK5ubnYvn07Pv30U9y/fx+jRo3CwoUL0aFDB6GjkQCys7Oxdu1afP7555BIJJg3bx6mTp0KQ0NDoaM9VllZGeLj4xEdHY2oqCjExMQgOjoaSUlJAP6e1Oji4oKuXbuiS5cu6Nq1K8zNzZGQkIArV64gLi5O85WSkgLg75OLHR0d4eTkpCn3UKlUsLW1hY6OjpCHS1pi8eLF+PTTTxEVFQU7Ozuh4xBRI/UkpRxVBQsPf+Xl5dXYllQqhampqearZcuWaNmyJUxMTCCXy6FQKKoVb1SVcZiYmEAmk3F8o8fKyMhAeno6UlNTNbdpaWnVblNTUzVlMfr6+rC1tdWUe9jY2FT73szMTOAjaprc3d3h5eWFtWvXCh2lwdVW8hEdHY309HQA1Us+lEplte+JiBpCczoZmKg5uHLlCjw8PDBixAhs37692n0rVqzAkiVLEBMTw9caRAAqKiqgq6uL/fv349VXX33suitWrMCCBQvw7bffws/Pr4ES1o5lHkRERA1rzpw52L17N65fvw6ZTCZ0HCIiImpGmtPn9yzzICIiIqonTb3Mo0uXLhgwYAA+/fRTwTLs2LEDEydOxIkTJ9C7d2/BchCRMFjmQc3V0aNHMWTIEERERMDFxUXoOKRF8vLyYGdnB39/fwQFBQkdp0m6ceMGhgwZgtzcXBw5coT/BqlOFBcXY9++ffjkk09w48YNDBo0CIGBgXBzcxM6Ggng/v37WLVqFdavXw9DQ0PMnDkTAQEBUCgUQkf7T3JychAVFaWZ0BceHo6IiAgUFhZCLBajQ4cOcHNzg5ubG1QqFVxcXCAWi5GQkIDExMRqkwGvXr2KiooKiMVitG3bttrVvlUqFVQqFfT19YU+ZGpApaWlcHV1RZs2bXDs2DGh4xCRFigtLcW9e/eQmZmJzMxMpKen4969e5pl9+7de6ZSjoeX/fN+U1PTaleDJhJCWVkZUlJScPPmTc1XUlISkpKScPPmTaSmpqKiogIAYGxsDHt7ezg4OMDJyQkdO3aEo6MjnnvuOf4uP4MxY8ZArVbj6NGjQkfRGlu2bMH06dOxfv36R5Z8PFzuwZIPIqovzelkYKLm4scff8Tw4cOxbt06vPPOO5rlZWVlcHNzg5WVFX7++WcBExJph9zcXMhkMhw7dgwvv/zyI9f74osvMGvWLKxbtw4BAQENmLB2LPMgIiJqODdv3oSDgwNWr16NadOmCR2HiIiImpnm9Pk9yzyIiIiI6klTLvMoKirS/NFM6Db+4cOHIzIyEpcvX4axsbGgWYioYbHMg5qryspKuLq6QqVSYffu3ULHIS2zevVqBAYG4saNG2jVqpXQcZqUs2fP4pVXXkHr1q1x5MgRtGnTRuhI1MRUVFTg6NGjWLx4McLDw+Hp6YnAwED069dP6GgkgMzMTAQHB2PDhg2o+H/s3XlcFPXjP/AXsNy3wnKIFwrKIcjlBYhH5q15ZWKa95VZny7zqNTSsjyy1PrlVeonrzQzTS1NRUhDUTy4PFBRrgVc7mvZ3d8ffXc+rngLzMK+no/HPNhjZvY1iMsyM+/XqFSYNm0a3nrrLbi4uIgd7ZlVVVUhJSVFq+AjNjYWMpkMAODi4qJV8OHt7Q1vb28oFApcvXpV60rfCQkJSElJgVKpfGjJh7e3N8zNzUXeaqot0dHR6Nq16xNdVZKI6p/KykqhhCM7O1u4nZOTA5lMBplMJpR1yGQyyOVyreUlEgkcHBzg6OgIBwcHODg4sJSD9FplZSXS0tKEkg/NZ7KUlBTcvHlTuFqzplihTZs2QtlH27ZteTXGJ7BkyRJ8//33uHnzpthRdMbDTr6Ty+Van+sTExNx+fJlZGVlAQDs7OzQqlWrap/vW7ZsCQMDAzE2hYjqOX06GZhIn3z66adYuHAhDh8+jB49egiPa/YZ7dq1C8OGDRMxIZH4MjMz4erqiqioKISHhz9wno0bN2LSpElYsmQJPvjggzpO+GAs8yAiIqo7o0aNQlxcHBISEmBsbCx2HCIiItIz+rT/nmUeRERERLWkIZd5nDp1Cl26dMG1a9fQqlUrUbPIZDK0a9cOw4YNw9q1a0XNQkR1i2UepM+2bNmCCRMm4MqVK2jZsqXYcUiHlJeXo3Xr1nj55ZexYsUKseM0GDt27MC4cePQr18/bNmyBRYWFmJHogbuyJEjWLBgAWJiYhAaGorZs2djwIABHLikh4qLi7FhwwZ8+eWXyMnJweDBgzFlyhT07Nmzwfw8ZGRkIC4uTqvkIzk5GSqVCra2tvD19dUq+AgJCYGpqSkqKyuFko/U1FStAYHl5eWQSCRo1qyZ1hW+vb29ERAQAEtLS7E3m2rA+PHjcfjwYSQlJcHW1lbsOET0CBUVFcjLy4NcLodcLkdmZiYyMjKE+/c/lp2dDZVKpbUOe3t7uLi4wN7eHvb29nB1dX3ofScnJxgZGYm0tUT1S2VlJe7cuVOtXCE5ORklJSUAtEvXgoKC0LFjR0ilUpGT65Zff/0VQ4YMQX5+PstP/s/Tnnz3oJKPhIQEZGZmAmDJBxE9O306GZhIn6jVaowePRqHDx/GP//8g9atWwvPcZ8R0b+uXbsGDw8PnDt3DgEBAdWe//HHHzFhwgQsXLgQ8+fPFyHhg7HMg4iIqG78888/6Ny5M3755RcMHjxY7DhERESkh/Rp/z3LPIiIiIhqSUMu81i9ejXmz58PuVyuEyfIbd++HZGRkThw4AD69u0rdhwiqiMs8yB9plQq4eXlhYiICKxbt07sOKRj1qxZg3feeQdJSUkse3lOarUaCxcuxKJFi/DGG29g5cqVMDQ0FDsW6ZHo6GgsXboUBw4cgK+vL959911ERkZCIpGIHY3qWHl5ObZv3461a9fizJkz8PPzw4wZMzB69GhYWVmJHa/GFRYW4uLFi1oFH+fOnUNZWRmMjY3h4eEhDCb18fFBQEAAGjduDABQKBS4fft2tYGAiYmJKCsrA/DvgNR7BwB6e3vD398f1tbWYm42PaW8vDy0bdsWY8eOxfLly8WOQ6R3ysrKkJ2djczMTOTk5CArKwtZWVnIyclBZmYmsrOzhduFhYVay5qYmMDBwQGOjo5wcnKCo6MjHBwc4ODgINzXPCaVSmFvby/SVhLpL5VKhZs3b+LSpUs4d+4czp8/j3PnziE9PR0A0Lx5cwQGBiIgIACBgYEIDAyEi4uLyKnFc/36dbRu3RqnT59Gx44dxY6jE2rq5LvHlXzY2tqidevWLPkgoofSp5OBifRNWVkZIiIiUFRUhNOnTwvFHZp9RmPGjGHxPem1CxcuoH379khJSYGnp6fWcz///DNGjRqFOXPmYNGiRSIlfDCWeRAREdWN8PBwGBkZ4fjx42JHISIiIj2lT/vvWeZBREREVEsacpnHhAkTcOvWLRw9elTsKIKXX34Zp0+fxoULF3hyN5GeYJkH6buNGzdi2rRpSElJYWEDaamqqkL79u3h7e2NnTt3ih2n3qqoqMCkSZOwfft2rFq1CjNmzBA7EumxS5cu4csvv8S2bdvg5uaGt956C5MnT4aFhYXY0UgEZ86cwbfffovt27fDxMQEY8eOxYwZM9C2bVuxo9WqqqoqpKSkaBV8xMbGQiaTAdC+YrxmEJ+3t7cwgK+qqgppaWmPver8vQMA3d3d4e/vD0dHR9G2mx5t3bp1mDFjBs6cOYP27duLHYeo3istLX1kKYdMJoNMJkNGRgaKi4u1lrW1tYWLiwscHR3h7OwMZ2dn4baTk5NWWQevjExUf2VnZ2uVe5w7dw43btwAALi6uiIsLAyhoaEIDw+Hn58fjIyMRE5cN1QqFWxsbLBq1SpMnDhR7Dg6obZPvpPL5UhNTa32+T41NRUASz6I6H/06WRgIn2UkZGBDh06oF27dti/f7/w+XP9+vWYNm0azpw5g4CAAJFTEokjJiYGYWFhuHPnDpo0aSI8vmfPHowcORIzZ87EypUrRUz4YCzzICIiqn07d+7EK6+8gtjYWAQHB4sdh4iIiPSUPu2/Z5kHERERUS1pyGUewcHBiIiI0Kmrnubm5sLf3x+hoaEctEqkJ1jmQfpOoVCgbdu26NmzJ77//nux45CO2b9/PwYOHIioqCiEh4eLHafeycvLw9ChQ3H+/Hns2LEDffv2FTsSEQDg5s2bWLlyJdavXw9LS0vMmDEDb775JgsN9dTdu3exceNGfPfdd0hNTUWPHj0wZcoUDBw4EObm5mLHqzMZGRmIi4vTKvlISkqCWq2Gra0tfH19tQo+QkJCYGpqKiyvVCpx48YNJCQkICkpSfialJSE0tJSAICbmxu8vLyEdfj6+sLb25uD0XWASqUSPutER0dzYCbRA5SUlDyylCMnJwfZ2dnIzMwUyo007Ozs4OzsDKlUKpRySKVSuLi4QCqVQiqVwtXVFY6OjjAzMxNpC4lIbHK5HOfOncOZM2cQHR2NmJgY5Ofnw8bGBl26dBHKPTp06NCgP6cGBweja9euvPr7/xHr5LvHlXzY2NjAw8OjWslHixYtYGhoWKdZiahu6NPJwET66tSpU+jevTvefvttLFmyBACgVqsRHh6OyspKnD59mr/nSS/98ccf6N27N/Lz84V92YcOHcJLL72EKVOm4OuvvxY54YOxzIOIiKh2VVZWwsfHB507d8bmzZvFjkNERER6TJ/237PMg4iIiKiWNNQyD83Vxb755huMHz9e7DhaTpw4gR49emDdunWYMGGC2HGIqJaxzIPo36tKzZgxAykpKWjZsqXYcUjH9O7dGzk5OTh79ixPUnwK165dQ//+/aFQKLB//354e3uLHYmompycHKxZswZff/01FAoFJkyYgPfff1/rymqkP1QqFQ4fPoy1a9fi4MGDsLS0xEsvvYRRo0bhhRdegEQiETtincvPz8eFCxcQHx+P+Ph4XLhwAQkJCaisrISpqSn8/PwQHByMoKAgoejD2NhYax1qtRo3b95EYmIiEhMTtYo+ioqKAADNmjWDt7c32rVrp1XyYWFhIcZm663z588jODgYP/30E0aOHCl2HKI6oVQqIZPJkJWVJZRzpKenQyaTITMzU+ux+ws6GjVq9MhSDicnJ7i4uMDR0VGr/IiI6EmpVCokJCTg5MmTiImJwcmTJ3H79m2YmJggKCgIYWFh6N69OyIiIhrU56Zx48YhMzMThw8fFjuKTtC1k+/y8/Nx/fr1aiUfN27cgFqtrlby4e7uDm9vb3h5eXG/GlE9p2vvR0RUO7Zs2YLXXnsNW7ZswejRowEAly9fRmBgIL7++mtMmzZN5IREdW/Pnj0YNmwYKisrYWxsjD///BODBg1CZGQk1q9fr7PFyCzzICIiql3Lli3DRx99hOTkZDRr1kzsOERERKTH9Gn/Pcs8iIiIiGpJQy3zuHbtGjw8PPDPP/+gQ4cOYsep5v3338fatWsRFxeHNm3aiB2HiGoRyzyIAIVCgTZt2uDFF1/Ed999J3Yc0jGJiYnw9/fHpk2b8Oqrr4odp16IiYnBSy+9hNatW2Pv3r1wcnISOxLRIxUVFWHjxo348ssvkZOTg5EjR2LevHn8W0iPZWdnY+fOndi2bRtOnz4NR0dHvPzyy4iMjESnTp109uTcuqBQKJCQkID4+HicO3cOcXFxiI+PR2lpKczMzODn5yeUewQHB8PHx+ehRSgZGRlaAwA169UMmHdxcdG6yre3tzcCAwMb1GBVXTNu3DhERUUhKSmJ5QNUrxUWFiIjIwMymQwZGRnIzs4WCjuys7OF52QyGVQqlbCchYUFXF1d4eTkBGdnZ6Gko0mTJpBKpXB2doazszOkUilMTExE3EIi0ldpaWk4efIkoqOjER0djYSEBJiamiIiIgJ9+vRBnz590LZtW7FjPpcVK1Zg6dKlyM7OFjuKTqgvJ989ruTD1NQUrVq1qvb5niUfRPVHfXk/IqLn984772Dt2rU4ceKEcD7Te++9h3Xr1iEpKQkuLi4iJySqW1u2bMHkyZNRXl6O6Oho9OnTB8OHD8fGjRt1+rMsyzyIiIhqj1wuR+vWrTFjxgx88sknYschIiIiPadP++9Z5kFERERUSxpqmcevv/6KIUOGoKCgANbW1mLHqUahUCA8PBwKhQKnTp3iyelEDRjLPIj+tW7dOrz++uu4cuUKWrRoIXYc0jFTpkzBwYMHkZKSwgHEj7Fp0yZMmzYNgwYNwubNm2Fubi52JKInVllZie3bt2PJkiW4evUq+vXrh48++gghISFiRyMRpaamYtu2bdi2bRsSEhLQsmVLjBo1CqNGjYKvr6/Y8XSCUqlEcnIy4uLihElTymFsbAwPDw+h4CMoKAghISGPLIrIyMhAXFyc1iDAxMRElJWVQSKRoFmzZloDAH18fODj4wMzM7M63OqGKT09HZ6envjkk0/w9ttvix2HSEtlZeUDyzlkMhnS09Mhk8mQmZmJrKwslJWVCcsZGRlBKpXCyckJqBn3bwAAIABJREFUrq6ukEqlDy3ssLKyEnELiYieXmZmJg4dOoRDhw7hzz//hFwuR4sWLYRij549e9a797aoqChERETg1q1bvKIl6v/JdwUFBbh27RpLPogagPr+fkRET06lUmHQoEE4d+4cYmNj4ebmhpKSEnh7e6Nr164sBiC9891332H+/PnYt28fevfujT59+mDbtm0PLbHWFSzzICIiqj2zZs3Cjh07cPXqVdjY2Igdh4iIiPScPu2/Z5kHERERUS1pqGUeixcvxvr163Hjxg2xozzU9evXERAQgOnTp2Pp0qVixyGiWsIyD6J/KRQKeHp64oUXXsC6devEjkM6Jjs7G23atMGMGTOwZMkSsePoJLVajYULF2LhwoWYNWsWVq5cyUEXVG+pVCocOHAAn3zyCc6cOYPQ0FDMnj0bAwcOFDsaiezChQv46aefsH37dqSlpaF169bo378/BgwYgK5du7II8x5VVVVISkrSKvi4cOECSktLYW5uDn9/f61yDy8vLxgZGT1yfWlpaVqDAOPi4pCSkgKlUgljY2M0bdoU3t7eCAoKEgYBtm3b9pHrpermzp2L7777DlevXkXjxo3FjkN6QCaTaRVxZGdnIyMjAzk5OUJxR3Z2NnJzc7WWs7GxeWw5h1QqhVQq5edSItILSqUS//zzj1DuERcXB4lEgtDQUPTv3x/Dhw9H8+bNxY75WCUlJbC1tcWOHTswbNgwseOIrqGefPe4kg8TExO0bt2aJR9EOqShvh8R0YMVFhaiS5cuMDU1xcmTJ2FhYYFffvkFw4YNQ3R0NLp06SJ2RKI6s2zZMixbtgylpaV48cUXsX37dp0v8gBY5kFERFRbrly5Al9fX6xZswaTJ08WOw4RERGRXu2/Z5kHERERUS1pqGUekZGRKCoqwm+//SZ2lEfatGkTJk2ahEOHDqFXr15ixyGiWsAyD6L/+fHHHzFx4kRcunQJXl5eYschHfP111/jvffeQ3x8PH8+7lNRUYEJEybg559/xvfff4/XXntN7EhENSY6OhpLly7F/v37ERgYiDfffBOjR49mOYCeU6vVOHXqFH777TccOHAAly5dgrW1NV588UX069cP/fv3h5OTk9gxdY5SqURycrJWwcf58+dRWloKKysrrYIPTSHH4ygUCly5ckVrAGBCQgKSk5OhUqk4CPAZFBUVwcPDA6NHj8by5cvFjkP1VHFxMdLT0yGTyZCVlYWsrCzIZDLhMU1xh0wmQ1VVlbCcqampUM4hlUofWM6heczc3FzELSQi0n05OTn4448/cOjQIfz++++Qy+Xo2LEjXn75ZQwfPhxNmzYVO+JD+fr6YuDAgfjss8/EjiI6fTr5Dvh34PDVq1erlXzcvHnzkZ/vWeJHVPv07f2IiP4dpNipUyf0799fKAPo3bs3cnNzcebMGe5bI70xfvx4bN68GYMHD8b27dvrTak3yzyIiIhqx6BBg3Djxg3Ex8dzfxQRERHpBH3af88yDyIiIqJa0lDLPPz9/dG3b198/vnnYkd5rMjISPz111+4cOECByMRNQCagwkaRUVFyMzMhKenp9Z8U6dOxcyZM+s6HpGoVCoVAgMD0bp1a/z8889ixyEdo1Kp0LlzZ5iZmeH48eMwMDAQO5JOyM3NxZAhQ5CYmIjdu3ejW7duYkciqhXnzp3DV199hZ9++gktW7bEzJkzMW3aNJiamoodjXTArVu38Pvvv+O3337D8ePHUVFRgaCgIAwYMAD9+/dHQEAAT25/iPsLPmJiYhAfHw+lUgkXFxetco/Q0FA0atToidZbWVmJq1evIi4u7oFX+raxsYGHh4fWAEAfHx+4u7vX8hbXD2vWrME777yDxMREfk9IUFFRgZycHK2SjszMTMhkMmRkZGg9VlpaKixnYGAAqVQqlHQ4OTnByckJrq6ucHR0FB5zdnZ+4v/jRET0dBQKBY4cOYKdO3di7969KCgoQOfOnYVijyZNmogdUcv48eNx+/ZtHDlyROwootOnk+8eRVPykZqa+lQlfiz5IHo2arUar776KtLT04XH8vLykJqaipCQEOExAwMDTJo0CaNHjxYjJhHVgT///BP9+vXD4sWL8f777yMxMRH+/v7YsGEDxo4dK3Y8oloXFRWFXr16wcrKCllZWTA2NhY70hNjmQcREVHNO3LkCHr16oXDhw/jxRdfFDsOEREREQD9Op7IMg8iIiKiWtIQyzyqqqpgZWWFdevWYcyYMWLHeaz8/Hy0b98efn5++PXXXzlwlaie8/HxQWJi4mPn+/TTTzFv3rw6SESkW/bt24fBgwfj1KlT6NSpk9hxSMecPXsWHTt2xObNm/XmBOW///4bmZmZGDZsWLXnEhISMGDAABgZGWH//v1o27atCAmJ6ta1a9fwzTff4P/9v/8HJycnvP3225g0aRIsLS3FjkY6orS0FEePHsX+/fvx+++/486dO7C3t0d4eDgiIiIQERGB9u3bc0DZIxQXFyM+Pl6r4CM1NRUA4O7ujtDQUKHgIyQk5KlKdfLz83H58mUkJCTg8uXLSExMxKVLl5CTkwMAaNy4MXx9feHt7Y127drB19cX7dq1g52dXa1sq65SKBTw9vZGeHg4Nm7cKHYcqkVqtRoymQwymQyZmZnIyspCdna2VklHdnY2srOzkZeXp7WsjY0NXF1dIZVK4eLiolXSce9jUqkUEolEpC0kIqL7VVZW4o8//sCuXbvw66+/oqioCF26dMHLL7+MkSNHQiqVih0Ra9aswbx58yCXy/X+mJQ+nXz3LCoqKnDt2jWtAj+WfBDVjObNmyMtLe2x8y1evBhz586tg0REJJaVK1fi3Xffxd69ezFw4EBMmzYN+/fvR0pKCveLU4N2+PBhDBkyBE2aNIGbmxuOHTsmdqSnwjIPIiKimlVVVYWAgAB4enpi9+7dYschIiIiEujT8USWeRARERHVkoZY5pGcnAwvLy/ExcUhMDBQ7DhPJCYmBt26dcMXX3yB//znP2LHIaLnsHTpUsyfPx9VVVWPnO/q1ato3bp1HaUi0i1hYWGQSCQ4fvy42FFIB02bNg179+5FcnJygx/YW1paitatWyM7Oxv79u1D//79heeOHDmCESNGwNvbG3v37oWjo6OISYnqXlpaGpYvX44NGzbA3Nwcr7/+OmbNmoVGjRqJHY10iFqtxsWLF3H8+HGcOHECJ0+eRG5uLmxsbBAeHo6uXbsiIiICQUFBHOj+GOnp6YiNjcU///yD2NhYnD17FkVFRTA3N0dwcDC6dOmC0NBQdOnSBY0bN37q9cvlcq3Bf4mJibh48SJkMhkAwMXFRRj4FxQUBB8fH/j6+j5VkUh9s3HjRkybNg1XrlxBixYtxI5DT6moqAgZGRnVSjrufSw7OxsymUxr/4CpqWm1Qg5nZ2dIpdJqj5mbm4u4hUREVBMqKipw+PBh7Nq1C/v27UN5eTkGDx6MKVOmoEePHjA0NBQlV2xsLDp27IiUlBR4enqKkkFX6NPJdzWpsrISV69efWjJh7GxMTw8PLRKPtzd3Rv8Z3yip/Hhhx9i6dKlUCgUD53HwMAA169fR8uWLeswGRGJYcqUKdi+fTv+/vtvODk5wcPDA2+++SYWLlwodjSiWnHw4EEMHToUQ4YMgUQigVwux2+//SZ2rKfCMg8iIqKatXLlSsyZMweXLl2Ch4eH2HGIiIiIBPp0PJFlHkRERES1pCGWefz8888YOXIkiouL69VJ759//jk++ugjHDt2DKGhoWLHIaJnlJaWhhYtWuBhf8YaGBggMDAQZ8+ereNkRLojOjoa4eHh+OOPP9CrVy+x45COkcvlaNu2LYYPH441a9aIHadWffzxx1iyZAmUSiXMzMxw+vRp+Pn5YcOGDZg+fTqGDh2KH374AWZmZmJHJRJNbm4uVq9ejW+++QaVlZWYMGEC3n33XTRt2vSxy166dAlNmzZt8MVA9D9qtRoJCQk4fvw4oqKiEBUVhezsbFhZWSE0NBShoaEICQlBcHAwHBwcxI6r05RKJZKSkhAbG4u///4bf//9N5KTkwEAbdq0QZcuXRAWFobOnTujbdu2z/w6GRkZwsC/uLg4JCYm4vLly6ioqBAGAGrKPby9vRESEgJnZ+ea2kxRKRQKeHp6ol+/fg3+M099UVFRAZlMhvT0dMhkMmRlZT2wpCMrKwtlZWXCcoaGhpBKpQ8s5JBKpWjSpAmkUimcnZ1hb28v4hYSEZGYysrKsGvXLnz//feIiYlBq1atMGnSJIwbN67OP98oFArY29vjq6++wqRJk+r0tXWNPp18VxceVvKRkpICpVIJY2NjNG3aVCj40HxlyQfpI80FSh7GwMAAQUFBOHPmTB2mIiKxKBQK9OrVC2lpaYiNjcWmTZvw8ccfIykpCc2bNxc7HlGNOnDgAIYPH47Ro0fj+++/x4gRI2BiYoJt27aJHe2psMyDiIio5uTl5cHT0xPTp0/Hp59+KnYcIiIiIi36dDyRZR5EREREtaQhlnksXLgQW7duxdWrV8WO8lTUajWGDh2Ks2fP4vz58xxYRFSPderUCWfOnIFKpar2nEQiwfLlyzFr1iwRkhHpjv79+yM7OxuxsbGiXYWUdNdPP/2EMWPG4NixY+jatavYcWpFWloaPD09hZ27EokE9vb2eOWVV7B69WosWLAAH374IQwMDEROSqQbiouLsWHDBixfvhzZ2dkYOXIk5syZ89BBD4WFhXBzc4OzszOioqIazOB/enpJSUk4ceIEoqKi8Pfff+PWrVsAgBYtWiA4OFgo9wgKCoKtra3IaXVbYWEhYmNjER0djZiYGMTExKCsrAw2Njbo0KEDQkNDERYWhtDQ0OcqV1UoFLhy5YpWyUdcXBwyMzMBAPb29vD29tYq+QgKCqpXha4aa9aswTvvvIPU1FS4urqKHadBysnJEaasrCzIZDLk5uYKZR33PldYWKi1rK2tLVxcXISSDicnJzg7O2s9pinxMDIyEmkLiYioPkpISMC6deuwefNmFBcXY9CgQZg8eTJ69epVZ/vJevfuDUdHR2zdurVOXk9X6dPJd2J61pIPHx8fltxSg+bj44OkpKQHXiBAIpFgxYoVeOONN0RIRkRiyM7ORocOHeDh4YF9+/ahffv2CAkJwX//+1+xoxHVmJ9//hmRkZEYN24cvvvuOxgaGqJPnz5wc3PD+vXrxY73VFjmQUREVHOmTp2KAwcOIDk5GVZWVmLHISIiItKiT8cTWeZBREREVEsaYpnHyJEjUVFRgb1794od5anJ5XIEBQXB3d0dhw8f5kAAonpq7dq1mDVrFpRKZbXnDA0NkZ6ezgGlpPcuXryIwMBAbNy4EWPHjhU7DumgIUOG4MKFC7h06RIsLS3FjlPjBg8ejIMHD0KhUAiPGRsbw9XVFQsWLMC4cePEC0ekwyorK7F9+3Z8/vnnSElJQb9+/TBv3jx06tRJa76lS5di/vz5MDAwQNOmTREVFYUmTZqIlJp0SU5ODs6ePas1ZWRkwMDAAB4eHkK5R/v27eHr68uizUdQKBSIi4vDqVOnEBMTg7///huZmZkwMTFBUFAQwsPD0a1bN4SHh9fISVdyuVwo99AM/jt37hzKysogkUjQrFkzodhDU/TRsmVLnS7GqqiogLu7O0aNGoVly5aJHadeKCkpgUwmQ3Z29gNLOrKzs7Weu/fvckNDQzg6OsLBwQFSqRTOzs5wdHSEo6MjnJychGIOTXEHB44SEVFtKy8vx65du7Bu3TqcPHkSLVu2xNSpUzF16lTY2dnV6msvWbIEq1evRkZGRq2+jq7Tp5PvdBFLPkjfafZfVVVVVXvO0NAQGRkZcHJyEiEZEYklPj4eYWFhmDBhAnr06IGhQ4ciKioKYWFhYkcjem47d+7Eq6++iokTJ2Lt2rXCftvw8HAEBQXhq6++Ejnh02GZBxERUc2Ij49HcHAwfvzxR4wePVrsOERERETV6NPxRJZ5EBEREdWShljmERQUhJ49e+KLL74QO8ozOXPmDMLDwzF//nzMnz9f7DhE9AxycnLg4uJSrczDyMgIXbt2xV9//SVSMiLdomnVT0lJaZBlDfR8MjIy4Ovri4kTJ+LLL78UO06NOnr0KF544YUHPieRSDBgwADs3r27zq7GS1QfqVQqHDhwAIsXL8Y///yD0NBQzJ49GwMGDEBlZSXc3NyQm5sL4N+iHKlUKgyOI7pfRkYGzpw5o1Xwofn5kUql8PX1hZeXl9bXxo0bi5xaN6WmpgrFHlFRUUhMTIREIkGHDh3QvXt3dO/eHV26dIG5uXmNvF5VVRXS0tKEkg9N0ceNGzegVqthZ2cnDPbTFH0EBATo1GfP5cuX4+OPP8aNGzfg6Ogodpw6V1JSgry8POTl5QkFHDk5OZDJZMjKykJubq5WYUdpaanW8lZWVnB2doZUKn1gSce9tx0dHfn5ioiIdFZSUhK+//57bNy4ESqVChMnTsRbb72FFi1a1MrrnTp1Cl26dMGVK1fg4eFRK69RH+jTyXf1iUKhwJUrVx5a8nFvmd+9JR/e3t419rcGUV24ffs2mjdvjvtPjTUyMkJERASOHj0qUjIiEtOePXswfPhwfPvtt9i5cydKSkpw6tQpnS6sJXqc7du3Y8yYMZg1axaWL1+u9VxAQAD69euHxYsXi5Tu2bDMg4iIqGZ069YNlZWViImJ4WdeIiIi0kn6dDyRZR5EREREtaQhlnk0atQIixcvxvTp08WO8sy+/vpr/Oc//8GhQ4fQq1cvseMQ0TN48cUX8ddff2kVehgZGWHdunUYP368iMmIdIdMJoOnpyfeeustLFiwQOw4pIPWr1+PqVOn4uTJk+jSpYvYcWpEVVUV2rVrh6tXr1YrfdIwNDTE7NmzsWTJkjpOR1Q/HTlyBJ9//jmOHj2K4OBgdOrUCWvXroVKpRLmkUgkQqGHu7u7iGmpvkhPT0diYiIuX76sNYCsoKAAwP9KPjSDxlq1aoVWrVqhWbNmkEgkIqfXHTKZDCdOnEB0dDRiYmIQFxcHiUQCf39/vPDCC3jhhRcQHh4OU1PTGn3dgoICXLp0Sfi3i4uLQ3x8PEpKSgAALi4uCAoKQlBQkDDoz8vLS5Sih5KSErRo0QKvv/56vf9MXFJSgtzcXGHKy8sTvt5b2HHvY2VlZVrrMDY2Foo3XFxc4OjoCAcHBzg5OcHJyalaSQcHaxIRUUNTWFiI9evXY9WqVUhPT8fw4cMxd+5c+Pn51ejrVFVVoVGjRli2bBmmTJlSo+uuT/Tp5LuG4N6Sj9TUVOHvtMuXL6OiooIlH1Qvde7cGbGxsVr7sYyMjLB+/XqMGzdOvGBEJKqPP/4Yn332GdauXYupU6di586dGDZsmNixiJ7Jxo0bMXnyZLz//vv47LPPqj3v6emJcePGYe7cuSKke3Ys8yAiInp+O3bsQGRkJE6dOoUOHTqIHYeIiIjogfTpeCLLPIiIiIhqSUMr8ygoKICdnR0OHjyIPn36iB3nuYwePRpHjhzB+fPn4erqKnYcInpKmzdvxvjx47VOvjM2NoZMJoOdnZ2IyYh0yxdffIEFCxYgKSkJzZs3FzsO6Ri1Wo1evXohOzsbZ8+erfGBvmJYuXIl3nvvvYcWedzrxx9/xNixY+sgFVHDcObMGXz++ec4duwY8vPzq13V1NjYGA4ODoiKikLr1q1FSkn13Z07d7TKPS5fvozk5GTk5+cDgDB4rFWrVnB3d4e7u7twu1WrVrCxsRF5C8SVlpaGY8eO4a+//sKxY8dw+/ZtWFhYICwsDL169cLAgQPRpk2bWnltpVKJ69ev4+LFi8J06dIl3LhxA2q1GjY2NvD390f79u0REBCAgIAA+Pj4wNjYuFby3GvOnDn48ccfcevWrTp5vSdRXFxcrXzj/mIOmUymdb+8vFxrHcbGxmjcuLEwOTg4aE33Pte4cWM4Ojry72UiIqL/U1VVhZ9//hlLly7FhQsXMHjwYHz44YcIDAyssdfo27cv7OzssG3bthpbZ32jTyffNWQKhQK3b98W/k570pIPLy8vWFhYiB2f9NzatWsxa9Ysrf3FPJ5IRGq1Gq+88gqOHj2Kzp074+rVq7h8+TJLhKneWbVqFf7zn/9g/vz5WLRo0QPncXV1xQcffIBZs2bVcbrnwzIPIiKi51NaWgovLy/07NkTGzduFDsOERER0UPp0/FElnkQERER1ZKGVuZx/vx5BAYGIjk5udYGf9SV4uJihISEwMnJCUeOHOFBeaJ6pqioCA4ODqisrATw76C+/v37Y+/evSInI9ItlZWV8PX1RYcOHbB161ax45AOunHjBvz9/TF9+nQsXbpU7DjPRSaTwd3dHSUlJY+cz9jYGAqFAtOmTcO3335bR+mIGobt27cjMjKyWpGHhrGxMWxtbXHixAl4e3vXcTpqyPLy8nD9+nWkpqYiNTVV6/adO3eEkj8HBwe0bNkSTZo0QdOmTeHi4oImTZqgSZMmcHV1hZubG6ytrUXemrpz7do1HDt2DMeOHcMff/yBvLw8tG7dGgMHDsSAAQMQHh5e6+UWhYWFuHz5Mi5evIj4+HicP38ely5dQllZGUxMTODr66tV8OHv7w8rK6sazXDr1i20atUKu3btwpAhQ2pknZWVlcjPz0d+fj4KCgqE23K5XLh973TvPHl5edUOQJuYmFQr5nB0dNS6f/9z+l5eQ0REVBPUajV+++03LFq0COfOnUP//v2xaNEiBAQEPPe6V6xYgcWLFyM7O1tvj0Hp08l3+uhhJR8JCQkoLy8XveTjzp07KCgogI+PT62/FumunJwcuLi4CGUePJ5IRBplZWUIDw9HSUkJrl27ho0bN2LMmDFixyJ6YkuXLsWcOXOwdOlSvPfeew+dz9bWFitWrMDEiRPrMN3zY5kHERHR8/nwww/xzTffIDk5Gc7OzmLHISIiInoofTqeyDIPIiIiolrS0Mo89uzZg+HDh6O0tBRmZmZix3luFy5cQOfOnfHGG2/U+8GrRPpo+PDh2LdvHxQKBQwNDbFjxw4MHz5c7FhEOmf37t0YMWIETp48idDQULHjkA5av349pk6dir/++gsRERFix3lmEyZMwNatW6FQKKo9Z2RkBJVKBUtLS0RGRmL69Olo3769CCmJ6jc/Pz8kJiZqXc30fhKJBDY2NoiKiuKAGaoTlZWVuHHjhlDucePGDWRkZODOnTvIyMhAeno6ysvLhfktLS2Fog83Nze4urrCyclJKElwcHCAVCqFg4NDjZdKiEmpVCI+Ph6//fYb9u/fj7i4OFhaWqJ79+4YOHAgBg0aVGcncimVSty6dQsJCQmIi4tDXFwcYmNjIZPJAAAuLi4ICgoSppCQkOfO1q9fPyiVShw+fBjA/8o47i3ZeFgZx/3z5Ofno7S09IGvY29vDzs7O63J1tZW6/6DSjv0qWSGiIhIV/3+++9YsGAB4uLiMHLkSHzyySdo1arVM6/v+vXraN26NY4dO4Zu3brVXNB6RJ9OvqP/eVzJh5GREZo3bw53d3etoo+AgABYWlrWWI7IyEihlHTJkiVo1qxZja2b6pfevXvj6NGjUCqVPJ5IRFpu3bqFDh06wNzcHEZGRkhOTq714lui56VWq/Huu+9i1apV+PbbbzF58uRHzi+RSLB161a88sordZSwZrDMg4iI6Nldv34dvr6++Pzzz/Hmm2+KHYeIiIjokfTpeCLLPIiIiIhqSUMr81i+fDlWrlyJO3fuiB2lxvzwww+YMGECtm3bhpEjR4odh4iewi+//IJhw4ZBrVbD3NwceXl5MDc3FzsWkU7q1q0bysrKcOrUKRgaGoodh3TQsGHDcP78ecTHx9fLq7zHxcUhJCQE9+/mlEgkUCqV6NatG8aNG4cRI0bwdwXRMzp06BD69u37RPNKJBJYW1vjxIkTaNeuXS0nI3q8vLw8ZGZmIi0tDVlZWbhz5w7S09OFso+cnBzk5uZqlX4AgJmZmVbhgqOjIxwcHNC4cWPY2NgIk729PWxsbGBtbS08puvlDKmpqUKxR1RUFJRKJcLCwjBq1CiMGDECjRo1qvNMN2/eRHx8PM6fPy98Lrl9+zYAwNXVFb6+vvDx8YG7uzvc3d1hYmICuVyOkpISlJSUoLi4GPn5+cLte+9nZmbixo0bsLOzQ3l5ebV/a40HlXE8qJDjYc8RERFR/aZWq7Fnzx7MmzcPqampmDx5Mj7++GNIpdJnWp+3tzf69OmDFStW1HDS+kGfTr6jx6uqqkJaWlq1ko/ExESUlZUB+LfYT1Pu8bwlH15eXkhOToZEIoGBgQHeeustzJ07l5/b9dCWLVswbtw4qFQqWFhYIDc3l/uIiUgQExODHj16oKqqCps2bcLYsWPFjkT0UEqlElOmTMHWrVuxZcuWx56PWFJSAisrKxw4cAD9+vWro5Q1g2UeREREz27AgAG4efMmzp8/z7I6IiIi0nn6dDyRZR5EREREtaShlXnMnDkTFy5cwMmTJ8WOUqNmzZqF9evXIzo6GoGBgWLHIaInVF5eDkdHRxQXF2PMmDHYvHmz2JGIdFZCQgICAgLw9ddfY9q0aWLHIR2Uk5ODdu3aYcCAAVi/fr3YcZ6KWq1Ghw4dcP78eSiVShgbG0OhUKBZs2aYMmUKxo0bhyZNmogdk6je69u3Lw4fPgxDQ0MolcrHzq8p9Dh+/Dj8/PzqICHR8ysuLkZubi5kMhlyc3ORl5eH3Nxc5ObmIicnBzk5OcjLy0NeXh4KCwuF6UEMDAyEogdra2tYW1vDwsIC5ubmMDMzg6WlJUxMTGBtbQ2JRAJbW1sYGhrC3t4ehoaGsLW1hZGRkVbJ1v33NfM97P6TKioqwrFjx7Bv3z78/vvvUCqViIiIwMsvv4zu3bvD0NAQBQUFUKlUwjIKhQLFxcXC/fLycmEAnlwuBwCUlpaioqICSqVS+D4kPbsfAAAgAElEQVQVFxdDoVAIy6tUKhQUFKCiogKlpaXC83K5vNprPIyJiQksLS1ha2uLxo0bw9LSEpaWlrCysoKdnR0sLS1hYWGBb7/9FsHBwRgzZgxsbGxYxkFEREQPVVVVhR9++AELFixASUkJPvroI8ycOfOpT36fM2cOdu7cievXr9dSUt2mTyff0bN71pKP9u3bw8rK6oHrVCqVsLCwQGVlpfCYsbExzM3NMXfuXLz55pswMzOrk+0j8RUVFcHBwQEKhQKvvvoqjycSUTU//PADxo8fD1dXV9y+fZsXRiCdVFlZidGjR+P333/H7t270adPn8cuk5WVBRcXF5w8eRJhYWF1kLLmsMyDiIjo2ezbtw+DBw/GsWPH0K1bN7HjEBERET2WPh1PZJkHERERUS1paGUe/fr1g4ODQ4M7waWqqgq9evXCjRs3cPbsWTg4OIgdqVaUl5cLg3KIGopvv/0Wx44dw7x58+Dv7y92HKIa4+zsjPDw8Bpd53vvvYcNGzYgOTn5ma8mqov4+63mxMbGYsWKFVi+fHm9Kr84ceIE1qxZA+Df8oDOnTujZ8+e8PLygoGBgcjpdE9tvL9olJWV4eDBg/z/2EBduHABCQkJkMvlQsFBfn4+ysvLhXkMDAyEK95WVVUJVzxduHAhmjdvLmJ6otpVUlKCsrIylJWVobS0VLiteby0tBTl5eWoqKiAQqFAZWWlcLu8vBxKpRKlpaVQqVQoKSmBSqUSBq3VR5piEjMzM+Fqx/b29gAACwsLmJqaahWP2Nvbw9jYGFZWVkLJiZ2dHUxMTGBlZSUsY2trCxMTE1RVVSE5ORmJiYm4fPkyzp49i4yMDBgYGMDDwwPBwcHCFBgYKFzF+9NPP8WqVatw584dmJqaivPNISIionqlpKQEn332GZYvX44WLVrgq6++Qu/evZ94+b///huhoaG4fPkyfHx8ajGpbtKnk++o5j2s5CMpKQmlpaUAHl7ykZGRgTZt2jxwvYaGhpBKpVi4cCEmTZrEAds1rKioCFVVVcJ9TYHjve4tg7yfphTyWWjKIR9kxYoVOH369COPJ1pZWT3zFYttbGxgZGT0wOfs7Oy09lNr/v69l+ZvYSISz6uvvor//ve/WL58Od5++22x4xBpKSkpwdChQxEbG4v9+/cjNDT0iZa7evUqPD09ER8fX+/Op2GZBxER0dMrKyuDr68vOnXqhP/+979ixyEiIiJ6Ivp0PJFlHkRERES1pKGVeXh5eWHkyJFYsGCB2FFqXF5eHkJCQuDu7o5Dhw5BIpGIHanG7dmzB8OGDRM7BhERPQGJRPLQk06fVWlpKXx8fNCtWzds2rSpRtctJv5+I3o6tfH+orF9+3aMGjWqVtZNREQ1y9TUFPv373/gc5qBRbdu3cLOnTuxf/9+GBsbY/LkyRg7diwsLCy0yjgAwMTERCjNEENGRgbi4uJw9uxZYZLJZDAyMoK3tzdCQkLg4eGBefPmYffu3XjppZdEy0pERET1z40bN/Duu+9iz549GDFiBFatWgUXF5fHLqdSqeDi4oJZs2Zh3rx5dZBUt+jTyXdUd6qqqpCamorLly8jKSkJly9fRnJyMpKSklBRUQFDQ0M4OjpCJpPhYadEGhoaQq1Wo127dvjqq6/QvXv3Ot6KJ1dZWYmSkhJUVFQI5ZHl5eVC6UVVVRWKiooAaJdk3FtskZ+fD7VaDaVSicLCQgAQ1gf8O0C4srISAFBQUACVSgW1Wo38/Hwhx/33718H1TxNKabG/X9331sKYm5uDjMzMwCAtbW1cK6DZh0SiQTW1tYAoFW8eW+BiaZ0xMjICDY2NgD+V1KiKe20s7MTvhI1NFVVVXB1dUVBQQFu3LgBV1dXsSMRAQDkcjn69++P1NRUHDp0CO3bt3/iZePi4hAcHIzr16/D3d29FlPWPJZ5EBERPb0FCxZgxYoVSEpKqlcXcSIiIiL9pk/HExveKEUiIiIiqnFqtRq3bt1Cy5YtxY5SKxo3bow9e/YgNDQUc+fOxRdffCF2pBqnuQrS7uQMkZMQEdGj/H1wH5b/Z1qNr9fCwgLLli3DiBEjMHbsWJ0+Qflp8Pcb0ZOrrfcXjaqqKhgbm2D7pZu19hpERPT8ovbtxtr57+CFF1545HxBQUEYOnQoioqKsHbtWnz22WfYsmULli5dijFjxmhdWVhsrq6ucHV1xcCBA4XHNAUfmmnv3r1QqVQYNmwY2rZti6CgIISFhSE0NBReXl68IjcRERE9VMuWLbF792788ccfmD59Ory9vfH5559jypQpj/xMZGhoiOHDh2Pz5s2YO3euTn1+IqqvJBIJPD094enpqfW4UqkUSj6+/fZbnDhxQiiouJ9KpQIAJCYmokePHujevTtWrlz5VFes1xRZ5Ofno6ysDGVlZZDL5ULZxr23i4qKUFVVhcLCQiiVSqEwQy6XCyUZKpUKBQUFQjmHQqFAcXHxU31vnrXcoXHjxo8sd9DQFDpo3Fv6oHHv6z5suXtf+0Huf90ndX/p5NN4lu+3xqNKTTT/rve6t3RFQ/OzoXFv8YqG5ufpQet5UCGLSqVCampqtYyaIph7X/dBZS2Po/l+a34ONP+umtIRU1NTWFhYCOUhFhYWMDU1haWlJUxMTGBjYwNzc3NYWlrC1tZWmMfOzg7m5uYwNzevVmhCVJskEgl2796Nrl27IiIiAvHx8aIW1xIBQFZWFnr37o38/HxERUVV+/zzOJrCr/t/XxMREVHDk5aWhi+//BKLFi1ikQcRERGRjmKZBxERERE9VlZWFsrKytCiRQuxo9Sa9u3b4/vvv8eYMWMQEBDAq4oTEVGDM2zYMPTv3x9vvPEGzp8/L5yUS0RERET0MNbW1pg9ezYmTpyI+fPnY/z48di4cSM2bdqk06WvDyr4mDNnDr7++mt0794d8fHx+Pnnn1FWVgZra2v4+fkhKChImHx8fERMT0RERLroxRdfxKVLl7Bw4ULMnDkTW7duxaZNm9C6deuHLvPaa69h7dq1iI2NRceOHeswLZF+MTIygoeHBzw8PLBr1y6tYoSH0RRFHz9+HAEBAfDz80OXLl1QXl6O4uJiFBYWoqysDCUlJVq3NWUJj3JvIYGmvEBTlKEp12jRogUMDQ2F8gp7e3sYGBjAzs6uWkGCpqjj/oIEzfz0fIyNjVkc8X8qKytRUlICAMjPz4dardYqntEUjdxfPKMpDNGUjGjKR+7evYuKigoUFxdDoVAI5Tb3FuE8iqYgxt7eXvg/ZWdnBwsLC5ibm8PW1haWlpYwNzeHjY0NrK2tYWNjI0y2trawtbWFnZ2d8H+K6GHCw8MRFhaG2NhYjBw5Er/++iuMjIzEjkV66ubNm+jVqxckEgmio6PRtGnTp16HpszjUSVaRERE1DDMnDkTLVq0wKxZs8SOQkREREQPwb3TRERERPRY6enpAAA3NzeRk9Su0aNH48yZM5g4cSI8PT0RFBQkdiQiIqIatWrVKvj6+mLFihWYPXu22HGIiIiIqJ5wcHDAd999h0mTJmHixInw9/fHN998g9dee03saE9s6tSpWLp0KQYPHozVq1ejqqoKKSkpiIuLQ1xcHGJiYrBmzRoolUrY2dkhODgYoaGhCAoKQqdOneDo6Cj2JhAREZHILCwssHTpUkRGRmL8+PFo3749li1bhqlTp8LAwKDa/B06dEC7du3w448/ssyD6BlVVFTg7t27wlRYWIiCggLha35+PgoLC4X7R48efaIyDw21Wg0DAwNcv35dKAawsrKCm5sbzMzMYGVlBRsbG6GYw9bWFmZmZsJtc3NzWFhYaN0mqq9MTExgYmICAHVWcCKXy4USELlcLhSBaG6XlZUhPz9fKAvR3C4rK0Nqaqpwu6CgAMXFxSgoKEBFRcUDX0vzf/Xesg9N0ce9j2vu29vbw8bGBo0aNRImatgWLVqEHj164M8//8Ts2bOxbNkysSORHrp48SL69OkDV1dXHDx48Jn3SRYWFsLExASmpqY1nJCIiIh0yeHDh/Hbb7/h6NGjvLAXERERkQ5jmQcRERERPZZMJgMASKVSkZPUvmXLluHixYsYMWIEzpw5g8aNG4sdiYiIqMa4u7vjww8/xMKFCzFkyBB4enqKHYmIiIiI6pHg4GDExsZi/vz5GD9+PGJjY/HVV1/Vi5PDWrRogfbt22PPnj3ClS19fHzg4+ODsWPHAgCKi4sRHx8vFHzs2rULixYtglqthouLC4KCghAUFISwsDB07twZlpaWIm8VERERicHf3x+nT5/GwoULMXPmTPz666/YsGEDXF1dq8376quvYsmSJVi+fDnMzc1FSEukGzQD9Z92ysrKglqtrrY+MzMz2Nvba01mZmYoLy/Xms/IyAgqlQpqtRqGhoZwc3ODv78/QkJC4Ofnh3bt2qFly5YPLOQhotpXW6UhD3vPubc4RDPJZDKkpKRoPZeTk4Oqqqpq633Qe8/9k6urK1xcXIT7Dg4OQkkK6bbu3bsjNDQU5eXlWLFiBdzd3TFjxgyxY5EeOX78OF566SUEBgZi7969sLGxeeZ1FRUVwdraugbTERERka4pKyvDjBkzMHLkSPTo0UPsOERERET0CCzzICIiIqLHkslkMDc314uDfBKJBDt27ECHDh0wbNgw/PHHHzyxgoiIGpT33nsPe/bswbhx43Dy5EkYGRmJHYmIiIiI6hFTU1N8+eWX6NSpE8aNG4fU1FTs2bOnXgxOHTp0KFavXo3Vq1c/8HOwlZUVwsLCEBYWJjxWUFCAS5cuISYmBtHR0fjuu++wcOFCGBkZoU2bNkLBR1BQEEJCQni1SyIiIj1hYmKCxYsXY9CgQRg7diz8/f2xefNm9O3bV2u+MWPGYN68edi3bx9GjhwpUlqimldYWIisrCzk5OQgJycH2dnZkMlkwn3Nc3l5ebh79y4qKyurrcPW1haNGzdGo0aNhKlZs2bw9/fXeuzeycbGBhYWFg/MJJPJsHv3bhgYGMDV1RXt27cXCjt8fX3Rpk0bHvcl0hPm5uYwNzd/YNHWk8rPz0dBQQHu3r0rTHl5eZDL5VqP3bp1C+fPn8fdu3chl8tRVlZWbV3W1tZo1KgRHB0dIZVKha9OTk5wdHSEo6MjnJychOe4b0E8H3zwAQYOHIhp06Zh1qxZaNasGQYMGCB2LNIDv/zyCyIjI9G3b1/89NNPMDMze671scyDiIio4fvkk0+Qm5uL5cuXix2FiIiIiB6DZR5ERERE9Fg5OTmQSqVix6gzjo6OOHDgALp06YIpU6bghx9+EDsSERFRjZFIJNiwYQNCQkKwdu1avPHGG2JHIiIiIqJ6aNiwYWjRogVefPFFDBgwAPv27YOlpaXYsR5pyJAh+PDDD3HmzBl06tTpiZaxtbUVCj5mz54NAMjIyEBcXJwwLVq0CHfv3oWxsTE8PDwQFhaG0NBQBAUFwcvLC4aGhrW5WURERCSijh07Ii4uDtOmTUP//v3xxhtvYNmyZTA2NgYAuLi4oG/fvlizZg3LPEjnaUo4bt++Xa2U4/7CjoqKCq1l7ezstAale3l5oWvXrnBwcIC9vf0Dizlq+nOyVCrF1atXIZVKOXiViJ6bnZ0d7Ozs0Lx586darqysTKvsQ1PycffuXWRnZwvvqQkJCcL98vJyrXXY2NjA2dn5gUUfjo6OaNKkCZydneHm5lYvylXrkwEDBiAwMBByuRyRkZGIjIxEdHQ0/Pz8xI5GDdjq1avx5ptv4vXXX8dXX31VI5+RioqKYGNjUwPpiIiISBclJCRg+fLlWLFiBZo0aSJ2HCIiIiJ6DJZ5EBEREdFj6VuZBwB4e3tj+/btGDhwILy9vfH++++LHYmIiKjG+Pn54YMPPsAHH3yAfv36oVWrVmJHIiIiIqJ6KCgoCH/99Rd69eqFvn374sCBAzo9aM7Hxweurq44duzYE5d5PIirqytcXV0xcOBA4bHU1FRER0cLBR+bN29GeXk5rK2t4efnh6CgIGHy8fGpic0hIiIiHWFlZYWtW7ciIiICb775JuLj47Fjxw44OzsDAN555x1069YNp06dQufOnUVOS/qovLwcGRkZyMjIQGZm5gO/pqWlobi4WFjGzMwM9vb2sLe3h6urK1xcXODh4aF1X3Pbzc0NJiYmIm7h/3BfNxGJzdzcHE2aNHmqAXVlZWWQy+XCe7JcLte6n56ejrNnzyIjIwM5OTmoqqoSljUzMxPel+/96u7uLtxu2rSpUDRGj/f+++9j9OjRuHDhAu7cuYNBgwbhn3/+gZOTk9jRqIFRq9VYuHAhFi1ahI8++ggLFiyosXUXFhbq9H5aIiIienZqtRpvvPEG/Pz8MG3aNLHjEBEREdETYJkHERERET2WTCaDo6Oj2DHqXJ8+ffDll1/inXfegaenJ1566SWxIxEREdWYefPmYc+ePZg8eTKOHj0KAwMDsSMRERERUT3k7++PY8eOoWfPnhg+fDj279+v0wNEIiIicOLECcyZM6dG1+vu7g53d3eMHTsWAFBVVYWUlBSh3CMmJgarV6+GSqWCi4uLVrlHp06d9HLfGxERUUMzefJkdOzYEcOHD0eHDh2wd+9eBAYGIiIiAp06dcKyZcuwe/dusWNSA1NZWYm0tDTcvHlTmNLS0pCeno7MzEzcuXMHRUVFwvwmJiZwcnJC06ZN4ezsDG9vb/Ts2RNNmjQRSuvc3Nw4+JOIqA6Zm5vD3Nwcrq6uCAoKeuS8KpUK2dnZQknTve/3WVlZOHbsGLKyspCTkyMsY2hoCCcnJ7i4uKBJkyZwc3ND8+bN0aJFC2FiUcX/DB8+HB9//DFWrFiBXbt2oXPnzhg8eDCOHj0KS0tLseNRA1FVVYXp06fjhx9+wLp16zBx4sQaXX9RURFsbGxqdJ1ERESkGzZu3IioqCjExsbCyMhI7DhERERE9ARY5kFEREREjyWTyfT2wP1bb72Fq1evIjIyEidOnEBISIjYkYiIiGqEicn/Z+++w6I41zaA30ux0URRmgUMgoKaUGywihhALIDYsKBYMBbsvR6xo8caS+zGXog9FgQTpWgQxRJRLFGjUhQroAhSvj/yuScIyC7sMgvcv+viUmdn5r3nnXl3hnXnmUrYunUr7O3tsWXLFgwdOlToSERERERURllZWeHUqVNwdHTE8OHDsXXrVqEjFcrJyQkTJkxAVlYW1NQU91+lampqsLKygpWVlaTAR1paGq5fvy4p8BEUFIR58+YhNzc3T4EPsViM1q1b8wYRIiKiMqhZs2aIioqCt7c3HBwcsHnzZvj4+GDixInw9vbG/fv30bBhQ6FjUhny6dMnPHv2LE+xjkePHkn+TEhIQE5ODgBAQ0NDclP2N998gzZt2sDY2BiGhoaoU6cODAwMYGBgIPAWERFRSaioqMDQ0FDyOUJhMjIyCi34ERsbi1OnTuHZs2fIzs4G8E9BEVNT0zwFPv79U5GKkKqqqmLq1KkYNmwYpk+fjl9//RVisRjdu3fH8ePHUalSJaEjUhn3/v179OrVCxcuXMDx48fRsWNHubeRkpLC4mxERETl0KtXrzBt2jSMGTMGNjY2QschIiIiIimxmAcRERERFSk5ORlNmzYVOoZgVq9ejXv37qFr166IiopCnTp1hI5EREQkFy1atMCkSZMwYcIEODk5wczMTOhIRERERFRG2djYYO/evfDy8oKZmRmmT58udKQCtWrVCmlpabh9+zaaNWtWqm1rampCLBZDLBZLpr179w5//vknIiMjERERgQ0bNmDu3LlQVVWFhYWFpMCHra0tmjdvjsqVK5dqZiIiIpKdrq4uTp06hUmTJmHAgAH466+/MGvWLJiammLFihX46aefhI5ISiY7Oxt///037t69izt37uDu3bu4d+8eHj16VOiN1k2bNoW7u3uFvdGaiIi+rnLlyjA1NYWpqWmh8xRWMOrPP//EiRMnEB8fn69gVMOGDWFubg4LCws0btwYFhYWqFGjRmltVqkZMGAAli1bhpkzZ+LAgQMICQlBu3bt0Lt3bwQFBfEJ6FRsr169gru7O+7du4eQkBC0bt1aIe2kpqby+21ERETl0Pjx46Guro45c+YIHYWIiIiIZMBiHkRERERUpBcvXlToL3+pqanh0KFDsLe3h6enJ8LCwvhkVCIiKjfmz5+P3377DX369MHFixehrq4udCQiIiIiKqPc3d2xevVqjB49Gg0bNkSPHj2EjpSPpaUlNDQ0cOXKlVIv5lEQHR0dSYGPqVOnAgAeP36My5cvIzo6GtHR0Thy5AjS0tJQtWpVfPfdd2jevLnkx9zcHCKRSOCtICIioi+pqalh1apVsLKywsiRI5GQkIBJkyZh7NixmDhxIovqVlApKSm4d+8e4uLiEBcXh7t370oKd2RkZAAADAwM0KhRI1hYWMDNzS1PsQ59fX2Bt4CIiMoTdXX1rxb8yMzMxNOnT/MU+7h//z7Onj2LtWvX4sOHDwAAPT09SWEPCwsLNGrUCI0aNYKJiQnU1Mrm19RVVVWxcOFCdOvWDePHj0erVq1w5MgRdOzYEX5+fti2bRs/jyGZPXr0CG5ubvj06RMuXrwIc3NzhbWVmpoKbW1tha2fiIiISt+FCxewe/duHD58GDo6OkLHISIiIiIZlM1PSYmIiIioVCUnJ6N27dpCxxCUtrY2Tpw4gZYtW2LAgAEICgqCioqK0LGIiIhKTF1dHTt27ICdnR0WLFiAuXPnCh2JiIiIiMowf39/xMXFYcCAAahbty5atmwpdKQ8VFVV8e233+Lq1asYPHiw0HEK9PlmzV69egH450ntcXFxkuIely5dwoYNG5CZmQkdHR3Y2trmKfBRr149gbeAiIiIPhs6dCgMDAzQu3dvJCQkoGHDhpg8eTKOHDkidDRSoJycHDx48AAxMTGIiYnBtWvXcPv2bSQkJAAAKlWqhIYNG6JRo0bo0qWL5KZnCwsL3oxBRERKo1KlSvjmm2/wzTff5HstNzcXT548kRSmunPnDu7du4czZ87g2bNnkuXNzMzQtGlT2NjYSH5q1KhR2ptSLF27doW9vT2mTZuG8+fPo127djh48CC6desGQ0NDLFq0SOiIVIbExMSgU6dOqFOnDk6ePKnwIm0pKSnQ0tJSaBtERERUejIzMzFixAi4ubmha9euQschIiIiIhmxmAcRERERfVV6ejrS09PLzH+mK5KpqSl++eUXuLi4YPr06ViyZInQkYiIiOSicePGWLJkCcaOHYv27dvD0dFR6EhEREREVIatXLkSDx48gJeXF6KiolC3bl2hI+XRtGlT3L59W+gYUlNVVYWVlRWsrKwwcOBAAEBWVhbu3r2Lq1ev4urVq4iIiMDKlSuRmZmJ6tWrw8rKCmKxGA4ODmjRogWf4k5ERCQgd3d3hIaGwt3dHUZGRjh69ChCQ0Ph7OwsdDSSg6ysLMTFxUkKd8TExOD69etITU2Furo6LC0tYWNjAzc3N0nBDlNTU6iqqgodnYiIqNhEIhHq16+P+vXrw9XVNc9rqampeYp83Lx5Ez/++CPi4+MB/FPE1NraWlLcw9raGoaGhkJsRpGWLVsGe3t7nDlzBm5ubnB3d8f27dvh6+sLXV1dTJ48WeiIVAacOnUK3t7eaN26NQ4dOlQqRTZSU1NZzIOIiKgcWbx4Mf7++2+cPHlS6ChEREREVAws5kFEREREX5Weng4AqFq1qsBJlEPbtm2xZcsW+Pr6ol69evD39xc6EhERkVz4+/sjODgYgwYNwvXr16GtrS10JCIiIiIqo9TU1LB//360adMGLi4uCAsLQ+3atYWOJdGwYUP8+uuvQscoETU1NUmBjwEDBgAA3r9/j2vXrkkKfJw4cQJLly5Fbm4uDA0NYWtrK/mxt7dHzZo1Bd4KIiKiiqN169YICwvD999/D11dXYwfPx7Xr19nQYcyKDExEREREYiIiEBUVBRu3ryJ9PR0VK5cGU2bNoWNjQ369esHGxsbNG3aFFWqVBE6MhERUanS0tKCnZ0d7Ozs8kx//vx5nuJX27Ztw+zZswEAhoaGsLGxgb29Pdq0aYMWLVqgcuXKQsTPo1WrVnB3d8eUKVPg6uoKFRUV+Pj44N27dxg9ejR0dXXh5+cndExSYlu3bsWIESPQr18/bNq0Cerq6qXSLot5EBERlR/3799HYGAgFixYAFNTU6HjEBEREVExqAgdgIiIiIiU28ePHwGAXzT7l/79+2PBggUYM2YMDh8+LHQcpTV3sLfQEYiISAYikQhbtmxBWloaRo8eLXQcpcXzG5Hy4HgkIlJuOjo6CA0NBQC4uLjgzZs3Aif6n4YNGyIhIQFpaWlCR5ErDQ0NiMVijB07Fjt37kRsbCzevn2L8PBwTJ06Fbq6uggKCoKHhwf09PRgZGQEd3d3LFmyBBEREfjw4YPQm0BERFSuWVpa4sKFC6hUqRJiY2OxfPlyoSORFF6+fIl9+/Zh8ODBMDc3h5GREfr06YPIyEg0b94ca9euxbVr15Camoro6Ghs3LgRw4YNQ/Pmzfn/q0rExcVF6AhERBWevr4+OnbsiJkzZ+LQoUN4+PAhXr9+jdDQUIwfPx4aGhpYt24d2rZti+rVq6Nt27aYPXs2wsPDkZWVJVjupUuX4s6dO9izZ49kmr+/P2bNmoXhw4cjKChIsGykvHJzcxEQEIChQ4dixowZ2LZtW6kV8gD+KebBh3cQERGVDyNHjkTDhg0xZswYoaMQERERUTGpCR2AiIiIiJQbi3kUbMaMGUhKSoKPjw9CQkLg4OAgdCS5697ICABwKC6hWMvn5ubKM0651L2RUbH7l0qupMc4VTwVYczq6+tj27Zt8PDwgJOTEwYOHCh0JLnj+U3xKsJYKQ0V4TzF8ah4HI/CqgjjmOSrPI7Z2rVr48yZMxCLxfDw8MDJkyeV4kvkpqamyM3NxdOnT9G4cWOh4yiUttqNgdkAACAASURBVLY2xGIxxGKxZFpCQgKuXr0q+Vm+fDmmTZsGNTU1mJubw9bWVvLTvHlzpXgSLhERUXlhbm6OsLAw2NnZYfr06XB0dETLli2FjkVfuHr1Ko4cOYLg4GDExMRAVVUVrVu3Ru/evSEWi9G6dety+aRzkUhU6OctX3utNIhEIgDF/zyInyMVTeh9XNGV9Biniqe8jFldXV18//33+P777yXTHj58iIiICISHh2Pv3r1YsGABtLW18f3336Njx47o2rUratWqVWoZLSws4Ovri9mzZ6NXr16Sz0nmzZuHV69eoX///tDR0YGrq2upZSLllpGRgUGDBuHQoUPYsWMH+vfvX6rtf/z4EZ8+fSqX16tEREQVze7du/Hbb78hIiKiVAuDEREREZF8qQgdgIiIiIiUG4t5FG7lypVwc3ODp6cn7t69K3QcuSvpDUQB2w/KKQmRYpS3m+SI5KVLly6YPHkyRowYgWvXrgkdR+54fqOyoiKcpzgeqbyrCOOYSBomJiYICQnBw4cPIRaL8eTJE6EjQV9fHwDw4sULgZMIw8jICO7u7ggICMCJEyfw4sULxMfH4/Dhw+jZsyfevHmDuXPnok2bNtDS0oKVlRWGDRuGnTt3IjY2Fjk5OUJvAhERUZlmbm6OqKgoqKqqwtnZGe/evRM6EgG4ceMGpkyZggYNGsDOzg579+5FixYtcPjwYbx69QoXLlzAvHnz4OrqyhsjBVDSG9ZDQ0PllIRIMcpDUQYieWnQoAEGDBiAzZs346+//sL9+/exaNEiZGVlYdy4cTA0NISzszM2bNiAt2/flkqmgIAAvHjxAuvWrcszfc2aNfD29kbXrl15riEAwOvXr+Hq6oozZ87gzJkzpV7IAwBSUlIAgNesREREZdybN28wceJEDBs2DK1btxY6DhERERGVAIt5EBEREdFXsZhH4VRVVbFnzx5YWFigY8eOSEpKEjoSERGRXCxcuBAtWrRAr169eDMBEREREZVY48aNER0dDTU1NbRq1QpXrlwRNI+enh7U1NTw/PlzQXMoky8LfCQnJ+PWrVvYsmULnJ2dERsbi+HDh6NJkyaoXr06xGIxxo4dKynwwRvPiIiIZNO4cWMcO3YM79+/h52dHbKysoSOVCFlZGRg586dsLe3x3fffYfDhw/D29sbV65cwcOHD7Fu3Tp4enryRkgiIiIBmZmZwd/fH8ePH0dycjL27duHmjVrYtKkSTA2NsaQIUMU/llTnTp1MHbsWCxYsADJycmS6SoqKti2bRt69OgBDw8PnDt3TqE5SLk9fPgQ9vb2ePLkCSIjI+Hk5CRIjtTUVACAtra2IO0TERGRfEydOhUikQgLFy4UOgoRERERlRCLeRARERHRV7GYx9dVrVoVx48fR6VKldClSxekpaUJHUnhntyPw8Jh/dHPpiH62TTEfL++eHI/Ls883RsZoXsjI5nW+3mZpCePsXT0EAxo0Sjfep7cj8PCH3wkbS/8wUfqtgubHv3bWczo44HezUwwvH0LbF88B+nv0wpc9mViAgJHDkQ/m4YY7NAMqyePQurbN8Xuo3+vu3sjI6yfNVHq/nr64C4W/uCDvtZm8LE1x7whffDswb182ylrf8iyf5/9dR/TvLugz3cNMKtfVyQ9eYynD+5iWq/O6Gtthv8M6IGXifFSb1OedT+4h/l+feFja46+1mZYOKw/nv11v+C8RRwT+frLzgJLRg0uNJs0fVCUD6kp2L54DkY4t0LvZiYYIv4Oa6aNw/2b12RuS5qx8TWy9Km8x6E896OixqG06yxqzMrjuFEmampqOHjwIN6/fw9fX98KcWMez2/KcX6T9n29KEKeJ6Uhy3qk3T/lCcejcoxHXm/+Ky+vN7+K15u83pSWkZERzp8/j6ZNm6Jdu3YICgoSLIuKigp0dHTw+vVrwTIoO1VVVVhZWWHAgAFYvXo1IiIikJKSglu3bmHt2rWwtbXF1atXMXToUDRp0gQ1atSAWCzGtGnTcOLECRa9JSIikkLHjh0xffp0PHjwAB4eHkLHqVBycnIQFBQES0tLDB06FHXq1EFISAju37+PxYsXw9bWVuiIciESiSASiaSa/vnfn18TiUTw8/Mr8jUAuHXrFjp37gwtLS1oaWnBzc0Nt27dKrDNv/76C926dYOurm6h+WQhS9uykCbvrVu30KlTJ0nbnTp1krrtwqYfP34cDg4OqFKlCkxMTDB+/HjJDblfLvv06VNJsRl9fX34+Pjg1atXxe6jf6/7y31clNjYWHTq1AmamprQ1tZGhw4dcPv27XzbKWt/yLJ/79y5g1atWqFatWpo06YNHjx4gNjYWLRs2RKamppwcnLCkydPpN6mf6/79u3bcHNzg7a2NjQ1NdG5c2fcuXOnwLxFHRNf9peOjg68vLwKzSZNHxTl3bt3GD9+PBo0aIAqVarA0NAQAwcOxOXLl2Vuq6RjWZY+lfc4lOd+VNQ4lHad8nhfLquqVauGnj174sCBA0hMTMTKlSsRExOD5s2bw8XFBTExMQpre+bMmahatSpmzZqVZ7qqqiq2b9+O7t27w8PDA7/99pvCMpDy+uOPP9C6dWtUqVIFERERaNy4sWBZPl87sCAdERFR2RUVFYWtW7di1apV0NXVFToOEREREZUQi3kQERER0VexmEfRatasiVOnTuHZs2fo1atXuX56WtKTx5g7qDfsnFzwU+gf2PDbZTh6dEfgyEF4lZQome9QXILM6/68zKaAafAcPAJbwq5j5qbdedpeMLQfWnfogp9C/8D6kEto6dIJ8/36IunJ4yLbLmx64MiBcPLqhR2X7yDw4K9Ie/cWW+bPKnDZ9bMmokMfX2yNuI6lv5xBxsd07FgyL8+8svbRobgEyc/IBcul6qt/98WGc1H46VwU2nfrjRUTRuTbVln6Q9bsB9Yux6hFK7E1/DpMGllh1eRR2P/jMoxavApbwmJQ55uG+DlwrlTb9OW6l48fDicvb/x0Lgo/hf6Bls4dMd+vL17EPy2wH752THzZX+tDLqG1a2esGD+82H1QlDXTxkJDSxuLD5zAriv3MGvTbiQ9eYRpvTrL3FZRY0OefSrvcSjP/ajIcSjNOr82ZuV13CgbfX197N27F7/++it+/PFHoeMoFM9vynd++1pfyLIeIc6T0uSTZT1f7p+sT5/y7Z/yhONR+cYjrzd5vSnPPuX1Jq83tbW18euvv8LX1xe9evWCn58f3r9/L0iWypUrIyMjQ5C2yyo1NbV8BT5ev36N8PBwBAQEoEGDBjhx4gQ8PT1haGgIIyMjuLu7IyAgACdOnCjwhiYiIqKKbuHChejQoQNOnz6NKVOmCB2nQoiLi4O1tTX69euHDh064NGjRzh48CCcnZ1LXFhC2RRWpLmg6Z+n5ebmSn62bNlS5GsPHjyAi4sL3N3d8fDhQzx+/Bg+Pj7w9PTEs2fP8q1/xIgRmDRpEhISEnDq1KkSbZ+sbcuiqLwPHjxAx44d0aNHDzx8+FBSbMDNzQ0PHjwosu3Cpnt6esLX1xevX7/GH3/8gdevX2P06NEFLuvn54cRI0YgMTERV65cwYcPHzBp0qQ888raRwXt46L89ddfkr549OgRHj16hEGDBqF37975tlWW/pA1e0BAALZv347ExER8++238PHxwZw5c/Dzzz8jPj4ejRs3xsSJ0he6/fe6vb29MXDgQDx69AgPHz6El5cX3Nzc8Pjx4zx5pTkmvuyvv/76C927d5f0V3H6oCi+vr6oXr06Ll26hHfv3uHUqVN48OABWrZsKXNbJR3LsvSpvMehPPejIsehNOuUx/tyeaClpYUffvgB165dw9mzZ/Hu3TvY2dlh/PjxyMzMlHt7mpqaCAwMxJYtWxAdHZ3nNVVVVfz888/w8vKCu7s7C3pUMIcPH0b79u1hY2OD8PBwGBsbC5onJSUFwD+fxRIREVHZk5WVhWHDhsHZ2bnA3xWJiIiIqOwR5VaER6sSERERCUAkEuHAgQPo1auX0FFK5NSpU+jcuTPS0tKgoaEhdBylFh0dDScnJ/Tu3RubN29Wqi/8HTx4EN7e3jLf9Ni9kVGeZVZPHoX6Fpbo6jcyz3y/HdqPx3GxGDxzfqHLStvevJ2/wKqFfb7XVk8eBbOm36HzgLxPgTqxfSMe3rmFsUvXFNm2NJnSUt7B36U1dkTdzrfs1HXb0eL7DpJpCY/+whzfHtgc9r+nXyu6jwBg9ZTRMGvybb6+iDh5DCsnjsi3Tmn7Q9bs83YdglXz1gCA1y+eY2hb6zzTXiUlYnL3DtgWeVOm7eveyAgTVmyAQ6e8TyI8sX0jHt+9g9GBqyR5pTkmCuuv348cwNrp44vdB1/Tz6YhNv4eDU2d6pJpL549wQjnVpL2ZO7vQsaGNKTt06LaknUcynM/fl6nIsahNOv8PG9BY0lexw0AXDx9HMvHDy/Wl4sVZeHChZg3bx7Onz+P1q1bCx0nD57fpM9UJs5vMvTFV9ejBOfJr+Yr4XvUi2dPMLOvZ773qKIo+v1l9+7dGDx4CPb/+Vim5Tge8y6rNONRCcYRrze/jtebvN4srL2ihB0/hPWzJiJTCYpYHD16FEOHDkXlypXx448/olu3bqXavqmpKUaMGMGbZhXgzZs3iI6ORnR0NK5cuYLo6GjEx8dDJBLB3NwczZs3R4sWLdCiRQtYW1ujUqVKQkcmIiISVHZ2NiwtLXHv3j2sXbsW/v7+Qkcqsd27d2PIkCFKVzzt3Llz6Nq1K5o0aYJdu3bBzMxM6EgKJxKJCvw8qKDphc37tdd8fHzQrFmzfNfV27Ztw40bN7B69eo86/j999/Rrl27YmxJ/gyyti3r52Jfy+vj44PmzZtj7NixeaavWLEC165dw65du4psW5pMb968gZmZWb7CeCKRCEePHoWnp6dk2t27d9G+fXvEx8fnyanIPgKA/v37w87OLl9f7N+/H3369JH6OCvp/j1//jwcHR0BAAkJCTA2Ns4z7dmzZ7C1tcXz589l2j6RSIT9+/fD29s7z/QVK1bg5s2b+PnnnyV5pTkmCuuvn3/+GYMGDSp2H3yNlpYW/v77b9SoUUMy7dGjR2jQoIGkvdIey9L0aVFtyToO5bkfP69TEeNQmnV+nrek78vlTW5uLnbv3g1/f39YWlri3Llzcv+eU25uLhwdHZGdnY2IiIh83wvKzs7GgAEDcPToUfz6669wcnKSa/ukfFavXo0JEyZgyJAhWL9+PdTU1ISOhJMnT6JLly748OEDqlatKnQcmXl6ekJbWzvPey4REVFFEhgYiICAANy4cQMWFhZCxyEiIiJSGGX9/0RFUBE6ABEREREpt48fPwIAqlSpInAS5de8eXMcOHAAO3bswMyZM4WOoxA3L4bnu1EKAGzafY8bF8Pk0oZZM+tC227h7JZvekuXjrh5MVwubQOAprYO0t69LfA1y+at8vy7lnFdvEl+kS+novvoZmRYgX3xrUPbkq1XxuwNLJtK/q6rVyvftBq19ZHyunhP3W1m3ybftJYuHXEj8kKevNIcE4X1l3Wb/F+ckdf+s/jOFotH+OJa+O/Izs4CANSuUy/PjXmytlXY2JCWNH1aVFuyjkN57sfPFDEOpVnn15TGuBfS9OnT4erqiu7du5e7J3Z9xvObkpzf5NQXynKelNd6vtw/eobGMr1HlTUcj0oyHpVkHPF6s3C83pS+TV5vKq+uXbvizz//hFgsRvfu3bFx48ZSbV9dXR1ZWVml2mZFoaurC1dXV8ycORNHjhzBs2fPEB8fj6NHj6Jnz55ITk7GnDlz0KpVK2hra6NVq1YYM2YM9uzZg/v37wsdn4iIqNSpqqoiJiYG+vr6GDduHD58+CB0pHLp8ePH6NWrFzw9PREWFlYhCnmUhtDQ0Hw3xwNA586dERISkm96ixYtBGu7OArLGxoaiq5du+ab7uXlhdDQULm0Dfxzbf369esCX2vbNu/nNCYmJkhMTMyXU9F9FBISUmBfuLi4lGi9sma3sbGR/N3AwCDfNCMjIyQnJxcri7Ozc75pXl5eOHv2bJ680hwThfWXm1v+zy7ktf9at24NDw8PnDlzRvJ7sKmpaZ5CEKU9lqXp06LaknUcynM/fqaIcSjNOr+mNMa9shKJROjfvz+uXLmCx48fY8iQIQppY/Xq1YiKisK+ffvyva6qqoqdO3fC09MTXbp0wfnz5+WegZRDVlYWRo4ciQkTJmDZsmXYtGmTUhTyAICUlBSoqamVyUIeREREFd2jR48wf/58zJ49m4U8iIiIiMoR5fjUiIiIiIiU1ucvc6iqqgqcpGzo3Lkztm/fDl9fX+jq6mLy5MlCR5Kr1LdvMLx9wV+WqSSngi+VqxT8n8kpb1+jul7tfNN1a+kj9U3BX2IrSsrrV9i9YhGuhf+Oty+TkZOd/dX5NbV18vxbvVKlfE+7KY0+KqwvtKrrlmi9smavqqEp+btIRaXAacV5ghdQ8Lbo1sp7s6a0x0Rh8xU0TV77b9LqTTi4bgU2z5uBlNevYGrZBK1cOsGtry9U1dSL1VZhY0Na0vRpUW3JOg7luR8/U8Q4lGadX1Ma415IKioq2Lt3L+zt7eHh4YHw8HC5P8VKaDy/Kff5Tda+UJbzpLzW8+X+UVFVLfb5tSzgeFTu8cjrzf/Nx+vN/Hi9+Q9eb8rGwMAA+/fvx8CBA2Fra1uqbaenp7N4bSkyMjKCh4cHPDz+V5gmISEBkZGRiIiIwNWrV7F582Z8/PgR2traaNq0KcRiMRwcHNCyZUvUrp1/HBMREZUnGhoaiI2NxcWLF1GtWjWh45RL69atQ82aNbF161aoq6sLHafcePXqFUxMTAp8raAbSOV5fMvadnEUlvfly5eSghH/ZmhoiJcvXxarreTkZEyfPh1nzpxBUlISsov4HElXN+/vxJUrV873u2Zp9FFhfVGzZs0SrVfW7FpaWpK/q/z/50hfTivu50gFbYuhoWGe4iDSHhOFzVfQNHntv6CgIMydOxf+/v5ITk6GtbU1unXrhpEjR0reD0t7LEvTp0W1Jes4lOd+/EwR41CadX5NaYx7ZWdubo4dO3bAzc0Nc+fOlftNkNbW1hg8eDCmTJkCDw8PaGpq5nldVVUVO3bsQO/eveHu7o6TJ0/mK9JCZdu7d+/g7e2N8PBwBAUFoVu3bkJHyiM1NTXPOZCIiIjKhtzcXAwbNgwmJibl7rvnRERERBUdi3kQEREREcmZj48P3r17h9GjR0NXVxd+fn5CR5IbLd0aWH3qQr4bkUqDdvUaeJP8HLWN6+aZ/ib5ObR0a+SZJhKJ8CkzE+qVKkmmFfT089VTRsPY9Bss3HsMNQ0Moar6z69I3RsZFTtnafSRdvUaePvyBWoZ1ckz/e3Lgp/sLG1/CLl/v/T2VTKq16yVZ9qb5OfQrvG/L1lJe0wU1l+K7INqWtoYOC0AA6cFIOXNa/x5KQK/7tiM21eiMPnHzXJtS1rS9GlRZBmH0rYp6zqlUdp9q0xjR1G0tLRw/PhxtGzZEr6+vggKCoJIJBI6ltzw/Fa00jq/yeP9QNnPkxXhPaMkOB6LxutN+eD1pvzxelNxlGnsKEpBTyBWtA8fPvBGWYEZGRmhZ8+e6NmzJ4B/igrfvXtXUuDjxIkTWLp0KXJzc2FoaAhbW1tJgQ9bW9sKcxMSERFVHDVr1oS7u7vQMcqtp0+fokmTJqhcubLQUUqVSCRCRkZGnu1+/bp4RUsLoqenh9u3b+e7+bw0CN12YmJivhvmExMToaenl2eatPugf//+sLCwQEREBOrUqQM1NTXJ8iXJqeg+0tPTQ1JSEurXr59nelJSUoHzS9sfQu7fLz1//hz6+vp5piUmJqJWrf99JiHtMVFYfymyD3R0dLBixQqsWLECL1++xLlz57Bq1SqEh4fjl19+kWtb0pKmT4siyziUtk1Z1yltztLsW2UaO0Kys7MD8M/5XxFPNF+8eDEOHz6MxYsXY+HChfleV1dXx/79+9GnTx907NgRx44dg7Ozs9xzUOl79OgRunTpgjdv3uD8+fNo3ry50JHySUtLYzEPIiKiMmj79u04d+4cwsLCUOlf370gIiIiorJPRegARERERETlkb+/P2bNmoXhw4cjKChI6Dhy8524HWKjLuabfudKFCZ366DQtpvZt0HU2VP5pkeFnEYz+zZ5plXXq42XifF5pt2O/iPfsnevXYH36MmobVxXcmNl5sePJcopSx8V98t334odcTn0TL7p1yPOFzi/tP0h5P790vXw8/mmRYWcxrcOjpJ/S3tMFNZfNy+G5Zsmrz7o3sgIr5ISAQDaujXg0MkDMzftwo3IC3JvS1rS9GlRZBmH0rYp6zqloai+LWzMKtPYUSRTU1McOnQIJ06cKPBLaWUZz29FK43zm7zeD5T9PFlR3jOKi+OxaLzelA9eb/J6k9ebysfBwQEDBgxAVlaWwtvKzc3F+/fv8z05lYSlpqYGKysr/PDDD9i5cydiY2Px5s0bhIeHY+zYsQCA5cuXo02bNtDW1oaVlRUGDBiATZs2ITY2Fjk5OQJvARERUcmFh4fj0KFDQscoMWUsBGxvb4+QkBDcvXtX6CilysDAAE+ePMkzLSws/++rwNf3W2GvdejQAefPn883PTw8HLa2ttIHLQYh23Z2dsbhw4fzTT9y5Ei+m7Wl3QcXL17E3LlzYWJiIinkkZ6eXqKcsvRRccetq6srjh49mm96cHBwgfNL2x9C7t8vFbQtR44cgaurq+Tf0h4ThfVXaGhovmny6gORSIRnz54B+KfQg7e3N06ePImzZ8/KvS1pSdOnRZFlHErbpqzrlIai+lYZ35eVyZo1a1C1alXY2NgoZP01a9bE7NmzsWzZMty7d6/AedTV1XHgwAH07NkTnTt3LnDsU9nyxx9/oHXr1lBVVcUff/yhlIU8ACA1NZXFPIiIiMqYpKQkTJo0CWPHjoWDg4PQcYiIiIhIztSEDkBEREREVF7NmzcPqamp8PHxgba2Njp0KPs32HiPnojAEQORk5ONJi0doKaujtjoS9g4ZyqGzl6k0LZ7jZqI/wzojqqaWmje3hUikQjRv53F8Z83Yv6uvF+o+dahLfasWIxB0+dCQ1sbcTHRCN6/M986LaztsGvZfHQbNgY1ahvgZWI8gtavLFFOWfqohr4B7l6/CrMmzXAr6iLWz5qIjb9fKbqNz32hoQk7JxeIVFRwI/ICzh7YXeD80vaHkPv3S2cP7IKqmhq+E7dDbk4Oon87i193bsH83f/b19IeE1/2l4qqKm5eDMOhjT/ma1eefbB+1kQMnDYHBvVM8T71HU7u2JLnZsHS7m9p+rQosoxDaduUdZ3SUFTfFjZmlWnsKFqbNm3w008/wc/PD+bm5ujVq5fQkeSC57eilcb5TV7vB8p+nqxI7xnFwfFYNF5vygevN3m9yetN5ZOZmYldu3bh8OHDWLduHXx9fRXW1suXL5GRkQFjY2OFtUHyoaOjA7FYDLFYjKlTpwIAEhIScPXqVURGRiIiIgJBQUH4+PEjtLW10bRpU9ja2kIsFsPR0RG1a9cWeAuIiIhkc+TIEWzevBmNGzeGpaWl0HGKTUVFBdnZ2ULHyGPEiBEICgpCp06dcOTIETRr1kzoSKXCxcUFM2bMwMqVK1G9enVERkZiw4YNBc5rbGyMS5cuwc7ODr///jv8/PwkRRcKey0gIAAeHh7Izs6Gk5MTKlWqhAsXLmD48OFYu3atQrdNyLbnzJkDJycnaGtrw8PDAyKRCMePH8eKFSvy3UQv7T6wt7fHlClTMGPGDBgZGeHJkyeYP39+iXLK0kdf2/9FtdGuXTtoaWnB3d0dKioqOHv2LDZt2lTg/NL2h5D790sbN26EmpoaOnTogJycHBw/fhyrV6/GhQv/K6oq7THxZX+pqqoiNDQUixbl//1enn3g5+eH5cuXw8zMDG/fvsXq1avzFKco7f6Wpk+LIss4lLZNWdcpDUX1rTK+LyuD3NxcrFy5EvPnz8fGjRtRo0YNhbU1cuRIbNq0CZMmTcLx48cLnEdVVRXbt2+HpqYmevXqhb1796JHjx4Ky0SKExQUBF9fXzg6OuLAgQPQ1tYWOlKh0tLSWMSYiIiojPH394eOjg7mzZsndBQiIiIiUgBRbm5urtAhiIiIiMojkUiEAwcOlPmbXA8ePAhvb2/wsrF4cnNzMXjwYBw8eBAhISGwt7cXJMfn/XgoLkHqZbo3MpL8/d/LJf79CLuXL8LNS+HIzspCXTNzdPthNFq6dCxyWWnbK2y5v+/dwa7/LsDtK1EAAEu7lug/eRbqmzfOM1/Km9fYtnA2blwMQ0Z6Opq2csDQ/yzGMCe7POt+9+oldiydh+sR5/E+5R2MTL5Bz5HjsHz88DzzFbY9JekjALh45gR2LVuI188ToWdojIHTAtC8vXRPG3r64C52Lp2P2Og/oKKiAqvmrTFk9gKM+L5lvr6Ttj+kzV7Qdks7TRrdGxnhp3NR2Dp/FmKjLyEnJwdWzVvBd+oc1PmmYZ55pT0m/t1fIpEIFtZ2GDx9LsZ2aVesPijKn5cicGrPNty5EoX092mooW+Ils5u8B49CVU1/velCVn7+8us0pK2T+U5DuW9HxUxDmVd59fGrDyOGwC4ePo4lo8frvTnXX9/f+zcuRPnz58X9ClePL+Vv/ObtH1RFCHPk9JQxHtUURT9/rJ7924MHjwE+/98LPUyHI/KPR55vfkPXm9Kh9ebZed6M+z4IayfNRGZGRkyLVdajh07Bl9fX7x79w7fffcdduzYoZCbLK9evQo7Ozvcv38fZmZmcl8/la6srCzcvXtXUtzj6tWruHPnDnJzc2FoaCgp7uHg4ABbW1tUrVpV6MhERESF+vTpE9q3b48XL14gOjpaqW8S/JpffvkFPXv2RHZ2NlRUVISOI/HixQv06tULUVFRCAgIwJgxubjehAAAIABJREFUY8r9tcHLly8xduxYhISE4MOHD2jfvj3WrVuHevXqAUCez4qCgoIwdepUxMfHo169eli+fDk8PDyKfO3+/fuYPn06QkNDkZWVBUtLS0yfPh1eXl6SdYtEojy5ZP2M6t/L/3tZWduWtl1p8v7555+YMmUKwsPDAfxTDHvp0qVo2rRpnvmk3QcvXrzApEmTEBwcjLdv38Lc3ByzZ8+Gt7d3nvkK256S9BHw9X1clNjYWEyePBlhYWFQUVGBo6Mj1qxZA1NT03x9J8sxWdz9K+00aYhEIjx69AijR4/GhQsXkJOTg7Zt22L58uVo3DjvZxXSHhP/7i+RSAR7e3usXLkSVlZWxeqDopw7dw5r165FeHg4UlNTYWxsjK5du2Lu3LnQ0tKSqa2SjuXP65CmT+U5DuW9HxUxDmVdZ0nfl8ujuLg4TJgwASEhIVi0aBEmT56s8DbDwsLQrl07HD169Kvvmbm5uZgwYQLWrFmDrVu3KrSILclXbm4uli5diunTp2P06NFYsWIFVFVVhY71VSNGjMD9+/cRGhoqdJRi8fT0hLa2Nnbt2iV0FCIiolJx8OBB9O7dG8HBwXBxcRE6DhEREVGp2b17N4YMGYIMJf0emzyxmAcRERGRgrCYB3326dMneHl54Y8//kBYWJggT1Irzs3OVDZ1b2RU5vdzedgGZSNEn3I/Fk9ZKebx6dMneHh44Nq1a4iMjMQ333wjSA6e30hWFfm9SRmLeVDZVB7GUXnYBmXD682yQ9mLeQDAhw8f0KNHD5w+fRoikQg+Pj7473//C319fbm1cfjwYfTs2RNpaWnl/ubNiiolJQU3b96UFPiIiopCcnIy1NTUYG5unqfAR+PGjZXqJmMiIqJnz57BxsYG7du3x/79+4WOUyxHjx6Fl5cXMjIyUKlSJaHj5JGdnY3AwEAEBgZCW1sb06ZNg6+vb5ktnEKkzEQikdL/f0dRysM2KBsh+pT7sXyLjY3FihUrsHPnTjRu3BgbNmwo1Qft+Pj4IDw8HLGxsdDU1PzqvP/5z3+wYMECrFmzBv7+/qWUkIorIyMDfn5+2L9/P1atWlVm9pmPjw/S0tJw9OhRoaMUC4t5EBFRRfL69WtYWlrCw8MDmzZtEjoOERERUamqSMU8+K0kIiIiIiIFU1dXR1BQEKysrODq6orHjx8LHYmIiKhE1NXVcejQITRo0ACurq5ISkoSOhIRERERlRPVqlXDqVOnsGrVKgDAsWPH8M033yAgIAAfP36USxs3btyAmZkZC3mUY9ra2hCLxZg6dSpOnDiBFy9eID4+HocPH4a7uzsePnyIcePGoUmTJqhevTrEYjHGjh2LoKAgPH/+XOj4RERUwdWpUwd79uxBUFAQ1q1bJ3ScYlFXVwfwT1FgZaOqqoqZM2fiwYMH6NGjB6ZNmwZjY2MMGzYMUVFRvNmbiIioDEhLS8Pu3bvRtm1bNGnSBBEREdi+fTuuX79eqoU8AGD58uVITU3FggULipx33rx5WLx4MUaPHi357IuU06tXr+Dq6opjx47h2LFjZaaQB/DP+CiqsAwREREph3HjxkFFRQVLliwROgoRERERKRCLeRARERERlYKqVavi2LFjqFWrFm96JoXp3sgoz59lUXnYBmUjRJ9yP1YM1apVw/Hjx6Guro4uXbogLS1N6EhEX8X3JqKSKw/jqDxsg7Lh9SYpytixY7Fr1y58+PABzZs3x7Jly2BpaYn9+/eX+AbL69evw9raWk5JqawwMjKCu7s7AgMDERERgbdv3yIqKgqLFi2Cqakpzpw5A29vbxgYGMDU1BR9+vTB6tWrcfnyZaW8EZmIiMo3FxcX/Oc//8HEiRNx48YNoePI7HPRtPT0dIGTFE5fXx+rV69GfHw8Fi1ahIiICLRq1QqmpqaYOHEiLl26hOzsbKFjEpVZIpEoz59lUXnYBmUjRJ9yP5Yfb9++xd69e9GtWzfUrl0bgwcPRu3atRESEoK4uDj4+PhARaX0vxavr6+PBQsWYPny5bh582aR80+dOhWBgYGYMGECAgMDSyEhySo2NhZ2dnZ49uwZoqKi0KlTJ6EjySQtLQ1aWlpCxyAiIqIinD59Grt27cL69euhq6srdBwiIiIiUiA1oQMQEREREVUU1atXx5kzZ+Do6AhnZ2f8/vvvqFWrltCxSkVRN1gdiksopSTKryR9pez9KM22Kfs2AMp1PCtrn5aF/Ujyoaenh9OnT8Pe3h6enp44deoUKleuLHSsUqNM7wfKTl59peznSR4TwmHfS0/Zx1FJKOu1kayU6XhW1j4tC/uR5KNfv3748OEDhg0bhjVr1uDKlSvo168fli1bhsWLF8PFxaVY67169SpGjRol57RU1lSqVAktWrRAixYtJMfD69evcfnyZVy+fBlRUVGYN28eXr9+jWrVqsHOzg729vawt7dH69atoaenJ/AWEBFReTd79mxcuHABffv2RXR0NKpVqyZ0JKl9vnkwNTVV6c+Z1atXx+jRozF69Ghcv34dv/zyC3755ResWLECNWvWhLOzMzp06ABXV1cYGxsLHbdcKuoG+5IW8xO6vbKsJH2l7P0ozbYp+zYAynU8K2ufloX9SAXLzs7GlStXEBwcjODgYFy+fBkikQjff/891q5dC09PT9SsWVPomACA4cOHY9euXfD390dYWFiR42HKlCnQ0NDA6NGjkZKSgkWLFpVSUipKSEgIevbsCUtLSxw9ehS1a9cWOpLM0tLSoKmpKXQMIiIi+or379/D398fvXv3RteuXYWOQ0REREQKxmIeRERERESlSF9fH+fOnZMU9Pjtt9+U5ssFisQbraRXnvuqvGybMm2HMmWhisvU1BQnT55Eu3bt4Ofnh507d1aYp5txDEpPXn2l7H2u7PnKM/a99MpzX5WXbVOm7VCmLFRxDR06FLdv38aMGTNw69YtTJkyBXPmzIGrqyucnZ0RGBgIW1tbqdd3+/ZtxMfHw8nJSYGpqayqUaMG3Nzc4ObmJpn28OFDRERE4OrVqwgJCcHSpUuRk5MDQ0NDiMViODg4QCwWw9raWpAnABMRUfmloqKCnTt34ttvv8WkSZOwfv16oSNJTVtbGwCQkpIicBLZfPfdd/juu++wYMEC3L59W3LzsL+/P9LT02FmZgaxWIy2bdtCLBajYcOGQkcuF0r7Rnve2C+98txX5WXblGk7lCkLlU0ZGRmIjo5GWFgYwsPDERkZidTUVNStWxcdOnTAuHHj4OLigurVqwsdNR8VFRWsXbsWLVu2xM6dO+Hr61vkMv7+/tDV1YWvry/evHmDdevW8XMFgf3444+YOHEi+vTpg82bN5fZh1ikpqZCQ0ND6BhERET0FVOmTEFKSgpWrVoldBQiIiIiKgUs5kFEREREVMqMjY3x+++/w9HRES4uLjh37hx0dXWFjkVERFRsNjY2OHToELp06QJNTU2sX7++whT0ICIiIiLFW7x4Mc6cOYORI0fixIkTOHjwIP744w9MnToVzZs3R48ePbBw4UKpbqYMDg6Grq4u7OzsSiE5lQcNGjRAgwYNMGDAAAD/3BARFRUlKfAREBCAt2/fQktLC82aNctT4IOf+RERUUnVqVMHmzdvRo8ePdChQwd4enoKHUkqn4t5pKamCpyk+CwtLWFpaYnx48cjPT0dkZGRCA8Px4ULF3DgwAGkp6ejVq1asLa2ho2NjeSnQYMG/GyUiIioCOnp6bh58yZiYmJw7do1xMTE4M8//0RmZiaMjY3Rtm1bBAYGol27drC0tBQ6rlRsbW0xYsQITJw4EZ07d4aenl6Ry/Tt2xdaWlro1asXUlJSsGPHDqip8av9pS0zMxP+/v7Ytm0bFixYgGnTppXp67m0tDRoamoKHYOIiIgKcenSJWzYsAE7d+6Evr6+0HGIiIiIqBTwEz8iIiIiIgHUrVsXISEhcHR0ROfOnREcHAwtLS2hYxERERWbi4sLjh49Ci8vL2RnZ2Pjxo1l+ktORERERKQ8qlSpgh9//BGurq6IiopCy5Yt0apVK1y4cAGhoaGYOHEirKysMGjQIAQEBMDQ0LDQdZ06dQrOzs5QVVUtxS2g8kRLSwvOzs5wdnYGAGRlZeHmzZu4ePEiLl26hAMHDmDJkiVQVVVFkyZN4ODggNatW8Pe3h4NGjQQOD0REZVF3bp1w+DBg+Hn54cWLVp89VpHWVSvXh0A8ObNG4GTyEfVqlXznP8zMzMRHR2Ny5cvIyYmBidOnMB///tfZGdnQ0dHJ0+BD2tra1hYWPD6k4iIKqzU1FRcu3ZNUrQjJiYGcXFxyMrKgra2NqytrdGmTRuMHTsWDg4OZfp35wULFuDQoUOYMWMGNm3aJNUy7u7uOHXqFDw8PNCtWzccPHgQVapUUXBS+uzVq1fo2bMnoqOj8csvv8DLy0voSCWWlpbG76AREREpqYyMDAwZMgRubm7o16+f0HGIiIiIqJSwmAcRERERkUC++eYb/P7773B0dETHjh0RHBwMDQ0NoWMREREVW8eOHbFv3z54e3ujWrVqWLVqldCRiIiIiKiccHFxQatWrfDf//4Xv/zyi2S6s7MzYmJi8PPPPyMgIAB79uzB+PHjMWnSJOjo6ORZR0JCAn7//XccOHCgtONTOaampia5WXfUqFEAgKSkJERHR+Pq1auIjIzEtm3b8PHjRxgYGMDOzg5isRjOzs6wtraGioqKwFtARERlwerVq3H+/HkMGzYMx48fFzpOkapWrQptbW08f/5c6CgKUalSJTg4OMDBwUEy7cOHD7h58yZiYmJw7do1nD9/HmvXrkVmZiY0NDTQuHFjmJubo3HjxrCwsICFhQXMzc15sy4REZUbycnJuHPnDu7evYu7d+8iLi4OcXFxePToEXJycqCnpwdra2t07twZs2fPhrW1NczMzMrVwwF0dHSwfPly+Pj4YODAgbC3t5dqOScnJ5w+fRpdunRBp06dcPz4cWhqaio4Lf3555/w9PREVlYWLly4ABsbG6EjyUVaWhqPHyIiIiU1Z84cxMfHIzg4WOgoRERERFSKWMyDiIiIiEhADRs2xG+//YZ27dqha9euOHHiBL+0R0REZZqXlxf27duH3r17Q0VFBStWrBA6EhERERGVE35+fhg1ahRSU1PzPF1SVVUVQ4YMQd++fbFmzRosWbIE69atw4QJEzB27FjJvHv27IG2tja6dOki1CZQBWFgYAB3d3e4u7sDAD5+/IgrV64gPDwcERERWLx4MaZNm4bq1atDLBZDLBajTZs2sLOzQ6VKlQROT0REykhDQwM7d+5E27ZtsXPnTgwYMEDoSEWqXbt2uS3mUZBq1aqhVatWaNWqlWRaZmYmbt26hWvXruHOnTuIi4vDzz//jMePHyM7OxsqKiowMTHJV+SjUaNGMDAwEHBriIiICvbp0yc8fPgwX9GOu3fv4vXr1wAALS0tSdGqgQMHomnTprC2tka9evUETl86+vTpg927d2PYsGGIiYmBurq6VMuJxWL89ttvcHNzQ8eOHfHrr7/mK1RL8nPq1Cn06dMHTZs2xeHDh1G7dm2hI8lFZmYmMjMzWcyDiIhICd24cQMrVqzAmjVrULduXaHjEBEREVEpYjEPIiIiIiKBNWrUCMHBwWjfvj26du2KY8eOoXLlykLHIiIiKrbu3btj79696Nu3L1RUVLBs2TKhIxERERFROeDh4YEffvgB58+flxRJ+LeqVatiypQpGDlyJNatW4fAwECsWrUKo0aNwrhx47B161b07t2bn7tQqatSpYqkaAcAZGdnIy4uDpGRkYiIiMBPP/2EadOmQV1dHc2aNYOzszMcHBwgFouhq6srcHoiIlIW9vb2GDVqFMaMGQMnJyel/9K/vr4+Xrx4IXQMQVWqVAk2Njb5nvKekZGBBw8eSG5+jouLQ0REBLZt24Z3794BAHR0dGBqagoTExOYmJjk+buJiQm0tbWF2CQiIirncnNzkZCQgMePHxf48/fff+PTp08QiUSoV68ezM3NYWdnBx8fH0lRqjp16gi9GYJbvXo1mjZtilWrVmHy5MlSL2djY4OwsDC4uLigffv2OHPmDGrVqqXApBVPbm4uli5dihkzZmDIkCFYu3ZtuSqsmpqaCgAs5kFERKRksrKyMHjwYNjb2+OHH34QOg4RERERlTIW8yAiIiIiUgLffvstQkND8f3336NPnz44ePAg1NR4uU5ERGVXz549kZ6ejkGDBkFFRQVLliyBSCQSOhYRERERlWG1atWCiYkJbty4UWAxj880NTUxdepUjBw5EuvXr8fixYuxYsUKpKWlYd++faWYmKhgqqqqsLKygpWVleRLmwkJCYiMjERoaChOnDiBpUuXQkVFBRYWFhCLxXBwcCgTN24TEZFiLVq0CKdPn8aQIUMQHBys1J+3GRgYIDExUegYSqly5cqSa4EvJSYmIi4uDvfu3cOjR4/w+PFjXLp0Cfv27cPz588l89WoUSNPcY/69etLCn7Ur1+fxT6IiKhAOTk5SEpKKrRYx5MnT5CRkQHgn6JUdevWlZxrHB0dYWZmJinaUa1aNYG3RnmZmZlhxowZCAgIQI8ePWBqair1so0aNUJ4eDhcXFzQtm1bhISEsECKnHz8+BE//PAD9u7di0WLFmHq1KlCR5K7tLQ0AICWlpbASYiIiOjfAgMDcefOHdy4cUOpP88jIiIiIsXg3YFERERERErC2toax48fh5ubG/r164c9e/awoAcREZVpAwYMgLq6Onx9ffH8+XNs3bqV5zYiIiIiKpFGjRrh/v37Us2rpaWFqVOnws/PD99++y3S09PRoUMHTJw4EWPGjEHVqlUVnJZIekZGRujZsyd69uwJ4J8becPDwxEREYGwsDBs2bIFOTk5aNSoEcRiMRwdHeHk5ARjY2OBkxMRUWmqVq0atm7dCkdHR+zduxf9+vUTOlKh6tevj4iICKFjlDmGhoYwNDSEk5NTvtcyMjIQHx+Phw8fSn4SEhJw8+ZNHD16FI8ePUJubi4AoEqVKjAyMoKhoWGhf5qYmEBDQ6O0N5GIiBQkPT0diYmJSEhIKPDPhw8f4unTp/j06RMAQF1dHXp6ejAyMkKDBg3QrVs3NGjQQPJTv359qKqqCrxVZdfUqVOxb98++Pv749SpUzIta2JigvDwcLi6uqJNmzYICQmBmZmZgpJWDAkJCfDy8sL9+/dx5swZODs7Cx1JIT4X89DU1BQ4CREREX129+5dLFy4EPPnz0fDhg2FjkNEREREAuDdE0RERERESkQsFuPkyZPo3LkzevfujX379kFdXV3oWERERMXWp08faGtro2fPnnj37h3279+PKlWqCB2LiIiIiMooLS0tfPjwQaZlwsPDkZCQgDNnzuD06dMICAjA2rVrMWPGDAwePBiVK1dWUFqi4jM0NESvXr3Qq1cvAMC7d+8QGRmJ8PBwhIeHY8eOHfj06RPMzc3Rrl07yY+hoaHAyYmISNHEYjGGDRuGcePGoUOHDtDT0xM6UoHq16+P3bt3Cx2jXKlcubLkBuuCvH//Ho8fP8bjx4+RmJiI+Ph4JCQkICEhAeHh4UhMTMTz588lBT8AQF9fHwYGBqhTpw6MjIxgbGwMIyMjGBgYQE9PD/r6+qhduzZvCCUiEkhubi6Sk5ORnJyMly9fIikpCUlJSYiPj0diYiKePn2KpKQkPH36NM/nJVWqVIGhoSGMjY1hbGyMJk2awM3NDQYGBqhXrx7q168PY2NjFutQoEqVKmHDhg1o164djh49iq5du8q0vIGBAc6fP49OnTqhTZs2OHv2LJo2baqgtOXbtWvX4OnpiSpVquDixYto1KiR0JEUJjU1FQCLeRARESmLnJwc+Pn5oXHjxhg3bpzQcYiIiIhIICzmQURERESkZBwdHREcHIyOHTvCy8sLhw4d4k0lRERUpnXu3BnBwcFwd3dHp06dcOzYMWhpaQkdi4iIiIjKIJFIhOzsbKnnz8zMxJQpU9C3b1+4urrC1dUVkydPxqJFizB+/HgsWrQIkydPxtChQ1G1alUFJicqGR0dHXTq1AmdOnUCAHz48AExMTGIjIxEaGgoduzYgYyMDDRo0ADOzs5wcHCAk5MT6tatK3ByIiJShMDAQBw7dgwzZ87Exo0bhY5TIBMTE7x48QLv37+HhoaG0HEqBA0NDVhZWcHKyqrQeT59+oSkpCQ8e/YMiYmJkj/j4+Px119/ISIiAs+ePZPcCPpZ1apVUatWLRgYGKBWrVqoVasWateuDX19fdSqVQt6enowMDBA7dq1oaenx//bJCL6ipSUFCQlJUkKdDx//hzPnz/Hy5cvkZycLHnt809OTo5kWRUVFejr68PIyAhGRkZo3Lgx2rdvjzp16sDQ0FDyp7IW+6po2rZti/79+2PMmDFwdnaWucBCjRo1EBwcjC5duqBdu3Y4ffo0WrRooaC05dOBAwcwaNAgtG3bFv/H3p2HRVU2bAC/2UQQ2UJlkVVDQcFlMBeGTAWX9wUEFXF7UcIXzTRSU7O00DKXMrX0K8gVXIGURBMVl3SATAlEcXdA2VVkZNiX4fvju5gv0zIVPMDcv+uaiwHPPOc+OByGM+e5z969e2FoaCh0pCZVWloKgGUeREREzcXGjRtx7tw5XLhwAZqanMJJREREpKr4SpCIiIiIqBlydXVFfHw8Ro0ahTFjxuDHH39E27ZthY5FRET0wtzc3CCRSDBixAgMGzYMP//8M08kJCIiIqLnVlhYCHt7+3+8/Ndff43c3FysXLlS+TVzc3Ns3LgRS5cuxbp167B48WJ8/vnnmDVrFubOnQsDA4OmiE7UqHR1dSEWiyEWi7Fo0SKUl5cjKSkJEokEiYmJ2L59O6qrqx8r9xg2bBgsLCyEjk5ERI1AX18fa9euxaRJkxAQEABXV1ehIz3Bzs4OACCVSnkV+WZES0sLlpaWzyz8qqiowIMHD56YUN7weWFhIdLT03Hv3j08ePAAlZWVjz3ewMAApqamMDY2furNyMjoqV9XU1Nrys0nImpUlZWVePjwofJWXFz82OcNt6KiIjx8+FC5L62qqnpsnIZ9pomJCTp06AB7e3uIxWJleVJDkVLDv6urqwu0xfQivvrqKzg4OODTTz/F2rVrn/vxBgYGiI+Px5gxYzB8+HDEx8djwIABTZC0damvr8eyZcuwfPly/Pe//8WmTZtUYgItyzyIiIiaj1u3bmHx4sX4+OOP4ezsLHQcIiIiIhJQ6z8qRURERETUQg0aNAgnTpzA8OHDMWbMGOzfv5+FHkRE1KL17NkTp06dgoeHB958803ExcWhS5cuQsciIiIiohYkKysLQ4cO/UfLZmRkYNmyZVi6dOlTJyt26tQJq1atwvz587Fp0yasX78eGzduxOzZsxESEgIjI6PGjk/UZHR1deHu7g53d3cAQFlZGZKTk5XlHtu2bUNNTY2y3MPd3R1DhgxhySIRUQs2YcIE7NixAzNnzkRqamqzm5xob2+PNm3a4NKlSyzzaIF0dHT+UelHA7lcjvz8fDx48AD379/HvXv3UFhYiKKiIuXkdqlU+tjk9pqamifGeVbhh76+PvT19WFoaAgDAwPo6+srP+rq6jb2t4GIVEBxcTFKSkpQUlKCR48eKe+XlJSguLj4sf3Yn2/l5eVPjKenp/fEvqxLly544403lGUcfyzo6NChA9q0aSPAltOr0qFDB6xcuRKzZs3CtGnTXuh1Ubt27XDw4EH4+flhxIgROHLkCAYNGtQEaVuH0tJS/Oc//8GRI0ewZcsWBAYGCh3plSktLUWbNm24XyEiIhKYQqFAUFAQ7O3t8dFHHwkdh4iIiIgE1rzexSUiIiIiose4uLjg+PHjGD58OHx9fXHgwAEWehARUYtmb2+PpKQkeHt7Y8CAAdi/fz/c3NyEjkVERERELcD9+/eRmZmJfv36PXPZ6upqTJ48GX369MGiRYv+dtkOHTogNDQU8+bNw3fffYfVq1fj66+/RmBgIBYvXgxTU9PG2gSiV6Zdu3aPlXuUlJTgzJkzOH36NE6fPo0tW7agvr4eTk5OGDp0qLJ0sV27dgInJyKi57Fx40b06NED3333HebMmSN0nMe0adMG3bt3R3p6OiZNmiR0HGpi7du3R/v27WFvb/+PHyOXy5UT4hsmyhcVFT0xWf7y5cvK+yUlJZDL5U8dT1NT84mij4Zbw+dP+7d27drBwMAAOjo60NXVhaGhIdTU1BrrW0NETaCyshIVFRUoLi5GRUUFKioqIJPJnijj+GMpx1/929NoaGhAX1//iVIhR0fHJ0qG/rwMJ9DT0wQFBWHbtm2YNWsWzpw580K/Z7S1tfHjjz/C398fw4cPR1xcHIYMGdIEaVs2qVSK0aNHo6CgAEePHsXgwYOFjvRKyeVytG/fXugYREREKm/dunX49ddfcf78eWhpaQkdh4iIiIgExjIPIiIiIqJmTiQS4fjx4/Dw8MDo0aMRGxsLHR0doWMRERG9MAsLCyQmJiIwMBDu7u4ICwvDtGnThI5FRERERM3c6dOnoaGhgTfeeOOZyy5cuBC3b99GWloaNDQ0/tH4+vr6WLRoEd555x18++23WL9+PbZu3YqZM2di7ty5MDc3f9lNIBKMvr4+PD094enpCQCQyWQ4c+YMTp06hYSEBKxfvx5aWloYOHAgPDw84O7uDhcXl3/880NERMLo0qUL5s6di08//RQTJ06EiYmJ0JEe4+zsjPT0dKFjUDPVUABibW39XI+rr69/YtL+H+8/bUJ/Xl6eckJ/w9eqq6v/ch1t27aFjo4OjIyMoKOjAx0dHRgaGkJXVxc6OjowMDBAu3btoKOjA319fejp6UFHR0e5TTo6OtDT04O2tjZ0dXWV4+no6PDCDaQyHj16BIVCofwok8lQV1eHR48eoaysDBUVFSgpKUFpaSkqKiogl8v+DEVsAAAgAElEQVQhl8tRUVGB0tJSlJSUoKKiAmVlZXj06BEqKipQXl4OmUyG+vr6v1yvnp7eYyU+DUU+VlZWjxX5NNyMjIyeKP5hySE1NnV1dWzcuBFvvPEGIiMjERAQ8ELjaGlpITo6GgEBAfD09ERcXByGDh3ayGlbLolEgrFjx8LMzAwXLlx47tcYrUFpaSn09PSEjkFERKTSrl+/jqVLl2Lp0qVwdnYWOg4RERERNQMs8yAiIiIiagH69u2LhIQEeHh4YNSoUTh8+DBPICEiohatbdu22L17N5YtW4bAwECkpqZi3bp1UFdXFzoaERERETVT+/fvx5tvvgkjI6O/XW7btm345ptvsHv3bnTp0uW516Ovr4+PP/4Y77//Pr7//nusXbsW3377LaZMmYIFCxagW7duL7oJRM2GoaEhvL294e3tDQC4f/8+Tp8+jYSEBISHh2PJkiXQ09PDgAED4O7uDnd3d4hEIoFTExHR03z88cfYsWMHli1bhm+//VboOI9xdnbG+vXrhY5BrYyamhqMjIye+XfBszSUBzSUBpSXlyuLAioqKlBRUYHi4mLlfZlMpiwgkEqlTxQQlJeXo6ys7B+tW1dXF9ra2mjXrh3atGkDPT09aGlpoX379tDU1IS+vj40NDRgYGAAdXV1GBoaKrdbTU0NhoaGAP6/dASA8rEAlN8bTU1NtG/fHgAeKxL547LU+pSVlSnLahqKNBpKNQCgqqoK5eXlf7lsdXU1ysrKlMtVVlYqfw4qKytRXl6Oqqoq5WNLS0tRU1MDuVyO2tpalJSUoK6u7pk5G57Lurq60NXVfaIYx8LCQlmMo6+vr1zO0NBQWY7TULijq6sLAwMD5c8MUXPUt29fzJgxAwsXLoS3t7dyX/68NDQ0EBERgalTp8LLywsHDx7EsGHDGjltyxMeHo45c+bA29sb27dvV9lzqsrKyljmQUREJCCFQoHp06eje/fuWLRokdBxiIiIiKiZ4DsyREREREQtRJ8+fXDs2DF4eHhg9OjROHjwIHR1dZ9rjKT4uCZKR0RNrV6hQD3AE9BauRsXfxc6wiulpqaG0NBQ2NjYYMaMGcjNzcWOHTue++Qq/n4jerZXsX9R1Cv48/icamtqIJc9hFGHTkJHISIVcTM9VegIL+zRo0c4dOgQVq1a9bfLJSYm4p133sHixYsxYcKEl1pnu3btMH/+fMyZMwd79+7FqlWr4OjoiH/9619YvHgxBg0a9FLjEzUnHTp0gJ+fH/z8/AAAUqkUCQkJSEhIwMqVK/Hhhx/CzMwMYrEY7u7u8PT0hLm5ucCpiYgIAPT09LBixQr897//RXBwMJycnISOpOTs7Iy8vDzcv38fHTp0EDoO0WMaygA6duzYqOM+evQIFRUVKC8vf+7yg4YyBZlMhvr6emRlZaG+vh4ymUxZxlBXV4eSkhIAjxcxvKiG4g8tLS3l5N8/Fn8A//felIGBwWOP+2ORSIOGEpIGGhoa0NfXf2yZP4/9Z38sK3keT8v4LDU1NSgtLX3udTWUXfydhv/LBrW1tZDL5Y8t0/C8+KOG//u/y/isgo4X1VDy0lAC0/CcaNOmDdq1awdtbW3o6urC2NhY+fPT8Dxo27btPy6paSjg+LvnAVFrtXLlShw4cABLly59qRI2DQ0N7NixA+rq6vD29kZsbCw8PDwaMWnLUVtbiyVLlmDNmjVYuHAhvvjiC5U+p0Iul7PMg4iISEBfffUVzp8/j/Pnz0NLS0voOERERETUTKjV//HIPxERERE1GjU1Nezbtw/jx48XOspLiYqKgr+/P/iysflIS0uDh4cHXn/9dRw6dAjGxsbPfMzZs2cxdOhQ1NbWvoKERET0Miw6d0ZOdrbQMV65M2fOYOzYsTAzM0NMTAzs7e2f+Rj+fiN6Pk25fzl58iSGDx/+j664SEREwrK1tYNUelvoGM9t/fr1WLp0KXJycv5ygtahQ4cwefJkDBs2DDExMY1+4r5CocDhw4excuVKJCcnw9XVFYsWLYKnpyfU1NQadV1EzUldXR3S0tKU5R5nzpxBdXU1HB0d4eXlBXd3d4jFYk7GIyISkEKhwBtvvAFTU1McOnRI6DhKBQUFMDMzw4kTJzB06FCh4xC1as8qePhj8UfDsn8sBvmrZYGnl1c0FJL8UXFx8WOf/9PH/dHTCi7+iRctNmkonHhefy4u+bOGQos/aihOadBQkvF3eZ5WbtJQjvHHMRsKOIDHi1aetSxLNYheve3btyMoKAjJycl44403Xmqsuro6TJ06Ffv370d8fDzefPPNRkrZMjx8+BDjx49HYmIitmzZgkmTJgkdSXAzZszA7du3kZCQIHSUFzZ69Gjo6+sjMjJS6ChERETP5dq1a+jbty+WLl2KxYsXCx2HiIiIqNnbuXMngoKCXug9gZaGZR5ERERETYRlHtSUbt++jREjRqBNmzaIj4+HlZWV0JGIqIllZ2fjhx9+wPbt25GTkwOxWIy3334bfn5+T5zoR9RS5eTkwM/PDxkZGdiyZYvyitBERC1RaWkp0tLSkJKSgsTERPzyyy+4d+8eNDU1YW9vD7FYDFdXV4hEIvTo0UPouEREzVp1dTW6d++OUaNGYdOmTU/8+7Vr1/DZZ59h9+7dePvtt/Hdd989MWmqsUkkEqxevRqHDx9Gz5498cEHH2DixIm8yhaphEePHuHUqVM4fvw4EhIScOPGDejo6MDNzQ3u7u4YOXIknJychI5JRKRyEhIS4OHhgVOnTuGtt94SOo5Sp06d8OGHH2Lu3LlCRyEiFaRKJwMTUctQX1+PIUOGoLy8HL/++utLl9HW1dVh8uTJOHLkCE6cOAEXF5dGStq83bhxA6NHj4ZcLkdsbKzKbPezTJ48GeXl5Thw4IDQUV4YyzyIiKglqqurg6urK2pqavDrr7/y/UIiIiKif0CVjt837uWoiIiIiIjolejSpQvOnDkDTU1NuLq6Ij09XehIRNTELC0tsXz5cmRlZeHYsWOwsbHBrFmz0KFDB4wfPx4JCQksXqIWr3Pnzjh9+jQCAwPh7++PkJCQv71CHxFRcyKVShEREYGQkBCIxWIYGxvDzc0Nq1evRkVFBd555x0cP34cJSUlyMjIQFhYGAICAljkQUT0D2zevBm5ublYsGDBY19PTU3F+PHj0aNHD6SmpuKnn37Cli1bmrzIAwDEYjHi4uKQlpYGZ2dnBAUFoWvXrvj666+VV7Ymaq0MDAzg4+ODTZs24fr167hz5w6+/fZbGBsbY82aNXB2doalpSWCg4Oxf/9+/kwQEb0i7u7uGDZsGJYsWSJ0lMf06tULqampQscgIiIiahbU1NTwzTffIDU1Fdu3b3/p8TQ0NBAZGQmxWIxRo0bhypUrLx+ymYuPj0f//v1hZGSECxcusMjjD+RyOfT09ISOQUREpHLWrFmDtLQ0REREsMiDiIiIiJ7AMg8iIiIiohbK3NwcZ86cweuvv45BgwZh3759QkcioldAXV0d7u7uiIiIQF5eHtavX4/bt2/Dw8MDDg4OWL16NQoLC4WOSfTCtLW1sWHDBmzbtg0//PAD3N3dkZ2dLXQsIqLHlJSUQCKRYPXq1fDy8oKJiQm6dOmC6dOnIzExESKRCJs3b8bt27eRl5eHuLg4hIaGwt3dHTo6OkLHJyJqUR4+fIjPPvsMM2fOhI2NDYqKihAeHg6xWAyRSITr169j27ZtuHTpEry9vV95PmdnZ+zcuRO3bt2Cr68vQkNDYWlpiblz5yIzM/OV5yESgpWVFYKCgrBnzx4UFhbiwoULmD17NjIzM+Hv7w9jY2O4uLggNDQUKSkpLCMlImpCK1euRFJSEg4fPix0FCVXV1ecPn1a6BhEREREzYazszNmzJiBjz76qFEKMLW0tBATEwNHR0cMHz68VR+T+vLLL+Hp6QlfX1+cOnUKpqamQkdqVkpLS1nmQURE9IpdvXoVy5cvx2effcaLuRARERHRU7HMg4iIiIioBTM0NMSxY8cwe/ZsTJgwATNmzEBNTY3QsYjoFTE0NERwcDBSUlJw+fJl+Pj44Msvv4SFhQU8PDwQHR3NfQK1WFOnTsWvv/6K+/fvo3fv3jhw4IDQkYhIRdXV1SEjIwMRERGYMWMGevToASMjI7i5uWHDhg0AgAULFuDs2bOQy+W4cOECNmzYgICAANjZ2Qmcnoio5Zs3bx7q6+thb2+PESNGoFOnTliwYAFef/11JCQk4OLFiwgICICGhoagOa2trbF+/Xrk5uZi+fLlOHDgALp27QovLy8kJCQImo3oVVJXV4dIJMKiRYtw/PhxFBQUYM+ePRCJRPjhhx/g4uICU1NTjB8/HhEREZDJZEJHJiJqVfr16wcfHx8sWbKk2ZQnDR06FNnZ2bh165bQUYiIiIiajeXLl6OmpgZr1qxplPF0dHQQFxcHU1NTeHh4ID8/v1HGbS6qqqoQGBiIxYsXY8WKFdi6dSu0tbWFjtXssMyDiIjo1aqtrcXUqVPRu3dvzJs3T+g4RERERNRMscyDiIiIiKiF09TUxKpVqxAZGYnIyEiMHDkSeXl5QsciolesR48eWLVqFXJzc7Fnzx60bdsWEydOhLW1NUJCQnDp0iWhIxI9N2dnZ6SkpGDKlCkYM2YMAgICUFZWJnQsImrlCgsLERcXh9DQUHh5ecHExAQ9e/bEu+++i4yMDLi7u2Pv3r0oLCxEXl4e4uLisGjRIojFYp44SkTUSBQKBc6dO4epU6dix44duHfvHubPn4+2bdti9+7dKCgowLZt2zB06FChoz6hffv2CAkJgVQqRWxsLIqLi+Hh4QGRSISIiAgWLpLKee211+Dn54ewsDDk5ubi8uXLmDdvHoqLizF9+nSYmJjAxcUFoaGhSElJaTYTz4mIWrLQ0FBcvHgRhw8fFjoKAKB///5o164dTp06JXQUIiIiombD2NgYH3/8MdauXYs7d+40ypj6+vr4+eefoampieHDh+Phw4eNMq7QcnNz8eabb2L//v04cOAAFi1aJHSkZotlHkRERK/WqlWrkJ6eji1btgh+4QEiIiIiar5Y5kFERERE1EpMmTIFiYmJyM3NhbOzM3788UehIxGRALS1teHn54e4uDhkZWUhJCQEcXFxcHZ2houLC8LDw1FaWip0TKJ/TEdHBxs2bEBUVBTi4uLQv39//P7770LHIqJWora2FhkZGQgPD0dAQAB69OgBMzMzeHt7IzIyEkZGRggNDcXZs2fx8OFDSCQSbNiwAX5+fujYsaPQ8YmIWpVr167hhx9+wOTJk2FqaooBAwZg9+7d6NKlC/bv348HDx7gp59+wvjx46GjoyN03GdSV1eHl5cXJBIJEhMTYWdnh7fffhtdunTBl19+CZlMJnREIkH06NEDixYtwvHjx1FQUIA9e/ZAJBJh8+bNcHFxgampKcaPH4+IiAgUFxcLHZeIqEVydnaGp6cnPv/8c6GjAADatGkDV1dXlnkQERER/cns2bNhZWWFxYsXN9qYHTt2xPHjxyGXy+Hr64vq6upGG1sISUlJcHFxgUwmw7lz5+Dl5SV0pGatrKwM7dq1EzoGERGRSrhy5QpWrFiBL774Ao6OjkLHISIiIqJmjGUeREREREStSJ8+fZCSkoKxY8di3LhxCAoKglwuFzoWEQmkc+fOWLRoEW7duoXjx4/D0dER77//PszNzREQEICEhARe8ZZaDD8/P6SlpcHExAQDBgzA8uXLUVtbK3QsImph8vLyEBcXh9DQUHh4eEBfXx89e/bEggULIJVK4eXlhZ9++gkPHjzA7du3ERERgZCQEIjFYmhpaQkdn4io1VAoFLh06RK+/fZbjB8/HqampnBwcMDcuXNx//59LFiwAGPGjIGBgQESExPh4+PToq8oOWjQIERHR+PWrVuYNGkSVq5cCTMzMwQEBCA9PV3oeESCMTY2hp+fH8LCwnD37l1cuHABc+bMQW5uLt5++2107NgRb775JlavXo0rV64IHZeIqEVZsmQJzp07h5MnTwodBQAwZMgQnDhxgsejiYiIiP6gTZs2WL16Nfbu3QuJRNJo41paWuLIkSO4ePEiZsyY0Wjjvmo7d+7EsGHD0LdvX/z222/o3r270JGavfLycujq6godg4iIqNWrra3F1KlT0adPH4SEhAgdh4iIiIiaOZZ5EBERERG1Mu3atUNYWBiOHDmCn3/+Gd27d0dsbKzQsYhIQOrq6nB3d0dERATy8vLw1VdfISMjAx4eHnBwcMDq1atRWFgodEyiZ7K2tsapU6ewceNGrFmzBiKRCGlpaULHIqJmqqamBikpKdiwYQMCAgJgZ2cHCwsL+Pr6Ijo6GmZmZli/fj0uX76M4uJiSCQSrFq1Cl5eXnjttdeEjk9E1Krcv38fhw8fxqeffopRo0bBxMQEzs7O+OSTT1BRUYH58+cjOTkZMpkMx44dQ7t27RAbG4utW7eiU6dOQsdvNDY2Nli1ahWysrKwevVqnDt3Dr169cLQoUOxf/9+1NXVCR2RSDDq6uoQiURYsmQJEhMTce/ePezcuRN2dnZYu3YtevToga5du2Lu3Lk4efIkampqhI5MRNSsvfHGG3B3d8eKFSuEjgIAGDp0KO7du8dyJiIiIqI/8fHxwbBhw/DBBx80avGZg4MD9u7di8jISHz11VeNNu6rUFtbiw8//BABAQEICQlBXFwcDAwMhI7VIrDMg4iI6NVYsWIFrly5gu3bt0NDQ0PoOERERETUzLHMg4iIiIiolRo5ciTS0tLg5uYGX19fTJ48Gffu3RM6FhEJzNDQEMHBwUhJScHly5fh4+ODL7/8EhYWFvDw8EB0dDQnxFCzpqampnwO6+rqYuDAgfj8889RXV0tdDQiElheXh6io6MREhICsViM9u3bw8XFBaGhocjPz0dAQAAOHjyIBw8eICMjAxEREQgODkaPHj2grs5D5UREjaW8vBzJyclYv349Jk2ahC5duqBjx47w9PTE3r17YWJigmXLliE1NRVFRUWIi4vDggULMGDAAGhqaiIxMRFz585FaGgovL29hd6cJqGvr4/33nsP165dw/Hjx2FiYoLx48fD0tISoaGhuH//vtARiQRnbGwMf39/bN++HQUFBbhw4QKmTJmCs2fPYtiwYTAyMoKXlxfCw8NZUEpE9Bc+/PBDnDx5Er///rvQUSASiWBoaIhTp04JHYWIiIio2VmzZg3Onz+Pffv2Neq4I0eOxOrVq7Fo0SIcPHiwUcduKkVFRRg5ciQ2btyIqKgorFq1iu/h/EP19fWoqKhgmQcREVETu3jxIr744gt88cUXsLe3FzoOEREREbUAavWNWeNLREREREpqamrYt28fxo8fL3SUlxIVFQV/f/9GvfoDvXqHDx/GrFmzUFZWhtWrVyMwMJBvdhORUlVVFQ4ePIjw8HCcOHECpqam8PPzw/Tp0+Hk5CR0PKK/VFdXh6+//hqhoaGwtbVFWFgYXF1dhY5FRK9AaWkp0tLSkJKSgsTERPzyyy+4d+8eNDU1YW9vD7FYDFdXV4hEIjg6OkJNTU3oyERErdKjR49w6dIlpKSkICUlBVeuXMGlS5dQXV0NAwMD9OzZU7lPHjBgADp06PC34929exf9+vXDoEGDsH//fpXaf0ulUoSHh+OHH35AWVkZvL29MXfuXAwcOFDoaETNTlZWFo4dO4a4uDgcO3YMdXV16N27Nzw9PeHl5QWRSCR0RCKiZqN3797o1asXduzYIXQU+Pj4oLa2FocOHRI6ChGpkJ07dyIoKAhVVVVCRyEi+luBgYGQSCS4evUqNDU1G3XsmTNnYteuXUhMTISzs3Ojjt2Y0tPTla8ZDxw4wL/vn1N5eTnatWuHuLg4eHp6Ch3nhY0ePRr6+vqIjIwUOgoREdETamtrMWDAAGhra+PMmTPQ0NAQOhIRERFRi6VKx+9Z5kFERETURFjmQc2NXC7H0qVLsWnTJvTq1Qvr16+HWCwWOhYRNTM5OTnYtWsXwsLCkJmZCZFIhODgYEyaNAl6enpCxyN6qszMTMyaNQvHjh1DcHAwVq5cCUNDQ6FjEVEjkkqlkEgkyvKOtLQ01NXVwczMDCKRCCKRSDlZXEdHR+i4REStjkKhQGZmJtLT05Geno7U1FSkpaXhzp07AAAzMzP07t0bffr0QZ8+fdC3b1/Y2dk91zrkcjkGDx6M2tpaJCUlqezfH2VlZdi5cyc2btyIy5cvY+DAgXjnnXfg5+eHtm3bCh2PqNkpKyvDyZMncejQIRw8eBAFBQWws7NTFnsMHjwYWlpaQsckIhLMli1bMGvWLGRlZcHMzEzQLBEREZg+fToKCwthZGQkaBYiUh2qdDIwEbVsd+7cgb29PcLDwzF16tRGHbumpgYjRoyAVCrFuXPn0KlTp0YdvzFER0cjMDAQffv2RUxMDDp27Ch0pBbnwYMH6NChA06cOIGhQ4cKHeeFscyDiIias08++QRr165FWloaXn/9daHjEBEREbVoqnT8nmUeRERERE2EZR7UXF2/fh3z5s3Dzz//DE9PT3z77bewsbEROhYRNTMKhQInT55EREQEYmJioKmpCR8fHwQEBGDYsGEqdYVsajni4uLwzjvvoKKiAp988glmz57NKyAQtUAlJSVIT09HYmIiJBIJkpOTUVRUBC0tLTg7O8PV1RUikQhubm6wtbUVOi4RUatz7949pKen4/Lly7h8+TLS09Nx5coVlJWVQU1NDV26dFGWdjQUeJiamr7UOisqKjBq1Chcv34diYmJz10E0lqdOnUK//M//4OffvoJ+vr6CAwMxIwZM9C1a1ehoxE1S3V1dUhLS0NcXBwOHTqElJQUGBkZwd3dHZ6envD29mbxIxGpnKqqKlhbW2PGjBlYtmyZoFlkMhlMTU0RHh6OgIAAQbMQkepQpZOBiajlCwoKwi+//IJr165BU1OzUcd+8OAB+vfvD2traxw/frzZvIdaX1+PNWvW4KOPPsL06dOxceNGlnK+oLt378La2hrJyckYMGCA0HFeGMs8iIioubpw4QIGDRqEtWvXYs6cOULHISIiImrxVOn4Pcs8iIiIiJoIyzyouUtISEBISAhu3bqFadOmYfny5c3y6htEJDyZTIaoqCh8//33SE1NRbdu3RAYGIhp06Zxv0HNjkwmw6pVq7Bu3Tr06NEDGzZsgJubm9CxiOgv1NXV4dq1a0hJSVGWd1y7dg0KhQJmZmYQi8XK8o5+/fpBW1tb6MhERK1GXl4erl27huvXr+PatWvIyMhAeno67t+/DwDo2LEjnJyc0LNnT/Ts2RPOzs5wdHSEnp5eo+aoqamBr68vEhMTcerUKfTu3btRx28NCgoKsGPHDnz//ffIysqCq6srQkJC4OPjw8kNRH/j5s2bymKPs2fPQk1NDW5ubvDy8sLo0aNZDEdEKmPp0qXYvHkz7t69K/hrB09PT6ipqSEuLk7QHESkOlTpZGAiavnu3LkDe3t7hIWFYdq0aY0+fnp6OgYMGIBFixbh008/bfTxn5dcLkdAQACOHDmCTZs2ISgoSOhILdq1a9fg4OCAixcvwtnZWeg4L4xlHkRE1BxVVVXBxcUFHTt2REJCAi+ERkRERNQIVOn4Pcs8iIiIiJoIyzyoJaiurkZYWBhWrFiBiooKzJ8/H3PnzkX79u2FjkZEzVRGRgYiIyOxefNmyGQyDBkyBMHBwZxERs3OlStXEBISghMnTsDf3x8rVqzgFd6JmoGCggKcP38eKSkpSElJgUQigUwmg56eHnr16gWRSASxWIzBgwejY8eOQsclImrxqqqqcOPGDVy/fl1Z2tFwv6SkBABgZGQEe3t7ODk5oUePHnBycoKTk9Mr2Q/X1dVh8uTJOHLkCBISEtCvX78mX2dLplAocPLkSYSHh+PAgQMwMTHB1KlT8c4778Da2lroeETNWnFxMeLj4xEXF4f4+HgUFxejd+/e8PX1hY+PT4ue5EJE9CzZ2dmwtbVFTEwMfHx8BM2yY8cOBAcHo6CgAEZGRoJmISLVoEonAxNR6zB9+nScPn0a165dg6amZqOPv2nTJrz33ns4evQo3N3dG338f+rWrVsYPXo07t+/j+joaAwePFiwLK3F77//DpFIhJs3b6Jr165Cx3lhLPMgIqLmaN68edi6dSvS09NhZWUldBwiIiKiVkGVjt+zzIOIiIioibDMg1qSsrIyrF+/Hl999RW0tLSwcOFCzJw5s9GvtktErUdVVRUOHjyI8PBwnDhxAqampvDz88P06dPh5OQkdDwipQMHDuDDDz9EVlYWZsyYgaVLl6JDhw5CxyJSCbW1tbh+/ToSExMhkUiQkpKCq1evor6+HnZ2dnB1dVWWd/Tu3RsaGhpCRyYiarGKi4shlUqRkZGBK1euKO9fv34ddXV1AAAzMzP06NEDdnZ2cHR0VN63tbUV5OpRCoUCgYGBiImJQXx8PNzc3F55hpYsKysL4eHh2Lp1K4qKiuDp6Ynp06dj5MiR/J1K9Ax1dXVITk5GdHQ09u/fj5ycHNjY2MDb2xteXl546623mmTCFBGRkEaMGIE2bdogLi5O0BwymQympqYIDw9HQECAoFmISDWo0snARNQ63LlzB/b29ggLC8O0adOaZB1+fn5ISkrCpUuXYGxs3CTr+DtHjx7FxIkTYWNjg9jYWE6IbSQSiQRubm7Izc2Fubm50HFeGMs8iIiouZFIJBg8eDC2bt2KqVOnCh2HiIiIqNVQpeP3LPMgIiIiaiIs86CW6OHDh1izZg02bdoEbW1thISEYM6cOTA0NBQ6GhE1Yzk5Odi1axfCwsKQmZkJkUiE4OBgTJo0iaVA1CzU1tZi8+bNWL58OUpLSzF//ny8//77MDAwEDoaUauSl5eHlJQUZXnH77//joqKCujr68PJyQlisRiurq4YNGgQXnvtNaHjEhG1ODU1NcjOzu5LxqQAACAASURBVH6itOPy5csoKCgAAGhra6NLly5PlHZ0794d7dq1E3gL/l91dTUCAgLw008/ITY2FiNGjBA6UotVXV2NAwcOICwsDKdPn4a5uTmmTp2KwMDAFn0FTqJXKSMjA9HR0YiKisLVq1dhYmKCUaNGwc/PD8OHD4e2trbQEYmIXlpUVBQmTZqEzMxMWFpaCprF09MTampqgheLEJFqUKWTgYmo9Zg+fTpOnz6Na9euNUnZpEwmg7OzM9zc3LBr165GH//vhIeH491334Wfnx+2bNkCHR2dV7r+1uzYsWMYMWIEiouLW/R5XizzICKi5qS0tBS9e/dGz549ERsbK3QcIiIiolZFlY7fs8yDiIiIqImwzINasqKiImzYsAHffvstFAoFZs+ejZCQEHTs2FHoaETUjCkUCpw8eRIRERGIiYmBpqYmfHx8EBAQgGHDhglytW+iPyorK8P69evx1VdfAQDee+89vP/++zAyMhI4GVHLU1NTg/T0dEgkEqSkpODs2bPIysqChoYGunXrBpFIpCzvcHBwgLq6utCRiYhahPLycty+ffuptzt37qC2thZqamqwsrJCt27d0K1bNzg4OMDe3h7du3eHhYWF0JvwTOXl5Rg3bhzOnDmDAwcOwMPDQ+hIrUZ2djZ2796N77//HllZWSxaJHoBUqkUcXFxiI6ORlJSEnR0dDB06FD4+fnBx8cH+vr6QkckInoh1dXVsLCwwNy5c/HRRx8JmmXHjh2YMWMGCgoKWvQkQyJqGVTpZGAiaj0yMzPRrVs3bN26FVOmTGmSdRw/fhwjRozA3r17X8m5bZWVlZg5cyZ27tyJFStWYNGiRU2+TlUTGxsLX19fVFVVoU2bNkLHeWEs8yAiouYkKCgIBw8exOXLl9GpUyeh4xARERG1Kqp0/J5lHkRERERNhGUe1BqUlpZiy5YtWL16NYqKiuDv74+FCxeiZ8+eQkcjomZOJpMhKioK33//PVJTU9GtWzcEBgZi2rRpfGOLBPfo0SN88803WL9+PWprazFnzhzMmTOHz02iv5GXl4fExERleceFCxdQVVUFU1NTuLi4QCQSQSQSwc3NjRNxiIie4cGDB39Z2JGfn69czsLCAl26dFHeunbtCnt7e3Tr1g26uroCbsGLk8lk8PLyQkZGBg4fPoyBAwcKHalV+nPRopaWFkaPHs2iRaLnlJ2djSNHjiAuLg5Hjx6FhoYGxGIxPD094e/vD1NTU6EjEhE9l9mzZ+PkyZO4cuWKoDkePXoECwsLrFq1CrNnzxY0CxG1fqp0MjARtS4TJ07EjRs3kJKS0mTrmDFjBvbv34+rV6/CxMSkydaTm5sLX19f3L59G3v37mW5bxPZvXs3pk6dipqaGqGjvBSWeRARUXMRFxcHb29vREdHY9y4cULHISIiImp1VOn4Pcs8iIiIiJoIyzyoNamqqsK+ffuwZs0aZGRkwNXVFYsWLYKnpycngBDRM2VkZCAyMhKbN2+GTCbDkCFDEBwcDB8fH2hpaQkdj1SYXC7Hxo0bsW7dOsjlckyZMgXz5s2Dg4OD0NGIBFVaWoq0tDSkpKQgMTERp0+fxv3796GpqQl7e3uIxWK4urpCJBLB0dGRrweJiJ6iuLgYUqlUecvIyMCVK1dw+/ZtyGQyAICWlhYsLS1hZ2f3xK1bt27Q09MTeCsaV2FhIUaOHInCwkIcPXoUTk5OQkdSCX8uWuzevTumTZvGokWi5/Tw4UMcOnQIhw4dwpEjR1BeXo6BAwfCy8sLY8aMweuvvy50RCKiZ5JIJHBzc8OlS5cEL23/73//i8TERGRkZPC4AhE1KVU6GZiIWpdff/0VAwcOhEQigaura5OsQy6Xw8HBAcOHD8fWrVubZB1JSUkYO3YsDAwMEBsbi+7duzfJegjYvHkz5s+fj0ePHgkd5aWwzIOIiJqDBw8ewMnJCSNGjMD27duFjkNERETUKqnS8XuWeRARERE1EZZ5UGtUX1+Pn3/+GevWrcOJEyfg4OCAmTNnIiAggFdgJ6JnqqqqwsGDBxEeHo4TJ07A1NQUfn5+mD59OifykaAqKioQERGBdevW4caNG/jXv/6F2bNnY/jw4VBXVxc6HlGTk0qlkEgkyvKO1NRUKBQKmJmZQSQSPVbeoaOjI3RcIqJmoaysDFlZWcjKyoJUKsWtW7dw+/Zt3L59G5mZmco3GfX09NClS5en3iwtLaGpqSnwlrwaV65cgZeXFzQ1NXHs2DFYW1sLHUklsWiRqHGUlpYiPj4eBw4cwOHDh/Ho0SOIRCL4+vrC19cXjo6OQkckInqq+vp62NraYsqUKfj8888FzZKWloY+ffrg1KlTeOuttwTNQkStmyqdDExErU///v1hbW2NqKioJltHTEwMxo8fjxMnTmDIkCGNOvYPP/yA2bNnw8PDA7t27YKBgUGjjk+P++abb7By5Urk5+cLHeWlsMyDiIiag/HjxyMpKQmXLl2CkZGR0HGIiIiIWiVVOn7PMg8iIiKiJsIyD2rt0tPTsWnTJuzevRsKhQITJ07EO++8A5FIJHQ0ImoBcnJysGvXLoSFhSEzMxMikQjBwcGYNGlSq7sCObUcCoUChw4dwrp16/DLL7/A1tYWwcHBCAwMRMeOHYWOR9QoSkpK8NtvvynLO5KSkvDw4UNoaWnB2dlZWdrh5uYGW1tboeMSEQmmsrISeXl5kEqlylteXh7y8/MhlUqRmZmpPFZiZGQEOzu7p95sbW1V/krjR48ehb+/P3r27IkDBw6gQ4cOQkdSeSxaJGo8dXV1SE5ORnR0NGJiYpCXlwc7Ozt4enrCz88PYrFY6IhERI9ZsGABYmNjcfPmTaGjYODAgbCyssK+ffuEjkJErZgqnQxMRK1PZGQkgoKCkJOT06TvVf773//GnTt3kJqa2iiFr7W1tViyZAnWrFmDhQsX4osvvuAFFF6B1atXIywsDFKpVOgoL4VlHkREJLSdO3ciICAAR44cwYgRI4SOQ0RERNRqqdLxe5Z5EBERETURlnmQqigpKUFkZCS+++47ZGRkoF+/fggKCsKECRN4VQ0ieiaFQoGTJ08iIiICMTEx0NTUhI+PDwICAjBs2DCVn/hIwrl69SrCwsIQERGBsrIyeHl5ISAgAKNGjeJVy1VERUUFiouL8fDhQzx8+FB5Xy6Xo6KiAhUVFaisrER5eTmqqqpQVlaG6urqZ46ro6OD9u3bQ19fHwYGBjAwMED79u2VXzM0NESnTp1gamr60vvAuro6XLt2DSkpKUhMTIREIsHVq1dRX18PMzMziMViZXlHv379oK2t/VLrIyJqSZ5W1vHHwo6nlXWYmZnB3Nz8sbKOrl278m/fvxEeHo7Zs2djzJgx2LZtG3R0dISORH/CokWixqNQKJCUlITo6Gj8+OOPyM3Nha2tLby8vFjsQUTNxrlz5zBgwABcunQJPXv2FDRLREQEpk+fjqysLJibmwuahYhaL1U6GZiIWp+KigqYm5tjyZIlmD9/fpOtRyqVwtHREWvXrsW77777UmMVFRVh/Pjx+O2337B9+3aMHTu2kVLSsyxbtgz79u3DlStXhI7yUljmQUREQsrLy4OTkxOmTJmCDRs2CB2HiIiIqFVTpeP3LPMgIiIiaiIs8yBVdObMGYSHh2P//v0AgLFjxyIwMBBvvfUWr7JBRM8kk8kQFRWF77//HqmpqejWrRsCAwMxbdo0dOrUSeh4pKIqKioQFRWFHTt24JdffoGxsTEmTpyIiRMnYsCAASycaWHKysqQnZ2Ne/fuIS8vD4WFhSgoKEB+fj4KCwuRm5uLoqIiFBcXo6Ki4onH6+npQV9fH23btoWOjg7atm0LXV1daGtrKz/+kwxyuRxyuRwlJSWQyWSQy+Woqal5bDktLS2YmZnB0tISFhYWMDc3h6WlJczNzdG1a1d07979iQm2BQUFOH/+vLK8IykpCeXl5dDT00OvXr0gEokgFovx1ltvoUOHDi/3zSQiaub+qqzjj4UdDf6urOP111+Hvr6+gFvSMtXV1eHjjz/GmjVr8Mknn+DTTz/l66ZmTqFQ4NixY9i6dSsOHjyINm3aYPz48QgICIBYLOZxHaIXkJGRgejoaOzcuRO3b99+rNjD1dWV+0UiEoRCoYCFhQXee+89LF68WNAsVVVVsLS0xJw5c7B06VJBsxBR66VKJwMTUes0c+ZMSCQSXL58uUnX88EHHyAiIgI3b9584fLiixcvwsfHB3V1dThw4ABEIlEjp6S/89FHHyE+Ph6///670FFeCss8iIhIKPX19fj3v/8NqVSK33//Hbq6ukJHIiIiImrVVOn4Pcs8iIiIiJoIyzxIlT169Ah79uzBtm3b8Ntvv8HW1hb/+c9/MGHCBDg4OAgdj4hagIyMDERGRmLz5s2QyWQYMmQIgoOD4ePjAy0tLaHjkYq6e/cudu7cicjISFy7dg2dO3eGr68vxo4dC7FYDA0NDaEjqjSFQoG8vDxkZWXh7t27yM7ORnZ2Nu7evav8/OHDh8rlNTQ00LFjR3Tq1Anm5ubo2LEjLCwsYGJiAmNjYxgbG8PIyOixj23atGmy/JWVlZDL5SguLkZhYSHu3r2LvLw85OTkIDc3F3l5ebh79y4KCwtRW1sLNTU1mJubw9jYGAqFAsXFxcjLywMA2NnZwdXVVVne0adPH07AJaJWRaFQID8/X7l/z8nJwd27d3Hnzh1kZWUhKysLMplMubypqSlsbGxgbW39xEdbW1vo6OgIuDWtT1FRESZNmgSJRILt27fDz89P6Ej0nIqKirBz505s374daWlpsLKywqRJkzB58mT07NlT6HhELVJDsceuXbtw69Yt2NjYwNvbm8UeRCSIoKAgXL16FUlJSUJHwYIFC7B3715kZmZCU1NT6DhE1Aqp0snARNQ6/fbbb+jfvz9+++039OvXr8nWI5PJ0LVrV8yYMQMrVqx47sfv27cPb7/9NgYMGICoqCi89tprTZCS/s68efOQnJyM5ORkoaO8FJZ5EBGRUDZt2oT3338fEokE/fv3FzoOERERUaunSsfvWeZBRERE1ERY5kH0fzIyMrBt2zbs2bMHeXl56NWrF/z9/TFhwgTY2toKHY+ImrmqqiocPHgQ4eHhOHHiBExNTeHn54fp06fDyclJ6Hikwi5duoQff/wRP/74Iy5fvgwTExMMHz4c//73vzF8+HCYmJgIHbFVkslkkEqlyMzMRGZmpvK+VCrFnTt3lAd0tbS0YGFhAUtLS1hbW6Nz586wtLSElZUVOnfujE6dOqFTp04tquAiLy8PKSkpkEgkOHHiBNLT01FTUwMtLS20bdsWFRUVypIPOzs7DBo0CIMGDYJYLIajo2OL2lYiogcPHiAnJwfZ2dm4c+eO8n5DeUdeXh5qamoA/F85k5mZGaytrWFlZfVEYYeNjQ3atm0r8BapjvPnz8PPzw/19fX48ccf4eLiInQkeklXr17Fvn37sHPnTty+fRuOjo7w8/PD1KlTeVyH6AU1FHvs3r0bN2/ehLW1NUaPHs1iDyJ6ZWJjYzF27Fjk5+ejY8eOgma5ffs2unXrhp07d2LChAmCZiGi1kmVTgYmotara9euGDduHFatWtWk6/n666+xdOlSSKVSdOrU6R89RqFQYOnSpVi5ciXmzJmDtWvXsqRNILNmzcLVq1dx6tQpoaO8FJZ5EBGREKRSKXr16oW5c+di+fLlQschIiIiUgmqdPyeZR5ERERETYRlHkSPUygUSEpKQnR0NKKiolBQUKCcABIQEAA7OzuhIxJRM5eTk4Ndu3YhLCwMmZmZEIlECA4OxqRJk6Cnpyd0PFJh169fR1xcHI4cOQKJRIK6ujr06dMHYrEYYrEYrq6uMDU1FTpmi1BVVYU7d+48tawjMzMTxcXFAAB1dXVYWFjA1tYWdnZ2j320tbWFqalpiy6vKCsrQ2pqKlJSUpCSkoKzZ88iKysLGhoa6NatG0QikfK55ejoCDU1NdTV1SEzMxOXL19Geno6EhMTkZycDLlcDkNDw8fKPfr16wddXV2hN5OIVFRlZSXy8vKQl5eH/Px8SKVSSKVS5ec3b95ESUmJcnkjIyOYmZnB3NwcdnZ2j923s7ODlZUVTw5vJiIiIjBz5kwMGDAAe/bs+ccn/FPLkZKSgoiICOzZswdFRUUYOHAg/Pz8MHnyZJbZEb2ghmKPPXv24MaNG7CysoKPjw+LPYioSZWWluK1117Dtm3bMGnSJKHjYNKkSbh48SIuXbrUoo/nEFHzpEonAxNR67VgwQLExsbi5s2bTbqeyspKdOnSBZMnT8aaNWueubxcLkdAQACOHDmCTZs2ISgoqEnz0d8LCgpCbm4u4uPjhY7yUljmQUREr5pCocBbb70FuVyOc+fOoU2bNkJHIiIiIlIJqnT8nmUeRERERE2EZR5Ef62urg7JycnKE9X/OAHE39+fE56J6G8pFAqcPHkSERERiImJgaamJnx8fBAQEIBhw4ZxogsJSi6X4/jx4zh9+jQkEgnS09NRV1eHrl27wtXVFa6urhCLxejevbtKPlcrKytx584d3LlzB1lZWY99zMzMRH5+vvJ1p5GR0RMlHQ33bWxsWtWb53l5eUhMTIREIkFKSgrOnz+P6upqmJqawsXFBSKRCCKRCG5ubjA0NPzH49bV1eHSpUuQSCRISkrC2bNnkZOTAy0tLfTv3x8jR47EyJEj0bdvX5V8PhJR46upqcH9+/eVJR1PK+woKChQ7uvbtm0Lc3PzJwo6Gj5//fXXoa+vL/BW0bNUVlZizpw52LJlCxYuXIgVK1ZAQ0ND6FjUhKqrq3H06FFER0dj//79qK2thYeHB/z8/DBu3DiWhhG9oIZij7179+L69euwtLSEr68viz2IqEm4ubmhW7du2Lx5s9BRcPXqVfTs2RP79u3DuHHjhI5DRK2MKp0MTEStV3JyMgYNGoT09HQ4OTk16bq++uorhIaGIjMzEx06dPjL5W7dugUfHx/cu3cP0dHRGDx4cJPmomebPHkyysrKEBsbK3SUl8IyDyIietVWrlyJZcuW4fz5803+WouIiIiI/p8qHb9nmQcRERFRE2GZB9E/U1VVhaNHj2Lv3r2Ii4tDZWUlhg4dCj8/P3h6erLYg4j+lkwmQ1RUFL7//nukpqaiW7duCAwMxLRp03glcGoW5HI5kpOTkZiYiMTERPz6668oKyuDgYEBHBwc0LNnTzg4OKBHjx5wcHCAlZWV0JFfSklJCXJzc59a1pGVlYX8/Hzlsvr6+rCxsYG1tbWyoMPa2ho2NjawtbWFkZGRgFvSdORyOS5evKgs7zh37hzu378PTU1N2NvbQywWw9XVFSKRCD169Gj09d+9excSiQQJCQmIj49Hfn4+OnXqhFGjRsHHxwfDhw+Hjo5Oo6+XiFq+8vJy3L17F/n5+cjJyUFOTg7y8/Mf+1pBQQEUCgUAQEtLCxYWFrC0tIS1tTU6d+4MS0tLWFlZwcrKCp07d4axsbHAW0Uv6/r16/D390d2djYiIyPxr3/9S+hI9Io9evQIP/30E6KjoxEfHw89PT14eXmxbJHoJaWmpiImJgYxMTG4ceMGLC0tMXbsWPj5+WHgwIH82SKilxYaGort27cjKytL6CgAAH9/f2RkZCA9PR3q6upCxyGiVkSVTgYmotZLoVDA3Nwc8+bNw8KFC5t0XWVlZbCxscHMmTPx2WefPXWZY8eOYcKECbCxsUFsbGyLf3+ztRg3bhw0NDSwb98+oaO8FJZ5EBHRq5SRkQEXFxd89tln+OCDD4SOQ0RERKRSVOn4Pcs8iIiIiJoIyzyInl95eTkOHTqEffv2IT4+HpWVlRCJRPD29oanpyd69+4tdEQiasYyMjIQGRmJzZs3QyaTYciQIQgODoaPjw+0tLSEjkcEAKitrUVaWhpSUlKQkZGBK1eu4MqVK8qSC319fXTv3h3du3eHhYUFzMzM0LlzZ5iamio/vurns1wuR1FREe7fv4+ioiIUFRWhsLBQOWk7JydH+Xl5ebnycQYGBk8UdDTct7a2VpkJ3FKpFBKJBCkpKUhMTERqaioUCgXMzMwgEomU5R0uLi5o27btK81WX1+P9PR0xMfHIy4uDsnJydDR0cGoUaMwZswYeHl5QU9P75VmIiJh3Lt3D3l5ecjJyUFubi7y8vKQnZ392NdkMplyeW1tbeXvqM6dO8PMzAxWVlbK8g4rKyuYmppyEl4rt3XrVoSEhKB79+6IioqCra2t0JFIYLm5uYiJiUF0dDQSExPRuXNnjBkzBlOnTkXfvn2FjkfUYmVkZCA6OhpRUVG4evWq8mfLz88Prq6uLPYgohdy5swZDB48GFKptFm8jsvIyICzszNiYmLg6+srdBwiakVU6WRgImrd/P39IZfL8fPPPzf5uj777DNs2LAB2dnZTxTAh4eH491338W4ceOwZcsW/C97dx4WVaG4D/ydYRt2BoFZ2BFBQAwcxQVMTdTM3CPNylzRFjXTVrs3M7v3avdmt7RSU1PLDStT01LxpgGahFgqQi4gywz7IiDrzPz+8DvzE8FcAA/L+3meeWbmrO9BmHHOnPMeKyurVs9Dd+fxxx9Hly5dsHnzZqGjNAvLPIiI6EGpra1Fnz59YGtri2PHjsHExEToSERERESdSmfaf88yDyIiIqJWwjIPouaprq5GXFwc9u3bh2+//RbZ2dlwcXHBiBEjMHr0aDz22GOwtrYWOiYRtUE1NTXYu3cv1q1bh9jYWMjlckRFRWHWrFkIDg4WOh5Rk0pKShqUe1y6dAk5OTnQaDTIy8szTicSiSCTyeDi4gJra2tYW1vDwcEBVlZWsLa2hp2dHWxtbWFqavqX69Pr9SgtLUVtbS0qKytRUVGB2tpalJaWoqamBiUlJcbijtra2gbzmpubw8XFBW5ubpDJZE3ee3h4wMHBoVV+Vm1ZWVkZEhMTjeUdCQkJKC4uhpWVFUJDQ6FSqaBSqfDwww/Dy8tL6LiNaDQafP/99/j222/x888/w8zMDGPHjsWUKVMwYsQIFiMRtUN1dXUoKCiARqOBWq2GRqPBlStXjI/VajUyMzNRUVFhnEcikUCpVEKhUECpVMLHx8f42HDv6enJg5k6sWvXruGFF17Atm3bMG/ePHzwwQcwNzcXOha1MefOncPXX3+Nbdu2ITMzEyEhIXjmmWcwadIkuLm5CR2PqN0yFHts374df/75Jzw9PTF27FhERUUhIiJC6HhE1I7U1tbCwcEBn376KaZNmyZ0HADAxIkTceXKFZw+fZpFRUTUYjrTwcBE1LF9/vnnePXVV1FcXNzq39cUFBTAw8MDa9aswYwZMwDc+A7++eefx5YtW/D+++/j9ddfb9UMdO+GDRsGHx8frF27VugozcIyDyIielDefPNNrF69Gr///jt8fHyEjkNERETU6XSm/fcs8yAiIiJqJSzzIGpZ58+fx/79+7Fv3z4kJCRAIpFg6NChGD16NB5//HEolUqhIxJRG5SdnY2vv/4aa9euRXp6OlQqFaKjozFlyhTY2NgIHY/ortTW1iIvLw9ZWVnIzc1FdnY2CgoKUFlZicrKSpSWlhofl5eX49q1a9BqtXdcroODAywsLGBtbQ0bGxuYm5vDwcEBEokEDg4O6NKlS4Obk5MTnJycYGtr+wC2uu3TarVITU1FUlIS4uPjERcXhwsXLkCv10OhUCAiIgLh4eFQqVTo06cPLCwshI58T4qKirBr1y5s27YN8fHx6NKlC5566inMmjULPXv2FDoeEQEoLS2FWq023rKysqBWq5GdnY2cnBzk5OQgLy/P+HleLBZDJpPB1dUVSqUSHh4eUCgUcHNzg5ubGxQKBTw8PFiaSH/p1KlTmDJlCsrLy/Hll19i5MiRQkeidiApKQlbtmzB9u3bUVBQgMDAQERFRWHq1Kk8OJKoGQzFHlu3bsWVK1eMf1tPPfUU/P39hY5HRO1AeHg4evbsic8++0zoKACAM2fOoFevXvj+++8xevRooeMQUQfRmQ4GJqKOLS0tDd27d8fJkyfRt2/fVl/fs88+i3PnziE5ORlqtRoTJkxASkoKvvrqK4wZM6bV10/3buDAgQgNDcXHH38sdJRmYZkHERE9CPHx8Rg0aBA+/fRTREdHCx2HiIiIqFPqTPvvWeZBRERE1EpY5kHUenJycozFHkePHkVNTQ3CwsIwcuRIREZGIiwsDKampkLHJKI2RKfT4ejRo9iyZQt2794NU1NTjBs3DlOnTsXQoUN5pUciuiONRoPffvvNWN6RkJCA69evw8bGBg899BBUKhUiIiIwePBgODs7Cx23RWVkZGDbtm348ssvcfHiRfTt2xezZ8/GpEmTWIxE1Aqqqqqg0WigVqtve5+Tk4OysjLjPBYWFnB0dIRSqYSPjw8UCgWUSqXx3sfHB+7u7q1+xUbquOrr6/HPf/4Ty5Ytw/Dhw7Fp0ya4uLgIHYvamZqaGhw6dAgxMTHYu3cvysvL0b9/f0RFRWHixIlwc3MTOiJRu2UozYmJiYFGozEWezz77LPo2rWr0PGIqI165ZVX8PPPP+P06dNCRzEaN24crl69it9++w0mJiZCxyGiDqAzHQxMRB2bXq+Hg4MDVq5ciTlz5rT6+k6dOoW+ffti48aNeOeddyCRSPD9998jICCg1ddN9ycsLAyDBw/GypUrhY7SLCzzICKi1lZZWYnQ0FD4+Pjg4MGDPG6QiIiISCCdaf89yzyIiIiIWgnLPIgejOvXr+Pw4cPYv38/fvrpJ2RlZcHOzg6DBw9GZGQkhg4disDAQKFjElEbUlpail27duHzzz9HcnIy/P39MX36dEybNg0ymUzoeETUBtTX1+P3339HXFwckpKSkJSUhJSUFACAj48PwsPDjeUdoaGhEIvFAid+MPR6PX7++WesX78e3377LSwsLDB97I3ghQAAIABJREFU+nS89NJL8PX1FToeUZt3/fp15OTkIDc3F9nZ2cjLy0N2dnaD51lZWaisrDTOY2ZmBplMBjc3N8hkMri7uxufy+Vy472Tk5OAW0YdXVpaGqZNm4YzZ87gX//6F+bPn8+D2qjZbi32KCsrM5YPTJ06FT4+PkJHJGqXdDodEhISEBMTgx07diA/Px+BgYGYOnUqnn32WSiVSqEjElEbsnPnTjzzzDMoLS2FtbW10HEAAKmpqejZsyfWrFmD2bNnCx2HiDqAznQwMBF1fOHh4QgNDcXq1asfyPo8PT2hVqsRGRmJ7du3w8HB4YGsl+5Pz549MXbsWLz33ntCR2kWlnkQEVFrmz17Nvbs2YOzZ89CLpcLHYeIiIio0+pM++9Z5kFERETUSljmQSSMK1eu4MiRIzhy5AhiY2NRXFwMmUyGhx9+GJGRkXj00Ufh4eEhdEwiaiPOnz+PrVu34osvvkBpaSmGDBmC6OhojBs3jleuJ+pE1Go1kpKSEB8fbyzwqK6uhp2dHcLCwozlHeHh4XB0dBQ6bptQVFSETZs2Yc2aNcjMzMSoUaMwf/58DB06lCd4U6dTU1ODoqIiaDQaqNXq297n5uY2+GwtlUqhUCigVCpve+/p6cmrUZNg9Ho91q9fj1deeQVdu3bF5s2bERISInQs6oBY7EHUOrRaLU6cOIGtW7dix44dqKioQP/+/REVFYXJkyez0JSIcOXKFXTt2hXx8fEYMGCA0HGMXn75ZWzfvh1paWk8YZSI7oler8djjz2G7Oxs47Dy8nLk5uaiW7duxmEikQgvvfQSoqOjhYhJRHTf5s6diwsXLuDYsWOtuh6tVoslS5ZgxYoVsLCwQHFxMaysrFp1ndR8fn5+mDp1Kt5++22hozQLyzyIiKg1/fjjj3jsscewc+dOREVFCR2HiIiIqFNjmQcRERERNRvLPIiEp9VqcebMGWO5R1xcHKqrq+Hj44PIyEhERkZi2LBhPBiUiFBTU4O9e/di3bp1iI2NhVwuR1RUFGbNmoXg4GCh4xFRC6qsrERycjKSkpKQlJSE48eP4+rVqzAxMYG/vz9UKhUiIiIQHh6OwMBAFlPcgU6nww8//ICPP/4YsbGx6NGjBxYvXowpU6bA1NRU6HhEzVJZWYns7Gzk5+cbyzhyc3Oh0Wig0WiQk5OD3NxcFBUVGecRiUSQyWRQKBRwdXVtVM5huLm4uLCkg9q0q1evYsaMGTh+/DgWLVqEZcuWwdzcXOhY1Amw2IOodVRXV+Pw4cOIiYnBd999h6qqKvTr1w9RUVF4+umn4eTkJHREIhKAXq+Hg4MDVq5ciTlz5ggdx6ikpAR+fn547rnn8O9//1voOETUzvj6+uLy5ct3nO6DDz7A4sWLH0AiIqKW8+GHH2LVqlXIyspqtXUUFxdj8uTJ+OWXX7BixQq88sor2LVrFyZMmNBq66SW4enpiXnz5rX79zeWeRARUWspLCxEcHAwRowYgS+//FLoOERERESdHss8iIiIiKjZWOZB1PZUVVUhPj7eWO6RnJwMkUgEf39/40m7Q4YMgbu7u9BRiUhA2dnZ+Prrr7F27Vqkp6dDpVIhOjoaU6ZMgY2NjdDxiOgeqdVqxMfHIy4uDklJSUhMTERtbS0UCgVUKpWxvGPAgAG8qlgzJScnY8WKFdi9eze8vb3x+uuvY+rUqTz5m9oUvV6PvLw85OfnIycnx3ifl5dnLOnIy8uDWq1GZWWlcT6xWAwXFxfIZDK4urpCJpPBzc0Ncrkcrq6ukMvlcHNzg0wmY5ENtWk5OTmwtLSEo6Njk+P1ej02btyIV155Be7u7ti8eTNUKtUDTkl0A4s9iFpHVVUVjhw5gpiYGHzzzTfQarUYNmwYoqKiMH78eNja2godkYgeoAEDBqBXr15YvXq10FEa+PTTT7Fw4UKcPXsWfn5+QschonZk2bJlWL58Oerq6m47jUgkQmZmJtzc3B5gMiKi5tu2bRumTZuG6upqiMXiFl/+n3/+ibFjx6K8vBzfffcd+vTpg2HDhsHOzg7ffPNNi6+PWpZMJsPbb7+NefPmCR2lWVjmQURErSUqKgonT57EH3/8AalUKnQcIiIiok6PZR5ERERE1Gws8yBq+/Lz8/G///0PcXFxOH78OM6dOwedTofu3bsjPDwcAwcOREREBLp27Sp0VCISgE6nw9GjR7Flyxbs3r0bpqamGDduHKZOnYqhQ4dCJBIJHZGIblFeXo7ff//dWN5x8uRJFBYWwtTUFA899BDCw8ONBR5BQUFCx+2wLl26hBUrVmDr1q1wdnbGW2+9hZkzZ7LUg1pVTU0NioqKoNFooFarUVJSYnx8831WVlaDkzkkEgmkUimUSiUUCoXx/tZhHh4eLOmgdk+tViMkJARdu3ZFQkJCo//PZmRkYM6cOYiNjcXChQvx3nvvQSKRCJSWqKFbiz3Ky8vRv39/PPHEExg3bhy8vLyEjkjULpWWlmLPnj3YsWMHYmNjYW5ujtGjR2Py5MkYOXIkLCwshI5IRK1s7ty5uHDhAo4dOyZ0lAa0Wi1CQ0Ph5eWFvXv3Ch2HiNqRy5cvo1u3brc9vkEsFqNfv36Ij49/wMmIiJrvf//7Hx555BEUFBTAycmpRZd94MABTJkyBUFBQfjmm28gl8sBAOvWrcPLL7+MwsJCluK3cVKpFCtWrEB0dLTQUZqFZR5ERNQaNm3ahFmzZuHIkSMYMmSI0HGIiIiICCzzICIiIqIWwDIPovanoqICJ0+eRFxcnPEk4OrqasjlcvTu3RsREREIDw9H3759YWZmJnRcInqASktLsWvXLnz++edITk6Gv78/pk+fjmnTpkEmkwkdj6hT0mq1SE1NRVJSEpKSkhAfH4/k5GTodDooFAqoVCrje3fv3r15MrIAcnJysGLFCqxbtw4KhQJ///vf8eyzz7IQge5JYWEh8vLykJubC41Gg7y8POTk5CA/Px85OTnIy8uDRqNBaWlpg/mcnZ0hk8mgUCggl8shl8uhVCrh4uICV1dXyGQyKJVK2NnZCbRlRA9WVVUVwsPDcfbsWWi1WmzYsAHTp08HAOj1eqxfvx6LFy+Gh4cHvvjiC/Tr10/gxES3d3Oxx759+1BaWoqQkBCMGzcOY8eORUhIiNARidqlwsJC7N69Gzt37sTx48dhb2+PiRMnYsqUKRg0aFCrXPWZiIS3evVqvPPOOygqKhI6SiNHjx7F0KFD8eOPP2LEiBFCxyGidiQ0NBS///57k8c4mJiYYM2aNZgzZ44AyYiImufcuXMIDg5GSkoKAgICWmSZer0eK1euxFtvvYUZM2ZgzZo1DcrZ1Wo13NzcsHfvXjz++OMtsk5qHdbW1lizZg2mTZsmdJRmYZkHERG1tIyMDDz00EOIjo7GBx98IHQcIiIiIvo/LPMgIiIiomZjmQdR+1dTU4PExET88ssviI+PR3x8PEpLS2FnZ4fw8HD069cPYWFhCAsLg6Ojo9BxiegBOX/+PLZu3YovvvgCpaWlGDJkCKKjozFu3Lg7Fv3odDoMHDgQjz32GN56661GV0MnotsrKytDYmIi4uLikJSUhISEBBQXF8Pa2hohISFQqVRQqVQYNGgQPD09hY5LN8nKysLy5cuxadMmeHl5Yfny5YiKiuJrYCdWVVWFkpISaDQaqNVq4/2tw7Kzs1FbW2ucz9zcHF26dIFUKoVSqYRCoWh0L5VK4enpCRsbGwG3kKjtmT59Or766ivU19dDJBLBzs4Oly5dQmlpKWbPno24uDgsWrQI7777LiwsLISOS3TXtFotTpw4gZiYGHz33XfIysqCp6cnRowYgccffxyPPvroPRWylpeXY+7cuVi4cCF69+7dismJ2ja1Wo2YmBjExMQgPj4erq6umDhxIqKiohARESF0PCJqQT/++CNGjhyJ4uJiSKVSoeM0Mn78eKSkpODMmTOwtLQUOg4RtROrVq3Ca6+9hvr6+kbjTExMkJeXhy5dugiQjIioeS5cuIDAwECcO3cOQUFBzV5edXU1Zs+ejR07dmD58uV4/fXXm5wuLCwMoaGhWLt2bbPXSa3H3NwcmzZtwtNPPy10lGZhmQcREbUknU6HoUOHIj8/H0lJSbwQEBEREVEbwjIPIiIiImo2lnkQdTw6nQ7nzp0zlnucOHECGRkZAIBu3bqhT58+xnKP0NBQ7vgn6uBqamqwd+9erFu3DrGxsZDL5YiKisKsWbMQHBzc5DxHjhzBsGHDIBaL8dRTT2HDhg08WZKoCfX19UhLS0NSUhLi4+MRFxeHCxcuQK/XQ6FQICIiAuHh4VCpVAgLC2twhTBqu65cuYKlS5fi66+/RlhYGP7zn/9gwIABQseiFlJZWQmNRoO8vDzk5+dDrVYjPz8fubm5yM3NRX5+vnF8dXW1cT6xWAwXFxc4OztDoVBAJpNBJpNBoVDAxcUFcrncONzJyUnALSRqv1asWIE333yzwb4dMzMz9OvXD4mJiejRowc2bNiAnj17CpiSqGWcP38eMTEx2L9/P5KSkuDo6IihQ4fi8ccfx/jx42Fra/uX82/fvh1TpkyBiYkJ/vGPf2Dx4sUQi8UPKD1R25SamoodO3Zg+/bt+PPPP9G9e3dMmjQJU6ZMgZ+fn9DxiKiZLl68CD8/P/z2229QqVRCx2lErVajR48emDlzJq+cSkR3TaPRwM3NDTqdrsFwExMTDBs2DAcPHhQoGRFR8xjKPM6ePYsePXo0a1nZ2dkYP3480tPTsXPnTgwdOvS207733nv4/PPPkZ2dzaL2NkwsFmPHjh3t/lhFlnkQEVFL+uCDD7BkyRIkJCSwxJ2IiIiojWGZBxERERE1G8s8iDqHsrIyJCYmIi4uDklJSfj1119RUFAAU1NT+Pn5QaVSQaVSISIiAqGhoTwBhKiDys7Oxtdff421a9ciPT0dKpUK0dHRmDJlCmxsbIzTTZo0Cd999x3q6upgamqKkJAQ/PDDD3BxcREwPdHdq6+vh6mpaYsvV6PR4LfffjOWdyQkJOD69euwtbVFz549jeUd/fr1g7Ozc4uvnx6slJQUvPrqqzhw4AAef/xxrFq1Cr6+vkLHoibU1NSgqKgIJSUl0Gg0UKvVxvtbh5WUlDSYVyKRQKlUQqFQQCqVGh/fOszDw6NVXleI6IaffvoJjz32WKMTmIAb+65efPFFfPTRRzAxMREgHVHrSk9Px969e7F//378/PPPMDU1RWRkJEaPHo0xY8ZALpc3mmfKlCnYvXs36urqIBaLERERgW3btsHV1VWALSBqe86fP4+tW7di8+bNyM3NRWBgIKZOnYrnnnuuyb8pImr76urqYGlpiW3btrXZ7zS/+OILzJkzB8ePH0d4eLjQcYionRg0aBDi4uIafB4Wi8XYunUrpkyZImAyIqL7l5qaioCAAPzxxx+3vbjE3YiPj8fEiRPh4uKC77//Ht7e3n85fWJiIsLCwnDu3DkEBQXd93qp9dTX18PMzAzffvstxo8fL3ScZmGZBxERtZSUlBSoVCq88847eOONN4SOQ0RERES3YJkHERERETUbyzyIOq9Lly7h1KlTOHXqFBITE3H69GlUV1fDzs4OvXv3Rt++fdGrVy+EhobCx8eHVy4h6kB0Oh2OHj2KLVu2YPfu3TA1NcW4ceMwdepUqFQqyOVy1NbWGqc3MzODXC7HTz/9hICAAAGTE/21mpoarFixAv/85z8RGxuLAQMG3Pey6urq8McffxiLsJKSkpCSkgITExP4+/uzCKsTOXLkCF555RWkpqbi+eefx/Lly2Frayt0rA6voqICGo0GBQUFKCgoQG5uLvLz81FQUIC8vDzjOLVajWvXrjWY197eHgqFAi4uLlAoFJDJZHBxcYFSqYSLiwvkcjnkcjlcXFxgZmYm0BYSkUFaWhp69+6N69evN1nmYWpqioCAACQnJ7PMgzq8oqIi/PDDD9i/fz8OHDiA6upq9OvXD6NHj8b48ePh5+cHrVYLR0fHBu9/ZmZmsLKywtatWzF69GgBt4CobdHpdEhISMDWrVuxY8cOVFRUoH///pg6dSomT54MOzs7oSMS0T3w9vbGnDlz2uxJDXq9HiNHjsTVq1eRnJwMiUQidCQiage++OILzJ07F1qt1jjMwsIChYWFDUrYiYjak4SEBISHhyMzMxPu7u73tYx169Zh3rx5GD58OL7++uu7+vxWX1+PLl264J///CdeeOGF+1ovta6qqipYWVlh79697X4fFss8iIioJdTW1iIsLAzW1tY4fvw4vwslIiIiaoNY5kFEREREzcYyDyIyqKurw9mzZ/Hrr78iMTERp06dQmpqKrRaLezs7PDQQw8hNDQUISEhCAkJQVBQEMzNzYWOTUTNVFRUhK+++gobN240Xh0pJSWlwYGjwI2TKM3NzbF7926MHDlSoLREtxcbG4vZs2cjMzMTALB06VK8/fbbdz2/Wq1GUlIS4uPjjQUe1dXVsLe3R58+fRAeHg6VSoXw8HA4Ojq21mZQG1VfX4/PPvsMf//732Fra4sPP/wQTzzxhNCx2pX6+vomizny8/ORm5trHKfRaFBYWIiqqqoG8zs4OEAmk8HZ2dlY0nFrMYehrIMnTBG1HyUlJejVqxeys7NRX19/2+lMTEzw0Ucf4aWXXnqA6YiEVVFRgR9//BF79uzBgQMHUFJSgpCQEAwZMgSrVq1qNL1YLIZOp8MzzzyDtWvXwsrKSoDURG1XdXU1Dh8+jK1bt+L777+HWCxGZGQkoqKi8MQTT/BvhqgdMBSqfvLJJ0JHua2rV68iODgY8+bNw/vvvy90HCJqB0pKSiCTyVBXVwfgxncxEyZMwM6dOwVORkR0/7799ls88cQTqKqqgoWFxT3NW19fj0WLFuGTTz7Ba6+9hn/84x/3VKj/2GOPwdbWlq+jbdS1a9dgb2+PgwcP4tFHHxU6TrOwzIOIiFrCG2+8gdWrVyM5ORndunUTOg4RERERNYFlHkRERETUbCzzIKK/UldXhz///BNJSUnG25kzZ1BZWQlTU1P4+flBpVIhKCgIgYGB6N+/P5ycnISOTUT36bfffkNUVBSuXr3a5Huq4UCpjz/+GC+++OKDjkfUpLy8PCxatAjbtm2DiYkJ6uvrIRKJMGLECBw8eLDJeSorK5GcnGws7zh+/Djy8vIavLdFREQgPDwcgYGBEIlED3irqK3Ky8vD66+/ji1btiAyMhKrV6+Gn5+f0LEEU1VVhZKSEmg0GqjVapSUlDR6bnicn5/fqChKKpVCoVBAKpVCqVQ2+VgqlcLDwwO2trYCbSURtZb6+noMHz4ccXFxxpOW/oq1tTUuXboEuVz+ANIRtS11dXU4duwY9uzZg7Nnz+LkyZOora1tclpTU1N4e3tj9+7d6Nmz5wNOStQ+lJaWYu/evYiJicHBgwdha2uL0aNHIyoqCiNHjoSpqanQEYmoCU8++SR0Oh12794tdJS/9Omnn2LBggU4ceIEevfuLXQcImoHxowZg4MHDxr3be/ZswdjxowROhYR0X377LPP8Le//Q2FhYX3NF9RURGioqKQmJiIzZs3Y8KECfe87hUrVuDDDz9Ebm4uv99rg4qLi9GlSxccOXIEQ4cOFTpOs7DMg4iImis+Ph6DBg3C559/jlmzZgkdh4iIiIhuozOVefBICSIiIiIiIgGYmZkhKCgIQUFBmDp1KgBAq9UiLS0NycnJOHPmDM6cOYMDBw6gqKgIIpEIPj4+CA0NRUhICIKCghAcHAxvb+97uloKEQnD3NwcGRkZtx2v0+kAAC+99BLS0tLw0Ucf8W+bBKPX67F161bMmzcPVVVV0Ov1qK+vN45LSEiAXq+HSCSCWq1GfHw84uLikJSUhMTERNTW1kKhUEClUmHu3LmIiIjAgAEDeDVm+ksymQxffvklZs+ejZdeegkPPfQQ/va3v+HVV1+FmZmZ0PFaRElJSaMijqZKOnJyclBWVtZgXolE0qiMIygoqMmSDrlczvcQok5u0aJFOH78eKOin1uZm5ujrq4OlZWViI2NxdNPP/2AEhK1HWZmZoiMjERkZCS6det22yIP4EZRTnp6Onr37o0PPvgA8+fP58krRLdwcHDA1KlTMXXqVOTk5GD37t2IiYnBmDFj4OrqiokTJyIqKgoRERFCRyWimygUCiQlJQkd447mzp2LXbt2YebMmTh16tQ9X42eiDqfp59+Gvv37wcA2NjYYMSIEQInIiJqnsuXL8PDw+Oe5vnjjz8wduxYiMVinDhxAj169LivdT/88MN44403cPnyZfj6+t7XMqj1GEqdO8p3akRERPersrIS06ZNw2OPPcYiDyIiIiJqM1jmQURERERE1EaYmJggMDAQgYGBDU6iyszMNJZ7JCcnY+PGjUhPT4der4eVlRUCAwPRo0cPY8FHUFAQ3NzcBNwSIrrV+vXrYWZmdldXRv/000+RlpaGmJgY2NnZPYB0RP/f77//jtmzZyMpKclYMnOra9euYfDgwTh79ixKSkogkUjQq1cv9O3bFwsWLEC/fv3g7u7+gJNTRxEeHo7ExESsWbMGS5YswY4dO/DFF18gLCxM6GiNVFVV3bGYw/A4Pz+/0Un1Uqm0QRmHSqVqVMwhlUrh4eEBW1tbgbaSiNqbDRs24OOPP2403MTEBMCNEklzc3OEhIQgPDwcffv2Rd++feHl5fWAkxK1Lenp6bh06dIdpzOU3C1cuBCxsbHYtGkTunTp0trxiNolV1dXLFiwAAsWLMCFCxewc+dObNu2DR9//DECAgLw5JNP4umnn0a3bt2EjkrU6cnlcuTm5god447EYjE2bNiAXr164dVXX23y/71ERDcbPXo0JBIJqqqq8OSTT7IEiIjavcTERPTp0+eup9+1axemT5+O/v37Y+fOnc3ahxEaGgozMzMkJSWxzKMNYpkHERHRDQsWLEBpaSnWrVsndBQiIiIiIiOWeRAREREREbVxHh4e8PDwwJgxY4zDamtrcfHiRSQlJSElJQXnz5/HZ599Ziz5sLe3h6+vLwIDAxEUFITAwED06dMHcrlcwC0h6pyqq6uxefPmuyryAG6cYHn06FFERETg4MGDcHV1bXYGvV6P0tLSBsNqampw/fr1BsPKy8uNJ6fdqqys7LblDndSUlJyX/MZSKXS+5pPLBbD3t6+yXGmpqaNTo63srJqdDCvg4NDp7ja9vXr17FixQq8//77EIvFf/lvLRaLUVdXh6VLl6Jv377o1asXDwyjFmVqaooFCxZg1KhRiI6OxoABA/Dyyy/jvffeg6WlZauuu6SkpFERR1MlHTk5OSgrK2swr0QiaVTGERQU1KCww/BYLpdDLBbfMU9VVRUOHjzYqAiEiKgpaWlpWLp0KYAb5R1arRYikQguLi4ICAhAt27d4OvrCw8PD2O5B3DjJIDExESBUhPdWd++fe/5qrP34tixY9iyZYvx7+Zu6PV67Nu3D127dsVrr73GMgKiJiiVSoSHhwMAAgICsHTpUrzzzjs4efIktm3bhs8++wzLli1Dv3798NRTT2HixIlQKpUCpybqnOzt7XHt2jWhY9yVrl27Yv369Zg8eTIGDx6MCRMmCB2JqIHLly/j9OnTQsegm6hUKsTFxcHNzQ0xMTFCx6H/Y2pqilGjRsHc3FzoKETthk6nQ3JycoMLw9yOXq/H0qVL8d5772HevHn4z3/+A1PT5p0yIJFI0L17dyQnJ2PSpEnNWha1PJZ5EBERAXv37sWGDRsQExPD42SJiIiIqE1hmQcREREREVE7ZG5ujqCgIAQFBTUYXlxcjHPnzuH8+fM4e/Yszp8/jx9++AHFxcUAblxhLygoCP7+/ujevTv8/f3h7+8PDw+PTnGyOlFLqqysRG1trbEA49q1a9BqtcbSi6qqKlRXV+PKlSsoLy//y2WJRKIGf4NarRZnz55F165d0a9fP4jFYuMB9beWcNTW1qKysrLB8ioqKu66PITujZmZGWxsbBoMs7a2bnDA6c2lIHZ2djAxMYFIJIKDg0OjZVhaWkIikQAAbG1tjQfSGQpMbi4dkUgksLS0NJaUmJiYwM7Ozrg8c3NzWFtb3/M27du3D3PnzkV+fj60Wu0dT2A0MTFBaGgo5s+ff8/rIroXvr6+iI2NxcaNG7F48WL88MMP2Lp1K3r37n3XyygvL0deXh7y8/NRUFCAvLw85OXloaCgAPn5+cjNzUVBQYHxdjNzc3M4OzvD2dkZCoUCzs7O6NevH+RyOVxcXODk5GR87Ozs3CpX9vz+++/x1FNPtfhyiajjM7yf6/V642vfzz//LGwoovv03HPP4csvv2yVZdfV1eGRRx657+LCsrIyLFmypIVTEXUMllZWuH7L/gqRSIT+/fujf//+WLVqFQ4fPozt27djyZIlWLBgAfr06YNx48ZhzJgxjfZ7ElHrsbKyarR/sS178sknceTIEcycOROhoaHw9vYWOhKR0auvvorvvvtO6BjUhHfffVfoCHSL/fv3Y9SoUULHIGo3/vjjD5SXl6NPnz5/OV11dTVmzZqFnTt34pNPPsGLL77YYhl69erF0qo2ynBsQHNLW4iIiNqrgoICzJkzB9OnT8cTTzwhdBwiIiIioga4x4aIiIiIiKgDcXR0xMMPP4yHH364wXC1Wm0s+Lhw4QLOnj2LmJgY40mrVlZW8Pf3h5+fH7p3724s+vDz87uvE8OJhFRRUYGqqiqUl5ejvLwcVVVVqKiowLVr11BVVYXKykqUlZVBq9WitLQUOp0OZWVlqK+vR3l5Oerq6lBRUWEsyTCUZxjKOa5fv46ampp7ymRpaQlzc3Po9Xrj35RIJIKlpSX0ej3EYjHMzMyg1+shEolgamqKuro6WFpawtfXFyYmJk2WOwAwFjrcuj5DQYSBvb09xGKx8fmty7ndfAZNlVjcLQsLC1hZWd3XvPfz8zaIC1v/AAAgAElEQVT4q1KT6upqVFVVNRhmKGQx0Gq1ja5Kavg9+Kv5DAUvAFBSUgIAxt8vw/j8/PxGGUtLS6HX6xus99bylrth+Hkbyj8M5SKG0hEbGxuYmZnB1tYWR44cQWZm5j0tv66uDsePH7+neYjul0gkwsyZMzFq1CjMnDkT/fv3x5w5c/Dss88iPz8fJSUlKCkpgUajgVqtNj4vKSlBTk4OysrKGixPIpFAKpVCqVRCoVDAw8MD/fr1g0KhaDBcKpVCLpc3eN0UQn19PczMzLHjbIagOYiIiISy4oXpdyybaw6dTgedTodxs16EiakpLK1tYGVjAwtLK1hYWsLa1h4SaytYSKwgsbKCla0dJJZWMGuFEi+ijuT43m/w6duL/nIaU1NTjBw5EiNHjkR1dTXi4uKwb98+rF69Gm+99RYUCgUiIiIQHh6OiIgIhIaGCv7/c6KOytraGlVVVcZ9k+3Bxx9/jMTEREyaNAlxcXENinaJhFSv1eLhMROxYOUnQkcharPqamsxuaeX8XsUIro7e/bsgaurK0JCQm47jVqtxrhx43D58mX89NNPeOSRR1o0Q69evbB///4WXSa1DMP3zWZmZgInISIiEkZ0dDQkEgk++ugjoaMQERERETXCMg8iIiIiIqJOQKlUQqlUYtiwYQ2GFxcXIy0tDRcuXEBaWhrS0tKwY8cOXLlyBXV1dRCJRHB3d4e/vz/8/f0REBAAPz8/+Pr6wt3dHSYmJgJtEXUkpaWluHbtGq5du4aysrIGj0tLS41FGjc/LisrQ2VlJaqqqnDt2rUGj/+KocDC1tYWpqamcHBwgEgkglQqhUgkgoODAyQSCVxcXIzTGkosbi1IMBRfGIoSbi5IMDU1hbm5OctwWoCVldV9F4EYClA6isrKStTW1jYqnjEUfhgKSm4tnjEUhhhKRgzlI5mZmaitrYWlpSVqa2vv6STJc+fOwc7ODlZWVrC2toa9vb2xOOTmxw4ODg0e29vbw87OznhvuDk4OLTiT67jOX36NNavX4/o6GiEhoYKHee+6XQ6FBQUoLCwEIWFhSgoKEB+fn6DYXl5eQ2e19fXY82aNVizZg0AwM7ODjKZDM7OznBycoKLiwt69OgBZ2dn4zCZTAYXFxc4OzvDgifeEhERURP8Q3sjbOgIoWMQdVoSiQSRkZGIjIzEqlWrcPLkSRw9ehTx8fH4+9//jmvXrsHW1hY9evRAcHAwevbsiaCgIPj6+sLV1bXdlA8QtVVWVlbQ6/Woqqq67/1wD5pEIsGuXbugUqmwZMkSfPDBB0JHIiIiImpV3377LcaPH3/bzz9nzpzBmDFjIJFIkJCQAH9//xbP0KNHDxQVFaGgoADOzs4tvny6f4aCJJZ5EBFRZ7Rp0ybs3bsXR48ebXRBLCIiIiKitoBlHkRERERERJ2Yo6Mj+vfvj/79+zcYXl9fj8zMTFy5cgXnz59HSkoKUlNTsXv3buTm5gK4cRCAu7s7fHx8Gt2CgoIgkUiE2CR6wCoqKlBcXGy83VrIce3aNZSWljYo7Lh5mrKysiaXKxaLYW9vD6lUaizQcHBwgJWVFSwtLeHj4wNra2tIJBLY29vD2toalpaWsLOza/DYxsYGlpaWsLW1NZZtELVX1tbWxoKY1jhArqKiAlevXkVGRgYyMzORnp6Oy5cv49KlS8jKykJpaSn0er1x+vnz50Mul6OyshJlZWWoqqrC9evXjX/fubm5KC0tNQ4vLS1FWVkZdDpdk+t3cHBoUPBhKP2wt7dvMO7mIhBHR0fjzcbGpsV/Jm2JTqfD3r178Z///AdxcXEAAE9PzzZX5lFSUgK1Wo2SkhKUlJRAo9E0eH7zsIKCgkZXX5RIJJBKpVAqlVAoFHBzc0NwcLDxuVQqRWlpKZYtW4aSkhJ89dVXePTRRwXaWiIiIiIiamlisRgDBgzAgAEDAABarRZ//PEHEhMT8ccff+Ds2bOIiYlBSUkJgBufIbp27QofHx+4u7vD1dUVbm5ucHd3h1KphIeHBywtLYXcJKI2z7C/qbKyst2UeQBAt27dsG7dOkyZMgUREREYO3as0JGIiIiIWkVaWhrOnj2LVatWNTk+JiYG06ZNw8CBA7Fjx45WK9Hv1q0bAODixYss82hj6urqALDMg4iIOp+MjAy8/PLLWLRoEQYNGiR0HCIiIiKiJrHMg4iIiIiIiBoxNTU1FnNERkY2GFdYWIhLly7h0qVLuHjxIi5fvozff/8d33zzDYqKigDcOEDA09MTvr6+jW7e3t4wNzcXYrMayMjIwPHjxzFp0iRYWFgIHUdwVVVVDU60bup26wnZxcXFqKmpaXJ5hpOxb745OzvDz88PlpaWTY6XSqXGcXK5HGKx+AH/FIg6NxsbGwQFBSEoKKjJ8bW1tcjKysLVq1eRn5+P8ePH39frZ1VVFaqrq2/7unPrOLVajfPnzzcYf2uxiMGtRRBNvc7cenNxcYGpadvdTVpRUYFt27Zh5cqVuHz5MkxMTAAA5ubmKCwsbNV1V1dXo7i4+LbvA7c+z8vLa1TWIpVKG/1bBAUFNRhm+Pdydna+64MMJ0yYgOeffx6jRo3CG2+8gWXLlhl/NkRERERE1HGYmJggNDS0UZGhRqPBpUuXcPnyZVy+fBkZGRk4d+4cfvrpJ2RnZzfYZ+Xo6Ag3Nzd4enrC29sbHh4e8PPzQ0BAALy9vflZgjo9Q4HH9evXBU5y7yZPnoyffvoJ06dPx8mTJ+Hn5yd0JCIiIqIW98knn8DLywuDBw9uMFyv12PlypV48803MXv2bKxZs6ZVv/Nyc3ODpaUlLl68aCxgpLaBZR5ERNQZ6XQ6TJ8+HW5ubli2bJnQcYiIiIiIbqvtHqVOREREREREbZKTkxOcnJzQr1+/RuNKSkqMB9EbCj9Onz6NmJgY5OXlAbhxAL6rqyu8vb3h5eUFb29v483Lywuurq4PpMRh48aNeO+997Bo0SK89tprmDt3LmxtbVt9vQ+CTqdDQUEBCgsLUVBQAI1GY3yel5eHvLw847iioiIUFxc3Oine1NQUjo6OkEqlcHR0NN569+7d5HDDzd7evk2fFE9E98/c3Bxdu3ZF165dm7UcS0tLWFpaGksc7kddXR3KysqMxUJN3QzjLl261GC4VqttsCyRSARHR0d06dIFzs7OcHZ2hkwmg4uLi/G5XC43PnZycnog71MajQZr167FqlWrUFlZaSzJMOTXarUoKCi4p2XeXJJyp2IOw7CbWVhYGN8D7lTMIZVKIZPJWu2kOGtra2zZsgUPP/ww5s+fjzNnzmD79u2ws7NrlfUREREREVHbolAooFAoMHDgwCbH5+fnIycnB9nZ2cjKykJWVhYyMzORlJSEb775Bjk5OQBufM4JCgpC//790b9/f0RERMDT0/NBbgqR4AxlHpWVlQInuT+fffYZLly4gDFjxuDEiROQSqVCRyIiIiJqMaWlpdi8eTPee++9Bt+5VFdXY+bMmdi1axc++eQTvPjii62eRSQSoWvXrrh48WKrr4vujaHMg8dqEBFRZ/Lvf/8bJ06cwK+//gqJRCJ0HCIiIiKi2+IeGyIiIiIiImoxUqkUffr0QZ8+fRqNKy8vNxZ8pKenIyMjA+np6fj111+RkZGB6upqADdOFvfw8GhU9mF4LJPJWiRrTk4OTExMUFhYiDfffBPLli3DwoULMX/+fDg5ObXIOlpSfX098vLykJ2djdzc3EalHDcXdhQUFBhP+gZuFKgYTkI3nJTu5eVlLGZpqpSDJ0MTUVtmZmZmfA27V9euXTMWexgKjQyPDa+jFy9eRHx8vPE19eYCELFY3Og11VDyIZPJIJPJIJfL4ebmBplMds8HzSUlJWHVqlXYsWMHxGKx8eC7W2m1WuTk5CA1NRWFhYXGrIb3BsMtLy/PuF03X5kauFGIYcht2AZ/f/8GRSZOTk5wdnaGi4tLmyy9mjVrFnr37o0xY8YgPDwce/fuhbe3t9CxiIiIiIhIYC4uLnBxcUFoaGiT48vLy5GamoqUlBScOXMGJ06cwLp161BXV4eQkBBERUUhKioK3bp1e8DJiR48a2trAO23zEMikWDPnj0ICwvDpEmTcODAAZ7ESERERB3GunXrIBaLMWPGDOMwtVqNsWPH4sqVKzh06BCGDBnywPL4+fmxzKMNMnyXyf8HExFRZ3H+/Hm88847WLZsGR566CGh4xARERER/SXusSEiIiIiIqIHwtbWFqGhoU0eQK/X66HRaBqUfGRkZODy5cuIjY1FVlaW8WRmS0tLeHt7w8PDA+7u7nB3d4enpyc8PDzg5uYGd3d3WFhY3DFPRkaG8YAGrVaLiooK/Otf/8LKlSsxZ84cLF68GO7u7i37Q7iNqqoqaDQaXLlyBWq1GhqNptF9ZmYm6uvrjfNIJBJIpVIolUooFAq4u7ujb9++UCgUkEqlDca5uLjwoA0iov9jZ2cHOzs7eHl53fU8htdptVqNkpKSBo9LSkqQkpJifJ6Xl9egUEkqlUKhUBhfk2++9/HxMb5OHzx4EMuXL8epU6dgZmYGrVbboESkKYmJiQgICDA+N7w33Pwe4O/v3+C5YbyrqyscHBzu+efXFoWEhODkyZMYO3Ys+vTpg2+++QaDBg0SOhYREREREbVhtra2xlLi5557DsCNz37x8fHYvXs3/vvf/+Ltt9/GmDFjsGTJkibLi4k6GrFYLHSE+yaXy/H9999j4MCBWLhwIT755BOhIxERERE1W3FxMVasWIHnn3/eeDGO5ORkjB07FpaWlkhISIC/v/8DzeTh4YFff/31ga6T7szw3aRIJBI4CRERUeurqanB008/DZVKhUWLFgkdh4iIiIjojngmDxEREREREQlOJBJBqVRCqVQiPDy80XitVovs7GxjyUdGRgauXr2KK1eu4NixY8jMzER1dbVxekO5xc1lHzc/VygUuHr1aqP1GApDPvvsM6xZswZPPfUUlixZgu7du9/3tpWXlxszG/JnZ2dDrVYjJycHGo0GNTU1xumtra3h5uYGhUIBNzc3DBgwAK6ursafj6urKxQKxV0VlhARUcuwtLSEj48PfHx87jhtTU0NNBoNcnJyjK/z2dnZyM3NRWZmJk6dOoXs7OwGV7sVi8UNCkAM70d3k+uXX36Bk5MTnJycYG5ufu8b10EolUr8/PPPePbZZzF8+HCsXbsW06ZNEzoWERERERG1I5aWloiMjERkZCTWrFmD/fv34x//+AfCwsIwZswYrF27FnK5XOiYRC3OsH+6ve9zDg0NxZYtWxAVFYWAgAC88MILQkciIiIiapalS5fC1NQUb775JgBg165dmD59OgYOHIidO3fC3t7+gWdSKBRQq9UPfL301wzfM7bngj4iIqK79be//Q2XLl3CmTNnYGJiInQcIiIiIqI7YpkHERERERERtXkmJibw9PSEp6fnbafJy8tDVlYWsrKykJmZiatXryIrKwsnTpzAzp07kZubC71eD+DGQcl/dRCD4STqnTt34uuvv8ajjz6KpUuXIiwsrNG0lZWVDYo6br0VFRUZp3V2doaXlxfc3d2hUqnw+OOPNyrqMFxRh4iI2icLCwt4eXnBy8vrL6e7du0asrOzodFoEB8fj9jYWJw/f77B+8adlJaWwsTEBA4ODp26yMPA2toa33zzDd59911Mnz4dycnJWLVqFQ9cJCIiIiKie2ZiYoKxY8di7NixOHToEF566SUEBwdj/fr1GDdunNDxiFpURynzAIAJEybgnXfewYIFC+Dv74+hQ4cKHYmIiIjovqSmpuLzzz/H6tWrYWdnhxUrVuDNN9/E7NmzsWbNGpiaCnMKgFKphEajgV6vh0gkEiQDNWY4FobfiRERUUcXHx+PDz/8EGvXroWvr6/QcYiIiIiI7grLPIiIiIiIiKhDkMlkkMlk6N27d5Pja2trkZ2djczMTFy8eBHR0dF3XKah1OPw4cM4ePAggoODMWjQIBQXF+PixYvIyMhAQUGBcXonJyfjCdxDhgyBp6cnvLy84O3tDS8vL1hbW7fMxhIRUbtnZ2eHwMBABAYGYujQofj73/8OACgsLMSJEycQHx+Pffv2ISUlBWKxGCKRCFqttsEyampq0KNHDwCAi4sLvLy84Ovri4CAAPj7+8Pf3x9+fn6QSCQPfPuEIhKJsHTpUvj4+CA6OhqZmZnYunUrbGxshI5GRERERETt1PDhw3H69GksXLgQ48ePxwcffIDFixcLHYuoxXSkMg/gxtVZL1y4gKioKBw/fty474SIiIiovaivr8eMGTPQo0cPPP3003jmmWewa9curF69Gi+88IKg2ZRKJWpra1FUVAQnJydBs9D/p9PpAIAFK0RE1KFVVlZi2rRpGDVqFGbOnCl0HCIiIiKiu8YyDyIiIiIiIuoUzM3N4ePjAx8fHyiVynuat76+HgBw9uxZaDQa9O3bFwMHDsSzzz7boKyDJwoTEVFzOTk5YfTo0Rg9ejT+9a9/4erVq4iNjcWRI0fw008/obi4GGZmZtBqtdDpdDhy5AiuX7+O9PR0ZGRk4M8//8TmzZuRnp4OrVYLsVgMT09P+Pv7o3v37ujevTv8/PwQEBAAuVwu9Oa2mqlTp6Jr164YP348IiMjceDAATg6Ogodi4iIiIiI2ikbGxusX78ePXv2xIIFCyCRSPDSSy8JHYuoRXS0Mg+RSISNGzfi0UcfxYgRIxAXFwdvb2+hYxERERHdteXLlyM5ORk//PADBg8ejPT0dBw6dAhDhgwROprxWAu1Ws0yjzZEr9cDAMRiscBJiIiIWs/8+fNRWlqKtWvXCh2FiIiIiOiesMyDiIiIiIiIOp0rV67c1XQmJiZQKpXo3bs3hg4diqioKLi4uLRyOiIiov/P09MTM2bMwIwZM6DX63Hu3DnExsbi0KFDSElJQXBwcJPvTbW1tbh48SJSU1Px559/IjU1FQkJCdi0aRPKysoAAPb29vD390dISAhUKhVCQ0PRs2fPDnPyTnh4OH799VdERkZi4MCBOHToEFxdXYWORURERERE7di8efNQXV2N+fPnw9nZGZMmTRI6ElGzdbQyDwCwtLTEvn37MGTIEAwbNgxxcXEdutSUiIiIOo6EhAS8//77WLRoEaZNmwZLS0skJCTAz89P6GgAgC5dugAAiouLBU5CN9PpdABuFNsRERF1RHv37sXGjRsRExPDfTxERERE1O6wzIOIiIiIiIg6tIqKCvz+++84ffq08Xb+/HnjeMPBDHq9Hra2toiIiMDw4cMRHh6O0NBQmJryozMREbUNIpEIwcHBCA4Oxssvv/yX05qbmyMoKAhBQUGNxuXm5iI1NRVpaWlISUlBcnIytm/fjvLycpiZmSEwMBC9evVCaGgoevXqhYceegg2NjattVmtytvbG3FxcRg+fDgiIiJw+PBh+Pr6Ch2LiIiIiIjasVdffRVZWVmYM2cO+vXrB09PT6EjETVLRyzzAAA7Ozv8+OOPGDhwIIYPH45jx45BKpUKHYuIiIjottRqNSZNmoTg4GB8/PHHGDRoEHbs2AF7e3uhoxkZshiK46ltMJR5iMVigZMQERG1vIKCAkRHR2PGjBl44oknhI5DRERERHTPeEYSERERERERdRh6vR4pKSn45ZdfEB8fj99++w1//vkndDodpFIpVCoVRowYgb59+2L9+vXw8vLCI488goEDByI8PBzdunUTehOIiIhanVwuh1wux+DBg43DdDodLl261KD8as+ePSgpKYFYLIa/vz9UKhUiIiIwcOBABAQEtJureykUChw7dgwjR47EwIEDcejQIQQHBwsdi4iIiIiI2rGVK1fiyJEjWLhwIb799luh4xA1S21tLYAbxaAdjbOzMw4fPoyIiAiMGjUKhw8fhrW1tdCxiIiIiBqpqqrC+PHjUV1djTNnzmDevHn48MMPYWJiInS0BszNzSGRSFjm0cbo9XoALPMgIqKO6fnnn4elpSVWrVoldBQiIiIiovvCPTZERERERETUrqWmpuK///0vxo4dC2dnZ/To0QOvvvoq8vLyMHHiRMTExCA9PR3FxcU4fPgwVq5cic8//xylpaVIT0/Hhg0bMG3aNBZ5CGjYsGFCRyAi6vTEYjH8/PwwefJk40lpxcXFuHLlCnbt2oXx48cjNzcXixcvRlBQEFxcXDBu3Dh88sknSEtLEzr+HTk6OuLQoUPw9fXFoEGDcPLkSaEjtVnvzpgkdAQiog6Nr7N0N/h7Qq2Nv2PNJ5FI8NFHH+G7775DXFyc0HGImqW4uBi2trZt7kTRluLu7o4DBw4gLS0NkydPRn19vdCRiFoU39eptfB3i+jB0el0mDx5Ms6cOYOysjJ88cUX+O9//9tm/39mb2/PMo82RqfTAUC7KeInIiK6Wxs2bMB3332HTZs2wc7OTug4RERERET3hWUeRERERERE1K7U1NRg3759iI6OhpeXFwICAvDuu+/C1NQUb7/9NhITE1FSUoJDhw5h+fLlmDBhAry8vBosQywWw97eXpgNuE9/ddCF0AdkiESiZmUwXCWGbk/of+P/x959h0Vxrm0Av5cmIEUsdKVYQDFWVBRbbKAEwYpB7N3EaIIlMTkRNSomlhhb1ESNGmPvsSAeExW7YkPBBgpSpCNR6d8f+djjSpuF3Z0F7t91cYmzM/Pe8847s7vDzrPVXUXHOFU/VWm82NnZYdCgQVi0aBFOnz6N1NRUXL16FV9//TU0NDTw7bffwtHREXZ2dpg8eTL+/PNPZGVliR27WMbGxjh16hRcXFzQq1cvBAcHix1JKQY5WmKQo2W5l+fzctkq0r/VCfvpXxU9JtWlTTG2QyzK3taqcp6tLuNB2Uoab5V1nKjiXMGxpxiVdYypmz59+qBz584IDAwUOwpRhSQkJMDMzEzsGErl5OSEY8eO4ezZsxg5ciQLepBa4bUc5eN75PLh2CJSjYKCAowePRpHjx6Fnp4egoKCMHbsWLFjlcrIyIjFPNRMYTEPDQ3eGkJERFVHZGQkvvjiC/j7+6N79+5ixyEiIiIiKjdesSEiIiIiIiK1l5eXh6NHj2LEiBEwMzODt7c37t69i9GjR+PixYtITEzE/v37MWPGDDg7O0NLS0vsyNVKRT/MV1Vvpqaqgx9YJfofLS0ttGvXDjNmzMCBAweQlJSEkJAQjBw5Erdu3YKnpyfMzMwwcuRIHDt2DHl5eWJHlqGvr49Dhw7Bw8MDH330EQ4cOCB2JIXbHx5boeUDtuxRUBIiAip+TKpLm2Jsh1iUva08z9K7ShpvlXWcVKdzRWVXWceYOvL398eJEycQFRUldhSicqsOxTwAoGPHjjh8+DAOHz6M4cOHs6AHqQ1ey6l8qsvrXo4tIuUrKCjAwIEDsWPHDtSvXx+hoaGV4kZVQ0NDZGZmih2D3lH492wW8yAioqoiPz8fY8aMgbW1NRYsWCB2HCIiIiKiCuEVGyIiIiIiIlJbcXFxWLhwIWxtbeHt7Y1nz55hwYIFeP78OS5duoSAgAB07NgRmpqaYkclIiKqljQ1NdGpUyfMnz8fly9fxvPnzzF//nxERkbCy8sLdnZ2WLhwIeLj48WOKqWjo4OdO3dixIgRGDZsGA4fPix2JCIiIiIiqqQ8PDxQr149bN++XewoROVWXYp5AEDPnj1x8uRJnDhxAsOGDUNOTo7YkYiIiKiaKigogLu7Ow4dOoRWrVrhzp07sLOzEzuWINra2nwdpWby8/MBABKJROQkREREivHDDz/g8uXL2LlzJ3R1dcWOQ0RERERUISzmQURERERERGonOTkZX375JRo2bIgVK1Zg4MCBePToEc6dO4fPPvsMVlZWYkesMIlEUuwHKYqbXvj/wsckEgnGjx9f5mMAcO/ePXh4eMDQ0BCGhoZwd3fHvXv3im3zyZMnGDhwIExMTErMJw952paHkLz37t1Dv379pG3369dPcNslTT9y5AhcXV2hq6sLW1tbfP7553j16lWxy0ZHR8PLywuGhoYwMzODn58fkpOTy91H7677/X1clrCwMPTr1w8GBgYwMjKCm5sb7t+/X2Q75e0PefbvgwcP4OLiAn19fXTp0gWPHz9GWFgYOnToAAMDA3z44Yd4/vy54G16d93379+Hu7s7jIyMYGBgAA8PDzx48KDYvGWNiff7y9jYGAMGDCgxm5A+KEt6ejo+//xz2NvbQ1dXFxYWFhg9ejSuXr0qd1sVPZbl6VNFH4eK3I/KOg6FrlMR5+XKzNraGtOnT8f58+fx8OFD+Pr6YvXq1bCxscGkSZOQkJAgdkQA/xYh2bhxI8aPH4+hQ4fi6NGjYkdSuuePwrFo0ggMb9MYw9s0xsLxvnj+KFxmnkGOlhjkaCnXeguXiX8ehe+njcPI9o5F1vP8UTgWTfSTtr1oop/gtkuafu2/QZj7cX8Ma2GLyT3aY8uSeXjzT2axyybFxSJw6mgMb9MYY11bYNWsT/EqLbXcffTuugc5WmLdN/5y9VXM44dYON4Xfm2bwLd1IyyaNAIxTx4Vn0dgv5XW/1Hh97Fg7DD4tmoIv7ZN8N2E4bh14a9ybbvQ/iyrn4TsPwCIfhyBRRP94Nu6EfzaNsGCcR8j5vHDYseFPNsQ8+QRvvT5CB+3ssc3w70R/zwK0Y8j8OVQD/i2boRvRw5GUtyLInnKIpPX2QFLPx1b4nqE5BWrTaHrlPe4FTIWhY4NIceHEHL3XwXbLK5vKjIulXFeef0qA1uWzMOUXi4Y1sIW4zq3wuovZ+DRnVCZdt9t//1jXFH7R10J6SNA+Hh+X0WOobIo8jiU5/gRss6Kjj1FvSYpizznPqHbpKzXQCX1RUnrrurHrrJoa2vDy8sLJ06cEDsKUbklJCTA3Nxc7Bgq06VLFxw/fhxBQUEYMGAAsrKyxI5EVCxeyxH/Wg6g+Pfd8l5fEdrH8vZdWe8NKrIfiahs2WywA9YAACAASURBVNnZaN26NYKCguDp6Ylr167B2NhY7FiCsZiH+snPz1fIZzyIiIjUQVhYGAICArBgwQK0bNlS7DhERERERBXGYh5ERERERESkVvbs2YOGDRti69atWLp0KeLj47Fq1SrY29uLHU2hCgoKBE8vnFZQUCD9+eWXX8p87PHjx+jduzc8PT3x9OlTREVFwc/PD15eXoiJiSmy/ilTpmDmzJmIjY3F8ePHK7R98rYtj7LyPn78GH379sXgwYPx9OlTabEBd3d3PH78uMy2S5ru5eWFUaNGISUlBZcvX0ZKSgqmTZtW7LLjx4/HlClTEBcXh+vXr+P169eYOXOmzLzy9lFx+7gsT548kfZFZGQkIiMjMWbMGAwbNqzItsrTH/JmDwgIwJYtWxAXF4eWLVvCz88P8+bNw9atW/HixQs0bdoU/v7CPzz77rp9fHwwevRoREZG4unTpxgwYADc3d0RFRUlk1fImHi/v548eYJBgwZJ+6s8fVCWUaNGoVatWrh06RLS09Nx/PhxPH78GB06dJC7rYoey/L0qaKPQ0XuR2Ueh0LWqYjzclXRsGFDBAYGIjo6Gj/88AMOHz4MR0dH7N27V+xoAP4tuLJ27VqMHj0agwcPrvBznzqLfx6F+WOGwfnD3lgffBk///cquvUfhMCpY5AcHyedb394rNzrLlxmY8CX8Bo7Bb+cu4WvN+6Qafu7CcPR0e0jrA++jHWnL6FD735YON4X8c+jymy7pOmBU0fjwwFD8dvVBwjccwyZ6Wn4ZeE3xS677ht/uH08Cr9euIXv951E1ts3+G3pApl55e2j/eGx0p+p3y2Xq6+Wfz4ZHw7wwfozV7A++DI69OqLheN98fJFdLn7raT+j416iuWfT4L3+E+w5fI9BO4+hrdvXmPheN9yb7uQ/iyrn4Tsv3f74OczV7D+zBX0GDgMK76YItNGebZh95rl+HTxSvx6/hZsHZ3w46xPseunZfh0yY/45dxNWDdsjK2B88vcp6XlXXf6Ejr28cCKzycXO6+QvGK0Kc865TluhYxFQP6xUdrxURZ5+08RbRbXNxUZl8o4r6z+cjpqGhphye6j2H79Ib7ZuAPxzyPx5VCPIu0Wd4wrqq/UmZA+AoSN5+JU5BgqjbKOw7KOH6HrrOjYU9RrkrLIc+6TZ5uEtiPPa6CS+qK4dVeHY1eZunfvjmvXrhUp+kpUWSQkJMDMzEzsGCrVuXNnnDx5EufPn8eAAQPw9u1bsSMRyeC1HPW4lqOM993lub7yvtLeWwpZr5D3BhXZj0RUutjYWFhbW+P27dv4/PPPceTIEWhqaoodSy4s5qF+CgoKWMiDiIiqhKysLPj6+qJt27Zyf5aMiIiIiEhdSQrKc9cMEREREZVJIpFg9+7dGDp0qNhRKmTPnj3w8fEp183WRETymjt3LgIDA/Hpp59iyZIlqFmzptiRlEoikRR7fi1ueknzlvaYn58fWrRogdmzZ8tM37x5M27fvo1Vq1bJrOPs2bPo3r17ObakaAZ525b3eaa0vH5+fmjXrh2mT58uM33FihUIDQ3F9u3by2xbSKbU1FQ0atQIycnJRZY9dOgQvLy8pNMiIiLQo0cPvHjxv29rU3YfAcCIESPg7OxcpC927dqFjz/+WPA4q+j+/euvv9CtWzcA/35AzcrKSmZaTEwM2rZti4SEBLm2TyKRYNeuXfDx8ZGZvmLFCty5cwdbt26V5hUyJkrqr61bt2LMmDHl7oPSGBoa4tmzZ6hdu7Z0WmRkJOzt7aXtqfpYFtKnZbUl73GoyP1YuE5lHIdC1lk4b0XPy1XRP//8gzlz5mDt2rWYO3cuFi1aJHYkAP9+W9no0aOxb98+HDt2DD169BA7ktSOHTswduw47LobJddygxwtZT5wv2rWp7BxaAbv8VNl5vvv/l2ICg/D2K8Xlris0PYWbNsHp/adijy2atanaPRBK3iMHC8z/eiWDXj64B6mf7+6zLaFZMrMSMcnvTvityv3iyw7Z+0WtO/pJp0WG/kE80YNxqZzoTI5ldlH7y77xYqf4dqvv8z0o1s2ICriAaYF/ijNI0+/ldT/K/2nok3XHujmNVg6LTbyCab17SLdBnm3XUh/Fs4rtJ+K23+rZk9Do+Yti/TBhT8PY6X/lAqN8QXb98OpXUcAQMrLBEzo2lpmWnJ8HGYNcsPmkDuC8peW9+zB3Vjz1eflzqvqNuVZJyD8uBUyFotT7NiQ4/gojbz9p4g2geL7rCLjUtHnleFtGmPD2WswMK4lnedlzHNM6eUik7ukfa/IvgKApVPHoIllPZnXeoqUlZUFXV3dIue20gjto/eV9lxV1rFV3mPoXQo9DuU8VwhZZ0XHXuFjinhNUhah576KblNFXwOV1BfFrVvRx+65I/ux7ht/ZGdlybVcZRUXFwcrKyucOHECbm7CziVE6qROnTpYvHgxJk2aJHYUlbtx4wb69OmD9u3b4+DBg9DV1RU7ElVy/b28kA5tuZ87eS1Hdll1uZajrPf6iri+UtL7CCHrFfreoCL7sTQ52dkY1sK2yPV2ourg0qVL6NGjB7Kzs/Hzzz9jwoQJYkcqFzc3N9SvX1/wF1CQ8u3cuROjRo2qEkVWvLy8YGRkpLTrgUREpN5mz56NdevW4datW2jUqJHYcYiIiIhIiXbs2IFx48Yhqxp8rkBD7ABEREREREREwL9vxgMDA7Ft2zb89NNPVb6QhyoEBwcXuTkeADw8PHD69Oki09u3by9a2+VRUt7g4GB4e3sXmT5gwAAEBwcrpG0AMDExQUpKSrGPde3aVeb/tra2iIuT/ZZ1VfTR6dOni+2L3r17V2i98mZv06aN9Hdzc/Mi0ywtLZGYmFiuLL169SoybcCAAQgKCpLJK2RMlNRf7u7uRaYpav917NgR/fv3x8mTJ5GbmwsAsLOzkykEoepjWUifltWWvMehIvdjIWUch0LWWRpVHPfqrGbNmlizZg1+++03LFmyBDt37hQ7EgBAQ0MDW7ZswYABA+Dp6Ym//vpL7EgKd+fi+SI3eQNAm+49cfviOYW00ahF6xLbbt+r6Hm0Q+++uHPxvELaBgADI2NkpqcV+1izdi4y/69nVR+piS+L5FR2HxVq0alLkWkdevfF7ZC/ZfLI028l9f+9yyH4oKNse5Z2DWVuxJB324X0p7yK2393Qs4V2wctXbsWmSbvNtg3+0D6u0ndekWm1TY1Q0ZKcpHlSlNS3tZdPqxwXlW2Kc865SFkLBan2LGhoPOKvP2n7HNZRcalIs8rDq3aYsmUUQg9fxZ5ef++PjW1biD4xjdVnffFVN4+Ku25qizlPYYUsQ55ztFCzxXFrbOiY6+Q2K9J3qWobSpNaeOqpL4oTnU4dpXJwsICjo6OuHr1qthRiOSWk5OD1NRUmJqaih1FFG3btsWJEydw+fJleHh4ICMjQ+xIRAB4LUddruUo872+Mq6vCF2vIt5fFKrI+xyi6iYrKwvdu3eHRCJBSEhIpS3kAQDa2tpVomhEVVJQUACJRCJ2DCIiogoJCQnBihUr8NNPP7GQBxERERFVKVpiByAiIiIiIiICgIULF2Lq1Knw8/MTO0qVkZycDFtb22If09PTKzJNX19ftLbLo6S8SUlJ0oIR77KwsEBSUlK52kpMTMRXX32FkydPIj4+Hnl5eaXOb2JiIvP/GjVqyBRnAFTTRyX1RZ06dSq0XnmzGxoaSn/X0NAodtr7/SNUcdtiYWEhUxxE6Jgoab7ipilq/+3duxfz58/HJ598gsTERLRu3RoDBw7E1KlToa2tXa62KnosC+nTstqS9zhU5H4spIzjUMg6S6OK474yGDlyJC5fvoyFCxfC19dX7DgAAE1NTWzbtg1+fn746KOPcOLECXTpUvTG6MrqVVoqJvcovviOjoK+dbiGbvFjOCMtBbXqFr0pzKSeGV6lFl8UqywZKcnYsWIxQs+fRVpSIvLLeF42MDKW+b+2jk6RY1cVfVTIsJZJkWkm9WRv0pe330rrfyOT2qXmkXfbhfRnaYTuv5L6oLj+k3cb9GoaSH+X/P9rk/enyfvapKS8xU1T1HhTRpvyrFMeQsZiRceGvOcVebZVGeey91VkXCryvDJz1UbsWbsCmxbMRUZKMuyaNYdL735w9x0FTS3tMrdDFX0lNiF9JO9zVVmEHEOKWEdFj8Nijx+B66zo2CukytckZVHUNhWSd1yV1BfFrrsaHLvKdv36dYVeWyNSlWfPnqGgoAANGjQQO4po2rdvjwsXLsDd3R2urq44efIkrKysxI5F1Ryv5ajHtRxlvtev6PWVkghZb3nfXyj6fQ5RdVOjRg2sX78e/fr1K/bvXZWJpqYm8vPzxY5B72AxDyIiquwyMzMxevRoeHh4YOzYsWLHISIiIiJSKBbzICIiIiIiIrUQHR2Ntm3bih1DpSQSCbKyslCjRg3ptJQUxd0gUbduXdy/f7/IzeeqIHbbcXFxRW6Yj4uLQ926dWWmCd0HI0aMgIODAy5cuABra2toaWlJl69ITmX3Ud26dREfHw8bGxuZ6fHx8cXOL7Q/xNy/70tISICZmZnMtLi4ONSrV0/6f6FjoqT+UmYfGBsbY8WKFVixYgWSkpJw5swZ/Pjjjzh//jz27dun0LaEEtKnZZHnOBTaprzrFJpTlX2rTseO2JydnfHbb7+JHUNGYUGPwYMHw9PTE0FBQWjfvvgP4Fc2hia1ser430U+zK8KRrVqIzUxAaZW9WWmpyYmwPC9mwYkEglysrOhraMjnVbcN3uumj0NVnYNsWjnYdQxt4Cm5r/Py4McLcudU5V9lJaciFp1ZM+pqYkJMKr9v8JG8vRbaQxrmSAjNQW1Tc1KnkfF40Po/jOqVRtpSS9Rz9JaZnpaUtFvqRVzjBcqKW9xY1hReZXRpjzrBIQft0LGojxjQxHHhzzbqqg2lUWR5xV9QyOM/jIAo78MQEZqCu5euoBjv23C/etXMOunTWVmUfe+UgQhfaTo5yohx5Ai1lHRc3RFnrcrOvbKosixKfTcJ3SbxHwNVKg6HLvKxkIeVFk9fPgQAKr9t506OTnhwoULcHNzQ+fOnXHy5Ek4ODiIHYuqMV7LKZsq+kiM9/rvE9rH8ijv+wtlvh4lqi54YyoRERFR8T777DOkpaVhw4YNYkchIiIiIlI4DbEDEBEREREREQFAp06dsGnTJmRnZ4sdRWXMzc3x/PlzmWnnzp0rdt7SikaU9Jibmxv++uuvItPPnz+v9MIpYrbdq1cvHDhwoMj0gwcPolevXjLThO6DixcvYv78+bC1tZUW8njz5k2FcsrTR+UtGtKnTx8cOnSoyPRTp04VO7/Q/hBz/76vuG05ePAg+vTpI/2/0DFRUn8FBwcXmaaoPpBIJIiJiQHwb6EHHx8f/PnnnwgKClJ4W0IJ6dOyyHMcCm1T3nUKoay+VcfzsjrJysrCxo0b4erqKnaUIrS1tbFnzx506tQJ7u7uCA0NFTuSQrTq3B1hVy4Wmf7g+hXMGuim1LZbdOqCK0HHi0y/cvoEWnTqIjOtVl1TJMW9kJl2/9rlIstGhF6Hz7RZMLWqL71pIPvt2wrllKePKvrtdrfO/1Vk2pXTJ9DStZv0//L0W2mc2nfCnYuyz+VR4fcx3eN/bSlrfJTUT0L3X8vO3XA1+GSR6bcu/FVkmphjvFBJed/vf0BxeZXRpjzrBIQft0LGotCxoajjQ55tVVSbyqLI88ogR0skx8cBAIxMasO1X398vXE7bof8LbNcSce4uveVIgjpI0U/Vwk5hhSxjoqeo4s7foSus6JjryyKHJtCz31Ct0nM10CFqsOxq2zPnj1D27ZtkZZWsZtriVTt0aNHMDMzg7GxeIXx1IWNjQ0uXrwIS0tLdOrUCZcuXRI7ElVjvJZTNlVcyxHjvf77hPaxPMr7/kKZr0eJqrq8vDzMnTsX169fFzsKERERkdo5cuQItmzZgvXr18Pc3FzsOERERERECsdiHkRERERERKQW1q1bh/v378PHxwfp6elix1GJ3r17Y+7cuYiJiUFmZiZOnTqFn3/+udh5rayscOnSJeTk5CAoKAgNGjQo87GAgADMmzcP+/btQ3JyMl69eoVjx47h448/xn/+8x+lbpuYbc+bNw8rVqzAL7/8gpcvXyIxMRG//vorVqxYgXnz5snMK3QfdOrUCbNnz0ZUVBSys7Px+PFjTJ48uUI55emj0vZ/WW0sX74cmzdvRmJiIpKTk/HHH39g48aNxc4vtD/E3L/v27BhA3bu3Ink5GTpvl61ahUCAgKk8wgdE+/3V0pKCvbs2YPFixcXaVeRfTB+/HiEhYUhKysLCQkJWLZsmUxxClX3t5A+LYs8x6HQNuVdpxDK6lt1PC+ri7S0NPj4+CAiIgJr164VO06xatSogQMHDsDZ2Rnu7u549OiR2JEqzGeaP3avXoZLp47hVVoq3vyTiet/ncYK/ykYMvVzpbY99FN/HNm6AcF7dyI9OQkZKck4s+8PHNm6AT6f+svM29K1K35fsQTJ8XF4+/of3LrwF07t2lZknQ6tnbF92UK8fBGN3JwcxD+PwoaAORXKKU8f1TYzR8StG8jLzcHtkL8x6UNnudoK2r0d548dxKu0VGl/HNv2C3ym/a8/5Om30gyeMh17163EnYvnkfXmNZ5FPMDauZ+jn9//vgFSWeOjpH4Suv98PvXHkS0/47/7dyEjJRmv0lJx4c9DCNq9o+i8Io7xkvJmpqfh4okj2L/hJ6XlVUab8qwTEH7cChmLQseGoo4PebZVUW0qi6LPK+u+8Uf04wjkZGcjLTkRh39dX+SmvZKOcXXvK0Upq48U/Vwl5BhSxDrKe44u7fiRpy8qMvbKosixKfTcJ3SbxHwNVKi6HLvKdP36dYSGhqJx48bIyMgQOw6RYI8ePULjxo3FjqE2ateujaCgILi4uKB37944ceKE2JGomuK1nLKp4lqOGO/13yfPa0+hyvv+QpmvR4mqsuTkZLi7u2PlypV4+vSp2HGIiIiI1EpiYiImTpyIsWPHYvDgwWLHISIiIiIVysnJgba2ttgxVEJSUFBQIHYIIiIioqpIIpFg9+7dGDp0qNhRKmTPnj3w8fEBXzYSkSqcP38ePj4+0NPTw48//ghPT0+xIylVUlISpk+fjtOnT+P169fo0aMH1q5dK73p+91z7969ezFnzhy8ePECDRo0wPLly9G/f/8yH3v06BG++uorBAcHIzc3F82aNcNXX32FAQMGSNf9/jeSyXvOf3f5d5eVt22h7QrJe/fuXcyePRvnz58HAHTp0gXff/89PvjgA5n5hO6Dly9fYubMmTh16hTS0tLQpEkT/Oc//4GPj4/MfCVtT0X6CCh9H5clLCwMs2bNwrlz56ChoYFu3bph9erVsLOzK9J38ozJ8u5fodOEkEgkiIyMxLRp0/D3338jPz8fXbt2xfLly9G0aVOZeYWOiXf7SyKRoFOnTli5ciWcnJzK1QdlOXPmDNasWYPz58/j1atXsLKygre3N+bPnw9DQ0O52qrosVy4DiF9qsjjUNH7URnHobzrrOh5uao6cuQIZsyYgaysLOzevRudO3cWO1KpXr9+jd69eyM6OhohISGoX7++yjPs2LEDY8eOw667UYKXGeRoKf19f3is9Pe4Z5HYsXwx7lw6j7zcXNRv1AQDJ05Dh959y1xWaHslLffs4QNs/+E73L9+BQDQzLkDRsz6BjZNZI/xjNQUbF70H9y+eA5Zb97gAxdXTPh2ifQGi8J1pycn4bfvF+DWhb/wT0Y6LG0bYsjUGVj++WSZ+Uranor0EQBcPHkU25ctQkpCHOpaWGH0lwFo16OP4P5af+YKfl34DcKuXUJ+fj6c2rlg1Jx5sG4oewOdkH4T0v8Rt25g2/cL8CTsDoxr14H7x6MxYOKnMvNUZHyUNL2kfhK6/wAg+nEEtn2/EGHXLkNDQwNO7TpizNz5+NS9M/bdj1HINgidJsS7eSUSCRxaO2PsV/Mx/aPuRdYldLyJ0aY86xR63AJlj0V5xobQ84oi+08RbVZkDJZ2DCryvHL30gUc/30zHly/gjf/ZKK2mQU69HKHz7SZ0KtpIJ2vtHOhovYPACydOgZNLOth+/btci8rRFZWFnR1dTFn7Ra07yns27KF9FFFnqtK2tdCzudlUeRxKPT4EbrOio49Rb4mKYvQc5/QbVLma6Di+qKkMabIY/fckf1Y940/srOy5F62Mvvjjz8wfPhwmJubIyIiQuZ9PZG6cnNzg5WVFTZv3ix2FLWSk5OD8ePH448//sCmTZswatQosSNRJdHfywvp0Mb071cLXobXctT7Wo6i33fLu41C+1je9Zb13qC45eR5v1CanOxsDGthi0OHDsHLy0vQMkSV1e3btzFgwADk5ORg//79aN++vdiRFMLLywtGRkZKu15D8tuxYwfGjRuHrCrwPpzji4ioehk8eDBu3LiB27dvw8jISOw4RERERKRCGzduxJdffomUlBSxoygdi3kQERERKQmLeRARlc/Lly/xySefYP/+/ejYsSO+/vpruLu7Q0NDQ+xoRFWKRCKp9M/vVWEb1I0Yfcr9WLXl5+fjxIkTWLRoES5fvowhQ4ZgzZo1qFevntjRBElOTkaXLl2gqamJc+fOwcTERKXtl6eYB6m3QY6WchWHoKKiH0dg0cQR+Pm/V8WOQqQWqvp5RR2LeRBR2aprMQ8AWL16NT777DPY2tri5s2bKn8PQSQve3t7TJgwAV999ZXYUdROQUEB5s6di6VLl2L27NlYvHgx/05BZSpPMQ+i6obFPKi6+OOPPzB+/Hg4Oztjz549MDMzEzuSwrDYgvphMQ8iIqqMfv31V0ycOBFnzpxB9+7dxY5DRERERCq2Zs0afPfdd4iPjxc7itLxL4xERERERESkVkxNTbF3715cuXIFhoaG+Oijj9CwYUMsWbIE0dHRYscjIiIiAZ4/f45FixbB3t4enp6eMDY2xtWrV7F79+5KU8gDAOrUqYOgoCBkZGSgX79+eP36tdiRiKqVQY6W+HPbL8jMSEdOdjYiH4Th529no+/w0WJHIyIiIirWtGnTMG7cODx79gzdunVDcnKy2JGISpSdnY3nz5+jcePGYkdRSxKJBEuWLMHOnTvx008/4aOPPkJ6errYsYiIiEjN5eXl4csvv4Svry/8/PwQHBxcpQp5EBERESlCZGQkvvjiC8ycOZOFPIiIiIiqqZycHOjo6IgdQyVYzIOIiIiIiIjUUrt27XDy5EmEh4dj4MCBWL58OWxsbNCxY0csX74ckZGRYkckqrQkEonMv5VRVdgGdSNGn3I/Vi1PnjzBsmXL4OLiAltbW/z4448YPHgwIiIicOLECTg7O4sdsVysra1x/PhxPHz4EMOGDUNubq7YkaiSGuRoKfMvle2rn3/Dtf8GYVJ3Z4zp9AHWf+OP3kOHw2vcVLGjEakFnleIiNTT2rVr0aRJEzx69Ai9evVCUlKS2JGIivXkyRPk5eWhUaNGYkdRa8OGDcN///tfhIaGonPnzvzbBBEREZUoKSkJ7u7uWLVqFbZs2YINGzZAW1tb7FhEREREaiU/Px9jxoyBtbU15s+fL3YcIiIiIhJJdnZ2tbl2piV2ACIiIiIiIqLSNGnSBMuXL8eSJUsQHByMffv2YfHixZg5cyaaNGmCPn36wM3NDd27d4eBgYHYcaucsm6wLygoqNTtVWYV6St170ch26bu2wCo13hW1z6tDPuRSpaZmYmzZ8/i1KlTOHXqFB4/fow6derA29sbAQEB6NmzZ5W50O7k5ITjx4+jZ8+eGDduHLZu3VotitCUdXP4/vBYFSVRf0L6iv0lP+fuveHcvbfYMUQ5Fnj8VUx12WccB1SI5wzFYD+SotSoUQO///47XFxcEBMTg65du+LMmTOwsLAQOxqRjLt370JLSwsODg5iR1F7Li4uuH79Ory8vNCuXTvs27eP3xpLaomvZ4RjXxGRooWGhmLgwIHIy8vD+fPnK22BcyIiIiJl++GHH3D58mVcuXIFurq6YschIiIiIpFkZ2ejRo0aYsdQCRbzICIiIiIiokpBR0cH/fr1Q79+/ZCTk4OQkBCcOnUKQUFBWLt2LTQ1NdG2bVt07twZXbt2haurK+rUqSN27EpP1Tfa88Z+4apyX1WVbVOn7VCnLFR5JSUlISQkBOfOncP58+cRGhqK/Px8tG7dGkOGDIGbmxtcXV2hpVU1Lzt36NABu3fvhre3N+rXr4/vvvtO7EhKx5sWhGNfVW1i7F+OqYrhPqPqhuNPMdiPpEht27bFrFmzsH79erx9+xZubm44e/Ysr1eSWrl58yaaNWsGPT09saNUClZWVvj7778xcuRIuLm5Yf369Rg7dqzYsYhk8PWMcOwrIlKkDRs2YMaMGejatSt27tzJ1/1EREREJQgLC0NAQAAWLFiAli1bih2HiIiIiESUlpYGY2NjsWOoRNX8VDURERERERFVadra2ujevTu6d++OJUuW4OXLlzh79izOnz+PoKAgrFy5EgUFBWjYsCHatGmDNm3aoHXr1mjTpg3q1q0rdnwiIiK1l5iYiNDQUNy8eVP68/TpU0gkEjg5OaFbt26YOXMmunfvDlNTU7HjqoyHhwe2bNmCkSNHom7dupgxY4bYkYiIiIiISE3NmTMHGzZsgJeXFw4dOgR3d3cEBwdXmw8kkfq7efMmWrduLXaMSqVmzZrYt28fvv32W4wfPx5Xr17FqlWrqs23hhEREZGs1NRUjB8/HocPH8ZXX32FgIAAaGpqih2LiIiISC1lZWXB19cXbdu2hb+/v9hxiIiIiEhkqampMDExETuGSrCYBxEREREREVV6pqam8PHxgY+PDwAgJSUFISEhuHHjBm7evIk1a9YgJiYGANCgQQNpYY/CIh9WVlZixiciIhLVixcvpAU7Cgt4YBj0egAAIABJREFUREdHAwCsra3Rpk0b+Pn5wdnZGa6urtXm4nlJ/Pz88OLFC/j7+8PCwkL6+oOIiIiIiOhdxsbG8Pf3x5IlS3Du3Dl4e3ujb9++CAoKgoGBgdjxiBAaGgoPDw+xY1Q6EokECxcuRPv27TFq1ChcvXoV+/btg729vdjRiIiISIWuXLkCX19f/PPPPzh+/Dj69OkjdiQiIiIitfbNN9/gyZMnuHXrFgugERERERGLeRARERERERFVZrVr14anpyc8PT2l016+fCm9QfnmzZv47bffMG/ePAD/FgNp1qwZHBwc4ODggKZNm6JJkyawtbWFhoaGWJtBRESkMPn5+YiKikJERAQePHiAhw8fIiIiAmFhYUhMTIREIoG9vT3atGmDqVOnSgtf1atXT+zoamnOnDmIi4vD6NGjYW1tDVdXV7EjERERERGRGvrss8+watUq7Nq1C6dPn0a3bt3g7e2NY8eOQVdXV+x4VI09f/4cSUlJaNOmjdhRKi1PT0+EhoZiyJAhaN26NTZv3oxBgwaJHYuIiIiULD8/H6tXr8asWbPQt29fbN68GXXq1BE7FhEREZFaCwkJwcqVK7Fx40Y0atRI7DhEREREpAZSU1NhaWkpdgyVYDEPIiIiIiIiqhZMTU3h5uYGNzc36bS0tDSEhobi9u3bCA8PR0REBA4dOoSEhAQAgK6uLpo0aVKkyIeDgwMMDQ3F2hQiIqISvXr1ChEREUWKdkRERCArKwsAYG5uDkdHRzg4OMDb2xstW7ZE69atYWxsLHL6ymXFihV49uwZvLy8cOnSJTRu3FjsSEREREREpGYMDAwwY8YM/PDDD5g/fz5OnTqFDz/8EN7e3jh8+DBq1KghdkSqpm7evAmJRIKWLVuKHaVSs7Gxwblz5zBnzhwMGTIE06ZNw7Jly6CtrS12NCIiIlKCmJgYDB8+HFeuXMEPP/yAzz77DBKJROxYRERERGotMzMTo0ePhoeHB8aOHSt2HCIiIiJSE2lpaTAxMRE7hkqwmAcRERERERFVW7Vq1cKHH36IDz/8UGZ6WloaIiIiEB4ejvDwcDx8+BD79+/HkydPkJ2dDQCwsLCAvb09bG1tYWtrCxsbG5nfdXR0xNgkIiKq4rKysvD8+XNERUUV+YmMjERcXBwAQEdHB40aNYKjoyM8PDzg7+8vLeDBoh2KoaGhgZ07d6J79+7w9PTEpUuXqs0fFoiIiIiISLixY8di3rx52L9/P4YPH47jx4+jd+/e8PX1xe7du6GlxY/ukOqFhoaicePGMDIyEjtKpaerq4tVq1bB2dkZkydPxq1bt7Br1y5YWFiIHY2IiIgU6PDhwxg3bhzq1auHy5cvo1WrVmJHIiIiIqoUPvvsM6Snp2PDhg1iRyEiIiIiNZKUlITatWuLHUMl+IkAIiIiIiIiovfUqlULHTp0QIcOHWSm5+bmIjIyEuHh4Xj06JH05unDhw8jKioKmZmZAP69udfCwgK2traws7OTFvko/LG2tua3bhIRUbGysrIQHR0tfY559uyZtFBHVFQUYmNjUVBQAAAwNDSUPrc4Oztj8ODBaNy4MRwdHWFra8sbwlRAT08Phw4dgouLC7y9vREUFMTneCIiIiIikmFmZgZPT09s2rQJw4cPR4cOHXDixAm4ublh/Pjx2Lx5MzQ0NMSOSdVMaGgoWrduLXaMKmXEiBFo0aIFhgwZgjZt2mDLli1wd3cXOxYRERFV0Nu3bzFnzhysXr0afn5+WL9+PWrWrCl2LCIiIqJK4fDhw9iyZQv27dsHc3NzseMQERERkZrIzc1FfHw8rK2txY6iEvw0NxEREREREZFAWlpaaNy4MRo3blzs46mpqYiNjUVcXByePn0q/Tlx4gQePXqEjIwM6by6urqwtLSEvb09LCwsYGlpWeRfGxsbaGpqqmrziIhIyd59nnj/36dPnyI2NhYJCQnIz88HANSoUQNWVlawt7eHk5MTPD09ZZ437OzsIJFIRN4qsrCwwPHjx+Hq6orJkydjy5YtYkciIiIiIiI1M2HCBPTt2xcPHjxA06ZN4erqir1798Lb2xvGxsZYtWqV2BGpGikoKMDly5cxZ84csaNUOS1btsT169cxdepU9OvXD9OmTcPSpUuhq6srdjQiIiIqhytXrmDMmDF48eIFfv/9d3z88cdiRyIiIiKqNBITEzFp0iSMHTsWgwYNEjsOEREREamR2NhY5OXloX79+mJHUQkW8yAiIiIiIiJSEBMTE5iYmMDJyanYxxMTExEVFYWYmBjExMQgLi4OL168QGxsLG7cuIGYmBiZgh/a2towNzeHtbU1LCwsYG1tDUtLS1haWqJevXowNzdHvXr1UK9ePejo6KhqM4mI6B1ZWVlISkrCy5cvkZCQgMTERLx48QJxcXHSc310dDQSEhKQk5MjXc7Y2BhWVlbS83qfPn1gYWGB+vXrw8rKCra2tqhXr56IW0bycHJywq5du+Dp6YkmTZrgq6++EjsSERERERGpkT59+qB+/fr4448/sGDBAgBA37598fvvv8PHxwfm5uZ8H0EqEx4ejsTERHTp0kXsKFWSkZERduzYAS8vL0yaNAnBwcH4/fff0apVK7GjERERkUBv377FvHnzsHz5cvTs2RMnT55EgwYNxI5FREREVKlMmTIF+vr6WLlypdhRiIiIiEjNxMTEAACsra1FTqIaLOZBREREREREpCKFhTfatWtX4jyvX79GdHQ04uPjER0dXaTgx5EjRxAXF4esrCyZ5YyNjWFubo66desWKfTx/v/r1q0LDQ0NZW8uEVGllJ+fj6SkJCQmJiIxMRHx8fHS398t2JGUlIT4+Hikp6fLLF+jRg1YWFhIC3W0b98eAwcOhLm5OerXry/9V19fX6QtJGVxd3fHunXrMGnSJNjY2MDX11fsSEREREREpCY0NDTQv39/HD16VFrMAwAGDx6MdevWYcqUKTAzM8PYsWNFTEnVRUhICPT09FhcQsmGDBmCDh06YMSIEXBxccH8+fMxa9YsXpsnIiJSc1euXMGYMWPw4sULrFu3DhMmTIBEIhE7FhEREVGlsnnzZhw8eBBnz56FkZGR2HGIiIiISM3ExMRAU1MTFhYWYkdRCRbzICIiIiIiIlIj+vr6cHBwgIODQ6nzZWRkFHuDeeEN6BEREbhw4YL08fz8fOmyGhoa0sIetWvXFvxjaGio7M0nIlKoV69eISUlRdBPcnKy9Bz67jlTU1NTWiipsDhS27ZtUbduXZiZmcHMzEymkBI/hFC9TZgwAffu3cO4ceNgZ2eHjh07ih2JiIiIiIjUhKenJ9auXYtnz57BxsZGOn3SpEl4/vw5Jk6ciDp16sDLy0vElFQdhISEwMXFBTo6OmJHqfIaNGiAs2fPYvXq1Zg9ezaCg4OxdetWWFlZiR2NiIiI3vP27VsEBARg2bJl6NmzJ06ePIkGDRqIHYuIiIio0omJiYG/vz/8/f3RtWtXseMQERERkRp68eIFzMzMoKVVPcpcVI+tJCIiIiIiIqpijIyMYGRkhCZNmpQ5b0FBgbSoR2JiIhISEvDy5UskJSUhOTkZKSkpePHiBe7duydzY/v7tLW1iy3yYWJiIv29MJexsTGMjIxQq1Yt6e/a2tolZnz9+jVWr14NU1NT2Nvbw97eHlZWVvyWQqJqLicnB+np6cjIyEBqaioyMjJkft4vyJGamirz/5ycnCLrLO48Zm1tjdq1a8sU7Hi3gAe/cY3ksXLlSjx79gz9+/fHpUuX0KhRI7EjERERERGRGujevTsMDQ1x/PhxTJkyReax7777DvHx8fD19cXp06fRqVMnkVJSdXDhwgV8/PHHYseoNjQ0NDB9+nS4uLhg+PDhaNmyJX766Sf4+vqKHY2IiIj+3+XLlzF27Fi8ePEC69atw4QJE/i3ISIiIqJyKCgowPjx42Fubo758+eLHYeIiIiI1NSjR4/QsGFDsWOoDIt5EBEREREREVVxEokEpqamMDU1FbxMQUFBqTfIF/4kJSXh4cOH0nkyMjLw9u3bYtepp6cnLfZhZGQEExMTaeGPvLw8bNu2DRKJBAUFBQAALS0tmJqawtbWFo0aNUKjRo3QuHFjNG/eHPb29tDX11dI/xCR4r169Qpv3rxBZmYmMjIy8ObNG2kBjneLchQW6ijuscLliqOrqwsjI6MihYUaNmxYbLGOdwsP8cOXpGwaGhrYsWMHunbtCi8vL1y6dAlGRkZixyIiIiIiIpHVqFEDvXv3xrFjx4oU85BIJNi4cSNSUlLg5eWFCxcuwMHBQaSkVJUlJCTg8ePHcHV1FTtKtdOhQwfcunULs2fPhp+fH/bs2YOff/4Z5ubmYkcjIiKqtt6+fYuAgAAsW7YMPXv2xMmTJ9GgQQOxYxERERFVWmvWrMGZM2cQEhICPT09seMQERERkZqKiIiAo6Oj2DFUhsU8iIiIiIiIiKgIiUSCOnXqoE6dOnIvm52dLb1JPy0trcjN+u/ftJ+QkID09HRoaGggPz9fup7c3FzExsYiNjYWFy9eLNKOhoYGtLW1YWBggMaNG8PAwADGxsbQ09ODvr4+atWqBT09Pejp6cHExET6e61ataCvr48aNWrAwMAA2traMDQ0hJaWFoyMjKCpqVmhviOqDPLy8pCRkYHc3Fy8evUKOTk5yMzMRFZWFl6/fo20tDS8efMGb968QWpqqvT3tLQ0vH79Gm/evEF6ejr++ecfaaGOzMxMvHnzBq9evSqxXYlEglq1asHY2FimuI+RkRHs7e2lRX4Kf96d793HdHR0VNhbRPIzMDDAkSNH0K5dO4wYMQIHDx6EhoaG2LGIiIiIiEhkbm5u8Pf3R25uLrS0ZD+yo6mpiZ07d6JXr17o27cvQkJCYGFhIVJSqqrOnz8PDQ0NuLi4iB2lWjIwMMC6devg6+uLsWPHomnTpli6dCkmTpwodjQiIqJq56+//sLkyZMRFxeHn3/+GePGjWNBeCIiIqIKePr0KebOnYu5c+eiffv2YschIiIiIjUWHh6Ofv36iR1DZVjMg4iIiIiIiIgUSkdHB3Xr1kXdunXlWs7V1bXYoh0lyc/PR1ZWFurWrYt27dohKytLWjwkPj5eWoDg9evX0qID2dnZgtZtbGwMDQ0N1KpVCxKJBCYmJtIiBBoaGjA2NoampiaMjIygpaUFQ0NDaWERHR0d1KxZEwCkxUEKlwUgnQ8A9PT0oKurW+K8VDWlpaWhoKBAWlAD+Pebv968eQMAyMzMRE5Ojsy8hUU3AEjHcuF8r169Qm5uLjIyMpCXl4f09HTExMQgJycHhoaG0nWkpaUhPz8f6enpgnIWjuWSCuPY29ujZs2a0NPTg5GREQwMDKCnpwdDQ0MYGhpCT09PpsiOoaEhjIyMlNCjROrJ2toaBw4cwIcffoh58+Zh4cKFYkciIiIiIiKRderUCZmZmbh79y5at25d5HE9PT0cOXIErq6ucHNzw7lz53idiBQqJCQEH3zwAYyNjcWOUq117twZt2/fxvz58zFlyhQcOnQIGzduhLW1tdjRiIiIqryEhATMmjULO3bsQL9+/RAUFIQGDRqIHYuIiIioUsvPz8eYMWPQqFEjfP3112LHISIiIiI19urVK8TFxcHBwUHsKCrDYh5EREREREREpBZcXFxw/fp1QQU3tLS0ULNmTcyfPx/Tpk2DhoaGoDYKiycUFkFIT09Hfn6+tNhBamoqACA1NbVI8YPCZQuLKrx9+xZJSUnIzs7GP//8g6ysLLx+/VqmKEPhesvr3cIf+vr6qFGjBoD/Ff4oVKNGDejr68ssa2hoKPMNr4VFSN6lq6sLPT09mWnvr/t97xYrkUdxGcvy+vVrZGVlyd1WWYVb3i2iUejNmzd4+/atzLTC8VHo3YIaJWV8d92FYwKQLdBRHu8WeSksAlM4JmrWrAkdHR0YGBhAW1sb1tbWCA8Px/Pnz6Grq4vmzZujZcuWaNu2LTQ1NUstTlM45soaB0QkTMeOHbFhwwaMGTMGzZs3h4+Pj9zryC/Ix8WTR5WQjoiISP2lvIwHLOspvZ2I0GvIzRFW/JGIyvboTqjYEdSWk5MTTExMcPHixWKLeQBAnTp1cOLECXTq1AnDhg3DsWPHZK7xEFXE2bNn0a1bN7FjEP69xhcYGIi+ffti3LhxaNGiBVauXIlRo0aJHY0qKDE2htdyiEqRl5srdgSqpgoKCrB9+3b4+/tDR0cHW7duxciRI8WORURERFQlLFu2DFeuXMHVq1eho6MjdhwiIiIiUmPh4eEoKCiAo6Oj2FFUhn/tJyIiIiIiIiLRPH36VPqHvOPHj5dZ7EBLS0tayX/JkiWoU6eOXO0VFjIwMTGpSGy5vVvg4d1iH+8WeCgs/CHPvIWKK15RWJik0Nu3b5GcnCwzrbgCE+8v9773C1wIVZ7CJu8WsJBHcYVL3vf+GCiuSElhkYxCWlpasLe3L3W5dzO/W4ylsAAH8L+CKSXNW1rhFnlER0fjwIED2Lt3LzZv3owDBw7go48+wpAhQ+Du7g5tbe1yrZeI5DNq1Chcv35d+i00bdu2FbyspaUlUFCA5TMmKTEhERGRehv8UV+lrVtLSwtm5uY49Ms6pbVBVF3Z2dmXPVM1JJFI0L59e1y6dAmffPJJifPZ2dnhzz//RNeuXTFlyhRs2rRJhSmpqnr58iXu3LmDhQsXih2F3tGtWzfcuXMHc+fOxdixY7Ft2zasX78eTZo0ETsalUN9a2scPXIED65fETsKkVrT0tKCubm52DGoGrl16xamTJmC69evY+rUqfjuu+9gaGgodiwiIiKiKuHBgweYN28eAgIC0KJFC7HjEBEREZGau3//PnR1dWFrayt2FJVhMQ8iIiIiIiIiUom0tDRcvXpVWrzjypUrSExMhJaWFlq0aIF27drh4cOHxS4rkUgAAM7OztiwYUOl+8NfYRERKt3EiRPx5MkTnDlzRuwoVUL9+vUxffp0TJ8+Hc+fP8fBgwexd+9eeHl5wcTEBB4eHhgyZAj69u3Lb/glUrKVK1ciLCwMgwYNwrVr11CvXj1By/Xo0QO5/KZKokovOjoarVq1go+PD9atY8EAInWiqamJ+Lg4sWPQexISEmBubo5Tp06hT58+YschUriOHTvit99+K3O+Nm3aYPfu3fDy8oKTkxNmzJihgnRUlZ05cwaampro1q2b2FHoPfr6+vjxxx8xcuRITJ48Gc2bN8cXX3yBgIAAaYFgqhzWrl2LtWvXih2D3rFjxw6MGzcOWVlZYkchIhGkp6fj22+/xdq1a9GxY0eEhoaiefPmYsciIiIiqjJyc3MxatQotGrVCrNmzRI7DhERERFVAtevX0erVq2q1WfXNcQOQERERERERERVT25uLsLCwrBt2zZMmjQJTk5OqFOnDtzc3LB+/XoAwNSpU3H69Gmkp6fjxo0b2L59O4yMjIqsS0tLC7Vr18bWrVtx8eLFSlfIg4Szs7NDZGSk2DGqpAYNGmD69Om4cOECIiMj8e233+Lp06fo378/zM3NMXLkSBw9epRFA4iUREtLC/v27YOmpiYGDhyI7OxssSMRkQrVr18fGzduxPr167Fr1y6x4xARqb2QkBBoaGigQ4cOYkchUor27dsjMjISKSkpZc7r4eGBxYsXw9/fH4cPH1ZBOqrKzpw5AxcXl2KvwZJ6aNOmDS5evIgffvgB69atQ/PmzXHq1CmxYxEREVVKR48exQcffIAdO3Zg+fLl+Pvvv1nIg4iIiEjBvvvuO9y9exe//vorNDU1xY5DRERERJXAjRs30LZtW7FjqBSLeRARERERERFRhcXGxuLo0aMICAhA7969YWRkhObNm+PTTz9FWFgYevXqhV27diE+Pl5m3l69ekFfXx8AIJFI4OzsDIlEAuDfG581NDQwZcoUPHnyBCNHjpQ+RlWTnZ0doqOjWVBCyWxsbKSFPSIiIjBjxgzcunUL/fv3lxb9uHbtmtgxiaqc2rVr48CBAwgNDcXMmTPFjkNEKjZo0CBMmjQJU6ZMQVRUlNhxiIjUWkhICD744AMYGxuLHYVIKZycnAAA9+/fFzT/7NmzMXHiRPj6+vL9OlXImTNn0LNnT7FjUBm0tLQwffp0hIeHo1OnTnB3d4enpydiYmLEjkZERFQp3L17F7169YK3tzf69u2LR48eYfr06dDQ4EfmiYiIiBTp1q1bWLx4MQIDA9GsWTOx4xARERFRJZCXl4fbt2+zmAcRERERERERUWlevXqFCxcuYNWqVRg6dCjMzc1hZWWFAQMGYO/evbCwsMCSJUtw/fp1pKWlSecdMmQIzMzMSl13x44dIZFIIJFI0K5dO9y6dQs//fQTb+CpJuzs7JCbm8sPpqtQkyZN8M033+DOnTu4f/8+Jk2ahFOnTqF9+/Zo1qwZAgMDuT+IFKhly5bYtm0b1qxZg02bNokdh4hU7Mcff4SNjQ18fHyQk5MjdhwiIrUVEhICV1dXsWMQKU39+vVhaGiIBw8eCF7mp59+gqurK7y9vREdHa3EdFRVPXz4EFFRUejdu7fYUUggS0tLbNu2DUeOHMHdu3fxwQcfYO3atSyETEREVIKEhARMmjQJrVu3RkZGBkJCQrBhwwbUrl1b7GhEREREVU5WVhZGjhyJDh06YNq0aWLHISIiIqJK4t69e3j9+jWcnZ3FjqJSLOZBRERERERERCXKzc1FWFgYtm3bhkmTJsHJyQm1atVCly5dsHTpUrx58waTJ0/G6dOnkZGRIZ13+vTpaNu2rdzfcNS7d2/Y2Nhg27Zt0m/iperDzs4OABAZGSlykuqpadOmmDdvHsLDw3Hv3j30798fK1asgI2NDTp37oyNGzciMzNT7JhEld7AgQMxd+5cfPLJJzh37pzYcYhIhXR1dfH777/j3r17CAgIEDsOEZFaevPmDUJDQ1nMg6o0iUQCR0dHuYp5aGtrY9++fahduza8vLz4/pzkFhwcDENDQ7Rv317sKCQnT09PhIWFYdKkSfjiiy/QunVrnDlzRuxYREREaiM7OxurVq2Cg4MD/vzzT6xbtw6XL1+Gi4uL2NGIiIiIqqx58+bh6dOn2Lp1q9yfDyQiIiKi6uvGjRvQ19dH06ZNxY6iUnzFTERERERERERSiYmJOHLkCObMmYMuXbrAyMgIzZs3x7Rp0/DkyRN4e3vj4MGDiIuLQ2xsLI4ePYqAgAD06tUL+vr6FW6/W7duePr0Kfz8/CCRSBSwRVSZmJqawsDAgMU81ICTkxMCAwMRExODQ4cOwdLSEtOmTYOpqSmGDh2Ko0ePIi8vT+yYRJXWggUL4ObmhmHDhuHFixdixyEiFXJycsLKlSsRGBiI06dPix2HiEjtXLt2DdnZ2SzmQVVes2bNcP/+fbmWMTIywuHDhxETEwM/Pz/k5+crKR1VRWfOnEG3bt2gra0tdhQqh5o1ayIwMBBhYWFo2rQpevXqBU9PTzx58kTsaERERKIpKCjA3r174ejoiK+//hqTJ09GeHg4Jk6cyBtKiYiIiJTo0qVLWLZsGVasWIGGDRuKHYeIiIiIKpFz587BxcUFWlpaYkdRKV6tJCIiIiIiIqqm8vPzERYWhk2bNmH06NFwcHCAqakpvL29cezYMTg6OmLt2rUICwtDamoqgoODsWjRIvTv3x/m5uZix6cqysbGBlFRUWLHoP+no6MDT09P7NmzB/Hx8fjxxx8RGxsLLy8v2NjYYPr06bh9+7bYMYkqHQ0NDfz+++8wMjLC0KFDkZOTI3YkIlKhiRMnwsfHByNGjEB8fLzYcYiI1EpISAgsLS1hY2MjdhQipSpPMQ8AsLe3x6FDh3Dy5El88803SkhGVVFOTg7OnDkDNzc3saNQBTVq1Ah79uxBcHAwoqKi0LRpU0yfPh0ZGRliRyMiIlKpq1evokuXLhg2bBg6d+6MR48eITAwEAYGBmJHIyIiIqrSXr9+jdGjR6NHjx6YMGGC2HGIiIiIqJL566+/0K1bN7FjqByLeRARERERERFVE//88w8uXLiApUuXwtPTE6ampmjevDk+//xzPH78GO7u7tizZw9evnwpLfIxZswYNGvWjN9eRCpjZ2eHyMhIsWNQMUxMTDBx4kRcuHAB9+/fx/jx43H06FG0atUKTk5OWLp0KV6+fCl2TKJKo/Bbte/du4eZM2eKHYeIVGz9+vXQ19fH6NGjUVBQIHYcIiK1ERISgs6dO4sdg0jp7OzsEBsbW67Cfp06dcKmTZsQGBiIP/74QwnpqKoJCQlBeno6+vbtK3YUUpCePXvi5s2b+P7777Ft27b/Y+/Ow6Ks9/+Pv4Z935EdQSVxyxRCU6ws0LJQXEBzwTwk2AZ6kKDSxLKjmIqj5gKRB0wD7KS4G+SSIh6DMoNUFBSQTZBlkEXW3x/nx3w1NSthPiyvx3VxAcMszymV+565P+8bAwYMQGxsLFpaWkSnERERdaj8/Hz4+Phg5MiRUFdXR3p6OmJjY2FhYSE6jYiIiKhHCA0NRUlJCaKjoyGRSETnEBEREVEXcu3aNeTm5nKYBxERERERERF1H4WFhdi/fz9CQ0Ph6uoKIyMjjBkzBlKpFAAQHByMU6dOoby8HKdPn4ZUKoWXlxdMTEwEl1NPxmEeXYOjoyPCwsJw9epVJCcnw9nZGStWrICNjQ2mT5+OY8eOcWEy0Z/Qv39/REZGYsOGDdixY4foHCJSIH19fcTHx+P48eNYu3at6Bwiok6htbUVqampGD16tOgUog5nY2OD5uZmFBYW/q3bz5kzBwEBAfD19UVaWlo711F3c+jQITg6OqJv376iU6gdqaqqYuHChcjKyoKHhwf+8Y9/wNnZGUlJSaLTiIiI2l1xcTECAgLg4OCAH3/8EYmJifj+++/x1FNPiU4jIiIi6jGOHz+OTZs2YdOmTbCxsRGdQ0RERERdzIkTJ6ChoYHHn8aeAAAgAElEQVQRI0aITlE4DvMgIiIiIiIi6gaampqQmZmJyMhI+Pj4oE+fPrCyssKUKVOwf/9+DBo0CFFRUcjJyZEP+QgJCYGrqyvU1NRE5xPJcZhH16KkpIQXX3wRMTExKCoqQmRkJG7cuIEXX3wRjo6OWLNmDcrKykRnEnVq06dPR0BAAN58801kZmaKziEiBXr66afx8ccf44MPPkBqaqroHCIi4S5evIjy8nIO86Aeoe1g9/z8/L99H2vXrsXzzz+PqVOn4ubNm+2VRt3QoUOHMGHCBNEZ1EFMTU2xdetW/Prrr+jXrx/GjRsHd3d3/PTTT6LTiIiIHlt5eTnef/999OvXD99++y3Wr1+PCxcuwMPDQ3QaERERUY9SU1OD+fPnw8PDA7NnzxadQ0RERERd0MmTJzFy5EhoaGiITlE4DvMgIiIiIiIi6oJkMhmSk5MRFhYGd3d36OvrY/DgwQgODkZRURF8fHyQlJSEqqoqZGZmYtu2bfDx8YG9vb3odKI/ZGdnh6KiItTX14tOob9IR0cHc+fORUpKCi5evIjJkydj5cqVsLKygre3N5KTk9Ha2io6k6hTWrNmDYYPH44pU6agqqpKdA4RKdB7772HcePGYfbs2fz7T0Q9XkpKCrS1tTF06FDRKUQdzsLCAqqqqo81zENZWRlfffUV1NTUMGXKFDQ0NLRjIXUXeXl5yMzM5DCPHmDAgAFISEjAmTNnUFdXB2dnZ3h7eyMnJ0d0GhER0V9WU1OD8PBw9O3bF1FRUVi6dCmuXLmCBQsWQFVVVXQeERERUY+zcOFCVFVVITIyUnQKEREREXVBra2t+O677+Dm5iY6RQgO8yAiIiIiIiLqAi5duoTo6Gj84x//wIABA2BgYIBx48YhISEBtra22LRpEy5evIjKykokJSUhLCwMbm5u0NLSEp1O9JfY29ujtbUVubm5olPoMTg6OmLVqlUoKCjAV199hYqKCri7u8PR0RHh4eEoKysTnUjUqaiqqiIhIQHV1dWYO3cuB98Q9SASiQRffvkl6urqMH/+fNE5RERCpaSkYMSIEVBRURGdQtThlJSUYGlp+VjDPADAyMgI+/fvR0ZGBhYsWNBOddSdHDhwADo6OnB1dRWdQgryzDPP4NSpU4iPj8fPP/+MAQMGwN/fH6WlpaLTiIiIHqmhoQGRkZHo27cvVqxYAX9/f2RnZyMkJASampqi84iIiIh6pKSkJERHR2Pz5s0wMzMTnUNEREREXdCPP/6IoqIieHh4iE4RgsM8iIiIiIiIiDqZlpYWZGZmIjIyEj4+PrC1tcWAAQMQEBCArKwsjBs3DvHx8bh58yZ+++03REdHY968eXB0dIREIhGdT/RY7O3tAQDXrl0TXELtQUNDA15eXkhKSkJmZiYmT56M8PBwWFtbw9vbG8nJyaITiToNc3Nz7Nq1CwcPHkRERIToHCJSoF69emHnzp349ttvER0dLTqHiEiYlJQUjB49WnQGkcJYW1ujoKDgse/H0dERMTExiImJwdatW9uhjLqTw4cPw93dHerq6qJTSIEkEgm8vLzw22+/YePGjUhMTETfvn0RGhqKyspK0XlERET3aWxsRGRkJPr06YNFixZh+vTpyM7OxqpVq6Cvry86j4iIiKjHqqiowOuvv47XXnsNXl5eonOIiIiIqIs6cOAAbG1tMWTIENEpQnCYBxEREREREZFgjY2NSE1NxerVq+Hh4QFjY2MMHjxYfmBtQEAAzp49i6qqKpw+fRpSqRReXl4wMTERnU7U7vT19WFoaMhhHt3QwIEDsWrVKuTm5mLDhg3Izs6Gu7s7BgwYgPDwcJSXl4tOJBLu+eefx6effoqQkBCcPHlSdA4RKdDYsWOxePFiBAQE4OLFi6JziIgU7ubNm7h69SqHeVCPYmJiglu3brXLfU2aNAnLli1DQEAATp061S73SV1ffX09jh07hgkTJohOIUFUVVXh5+eHrKwsBAUFYevWrejXrx/Cw8NRU1MjOo+IiAgNDQ2Ijo5G//79ERAQgClTpiA7OxtSqRS9evUSnUdERETU4y1atAitra3YuHGj6BQiIiIi6sIOHDgADw+PHnviWg7zICIiIiIiIlKwxsZGpKenIzw8HB4eHjA1NcWoUaOwdu1aAEBoaCjS0tJQVlaGffv2YfHixRgxYgRUVFQElxMphr29PYd5dGO6urrw8/NDeno6/vvf/2LUqFH45JNPYGtrizfeeAPnz58XnUgkVHBwMDw9PTF9+vR2OUs3EXUdK1aswFNPPQVvb2/U1dWJziEiUqiUlBQoKSlh5MiRolOIFMbIyKhdB1suXboUr776Kry9vVFUVNRu90td1/fff4+6ujoO8yDo6elh2bJlyM/PR3BwMFauXAk7OzuEh4dz34OIiISoq6vDxo0b0a9fP7z11lt48cUXkZWVhQ0bNsDc3Fx0HhEREREBOHToEGJiYvD555/DyMhIdA4RERERdVGFhYU4f/48Xn31VdEpwnCYBxEREREREVEHq6mpQXJyMsLCwuDu7g49PT04OztDKpVCU1MTy5cvR1paGoqLi7F//36EhITAyckJSkrcbaeeicM8eg4XFxdER0ejoKAAq1atwtmzZzFs2DCMHTsW3377LZqbm0UnEimcRCLBl19+CSMjI3h5eaGhoUF0EhEpiIqKCuLi4lBYWIjFixeLziEiUqiUlBQMHjwY+vr6olOIFKa9h3lIJBLExsbCyMgIU6dO5b4EYc+ePRgxYgQsLS1Fp1Anoauri5CQEGRnZ8PX1xcff/yxfKhHfX296DwiIuoBbt++DalUin79+iE4OBgvv/wyrl69iqioKNja2orOIyIiIqL/r6qqCgsWLMCsWbMwefJk0TlERERE1IX95z//ga6uLp5//nnRKcJwVRARERERERFRO5PJZEhOTkZoaChcXV1hZGQEd3d37NixAxYWFpBKpcjOzkZhYSESEhIQGBgIJycnSCQS0elEnQKHefQ8+vr6eOedd5CRkYFTp07B1NQU3t7esLW1RVhYWLsubiLqCnR1dREfH48LFy7g/fffF51DRApkY2ODyMhIbN68GfHx8aJziIgUJiUlBaNHjxadQaRQhoaG7b6/q6Ojg2+//RaZmZkIDg5u1/umrqWlpQUHDx7EpEmTRKdQJ2RsbIxVq1YhOzsbM2bMwLJly/DEE09g48aNqKurE51HRETd0K1btxAWFobevXtjyZIlmDZtGnJycrBt2zbY2NiIziMiIiKi31m0aBHq6+sREREhOoWIiIiIurivv/4anp6e0NDQEJ0iDId5EBERERERET2m4uJi7N69G4GBgXB2doahoSHc3d2xe/duDBo0CFFRUcjLy0N2djZiY2Ph5+eHPn36iM4m6rQ4zKNnc3V1RUJCAi5duoRp06Zh3bp16N27N95++21cvnxZdB6RwgwZMgRbt25FREQE9u3bJzqHiBRo6tSp8PPzw4IFC3D9+nXROUREHa6urg4//fQTh3lQj2NkZNQhwyv79++PmJgYbNy4ETExMe1+/9Q1nDlzBsXFxfD09BSdQp2Yubk5pFIprl69Ck9PT4SEhMDe3h6fffYZbt++LTqPiIi6gZs3byIsLAx9+/bFpk2b8O677yI3NxdSqRSWlpai84iIiIjoAZKTk/Hvf/8bW7ZsgampqegcIiIiIurC8vLycPbsWcyYMUN0ilAc5kFERERERET0FxUWFmL37t3w9/fHoEGDYGlpiddee01+Ftm4uDiUlZUhOzsb27Ztg4+PD88oRPQX2Nvbo7y8HFVVVaJTSKB+/fpBKpWioKAAa9euxfHjxzFgwAC4u7tj//79ovOIFGL27NmYN28eXn/9dS7oJ+phpFIpevfujenTp6OxsVF0DhFRh0pLS0NDQwOHeVCPY2RkhMrKSrS2trb7fXt6emLRokV488038fPPP7f7/VPnl5iYCAcHBzg6OopOoS7A2toaGzZsQG5uLhYsWIBPP/0UVlZWCA0N7ZChQ0RE1P1duXIFb775Jnr37o3IyEgsXboU169fR1hYGIyMjETnEREREdFDyGQy+Pr6Yvr06Zg6daroHCIiIiLq4nbt2gVjY2O4ubmJThGKwzyIiIiIiIiIHqG4uFg+vMPOzg5WVlaYOXMm0tPT4eHhgcTERJSVlSEtLQ1SqRReXl4wNjYWnU3UZdnb2wMAcnNzBZdQZ6Crqws/Pz9kZGRgz549qKurw8SJEzFixAh88803aG5uFp1I1KE+//xz2NraYvr06WhoaBCdQ0QKoqGhgZ07dyIjIwPLly8XnUNE1KFSUlJgaWkJOzs70SlECqWlpYXm5uYO284PDw+Hi4sLvL29UVlZ2SGPQZ3Xvn37MGXKFNEZ1MWYmpoiLCwMOTk5WLhwISIjI2Fvb4/3338fN2/eFJ1HRERdwIkTJzBp0iQ4Ojriu+++w9q1a5GTk4OgoCDo6OiIziMiIiKiRwgKCkJtbS2kUqnoFCIiIiLqBr7++mtMmzYNqqqqolOE4jAPIiIiIiIiot8pKyvD7t278eabb6J///6wsLDAnDlzcPnyZfzjH//AqVOncPv2baSlpWHVqlXw8PCAgYGB6GyibsPOzg4SiQTXrl0TnUKdiJKSEiZNmoTTp08jPT0d/fv3x4wZM+Dg4ACpVIqamhrRiUQdQkNDAwkJCbh48SKWLFkiOoeIFGjQoEGIiIjAypUrkZycLDqHiKjDpKSkYPTo0aIziBROU1MTAFBXV9ch96+iooL4+HjU1dVhzpw5aGlp6ZDHoc4nIyMDWVlZmDRpkugU6qKMjIywfPly5OXl4eOPP0ZMTAxsbW3h4+ODixcvis4jIqJOprGxEbt378YzzzyDsWPHoqCgANu3b8fly5fx1ltvQUNDQ3QiEREREf0Jx44dQ3R0NLZs2YJevXqJziEiIiKiLu78+fO4cOECXnvtNdEpwnGYBxEREREREfV4NTU1SE5ORmhoKJydnWFmZobXXnsNP/74IyZPnox9+/bh5s2bOHHiBD766CO4urpCXV1ddDZRt6WhoQFzc3MO86CHGj58OGJjY3Hx4kWMHz8e77//Puzs7LBs2TLcunVLdB5Ru3viiSewYcMGrFmzBomJiaJziEiB/Pz8MH36dMyePRvFxcWic4iI2l1raytSU1M5zIN6pI4e5gEAZmZmiI+Px9GjR7F69eoOexzqXPbu3QszMzOMGDFCdAp1cTo6OggMDMTVq1exdu1anDlzBoMHD8bUqVORmpoqOo+IiASTyWSQSqXo168fZsyYARMTE6SkpCAtLQ0+Pj5QUVERnUhEREREf1JNTQ3mz5+PiRMnYtq0aaJziIiIiKgb2LZtG/r3748xY8aIThGOwzyIiIiIiIiox2lqakJ6ejrCw8Ph7u4OIyMjuLu7Y/fu3XByckJcXBxKS0uRlpaGVatWwcPDA3p6eqKziXoUe3t7DvOgR3JwcMCWLVuQm5uLt99+G59//jns7OywePFiFBUVic4jalevv/46fHx8MG/ePOTm5orOISIF2rJlC7S0tDBv3jy0traKziEialeXLl3CrVu3OMyDeqS2YR61tbUd+jijR49GeHg4lixZgmPHjnXoY1HnkJiYiEmTJkFJiYeFUfvQ0tLC22+/jaysLOzduxfFxcUYNWoUnJ2dERsbi+bmZtGJRESkQDk5OQgNDYWtrS2WLl0KT09P5OTkYP/+/Rg1apToPCIiIiL6G4KCgiCTybBt2zbRKURERETUDdTU1GDXrl3w8/ODRCIRnSMc37UlIiIiIiKibq+5ufme4R26urpwdnZGZGQkLCwssHHjRuTn5yM7Oxvbtm2Dl5cXDA0NRWcT9Wh2dnYc5kF/mqmpKcLCwpCbm4sVK1YgLi4OdnZ28PHxwZUrV0TnEbWbzz//HBYWFpgxYwYaGxtF5xCRgujr6+Prr7/G999/j3Xr1onOISJqVykpKdDW1sbQoUNFpxApXNswj7q6ug5/rIULF2LSpEmYNWsWiouLO/zxSJyCggKkp6dj0qRJolOoG1JSUoKHhwdSUlJw8uRJWFpaYt68eRg0aBC2bdvW4cOJiIhInJaWFhw5cgQTJ06Eg4MDEhISEBYWhoKCAkilUvTu3Vt0IhERERH9TcePH0dkZCQ2bdoEMzMz0TlERERE1A18/fXXuHPnDubMmSM6pVPgMA8iIiIiIiLqlnJychAZGQlvb2+YmJjA2dkZERERMDQ0hFQqRU5ODrKzsxEbGws/Pz9YW1uLTiaiu9jb23OYB/1l2traCAwMRE5ODqKionD27Fk4OjrC29sbFy9eFJ1H9Ni0tbWRkJCACxcuYNmyZaJziEiBRowYgU8++QQffPABfvrpJ9E5RETtJiUlBS4uLlBVVRWdQqRwihzmIZFIEB0dDS0tLcycORPNzc0d/pgkxp49e6CtrY0XXnhBdAp1c88++yz27duHjIwMjBkzBgsXLoSNjQ1CQkKQm5srOo+IiNpJWVkZPvvsMzg4OGDChAm4ffs24uPjceXKFSxcuBC6urqiE4mIiIjoMdTU1GD+/Pnw8PDA9OnTRecQERERUTcRFRWFqVOnwtTUVHRKp8BhHkRERERERNQttA3v8PHxgbW1Nfr27YvFixejoqICoaGhSEtLQ1FRERISEuDn5wd7e3vRyUT0BzjMgx6HmpoafHx88Ntvv2H79u3IyMjA4MGDMX36dGRmZorOI3osgwYNglQqxapVq7B//37ROUSkQMHBwRgzZgymT5+O27dvi84hImoXKSkpcHV1FZ1BJISKigoAoKmpSSGPZ2BggPj4eJw5cwb/+te/FPKYpHiJiYmYMGECNDQ0RKdQDzFgwABERUWhqKgIH330EeLi4tCnTx94eHggOTkZra2tohOJiOhvSE9Ph7+/P3r37o0VK1bAzc0Nv/zyC44dO4Zp06ZBWVlZdCIRERERtYOQkBBUVlZi27ZtolOIiIiIqJtITU3FuXPn8Oabb4pO6TQ4zIOIiIiIiIi6pBs3biA2NhZz586FjY0N+vbti6CgINy6dQuLFi3CTz/9hMrKSiQlJSEkJAROTk6QSCSis4noT7K3t0dNTQ1KS0tFp1AXpqKiAh8fH2RkZCA+Ph6XLl3Ck08+iZkzZ+LSpUui84j+tjfeeAOzZ8+Gr68vCgoKROcQkYIoKSkhJiYGFRUVCAoKEp1DRPTYSktLcfXqVYwePVp0CpEQba9VKnKhu7OzM9asWYOwsDAkJSUp7HFJMSorK/HDDz9g0qRJolOoBzIwMEBgYCBycnKwd+9e1NfXw93dHcOHD0dkZCRqa2tFJxIR0SPU19cjNjYWw4cPh7OzM06dOoV//etfKCgowLZt2zBkyBDRiURERETUjk6cOIHNmzdjw4YNMDc3F51DRERERN3E2rVr4ezszBO73IXDPIiIiIiIiKhLqK2tRXJyMkJDQ+Hs7AxbW1v4+voiMzMTs2bNQlJSEsrKynDw4EEEBQVh2LBhUFLibi9RV2Vvbw8AuHbtmuAS6g6UlJQwbdo0nD9/Hnv37sWlS5cwaNAgeHt74/Lly6LziP6WzZs3w9jYGDNnzlTYmbyJSDwrKytERUUhMjISCQkJonOIiB7L6dOnIZFIMHLkSNEpREKIGOYBAO+88w5mzJiBOXPmoLCwUKGPTR3rwIEDaG1txcsvvyw6hXowZWVleHh4ICkpCT/++COGDBmCgIAA9O7dG++99x6uXr0qOpGIiH7nwoULePfdd2Fubg5/f38MGTIEqamp+O233xAYGAgdHR3RiURERETUzmprazF//ny88sormDlzpugcIiIiIuomrl27hr179yI4OFh0SqfCVU1ERERERETUKbW0tCA9PR0rV67ECy+8AENDQ4wbNw5HjhzBCy+8gKNHj0ImkyEtLQ2rVq2Cm5sb1NXVRWcTUTuxsbGBiooKh3lQu5JIJPDw8EBaWhr27t2LrKwsDBw4EN7e3rhy5YroPKK/REdHB3FxcTh37hw++eQT0TlEpECTJ0/GG2+8gQULFiAvL090DhHR35aSkoLBgwdDX19fdAqREKKGeQDAli1boKuri9mzZ6O5uVnhj08dIzExEc8//zwMDQ1FpxABAJydnREbG4vr168jMDAQcXFx6N+/P8aPH489e/ZwOCkRkUCVlZXYvHkznJ2dMXToUBw5cgRLlizBjRs3EBMTw6GLRERERN3c+++/j9LSUmzdulV0ChERERF1I+vWrYONjQ2mTJkiOqVT4TAPIiIiIiIi6jRKSkqwe/du+Pv7w8bGBs7OzoiIiICJiQk2btyIvLw8nD9/HqtXr4a7uzs0NTVFJxNRB1FRUYG1tTWHeVCHUFJSgoeHB9LT0xETE4NffvkFgwYNgp+fHwoKCkTnEf1pQ4cOxZo1a7BixQocP35cdA4RKdD69ethZmYGHx8fLsAloi4rJSUFo0ePFp1BJIzIYR56enpISEjAmTNn8Omnnyr88an93blzB0ePHsWkSZNEpxDdx9zcHEuWLMH169dx9OhR6Ovrw8vLC7a2tggNDUVubq7oRCKiHqGlpQWnT5+Gv78/rK2tERQUhD59+iApKQlZWVlYvHgxjI2NRWcSERERUQdLTU3Fpk2bsGHDBlhZWYnOISIiIqJu4tatW9i+fTsCAwOhoqIiOqdT4TAPIiIiIiIiEqa2thbJyckIDQ2Fs7MzLCwsMHfuXOTk5CAgIABpaWkoKSlBQkIC/Pz8YG1tLTqZiBTI3t4e169fF51B3ZiysjJmz56NzMxMREVF4bvvvoODgwNCQkJQUVEhOo/oT3n77bfh4eEBHx8flJeXi84hIgXR1tbGzp07kZqainXr1onOISL6y+7cuYOff/6ZwzyoRxM5zAMAhg0bhtWrV2P58uUcDtgNfP/997h9+zYmTpwoOoXooZSUlODm5oaEhARkZWXBx8cH27dvR79+/TB58mQcOnSIwwqJiDpAQUEBwsPD4eDggDFjxiA9PR2ffvopCgoKkJCQADc3N/m2KRERERF1b7W1tZg7dy5efvll+Pj4iM4hIiIiom5k3bp10NTUxBtvvCE6pdPhMA8iIiIiIiJSqMzMTKxZswZubm4wMjLCuHHjcOTIEYwdOxZHjx7FrVu3kJSUhJCQEDg5OfHAIaIezN7eHteuXROdQT2AiooK5s6di6ysLKxfvx4xMTHo3bs3wsLCUFdXJzqP6JG2b98OiUSC+fPni04hIgUaPnw4PvnkE3z44Yc4d+6c6Bwior/k3LlzuHPnDod5EEHcMA8AePfdd+XDAW/duiWsgx7fnj174OzsDBsbG9EpRH9Knz59sGrVKuTl5SE2NhYVFRV49dVXYWdnh6VLlyInJ0d0IhFRl1ZbW4tdu3bB3d0dtra2iIiIwJQpU5CZmYm0tDQEBgbCyMhIdCYRERERKdiSJUtw8+ZNbN26VXQKEREREXUjt27dwsaNG7F48WLo6OiIzul0OMyDiIiIiIiIOlR1dTX27t0Lf39/9O7dG4MHD0Z4eDjMzMwQFRWFwsJCnD9/Hp999hnc3d2hqakpOpmIOonfD/MoKipCamoqiouLBVZRd6ampgY/Pz9cvXoVH374ISIiIuDg4IDIyEg0NTWJziN6KENDQ+zYsQOJiYn44osvROcQkQItXrwYzz77LGbNmoXq6mrROURED1RUVIT169fj1KlT8mF5KSkpsLS0hJ2dndg4IoEaGxsB/G9fVBSJRILt27dDSUkJr7/+utDBIvT3tbS04MCBA/D09BSdQvSXqaur47XXXsOJEydw+fJl+Pr6IjY2Fv369YOrqysiIyNRW1srOpOIqEtoaWnB6dOn4e/vD3Nzc/mZ1uPi4pCfn4/PPvsMAwcOFFxJRERERKKcPXsWGzZsQEREBKytrUXnEBEREVE38tlnn0FdXR1vvfWW6JROicM8iIiIiIiIqN3l5ORAKpXC3d0dpqammDp1KtLT0/Haa68hKSkJRUVF2LlzJ+bMmQNzc3PRuUTUSchkMqSnp+Obb77BmjVrcOrUKZSUlKBv375QV1eHpaUlRo0ahaVLl4pOpW5OR0cHISEhyMrKgqenJ9555x0MHjwY+/btE51G9FDPPfccFi9ejIULF+LSpUuic4hIQZSUlBATE4OKigoEBQWJziEieqATJ05g0aJFePbZZ6GrqwtnZ2fs2bMHDg4OHNZIPVrbMA9VVVWhHW3DAQ8fPowtW7bc87MdO3agX79+uH79upg4+lPOnDmD4uJiDvOgLs/BwQFhYWHIzs7G3r17YWxsjLfffhvW1tYICAjATz/9JDqROrnW1la8/PLLGDJkiPxjyZIlkEgk91z25JNPIjIyUnQuUbvJzMxEaGgorKysMGbMGJw+fRoffvghbty4gaSkJHh5eQnf5iQiIiIiserr6/H666/D3d0d8+bNE51DRERERN1IWVkZNm/ejPfeew+6urqiczolFdEBRERERERE1PXV1NQgNTUV+/fvx969e5GXlwcTExOMHTsWGzZsgIeHBywsLERnElEn5+LigsuXL0MikUBVVRWtra1obGyETCaTX0dZWRkDBgwQWEk9iZmZGTZt2oRFixbhgw8+gKenJ8aOHYt169Zh6NChovOI7rNixQqcPHkS3t7eOHfuHDQ0NEQnEZECWFlZ4YsvvsDkyZPh5uYGb29v0UlERPewtLSUf93c3Iz09HSoqqqiqakJFhYWsLa2xvPPP4+XXnoJs2bNElhKpFgNDQ0AxA/zAIBnn30WH3zwAf75z39i1KhRsLW1hb+/P7755hsoKSlhz549WLRokehMeojExET069cPAwcOFJ1C1C5UVFQwceJETJw4EUVFRYiJicGXX36JjRs3YvDgwfDx8cGsWbPu2cYgAgCJRIIrV64gOzv7vp9lZGTc8/3d7zsQdUW5ubmIi4vD9u3bcfnyZdjZ2WHu3Lnw9eyfm5gAACAASURBVPWFg4OD6DwiIiIi6mQ+/vhjFBUVISkpSXQKEREREXUzK1euhKamJt566y3RKZ2WkugAIiIiIiIi6poyMjIQHh6O559/HgYGBnjppZdw7tw5+Pr64ty5cygpKUFCQgL8/Pw4yIOI/hRPT08oKyujtbUVDQ0N8jPU3q25uRkuLi4C6qgn69u3L+Lj43H27FncuXMHw4cPh4+PD88iTp2OiooKvvrqK+Tm5uLDDz8UnUNECuTp6Yn58+djwYIFyMvLE51DRHQPGxub+y5rbGxEa2srAODGjRvYuXMnAgIC0NLSoug8ImHaXvdQU1MTXPI/H330EZ5++ml4enpi4MCB2Lt3r/xnBw8eFFhGj7Jv3z5MmTJFdAZRh7CwsEBoaCiysrKQlpaGF154AatXr4aNjQ1cXV0RGRmJ27dvi86kTsTHx+eRg7IkEglmzJihoCKi9lNQUACpVIqRI0fCzs4OUqkUEyZMQFpaGq5du4ZVq1ZxkAcRERER3efChQtYs2YNVq1a9cDX64mIiIiI/q5r167h888/x0cffQRtbW3ROZ0Wh3kQERERERHRn1JfX48jR47gnXfegb29PYYMGYK1a9eid+/e2LFjB0pKSpCamio/6FtJibucRPTXBAcHP3IBi7KyMoYPH66gIqJ7ubi44NSpU4iLi8OpU6fQr18/hIWFob6+XnQakVzfvn2xceNGRERE4MCBA6JziEiB1q9fDzMzM8yZMwfNzc2ic4iI5KysrCCRSB55vXXr1vH1JOpRGhoaAOCRC44VpampCUOGDEFeXh7KysrQ1NQEAGhpacEPP/yA2tpawYX0IBkZGcjKyoKnp6foFKIO5+TkBKlUivz8fMTFxcHQ0BBvv/02rKys4Ovri+PHj3NfiDBr1iz577AHUVJSwjPPPANra2sFVhH9ffn5+Vi/fj1cXV1ha2uLZcuWYcCAAUhKSkJ+fj7WrVsHJycn0ZlERERE1Ek1NzfD19cXTk5O8Pf3F51DRERERN1MaGgo7Ozs4OfnJzqlU+ORMERERERERPRQpaWliI2Nhbe3N8zMzPDyyy/j+PHjmD59OpKSklBYWIiYmBjMmDEDxsbGonOJqIszNjZGQEAAVFRUHnodR0dHaGlpKbCK6F4SiQReXl7IzMzEe++9hzVr1mDgwIHYvXu36DQiOR8fH8ycORO+vr4oLi4WnUNECqKlpYWdO3fi7NmzWLt2regcIiI5dXV1GBgYPPTnqqqqGDVqFHx8fBRYRSReY2MjgM4xzCMzMxPOzs6IiopCa2vrfYvhGxsbcfLkSUF19Ef27NkDMzMzjBgxQnQKkcJoaGjAy8sL+/fvx40bN7B8+XL8/PPPeOGFF2BtbY2AgACkpKSgtbVVdCoJ0LdvXwwdOvShw+QkEgm3O6nTy8/Ph1QqhaurK3r37o3ly5ejT58+iIuLQ2FhIbZv3w43NzcoKyuLTiUiIiKiTm7dunX49ddfER0dzWHaRERERNSu/vvf/2L37t1YvXp1p3jPuzPjljgRERERERHdIzMzE+Hh4XB1dYWZmRkWLFiAiooKfPzxx8jLy0NmZiZWrVoFNze3P1xwT0T0dwQHBz/0BT1VVVWMGTNGwUVED6alpYWPPvoIly9fxrPPPovp06fD3d0dly5dEp1GBADYunUr9PX18frrr3PxClEPMnz4cKxYsQJLly5Fenq66BwiIjkrK6s//PkXX3zx0AWXRN1VfX09gP8tShcpOjoaw4YNw+XLl9HU1PTA66iqquLw4cMKLqM/IzExEZ6enlyMQT2WmZkZFi5ciJ9++gk5OTlYuHAhkpOT4erqCltbWwQGBuL06dN8baSH8fHx+cMhB9OmTVNgDdGfk5eXd88Aj7CwMPTp0weJiYkoLi5GbGwsvLy8OPCeiIiIiP6069evY/ny5ViyZAkGDhwoOoeIiIiIupHW1lYEBQXh2WefxcSJE0XndHp8J5eIiIiIiKiHu337Nr799lv4+vrC3NwcgwcPxubNm/Hkk0/iwIEDuHXrFpKSkhAYGAgbGxvRuUTUzRkbGyMgIOCBw4JaWlrg4uIioIro4aysrPDvf/8bP/74I2QyGZ588kkEBgaiurpadBr1cDo6Oti5cyeOHTsGqVQqOoeIFCgoKAhjxozBrFmzUFtbKzqHiAgAYG9v/8BhHcrKyli2bBkcHR0FVBGJJZPJAAB6enpCO65evYrGxkY0Nzc/9DqNjY3Yt2+fAqvozygoKMBPP/2ESZMmiU4h6hTs7e0REhKC3377DRkZGfD19cWRI0cwZswY2Nvbywd7UPc3Y8YMtLS03He5srIy3N3dYWxsLKCK6H4XLlzAihUr8PTTT8POzg7Lly+Hg4MDDhw4gJKSEsTGxsLDwwPq6uqiU4mIiIioi2ltbYWfnx/69OmD9957T3QOEREREXUzO3fuRGpqKtauXSs6pUvgMA8iIiIiIqIeqLS0VH7wj4mJCby8vPDLL79gwYIFSEtLw/Xr17F582ZMmDABmpqaonOJqIcJDg6GqqrqfZc3NzdzmAd1Wk5OTkhNTcUXX3yBXbt2wdHREbGxsaKzqId7+umnsWzZMoSGhuKXX34RnUNECqKkpISYmBiUlpYiODhYdA4REQCgd+/e9+3nKSsro2/fvvy3inosmUwGFRUV4a+/rly5Ert374aOjs4Dh6u2yc3NRXZ2tgLL6FG+/fZbaGtrY+zYsaJTiDqdQYMGISwsDJcvX0ZGRgZef/11HDx4EGPGjJH/7NKlS6IzqYNYWFjA1dUVSkr3Hh7b2tqKOXPmCKoiApqamnDs2DEsXLgQffr0wdChQ/H5559j2LBhOHjwIIqLi7F9+3ZMmDABampqonOJiIiIqAvbvn07vv/+e2zbto3blkRERETUrqqqqvDee+9hwYIFcHJyEp3TJXCYBxERERERUQ/x22+/YeXKlRg5ciTMzc3x1ltvQU1NDZGRkSgpKUFaWhrCwsLg5OT0wDOlEhEpirGxMQICAu5bQKKpqcmzNVOnpqSkBB8fH1y+fBnTpk3DvHnz8MILLyAzM1N0GvVgoaGhcHFxwezZs1FfXy86h4gUxMrKClFRUdiyZQsOHDggOoeICNbW1vdd1tLSgi+//JIHElOPVV1dDT09PdEZAIBp06YhIyMDLi4uUFZWfuB1VFRUcOTIEQWX0R9JTEzEK6+8Ag0NDdEpRJ1a2/COq1evIi0tDW5uboiMjMSAAQPkP7ty5YroTGpnc+bMue/9TlVVVUycOFFQEfVUtbW12L9/P/z9/WFtbY0XX3wR+/fvh4eHB06dOoWCggJERkbi5Zdf5r4REREREbWL4uJiLF68GAsXLsQzzzwjOoeIiIiIupmQkBC0tLRgxYoVolO6DA7zICIiIiIi6qZaWlqQnp6OsLAwDBw4EIMGDcK6devwxBNPIC4uDsXFxfjPf/4DHx8fmJiYiM4lIrpHcHDwfWdtfvrppx+6oISoMzEyMoJUKsWpU6dQUVGB4cOHY9myZbhz547oNOqBlJWVsWvXLhQUFOCDDz4QnUNECjRlyhTMmjULvr6+KCkpEZ1DRD2ctbU1mpqa5N+rqqrC398fo0ePFlhFJJZMJus0wzwAwNbWFj/88AM+/fRTKCsr3/caTEtLC4eEdSKVlZX44Ycf4OnpKTqFqEtxcnKCVCpFfn4+jh07hjFjxuDzzz9H//794eLigpUrVz7WYN6srCzcvn27HYvp75o6dSqUlP7v8FgVFRVMmjQJOjo6Aquop8jJycHmzZvx0ksvwcjICJMnT8alS5cQHByMK1euIDs7G1KpFK6urvf8OSUiIiIiag/vvvsu9PT0sHz5ctEpRERERNTN/Pjjj4iKisK6detgaGgoOqfL4KvARERERERE3UhdXR2Sk5MRGBgIa2trODs7Y8eOHXB3d0dSUhKKiooQGxsLLy8vHqxGRJ2asbExAgMDoaKiAgBQU1PDqFGjBFcR/TWjRo1CWloaVq9ejXXr1mHYsGFISUkRnUU9kLW1NSIiIrB+/XqeSZuoh9m0aRM0NTXh7+8vOoWIejgbGxu0tLQAAJSUlKCnp4eVK1cKriISq7q6ulMN8wD+NwwwJCQEZ86cgZWVlfx1GeB/wzxOnDjBQZWdxL59+wAAL730kuASoq5JWVkZY8eOxdatW1FUVIRDhw7hqaeeglQqxeDBg+Hg4IDg4GCcPn1avg3zKE1NTXBxccGgQYOQmprawc+AHsXQ0BAvvfSS/HdZc3MzZs2aJbiKuqs7d+4gKSkJ//znP+Ho6Ii+ffsiNDQU2tra2LZtG4qLi3Hy5EkEBQWhX79+onOJiIiIqBs7cOAAvvnmG0RGRvL4UCIiIiJqV42NjZg/fz6ef/55zJw5U3ROl8JhHkRERERERF1ceXk5/v3vf8PT0xMmJiYYP348fvzxRwQGBuLixYvyM/u4ubndc/A1EVFnt3jxYqiqqgL43wuALi4ugouI/jplZWUEBgbi8uXL6N+/P8aMGQN/f3/IZDLRadTDzJ07F15eXnjjjTdQXl4uOoeIFERfXx9fffUVDhw4gOjoaNE5RNSDWVtby79uaWnBtm3bYGBgILCISDyZTAZdXV3RGQ/k4uKCX3/9FTNmzAAASCQSAEB9fT1OnTolMo3+v8TERLz44ov8t5SoHaioqOCll15CZGQkCgsLkZaWhlmzZuHQoUMYM2YMevXqBR8fH+zevRu3b99+6P2cOXMGVVVVuHHjBlxdXREWFoampiYFPhP6vVmzZqG5uRkAoKOjg/Hjxwsuou7k+vXriIyMhLe3N3r16oVx48YhMTERzz33HPbt24fS0lL85z//wdy5c2FiYiI6l4iIiIh6AJlMhjfffBNz587FuHHjROcQERERUTfz6aef4sqVK9i6davolC6HwzyIiIiIiIi6oOLiYmzduhXu7u4wMzPDggUL0NTUhPXr16OgoABnzpxBSEgIHB0dRacSEf1txsbGCAwMhEQiQWtrK55++mnRSUR/m6WlJfbs2YP4+Hjs2bMHjo6O+Pbbb0VnUQ+zdetWKCkpwc/PT3QKESmQq6srgoKCEBgYiKysLNE5RNRDWVlZQSKRQCKR4OWXX8bUqVNFJxEJV11dDT09PdEZD6Wnp4cdO3YgNjYWmpqaUFVVhZKSEg4fPiw6rcerq6vD0aNH4enpKTqFqNtRUlKCk5MTwsLCkJmZiezsbCxduhQ5OTmYMWMGevXqBQ8PD0RGRqKkpOSe2x4+fBiqqqpoaWlBS0sLVqxYARcXF1y5ckXQsyEPDw9oaGgAALy9vaGuri64iLqy2tpaHD16FEFBQRgwYADs7e0RFBSEhoYGrF69Grm5ucjOzsa2bdvg4eHBP29EREREpHDBwcGor6/HZ599JjqFiIiIiLqZ8+fP41//+hdWrlwJBwcH0TldDk/JTERERERE1EXk5+fj8OHD2L9/P44cOQJVVVW8+OKLiI6OxqRJk6Cvry86kYjoPrW1tbhz5w6am5shk8kAALdv30ZjYyMAoLW1FZWVlQ+9/bBhw6CqqgoNDQ2kpqY+8Dq6urpQUXn4y1wGBgbyM8iqqqpCR0cHwP8WpSgrK0NdXR1aWlp/6/kR/VVeXl4YO3YsFi1ahKlTp8Lb2xsbNmyAmZmZ6DTqAQwNDREdHY3x48dj165dmDlzpugkIlKQFStW4Pjx45g1axbOnDkDVVVV0UlE1AnU1NSgoaEBAFBVVYWWlpYH7qNVVFT84f20tLSgqqrqkY+nra2NhoYGzJ49G8nJyQ+8zu/377S1taGmpgYA0NfXh5KSEpSUlPg6GHULMpmsQ4d51NXV4fDhw2hubn6s+9HQ0EB4eDgiIiKQk5ODXbt2YeTIke1UKZalpSVGjx4tOuMvS0pKQl1dHSZOnCg6hajb69OnDwIDAxEYGIjS0lIcPnwYu3fvRkBAAN566y2MHDkSHh4emDx5MhITE+WvewNAc3Mzfv31VwwZMgTh4eEIDAwU+Ew6t7vfM5DJZPLfXb/fDq2urkZTU9Mf3lfbexJtnJyccPr0aVhbW2P37t3yyx/1vgJw77YogHveS9DU1JQPCtHR0eF+difS0tKCXbt24amnnsLgwYP/9v00NzcjPT0dycnJSE5OxpkzZ3Dnzh0MGjQIr7zyCjZt2oQxY8bc82eEiIiIiEiUkydPIioqCl9//TVMTU1F5xARERFRN9LQ0IC5c+fCxcUF77zzjuicLknS2traKjqCiIiIqDuSSCSIj4+Ht7e36JTHkpCQgOnTp4ObjURiXL9+HYmJidi9ezfOnDkDTU1NvPDCC/Dy8sKUKVPkC9KJiB5HbW0tKisrUVFRgYqKCty+fRvV1dWQyWSoq6tDTU0NqqqqUFtbi7q6OlRUVKCurg61tbWoqqqSLwCrq6tDfX39Iwd0dGZtgz80NDSgqakJNTU1aGtrQ19fH1paWtDU1IShoSE0NTWhpaUFfX19aGtrQ0tLC7q6utDV1YWOjg4MDQ3lH5qamqKfFnVSR48exYIFC1BTU4MtW7bw7OSkMO+++y527NiBX375Bb179xadQ0QKcvHiRTg5OeH999/H0qVLRecQ0R+oq6tDVVUVZDIZqqqq7tnvqqiowJ07d1BbW4vq6mo0NDSgqqoK9fX1qKurg0wmQ0NDA2Qy2QOHK7bdtrto22cD/m9BpbKyMvT09OTf6+vrQ01NDbq6uvIFmYaGhvLb6ujoQE1NDQYGBtDW1oaenh709fWhr68PXV1dwc+QurPx48fD1tYWUVFRHXL/cXFxeO211zrkvrsLTS0t1NbUiM74y+bPn49ff/0VZ8+eFZ1C1GPJZDIcOXIEe/fuxaFDhx452EwikWDixImIjo6GsbGxgiofz507dyCTySCTyVBZWYmqqir5+wK3b99GQ0MDKisr0dDQgJqaGvn2attlt2/flm+Ptg2Ou3tb9PdDN7qLtiHiwP8G6wKQv9+gp6cHVVVV6OvryweD6OrqQlVVFQYGBvdsn6qqqsrfX9DT05N/3D28nO6XkZEBX19fnDt3DnPmzEFsbOxfun1OTo58eMf333+P8vJy9OrVC8899xzc3Nzw0ksvwdbWtoPqibqOSZMmQU9PDzt27BCdQv/fV199BV9f327xu5V/voiI/ro7d+5g2LBhsLe3x8GDB0XnEBEREVE3s3TpUkREROCXX35B3759Red0SX88WpyIiIiIiIgULjMzEwcOHMD+/fuRkpICIyMjvPLKKwgJCcG4ceOgrq4uOpGIOqmGhgaUlpaitLQUxcXFKC0tRVlZGcrLy1FRUXHPwI67v37YQT1ti5/ahlm0DbAwMDCAoaEhLC0t5QeTamho3HNWut8PxZBIJDAwMAAAaGlp3fNv2aPOgPdHB6c+anBIU1MTqqur5d/ffbBw21n9HjSEpO3A47YFcW0DTOrq6pCTkyMfbNK2qK5t0dyDqKurywd7tP23u/t7IyMjmJqawsTEBBYWFjAxMYGpqSnP5tYDjB8/HpmZmXj//ffh5eWFadOmYevWrTAyMhKdRt3cZ599hhMnTmDOnDk4fvy4fIEBEXVvAwYMwMqVK7F48WKMGzcOI0aMEJ1E1G21trbi1q1bD/yorKyUD+m4e1hH2wLJtmEcD9K2X3X3wj81NbV7FgNaWVnJL2vbHwP+byGhioqKfEDF3T+/+2ziv98H+/0+3IP8mTObV1ZW/uHQ6JaWlvsWwt599vW2fbi79/Pa9tmA/zuje2Nj4z2LRysrK1FXV4fS0tJ7hqL8fuHpg7T9NzcwMJAvoGwb9NH2ddt+nomJCYyNje/54H4d/RGZTAY9Pb0Ou/+mpiaoqqoh7tfrHfYYXdkP+/6DzUuCRGf8Za2trTh06BDeeust0SlEPZqenh68vb3h7e2NhoYGfPjhh4iIiEBzc/MDr9/2d7d///6IjY3FhAkTOryxvr4et27dQnl5+X2f27Y7f/9RUVEBmUyG6urqP1wM/KABFG1D0wwMDKCpqYlevXrJ3zto21ZUVVWVn6jg7vcT2q4H3LtdevdgDODeQW4Pc/f27sM8aLvzQdq2P9u0vZcA/N+2J/C/3+lt/+/bbnP3Y9w91KSxsVG+H1BcXIzq6mo0NjY+cDDKw+jq6t4z4KNtyEfbNqquri709fVhbGwMIyOj+z4rKSk98rl3NXV1dVixYgXCw8Plz+/kyZOPvF1+fj5OnDiBEydO4Pvvv0dubi50dXXx3HPP4aOPPoKbmxsGDRrU0flERERERI8lLCwMBQUFOHr0qOgUIiIiIupmfvjhB6xcuRIbNmzgII/HwGEeREREREREncCFCxcQHx+Pb775BllZWbC0tMTkyZPx8ccf47nnnuMCS6IerLW1FSUlJSgoKEBBQQHy8vJw8+ZN+cCOsrIylJaWoqSk5L6hFurq6vLFRG2Li3r16oX+/fs/cKhE29e6urryA2o7O4lEIl+U9jCmpqYKqvnfAbzV1dXyQSm/H5xy9/f5+fmoqKhAeXk5ysrK7js42sDAAGZmZjA1NYWpqSnMzMzQq1cvmJqawtbWFlZWVrCysoKZmRnPxNeFaWlpQSqVYsKECXjjjTcwaNAgREVF4dVXXxWdRt2YhoYGYmNjMXLkSERERGDx4sWik4hIQQICAnD06FHMmjUL58+f7zLbfESiNTc34+bNm/J9s5s3b6KoqOieIR1tiyPbPn4/tEJbW1u+b3b3IAgzMzPo6+vD0NBQftnvP+vr69+zqLGrahvw+EdEnqm+oqICNTU19w1baRu0cvdlMpkMhYWF8kWv5eXlDxw0qaurC2NjY5iamt436MPExARWVlbo1auXfN+OQ3x7FplM9sjFxkS/l5aWhsLCQr5uQNSJqKmpITs7+5HXa2xsREVFBV555RXMnz8f69evlw+z+DPKyspQUlKCkpISFBUV4ebNmw8cHte2Xdo21PpubcOl27Y12z4sLS2hp6cn3yb9/UfbNqmWlpZ8GFxXpqSk9Mj3FQD8qet0pLahdG3DVtq2TR80iKWyshL5+fn3fF9eXi4ffHe3tsEevx/yYWRkBBMTE1haWqJXr16wsLCAubl5p/9/fvLkSfj6+uL69etobm6WD1bJy8tDcXExzM3N5dfNzc3FiRMncPLkSZw8eRI5OTlQV1eHi4sL5s2bBzc3N4wYMeKRgwqJiIiIiDqLCxcuYO3atZBKpbCxsRGdQ0RERETdSEVFBXx8fDB+/Hi8+eabonO6NL7iTEREREREJMhvv/2GhIQExMfH49KlS7C1tcW0adMwdepUjBw5slueFYmI7nfz5k3k5OTgxo0b8mEdhYWFuHHjBvLz81FUVHTPGdhMTU3lAx0sLCwwbNgw+WW/H/ygr68v8Jn1TDo6OtDR0YGFhcVfvm3bmfjuHtDSNriltLQUly5dwqlTp1BSUoKysjL57dTU1GBpaQlra2tYW1vDysoKNjY28s99+vRR6EAT+nvGjx+PX3/9FSEhIZg4cSLmz5+PtWvXcpE1dZhhw4Zh2bJlWLJkCdzd3TF06FDRSUSkABKJBF988QWefPJJBAcHY8uWLaKTiIRqbm5GUVERcnNzUVxcjMLCQty8eRMFBQUoKSlBYWGhfLv87rOsa2trw9zcXD480djYGP369btnSMPdPzM2NpafaZw6r7YBl39Xc3PzfYtpy8rKcOvWLZSWlsovu379+j2X3c3IyAjm5uYwNzeHpaUlzMzM7hn4YWVlBVtbWw796Caqq6uhp6cnOoO6mIMHD8LGxgZPPvmk6BQi+v8aGxvx3Xff3bO9+DAtLS0AgO3bt+P06dPYtWsXjIyMkJeXJ9/+LC0tlW+H3j244+73CVRVVdGrVy+YmJjIhzE88cQT9wxmeNBnnjygazEwMICBgcHfer+hTW1trXzAS9vnsrKye4YRlpeXIzs7G+Xl5Q/cRtXV1b1vwEevXr3kl1lZWcHa2homJiaP+5T/koqKCrz33nuI/n/s3Xlcjen/P/DXaVGRJUO0R9myk+xbQmXJLmuE7NMY61hGGIMZmsEw9jVEjGHIlp0oES0KIZVKkTVby/374/N1fmOKTlTXOafX8/E4D9N97nPfr/u67qbrOuc+73vjRmhoaOT4HZTJZPD390fp0qUREBCAgIAA3Lt3D1paWqhfvz769u0LBwcHtGzZUukLlhARERER5SYrKwsjRoyAra0tRo8eLToOEREREakZd3d3ZGZmYuvWrbzp5FdiMQ8iIiIiIqIiFBsbiwMHDsDPzw8XL15EhQoV0KtXL6xfvx4tW7bkJJdIDb1//x4JCQm4d+9ejsedO3fw4sUL+boGBgYwMjKCsbExbGxs0KFDBxgbG6Nq1aowMjKCubk579iqxj7c3bBGjRp5rvvu3Ts8efIESUlJuHfvHhITE+X/ffnyZezfvx9xcXHIzMwEAOjo6MDExARVq1bN8ahZsyZKlSpV2IdHCihXrhzWrl2LDh06YNy4cTh58iS2bduGFi1aiI5GamrGjBk4fvw4Bg4ciJCQEF60TlRMGBsbY/369ejduzecnZ3RrVs30ZGICs3bt2+RmJiYY8z84REfH4+MjAz5+rq6ujA2NpbPy9q0afPRz0ZGRjAwMICxsbHAoyJlpampCUNDQxgaGir8mvfv3+Px48d4+vQpkpKS5Ofph38vX76MpKSkHOeqgYGB/L2CD+8b/PtnS0tLFgpWAS9evGAxD8q3Q4cOoWvXrvwsgUiJBAYGIj09PdfnZDIZNDU1IZPJIEkSJElCdnY2MjMzERUVhYYNG360/n/Ho82bN5ePP/89Jq1UqRILc5BCSpYsiZIlS8LU1FTh13xujPr06VPcvHkTAQEBSEpKwtOnT+Wv+/A5xKfGqNbW1gVWhN7Pzw8eHh549eoVJEnKtZiOtrY2JkyYgIyMDBbvICIiIiK15O3tjfDwcFy7do3vBxMRERFRgVq9ejX++ecf5Wm6vQAAIABJREFUnDx5ssgLOasjFvMgIiIiIiIqZHFxcdi/fz/8/PwQGBiI8uXLw9nZGdOnT4eTkxO0tDg1I1IHqampiIyMRHR0NG7evImbN2/i1q1bePjwISRJAgBUqFBBfvFi586dMXbsWPnPxsbG0NbWFnwUpCp0dHRgbGwMY2NjNG7cONd1MjIy8PDhwxxFZEJDQ7Fv3z753fVkMhlMTU1Ro0YN1KpVCzY2NvJ/K1asWJSHRf+nX79+aNOmDUaOHIm2bdvCy8sLP/zwAy++oAKnoaGBzZs3o379+pg9ezaWLVsmOhIRFZGePXtiyJAhGDFiBMLDw1GpUiXRkYi+WGpqKu7cuSN/xMTE4M6dO4iNjUVaWpp8vbJly8Lc3BwWFhaoXr06OnToAHNzc/myypUrc05GRa5EiRLyuV3t2rU/uZ4kSUhJSUFCQgLi4uIQFxeHBw8eIC4uDtevX8fBgweRnJwsX19PTw+WlpawtrZGtWrVPvrX3NyccwslkJmZiZcvX6JcuXKio5AKSUpKwrVr1zBv3jzRUYjo/7x9+xaXL18G8L+/6x8Kd2RlZSEjI0NeuAMASpcujfLly6NixYowMjKCmZkZbGxs0LBhQ1hYWMDQ0JDjUVIKio5RASA9PR3x8fFISEhAfHw84uLi5D//888/iIuLw6tXr+TrGxgYwNLSElZWVrC2toaVlZX8v01NTfMsVnX37l2MHDkSZ8+eBQD552+5ef/+PerUqYOQkBDo6OjkowWIiIiIiJRfbGws5s2bhzlz5sDGxkZ0HCIiIiJSIyEhIZg8eTJmz56Ntm3bio6jFviNMSIiIiIiokKQkJCAffv2yQt4lCtXDl27dsX06dPh6OjIi/GIVFhaWhquXbuGyMhIREVFISoqCpGRkfLCCGXLlkWtWrVQu3ZtdO7cGVZWVvKCHbzbKhUlbW1tWFpawtLSEvb29jmef/78ubzAx927d3Hr1i0EBwdj27ZteP78OYD/FaD5UNzjw3ndqFEjlC9fvqgPp9ipXLkyDh06hG3btmHMmDEICAiAj48PTExMREcjNVOlShUsX74cI0eORPfu3fnhC1ExsmrVKjRs2BAeHh44cOCA6DhEn/X69WvcvHkTUVFROYp2fBi76urqwtraGtbW1ujQoQOqVKkiL9Rhbm7O+RipNJlMhkqVKqFSpUqfLOj47t07+Zcn4+LicP/+fcTExOD8+fPYtGkTnj17BuB/xSGtrKw+KvJRvXp11KtXD998801RHlaxlpqaiuzsbBbUonw5dOgQdHV10b59e9FRiIqVjIwM3Lp1C1FRUbh79y5iYmLk//63mPe/ixN8GIuamprCxMSExQRILZUqVQo1a9ZEzZo1P7nO06dPkZCQgAcPHiAhIQGxsbGIiYnB0aNHERMTIy/2oauri6pVq8p/jz6MVW1sbGBoaAhvb2/8+OOPkCTps0U8/u3WrVsKr0tEREREpCokSYKHhweqVq2KadOmiY5DRERERGokLS0N/fr1Q6tWrTBnzhzRcdQGi3kQEREREREVkCdPnmDPnj3YsWOHvIBHjx49MHv2bDg4OEBLi1MwIlXz9OlTREZG4urVq/JHVFQUJEmCgYEBqlatChsbGzg7O8PGxga1a9dGlSpV8rxzGJEyKFu2LBo2bIiGDRvmeO7DuX/z5k35vydOnMC9e/cAAEZGRmjcuLH8YWtrCyMjo6I+hGJh6NChaNy4MVxdXdGgQQNs3rwZXbt2FR2L1Mzw4cNx6NAhDBs2DGFhYShdurToSERUBPT19bFlyxa0bdsW69evx6hRo0RHIkJmZibi4uI+GotevXoVt27dQlZWFrS1tWFmZoaqVauiUaNG6NOnj3wuZmFhAU1NTdGHQCSMjo4OqlWrhmrVquX6/NOnT+UFHT88Ll++jA0bNsiL4hgYGMh/p2xsbNC4cWM0aNAA+vr6RXkoxUJKSgoAwNDQUHASUiWHDx+Gg4MDSpYsKToKkVrKbSz64d+3b98CwEefCzg6OsoLeVevXp3vpxB9goGBAQwMDFC3bt1cn89tnBoeHg5fX18kJSUB+F/x8oyMDADI12dwGRkZuHbtGlq0aPH1B0JEREREpCQ2bdqEkydP4sKFC7ypHBEREREVmKysLAwcOBDZ2dnYtWsXr8EpQPwmGRERERER0Vd48+YNDh48iB07duDo0aMoUaIEevTogRkzZqBTp04oUaKE6IhEpKA3b94gODgY586dQ3BwMK5du4bExEQAgKWlJRo1aoSBAweiUaNGaNSoEe+cSmrNwMAArVq1QqtWrT5anpycjGvXriE0NBTXrl3D1q1bMW/ePACAsbExGjVqhKZNm6JNmzZo0qQJ9PT0RMRXO7Vr10ZwcDBmzJiB7t27Y+LEifjll194N08qUGvWrEGdOnUwZcoUrF27VnQcIioiLVu2xNSpU/H999+jffv2sLa2Fh2JipHXr1/j2rVrCA4OxtWrVxEREYHo6Gi8f/8eWlpasLa2Rp06ddCvXz/UqVMHdevWhZWVFS8WIPpCBgYG8oKM//Xw4UNERkYiLCwMkZGRuHbtGnx8fPD69WvIZDJUqVIFdevWRYMGDWBnZwc7OztUqFBBwFGoDxbzoPx6+/YtAgICsGzZMtFRiNTCs2fPcPXqVVy5cgWhoaG4efMmbt++jffv30NTUxNVqlRBnTp10LlzZ0yePBm1atVCrVq1+H4cUSH43Dj18ePHiIiIwKlTp3D27Fk8ePAAycnJePfuXa7b0tLSgpaWFjIzM5GZmQmZTIbAwEAW8yAiIiIitZGcnIypU6fiu+++Q/PmzUXHISIiIiI18sMPP+Ds2bO4cOECrwcoYCzmQURERERElE/Z2dkIDAzE9u3b4evri/T0dDRr1gx//PEHBgwYwDtvEamIZ8+e4eLFizh//jzOnz+PkJAQvH//HmZmZmjZsiU8PT3lhTvKly8vOi6RUqhcuTKcnZ3h7OwsX5aWloZr167JH2vXrsWcOXNQokQJNGnSBK1bt5YXBilbtqzA9KpNT08Py5cvh52dHcaOHYsLFy7A19f3k3fdJsqvihUrYu3atejVqxdcXFw++j0nIvU2b948HDt2DG5ubjh37hwLJVChyMrKws2bN3HlyhUEBQUhODgYERERyMzMRMWKFWFrawsnJydMnToVtWvXho2NDb8oSVSETExMYGJigk6dOsmXZWdny++KHhERgYiICPj4+MgLOlatWlVe2MPOzg6NGjViQcd8SElJgba2NsqVKyc6CqmICxcuID09nXM1oi+Qnp6O0NBQXLlyBSEhIQgJCcGdO3cgSRJMTEzQuHFjdOvWTT4OrVWrFnR1dUXHJiIAFSpUQLt27dCuXbuPlqekpCAiIgI3b95ESEgIrl+/jujoaLx79w4ymQwGBgbQ1NTEu3fvkJaWhuzsbGhoaIg5CCIiIiKiAjR58mSULVsW8+fPFx2FiIiIiNTIzp07sXTpUmzevDnXwsv0dVjMg4iIiIiISEGRkZHYvn07tm3bhqSkJNjY2GDmzJlwc3ND5cqVRccjojxkZmbiwoUL8Pf3x/HjxxEeHg5JklCrVi20atUKY8eORevWrWFhYSE6KpFKKV++PBwcHODg4CBf9uDBA5w7dw4XLlzAgQMHsGTJEshkMtSrVw+dOnWCs7MzWrZsCS0tvj2ZX4MGDULTpk3h6uqKJk2aYNu2bejevbvoWKQmevTogf79+2PUqFEIDw9nMSuiYqJEiRLw8fFB48aN8euvv2LGjBmiI5EayMjIQFBQEE6dOoXTp08jJCQEr169QsmSJdGoUSPY29tjxowZsLOzQ5UqVUTHJaJcaGhowNraGtbW1ujZs6d8+ZMnTxAcHCx/LFq0CKmpqdDS0kLdunXRpk0bdOjQAW3atGFBx89ISUmBoaEhZDKZ6CikIo4dO4ZatWrBzMxMdBQipZecnIwzZ87gzJkzuHjxIqKiopCVlSUvIufq6gpbW1vY2trCyMhIdFwi+gKGhoawt7eHvb29fFlmZqa8uMeHx40bN7Bo0SKsWrUKtra2aNu2Ldq1a4emTZuygCQRERERqZwzZ85g165dOHDgAEqVKiU6DhERERGpiYsXL2LEiBGYPHky3NzcRMdRS7xanoiIiIiI6DPi4uKwa9cubNmyBdHR0bCwsMDQoUPh7u6O6tWri45HRHlISUnBkSNH5AU8nj17hho1asDJyQleXl5o1aoVKlSoIDomkdqxsLDAkCFDMGTIEABAamoqLl68iDNnzuDvv//GL7/8gnLlyqFz587o0qULHB0dUbFiRcGpVYe1tTUuXryIadOmoUePHpg2bRoWLlwITU1N0dFIDfz555+oW7cuPD09sX37dtFxiKiI2NjYYP78+Zg9ezacnZ1Rr1490ZFIxWRnZ+P69es4efIkTp06hfPnzyM9PR3m5uawt7fHwIEDYWdnh9q1a7OgG5GK++abb+Dk5AQnJyf5svv37yMoKAhBQUE4ffo0Vq5cCZlMBltbW/mXLFu2bAk9PT2ByZVLamoqDA0NRccgFXL8+HF07txZdAwipfTo0SOcPXtWXsAjKioKWlpaaNKkCZydneHl5QVbW1sW8iZSc1paWqhXrx7q1asHd3d3AMD79+8RFhaGkJAQXL58GZs2bcLcuXOhp6eH5s2bo127dmjfvj3s7OxQokQJwUdARERERPRp7969w5gxY9CzZ09069ZNdBwiIiIiUhP3799Hr1690KFDByxevFh0HLXFK6WIiIiIiIj+4/nz59i9eze2bt2KS5cuwdDQEP3798eWLVvQtGlT0fGIKA9PnjzBzp07sXPnTgQHB0NbWxtt27bFvHnz0KVLF1hZWYmOSFTsVKxYET169ECPHj3w+++/IyYmBocPH8bhw4cxatQoZGRkoFmzZhg4cCAGDBiA8uXLi46s9HR0dLB8+XI0btwYY8aMQXBwMHx9ffllMPpq5cqVw8aNG+Ho6AgXFxf06dNHdCQiKiKTJ0/G4cOHMXDgQISEhEBXV1d0JFJyr1+/hr+/P/bu3YsTJ04gLS0NhoaGaN++Pby9vWFvbw9ra2vRMYmoCFSpUgVVqlSBq6srAODx48c4ffo0Tp06hX379mHRokXQ0dFBq1at0KtXL/Ts2RNGRkaCU4uVkpLC+RspLDk5GeHh4byAjuj/SJKEoKAg7N+/H4cOHcLNmzehpaUFW1tbuLi44LfffkPLli2hr68vOioRCVaiRAnY2trC1tYWY8aMAfC/i9M/FP9Zv349fvzxR5QsWRKtW7dGjx494OLiUuzHqkRERESkfH7++WckJCTg2LFjoqMQERERkZp48eIFunfvDhMTE+zevZs3FCxEGqIDEBERERERKYPs7GwEBARg8ODBMDIywnfffQdLS0v4+/sjISEBy5cvZyEPIiWWkZGBAwcOoFevXjA2NsasWbNQs2ZN/PXXX3jy5AmOHTuGb7/9loU8iJSEtbU1PD09cfz4cTx+/Bh79+6FtbU1ZsyYAWNjY/Tu3RsHDx5ERkaG6KhKb+jQobh48SJiY2Nha2uL4OBg0ZFIDXTq1Anu7u4YO3YsHj16JDoOERURDQ0NbN68GXFxcZg/f77oOKSkXr16BV9fX/Tp0wcVK1aEq6srUlJSMHv2bNy4cQPJycnw9fWFh4cHC3kQFWMVKlRA37598eeff+LWrVuIj4/H2rVrUaFCBUyfPh2mpqZo06YNVqxYgYSEBNFxhWAxD8qPY8eOQVtbG23atBEdhUiYzMxMnDx5EuPHj4eZmRmaN2+Ov/76C87OzvD390daWhouXbqERYsWoXPnzizkQUSfVKVKFQwfPhxbt25FXFwcYmJisHLlSpQpUwZTp06FqakpWrRogV9//RUxMTGi4xIRERER4c6dO/jll1+wYMECWFhYiI5DRERERGrg7du3cHFxwbNnz3Do0CGUKlVKdCS1xmIeRERERERUrMXHx2PJkiWoVq0aOnbsiOjoaCxatAjx8fHYsWMHHB0doaWlJTomEX3CgwcPMHnyZJiYmKBXr1548eIFNmzYgKSkJGzevBkuLi58c4lIyenr66Nnz57YunUrkpKSsG7dOjx79gw9e/aEiYkJpkyZgri4ONExlVrDhg0RFBSE6tWro127dti6davoSKQGfv/9d5QtWxYeHh6ioxBREapSpQp+/fVXLFmyBOfPnxcdh5REVlYWDh06hF69eqFixYoYMmQInj9/Dm9vbyQmJuLUqVOYNGkS6tWrB5lMJjouESkhU1NTuLm5wdfXFykpKdi3bx/Mzc3x448/wtzcHC1atMCaNWvw4sUL0VGLDIt5UH4cP34crVu35vucVOxIkoTz58/D3d0dlSpVgoODAwIDA+Hh4YGwsDDcuXMHv/76K5ycnFC6dGnRcYlIRVlZWcHd3R179uxBamoq9u/fjxo1asivIahXrx4WLVqExMRE0VGJiIiIqJgaO3YsqlWrhgkTJoiOQkRERERqICsrC4MGDcL169dx+PBhGBsbi46k9ljMg4iIiIiIip03b97Az88PHTt2hIWFBZYvX46uXbvixo0bCAkJgaenJ7755hvRMYnoM27evAlXV1dYW1vDz88P3333HWJjYxEQEIAhQ4bwwnYiFaWvr4+hQ4fi5MmTuH//Pjw9PbFnzx5YWVlh0KBBiI6OFh1RaVWsWBHHjh3DtGnT4O7uDk9PT2RlZYmORSpMX18f69atw6FDh7B9+3bRcYioCI0ePRqOjo4YNmwYXr16JToOCfTkyRMsWLAAlpaW6N69O54/f44//vgDycnJOHHiBEaPHs0vopNa6tixY7Hcd1HR09NDjx494OPjg0ePHuHgwYOwtrbG999/DxMTE3h4eCAqKkp0zEKXkpKCihUrio5BKkCSJAQEBKBTp06ioxAVmefPn2Pp0qWoWbMm2rRpg7CwMMycORN3795FaGgofvzxR9StW1d0zGKlOIxRSAxlO7d0dXXRvXt3bN68GcnJyQgICEDr1q2xdOlSWFhYoHv37jhx4gQkSRIdlYiIiIiKCR8fH5w+fRpr166Ftra26DhEREREpAYmTZqEI0eO4ODBg6hXr57oOMUCi3kQEREREVGxcfXqVfkXTYYMGQJdXV3s3r0bcXFxWL58OSeiRCogMTERw4YNQ7169RAVFYWtW7fi7t27mDlzJszMzETHy+Fzd6XmHatzYpvQv5mbm2PWrFm4e/cutmzZgvDwcNSpUwfu7u5ISkoSHU8paWpqwsvLC76+vli/fj26du1arO5sTQXP3t4eEyZMwMSJExEfHy86DhEVofXr1+P58+eYPn266CgkwKNHjzBp0iRYWFjg999/x8CBA3H79m2cPHkSI0aMUOoCqMV9DiaTyQr9ONWpHT/VXiK/mKfovouir4uCjo4Ounbtim3btiExMRELFy7EuXPnUKdOHfTs2ROhoaGiIxaalJQUFkQihYSGhiIlJQWdO3cWHYWo0D169AhTpkyBubk55s+fj06dOiE0NBQhISGYPHkyqlatKjriZynzWPRrxw4sXJC3gu5jdRnv5UWZzy0tLS106NABq1atQmJiInx8fPD69Wt06tQJDRo0wI4dO5CdnS06JhERERGpsefPn2PatGkYPXo0mjdvLjoOEREREamBOXPmYPXq1fDx8UHr1q1Fxyk2WMyDiIiIiIjU2sOHD7FgwQJYWVnB1tYWV69exaJFi5CYmIh//vkHffv2hZaWluiYRJQHSZKwatUq1KpVC+fPn8e2bdsQGhqKgQMH8q4DRGpOW1sbgwYNwvXr17FlyxacPn0atWrVwpo1a5T6Ql+R+vbti1OnTiE0NBStWrVCXFyc6EikwhYtWoRKlSrB3d2dv3NExYixsTH++OMP/Pnnnzhy5IjoOFRE3r17h4ULF6JatWrw8/PDggUL8ODBAyxZsgTW1tai45EC+Lc6fz7VXgEBAUWcJP/7Vse+LleuHL799lvcvHkTe/fuRWJiImxtbeHm5obExETR8QpUeno60tPTWcyDFHLixAlUrlyZxchJrb1+/Rpz586FtbU1du3ahdmzZyM+Ph4rV65EgwYNRMdTC187dhA5Piqu1HG8lxtVObd0dHTQv39/BAQEIDQ0FPXq1YObmxsaNmyI48ePi45HRERERGpq+vTpyM7OxsKFC0VHISIiIiI1sGzZMixcuBDr1q1Dr169RMcpVljMg4iIiIiI1E5WVhYOHToEFxcXWFhYYOXKlXBxcUFYWBhCQkIwYcIElC9fXnRMIlLQ8+fP0atXL0yaNAkTJkxAREQEBg4cCA0Nvq1BVJxoaGhg8ODBiIyMxOjRozFx4kT06dMHL168EB1NKTVr1gwhISHQ1NREs2bNcOXKFdGRSEWVLFlSXkhn3bp1ouMQURFydXVFv379MHLkSKSlpYmOQ4Xsxo0baNKkCRYvXoxp06bh9u3bmDRpEvT19UVHI6JiRkNDAz179sTly5exa9cunD9/HnXq1MGuXbtERyswjx49AgAW8yCFnDp1Cvb29pDJZKKjEBWK8+fPo379+lixYgVmzZqFO3fuYOrUqShbtqzoaEREuWrQoAG2b9+O8PBwVK1aFZ07d4abmxuePn0qOhoRERERqZErV65g/fr18Pb2hoGBgeg4RERERKTiVq5ciSlTpmDx4sVwd3cXHafY4bdeiIiIiIhIbSQmJsrvFtutWzc8fPgQq1evxoMHD+Dt7Y26deuKjkhE+fT06VM4ODggMDAQR48excKFC6Gnpycsj0wmy/XC+dyWf/j5w3MymQwjR47M8zkAiIiIQJcuXVC6dGmULl0ajo6OiIiIyHWfd+/eRa9evWBgYPDJfJ87lqioKDRr1gwlS5ZE69atERMTg8jISDRt2hT6+vpo37494uLicrz+4MGDaNmyJXR1dWFpaYlJkybh5cuXue4jPj4eLi4uKF26NCpVqoTBgwfjyZMnCrdXUbUJ8L8vMXbq1AmlSpVCmTJl4OTkhGPHjn20TkREBJydneVZnJ2dP5klr2P/9/GeOXMGAODr6/vR8oJsg+fPn2PSpEmoWrUqdHV1YWRkhGHDhiE4OPij7SjSv6KULFkSS5YswalTp3Dp0iW0bdsWjx8/Fh1LKZmamuLcuXNo3Lgx2rRpo1ZffqOi1bx5c0ydOhVTp05FbGys6DhEVITWrFkDDQ0NeHp6io5ChWj//v1o3rw59PX1ERoaitmzZ6NkyZKiYwFQrzkYoNh8Q9GxeGRkJJydnaGvr4+yZcuiZ8+euc7dFN2mInOFvNo4r/ZRZC6Vl8Ke03yqTxXpu7y2mde871P7zk9fK3Iuf1jva/uisMlkMvTr1w+RkZHw8PDA4MGD4enpiezsbNHRvlpKSgoA5Szm0bumMXrXNMbjpEQsHjcMgxpVg3vLelg+dQJePsv5BdW4O9FYOHoIBjWqhkGNqmHByIGIuxOdY734mFtY6DEYAxtaY3Dj6pg/YgASYm7L9/dvV04dx8wB3eFazxJj7O2wedFcvEl/lWvO5LhY/DJxBIba1cx1W6ouMzNT/t4HkTpat24d7O3tUa1aNYSHh2PGjBlKMw4F1G8smpv87Ds/CmpsmJ8+AAr+c4v8tNG/t/3fPs5LQY/38vvZTH7O8/y0XV5j6K/pR2VQq1Yt7N+/H/7+/jh16hRsbW0RFRUlOhYRERERqYHMzEyMHj0arVu3xoABA0THISIiIiIVt3HjRnh6euLnn3/GtGnTRMcplljMg4iIiIiIVFp2djYCAgLQr18/WFhYYMmSJejUqRMiIiIQEhICDw8PoV/8J6Ivl5GRAScnJzx58gTBwcGwt7cXHQmSJCm8/MMySZLkjw0bNuT5XExMDDp27Ihu3brh3r17iI2NxeDBg+Hi4oKEhIQc2x87diymTJmCxMRE+Pv75/tYvLy8sHnzZiQlJaF+/foYPHgw5s6diy1btuDhw4eoVasWJk+enOP1Li4ucHNzQ1paGi5fvoy0tDRMnDgx132MHDkSY8eORVJSEkJCQvD69WtMmTJF4fYqqja5ffs2+vfvj2nTpiE1NRWXL19Geno6HB0d5evExMTAyckJffr0wb179+QXIzs6OiImJibfx56ZmQkrKyukpaWhXbt2AABXV1ckJibCwMAAr169KtA2cHNzQ7ly5XDp0iU8f/4c/v7+iImJQdOmTT9qC0X6V7TWrVsjMDAQT58+Rbdu3ZCRkSE6klIqXbo09u/fD3d3dwwePBhLly4VHYlUlJeXFywsLDBixIhP/j0kIvVTrlw5bNy4ETt27ICfn5/oOFQI9u7diz59+mDEiBE4f/48rK2tRUf6iDrNwRSZbwCKjcXv3r0rn5fcv38fd+/eRe/eveHq6prrvhXZpiJzBUXa+FPto+hcKi+FPafJ7dxStO8+RdF5X277zk9fK3ouF1RfFBU9PT0sXrwYO3bswNq1azFhwgTRkb5afHw8NDQ0YGRkJDpKDvuiEwEAq2dPRucBbth44Tp+2XsU796+wdYl8z9aNzkuFvOGu8K2fUf8GXAZa04Fo2333lg8bjieJCd9tN5PowaheeeuWHMyCH+eDIJ9L1d4fz/2o31+sHjcMLTv2Q9bg6OweM8hvHr+DBsWzM415zqvGXBxH4sN565j1jqfAm8P0a5cuYKXL1/K/99BpE5+/vlnjB07FgsXLoS/vz9MTU1FR8pBncaiucnvvvOjoMaG+ekDoOA/t8hvG+XWx3kpjPHel3w281+fO88V2a4iY+iv6Udl4uTkhGvXrqFy5cpo1aoVbt26JToSEREREam433//HTdv3sSaNWu+uogjERERERVvGzduxKhRo/DTTz/hhx9+EB2n2JJJvOqWiIiIqFDIZDLs3r0b/fr1Ex3lq+zZswf9+/fnl7VI6Tx8+BA+Pj74888/ERcXhw4dOmDIkCHo27cvi3cQqYl58+Zh6dKluHr1KqpXry5mmROxAAAgAElEQVQ6jpxMJsv172Juyz+17ueeGzx4MOrVq5ej8u2mTZtw48YNLF++/KNtnD59+osv6P9wV+APd/dMTEyEiYnJR8sSEhLQuHFjPHr06LPbevr0KaytrXO9q9vff/8NFxcX+bJbt27B3t4eDx8+zLGuyDYZOHAgnJycMGTIkI+y1qxZU55r8ODBaNKkSY6703t7eyM0NBTbt2/P97HPnDkTJiYmGD9+vHzZ4sWL8eDBA/z5558F2galS5fGgwcPUL58efmy+/fvo2rVqp8d732qf5VBdHQ0bG1tMX36dMyZM0d0HKX222+/YfLkyZg6dSoWL17Miz4o365du4ZmzZph5cqVGD16tOg4RFSEPDw8sH//foSHh6Ny5cqi41ABuXv3Lho0aIDhw4djxYoVouN8krrMwRSZb+Qmt7H4kCFDYGtrm2NesmXLFgwfPjzP93Jz26aic4W82vhT7ZOfudTnFPScRpHz6Ev77t8Umffltu/89LWi53JB9YUIBw4cQK9evbBly5aP+kPV/Pbbb1i6dGmO90UKmo+PD9zdR8A3PDZfr+td0xjTV22GXYfO8mWJ9+9irlsfrD8XKl+2fOoEWNSwQY+R4z56/al9voiNjoT7rAX/W2/aRFjXqY8uQ0d+tN6Fwwfw2+SxOYp5/NerF88xvmNzbA26mSPn/G17UduuRb6O74NzB/dh9ezJeP/u3Re9vigsWrQIK1euRGLi59uISNUcO3YMzs7OWLVqFcaMGSM6zmepy1g0twz53Xd+rxcoqLFhfvrgv772c4vCbiOgcMZ7+TnGz2X/1HmuyHYVHUN/TT8qm7dv38Le3h5PnjxBWFgYdHR0REciKjQuLi4oU6aMUs8fixsfHx+MGDEC75R4fqMonl9EVNzFx8fDxsYGU6ZMwdy5c0XHISIiIiIVtnbtWowbNw4//vgjx5aCsZgHERERUSFhMQ+igpeVlYV//vkH69atw7Fjx2BoaIhhw4Zh5MiRsLKyEh2PiArQmzdvYGZmhkmTJmHWrFmi43yksC/erVy5MoKCgmBhYfHR8kePHqF9+/a4efP/f3FBJpMhPT0dJUuW/JJDgUwmw4sXL1C6dGkAQHZ2NjQ1NXMs09LSQnZ2tkLby60N0tLSYGBgIF/27t076Onp5dim6DapXLkyrl27BmNj48+uk1uW+/fvo0WLFkhK+v93nlX02O/cuYMBAwYgJCREvqx69erYvXs3GjZs+Nn95rcNOnXqhNevX2P27NlwcHCAlpZWXs3y0XaVdUy4YMECrFixAvHx8dDV1RUdR6nt3LkTw4YNg6urKzZt2pSvc4AIAGbMmIE//vgDYWFhqFq1qug4RFRE0tPT0aBBA9SqVQsHDx4UHYcKyMiRI3Hx4kWEhYVBW1tbdJxPUpc5mCLzjU/5b/ZPZU5OToaRkZFC4/b/blPRuUJebfyp9snPXOpzCnpOo8iyr+m7DxSZ931q34r2taLnckH1hSjjxo3D0aNHcfv2bZWdz0yePBkXLlxAUFBQoe7na4p5bA2Ogn6ZsvJlGe/fY0D9Ktgb9f+/pDuiZX0s9juMisamH73+2ZNUzB3aB8sPn/3sei+fPcWwZrXzLObxIdN/1+td0xg7r9+Fju6XFfdWhWIejo6OKF++PHbu3Ck6ClGBatSoEaysrODn5yc6Sp7UZSyaW4b87vtLinkUxNjwa4p5fGo9Rd+7L+w2+tw+vma8l59j/Fz2r207RcbQX9OPyigxMRHW1tZYunQpxo0bl/cLiFQUiy0oHxbzICJSHz169MDNmzcRFhbG61+IiIiI6IutXr0aEyZMwLRp07B48WLRcYo9DdEBiIiIiIiI8vLs2TMsX74cVlZW6N27NzIyMuDr64u4uDgsWrSIhTyI1NCNGzfw5MkTDBo0SHSUIvfkyRNYWlpCJpN99KhcuTJiY2NzrP+lF+5+8KFoBwBoaGjkuuy/F0impqZi5MiRMDU1hZaWljzjp/z7ok4A0NHRyddFl0XVJo8fP0aFChXyXCe3u9EbGRnh8ePHOZYrcuzVqlWDnp4ebty4AQA4d+4cypQp89EXugqqDfz8/GBnZ4fx48ejfPnyaNu2LZYvX46MjAz5OvntX2UwePBgPH78WN6G9GkDBw6Ev78/9u/fj169euHNmzeiI5GKmTdvHiwtLTFq1CiVuICeiApGqVKlsGXLFvj7+2PTpk2i41ABOXr0KEaOHKnUhTyKgjLNNxQdi39qXpLbMkW3qchcQRGfap/8zqU+RcScRpG+y4si875P7VvRvlb0XC6ovhBl7NixuH//PqKjo0VH+WIJCQkwMzMTHeOz/l3IAwC0S5TIMf5/+ewpxtjboXdN448eI1rWR8rDePl6L56loVwFwxz7KF3OIMeyF2lPsHr2ZIxq2wh9a5vJt/kpX1rIQxVkZmYiMDAQbdu2FR2FqEAlJiYiNDQU48ePFx1FKRT15wFfs+8vUdhjw38rjM8tiqKNCmO898HXfjbzKYps90vH0Kr4+cS/GRsbo1evXjh8+LDoKERERESkgo4cOYIDBw5g9erVLORBRERERF9syZIlmDBhApYuXcpCHkqCxTyIiIiIiEhpXb16FcOHD4eRkRG8vLzQu3dv3L59GydOnEDfvn2L/ZdNiNTZh4s1DQ1zXugvmkwmy3FHm7S0tALbfoUKFZCWlgZJknI8Xr9+XWD7+RpDhgxBqVKlcOHCBbx9+1aer7AUVZt88803eV4oXKFChVzvUpyUlPRVX+4aPny4/IuxGzduhIeHR479FkQblC1bFt7e3rh79y7u3buHcePGwdfXFwMGDJCvU9T9WxAqVaoEACrxxTNl4ODggJMnT+LSpUtwcnLC8+fPRUciFaKjo4ONGzfi7NmzWL9+veg4RFSEWrZsiUmTJsHT0xN3794VHYe+kiRJSElJgZGRkegoeVKXOZgi8w1Fx+IVKlRAcnJyjuW5tYui21RkrvA1CmouJWJOo0jfKSKveV9u8tPXip7LhTWvLSof7u7+6NEjwUm+XHx8PExNTUXH+GqlDcpja3AU9kUn5njsun5Pvl6ZcuXx7HFKjtfntmz5tInQ1SuJhTsPwDfsvnx7xdGVK1fw8uVLtGvXTnQUogKVkvK/330TExPBSRSjLmNRZdy3ouMRRfugMN7XLoo2KozxXn4Vxnn+pWNoVfx84r9MTU1VeqxKRERERGK8fv0a48ePx6BBg+Dg4CA6DhERERGpqFmzZmHmzJlYvXo1vv/+e9Fx6P+wmAcRERERESmV9+/fw8/PDx07doStrS0uXbqExYsXIyEhAcuWLYOVlZXoiERUBD78roeHhwtOklPlypURFxf30bJz587luu7n7hb2qec6d+6MM2fO5Fh+/vx5NG7cWPGghSgwMBDz5s2DpaUltLS0AABv3rz56u2KbpN27dohICDgo2U3btyAjY2N/GcHBwf89ddfOV67f//+r/owvV+/fjhw4ABSU1Nx9OjRHF+YK6g2kMlkSEhIAPC/C3/79++Pw4cP4/jx4/J1Cqt/C9OHu1tznKA4Ozs7nD17Fnfv3kWrVq2QmFg8vxxFX6Zp06b4/vvvMXXq1Bx/E4lIvf3000+oUqUKhg0bhuzsbNFx6CvIZDJUq1YNV65cER0lT+oyB1NkvqHoWLxTp074+++/cyz/7/bzs01F5gof1vsSBTWXEjGnUaTvFJHXvC83+elrRc/lwprXFpXg4GAAQI0aNQQn+XIJCQlqUcyjQat2iAwKzLE8KiQIU3t1lv9cv1VbBAcczbHe9Qtnciy7FRqC/hOnwtDEDJqa//v9ff/2bcGFViFnz56FkZGRSp/rRLmxtraGpqam/P/nyk5dxqLKtu/8jEcU7YPCeF87P230pePkwhjv5Vd+znNFfekYWhU/n/ivy5cvo2bNmqJjEBEREZGKmTt3LtLS0vDrr7+KjkJEREREKigrKwseHh745ZdfsGnTJowZM0Z0JPoXFvMgIiIiIiKl8OjRIyxZsgTW1tZwdXWFrq4uTpw4gaioKHh6eqJUqVKiIxJREapVqxbq16+PZcuWiY6SQ8eOHTFz5kwkJCTg1atXOHbsGNasWZPruiYmJrh06RIyMjJw/PhxmJub5/mcl5cX5s6di7179+LJkyd4+fIlDh06hAEDBmDOnDlFcox5adGiBaZNm4bY2Fi8f/8eMTExBfKmn+g2mT17NubPn4+AgACkp6cjLCwM7u7umDhxonyduXPnwtvbGxs2bEBKSgpSU1OxceNGeHt7Y+7cuV+8b319fbRv3x6DBw9G9+7dUbp06Y+eL8g2GDlyJCIjI/Hu3Ts8evQIS5cu/egC6cLq38K0bNkyNGzYkBfI5pONjQ3OnTuHd+/ewd7ePte7YRJ9yoIFC2Bqagp3d3eVuzsmEX05HR0dbNmyBUFBQVixYoXoOPSVRowYgY0bNyI2NlZ0lM9SlzmYIvMNRcfiXl5eWLZsGTZt2oTU1FSkpaVhz549+Pnnn3Osm5/xfV5zBeDzbfw5BTmXKuo5jSJ9p4i85n25yU9fK3ouF9a8tihkZGRg3rx5cHR0VNliGFlZWUhKSlLZ/P/Wf+Jk7F65FJeOHcLLZ0/xJv0VQs6cgPfkseg7btL/X2/CZBzcvAan9vniRdoTvHz2FBcO/43ju31ybLNGQ1tsX7oAKQ/jkZmRgeS4WKz1ml6Uh6U0zp49i7Zt24qOQVTg9PX1MWDAACxYsACvXr0SHSdP6jIWzY3IfednPKJoHxTG+9r5aaMvHScXxngvv/JznivqS8fQqvj5xL/5+/vj7NmzGDVqlOgoRERERKRCIiIisHz5cixevBhGRkai4xARERGRinn37h1cXV2xfft2+Pr6ws3NTXQk+i+JiIiIiAoFAGn37t2iY3y13bt3Sxw2UmEKCQmRPDw8JF1dXalcuXLSt99+K8XGxoqORURK4MiRI5JMJpM2btwoOspHUlNTpYEDB0oVK1aUSpUqJXXr1k2Ki4uTAOT4m7lnzx6pSpUqUokSJSRra2vpwIEDCj13+/ZtqXfv3lLZsmWlUqVKSU2aNJH++uuvj7b9YX+57VcRub1W0WWPHj2ShgwZIhkaGkolSpSQ6tSpIx8z5PXazy0X3SaSJEmBgYFSy5YtJV1dXcnMzExatGhRjnXCwsIkR0dHqVSpUlKpUqUkR0dHKSwsTKFj/Fy+c+fOSQCkoKCgXLMVRBsEBARIPXr0kL755hupRIkSUpUqVaRJkyZJL168kK+jaP8qi/Xr10symUw6duyY6Cgq69GjR1Lt2rWl6tWrSw8fPhQdh1TIpUuXJE1NTWn9+vWioxBREZs/f76kp6cnRUdHi45CX+H169dSgwYNpPr160uPHz8WHeeT1GUOJkl5zzfyMxaPiIiQnJycpFKlSkn6+vpSp06dpMjIyC+evykyV/hcOyrSPorMpfJSkHMaRefAkqTYXFERn5v3fWrfiva1JCl2LktSwfRFUcvKypJGjBghlS5dWoqIiBAd54slJCRIAKTz588X+r62b98uaWuXkPZFJyr8+Pd5qMjyP45dlJp16iKVLF1G0tErKVnXbSBNW7kxx3Z/P3RaatTGXtLRKynpldKXbNt1lFYdD5RkGhofrbfpYpjU1qWPVPabCpKWtrZkXq2mNPm3NTn2/d//5+TnGD88PH9ZKWmXKFHo/fAlsrOzJQMDA+mPP/4QHYWoUMTFxUmVKlWSunTpIr1+/Vp0nM9Sl7Hop16b331/yf6+dmyoaB8U1ucWio6vPtfHeSno8V5+j1HRNs7vdvMaQ3/N50/K6OrVq1K5cuUkNzc30VGICl337t2lwYMHi45B/7J9+3aphJLOb/KL5xcRFTdZWVlSixYtpCZNmkhZWVmi4xARERGRiklLS5Nat24tGRgYFMln0PRlZJLEW+YRERERFQaZTIbdu3ejX79+oqN8lT179qB///680zIVqMzMTOzZswfe3t64evUqGjdujAkTJsDV1RW6urqi4xGREpk9ezYWL16MjRs3skosEeWwefNmjBo1CrNmzcK8efNEx1FpKSkpsLe3R0ZGBk6fPg1jY2PRkUhFTJkyBevXr0d4eLjCdxwlItWXmZmJFi1aQFNTExcuXICmpqboSPSFYmNjYW9vjxIlSuDAgQOoUaOG6EhERDm8fPkSw4cPx+HDh7F371506dJFdKQvFhQUhGbNmiE2NhYWFhaFui8fHx+4u4+Ab3hsoe7nS8XH3MJCjyFYcypYyP7PHdyH1bMn4/27d0L2/zlRUVGwsbHBlStXYGtrKzoOUaEICgqCs7MzqlevDj8/P5iamoqORET0xfbu3Ythw4ahVatWOHDgAHR0dERHIipULi4uKFOmDLZv3y46Cv0fHx8fjBgxAu+UcH6TXzy/iKi4WbduHcaPH4/g4GA0bNhQdBwiIiIiUiH3799Hly5d8Pr1axw9ehQ1a9YUHYk+QUN0ACIiIiIiKj5evnwJb29vWFlZwc3NDdbW1ggMDERISAiGDRvGQh5ElMNPP/2EadOmYfjw4fjuu+/U4uITIvp6b9++xcSJEzFixAjMmDGDhTwKgKGhIU6ePAltbW20b98eiYmJoiORili4cCFMTU0xYsQIFoEkKka0tLSwdetWXL9+Hd7e3qLj0FewtLREYGAgypYti0aNGmHFihXIysoSHYuISO7kyZOoV68ezp8/j+PHj6t0IQ8AiI+Ph4aGBoyMjERHKVK9axrj8LYNePXiOTLev8f9qEis+XEanAYNEx1NKQUFBUFXVxf16tUTHYWo0DRt2hSBgYF4+vQp6tSpgw0bNiA7O1t0LCKifHn06BEGDhyIvn37YujQoTh06BALeRARERGRwh4/foxZs2bB09OThTyIiIiIKF8CAwPRrFkz6OnpITAwkIU8lByLeRARERERUaFLTk6Gl5cXLCwsMHfuXDg6OiIyMhK+vr5o3ry56HhEpOR+/vln7Ny5E5s2bUL9+vVx+vRp0ZGISKAPX+Tatm0bdu/ejZ9++kl0JLVRqVIlFvSgfNPR0cHGjRtx+vRpbN68WXQcIipCtWrVwpw5czBnzhxERkaKjkNfoXLlyrhw4QKmTp2KKVOmoEGDBjhy5IjoWERUzN26dQs9evSAg4MDGjZsiPDwcLRu3Vp0rK+WkJCASpUqoUSJEqKjFKkf1mzFlVPHMbqdLYa3qIs/Z09Gx36D4DJinOhoSikoKAiNGzcuducJFT81atRAaGgoRo4ciTFjxqBRo0YchxKRSnj58iXmzZsHa2trXLhwAf7+/li9ejW0tLRERyMiIiIiFfL9999DT08PXl5eoqMQERERkQrx8/ODg4MDGjdujNOnT8PY2Fh0JMoDi3kQEREREVGhCQsLw+jRo1GlShWsWbMG3377LR48eIC1a9eievXqouMRkQpxdXVFdHQ06tatC3t7e3Ts2BHXrl0THUtpyWSyzz6KI7aJ6ouMjES/fv3g4OCAGjVqIDw8HH379hUdS+1UqlQJJ06cgEwmQ4cOHZCcnCw6EqmAZs2awdPTE99//z3i4+NFxyGiIjRt2jTUr18fI0aMQFZWlug49BW0tbXh5eWFiIgIVKtWDc7OzrCzs8PevXt5h3QFcL5RMFS1HVU1t7K6evUq+vXrBxsbG9y7dw9Hjx7FX3/9BUNDQ9HRCkRCQgLMzMxExyhytu06wmvLHuy4dgc+Ibfwy76jaNejn+hYSuvy5cto2rSp6BhERUJPTw9Lly5FWFgYLC0t4ezsjEaNGmHHjh3IyMgQHU8lFPVYhGMfxbGt1M/Dhw8xffp0mJub4/fff8fMmTMRHR0NJycn0dGIiIiISMWcOXMGPj4+WL58OfT19UXHISIiIiIVIEkS5s2bh/79+2PcuHE4dOgQypQpIzoWKYDFPIiIiIiIqMBduHAB3bp1Q4MGDXDmzBksXrwYsbGx8PLyQvny5UXHIyIVZWxsDD8/Pxw9ehRPnz6Fra0tunXrhrNnz4qOpnQkSfrsozhim6iuM2fOoGvXrqhbty5iY2Nx4sQJ/PPPPzA3NxcdTW0ZGRnh9OnTkCQJnTt3xrNnz0RHIhWwYMECGBoaYsyYMaKjEFER0tLSwtatW3Hjxg0sXbpUdBwqANWrV8dff/2F4OBgmJmZoX///qhatSoWLlyIpKQk0fGUFucbBUNV21FVcyuTN2/eYOvWrWjRogVsbW1x7949+Pr64vr16+jcubPoeAUqISEBpqamomOQEnv9+jUiIiJYzIOKHRsbG/z9998ICQlBzZo1MWzYMJibm2PGjBm4c+eO6HhKrajHIhz7KI5tpR6ysrJw6NAh9OjRA5aWlvDx8cH06dNx7949/PDDDyhZsqToiERERESkYjIyMjBhwgQ4OTmhZ8+eouMQERERkQp49eoV+vbti4ULF2LNmjVYunQpNDRYIkJVsKeIiIiIiKhAZGRkYNu2bahfvz5at26Nt2/fwt/fH9HR0fD09ISurq7oiESkJjp37owrV67g77//xvPnz9GuXTvUr18f3t7eSE5OFh2PiApAUlISli1bhnr16qF9+/Z4+fIlDh48iKCgIDg4OIiOVywYGRnh5MmTeP78OZycnJCeni46Eim5kiVLYuPGjTh69Ch8fHxExyGiIlSzZk14eXlh7ty5iIiIEB2HCkiTJk2wb98+REVFoXfv3vjtt99gbm6OTp06Yd26dUhJSREdkYhU3Js3b/D3339jyJAhMDIygoeHB8zNzXH69GmEhISgb9++annxUUJCAkxMTETHICUWEhKCzMxMNGvWTHQUIiEaN26MnTt34u7duxg9ejR27tyJGjVqwM7ODosXL0Z0dLToiERUDLx//x5Hjx7F6NGjYWJigu7du+Ply5fYtm0b7t+/jxkzZsDAwEB0TCIiIiJSUStWrEBMTAx+++030VGIiIiISAXExMSgefPmOHv2LI4cOQIPDw/RkSif1O/KByIiIiIiKlLv37/Htm3bYGNjg5EjR6JGjRoICgrCiRMn4OjoCJlMJjoiEakhmUyG7t2749y5cwgKCkKzZs2wYMECmJmZoUuXLti9ezfevn0rOiYR5cObN2+wa9cuODs7w8zMDAsXLkSLFi0QHByMs2fPomvXrhxXFDETExP4+/vj9u3bcHV1RWZmpuhIpORat26NMWPG4LvvvsOjR49ExyGiIjR16lQ0adIEQ4cORUZGhug4VICqV6+OZcuWISEhAT4+PihTpgwmTZoEY2Nj2NvbY9WqVUhMTBQdk4hURHp6Ovz8/ODq6gpDQ0P07t0bDx48wLx58xAfHw9fX1+0a9dOdMxC9eDBA1hYWIiOQUosKCgIRkZGMDc3Fx2FSChzc3N4eXkhNjYWR44cQYMGDfDbb7+hVq1asLGxwaxZsxASEgJJkkRHJSI18erVK/j5+WHgwIEwNDSEs7Mzrl69iokTJ+LOnTs4efIkBgwYgBIlSoiOSkREREQqLDk5GQsWLMD06dNRvXp10XGIiIiISMkdOXIEdnZ20NbWxpUrV9ChQwfRkegLsJgHERERERF9kdevX2P58uWoWrUqRo8ejc6dOyMmJgZ79uyBnZ2d6HhEVIzY2dlh7dq1SEpKwo4dOyCTyTB48GBUrlwZrq6u2L59Ox4/fiw6JhHlIjU1Fdu2bUP//v1RuXJlDB06FJqamti1axcSExOxZs0aNGnSRHTMYs3GxgZHjhzB6dOnMXz4cH5BgvL0yy+/oEyZMvD09BQdhYiKkIaGBjZs2IDo6Gj8+uuvouNQIdDV1UX//v2xd+9epKamwtfXF5UqVcKMGTNgZmaGpk2bYubMmQgICMCbN29ExyUiJZGdnY2rV6/i119/hZOTEypWrIgBAwYgNTUVS5YsQUJCAs6dOwdPT08YGhqKjlvo3r9/j8TERFhaWoqOQkosODiYn7EQ/YuGhgY6d+6MdevWITExEefOnYOjoyN27dqFJk2awMzMDG5ubti8eTPu378vOi4RqZCMjAxcvHgRCxcuRMeOHeVj1aSkJMyfPx+xsbEICQnBrFmzYGVlJTouEREREamJyZMno2zZspg2bZroKERERESkxLKzszF//nx07doV3bp1Q2BgID9nVmFaogMQEREREZFqSU9Px4YNG/DLL7/gyZMncHNzw48//ggTExPR0YiomNPV1UW/fv3Qr18/JCcnY8+ePTh06BBGjhyJrKws2NnZoUuXLnB2dkaDBg0gk8lERyYqdiRJwvXr13H48GEcPnwYwcHB0NbWRtu2bbFw4UL07dsXlSpVEh2T/sPOzg5///03unTpAlNTUyxatEh0JFJipUqVwqpVq+Ds7Iz+/fujZ8+eoiMRURGpUaMG5s2bh9mzZ6Nbt26oW7eu6EhUSEqWLIk+ffqgT58+ePv2LY4dO4ajR49i3759WLRoEXR0dNCiRQvY29vD3t4ednZ20NLix9JExUV0dDROnjyJU6dO4cyZM0hLS4OhoSHat2+PFStWwMXFBRUrVhQdU4gHDx4gOzsbVapUER2FlNi1a9cwfPhw0TGIlJKmpiZat26N1q1bw9vbG6GhoTh8+DBOnz6N8ePH482bN7CwsEC7du3Qvn17tGvXDhYWFqJjE5GSyMzMxJUrV3DmzBmcOXMGFy9eRHp6OkxNTdG+fXusWbMGXbp0QYUKFURHJSIiIiI1deHCBezatQv79+9HqVKlRMchIiIiIiWVmpqKwYMH48yZM1i+fDkmTJggOhJ9JV41RURERERECnn16hU2btyIxYsX49WrV3B3d8eMGTNgZGQkOhoRUQ6VK1fGt99+i2+//RavXr3C8ePH4e/vj1WrVmH27NkwMjJCmzZt0KpVK7Rp0wZ16tSBhoaG6NhEaic7Oxvh4eE4f/48Lly4gHPnziEpKQnGxsZwdnbG9OnT4eDgAH19fdFRKQ8ODg5Yv349hg0bBkNDQ0yaNEl0JFJiTk5OGEWBSuoAACAASURBVDJkCMaPH4927drBwMBAdCQiKiKTJ0/GwYMH4ebmhqCgIGhra4uO9P/Yu/OwqMrGfeD3ILLJKsq+jaDIprIouZUZWJqoaWJpkaWCS4pLCrlBaCqpFZYpqGX4tghZKub7FrgVlgu4oKgYw6ay77LJNr8/+jI/LLVF5Rng/lzXXAwDM+c+XCLPmfM896HHTENDA+PHj8f48eMBADdv3sTRo0dx5MgRREZGYtWqVdDR0YGHhwc8PT0xaNAgDBw4EBYWFoKTE9GjUFFRgbNnz+LMmTM4e/YsTp8+jby8POjq6uKpp57CqlWrMHLkSLi4uLBUFUBWVhYA8IpJdF+3b99GZmYm+vfvLzoKUbvg6uoKV1dXrFy5Enfu3MHp06dx7NgxHD9+HLNnz0ZdXR2sra0xcOBAeHh4wMPDA+7u7tDX1xcdnYjaQHp6OpKSkhS35ORkVFVVwczMDE8//TQ+/PBDjBgxAnZ2dqKjEhEREVEn0NjYiHnz5sHb21txToWIiIiI6I/Onj0LX19fNDU14fjx4xg8eLDoSPQIsMyDiIiIiIgeqLKyEtu2bUN4eDgaGxvx+uuvY/ny5TA2NhYdjYjob9HW1sbEiRMxceJEyOVynDt3Dj/++CMSExOxcuVKVFRUQF9fH0OHDsXw4cMxbNgweHh4QF1dXXR0onbnzp07OHv2LBITExW31r9jCxYswKhRo+Dq6sqFXO2Qn58fioqK8NZbb6FXr16cYEIP9MEHH8DJyQlBQUGIiooSHYeI2oiKigp27twJV1dXhIeHY+XKlaIjURuzsLCAn58f/Pz8AABpaWk4fvw4Tp8+jbi4OLz33ntobm6GmZkZBg4ciEGDBmHQoEHw8PDgokoiJXfnzh1cvHhRUdxx5swZpKWlQS6Xw9LSEoMGDcKiRYswfPhweHh4QFWV01H+KCsrCzo6OujevbvoKKSkUlJSIJfL0a9fP9FRiNoddXV1PPnkk3jyyScREhKCuro6nDp1CidPnkRSUhI++ugj3Lp1CxKJBHZ2dncVfLi6urJsmKidy8nJuau4IykpCWVlZVBVVYWzszM8PDzwyiuvYPjw4bC3txcdl4iIiIg6oS1btiAtLQ2xsbGioxARERGREpLL5di0aROWL1+O0aNHY/fu3Tyv3IFw9gQREREREd1TSUkJNm3ahK1bt0JNTQ2LFy/G/PnzoaenJzoaEdG/JpFI4O7uDnd3dwBAc3Mzrl69ipMnTyIxMRHbtm1DcHAwVFVV0adPH8X3uru7w83NDVpaWoL3gEh5NDQ04Pr160hOTr7rVldXBxMTE3h4eODtt9+Gl5cXXF1doaKiIjoyPQJLlixBeno6XnnlFZw8eZILjOi+DA0NsWXLFrz00kuYPHkyvL29RUciojZib2+PtWvXIjg4GGPGjIGbm5voSCSQvb097O3tERAQAACoqqrChQsXFGPHL774AitWrAAAmJqawsnJCY6OjoqPPA4jEiM3NxfJycm4cuUKUlNTceXKFVy+fBl37tyBjo4O+vXrh1GjRuHtt9/G8OHDIZVKRUduF7Kysvizoge6ePEi9PT0YGVlJToKUbunoaGBESNGYMSIEYrHysrKkJycjMTERCQnJyM8PBwFBQUA7j0WHTBgAEs+iJRMWVmZYnza8jElJQWFhYUAgF69emHo0KEICQnhuT0iIiIiUhoFBQUICwvDsmXL0KdPH9FxiIiIiEjJ3LhxA9OnT8fPP/+Md999F0uXLuUFEzsYlnkQEREREdFdqqqq8MEHH2Dz5s1QV1fHypUrMWfOHOjo6IiORkT0yKmoqMDJyQlOTk7w9/cHAKSnp+P06dM4d+4czp07h4MHD6KiogKqqqpwcHCAm5sb3Nzc4OzsDEdHR5iYmAjeC6LHLz8/X7F4Kzk5GefOncO1a9fQ2NgIPT09uLm54YknnsDcuXPh6ekJW1tb0ZHpMWq5Ysy4ceNw5swZGBkZiY5ESsrX1xdff/01/P39cenSJS6AIepEFi5ciAMHDmDGjBk4c+YMunbtKjoSKQltbW0MGzYMw4YNUzyWl5eH5ORkXL58GSkpKTh+/Di2b9+O+vp6qKqqonfv3nB2doaLiwscHR1hZ2eH3r17c0EW0UNqbGxEVlYWfvvtN1y9ehWpqalISUnBlStXUFNTA4lEAqlUCmdnZzz77LNYunQp+vfvD3t7e04c+pdY5kF/5dKlS+jXrx9/x4geEwMDA3h5ecHLy0vxWHZ2Ns6fP6947/PEiROKsaiKiorib6GjoyMcHR3Ru3dv2NraokePHgL3hKhja2xsRE5ODmQyGa5fv47Lly8rfkdLS0sBAD169FD8bk6cOBHOzs5wdXXl+49EREREpJSWLFkCPT09BAUFiY5CREREREomNjYWs2fPhpGREX755Rd4eHiIjkSPAcs8iIiIiIgIAFBfX4/du3cjJCQEVVVVmDdvHpYvXw5dXV3R0YiI2pSdnR3s7Owwbdo0AIBcLodMJlOUe5w7dw6HDh1CSUkJgN8nADs4OMDR0RF9+/aFk5MT+vbtC2tra068p3ZFLpcjKysL165dw5UrV3D16lWcOnUKubm5KCsrAwAYGhrCzc0Nzz//PFatWgU3NzfY2try33on07VrV8TGxsLT0xOTJk3CkSNHoKamJjoWKamtW7fCyckJISEh2Lx5s+g4RNRGVFRU8Nlnn6F///5Yv349Vq9eLToSKTFTU1OMHTsWY8eOVTzW0NCgWLR16dIlXL58Gbt370ZWVhaam5sBAObm5ujdu7ei3KP1R01NTVG7Q6RUGhsbkZ2djfT0dPz222+KW3p6OrKystDQ0AAAMDIygouLC4YOHYqAgAC4uLjAycmJiyEfsczMTAwaNEh0DFJiFy9ehJubm+gYRJ2KtbU1rK2tMWHCBMVjjY2NkMlkdxUIHDx4EJs2bVL87dTX14etrS1sbW1hZ2d310dzc3NRu0PUbty5cweZmZlIT09Heno6ZDKZ4mPrcaqBgYGilH/y5MlwdHSEs7MzC6aJiIiIqN1ITEzEl19+ie+++w7dunUTHYeIiIiIlERFRQXmz5+P//znP5g1axbef/99jhc7MJZ5EBERERF1cs3Nzdi3bx+Cg4Nx8+ZNTJ8+HWvWrOEEGCKi/yORSBQFH76+vorH8/PzceXKlbuKD77//nvk5eUBALp16wZ7e3v06tXrrputrS2srKygqsq3ZajtNTQ0ICcnBxkZGXfdZDIZ0tLSUFNTA+D3BZUWFhZITU2FtrY2fHx8MH36dIwfPx5dunQRvBekDAwNDREXF4fBgwdj9uzZ+PTTT0VHIiVlamqKjRs3wt/fH5MmTcKQIUNERyKiNtKrVy+sWbMGS5cuxfPPPw93d3fRkagd6dq1q2LB1pQpUxSP19XVQSaTKcoIWgoKfvzxR9y4cQNyuRwSiQQWFhawsbGBjY0NrKysYGlpCSsrK1hZWcHa2poFBdRh1NfX48aNG7hx4wZycnKQlZV11/3MzEzFQsgePXoo3t8YPHiw4n7v3r2hr68veE86h6ysrLveWyJqTS6XIzU1FdOnTxcdhajTU1VVhb29Pezt7TFp0iTF401NTcjJyVEUDrSUD8TFxUEmkyneW9XU1ESvXr1gY2MDCwsLWFpaKsajlpaWsLCwgLq6uqjdI2oTpaWluHnzJnJycpCTk4ObN2/eNU69efOmoqjR2NhYUYYzZMiQu4pyDA0NBe8JEREREdG/19jYiDfffBPe3t4YP3686DhEREREpCSOHDmC6dOno6GhAQcPHrzr4jfUMXHVCBERERFRJyWXy3Ho0CGsXLkSV69exeuvv47Vq1fzalFERH+TiYkJTExMMHLkyLseLysrw9WrV3HlyhVcv34dMpkM8fHxyMjIQEVFBYDfJwNbWVndVfJhYWEBKysrmJmZwdzcHBoaGiJ2i9q5uro63Lp1C7m5uYoJsjKZTFHacePGDTQ2NgIA9PT0FP/+vLy8MG/ePDg6OsLBwUGxkCs7Oxv79+9HbGwsJk2aBENDQ4wZMwaTJ0/G6NGjWUrTyTk4OOCrr76Cj48P3Nzc8Oabb4qORErqjTfeQExMDGbMmIELFy5wwQpRJ7JgwQLs378fM2bMwJkzZ6CmpiY6ErVzGhoaipKPP6qrq7ur4CM7OxvZ2dm4cOECcnJyFMdjANC9e3fFgkobGxtYWlrC1NQUpqamimM9Lhoj0aqrq5Gbm4uCggLk5eUhLy8POTk5ikWQOTk5yMvLg1wuB/D770dLaY2VlRWGDh2K3r17K0o7DAwMBO9R51ZXV4f8/HzY2NiIjkJKKiMjA5WVlejXr5/oKER0H126dIFUKoVUKoW3t/efvp6bm6so+MjMzER2djauX7+OI0eO4MaNG7hz547ie01MTP5U9GFsbKwYjxoZGaFnz55tuXtEf0t9fT0KCwsV49TCwkJFaUfrwo7q6mrFc1off7m4uOD5559XlHXY2tqybJGIiIiIOqytW7fi2rVriI2NFR2FiIiIiJRAXV0dQkNDsXHjRkycOBHbt2/n3JROgrPtiYiIiIg6oYSEBLz99ttITk7Giy++iG+++Qa9e/cWHYuIqEMwMDDAkCFDMGTIkD99raSkRFGq0HJLT0/Hjz/+iFu3bimulgsAPXv2hJmZGSwtLaGvrw9NTU0MGTIEZmZmMDU1Rc+ePdGzZ0906dKlLXePBGlsbERxcTGKioqQm5uL3Nxc3LhxA7du3cKtW7dw48YN5OXloaioSPEcNTU1mJubQyqVolevXnjmmWfuKpD5O28AW1tbIzAwEIGBgcjKysKBAwcQGxuLcePGoUePHpg4cSJeffVVDB06FBKJ5HH+CEhJjR49GmvWrMGiRYvQv39/DB8+XHQkUkISiQSRkZFwcXHB+vXrERoaKjoSEbURFRUVfPbZZ+jXrx/WrVvH3396rDQ0NODs7AxnZ+d7fr2yslJxFejWZQjnzp3D/v37UVBQgPr6esX3q6urw8jICObm5jA2NoaZmZligaWpqSmMjIxgaGiInj17Qk9Pr612k9q5mpoalJSUoLi4GPn5+YqFkPn5+cjPz0deXh4KCgpw69atuxZASiQSGBkZKYpAPT09MWXKFMWiyJYFwKS8srOzIZfLWeZB95WSkgIVFZX7/h0jIuVnZmYGMzOz+74/lp+fryg7aBmP3rhxA0lJSdi3bx8KCwvvOkfQtWtXGBkZKcrmWsamRkZGinGpoaEhunfvDkNDQ3Tt2rWtdpU6mKqqKpSWlqKkpAT5+fkoKipSjE1bxquFhYUoKChASUnJXc/V1tZWFNNYWFhg8ODBsLKyUjxmbW0NLS0tQXtGRERERCROUVERQkNDsWTJEs7NJSIiIiJcunQJr7zyCrKysrBt2zb4+/uLjkRtiGUeRERERESdyNmzZ7F06VKcOHECY8eOxYULF3iVNyKiNmRoaAhDQ0MMHDjwT1+Ty+XIz89XlDMkJibi1KlT+PXXX1FSUgJ1dXV88cUXqKmpUTxHIpGgR48eimKP1lfsa5nQ27NnT3Tv3h36+vowMDCAhoZGW+4y3UddXR3KyspQXl6O0tJSFBUVoaCgAAUFBSguLkZhYaFi0mzLrTUtLS1YWlrCzMwMFhYW6NevH8zNzWFpaQlzc3PFgsNHWbBhY2OjKPa4cuUKYmJiEBMTg6ioKFhZWWHy5MmYMmXKPf99U8cWHByM06dPY+rUqbhw4QKbwumebGxsEBYWhmXLlmH8+PFwdXUVHYmI2ohUKsW6deuwePFijB07Fh4eHqIjUSelq6v7wLIPAIpxeV5enqJcoWXh2pUrV3D8+HHk5uaioqLirud17dpVcbzXcms5VvvjY3p6etDV1YWenh6vQN2O1dXVobKyEpWVlSgvL0dJSYniVlxcrLhfVFR01+e1tbV3vY6mpiZMTExgamoKY2Nj9O/fH0ZGRvcsj1FV5fSO9iwzMxMAWOZB95WamgobGxv+bSDqwFpKOR50TFRUVKR4b7h18VdBQQFyc3ORlJSEwsJCFBUVobm5+a7n6urqKsacrUs+7nW/ZUyqq6vLooUOpKysDJWVlbh9+zYqKioUY9CWoo7W49LWj9+5c+eu19HQ0FAUGhoZGcHe3h5PPfWUYpzaumSG/36IiIiIiO5txYoV6NatG95++23RUYiIiIhIoLq6Oqxbtw4bNmzAsGHDEBcXBysrK9GxqI1xtgcRERERUSeQm5uL5cuXIzo6GkOHDsXJkycxZMgQ0bGIiKiV2tpaJCUl4dChQ/j+++9x69YtGBsbY8yYMfDx8cFzzz0HHR0dlJWVKUoeWq6E1lL2kJeXh/Pnzyuu8FteXv6n7WhoaMDAwAAGBgaKgo/W9/X19aGtrQ0DAwNoampCU1MT+vr60NLSgpaWFnR1daGtrd1pr/LX0NCAqqoqVFRUoLa2FjU1NSgvL7/rflVVFcrLy1FWVqYo7Gj9saysDHV1dX96bQMDAxgbG6NHjx4wMjKCk5OToqjF2NhYUdRiYmICAwMDAXv//zk6OiI0NBShoaFITU1FbGws9u7di82bN6Nv376YMmUKXn/9dVhbWwvNSW1DIpHgs88+g5ubG/z8/HDo0KFHWiRDHceCBQsQExODOXPm4JdffoGKioroSETURubNm4d9+/ZhxowZOHv2LNTU1ERHIrqnlvH3gwo/gN+P31pKGoqKiu5Z5JCZmYmzZ88qHvtjiQMAqKioQE9PD/r6+nctqGx938DAAHp6etDQ0EC3bt2gra0NNTU16OvrQ11dHVpaWtDR0YGamhr09PQe14+m3aupqcGdO3dQXl6O+vp6VFVVobq6GvX19SgrK0N9fT2qq6tRUVGhKOlofb+8vBzl5eWKz/+44BH4c6lLjx49YGtrC09Pzz89bmhoCGNjY+jq6gr4aZAIWVlZivddiO4lPT2dV2klIsV41MnJ6YHf19TUhMLCQkUZQ0sxwx/LGm7cuHHX1xsaGv70Wl26dFGMO1vGoDo6Oor7LWNVHR0daGhoQE9PTzEObTlXYGBggK5du0JbWxvdunXjMd/fcPv2bTQ0NKC8vBx37txBTU0Nqqqq0NDQgLKyMsW5iNu3b+P27duKcWjL2LT15y1fv5du3br9aSzq5OR0z6IXQ0NDGBkZcYxKRERERPSQzp8/j08//RSff/45i1uJiIiIOrGjR49i9uzZyM/Px6ZNm/Dmm29yzmQnxTIPIiIiIqIOrL6+Htu2bcPq1auhq6uL3bt349VXX+XiSiIiJZGRkYGEhATExcUhPj4eDQ0NcHV1xcyZM+Hj4wM3N7c//Z/dUr7h4ODwl69fX1+PoqKi+5ZKtC6XyMnJUTzWUkYhl8vv+9qqqqrQ0dGBjo4ONDU1FSefW0omNDU1oaGhoVicBkAxibdlcnBrDyoIaZkYfC8tC7LupWWya2uVlZVoampSLNQCgIqKCjQ3N6Ourk6xwK6srAwAUFVVhdraWsWE2cbGxvv+TCQSyV1lKC0FKT169EDv3r3vKkz5Y4lKz5492+0EZycnJzg5OSmKPfbs2YOtW7dizZo1GDlyJF599VW8+OKLvEJfB2dgYICvv/4aw4cPx4cffohFixaJjkRKqEuXLtixYwfc3Nywbds2zJs3T3QkImojKioq+PTTT9GvXz+sX78eISEhoiMRPRRNTU1YWVn9o6ul1NTUoKSkRFEQ0fpjy2K81uURubm5qKysVFxdu66u7k/HN/eioaEBTU1N6OrqQk1NTXHspaWlBXV1dQC/X7W9S5cuimMYAIrFly37p6Ghcc/XvZ97Hee1Vltbe89Swxb3On5rbGzE7du3AeCu47WWRY7A/z+ea25uRkVFhWJblZWVqK2tRX19veI1HqTluLOlSKV1oYqxsbGidOWPX9PT04Oenh4MDQ256JEeKCsrCzY2Nm2+3WZ5M375X1ybb7c9+C3lvOgId5HJZOjXr5/oGETUTnTp0gWmpqYwNTX9R8+rrKxESUnJPYsgWsadrYsjWs4vtC40u1eJ+L3o6+uja9euinMILePLlrFoy/dIJJK7ziO0nHsA7n1u4K/GnQD+slDkr97rbz0Oba3lvEHrsWfrcWxLKQdw97mLiooKNDQ0KMb19yr6+yM1NTV069ZNUazSumBFKpXe9XnL11sXsujq6sLQ0FBxDEBERERERG1DLpdj4cKFGDRoEKZOnSo6DhEREREJUFZWhuDgYOzYsQPPP/88EhIS/tH8Eup4WOZBRERERNRBxcXFYeHChcjPz8fSpUsRFBT0wAn3RET0+DU1NeHXX3/FoUOHkJCQgOTkZHTr1g1PP/00tmzZAh8fn388+fZB1NTUYG5uDnNz83/1/NraWtTW1qK8vBzV1dWKBVG3b99GbW0tqqqqUFFRgdraWtTU1Nw1gbVlcVV9fT0yMjIA/P8JsvdapNUyCfZeWq6WfC+tF5zdS0u5SIuW0pDWE4J1dHQUn7f8/PX09KCiogItLS1oampCT08P2traiqsN6urqQktLC1paWtDX14eWltafFrt1Rk5OTtiwYQNCQ0Nx8OBB7N69G2+88QYWLVqE1157Df7+/ujbt6/omPSYeHp64p133kFQUBAGDx6MJ554QnQkUkLOzs546623sHz5cowfPx4WFhaiIxFRG+nVqxfWrl2LpUuXYty4cXB1dRUdiahNtRw/WFpaPtTrVFVVob6+HuXl5YqFgJWVlaivr0dlZaVi0WB5eTnq6+sVx16tFyy2lDc2NjYqjtdaLzy81zFYSzHi/fxVWUfrY7D7aVnM2eLvlI1YWFhAVfX3aQ8tx3+ZmZn45ptvMGbMGIwbNw76+vqK5+jr60NNTU1x1Xh1dXXFNogep8zMzDYv8zAzMwPkcmxeGNCm221PpNJeoiMoyGQyvPDCC6JjEFEH11Ly8LBSU1Px9ttv49ChQxg0aBACAwNhY2OD6upqxViyrKxMcS6g9fjyXoUYrc8jtB6X3muM+VfjztbbuJ8HFYi3aDlHcL/HWsaerYtItLW1YWJi8qdt6OjoQE1NDXp6eorHtbW1oaamphifduvWTXH+4o/nNYiIiIiIqP348ssvkZiYiFOnTvGie0RERESdUGxsLObNmwdVVVXs3r0bfn5+oiOREmCZBxERERFRB3PhwgUsXLgQP/30E1588UVs3LgR1tbWomMREXVaJSUlOHr0KOLi4hAXF4fy8nL06tULY8eOxYYNG/Dkk08+8ApxImlqakJTUxPdu3cXHeWe/P39IZPJcOTIEdFR6A80NDTg6+sLX19f5ObmYvfu3di5cyc+/PBDPPXUUwgICMDEiROV9t8+/XtBQUE4fvw4pk2bhnPnzikmshO1FhISgm+//RYLFizAt99+KzoOEbWhBQsWYN++fZgxYwbOnDmjWIBPRH9fS6GFsh6nKQO5XI4dO3Zg0aJFKC4uxhdffIFevZRnwT51Tunp6XjmmWfadJsjR45UlPh0VikpKRgxYgTc3d1x4MCBv1y4LUpNTQ3y8/Nha2srOgoR0QOVlJRg48aN+PDDDyGVSrF3715MnjxZdKz7GjhwIEaMGIGNGzeKjkJERERERJ1ATU0Nli9fjhkzZmDgwIGi4xARERFRG5LJZJgzZw6OHDmCmTNnYuPGjY+kXJs6BpW//hYiIiIiImoPSkpKEBgYCA8PD1RXVyMxMRExMTEs8iAiEiA1NRXh4eHw9vaGiYkJpk6dioyMDAQHB+PKlSuQyWSIiIiAl5cXywweglQqRWZmpugY9BfMzMywfPlypKen4/Dhw9DX18err74KS0tLBAUFISsrS3REeoRUVFQQHR2NmpoaBATw6s90b+rq6ti+fTv279+P/fv3i45DRG1IRUUFO3fuxNWrV/Hhhx+KjkNEHZREIoG/vz/Onj2LmpoauLm54auvvhIdizq5jIwMFjUI0K9fPxw9ehQXL17Ec889h9u3b4uOdE/p6emQy+Wws7MTHYWI6J5qamoQHh4OW1tb7NmzB1u2bMGlS5eUusgDAPLy8mBqaio6BhERERERdRJr165FeXk5wsLCREchIiIiojbS0NCA8PBwODs7o6CgACdPnkRkZCSLPOguLPMgIiIiImrnGhsb8f7778PW1hbffvstPv/8c5w5cwZDhgwRHY2IqNOora1FQkICAgMDYWVlBWdnZ2zevBmmpqb48ssvUVxcjMTERAQFBcHBwUF03A5DKpXixo0bnf4qs+2FiooKnnvuOXz33XfIysrCvHnz8OWXX8LOzg6TJk3CiRMnREekR8TY2Biff/45YmJiEBsbKzoOKakRI0bglVdewdy5c1FRUSE6DhG1IXt7e6xcuRIrV67E1atXRcchog7M0dERp0+fxmuvvYZp06bBz88PVVVVomNRJ1RSUoLy8nKWeQgyYMAAnDhxAjKZDM888wxKS0tFR/oTmUwGiUQCqVQqOgoR0V2am5sRGxsLR0dHrFmzBrNnz8a1a9fg7+8PVVVV0fEeqLm5GQUFBSzzICIiIiKiNpGRkYEPPvgAYWFhMDExER2HiIiIiNrADz/8gP79+yMsLAxhYWFITk7GE088IToWKSGWeRARERERtWPJyckYNGgQVqxYgQULFuDatWuYNm0aJBKJ6GhERB1ednY2oqKi4OvrCyMjI3h7eyMhIQFTp07Fzz//jPz8fERHR2Py5MnQ09MTHbdDkkqlaGxsxM2bN0VHoX/I3Nwcq1evRnZ2Nr777jtUVlZixIgRcHV1RVRUFGpra0VHpIc0atQozJw5E3PnzkVhYaHoOKSkPvjgAzQ2NmLVqlWioxBRGwsKCoKzszNmzpyJ5uZm0XGIqAPT0NBAREQEvvvuOxw+fBgeHh44d+6c6FjUychkMgBgmYdADg4OOHr0KHJzc+Ht7Y2SkhLRke4ik8lgZmYGLS0t0VGIiBQSEhLg6uqKadOm4dlnn0V6ejo2bNgAHR0d0dH+haVnzAAAIABJREFUlsLCQjQ2NsLMzEx0FCIiIiIi6gQWL14MqVSKuXPnio5CRERERI/Z1atXMWbMGDz33HOwt7dHamoqli5dqvQl2CQOyzyIiIiIiNqhmpoaBAcHw9PTE9ra2jh37hzCwsLQrVs30dGIiDqspqYmJCcnIzQ0FB4eHpBKpVi0aBFqa2uxefNm3Lx5E6mpqdiwYQOGDRsGFRW+7fK4tVytNDMzU3AS+rdUVFTg4+OD+Ph4nDlzBk5OTpg/fz5sbGwQFhamdItr6J/ZtGkTNDU1sXjxYtFRSEkZGhpi48aN2Lp1K3799VfRcYioDamqqmLXrl04e/Ystm/fLjoOEXUC48ePR2pqKqRSKZ544gmEhoayTIjajEwmg6qqKiwtLUVH6dTs7e2RmJiIsrIyeHl5obi4WHQkBZlMxrIXIlIaSUlJGDlyJLy9vWFkZIRz584hMjKy3V1ZOi8vDwBgamoqOAkREREREXV0R44cwYEDB/D++++ja9euouMQERER0WNSWlqK4OBgDBgwANnZ2fjvf/+L7777DjY2NqKjkZLjqhIiIiIionbm8OHDcHR0RGRkJDZv3ozjx4/DwcFBdCwiog6prKwMsbGxCAgIgIWFBTw8PBAdHQ13d3ccOHAApaWliIuLg7+/P8zNzUXH7XSMjIygra3NMo8OYuDAgfjPf/6DrKwszJo1CxEREbCxscGiRYtw48YN0fHoX9DV1cX27dvxxRdfYP/+/aLjkJJ67bXXMHLkSAQEBKChoUF0HCJqQ/3798fSpUuxbNkyZGRkiI5DRJ2AsbExDh8+jI0bN2L9+vUYNWoUcnNzRceiTkAmk8HGxoZXYlICNjY2OHbsGG7fvo0nn3xSsdBbtPT0dJZ5EJFwOTk5CAgIgKenJ2pqanDixAnEx8fD2dlZdLR/peX/eDMzM8FJiIiIiIioI2tsbMTChQsxYcIEPPfcc6LjEBEREdFj0NDQgKioKNjb22PXrl147733kJKSwvEf/W0s8yAiIiIiaicKCgrg5+eH559/Hi4uLrh8+TICAwOhosJhPRHRo5SRkYGIiAh4e3vD2NgYL7/8MlJTU7Fw4UIkJSUhIyMDkZGR8PHxgbq6uui4nZ61tTWysrJEx6BHyNTUFGvXrkV2djbWrl2Lffv2wdbWFn5+frhy5YroePQPjRkzBn5+fpg7dy7KyspExyEltW3bNqSnp+P9998XHYWI2tjq1athY2MDf39/yOVy0XGIqBOQSCQIDAzEyZMnkZOTgwEDBuDQoUOiY1EHJ5PJWNSgRKytrXH06FE0NDTg2WefRWlpqehIuHnzJqytrUXHIKJOquVKgvb29jh+/Di+/vpr/Prrr3jyySdFR3soubm50NbWhra2tugoRERERETUgX3yySdIT0/Hpk2bREchIiIioscgISEBrq6umD9/PqZOnQqZTIbAwEB06dJFdDRqR7jqj4iIiIhIycnlckRHR8PJyQmJiYn473//i7i4OJibm4uORkTUIdTV1SEhIQHBwcFwcHCAra0t1qxZAwMDA+zcuRPFxcVITExEUFAQ3N3dRcelP5BKpcjMzBQdgx4DbW1tBAYGIj09Hdu3b8eZM2fg4uKCF198EZcuXRIdj/6BiIgIqKioYOnSpaKjkJKys7PDihUr8M4770Amk4mOQ0RtSF1dHbt27cLx48cRHR0tOg4RdSIeHh5ITk7GCy+8gHHjxiEgIAA1NTWiY1EHxTIP5WNlZYVjx47h9u3bGD16NG7fvi00T15eHkxMTIRmIKLOp76+HhEREbC1tcXOnTsRGhqKlJQUTJ48GRKJRHS8h5aXlwczMzPRMYiIiIiIqAMrKytDWFgYFi1axPf/iIiIiDqYq1evYsyYMfD29oZUKsW1a9cQEREBXV1d0dGoHWKZBxERERGREktLS8NTTz2FGTNmYPr06bh06RKee+450bGIiNq9oqIiREdHw9fXF8bGxvD29kZsbCxGjRqF+Ph45OfnIyYmBn5+ftDX1xcdlx6AZR4dn5qaGt544w1cuXIFMTEx+O233zBgwABMmTIFV65cER2P/gZ9fX1s2bIFn376KY4dOyY6DimpoKAg9OnTB7NmzYJcLhcdh4jakKenJ958800EBgbi1q1bouMQUSeio6ODyMhIxMTEIDY2FoMGDUJKSoroWNQBscxDOVlYWCA+Ph45OTkYP3486urqhOSoq6tDRUUFyzyIqM00NzcjNjYWffv2xfLlyxEQEACZTIagoCCoq6uLjvfI5OXlwdTUVHQMIiIiIiLqwFavXo0uXbogODhYdBQiIiIiekRkMhn8/Pzg4uKCkpISnDx5EnFxcZBKpaKjUTvGMg8iIiIiIiUkl8uxbds2uLm5obq6GmfOnMGmTZvQrVs30dGIiNqt1NRUhIeHY9iwYTA2Nsbs2bMVV0jIzs6GTCZDREQEvLy8oKqqKjou/U0s8+g8VFRUMGnSJFy4cAH79+9Heno6XFxc4OPjg4sXL4qOR39h4sSJGDt2LBYuXIimpibRcUgJqaqqIjIyEidOnMAXX3whOg4RtbF169ahR48emDNnjugoRNQJvfjiizh//jwMDAzg6emJiIgIlovRI1NbW4u8vDyWeSgpOzs7/Pjjj7h48SKmTJmChoaGNs+Qn58PACzzIKI2kZCQAA8PD7z00ksYNmwYfvvtN2zYsAF6enqioz1yubm5LPMgIiIiIqLH5urVq4iMjMS6det4dXYiIiKiDuDGjRvw9/eHg4MDTp8+jf/85z84deoUhgwZIjoadQAs8yAiIiIiUjKFhYWYMGEC3nzzTcycORO//vorXF1dRcciImp3ampqEBcXh4CAAJibm8PZ2RkffPABevXqhb1796KwsBDx8fEIDAyElZWV6Lj0L9nY2CAvL0/Y1VOp7UkkEvj4+ODs2bP46quvkJmZCXd3d0yfPh05OTmi49EDfPDBB0hLS8OOHTtERyEl5enpiYCAACxcuBBFRUWi4xBRG9LS0sKOHTtw6NAhfPPNN6LjEFEnZG1tjWPHjiEoKAhLlizBxIkTUVJSIjoWdQAymQxyuZxlHkrMxcUFhw8fxtGjR/H666+jubm5TbfPMg8iagtXrlyBj48PvL29YWhoiPPnzyM6OhpmZmaioz02WVlZsLGxER2DiIiIiIg6qMWLF8PR0RHTp08XHYWIiIiIHkJRURGCg4PRp08f/PDDD/j444+RmpqKl156CRKJRHQ86iBY5kFEREREpER++OEHDBgwABcvXsSxY8cQEREBNTU10bGIiNqNjIwMREVFwcfHB927d8eECROQnJyMWbNmISkpCXl5eYiOjsbkyZOhra0tOi49AlKpFHK5HNnZ2aKjUBtTUVGBr68vUlJSsGfPHiQmJsLe3h7Lli1DWVmZ6Hh0D7a2tpg3bx5WrFiB0tJS0XFISW3YsAEaGhoICgoSHYWI2tjTTz+NGTNmYM6cOSz0ISIhVFVVERoaisTERFy8eBFOTk744YcfRMeidk4mk0EikUAqlYqOQg/g6emJAwcOYN++fXjzzTfbdNsFBQUAAGNj4zbdLhF1Djdv3kRAQAD69euH/Px8HD16FPHx8ejXr5/oaI9ddnY2rK2tRccgIiIiIqIOKCEhAf/73/+wadMmdOnSRXQcIiIiIvoXSktLERoaCltbW3z22WcIDQ1FWloa/P39oaqqKjoedTAs8yAiIiIiUgK1tbUIDAzE6NGjMWzYMJw/fx5PPvmk6FhEREqvqakJiYmJCA4OhoeHB2xtbbF48WIAwJYtW3Dr1i0kJSUhNDQU7u7ubMjtgFoWw2RmZgpOQqKoqKjg5ZdfxtWrVxEREYHo6GjY2toiPDwcdXV1ouPRH4SEhKBr16549913RUchJaWrq4uIiAjs3r0bR44cER2HiNrY5s2boaGhgSVLloiOQkSd2BNPPIHz58/j6aefxujRoxEYGIj6+nrRsaidkslkMDExQbdu3URHob8wcuRIfP3119ixYweWL1/eZtvNz8+Hvr4+NDQ02mybRNTxVVVVITQ0FH369MH//vc/fPLJJzh9+jSefvpp0dHaREVFBcrLy2FjYyM6ChERERERdTCNjY1YtGgRJk6cCC8vL9FxiIiIiOgfqqqqQnh4OGxtbbF161asWLECWVlZCAoK4vk6emxY5kFEREREJFhSUhJcXV3x+eefY8+ePYiJiYGBgYHoWERESqu4uBixsbHw8/NDjx49MHz4cMTGxmLo0KGIj49HaWkp4uLi4O/vDxMTE9Fx6THT09ODgYEByzwIXbt2hb+/P9LS0jBnzhyEhYWhb9+++OqrryCXy0XHo/+jq6uL0NBQfPTRR0hLSxMdh5TUpEmTMG7cOMyZM4elPESdjK6uLrZv3449e/bgwIEDouMQUSemp6eHr776Crt378auXbswbNgwpKeni45F7ZBMJoOdnZ3oGPQ3jR8/Hp9++inCw8OxcePGNtlmQUEB38MkokemoaEBUVFRsLW1xUcffYSQkBDFlQRVVDrPVNGW8wUs8yAiIiIiokdt27ZtuH79OjZs2CA6ChERERH9A+Xl5Vi3bh2sra0RHh6OpUuXIjMzE0FBQdDU1BQdjzq4znOGhoiIiIhIyTQ1NSE8PBxDhw6FhYUFLl++jGnTpomORUSklFJTUxEeHg5vb2+Ymppi6tSpyMjIQHBwMK5evQqZTIaIiAh4eXlBTU1NdFxqY1KplGUepKCnp4d3330X169fx8iRI/HKK69gxIgRSElJER2N/s+sWbPg4OCAt956S3QUUmKffPIJCgsLsW7dOtFRiKiNPf/883j55Zcxd+5clJeXi45DRJ2cn58fkpKS0NjYCDc3N0RFRYmORO2MTCaDra2t6Bj0D7z66qt4//33ERQUhL179z727bHMg4geBblcjtjYWDg4OGD+/Pl46aWXIJPJOu2VBLOysiCRSGBlZSU6ChERERERdSBlZWUICwvDwoUL0bt3b9FxiIiIiOhvyM/PR1BQEKytrfHee+9h3rx5yMjIwPLly6GtrS06HnUSLPMgIiIiIhKgqKgIo0ePRkhICMLCwvDjjz/CwsJCdCwiIqVRW1uLhIQEBAYGwsrKCs7Ozti8eTNMTU3x5ZdfoqSkBImJiQgKCkLfvn1FxyXBWOZB92Jubo5PP/0UZ8+eRWNjI1xdXeHn54fi4mLR0Tq9Ll264P3338ehQ4dw7Ngx0XFISZmZmeGdd95BeHg4UlNTRcchojb20UcfobGxEcHBwaKjEBGhb9++OH36NBYvXow5c+bA19eXZUP0t7HMo30KDAzEggUL4Ofn99iPWwsKCmBkZPRYt0FEHduvv/6K4cOH46WXXoKbmxuuXbuGiIgI6Ovri44mTFZWFoyMjKClpSU6ChERERERdSDvvPMOJBIJli9fLjoKEREREf2FzMxMBAYGolevXti9ezcWLVqEzMxMhIWFder3z0kMlnkQEREREbWxn376Cf3790dmZiZOnTqFoKAgqKhwaE5ElJ2djaioKPj6+sLIyAje3t5ISEjA1KlT8fPPP6OgoADR0dGYPHkydHV1RcclJcIyD3oQNzc3/Pzzz9i5cyd+/PFHODg4ICoqCs3NzaKjdWrPPPMMnnnmGYSFhYmOQkps/vz5cHd3x4wZM/g7S9TJGBoaIiIiAlFRUUhISBAdh4gIXbt2RWhoKH744QckJiZiwIABOHnypOhYpOSampqQk5PDMo926v3338fYsWMxefJkpKWlPbbtlJWVoXv37o/t9Ymo47p27Rp8fX0xZMgQaGpqIikpCTExMZBKpaKjCZednQ0bGxvRMYiIiIiIqANJS0vDJ598gjVr1kBPT090HCIiIiK6j5SUFPj5+aFPnz6Ii4vD+vXrkZWVhdDQUBgYGIiOR50UVwwSEREREbURuVyOiIgIeHl5YeDAgThz5gwGDBggOhYRkTBNTU1ITk5GaGgoPDw8IJVKsWjRItTW1mLz5s24efMmUlNTsWHDBgwbNgwSiUR0ZFJSLPOgv6KiooLXX38d6enpmDdvHubPn49hw4YhNTVVdLRO7Z133sHx48fx008/iY5CSkpFRQXbt2/HuXPnsGPHDtFxiKiNvfTSS5gwYQL8/f1RVVUlOg4REQDAy8sLFy9ehLOzM0aMGIHQ0FA0NTWJjkVKKicnB/X19SzzaKdUVFSwZ88e2NnZYezYsSgpKXks26murka3bt0ey2sTUceUm5uLgIAAuLi44MqVK4iLi0N8fDxcXV1FR1MaLPMgIiIiIqJHbcmSJejduzdmzJghOgoRERER3UNiYiJ8fHwwYMAAXLx4Ebt27cL169cRGBgITU1N0fGok2OZBxERERFRG6iqqsKkSZPw1ltvYf369di/fz9bHYmoUyotLUVsbCwCAgJgYWEBDw8PREdHw93dHQcOHEBpaSni4uLg7+8Pc3Nz0XGpnZBKpSgtLUVFRYXoKKTktLW1ERoaiqSkJDQ3N8PV1RXBwcG4c+eO6Gid0tChQzFixAiEhYWJjkJKrF+/fli4cCGWLVuGW7duiY5DRG3s448/RllZGUJCQkRHISJS6NmzJ+Li4rBp0yZs2LABXl5euHnzpuhYpIRkMhkAsMyjHdPS0sLBgwfR0NAAX19fNDY2PvJtsMyDiP6u6upqhIeHo2/fvjh8+DC2bt2KixcvYuzYsaKjKZ2srCyWeRARERER0SMTHx+P77//HhEREVBVVRUdh4iIiIj+T1NTE/bt24fBgwdj+PDhqKysxPfff48LFy7Az8+PYzdSGizzICIiIiJ6zDIzMzFkyBCcPHkSR48exZIlSyCRSETHIiJqMxkZGYiIiIC3tzdMTEzw8ssvIzU1FQsXLkRSUhIyMjIQGRkJHx8fqKuri45L7ZBUKgXw+9X2iP4OFxcX/PLLL/j444/xySefwNnZGceOHRMdq1NatWoVjhw5gp9//ll0FFJioaGh6NmzJxYtWiQ6ChG1MTMzM2zcuBERERFITk4WHYeISEEikSAwMBDJyckoKSmBs7Mzvv76a9GxSMnIZDLo6urC0NBQdBR6CEZGRjhw4ABOnz79WI5JWOZBRH+loaEBUVFRsLOzw9q1a7F48WJcv34d/v7+6NKli+h4SikrKwvW1taiYxARERERUQfQ3NyM4OBg+Pj4wMvLS3QcIiIiIsLvFxd97733YGtrC19fXxgZGeHkyZM4ceIERo8ezfVapHRY5kFERERE9BglJibiiSeegEQiwenTpzF8+HDRkYiIHru6ujokJCQgODgYffv2ha2tLdasWQMDAwPs3LkTxcXFSExMRFBQENzd3UXHpQ7AxsYGEokEmZmZoqNQO6KiogJ/f39cunQJvXv3hpeXF+bNm4fq6mrR0TqVkSNH4sknn8S7774rOgopMS0tLWzduhWxsbE4ePCg6DhE1MZmzJiBp556Cm+88QYaGhpExyEiuouTkxNOnz6N1157DS+//DL8/Px4TEEKMpkMdnZ2omPQI9C/f3/s2bMHW7duRWRk5CN97aqqKpZ5ENF9JSQkwNXVFW+++SbGjRsHmUyG0NBQaGpqio6mtCoqKlBWVgYbGxvRUYiIiIiIqAP4/PPPcfHiRaxfv150FCIiIqJOLy0tDYGBgbCyssLatWvx7LPP4vLlyzhw4ACGDBkiOh7RfbHMg4iIiIjoMdmxYwdGjhyJp556Cr/88gsnDBFRh1ZYWIjo6Gj4+vrC2NgY3t7eiIuLw4QJExAfH4/8/HzExMTAz88P+vr6ouNSB6OhoQETExOWedC/Ym1tjcOHDyM6Ohp79+7FgAEDcOrUKdGxOpWVK1fihx9+wMmTJ0VHISX27LPP4uWXX8b8+fNRVVUlOg4RtSGJRIJt27bh+vXriIiIEB2HiOhPNDU1ERERgW+//RaHDx+Gh4cHzp8/LzoWKQGZTAZbW1vRMegReeGFF7B69WosWLAAiYmJj+x1q6urWeZBRH9y+vRpPPXUUxg1ahQcHR1x9epVREZGwsjISHQ0pXft2jUAgL29veAkRERERETU3tXW1iIkJASzZs2Ck5OT6DhEREREnVJzczMSEhLg4+MDBwcHHD58GKtWrUJOTg4iIyPh4OAgOiLRX2KZBxERERHRIyaXy7FixQoEBARgxYoV2Lt3LydiElGH09zcjOTkZISHh2PYsGEwMTHB7NmzUVZWhrCwMOTk5CA1NRUbNmyAl5cXVFVVRUemDk4qlbLMgx7KtGnTkJqair59+2LYsGEIDg5GfX296Fidgre3N4YMGYLw8HDRUUjJbdmyBTU1NVi9erXoKETUxvr06YO3334bISEhyMjIEB2HiOieXnjhBZw/fx7GxsYYPHgwwsPD0dzcLDoWCcQyj44nJCQEo0ePhq+vL/Lz8x/69eRyOWpra3kOiYgUrl+/Dl9fXwwePBiNjY1ITExETEwM/578A2lpaVBXV4e1tbXoKERERERE1M5t2rQJZWVlCAkJER2FiIiIqNOprKxEREQE7OzsMGrUKNTV1eHAgQO4fv06goKCeHFRaldY5kFERERE9AjV19fDz88P7733HiIjIxESEgKJRCI6FhHRI1FdXY24uDgEBATA0tISHh4e2LZtG5ycnLB3714UFhYiPj4egYGBsLS0FB2XOhkbGxuWedBDMzY2xsGDB/HJJ59g69atGDhwIFJSUkTH6hSWLFmC77//nr/H9EA9evTAhg0bEBERgVOnTomOQ0RtLDg4GFKpFHPnzhUdhYjoviwtLXHs2DGEh4dj1apVeO6555CXlyc6FgmSkZHBxdcdjEQiwZ49e6Cnp4eXXnoJjY2ND/V6NTU1kMvlLPMgIhQXFyM4OBguLi64dOkS9u7di5MnT2LIkCGio7U7aWlp6NOnD7p06SI6ChERERERtWOFhYXYtGkTgoKCYGJiIjoOERERUadx9uxZBAQEwMzMDKtXr8bYsWORlpaG+Ph4+Pj4cH0WtUss8yAiIiIiekQqKirw7LPPIi4uDv/9738xa9Ys0ZGIiB5aRkYGoqKi4OPjg+7du2PChAlITk7GrFmzkJSUhMzMTERGRmLy5MnQ1tYWHZc6MalUyhIAeiQkEgn8/f2RlJQEDQ0NPPHEE4iMjBQdq8MbN24czMzMEBUVJToKKbk33ngDI0aMQEBAABoaGkTHIaI2pKamhl27diE+Ph5ffPGF6DhERPclkUgQGBiIxMREZGZmYsCAAfj+++9Fx6I2VlBQgNu3b7PMowPS0dFBTEwMzp49i5UrVz7Ua1VXVwMAyzyIOrGamhqEh4fD1tYWe/bswUcffYRLly5h8uTJoqO1W9euXUPfvn1FxyAiIiIionZu9erV0NbWxqJFi0RHISIiIurwysvLsXXrVri6umLQoEFITEzEunXrcOPGDWzZsgW9e/cWHZHoobDMg4iIiIjoESguLsYzzzyD69ev46effoKXl5foSERE/0pTUxMSExMRHBwMJycn2NraYsmSJQCAjz76CLdu3UJSUhJCQ0Ph7u7OdltSGizzoEfN3t4eJ0+exJIlSzB37lxMmzYNVVVVomN1WKqqqpg5cyZ27tyJuro60XFIiUkkEnzyySdIS0vDxx9/LDoOEbUxT09PBAQEYOHChSgqKhIdh4jogQYNGoTk5GSMGjUKPj4+CAwMxJ07d0THojYik8kAgGUeHZSLiws++ugjvPfeezh48OC/fh2WeRB1Xs3NzYiOjoadnR3WrFmDOXPm4Nq1a/D394eqqqroeO3atWvXYG9vLzoGERERERG1Y9euXcOuXbuwdu1avm9DRERE9BglJycjICAAFhYWeOutt9C7d2/Ex8fj8uXLWLBgAXR1dUVHJHokWOZBRERERPSQ8vPzMXLkSBQXF+PEiRPo16+f6EhERP9IcXExYmNj4efnhx49emD48OGIjY2Fl5cX4uPjUVpairi4OPj7+8PExER0XKJ7kkqlqK6u5qJOeqRUVVWxZs0aJCQk4OjRo3B3d0dKSoroWB2Wv78/Kioq8M0334iOQkrO3t4ey5YtQ0hICG7duiU6DhG1sQ0bNkBdXR3Lli0THYWI6C/p6upiz5492Lt3L6Kjo+Hh4YFLly6JjkVtICMjA+rq6rCwsBAdhR6TN954A6+//jpef/113Lx581+9Rn19PQCga9eujzIaESm5hIQEuLq6YubMmfDx8UF6ejo2bNgAHR0d0dHavaamJshkMpZ5EBERERHRQ1m6dCkcHR3h5+cnOgoRERFRh1NWVoaoqCj069cPHh4eSExMxKpVq3Dr1i3ExMTAy8uLFxulDodlHkREREREDyEzMxNDhw5FY2MjTp48CTs7O9GRiIj+ltTUVISHh8Pb2xumpqaYOnUqMjIyEBwcjKtXr0ImkyEiIgJeXl6cTE7tglQqBfD732aiR+3pp59GUlISjIyM4OnpiaioKNGROiRTU1NMmDAB27ZtEx2F2oG3334bPXv2xJIlS0RHIaI2pquri4iICOzevRsJCQmi4xAR/S2TJ0/G+fPnoaurC09PT0RERIiORI+ZTCaDjY0NVFQ4Lacj27JlC4yMjDBt2jQ0NTX94+e3TESUy+WPOhoRKaGkpCQ8/fTT8Pb2hpWVFVJTUxEZGckS9UcoIyMDd+7cQd++fUVHISIiIiKidur48eM4dOgQNm7ciC5duoiOQ0RERNQhNDc3Iz4+HlOmTIGJiQmWLVuGYcOGITk5GampqQgKCkL37t1FxyR6bDhrgIiIiIjoX8rKysKIESOgp6eHEydOwNzcXHQkIqL7qq2tRUJCAgIDA2FlZQVnZ2ds3rwZpqam+PLLL1FSUoLExEQEBQVxkiO1S5aWllBVVWWZBz025ubmOHbsGBYsWIDZs2dj5syZuHPnjuhYHc6cOXPwyy+/4Ny5c6Kj0P9j7+7jar7/P44/O52iVHKVSBfKRVdIJaRQytBcbGihxTAJ6et09UGnAAAgAElEQVQiMqySkblsrsa+5nLD2vfrizFbmIs2RalMZCpJutIUutLl74/99J2vUNR5d+p5v93ObZzzOefz+Hw65+ym8zmvTwOnoqKCbdu24fDhw/jxxx9F5xCRjI0dOxZjxoyBl5cXioqKROcQEdWIgYEBzp8/j0WLFmHBggV4//338fDhQ9FZVE+Sk5NhaGgoOoPqWYsWLfDNN98gIiIC69atq/X9nw17qaioqOs0ImpAUlNT4enpib59+6KoqAgXLlzA8ePH0bVrV9Fpjc6tW7cAAN26dRNcQkRERERE8qiyshILFy7EsGHDMHToUNE5RERERHIvPj4eAQEBMDIywtChQ5GUlITNmzcjLS0N27Ztg6WlpehEIpngMA8iIiIiojeQlpaGIUOGQFNTE2FhYWjXrp3oJCKiF6SkpGDnzp1wdXWFlpYWnJ2dcfr0aUycOBEXL15EVlYW9u3bh/Hjx0NDQ0N0LtFbkUql6NSpE4d5UL2SSqVYs2YNjh49itDQUAwZMgTZ2dmisxqVwYMHw8TEBDt27BCdQnLgnXfewXvvvYe5c+eiuLhYdA4Rydi2bduQk5ODlStXik4hIqoxqVSKgIAAhIWF4fLly7CwsMCFCxdEZ1E94DCPpsPS0hKfffYZli1bhsjIyFrd99nZXTnMg6hxevjwIfz8/NCtWzecO3cOhw4dwqVLl2Bvby86rdFKSEiAjo4OP/MiIiIiIqI3cuDAAcTGxuLzzz8XnUJEREQkt9LT0xESEgI7OzuYm5vj66+/xqhRoxAbG4uoqCjMmDEDampqojOJZIrDPIiIiIiIaikrKwvOzs5QVlbGzz//jDZt2ohOIiICAJSXlyM6OhoBAQGwtraGoaEh5s2bh6KiIqxfvx5paWmIj49HcHAw7OzsoKCgIDqZqE517twZKSkpojOoCRg5ciSuXLmCnJwcWFlZITo6WnRSo6GgoIBp06YhNDQUJSUlonNIDoSEhCAzMxNr164VnUJEMtahQwcEBQXh888/R0xMjOgcIqJacXBwwPXr12FrawsHBwf4+PigtLRUdBbVIQ7zaFrmz58PBwcHeHh4oKioqMb3k0j+OmyrvLy8vtKISICSkhKEhITAyMgIu3btQmBgIH7//XeMHz+en8vUs1u3bsHY2Fh0BhERERERyaHi4mIsW7YMU6ZMQY8ePUTnEBEREcmVoqIihIaGYuTIkdDX14e/vz8MDQ0RFhaGu3fvIiQkBL169RKdSSQMh3kQEREREdXCn3/+CQcHBygoKODcuXNo37696CQiauIePnyI0NBQeHp6QkdHB9bW1ti/fz+srKxw9OhRPHz4EMePH8eMGTOgo6MjOpeoXnXu3Bl37twRnUFNRLdu3fDbb7+hW7duGDRoEI4cOSI6qdFwdXVFXl4efv75Z9EpJAd0dXWxfPlyrF69GsnJyaJziEjGZs2ahb59+8LT05NfgiUiuaOpqYlDhw5h9+7d2LVrF+zs7JCUlCQ6i+pAcXExMjIyOMyjCZFIJNi9ezeys7OxbNmyWt0PACoqKuorjYhkqKKiAqGhoTA2NsYnn3wCT09PJCUlYfHixVBWVhad1yQkJCSge/fuojOIiIiIiEgObd68GTk5OVixYoXoFCIiIiK5UF5ejlOnTsHd3R1t27aFu7s7pFIpDh06hKysLOzbtw9OTk4cck0EDvMgIiIiIqqxoqIijBo1CoWFhTh9+jQHeRCRMMnJyQgJCYGzszO0tbUxYcIExMfHY968eYiKikJSUhJ27NiBkSNHolmzZqJziWTmf4d5ZGRk4NKlS8jMzBRYRY1Z69atqz6MGDduHFavXi06qVHQ1dVFv379EBoaKjqF5MT8+fPRtWtXzJo1S3QKEcmYRCLBl19+ibi4OGzbtk10DhHRG/Hw8MCVK1dQUlICS0tLHDhwQHQSvaXk5GRUVlZymEcTo6Ojgw0bNmDTpk0IDw+v0X04zIOo8Th9+jSsrKzg5uYGOzs7JCYmIjg4GBoaGqLTmpSEhAQYGxuLziAiIiIiIjmTl5eH4OBgzJ8/Hx07dhSdQ0RERNRglZeXIzw8HD4+PujUqROGDx+OhIQErFq1CmlpaThy5AjGjh3L7y8Q/Q+p6AAiIiIiInlQXl4Od3d33Lp1CxcvXuQv7IlIpoqLixEeHo7Tp0/jP//5D27duoU2bdrA0dER//znPzFq1ChoamqKziSSucePH+P27du4c+cOUlJScPHiRWRlZcHIyAhpaWkoKSkBAEyfPh1fffWV4FpqrJSUlPDll1/CzMwM8+bNQ1paGjZv3lz1hRx6M+PHj0dAQACKi4vRvHlz0TnUwEmlUmzduhUDBw7EkSNH8N5774lOIiIZMjc3h6+vL5YuXYoxY8ZAV1dXdBIRUa2ZmJjg0qVLWLx4MTw8PHDs2DHs3LmTv++RU8nJyQD+GjpKTctHH32E0NBQTJ8+HTExMVBRUXnl8hzmQST/4uPj4efnhx9++AFOTk6IiYlBz549RWc1Sffu3UNOTg4sLCxEpxARERERkZxZtWoVJBIJFi5cKDqFiIiIqMEpKyvD2bNn8f333+PIkSPIycmBpaUlfHx84OrqyhMcENUAh3kQEREREdXAnDlz8OOPPyIsLAwmJiaic4ioCcjOzsapU6fwww8/4NSpU3jy5AlMTU0xZswYODk5YfDgwZBK+c96atpsbGxw69YtKCgoQElJCZWVlSgtLcXjx4+rllFUVOT/u0kmvL29oaenhwkTJiA9PR0HDx7kEIq3MH78eCxcuBA///wzRo0aJTqH5ICdnR0+/PBD+Pj4wNnZGWpqaqKTiEiGli9fjn//+9+YOXMmTpw4ITqHiOiNNG/eHCEhIXBxccHkyZPRu3dvfPPNN7C1tRWdRrWUnJwMLS0tqKuri04hAXbs2AFzc3N8+umnWLt27SuX5TAPIvmVlpaGoKAg7Nq1C5aWlvjll18wePBg0VlNWkxMDBQUFDhMhYiIiIiIauX+/fvYunUrPvvsM7Rs2VJ0DhEREVGDUF5ejkuXLiE0NBSHDx9GVlYWTE1NMXv2bEyYMAHdu3cXnUgkV3h6SCIiIiKi19i6dSt27tyJb775BgMGDBCdQ0SNVEVFBaKjo7FmzRrY2dlBW1sbM2fORG5uLoKCgpCamor4+HgEBwfDycmJgzyIAIwZMwaKioqorKxESUkJSktLX1imvLwcNjY2AuqoKRo9ejR+/PFH/PLLLxgxYsRzg2Wodjp16oT+/fsjNDRUdArJkbVr1yI/Px8rV64UnUJEMtasWTNs374dP/74I77//nvROUREb2Xo0KGIi4uDiYkJBg0ahICAAH7RX87cuXOHZ6BqwnR1dbF27Vps2rQJcXFxr1yWwzyI5E9ubi78/PzQrVs3nDp1Cl9//TUiIyM5yKMBiI2NhaGhIb98R0REREREtbJ8+XJoaWnBy8tLdAoRERGRUCUlJTh16hSmTZsGLS0t2Nvb47fffsP8+fORlJSE+Ph4BAQEcJAH0RvgMA8iIiIiolcIDw/H/PnzERgYiPfee090DhE1MgUFBTh+/Dg8PT2hq6sLa2trbN++HWZmZjh8+DCys7MRFhYGHx8f6Orqis4lanB8fX2hrKz8ymUUFRVhaWkpoyIiYNCgQQgPD8cff/wBR0dHZGdni06SW+PHj8fRo0dRVFQkOoXkhJaWFlauXIn169fj2rVronOISMYGDRqEjz76CN7e3sjNzRWdQ0T0VrS0tHDixAmsW7cOq1evhpOTE+7fvy86i2ooKSkJRkZGojNIoOnTp6NPnz6YPXs2KisrX7qcoqIigL+G0RJRw1ZaWoqdO3fC2NgYX331Ffz9/fHHH3/Aw8MDCgoKovMIfw3zsLCwEJ1BRERERERyJCEhAfv370dQUBCaNWsmOoeIiIhI5nJzcxEaGgoPDw9oaWlh+PDhiIiIgLe3N27duoUrV65g0aJFPJEB0VviMA8iIiIiope4e/cu3n//fbi4uGDp0qWic4iokUhOTsbOnTsxcuRItG7dGu+99x6io6Px8ccfIyoqCnfu3MGOHTswfvx4qKmpic4latDatGmDuXPnQiqVvnQZY2NjqKqqyrCKCDA3N8f58+eRl5cHe3t7pKeni06SS+PGjUN+fj7OnDkjOoXkyMyZM2FlZYU5c+a88ktzRNQ4rV27FpWVlViyZInoFCKit6agoAAfHx/89ttvuH//PiwsLHDs2DHRWVQDycnJPKCtiZNIJNixYwciIyOxZ8+ely7XokULAEBhYaGMyojo70pLS+Hm5oYdO3a8dJnKykqEhobCxMQE3t7ecHNzQ1JSEhYvXswvejUwHOZBRERERES1tWjRIpiammLixImiU4iIiIhk5s6dO9i0aROGDBkCLS0tTJo0CRkZGQgKCkJKSgri4+MREBCAbt26iU4lajQ4zIOIiIiIqBqlpaVwdXVFhw4dsH//fp5RiaiJy87OxtSpU3H58uVa37e8vBzh4eHw8/ODmZkZjIyMsGTJEqioqGDz5s1IS0tDVFQUAgICYGVlxfcbolry9fWFkpJStbcpKSnB3t5exkVEfzEyMkJ4eDgUFRXh6OjIgR5vQEdHBz169MDZs2dFp5AckUgk2Lp1K3777TccOHBAdA4RyVjr1q2xceNG7Ny5E+Hh4aJziIjqhJWVFWJjYzFx4kSMHj0aHh4e/OJ/A1ZZWYk7d+6gc+fOolNIsB49esDLywu+vr7IycmpdplmzZpBSUkJT548kXEdEVVWVmLy5Mk4fPgwFi5ciD///POFZX777TfY2dnBzc0NlpaWuHXrFkJCQqCpqSmgmF4lLy8PKSkp6N27t+gUIiIiIiKSE+Hh4Th+/Dg+//xzSCT8ah0RERE1bs8GdFhbW8PIyAjLli2Dqqoqdu3ahezsbISFhcHb2xv6+vqiU4kaJf6Lg4iIiIioGsuXL0d8fDwOHz5cdWY0ImqaTp06BRMTE+zevRvbtm2r0X1ycnIQGhoKDw8PtGnTBvb29ggNDYWTkxPCwsKQmZmJ7777DjNmzIC2tnY9bwFR49amTRvMnTsXUqn0hdsqKipgY2MjoIroL9ra2jh37hykUikcHBw40OMNODo6cpgH1ZqVlRU8PT3h6+uL3Nxc0TlEJGMTJkzAu+++i+nTp6O4uFh0DhFRnVBRUUFISAi+//57nDhxAtbW1oiLixOdRdXIyspCYWEhh3kQACAoKAhKSkr49NNPX7qMmpoa8vPzZVhFRACwcOFCHD58GADw9OlTrFq1quq2mzdvwtXVFQMGDICqqiqio6Px3XffwcDAQFAtvU5sbCwqKythYWEhOoWIiIiIiOSEn58fBg0ahHfeeUd0ChEREVGde/LkCY4cOQJPT0/o6OjA3Nwce/bsga2tLX7++Wfk5ubi+PHj8PDw4ABrIhngMA8iIiIiov9x/vx5rFu3Dl988QWMjY1F5xCRIKWlpfD398eIESOQl5cHADh69CgqKiqqXT4+Ph5r1qyBnZ0d2rdvDw8PD2RkZGDJkiW4efMmkpKSEBISAicnJygpKclyU4gaPV9f32pfV+Xl5RzmQcJpaWnhzJkzUFJS4kCPN+Dg4IBr167hwYMHolNIzqxevRoSiQTLly8XnUJEAmzevBlpaWlYs2aN6BQiojo1duxYxMTEoF27dujXrx9CQkJQWVkpOov+JjU1FQB41ioCALRs2RKrVq3CV199hYSEhGqXUVdXx5MnT2RcRtS0BQcHY+PGjVWf95SWluKLL77ApUuX4OnpiR49euDGjRv44YcfEBYWxgERciA2NhZt27aFjo6O6BQiIiIiIpIDR44cwW+//Ybg4GDRKURERER1orKyErGxsQgODsbgwYPRpk0bjBs3DjExMZg5cyZiYmKQkpKCL774gt9lIBKAwzyIiIiIiP7m4cOHmDBhAsaOHYupU6eKziEiQRISEmBlZYVVq1ahsrKy6oDOvLw8XLlyBQBQVFSE06dPw8fHB7q6ujA3N8eGDRtgaGiIQ4cOISsrC2FhYVi8eDEHAxHVszZt2mDu3LmQSqXPXa+iosLXHzUI7du3R1hYGBQUFDBkyBBkZmaKTpIbgwYNgkQiwblz50SnkJzR0NBAcHAwtm/fjsjISNE5RCRj+vr6CAwMRHBwMG7fvi06h4ioTunp6eHs2bMICAiAr68vhg0bxn9jNCCpqamQSCT8MjFVmTx5Mnr06AE/P79qb1dXV0d+fr6Mq4iargMHDuCTTz55YRiWgoICpkyZgp9++gl79uzBtWvX4OLiIqiSais2NhaWlpaiM4iIiIiISA6Ul5dj2bJlcHV1Rb9+/UTnEBEREb2xhw8fIjQ0FJ6entDT00Pv3r2xfv16aGlpYcuWLbh37x4uX76M5cuXc2g1kWAc5kFERERE9DcLFy4EAHz55ZeCS4hIlH379qF3795ISEhAWVnZc7cpKytj69atGDZsGFq3bo133nkHERERmDFjBqKjo5GZmYl9+/Zh/Pjx0NDQELQFRE2Tr6/vC5Oi+/TpA0VFRUFFRM/r0KEDzp49i4qKCgwbNgyPHj0SnSQXWrZsCSsrK/zyyy+iU0gOffjhhxg0aBBmz56N8vJy0TlEJGM+Pj4wNjbG7NmzRacQEdU5RUVFLF68GBcvXkRiYiJ69eqFH3/8UXQWAbh79y46dOgAZWVl0SnUQEgkEnz22Wc4evRotf+21dTURF5enoAyoqbnhx9+wJQpU14Y5AEApaWluH37Ng4fPgx3d3dIJDysUp7ExMTwYHQiIiIiIqqRr7/+Grdv30ZQUJDoFCIiIqJaKSsrQ0REBAIDA9G/f39oaWlh4sSJuHnzJry8vBAVFYXs7Gx89913mDFjBjp27Cg6mYj+Hz91IiIiIiL6f2fPnsWePXuwdetWtGrVSnQOEcnYo0eP4OrqismTJ6O4uBilpaUvLFNSUoILFy5AXV0d27dvR0ZGBiIjI7F8+XJYWlpCQUFBQDkRAUCbNm3g4+MDqVQK4K/hO7a2toKriJ7XsWNHnDlzBg8fPsSYMWPw9OlT0UlywdHREWfOnBGdQXJIQUEBW7ZswbVr17Bz507ROUQkY1KpFDt27MCZM2dw+PBh0TlERPWib9++iImJgbOzM1xcXODj44OSkhLRWU3avXv3oKenJzqDGpjhw4fDyckJfn5+LwwRaNu2LXJycgSVETUdERERGD9+fLWDPJ6RSqVYtmyZDKuoLpSUlCAhIYHDPIiIiIiI6LWKiooQGBiIjz/+GF27dhWdQ0RERPRaycnJ2LlzJ1xdXaGlpYX+/ftj+/bt6Nq1Kw4ePIjs7GxcuHABn3zyCaysrPhdBqIGisM8iIiIiIgAFBQUYPr06Rg7dizee+890TlEJGPnzp1D9+7dceTIkdcum5qaio0bN2LKlCnQ0tKSQR0R1dTChQuhpKQE4K8zKdrY2AguInpRp06dcPLkScTFxcHDwwMVFRWikxo8R0dH/PHHH0hLSxOdQnLI1NQU8+bNw5IlS5CRkSE6h4hkzMbGBlOnTsU//vEPnvGeiBotDQ0NHDhwAHv27MHXX38NW1tb/PHHH6KzmqzU1FTo6+uLzqAGaM2aNYiKinrhd9Ac5kFU/+Lj4/HOO++gtLT0lb+LKy0txenTpzlUVs7Ex8ejpKQEvXr1Ep1CREREREQN3JYtW5CXl4fly5eLTiEiIiKqVlJSEr766iu4ubmhffv2MDIygp+fH8rKyrBixQrcuHEDmZmZ2LdvH8aPH8+TGBPJCQ7zICIiIiICsHbtWjx8+BCbN28WnUJEMlRWVoaAgAAMGTIEOTk5KCsre+19JBIJTp48KYM6IqqtNm3awMfHBwoKCqisrESfPn1EJxFVy9zcHEeOHMGxY8fg7e0tOqfBGzBgAJSUlHDx4kXRKSSn/P390apVKyxZskR0ChEJsGbNGpSXl8Pf3190ChFRvfLw8MC1a9egrKwMCwsLhISEiE5qku7evQs9PT3RGdQAWVpaYsyYMQgKCkJlZWXV9RzmQVS/UlJS4OjoiMLCQpSXl792eQUFBSxatEgGZVRXIiMjoa6uju7du4tOISIiIiKiBiw/Px9r166Fj48PtLW1RecQERERAQDS09PxzTffYNq0aejcuTO6dOlSdcKaBQsW4MqVK3jw4AH+/e9/Y86cOTAxMRGdTERvQCo6gIiIiIhItPT0dKxbtw7+/v5CfkmfkpKCK1euyHy9RE1dXl4egoODkZycXKv7VVZWYseOHY12km2fPn1gYGBQb49/8eJFZGZm1tvjE3Xt2hVKSkpo3rw5Ll26JDqHmihtbW3Y29u/cplBgwZh7969mDBhAjp37oyFCxfKqE7+qKqqwszMDNHR0ZgwYYLoHJJDqqqqWL9+PcaNG4fJkyfDwcFBdBIRyVDr1q2xZs0aTJ8+HZMmTYKNjY3oJCKietO5c2dcuHABK1euxPz583Hx4kV89dVXjfb3WA1RamoqdHV1RWdQA7V8+XJYWlrixIkTePfddwH8NZyWwzxIVnJzcwEARUVFKC4uRmVlJfLy8qpuf/r0KQoLC196/8LCQjx9+vSlt0skErRs2fKltyspKUFNTa3q7y1atICysjKkUinU1dUBAOrq6pBK6+aQxgcPHmDIkCHIzc2tdpi7RCKBoqIiSktLq/r09fXRt2/fOlk/yUZ4eDj69+8PRUVF0SlERERERNSArVu3DqWlpViwYIHoFCKiGjt//jyys7NFZ1Aj0LFjRwwYMEB0BuGv7y79+uuvOH36NMLDw3Hz5k1IJBJYWFjggw8+gJOTE+zt7dGsWTPRqURUhzjMg4iIiIiavKVLl6Jdu3bCzoq+ZMkSHDp0SMi6iaj2KioqcPXqVbi6uopOqRdubm44ePBgvT2+o6NjtQfNEtW1kpKSRvs6pYZPKpVWfQngVVxdXZGRkYH58+ejW7duGDVqlAzq5JO1tTWioqJEZ5Ace//99+Hi4gJvb2/ExMRASUlJdBIRydCUKVOwb98+zJ49GxEREfySFxE1alKpFAEBAbC3t4eHhwcsLCxw4MCB1w4cpLdXWFiInJwc6OnpiU6hBsrCwgIuLi5YuXJl1TCPdu3a4cGDB4LLqCHJy8tDbm5u1X/z8/NRWFiIx48fIz8/H0VFRXjy5AkeP36MoqIiFBQU4NGjRygsLERRUVHVwI5Hjx6hoqLitQM6Gqq/D/7Q0NCAoqIi1NTUoKqqCjU1NWhoaEBFRQUtWrSApqYmVFRUoKKiglatWkFVVRUSiQT+/v5ITk6uGtpRXl4O4K+hn127doWFhQVMTEyqLoaGhvy3ghwKDw/H1KlTRWcQEREREVEDlpOTg40bN2Lx4sVo3bq16BwiohopLS2Fo6MjKioqRKdQI6CiqorCggLRGU1ORUUFfv/9d1y4cAHh4eG4ePEiMjIyoKKiAhsbG4wdOxZ2dnawtbV9bhA2ETU+HOZBRERERE1afHw89u3bhwMHDqB58+ZCGsrLy2E7bCQWbNohZP1E9F9FBfl4WlSI4sJCFDx5jOLCAjwtLERxUSEKHj9CcUEBiosKodysGUZN9YKCgoLo5Dq1/h+eVQez1peysjIs2PglbIfzC+tE1Dj99uMxrJ83s8bL+/j4ID4+Hu7u7rh06RLMzMzqsU5+WVlZ4dChQ6ioqIBEIhGdQ3Jqy5YtMDU1xaZNm+Dr6ys6h4hkSEFBAVu2bEHv3r2xc+dOeHl5iU4iIqp3Q4YMQVxcHKZOnQoHBwcsXLgQQUFBHGpWj1JTUwGAwzzolQICAtCnTx+EhYXB2dkZHTt2RGFhIfLy8qCpqSk6j+pQfn4+srKykJ2djQcPHlRd/j6o4++XZ9dVVla+8FiKiorQ0NCAmpoaVFRUoK6uDnV1daioqEBNTQ26urpVgy1atmwJiUQCdXV1SKXSaodiNGvWDKqqqgAATU3Nqs86JBIJWrZs+dJt+vtjVae4uBhFRUUvvb2goAAlJSVVf3/y5AnKyspQUlKCgv8/kLy6ISTPBpT87wCTJ0+eICsrC3l5eSgqKqoaZlJUVITi4uKq9fz9Cw9qampVX9xKSUnBo0ePcOvWLZw/fx6amppo3bo12rdvDy0tLbRr1w7t2rVD27ZtX7pNJFZ6ejru3r0LOzs70SlERERERNSABQcHo1mzZsJO+EdE9CYqKipQUVGBxVt3w2bIO6JzSI5dOPYvbFu2QHRGk1BUVITo6GiEh4dXXR49egRNTU0MGDAAPj4+sLe3h7W1NZSVlUXnEpEMcZgHERERETVpq1evRvfu3fHBBx+ITiGiBkClhRpUWnCyLRERydbWrVuRkJCA999/H5GRkfzyTjUsLS2Rn5+PpKQkdO3aVXQOySl9fX0sXrwYAQEBGD9+PAwMDEQnEZEMmZmZYd68efDz88OYMWPQoUMH0UlERPWubdu2OHbsGPbt2wcvLy+cO3cO3377LQwNDUWnNUoc5kE1YWVlhaFDhyI4OBjOzs7Q0dEBANy/f5+/D5ADT58+xf3793H//n3cu3cPmZmZyMjIqBrUkZ2djaysLDx48OC5YRIAoK6ujnbt2qFVq1ZVF0NDQ7Rq1QqamprPXf/369TV1eXmoN7mzZu/8uQJrVq1kllLZWUl8vLy8Pjx42qHpvz975mZmbh58yZyc3Px8OFD5OTkPDdURSqVVg31+N9BH506dULHjh2ho6MDPT09nj1Rxi5evAipVAobGxvRKURERERE1EClp6dj+/btWLVqFdTV1UXnEBERUSOSnJyMS5cuITIyEpcuXUJcXBxKS0vRsWNH2NvbY+XKlRg4cCDMzc15AjOiJo7DPIiIiIioybpz5w4OHz6M3bt38x/HRERERCSMkpISvvvuO1hbW8PNzQ0nTpyAoqKi6KwGxdTUFAoKCrhx4waHedBb8fPzw7fffouFCxfi+++/F51DRDLm7++P0NBQLFq0CPv37xedQ4O3CgIAACAASURBVEQkMx4eHrC2tsaECRPQu3dvbN++HRMnThSd1eikpqZCTU0NrVu3Fp1CDdy8efMwbNgwXLt2Dbq6ugD++mKJmZmZ4LKmraysDKmpqUhJSUFaWhru3buH9PR03Lt3D2lpaUhPT0dWVlbV8kpKSmjfvj20tbWrhjuYmppCW1u72sEPrxpyQXVPQUGhajCKvr5+re5bXl5e7YCWnJwcZGZmIjs7GykpKcjOzsb9+/dRVFRUdV8NDQ106tQJnTp1go6ODnR1daGjowMdHR0YGBjA0NAQKioqdb25Tdavv/4KCwsLDlEhIiIiIqKXWrFiBdq2bYuZM2eKTiEiIiI5VlBQgJiYGERHR+PXX3/FhQsXkJWVBalUim7dusHOzg7e3t6wsrKqOtaRiOgZDvMgIiIioibr888/h66uLtzc3ESnEBEREVETp62tje+//x6DBw9GQEAAgoKCRCc1KGpqatDT08ONGzcwevRo0Tkkx5SVlbF582YMHToUJ06cgIuLi+gkIpIhVVVVbN26FSNGjMCUKVMwZMgQ0UlERDJjamqKyMhILF68GO7u7jh16hS2bdvGL7/Wofv370NHR0d0BsmBoUOHwtjYGNu3b8f27dvRokUL3L9/X3RWk5Cbm4vk5ORqL6mpqSgrKwMANGvWDK1bt0bHjh1haGgIe3v7qj936NABHTt2hJ6eHqRSHnrXGCkqKkJbWxva2to1Wr6oqAgZGRlITk5Genr6c3++du1a1XXPtGrVCoaGhtVe9PX1OeS3Fn799VfY29uLziAiIiIiogbqzp072L17N7Zt24ZmzZqJziEiIiI5UVpaiuvXryMqKgpRUVG4fPkyrl+/jrKyMujo6KBfv37w9fVFv379YGVlxWHeRPRa/ESRiIiIiJqkx48fY//+/Vi9ejUPtCMiIiKiBqFfv37YuXMnpkyZgh49esDV1VV0UoNiZmaGGzduiM6gRsDZ2Rmurq7w8fHBkCFD+IEqURMzfPhwjBo1Cl5eXvj999958CYRNSnNmzdHSEgIHB0dMW3aNPTs2RPffvst+vXrJzqtUcjOzkb79u1FZ5AcUFBQgJeXF5YsWYLPPvsMHTp0QHp6uuisRqO8vBx37tzBjRs3cPPmTdy4cQM3btxAYmIi8vLyAPw1rEFXV7dqgIKjo2PVnw0MDNCuXTvBW0HyREVFper58zIFBQW4c+fOC0Nkjh07hjt37qC4uBjAX/+vNjQ0hImJCUxMTGBqagoTExMYGxvz9xf/Iz8/H9euXYOfn5/oFCIiIiIiaqCWL18OfX19TJ48WXQKERERNVDl5eW4efNm1eCOqKgoxMXFobi4GGpqaujduzccHBywZMkS9O/fH7q6uqKTiUgO8VuLRERERNQkHTp0COXl5XB3dxedQkRERERUxcPDA5GRkZg2bRpMTEzQo0cP0UkNhomJCc6fPy86gxqJDRs2wMTEBKtXr0ZgYKDoHCKSsc2bN8PMzAzr1q3D0qVLRecQEcnc6NGj0a9fP0yZMgX29vZYunQpPv30U0gkEtFpci0rK4vDPKjGPvroIyxfvhx79+6Fnp4e7t69KzpJ7lRWViIpKQmxsbG4efMm4uPjkZCQgISEBDx9+hQAoK+vD2NjY9jb22PatGlVAxf09fWhpKQkeAuoKWnRogXMzc1hbm7+wm2VlZVIT0+vGvBx+/ZtJCQk4F//+hfWrFmD0tJSSCQSdO7c+bkBHz179oS5uTmUlZUFbJF4ERERKCsrg62tregUIiIiIiJqgOLj43Hw4EF8++23POEfERERAQDKysqQkJCA2NhYREdHIyoqCjExMSgoKICKigosLCxgY2MDLy8vWFtbw9jYGIqKiqKziagR4L9IiIiIiKhJ2rVrF8aNG4dWrVqJTiEiIiIies6mTZvw+++/4/3330d0dDQ0NDREJzUIBgYG2Lt3r+gMaiR0dHQQEBCApUuXYvLkya88ey4RNT56enpYtmwZAgMD4ebmBiMjI9FJREQy1759e5w8eRJffPEFFi1ahPDwcOzbtw8dO3YUnSa3srKyYGFhITqD5IS6ujrc3d2xY8cODBw4EElJSaKTGrTy8nLcvXsX8fHxiI6ORnR0NCIiIpCTkwMA6NChA8zMzDBo0CDMmjULpqam6NWrF9TV1QWXE72egoICdHR0oKOjA3t7++duKysrQ2pqKuLj43Hjxg0kJyfj119/xdatW1FQUACpVIpu3brBysqq6mJpaQlVVVVBWyM7v/76KwwNDaGjoyM6hYiIiIiIGqBly5bBzMwM48ePF51CREREAjx58gTXrl1DbGxs1eX69esoLi6GsrIyevbsCWtra0yZMgXW1tYwMzPjADAiqjd8dyEiIiKiJufmzZu4fPkygoODRacQEREREb1ASUkJ3333HXr16gVvb28OsPh/BgYGyMnJwZMnT/hlHKoTc+fOxZ49ezB//nz85z//EZ1DRDK2YMECHDx4ELNnz8apU6dE5xARCaGgoAAfHx8MGDAAEydOhIWFBXbt2oWRI0eKTpNLWVlZaN++vegMkiNTpkzBtm3bMGTIECQnJ4vOaVAyMjJw8eJFhIeHIzo6GnFxcSgoKICysjLMzc1haWmJFStWwNLSEj179oSKioroZKJ6IZVKYWhoCENDw+f+/1xeXo5bt27h6tWriImJwdWrV3Hs2DE8evQIUqkUxsbGsLKygq2tLezt7WFsbAwFBQWBW1L3fv31VwwYMEB0BhERERERNUBRUVE4evQojh8/DolEIjqHiIiI6llqaip+//13xMXFITY2FjExMUhOTkZFRQVatWoFCwsL2NvbY86cObCwsICpqSmUlJREZxNRE8JhHkRERETU5Bw5cgRaWloYNGiQ6BQiIiIiomppa2tj7969GDFiBIYPHw43NzfRScIZGBgAAFJSUtCjRw+xMdQoSKVSbNq0CUOGDMHJkycxYsQI0UlEJENSqRRbtmzBwIED8a9//Qtjx44VnUREJIy1tTWio6OxcOFCjB49Gh9//DE2btwIVVVV0WlyhcM8qLb69OkDY2NjJCcnIzU1FaWlpU324NHbt28jPDwcFy5cQHh4OBITEyGVSmFhYQEbGxt89NFHsLS0hLm5OZSVlUXnEgmnqKgIU1NTmJqawt3dHQBQWVmJpKQkXL16FVevXkVUVBTmz5+PgoICtGvXDgMGDMDAgQNhZ2eH3r17y/VZJsvLyxEZGYnPP/9cdAoRERERETVAS5YsQf/+/eHi4iI6hYiIiOpQXl4erl+/jhs3biA+Ph43btxAXFwcHjx4AADo0KEDrKysMHbsWJiamsLKygqmpqaNbtAxEckf+f1EhoiIiIjoDR0/fhyjRo3ixG0iIiIiatCGDRsGT09PeHl5wdbWFnp6eqKThHo2zCM1NZXDPKjOODo6Yty4cfDx8cGQIUPQrFkz0UlEJEN2dnaYPHkyvL294eTkhJYtW4pOIiISRl1dHTt27ICzszNmzJiB8PBwHDx4ED179hSdJheKi4vx+PFjDvOgWps4cSI2btyI8vJypKamwsjISHSSTPz555/46aefcOLECfzyyy/IyMiAiooKbGxsMGHCBNjZ2aF///5QV1cXnUokNxQUFNClSxd06dIFrq6uAICysjJcvXq1aljOqlWrkJOTAzU1NQwYMAAjRozAiBEj0KVLF8H1tXPt2jU8fvwYtra2olOIiIiIiKiBuXDhAk6fPo2zZ8+KTiEiIpJbRUVFKCoqQuvWrYWsPy8vDwkJCbh+/Tri4+Nx/fp1XL9+HZmZmQCA1q1bo0ePHjAzM8PYsWNhZmaGHj16QFNTU0gvEdHrcJgHERERETUp2dnZuHz5MpYsWSI6hYiIiIjotTZu3Ijw8HB8+OGHOHv2LBQVFUUnCaOmpgY1NbWqD+WI6sqGDRtgYmKCjRs3ws/PT3QOEcnYunXr8MMPP2DFihVYv3696BwiIuHGjRuHPn36wN3dHX379kVwcDDmzp3LM1a9RlZWFgBwmAfVmoeHB/z9/QEAiYmJjXqYR1xcHE6ePIkTJ04gIiICEokE9vb2mDt3Luzt7dGnTx8oKyuLziRqVKRSKWxsbGBjY4P58+ejsrISN2/exMWLF3H27Fn4+/vDx8cH3bt3h4uLC0aMGIGBAwdCSUlJdPornTlzBm3btoWZmZnoFCIiIiIiamD8/f3h6OgIBwcH0SlERERyJz8/H9u2bUNwcDC6deuGiIiIel1fbm4u4uPjcePGDSQnJ1f9+c6dO6isrISysjK6dOkCKysrODk5wdTUFGZmZujcuTM/uyQiucJhHkRERETUpJw5cwaKiopwcnISnUJERERE9FrNmzfH3r170b9/f2zYsAG+vr6ik4TS1tbmMA+qc7q6uvDz80NQUBAmTpwIPT090UlEJENt2rTBqlWr4OXlBXd3d/Tu3Vt0EhGRcPr6+vjll1+wcuVKLFiwAL/88gt27dqFNm3aiE5rsDjMg96Uvr4+bG1tER0djZs3b+Kdd94RnVSn4uLisGfPHnz//fdIS0uDtrY2RowYgXnz5sHZ2RkaGhqiE4maFAUFBZiamsLU1BSenp4oKytDeHh41aCdDRs2QENDAy4uLvjwww8xdOjQBjlc+PTp03BycoJEIhGdQkREREREDciZM2dw7tw5nD9/XnQKERGRXHn8+DE2b96MtWvXoqCgAGVlZfjjjz/q7LETExORlJSExMRE3Lp1Czdv3kRCQgIeP34M4K/jNkxMTGBiYoLBgwfDzMwM3bt3h4GBAYd2EFGjwGEeRERERNSkREREoFevXlBVVRWdQkRERERUI5aWlggMDMTSpUsxePBg9OnTR3SSMNra2lVfkiOqS76+vti/fz/8/Pzw7bffis4hIhmbPn069uzZA09Pz6qzxBMRNXVSqRQBAQEYNmwYJk6cCDMzM+zdu7fRDRqoK9nZ2QAALS0twSUkj8aMGYPLly/jxo0bolPqRFZWFr799lvs3bsXcXFx6NKlC6ZNm4Z3330XVlZWPPCWqAGRSqUYPHgwBg8ejM8//xwpKSk4ceIEDh06BBcXF2hra2PSpEmYPHkyzM3NRecCAEpKShAeHo4vvvhCdAoRERERETUwK1aswNChQzFw4EDRKURERHLhyZMn2LZtG1atWoXCwkKUlZVV3ZaXl4eioiKoqKi89nEePnyIxMTEqqEdt2/frvrzs8/QFBUVoauri27duqF///6YOnUqjI2NYWpqinbt2tXbNhIRNQQc5kFERERETUpkZCT69esnOoOIiIiIqFYWLVqEU6dOYfLkybh69SqaN28uOkmI9u3bV33AR1SXmjVrhnXr1mHUqFH4+OOP4eDgIDqJiGRIQUEBO3bsgKWlJXbt2oWPP/5YdBIRUYPRr18/xMTEYObMmRg+fDi8vb2xdu1aKCsri05rUB4+fAgVFRUOEqc3MmLECPj6+uLKlSuiU97K6dOn8cUXX+DHH39EixYt4Orqiq1bt8LW1pYDPIjkhIGBAWbPno3Zs2cjKSkJ+/fvx759+7Bu3TpYWlrCy8sLH374IZo1ayasMTw8HAUFBXB0dBTWQEREREREDc9PP/2ECxcu4OLFi6JTiIiIGrw///wTmzdvxvr161FcXPzcEI9nKisrce/ePXTr1g0AkJubi+Tk5Bcu8fHxyMjIAAAoKSlBV1cXhoaG6NGjB0aPHg1DQ0MYGhrCxMSEn6MRUZPF00oRERERUZNRWlqK2NhY2NjYiE4RLnDqB6ITqAb4c6p/DXEfN8Qmecb9SU1dY3wNNMZtqgmJRIJ9+/YhLS0NK1euFJ0jTMuWLfHo0SPRGdRIjRw5Ei4uLvD29kZpaanoHCKSMXNzc3h7e8PPz4+Do4iI/kfLli1x8OBB7NmzB7t27cKAAQNw+/Zt0VkNSkFBAVq0aCE6g+SUqakp2rZti1u3bolOqbWKigocOnQIvXr1grOzMwoKCrB//35kZGRg586dGDBgAAd5EMkpIyMjBAQEICkpCefPn0ePHj0wZ84c6OvrY/Xq1cjPzxfSFRYWhm7dusHAwEDI+omIiIiIqGEKCAjA8OHDYWdnJzqFiIhqqKkeByhSTk4OAgICoK+vj1WrViE/P7/aQR7PTJ8+HZaWltDQ0EDr1q1hbW0NDw8P7Nu3D5mZmejZsyeWLVuGn376CUlJSSgsLERSUhLCwsKwY8cOLF68GOPHj4eVlRUHeRBRk8ZhHkRERETUZNy9exdPnz6Fqamp6JS3Nta4I8Yad3zj+1dWVtZhTeP0Nvu3rjTWn9PbPn/rcp1vs4/razsa68/9TfH9rv41hPe7pqy+3xPl9TXwqn0ir9tUF/T09BAUFIQ1a9YgLi5OdI4Q6urqePz4segMasRCQkKQlJSE7du3i04hIgECAwPRokULLF68WHQKEVGD5OHhgaioKJSXl8PKygo7d+4UndRgFBYW8iBEeiu2trYoKirCgwcPRKfUWFhYGKysrDBp0iSYm5vj6tWrOHPmDNzc3KCioiI67wWvGirCgSMv4j6hZxQUFDBw4EDs2bMHKSkpmDZtGoKDg9GlSxds2bIF5eXlMu0JCwuDs7OzTNdJREREREQN28mTJxEREQF/f3/RKUREDdLbHqP4MCsTIb5zMN2+N8aZdqqzYx6b4nGA9bUva+LvQzwKCgpee6IjRUVFFBQUwNnZGevXr8fZs2dx9+5dFBYWIj4+HkePHsX69esxa9YsDB06FIaGhpBKpTLZFiIiecNhHkRERETUZCQnJwMADA0NBZe8vX8lpL/V/QN2f1dHJVSfGuvP6W2fv3W5zrfZx/W1HY315/6m+H5HjV19vyc2xtdAY9ym2vD29kafPn3g6emJiooK0Tkyp6GhwWEeVK+MjIwwb948LF++HJmZmaJziEjG1NTUsGHDBuzduxeXLl0SnUNE1CAZGxsjMjIS8+fPh5eXF1xdXZGbmys6S7jCwsIGObyA5IerqysA4Ny5c2JDauDBgweYNGkShg4dCj09PcTFxeGbb75B7969RacRUT3T1tbGZ599hqSkJLi7u2PhwoXo27cvYmJiZLL+Bw8eICYmhsM8iIiIiIjoOYGBgRg5ciT69u0rOoWIqEF622MUv/Cbiw76nbHph19wMDYZvpv/WSddTfE4wPral6/yOPchSktKEBgYiMLCwtcO8XhGKpVixIgRWLNmDT7++GM4ODhAT0+Pg6CJiN4Ah3kQERERUZNx584dtGzZEq1atRKdQkRERET0RiQSCbZv347o6Gjs2rVLdI7McZgHycKyZcvQqlUrLFu2THQKEQkwbtw4DB06FLNnz5b5GaaJiOSFkpISAgIC8NNPPyE8PBy9e/dGeHi46CyhioqKoKqqKjqD5NiYMWMAAD/88IPgkleLjIyElZUVwsPDcfz4cRw9ehTm5uais4hIxtq2bYt169YhJiYGqqqq6N+/P3bs2FHv6z1x4gSUlJQwZMiQel8XERERERHJh2PHjuHKlStYvny56BQiokYrIfoy3pvhDbWWmlBSVkY/5xFCTuzYGIjYl2otNaEolWLy5MkwMjKqGsbRvHlzSCQv/3p5WVkZUlNT67WNiKip4DAPIiIiImoy0tLSoKenJzqjXqXeTsBnnh9ikmVXTLLsiqDpE5F6O+G5ZcYad8RY4461etxn98lMTcHn3tPgYWP8wuOk3k7AZzPcq9b92Qz3Gq/7ZddfOfszPpkwCm49DTDT0Qa7V/ujqCC/2vvmZKQjeNYUTLLsiqkDeiLEdw6e5L14Rsia7qO/P/ZY447YtmxBjfdXbfbFy/bpy/bJvcRb+GyGOyb27gJ3q25YMW0C0hL/qHb52jwf0pJuw++DdzHBwhDLJo1BZmoK7iXegp+rCyb27oJPPcYhJ+N+jfdBtb3W3bFmztSXPk5N9ltdrrO6fVbb5xOAOn/uvazpbV9/jQ3f7xrG+11N35Nquz9Ev39VPXbiHwiaPhHuVt0wsXcXfOb5IdKSblffW4PXYK3fE1+zD2q6HdVdV9PnUUrCDayY6oaJFkZwt+qGlR9PQmz4uVq31ma9r3pevuy5Nda4I+Iv/wYACD9x9Lnrn6nN6+xV7wENQa9evTB79mwsXboUeXl5onNkqlmzZnj69KnoDGrkVFVVsWbNGuzevRuRkZGic4hIgI0bN+L69ev45z/r/yw4RETyzMnJCXFxcTA3N4eDgwMCAgKa7CAkDvOgt9WiRQtoaGjgypUrolNe6ueff4aDgwN69OiBmJgYvPvuu0J7FBQUqj0DYHXXP/v7s9sUFBQwffr0194GANevX4eLiwvU1dWhrq6OYcOG4fr169WuMykpCe+//z5atWr10r5XbcvNmzfRr18/qKqqwt7eHomJiYiPj0ffvn2hpqYGBweHag+ePnbsGAYMGIDmzZvDwMAA8+bNw5MnT6pdx7179zB69Gioq6ujffv2cHd3x59//lnj/SWrfQIAcXFxGDp0aNXrY/jw4fjpp5+eW+b69esYMWJEVcuIESNe2vK6bf/79p47dw4AcOjQoeeur8t98OjRI8ybNw+GhoZo3rw5OnTogClTpuDy5cvPPU5Nfr6imJiY4Pz58wgMDMSsWbOwaNGiel3fiRMn4ODgADU1tXpdDxERERERyYfKykqsXLkSY8aMQZ8+fUTnEBE1CHV9jOJY444oLSmBW0+D547Je9tjE192TF5NjlesyXGAVdv3lsdWFz55jN2r/eHl1A9uPQ0wzc4Cm/3+gdvXYl5cVx3uy5rui5qQSCSQSCTYs2cPEhMTkZOTg5MnT2LRokVwcHBAixYtAACKiopQUlKqul95eTkSExNrvT4iInoRh3kQERERUZORn58PdXV10Rn1JjM1BYEfucHawRnbT0fgy7OXMWjUWATP+gh/ZmZULfcm01uf3WdngB9GT/XCPy/EYunOA8+te+XHk9D/nXex/XQEtoVdQl/nEQiaPhGZqSmvXffLrg+eNQUO77li7+WbCP7uB+Q/ysM/g5ZVe99tyxbgnQmTsSs8Fp9/fwpPi4uwd82K55at7T76V0J61WXWyvU12le13Rcv26fV7ZO/P/aXZyKx/UwkHN93w4b5Xi/cp7bbenjLesxZtRG7LsbCwNgMm3zn4NAX6zBn9Sb888JVdDLqij3BgTXaBy/r3RZ2Cf2HumDDvJlvvN/qcp3V7ePaPJ+e+d9ly0pL3/q5V13T277+GhO+3zW897vXvSfVZn80hPevZ4+9ft5MOLz3AbaficT20xHo6zQcQdMnIvv+vWr3w6ueE7V9T6zJPqjpdlR3XU2eR+kpyVg/zxNjps/G7ojrCD78A4qLChE0fWKtW2uz3lc9L/93m0Lj70FbzwB7L9+EmY0tAMDOZTT+eTEGahot8W3Mfz9Mqs3r7GXvAQ1JQEAAACAwsHbPb3mnpKSE0tJS0RnUBHzwwQcYNGgQZs+ejYqKCtE5RCRjJiYm8Pb2xieffIKcnBzROUREDVq7du1w/PhxrFu3DsHBwbC3t8edO3dEZ8lcYWEhVFRURGeQnOvSpQtSUlJEZ1Tr6tWrGD16ND744AMcP34crVu3Fp2EysrKGl//7LrKysqqy7PBba+6LTExEc7Ozhg5ciSSk5ORkpICd3d3jB49GmlpaS88vpeXFxYuXIj09HScPHmy1tsSEBCA3bt3IyMjA7169YK7uzv8/f2xZ88e3L9/HyYmJliw4MVhzKNHj8bkyZPx8OFDRERE4OHDh/D29q52HdOnT4eXlxcyMjIQFRWFwsJCLFy4sMb7S1b75I8//sAHH3yARYsW4cGDB4iIiEBBQQGGDRtWtUxiYiKGDx+OcePGITk5uWpoxrBhw547yLym215WVgYjIyM8fPgQgwcPBgC4ubkhPT0drVq1Qn5+fp3ug8mTJ0NTUxOXLl3Co0ePcPLkSSQmJqJv377P7Yua/HxFUlBQwOLFi/H1119j/fr12LRpU72sp7S0FKdPn4aLi0u9PD4REREREcmfI0eOICoqCv7+/qJTiIgahPo4RrG6Y/meXf7Xmxwj+Hc1OV4RqNlxgHV1bPVmPx+0UNfA6sPHsT/qDyzbeQCZqXfg5/rf31HVx76s6b54E61bt8bw4cMRGBiI06dP4/Hjx7h+/Tp27NgBDw8PdO3atWog8f37tT8RKBERvUgqOoCIiIiISFYKCgqqJoc2Roc3r8PIKTPwjptH1XUDR41FWWkpju7ahqlLg956HWNnzkX33tYAAMuBjv/9IvXmdRg91QuOY92qlnUaPxFF+U9weMt6+Hy++Y3W9/dfTjVrroKPPlmB2c79q1122MQp6G3vAABortoC7vM/gf/kcc8tI4t9VNt98bJ9Wu1jb1mPUR/NfO6x7VxGAwA2LvB6oaM22zps4mR0MuoKAHjfcy4+HtgbH+7/V9V1Yz3nwnfsOzXeDy/rHThqLMrLy3ArNvqF3rp4DtVmna9Sk+fTy5b9cOFSLJ04+oXte9vnnqxffw0Z3+8ayPtdLd6TavW4DeD965lxXv/AgBGjqv5e9bPevB7ewZuqemvynKjte2J9//xq+jwaN9MHPW3tAQCdunTDrKB18B5u/8attXl/rQmJoiJsh43ExeP/xvBJH1Vdf+5IKAaMGI1mKv89K3JtXme1+f+zKJqamli5ciXmzJkDT09PGBsbi06SCQ7zIFnasmULLCws8PXXXz93BmIiahoCAgJw6NAhfPrpp9i2bZvoHCKiBk1BQQE+Pj5wcnLChAkT0Lt3b3z55Zdwc3N7/Z0bicLCQqiqqr5+QaJX6N+/P65evYrc3Fy0atVKdE6VsrIyTJo0CXZ2dti1axckkqZz7qiAgADMmzcPM2f+92B3d3d3lJSUYO3atQgJCXlu+U8++QS2tn8NnB0+fPhLB468zKxZs2BiYlL1WDo6/8fencfVmPZ/AP+c9tKufaFCUllSjKjQWDO2YeyyzNiZsSc/1QAAIABJREFUkCXZyr6FGDOWsWYZ68zD8JiRrbKEkFFZZsIgpbRRIeX3xzzOb5Io6lyn0+f9ep1X51znXj73de5zV/e5zve2xOLFi4u0ubq6Fpvv3+vR0tLCypUrUbt27RLX8aYghra2NhYuXAhvb+9SZ5RVnwQFBWH69Olo06YNAMDR0REbNmwocg4sKCgIkyZNwtChQ6Vt33zzDbKzsxEcHIywsLAybbuysjJ69eqFnTt3YsyYMdL2rVu3onfv3tLPmcurD44fP45NmzZJi+O4uLggLCwMdnZ2ReYvy+sr0qBBg5CUlISAgAB06NCh3M9XRkREIDMzEx07dizX5RIRERERUeX0+vVrzJkzBz169EDDhg1FxyEikgvyMkbxY8cIlma8IlC6cYDlNdb32rkojFmwAtp6+gAAW0dn+C1ZjVFtmhVZV3n3ZWn7ojwoKSnByckJTk5O+PrrrwEAWVlZiI6OhrKycrmvj4ioKqo6n64SERERUZWn6MU8rp2NLPKF4zcat/ocsWcjymUdtRu4lLjupm06FGv/rG1HXDsbWS7rBgBtXT08y8p853OOTZoVeWxsaY2M1MfFclZ0H5W1L0rq03cu+0zEO5fdsIXXO3OUZVvtHOtL7xsYGRdrMzQxRXb6k1JnfV/eNydo385bHvtQWdb5PqXZn0qa1sjcskL2PdHvP3nC452cHO/KcEwq03Ll4Pj1xpsPQv7ts7YdEXvmdJG8pdknynpMrOjXrzT70fXzZ1DfvWgfWNjWKvJhWFmzluX4WlrePfrg5IHdRdqO79+Ftr0GvHe+973PyvL7WaSvv/4aDg4OmDFjxocnVhAs5kGy5OjoiNGjRyMgIABPnnzc7xIiqrx0dHSwcOFCrFu3DhcvXhQdh4ioUnByckJ0dDQGDRqEvn37wtfXFzk5OaJjyURubi40NTVFx6BKrlu3bgCA33//XXCSog4ePIjbt29j3bp1VaqQBwCEh4ejd+/exdo7deqEY8eOFWtv2rTpJ62vcePG0vtmZmbF2iwsLJCamvrB5RgYGCA9Pf2dz3l5FT1/a2Njg0ePHr1z2neRVZ+cOHECn3/+eZG2unXrFilsER4eLn3f/Fv37t0RHh5erL002z5kyBBs3ry5SNumTZswfPjwIustjz5wd3dHly5dcPToUbx69QoAYGtr+8GCJ+97fUWbOnUq7OzssHLlynJf9uHDh+Ho6IhatWqV+7KJiIiIiKjy2bdvH/744w/MnDlTdBQiIrkhL2MUP3aMYGnGK77Lu8YBltdY37qNXLFw1CBciTyJgoJ/zuGZWNX4pDGUpfGxfVFe9PT00K5du2LnaImI6OOoiA5ARERERCQr+fn5UFVVFR2jwjzNzMBI73cPBlPT0CiXdahrvHswcnZmOvSNTIq1Gxib4mnGxw0my05/gu3LF+BK5ElkpqWisKDgvdNr6+oVeayqplZssJss+qisfVFSn5Zl2Tr6xa/QV9Zt1aymLb0v+d9g3LfbynoFuZLyvqutvPahsqzzfUqzP5U0rZKycoXse7J8/8k7Hu/k+3j3rmNSWcjD8euNd22LgXHR4iCl3SfKcnySxetXmv0oOzMdugaG711OWbOW5fhaWuY1baGmoYG7N+Jh4+CI+IvnoaWtA1tHZ+k0ZX2fleX3s0jKysqYP38+unTpgvPnz6NZs2YfnqmSU1JSQmFhoegYVIXMmTMHe/bsQXBwMFatWiU6DhHJ2MCBA7Fx40aMHz8eUVFRkEgkoiMREck9TU1NhIaGolWrVhg2bBjc3Nywc+dOuLhUjqKJH+vVq1fQ0tISHYMqOW9vb6SmpsLIyEh0lCJOnDgBd3d32NnZiY4ic0+ePIGNjc07n3tXAZ9PPQ7o6OhI778pnPJ229vn0lJTUzFt2jQcPXoUycnJKPjAeS8Dg6LnPNXV1ct0fk5WfZKWlvbB90JaWpq06Mm/mZubIy0trVh7aba9Tp060NTURGxsLBo2bIiIiAjo6uoW+T1WXn2wd+9eBAcHY8yYMUhNTYWLiwu+/PJLjB49WvqZdllfX9GUlJTQt29fhIWFlfuyDx8+jK5du5b7comIiIiIqPIpLCzEnDlz8NVXX6FBgwai4xARyQ15GaP4sWMESzNesbTjAMtrrO+k0PXYs2Y5NswJRHb6E9g6OqNZWx906DcIyir/nMOriL4sTV8QEVHlwWIeREREREQKQsfAEKFHThc7ASYLuvqGyEhNgYmldZH2jNQU6Lx1IkkikSD/5UuoqqlJ296uhgsAoVPGwdK2Fubv/A+qm5lDWfmff196OFh8dE5Z9FFZ+uJjlp2Z9hjGFlZF2jPTilcrFrk/vFFS3ne93uXVb2VZpyxV5OtRkfucvOLx7sNkdbwr7TEJKH1/yMPx643MJ6nQr25cpC0jNQW6htWlj0u7T5Tl+CQvfaCjb4DsjHQYmpiWPI2cZPX+sg9O7N+FodPn4vj+XWjbe0CR5yvifSYvOnfujJYtWyIgIACnTp0SHYdI4ejq6mL+/PkYNmwYvv76azRs2FB0JCKSIYlEgpUrV6JJkyYICwuDr6+v6EhERJVG9+7d4ebmhoEDB8Ld3R3BwcGYPHmy9MvpRFSckpKS3BXyAP4pXGBiUraC2bIikUjw4sULqKurS9vS08uvyLWRkRHi4+OLFYGQJwMHDkTdunURFRUFKysrqKj8c96rogrRyapPqlevjrS0NFhYlHz+zsjICI8ePSpWWOPRo0ef9F4aMmQINm3ahNDQUGzcuBHDhw8vtt7y6AM9PT0sX74cy5cvR1paGo4fP46VK1ciMjIS+/btAyD717c8mJqaIjU1tVyXee3aNdy6dQvdu3cv1+USEREREVHldODAAcTFxWHXrl2ioxARlavMzEy8ePECOTk5ePLkyYdneEtlHKP4b6UZr1jacYDlNbZaS0cXgwOCMDggCNkZ6fjjXBR+3boB8ZeiMXnVhn9yV0BflqYviIio8uAoCSIiIiIiBdHIoxXios8Wa0+4FI3JX7av0HU3aO6J6N+PFGuPPvZfNGjuWaRN38gEaY8eFmmLv3i+2Lw3r1xC73GTYWJpLT3R9vL580/KWZY++thBcGXpi7Jq6NESF8KPFmu/GnWqWJvI/eGNkvJeOxtRrK28+q0s65Slinw9KnKfk1c83n2YLI53ZTkmAaXvD3k4fr1xNfJUsbboY/9FwxYtpY9Lu0+U5fgkL33g1LR5sXx3b8TDr9P/b39FZS3rftm8Y2dcOP4bstOf4ErkSXh06lbk+Yp4n8mTOXPm4PTp04iIEPv7jkhRDR48GE2aNMHYsWPLdLViIlIMLi4uGD58OKZMmYKsrCzRcYiIKhVra2ucPHkSixcvxsyZM9G+fXs8evRIdCwiuXbw4EH8+eefomMUYWdnhz/++EMu/x8yMzPD33//XaStpPMj7zvfVNJz7du3f2fx1MjISLi6upY+aAU6e/YsgoODYWNjIy30kJeX98nLFd0nrVq1Qnh4eJG22NhYODo6Sh+3adMGBw4cKDbvzz//jDZt2nz0unv16oX//Oc/SE1NxdGjR9G3b98iz5dXH0gkEjx48ADAPwVCevfujcOHD+P333+XTlNRr29Fio2NRe3atct1mfv374elpSWaNWtWrsslIiIiIqLK5/Xr11i0aBF69uwJZ2dn0XGIqAp6+vQpHjx4gLi4OMTExCA8PByHDx/G3r17sXHjRnz//fdYvHgxZs2ahalTp2LEiBEYNGgQevXqhfbt26NVq1Zwc3ODg4MDbG1tYWhoCE1NTUgkEhgYGMDMzAy1atVC06ZNy5ytMo5R/LfSjFcs7TjA8hpb3cPBAk+S//lsS9fAEC18umD6+jDEnjktnaYi+rI0fUFERJWHiugARERERERUPnqP88eiUYNRWFgA589aQEVVFXEXz2Hd7KkYNnNBha6711h/zPLtAU1tHTTxbgeJRIKLJ37HwS3rMDes6CC6hi28sGP5QgyZFoxqurq4cfkifvtpW7Fl1nVxQ9iyufhyxLcwNDFD2qOH2Pv9ik/KWZY+MjQ1w82rMajt3ADXo8/i+xn+WHfyUrn2RZnzv1l2NW24tW4LiZISYs+cxu+7t3/StlaUt/MqKSvj2tkI7F+3qti05dVvZVmnLFXk61GR+5y84vHuw2RxvCvLMQkofX/Iw/Hrjd93h0FZRQWNPFrhdWEhLp74Hb9u+xFzt///a13afaIsxyd56YOeo/ywZOzXMDQxQ10XVyT/fQ9rAifAZ8DQCs9a1v1SQ6sanD9rgZWTx6KJdztoVtMu8nxFvM/kiZeXF7y8vLBgwQJ4eXmJjkOkcCQSCdasWYOmTZti165d6Nevn+hIRCRj8+fPx969ezFnzhyEhISIjkNEVKlIJBL4+fnB3d0d/fv3R8OGDbF582Z06tRJdDQiuTRy5EhMnDgRkyZNEh1Fqk+fPliwYAEOHTqELl26iI5TRNu2bREYGIgVK1ZAX18fZ86cwdq1a985raWlJc6dOwc3NzecPHkS33zzjbQQSEnPBQUFoUuXLigoKEDr1q2hpqaG06dPY+TIkfjuu+9kuaklat68OaZMmYLAwEBYWFjg77//xty5cz95uaL7ZMaMGejevTssLCzg7u6Ov/76C0OHDsW4ceOk08yePRutW7eGrq4uunTpAolEgoMHD2L58uXvLLZRWtra2mjdujUGDBiALl26QEdHp8jz5dkH33zzDUJCQlC7dm1kZmYiNDS0SCGSinp9K0pycjJ27NiBWbNmlety9+3bh549e350cXIiIiIiIlIcBw8exOXLl7F+/XrRUYioksrJyUF6ejqePHmC9PR06S0zMxNZWVnSW3Z2dpHHmZmZyMzMfG/RY11dXairq0NHRwfVqlWDuro69PX1oaGhAU1NTdSoUQNqamolPq+npwd1dXVoa2tDTU0NDRo0KNO2VcYxiv9WmvGKpR0HWJ5jq7+f4Y/BAbNhVsMWOU+zcHjrj0UKglREX5amL4iIqPKQvJbHyyYQERERKQCJRILdu3ejV69eoqN8kj179qB3795yebWtsnrzWuzZs0dwkqJ69eqFh0+fw3/lulLP08PBQnp//40k6f1H9+5ge8gCXDsXiYJXr2Bd2x5fDh+Hz9p2/OC8pV1fSfPdu5WAsKXzEH8pGgDg6PYZBk6egZr29YpMl52Rjk3zZyL2bARe5OWhfrMWGDZrIUa0diuy7Kwnadi6ZA6uRp1CTnYWLGxq4avR4xEyYWSR6Urank/pIwA4e/QQwpbNR3rKIxiZW2JwQBCaeLcrVX+Vpi8+1Kcl5b//501sWzIXcRfPQ0lJCU5N3DEkMBhjO3hgX/yDIsv42P2htG2l8e+8EokEdV3cMHRaMPy+aFVsWaXdh8prnWXZzk+dFiif1+PtZb5RXn0XMn4ELHU0KvQ4KZFI4L9iLZp3LN2gbx7v5Pt4965j0tcz52HU558V67vS9kdps1f08auHgwV+OB6NjXNnIO7iORQWFsKpSTMMmjobVrXqFJm2tPtEWY6JpX39PrQNb297Wfejm1djsG3JHPwVdw16htXRoe9gdB8+tsh6PuX9WFJ7Sfvl+17PhEvRmDGgOxbtOYw6DVyKPPcx77N3raM0zv73IEImjJT538+///472rdvjwsXLqBJkyYyXbcsbd++HV9//TVevHghOgpVQcOHD8ehQ4dw8+ZN6Orqio5DRDK2du1ajBs3DpcvX0b9+vVFxyEiqpSys7MxZswY7NixA+PGjcOSJUugrq4uOla56Nq1K3R1dREWFiY6ClVybdq0Qc2aNbFx40bRUYrw9fXFsWPHcOHCBVhbW4uOI5WWlgY/Pz8cO3YMubm58Pb2xpo1a1CjRg0AKHJ+Zu/evZg6dSoePnyIGjVqICQkRFqc5H3P3b59G9OmTUN4eDhevXoFR0dHTJs2Dd27d5cu++0CA2U9L/Tv+d/MW9q2x48fY9KkSfjtt9+QmZkJe3t7zJw5E7179/7gvO9rF90nAHDu3DlMnjwZMTExMDY2xujRoxEQEFBkmj/++ANTpkxBZGQkAMDT0xNLliwp8jd7WbcdACIjI+Hl5YXo6Oh3XgW1PPrg+PHj+O677xAZGYmnT5/C0tIS3bp1Q3BwsLSASGlfX3nw8uVLfPHFF7hz5w6uXLkCbW3tD89UCjdv3oSDgwMiIyPh4eFRLsskIqJPw/9/5I8ifX7G/YuIPqRp06awtLTEzz//LDoKEcmBrKwspKSkIDU1FWlpaUhNTUVqamqRIh1vF+14199MBgYG0NfXh56eXpGbrq6u9L6+vr50mjftGhoaMDAwgLq6OrS0tMp12168eAENDQ1MXbMZTT9vX+r5ynuMYkWNq/7Y8YqlHQcIlM/Y6j/OReHIjk1IuBSNvJxnMDQ1x2dtOqD3uElFLjhWEWMoSzN2szQiDu7H9zP88VIB/l8gIqqsWMyDiIiIqIKwmIf8UaRiHkT/dv/Pm5g/fCDWnrggOgpVcvJYzIMqpx4OFh9VBEGeKMI2kBiiinkA/wxaqVmzJvbu3SvzdcuKIg1GpMonPT0d9vb2+Oabb7Bo0SLRcYhIxgoLC+Hu7g5tbW0cP35cdBwiokpt7969GD58OCwtLbFr1y6FKJLELxtRefn2229x8eJFnDt3TnSUIrKzs+Hp6Ylnz57h2LFjsLOzEx2JiORIXl4e+vbti5MnT+LEiRNwdXUtt2XPmTMHP/zwAx4+fAglJaVyWy4REX08/v8jfxTp8zPuX0T0PkeOHEGnTp0U/iInRFXZy5cvkZKSgocPH0oLdKSkpODx48fSx8nJydL7b//9o6urC2NjY1SvXh2GhoZFbu9re7soqzz42GIeRG9jMQ8iIvFURAcgIiIiIiKi0uvhYIGhgXPQsttXUNfQxIO/buPHuYHo2H+w6GhEREQk2MSJEzFgwADcvXsXNjY2ouMQKRxDQ0MEBwdj4sSJGDJkCOrWrSs6EhHJkJKSElauXIkWLVpg37596Nmzp+hIRESV1ldffYUmTZpgwIAB+Oyzz7Bw4UL4+fmJjkUkF+rVq4etW7fi9evXcjWAXFdXF8ePH0f79u3h5uaGrVu3onPnzqJjEZEcuHXrFnr16oX79+/j6NGj5VrIAwAOHDiAL7/8koU8iIiIiIgICxYsQKdOnVjIg6gSevnyJdLS0vDo0SMkJSWV+PPx48coKCiQzqehoQEDAwMYGBjAwsIC5ubmsLe3L/L4zX1LS0uoq6sL3EoiIiKid2MxDyIiIiIiokpk2tqt+HXLBuxcuRgSJSVY1LSFz8ChaNWtl+hoREQA/ik69Obn/htJgtN8HEXYBqqaevTogcmTJ2PdunVYuHCh6DhECmnkyJH48ccfMW7cOPz++++i4xCRjLm7u8PX1xcTJ05Ex44dUa1aNdGRiIgqLRsbG5w6dQrz5s2Dv78/Tp8+jR9//BGGhoaioxEJ5eTkhOzsbDx8+BBWVlai4xRhZGSEqKgojBkzBl26dEG/fv0QEhICMzMz0dGISICXL19iyZIlmD9/PurXr4+YmJhyLzAcFxeH2NhYrFq1qlyXS0RERERElc+xY8dw5swZREVFiY5CRG95/vw5/v77bzx48AD379/HvXv3pPcfPHiA5ORkpKWlFZnHxMQEpqamsLS0hJmZGRo2bAhTU1NYWVlJ201MTKCpqSloq4iIiIjKD4t5EBERERFVcW++sFwSfon5/8lDX7m1agu3Vm0rfD0fIqIv5KH/qXLjPlR6n9JX8t6Ppdk2ed8GgPszvZuqqiqGDx+O0NBQzJ49GxoaGqIjESkcZWVlfPfdd/D09MQvv/yCbt26iY5ERDK2ePFiODg4YNGiRZg7d67oOERElZqKigqCgoLQsmVLDBw4EI0aNUJYWBhatmwpOhqRME5OTgCA+Ph4uSvmAQCamprYtGkTevbsiTFjxqB27doYO3YsAgICoK+vLzqeXJJIJO99/vXr1zJKIj/YJ5VbYWEh9u/fj2nTpiEpKQlTp05FYGAg1NTUyn1dYWFhqFmzJjw8PMp92UREREREVLnMmzcP7dq1Q4sWLURHIapSCgoK8OjRI9y7d09anOPtgh2PHz+WTq+hoYEaNWrAysoK1tbWcHNzK1Kk483PijiPQFRWHINJRESywmIeRERERERVHE80lR776v+J6Av2P30q7kOlp8h9pSjbpijbQeVv2LBhmDNnDn755Rf06dNHdBwihdSiRQv069cPfn5+aNeuHbS0tERHIiIZMjU1xaxZsxAQEICBAwfC3t5edCQiokqvdevWuH79OkaOHInWrVtj3LhxWLZsGVRVVUVHI5K56tWrw8TEBPHx8WjXrp3oOCXy8fFBXFwcVq9ejSVLlmDt2rUYMWIEvv32W1haWoqOJ1dYmKI49knllJubi61bt2L58uW4e/cuhgwZglmzZlVY4aHCwkLs3LkTvr6+UFJSqpB1EBERERFR5XDq1ClEREQgIiJCdBQihZSXl4dHjx4hMTGx2C0hIQG5ubnSaQ0MDGBnZwc7Ozu0aNECFhYWsLOzg7m5OSwsLGBjY8P/46nS4BhMIiKSFRbzICIiIiIiIiIiIlIQZmZm6NChAzZv3sxiHkQVaNmyZXBwcMDSpUsxe/Zs0XGISMbGjRuHzZs3w9/fH4cOHRIdh4hIIejr6+Onn36Cj48PRo8ejfPnz2PHjh2oXbu26GhEMufo6IiEhATRMT5IS0sLU6dOxciRI/HDDz9g1apVWLlyJXx8fDBo0CD4+PjwCptECuD8+fMICwvDTz/9hLy8PAwaNAj+/v4V/jv61KlTuH//Pvr27Vuh6yEiIiIiIvk3d+5ctGrVCp6enqKjEFVK+fn5uHv3Lu7cuYPExETpzzf3MzIyAABKSkqwsrKCnZ0dbG1t0a1bN0ycOBE2NjaoWbMmzMzMoKysLHhriIiIiCofFvMgIiIiIiIiIiIiUiBDhgzBV199hfv378Pa2lp0HCKFZGZmhunTp2P27Nnw9fWFra2t6EhEJEMqKipYs2YNWrZsicOHD6NTp06iIxERKQxfX180adIE/fr1g6urK9asWYMBAwaIjkUkU46Ojrh27ZroGKWmp6eHgIAATJw4EXv37sWWLVvQo0cPGBgYoG/fvtL3NRFVHn///TfCwsIQFhaGmzdvwsnJCVOnTsWQIUNgbGwskwxhYWFo0qQJnJycZLI+IiIiIiKST+fPn8eJEydw/Phx0VGI5F5GRgYSExMRFxeH+Ph4acGOuLg4PH/+HACgoaEBCwsL2NnZwc3NDb169YKdnR3s7OxQr149aGlpCd4KIiIiIsXDYh5ERERERERERERECuSLL76Anp4e9u7di4kTJ4qOQ6Sw/Pz8sGnTJkyaNAn79+8XHYeIZMzT0xM9e/aEn58fPv/8c2hoaIiORESkMOrVq4dz585h6tSp8PX1xcGDB7F+/Xro6+uLjkYkE/Xq1cPu3btFxygzNTU19O/fH/3798eDBw+wfft2bNu2Dd999x3s7e3RuXNn+Pj4wNPTE6qqqqLjEtFbrl27hsOHD+Pw4cM4d+4cqlevjr59+2LHjh1wdXWVaZa8vDz8/PPPmDNnjkzXS0RERERE8ic4OBju7u7w9vYWHYVILmRmZuLWrVu4ffs2bt68iVu3bkkfP3v2DACgq6sLe3t76Tm5SZMmoXbt2rCzs4OhoaHgLSAiIiKqeljMg4iIiIiIiIiIiEiBqKmpoVOnTvjPf/7DYh5EFUhNTQ2rV69G27ZtcezYMbRt21Z0JCKSseXLl8PBwQEhISGYPn266DhERApFQ0MDoaGh6NSpEwYNGgQXFxfs2LEDzZs3Fx2NqMLZ2dnhyZMnyMrKgp6enug4H8XKygoBAQEICAjAhQsXsG/fPhw+fBghISHQ1dVFu3bt4OPjAx8fH5iamoqOS1Ql5ebm4sSJE9ICHvfv34epqSl8fHwwZcoUdOzYUVjhnX379iE3Nxd9+vQRsn4iIiIiIpIPly9fxm+//Yb//ve/oqMQydyTJ09w/fp1xMfH448//kB8fDwSEhLw+PFjAP+MV7Czs0PdunXRpk0bjBo1Cvb29qhbty7MzMwEpyciIiKif2MxDyIiIiIiIiIiIiIF07VrV/Tp0wdpaWkwMjISHYdIYbVp0wZffPEFJkyYgKtXr0JFhR+7EFUlVlZWmDZtGubPn48BAwagZs2aoiMRESmcdu3aITY2FkOGDEHLli0xffp0zJw5E8rKyqKjEVUYW1tbAMDdu3fRsGFDwWk+XdOmTdG0aVMsWbIEd+7ckRYOGD16NF6+fIkGDRrA09MTHh4e8PT0hLm5uejIRArp2bNnOHfuHKKiohAREYHo6Gg8f/4crq6uGDp0KDp16gRXV1coKSmJjoq1a9eie/fuMDExER2FiIiIiIgECg4ORpMmTdC+fXvRUYgqTFZWFuLi4nD9+nXExcVJb8nJyQAAfX19ODo6wtnZGV27doWDgwPq1KkDGxsbjk8gIiIiqiT4VxsRERERERERERGRgunQoQNUVVVx+PBhDBo0SHQcIoW2cuVKODk5YcOGDRg1apToOEQkY5MnT8a2bdswZcoU7N69W3QcIiKFZGJigl9//RWrVq3ClClTEBERgbCwMFhaWoqORlQhbGxsIJFIcOfOHYUo5vFvtra2GDt2LMaOHYucnBycOHECJ06cQFRUFH744Qe8evUKtWvXhoeHB7y8vNCiRQvY29uLjk1UKT1+/BhnzpxBZGQkIiMjcfXq1SLvsUGDBqFDhw5yd7Xe+Ph4nD17FsePHxcdhYiIiIiIBEpISMCvv/6KAwcOiI5CVC6eP3+O69ev49q1a0hISMAff/yB+Ph43L9/HwCgra0tLdrRsWNH1K9fH46OjrCyshKcnIiIiIg+FYt5EBERERERERERESkYbW1teHt74z//+Q+LeRBVsFq1amHcuHGYMWMGevWX8kHyAAAgAElEQVTqherVq4uOREQypKamhlWrVqFDhw4YOnQorw5HRFRBJBIJ/Pz84OHhgX79+sHZ2Rlr165F7969RUcjKneampowNTXF3bt3RUepUNWqVUPnzp3RuXNnAEBOTg6uXLmCM2fOIDw8HGPGjEFeXh50dXVRv359uLq6Sm/16tWDkpKS4C0gkh8ZGRmIi4tDTEyM9JaQkACJRAIHBwd4eHhg3LhxaNmyJWrWrCk67nt9//33qFWrFlq3bi06ChERERERCTR//nzUrVtXet6AqDLJzs7GtWvXEBMTg/j4eMTFxeHSpUt48eIF1NTUULt2bTg5OWHo0KFwcnKCo6Mjz3cRERERKTAW8yAiIiIiIiIiIiJSQF27dsWECROQm5sLLS0t0XGIFNqsWbOwfft2zJ07FytXrhQdh4hkrH379vjiiy/g7++Pzz//HCoq/AiWiKiiuLq64urVqwgICECfPn1w+PBh/PDDD6hWrZroaETlysbGRuGLebytWrVq8PDwgIeHB6ZOnYqXL18iJiYGly5dwuXLl3Hq1Cl8//33ePXqFXR1deHi4oLGjRvDxcUFjo6OcHBw4LGAFN6rV6/w119/IT4+HrGxsYiJicHly5eRlJQEALC1tUXjxo3Rv39/NG7cGO7u7tDT0xOcuvRyc3Oxc+dOBAYGQiKRiI5DRERERESC3LlzB7t378bmzZtZ3IDkXlJSEq5cuYIrV67g6tWruHLlChITEwEAxsbGcHFxkRbZdHFxQe3atblfExEREVUxHElGREREREREREREpIA6d+6MkSNH4tSpU/Dx8REdh0ih6ejoYM6cORg9ejS++eYbODs7i45ERDK2cuVKODk5Yf369Rg9erToOERECk1TUxOhoaFo2bIlhg0bhiZNmmDnzp1o1KiR6GhE5cbW1hZ37twRHUMoNTU1uLu7w93dXdr2/PlzXLt2DZcvX8bly5cRERGBNWvW4OXLl5BIJKhZsyYcHBzg5OQEBwcH6VVNDQwMBG4JUdk9f/4cN27cwI0bNxAfH4+EhAQkJCTg9u3b0v29du3aaNy4Mfz8/NC4cWO4urpW+n19165dyMnJwaBBg0RHISIiIiIigZYsWQJra2v06dNHdBSiIu7du4fo6Ghp8Y4rV67g8ePHAP45n+fi4oIhQ4agUaNGcHFxgaWlpeDERERERCQPWMyDiIiIiIiIiIiISAGZm5vDwcEBUVFRLOZBJANff/011q9fj/HjxyM8PFx0HCKSsVq1amHMmDGYOXMm+vTpA0NDQ9GRiIgU3pdffgk3NzcMHDgQ7u7uWLRoEb799ltIJBLR0Yg+mY2NDX799VfRMeSOhoYGmjZtiqZNm0rbXr16hcTERMTFxUkLH5w6dQpr165FTk4OAMDMzAz29vaoVasW7OzsitxMTExEbQ5VcU+fPkViYmKx2+3bt3H37l0UFBRARUUFtWrVgpOTE7p27SotUOPg4AAtLS3Rm1Du1qxZg6+++grGxsaioxARERERkSApKSnYunUrQkJCoKLCr7yROM+ePcPVq1cRExODM2fOICIiAikpKVBRUYG9vT2cnJwwatQouLq6olmzZvxfloiIiIhKxP9siIiIiIiIiIiIiBSUu7s7zp8/LzoGUZWgpKSE0NBQeHh44NChQ+jcubPoSEQkYzNnzsS2bdswf/58hISEiI5DRFQl1KhRAydOnMCyZcswefJkHDlyBFu3boWZmZnoaESfxMbGBnfv3hUdo1J48wUKe3v7Iu2vX7/GvXv3cOPGDcTFxeHPP/9EYmIiIiMjce/ePeTn5wMAtLW1ixT3sLGxQY0aNWBhYQErKyuYmppCSUlJxKZRJZeeno6kpCT8/fffSEpKwt27d4sU7UhNTQUASCQSWFhYSPfBFi1awMHBAfXq1UOdOnWgpqYmeEtk48SJE7hy5QrWrl0rOgoREREREQkUEhICXV1dDB48WHQUqkIKCgpw48YNxMTESIt3XLlyBYWFhTA3N4erqytGjhwJDw8PNG/eXCELbBIRERFRxWExDyIiIiIiIiIiIiIF1axZM+zevRuvXr3iVWuIZKB58+bo1asXJkyYgHbt2kFdXV10JCKSIX19fQQHB2P8+PEYMWJEsS+UEhFRxVBWVsbUqVPRqlUr9O/fHw0bNsTmzZvh4+MjOhrRR7O1tcXTp0/x5MkTVK9eXXScSkkikcDGxgY2Njbo0KFDkecKCgpw//593Llzp0hxhaioKGzfvh2PHz+WTquqqgozMzNYW1vD0tISlpaWsLa2lhb7MDY2hpmZGfT09GS9iSRIbm4uUlNTkZycjOTkZGmxjocPH+L+/ftISkrC/fv3kZeXJ51HR0cHNjY2sLOzg7u7O/r37y8t3mFrawsNDQ2BWyQfli9fjpYtW6Jp06aioxARERERkSBZWVlYv349AgMDoampKToOKbAHDx4gOjoa58+fR3R0NC5fvoycnBzo6OjAzc0N7dq1w8yZM9G0aVOYm5uLjktERERElRxHbxMREREREREREREpqGbNmiEnJwfXr19Ho0aNRMchqhKWLVsGBwcHrF69GpMmTRIdh4hkbMSIEVi7di2mTJmCX375RXQcIqIq5bPPPsPly5cxevRofPHFFxg3bhyWLl0KNTU10dGIyszW1hYAcOfOHRbzqADKysrSQh+tW7cu9vyLFy/w8OHDIsUZHjx4IP2ix969e5GcnIyCggLpPOrq6jA2NoaJiQlMTU1hbGwsLfRhYmICIyMjGBsbw9DQEPr6+jAwMICSkpIsN5tKkJ2djYyMDGRkZCA9PR3JyclITU2VFux4cz8lJQUpKSnIyckpMr+xsTEsLCxgbW0NBwcHeHt7o0aNGrCwsJAWf9HR0RG0dZXDzZs38d///hc///yz6ChERERERCRQaGgogH8+ayEqT2+KuJ45cwbh4eFITEyEsrIy6tatC1dXV/To0QMeHh5o1KgRlJWVRcclIiIiIgXDYh5ERERERERERERECsrJyQl6eno4d+4ci3kQyYiVlRUmTZqEOXPmoH///rxSD1EVo6ysjBUrVqBNmzb4/fff0a5dO9GRiIiqFF1dXWzfvh3t2rXDmDFjcObMGezcuRP29vaioxGViaWlJQAgKSlJcJKqSV1dHXZ2drCzsytxmoKCAqSkpCA1NRWPHj0qUvDh8ePHSE1NxY0bN6TFIPLy8ootQ09PT1rY483Pf9/X19eHtrY2qlWrBj09PWhqakJLSwv6+vrQ0tKCpqYm9PX1K7Ir5FpOTg5yc3Px9OlTPH36FHl5eXj27Bmys7ORm5uLnJwcZGRkIDMzU1qs4133CwsLiyxXRUVFWozF1NQUJiYmsLOzg4mJCczMzGBsbAwjIyOYmZnBzMwMGhoagnpAcYSEhKBWrVr44osvREchIiIiIiJBcnNz8d133+Hbb7+Fnp6e6DhUiRUUFCA2NhaRkZGIiIhAVFQUHj9+DG1tbbi7u2Pw4MHw9PSEm5sbtLW1RcclIiIioiqAxTyIiIiIiORA2qMknD16SHQMIqri0h4lwVKn5MHJ5eVW7GVAIqnw9RARiXAr9rLoCEUoKSmhSZMmOH/+PEaNGiU6DlGVMXXqVGzZsgWzZs3Chg0bRMchIhn7/PPP0alTJ0yYMAGxsbFQUeFHskREsubr6wtPT0/0798fjRo1wsKFC+Hn5yc6FlGpaWpqQldXFykpKaKjUAmUlZVhYWEBCwsLNGzY8IPTP3v2DKmpqcUKSbxdXCIpKQnx8fHSxzk5OXj27Nl7l/2msIeenh60tbWhqqoKNTU1VKtWDQCgr68PiUQCDQ0NaGpqAgAMDAwA/LOvvSlG8fr1aygpKb23QIiOjk6Jf99mZGSUOF9OTg5evnwpfVxQUIDs7Gxp3+Tn5yM/P1+6rdnZ2SgoKMDLly+Rk5OD169fIzMzE7m5ucjLy0NWVtZ7+0RdXR3VqlUrVijFxsYGLi4uJRZPMTQ0hJGR0XuXTeUrNTUV27dvx/Lly6GkpCQ6DhERERERCbJu3Trk5ORg3LhxoqNQJfPq1SvExsYiKioKZ86cQXh4ODIyMqCjo4PPPvsMEydORIsWLdC0aVOoqamJjktUZjevXMSr/JcfnpCoBLevXREdgYioyuPIMSIiIiIiwaysrLB3716EjB8hOgoRETp5e1Xo8i2trHBoy/oKXQcRkWiWVlaiIxTh5uaGw4cPi45BVKVoampiwYIFGDhwIIYPH44mTZqIjkREMhYSEoL69etj06ZNGD58uOg4RERVkq2tLSIiIjBv3jxMnDgRkZGRWL9+PQwNDUVHIyoVMzMzJCcni45B5URbWxva2tqwtbX9qPmzsrKQl5eH3NxcZGRkSO9nZWUhJycHubm5ePr0KZ4+fYpXr14hLy8Pz58/lxbBAID09HS8ePEChYWF0mIYbwppvHr1CsnJyTAwMChSdOPf/r2skrZRVVX1nc/9u7gIAEgkEmnREC0tLairq0NJSUl69WULCwuoqqpCRUUFOjo6AP4pSvKmcIm+vj6qVasmLXyjo6MDTU1NaGtrQ09Pj0UhKpEVK1ZAW1sbvr6+oqMQEREREZEg+fn5WLlyJYYPHw5jY2PRcUjOvXjxAmfPnsXJkydx+vRpXLhwAc+fP4elpSW8vLwwf/58eHl5wdHRERJecIwqMRUVFZiameGXH78XHYUUgK1txV/okYiISsZiHkREREREgi1fvhzLly8XHYMIALB69WpMnDgR4eHhaNmypeg4pIAe3L8vOgIpqB07dmDIkCHIzMyElpaW6DhEcsXe3h6hoaEoLCzkFxmIZKhv375Yu3Ytxo8fj6ioKA4UIqpi6tati1GjRmHmzJno3bu39EuJREQkWyoqKggKCoKXlxcGDhwIFxcXhIWFwcurYgvaEpUHMzMzpKSkiI5BckJPT69C/6b09fXF+fPnERcXV2JBDqLylpaWhu+++w4zZ87keX0iIiIioips69atePToESZMmCA6CsmpP/74A8eOHcOxY8cQERGB3Nxc1KlTB56enhg6dCg8PT1hZ8cvqpNiUVZWRvKjR6JjEBERUTngyG0iIiIiIiKSGjt2LLp164bevXvj4cOHouMQEZVaZGQk3NzcOOCX6B3q1KmDvLw8JCUliY5CVKVIJBKEhobi/Pnz2L17t+g4RCRAUFAQCgoKsGDBAtFRiIiqPG9vb8TGxqJhw4bw9vZGQEAA8vPzRcciei8zMzMkJyeLjkFVwPXr17Fz507MmzePhTxIphYvXgwNDQ2MGjVKdBQiIiIiIhKkoKAAS5cuha+vL2rUqCE6DsmJx48fY+/evRgxYgRq1KiBBg0aYMGCBdDR0cGKFStw584d3Lp1Cxs3bsSgQYNYyIOIiIiI5BqLeRAREREREZGURCLB5s2bYWhoiK+++ooD2omo0oiMjISnp6foGERyqU6dOgCA27dvC05CVPW4uLhg8ODBmDx5MnJyckTHISIZMzAwwKxZs7By5Ur+HiYikgNGRkY4ePAgNm3ahNWrV8PT0xN//fWX6FhEJWIxD5KV6dOnw9nZGT179hQdhaqQ5ORkfP/99wgMDIS2trboOEREREREJMiBAwfw119/YcqUKaKjkEB5eXkIDw9HQEAA3NzcYGZmhn79+iEmJgb9+vXDsWPHkJycjD179mD48OGwsbERHZmIiIiIqNRYzIOIiIiIiIiK0NbWxp49e3Dt2jUEBgaKjkNE9EFpaWlISEhgMQ+iEpiamkJPTw+3bt0SHYWoSlq4cCGePn2KpUuXio5CRAKMHj0aderUwbRp00RHISKi//H19cXFixeRl5eHxo0bY8eOHaIjEb2TqakpUlJSRMcgBXfhwgUcOnQIixcvhpIShxKS7CxYsAD6+voYMWKE6ChERERERCRQSEgIunXrBnt7e9FRSMZiY2OxcOFCeHt7w8DAAG3btsWRI0fQsmVLHD58GFlZWbh06RIWLVqENm3aQEVFRXRkIiIiIqKPwk/giIiIiIiIqBhnZ2ds2LABISEh2Ldvn+g4RETvdebMGQBA8+bNBSchkl+1atXC7du3RccgqpJMTEwQGBiIJUuW4N69e6LjEJGMqaioYMmSJdi/fz9Onz4tOg4REf2Po6MjoqOjMXjwYAwcOBC+vr549uyZ6FhERZiamuLRo0eiY5CCCwgIgIeHB9q3by86ClUhCQkJWLt2LYKDg6GpqSk6DhERERERCXLq1ClER0fD399fdBSSgRcvXuC3337D2LFjUbNmTTRq1AirVq2ClZUVNmzYgKSkJFy7dg0hISHo2LEjtLS0REcmIiIiIioXLOZBRERERERE79S3b1+MGDECQ4cORUJCgug4REQlioyMhLOzMwwNDUVHIZJb9vb2LOZBJND48eNhbW2NgIAA0VGISAAfHx906NAB48ePR2Fhoeg4RET0PxoaGggNDcXPP/+MI0eOoEGDBjh37pzoWERSZmZmyMnJYaEZqjBHjx7FyZMnsWjRItFRqIqZOHEinJycMGTIENFRiIiIiIhIoKVLl8LLywvu7u6io1AFefLkCfbu3QtfX1+YmpqiQ4cOOHnyJPr27YvIyEg8fPgQ27Ztw8CBA2Fubi46LhERERFRhWAxDyIiIiIiIirRqlWrUL9+ffTq1Qu5ubmi4xARvVNkZCQ8PT1FxyCSa1ZWVryaL5FAampqWLp0KX766SdERESIjkNEAixfvhxxcXHYsmWL6ChERPSWrl27Ii4uDnXr1oWXlxeCgoJYfInkgpmZGQAgJSVFcBJSRK9fv8b06dPRtWtXNG/eXHQcqkKOHDmCo0ePYuXKlVBWVhYdh4iIiIiIBElISMDRo0cxefJk0VGonCUmJiI0NBRt27aFubk5+vXrh8TERAQHB+PevXuIi4vDokWL4OHhASUlfq2RiIiIiBQf/+olIiIiIiKiEqmqquKnn35CcnIyhg0bJjoOEVExOTk5uHLlCot5EH2AkZERUlNTRccgqtK6dOmC9u3bY/z48fxyKFEVVK9ePQwbNgyBgYHIzs4WHYeIiN5iamqKI0eOYNmyZVi4cCHatm2LpKQk0bGoijM2NgYApKWlCU5CimjPnj24evUqgoODRUehKiQ/Px/+/v7o0aMHWrZsKToOEREREREJtHjxYtSpUwc+Pj6io9AnKigoQFRUFAICAuDo6IhatWph7ty5MDAwwI8//oi0tDRERUXBz88PNWrUEB2XiIiIiEjmWMyDiIiIiIiI3sva2hq7du3C7t27sW7dOtFxiIiKOHfuHPLz89GiRQvRUYjkmrGxMb/8QyQHVqxYgevXr2Pz5s2ioxCRAHPnzkV+fj6WLFkiOgoREb2DRCKBn58fzpw5g/v376Nhw4Y4dOiQ6FhUhenr6wMAMjMzBSchRVNQUICgoCAMGDAADRs2FB2HqpCQkBDcu3cPS5cuFR2FiIiIiIgEevjwIXbt2oUpU6ZASYlfa6uM8vPzcfToUQwZMgRGRkbw9PTEoUOH0KVLF0RFRSElJQV79uyBr68v9PT0RMclIiIiIhKK//UQERERERHRB7Vp0wbTp0+Hn58fLl68KDoOEZFUZGQkbG1tYW1tLToKkVwzMjLCs2fPkJeXJzoKUZVWr149jBw5EoGBgcjKyhIdh4hkzNDQENOnT0dISAju3r0rOg4REZXAzc0NMTEx+PLLL9GlSxf4+voiNzdXdCyqgnR0dKCsrMxiHlTuNm7ciL/++guzZ88WHYWqkDt37mDevHmYNWsWbG1tRcchIiIiIiKBQkNDYWBggH79+omOQmVQUFCA8PBwDBs2DObm5ujYsSPi4+MxY8YM/Pnnn4iLi8OiRYvQokULKCsri45LRERERCQ3WMyDiIiIiIiISmX27Nlo3bo1evbsibS0NNFxiIgA/FPMw8vLS3QMIrlnbGwMAPwdTiQHgoODUVhYiPnz54uOQkQCjBs3DjVq1EBAQIDoKERE9B46OjpYt24d9u7di19//RVNmjTBtWvXRMeiKkYikUBPTw8ZGRmio5ACef78OebNm4eRI0fCzs5OdByqQoYPHw47Ozv4+/uLjkJERERERAI9ffoUGzZswPjx46GhoSE6Dn1AYWEhoqKi4OfnBysrK7Rt2xZnz57F2LFjcevWLURHR8Pf3x+1atUSHZWIiIiISG6xmAcRERERERGVipKSEnbs2AElJSX07dsXBQUFoiMRURWXn5+P6OhoeHp6io5CJPdYzINIfhgYGCAoKAihoaG4deuW6DhEJGOqqqpYunQpdu/ejcjISNFxiIjoA3r27IkrV67A0NAQn332GUJDQ/H69WvRsagKMTAwQGZmpugYpEBWr16N9PR0BAYGio5CVciWLVtw4sQJrFu3DqqqqqLjEBERERGRQOvWrUN+fj6GDRsmOgq9R0xMDPz8/GBtbQ1PT0+Eh4djxIgRuHHjBuLi4hAUFIQ6deqIjklEREREVCmwmAcRERERERGVmqGhofQLRwsWLBAdh4iquJiYGOTm5rKYB1EpGBkZAQCePHkiOAkRAcDIkSPh4OCASZMmiY5CRAJ06dIF7dq1w/jx41FYWCg6DhERfUDNmjVx8uRJTJ06Ff7+/ujevTsLJZLM6OvrIysrS3QMUhBZWVlYvHgxJkyYADMzM9FxqIpISUnBpEmTMHbsWLi7u4uOQ0REREREAuXn52P16tUYPnw4qlevLjoOveVNkY7atWvDzc0Nhw4dwsCBAxEXFyd9rm7duqJjEhERERFVOizmQURERERERGXStGlThISEICgoCEePHhUdh4iqsMjISBgbG/NKD0SloKmpCQDIzc0VnISIAEBZWRkrVqzAoUOH+Dc1URW1YsUKXLt2DTt27BAdhYiISkFFRQVBQUGIiorCtWvX4OzszL/jSCb09fWRkZEhOgYpiKVLl6KwsBATJ04UHYWqkBEjRkBXVxfz588XHYWIiIiIiATbtWsXkpKS4OfnJzoK/U9SUhIWL14Me3t7ODs7Y8uWLejUqRMiIyORmJiIRYsWwdHRUXRMIiIiIqJKjcU8iIiIiIiIqMzGjBmDAQMGoH///rh7967oOERURUVGRsLLywsSiUR0FCK5p66uDiUlJTx//lx0FCL6H29vb3Tr1g3+/v549eqV6DhEJGOOjo4YOnQopk2bhpycHNFxiIiolJo1a4YrV67A29sbPj4+8PPzw8uXL0XHIgWmr6+PzMxM0TFIAaSmpmLVqlWYNm0aDAwMRMehKmLTpk04dOgQNm/eDG1tbdFxiIiIiIhIsBUrVqB3796oWbOm6ChV2vPnz7F792506NABNWrUwNKlS9GxY0dcunQJd+/eRWhoKDw8PETHJCIiIiJSGCzmQURERERERB/l+++/h7m5OXr37o0XL16IjkNEVczr169x9uxZeHp6io5CVGmoq6uzmAeRnAkJCcFff/2F9evXi45CRALMnTsXT58+xdKlS0VHISKiMtDT08POnTuxZcsWbNy4ES1atGBhJqowBgYGLOZB5WLOnDnQ0dHBmDFjREehKuLBgwfw9/fHxIkT0bJlS9FxiIiIiIhIsKNHj+Lq1avw9/cXHaXKiouLQ0BAAKytrdGvXz8UFBRg06ZNuH//PkJDQ+Hq6io6IhERERGRQmIxDyIiIiIiIvoo1apVw4EDB3Djxg1MmjRJdBwiqmLi4uLw5MkTFvMgKgMNDQ0W8yCSM3Z2dhg7dixmzpyJ9PR00XGISMZMTEwQGBiIZcuW4dGjR6LjEBFRGfn6+uLSpUsoKCjA6dOncfv2bdGRSAHp6+uzmAd9srt372LDhg0ICgqClpaW6DhUBRQWFsLX1xfm5uaYM2eO6DhERERERCQHli1bhrZt28LFxUV0lColIyMD69evR+PGjeHs7IxffvkFY8aMQWJiIo4dOwZfX19oamqKjklEREREpNBYzIOIiIiIiIg+mr29PbZt24Y1a9Zg27ZtouMQURUSGRkJbW1tNGjQQHQUokpDQ0MDeXl5omMQ0VtmzJgBJSUlLFy4UHQUIhLAz88P1atXR3BwsOgoRET0ERwcHBAdHY1atWrhwoUL+Oqrr5CRkSE6FikQXV1dZGVliY5BldysWbNQo0YNDB48WHQUqiJWrFiBqKgobN++nV8KIyIiIiIixMbG4vjx47xgmIwUFBQgPDwcvXr1gqmpKSZPngxnZ2ccO3YMCQkJCAoKQs2aNUXHJCIiIiKqMljMg4iIiIiIiD5J165d4efnh9GjRyMuLk50HCKqIiIjI9GiRQuoqKiIjkJUaWhoaOD58+eiYxDRW/T19REUFIRVq1bxau5EVZCGhgaCg4Px448/Ij4+XnQcIiL6CKqqqqhbty68vb1x5swZuLi4ICoqSnQsUhCamposzEmf5Pr169ixYwfmzZsHVVVV0XGoCrhw4QICAwMxd+5cNG7cWHQcIiIiIiKSA8uXL4eTkxPatm0rOopCS0xMxNSpU2FpaYn27dsjPT0dmzZtQnJyMrZt24Y2bdpAIpGIjklEREREVOWwmAcRERERERF9sqVLl6Jx48b48ssvkZ2dLToOEVUBUVFR8PT0FB2DqFJRV1fHixcvRMcgoncYOXIk7O3tERAQIDoKEQng6+uL+vXrY/r06aKjEBHRJzA3N0dsbCycnZ3RunVrBAUFoaCgQHQsquRYzIM+1fTp01G/fn307NlTdBSqArKystCnTx+0bt0akydPFh2HiIiIiIjkwOPHj7Fnzx5MmDCBhSQqQGFhIX799Vd06tQJderUwc6dOzFq1CgkJiYiPDwcAwYMgKampuiYRERERERVGot5EBERERER0SdTUVHBnj178PTpUwwbNkx0HCJScHfv3sX9+/dZzIOIiBSGsrIyFi9ejAMHDiAiIkJ0HCKSMSUlJcyfPx+//PILoqKiRMchIqJPYGxsjEOHDmHZsmVYtGgRPDw8cOfOHdGxqBJjMQ/6FG99450AACAASURBVBcuXMChQ4ewePFiKClxmCBVvFGjRiE3NxdbtmzhPkdERERERACA1atXQ0dHB/369RMdRaE8fvwYixcvRu3atdG5c2dkZWXhp59+QmJiImbPno2aNWuKjkhERERERP/DT0yIiIiIiIioXJiZmWHHjh3Yv38/Vq1aJToOESmwyMhIqKmpwc3NTXQUokrl9evXvNINkRzz8fk/9u48Lqqycf/4NSBrgGguaGlqivpoqbkv5JJmZWmae26544bmvpSoj2am+Wia5pa5VC6UlWWpZTW4ZaXmUrhXKq6gouwwvz/6wTdCDQTmZuDzfr14ydxz5tzXnDlHZZhznWfUsmVLDR8+XMnJyabjALCzZ555Rk888YRGjRolm81mOg4AIAssFouCgoL0008/6datW6pRo4Y++OAD07HgoDw8PBQdHW06BhzUuHHj1KhRI7Vs2dJ0FOQDixYt0rp167RmzRr5+fmZjgMAAAAgF4iLi9PSpUsVGBgoDw8P03HyhJ9//lk9evRQ6dKl9frrr+v5559XWFiYQkND1aFDB7m4uJiOCAAAAOAfKPMAAAAAAGSbpk2baurUqRo1ahRXEwaQY6xWq2rXri1PT0/TUQCHkpyczBUxgVxu7ty5OnTokFavXm06CgADZs6cqR9++EGffPKJ6SgAgGxQpUoV7d27Vz179lTXrl3Vo0cP3bp1y3QsOBgPDw8lJSUpISHBdBQ4mC1btmjHjh2aOXOm6SjIB3766Se9/PLLmjhxopo3b246DgAAAIBcYtWqVbp27ZoCAwNNR3FoSUlJ+vjjj9W4cWPVrFlTBw8e1MKFC3Xu3Dm9+eab8vf3Nx0RAAAAwF3wyW0AAAAAQLYaP368nn32WXXo0EEXLlwwHQdAHmS1WhUQEGA6BuBwbDabLBaL6RgA7qJy5crq27evJkyYwImeQD5Uq1YtdezYUePGjVNiYqLpOACAbODh4aF58+bpo48+0hdffKFatWpp//79pmPBgaRctTYmJsZwEjgSm82mSZMmqU2bNmrQoIHpOMjjIiIi1KFDBzVs2FCTJ082HQcAAABALrJgwQJ16dJFfn5+pqM4pKioKC1ZskRVqlRR+/bt5erqqk8//VQHDhxQnz59Ut83AgAAAJC7UeYBAAAAAMhWFotFK1askKenp7p27aqkpCTTkQDkIVeuXFFYWBhlHsA9SE5OlpMTbwkDud3UqVN169YtvfHGG6ajADDgtdde05kzZ7R8+XLTUQAA2aht27bav3+/ihcvrrp16yo4OFjJycmmY8EBUOaBe7Fu3TodOHBAU6ZMMR0FeVxycrJefPFFJSUl6YMPPpCzs7PpSAAAAAByia1bt+qXX35RUFCQ6SgO5/z58xo9erQefPBBjRw5Us2bN9dvv/2mbdu26bnnnuMiLgAAAICD4ZPbAAAAAIBs5+vrq48++kh79uzhKlwAspXVapXFYlG9evVMRwEcjs1m40MdgAMoWrSoJkyYoFmzZumPP/4wHQeAnZUtW1b9+/fXq6++qqioKNNxAADZqFSpUtqxY4feeOMNzZgxQy1bttT58+dNx0IuR5kHMispKUlTpkxRt27dVK1aNdNxkMe98sor2rFjhzZu3KiiRYuajgMAAAAgF5k7d66aNWum6tWrm47iMH777Tf16dNHZcuW1dq1azVhwgT9+eefWrBggSpUqGA6HgAAAIB7RJkHAAAAACBHVKtWTfPnz9eMGTO0adMm03EA5BFWq1WPPPKIChcubDoK4HAo8wAcx/Dhw/XAAw/olVdeMR0FgAGvvvqqYmNj9b///c90FABANrNYLAoKCtLOnTt15swZVa9eXZs3bzYdC7lYSplHdHS04SRwFMuWLdPJkycpWkeO++yzz/Taa69pwYIFql27tuk4AAAAAHKRsLAwbd26VcOHDzcdxSH8/PPP6tGjh6pWrapvv/1Ws2bN0smTJzV27Fj5+vqajgcAAAAgiyjzAAAAAADkmL59++qll15S7969derUKdNxAOQBVqtVAQEBpmMADikhIUEuLi6mYwDIAFdXV82YMUOrV6/Wvn37TMcBYGdFihTR6NGjNWvWLF28eNF0HABADqhdu7Z++ukntWzZUq1bt9aAAQMUExNjOhZyoZQyD/YPZERsbKz++9//auDAgSpXrpzpOMjDfv31V3Xv3l19+vRR3759TccBAAAAkMu8+eabevjhh9WqVSvTUXK1b775Rk2bNlXNmjUVFham9evX6/jx4woKCkp9TwgAAACA46PMAwAAAACQoxYuXKiyZcuqXbt2fOAYQJbcvHlTBw4coMwDuEdxcXFyc3MzHQNABnXo0EGNGjVSUFCQbDab6TgA7GzkyJHy9fXVf//7X9NRAAA5xMfHR6tXr9a6deu0fv161a5dW4cOHTIdC7lMgQIFJEmJiYmGk8ARzJ8/X5GRkZowYYLpKMjDIiIi1KZNG1WpUkULFiwwHQcAAABALhMREaG1a9cqKChITk6csnY727ZtU0BAgJ544gk5Oztrx44d2rt3r9q1a8c2AwAAAPIg/pcPAAAAAMhR7u7uCgkJ0Z9//qmgoCDTcQA4sN27dysxMVGNGjUyHQVwSJR5AI5n3rx52rt3r0JCQkxHAWBnHh4eevXVV/XOO+/o+PHjpuMAAHJQhw4dtH//fvn6+qpu3bqaN2+e6UjIRZydnSVJSUlJhpMgt7t+/bpmzZqlESNGyM/Pz3Qc5FGJiYnq2LGj4uLi9NFHH/FeIwAAAIB0Fi1aJBcXF/Xs2dN0lFwnNDRUzZo105NPPimbzaavv/5a27dvV5MmTUxHAwAAAJCDKPMAAAAAAOS4MmXK6L333tOyZcv07rvvmo4DwEFZrVY9/PDDKlmypOkogEOizANwPDVq1FDXrl01ZswYxcXFmY4DwM569+4tf39/TZw40XQUAEAOK1OmjL799luNGTNGI0eOVNu2bXX16lXTsZALUOaBjHrjjTeUnJysl19+2XQU5GFBQUHatWuXQkJCVLx4cdNxAAAAAOQyCQkJWrx4sfr37y8vLy/TcXKNrVu3ql69egoICJCHh4d2796dWuwBAAAAIO+jzAMAAAAAYBfPPvusxowZo0GDBunnn382HQeAA7JarQoICDAdA3BINptNCQkJcnV1NR0FQCbNnDlTly5d0vz5801HAWBnzs7Omj59ujZu3Kjdu3ebjgMAyGEFChRQcHCwtm3bpn379ql69er67rvvTMeCYZR5ICMuX76s+fPna/z48SpUqJDpOMijVqxYoUWLFmnlypWqVauW6TgAAAAAcqF169bpwoULGjx4sOkoucLu3bvVtGlTtWzZUkWKFNEPP/ygzz//XPXq1TMdDQAAAIAdUeYBAAAAALCb6dOnKyAgQJ06ddK1a9dMxwHgQBISEvTDDz9Q5gHco/j4eNlsNrm5uZmOAiCTHnjgAY0cOVLTpk3TxYsXTccBYGdt2rRRw4YNNW7cONNRAAB20rRpUx0+fFgNGzZU06ZNFRQUpISEBNOxYAhlHvg7m82mYcOGadOmTbLZbKnjU6dOlbe3NydLIcds27ZNAwcO1JQpU9SxY0fTcQAAAADkUvPnz1e7du1UunRp01GMOnLkiDp27KiGDRsqPj5eO3bs0ObNm1W7dm3T0QAAAAAYQJkHAAAAAMBunJ2dtXr1asXExKhHjx5pPmx6/fp1de7cWbNnzzaYEEBu9eOPPyo6OpoyD+AexcXFSRJlHoCDGjt2rHx9fTVlyhTTUQAYMHv2bFmtVn3++eemowAA7MTX11cffvihVq5cqeXLl6thw4Y6ceKE6VgwgDIP/N25c+f01ltvqW3btqpZs6a2b9+uM2fOaOnSpZo8ebI8PT1NR0QedPToUXXs2FHt2rXTpEmTTMcBAAAAkEvt2bNH+/bt07Bhw0xHMebEiRPq2rWrHn30UZ06dUpbtmzRzp071aRJE9PRAAAAABhEmQcAAAAAwK6KFy+uDRs26KuvvtIbb7whSTp48KCqV6+udevW6Y033lBycrLhlAByG6vVquLFi6tChQqmowAOiTIPwLF5enpq6tSpWrJkiQ4dOmQ6DgA7q1u3rtq2bavRo0crMTHRdBwAgB316NFD+/btU0JCgh577DGtXr3adCTYGWUe+Ltjx46lfn/o0CG1aNFCDRs2VNGiRdW7d2+DyZBXXbhwQc8884weeeQRvffee7JYLKYjAQAAAMilFixYoOrVq6thw4amo9hdRESEXn75ZVWpUkX79+/XunXrtG/fPrVs2dJ0NAAAAAC5AGUeAAAAAAC7q1+/vmbMmKEJEyZo/Pjxqlu3rs6ePStJunTpknbv3m04IYDcxmq1KiAgwHQMwGHFxMRIkjw8PAwnAXCvevTooRo1amjEiBGmowAw4LXXXtOJEye0atUq01EAAHZWuXJl7d69W4MGDVKvXr3UsWNHXbt2Ld1y169fV6VKlfS///3PQErkFMo88HfHjh1TgQIFJCm15O3y5cs6e/asnnzySR04cMBkPOQxMTExev7551WgQAGFhIRQEgwAAADgji5duqSNGzdq6NChpqPYVUJCgpYsWaJKlSpp1apVmjVrlg4dOqT27dtThggAAAAgFWUeAAAAAAAjBg8erCpVqmjmzJmKj49P/eCpi4uLNmzYYDgdgNzEZrNp165dlHkAWZBS5uHp6Wk4CYB75eTkpNmzZ+vrr7/Wl19+aToOADvz9/dXnz599Morryg6Otp0HACAnbm7u2vmzJn68ssvFRoaqho1amjnzp1plhkwYICOHTumMWPG6JdffjGUFNktpcwjOTnZcBLkBsePH5eTU9qP+yUkJEj6qwz5scceU9euXXX+/HkT8ZCHJCcnq2vXrjpx4oS2bNmiokWLmo4EAAAAIBdbvHixPD091blzZ9NR7Oazzz7Tf/7zHw0dOlRdunTRyZMnFRQUlFrCCQAAAAApKPMAAAAAANjdH3/8oYYNG+ro0aOS/jpRP0VCQoI++OADPpwMINXhw4cVERFBmQeQBSkn/Xp4eBhOAiArGjdurLZt2+rll19OPWELQP4xZcoURUVFaf78+aajAAAMadGihQ4cOKD//Oc/atKkiYKDg5WUlKSVK1dq3bp1stlsstlsat++vWJjY03HRTZIKfNISkoynAS5wa+//nrHnwUTExNls9n0wQcfaO3atXZOhrxm2LBh+vLLL/Xpp5+qQoUKpuMAAAAAyMUSExO1dOlS9e/fP19cXOSXX35R48aN1aZNG9WpU0fHjx/XvHnzVLBgQdPRAAAAAORSlHkAAAAAAOxq8+bNqlq1qg4dOqTExMTbLnPp0iXt3r3bzskA5FZWq1U+Pj569NFHTUcBHFZMTIwkyjyAvGD27Nk6deqUli5dajoKADsrVqyYRowYoZkzZ+rq1aum4wAADClWrJg2b96s1157Ta+99po6deqkwYMHp96fmJio06dP65VXXjGYEtnFYrFISluIjfzr6NGjd90XnJyc1L17d40YMcKOqZDXTJkyRYsXL9batWvVoEED03EAAAAA5HIhISEKDw/XgAEDTEfJUdeuXdOwYcNUs2ZNxcXFac+ePVq7dq1Kly5tOhoAAACAXI4yDwAAAACA3cTGxqpdu3a6efPmXa8k7urqqo0bN9oxGYDczGq1qkGDBqlXIgWQedHR0ZKUL66EA+R15cqV0+DBgxUcHKxr166ZjgPAzkaPHi0PDw9Nnz7ddBQAgEEWi0WjRo3S999/ryNHjqR7rzUxMVFz5szRjh07DCVEdklKSpIk3heDEhMTdfbs2Tveb7FYNHjwYL333nsqUKCAHZMhL1m8eLGmTJmiRYsWqV27dqbjAAAAAHAACxYs0HPPPaeyZcuajpIjbDabVq1apUqVKmnt2rWaPXu2du3apTp16piOBgAAAMBBUOYBAAAAALAbd3d3bd++XQ899NBdP0waHx+vDz/8kKsNApAk7dy5UwEBAaZjAA4tJiZGkuTh4WE4CYDs8Morr8hms3EyP5APeXl5adKkSXr77bd1+vRp03EAAIaFhITo+PHjty1OdnJyUpcuXRQZGWkgGbILZR5IcerUqdT94XbGjBmj+fPny2Kx2DEV8pKPP/5YQ4YM0fTp09WvXz/TcQAAAAA4gAMHDig0NFRDhgwxHSVH/Pjjj6pfv7769OmjTp066eTJkwoKCpKTE6fiAQAAAMg4foIAAAAAANjV448/rl9//VUTJkyQs7PzHUs9Lly4oD179tg5HYDc5vTp0/rzzz8p8wCyKCYmRhaLRe7u7qajAMgGvr6+Cg4O1ltvvaVTp06ZjgPAzvr3769SpUppypQppqMAAAz69ttvNXv27Due3J+UlKSIiAgNHTrUzsmQnSjzQIrjx4/fdtxisWju3LmaOXOmnRMhL/nmm2/UpUsXDRw4UOPHjzcdBwAAAICDeOutt1S5cmU1a9bMdJRsdfPmTQ0fPlz16tWTu7u7fv75Z82bN0++vr6mowEAAABwQJR5AAAAAADszt3dXVOmTNFPP/2kypUr3/aDyC4uLtqwYYOBdAByE6vVKjc3N9WuXdt0FMChRUdHy93dnauzAnnIwIEDVb58eU6yAfIhFxcXBQcHa82aNTp69KjpOAAAA65cuaKOHTv+6894CQkJWrt2Le+zOjDKPJDi2LFjcnV1Tb1tsVjk5OSkFStWaPjw4QaTwdHt27dPbdq00QsvvKD58+ebjgMAAADAQURGRurDDz/UkCFD8tTnEL744gtVrVpV7733nt5++23t2LFDjzzyiOlYAAAAABwYZR4AAAAAAGOqVaumn3/+WdOnT5eLi4sKFCiQel9CQoLef/992Ww2gwkBmGa1WlW7dm25u7ubjgI4tJiYGHl6epqOASAbOTs7a8aMGVq/fr127txpOg4AO+vSpYuqVq2qyZMnm44CADDg5MmTioqKUnJyslxcXO66rMViUb9+/XT+/Hk7pUN2oswDKY4fP576+xInJycVKFBAGzduVK9evcwGg0M7fvy4nn32WdWvX1/vvvuunJz4OCkAAACAjFm6dKmcnZ3VrVs301GyxcWLF9WjRw+1atVKderUUVhYmPr375+nikoAAAAAmMFvXwAAAAAARhUoUEBjx47V/v37Va1atTQfFLx48aL27t1rMB0A06xWqwICAkzHABxeTEyMPDw8TMcAkM1at26tJ554QqNGjaIED8hnnJycFBwcrJCQEP3www+m4wAA7Kxu3bqKjIzUtm3bFBgYKD8/P0mSi4tLuhMMbDaboqOj1a1bN/7P6IAo80CKo0ePKiEhQc7OznJzc9MXX3yhtm3bmo4FB3bu3Dm1aNFCZcuW1ccffyxXV1fTkQAAAAA4iKSkJC1evFi9e/eWj4+P6ThZYrPZtHz5clWqVElWq1VbtmzR+vXrVaxYMdPRAAAAAOQRlHkAAAAAAHKFKlWqaO/evXrjjTfk5uaW+sHzDRs2mI4GwJDLly/r2LFjlHkA2SA6OpoyDyCPeuONN/TDDz8oJCTEdBQAdvb888+rbt26mjx5sukoAAAD3N3d1bx5c82bN0/h4eE6fPiwpk2bpscff1zOzs6yWCypBRAJCQn67rvvtHDhQsOpkVmUeSBFWFiYJMnb21tWq1XNmzc3nAiO7OrVq3ryySfl5eWlL774Qvfdd5/pSAAAAAAcyGeffaYzZ84oMDDQdJQsOXfunFq1aqUBAwaod+/eOnz4sJ566inTsQAAAADkMQVMBwAAAAAA5H0JCQm6efNm6u3Y2FjFxMSk3o6OjlZcXJwkqXHjxlq3bp2mTJmi/fv3a+XKlXrqqafSXVHydm7duqX4+PhMZXN1dc3UhxSdnJxUsGDBdONubm7y9PRMve3h4SF3d/fU215eXnJxcclUNiC/s1qtslgsql+/vukogMOLiYlJ8+8UgLyjRo0a6tKli8aOHavnnntObm5upiMBsKNp06apRYsW+vbbb9WkSRPTcQAABlWpUkVVqlTR2LFjdenSJW3atEkrVqzQgQMHFBcXp+TkZI0YMUKJiYl64IEHTMfNFUqWLKmGDRuajnFXlHlkj5iYGG3ZsiV1ezqa+Ph4XbhwQb6+vpo8ebJOnTqlU6dOZescjnA8IHtER0erdevWioqK0s6dO1W4cGHTkQAAAAA4mAULFqhly5aqWLGi6Sj3bMOGDRo4cKAKFiyor7/+Wo0bNzYdCQAAAEAeRZkHAAAAAORB8fHxunXrlqKiohQXF6cbN26kFmakFF6kLGOz2XTt2jVJUlRUlBITExUTE6PY2FglJiYqKipKknTt2jXZbLZ0j08RGRmZ+n1SUpJu3LiRLc8lIiJCTz75ZLasKzfx8fFJ8wHsQoUKpX5/3333ydXVNbVoxGKxyNfXN83jUspCChQoIG9vb0mSr6+vLBZLusenFI34+PjIzc1N3t7eqcsAuZnVatWjjz6auv8DuHcxMTHy8PAwHQNADpk5c6YqVqyoxYsXKygoyHQcAHbUvHlzNWvWTJMmTVJoaKjpOACAXKJYsWLy8fHR3r1704wnJiZqxIgRhlLlPh6enor+23vcuRFlHtnjk08+UZcuXUzHyLJr167l2DHsCMcDsi4+Pl5t27bViRMnFBoaqlKlSpmOBAAAAMDB/Prrr/rmm2/02WefmY5yTy5duqSBAwdq06ZN6tevn+bMmSMvLy/TsQAAAADkYZR5AAAAAIBh169fV1RUlG7cuKGoqChFRUUpMjIy9fuYmBhdu3ZNsbGxiomJ0fXr1xUXF6ebN2/q5s2biouL0/Xr11MLOFJKN/5NRkognJycVLBgQUlS6dKl71giId29nOLv65EkFxeXNL8Ec3d3v+0JxiklFBn1z3ky4vr160pOTs7w8imlKP82fvPmTSUkJNxxnruVn6SUqqS85n8vVfnjjz9uW6pyu1KWf5NSEpKy/QsWLCg3Nzd5eXnJy8tLbm5uKliwYOpr7uvrKw8PD3l7e8vb21uFChVK/d7Hx0fe3t6Z3v7A3VitVgUEBJiOAeQJ0dHRmfo3FYBjefDBBzV06FBNmTJF3bt356q6QD4zc+ZM1a1bV1u2bNHTTz9tOg4AIJdITEyUi4urPjx0xnSUXOn7T0P09qSRpmP8q5T3eSnzyBqOh7tzlOMBWZOQkKBOnTppz5492rFjhypUqGA6EgAAAAAHtHDhQpUrV84hfx/x8ccfq3///vLy8tLXX3+tpk2bmo4EAAAAIB+gzAMAAAAAsuDWrVuKiIhQRESEIiMj03yfUs6R8ue1a9fSFHZERUXp+vXrd1x3SjlCSsnC3wsXPD09VaxYsTSFCxktZEj5E3/JbPnE30tKcruUMpCUopeMFMHEx8enuf/UqVNp7o+NjU3dj++kYMGCqSUfKUUffy/+SBkrXLiwChUqlObPwoUL67777rPjVkJudfPmTR08eFBjx441HQXIE2JiYm5bnAUg75g4caJWrlypmTNnatasWabjALCj2rVr69lnn9W4cePUsmVLOTk5mY4EAACySUxMjCTxnj6ALElKSlLPnj21detWbdmyRY899pjpSAAAAAAcUFRUlFavXq3Jkyc71O8iYmJi9PLLL2vx4sXq27ev3nzzzTQXMQMAAACAnESZBwAAAADor6vVX7lyReHh4elKOe72fXx8fLp1FSxYUIUKFUpXaFCuXLnUgo6//+nr65tmOW9vb4cqjEDu5e7uLnd39xzbnyIjI9OU06SU1ly/fj3N2I0bN3Tt2jWFh4crLCwsdSwiIkI3btxIt15XV9fUYo+/l3zc6Xs/Pz8VLVqUk9TzmF27dikxMVENGzY0HQXIEyjzAPI+b29vTZw4UaNGjdKAAQP08MMPm44EwI6mT5+u6tWrKyQkRB06dDAdBwAAZJPY2FhJlHkAuHfJycnq1auXPvnkE23evFmPP/646UgAAAAAHNTKlSuVmJioXr16mY6SYb/++qs6d+6sM2fO6P3331eXLl1MRwIAAACQz1DmAQAAACDPioyM1Pnz5xUZGanw8PDU7+90+59SShD+/lWlShWVKFEi3XjKV5EiReTq6mrg2QL2l7LfZ1VMTEzqsfjPr5Rj9erVqzpx4kTq+NWrV9OV6fz9mC1ZsmSaY/Xvt0uWLKkHH3yQYzWXs1qtKl++vEqWLGk6CpAnxMbGqmDBgqZjAMhhgYGBWrRokV555RW9//77puMAsKNHHnlEnTp10qRJk9S2bVsVKMCvgQEAyAso8wCQFTabTYGBgVq/fr02bdqkpk2bmo4EAAAAwEHZbDa9/fbb6tatmwoXLmw6ToasWrVKgYGBqlq1qvbv369y5cqZjgQAAAAgH+JTXAAAAAAcSlxcnMLDw3Xu3DmdP39e58+f17lz5xQeHq4///xTFy9eVHh4uK5fv57mcW5ubipSpIiKFi0qPz8/FS1aVHXq1FHx4sVVrFgxFS1aVEWLFlXx4sV1//33y9vb29AzBPIfDw8PeXh4ZLq0ISoqSlevXtWFCxd05coVXb58WRcvXtSlS5d0+fJlXb58WYcOHUr9/p/lH76+vvLz85Ofn58efPBBlShRQg888IBKliyZWvjh5+cnNze37Hy6yCCr1aqAgADTMYA8IzY2VsWLFzcdA0AOK1CggKZPn64XXnhBQ4YMUYMGDUxHAmBHU6ZMUZUqVbRmzRqHuioeAAC4s5QyDw8PD8NJADgam82mwYMHa+XKlQoJCdHTTz9tOhIAAAAAB7Zt2zb99ttvWrduneko/+ratWvq3bu3Pv30U02YMEGvvvoqJegAAAAAjOGnEQAAAAC5xq1bt3TmzBmdPn06tajj7NmzunDhgv78809duHBBly5dSl3eyclJxYsXTz3xvnLlymrWrJn8/PzSFXRwJXog7/H29pa3t7fKlCmToeWvX7+ervgjpQDo3LlzOnr0qMLDw3XhwgXZbLbUxxUrVkx+fn4qg/6qLAAAIABJREFUVapUusKPsmXLqkyZMrrvvvty6FnmT/Hx8dq3b5969uxpOgqQZ8TFxcnV1dV0DAB20LZtWzVq1EijRo3Szp07ZbFYTEcCYCcVKlRQr169NGXKFHXt2pV/+wEAyANSyjzc3d0NJwHgaMaMGaNly5Zp48aNevbZZ03HAQAAAODgFi5cqMcff1yPPvqo6Sh3dfDgQbVv317R0dH6+uuv1bhxY9ORAAAAAORzlHkAAAAAsJvY2FidP39ep06dSvN1/vx5hYeH6/Tp06kn0Lu7u6tkyZIqUaKESpYsqSZNmqS5Xa5cOZUqVUouLi6GnxUAR1GwYEEVLFhQFStW/NdlIyMj0/z99Pc/9+/fn3o7RaFChdL8/fT3r/Lly1MolEk//vijoqOjFRAQYDoKkGfExcXJzc3NdAwAdjJ79mzVq1dPmzZtUtu2bU3HAWBHr7zyilatWqUVK1Zo4MCBpuMAAIAsoswDwL0YN26c5s6dqzVr1qh169am4wAAAABwcL///rs+//xzffDBB6aj3NWaNWs0YMAA1apVSx9++KFKlChhOhIAAAAAUOYBAAAAIHtduXJFYWFh+u2333Ts2DGdPHlSZ86c0e+//64rV66kLlekSBGVKVNGDz30kOrVq6eHHnpIZcuWTR3z9vY2+CwA5HeFChVSzZo1VbNmzTsuExUVpd9//12nT59O/XvuzJkz+umnn/TRRx/d8e+8hx9+WBUrVkz9KlKkiD2ekkOxWq3y8/NT+fLlTUcB8oz4+HjKPIB8pE6dOurcubNGjx6tVq1aydXV1XQkAHZSqlQp9e3bV9OmTVPPnj3l4eFhOhIAAMiC2NhYubi4yNnZ2XQUAA5i0qRJmj17tt577z117tzZdBwAAAAAecDbb7+t4sWL6/nnnzcd5bbi4uI0ZswYvfXWWxo6dKhmz57NReIAAAAA5BqUeQAAAADItPj4eJ04cSK1sOPYsWP67bffFBYWpoiICEmSp6enKlasqIcfflhNmzbVQw89pDJlyqQWdtx3332GnwUAZI23t7eqVq2qqlWr3vb+mzdvpin7SCn82Lp1qxYsWKDo6GhJ0v333y9/f39VqlRJ/v7+qSUf5cuXz7cn3lqtVgUEBJiOAeQpcXFxlHkA+cyMGTNUuXJlvfPOOxo6dKjpOADsaOLEiVqxYoWWL1+uIUOGmI4DAACyIDY2Vu7u7qZjAHAQwcHBmjFjht555x29+OKLpuMAAAAAyANiYmK0fPlyBQUF5cqCjLNnz6pdu3YKCwvTxo0b1a5dO9ORAAAAACANyjwAAAAA3JHNZtOpU6e0f/9+HTx4UAcPHtTRo0d15swZJSUlycnJSaVLl5a/v79q1aqlbt26yd/fX/7+/ipVqpQsFovppwAAxnh5ealKlSqqUqVKuvtsNpv+/PNPHTt2TGFhYanlSDt27NDvv/8um80mZ2dnlS1bVpUrV1a1atVUvXp1Va9eXeXKlcvTf78mJydr9+7dCg4ONh0FyFMo8wDynzJlymjo0KEKDg7Wiy++qMKFC5uOBMBOSpQoof79+2vGjBnq06ePPDw8TEcCAAD3iDIPABk1Z84cTZ06VW+//bb69etnOg4AAACAPOL9999XVFRUrvw544cfftDzzz+vwoULa9++ffL39zcdCQAAAADSocwDAAAAgKS/GtSPHDmSWtxx4MAB/fLLL4qKipKzs7P8/f1VrVo1vfTSS/L391fFihXl7+/Ph0gB4B5YLBaVLl1apUuXVvPmzdPcFxMTo2PHjqV+HT58WBs3btRrr72mpKQk+fj46NFHH01T8FG1atU88/fx4cOHFRERoYCAANNRgDyFMg8gf5owYYJWrFihWbNmaebMmabjALCjcePGaenSpXrnnXc0fPhw03EAAMA9oswDQEbMmTNHo0eP1ltvvaWBAweajgMAAAAgD1m0aJE6dOggPz8/01HS2LBhg3r16qWAgACtW7dOBQsWNB0JAAAAAG6LMg8AAAAgnzp+/Lh27twpq9WqPXv26NixY0pMTJSXl5ceeeQRVa9eXT169Eg9SdzT09N0ZADIFzw8PFStWjVVq1YtzXh0dLQOHTqkgwcPav/+/fr555+1cuVK3bp1SwUKFFDFihVVt25dBQQEqFGjRipfvryhZ5A1VqtVPj4+euSRR0xHAfIUyjyA/MnX11eTJk3S+PHjFRgYqIceesh0JAB24ufnp8DAQM2YMUN9+/aVl5eX6UgAAOAeREVFydvb23QMALnY66+/rvHjx+vNN9/U4MGDTccBAAAAkIfs3LlTP/30kxYsWGA6SiqbzaZZs2Zp/Pjx6tevnxYuXKgCBTg1DgAAAEDuxU8sAAAAQD6QlJSkgwcPymq1KjQ0VKGhobpw4YI8PDxUu3ZttWnTRjVq1FC1atVUvnx5OTk5mY4MAPgHT09P1a1bV3Xr1k0dS05O1okTJ3TgwAHt379fu3bt0vvvv6/Y2FiVKFFCjRo1Sv2qVq2anJ2dDT6DjLFarWrYsKFDZAUcSUJCglxcXEzHAGDA4MGD9fbbb2vixIlas2aN6TgA7GjcuHFasmSJFi1apNGjR5uOAwAA7gFlHgDuJqXIY+7cuQoKCjIdBwAAAEAes3DhQtWoUUP16tUzHUXSXxdC6tWrlzZt2qR33nlH/fr1Mx0JAAAAAP4VZR4AAABAHnX06FF98cUX2r59u3bt2qWoqCgVLlxYDRo00IgRI9SoUSPVqlVLrq6upqMCAO6Rk5OT/P395e/vr44dO0qS4uPjtW/fvtTypuDgYEVGRsrb21sNGjRQixYt9PTTT+s///mP4fS3t3PnTg0aNMh0DCDPSUpKoiQHyKdcXFw0Y8YMdezYUUFBQapdu7bpSADspEiRIho0aJBmzZqlgQMHciIwAAAOiDIPAHcSHBysqVOnav78+RoyZIjpOAAAAADymAsXLigkJETvvPOO6SiSpKtXr+rZZ5/V8ePHtXXrVjVp0sR0JAAAAADIEC63DQAAAOQRSUlJ+uabbzRo0CCVKVNGVapU0cyZM1WoUCG9/vrrOnTokC5fvqzPPvtMY8aMUYMGDSjyMKhFixamIyADeJ1yXm7cxrkxU2a4urqqYcOGGjt2rD777DNduXJFhw4d0uuvv65ChQrptddeU5UqVVS2bFkNHjxYO3bsUFJSkunYkqRTp07p7NmzCggIMB0FyHOSk5Pl5MTbwUB+1b59ezVs2FCjRo0yHQWAnY0ePVrx8fFasGCB6SgAAOAe3LhxQz4+PqZjAMhlXn31VU2dOlULFiygyAMAAABAjnjnnXfk4+Ojzp07m46i33//XY0aNVJ4eLhCQ0Mp8gAAAADgUPj0NgAAAODg9uzZo0GDBqlkyZJ64okntHv3bvXo0UO7d+/WxYsX9cEHHygwMFBVq1Z1uBM4LRbLPd1nDxaLJUsZbDZbNqbJm0y/xlLefZ2yuv9m55xZ2cY59Tzy2uvu5OSkqlWrKjAwUB988IEuXryoXbt2qVu3btq5c6eaNWumBx54QIMHD9bevXuNZrVarXJzc1OtWrWM5gDyoqSkJDk7O5uOAcCg2bNny2q16pNPPjEdBYAd3X///Ro2bJjmzJmjGzdumI4DAAAyKSoqSt7e3qZjAMhFJk6cqBkzZujdd9/VoEGDTMcBAAAAkAclJCRo6dKl6tu3r9zd3Y1mOXLkiBo1aiRnZ2eFhoaqUqVKRvMAAAAAQGY51pl8AAAAACRJt27d0sKFC1WtWjXVr19foaGhCgoK0rFjx7R//35NnTpV9erV44TNHJTVk/23b9+eTUmQk/Lq62SirOJOc2ZlG+fU88irr3sKZ2dn1a9fX9OmTdOBAwcUFhamIUOG6Pvvv1e9evVUvXp1LVq0SNHR0XbPZrVaVadOHeMfBADyouTkZIcrdgOQverWrasOHTpo7NixSkhIMB0HgB2NHDlSycnJmjdvnukoAAAgkyjzAJDCZrNp+PDhev311/Xuu++qZ8+epiMBAAAAyKNCQkJ04cIFDRgwwGiO7777To0aNdLDDz+snTt36sEHHzSaBwAAAADuBZ/eBgAAABzIrVu3NGvWLJUrV05jx45VrVq1tGfPHv3yyy+aMGGCKlSoYDoiAMDB+Pv7a9KkSTp06JB2796txx57TKNGjVLZsmU1e/Zs3bp1y25ZrFarAgIC7DYfkJ8kJSVR9AZAM2fO1JkzZ7RkyRLTUQDYka+vr4YNG6Y5c+YoMjLSdBwAAJAJlHkAkP4q8hg2bJgWLlyoVatWqXv37qYjAQAAAMjDFi5cqNatW6tMmTLGMnzyySdq2bKlmjdvrq+++koFCxY0lgUAAAAAsoIyDwAAAMBBfPHFF6pSpYqmTZumzp0768SJE1q+fLnq1q1rOlqGWSwWWSyWDI2n3E65z2KxqG/fvv96nyQdPnxYrVq1kre3t7y9vfXUU0/p8OHDt53z5MmTateunQoVKnTHfJmRmbkzIyN5Dx8+rGeeeSZ17meeeSbDc99p/NNPP1XDhg3l7u6uMmXKaMSIEYqKirrtY//880+1adNG3t7eKl68uLp166arV6/e8zb6+7r/+Rr/m8xsiztt0zttkyNHjuiZZ56Rl5eXfHx81LJlSx09evS2y2dmf/j1119Vr149eXp6KiAgQCdOnNCRI0dUt25deXl5qWnTpvrjjz8yvA1ul7dgwYJq27btHdeTke2WnXPe6djPzP4kKdv3vTtlyurx5wjq1aunFStW6Pfff1dgYKD++9//yt/fXx999FGOz33x4kUdP36cMg8ghyQnJ8vJibeDgfyubNmyGjx4sKZMmaLr16+bjgPAjkaMGCEnJyfNmzfPdBQAQC72QqWSeqFSSV0JP6+Zg3rpxccqqHfDRzVv9BBFXUtfCPXH8d80fUB3vfhYBb34WAVN69tVfxz/Ld1yf54I0/T+3dS1Rnl1q+mvqX266OyJY6nz/d2+b7ZqQpfW6vxoGQ1sVkfvvjZZMbdu3jbnhT/OaNbQPupRp9Jt15UXUOZhDscDcgubzaYhQ4ZoyZIlWr9+vbp27Wo6EgAAAIA87ODBgwoNDdXgwYONZdiwYYM6dOigXr16ad26dXJzczOWBQAAAACyik9vAwAAALlcUlKShg4dqlatWikgIEAnT57UvHnz5OfnZzpaptlstgyPp4zZbLbUr2XLlv3rfSdOnFCLFi303HPP6dSpUzpz5oy6deumNm3a6OzZs+nWHxgYqFGjRun8+fP64osvsvT8Mjt3Zvxb3hMnTujpp59W+/btderUqdTSgaeeekonTpz417nvNN6mTRv17NlTERER2rNnjyIiIjR06NDbPrZv374KDAxUeHi4fvzxR0VHR2vUqFFpls3sNrrda/xvMrst7rRNb7dNTp48mbru06dP6/Tp03rppZfUuXPndI/J7HMNDg7Wu+++q/DwcFWrVk3dunXT5MmTtXLlSp07d06VK1fWyJEjM7QN7pT35MmTeuGFF1Lz3st2y84573bsZ2R/SvHPZePj47O8790uU1aPP0dSpEgRBQcHKywsTE2aNNELL7ygoKAgJScn59icVqtVTk5Oql+/fo7NAeRXKf+WOjs7m44CIBeYOHGiEhMTNWvWLNNRANhRwYIFFRQUpP/973+6du2a6TgAgFwq5LfzkqS3J41Uyy49tTz0gGZt/FJxsTF67/WpaZa98McZTXmps2o1baFF2/do8Tc/qHHrFzRz0Eu6eiE8zXL/7fei6rd8Vou/3qtFX+9Vs3ad9ebLgWnmTDFzUC81bdtR7/3wq2au36yb169p2bRJt825JHic2vQO1LLvD2jikjXZvj1yg6ioKPn4+JiOkS9xPCA3SEpK0ksvvaRly5Zpw4YNatu2relIAAAAAPK4BQsWqHLlymrWrJmR+detW6euXbuqT58+WrRoERctAQAAAODwLLZ7OYsMAAAA/8pisWjdunXq2LGj6ShZsn79enXq1Omeygdym5TXYv369YaTZE6PHj20ceNGrVmzRu3atTMdJ8ssFstt96fbjd9p2bvd161bNz366KMaM2ZMmvEVK1bo4MGDaa5Aa7FYtGPHDjVp0uQenkn6DJmdO7PH1d3yduvWTbVr11ZQUFCa8TfffFP79+/X6tWr/3XujGSKjIxU+fLldfXq1XSP3bRpk9q0aZM6FhYWpmbNmuncuXNpcubkNkqZIzPb4m77wD8zdO/eXbVq1Uq37g8//FBdunTJ0v7w7bffqnHjxpKk8+fP64EHHkgzdvbsWdWsWVMXL17M8La4U96VK1fqpZdeSpc3o9stu+aU7nzsZ2R/utOyp0+fVqNGjbJ138uu489RbdiwQT169FCnTp20cuXKHJkjKChIVqtVP//8c46sH8jPEhMT5eLiopCQEIf//+SaNWvUp08fxcXFmY4COLTZs2fr1VdfVVhYmEqVKmU6DgA7uX79usqWLauXX35ZkyZN+vcHAAAyrE2bNvLx8clV7wOtWbNGvXv30YeHzmTqcS9UKqmxC99VnSdapo6dP31Sk3u219Lv96eOzRs9RA9V/I+e7zsozeO/CflQZ347ot4Tp/213JihKl+1mlr16JtmudDPP9HckYHpygv+6eaN6xrcor7e23s0Xc6pqzaqSp0GmXp+Kb7/NERvTxqp+Fz+86Wnp6cWL16sHj16mI7i0Dge7s5Rjof8JqXIY+PGjdq0aZOefPJJ05EAAJCUO3/+ye/y0u/P2L8AsyIjI1WqVCnNmjVLgwYN+vcHZLP3339fPXv2VFBQkGbPnm33+QEAAAAgJ1BRCAAAAORi69ev19q1a7Vp0yaHP/HSXrZv365OnTqlG2/VqpW2bduWbrxOnTrG5r4Xd8q7fft2Pf/88+nG27Ztq+3bt2fL3JJUqFAhRURE3Pa+xx9/PM3tMmXKKDw8PM2YPbZRZrdFZvaBbdu23XbdLVq0uG2OzDzXxx57LPV7Pz+/dGMlS5bU5cuXM5z1bnmfeuqp2+bNjn0oM3PeTUb2pzstW7p06RzZ90wffyZ16NBBmzZt0qpVq7Rx48YcmcNqtSogICBH1g3kd8nJyZLEFWsApBo2bJhKlCihKVOmmI4CwI4KFiyooUOHau7cuYqKijIdBwCQi/2ndr00t4s+UEqRly+lGftll1UNn2md7rGPNXlCB3d9/3/L7fxedZqnf2+wWsPH043djpdPQd28fu2295V/tEaG1uGoYmNjFRMTo8KFC5uOkq9xPMCEhIQEde7cWR999JE2b95MkQcAAAAAu1i2bJmcnJzUrVs3I3N3795dI0eOpMgDAAAAQJ5SwHQAAAAAAHe2evVqtW/fng9oZcLVq1dVpkyZ297n4eGRbszT09PY3PfiTnmvXLmSWgDxdyVKlNCVK1fuaa7Lly9r/Pjx+vLLL3XhwgUlJSXddflChQqlue3m5iabzZZmzB7bKLPbIjP7wJ3Wff/996cby+xz9fb2Tv0+5WTrf479c3vea97bjWXXPpSZOe8mI/vTnZZ1dnbOkX3PnsdfbtSyZUu98MILWrVqldq3b5+t675x44Z++eUXTZgwIVvXC+AvKX8nWiwWw0kA5Baurq4KDg7WSy+9pOHDh6tq1aqmIwGwkxEjRmj+/PlasGCBxo8fbzoOACCX8vIpmOa2i6truvfboq5FamCz25ffurq7p35/41qEfIsUS7eMt2+hdGM3Iq5qzZsztN+6Q9euXFbyv7wn7eaePe8p51Ypxdr/fP8T9sXxAHuLiYlRx44d9d133+mLL75IV2gOAAAAADkhOTlZixcv1ksvvSQfHx+7zr1y5Ur1799fwcHBevXVV+06NwAAAADkNC7FCAAAAORiv//+u/z9/U3HyFYWi0VxcXFpxlI+kJodihQpooiICNlstnRf0dHR2TZPbpw7PDw83Xh4eLiKFCmSZiyjr0H37t113333KTQ0VLGxsanPJas5c3obZWZb3Mu6L1y4kG78dmMm94e/Z7hdttu93tm13TIzpz3l5OuRk/tcblOxYkX9/vvv2b7eXbt2KSkpSQ0bNsz2dQMAgNt78cUXVa1aNU7mB/IZX19fDRo0SHPmzFFUVJTpOAAAB+ZdqLDe++FXhfx2Pt3XBwdOpS7n41tY165cSvf4243NGzNU7h6emv7+J/rwl9Op68uvIiMjJUmFCxc2nAT/huMB2eXWrVtq3bq1du7cqa+++ooiDwAAAAB28/nnn+v06dMKDAy067wfffSR+vXrp0mTJlHkAQAAACBPoswDAAAgh3DVa2SHWrVq6fPPP1diYqLpKNnGz89Pf/zxR5qx77///rbL3u04utN9LVu21Lfffptu3Gq1qmbNmhkPeg9Mzt28eXN99NFH6cY//vhjNW/ePM1YRl+DXbt2acqUKSpTpowKFCgg6a+rgWVFZrbRvf49mpltkVlPPvmkNm3alG78q6++Sjdmcn9Icae827dvTzeWXdstM3PaU06+Hjm5z+UmiYmJ2rx5s2rVqpXt67ZarfL391eJEiWyfd0AAOD2nJycNHv2bG3evFnffPON6TgA7Ojll19WfHy8Fi9ebDoKAOQZWS1BdkTVGzXRkb270o3/+uNejW7XMvV2tUaN9cP2L9MtdyD023RjYft/VKeho1XsgVJydv7rPen42NjsC+1gUgqSCxUqZDgJ/g3HA7JDZGSkWrRooUOHDmnHjh2qX7++6UgAAAAA8pGFCxeqRYsWqlSpkt3m3Lp1q7p27arAwEBNnTrVbvMCAAAAgD0VMB0AAAAgr3Jzc1NsHvhAVUJCglxcXEzHyLfGjRunGjVq6OWXX9a8efPyRElMixYtNGHCBM2dO1e+vr7auXPnHU8eeeCBB7R7927VqlVLO3bsUN++fVNLKO50X3BwsFq3bq2kpCQ1bdpUrq6u+u677zRw4EAtWLAgR5+bybknT56spk2bysfHR61bt5bFYtGnn36qN998M12BQUZfgwYNGmjMmDGaMGGCSpYsqT/++EPTpk3LUs7MbKO7vf7ZtS3uJX+TJk3k7e2t5557Tk5OTtq6dauWLFmSpeeaU/6Z19nZWdu3b9eMGTPSLZtd2y0zc9pTTr4eObnP5RbJyckaPny4jh8/ro0bN2b7+q1WqwICArJ9vQDynsTExNSSMQBZ17RpUz355JMaN26c9u7dmyd+5gTw7+6//34NGjRIs2bNUmBgoLy8vExHAgCHlx9/Vuk0dKRmBvZScnKSqtZtqAIuLjqyb7femTxW/V75v/cCOw0ZqVd7vCCP+7xUq2kLWZycdHDnd9q6bk26dVasUUurZ09TuwHDVLiYn66En9OGt+fa82nlKpGRkZIo83AEHA/IqosXL6ply5aKjIyU1WpVhQoVTEcCAAAAkI+cOHFC27Ztu+0FnHLKN998ozZt2qhz586aN2+e3eYFAAAAAHtzMh0AAAAgr/Ly8tKtW7dMx8iy+Ph4ubq6mo6Rb/n7+2vlypVasmSJOnbsqKtXr5qOlGVz5syRq6urHnvsMfn5+WnhwoVaunSpJKU7cezNN9/Uiy++KC8vLw0ePDjNCfd3uq9MmTIKCQnRhx9+qIcfflglSpTQ1KlT9dZbb+n5559PfXzKXBaL5Z5OWPv741Pcy9z3Mt/tHlehQgVt2bJFISEhKleunMqWLauNGzdqy5YtKl++fJplM/oarFq1SrGxsapbt668vb3Vtm1btWrVKt1yd3o+WdlG0t1f/7vJ6Lb4t216u/zlypXTli1btHHjRpUtW1Zly5bV+++/r1WrVsnJKe2P2FnZHzI69m/+mfehhx7S8uXL9f7776dbV2b2oeyaMzPPM6vLZtfrkdXjzxFduXJFHTp00LJly7Rq1apsf05xcXHat28fZR4AMiQ/niAH5LQ33nhDP/30kzZs2GA6CgA7GjVqlGJjY29bTgkAyLyEhIQ88buUFyqVTPPn3caLPVBKo99aptDPP9GgFvXVp1F1bVg4V30nTVed5k+lLle81EOatHStdn+1WQOfqKvAJ+rK+tnHGvb6fFn+8Z7qsNfnKz4uTuM6ttKLj5XX64N7q2bjJ9LN/fc8/8yal0RERMjT01Nubm6mo+RLHA+wlz/++EMBAQGKjY1VaGgoRR4AAAAA7O6tt95SqVKl9Mwzz9hlvj179qhNmzZq27atli9fzgUHAAAAAORpFpvNZjMdAgAAIC8qU6aMhgwZolGjRpmOkiXvvPOOxo8fr4iICNNRsqxjx46SpPXr1xtOknk7duxQ9+7dlZCQoJkzZ6p79+6cxAjkIkeOHFGrVq105swZ01GAbJOYmKhVq1Zp3LhxcnNz05o1a9S4ceNsnyc0NFQBAQE6efKkypUrl+3rB/BXaY67u7s2bdqkNm3amI6TJYsXL9bEiRPzRMkdkJv06NFDoaGh+vXXXzlREMhHRo0apbVr1+rUqVPy8PAwHQcAHFrjxo31yCOPZLiQ2B7WrFmj3r376MNDZ0xHua0/T4Rpev/uWvzND0bm//7TEL09aaTi4+KMzJ8Rc+fO1Zw5c3T27FnTURwex8PdOcLxkFeFhYWpRYsW8vHx0datW1WyJIUsAIDcr02bNvLx8dHq1atNR8H/t2bNGvXp00dxeeD/c+xfgP3dvHlTDz74oCZOnKjRo0fn+HzHjx9XgwYNVL9+fYWEhMjFxSXH5wQAAAAAk5z+fREAAADci/vuu0+3bt0yHSPLEhISeLM8F2jatKmOHj2q9u3bq3///qpUqZKWL1+u2NhY09GAfMdisWjevHmKjIxUXFycDhw4oAEDBmjw4MGmowHZIiYmRsuWLVPFihU1cOBAderUSUeOHMmRIg9JslqtKlGiBEUeADIkMTGRUjsgB8yYMUMXLlzQkiVLTEcBYEejR4/WjRs3tHTpUtNRAMDh8buUu3uhUkl9vmqZbt64roT4eJ3+9YgWvzpGT7/Yy3S0XC0yMlKFCxc2HQPZjOMBKY4cOaLdNC1nAAAgAElEQVRmzZrJz89P3333HUUeAAAAAIxYtWqV4uPj1bt37xyf6+rVq3r22WdVpkwZffDBB7yfBgAAACBfoMwDAAAgh3h5eenmzZumY2RZfHy8XF1dTceAJB8fHy1cuFBhYWFq2rSpBg0apJIlS2r48OE6fPiw6XhAvvHZZ5/p008/VenSpVWsWDH17dtX/fr1s8uVCYCcdOjQIQ0bNkwlS5bU4MGD9cQTTygsLExvvfWWfHx8cmxeq9Wqxx9/PMfWDyBv4QQ5IGc8+OCDGjx4sKZOnarr16+bjgPATooXL67+/ftr5syZiomJMR0HABwaP6vc3fjF72nfN1s1oEktvdTgkf/H3r3H51w//h9/7mBj52VzGOWUEWKjPk6bQymHhiISIoSKEsrhKyHKoZKRSOWUEB0UhZw+XJlDCeU8MeeN7Lyx4/X7o599UilyXXtd1zzut5ub7PB6P7aazPZ+Xpr18lA90Lmb2vd51nSaQ0tMTFRgYKDpDNgYHw+QpO+//15NmzZVaGioNmzYoJIlS5pOAgAAAHALslqtevfdd/X444/b/fOSy5cvq127dsrJydGqVavk7e1t1+sBAAAAgKPgIQwBAADsJDg4WAkJCaYzblpWVpY8PT1NZ+B3KleurPfff18TJkzQ/Pnz9f777ys6Olo1a9ZUp06d1LlzZ911112mM52ai4vL3z7farU69fWcmSO8r6KiohQVFWX36/wTE+8LR3j/w7YOHDigZcuWafny5Tpw4IDuvPNOjRw5Uk8++aRKlSpl9+vn5+dr27ZtmjBhgt2vBaBoyM3Nlbs7f60N2MOoUaM0d+5cvfHGG/y/GbiFvPTSS5o9e7bmzp2rAQMGmM4BAKfF11L+3j3NHtA9zR4wneF0EhMTddttt5nOgI3x8YD//ve/ateunZo2baply5apRIkSppMAAAAA3KI2bNig/fv3a9GiRXa9Tn5+vrp3765Dhw5p69atKl26tF2vBwAAAACOxNV0AAAAQFFVsWJFHT9+3HTGTUtKSlJAQIDpDPyF0qVLa/jw4YqNjZXFYtF9992n9957TzVq1FDVqlU1aNAgrV27VpcvXzad6nSsVuvf/nD26zkz3lf/Y+J9wfvf+V2+fFlr167V888/rzvvvFM1a9bU+++/rxYtWshisejIkSMaNmxYoQx5SNJPP/2k5ORkRUZGFsr1ADg/xjwA+wkICNCIESM0depUnTp1ynQOgEISEhKip556SlOmTFFOTo7pHABwWikpKfL39zedgSLm3LlzKlOmjOkMADa0atUqtW7dWlFRUfr8888Z8gAAAABg1LRp09SsWTOFhYXZ9TrDhg3TqlWr9MUXX6h69ep2vRYAAAAAOBrGPAAAAOykUqVKiouLM51x05KTkxUYGGg6A3/DxcVFERERmj59uk6fPi2LxaJHH31U//3vf9WqVSvddtttatasmUaPHq01a9YoNTXVdDIAoJCkpqZqzZo1Gj16tJo1a6bbbrtNrVq10pYtW9SpUyd99913OnXqlKKjoxURESEXF5dC7bNYLPL391fNmjUL9boAnBdjHoB9PffccypVqpReffVV0ykACtGwYcMUHx9v90feA4CijDEP2ENCQgKPVAsUIUuWLFGHDh3Us2dPLVq0SMWKFTOdBAAAAOAWFhsbq9WrV2vQoEF2vc6iRYs0depUzZ07V02aNLHrtQAAAADAEfFdzwAAAHZSqVIlnT17VllZWfL09DSd868lJSUx5uFEXF1dFRERoYiICE2cOFGnTp3S+vXrtWXLFn3yySeaMGGC3NzcVLt27YKXi4iIUEhIiOl0AIANnD17VhaLRVu3bpXFYtHPP/+svLw8hYaGqnHjxurZs6ceeOABlS9f3nSqpN/GPCIiIuTm5mY6BYCTYMwDsK/ixYtr/Pjx6tWrl1544QUGt4BbxO23366uXbvq9ddfV48ePfjzOQDcIKvVqrS0NMY8YHMJCQkqU6aM6QwANjBz5kw9//zzevHFFzVp0qRCH9YGAAAAgD+aPn267rjjDrVt29Zu19izZ4/69++vl156SV27drXbdQAAAADAkfFdzwAAAHZSqVIl5efn6+TJk6patarpnH8tOTlZlSpVMp2Bf+n2229Xr1691KtXL0lSfHy8tm7dqu+++07fffedZs2apdzcXFWsWFHh4eEKCwtTnTp1FBYWpgoVKhiuBwD8nbi4OO3du1d79uzR3r179eOPP+rEiRNyd3dXWFiYmjVrptGjR6tx48YO+wieW7du1fPPP286A4ATycnJ4VFLATvr1q2bpk2bppEjR+qrr74ynQOgkIwYMUI1atTQ559/rk6dOpnOAQCnkpaWpvz8fMY8YFPZ2dlKSkpy2L/XA3D9xo4dq1dffVWvv/66RowYYToHAAAAAJSWlqaFCxdq7Nixdhv4TkxMVIcOHdSwYUO99tprdrkGAAAAADgDxjwAAADspHLlynJxcdHhw4edeswjKSlJdevWNZ0BGylTpow6duyojh07SpLS09O1fft2bd++XXv37tXChQt17NgxWa1WBQYGKiws7KqBjxo1anDzJAAUspycHO3fv/+q4Y49e/YoKSlJLi4uqlKlisLCwtS3b1/Vr19fDRo0kI+Pj+nsf3T06FGdPXtWkZGRplMAOJHMzEx5eXmZzgCKNFdXV02cOFEtW7bUxo0bdd9995lOAlAIqlWrpg4dOui1117To48+yiOFA8ANSE1NlST5+fkZLkFRcv78eVmtVsY8ACdmtVo1dOhQTZ8+XbNnz1a/fv1MJwEAAACAJOn9999Xfn6+evfubZfz8/Ly1LVrV+Xn52vp0qVyd+fWNQAAAAC3Lj4jAgAAsBN/f39VqVJFP/zwg6Kiokzn/GsXL15UyZIlTWfATnx8fNSiRQu1aNGi4GlpaWnau3dvwc3iFotFs2bN0uXLl+Xh4aHQ0FBVq1ZNoaGhCg0NVfXq1RUaGqrbbrvN4FsCAM4vMTFRR44c0aFDh3TkyBEdPnxYR44c0ZEjR5Sdna3ixYurVq1aCg8PV8eOHRUWFqbatWvL19fXdPq/YrFYVLx4cdWrV890CgAnkp6e7hSDRYCze/DBB/XAAw9o5MiR2r59Ozf1A7eIl19+WeHh4VqzZo1at25tOgcAnMb58+clScHBwYZLUJTEx8dL+m2kHYDzyc7OVo8ePbRixQotXbpUjz76qOkkAAAAAJAk5efna+bMmerVq5f8/f3tco3hw4fLYrFo69atCgoKsss1AAAAAMBZMOYBAABgR/fee6++//570xn/Wn5+vs6ePavy5cubTkEh8vX1VUREhCIiIgqelpubq8OHD2vv3r06cOCADh8+rK+//lpvv/22Ll++LOm3b1SuVq3an4Y+KleuLA8PD1NvDgA4lOzsbB07dqxgsOPKeMfhw4f166+/SpKKFy9e8Htp+/btVaNGDdWpU0fVqlUrUo9UYbFYVL9+fXl6eppOAeBEMjIy5O3tbToDuCW88cYbqlu3rj799FN16tTJdA6AQlCnTh21atVK48ePZ8wDAG7AuXPnJDG6ANtKSEiQJJUuXdpwCYAblZGRoY4dO2rr1q1auXKlHnjgAdNJAAAAAFDgq6++0vHjxzVgwAC7nL9q1SpNnTpVCxcuVFhYmF2uAQAAAADOpOjcAQIAAOCA7r33Xr3++uumM/61CxcuKDs7W+XKlTOdAsPc3d1Vs2ZN1axZ80/PO3v2rA4cOKBjx47p2LFj2r9/vzZt2qS4uDjl5+dLkgIDA1W5cuWrfpQtW1YhISGqXr06N2QCKDJycnJ06tQpnT17VufOnSv4vfHKjxMnTigvL0/Sb7831qhRQzVr1lTbtm0L/rlChQpyc3Mz/JbYn8ViUZcuXUxnAHAyGRkZdnt0IABXq1Onjrp27aoRI0aoffv2jDQCt4jRo0erUaNGslgsioyMNJ0DAE4hPj5e3t7e8vHxMZ2CIiQhIUHe3t58/QRwMomJiYqKitKxY8e0ZcsWhYeHm04CAAAAgKtER0froYceUrVq1Wx+dkJCgp566in17NlT3bt3t/n5AAAAAOCMGPMAAACwo3vvvVe//vqr4uLiVLFiRdM5N+zMmTOSxJgH/lZISIhCQkL+9PTMzEwdPnxYx44dU1xcXMGPVatW6cSJE0pPT5ckubq6qmzZsqpUqZIqVqxY8CMkJETly5dX2bJlFRQUVNhvFgD8pV9//VXnzp3T6dOndebMGZ04cUJxcXE6fvy44uLidO7cuYIhIx8fn4Lf0+666y61atVKFStWVJUqVRQaGiovLy/Db4058fHxOnr0KDcHArhhGRkZfH4CFKIJEyaoevXqmjNnjgYOHGg6B0AhaNiwoSIjIzVx4kT+vA4A1yk+Pl5ly5Y1nYEiJj4+XmXKlDGdAeAGnDhxQi1btlRWVpa2bNmi0NBQ00kAAAAAcJV9+/Zp8+bN+vbbb21+dn5+vrp37y4fHx9Nnz7d5ucDAAAAgLNizAMAAMCOwsPD5ebmpp07dzr1mMdfDTUA/8TLy0vh4eHXfMSpK0M3v/9x4sQJffHFF4qLi1NGRkbBy3p6ehaMhpQrV67g57Jly6p8+fIqU6aMbr/99lv6xngANyczM1OnTp1SfHx8wc+nT5/WuXPndObMGZ09e1Znz55VVlZWwet4e3urYsWKqlSpksLDw/Xwww9fNUrEENG1WSwWubm5qX79+qZTADiZjIwMHpUYKEQVKlTQgAED9Oqrr6pHjx7y8/MznQSgEIwcOVJt2rTRDz/8oHvuucd0DgA4vISEBEYXYHMJCQkqXbq06QwA1+ngwYNq2bKl/Pz8tGHDBsZoAQAAADikqVOn6q677tL9999v87OnTJmizZs3y2KxyNfX1+bnAwAAAICzYswDAADAjry9vVWvXj1t2LBBnTt3Np1zw86ePavAwEAGEmAXQUFBCgoKuuZNISkpKVfdQH/mzBmdO3dOp0+f1o4dO3Tq1CklJCQoJyen4HX8/f1Vrlw5BQcHq3Tp0ipVqpSCg4MVHBysMmXKKDg4WEFBQSpdurQCAwML600FYEhiYqLOnz+vCxcu6Ndff9W5c+f066+/6sKFCzp//rwSEhJ04cIFnT59WqmpqQWvV6xYMZUuXVq33367ypQpo7p16+qhhx4qGBO6Mijk7+9v8K1zbhaLRWFhYbwPAdwwxjyAwjdq1CjNmzdPb775pl599VXTOQAKQevWrVWvXj1NnjxZy5cvN50DAA7v7NmzjC7A5hjzAJzHzp079dBDD6lKlSr6+uuvVbJkSdNJAAAAAPAnFy5c0JIlSxQdHS0XFxebnr1z50698sormjhxIg/sAwAAAAB/wJgHAACAnbVu3Voffvih6Yx/5ZdfflGlSpVMZ+AW5e/vL39/f9WoUeOaL2O1WpWQkKBz585dNfxx4cIFxcfHa+/evQU37ScmJl71usWKFSsY+rgy/BEUFFTw82233abAwEDddtttBf/MYjxgTlpamhITE5WUlHTVzxcuXCgY6zh//rzi4+MLBjt+P/YjSSVLliz4uA8ODlbNmjUVHBx81UBH2bJlVbp0aZt/0RpXs1gsatasmekMAE6IMQ+g8AUGBmrEiBEaN26cnnnmGZUtW9Z0EoBCMHz4cHXp0kX79+9XzZo1TecAgEOLi4tT8+bNTWegiElISNBdd91lOgPAP9iwYYMeeeQRNW3aVMuWLVOJEiVMJwEAAADAX5o9e7ZKlCihbt262fTcy5cvq0ePHmrevLmGDBli07MBAAAAoChgzAMAAMDOWrVqpXHjxjnlN77HxsaqatWqpjOAa3JxcVGZMmVUpkwZhYeH/+3L5uTkFNzwn5CQoPPnzxeMAMTHx+vChQv65ZdfdP78ef36669KSUn50xnFihUrGPj4489/9TRfX1/5+fnJ19dXgYGB9no3AE4jKSlJqampSktLU2pq6p+GOa71c2JionJzc/90nr+/f8EIT3BwsMqXL697771XQUFBCg4OVqlSpVS6dGkFBwcrKChIxYoVM/BW449SU1P1888/a/To0aZTADghxjwAM5577jnNmDFD48aN0+zZs03nACgEHTt2VGhoqN58803NmzfPdA4AOLTjx4+rd+/epjNQxMTHxzOGCzi4xYsX68knn9Rjjz2muXPn8jUIAAAAAA4rJydH7733nvr372/zr7ePGTNG586d07p163jwJAAAAAD4C4x5AAAA2Nl//vMfBQcHa/Xq1U455vHII4+YzgBsolixYgoJCVFISMh1vXx+fv41RwX++LS4uLirfp2VlfWXZ/5+3MPPz09+fn4KCAj409P9/f3l7+9f8OsSJUooICBAHh4e8vHxkY+PD98QiEKRk5Oj9PR0paenKzs7W8nJybp06VLBIEdKSoqSk5MLxjnS0tKUlpam5ORkpaSk/Onpf8XT0/NPwzhBQUEKDQ295njOlZ9dXV0L+T0CW9i6davy8/MVERFhOgWAE0pJSVFAQIDpDOCWU7x4cY0bN079+vXTCy+8oOrVq5tOAmBnrq6uGjZsmPr376/x48erfPnyppMAwCGlpaUpMTFRlSpVMp2CIiYhIUGlS5c2nQHgGqKjozV48GANHTpUU6ZM4YY1AAAAAA7tk08+UUJCgp599lmbnrt79269/fbbmjlzpm6//Xabng0AAAAARQVjHgAAAHbm6uqqFi1aaM2aNXrxxRdN51y3/Px8HTt2TFWrVjWdAhjh6uqqoKAgBQUF3fDrZmZmKikpqWDEIDU1VUlJSQWDBr8fQkhJSVF8fLxiY2MLnp6cnKzU1FTl5eVd8xouLi4KCAhQ8eLFVaJECfn5+cnT01O+vr7y9vaWh4eHAgMD5enpKS8vL/n6+srT01N+fn4Fryv9NjDi7u5ecI67u7t8fX0lSQEBAXJxcWE8xIFkZ2crIyNDVqtVycnJkn67YSA3N1eXLl3S5cuXlZubWzCckZycLKvVqtTUVGVlZSktLU0ZGRnKzs5WUlKSsrKylJmZqbS0NGVlZSk1NbXgnCuvey1ubm4FgzRXxmiuDNBUrlz5qkGaKz///mX9/PwUGBgoLy+vQnnfwXFYLBaFhoaqVKlSplMAOJmMjAxlZWUpMDDQdApwS+rRo4feeustjRkzRp988onpHACFoHv37hozZoymTZumN99803QOADikY8eOSZIqVqxoNgRFSlZWlpKTkxnzAByQ1WrVyJEjNWXKFE2aNEnDhg0znQQAAAAA/2jGjBnq2LGjTQc3srOz1aNHD0VEROipp56y2bkAAAAAUNQw5gEAAFAI2rRpoz59+igpKclpbjw7ffq0Ll26xJgH8C94eXnJy8tL5cqVu6lzMjIylJaWpszMTKWkpCgrK0vp6ekFN7ImJyfr8uXLunTp0l8+/9ixY3/5/Ly8PKWmpt5wz5VhEFdXV/n7+0uS/P395erqKklXDYH8/uWvKFGihIoXL17w6z+OhPj5+cnNze0vr/13z/ujYsWKycfH57peNj09XTk5Odf1sn/3fvvj83JycpSenl7w6yv/Hq64MqhxxZVBDum3MaWUlBRJUkpKivLz85WZmamsrKzr6vy9K+83X19feXh4yN/fv+DfQ0BAgHx9fVWmTJlrPt/T01Pe3t7y8fGRp6en/P39C8ZhvL29b7gHkH4b84iMjDSdAcAJJSUlSZLTfE4FFDVubm6aMGGCOnTooCFDhqh+/fqmkwDYWbFixTRw4EBNmDBBL7/8csEwKADgf44fPy4XFxeHHfPIt+YrZs1K0xkOKfan3aYTrun8+fOyWq0qU6aM6ZQi5aqPB6tVcnExG+RAHPnjwZHk5ubqmWee0fz58zVnzhxuVgMAAADgFGJiYrRz505NmzbNpudOmDBBx44d04oVK+TC59gAAAAAcE2MeQAAABSCdu3ayc3NTZ9++qn69u1rOue6HDlyRJIY8wAM8vb2tvtgwpWxiCvjEtnZ2crIyJDValVycrIkKTU1VXl5ebp06ZIuX76s3NxcpaWlSfrfTbXSb48WmJmZWfDrPw5QXLhw4arhjCvXvuL3Z/3eH4cx/snvhzH+ibu7u7y9vZWfny9393/+FPmPAyS/9/sbi38/eCL9eWCkZMmSKlGiRMGvvby85Onp+aezfH195e7uruLFi6tEiRJyc3OTn5+fJCkgIEAuLi7y9vaWh4fHX46tAI4mKytLP/zwg9P8eQiAY2HMAzDv4YcfVsOGDTV69Gh9++23pnMAFIKnn35ar7/+umbPnq0RI0aYzgEAh3PkyBGVK1fuqr/rcxQhISGS1aq3XuhvOsVhVapU2XTCX0pISJAklS5d2nBJ0cHHwz9z1I8HR5GRkaHOnTtr8+bN+vLLL9WmTRvTSQAAAABwXaKjo1WvXj01bNjQZmfu27dPkyZN0ltvvaUqVarY7FwAAAAAKIoY8wAAACgEfn5+ioqK0uLFi53m5tW9e/eqbNmyCgoKMp0CwI6ujD7cyjfFDhs2TF999ZUOHTpkOgUo8nbu3KnLly8rMjLSdAoAJ8SYB+AYJk2apCZNmmj9+vVq0aKF6RwAdubn56d+/fpp2rRpeuGFF1S8eHHTSQDgUA4cOKAaNWqYzvhL991333WPHjuDX375RbVr19aLL76ocePGmc6xqytjHqVKlTJcUnTcd999unTpksaMGaMpU6aobdu2ev/99/k6KK7LxYsX1bZtWx05ckTr1q2z6Q1wAAAAAGBPZ86c0RdffKH58+fb9NyhQ4fq7rvv1oABA2x6LgAAAAAURa6mAwAAAG4VXbt21ZYtW3Tq1CnTKddl7969qlOnjukMALC7qKgoHT58WEeOHDGdAhR5FotF5cqVU6VKlUynAHBCV8Y8AgICDJcAt7bIyEi1bt1aI0eOlNVqNZ0DoBAMGjRISUlJ+vjjj02nAIDDOXjwoMOOeRQ1VapU0aRJk/T6669r586dpnPs6tSpU/Lz85OPj4/plCLj+PHjatasmaZNm6a33npLX3zxBUMeuC7Hjx9Xo0aNFB8fr5iYGIY8AAAAADiVGTNmKCgoSI8++qjNzly+fLnWrVunmTNnytWVW9IAAAAA4J/wmRMAAEAhadOmjQIDA7V06VLTKddlz549jHkAuCU0btxYJUuW1KpVq0ynAEWexWJRZGSk6QwATiopKUleXl7y9PQ0nQLc8iZPnqwff/xRn332mekUAIWgXLly6tq1q9544w3l5+ebzgEAh2G1WnXw4EHdddddplNuGQMHDlSLFi3Us2dPXbp0yXSO3Zw6dUoVK1Y0nVFkLFy4ULVr11Z2drb27NmjQYMGmU6Ck/j5558VEREhX19fbdu2TaGhoaaTAAAAAOC6ZWZm6oMPPtCzzz4rDw8Pm5x56dIlDRs2TD179lSDBg1sciYAAAAAFHWMeQAAABQSDw8PdezY0SkewTI7O1uHDx9mzAPALcHNzU2tWrVizAOws7y8PG3bto0xDwD/WlJSkgIDA01nAJB09913q0uXLho1apRyc3NN5wAoBMOHD1dsbCyfOwPA75w6dUppaWmqUaOG6ZRbhouLiz744AMlJCTo//7v/0zn2M2JEyd0xx13mM5wer/++qsefvhh9erVS71799bWrVsZY8B127BhgyIiInTXXXdp48aNKl26tOkkAAAAALghH330kdLT09W3b1+bnTlx4kRdvHhRr7/+us3OBAAAAICijjEPAACAQtSzZ0/t3btXO3bsMJ3ytw4cOKDs7GzGPADcMtq2bSuLxaKkpCTTKUCR9dNPPyklJYUxDwD/GmMegGN57bXXdOLECc2bN890CoBCUL16dbVp00ZvvPGG6RQAcBgHDhyQJMY8Clm5cuU0bdo0TZ8+XZs2bTKdYxcnT55UhQoVTGc4tfXr16tOnTravXu3Nm7cqOjoaJs9CjGKvkWLFql169Zq166dVq9eLT8/P9NJAAAAAHDDZs6cqW7dutlsnPD48eN68803NWbMGJUtW9YmZwIAAADArYAxDwAAgELUqFEj1atXT++8847plL/1448/ysvLi0enAnDLaNWqlVxcXLR27VrTKUCRZbFYFBgYqJo1a5pOAeCkGPMAHEvFihXVt29fjR07VpmZmaZzABSCl156Sd99951iYmJMpwCAQ9i1a5cqVKig2267zXTKLadHjx7q0KGDevTooeTkZNM5NnfixAndcccdpjOc0uXLlzVixAi1bNlSjRs31p49e9S0aVPTWXAi0dHR6tmzp5555hktWLBAxYoVM50EAAAAADfs22+/1c8//6znn3/eZmeOHj1ad9xxh03PBAAAAIBbAWMeAAAAhezZZ5/VsmXLlJCQYDrlmrZt26Z7771X7u7uplMAoFD4+/srIiJCq1atMp0CFFkWi0WNGzeWqyt/HQXg32HMA3A8r7zyitLS0jRjxgzTKQAKQZMmTdSwYUO98cYbplMAwCHs3r1bdevWNZ1xy5o1a5ZycnI0dOhQ0yk2lZeXp7NnzzLm8S/s379fDRo00KxZszR//nwtW7aMv0fAdbNarRo+fLgGDx6sSZMmKTo6mr/LBgAAAOC0oqOj1bx5c9WpU8cm5+3bt09LlizR+PHjGT0EAAAAgBvEV5wAAAAK2eOPPy5fX1+9//77plOuadu2bWrQoIHpDAAoVG3bttXq1auVm5trOgUokrZu3arIyEjTGQCcGGMegOMJDg7WCy+8oEmTJikxMdF0DoBCMHToUH355Zc6ePCg6RQAMO7HH39UeHi46YxbVlBQkObMmaO5c+fq888/N51jM2fOnFFubq4qVKhgOsVpWK1WRUdHq169evLy8tKPP/6oJ554wnQWnEh2dra6deumadOmafHixXrppZdMJwEAAADAvxYbG6s1a9Zo0KBBNjtz1KhRqlWrljp27GizMwEAAADgVsGYBwAAQCErUaKE+vTpU/CIYY4mNTVVBw8eZMwDwC2nXfKqC2YAACAASURBVLt2SkxMVExMjOkUoMiJjY3VuXPnGPMAcFMY8wAc00svvSQPDw+98cYbplMAFIJHHnlEd955p95++23TKQBgVHJysuLi4lS3bl3TKbe0du3aqWfPnnr66aeVkJBgOscmTp48KUm64447DJc4h4SEBEVFRenFF1/UiBEjZLFYVKVKFdNZcCKpqalq06aNvvnmG61Zs0ZdunQxnQQAAAAANyU6Olp33HGHoqKibHLe999/r5UrV2ry5MlydeUWNAAAAAC4UXwmBQAAYMAzzzyjhIQEh3yksB07dig/P1//+c9/TKcAQKGqUqWKqlevrpUrV5pOAYoci8WiEiVKqF69eqZTADgxxjwAx+Tr66sRI0YoOjpap0+fNp0DwM5cXV01ePBgLVq0SBcuXDCdAwDG7N69W1arVeHh4aZTbnnR0dHy8vJS//79TafYxIkTJ1SsWDGVKVPGdIrD++KLL1SzZk0dPHhQmzdv1tixY+Xm5mY6C07kzJkzatKkScF/Q82bNzedBAAAAAA3JTk5WQsXLtTzzz9vs8+RR4wYocaNG6tVq1Y2OQ8AAAAAbjWMeQAAABhQsWJFPfrooxo/frzy8/NN51xl+/btqlChgkJCQkynAEChi4qKYswDsAOLxaL69evLw8PDdAoAJ8aYB+C4BgwYoDJlymj8+PGmUwAUgp49e8rLy0uzZ882nQIAxuzYsUMhISF8LcUB+Pv7a+7cufrqq6+0aNEi0zk37eTJkypfvjyjFH/j0qVLGjRokDp06KA2bdrop59+UqNGjUxnwcns379fjRo1Uk5OjmJiYlSnTh3TSQAAAABw0+bMmSNJ6t27t03O27BhgzZu3KiJEyfa5DwAAAAAuBUx5gEAAGDI6NGjdfDgQYe7aXzz5s1q0qSJ6QwAMKJt27Y6fPiwYmNjTacARYrFYlFkZKTpDABOLjk5mTEPwEF5eHjolVde0YcffqiDBw+azgFgZ15eXurbt6/eeecdXb582XQOABgRExOjxo0bm87A/3fffffpueee08CBA3Xy5EnTOTfl5MmTqlChgukMh/X999+rTp06WrJkiVasWKGFCxfKx8fHdBaczKZNmxQREaHy5ctry5YtfMwBAAAAKBJycnL0zjvvqF+/fvL397fJmZMmTVKLFi0UERFhk/MAAAAA4FbEmAcAAIAhNWvWVLt27TRu3DhZrVbTOZKkrKwsxcTEqHnz5qZTAMCIxo0bq2TJklq1apXpFKDIiI+P1y+//MKYB4CbkpmZqaysLAUEBJhOAXANTzzxhKpXr64xY8aYTgFQCJ577jklJydr6dKlplMAoNBZrVZt375dDRs2NJ2C35k8ebLKly+vPn36OMzX3f6NkydP6o477jCd4XDy8vI0efJkNW7cWBUqVNCePXvUvn1701lwQp9++qnatGmj+++/Xxs2bFDJkiVNJwEAAACATSxbtkxnz57VgAEDbHLe3r17tWHDBg0fPtwm5wEAAADArYoxDwAAAINeeeUV7dmzR2vXrjWdIum3R5K7dOkSYx4Abllubm5q1aqVVq5caToFKDK2bNkid3d3NWjQwHQKACeWlJQkSdxgATgwNzc3vfbaa/r000+1fft20zkA7CwkJESdOnXSW2+95dQ3TAPAv3HkyBFduHBBjRo1Mp2C3ylevLgWLFigzZs3a9asWaZz/rUTJ06oQoUKpjMcyokTJ9S8eXONHTtW48eP19q1axUSEmI6C04oOjpajz32mPr166dly5apePHippMAAAAAwGaio6PVqVMnVapUySbnTZw4UbVr19b9999vk/MAAAAA4FbFmAcAAIBB4eHhat26tcaNG2c6RZK0adMmVa5cWRUrVjSdAgDGREVFyWKxFNw0DODmWCwWhYWFydfX13QKACeWmJgoSQoMDDRcAuDvtG/fXo0aNdKIESNMpwAoBEOGDNG+ffu0adMm0ykAUKhiYmJUvHhxhYeHm07BH9SrV0/Dhw/XSy+9pCNHjpjO+VdOnTqlO+64w3SGw1i+fLnCw8OVmJio7du3a/jw4XJ15dvdcGPy8vI0cOBADR06VNOnT1d0dDT/HQEAAAAoUv773//q+++/1wsvvGCT844fP67PPvtMw4cPl4uLi03OBAAAAIBbFV+VAgAAMGz06NHavn271qxZYzpFGzdu1H333Wc6AwCMat26tVxcXLR27VrTKUCRYLFYFBkZaToDgJO7MrLFmAfg+CZNmqTNmzdr/fr1plMA2FndunUVGRmpt99+23QKABSqmJgY3XPPPfLw8DCdgr8wZswY1axZU08++aTy8vJM59yQpKQkpaamMuYhKSUlRd27d9djjz2mJ554Qrt27VKdOnVMZ8EJZWZm6pFHHtGHH36oxYsXa8CAAaaTAAAAAMDmpk6dqsjISNWvX98m57311lsqX768OnXqZJPzAAAAAOBWxpgHAACAYQ0aNFD79u01bNgwo99UmJqaqp07d6p58+bGGgDAEfj7+ysiIkKrVq0ynQI4vZSUFO3bt48xDwA37cqYR0BAgOESAP8kIiJCbdq00YgRI2S1Wk3nALCzwYMH6+uvv9ahQ4dMpwBAodm4caOaNWtmOgPX4O7urgULFmj37t2aMmWK6ZwbcuLECUlShQoVDJeYFRMTo/DwcK1fv16rVq1SdHS0PD09TWfBCV28eFEPPvigtm7dqnXr1qlz586mkwAAAADA5mJjY/X1119r8ODBNjkvMTFR8+bN0+DBg+Xu7m6TMwEAAADgVsaYBwAAgAOYPHmyDh06pAULFhhrWLdunfLz8/Xggw8aawAAR9G2bVutXr1aubm5plMAp7Z161bl5+ercePGplMAOLmkpCR5e3tz8w7gJCZNmqTdu3fr008/NZ0CwM7at2+vypUra8aMGaZTAKBQnDx5UseOHWMY3cHdddddevXVVzVmzBjt2rXLdM51O3nypCTp9ttvN1xiRm5ursaOHasmTZooLCxM+/fvV5s2bUxnwUkdO3ZMjRo10rlz5xQTE6OIiAjTSQAAAABgF1OnTlWFChXUrl07m5y3YMECubq66sknn7TJeQAAAABwq2PMAwAAwAFUq1ZNTz31lEaPHq2MjAwjDd98843q16+voKAgI9cHAEfSrl07JSYmKiYmxnQK4NQsFouqVaumUqVKmU4B4OQSExMVGBhoOgPAdbr77rvVtWtXjRo1Sjk5OaZzANiRq6urnnvuOc2fP18XL140nQMAdrdx40Z5enqqYcOGplPwD4YOHapGjRqpR48eunz5sumc6xIXF6fSpUvLy8vLdEqhO3TokOrXr68pU6borbfe0ueff66SJUuazoKT2rlzpxo2bKiAgABt27ZN1apVM50EAAAAAHaRmJiojz76SEOGDJGbm5tNzvzggw/UrVs3+fn52eQ8AAAAALjVMeYBAADgIMaNG6f09HS9/fbbhX5tq9WqNWvW8OhWAPD/ValSRdWqVdPKlStNpwBOzWKxKDIy0nQGgCIgKSmJMQ/AyYwfP14nT57U3LlzTacAsLPevXvLw8ND77//vukUALC7TZs2qVGjRipRooTpFPwDV1dXzZs3T6dOndK4ceNM51yX2NhY3XnnnaYzCt3ChQt1zz33yM3NTXv37tWgQYNMJ8GJffnll2revLkaNGigTZs2MTQNAAAAoEh799135eHhoSeffNIm523evFkHDhxQv379bHIeAAAAAIAxDwAAAIcRHBysF198UZMnT1Z8fHyhXnv37t06e/YsYx4A8Dtt27bVqlWrTGcATisrK0u7du1izAOATSQnJzPmATiZihUrql+/fho3bpwyMzNN5wCwI19fX/Xp00czZsxQdna26RwAsKtNmzapWbNmpjNwnSpVqqQ333xTU6ZM0ZYtW0zn/KOjR4/eUmMeFy5cUPv27dW7d28NHDhQW7duVdWqVU1nwYl98MEHevTRR/X444/rs88+k5eXl+kkAAAAALCbrKwsvfvuu+rfv798fHxscuacOXP0n//8R3Xr1rXJeQAAAAAAxjwAAAAcypAhQ+Tv769Ro0YV6nW/+eYbhYSEKCwsrFCvCwCOrG3btjp06JBiY2NNpwBOaceOHbp8+TJjHgBsIjU1Vf7+/qYzANyg0aNHKz09XdOnTzedAsDOnnvuOZ0/f16ffvqp6RQAsJuDBw/q1KlTatGihekU3IB+/fqpdevW6tWrl9LT003n/K1baczj22+/VZ06dbR3715t3LhRkyZNUrFixUxnwUlZrVaNHTtW/fr106hRo/TBBx/I3d3ddBYAAAAA2NXixYv166+/asCAATY57+LFi/r888/Vv39/m5wHAAAAAPgNYx4AAAAOxNvbW2+++abmzZunmJiYQrvuihUrFBUVJRcXl0K7JgA4usaNG6tkyZJatWqV6RTAKVksFpUrV04VK1Y0nQKgCEhPT7fZowkBKDzBwcEaPHiwJk+erMTERNM5AOyoQoUKat++vd555x3TKQBgN6tXr1ZgYKDq169vOgU36P3331dKSoqGDx9uOuWacnNzdeLEiSI/5nH58mUNGjRIrVq1UkREhHbv3q0mTZqYzoITy87OVvfu3TVx4kR99NFHGjt2rOkkAAAAACgU0dHR6tKli8qXL2+T8xYuXChPT0899thjNjkPAAAAAPAbxjwAAAAcTJcuXdSyZUs9/fTTysnJsfv14uLi9OOPP+rRRx+1+7UAwJm4ubmpZcuWWrlypekUwClZLBa+ER+AzaSlpTHmATipl156SR4eHpo8ebLpFAB2NnDgQG3btk0//PCD6RQAsIvVq1erZcuWcnNzM52CG1S2bFnNmTNHs2bN0urVq03n/KXjx48rJyenSI957Nu3T/Xr19eCBQv00UcfadmyZQoMDDSdBSeWlJSkBx98UCtXrtRXX32lbt26mU4CAAAAgELx7bffau/evRo8eLDNzvz444/VqVMneXt72+xMAAAAAABjHgAAAA5p+vTpOnLkiN599127X2v58uUKCAhQ06ZN7X4tAHA2bdu2lcViUXJysukUwKnk5eVp+/btioyMNJ0CoIhIT09nzANwUj4+Pho5cqSmT5+uU6dOmc4BYEfNmjVT7dq1NXPmTNMpAGBzGRkZslgsat26tekU/EsdOnRQ586d9dRTTykxMdF0zp8cPXpUklSlShXDJbZntVoVHR2te+65Rz4+Pvrxxx8ZXcBNO3PmjJo3b67Y2Fht2bJFLVu2NJ0EAAAAAIVm6tSpuu+++xQeHm6T83755Rft2rVLjz32mE3OAwAAAAD8D2MeAAAADqhq1aoaOnSoRo8erbNnz9r1Wp999pkefvhheXh42PU6AOCMWrduLRcXF61du9Z0CuBU9u7dq5SUFMY8ANgMYx6Ac3v22WcVEhKi8ePHm04BYGfPPPOMlixZovPnz5tOAQCb2rBhg3JycrhZ3MnNnj1brq6uev75502n/MnRo0cVHByswMBA0yk2FR8frzZt2ujFF1/UiBEjtGXLFlWuXNl0Fpzczz//rAYNGhSMSoeFhZlOAgAAAIBCs3//fn377bcaMmSIzc5csmSJgoOD1axZM5udCQAAAAD4DWMeAAAADmrUqFEqWbKkXnzxRbtd4/Tp09q5c6c6duxot2sAgDPz9/dXRESEVq5caToFcCoWi0WBgYGqUaOG6RQARURaWpq8vb1NZwD4lzw8PPTKK69o7ty5OnjwoOkcAHbUo0cPeXt7a+7cuaZTAMCmvvnmG9WrV0+lS5c2nYKbEBAQoLlz52rx4sVatmyZ6ZyrHD16VHfeeafpDJv67LPPVLNmTcXFxWnHjh0aO3as3NzcTGfByW3YsEERERGqVq2avvvuO91+++2mkwAAAACgUL399tuqWrWqWrdubbMzP/nkE3Xu3Fnu7u42OxMAAAAA8BvGPAAAAByUl5eXZsyYoSVLlmjVqlV2ucby5cvl5+enFi1a2OV8ACgKoqKitHr1auXm5ppOAZyGxWJRRESEXF35qycAtpGeni5fX1/TGQBuwhNPPKFatWrplVdeMZ0CwI68vLzUs2dPzZo1i8+jARQZ+fn5+uqrr9S+fXvTKbCBBx54QH379tWAAQMUHx9vOqdAURrzSEtLU//+/fXoo4/qoYce0g8//KC6deuazkIRsGDBArVu3VoPP/ywVq9eLX9/f9NJAAAAAFCozp8/r48//lhDhgyx2ffkHDp0SPv27dNjjz1mk/MAAAAAAFfjjgoAAAAHFhUVpe7du6tfv35KSkqy+fkff/yxOnToIE9PT5ufDQBFRfv27ZWYmKiYmBjTKYDTiImJUWRkpOkMAEVIZmamvLy8TGcAuAmurq569dVX9dlnn2n79u2mcwDY0YABA3T69GmtXLnSdAoA2MT27dt17tw5Pfzww6ZTYCNTp05VQECA+vXrZzqlQGxsbJEY89ixY4fq1q2rL774Ql9++aUWLlwob29v01koAiZPnqxevXrpmWee0fz581WsWDHTSQAAAABQ6GbOnCkvLy91797dZmcuWbJE5cqVU+PGjW12JgAAAADgfxjzAAAAcHAzZsyQq6urhgwZYtNzDx06pF27dqlbt242PRcAipoqVaqoWrVqWrVqlekUwCkcOXJE586dY8wDgE1lZ2dzkwZQBLRr105NmjTRiBEjTKcAsKMqVaqoVatWmjlzpukUALCJL7/8Unfeeadq1qxpOgU24u3trfnz5+ubb77R3LlzTecoLy9PJ06ccOoxj9zcXE2ePFmRkZGqXLmy9uzZo3bt2pnOQhGQl5enp59+WqNGjdK7776r6Ohoubi4mM4CAAAAgEJ3+fJlvffeexo4cKBNhzNXrlyphx9+WK6u3F4GAAAAAPbAZ1sAAAAOLiAgQLNmzdL8+fP15Zdf2uzcjz/+WCEhIWrWrJnNzgSAoqpt27Y8ojBwnSwWi0qUKKG6deuaTgFQhOTl5cnd3d10BgAbmDBhgjZv3qx169aZTgFgRwMGDNCGDRv0888/m04BgJv25Zdf6pFHHjGdARtr3LixBg8erEGDBumXX34x2hIXF6fs7GynHfOIi4tT8+bNNXbsWL3xxhtas2aNQkJCTGehCMjIyFD79u21aNEirVixQk8//bTpJAAAAAAwZsGCBUpOTtYzzzxjszPj4+O1Z88etWnTxmZnAgAAAACuxpgHAACAE2jbtq26deumZ599VklJSTd9ntVq1eLFi9W1a1e5ubnZoBAAiraoqCgdOnRIsbGxplMAh2exWNSgQQN5eHiYTgFQROTl5clqtTLmARQRERERioqK0ksvvaT8/HzTOQDspHXr1goNDdXs2bNNpwDATTlw4IAOHz6s9u3bm06BHUyYMEGVKlXSk08+afTPpkePHpUkpxzzWLhwoWrXrq3k5GTt2LFDgwYNkouLi+ksFAHx8fFq2rSpdu3apf/+97+KiooynQQAAAAAxlitVkVHR6t79+4qU6aMzc5dvXq1PD09eVBAAAAAALAjxjwAAACcRHR0tPLz8zV06NCbPmvbtm06duyYunXrZoMyACj6IiIiVLJkSa1atUqSlJ+frx07dujVV1/VgQMHDNcBjmXLli2KjIw0nQGgCMnLy5MkxjyAIuT111/Xzz//rOXLlxc8LScnRx988IFmzZplsAyArbi4uOjpp5/WwoULlZKSYjoHAP61pUuXqly5cmrYsKHpFNiBp6enFi5cqJ07dyo6OvpPz8/NzVVOTo5Nr5mZmanx48dr7ty52rlzp9LS0hQbG6vAwEDddtttNr2WPaWkpKhr16568skn1atXL/3www+qXbu26SwUEUePHlVkZKRSUlK0ZcsW3XPPPaaTAAAAAMCob775RgcPHtTzzz9v03PXrFmjpk2bysvLy6bnAgAAAAD+hzEPAAAAJ1GyZEnNnj1b8+fP1+eff35TZ82bN0933323wsLCbFQHAEWbm5ub7r//fs2bN0+9e/dWcHCwGjRooDFjxmjt2rWm8wCHcebMGR0/fpwxDwA2lZubK+m3/x8DKBruvvtudevWTaNHj1ZWVpYWLVqkqlWrqm/fvho7dqzpPAA20qtXL0nSggULDJcAwL+3dOlSPf7443J15dtriqqwsDC9/PLLGjlypPbt21fw9O3btys0NFRdunSx6fVOnTqlV155RU899ZTq168vf39/jR07ViVLltTw4cO1YMEC/fDDD8rIyLDpdW1p48aNqlWrljZt2qRvvvlG0dHR8vT0NJ2FImLbtm1q2LChgoKCFBMTo6pVq5pOAgAAAADjpk6dqpYtW9p0SDMvL0/r169X69atbXYmAAAAAODP+G4DAAAAJ9K+fXv17dtXffr00cmTJ//VGenp6frkk0/01FNP2bgOAIqehIQELVy4UB07dtSKFSu0b98+LVq0SImJiZIkd3d3+fj4GK4EHIfFYpG7u7vq169vOgVAEXJlzMPd3d1wCQBbGjt2rOLj4xUaGqoePXro1KlTkqQLFy7o0qVLhusA2EJAQIC6deumd999V1ar1XQOANyw7du3KzY2Vl27djWdAjsbOXKkwsLC1LNnT2VkZOjll19WRESE4uLitGbNGuXk5NjsWlWqVFGxYsUK/t9otVp18eJF/fLLL4qOjlbv3r117733ys/PTzt37rTZdW0hJydHY8eO1QMPPKD69etr3759atWqleksFCGfffaZ7rvvPjVp0kQbN25UcHCw6SQAAAAAMG7Pnj3auHGjBg8ebNNzt2/frsTERMY8AAAAAMDOGPMAAABwMm+//bbKli2r7t27Ky8v74Zff+nSpcrOzuabTwHgH/Tp00dlypRRnz59tGLFCmVnZ8tqtV71jdv5+fny9vY2WAk4FovForp168rX19d0CoAi5MrnPW5uboZLANjK+vXr1aFDB6WlpenMmTOyWq3Kz8+X9NvNjMePHzdcCMBWnn32WR0+fFibN282nQIAN2zx4sWqXr26wsPDTafAztzd3bVgwQLt379foaGhmjRpkvLy8mS1WpWZmWnTUQ13d3dVqVLlT0+3Wq3Kysoq+HNxYGCgatSoYbPr3qyDBw+qfv36mjp1qmbNmqVPP/1UJUuWNJ2FIiQ6OlqdO3dWv379tHz5cpUoUcJ0EgAAAAA4hLfeekt33323HnzwQZueu379elWsWFGhoaE2PRcAAAAAcDXGPAAAAJyMl5eXli1bpu+//16TJ0++4df/8MMP1bFjRwUFBdmhDgCKjrCwMElSbm5uwTdQ/xFjHsDVLBaLIiMjTWcAKGI8PDwkSdnZ2YZLANysrVu36p577tEDDzygffv2SdJfDpXGxsYWdhoAO6ldu7bq16+v9957z3QKANyQ3NxcLVu2TN26dTOdgkJgtVq1Zs0a5eXl6fz581f9GdXDw0Pr1q2z6fXCw8P/drDS1dVVr7/+unx8fGx63WtZsmSJLl68+JfPs1qtmjNnju655x4VK1ZMP/74o/r161coXbg15OXlaeDAgRo6dKimTZum6OhoubryLY0AAAAAIEmnT5/WJ598ohdffFEuLi42Pfu7775TkyZNbHomAAAAAODP+MoXAACAE6pVq5Zee+01jRkzRtu2bbvu19u3b5+2b9+uPn362LEOAIqGgQMH6qGHHlKxYsX+9uUK6xuqAUeXlJSk/fv3M+YBwOZKlCghFxcXZWZmmk4BcJMmTZqkXbt2SfrrEQ/pt5slf/nll8LMAmBn/fv31+eff67z58+bTgGA67Z+/XolJCToscceM50CO4uLi1NkZKSGDBmi3Nxc5ebmXvX87Oxsff311za9Zq1ata455uHm5qZKlSqpd+/eNr3mtXz88cfq2rWrnnjiCVmt1qued/78ebVr104DBgzQc889p++++0533nlnoXTh1pCRkaFHHnlEH374oRYvXqznnnvOdBIAAAAAOJSpU6eqVKlS6tKli03PzcvL086dO9WoUSObngsAAAAA+DPGPAAAAJzU4MGDdf/99+uJJ55Qamrqdb3OnDlzVKVKFTVv3tzOdQDg/FxcXDR//nwFBgb+7aMkMuYB/Gbr1q2yWq18oR+Azbm6uqp48eKMeQBFwEcffaR77733bwfzrFYrYx5AEdOlSxd5e3tr/vz5plMA4LotXrxYDRo0UNWqVU2nwI727NmjGjVqaMeOHcrPz7/my+3evVvJyck2u26tWrWUnZ39l8/Ly8vTtGnT5O7ubrPrXcvx48fVv39/ubi4aM2aNZozZ07B89auXauwsDDt27dPmzZt0qRJk/5x+Bq4ERcvXtSDDz6omJgYrVu3Tp07dzadBAAAAAAOJTU1VXPnztULL7wgDw8Pm579008/KTU1VY0bN7bpuQAAAACAP2PMAwAAwElduck8PT1dffr0+dOjZf1Renq6Fi5cqGeeeUYuLi6FVAkAzi0oKEjLli37299jvb29C7EIcFwWi0V33XWXgoODTacAKIK8vLx06dIl0xkAblJAQIA2bdqkxo0bX/PmxJycHB06dKiQywDYU4kSJdS9e3e99957f3ujNAA4iszMTK1YsUJdu3Y1nQI7CwkJUc2aNf/xa2z5+fnatGmTza5bq1atv3y6u7u7GjdurKioKJtd61pyc3PVpUsXZWdny2q1ymq1atCgQdq7d68GDRqk1q1bKyIiQrt371ZERITde3BrOXr0qBo2bKiEhATFxMTw3xgAAAAA/IV3331XVqtVffv2tfnZMTEx8vPzU40aNWx+NgAAAADgaox5AAAAOLEyZcpo6dKlWrFihaZNm/a3L/vRRx8pOztbvXr1KqQ6ACgamjZtqmHDhsnNze0vn+/j41PIRYBjslgsioyMNJ0BoIjy8vJSZmam6QwANuDt/f/Yu++wps73DeB3BGXKUlRwFJzUbdWqDKtUVLS4BYvbuquluK3WWbeo1Imzjuq3iFbrQsVFEHDWUVDrwAmIAgIKMvP7oz9pEdAEl0zaCAAAIABJREFUkrwh3J/r8lJPTs5znzcn4SXJeY4RAgMD4erqWugc+86dO2pORUSqNmbMGERFReH06dOioxARfdQff/yBtLQ0uLu7i45CKlapUiWEhYVhxowZkEgkKFOm4K9R6erqIigoSGl1bW1tYWBgkG95dnb2Rz/vU5Z58+bhypUryMzMzFO/W7du2LVrF/z9/eHv7w8zMzO15KHSIywsDPb29rCwsEBYWBjq1q0rOhIREREREZHGyczMxNq1azFq1CiYmpoqffvnz5+Hvb19oe+FEBERERERkfLwNy8iIiKiEq5du3aYP38+pkyZAqlUWuh669evh6enJywsLNSYjohIO8yfPx+fffZZgVcPZzMPIiAtLQ1XrlxhMw8iUhk28yDSLnp6eti/fz/69etX4JcEY2JikJGRISAZEanKp59+CgcHB/j5+YmOQkT0Ubt370aHDh1QuXJl0VFIDXR1dTF37lwEBQXBwsKiwPeAMzMzcfjwYaXVlEgkqFevXp5lZcuWhYeHB1q0aKG0OoUJCQnBggULkJ2dnWd5VlYWnj17hmHDhqFPnz4qz0Glz759+/Dll1/C0dERZ86cgaWlpehIREREREREGmnXrl14/vw5xo8fr5Ltv2u0SERERERERKrHZh5EREREWmDq1Klwc3ODu7s7YmJi8t1+7tw53Lx5E2PGjBGQjoio5NPV1cX//vc/6OnpQSKR5LnNyMhIUCoizXHhwgVkZGSwmQcRqYyRkRHevHkjOgYRKZGuri62b9+OIUOG5GvokZOTg0ePHglKRkSqMmrUKBw4cADR0dGioxARFerFixc4fvw4PD09RUchNXN2dkZkZCTat2+f7z1gAHj8+DGioqKUVu/95tEymQw//fST0rZfmFevXsHDw6PAfQSA7OxsrFixAmFhYSrPQqWLr68v3N3dMWLECAQEBMDAwEB0JCIiIiIiIo0kk8ng4+MDT09PVK9eXenbT0xMxMOHD9XSUJSIiIiIiIjYzIOIiIhIK0gkEmzduhVGRkbo378/srKy8ty+Zs0atGnTBs2bNxeUkIio5KtZsya2bdsGmUyWu0wikUBfX19gKiLNIJVKUa1aNdSoUUN0FCLSUpaWloiLixMdg4iUTEdHB5s3b4aXl1e+kwnv3bsnKBURqUrfvn1hbm6OX375RXQUIqJCbd26FQYGBujVq5foKCSApaUljh8/jpUrV0JXVxc6Ojq5t+no6CAoKEhptRo0aJDb1K5s2bL4/vvvUatWLaVtvzCjRo1CXFwcsrOzC11HIpHAw8MDKSkpKs9D2i87Oxvjx4+Ht7c3Fi5cCF9f33wNHYmIiIiIiOhfR48eRUREBL7//nuVbP/GjRsAgCZNmqhk+0RERERERJQXPxkjIiIi0hJmZmbYu3cvwsLCMGvWrNzl9+7dw++//66yN/aJiEqTvn37YtCgQblXTDQwMCj0CoZEpYlUKsUXX3whOgYRabGqVavi6dOnomMQkQpIJBKsWLECCxcuzF1WtmxZNvMg0kJ6enoYOHAg/Pz8PngCMRGRKDKZDFu2bMGgQYNgZGQkOg4JIpFI4OXlhdDQUFStWjX3vWAAOH78uNLqNGzYEBkZGQAAfX19TJ8+XWnbLsy2bduwd+/efBcFeF92djaePHmCefPmqTwTabfU1FT06tULmzZtwp49ezB16lTRkYiIiIiIiDTesmXL0LlzZzRt2lQl27958yYsLCxgbW2tku0TERERERFRXmzmQURERKRFmjVrhrVr12Lx4sXYu3cvAGD58uX45JNP0Lt3b8HpiIi0w9q1a1G9enUA/zTzICrtsrKyEB4eDicnJ9FRiEiLVatWDc+ePRMdg4hUaNq0aViyZAkkEgmysrLYzINIS40cORJPnjzBiRMnREchIsrn5MmTuHv3LkaOHCk6CmmAli1b4vr163Bzc4NEIkF2djZOnjyptIZUDRs2zP337NmzYWFhoZTtFubu3bv49ttvIZPJCl2nbNmyAP5pLtK1a1d89dVXKs1E2i0+Ph4dO3ZESEgIgoKC4OHhIToSERERERGRxrt8+TLOnTuHyZMnq6zGzZs30ahRI5Vtn4iIiIiIiPLS/fgqRERERFSSDBs2DNeuXcPgwYNhamqKHTt2YOXKldDR0REdjUgYqVSK2NhY0TFIi4wePRo//PADAOQ2TyISrUqVKkIaaly7dg0pKSls5kFEKlW1alU8ffpUdIxCnTt3DnFxcaJjEJV4tra2GD58ODZv3ozg4GDOtYlKEGtrazg4OHx0vXr16uGLL76An58fXF1d1ZCMiEh+fn5+cHR0zNNkgUo3MzMz7N+/Hxs2bICXlxeSk5Nx5coVNGjQABkZGUhMTERGRgbevHkDAEhKSkJOTk6ebaSmpiI9PT3ftk1MTGBoaAhDQ0PUr18fQUFBMDAwgL6+PiQSCczMzKCnpwdDQ0OUL18eurpF/4pXZmYm+vXrh6ysrDzL3312mJ2djerVq6Nnz55wc3ODk5MT9PT0ilyP6P79+3B1dUV2djZCQ0NRr1490ZGIiIiIiIhKhGXLlqFJkyZo3769ymrcuHEDLVq0UNn2iYiIiIiIKC828yAiIiLSQitXrsTdu3fRt29fGBkZYdCgQaIjEQnl7Oyc70uqRMoQHx8Pd3d30TGIAAC6urrIzMxUe12pVAoLCwvY2dmpvTYRlR5Vq1ZFUlISUlJSUL58edFx8sjMzISzs3O+E7aIqHiuXbvGuTZRCWJgaIjU/z+R+WNGjRqFgQMHIiYmBlZWVipORkQkn9jYWBw6dAhbt24VHYXUIDMzE3FxcYiOjsaLFy+QmJiY509CQkKe/6empsLAwADZ2dlo1aqVUrOkpqaiS5cuH12vTJkyMDU1hb6+PgwMDGBubp7vj4WFRe6/K1SogEqVKsHKygpLly7F1atXAfzzHmJWVhaMjY3RuXNndOnSBZ06dYK1tbVS94tKr/DwcHTr1g22trY4dOgQKlWqJDoSERERERFRiRAVFYX9+/dj586dkEgkKqkhk8kQGRmJoUOHqmT7RERERERElB+beRARERFpIR0dHfj5+cHW1hbVqlVDmTJlREciEiorKwsTV26AvWs30VGIiFQi9Ngf8PEeLaS2VCqFk5MT5xtEpFLVqlUDADx79kzjmgfl5OQgJycHU9duw+dfdhIdh4iISO2C/9iHdTMnyr1+jx49UL58efz666+YNGmSCpMREclv8+bNMDExQZ8+fURHoWJ6/fo1Hj58iKioKDx8+BAxMTGIjo7G8+fP8ezZM8TFxSEuLg4ymSz3PuXKlSuwMcYnn3wCc3NzGBoawtzcHGXLloWxsTGMjIxQrlw5mJmZoVy5cjA2NgaA3OX/Va5cORgZGeVZJpPJ8OrVq3zZU1JSkJWVhZycHCQlJeHt27dIS0tDSkoKMjIykJSUhPT0dKSmpuZpNnL//v08/y9o2+/yVatWDQ0aNECjRo1gY2MDGxsbZGRkICsrC7q6/BoZFc/+/fsxYMAAdOrUCb/++isMDQ1FRyIiIiIiIioxVqxYgWrVqqn0/anHjx8jOTkZDRs2VFkNIiIiIiIiyoufwhIRERFpqd9++w0GBgZ49eoVRo8ejW3btomORERERFpGJpPh/PnzmDJliugoRKTl3jXzePLkicY18yAiIiLF6Ovrw93dHb/88gubeRCRRsjJycGWLVswZMgQ6Ovri45DcoiNjcWtW7dw+/ZtPHjwAA8fPsz98/Lly9z1LC0tYWVlhWrVqqFKlSpo3rw5KleuDGtra1SpUgVWVlaoVKlSbjMOdZFIJDA3N8+3vKBlRSGTyfDy5UvExcXh6dOnCAoKgqGhIZKTkxEbG4vo6Gjs2bMHjx8/xtu3bwEAurq6qFatWm6DD1tbW9StWxf16tWDnZ0dDAwMlJKNtJevry8mTJiAcePGYeXKlWz+TEREREREpICEhAT88ssv+Omnn1TabPP+/fsAgNq1a6usBhEREREREeXFZh5EREREWigzMxOrV6/GmDFj4OTkhJ49e6J58+YYN26c6GhERESkRe7cuYO4uDg4OTmJjkJEWq5ChQqwtLREZGQkXFxcRMchIiKiYho8eDD8/Pxw5coVNG/eXHQcIirljh07hkePHmHkyJGio9B7nj59ihs3biAyMhK3b9/GrVu3cOvWLSQmJgIAzMzMULt2bXzyySf44osvMHjw4NxGFDY2NjAyMhK8B2JIJBJYWlrC0tISDRo0QKdOnQpdNyYmBg8fPsSjR4/yNEUJDQ1FVFQUMjMzUaZMGdjY2MDOzg7169fP/btx48aldozpX9nZ2fD29saaNWswa9YszJkzR3QkIiIiIiKiEmft2rUoW7YsvvnmG5XWefToEQwMDGBpaanSOkRERERERPQvNvMgIiIi0kI7duxAbGwsvvvuO1SvXh3z58+Ht7c3atasiS5duoiOR0RERFpCKpXC0NAQTZs2FR2FiEqBhg0bIiIiQnQMIiIiUoI2bdqgXr162L59O5t5EJFwfn5+aN++PerWrSs6SqkWHR2NK1eu5P65fPkyYmNjAQDm5uaoX78+GjZsiG7duqF+/fpo0KABbG1tIZFIBCcv2aysrGBlZYU2bdrkuy0rKwuPHz9GREQEIiMj8eDBA4SFhWHDhg14/fp17v2bN2+e+8fe3h4VKlRQ926QIG/fvsXgwYNx8OBB7N69G/369RMdiYiIiIiIqMRJT0/HunXrMGbMGBgbG6u01qNHj2BjY8P3U4iIiIiIiNSIzTyIiIiItIxMJsOKFSswcOBAVK9eHQDwww8/4PHjx+jXrx+Cg4N5wi0REREphVQqRZs2bVCuXDnRUYioFGjUqBEuXrwoOgYREREpSf/+/bFu3TqsXLkSOjo6ouMQUSn15MkTHD16FLt37xYdpVTJyMjApUuXEBwcjJCQEISFhSExMRE6OjqoW7cuPvvsM0yePBmfffYZmjZtCjMzM9GRSyVdXV3UrFkTNWvWhJubW+5ymUyGqKgoXL16NffPunXr8OLFC0gkEtSpUwcODg5o27YtnJycUKtWLYF7QaoSHx+P7t2749atWzh58iScnJxERyIiIiIiIiqRtm/fjsTERIwbN07ltR4+fIhPPvlE5XWIiIiIiIjoX2zmQURERKRlDhw4gFu3bmHv3r15lq9evRoPHjxA165dERYWhho1aghKSERERNpCKpViyJAhomMQUSnRrFkzbNq0CRkZGWwiREREpAU8PDwwa9YsSKVStGvXTnQcIiql1qxZg0qVKqFHjx6io2i19PR0hISE4Ny5cwgODsbFixeRlpYGa2trODk5Ye7cubmNO4yMjETHpY+QSCS5TT769OmTu/zJkye4evUqLl++jODgYOzZswdv376FtbU12rZtC0dHR3z55Zews7MTmJ6U4f79++jSpQsyMzNx/vx5PqZERERERERFJJPJsGrVKgwcOBBWVlYqr/fo0SP+DkdERERERKRmbOZBREREpEVkMhkWLFiA7t27o379+nluK1u2LAICAuDk5IQuXbogJCSEVzIjIiKiInv27BkePnzIKy4Skdq0adMGaWlpuHbtGj7//HPRcYiIiKiY6tati8aNG2Pv3r1s5kFEQqSkpGDjxo2YOnUqGwaqwPPnz3H8+HEcPnwYx48fR3JyMqysrODo6IhVq1bBwcEB9evXh0QiER2VlKR69eqoXr06unfvDgDIysrC9evXERISgvPnz2PWrFkYN24cbG1t4eLigg4dOqBz584oX7684OSkiPDwcHTr1g22trY4dOgQKlWqJDoSERERERFRiXXw4EHcvn0bAQEBaqn38OFDdOrUSS21iIiIiIiI6B9lRAcgIiIiIuXZt28frl69itmzZxd4u4mJCY4ePYqkpCT06tULGRkZak5IRERE2iI4OBi6uro8oZ6I1KZu3bqoWLEiwsLCREchIiIiJenbty/27duH7Oxs0VGIqBTatGkTMjMzMWLECNFRtMaNGzcwffp0NGzYEFWqVMHYsWORnp6OpUuX4tGjR4iOjoa/vz9GjhyJBg0asJGHltPV1UXz5s3h5eUFf39/xMXFISQkBJ6enrh06RI8PDxQuXJluLq6YtOmTUhMTBQdmT7i999/h7OzM+zt7XHmzBk28iAiIiIiIiqmZcuWwc3NLd/F+1QhJycHT58+RY0aNVRei4iIiIiIiP7FZh5EREREWiI7OxuzZ8+Gh4cHmjZtWuh6VatWxYEDB3Dx4kV8++23akxIRERE2kQqlaJ58+YwNjYWHYWISgmJRILWrVsjODhYdBQiIiJSkj59+uD58+c4f/686ChEVMpkZ2djzZo1GD58OCpUqCA6TokWFRWFhQsXomHDhmjSpAn27NmDjh074sSJE4iPj8fBgwcxatQonihC0NHRgYODA3766SdcvXoVz549w5o1a2BoaAgvLy9UqVIFPXr0gL+/P9LS0kTHpff4+vqiT58+6N+/PwICAmBoaCg6EhERERERUYl28eJFhIaGYvLkyWqpl5iYiKysLFSuXFkt9YiIiIiIiOgfbOZBREREpCV+/fVX3LlzB7Nnz/7ous2bN8eePXuwbds2zJkzR/XhiIiISOtIpVI4OTmJjkFEpYyLiwuCgoKQmZkpOgoREREpgZ2dHerUqYMjR46IjkJEpYy/vz8eP36M8ePHi45SImVkZGD37t1wdHRErVq1sGrVKnzxxRcICQlBVFQUVqxYARcXF+jp6YmOShrMysoKw4YNw759+xAbG4uNGzfi7du38PT0ROXKlTF8+HBcv35ddMxSLycnB15eXpgwYQKWLFmCTZs2QVdXV3QsIiIiIiKiEm/x4sVo2bIlHB0d1VIvISEBANjYloiIiIiISM3YzIOIiIhIC2RmZmLevHkYMmQI7Ozs5LqPm5sbtm7dinnz5sHX11fFCYmIiEibJCYmIjIyks08iEjtOnXqhOTkZFy6dEl0FCIiIlKSr776is08iEjtVq1ahd69e6NWrVqio5QocXFxmD9/PmxsbDB48GBYW1vj8OHDiI6Oxtq1a+Hg4ACJRCI6JpVAJiYmGDx4MAIDA/Hs2TMsWLAA4eHhaNq0Kdq1a4f9+/cjOztbdMxS5+3bt3B3d8fGjRuxZ88eTJo0SXQkIiIiIiIirfD333/j4MGDmDJlitpqxsfHA2AzDyIiIiIiInVjMw8iIiIiLbB582Y8efIEM2bMUOh+gwYNwvz58zFhwgT4+/urKB0RERFpm5CQEMhkMjg4OIiOQkSlTL169WBjY4OjR4+KjkJERERK0rVrV0RERCAqKkp0FCIqJc6ePYuLFy/C29tbdJQSIyYmBqNGjUKNGjXg6+uLwYMH48GDB/D390eXLl2gq6srOiJpkcqVK2P8+PG4efMmTp48CRMTE/Tt2xe1a9fGli1b2NRDTRITE9GpUyecOnUKx48fh7u7u+hIREREREREWmPZsmWwtbVFz5491VaTzTyIiIiIiIjEYDMPIiIiohLu7du3WLhwIUaNGgVbW1uF7z9jxgx4eXlh4MCBOHHihAoSEhERkbaRSqWoX78+P+AnIiF69eqFvXv3io5BRERESuLk5AQTExMcO3ZMdBQiKiV8fHzQtm1btG7dWnQUjZeSkoJZs2ahTp06CAwMxM8//4wnT55g0aJFqF69uuh4pOUkEgk6dOiAP/74A3fu3EHnzp0xZswYNGnSBEeOHBEdT6tFR0ejXbt2uHfvHs6ePYu2bduKjkRERERERKQ1nj9/jl27dmHq1KnQ0dFRW92EhATo6enB0NBQbTWJiIiIiIiIzTyIiIiISrw1a9YgPj4eU6dOLfI2fHx88PXXX6NPnz64cuWKEtMRERGRNpJKpXBychIdg4hKqb59++Lvv//GjRs3REchIiIiJShXrhzatWuHU6dOiY5CRKXAnTt3cPToUUycOFF0FI23a9cu1K5dG6tXr8asWbNw584djBw5EgYGBqKjUSlUu3ZtrF+/Hn/99Rfs7Ozg5uYGZ2dn3L9/X3Q0rfPXX3+hdevWyM7ORnh4OJo0aSI6EhERERERkVZZsWIFTE1NMXDgQLXWjY+P50V7iIiIiIiIBGAzDyIiIqIS7PXr11i2bBm8vLxQtWrVIm9HIpFg06ZNcHBwQOfOnXHnzh0lpiQqfeYO8xAdgUgobXwOaOM+FVVaWhquXr3KZh5EJEyrVq1Qo0YN/Pbbb6KjCMOfS0REqsXXWfVr3749zp49i5ycHNFRiEjLLV++HLVr18ZXX30lOorGSkpKgqenJwYNGgR3d3fcv38fU6ZMgb6+vuhopGFcXFzUXrNu3boICAjA+fPnkZiYiGbNmmHHjh1qz6Gtzpw5A0dHR9SqVQshISGoXr266EhERERERERaJTk5GX5+fvD29lb7ey2JiYmwsLBQa00iIiIiIiJiMw8iIiKiEm3FihVIT0/H5MmTi72tsmXLYu/evahZsyY6d+6MJ0+eKCEhUcnU284ave2si3x/mUymxDTaqTjjS8VX3GP8Y0rqc+BDY1JS90kVwsPDkZGRAUdHR9FRiKiUkkgk6N+/P7Zt24asrCzRcYqE803V43xTPhynf6h6fqyumiL2QxT+TiOfknQ8ODs7IyEhAdeuXRMdhYi02LNnz7Br1y5MmDABZcrw6zIFuXDhApo2bYozZ84gMDAQq1ev1oiTPCQSSZFuE0kikWhsNkUVti8i50xt2rRBeHg4RowYgSFDhsDT0xNv3rwRlkcb7Nu3D126dEGHDh1w7NgxmJmZiY5ERERERESkddatWweZTIZRo0apvXZaWhoMDQ3VXpeIiIiIiKi047cTiIiIiEqouLg4rFixAhMnTlTaFymNjY1x/PhxmJub48svv0RMTIxStktU0uy7HV2s+8/Z5q+kJESqUdxj/GO08TmgjftUVFKpFJ988glq1KghOgoRlWIjRozA8+fPcfToUdFRioTzTSLNour5sbpqitgPUfg7jfZp1KgRLC0tcfr0adFRiEiLLV68GJaWlhgyZIjoKBopMDAQzs7O+PTTT3Hjxg107NhRdKQSTVuagwGF70tQUJCak+Slp6cHHx8fBAYGIigoCB06dEBiYqLQTCWVr68v3N3dMXLkSPj7+6v96tBERERERESlQXp6On7++WeMGTNGSAPFjIwMlCtXTu11iYiIiIiISjs28yAiIiIqoWbOnAljY2NMmDBBqds1MzNDYGAgdHV10alTJ8THxyt1+0RERFSySaVSODk5iY5BRKWcra0tnJ2dsXHjRtFRiIiISAkkEgkcHBwQHh4uOgoRaamYmBhs2bIF06ZNg56enug4Gic0NBS9evWCu7s7/vjjD1haWoqORCS3jh07QiqV4tmzZ3Bzc8Pbt29FRyoxZDIZpk6dCm9vbyxcuBC+vr4oU4ZfJyQiIiIiIlKF7du3IyEhAd99952Q+mzmQUREREREJAY/fSMiIiIqga5fv46tW7di8eLFMDIyUvr2K1WqhBMnTuD169e8ihXRfzy+exsLRg1E/8/qoP9ndTB/uCce372dZ53edtbobWet0Hbf3Sf28UMsHf8NBn1ul287j+/exoKRA3JrLxg5QO7ahS2/dPoEfvi6G/o1tsFo58+xbdFspL15XeB9X8ZEY/HYIej/WR0Mc2gM38njkPIq/2uDvGP03233trPGupkT5R6vJ/fuYMHIAfBsVhsDmtfFvG++xtN7f+fbT0XHQ5HH9+n9u5jm8RW+bloTM/v3QOzjh3hy7w6muXeFZ7PamDWoD17GPJN7n/Js+97fmD/cEwOa14Vns9pYMGognt6/W3DejxwT+carRT0sGTes0GzyjIG8+1HQMnmPo4e3IzFvWD94Nq2FAc3r4qcR/XEt5KzCWRWp+6HjsrBjq7edNSIuhgIAQo4czLP8HUWeZx96DdAUWVlZuHDhApt5EJFGGDNmDI4dO4bbtxX7WaXJON8UP99UxZxMnvHXtPkPIN/jB8g/P1d0H1Qx586XVw3zY1XVlHebij5v5TkW5T025P2d5WMUHr9i1vzQ7zRFOS5V8bqSmpKMbYtmY0yH1ujX2AbfODbF6mnf4+6NP/PU/W/995/jynp8lKlFixa4fPmy0AxEpL0WLVoEMzMzDB06VHQUjfPixQv06tULHTt2xObNm6Grq6vymhKJBBKJRK7l7/7/7jaJRILhw4d/9DYA+Ouvv9C1a1eUL18e5cuXR+fOnfHXX38VWPP+/fvo1asXzM3NC81XmIiICHTp0gXGxsYwNTVFz5498fjx4wLXlSdTUlISvL29UbNmTejr68PKygpDhgzBxYsX8+WOjIxE586dYWJiAmNjY3Tt2hW3bt0qUl1F9qWwx6q4Y1lU9erVQ2BgICIjI+Ht7a3yetogPT0dnp6eWLVqFX799VdMnTpVdCQiIiIiIiKtlZOTg+XLl2PQoEGwthbzfSA28yAiIiIiIhKDzTyIiIiISqDvv/8eLVu2RP/+/VVWo1q1ajh58iTi4uLQtWtXvH6d/6QMotIk9vFDzB3aDy3au2B9UDg2nL6IL7r1xuKxQxEfG5O73r7b0Qpv+919Ns6Zhu7DxmBz8DXM2LgrT+2fRvRHm05fYX1QONadDEMrly6YP9wTsY8ffrR2YcsXjx2C9j3dsf3iLSz2P4zXSa+wef7MAu+7buZEdPp6MLaEXMPSgECkv03D9iXz8qyr6Bjtux2d+2fsTz5yjdV/x2LDqQtYf+oCnHv1w4oJY/LtqyLjoWj239b4YNzCldgivQYbuwZYNXkc/vfzcoxbtAqbg6+iWq06+GXxXLn26f1t+3iPRvueHlh/6gLWB4WjVQdXzB/uibhnTwochw8dE++P17qTYWjTsStWeI8u8hjIux8FLZPnOIp++AA+3qPQY/i32Bb+Fxb/dhhv01Ixf7inwlkVqfuh4/L9fdob8QRVathg+8VbaPC5PQAOsWynAAAgAElEQVTAsWt3bJb+CWMTU+z+817uuoo8zwp7DdAkf/75J1JSUtjMg4g0Qo8ePVCvXj0sX75cdBSl4HxTM+abqpiTfWz8NXH+A8j3+CkyP9eEObeI+bEqaiqyTUWet/Ici4Dix8aHnh8fo+j4KaPmh36nKcpxqYrXldXTvGBU3gSLfjuEnZf/xsyNuxD7OArT3Lvmq1vQc1xZY6VsLVq0wKNHjxAXFycsAxFpp5iYGGzevBkzZsyAgYGB6DgaZ9KkSdDT08P27duho6OjlpoymUzu5e+WyWSy3D+bN2/+6G337t2Di4sL3Nzc8ODBAzx8+BADBgxA9+7d8fTp03zbHzNmDCZNmoTo6GgcPXpU7n25f/8+XF1d0adPH0RFReH+/fvo3bs3+vXrl29deTMNHjwYZmZmCAsLQ1JSEo4ePYp79+6hVatW+XJ7eHhgyJAhiIqKwoMHD9CzZ0907twZDx8+VLiuIvvyoceqqGNZXPXr18eGDRvg5+eH8+fPq61uSfTq1St06tQJR44cwaFDh/D111+LjkRERERERKTV9u/fj/v37wttQMlmHkRERERERGKo/nIaRERERKRUAQEBOHfuHKRSqcqvZFWrVi2cOXMGbdu2RY8ePXD48GHo6+urtCaRpvpt9XK4DRmJTv0G5S5r2603sjIzcXDLOgybMb/YNXqP/g71mrUAAHzW1vnfk4VWL0f3YWPg3PvfL8x26OuJtNcp+G2ND7yWri5Svf+eoKSnb4ChP8zDty5tCly3s+cQNHNqDwDQNzTCgAk/YPbgPnnWUccY/bbGB92Gjs4zFo5duwMAVk4cU/TtKpi9s+dgVKtVBwDQa9R3GNG2GQbu3Je7rPeo7zC5d6ciZekz5ns4dOmW+//cx3q1D8YvXpWbV55joqDxatutN7Kzs3Dn2pVijUFRyHsc9Rnthcb2/zSLqFa7LsbOX47xrk551lHs8fp4XUWU0dGBfWc3SA/th2v/f6/mevb3vXDo0h16Boa5yxR5nhX2GqBJpFIpKlasCDs7O9FRiIhQpkwZeHt7Y/z48Zg3b56wKxgpC+ebmjHffEeZc7J3PjT+mjj/kefxU2R+rglzbhHzY1XUVGSbipDnWATkPDaU9Lqi6Pip4rXsv4pzXCrzdeVGWAi+XbgSxqZmAADb+g3htXQ1xnRoLdd+qGOsiqJly5aQSCS4cuUKXF1dhWQgIu20ePFimJmZYdiwYaKjaJxHjx5h9+7d2L59O0xNTUXHUao5c+bA29sbo0f/2wRswIAByMjIwLJly+Dr65tn/R9++AH29v807nV1dS204UhBdSZOnJjn+BowYACysrIQFhZWpEynTp3C1q1bYWFhAQBo1qwZdu7ciZo1a+arP3PmTHh4eOT+f/jw4UhOTsacOXPwyy+/KFRXkX35kKKOpTK4u7tj3bp1WLBggVobiZQk0dHR6Nq1K54/f47g4GA0bdpUdCQiIiIiIiKt5+Pjg549e+LTTz8VloHNPIiIiIiIiMQoIzoAEREREckvPT0d06dPx4ABA+Dg4KCWmnXr1sWxY8dw5coV9O3bFxkZGWqpS6RpboRK85x0885n7b7E9dBgpdSo3bhZobU/79A53/JWLq64ESpVSm0AMDYxxeukVwXeVr9l3hOCLKtWR+KLvFfKVccY3TgfXOBYNHFoW7ztKpi9Zv1Guf82r2iZb5lFpcpITogvUpZ3J879VysXV1w/fy5PXnmOicLG692Jnf+ljsdPnuPor/DzaNQm7xhY29bKc8Kgolnlqaso5979cGb/b3mWndq3By7uAz54vw89zwp7DdAkUqkUjo6OKm8oRkQkr4EDB6JChQpYvHix6CjFxvmmZsw331HmnOydwsa/pMx/Cnr8FJmfa8KcW8T8WBU1FdmmIuQ5FgtS4LGhpNcVRcdP1a9lxTkulfm6Uq9pcywaMxh/Ss8gOzsLAFCpWg25GwKq63VfURYWFrCxscHly5eFZSAi7RMbG4tNmzZh+vTpMDAwEB1H4xw4cADly5eHu7u76ChKFxQUlKfJxTtdu3bFyZMn8y3//PPPi1Tn5MmT6NGjR77lnTvn/1krb6Y2bdqgW7duCAwMRFbWPz/rbW1tC2yK0aFDh3zLevbsiRMnTihcV5F9+ZCijqWyjB49GkFBQUhKShKaQxNFRESgTZs2yMjIQHh4OBt5EBERERERqcGpU6cQHh6OSZMmCc2RkZGBsmXLCs1ARERERERUGumKDkBERERE8vPx8UF0dDR++ukntdZt1qwZAgMD0alTJ/Tp0wcBAQHs0E2lTsqrRIx2LvgLqOX09ZVSQ0+/4C+TJ79KgFnFSvmWm1tWRkpiQpFqJSfEY9eKhfhTegavXr5ATnb2B9c3Nsl7Vcay5crl++KwOsaosLEob2ZerO0qmt3AyDj335IyZQpcVtSrDRa0L+aWeU8Ik/eYKGy9gpap4/GT5zhKfpUAE3OLD25H0azy1FWU1Se2KKevj4e3I2FjVx+Rl8JhaFwetvUb5q6j6POssNcATSGTyRAaGoqpU6eKjkJElEtfXx8//vgjvLy88P333xd4leKSgvNNzZhvvqPMOdk7Hxp/TZv/yPv4KTI/14Q5t4j5sSpqKrJNRchzLBb32FD0dUWRfVXFa9n7inNcKvN1ZZLvRvivXYFN835AckI8bOs3RGuXLujsORg6uh//Iq46xqqoWrRogStXrgjNQETaZfHixTAzM8Pw4cNFR9FI169fx+effw5dXe37+lB8fDxsbGwKvK2gxi6GhoZFqvPy5UtUqVIl3/KClsmbae/evZg7dy6+/fZbvHjxAs2aNUOvXr0wduzYfCfdVKhQId+2rKys8OLFC4XrKrIvH1LUsVQWBwcHZGZmIiIiAvb29kKzaJKzZ8/mXgX60KFDBR47REREREREpHxLliyBs7MzWrdu/fGVVSg7Oxs6OjpCMxAREREREZVG2vdpPBEREZGWev78OZYsWYLp06ejRo0aaq/fqlUrnDp1Ci4uLujRowd+//136OnpqT0HkSjlzS3ge/RcvpPi1MHEzAKJL56jUtXqeZYnvniO8u+daCWRSJCZkYGy/2m4U9DVz32njEdV21pYsPsgKlSxgo7OP78e9razLnJOdYyRiZkFXr2Mg6V1tTzLX70s+Crj8o6HyMf3fa/iX8CsgmWeZYkvnsPE4t8v1sp7TBQ2Xpo8BuXNzJGcmACLSpULX0dDsjr36ofT+/Zg2Iz5OLVvD1w8BuS5XRXPM5Fu376NuLg4ODnlv6I4EZFIw4cPh6+vL+bOnYvt27eLjlNknG9+nDrHSJlzso/RxPmPvI+fIvNzTZjDiZgfq6KmItsEFPi9SI5jUZFjQxnPD0X2VVk1VUWZryuG5U0wZNocDJk2B8mJCbgZFoLD2zch8vIFTP5500ezaPJYNW/eHKtXrxaagYi0R2xsLDZt2oRFixYV2LyBgJSUFJiYmAipLZFIkJ6enuezpoQE5TWVqlixIiIjI2FuXrxG0PLUiY2NxSeffJJneUH7Im8mU1NTrFixAitWrMDLly9x6tQprFq1ClKpFAEBAXnWff78OSpXzjt/i4mJgaXlv/MOeesqsi+azNT0n/l0cnKy4CSaY//+/ejfvz9cXV3x66+/8jWRiIiIiIhITa5fv46goCAEBgaKjkJERERERESClBEdgIiIiIjkM3XqVJiammLChAnCMjRv3hxHjhzB+fPn0bNnT6SnpwvLQqRuTR3bIeJCaL7lty5fwORenVRau7G9Ey6cOJpv+YWTx9DYPu9J9WYVK+FlzLM8yyIvhee7750/L8Nj/GRUqlo99+SrjLdvi5VTkTGSSCRFqtHE8QtcDMr/4ea1kLMFri/veIh8fN93TXo237ILJ4+hicMXuf+X95gobLxuhAbnW6YpY9Dgc/t8+R7ejoRX13/3X1VZFT0u7V3dcPHUcSQnxONP6Rk4du2R53ZVPM9EkkqlMDIyQtOmTUVHISLKQ1dXF3PmzMGvv/6KK1euiI5TZJxvfpw65pvvKHNO9jGaOP+R9/FTZH6uCfNNEfNjVdRUZJuA/M9beY5FeY8NZT0/FNlXZdVUFWW+rvS2s0Z8bAwAwMTcAg5dumHGxp24fv5cnvsV9hzX5LFq2bIlnj17hpiYGKE5iEg7LFmyBCYmJhgxYoToKBqrSpUqePr0qbDajx8/zrMsOLjg+cyH5veF3dapUyecPXs233KpVIrmzZvLH/QjOnbsiAMHDuRbHhQUVORMEokk93GpWLEiPDw8cOTIEZw4cSLffY8fP55v2e+//46OHTsqXFeRfdFk744rKysrwUk0w88//4y+ffti5MiRCAgIYCMPIiIiKjaZTCY6Ar2nuJ+JEJHqLFq0CI0bN4aLi4voKERERERERCQIm3kQERERlQBXr17Fzp074ePjA0NDQ6FZ2rRpg8DAQDb0oFLHY/xE/LZ6OcKOH0bKq0SkvXmNy2dPYsXEMeg71lultd3HTcQfv/ghaO9uJMW/RHJCPE4F7MEfv/jBY9zEPOs2cWiLX1csQnxsDN6mvsG1kLM4/r8d+bZZr1kL7Fw+H3HPniArMxOxjx/Cb87UYuVUZIwsKlfBnWtXkJ2Vievnz2FU+xby1Rg3EX9s24DT+/6H5IR4pLxKRMiRAzjx264C15d3PEQ+vu878dtOSA//jpRXibmP9eEdm+Ex/t/HWt5j4v3xep30CqHH/sA+v5/z1dWUMegzxgt7163EjVAp0tNS8ejOLaz9wRtdBgxTeVZFj0t9QyM0bOWAVZPHoaVzRxgYGee5XRXPM5GkUinatGmDsmXLio5CRAoqV64cJBIJMjIyREdRGXd3dzg5OWH06NHIyckRHadION/8OHXMN99R5pzsYzRx/iPv46fI/FwT5psi5seqqKnINgH5n7fyHIvyHhvKen4osq/Kqqkqyn5dWTdzIp7cu4PMjAy8in+Bg1vW52vEUdhzXJPHqlGjRgCAyMhIoTmIqOR7+vQp/Pz8MG3aNJ64/gFt27bFpUuX8OLFC7XXdnFxwQ8//ICnT5/i9evXOH78ODZs2FDgulWrVkVYWBgyMzNx4sQJ1KhR46O3zZkzB7Nnz0ZAQADi4+ORkpKCw4cP4+uvv8aPP/6otP2YM2cOfHx8sHXrVrx48QIJCQnw9/fHwoULC1xX3kzDhw9HREQE0tPT8fz5cyxfvhwdOnTIt00/Pz/s3r0b8fHxePHiBbZs2QJfX1/MmTNH4bqK7IsmO3r0KCwsLNCwYUPRUYSSyWSYM2cOvv/+e/z444/w9fVFmTL8qiAREREV35s3b2BsbPzxFUltdHR0kJWVJToGEb0nKioK+/btw7Rp09h0h4iIiIiIqBSTyNgel4iIiEij5eTkwMHBAWXLlsW5c+c05k39sLAwdO7cGY6Ojti/fz/09PRER/ood3d3AIC/v7/gJKRuEokEE1dugL1rN7nW721nnfvvfbejc/8d8ygKu3wW4kaYFNlZWaheuy56jRyPVi6uH72vvPUKu9+jv29h57KfEHn5AgCgfotWGDh5Jj6p+2me9ZITE7B1wY+4HhqM9LQ0NGrtgBGzFuWesPNu20nxL7F96TxcCzmLN8lJsLaphb5jv4eP9+g86xW2P8UZIwAIDTyEncsXIOF5DCpaVcWQaXPQ0rkj5PHk3h3sWDofEZfCUaZMGTRo2Qbf/PgTxnzZKt/YyTse8mYvaL/lXSaP3nbWWH/qArbMn4mIS2HIyclBg5atMXjqbFSrVSfPuvIeE/8dL4lEgnrNWmDY9Lnw+qpdkcZAnn14f98VPY7uXLuCHUvn4X7EDZhaVEDnr4eg58hxeeoU5/lY2PLCjssPPZ63Ll/AzAE9sdj/COo0bpbntqI8zwqqIY/QY3/Ax3u0Sq+CZGNjg2HDhmHWrFkqq0FEqmNgYAA/Pz8MGjRIdBSViYiIQLNmzbB27Vq1Xnk7PT0d+vr6mLp2Gz7/spNc9+F8U7Pnm8qek8kz/po2/5H38QMKnp8P/WEuxnV2REBk3qu8a8KcW93zY1XVVGSbivxe9LFjUZFjQ97XFWWOnzJqFucY/NBzUJmvKzfDQnD01624dfkC0t68hkVlK7Tq0Bke4yflaTL4oddCZT0+ABD8xz6smzkRGUpq+mtqaoply5Zh5MiRStkeEZVO33zzDU6dOoU7d+6UiM8vRElNTYWtrS2GDh2KxYsXq7X2y5cv4eXlhZMnTyI1NRXOzs5Yu3ZtbjOO/77PtXfvXkydOhXPnj1DjRo14OPjg27dun30trt372L69OkICgpCVlYW6tevj+nTp6Nnz565237/c7eivL8WERGByZMnIzg4GBKJBPb29li5ciUaNGiQb5vyZDp16hTWrFkDqVSKlJQUVK1aFT169MDcuXNRvnz5PNmjoqIwfvx4nDt3Djk5OWjbti18fHzw6ad5f6bLU1eRffnvuBW0rKhjWVypqamoW7cu3N3dsWLFCrXX1xQZGRkYOnQoAgICsG3bNnh6eoqORERERFqkZcuWcHZ2xpIlS0RHof8XEBCAvn37Ijs7u8Q3cOvevTtMTEywc+dO0VGIim3s2LEIDAzE33//DV1dXdFx+PwiIiIiIiIShM08iIiIiDTcunXr4OXlhUuXLqFp06ai4+Rx/vx5uLq6wtnZGf7+/ihXrpzoSB/EZh6ll6LNPKhk6m1nXaQmCJpEG/aBxFB1M4+nT5+ievXqOH36NNq3b6+SGkSkWubm5liyZInWnxQ7ceJE/PLLL4iIiECVKlXUUrMozTxIs3FOVnxP7t3BgpEDseH0RdFRiDSCtr+uKLuZx2effQYXFxeeEEJERXb79m00atQIW7duxcCBA0XH0Xhr1qzBhAkTEBoaihYtWoiOQwqQSCRCGmZosnHjxmH37t2IjIxU2/sCmub169fo3bs3QkNDERAQgE6d+F4FERERKVe9evUwcOBAzJw5U3QU+n8HDx5Ejx49kJ6ervHf3/sYNhsgbREXFwcbGxssX74cY8eOFR0HAJ9fREREREREopTs1qtEREREWi42NhYzZszApEmTNK6RBwA4ODjg2LFjOHPmDHr06IG0tDTRkYiIiEgFgoODUbZsWbRq1Up0FCIqIgMDA7x9+1Z0DJWbO3cuzMzMtL5pCZEm6W1njSM7NuN1chIyMzIQdSsCG2ZNgWv/IaKjEVEJVatWLdy/f190DCIqwaZOnYpPP/0U/fv3Fx2lRBg7dizatWuHHj164MmTJ6LjEBWZn58f1q1bh/Xr15faRh4xMTFwcnLCzZs3ERwczEYeREREpBLJyckwMTERHYP+o2zZsgCAzMxMwUmI6B1fX1+UL18eQ4cOFR2FiIiIiIiIBGMzDyIiIiIN5uXlBVNTU42+koGDgwNOnz6NixcvwtXVFSkpKaIjEVEp1NvOOs/fJZE27ANpL6lUiubNm8PQ0FB0FCIqIn19/VLRzMPY2Bg7duzA0aNHsW3bNtFxqATinExx0zdsx6XTJzCqXQsMtW+E9TMnwsW9P7p/oxlXGSMSja8riqtduzbu3bsnOgYRlVDh4eE4dOgQli5dijJl+JUYeZQpUwZ79+6FhYUFvvjiC9y9e1d0JJKDRCLJ83dpt3btWowdOxbz5s2Dh4eH6DhCREZGonXr1khPT0dYWBiaNWsmOhIRERFpKTbz0DzvmnlkZGQITkJEAPDmzRv4+flh/PjxMDAwEB2HiIiIiIiIBNMVHYCIiIiIChYYGAh/f38cOnQIRkZGouN8UPPmzXHu3Dm4uLigS5cuOHLkCD+0Jfp/HztZZ9/taDUl0XzFGStNH0d59k3T9wHg8VyaSaVSdOnSRXQMIioGAwMDpKWliY6hFg4ODvjuu+/g7e2N9u3bw8bGRnQkleLPZ/lpy5xM07Ro54IW7VxExxDyXODzr3hKy2PG40BxtWrVwv379yGTyXiCMhEpbNKkSWjbti06d+4sOkqJYmpqinPnzqFr165o0aIF1q9fD09PT9GxhPvYzyGZTKamJJpVW5OkpaVh2rRpWL16NWbNmqXRF0hQpfDwcLi5uaF27do4dOgQKlasKDoSERERaano6GikpqbC1tZWdBT6j3cX5UhNTYW5ubngNES0YcMGvH37FmPGjBEdhYiIiIiIiDQAm3kQERERaaDU1FR8++236NevH7766ivRceTSoEEDnD59Gh06dICzszOOHz+OChUqiI5FJBxP2pGfNo+VtuybtuwHKSYhIQG3bt3CokWLREchomLQ19dHenq66Bhqs2DBAgQFBcHDwwNSqRTlypUTHUll+PNZfhwr7Sbi8eUxVTx8zKgwtWrVwuvXrxEXF4fKlSuLjkNEJciBAwcQGhqK0NBQ0VFKJHNzc5w+fRpTp07FgAEDEBgYiHXr1sHY2Fh0NGHYMEOzXblyBZ6enkhISMDBgwfh5uYmOpIQv//+O/r3749OnTph9+7dvOozERERqVRkZCQA4NNPPxWchP7r3UW3kpOTUbVqVcFpiEq3zMxM/Pzzzxg1ahS/P0tEREREREQAgDKiAxARERFRfnPnzsXLly/h4+MjOopC7OzsIJVKkZCQgA4dOuDFixeiIxEREVExhYSEQCaTwd7eXnQUIioGAwMDpKamio6hNgYGBti3bx9u376NKVOmiI5DRERECqhVqxYA4P79+4KTEFFJkp2djZkzZ6Jv375o3bq16Dgllr6+Pnx9fXHgwAEcO3YMjRs3xp49e9jUgjTKy5cv8f3338Pe3h41atTA9evXS20jj9WrV6NPnz745ptvsG/fPjbyICIiIpWLjIxEhQoVUKlSJdFR6D9MTU0BAElJSYKTENGuXbsQExMDLy8v0VGIiIiIiIhIQ7CZBxEREZGGuXnzJlauXIklS5bA2tpadByF2dra4vTp00hKSoKzszNiY2NFRyIiIqJikEqlaNCgAa8YQlTCWVhYID4+XnQMtapTpw78/Pzw888/Y9++faLjEBERkZyqVKkCiUSC58+fi45CRCXItm3bcOfOHcydO1d0FK3QrVs33LhxA+3atcOAAQPQsmVLnDp1SnQsKuVSU1OxaNEi1K5dG7/99ht8fX1x/PjxEvl5anHJZDLMmTMHXl5e+PHHH7F69WqUKcOvARIREZHq3bp1Cw0aNBAdg95jYmICAEhOThachKh0k8lk8PHxQf/+/VGjRg3RcYiIiIiIiEhD8FM8IiIiIg2Sk5OD0aNHo1mzZhg5cqToOEVmY2OD4OBgZGZmwtHREVFRUaIjERERURFJpVI4OTmJjkFExWRtbY2YmBjRMdSuX79+GDt2LIYMGYLr16+LjkNERERyKFeuHExMTPDixQvRUYiohEhLS8PcuXMxYsQI2NnZiY6jNaysrLB161Zcu3YNlStXRocOHeDs7IyDBw8iJydHdDwqRV6+fImFCxeidu3aWLhwIby9vXH37l2MHj26VDawyMjIwMCBA7Fo0SLs2LEDc+bMER2JiIiISpGIiAh8+umnomPQe0xMTCCRSNjMg0iwgwcPIjIyEpMmTRIdhYiIiIiIiDRI6ftEk4iIiEiD+fn54dKlS9i8eXOJ//JZtWrVEBoaiooVK8Le3h43btwQHYmIiIgUlJqaij///JPNPIi0gJWVFaKjo0XHEGLVqlVo1aoVunTpgmfPnomOQ0RERHKwtLRkMw8iktvSpUuRlJSEWbNmiY6ilRo1aoQjR47gzJkz0NfXR69evVCnTh2sXLkSSUlJouORFrtx4waGDx+O6tWrY/ny5RgwYADu3buH2bNnw9jYWHQ8Id68eYNu3brhjz/+wJEjRzBgwADRkYiIiKgUSU1NxcWLF2Fvby86Cr2nTJkysLCw4PtpRIItW7YMbm5uaNCggegoREREREREpEFK9hmiRERERFrk0aNHmDZtGiZOnIhGjRqJjqMUFhYWCAoKQsOGDdGuXTuEhYWJjkREREQKCA8PR0ZGBhwdHUVHIaJiKs3NPHR1dbF3714YGxuje/fuSE1NFR2JiIiIPsLS0hIvX74UHYOISoCnT59i2bJlmDlzJqpUqSI6jlZr164djh49ilu3bsHV1RWzZs1CtWrVMHjwYAQGBiIrK0t0RNICcXFxWLt2LRwcHNCkSROEhYVh5cqVePLkCZYuXYrKlSuLjihMQkICOnbsiEuXLuHEiRPo0KGD6EhERERUypw7dw4ZGRlwcXERHYUKUKVKFcTGxoqOQVRqBQcHIzQ0FFOmTBEdhYiIiIiIiDQMm3kQERERaQCZTIZRo0bB2toas2fPFh1HqYyNjXH48GG0a9cOLi4uOHHihOhIREREJCepVAobGxtUr15ddBQiKiZra2skJSXhzZs3oqMIYW5ujkOHDiEqKgoDBgxAdna26EhERET0AZaWlrySKBHJZdKkSahSpQq8vLxERyk16tatizVr1uDp06dYuHAh/v77b7i6uqJq1aoYP348QkNDIZPJRMekEiQ5ORk7duzIPY6mTZsGW1tbnDhxAn/99RdGjx4NIyMj0TGFio6ORrt27RAdHY3Q0FC0bt1adCQiIiIqhU6ePImGDRvCyspKdBQqAJt5EIm1ZMkSODk5wcHBQXQUIiIiIiIi0jBs5kFERESkAdavX49Tp05h+/bt0NfXFx1H6fT09LB371707dsXbm5uCAgIEB2JiIiI5CCVSuHk5CQ6BhEpgbW1NQAgJiZGcBJx6tati6NHj+LEiRMYNmwYTy4jIiLSYJUqVWIzDyL6qNDQUPj7+2PFihXQ09MTHafUMTU1xfjx4xEWFoZHjx7hhx9+wPnz5+Hg4IDKlSvD3d0dO3bswKtXr0RHJQ304MEDbNy4EW5ubqhUqRKGDRuGrKwsbNmyBTExMdi1axdcXFwgkUhERxXu1q1baN26NbKzsyGVSlGvXj3RkYiIiKiUOnnyJDp27Cg6BhWCzTyIxLl58yaOHTuGqVOnii+fgUcAACAASURBVI5CREREREREGojNPIiIiIgEi4qKwrRp0zBt2jR8/vnnouOojI6ODrZs2YIRI0agX79+2LZtm+hIRERE9AFZWVm4cOECm3kQaYl3zTyio6MFJxGrVatW+P333/G///0P06dPFx2HiIiICmFpaclmHkT0QTk5OfDy8oKzszO6desmOk6pV6NGDXh5eeHq1au4du0avLy88OzZMwwbNgyVKlWCs7Mzli1bhitXriA7O1t0XBLg1atXOHLkCL777jvUrl0btWrVwrRp02BkZISNGzciLi4OJ0+exKBBg2BsbCw6rsa4dOkS2rZtC2trawQHB6NatWqiIxEREVEp9eTJE0RERMDFxUV0FCpE5cqVS3VTfyKRli5dCjs7O7i6uoqOQkRERERERBpIV3QAIiIiotIsJycHQ4cORfXq1TFjxgzRcVSuTJkyWLNmDczNzfHNN98gLi6O3ciJiIg01NWrV/H69Ws28yDSEpaWltDV1S31zTwAwMXFBVu2bMGgQYNgamrKph5EREQayMTEBMnJyaJjEJEG27JlC65du4arV6+KjkLvadKkCZo0aYIZM2YgPj4eJ06cwNGjR7Fs2TJMmTIF5cuXh729PRwdHdG2bVt8/vnn0NfXFx2blCw6OhpSqRQhISGQSqW4efMmZDIZGjdujL59+6JLly5o06YNdHX51bXCBAUFoVevXvjiiy/g7+8PAwMD0ZGIiIioFNu5cycsLCzQrl070VGoEDVq1MCjR//H3p1H1Zw/fhx/XXXby42SsktMJUNFUonEGMRg7Glk3/taM2OZMJoso0nZxUyWiQzZlzDqSvbsCinbSJpSQtvt/v6Ynw4zDGaq961ej3M6rrrd+8x23Nv9vD53RWcQVTr379/H1q1bERoaiipVeK5lIiIiIiIi+jt+R5SIiIhIoODgYMTGxiIuLq5SvVBx/vz5qFmzJiZOnIgHDx4gKCiI38ggIiJSMXK5HEZGRmjSpInoFCIqAWpqaqhXrx5u3bolOkUleHp64tmzZxg3bhwAcNCDiIhIxejq6uL58+eiM4hIRWVnZ2POnDkYO3YsbGxsROfQP6hevToGDBiAAQMGQKlU4vr164iJicGJEyewevVqzJ49G5qamrC1tYWdnR1sbW1ha2sLKysrSKVS0fn0gTIzM3HhwoXitzNnzuDOnTtQV1dHixYt4ObmBj8/Pzg5OcHY2Fh0brmwefNmeHt7o3///ggNDeXfByIiIhJu48aNGDx4MDQ1NUWn0DuYm5sjLS0N2dnZMDAwEJ1DVGksXrwYJiYm6Nevn+gUIiIiIiIiUlEc8yAiIiIS5M6dO5g1axZmzpwJe3t70Tllbty4cTAzM8PAgQPx8OFDbNmypVINmhAREak6uVwOFxcXSCQS0SlEVEKsra1x7do10RkqY8yYMVBXV8fo0aOhUCgwa9Ys0UlERET0/3R0dDjmQUTvNHfuXOTn52POnDmiU+gjSCQSWFtbw9raGmPGjAEApKSkQC6X49SpUzh79ixCQ0Px8uVLaGlpwcbGBnZ2dmjevDksLS1haWnJIQjBCgsLkZycjOvXr+P69evF4x137twBAJiamsLOzg6DBw+Gk5MTHB0doaenJ7i6/AkODsb//vc/jB8/Hj/++COfnyUiIiLh5HI5EhISEB4eLjqF/kHDhg0BAMnJyfj0008F1xBVDhkZGdiwYQO+++47aGhoiM4hIiIiIiIiFcUxDyIiIiIBioqK4O3tjUaNGuGbb74RnSNMz549ceDAAXzxxRf4/PPPERkZiapVq4rOIiIiqvSUSiVOnjyJr7/+WnQKEZWgpk2bYvfu3aIzVMqIESNQUFCA8ePHQyKRYObMmaKTiIiICICuri5evHghOoOIVNDt27exfPlyBAYGonr16qJz6D+qX78+6tevj8GDBwP4cyzixo0bxSMRFy5cwJYtW5CdnQ0AqF69evGwR5MmTWBtbY2GDRuiXr16PEN4Cfrjjz+QkpKCmzdv4vr160hISEBCQgJu3ryJ/Px8AEC9evXQokULDBkyBLa2trC1tYWpqang8vJNqVRi7ty5mDdvHgICAjB9+nTRSUREREQAgA0bNsDOzo4DESquYcOGqFKlCu7cucPfK6IysmzZMmhoaGDYsGGiU4iIiIiIiEiFccyDiIiISIDAwMDis4xV9kXudu3aITY2Fp07d4azszMOHDiA2rVri84iIiKq1K5fv44nT57AxcVFdAoRlSBra2ssXrwY+fn5lf5xyOvGjh2LKlWqYNy4ccjIyMCSJUt41lsiIiLBdHR0oFAokJubCy0tLdE5RKRCxo0bh8aNG2PEiBGiU6gUqKurw8bGBjY2Nvjqq6+K3//gwYPiQYnr168jMTERe/bsQWpqKgBAIpHA1NQUDRo0QIMGDVC/fv3iH83MzGBmZgYDAwNRX5ZKUSgUSEtLQ2pqKu7du4eUlBQkJycjOTkZKSkpSElJKR5PkUqlaNSoESwtLdG9e3dYWlrik08+wSeffAI9PT3BX0nFolAoMGbMGKxfvx5r167lgWBERESkMjIyMhAREYGAgADRKfQeWlpaMDMzw+3bt0WnEFUKL168wPLlyzFhwgQ+RiYiIiIiIqJ/xDEPIiIiojJ27do1zJ49G7Nnz0azZs1E56gEa2trnDhxAp07d4aLiwsOHjyIJk2aiM4iIiKqtORyOfT09NC8eXPRKURUgqytrVFQUIDbt2/DyspKdI5KGT16NGQyGby8vJCWlob169dDKpWKziIiIqq0dHV1Afz5gmiOeRDRK+Hh4YiKisKxY8egrs6Xu1QmtWvXRu3ateHu7v7G+58+fYo7d+4UD1K8GqPYuXMnkpOT8eLFi+Lramtrw9TUFKampqhZsybMzMxQo0YN1KxZE4aGhjA0NES1atWKL5eX8Q+FQoGMjAxkZmYiMzOz+PIff/yBtLQ0PHz4sPjHx48fIy0tDQqFovjzTUxMiodPunbt+sYQSv369fnYuAzk5eXB09MT+/fvx65du9C1a1fRSURERETFAgMDoampCS8vL9Ep9AEsLS1x7do10RlElcK6devw4sULjBs3TnQKERERERERqTi+uoGIiIioDOXl5WHQoEGwtbXFjBkzROeolHr16kEul8PDwwPOzs7YuXMnnJ2dRWdRBXLz0gWAZ1gnAgAolUpI+PehQrl56UKJ3p5cLoejoyMPjCGqYD755BOoq6vj2rVrHPN4i/79+0Mmk6F379549uwZfvnlF2hra3/w5yfGn0VhQX4pFhIRUUWW++I5tHR0RWf8K7cux5f4bb4a88jJyUG1atVK/PaJqPzJzs7G1KlTMWzYMLRr1050DqkImUwGW1tb2NravvXj4eHhGD9+PNTV1eHn54eMjAw8fvwYjx49Qnx8fPG4RVZW1t8+V11dvXjYQ19fH3p6etDQ0IBMJoOGhgZ0dXWhp6cHqVQKQ0PDN5r++tzr6x8H/vx+4etDI39936vLOTk5yM/Px9OnT5Gfn4/nz5/j+fPnyM3NLR7tyM7Ofmt79erVUaNGDZiZmcHExARNmzaFqakpTExMiodM6tWr91GPe6nkPX36FD169MCVK1dw6NAhfm+UiIiIVEpWVhZCQkIwbdo06Ovri86hD2BjY4Po6GjRGUQVXkFBAZYuXYphw4bB2NhYdA4RERERERGpOB6RQURERFSGpk2bhpSUFFy8eJEHx76FkZERjh49ikGDBsHd3R0bNmzAgAEDRGdRBVCrdm3s+WmN6AwiolJVq3btErutEydOYPjw4SV2e0SkGjQ1NWFubo5r166hT58+onNUUufOnREVFYVu3bqhXbt2iIyMhKmp6T9+jrq6Okxq1kTkuhVlVElERKR6GjRoWKK3p6GhAQDIz+dQFhH9adasWcjNzcX3338vOoXKgby8PHz77bdYvHgxevfujdWrV/9tUON1CoUCmZmZxW+vhjJevT179uyNYY1nz57h8ePHb7zv1e38dVzjbe9TU1ODgYHBG+9TV1cvPkBSKpVCT08Purq60NDQgKGhIfT09GBiYgI9PT1oamqiWrVqxWMjhoaGb/ycB1qWD48fP8Znn32GP/74A3K5HNbW1qKTiIiIiN4QGBgIABg7dqzgEvpQNjY2WLlyJRQKBdTU1ETnEFVY4eHhePDgAXx8fESnEBERERERUTnAI0iJiIiIysjBgwcREhKCTZs2oX79+qJzVJaOjg527NiBuXPnYtCgQUhMTMS33377t7OYEX2MB/fvi04gUhmvzg6xYMECVK9eHT/88AN69eolOotUyN27d3Hv3j20bdtWdAoRlYKmTZvi8uXLojNUWps2bXDmzBl0794d9vb2iIyMRMuWLd95fTU1NaQ+elSGhUREVNHk5eVh9+7dWLNmDY4ePQpzc3MMHz4cQ4cOrbRn9Xs1hFxYWCi4hIhUwfnz57FixQqsXbsWRkZGonNIxd24cQMDBw5EUlISVq5ciZEjR773c9TU1GBkZMQ/X1Rm7t69i44dOwL4c1i5Xr16gouIiIiI3pSdnY1ly5Zh0qRJkMlkonPoA9nY2ODly5dISkpC48aNRecQVUhKpRJLly5F//79YW5uLjqHiIiIiIiIyoEqogOIiIiIKoO0tDR4e3tj8ODBGDhwoOgclSeRSODn54c1a9bA398fAwYMQG5urugsIqIKQSqVwtfXF4mJiejUqRP69OmD9u3b88BuKiaXy6GhofGPB64TUfnl4OCA2NhYKJVK0SkqrVGjRjh9+jRsbW3Rtm1bbNq0SXQSERFVYJqamujTpw+ioqJw5coVdO7cGd9//z3q1KkDT09PnDlzRnRimeOYBxG9UlRUhPHjx8PR0RFDhgwRnUMqLiwsDC1btoSGhgYuXLjwQUMeRGUtISEBLi4u0NDQwPHjxznkQURERCrJ398fADBx4kTBJfQxrKysoK6ujvj4eNEpRBXW/v37cfHiRUyZMkV0ChEREREREZUTHPMgIiIiKmVKpRJDhw6Fjo4OgoODReeUK8OHD8e+fftw8OBBuLu7Iz09XXQSEVGFYWpqitWrV+P06dPIy8uDnZ0dRo0axX9rCXK5HPb29tDR0RGdQkSloG3btkhLS8PNmzdFp6g8fX197Ny5EyNGjICXlxdmzJiBgoIC0VlERFTBWVtbIzg4GA8fPsTy5cuRkJAABwcHODk5Yfv27VAoFKITywTHPIjolZUrV+LcuXNYvnw5JBKJ6BxSUenp6ejRowe8vb0xbNgwnDhxAo0aNRKdRfQ3Fy5cQNu2bVGzZk1ER0fDzMxMdBIRERHR39y6dQs//vgj5s+fD5lMJjqHPoK2tjaaNWtWKceBicrKwoUL8fnnn6NFixaiU4iIiIiIiKic4JgHERERUSkLDAzEoUOHsGnTJhgYGIjOKXc6duyIEydO4MGDB3B0dORBh0REJcze3h6xsbEIDQ3F7t270aRJEwQFBVWaA8To7+RyOVxcXERnEFEpsbOzg56eHuRyueiUckFdXR3Lli3DunXrEBwcDBcXF9y5c0d0FhERVQK6uroYNmwYzp07h3PnzsHc3BwDBgxA3bp14efnh8zMTNGJpUpNTQ0A+NiUqJJ7/PgxZs2ahalTp6JZs2aic0hFHT16FM2aNcPFixdx/PhxBAUFQSqVis4i+hu5XA43Nzc0bdoUR48eRfXq1UUnEREREb3VxIkTYW1tjdGjR4tOoX/BwcEBp06dEp1BVCGdOXMGcrkcvr6+olOIiIiIiIioHOGYBxEREVEpunr1KmbOnIm5c+fC0dFRdE651bRpU8TFxUEmk6FNmzaIiYkRnUREVKFIJBJ4eXnh9u3bmDBhAnx9fWFvb89/byuh9PR0JCQkcMyDqAJTV1dH69atOebxkYYOHYrz588jLy8PzZs3x6ZNm0QnERFRJWJnZ4ewsDAkJiaiT58+WLp0KerVq4fJkyfj4cOHovNKhbq6OgCgsLBQcAkRiTR58mTIZDLMnj1bdAqpoKKiIsydOxefffYZnJyccOnSJT6nRSrrwIED6Ny5M1xdXbF//37o6+uLTiIiIiJ6q/DwcBw+fBghISHFY6tUvjg4OODChQvIz88XnUJU4Xz//fdwcHCAq6ur6BQiIiIiIiIqRzjmQURERFRKXrx4gb59+8LBwYFL3CXA1NQUx48fh7OzMzp16oTNmzeLTiIiqnB0dXXh5+eHK1euoFatWnB1dYWHhwdSUlJEp1EZOXHiBCQSCUfIiCo4FxcXDjb9C5988gni4uIwZMgQeHl5wdvbG1lZWaKziIioEmnYsCF+/PFH3L9/H99++y0iIiJgbm6OUaNG4c6dO6LzShTHPIjowIED2LJlC4KDg6GjoyM6h1TMkydP0KVLF3z//ff44YcfEBERAZlMJjqL6K0iIyPRs2dP9OrVC7/++iu0tLREJxERERG9VXZ2NqZOnQpvb29+v7gcc3BwQG5uLi5duiQ6hahCSUhIwO7duzF9+nTRKURERERERFTOcMyDiIiIqJSMHz8ejx8/xsaNG3mmghKiq6uLnTt3YsaMGRg8eDD8/PxEJxERVUgWFhbYu3cvoqKikJSUBGtra/j5+eHly5ei06iUyeVyNG3aFNWqVROdQkSlqG3btkhJScG9e/dEp5Q7WlpaWLZsGXbt2oUDBw7AysoKO3fuFJ1FRESVTNWqVTFlyhQkJSVhzZo1OH78OCwsLNC3b19cv35ddF6J4JgHUeWWnZ2N0aNHY+DAgejWrZvoHFIxMTExaN68OW7cuIHjx4/Dx8dHdBLRO4WFhaFPnz4YPnw4fv755+L/4xARERGpogkTJqCgoAABAQGiU+g/aNKkCYyNjREdHS06hahCWbx4MSwsLPDFF1+ITiEiIiIiIqJyhmMeRERERKVg/fr1+OmnnxAaGoo6deqIzqlQJBIJ/Pz8sHr1avj7+8Pb2xv5+fmis4iIKiR3d3dcunQJ/v7+CAwMROPGjREWFiY6i0qRXC6Hi4uL6AwiKmUODg7Q1NSEXC4XnVJueXh4ICEhAd26dUPv3r3h4eGB+/fvi84iIqJKRkNDA15eXrh27Rp+/vlnXLt2DTY2Nvjyyy9x5coV0Xn/Ccc8iCq36dOn48WLFwgMDBSdQipEqVQiKCgI7u7uaNmyJS5evIjWrVuLziJ6p2XLlmHIkCGYMmUKQkJCUKUKX6ZHREREqmv79u3YuHEj1q1bByMjI9E59B9IJBK0b98ev/32m+gUogrj4cOH2LRpE6ZOncrHdkRERERERPTR+EiSiIiIqIRduXIFEyZMgK+vL1e4S9GIESOwd+9e7Ny5E25ubkhPTxedRERUIUmlUvj4+CAhIQFdunSBt7c33NzccPnyZdFpVMKeP3+OixcvcsyDqBLQ1taGg4MDDh8+LDqlXJPJZFi9ejWioqJw48YN2NjYYNWqVVAoFKLTiIioklFXV4enpyeuXLmCiIgI3LlzB82bN8egQYNw+/Zt0Xn/Csc8iCqv6OhorFmzBiEhIahRo4boHFIR6enp6Nq1K6ZOnYr58+dj586dMDQ0FJ1F9E4LFy7E//73PyxZsoRnticiIiKVd//+fYwcORLjx4+Hh4eH6BwqAW5uboiJiUFBQYHoFKIKISgoCIaGhvD09BSdQkREREREROUQxzyIiIiISlBOTg769u2Lli1bYv78+aJzKrxOnTpBLpfj/v37cHR0xM2bN0UnERFVWKampli9ejVOnz6N3Nxc2NnZYdSoURxTqkDi4uJQUFAAJycn0SlEVAa6d++OvXv38gDZEtChQwdcvnwZo0aNwsSJE2FnZ4ejR4+KziIiokqoSpUq6NWrF86fP4/IyEhcvXoVVlZW8PLyQkpKiui8j8IxD6LK6cWLFxg+fDi6du2Kfv36ic4hFXHmzBm0bNkSV69eRUxMDHx9fSGRSERnEb2VUqnEpEmTMHPmTKxduxaTJ08WnURERET0j4qKiuDl5QVTU1MsXLhQdA6VEDc3N+Tk5ODs2bOiU4jKvezsbKxZswaTJk2ClpaW6BwiIiIiIiIqhzjmQURERFSCRo8ejYyMDGzZsqX4BedUumxsbBAXFwcDAwO4uLggLi5OdBIRUYVmb2+P2NhYhIaGYvfu3WjSpAmCgoKgUChEp9F/JJfL0bBhQ9SuXVt0ChGVgd69eyMjIwMxMTGiUyoEHR0dLFy4EFevXkXjxo3h7u6Ojh074urVq6LTiIioEpJIJPDw8MD58+exatUqREdHw8rKClOnTi03g4xqamoAwMeaRJXM7Nmz8eTJE6xcuVJ0CqkApVKJJUuWwMnJCc2aNcOlS5fg6OgoOovonRQKBYYOHYoVK1YgPDwcw4YNE51ERERE9F5z5szBqVOnEB4eDm1tbdE5VEIsLCxQt25dHD58WHQKUbm3YsUKKJVKjBo1SnQKERERERERlVMc8yAiIiIqIcHBwfjll1+wadMmmJmZic6pVMzMzBAdHY3WrVujffv2WL9+vegkIqIKTSKRwMvLC7dv38aECRPg6+sLe3t7HhBezsnlcri4uIjOIKIyUr9+fdjY2GDXrl2iUyqUxo0bY9u2bYiKisLjx49ha2sLHx8fpKWliU4jIqJKSF1dHUOHDsWtW7fw448/YvPmzbCwsMDChQuRl5cnOu8fvRpKLiwsFFxCRGXlzJkzCAoKwtKlSzk0Snj+/DkGDBiAr7/+Gt9//z0iIyNhaGgoOovonXJzc9GzZ09ERERg7969+PLLL0UnEREREb3X1q1b4e/vj5CQENjY2IjOoRLWrVs37NmzR3QGUbmWl5eH4OBgjB49GjKZTHQOERERERERlVMc8yAiIiIqAWfPnsW0adMwb948dOzYUXROpaSnp4fIyEjMnTsXI0aMwKhRo1BQUCA6i4ioQtPV1YWfnx+uXLmCWrVqwdXVFR4eHkhJSRGdRh+poKAAp0+f5pgHUSXTs2dP7NixA0qlUnRKhePu7o74+HiEhIRg27ZtaNCgAaZOncpRDyIiEkJDQwMjR47ErVu3MHbsWPj5+aFZs2Yq/WJ+dXV1SCQSPr9HVEnk5+dj2LBhcHV1hbe3t+gcEiwpKQmOjo44cuQIDhw4gKlTp0IikYjOInqnFy9eoHv37pDL5YiKiuL3iomIiKhciI+Px7Bhw+Dj44Nhw4aJzqFS4OHhgQsXLvD1G0T/QVhYGJ48eYLx48eLTiEiIiIiIqJyjGMeRERERP9RZmYm+vXrB2dnZ8yYMUN0TqUmkUjg6+uL8PBwbN68GR06dODBckREZcDCwgJ79+5FVFQUkpKSYG1tDT8/P7x8+VJ0Gn2g8+fP48WLFxzzIKpkevTogQcPHiA+Pl50SoWkpqaGkSNHIiUlBYGBgfjll1/QoEED+Pj44NGjR6LziIioEtLT08OCBQtw69YtODg4oEePHujQoQMuX74sOu2tNDQ0kJ+fLzqDiMrA/PnzkZycjHXr1nG0oZI7ePAgWrZsCTU1NZw9exbu7u6ik4j+0fPnz+Hh4YFz587h0KFDcHR0FJ1ERERE9F6pqano0aMH2rRpg8WLF4vOoVLSvn176OvrY9++faJTiMolpVKJwMBAeHl5oU6dOqJziIiIiIiIqBzjmAcRERHRf1BUVARPT08UFhYiPDwcampqopMIQJ8+fXDy5Ek8ePAA9vb2OH/+vOgkIqJKwd3dHZcuXYK/vz8CAwPRuHFjhIWFic6iDyCXy2FsbAwLCwvRKURUhmxtbdGgQQNERkaKTqnQNDU1MXLkSNy6dQvfffcdtm3bBgsLC0yePJlnQyMiIiFq166NsLAwREdHIysrC3Z2dhg/fjyysrJEp71BU1MTubm5ojOIqJSdOXMGAQEBCAgIQIMGDUTnkCBKpRILFy5Et27d0KVLF8TGxvLPA6m8rKwsdOzYEVevXsXx48fRqlUr0UlERERE75Wbm4svvvgC2tra2LZtG9TV1UUnUSnR1NTEZ599ht27d4tOISqXIiMjkZCQgMmTJ4tOISIiIiIionKOYx5ERERE/8GcOXNw9OhRREREwMjISHQOvaZZs2Y4e/YsGjduDFdXV2zfvl10EhFRpSCVSuHj44OEhAR06dIF3t7ecHNzU9kzPdOf5HI52rZty7PfElVCHh4e/L9yGdHR0cGkSZOQlJSE+fPnY/v27bCwsEDfvn1x6tQp0XlERFQJubi44MyZM1izZg0iIiJgaWmJbdu2ic4qpqmpiby8PNEZRFSKcnNzMXToULi6umLcuHGic0iQnJwc9OnTB7NmzcKCBQuwadMm6OjoiM4i+keZmZno1KkTkpOTcezYMTRr1kx0EhEREdF7FRQUoF+/frh58yZ2794NmUwmOolKWe/evXHs2DE8efJEdApRubN48WL06NEDVlZWolOIiIiIiIionOOYBxEREdG/FBkZCX9/f4SEhMDBwUF0Dr1F9erVcfDgQYwfPx59+/bFlStXoFQqRWcREVUKpqamWL16NU6fPo3c3FzY2dlh1KhRSE9PF51Gf6FUKnHy5Em4uLiITiEiAQYPHowbN24gLi5OdEql8WrU486dO9i4cSNSUlLg6OgIJycnbN++HQqFQnQiERFVIlWqVIG3tzcSExPRp08fDBgwAG5ubrh586boNI55EFUCvr6+ePDgAdavX8+B0Urq1q1baN26NWJiYnDo0CH4+vqKTiJ6r7S0NLRr1w6pqamQy+WwtrYWnURERET0XkVFRRgyZAiOHDmC3bt3o0mTJqKTqAx0794dWlpaiIiIEJ1CVK7ExMQgLi4O06ZNE51CREREREREFQDHPIiIiIj+hYSEBHz11VcYO3Yshg8fLjqH/oG6ujoCAgIQFhaGW7duITY2FllZWaKziIgqDXt7e8TGxiI0NBS7du1CkyZNEBQUxAOVVci1a9fwxx9/cMyDqJKyt7dH8+bNERoaKjql0lFXV0f//v1x5swZnDt3DubmIfg5DAAAIABJREFU5hgwYADq1KmDGTNmIDk5WXQiERFVIjKZDEFBQYiOjkZaWhqaN28OPz8/5OfnC2vS0tLimAdRBXbs2DGEhIQgODgYdevWFZ1DAuzbtw+tWrWCpqYmzp49Czc3N9FJRO+VmpqKDh06IDs7G8ePH0ejRo1EJxERERG9l1KpxLhx47B9+3b8+uuvcHZ2Fp1EZURHRwfdu3fHL7/8IjqFqFxZtGgRnJ2d0aZNG9EpREREREREVAFwzIOIiIjoI2VmZsLDwwNNmzbF0qVLRefQB/L09ISrqysyMzPRqlUrJCQkiE4iIqo0JBIJvLy8kJSUhAkTJsDX1xf29vaIiYkRnUYA5HI59PT00KxZM9EpRCSIt7c3tm7dimfPnolOqbTs7OwQFhaGxMREDBkyBD///DMaNWqELl26YOfOnSgoKBCdSERElYSzszMuXLiAmTNnYtGiRWjVqhUuXbokpEVTUxO5ublC7puISld2djaGDh0KDw8PDB48WHQOCRAUFITu3bvDw8MDJ06cQL169UQnEb3XvXv34OLigoKCApw4cQINGjQQnURERET0Qb7++musXbsWmzdvRufOnUXnUBkbMGAAYmNjce/ePdEpROXCjRs3cODAAUyfPl10ChEREREREVUQHPMgIiIi+ghFRUXw9PTE8+fPERERAQ0NDdFJ9BGqV68Od3d3yGQyODg4YM+ePaKTiIgqFV1dXfj5+eHKlSuoVasWXF1d4eHhgZSUFNFplZpcLoeTkxPU1dVFpxCRIJ6enigsLERERITolEqvYcOG8Pf3x7179xAREQGlUokvv/wS9erVw7Rp03Dx4kXRiUREVAloaGhg5syZuHz5MgwMDNCqVSv4+/ujsLCwTDv09PSQk5NTpvdJRGXDx8cHL168wOrVq0WnUBnLz8+Ht7c3pkyZAn9/f4SFhUFbW1t0FtF7paSkoH379tDQ0MBvv/2GWrVqiU4iIiIi+iDffvstFi9ejJ9//hlffvml6BwSoFOnTjAyMsLPP/8sOoWoXAgICEDjxo3RtWtX0SlERERERERUQXDMg4iIiOgjzJw5E8eOHUNkZCTMzMxE59C/oK2tjZiYGPTq1Qs9e/bEwoULRScREVU6FhYW2Lt3L6KiopCUlARra2v4+fnh5cuXotMqpRMnTsDFxUV0BhEJVK1aNXzxxRcIDQ0VnUL/TyqVolevXjhw4ACSkpIwfPhw/Prrr2jRogWsra2xYMECJCcni84kIqIKrlGjRoiOjkZwcDAWLFgAJycnJCYmltn9Gxoa4unTp2V2f0RUNvbs2YOffvoJK1euhImJiegcKkMZGRn47LPPsH37duzcuRO+vr6ik4g+SGJiIlxcXCCTyRAdHQ1TU1PRSURERETvpVQqMWXKFCxYsABr167FoEGDRCeRIBoaGvDy8sLatWuhUChE5xCptAcPHiA8PBy+vr6oUoWHWhEREREREVHJ4CNMIiIiog+0c+dOLFy4ECEhIWjVqpXoHPoPNDU1sWHDBqxYsQKzZs3CgAED8OLFC9FZRESVjru7Oy5dugR/f38EBgaicePGCAsLE51VqaSkpOD+/fsc8yAiDBs2DCdPnsT169dFp9Bf1K9fH/PmzUNSUhJiY2PRvn17BAUFwdzcHM7OzggJCcGDBw9EZxIRUQUlkUgwcuRInD17FkVFRWjRogUWLlyIoqKiUr9vmUzGMQ+iCubJkycYMWIEvLy80Lt3b9E5VIZu376NNm3a4Pbt24iJiYGHh4foJKIPcuPGDbi5uaFmzZqIioqCkZGR6CQiIiKi91IqlfDx8UFQUBDWr1+PoUOHik4iwUaMGIEHDx4gKipKdAqRSlu6dCmMjY0xcOBA0SlERERERERUgXDMg4iIiOgDXLp0CV5eXhg7diyGDRsmOodKyMiRI7Fv3z4cOnQITk5OuHv3rugkIqJKRyqVwsfHBwkJCejSpQu8vb3h5uaGK1euiE6rFORyOTQ0NGBvby86hYgEc3NzQ/369bFmzRrRKfQOEokEbdq0QUhICB4+fIi9e/eifv36+Oabb1C3bl04ODjg+++/R0JCguhUIiKqgKysrHDy5ElMnz4ds2bNQufOnfH48eNSvU9DQ0NkZmaW6n0QUdlRKpUYOnQotLW1sWzZMtE5VIaOHDmCli1bwtDQEOfOnUOLFi1EJxF9kPj4eLRt2xbm5uY4duwYqlWrJjqJiIiI6L0UCgW8vb2xevVqREREwMvLS3QSqYAmTZqgbdu2WLt2regUIpWVmZmJdevWYdKkSdDQ0BCdQ0RERERERBUIxzyIiIiI3iM1NRXdu3dHy5YtERgYKDqHSlinTp1w+vRp5Ofno3Xr1oiOjhadRERUKZmammL16tU4ffo0cnNzYWtri1GjRiE9PV10WoUml8vRsmVL6OjoiE4hIsGqVKmCCRMmYN26dfjjjz9E59B7SKVSdOnSBZs2bUJaWhr27NkDGxsbBAYGwtLSEpaWlvj6669x8uRJKBQK0blERFRBSKVS+Pn54eTJk7hz5w5atGiB3377rdTuTyaT4enTp6V2+0RUtkJCQrB//35s2LABVatWFZ1DZWTdunXo0qULOnbsiGPHjsHExER0EtEHOXfuHNzd3dG0aVPs378f+vr6opOIiIiI3is3Nxdffvkltm/fjn379qFnz56ik0iFjBw5Env27MH9+/dFpxCppBUrVqBKlSoYPny46BQiIiIiIiKqYDjmQURERPQPcnNz0bNnT6irq2Pbtm2QSqWik6gUWFhYIC4uDo6OjnB3d8fixYuhVCpFZxERVUr29vaIjY1FaGgodu3ahSZNmiAoKIgHIpcSuVwOFxcX0RlEpCJGjRoFLS0trFy5UnQKfQQtLS107doV69atw6NHjxAdHY3PP/8cW7duhZOTE4yNjdG3b1+sX78ev//+u+hcIiKqAFq2bIkLFy6gbdu26NixI/z8/ErlMRvHPIgqjmvXrsHX1xezZ89Gu3btROdQGVAoFJgxYwZGjhyJyZMnY+vWrdDW1hadRfRB4uLi0KFDBzg6OuLAgQPQ09MTnURERET0Xk+ePEGHDh0QHR2NQ4cOwd3dXXQSqZg+ffrAxMQEISEholOIVE5eXh5CQkIwbtw4jtASERERERFRieOYBxEREdE7KJVKDBs2DDdv3sSBAwdgZGQkOolKkYGBAX799VcsWbIEM2fORI8ePXiwABGRIBKJBF5eXkhKSsKECRPg6+sLe3t7xMTEiE6rUNLT05GYmMgxDyIqpquri9GjRyM4OBgvX74UnUP/gpqaGtq2bYulS5fizp07uHHjBmbPno3s7GyMGzcOtWrVwqeffgpfX18cPnwYz58/F51MRETllIGBAcLDw7F+/XosWrQIHTt2xKNHj0r0PqpVq4aMjIwSvU0iKnt5eXkYNGgQbGxsMHPmTNE5VAZycnLQq1cv/PjjjwgLC0NAQAAkEonoLKIPcv78eXTt2hVOTk749ddfoaWlJTqJiIiI6L1u374NZ2dnPHr0CLGxsXBychKdRCpIKpVi7NixWLVqFbKzs0XnEKmUDRs2IDMzE+PHjxedQkRERERERBUQxzyIiIiI3mHu3LmIiIjAtm3b0LhxY9E5VAYkEgl8fHxw9OhRnDt3Dq1atcLly5dFZxERVVq6urrw8/PDlStXUKtWLbi6usLDwwN3794VnVYhyOVySCQStGnTRnQKEamQiRMn4tmzZ/jpp59Ep1AJ+OSTTzBp0iQcPHgQGRkZ2L9/P9q1a4fdu3fjs88+g6GhIZycnDBz5kxERUVx3IOIiD6al5cX5HI57t27Bzs7O5w4caLEbrtWrVrIzs5GVlZWid0mEZW9qVOnIiUlBeHh4ZBKpaJzqJT9/vvvcHZ2xunTp3H8+HF4enqKTiL6YBcuXEDHjh3h4OCAHTt2QFNTU3QSERER0XsdO3YMLVu2RLVq1XDq1ClYWlqKTiIVNnr0aBQVFfH7gESvUSgUWLp0KYYMGQJTU1PROURERERERFQBccyDiIiI6C0iIiIwb948LFu2DB06dBCdQ2XMxcUFly5dQt26deHg4IDQ0FDRSURElZqFhQX27t2LqKgoJCUlwcrKCn5+fsjNzRWdVq7J5XLY2NhAJpOJTiEiFVKjRg189dVXWLx4MQoLC0XnUAnS1tbG559/jqCgINy4cQMPHz7ETz/9BGtra2zfvh2dOnWCoaEhnJ2d4evri127diEtLU10NhERlQN2dnY4f/48HBwc0KFDhxJ7Lq1evXoAgHv37pXI7RFR2Tt48CCWL1+OFStWoEGDBqJzqJQlJibCyckJeXl5OH36NFq3bi06ieiDxcfHFw957Ny5E1paWqKTiIiIiN5rw4YN+Pzzz+Hu7o5jx46hRo0aopNIxRkaGuKrr77Cjz/+iIKCAtE5RCphx44dSEpKwpQpU0SnEBERERERUQXFMQ8iIiKivzh//jyGDBmCSZMmYfTo0aJzSBBjY2McPHgQPj4+GDFiBLy8vPDy5UvRWURElZq7uzsuXboEf39/BAYGwsLCAmFhYaKzyi25XA4XFxfRGUSkgqZNm4Z79+5hx44dolOoFJmZmWHgwIFYs2YNEhMT8fDhQ2zYsAFWVlbYt28fevXqBRMTE1hYWMDLywsrVqzAxYsXoVAoRKcTEZEKqlq1Knbs2IF58+Zh5MiRGDVq1H8+IKBu3boAgLt375ZEIhGVsbS0NHh7e2Pw4MEYOHCg6BwqZWfPnoWLiwtq1KiBmJiY4kEmovIgPj4e7u7uaNmyJYc8iIiIqFwoLCzEjBkzMHToUIwePRpbt26Ftra26CwqJ6ZPn46HDx9i48aNolOIVMIPP/yAnj17wsLCQnQKERERERERVVAc8yAiIiJ6zb1799CtWze4ublh0aJFonNIMHV1dQQEBCAyMhJ79uyBs7MzkpOTRWcREVVqUqkUPj4+SEhIQJcuXeDt7Q03NzdcuXJFdFq5kpOTg4sXL3LMg4jeqmHDhujduzcWLFiAoqIi0TlURszMzDBo0CCsWbMGV69exdOnTyGXyzF8+HBkZmZi9uzZaNGiBbS1tWFtbQ0vLy8EBQXhxIkTyMvLE51PREQqQCKRwNfXF+Hh4di0aRO6du2KzMzMf317enp6qFatGu7du1eClURUFoqKijBo0CDo6uoiODhYdA6VsqioKHTo0AHNmzfHkSNHYGxsLDqJ6INdvHgR7u7usLe3R2RkJIc8iIiISOU9evQI7du3R0hICH755RcEBQWhShUeDkAfrm7duvDy8oK/vz8KCwtF5xAJdezYMZw+fRpTp04VnUJEREREREQVGJ+9IyIiIvp/T58+RdeuXVGjRg1s2bIFampqopNIRXTv3h1nzpxBQUEBWrZsiYMHD4pOIiKq9ExNTbF69WqcPn0aubm5sLW1xahRo5Ceni46rVyIi4tDYWEhnJ2dRacQkYqaN28erl+/jk2bNolOIUH09fXh7OwMX19f7NmzB0+ePMHly5excuVKuLq64ubNm5gxYwZcXFxgaGgIR0dHjBs3DmvWrMGpU6fw7Nkz0V8CEREJ0qdPH8jlcty4cQMODg5ISEj417dVr1493L17twTriKgs+Pv7Izo6Gps2bYKBgYHoHCpFYWFh6Nq1K3r27Il9+/ZBX19fdBLRB+OQBxEREZU3J06cgJ2dHR4/foy4uDj0799fdBKVU7NmzcL9+/exefNm0SlEQi1atAjt2rVD69atRacQERERERFRBcYxDyIiIiIABQUF6NOnDzIyMrBnzx6+2JD+xsLCAmfOnEGPHj3QpUsXzJgxg2cpJyJSAfb29oiNjUVoaCh27dqFJk2aICgoCAqFQnSaSpPL5TA3N4eZmZnoFCJSUU2aNIG3tzdmzpyJly9fis4hFVClShXY2Nhg2LBhWLFiRfFgx8WLFxESEgI7OztcuHABU6ZMgaOjI6pWrQpzc3P07NkTs2fPRkREBBISElBQUCD6SyEiojJga2uL+Ph4mJqaok2bNjhx4sS/uh2OeRCVPzExMZg7dy6WLFnCAyEquKCgIAwZMgRjxozBTz/9BKlUKjqJ6INdunQJ7u7usLW1RWRkJLS1tUUnEREREf2jNWvWwM3NDfb29jhz5gxsbGxEJ1E5Vq9ePXh6emL+/PnIz88XnUMkxOXLl3H48GFMnz5ddAoRERERERFVcBzzICIiokpPqVRi+PDhOH36NPbv34+6deuKTiIVpaWlhdDQUKxatQqBgYHo2LEj0tLSRGcREVV6EokEXl5euH37NiZMmABfX1/Y29tDLpeLTlMJO3bswJgxY7Bp0ybcu3cPwJ9jHi4uLoLLiEjV+fn5ITMzEytWrBCdQipKXV0dn376KYYOHYqQkBDExcXh2bNnePjwIQ4fPoyJEydCX18fBw4cwODBg2FpaQkdHR2Ym5ujY8eO8PHxwZo1a3DkyBGkpqaK/nKIiKiEGRkZ4fDhw+jQoQPc3d3x66+/fvRtNGzYELdv3y6FOiIqDU+ePMHAgQPRuXNnTJgwQXQOlRKlUolp06Zh0qRJWLx4MYKCgiCRSERnEX2wV0MeLVq0wK5duzjkQURERCotMzMTffr0wdixYzFv3jzs2rULMplMdBZVAPPmzcOjR4+watUq0SlEQixcuBBNmzZF586dRacQERERERFRBSdRKpVK0RFEREREpU2hUODs2bNvPQvcN998gyVLlmDv3r3o1KmTgDoqK3379gUAbNu27T/f1vnz59GnTx8UFhZi27ZtPMMgEZEKuXnzJiZPnox9+/ahW7duCAkJQb169URnCTN27FisWrUKEokERUVFMDExQUFBAbp27QpfX19YWVnxgAsieqeZM2di5cqVuH37NqpVqyY6h8qx3Nxc3LhxA4mJiUhISEBCQgISExORmJiIly9fAgBq1KiBRo0awdzcvPjHV2/GxsaCvwIiIvq3FAoFxo0bh3Xr1mHlypUYMWLEB3/uxo0bMXz4cDx79gwaGhqlWElEHyMkJASpqanw8/ODuro6gD8HHnr06IGLFy8iPj4e1atXF1xJpSE/Px9fffUVdu7ciZ9//hn9+vUTnUT0US5fvowOHTrAysoK+/fvh66urugkIiIioneKjo7G4MGDoVAosHHjRri5uYlOogpm+vTp2LBhA27fvo2qVauKzgEA9OjRAwYGBti4caPoFKrA7t+/D3Nzc6xfvx6enp6ic8oM/34RERERERGJUUV0ABEREVFZCA0NhaOjI3x9ffH6ltm6desQEBCANWvWcMiDPoqdnR3Onj0LKysrtGvXDkFBQaKTiIjo/zVu3Bh79+5FVFQUkpKSYGVlBT8/P+Tm5opOE8LMzAwaGhooKioCADx+/BhZWVnYsmULmjZtCplMhm7dumHXrl2CS4lIFc2YMQNSqRQLFy4UnULlnJaWFlq0aIH+/fvDz88P4eHhiI+PR05ODu7cuYMDBw7gm2++ga2tLdLT07F582YMHToUjo6OqFGjBqpWrQpbW1v06NEDEyZMwMKFC7F582bI5XIkJycjPz9f9JdIRETvoKamhlWrVmHBggUYNWoU/Pz8PvhzW7Rogfz8fNy4caP0AonooygUCnz77bdYsGABXF1d8ejRIwB/ns304MGDCA8P55BHBZWTkwMPDw/s3bsXe/bs4ZAHlTs3btxAp06dYGlpiX379nHIg4iIiFRWYWEh/Pz80KFDB9jZ2eHy5csc8qBS8c0330CpVGLRokWiU4jK1OLFi1GzZk0+t0FERERERERlQl10ABEREVFpUyqV+OGHHyCRSLBkyRI8efIEa9euxeHDhzFmzBj4+flhyJAhojOpHKpevTr279+PuXPnYvLkybhw4QJWrlwJHR0d0WlERATA3d0dly5dwooVKzBnzhyEhoZiwYIF8PLyEp1WpszMzFBYWPjG+xQKRfHl7Oxs7Nu3D0ZGRujRo0dZ5xGRitPX18eMGTMwc+ZMjB8/HnXq1BGdRBVMlSpV0KBBAzRo0ACdO3d+42MKhQL3799HUlISkpKScOfOHdy/fx8XL17E3r178fvvvxePeEgkEtSsWRO1a9dG7dq1UadOHdSpU+eNy6amppBKpSK+TCIiAuDr6wtdXV34+PggOzu7+Dnbf2JpaQkdHR3Ex8fj008/LaNSIvon0dHRyMjIAACcPXsW1tbWmDdvHubMmYOAgAC0adNGcCGVhj/++AOdOnVCamoqYmNj0axZM9FJRB8lISEBbm5usLCwwP79+6Gnpyc6iYiIiOitkpOT4enpifj4ePzwww/w8fERnUQVmEwmwzfffINZs2Zh+PDhaNCggegkolKXkZGBDRs24LvvvuP3DYmIiIiIiKhMSJSvn5qeiIiIqAKKiopCp06din+upqYGNzc3xMXFoW/fvggNDRVYR2Wpb9++AIBt27aV+G3v378fgwcPhqmpKbZu3Qpra+sSvw8iIvr3Hj16BD8/P6xbtw6urq4ICgqCjY3NW687efJkREdHIyYmpkKcnfHQoUN/Ozj6dRKJBDo6OkhMTEStWrXKsIyIyou8vDxYW1ujefPm2L59u+gcomJKpRKpqam4f/8+Hjx4gPv37xdffvDgAe7evYvU1NTiUasqVaqgZs2aMDIygomJCWrUqAEjIyMYGxujZs2aMDY2fuPn+vr6gr9CIipNL1++RG5u7hvvy8zMfO/n5ebm4uXLlyXaoq+vD3X1d5+DQUdHB5qamgAAqVRa7g8+3bp1KwYPHoyRI0ciODj4vYMeDg4OaN26NYKCgsqokIj+yZgxY7B+/friUTU1NTUolUq0bt0acrkcVapUEVxIJS0tLQ0dO3ZEVlYWjh49CnNzc9FJRB8lISEBrq6usLKywt69eyvEc75ERERU8SiVSqxbtw6TJ0+GhYUFtmzZgk8++UR0FlUC+fn5aN68ORo3bozIyEjROejRowcMDAywceNG0SlUQc2dOxfLli3D3bt3y/1z7R+Lf7+IiIiIiIjEePerwoiIiIgqiKVLl0IqlaKgoADAn2f2PX78OBo3boxFixYJrqOKokuXLrh48SIGDhwIe3t7BAQE8OwYREQqxNTUFKtXr8bw4cPh4+MDW1tbDB06FAsWLICRkVHx9a5cuYKgoCAolUr069cPu3fvLvcHoZiZmb33OsuWLeOQBxG9k6amJlasWIHPPvsMe/bsgYeHh+gkIgB/DlKZmprC1NQUrVq1eut1FAoFUlNTcffuXTx48AC///47njx5gtTUVKSnpyM5ORlpaWl4/Pgxnj179sbnampqwtjYGMbGxjAxMSke+6hRowaqVasGmUyGqlWromrVqm9c1tHRKYsvn0io58+fFx/EnZOTU/y823+5/OzZs+Lxnf9y+a99AFBUVISsrKyS/mVQCTKZrHgMQ1dXFxoaGgAADQ2N4gNV9fX1IZVKIZPJisdAXg2EVK1aFVKpFAYGBtDS0oK2tvYb19fU1IRMJoNMJiuxFzb369cPUqkU/fv3R0FBAVatWvWPgx4tWrRAfHx8idw3Ef03CoUCW7dufePfWIVCAQA4deoUunfvjk2bNkEmk4lKpBKWmpqKjh074vnz5/jtt994lmYqd5KTk+Hu7g4LCwsOeRAREZHKunv3LkaMGIFjx45hypQpmD9/fvFzPESlTUNDA8HBwXB3d8e+ffvQtWtX0UlEpebFixdYvnw5xo8fX+mGPIiIiIiIiEgciVKpVIqOICIiIiott2/fRuPGjfG2//JIpVJYW1vj8OHDMDY2FlBHZa1v374AgG3btpXafRQWFuK7777D/Pnz8cUXXyA0NJQvXCYiUjFKpRIbN27E9OnTUVBQgDlz5mD8+PFQU1ODi4sLTp8+jYKCAqipqWHixIlYunSp6OT/JCMjA9WrV3/rx6RSKRwcHBATE/Pes2ETEfXv3x9xcXG4fv06D36hCik3Nxfp6elvjH2kp6cXj328+lhaWhoyMzPx9OnTdz7f8PrIx6uhj9cHP1696enpQU9PDxoaGsUHzevo6LxxID1VTq/GKV4focjNzcXLly9L5OPZ2dlQKBT/+uP/xasRiX9z+fWxinddBlA8SvG6qlWrvjHU9/rYxSv6+vpQV3//uRAMDQ0//At+j4KCAuTk5PzjdV4fK8nLy8OLFy8A/H2k5NXvGwC8fPkSubm5xe8vKChAVlYW8vPz8fz58+LBk6ysLBQUFCA7O/u9v8fq6upv/NtmaGhYfPmvb6+uV6NGDZiZmb31hdE7duxA//79MXbsWAQGBr7zMcnq1asxffp0ZGZmlvuxRaLy7ujRo3B3d3/nx6VSKWrVqoXdu3fDxsamDMuoNNy7dw/u7u5QU1PDkSNHOARL5c7vv/8OFxcX6Ovr47fffivR/8MRERERlQSlUom1a9di6tSpMDExQWhoKNq2bSs6iyqpvn37Ij4+HlevXi1+PlaEHj16wMDAABs3bhTWQBVXSEgIpk2bhuTkZNSsWVN0Tpnj3y8iIiIiIiIxOOZBREREFdrEiROxatWq4jN8/pVUKkXdunXx22+/oU6dOmVcR2WtLMY8Xjl27Bg8PT2hoaGB8PBwtG7dutTvk4iIPk5OTg6WLFmCgIAAWFpaomfPnvj222//dr3ly5dj7NixAgpLjqam5htnzX1FQ0MD165dQ6NGjQRUEVF5k5qaCktLS4waNQoBAQGic4hUQnZ2NrKysvD06VNkZWX97e3p06d/+9jrP3/fAfwA3hj40NDQQNWqVd/6PuDdowevDxQYGBhATU0NACCTySCRSCCRSN4YDnnbyMF//VhJeH2o4HXvGiBQKBTIzs5+621lZWWhqKgIwN/HFDIzM4svvxo8AFA8gvBfrpeTk1P8PNXr11MqlXj69Om7vvQP8vqv/+u//68OWizJj2tra0NLS+uDL7/+Z5NU36s/p5mZmcjLyyv+d+vVv2mv3l4NG73t7a+PP3R0dGD9gLpbAAAgAElEQVRiYgJTU1MYGxvDzMwMNWrUwO+//47169fjyy+/hL+/P2rWrAkdHZ03Pvf8+fOwt7fH1atXYW1tXZa/FET0F2PGjMH69evf+hzDKxKJBFWrVkVGRgaHQ8uxu3fvws3NDVpaWjhy5AhMTU1FJxF9lPT0dLi6uqKwsBAxMTEwMTERnURERET0hpSUFAwfPhzR/8fefUdFcT5eA79LR4qgqIAKiIpGLBAhWKN8QQQbKnYJNmwxhNhjSdQYY4smlliwQxIssSRWFDsJ2AMCKioISC/SpJf3j/zYFwSUVWDY5X7O2QM7Ozt7Z3aHfYCdO9evY/78+Vi5cqX4b2lEQoiOjoapqSnc3NywZs0awXKwbIBqS1FRETp06AB7e3ts375d6DiC4P5FREREREQkDJZ5EBERkczKyMiArq5utc4YamZmhgcPHtRBKhJSXZZ5AEBiYiImTZqEy5cvY/Xq1Vi0aBE/vExEVA89fvwYbm5uuH79uvjs42XJycnhzz//xJAhQwRK+OFatWqFmJiYctPk5eWxdu1aLFy4UKBURCSNduzYAXd3d9y9exfdunUTOg6RTMjKykJ+fj7S0tKQl5eH7OxsZGVlIS8vD+np6eKiiszMTOTn55eblpGRgfz8fHFhRdmiiLLFF2WLK8oWS1DlyhaelC2kkJeXh6ampsTzNW7cGHJychXmU1BQgIaGRqXzVVamoaioCHV19SpvJ6pPsrOzkZaWhsTERMTGxiIpKQlxcXGIj48XT0tMTERCQgJSU1PL3VddXR2GhoZo06YN2rRpAyMjI3z77bdwc3PD0qVLy+03RFR3ioqK0KxZs7eOJRQUFKClpYW9e/fC0dGxDtNRTQoLC4ONjQ2aNWuGixcvQkdHR+hIRBLJyMiAjY0NEhMTcfPmTRgYGAgdiYiIiEisqKgI27dvx7Jly9CmTRscOHAAFhYWQsciAvDfiU6++uorBAQEoHv37oJkYNkA1RZvb2989tlnePz4cYM94Q33LyIiIiIiImGwzIOIiIhk1pYtWzB//vxKz9gKQFyq0L59e2zbtg12dnZ1GY8EUNdlHsB/Z9bdunUrFi5cCAcHB+zfvx9Nmzats8cnIqLqWblyJb7//vtKxw1ycnJQUVGBv78/unbtKkC6D9ejRw/cunVLfF1BQQEmJib4999/oaioKGAyIpI2xcXF6NOnD4qLi/HPP/+IDzonIulTUlKCtLQ0AP99gLy0EAQAXr9+jfz8/Erv97631YSyRRhlvVmKUZaWllalxZqNGjWCsrIygIrlG0RUt/Ly8rBv3z64ubnB2dkZffv2RWRkJCIiIhAeHo6IiAjEx8eL52/WrJm46MPY2Fj8fbt27WBoaMgyXaJacvnyZdja2lZ6m7y8PIqKiuDk5ITdu3fzb+BS7PHjx7CxsYG+vj58fHzQpEkToSMRSSQ7OxsODg54/vw5bty4AWNjY6EjEREREYndvn0bs2fPRnBwMBYvXozly5eLC3uJ6oPi4mL0798fGRkZuHPnjiCfJWDZANWW7t27o3379jh8+LDQUQTD/YuIiIiIiEgYCkIHICIiIqoNxcXF2Lx5s/iss2+Sk5ND8+bNsWrVKkybNk18FlWimiYSieDu7o4ePXpg/PjxMDc3x++//44+ffoIHY2IiP5PdHQ01q9fX2UBWHFxMfLz8+Hg4ID79++jRYsWdZzwwxkaGuLOnTvisVFxcTE8PT1Z5EFEEpOTk8POnTthYWGBHTt24IsvvhA6EhG9J5FIBG1tbfF1nnGdiISirKyMzz//HHJycvj8889hbW2N1atXl5tnw4YNWLt2LQ4dOoTIyEhxycfZs2cRERGBzMxMAIC6ujo6duwIU1NTdOrUCZ06dYKpqSnatGkjxKoRyZRjx45BSUmpQnGXgoICdHV1sX//fgwYMECgdFQT/v33X9jZ2aFDhw44e/Ysy85I6uTn52PUqFEIDQ3F9evXWeRBRERE9UZaWhpWrFiBX375Bb1798b9+/dhamoqdCyiCuTk5LBnzx6YmZlh48aNWLp0qdCRiGrExYsXcf/+fXh4eAgdhYiIiIiIiBoglnkQERGRTDpz5gyioqIqTFdQUICamhqWLFkCd3f3Ss/mSlQbrKys8ODBA7i6usLa2hrLli3Dt99+yzOZExHVA1999VWVRR6lCgsLkZSUBHt7e/z9999o1KhRHaWrGa1atYKCggLy8/OhoKCA+fPno3v37kLHIiIp1a1bNyxbtgwLFy5E//790blzZ6EjERERkQyYNWsWIiMjMWPGDOjq6sLe3l5825AhQ7B48WLo6Ohg2LBhFe6blJSEp0+fIiQkBI8ePUJISAiuXLmC6OhoAICWlhbMzc3LXTp27MiSZ6JqKioqwtGjR8sVecjLy6O4uBhTpkzB5s2boa6uLmBC+lD379+HnZ0dOnfujDNnzvD5JKlTVFQEZ2dn/PPPP7h8+TI6deokdCQiIiIiAP8VI7q5uaGwsBA7duzA9OnTIRKJhI5FVKUOHTpg9erVWLZsGQYOHMjPFZBM2LBhA2xtbfl6JiIiIiIiIkGwzIOIiIhk0qZNm6CgoIDCwkIAgKKiIuTl5eHu7o6lS5fybGIkiMaNG+Po0aPYunUrFi1ahJs3b+LXX3+Fnp6e0NGIiBqskJAQnDhxoloHcBUUFCA4OBguLi44duyYVH3IqvS9Rl5eHrq6uvjmm28ETkRE0m758uXw8fGBi4sLAgICoKSkJHQkIiIikgE//PADEhIS4OTkhMuXL6NHjx4AgE6dOqFdu3Y4e/YsevXqVeF+zZo1Q7NmzSrclpGRgeDgYDx48AAPHjzAtWvXsH37duTn50NNTQ2Wlpbo1asXevTogZ49e0JHR6dO1pNI2ly9ehWvXr0SX5eXl0fbtm1x6NAh8X5K0isgIAD29vbo1asXTpw4wSJ8kjrFxcWYNGkSzp49iwsXLvDgLCIiIqoXgoOD4ebmhhs3bmDmzJn44YcfoKWlJXQsomqZN28ezp8/j3HjxuHBgwcsfCSpdv/+fVy+fBk+Pj5CRyEiIiIiIqIGiqcBJyIiIpkTHByMmzdvorCwEIqKilBUVISbmxuio6Oxbt06FnmQoEQiEdzd3fHPP/8gKioKZmZmuHDhgtCxiIgarPbt22PXrl2YOnUqunbtCkVFRQD/HZSiqqpaYf7CwkKcPHkSy5Ytq+uoH6Rly5bIz89HcXExDh06BDU1NaEjEZGUU1BQwG+//YZnz55hxYoVQschIiIiGSESibB79258+umnGD58OJ4/fy6+bfDgwThz5oxEy9PU1ESvXr0wZ84c7N27F/fu3UNWVhbu37+Pn3/+GW3atMHJkyfh6OiIZs2aoUOHDnB1dcXvv/+O+Pj4ml49Iqn1xx9/QE5ODgoKClBQUMDy5cvx8OFDFnnIgLt378Le3h6ffvopTp06xSIPkjolJSWYM2cOjh07hj/++AN9+/YVOhIRERE1cCkpKZgzZw7Mzc2RlZWFgIAA7Nixg0UeJFXk5OTg6emJ1NRULFq0SOg4RB9k06ZNMDMzg52dndBRiIiIiIiIqIFSEDoAERERSY+CggJkZWWhpKQEaWlpAID09HQUFxcDALKzs5GXl1fpfXNzc5GTk1PlsjU1NSEvL1/pbRoaGlBQ+G/YoqKiAlVVVSgqKkJdXR0ikajCPzu3bNmCkpISyMnJYeLEiVi1ahUMDAwkXl+i2tS9e3fcv38fM2fOxKBBg+Dm5oYff/xRfBA5ERHVDSUlJcycOVN8vaCgACEhIeKzNt++fRtBQUHIycmBnJwclJSUkJubi7Vr18LExASTJ08W3/fNsdCb45/8/Hy8fv26QobCwkJkZmZKlLu4uBjp6enVnj8sLAwA0L9/fxQVFcHX11eixys7HitLTU0NSkpK4uuqqqrlDvpQVlZGo0aNJHosIpIexsbG2LRpE2bNmgU7OztYW1sLHYmIiIhkgKKiIo4dOwZra2sMGzYMAQEB0NDQwNChQ7FlyxY8f/4cbdu2/aDlm5ubw9zcHK6urgCA1NRUBAQEwN/fH9euXYOnpycKCgrQuXNn/O9//4OdnR1sbW2hrKxcU6tJUur69etITEwUOkadKioqwq+//ori4mIYGRlhzpw5aN26Nf78888PXraCggIGDx5c7m8LVHeCgoJgb28PKysrHD16lM8DSaWvv/4ae/bsgbe3NxwcHISOQ0RERA1YQUEBDhw4gGXLlkFRURG//PILpk2bVuXn4Yjqu5YtW2Lnzp0YN24cbG1tMXLkSKEjEUns5cuXOHbsGA4cOCB0FCIiIiIiImrARCUlJSVChyAiIqLakZKSgtTUVKSkpCAjIwPp6enIyMhAVlYWXr9+LZ6WlZUlvqSlpSErKwv5+fnIyspCQUEBcnJykJubK/TqvFNpIUh2djYUFBTQqlUrNG3aFGpqatDS0oKGhgbU1dWhrq4OTU1NaGpqlrvetGlTNGnSRHwfkj1jxowBABw9elTgJOV5enpi9uzZ6NKlC7y9vdGmTRuhIxER1VulJRalRRmZmZkoKCgQF429evUKAMTjl7IlZK9fv0Z+fj6KioqQkZEBAOLxTmlpGQBkZGSgqKioXPlG6WMUFBSgsLAQRUVFAP478yNVX2khWyl5eXloamqKr5eWg5Sdrq6uDkVFxXL3LR33lS0L0dLSgkgkEpe/lS1909LSgqKiIjQ0NNCoUSMoKyujcePGkJOTq6tVJ5Jpo0ePRkBAAIKCgqCtrS10HCIiIpIRcXFxsLCwgKWlJU6ePIni4mK0bNkSbm5uWLZsWa0+dlZWFm7evInLly/jypUrCAwMhIaGBoYNG4YxY8bAzs6OB703QAUFBVBRUREXnFPNOHPmDAYPHix0jAbn8ePH6N+/Pzp37ozTp09DVVVV6EhEElu1ahW+++47eHl5YcKECULHISIiogbM19cXc+fORVhYGGbNmoXVq1eX+x8okTSbOXMmvL29cefOHXTo0KHWH8/R0RGamprw8vKq9cci2bdgwQIcPnwY4eHh/HsuuH8REREREREJhWUeREREUiI3NxcJCQmIjY1FYmIiYmNjkZycLC7sKC3tKPu1srd5TU1NqKmpVSi0UFNTg6amJho3bgw1NTWoqKiID3RUUlKCmppauYMqSw+WLHuW9jcPzizrzQM1y3rbmeXLHoAL/P8z3ufl5SE7O7vcwbhpaWkoKSlBZmYmCgsLkZGRgdevXyMrKwsZGRmVFpm8fv260qISZWVlcbFHkyZNyn2vo6ODFi1aoHnz5mjZsiWaN2+O5s2b82BQKVBfyzwA4OHDhxg7diwSExOxb98+ODo6Ch2JiOi9lb4/l5aGvX79GpmZmeLSsNL359IijVevXonLNEoLN0qLMzIzM8XFHKUlG9VR3ZKH0vFOZeURCgoK0NDQEC+ztGiiVOkYqbLHBN5dXFFW6WNKojS7JErHUJIoW3Typjefk9LntFTp2K3UmyVxb+YpHceVfcz09HQUFxeXm7d03Pe20pbqKH1OSl8bGhoaUFRUhJaWlvj5LH1utLW1xc9p6fhZXV29XGmcmpoaGjduLC4bIWookpKS0LVrV/Tv3x/e3t5CxyEiIiIZ8s8//8Da2hrffPMNli9fDjc3N1y+fBmhoaF1miM5ORknTpyAp6cn/P390bhxY4wePRqzZs2Cubl5nWYh4eTl5UFFRQWLfzmAT2wGCh1H6hXk52NcVyOcOnWKfw+vY2FhYejfvz+MjY1x4cKFKv+3R1SfbdmyBXPnzsXOnTsxc+ZMoeMQERFRAxUcHIxFixbh/PnzcHJywsaNG3kCH5I5eXl56N27NwoKChAQEFDrZZAsG6CakpmZidatW2Pp0qVYtGiR0HHqBe5fREREREREwlAQOgAREVFDV1xcjLi4OLx48QKRkZF4+fIl4uLiyhV3xMXFlSu0AIAmTZqgefPm4qIJHR0dmJiYiAsnmjZtCh0dHfH3pQcV1kdycnJvPXtzkyZNavXxCwsLkZ6eXmUpSun3L1++RGBgIJKSkpCYmIicnBzxMuTl5cWlHqUFH3p6etDV1YWRkREMDAxgaGjIs1RTlbp06YI7d+7A3d0dw4cPx8yZM7F58+ZyB4UTEdW24uJivHr1CmlpaeW+ln6fmZkpLtx483p6erq4OKuyoqxSpQUIampq5YoTSosxmjdvDiUlJWhpaUFRUREaGhpQVVWFiopKpfOXFmyUFnawROHtlJWVJS4AAYDmzZvXQpraVVoqU1r0kZ+fj9evX7+zMKawsLDc/AkJCRXmLy2kef36dZWPr6qqWq4wr+zrXktLq8J1bW1taGtri78v/crCOJIGzZo1g6enJxwcHGBlZYWvvvpK6EhEREQkI3r16oXNmzfjyy+/hJmZGcaNG4ft27cjKCgIXbt2rbMcOjo6mDFjBmbMmIHo6Gh4enriwIED8PDwgKWlJaZMmYLx48eLiyOJiOqr58+fw9raGkZGRjh//jyLPEgqHT16FPPmzcO6detY5EFERESCiIyMxIoVK+Dl5QUzMzNcvXoV/fv3FzoWUa1QVlbGkSNHYGFhAXd3d3h4eAgdiaha9uzZg+LiYsyYMUPoKERERERERNTAscyDiIiolhUXFyMqKgrPnj1DVFQUIiMj8eLFC/H3L1++FJ+9XFFREXp6euIyiE6dOsHa2hq6urrQ09MrVxTxPgdhUuUUFBTQtGlTNG3aVKL7ZWRkiAtXYmNjkZCQgPj4eHEZy/379xEfH4/ExETxfTQ0NGBoaFiu4MPAwABGRkZo3769xBlItqipqWHv3r0YPHgwpk+fjmvXruG3335D9+7dhY5GRFImOTkZKSkpSE5OrrSco6qvGRkZlS6vtFhAQ0MD6urqUFdXR+PGjaGvry++rqmpCU1NTfH10oKC0vIOdXV1llpRnZKXlxe/5mqzHO7Vq1fIysoSX9LT08VFN1lZWcjIyBAX3WRlZSEzMxMvXrwQF4JkZmaK98HKaGpqVlryUdVXHR0d6OjocFxJdW7AgAFYvXo1Fi5cCHNzc/Tr10/oSERERCQj5syZg3///RcTJkxAQEAAjI2NcfDgQWzevFmQPK1bt8ayZcuwdOlSXL9+Hfv378eCBQswf/58jBs3DrNnz4alpaUg2YiI3iY2NhZ2dnbQ09PD+fPnoaGhIXQkIoldv34dLi4umDlzJs+sTERERHUuNTUVGzZswJYtW9CiRQvs3LkT06ZN48kmSOa1bdsWBw8exIgRI2BmZobPP/9c6EhEb1VUVITt27dj6tSpLGAmIiIiIiIiwYlKSkpKhA5BREQkC169eoXw8HCEh4cjJCQEoaGhCA8Px+PHj8Vn7FZWVkbLli1hbGwMPT096Ovrw9jYWHwxMDCAggK7tmRNXl4eYmJiEB4ejtjYWMTFxYlfK+Hh4YiKikJhYSGA/w6WLvua6NSpE0xNTWFiYsIPVdaAMWPGAPjvjF31XUJCAqZMmYJLly5h2bJl+Oabb/jPf6IGKicnB69evSp3iYuLQ2xsbKXTkpOTxUVhZamoqEBbW1viS/PmzTk+Iaojle3v1b3k5uZWWJ6Kigr09fWhp6dXbr+ubFrpdKIPUVJSgrFjx+LGjRu4e/cuWrVqJXQkIiIikhG5ubno168fsrKyMHr0aGzfvh0vX76EioqK0NEAAOnp6fj999+xc+dOPHz4EBYWFpg9ezbGjx8PVVVVoeNRDcnLy4OKigoW/3IAn9gMFDqO1CvIz8e4rkY4deoUHB0dhY4j89LS0mBtbY3Xr1/j5s2baNGihdCRiCQWEhKCvn374tNPP8Xx48f5fzMiIiKqM69fv8b27duxbt06KCgoYMGCBfjqq694Mi5qcL777jusXr0aPj4++N///lcrj+Ho6AhNTU14eXnVyvKpYTh8+DCcnZ3x5MkTtG3bVug49Qb3LyIiIiIiImGwzIOIiEhCr169QlBQEIKCgvDw4UMEBgbi8ePH4jPZq6uro3379uKLiYkJTExM0K5dO+jo6AicnuqjoqIiREdH4+nTp3j69CnCwsLEl8jISHHRR8uWLWFqaopu3bqhS5cu6NKlCzp16gQlJSWB10B6SFOZB/DfwZBbt27F4sWL0atXL3h6evKASCIZkZ+fj8TERLx8+RKJiYmIjY1FfHw84uLiEBcXh/j4eMTHxyM5ORk5OTnl7qukpAQdHR3xpXnz5tDR0UHTpk0rTNPR0YG2tjYPHCJqALKzs/Hq1SukpKQgKSkJSUlJSE5OFl9SUlKQkJCAlJQU8bT8/Pxyy1BVVYWOjg709PTQokUL6OnpQU9PD7q6utDX10eLFi3QsmVLNG/enGNQqlJWVhasrKygqamJa9eu8YOsREREVGOio6NhZmaGIUOGwNvbG4cOHcL48eOFjlXBvXv34OHhAS8vLygpKWHs2LFwc3ND586dhY5GH4hlHjWLZR51Jzs7G3Z2doiMjISfnx8MDQ2FjkQksZiYGPTq1QtGRkbw8fGpN4VeREREJNtyc3OxZ88e/PDDD8jOzsaCBQswd+5cqKurCx2NSBAlJSWYMGECLl68iNu3b9dKSQLLBqgm9OjRAwYGBlLzOdG6wv2LiIiIiIhIGCzzICIieotnz57h7t27CAwMxMOHDxEUFITo6GgAQNOmTcWlCqampuLyjpYtWwqcmmRJfn4+IiIiEBYWhidPniA4OBgPHz5ESEgI8vLyoKioiI4dO6JLly7o2rUrzMzMYGlpiSZNmggdvV6StjKPUsHBwZgwYQKioqLwyy+/YOLEiUJHIqIqFBYWIi4uDlFRUYiOjkZCQoK4qCM+Ph6xsbFISEhAUlJSuftpa2tXOGBeT0+vXGlHaUmHhoaGQGtHRLImIyNDXPxRtuQjNjYWiYmJiImJEf8cS0tLK3ffZs2aoUWLFtDX14eurq64+KNFixZo3bo1DAwMoK+vzzOkNlBhYWH45JNPMGHCBOzYsUPoOERERCRDTpw4gVGjRsHKygoqKiq4evWq0JGq9OrVK3h6emLLli2IiIhA79694e7ujuHDh0NRUVHoePQeWOZRs1jmUTfy8/Ph6OiIe/fu4caNG+jYsaPQkYgklp6ejk8//RSFhYXw8/ODtra20JGIiIhIxuXl5WHv3r1Yt24dUlJSMGvWLCxdupQn8iLCf4WRffr0QV5eXq2Mz1k2QB/qxo0b6NevH/z9/dGjRw+h49Qr3L+IiIiIiIiEwTIPIiKi/5OZmYnAwED8/fff8PPzw+3bt5GYmAgFBQUYGBigU6dO6N69O7p37w5TU1O0adMGIpFI6NjUQBUWFiIqKgohISG4d+8eQkNDERISgkePHqGkpAR6enro06cPevfuje7du8PS0pJnxIb0lnkA/53tY/Hixdi2bRtGjRoFDw8PaGlpCR2LqMHJyclBXFwcwsPDER4ejtjY2HLXo6KiUFhYKJ6/tKRDX18fenp60NbWFn9f+rV169bQ1NQUcK2IiN4tLy8PKSkpiIuLE//si42NxatXr8pNq+znoLGxMYyNjcU/+968TrKp9EDbPXv2YNq0aULHISIiIhkyZcoUnDx5Eunp6Xjw4AHMzMyEjvRWxcXFuHLlCjw8PHDy5Ek0a9YMLi4u+Pzzz2FgYCB0PJIAyzxqFss8al9xcTHGjh2LS5cu4erVqzA3Nxc6EpHE8vPzMWjQIDx69Aj+/v587yQiIqJaVVBQAG9vb6xatQovX77E5MmT8e233/LkXkRviI2NRc+ePWFkZISLFy/W6OcSWTZAH8rR0REpKSnw8/MTOkq9w/2LiIiIiIhIGCzzICKiBismJga+vr64evUqbt26hSdPnqCkpARt2rRBjx49YGVlBSsrK5ibm7MEgaRGcnIybt26Ve6Snp4OVVVVfPzxx+jVqxdsbGzQt29fNGrUSOi4dU6ayzxK+fj4YMqUKVBWVoaXlxf69OkjdCQimZKTk4Nnz56JL8+fP0dUVBSioqIQGRmJrKws8bxNmzZF69at0bp1axgZGYm/b926NQwNDaGnpwd5eXkB14aIqO4VFRUhLi4OkZGRiIqKQnR0NKKjoxEZGSn+PiUlRTy/hoYGDAwMxJd27dqVu6ioqAi4NvShvv32W6xbtw5nzpyBnZ2d0HGIiIhIRrx+/Roff/wx4uLiMGLECBw6dEjoSNUWExODPXv2YOfOnUhJSYGDgwPc3d1hY2PD8nApwDKPmsUyj9rn5uaGvXv3wsfHB59++qnQcYgkVlxcjHHjxsHHxwc3btxAt27dhI5EREREMqq0xOO7775DdHQ0SzyIqiE0NBR9+vTBgAED4O3tDTk5uRpZLssG6EM8ffoUHTt2xB9//IERI0YIHafe4f5FREREREQkDJZ5EBFRg5GWloZr167h8uXL8PX1xePHj6GiooKePXuiV69e4vKO5s2bCx2VqMYUFxfjyZMn4mKPGzduIDQ0FEpKSujZsydsbW1hY2MDS0tLKCgoCB231slCmQcAJCYmYurUqfDx8cH8+fOxevVqKCoqCh2LSGpkZ2eXK+woe3n58iVKSkogEonQqlUrtGvXDgYGBjA0NBQXdZReb4ilSERENSE7OxsvXrwQl3uUln1ERkbi+fPnlf4sLr20b99e/L2qqqrQq0LvUFJSgilTpuDEiRO4ceMGzMzMhI5EREREMuLu3bvo0aMHAODFixdo1aqVwIkkk5+fjz///BMeHh7w9fVF+/btMW3aNLi6uqJp06ZCx6MqsMyjZrHMo3atW7cOy5Ytw5EjRzBq1Cih4xC9l7lz52LHjh04d+4cbGxshI5DREREMig3Nxf79+/Hxo0bERsbC1dXVyxZskTq/s5AJJQrV67AwcEBbm5u+PHHH2tkmSwboA8xe/Zs+Pj44OnTpzwBUyW4fxEREREREQmDZR5ERCTTwsLCcOLECZw6dQp3795FSUkJzM3NYWNjA1tbW/Tp04cHgCNFCVoAACAASURBVFGDExcXB19fX3GxTUxMDDQ1NWFjY4ORI0di6NChaNy4sdAxa4WslHkA/x0YuWfPHsydOxddunTBb7/9hrZt2wodi6heSU9PR0hICB4+fIiHDx8iNDQUYWFhiImJAQDxQeJlDwwve7C4ioqKwGtARNQw5eTkVChbevr0abnSJQDin+Gmpqbo0qULOnfujM6dO0NTU1PgNaCyCgoKMHjwYISEhMDf3x8GBgZCRyIiIiIZ8e233+L777+Hq6srPDw8hI7z3h4/foyDBw/Cw8MDOTk5GD16NBYuXIguXboIHY3ewDKPmsUyj9rj7e2NiRMn4qeffoK7u7vQcYjey4YNG7BkyRIcPnwYo0ePFjoOERERyZiMjAzs2rULP/30E9LS0jB16lQsXryY/8Mgeg/e3t5wdnbGqlWrsHz58g9eHssG6H2lpqbCwMAA69evx5w5c4SOUy9x/yIiIiIiIhIGyzyIiEjmBAcH4/jx4zh+/DgePnyIZs2awdHREQMHDoS1tTXPakf0hsePH8PX1xdnz57FlStXAAC2trYYOXIkhg8fLlP7jCyVeZQKDQ3FxIkTER4ejo0bN2LGjBlCRyKqc/n5+Xj06BGCg4Px8OFDBAcHIzg4GJGRkQAADQ0N8YHeJiYm5Uo7WNhBRCRdcnNzyxV8PH36FEFBQQgNDUVmZiYAwMjISFzsUVry0bFjRygpKQmcvuHKyMhA3759UVRUBD8/P2hpaQkdiYiIiGRAYWEhDA0NkZCQgNjYWDRv3lzoSB8kIyMDnp6e2LZtG54+fQobGxu4ublhyJAhkJOTEzoegWUeNY1lHrXj6tWrcHBwwFdffYV169YJHYfovRw+fBgTJ07Epk2b8NVXXwkdh4iIiGRIcnIytm/fjm3btiE/P19c4qGvry90NCKpduDAAUybNg0bN27E/PnzP2hZLBug97V69Wr89NNPiIqKgrq6utBx6iXuX0RERERERMJgmQcREcmEpKQk7N+/HwcOHMCTJ0/QsmVLjBgxAiNHjsSnn34KeXl5oSMSSYW0tDScPn0ax48fx8WLF1FQUAAbGxtMnz4dw4YNg6KiotARP4gslnkA/x3UunLlSmzcuBFOTk7YvXs3tLW1hY5FVCuKiooQHBwMf39/+Pv74969ewgLC0NBQQEUFRXRsWNHmJqaomvXruIDuY2MjCASiYSOTkREtaikpAQvXrzAw4cPERISgqCgIAQHB+PJkyfi9wgTExNYWFigZ8+e6NmzJ0xNTfm7Yh2KiYlBjx490K5dO/j4+LBchYiIiGrEjRs30K9fPwwdOhR//fWX0HFqRElJCS5fvgwPDw+cOHEChoaGmDFjBqZPn44mTZoIHa9BY5lHzWKZR837999/xT8Tvby8+DdRkkrXrl2Dvb09vvzyS2zYsEHoOERERCQjoqOjsWnTJuzduxeqqqpwd3fHF198wfJxohq0ceNGLF68GPv27cOUKVPeezksG6D3kZeXByMjI0ydOhVr1qwROk69xf2LiIiIiIhIGCzzICIiqXbz5k3s2rULx48fR6NGjeDi4oKxY8fCysqKZ6oj+kBZWVk4d+4cvLy8cP78ebRo0QKurq6YPn06WrVqJXS89yKrZR6lLly4gClTpkBZWRleXl7o27ev0JGIPlhSUhICAgIQEBCAf/75B3fv3kVWVhY0NDRgaWmJTz75RFzc0bFjR6kvHSIiopqVn5+Px48fiws+bt26hTt37iArKwvq6uqwtLREr169YGVlhR49eqBZs2ZCR5ZpDx48QL9+/TBs2DB4enry93YiIiKqEb169UJAQAAePXqEDh06CB2nRj179gx79+6Fh4cHcnJyMHr0aCxatAidO3cWOlqDxDKPmsUyj5oVGxsLKysrmJiY4Pz58yxQJKn08OFD9OnTB0OGDMGvv/7KQhoiIiL6YIGBgdixYwc8PT3RuHFjzJ07F1988QXU1NSEjkYkk7799lusWbMGu3btwvTp099rGSwboPexb98+zJ49G+Hh4VL72da6wP2LiIiIiIhIGCzzICIiqVNcXIzDhw9j7dq1CA4OhqWlJWbPno1x48ZBVVVV6HhEMikyMhIeHh7Yt28fkpOTMWzYMCxduhQWFhZCR5OIrJd5AEBiYiKmTZuG8+fPY/78+fjuu++grKwsdCyiaouLi8OlS5fg6+sLf39/PHv2DCKRCB06dECPHj3Qo0cP9OzZE6amppCXlxc6LhERSaGioiIEBwfD399fXBgVFhaGkpIStGvXDr169YKtrS1sbW2hp6cndFyZ4+vri6FDh8LZ2RkeHh48MIeIiIg+WFxcHFq1aoXOnTsjMDBQ6Di1IjMzE97e3tiyZQtCQ0PRu3dvuLu7Y+TIkfz7SB1imUfNYplHzcnJyYG1tTXS0tLg7+8PbW1toSMRSSw+Ph49evRAmzZt4OPjw0IaIiIiem8lJSXw8fHBpk2b4Ovriy5dumDevHmYMGECxxhEdWD9+vVYsmQJNm/ejK+++kri+7NsgCRVUlICMzMzfPzxxzhw4IDQceo17l9ERERERETC4KkPiYhIqvj4+KB79+5wcXHBxx9/jDt37uD27duYMmUKizxkzIABA4SOQGUYGhpizZo1iIqKwq+//oqYmBhYWlpi6NChCAkJEToeldG8eXOcPn0a+/fvx86dO9G9e3fcv39f6FhEVSoqKsL169cxf/58dO7cGfr6+pgxYwaio6MxYcIEnD17FsnJyXj06BEOHDiAmTNnomvXrjxQRWB8n6aGThb3AVlcp6rIy8ujW7dumDVrFg4ePIjHjx8jOTkZZ8+exfjx4xEVFQVXV1fo6+ujS5cuWLBgAW7cuIGioiKho8sEW1tbnDp1Cl5eXvjyyy+FjkNEREQyQE9PD5999hmCgoJw+PBhoePUCg0NDcyYMQMPHz7EpUuXoK2tjbFjx8LExATr169Hamqq0BGJSCAlJSWYOnUqnj59itOnT7PIg6RSbm4uRowYAXl5eRw7dowH2RIREdF7yc/Ph6enJ7p27QoHBwfk5OTgr7/+QmBgICZPnswxBlEdWbx4MTZs2IB58+Zh9erVQsehBuDChQsICgp6r/IYIiIiIiIiorrAMg8iIpIKDx8+hI2NDezt7WFgYIDAwEAcOnQIFhYWQkcr521nFK6vZxsWiUQflC0mJgbOzs7Q19eHvLz8By+vVElJyQcvQ9rU1rasSUpKShg3bhxu3bqFc+fOIS4uDmZmZvjyyy+RmZkpdDwqw8XFBUFBQWjWrBmsrKzw9ddfo6CgQOhYRAD+K/C4cOECpk6dCl1dXfTv3x8XLlyAvb09zp8/j5SUFFy9ehWrVq3CoEGD0KRJE6Ejv5f6PC740PeYhvg+LSmhn+OGrrbHUdK6D7xtm0jrOtWUJk2aYNCgQfjuu+9w9epVpKam4ty5c7Czs8PZs2fRr18/6OnpYdq0afDx8WGxxwcaOHAgvL29sWvXLsydO1foOERERCQDPDw80KhRI8yePRuFhYVCx6k1cnJysLW1xenTpxEWFobRo0dj3bp1MDQ0xMyZMxEcHCx0RPoAqQnx2LLwC7j2NceoTq3g1FEfTh31hY5F9dyyZctw/Phx/PHHH2jfvr3QcYgkVlJSgmnTpiEsLAznz5+Hjo6O0JGIiIhIyiQnJ+OHH36AoaEhpk+fju7duyMwMBB+fn4YOnQo/29LJIAFCxZgx44dWLlyJb7++muh45CM27x5M+zs7NCtWzehoxARERERERFVimUeRERUr5WUlGDDhg2wtLREdnY2/Pz88Oeff8LU1FToaDLjQw/amzRpEtq3b4/g4GBkZ2fj+PHjNZLL19e3RpYjTWprW9YWBwcH3L59G7t27YK3tzfMzMzg7+8vdCwqw8jICFeuXMEvv/yCbdu2oW/fvnjy5InQsagBe/bsGb7++msYGBjAwcEBjx49woIFC/DkyROEhITgxx9/hL29PdTU1ISOKvM+9P2/Ib5Pk3Sp7WIKWdwHZHGdPoSamhocHBywadMmPHr0CI8fP8b8+fMRHBwMe3t7GBoaYsmSJXj+/LnQUaXWiBEj4O3tjW3btmHlypVCxyEiIiIpp6SkhB9++AFpaWlYtWqV0HHqRLt27bBu3TpERUVh06ZNuHnzJrp06YI+ffrg2LFjLKCTQlu//hJ6hm3w85mr8P43HAu37RU6EtVznp6eWLt2LbZv3w5ra2uh4xC9lxUrVuDYsWM4evQoTExMhI5DREREUuT+/fuYOnUqWrdujR9//BGTJ09GREQEDh48iK5duwodj6jBmzVrFnbv3o2NGzdi0aJFQschGRUUFITLly/zBBJERERERERUr4lKGvppN4mIqN7Kzc3F5MmTcfLkSXz33XdYsGAB5OXlhY71ViKRqMoDB992m9A+JJuKigrS09OhrKxcw6kaHmnelvHx8XB1dcWlS5ewZ88euLi4CB2pUmPGjAEAHD16VOAkdS80NBQuLi4IDQ3FihUrsHDhQsjJsduP6sa9e/ewfv16nDhxAi1btoSLiwtcXFxk/kyR9X1cUB8yyDJuX+HxOaiI26RmhIWF4dChQ/D09ERcXBycnJywePFifPzxx0JHk0r79u3D9OnTsXbtWixevFjoOERERCTFSkpKoKuri7S0NCQnJ0NDQ0PoSHWquLgYV65cwZYtW3D27Fm0adMGM2bMwPTp09GkSROh48mEvLw8qKioYPEvB/CJzcAaX/64rkbwuhsGRSWlGl92fVSQn49xXY1w6tQpODo6Ch1H6vj7+8Pa2hpz587F2rVrhY5D9F6OHj2KcePGYceOHZg1a5bQcYiIiEgKFBUV4dy5c9i6dSt8fX3RoUMHzJ49G66urjxpCFE9dfjwYXz22WdwdXXFL7/88s7Pqzk6OkJTUxNeXl51lJCk2bRp0xAQEIDg4GCIRCKh49R73L+IiIiIiIiEwaP3iIioXioqKsL48eNx8eJFXLhwAYsXLxakyEMkElX6B97KppdeL71NJBLB1dX1nbcBQHBwMAYPHgwNDQ1oaGjA3t4ewcHBlT7m8+fPMXLkSGhra1eZryohISEYNGgQ1NXV0bhxY4wYMQJRUVGVzlvdTKUfXi27blVtH5FIhOjoaDg6OkJDQwMtWrSAs7MzUlJSKp33TYGBgbCzs4Oamho0NTXh4OAAHx+fcvP89ddf6N27N1RUVGBkZIS5c+ciMzOz0vUbNGiQeP0GDRpUYf3eJT09HXPnzoWxsTFUVFSgp6eHyZMn4/bt27W6Lau7LeqSrq4uTp8+jSVLlmDy5MnYu5dnDKxvOnXqhICAAKxYsQLffPMNBg4ciOjoaKFjkYyLi4uDi4sLLC0tERYWhv379+P58+dYvXq1VBZ5yNq4oDKSPLYkqpO3Ou/NkjwHQPXGBZKMUSTZRmWX/eZz/C5lx2yampoYOHAgQkNDK6ynpNtDkuf30aNH6NGjBxo1aoS+ffvi2bNnCAkJgZWVFdTV1WFtbV3lOLIqpcsODQ2Fvb09NDU1oa6ujsGDB+PRo0eV5q3OeK2mx7jVXY/KplX3dVSdsZwkz1d1x9hl7/Pmz6XKXlsikQjXrl0D8N+HrCobn0qyn9X0zyyhmJiYYM2aNYiMjMTJkycRGRkJCwsLjBkzhuOr9zBt2jRs27YNS5YswerVq4WOQ0RERFJMJBJh3759yM/Px8yZM4WOU+fk5ORga2uL06dP48mTJxgyZAi+//57GBoaYubMmQgJCRE6YoN158pFLB0/DOO6GmHW/z7BgbUrkPM6q9w8Th31xeUWTh31K1zenNepoz7io15gg9s0uHzSsdx8pd+/fP4UX48dgvFmxlg+cTjio14g+tkTfD1mMCaYt8O3LqOQHBfz3nnfloFqV3x8PEaPHo3+/fvj+++/FzoO0Xvx9/eHi4sL5s2bxyIPIiIieqeEhASsX78ebdq0wfDhw6GiooJLly7h0aNHcHd3Z5EHUT02btw4eHt7Y9++fXB2dkZubq7QkUhGJCUl4ffff4e7u7vUfvaAiIiIiIiIGgaWeRARUb20YMEC+Pr6wsfHB9bW1oLlqOqs1ZVNL51WUlIivpQWGrzttmfPnmHAgAEYOnQowsPD8eLFCzg7O8PR0REvX76ssPzZs2djwYIFiI2Nxblz56q9Ls+fP4eDgwNGjRqFiIgIPH/+HE5OThg3blyFeSXNVHa9Si9VbR9XV1fMnj0bcXFxuHv3LrKzs7FgwYJK5y0rLCwMY8eOxaJFi5CUlISAgAC8fv0a9vb25eZzdHTEpEmTkJqaioCAAKSmpsLNza3C+pVui/DwcPFBhfb29nj27Fk1tygwadIkaGlpwd/fH+np6Th37hyePXsGKyurWt2W1d0WdU0kEmHlypX49ttvMXv2bPj5+QmahypSUFDA4sWL4efnh5cvX6JLly7w8PAQOhbJqHPnzuGjjz6Cn58fjh8/jn///RcuLi5QUFAQOtp7k6VxQWUkfWxJvCtvdd+bJXkOgOqNCyQZo3zI+3p1i67eHLNFRERgypQp4jFb2XWVZHtImn3lypU4cOAA4uLi0K1bNzg7O2PFihU4ePAgYmJi8NFHH2H+/PnVWqc3lz127FhMnjwZERERCA8Px4gRI2Bvb48XL16Uy1ud10RtjHGrux6VTavO66g6YzlJny9Jxthv+7lUqrCwEG3btkVqair69+8P4L8PWcXGxkJbWxtZWf//IC5J9rOa/JlVH8jJyWHo0KEICAjAH3/8gdu3b6Nr1664cOGC0NGkzpw5c7B7926sXLkSX3755Xu91xAREREBwJAhQ2BmZobDhw8jPDxc6DiCad++PbZs2YLo6GisWrUKvr6+6NKlCxwcHHDx4kWOt+rYus8nw3rEGBy6/Qjrjp5BVnoa9q5eXm6e449jxV/fvLypdJrHyq/hOHU29t74F8s8fq1w+5Htm/DFDz9h381/YdTRFD8v/AKHt/6IL9b+jL037qNV2/Y4uG7VB+WtKgPVnoKCAowePRrq6uo4cuSIICdDIPpQMTExcHJywoABA7Bhwwah4xAREVE9duPGDUyYMAEGBgbYuHEjJkyYgIiICJw+fRq2trY8eJtISowaNQrnz5/H+fPnYW1tjcTERKEjkQzYvXs3VFVVMXHiRKGjEBEREREREb2VqISf1CEionrm/v37sLS0xMGDB/HZZ58JHQcikajSD7ZWNr2qed92m7OzM7p27YpFixaVm75//34EBgZiy5Yt5ZZx9epV8QF1kvjss89gYWEBd3f3ctMPHjyIKVOmlMsmaSZJts+pU6fg6OgonvbkyRP873//Q0xMzFvvP2HCBDg4OJR7TTx58gQdO3Z86wePX716hXbt2pU7M7mzszMsLS0rbIvNmzfjwYMH8PLyqnJ5ZWloaCAyMhJNmjQRT4uIiICxsbE4U21sy/fdFnVpyJAhCA8PR3BwMOTk6k9/3JgxYwAAR48eFTiJ8HJzc7Fy5Ups3LgRI0aMwK5du6CjoyN0LJIRv/32GyZNmoRJkyZh+/btUFVVFTpSjZGVcUFlGWriPetdj1dVXknemyV5Dt5U2big9L7VGaPU9jYCqh6zHT58GOPHj6/26+xDn99r166hX79+AIDY2Fi0bNmy3LSXL1+ie/fuSEhIkGj9RCIRDh8+jLFjx5abvnnzZgQFBeHgwYPivNV5TdTWGLc66/G+Y93qjOUkfb7ed4z9ttuWLl2Kli1bYs6cOeJp69atQ2RkJHbu3FnltnnbfvYhP7OkQU5ODj7//HN4eXnh119/rbRUht7u8OHDcHFxwdSpU7Fjx4569bsEERERSY/IyEgYGxvj448/xp07d4SOUy8UFxfjzJkz+Pnnn3H16lWYmprC3d0dzs7OMvV3m9qWl5cHFRUVLP7lAD6xGfjey8nKSMecAT1x6FZouelOHfUrLe+obLpTR3185/kHTD/pVeljOHXUx3dex2Fq2RMAkJqYgOmfmpeblhIfh4VOA7H/76D3zvu2DO9SkJ+PcV2NKvxOS283ffp0HDlyBAEBAejUqZPQcYgklpubi379+iE9PR23bt1C48aNhY5ERERE9UxaWhq8vLywa9cuhIaGwsLCArNnz8b48eP5OyyRlHv69CkGDx6MoqIinDlzBh999FGFeRwdHaGpqVntz3BSw1RQUABjY2NMnDgR69atEzqO1OD+RUREREREJAyWeRARUb3j6uqKe/fu4cGDB0JHAVD7B+3q6uri1q1bMDQ0LDc9ISEB1tbWCA39/x+OFIlEeP36NRo1aiTxelT1OPHx8dDT0yuXTdJMkmyf1NRUaGtri6fl5eVBVVUVxcXFb72/rq4u7t+/D319fQnWuuplVbZ+ERER6NWrF+Li4qq1XDs7O2RnZ2P58uWwtbWFgoJChXlqY1t+yLaoK0+ePMFHH30EHx8fDBgwQOg4YizzqMjPzw+TJ09GZmYmPDw8+KFp+mDh4eHo1q0bZsyYgU2bNgkdp8bJyrigsgw18Z71rserKq8k780fUuZR1XzVHaPU9jZ622OkpKRAR0fnvcs8JM2ekZEBDQ0NAP8d9CUvL19hmoKCQoUx3LuIRCIkJyejadOm5aZHRESgd+/eiI2NfWveN18TtTXGrc56fMjr6F1jOUmfr/cdY7/ttqdPn2L8+PG4e/eueJqJiQmOHDkCc3PzKrNX9Tgf+jNLmsybNw979+5FYGAg2rRpI3QcqXPmzBmMHj0aI0aMwKFDh6CoqCh0JCIiIpJC48ePx5EjRxAVFYVWrVoJHadeCQwMxI4dO+Dl5QUlJSVMmjQJCxYsQOvWrYWOVu/VVJkHUHVBhyRlHr//+xzKKpUfyObUUR+/3guDqpo6AKCkuBijOrWqMG20aWv88Sim0mV8aIZ3YZmH5LZv3w53d3f8+eefGDJkiNBxiN6Lq6srjh49ykIaIiIiquDevXvw8PDAb7/9hqKiIgwdOhTu7u7o3bu30NGIqAalpKRgxIgRCA4OxvHjx2FtbV3udpYNUHX8/vvvcHFxwbNnz2BkZCR0HKnB/YuIiIiIiEgYPLUhERHVO35+fhgxYoTQMepMSkoKjIyMIBKJyl10dXXx4sWLCvO/78FvycnJ0NXVrTC9smmSZpJE2YMMAUBZWblaB7omJydDR0fnrfMkJSXB1dUVrVq1goKCgjh3ZcuqbL319PSQnJz8ziyljh07hk8++QRz5sxBkyZN0K9fP2zZsgUFBQXieWpjW1ZnWwitQ4cO6NSpE27evCl0FHqHPn364P79+xg+fDiGDx+OMWPG4NWrV0LHIil25MgRNG3alGc9eE91NS6oicd+H1Xlran35rKqOy4oVZ0xSl1so6q2xZvlF5KSNHtpaQcAyMnJVTrtffthK1sXPT09JCUlia9X9zVRX8a4parzOqrOWE7SrO87xn6b9u3bQ1VVFYGBgQCAGzduQFNTs1yRh6T7WUMo8gCA9evXQ1tbG0eOHBE6ilQaMmQIzp8/jzNnzsDJyQm5ublCRyIiIiIpdPDgQdy6dYtFHpXo1q0bdu/ejRcvXmDJkiU4fvw42rVrhzFjxiAgIEDoeDInIzUFO5bPx/R+H2O0aWs4ddSHU8eaKep+V4lGaWkHAIj+73f7N6e9+bujpHnft8iDJHfz5k3MmzcPK1euZJEHSa2ff/4ZBw4cwO+//84iDyIiIgIAZGZmYs+ePbCwsICFhQX++ecfrF+/HvHx8Th69CiLPIhkUNOmTXHp0iUMGjQIdnZ22LVrl9CRSApt3boVI0eOZJEHERERERERSQWWeRARUb2Tmppar4oKRCIR8vLyyk1LTU2tseXr6OggNTUVJSUlFS7Z2dk1+jjx8fEVple2LnWVSRJNmzZ958G8n332GdTU1ODn54fc3Fxx5jfp6OiIz+ZeVlxcnESvvcaNG2Pz5s14/vw5wsPD8fnnn+Pw4cMYP358uceq6W1ZnW1RH+jo6CAlJUXoGFQNmpqa2L17N86ePQs/Pz+Ym5vj6tWrQsciKRUREYH27dtDUVFR6Ci1QlbGBfXxsav73lzd56C64wJJc9b2NqpqzFbZNKD626M+je8SEhIqTIuLi0OzZs3E16v7mpDGMW51xnL1JeuUKVOwf/9+AMC+ffswY8aMcrfXxn4mCxQVFWFiYoKIiAiho0it/v374/z587hx4waGDh2K9PR0oSMRERGRlFFWVoalpaXQMeq15s2bY/HixQgPD8eePXvw5MkT9OzZExYWFvD09ERhYaHQEWXClkVuUFFthDW//4nDQRE4/jgWxx/HCh2rSkLkXbhwIZo0aYIWLVqgbdu2aN++vfhAPhsbGwwYMAAjRozAmDFjMGnSJMycORPz58/HqlWrsHnzZuzduxfHjh3DxYsXERAQgJCQEERHRyMtLa1Wc9elxMREjBs3DoMGDcLy5cuFjkP0Xi5fvoyFCxdizZo1LKQhIiIi3Lt3DzNnzoS+vj7c3NxgbGyMS5cuISgoCHPmzEHjxo2FjkhEtUhZWRleXl5YtGgRPv/8cyxbtoz/Z6ZqCwgIwK1bt+Du7i50FCIiIiIiIqJqYZkHERHVO0ZGRnj06JHQMcR0dXURFRVVbtqNGzcqnfdtZ6Gu6raBAwfi2rVrFabfvHkT3bt3r37Qd7Czs8OpU6cqTPf19RUskyT69+9fIWtgYGC5szb9888/WLVqFYyMjKCgoAAAyMnJqbAsW1tbnDhxosL0kydPwtbWttqZRCIRXr58CeC/Ay7Hjh2Ls2fP4uLFi+J5amNbVmdbCK2oqAhPnjxBmzZthI5CEhg0aBACAwPx8ccfw8bGBjNnzhSswIekl5WVFQICAiq8d8oKWRkX1LfHluS9ubrPQXXHBZKQZBu97fl/m6rGbD4+PpXOX93tUZ/Gd5Wty8mTJ2FnZye+Xt3XhDSOcaszlqutrJK+LseMGYM///wTSUlJuHDhQrnSOqB29jNZqoT1wwAAIABJREFUEBkZCX9/f1hZWQkdRar17t0bV69eRWhoKPr27Yvo6GihIxEREZGUuXLlCv7++2+hY9R7SkpKcHFxQWBgIG7evAljY2NMnToVJiYmWL9+PV69eiV0RKn25MFdjHVbiOYtW0Ne/r/fm/JzcwVOVTUh8jo5OWHdunVYvnw5ZsyYgcmTJ8PW1ha2trZo164djI2NoaKiAgBITk5GeHg4/Pz8cOTIEWzevBnz58/HmDFjMHDgQPTs2ROdO3eGgYEBtLW1IRKJoKWlhdatW8PU1BT9+vXDqFGjMGfOHKxYsQLbtm2Dt7c3rly5gocPHyIuLg4FBQW1ur6SKi4uxmeffQZFRUXs37//vf/mRCSkyMhIjBs3DiNHjsTixYuFjkNEREQCefnyJdavX4927drBwsICfn5+WL58OaKjo3H06FHY2tpyvEvUgIhEIqxZswb79+/Hjz/+iKFDh9boyXRIdm3duhXm5ubo3bu30FGIiIiIiIiIqkVB6ABERERvGj58OH766Sd8//339aJlf8CAAVi6dCl++uknaGlp4e+//8auXbsqnbdly5bw9/eHhYUFrl69CldXV/HBlVXdtnLlSgwbNgxFRUWwtraGkpISrl+/jlmzZmH79u01th4rV65E//79oaGhgaFDh0JeXh6+vr744YcfKp23LjJJYvny5RgxYgT09fXRs2dPPH/+HFOnToWbm5t4nl69emHRokVYunQp9PX1ERUVhdWrV1dY1ooVK2BtbQ1NTU0MGzYMIpEIf/31FzZv3lzpQZNv4+rqik2bNqFdu3ZIS0vDli1byh1gWhvbsjrbQmh//fUXEhISMHz4cKGjkISaNWuGEydO4NChQ3B3d4efnx/279/Pg1Gp2pydnbF161Y4OTnhzJkzaNGihdCRapSsjAsqI+RjS/LeXN3noLrjAklIso3e9vy/6zHKjtnk5ORw8eJFeHh4VDp/dbdHfRrf7d69GwoKChg4cCCKi4vx119/YcuWLbh+/bp4nuq+JqRxjFudsVxtZZX0damurg5ra2s4Oztj2LBh0NDQKHd7bexn0i4hIQFOTk5o3749Jk6cKHQcqWdubo47d+5g8ODBsLKywunTpwUrmCQiIiLps2XLFsTExODOnTs8GKia+vTpgz59+uD58+fYunUrVq9ejTVr1mD8+PGYN28eOnToIHREqdPB3AJeP67GyJlfoklzXSTHxeDYjp+EjlUlIfL26NEDjo6OH7yctLQ0ZGRkIDMzE5mZmcjIyEB6ejrS09ORmZmJ9PR0JCcnIykpCaGhoUhKSkJycjKSk5NRVPT/2LvzsKjKx23gN6souyKiIriBgiwKKi64IagpiBuYfpXKClzzalEplygrlczEJXdNrTQQA9FKAXdZElxQFEVUENlBVhFZzvtHv5lXzcwFeYC5P9c1FzPDmTn3GYaZM2fOc5/qx+5LX18fhoaGMDAwgIGBAVq3bg1jY2OYmJigXbt2MDY2Rrt27dCkSZNXzv1fvvzyS5w4cQJnzpxB8+bNX/v8iGpbRUUFPDw8YGRkxEIaIiIiBfTgwQOEhYVh165d+OOPP6CjowMPDw8EBQWhR48eouMRUT3w9ttvo1u3bvD09ET37t3Rvn176OjoiI5F9VRGRgaCg4OxZcsW0VEapJqaGigr83jQREREREREdU4iIiKqZ/Ly8iRDQ0Np2rRpoqNIkiRJubm50uTJk6WWLVtKmpqakpubm5SWliYBkJ58Kw0MDJQ6dOggqaurS507d5ZCQ0Of63fXr1+Xxo8fL+nq6kqamppSr169pP379z9237L5PW2+z+vy5cvSG2+8IWlqakpaWlrSsGHDpMTExKfe54tm+q/ra2PaqKgoqX///pKGhobUrl07admyZY/9Pjs7W5o6dapkaGgoqaurS1ZWVtKvv/761PtKSEiQRowYIWlqakqamprSiBEjpISEhOd8JP8WEREhjRkzRmrRooWkrq4udejQQfrwww+l4uLix6ar7cfyeR4LkfLy8iQTExNp8uTJoqP8g4eHh+Th4SE6RoORmpoqDRs2TFJRUZHmz58vlZeXi45EDURycrJkZmYmmZqaSpGRkaLj1KrGsl7wb7d9lfes553fv93ued+bn/dv8LzrBS/6Hvw8j5EkPftv/F8eXWfT1taWXF1dpVu3bj31sXuR5+TL/n1fZH3tvwCQbt26Jbm6ukra2tqSpqam9MYbb0hXrlz5x7TP+5yo7XXc51mGV30ePc+63OtYh/y35+Wz/p4nT56UAEixsbH/+N3L/J815s2RERERkomJiWRubi6lpKSIjtOolJSUSG+88YakpaUlhYWFiY5DREREDUR8fLykpKQk/fnnn6KjNFhFRUXS6tWrJVNTU0lZWVlydXWVwsPDRccS5sGDBxIAacH6HVJwUsZznbafSZAGuU+QdFsYSKpqapKJWVfp4+83yj8fyaZ79DPTo7d/2vVPfsZ6cp7/dZtnXfcyeZ+W4XlOexNuSwCkkJAQ0X9aKTc3V7py5Yp08uRJaf/+/dKGDRukL7/8Uvrggw+kyZMnS4MGDZI6deokNWnS5LHlbtWqlWRvby+5u7tLH3zwgeTv7y/98ssv0unTp6XU1FSpsrLylXIdPXpUUlFRkX744YdaWlKiuufj4yNpa2s/dfsfERERNV5xcXHSBx98IDVv3lxSUVGRnJ2dpcDAQOnhw4eioxFRPZWbmyuNGDFCUlZWlnr27Ck6DtVTCxculAwNDbkf40saOXKk9NZbb4mOQUREREREpHCUJEmSQEREVM+EhoZi/Pjx+Pzzz7F48WLRcYjoOZWUlGD48OHIzMzEX3/9hZYtW4qO9BhPT08AQGBgoOAkDUtQUBCmT58OfX19bN++HQMHDhQdiRqAgoICTJs2DaGhofD09MQXX3yBrl27io5F1KApKSmhoW/GaQzLQPSkq1evYsmSJdi3bx/GjBmD7du3Q19fX3SsRqeqqgqzZ8/G1q1bsWbNGsycOVN0JCIiImoARo4cicLCQkRFRYmO0qDV1NTg0KFDWLNmDSIiItCjRw9Mnz4dXl5e0NDQEB2vzlRUVEBDQwML1u9A76HDRcdp8CofPsSbNu0REhICd3d30XGeW1ZWFtLT05Geno60tDTcuXMH6enpuHPnDu7cuYOMjAxUVVUBAFRUVNCmTRuYmZnB3Nxc/tPc3BwdOnSAmpraM+fTo0cPDBw4EL/++mtdLR5Rrfrll18wZcoUBAYGYsKECaLjEBER0WuWmZmJwMBAbN++HQkJCbCwsMBbb72Ft99+G61atRIdj4gaAEmSYGVlhatXr2LSpEnYtGkTtLS0RMeieqKiogKmpqaYPn06/Pz8RMdpkEaOHAkjIyNs375ddBQiIiIiIiKFoio6ABER0dO4u7tj/fr1mDlzJrKysrB69epn7tBGROLdvn0bo0ePRl5eHo4dO1bvijzo5Xl4eMDR0RHTp0/HkCFD8N5772HVqlXQ1NQUHY3qsebNmyMkJASHDh3Cxx9/jG7dusHNzQ0ffvghBg4cCCUlJdERiYiIXpokSThx4gS+//57HDx4EObm5jh06BBGjhwpOlqjpaqqig0bNqB169aYPXs20tLS8PXXX0NFRUV0NCIiIqrHlixZgr59++Lo0aNwcnISHafBUlZWhpubG9zc3BAfH4+AgADMnj0bS5YswfTp0zF79mwYGBiIjklUJ4yMjGBkZISePXs+9ffV1dXIyspCWloa0tPTcfv2bSQnJyMpKQmhoaHIzMwE8PdnnPbt28vLPWRlH2ZmZjA2NsakSZOgp6eHrVu31uXiEdWaS5cu4f3338cnn3zCIg8iIqJGrKKiAkeOHMHu3bvx22+/QUtLC56enli/fj0cHR1FxyOiBkZJSQmdO3dG27ZtcfToUfTs2RP79u2DlZWV6GhUD/z888+4d+8epk+fLjpKg1VTU8N99oiIiIiIiARQkng4VCIiqsf279+PqVOnwsLCArt374aFhYXoSET0FLt378acOXNgamqKsLAwmJiYiI70VJ6engCAwMBAwUkarqCgIEyfPh36+vrYtm0bBg0aJDoSNQA1NTUICQnBt99+i5iYGHTq1AleXl6YMmUKOnbsKDoeUYPw6JfpDXVTTmNYBqKUlBT89NNP2LlzJ27duoV+/fph3rx5GD16NJSVlUXHUxi7d++Gt7c3hgwZgl9++QV6enqiIxEREVE95uLigqqqKhw7dkx0lEYlMzMTmzZtwrp161BaWgpPT0/Mnz+/UQ+uqKiogIaGBhas34HeQ4eLjtPgVT58iDdt2iMkJATu7u6i49SZ0tJSXL9+HcnJyUhOTsa1a9fk5wsKCgD8XfRRXV0NJycnODg4wMbGBtbW1jA3N4eqKo/ZQ/VfSUkJevfujebNm+P48eM8aAcREVEjI0kSYmNj8fPPP+OXX35BUVERhg0bhrfffhvu7u5o0qSJ6IhE1IC5u7tDR0cHy5Ytw8SJE5GQkIAffvgBU6dOFR2NBOvevTtsbGywa9cu0VEarOHDh8PExARbtmwRHYWIiIiIiEihcA9zIiKq18aNG4dLly6hadOmsLW1hY+PD7KyskTHqneUlJSeeaIXx8f0+SQlJeGNN97AW2+9hYkTJyIqKqreFnlQ7fDw8MDly5dhZWWFIUOGwMfHB2VlZaJjUT2nrKyMcePGITo6GhcvXsTo0aOxfv16dOrUCd27d4efnx/Onz8vOmajUdfvYXzPfH6v8lhJkiQ/1UfPs2z1fRkAPp/p6c6dO4fPP/8ctra26Ny5MzZs2ICxY8ciISEBZ86cwZgxY1jkUcemTp2KqKgoXLlyBb169cLly5dFRyIiIqJ67IsvvsDx48dx8uRJ0VEaldatW8PPzw/p6enYvHkz4uPjYW1tDUdHR4SFhdXrz35EImlpacHOzg4TJ07EokWLsHv3bsTExCA/Px+5ubnYvn07AGDo0KFo3rw5QkNDMWXKFHTr1g2ampro0aMHvLy84O/vjz///BOZmZmCl4jon6ZNm4bCwkLs27ePRR5ERESNSEJCAj777DN06tQJffv2RXh4OD755BOkpqbi999/h6enJ4s8iKjWGBsb4/jx4/D29sZbb70FT09P5Ofni45Fghw/fhwXL17EnDlzREdp0GpqarjvCxERERERkQBKEveiISKiBqCmpgbBwcGYP38+cnNzMXv2bHz22WfQ0dERHY1IId2+fRvLli3D9u3bYWNjgzVr1qB///6iY/0nT09PAEBgYKDgJI1DUFAQpk+fDj09PWzbtg2DBw8WHYkakMrKShw/fhwhISEIDQ3F3bt30bp1a7i4uMDFxQXOzs4wMjISHZOIiBRQVlYWIiIicOTIEURERCAzMxPGxsZwd3fHmDFjMHjwYB4JuZ7Iy8uDp6cnzp49ix9//BHjx48XHYmIiIjqqcGDB0NDQwN//vmn6CiNVk1NDX7//XesXr0akZGRsLS0xNy5czF16lQ0bdpUdLxaUVFRAQ0NDSxYvwO9hw4XHafBq3z4EG/atEdISAjc3d1Fx6kXysrKYG9vDxMTExw+fFg+uKKyshLXr1/HlStXkJiYiPj4eFy5cgW3bt2CJEnQ19eHpaUl7O3t5adu3boJXhpSVJs2bcLMmTNx+PBhODs7i45DREREryg1NRUhISHYtWsXzp07B2NjY4wbNw4eHh7o378/BwQTUa1zd3eHjo4Odu/eLb8uMjIS77zzDh4+fIjNmzdj9OjRAhOSCGPHjkVubi5Onz4tOkqD5uzsjM6dO2Pjxo2ioxARERERESkUlnkQEVGDcv/+faxZswYrVqyAiooK3nnnHfj4+KBz586ioxE1ejU1NYiIiMDGjRtx4MABdO7cGYsXL8akSZMazJHIWeZR+7KysjBjxgyEhobi/fffx3fffQctLS3RsaiBkSQJ8fHxOHz4MMLDwxEdHY3KykqYm5ujT58+6NOnD/r27QsrKyuoqKiIjktERI1IVVUVLl++jOjoaMTExCA2NhbXr1+Hmpoa+vXrBxcXFwwfPhx2dnbcIbWeqqqqwqJFi+Dv74/58+fjm2++aTCfT4iIiKju/PHHHxg5ciTOnz+P7t27i47T6F2/fh3r16/Hli1boKmpiXfffRdz5sxB27ZtRUd7JSzzqF0s8/inadOmISwsDBcvXkSbNm3+c/qCggKcP38e8fHxOHfuHOLj45GSkgJJktCqVSvY29ujZ8+e8m2s+vr6dbAUpMgSExPRu3dvfPTRR1i6dKnoOERERPSS7t69i3379iEoKAhRUVHQ19fHqFGj4OXlhaFDh/L7EiJ6rZ5W5gEAxcXFmDdvHjZv3oypU6di/fr10NbWFpSS6lJqaio6deqEPXv2wMPDQ3ScBs3JyQldunTBhg0bREchIiIiIiJSKCzzICKiBik/Px8bNmzAli1bkJ6eDmdnZ0yfPh1ubm48QjJRLcvLy8OOHTuwefNm3LhxAwMHDsTMmTMxYcKEBjeonmUer09QUBBmzJgBHR0dbNu2DUOGDBEdiRqw0tJSnDhxAtHR0YiOjsbZs2dRUlICLS0t9OzZE/369YODgwP69OkDQ0ND0XGJiKgByc7ORkxMDGJiYhAdHY24uDiUlZVBW1sbvXv3Rp8+fdCvXz8MGjQImpqaouPSC9i6dStmz54NFxcX7Ny5E82bNxcdiYiIiOqZ7t27w9bWFjt37hQdRWHk5uZi+/btWLNmDfLy8jBx4kTMnz8fVlZWoqO9FJZ51C6WeTxu37598PT0REhIyCsdYbioqAjnzp2Tl3ucPXsWN27cgJKSErp06fJYeXK3bt0a3Pc8VH89ePAADg4O0NDQwOnTp6GmpiY6EhEREb2AgoICHDx4EEFBQfjjjz+gra0NNzc3eHh4YMSIEXxvJ6I6829lHjLBwcGYPn06tLS08OOPP2LQoEF1nJDq2ieffIK9e/fi1q1bfD96RUOGDIGlpSXWr18vOgoREREREZFCYZkHERE1aNXV1Th06BA2btyIw4cPw8jICOPHj8f48ePh6OjIHdCIXlJRURHCwsKwf/9+/P7772jatCmmTp2K6dOnw9LSUnS8l8Yyj9crKysLM2fOREhICN5//31899130NLSEh2LGoHq6mpcuXIF0dHR8gHYSUlJkCQJHTp0gLW1NaysrGBjYwMrKyuYm5vzy1siIgVXWVmJpKQkXL58GZcuXcLly5eRkJCA1NRUKCkpoWvXrvLBS3369IGlpSU/PzYC0dHR8PT0hLKyMvbu3Yu+ffuKjkRERET1yI4dO+Dj44OUlBS0a9dOdByFUlFRgV9//RX+/v5ITExE//79sWDBAri6ujaoIzqzzKN2sczj/8vOzka3bt3g4eHxWo6Mmpubi5iYGMTGxiIqKgpxcXEoKSmBtrY2HBwcMHDgQAwaNAi9e/eGhoZGrc+fFIOPjw8CAwNx/vx5tG/fXnQcIiIieg5FRUUIDQ1FUFAQDh8+DBUVFTg7O8PDwwMTJkxAs2bNREckIgX0X2UeAJCTkwNvb28cOHAAc+bMgb+/P5o0aVKHKamu3L9/H+3atcO8efPg6+srOk6DN2jQIFhbW2PdunWioxARERERESkUlnkQEVGjcevWLezcuRPBwcG4fPkyDA0NMWbMGIwfPx5DhgzhoF6i/5Cfn4/Q0FAEBwcjIiICADB06FB4enrC09OzUXxJzzKPuhEUFIQZM2ZAR0cHW7duhZOTk+hI1AgVFhYiNjYW8fHxSEhIwOXLl3H9+nVUVlZCXV0dXbt2hZWVlbzow8rKijsQExE1Urdv35aXdsiKO5KSklBZWQk1NTWYm5vLS5/s7e3h4OAAPT090bHpNcnPz8dbb72Fw4cPY+HChViyZAmUlZVFxyIiIqJ6oLKyEh07dsSkSZPg7+8vOo5CkiQJkZGRCAgIwKFDh2BmZoaZM2fC29sbTZs2FR3vP7HMo3axzOP/mzBhgnw7p7a29mufX3V1NRITExEdHY0zZ87gxIkTSEtLg4aGBnr37o3Bgwdj4MCB6Nu3b6P4bohev+DgYEyYMAF79+7FxIkTRcchIiKiZ3jw4AHCw8MRFBSE/fv3o6qqCi4uLvDw8MDYsWPrZH2UiOhZnqfMQ2br1q346KOPYGxsjI0bN2LgwIF1kJDq0g8//IBPPvkEd+7cQYsWLUTHafAGDhyI7t27Y82aNaKjEBERERERKRSWeRARUaN07do1BAcHIzg4GOfOnYO+vj6cnJwwdOhQODs7w8zMTHREIuEqKysRExODyMhIREZGIiYmBqqqqhg+fDjGjx8PNze3RjfIkWUedSc7OxszZ87Eb7/9hvfffx/fffcdtLS0RMeiRu7hw4e4evXqPwZ0p6WlAQB0dHRgZmaGzp07o3PnzvLzZmZmMDQ0FJyeiIieJTs7Gzdu3EBycjJu3LghPyUnJ6O4uBgAYGpqKi9wkpU5WVhYQF1dXXB6qmuSJGHNmjWYP38+BgwYgJ9++glGRkaiYxEREVE9sGzZMixfvhxpaWnQ1dUVHUehXbx4ET/88AN27doFHR0dzJgxA7Nnz4aBgYHoaP+KZR61i2Uef9uzZw/+97//4fDhw3BxcRGW4/bt2zhx4gROnDiBkydPIiUlBWpqaujduzdcXFwwbNgw9O7dGyoqKsIyUv2Unp4OGxsbvPnmm/jhhx9ExyEiIqKnKCkpwe+//47ffvsNhw4dQnl5OZycnPDmm29i3LhxjW7fICJq2F6kzAP4+/Ps7Nmz8fvvv+Ptt9/Gt99+y9KHRkKSJHTr1g2Ojo7YvHmz6DiNgqOjI+zt7REQECA6ChERERERkUJhmQcRETV6t27dQmhoKCIiInDixAmUlpbCxMREXuzh5OTEQT2kECRJwqVLlxAREYHIyEicPHkSpaWlMDU1xdChQzF8+HCMHDmyURcusMyj7v3000+YO3cu9PT0sHnzZgwdOlR0JFJARUVFuHTpEhITE+WDwJOTk5GSkoKKigoAfxd9yEo+niz74HoCEVHdyMzMfKyo49GTrLBDQ0MDnTp1euy1WlbgwcGY9KS4uDhMnDgRZWVl2L17t9CBcURERFQ/3Lt3DyYmJvDz88PHH38sOg7h7+K+DRs2YN26dSgtLYWnpyd8fX1haWkpOto/sMyjdrHMA8jNzYWVlRUmTJiA9evXi47zmLt37+L48eM4duwYwsPDkZaWBj09PQwZMgTDhg2Di4sLOnXqJDomCSZJEkaOHInbt28jPj4ezZo1Ex2JiIiI/k9eXh4OHDiA3377DREREaiqqsLAgQMxbtw4TJgwAa1atRIdkYjoqV60zEMmLCwMs2bNQmlpKZYvX473338fSkpKrykl1YXw8HAMGzYMCQkJsLa2Fh2nUejfvz969+6N77//XnQUIiIiIiIihcIyDyIiUijV1dW4cOECIiIiEBERgVOnTqGiogKtW7eGvb09HB0d0b9/f/Ts2RMaGhqi4xK9kuLiYiQkJODMmTM4ffo0oqOjkZ+fD21tbTg4OMDZ2RnOzs6wt7cXHbXOsMxDjKysLMycORMhISF45513sHLlSujr64uORQTg70E8N2/eRGJiIq5cuYKbN2/i5s2buHbtGkpLSwEA6urqMDY2RuvWrdGmTRt07NgRHTt2lF82MzODjo6O4CUhIqrfKioqcPfuXWRkZCAzM1P+eiu7/LTXXdnrraWlJbp164aOHTvC1NSURwGmF3Lv3j1MmzYNYWFhWLhwIRYvXgxVVVXRsYiIiEiguXPn4sCBA0hJSYGysrLoOPR/SktL8csvv+D777/H9evX4eTkhA8++ABubm6io8mxzKN2scwDmDBhAuLj45GQkABtbW3RcZ4pKSkJ4eHhOHLkCI4fP47S0lJ06tQJw4YNg6urK5ycnPjdqgIKCAjAJ598gtOnT8PBwUF0HCIiIoV3584d/PHHHwgLC8Phw4ehoqICR0dHuLq64s0332SBBxE1CC9b5gEAZWVlWLp0KVauXIl+/fph48aN9bIwlp7PmDFjUFhYiOPHj4uO0mj07dsXffv2xapVq0RHISIiIiIiUigs8yAiIoVWWlqKM2fOICYmBrGxsYiNjUVBQQGaNGkCOzs7ODg4oHfv3rC1tYW5uTkH/FC9VVJSgkuXLuH8+fPy5/L169cBAGZmZnBwcICDgwP69+8PW1tbhd1JnWUeYoWFhWHmzJmorKyEv78/vLy8REci+leSJOHu3btISUlBamoqUlNTcefOHdy5cwdpaWlITU1FWVmZfPqWLVuiXbt2aNeuHUxNTWFiYoK2bduibdu2MDQ0RNu2baGlpSVwiYiIXp/S0lLcvXsXOTk5uHv3Lu7evSt/rZS9dubm5sqn19TUlL9WtmvXDiYmJjAxMYGpqSk6deoEY2NjgUtDjZEkSVi3bh0WLFgAKysr7Nq1C127dhUdi4iIiAS5ceMGzM3NceDAAbi6uoqOQ0+oqanBoUOHsGbNGkRERKB79+748MMPMWnSJKipqQnNxjKP2qXoZR6//vorJk2ahPDwcAwdOlR0nBdSWVmJ6OhoHDlyBH/++SfOnTuHZs2awcXFBa6urnB1deVAUQWQlJQEOzs7+Pr6YsmSJaLjEBERKaybN28iLCwMQUFBiIqKQtOmTeHk5AQPDw+MGTOGB6UgogbnVco8ZM6fP4/p06fj/Pnz+Oijj+Dn58cCygbmzp076NChA37++WdMnDhRdJxGo0+fPnB0dMTKlStFRyEiIiIiIlIoLPMgIiJ6hCRJSE5OlpchxMTEICEhAZWVlWjSpAm6desGa2trWFtbw9bWFtbW1twZjepUdXU1UlJScPHiRVy6dAmXLl1CQkICbt26BUmSoKenh969e8vLO/r06YMWLVqIjl1vsMxDvMLCQixYsABbtmzBqFGjsGHDBg7YpQYrPz9fPkj99u3b/yj7yMzMRE1NjXx6TU1NtGktiH20AAAgAElEQVTTBq1atUKbNm1gZGQEIyMj+XWy4g9DQ0MoKSmhsrIS1dXV3KGAiISQJAk5OTnIyclBeno6cnJykJGRgaysLGRmZiIzMxPZ2dnIyMh4rNxIWVkZrVu3fqyso127dmjfvr28uKN58+YCl4wUWVJSEqZOnYrLly/Dz88P8+bNU9iiQyIiIkXn4uICdXV1HDp0SHQUeoZz585h9erV2LNnDwwMDODj44MPPvhA2GcKlnnULkUu87h37x4sLCzg7u6OTZs2iY7zyu7evYuDBw8iLCwMR48eRUVFBXr16gU3NzeMHj0a1tbWoiNSLauqqkL//v1RXV2N6Oho4WVLREREiiYxMRFBQUE4ePAg4uPj0aJFC4wcORIeHh4YNmwYmjRpIjoiEdFLq40yD+Dv/SzXrl2LJUuWoFWrVvD398fYsWNrKSW9bosWLcK2bduQmpoKdXV10XEajd69e2PQoEH49ttvRUchIiIiIiJSKCzzICIi+g8PHz7ElStX5MUJshKFzMxMAIChoSG6desGc3NzmJmZwdzcHObm5ujQoQM3ItNLKyoqQnJyMq5fv/7Y6cqVKygvL4eqqirMzMweK5axtrZG+/btRUev11jmUX+cPHkS77//PrKzs/HFF19gzpw5HEhJjU51dTVycnKQlZWFjIyMfwyIlw2Cz8rKQnl5ufx2ampqMDQ0RFlZGQoLC6GmpgYtLS0YGBjA0NAQxsbGaNeuHTp27IiuXbuia9euaN26tcAlJaKGoLq6Gvn5+cjLy5OfcnNzkZubi7y8PPnvZK9bOTk5qKqqkt++adOmaN26NVq3bi0vJXq0iEhWUmRoaAgVFRWBS0r0bFVVVfjuu++wePFiDBo0CDt27GC5HBERkQLav38/JkyYgGvXrsHMzEx0HPoPmZmZ2LRpE9asWYPKykpMnjwZH330Ebp06VKnOVjmUbsUuczDx8cHoaGhuHr1KvT19UXHqVXl5eU4c+YMwsLCEBwcjLt376J9+/YYPXo0PDw80L9/fygpKYmOSa/o888/x8qVK3Hu3Lk6fy0mIiJSRDU1NYiKisLBgwexf/9+JCcnw8TEBCNGjICrqyveeOMNqKqqio5JRFQraqvMQyY9PR3z58/H3r17MWjQIKxatQo9evSolfum1+Phw4cwMTGBj48PvvjiC9FxGpVevXrByckJK1asEB2FiIiIiIhIobDMg4iI6CXl5eXJiz2uXr0qL164e/cuAEBVVRXt27eXF3x07twZpqam8pOurq7gJSCRJElCZmYmUlNTkZaWhtu3b+P69etITk7GtWvXkJOTAwBQV1dHx44d5SUxlpaWsLGxQbdu3aChoSF4KRoelnnUL+Xl5fjiiy+wcuVK9OvXD1u2bOFOn6SwioqK5AUfd+/eRU5ODn7++WecO3cOz/uxXVVVFRoaGtDR0YGtrS26d+8OAwMD6OvrQ09PT/5Tdp7rIkQNV1FREe7du4fCwkL5T9l5WSGHrLDj0QKPJ+nr66Nly5YwMDCAgYEBWrRogZYtW8LIyOgfRR18zaDG5q+//oKXlxeysrLg7+8Pb29v0ZGIiIioDlVXV6NTp07w9PSEv7+/6Dj0nEpKSrB9+3Z8//33uHPnDkaOHAlfX1/079+/TubPMo/apahlHn/99Rf69u2Ln376CZMmTRId57WqqalBbGws9u3bh3379iEtLQ1mZmbw8PDAhAkTOHiqgbp48SJ69eqF7777DnPmzBEdh4iIqNEqKytDREQEDh48iNDQUOTm5sLS0hJjx47FuHHjYGdnJzoiEdFrUdtlHjJnz57FRx99hDNnzmDChAlYuXIlTExManUeVDv27NkDLy8v3Lp1iwdlqGX29vZwcXHB8uXLRUchIiIiIiJSKCzzICIiqmVlZWXyUgZZMcP169eRkpLy2AA6XV1dmJiYyMs9TExM5KfWrVvDyMgITZs2Fbgk9CoKCgqQlZWFjIwMpKWlyQs7ZOfv3LmDhw8fAvh78LWxsTHMzMzk5S+yk6mpKY+eUYtY5lE/XbhwAe+99x6uXLmC+fPnY+HChVBTUxMdi0i4oKAgTJw48bnLPGSUlZVhZWUFZWVl5OXlobCwEKWlpf+YTklJ6R9FH/9W/CE7r6WlBS0tLejp6UFbW5vvUUQvoaqqCiUlJfL/zdLS0qeWcjx5/t69e/LzT3td0NLSgr6+Plq0aAFDQ0N5QYespMPQ0BAtW7ZEixYt5Nfzf5gUnaxc7ttvv8XIkSOxYcMG7hBGRESkQJYuXYqAgACkp6ezOLmBqampwaFDh7Bs2TJER0fD3t4eH3zwASZPnvxaP+ewzKN2KWKZR1VVFXr16oWWLVviyJEjouPUKUmSHiv2SE1NRefOneHp6YkpU6bAwsJCdER6DlVVVejbty9UVVVx5swZKCsri45ERETUqNy6dQuHDh3CwYMHceLECTx8+BC9evXCmDFjMHbsWB4chYgUwusq85AJCwvD3LlzkZ2djTlz5mDRokXQ0tJ6LfOilzNgwAAYGhoiODhYdJRGx87ODiNGjMA333wjOgoREREREZFCYZkHERFRHbp///5jhQ5paWlITU2VX5eRkYGqqir59Lq6umjTpg0MDQ0fOyq2kZERjIyMYGhoiObNm6NFixZo1qyZwCVTDPfu3UN+fj7y8/ORk5ODzMxMZGZmIjs7GxkZGcjJycHdu3eRnZ2NiooK+e2aNWuG9u3by8taZOUtsuvatGnDgZR1hGUe9VdVVRW+++47+Pn5oUuXLti6dSt69uwpOhaRUFlZWWjduvVzT6+srAx7e3v8+OOPsLS0fOx3VVVV/1oO8KyfsvOPrp88SkNDA1paWtDR0YGurq687ENWKvDoZV1dXejo6Mgva2tro1mzZmjSpAl0dXWhqqoKXV3dV3rMiF6HoqIiVFVVoaioCBUVFbh//z5KSkrkRRzFxcUoKiqSXy4tLcW9e/ceu1xUVITi4mKUlpbiwYMHT52PmpraU0t0Hi3Z+beiHX19fa5PEr2CyMhIeHt7o6CgAN9++y3effddKCkpiY5FREREr1lmZiZMTU2xbds2TJ06VXQceknx8fEICAjAL7/8AhMTE/j4+MDHxwd6enq1Pi+WedQuRSzz8Pf3x5IlS3Dx4kWFHogpSRLOnj2LoKAg/Prrr7hz5w569eqFqVOnYtKkSTAwMBAdkf6F7Dl87ty5f2yDJiIiohdXXV2NCxcuICwsDAcPHkR8fDw0NTUxZMgQuLm5wdXVFW3atBEdk4ioTr3uMg8AePjwITZs2IAlS5ZAW1sbS5YswXvvvcfCwnogMTERVlZWiIiIwNChQ0XHaXS6d++OUaNG4euvvxYdhYiIiIiISKGwzIOIiKgeqaqqQlZWFu7evftCZRHA34NpmzdvLi/3ePR8ixYtoKenB11dXWhqasoH0Orp6ckvN/Z2cUmSUFhYiJKSEpSVlT02qLKsrAzFxcUoKChAQUEB8vPz5ecfvVxTU/PYfT6tbKV169byshVZ8Qp3Oqw/WOZR/924cQPe3t44deoUZs6ciWXLlrGsiBRSTU0NLl68iOHDhyM3N/eZ06qpqUFNTQ3ffPMN5syZ81p2LigtLUVhYaG8mED2nvpfZQay99xHb/NvxSAyTZo0QbNmzaClpSUvN1BTU4O2tjY0NDTQtGlTaGtrP/Y7LS0teTGI7DLw93u1srKy/HYAoK+vDwDy6VVUVKCjo1PrjxnVvuLiYlRXV8sLNYC/y9YAoLy8HA8ePEBNTQ2KiooA/P28rayslE8vuywrqCkpKZHfrqSkBJWVlSgsLMTDhw9RVlaG+/fv/2Od+0mqqqry9epHy2v09PSgra0tv6yjo/OPMptHbyM7T0TilJeX44svvsDKlSvRr18/bNmyRaEH1xERESmKcePGoaioCJGRkaKj0Cu6efMmAgICsG3bNqioqODtt9/Gxx9/DBMTk1qbB8s8apeilXmkpqaiW7duWLBgARYvXiw6Tr1RU1ODqKgo7N69G3v27MH9+/cxZMgQTJ06FRMmTOD3A/VIcnIybG1tsWjRInz22Wei4xARETVY+fn5OHr0qLzA4969e+jYsSOcnZ3h6uqK4cOHQ11dXXRMIiJh6qLMQyYrKwuLFi3Cjh07YGdnhy+//BJvvPHGa58v/bsZM2YgMjIS165d48EXXgNra2uMHTsWX375pegoRERERERECoVlHkRERA3UvXv3kJOT89TSiScv5+fno7CwEEVFRf8opHjUowMKNTU15YMTlZSU5Eex09HRgYqKinwArGzArYy6ujo0NTWfev+yQblPetZASdkATZnCwkJIkiQfDCwbgFlZWYnS0tLHBnDKjoguO4r6v9HQ0ICOjo68AOXJQpRHL8vKUQwNDeWDgqnhYJlHwyBJErZs2YJ58+ahZcuW2Lx5M5ycnETHInrtkpOTERkZicjISBw/fhx5eXlo1aoVCgoKUFlZ+Y/plZWVUVNTgzfeeAObNm1Cu3btBKR+cQ8ePJAXgMjex4uLi1FZWSl/z360eKGwsBCVlZWPFS88a/oHDx6gvLz8pbLJ1lWeVggiIysDkXny99ra2lBVVZVf1tTUfGyHu6ZNm0JDQ+NfMzx5/8+b+XnISipexJPrYo968rF+8v5lhRkyj66nPe3+a2pqkJ6eDk1NTdy/fx+VlZXydbyXIXusnyx80dXVhZqaGnR0dJ5aECNbn33W9LJijmf9LYmoYbpw4QLee+89XLlyBfPnz8fChQuf+3WWiIiIGp7Q0FCMHTsWN27cQMeOHUXHoVpQUFCATZs2Ye3atcjLy4OHhwc+/vhj2NnZvfJ9y8o8xrw3E52sbGshrWKrrqrC6k9mKUyZx8SJE3HhwgUkJCSgSZMmouPUS/fv38f+/fuxe/duREZGQkdHB5MmTYK3tzdsbfk/J5IkSXBxcUFubi7i4uL4OZmIiOgF3bx5U17eceLECdTU1KBPnz5wc3ODm5sbLC0tRUckIqo36rLMQyYhIQGLFi1CWFgY+vfvj6+++gqDBw+us/nT30pKSmBsbIwvv/wSc+fOFR2nUbKwsMCkSZOwZMkS0VGIiIiIiIgUCss8iIiIFEx5eTlKS0tRUlKCwsJClJaWyk+FhYUoKSlBaWkpysvL5YNjq6urUVxcDOD/l2nIBszKBtXKlJWV4eHDh0+d978NBn2RAhBZmYhsYKysTERFRQU6OjoA/i4lUVJSgq6uLgBg2bJl0NfXx9KlS2Fubi4vLNHV1ZXfHykGlnk0LBkZGZg9ezZCQkIwZcoUrF69Gs2bNxcdi6jWZGdn4+TJk4iIiMCRI0dw+/ZtNGvWDP369YOzszOcnZ1x7tw5zJgxA9XV1Y/dVlYssGrVKnh5eQlagvpPtu4hKw57dJ1Gti7zaFmErPhMtg706H0AeOz2wN87sRcWFj42T9m6kkxxcfFjfz/ZfJ/mRYtInszzPF503edZ5SOPlp4AeGx9DMBjhXAysvW0p+UpLi7G9u3boaKigsGDB8PFxQXa2try+3xW2cqjBXMvWohCRPSkyspK+Pv746uvvoKlpSU2bdqEnj17io5FREREr0FVVRXatWuHGTNmcAfmRubhw4fYu3cvVq1ahYsXL8LJyQmffPIJRowY8dJH9ayurkZbY2NkZ2XVclrFpaqqitOnT8PBwUF0lNcqKioKjo6OOHDgAFxdXUXHaRAyMjLw888/Y9u2bbh27Rr69OkDHx8fTJw4kWX7AmzduhUzZsxATEwM7O3tRcchIiKq98rLy3HmzBmEhYUhJCQEaWlpMDAwwJAhQ+Dq6gp3d3f5Pk1ERPQ4EWUeMn/99ReWLl2KgwcPon///vj6668xaNCgOs+hqNatW4cFCxYgPT2d+328JmZmZnjnnXfw2WefiY5CRERERESkUFjmQURERI1eeno6xo0bh2vXrmH37t0YPXq06EgkCMs8GqagoCDMmjULqqqqWLduHcaNGyc6EtFLKS0tRUxMDCIiIhAREYFz585BRUUFtra28vKOAQMGPHZkzmvXrqFr167yyyoqKqipqcH//vc/rF69Gi1atBCxKNSAdO7cGW+99RYWL14sOspzKS4uxoYNG+Dv74+HDx9i2rRp8PX1RevWrUVHIyIFdO3aNfj4+ODUqVPw9vbG119/zXI5IiKiRuijjz5CSEgIUlJSXrrkgeq306dPY8WKFTh06BA6d+6MWbNmwdvbm4UAVCdkR13X1tZGZGSk6DgNUnx8PDZv3ozdu3dDXV0dEydOxKxZs2BjYyM6mkIoKChAly5dMGXKFHz//fei4xAREdVbycnJOHLkCH7//XccO3YMDx48gL29PUaNGoVRo0bB3t4eysrKomMSEdV7Iss8ZKKiorBo0SIcO3YMzs7OWL58OYsN64C1tTX69u2LzZs3i47SaHXo0AEzZszA/PnzRUchIiIiIiJSKNwyTERERI2esbExTp48iXHjxmHMmDHw9fUF+8yIGg4PDw9cuXIFTk5OGD9+PCZNmoTs7GzRsYj+U3l5uXywiIuLC5o3b47hw4cjLCwM9vb2+PXXX5Gfn4+4uDgsX74czs7OjxV5AIC5ubn8aBMqKipo164djh07ht27d7PIg56Lra0tEhISRMd4bjo6OliwYAFSU1Px1VdfITAwEGZmZpg7dy7u3r0rOh4RKZguXbrg+PHjCAkJwcGDB2FmZoaAgADU1NSIjkZERES1aNq0abh16xZOnjwpOgq9Jo6OjggLC8OFCxcwZMgQ+Pr6okOHDvDz80NBQYHoeNTI7dy5E+fOncPq1atFR2mw7O3tsWnTJty+fRuffvopIiMjYWtri4EDByIwMBBVVVWiIzZqn332GVRUVODn5yc6ChERUb1SWFiI/fv3Y/r06ejYsSPMzc3x2WefQUNDA2vXrkVGRgbOnj0LPz8/9OrVi0UeREQNSL9+/XD06FH88ccfKCwsRK9eveDh4YHLly+LjtZoHTt2DJcvX8b06dNFR2nUqqqqoKqqKjoGERERERGRwuHWYSIiIlIIGhoa2LFjBzZu3IhVq1ZhzJgxKC4uFh2LiJ6TgYEBfvrpJxw6dAjR0dGwsLDAli1bWMxD9U5iYiJWrlwJZ2dnNG/eHAMGDMCOHTtgbm6OPXv2IDc3F4mJidi0aRM8PDygo6PzzPtTUlLCoEGDoKKiggULFuDq1asYNGhQHS0NNQbW1tYNqsxDRktLC3PnzsWNGzfw9ddfIzg4GB07doSXlxdSUlJExyMiBePm5oakpCS8//77+OSTT9C7d2/89ddfomMRERFRLbGysoKdnR127twpOgq9ZjY2Nti0aRNu3bqF6dOnY+3atTA1NYWPjw+uX78uOh41QqWlpVi4cCF8fHxgbW0tOk6DZ2hoiAULFuD69es4fPgwDAwMMHnyZHTu3BmrVq3i936vQXx8PLZu3YqVK1dCV1dXdBwiIiKhqqurER8fLz+Qg6GhITw8PBAXFwdPT0+Eh4cjNzcXwcHBePfdd2FkZCQ6MhERvaIRI0bgr7/+wv79+3Ht2jXY2NjA3d0dMTExoqM1Ohs2bEC/fv1gZ2cnOkqjxjIPIiIiIiIiMVjmQURERArF29sbERERiI2NhYODA5KSkkRHIqIXMHLkSFy5cgUffPABZs2ahQEDBiAxMVF0LFJgJSUlCAkJgY+PD0xNTWFlZYUVK1agVatW2LRpE+7cuYOkpCSsX78e48ePR/PmzV94HmvXrkViYiK+/vpraGhovIaloMbM1tYWN27cQGlpqegoL0VTUxNz587FzZs3sWXLFkRFRcHCwgJeXl4caEVEdUpTUxPLly9HXFwcNDQ00K9fP8yZMwf37t0THY2IiIhqwZQpU/Dbb7+hoqJCdBSqA0ZGRvDz80Nqaiq++uorHD58GBYWFnBzc+NgDKpVy5cvR3l5Ofz8/ERHaVSUlZUxbNgw7N+/H8nJyXjzzTexdOlSGBsbY+7cubh9+7boiI1CTU0NZs+ejb59++J///uf6DhERERCZGZmYteuXfD09ETLli3Rs2dPrF69Gvr6+ti6dStyc3MRFxeH5cuXw9nZGerq6qIjExFRLVNSUsKYMWNw8eJFhIaGIjc3F3379oWjoyPCwsJ4IKpakJmZiZCQEMyYMUN0lEaPZR5ERERERERisMyDiIiIFM7AgQMRFxcHbW1tODg44MCBA6IjEdELaNasGfz8/HD27FlUVVWhR48emDt3LsrKykRHIwWRmJiIb7/9Fk5OTjAwMMD48eNx4cIFvPPOO4iJiUF2djZ+/vlneHl5wdjY+JXnZ2xsjC5dutRCclJENjY2qKmpafDFR+rq6vDy8sLVq1exdetWxMbGwsLCAp6enrh69aroeESkQGxtbXHq1Cls3boVgYGBMDMzw7p161BZWSk6GhEREb0CDw8PFBUVITw8XHQUqkNaWlryAsmQkJDHBmMEBQWhurpadERqwDIzM/H9999j4cKFaNmypeg4jVaHDh2wfPly3Lp1C4sXL8Zvv/0GMzMzTJw4EbGxsaLjNWjbtm1DXFwc1q1bByUlJdFxiIiI6sT9+/cREREBX19f9OzZE23atMGMGTNw7949LFiwAHFxccjIyEBgYCC8vLxe6kAORETUMCkpKcHNzQ1RUVE4deoU9PX14e7uDjs7O+zatYvbkV7Bpk2boKuriwkTJoiO0uixzIOIiIiIiEgMlnkQERGRQjI2NsbJkycxbtw4jBkzBr6+vmxJJ2pgbG1tERUVhXXr1uHHH3+Era0tjhw5IjoWNULV1dU4ffo0fH19YWFhASsrK6xYsQIGBgZYu3Yt7ty5g9jYWPj5+cHBwQHKyvyoTfVHx44doaOjg4SEBNFRaoWampq81GPv3r24fPkyrKys4Obmhvj4eNHxiEhBKCkp4e2330ZKSgpmz56NefPmwcrKCkFBQaKjERER0UsyNjZGnz59+H6uoJSVleHm5oaYmBj5YIyJEyeia9euCAgIQHl5ueiI1AB9/fXX0NPTw8yZM0VHUQh6enqYN28ebt++jf379yMtLQ19+vSBo6MjIiIiRMdrcEpKSrBo0SLMmjULtra2ouMQERG9NjU1NYiPj8eKFSvg4uKC5s2bw8XFBWFhYXB2dkZ4eDgKCgoQHh6OBQsWwN7eniVXREQER0dHhIWF4dy5c7C2tsa0adPQpUsXBAQEoKKiQnS8BqWqqgpbt27Fe++9Bw0NDdFxGj2WeRAREREREYnBEUZERESksDQ0NLBjxw5s3LgRq1atwpgxY1BcXCw6FhG9AGVlZXh7eyMpKQl2dnYYPnw4PD09kZubKzoaNXBlZWUICwuDl5cXWrZsiQEDBiAoKAjDhg1DeHg4srKyEBgYCG9vb7Rp00Z0XKJ/paSkBCsrq0ZT5iGjrKwMDw8PXL58GSEhIcjMzETPnj3h4uLCo64SUZ3R0tKCn58frl+/DgcHB0ycOBHOzs64ePGi6GhERET0Ejw8PBASEoIHDx6IjkICyQZjXLt2DSNHjoSvry/at28PPz8/5Ofni45HDURqaiq2bt2KJUuWoFmzZqLjKBRZOU90dDQiIyOhqqoKFxcXDB48GEePHhUdr8Hw9/fHw4cPsXjxYtFRiIiIal1SUhI2bNgAT09PGBoaomfPnggICEDbtm2xfft2ZGdnIzExEcuXL4ezszOaNGkiOjIREdVT3bt3x65du3Dp0iX0798f8+bNg5mZGfz9/XHv3j3R8RoE2f4e3t7eoqMoBJZ5EBERERERicEyDyIiIlJ43t7e+PPPPxEVFQVHR0fcuHFDdCQiekGtW7dGYGAgDhw4gNjYWHTp0gWbN2+GJEmio1EDkp6ejrVr18LZ2Rn6+voYN24c0tPTsXjxYty4cQMpKSkICAiAs7Mzv9ikBsXGxqbRlXnIyAZoxMXFITw8HCUlJfKjrnKABhHVlXbt2mHXrl04ceIEioqKYG9vDx8fH2RnZ4uORkRERC/Aw8MDJSUlCA8PFx2F6gEzMzMEBATg9u3bmDFjBtauXQtjY2N4eXnh2rVrouNRPefn54c2bdrgnXfeER1FoTk5OeH48eM4ffo0tLW1MXToUPTv3x9hYWH87uAZMjIy8P3332PhwoVo0aKF6DhERESv7ObNm9i2bRumTJmCtm3bwsLCAgsWLEBZWRk+/fRTJCQkICMjAz/++CMmT54MQ0ND0ZGJiKiBsbCwwM6dO5GcnAwPDw988803aNeuHWbOnMntSP9hw4YNGDVqFDp06CA6ikKorKzkPm9EREREREQCsMyDiIiICH/v0BcXFwd1dXX06tULYWFhoiMR0Utwc3PD1atX4e3tjZkzZ2LQoEG4evWq6FhUjyUnJ2PFihVwcHCAiYkJFi1aBAMDA+zcuRM5OTk4evQoPvzwQ3Tq1El0VKKXJivzaOyDFJydnRETE4NTp06hSZMmGDp0qPyIykREdWHAgAH466+/sGfPHhw+fBidOnWCr68vCgsLRUcjIiKi52BsbIy+ffti3759oqNQPdKqVSv4+fkhNTUVAQEBiI2NhaWlJdzc3BAdHS06HtVD169fx08//YSlS5dCXV1ddBwC5AUeZ86cgY6ODkaPHo2+ffvi8OHDoqPVS59//jn09fUxa9Ys0VGIiIheSlZWFoKCguDj44OOHTuiU6dOmDNnDm7fvo2pU6ciPDwceXl5OHToED7++GNYW1uLjkxERI2EqakpvvvuO6Snp2PVqlU4fvw4LCws4OLiwmLJp7h69SqOHTuGGTNmiI6iECRJQnV1NdTU1ERHISIiIiIiUjgs8yAiIiL6P6ampjhz5gw8PDzg7u4OX19fVFdXi45FRC+oWbNmWL58Oc6ePYsHDx7A1tYWvr6+qKioEB2N6onExESsWLECjo6OMDc3h7+/P7p06YLQ0FDk5ORg7969mDRpEvT19UVHJaoVNjY2KCwsRFpamugodcLR0RGRkRd6oa8AACAASURBVJE4deoU9PX1MXr0aPTr1487xxBRnVBSUoKHhweuXLmCRYsWYfPmzTAzM8OqVavw4MED0fGIiIjoP4wdOxaHDh3idmH6By0tLXh7e+Pq1asICQlBXl4e+vXrB0dHRwQFBfE5Q3ILFy5Ely5dMGnSJNFR6An9+vXDH3/8gdjYWBgYGGDEiBFwcXHBuXPnREerN5KSkvDjjz9i2bJlaNq0qeg4REREzyUnJwdBQUGYO3cuevbsiTZt2mDy5MmIj4+Hp6cnwsPDUVBQgNOnT2P58uVwdnZm6RoREb1Wsu1Ily9fxpEjR6ChoQF3d3d06dIFAQEBuH//vuiI9cKGDRvQsWNHDB8+XHQUhVBVVQUAUFVVFZyEiIiIiIhI8bDMg4iIiOgRTZo0webNm/Hjjz9izZo1cHV1RUFBgehYRPQSevTogaioKHz77bdYv349rKysEBkZKToWCXLhwgV8+umn6Ny5M6ysrLB27Vr06NEDkZGRyMnJwa5du+Dm5oYmTZqIjkpU66ytraGsrIzz58+LjlKnHB0dERYWhqioKLRo0QLu7u7o3r07du3axUFWRPTaNWvWDL6+vkhJScGsWbPg5+cHMzMzbN68Wb6jFBEREdU/I0eORH5+PmJjY0VHoXpKWVkZbm5uiI6OxqlTp9CmTRu8+eab8sEY5eXloiOSQImJiQgODsbSpUuhrMzdceqr3r174+DBg4iOjkZFRQV69uwJT09PpKSkiI4m3IIFC2BtbY3JkyeLjkJERPSvSkpKEBERAV9fX/Ts2RNGRkaYNGkSzpw5A2dnZ4SGhiI/Px9xcXHy8g4NDQ3RsYmISAEpKyvD2dkZYWFhuHDhAgYMGABfX1+Ymppi/vz5uHHjhuiIwty/fx+7d++Gj48Pt6HUEZZ5EBERERERicNPvkRERERP4eXlhdOnTyMpKQndu3fH2bNnRUciopegqqqKuXPnIikpCTY2NnBxcYGXlxfy8vJER6M6cOXKFXz++efo2rUrevTogT179mDcuHGIjo7GnTt3sHbtWjg5OUFFRUV0VKLXSkdHB5aWloiOjhYdRYi+ffvKd46xtbXFtGnTYGtry1IPIqoT+vr68PPzQ1JSEkaNGoXZs2fD2toawcHBkCRJdDwiIiJ6gqWlJTp16oTff/9ddBRqABwdHREYGIhr165h1KhR+PTTT2Fqago/Pz9uf1RQy5cvR9euXeHu7i46Cj2HPn364OTJkzhy5AiuXr0KCwsL+Pj4IDs7W3Q0IeLj4xEWFoavvvqKA6mIiKheuXfvHg4ePIiPP/4YdnZ20NPTw/DhwxEeHo7Bgwfj4MGDuHfvnry8w83NDTo6OqJjExERPcbGxgbbtm1Damoq5s6di71798Lc3BzDhg3D/v37UVlZKTpinQoKCsL9+/fx1ltviY6iMFjmQUREREREJA6/fSUiIiL6F3Z2djh79iy6dOmCgQMHYtu2baIjEdFLatu2LYKDgxEaGopjx46hS5cu2Lx5MwdQNkKpqakICAiAo6MjunXrhm3btmH48OE4deoUbt26BX9/f/Tp0wdKSkqioxLVqX79+iEqKkp0DKFsbGywa9cuXLx4EXZ2dnj33Xdhbm6OzZs3y3daICJ6Xdq0aYONGzf+P/buPS7n+/H/+LOUdC4pKqsUUVcilVE5rj7DXLKh2OFCKDS7hs1hw5rTim3kw6aEXOygZg5pozRMznJYSlHJoRNZ6aBz/f7Yd/2+++7EVr2q63m/3brFuq739ej2uX22Du/3841bt25h6NCh8PHxQb9+/RAdHc2vSYmIiFqZUaNGITY2VnQGtSE9e/ZEaGgosrOzMXfuXGzevBndu3eHTCZDWlqa6DxqIXfv3sXevXuxdOlSDiG0MZ6enrh8+TI2btyIgwcPonfv3ggJCUF1dbXotBa1cuVKODk5YfTo0aJTiIhIyRUUFCAmJgZLliyBi4sLunTpAqlUigMHDsDV1RVff/01Hjx4gKSkJHz88ccYM2YMdHV1RWcTERE9FRMTEyxbtgzZ2dmIi4uDgYEBfH19YWFhgSVLliA7O1t0YovYtm0bxo8fDxMTE9EpSoNjHkREREREROLwDAIiIiKiv9ClSxccOXIEcrkcs2bNQkBAgNKdvEfUnkilUiQnJ8PHxwdz5szBqFGjcOvWLdFZ9C/l5+djw4YNcHV1hZWVFdauXQtHR0ecPHkSd+/ebRz34IAHKbPBgwfj0qVL/DoGgEQigUKhQHp6Ojw9PREYGNh44VVlZaXoPCJq5ywtLREWFobLly+jV69e8PX1xYABA3DgwAGOehAREbUSY8aMwbVr15CTkyM6hdoYExMTBAUF4c6dO9i0aRMuXLgAiUQCqVSq9AObymDdunXo1q0bJk+eLDqF/gF1dXXMnTsXGRkZePvtt7Fy5Uo4OjoiPj5edFqLuHr1KmJiYhAUFMSfoxMRUYvLzc1FdHQ0AgICIJFIYGpqipdffhkxMTFwdnZuHO/IzMxEWFgYJk2aBCMjI9HZRERE/4qqqio8PT0RFRWF7OxsvP322/jyyy9hY2MDLy8vREdHt9ubkqSlpeHMmTOYNWuW6BSlwjEPIiIiIiIicTjmQURERPQ3OnTogODgYBw4cAB79+6Fu7s77ty5IzqLiP4hAwMDfP755zh16hTy8/Ph6OiIoKAgXsDdxjx58gRffPEFRo8eje7du+PDDz+Eo6Mj4uLikJubi88++wxDhw7lXTCJ/oebmxsqKytx5coV0SmthrW1NcLCwpCRkQFvb28sWbIEVlZWCAkJwZMnT0TnEVE7169fP+zbtw8//fQT+vbtiwkTJsDR0RHR0dEc9SAiIhJsxIgR0NTUxPfffy86hdoobW1t+Pv7IzU1FQcOHMCjR4/g7u4OFxcXKBQK1NXViU6kJvbgwQPs2LEDixYtgrq6uugc+hd0dHQQFBSEmzdvYuDAgfjPf/4DqVTa7n8vuHLlSvTv3x9jx44VnUJEREogKysL4eHhkMlk6NGjB8zNzfHqq68iKSkJUqkUBw8eRGFhIVJSUhrHO4yNjUVnExERNRtzc3MsXrwYmZmZ2Lt3LxoaGuDr6wsbGxt88MEHyMrKEp3YpMLDw2FlZYWRI0eKTlEqHPMgIiIiIiISh1c1ERERET2lcePG4fz583jy5AlcXV2RkJAgOomI/gU3NzckJSUhODgYGzZsgIODAy/SaOXq6+uRmJiIgIAAdOvWDVOnTkVtbS127NiBnJwcbN++HV5eXujQoYPoVKJWp1evXjA2NuadgP+ApaUlQkNDkZ2djWnTpmHlypWwsrJCUFAQHj9+LDqPiNo5BwcHKBQKXLlyBba2tvD19cWAAQOwf/9+1NfXi84jIiJSSpqamvDw8MDx48dFp1Abp6qqCqlUijNnzuDkyZMwMzPD9OnTIZFIsG3bNlRVVYlOpCayceNG6Orqws/PT3QKNRFzc3MoFAokJCQgMzMT9vb2CAoKapf/v01JScHBgwexYsUKqKioiM4hIqJ2pq6uDklJSQgNDYWPjw+MjY1hY2ODhQsXIi8vD1OnTkV8fDxKS0tx6dIlBAcHQyqVwsDAQHQ6ERFRi1NXV8fEiRNx7NgxpKWlwdfXF9u2bUPPnj0xbNgwREZGoqysTHTmv1JdXY09e/Zg5syZvEFTC+OYBxERERERkTj8DpiIiIjoGfTu3Rvnzp3DsGHDMGrUKISEhPCuyURtmJqaGuRyOW7cuAE3NzeMGTMGUqkUd+/eFZ1G/8uNGzewePFiWFhYYMiQIbhy5QrWrFmDvLw8xMfHQyaTQVtbW3QmUaumoqKCQYMG4ezZs6JTWq2uXbsiODgY2dnZmDt3LjZu3AgbGxsEBQWhqKhIdB4RtXOOjo7Yt28frl69Cmtra0ycOBEODg6IjIxETU2N6DwiIiKlM2zYMI55UJMaOnQoDh06hJSUFAwZMgTz5s2DlZUVPvroI37P2caVl5fj888/x1tvvQUtLS3ROdTERo4ciStXrmDp0qVYv349+vfvjx9++EF0VpMKCQmBRCKBt7e36BQiImoHnjx5ghMnTmDlypXw8vKCvr4+XFxcsHbtWtTV1WHZsmVISkpCcXEx4uPjERQUBE9PT3Tq1El0OhERUatia2uLdevW4f79+4iLi4OlpSUCAwNhbGwMHx8fHDt2rE2et/rtt9+iqKgI06ZNE52idDjmQUREREREJA7HPIiIiIieka6uLqKiorBq1Sq8//77mDJlSptfPCdSdmZmZo132cvIyGi8y151dbXoNKVVVlaGHTt2wMPDA/b29vj6668xbdo03LhxAxcuXMC8efNgbGwsOpOoTRk8eDBOnz4tOqPVMzY2RlBQEDIzM/Hmm29i06ZNsLS0hFwuR0FBgeg8Imrnfh31SE9Ph5eXF2bPng0LCwuEhISgvLxcdB4REZHSGDZsGPLy8pCRkSE6hdqZPn36YNu2bbh79y4CAgLw8ccfw8LCAnK5nAPDbZRCoUBVVRVmz54tOoWaiYaGBpYtW4aUlBT06dMHnp6e8Pf3R0lJiei0fy0vLw979+7F/PnzoaKiIjqHiIjaoNzcXMTExGDJkiXw8PBA586dMWLECGzduhWGhoZYs2YNLl26hPz8fOzbtw9yuRwDBgxAhw4dRKcTERG1CaqqqvD09IRCoUBOTg5CQ0ORm5sLLy8vWFpaYsmSJcjKyhKd+dS2bduGl156CWZmZqJTlA7HPIiIiIiIiMRRaWiLk5xERERErcSxY8fw6quvokuXLvjmm29gb28vOon+go+PDwAgKipKcAm1ZpWVlQgODkZISAhsbW3x+eefw83NTXSW0khKSkJ4eDi++uorVFdXY9y4cXjjjTcwZswYntRF9C+dPHkSw4cPR3Z2NiwtLUXntBmlpaXYsWMHPvroI5SXl8PPzw+LFy/mySVE1CLy8/OxceNGbN68GZqamggMDMS8efNgZGQkOo2IiKhdq6mpgaGhITZu3IiZM2eKzqF2rKysDNu3b8enn36KvLw8jB8/HosWLYKLi4voNHpKjo6OcHV1xfbt20WnUAs5fPgwAgIC0NDQgLCwMEilUtFJ/9iKFSuwdetW3L17F506dRKdQ0RErVxNTQ0uX76Ms2fP4uzZszhz5gzu378PNTU19OvXD25ubhg8eDDc3d1hYWEhOpeIiNoob29v6OnpYffu3aJTWrUbN25g165d2LVrF/Lz8+Hs7Iw33ngDU6ZMgYmJiei8P5SVlYVevXrh0KFDeOmll0TnKJ2UlBQ4ODjg+vXrkEgkonOIiIiIiIiUiqroACIiIqK2zNPTE1euXIGhoSFcXFywc+dO0UlE9C916tQJQUFBSE5OhqmpKTw8PCCTyfDw4UPRae3Ww4cPsWHDBjg4OMDFxQXnzp3DqlWrkJOTg6ioKEilUg55EDWBgQMHQl1dHWfOnBGd0qbo6upCLpcjMzMTq1evxjfffANra2sEBATg/v37ovOIqJ3r1q0bgoODkZ2djTlz5uC///0vrKysMH/+fNy+fVt0HhERUbulrq6OwYMH4+TJk6JTqJ3T0dGBXC5HRkYGIiIicOPGDbi6usLDwwMxMTGi8+hvHD9+HMnJyZgzZ47oFGpBY8eOxfXr1yGVSjFu3Dj4+PigqKhIdNYzq6qqQnh4OGbPns0hDyIi+kMFBQWIiYlBUFAQvLy8oK+vj0GDBuGDDz7Azz//jBkzZuDQoUN4+PAhLl26hE2bNmHKlCkc8iAiImoBdnZ2CA4Oxr179xATEwNbW1u899576N69O8aOHYsvv/wS5eXlojN/Y9u2bTAzM8OoUaNEpyil6upqAEDHjh0FlxARERERESkfjnkQERER/Uvm5uY4efIk3nrrLcyYMQMBAQGNP/gmorarZ8+eOHLkCA4ePIgTJ06gd+/eCA0NRX19vei0diMpKQkBAQGwtLREUFAQBgwYgPj4eFy7dg1yuZx3nCdqYpqamujXrx/Onj0rOqVN0tbWhlwuR1ZWFjZt2oTvvvsONjY2kMlkuHXrlug8ImrnunTpgpUrV+LOnTv48MMP8e2336JXr16YNGkSR5qIiIiayfDhw/Hjjz+KziAloa6uDplMhuTkZJw6dQqGhoYYN24cnJycoFAoUFtbKzqR/sCWLVvg5uYGFxcX0SnUwgwNDREWFoaYmBicPn0aEokEhw4dEp31TL766iv8/PPPCAgIEJ1CREStQF1dHVJSUqBQKBAQEACJRAJTU1OMGzcOu3fvhqmpKTZu3Ijr16+juLgY8fHxCAoKglQqhYGBgeh8IiIipaWmptY43lFYWIh9+/ZBS0sL06dPR5cuXSCVShEdHS38fNba2looFAr4+fnxhk6CcMyDiIiIiIhIHI55EBERETUBNTU1BAcH49tvv8XevXvh5ubGuyQTtRNSqRQ3btyAv78/Fi5ciGHDhiE5OVl0VptVUlKCzz77DH379oWLiwuuXr2KLVu2IC8vDwqFAp6enqITido1Nzc3jnn8SxoaGvD390dmZia2bduGc+fOQSKRQCaTIS0tTXQeEbVzOjo6WLBgAW7fvo39+/cjNzcX7u7ucHZ2hkKhQE1NjehEIiKiduP555/H3bt3kZeXJzqFlIyHhwdiYmJw+fJl9O3bFzNmzICtrS1CQ0Px5MkT0Xn0P3JycnDo0CEEBgaKTiGBxo4di6tXr2LIkCEYP348Zs+ejYqKCtFZT2XLli2YNGkSzM3NRacQEZEARUVF+P7777FixQp4eXnB0NAQDg4OePPNN5GVlYWJEyfiu+++Q3FxMTIzM6FQKODv7w+JRAIVFRXR+URERPQHNDU1IZVKERUVhZycHHzyyScoLi6Gr68vzMzMMGfOHBw/fhx1dXUt3hYTE4P8/Hz4+fm1+GvTL6qqqgD8cs4LERERERERtSyOeRARERE1ofHjx+PChQuorq6Gq6srjhw5IjqJiJqAtrY2goODkZSUhLq6OgwYMAByuRylpaWi09qMtLQ0yOVymJubY+HChbCzs0NiYiLOnz+P6dOnQ0tLS3QikVJwc3PD1atXUVJSIjqlzevYsSNkMhlSUlIQERGBixcvQiKRQCqV4vLly6LziKidU1VVhVQqxenTp5GYmIgePXrAz88PPXv2xMcff4zi4mLRiURERG2eq6srVFRUkJSUJDqFlJSTkxMUCgXS09MhlUrx3nvvwdLSEkFBQSgsLBSdp/S2bt0KIyMjTJw4UXQKCWZsbIy9e/di7969iIqKwsCBA5Gamio66y+lpKTg0qVL8Pf3F51CREQtoLa2FikpKVAoFAgICIBEIkGXLl0wZswYREREwNDQEKtWrcKpU6fw6NEjxMfH48MPP8SoUaOgr68vOp+IiIj+gS5dumDu3Lk4deoUbt++jXfeeQdnzpzByJEjG4c9EhISWmzYY9u2bfjPf/4DS0vLFnk9+r3q6moAv5zrQkRERERERC2LYx5ERERETczW1hbnz5+Ht7c3xowZgyVLlghZMyeiptevXz+cPn0a27dvx5dffok+ffpAoVCIzmq1ampq8OWXX8Ld3R12dnaIi4vD6tWrkZeXh6ioKLi7u4tOJFI6I0aMQF1dHX788UfRKe2Gurp646jHgQMHkJubCxcXF0ilUly8eFF0HhEpAXd3d3zzzTe4desWpkyZgjVr1sDU1BQymQzXrl0TnUdERNRm6evrw8bGBpcuXRKdQkrO2toaoaGhyM7ORmBgIDZv3ozu3btDJpPh5s2bovOUUn19PXbt2oVp06bxAghqNGnSJFy7dg36+vpwdnZGaGio6KQ/FRkZCUtLSwwZMkR0ChERNYNbt25hz549eOuttzBo0CDo6OjAwcEBcrkc2dnZeOWVV3DgwAEUFBQgNzcXUVFRkMvl8PDwgLq6uuh8IiIiamKWlpZYsmQJrl27hqysLLz33ntITk6Gl5cXTExMIJPJEBMT0zj20NTu37+PuLg4zJo1q1mOT0+HYx5ERERERETicMyDiIiIqBloampi+/btiIyMxKZNm+Dl5YWCggLRWUTUBFRUVCCTyZCeno6xY8di2rRpeOGFF5Ceni46rdV49OgRPvroI/To0QNTp06FmZkZEhISkJqaCrlcDgMDA9GJRErLxMQEjo6OSEhIEJ3S7qiqqkIqleLSpUs4ePAgCgoKMHDgQHh5eeHcuXOi84hICfTo0QPBwcG4e/cuQkNDceXKFfTv3x8uLi5QKBSoqakRnUhERNTmuLq6cqSPWg1jY2MEBQXhzp072LRpE86dOwc7OztIpVKcP39edJ5S+eGHH3Dv3j1MnTpVdAq1Ms899xxOnDiBxYsXY8GCBZg4cSKKi4tFZ/1GbW0tvvjiC0ybNg2qqjxtjIiorXv8+DESExMREhICqVQKExMT2NraYvr06UhISICtrS02bdqE69ev49GjRzh69ChWrVrV+FgiIiJSLj169IBcLkdiYiKysrKwYsUKZGVlwdvbG926dWuWYY+IiAh06dIFUqm0yY5Jz45jHkREREREROLwt7JEREREzUgmkyExMRHZ2dlwcXHB2bNnRScRURPp3LkzwsLCcPLkSTx48ABOTk4ICgpCZWWl6DRhMjIyIJfLYWlpieDgYEyYMAEZGRmIjo7GyJEjoaKiIjqRiAB4enri2LFjojPaLRUVFUilUly4cAHx8fEoLy/H4MGD4eHhgZiYGNF5RKQEdHV14e/vj+TkZJw6dQrW1taYMWMGLCwssGTJEty7d090IhERUZvh4uLCMQ9qdbS1teHv74+0tDQcOHAADx48wKBBgxq/72xoaBCd2O7t3r0bAwcORJ8+fUSnUCukpqaGoKAgxMXF4cyZM3BycmpVQ69Hjx5Ffn4+3njjDdEpRET0jGpqapCSkoLw8HDIZDJIJBIYGhpiyJAhCA0NBQAsXLgQp06dQklJCVJSUqBQKODv7w+JRMIRJyIiIvoNKyurxmGP27dv44MPPmgc9ujatSt8fHygUChQUlLyj1+jvr4ekZGRmDZtGtTV1Zuwnp5VdXU1VFRU+L8DERERERGRAPzpPBEREVEzGzBgAC5evIi+ffti6NChCAkJEZ1ERE1oyJAhuHz5Mj788EN88sknkEgkSnexdmJiIqRSKWxtbREbG4vly5fjzp07CA0NhaWlpeg8Ivo/XnjhBaSkpCAvL090Srvn6emJM2fO4NSpUzA0NMS4ceN4cRURtSgPDw9ERUUhMzMT06dPx44dO2BjY4OJEyciLi4O9fX1ohOJiIhatQEDBuDhw4fIzc0VnUL0O6qqqpBKpTh//nzj953e3t7o378/FAoFampqRCe2S+Xl5fj2228hk8lEp1Ar98ILLyApKQnW1tYYPnw4duzYIToJwC9jNB4eHrCxsRGdQkREf6G2thbJycmIjIxEYGAgXF1doa2tDQcHB7z33nt49OgRfHx8EBsbi8LCQuTm5iImJgaLFy+Gh4cHNDU1RX8KRERE1IZYWlo2DntkZWVh+fLlKCgogJ+fH7p27YqXXnoJ27ZtQ0FBwTMd98iRI7h79y5mzJjRTOX0tKqqqqCurs6bcREREREREQnAMQ8iIiKiFmBkZITY2FisXr0a77//Pl555RU8fvxYdBYRNRF1dXW8++67uHnzJtzd3eHt7Q0vLy+kpaWJTms2NTU12LVrFxwcHDBkyBBUVFTg4MGDuHnzJhYvXgwDAwPRiUT0J4YOHYqOHTvihx9+EJ2iNH4d8EhMTGy8uGrAgAGIjo7mqAcRtQgLCwusXbsW9+7dw44dO/DgwQO8+OKL6NmzJ9asWcOBJyIioj9hZ2cHALhx44bgEqK/9uv3nVeuXEG/fv0wY8YM9OrVCyEhIfxdRBPbt28fqqur4evrKzqF2gBTU1PExcVhwYIFmDlzJhYsWIC6ujphPVVVVYiNjcXkyZOFNRAR0e/V1dUhJSUFu3btwltvvQV3d3fo6+vD0dERc+fOxZUrV+Du7o7IyEjcunULhYWFiI2NxQcffIDRo0fDyMhI9KdARERE7YiVlRUWLFiAkydP4sGDBwgLC4O2tjYWLlwIMzMzuLi4ICgoCKmpqX97rG3btmH48OHo1atXC5TTX6muroaGhoboDCIiIiIiIqXEMQ8iIiKiFqKiooLFixfjyJEjSExMxODBg3H9+nXRWUTUhExNTaFQKHD8+HEUFBSgX79+kMvlKCsrE53WZMrLyxEaGgobGxvMmjULLi4uuHbtGo4dOwapVApVVX6bSdTaaWtrY9CgQYiPjxedonTc3d0bL67q1asXfH190a9fPygUCqEXchCR8tDQ0MDrr7+OH3/8Eenp6fDx8UFoaCi6d+8OLy8vREdHo7a2VnQmERFRq9G1a1cYGRlxzIPajF+/x7x16xa8vb2xatUqWFhYQC6XIzc3V3Reu6BQKDB27Fh06dJFdAq1ER06dMDatWvx1VdfISwsDGPGjEFxcbGQlh9++AHl5eWQSqVCXp+IiH6Rm5uLmJgYLFmyBB4eHtDX14eDgwNmzZqFhIQE2NjYYO3atTh16hSKiopw5swZbNy4Ea+++ip69uwpOp+IiIiUSOfOnSGTyRAVFYX8/Hx8++23cHR0xJYtWyCRSGBvb4/Fixfjxx9//N3vGPPz8xEbG4tZs2YJqqf/rbq6Gh07dhSdQUREREREpJR4lRURERFRC/P09MTly5fRuXNnPP/884iMjBSdRERNbNiwYbh8+TLWrVuHyMhI2NnZQaFQiM76V0pKShAaGoqePXti8eLFGD16NDIyMhAZGQlHR0fReUT0jEaNGoXvv/8e9fX1olOUUr9+/RAVFYVr166hf//+8PPzQ+/evREeHs6L6Imoxdja2iI4OBj37t3Dnj17UFdXB19fX9jY2OCDDz5AVlaW6EQiIqJWoU+fPhzzoDbHysoKoaGhyMnJwcqVKxEdHQ1ra2vIZDKkpaWJzmuz8vPzcfz4ZRKxgAAAIABJREFUcbz++uuiU6gN8vX1xenTp5GWlgZXV1ch/22JiYmBk5MTnnvuuRZ/bSIiZfXrcEdQUBCkUik6d+4Mc3NzTJgwATExMbC2tsaaNWtw6tQplJaWIiUlBQqFAnK5HB4eHrx7OhEREbUaWlpa8Pb2xo4dO5Cfn4+TJ09i9OjROHDgAIYNGwYTExNMmTIFX3zxBR49eoSdO3dCT08PL7/8suh0Asc8iIiIiIiIROKYBxEREZEA3bt3x4kTJ/Duu+9ixowZkMlkKC8vF51FRE1ITU0NcrkcaWlpGDFiBKZNmwZPT882d/FHfn4+goKCYGFhgRUrVsDHxwe3b99GWFgYLCwsROcR0T/00ksv4cGDB7h06ZLoFKXWt29fKBQKpKen44UXXkBgYCBsbW0RGhqKqqoq0XlEpCQ0NDQwZcoU/PDDD0hLS8PkyZOxbds29OzZE8OHD8euXbtQVlYmOpOIiEgYe3v7NvfzHKJf6evrQy6X4/bt2wgPD8eFCxcgkUgglUpx9uxZ0XltzsGDB9GpUye8+OKLolOojerfvz/Onj0LIyMjDBo0CIcPH26x125oaEBMTAykUmmLvSYRkTKpr69Heno6vvzySyxcuBDDhg2Dnp4ezM3NMXHiRMTGxsLc3BwhISG4fPkyysvLOdxBREREbVaHDh0wdOhQfPLJJ0hPT0dmZiaCg4NRVlaGGTNmwMTEBB9++CF69eqFlJQUNDQ0iE5WelVVVRzzICIiIiIiEoRjHkRERESCqKmpISgoCIcOHcJ3330HFxcXJCcni84ioiZmamoKhUKBEydO4OHDh+jXrx/kcnmrvyAyOzsbs2bNgqWlJSIiIrBixQrk5OQgNDQUpqamovOI6F/q27cvrKysEBsbKzqFANjY2CAsLAy3bt2CVCrFkiVLGkc9KioqROcRkRKxtbVFSEgI7t+/j7i4OFhYWGDu3LkwMTGBj48Pjh07xpPtiIhI6djZ2SEtLU10BtG/oqGhAZlMhtTUVBw4cACFhYVwc3ODh4cHYmJi+DXeU9q/fz9Gjx4NLS0t0SnUhpmZmeHEiROQSqV4+eWXsXXr1hZ53StXruD+/fsc8yAiagK1tbW/GeLw8vKCiYkJ+vTpg6lTp+LIkSOwtLTEqlWrcOrUKTx+/BgXL17E1q1bMWvWLDg5OUFdXV30p0FERETUZKytreHv74+YmBg8fPgQy5cvR1VVFW7dugUXFxdYWVlhzpw5OHjwIEpLS0XnKqXq6mqOxxEREREREQnCMQ8iIiIiwV566SVcvXoVRkZGeP755xERESE6iYiawdChQ5GUlIT169dj165d6NOnDxQKheis37lz5w4CAgJga2uLhIQEbNmyBVlZWViwYAF0dHRE5xFRExo9enSL3v2T/p6VlRVCQ0ORnp6O8ePHY+nSpbCyskJISAiePHkiOo+IlIiqqio8PT2hUChw7949rFu3DllZWfDy8kLPnj3xwQcf4MaNG6IziYiIWoSVlRXy8/M5tEftgqqqKqRSKc6ePYuEhATo6OjA29sbjo6OUCgUqKmpEZ3Yaj1+/BjHjx/H+PHjRadQO9CpUyfs3r0bK1aswNy5c7F69epmf82EhASYmJhgwIABzf5aRETtSWlpKU6dOoX//ve/8PPzw4ABA6ClpQUHBwfMmTMHFy5cQM+ePbF27VpcvHgR5eXlvxn68PDwQKdOnUR/GkREREQtRldXF+np6Rg8eDAePHiACxcuYPr06bh06RJeeeUVGBkZYcSIEQgJCcHVq1c5MttCampq0LFjR9EZRERERERESkmlgd/9EhEREbUKtbW1WL16NVatWoXXXnsNW7du5d3dmpiPjw8AICoqSnAJKbv8/Hx88MEHiIiIwLBhw7B582bY29sLbbp37x4+/vhjhIeHw8TEBAsWLMDs2bO5yE/UjsXGxkIqleLevXswNzcXnUN/4MGDB/jss8+wYcMGdOzYEYGBgXj77bdhYGAgOo2IlFRycjIiIyOxd+9e5OTkoH///pgyZQomT54MCwsL0XlERETN4vLly3B2dsbNmzfRq1cv0TlETS45ORnr16/H119/DSMjIwQEBGD+/PnQ19cXndaqfPnll5g2bRoKCgpgaGgoOofaka1btyIwMBBz585FaGgoVFWb575M3t7eUFdXxzfffNMsxyciag+KioqQkpKCpKSkxre0tDTU19dDX18fDg4OcHZ2hrOzMyQSCfr27csLIomIiJqYt7c39PT0sHv3btEp9A8VFxfD1NQUmzdvxowZM37zscLCQhw/fhzHjh1DbGwscnJyYGxsjOHDh8PT0xNSqRSmpqaCytu3pUuXIi4uDklJSaJTiIiIiIiIlA7HPIiIiIhamZiYGEybNg1du3ZFdHQ0JBKJ6KR2g2Me1NpcvHgRgYGBuHr1KubMmYPVq1dDV1e3RRvu37+P9evXc8SDSAlVVFTAyMgImzZtwsyZM0Xn0F8oLCzE5s2bERoaivr6esyZMweLFi1C586dRacRkZKqr6/HmTNnEB0dja+//hoPHjyAs7Mz3njjDfj6+qJbt26iE4mIiJpMYWEhjI2NER8fD09PT9E5RM3mzp07+PTTT7F9+3Z06tQJgYGBmDdvHrp06SI6rVXw8fFBcXEx4uLiRKdQO3TgwAFMmTIFEyZMwM6dO6Gurt6kx29oaEDXrl2xdOlSzJ8/v0mPTUTUVuXm5v5mtCM1NRVZWVkAAFNT08bBDnt7ezg7O8Pe3h4qKiqCq4mIiNo/jnm0fZ9//jkWLlyIvLy8vxyLbWhowJUrV3DkyBEcPXoUZ86cQX19PVxcXPDiiy/C09MTgwYN4nhaE1mwYAHOnj2Ls2fPik4hIiIiIiJSOhzzICIiImqF7t27B19fXyQnJyMsLAyvvvqq6KR2gWMe1BrV19djz549WLBgATQ0NPDRRx9BJpM1++s+ePAAq1evRnh4OLp27Yr33nsP06dP5y9AiZSMt7c36urqcPjwYdEp9BRKS0vx2WefYd26daiuroafnx+WLl3Ki+aJSKi6ujocP34cCoUCBw4cwJMnTzBo0CDIZDL4+vryju5ERNQu6OjoYNOmTfDz8xOdQtTsfh2U3Lx5M8rKyuDj44Ply5ejV69eotOEqaqqgrGxMYKDgzF37lzROdRO/fDDDxg/fjyGDRuGqKgoaGpqNtmxU1NTIZFIcOHCBbi6ujbZcYmI2oKysjKkpKTg2rVruHbtGpKTk/HTTz/h8ePH6NChA2xtbeHk5IT+/fvDyckJTk5OMDIyEp1NRESktDjm0fYNGjQItra2UCgUz/S8x48fIyEhAUePHkVcXByys7Ohra2NIUOG4IUXXoCnpyccHR2hqqraTOXt25tvvonk5GScPHlSdAoREREREZHS4ZgHERERUStVW1uLZcuWYd26dXj99dexdetWaGlpic5q0zjmQa3ZgwcPsHjxYuzatQsjR47Epk2bYG9v3+SvU1ZWhk8++QSffPIJdHV1sXz5cvj5+XHEg0hJKRQKzJw5EwUFBTA0NBSdQ0+prKwM27dvR0hICEpKSjBjxgwsWrQI5ubmotOISMlVVlYiPj4e0dHR2LdvH+rq6uDl5YVJkyZhwoQJ0NbWFp1IRET0j9jZ2cHX1xdBQUGiU4haTHl5OSIiIvDpp5/i/v37GDNmDIKCguDs7Cw6rcWdOHECI0aMwO3bt2FlZSU6h9qx8+fPY8yYMZBIJIiJiWmyccTw8HAsWLAARUVFUFdXb5JjEhG1Ng0NDbh9+zZ++umnxrdr164hKysL9fX10NXVhYODAxwdHdG/f3/0798fffv25c+riIiIWhmOebRtN2/eRJ8+fRAfH48XXnjhXx0rKysLiYmJOH36NA4fPozc3Fx06dIFI0aMgKenJ9zd3SGRSJqovP3z9/dHdnY24uLiRKcQEREREREpHc5SEhEREbVSampqCA4Oxv79+3H48GG4uroiNTVVdBYRNRMTExPs3LkTp0+fRlFREfr164e3334bxcXFTXL8mpoahIeHo1evXvj4448xd+5cpKWlYfbs2RzyIFJi48aNg4qKCg4fPiw6hZ6Bjo4O5HI5bt26hTVr1mDfvn2wtraGTCZDZmbmUx3j3r17qK6ubuZSIlI2nTp1glQqhUKhwP379/HZZ5+hoqICfn5+MDMzw9SpU/H999+jpqZGdCoREdEzMTc3R15enugMohalra0NuVyOjIwM7Ny5E7dv34aLiws8PDwQExMjOq9FJSQkwMbGhkMe1Oyef/55/Pjjj8jKysLo0aNRVlbWJMe9fPkyBgwYwCEPImo3SktLkZSUBIVCAblcDi8vL5iYmMDGxgYvv/wytm7diqqqKkyYMAE7d+7E9evXUVxcjDNnzmDr1q2YPXs2Bg0axCEPIiIioia2c+dOmJubY/jw4f/6WL+eAxEWFoacnBxkZmZizZo1AIBFixbBwcEBZmZm8PHxQXh4OHJycv71a7Zn1dXVPEeQiIiIiIhIEI55EBEREbVy3t7euHr1KvT09DBo0CB89dVXopOIqBkNHjwYFy9exPbt2/H111/DxsYGoaGhqKur+0fHa2hoQHR0NOzt7TFv3jyMGzcOmZmZCA4Ohq6ubhPXE1FbY2BggBdeeAH79u0TnUL/wK8XVmVlZWHbtm04e/Ys7OzsIJPJcPPmzT993s8//wx7e3uMHTsWlZWVLVhMRMrE0NAQfn5+OHbsGAoKCrB+/XpkZmbipZdeQteuXeHj4wOFQoHS0tJnPnZpaSk+//xz/juMiIhajJGRER49eiQ6g0gIdXV1yGQyJCcn49ChQwB+GQd1cXFBdHQ0GhoaBBc2v4SEhH99N1mipyWRSHD8+HFkZ2dj1KhRKC8v/9fHTEtLg729fRPUERG1vNzcXMTExCAkJAQymQwSiQQGBgZwcXHBm2++idOnT8PU1BTLli1DfHw8CgsLG58THBzc+BxVVZ4qS0RERNSc6uvr8cUXX2DatGno0KFDkx/f2toa/v7+iIqKQmFhIS5dugS5XI6ioiLMmzcP3bt3h42NDQICAhAdHY3Hjx83eUNbVl1dzZFPIiIiIiIiQfgbCiIiIqI2wMLCAidOnMDUqVPx6quvIjAwEFVVVaKziKiZqKqqQiaTIS0tDbNmzcKiRYvg6uqKxMTEZzpOQkICXF1dMXnyZLi5ueHmzZsICwuDiYlJM5UTUVs0YcIEHD16FCUlJaJT6B/q2LEjZDIZUlNTERERgQsXLsDOzg4+Pj64cePG7x4fGhqKyspKHD9+HOPGjePXlUTU7IyMjODv74/ExERkZmZi2bJlyM/Ph5+fH7p27Qpvb2/s3LkThYWFT3W83bt3Y+7cuejfvz9++umnZq4nIiICunTpwjEPUnoqKiqQSqVITEzEqVOnYGpqCl9fXzg6OkKhUKCmpkZ0YrMoLS3FpUuXMHLkSNEppER69eqF48ePIyMjA+PHj//XQ4ZpaWno3bt3E9URETWPoqIiJCYmIjw8HHK5HB4eHtDT04O5uTnGjRuH0NBQFBUVQSqVYufOnbh+/TqKi4tx6dIlKBQKyOVyeHp6wsjISPSnQkRERKSU4uLicO/ePbz++uvN/lpqampwdnbG4sWLER8fj59//hnx8fGYNGkSkpKS4OvrCyMjI7i4uGDJkiU4duyY0p8XUVlZCU1NTdEZRERERERESkmlQRluk0JERETUjhw4cADTp0+Hubk59u7dC4lEIjqpzfDx8QEAREVFCS4hejbp6emYP38+jhw5gokTJ+Ljjz+GhYXFnz4+KysL77zzDvbv348xY8YgODgYffv2bcFiImpLHj16hG7dumH37t2YPHmy6BxqAvX19di3bx+CgoKQlpaGMWPGICgoCM7OzigpKUH37t1RWloK4JeTXIYPH46YmBh06tRJcDkRKZtHjx4hNjYWhw8fxnfffYfKykoMGjQIUqkUL7/8Mmxtbf/weWPGjMHRo0cb76gaEhKC+fPnQ0VFpSXziYhIiaxYsQL79+9HcnKy6BSiVuX69etYt24dvv76a5iZmWH+/PmYOXMmtLW1Rac1mdjYWEilUuTl5aFr166ic0jJXLt2DSNHjsTAgQNx4MABaGhoPPMxiouLYWhoiO+++w6jR49uhkoiomfz+PFjpKSk4Pr160hOTkZKSgqSk5MbR16NjY3Rt29fODg4wMHBAY6OjnBwcGhXX18QERHRn/P29oaenh52794tOoWe0ZQpU3D//n2cOnVKdAoKCgqQkJDQ+Hbnzh3o6Ohg6NChGDp0KIYNGwYXFxeoqamJTm0xY8aMQbdu3bBjxw7RKUREREREREqHYx5EREREbdCdO3cwZcoUXL16FR999BHkcrnopDaBYx7U1sXExEAul6OgoADvvvsulixZ8psLr588eYJ169YhJCQEFhYW2LBhA8aMGSOwmIjaiv/85z/Q1dXFvn37RKdQE/p11GPNmjX46aefMG7cOHTv3h1hYWGora1tfJyamhpGjBiBQ4cOcdCDiIR58uQJEhISEB0djZiYGBQXF8Pe3h5SqRRjx46Fu7s7VFRUUFVVBQMDg9/cmVpVVRVDhgzBF198AXNzc4GfBRERtVehoaEICQlBbm6u6BSiVunOnTv49NNPERERAS0tLQQGBmLevHkwMjISnfavLVy4EMeOHcO1a9dEp5CSOn/+PLy8vODl5YW9e/c+84VGZ8+ehZubG7KystCjR49mqiQi+r2amhrcvHkTqampSElJaXx/48YNNDQ0QFdXF7a2trC3t4dEIml8b21tLTqdiIiIBOKYR9v0+PFjmJqaYtOmTZg5c6bonN/JyMhAQkICTpw4gZMnTyIvLw86Ojpwd3dvHPcYOHAg1NXVRac2m5EjR6J37974/PPPRacQEREREREpHY55EBEREbVRtbW1WL16NVatWoXXXnsNn332GXR0dERntWoc86D2oLq6Gp9//jmWLVuGbt26Ye3atZg4cSK++eYbvPPOOygpKcGSJUswf/58dOzYUXQuEbURkZGRCAgIQG5ubru40IZ+79ixY3jvvfdw/fp1VFRU/O7jampqGDlyJA4dOvSP7vJKRNSUqqurcfz4cezfvx+HDh1CXl4ebGxs8PLLL8PU1BQLFy783XPU1dWhoaGB8PBwTJkyRUA1ERG1Z7t374a/v/8ffi1NRP9fYWEhNm/ejM2bN6OyshIzZszAwoULYWFhITrtH3N2dsaQIUOwceNG0SmkxH788UeMHj0aEyZMwK5du6CiovLUz927dy9ee+01VFVVoUOHDs1YSUTKqqamBhkZGUhJSUFKSgquX7+O5ORkZGRkoK6uDhoaGrCzs4NEIkHfvn3h4OAAiUQCKysr0elERETUCnHMo20KCwvD/PnzkZubCwMDA9E5fysrKwuJiYk4ffo0jh49ijt37kBLSwtOTk7w8PCAp6cnPDw82tXNUNzc3PD8889jw4YNolOIiIiIiIiUDsc8iIiIiNq4Y8eO4Y033oCenh6+/vprODk5iU5qtTjmQe1JTk4Oli5dij179kBPTw+lpaV47bXX8PHHH8PExER0HhG1MeXl5ejWrRvWr1+P2bNni86hZvLJJ59g8eLFqKur+8OPc9CDiFqrlJQUREdHIyoqCrm5uaioqEB1dfXvHqeiooKGhga89tpr2Lp1KwcviYioyXzzzTfw8fFBbW0tVFVVRecQtXrl5eWIiIjAp59+iry8PEyePBmLFy+GRCIRnfZMKisrGy8g8vX1FZ1DSi4+Ph5jx47FO++8gzVr1jz187Zs2YKgoCA8fPiwGeuISBnU1NTg3r17SElJQWpqauP71NTUxtE7U1NTODs7QyKRwN7eHhKJBA4ODvx5MxERET01jnm0TW5ubrC2tsaePXtEp/wj/3vcIz4+Hrdv34a6ujocHR3h6ekJT09PuLu7Q1NTU3TqPzZgwAC8+OKL+Oijj0SnEBERERERKR2eaURERETUxnl6euLq1auwsrLC4MGDERoaCu61EbV/mpqa0NDQgIqKSuOFJIaGhu3qjgBE1HK0tbXh7e3NE2LascrKSoSEhPzpkAcA1NbWIiEhAd7e3qiqqmrBOiKivyaRSBAUFITU1FTo6+v/4ZAHgMbvhaOiotCnTx8kJia2ZCYREbVjWlpaaGhoQGVlpegUojZBW1sbcrkcGRkZiIiIwOXLl9G3b19IpVKcPn1adN5Tu3LlCmpqauDq6io6hQheXl4ICwvD2rVrER4e/tTPe/ToEYyMjJqxjIjam+rq6sZh1aCgIPj4+MDFxQW6urqwsbHBK6+8gvDwcBQVFcHT0xMbN27EqVOnUFZWhtzcXMTExCA4OBgymQzOzs4c8iAiIiJq527evIlz585h6tSpolP+MWtra8hkMoSFhSErKws5OTn44osv4OzsjOjoaHh5eUFPTw8uLi5YsmQJYmJiUFJSIjr7mVRVVfFrcyIiIiIiIkE45kFERETUDnTt2hVHjhxBSEgI3n33XYwfPx6PHj0SnUVEzWTPnj2ws7NDbGwsvvzyS5SUlGD79u346quv0KdPH4SHh6O+vl50JhG1MW+88QbOnDmDmzdvik6hZhAREfFUXx/W1dUhISEBPj4+qKmpaYEyIqKnd/v2bdy9e/dvH1dTU4P8/HwMGzYMS5Ys4b/PiIjoX/v1jotPnjwRXELUtqirq0MmkyE5ORkHDx7Ezz//DA8PD3h4eCAmJqbVD5NfvHgRnTt3Ro8ePUSnEAEApk2bhqVLl+LNN9/EDz/88FTP4ZgHEf2ZPxrtkEgk0NLSgoODA1577TXs3r0bFRUV8PT0RHh4OC5duoSSkhJkZmY2jnb4+/vDw8MD2traoj8lIiIiIhIgMjISZmZmGDlypOiUJmNmZoZJkyYhLCwMmZmZuH37NiIiIuDo6Ijo6GiMGzcOxsbGGDJkCJYvX464uDiUlpaKzv5LlZWVvEkYERERERGRICoNrf3sCCIiIiJ6JufPn8eUKVNQW1uLL774AkOGDBGd1Gr4+PgA+OUuzURtUWZmJgIDAxEXF4fXX38dGzduROfOnRs/XlRUhKCgIGzZsgVOTk7YtGkTBg8eLLCYiNqS+vp6WFhYYObMmQgKChKdQ03MwsIC9+/ff+oLpdTU1DB27FhERUVBXV292brKy8tRXV2Nurq6xjvXlJWVNV54X19fj8ePH//p82tra//2pBg9PT106NDhTz9uYGAAFRUVAEDHjh0bTzrX19eHqqoqNDQ0oKWl9UyfFymfkydP4sGDB6Iz2r0jR45g165dqKure6bn9ezZEwsWLECXLl2aqYyIiMzMzODu7i46o9mcO3cOgwcPxt27d/Hcc8+JziFq0xITExESEoLY2Fg4ODjgnXfewZQpU5r1e89/SiaToaCgAEePHhWdQtSooaEBr7/+Oo4cOYKzZ8/C1tb2Lx//+uuvo6SkBIcOHWqhwn8uMzMTly9fFp3Rrjz//POwsLAQnUGCFRQU4MaNG0hLS/vN2927d9HQ0IBOnTqhT58+sLOzg0QiaXxvY2MDNTU10flERESkZLy9vaGnp4fdu3eLTqGnUF9fDysrK8hkMqxevVp0Tou5d+8eTpw4gZMnT+LHH3/ErVu3oKamhv79+2PIkCEYMmQIPDw8YGxsLDq1kbm5Od599128/fbbolOIiIiIiIiUDsc8iIiIiNqhx48fY9asWfj222+xbNkyLF++/C8vYFQWHPOgtqqmpgafffYZ3n//fdjY2GDr1q1/OdJx9epVyOVyJCYmYvr06VizZg26du3agsVE1Fa9++67+Pbbb5GRkdE4bkDtQ1hYGJKSknDnzh1kZWXh/v37qKysbPy4uro6OnTogNraWtTW1jb+85dffhmRkZEoLS1FUVERiouLUVpairKyMpSUlODJkyd48uQJiouLUVFR0fjnJ0+eoKKiAo8fP24c7KioqEBlZeXfDnS0Zr8Of2hqaqJTp06NQx8GBgbQ1NRs/LOWlhY0NTWhr68PHR0daGpqQldXt/HN0NAQBgYGMDQ0bLzLO7VdNTU16NSpE+rr60WnEBERCaOppYUn5eWiM5rNtWvX0L9/f6Snp//tRdNE9HSSk5Oxfv16fPXVVzA3N8f8+fMxa9asVjWmaGdnhwkTJijVxSjUNlRWVmLkyJEoKCjAuXPn/vLioEmTJkFVVRV79+5twcJ/5pVXXsH+/ftFZ7QrU6dORWRkpOgMagG1tbXIyspqHO1IT09v/HNxcTGAX3622bt3b9jZ2TWOd9jb26NHjx48l4CIiIhaDY55tC1xcXF48cUXcePGDfTp00d0jjAFBQW4cOECTp8+jcTERFy4cAE1NTWwtraGu7s7PDw84O7uDolEIqzRyMgIa9aswezZs4U1EBERERERKSuOeRARERG1Y+Hh4Xjrrbfg5uaGPXv2wMzMTHSSUBzzoLYoMTERs2fPRlZWFhYtWoT33nsPHTt2/NvnNTQ0YO/evVi0aBEeP36M999/H3K5HBoaGi1QTURt1fXr19G3b1/Ex8fD09NTdA41saqqKhQWFuLhw4fIz89HdnY2MjIycP/+feTl5aGwsBDFxcUoKSlBZWXlb0Y9/oienh60tLR+M2ahqanZOFChqanZOGyhoaHROHwB/H4UQ0VFBQYGBgDQ+Phf6erq/uUdIH891h/5u+GQmpoalJWVNf69srISFRUVAICioiIA+MMRkl8HSn59fFFRESoqKlBRUdE4ZvLkyROUlJSgrKwMFRUVKC0t/cOGTp06NQ57/Pr2f/9ubGwMY2NjdOvWrfHPrfGu1cqqqqoKnTp1wuItOzHwhRdF57Rr21a+h9s3rkNHTx/aevrQ0tWDpo4OtHX1oaWrCy0d3V/+rqMHTR1daOnoQEtPH9o6ulBRVRWdT0TUbv14aB8+W7YQ1VVVolOaDcc8iJpPdnY2NmzYgIiICGhpaSEwMBDGanh+AAAgAElEQVTz5s2DkZGR0K7S0lIYGBhg3759GD9+vNAWoj9SUFCA559/HlZWVoiLi/vT3xtMnjwZtbW1+Oabb1q48NmN8/bGY6hDvu6/olPahZC502FrZsyLINuZqqoqZGRkIDU1FSkpKUhNTUVWVhZSU1Mbf65paGgIe3t7SCSSxvfW1tbo0aMHR7yJiIio1eOYR9vy2muvITs7G6dPnxad0qqUlZXh3LlzSExMbBz4qKyshKmpaeOwh4eHB5ycnKDaQr/D1NbWxpYtWzBt2rQWeT0iIiIiIiL6//78LHgiIiIiavP8/f3h4uKCyZMno1+/foiMjMRLL70kOouInkJFRQU+/PBDrF+/HqNGjcLhw4dhZWX11M9XUVHB5MmT4e3tjU2bNmH16tXYvHkzVq9eDZlM1nzhRNSmOTg4wMPDA2FhYRzzaCMaGhqQn5+PnJwc5OTk4O7du3j48CEePHiAgoICPHz4EIWFhcjPz//dqIWGhgaMjY3RuXNnGBoawtbW9jcjEvr6+ujQoQMsLS0bH2NgYABdXV3o6OgI+oyfjaqqKgwNDf/yMSYmJi1U88vFYKWlpSgqKkJxcTGKiooa3/7v3+/du4eioiL8/PPPePjwIaqrq39zLENDQ3Tt2hVdunT5zdCHiYkJLCwsYG5uDjMzM3Tr1q3FPj+i5jZrxVrRCUREpKR+vT8GL34kanpWVlYIDQ3F8uXLsXnzZvz3v//FJ598Aj8/P7zzzjt47rnnhHQlJyejvr4eTk5OQl6f6O907doVhw8fhpubGxYtWoSNGzf+4ePU1dVRWVnZwnVE9G/U1NTg9u3buHXrFtLT03Hr1i3cunULaWlpyMnJAfDLz3Z79eqFPn36YNSoUViwYAF69+6NPn36QFtbW/BnQERERETKoKSkBAcOHMCGDRtEp7Q6Ojo68PT0bDzvpqamBj/99BOOHTuGxMREfPjhhygqKoKenh4GDhwIT09P/D/27jwup/T/H/irSAshJCpLd8SUJYVQWWsQSUwLNREm+8QnFGOpobFENPZ9ZJkZMmPLDLKWdShbthIlrRRJaf/94ef+TtPiTnedltfz8bgfdN3nnOt1rnPuu/vcnfM+xsbG6NGjR4XdqCsrK4s3ASMiIiIiIhIIi3kQERER1XAGBga4desWpk2bBktLS8ycORM+Pj4l3qGLiIQXEhICZ2dnpKSkwN/fHw4ODl+8LEVFRbi7u8PR0RE//vgjnJ2d8csvv2Dt2rXo2rWrFFMTUU0xefJkODs7Iy4uDurq6kLHqfUSExMRFRWF2NhYcbGOuLg4xMbG4sWLF4iPj0dOTo54elVVVaipqYmLOxgaGqJZs2ZQU1MrUvihYcOGAq5Z7aSsrAxlZeUvem29efOmSIGWpKQkvHr1CklJSXjw4IG4/fXr1+L55OXloa6uDg0NDbRq1QoaGhrQ1NSEpqYmWrVqBS0tLaiqqkpzNYmIiIhqHBbzIKp4zZo1g6enJ+bMmYOdO3dizZo12Lx5M+zt7eHh4QFdXd1KzfP48WMoKioKVkyESBKdOnXCjh07YG9vj379+sHa2rrINHXr1kVubq4A6YioNAUFBXjx4gWePHkiLtbxqXDHs2fPxK9bNTU1dOjQAe3bt8fgwYPRsWNHfPXVV9DS0kKdOnUEXgsiIiIiqs1+++035Ofnw9bWVugoVZ6cnBwMDQ1haGgId3d35Obm4vbt2wgJCcGlS5ewZs0aeHh4oH79+ujduzdMTU1hamoKIyMjKCkplbv/7Oxs5OXlQUFBQQprQ0RERERERGXFYh5EREREtYCysjL27t0Lc3NzTJ8+HVeuXMGvv/6Kdu3aCR2NiP7lw4cP8PT0xOrVq2FmZobz589DU1NTKsvW0NDA1q1bMWnSJMyaNQsGBgZwcHCAj48P1NTUpNIHEdUMNjY2+N///oddu3Zh4cKFQsep8bKzsxEbG4uoqKgij4iICKSlpYmnVVFRgUgkQsuWLaGnpwczMzOoq6uL21q3bg1lZWUB14YqUuPGjdG4cWN06NDhs9NmZWXh9evXiI+PR1RUFOLi4sT/v3r1KuLj4xEdHY28vDwAgIKCgnhf+u+Dd/MkIiIiYjEPosrUoEEDuLq6YurUqdi/fz98fHzQuXNnjBgxAvPnz0fPnj0rJUdERATat28PWVnZSumP6EvZ2toiKCgIEyZMgL6+PrS0tAo9z2IeRMJKTU0Vf98bHh6OBw8eICoqCo8fP0Z6ejqAj9/7aWtrQyQSYdSoURCJRNDV1UXnzp3RqFEjgdeAiIiIiKh4e/bswahRo9C4cWOho1Q7devWRffu3dG9e3fMmjULABAVFYWQkBBcvnwZv//+O5YsWYK6deuia9euMDY2homJCQYMGIBmzZqVub+srCwAYDEPIiIiIiIigbCYBxEREVEt4uTkhJ49e8Le3h7du3fH1q1bYWdnJ3QsIgJw48YNjB8/Hi9fvsSmTZvw3XffVcgFIj169EBISAgCAgIwd+5ctGvXDm5ubpg/fz7k5eWl3h8RVT/y8vIYN24ctm3bhvnz5/PuflKSlJSE8PBwPHr0COHh4Xj48CEeP36MuLg48YWBqqqq4gIKQ4YMwbRp06ClpQWRSAQNDQ3Urcuv8kgy8vLyUFdXh7q6OgwNDYudJicnp9hCMqGhoQgICEBKSgoAQFZWFpqamujQoQO++uor6Orqiv/9khOFiIiIiKqjT5/Ziajy1KtXD87Ozhg3bhyOHTuG5cuXw8jICIMGDcKCBQswcODACu3/yZMn0NHRqdA+iKTl559/xj///AM7OzuEhISgXr164ueaNGmCsLAwAdMR1XxZWVmIjIwUF+r49Lh37x4SExMBfPy9pqmpCV1dXZiZmcHFxUX8XbCWlhaLxhERERFRtRIREYGrV69iyZIlQkepMT4dHzg5OQEA4uPjERISIi7wsWHDBuTn50MkEomLexgbG0NPT++zy/7w4QMAFvMgIiIiIiISCq8AICIiIqplOnbsiGvXrmHu3LkYM2YM/vrrL6xfv553cScSSHZ2Nry8vLBq1Sr0798ff//9N1q3bl2hfcrIyMDGxgbDhg3D+vXrsWzZMhw4cADe3t6wsbGp0L6JqHqYMmUKfH19cfLkSVhaWgodp1p5/fo1QkNDxQU7Hjx4gAcPHogLIzRu3BhfffUV9PT0MHToUPEdF0UiET+PUaWSk5ODlpYWtLS0MGjQoCLPv3nzptDFB48ePcK1a9fwyy+/IC0tDcDHAjT/Lu6hp6eHbt26QUVFpbJXh4iIiKhC8WRnIuHIyspi5MiRGDlyJEJCQrBy5UoMGjQI+vr6mD17NhwcHCqkEGlERASGDx8u9eUSVQQFBQUcPHgQhoaGmD9/PtasWSN+TlNTE7GxsQKmI6oZsrOzxYVxw8PDCxXuePbsGQoKClC3bl20bt1a/H2vmZmZ+Duztm3bQlZWVujVICIiIiKSij179kBdXb3YvzOTdLRs2RI2Njbic/nevXuH69evi4t7uLq64sOHD2jZsqW4sIeJiQm6detW5NiD328TEREREREJi8U8iIiIiGohBQUFrF+/HpaWlhg/fjy6dOmCffv2wdjYWOhoRLXK8+fPMWbMGNy5cwfLli3D3LlzK/VEPiUlJbi7u8PBwQELFiyAnZ0dtmzZgrVr16JLly6VloOIqh5tbW0MGjQIGzduZDGPUqSmpiI8PBy3bt0SPx4+fIiCggKoqKhAJBJBV1cXw4cPF5+0zbssUnXRuHFjGBgYwMDAoMhzn/b9Bw8eiP89evQo4uPjAXw8scjQ0FD86NGjB1q0aFHZq0BEREQkNRkZGQCA+vXrC5yEqHYzMTGBiYkJbt++DV9fX0yYMAFLly7F3Llz4ezsDDk5Oan0U1BQgMjISLRv314qyyOqDO3bt8e2bdswduxYmJqaYuTIkQA+FvNISkpCVlYW5OXlBU5JVLXl5OQgOjoaERERePLkCZ48eYKIiAhEREQgJiYG+fn5kJGRQatWraCjo4P27dvDwsICHTp0QPv27dG2bVup/S4iIiIiIqqq8vPzsXfvXjg5OVVIgVUqnrKyMszMzGBmZgbg4/HL3bt3ERQUhJCQEHh5eSE1NRXKysowMjISF/cwMTFhMQ8iIiIiIiKBsZgHERERUS329ddf4/bt25gwYQL69++PH374AYsWLeIfWYgqwaFDh+Di4gKRSIQ7d+4IemK4pqYm/P39MWPGDMyaNQvdunWDg4MDVq9ejebNmwuWi4iENWvWLAwbNgy3b9+Gvr6+0HEEl5GRgevXr+PSpUu4ceMGQkNDkZCQAAAQiUTi985PxQ/4/kk1mYqKivjEn3+Lj49HaGio+LF79254eXkB+Ph5w8DAAEZGRjA1NUWPHj14shARERFVG5+KeSgpKQmchIgAQF9fH/7+/li8eDF8fHwwY8YM/PTTT5g9ezZcXFygqKhYruW/ePECGRkZ0NHRkVJiosphb2+PM2fOYOLEiejRowc0NDTQqlUrFBQU4OXLlxCJREJHJBLchw8fEBcXh6ioKPHjU7HamJgY5ObmAoC4WLNIJMK4ceOgp6cHkUiEDh06oEGDBgKvBRERERGRcM6ePYuYmBg4OTkJHaVWk5OTE99cw93dHXl5ebhz5w6Cg4MRHByMLVu2wMvLC4qKitDT0wMA3Lp1C+3bt+cxDRERERERUSWTKSgoKBA6BBEREREJq6CgAD///DPc3d1hYGCA/fv3Q0tLS+hYUmdrawsAOHjwoMBJqDZLT0+Hm5sbtm/fjpkzZ2LVqlVV6m54BQUFCAgIwJw5c/Du3Tu4u7tj9uzZqFevntDRiKiSFRQUoFu3bujatSv27NkjdJxKl5qaipCQEAQHByMkJAQ3b95ETk4O2rRpgz59+oiLdnTr1g0qKipCxyWqsl69eoWwsDCEhobi1q1buHLlCl6+fAl5eXn06NEDffv2hYmJCYyNjdGwYUOh436RrKwsKCgowH3jbvQcNFjoOERERJXu0rHD2LTQDdlZWUJHqTAHDhzAuHHjkJOTI3QUIipGdHQ0fH19sX37djRo0ADTpk3DrFmz0Lhx4y9aXkhICExNTREXF4eWLVtKOS1RxcrIyEDXrl2hp6eHI0eOIDExES1atMDZs2cxcOBAoeOVaoSVFd5CDq6r1gsdpUZYOc0ZOuqq2Lt3r9BRKtWn4jVRUVF4+vSp+N9P/3/16hUAQFZWFpqamtDW1oZIJCr0b7t27b74dwgRERERlY+VlRUaNmxY6z7HVifffvstIiMjcfXqVaGj0GfExcXh8uXL+PXXX/Hnn39CRkYGsrKy6NChA0xMTGBmZoaBAweiadOmQkclIiIiIiKq0eoKHYCIiIiIhCcjIwNXV1eYmZlh7Nix6NatGzZv3owxY8YIHY2oRgkNDcWYMWOQkpKCY8eOYfjw4UJHKkJGRgY2NjawsLCAj48PPD09sWvXLqxZs6ZK5iWiivPp88HkyZOxdOlStG7dWuhIFSonJwfBwcE4efIkTp8+jfDwcBQUFEBXVxempqaYPn06+vbti1atWgkdlahaadasGczNzWFubi5ue/bsmfiOQH/88Qd++ukn1KlTB126dMHgwYNhYWGBPn36oE6dOgImJyIiIvo/mZmZUFJSEjoGEZWgTZs28PPzw8KFC7Fx40b4+fnB19cXzs7O8PDwKHNBjoSEBMjKykJVVbWCEhNVHCUlJezYsQMDBgzA77//Djs7O2hoaODmzZtVvpgHkaSys7MRGxuLqKioIo/Hjx8jPT0dAFCvXj1oampCJBJBX18fo0aNgkgkgkgkQseOHVG/fn2B14SIiIiIqHp5//49/vzzT/j4+AgdhSSgrq4OGxsbtGjRAn/++SdCQ0Px+PFjXLp0CRcvXsT27dshIyODzp07o1+/fujbty9MTU3RvHlzoaMTERERERHVKCzmQURERERienp6uH79Otzd3eHg4IC//voLmzZtQoMGDYSORlStFRQU4Oeff4a7uzv69OmDc+fOQUNDQ+hYpapfvz48PT0xbtw4zJ07F5aWlhg6dChWr14NXV1doeMRUSVxdHTE4sWLsX79+hp5MkZiYiJOnjwpLuCRlpaGr776CkOHDsWyZctgbGzMO5AQVQAtLS1oaWnByckJAJCUlISQkBBcvHgRAQEBWLFiBZo0aYLBgwdj2LBhGDJkCF+LREREJKjU1FTenZ2oGlBVVYWnpyfc3Nywa9curFy5Elu3bsW4ceOwcOFCiQt0JiYmomnTpqhbl6fUUPXUr18/fPfdd5gxYwYGDhyInj174vr160LHomrg4sWLaNWqFUQikdBRkJqaWmyxjqioKERHRyMvLw8AoKKiIi7QYWZmBhcXF/HPbdu2haysrMBrQkRERERUcxw5cgTZ2dmwsbEROgqVwYcPHwAArVu3hr6+Puzs7AAAaWlpuHHjBoKCghASEoLNmzcjJycHIpEIxsbGMDExwddff422bdsKmJ6IiIiIiKj645kHRERERFSIgoIC/Pz8MHDgQEyaNAldunTB/v370bt3b6GjEVVL7969w7hx43D8+HF4enpi/vz51erEQS0tLQQEBODixYuYPXs2unbtChcXF3h6evLOlES1gJycHGbMmAFvb28sXLgQjRo1EjpSuSUnJ+PAgQM4cOAAbt68iXr16qF///7w9vaGhYVFlThRnai2ad68OUaNGoVRo0bBz88PT548QWBgIAIDAzFhwgTk5eWhd+/ecHBwgJ2dHVRUVISOTERERLXM69evWVyMqBpRVlaGq6srpkyZgj179mDZsmXYvXs37O3tsWDBAnTs2LHU+RMTE6GmplZJaYkqho+PD06ePAk3Nzf07NkT69evFzoSVWF//fUXlixZgn/++QfOzs7YtWtXhff54cMHPH/+XPx49uwZoqKi8PTpU0RFReHt27cAPn5H3aZNG4hEIrRv3x6DBw+GtrY2RCIRtLW1eVMKIiIiIqJKdODAAQwZMgTNmjUTOgqVwadiHoqKioXaGzZsCDMzM5iZmQEA0tPTce3aNYSEhODy5cv4/vvvkZWVhZYtW8LExARmZmYwNjaGnp5epa8DERERERFRdcZiHkRERERULCsrK/Tq1QvOzs7o27cvfvjhByxevLhaFSEgEtrjx49hbW2NlJQUnDt3DqampkJH+mL9+vXDrVu3EBAQgLlz58Lf3x9ubm7w8PCAgoKC0PGIqAJNnjwZ3t7e2LZtG+bOnSt0nC+SnZ2NwMBA7NmzBydPnoSioiK++eYbLFy4EIMGDYKSkpLQEYnoX3R0dKCjo4PZs2fj3bt3OH36NI4cOQI3NzfMmjULI0aMgJOTE4YMGcI7ZRMREVGlYDEPoupJXl4eLi4ucHZ2xq+//orly5dDT08PFhYWWLRoEXr27FnsfCzmQTVBw4YNsWXLFgwfPhze3t6Ii4vDy5cvoaGhIXQ0qiIKCgrEhejDwsLE37FERkZKZfkfPnxAdHR0oYIdnx7R0dGIj48XT6uiooK2bdtCW1sb5ubmhYp1tGrVit//EBERERFVAcnJyThz5gz8/f2FjkJl9P79e8jKyn72HL8GDRoUKu6RkZGBq1ev4tKlS7h48SJcXV3x4cMHaGhooF+/fjA1NUW/fv3w1VdfVcZqEBERERERVVv8SxcRERERlUhNTQ2BgYH4+eefMW/ePAQHB8Pf358n+hFJ4OTJk3BwcIBIJML169fRpk0boSOVm4yMDGxsbDBs2DCsX78e3t7e2LVrF5YtW4Zvv/0WMjIyQkckogrQuHFjTJkyBatXr8a0adNQv359oSNJ7NmzZ/j555+xd+9epKamwszMDLt374a1tTULeBBVE8rKyhg9ejRGjx6NTZs2ISAgAHv27MGIESPQvHlzjBs3DjNnzoSmpqbQUYmIiKgGe/36Ne82SVSNycnJwcnJCY6OjggMDMTSpUthZGQEY2NjuLu7w9LSstD0SUlJLOZBNcKwYcNgb2+PLVu2QEFBAWfOnMH48eOFjkUCKygowIkTJ7B48WLcvn0bderUAQDk5uYCAJ4/fy7RcrKzsxEbG4uoqCjExcUhPj4eUVFR4sfz58+Rn58PAFBQUIC6ujpEIhG6dOmCkSNHQiQSiR8qKioVsq5ERERERCQ9Bw8eRL169Yp8j0JVX0ZGBhQVFct8bp+SkhIGDRqEQYMGAfh43Hjnzh0EBQUhJCQE8+fPx5s3b6Cmpoa+ffuKC4GIRKKKWA0iIiIiIqJqi7dVJyIiIqJSycjIwNXVFVeuXMHLly/RqVMn/P7770LHIqqyCgoKsHLlSlhaWsLS0hIhISE1opDHvykpKcHd3R2PHj3C0KFDMWHCBPTq1QuXL18WOhoRVZB58+YhMzMTGzZsEDqKRO7duwdbW1u0b98ef/75J+bMmYPo6GicOnUKDg4OLORBVE0pKyvD2dkZFy5cQFRUFKZNm4Z9+/ZBJBLByckJT548ETpipfGaYCd0BCKiGo3vs/Rfr169QtOmTYWOQUTlJCsrC0tLS9y4cQPBwcFQUVHBiBEjYGJiguPHj6OgoAAAkJiYyGIeVGP4+fkhMzMT6urqOHz4sNBxSED5+fk4fvw4unTpAisrK9y7dw8AkJeXV2i6+Ph45OfnIzs7G1FRUQgKCoK/vz9WrlyJyZMnw9zcHNra2lBSUoK2tjbMzc0xefJkbNu2DVFRURCJRHBxccFvv/2GmzdvIiUlBZmZmXj69CnOnDmDrVu3wt3dHTY2NjA0NGQhDyIiIiKiauLAgQOwtrauVjeAoY8yMjKkcp5M3bp1YWhoCHd3dxw/fhzJycm4evUqvv/+e6SkpGDWrFnQ1taGtrY2Jk2ahAMHDiAhIUEKa0BERERERFS9sZgHEREREUnE0NAQYWFhcHJygr29PZycnPD+/XuhYxFVKe/evcPo0aOxcOFC/PTTT/D394eioqLQsSqMuro6tm7dihs3bkBRURGmpqawtbXFs2fPhI5GRFLWrFkzzJw5Ez4+PkhLSxM6TolevHiBb7/9Fvr6+oiIiMD+/fsRGRkJDw8PaGpqCh2viNLuelLWO6LUBhwT+re2bdti8eLFePbsGXbs2IFbt25BT08PLi4uSExMFDreZ43uqI7RHdW/eP5PFxlSycozvrUJx+mj8r4mq0qfQqyHUCp6XWvK+2xt2R8qQ1JSElRVVYWOQURS9KmAR0hICFRUVGBlZYWuXbvC398fb9++RaNGjYSOSCQVzZs3h7e3N6Kjo3H69Gm8fftW6EiCSUlMgN/cGZhk2g3f6GrWms/P+fn5OHToEHR0dGBlZYUHDx6goKCgSBGPT3Jzc6Gurg4FBQVxsY7vv/9efBGWnp4eZs6ciYCAAISFhbFYBxERERFRLRAdHY2rV6/CwcFB6Cj0BaRVzOO/6tati169emHBggUICgpCWloabt68CRcXF0RHR2PChAlo2bIltLW1MXnyZBw6dAivX7+Weg4iIiIiIqKqjsU8iIiIiEhiioqK8PPzwx9//IGTJ0+ie/fuCAsLEzoWUZXw5MkT9OjRA9euXcPFixfh7u4udKRKY2BggAsXLuDo0aMICwuDnp4ePDw8qvQF/0RUdnPnzkV+fj78/PyEjlJEQUEB/Pz8oKenh2vXruHXX39FaGgo7OzsULduXaHjEVEFqlevHpycnHD37l3s2LEDp06dwldffYWdO3cKHa1Uhx/FlWt+z90HpZSEiIDyvyarSp9CrIdQKnpd+T5L//Xy5UtoaGgIHYOIKoCxsTGOHz+OO3fuQF9fHxMnTkRERARu3bqFDx8+CB2PSComTpwIHR0d5ObmIjAwUOg4gvnZ43u0bKOFdSfO49fbUZi7fofQkSpUQUEBIiMjoaWlBXt7ezx79gwFBQXIz8//7Lz29vY4fPgwQkNDkZKSgjdv3uDOnTs4evQo1q1bh1mzZmHkyJHQ19dnsQ4iIiIiolpg3759aNasGczMzISOQl+goop5/FfdunVhaGgId3d3nDlzBikpKThz5gxsbGwQHh4OBwcHNG/eHHp6euLiHrW56CgREREREdUeLOZBRERERGVmbW2NsLAwtGjRAr1794avr69EJ34R1VSXL19Gnz590LhxY9y6dQt9+vQROpIgLC0t8eDBA6xbtw47d+6EtrY2/Pz8Sry7GxFVL40bN4arqyvWrFmDlJQUoeOIpaamYsSIEZg3bx5mz56Ne/fuwdbWFjIyMkJHI6JKVKdOHYwbNw4PHjyAs7MzJk+eDHt7e6SnpwsdjYiIiKq59PR0vHv3jsU8iGq4zp07w9/fH0+ePIG8vDz++usvtG3bFp6enryogKq9OnXqYPXq1cjPz8emTZuEjiOYR7duwNplJho0agy5evXQy9yiRhfES01KxLVr1xATEwMAEv8tV0ZGBr1794a1tTW6devGYh1ERERERIRff/2VN1OpxjIzM1G/fv1K71dJSQlmZmZYsWIFQkJCkJCQgICAAAwcOBAhISGwtbWFqqoqTExMsHjxYly4cAFZWVmVnpOIiIiIiKiisZgHEREREX2RVq1a4ezZs1iyZAnmz58PMzMz8clgRLXJ4cOHYW5uDlNTU5w7dw4tW7YUOpKg5OTk4OLigsePH2PixIlwd3dH586dcfLkSaGjEZEUuLm5oV69eli7dq3QUQAAycnJ6NevH8LCwnDhwgV4eXlBQUFBsDwyMjLFFhEprv3Tz5+ek5GRwaRJkz77HADcv38fw4YNg7KyMpSVlTFkyBDcv3+/2D6fPn2KUaNGQUVFpcR8pa3Lw4cP0atXLygpKcHU1BSRkZEIDw+HkZERGjRogAEDBhT7GfDYsWMwNjaGgoIC2rZti9mzZ+Pdu3fF9vHixQtYWVlBWVkZampqcHR0xOvXryUer8oaEwC4c+cOvv76a9SvXx8NGzbE0KFDcerUqULT3L9/HxYWFuIsFhYWJWb53F9MHYgAACAASURBVLr/e30vXLgAAPjtt98KtUtzDN6+fYvZs2dDJBJBQUEBLVu2xPjx43Hjxo1Cy5Fk+wqlfv36WLNmDc6ePYuLFy+iX79+VaoA0efERDyC9+Rv4WDQHg4G7bF00ljERDwqNM3ojuoY3VG9TMv9NE9CzHOsmjkRTj07FllOTMQjeLs4ivv2dnGUuO+S2v85dxoLxoyAfZe2mDKwJ3YvX4LM9+nFzvsqPg4rpo2Hg0F7TDDuAr+5M/DuTeoXj9G/lz26ozo2LXQr01jFRj7B0klj4Wiog7Hd2sF78reIfRpRfB4Jx6208X/+6AF+nGCPsfracDTUwbLvHHA75MIXrbuk4/m5cZJk+wHAi8jH8HZxxNhu7eBoqIMfJ45BbOSTYveLsqxD7NMIeNgNxxh9ERY6jERCzHO8iHwMD9thGNutHRY7fYNX8S+L5PmcQnm7d8DKGRNKXI4keYXqU9JllvV1K8m+KOm+IcnrQxJlHr9y9lnc2JRnv6yI95WMd2nYvXwJppr1gn2Xtphooo/1HrMQcTesUL//7v+/r3FpbZ/a4OXLj9uUxTyIagctLS3Iy8vD29sbU6ZMwbp166CtrQ1PT89qdWxB9F8WFhbo2rUrLl++jIcPHwodR6okPfbMyc6GfZe2hT4flfbZr6RjuPIes5TlWLm048jPadJcDYMHD4avry9GjRoFNTU1AB+/HyrtO1Q5OTn+zZeIiIiIiMRu376N8PBwODg4CB2FvlBGRgaUlJSEjoEmTZrA2toa69evR3h4OBITE7F//37o6enh8OHDGDBgAFRUVGBubo6VK1fWuO8viIiIiIio9mIxDyIiIiL6YrKyspg/fz5u3ryJlJQUdO7cGdu2bRM6FlGl8fPzg62tLb777jscPny4SvzRq6po0qQJVqxYgbt376JTp04YNmwYzM3Ni1xUTETVS4MGDeDm5oZ169aJL2gTSlZWFoYMGYLMzExcu3YNvXv3FjQPABQUFEjc/qmtoKBA/NixY8dnn4uMjIS5uTksLS0RFRWF58+fw9HREVZWVoiNjS2y/KlTp2LOnDmIi4srU2GlT/N7enpi9+7diI+PR9euXeHo6IglS5bgl19+wcuXL/HVV1/Bza3oBfJWVlYYN24cUlJScO3aNaSkpGDmzJnF9jFp0iRMnToV8fHxuHnzJjIyMjBnzhyJx6uyxuTJkyews7PDvHnzkJycjGvXruH9+/cYMmSIeJrIyEgMHToU33zzDaKiosRFM4YMGYLIyMgyr3tubi60tbWRkpKC/v37AwDs7e0RFxcHFRUVpKenS3UMxo0bh8aNG+Pq1at4+/YtTp48icjISBgZGRUaC0m2r9D69euH4OBgJCUlwdraGnl5eUJH+qyEmOfwcrZH9wHm2Bx0DVvO3UC/EaOxYpozXifEi6f7krsGf5pnm6cHrCZMxY5Lt/HDtn2F+l72nQN6Dx6OzUHXsOnMVRiZW2DppLFIiHn+2b5Lal8xbTwGWNtiz42HWHHwBNLfvsGOpQuLnXfTQjcMHjMOO0NuY1XA38j6kIk9K38sNG1Zx+jwozjxY9qyNWUaqzWzp2CAtR02n72OzUHXYGQ2FEsnjUXSyxdfPG4ljX/c8yismT0ZIydNx+5r97Hi9xP4kJmBpZPGfvG6SzKenxsnSbbfv8dgy9nr2Hz2OgaOsofv/6YW6uNL1uH3DWsw46e12Bl8G2076mHd3Bn47efVmLF8HXZcCoWmdnv8ssLrs9u0tLybzlxF76+HwXf2lGKnlSSvEH2WZZlled1Ksi8CZd83Snt9fE5Zx08afRY3NuXZLyvifWW9hyvqKzfE8t+PY+/NJ1i4bR8SYp7Bw3ZYkX6Le41La6xqi0/HPurqZSumRUTVV1ZWFlRVVeHp6YmnT59ixowZWL9+Pdq0aQNXV1fBvxMh+lK7d+8GALi6ugqcRLrKcuz5789Gnx7/9bljuPIes5Qlb0kZJCIjA1VVVcyePRuHDh1CQkICYmNjcfDgQUybNg1GRkaoV68egI8FPOTk5AAAeXl5LOZBRERERERi+/fvh0gkKvI3Y6o+qkoxj/9q3rw5bGxssHXrVoSHh+PZs2dYt24dlJWV4e3tDV1dXXTo0AGurq74+++/kZmZKXRkIiIiIiKiLyJTUNJVBkREREREZfDhwwd4enrCx8cHo0aNwpYtW9C0aVOhYxVia2sLADh48KDASai6y8vLg6urKzZt2oTly5fD3d1d6EhV3tmzZ+Hm5oYHDx5g8uTJWLJkCZo1ayZ0LCL6AllZWejUqRN69+4Nf39/wXL88MMP2LBhA8LCwiASiQTL8V8yMjLFFu8orr2kaUt7ztHREV26dMG8efMKte/atQt37tyBn59foWWcP39eXASirGRkZHDhwgX069cPABAXFwcNDY1CbbGxsTA0NERiYmKpy0pNTUW7du3w+vXrIn0cOXIEVlZW4rbHjx9j4MCBRS6OEnpMxo4di6FDh+Lbb78tlLVjx47iXI6OjujRo0eRi2J8fX0RFhaGvXv3lnndFyxYAA0NDUyfPl3ctmLFCkRHR2Pz5s1SHQNlZWVER0ejSZMm4rZnz55BJBKVuK8CJW/fquD+/fvo0aMHvLy8ioyPtGRlZUFBQQHuG3ej56DBEs83uqN6oYuG/ObOQJsOuhg5aVqh6c4d/g3PH4Vjwg9LS5xX0v5+9A+AXs8+RZ7zmzsD7TrrY5jTpELtx3dvRdTD+3Bdtf6zfUuSKT3tLaab98ae6w+KzPvf8Yt79hRLxn2D7ZfCCuWsyDH697z/890CY4sRhdqP796K548fYuaKdeI8ZRm3ksZ/rds0GPQdiH5W34jb4p49xcyhpuJ1KOu6SzKen6aVdJyK235+82aiXaeuRcYgJPAo1rpNLdc+/uPew9Dr8bFYV0pSIr7r261Q2+uEeMwdPRi7Lt+VKH9pec//+Ts2zJ/9xXkru8+yLBOQ/HUryb5YnGL3jTK8PkpT1vGTRp9A8WNWnv1S2u8rDgbtsfX8P2jQqLF4mqTYGEw161Uod0nbXppjBQCXjh3GpoVuyM7KKtN81cWePXswdepUvH//HjIyMkLHIaJKICcnB39/f4wZM0bclp6ejp07d8LHxwfJycmws7PDwoULoaOjI2BSorLr1asXbty4gdjY2CpXqGqElRXeQq7Mn0X+q7RjT0mPZ0s7hhM/L6VjltLylpbhc1ZOc4aOumqh76P+Kzs7G6Ghobh+/TquXLmCS5cuISEhAQ4ODti3r4zFQ4iIiIiIpMDKygoNGzYs9XMsVZ78/Hy0adMG48ePx9Klkv1dhKqeMWPGIDs7G4cPHxY6isTy8vJw+/ZtHD9+HCdOnEBoaCjk5eVhYmICMzMzmJmZwdDQUOiYREREREREEpEVOgARERER1QwKCgpYsWIFTp8+jWvXrkFPTw+BgYFCxyKSuvfv38Pa2ho7d+7Eb7/9xkIeEho0aBBCQ0OxefNmHD58GO3atcOKFStYMZ+oGpKXl8eKFSuwb98+hISECJIhPT0dGzduxMKFC6tUIY/KEBQUBDs7uyLtw4YNw5kzZ4q09+zZs1z9GRgYiP/fokWLIm3q6upITk7+7HJUVFSQkpJS7HN9+/Yt9HPbtm0RHx8vccbKGpNz585h0KBBhdo6dOhQqMhFUFAQRo4cWWRea2trBAUFFWmXZN2dnZ3Fd879ZNeuXXBxcSnUrzTGoHfv3hgxYgT+/vtv5ObmAgC0tLRKLeQBlL59hdapUye4ublh7dq1yM7OFjpOqe5eCS5ykTcAGPQfhDtXLkmlj3ZdupXYd0+zIUXajcyH4u6VYKn0DQANGjZC+ts3xT6n26NXoZ9VNVohNTmpSM6KHqNPuvQxLdJmZD4Udy5fLJSnLONW0vjfv3YZnXsX7k9dS7vQxWRlXXdJxrOsitt+dy9fKnYMuhr3LdJW1nUQ6XYW/1+lmWqRtibN1ZCWUrYiQiXl7WY6oNx5K7PPsiyzLCTZF4tT7L4hpfeVso5fRb+XlWe/lOb7Sgd9QyyfOg5hweeRl/fxd3ZzzdYSF+eprPf9muLJkydo164dC3kQ1RJ5eXnIzc2FvLx8ofYGDRrA1dUVkZGR8PPzw+XLl6GnpwdHR0fcv39foLREZfepOK+3t7fASSpOaceeZVHSMdwn0jpmKS3v5zKUV7169dCrVy+4urri999/R3x8PF6+fIlNmzZVaL9ERERERFQ9XLp0CbGxsbC3txc6CpVDRkYGlJSUhI5RJnXq1IGhoSE8PT1x8+ZNJCQkwN/fHy1btsTKlSvRvXt3iEQiTJ48GYcOHUJaWprQkYmIiIiIiEpUV+gARERERFSzDBo0CPfv38fMmTNhaWmJ7777Dr6+vqhfv77Q0YjKLTU1FUOGDMHz589x4cIFGBkZCR2pWpGVlcXEiRNhb2+PDRs24KeffsKGDRuwePFiTJw4EXXq1BE6IhFJaPTo0TAzM8OsWbNw48YNyMpWbr3Y0NBQvH37Fg4ODpXab1Xw+vVrtG3bttjnFBUVi7SV94QMZWVl8f8/bef/tv230ENycjLmz5+Pv//+GwkJCcjLyyu1DxUVlUI/y8vLf7Z4xL9V1pi8evUKzZo1++w0n4qe/FvLli3x6tWrIu2SrHv79u2hqKiIO3fuoGvXrrh06RIaNmyIbt3+72IOaY3BoUOH4OXlhenTpyM5ORndunXDqFGjMG3aNMjJyQEo+/atChwdHeHt7Y0HDx5AX19f6DglevcmFVMGFl9opZ6CglT6kFcouj8AQNqbFDRu1rxIu4qqGt6lflmhlrSU19jn+xPCgs/jzatk5H9mX2nQsFGhn+Xq1SvyeqiMMfpEubFKkTYV1cIXYpV13Eob/4YqTUrNU9Z1l2Q8SyPp9itpDIobv7Kug2L9BuL/y/z/30H/bSvLOpWWt7g2ae1vFdFnWZZZFpLsi+XdN8r6vlKWda2I97L/Ks9+Kc33lTl+23Bwoy+2/7gAaSmvoaXbCb3MLTBk7DjUqSv32fWojLGqSSIiIqCjoyN0DCKqJJ8KG5b0XaWCggKmTJkCFxcXBAYGwsvLC126dMGwYcOwaNGichfVJKpoOjo6uHbtWo3ZV8t67FkWJR3DffIlnw3LmvdzGSqCurp6pfdJRERERERV0/79+2FgYAA9PT2ho1A5ZGRkFHseQ3XSvHlz2NjYwMbGBnl5ebh9+zaCgoJw/Phx7NixA7KysjAyMoKlpSXMzMxgYGDAAt1ERERERFRlsJgHEREREUldo0aN4O/vD0tLS0yZMgWXLl3C3r170b17d6GjEX2xpKQkfP3110hNTUVISAjat28vdKRqq379+nB3d8fEiROxdOlSTJ8+HX5+fvD09ISNjY3Q8YhIQmvXroW+vj727dsHJyenSu371atXkJGRgaqqaqX2KwkZGRlkZWUVuoNvSor0Lohs1qwZHjx4UKQIRFXy7bffokOHDggJCYGmpibq1v34FWRFnShRWWPStGlTvHr1qtQLGpo1a4b4+PgihTXi4+M/WwikNM7Ozti1axf8/Pywc+dOuLi4FOlXGmPQqFEj+Pr6wtfXF69evcLZs2exbt06BAcHIyAgAEDlb19pUFNTA4BiC6pUJcoqTeB38mKRIgyVoWHjJkhNTkRzjVaF2lOTE6H8nwv7ZWRkkJOdDbl69cRtxd1B2G/eTGhoacP7wFE0bdESdep83FdGd/zyi4Iqc4zevE5G46aFf8+kJieiYZOm4p/LMm6lUW6sgrTUFDRprlbyNJW8f0i6/Ro2boI3r5Kgqq5ZqP3Nq6QiyxRyH/+kpLzF7cPSylsRfZZlmYDkr1tJ9sWy7BvSeH2UZV2l1WdFkeb7ipJyQ4z38MR4D0+kpabg3tUQnNizHQ9uXsfcn7d/NktVH6uqJiIiAkOGDBE6BhFVMbKysrC0tMTw4cNx9OhReHt7w8jICEOHDsUPP/wAY2NjoSMSlaimFPIAKubYsyJVt7xERERERFR7ZWdn448//sCCBQuEjkLllJGRUe4bwVQlderUgaGhIQwNDeHu7o7ExEScOnUKf//9N3x8fODh4YE2bdpg2LBhsLKyQv/+/VHvX38jIyIiIiIiqmyVe9tUIiIiIqpVbGxsEB4eDpFIhN69e8PDwwM5OTlCxyIqs4SEBAwaNAhv377F+fPnWchDSpo1awY/Pz/cv38fenp6sLW1hbm5OcLCwoSORkQS0NPTw8SJEzFv3jykpaVVat/a2tooKCjA/fv3K7VfSbRo0QIxMTGF2i5dulTstKUVPyjpucGDB+PChQtF2oODg2FoaCh50Ap05coVeHl5oW3btuJCD5mZmeVertBj0r9/fwQFBRVqu3PnDnR1dcU/m5mZ4Y8//igy759//gkzM7Mv7tvW1hZHjx5FcnIy/v77b4wZM6bQ89IaAxkZGcTGxgL4+Hvazs4OgYGBOH36tHiaitq+FenOnTsAPr53VGX6Jv0Rfv1KkfaHN69j7qjBFdp3lz6muH76ZJH262f+Qpc+poXaGjdrjlfxLwu1PfjnWpF5H4fdhN3MuWiu0Up8cVL2hw/lylmWMSpvgZnbwReKtF0/8xe6GvcT/1yWcSuNXs8+uHul8O+K548ewHXY//VVUftHSeMk6fbratIPN4L+LtJ+O+RCkTYh9/FPSsr73/EHpJe3IvosyzIByV+3kuyLku4b0np9lGVdpdVnRZHm+8rojup4nRAPAGio0gTGFiPww7a9uHP5YqH5SnqNV/WxqkoKCgoQGRnJ74KIqEQyMjIYOXIk/vnnHwQHByM7OxsmJiYwMTHB8ePHhY5HVKyYmBjs2bNH6BhSURHHnhWpuuUlIiIiIqpsBQUFQkeg/+/kyZN48+YN7OzshI5C5VTTinn8l5qaGpycnHDgwAEkJibi2rVrGD9+PK5evYrBgwejefPmsLe3x2+//Ya3b98KHZeIiIiIiGohFvMgIiIiogrVokULnDhxAhs3bsT69ethYmKCJ0+eCB2LSGIxMTEwNTVFbm4uQkJCIBKJhI5U43To0AEHDx7E1atXkZmZCUNDQ9ja2uLZs2dCRyOiz1i6dCmysrLg5eVVqf126dIFurq6WLNmTaX2Kwlzc3MsWLAAsbGxSE9Px6lTp7Bly5Zip9XQ0MDVq1eRk5OD06dPo3Xr1p99ztPTE0uWLEFAQABev36Nd+/e4cSJExgzZgwWLVpUKev4OX369MG8efPw/PlzZGdnIzIyElOmTCn3coUek4ULF+LHH39EUFAQ3r9/j7t372LChAmYOXOmeJolS5bA19cXO3bsQFJSEpKTk7Fz5074+vpiyZIlX9x3gwYNMGDAADg6OmLEiBFQVlYu9Lw0x2DSpEkIDw9HVlYWEhMTsXr16kKFSCpq+1akNWvWoFevXtDS0hI6SqnsZrrh9/WrcfXUCbx7k4rM9+m4eeEMfN2mwmba7Art23aGG479shVBhw7g7etXSEt5jbMBv+LYL1thN8Ot0LRdjftiv+9yvE6Ix4eM97gdcgGnfvMvsswO3bpj7+qlSHr5Ark5OUiIeY6tnu7lylmWMWqi1gKPb99CXm4O7ly+iMkDupepr9O/70XwiT/x7k2qeDxO+O+A3cz/G4+yjFtpvpnqikOb1uLulWBkZWYg+vFDbFwwGxaOE75o3cuipHGSdPvZzXDDsd1bcO7wb0hLeY13b1IREngEp3/fV3RaAffxkvKmv32DK38dw+GtP1dY3orosyzLBCR/3UqyL0q6b0jr9VGWdZVWnxVF2u8rmxa64UXkY+RkZ+PN62Qc3bm5SCGOkl7jVX2sqpL4+Hikp6ezmAcRScTExARBQUEIDg6GiooKRowYAQMDAxw6dIgXI1GVcv78eXz33Xd4/vy50FHKrSKOPStSdctLRERERFTZcnJyUK9ePaFjEID9+/ejf//+0NTUFDoKlVNGRgYUFRWFjlEp6tSpAyMjI3h6eiI0NBTR0dFYtWoV3r9/j3HjxqFp06YwMTHBypUrERERIXRcIiIiIiKqJWQKeMYAEREREVWShw8fwtHREQ8fPsTy5cvx/fffl/tuyWVha2sLADh48GCl9UnV27NnzzBo0CA0atQIp0+fhqqqqtCRaryCggIEBARgwYIFiImJwZQpU+Dl5YXGjRsLHY2ISrBjxw5MnjwZly5dgrGxcaX1e/z4cVhZWcHf3x+Ojo6V1u/nvHr1Cq6urjhz5gwyMjIwcOBAbNy4UVx44t9fxR06dAju7u54+fIlWrdujTVr1mDEiBGffS4iIgLz589HUFAQcnNzoauri/nz58Pa2lq87P9+xirrV4D/nv/TvJK2JSUlYc6cOTh16hTevHkDHR0dLFq0SHzHntLmLa1d6DEBgKtXr2Lu3Lm4desWVFVVMW3aNHh4eBSa5t69e5g3bx6Cg4MBAKampli1ahU6d+782XUsqR0AgoOD0bdvX1y/fh09e/Yskk0aY3D27Fls2LABwcHBePfuHTQ0NDBy5Eh4eXmJC4hIun2rio0bN+L777/H2bNn0b9//wrpIysrCwoKCnDfuBs9Bw2WaJ7RHdXF/z/8KE78//joZ9i35ifcvRqMvNxctGqng1EuM2FkPvSz80raX0nzRT95iL0+y/Dg5nUAgG53I3w7dyHa6HxVaLq01BTs8l6EO1cuISszE517GeO7xcvFF4h/Wvbb16+wZ9WPuB1yAe/T3kK9rTZsps3CmtlTCk1X0vqUZ4wA4Mrfx7F3tTdSEuPRrKUGxnt4osfAryUer81nr2Pn0oUI/+cq8vPzodejF8a5L4GmduGLuSUZN0nG//HtW/Bf9SOeht9FoyZNMWTMeFi7zCg0TXn2j5LaSxonSbcfALyIfAz/VUsR/s81yMrKQq9Hbzgv8MKMISYIeBArlXWQtE0S/84rIyODDt26Y8J8L7gO719kWZLub0L0WZZlSvq6BT6/L5Zl35D0fUWa4yeNPsuzD5b2GpTm+8q9qyE4uX8XHt68jsz36Wii1hJGZkNgN3MOFOs3EE9X2nuhtLYPAFw6dhibFrohOyurzPNWdRcuXMCAAQMQHx+PFi1aCB2HiCrBp8/3R44cgZWVVbmWFRYWhuXLlyMgIACdO3eGm5sbHBwcUKdOHSmlJfoyOTk50NHRwbBhw7Bhwwah44iNsLLCW8jBddV6ieepiGPPzx3Dleez4ZfkLS6DJFZOc4aOuir27t1b5nmJiIiIiIQyaNAg6OjoYPPmzUJHqdXS0tLQokULrF+/HhMnThQ6DpVTq1atMHv2bPzvf/8TOoqgUlNTERQUhOPHj+PYsWN4+/YtdHV1YWNjAwcHBxb1JiIiIiKiCsNiHkRERERUqXJzc7Fs2TIsW7YMZmZm2LVrF9TV1T8/oxSwmAeVxaNHj2BmZoYWLVrg1KlTaNq0qdCRapWcnBzs3r0bixYtQm5uLubNm4dZs2ZBXl5e6GhE9B8FBQUYMmQIYmJiEBYWBgUFhUrre968eVi7di327NmDsWPHVlq/RFQ9bN26FdOmTcPSpUuxYMGCCuvnS4p5UNU2uqP6F10oRf/nReRjeLt8iy3nbggdhahKqOnvKzW5mMf27dvh5uaGtLQ0oaMQUSWRZjGPT+7duwcfHx8cOHAAHTp0gLu7O8aOHYu6detKZflEX2LTpk1wc3PD8+fPoaamJnQcAF9WzINKxmIeRERERFQdmZqawtDQEOvWrRM6Sq32yy+/YPLkyYiPj0eTJk2EjkPl1LRpU3h7e2PKlClCR6kysrKycPbsWQQEBODo0aNITU1Fjx49YGNjg2+++QZt27YVOiIREREREdUgskIHICIiIqLapW7duvD09ERISAiePn0KfX19HDlyROhYRIU8efIE/fv3h7a2Ns6fP89CHgKQk5ODi4sLnj59ipkzZ8LLyws6Ojrw9/cHa1ISVS0yMjLYtm0bYmNj8dNPP1Vq3ytXrsSsWbPg6OiIOXPmIDs7u1L7J6KqKTMzE5MnT8bUqVPh6elZoYU8iOhjkYJA/x1IT3uLnOxsPHsYji2L52Gow3ihoxERlVtERATvxkdE5da5c2f4+/vj8ePHMDExwcSJE6GjowM/Pz98+PBB6HhUS02YMAENGjTA9u3bhY5CREREREQklpWVhXr16gkdo9bbv38/hg8fzkIeNURGRgbq168vdIwqRV5eHhYWFti1axcSEhIQGBiITp06Yfny5RCJRDAyMsLq1avx/PlzoaMSEREREVENwGIeRERERCSIXr16ITQ0FNbW1rC2toatrS3evHkjdCwivHjxAoMHD0bbtm1x4sQJKCsrCx2pVmvQoAE8PT3x5MkTDBkyBBMmTICRkREuXrwodDQi+pc2bdrA29sby5cvR2hoaKX1KyMjAx8fH/j7+2PLli3o1q0bgoODK61/Iqp6Tp06hU6dOuHgwYP4448/sGjRIqEjUTUzuqN6oX/p8+Zv2YN/zp3G5P7d4dynMzYvdIO5rQOsJk4TOhpRlcD3leotIiICOjo6QscgohpCW1sbW7duRUREBCwtLeHh4YEOHTrAz88PmZmZQsejWkZBQQHjx4/Htm3bkJeXJ3QcIiIiIiIiAEB2djbk5eWFjlGrJSQk4Pz58xg7dqzQUUgK8vPzkZWVBSUlJaGjVFlycnIYOnQodu7ciaSkJFy6dAm9evWCj48PtLS00L17d/j5+SE5OVnoqEREREREVE3JFPCWxkREREQksCNHjsDFxQUNGjSAv78/TExMKqQfW1tbAMDBgwcrZPlU/SUlJaFfv36Qk5PDhQsXeHeBKig8PBzu7u4IDAyEmZkZfH190blzZ6FjERE+ngDQv39/vHv3Djdu3ICcnFyl9v/y5Ut8//33+OOPP2BmZgYfHx/o6+tXaobqQkZGptTna+PXhRyT6u/evXtYunQpDh06hOHDh2Pz5s3Q1NSslL6zsrKgoKAA94270XPQ4ErpyuHRsgAAIABJREFU898+d3H44UdxlZSk6uNY1WxCbF/uU+XDbVZzXDp2GJsWuiE7K0voKFKnq6uLb775Bj/++KPQUYioknz6fH/kyBFYWVlVaF8xMTFYs2YNtm/fDmVlZUydOhX/+9//0LBhwwrtl+iTp0+fQkdHB0ePHsXw4cOFjoMRVlZ4Czm4rlovdJQaYeU0Z+ioq2Lv3r1CRyEiIiIikpiuri7GjBnDgv0CWrduHZYsWYKEhAQoKioKHYfKKT09HcrKyjh58iSGDh0qdJxqJScnB2fOnMG+fftw9OhR5ObmwsLCAo6Ojhg2bBgUFBSEjkhERERERNVEXaEDEBERERGNHDkSvXv3xqRJk9CvXz/MmjULy5Yt4x+DqFK9efMGQ4YMQV5eHs6fP89CHlWUnp4eTpw4gaCgIMydOxcGBgaYMGECvLy80KJFC6HjEdVqsrKy2LZtGwwMDPDjjz9i6dKlldq/hoYGDh8+jJMnT2LhwoUwNDSEpaUl5syZU2GFwqorFqYoimNSfZ09exarV6/GqVOn0KtXL5w7dw4DBgwQOlal4oXnkuNY1WxCbF/uU+XDbUZVXWZmJiIiIlhElIgqTOvWreHn54cffvgBmzZtwrp167Bx40ZMnz4drq6uUFFREToi1XDa2toYMGAAdu/eXSWKeRAREREREX348IEXyAts//79GD16NM/drCEyMjIAAEpKSgInqX7k5ORgYWEBCwsLvHv3Dn/++Sf27dsHOzs7KCsr45tvvoGjoyP69u372RvIEBERERFR7SYrdAAiIiIiIgBQU1PD8ePH8dtvv+GXX35B586dERwcLHQsqiXevXuHr7/+Gq9evcKZM2dYFKIaMDMzw61bt3DgwAGcPn0a7dq1g4eHB9LS0oSORlSrdezYEWvXrsVPP/2EM2fOCJLBwsICt27dQkBAAJKTk2Fqaopu3bph3bp1SExMFCQTEUnXy5cvsWrVKnTq1AlmZmbIyspCYGAgrly5UusKeRAREVHFuX//PnJzc6Gvry90FCKq4Zo3bw5PT088ffoU06dPx88//4w2bdrA1dUVCQkJQsejGs7e3h4nT57kd+tERERERFQlvHr1ijdgElBkZCRu3rwJBwcHoaOQlLCYh3QoKyvDyckJp0+fRkxMDDw9PfHw4UP0798fbdq0gYeHB2JiYoSOSUREREREVRSLeRARERFRlWJjY4P79+9DV1cX/fv3h6urK7KysoSORTVYZmYmRowYgejoaJw5cwZt2rQROhJJSFZWFjY2Nnjw4AEWLVqELVu2QFtbG35+fsjNzRU6HlGtNXnyZIwZMwaOjo6IixPmzucyMjKwtrbG5cuXcfXqVXTv3h2enp7Q1NSEpaUlDh06xM8XRNVMRkYG9u/fj8GDB6NNmzZYuXIl+vXrh1u3buHcuXMYOnSo0BGJiIiohrl9+zbq168PbW1toaMQUS3RtGlTeHp6Ijo6GkuXLsXBgwfRrl07uLq6CvYdC9V8o0ePRn5+PgIDA4WOQkREREREtVxOTg7S09PRtGlToaPUWvv27UPLli3Rv39/oaOQlLCYh/Spq6vD1dUVISEhuHv3LqytrbF9+3Zoa2vD2toagYGByMvLEzomERERERFVISzmQURERERVTsuWLXHs2DHs3r0bu3fvhqGhIW7evCl0LKqB8vPz4eDggHv37uHs2bPo0KGD0JHoCygqKsLd3R1Pnz7FxIkT4e7ujs6dO+PQoUNCRyOqtbZs2QIVlf/H3r3H9Xw//v+/vzrqpINKYQ7lUDorFDmMV2gTm3kVZs2wYt7WZqxsRnOYYmOGfVdjLIRymmwOveRQlFaSRKEIlXQQpaLD6/fH+7N+b5/39tlm1aN63a+XSxdNr8Pt5WLi9Xo+7y9DvPnmm8JfoHZ1dcX333+PwsJCREREoL6+HlOnToWZmRmmTZuGXbt2obS0VGgjEf2+oqIibN++HTKZDGZmZnjnnXfQoUMHREVFoaCgAJs3b8aAAQNEZxIREVE7lZ6eDgcHB6io8CV1ImpZenp6CAgIwM2bN7Fq1Srs378fFhYW8Pf3x927d0XnUTtjaGiIUaNG4cCBA6JTiIiIiIhIyZWWlkKhUHDMQ6DIyEhMmTIFqqqqolOoiXDMo3nZ2dlhw4YNKCgoQGRkJCorK+Hl5YXu3bsjKCgIt27dEp1IREREREStAI88IiIiIqJWy9fXFxkZGejcuTPc3NwQFBSEZ8+eic6idmTx4sU4cuQI9u3bB1tbW9E59A916tQJISEhyM7OxsCBA+Hj44MhQ4bg3LlzotOIlI6uri6ioqJw4cIFrFq1SnQOgH8P/0ydOhW//PIL7t69i2XLluHBgweYOXMmOnfuDHd3d6xevRrp6emiU4mUlkKhQGpqKpYvX47BgwejS5cumDt3LiorKxESEoL8/Hz89NNPmDRpEjQ1NUXnEhERUTv325gHEZEoOjo6CAgIQG5uLsLDw3Hy5ElYWlrC19cX169fF51H7ci4ceMgl8uFj/ISEREREZFyKykpAQCOeQiSmpqKGzduYOrUqaJTqAlxzKNlaGpqQiaTITY2FtnZ2Xj33XcRGRmJ3r17w8PDAzExMVAoFKIziYiIiIhIEI55EBEREVGr1qNHD8jlcmzevBmbN2+Gi4sLLl68KDqL2oHt27dj7dq12Lp1K0aOHCk6h5pQjx49EBERgaSkJKirq2PYsGHw9vZGTk6O6DQipWJvb481a9Zg+fLliIuLE53zHHNzc3zwwQeQy+UoLi7G3r170a9fP2zYsAGOjo7o2rUrpk2bhm+//RYZGRloaGgQnUzULtXX1yMtLQ3ffPMNvL29YW5uDhcXF3z//fdwdHTEwYMHUVJSgqNHj+K9996DiYmJ6GQiIiJSEgqFApcvX+aYBxG1ChoaGvD19cW1a9ewZcsWXLhwAdbW1vD29sa1a9dE51E7IJVKUV5eztffiIiIiIhIqNLSUgAc8xAlKioKvXr1gouLi+gUakIc82h5ffr0QXBwMHJycrBnzx7U1NRgwoQJcHR0xJYtW1BdXS06kYiIiIiIWhjHPIiIiIio1ZNIJPDz88Ply5fRqVMnuLq6IigoCM+ePROdRm1UfHw85syZg08//RRvvfWW6BxqJoMGDcKZM2dw4sQJXLt2DdbW1vD398eDBw9EpxEpjX/961+YPHkyZDIZsrOzRef8ro4dO+KNN97A1q1bUVBQgF9//RXz5s1DeXk5Fi9eDHt7exgbG8PLywtr1qxBYmIi/w5C9IJqamoQHx+PL774Aq+88gqMjIwwYMAABAcHo7q6GgsWLEBaWhru3r2LsLAwTJgwATo6OqKziYiISAnl5ubi8ePHcHR0FJ1CRNRIXV29cdRjz549yMzMhK2tLby8vJCSkiI6j9qw/v37o0uXLq1ukJeIiIiIiJRLWVkZJBIJDA0NRacopf3798PHxwcSiUR0CjUhjnmIo66uDplMhvj4eFy8eBGurq54//33YW5ujoCAANy5c0d0IhERERERtRCOeRARERFRm9GrVy/ExcVh06ZN2LRpEwYOHIhLly6JzqI2Jjc3F5MmTcL48ePx+eefi86hFiCVSpGWloZNmzbh8OHDsLKyQmhoKGpqakSnESmF7du3o1+/fvD09Gz1YzoqKipwcXHBJ598gl9++QVlZWW4cuUKQkJCYGhoiM2bN2PIkCHQ0dGBjY0NfH19sWHDBiQkJDQeAEFE/1ZbW4vMzExEREQgICAA7u7uMDAwwPDhw7Fx40aoqqrik08+QUpKCkpKShATE4OPP/6YJ8wSERFRq5Ceng4VFRXY2NiITiEi+i8qKiqQyWTIyMjAoUOHUFRUhIEDB8LDwwNJSUmi86gNkkgkGDx4MH799VfRKUREREREpMQKCgrQqVMnaGhoiE5ROsnJycjJyYFMJhOdQk2sqqoKmpqaUFVVFZ2i1JycnBAWFoZbt25hwYIFiIqKQu/evTF9+nRkZmaKziMiIiIiombGMQ8iIiIialMkEgn8/PyQnp4OfX19uLm5ITQ0FPX19aLTqA0oKyuDp6cnevTogYiICKio8J9EykJNTQ1+fn64efMmAgMDsWrVKvTt2xfh4eH884OomXXo0AGHDx+GqqoqJk2a1KaGdFRVVWFjYwM/Pz9EREQgLy8P2dnZ2LZtG8aOHYs7d+5g6dKlGDZsGPT19eHg4IB33nkHGzduxKlTp1BUVCT6IRC1iIKCApw8eRJff/01fH19YWtrCy0tLdja2iIgIABXrlyBm5sbtm3bhpycHBQWFiImJgaBgYFwdnbm38mIiIio1UlPT0efPn2gq6srOoWI6A+pqKjAy8sLycnJiI2NRWVlJdzc3ODu7o6YmBjRedTGODk54eLFi6IziIiIiIhIid26dQs9e/YUnaGUoqOjYWFhgQEDBohOoSZWVVUFbW1t0Rn0Pzp37oylS5ciLy8PW7duRXp6Ouzt7TFp0iSkpqaKziMiIiIiombCo6SJiIiIqE2ytLTE6dOnERISgmXLlsHd3R1ZWVmis6gVq6+vh0wmQ01NDY4cOcIXqZSUjo4OAgMDce3aNYwZMwbvvfceBg0aBLlcLjqNqF0zNjbG4cOHcfXqVfj6+kKhUIhOemF9+/bF9OnTsW7dOpw+fRrl5eW4fv06du7ciXHjxuHevXtYtmwZRo0aBTMzM3Tq1Anu7u7w8/PDunXrcPz4ceTl5bXpXwNSTg0NDcjNzcUvv/yCL7/8ErNnz4abmxsMDQ3RtWtXSKVSrFq1CkVFRfDy8sKePXuQk5ODhw8f4uTJk1i7di2mTp0KCwsL0Q+FiIiI6E9dunQJjo6OojOIiP4yqVSKxMRExMbGQk1NDRMmTMCIESMQFxcnOo3aiAEDBuD27dsoLy8XnUJERERERErq9u3bHPMQQKFQYN++fZgyZYroFGoGT5484XGSrZCGhgbeeustXL58GYcOHUJBQQFcXFzg7u6OkydPis4jIiIiIqImpiY6gIiIiIjoRamoqCAgIABSqRQzZsyAk5MTgoODsXDhQqiqqorOo1YmODgY58+fR2JiIszMzETnkGBdu3bFli1b8MEHHyAwMBAeHh6QSqVYvXo1XFxcROcRtUvW1taIjo6Gp6cnli5dihUrVohOahISiQR9+vRBnz594OPj0/jzhYWFuHr1KrKyspCZmYmsrCwcPnwYRUVFAABdXV3069cPFhYW//XRvXt3qKnxaTtqebW1tcjLy0Nubu5zHzk5OcjOzkZ1dTUAoEuXLujfvz9cXFzg6+sLKysr2NjYwNTUVPAjICIiImoaaWlpeO+990RnEBH9bVKpFFKpFAkJCVi+fDlGjx4Nd3d3LFu2DFKpVHQetWJ9+/aFQqFATk4OnJ2dRecQEREREZESun37Nl5++WXRGUonOTkZt2/fhkwmE51CzaCqqgo6OjqiM+gPSCQSeHl5wcvLC8ePH8eqVasglUoxYsQIBAcHY+TIkaITiYiIiIioCfCsACIiIiJq82xsbJCYmIivvvoKS5cuxeHDh7Ft2zb07dtXdBq1EnFxcVi9ejW+/fZbvqsqPcfW1hY///wzEhMTERQUhIEDB0IqlWLdunWws7MTnUfU7owePRrfffcdZs+eDX19fSxcuFB0UrMxNzeHubk5Ro8e/dzPl5WV4dq1a7h69SquX7+O3NxcHD9+HLm5uXj8+DEAQF1dHd27d39u4KNbt2546aWX0LVrV3Tt2hWampoiHha1cTU1Nbh37x4KCgpw584d3Lt3r3GsIzc3F3fv3kV9fT0AwMDAoPH335gxYzB//nzY2NjAysoK+vr6gh8JERERUfMpLCzE3bt3MWjQINEpREQvzN3dHSdOnEBiYiK++OILeHh4wM3NDYsXL4aXl5foPGqFevToARUVFdy6dYtjHkREREREJMTt27fRs2dP0RlKJzo6GpaWljymrp2qrq6Gtra26Az6C8aOHYuxY8fi7NmzWLlyJV5++WV4enpi9erVcHBwEJ1HRERERET/AMc8iIiIiKhdUFNTQ2BgIF599VW8/fbbcHR0xLJly7Bo0SKoqKiIziOB7t+/jzfffBOTJ0+Gn5+f6Bxqpdzc3HDmzBnI5XIsXLgQjo6OeOONN7BmzRoeKEDUxGbOnIna2lrMnTsXtbW1WLx4seikFmVkZIShQ4di6NCh//W1kpIS5ObmPvdx/fp1HDt2DAUFBaitrW28rKmpKbp06YJu3bqhW7du6NKlC7p3744uXbrAzMwMJiYmMDExgaqqaks+PBKkrq4OxcXFKC4uRkFBAQoKCnD37l3k5+c/93lpaWnjdTQ0NNCtWzf06tULlpaW8PDweG5AxsjISOAjIiIiIhLnwoULUFFRgYuLi+gUIqJ/zM3NDTExMUhKSsKqVaswceJEuLq6YvHixRg/fjwkEonoRGolNDQ00KVLF+Tl5YlOISIiIiIiJVRRUYHS0lIeo9PCFAoF9u3bh+nTp4tOoWZSVVXFMY82Zvjw4Thx4gTOnz+Pjz/+GE5OTpg8eTJCQkJgYWEhOo+IiIiIiF4AxzyIiIiIqF2xtbVFYmIiVqxYgSVLliA2Nhbh4eF8EltJ1dXVwdvbG3p6eggPDxedQ22AVCrFxYsXsX//fgQFBaFfv36YMWMGVqxYAVNTU9F5RO2Gv78/AGDu3LkAoHSDHn/E2NgYxsbGv/sO4A0NDSgqKsK9e/dQUFCAO3fuoKCgAPn5+cjKykJcXBzu3r2L6urqxutIJJLGUQ8TE5PnRj46d+6Mzp07w8TEBIaGhjA0NISBgQE6dOjQkg+Z/kB1dTXKy8vx8OFDPHz4EMXFxbh//z4ePHiA4uJiPHjwAPfv30dJSUnjiMd/0tbWbhx36datGxwcHKClpYWoqChkZWWhrq4O/fr1w5gxY+Dh4YFhw4bxAB4iIiKi/5GcnAwrKyt07NhRdAoRUZNxdXVFTEwMLl26hC+++AITJ06Eg4MDPvnkE0yePJmjHgQAMDExeW4IlIiIiIiIqKXk5OQAAHr16iW4RLkkJSUhLy8PMplMdAo1E455tF1DhgxBfHw89u3bh08//RTW1tY8jpGIiIiIqI3imAcRERERtTsaGhpYsWIFJk6ciJkzZ8Le3h4rV66EQqHgAalK5rPPPsOvv/6KxMREnoBBf5mKigpkMhkmTpyI7du3Y9myZYiMjMS8efPw6aefQk9PT3QiUbvg7++PmpoafPjhhwA46PFnVFRUYG5uDnNz8//zcmVlZY0jD0VFRSgqKmoce7h//z7S0tJQXFyMoqIilJeX/9f1tbS0Goc9/vPH//xcR0cHhoaG0NLSgra2NvT19aGjowMtLS107NgRurq6UFdXb65filbt2bNnePLkCR49eoTq6mpUVVXh4cOHqK6ubhzoqKysbBzp+G2w43//WFNT81+3bWRkBFNT08ZBFjs7OxgbGzcOtfz2NTMzMxgYGPxu35IlS1BVVYXz589DLpdDLpdj3bp1UFVVhYODA8aPHw8vLy84OTlBRUWluX+5iIiIiFql5OTk3x3YIyJqDxwdHREVFYX09HSsWrUKPj4+sLe3x6effspRD4KBgQEePnwoOoOIiIiIiJRQRkYGNDU10adPH9EpSiU6Ohp9+/aFg4OD6BRqJhzzaNskEglkMhlee+01hIeHY8WKFYiKisKKFSswd+5cqKqqik4kIiIiIqK/gGMeRERERNRuubi4IDU1FevWrUNQUBB0dXXh4uIiOotayNGjR7FmzRp8//33cHR0FJ1DbZCGhgb8/Pzw5ptvYtOmTVi9ejV++OEHfPTRR/jggw+gqakpOpGozQsICIBCocCCBQvQoUOHxmEPenFGRkYwMjL6S5d9+vQpSkpKGocl/q9xiby8vMbPnzx58qcndqipqUFPTw8dO3aElpYWdHR0IJFIGkcmtLW1oampCRUVFejr6wMAdHR0oKGh0Xjd/6Snpwc1td9/KlNTU/MPDz558uQJnj179rtfq62tRWVl5XM/9/jxY9TX1+Pp06eoqqoCAJSXl0OhUKCmpgbV1dVQKBSNQyiVlZWorq5GRUVF43X/yG+PVU9P77mxFFNTU/Tt2/cPR1QMDQ1hYmLSZAMp2trakEqlkEqlAICioiKcPXsWcrkcW7Zsweeffw5jY2O8/PLLkEqlGDduHLp3794k993eZaf9irra3//9RkRELaP26VPU19ehg7aO6BSlcuNymuiEJqNQKJCamoo33nhDdAoRUbNycHBAVFQULl++jJUrV3LUgwAAHTt2xOPHj4U2FBfcw7mjh/l7sAmUPbgPdDERnUFERERE9JdkZGTA2tpaad80QgSFQoH9+/fj7bffFp1CzYhjHu2Duro65s2bh7fffhurVq3CggULsH37dvy///f/MHDgQNF5RERERET0JyQKhUIhOoKIiIiIqLllZmZi+PDhKC8vx6JFi7B8+XJoaGiIzqJmUlpaChsbG4wZMwYRERGic6idKC0txdq1a7FhwwZ07twZn3zyCWbPng0VFRXRaURt3vr16/HRRx9h0aJFCAkJ4cH6bUR1dTWqqqrw6NEjPHnyBFVVVaioqEBFRQWqqqrw5MkTPHr0CFVVVaiurkZ9fX3jCSGVlZWora1FXV0dKioqAPz/QxrPnj3DkydPGu/nP8czfs9vt/V7NDQ0oKPzxyfzGhoaPvffurq6UFdXf25QpGPHjlBVVX3utvT19aGiogJtbW1oa2ujY8eO0NXVhba2NnR1ddGxY8fGrxkaGkJLSwsdOnT4C7+q4uXm5kIulyMmJgZyuRw1NTWwsLBoHAAZM2ZM4wAL/Vt9fT26duuGovv3RacQEREJ06uXBXJzc0Rn/GNXr16FjY0NUlJS4OzsLDqHiAR4+vQpOnTogEOHDmHixImic1pMRkYGVqxYgX379sHOzg5LlizhqIcSmjx5MtTU1LBnzx4h9z9r1iz88MMPQu67vQoKCsLq1atFZxARERER/SlPT0+YmJjwOK8WdO7cObi7u+Py5cuws7MTnUPN5JVXXoG5uTm2bt0qOoWa0I0bNzBv3jzI5XJMnz4d69evR6dOnURnERERERHRH+CYBxEREREpDZlMhlu3biE7Oxu9evXC1q1buUrdTk2bNg1nzpzBlStX/uskXaJ/6u7du1i5ciW2bt0Ka2trLF26FDKZTHQWUZsXHR0NX19fvPrqq9ixYwe0tLREJxEpverqapw7dw5yuRxyuRwXL16EqqoqHBwcGsc9Ro4cCTU1NdGpREREAIDy8nLEx8cjPj4eCQkJSElJQW1tLbp3747hw4dj6NChGDZsGPr378+Tk+l3bd++HXPnzsWjR484BEykpJR1zOM3GRkZWLt2LXbt2gUbGxt89tlnHPVQIjKZDBKJBFFRUS1+3ydPnsTbb78NFRUV7NixAyNGjGjxBiIiIiIiEqdr16744IMPsGjRItEpSuODDz7AsWPHkJWVJTqFmtHIkSNhZ2eHjRs3ik6hJqZQKLBjxw4sWrQIEokEX375JaZPny46i4iIiIiIfgffPpiIiIiIlIZEIoGFhQXS09NhamqKIUOGICAg4Ll3fqe2LyYmBnv27MGWLVs45EHN4qWXXkJYWBgyMjJgbW0NHx8fDB06FPHx8aLTiNo0mUyGkydP4syZMxg1ahQePHggOolI6WlpaUEqlSIkJAQpKSkoKipCZGQknJ2dERkZCQ8PD5iZmcHb2xvh4eG4ffu26GQiIlJyBgYG8PLywpo1a3D+/HmUl5fj1KlTmD17Nh48eIBFixbB1tYWJiYmmDhxIr788kskJSWhrq5OdDq1EsnJyXBycuKQBxEpLTs7O0RERCA9PR2Ojo6YOnUq7O3tERERgYaGBtF51Mzq6+uhqqraovdZW1uL4OBgjBkzBq6urrh06RKHPIiIiIiIlExZWRkKCgpgb28vOkVpKBQKHDhwAFOmTBGdQs2sqqoK2traojOoGUgkEvj6+iI7Oxs+Pj6YMWMGPD09cf/+fdFpRERERET0v3DMg4iIiIiUjoWFBWJjY7F161bs2LEDDg4OOHXqlOgsagLl5eWYO3du4wsTRM3J2toaUVFRSExMhKamJoYPHw4PDw9cvnxZdBpRmzVkyBAkJiaitLQUbm5uyM7OFp1ERP/BxMQEMpkMYWFhuHPnDnJycvDFF18AABYuXIhevXrB0tIS/v7+iI6ORnl5ueBiIiJSdtra2hg5ciQ+++wzHD9+HOXl5bhy5Qq++OIL6Ovr45tvvoGbmxsMDAzg4eGB0NBQJCQkoLa2VnQ6CZKcnIzBgweLziAiEs7W1rZx1MPJyQkzZ86Eg4MDIiIiUF9fLzqPmklxcTGMjY1b7P5yc3Ph5uaGr776Clu2bMG+fftgZGTUYvdPREREREStw2/H2dja2gouUR7nzp3D3bt3IZPJRKdQM6uoqICurq7oDGpGBgYG2LBhA+Lj43H9+nU4ODjgyJEjorOIiIiIiOg/cMyDiIiIiJTSb6vUmZmZsLOzw+jRo+Hv74+KigrRafQPzJ8/Hw0NDfjqq69Ep5ASGTx4MOLi4hAbG4vS0lI4OTnB29sbubm5otOI2qTevXsjPj4exsbGGDp0KE6cOCE6iYj+gIWFBfz8/BAVFYWysjKkpKTgrbfeQmpqKqZMmQJjY2O4uLggKCgIcrmcJ0YTEZFwqqqqsLGxgZ+fHyIiInDnzh1cvXoVa9asgaGhIb766isMGzYMpqammDhxIjZs2IDLly9DoVCITqcWUFNTg4yMDAwcOFB0ChFRq2FjY8NRDyVSXFwMExOTFrmvw4cPw8XFBfX19bh48SLeeeedFrlfIiIiIiJqfc6fP4+uXbuia9euolOURnR0NKysrGBjYyM6hZpZZWUlxzyUhJubG9LS0jB27FhMmDAB/v7+ePLkiegsIiIiIiICxzyIiIiISMmZm5vj4MGD2Lt3Lw4cOADlVfmgAAAgAElEQVQrKyv89NNPorPoBfz888/YuXMnvv32WxgaGorOISUklUqRmpqKPXv2IC0tDdbW1vD390dRUZHoNKI2p3Pnzjh16hTGjBkDT09PLF26lCeIELVyampqcHZ2RnBwMFJSUlBUVITdu3fD2dkZu3fvhoeHB4yMjODh4YHQ0FBcvXpVdDIREREAwNraGu+99x6ioqLw4MED5OTkIDQ0FJqamlixYgUcHBxgamoKLy8vhIaGIjU1leMe7VRaWhqePXuGQYMGiU4hImp1fhv1uHz5MgYMGICZM2fC3t6eox7tTElJSbOPedTX1yM4OBivv/46xo8fj3PnzqFPnz7Nep9ERERERNS6nTt3Du7u7qIzlEZDQwP279+PKVOmiE6hFlBZWQk9PT3RGdRCOnbsiIiICOzcuRNRUVEYNGgQ0tPTRWcRERERESk9jnkQEREREQGQyWTIzMzE6NGj8dprr8Hb2xslJSWis+gvKi8vh7+/P6ZPn47XXntNdA4pMYlEAplMhqtXr2Ljxo2IiYlB7969ERQUhMePH4vOI2pTtLW1ERkZiW3btuGrr77C6NGjUVhYKDqLiP4iY2NjyGQyhIWFIS8vDzk5Ofjqq69gaGiI1atXw8bGBpaWlvD390d0dDQePnwoOpmIiAgAYGFhAT8/v8ZxjytXrmDVqlXQ0tJCaGgoXFxcYGZmBm9vb4SHhyM/P190MjWR8+fPw9TUFL179xadQkTUavXv3x8RERHIyMiAs7MzRz3akfr6ejx8+LBZxzzu37+P0aNHY82aNdiyZQsiIiKgra3dbPdHREREREStn0KhQFJSEoYOHSo6RWkkJCQgPz8fMplMdAq1gMrKSujq6orOoBY2bdo0pKenw9jYGEOGDEF0dLToJCIiIiIipcYxDyIiIiKi/2FqaoqIiAgcOXIEiYmJsLW15ZPYbcTnn3+O2tpabNiwQXQKEQBAXV0dfn5+uHHjBpYsWYKwsDBYWloiNDQUNTU1ovOI2hRfX9/Gg0kcHR0RGxsrOomIXsB/nhhdUlKClJQU+Pn5ITc3F9OmTYOJiQlcXFwQFBQEuVyOZ8+eiU4mIiKCiooKbGxsnhv3SEpKQkBAAB48eIB//etfeOmllzBgwAAEBQUhLi4OT58+FZ1NLygxMRGurq6iM4iI2gRra2tERETg+vXrcHd3x6xZs9C3b1+Eh4ejrq5OdB69gNLSUjQ0NMDY2LhZbv/ixYsYNGgQ8vPzkZiYiHfeeadZ7oeIiIiIiNqWzMxMlJWVwd3dXXSK0oiOjoatrS369+8vOoWaWXV1Nerq6jjmoaS6d++OuLg4zJ8/Hz4+PggKCkJDQ4PoLCIiIiIipcQxDyIiIiKi/+XVV1/FlStXMHHiRPj4+MDLy4vvstqKXbt2DZs3b8bKlSthZGQkOofoOTo6OggMDEROTg5mzZqFzz//HP369UN4eDjfqZLob3ByckJKSgqGDRsGT09PLF68mMM4RG2YmpoanJ2dERgYiNjYWJSVleHgwYNwdnbG3r174eHhASMjI3h4eCA0NBSpqamik4mIiAD8+3vY4MGD8cknn+D06dMoLy/HiRMnMGbMGMjlcowePRqGhobPfQ9TKBSis+kvSkpK4pgHEdHfZGFhgbCwMFy/fh1SqRTz5s1rfP6Tox5tS3Z2NgCgd+/eTX7b0dHRGDZsGHr16oXz58/DwcGhye+DiIiIiIjapnPnzkFXVxd2dnaiU5RCQ0MDDhw4AJlMJjqFWkBlZSUAQE9PT3AJiaKqqoqQkBCEh4dj/fr1mDBhAh4/fiw6i4iIiIhI6XDMg4iIiIjod+jr6yMsLAynT59GdnY2bG1tER4ezhMwWqEFCxbAxsYGM2fOFJ1C9IeMjIwQEhKC69evY9y4cZg3bx7s7e0RHR0tOo2ozdDX10d0dDQ2bdqEzZs3w8nJCefPnxedRURNQE9PD15eXggLC8OtW7eQk5ODdevWwdDQECEhIXBxcYG5uTm8vb0RERGB0tJS0clEREQAAG1tbUilUoSEhCAlJQW3b9/Ghg0bYGhoiDVr1sDFxQUvvfQSZs6cif3796OiokJ0Mv2BO3fuID8/H25ubqJTiIjapF69ev3XqEffvn056tGGZGRkwMDAAF27dm2y21QoFAgNDYWPjw+mT58OuVwOExOTJrt9IiIiIiJq+86dOwdXV1eoqamJTlEKZ8+eRUFBAcc8lMRvr0no6uoKLiHRZs+ejdjYWCQnJ2P48OHIy8sTnUREREREpFQ45kFERERE9H8YPnw40tLS4Ovri7lz58LT05NPZLciR44cwbFjx/D1119DVVVVdA7Rn+rWrRvCwsKQkZEBGxsb+Pj4wM3NDWfOnBGdRtQmSCQSzJkzB1lZWejXrx/c3d3h7+/f+G4iRNQ+WFhYwM/PD1FRUSgpKUFKSgo++OADPHz4ELNnz4apqSlcXFwQFBQEuVyOp0+fik4mIiICAPTo0QPvvvsuoqKi8ODBAyQlJWHOnDm4fv06fHx8YGxsDA8PD3z99de4efOm6Fz6D0lJSVBVVYWLi4voFCKiNu23UY9r165hxIgRmDdvHvr3748ff/yRox6t3JUrV2BnZweJRNIkt1dVVYU33ngDS5cuxffff4+wsDCoq6s3yW0TEREREVH7oFAoIJfLMWrUKNEpSiM6Ohr29vawtrYWnUIt4LdjaTjmQcC/j4VOTk6GQqGAu7s7bty4ITqJiIiIiEhpcMyDiIiIiOhP6OjoYMOGDUhISMCdO3fQv39/BAcHo7a2VnSaUnv27BkWLlwImUyGESNGiM4h+lusrKwQFRWFxMREaGlpYeTIkZgwYQIyMjJEpxG1CV26dMGhQ4ewfft27Nu3D/b29vj5559FZxFRM1BVVYWzszMCAwMRGxuLsrIyHD9+HFKpFDExMfDw8ICRkRE8PDwQGhqK1NRUKBQK0dlERERQVVXF4MGDsWTJEiQkJODBgwfYuXMnzM3NsXz5cvTp0weWlpbw9/dHTEwMnj17JjpZqSUmJsLe3p4HNRMRNZHevXtj27ZtyMrKgru7O959913Y2tpi9+7daGhoEJ1HvyMjIwO2trZNclulpaWQSqU4e/YsTp48iVmzZjXJ7RIRERERUfuSlpaGwsJCeHp6ik5RCg0NDTh48CBkMpnoFGohv4156OnpCS6h1qJnz544e/YsunXrhmHDhiEzM1N0EhERERGRUuCYBxERERHRX+Tm5oa0tDQsWrQIISEhGDx4MFJSUkRnKa2NGzciLy8Pa9asEZ1C9MIGDx6MuLg4HDt2DPn5+XB0dMTUqVNx/fp10WlEbYKvry8yMzMxcOBAjB8/Hh4eHrh06ZLoLCJqRrq6upBKpQgJCUFmZiZycnKwfv16GBoaIjQ0FC4uLjA3N4e3tzfCw8ORn58vOpmIiAgAYGRkBJlMhoiICBQXFyMlJQVvvfUWUlNTMWHCBBgZGcHLywvh4eEoLCwUnat0EhMT4ebmJjqDiKjdsbS0xA8//IAbN25gxIgR8PX1hZ2dHaKjoznE2MpcuXIFdnZ2//h2bt++DXd3dxQWFiIhIQHu7u5NUEdERERERO3RL7/8AnNzczg4OIhOUQpnzpxBYWEhJk+eLDqFWkhFRQUAcMSanqOvr4/Y2FhYW1tj1KhRfPMxIiIiIqIWwDEPIiIiIqK/QVNTE8HBwbhy5Qo6deqEwYMHw9/fH48fPxadplQePHiAFStW4KOPPkLPnj1F5xD9Y2PHjkVKSgoOHTqEa9euwdraGt7e3sjJyRGdRtTqmZmZYe/evUhKSkJNTQ2cnZ3h7e2NvLw80WlE1AIsLCzg5+eHqKioxhOjP/zwQzx8+BDz589Ht27dYGlpiYCAAMjlctTU1IhOJiIigqqqKpydnREcHIyUlBTk5uZi3bp1AID3338f3bp1g7u7O0JDQ3Hz5k3Bte3f06dPcenSJbi6uopOISJqt3r06IGwsDBkZGTA2dkZU6dOhYODA0c9Wonr16+jvLwcTk5O/+h2MjIy4O7uDnV1dcTHx8PKyqqJComIiIiIqD06evQoPD09IZFIRKcohejoaDg6OvLfakqksrISEokEOjo6olOoldHV1cWRI0dgY2OD0aNH4/Lly6KTiIiIiIjaNY55EBERERG9gN69e+PEiRPYtm0bDh48CCsrK0RERIjOUhpr1qyBtrY2Fi9eLDqFqMlIJBJ4eXnh4sWL2LNnDy5dugRra2v4+/ujoKBAdB5Rqzd48GCcPXsWu3btwq+//gobGxsEBQXh/v37otOIqIX8dmJ0YGAgYmNjUVZWhtjYWMhkMpw7dw4eHh4wMjKCh4cHQkNDkZqaypPGiIioVejVqxf8/PwQExOD4uJi7N27Fz169MAXX3yBvn37wtXVFWvWrOGwRzNJTU3F06dP4ebmJjqFiKjd++21lPT0dFhZWcHHxwdubm6IiYkRnabUzpw5A21tbQwYMOCFb+P06dMYOnQobGxscO7cOXTr1q0JC4mIiIiIqL15+PAhkpOT4enpKTpFKdTX1+PAgQOQyWSiU6gFVVZWQltbG6qqqqJTqBXS0dFBTEwMbG1tMXr0aGRnZ4tOIiIiIiJqtzjmQURERET0giQSCXx9fZGdnQ0vLy/MmDEDXl5eyMvLE53WrpWWliIsLAwLFy7kajy1SyoqKpDJZMjMzMSWLVsQGxuLXr16wd/fH0VFRaLziFo1iUSCKVOmICsrC8HBwdi+fTt69eqFOXPm8MRHIiWko6MDqVSKkJAQpKSkoLCwED/++CPMzc2xdu1auLi4wMzMDN7e3ggPD8e9e/dEJxMREUFPTw+TJ0/Grl27UFZWhrNnz2Lw4MFYv349+vTp0zhal5CQIDq13UhMTISxsTEsLS1FpxARKQ0bGxtERUXh0qVL6N69OyZMmAB3d3ecOnVKdJpSOnPmDIYMGQINDY0Xuv6JEyfw6quv4pVXXsGRI0egp6fXxIVERERERNTeHD9+HAAglUoFlyiH06dPo6ioiGMeSqaiogK6urqiM6gV09HRwZEjR9C7d2+88sorPDaRiIiIiKiZcMyDiIiIiOgfMjQ0RFhYGE6fPo2cnBz0798foaGhqK+vF53WLn355Zfo0KED/Pz8RKcQNSt1dXX4+voiKysLGzduRExMDCwtLREUFITy8nLReUStmqamJhYuXIjbt29j/fr1kMvlsLKygre3Ny5cuCA6j4gEMTMzg0wmQ0REBB48eICUlBQsWLAADx8+xPvvv4+XXnoJlpaW8Pf3R3R0NCoqKkQnExGRklNVVYW7uzs2bNiAe/fu4eTJk3j55ZexY8cODBs2DH379kVQUBB+/fVX0alt2oULF+Dq6gqJRCI6hYhI6djb2yMqKgqJiYnQ0tLCqFGj4O7ujrNnz4pOUyrx8fEYMWLEC133l19+wcSJEzFx4kTs3LkT6urqTVxHRERERETtUVRUFEaNGgUDAwPRKUph3759cHR0RJ8+fUSnUAuqrKzkmAf9KW1tbRw+fBgqKirw8vJCdXW16CQiIiIionaHYx5ERERERE1k+PDhSE9Px9KlS7Fs2TK4uLggOTlZdFa7UlZWhs2bN2PRokV8oYmUhoaGBvz8/HDjxg2sWrUK27ZtQ/fu3REUFITHjx+LziNq1Tp06IA5c+YgOzsbkZGRyMnJgaurK+zs7LB+/XoUFxeLTiQiQVRUVODs7IzAwEDExsairKwMsbGxkMlkSE1NhY+PD4yMjODu7o7Q0FCkpqaioaFBdDYRESkxVVVVjBo1Cps2bUJ+fj6uXLmCadOm4eDBgxg0aBB69uyJoKAgZGdni05tcxITE+Hm5iY6g4hIqbm6uiI2Nhbx8fFQV1fHiBEj4OHhgdTUVNFp7V5ubi7u3LnzQmMeMTExmDRpEqZPn46dO3dCTU2tGQqJiIiIiKi9efz4MY4dOwYfHx/RKUqhoaEBP/30EyZPniw6hVpYZWUl9PT0RGdQG2BiYoKjR4/i5s2bmDt3rugcIiIiIqJ2h2MeRERERERNSF1dHYGBgcjIyECnTp3g5uYGf39/vqt3E1m/fj00NDT4ggEpJR0dHQQEBCAnJweffvopvvvuO1haWiI0NJSL+ER/QlVVFd7e3khNTUVSUhKGDBmC4OBgdOvWDZMnT0ZMTAxqampEZxKRQNra2pBKpQgJCUFKSgoKCwsRGRkJGxsbbNy4ES4uLujcuTO8vb0RHh6OO3fuiE4mIiIlZ2Njg+DgYGRnZyM5ORmvv/46IiIiYGVlhUGDBuHrr79GYWGh6MxW7+7du7h37x7HPIiIWgl3d3ecOnUKsbGxePToEQYOHAgvLy9cunRJdFq7FRcXBy0tLQwaNOhvXW///v2YNGkS3n33XYSHh0NFhYegERERERHRX3Pw4EHU19fjtddeE52iFM6fP4/CwkJMmjRJdAq1sMrKSr5hGv1lvXv3xq5du7Bjxw5s3rxZdA4RERERUbvCV1KJiIiIiJpBnz59EBsbi23btuHAgQOwsrLCvn37RGe1aY8ePcKmTZvw4YcfcjGelJquri4CAwORk5ODWbNmYfny5ejbty82bNiAp0+fis4javUGDx6MsLAwFBYW4vvvv0dJSQkmTpwIExMTTJ48GRERESgtLRWdSUSCde7cGTKZDGFhYbh37x5ycnKwZMkSPHz4EAEBAejRowcsLS3h7++P6OhoPH78WHQyEREpsYEDB2L9+vW4d+8e4uPj4eTkhGXLlqFbt25wd3dHeHg4v1f9gaSkJKiqqmLgwIGiU4iI6D9IpVIkJyfjxIkTKCgogLOzM7y9vXH9+nXRae3O0aNH8fLLL0NTU/MvXyc2NhbTpk2Dv78/vvnmG0gkkmYsJCIiIiKi9mbv3r0YN24cjIyMRKcohYMHD6Jv376wtrYWnUItrKKigmMe9Ld4enpi2bJl+Oijj5Ceni46h4iIiIio3eCYBxERERFRM5FIJPD19UV2djbGjx8Pb29veHl58V28X9DXX38NhUKBefPmiU4hahU6deqEkJAQ3L59G2+++SaCgoLQr18/hIeHo66uTnQeUaunra0NX19fnD59Gnfv3sXatWtRWVmJd999F507d8aIESOwbNkyyOVyPHnyRHQuEQlmYWGBgIAAxMbGoqysDLGxsZDJZEhNTYWPjw86deoEFxcXBAUFQS6X83sxEREJoaKiAnd3d4SFheH+/fvYs2cPTExM8P7778PMzAze3t746aefUFtbKzq11UhKSoKtrS0PaCYiaqWkUilSUlJw6NAhZGdnw9raGt7e3sjJyRGd1i7U1dXh5MmT8PT0/MvXuXDhAiZNmgSZTMYhDyIiIiIi+tvKyspw8uRJ+Pj4iE5RGocOHcIbb7whOoMEqKys5Jum0d+2ZMkSuLm5Ydq0aaiurhadQ0RERETULnDMg4iIiIiomRkZGSEsLAynTp3CzZs3YW1tjdDQUNTX14tOazOqq6uxceNGBAQEwMDAQHQOUatiYmKCkJAQXL9+HWPHjsW8efNgZ2eHiIgINDQ0iM4jahO6du2KOXPm4NixYyguLkZkZCQsLCywa9cueHh4wMDAAG5ubli4cCF27tyJy5cv8wRIIiWmpaUFqVSKkJAQpKSk4P79+4iMjISzs3Pjnxu/nTAdHh6O27dvi04mIiIlpKWlBZlMhoMHD+L+/fv47rvvUF1djcmTJ+Oll15CQEAArly5IjpTuKSkJLi5uYnOICKi/4NEIoGXlxfS0tKwZ88eXLp0CdbW1vD390d+fr7ovDYtISEBjx49wrhx4/7S5a9cuYJXXnkFL7/8MrZv3w4VFR52RkREREREf09UVBTU1NQwYcIE0SlKIS0tDbm5uXj99ddFp5AAlZWVHLKmv01FRQXbtm3DvXv3EBwcLDqHiIiIiKhdkCgUCoXoCCIiIiKiluDt7Q3g3y8KilJTU4OQkBCEhITA2toa4eHhGDhwoLCetmL79u3w9/fHnTt30LlzZ9E5RK3a7du3sXr1amzduhXW1tZYunQpJk+ezHdIJHpB+fn5OHv2LBISEnD+/HlcvXoVz549g7q6OqytrWFra4vevXujZ8+e6NWrF3r27Ilu3bpBTU1NdDoRCZKbmwu5XA65XI5jx46hoqICFhYWkEqlkEqljSNBREREIuTn52Pnzp347rvvcPv2bTg7O8PPzw/Tp0+Htra26LwW9ezZM+jr6+O7777D22+/LTqHiFqJp0+fokOHDjh06BAmTpwoOod+R21tLXbv3o3PP/8c9+7dw4wZMxAcHAxzc3PRaW1OYGAgDh48iOvXr//pZfPy8uDm5oZ+/frh6NGj6NChQwsUEhERERFRe+Ps7Aw7Ozts375ddIpSWLp0KX744QfcvXuXxw0poeHDh8PR0RHffPON6BRqg7799lsEBAQgJSUFDg4OonOIiIiIiNo0jnkQERERkdJoDWMev7lx4wbmzJmD06dPY/bs2fjyyy+hp6cnOqvVcnV1Ra9evbB7927RKURtxtWrVxEcHIx9+/Zh0KBB+PTTT+Hl5SU6i6jNq62tRVZWFjIyMnD58mVcuXIFt27dwq1bt1BdXQ0AUFVVhbGxceOHqakpTExMoKenB11dXWhpaTV+rq6u/pfvu7y8HAqFAtXV1aipqUF9fT0eP34MAKioqEBdXR2ePn2KqqoqAMDDhw8BAFVVVXj69Olzl/+rOnToAG1tbRgYGEBHRwfa2towMjKCiYkJTExMYGZmBlNTU5iZmaFHjx5/6/EQKYO6ujokJSXhyJEjkMvlSEtLg0QigaOjY+O4x4gRI/j/DhERtbiGhgbExcUhPDwchw4dgra2Nnx8fDBnzhw4OTmJzmsRFy5cgKurK7KystCvXz/ROUTUSnDMo+149uwZtm/fjs8//xyPHj3CrFmz8Omnn8LU1FR0Wpthb2+PkSNH/ulJPZWVlRg6dCgAID4+Hh07dmyJPCIiIiIiamd+/fVXDBo0CAkJCY3/xqDmZWdnh1GjRmHDhg2iU0iAAQMGwNPTE6tWrRKdQm1QQ0MD3NzcoKGhgbNnz3IQiIiIiIjoH+CYBxEREREpjdY05gEACoUCW7ZsQWBgIPT09PDNN9/w4ODfkZ6eDkdHR5w5cwbDhw8XnUPU5ly+fBkrV65EdHQ0hg4dilWrVmHEiBGis4japfv37+P27dvIy8vDgwcPUFJSgpKSksbPKyoqUFFRgZqamsbP6+rq/vLtd+zYEaqqqtDU1IS2tjYkEgkMDAwAADo6OtDQ0ICamlrjQJi+vj5UVFTQoUMHaGlpPXf5v6qqqgrV1dV49OgRKisrUV1djbKyMhQXFzc+rt+oqqqie/fusLCwgIWFBXr37g0nJyc4ODjwRBqi/1FSUoJTp05BLpfj2LFjuHPnDnR1deHq6gqpVAovLy/0799fdCYRESmZwsJC/Pjjj9i6dStu3ryJwYMHY/bs2ZgyZQp0dXVF5zWbDRs2YPny5SgpKeFBqETUiGMebc/Tp0/x448/YtmyZaisrMS8efMQFBT0t58DUTZ37txBjx49cOLECXh4ePzh5RoaGjBp0iQkJCQgOTkZFhYWLVhJRERERETtybvvvotz584hMzOTz8e1gJs3b6JPnz44deoURo4cKTqHBOjbty/eeecdLF68WHQKtVGpqakYNGgQoqKi8MYbb4jOISIiIiJqszjmQURERERKo7WNefymqKgIH330ESIjIzFu3Dh888036N27t+isVsPPzw8JCQl8IZfoHzp//jyWLFmCU6dOQSqVIiQkBM7OzqKziKiNq62tRXFxMfLz85Gbm9v4kZOTg+zsbBQUFAAAunTpAkdHRzg7O2P48OEYMmQItLW1BdcTiZebmwu5XA65XI7jx4/j8ePHsLCwgFQqbfwwNDQUnUlEREokNTUV4eHh2LlzJ9TU1DBjxgwsWLAAPXr0EJ3W5KZOnYrHjx/j559/Fp1CRK0IxzzaridPnmDTpk0IDQ2FRCLB/PnzsWDBAnTs2FF0Wqu0adMmLF68GCUlJdDU1PzDywUFBWHdunWIjY3lSDQREREREb2wyspKdOnSBStXrsT7778vOkcphIaGYu3atbh//z7U1NRE55AA5ubm+OSTTzB//nzRKdSGTZs2DampqcjMzOSfJUREREREL0hFdAARERERkbLr3Lkzdu7cidOnT+PevXvo378/AgICUFlZKTpNuIqKCuzZswfvvfcehzyI/qEhQ4YgLi4OsbGxePToEQYOHAgvLy+kp6eLTiOiNkxdXR1dunTBwIED4ePjg8WLF+P7779HXFwc8vPzUVRUhBMnTiAgIAD6+vrYvXs3PDw8YGhoiGHDhuGzzz5DXFwc6urqRD8UIiEsLCzg5+eHqKgolJaWIiUlBX5+fsjNzcW0adNgYmICFxcXBAUFQS6X49mzZ6KTiYionXN2dkZYWBju3LmDoKAg7N+/H71794aPjw+SkpJE5zWpxMREuLq6is4gIqImoqOjg8DAQOTl5eHjjz/G119/DUtLS4SGhqK6ulp0Xqvz888/Y+zYsf/nkMfOnTuxZs0ahIeHc8iDiIiIiIj+kZ07d6Kurg7Tp08XnaI0Dh48iIkTJ/LkeyVWWVkJXV1d0RnUxq1YsQK3bt3Crl27RKcQEREREbVZHPMgIiIiImolhg8fjosXL2Lt2rX48ccfYWVlhYiICNFZQv3444+or6/Hm2++KTqFqN2QSqW4cOECDhw4gLy8PDg7O8PX1xc5OTmi04ioHTI1NYWHhwc+/vhjREZG4saNGygsLMTOnTsxYMAAHD16FFKpFKampvD29kZERAQHzUhpqampwdnZGYGBgYiNjcX9+/exe/duODs7Y+/evfDw8ICRkRE8PDwQGhqK1NRU0clERNSOderUCYsXL8atW7cQGRmJu3fvws3NDS4uLoiIiGjzY2yFhYXIy8vjmAcRUTukp6eHwCMu5tIAACAASURBVMBA3Lx5EzNnzsTy5cvRp08fhIeHt/nvX03lyZMnOH36NMaPH/+Hl8nKysKcOXPw4YcfYsaMGS0XR0RERERE7Y5CocCmTZvg7e0NIyMj0TlKIT8/H8nJyXj99ddFp5AgDQ0NqKqqgp6enugUauMsLS0xZcoUhIaGQqFQiM4hIiIiImqTOOZBRERERNSKqKmpISAgAFlZWRg1ahRmzJiB0aNH4+rVq6LThPjuu+8wbdo0GBoaik4halckEglee+01XLp0CTt27MCFCxdgZWWFWbNm4datW6LziKidMzMzg0wmw4YNG5CSkoKcnBwsWbIEBQUFeOedd2BmZgZvb28cPXoUDQ0NonOJhOnUqRNkMhnCwsJw69Yt5OTkYN26dTA0NERISAhcXFzQpUuXxiGcsrIy0clERNQOqaurQyaT4fz580hJSUH//v0xa9YsdO/eHcHBwW32+8+FCxegoqKCQYMGiU4hIqJmYmxsjNDQUOTk5OD111/H/PnzYWNjg6ioKKU/8eDkyZN49uwZPD09f/frT58+xbRp02BlZYXVq1e3cB0REREREbU3R44cwdWrV/Hhhx+KTlEahw4dgo6ODqRSqegUEuTJkydoaGiArq6u6BRqBxYuXIisrCwcO3ZMdAoRERERUZvEMQ8iIiIiolbIzMwMEREROHPmDEpKSuDo6IiAgACleqf6S5cuITMzE7NmzRKdQtRuqaioYOrUqbh27RoiIyORkJCAfv36wdfXFzk5Of8fe3ceV2Pa/wH8c9ppU0mLZ6i0N7JUhGwpQyShGPtgamzTmFAzPBhZMoaRbYYxlgxjsjMa1NiXKEOSSouKFpVSqZG23x/z6KepKE7dLZ/369VrnOters99dZ8zV+ec+3sLHY+IWghdXV18+eWXuHLlClJSUrBu3TpkZGRg2LBh0NXVxfLly/H48WOhYxIJTk9PD25ubggICEBWVhbCwsLg4eGBnJwczJgxA+rq6rC0tIS3tzeCg4NRVFQkdGQiImpmLCws4O/vj5iYGLi6umL9+vXQ0dHBwoULkZmZKXS8Orl58yaMjY2hrKwsdBQiIqpnmpqa2LRpE2JjYzFgwACMHz8e5ubmOHjwoNDRBHPmzBl0794dGhoa1S739vZGbGws9u/fDxkZmQZOR0REREREzc3atWvh4OCALl26CB2lxTh69CgcHBwgJycndBQSyKvvmbKYB4mDubk5bG1tsW3bNqGjEBERERE1SSzmQURERETUiPXt2xe3bt3C2rVrsWfPHhgbG8Pf31/oWA3i0KFD+OCDD9CzZ0+hoxA1exISEnBxcUFUVBT27duH69evw8TEBJMnT0ZCQoLQ8YioBdHU1IS7uzsuXLiA6OhouLq6YsuWLdDR0cGIESNw+fJloSMSNQqSkpKwsLCAl5cXgoKCkJ2djTNnzsDOzg4nT56Evb09VFVVYW9vjzVr1uDWrVst/s7TREQkPnp6etiwYQMePXqEJUuWwN/fH3p6evD29kZWVpbQ8Wrl5s2bsLKyEjoGERE1oA4dOmDbtm24e/cuTExM4OrqChsbmxb5XsPZs2cxePDgapedPn0afn5++OGHH2BoaNjAyYiIiIiIqLm5efMmLl++jIULFwodpcXIzs7GxYsX4ezsLHQUEtCrYh6KiooCJ6Hm4pNPPsGpU6eQnp4udBQiIiIioiaHxTyIiIiIiBo5KSkpeHh4ID4+HqNHj8Ynn3wCW1tb3L9/X+ho9erw4cNwdXWFSCQSOgpRi/GqqMf9+/exY8cOXLt2DSYmJnB3d8fjx4+FjkdELYyhoSHWrl2LR48eYf/+/cjNzUW/fv3Qr18/nDlzRuh4RI2KgoIC7Ozs4Ovri8jISMTHx+P777+HiooK1qxZA0tLS2hpacHV1RXbt29Hamqq0JGJiKgZUFZWxvz585GQkIAVK1bA398fOjo68PDwwJMnT4SOV6Py8nLcunWLxTyIiFooU1NTBAQE4Pr165CWlka/fv1gb2+Pu3fvCh2tQTx8+BBxcXHVFvPIycnB1KlTMWHCBEycOFGAdERERERE1NysXr0aVlZW6Nevn9BRWoyTJ09CUlISDg4OQkchAeXn5wP453NkInEYNWoU5OXlceDAAaGjEBERERE1OSzmQURERETURKipqcHPzw8hISF4/vw5unbtCg8Pj4oPXpqTiIgIREdHY/To0UJHIWqRpKWlMXnyZERFReGnn35CcHAwOnXqBHd3d6SkpAgdj4haGBkZGbi6uuLixYu4dOkS5OXlMWTIEFhZWeHYsWMoLy8XOiJRo6Onpwc3NzcEBAQgMzMTYWFhmDdvHnJycjB37ly0b98eZmZm8Pb2RnBwMF68eCF0ZCIiasJat24NDw8PxMbGYuXKlQgICIC+vn6jLeoRGxuLZ8+esZgHEVELZ21tjfPnzyMoKAhPnz5Ft27d4OrqiocPHwodrV6dPn0a8vLysLa2rrLsq6++AgBs3LixoWMREREREVEzFBUVhRMnTsDb21voKC3K0aNHYWdnByUlJaGjkICeP38OgMU8SHxatWqFYcOG4fjx40JHISIiIiJqcljMg4iIiIioibGyskJISAh27NiBffv2wdjYGP7+/kLHEqtDhw6hffv21X6ZlIgazutFPTZt2oTAwEDo6enB3d0dqampQscjohaob9+++OOPP3Dnzh2YmJhgzJgx6NmzJ65duyZ0NKJGS1JSEhYWFvDy8kJQUBCys7MRFBQER0dHBAcHw97eHqqqqrC3t8eaNWtw69YtFskhIqJ3Ii8vX1HUY/Hixdi/fz8MDQ2xZMkSPHv2TOh4FUJDQyEtLQ1zc3OhoxARUSNgZ2eHsLAwHDhwAH/99ReMjY3h7u7eKAtSiUNQUBBsbW0hKytbqT00NBQ//fQT1q9fDxUVFYHSERERERFRc7J06VKYmppi5MiRQkdpMQoLCxEUFARnZ2eho5DAXhXzUFRUFDgJNSeOjo64fPkynj59KnQUIiIiIqImhcU8iIiIiIiaIAkJCUyePBkxMTEYM2YMPvnkE9ja2iIyMlLoaGJx6NAhjBkzBiKRSOgoRARARkYGbm5uiI+Px6ZNm3Dq1KmKoh5paWlCxyOiFqhLly7w9/fHzZs30apVK9jY2GDKlCksNERUC/Ly8rCzs4Ovry/CwsKQmpqKPXv2QEtLC99++y0sLS2hqakJV1dXbN++HY8fPxY6MhERNTEKCgrw8vJCQkICvL29sXXrVhgYGGDr1q0oKSkROh7CwsJgbm4OOTk5oaMQEVEjISEhARcXF9y/fx/fffcdjh8/DiMjI6xYsQIFBQVCxxOb8vJyXL58Gba2tpXaS0pK4O7ujr59++Ljjz8WKB0RERERETUnd+/exeHDh7FixQpISPCSlYYSGBiIoqIiODo6Ch2FGlB5eTmMjY2hoaEBXV1ddO7cGd7e3pCVlcWnn34Kd3d3eHl5wcfHB7dv3xY6LjVhQ4cOhUgkwvnz54WOQkRERETUpPCdESIiIiKiJkxNTQ1+fn64ceMGCgoK0K1bN3h4eCA/P1/oaO8sJiYG9+/fx+jRo4WOQkT/8qqoR0JCAjZu3Ijff/8dBgYG8PDwQHp6utDxiKgF6t69Oy5evIjffvsNly5dgqGhIVasWIEXL14IHY2oydDS0oKLiwv8/f2RmZmJsLAwfPnll8jJycHnn3+ODz74AJ06dYK7uzsOHjzYpP/WICKihqWoqIivvvoKiYmJmD17Njw9PfHhhx/i4MGDguYKDQ2FlZWVoBmIiKhxkpGRwdy5cxEXFwdPT0+sXbsWhoaG2LFjB0pLS4WO995iYmKQlZWFPn36VGrfuHEjoqKisH37dhZZJyIiIiIisfD29kb37t0xYsQIoaO0KEePHoWNjQ3atWsndBRqQK/+ls/IyEBiYiLu3buHiIgIFBUV4cCBA9i1axc2bNiAJUuWICAgQOC01JQpKyvD3NwcV65cEToKEREREVGTwmIeRERERETNgKWlJa5fv44dO3Zg//79MDY2hr+/v9Cx3snBgwehqalZ5cukRNR4vF7UY/369Th48CD09fXh4eGBJ0+eCB2PiFogFxcXREVF4euvv8aaNWtgYWGB0NBQoWMRNTkSEhKwsLCAl5cXgoKCkJ2djaCgILi4uODWrVsYO3Ys2rVrB3t7e6xZswa3bt1CWVmZ0LGJiKiRU1BQwLJly3Dv3j107twZrq6ucHBwQHx8fINnKS0txZ07d1jMg4iI3khBQQH//e9/kZCQgEmTJmHOnDmNoiDV+7p27RpatWqFLl26VLTl5eVh5cqV8PT0hKGhoYDpiIiIiIioubh69Sr++OMPrF69mgUDG1BxcTH++OMPODs7Cx2FBODs7AwZGZkq7WVlZSguLsbLly8BAJMmTWroaNTM2NjY4OrVq0LHICIiIiJqUljMg4iIiIiomZCQkMDkyZMRGRmJjz76CFOnToWdnR2ioqKEjlYngYGBGD58OCQk+OcKUWMnKysLNzc3xMbGYuXKlQgICIC+vj68vb2RnZ391u03b96M1NTUBkhKRC2BnJwcvv76a9y7dw/a2tro3bs3vL29UVRUJHQ0oiardevWsLOzg6+vL8LCwpCWlgZ/f3/o6elh48aNsLS0hKamJlxdXbF9+3YkJycLHZmIiBqxTp064eDBg7h48SIePXqEzp07w8fHp0Hna5GRkSgoKGAxDyIiqhU1NTX4+voiJiYGVlZWGDt2LHr37t1kL1i4fv06rKysKl3c4+fnh9LSUnh6egqYjIiIiIiImpOvv/4aAwYMgJ2dndBRWpQ///wTOTk5GDFihNBRSADDhg2rKNhRHUlJSdjY2MDU1LQBU1Fz1KNHD9y9exclJSVCRyEiIiIiajJ4dRwRERERUTPTrl077Ny5E1evXkVOTg66dOmCefPmIScnR+hob/Xs2TOEhobio48+EjoKEdWBvLw8PDw8EBcXhxUrVmD37t3o2LEjvL29a3ztOXPmDObOnYt+/frhyZMnDZyYiJqzjh074uzZs9iyZQu2bt0KCwsLhIWFCR2LqFnQ0NCAi4sLtm3bhpSUFMTHx2PRokXIycmBh4cHOnbsiE6dOsHd3R0HDx5EXl6e0JGJiKgR6tevH/766y988803WLNmDczNzXHx4sUG6Ts0NBStW7eGiYlJg/RHRETNQ8eOHeHv74+QkBBIS0ujb9++cHV1RXx8vNDR6uTatWvo3bt3xePc3Fxs2LAB8+bNg4qKioDJiIiIiIiouThy5AguX76M1atXCx2lxTl69CgsLS2hq6srdBQSQK9evaCkpFTj8rKyMsydO7cBE1FzZWpqipcvXza598WIiIiIiITEYh5ERERERM1Ur169EBoaih07duDXX3+Fvr4+/Pz8GnVF7D///BPl5eWwtbUVOgoRvYPXi3osXrwYP/30U0VRj2fPnlVa97///S8kJSWRlJSEfv36ITMzU6DURNQciUQiuLm54c6dO2jbti169+6Nb7/9FuXl5UJHI2pW9PT04OHhgaCgIGRnZyMoKAguLi64desWxo4dCzU1NVhaWsLb2xtXrlxBWVnZO/f18OFDHDhwgM9jIqJmQlpaGgsWLMD9+/dhZGQEW1tbfP755ygoKKjXfkNDQ9G9e3dISUnVaz9ERNQ89ejRAxcvXsTZs2cRFRUFExMTuLu7IyMjQ+hob/X8+XNER0ejR48eFW0bNmxAaWkpPv/8cwGTERERERFRc/HixQvMnz8fEydOhLW1tdBxWpSysjKcOHECzs7OQkchgUhKSmL48OGQlpaudnmbNm3g5OTUwKmoOTIyMoKEhATu378vdBQiIiIioiaDxTyIiIiIiJoxCQkJTJ48GXFxcZg7dy68vLzQuXNnnD59Wuho1QoODoalpSVUVVWFjkJE70FBQQFeXl5ISkrCokWLsH37dnTo0AHe3t7Izc3F2bNnERoaitLSUpSUlODhw4fo378/nj59KnR0Impm9PT0cO7cOaxevRqLFi3C6NGjkZeXJ3QsomapVatWsLOzg6+vL8LCwpCeno79+/fDwsIC+/btQ9++fdGuXTu4urpi+/btSEpKqtP+165di48//hh2dnZISUmpp6MgIqKG1qFDB5w4cQK7d+/GL7/8gi5duuDSpUv11l9YWBisrKzqbf9ERNQy2NnZ4fbt29i8eTNOnDgBY2NjrFmzBi9evBA6Wo1iYmJQVlYGMzMzAP8U99iwYQO+/PJLqKioCJyOiIiIiIiag2+//RaZmZnw9fUVOkqLc/XqVaSnp7OYRws3fPjwam/0Ji0tjZkzZ0JWVlaAVNTctG7dGpqamnX+vJ+IiIiIqCVjMQ8iIiIiohZAQUEBy5YtQ0REBDp37oyhQ4fC0dERCQkJQker5OLFi7C1tRU6BhGJyauiHvHx8fjiiy/www8/oFOnTpg7d26luyAXFxcjLi4O/fv3R3Z2toCJiag5kpCQgKenJ86fP4+QkBBYWloiIiJC6FhEzV67du3g4uKCbdu24dGjR4iPj8eqVasAAPPnz4eOjg46deoEd3d3HDx4ELm5uW/c36lTpwAAly9fhomJCfbt21fvx0BERA1n0qRJiIqKgrm5OQYMGAAPDw8UFxeLtY+ioiJERETAwsJCrPslIqKWSUpKCm5ubnjw4AFmz56N5cuXw9jYGL/88gvKy8uFjlfFgwcPICUlBV1dXQBAQEAAXrx4gTlz5gicjIiIiIiImoPHjx/j22+/xeLFi6GtrS10nBbn6NGjMDQ0hImJidBRSEBDhgyBhETVS8RKSkowY8YMARJRc6WhoYEnT54IHYOIiIiIqMlgMQ8iIiIiohbEwMAAAQEBCA4ORmJiIkxMTODh4dEo7lCflZWF6Oho2NjYCB2FiMRMRUUFy5cvx8OHD/HRRx/hwYMHVe4EUVxcjAcPHmDw4MHIz88XKCkRNWc2NjYIDw9Hhw4d0LNnT+zatUvoSEQtip6eHtzc3BAQEICMjAwEBQXBxcUFt27dwrhx46CmpgZLS0t4e3sjODi40gXciYmJSE5OBvDPnCE/Px+TJk3CqFGjkJWVJdQhERGRmGloaODIkSPYvXs3duzYgb59++Lhw4di239kZCRevnzJYh5ERCRWioqK8PHxQWxsLOzs7DB16lRYW1vj2rVrQkerJCYmBnp6epCWlgYA/Pzzz3B2doaqqqrAyYiIiIiIqDnw9PSEpqYmvvjiC6GjtEjHjx/H6NGjhY5BAlNRUUGPHj0gEokq2qSkpGBvb19R3JNIHDQ1NVnMg4iIiIioDljMg4iIiIioBRo0aBBu376NTZs2Yf/+/TA2Nsb27dtRVlYmWKarV68CAKytrQXLQET1S1VVFQkJCZCSkqp2eXFxMe7evQs7Ozs8f/68gdMRUUugrq6O06dP47PPPsP06dOxcOHCRnm3XKLmTk5ODnZ2dvD19UVYWBhSU1Ph7++PDz/8EHv37oW9vT00NDTg4uKC7du3Y//+/ZCUlKy0j/Lycvz+++8wMjLC8ePHBToSIiKqD5MnT8b169eRm5sLKysrBAUFiWW/d+7cQevWrWFgYCCW/REREb1OW1sbO3bsQEREBNTU1NCnTx84OjqKtTDV+3jw4AGMjIwA/FPY4/r165g2bZrAqYiIiIiIqDk4c+YMAgICsGHDBsjKygodp8W5ffs2EhIS4OzsLHQUagScnJwqfS+rtLQUc+bMETARNUeKior8bh8RERERUR2wmAcRERERUQslJSUFNzc3REVFwcnJCbNmzUKvXr0Eu1vctWvXYGpqyrvAETVjwcHBCAkJQUlJSY3rFBcX4/bt27C3t0dBQUEDpiOilkJKSgrr16/H3r174efnhwkTJuDly5dCxyJq0TQ0NDB+/Hjs3r0bKSkpiI+Ph6+vL0QiERYsWICtW7dWu11xcTGePXuGkSNHYsyYMcjJyWng5EREVF/Mzc0RFhaGjz76CA4ODti4ceN77zM8PBydO3euUiCKiIhInExMTBAYGIigoCAkJCTAzMwM3t7eyM/PFzRXTEwMDA0NAQA///wzOnToAFtbW0EzERERERFR01dQUIBZs2Zh7NixGD58uNBxWqSjR4+iffv2sLS0FDoKNQLDhw9HcXFxxWMNDQ04ODgImIiaI1lZWbx48ULoGERERERETQaLeRARERERtXBt27bFDz/8gL/++guKioqwsbHB2LFjG/xucTdv3oS1tXWD9klEDWvJkiWV7v5Qk+LiYoSFhWHEiBH84I+I6s2ECRNw+vRpBAYGYsiQIcjNzRU6EhH9j56eHtzc3BAQEIC0tDTk5uaitLS02nXLysoAACdOnMCHH36I8+fPN2RUIiKqR/Ly8vjll1/g4+ODefPmwc3N7b2KsN25cwddu3YVY0IiIqKa2dnZ4c6dO1i9ejW2bdsGY2NjbN++vca/bepbcnIydHV1UV5ejl9++QVTp06FhAS/NkZERERERO/nq6++Qm5uLvz8/ISO0mIdOXIEo0ePhkgkEjoKNQJmZmZo3749AEBaWhqzZs1igWsSOxbzICIiIiKqG34qS0REREREAP6542lwcDDOnj2L+/fvw8jICB4eHnj27Fm9911eXo47d+7AwsKi3vsiImGkpqYiJCQEJSUlkJaWhqys7Bu/LF5SUoJLly7B2dn5vS7WIiJ6k4EDB+LKlSuIjY2FjY0NHj16JHQkIvqXiIgIPH/+/K3rFRcX48mTJxg0aBDc3NxQUFDQAOmIiKi+iUQieHt749ixYzhw4ACcnJxQWFhY5/2Ul5cjIiICXbp0qYeURERE1ZOWloaHhwfi4+MxZswYzJ49Gz179sTly5cbNEdpaSmys7OhoaGBe/fuIS0tDSNGjGjQDERERERE1PyEhIRg69at+P7776GhoSF0nBYpNjYWkZGRcHZ2FjoKNSIjR46ESCRCWVkZpk+fLnQcaoZeff+PiIiIiIhq5+23wyUiIiIiohbFzs4Ot2/fxs6dO/Hf//4Xv/zyCxYuXIh58+ZBRkamXvqMi4vDs2fP0L1793rZf0v14sULBAYGCnanP6J/27hxI1JTU5GZmYnMzExkZGTgyZMnyMjIqHSRrpSUFEQiEYqLi3H69Gn07t0bCxcu5F1EiOidWFlZQUdHp8blH374Ia5cuYKhQ4fCxsYGp0+fhomJScMFpFq5ePEiMjIyhI5BAjhy5AikpKRQUlLy1nVfzXt/+uknnDx5El5eXhV3niIiauq0tbXRp08foWMIxtHRERcuXMCQIUMwcOBABAYGQk1NrdbbJyUlIScnh8U8iIhIEKqqqvDz88PMmTPh6emJfv36Yfjw4di4cSN0dXXrvf+srCyUlZVBXV0df/75J1RVVdG1a9d675eIiIiIiJqvoqIiTJ8+HYMHD8akSZOEjtNiHTlyBGpqarCxsRE6Cr2n4uJiPH/+HGVlZcjNzQUA5ObmoqysDABQWFiIoqKiarf9+++/8eLFi4rHSkpKKC8vh4WFBa5evQplZeUab7ikpKQESUlJAECrVq0gJycHaWlpKCgoQCQSoU2bNuI8TGomCgsL0bp1a6FjEBERERE1GaLy8vJyoUMQERERETUEV1dXAEBAQIDASZqO58+f47vvvsOaNWvQsWNH+Pj4wMXFRez9/Pbbb5gwYQLy8vL4Jr8YHTlyBKNHjxY6BhERkaDGjRuHX3/99a3rZWdnw9HREfHx8Th//jwLejQixcXFkJOTq/iiEhERUUvUqnVrFBYUCB1DcFFRURg8eDDatm1bcTFybRw/fhzOzs549uwZlJSU6jklETVlRUVFkJOTw7Fjx+Dk5CR0HGqmTp48ifnz5+PRo0dYsGABvL290apVq3rrLzY2FoaGhrh9+zaWLFkCGRkZHDp0qN76IyIiIiKi5m/BggXYtm0bIiIi0LFjR6HjtFg2NjYwMDDArl27hI7SopSXlyM7OxtPnz5FdnY2cnNzkZeXh7y8PDx//hzPnz9Hfn4+cnNzKx4/f/4cOTk5KCgowMuXL5Gfn4+SkpIqhTgaq1cFQeTl5SEjIwMFBYWKH2VlZSgpKUFeXh4KCgpQUlKCsrJyxWNlZWWoqqpCTU0NqqqqkJeXF/pw6D2NGDECbdq0gb+/v9BRiIiIiIiaBCmhAxARERERUeOloKCAZcuWYdq0aVi8eDHGjh2LH3/8EevWrRPrXdsiIiJgZGTEQh5i9uru5YejUwVOQkREJIx1X7ijtLS0VuuqqqoiKCgIDg4OGDBgAC5cuMCCHo1EWVkZysrK4LVlF3oM+kjoONTAvp07HSkJcVBSVYOKejsoKKtAQbkNFNuoQLFNGyi0UYHia20Kym0g8b+7RxERNReXThzG1sWeQsdoFExMTHD58mUMGDAADg4OCA4OhoKCwlu3u3PnDjp16sRCHkRE1Cg4OjpiyJAh2LhxI5YvX469e/fCz88Pjo6O9dLf33//DQCQkZHBpUuXsHr16nrph4iIiIiIWoaLFy9i/fr1+Pnnn1nIQ0DPnj3DjRs38Pnnnwsdpcn7+++/8eTJE6SlpSEjIwMpKSnIyspCdnZ2paIdr/6bnZ2N6u6prKSkBAUFBcjLy1cpaNGuXTsoKytDQUEBsrKyaN26NWRlZSv+LSkpWfH+tYqKCgBAUVERUlL/XPIlLS1d43vhUlJSUFRUrHZZaWkp8vLyql1WVlaG3NzcisevCo0UFRWhsLAQJSUlyM/PBwDk5OQAQEURkleFSwoKCpCXl4fHjx9Xepybm4uCgoJqC5XIyspWFPZ4vciHmpoa2rZti3bt2kFDQwPa2tpo164d2rVrBwkJiWqPgYSRlZUFfX19oWMQERERETUZLOZBRERERERv1aFDB/j7+8PNzQ2enp6wtLTE1KlT4ePjAy0trffef3R0NC+WJSIiIsG1bt0ap06dwtChQ2Fvb4+LFy+iU6dOQsciatEWbvpZ6AhEFdOkFQAAIABJREFURNTI6OjoIDg4GH379oWTkxNOnToFOTm5N24THh4u1sK0RERE70taWhqenp4YP348vLy84OTkhEGDBmHTpk0wNjYWa1+vLpyJj49Hbm4uBg4cKNb9ExERERFRy5GVlYXx48fD2dkZU6dOFTpOixYUFITy8nLY2dkJHaXRKi0tRVpaGhITE5GUlITHjx9XKtiRkZGBtLS0SgUtAEBNTQ3q6uoVRSbU1dVhbGxcUXDi1c+rx8rKyo22kLSkpGRFcZDqqKmp1Wv/JSUlyM3NrbEoyqt/P3r0CHfu3EFWVhYyMjIqCpO+OoZ/F/jQ1taGpqYmdHR00KFDB3Ts2BFt2rSp12Oh/5eeng4NDQ2hYxARERERNRks5kFERERERLVmY2ODkJAQ/Prrr/jqq69w4MABfPnll1iwYEGN1d1rIyoqCqNGjRJjUiIiIqJ3Iy8vj5MnT2Lw4MEYOHAgLly4AD09PaFjEREREdFr9PX1ERgYiIEDB8LNzQ3+/v5vXD88PByffPJJA6UjIiKqPS0tLfj7+2PGjBmYPXs2unTpgnnz5mHZsmVvLVZVW6/uFhwTE4PWrVvD0NBQLPslIiIiIqKWZ8aMGZCQkMD27duFjtLinTlzBj179oSqqqrQUQRTWlqK5ORkxMXFITk5GcnJyRWFO5KTk/H48WMUFxcD+Keopra2dkUxiA8//BDt2rWDlpYWNDU1KxWKkJWVFfjImg8pKamK4icGBga13i43N7fawivp6elIT0/HrVu3kJ6ejszMzIptlJSU0KFDB+jo6KBjx44VRT50dHRgYGDQop8r4vbkyRNoamoKHYOIiIiIqMlgMQ8iIiIiIqoTkUiE8ePHY8yYMfjhhx+wbNkybN26FQsWLMAXX3xR5w+zSkpKEB8fL/Y7zRERERG9K2VlZZw+fRqDBg2CnZ0dQkJC0K5dO6FjEREREdFrunXrhkOHDmHIkCHo0aMH5syZU+16eXl5ePjwIbp06dLACYmIiGqvX79+uH37NrZs2YIlS5bg4MGD8PPzw/Dhw99739LS0gCABw8ewNjYGBISEu+9TyIiIiIianm2bt2KkydPIjg4mBfFNwJnz57FjBkzhI7RIHJycpCQkICEhARERkbi/v37SEhIQFRUFAoLCwEAcnJy0NbWhp6eHoyMjDBgwICKx3p6eujQoQOkpHj5VFOhrKwMZWXlt36ntKioCCkpKUhISEBqairS0tKQkJCAmJgY/PHHH0hOTkZJSQkAQEVFpeJ80NPTg6mpKczMzGBoaPheN7JradLT01FYWIiOHTsKHYWIiIiIqMngX6NERERERPROZGRk4OHhgUmTJuHbb7/FsmXL8MMPP2D58uWYNGkSRCJRrfaTmJiIoqIi3gmOiIiIGhUVFRWcPXsWvXr1wsiRI3Hu3Dmx3RGXiIiIiMTDzs4Oy5Ytw5dffonu3bujd+/eVda5e/cuysvLWcyDiIgaPSkpKXh4eMDV1RVeXl4YMWIEhg0bho0bN0JXV/ed9/uqmEdSUhL09fXFFZeIiIiIiFqQv/76C56enli0aBEGDhwodJwWLy4uDo8ePYKdnZ3QUcQqOzsb4eHhiIiIQEREBMLDwxEdHY38/HwAgKKiIgwMDGBgYIChQ4fCw8MDhoaG0NfXh5qamsDpSQiysrIVxTmqU1JSgkePHiE2NhaxsbGIiYlBbGwsDh06hMTERJSWlgIAPvjgA5iamqJLly7o3LkzzM3NYWJiUvGeCv2/qKgoAODN+4iIiIiI6oDFPIiIiIiI6L2oqqrC19cXs2fPxooVKzBt2jRs3rwZa9euRf/+/d+6fWJiIgC81xdRiYiIiOpD27Zt8fvvv6NXr16YPHkyfvvtt1oXLCMiIiKihrFo0SKEhIRgypQpuHv3Llq1alVp+Z07d9CmTRt88MEHAiUkIiKqGy0tLfj7+2Pq1KmYM2cOzMzMsHTpUnh6er7TXYQVFBQAAGlpaTAzMxN3XCIiIiIiauZycnLg4uKC3r17Y+nSpULHIQDXrl2DrKwsLCwshI7yzh48eIBbt24hPDwcd+/eRUREBB4/fgzgn8/pu3TpAhsbG3z66acwNDSEoaEhtLS0BE5NTY2UlBR0dXWhq6uLwYMHV1r28uVLJCQkICYmBg8ePMC9e/cQFBSEDRs24OXLl5CWloaJiQnMzc3RuXNndO3aFT169ECbNm0EOprGITo6GsrKytDU1BQ6ChERERFRk8FiHkREREREJBYffPABtm3bhs8//xxeXl4YMGAA7OzssG7dOpibm9e4XVJSEuTl5dG2bdsGTEtERERUO0ZGRjh69CgGDx4MHx8fLFmyROhIRERERPQakUiEn376CWZmZli2bBnWrFlTafndu3fRtWtXFmUjIqImx9bWFuHh4fjuu++wbNkyBAQE4Oeff0bXrl3rtJ9Xn79kZmZCQ0OjPqISEREREVEzVVZWhgkTJqC4uBgHDhyApKSk0JEIQEhICLp37w5ZWVmho9RKXl4e7t69i6tXr+LKlSu4ceMGMjMzISUlBUNDQ5iZmWH69OmwsLCAmZkZ9PT0hI5MLYCMjAyMjY1hbGxcqb2kpATJycmIjIzErVu3cOvWLWzbtg0PHz5EeXk5tLS0YGNjgz59+sDCwgJWVlZN5rkoDhERESwWS0RERERURyzmQUREREREYmVmZobff/8dwcHBWLhwIbp164YJEybA19cX2traVdZPSkqCjo5OwwclIiIiqqX+/fvDz88Ps2bNgrGxMVxdXYWORERERESv0dLSgq+vL2bPno3x48ejS5cuFcvu37+Pbt26CZiOiIjo3UlLS+Orr76Cq6srPv30U1hZWWHWrFlYvXo1WrduXat9KCoqQk5ODoWFhVBQUKjnxERERERE1JwsXboU586dw+XLl6Guri50HPqf69evw9bWVugYNXr06BGCg4Nx4cIF3LhxAw8ePEB5eTk6deqEnj17YvHixejZsye6desGGRkZoeMSVSIlJQU9PT3o6enB0dGxoj0zMxM3btzAjRs3EBISgiVLliAvLw+tW7dG9+7d0adPH9ja2qJv375o1aqVgEdQv27cuIF+/foJHYOIiIiIqEmREDoAERERERE1T3Z2dggLC8OBAwdw5coVGBgYwNvbGzk5OZXWS0pKQocOHQRKSURERFQ7n332GWbPno0ZM2YgLi5O6DhERERE9C+ffvopunbtiiVLllRqj46OhpGRkUCpiIiIxKNTp074888/sWXLFuzevRvm5uY4f/58rbfX0NDAixcvmvXFJEREREREJF4nT57EqlWrsHHjRlhZWQkdh/6noKAA9+7dg7W1tdBRKuTk5ODIkSOYPXs2jIyM0KFDB8yePRspKSlwdXXFiRMnkJGRgbi4OOzbtw+ff/45evbsyUIe1KSoq6tj+PDh8PHxQVBQEHJycnDv3j1s2rQJpqamOH78OD766COoqKjA1tYWq1atwo0bN1BaWip0dLF58eIFIiIi0KNHD6GjEBERERE1KSzmQURERERE9UZCQgIuLi64f/8+vvnmG+zYsQP6+vpYs2YNCgsLAQBpaWnQ1tYWOCkRERHR23333XfQ19fHuHHj8PLlS6HjEBEREdFrRCIRli1bhhMnTiA0NBQAkJGRgadPn8LY2FjgdERERO9PJBLBzc0N0dHR6Ny5MwYNGgR3d3fk5eW9dVs9PT2UlZVBJBI1QFIiIiIiImrq7t69iwkTJuCTTz6Bm5ub0HHoNZGRkSgpKYGFhYWgOaKjo7Fy5Ur06NED6urqcHV1RWhoKEaNGoXg4GBkZ2cjODgYy5cvx/Dhw6Guri5oXiJxk5CQgJmZGaZNm4Zt27YhKioKjx8/xrZt2/Cf//wHmzdvhrW1Ndq2bYsxY8Zg//79tXoPpzELCwtDcXExi3kQEREREdURi3kQEREREVG9k5OTw/z585GYmIiFCxdi1apV0NHRwZo1a/DkyRNoaGgIHZGIiIjorWRlZREQEICYmBh88803QschIiIion8ZNmwYrKyssHbtWgBATEwMALCYBxERNStaWlo4evQo9u7diyNHjqBz5844d+7cG7fR19eHSCTC33//3UApiYiIiIioqUpLS4OjoyO6deuGLVu2CB2H/uXevXto3bo1dHR0Grzv8PBwLF26FB9++CFMTEywadMmdOvWDQEBAcjMzMTNmzexevVqDBo0CHJycg2ej0ho7du3x5QpU+Dv74/U1FRERkZi+fLlyM/Px9SpU9GuXTs4Ojpi9+7dyM7OFjpunQUHB6Njx47o1KmT0FGIiIiIiJoUFvMgIiIiIqIGo6CgAC8vL8THx2PatGlYtmwZIiMjERcXh9LSUqHjEREREb2Vvr4+vvvuO/j6+r71QhkiIiIiangzZ87E8ePHkZ2djejoaCgoKKB9+/ZCxyIiIhK7CRMm4P79++jRowfs7e2xaNEilJSUVLuugYEBysrKUFhY2MApiYiIiIioKfn777/h7OwMaWlpHD58GLKyskJHon+JjIyEqakpJCQa5lKgJ0+eYNWqVTA0NETXrl2xa9cuDBo0CBcvXkRKSgq2bduGUaNGQUVFpUHyEDUlpqammDt3Ls6cOYP09HRs27YNIpEIM2fOhKamJhwcHHDs2LEa389pbIKCgmBvby90DCIiIiKiJofFPIiIiIiIqMG1bdsWvr6+iImJQXl5OQ4dOoQuXbrg4MGDQkcjIiIieit3d3c4OTlh6tSpyM/PFzoOEREREb1m9OjRkJSUxJEjRxATEwNjY2OIRCKhYxEREdULdXV1HDx4ELt27YKfnx969+6N+Pj4Kut17doVpaWlSEhIECAlERERERE1BWVlZZgwYQLi4uLwxx9/oG3btkJHompERkbCzMys3vu5ePEixo0bhw4dOmD9+vVwdHRESEgIkpKS4Ofnh379+kFSUrLecxA1F6qqqpgyZQpOnDiBjIwM+Pv7A/jnMw1dXV0sX74cqampAqesWW5uLm7evIlBgwYJHYWIiIiIqMlhMQ8iIiIiIhJMmzZtUFZWhh9//BGmpqYYO3YsevfujQsXLggdjYiIiOiNtm3bhoKCAnzzzTdCRyEiIiKi1ygpKcHBwQFHjx5FdHQ0jI2NhY5ERERU7yZPnoywsDAUFxeje/fu2LdvX6XlFhYWAICoqCgh4hERERERURPg6emJwMBAHDt2DAYGBkLHoRrcv38fpqam9bLvsrIy+Pv7w8zMDAMGDEBSUhJ++uknPH78GOvWrUPPnj1ZOJlIDBQVFTFu3DgEBgYiLi4OEyZMwObNm9GxY0e4uLjg9u3bQkesIjAwECKRCIMHDxY6ChERERFRk8NiHkREREREJJhXd7I3MzNDQEAArl27Bjk5OQwcOBDDhw/HrVu3BE5IdfXNtLFCRyAiatb4Ott4qKurY+XKlfDz88Pdu3eFjkNixucaEVH94uss1bd+/fohJCQE0dHRMDIyEjoOERFRgzA2Nsb169cxadIkTJo0CTNmzEBBQQGAf+7+qqSkhPj4eIFTEhERERFRY7Rq1Sps3LgRe/bsgY2NjdBxqAbFxcVITU2Fjo6O2Pd96tQpdO3aFdOnT0fPnj3x119/4fr165g8eTLk5OTE3h8Jx97eXugI9BpdXV34+vri0aNH2LNnDx4+fAgLCwuMHDkS0dHRQsercOTIEQwcOBCqqqpCRyEiIiIianJYzIOIiIiIiASTl5cH4J9K4wBgbW2Nc+fO4cyZM8jKyoKVlRWcnZ15gWwDGm2sjdHG2u+8fXl5uRjTNE/vM74tCcfpH+/7nGwsfQpxHEKp72NtLq+zzeV8cHNzg4WFBWbPnt1sfjfNBec09a+5PI/rG8fpH5zTND2c09ROSzkfmiJra2tkZ2cjMTERxsbGQschIiJqMHJycti8eTOOHj2KY8eOoXfv3khKSgLwT7GP1NTUZjMXIyIiIiIi8fjxxx+xaNEirF+/HmPHshBzY5aSkoLS0lJ06NBBbPu8ffs2+vfvD0dHRxgYGCAiIgI7d+5Et27dxNaHOIhEondaJiSRSPRe2VJSUjBx4kRoa2tDUlLyvff3Skt8X6C+xlKcZGVlMX78eISGhuL48eNISkqCubk5PD09K4q1CuXvv//GH3/8AWdnZ0FzEBERERE1VSzmQUREREREgsnPzwcAKCkpVWofPHgwQkJCcPbsWTx+/Bhdu3aFo6MjwsPDhYjZohyOTn2v7ZftChBTEiIC3v852Vj6FOI4hFLfx8rX2cZFQkICmzdvxvXr17Fv3z6h49BrOKchalw4p2l6OKehps7c3BwAUFpaymIeRETUIjk5OSE0NBRlZWWwtrZGSEgIBg0ahNLS0kZ1V1ciIiIiIhLW0aNHMWfOHPj4+MDDw0PoOPQWycnJAICOHTu+977KysqwcuVK9OzZE2VlZbh27RoOHz7M91PF6H2LZkyZMgUGBga4d+8eCgsLcfjwYbHkCg4OFst+mpL6Gsv6IBKJ4OjoiLCwMGzatAm7d+9Gt27dcPPmTcEynTp1Ci9evICTk5NgGYiIiIiImjIW8yAiIiIiIsE8f/4cACAvL1/tcjs7O4SGhuLs2bNISUlB9+7d4erqigcPHjRkTCIiIqIaWVpaYsaMGVi0aBGKioqEjkNEREREAOTk5NCqVStISEhAX19f6DhERESC0NXVxbVr12BhYYFBgwbBwMAAALB3716BkxERERERUWNw5swZjBs3DnPmzMHixYuFjkO1kJycDBkZGWhoaLzXfgoLC+Hi4gIfHx/4+vri4sWLsLa2FlNKEpcrV67A29sbqqqqkJWVxahRo967QEhL1RTHUlJSEu7u7oiIiICuri769++PAwcOCJJl9+7dGDx4MLS0tATpn4iIiIioqWMxDyIiIiIiEszLly8BADIyMm9cz87ODrdu3cKxY8fw4MEDmJiYwNXVFXFxcQ0RkwAkx0ZjpfskTOhugAndDeAzYzySYyvfvW+0sTZGG2vXab+vtklPTsS3c6djcg/jKvtJjo3GSreJFX2vdJtY675rag89dxZffzwC48x18JltD+xavRR/FzyvdtustFT4zpqKCd0NMK2POfwWzEH+s5x3HqPX9z3aWBtbF3vWaawexz2Az4zxmGhhiPHd9LHSfRIex8dWn6eW4/am8U+Mvo/l08ZhfNdOmGhhiBWfTsCdKxfe6dhrO55vG6fa/P4A4FFcDFa6TcT4bvqYaGGI5dM/xuO4B9WeF3U5hsfxsfAeOxwfd9XD4gkjkZ6ciEdxMfB2HYbx3fSxZPIYZKWlVMnzNpXyWhphzZxpNe6nNnmF6rO2+6zr87Y252Jtz43aPD9qo87j9559Vjc273Ne1sfrSmF+HnatXoqZdtYYZ66D6TZdscn7C8TevV2p39f7//dzXFy/n4a0dOlSZGZmYufOnUJHobfgnIZzGs5pOKfhnKYqzmk4p2muZGVloaKiAjk5OaGjEBERCUZRURHHjx/HqFGjMGvWLMjIyODUqVNCxyIiIiIiIoEFBwfD2dkZY8eOxffffy90HKqltLQ0aGlpQULi3S8DKi4uxqhRo3DhwgWcOXMGX3755Xvt712JRCKIRKJatb96/GqZSCTCjBkz3roMAO7du4dhw4ZBUVERioqKGDJkCO7du1dtn/Hx8Rg1ahRUVFRqzFeTyMhIODg4QEFBAcrKynB2dkZycnK169Y2U1FREeTk5CodW03jIxKJ8OjRIzg5OUFRUREaGhqYOHEinj59Wu26/xYeHo7BgwdDXl4eSkpKGDp0KM6cOVNpnRMnTqBPnz6Qk5ODjo4O5s2bh/z8/GqPz8HBoeL4HBwcqhzf2+Tm5mLevHnQ09ODnJwctLS0MHXqVNy8ebNex7K2Y9GQtLW1cfr0aXh5eWH8+PHYtWtXg/b/5MkTnDlzBlOmTGnQfomIiIiImhMW8yAiIiIiIsGUlJQAAKSkpN66rkgkgqOjI/766y8cOHAA4eHhMDU1xeTJk5GQkFDfUVu09OREfPPJOFgOtMcPwSH48dxN9B8xGr6zPsHT9LSK9Q5Hp9Z536+22b7MG07TZmLHpTtYtP2XSn2v+HQCen00HD8Eh2Br0HX0tHeAz4zxSE9OfGvfNbX7zpqKgc6u2HMzCr4Bv+N57jPs8Flc7bZbF3vio4+n4Ocrd/DtodMoevE39qxZXmnduo7R4ejUip9ZK9bVaazWzfsMA53H4oc/b+CH4BD0tBsKnxnjkZHy6J3HrabxT01MwLp57hg5YzZ2hdyD72+/48XfhfCZMf6dj7024/m2carN7+/1Mfjxzxv44c8bsB01Duu/nFmpj3c5ht82r8OcVd/j58t3oGNshg0L5uDAxu8wZ/UG7Lj0F/7TyQC7fb956+/0TXm3Bl1Hr8HDsH7eZ9WuW5u8QvRZl33W5Xlbm3MRqPu58abnx9vUdfzE0Wd1Y/M+52V9vK5s8vaAvKISVv92EnvDHmDx9l+QnvwQ3q7DqvRb3XNcXGPV0LS0tDBjxgysXr0aRUVFQsehGnBOwzkN5zSVc3FOwzlNXY+Vc5rmP6dpbkpLS6Guri50DCIiIsFJSkpiz549+Pjjj1FaWorIyEihIxERERERkYAuXbqEkSNHwtHRETt37qxTwQISVlZWFtq2bfte+/Dw8EBISAj+/PNP9O/fX0zJ6q68vLzW7a/aysvLK3527Njx1mVxcXGwt7eHo6MjEhISkJiYiIkTJ8LJyQmPHz+usv+ZM2di/vz5SE1NRWBgYK2PJT4+HkOHDsWYMWPw8OFDxMfHY/To0Rg3blyVdeua6fXjevVT0/jMmDEDM2fORFpaGsLCwlBYWIj58+dXu+7rHjx4gLFjx2LhwoXIzMxESEgICgoKMGTIkErrOTk5YcqUKcjOzkZISAiys7Mxd+7cKsf3aiwSEhIqCqQMGTKkTjdumzJlCtq0aYPr168jNzcXgYGBiIuLQ8+ePet1LGs7Fg1NJBJh2bJl8PLygru7e5WiJvVpz549UFBQgJOTU4P1SURERETU3IjKa/ormIiIiIiomXF1dQUABAQECJyEXjl27BicnZ1RVFQEGRmZOm1bUlKCPXv2wMfHB+np6Zg+fTq8vb3xwQcf1FPapicgIABjx46t8wWpo421K23jt2AOOhqZYuSMWZXWO3f4ABKjIzFtkU+N29a2v+X+h2DWo3eVZX4L5kC/c1cMmzyjUvvJXduQEHUPHt9uemvftcn0PC8Xs+17Yc+N+1W29dqyCz0GfVTRlvowHkunjMFPl/7/jsz1PUavb/vl+h/Rx2FEpfaTu7YhMSYKc303VOSpy7jVNP7fe85C93626O80pqIt9WE85g7tW3EMdT322oznq3VrO07V/f78Fs6F/oddqozBlVPH8b3nzPc6x5fvPQwzq14AgOyMJ/i0X7dKbU/T07Bg9EfYefVurfK/Ke/5o79h81fz3jlvQ/dZl30CtX/e1uZcrE6150Ydnh9vUtfxE0efQPVj9j7npbhfVyZ0N8C286FQUG5TsU7G42TMtLOulLum3704xwoA1n3hjvaKcg0y/0tLS0OnTp3w3XffYdasWW/fgGrt1V1y/v3/kLfhnKbytpzTcE7DOQ3nNNXhnKb6Y2hsc5pLJw5j62JPvGTRsDqRkpKCra0tzp49K3QUImpCXv39cezYMX5BnZqd4uJidO3aFffv38fevXsxceJEoSMREREREVEDu3TpEhwcHDBs2DDs27evVjdgosbj008/RXJyMs6cOfNO24eEhKB37944cOBAxXcphSQSiaotqFBde03rvmnZxIkTYW5ujoULF1Zq37lzJ8LDw+Hn51dpH+fPn8eAAQPqfByTJk2CpaUlPDw8KrXv3r0bn3zySaVsdc1Ul/H59/tZMTExsLW1RUpKyhu3Hz9+PIYOHYpJkyZV2tbY2LjGMQeAnJwc6Ovr4+nTp5WOz8rKqspYrF+/Hrdv38bevXtr3N/rFBUVkZSUBFVV1Yq2hw8fQk9PryJTfYzlu45FQykvL8fgwYORmZmJ27dv13sxprKyMhgYGGDYsGHYuHFjvfZFRERERNScSQgdgIiIiIiIWq6SkhIAeKcPhqWkpDB9+nQ8ePAAGzZswKlTp6Cvr4/PPvsMiYmJYk7ast29drnKBVEA0H3AIIRfuySWPvTNu9XYdw+7qpXte9oPxd1rl8XSNwAoKCnjee6zapeZWllXeqze/gPkZGZUyVnfY/SKee++Vdp62g9F+NWLlfLUZdxqGv97IVfRuVfl/rR1O1W6WK2ux16b8ayr6n5/d69eqnYMuvTpV6WtrsegZ9q54t8qbdWrtKm200Be9tMq271JTXm79R343nkbss+67LMuanMuVqfac0NMryt1Hb/6fi17n/NSnK8rRl0tsHrmFNy+fB6lpf/8f77dfzrU+kL2hnrdrw9aWlpwc3PDqlWr8PLlS6HjUDU4p+Gc5nWc03BO86Y+OafhnKYlz2mai/LycpSVlUFXV1foKERERI2GtLR0RZGrDRs2CJyGiIiIiIgaWlBQEIYMGYLhw4ezkEcT9fTpU6ipqb3z9lu2bEGPHj0aRSGPhhAcHIyxY8dWaR82bBiCgoKqtPfo0eOd+gkKCsLIkSOrtA8ZUvVzgrpmqot+/Sp/fqijo4O0tLS3bnfu3DkMGjSoUpuRkdFbi1eoqKggOzu7UltwcHC1Y+Hs7Izg4OC3ZnmlV69eGDFiBE6fPl3xHVNdXd1KmepjLN91LBqKSCTCunXrEB4ejsuX6//zplOnTuHhw4e8oQ0RERER0XviOzBERERERCSYsrIyAICExLvXGZSRkcFnn32G6dOn49dff8WKFSuwc+dOjBs3DosXL4ahoaG44rZY+c9y8Jlt9R9WysjJiaUPWblW1bbnPctGm7btqrSrqGsgPye7mi3eLi/7KX5Zvwq3L5/Hs6xMlJWWvnF9BSXlSo+lZWQkVrsyAAAgAElEQVSqfEDXEGP0imIblSptKuqVL2ir67i9afyVVFSrXfZKXY+9NuP5JrX9/dU0BtWNX12PoZW8QsW/Rf97/fp3W10/xK0pb3Vt4jrf6qPPuuyzLmpzLr7vuVHX15W6HGt9vJb92/ucl+J8XZnvtx0BW9bjp+VfIy/7KXRNP4S1vQOGjJ8CSSnptx5HQ4xVffL09MSWLVtw9OjRar80QsLinIZzmjfhnIZzGs5pKuOcpmXPaZoDkUiEly9fssgaERHRv7Rv3x7Xr1+HtbX121cmIiIiIqJmIzAwEGPGjMHo0aOxe/duSEpKCh2J3kFOTg7MzMzeefsrV67gs88+E2Oixu3p06fQ0dGpdlmrVlU/V2zduvU79ZOVlQVNTc0q7dW11TVTXaioVP6cRFZWtlaf9WVlZaFt27ZvXCczMxNfffUVTp8+jfT0dJTW8PlVTWOhpaWFrKyst2Z55eDBg/jmm28we/ZsZGZmolu3bhg1ahRmzZoFael/Pqepj7GszVgIzdzcHPr6+rh8+XKVAi7itmXLFtjb28PY2Lhe+yEiIiIiau5YzIOIiIiIiJoFaWlpTJ48GR9//DF+/fVXrFy5EiYmJhg9ejR8fHxgZGQkdMQmS1FFFX6BF6tcsNgQlNqoIifzCdq1/6BSe07mEyj+6yI4kUiE4pcvIS0jU9FW3Z3p/RbORXvdTli5/zjUNLUgKfnPn8ajjbXfOWdDjtGzp5loo6ZeqS0n8wmUVP//zht1Gbc3UWyjgrycbKi206h5nQY+P2r7+1Nqo4pnWRlQ1/5PpfZnWRlV9inkOf5KTXmrO4fFlbc++qzLPoHaP29rcy7W5dwQx/OjLscqrj7rizhfV1orKmGq9zJM9V6G/2PvvuO6qhc/jr/ZDoaIA1REcSGIptwyzTbmrSTtJo4SHCnXhSP3KFyV4t6JaCXmSs000xTLris1J4q5MDcOBBFF9u+PfnLjooUKHMbr+Xj4kO/5fr/n8z7nOzh8v+e8T3zsTUXs3qHvvlygyF/3aPDMBX+bpaCvq7/j7Oysli1bat68eZR5FEBs0/w9tmnYpnlSbNOwTWMktmnwv8zNzTm7KAAAD0CRBwAAAFC8LF26VJ07d5afn59CQkIo8ijEEhISZG1t/fc3fIibN28WqKICExMTJSUlycrKKnPazZu5V4hdrlw5RUZGZiu5yG3lypVTdHS0XFxcskx/0LLkV6ZH4eDgoBs3bqhSpYd/z+zn56c6depox44dqlKlSuZn7yYmJlluV65cOV25ciVbycaVK1ce6blnZ2enqVOnaurUqbpx44a2bt2q6dOna/v27Vq1alXmWLm9LnOyLgqCcuXKKSYm5u9v+ASOHz+uzZs3a+3atXk6DgAAAFAcPP7prwEAAACgALpf6nH8+HEtX75cERERcnd3V9u2bfXbb78ZHa9QeqrZSzq2Z1e26cd/3aPB/2qRp2PXb/q89mz+Ptv0PVs2qn7T57NMK1Ougm5cuZRlWuS+X7Ld98TBX9UucLAqVHbOPDAu+d69J8r5KOvof7/EfFSHtm/LNm3Plo1q8NyLmZcfZb39FY9nmurIrv9kmfb7b5Hq9+Z/x8qr58fD1lNOH78GzV7U3vBN2aYf2rEt2zQjn+P3PSzv/65/Kffy5sWYjzJPKeev25w8F3P63Mit18ejLGtujZlXcvN95R23SoqJviJJsrUvq+feeEsjQ8J0eOfPWe73sNd4QV9XOdGzZ0/9/PPPioiIMDoK/gfbNH+PbRq2aZ4U2zT/xTZN/mObBn+WlJSkZcuW5fnOrACKrifd3gUKsoMHD+qnn34yOgYAAACAfDBv3jz5+fmpZ8+eCg0NpcijkLt3755KlCjx2PevVq2ajh8/nouJnoyjo6POnz+fZdp//vPg72L+6rOah13XokULbdu2Ldv07du3y8vLK+dB/8Zrr732wMKD8PBwwzI9ipdeeilb1sOHD8vd3T3z8q5duzRmzBhVq1Yts8gjMTEx27y8vb21Zs2abNO/+eYbeXt75ziTiYmJLl68KOmP4op27dppw4YN2rx5c+Zt8mJd5mRdGC01NVWnTp1S9erV83SciRMnqnbt2mrZsmWejgMAAAAUB5R5AAAAACiSTE1N5evrq6NHj2rx4sU6evSoPDw89O677yoyMtLoeIVKu8CBWjFrsnb/8J1ux8Uq8U6Cft22RVMH9pRvrwF5OnbbPgO17ov5Cv96qW7F3FD8zRhtXbVM676Yr3Z9Bma5bYPnXtBXUz9VTPQV3bt7R4d2bNMPyxdnm2edhv9Q2ORxunbpglJTUhR9/nfNHz30iXI+yjoqW9FRJw7tV1pqig7v/Fn/fvkfjzTW5hVh2v7dN7odF5u5Pr5bHKp2gf9dH4+y3v5Km5799PXcaTqya7uSEu/q3InjmjNigN7o2PWxlv1RPGw95fTxa9dnoNZ9/pl+XL1c8TdjdDsuVjs2rNXmFUuy39bA5/jD8ibcitOujeu0ev7MPMubF2M+yjylnL9uc/JczOlzI7deH4+yrLk1Zl7J7feVuaMG6sLpE0pJTlZczHV9u3BetoNWH/YaL+jrKieaN2+u2rVra/78+UZHwf9gm+bvsU3DNs2TYpuGbRojsU2DPzt8+LDefffdXD2LI4DiITk5WZJkaWlpcBIg74SGhuqjjz4yOgYAAACAPDZx4kT16tVLgwcP1owZMyiuLALu3bsnKyurx75/69at9dVXXykhISEXUz2+5s2ba8SIEbp48aISEhL0ww8/6LPPPnvgbStXrqzdu3crJSVFmzdvVtWqVf/2utGjRysoKEirVq1STEyMbt++re+++04dOnTQhx9+mGvLMXr0aE2ZMkWLFi3S9evXdfPmTa1cuVKffPLJA2+bH5kexahRozR27FiFh4frzp07OnLkiLp27arAwMDM2zRt2lRDhgzR77//ruTkZJ0+fVo9evTINq+goCBNnTpVoaGhunbtmq5fv66FCxdq6tSpCgoKeqRc3bp107Fjx5SUlKSrV69q8uTJWQpB8mJd5mRdGG3VqlWKjY1Vq1at8myMCxcuaNmyZRo2bJhMTTnsEAAAAHhSJhkZGRlGhwAAAADyQ9u2bSVJK1euNDgJ7lu5cqXatWun/PizJD09XRs2bFBQUJAOHTqkN998UyNHjtSzzz6b52Mb5f76Xf3b5Rzf5x23Spk///l+V86d1ZIpn+jI7u1KS02Vc83a+ldAoBo3f/1v75vT8R52v3Mnjyts0nhF/rpHkuT+j8byGzxKLrXrZrldfOxNLfr4Qx3e9R8lJSbK89nn1P2jTzMPpro/71sxN/Rl8Fgd2rFNd+JvqVK1GvLt1V9TBvTIcruHLc+TrCNJ2rVpvcImf6ybV6+onFNldR42Wk+/8lqO19e8rXu0cNwoHdu3W+np6fJ4+ll1GhqkKjVqPfJ6y8n6P3FovxYHj9WZY0dkV9ZB/+zQWW8H9Mlymyd5fjxs+sPWU04fP0m6cPqEFgeP07F9v8jU1FQeTzdRlxFj1OefzbQq8mKuLENOp+XEn/OamJioTsN/qOvwMerX8qVs88rp882IMR9lnjl93Up//1x8lOdGTt9XcnP95caYT/Ic/KvXYG6+r0Ts3qHvv1qk47/uUeKdBJWt6KTG3v9Uu8BBKlnaOvN2f/VemFuPjyRN6f9vVbYpke/bf1OmTNG4ceN09erVJ9qZCn9ISkpSiRIlNHTO53rm1RY5ug/bNGzT/C+2adimedQx2aZhm6YgbdP8Z91qzR01UMlJSY983+Jq7ty5GjFihG7evMmOpgAeyY0bN1S+fHn9+OOPevnll42OA+SJadOmKTg4WFeuXDE6CgAAAIA8kJ6erg8++ECzZs3S3Llz9e9//9voSMglVapU0cCBAzVgwOOVuF+7dk1169ZVu3btNHfu3FxO9+hu3Lihfv36acuWLbp7965eeeUVzZkzJ7OM48/7FH799dcaOnSoLl26pKpVq2rKlCl66623/va6U6dOafjw4QoPD1dqaqrc3d01fPhwvf3225nz/t+im8fZl/HYsWMaPHiw/vOf/8jExERNmzbVtGnT5OHhkW2ej5rpz/d90PTcuO3u3bs1ePBg7d+/X+XLl1evXr00bNiwzOuvXbumQYMG6YcfflBcXJxq166tDz/8UO3atcs2r4iICA0ZMkTbt2+XJD3//PMKDg6Wp6fn36zF/9q6datmz56t7du36/bt26pcubJat26tMWPGyMbGJvN2ub0uc7IujHTt2jU1bNhQLVq00KJFi/JsnH79+mnt2rU6ffq0LCws8mwcAAAAoLigzAMAAADFBmUeBU9+lnncl56errVr12rChAnat2+fvL29NXz4cL3yyiv5liG/PE6ZBwq2d9wq8Xg+oQunT+jjAD999uNeo6MABUJRf18xqszjypUrqlKlitauXSsfH598HbsoepwyDxRsRf29Jz+wTQNkVdTfVyjzeHQdO3ZUdHS0wsPDjY4CoJC5dOmSqlSpol27dqlJkyZGxwHyxHfffScfHx/Fx8dnOQAGAAAAQOF39+5ddezYUd9//70WL16cub8cigYnJyeNGDFCgYGBjz2Pr7/+Wu3bt9enn36qIUOG5GI6AHkpLi5OzZs3V1xcnPbu3St7e/s8Gefy5cuqWbOmJk6c+ETvNQAAAAD+i9MQAQAAAChWTE1N9a9//Ut79+7V9u3bVaJECb366qtq1KiRFi9erLS0NKMjAsgl77hV0obFoUqIv6WU5GSdPX5Mn300RK+/19noaACKOCcnJz377LNatWqV0VEAFAFs0wDAo0lJSdH3339PqRqAx3Lv3j1JkpWVlcFJgLxTs2ZNSdLp06cNTgIAAAAgN924cUOvvfaafv75Z23evJkijyLI3NxcKSkpTzQPX19fTZ8+XcOGDdOAAQOUmpqaS+kA5JUzZ86oadOmio6O1qZNm/KsyEOSPvnkE9nb26tbt255NgYAAABQ3FDmAQAAAKDYatasmdavX68DBw6oXr166tq1q9zc3BQSEvLEX3wCue0dt0pZ/sffG/7Zl9r342b9+6V/qEtTT80bNVDN276nVu/3MjoaUCDwvpK32rRpo3Xr1ikpKcnoKECBwnvPo2ObBvhrvK/gf23evFlxcXF6++23jY4CoBC6/zccZR4oylxdXWVmZkaZBwAAAFCEREZG6umnn1Z0dLR27dqlF154wehIyAOWlpa5sk9bYGCgli1bpvnz56tZs2Y6efJkLqQDkBcWLVqkhg0bqmTJkvrll19Uo0aNPBvr/PnzCg0NVVBQkEqWLJln4wAAAADFjbnRAQAAAADAaA0bNtTixYs1dOhQTZw4Ub1799Ynn3yiAQMGqHv37ipVqpTREQulvzuQavVvl/MpScGXk3XF+np0/3ipuf7xUnOjYxjyWuD192SKy2PG8yBvtWnTRgMHDlR4eLjefPNNo+PgCfCemnNs0+QNtmnyd8yipLg8ZjwP8L8WLVqkpk2bqmrVqkZHAVAI3S/zKFGihMFJgLxjaWmpqlWrUuYBAAAAFBFbt25VmzZtVK9ePa1du1YODg5GR0IesbCwyLUTVLVr107169eXv7+/6tWrpy5dumjs2LGqWLFirsy/qDAxMfnL6zMyMvIpSdHBOs2Z48ePq3///tqyZYsCAwMVHByc5wXEY8aMUeXKldWlS5c8HQcAAAAobijzAAAAAID/5+HhocWLF2vMmDGaNGmShg0bpk8//VT9+/fXv//9b9nb2xsdsVDhgKqcY10VbUY8vjynngyPGXKDs7OzGjVqpO+//54yj0KO12fOsa6KNn4/Fj48ZiiOoqKi9O2332r58uVGRwFQSN0v88jrHeMBo9WsWZMyDwAAAKAImD59ugYPHixfX18tWrSIcsoiztLSMtfKPCSpbt262r17txYtWqTRo0dr6dKl6t27t0aMGCFbW9tcG6cwo1gi97FO/1pUVJQmTpyohQsXqmHDhtq5c6eaNGmS5+MePHhQX375pb788ktZWFjk+XgAAABAcWJqdAAAAAAAKGiqV6+uuXPn6uzZs+rcubMmTJigqlWrasCAATp37pzR8QAAQCHx6quv6qeffjI6BgAAQLExadIkubi46O233zY6CoBCKjExUZI4+AlFXq1atXTq1CmjYwAAAAB4TElJSeratas++OADjRw5Ul999RV/yxYDFhYWSk5OztV5mpubKyAgQKdOndLQoUM1b9481axZU8OGDVNUVFSujgXgwdLT07Vx40a1atVKtWvX1o4dO/TVV19p7969+VLkkZGRof79++uZZ57Ru+++m+fjAQAAAMUNZR4AAAAA8BCOjo6aMGGCLl68qPHjx2vNmjVydXWVj4+PfvnlF6PjAQCAAu6VV17R8ePHdenSJaOjAAAAFHm//fabFi5cqGHDhsnMzMzoOAAKqRs3bsjU1FT29vZGRwHyVM2aNXX69GmjYwAAAAB4DJcvX9aLL76o1atXa+3atRo9erRMTEyMjoV8YGFhoZSUlDyZd+nSpTVq1CidPn1avXv31pIlS1SrVi298cYbWrdundLS0vJkXKA4u3btmiZOnKiaNWvqzTff1O3bt7V8+XJFRESoXbt2+fbevnTpUu3YsUMzZszg9wkAAACQByjzAAAAAIC/YW1trX79+uns2bNau3atrl27piZNmqhZs2Zav369MjIyjI4IAAAKoOeff15WVlb66aefjI4CAABQ5H3wwQdyd3dX165djY4CoBC7fv26ypYtSykQirxatWopOjpaCQkJRkcBAAAA8Ah27NghLy8vxcfHa9++fXrrrbeMjoR8ZGlpmWdlHveVL19eQUFB+v3337V69Wqlp6fr7bffVrVq1TRgwABt375d6enpeZoBKMpiY2O1ePFitWrVSlWrVtXEiRPVqlUrRUZG6scff1SbNm1kapp/h/rdvXtXI0aMULdu3fT000/n27gAAABAcUKZBwAAAADkkKmpqXx8fLRnzx5t375d9vb2atWqlerUqaMZM2YoMTHR6IgAAKAAKVWqlJ555hnKPAAAAPLYN998o40bN2r69OkcgA/giVy/fl3ly5c3OgaQ51xcXJSRkaHz588bHQUAAABADmRkZCg4OFgvv/yyGjdurF9++UW1a9c2OhbymaWlpZKTk/NlLHNzc7Vu3VqbNm3SyZMn1aVLF23evFkvvPCCKleurF69eik8PFypqan5kgcozK5fv64FCxbo9ddfV8WKFRUQEKC0tDSFhITo0qVLmjZtmtzc3AzJNn78eMXHx2v8+PGGjA8AAAAUB5R5AAAAAMBjaNasmdavX6/Dhw+radOmGjJkiGrUqKEJEyYoNjbW6HgAAKCAaNq0qfbt22d0DAAAgCLr2rVr6tmzp95//3299NJLRscBUMhR5oHiwsXFRZIo8wAAAAAKgVu3bsnX11cjR47UyJEjtWbNGtna2hodCwYoXbq0bt++ne/j1qhRQ2PHjtWxY8cUGRmp3r17a/fu3WrevLkqVqyotm3bav78+Tp9+nS+ZwMKouTkZP3nP//RRx99pOeee05OTk7q16+fSpYsqc8//1xXr17Vd999J39/f5UsWdKwnFFRUZo2bZpGjx7NZ6IAAABAHqLMAwAAAACegKenp7744gudP39eAQEBmjRpkpycnOTv76+jR48aHQ8AABisYcOGioyM1N27d42OAgAAUORkZGSoU6dOsrGx0fTp042OA6AIuHHjhsqVK2d0DCDP2drays7OjjIPAAAAoID79ddf1bBhQ+3Zs0fbtm3T6NGjZWrKISDFlYODg27evGlohrp162rUqFE6ePCgTp8+rZEjRyohIUEDBw5UrVq1VL16dXXr1k3Lly/XtWvXDM0K5Jf09HQdOnRIkydP1uuvv66yZcvqxRdf1JIlS+Tu7q7ly5fr+vXrWrNmjd577z3Z2dkZHVmSNGDAALm6uqpXr15GRwEAAACKND7JAQAAAIBcULFiRY0ePVrnzp3TzJkztX//fnl6eqpZs2b6+uuvlZaWZnREAABggEaNGiktLU0RERFGRwEAAChyxo4dq61btyosLEzW1tZGxwFQBFy/fp2zUKLYqFq1KmUeAAAAQAGVkZGhyZMnq2nTpnJzc9PBgwf13HPPGR0LBnNwcFBMTIzRMTLVqFFDH3zwgb7//nvFxcXp119/VY8ePXTu3Dl16tRJFStWVKVKleTj46OJEydqx44dunfvntGxgSd269YthYeHa/To0fLx8VGFChXUsGFDTZw4UTY2Npo6daqOHj2qqKgoLViwQG3atFHp0qWNjp3Fpk2btG7dOs2YMUMWFhZGxwEAAACKNHOjAwAAAABAUWJtba2AgAB1795dW7du1YwZM9SuXTu5urqqe/fuCggIkL29vdExAQBAPqlZs6bs7Ox08OBBNW7c2Og4AAAARcaaNWs0ZswYzZ07V88++6zRcQAUEdevX1fTpk2NjgHkC8o8AAAAgILp8uXL6tSpk37++WeNHTtWQ4cOlYmJidGxUACULVu2QJV5/Jm5ubm8vLzk5eWloUOH6vbt29qxY4f27NmjPXv2aOLEiYqNjVWJEiXUqFEjNW7cWI0bN1b9+vVVq1YtmZtzaBMKpvj4eEVEROjgwYPas2ePfvnlF50+fVomJiaqVauWGjdurLFjx6pp06aqX7++TE0L/jm34+Pj1aNHD7Vt21be3t5GxwEAAACKPP7iBQAAAIA8YGJiIm9vb3l7e+vUqVOaPXu2xo0bp48//lgdOnRQ//79VbduXaNjAgCAPGZiYqIGDRro8OHDRkcBAAAoMvbu3Ss/Pz/16dNHPXr0MDoOgCIkOjpaFSpUMDoGkC9cXFx09OhRo2MAAAAA+JNvvvlG3bt3l62trX766Sc999xzRkdCAeLg4KCbN28aHSNHbGxs9Prrr+v111+XJGVkZOjEiROZ5R7btm3TrFmzlJqaqhIlSsjDw0Oenp6qX7++PD091aBBA5UvX97gpUBxkpaWplOnTikiIkKHDx9WRESEIiIidPbsWUmSvb29GjdurPfeey+zjKZs2bIGp348gwYN0p07dzRz5kyjowAAAADFAmUeAAAAAJDHatWqpRkzZmj06NEKDQ3V3LlzFRoaqpYtW6pv37565ZVXOIMGAABFWO3atXXq1CmjYwAAABQJR44c0euvv66XX35ZU6dONToOgCIkISFB169fV/Xq1Y2OAuQLZ2dnff/990bHAAAAACApMTFRw4YN08yZM+Xn56e5c+fK2tra6FgoYMqWLau4uDilpqbK3LxwHQpkYmIiNzc3ubm5qVOnTpKk5ORkHTt2LLM04fDhw9q0aZOio6MlSY6OjnJ3d1etWrVUu3btzH/Vq1eXhYWFkYuDQiwuLk6nTp3SyZMns/w7fvy4EhMTZW5urtq1a8vT01Pdu3eXp6enPD095eLiYnT0XLF161aFhoZqxYoVqlixotFxAAAAgGKhcP0FDwAAAACFmL29vQYPHqyBAwdqw4YNmjlzppo3b65atWqpa9eu6tatmxwcHIyOCQAAclmNGjW0ZcsWo2MAAAAUeqdOnVKLFi3UoEEDff3114Vuh3UABdv9s2xS5oHiomrVqrp06ZLS0tJkZmZmdBwAAACg2Nq5c6e6dOmimzdvavXq1frXv/5ldCQUUA4ODsrIyFBcXJzKlStndJwnZmlpqYYNG6phw4ZZpl+7dk1HjhzRkSNH9Ntvv+nEiRNav369Ll++LEkyNzdXtWrVMss9atasKRcXF7m4uKhq1aqys7MzYnFQQKSnpys6Olq///67zp8/r99//z1Lacf169cl/fH8q1GjhmrXrq1XX31Vffv2laenpzw8PGRlZWXwUuSN+Ph4de3aVb6+vvL19TU6DgAAAFBssHcTAAAAAOQzU1NT+fj4yMfHR4cPH9a8efM0fvx4jRs3Th06dFDPnj3VqFEjo2MCAIBcUrNmTV24cEH37t1TiRIljI4DAABQKEVERKhFixaqXr261q1bp5IlSxodCUARc7/Mo6icZRP4O1WrVlVKSoquXLmiKlWqGB0HAAAAKHYSExM1cuRIzZgxQy1atNCCBQtUuXJlo2OhACtbtqwkKSYmpkiUeTxMhQoV5O3tLW9v7yzTExISdPLkSZ06dUqnTp3SiRMntGvXLoWFhSkmJibzdnZ2dqpatapcXFxUrVo1Va1aVVWrVpWzs7MqVaqkihUr8vlyIRYTE6Po6GhdvnxZ58+fzyzsuP/zxYsXlZycLOmP4hdnZ2fVqlVLTz31lNq1a6datWqpdu3acnFxKXblpgMHDtTdu3c1a9Yso6MAAAAAxQplHgAAAABgoAYNGuizzz7TpEmTtGzZMs2dO1ehoaHy8vJSQECAOnbsqFKlShkdEwAAPIGaNWsqPT1dZ8+eVd26dY2OAwAAUOjs27dPb7zxhtzd3bVu3TpZW1sbHQlAEXT27FlVrFiR9xgUG/eLa86dO0eZBwAAAJDPdu/era5du+rKlSuaN2+eunfvLhMTE6NjoYC7X+Bx48YN1alTx+A0+c/a2lqNGjV64Emy7ty5o3PnzuncuXOZpQ7nz5/XoUOH9O233+ry5ctKS0vLvL2dnZ0qVaqkChUqqHLlyqpQoYIqVaokR0dHOTo6qkKFCnJwcFDZsmXZdy8f3Lx5Uzdv3lRMTIyuXr2qK1euKDo6OrO049q1a7p06ZKuXbumpKSkzPuVLl1aLi4ucnFxUZ06ddS8efPMyy4uLqpUqVKxK+x4mK1bt2rhwoVauXKlKlSoYHQcAAAAoFihzAMAAAAACgAbGxsFBAQoICBA+/fvV0hIiPr3768hQ4aoXbt26tu3rzw8PIyOCQAAHkP16tUlSb///jtlHgAAAI9o48aNatu2rV566SWtXLmSMyYCyDNnz57N/PsNKA6cnJxkamqqy5cvGx0FAAAAKDbu3r2rUX451y4AACAASURBVKNGacaMGWrRooW2bNlCuR5yrGLFijIzM+PvuAcoXbq03N3d5e7u/sDrU1NTFR0drUuXLj2wLCIqKuqBZRGSVKJEicxij/v/7l8uV66c7OzsZGdnJ2tra5UuXVo2NjYqU6ZM5uWiXhybnp6uW7du6fbt20pISNCdO3d069YtxcfHKyEhQbdv31ZMTExmYcf90o4/X05PT88yzzJlysjJySmzbMXV1TVL2YqTk5OcnJzk4OBg0FIXLvHx8eratat8fX3Vpk0bo+MAAAAAxQ5lHgAAAABQwHh5eWn+/PkaN26cFi5cqJCQEC1YsEDe3t7q2bOnWrZsKQsLixzPb9em9XmYFgCQXxLvJOju7dsqU768zMz4WC8nbly5rMo2rkbHkJ2dnUqXLq3o6GijoxRqJw7uU2pKstExAADId6eOHDQ6gmGmT5+uQYMGqWPHjlqwYMEjfR4CAI8qKiqKMg8UK+bm5ipXrhyfVwAAAAD5ZNu2berRo4eio6M1b948de/eXSYmJkbHQiFibm6uChUq6OLFi0ZHKXTMzc1VpUqVHJXn3Lx5U9evX39g6cT9aefPn9fBgwd17tw53bp1S2lpadkKKf7M3t4+s9ijdOnSsrCwkLW1tUxMTFSmTBlJkq2trczMzFS6dGlZWlrKyspKpUqVypyHpaWlSpcu/cD529jYyNw8+34kd+7cUXLyg79jj42NfeDl27dvKzU1VYmJibp3756Sk5N1586dzNKOjIwMxcXFKSEhQQkJCbp79+5Dl7tkyZKysbHJVoBSu3btLAUpDg4Omf8qVKigEiVKPHSeeHSDBg3SvXv3NHv2bKOjAAAAAMUSe/0DAAAAQAFVoUIFDR8+XEOHDtX333+vefPmqU2bNqpQoYI6d+6s999/XzVr1nzo/Z2cnGRubq4p/f+dj6kBAChY3nzlBaMjSPrjLEkcHPN4zM3NVdHRUWtD5xodBQAAw1SvbnxBWX5KTk5Wr1699Pnnn+vTTz/VkCFDjI4EoBj4/fff5ePjY3QMIF85OjryeQUAAACQx27evKnhw4crJCRELVu21JYtW+Ts7Gx0LBRSlStX1qVLl4yOUaTdL5j4K7t371bv3r0VHx+vDz74QGPGjFFaWlpmwUVsbKzu3LmTeTkuLk63b99WQkKCEhMTlZSUpLt37yotLU3x8fGSpPPnzysjIyNbmcZ9j1LMcd+jFIDY2dnJ1NQ0W5lIqVKlVLFiRUl/lJJIUpkyZWRtbZ1ZTmJvb5952draWnZ2dpnlJDDW2rVrFRoaqq+//lrly5c3Og4AAABQLFHmAQAAAAAFnKmpqVq2bKmWLVvq0qVLWrJkiT777DNNmDBBXl5eCggIUMeOHbM08UvS888/r5SUFINSAwByW2Jiok6cOKGTJ0/qxIkT+u233zIv3759W9IfO0zUrl1bbm5ucnNzU+3atVWnTh3VqlVLVlZWBi9B8ebo6KirV68aHaNQMjMzU/SVK0bHAJADaWlpcnNzk7e3t+bNm2d0HACF1IULF9S+fXsdOXJEq1evVuvWrY2OBKAYSEtL06lTp1SrVi2jowD5ysnJiTIPAAAAII9kZGQoLCxMAwcOlKWlpVatWqV33nnH6Fgo5CjzMNbNmzc1ZswYzZ49W88//7wOHDggDw+PzOtLlSqlChUqGJgQ+K8LFy6oW7du6t69O79/AAAAAANR5gEAAAAAhUjlypU1dOhQDR48WD/++KNCQkLUp08fDRkyRO3atVPPnj311FNPGR0TAJAHSpYsqaeeeuqB7/OxsbE6duyYIiMjFRUVpaioKC1ZskQnTpxQWlqapD8OzvDw8JCrq6vc3d0zf65evbpMTEzye3GKHScnJ12hkAJAEWdmZqb+/ftr0KBBCgoKkqOjo9GRABQy3333nTp16qQKFSpo9+7dqlevntGRABQTp06d0r179+Tp6Wl0FCBfOTo68nkFAAAAkAciIiLUp08f7dy5U4GBgRo3bpysra2NjoUioHLlyoqIiDA6RrHz53IeCwsLff755/Lz82NfCxRYqamp6tChgxwdHTVt2jSj4wAAAADFGmUeAAAAAFAImZqaytvbW97e3oqOjtaKFSsUGhqqkJAQeXl5KSAgQB06dJCNjY3RUQEA+cDe3l7NmjVTs2bNskxPTk7WxYsXsxR9HDt2TMuXL1d8fLwkyc7OTjVr1pSrq2uWog83NzeVLl3aiMUpkhwcHHTmzBmjYwBAnuvSpYvGjBmjefPmacyYMUbHAVBI3Lt3TyNHjtS0adPUuXNnzZ49W6VKlTI6FoBiJCIiQmZmZqpbt67RUYB85eTkpCNHjhgdAwAAACgy4uLiFBQUpLlz56phw4bas2ePvLy8jI6FIqRy5cratGmT0TGKlQMHDqh379769ddf1atXL40bN062trZGxwL+0siRI3Xo0CHt3buX71sAAAAAg1HmAQAAAACFnKOjo/r166d+/fpp//79CgkJ0YABA9S/f3+1bNlSAQEB8vb2NjomAMAAlpaWmSUdPj4+Wa6LjY3NLPe4X/Sxfv16TZ48WWlpaZL+OKDDw8MjS8mHq6urqlevzhlmHpGtra1u3bpldAwAyHOlSpVSr169NGvWLA0ePJgzDQL4W4cOHZKfn5/Onz+vL774Qv7+/kZHAlAMHT16VDVq1GDHdhQ7jo6OunLlitExAAAAgEIvIyNDYWFhGjJkiFJSUjR58mT16dNHZmZmRkdDEVO5cmVdvnxZGRkZfGefx2JjYzV69GjNmTNHzz33nA4cOCBPT0+jYwF/a9OmTZo8ebJCQ0Pl7u5udBwAAACg2KPMAwAAAACKEC8vL82fP1/BwcFasWKF5s2bp+bNm6tu3brq1KmT3n//fZUrV87omACAAsDe3l5eXl7ZzgSVnJysixcvZin5OHbsmFasWJFZRmFlZaUaNWpkK/pwc3NT6dKljVicAs/Ozo4yDwDFRmBgoCZPnqwvvvhCffr0MToOgAIqNTVVkyZN0ujRo9WkSROtX79e1apVMzoWgGLq6NGjqlevntExgHzn6Oio69evKy0tjYMMAQAAgMe0d+9e9e3bV/v371ePHj00duxY2dvbGx0LRVTlypV17949xcTEsA9YHrlfzjN48GCZmppq0aJF8vPzozwFhcLVq1fVpUsX+fr6qkuXLkbHAQAAACDKPAAAAACgSLKzs1NAQIACAgK0f/9+hYSE6OOPP1ZQUJDeeustBQQE6NVXX+VLRgBANpaWlnJ1dZWrq6t8fHyyXBcbG5tZ7nG/6GP9+vWaPHmy0tLSJElOTk6ZJR9/LvqoVq2aTE1NjVikAoEyDwDFiYODg/z9/TV16lT16NFD5uZ8HQUgqwMHDqh79+6KjIzUJ598ogEDBhTrbUUAxouIiNC7775rdAwg3zk5OSktLU3Xr1+Xo6Oj0XEAAACAQuX8+fMaMWKEli5dqhdeeEH79+9X/fr1jY6FIs7Z2VmSdOHCBco88sChQ4fUu3dv/fLLL+rWrZuCg4NlZ2dndCwgR9LT0/Xee+/J2tpaISEhRscBAAAA8P/YexIAAAAAijgvLy/Nnz9fkydP1vLlyxUaGqrmzZurVq1a6tKli/z9/VW5cmWjYwIACgF7e3t5eXnJy8sry/SUlBRduHAhS8lHVFSUvv32W129elWSZGVlpRo1amQWfdwv+ahTp46sra2NWJx8ZWdnp/j4eKNjAEC+GTRokEJCQrRmzRq1bdvW6DgACojExERNnDhRn3zyiZ555hkdOHBAdevWNToWgGIuMTFRUVFRqlevntFRgHx3v8AjOjqaMg8AAAAgh+7cuaNJkyYpODhY5cuX1xdffCE/Pz9OqIN88ecyj4YNGxqcpuiIi4tTUFCQ5syZo4YNG+qXX37R008/bXQs4JGMHTtWO3bs0O7du2Vra2t0HAAAAAD/jzIPAAAAACgmbGxs1L17d3Xv3l1HjhzRwoULNXXqVH344Ydq3ry5unTpolatWsnKysroqACAQsbCwkKurq5ydXWVj49PlutiY2MVFRWVpehj/fr1mjx5stLS0iT9cRbY+yUffy76qFatWpE5Q7ulpaWSkpKMjgEA+cbV1VWtW7fWpEmTKPMAoIyMDH399dcaOnSo4uLiNHv2bHXv3p0DHAAUCMeOHVNaWhplHiiWKlSoIEm6du2awUkAAACAgi89PV1LlizR0KFDlZSUpKCgIPXv35/9bJCvSpUqJQcHB50/f97oKEVCRkaGwsLCNGTIEKWkpGjKlCkKDAwsMvspoPj4+eefNX78eM2cOZOiHwAAAKCAocwDAAAAAIqh+vXra8aMGZo0aZJ++OEHhYWFqWPHjipdurTatm0rPz8/NWvWzOiYAIAiwN7eXl5eXvLy8soyPSUlRRcuXMhW9PHtt9/q6tWrkiQrKyvVqFEjs+jjfslHnTp1ZG1tbcTiPDYLCwtlZGQoLS1NZmZmRscBgHwxdOhQPfPMM9q2bZteeuklo+MAMMivv/6qAQMGaNeuXerYsaMmTJggJycno2MBQKY9e/bI1tZWtWvXNjoKkO/s7OxkYWGhmJgYo6MAAAAABVp4eLgGDhyo48ePq0uXLho/frzKly9vdCwUU1WrVtWFCxeMjlHonThxQn369NGPP/6o9957T1OnTlW5cuWMjgU8sitXrujdd99V69at1atXL6PjAAAAAPgflHkAAAAAQDFmaWkpHx8f+fj46MqVK1q5cqUWLVqkkJAQ1a1bV506dVLnzp1VsWJFo6MCAIoYCwsLubq6ytXVVd7e3lmui42NzVbysX79ek2ZMkWpqamS/igJuV/u8eeij2rVqhXIs+SYm//xUWxqaiplHgCKjaefflovvPCCJk2aRJkHUAxdvnxZY8aM0cKFC+Xl5aXt27eradOmRscCgGz27NmjZ555pkD+LQnkNRMTE9nb21PmAQAAADzEli1bNGLECB04cEDt2rXT6tWrVbNmTaNjoZhzdnamzOMJ3LlzR5MmTdKnn36qevXqadeuXWrcuLHRsYDHkpSUpHfeeUfW1tYKDQ01Og4AAACAB6DMAwAAAAAgSXJyclK/fv3Ur18/7d+/X4sXL9akSZM0cuRIvfzyywoICFDr1q1lYWFhdFQAQBFnb28vLy8veXl5ZZmekpKiCxcuZCv6WLdunaKjoyVJVlZWqlGjRmbJx/2ijwYNGsjGxsaIxZGkzN+fKSkpsrKyMiwHAOS3wYMHy8fHR4cPH1aDBg2MjgMgHyQmJmrmzJn6+OOPZWdnp0WLFsnPz08mJiZGRwOAB9qzZ498fX2NjgEYply5crpx44bRMQAAAIACZe/evRoxYoS2bt0qb29v7du3T40aNTI6FiBJqlq1qg4ePGh0jEJp/fr16t27txISEhQcHKw+ffpwMg4UaoGBgTp69Kh2796tMmXKGB0HAAAAwANQ5gEAAAAAyOb+AdQTJ07U+vXrtXjxYnXo0EF2dnZq06aNevbsqaeeesromACAYsbCwiKzoMPb2zvLdbGxsdlKPsLDw3Xs2DHdu3dP0h8lIe7u7plFH/d/rlatWp6fgfl+mUdqamqejgMABc2bb74pDw8PTZs2TV988YXRcQDkofT0dC1dulQjRoxQXFychg8frgEDBqhEiRJGRwOAh4qLi9OpU6c4+yqKNQcHB8XExBgdAwAAACgQDhw4oDFjxmjdunVq1qyZtm/frmbNmhkdC8jC2dlZ69atMzpGoXLy5EkFBgZqy5Yt6tixo6ZMmaLy5csbHQt4IrNmzdLChQv17bffysPDw+g4AAAAAB6CMg8AAAAAwEOVKFFCvr6+8vX11cWLF/XVV19pwYIFCgkJkZeXl/z8/PTee++pXLlyRkcFABRz9vb2mWVUf5aSkqILFy5kK/pYv369rly5IkmytLRUzZo1M0s+7hd9NGjQQDY2NrmSz9zcPDMPABQnJiYm+uCDD9SjRw+NGzdOzs7ORkcCkMvS09O1YsUKjRs3TidPnlTnzp01fvx4OTo6Gh0NAP7W3r17lZGRoWeeecboKIBhKPMAAAAApIMHD2aWeHh5eWnDhg164403jI4FPJCzs7MuX76stLQ0mZmZGR2nQLt7966Cg4M1YcIEubu7a+fOnWrSpInRsYAntmPHDg0aNEjjxo1Ty5YtjY4DAAAA4C9Q5gEAAAAAyJEqVapo6NChGjx4sH7++Wd9/vnnGjFihIYNG6ZWrVrJz89PLVq0yDxYGQCAgsDCwiKzoMPb2zvLdbGxsYqKispS9BEeHq5jx47p3r17kv4oCXF3d88s+rj/c7Vq1WRqavpIOSQpNTU19xYOAAqJ9957Tx9++KFmzZql4OBgo+MAyCXp6enasGGDPvroIx05ckTvvPOO1qxZIzc3N6OjAUCO7dmzR9WqVVPFihWNjgIYxsHBQRcuXDA6BgAAAGCIo0ePauzYsVq1apU8PT21YsUKtWnTRiYmJkZHAx6qcuXKSk1N1bVr1+Tk5GR0nAJr/fr1CgwM1K1btzRx4kT16dOH8hMUCefOndO//vUvtWzZUsOHDzc6DgAAAIC/wRFWAAAAAIBHYmpqqpdfflkvv/yyZs+erZUrV2rx4sXy8fFR+fLl1aFDB/n5+cnLy8voqAAA/CV7e3t5eXnJy8tLvr6+mdNTU1N1/vz5LCUfUVFRCg8PV1RUlCTJ0tJSVapUyVb0Ub9+fdna2mYb637ZVUpKSv4sHAAUIFZWVgoMDNSnn36qkSNHys7OzuhIAJ7Ag0o8li1bRokHgEJpz549aty4sdExAEOVK1dOhw4dMjoGAAAAkK927dql4OBgrVu3To0aNdK3336rli1bUuKBQuF+gceVK1co83iA48ePq2/fvtq6das6d+6siRMnqnz58kbHAnJFYmKi3nnnHVWqVEmLFy/m9xYAAABQCFDmAQAAAAB4bLa2turWrZu6deumCxcuaOnSpVq0aJFmzJghNzc3tWvXTv7+/nJ1dTU6KgAAOWZubi5XV1e5urrK29s7y3WxsbGKiorKUvQRHh6uyMhIJSYmSvqjJOTPJR9//j2Ympqar8sCAAVFr169NGHCBIWEhGjw4MFGxwHwGO6XeAQFBenw4cOUeAAo9NLT07V792599NFHRkcBDOXg4KCYmBijYwAAAAB5LiMjQ999952Cg4O1Y8cONWnShBIPFEp/LvPAf8XHx2vMmDGaNWuWPD09tXPnTjVp0sToWECuycjIUJcuXXT27Fnt27dPpUuXNjoSAAAAgBygzAMAAAAAkCucnZ01dOhQDR06VMeOHVNYWJjmzZuncePGqUmTJvL391f79u1la2trdFQAAB6bvb29vLy85OXlJV9f38zpqampOn/+fJaSj6ioKIWHhysqKirzdi+99JIaNGiQWfTh7u6u+vXr8/sRQJFna2ur999/XzNmzFC/fv1kaWlpdCQAOZSYmKiwsDBNmzZNJ0+eVPv27fXVV1+pbt26RkcDgCcSERGhmzdv6sUXXzQ6CmAoBwcH3bhxw+gYAAAAQJ5JSUnRsmXLFBwcrMjISL366qtat26dfHx8jI4GPBZra2vZ2NhQ5vH/MjIytGrVKg0cOFAJCQmaNGmS+vTpIzMzM6OjAbnqk08+0erVq7V582ZOrgYAAAAUIpR5AAAAAABynYeHhyZMmKCPP/5YP/30kxYvXqwBAwaoX79+8vb2lr+/v1q3bi0LCwujowIAkCvMzc3l6uoqV1dXeXt7Z7kuNjZWGzZskJ+fn95++21duXJF4eHhioyMVGJioqQ/SkLul3v8uejDzc2NnYwAFBkDBgzQ7NmztWzZMnXq1MnoOAD+RnR0tObMmaPPPvtMCQkJ6tixo9asWUOJB4AiY9u2bbK3t1f9+vWNjgIYqmzZskpISFBycjKlewAAAChSEhIStHDhQk2ZMkXR0dFq3769VqxYIQ8PD6OjAU/MycmJMg9Jhw4dUp8+fbR792699957mjJlisqXL290LCDXLV++XB999JGmT5+ul19+2eg4AAAAAB4BZR4AAAAAgDxjZmYmb29veXt7a+bMmVq3bp3CwsLUrl072dvbq02bNvLz81OzZs2MjgoAQJ6xt7dXnTp1JEn9+/dX9erVJUmpqak6f/68oqKiFBUVpWPHjikyMlI7d+5UVFSUJMnS0lJVqlTJVvLh6ekpOzs7w5YJAB5HlSpV1LZtW02ePFn+/v4yMTExOhKABzhy5IjmzJmjsLAwWVtb6/3331ffvn1VqVIlo6MBQK76+eef9cILL8jU1NToKICh7n++EB8fr3LlyhmcBgAAAHhy165d09y5czVr1iwlJyera9euGjRokJydnY2OBuSa4l7mERsbq9GjR2vOnDlq1KiRdu/erWeeecboWECe2LZtmzp37qwePXooMDDQ6DgAAAAAHhFlHgAAAACAfFGmTBn5+/vL399fZ86c0ZIlS7RkyRKFhITIw8NDfn5+at++vVxcXIyOCgBArktPT5ekLAeJmZuby9XVVa6urtluHxcXpzNnzmQp+QgPD9fx48d19+5dSX+UhNwv9/hz0Yebm5vMzMzyZ8EA4BENGTJEDRo00KZNm/T6668bHQfAn+zYsUMTJ07Uhg0bVLNmTX366afq3r27SpUqZXQ0AMh1GRkZ2r59u0aMGGF0FMBwtra2kijzAAAAQOF35swZzZw5UwsWLJCNjY0CAwPVt29flS1b1uhoQK4rrmUe6enpWrJkiQYNGiRzc3PNnTtX3bp1o6wVRdbRo0f19ttvq3Xr1po1a5bRcQAAAAA8Bso8AAAAAAD5rkaNGgoKClJQUJB27dqlJUuWaNKkSRo+fLiaNm2qDh06yNfXVxUqVDA6KgAAueJBZR5/pUyZMvLy8pKXl5d8fX2zXHf58mVFRkZmKfrYuXOnzp49q4yMDFlYWMjZ2TlLyYerq6s8PT1VsWLFXF82AHgUnp6eat68uSZNmkSZB1AAxMXFKSwsTPPmzdNvv/2m5s2ba+PGjXrttddkYmJidDwAyDMRERG6ceOGXnrpJaOjAIazs7OTJN26dcvgJAAAAMCjS09P148//qiQkBCtWbNGLi4u+vTTTxUQEKCSJUsaHQ/IM46Ojtq7d6/RMfLVvn37FBgYqAMHDqhnz54aN25cZkElUBRdvHhRb7zxhp566il9+eWXlNYAAAAAhRRlHgAAAAAAQzVt2lRNmzbVrFmz9NNPP2nx4sUaPny4+vXrp2effVb+/v5q3749X74CAAq1Ry3z+CuVKlVSpUqVsk2Pi4vTmTNnspR8hIeH6/jx47p7964kyd7eXq6urlmKPtzd3eXm5iYzM7MnzgYAOTF48GA1b95ce/bsUePGjY2OAxRLv/zyi+bPn6+VK1fK1NRUHTp00MqVK1WvXj2jowFAvti2bZvs7OxUv359o6MAhrv/2Xt8fLzBSQAAAICci4mJ0aJFi/TZZ5/p7NmzevXVV7Vq1Sq99dZbHOyMYsHGxqbY/B0XHR2toKAghYaG6sUXX9TBgwfl4eFhdCwgT8XExOi1116TnZ2dvvnmG1lZWRkdCQAAAMBjoswDAAAAAFAgmJmZydvbW97e3rp37562bNmisLAwBQYGqm/fvmrevLl8fX31zjvvqHTp0kbHBQDgkeRmmcfDlClTRl5eXvLy8pKvr2+W6y5fvqzIyMgsRR87d+7U2bNnlZGRIQsLCzk7O2cr+vD09FTFihXzLDOA4snb21uNGjXStGnTtHz5cqPjAMVGfHy8li9frs8++0wHDx5U3bp19dFHH6l79+4qW7as0fEAIF9t27ZNL7zwAqWGgCQ7OztJlHkAAACgcNi/f79CQkK0ZMkSmZubq3379goMDKSkFsWOjY2Nbt++bXSMPJWamqo5c+boo48+kq2trT7//HP5+/sbHQvIc4mJiWrdurVu376tXbt2qUyZMkZHAgAAAPAEKPMAAAAAABQ4JUqUkI+Pj3x8fBQXF6d169bp66+/1vvvv6+ePXvqzTfflJ+fn/75z3/KwsLC6LgAAPyt/Cjz+CuVKlVSpUqVsk2/deuWTp8+raioqMyij507d2rhwoW6c+eOJMne3j5byYe7u7vq1Kkjc3M+YgbweAYNGiQ/Pz+dOXNGNWrUMDoOUKTdP8Bh6dKlSk1NlY+Pj4KDg+Xt7W10NAAwRGpqqn788UeNHz/e6ChAgWBlZSUrKyvdunXL6CgAAADAAyUlJWndunUKCQlReHi43Nzc9Mknn+j999+XtbW10fEAQxT1Mo+ffvpJffv21cmTJ9WjRw99/PHHvN5RLKSlpaljx446fvy4tm/fLmdnZ6MjAQAAAHhC7GkNAAAAACjQypQpI39/f/n7+ysmJkarV6/W4sWL1apVK9nb2+vNN9+Uv7+/Xn31VZmYmBgdFwCABzK6zONh7Ozs5OXlJS8vr2zXXb58WZGRkZklH5GRkdq5c6fOnj2rjIwMWVhYyNnZOVvRR7169eTo6GjA0gAoTNq2batRo0Zp+vTpmjVrltFxgCLnxo0bWr58uRYtWqSDBw/K09NTEyZMUMeOHWVnZ2d0PAAw1K5du3Tr1i21aNHC6ChAgWFra6v4+HijYwAAAABZXLp0SQsWLNDcuXN169YttWrVSlu2bGH/EEBFt8zj0qVLGj58uMLCwtSyZUt9++23cnV1NToWkC8yMjLUp08fbdy4UVu2bFHdunWNjgQAAAAgF1DmAQAAAAAoNBwcHBQQEKCAgACdOXNGy5Yt07JlyxQWFiYXFxe1a9dOvr6++sc//mF0VAAAssjIyJBU8Mo8/kqlSpVUqVKlbNOTkpJ0+vTpLEUfO3fu1MKFC3Xnzh1Jkr29fbaSD1dXV3l4eKhEiRL5vSgACiAzMzP17dtXI0aMUFBQkMqVK2d0JKDQS0pK0nfffaewsDBt3LhRlpaWatOmjebMmaMmTZoYHQ8ACowffvhB1atXV61atYyOIiUBZwAAIABJREFUAhQYdnZ2unXrltExAAAAACUnJ+v7779XaGioNm7cKCcnJwUGBqp79+6UyQN/YmNjo5SUFCUlJcnKysroOE8sOTlZ8+bN06hRo+Tk5KQNGzbojTfeMDoWkK8GDhyo0NBQrVq1Ss8995zRcQAAAADkEso8AAAAAACFUo0aNTRq1CiNGjVKhw8f1rJly7Ry5UoFBwerevXq8vX1pdgDAFBgpKenS1KROEuYlZWVPDw85OHhke26y5cvZyn5iIyM1M6dO3X27FllZGTIwsJCzs7O2Yo+PDw85OTkZMDSADBSt27dNG7cOM2bN08ffvih0XGAQmv//v1avHixli1bppiYGDVp0kSzZs3Su+++K2tra6PjAUCB88MPP+j11183OgZQoNja2io+Pt7oGAAAACjGDh06pC+++EJLly5VTEyMXnnlFa1YsUKtW7eWuTmHPAD/y8bGRpJ0+/btQl/msX79evXv31/R0dEaPHiwhg8fXuiXCXhUI0aM0MyZM/Xll1+qVatWRscBAAAAkIv4ZAsAAAAAUOg1aNBADRo00IQJE3Ts/9i787io6sV94M/AsA3rpOzIMi5sKiLXDUgiUdHAJfc0M/VqqVe0tCwzt2u5dStNvTc1vVqmYtcE9zVREFcyBUdFREFWZdi3YWZ+f/RjviKYK5wBnvfrNS/gnDPnPJ9hNphznpOYiMjISPz8889Yvnw5nJ2dMWjQIAwbNgwBAQFN4iBqIiJqvJr665CDgwMcHBxqTa+oqEBycnKNoo/Y2Fhs3LgRJSUlAACpVAqZTFZn0YexsXFDD4WIGoCpqSkmT56M7777DrNmzYKJiYnQkYgajbS0NGzbtg0bN27EzZs34eXlhSlTpmDcuHFwdXUVOh4Rkc7Kzc1FQkICPv/8c6GjEOkUS0tLFBQUCB2DiIiIiJoZhUKByMhIfP/997h48SKcnZ0xfvx4TJo0CTKZTOh4RDqtusyjsLAQLVu2FDjN80lOTsaMGTOwb98+hIWF4cSJE3B2dhY6FlGDmzt3LpYvX47Nmzdj9OjRQschIiIiIqKXjGUeRERERERE1KR4e3vD29sbCxYsqFHssWrVKhZ7EBGRYDQaDYCmX+bxOEZGRtrX6EdlZGRoSz6qiz62bt2K1NRUqNVqiMViODs711nyYW9vL8BoiOhlioiIwL/+9S9s2bIFkydPFjoOkU7LysrCL7/8gu3btyM2NhY2NjYYNWoUxo4dC19fX6HjERE1CocOHYJYLEZwcLDQUYh0iqmpqbZsk4iIiIioPqlUKpw4cQLff/899uzZA319fYSFhWHp0qXo1atXs/0sjehZ6enpAfi/z6Ebk9LSUixfvhxLly6Fm5sbDh8+jN69ewsdi0gQ8+bNw7Jly7Bp0yaMGTNG6DhERERERFQPWOZBRERERERETVZdxR7bt2/HqlWr0KpVKwwePJjFHkRE1CAa405UDcXBwQEODg61pldUVCA5OVlb9JGYmIjY2Fj88MMPKC4uBgBIpVLIZLJaRR9eXl4wMTFp6KEQ0XOwsbHB22+/jeXLl2PixInQ19cXOhKRTsnNzcUvv/yCnTt3IiYmBiYmJhgwYADmzJmDvn37Qizmx71ERM/i0KFDCAgI0J69loj+ZGpqitLSUqFjEBEREVETlpSUhC1btmDz5s3Izc1Fjx49sHr1arz11lswMzMTOh5Ro9NYTyYRHR2NadOmobCwEMuWLcPUqVP5f25qtj7//HN88cUX2LRpE95++22h4xARERERUT3hX71ERERERETULDxc7HHp0iVERkZi165dWLVqFVxcXDB06FAMGzYMXbt2bXQfdBMRUePB15inZ2RkpH39fpRCoUBiYmKNoo+tW7ciNTUVarUaYrEYzs7OtUo+qi9EpFtmzZqFjRs3Ys+ePXjzzTeFjkMkOIVCgejoaERGRuLQoUMQi8Xo1asXfvjhB7z55ps8uIGI6DmpVCocOHAAc+bMEToKkc6RSCTIzs4WOgYRERERNTFpaWmIjIzETz/9hEuXLkEmk2HKlCl455134OLiInQ8okatsZV5yOVyRERE4MiRIxgzZgxWrlwJGxsboWMRCWbBggX45z//iXXr1mHs2LFCxyEiIiIionrEMg8iIiIiIiJqdjp37ozOnTvjyy+/RGJiIiIjI7Fjxw589dVXsLa2RmhoKIYNG4a+ffvC0NBQ6LhERNQENLadqXSdVCpFYGAgAgMDa0yvqKhAcnJyjZKP2NhY/PDDDyguLtZet7rU4+GiDy8vL5iYmAgxHKJmr127dggPD8fSpUtZ5kHNVn5+PqKiohAZGYnDhw9DT08PISEh2LBhAwYPHgxzc3OhIxIRNXqnTp3CgwcPMGDAAKGjEOkciUSCkpISoWMQERERUROQmZmJXbt2YceOHYiLi4OlpSXefPNNfP3113j11Vf5WRnRS1JVVQUA0NfXFzjJX8vPz8f8+fOxdu1a+Pj4IDY2Fj169BA6FpGgFi9ejMWLF2P9+vWYMGGC0HGIiIiIiKiescyDiIiIiIiImjVvb294e3tjwYIFuHz5Mnbv3o1ff/0VW7duxSuvvIKwsDAMGjQIffv2hUQiETouERE1UtVlHlS/jIyMtK/tj1IoFEhMTKxR9LF161akpqZCrVZDLBbD2dm5zqIPmUwmwGiImpfZs2cjMDAQp0+f1hb1lJeX46effkLHjh3RpUsXgRMSvXw5OTk4ePBgrQKP9evXs8CDiKgeREdHw8PDA+3atRM6CpHOkUgkKC0tFToGERERETVSeXl52Lt3LyIjI3Hw4EEYGBigV69e2LFjBwYMGAAjIyOhIxI1OUVFRQCgs/9HVqlU2LhxIz777DPo6enh+++/x7hx41joQ82aRqPB7Nmz8fXXX2PdunUs8iAiIiIiaiZY5kFERERERET0//n4+MDHxwcLFizAnTt38Ouvv2Lv3r0YPnw4xGIxQkJCEB4ejoEDB8LW1lbouERE1Ahx5yThSKVSBAYGaksCqlVWVuLmzZvako/qoo+ff/5ZuxOclZUVWrduXavkw8vLCyYmJkIMh6jJCQgIgL+/P1asWAEvLy+sXbsWX3/9NfLy8vDOO+9g8+bNQkckeimuXLmCPXv2YM+ePbh48SLMzc0RGhqKzZs3IywsTGd3vCYiagqio6MxePBgoWMQ6SSJRIKSkhKhYxARERFRI5Kfn4+oqChERkbi0KFD0NfXR0hICDZu3IghQ4bA1NRU6IhETVpxcTEAwMzMTOAktf3222+YOXMmEhMTMXXqVMyfPx9WVlZCxyISVFVVFSZPnowff/wRP/74I0aNGiV0JCIiIiIiaiAs8yAiIiIiIiKqg4uLCyIiIhAREYEHDx5g3759iIyMxPTp0zFlyhR0794dw4YNw5AhQ+Dk5CR0XCIi0nEajUboCPQYhoaG8Pb2hre3d615CoUCiYmJ2qKPxMREbN26FampqVCr1RCLxXB2doZMJqtV9OHm5sbyFqJnNHbsWEybNg2Ojo5QqVRQKpUAgPT0dIGTET0/tVqNhIQEREdHY8eOHZDL5bC2tkZoaCg+//xz9OnTh2cmJSJqAElJSbh58ybCw8OFjkKkkyQSCUpLS4WOQUREREQ6rrCwEFFRUdixYwcOHz4MPT09hIaGYsuWLQgPD2eBB1EDKioqgrGxMQwMDISOopWWloa5c+fixx9/RK9evZCQkFDnZ7BEzU1JSQmGDx+OkydPYs+ePQgNDRU6EhERERERNSCWeRARERERERE9QYsWLTB27FiMHTsWhYWFOHDgAHbv3o158+Zh5syZ+Nvf/obBgwdj0KBB8PT0FDouERHpoOqdqKoPTKfGQSqVIjAwEIGBgTWmV1ZWIj09vVbRx88//4yioiIAgJWVFVq3bl2r5MPT0xMSiUSI4RDprMuXL2PFihXYvn07RCIRysvLa8y/d++eQMmInk9RURGOHj2K6OhoREdH4/79+/D09MSgQYMwaNAgdOnSBXp6ekLHJCJqVqKiotCiRQv06NFD6ChEOkkikaCkpEToGERERESkg3Jzc3HgwAFERkbiyJEjqKqqQvfu3bF69WqMGDEClpaWQkckapYyMzNhZ2cndAwAQGlpKZYvX45ly5bB2dkZUVFRCAsLEzoWkU7Iy8tDeHg45HI5jhw5wv9PEhERERE1QyzzICIiIiIiInoGFhYWGDFiBEaMGIGqqirEx8cjMjISq1evxqeffgo3Nzf07t0bYWFhPMMyERFpVZc3lJWVCZyEXgZDQ0PIZDLIZLJaZ/ZWKBS1Sj62bt2KO3fuQKVSAQDs7e215R4PF324ublBJBIJMSQiQeTn5+PNN9/EiRMnYGBgoH2MPCo7O7uBkxE9O7lcjv3792P//v04deoUVCoVunXrhtmzZ2PQoEFo166d0BGJiJq1vXv3IiwsDPr6+kJHIdJJpqamKC0tFToGEREREemIq1evIioqCr/++isuXLgAiUSC0NBQfP/99wgLC8Mrr7widESiZi8tLQ2tWrUSNINGo8GuXbswa9YsFBYWYsGCBZgxYwb3lSL6/+7cuYPQ0FCUl5cjLi4O7u7uQkciIiIiIiIBsMyDiIiIiIiI6DmJxWIEBgYiMDAQ//rXv3D27FlER0dj3759+P7772FhYYE+ffogLCwM/fv3h7W1tdCRiYhIICYmJgDAA2OaAalUqn1/8LDKykqkp6fXKvrYvn07CgsLAQCWlpZo06aNtiikuujD09NTWwhD1JRoNBokJSVBX18fSqXyscsVFBRApVLx4FvSKeXl5Th9+jSOHj2KqKgoXLt2Da+88gp69eqF1atXIzw8HPb29kLHJCIi/Hmm2jNnzuDDDz8UOgqRzpJIJCgtLYVGo2HJJBEREVEzpFKpcObMGezduxd79uyBXC5Hy5Yt0a9fP8yePRv9+vWDmZmZ0DGJ6CHp6elwcnISbPvnz5/HjBkzEB8fj9GjR2PlypWwsbERLA+RrklMTERoaCgsLS1x6tQpQR+vREREREQkLJZ5EBEREREREb0E+vr68Pf3h7+/P7788kvcuXMHhw4dQnR0NCZPngylUglfX1+EhYUhPDwcnTt35k7RRETNSHURQ1lZmcBJSCiGhobako7w8PAa8xQKRY2Sj5SUFERHR2PlypVQqVQAAHt7e3h7e9co+ZDJZHBzc+N7Cmq0pFIpTp06BX9/f+Tn56OqqqrO5dRqNXJycliMQIJLTU3F/v37sX//fpw4cQJlZWXo1KkTBg8ejA0bNqBbt24snSEi0kG7du2CqakpQkNDhY5CpLNMTEyg0WhQUVEBY2NjoeMQERERUQMoKyvD0aNHsXfvXkRFRSErKwsymQxhYWFYvXo1XnvtNYjFPNSASFfdunWr1meODSEjIwMLFy7Ehg0bEBQUhEuXLsHHx6fBcxDpskOHDmHkyJHw8fHBnj17YGlpKXQkIiIiIiISEP/DRkRERERERFQPXFxcMGnSJEyaNAmlpaWIi4tDdHQ0NmzYgIULF8LFxQV9+/ZFSEgIz2JDRNQMVJd5lJaWCpyEdJFUKkVgYCACAwNrTK+srER6enqNoo/ExERs374dhYWFAABLS0u0adNGWxRSXfTh4eEBU1NTIYZD9Ezatm2L48ePo2fPniguLn5soUd2djbLPKjBlZSU4MyZMzh69CiOHj2KixcvQiKRwN/fH1988QXefPNNtGrVSuiYRET0BJGRkQgPD4eJiYnQUYh0VvVBmo97P05ERERETYNcLsfBgwdx8OBBnDx5EkqlEt27d8cHH3yAgQMHol27dkJHJKKnUFFRgevXr2Pu3LkNts2ysjKsWrUKS5YsgZWVFTZt2oSxY8c22PaJGosVK1bgk08+wahRo7B+/XqWphIREREREcs8iIiIiIiIiOqbRCJBSEgIQkJC8PXXX+PChQvYu3cv9u7di/Xr10MikaB3794IDQ1F37594erqKnRkIiJ6yaoPGisrKxM4CTUmhoaG2pKOR8+spVAotOUe1UUf0dHRWLlyJVQqFQDA3t4e3t7eNUo+ZDIZ3NzcIBKJhBgSUZ06dOiA3377DT179kRJSYn2PvywrKwsAZJRY6FUKhEfH49XX331hdajUqlw/vx5HD58GEeOHEF8fDzUajV8fX3Ru3dvLF++HIGBgTA0NHxJyYmIqL5lZWUhNjYWv/zyi9BRiHSagYEBgD/fVxERERFR01FYWIhjx47h0KFDOHToEFJTUyGVShESEoI1a9YgLCwMNjY2Qsckomd07do1KJVKdOzYsUG2Fx0djYiICOTk5GDWrFmYM2cOCwqIHlFeXo733nsPP/74I5YsWYKPP/5Y6EhERERERKQjWOZBRERERERE1ID09PTQtWtXdO3aFYsWLUJ6ejr27duHffv24cMPP8R7770Hd3d3hIaGIjQ0FEFBQTxrKBFREyCRSAAApaWlAiehpkIqlcLPzw9+fn41pldWViI9Pb1GyUdiYiJ27NiBgoICAICRkRFat25dq+jDw8MDpqamQgyHCD4+Pjh06BB69eqFioqKGoUe+vr6LPOgxzp//jzGjh0LuVyOq1evwtvb+5mun5KSgqNHj2ovCoUCdnZ2ePXVV7UHNDg4ONRTeiIiqm87d+6Eqakp+vbtK3QUIp1WXeZRVVUlcBIiIiIielHV5d979+5FTEwMqqqq4OvrixEjRiAkJARBQUHa939E1DglJCTA2NgYbdu2rdftXLp0CTNnzsSpU6cwZswYLFu2DPb29vW6TaLG6N69exg8eDBu3bqFAwcOoHfv3kJHIiIiIiIiHcIyDyIiIiIiIiIBOTk5YfLkyZg8eTKqqqpw+fJl7Y41q1atgpGREQIDAxESEoKQkBB07twZIpFI6NhERPSMTExMIBKJWOZB9c7Q0BAymQwymQzh4eE15ikUCm25R3XRR3R0NFauXKktTrC3t9eWfDxc9OHq6go9Pb16za7RaPDRRx+hV69eCA0NrddtkW7q3r07Dh8+jJCQEADQ3i/FYjHLPKiW0tJSzJs3D9988w309fUhFosRExPzxDKPzMxMHD9+HCdOnMCJEyeQkpICMzMzvPbaa1i4cCF69+4NDw+PBhoFERHVt8jISAwYMIBluURPUH0wp1KpFDgJERERET2rBw8e4Pjx4zh69Cj279+P9PR0WFtb47XXXsPq1atZVkvUBB0/fhwBAQH1Vszz4MEDLFq0CGvWrEHnzp0RGxuLHj161Mu2iBq72NhYDB06FJaWloiLi4O7u7vQkYiIiIiISMewzIOIiIiIiIhIR4jFYvj5+cHPzw8LFixATk4OTp48iejoaCxfvhxz5syBnZ0devfujfDwcPTu3RtWVlZCxyYioqcgEolgbGyMsrIyoaNQMyaVSrXvNR6mVCqRlpZWo+QjJSUFe/bsQXZ2NgDAyMgIrVu31hZ9VJd8uLu7w8zM7KXkS09Px8qVK7Fy5UoEBgZixYoV6N69+0tZNzUeAQEBiI6ORv/+/aHRaKBWq6HRaLT3RSIAiImJwbhx45CWlga1Wg21Wg19fX2cOnUK77//fo1lc3Nz8dtvv2nLO+RyOQwMDNCtWzeMHj0aISEh6NGjB89GSkTUBGVmZiIuLg6zZs0SOgqRzmOZBxEREVHjUVxcjPj4eBw9ehRHjx5FQkICRCIROnXqhNGjRyMsLAz+/v71XtBNRMI5ceIEpkyZ8tLXq1QqsXbtWsyfPx9mZmb44Ycf8Pbbb/OkQ0SPsW7dOkRERCAsLAxbtmx5aZ+bExERERFR08IyDyIiIiIiIiIdZWNjg2HDhmHYsGFQqVQ4d+4cDh48iEOHDmHUqFEQiUTo0aMH+vTpg5CQEPztb3+DWMw/9YmIdJWFhQUKCgqEjkFUi4GBAWQyGWQyGcLDw2vMUygUSElJqVH0ER0djZUrV0KlUgH4sySkutzj4aIPV1fXZ9pZ+Pr169rv4+Pj4e/vj/DwcHz55Zfw8vJ6OYOlRiEkJARRUVEIDw+HRqOBUqlEZmam0LFIB+Tn52P27NnYuHEj9PT0tM9DAKBSqXD06NG/PJihT58+WLRoEfr06QNLS0sBR0JERA0hMjISpqam6Nu3r9BRiHRe9f+VWeZBREREpHuKi4tx6tQpbWHtpUuXoFar0aFDBwQHB2PevHkIDg6GhYWF0FGJqAEkJSXh3r17eP3111/qeo8ePYrp06cjNTUV06dPx2effcZiAqLHKCwsxNSpU/HTTz/ho48+whdffMESLSIiIiIieiwe4UNERERERETUCOjr66NHjx7o0aMHFi5ciAcPHuDIkSM4ePAg1q1bh3nz5sHCwgJBQUHo1asXevXqhfbt2wsdm4iIHmJjY4OcnByhYxA9E6lUCj8/P/j5+dWYrlQqkZaWVqvoIyoqCllZWQAAIyMjtG7dulbJh7u7e507/8nlchgYGECpVKKqqgoAcODAAURHR2PIkCFYtmwZZDJZ/Q+adEJoaCi2bduGkSNHQq1WIz09XehIJLDo6Gj8/e9/R15eHjQaTY0ij2q5ubnako6OHTsiODgYCxYsQM+ePXkwAxFRMxQZGYmBAwfC2NhY6ChEOs/AwAAAyzyIiIiIdEFZWRkuXryI2NhYHD16FDExMaisrIRMJkNISAimTZuGXr16wdHRUeioRCSAHTt2wMHBAV26dHkp65PL5fjggw9w4MABhIWFYf/+/XB1dX0p6yZqis6ePYvRo0ejqKgIe/fuRf/+/YWOREREREREOo5lHkRERERERESNUIsWLTBy5EiMHDkSAJCSkqI98/SiRYswY8YM2NjYICgoCCEhIejduzfc3NwETk1E1LzZ2NggOztb6BhEL4WBgQFkMpl25+GH5eTk4Nq1a7hx4wauX7+O69ev45dffsFXX32FqqoqiEQiODs7o127dnB3d4enpyfatWuHCxcuQCQS1VhX9YFkUVFR+PXXXzF+/HgsWrQItra2DTbW5qi0tBQVFRW1pufn50Oj0dSYVllZiZKSkr9cn0KheK4cUqkUs2bNwooVK3Dr1i1ERkY+13rqYmZmpj1gsT7XY2RkBIlEUmu6ubm59uzn1fT19Vk4UYesrCxMmTIFu3fvhp6eHtRq9WOX1dPTw9SpUzF//ny0aNGiAVMSEZGuyczMRFxcHGbPni10FKJGofo9bXWxIhER0a1bt3Dp0iWhY+i0bt26wdnZWegY1AQUFRXhzJkziI2NxW+//YazZ8+ioqICbdu2RXBwMMaPH4/g4GDY2dkJHZWIdMD27dsxatQo6Ovrv9B68vLysHDhQqxduxYdO3ZETEwMXn311ZeUkqjpUalUWLlyJebNm4fg4GD897//5WszERERERE9FZZ5EBERERERETUBMpkMkyZNwqRJk6BWq5GQkIDTp08jNjYWs2bNQlFREWQyGQICAhAYGIiwsDA4ODgIHZuIqFmxtbVFTk6O0DGI6p2NjY22VOxhSqUSaWlpSElJQWJiIpKSkiCXy7Fr1y5kZWXBwMDgsWeBrqysBABs2rQJW7ZsQUREBD799FOdKD5QKpUoLi4G8H9lFyUlJaisrKwxr7y8HGVlZQAAtVqNgoIC7TqKioq0B81VVFSgtLQUAKDRaJCfn69drri4WHsbPe1y1QoLC6FSqWpMU6lUKCwsfPEboQFkZWVh+PDhQscQhImJCYyNjWtNt7S0hJ6envZnkUgEKysr7c8PF40YGhrC1NRUO08qlWq/NzU1haGhIYA/D+I0MzN7puWqC0v09PRgaWkJ4P/KSoyNjWFiYvJc49ZoNNi6dSumT5+uva//VZEH8GchSmlpKYs8iIgIO3fuhKmpKfr06SN0FKJGofp94+P+JiMiouZn9uzZ2L17t9AxdNo777yDzZs3Cx2DGqG0tDScPn0acXFxOH36NK5cuQKVSoXWrVujZ8+emDhxIoKDg+Hk5CR0VCLSMefOncONGzcwYsSI515HVVUVfvjhB8ydOxcAsHLlSkybNu2Fy0GImrK7d+9izJgxOH/+PFasWIHp06fXOkkFERERERHR44g0j55CjYiIiIioiao+6Gfnzp0CJ6FqO3fuxIgRI2qd2ZmIXq6KigrExcXh2LFjOH78OM6fPw+1Wo2OHTsiKCgIQUFBePXVV9GyZUuhoxIRNWkzZ87EmTNnEB8fL3QUIp2Tm5sLT09PPHjw4KmWF4vFMDU1xSeffIKIiAhUVlZCpVJBoVCgqqoKRUVF2vKM6mKNgoICqFQqbelFQUEB1Go1SktLUVFRob0e8H+lHE8z73lZWVlpd/KSSCQwMjLSjs3c3Fy73MOFDU+7XF3lDw9f93E5qj1a/FDt4XKIag8XODzOowURz+txuZ7Vw0Uo9b2e6vvfoxQKxVOv7+Gyl2p1FbE8Ou3hApeysjKUl5c/cbmnLZ15Vg/fTywsLKCvr68t+qhrnpGREY4fP46MjIxn3pajoyMuXboEAwODWoUnRETUfAQGBkImk2HLli1CRyFqFO7evQsXFxfEx8ejW7duQschIiIdMGDgQBTAABHLVwsdRSctm/Iu2jlYY+vWrUJHIR2nUqkgl8sRGxuL06dP4+LFi0hKSoK+vj7c3d0RGBiIgIAABAUFwcXFRei4RKTj3nrrLVy7dg0JCQnPdf1jx45hxowZuH79Ot5//30sXrxYJ4rziXTZrl27MGnSJNjb22Pbtm3w8fEROhIRERERETUyYqEDEBEREREREVH9MjIyQnBwMIKDgwH8ebDeyZMncfz4cZw8eRLfffcd1Go1vLy8tMUeQUFBsLe3Fzg5EVHT4uzsjO3btwsdg6jBKZVKFBcXo6CgAKWlpSgtLUV+fj5KSkpQWlqKoqIi3L9//6mLPIA/zxpWUFCAOXPmYM6cOU91HXNzc4jFYm15RfXPRkZGkEgkNQoFWrVqBbFY/JdlA9Xz9PX1tTs6Vs+rLtN4eN7LKrSgF2dkZFRnsQk9vYe0k7T9AAAgAElEQVRLP+oqvXmWspzq54iH51U/H1hYWKC8vBxKpfKpi0Dv3bsHW1tb7c/Vj9/qMpjqx+fDzwlisRgWFhbaZarLbywtLSGRSCCRSGBlZQVTU1OYmprCzMxMO8/ExOSl3a5ERPRyZGZm4syZM/j444+FjkLUaIjFf+5CplQqBU5CRERE1Ljl5+fj/PnzOHPmDGJjY3HmzBkUFRXBwsIC/v7+GDlyJAIDA9G1a9eXUlxMRM3H7du3ERkZ+VzFpTdv3sTcuXMRGRmJsLAw/Prrr2jdunU9pCRqOjIzMxEREYFdu3Zh6tSpWLFiRa2TKRARERERET0NlnkQERERERERNTMWFhYIDw9HeHg4AKC4uBjx8fE4ffo0YmNjsXHjRlRUVEAmkyEgIEB7NiBvb2+BkxMRNW6tW7dGVlYWiouLeUA/6bSysjIUFhaioKAAhYWFyM/PR3FxMUpLSx9bylFSUvLYeZWVlY/dVnXZxZOKFfT09KDRaKDRaKCnp4eWLVtCJpNBJpOhS5cucHd3h4GBASwtLSEWi+s8cJ+IXh5jY2Pt40oqlTbINhUKBTIzM5GRkVHjkpqairS0NGRmZiIvLw9KpRLr1q1D69atkZ+fry0SqS4gqX5eKigogEqlQn5+PsrLy3H//n3tMsXFxVAqlVAoFNrSkccRiUTaog+JRAJzc/M6S0Cq51lYWGh/rp5naWkJCwsLWFpawtzcvEFuTyKipmznzp0wMzND7969hY5C1GgYGBgAYJkHERER0bOoqKhAQkICzp8/j3PnzuH8+fO4ceMGNBoNXFxcEBgYiKVLlyIwMBDt27eHnp6e0JGJqBFbuXIlnJycMGzYsKe+Tn5+PpYuXYpvvvkGbm5u2L9/P/r161ePKYkaP41Gg/Xr1+Pjjz+GVCrFwYMH0adPH6FjERERERFRI8YyDyIiIiIiIqJmzszMDCEhIQgJCQHwZ7nHmTNnEBMTg5MnT2Lnzp2oqKiAi4sLevbsiaCgIPj7+8PDwwMikUjg9EREjUf12Y1SU1PRvn17gdNQU1VWVgaFQqE9IF2hUNS6/NW86vmPY2xsDKlUqi3IePh7e3t7eHl51TlPKpXWeT0rKyuIRCLs2LEDI0eOhEgkgoGBgbYAxNTUFD4+PujSpQs6deoEHx8feHt7w9DQsKFuUiLSEdXPI15eXn+5XElJSb2c1bSu59dHn0/rmpeRkVHncgUFBVCr1XVu6+HnzbqeSx+9PDrf2tpae0AuEVFztGPHDgwcOJCFbkTPoPq9Q1VVlcBJiIiIiHRXSkoKTp8+jYsXL2ov5eXlsLCwQIcOHdC3b18sXrwYr776Kuzs7ISOS0RNiFwux/r16/Hdd99BLH7yIUBVVVVYv3495s+fD41Gg6+//hqTJk2Cvr5+A6Qlarxu3ryJ9957DzExMZgyZQqWLFnCE7UQEREREdELY5kHEREREREREdVQfebS6rOXlpeX4+zZszh58iRiYmIwffp0lJaW4pVXXkGPHj3Qo0cP+Pv7o2vXrvVy0BwRUVMhk8kgEomQkpLCMg/6SxUVFcjLy3vi5cGDB8jLy0N+fj7y8/P/8sBwqVQKS0tLWFhY1Pjq5OQEb29vSKXSWvMsLCxgYWEBKysrmJmZ1euB4WZmZpDJZOjQoQM6d+4MHx8f+Pj4wNXVtd62SURNU339TWJiYgITE5OXuk6FQoGSkhIUFhaioKBA+7X6Of3haYWFhUhPT0dSUhIUCoV2mlKprHPd1c/llpaWeOWVV2pdWrRogRYtWtSazr/piKixu3PnDuLj4/H5558LHYWoUan+e+9x7y2IiIiImhONRoPk5GT8/vvvuHjxIs6dO4eLFy+isLAQxsbG8PX1RZcuXfD++++jS5cuaNu2LU+CQUT16oMPPoC3tzcmTJjwxGX37duH2bNn49atW5g6dSrmzZsHqVTaACmJGi+lUol//etfmD9/Pjw9PREXF4cuXboIHYuIiIiIiJoIlnkQERERERER0V8yNjZGUFAQgoKCAAAqlQpyuRyxsbE4ffo0tm3bhs8++wz6+vpwd3dHYGAgAgIC4OfnB29vb4HTExHpDhMTEzg5OUEul2PAgAFCx6EGkp+fj+zsbOTm5uL+/fvaAo5HCzkevpSUlNRaj5mZWa0Drtu0aYNXXnkFVlZWsLKy0h60XVcph65744038MYbbwgdg4ioQUml0hfeibq0tLRWGYhCoUBhYSEKCwuhUCi0ry/37t3DlStXtK8/+fn5tdZnZGRUZ/nHoxcbGxu0bNkS1tbWsLa2hp6e3guNg4joZdm6dStatmyJkJAQoaMQNSos8yAiIqLmSqlU4urVq/j999+RkJCA33//Hb///juKioogFovh4eGBLl26YPjw4ejatSs6dOhQr8XXRESP2rNnDw4cOICTJ09CX1//sctdu3YNs2fPxr59+xAWFoaoqCi0adOmAZMSNU7Hjh3DtGnTkJ6ejqVLl+If//jHXz7WiIiIiIiInhXLPIiIiIiIiIjomejr68Pb2xve3t6YNGkSACA9PR1xcXGIi4vDmTNnsGnTJiiVSjg4OMDf3x/+/v7o3r07fH19YWxsLPAIiIiE4+Pjg4SEBKFj0AsoLy9HXl4eFAoFMjMzkZGRAYVCUevnzMxMpKeno7Kyssb1jY2NtQdvV1+cnJzQoUOHWtMdHBxgb2+PFi1awMjISKARExGRLpNIJJBIJLCzs3uu65eVlWlfx+p6PVMoFMjNzcWNGzdq/FxVVVVjPcbGxtrXrYdfwx59TZNKpbCzs2P5BxHVm+3bt2PkyJEQi7k7DNGzqH7MsMyDiIiImrLi4mJcv34diYmJuHjxIi5evIhLly6hrKwMBgYGaNu2Lfz8/DBkyBD4+fmhc+fOkEgkQscmomYsOzsbkyZNwtixY9GzZ886l7l//z4WL16MNWvWoFOnTvjtt9+0J+shose7evUqPv74Y+zfvx/h4eE4dOgQnJ2dhY5FRERERERNEPdeICIiIiIiIqIX5uTkhOHDh2P48OEA/tzp+48//sDp06cRGxuLL7/8Erm5uRCLxWjXrh38/Py0l65du8LQ0FDgERARNQxfX1/s3LlT6Bj0CLVajezsbGRkZCAjIwPp6enaMo7c3Fzcv38fWVlZyM3NRUlJSY3rmpqawsbGBra2trC2toa1tTU6dOig/d7a2hp2dnba73nGPiIi0iUmJiYwMTGBg4PDU19Ho9Hg/v37yM3NRW5uLrKzs5GTk6P9OSsrC0lJSYiJiUF2djYUCkWN6xsaGtZ6jbSzs4OjoyMcHBzg4OAAJycn2Nvb829FInomCQkJSExMxIYNG4SOQtTo6OnpQU9Pr1ZhFxEREVFjVFVVhRs3buDq1au4cuUKEhMTceXKFaSkpECtVkMqlcLX1xfdu3fHe++9B19fX3h4eEBfX1/o6EREWhqNBhMnToSZmRlWr15da35paSlWr16NL774AhYWFli7di0mTpzIImWiJ8jNzcU///lPrF27Fu7u7ti3bx/69+8vdCwiIiIiImrCWOZBRERERERERC+dgYGBtqwjIiICAHDz5k2cP39ee/nll19QWloKU1NT+Pn5oUuXLujSpQu6du0KNzc3gUdARFQ/OnXqhCVLlqC4uBhmZmZCx2kWioqKkJ6ejoyMDNy7dw/37t3TFnVkZmYiLS0N2dnZNQ5YkkqlcHBwgKOjI2xtbdG2bVvY2trCxsam1sHHPCsfERE1NyKRSPt6+DSUSmWNoo/q73NycpCdnY3c3FwkJSUhIyMD2dnZUKvV2uva2trCzs4OTk5O2tfmRws/bGxs6muoRNTIbNu2DTKZDN26dRM6ClGjZGBgAKVSKXQMIiIioqem0WiQmpqKq1evags7EhMTce3aNVRWVkIsFqNNmzZo3749xowZg44dO8LX1xeurq5CRycieqIVK1bg4MGDOHXqFCwsLLTTNRoNdu3ahY8++gi5ubmYNWsWPv74Y5iYmAiYlkj3lZSU4LvvvsOSJUtgaWmJNWvWYMKECSzzIiIiIiKiescyDyIiIiIiIiJqEG3btkXbtm3x1ltvAfjzjEiJiYk4f/48zp07h2PHjuHbb79FVVUVWrZsqS338PPzQ6dOneDs7CzwCIiIXpyvry/UajUuX76MgIAAoeM0CRkZGbh9+zZSU1NrfM3IyEBaWhpKSkq0yxoZGcHe3h6Ojo5wdHRE9+7dMXToUNjb26NVq1bag4W5sxsREdHLY2BgoC3g8PHx+ctllUolsrOzkZaWhqysrBqFXLdu3cLp06eRlpaG4uJi7XUMDQ1hb28PJycnuLi4wM3NDa6urnBzc4ObmxtatWoFAwOD+h4mEQlMrVZj+/btGDduHEQikdBxiBollnkQERGRrlKpVEhNTYVcLse1a9dw/fp1XLlyBUlJSSgqKgIAuLq6wtvbG6GhoZg1axa8vb3h5eUFIyMjgdMTET27X375BZ988glWrlyJ7t27a6fHx8fjgw8+wNmzZzF69GgsX74cdnZ2AiYl0n0VFRXYuHEjFi9ejPLycsydOxcREREwNjYWOhoRERERETUTLPMgIiIiIiIiIkGIxWL4+PjAx8cHEydOBACUlZUhISEB58+fx/nz57F9+3YsXrwYGo0GLVq0gK+vr/bSqVMntGvXjmdIIKJGxc3NDQ4ODoiJiWGZx1O6f/++tqDj0dKO1NRUlJeXA/jzoCNnZ2e4urpCJpOhZ8+ecHR01BZ12Nvbw9raWuDREBER0V8xMDCAk5MTnJyc/nK54uJipKWlITMzE/fu3cO9e/e0BV979uzB7du3tYVe+vr6cHJy0hZ8PFz0Uf3eTE9PryGGR0T1KCYmBunp6Rg5cqTQUYgaLZZ5EBERkdCKi4tx/fp1XL9+HUlJSdrvb9y4gYqKCgCAo6MjPDw80K1bN0yYMAHt27eHt7c3LCwsBE5PRPRynD9/HmPHjsXEiRMxc+ZMAMDNmzcxd+5cREZGIiQkBAkJCejYsaPASYl0W0lJCb7//nusXLkSDx48wHvvvYfPPvsMLVu2FDoaERERERE1MyzzICIiIiIiIiKdYWJiAn9/f/j7+2unFRUV4fLly0hKSkJiYiLi4uKwevVqlJeXw9DQEG3atIGfn5/20rlzZ0gkEgFHQUT011577TWcOHECn3zyidBRdEZ5eTnkcjnkcjkSExMhl8tx/fp1pKamas+qp6enB0dHR+1BuN26datxQK6joyMLnoiIiJoJMzMzeHp6wtPT87HL5Obm1igCq/4+Li4Od+7c0R4EZGhoCBcXF7Ru3Rre3t7w8PCAp6cnvLy8IJVKG2pIRPSCtm3bBl9fX3h7ewsdhajR0mg0EIlEQscgIiKiJk6pVOL27dtITk5GcnIybt68qS3tuHv3LgBoPwP28PBAWFgYPD094eHhAXd3d5Z2EFGTdunSJfTv3x8hISFYu3Yt8vLysHz5cnzzzTdwc3NDdHQ0wsLChI5JpNOKiorwww8/YOnSpSgqKsKECRMwe/bsJ5aIExERERER1ReWeRARERERERGRTjM3N0dgYCACAwO10yorK3H16lUkJCRoL7t370ZxcTHEYjE8PDzQoUMH7aV9+/ZwdXUVbhBERA8JDg5GREQEKioqYGRkJHScBlVQUAC5XI6kpCTt12vXruH27dtQq9UwMDDQHkgbFhYGNzc3bWGHs7MzDA0NhR4CERERNRLW1tawtrZG165da83TaDTIyMioUfZx8+ZNnDx5Ev/5z39QXFwMALC1tYWXlxc8PDy0RR9eXl6wt7dv6OEQ0V+orKzE//73P8yZM0foKESNmlqthp6entAxiIiIqAmoqKjQFnbcvHlTW9yRnJyMu3fvoqqqCsCff7u3adMGnp6eCAkJgbu7Ozw9PSGTySAWcxd3Impe4uLi8MYbb6Br167YvHkzvvnmGyxZsgSGhoZYtWoVJkyYwBMbEP2F3NxcrFmzBt9++y1UKhXeffddfPLJJ7CzsxM6GhERERERNXP8TycRERERERERNTqGhobo3LkzOnfurJ2mVqtx8+ZNJCQk4PLly7hy5Qr+85//4M6dOwAACwsLtG/fvkbBR8eOHXmmZSJqcK+//jpKS0sRHx+PoKAgoePUC7VajRs3buDSpUu4dOkSLl++DLlcjvT0dACAiYkJPDw84OHhgXfffRceHh7w9PRE27ZtYWBgIHB6IiIiaupEIhEcHR3h6OhYozgS+LPo4+7du5DL5UhMTIRcLscff/yBHTt2IC8vDwBgZWUFT09PdOjQQfu3aYcOHWBsbCzEcIiavf3790OhUGDkyJFCRyFq1FjmQURERM8iIyNDW5D58Ndbt24hLS0NKpUKAGBnZ4c2bdqgTZs26Nmzp/b7Nm3awNLSUuBREBHphmPHjmHgwIEICQnB4MGD0blzZ+Tk5GDGjBmYM2cOzM3NhY5IpLMuXryIdevWYdu2bTA3N8fHH3+MKVOmwMLCQuhoREREREREAFjmQURERERERERNhJ6eHtzd3eHu7l7j4I2CggJcvXoVV69exR9//IGrV69i586dUCgUAAAnJydtyUf1WZY9PDxgZWUl1FCIqImTyWRo06YN9u3b12TKPO7du4fY2FicOXMGFy5cwO+//47i4mIYGBjA29sbvr6+6NOnD7y8vODp6QlXV1ceINTI9O7dG0eOHBE6BhFRk8XnWd0hEong4uICFxcX9O3bt8a87OxsJCUlQS6XIykpCX/88Qd+/vlnFBUVwcDAAF5eXujcuTN69OgBf39/eHl5QSQSCTQSouZj27Zt6NmzJ5ycnISOQtSoscyDiIio/pSXl2PHjh0wMzPDkCFDhI7zRGq1GtnZ2UhLS8OdO3dqFXakpqaivLwcwJ8nYXB2doarqyvc3NwQEhJSo7DDzMxM4NEQEem2f//734iIiMBrr72GnJwcjB8/HkOGDMHy5cvh6uoqdDwinVRWVoYdO3Zg3bp1OHfuHNq3b4+vvvoK48aNg4mJidDxiIiIiIiIamCZBxERERERERE1aZaWlggICEBAQECN6enp6TUKPo4dO4Y1a9agtLQUAGBvbw9PT88aBR+enp5wcHAQYhhE1MQMHToU27dvx7JlyxrlAZ63bt3CkSNHcOrUKcTGxuLOnTsQi8Xo2LEjunTpgrffflt7hnojIyOh4zYYkUgEjUbzzPMaQvX97HkzCJm9sRD6d9xY8Hb604s+JnVlm0KMQyj1Pdamchs29ce4ra0tbG1tERwcrJ2mVquRnJyMS5cu4dKlS7hw4QJ27tyJkpISSKVS+Pv7IyAgACEhIfDz8+NB0kQvWWFhIfbu3Ytvv/1W6ChEjR7LPIiIiF6+9PR0rFu3DmvXrkV+fj58fHwEL/OorKzE/fv3kZmZiYyMDGRmZiIlJaXG92lpaVAqldrrSKVSyGQyyGQyDBw4UPu9TCaDi4sL9PX1BRwREVHjVFlZiWnTpmHDhg1wd3fH4cOHERISgosXL6JTp05CxyPSScnJydiwYQM2btyIwsJCDBw4EEuWLEGvXr0a5X4XRERERETUPLDMg4iIiIiIiIiaJScnJzg5OSE0NFQ7TaPR4M6dO5DL5UhMTIRcLsfly5exfft25OXlAQCsrKzg7u4Ob29vuLu7o127dmjXrh1at27drA5YJ6IXM2zYMCxduhQXLlxAly5dhI7zROXl5Th8+DAOHjyIw4cP49atWzAzM0NAQADGjx+PgIAAdOvWjWfY02EajeaFdmA6evToS0xDRC/6mNSVbQoxDqHU91j5PNt46enpaf8uHDlyJACgqqoKly9fRmxsLOLi4rB69Wp8+umnaNGiBXr16oU+ffpgwIABsLa2Fjg9UeO3e/duqFQqDB06VOgoRI1ec3pvR0REVN9iYmKwatUq/Prrr9DT09MWY1R/3lhfSktLcffuXWRkZCA9PR1paWnIyMhAWloa7t27h4yMDGRlZWmXF4vFsLW1hbOzMxwdHeHt7Y3Q0FA4ODigVatWcHR0hJOTEwwMDOo1NxFRc5Oamophw4bhjz/+gEgkgr6+Pvbt24f+/fsLHY1I5+Tn5+N///sffvrpJ5w4cQLOzs744IMPMH78eNja2godj4iIiIiI6IlY5kFERERERERE9P+JRCK4urrC1dW1RskHAGRnZyMpKQlyuRzXrl3DtWvXcOTIEaSlpQEA9PX14ezsjLZt22oP5GrXrh3atm3LM1IRUS2dO3dGmzZtEBkZqbNlHkqlEgcPHsTOnTsRFRWF4uJi/O1vf8PIkSPRu3dv+Pv7cwdeIiIiojqIxWL4+fnBz88P06dPBwBcvXoVhw8fxpEjRzB9+nRMnjwZr7/+OoYPH44hQ4ZAKpUKnJqocfr555/Rr18/PoaIXgK1Wg09PT2hYxARETVaFRUV2LFjB5YvX47ExEQYGBhApVJBpVJplykoKHjm9ZaVleH+/fvIyspCTk4OcnNzkZubi6ysLOTm5iInJwfp6em4d+8e8vPztdczNjaGo6MjHBwc4OLiAk9PTzg6OqJVq1basg5bW1t+hklE1MDWrFmDDz/8EEqlEjY2Nli4cCEmTJjA52Oih5SXl2Pfvn346aefsH//fohEIrzxxhuIiopCv379+HghIiIiIqJGhZ/AEhERERERERE9BVtbWwQHB+P999/HqlWrcOTIEdy9exclJSVISEjAzz//jIkTJ8LBwQEXL17EokWLEBoaitatW0MikcDLywuDBg3C7NmzsXbtWhw4cAByuRzl5eVCD42IBDJ06FDs2LGjxo68uiA/Px/ffvstWrdujQEDBuDatWtYtGgR0tLScPbsWfzzn/9EUFBQsyjyEIlEdZ6VuK7p1T9XzxOJRJg4ceIT5wF/Htz7xhtvwNzcHObm5ggNDcXVq1fr3OatW7fw5ptvQiqVPjbfs3iWbT+Lp8l79epV9O/fX7vt/v37P/W2Hzc9KioKAQEBMDY2hqurK2bOnImioqI6r5uWloaBAwfC3Nwctra2GDNmDB48ePDct9HD6370d/w0t1VSUhJCQ0NhYWEBMzMzvPHGG7h27VqdeZ72dvur2//y5cvo06cPTE1NYWFhgX79+uHQoUPPNfanvT2fdDs9ze8PABITE9G/f3+YmZnBwsICffv2RVJSUp33i2cZw7Vr19C9e3dIJBK8+uqrSE5ORmJiIrp16wYzMzMEBwfj7t27tfI8ycN5LS0tMXjw4Meu52nyCrXNp13nsz5un+a++LT3jad5fDyNZ739XnSbj3tded77ZX08rxQUFGDmzJmQyWQwNjaGvb09xo0bh3PnztXY7sPbr+v17mX8fhqr9u3b44MPPsCBAwdw//597N69G3Z2dpgxYwbs7e0xduxYXLlyReiYRI1KTk4Ojh07hrfeekvoKERNAss8iIjoRQ3xcMAQDwfcz8zA0injMLpzW4wP6IhvZ09DUb6i1vJ3b8qxZPLbGN25LUZ3bovFE9/C3ZvyWsulJV/Hkklj8JZvG4zxa4dFE0YhPfmGdnsPO3/8MD4dNQAjO7rivde7YtOX81FWUlxnzqy7qVj+jwkY29WjznU9rYyMDCxYsAB2dnZ49913tX97K5XKWssWFxdDqVQiKysLV65cwbFjx7Bt2zZ8++23+Oyzz/D3v/8dAwcOhL+/P9q0aQNzc3NIJBI4Ozuja9euCAsLw9SpU/Hdd98hNjYWCoUC9vb2GDJkCJYuXYro6Gj8/vvvyMnJQVlZGZKTkxETE4OtW7di2bJlmD59OgYPHoxu3brBwcGBB8ISETWg9PR0dOrUCdOmTQMALFq0CLdv38akSZP4fEwEoKqqCkeOHMG7774LOzs7jBgxAsXFxfj3v/+NrKws7Nq1C2FhYXy8EBERERFRo8NPYImIiIiIiIiIXoBEIkGnTp0wbNgwfPrpp9i0aRPi4uKQm5uLvLw8nD17Fhs3bsTQoUNhbGyMEydOYN68eejfvz88PT0hkUjg6OiIwMBAvP322/j888+xadMm/Pbbb7hz547OHeRPRC/PhAkTkJ6ejn379gkdBQBQWVmJJUuWwNHREYsWLcKoUaNw+/ZtXLhwAREREXBweL4dmRszjUbz1NOrp2k0Gu1lw4YNT5yXnJyM3r17Izw8HCkpKUhNTcWYMWMwcOBApKen11r/+++/j1mzZiEjIwP79+9/ofE967afxZPyJicno1+/fhg6dChSUlK0pROhoaFITk5+4rYfN33gwIF45513kJeXh/j4eOTl5eEf//hHndedOHEi3n//fWRmZuLChQsoLS3FrFmzaiz7rLdRXb/jp72tRowYgXHjxuH27dtISUnB4MGDERoaitTU1Oe+3R53+9+4cQMjRozARx99hNzcXMTHx6OkpAShoaHPPfanuT2fdDs9ze/v1q1b2tvg9u3buH37Nt59912MHDmyxjaeZwwLFizApk2bkJmZCR8fH4wZMwbz58/H5s2bce/ePXh6euLDDz984u/0r/LeunULQ4YM0eZ92NPmFWKbz7LOZ3ncPs19EXi6+8bTPj6e5Flvv5exzb96XXme+2V9PK+88847sLKywpkzZ1BQUID9+/cjOTkZ3bp1q7Xdx73evYzbqqkwMTFBeHg4tmzZgszMTHz11Vc4e/YsfHx88NZbbyEzM1PoiESNwvbt22FiYoKwsDChoxA1CSzzICKiF/WLPAMAsPazD9F31DvYePp3LN91EBXlZfjvskU1ls26m4qF747E34J7Y93RePz7+DkEDRiCpVPexYOszBrL/fPvo9Gjbxj+fews1h07i9ffHIl/ffB+jW1WWzplHIIHD8d/z13D0p17UVyQjw2LP6sz5/cL5mDg+PexIeZ3zP3+x2ceb05ODoYOHQpnZ2d88cUXyM/Ph1qthlqtfux11Go1jIyMYG9vj44dOyIkJATvvPMOli1bhujoaNy5cwfm5ubo1q0bxo8fj2+//fqoxN4AACAASURBVBZRUVE4c+YMbt26heLiYpSUlODOnTuIj49HdHQ0Nm3ahIULF2Ly5MkICwuDj48PrK2tn3k8RERUP6qqqjBp0iS4uLjgjz/+QHh4ONLS0jB37lwYGxsLHY9IUHl5eYiMjMTYsWNhY2ODPn364Ny5c/jkk0+QlpaGw4cPY9y4cbC0tBQ6KhERERER0XMTaZ5nL1wiIiIiokZo+PDhAICdO3cKnISq7dy5EyNGjHiugwOJiBq78vJyZGRkICUlpdbl5s2bKCwsBAAYGBigZcuWcHBwgEwmq3VxdXXlTvZEjVi/fv2gVqtx6ND/Y+/Ow5q68/2Bv4EAYSeyJmFNESG4YXAF16KOdattrbe9Xa3da3v769iOne5zZ6ad3i62s3S7nc7YmXZqR2tdRiuugLihYstiUZYACWFLWEMgwO+P3pwhbIIih+X9ep7zJDk5y+ecnOSEcL7v735R6yguLsayZcug1Wrx0ksv4YknnoC7u7uoNQ0XDg4OPX5f7Wl8b9P29dxdd92FyZMn49lnn7Ub/+mnnyIrKwtbtmyxW8bhw4exYMGCq9iS7jUMdN0D/d7eV7133XUXpk+fjqeeespu/Ntvv41z585h69atV1x3f2oyGo2IiopCdXV1t3m/+eYbrF69Whh38eJFLFq0CGVlZXZ1Xs991HneL7/8EuvWrbMb//bbb+PChQv47LPPhHoGst962/933nknli1bhrvvvlsYd/HiRcTExAjbMNBt78/+tE3b3/3U0+t39913IyEhods++PLLL3HHHXdc0zF+5MgRzJ8/H8BPPaoqlUq7caWlpdBoNDAYDP2qv696P/vsM9x///1XXe9Qr3MgywT6/77tz7HYk56OjYG8P/oy0P03GOsEej+vXO1xOdifK15eXiguLsa4ceOEaQoLC6FSqezq7ut8N1j7arTq6OjAzp078f/+3/9DTU0N/va3v2H58uVil0U0rM2ePRvjx4/HX//6V7FLIRrxOjo64OjoiK+++gpr164VuxwiIhoGVq1ejVo446nfvT+g+W6NUeC5P/wZM25cKozTFV7Gy/feho+PnRPGbdn0BMInqHHzhsfs5j/0zy9RlJeN9b/81U/TPbsRUROnYPk9G+ymS9uzE+8882i3MI+uGupq8fji2fjLyZxudb72168RN2POgLbP5ukVC6G9dPGq5v3jH/+IuLg4BAQEICAgAP7+/le1HCIiGv7ee+89bN68GU1NTYiNjcW2bdsQFxcndllEosrOzsbu3buxe/duZGRkwMnJCfPmzcOKFSuwcuVKqFQqsUskIiIiIiIaVAzzICIiIqIxg2Eeww/DPIiIemcwGITe5m1DUVERCgsLodVq0draCgBwd3dHZGRktyEiIgJhYWF2je2IaPjZvXs3Vq1ahdzcXEyYMEGUGioqKjBnzhz4+Phgx44dCAsLE6WO4ep6h3kEBwfj5MmTCA8PtxtvMBiwcOFC5OT8+yJzBwcHNDY2XnXQStcaBrruqwnz6K3e3tZdWFiIOXPmQK//d++b1xLm0dt0Dg4OqKmpgUwmE8ZZLBa4ubnZ9Zx5vfdR53mrqqrg5+dnN76wsBCJiYnQ6XR91tPbfutr/589exYKhaLXmga67f3Zn7ZpB7Kf+nvcVldXw9/f/5qO8bq6Onh5eQH4qZdUJyenbuMkEkmfvat21VsN5eXlkMvlV13vUK9zIMsE+v++7c+x2Jv+Hhs9vT/6Mhj7b6Dr7Gl7bOOu9rgc7M+VJUuWoKmpCS+88AKSk5MhkUj6vR0DWQ8BTU1NePLJJ/G3v/0Ne/fuxcKFC8UuiWhYKi4uRmRkJPbs2YNly5aJXQ7RiGf7nvH111/j1ltvFbscIiIaBq4lzOMvp3Lh6f3v3tNbW1pwx5RIfJ3779DXBxKn4PVtexCgCLGb31RdiZfvuQ1b9hztc7p6kxH3zYq7YpiHraau090ao8Dfz1+Gq9RtQNtn8+sH74KjuQ4ymQzHjh2DxWKBVCpFc3PzFefNzMzEtGnTrmq9REQ0ctx6663Yvn07AgIC8L//+79YuXKl2CURiUKr1eLIkSM4fPgwDh8+jOLiYgQEBOCmm27CihUrsGTJEnh7e4tdJhERERER0XXT81VWREREREREREQkqqCgIAQFBWHWrFk9Pm80GlFQUGA35ObmYs+ePSguLkZbWxsAQCqVQqFQQC6XQ6FQQKVSdbsvl8vh4OAwlJtHRP/npptuQmRkJP7whz/gvffeE6WGd999Fy0tLThw4AADgERQXV2NiIiIHp9zc+t+IfnVBnkMxrqvRm/1VlVVITg4uNt4uVyOqqqqq1pXZWUlNm/ejH379qG8vFw4F/amc/AEALi6unZrgD4U+8ima4N74Kf9UVlZKTwe6H7ra/9fqcfPgW57f/ZnX/r7+vW2D3rafwPdBls4AgA4Ojr2OG6ggS291dvTuME63q7HOgeyzIHoz7F4rcfGQD9XBrKt1+OzrKtrOS4H83Nl27ZtePXVV/H444+jsrIS8fHxuOWWW/DYY4/B2dn5itsxFPtqtHB3d8fHH3+MmpoabNq0CWfOnBG7JKJh6fPPP4e/vz+Sk5PFLoVoVLAFg/E3QiIiGgydgzwAwNnFpdvfrvUmIx5ZNKPH+V2kUuF+nakGvv6B3abx8pV1G1dXU43P3/4NzqUehqmqEu1X+H3waoM8AEDi7Izo8Bhs3boVVqsVJ06cwO7du7Fnzx5kZ2fD0dERDg4OsFqt3eY1Go1XvV4iIho5Nm3aBI1Gg+eff17sUoiGVElJiRDecfToURQUFMDV1RUzZ87Efffdh6VLl2LmzJnC/zyIiIiIiIhGO4Z5EBERERERERGNQDKZDBqNBhqNpttzFosFRUVF0Gq1KCsrg1arRWlpKUpLS7F7926UlpaitrZWmN7DwwNhYWEICQmBUqm0ux8eHo6QkBD4+Ph0Ww8RXTtHR0c8/fTT2LRpE5599lmEhIRceaZBVlRUhPj4eAZ59MLBwQEWiwWurq7CuJqamkFbvr+/P3JycroFIQwFsdet1+u7hQjo9fpuDfv7+xrcfffdmDBhAtLS0hASEgKJRCLMfy11DtU+MhgMCAoKshun1+sREBBgV09/91tf/Pz8UFVVBYVC0es0Q3189Pf18/f3R3l5OcLDw+3Gl5eXd1ummMd45xp6qrenY3iw6r0e6xzIMoH+v2/7cywO5NgYjPfHQPffYKzzehnMzxUfHx+8/fbbePvtt1FVVYWDBw/i3XffRWpqKr7++usr1jLc99Vw4+DggBtvvBEvvfSS2KUQDVtffvkl1q5d269AISK6MluYBxvSEBHRUPGSjcOWvUe7BX905e07DqaqCgQo7H87N1VVdJt2y7MboYy8Ab/++074Bcvh5PTTbwi3xvT+u8NgkEgkSEpKQlJSEl5//XXo9Xrs378f+/fvx759+2AymeDq6oqWlhZ0dHQwzIOIaIyYNWtWr523EI0WDQ0NOHv2LE6dOoXTp0/j1KlTKCoqEsI77rrrLixYsACzZs0a9I4SiIiIiIiIRgr+B5aIiIiIiETDHt6IiK4PV1dXTJgwAYsXL8Z9992Hl156CR999BH27t2LH374ASaTCfX19cjOzsb+/fvx3nvvYd26dQgLC0N5eTm+/vprPPPMM1i+fDkmTpwIX19feHl5IS4uDkuXLsX69evxyiuv4JNPPsG+ffuQnZ0Nk8kk9mYTjVgPPfQQ5HI5/vu//1uU9d94443Yv38/Dh48KMr6h7vg4GBotVq7cceOHetx2r6+3/b23NKlS3HkyJFu41NTU3sMbBpMYq47OTkZ27dv7zZ+x44d3XpX7+9rcPz4cbz66quIiIgQGvubzeZrqnMg++ha/77Zv39/t3E7duzAkiVLhMcD2W99WbBgAVJSUuzGZWVlQa1WC4+v1/HR237q7+u3ZMkSfPPNN93G97T/xDzGbXqrt+v+Bwav3uuxzoEsE+j/+7Y/x2J/j43Ben8MZFsHa53Xy2B+rjg4OKC0tBTAT8Ec69atw549e/Ddd9/Zzdfbe3y476vhRqfT4Z133uG+IerFhQsX8MMPP+COO+4QuxSiUYNhHkRENNSmJi1A9snj3cbnnjmJTbcsFR5PSZqPUyn7uk13Pu1It3EXz53Buo2bEKgMFYI8WpqbB6/ofpLL5bjvvvvwxRdfoLq6GqdPn8aLL76IWbNmQSKRMJCOiGiUMxgM2Lx5M15++WWxSyEaVI2NjTh16hT+9Kc/Yf369Zg0aRJ8fX0xf/58vPXWWzCbzXjggQdw8OBBGI1GHD16FK+++ioWLlzIIA8iIiIiIhrTJGIXQEREREREY5eth96Wlha4uLiIXA0R0dji6ekJtVpt11CyK7PZDL1ej4KCAuh0Orv7Fy5cwOXLl+1CPFxdXTFu3DgoFArI5fJeb+VyOQOdiDpxcXHBCy+8gEceeQSbNm3CDTfcMKTrv//++5GWloZVq1bh9ddfx2OPPQYnJ6chrWE4W7x4MZ5//nm888478PX1RXp6Oj744IMep1UqlcjIyEBCQgIOHz6MDRs2CI3Ze3vulVdewapVq9DW1oaFCxfCxcUFR48exSOPPILf//7313XbxFz3yy+/jIULF8Lb2xurVq2Cg4MDvv32W7z99tvdggX6+xrMmTMHzz77LJ5//nkoFApotVr86le/uqY6B7KP+nr9++PDDz+ERCLB0qVL0d7ejm+//RZbtmzB0aNHhWkGst/68sILL2DNmjVQKBSYPXs2Ll++jPXr12Pjxo1Xte0D0dt+6u/r98orr2DBggXw8vLCypUr4ejoiO+++w4fffRRj9OKdYz3Vq+TkxNSUlLwm9/85rrVez3WOZBlAv1/3/bnWOzvsTFY74+BbOtgrfN6GezPlQ0bNuCtt95CVFQUTCYTtmzZ0i1sorf3+HDfV8PJoUOH8OCDD8Ld3R1/+MMfxC6HaFj64osvEBYWhsTERLFLIRo1GOZBRERDbd3GZ/D6o/ehvb0NE2cmQuLsjOzTGfjw5efw4Iv//ht83RPP4KV7boWbhycSFi6Gg6MjstKP4rt/fN5tmRPiE7D1f36FWx5+EuMCg1GlL8O2P74zlJvVjaOjIxISEpCQkIBf/vKXvDaCiGgUKyoqwv/8z//g008/hbe3N37xi1+IXRLRVbFardBqtcjOzkZOTg6ys7ORmZmJvLw8tLe3w9PTE1OmTMGiRYuwadMmaDQaxMXFiV02ERERERHRsOXQ0dHRIXYRRERERERD4fbbbwcAfPXVVyJXQjYHDhzAkiVLYDKZ4OPjI3Y5RER0FUwmE0pLS1FaWgqDwYDS0lKUl5fbPTYYDGhpaRHmcXd3R0hICIKCghASEoLg4GC7x0FBQQgNDYWHh4eIW0Y0tKxWKyZOnIiEhAR8/nn3i5Cvt7a2Nrz88st48803MXHiRPzyl7/E6tWrGeoBoKqqCk899RQOHDiApqYmLFq0CH/4wx8QFhYGAOj8E/u2bdvw3HPPoaysDGFhYXjrrbewatWqKz6Xn5+PzZs3IyUlBVarFWq1Gps3b8aaNWuEZXcNQRroT/ud5+8870DX3d/19qfe77//Hs8++yxSU1MBAHPnzsXvfvc7TJo0yW66/r4GFRUV+PnPf479+/fDZDIhOjoaL774ItatW2c3XW/bcy37COj7Ne7P/iosLMTGjRtx9OhRtLe3Y968eXjrrbcQGxs74P3Wn/2fkZGBTZs2ITMzEwEBAXjssce6XVh6LcdHb+N720/9ff0AIDs7G5s2bcKxY8fg6OiI+fPn491330V0dDTa2toGZRv6O64/Otfr4OCAOXPm4J133hEubLya402MdQ5kmQP57LzSsTiQY6O/nyuDuf8GY53Xcgz29R4czM+VgwcP4ve//z1SU1NRX18PpVKJm2++Ga+++iq8vLyE6fr6LBys12e0OnPmDH73u99h27ZtWL16NT766CMEBgaKXRbRsNPR0QGVSoV169bh9ddfF7scolGjoaEBXl5e2LNnD2666SaxyyEiomFg1erVqIUznvrd+/2e59YYhXD/n3m6K47XFxfi87d+gwsZqWizWhEaFY1bHtqImYuX2S235NJF/PV3v0L26RNwdHRE3PTZuP/5V/HEz5LwdU6pMF1tdRX+8rvXcD7tCBrraqGIuAFrH/svvPX0I3br7lxP15r6643H7ke0IgBbt24d8LxERDS65OTk4I033sAXX3wBpVKJn//851i/fj3c3NzELo2oTwaDAT/++CPy8/ORn5+PS5cuIT8/H3l5ebBYLHByckJUVBQmTZqESZMmYeLEiZg8eTJUKhXDQImIiIiIiAaAYR5ERERENGYwzGP4SUtLw9y5c6HX6xEcHCx2OUREdB0ZDAa7cA9b6EdZWZkQ/lFRUYHW1lZhHk9Pz15DP5RKpXDr6ekp4pYRDZ5//vOfWLt2LY4ePYq5c+eKUkNeXh6ee+457N69G2FhYXj00UfxH//xH0LjayK6PhwcHAYc0EL2srOzsXz5chQVFYldCtGwwM+VkaGurg7ffvstPvzwQ6SlpWHq1Kl47bXXsHLlSrFLIxq2bL8pnz9/HlOmTBG7HKJRo76+Ht7e3ti7dy+WLVt25RmIiGjUu5owj6FUcukifv3Q3fjg0ClR1s8wDyIiSktLwxtvvIE9e/ZApVLh2Wefxf333w9nZ2exSyMC8NPvz1qtFkVFRSguLhYGW2hHfX09AMDNzQ3jx49HVFQUxo8fj9jYWEycOBFxcXGQSqUibwUREREREdHIJxG7ACIiIiIiGrtsPRCYzWaRKyEioustKCgIQUFBmDx5cp/TGY1G6HQ66PX6brcnTpyAXq+HVquF1WoV5pFKpZDJZFAoFJDL5b3eBgUFwcnJ6XpvKtFVu/XWW7Fy5Ups2LABWVlZolwYExMTg507d+LSpUt4//338frrr+MXv/gFZs2ahdtvvx0rVqxAVFTUkNdFRNSZg4MD3n33Xdxzzz1wd3dHbm4unnjiCTz++ONil0ZEdEVVVVX47rvvsG3bNuzbtw/t7e1Yvnw5Dh06hIULF4pdHtGw98UXXyA2NpZBHkSDrL29HQDYsy4REQ1Lt8YosP751zD/5rVwlbqh9HI+PvnV81j2n/eJXRoREY0xZrMZW7duxZYtW5CTk4Mbb7wRO3fuxPLly/n3FA0Zq9WKiooK6PV66PV6lJeXQ6fTwWAwoKSkBFqtFlqtFkajUZjH398fYWFhCA8Px4033oiHH34Y48ePx/jx46FUKuHg4CDiFhEREREREY1uDPMgIiIiIiLRMMyDiIi6kslkkMlkiIuL63O6rqEfRqNRuF9QUIC0tDSUlpairq6u2/L7CvxQKBQIDQ1lbzkkmvfffx9xcXF4/fXX8corr4hWR1RUFLZs2YI333wTBw4cwLZt2/Dqq6/i6aefRmRkJJYsWYLFixdj/vz58Pf3F61OotHAdnGcg4MDOjo6RK5mZNi1axfeeecdvPDCC3B0dMT48eOxceNG3HvvvWKXRjQs8HNleDGbzThx4gQOHDiAAwcO4OzZs3BycsKNN96IP/7xj7j55pshk8nELpNoRLBarfj666+xceNGsUshGnUY5kFERMPZ5g/+gt2ffYy/v/sGHBwdoQiPxE13r8eCm28XuzQiIhojtFotPvzwQ3z00UdoaGjAnXfeiS+++OKKnZkQDYTZbO4xoKOsrAwVFRUoLS1FRUUFDAaD3W//np6eCAkJQWBgIEJCQrBs2TIhuCM8PBwRERHw8PAQccuIiIiIiIjGNoZ5EBERERGRaBjmQUREV2sgoR+9XehQUlKCM2fOQKfToba21m6+oKAgBAYGQqlUIigoCAqFAsHBwULoh22wncuIBktYWBhee+01/OIXv8Dtt98OtVotaj0uLi5Yvnw5li9fDqvVioyMDHz33Xc4cOAAPvnkE7S3t2PChAmYM2cOkpKSMHv2bEyYMIE99wyxK+3vwW7IPdTrG8n6s6+4vwZuxYoVWLFihdhliPJe4Pvv2oyV14zHgbj0ej0yMjKQlpaGjIwMZGZmorW1FVFRUViyZAleeOEFLFy4EN7e3mKXSjTiHDt2DBUVFVi3bp3YpRCNOm1tbQAAJycnkSshIiLqLmHBYiQsWCx2GURENMa0t7fjX//6Fz744AP861//QmBgIJ588kk8/PDDCAwMFLs8GgHMZjOMRqNd5zS2xz2NKy8vt/t939ZZjUwmg0KhwIIFC7p1WKNUKuHr6yviVhIREREREdGVMMyDiIiIiIhEwzAPIiK63myhH1cKRLhSDyfnz5+HwWDo1sOJr6+vXdBHcHCwEAASEhKCoKAgKJVK9nJCA/Lkk0/iyy+/xN1334309HRIpVKxSwIASCQSzJ07F3PnzsWvfvUrGI1GpKen4/jx40hPT8cXX3wBs9kMHx8fxMfHQ6PRQKPRYNq0aRg/fjx7972OhrrRNhuJ9x/31egmxuvLY+ra8DWjwabX65GZmYnMzEycPXsWmZmZKCsrg5OTE+Li4pCUlIQnnngCSUlJCA8PF7tcohFv+/btmDx5MsaPHy92KUSjjsViAYBh8xsEERGJz2KxAK7OYpdBREQ05MrLy/GXv/wFH374IQoLC6HRaPDpp5/ijjvugLMzz41jWU1NDSorK1FVVYWqqipUVlbCYDAIj6uqqlBRUYHKykpUVlaiubnZbn43NzcEBAQgICAAgYGB8Pf3x4wZMxAQEICgoCAEBAQI154EBgbyeCMiIiIiIholGOZBRERERESisYV5NDU1iVwJERGNdW5ublCpVFCpVFec1mg0QqfTCb2kdL7NyMiAXq+HVquF1WoV5pFKpUJvKZ17Sel6K5fLr9h7O41+Tk5O+OqrrzBt2jQ8/fTT+NOf/iR2ST2SyWRYsWIFVqxYAQBobW3FuXPnhAatBw8exHvvvYfW1lZ4eHggJiYGsbGxUKvViImJgVqtxg033ACJhD9TExER0fBWUlKCvLw85ObmIicnB3l5ecjJyUFlZSUA4IYbbsC0adOwceNGaDQazJgxA97e3iJXTTS6dHR0YOfOnXjggQfELoVoVLKFebi6uopcCRERiaGxsdHut920tDRotVrMWbZK7NKIiIiGhNVqxb59+/DnP/8Zu3btgo+PD+699148/PDDDBUdxWydvuh0OhiNRhiNxm6PbeNKS0vR0tJiN7/tOpDO14JER0fbPbY9bxtHREREREREYw+vkiYiIiIiItF4eXnBxcUFVVVVYpdCRETUb7YLLeLi4nqdpr29HQaDAeXl5dDpdCgvL0dZWZlwm5WVhb1798JgMKC1tVWYz93dHQqFQuhtxRbwIZfLoVQqoVAoEBoaCk9Pz6HYVBJReHg4PvvsM6xevRqzZ8/GPffcI3ZJV+Ts7IwZM2ZgxowZwjiLxYILFy4gKysLeXl5yM7OxkcffYTi4mJ0dHTAxcUF48ePR2xsrF3QR0xMDHsDJiIioiHV1taGwsJC5OTkIDc3Vxjy8vJQV1cHAPD394darUZsbCzWrFmDiRMnQqPRwNfXV+TqiUa/EydOoLS0FLfccovYpRCNSgzzICIaO9rb25GTk4NTp07hxIkTOHnyJLKzs9HW1gaFQoGZM2fi4Ycfxre7dgEMHyciolEuLy8Pf/7zn7F161aUl5dj3rx5+POf/4zbbruNfx+NYH110GK7LS4uRltbm918XTtpkclkUKlU3YI5FAoFlEoljxEiIiIiIiLqF4Z5EBERERGRaBwdHSGXy1FaWip2KURERIPKdo6Ty+WIj4/vc1rbhSSde3mx3WZnZ+PAgQMoKSlBfX29MI9UKhUuGOl8q1KphPthYWGQSPjz30i2cuVK/Nd//Rcee+wxJCQkQK1Wi13SgLm6umL69OmYPn263fjGxkZcvHjRrnf7bdu24fLly2htbYWjoyPCw8MRGRmJiIgIu9vIyEjI5XI48EJyIiIiGiCj0YjCwkIUFhaiqKjI7vby5ctCQ+awsDDExMRgzpw5eOCBBxATEwO1Wg1/f3+Rt4Bo7NqxYwciIyMxefJksUshGpWam5sBMMyDiGg0MplMOHPmDNLS0pCZmYnjx4+jpqYGzs7OmDx5MhYsWIBnnnkGGo3GLsQ8/fhx1IK/wRIR0ehTV1eHb775Blu3bsXBgwehUChwzz33YMOGDYiKihK7POpFa2srDAaDXScqPd1WVFSgo6NDmM/Pzw/BwcFQKpUIDg7GvHnzEBwcDLlcjsDAQPj7+wuDk5OTiFtIREREREREoxWv5iciIiIiIlEplUqUlZWJXQYREZFobL23XInZbIZer0dBQUG3XmPS09Oh0+lgMBjQ3t5ut+zOAR9db6OiouDj43M9N4+u0RtvvIGTJ0/i5ptvRlpaGgIDA8UuaVB4eHhg2rRpmDZtmt341tZW5OfnIzc3Fz/++KPQwPbYsWPQarVoaWkB8FPjoq4hH53DPtjQloiIaGxqbGwUwjp6Cuyora0FADg4OEChUAjfHTQaDW644Qao1WpMmDABXl5eIm8JEXW1c+dOrF27VuwyiEYtW6AVwzyIiEa21tZWXLhwQQjuyMzMRG5uLjo6OiCXy5GUlISXXnoJGo0G06dP5+c+ERGNGRaLBd999x22bduG7du3o62tDStXrsTOnTtx0003McRhGLBYLCgrK7O7HqKgoEAYiouL0dbWJkzftQOU+fPnd7smIiwsjL/1EhERERERkegY5kFERERERKJimAcREVH/uLm5QaVSQaVS9TqNxWJBdXV1j6EfBQUFSEtLQ3FxMRobG4V5ul7k0lP4R3h4OC9gEomzszN27tyJpKQkLF++HIcPH4anp6fYZV03zs7OUKvVUKvV3Z5rb29HWVmZXYPcwsJC5OTkYM+ePSgrKxPCbDw9PREaGgqFQgGlUgmFQgGFQoGQkBDI5XKEhIQgODgYEgl/IiciIhopjflSFwAAIABJREFUDAYDysvLUVpaCp1Oh7KyMuh0Ouh0OmFcZWWlMH1AQIAQ+LV06VK78K/w8HA2WiMaQbKysvDjjz9izZo1YpdCNGrZwjykUqnIlRAR0UDodDqkp6fbhXc0NzfDx8cH06dPx9q1a6HRaDB79mwGIBMR0ZjT1taGo0eP4m9/+xu2b9+Ouro6zJ8/H1u2bMFtt93GTi9EYDAYcOnSJeTn5+PSpUu4fPkyLl++DK1WC4PBIEzn4+OD8PBwhIeHIzY2FkuXLkV4eLjwP1+5XM6/X4mIiIiIiGjE4JXKREREREQkqpCQEGRkZIhdBhER0ajg6uoqXMCi0Wh6na68vBx6vR6lpaUoKyuDXq+HVquFXq/H7t27UVZWBpPJJEzv7OwsBCCEhoYiNDQUYWFhCA8PFx7zQuDrx9/fH3v37kViYiJWr16NvXv3jsnGp46OjsLxNm/evG7Pt7S0QKvVoqioCEVFRXbH9/nz51FeXo6Kigq75QUFBdkFfQQHByM0NNQu8IPHNhER0fXV2NiI0tJSlJeXo6SkBHq9vltQh16vR0tLizCPl5eXENKlVCoxadIkyOVyREZGCqEdozkAjWis2bFjB5RKJWbOnCl2KUSjli3MYyz+3kBENFLU1dXhwoULQnjHyZMnUVlZCYlEgujoaCQlJeGhhx6CRqOBWq2Gg4OD2CUTERENuY6ODpw8eRJfffUV/vGPf0Cn00Gj0eDFF1/EunXroFQqxS5x1KuurkZOTg5+/PFHXL58GZcuXRKG+vp6AD8FSUZFRSEqKgpz585FeHg4IiIihAAPX19fkbeCiIiIiIiIaPAwzIOIiIiIiESlVCpRVlYmdhlERERjSnBwMIKDgxEfH9/rNE1NTULDyZKSEqH38+LiYhw6dAglJSV2PZ+7u7vbhXuEhoYiIiLC7jF7x7l6KpUK+/fvx/z583H//ffj888/h6Ojo9hlDSsuLi7CRV+9aWlpQVVVFfR6PXQ6nd1tfn4+jh49irKyMtTW1trNJ5PJIJfLIZPJIJPJhB6ferovk8mu96YSERENe0ajETqdDkajUTjfGo3Gbo91Op1diBzw03lXpVJBLpcjLi4OycnJwvlWoVBApVLxfEs0xmzfvh1r1qxhg1Si66i5uRkAwzyIiIYLq9WKixcvIjMzUwjvyMvLQ3t7O+RyOTQaDZ555hkkJiZCo9HAzc1N7JKJiIhE097ejhMnTmDbtm345z//iZKSEowfPx4bNmzAnXfeiQkTJohd4qhkNBqRnZ2NnJwc4bagoAAFBQUAfvr7UqlUQqVSYfr06bj33nsRFxcHlUqF8PBwODk5ibwFREREREREREODYR5ERERERCQqpVIJvV6PtrY2/pOOiIhoGHF3d0d0dDSio6N7ncZisQi9puv1euHiHJ1Oh/Pnz+PHH38UetcB/h2IYGuEaWukaXvMi3b6NnnyZGzbtg3Lly+Hu7s7PvzwQ+6vAXJxcYFCoYBCoYBGo+l1utraWpSVlUGv16O8vByVlZVCCEhlZSW+//57pKSkwGAwoLGx0W5ed3d3BAYGIjg4GAEBAfD390dwcDACAwPh7+8PPz8/yGQyjBs3ThgYzEJERMNZXV0dampqUFNTg+rqatTU1AjnxsrKSuH8WFVVBYPBAKPRaDe/q6sr/P397c6PM2fOtDs/2sI6goKC2FifiOxcunQJ33//Pd59912xSyEa1SwWC4Cf/m4mIqKhp9PpkJmZKYR3pKenw2w2w8vLC5MnT0ZycjJeeeUVzJ8/H4GBgWKXS0REJLr29nYcP35cCPAoKytDZGQk1qxZg7Vr1yIxMZG/Mw6SmpoanDt3DllZWfjhhx+Qk5ODvLw8oXMEf39/qNVqxMbGYsWKFVCr1YiJiUFoaKjIlRMRERERERENDwzzICIiIiIiUSmVSlitVhgMBigUCrHLISIiogFwdXUVQjl6Y+txvWvYR0FBAVJSUlBcXIy2tjYAPzUY8fPz6zXsIyoqCj4+PkO1ecNScnIyduzYgdtuuw0NDQ3YunUrnJ2dxS5r1PHx8YGPjw/UavUVpzWbzT02ZDYYDEIAyLlz51BZWYnKykq0tLR0W4avry/8/PzsAj76M0gk/ImfiIj6zxbI0dNgNBp7fc5qtdotx8HBAQEBAcIQFBSE+Ph44XHXQKux/v2NiK7N9u3b4efnh3nz5oldCtGoZrFY4OLiwrBJIqIh0NDQgPPnzwvhHceOHUNxcTGcnJwwYcIEaDQa/Pa3v0VSUhLi4+P52UxERPR/mpqacPDgQezatQu7d++GXq9HbGws1q9fj9tuuw2TJ08Wu8QRraOjA5cvX8b58+dx/vx5ZGVlISsrCyUlJQCA4OBgTJo0CbNmzcL999+PmJgYxMXFwd/fX+TKiYiIiIiIiIY3XulLRERERESiioqKAgDk5eUxzIOIiGgUkslkkMlkiIuL6/H5lpYWlJWVoaSkBMXFxdBqtSgpKUFJSQl2796NkpIS1NXVCdOPGzcOoaGhCAsLQ3h4OMLCwhAZGSkM48aNG6pNE81NN92Effv2YeXKlbj55pvx9ddfw83NTeyyxiw3NzeEhYUhLCysX9M3NDT02FC6urrarjH1Dz/8YPe82Wzutixvb2/IZDKMGzcOvr6+8Pb2ho+Pj92tr68vfH19u4338fGBl5fXYO8OIiK6TsxmM+rq6lBbW4u6ujqYTCaYTCZhnG181+dra2uFc0lHR4fdMiUSSY9hUVFRUT2Ol8lk8PPzg0wmE2kvENFYtGPHDqxatYpBdkTXmcVigaurq9hlEBGNOm1tbcjLyxOCO9LT03H+/Hm0tbVBLpdDo9Hgvvvug0ajwdy5c+Hr6yt2yURERMOKXq/H7t27sWvXLqSkpKC5uRkJCQl49NFHsWbNGkycOFHsEkektrY25Obm4tSpU8jMzERWVhYuXLiA+vp6ODk5ITo6GlOmTMHjjz+OqVOnYsqUKQgODha7bCIiIiIiIqIRiVc7EBERERGRqORyOQIDA3HhwgUsWrRI7HKIiIhoiLm4uAhBHL2pra1FSUkJioqKhKCPkpISnD9/Ht9++y3KysrQ1tYGAPDx8bEL9+g8qFQqSKXSodq062revHlISUnBsmXLcNNNN+Hbb79lMMMI4enpCU9Pz36Hf9iYzeYeQ0Bsg63xdk1NDYqKiro15u7agBsAHBwchLCPnoJAfHx8hCAQd3d3uLu7w9fXFx4eHnB3d4eXlxe8vb2F54iIyF5LSwsaGxthMpnQ1NQEs9kMk8mExsZGNDU1ob6+3i6Ao/NtbW2tEMZRV1eHlpaWHtfh7e3d42e4SqUSPsM7B3LYwjjGjRsHb2/vId4jREQDU15ejlOnTmHz5s1il0I06jHMg4hocOj1epw5c8YuvMNoNMLDwwNTp05FYmIinnzySSQlJUGlUoldLhER0bCUnZ0tBHhkZGTA1dUViYmJ+O1vf4vbbrsNSqVS7BJHnJKSEpw+fRonT54UAjzq6+vh7u6OqVOnYurUqbjnnnsQHx+PiRMnsiMJIiIiIiIiokHEMA8iIiIiIhLdpEmT8P3334tdBhEREQ1TPj4+8PHx6bVnpdbWVpSUlKCgoAA6nQ56vR4FBQW4cOECvvnmGxQWFgpBBjKZDCqVqschLCxsRPX2PH36dBw5cgRLlixBYmIivvnmG14APoq5ublBqVRe9QWK9fX1PTYWtzUU79qAXKfT2T1va4TeF5lMBjc3N7i7u8PHxweenp5wd3eHp6dnj4Egbm5u8Pb2hpeXF9zd3YWQEFdXV3h7e8PJyQkymeyqtpeIaCAaGhrQ2toKk8kEq9WKuro6WCwWNDU1CUEcTU1NqK2tRUNDA5qamnD69Gm0t7cL3x1s45uamlBXV4f6+npYrdZe1+ns7Cx8PnYN5AgKCrILVLI91/W+r68vHBwchmo3ERENuX379sHZ2Zkh0ERDoLm5mWEeREQD1NraigsXLiAtLU0I78jJyQEAqFQqJCYm4uWXX4ZGo8GMGTPg4uIicsVERETDk9VqxYkTJ7Bt2zZ888030Gq1CAgIwM9+9jM89dRT+NnPfsZODQagrq4Op06dshv0ej2cnJygVqsxY8YM3HHHHZg5cybi4uJG1P/HiYiIiIiIiEYi/uVNRERERESimzx5MlJTU8Uug4iIiEYoZ2dnIZCjJ83NzdDpdCgoKLAbUlJSkJ+fj7q6OmE5/v7+UCgUPYZ9REZGDrsGsxMnTsTp06exZs0aTJ8+HV9++SUWL14sdlk0DHl5eV3zhY4dHR0wmUxobGxEU1MT6uvrUVdXJzReNxqN3RqyNzU1obGxEcXFxT02hm9oaLjieiUSCby8vCCVSuHm5gZPT084OzvD19cXEokE3t7ecHV1FQJBXFxc4OPjAycnJ/j6+goN5t3c3CCVSuHl5QWJRCI8dnJygre3NwAIISJEJC6TyYSOjg40NTXBYrHAarWivr5eeK5r4EZjYyNaWlpQW1sLq9WK2tpatLS0CJ9XFotFCNcwGo3C8pqbm68YVARA+IyRyWTCZ01WVhYsFosQGObq6gqZTAZ/f3+MHz8eCoUCoaGhiIiIwIQJE+Dn52cXduTs7Hxd9yER0Wiwf/9+zJs3D56enmKXQjTqWSwWSKVSscsgIhrWdDod0tPThfCOM2fOwGKxwMfHB9OnT8fatWuh0WgwZ84c+Pn5iV0uERHRsFZdXY1Dhw5h165d2LlzJ+rq6qBWq3HHHXdgxYoVSExMHHb/lx2uKioqcPLkSeF7yqlTp9Da2gq5XA6NRoOHHnoIGo0GSUlJDNEnIiIiIiIiEgHDPIiIiIiISHSTJk3CBx98gLa2NjacIyIiokEnlUr7DPswGo3dgj4KCgqwa9cuFBYWCo18XV1doVQqewz6iIqKgo+Pz1BulkCpVOLYsWN45JFHsGzZMvz617/Gc889J0otNLo5ODhAJpNd1YV+zc3NuHz5Mi5dutRt0Gq1aG9vBwD4+/sjNDQUQUFBCA4ORnx8PPz8/Owa5NfV1cFqtcJkMqG1tRUNDQ0wmUwoLy+3a6zf1tZm19h/IGzBIY6OjsJ72xYCYmvU7+DgAF9fXwAQGua7uLjAw8Ojx+cAwN3dXejt2hZSYuPr6ytcmGoLJQEghJHY8EJLula29wkAu/dHe3s7amtre5yuc+iF7b0F/DvkBwAaGhrQ2toqhGgAP51jAQhhG7b3LNB3YEd/9RbWI5PJhPfYuHHj4ObmZhf2I5FI4OPjI7xnbe9Nb29vSCQSuyCgvkJ+WltbUVJSgoKCAuh0Ouj1euF7RFpaGoqKioTPN5lMJnxvkMvlduFhEyZMYEN1IqIu2tvbcfDgQf5tQzRELBaL8LcKERH91KP9hQsXhEaxJ06cQFVVFSQSCaKjo5GUlCQ0jFWr1WxsTEREdAVWqxVZWVlISUlBSkoKjhw5AolEgqSkJLz22mu45ZZbEBoaKnaZI4JWq8XRo0eRmpqK1NRU5OXlwcnJCVOmTMG8efPwzDPPYPbs2QgODha7VCIiIiIiIiICwzyIiIiIiGgYmDx5MsxmM/Lz8xETEyN2OURERDTGyGQyaDQaaDSabs9ZrVaUlpaisLDQbvjhhx+wa9cu6PV6YdqAgABERkbaDREREQgLC0NERMR17eFWKpXis88+Q1xcHDZv3owffvgBH374Idzd3a/bOom6amlpQWlpqdCQPTs7Gzk5OSgoKEBxcTHa2toA2DdoX7duHdRqNeLi4jB+/Hh4e3tft/psYQK1tbVob28fcLiAbT6z2Yzm5ma7QIOysrJen6urqxO2vXM4wmDoHPphCyWw6Sn0o3OwiE3n4JHObIEmXfUUbNA1mKQvnUNLrkbngJWrYXttr0V/X0fb8dCV7VjqrPNx2JntOO3KFpLRmS1MA7AP6egcuDFYOh9fttfUFojR+Xjw8fGBo6Mj/P39IZVK4eTkJLzPbcfSQMNzOgduiM3Z2bnPwDCLxYKysrJugWHp6elC+IdN58/GrkNYWBgkEv5bl4jGltOnT6OyshI/+9nPxC6FaExgmAcRjWVWqxUXL14UgjsyMzORm5uLjo4OoUf7n//850hMTERCQsJ1/Z13uKnUleL4vl1ilzEs1VSUA4oAscsgIhq2Ojo6hPCOAwcOIDU1FWazGdHR0Vi8eDGeeOIJJCcn2/1fg3qWl5eH1NRUHDt2DMeOHYNWq4WrqyumT5+ONWvWYO7cuUhMTLyu/2MjIiIiIiIioqvHq76IiIiIiEh0cXFxkEgkuHDhAsM8iIiIaFiRSCSIiIhAREQEFi5c2O15s9ncLeijsLAQ+/btQ2FhIWpra4Vpg4KCEB4ejvDwcISFhSE8PBwRERHCuGtpnG6zadMmTJ48GXfeeSemTJmCjz/+GAsWLLjm5RLZdG6Y3jmso6CgAEVFRUJAQedG6XfffTfi4uKgUqkQHR3d79CHwebh4QEPD48eQy7E0Dlsob293e7zonNYRHNzM8xmc4/TdQ4K6Txd5zCRzmxhJZ31FiJRVVUlBEPY9BYK0XndfRnKII2+DFWgiLOzMzw9PbuN7xzCYtNbqMq4ceN6DGayhV10ZgvTALoHrHTe5s7Tda2x83Sd6+xtW6hvrq6ufYZ9NDc3Q6fTdQv7SElJQX5+vt37uK+wj/Dw8G4hO0REI92+ffsQEhKCuLg4sUshGhMY5kFEY4lOp0NmZqYQ3nH27FmYzWZ4eXlh8uTJWLlyJV5//XXMnDkTgYGBYpcrmtCQEOz69lvknjkpdinD1m0rloldAhHRsFJeXo7U1FSkpKRgz549KCsrg7+/PxYuXIh3330XS5YsQUREhNhlDmsdHR3IycnB0aNHcfToURw7dgzl5eXw9PTE7NmzsWHDBsybNw8zZszoMZCdiIiIiIiIiIYfh46uV20SEREREY1St99+OwDgq6++ErkS6olarcaaNWvw61//WuxSiIiIiAaN2WyGXq/v1khXp9NBr9ejsLBQaFgvlUqhUCjsGufK5XJhXEREBBwdHfu1XoPBgMcffxzbt2/Hgw8+iDfffJO9MVG/2QI7uoZ19BbYoVarhbAOlUqFCRMmsNE/EdEgMBqN3b472B7n5eWhsbERAODi4oKQkJAevz+oVCpERkZeU4ANEZEYkpKSEBsbi48//ljsUojGhMcffxzZ2dk4cuSI2KUQEQ2qhoYGnD9/XgjvOHbsGAwGAyQSCaKjo6HRaJCUlITExETExsb2+/dXIiIiAhobG5GRkYGUlBSkpKTg7NmzkEqlSExMRHJyMpKTkxEfH8/z6xXYAp5TUlJw5MgRVFZWwtPTE7NmzUJiYiKSkpIwb968biHhRERERERERDQyMMyDiIiIiMYMhnkMbw888ADy8/Nx7NgxsUshIiIiGjK20ISeGukWFBSguLgYbW1tAH5qqOvn5weFQgG5XA6ZTCbc73wbGhoKZ2dnAMA//vEPbNy4EVKpFG+88QbWrVvHC+YIANDc3IzLly93C+soKCiwC5mRyWTdwjpUKhViYmLg4eEh8lYQEY1tncM+ug5arRZWqxUA4OrqCqVSafc53nmQyWQibwkRkT2z2QxfX198+umn+M///E+xyyEaE+6//34YDAbs3btX7FKIiK5aW1sb8vLykJmZKYR3nDt3Du3t7ZDL5dBoNEJ4x5w5c+Du7i52yURERCNKc3MzTp8+jYMHD+LAgQM4deoU2tvbER8fj+TkZCxevBiJiYmQSqVilzps2b6vpKenIyUlBYcOHUJ1dTW8vLwwc+ZMJCcnIzExETNnzhT+30tEREREREREIxvDPIiIiIhozGCYx/C2detWbNiwATU1NWwUSERERPR/WlpaUFpaiuLiYpSUlKC8vBx6vR7l5eXQ6XQwGAwoKytDQ0ODMI+joyMCAwMRFBQEpVIJb29v5Obm4vvvv0dISAgeffRRrF27FgqFAm5ubiJuHV1vJpMJly9f7rGRd+fADrlc3i2sQ6VSITY2lo0aiIhGsL7CPjoHhkmlUigUih6DPsaPHw9vb2+Rt4SIxppDhw7hxhtvRHFxMcLCwsQuh2hMWLt2LRwcHPg/NCIaUfR6Pc6cOSOEd6SlpcFkMsHDwwNTp04Vwjvmzp2LyMhIscslIiIacRobG3Hu3DkheCItLQ3Nzc2Qy+VISkpCcnIyVqxYAYVCIXapw1ZbWxvOnz+PtLQ0pKen4+DBg6ipqYG3tzdmzJiB5ORkJCcnIz4+nh0yEBEREREREY1SDPMgIiIiojGDYR7Dm06ng1KpxIEDB5CcnCx2OUREREQjSnNzM2pqaqDX66HT6Xq81Wq1qKqqQuefhKVSKWQymTAoFArI5XK7cZ2fCwkJgYuLi4hbSl311VC7oKAAACCRSBAWFtZjI221Ws1QFyKiMcgWGNb5nGH7ztA19Ekmk9mdO+RyuRD+ERMTw1BWIhp0r7zyCv76178K32eJ6PpbtmwZ5HI5Pv30U7FLISLqka0xsS24IzMzEzk5OQAAlUqFxMREIbxjxowZ/A2TiIjoKtTX1+PkyZNCcMfp06fR0tIinGuTkpKQmJiIuLg4sUsdtqxWK7KysoTwjgMHDsBkMiEwMBAzZswQQlAY3kFEREREREQ0dkjELoCIiIiIiAgAFAoFoqKicOTIEYZ5EBEREQ2QVCqFQqGAQqGARqPpdbrW1lakpqbiN7/5DQ4dOgRfX18kJCQgMjISdXV1qK6uxunTp1FdXY2qqirU1NR0W4a3tzcCAwPh5+cHf39/u9uAgADhvq+vrzB4e3tfz80f9XoL7MjOzoZerwcAODs7IzQ0VGhonZycLNyPi4uDVCoVeSuIiGg4cXFxEc4TPbFYLCgrK+t27klJScHly5dhMpmEabuGfXQewsLCIJHwX9JENDCpqamYO3eu2GUQjSkNDQ3w9PQUuwwiIkFBQQHS0tKE4A5bY+Lg4GAkJCRg7dq10Gg0SExMxLhx48Qul4iIaEQqLy/H6dOnkZ6ejpSUFJw7dw7t7e3C/5keeughLFiwAGFhYWKXOmzZwjtsASjHjh1DXV0dgoODMXfuXLzyyitISkrCtGnT4ODgIHa5RERERERERCQCXjlFRERERETDxsKFC3H48GGxyyAiIiIatZydnbFo0SIsWrQImZmZeP/99/GPf/wDUqkU69evxwsvvIAbbrjBbh6z2Qy9Xg+dTgej0Wg32MZfvnxZGFdRUYG2trZu65ZKpZDJZH0Obm5uPU4XFBQEJyenodpNougpsCM7OxvZ2dlCg+neAjvUajUmTJjAxtJERDRoXF1d+wz7MBqN0Ol00Ov13cI+fvzxR9TX1wP46dzl7+8PhULRY9hHREQEe6AkIjutra04ceIEtmzZInYpRGMKwzyISEy1tbU4ffq0EN6RkZGB6upqODs7Y/LkyUhMTMRDDz0EjUYDtVrNhrBERERXSafTCcEdaWlpyM3NhaOjI6ZOnYrExEQ899xzWLRoEfz8/MQuddhqamrC2bNn7fZjc3Mz5HI5kpKS8OabbyIxMZHfWYiIiIiIiIhI4NDR0dEhdhFEREREREPh9ttvBwB89dVXIldCvfniiy9wzz33oKamBl5eXmKXQ0RERDQmVFVV4ZNPPsEHH3yAkpISLF26FPfeey9WrVoFNze3AS/ParWiuroaJpNJGGpra2EymWA0Gu3Gd33eZDLBbDZ3W6aDgwN8fX0hk8ng6+sLX19feHl5wcPDA56enpDJZMJ9Dw+PHh/b7nt4eAzGbrsqXQM7srOzkZOTg0uXLqG2thYA4OLigpCQELuGzmq1GnFxcQgPDx/1oSZERDQ69BRSZQv/yM3NRVNTE4Cez3tyuVwI/4iMjORF70RjzMmTJzFr1izk5eVhwoQJYpdDNGZER0fj3nvvxS9/+UuxSyGiUc5qteLixYtIT08Xwjtyc3PR0dEhNIJNTEyERqNBQkICpFKp2CUTERGNSGazGZmZmTh58iROnDiB48ePQ6fTwc3NDTNnzsS8efMwb948zJo1S9T/nQ13jY2NOHfunBDekZqaCovFInxvSU5ORmJiIuLi4sQulYiIiIiIiIiGKYZ5EBEREdGYwTCP4U+v10OpVOJf//oXli5dKnY5RERERGNKW1sbdu3ahY8++ggHDhyAm5sbbr75Ztx5551ITk6GRCIZkjosFkuvQR+dw0AaGhqEwfa4sbFReNzbT9+2YBBbuIenp6fw2DbOFhYilUrh5eUFd3d3uLq6wtfXFy4uLsJ0Li4ukMlkcHFxES507C2wIz8/H3V1dQC6N1y2hXWoVCoGdhAR0ZjQU9iHbdBqtbBarQAAqVQqBHt0HW644Qb4+vqKvCVENNj++Mc/YvPmzTCZTAzzIRpCCoUCzz33HJ566imxSyGiUUan0yEzM9MuvKO5uRne3t6YNGmSEN4xa9YsBAQEiF0uERHRiJWfny8Ed5w8eRJZWVlobW1FUFAQZs6cidmzZ2Pu3LmYPn06XFxcxC532KqsrMTx48eRnp6O1NRUnDlzBlarFdHR0Zg3bx7mz5+PBQsWICQkROxSiYiIiIiIiGiEYJgHEREREY0ZDPMYGSZOnIjFixfjnXfeEbsUIiIiojGroqICX331Ff7+97/jxIkTCAwMxO23345169Zh1qxZIyJsorGxUQj3MBqNwv3GxsYeH9vud37c3NyMuro6mM1mNDc3X3GdDg4OQoiIg4MDXFxc4O7uDm9vb/j7+2PcuHHw8/NDSEgIXF1d7YJCvLy8IJFI4O3tDScnpyveEhERjVatra0oKSmBTqeDXq/vFvZRVFSE9vZ2AIBMJoNcLu8x8CM6OhpeXl4ibw0RDdSDDz6IS5cu4fDhw2KXQjSmeHt745133sEDDzwgdilENILV19cjKytLCO84evQoKioqIJFIEB0dDY1GI4R3xMbGwtHRUeySiYiIRqSu59wjR46gsrJSOOfazrcajQZqtZphmb048QwrAAAgAElEQVTo6OhAXl4ejh8/jrS0NGRkZODixYtwdHSEWq3G3LlzhQAPuVwudrlERERERERENEIxzIOIiIiIxgyGeYwML774Ij777DNotVr+M5mIiIhoGNBqtdixYwf+8pe/4Ny5c/Dz88OiRYuwYsUKrF69Gj4+PmKXeF0YjUYUFBQgOzsbOTk5KCgoQH5+PvLz89HY2AgAcHFxgZ+fH0JDQyGXy+Hj4wOZTAZXV1e4ubkJYSAWiwX19fVoamqCxWKByWSCxWIRAkVaW1thMpkwkJ/ru4Z7+Pj4wNHRsd+3np6ecHZ2hrOzMzw9PQFAeM7NzQ1SqVSYHoAQNuLi4gIPD4/B3+FERET91NLSgtLS0m4hH7bwj8LCQuGcKpPJuoV82MI/YmNj4e7uLvLWEFFXGo0GCxYswFtvvSV2KURjRkdHByQSCf7+979j3bp1YpdDRCNEW1sb8vLyhEbEaWlpyMvLQ3t7O+RyOTQajV14h5ubm9glExERjUidz7m28+65c+fszrmdwzt4zu1da2srLly4gLS0NKSnp+Pw4cOoqqqCu7s74uPjhX25aNEi+Pn5iV0uEREREREREY0SDPMgIiIiojGDYR4jw/nz5xEfH4+MjAzMmjVL7HKIiIiIqJPc3Fzs2rULu3btQkZGBiQSCebPn49Vq1Zh+fLliIiIELvEATEajXZhHbYhLy9PCOyQSqVQqVSIi4vr1hg4MjJy0APobKEe/b01Go3Ctgzktq6uDm1tbbBYLGhqarqqWmUyGQDA3d0drq6uQrgI8O+wEVdXV6GhtIeHB1xcXPq8b1tW1/u2gJG+7kulUuEi1c73iYhobGluboZOp+sW9lFQUIBLly6htrZWmLansA/bEB4eDicnJxG3hGjsaWlpgbe3Nz755BPcddddYpdDNGY0NjbC09MTu3fvxvLly8Uuh4iGKZ1OZ9eI+Pjx42hqaoKnpyemTJkiNH6dO3cugoODxS6XiIhoxCosLMTZs2dx5swZnDx5EqdPn0ZDQwM8PT2RkJCA2bNnY+bMmZg5cybPuVdgMBhw6tQpIXgsMzMTzc3NCA4ORkJCghCCMn36dOH/UUREREREREREg41hHkREREQ0ZjDMY+SIiYnBypUr8eabb4pdChERERH1oqamBgcPHhTCPUwmE1QqFZKTk5H4/9m78+jGzvp84I9la/MiS95lS17k8SZlPItnyYwdshDSkpYWSENbDgf6B6E0bIctJUCB/kJp0wM5ULpQyqGnNCdsDemBpkAOgSR4ksyMPTP2jLyPbMu25F2SJWuX9ftjet9ItuzZfW3r+ZzzHt17dXX1vRqPfe/VfZ+3sxP3338/qqur5S4TLpdrQ1iHw+HA4OCgCLHQ6/VobGzM2JH3dgR27ERSQAhwpSNXNBpFPB6H3+8HAPh8PqytrSEcDiMUCmFtbU10hg4EAojFYohGoyIERQobCYVCCIfDAN4IEAEAv9+PeDy+5bS03ZuVGiiy2bRKpUJBQcGGaaVSicLCwi2n8/LyUFRUtGEaAIqKipCXl5fxucLCQiiVSgBIC0IB0oNMiIjo1vJ4PHA4HHC5XHC73WnHB8PDwwgEAgCu/K43m82wWCwwGo2orq5OO0aor6+HQqGQeW+I9pbz58/j8OHDsNvtsFqtcpdDlDXm5uZQVVWFl156CXfffbfc5RDRDrC6uorz58+L8I7u7m6Mj48jNzcXLS0t6OjoEOEdhw4d4nExERHRDbp8+TLOnTuH3t5e8bi8vIzc3Fy0trbi2LFjuPPOO3HnnXfCZrMxePYqHA4Huru7RXjH4OAgFAqFOH6RwjtsNpvcpRIRERERERFRFmGYBxERERFlDYZ57B6PP/44fvCDH8DhcGRFx0kiIiKi3S4ajaK7uxsvvvgiXnzxRfT09CCZTOLAgQO477778OY3vxl33XWXCD+4leLxOJxO54awDofDgYGBAYRCIQCAwWDIGNYhNdrZUoM9pLCRraaDwSAikciG6dRwkc2mpcCS9dORSEQEwGw2nRpocqvk5ORAr9eLea1WC41GI+b1er04b0oNKAGA4uJi0aEmNaQEuDVBI1vVplAoUFxcnHGbREQ7mRT2sb65XC6Mj4+LvwtqtRo1NTUZjyuk8A8iuj5PP/003v/+92N1dZUdlIi20eXLl7Fv3z709PSgo6ND7nKISAZSx1cpvOPs2bOIRqMwGo0iuEPqAGswGOQul4iIaFdyuVzib21vby9Onz6NhYWFDWFZHR0dOHToUNr1fNooGAzi3LlzIrjjtddew9LSEgoKCnDw4EER3NHZ2YmSkhK5yyUiIiIiIiKiLMYwDyIiIiLKGgzz2D16enpw9OhR3jhKREREtEv5fD68/PLLItzDbrdDqVSio6MDJ06cwMmTJ3Hy5Mlr7uQai8UwNTWVsWOt3W4XIQybBXbYbDYYjcbbuctEm0oNClk/v9Vz17Pudjzn9/sRj8dv9GPISKPRQKvVbpi+0ee2exvswESUnTYL+3A4HJicnEQikQBw5XdGdXV1xmOTffv2pQUeEdEVf/3Xf43vf//7GBoakrsUoqzS19eHgwcPYmhoCC0tLXKXQ0S3mdfrRU9PjwjvePXVV7G8vAylUon29nZ0dnaKjsQctZ6IiOjGrA/ueP3117G4uMjgjpvgdrvR09Mjwjt6enoQiURE+JgU3nHs2DGoVCq5yyUiIiIiIiIiEhjmQURERERZg2Eeu0tjYyP++I//GF/5ylfkLoWIiIiIbtLs7Cx+85vfiBvsLl26hEQigfr6enR2duLEiRO48847odPpMDk5uSGsY2RkRIQIZArssFqtuOOOO6DX62XeU6K9LzXUIx6Pw+/3i+cCgQBisRiAKyE8gUBAPOfz+bC2tgYACIfDCIVCAIBkMgmv1yvWW11dRTQazbj9W7GNlZUV0dH+VsjLy0NRUZGYlwI+lEolCgsLAQD5+flQq9UAgOLiYigUCuTm5kKn0wFIDwkpKipCXl7eLd8WEW2P1AAyl8sFt9uddlwzMTEhfo+lHtMYjca04I+Wlhbx/54om7zvfe/D4uIinn/+eblLIcoqp06dQldXF6anp1FTUyN3OUR0C8ViMYyMjIhrcr29vRgcHEQymYTRaBSdXjs6OnD06FFxvklERETXJhaLYWBgAP39/Th//jx6e3tx4cIFrKysQKlUwmaz4fDhwyK4o729PS0wmjJLJBIYGhpKO4YZGBgQYSjSMUxXVxcsFovc5RIRERERERERbYlhHkRERESUNRjmsbt8+tOfxnPPPYfR0VHk5OTIXQ4RERER3QLRaBTT09O4dOkSfvOb36CnpwfDw8NYWloSHVuBK53RjUYjWltb0d7eDqvVCpvNxlHsieiWikQiCAaDYt7j8YjpYDCISCQCYOtAkNRtJBIJrKysAEgPG0kNOZHeIzXsJPW9pMCSzbZ1I3JyckTY0c0Gg6RuS6VSiREjpW2lPi9ts6CgACqVSmwvtQaibBOJRDAzM5MW8CE1KfxDkinATGq1tbUM66E9qaurC4cOHcI3v/lNuUshyiovvPACfud3fgder5fn3ES7nMvlSuv02tvbi3A4DJ1Oh/3794uOrydOnEBZWZnc5RIREe0qs7Oz6O/vR19fH/r7+9Hf34/BwUHEYjGoVCrccccdIrjj8OHDOHDgAIOyrpHb7caZM2dEO336NPx+P3Q6HU6cOIGTJ0+is7MTx48f57VlIiIiIiIiItp1GOZBRERERFmDYR67y8DAAGw2G1588UXcd999cpdDRERERNdICuyQOqba7XYMDAzA4XBgcnJSdIBP7aDa0NAAnU6H1dVVzMzMoL+/H5cuXUI8HkdxcbEYsayjowNHjhxBY2OjzHtJRCQPv9+PeDwO4OaDQaRtJZNJeL1eAFd+h6+urt7wtq6HQqEQnUWl4I/CwkIolUpotVpoNBoRGJK6rl6vR05OjggYWb+u9CiFh0jLpPWl1xPtROFwGC6XK2PYx+joqPj/B2wd9lFXV4fc3FwZ94ToxhiNRjz22GP4+Mc/LncpRFnlJz/5CR566CHEYjGGRRHtIisrK+jv7xfhHadPn8bCwgLy8vLQ3Nwsgjs6OjpgtVp5HkRERHSNYrEYRkZGMDAwALvdLgKypBBWg8EAq9Uqvrey2Wyw2WzQaDQyV747BAIBnDt3ToR2nD59GlNTU8jJyUFLSwuOHTuG48ePo6urCzabjde4iIiIiIiIiGjXY5gHEREREWUNhnnsPp2dnTCZTPjhD38odylERERElCJ1VPnUsA6Hw4GJiQmsra0BSO9karVaYbPZYLFY0NzcjKKioi3fIxwOo6+vDz09Pejt7UVPTw8GBwcRj8eh1+vR3t6O/fv3o729He3t7bDZbFfdJhER3V6pYR9S2MjKygoSiYQIB4lEIggGg4jH4/D7/RnXXV1dRTQaFYEh0rqpwSNSwEggEEAsFksLF7kaKRwkLy8PRUVFUKvVyM/PF8EgUqiIFDJiMBiQm5sLnU53TWEharUaBQUF0Ol0vNmcbimPxyOOuVwuF9xut5gfGhoSYTwqlQomk0kchxmNRlRXV6cFqbEzJ+00wWAQhYWFeO655/CHf/iHcpdDlFW+973v4YMf/CCCwaDcpRDRJuLxOIaHh9Hb2yvCO4aGhrC2tgaj0YiOjo608A6tVit3yURERLuCx+NJC+yQAjzC4TCUSiWamppEYIfVasXRo0dRVVUld9m7RiKRwNDQkPh8e3t7cfbsWUSjUej1ehw5ckQcv5w4cQJlZWVyl0xEREREREREdMsxzIOIiIiIsgbDPHaf733ve3j/+9+PiYkJVFdXy10OERERUVaRAjvWh3VsFtiRGtZhsVjQ0tKCwsLCW1pTMBhEX18fzp07h/7+fly8eBGXLl2C3+9HTk4OGhoaNoR8NDY2siM1EVGWCYVCItxj/aPH49n0uetdVwofuRop+EOj0cBgMFzX9FbPMyyE1ksN+1jfnE4n4vE4AECtVqOmpkYct61vBoNB5j2hbDQxMYGGhgacPn0ax44dk7scoqzyT//0T/h//+//YW5uTu5SiOj/uFwu0eH11KlTePXVVxEMBlFUVIT29nYR3vGmN70JlZWVcpdLRES04/l8PhHUYbfb0d/fj76+PiwtLQEAzGaz+G7pwIEDaG9vR3NzM/Ly8mSufHdJPYbp7e1Fd3c3vF4vCgoKcPDgQXR0dIhms9nkLpeIiIiIiIiIaFswzIOIiIiIsgbDPHafcDiMmpoafOpTn8Ljjz8udzlEREREe044HMbly5c3hHU4HA6Mj49DunxsMBg2hHVYLBa0traioKBA5r24cnOgdBOmdIPg8PAwEokElEolzGazqF963Cm1ExHR7ub3+xGPx+Hz+ZBIJOD1ekXgh8/nQzgcxurqKvx+P8LhMPx+P1ZXVxEOh+Hz+UQwiPS6YDCIlZUVhMNhBAKBq76/Xq+HWq1GQUEBdDodtFotCgoKYDAYUFhYiMLCQhQUFECv16OoqEjMFxcXQ6fTiXmdTofi4mIoFIpt+NRIDrFYDNPT0xgfH8fExETa4/j4ONxud9qxX0NDA+rr69MepcaR3ul2OH/+PA4fPoyRkRE0NTXJXQ5RVvnyl7+Mp59+GkNDQ3KXQpSVAoEALly4IK5p/fa3v8XExARyc3PR0tIiOrx2dXXh0KFDPGYnIiLagtfrFd8XDQ4OisD66elpAEBBQQGsVqsIhJdaSUmJzJXvPn6/H319fSJ87Le//S1mZ2c3HMN0dHTg2LFjUKlUcpdMRERERERERCQLhnkQERERUdZgmMfu9IlPfALPPvssHA4HR5slIiIiugFerxeXL1/OOEJ7amCH0WjcENZhsVjQ1taG/Px8mffi+oVCIQwMDGBwcBADAwMYGhoSoSWxWAwKhQL19fVobW2F1WpFa2srmpqa0NzcjKqqKrnLJyIiAnClY18kEoHP50MwGEQkEoHH40kLDIlEIggEAvD7/QiFQggEAvB4PFhdXUUgEEAgEIDX6xXTwWBw0/fLz88XISB6vT4tEORaAkJSG2/Q312i0Simp6fTjhVdLhfcbnfGoLf1x4xSq62t5ai1dENefPFF3H///VhcXERpaanc5RBllU9/+tN45ZVXcPr0ablLIdrzEokEhoaG0kasP3PmDGKxGIxGY1qn17vuugt6vV7ukomIiHYkn8+HsbExEdYhPUrXL1QqFfbt25cW8m61WtHW1sZgrBsQj8cxPDwsgju6u7sxNDSEtbU1HsMQEREREREREV0FwzyIiIiIKGswzGN3Gh4eRltbG/73f/8Xv/u7vyt3OUREREQ7ksfjyRjWITUAyMvLQ21tbcZOl1arNWtGWI/H43A6neLGTofDAbvdjr6+PgQCAQCAWq1GTU2NuMEz9bNqaGhATk6OzHtBRER0c0KhUFooiMfjuab5zdbZjEajgcFg2LJptdqM65WXl0OpVG7jp0JbiUQimJmZyXisOTo6ipWVFbHuVmEf9fX17DRDGf3Xf/0X3vWudyEajTIQhmibPfLII3A6nfjlL38pdylEe87s7CzOnj0rgjtOnToFj8eDgoICHDx4MK3jq81mk7tcIiKiHedqoR1qtRqNjY0M7bjFXC5XWnDHuXPnEAqFUFRUhPb2dnR0dKCrqwt33XUXA/KJiIiIiIiIiK6CYR5ERERElDUY5rF73XvvvSgqKsJPf/pTuUshIiIiks1mgR12ux1utxsAoFQqYTabM3actNls0Gg0Mu/FzjY9PY3R0VGMjY1hbGwsbToUCgEAioqK0NTUhMbGRhHuIbW6ujqoVCqZ94KIiGh7RSIRBAIB+Hw+rKyswOfzwefzwev1iunUZZmWS39n19PpdCguLt60GQwGMa3X61FSUpLWGMC1fTIdq7pcLrjdbgwODiIYDAJ4IzQt0/FqY2MjR27NYt/+9rfx2GOPwev1yl0KUdZ5+OGHoVAo8MMf/lDuUoh2tVgshv7+fnR3d4vwjoGBAQCAxWJBZ2enCO44duwYryERERH9n7W1NUxOTmJkZARDQ0MYHh7G8PAwBgcHxfdfRUVFaG1txR133IG2tjbxWFdXx+s/NyGZTOLy5cs4d+6caL29vVheXoZKpcKBAwdw7Ngx0VpaWvh5ExERERERERFdJw5nQkREREREO97HPvYxPPTQQ7Db7RyVioiIiPa0TJ0g7XY77Ha76NS2PrDj/vvvh8VigdVqRUtLC0exvgkmkwkmkwn33ntv2vJkMonp6em0kI/Lly/jhRdewPj4uPi3USgUqKmpSQv4SA38MBqNHAmOiIj2HLVaDbVajdLS0pvaTigUgsfj2bSFw2GxzvT0NC5evCieW15eRiQS2bBNjUYDg8GQsVVXV8NoNG5YXl5eDqVSeVP7ko0MBoPonJrJZsF0v/rVrzAxMYG1tTWxHYvFAqPRiOrq6rSwj9bWVhQUFGznbtE2CoVCyM/Pl7sMoqzk8/nQ0NAgdxlEu47L5RKj1ff29qKnpweRSATFxcU4evQoHn74YXR0dODkyZM3faxMRES0F/h8PhHUIbWRkRGMjIwgHA4DAMrKytDa2oqWlha89a1vhc1mg9VqRV1dnczV736JRALDw8MitOP8+fM4f/48fD4f8vLy0NbWhsOHD+Ntb3sbjh49ikOHDkGtVstdNhERERERERHRrpeTTCaTchdBRERERLQd3vWudwEAfvSjH8lcCV2vZDKJAwcOoL29HU8//bTc5RARERHdlPUdGe12OwYGBjA2NgafzwcAUKlUMJlMaZ0XrVYrbDYb6urqkJubK/NeUKpQKAS3252xg+rw8DACgYBYN1MH1dTp2tpaBrIQERHdgEAggOXlZdGWlpbS5jM9J4WErFdcXIzS0lKUlJRcUysrK0NZWRlHJr1B0WgU09PTGY+lXC6XGIUXeONYKlPjcfLu9o//+I/48pe/jNnZWblLIco6x44dw7333osnn3xS7lKIdqyVlRX09/eL8I7XX38di4uLyMvLQ3NzM7q6utDZ2YmOjg5YrVYeFxIRUVZzuVwYGBhI+w7M4XBgfHwcyWQyLbRe+u7LYrHgjjvuQFVVldzl7wnxeBzDw8Po7e0V7cKFC1hdXRXHL1Ioa0dHBw4fPsyATSIiIiIiIiKi24RhHkRERESUNRjmsbs988wzeO9734vBwUE0NTXJXQ4RERHRllIDO1JvVBwdHcXKygqAjYEdqTcssiPi3pFMJuFyuTA+Po6pqSnMzMxgamoqbXp2dhbSpXqlUgmj0Qiz2Qyz2YyampoN01VVVVAoFDLvGRER0d4QCoXg8Xiuu6UGTEg0Gg2qq6thNBphMBhgMBg2na+oqGCA1zUKh8NwuVwZwz5GRkbg9/sBIK0z0PrANIvFgoaGBnas3cG+9a1v4fOf/zwWFxflLoUo6zQ3N+PP/uzP8NnPflbuUoh2hNTOr1J4x+DgIJLJJIxGIzo6OkR4x5EjR6DRaOQumYiIaNvNz89jbGwMw8PDGBkZwfDwMIaHhzE2NoZoNAoAqKqqQmtrK5qbm9HS0oLW1la0tLSgvr6e34HdQrFYDCMjI2nBHefOnUMoFIJSqURTU1NacAePX4iIiIiIiIiIthfDPIiIiIgoazDMY3dLJBJoa2vDPffcg29/+9tyl0NERES0aWBHaodCtVqNmpqaDWEdFosF9fX1DGQgAFdGo3e5XJienobT6cTMzMyG6a0CP0wmE0wmE2pra1FdXY2amhqUl5dDrVbLvGdERER7VygUwvLyMpaXl7G4uIjZ2VksLi5icXERCwsLG+bXBxTk5uairKwM5eXlKCsrQ1VV1YZ5aVpaTpmlHpevb06nE/F4HMAbYSvS8Xhqa2pqgk6nk3lPstt3vvMdfOpTn4LX65W7FKKsU1FRgS996Ut49NFH5S6FSBYulystuEPq/FpUVIT29nYR3nH33XejoqJC7nKJiIi2TabzbbvdjkuXLsHn8wF4I7g+9Tswq9WK/fv3o7i4WOY92Hui0ShGR0fTgjt6e3sRDodRWFiIAwcOwGazwWq1oqOjA0ePHuV3RUREREREREREMmOYBxERERFlDYZ57H7f+c538Oijj2JsbAy1tbVyl0NERERZQLpRMTWsw+FwYHh4GIFAAMAbgR3rwzoY2EG3UjQaxeLiItxuNxwOB1wu14bpyclJJBIJ8Rqpw6rRaITBYBDT65eZzWYolUoZ946IiGjvi8fjacEeUthHpvmFhQUsLS2lvT43Nzct3MNoNKKiokL8XU9tJSUlMu3lzhOLxbCwsCCOm9a3iYkJrK2tAQAMBsOGkA/p2MlqtUKr1cq8N3vbf/zHf+BDH/qQOM8iou2jVqvx7//+73j3u98tdylEt10gEMCFCxdEeMcrr7yCubk55ObmoqWlRQR3dHZ2oq2tjdf1iIhoz5uZmcHY2FjGJp2faTQa7Nu3L2Mzm838e3mb+P1+9PX1icCOgYEBXLx4EdFoFDqdDvv370dHR4doPHYhIiIiIiIiItqZGOZBRERERFmDYR67XywWQ1NTE97+9rfj61//utzlEBER0R7h8Xg2hHU4HA4MDQ1hdXUVwJUbFS0Wy4awDovFgoaGBuTk5Mi8F0RAJBIRwR7z8/Nwu92Ym5vD3NycWDY7O4vZ2VmEQiHxupycHJSXl6OiogJVVVWoqqoSnYMrKipQWVkpOgxXVFTw552IiGgbpIZ/LCwsYG5uLm1+dnYW8/PzmJmZwezsLCKRiHitWq1GVVUVampqUFlZKR5NJhMqKirEY2VlZdb/XY9EIpiZmckY9DE2NiZGGgYyh30wxO/W+eEPf4j3vOc9iEQi/CyJttHq6ioKCwvx/PPP48EHH5S7HKJbKpFIYGhoSHSAPXXqFM6fP4+1tTUYjUbR8bWrqwsnT55Efn6+3CUTERHdFpsF14+MjMDv9wN4I7jeYrFsCK/nOe/tlUwmMTExgf7+fly8eBH9/f24cOECxsbGkEwmUV5ejsOHD6c1i8Uid9lERERERERERHSNGOZBRERERFmDYR57wze/+U185jOfwdjYGIxGo9zlEBER0S7hcrk2hHU4HA4MDg4iGAwCAPR6PRobGzN2zmNgB+01gUAAMzMzojOw2+0Wo9avDwBJ7Rycm5srQj2ksI+ysjKUlZWhvLwcpaWlaa2srAy5ubky7ikREVF2CIVCcLvdItgr06PL5YLX6017ncFggNFoRHV19aaPZrMZSqVSpj2Tl9ThyeFwiM8yU/ifSqWCyWTaNOzDYDDIvCc73yuvvIK7774bbrcbVVVVcpdDlDVmZmZgMplw6tQpnDx5Uu5yiG6K2+1GT09PWniHx+NBQUEBDh48KMI77rrrLjQ0NMhdLhER0S2zsrKC8fFxjI+Pw+FwiGlpPhwOAwB0Oh0aGxuxb9++tNbU1MT7b7aJz+fDxYsXcfHiRfT19eHixYu4dOkSVlZWkJOTg4aGBuzfvx8HDx7EoUOHcPjwYZjNZrnLJiIiIiIiIiKim8AwDyIiIiLKGgzz2BtCoRBaW1vxwAMP4N/+7d/kLoeIiIh2iHg8DqfTmXFE7YGBAYRCIQBbj6bNUayIMvN4PJidncX8/DxcLhfm5+fTwj4WFxexsLCAxcVFMYpfKr1ev2nQh9TWL8/WDsNERES3m9/vx8zMDObm5jA9PY35+XlMT09jbm5OLHe5XPD5fOI1OTk5qKysRFVVFcxmM2pra2E2m2EymVBXVwez2Yzq6uqs/PudGvaxvk1OTiKRSAAANBoNqqurM56DtLS0oLCwUOY9kZ/D4UBjYyPOnj2LI0eOyF0OUdaw2+244447cOnSJdhsNrnLIbpmsVgM/f396O7uFuEdAwMDAACLxYLOzk4R3nHs2DGoVCqZKyYiIrpx0WgUTqdz07COpaUlAFfO341GIxoaGkRQvcViQVNTE/bt24eKigqZ9yR7SN9b2u12cegQ+JMAACAASURBVJxit9sxODiIZDIJnU6HpqYmWK1WdHR0wGaz4dChQygtLZW7dCIiIiIiIiIiusUY5kFEREREWYNhHnvH008/jfe9733o6enBoUOH5C6HiIiItkksFsPU1FTGjnJ2u12MLLZZYIfNZuPIYkS3WTQaxdLSUlqTgj7WL5ee83q9G7aj0+k2BH2snzYYDDAYDNDr9dDr9TAYDFAoFDLsNRER0d4TCoXgcrngdrtFc7lcmJ6exuTkJKampuByuRCLxQAAubm5qKqqEuEeJpMJtbW1IvjDbDZnXaehaDSK6enptPMW6TOVOl9Jt2tsFTpYW1uLvLw8mffm9otEItBqtXj22Wfxjne8Q+5yiLLGqVOn0NXVhenpadTU1MhdDtGmHA5HWnBHT08PIpEI9Ho9jhw5IsI7Ojs7UVJSIne5RERE122rsEin04l4PA6AYZE7kcfj2RDacf78eQSDQeTl5aG2tjYttMNqtcJqtSInJ0fu0omIiIiIiIiIaBswzIOIiIiIsgbDPPaOZDKJ48ePo6ioCC+++KLc5RAREdEttFlgh91ux8jIiLhZMVNnN6vVijvuuAN6vV7mvSCi6xUKhUQnYY/Hs6Gtf25hYUH8Pkil0WhEyMf6ptVqt3y+srISubm5Muw9ERHR7iV1NkoNqUidn5iYwNraGgBApVLBZDLBaDSKjkep042NjVl1LB8Oh+FyuTJ21BoZGYHf7wcAKJVKmM3mtM8qtTU0NOyZDkBVVVX43Oc+h4985CNyl0K0Z42NjSEajYqQxF/84hf4/d//fQQCARQUFMhdHhEAwOfz4ezZsyK847XXXsPS0hKUSiXa29tFcEdHRwc7whIR0a6QTCbhdrsxOTkpmtPpxOTkJMbHx+FwOERgvUqlQn19PRoaGtKadP7H0Cr5xGIxjIyMiMAOKWTM7XYDuPLd5frQjsOHDyM/P1/myomIiIiIiIiISE4M8yAiIiKirMEwj73ltddeQ2dnJ55//nm89a1vlbscIiIiug6ZRqi22+0YGBjA5OQkEokEgI2BHVarFTabDfv27UNxcbHMe0FEckomk/B6vfB4PGmPqW2rZcFgcMM2FQoF9Ho99Hq9CPiQ5lOXS9NFRUUoKiqCTqeDXq9HYWEhVCqVDJ8GERHRzhUOhzE9PY2pqSlMTU1hcnJSzDudTjidThFaAVw5BzCbzaitrUVtbS0aGhrQ2Ngowj6yaYTh2dlZjI+Pp7WJiQk4HA5MTU2JYLOCgoK0jl3StDS/mzoNHTt2DF1dXXjqqafkLoVoz8rPz0coFBLzUoCH1WpFVVUVysvLUVFRgYcffhiHDx+Wq0zKIvF4HMPDwzh16pQI7xgcHEQymYTRaERXV5cI7zhy5Ag0Go3cJRMREW0gfe8lBXRMTEykhXZMTU0hEokAAPLy8mAymVBbW4v6+nrU19ennc/V1NRAoVDIvEfZLZFIYHx8HHa7HXa7HX19fbh48SJGR0cRj8eh0Whgs9nQ3t6O/fv3o729He3t7SgvL5e7dCIiIiIiIiIi2oEY5kFEREREWYNhHnvPQw89hMHBQfT39yMvL0/ucoiIiCjF+sAOKazD4XBsGtghhXVYLBY0NTVBp9PJvBdEtJeFQiF4PJ7rbsvLy+LG60w0Go0IAzEYDNBqtWnL1s9nWlZaWgq1Wr2NnwYREZF8fD6fCPqYmppK6wDlcDgwMzMD6baGioqKtHAP6bGxsRFGo1HmPdk+8Xgc09PTIuTD4XCkTc/NzYl1q6qqNozkLD2aTCbk5ubKuCfpHn30UfT19eHUqVNyl0K0Zx0/fhxnzpzZ9Pm8vDzE43F88YtfxJe+9KXtK4yyhsvlQm9vrwjvOHfuHEKhEHQ6Hfbv3y/CO+688052iCUioh0jEolgZmZGfOflcrngdrvFfOr3Xmq1GjU1NbBYLDAajaiurk4Lrq+treX9LTtELBbD1NSU+A5TehwcHBSB4EajETabDVarFR0dHbDZbNi/fz+DvYmIiIiIiIiI6JoxzIOIiIiIsgbDPPYeh8MBq9WKb3zjG/jzP/9zucshIiLKOqk3L6aGdTgcDkxMTGBtbQ3A5oEdzc3NKCoqknkviIiu3+rqKvx+P/x+P1ZWVuDz+cR8IBCAz+eDz+dDIBAQy30+H1ZWVtLW83q9m75Hfn4+CgsLUVRUBL1eD51OJ+alZQUFBdBqtdDpdCgoKIBGo0FxcfGm00RERLvR+qDA1DY8PIxAIAAgvcPU+tbW1ob8/HyZ92T7rO9oltpGR0exsrICAFAqlTCbzWmf1frOZtvpP//zP/HII4/A5/Mx2IzoNvniF7+Iv/u7v0M0Gt10ndzcXExMTMBkMm1jZbQX+f1+9PX1ifCOl19+GfPz88jLy0NzczM6OjpEeEdbWxsUCoXcJRMRURaKx+NwuVyYmpoSAZNTU1NwOp0ieHJxcVGsX1xcjLq6OtTV1aG+vh51dXWora0VyyorK2XcG8okGo1idHQ0LbBD+m4zHA4DSA/tkB4PHDjA7zGJiIiIiIiIiOimMcyDiIiIiLIGwzz2po9//ON45plnMDg4iJKSErnLISIi2nOkTmDrwzo2C+xIDeuwWCxoaWlBYWGhzHtBRLRzSQEfUvCH1+vFysqKmA8EAvB4PGkhIH6/Hx6PB8FgEKFQCD6fD8FgEJFIZMv3ys/Ph1arRXFx8YZpjUYDvV5/TdNarRZarVZMazSabfq0iIiINvJ4PBlDKxwOB8bHxyHdEpEaMpipZZOtPjOn04l4PA4A0Gg0G0aRllpraysKCgpuaV1jY2NoamrCq6++ihMnTtzSbRPRFa+88gruvvvuTZ9XKpX4oz/6IzzzzDPbWBXtBYlEAkNDQ+jt7RXhHefPn8fa2hqMRiM6OjpEeMfJkyezKmSLiIjks7a2htnZWTidTkxPT2N6enrD9OzsLBKJBIAroWZVVVWoq6uDyWSC2WxOC+2oq6tjaPIOtrKygtHR0bRBCOx2O4aHh5FIJESgZWpgh81my7oAUCIiIiIiIiIi2l4M8yAiIiKirMEwj71pZWUFVqsVDzzwAL773e/KXQ4REdGuFA6Hcfny5Q1hHZk6v60P67hdnbiIiOjGhEIhhMNhhEIheDyeWzK9uLiIWCx21ffWaDQwGAwi4ONqj9ey7vp1CgsLoVQqt+GTJCKivcDn88HhcODy5cu4fPmymJZCK6QOWyUlJWhqakJraytaWlrQ3NyMlpYWNDU1Qa1Wy7wX2ysWi2FqakqcE7pcLrjd7rTzRMlWASn19fVQKBTX/f5VVVV47LHH8IlPfOJW7hYR/Z9oNAq9Xo9QKLTpOqdPn8axY8e2sSrajVwulwju6O3tRXd3N7xeLwoLC3HgwAER3vGmN70J9fX1cpdLRER7lMfjSTtnWX/+MjU1lXZd02AwwGg0poUWps7X1tYiLy9Pxj2iayEFVKYGdgwMDIjvNFUqFfbt2ye+z5S+27TZbAymJiIiIiIiIiKibccwDyIiIiLKGgzz2Lv+53/+B29729vwwgsv4C1veYvc5RAREe1IXq9XdFrbKrDDaDRuCOuwWCwclYqIKMutrq4iFAphZWVlw3Q0GoXX60UikYDP50MsFkMgEBBhINI6KysrSCQS8Hg8SCQSWFlZQTQaFdsLh8PXVIsU7iEFexQXFyM3Nxd6vR45OTnQ6/UAgOLiYigUCrGe9DqlUonCwkIoFAoxkqb02qKiIuTl5SE/Px9qtRpqtRr5+fnIzc2FTqe7bZ8vERFtv1gshsnJSRH0MTw8LJrT6cTa2hoUCgXq6+tFuEdq0IfJZJJ7F2QRDofhcrkynlsODQ1hdXUVAKBSqWAymTIGfTQ2Noq/1+u9853vRCwWw89+9rPt3C2irPLAAw/gxRdfxNraWtry3NxcHD16FK+99ppMldFOtbq6ivPnz4vgjlOnTsHhcCA3NxctLS0iuKOjowPHjx9nACMREd20SCQCl8uFmZkZzMzMwO12Y2pqCm63G9PT03C5XJienkYkEhGvqaiogMlkgslkQm1tbdq02WxGdXU1VCqVjHtF1yMajcLhcGBkZASjo6MYHR3F0NAQ7HY7FhcXAQA6nQ6tra2w2Wxoa2uD1WpFW1vbDYdLEhERERERERER3Q4M8yAiIiKirMEwj73tne98J86fP49Lly6hoKBA7nKIiIhkIY1EtVkDgLy8PNTW1mbsUGW1WqHVamXeCyIiymaBQACxWAw+nw/xePy6w0GkR+DK30UAYrn0Omk78Xgcfr//ums0GAwArtwsnpubi4KCAqhUKmg0Gmi1WuTl5aGoqCgtWESlUolzVSlcJHVbqc9L20t9XgogWf+8FEJCRES3VjgcxsjICEZGRtJCPkZGRuD1egFc+X3e1tYGm80mRvmVOg1l8+/mrc5LJycnkUgkAFz5G7f+nNRoNKKnpwdPPvkk5ufnGaRFdJt89atfxeOPP454PJ62PCcnB88++yze8Y53yFQZ7RQOhwPd3d0ivOPs2bOIRqOoqqrCkSNHRHBHV1eXOGchIiK6VgsLC2nhHFJghxTQ4Xa7MT8/L9ZXKBSoqqpCTU0NjEYjzGazeKytrUVNTQ3MZjM0Go2Me0U3IpFIwOl0YnR0VJyDS8EdExMT4vyxuroaTU1NaG1tTQvtyNaQTSIiIiIiIiIi2l0Y5kFEREREWYNhHnub2+2GzWbDI488gieffFLucoiIiG6bzTpG2e12uN1uAFc6/JrN5oyBHTabjTc0EhERpUgmk6Jjts/nw9ramggVCYVCCIfDIlBkbW0NPp8PAOD1epFMJuH3+xGPxxEMBhGJRBCJRBAMBtOCRaTtAG+Ei6Q+LwWM3KjUsI/8/Hyo1WoAb4R9SAEj69dNDRwBgKKiIuTl5QEAtFqtOGZIfT2AtA57qa+RAk0yvSY1eCQ10ISIaLeZm5vD0NAQhoeHMTAwINrMzAyAK6FLqSEfUuPIwFdGVp6ens54Tnv58mXx9xi48jm2trZmPK9taGjI6sAUopt14cIFHDp0aMNyk8mEiYkJ5ObmylAVycXn8+Hs2bMivOO1117D0tISlEol2tvb0dnZKcI7bDab3OUSEdEOFgwG4Xa74Xa7RSiHFNgxPT0tAjsikYh4TWFhoQjnqKmpgclkSgvsMJlMqKysFNeeaHeSvtu02+0YGBgQ54GDg4MIBoMANgY+SqGZTU1NDHokIiIiIiIiIqJdjWEeRERERJQ1GOax9/3rv/4rPvzhD+P1119HR0eH3OUQERHdsEyBHXa7HXa7XXRu2iyww2q1oqWlhTc2EhER7VJS2EdqcEhq2IcUHpL6vBQgAkAEkaSGlESjUayurm7YVmqgCPBGQAkArK6uIhqNbtj++tfcrNzc3A035BcUFEClUol5hUKB4uLitHVSQ0uAjcEkQHogiWT9yOGpASSS1OARAFCr1cjPz09bp7i4OK1TvkqlQkFBQdo6Op0urTNsapCKJDUMhYh2N6/Xi8HBQdE5yW63Y3BwEFNTUwDeCPlob2/H/v370d7ejgMHDqC0tFTmyncO6Vz4Ax/4APx+P9761rfC7XbD4XBgYGBA/P1Sq9WoqanJGPTR3NycFiZFRBslk0mUlJSkBejk5eXha1/7Gj760Y/KWBndbvF4HMPDwzh16pQI7xgcHEQymYTRaERXV5cI7zh69Gja8TYREWWvUCgEt9sNl8u14dHj8Yjp2dlZpN6SbjAYYDQaUV1dDYvFIqbXP9LesP67TenceGRkBH6/H8CVc7nGxkbYbLYNAxEYjUaZ94CIiIiIiIiIiOj2YJgHEREREWUNhnnsfclkEvfccw8CgQBOnz7NzjBERLSjbXZT29jYmOiYq1KpYDKZMo5EVVdXx5FSiYiISHY+nw9ra2sA0gNAUgNEUoNHgDcCS9avl+l5AIjFYggEAmnrSKEmkng8LjoGSKRgE0mmIJLUmjPVClwZWTZ11NjbKS8vb0Mn9PXBJakyBY1IMgWlpFofbJJqq5CRnVbP1babyVb7sJn1IS9XkynghbLTysoKBgcHcenSJdjtdvT396O/vx8LCwsAgOrqahHuIQV9tLW1pYUaZZv//u//xkMPPYTLly+jvr5eLM8UfCm18fFx0XFw/YjOqY3n0kRXvOtd78Jzzz0njqfy8/Phdrs56vke43K50NvbmxbeEQ6HodPpsH//fhHeceLECZSVlcldLhERbaNkMom5uTnMz89jenoa8/PzmJmZwdzcnHiUQjvC4bB4nVKpRGVlJWpqalBZWYnq6mpUVVXBaDSKVl1djcrKSh5370FS2OL4+DgcDgdGR0dFW15eBnDl2lBTU9OG1tzczMAOIiIiIiIiIiLKSgzzICIiIqKswTCP7DA8PIxDhw7hk5/8JJ544gm5yyEioiyX2tFICuuQbm6TOpKuD+yQwjrYyYiIiIhoZ0omk2kj2QNXRqlN7dwCXDkWTBUOhxEKhdKWeb3etFFrI5EIgsFg2jqpgSnrrQ8sudr7STIFpEgy7Z+c9WSTwsJCKJXKa15foVCguLj4ut5Do9FAq9Ve12t0Ot11nZdkCqW5mhsJWNkqAGa9rYJm1rueIBalUonCwsJrWnf957K8vIzx8XFcvnwZ4+PjGB8fx+TkJOLxOPLy8lBfX4+mpia0tLSgpaUFra2t4vU5OTnQ6/VXfQ/J9ez/ThCLxWCxWPDwww/jqaeeuqbXRCIRzMzMZAz6SB0JWqlUwmw2bwj5SB0xnCgbfPvb38ajjz6KRCIBpVKJj370o/jqV78qd1l0E/x+P/r6+kRwx5kzZzA/P4+8vDw0Nzejo6NDhHdYrdbrCikjIqLdw+/3w+VyYX5+HnNzc5idncX8/Dzcbjfm5ubgdrvFdGpIan5+/oZgjqqqKhHMIYV3VFRUyLh3dLutrq6mhXVIj9K0dF1HpVKhvr4e+/btQ3Nzc1poR21tLRQKhcx7QkREREREREREtHMwzIOIiIiIsgbDPLLHv/zLv+DDH/4wfvWrX+Hee++VuxwiItrjpMCO1LCO9Z2F1Go1ampqNoR1WCwW1NfX86Y2IiIiIqJNXC1cZKsAkRvZXiZbBZFsZmVlBYlE4prXj8fj4vzhWgWDQUQiket6zfqQmauJRqNYXV29rtdc77/J2toafD7fdb3H9f6bXM+/h9/vT+vUdqvW3YkKCgqgUqk2LN8swCVTgMr1BIisX5a6vdRAl9zcXJw5cwY//elP8bd/+7eoqqpCXl7ehm1otVpoNBoRqpIaclJUVCReA6SHba5vTqdT/DtqNBoR6rG+tba2XnPQC9FO53A40NjYCOBKONTY2BgaGhpkrmrvSiaT+O53v4unn34azz///E0HLMXjcQwPD6O3t1eEdwwNDWFtbQ1GozEtuKOjo+O6g7yIiGhnCQQCIqBjfn4eLpcLCwsLmJ2dxezsLBYWFsTzqedJOTk5KC8vR0VFBSorK2E0GtOCOVIfrzeQkXavrc6NxsfHReiswWDIeF7EwQiIiIiIiIiIiIiuD8M8iIiIiChrMMwju7z97W9Hb28vLly4gNLSUrnLISKiXW6zwI7h4WExgrgU2LE+rIOBHURERERERHQ9ISerq6uIRqNifm5uDna7XbRLly7B7XYDACoqKtDa2orW1lY0Njaivr4eJSUlW25P4vP5sLa2lrZss8CbzQJnNgtWyfSeqQE0iUQCKysr4rnUYJRoNIpAIACfzwe1Wo1IJIIbvbXlaoEfGo0GBQUFUCgUiEQiiEQiCIVCWF1dRTAYxNLSEubn58X2dDod6urqxAjUPPen3cxkMmFmZgbveMc78JOf/ETucvas/v5+fOADH8CZM2eQTCbx0ksv4e67776ubbhcLvT29orwjldffRXBYBCFhYU4cOCACO9405vehMrKytu0J0REdCstLy9jfn4ei4uLWFxcxMzMDBYWFjA3Nwe32435+XnMzs5ibm4OwWAw7bXrAzrKy8tRVVWFqqoqVFRUwGg0oqKiAhUVFWkBd5QdPB4PXC4X3G73hrCOwcFB8fOUOhDB+tbc3MyAFyIiIiIiIiIioluEYR5ERERElDUY5pFdPB4PDh48iCNHjuDZZ5+VuxyiPU3qiJHaCSO1g8rVRj2+ltGH14+mup5er0dOTg4AiM4ZwBsjyWYaDZZoPY/HsyGsw+FwYGhoSIxErdFoYLFYNoR1WCwWNDQ0iJ9DIiIiIiIiotvJ5/Ph4sWLonN3b28vhoaGsLa2BqPRiI6ODtE6Ozs3BHzsBk899RQ+97nPYXh4GLW1tQCAUCiEcDgM4I3AkEgkgmAwmHZtyuv1IplMXnUdKThkZWVFhHikTmcKPJFI1wCk224UCgV0Oh1KSkpQWVkJs9mMxsZGWK1WHDt2DBaLhZ0p6YZIP8ebXX9dW1uDz+fb9PWbXX/91re+hV//+td44okncPTo0S1HV0+9/qpSqVBQUAAAKC4uhkKh4PXXDILBIJ588kl85StfAXDl30GlUuGJJ57AY489tunrVldXcf78efG7/be//S0mJiaQm5uLlpYW8bu9q6sLhw4dYogQEdEOEQqF4Ha74XK54PF44PF4NsxLy6anpzcE32k0GlRXV8NoNMJgMIjp9cvMZjOUSqVMe0lySyQScLlccDqdmJycxNTUFKampjA5OQmn0wmn0ym+l8/NzYXJZEJDQ4P4HjP1O00GgBEREREREREREW0PhnkQERERUdZgmEf2eeWVV3DffffhW9/6Ft7//vfLXQ6RrILBILxer7hRLBAIwO/3b+icEAwGEQqF4PF4EAqFEAwG4fP5xA3jUoeJqwV07GTSjecajQZarVbcfF5cXIz8/HxotVoYDAZotVrk5+ejuLgYBQUFyM/PR1FREYqKilBYWAiDwSCaVquVe7foGrlcrg1hHetHotLr9WhsbMw4EhUDO4iIiIiIiGin8vv96OvrEx3Au7u7MT4+DgCwWCzo7OwUncCPHj0KtVotc8Vbi0QiaGtrw/Hjx/H9739ftjqi0ai4dhYKhRAIBLC0tCTaxMQEnE4nZmZmsLi4CI/Hg9XVVUQiEay/JUepVEKn06G0tFR0rLPZbLBarTCZTKipqYFer5dpT+lmBINBce3V6/XC7/eLoJhgMCiuz0rXXL1er7gWm+n669UCOnYy6fqrVquFRqMRQR96vV5cc9Xr9eJabHFxMQoLC6HVasX116KiIhgMBuj1+l15/fVnP/sZPvjBD2J+fh7xeFwsVygU+IM/+AM899xzYpnD4UB3d7f43X327FlEo9ENwUx33XUXfz8QEW2TRCKBhYUFLC4uYnFxEXNzc2nz8/PzmJ+fx+Lioli+PgCutLQU5eXlKCsrQ3l5OSoqKlBeXp62rLKyEmVlZSgrK4NKpZJpb2kn8fl8mJqawsTEBKampuB0OtPCOlwulzi2UCqVqKmpgdlsRn19PWpra2E2m0VoR21tLX+uiIiIiIiIiIiIdgCGeRARERFR1mCYR3Z6/PHH8c1vfhM9PT1obW2VuxyimxaNRrGwsICFhQXMzs6KG8SWl5fFjeKpN41L05FIJOP2dDodtFqtCLNIvZlaq9WmBVuk3ngNbAzFyMnJETcT5+fnp3UIKSoq2nLk0dSRHde7WnDI+pElpZFWAcDj8QBAxhAS6Qb5cDicFmASCoUy3kwfCoXEyJfrqdVqEewh3WCeOl9SUiJuzjMajeImvb18A9XZs2fxi1/8Ap///Oe3NfwiHo/D6XRuCOtwOBwYGBhAKBQCABgMhoxhHVIjIiIiIiIi2gump6dx5swZ0Xp6euD3+6HVanH48GGcPHkSnZ2dOHnyJMrLy+Uud4Of//znePDBB/HTn/4Ub3vb2+Qu57oFAgFcvHgRFy5cgN1ux9jYGKampjA/Pw+Px4NEIrHhNbm5ucjPz0d5eTksFgv27duH+vr6tJHZ6+vrUVBQsG37kUgk4HQ60dDQAAD4yEc+gpWVFfzVX/0V9u3bt211bIdIJCI65krXXxcWFsR11kzXXr1e75bXX/Pz8ze95qrVakWwhVqtznj9Vbo2e7uuv14tOCQWiyEQCIh56XoqsPH6a+q2ruX6azAYxMrKCgKBAEKhUNp13lQajSbjddfUeamDdFVVlZhWKpWb7tft4HA48Oijj+KXv/wlFArFho7dwJV/i0cffRSvv/46zp49C7/fj/z8fHR0dOD48eM4fvw47rzzTphMpm2tnYhor/N4PHC5XOLvt9vt3nR+fn5+w3GaRqMRx2LS357189Iys9m87X+DaHfweDzie0uXywW32532XaZ0bAW88TMnfXcpnQ9I87W1tVse/xEREREREREREdHOwDAPIiIiIsoaDPPITrFYDF1dXQiHw3j11Ve39QZnomuVTCYxNzeHmZkZzMzMwOl0Yn5+XtwwLt08Pjc3tyHUQq1Wo6ysDKWlpVe9mTl1vqioCIWFhTLt8e4WCATg9/s3vXk/0/zy8jIWFxc33NSv1+tRWVkpbi6vrKwUI3PV1taipqYGNTU1qKys3NZAjJtx8eJFfPazn8Xzzz+PZDIJh8MhOnrcKrFYDFNTUxkDO+x2O8LhMIDNAztsNhuMRuMtrYmIiIiIiIhoN1hbW8Pg4CDOnDmD119/HadOncLg4CDW1tbQ0tKCEydOoKurCydPnkRra+uOuB7xJ3/yJ3jttdfQ19cnggz2CqkzX39/Py5evIihoSFMTk7C7XbD6/VCuqUnUyhASUkJqqqq0NDQAJPJBJPJhLq6OjEqd01NzS3r3PeDH/wA7373u/Hggw/iiSeewO/93u9hdnYWOTk5eM973oMvfOELaGxsvCXvdTskk0nMzs6mXX9dWFjA/Pw85ubmRGDy7OzshlALtVqN8vJylJSUXNN1V2me119vnN/vF9dfr3bdVZpfXl7GwsICotFo2rYMBgMqKytFuLIU9FFRUSH+n1RXV6Oqquqmao7FYvjnf/5nfOYzFMXQiQAAIABJREFUn0EikUAsFtty/draWtx9993o6OhAR0cHjh49mhbOQkREW4tEIlhaWkr7m7BVOMfc3NyGYymDwZAxiCNTWEdFRQVDE2hLwWAQ09PTcLvdmJqagtvtFseeLpcLTqcTbrdbhMQolUqYTCaYzWbU1dWhtrYWtbW1MJvNqK2tRV1dHY8liYiIiIiIiIiI9giGeRARERFR1mCYR/ZyOp04cuQIurq68Oyzz+6IG9Apu8zPz8PhcGB6elrcLO5yuTA9PS1u5km9yVi6mbi8vBxGo1HcaFxRUbEh+KG4uFjGPaPr5fP5NgS0SMEtqaN9zs3NYXFxUbxOpVKhurpadMyoqamB2WwWjxaLRfbRc0dGRvCFL3wBP/rRj5CXlyduWP/lL3+JBx544Lq3t1lgh91ux8jICOLxOIDMgR1WqxV33HHHnuvgQ0RERERERHQ7eDwevPbaa3j11VfR3d2Ns2fPIhgMorS0FCdPnkRnZyc6Oztl62y+sLCAgwcP4uTJk/jxj3+87e8vl0gkgpmZGXFNZGxsDAMDAxgbG8Pk5KQIM1UoFFCr1cjJyUE4HBYdVXNzc2E0GtHQ0ID6+nrU1dWJjoLStEajuaZa/vqv/xpf/vKXAUB0QJRuN1IqlYjH43jooYfwN3/zN2hubr7VH8VVzc3NXfX6a2q4gnRtNTXcoaysDJWVlRuCH3Q63bbvD904r9e7IaBlfn4ei4uLmJ+fF9dmZ2dnsbS0JF6nVqtRXV2ddt1VuhZrNpvR0NCw6fXXl19+GY888ggcDof4/7GVnJwc/PjHP8ZDDz10y/abiGi3SiQSWF5exvLyMpaWlracXlpaEtN+vz9tOyqVKu37VOm71LKyMlRUVKCiogJlZWVindLSUpn2mHYbKRTO5XKJ48vUwA7p+DN1QA6lUomqqiqYzWYYjUZxXCGFddTX16OqqgoKhULGPSMiIiIiIiIiIqLtwjAPIiIiIsoaDPPIbt3d3bjvvvvwxBNP4C//8i/lLof2mGg0iunp6Q2hAw6HA6Ojo1hZWRHrSqM8VVdXw2KxbJiura1FUVGRjHtDO4U0qpjb7YbD4YDL5dow7XQ6RaiFWq1GTU3NhmALi8WC1tZWFBQU3JY6nU4nvvzlL+O73/0uFApFWseIvLw8fOMb38Cjjz6a8bWZ/u/Y7XYMDAxgcnJS3Py+PrDDarXCZrNh3759DLQhIiIiIiIiusXi8TiGh4dx6tQpdHd345VXXsHk5CS0Wi0OHz6Mrq4u3H///ejq6rrmMIib9etf/xpvectb8A//8A/40Ic+tC3vudN5PJ6M1yOlsA/pdiCNRgOtVgvgyojhkUhEbEO65pJ6jTK1GQwGAMB73/tePPPMM1sGFaSGenzlK19BU1PTLdvX673+mrpPvP5Km7mW66+p1yg1Gk3a/xOTyYQXXngB3d3dUCgUIkjnalQqFT72sY/h7//+72/n7hERbbtrCeRYH86RGoAg0Wq1KCkpQUlJCUpLS8V0WVmZWCYFc0hhXPyuiG5EIBDAzMwMZmdnMTU1BZfLhZmZGczMzIjAjtnZ2bTvPg0GgxiAwWg0isAOaTCG6upqVFZWcoAZIiIiIiIiIiIiEhjmQURERERZg2Ee9PWvfx2f/OQn8bOf/QwPPvig3OXQLrSwsAC73Y6hoSEMDAxgYGAAw8PDmJmZETfHl5WVZQxTsFgsqK6uhlKplHkvaC+JxWJpI7Sub9Lokjk5OTCZTGhpaUFbWxusVqt43GxEyatZWFjA1772NTz11FOilvVUKhX+4i/+Ah/96Ec3hHU4HI5NAzuksA6LxYKmpiaOgEpEREREREQks8uXL+Pll1/GSy+9hJdeeglTU1PIz8/HiRMncM899+Cee+7BsWPHoFKpblsNTzzxBJ544gn8/Oc/x5vf/Obb9j57QSQS2fSa0eDgIILBIIArQawFBQVQq9VIJpMIBoNYXV0V2ykuLkZdXR2cTmfGzraZKJVKrK2t4U//9E/xhS984bpCPebn58X1V7vdjsHBQQwPD8Plconrr+Xl5RuuuzY0NMBisaCmpgZ5eXnX8UkRbS0Wi20ZJOPz+dLWz8nJEcEeW92Sd+LECbz66qu3u3wiohsSCoXg8XgyNrfbDZfLtWH5wsKCCJ9PJQUhGY1GGAyGa2rV1dUy7DXtFdFoFIuLi2k/r6k/t9K0y+VKO75VqVQoLS1NC4NbHwpnMpkYHENERERERERERETX7f+zd+dxUdX7/8Bfw74zwz4DoqGB4A6ipaCSuK9lWpbhLdNrdrVbueWSqbe+WWpZtliZaV4zNXdMETdQywXQVMQFlW0GGJgZ1mGf3x/9OJcRJEzhgLyej8fnMcw5c868zwHm8eDN57wOwzyIiIiIqNVgmAcBwJQpU7Br1y6cPXsWHTp0ELscaqY0Gg3i4+OFCeNXr17FlStXhGAER0dH+Pv7o1OnTvDz80P79u2FieMMHaDmJC8vT5hcnpycjGvXrgkXRFRPNHdxcRHCPap/rgMDA+Hk5FTnPnNzc/Hxxx/j008/RVVVVZ0hHtUkEgns7e2Fu6NWB3bUDOvw8fGBr68v74hKRERERERE1IIkJyfj+PHjOHHiBI4dO4b09HTY2NigT58+GDBgAAYNGoSgoCCYmpo+tPc0GAx44YUXEBUVhdjYWAQEBDy0fbcmVVVVdQZ9JCcn49atW1Cr1QD+7OtIpVJIpVKkp6fX2wOqS81QjyVLlhj143Nzc436r9XByRqNBgAglUrv2X9lD4maE51Oh6SkJJw7dw4XL15EUlISbt++DbVaXefvjImJCYA/LxguKioSnhMRNQatVgudTicEbuTk5ECj0QgjNze3zq/vDuUwMzODk5MTnJyc4OzsXOfXTk5OcHFxMVpuZ2cn0pHToyg7OxvZ2dlQqVTIzMxEdnY2MjIyoFaroVQqkZWVhaysLOTk5BhtZ29vD4VCATc3N8jlcnh4eMDd3V1YplAohGUSiUSkoyMiIiIiIiIiIqJHGcM8iIiIiKjVYJgHAUBJSQn69euHwsJC/P777wxeIGi1Wly5cgVxcXHCuHr1KgwGQ63ggerHxx57jJN5qMWr/tlPTEwUHqsv3gAAuVyOoKAgYfj6+uK///0vVq1ahfLy8gZfwOHp6YmDBw+iQ4cOsLKyasxDIiIiIiIiIiKR3Lx5EydOnMDx48dx9OhRKJVKODs7Y+DAgRg0aBAGDx4Mb2/vB34fvV6PIUOGIDk5GbGxsfDx8XkI1VNNBQUFRiEf169fxzfffPO392dqagqDwYDevXvDx8cHCQkJ7L9Sq1Ddf/3jjz9w5swZXL58GcnJyULI8t391+DgYHh4eIhcNRE1J3q9XgjiqB4lJSV1Lr97qNXqWqEcAGBlZQWZTGY0FAoF5HJ5reXVw93d/aEGtBEBf/585+TkICsrC9nZ2VCr1cjJyYFKpUJOTg7UajWysrKE4I6a/5e0tLSEq6srPD094ebmBg8PD8jlcri5udVaZm1tLeJREhERERERERERETHMg4iIiIhaEYZ5ULXU1FT07NkTffv2xY4dOzj5qBXR6/U4e/YsYmJicPbsWcTHx0OpVAIA2rVrh8DAQKPh7u4ucsVETS8zMxPx8fFISEhAfHw84uPjcefOnb+9P3Nzc+j1en7WEhEREREREbUit27dQnR0NKKjo3Ho0CHk5+fDx8cH4eHhCA8Px+DBg+Ho6Pi39p2Xl4ennnoKWq0WR48eRbt27R5u8WTk8uXL6NKlywPvx8LCAkOGDMETTzwh9F/d3NweQoVELYtKpRL6rtUjNTUVAODl5YXAwED07t0boaGhCA4OZkAyUQum1+uh0+mg1Wqh0+nuOarX3/26ysrKWvu0traGVCqtNWQyWb3LnJyc4OTkJMJZoNaivLzcKITjXgEd2dnZyMrKQmFhodH21tbWcHFxgYeHB1xdXeHq6go3NzchpEOhUMDd3R3u7u5wdnYW6SiJiIiIiIiIiIiI7h/DPIiIiIio1WCYB9V06tQpDBo0CFOmTMHnn38udjnUSHQ6HU6dOoXY2FjExsbi/PnzKCsrQ5s2bdC3b1/06NFDmDjOCWxE96bRaPDrr79iz549uHDhAlJSUlBWVgYAkEgkMDU1rfMOb9Vu377NC2uIiIiIiIiIWqmSkhKcOnUKUVFRiIqKwsWLF2Fubo4+ffpg6NChGDlyJDp16nRf+1Sr1Rg8eDBycnIQFRUFf3//Rqqe9u7dizFjxtz3djY2NujatStGjhyJiRMnwsfHpxGqI3o05OTkCOHKcXFxOH36NDIyMmBpaYng4GD069cPISEh6Nu3LxwcHMQul6hV0ev10Gq1f2uUlJTUuU8rKyvIZLL7Hk5OTgz4oSZhMBiQm5t7z5GTkyOM6oAOjUZjtA9zc3O4urrWCuhwdXUVnru4uMDNzQ3u7u6ws7MT6WiJiIiIiIiIiIiIGhfDPIiIiIio1WCYB91t3759ePrpp/HBBx9g7ty5YpdDD0FFRQVOnjyJAwcOICoqCpcuXYLBYIC/vz9CQkIQGhqK0NBQtG3bVuxSiVq85ORkbNu2DVFRUfjjjz+MJulJJBJYWFigtLQUAHD48GGEh4eLVSoRERERERERNSNZWVmIjo7GoUOHcPDgQajVavj4+GDkyJEYOXIk+vfvDwsLi7/cj06nw4gRI3Djxg3s3r0bffr0aYLqW59PP/0Uc+bMqTfI1czMDB4eHujbty9mzpyJvn37NmGFRI+m27dvC0HlJ0+eRFJSEkxNTdG1a1cMGTIEw4cPR58+fWBqaip2qUTNTlVVFfLy8pCXl4f8/HwUFBQgPz8f+fn5Rstrrrt7eX5+PoqKimrtWyKRQCqVQiaTQSqVCuPu53eP6vW2trYinBFqzUpLS5GbmwuNRlMrjONeYR0ajQZ3Ty23sbGBs7MznJ2d4eLiIox7BXTwRhpEREREREREREREf2KYBxERERG1GgzzoLp8/fXXmDFjBn744QdERESIXQ79DdnZ2fj111+FAA+dTgc/Pz8MGzYM/fv3R0hICFxcXMQuk+iRp1arERsbi127diE6OhqZmZkwMzODRCLBW2+9hbfffhuurq5il0lEREREREREzUhVVRUSEhKwb98+7N+/H/Hx8bC2tsZTTz2FUaNGYeTIkVAoFPfcvqioCC+88AIOHTqE7777DpMmTWrC6luHGTNm4KuvvgLw5wXMBoMB1tbW6NKlC5577jlERESw/0rUBLKzs3Hy5EmcOHECBw4cwM2bN+Hk5IQhQ4ZgxIgRGDp0KJydncUuk+iBNDSE46+WFxYW1rl/ExMTODo6QiqVwt7eHg4ODsLj3csdHBzqDOpwdHRs4rNC9D96vR5arbbWUKlUUCqVda7LzMysFcxhZWUFmUwmDIVCAblcbrSs5vD09IRUKhXpqImIiIiIiIiIiIhaNoZ5EBEREVGrwTAPupc5c+ZgzZo1iIyMxKBBg8QuhxogNzcXW7ZswZYtW3D27FmYm5ujf//+GDFiBEaMGIH27duLXSJRq3fz5k1ERkYiMjISMTExKC8vxxNPPIEXXngBEydO5B25iIiIiIiIiKiWlJQUREZGYt++fTh+/DjKysrQq1cvjBkzBuPGjcPjjz9ea5uqqirMmzcPq1atwptvvokPP/wQ5ubmIlT/6FCr1UL/9fz58zAzM0NISAiefvppDB8+HD4+PmKXSNTqXb9+Xei/xsbGorKyEk8++SRefPFFPPfcc5DJZGKXSK1IaWkpioqKoNPpUFhYKGoIR33L7ezsmvjMENXNYDBAo9EgNzf3niMnJ6fWstLSUqP9mJmZwdnZuc7h4uJyz3WmpqYiHTkRERERERERERFR68MwDyIiIiJqNRjmQfdiMBgwefJk7NmzBzExMejWrZvYJVEdysvLceDAAWzcuBGRkZGwtLTEuHHjMHbsWISHh8PW1lbsEonoHgoLC3H48GHs3r0bO3fuRHl5OUaMGIHJkydj2LBhvMCGiIiIiIiIiGopKipCVFQUIiMjsXfvXqjVanTr1g3jxo3DuHHjEBAQYPT6H3/8Ea+99hq6du2KrVu3wtvbW6TKW6aysjJERkZi48aNOHDgAKytrfHss89i7NixGDhwIGxsbMQukYjuoaCgAFFRUUL/tbKyEqNHj0ZERASGDh0KMzMzsUukZkav16OkpAR6vR5arRZarbbe5/Wt02g0tQIGarKysoJMJoNMJoO1tbXR84Yu9/DwgImJSROeIaKGq/m7oVKpoFQqhef3Gmq1GhUVFUb7qet3oHooFArI5fJay93d3RnMQURERERERERERNTMMcyDiIiIiFoNhnlQfUpLSzF06FDcuHEDJ06cQPv27cUuif6/lJQUfPbZZ/jxxx+Rm5uLsLAwTJ48Gc888wwDPIhaoMLCQuzcuRMbN27E8ePH4ezsjIiICMyaNYsX2RARERERERFRnaqqqnD69Gls374dO3bsgFKphI+PD0aOHInx48cjJCQEAHDt2jWMHz8eqamp+OijjzBt2jSRK2/+bt++LfRftVotwsPDERERgaeffpoBHkQtUEFBAXbs2IGNGzciJiYGbm5umDx5MmbOnAkvL68H2nd5eTkiIyPxzTff4OzZs0hNTeXnRBMoLS1FcXExtFotioqKUFRUhMLCQuh0OhQVFaG4uBj5+fnIz88X1ufl5aGwsFB4fve292JiYgJHR0fY29vD1tYWNjY2kMlksLW1ha2tLezs7CCVSoV1Dg4OcHBwENZXb1s97OzsmvBMEf19JSUl0Gg09xxarRa5ubm1lhcUFNTal7W1NZycnODk5ASZTCZ8XXM4OzsLj9Vf8/OUiIiIiIiIiIiI6NHEMA8iIiIiajUY5kF/JS8vD+Hh4VCr1YiJieFF5SJLTEzEsmXL8Msvv0Aul2P69Ol46aWX0KZNG7FLI6KHJDU1FT/++CPWrVsHlUqFCRMmYPHixejYsaPYpRERERERERFRM1VVVYVTp07hl19+wc6dO5GWlobHH38czz77LJ5//nl06NAB8+fPx9q1azFmzBh89dVX8PDwELvsZufSpUtYvnw5du7cCS8vL0yfPh2TJk164Iv9iaj5uHPnDjZt2oR169ZBrVbj+eefx6JFi+Dr63tf+7l27Rq+//57rF+/HhqNBiYmJqisrERGRgYUCkUjVd+yVFRUoKCgAIWFhSgtLUVeXh70ej1KSkqg1WqFQI68vDyUlpaisLAQBQUFKC0tFUI4SktLodPpoNfrhdcWFBSgoqLinu9rY2MDW1tb2Nvbw9HRUQjZqBnIYWtrC6lUCjs7O9jY2BgFctTc1sbGBtbW1k141ogePr1eD61We99DpVLV2peVlRVkMtl9D34uEhEREREREREREVFNDPMgIiIiolaDYR7UEDqdDgMHDkReXh5OnDgBT09PsUtqdZRKJRYsWIDNmzejU6dOmDdvHsaPHw9zc3OxS6uTRCLBvf60rm9da8VzQnUpLy/Htm3bsGLFCiQmJiIiIgLvv/8+5HK52KURERERERERUTNmMBhw5swZ/PLLL9ixYwfu3LmDLl26YNKkSXjssccwb948aDQa/Oc//8Frr70GU1NTsUsWXVpaGhYsWIAtW7aga9eumD9/PsaNGwczMzOxS6sT+6/3h+eE6lJWVoatW7dixYoVuH79Ol5++WUsX74c7u7u99ympKQE+/btw5dffokTJ07AzMwM5eXlRq9JTk6Gj49PY5f/0BQVFaGkpOS+gzaKi4tRUlICnU6HkpIS6PV66HQ6lJaWoqioCPn5+aisrKz3va2srGBtbQ1HR0dYWVkJIRpWVlZC6IaVlRUcHR1hbW0NW1tbODg41BnIUfO5RCJporNH1LQqKiqQm5tba+Tk5CAnJ8domVarhUajgUajQVlZWa19SaVSODs7w8nJyWjIZLJay2qO5vq/aSIiIiIiIiIiIiJqWRjmQUREREStBsM8qKHUajXCwsJQVlaGEydO8GLyJmIwGPDll19iwYIFcHFxwfLly/H888/DxMRE7NLqxcnk94fnhOpTVVWFLVu2YPHixdBqtfjwww/xz3/+kxOSiYiIiIiIiKhB4uLisGnTJmzduhU5OTno1asX7OzsEBMTg06dOmHNmjUIDQ0Vu0xRGAwGfPbZZ1i8eDHc3d3x/vvvY/z48c2+78L+6/3hOaH6VFZWYvPmzXj33XdRUFCAjz/+GFOmTDF6TVxcHDZu3IiNGzeisLAQEonknkEVly9fRqdOnR64Lq1Wi8rKSuTn5wvBGkVFRSgrK0NeXh4qKyuh0+lQXl6OwsJCIYijoKAAFRUV0Ol0qKiouOf2ZWVlKCgo+Ms6aoZr2NnZwdLSEo6OjrCxsYGlpSVkMtl9hXLU3I6oNSsuLkZubi40Gk2dYRx1BXbk5eXV2o+DgwOcnZ3h4uICZ2dnYdwrjKM6rKO5/6+ZiIiIiIiIiIiIiB5tDPMgIiIiolaDYR50P7KzszFgwAAYDAYcP3683ruT0YPLy8vDP/7xD0RGRmLOnDlYtGgRrK2txS6rQTiZ/P7wnFBDFBcXY+nSpVi9ejVGjx6NDRs2wMHBQeyyiIiIiIiIiKiFKCsrw6+//orNmzdj//79MBgMkEqlyMrKwqhRo/DRRx+hY8eOYpfZZLRaLSIiIhAVFYX58+fjnXfegZWVldhlNQj7r/eH54QaoqioCO+++y7WrFmDZ599FqtXr8b+/fvx+eef4/LlyzA3N0d5eflf7mfx4sXw8vJ64DCOhpBKpTAzM4ODgwMsLS1hY2MDW1tbWFhYwMHBAWZmZpBKpTA3N4ednR2sra1hZWV1X6EcRPTX9Ho9tFqt0VCpVFAqlbWWV6/TarW19mNlZQWZTAaZTAaFQgG5XC48rzmq17m4uMDCwkKEIyYiIiIiIiIiIiIiejAM8yAiIiKiVoNhHnS/0tPT0a9fP0ilUhw5coR3zmokWq0WgwcPRmpqKn766Sc89dRTotZTfSfKu/9crmt5XXetnDJlCr777rt61wF/3rFu3rx5iImJAQD07dsXK1euROfOnWvt/+bNm5gzZw6OHTsGnU5XZ331HUtiYiJefvll/PHHHwgKCsKGDRtQWlqKV155BVeuXEFwcDA2btwIb29vo+337t2LFStWIC4uDh4eHnj66aexbNky2Nvb13qP1NRU/Otf/8LRo0dhY2ODQYMGYc2aNXB2dm7Q+WqqcwIAFy9exJw5c3Dq1CmYmpqib9+++Pe//40hQ4YIr7l8+TLmzp2L2NhYAEBoaCg++uijOmv5q2OvedzHjh3DgAEDsHXrVkycOFFYXl37wzgHeXl5eO+997Bnzx4olUrIZDIMGTIEM2bMQK9evYT9NOT7K7bY2Fg899xzcHd3x+HDh+Hi4iJ2SURERERERETUwuTl5WHPnj3Yvn07Dhw4IIQdjBo1Cv/3f/8Hf39/sUtsVGq1GgMHDoRGo8H27dvx5JNPiloP+6//w/4r+69iO3HiBJ555hlotVoYDIb7DoOpGYhhampaZ5iGvb29ELTxd8I4qrcnoodPq9UiOzsbarUaubm5wsjJyTF6XnPcHcBjaWkJZ2dno+Hi4lJr2d2DiIiIiIiIiIiIiKi1YJgHEREREbUaDPOgv+POnTvo378/nJ2dcejQIbi6uopd0iOlvLwcoaGhyM7OxrFjx9C2bVuxSwJw77sX1rX879wZ8ubNmwgNDcWSJUswbtw4mJiY4Ndff8WSJUtw4sQJeHl5Ge1j0KBBeO+999CjRw8cP34cw4cPb/CEWolEggkTJuC9996DQqHAwoULcf78eXh5eWH58uVQKBR45513oFarsX379lrbrlu3DpMmTUJ+fj7mzZsHiUSCH374odbrBg8ejDfffBMhISHQarV444034OjoiA0bNjSrc3L9+nWMHj0aa9euRZ8+fXDnzh1Mnz4dsbGxwvY3b95EWFgYli5dilGjRsFgMGDv3r147733cPz4cXTo0OG+jr2yshJ+fn44d+6cUSiQSqVCp06dkJaWBltb24d2DsaOHYsePXpg+vTpkEqlSExMxMyZM3Hq1KlaF0M05Psrtjt37mDAgAGQy+WIiYmBubm52CURERERERERUQuVlpaG9evXY+3atcjNzQUA9OzZE5988glCQkJEru7hKy0tRZ8+fZCfn49jx44Z9ZfExP7r/7Zl/5X9V7GdOXMG4eHhKC8vR2lpKSwsLFBWVtagbQ8dOoTBgwc3coVE1FB6vR5arRZarRYqlQpKpbLO5yqVCunp6bV+162srCCTyWoNhUIBuVxe5zq5XF5nmBQREREREREREREREf2JYR5ERERE1GowzIP+rpSUFISHh8PMzAyHDx9uNhOeHwVLly7FypUrERcXB19fX7HLETT2ZPJJkyaha9eumDt3rtHy77//HhcvXsSaNWuM9lF9N8G/QyKR4Pjx4+jfvz8AQKlUwtPT02hZeno6goKCkJWVVe++tFotOnToIFzoUPM9du/ejTFjxgjLrl27hqeeegoZGRm1XivmOXnhhRcwbNgwvPTSS0a1duzYUahr0qRJCA4OxhtvvGG07erVq5GQkIAff/zxvo99wYIF8PT0xOuvvy4s+/DDD5GSkoKvvvrqoZ4De3t7pKSkwMnJSVh2+/Zt+Pj41Dvh/l7f3+YgKSkJPXv2xLx587B48WKxyyEiIiIiIiKiFq6qqgpHjhzB0qVLcfr0aRgMBnh4eOCdd97BzJkzH5mLUhcuXIi1a9ciISEBPj4+YpcjYP+1buy/sv8qlsuXLyM4OBgzZsyAm5sbdu7ciXPnzsHExAQGgwFVVVV1brdnzx6MHj26iaslaj0qKyuRnZ2NrKwsqFQq5OTkQK1WIysrC9nZ2VCr1cjJyRHWFRcXG21va2sLd3d3uLu7w8XFBa6urvDw8ICrq6swPDw84OLiAmdnZ1haWop0pEREREQvNRc5AAAgAElEQVREREREREREjy6GeRARERFRq8EwD3oQmZmZGDx4MPLz8xEdHW10Zzj6e/R6Pdq0aYM333wTCxcuFLscI409mdzDwwNnzpxB27ZtjZZnZWUhLCwMiYmJRvsoKiqCjY3N3zkUSCQS5Ofnw97eHsCfFyqYmprWWmZmZnbPCbl/dUwSiQQajcboroelpaWwtrautU+xz4mHhwfi4+OhUCjqfU1dtdy+fRt9+vSBSqUyqqUhx37jxg1MnDgR58+fF5b5+vri559/Ro8ePep93/s9B4MHD0ZxcTEWLVokBBE1VH0/z2Jbvnw5PvvsM6SlpcHKykrscoiIiIiIiIjoEaFSqbB48WJs2bIFer0e7dq1w+3bt8Uu64EVFhbCy8sLCxcuxJw5c8Quxwj7r/Xvj/1X9l/FsGjRIqxfvx4pKSmwsLBAamoqDh48iJ07dyI6OhpVVVUwMTFBZWUlgD+PZevWrcL/X4mo4fR6PbRaLVQqFZRKZa3H6nWpqamoqKgQtrO0tISTkxNkMhlkMhkUCgXkcnmdzz09PSGVSkU8SiIiIiIiIiIiIiIiAhjmQUREREStCMM86EFptVoMGzYMKSkpiIqKQpcuXcQuqUX7/fff8eSTT+L27dto166d2OUYaezJ5Obm5kaT72qytrY2unPWg07ubWjNdy9Tq9V45513cPDgQWRmZgoTdAE0+Bzcz/lqqnNiZmaG4uJiWFhY1PuaoqKiWncgKykpgb29PcrLy/+ylrqWh4aGYu3atejWrRtiYmLw1ltvGU0uf1jnIC8vD0uXLsWePXugVqvRo0cPPPPMM5gxYwbMzc0B3N/3t7movrvl77//jt69e4tdDhERERERERE9YqqqqrBu3Trk5uZi0aJFYpfzwGJiYtC/f39kZGTUG6wgBvZf2X9l/7X5SUpKgr+/PxISEtC9e3ejdRqNBvv378fOnTtx8OBBlJWVwWAwYMOGDfjHP/4hTsFEzUx5eTmys7ORmZkJlUqFrKwsKJVKZGdnQ6lUIisrCyqVCpmZmUafN6ampnBzc4O7uzsUCgXc3NygUCjg7u4OuVwODw8PYVl1SBQREREREREREREREbUcDb81ABERERERUSsnk8kQHR2NMWPGYMCAAfj111/Rq1cvsctqsXJycgAAbm5uIldSm0QiQWlpqdFkYo1G89D27+LigsTERKO7CTY3L730Evz8/HDy5El4eXkJdxeUSCSN8n5NdU6cnZ2Rk5NT7wUMLi4uUKlUtUJmVCoVXFxc/vZ7v/zyy/j++++xZs0arF+/HtOmTav1vg/jHDg6OmL16tVYvXo1cnJycOTIEXz66aeIjY3Fjh07ADT99/dhcHd3B/C/zw4iIiIiIiIioofJxMQEr732mthlPDQ5OTmQSCRwdXUVu5Ra2H9l/5X91+anvv6rk5MTIiIiEBERAb1ej8OHD+PQoUN48sknm7pMIlHodDpkZGQgPT0dSqUSaWlpUCqVwjKVSoXs7GyjsB47OzujUI6goCCjwA5PT08hxMPExETEoyMiIiIiIiIiIiIiosbE/wIQERERERHdBzs7O+zduxdBQUEYMmQIYmNjxS6pxWrfvj0A4NKlSyJXUpuHhwdSU1ONlsXExNT52vom395r3ZAhQ3D8+PFay2NjYxEUFNTwQhvR6dOnsXTpUrRr106YaKzX6x94v2KfkwEDBiA6Otpo2cWLFxEQECA8Dw8Px86dO2ttu2vXLoSHh//t954wYYJwt8aDBw9i4sSJRusf1jmQSCRIT08H8OcE9eeeew6RkZGIiooSXtNY39/GdPHiRQD/++wgIiIiIiIiImoMBw8exIQJE3Du3DmxS3kg7du3h8FgwOXLl8UupRb2X9l/Zf+1+Wlo/9Xa2hqjR4/GF198AT8/v6YojajRVFZWIiMjA2fOnMGuXbvw+eefY/78+YiIiEBYWBg6duwIW1tbyGQydO7cGUOHDsW//vUvbNmyBdeuXYNMJsOQIUOwcOFCbNu2DbGxsbhx4waKiopQUFCAa9euISYmBj///DPWrFmDBQsW4B//+AeGDx+Obt26QS6XM8iDiIiIiIiIiIiIiOgRZyZ2AURERERERC2Nra0t9u3bhxdffBGDBg3Cxo0b8dxzz4ldVovj7++Pbt26YdWqVdi2bZvY5RgZNGgQFixYgE8++QRSqRSnTp3C119/XedrPT098dtvv6Fnz544duwYXn31VWEi+r3Wvffeexg9ejQqKysRFhYGCwsLnDhxAtOnT8fatWub8lDvqU+fPpg7dy4WLFgAhUKB1NRULF++/IH3K/Y5WbRoEZ5++mkoFAo8+eSTSE5OxiuvvIKZM2cKr1myZAnCwsLg4OCA0aNHQyKRYO/evVi9enWdk70bys7ODmFhYZg0aRJGjx4Ne3t7o/UP8xy8+uqrWLVqFTp06ACdToc1a9YYTYRvrO9vY1q1ahV69OiBjh07il0KERERERERET3CbGxscPv2bfTq1QthYWGYM2cOhg4dWm+oRHPUtWtXBAQEYNWqVdi8ebPY5Rhh/5X9V/Zfm59Vq1bhiSeewGOPPSZ2KUQPRXl5OTIyMpCamoqUlBQolUpkZGQgLS0NKpUKaWlpyMrKQmVlpbCNm5sbFAoFvLy84Ofnh7CwMLRp0wZyuRxt2rSBQqGATCYT8aiIiIiIiIiIiIiIiKilkRgMBoPYRRARERERNYUJEyYAQLMLDaCWy2AwYOnSpVi2bBneffddvPfee2KX1OIcPHgQw4cPx3fffYdXXnlF7HIEOTk5eOONN3D48GEUFxfjqaeewhdffAFvb28Af37vq23fvh3z5s1DRkYGvL29sWrVKowePfov1924cQPvvPMOoqOjUVFRgYCAALzzzjt4+umnhX3ffYHA/f4JX3P76m0buiw7OxuzZ8/GoUOHoNPp4Ovri8WLFwvBNfVtW99ysc8JAPz222+YM2cO4uLi4OrqihkzZmD+/PlGr7l06RLmzp2L2NhYAEBoaCg++ugjdOnS5S+P8V7LgT/v8tivXz+cOXMGvXr1qlXbwzgHR44cwdq1axEbG4uCggJ4enpi7NixWLp0qTCBvaHf3+biu+++w7Rp03Dw4EEMHjxY7HKIiIiIiIiIqBU4efIkVqxYgcjISHTu3BmLFy/G+PHjxS7rvuzbtw9jxozBpk2bMGnSJLHLEbD/yv4r+6/Nq//6xRdfYNasWThy5AgGDBggdjlEDVJaWoqMjAzcunULSqUSKpUKt27dEkZqaioqKioAABYWFnB2doZCoYBcLodCoYCPj4/wtVwuR9u2bWFnZyfyURERERERERERERER0aOGYR5ERERE1GowzIMay2effYY333wTr7zyCr766iuYmZmJXVKLsmjRInz44YdYv349Jk+eLHY5RNTMbNiwAVOnTsXChQuxdOlSscshIiIiIiIiolYmISEB7777Lvbv349+/frhgw8+QN++fcUuq8Hmzp2LTz75BBs3bsQLL7wgdjlE1MysW7cOM2bMwPLly7FgwQKxyyESaLXaOkM6qpfdvn1bCMaxsrISAjqqR83QjrZt28LU1FTkIyIiIiIiIiIiIiIiotaIV5gRERERERE9oFmzZsHb2xsvvvgi0tLSsH37duHua/TX/vOf/6Cqqgovv/wyEhISsGLFClhaWopdFhGJrKSkBHPmzMEXX3yBBQsWMMiDiIiIiIiIiETRo0cP7Nu3D6dPn8aCBQsQEhKC4cOHY8WKFejcubPY5f2lFStWwGAwYNKkSYiPj8cHH3wACwsLscsiIpHp9Xr8+9//xrfffoulS5cyyIOaXHZ2NpKTk3Hr1i2kpqYiJSVFeLxz5w6Ki4uF18rlcrRt2xbe3t548skn0bZtW2F4e3tDKpWKeCRERERERERERERERET3JjFUx5MTERERET3iJkyYAADYtm2byJXQo+q3337D6NGj4ePjg3379sHNzU3sklqUrVu3Ytq0aVAoFPjqq68QFhYmdklEJJIjR47gtddeQ1ZWFr777juMHz9e7JKIiIiIiIiIiAAAUVFReOedd3Dx4kVMnToVy5Ytg6urq9hl/aXNmzdj+vTpaNu2Lb7++muEhoaKXRIRieTQoUOYMWMGNBoNNmzYgLFjx4pdEj2CysvLkZaWhlu3btUaN27cQH5+PgDA3NwcLi4uUCgU8PHxEYZcLodCoYCfnx/s7OxEPhoiIiIiIiIiIiIiIqK/h2EeRERERNRqMMyDmsKNGzcwfPhwlJWVYffu3ejRo4fYJbUoSqUSb7zxBnbs2IHw8HCsWLECgYGBYpfVLEkkknrXt8Y/93lOWr4rV65g6dKl2L59O0aOHIkvvvgC3t7eYpdFRERERERERGTEYDBgx44dmD17NjQaDd5++23Mnz8fVlZWYpdWr4yMDMyaNQs7d+5EeHg4Pv74Y3Tv3l3sspol9hpr4zlp+S5duoTly5cL/devvvoKXl5eYpdFLVhJSQmUSqVRUMeVK1eQmJiI1NRUVFRUAABkMplRUEfN0bZtW5iamop8JERERERERERERERERI2DYR5ERERE1GowzIOaikajwfPPP4/Y2FisW7cOERERYpfU4hw6dAgLFy5EfHw8RowYgdmzZ6N///5il0VEjeT48eNYuXIlDhw4gJ49e+KDDz5AeHi42GUREREREREREdWrqKgIK1aswKpVqyCXy7F69WqMHj1a7LL+0oEDB7Bo0SJcvHgRo0aNwuzZsxESEiJ2WUTUSI4cOYKVK1fi0KFDeOKJJ/D+++8jLCxM7LKohdBqtUZhHTXH7du3hSCf+gI7fHx8RD4KIiIiIiIiIiIiIiIicTDMg4iIiIhaDYZ5UFOqrKzEwoULsWLFCsyaNQurV6/mXaXuk8FgwL59+7By5UrExsaia9eumDx5Ml544QV4eHiIXR4RPSCVSoUtW7Zg48aNuHTpEvr164c5c+ZgxIgRf3mXTyIiIiIiIiKi5iQtLQ3z5s3DTz/9hJEjR2LNmjXN/sJlg8GA3bt3Y+XKlTh9+jS6d++OyZMnY+LEiXB3dxe7PCJ6QBkZGfjvf/+LTZs24cqVKwgLC8OcOXMwbNgwsUujZkij0eDatWtISkrC9evXcf36dVy7dg3JyckoKSkBAFhZWaF9+/Zo3749fHx8jB7btWsHS0tLkY+CiIiIiIiIiIiIiIio+WGYBxERERG1GgzzIDH89NNPmDJlCvr374+ffvoJUqlU7JJapLNnz2L9+vXYtm0bCgsLMXjwYERERGDMmDGwsrISuzwiaiC9Xo/du3fjxx9/RFRUFBwcHDBhwgRMmTIFwcHBYpdHRERERERERPRAYmJi8PrrryM5ORlz587F/PnzW0T/8vfff8f69euxfft2FBUVYejQoYiIiMDo0aN5cTZRC1JcXIxdu3Zh06ZNOHLkCBwdHfH8889jypQpCAwMFLs8EllZWRlu3bolBHZcu3ZNGDk5OQD+DOzw9fWFn58ffH198fjjjwuBHQqFQuQjICIiIiIiIiIiIiIiankY5kFERERErQbDPEgsCQkJGDt2LCwtLbF7924EBASIXVKLVVJSgr1792LTpk04dOgQbG1tMXToUIwYMQLDhg2Di4uL2CUS0V3UajV+/fVXREZG4uDBgyguLhYuCBk1alSLuKCFiIiIiIiIiKihysvL8emnn2LZsmVwd3fHZ599huHDh4tdVoPcHcRqb2+PYcOGYcSIERg6dCicnZ3FLpGI7pKVlSX0Xw8dOoSSkhIMGzYMkydPxogRIxjI0wpptVrcunULV65cQWJiIm7duiU8LykpAQDIZDIEBASgU6dO8PHxgY+PDwICAtCxY0eYmpqKfARERERERERERERERESPDoZ5EBEREVGrwTAPEpNKpcIzzzyDxMRErF+/Hs8++6zYJbV4mZmZ2LZtG/bv348TJ06gsrISvXr1wogRIzB8+HB0794dEolE7DKJWh2DwYALFy4gMjISkZGROHv2LMzNzdG/f3+MGjUK48ePh7u7u9hlEhERERERERE1KqVSifnz5+PHH3/EyJEj8fXXX8PT01PsshpMpVLh559/xv79+xEbG4vKyko88cQTQv+1W7duYpdI1CoZDAbEx8cL/dfz58/DwsICAwYMEPqvrq6uYpdJjaysrAzp6elGgR1XrlzB5cuXkZeXBwCwtLRE+/bthcCO6vAOX19f2Nvbi3wERERERERERERERERErQPDPIiIiIio1WCYB4mttLQUb731Fr788kvMmjULH3/8MSwsLMQu65FQWFiIqKgoHDhwAAcOHIBKpYJcLke/fv0QEhKCfv36oXPnzjAxMRG7VKJHTlVVFS5duoTY2FicPHkSMTExUKlUUCgUGD58OEaMGIHw8HDY2dmJXSoRERERERERUZM7ePAgpk+fjry8PKxYsQJTp05tcSHE+fn5OHz4MA4cOIDIyEhkZWVBoVCgf//+CAkJQWhoKDp16sT+K1EjqKysxB9//GHUf83KyoKXl5fQfx04cCBsbW3FLpUaQXFxMa5evYorV64IYR2JiYlISUmBwWCAqakp2rZtCz8/P3Ts2BG+vr7w9fWFn59fiwqQIiIiIiIiIiIiIiIielQxzIOIiIiIWg2GeVBzsWvXLrz88svo0KEDtm3bBh8fH7FLeqRU35UuKioKJ0+exKlTp5CXlwepVIq+ffsiNDQUISEh6NmzJywtLcUul6jFKS0txblz53Dy5Elh1PwdCwkJweDBg9GjR48Wd2EKEREREREREVFjKC4uxrJly7By5Ur07dsX3377LXx9fcUu62+pqqqq1X/Nz8+HTCYT+q+hoaEICgpimDXR31BSUoJz584J4R11/Y4NHjwY3bt3F7tUeohKS0uRlJSExMREXLp0CYmJibh8+TJu376NqqoqWFpawt/fH/7+/ujSpQv8/Pzg5+eHDh068H9dREREREREREREREREzRjDPIiIiIio1WCYBzUn169fx/jx45GSkoL169dj3LhxYpf0yKqqqsLVq1dx6tQp4a51KSkpMDMzg6+vL4KCgoQRGBgIGxsbsUsmajbKy8tx/fp1xMXFGY2SkhJ4eHigZ8+eCAkJQXh4OHr06MG7rxIRERERERER1SMhIQGvvvoqrl69iiVLlmD27NkwNTUVu6wHUllZiaSkJKH/euLECaSmprL/StQAdfVfz58/j9LSUvZfH1EVFRVITU3FlStXkJiYKDxevnwZpaWlMDMzg7e3NwICAtCpUyfhsXPnzgztICIiIiIiIiIiIiIiaoEY5kFERERErQbDPKi5KSkpwbx58/D5559j5syZWLlyJczNzcUuq1W4efMmzpw5g/j4eMTHxyMhIQF5eXkwMzODv78/AgMDERgYiM6dOyMgIAAeHh5il0zU6DIzM4VJw3FxcYiPj0dSUhIqKirg6Ogo/F4EBgaid+/eaN++vdglExERERERERG1OOXl5Vi9ejWWLFkCf39/fPvtt+jZs6fYZT1U169fx9mzZ436r/n5+TAzM0NAQECt/qu7u7vYJRM1OqVSiatXr+LSpUvC70ZSUhIqKyshlUpr9V99fHzELpkekFKpRFxcnFFoR2JiIvR6PQBALpcjKCjIKLQjICAA1tbWIldOREREREREREREREREDwvDPIiIiIio1WCYBzVXP/zwA15//XV07doVmzdv5gXyIjAYDEhOThYm0FaP3NxcAIBMJoO/vz8CAgLQsWNHdOrUCR07dkTbtm0hkUhErp6o4QwGA+7cuYOkpCQkJiYKj1evXoVWqwUAODs7G00cDwwMRPv27fmzTkRERERERET0EN28eRPTpk1DbGwsZsyYgQ8++AC2trZil9UoDAYDbt68adR7jYuLE/pRTk5OdfZfvb292ZOiFqWqqqpW//XKlStISkqCTqcDALi4uAh916CgIAQGBjK4o4VLT0/HhQsXcPnyZVy+fFnouZeUlMDExATt2rUTwouqHwMCAmBpaSl26URERERERERERERERNTIGOZBRERERK0GwzyoObty5QpefPFF3Lp1C2vWrMHLL78sdkkEIDMzs1bgwdWrV6FSqQAAtra28PPzg4+Pj9Fo3749vL29YWZmJvIRUGtUXl6O1NRU3Lp1y2gkJyfj2rVrKC4uBvDnXf/uvkCCd0IlIiIiIiIiImo6BoMB3377LebMmQNXV1esW7cOAwcOFLusJqNSqWoFHiQmJiIrKwsAYGdnV2f/1cfHh/1XEk15eTlSUlLu2X/V6/UAAIVCIfRfa/Zh3dzcRD4C+rsqKyuRkpKCK1euIC4uDnFxcTh37pzwmSWXy9GpUycEBAQIj927d4ednZ3IlRMREREREREREREREZFYGOZBRERERK0GwzyouSsvL8f777+P5cuXY+zYsfjmm2/g7OwsdllUB61Wi6tXryIxMRHXr19HcnIybt++jVu3biEvLw8AYGZmBm9vb6MJ5p6enmjTpg28vLzg6ekJKysrkY+EWqKSkhJkZGRAqVQiNTUV6enpSE5OFiaNp6WloaKiAgDg6Oho9DPo5+eHgIAA+Pv7QyqVinwkREREREREREQEAOnp6ZgxYwb279+PqVOn4qOPPoKjo6PYZYlGo9EY9V9rBibk5+cDAMzNzWv1X728vNCmTRt4enrC09MTlpaWIh8JtUQlJSVIT0836r9Wh3VU918rKysBAFKptFb/tTo4uTX/Dj8KCgsLce3aNaPgjoSEBBQXF8PMzAy+vr4ICgoSQjueeOIJuLq6il02ERERERERERERERERNTMM8yAiIiKiVoNhHtRSHD16FJMnT0ZFRQW+//57DBs2TOyS6D7k5uYaTS6/ePEiLl26hLS0NBQWFqLmn+Gurq5QKBTCBHOFQgFvb28oFArI5XK4urrC1dUVpqamIh4RNZWKigrk5ORArVZDqVRCqVQiLS0NGRkZyMjIQFpaGlQqFdRqtbCNhYUFPD098dhjj9V5h1IGAhERERERERERtRw///wz3njjDVhYWOD7779HeHi42CU1Ozk5OUb915pDqVSivLxceK2bmxsUCgW8vLzg5eVl1H/18PBg/7WVqaiogFqtrrP/Wv21UqlETk6OsI2FhQW8vLzu2X91cnIS8YjoYdFqtUahHXFxcUhKSkJVVRUcHBzQpUsXIbQjKCgIPXv2ZFg7ERERERERERERERERNQjDPIiIiIio1WCYB7UkGo0G06ZNw65du/DWW2/hP//5D+8i2EKkpqbi6NGjOHbsGI4ePYr09HTY2dkhNDQUAwYMQP/+/WFqairc1U+pVCI9PV24019aWhqKi4uF/UkkEri4uAgTyz08PODm5gZXV1e4ubnB3d0drq6ucHJyglQqhUwm4yTSZqKkpARarRY6nQ4ajQZqtRpZWVnIyspCTk4OsrOzkZmZKUwgrxnSAQA2NjZo06aN0QUHnp6eRncXdXd3h0QiEekIiYiIiIiIiIjoYdPpdJg1axY2b96MqVOnYtWqVbCzsxO7rBahqqoKWVlZQq+1uv9aHZRb3X/V6/XCNhKJROi9Vvdfq792d3cX+q8ymQwymQxSqZT912ZCr9dDp9NBq9VCq9VCrVYjMzMT2dnZUKvVQv+1OkC5rv5rdbjL3YEv1eHbHh4eIh0dNYbKykqkpKQYBXecP38emZmZAAC5XI6goCCj4I6AgAD24ImIiIiIiIiIiIiIiOhvY5gHEREREbUaDPOglmjTpk3417/+BW9vb2zYsAHBwcFil0R3yc7OxokTJxAdHY2TJ08iMTERZmZm6NatG8LDwxEeHo7Q0ND7CmPRarVCyEN2djaysrKEycYqlQpqtRo5OTnIzMyETqertb2VlZXR5PK7v5ZKpbCzs4NMJoO1tTWsra0hlUphY2MDGxsbODg4wM7ODubm5g/zVLUY5eXlKCwsRF5eHvR6PYqLi6HT6Yy+LiwsNJooXv11zWUlJSW19i2TyeDu7g4XFxe4ubnVujigOqjFw8MDMplMhKMnIiIiIiIiIqLmYPv27ZgxYwbs7OywYcMGDBgwQOySHhkajUYIeagO363uv9YM383Kyqqz/2ptbV2r33p3D9bW1lbov9rY2MDR0RG2trawtrZu9f3XsrIyFBUVGfVftVot9Hq9ENBRWFh4z95r9WNd/VcnJyehx+rq6gq5XC6EZdcMyvbw8IBUKhXh6KmpFBcX448//sCFCxeQkJCACxcu4PLlyyguLoa5uTkCAgLQvXt3dO/eHd26dUP37t3ZkyciIiIiIiIiIiIiIqKHjmEeRERERNRqMMyDWqo7d+5g6tSpOH78ON5++20sXbr0voIh6OEqKCjAmTNnEB0djejoaMTHx8PU1NQovCMkJKTJ7s5YVlYGtVr9lxOb715WHUZRX1vAzMwM9vb2sLe3h7W1tXAH0OoJrdbW1rCysoKJiQkcHR0BALa2trCwsICpqSkcHByM9lffBHVLS0vY2NjUua64uBilpaV1rqsO3qgpPz8flZWVwqRwAMjLy0NVVRVKSkqEO29qtVoAQGFhIfR6PQoKClBQUICKiop7nhOJRGIUhnL3hP36JvC7urrCwsLinvsmIiIiIiIiIiKqKSsrC9OnT8eePXswdepUfPLJJ/fsoVHjKC0tRU5OjtBjbWgPtqioSOg/3kt1/9XBwQHW1tawtbUV+o8AYGNjA0tLyzr7r9XbGgwGSCQSAIC9vT3MzMzqfK/6+q9FRUUoKyurc119/dfS0lIUFxcDgNBrru6/GgwGIQilZv+1ett7qT5We3v7v+y91uzBVvdfW2tASmtXUVGBa9euIS4uThjnzp1DWVkZHBwc0KVLF3Tq1AkBAQEICgpCUFAQrK2txS6biIiIiIiIiIiIiIiIWgGGeRARERFRq8EwD2rJDAYDvv32W8yePRtt2rTBhg0b0KtXL7HLahWKiorw22+/CeEdCQkJkEgk6CAoYIoAACAASURBVN69O/r27YuQkBAMHjxYmEzd0tS822FRURH0ej3y8/NRUFAAvV6PwsJCozskVlVVIS8vD8Cfk7DLy8tRUVGBgoICABDCMOqa5F3f5PX6JoxbWFjA1tb2ntvefbe86tCQ6gntwP8mspubmwuhJI6OjjAxMYGNjQ2sra3h6OgIOzs72NjYwM7ODg4ODrCxsYGNjQ2kUilsbGyaLKSFiIiIiIiIiIio2vbt2zF9+nS4u7tj48aNCA4OFrskaqDqvmpeXh6KiopQXFwshAoXFxejqKgIeXl5KC4uhl6vR2VlJfLz8wHU3X+9O8hYp9OhtLQUbm5uQnhGXar3VZeG9F+r910ddHx3/9XBwQGmpqZG+6rZf7WxsYGDg8M9+68ymUwIjyaqT1VVFZKSknDu3DmcO3cO58+fx4ULF1BaWgoHBwcEBQUhODgYwcHBCAwMhI+Pj9glExERERERERERERERUSvGMA8iIiIiajUY5kGPgpSUFLz66qs4evQoXn31Vd6JsREUFxfj9OnTOHnyJE6dOoWYmBiUlZXBx8cH4eHhCA8Px8CBA+Hk5CR2qY8sfl4TEREREREREREZU6lUmDp1Kg4dOoS3334by5Ytg4WFhdhlkYg0Gg0ef/xxvP7661i2bFmjvtfEiROxdetWzJw5E2vWrIFEImnU9yOqplQqERcXJ4zTp09Do9HA3Nwcjz/+OIKCghASEoK+ffvC398fJiYmYpdMREREREREREREREREJDATuwAiIiIiIiJquLZt2yIqKgrffPMN5syZg9jYWHz33Xfo06eP2KW1WBUVFbh48SKio6MRHR2N2NhYlJaWCuEdL730EgYOHAhPT0+xSyUiIiIiIiIiIqJWSi6XY9++ffj222/x9ttvIzIyEps2bUKPHj3ELo1E8u6778LMzAyzZ89u9Pfy8/ODRCLBF198AY1Ggx9++AFmZpx2Rg+XSqXC+fPnheCOs2fPIjs7G6ampvDz80NQUBDeffddBAUFITg4GJaWlmKXTERERERERERERERERFQv/leViIiIiIiohZFIJPjnP/+JoUOH4p///CdCQ0MxdepUfPjhh5BKpWKX1+xVVlbiwoULiI6OxsmTJxETE4P8/HzI5XKEhITgs88+w9ChQ+Ht7S12qUREREREREREREQCiUSCadOmYdCgQXjllVfQu3dvvPXWW1i+fDnMzc3FLo+a0LVr1/DNN9/gyy+/hIODQ6O/n6+vLyQSCaqqqvDzzz9Do9Hgl19+gbW1daO/Nz2a8vPz8ccffwjBHXFxcUhMTATwZ3hRUFAQ3nrrLfTt2xeBgYGwsbERuWIiIiIiIiIiIiIiIiKi+ycxGAwGsYsgIiIiImoKEyZMAABs27ZN5EqIHq59+/bhtddeQ0VFBT766CNERESIXVKzUlVVhatXr+LUqVOIjo7G4cOHodPp4O7ujn79+iE8PByDBg3CY489Jnap9P/x85qIiIiIiIiIiKh+VVVVWL16NRYvXoxu3bph48aN8PPzE7ssaiKjR49GcnIyLl68CDOzxr+X0/nz5xEcHCw8NzMzQ+/evXHgwIEmCROhlq24uBhxcXE4d+4czp8/j3PnzuHmzZsAAG9vbwQHB6Nnz57Co6Ojo8gVExERERERERERERERET0cDPMgIiIiolaDF4fTo0yn02HJkiVYu3Yt+vXrh6+//rpVT9y+desWoqOjER0djaNHjyI3Nxeurq7o3bs3QkJCEB4ejsDAQEgkErFLpTrw85qIiIiIiIiIiKhhEhMTMXnyZCQmJmLlypWYPn06+56PuOPHjyMsLAwHDx7EkCFDmuQ9CwoKaoV2mJubw9/fH9HR0XB1dW2SOqhlUCqViIuLw6n/x96dx8d0738cf89ksQWhlhJUaUtRpFHbhCITorZu1E6rG1fr9rYut7ooequLW7SlltalSuhmKyVjiUxiS6wt2l6hdiILESSZ5ffH/TW3SkhikpPl9Xw85oEz53y/7/Ods3icOecz0dGy2+2KjY1Venq6KlasqCZNmig4OFgWi0UPPPCAbr/9dqPjAgAAAAAAAAAAAPmGYh4AAAAoMXg4HCVBdHS0nn/+eR06dEh///vf9eqrr8rX19foWPkuPj5edrtd0dHRWr16tY4fPy4/Pz+1bt1aVqtVVqtVgYGBMpvNRkdFDnC8BgAAAAAAAHLO4XBoypQpev3119WxY0fNmzdPNWvWNDoW8oHL5VLLli1VtWpVrVmzpkD7rlKlihITE6+a5uPjozp16mjjxo2qXbt2geZB4ZCZmaldu3Zpy5YtiomJUUxMjI4fPy5vb281a9ZMbdu2VZs2bdSmTRvVrVvX6LgAAAAAAAAAAABAgaKYBwAAAEoMHg5HSZGZmakZM2Zo3LhxCggI0NSpU9W1a1ejY3nUqVOnZLfbZbPZtG7dOh05ckRly5ZV27ZtZbVaZbFY1KpVK/n4+BgdFXnA8RoAAAAAAADIvW3btmngwIE6f/685s6dq549exodCR42f/58DRs2TLt27dJ9991XoH1bLBbFxMRcM93Hx0dVqlTRxo0b1aBBgwLNhIJ3/vx57dixI6vAekxMjC5duqQKFSqoZcuWslgsCgoKUrt27eTv7290XAAAAAAAAAAAAMBQ3kYHAAAAAAB4lo+Pj0aNGqUePXropZde0kMPPaRHH31UU6ZMKbK/enb27FlFRkbKZrPJbrdr//79Wb/q9sQTT8hqtapdu3YqVaqU0VEBAAAAAAAAwBCtWrXSzp079corr6hXr14aNGiQZs6cqXLlyhkdDR5w+fJlvfHGGxo2bFiBF/KQpMaNG2vHjh3KzMy8anpmZqYSEhLUsmVLrVu3Tq1atSrwbMg/8fHxWYU77Ha7Dhw4ILfbrXr16sliseif//yngoODFRgYKLPZbHRcAAAAAAAAAAAAoFChmAcAAAAAFFP16tXT8uXLtX79eo0aNUqNGjXSiy++qNdee01+fn5Gx7uh1NRUbdu2TTabTTabTTt37pSXl5eaNWumHj16aNq0aQoODlbp0qWNjgoAAAAAAAAAhUb58uU1a9Ysde7cWc8995xatGihhQsXKigoyOhouEUffPCBkpKSNH78eEP6b9CggUwm03XfczgcSktLU0hIiFavXq327dsXcDp4wsWLF7V79+6swh0xMTFKSkpSuXLl1Lx5c/Xo0UOTJ09WmzZtVKVKFaPjAgAAAAAAAAAAAIWeye12u40OAQAAABSEPn36SJKWLl1qcBKg4GVmZmrGjBl64403VKFCBb399tsaPHiw0bGypKWlacuWLVnFO3bt2iWTyaTmzZvLYrEoODhYnTt3VsWKFY2OigLA8RoAAAAAAAC4dadPn9ZTTz2liIgIjRs3Tq+//rq8vLyMjoU8OHv2rO6++279/e9/17hx4wzJsHLlSvXs2fOG85hMJtWtW1fx8fEFlAq34uTJk1mFO+Li4rR9+3ZlZmaqRo0aCg4OlsViUVBQkFq2bClfX1+j4wIAAAAAAAAAAABFDsU8AAAAUGLwcDjw3xszx4wZoy+//FIhISGaMmWKmjZtWuA5Ll26pJiYGNntdkVHR2vz5s3KyMhQvXr1ZLVas16VKlUq8GwwHsdrAAAAAAAAwDPcbremT5+uMWPGKDAwUAsXLlT9+vWNjoVceuaZZ7RmzRr98ssvKlu2rCEZfv75ZzVs2PC673l7e8vpdOrRRx/VP//5T91zzz0FnA4343A4FBsbq6ioKEVHR2vLli06e/asSpUqpaCgILVp00Zt27ZVmzZtVKNGDaPjAgAAAAAAAAAAAMUCxTwAAABQYvBwOPA/0dHReumll7Rz504NHTpUEyZMUM2aNfOtP4fDoT179shms8lmsykqKkrp6elZxTssFotCQkIUEBCQbxlQdHC8BgAAAAAAADzrp59+0oABA3T48GG9//77evbZZ42OhBzav3+/mjVrps8//1yDBg0yLEdmZqbKlCkjp9OZNc1kMsntduvBBx/UlClTFBQUZFg+XC09PV3bt29XZGSkNm/erJiYGKWlpen2229XmzZtZLFY1KZNGwUFBalUqVJGxwUAAAAAAAAAAACKJW+jAwAAAAAACp7FYtG2bdv09ddfa8yYMVq8eLFeeOEFjRs3TuXLl7/l9p1Op3bv3i2bzSa73a7IyEilpqaqRo0aCg4O1vTp0xUWFqY6dep4YG0AAAAAAAAAADfSuHFjbd26VePHj9fw4cMVERGhWbNmqXLlykZHw0387W9/U5MmTTRgwABDc/j4+KhWrVr67bffZDab5XK5VLduXR0+fFgWi4VCHga7fPmy4uLiFB0dLZvNpujoaF2+fDnre5m3335bwcHBuv/++2UymYyOCwAAAAAAAAAAAJQIJrfb7TY6BAAAAFAQ+vTpI0launSpwUmAwiUjI0MzZ87Um2++qXLlyunNN9/UsGHD5OXlleM2XC6XDhw4kHWTaEREhFJSUlS9enW1b99eVqtVoaGhuvPOO/NxTVBccLwGAAAAAAAA8s+6des0dOhQeXt7a8GCBerQoYPRkZCNH374QV27dpXNZlNISIjRcfTQQw9pzZo1atiwod5991317NlTAQEBSkpK0vnz5+Xr62t0xBIjLS1NW7Zskd1uV3R0tOx2u65cuZJVvMNqtcpisahx48ZGRwUAAAAAAAAAAABKLIp5AAAAoMTg4XDgxhISEvTmm29qzpw5aty4sSZPnqywsLBs54+Pj5fNZpPNZtOGDRuUmJioqlWrqlWrVlk3ivILb8gLjtcAAAAAAABA/jp37pyeffZZrVixQmPHjtX48ePl7e1tdCz8gdPpVGBgoOrVq6dly5YZHUeSFBMTo6NHj6pPnz4ym82SpLVr1yosLEzPPPOMZs+ebXDC4uvixYvaunVrVvGOzZs3KyMjQ/Xq1ZPFYlFwcDBF1QEAAAAAAAAAAIBChmIeAAAAKDF4OBzImQMHDmjs2LFasWKF2rdvr3feeUdt27ZVfHx81k2iq1ev1vHjx+Xn56fWrVvLarXKarUqMDAw6wZeIK84XgMAAAAAAAAFY8GCBRoxYoQaN26sRYsWqX79+kZHwv+bPXu2/vKXv2jPnj1q1KiR0XFuqGHDhvrPf/6jc+fOyd/f3+g4xUJqaqq2bdsmm80mu92u7du3KzMzU/Xq1ZPVapXFYlGHDh1Up04do6MCAAAAAAAAAAAAyAbFPAAAAFBi8HA4kDvff/+9xo4dqx9//FFlypTR5cuXVbZsWbVt2zbrRtFWrVrJx8fH6KgoZjheAwAAAAAAAAXn4MGD6tevn+Lj4zVjxgwNGDDA6Egl3sWLF3XPPffo8ccf1/Tp042Oc1NxcXFq0aKFHnnkEX377bdGxymSzp49q23btik6Olo2m027du2S9N9CKcHBwbJarerYsaOqVKlicFIAAAAAAAAAAAAAOeVtdAAAAAAAQOFw9uxZRUZGZv3K2/79++Xt7a27775bqampunLlirp27arJkyfrrrvuMjouAAAAAAAAAMADGjZsqC1btmjMmDEaNGiQ1q5dqxkzZsjPz8/oaCXW5MmTdfnyZb3xxhtGR8mRoKAgPfDAA1q2bJmOHTum2rVrGx2p0Dt9+rSioqJkt9sVHR2tnTt3ymw2q3nz5rJYLBozZoxCQkJUuXJlo6MCAAAAAAAAAAAAyCOz0QEAAAAAAMZITU2VzWbT2LFj1aJFC91+++3q37+/4uLi1KNHD0VERCg1NVW//PKLTp48qfDwcO3bt0+NGjXSiBEjdOzYMaNXAQAAAAAAAADgAaVLl9a0adO0bNkyrV69Wi1atNDOnTuNjlUinThxQh9++KHGjRunKlWqGB0nxxYvXixJGjRokMFJCqczZ85o8eLFeuaZZ3TXXXepRo0aGjhwoOLi4tSlSxetXr1aKSkpio2N1bRp09S7d28KeQAAAAAAAAAAAABFnMntdruNDgEAAAAUhD59+kiSli5danASwBhpaWnasmWLbDabbDabdu3aJZPJlPUrb8HBwercubMqVqyYbRsOh0Pz5s3TpEmTdObMGQ0bNkz/+Mc/VKtWrQJcExR3HK8BAAAAAAAA45w5c0ZDhgzRhg0b9Oqrr+qNN96Q2czvBRWUwYMHy26368CBAypVqpTRcXKlc+fOstls2rt3r5o0aWJ0HEOlpKQoMjJSGzZs0Pr16/XTTz/Jx8dHLVu2VEhIiB588EG1bt1aZcuWNToqAAAAAAAAAAAAgHxCMQ8AAACUGDwcjpLm0qVLiomJkd1uV3R0tDZv3qyMjAzVq1dPVqs161WpUqVct52ZmanFixdrwoQJOnbsmIYOHarXX3+doh7wCI7XAAAAAAAAgLHcbremT5+u0aNH68EHH9SCBQtUo0YNo2MVe7t371ZQUJDCw8PVu3dvo+PkWlJSkqpVq6YmTZpo9+7dRscpUH/+TiYyMlJOp1MNGzZUcHCwrFbrTQuqAwAAAAAAAAAAACheKOYBAACAEoOHw1HcORwO7dmzRzabTTabTVFRUUpPT88q3mGxWBQSEqKAgACP9fl7UY+33npLx48f19ChQ/XGG294tA+UPByvAQAAAAAAgMJhx44d6tevn1JTUzVv3jw99NBDRkcq1qxWq9LS0hQTEyOTyWR0nDzp16+fwsPDtXHjRnXo0MHoOPnmZt/JWK1WderUSbfddpvRUQEAAAAAAAAAAAAYhGIeAAAAKDF4OBzFjdPp1O7du2Wz2WS32xUZGanU1FTVqFEj61fewsLCVKdOnXzPkp6ers8++0yTJ09WQkKCnnrqKY0ePVp169bN975R/HC8BgAAAAAAAAqPCxcuaMSIEVq0aJFeeOEFvf/++/L19TU6VrGzbNkyPfroo4qKipLFYjE6Tp5dvnxZ/v7+qlWrlg4dOmR0HI9xu93au3evIiIisr6XSUtL0x133KFOnTplvWrWrGl0VAAAAAAAAAAAAACFBMU8AAAAUGLwcDiKOpfLpQMHDig6Olo2m00RERFKSUlR9erV1b59e1mtVoWGhurOO+80LGN6ero+//xzvffeezpx4oT69eunMWPGqFGjRoZlQtHD8RoAAAAAAAAofD7//HO9+OKLuvfee7V48WLdddddRkcqNhwOh5o2baqmTZsqPDzc6Di37MUXX9RHH32kr776So8//rjRcfLsxIkTioiIUEREhNavX68zZ86oSpUqCgkJUUhIiDp16qT69esbHRMAAAAAAAAAAABAIUUxDwAAAJQYPByOoig+Pl42m002m00bNmxQYmKiqlatqlatWik4OFhWq1X333+/TCaT0VGv4nK59M0332j8+PE6cOCAunXrptdee02tWrUyOhqKAI7XAAAAAAAAQOH0888/q1+/fjp06JBmz56tJ554wuhIxcL06dM1evRo7d+/v1gUh3A6napYsaL8/Px0+vRpo+Pk2KVLlxQTE5P1vczOnTvl5eWlZs2aqXv37urRo4cCAwNlNpuNjgoAAAAAAAAAAACgCOCbRQAAAAAoROLj47VgwQI999xzql27turXr6+XX35ZycnJGj16tGJjY3X69GmtXLlSY8aMUVBQUKEr5CFJZrNZvXv31r59+/T111/r9OnTat26tbp06aJNmzYZHQ8AAAAAAAAAkAcNGjTQli1bNHToUPXr10+DBw/WpUuXjI5VpKWkpGjixIkaNWpUsSjkIUleXl567bXXdObMGX300UdGx8mW0+lUXFyc3n33XYWGhqpy5coKDQ3VV199paCgIC1ZskRJSUmKjY3V+PHjFRQURCEPAAAAAAAAAAAAADlmcrvdbqNDAAAAAAWhT58+kqSlS5canAT4n1OnTslut8tms2nt2rX67bffVLZsWbVt21ZWq1UWi0WtWrWSj4+P0VFvmd1u17vvvqtVq1YpMDBQf/3rX9W/f395e3sbHQ2FDMdrAAAAAAAAoPBbtmyZnnrqKdWoUUNLly5V48aNjY5UJL3yyiuaN2+efv31V1WuXNnoOB5VuXJlOZ1OpaSkFJrC5IcOHdK6desUERGhjRs3KiUlRQEBAQoNDVVoaKhCQkJUvXp1o2MCAAAAAAAAAAAAKAYo5gEAAIASg4fDURicPXtWkZGRstlsstvt2r9/v7y9vdWsWTNZrVZZrVa1a9dOpUqVMjpqvtm5c6emTp2qxYsXq1atWnr++ef1/PPPq2LFikZHQyHB8RoAAAAAAAAoGo4ePaq+fftq3759+vTTTzVgwACjIxUphw8f1r333qsPPvhAI0eONDqOx82fP19Dhw7V66+/rgkTJhiS4eLFi9q4caPWrl2rtWvX6j//+Y/8/PzUoUOHrAIe9957ryHZAAAAAAAAAAAAABRvFPMAAABAicHD4TBCamqqtm3bJpvNJpvNpp07d8rLy+uq4h3BwcEqXbq00VEL3OHDhzV16lR99tln8vLy0tChQzV69GjVqlXL6GgwGMdrAAAAAAAAoOhwOBx67bXX9N5772ngwIGaOXOmypUrZ3SsIqFPnz7au3ev9u3bJx8fH6Pj5IuAgAAlJibq/PnzBVbIPD4+XitXrtSqVasUFRWl9PR0NWrUSD169CgRRdUBAAAAAAAAAAAAFA4U8wAAAECJwcPhKAhpaWnasmVLVvGOXbt2yWQyqXnz5rJYLAoODlbnzp1VsWJFo6MWGomJiZo5c6Y+/vhjpaSkqF+/fho5cqSCgoKMjgaDcLwGAAAAAAAAip4VK1boySefVPXq1bVkyRLdd999Rkcq1LZu3aq2bdtq2bJl6tmzp9Fx8s0PP/ygrl276tlnn9WsWbPypY9z585p48aNstls+v7773XixAlVrVpVHTp0kNVqVbdu3RQQEJAvfQMAAAAAAAAAAABAdijmAQAAgBKDh8ORHy5duqSYmBjZ7XZFR0dr8+bNysjIUL169WS1WrNelSpVMjpqoXflyhV98cUX+uijj7Rv3z61adNGI0eO1OOPPy5fX1+j46EAcbwGAAAAAAAAiqZjx46pX79+2rlzp9555x2NGjXK6EiFktvtVrt27eTt7a1NmzYZHSff3XPPPYqPj1dCQoJHvi9xOp3avXu3bDabVq5cqS1btmQVVu/evbt69OihwMBAmc1mD6QHAAAAAAAAAAAAgLyhmAcAAABKDB4Ohyc4HA7t2bNHNptNNptNUVFRSk9PzyreYbFYFBISwi+83aK4uDhNmzZN4eHhqly5soYOHaq//OUvql27ttHRUAA4XgMAAAAAAABFl8Ph0KRJkzRx4kQNGDBAM2bMkJ+fn9GxCpUlS5aof//+2rZtm1q0aGF0nHy3bds2tW7dWo888oi+/fbbPLVx7NgxrVmzRmvWrNH69euVmpqq+vXrq0uXLurSpYs6derEdgYAAAAAAAAAAACgUKGYBwAAAEoMHg5HXvzx193sdrsiIyOVmpqqGjVqKDg4WFarVWFhYapTp47RUYulU6dOacGCBfroo490+vRpde3aVaNGjZLVajU6GvIRx2sAAAAAAACg6LPZbBo4cKD8/f21dOlSNW3a1OhIhUJGRoYaNWoki8Wi+fPnGx2nwLRo0UI7d+7Ub7/9llW4OykpSVOnTlXnzp0VHBx81fwOh0PR0dFZBTz27t2rsmXLqlOnTuratau6dOmi+vXrG7EqAAAAAAAAAAAAAJAjFPMAAABAicHD4cgJl8ulAwcOKDo6WjabTREREUpJSVH16tXVvn17Wa1WhYaG6s477zQ6aomSkZGh5cuXa9q0aYqOjlbz5s01fPhwDRw4UGXLljU6Hm7Bjz/+qMGDByszMzNr2qlTpyRJNWrUyJrm4+OjBQsWqEmTJgWeEQAAAAAAAEDeHD9+XP369VNsbKwmT56sUaNGGR2pwLjdbkVGRspiscjHxydr+vvvv68333xTBw8eLFGFwuPj43XXXXfpwQcf1Jo1azR9+nRNmjRJqampevrppzVnzhwlJCRo06ZNWrlypVauXKmUlBTVq1dPVqtV3bt3V2hoqEqXLm30qgAAAAAAAAAAAABAjlDMAwAAACUGxTyQnfj4eNlsNtlsNm3YsEGJiYmqWrWqWrVqpeDgYFmtVt1///0ymUxGR4WkuLg4zZ49W1988YV8fX01ZMgQ/fWvf6XAShH1yy+/qEGDBjma9+DBgzmeFwAAAAAAAEDh4HA4NGnSJE2cOFGPPPKIPvvsM1WsWNHoWPkuNjZWDzzwgO68807961//0sMPP6ykpCTdfffdGjFihCZOnGh0xAJntVq1fv16Va1aVcnJyXI4HJKk2rVrq06dOoqJiVGpUqWyvpvp0aOHGjVqZHBqAAAAAAAAAAAAAMgbinkAAACgxKCYB34XHx8vu92u6OhorV69WsePH5efn59at24tq9Uqq9WqwMBAmc1mo6PiBs6ePas5c+bo008/1alTp9S9e3eNGDFCVquVz66Iadasmfbt26fsLlGYTCbdd9992rNnTwEnAwAAAAAAAOAp69ev18CBA1WhQgUtWbJEzZs3NzpSvpo3b56eeeYZud1uuVwutW7dWrVr11ZkZKR+/fVXVahQweiIBcpms2nkyJH6+eefZTKZrroebDab9fTTT8tqtSosLEzly5c3MCkAAAAAAAAAAAAAeAZPNwEAAAAo9k6dOqWvvvpKzz33nOrWrav69etrxIgRio+P18iRIxUVFaWkpCRFRERozJgxCgoKohhEEVCtWjWNGzdOhw8fVnh4uFJSUtSlSxfVq1dPb731lo4ePWp0ROTQ4MGD5eXlle373t7eGjJkSAEmAgAAAAAAAOBpISEh2rNnj+644w61adNG06ZNMzpSvvrxxx/l5eUll8slSYqNjdVXX32lO+64Q+fOnTM4XcHZvn277r//foWGhuqXX36RpGsKO7tcLk2YMEG9e/emkAcAAAAAAAAAAACAYsPkzu5nbwEAAIBipk+fPpKkpUuXGpwE4dg2dgAAIABJREFU+e3s2bOKjIyUzWaT3W7X/v375e3trWbNmslqtcpqtap9+/by9fU1Oio87JdfftHnn3+uf//730pISFCnTp00aNAg9e7dW2XKlDE6HrJx8uRJ1a5dO+um9j8zmUw6duyYAgICCjgZAAAAAAAAAE9zOp2aOHGiJk2apJ49e+rzzz+Xv7+/0bE8LiQkRBs2bLhmuo+Pj9xut0aMGKG33nqrWK77pUuXtH79eq1atUpz587N9trvH23cuFEdOnTI/3AAAAAAAAAAAAAAUEAo5gEAAIASg2IehU9cXJwaNmyocuXK3VI7qamp2rZtm2w2m2w2m3bu3CkvL6+rincEBwerdOnSHkqOws7pdGrjxo2aPXu2vvvuO/n5+alPnz4aPny4mjdvbnQ8XEe7du0UExNzzU3dZrNZbdu2VVRUlEHJAAAAAAAAAOSHjRs3asCAAfL19dWSJUvUqlUroyN5VLVq1ZSQkJDt+97e3ipXrpxiYmLUqFGjAkyWP86cOaO1a9dq1apVWrNmjS5evKhGjRqpadOmWrZsmRwOhxwOx3WX9fb21vTp0zV8+PACTg0AAAAAAAAAAAAA+cdsdAAAAAAAJU9KSoqGDBmiFi1a6JNPPsn18mlpabLZbBo7dqxatGghf39/hYWFyWazyWKxaMmSJTp37pxiY2M1efJkWa1WCnmUMF5eXrJarVq6dKmOHj2qsWPHasOGDQoMDFSLFi00bdo0JSUlGR0TfzBo0KDrTjeZTBo8eHABpwEAAAAAAACQ3zp27Kjdu3erYcOGevDBBzVt2jRl95tEhw4d0rZt2wo4Yd4lJyffsJCH9N9rn9WrV1eVKlUKKJVnuVwuxcXFafz48WrRooVq1Kih4cOH6/Lly5oyZYqOHz+un376SYsXL9b27dtVqVIleXt7X7cts9msAwcOFPAaAAAAAAAAAAAAAED+Mrmz+xYcAAAAKGb69OkjSVq6dKnBSUq21atX68knn1RycrIcDoc6duyo9evX33CZS5cuKSYmRna7XdHR0dq8ebMyMjJUr149Wa3WrFelSpUKaC1QVMXFxWn27Nn68ssv5XQ61aNHDz377LMKCQmRyWQyOl6JlpycrGrVql3zy4xeXl46c+aMbrvtNoOSAQAAAAAAAMhPbrdb7733nsaNG6fu3btr3rx5V13vP3/+vJo2bapz587p4MGDql27toFpcyYqKkrt27fP9n1vb28FBgZqzZo1ReraZ1pamjZs2KBVq1Zp5cqVOnXqlOrWravOnTure/fu6ty5s0qVKnXdZQ8fPqxOnTrpxIkTyszMvOb9Bx98UJs2bcrnNQAAAAAAAAAAAACAgkMxDwAAAJQYFPMw1vnz5/XKK6/os88+k8lkksvlkiSVKlVKFy5ckK+vb9a8DodDe/bskc1mk81mU1RUlNLT07OKd1gsFoWEhCggIMCo1UERl5KSoi+//FKff/65du7cqQYNGmjo0KHq37+/6tSpY3S8Eqtbt25au3atnE6npP8W8ggLC9OqVasMTgYAAAAAAAAgv0VGRqp///7y9vZWeHi42rRpI7fbrUceeUSrV6+WJLVv314RERGFvjjzzJkz9eKLL15TvFj673XPbt26KTw8XGXKlDEgXe4cOXJEK1as0IoVK7R582a5XC5ZLBZ169ZN3bt3V6NGjXLc1pkzZ2S1WvXzzz9fU9CjatWqOnv2rKfjAwAAAAAAAAAAAIBhKOYBAACAEoNiHsb54YcfNHToUCUlJV3319YiIyNVrlw52Ww22e12RUZGKjU1VTVq1FBwcLCsVqvCwsIosoB8sWvXLn322WcKDw9XcnKygoODNWDAAD3++OOqXLmy0fFKlMWLF2vAgAH6/VKF2WzWl19+qb59+xqcDAAAAAAAAEBBSEhI0JAhQxQREaFJkybJx8dHr7zyStY1Q5PJpDlz5mjYsGEGJ72xkSNHas6cOcrIyLhquslk0siRIzV16lSZzWaD0t2Y2+1WXFycli9frhUrVmjv3r3y9/dXWFiYevbsqS5dutzStfOLFy/q4YcfVmRk5DXFTlJSUlSxYsVbXQUAAAAAAAAAAAAAKBQo5gEAAIASg2IeBe/8+fN65ZVXNHfuXJnNZrlcrmvm8fHxkclkUkZGhgICAtSpUyd17NhRnTp10h133GFAapRUTqdTGzdu1IIFC/Tdd9/p8uXL6tixowYNGqTHHntM5cqVMzpisXfp0iXddtttunLliiSpdOnSSkhIkJ+fn8HJAAAAAAAAABQUl8ulyZMn64033pD032u3f1S2bFkdPHhQtWvXNiJejlgsFsXExFwz/c0339T48eMLPtBNpKenKyoqSitXrtS3336r48eP64477lCXLl3UvXt3denSRb6+vh7rLyMjQwMGDNC333571XdHW7duVatWrTzWDwAAAAAAAAAAAAAYiWIeAAAAKDEo5lGwfvjhBw0dOlRJSUnKzMzMdj6TyaT69evr+++/1z333FOACYHsXb58WatWrdKCBQu0du1alSlTRr169VLv3r3VtWtXeXt7Gx2x2Orfv7++/vprud1u9e7dW4sWLTI6EgAAAAAAAIAClpycrHvvvVeJiYlyOBxXvefj46Pg4GCtX79eJpPJoIQ35u/vr/Pnz0uSzGazzGaz5s+fr/79+xuc7H+SkpK0fv16rVy5UsuXL9eFCxfUqFEj9ejRQ927d5fFYsnX8XU6nRo5cqRmzZolt9sts9msuXPn6sknn8y3PgEAAAAAAAAAAACgIJmNDgAAAACgeDl//ryeeeYZde3aVQkJCTcs5CFJbrdbv/32W6H+BT2UPGXKlFHv3r21cuVKnTp1Su+//77i4+PVq1cv3XHHHRo1apTsdrvRMYul/v37KzMzUw6Ho1Dd2A4AAAAAAACgYLjdbg0ePFhJSUnXFPKQpMzMTG3atEnz5883IN3NnTp1KquQh5eXl0qVKqVVq1Z5/Hrn3Llz1bp1a6Wnp+d4mcOHD2vatGkKDQ3V7bffrv79+ys+Pl4TJkzQ0aNH9dNPP2ny5MkKDg7O90IpXl5emjlzpt58801Jksvl0oEDB/K1TwAAAAAAAAAAAAAoSCa32+02OgQAACh8jhw5oh07dhgdA/CoDz/8UJL00ksvGZyk+Nq/f78+/PDDrJtUc+P111/Xfffdlw+pir8HHnhAdevWzbf2o6KidPr06Xxrvyg5efKk7Ha7oqKidObMGQUEBCgkJETdu3c3Olqx4XQ6NWzYMLndbn322Wfy9vY2OhJKiNtvv13t2rUzOgYAAAAAAECJ98477+i1116Ty+XKdh6TyaSyZcvq4MGDqlWrlsf6Tk1N1YkTJ5SSkqKLFy/K6XTqwoULkqSKFSvKbDarfPny8vf3V61atVSuXLlr2rDZbAoNDZWXl5cqV64sm82mpk2beiyjJE2cODGrCMaCBQs0cODAbOfdsWOHvv32W61YsUL79+9X5cqV1bVrV/Xq1UthYWEqX778NctERkbq7NmzHs18IwsXLtSKFSt099136+233y6wfguKt7e3unXrJl9fX6OjAAAAAAAAAAAAAChAFPMAAADX1a9fP4WHhxsdAwCQA3379tXixYvzrX0fH5/r/vohABQn3t7eyszMNDoGAAAAAABAiXb8+HHVrVtXLpdLN7ulycfHR1arVatXr85VHy6XSz/++KN27dqlAwcO6Ke9e/XL/v06fvq0LqWn56qtcqVLq3aNGmrQpIkaNWmixo0ba9++fXr33Xd19913y2azqU6dOrlq80acTqdGjhypWbNmye12y2w2KzAwULGxsVfN9+OPPyo8PFzh4eE6dOiQ6tWrp549e6pnz55q167dDYsoZ2ZmqnTp0jcspoLcW7Vqlbp162Z0DAAAAAAAAAAAAAAFiJ+3BQAA1+V0OtU2rIdenjrL6CgAiqiL51N0PvGcLiQl6nxyolISzupCUqIuJCcpJeGsEs+e1vnEc0pNSdKl1FR1eLi3Xpg8zejYRc6Uvz4np9OZr304HA69/OGnatu1Z772AwBGiVmzQlNeet7oGAAAAAAAACVezZo1NWvWLC1atEiRkZGSJJPJdN2C05mZmfrhhx/0xRdfaNCgQTdsd+/evVq9erWiNm1StN2u82lpKm02q6GPj+7NyNBAt1u1JVWXVEtSJUnlJJklVfz/NlIkuSVdlJQk6YSkM1eu6LfDh3XwyBGtWrdOUzIzleFyycfbW/Xr1tXSpUvVvXt3NWzY8JbHJj09XQMHDtS3336bVejE5XIpLi5OsbGxqlatmr777jt99dVXio6OVq1atfToo4+qd+/eslgsMplMOerH5XLJ5XJpzCfz1DKkyy3nLukyMzLUt2ldiqYDAAAAAAAAAAAAJRDFPAAAAADkC7+K/vKr6K+AenfddF6n0yGzyVwAqQAAAAAAAAAAQGFlNps1bNgwDRs2TMnJyVq5cqWWL1+u1atXKz09XV5eXtcURRgxYoQ6deqkgICAq6bv2LFDixYt0vKvvtLhEydU3cdHHRwOTXK71V5SY5dLXunpOc7m//9/VpJUW1KzP77pdkvp6XJI2iPJ7nAoav16vbtpk0aPHq176tZVr969NWDAADVr1ky5lZqaql69eikqKkoul+uq93x8fNS/f3/9+uuvqlq1qnr37q133nlHFotFZjPfvQAAAAAAAAAAAACAUfjGFgAAAIDhvLy8ZeKGUgAAAAAAAAAA8P8qVaqkwYMH65tvvlFCQoLCw8P1yCOPqEyZMjKZTPL19ZXb7dalS5f03HPPSZIuXLigTz75RM0bN1bLli31wyefqO+JE9oq6WRmpsLdbo2U1FSSVz5k9pYUJGmUpK9dLp3OzNRmST2PHNG306apefPmanX//ZozZ47S0tJy1Obp06fVpk0b2e32awqZSFJmZqYOHz6sJUuW6OTJk/rkk0/Url07CnkAAAAAAAAAAAAAgMH41hYAAAAAAAAAAAAAAABAoeXn56c+ffpo6dKlSkpK0rJly9S3b1+VL19eLpdL33//vfr06aO6tWrplRdf1D0HDihC0v7MTP1TUisZc5OUl6R2kt6X9J+MDMVKar5nj/46fLjq1qql8ePHKzk5OdvlDx06pNatW+vXX39VZmbmDfs6cuSIvL29PRkfAAAAAAAAAAAAAHALKOYBAAAAAAAAAAAAAAAAoEgoXbq0evbsqfnz5+v48eMaPHiwfLy9tfa77/S31FSdcrm01O2WVZLJ6LB/EiRplsulI06nnktJ0dS339adtWvr/fffV0ZGxlXz7tixQw888IBOnDhxzXt/5nA4NG3aNDmdznxMDwAAAAAAAAAAAADIDYp5AAAAAAAAAAAAAAAAAChSli9fruaNG+u7RYs0weHQCYdDr0nyNzpYDlSVNEnSbw6HRqWl6c1//EP3NWyotWvXSpJWr16t9u3bKzU1VQ6HI0dtnjx5UqtXr86/0AAAAAAAAAAAAACAXKGYBwAAAAAAAAAAAAAAAIAi4cKFCxo8cKAeefhhWU6e1EGHQ2Ml+RkdLA8qSnpL0gGnU/cdPaqwsDBZQ0LUs2dPXblyJauQh7e3t0qVKqVSpUrJ19dXZvP1b/mKi4sruPAAAAAAAAAAAAAAgBvyNjoAAAAAAAAAAAAAAAAAANxMbGys+jz6qC6dPq2Vkrq5XEZH8og7JH3tdOprSQM3bZLZbNZdDRqoZs2aqlKlivz9/eXv76+KFStm/fnHv/9xGgAAAAAAAAAAAACgcKCYBwAAAAAAAAAAAAAAAIBCbfny5RrQt6+CMzO1wOlUNaMD5YPHJbVxudTPbNbe48f18ccfy2q1Gh0LAAAAAAAAAAAAAJAHZqMDAAAAAAAAAAAAAAAAAEB2Zs+erccefVSD0tO1qpgW8vhdgKQIh0PdLl/WQ2FhWrx4sdGRAAAAAAAAAAAAAAB54G10AAAAAAAAAAAAAAAAAAC4noULF2r4889rvNut140OU0BKSVrocul2SYMHDlTZsmXVq1cvo2MBAAAAAAAAAAAAAHLBbHQAAAAAAAAAAAAAAAAAAPizH374QU8OGaLRJaiQx+9Mkj6Q9LTbrb69e8tutxsdCQAAAAAAAAAAAACQCxTzAAAAAAAAAAAAAAAAAFCoHD9+XIP69VN/SZONDmMQk6RP3G51cTrV97HHlJCQYHQkAAAAAAAAAAAAAEAOUcwDAAAAAAAAAAAAAAAAQKHhdrs14IknVDUtTTNcLqPjGMosaZ7LJZ/kZA0dONDoOAAAAAAAAAAAAACAHKKYBwAAKDTeeuoJoyMAAAoBzgco6YrjPlAc1wkAAAAAAAD5Z+HChYreskWLMjNVzugwhUAlSV9kZmrNunVavny50XEAAAAAAAAAAAAAADlAMQ8AAOAxjzWsqcca1szz8m6324NpiqdbGV/culvdxlHylNTthfNB/iup21Zhkd/ng6K6D9xoTIrqOgEAAAAAAKDgpaWl6R+vvKKnJTW/xbZMOXhdb/7qkhJu0l52fZSRVEtSD0n/lpRxi+vwu2BJT5jNGv3Xvyojw1OtFrykM6c1bfRIPd0uUI83qsX3bwAAAAAAAAAAAACKLYp5AAAAj/nm4MlbWn78vKUeSgLkj1vdxoGSgvMBirv8Ph8Ux32gOK4TAAAAAAAA8sfChQuVlJioCR4oEOv+w5/Xe2U3/xBJr9ykvez6SJIUJWmgpEWSgiT9mrf413jH5dLho0f13XffeajFgjd97Iuqccedmrpqoxbvjtfoj+YaHQkAAAAAAAAAAAAA8gXFPAAAAAAAAAAAAAAAAAAUCnNmzFBvt1vVDMwwXpJd0sY8LFtG0p2SnpC0TtKLkjpLOu+BXHUlPWQyafaMGR5ozRgH47brkWdfkF9Ff/n4+qp16EMU1AcAAAAAAAAAAABQLHkbHQAAABR/R389qC8+eFv7d2yVJDW8/wENGfOG6tzdMGuexxrWlJS7X7r/fZlP1sVowfsT9eO2aKVduHBVO0d/Pagv3p+k/bHbJEmNWrTSoNGv5ajv7Kbv2LBO3835WPE/7ZV/lWpqFdpVfV8crTLl/K5ZdtbGWM2d+Kr2bY1WqTJl1Kxtez01bqLK+1fK8xj9/qckhTzeTyMmTcnReB37z89a8N5E/bRjq8xms+5pHqSn/vGWRnXvcNV65nY8cpN92veR+vjVl/Tbz/tVv3FTjXxnqjIz0vXJq3/T0V9/1l33NdeL705TlRoBOVqnq9petUnzJo/Xz7ti5XK51LhlGw35+xuqVf/ua/PeZJu4Zry8vHRfa4uGjZt43Qw5GYObuZR6QUs+nqLt69cq+explavgr+bBHRTWf4jubhqYq75ysm/cSG7G1NP7oSc/x/zcD3PS5s32WU9sN0UN5wPOB5wPcr4efxzf3G5HRw7u14L3Jujgzh0ye3mp4f0PqPuQZ9Q8uEOusnrqmPfndfrjPBMWfK3GLdvK/v1yffjy8Kzpv8+bm/0sr+c9AAAAAAAAFB4HDx5U3N69+lcB9efOZnpZSTMlDZe0V5LvLfTxjKRYSR9Iuv6VxVy253SqZ1SUTpw4oYCAnF9DzW+5uZbXt2nd67Zxveui2V33u9XrzVx7BAAAAAAAAAAAAJDfzEYHAAAAxdvpo0f01pN91aJjqGbaturTDdv1YM/HNHnEk0o8fSprvrzc7PT7MrPHj1Wvp4Zr7ubdGjd74VV9T3pmgNp06a6Ztq2aEbFFrUIf0sSn++v00SM37Tu76ZNHDFXHR/po/vYDmrx0lS6eT9Hcia9dd9kZr72sLv2G6DP7br339Q9Kv3JZ89+dcNW8uR2jbw6ezHrl9MHtP47Fp+u3aeb6ber0aF/962/Dr1nX3IxHbrMv+XiKRv7zQ30WtVt1GzbW1NEjFT79A418Z6rmbt6pWvXv1r8nv5Wjdfpz21Neel4dH3lCM9dv00zbVrWydtXEp/vr7Ilj1x2HG20Tfx6vGRFb1KZzN/3rpefzPAY389HYUSpXvoLeWbJSX8T+otdmL9Tpo4c1tk+3XPd1s33Dk2Pq6f3Qk59jfu6HOWnzRvusp7abooTzAeeDPy7L+eDm63G9aTnZjk4eideUl57Tw0//RfO2/qjJS1bpyuVLmvh0/1xn9dQx78/r9NVPx3R7nbqav/2AGrdsK0kK7tZLc6N2ya9CRS3a9Z+seXOzn+X1vAcAAAAAAIDCIzIyUn5eXmqbz/2YcjBPZ0lBkt71QH/PSFrugXYkqaMkb5NJdrvdQy16Rm6u5f3xOuLvrz+72XW/W73ezLVHAAAAAAAAAAAAAPnN2+gAAACgeFvy0QfqMfRZdek7OGta+56PyZGZqeWfzdBT2fyyfW489vyLahDYQpJ0f/tO/7tx66MP1Oup4er0WN+sea29++vyxVQt+XiKRr33UZ76++PNZKVKl9GTr07QX0LbXHfesP5DFdiuoySpdNlyGvi3V/XmkMevmqcgxmjJx1PU88nnrxqL4G69JEkfvjw87+3mMntY/yGqVf9uSdKjz72oZ9oHatAX32RNe+y5FzX6sS55yvL48L/K8lDPrH9nfdYfTdELk6dm5c3JNnG98Wrf8zE5nQ79vDvulsYgO3u32PWXf34ov4r+kqQ7GzXRqPc+0nBr6zz3ld2+kVM5GdOb9ZXb/dCTn+Pv8mM/zEmbN1IQ+31hw/mA88EfcT7Im5xuR48/P0pN27aTJNW66x6NmPiBXujaLs9Zb/WY92dmLy+1DeuhqJXfquuAJ7Omb/ruK1ke6qVSZcpmTcvNfnar5z0AAAAAAAAYL9puVxuTyeM3NOWkeMf1TJXUXFI/SXfdQv/3Soq/heX/qJykQG9v2e12PfHEEx5q9dbl5lpebtzsul9erzdz7REAAAAAAAAAAABAfjMbHQAAABRve2Oirnqg9nf3dwjRnpjNHunjrqaB2fbd0hp2zfRWoV21NybKI31Lkl+Firp4PuW67zV6oPVV/64aUFvJCWevyZnfY7Q3evN1x6KZpf2ttZvL7PUa3Zf190pVql4zrXK16rqQlJinLL8/tPxHrUK7ak905FV5c7JNZDdevz/I/Eee+vwaNA/SO8OHaFfURjmdDklStVp1rroZMLd9Zbdv5FROxvRmfeV2P/Tk5/i7/NgPc9LmjRTEfl/YcD7gfPBHnA/yJifb0Y9bo3Vfm6vHoOad9W/pfHKrx7zr6fRYX238dslV09Z/s1ihfQbecLkb7We3et4DAAAAAACA8Q7/8osaOhweb9f9p1dOVZU0SdIID/TvSQ0yMnTk0CEPt+pZN7qWlxs3u+7nqevNXHsEAAAAAAAAAAAA4Gme/iELAACAq6SmJOv5Ti2v+55v6dIe6aNU6TLXnX4hJUn+VapdM71S1epKTU7KU18XkhK18F//1K6ojUo5lyCX03nD+f0qVLzq3z6+vnK7r75dryDGKLuxKO9f6ZbazW32MuX8sv5uMpuvO+3P45NT11uXSlWvvjkvp9tEdvNdb5qnPr9Xps3W0k/+pTkTXtWFpETd2aiJWoc+pLD+Q+Tl7ZOnvrLbN3IqJ2N6s75yux968nP8XX7shzlp80YKYr8vbDgfcD74I84HeZOT7ehCSpIqVKp8w3YK+ph3PTXuuFO+pUvryMH9qtuwkfbv2KqyfuV1Z6MmWfPkdj+71fMeAAAAAAAAjJd47pxuK4B+cnN160lJX0haJKl/HvvbL6l+Hpe9nqqSfj1zxoMt3prcXsvLjZtd98vL9WauPQIAAAAAAAAAAAAoCBTzAAAA+ap8pcqatjrymodAC0IF/8pKTjijagG1r5qenHBG5f/0kKvJZFJmRoZ8fH2zpl3vl5em/f0FBdxZX28vWq7bbq8hL6///nfqsYY185yzIMaogn9lpZw7q6o1a101PeXc2evOn9PxMPLz/bOUxAT531b1qmnJCWdUofL/bvnM6TaR3Xjl5xiULV9BQ8eO19Cx43UhOUn7tti1av4c7Y/dptHT53i0r5zKyZjeTG72w5z2mds2c6Kgx7Yw7TsFhfPBzXE+8Iyifj64VeX9K+lCcpIqV6ue/TyFJGunR/tqwzeL9dS4iVr/zWKFPjHwqvfzYz8DAAAAAABA4Xbp8mWVNTrEdXwqqbOkh/K4/CxJD3sujspJupia6sEWb01Ru5ZX1PICAAAAAAAAAAAAKJrMRgcAAADFW/PgDvppW8w10w/EbtPoR7vka99N27bTtnWrr5m+LWKNmrZtd9U0/yrVdO7Uiaum7d+x9Zplf94VqydeGK1qAbWzburKuHLllnLmZoxMJlOe+mgW/KC22364Zvpu+6brzp/T8TDy8/2z3VGbrpm2LWKNmlkezPp3TreJ7MZrb8zma6Z5agwea1hTiadPSZIqVKosy0M9NW72F9oTHenxvnIqJ2N6M7nZD3PaZ27bzIn8Gtvs9tnCtO8UFM4HN8f5wDOK+vngVjVu2faafEcO7teobv9b/4I+5mWnbdce2r5+rS4kJWpX1EYFd7v6cYb82M8AAAAAAABQuFWuVEnJBdhfTq9o3SPpaUn/yEMfMyWtl/S3PCybnURJVapV82CLt6aoXcsrankBAAAAAAAAAAAAFE0U8wAAAPnqiRde1pKPPtCWtauUmpKsy2kXFbspQv96ebh6j3gpX/vuM/Jlrfj3LNm+WqTzied0ISlR679erBX/nqUnRr581bzNLO315b/eUeLpU7pyKU277Zu0NnzBNW02CGyhLz6YqLMnjsmRmanTR49o1vgxt5QzN2NUufrt+nl3nJyOTO2JjtRzHVvkrI+RL2vFvE+14ZtwXUhKVGpKsuzfL9O6JQuvO39Ox8PIz/fP1i35QlGrvlNqSnLWZ71qwVw98cL/PuucbhN/Hq+L51MUs2aFvpk1/Zp+PTkGM157Wcf+87MyMzKUkpig/2vn7oOsqs87gH/v7r0bKRq34CCuoARBEC0MDisYHKYBSX2bomJIY+2EdTHKAAAKlklEQVSYiZOgVptAVKxjaoxvCVRhOtq0Y2OT2BhfC9ZpYytRBzaoA4kBo4uMDrXy4lu1Wo3gsrv9o8QJrcBd2N1zd/18ZnZ2997z8v095/z2zJy953nwe9/d5aHy3q53NTXdm67Mw2r32dVtVqOnaru7OVtLc6e3uB7snetB9+gP14P9cc5FX819f70461atzPb3f52Xnm/NbVfNy2nnfanHs3b1vDzgdwbmuMlTs+TyS9I8/bMZMPDAXd7viXkGAAAAQG0bPGRIXis6xG4sSPKzKpbbluTfk9yd5OQktyV5JMnB3ZjltVIpgw89tBu3uH/62r28vpYXAAAAAAAA6JtKnZ2dnUWHAABqz5w5c7L5v7fl60v+tup1Zo9t+vDnB9Zv+fDnrS9tzD/cfGPWPbEy7Tt2ZPioo3P2Vy7N5Jmn7nXdave3u/Ve2tCaOxddn+fWPJUkGTdpcv7k8qtz5NHH7LLcO2+9mTtu+EbWrlqR7e+/n9+bMjVf/oubPnwI9Tfbfvs/38gPFn4rv2x5PO+983aaRhyVz138tdw878JdltvdePanRkmy6uGHcudf3pA3X92aQw47PF+88ptpnv7Zqur18gvP54cLr8uzq59MXV1djm0+MRd84/pcNGPy/6tdtfWoNvtHjbva16oxe2xTvvvTp/K9667Os6ufSEdHR45tnpLzF1yTYUeN3mXZas+J365XqVTKmImT8qU/vzZfPeP396kGe/PMEy35lx/dkdY1T+X9997NoEMPy+STT8nnL71sl4ebu1rv/5u1WtXWtDvnYXcfx56Yh13d5p7mbHecN0ly89fm5vCDDsi9997bpfW6olQq5euL/yafPvUPq1re9cD1wPVg3+d1V+qxu9ef/+XP88OF38qLz67LwYMG55QvfDFnfeWSXfbTm3/z9nQ8W9c8lavPOyvfvvefM3r8xF3e25d59lH7qMaqn/xTbp53YdwmAwAAACjW/Pnz89htt+XpDz7olu2Vqljmt+8IlXbz+m+sSnJSko497OMTSQYnmZhkdpJzd77WnUY2NOT8q67KNddc081bTrZv354DDjggC277+5ww4w+qWqcn7pnv7b7f/txv7s17j20ffJA/Gj8iy5Yty6xZs7q8PgAAAAAAANB3aeYBAHykfWnmQd80e2zTPn3wrJb0hzHUmiJq6jjum1ps5kHf1B/mYH8YA8XQzAMAAACgNixdujTnzJ6dNzs7c3DRYWrU5iTDkixfvjwzZszo9u3vSzMPdk8zDwAAAAAAAPj4qis6AAAAAAAAAAAAwLRp01Kur8+yooPUsAeSHDhgQKZMmVJ0FAAAAAAAAAD2QDMPAICPsdljm3b53hf1hzHUmiJq6jhCsfrDHOwPYwAAAACAj7vBgwfnzDPPzO2VStFRatbtlUrOPe+8DBw4sOgoAAAAAAAAAOxBuegAAAAfZW8P4j6wfksvJal9+1OrWq9jNWOr9TEktXU+12pN+8JxpBi1NH9qnetBbY8hcT4DAAAAQDXmXnRRZtx/f1Yl+XTRYWrMT5L8qq0tP7jwwqKjAAAAAAAAALAXmnkAADXJw6zV68+16i9jq6Vx1FIWqIZztnr9uVb9ZWz9ZRwAAAAA0JOmT5+emZ/5TC5tacnqtrbUFR2oRrQnuaJSyTlnnJHjjz++6DgAAAAAAAAA7IX/dwMAAAAAAAAAADVj0eLFWdventuLDlJDFifZ0NmZby9aVHQUAAAAAAAAAKqgmQcAAAAAAAAAAFAzJkyYkAVXXpl59fV5pugwNeDJJFfV1eW6G27IUUcdVXQcAAAAAAAAAKqgmQcAAAAAAAAAAFBTrr322kw64YScU6nk9aLDFGhzks9XKpk5c2Yuv/zyouMAAAAAAAAAUCXNPAAAAAAAAAAAgJpSLpdz9/33Z8fQoTmlUsnbRQcqwOtJZlYqOehTn8qdd92VUqlUdCQAAAAAAAAAqqSZBwAAAAAAAAAAUHOampryyOOP55XGxpxaLueNogP1os1JTq5Usn3o0PzbY49l0KBBRUcCAAAAAAAAoAs08wAAAAAAAAAAAGrSyJEj8+jKlXn1sMNyYkNDNhQdqBesSzKlUknbkUfmpytWpKmpqehIAAAAAAAAAHSRZh4AAAAAAAAAAEDNGjNmTJ5YsyaHjB+fyeVy7ik6UA+6I8nU+vocfeKJWbV6dUaMGFF0JAAAAAAAAAD2gWYeAAAAAAAAAABATRsyZEgeXbEifzx3br5QKuX8urq8VXSobvR6ks/V1+fLpVIunj8/Dy9fnsbGxqJjAQAAAAAAALCPNPMAAAAAAAAAAABq3oABA3LrrbfmoYceyr82NmZMpZLbk3QUHWw/7EjyV0nGlMt58pBD8sjy5fnOwoWpVCpFRwMAAAAAAABgP2jmAQAAAAAAAAAA9Bmnn3561r/4Ys69+OJcXFeXSZVKliXpLDpYF7QnuTvJhEolV1QqmXvZZWl94YVMnz696GgAAAAAAAAAdAPNPAAAAAAAAAAAgD6lsbExS5YsydpnnsmI007L7FIp4xsacmeSbUWH24P3kvxdknGVSs6rq8uEs87Kr557LjfddFMOPPDAouMBAAAAAAAA0E008wAAAAAAAAAAAPqkcePG5R+XLcvadesy/uyzc0F9fZrK5fxZkqeLDrdTZ5Ink8wtldJULueSSiVTzz03revX56577smoUaOKjggAAAAAAABAN9PMAwAAAAAAAAAA6NOOO+64/OjHP85/bNqUBddfn4dHjMjxSUY2NGRekseSbOvFPL9O8kiSP01yRKWSE5P8bPTofHPhwmzasiV3fP/7GT16dC8mAgAAAAAAAKA3lYsOAAAAAAAAAAAA0B2GDh2aBQsW5IorrsiaNWuydOnSPHjffVnywgv5RF1dmuvrc1JbWyYlOTbJqOz/B6jakmxI8myS1UlaKpX8vL09bR0dmXDMMblgzpzMmjUrEydO3M89AQAAAAAAANBXaOYBAOzWG1u3ZNXDDxUdA4A9eGPrlhx+0Mge38+Gtb9ISqUe3w9AETas/UXREQAAAADoZqVSKc3NzWlubs6NN96YjRs3ZuXKlWlpacmDjz6aRRs3pr2jIw11dRlVqWR4e3uG7tiRpiSNO7+S5HeTdCb5r52/v7Xza2uSreVyXq6vz4ttbWnr6Ei5vj7HjBqVk6ZPzyVTp2batGkZPnx4r4+9Ozz/9OrsaPug6Bh9XvuOHUVHAAAAAAAAAApS6uzs7Cw6BABQe+bPn5/FixcXHQOAKsybNy+33HJLj21/2PDh2bxpU49tH6AWHD5sWDa9/HLRMQAAAADoJdu2bUtra2taW1uzfv36bNq0Ka9t3ZrNL72Ud955J2+9/XaS5K13302pVErjwIH/+/2Tn0xjY2OajjgihzY1ZdiwYRk7dmzGjRuXsWPHpqGhoeCR7Z/29vYcPmxYXn3llaKj9BvlcjktLS2ZPHly0VEAAAAAAACAXqSZBwAAAAAAAAAAAAAAAAAAAAB0k7qiAwAAAAAAAAAAAAAAAAAAAABAf6GZBwAAAAAAAAAAAAAAAAAAAAB0E808AAAAAAAAAAAAAAAAAAAAAKCblJPcV3QIAAAAAAAAAAAAAAAAAAAAAOgP/gcvxcMPuT66XgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 175it [00:00, 187.09it/s, # examples=181]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=182]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=183]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=184]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=185]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=186]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=187]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=188]\u001b[A\n", + "Processed actions: 175it [00:00, 187.09it/s, # examples=189]\u001b[A\n", + "Processed actions: 175it [00:01, 187.09it/s, # examples=190]\u001b[A\n", + "Processed actions: 175it [00:01, 187.09it/s, # examples=191]\u001b[A\n", + "Processed actions: 175it [00:01, 187.09it/s, # examples=192]\u001b[A\n", + "Processed actions: 175it [00:01, 187.09it/s, # examples=193]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=193]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=194]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=195]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=196]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=197]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=198]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=199]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=200]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=201]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=202]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=203]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=204]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=205]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=206]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=207]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=208]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=209]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=210]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=211]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=212]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=213]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=214]\u001b[A\n", + "Processed actions: 193it [00:01, 183.99it/s, # examples=215]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=215]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=216]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=217]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=218]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=219]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=220]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=221]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=222]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=223]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=224]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=225]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=226]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=227]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=228]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=229]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=230]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=231]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=232]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=233]\u001b[A\n", + "Processed actions: 215it [00:01, 191.55it/s, # examples=234]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=234]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=235]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=236]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=237]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=238]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=239]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=240]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=241]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=242]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=243]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=244]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=245]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=246]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=247]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=248]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=249]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=250]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=251]\u001b[A\n", + "Processed actions: 234it [00:01, 176.60it/s, # examples=252]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=252]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=253]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=254]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=255]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=256]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=257]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=258]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=259]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=260]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=261]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=262]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=263]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=264]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=265]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=266]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=267]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=268]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=269]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=270]\u001b[A\n", + "Processed actions: 252it [00:01, 165.66it/s, # examples=271]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=271]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=272]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=273]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=274]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=275]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=276]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=277]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=278]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=279]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=280]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=281]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=282]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=283]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=284]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=285]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=286]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=287]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=288]\u001b[A\n", + "Processed actions: 271it [00:01, 171.23it/s, # examples=289]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=289]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=290]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=291]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=292]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=293]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=294]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=295]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=296]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=297]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=298]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=299]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=300]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=301]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=302]\u001b[A\n" + ] }, { "name": "stderr", "output_type": "stream", "text": [ - "Processed Story Blocks: 100%|██████████| 21/21 [00:00<00:00, 250.96it/s, # trackers=1]\n" + "Processed actions: 289it [00:01, 172.77it/s, # examples=303]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=304]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=305]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=306]\u001b[A\n", + "Processed actions: 289it [00:01, 172.77it/s, # examples=307]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=307]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=308]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=309]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=310]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=311]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=312]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=313]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=314]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=315]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=316]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=317]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=318]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=319]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=320]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=321]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=322]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=323]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=324]\u001b[A\n", + "Processed actions: 307it [00:01, 171.97it/s, # examples=325]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=325]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=326]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=327]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=328]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=329]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=330]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=331]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=332]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=333]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=334]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=335]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=336]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=337]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=338]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=339]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=340]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=341]\u001b[A\n", + "Processed actions: 325it [00:01, 158.99it/s, # examples=342]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=342]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=343]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=344]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=345]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=346]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=347]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=348]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=349]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=350]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=351]\u001b[A\n", + "Processed actions: 342it [00:01, 152.63it/s, # examples=352]\u001b[A\n", + "Processed actions: 342it [00:02, 152.63it/s, # examples=353]\u001b[A\n", + "Processed actions: 342it [00:02, 152.63it/s, # examples=354]\u001b[A\n", + "Processed actions: 342it [00:02, 152.63it/s, # examples=355]\u001b[A\n", + "Processed actions: 342it [00:02, 152.63it/s, # examples=356]\u001b[A\n", + "Processed actions: 342it [00:02, 152.63it/s, # examples=357]\u001b[A\n", + "Processed actions: 342it [00:02, 152.63it/s, # examples=358]\u001b[A\n", + "Processed actions: 342it [00:02, 152.63it/s, # examples=359]\u001b[A\n", + "Processed actions: 342it [00:02, 152.63it/s, # examples=360]\u001b[A\n", + "Processed actions: 342it [00:02, 152.63it/s, # examples=361]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=361]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=362]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=363]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=364]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=365]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=366]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=367]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=368]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=369]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=370]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=371]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=372]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=373]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=374]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=375]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=376]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=377]\u001b[A\n", + "Processed actions: 361it [00:02, 160.62it/s, # examples=378]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=378]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=379]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=380]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=381]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=382]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=383]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=384]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=385]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=386]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=387]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=388]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=389]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=390]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=391]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=392]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=393]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=394]\u001b[A\n", + "Processed actions: 378it [00:02, 161.70it/s, # examples=395]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=395]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=396]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=397]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=398]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=399]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=400]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=401]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=402]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=403]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=404]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=405]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=406]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=407]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=408]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=409]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=410]\u001b[A\n", + "Processed actions: 395it [00:02, 154.81it/s, # examples=411]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=411]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=412]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=413]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=414]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=415]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=416]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=417]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=418]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=419]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=420]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=421]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=422]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=423]\u001b[A\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "leirouanet\n" + "Processed actions: 411it [00:02, 149.78it/s, # examples=424]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=425]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=426]\u001b[A\n", + "Processed actions: 411it [00:02, 149.78it/s, # examples=427]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=427]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=428]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=429]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=430]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=431]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=432]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=433]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=434]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=435]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=436]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=437]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=438]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=439]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=440]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=441]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=442]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=443]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=444]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=445]\u001b[A\n", + "Processed actions: 427it [00:02, 151.33it/s, # examples=446]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=446]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=447]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=448]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=449]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=450]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=451]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=452]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=453]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=454]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=455]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=456]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=457]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=458]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=459]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=460]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=461]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=462]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=463]\u001b[A\n", + "Processed actions: 446it [00:02, 159.31it/s, # examples=464]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=464]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=465]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=466]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=467]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=468]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=469]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=470]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=471]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=472]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=473]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=474]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=475]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=476]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=477]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=478]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=479]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=480]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=481]\u001b[A\n", + "Processed actions: 464it [00:02, 163.14it/s, # examples=482]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=482]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=483]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=484]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=485]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=486]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=487]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=488]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=489]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=490]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=491]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=492]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=493]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=494]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=495]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=496]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=497]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=498]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=499]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=500]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=501]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=502]\u001b[A\n", + "Processed actions: 482it [00:02, 167.83it/s, # examples=503]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=503]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=504]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=505]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=506]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=507]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=508]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=509]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=510]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=511]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=512]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=513]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=514]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=515]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=516]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=517]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=518]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=519]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=520]\u001b[A\n", + "Processed actions: 503it [00:02, 177.47it/s, # examples=521]\u001b[A\n", + "Processed actions: 503it [00:03, 177.47it/s, # examples=522]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=522]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=523]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=524]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=525]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=526]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=527]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=528]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=529]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=530]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=531]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=532]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=533]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=534]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=535]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=536]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=537]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=538]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=539]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=540]\u001b[A\n", + "Processed actions: 522it [00:03, 178.70it/s, # examples=541]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=541]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=542]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=543]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=544]\u001b[A\n" ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAEDIAAAS7CAYAAAB9OS15AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeXxU9aH38W+SmWwQwpB1ksnCAAFmAIXBFXC5cttq9fbeVtvnKddbq61ea1VwKdza1luXVkCQ2mp769Zd+2jv0xZp+9xiWxEV0WFPCAkkIZNMNpKJZM9szx+Y04RFIiScLJ/36/V7nXMmc858fyOZ5OUrv++JiUajUQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJy98lizEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLGDIgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBkKDIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDxmJ2AAAAAAAAAAAAAAAAAAAAAIxdkUhEzc3Nam5uVkdHhwKBgCQpGAyqvb1dkhQfH68JEyZIkiZMmKDk5GSlpaUpLS1NSUlJpmUHAAAAAAAAAJwZigwAAAAAAAAAAAAAAAAAAABwxnp6elRcXKzy8nJVVlaqsrJSB6sOqrK6Us1NzTrafPSsrp+QnCBbuk0Oh0Mzp85UYWGhpk6dKqfTqXnz5iktLW2IZgIAAAAAAAAAGCox0Wg0anYIAAAAAAAAAAAAAAAAAAAAjHzBYFDvvfee3nrrLe3ctVPv7n5Xh0oPKRwMK8YSo3hHvCKFEQWnBqVCSRkfjHRJaZJSJKV+cDHLB8eS1COp84P9Lkntko5Iav5gHJHkk2IrYmWttCpUFVK4IyxJynRkasF5C7TgvAW66KKLtGjRIsoNAAAAAAAAAMBc5RQZAAAAAAAAAAAAAAAAAAAA4KQikYjeffdd/fGPf9Rf3/ir3tn2jno6e2TNtCqyIKLweWHpfEnzJM2QZD2H4fyS9kraJcXsjlH87nj1lvZKUWmGe4auWnKVrrrqKn384x/XxIkTz2EwAAAAAAAAABj3KDIAAAAAAAAAAAAAAAAAAADA3/X29up//ud/9Pvf/17/vfG/1VzfrPj8eAWvCCq6JCotkTTT7JSn0CLpTUlbJOsbVoXeC8liseiKK6/Qpz/1af3zP/+zsrOzzU4JAAAAAAAAAGMdRQYAAAAAAAAAAAAAAAAAAACQiouL9fOf/1w/fuHHCjQGZHFZFLohJF0naYGkGLMTnoFmSX+R4jbGKeZ3MQq3h3XFP1yhm268Sddff72Sk5PNTggAAAAAAAAAYxFFBgAAAAAAAAAAAAAAAAAAAONVMBjUiy++qDVPrFHxrmLFF8Wr9996pX+TlGd2uiHWJel3kuWnFoX/HFZKaopu//Ltuuuuu5STk2N2OgAAAAAAAAAYSygyAAAAAAAAAAAAAAAAAAAAGG86Ojr0ox/9SGs3rFVTQ5NiPhuj8FfC0qVmJztHaiX9RLL+wKpoS1TLli3Tqq+t0qxZs8xOBgAAAAAAAABjAUUGAAAAAAAAAAAAAAAAAAAA40U4HNbzzz+vrz/4dQXaAgp/KSytkJRvdjKT9Ej6uWRdZ1X4YFi33HyLHvr2Q8rOzjY7GQAAAAAAAACMZhQZAAAAAAAAAAAAAAAAAAAAjAd/+9vfdNtXb9PBsoOK3hpV9MGolGF2qhEiIulnkuWbFllaLfrmf3xT999/v6xWq9nJAAAAAAAAAGA0osgAAAAAAAAAAAAAAAAAAABgLOvo6NDKVSv19FNPK/a6WIUfD0szzE41QnVJekKKeyROrtku/fInv9TcuXPNTgUAAAAAAAAAo015rNkJAAAAAAAAAAAAAAAAAAAAMDx27dol13ku/dev/kvRn0cV/h0lBh8qSdLXpfCusPYn7pfnAo82bNhgdioAAAAAAAAAGHUoMgAAAAAAAAAAAAAAAAAAABiDfvOb3+iSxZfIX+BXaF9IWmZ2olGkSAptCSn4YFD33HePbrr5JvX09JidCgAAAAAAAABGDYoMAAAAAAAAAAAAAAAAAAAAxpjHH39cN9xwg3q+0KPQ/wtJdrMTjUJxkv5Div4uql/+5pe6YukVamtrMzsVAAAAAAAAAIwKMdFoNGp2CAAAAAAAAAAAAAAAAAAAAAyNJ598Uncvv1taL2m52WnGiGLJstSiC4su1J//+GclJyebnQgAAAAAAAAARrLyWLMTAAAAAAAAAAAAAAAAAAAAYGj87Gc/0/Lly6XHRInBUHJLoc0hbS/Zrk995lMKh8NmJwIAAAAAAACAEY0iAwAAAAAAAAAAAAAAAAAAgDGguLhYt95+q6L3RaWvmZ1mDHJLoT+F9Ne//VWPPPKI2WkAAAAAAAAAYESjyAAAAAAAAAAAAAAAAAAAAGCU6+7u1mf+12cUOT8ifWcILhiV9DNJF0tKk5Qk6TxJX5e0r9/zYgYxjtclabKkyz/k9U92HdsHef7PIJ9/uhxnwiOFHw/roYcf0htvvDFEFwUAAAAAAACAsYciAwAAAAAAAAAAAAAAAAAAgFHuqaee0sHKgwr+KihZhuCC35b0a0k/llQrqU7SBkl/lDT3uOdG+42THR/vFUkXSSqTVH6K5xx/raCOFSh8RdKdkr5/inM+So4zdYcU8/EYfeXurygaHeqLAwAAAAAAAMDYEBPl/6ACAAAAAAAAAAAAAAAAAACMWh0dHcp35qvl5hbpu0N00SxJeyVlHvd4iSS3/l4OEKOBRQGnO5akKyTdLeltSXE6deaTnStJmyXdKqniI7zuqa51poqlmHkxevn/vKzPfOYzQ3hhAAAAAAAAABgTymPNTgAAAAAAAAAAAAAAAAAAAIAz99Of/lRHO49K9w3hRTslpZ7kcZcGFgKcrhzg+K8flFQq6VpJt0j6qaTQR8x2oST/aV7ndDnOlluKuSFG3318qJojAAAAAAAAAGBsocgAAAAAAAAAAAAAAAAAAABgFPvN736jyCcjUtoQXvQ6SaskBYbwmpL0nKQbJVklzZTklPSHj3iN7ZIKhzbWmYj8a0Q73tmh2tpas6MAAAAAAAAAwIhDkQEAAAAAAAAAAAAAAAAAAMAo1d7eri1/26LIdZGhvfCzH2ynS7pG0tOSzna9fljSzyTd0u+xL+lYucFgzvVL+rmOFSF8/SyzDIWrpNjkWP3pT38yOwkAAAAAAAAAjDgUGQAAAAAAAAAAAAAAAAAAAIxSFRUVCvWGpAuG+MLJkp6QVCHp3yRtk3S+pGWS3j/Da/5B0lRJs/o9doOkNyTVn+KcmA+GRVKupJU6Vmbwb2eYYSglSZY5FpWWlpqdBAAAAAAAAABGHIoMAAAAAAAAAAAAAAAAAAAARim/339sxz5ML5Aq6X9J+pmkKkndku46w2s9K+mW4x6bIOl6ST85xTnRfiMg6TuSbv0gywgQtAdV6681OwYAAAAAAAAAjDgUGQAAAAAAAAAAAAAAAAAAAIxS7e3tUoyOFQIMtwmSnpD02zM4t17SHyTdrGN5+49nJD0/iGtMlnTTB+PBM8gwDCKTIgq8HzA7BgAAAAAAAACMOBQZAAAAAAAAAAAAAAAAAAAAjFKZmZlSVFLTEF84RlLVSR63Spp4Btf7qY6VGERPMSyStgzyWl+R9DtJLWeQY4hZGixy2B1mxwAAAAAAAACAEYciAwAAAAAAAAAAAAAAAAAAgFEqJyfn2E7NMFz8RklvS2qT1CnJ+8Fjt53BtZ6X9KUP+fqXJD07yGulS7pO0gtnkGOIxfniZLfbzY4BAAAAAAAAACNOTDQajZodAgAAAAAAAAAAAAAAAAAAAB9dJBJRRm6GWla0SF8bwgtv07Hygb9KqpYUJ2mWpJsl3SEp5iTn9H8seorH/6+kfz7uvD9Juvq4c091rT5vS7r0g/0mHSs3OF2OoeaX5JBWLF+hyy67TDabbcCYOHHiML44AAAAAAAAAIxo5RQZAAAAAAAAAAAAAAAAAAAAjGJfvPmL+mXZLxXcGjQ7yvjyX5LlTosS4hPU0dFxwpetVqtRajB58uQTig76j+O/PmnSJBMmBAAAAAAAAABDptxidgIAAAAAAAAAAAAAAAAAAAAMTlNTkxoaGuT3+1VfXy+/369AS0DBt4KSV5LH7ITjRESy/sCqyy6/TE8/9bQyMjIUDAYVCAROOVpbWxUIBFRSUjLg8ba2thMuHxcXpylTpigtLU1paWkn3U9PTz/ha4mJiSa8GQAAAAAAAABwophoNBo1OwQAAAAAAAAAAAAAAAAAAMB4FYlE1NDQYBQT9G0bGhpUU1OjxsZG1dTUqKGhQb29vcZ5iYmJstvtysnJUVV1lRrmNii0KWTiTMaRF6XYG2MVCUeMhxITE5WTk2P8NznZNjc3V5MnTx5wqVAodELZQSAQUHNzs1paWtTc3HzCfnNzswKBwAmxkpOTBxQe9JUdnKoMoW8AAAAAAAAAwBArp8gAAAAAAAAAAAAAAAAAAABgmAQCAfn9ftXV1Z1yW11drVDo7wUEiYmJstlsp10Ub7fbFRMTI0navHmz/vEf/1H6raRPmTTZ8aJVsp5n1eeu+Jye3PDkGf33Pd1/W4fDodTU1NNG6erqMooP+l6z7/hkw+/3q7W19YTr9M9ks9kG/Ps7/jgjI0NWq3VI31IAAAAAAAAAYw5FBgAAAAAAAAAAAAAAAAAAAB9FT0+PmpubP3Txut/vV2Njo8LhsHHeYBaw5+TkyGaznVGum790s37+3z9XaGdIKhiq2eJ4sf87VulvpKt4V7HS09MHdc6ZFlqc7t9LXl6eJk2a9JHyd3Z2qrm5WS0tLTpy5IgaGxt15MgRYzQ0NKipqck4bmpq0vF/bpyenq6MjAylp6crPT1dmZmZyszMNI4zMjKUlZVlHMfHx3+kjAAAAAAAAABGPYoMAAAAAAAAAAAAAAAAAAAAJKm7u1t+v19+v1+1tbWqq6tTbW2t6uvr5ff7je3xd7TPyspSZmamHA6HsrKylJubO2Dbt+g8MTFx2LI3NjZq27ZtuvnLN6s1vVXhbWEpZdhebvxaI8X8R4xe2/yarrzyyiG//HAVHuTn5ysl5cz+QUQikQFFB01NTWpoaDjpcV8BQv98kpSamjqg2MButxvfNzk5OcrMzFRWVpbsdrsmTJhwVu8hAAAAAAAAgBGBIgMAAAAAAAAAAAAAAAAAADC2hcNhNTQ0nFBSUFNTo/r6evl8PtXV1am5udk4Jy4uzlhkbbfbjUXh2dnZxjY3N1eZmZmyWq3ndD4VFRXauXOndu3apZ07d2rnzp3y+/2SpOzsbLV3tav7/G6F/hCSks9ptLHtB5Lukp783pO68847TY0ymMKDw4cPKxwOG+cMd+FBfy0tLWpqajKKDY4vP/D7/WpsbDQe62/ChAknFB1kZGQoOztbdrtdGRkZxteTkpLOOisAAAAAAACAYUGRAQAAAAAAAAAAAAAAAAAAGL26urpOuoi7oqLiI9/B3ul0Gvv5+fmyWCwmzkwKhUI6cOCASkpKVFxcLK/Xq3feeUdNTU2SJLvdLo/HY4wLLrhA2dnZ2rdvn5ZcuUTtc9sVeiUkTTF1GmPDWkkrpdWPrdbXvvY1s9MM2nAVHhQUFGjixInDljMQCJx0v6GhQZFIZEBWm812Qr7+j9lstiEraAAAAAAAAAAwaBQZAAAAAAAAAAAAAAAAAACAkaenp0fNzc2nLCfw+/2qqanR0aNHjXMSEhI0ZcqUU5YT2O125eXladKkSSbO7OR6e3tVXl4ur9drjJ07d6qzs1NWq1UzZswYUFpw/vnnf+hC8j179ujq667Wkfgj6v19rzT7HE5mLOmRYm6LUcwvYvT42se1YsUKsxMNi/5FAsd/n/VtGxsbP1LhgdPplMPhUHx8/JDl7O7uVlNTk2pra9XU1KT6+nrV19ersbFRdXV1amhoUGNjo/x+v9rb2wecO2XKlAEZHQ6HsrOzlZeXp+zsbDkcDmVlZclqtQ5ZXgAAAAAAAGAco8gAAAAAAAAAAAAAAAAAAACcW4NZNF1fX6/+f+Jos9lOWU7Qt7Xb7YqJiTFxZoPz/vvva+/evUZhQUlJifbu3ave3l6lpKRo3rx5crvdcrlc8ng8WrhwoRITEz/y6zQ0NOifPv1P2rFvh0JPhqQvDMNkxrL9kuULFiWUJejlF1/W1VdfbXYiU/X29urIkSMnfK8ev21oaFAkEjHO6/+9e6ptXl7ekBcIdHZ2GkUHTU1NxudKTU2N6uvr5fP5jOKDPjExMcrKypLdbldubq5ycnKUk5Oj3NzcAeUHWVlZQ5oVAAAAAAAAGIMoMgAAAAAAAAAAAAAAAAAAAEOjq6trwKLmk5UUVFdXKxQKGeccf1f3k5UU5Ofny2KxmDizM+f3+42yguLiYnm9Xu3fv1/RaFQ2m80oK+gbs2fPVmxs7JC9fk9Pj1atWqXvPfk9xV0Tp9B/haScIbv82BSWtF6K/Vas5s2dp5d+/pJmzpxpdqpRY7QVHgw2b11dnXFOfHy80tLSPjTraCpXAQAAAAAAAIYBRQYAAAAAAAAAAAAAAAAAAOD0AoHASQsK+vZ9Pp/a2tqM5ycmJspms52ynMButys/P18pKSkmzmpo9ZUW9I13331XDQ0NkiS73T6gsMDtdsvpdJ6zbG+99Zb+9Yv/qmp/tcL3hqWVkpLO2cuPHq9J1vutiuyL6L577tPDDz885AvncUxPT4+am5tPWyBQX1+v/n/ubFbhQXt7u2pqalRXV6fa2lpj6/f75ff7jcd6enqMc5KTk+VwOJSdna28vDwjW0FBgfLy8pSXl6f09PQhzQkAAAAAAACMEBQZAAAAAAAAAAAAAAAAAAAwngWDQfn9ftXU1KimpkZ+v1/V1dWqra1VbW2tfD6f6urqFAqFjHOysrKUk5Mjh8Mhh8Oh3NxcY5FuTk6OcnNzlZqaauKshlcwGFRZWdmA0oJdu3apo6NDFotFRUVFRlmBy+XSJZdcMiIWK3d2dmrNmjVas26NQqkhBb8elL4siXX60k4p7utxCv8prE9c+wmtX7Nes2fPNjsVNLyFB/n5+bJYLEOat6mpSfX19fL5fKqvrx9QftD3OdvU1GQ8PykpaUCxQX5+vgoKCuRwOIzjpCRaRwAAAAAAADDqUGQAAAAAAAAAAAAAAAAAAMBY1X8BcEVFhbHot//+4cOHFQ6HjXNsNpucTucJC377HisoKNDEiRNNnNW51dbWpt27d6ukpETFxcXyer1677331NPTo/j4eE2fPl0ej2fAGMmLjv1+vx599FE98+wzCoVCsjgsCi4PSl+SlGJ2unMsKul/JMvjFoU2hzTPM08b1m7QlVdeaXYynIHRVHjQ09Oj2traAZ/J/T+Xy8vLdfTo0ZNmdDqdAz6jnU7nsBQyAAAAAAAAAGeJIgMAAAAAAAAAAAAAAAAAAEajrq6uAQt0T1ZU0H/Bbnx8vNLS0k5aTtC3n5eXJ6vVavLMzBMIBIyygr5RWlqqSCSi1NRUzZkzZ0BhwaxZsxQXF2d27EE5dOiQnnzyST3zzDNKSUnR7bffrn/5l3/RCy+8oB8/92MFLUGFbgxJX5DkMTvtMGuU9CvJ+qxVweKgLr/qcv3H/f+hj33sY4qJiTE7HYZZd3e3WlpaTlt4UFdXN+C8wRQeFBQUDNlnQiAQOOXne0VFhaqrqxUKhSRJVqtV6enpJ/1c738MAAAAAAAAnEMUGQAAAAAAAAAAAAAAAAAAMNL0lRScrJygbz8QCBjPT0hIUG5u7gmLavsvYB3KBbZjgd/vH1BY4PV6jYXLdrtdHo9HbrdbLpdLHo9HLpdrVC5y37FjhzZs2KBf/epXKigo0F133aVbb71VSUlJxnMCgYB+/OMf65kXntGhA4cUPydevV/olf5F0jTzsg+pNkl/kmJ/GSv9QUpMStTlSy7Xn//fnzVr1iytW7dOH/vYx8xOiRFkpBcehEIh+f1+VVdXq7q6Wj6fTz6fb8BxS0uL8fyUlBTl5+crPz9fU6dO1dSpU+V0Oo39yZMnn1UeAAAAAAAA4DgUGQAAAAAAAAAAAAAAAAAAcC592F22/X6/fD6f2trajOcnJiaespygb99ut4/KRfbnQigU0oEDB+T1elVSUqLi4mK9/fbbam5uVlxcnAoKCoyyAo/Ho4suukiZmZlmxz5rW7du1erVq/Xqq69q/vz5Wr58uZYtW3baxdNvvfWWfvLTn+ill19SW6BN8a549f5Tr3StpAslWc9J/KFxSNKfJMvvLYq8HpFC0pIrluhLN31Jn/70p5WcnKzy8nI98MADevnll7V06VKtX79ec+fONTs5RpHu7m75/f4PLTvw+/1qbW0dcN6HFR70fbZnZWWdVeFBZ2enqqqq5PP5VFNTI5/Pp6qqKlVWVho/cyKRiJGnf7FB//3CwkLFx8ef1fsEAAAAAACAcYciAwAAAAAAAAAAAAAAAAAAhkI4HFZdXZ0OHz6s2tpa1dbWqrq6Wn6/X7W1tfL5fKqrq1MwGDTOycjIUG5urhwOhxwOh3JycpSfn6/c3Fzl5uYqPz9fEyZMMHFWo0t7e7sOHDig4uJieb1eeb1e7dixQ11dXbJarZoxY4ZRWODxeDR//vwx9f4Gg0H99re/1erVq+X1erVo0SKtXLlS11133Rld64033tDGjRv1yu9fUU1FjeKS4xRzSYxCl4WkJZIWSEod8mmcmaCkUklvSjFvxMj6ulW9tb1KSknS1R+/Wp+67lO65pprlJ6eftLT//KXv+jee+/Vvn37dPPNN+vhhx8eE4UWGDm6urpOWXRwqsKD+Ph4paWlnbTsoP82OztbsbGxHzlTMBiUz+dTRUXFCaMvV5++ooOTjcLCwjN6fQAAAAAAAIxpFBkAAAAAAAAAAAAAAAAAADAYfYtQj1/k2XdcXV2tUChkPL//3bb77q7dfz8/P18pKSkmzmh0a21t1b59+4zCAq/XqwMHDigcDmvSpEmaO3euPB6P3G63XC6XLrjgAiUkJJgde1i0t7frueee0/r161VTU6NrrrlG3/rWt3TBBRcM2WuUlZVpy5Yten3L63pty2uqO3xsgXN8YbxC54UUmReRZkma+sHIHrKXHqhDUuUHo0zSPil+d7xCxSFFeiNKmpikSxddqiuXXKnLL79cF1544aDvJB+JRPSLX/xCq1atUldXl1atWqXly5eP2X83GJkGU3hQW1ur999/3zhnuAoPuru75ff7T1p0UFpaqo6ODuP1HQ7HSUsOpk2bpsmTJw/5+wQAAAAAAIARjyIDAAAAAAAAAAAAAAAAAAC6u7tVXV0tn88nn8+nw4cPG/t9x52dncbz09LSlJeXp7y8PBUUFBj7+fn5ys/Pl91ul8ViMXFGY4vf7zfKCkpKSlRcXKz9+/crGo3KZrPJ5XLJ4/EYY/bs2ePi7uBNTU166qmn9IMf/EDd3d1atmyZ7rvvPs2YMWPYX7umpka7du3Snj17tHPXTr235z35KnwKB8OSpLikOFmmWhTJiCiUFlI0IyqlS0qRNFGSVVKMpL71zZ2Sej7Yf19Sl6TmY8NyxKK4pjhFaiIKNgaNDGnZaZo7Z64Wnr9Q8+bN07x58+R2u8/6e6+jo0Nr167VmjVrlJGRoYcfflg33nijYmJizuq6wFAaTOFBTU2Njh49apyTkJCgKVOmDEnhQTQaVW1trSorK1VRUaHKysoB+36/X31/pp6WlqapU6dq6tSpcjqdxnbGjBnKy8tTXFzcsL5XAAAAAAAAMAVFBgAAAAAAAAAAAAAAAACAsS8QCKiiosJY4Nl3R+m+46qqKkUiEUnHFnrm5uYaizr77irddzxjxgxNmjTJ5BmNTeFwWIcPH1ZxcbFRXLB9+3Y1NjZKkux2+4DCggsuuEDZ2dkmpz73KisrtWHDBj377LNKTk7WHXfcoTvvvFNpaWmm5gqHw/L5fKqsrFRVVZWqqqp05MgRNTc3y9/kV1Nzk9ra2tTZ0algb1DRSFQd739wR/ekeMUnxkuSUm2pSkhIUHpaurLSspSRlqH09HTl5uYOWAidnJw8rPOpqanRww8/rGeffVYXXnih1q9fr0suuWRYXxMYaoMpPPD5fGprazPOGWzhgd1uP2XBR29vr2pqaoyft/3HoUOH1NraKkmyWq3Ky8szftY6nU65XC653W4VFBRQcgAAAAAAADB6UWQAAAAAAAAAAAAAAAAAABjd+hZpHl9O0Hfs8/kUDP79Lu42m21AMcHxRQWFhYWnvRM1zl4wGFRZWZlRWOD1erVz5051dnbKYrGoqKjIKCxwu92aP3++6Qv1zbZ7926tW7dOL774ohwOh5YvX64vf/nLw76gf7x79913de+992rr1q26/vrrtXbtWhUUFJgdCxhS57rwoK9g6Pixb98+1dfXS5Li4+PlcDhOKDhwOp2UHAAAAAAAAIx8FBkAAAAAAAAAAAAAAAAAAEau3t5eHTly5JRFBf3v6ixJiYmJJy0n6DvOy8uT1Wo1cUbj09GjR7Vnzx6jsKCkpET79u1TT0+PJk6cqJkzZ8rlchnFBQsXLlRiYqLZsUeMrVu3avXq1dq0aZPmzp2re++9V5///OdlsVjMjjaubNy4UcuXL1d9fb3uvPNOPfDAA0pJSTE7FnBODabwoLq6Wu3t7cY5iYmJstlsgy48aGpq0sGDB1VeXm6MvuOjR48a15wxY4aKioo0c+ZMzZw5U7NmzVJRUZEmT55s1tsDAAAAAACAv6PIAAAAAAAAAAAAAAAAAABgnr47MvcvJ+h/XFVVpUgkIunYnZ9zc3NPKCfoO54+fbpSU1NNnhH8fr9KSkpUXFxsFBfs379f0WhUkydPltvtNgoLPB6PZs+erdjYWLNjjziRSESbNm3SI488ou3bt2vRokVauXKlrr322hPubI5zp7e3Vz/84Q/14IMPasKECXrwwQd1yy23cGd44DiDKTw4fPiwOjo6jHMGU3hgtVrV1tam8vJylZWVqaysTKWlpTp48KB6enokSVlZWZo1a5ZmzpypoqIizZ49W0VFRZo6dSrfqwAAAAAAAOcORQYAAAAAAAAAAAAAAAAAgOHRt4jxVEUFx5W9DPEAACAASURBVC9gtNlsA4oJji8qKCwsZMH7COP3+42yAq/Xq/fee0/19fWSJLvdPqCwwO12y+l0mpx45Ovp6dGvf/1rfec731F5ebmuueYaPfDAA7r44ovNjoZ+mpub9dBDD+mpp57S+eefr/Xr1+uyyy4zOxYw6gQCgQ8tO6irq5PP51MwGDTOOVnhQWFhoaxWq3p7e9Xa2qqmpiZVVVWptLTU+LkUHx+v6dOna9asWSoqKtLMmTPlcrk0a9YsTZo0yay3AAAAAAAAYKyiyAAAAAAAAAAAAAAAAAAA8NEFg0HV1tbq8OHDOnz4sKqrq+Xz+VRTU2Mct7W1Gc+fMmWKHA6H8vPzlZ+fr7y8POXl5amgoEB5eXnGXZYxMoVCIR04cMAoLCgpKdGOHTvU0tIii8WioqIiud1uuVwueTweXXzxxcrIyDA79qhy9OhRvfDCC1q9erVaWlr02c9+Vg888IBmzpxpdjR8iP379+u+++7TH/7wB1177bXasGGDpk2bZnYsYMw508KDnJwcZWZmauLEicbvGUePHlVjY6NqamrU1dUl6ViZksvlMn6Wud1uzZ07V1lZWabMFwAAAAAAYAygyAAAAAAAAAAAAAAAAAAAcKKenh7V1taqoqLCWCBYUVFhjOrqaoVCIUnH7nDscDiMuyI7nc4B+9OnT1dqaqrJM8JgtbW1affu3SopKVFxcbFRXtDd3S2r1aoZM2bI4/EYY8GCBUpOTjY79qhVX1+vH/3oR9qwYYOi0ahuuukmrVy5Ujk5OWZHw0ewefNmrVixQgcOHNDtt9+ub3/725o8ebLZsYBx50wKD+Lj4zVx4kRZLBYFg0G1t7cbX58yZYpmzJihefPmaf78+Zo9e7bcbjdlPQAAAAAAAKdHkQEAAAAAAAAAAAAAAAAAjEddXV0nlBP0Ly2orKxU35+X9d3R2Ol0GqN/UUFhYaFiY2NNnhHORCAQGFBW4PV6VVpaqkgkotTUVM2ZM8coLOi7O3V8fLzZsceEvXv3au3atXrppZeUlpam2267TcuXL2fx+ygWCoX0/PPP65vf/KZCoZC+9a1v6Y477pDFYjE7GoDjnK7wwOfzqba2VuFw+KTnJyQkKD09XQ6HQ0VFRTr//PN18cUXa86cOZo0adI5ng0AAAAAAMCIRJEBAAAAAAAAAAAAAAAAAIxFgUDghHKCvuNDhw6ptbXVeK7NZjuhnKD/sNlsJs4EQ8Xv9w8oLCgpKVFFRYUkyW63G2UFLpdLHo9HLpdLMTExJqcee7Zu3arVq1dr06ZNmjZtmr761a/qtttuU2JiotnRMEQCgYBWr16tDRs2qLCwUA8//LBuuOEGs2MBOAPHFx4cOHBA+/fvV1VVlerq6tTa2qru7u4B58TGxmrSpEnKyMhQYWGhioqKlJeXZ/yeZbfblZeXR+EBAAAAAAAY6ygyAAAAAAAAAAAAAAAAAIDRJhgMqqmpaUA5Qf/CgtLSUnV0dBjP7ysq6D/6FtPNnDlTEydONHE2GGqhUEgHDhxQSUmJiouL5fV6tW3bNh05ckTS30sL+saFF16orKwsk1OPbZFIRJs2bdJjjz2mt956S4sWLdLdd9+tz3zmM4qNjTU7HobJwYMH9fWvf10vv/yyli5dqnXr1mnevHlmxwIwDCorK7V161Zt27ZNJSUlqqysVG1trUKhkGJiYmSxWBQKhdT/T/cTExONYoNTbfPz85WSkmLizAAAAAAAAM4YRQYAAAAAAAAAAAAAAAAAMNL09vbK5/OpqqrqpMPv9ysSiUiSkpKSVFhYqPz8fBUUFBjbwsJCFRQUKCcnR3FxcSbPCMOlt7dX5eXl8nq9xti5c6c6OztltVo1Y8aMAaUF8+fP14QJE8yOPW709vbqpZde0mOPPabS0lJ98pOf1KpVq7Ro0SKzo+Ec2rZtm1asWKHt27dr2bJlWrt2LeUhwDgQCoVUXl6uvXv3au/evdq3b5927dqlw4cPKxqNKiEhQZmZmZo0aZLi4+MVCoXU1tYmn8+ncDhsXGcwhQcFBQUUUwEAAAAAgJGGIgMAAAAAAAAAAAAAAAAAONeCweCHFhXU1tYaRQUTJ05UYWHhCaOvsCAzM9Pk2eBcef/997V3794BpQUHDhxQOBxWSkqK5s2bJ7fbLZfLJY/Ho4ULFyoxMdHs2ONSW1ubnn/+eT3++ONqbGzU5z73Oa1atUoul8vsaDBJNBrVK6+8ovvuu08tLS269957tWrVKr5HgXGovb1dxcXF2rNnj/bt26c9e/Zo165dam1tVWxsrKZNmyaXy6XCwkJlZmZq4sSJ6urqkt/vV11dnSoqKuT3+9XY2EjhAQAAAAAAGMkoMgAAAAAAAAAAAAAAAACA4RAIBFRRUXHSUV1drVAoJElKSEhQbm6unE7ngNG36Gzq1KmKiYkxeTY41/x+v7xer0pKSlRcXCyv16v9+/crGo3KZrMZZQV9Y/bs2YqNjTU79rjX0NCgH/7wh3ryyScVDAZ188036/7775fD4TA7GkaIzs5Off/739cjjzwim82mRx55RDfeeCOf8wA+8s9+p9OpQCCguro6o+TgZNuGhgajIEs6sfCg/++dfdu8vDxZrVYT3w0AAAAAADAGUGQAAAAAAAAAAAAAAAAAAGfibIoK+i8co6hgfAuHwzp8+LCxYNHr9Wr79u1qbGyUJNnt9gGLFhcuXCi73W5yahzv0KFDevLJJ/XMM88oJSVFt99+u+6++27ZbDazo2GEqq2t1UMPPaRnn31WCxcu1BNPPKFLL73U7FgARphAIKCdO3dq165dxti/f79CoZAmTJigefPmaf78+cbvCC6XSxaLZcA1ent7deTIkY9ceGCz2U4oOKDwAAAAAAAAfAQUGQAAAAAAAAAAAAAAAADA8SKRiGpra1VZWanKykpVVVUNGDU1NUZRQVJSkgoLC085MjMzTZ4NRopgMKiysjKjsMDr9WrXrl3q6OiQxWJRUVGRPB6P3G63XC6XLr30UqWlpZkdGx9ix44d2rBhg371q1+poKBAd911l2699VYlJSWZHQ2jhNfr1T333KM33nhD119/vdasWaPCwkKzYwEYwXp6erRv374BBQc7d+5UZ2enkpOTdf7552vhwoVGucGsWbMUGxt72utSeAAAAAAAAIYYRQYAAAAAAAAAAAAAAAAAxqdAIKCKigpjYVZFRYUx9u/fr87OTklSfHy8HA6HnE6nnE6nsSCr77iwsHBQi8Mwvhw9elR79uyR1+tVSUmJiouL9d5776mnp0fx8fGaPn26PB7PgMHi99Fj69atWr16tV599VXNnz9fy5cv17JlyxQXF2d2NIxSGzdu1IoVK1RXV6c777xTDzzwgFJSUsyOBWCUCIfDKi0tHVCWtGPHDnV1dWnixIk677zzBvzOMXv27DP+/bWnp0fNzc2nLTyor69X/6UKgyk8yM/Pl8ViGaq3BQAAAAAAmIsiAwAAAAAAAAAAAAAAAABjU29vr2pqagYUFPSNQ4cOqbW11XiuzWYzigmOHxQV4HQCgYCKi4sHLB4sLS1VJBLR5MmT5Xa7BywenDVrFgveR6FgMKgXX3xRa9eu1b59+7Ro0SKtXLlS1113ndnRMEYEg0E9/fTTevDBBzVhwgQ9+OCDuuWWW/i8AHBGgsGg9u7dq/fee88Y+/btUzAY1OTJk+XxeLRw4UItXLhQF198sRwOx5C+PoUHAAAAAACMexQZAAAAAAAAAAAAAAAAABi9AoHASYsKKioqVFVVpUgkIunEooK+RVBOp1OzZ89WcnKyyTPBaOH3+wcUFni9XtXV1UmS7Ha7UVbgdrvlcrnkcrkUExNjcmqcjfb2dj333HNav369ampqdM011+jBBx/UwoULzY6GMaq5uVkPPfSQnn76ac2bN0/r1q3TFVdcYXYsAGNAMBhUWVnZgN9j3n33XfX29g74PWbx4sVatGiRkpKShj1Td3e3WlpaKDwAAAAAAGDsocgAAAAAAAAAAAAAAAAAwMjVv6igbyFT3/H+/fvV2dkpSUpISFBubu6AsoK+MX36dKWmppo8E4w2oVBIBw4cMBb5lZSUaOfOnWpublZcXJwKCgrkcrmMBX8XXXSRMjMzzY6NIdTU1KSnnnpKP/jBD9Td3a1ly5bpvvvu04wZM8yOhnGitLRU999/v1599VUtXbpU3/ve9+RyucyOBWCM6ejo0M6dO+X1evXmm29qy5YtamhokMViUVFRkVFq4PF4TC1oGmzhQV/BVJ/BFB4UFBQoLi7OlHkBAAAAADCGUWQAAAAAAAAAAAAAAAAAwDw9PT2qqqrSoUOHjIKCyspKYxw9elSSFBcXJ4fDIafTqalTpw4YTqdT2dnZJs8Eo1l7e7sOHDig4uJio7hgx44d6urqktVq1YwZM4zCAo/Ho/nz52vChAlmx8Ywqays1IYNG/Tss88qOTlZd9xxh+68806lpaWZHQ3j1ObNm3XPPfeotLRUX/ziF/Xoo48qPT3d7FgAxjC/328UG2zdulVer1fd3d1KTU3VBRdcYBQbLFmyRJMnTzY77gAfVnjQvxwtEAgMOI/CAwAAAAAAhhxFBgAAAAAAAAAAAAAAAACGVyAQMIoKDh06NGC/pqZGkUhEkpSenn5CUUHfcX5+vqxWq8kzwVjQ2tqqffv2GYUFXq9XpaWlikQimjRpkubOnWsUFrjdbs2ZM0cJCQlmx8Y5sHv3bq1bt04vvviiHA6Hli9fri9/+ctKTk42OxqgUCik559/Xt/61rcUDAb1ta99TStWrFB8fLzZ0QCMA11dXdqxY4e2bdumt99+W9u2bVNtba0sFovOO+88LV68WJdddpkWL16szMxMs+MOSldX10nLDvpv/X6/WltbB5xns9nkdDo/tPQgKyuLwgMAAAAAACgyAAAAAAAAAAAAAAAAADAUAoGAKioqTjn62Gw2uVwuud1uOZ1OY0yfPl2pqakmzgBjUd/dhL1er0pKSlRcXKySkhJJkt1ul9vtlsvlMooLXC6XYmJiTE6Nc23r1q1avXq1Nm3apLlz5+ree+/V5z//eVksFrOjASdob2/X448/rtWrVys/P1+PPPKIbrjhBrNjARiHfD6ftm3bpjfffFNbtmzRnj17FA6HNWvWLC1evFhLlizRkiVLNHXqVLOjnpXBFB7U1tbq/fffN86Jj49XWlraKYsO+rbZ2dmKjY01cXYAAAAAAAwrigwAAAAAAAAAAAAAAAAAnF5vb69qampOWlJQWlqqjo4OSVJCQoJyc3MHlBT0DZfLpaSkJJNngrEoHA6rtLTUKCvwer1655131NTUJOlYaUFfWYHH49EFF1yg7Oxsk1PDTJFIRJs2bdIjjzyi7du3a9GiRVq5cqWuvfZayiwwKlRXV+sb3/iGfvGLX+gf/uEftG7dOp133nlmxwIwjrW3t2vbtm3aunWr3nzzTW3dulXd3d3Kzs7WkiVLtGjRIi1evFjz588fk4v3KTwAAAAAAOAEFBkAAAAAAAAAAAAAAAAAOCYQCJy0qKCiokJVVVWKRCKSJJvNdtKiAqfTqcLCQhbZYFgFg0GVlZXJ6/UaY+fOners7JTFYlFRUZFRWOB2u7VgwQJNmTLF7NgYIXp6evTrX/9ajz76qA4ePKhrrrlG3/jGN3TRRReZHQ04I++8845WrFihd955R8uWLdOaNWsoagEwInR3d+vdd9/Vli1bjHKDtrY2TZkyRYsWLdJll12myy67TB6PR3FxcWbHPWcGU3hQU1Ojo0ePGuckJCRoypQppy08sNvtFDIBAAAAAEYSigwAAAAAAAAAAAAAAACA8SISicjn8+ngwYOqqKjQoUOHdOjQIWO/7+6gVqtVBQUFcjqdmjZtmqZNmzZgf8KECSbPBOPF+++/r7179xqFBSUlJdq7d696e3uVkpKiefPmye12y+VyyePxaOHChUpMTDQ7Nkago0eP6oUXXtDq1avV0tKiz372s3rggQc0c+ZMs6MBZy0ajeqVV17R/fffryNHjui+++7TqlWr+DwEMKKEw2GVlpbqzTff1NatW/W3v/1NPp9PEydO1MUXX6ylS5dq6dKlWrBgAYvxNbjCA5/Pp7a2NuMcCg8AAAAAACMMRQYAAAAAAAAAAAAAAADAWOP3+1VSUqKKiooBo7S0VB0dHZKkxMRE5eTkyOl0GsPlcsntdis/P18Wi8XkWWC86ft3W1xcbBQX7N+/X9FoVDabzSgr6BuzZ89WbGys2bExwtXX1+tHP/qRNmzYoGg0qptuukkrV65UTk6O2dGAIdfZ2anvf//7evTRR5WamqpHH31UN954I4tVAYxYFRUV2rx5szZv3qzXXntNLS0tyszM1OWXX24UGzidTrNjjmiDKTyorq5We3u7cQ6FBwAAAACAc4QiAwAAAAAAAAAAAAAAAGC0CYVCqqqq0sGDB41RXl6ugwcPqqqqSr29vZIkm82m6dOnG2PGjBnGfkZGhsmzwHjm9/uNsgKv16t3331XDQ0NkiS73T6gsMDtdrOADR/Z3r17tXbtWr300ktKS0vTbbfdpuXLl2vy5MlmRwOGnd/v17e//W0999xzWrBggdavX6/FixebHQsAPlQ4HNauXbu0efNmbd26Va+//rra2tpkt9u1ePFiLV26VNdcc40cDofZUUelMyk8SExMlM1mO23hAQVRAAAAAIBToMgAAAAAAAAAAAAAAAAAGImCwaB8Pp8qKipOGMXFxeru7pZ0rKzA6XSecgBmCgaDKisrG1BasHv3brW3t8tisaioqEhut1sul0sej0eXXHKJ0tPTzY6NUWzr1q1avXq1Nm3apOnTp+uOO+7QbbfdpsTERLOjAefcjh07dM8992jLli26/vrrtXr1ak2dOtXsWAAwKD09PXr77bf12muv6S9/+Yu2b9+ucDgst9utq666Sp/4xCd0+eWXKykpyeyoY8rxhQcVFRUnlB74fD4Fg0HjHAoPAAAAAACnQJEBAAAAAAAAAAAAAAAAYJZTlRUUFxerrKxMoVBI0qnLCubMmaPs7GyTZwEc09bWpt27d6ukpETFxcVGcUF3d7fi4+M1ffp0eTweYyxYsEDJyclmx8YYEIlEtGnTJn33u9/V22+/rUWLFmnlypW69tprFRMTY3Y8wHQbN27UPffco+rqav37v/+7Hn74YU2aNMnsWADwkbS1tWnLli167bXX9Nprr2nPnj1KSkrSFVdcoauvvlpXX321pk+fbnbMcSMQCJxQcDCYwoPTlR3k5uZq8uTJJs4MAAAAADCEKDIAAAAAAAAAAAAAAAAAhlNvb69qampOKCooKSnR4cOHFQ6HJZ1YVuByueR2uzV9+nSlpqaaPAtgoEAgMKCswOv1qrS0VJFIRKmpqZozZ86A0oJZs2YpLi7O7NgYY3p7e/XSSy/pscceU2lpqT75yU9q1apVWrRokdnRgBEnGAzq6aef1n/+53/KYrHoG9/4hr761a/y2Qxg1GpsbNTrr7+ujRs3auPGjWptbZXT6dTSpUu1dOlSfeITn1BKSorZMcc9Cg8AAAAAYFyjyAAAAAAAAAAAAAAAAAA4W8FgUFVVVSorK9OBAwdUXl6usrIylZeXq6amRn1/ouNwODR9+vSTjgkTJpg8C+Dk/H7/gMKCkpISVVRUSJLsdrs8Ho/cbrdcLpc8Ho9cLpdiYmJMTo2xrK2tTc8//7wef/xxNTY26nOf+5xWrVoll8tldjRgxGtpadGaNWv0xBNPaNq0aVq3bp2uvvpqs2MBwFkJh8PatWuXNm7cqFdffVU7duxQQkKCFi9ebBQbeDwes2PiQwym8KC6ulqhUMg4ZzCFBw6Hg2JAAAAAADAPRQYAAAAAAAAAAAD/n707j4uq7P8//mZVQVA0FzQ3EoQZUXAwLTXTtLTUyiLNSrPUb6amaUblXVlpZpaVZd6pLbdtt5ndLVrdrZZmbiMoDKuRK265gCLI+vujn3OLgAw4cFhez8djHtDhLO9znetcnnOa+QwAAADgqP3799sLFCQnJ9tff/75p/0bJFu2bKlOnTopMDBQQUFBRYoVNGjQwOA9AEqXl5enpKQke7ECm82mTZs26a+//pL0v6IF515XXnmlWrRoYXBq1CWHDx/WkiVLtGjRIuXl5Wns2LGaOXOmLr/8cqOjATVOUlKSnnzySa1atUoDBgzQq6++KrPZbHQsAHCKAwcO6JtvvtG3336rH374Qenp6erYsaNuvPFGDRs2TH379pW7u7vRMVEBlVXwoE2bNvL19TVwzwAAAACgVqKQAQAAAAAAAAAAAAAAAHC+EydOKDU11f6y2WyKj49XcnKyTp06JenvD0IEBATIbDYrICBAAQEBMplM6tKlCx9+QI2Qk5OjlJQUWa1W+2v79u3KysqSh4eHAgMDixQtCA8Pl7e3t9GxUUf98ccfWrRokZYuXSpfX19NnDhRU6dOlZ+fn9HRgBrvxx9/1PTp05WQkKCxY8dqzpw5atasmdGxAMBp8vLy9Ntvv+mbb77R2rVrFRcXpyZNmuimm27SLbfcokGDBsnLy8vomHCyyip40LZtW/n4+Bi4ZwAAAABQo1DIAAAAAAAAAAAAAAAAAHVPTk6O9u/fby9ScH7hgtTUVEmSh4eH2rRpYy9ScH7Rgg4dOsjFxcXgvQAcc/LkScXFxRUpWpCUlKT8/Hz5+voqNDRUFotFZrNZJpNJ3bt3V7169YyODWj79u169dVX9dFHH6ldu3Z66KGHNGHCBDVo0MDoaECtUlBQoA8++ECPPvqocnJyFBUVpWnTpvFvAYBaaffu3friiy+0Zs0arVu3Tu7u7urdu7eGDBmiESNGqGXLlkZHRBVypODBnj17lJ+fb1+GggcAAAAA4DAKGQAAAAAAAAAAAAAAAKB2ysvL0969e4sUKDhXuGD37t0qKCiQJPn7+xcpUnCucEFwcLDc3NwM3gugfNLS0uzFCuLj42Wz2ZSQkKDCwkL5+fnJZDLJYrHYXyEhIXJ1dTU6NlDEhg0bNH/+fK1Zs0bh4eGaNm2a7rrrLsZkoJJlZmZqwYIFmj9/vtq0aaO5c+cqMjLS6FgAUGmOHTumtWvXas2aNfr666+VnZ2tnj17aujQobr11lsVFBRkdERUE5VV8KBdu3Zq2LChgXsGAAAAAJWKQgYAAAAAAAAAAAAAAACo2Q4dOqTExEQlJycrJSVFycnJSkpK0p9//qmcnBxJUvPmzRUUFFTs1bFjR75tGDVSfn6+9uzZI5vNZi9csGXLFh05ckTS3wU6zi9YEBERIX9/f4NTA6XLzc3Vxx9/rAULFiguLk69evVSVFSUhg4danQ0oM7Zt2+fZs2apQ8++EDXXnutFi5cqLCwMKNjAUClOnXqlL755ht9/vnn+vrrr5Wenq5u3brplltuUWRkpIKDg42OiBrg/IIHqampJRY9OHLkSLkLHrRv317e3t4G7hkAAAAAVAiFDAAAAAAAAAAAAAAAAFD95ebmat++fUpNTZXNZlN8fLxSU1MVGxurw4cPS5Lq1aunK664QmazWQEBAfZXaGioWrRoYfAeABWXm5ur5ORke8ECq9WqmJgYZWZmyt3dXUFBQbJYLDKbzTKZTLr66qvVtGlTo2MDDjl9+rTefvttLVy4UPv379eNN96op59+WhEREUZHA+q8LVu2aPr06fr999911113af78+WUWxTl+/LiaNGlSRQkBoHLk5OTo559/1ueff64vvvhCBw8eVHh4uEaNGqURI0aoTZs2RkdEDZaTk6O//vqrWIGDC38ePnxYBQUF9uX8/PwuWuygVatWatOmjTw8PAzcOwAAAAAogkIGAAAAAAAAAAAAAAAAqD6OHz+upKQkJSQkKCkpyf57amqq8vLy5OLiorZt26pTp04KDg5WcHCw/fdWrVoZHR+4ZBkZGdq5c6esVqvi4+Nls9m0bds2nT17Vg0bNlSnTp1kMplksVjsrwYNGhgdG5Ak/fXXX/Ly8pKXl1eZ8x49elSLFy/W66+/rrNnz+quu+7SI488osDAwCpICsBRhYWF+vTTT/Xoo4/q6NGjeuSRRxQVFVXivz2pqakym82aOXOmnn32WQPSAoDzFRQUaOPGjVq1apU+/vhjHT16VBaLRffcc49GjhxJ0TxUGgoeAAAAAKgFKGQAAAAAAAAAAAAAAACAqpeWlqb4+HilpqbKZrPZf09NTZUkeXp66vLLL5fJZJLZbFZAQIBMJpPCwsLUsGFDg9MDznHuPLDZbLJarbJarUpISFBhYaEaN24ss9lcpGBBSEiIXF1djY4NlCgmJkb9+vXTjTfeqA8//LDU+f7880+9+uqrWr58uby8vDRp0iRNmTJFTZs2rcK0AMorKytLixYt0vPPPy9fX189+eSTGjduXJF/l26//XZ9/vnnys/P19KlSzV+/HgDEwOA8+Xn5+vnn3/WihUr9Pnnn+vMmTPq2bOnRo8erZEjR8rX19foiKiDzp49q2PHjpVZ8ODQoUM6/+NDFDwAAAAAUAUoZAAAAAAAAAAAAAAAAIDKcfbsWe3atatYwYLExERlZmZK+vuN8+eKFJxfsCA4OFhubm4G7wHgPGlpafZiBVarVdu2bdOhQ4ckSf7+/vZiBWaz2X4+ADWF1WpV//79dfr0aUnSrl271KFDhyLz7NixQy+//LI+/vhjXX755Zo2bZrGjx8vLy8vIyIDqKCDBw9q9uzZevvttxUeHq6FCxeqT58++v3339WrVy/7ByRdXV312Wef6eabbzY4MQBUjqysLP3www96//339cUXX8jV1VUDBgxQZGSkbr/9dq5xUO1UZsGDtm3byt3d3cC9AwAAAFBNUcgAAAAAAAAAAAAAAAAAl+bEiRP2IgXnFyzYvXu3CgoK5O7urrZt2xYrWBAaGqoWLVoYHR9wqry8PCUlJdkLFsTHx2v79u06fvy43Nzc1KlTy6P/qQAAIABJREFUJ3uxAovFop49e6pZs2ZGxwYq7FwRgzNnzigvL08eHh4aP368Fi9eLEnasGGD5s+fr7Vr16pLly6aPn26Ro0axQedgBouOjpaM2bM0Lp163THHXcoMTFRNptNeXl5kiQXFxd5enpq3bp16tmzp8FpAaBynTx5Ul9++aVWrVqlb7/9Vt7e3hoxYoQeeOABhYeHGx0PKBcKHgAAAABwIgoZAAAAAAAAAAAAAAAAoGy5ubnatWuX4uPjlZiYqISEBCUlJSkpKUmnTp2S9Peb1jt16qSQkBB16tTJ/ntAQIA8PDwM3gPA+U6dOqXk5GTZbDZ74QKr1ars7Gx5eHgoMDBQFovF/urWrRvfzIpa5bffftMNN9yg7Oxs5efn26d7eHho0aJFWrp0qaKjo3XdddcpKipKAwcONDAtgMrwww8/aOzYsTpw4IAufEuym5ubfHx8tGXLFgUGBhqUEACqVlpamlasWKF33nlHKSkp6t69u+6//37deeed8vX1NToe4DTZ2dk6fvx4mQUPDh48WGQ5RwoetGvXTm5ubgbtGQAAAAAnopABAAAAAAAAAAAAAAAA/icnJ0fJycmKj48v8kpJSVFOTo5cXV3Vvn17BQUFyWQyFSlY0Lx5c6PjA5Xm5MmTiouLK1KwIDExUQUFBWrUqJE6d+5sL1hgNpsVGhoqT09Po2MDlWb9+vW64YYblJOTU6SIgSS5u7vrsssuU0REhP7xj3+oR48eBqUEUNmys7N1xRVX6NChQyooKCj2d3d3d7Vq1Upbt27lWhFAnWO1WrV06VJ9+OGHys/P19ChQzVhwgRdd911cnFxMToeUCUoeAAAAADUaRQyAAAAAAAAAAAAAAAAqItyc3O1b98+2Ww2xcfHF/mZnZ0tSfL395fZbJbJZLL/DAsLU8OGDQ1OD1SutLS0IgUL4uPjlZqaKqnoeXGucIHJZOKDSKhTfvnlFw0ePLjEIgbneHt768CBA2rUqFEVpwNQlZ5//nk99dRTpY4FkuTh4aHQ0FCtX79eXl5eVZgOAKqH9PR0rVy5UkuXLpXValVQUJDuu+8+3XvvvWrRooXR8YBq4fyCB6mpqSUWO0hLS9PJkyeLLHexggcBAQHy9/dXixYtKHgAAAAAGINCBgAAAAAAAAAAAAAAALVZTk6OUlJSihUrSEpKUn5+vtzd3dW2bdsixQrMZrNCQkL4oBlqvby8PCUlJdnPC6vVqs2bN+vo0aOS/i5acK5YgcVi0ZVXXskHjVDn/fe//9WwYcOUl5dX4revn+Pu7q558+bpkUceqcJ0AKrSkSNH1KFDB505c6bMed3d3XX99dfryy+/5IOEAOq07du3a/ny5froo4+UlZWloUOHauLEibruuuuMjgbUCFlZWcUKHJRV8MDT01NNmzYtsdjB+T9btmwpV1dXA/cOAAAAqHUoZAAAAAAAAAAAAAAAAFAblFWwwMPDQ23atClWsMBkMqlBgwZGxwcq3blzxGq12l/R0dE6c+aMPDw8FBgYWKRoQVhYmBo2bGh0bKBa+eabb3TzzTcrPz//okUMzmnatKn279+v+vXrV0E6AFXtmWee0ezZs+Xu7q68vLwy53dzc9OkSZP02muvVUE6AKjesrKytGrVKi1btkwbNmxQly5dNG3aNI0aNUr16tUzOh5Q4zlS8ODAgQNKT0+3L0PBAwAAAMDpKGQAAAAAAAAAAAAAAABQk2RkZCglJUWpqalFChYkJiaqoKDA/oFss9msgIAAe8ECs9nMB0lRZ6Snpys2NtZesCA+Pl6xsbHKycmRj4+PunTpYi/kYbFYFBERwfkBlOHzzz9XZGSkCgoKHCpicM57772nMWPGVGIyAEZJS0vTF198oZ07dyo6OlpxcXHKzMyUJNWrV095eXnKz88vsoyLi4teeuklTZ8+3YjIAFAtxcTEaMmSJVqxYoV8fX01duxYTZkyRa1btzY6GlDrOVLwYP/+/crIyLAvU5sKHiQlJWn79u26/fbb5eHhYXQcAAAA1D4UMgAAAAAAAAAAAAAAAKiOMjIyZLPZFBcXp4SEBNlsNiUkJGjfvn2SJC8vLwUHB9sLFYSEhMhsNiszM1PJyckGp0dN1KBBA910001ycXExOkq5pKWl2YsV2Gw2Wa1WJSQkqLCwUH5+fvZiBedeISEhF/0gwYkTJ/Tjjz+Kt1UB/7Np0ya9+uqr9gIGLi4u9vPowg8pe3t7y9fXV82aNVPTpk01ePBgtW/fvqoj12pGjNexsbFKTEyssu2h5jp69Kj27t1rf/355586dOiQCgoKivTZRx55RN27dzcwKYDzBQYGKiwszOgYdd7hw4e1ZMkSLV68WBkZGRoxYoRmzpyp0NBQo6MBdV5FCh7Uq1dPTZo0KbPggb+/v2HPYqZMmaI33nhD/v7+ioqK0rhx4+Tt7X3RZXhuAgDVQ79+/XTZZZcZHQMAykIhAwAAAAAAAAAAAAAAACPl5OTYCxXExsYqLi5OcXFx2r17tyTJx8dHwcHBRYoVhISEqH379iV+GNsS0V3brduqeC9QW8TGxqpz585GxyjVuaIF515bt27V4cOHJUn+/v5FChaYzWYFBASUexvz58/XY4895uzoAOBUVT1ec30BALVbp+AQJSbEGx0D/9/Zs2e1cuVKLViwQHFxcerVq5emTp2q4cOHy83Nzeh4AC7CkYIH+/bt06lTp+zLGFnwYPjw4fr8889VWFgoNzc3NWzYUNOmTdPkyZNL/XAsz00AoHp48skn9eyzzxodAwDKkuJudAIAAAAAAAAAAAAAAIC6Ii0trci3xp/7PTs7W+7u7mrbtq1MJpPGjBkjs9ksk8lU5rfHXygvL1e3/d9DGvUwbyiG49J2p2rKoN7Ky8tzeJnvvvtOgYGB6tChg9Pz5ObmKjk5uUjRgpiYGGVmZsrd3V1BQUGyWCx6+OGHZTKZdNVVVznt26fy8vLUun2AFn27wSnrAwBnqsh47QxcXwBA7bX6n69p85rVRsfAeerVq6fRo0frnnvu0X//+1+98sorGjFihDp16qSoqCjddddd8vDwMDomgBI0aNBAAQEBZRZWvFjBg9TUVG3YsEF79+7V6dOn7cvUr19ffn5+Ti14sGfPHp37ftz8/Hylp6dr7ty5mj9/viZMmKAZM2aobdu2RZbhuQkAGO/R4dcrPz/f6BgA4BAKGQAAAAAAAAAAAAAAADjZiRMnZLPZihQt2LFjh/3Nx/7+/jKbzerVq5ceeughmc1mmc1m1a9f3+DkQNlsNpsmT56sdevWady4cVq2bNklre/UqVPasWNHkeIe27Zt09mzZ+Xp6amOHTvKYrEoMjJSFotFFotFDRo0cNLeAAAAAED15OLiokGDBmnQoEGy2Wx6+eWXNWHCBD3zzDOKiorS2LFjVa9ePaNjAqgAZxY82LNnjzIzM+3LOFrwoFWrVkpLSyu2zby8POXl5WnJkiVavHixRo4cqccff1xms9np7QAAAIDaj0IGAAAAAAAAAAAAAAAAFZSRkaGUlJQiRQu2bdumQ4cOSZL8/PxkMplkNpvtH8IOCwtTw4YNDU4OlN/x48c1e/Zsvfnmm3J1dZUkbd68uVzrOFfkw2q12l+JiYkqKChQo0aN1LlzZ1ksFk2YMEEWi0XBwcFyc3OrjN0BAAAAgBrDbDbrnXfe0VNPPaUXX3xR06ZN05w5czRz5kxNmDCBYm9ALeVowYPDhw/r8OHD2r9/f7GfO3fu1Ndff63Dhw8rNzfXvoy3t7eys7NLXee5eT/55BN99NFHGjRokGbNmuWcHQMAAECdQSEDAAAAAAAAAAAAAACAMuTm5io5OdlerODcz3MfwPbx8VFQUJBMJpOmTZsmk8mkiIgI+fv7Gx0duGQFBQX64IMPNG3aNJ06dUr5+fnKz8+XJCUmJio3N1ceHh7FlktLSytSsMBqtergwYOSJH9/f1ksFg0dOlRRUVGyWCwymUxycXGp0n0DAAAAgJqkffv2evPNNzVr1iwtWLBAjz/+uBYsWKAnn3xS9913X4n3ZgBqvxYtWqhFixbq0qVLqfMUFhbqyJEjOnTokPbv369du3Zp2rRpZa77XEGD77//Xt98843atGmj3PwCp2UHAABA7UYhAwAAAAAAAAAAAAAAgPOc+/D1hUULsrOz5eHhoTZt2shkMikyMlJms1kmk0khISH2b6gHapOff/5ZkyZNUlJSkgoKir9JPTc3V3FxcfL09Cxy3vz+++86duyY3Nzc1K5dO5lMJk2YMEEWi0U9evRQ8+bNDdgbAAAAAKgdWrdurVdffVWzZs3Syy+/rGnTpmnevHl64okndP/998vNzc3oiACqGRcXF3vBg65du2rHjh0OL+vq6movPnno0CE1bNS4smICAACglqGQAQAAAAAAAAAAAAAAqJNOnDhRpFCB1WrVjh07dPr0aUl/f2O82WxWr1699NBDD8lsNstsNqt+/foGJwcq3759+/T444/rww8/lJubW4lFDKS/38g+adIk/f7776pfv75CQ0MVHh6uOXPmKDw8XKGhofLy8qri9AAAAABQNzRr1kwvvPCCHnjgAT3zzDN68MEH9frrr2vBggUaNGiQ0fEAVGMHDhwo9W/u7n9/3CwvL09eXl7q2bOnrr/+evXq1Us//fSTlr77r6qKCQAAgBqOQgYAAAAAAAAAAAAAAKBWy8jIUEpKSpGiBdu2bdOhQ4ckSX5+fjKZTDKbzYqMjJTFYlFYWJgaNmxocHKg6mVnZ2v27NmaN2+eCgsLJUn5+fmlzu/u7q7AwEAtXbpUwcHB9je6AwAAAACqTvv27fXuu+8qKipKTzzxhAYPHqwbbrhBL7/8ssxms9HxAFRDhw4dkouLiwoLC+Xh4aH8/HwVFBSoefPmuu6669S3b1/16dNHISEhcnFxsS/3yy+/GJgaAAAANQ3/5xAAAAAAAAAAAAAAANQKubm5Sk5OthcrOPczMTFRBQUF8vHxUVBQkEwmk6ZNmyaTyaSIiAj5+/sbHR2oNoYMGaKTJ09etHjB+XJycvTHH3+oc+fOlZwMAAAAAFCW4OBgffbZZ/rll180Y8YMde3aVePGjdOzzz6r5s2bGx0PQDWSnZ2twsJCBQQEqH///rrmmmvUp08ftW/f3uhoAAAAqEUoZAAAAAAAAAAAAAAAAGqctLQ0Wa3WIkUL4uLidPbsWXl4eCgwMFBms1mRkZEym80ymUwKCQmRq6ur0dGBau3YsWOSJA8PD7m4uCgnJ6fMZXbs2KHCwsIi384HAAAAADBO3759tXXrVn366aeaOXOmVq5cqdmzZ2vy5Mlyc3MzOh6AauD//u//dOedd8rPz8/oKAAAAKjFKGQAAAAAAAAAAAAAAACqrWPHjikmJkY7d+5UbGysYmNjFR8frzNnzsjV1VUdOnRQaGioBg0apEcffVRms1lBQUHy8PAwOjpQI3399ddyd3dXcnKykpKSlJiYqPj4eB08eFAFBQWSpHr16ik/P195eXmSpNOnT2v37t3q0KGDkdEBAAAAAOdxcXFRZGSkbrrpJr344ot69NFH9a9//UtLlixRjx49jI4HwGBubm4UMQAAAEClo5ABAAAAAAAAAAAAAAAwXF5enpKSkrRz507t2LFDO3fu1M6dO3XgwAFJUvPmzdWlSxf16dNHEydOVGhoqEwmk7y9vQ1ODtQu/v7+CgsL08CBA4tMP3v2rHbt2qWkpCSlpKQoOTlZcXFxSk5O1smTJ3Xs2DEKGQAAAABANeTl5aXZs2crMjJSDz74oHr16qWJEydq3rx5atiwodHxAAAAAAC1GIUMAAAAAAAAAAAAAABAlUpPT1dsbKzi4+Nls9lktVoVHR2tM2fOyN3dXUFBQTKbzRo3bpwsFovMZrMCAgKMjg3UafXq1ZPZbJbZbC72t+zsbNWvX9+AVAAAAAAAR5nNZq1bt04rVqzQjBkztHbtWi1fvlz9+/c3OhoAAAAAoJaikAEAAAAAAAAAAAAAAKgU+fn52rNnj71YgdVqVXx8vP78808VFhaqcePGMpvNslgsGj16tEwmkywWixo0aGB0dADlQBEDAAAAAKgZXFxcNGbMGA0ePFgPPvigBgwYoPHjx+ull16Sj4+P0fEAAAAAALUMhQwAAAAAAAAAAAAAAMAlS09PV2xsrOLj4+2FC6Kjo3XmzBm5u7urbdu2MplMuueee2SxWGQ2mxUQEGB0bAAAAAAAgDqnefPm+vTTT/Xxxx/roYce0vfff6+PPvpIPXv2NDoaAAAAAKAWcTU6AAAAAAAAAAAAAAAAqDny8/OVmpqqr776SrNnz9Ydd9whs9ksPz8/9enTR1FRUbJarbJYLHrllVe0fv16ZWRk6I8//rAvM3ToUIoYoMo8c98IoyMAZaKfAkBxjI1wNmf3Kfpo5aONgcp35513Ki4uTp06dVKfPn00b948FRQUGB0LAIrgmgAAAKDmcjc6AAAAAAAAAAAAAAAAqJ7S09MVGxur+Ph42Ww2Wa1WxcTEKDMzU+7u7mrbtq1MJpMiIyNlsVhkNpvVoUMHubi4GB0dsCssLDQ6QpluC26l1YlpRsfAJbgtuJUkVfg41oR+ajTOk5rrUs8P1FyMjZWPsbF8KtqnSuvL9NHKH+NpY6BqtGjRQl9//bUWLlyoJ554Qj/++KPef/99+fv7Gx0NQC3BvUHlqw73Btz/ozr0Q2eiTwOAc1DIAAAAAAAAAAAAAAAAKC0tTVarVVar1V64ICEhQYWFhWrUqJE6d+4ss9lsL1rQrVs3eXl5GR0bKNPsdz8xOgLqgNWJafY3tlYE/RS12aWeH6i5GBtR3VS0T5XWl+mjlT/G08ZA1XFxcdGMGTPUt29f3XnnnbJYLFq9erWuuuoqo6MBqAW4N6gbuP9HbUOfBgDnoJABAAAAAAAAAAAAAAB1SEZGhnbu3GkvVmC1WhUTE6PMzEy5ubmpXbt2MplMioyMlNlslslkkslkkouLi9HRAQAAAAAAUIkiIiK0fft2jR49Wtdee60WL16scePGGR0LAAAAAFBDUcgAAAAAAAAAAAAAAIBaKi0tTVarVVar1V64ICEhQYWFhWrUqJE6d+4ss9msyMhIWSwWdevWTV5eXkbHhkF2J8ZrxYvPKnH7Vrm6uSm4W3cNGTNeYb2vlST7Nw+tTkwrslxJ089Ne23tL3rjiYe1JyleV5i7aPK8V5Wbc1aLn5iuvSlJ6hgapofmv6bL/FsXX3bNOr37wmwlRW9TQUGBzFdepTGPPqXLrwgsNu/i7zZqxYLnFLf5N2VmZNjzODubJO1NSdT7L81V/NZNkqTgbt01JuoptQ0MLraNt37epuXPPaHYTb+pXoMG6nr1Nbpv1nPyaexXbN7zv9nputvv1INzXpYkbf3pO/1n2RtKte1U48uaq8fAwRr50Ew18G7ocDvAOOXpL+U5Vo4c870piXp/wRzFb9ssSTJF9NA9M//h0LZLm16e/uhI/y9vG5V2njjSVs4YU+x5HWzXSxpnytiGVPa4LTl2zMqzzbLs25WkFS8+J9vWTXJ1c1Noz166f9ZzJc7ryLEvy6W2tbPGWGcei7qAsdH4sVFyrN9W2Zjn4L5eynl4KcevJBe7zryQh6en/r1zd7m2xxh/8TZ29FwqktnVVUFhFt33+DOaOuTaIut2ePwoY5/OnMrQyjde1pYf/6sTRw7J27exwnpfq0GjxiiwS7jD89i3V8Zxc3RdQHn5+Pho9erVeuqppzRhwgRFR0frtddek7s7Hz8B4FzcGxh7b3D+/M+u+FTmK6/WhrVf6JUZE+3Tz+3jpdzTlqetq+J6rCzleZZUnrZx9NrU0XXWtOfczrovcea9kiPrkqS/DqY57XzlGh5AXeRqdAAAAAAAAAAAAAAAAHBpMjIyZLVatWLFCk2dOlW9e/eWj4+PWrdurWHDhmnp0qXKyspSZGSkVq5cqbi4OJ04cUIbNmzQW2+9ZV+GIgZ1V9ruVL388P/plnGT9O6mOL2wco2ys87ouXGj7POU9mbhkqafm7byjZc1+flX9Pb6GLUPNuvVmZP170UvafK8V7X81+26/IpAvffCMyUu+/LDD6jfrSO05MfNWvLDJvUYMFjPjRulIwf2FZt36ezHdPN9E7X81xjNWvpBpWU7tHe3nhk7UhH9BmrJD5v0z5+2qO+w2/TCg2N17NDBYtt48x8zdMOdY/T2hhi9+Om3OpudpX/Nf7bEPKsT0+yv899k/MKD96rfrXfoX1sS9MIna3Q6/aSWP/ePEtdRWjvAGOXtL+VR1jE/tHe35oy/S1fdMERLftikN7//XT0G3qjnxo3Sob27y9x2adPL0x8d6f/lbaPSzhNH2soZY0p527Wi44wj23Bk3JYcO2aObrMs56/nnz9u1pvf/66rrr9JCx9+oMR5HTn2ZbmUtna0fcrqF848FnUBY2P1GBsd6bdVNeaVZ18v5Ty8lONXkov1k3OvlbF7dEXnrhr7xP+OsSPbY4z/28Wu5R09l87PvOTHzeo/fKQWTp9YbP2OjB+O7NPrj02Vt4+v5q38Su9vS9Y/ln6gQ3v/1GN33FSueRw9bo6sC6goV1dXzZkzR6tWrdJ7772n4cOH68yZM0bHAlCLcG9g/L3BKts+tWzbXv/akiDzlVdLknrfdLOWr49WQ99G+ih6V7n2rSTlbeuquB4rS3meJTnaNuW5NnV0nTXpObez7kucea/k6LpK2v+83NwKn69cwwOoi1wKCwsLjQ4BAAAAAAAAAAAAAADKVlhYqD/++EMxMTHauXOn/fXnn39Kkho3bqyuXbuqS5cu6tKli8LCwmQ2m9WgQQODk6MqdQ0LU2DPvhr18GMOL/PKjAfV7Zr+6nvz7fZpaX/+oSmD+xT7BtSS3qhb0vTbglvp2fdXy9z9KknS8SOHNf6a8CLTjh06qJm33aB3fttZbNnpC/+pXjcOKzL9q3ff0u6kBE154dWi2/n/3xhWEmdme23mZLXrZNIt4x4ssr6fVv9buxNtuu+8b6S9LbiVoha/qyuvu8E+Le3PP/T0mNu17NfoMjOW5nRGuiYNvEr/2hxffJ8u0g5lSdudqimDeis6OlphYWEVWkdtMXfuXC1Z/o4WfbuhXMtdeBzL21/K+8b8ix3z12ZOVsfQMN00elyR6V+9+5ZSE+I09cXXy9y2I5ku1h8d6f+V3UbnL+uMMaW87VrRccaRbTg6bl+opGNWnv26mNcenaKOnbsWW8/P/1mpNx5/uMLnR1ku5d+bC1VkjHXmsXCEUeN1Ra4vJMbGC5etLmOjI/22qsa88uzrpZ6Hl3r8SrqmvNj6lj7zuDIz0vXwy2+Wa3uM8f9TWrs7dC6VkvnctwyXeI9wkfHDkX26q1ug3vp5qxo2amyf58j+vZo4oKd9e47M4+hxc2Rdjlj9z9e0ec1q7UpJcXgZ1C1btmzRkCFD1KFDB61Zs0bNmjUzOhIAA/HcxPFMNeHe4MOF89SkRUsNvmusfdp/lr6ho2n7NWH2CxXatwuPc7nuK6rgeswR5XmWdKESr8vLeW3qyDrP5awJz7mddV/izHul8txHXrj/R/bv1axRN1fofHVWH310+PUaccswzZ071+FlAMAgKa5GJwAAAAAAAAAAAAAAAMXl5ubKZrNpxYoVmjp1qgYOHKhmzZopMDBQkZGRWr58ufLz8zV69Gh98skniouL0/Hjx7Vu3TotWrRI48aNU0REBEUM4JC4Tb8p9Ko+Raa16nBFhT80fE6AKdT+u99lzYpNa9K8hTKOHytx2S5X9yk2rcfAwdrx2y/FpnfsEl4l2XZuXF/szauS1O3a67Rj46/Fppu69yzy381at9GJo0fKnfV8DX0b6XT6yRL/VpF2QOUpb3+piNKO+c6N63XlgEHFpvcYOFg7N653yrali/dHR/p/VbTROc4YU8rbrhUdZxzZRkXH7ZKOmbP6y87ffi1xPeF9+hWf18nH/lL+vTlfRcZYZx6LuoCxsXqMjY7026oa88qzr84+D0virHNzw9rPFbf5N018bkG5t8cYXzaHzqVSMnftdU2p673Y+OHIPnUKs2jexDGKXv+z8vPzJEnNL29b5Ng5Mo+jx82RdQHOcOWVV+rXX3/V4cOHdc899xgdB0Atwb1B9bg36H/bSP382coi035c/bEG3nH3RZdz9Lq5vG1dFddjjirPs6TzlXhdXoFr07LWeU5NeM7trHPOmfdK5VnXhft/mX/rCp+vXMMDqIvcjQ4AAAAAAAAAAAAAAEBdd/LkScXExBR5xcfHKzc3V15eXgoNDVV4eLhuv/12hYeHq3PnzvLy8jI6NmqRjJPH5evXxOnrbeDd0P67i6tridMKCwtLXNansV+xaX7NSv4gar365S/YUZFsp06e0AP9ryxxfZ716xeb1tC3UZH/9vD0LHV/S5Jx/Jg+WPi8otf/rJN/HVVBfv5F569IO6DylLe/VERpxzzj5HE1vqx5sel+zVro1InjFdpWefujI/2/KtroHGeMKeVt14qMM45uw5Fx29Fj5qz+Utp6Sprm7GNfobZ20hjrzGNRFzA2Vo+x0aF+WwVjXnn39VLOwxKXq6Rz80DqLr3z/FOa/d4nqu/lXe7tMcaXzZFzqbTMJV0TnFNaH3N0nx55bak+WbxQy559QhnHj6mDqbN6DrxRg0aNkZu7h8PzOHrcHFkX4CzBwcHauHGjsrKyjI4CoJbg3qB63Bv4t+sgz/r1tTsxXu2DTYrfukleDX3UwdTZPs+lXDeXt62r4nrMUY48S7rU6/KStlHe9q4Rz7mdeF/izHslR+8jL9x/Vze3Crcp1/AA6iIKGQAAAAAAAAAAAAAAUIXS0tIUHx8vm80mq9Uqq9WqxMREFRQUqHHjxjKbzerbt6+mT58us9ms0NBQeXp6Gh0btZxPYz9lnDiuJs1bXHQ+FxcX5ebkyOO8PllZ3yZJRGYsAAAgAElEQVR98thRNW7arMi0E0cPy7dJ00rZniN8/Jrota9/KfbGxcry2qNT1LrDFZr70Rdq2tJfbm5/v9XntuBWVbJ9XJqq7i/n823cRCeOHlbz1m2KTD9x9LB8LniDrqPndWX0x6psI2eMKeVp14pydBuOjNuOHjNn7Zdv4yY6+dcRNWt1eZHpJfUnI8+Pc5zVp515LOoCxsayVUUbOdJvq2LMc9a+Onote6HKOH5ns87oxYfG6Z5HZqltYHCFtscY7xylZT75l+PfHHuOo/vk5eOrex+brXsfm62ME8cV+/sGrfnXMsVv26yZi5Y5PI+jx82RdQHO1KpV3bt2AVB5uDcoW1W1Uf/hI/XT6o9136zn9OPqjzVwxN1F/n4p++as61FnXo85ypFnSeW5Lnf02rQqniFU9fnntH7gxHulit5HlprNgD4KADWFq9EBAAAAAAAAAAAAAACojfLz85WamqqvvvpKs2fP1tChQ9WyZUu1bt1aAwcO1Pz583XixAlFRkbq3//+t+Li4nT8+HFt2LBBr732mkaPHi2LxUIRA1QJ85VXa+fGX4tM250Yr6k39S0yrfFlzfXXwQNFpsVv3VQpmWLWrys2bfP336hrr77FZ64iYb2vlW3zxmLTE7Zt1szhN1R4vS4uLiVOT4rephFTZqp56zb2N1zmZGdXeDuoWpXVXxzR5eo+2vzd18Wmb/7+G3W5uk+RaY6e15XRH8vTRqWdJ45yxphSnnatKEe34ci47egxc9Z+de3dV1t++LbY9AtzSsaeH+c4q08781jUBYyNZauKsdGRflsVY56z+oOj17IXqozj98+noxTUJVz9bh1hn3buAzOObo8x3jlKyxyzYV251+XoPt0W3ErHDh2UJPn6NVGvG4dp1tL3teO3X8o1j6PHzZF1Ac42ZMgQ3XLLLUbHAFALcG9Qtqp6bnL14KHa8uN/lXH8mKLX/6zeNxUd5y9l35x1PerM6zFHOfIsydG2Kc+1aVU8Q6jq59zO6gfOvFeq6H1kaYzoowBQU1DIAAAAAAAAAAAAAACAS5SbmyubzaYVK1Zo6tSp6t27txo1aqQrrrhCw4cP16pVq+Tn56eHH35YX375pY4cOaK0tDR7kYPIyEiZzeZL/pAmUFG3T5yqVW++op0b1+ts1hntSUrQ4ice1o1331dkvq69rtGHC+fp2KGDyj6TqZgN6/Tff6+olEzfrXxf69f8R6dOnlDG8WP68dOPtWbFco2YMqNStueIEVNmaOXrL+n3/67RqZMnlJV5WtvWfa+FMyYq8sGHK7zeJi1aKinGqvy8XO347Rf9X78ISVKn8Ai9/9JzOnJgn/Jyc3Vo7269NTvKWbuDSlZZ/cURd0yeoS/fe0s/rPpI6cf+sp9DX773lkZMLnoOOXpeV0Z/LE8blXaeOMoZY0p52rWiHN2GI+O2o8fMWfs1YvIMffnuP/XT6n8r4/gxnU4/qY3ffKnVby0qPq+B58c5zurTzjwWdQFjY9mqYmx0pN9WxZjnrP7g6LXshZx9/L5b+b52J9g0/ql5l7Q9xnjnuDDzqZMntGHt5/pu5QflX1c59unNf8zQvl1Jys3J0cljR/XF20uKfTirrHnKc9wc2R7gTFu2bNEXX3yhm266yegoAGo47g3KVlXPTep7eatzj156deZkde9/vRp4N3TavjntetTJ12OOcORZkqNtU55r06p4hlDVz7md1Q+cea9U0fvI0hjRRwGgpnApLCwsNDoEAAAAAAAAAAAAAAA1RXp6umJjY2W1WmW1WhUfH6/Y2Fjl5OTIx8dHQUFBMplMslgs9leDBg2Mjo06pGtYmAJ79tWohx8r13JJMVatePFZ/WHbqUZNmmrQnffq1gmTi8yTceK43pn7pHZs/FVns7IU2rOXxj81z/6GxNWJaZL+962zFZl2bvqSHzfr7ef+IdvW31VQUCBz954aE/W0Lr8isMh85zt/HZeao7RsB/f8qQ9efl47f1+v/Lw8tekYpOETpqjHwMEX3e7Fpm/89iu9/9JcHT98UJf5t9a9j81W9/7XK/3YX/rXi88qZsM6ZWakq1X7KxT54DS9/PADpWYtqR0ckbY7VVMG9VZ0dLTCwsLKvXxtMnfuXC1Z/o4WfbvB4WUqo784ur3SltuTnKD3F8xR/LbNkiRTRA/dM/MfahcUUmQ+R8/rivRHR/q/I20klX6eONpezhhTJMfa9VLHGUePXVnjtqPHrDzbLMu+XUla8eJzsm3dJBcXF3UKj9B9jz+jqUOuLbZNR4/9xVxKWztzjHXmsSiLUeN1Ra4vGBur99joyLVfVYx55e0PFy7v6P44axy42LSRXdorNyenWLZz85RnLGCML//9Q0nTz8/s6uoqc/erNPaJZzR5UG99Gr+/xOUvXEd59in29w36+sN3lLBts7IyT6tJC3/1GDBII6Y8Yv9AoCPzSI4dN0fXVZbV/3xNm9es1q6UFIeXQd2Vn5+vVq1a6ciRI+rbt6/WrVtndCQAVYznJrXv3kD6+1vj/3H3rXrhk7UK7BJe5G+Xum/lva+4cPnytIWzro8cfZZUnutyR69NnX2fUh2ec0vOuy9x5r1SRe4jLza9Kvvoo8Ov14hbhmnu3LkOLwMABkmhkAEAAAAAAAAAAAAAAKVIS0srUrDAZrMpISFBhYWF8vPzK1awICQkRK6urkbHRh1X0UIG1cltwa0q9GF8VByFDP6nIm/IR/XGmILapCYVMgCA6mjfriTNnXCP/vnTFqOjVBsUMkB55ebmqlWrVvrrr7903XXX6bvvvuN5GFCH8NwEdUFVPUvi2hQVRSEDADVIirvRCQAAAAAAAAAAAAAAMFpeXp6SkpLsxQqsVqs2b96so0ePSpL8/f1lsVgUGRkpi8WiiIgI+fv7G5waAAAAAACU5rbgVrrviWfV95ZI1avfQPv/SNHy557Q4LvuNToaUKN5eHho9+7d8vf3148//qj+/fvr22+/Vf369Y2OBgBAtcW1KQCgrqKQAQAAAAAAAAAAAACgTjl9+rSSkpLsBQusVqu2b9+urKwseXh4KDAwUBaLRbNmzZLZbFa3bt3UpEkTo2MDdcZtwa3sP/kGdQCXijEFAIC66/F//ktr3lumj16dLxdXV7Vq10E33nOfrr3lDqOjATWet7e3YmNj1bFjR/36668aPHiwvvjiC/n6+hodDQCAS1JZz5K4NgUA1FUUMgAAAAAAAAAAAAAA1FonTpwoUrDAarUqMTFRBQUF8vX1VWhoqCwWi0aPHi2TyaTu3burXr16RscG6jQ+aIy67tybpUvDOfI/jrQV7eUcRvRLzgWcj/7gONoK5VWbx/iIawcq4tqBTlkXgOLatWunzz77TMOGDdOGDRvUq1cvrVmzRu3atTM6GoBajOtdx9FWxRn5LIlr04ujvwJA7UUhAwAAAAAAAAAAAABArZCWllakYIHVatXBgwclSf7+/jKbzRowYICioqJksVhkMpnk4uJicGoAAIriTbmOo62qjhFtzfHF+egPjqOtUF6M8QAuxdChQzV27Fi9++67Onz4sCIiIvSf//xHvXv3NjoagFqK6wjH0VbF0SbVF8cGAGovChkAAAAAAAAAAAAAAGqUs2fPKi4uTtHR0YqJiVFMTIx27Nih06dPy93dXZ06dVJYWJimT5+u8PBwhYWFqWnTpkbHBgAAAAAAAGqdt956S19//bWOHDmiq6++WgMGDNA777yjUaNGGR0NAAAAAGAwChkAAAAAAAAAAAAAAKqt3NxcJScny2q1FnllZ2fL09NTHTt2lMViUWRkpCwWi7p16yYvLy+jYwMAAAAAAAB1goeHh5YtW6Zhw4YpNTVVDz74oO6++24lJyfr6aeflouLi9ERAQAAAAAGoZABAAAAAAAAAAAAAKBaOHXqlGJiYrR9+3b7KyEhQfn5+WrUqJHCw8PVo0cPTZw4Ud26dVNQUJDc3NyMjg0AAAAAAADUaUOHDlWPHj0UHR2tU6dO6fXXX9e0adO0e/duLV26VJ6enkZHBAAAAAAYgEIGAAAAAAAAAAAAAIAql5GRoZ07d8pqtdpfiYmJKigoUKNGjdS5c2f1799fM2fOlMViUUhIiFxdXY2ODQAAAAAAAKAEUVFRuu222/T2229rw4YNWrt2re644w7ZbDatXr1abdu2NToiAAAAAKCKUcgAAAAAAAAAAAAAAFCp0tPTFRsbW2LRAj8/P5lMJg0YMEBRUVGyWCwymUxycXExOjYAAAAAAAAABw0bNkxt27aVq6urpkyZoq1bt2rLli269dZbFRERoX//+9/q37+/0TEBAAAAAFWIQgYAAAAAAAAAAAAAAKc5ceKEbDZbkaIFCQkJKiwslL+/vywWiyIjI2U2m2UymWQ2m42ODAAAAAAAAOASubm5afjw4fryyy+1c+dOffDBBxo9erQ2bdqksWPH6oYbbtCcOXMUFRVldFQAAAAAQBWhkAEAAAAAAAAAAAAAoELS0tKKFCywWq06ePCgJBUpWmCxWNS9e3e1bNnS4MQAAAAAAAAAKsvQoUP1yiuvaNSoUXriiSd0xx13yMfHR6tWrdKLL76oWbNmaceOHVq2bJm8vb2NjgsAAAAAqGQUMgAAAAAAAAAAAAAAlOnCogVbt27V4cOHJf2vaMGECRNksVjUs2dPNWvWzODEAAAAAAAAAKrSVVddJTc3N/Xr10+rV6/W+++/r/Hjx8vFxUVRUVG68sorNXLkSPXq1UurV6/WFVdcYXRkAAAAAEAlopABAAAAAAAAAAAAAKCIC4sWbN68WUePHpWbm5s6deoks9msBx54QBaLRVdffbWaNm1qdGQAAAAAAAAABqtfv74CAgJ04MAB3X333XrppZd0//33y9XVVZLUr18/bdq0ScOHD1f37t319ttv69ZbbzU4NQAAAACgslDIAAAAAAAAAAAAAADqqPz8fCUmJio+Pl42m01Wq1UbN27U8ePH5e7urqCgIFksFs2aNUsWi0Xh4eHy9vY2OjYAAAAAAACAaiogIEB79+7Vo48+qnfffVdfffWVbr75ZvvfO3TooI0bN2rq1KkaPny4Jk+erAULFqh+/foGpgYAAAAAVAYKGQAAAAAAAAAAAABAHZCXl6ekpCRZrVb7KyYmRpmZmfLw8FBgYKAsFoueeuopWSwWWSwWNWjQwOjYAAAAAAAAAGqQhg0bKjMzU506ddKNN96oxYsXFylkIEkNGjTQ0qVLNWjQIN1///36+eeftXLlSpnNZoNSAwAAAAAqA4UMAAAAAAAAAAAAAKCWyc3NVXJycpGiBdu3b1dWVpY8PT3VsWNHWSwWRUZGymKxKCIigm88AwAAAAAAAHDJ6tWrp8zMTEnSmDFjNGLECB04cECtW7cuNu/w4cNlsVh05513qmfPnlqyZInuvvvuqo4MAAAAAKgkFDIAAAAAAAAAAAAAgBosJydHKSkpRYoWbNu2TWfPnpWPj4+6dOkii8WiCRMmyGw2KzQ0VJ6enkbHBgAAAAAAAFALHTt2zF60YMiQIfL19dWqVas0bdq0Eudv166d1q1bp6ioKI0ePVo//fSTXn/9dXl7e1dlbAAAAABAJaCQAQAAAAAAAAAAAADUEJmZmYqJidG2bdvsRQuSkpKUn58vPz8/devWTVdffbUmT56sbt26KTAwUC4uLkbHBgAAAAAAAFBHHDlyRF27dpUk1a9fX8OHD9dHH31UaiEDSfL09NQrr7yiG2+8Uffcc4/WrVunFStWqHfv3lUVGwAAAABQCShkAAAAAAAAAAAAAADVUFZWlmJiYmS1Wu2FCxISEpSfn6/LLrtMERERuuWWW9StWzd169ZNHTp0MDoygGpkf2qKNn77ldExUIOcOHrE6AjVStaZTM4hANWSkeM11xcAUDvtTUk0OgJqkdzcXCUkJOjhhx+2Txs+fLjeffddHT58WC1atLjo8gMHDlRMTIzGjx+vfv36acaMGXr22Wfl6elZ2dEBlAPPTYDqqbCgQHJxoch5HXA6I93oCADgMAoZAAAAAAAAAAAAAIDBcnNzlZycLKvVan9t27ZNZ8+ela+vr0JDQ9W/f3/NnDlTFotFJpOJNyEBKFWby9to7do12vz9N0ZHQQ3TwMtLTZs2NTqG4S6//HKdOHpEL0/7P6OjAECJjBivub4AgNrt2mv7GR0BtYTNZlN2drbCw8Pt06655hq5u7vr559/1siRI8tcR8uWLfXll19q2bJlmj59ur755hu9//776tKlS2VGB+AgnpsAQPVw+eWXGx0BABziUlhYWGh0CAAAAAAAAAAAAACoK/Ly8pSUlFSkaIHValV2drZ8fHzUpUsXWSwW+4uiBQDgHB07dtT999+vxx9/3OgoAGqpTz/9VCNHjtRff/2lxo0bGx0HAOBkzz//vJYsWaJ9+/YZHQUAqq3nn39eixYtUlpamlxdXe3Te/furZCQEC1btqxc60tNTdWYMWO0bds2zZ49WzNnziyyXgAA8D9//PGHFi1apPfee095eXkaNWqUJk2apLCwMKOjAQDqrhQKGQAAAAAAAAAAAABAJSmpaMH27duVlZWlhg0bqmvXrkWKFoSEhPBGXACoJM2aNdMzzzyjBx980OgoAGqpSZMmacuWLdq6davRUQAAleCHH37QwIEDdeDAAbVq1croOABQLUVERMhiseitt94qMv3pp5/Whx9+qF27dpV7nXl5eXr++ec1Z84cXXPNNXr77bfVrl07Z0UGAKDWOX36tD766CO98cYbio2NlcVi0YQJEzR69GjVr1/f6HgAgLqFQgYAAAAAAAAAAAAA4Az5+flKTEwssWiBt7e3wsLCKFoAAAaqV6+e3nnnHd11111GRwFQS5lMJg0ZMkQvvvii0VEAAJUgPT1dTZo00Weffaabb77Z6DgAUO1ER0erW7du+umnn9SvX78if/vqq69088036/jx42rcuHGF1r9t2zaNHj1a+/fv17x58zRx4kSerwIAUIYNGzZo0aJF+s9//qOmTZvq3nvv1aRJk9SmTRujowEA6gYKGQAAAAAAAAAAAABAeZVUtCA6OlpnzpyRh4eHAgMD7QULevfurbCwMLm5uRkdGwDqrKysLHl5eemrr77SkCFDjI4DoBY6cuSIWrZsqbVr12rw4MFGxwEAVJKQkBDddtttmjNnjtFRAKDauffee7Vt2zbFxsbKxcWlyN/27Nmj9u3ba/369erdu3eFt5Gbm6uFCxfqqaeeUkREhJYvX66QkJBLjQ4AQK138OBBrVixQq+//roOHTqkwYMHa+rUqRowYIDR0QAAtVsK5ecAAAAAAAAAAAAAoAxpaWn66qv/x96dx1VVJ/4ff7MKsqvIpoESoEKgXrQSskVoxkY0bbFltGzMmhnTyspmyoaWcWyamaLNxBbHmjazUrNMzUoRNb2oKIUbosJlE/Cyy/r7Y37cr05aVsABfD0fj/Pgcu+557yP0eVezvm8P6uUnJyspKQk+fr6KioqStOnT9f69es1cOBAzZ8/X5s2bVJVVZWysrK0dOlSzZ49WyaTiRIDADCY1WqVJHl5eRmcBEB3tWHDBjk4OCguLs7oKACAdjRy5Eh98803RscAgE7n0KFDeuedd3T//fd/r8RAki644AL5+PgoMzPzF+3HyclJc+fO1fbt29XQ0KDhw4crOTlZ9fX1v2i7AAB0dwEBAZo7d65ycnL0zjvvqK6uTomJiRo8eLBSUlJUXV1tdEQAQDdl19LS0mJ0CAAAAAAAAAAAAADoLCwWi8xms21JT09XWVmZHB0dFR4eLpPJZFtGjBihHj16GB0ZAPAj9u3bp0GDBmn37t2Kjo42Og6Abuiuu+5SZmamtmzZYnQUAEA7evHFF/Xoo4+qrKxM9vbMJwcArW644Qbt3btXe/bskaOj4xnXiYuLU2xsrFJSUtpkn42NjXrppZf0yCOPKDQ0VK+99ppiY2PbZNsAAJwPzGazUlNT9dZbb8nJyUmTJ0/Wvffeq8GDBxsdDQDQfRygyAAAAAAAAAAAAADAeet/Swu2bt2q48ePn7G0IDY2Vi4uLkZHBgD8DN98840uvvhi5ebmKjg42Og4ALqhiIgIXXfddZo/f77RUQAA7aj1fWV2drYiIiKMjgMAncIXX3yhxMRErVy5UuPGjTvrepMnT1ZjY6OWL1/epvvfv3+/pk+frq1bt+q+++7TY489Jjc3tzbdBwAA3dmJEyf073//W88995yOHj2qq666SjNmzNCkSZPk4OBgdDwAQNdGkQEAAAAAAAAAAACA88P/lhZs27ZNJSUlcnBwUERExGmlBSaTSa6urkZHBgC0kXXr1unqq69WeXm5vL29jY4DoJspKChQYGCg1q5dq8TERKPjAADaUX19vTw9PfXqq6/qt7/9rdFxAMBw1dXViomJUVRUlD7++OMfXPf+++9Xenq6tm7d2uY5mpublZqaqj//+c/y8PBQSkqKrr322jbfDwAA3Vlzc7M2bNiglJQUrV69WgMHDtSdd96pO++8U7169TI6HgCgazpgb3QCAAAAAAAAAAAAAGhrFotFq1atUnJyspKSkuTn56egoCBNnDhRy5Ytk4+Pjx555BFt2rRJFRUVysrK0tKlSzV79mzFx8dTYgAA3YzVapWdnZ08PT2NjgKgG9qwYYOcnZ01atQoo6MAANqZs7OzYmJitH37dqOjAECncM8998hqtWrRokU/um5QUJAsFku75LC3t9fdd9+tgwcP6te//rUmTZqkpKQkHT58uF32BwBAd2Rvb6+EhAStWrVK+/bt0/XXX6+nn35aQUFBmjp1qnbv3m10RABAF+RodAAAAAAAAAAAAAAA+CUsFovMZrNt2bFjhwoLCyVJAQEBMplMuv/++xUXF6dhw4bJzc3N4MQAgI5mtVrl4eEhe3vm/ADQ9r788kuNHDmS95kAcJ4YOXKkvvnmG6NjAIDhUlNTtWTJEi1fvlx+fn4/un6vXr1UXl7erpl69eqlRYsW6dZbb9Uf/vAHRUZG6qGHHtKf/vQn9ejRo133DQBAdxIWFqYFCxbokUce0TvvvKMXXnhBQ4cOlclk0qxZs3TzzTfLycnJ6JgAgC6As7MAAAAAAAAAAAAAuozS0lKtWbNGTz75pMaPH6/AwEAFBQVpwoQJevfdd+Xp6amHHnpIX3/9tSoqKmSxWLRq1SrNnTtX8fHxDC4DgPOU1WqVl5eX0TEAdFNffvmlrrzySqNjAAA6yIgRI7Rr1y41NDQYHQUADJOenq7Zs2frkUce0cSJE8/pOW5ubqqpqVFLS0s7p5NGjx6tjIwMzZs3T88884yGDh2q9evXt/t+AQDobjw8PDRjxgzt2bNHmzZt0sCBA/W73/1OF1xwgR5++GHl5eUZHREA0MnZtXTEp0AAAAAAAAAAAAAA+ImqqqqUkZGh7du325acnBxJ0oABAzRixAiNGDFCJpNJJpNJnp6eBicGAHRWf/nLX/Thhx9qz549RkcB0M3k5uZqwIAB+uqrr3T55ZcbHQcA0AH27Nmj6Oho7d69W9HR0UbHAYAOt3//fsXFxSkuLk4ffvih7O3PbX7N1atXa9y4caqurlbPnj3bOeX/yc3N1ezZs7Vy5Upde+21+sc//qHQ0NAO2z8AAN2NxWJRamqqXn75ZVmtVk2YMEEzZsxQQkKC0dEAAJ3PgXP7xAgAAAAAAAAAAAAA7aixsVFZWVlaunSpZs+erfj4ePXq1UuXX365nnrqKZWWlmrKlClauXKlioqKlJOTo/fee08PPPCArrzySkoMAAA/yGq1ysvLy+gYALqhzz//XG5ubrrkkkuMjgIA6CBDhgxRz549tXPnTqOjAECHy8/P1zXXXKPQ0FC9/fbb51xiIMlWXlBdXd1e8c4oJCREK1as0BdffKFDhw5p8ODBmj17tioqKjo0BwAA3UVgYKCSk5N17NgxvfXWW8rPz1diYqKGDx+u1NRU1dTUGB0RANCJ2LW0tLQYHQIAAAAAAAAAAADA+SUnJ0dpaWkym822pa6uTh4eHoqOjpbJZLItkZGRRscFAHRx06ZNU3FxsVavXm10FADdzA033KCamhpeXwDgPDNy5EiNGjVKzz33nNFRAKDD5Ofn68orr5STk5O++uor+fr6/qTnb9iwQWPGjNHx48fVu3fvdkr5wxobG/X666/r0UcfVUtLix599FHNnDlTDg4OhuQBAKC7MJvNSk1N1ZtvvilnZ2fddtttuvfeezVgwACjowEAjHWAIgMAAAAAAAAAAAAA7cpisZxWWLB582aVl5fLyclJYWFhio+PV1xcnEwmkwYPHvyTZvECAOBcTJo0SS4uLnr77beNjgKgG2lqalLfvn01b9483XvvvUbHAQB0oLvvvlvffvutNm7caHQUAOgQR44cUWJiopycnLRhwwb5+fn95G2sW7dOV199tcrLy+Xt7d0OKc9daWmp5s2bp9TUVA0fPlzPPvus4uLiDM0EAEB3UFxcrDfeeEMLFy7UsWPHdNVVV2nWrFkaN26c7OzsjI4HAOh4B7gCCAAAAAAAAAAAAECbOXHihNavX6/k5GQlJSXJz89PQUFBmjhxopYtWyYfHx/95S9/0aZNm1RZWamsrCwtWrRIU6dOVWRkJCUGAIB2YbVa5eXlZXQMAN1MRkaGysrKlJCQYHQUAEAHGzZsmHbv3q3m5majowBAu9u7d6/i4uLUs2fPn11iIP23CEySHBwc2jLez9K7d2+9/PLLysjIkIeHh+Lj43Xddddp3759RkcDAKBL69u3r+bOnaucnBx9/PHHkqQJEyYoPDxcTz/9tMrKygxOCADoaFwFBAAAAAAAAAAAAOBnqaysVFpamlJSUmxFBD4+PkpMTFRqaqok6f7779emTZtUUVGhrKwsLV26VLNnz1Z8fLx69Ohh8BEAAM4XFBkAaA/r1q2Tv7+/IiMjjY4CALmBXYoAACAASURBVOhgw4YNU0VFhQ4dOmR0FABoV1999ZVGjx6t0NBQff311z+7xECS6uvrJUlOTk5tFe8Xi46O1hdffKF169bp0KFDioqK0l133aXCwkKjowEA0KXZ29srKSlJ69at03fffadrrrlGTz31lIKDg3XXXXdpz549RkcEAHQQigwAAAAAAAAAAAAA/KiGhgZlZWUpNTXVVlrg7e2tyy67TE8//bTKy8t1ww03aOXKlSopKZHFYtGqVas0d+5cxcfHq2fPnkYfAgDgPEaRAYD2sH79eiUmJsrOzs7oKACADhYdHS0nJyft3LnT6CgA0G5SUlKUmJiohIQEff7557/4c3VFRYWcnZ3l4uLSRgnbTkJCgjIyMvT222/r888/14UXXqiHH35YFRUVRkcDAKDLi4iIUEpKivLz8/XPf/5TmzdvVnR0tOLj47Vs2TI1NjYaHREA0I4oMgAAAAAAAAAAAABwmqamJmVlZWnp0qWaPXu24uPj5eHhoaioKD344IPKyclRQkKC3njjDeXk5NhKC5KTk5WUlKQ+ffoYfQgAAJyGIgMAba2mpkbp6elKTEw0OgoAwAAuLi6KiIigyABAt1RXV6dp06bpvvvu05w5c/Tee++1SflARUWFPD092yBh+7C3t9cNN9ygb7/9Vn/605+0cOFCDRo0SIsWLVJDQ4PR8QAA6PI8PT01Y8YM7dmzR+vWrVNgYKBuueUWXXDBBXr44YeVn59vdEQAQDuwa2lpaTE6BAAAAAAAAAAAAADjWCwWmc1mbd68WWlpadq5c6dqamrk5uamoUOHymQy2ZYhQ4Yw4ywAoMtxcXHRa6+9pltvvdXoKAC6iTVr1mjs2LHKy8tTUFCQ0XEAAAaYOnWqioqK9PnnnxsdBQDazLFjx3Tdddfp0KFDevvtt/WrX/2qzba9YMECLV68WIcOHWqzbbankpISPfnkk1q0aJH69++v5ORk3XLLLbK3Zz5RAADaSn5+vhYvXqyXXnpJFRUVmjBhgmbMmKGEhASjowEA2sYBPkEBAAAAAAAAAAAA5xGLxaJVq1YpOTlZSUlJ8vX1VVBQkCZNmqRVq1Zp4MCBmj9/vjZt2qSysjKlpaUpJSVFU6dOVWRkJCUGAIAup66uTidPnpSXl5fRUQB0I+vWrVNkZCQlBgBwHhs2bJgyMjKMjgEAbWb16tUaPny4Tp48qe3bt7dpiYEkFRcXq2/fvm26zfbk6+ur559/XgcOHNCYMWM0bdo0RUVFadmyZWI+UQAA2kZQUJCSk5OVl5ent956S3l5eUpMTFRsbKxSU1NVU1NjdEQAwC9EkQEAAAAAAAAAAADQTVmtVlsRwY033qiAgAAFBQVp/PjxevPNN+Xj46NHH31UmzZtUkVFhbKysrR06VLNnj1b8fHxcnZ2NvoQAAD4xaxWqyRRZACgTa1bt06JiYlGxwAAGGj48OE6fvy48vLyjI4CAL9IZWWl7rzzTo0bN05jx45Venq6Bg4c2Ob7yc/P75JFYBdccIEWLVqkvXv3KjY2VjfffLNiYmK0bNkyo6MBANBt9OjRQzfccIPS09O1Y8cOmUwmzZ49W0FBQZo9e7Zyc3ONjggA+JnsWqiCAwAAAAAAAAAAALq8qqoq7dq1S2az2bZ89913amlpUUBAgEwmk22Ji4tTr169jI4MAECH2L9/vyIiIrR7925FR0cbHQdAN1BUVKSAgAB98sknuuaaa4yOAwAwiNVqlY+Pj1asWKGkpCSj4wDAz5Kenq7bbrtNpaWleuGFF3Trrbe2277i4uIUGxurlJSUdttHR8jMzNS8efO0cuVKxcXF6fHHH9eYMWOMjgUAQLdTVFSkJUuW6OWXX1ZeXp6uuuoqzZo1S+PGjZOdnZ3R8QAA5+aAvdEJAAAAAAAAAAAAAPw0jY2N2rlzp1555RXdcccdioqKkre3ty677DItWLBA5eXlmjx5slavXq2SkhJZLBatWrVKycnJSkpKosQAAHBesVqtkiQvLy+DkwDoLtavXy8nJyeNHj3a6CgAAAN5eXkpJCREu3fvNjoKAPxkdXV1evjhhzV69GiFhYVp79697VpiIEn5+fkKCgpq1310hOjoaK1YsUJbt26Vm5ubEhISFBcXpzVr1hgdDQCAbsXPz09z585VTk6OPv74Y0nShAkTFBERoaefflrl5eUGJwQAnAu7lpaWFqNDAAAAAAAAAAAAADi7nJwcffPNN7YlIyNDtbW18vDwUGxsrEaOHKmRI0dqxIgR6t+/v9FxAQDoVNavX6/ExESVl5fL29vb6DgAuoEpU6bo2LFj+uqrr4yOAgAw2Pjx4+Xm5qZ33nnH6CgAcM42btyou+++W/n5+Xruuec0bdq0dt9nc3OzXF1d9cYbb+iWW25p9/11pF27dmn+/Pn64IMPFB0drUceeUTXX389M0UDANAOsrOztXDhQr322muyt7fXzTffrHvuuUdRUVFGRwMAnNkBe6MTAAAAAAAAAAAAAPg/FRUVSktL09NPP62kpCT5+fkpNDRUU6ZM0eeff66BAwfqb3/7m3bs2KETJ05ow4YNWrBggSZNmkSJAQAAZ2C1WmVnZycPDw+jowDoBpqbm7V27Vpdc801RkcBAHQCUVFR2rt3r9ExAOCcFBUVaerUqbriiisUEhKiPXv2dEiJgSSVlJSovr5eQUFBHbK/jjR06FC9//772rlzp8LDwzV58mTFxMRo6dKlam5uNjoeAADdyqBBg5SSkiKLxaJ//OMf2rRpky666CLFx8dr2bJlamxsNDoiAOB/UGQAAAAAAAAAAAAAGKShoUFZWVlKTU3V1KlTFRkZKW9vb1122WVKSUmRJP3+97/XunXrZLValZWVpaVLl2r27NkymUyyt+d0HwAAP8Zqtcrd3V0ODg5GRwHQDezYsUPFxcUaO3as0VEAAJ1AVFSU9u3bp/r6eqOjAMBZNTc3a+nSpYqMjNSGDRu0ZMkSffrpp7rgggs6LENeXp4kqV+/fh22z44WExOj999/XxkZGQoLC9O0adMUExOjt956i0GVAAC0MU9PT82YMUN79+7VunXrFBgYqJtvvlnBwcFKTk5WSUmJ0REBAP8fVzYBAAAAAAAAAAAAHcRisWjZsmWaPXu24uPj5enpqaioKD344IPKyclRUlKSVqxYoaKiIlksFq1atUrJyclKSEhQz549jY4PAECXZLVa5eXlZXQMAN3EZ599pn79+ikqKsroKACATiAqKkoNDQ3av3+/0VEA4IzMZrMuvfRSTZ8+Xbfeequ+++47TZ06tcNz5OXlyc7OToGBgR2+7442dOhQLV++XLt371ZMTIymTZumsLAwvfjii6qpqTE6HgAA3Yq9vb0SEhL0/vvva9++fZoyZYpefPFF9e/fXzfeeKPS09ONjggA5z2KDAAAAAAAAAAAAIB2UFBQYCsiSEpKUp8+fRQUFKRbb71V69evV2RkpBYtWqS9e/fqxIkTSktL04IFC5SUlKS+ffsaHR8AgG6DIgMAbemzzz7Tr3/9a9nZ2RkdBQDQCQwaNEjOzs7as2eP0VEA4DS5ubmaMmWKRo4cKXd3d2VmZiolJUUeHh6G5Dlw4ICCgoLk6upqyP6NEBUVpbfeeksHDhzQ+PHjNXfuXNss0WVlZUbHAwCg2wkNDdWCBQuUl5en1NRU7d+/X3FxcYqNjVVqaqpqa2uNjggA5yWKDAAAAAAAAAAAAIBfqLq6WmlpaUpJSdHUqVMVGRmpwMBAjR8/XqmpqXJ1ddW8efO0adMmVVRUKCsrS4sWLbKtyyAoAADaD0UGANpKWVmZduzYobFjxxodBQDQSTg7OyssLExZWVlGRwEASVJpaanmzJmjQYMGaevWrXr33Xf1xRdfaNCgQYbmOnDggMLCwgzNYJSQkBClpKTo8OHDuvvuu/X8888rODhYc+bM0ZEjR4yOBwBAt+Pi4qKpU6dq165d2rFjh4YMGaKZM2cqJCREDz/8ML9/AaCD2bW0tLQYHQIAAAAAAAAAAADoKpqampSdnS2z2Wxbtm/frvr6evn7+ys2NlYmk0kmk0mjRo1S7969jY4MAMB57Y477lBhYaE+/fRTo6MA6OLefvtt3XbbbTp+/DgFKQAAm5tuukm1tbVasWKF0VEAnMdqa2v1/PPPa8GCBXJ0dNQDDzyge++9Vz169DA6miTpyiuvVHh4uBYtWmR0FMNVVlYqNTVVzz33nAoLC3Xttddq9uzZio+PNzoaAADdVmFhof7973/rxRdflMVi0TXXXKPZs2drzJgxTDoAAO3rgL3RCQAAAAAAAAAAAIDOzGKxaNWqVUpOTlZiYqK8vLwUFRWlP/zhDzKbzTKZTFq8eLH27t2rgoIC27pJSUmUGAAA0AlYrVYGHANoE5999pni4+N5TQEAnCYqKkp79+41OgaA81RjY6Nee+01hYWF6amnntKsWbN0+PBhzZ07t9OUGEjSgQMHFBYWZnSMTsHDw0Nz5sxRbm6uPvzwQ504cUKXXXaZhg8frtTUVNXW1hodEQCAbsff319z587VoUOH9O6776qurk6JiYkaPHiwUlJSVFVVZXREAOi27FpaWlqMDgEAAAAAAAAAAAB0BhUVFcrMzJTZbNbmzZu1ceNGFRUVycHBQRERETKZTLZl5MiRcnZ2NjoyAAD4EQkJCbrwwgv1yiuvGB0FQBfW3NysgIAAzZkzRw899JDRcQAAncjHH3+sSZMmyWq1ysPDw+g4AM4TDQ0NWrp0qebPn69jx45p+vTpeuyxx+Tv7290tO+pqamRu7u7PvroI02YMMHoOJ2S2WxWSkqK3n33Xfn4+GjatGmaOXOm+vXrZ3Q0AAC6rZ07d+qVV17Rf/7zHzk4OOimm27SrFmzFBkZaXQ0AOhODlBkAAAAAAAAAAAAgPNSY2Oj9u3bZystSEtLU3Z2tm2AUmthQXx8vC699FK5ubkZHRkAAPyIN998U7fddpt69uwpV1dX9ezZU1arVT4+PoqMjJSHh4c8PT3l5+enP//5z3JxcTE6MoAuYvv27Ro5cqQyMzN10UUXGR0HANCJHDx4UGFhYdq2bZtGjhxpdBwA3VxDQ4PeeecdPfnkkzpy5IhuuukmzZs3T2FhYUZHO6vMzEzFxMQoKytLQ4YMMTpOp1ZYWKhXXnlFL7/8sqxWqyZMmKD7779fl1xyidHRAADotqxWq5YsWaKUlBTl5uZqzJgxmjFjhiZOnChHR0ej4wFAV0eRAQAAAAAAAAAAAM4PFovFVlhgNptlNptVV1cnDw8PRUdH20oLRo8eLT8/P6PjAgCAn+HLL7/UVVddddbH7ezsZGdnJ3t7e1ksFvn6+nZgOgBd2RNPPKHFixfr6NGjsrOzMzoOAKATaW5ulqenp55//nndcccdRscB0E3V19fr3Xff1RNPPKFjx45p8uTJ+stf/qLQ0FCjo/2o5cuX68Ybb1R1dTWFgufo5MmTeu+99/TPf/5TmZmZMplMmjVrlm655RYGVAIA0E6am5u1YcMGpaam6sMPP5S/v7+mT5+umTNnqk+fPkbHA4CuiiIDAAAAAAAAAAAAdD8nTpzQjh07bKUFW7du1fHjx+Xo6Kjw8HBbaUFcXJwGDx4se3t7oyMDAIA20NjYKB8fH1VVVZ11HUdHRyUlJenDDz/swGQAurpLL71UUVFRWrx4sdFRAACd0MiRIxUfH69//etfRkcB0M1YrValpqYqJSVFpaWlmj59uubOnat+/foZHe2czZ8/X4sXL9bhw4eNjtIlpaWl6fnnn9dHH30kX19fzZgxQ/fcc4969+5tdDQAALqtgwcP6tVXX9XixYtVXV2t8ePH67777tOll15qdDQA6GooMgAAAAAAAAAAAEDXVltbq4yMDG3bts22HDlyRHZ2dgoPD9fIkSNty9ChQ+Xs7Gx0ZAAA0I5uuOEGffzxx2psbDzrOuvXr9eYMWM6MBWArqysrEx9+/bV+++/r0mTJhkdBwDQCd1xxx3Ky8vT2rVrjY4CoJs4duyYUlJSbEVad955p+6//34FBgYanOynu/3221VYWKg1a9YYHaVLO3TokF588UW9/vrramxs1OTJkzV9+nSNGjXK6GgAAHRbdXV1ev/99/XPf/5TmZmZMplMmjFjhqZOnSoXFxej4wFAV3CAqWUAAAAAAAAAAADQpezfv19vvvmmZs6cqREjRsjLy0vx8fFasGCBampqNH36dH3++ecqKytTdna2li5dqpkzZ2rkyJGUGAAAcB5ISkpSc3PzWR+/4IILdNVVV3VgIgBd3Zo1a2RnZ0cBCgDgrKKiopSVlWV0DACd0MmTJ/X000+roKDgnNbfvXu3pk6dqtDQUP3nP//Rfffdp9zcXP3jH//okiUG0n//ph8eHm50jC4vNDRUzz77rPLy8vTMM88oIyNDcXFxioqKUkpKisrLy895W/v27VN6eno7pgUAoHtwcXHR1KlTtXv3bu3YsUNDhgzRzJkzFRISoocfflhHjx4952199NFHqq6ubse0ANA52bW0tLQYHQIAAAAAAAAAAAA4k8rKSu3evVubN29WWlqatm3bppKSEjk6Oio8PFzx8fGKi4uTyWTSkCFDZGdnZ3RkAABgsJKSEvn7+5+xzMDR0VFPP/207r//fgOSAeiqpk6dqqNHj+qrr74yOgoAoJNavXq1xo0bJ6vVKk9PT6PjAOgkjh8/rqSkJG3dulUPPPCAnnnmmTOu19zcrDVr1uhf//qXvvjiC8XExGjOnDm66aab5OTk1MGp216fPn2UnJysmTNnGh2l2zGbzUpNTdU777yj+vp6jR8/XjNmzNCYMWN+8HzJ6NGjtXnzZv3973/XnDlzOjAxAABdX0FBgZYuXaoXXnhBhYWFGjt2rGbPnv2Dv3+/+uorXXnllYqNjdWaNWvUu3fvDk4NAIY5QJEBAAAAAAAAAAAAOoWmpiZlZ2fLbDbbiguys7PV3NysgIAAmUym04oLXF1djY4MAAA6qdjYWGVkZOh/L4txcnJSfn6+fH19DUoGoKtpamqSv7+/HnroIT344INGxwEAdFIHDx5UWFiYduzYIZPJZHQcAJ3Avn379Ktf/UoWi0UNDQ3q1auXCgsLTysmKC8v1+uvv66FCxcqJydHV199tebMmaPExEQDk7et48ePy9fXV2vXru1Wx9XZ1NbW6pNPPlFqaqrWr1+v8PBw3XHHHZo2bZr69u172rrHjh1TcHCwWlpaZGdnp1tvvVWLFy+Wi4uLQekBAOia6uvrtWLFCtvv30GDBunuu+/W9OnT5ebmdtq6kyZN0qpVqyRJwcHB+uKLLxQcHGxEbADoaBQZAAAAAAAAAAAAwBgWi0Vms9lWXJCenq6amhq5u7srJibGVlwwevRo+fn5GR0XAAB0IU899ZSeeOIJNTQ02O5zcnLS5MmT9eabbxqYDEBXs3HjRl1++eXKzs5WRESE0XEAAJ1UU1OTevbsqTfeeEO33HKL0XEAGGzz5s0aN26cqqurbZ9L7ezstHz5ck2cOFHZ2dlauHChXnvtNdnb2+vmm2/WPffco6ioKIOTt7309HTFxcUpNzeXwXod5Ntvv9XSpUu1ePFiVVVVacKECZoyZYquueYaOTg46G9/+5see+wxNTY2SpIcHR01ZMgQffLJJ+rfv7/B6QEA6JoyMjK0aNEivfXWW3J0dNRNN92ke++9V4MHD5bFYtEFF1ygpqYmSf89V+Hl5aX169crJibG4OQA0O4oMgAAAAAAAAAAAED7q66u1s6dO23FBWlpaTp8+LAcHBwUEREhk8lkKy4YNmyY7O3tjY4MAAC6sF27dmnYsGHfu3/z5s0aNWqUAYkAdFUPPvigPv74Yx04cMDoKACATm7w4MG68cYb9fjjjxsdBYCBlixZojvvvFMtLS22wWqS5ODgoIsuukju7u5KS0vTkCFD9Mc//lFTpkyRh4eHgYnb15IlS/SHP/xBVVVV/N2/g9XU1Oi9997Tq6++qvT0dIWGhup3v/udXn/9dR08ePC0dZ2cnOTt7a1PPvlEI0eONCgxAABd3/Hjx/Xaa69p4cKFOnbsmH7961+rV69eeu+9904rXnZ0dJSLi4s+/fRTXXbZZQYmBoB2R5EBAAAAAAAAAAAA2l5OTo7S0tJsxQXbt29XfX29/P39FRsbe1pxgY+Pj9FxAQBAN9PS0iJ/f38VFxdL+u/MlxEREfruu+8MTgagq4mIiND48eP1zDPPGB0FANDJXXvttXJxcdG7775rdBQABmhpaVFycrKeeOKJs65jZ2enuLg4PfTQQxo3bpzs7Ow6MKExHn30Ua1YsUJ79uwxOsp5LTs7W0uWLNHrr7+ukpKSM67j6OgoOzs7LV68WLfddlsHJwQAoHtpbm7Whg0b9Oyzz+rLL79UbW3t99axt7eXg4OD3n77bV1//fUGpASADnHA0egEAAAAAAAAAAAA6NqsVqu2b99uKy7YsmWLSktL5eTkpOjoaMXFxWnGjBkymUyKjIw0Oi4AADgP2NnZ6dprr9WSJUtUX18ve3t7zZo1y+hYALqYgwcPav/+/UpKSjI6CgCgC4iIiNDatWuNjgHAACdPntTtt9+u99577wfXc3R01NixY8+r95e5ubkKCQkxOsZ5b9CgQVqwYIFqamq0aNEi1dfXf2+dxsZGSdLtt98us9msZ599Vg4ODh0dFQCAbsHe3l4JCQkqLCzUZ599dsZ1mpub1dLSosmTJ+vll1/WXXfd1cEpAaBj2LW0tLQYHQIAAAAAAAAAAABdQ2Njo/bt26fNmzfbigu+++47tbS0KCAgQPHx8YqLi5PJZFJsbKxcXFyMjgwAAM5TK1eu1IQJEyRJrq6uKiwslKenp8GpAHQlzzzzjBYsWKCioiI5OjJnEADgh73++uuaNWuWKisrz4tZ1gH81/Hjx5WUlKQdO3bYBoL/kH79+uno0aPnzevE6NGjFR0drRdffNHoKOe9xsZG+fn5qays7EfXdXBw0FVXXaX3339f3t7eHZAOAIDuKTY2Vrt27VJTU9OPrjt37lwtWLCgA1IBQIc6wNkVAAAAAAAAAAAAnJXFYpHZbLYVF2RkZKi2tlYeHh6Kjo5WUlKSFixYoEsuuUS+vr5GxwUAALAZM2aMnJyc1NDQoN/+9reUGAD4yVatWqXf/OY3lBgAAM5JRESEqqurlZeXp/79+xsdB0AHyMrK0q9+9SsVFxefU4mBJOXl5enrr7/WFVdc0b7hOokjR45o3LhxRseApDVr1pxTiYEkNTU16auvvtLw4cP16aefatCgQe2cDgCA7mfnzp0ym83nvP4zzzyjoqIiLV68mL9HAuhWeEUDAAAAAAAAAACAJKmqqkq7du2yFRds3LhRRUVFcnBwUEREhEwmk6ZOnaq4uDgNHjxY9vb2RkcGAADd0MmTJ1VTU6PGxkZVVlaqpaVFJ06csD1eUVFx1tmLrFarmpubbd8PGTJEu3fv1oUXXqiVK1eqZ8+eZ3yei4uLXF1dJUmOjo7y8PCQnZ2dbdZBLy8v3vsA55mysjJt2bJF99xzj9FRAABdREREhCRp3759FBmcxWeffaaqqiqjYwBtYs+ePfr73/+ukydPnnUdOzs722fJ1q8NDQ168sknVVJS8oPbd3V11W9+8xvZ2dm1XegO1tjYKIvFouDg4HbfF68vP+7ZZ5+VnZ2dWlpazmn9hoYGHT58WMOHD9fDDz+swYMHt3NCAJ3ZlVdeqT59+hgdA+hSFi1aJOm/5xzOpfSqublZ//73v2W1WvXOO++oR48eP3mfdXV1qq2tPe2+EydOnPb7v76+XtXV1Wd8fk1NzQ++v/0h5eXlP+t5kuTk5CR3d/ef9Vx3d3c5OTmd8TFvb+/T3k87OzvLzc3ttHU8PT3l4ODws/YN4NzYtZzrpxAAAAAAAAAAAAB0Kzk5OUpLS7MVF+zatUtNTU0KCAiQyWSSyWRSfHy8Ro0addZBfwAAAJWVlSotLdXx48d14sQJnThxQlVVVbblxIkTqqiosH1fWVlpW6e+vl6VlZVqbGz8RRfIdZTWC+JcXV3l4uIiNzc3ubu7y93dXd7e3vLw8JC7u7s8PDzk4eEhb29v2+NeXl7q3bu3evXqpd69e8vFxcXowwHwA5YuXao777xTJSUl8vT0NDoOAKCL6NOnjx5//HH98Y9/NDpKp5OTk6PQ0FCjYwBdyp49exQVFWV0jJ/tyJEjCgkJUXp6ui699NJ22w+vLwDQ/ubNm6cnnnjC6BiAIRoaGlRVVWUrYa6trVVdXZ2qq6tVX19ve1w6vQjAbDYrOztbtbW1qqysVE1NjWpqalRXV2d73tmG9vr6+qpPnz6nnTNp3V+r/y2BRttoLbs+lZubm5ydnW3fn1qe4OPjI+n0MoaePXvaiihai7Lt7e3l5eUlSerRo4ftGpwzbav1Pg8PDzk6Otq20fo40MUccDQ6AQAAAAAAAAAAANrfiRMntGPHDltxQXp6usrKyuTm5qahQ4cqLi5Os2bNUnx8vAYOHGh0XAAAYKDi4mIVFxfLYrGosLBQxcXFKikpUWlpqUpLS1VWVnba7VMvnGt1tgH+7u7u8vX1laenp9zd3W1lAM7OznJxcZGrq6vtYq9TL+o6ddac1hKBMzn14rD/VVVVpYaGhjM+1lqmIP3fbERNTU2qqKiQ9H8zCVVUVKipqcl2wWBlZaWqqqpUXV0tq9Wq/Pz8sxY2nOnfqLXUoHfv3urTp4/tdu/eveXv76/AwED17dtXQUFBP3s2IgA/z6pVq3TFFVdQYgAA+EnCw8O1b98+o2N0Sq3vt//x0ToNGBxpcBqgc7Pk5uieX8ef08y9ndnRo0clScHBwe26H15fAKB9PTTpajU1NRkdAzgjq9Wq2tpa1dTUqLy8XLW1taqtrdWJEydUXV2t2tpaVVRUnLWEoPXcgNVqVXNzs8rLy20FCdD0jAAAIABJREFUAaeeIzhXrec5JNkGoUv/HaDu5ub2vcHujo6Oqq+vl4uLixoaGtTY2Ch7e3v5+vqqf//+tm1Jpw9+b9U6wL3VqdtvdepAeUlycHD4wb95/tzB8mfKd65a//1/qlNLJP5Xc3OzrFbrafedqVC79fxPq9aflR/K13qu6NR9nPq84uJi2/mo1u2frfCidVvnqvXcWWvhgrOzs9zc3Gw/e6cWcTs7O59WhtD61c3NTT179rSVcru6utoKuV1dXZnoBG2OIgMAAAAAAAAAAIBupr6+XhkZGdq2bZu2bt2qrVu3Kjc3V3Z2dho0aJBGjhypv/71r7rkkksUFRVlO3kOAAC6t7q6Oh05csS25Ofnq6CgQAUFBSoqKpLFYlFRUdFpg/1dXFzUt29f9enTxzbQPjo6+rQB+L1791avXr3Up08f+fj4nFY60Jn8UBFAe89iU19fL6vVesYyiNbl+PHjysrKUllZmY4fP67i4uLTLl5zc3NTYGCg/Pz8FBAQoICAAPn7+6t///4KCQlRcHCwAgMD5eDg0K7HApwP6uvrtXbtWv31r381OgoAoIuJiIigyAAA/r+jR4/K2dlZ/v7+RkcBAACdRFVVlaxWq6xWqyoqKmxfy8vLZbVaVVNTo5qaGp04ccJWPGC1WlVVVaXa2lpVVlaqsrJSNTU1qq6u/sF9tQ7q9vb2tg3wbx1s3zrY29/f/7TB3p6ennJwcJC3t7fs7e3l7e1tG/h/tm38WDEAflxrqfXP0bdv3zZMYpxTSxHOVLDR+nhjY6MqKyttpdx1dXW2Mo+TJ0/aSjoKCwu/t43W555a7n02Pj4+p/0/5ObmJldXV1tRec+ePeXu7i5PT0/17NlTXl5e8vLykqenp3x8fGy3vby8zlpAjvMHV6UBAAAAAAAAAAB0cXl5edqyZYu2bNmibdu2yWw26+TJk+rdu7cuvvhiTZs2TRdffLEuvvhieXt7Gx0XAAC0k4aGBuXk5OjgwYOnFRa0LgUFBbZ1PTw81L9/f/n5+SkwMFBhYWEKCgpS3759FRgYKH9/fwUEBLT7AP/zhbOzs3x9feXr63vOz2lqalJxcbGKioqUn5+v4uJi5efn20onzGazLBaL8vPzVV9fL+m/sy31799fwcHBCg4OthUchISE6MILL1S/fv3a6xCBbuXLL79URUWFxo0bZ3QUAEAXEx4eri+//NLoGADQKRQUFMjf3/+0WYIBAEDX1djYqLKyMttyaiFBaxFBaznB2YoKTp3VvpWdnZ28vb1tM8W3DpxuLQsYOHCg3N3d5erq+r0Z5D09PeXq6io3Nzd5e3vbBl5zbgNdjb29ve3ntiN+fhsaGlRVVaWKiorTCkRqa2tVW1ur8vJyW0GC1WpVdXW1amtrVVFRocLCwtOKRaqrq22FI2fSo0ePHyw6OPX2qY+3FqlznVPXR5EBAAAAAAAAAABAF9LQ0KDMzEylpaXJbDYrLS1Nhw8floODgyIiImQymXTbbbcpLi5OgwcP5gJBAAC6ofLycuXk5CgrK0vffvutcnJybN/X1dVJklxcXBQYGKiBAwcqOjpa1157rQYOHKiBAwcqICBAAQEBsrOzM/hI8EMcHBxs/62GDh36g+u2/ky0LhaLRQUFBVq1apX279+vyspKSf+9WCw0NFSRkZG2n4chQ4booosu+kUzHgHdzapVqxQTE6OQkBCjowAAupiIiAgdO3ZMtbW1cnV1NToOABiqtLRUffr0MToGAAA4g9aByuXl5SooKJDFYrF9f7aluLhYTU1N39uWi4uLfHx8Tltaywj+9/5TH299np+fnxwcHAz4VwDOX05OTrb/H9vSqa8t5eXlqqur+959rUtJSYn2799/2jolJSVqbGz83nb/93UmMDDQVsh+toXXls6DIgMAAAAAAAAAAIBOrHW23c2bN9vKC+rq6uTl5aURI0Zo6tSpMplMio+PZ1YBAAC6GavVqszMTO3evVuZmZnatWuXsrOzbYPSvby8FBYWpvDwcE2YMEEPPvigwsLCFBYWJg8PD4PToyP5+PjIZDLJZDKd8fGioiLt37//tGXlypU6dOiQ6uvrJUn+/v6KiopSdHS0YmJiFB0drSFDhsjZ2bkjDwXoFFavXq0pU6YYHQMA0AVFRESoublZBw4cUHR0tNFxAMBQx48fp8gAAIAO0NzcrJKSEpWUlKi4uFiFhYW27wsKCmy3i4qKVFpaqoqKiu9tw9XVVb169bItvXv3lr+/v4YMGWKbFb31/tbbXl5ecnd3N+CIAXRWrq6ucnV1VWBg4M/eRnl5uaxWq0pLS1VaWqqysrLTltb7duzYcdr9/1uA4ODgYHvd8vX1Vd++feXv7y9fX1/5+voqICDAdtvf35/C73ZEkQEAAAAAAAAAAEAnUVNTo4yMDJnNZpnNZm3cuFFHjhyRo6OjwsPDZTKZNHXqVMXFxWnIkCHMogwAQDeSl5enb775Rrt377YVFxw+fFiS1KtXL8XExCguLk533nmnwsPDNWjQIPn5+RmcGl2Fn5+f/Pz8dNlll512f1NTk3Jzc7V//35lZ2dr7969+vrrr/Xyyy+rrq5OTk5OGjx4sK3YYPjw4RoxYgRFGejWdu3apdzcXCUlJRkdBQDQBYWGhsre3l4HDx6kyADAea+srEy9evUyOgYAAF1SS0uLioqKZLFYlJ+f/71SgsLCQhUXF9u+b25utj3X0dHxewN1L7zwQvXt21d9+vQ5YymBq6urgUcLAP/Hx8dHPj4+CgkJ+UnPq6ioOGP5wfHjx21lLnv27LGVvpSWlp72/B49ethKDfr27StfX1/b+bXW+4OCghQUFETpwU9EkQEAAAAAAAAAAIBBLBaLNm/erLS0NJnNZu3YsUMnT56Uv7+/YmNjdfvttys+Pl6jRo1Sz549jY4LAADaSENDgzIzM23vAcxms7799ltJUkBAgK28KDIyUkOGDKHACO3GwcFBoaGhCg0N1dixY233NzY26ujRo8rKyrL9jC5cuFA5OTlycHBQRESETCaTTCaT4uPjNWzYMNnb2xt4JEDbWbVqlQICAhQbG2t0FABAF+Ti4iJ/f3/l5uYaHQUADFdVVaXg4GCjYwAA0OnU1dWprKxMBQUFysnJkcViUUFBge1rTk6Ojh07poaGBttzXFxc5OPjo8DAQAUEBCgoKEhRUVG27099zM/PTw4ODgYeIQB0PE9PT3l6emrAgAHn/Jzy8nJZLBaVl5fbXodPvX3w4EGVl5fr2LFjqqystD3PxcXF9pp7pq8DBw5U//795eTk1B6H2uVQZAAAAAAAAAAAANABqqurtXPnTpnNZm3evFlff/21iouL5ejoqPDwcMXHx2vGjBkymUyKjIw0Oi4AAGhD1dXV+vrrr7V+/Xqlp6dr586dqq+vV9++fXXxxRfr1ltv1ahRoxQbGyt3d3ej4wJydHTUwIEDNXDgwNNmpS8oKNDWrVu1ZcsWbdmyRR988IFqa2vl7e2tSy65RJdddpkSEhJkMpm4UBZd1ooVK5SUlESBDADgZwsJCdHhw4eNjgEAhqupqWF2ZwDAeae5uVkWi0WHDx+2Lbm5ubJYLMrPz1d+fr5OnDhhW9/JyUn+/v7q37+/AgMDFRkZqauvvloBAQHq37+/AgIC1K9fPyY+AIB24OPjIx8fn3Nat7S0VAUFBTp27JgKCgqUl5dne23fuHGjCgoKVFRUZFvf3t5efn5+CgwMVGBgoPr376+QkBANGDBAAwYMUEhIiHr37t1eh9apUGQAAAAAAAAAAADQDiwWizZv3mybaXn79u2qr6+3zbL8+9//XvHx8YqLi+NCPgAAupmmpibt2LFD69ev17p167RlyxY1NDTooosu0ujRozVz5kxdeumlCg0NNToq8JMEBARo4sSJmjhxoiSpoaFBu3fv1pYtW7Rt2za9+OKLeuSRR9SrVy9dddVVSkhIUGJiogYOHGhwcuDc5ObmKiMjQ/Pnzzc6CgCgCxswYIByc3ONjgEAhqutreX8BwCgWyouLrYVFJxaVnD48GEdOXJE9fX1kqQePXooODhYISEhCgwM1CWXXKKAgAAFBQUpKChIgYGB8vPzo1ATALqA3r17q3fv3oqKijrrOvX19aeVHFgsFh07dkyFhYXKzMzUypUrZbFY1NzcLEny9PQ8rdig9Xbr4ubm1lGH164oMgAAAAAAAAAAAPiFqqqqtGvXLltxwdatW3X8+HE5OTkpOjpacXFxmjFjhuLj4xnEBQBAN1VTU6PVq1frgw8+0Lp161ReXq7AwEAlJiZq+vTpSkhIkL+/v9ExgTbl5OSk2NhYxcbG6p577pEk7d27V+vWrdP69es1Z84cVVdXKzQ0VOPGjdMNN9ygSy+9VPb29gYnB85s+fLl8vLy0hVXXGF0FABAFzZgwAB99NFHRscAAMPV1dWpR48eRscAAOBnsVqt2rdvn7799lvt27dP2dnZOnjwoA4fPqzq6mpJkqOjo/r162cbfBoXF3faANTAwEBKCgDgPOLs7Kzg4GAFBwefdZ2TJ0/q6NGj3yvCSU9P19tvv63i4mLbur6+vhowYIDCw8M1ePBgRUREaNCgQQoLC5Ozs3NHHFKboMgAAAAAAAAAAADgJ8rJyVFaWprMZrM2b96snTt3qrm5WQEBATKZTHrggQcUFxen2NhYubi4GB0XAAC0k+rqaq1evVrLli3Tp59+qpMnT2r06NF67LHHlJiYqMjISKMjAh0uKipKUVFRuu+++1RfX6/09HStXbtWH330kVJSUhQUFKTrrrtO119/veLi4ig1QKeyfPlyTZgwoUtdAAgA6HwGDBigw4cPq6WlhUFLAM5rdnZ2amlpMToGAAA/6OjRo7aigu+++0779u3Td999p4KCAkmSi4uLIiIiFBERoQkTJpw2c3b//v3l5ORk8BEAALqSHj16KCwsTGFhYWd8vLq6Wrm5ucrJybEVHWRnZ+u1115Tbm6umpub5ejoqAEDBmjw4MEaNGiQIiIiNGTIEEVERMjHx6eDj+jHUWQAAAAAAAAAAADwAyoqKpSZmanNmzcrLS1NW7ZsUWlpqZycnBQdHa24uDjNmjVLo0ePVkhIiNFxAQBAB9i4caMWLlyoFStWqKGhQVdccYX+9a9/aeLEierbt6/R8YBOw9nZWVdccYWuuOIKzZ8/X3v37tWyZcv0wQcf6Pnnn1dgYKCmTJmiu+++m/fSMFx+fr62bdumP/3pT0ZHAQB0cSEhIaqpqVFJSQmfDwCc1xwcHNTU1GR0DAAAJP13BuzMzEyZzWaZzWbt3LlT+/btU1VVlSSpT58+GjRokAYPHqxrrrnGNjg0JCSEMlYAQIdxc3NTZGTkGQvz6+rqtG/fPlvpTnZ2ttauXasXXnhBtbW1kiQ/Pz9FRkZq+PDhMplMGj58uMLCwgwt26TIAAAAAAAAAAAA4P9rampSdna2zGazrbggOztbzc3NCggIUHx8vObNmyeTyaQRI0aoR48eRkcGAAAdpKqqSv/5z3/00ksvac+ePbr44ouVkpKiiRMnqk+fPkbHA7qEqKgoRUVF6fHHH9e3336r999/X6+++qqeeeYZ/eY3v9Ef//hHJSYmcmEwDPHRRx+pZ8+eSkxMNDoKAKCLGzBggCTp8OHDFBkAOK9RZAAAMEpdXd1ppQUZGRnau3evGhoa5OnpqWHDhmn06NG66667bIUF/J0fANDZubi4KCYmRjExMafd39zcrCNHjtgKDvbu3av169crJSXF9rtv+PDhtnIDk8mksLCwDjsfR5EBAAAAAAAAAAA4b1mtVm3fvl1paWm28oLy8nK5ublp6NChSkhIUHJysi6//HIuOgYA4DxVVlamBQsWKDU1VfX19brpppv0xhtvyGQyGR0N6NKGDBmi5ORkPfroo1qxYoVeeukljR07VhdeeKHmzp2r22+/XQ4ODkbHxHlk+fLlGjdunFxcXIyOAgDo4vr37y9HR0cdPnxYF198sdFxAMAwPXr0UF1dndExAADngaNHj+rrr79WWlqavvnmG2VlZamh4f+xd+dxUZXt/8A/LLLvIAgEAiogGC4IgjOKmihq7rlmmqZUlvmYopb51XbrMZPqUTMzlyd3K7UFFdNgRtQkxVTEhUVkENl32X9/9Jt5GAGZwYHD8nm/XryQe865z3Wuc+aAc5/7OhUwNzdH3759MWzYMISFhSkmbgr5VGoiIiJN09bWhqurK1xdXRESEqJof7Swz+nTp/Hll1+ioqICpqam6Nu3LwIDAzFo0CCIxWKYm5s3S3wsZEBERERERERERERERB1CVVUVrl69CqlUinPnzuHcuXO4desWtLS04O7ujoCAAHz00UcIDAxEr169OGmKiIiog3v48CG+/PJLfPzxx9DT08OqVavw0ksvwcrKSujQSGDBwcE4efKk0GG0G7q6upg8eTImT56M69ev44svvsCrr76Kzz//HJ9++ilGjx4tdIjUAWRlZUEikWDv3r1Ch0JERO2Arq4unnrqKSQlJQkdSof37rxpWLN9v9BhEHVYVlZWyM3NFTqMZsHrCxFpEq8p6svIyMCJEydw8uRJREVFISUlBfr6+vDz88Pw4cOxYsUK+Pr6onv37ixa0Erxc3YiouZnYGAAf39/+Pv7K9rKysqUihscPXoUn3zyCXR0dNC7d28EBQVh5MiRGDx4MAwNDTUSBwsZEBERERERERERERFRu5Sbm4uYmBicO3cOUqkUFy5cQFFREUxNTTFgwABMnz4dAQEBCAgI4IREIiIiUnLgwAEsX74cWVlZePPNNxEWFgZTU1Ohw6pDS0sLNTU1ar9GT6Yt5LWtHn8vLy9s2bIFS5cuxVtvvYVnn30WQ4cORXh4OHr16iV0eNSO/fjjj+jUqRNGjRoldChERNROuLq6Ijk5Wegw2rzJng4AgMM3ZE1avy3+TdzSJns6NDm/9D9Peq62V1ZWVsjJyRE6jHrx+tL8WuL6wmsYtRdVlVVNWq+jvQf++usv/PDDD4iIiMBff/0FPT09iEQizJs3D0FBQfD399fYhMvWojWPAcgLRDQ1Bv4ubZzQx1geA8Dj1ZG1hvNQk3hOQ1H4x8/PT9H24MEDSCQSREVFITIyEp9//jkMDQ0RFBSEMWPGYNKkSXBwcGjyNlnIgIiIiIiIiIiIiIiI2oXExERIJBLExsZCKpXi0qVLqK6uhr29PcRiMT744AP4+vpiwIAB6NSpk9DhEhERUSuUn5+PV155Bfv378dLL72E9957D/b29kKHRa1MZGSk0CG0ez169MChQ4cQExODN998E35+fli3bh0WL14sdGjUTh0+fBghISEwNjYWOhQiImonXF1dkZSUJHQYbd7hGzLFZOOmWPvdAQ1GQ9SwJz1X2ysrKyskJiYKHUa9eH0hotbkvV2HhA6h1YqPj8fu3btx8OBB3L59Gy4uLhg9ejTWrFmDYcOG8bMcAdXU1CgmBDcFP2dvG570OBO1Njyn62dra4tJkyZh0qRJAIC0tDREREQgIiICq1atwuLFiyEWizF16lTMnDkTlpaWavXPQgZERERERERERERERNTmFBUV4fLly5BKpZBIJIiJiUF2djaMjIzQt29fiEQirFixAkFBQbC1tRU6XCIiImoDUlNTMXr0aGRlZSEiIgIjRowQOiSiDi8wMBASiQTr1q3DsmXLcOXKFWzZsoWFyUij8vLycPr0aWzfvl3oUIiIqB1xcXFBVFSU0GEQEQnKzs4OMlnHeVI4ERFpRlVVFX766Sds2rQJp0+fhrOzM6ZMmYKpU6cqPT2aiIiImoejoyNeeuklvPTSS3j48CEiIiJw4MABrFy5EmFhYZgxYwZee+019OvXT6X+tJs5XiIiIiIiIiIiIiIioicmk8lw8OBBRYVnKysrDBo0COHh4QCAsLAwREdHIycnBxKJBOHh4ZgyZQqLGBAREZFKMjIyMGTIEADAhQsXBCtioKWlVe9TQOprl/8sf01LSwvz589v9DUAuHr1KsaMGQNTU1OYmpoiJCQEV69erXebd+7cwaRJk2BpadlgfA2Ji4vDiBEjYGxsDDMzM4waNQrHjx9v8v5qaWkhPj4eAQEBMDIywqBBg3D79m1cu3YNAwYMgImJCYYOHYq7d+/Wu+7169cREhICMzMzmJiYYMyYMYiPj1drvzUdG6De8UhNTcX48eNhamoKOzs7zJo1C9nZ2XWWrb3Oo8f/6NGjEIlEMDAwgIuLC5YsWYLCwkK18tCSdHR0sGrVKhw9ehQHDhzAnDlzUF1d3eJxUPt19OhR1NTUYPTo0UKHQkRE7YirqytSUlJQVVUldCjt0t1bN/Dhyy/g+X498Hy/Hnh//kzcvXVDaZnJng5qP21dvs79u8n4dNFLmO3vWaefu7du4MPQWYptfxg6S+VtN9T+5+8n8PaMcZju44JXhvnju4/XoLS4qN51s9JlWLfwRTzfrwfmiXwQHvY6CvNym5yj2n1P9nTApneWqpwvVXKhitTbCfgwdBZm9u2OWb7ueO+lGbh3+2adfKmbV1VyoAp1+lH1+HQUrq6uSE1NRUVFhdChqIzXl1Z0fXnCbaiz7/du38T782dilq87Zvbtjg9ffgH37txqUj5LCgvw3cdr8OrwAEz3ccFL4j74cuW/cOvKJZX3vzni18Q5WDvX1y6cBQBIfjmi1K5O/ACQfOM63ps3HTP7dMMsX3d8sOB5XJacUTsXqsSvipbOae1+6uzLE74HNPV7uqVFRkaiX79+mDp1KrS1tbF//37cuXMH//73v9tFEYP2NgZQH3W2rQ5V4r169SpGjx6t2Pbo0aNV3nZD7ep8nq7K5/fq5Kh2348e48bypKWlhTNnzgAA9u3bp9Suzr41RJ1cN3bMGstFfn4+lixZAjc3NxgYGMDe3h4vvvgiLly4oFKstWNRZZxIndxcu3YNo0ePhomJCczMzDBy5Ehcv3693vNJnXOprYw3qXIeqKKx8URV86dqXwA0+n7VxDnamhkYGGDChAnYs2cPZDIZNm7ciNjYWPj6+iI4OBhxcXGN9sFCBkRERERERERERERE1KqUlJQoihFMnToVdnZ2cHR0xMyZMyGVSuHr64tt27YhKSkJMpkMx44dw4oVKyAWi6Gvry90+ERERNTGVFdXY9KkSdDV1cXp06fh5OQkWCw1NTUqt8vbampqFF/btm1r9LXbt28jODgYY8eORWJiIpKTkzFr1iyMHz8e9+7dq9P/q6++imXLlkEmk+HXX39VeV9u3ryJadOmYfny5cjMzMS5c+dQXFyMkJCQJ9rftWvX4rvvvkN6ejp69+6NWbNmYc2aNdixYwfS0tLQs2dPLF26tN51p02bhhdffBFJSUlITEzExIkTERISguTkZJX3W9OxqXs85s+fj1dffRXp6em4ePEiSkpKsGzZsnrjqe/4A8D48eMxZ84c5OTk4Ny5c8jJycGiRYvq7aOpx785jBo1CkeOHMHhw4exbt06QWOh9uXw4cMIDg6GpaWl0KEQEVE74urqioqKCj6JvBncv5uMd+dOR/+hwdgceQ5bfr+AoHGTsW7hXGTfT1csd/iG+rmXr7N17UqMn/cqtkVdxqqt/1Xa9gcLnkfgyGexOfIcNp2MwYDg0Xh//kzcv5vc6LYbal+38EUMnTgVOy/EY92Bn1GUn4dt779T77qb3lmKkTPm4FvJZXx6KAJlD0ux85P3lJZVN0eHb8gUXws/+EylXKmaC3X62XLqPDafOo9hk6Zjw5uvKsX46L/ry82j/aqSA1XiU6efR49PZUVFnePTkXTr1g2VlZX1TrJqjXh9aT3XF01sQ519/2zJKxg6cRo2nzqPzZHnMGD4KLw/fyYepKWqnc8vVy6GsakZPt5/DLsv3sQ7W/+L+3eTsHLqGJX2v7ni18Q5ePBaKro4u2DnhXh4+w8EAIjHjMe26EswMTPHnku31YpflpyIz5a8jAnzX8N3565i3f6f8bC0BO/Pn6l2LjT1e6mlc1q7n9rrPel7QFP5aEmZmZkYOXIkRowYgZ49e+LGjRs4efIkpkyZAh0dHaHD05j2NAZQH3W3rY7G4r19+zZGjRqF5557DomJiYrJ8yEhIbh9+3adfhrq/1HqfJ6uyuf36uaooc/5G1JZWYlu3bohJydHUcB7+vTpkMlksLS0RFHR/wrBqLJv9VE31487ZqrkYs6cObCwsEBMTAzy8/Px66+/4vbt2xgwYECjsT4aiyrjRKrm5s6dO4o8JCUlISkpCXPnzsX06dOVtqlOn21pvEnV86Axqownqpo/Vfuqb//Ly8ub/H7VxDnaVpiamiI0NBSXL1/Gr7/+iszMTPj6+mLNmjWPLeapVdOUKz8REREREREREREREZGGyGQyxMbGQiqVQiKR4OLFiygrK4O9vT18fX3h6+sLsVgMsVgMAwMDocMlIiKiduabb77B66+/jr/++gve3t5ChwMtLa16b5irr72hZR/32qxZs+Dj44Ply5crtW/fvh1xcXEIDw9X6uP06dOKm93UMXPmTIwaNQovvPCCoi0hIQGenp5Kcam7v2fOnEFQUBCAf/6OdHR0VGq7d+8efH19kZGRUWfdffv2Ydq0aUrtGzZswJUrV7Bjxw6V91uTsal7PH766SeMHz9e0ZaQkIBhw4YhLS2t0Rgbkpubi+7du9f7pJ2mHv/mtH79eqxevRrx8fFwcXEROhxq44qKimBra4uvvvoK8+bNEzocIiJqR+R/D/7xxx8YPHiw0OG0Cjdv3oSHhwfW/3gSrj1V/7/XZE8HpQl+4WGvo6uHFybMX6i03O+H9yH5xjXMW/V+g+uqur33dh1STNCsLTzsdXR/ug/GzFZ+Euqx775GYvxVLP70y0a3rUpMRQX5eC04EDvPX6+z7or/fAf/Z0Yq2mRJd7BmznP4Jup/T/pu7hzJt6FqLh7bz/JF6N6rd52anrcDAAAgAElEQVR+JL8cwedLX60Tm6p5VScHj41PzVw+enwe3LuLVTPHKx0fVciSE7EoRIxLly6hT58+aq3bmuTk5MDa2hrHjx/HiBEjmm07vL6oHlNbub40xzYet+9vbtgC0ehxSu3HvvsayQnxWLRuo1p9Pt+vB74+/SdMzC0UbQ/u3cWrwwOalA9Nxq+Jc/D7DR/Dyq4LRj0/V7HMj1u/QqbsHkLXNlx4sr74P1+6EP0GD0PQ+OcUbbKkO1g0atBjc1VfX5r6vQS0fE7l/cj3WRPvAU3mAwCWTxqBaRPG4cMPP1RrPVXduXMHQUFB0NfXx549e9rlxM/a2ssYQH0xqLttdae1Pi7eWbNmwc/PD4sXL1Zq37BhAy5duoTdu3c3um1VYnrc5+mqfH7f3DkCgLfffhuOjo547bXXFG3r1q1DSkoKNm/e3KR9e/Q4q5Prxx0zVXJhamqKlJQUWFlZKZZJSkqCm5ubWvlRZ5zoUfXl5oUXXkD//v3r5GHfvn2YMWPGE51LbWG8SZ3z4HFUHU98VH35U2ds8tH9T0pKglgsbtL7VVPnaFtUXV2NLVu2YOnSpRg6dCiOHj0KXV3dRxe7pS1EcERERERERERERERE1DFVVlYiNjYW4eHhmD17NlxdXeHo6IhJkybh2LFj8Pb2xtatW3H16lXIZDIcO3YMa9euxfDhw1nEgIiIiJrFpk2bMHv27FZRxKAlREZG1rlJCwDGjBmDkydP1mn39/dv0nZ+//13PPPMM0ptHh4eT3zDTr9+/RT/7tKlS502BwcHZGZm1rvu8OHD67RNnDgRJ06cqNPelP1uSmzqHo9HJ8G5uLggPV31p4nWx9LSEjk5OfW+1tTj35z+9a9/wdraGtu3bxc6FGoHfvnlF5SXl2Ps2LFCh0JERO2Mvb09DAwMkJSUJHQo7c6Vs9F1JhYCQL8hzyDubJRGttHdp2+D2/YfXvdJjgOCR+HK2WiNbBsATMzMUZSfV+9rXn4BSj93dnRCbuaDOnE2d440lYsr0qh6++kterICIJrKgbr9PHp8bOwd6xyfjsTKygoODg6Ii4sTOhSV8PrSeq4vzbGNx+27z8BBddoGBI9CnPQPtfv06OOLj1+dg0vRp1FVVQkAsH3K+YmKGDS0LTl14n/Sc3DY5Ok4/cN+pWVOHd6L4Kmz1I7/6jkpng5Ujt3BtVujuaqvL02/h1oyp/Wt96TvgZa6pmjCw4cPMXnyZDg6OiI2NrbdFzFoCS01BqCJbTdFQ/FGRkZiwoQJddonTpyIyMhIjWwbePzn6ap8ft8SOZo7dy6+++47pbbt27cjNDT0ses9bt9qUzfXjztmquQiMDAQ48aNQ0REBCor//nd6urq2qTxJnXGiWqrLzcnT56sNw/BwcEqxfK4fLeF8SZNveeaOp5YX/7U6evR/Xd2dm7y+1WT52hbo62tjYULFyI6OhrR0dFYuXJlvcvVKW1ARERERERERERERESkKenp6bh48SJiY2MhlUohkUjw8OFDmJubw8/PD3PmzIFYLMbAgQNhZGQkdLhERETUwRQVFeHy5ct4/33VnsTYHmRnZzf4FHtDQ8M6bU39Gy0rKws2NjZNWvdxTE1NFf/W1taut62hG4Osra3rtNnb29db+KAp+92U2NQ9HpaWlko/6+vrq3UjVGZmJt566y1ERETg/v37qKqqeuzyrfFvdF1dXTz77LOIjm5dN11T23T48GEMGTIEnTt3FjoUIiJqZ7S0tPDUU08hNTVV6FDancK8XLwyrP6JMHoaKoarb1D3b3EAKMjLgYWNbZ12y852KMxtfMJPvX3mZOO/Gz7CpejTyMvKRHUjf6ObmJkr/dxJT6/O/wlaIkeaykVD/ZhaWNaztOo0lQN1+3n0+Gjr6HSIySuP079/f/z5559Ch6ESXl9ax/VFE9tQd9/ru+ZYdrZDQc7/nvCrap/LwrfiwH824Jv33kZBTjZcvXohIHg0QmbOgY5uJ8Hil3vSc9C+qyv0DAyQfOM6XDy9cP3PczAyMYWrVy+14y/Iy4GZpVW9rzWlL02+h1oyp4/SyHugGa4pzeXo0aOIj4/HrVu3YGFhIXQ47UJLjQFoYttN0VC8WVlZignftdnb2yMrK6tJ21L383RVPr9viRz16NEDhoaGiIuLQ+/evREVFQUzMzP07fu/wivq7ltt6ua6oWOmai4OHjyId999F6+99hoyMzPRt29fTJo0CQsXLkSnTqr9bpVTZZxI1dw0lIf6tqFuvtvCeJOm3nOqjCeqc0xUHZt8dP916vm/mxDnaFvVv39/bNiwAa+//jpWr14Nc3Pl/1uwkAEREREREREREREREWlEZWUlEhISFAULYmNjcf36dejo6MDDwwO+vr4IDw+HSCSCl5cXtLS0hA6ZiIiIOrjc3FwA9d9UJBQtLS2UlZVBX19f0abKE3BUZWNjg+vXr9e5QUfTrK2tkZWVBQcHh8cu19z7W1tGRgbs7OyU2tLT0wWdwNxSx0PuhRdegIeHByQSCZ566ino6v5z61Bb+9vcxsYGMTExQodBbdzDhw8RERGBTz75ROhQiIionXJwcIBM9mRPX6a6TC2tEP7rH3Um3LYEMwsr5GZmwNbRSak9NzMDpo9MxNTS0kJFeTk66ekp2up7knb48kVwdO2GD/ccgXUXe+jo/PM3+mTPx/9f6nFaIkfq5KKxfvKyHqCzw1NK7XlZD+pdXtW8aioHQp5v7YWfnx+2bdsmdBgq4fWlcS2RI01sQ919z8vOhIW18udDuZkZMLP632eGqvZpZGqGF1euxYsr16IgNwd/x0jw885vcP3ieYR98Y1g8TdGnXNw2KTp+P3wXsxb9T5OHd6L4GmzmhS/qYUlCnJzYGWr/HldU/rS1O8luZbOaW2aeA9oOh/N6d69e7CxsYGzs7PQobSY9jIG0Bq3nZ6eXmfScXp6ep2Jzaoeg+b4PL2lcjR37lxs374d4eHh+PbbbxEaGqr0+pPsmzq5bqwfVXJhbm6ODRs2YMOGDcjKysKpU6ewceNGREdH49ChQypvD1BtnEjV3NjY2OD+/fvo2rWrUvv9+/frbLclxmZa+v2nqfNAlfFEVfOn6tikqoQ4R9syX19flJeXIyMjo04hA22BYiIiIiIiIiIiIiIiojYuPz8fkZGRWLt2LYKDg2Fubo5evXph2bJlSE9Px5QpU3D06FFkZmbi2rVr2LVrF0JDQ+Ht7d3mJkoRERFR+2Rvbw89PT0kJCQIHYpCly5dcPfuXaW2qKioepd93N9UDb02cuRInDlzpk57dHQ0fH19VQ+0EUOGDEFkZKRSW1xcHLy8vJTa1NnfJ3X8+PE6bT/++CNGjBjRLNtTRXMdj4aO/9mzZ/Huu+/CxcVFcaNXaWlpk7cjlPj4+AafgkOkqoiICBQXF2PChAlCh0JERO2Uo6MjCxk0gz7iIbh2/myd9viL5xE2aWSzbttn4CCcP/FrnfbzJ3+Dz8BBSm0WNrbISk9Tarv+57k66yZcuohpi8Jg6+ikmJxZ/vDhE8WpTo6a+lm9Orl4nN7iIFyIjKjTfllypt7lVc2rps4TIc+39sLf3x8pKSlIT08XOpRG8frSuJa4vmhiG+ru++XoM3Xazp/8Db1FQWr3OdnTAdn3/znfzSytIBo9Dqu27kac9I8Gt98S8TdGnXNw4KixuHDqOApysnEp+jTEY5T/X61q/N7+A3HlrPLngMk3rmPxGPXzrqnfS3ItndPaNPEe0HQ+mtPAgQMhk8lw5MgRoUNpMe1lDKC1bXv48OH44Ycf6rT/+OOPGD58uFKbqsegOT5PVydHT3JfzdSpU3HkyBFkZmYiIiICM2bMUHr9SfZNnVw/jqq50NLSwr179wD8M7F82rRp+OWXX3DixAmVtyWnyjiRqrkZMWIEfvrpJ5W20RJjMy093qSp80CV8URV86fq2KSqhDhH27JNmzbB3t4erq6udV5jIQMiIiIiIiIiIiIiImpUVVWVohjByy+/DG9vb1haWiI4OBi7d++Gvb09PvroI1y8eBF5eXk4efIk1q5di7FjxwpSbZ+IiIhIFbq6uhgzZgy+/fZb1NTUCB0OACA4OBhvv/027t27h6KiIhw/fhxbtmypd1lHR0fExMSgoqICJ06cUHpqVUOvrV27FmvWrMGhQ4eQnZ2NwsJC/Pzzz5gxYwZWr16tsf1455138N577yEyMhLFxcW4cuUK5s2bh0WLFjV5f5/U119/jT179iA7OxuZmZn49ttvER4ejrVr1zbL9lTRXMejoeM/cOBALF++HMnJySgvL8ft27fxyiuvaGp3WoRMJsOvv/7Kyef0xPbv3w+xWAx7e3uhQyEionbKwcEBaWlpjS9Iapm2aCn2f7keMcd/RmFeLkqLi3DxzElsWPoqpixc0qzbnvr6Uhzd8TUiD+5BfnYWCnKycerQXhzd8TWmvb5UadneosH4fsPHyL6fjoclxbgsOYPj+3bV6dOjb3/sXv8+HqSlorKiAvfvJuPrtSueKE51cmRl1wUJl2NRVVmBOOkfeHlof5W2oU4uHhvr60tx9Lst+P3wPhTkZKMwLxeSX37Cif3/rXd5VfOqqfNEyPOtvRCJRDAwMKh3Qldrw+tL41ri+qKJbai77yf270b0zz+iMC9Xkfufd23DtEX/y706fW56ZylSbyegorwcedmZOPLtZrUmjzdH/I1R5xw0MDJGrwEibAx7HX7DRsDQ2KRJ8T/36mIc3PQ5rpyNRllpCVIS4vGft5dg9Kx5avelqd9Lci2d09o08R7QdD6aU0BAABYuXIjZs2cjIqJucaP2qL2MAdRHyG2vWbMGGzZswLZt2/DgwQPFGMCGDRuwZs0apWVVPQbN8Xm6Ojl63PFvjImJCYYOHYpZs2Zh3LhxMDU11di+qZPrx1EnF/Pnz8e1a9dQVlaGjIwMrF+/Xq3J8nKqjBOpmpu1a9fis88+w/bt25GZmYns7Gzs3bsXW7durbNsS4zNtPR4k6bOA1XGE1XNn6pjk6oS4hxti6qqqrBq1Sp899132LZtGzp16lRnGa2a1jIST0RERERERERERERErUZhYSHi4uIglUohkUgglUqRm5sLExMT9O7dG2KxGCKRCAMHDoS1tbXQ4RIRERE12Z9//onAwEBs2bIF8+fPFzocZGVlYfHixTh58iRKSkowbNgw/Oc//1HcGFT7No+DBw9ixYoVSEtLg7OzMz777DOMGzeu0ddu3bqFt956C5GRkaisrISXlxfeeustTJw4UdH3o09YacrtJTExMQgLC0NsbCw6d+6MhQsXYuXKlU3a39rxqNsmb09KSsKiRYvwxx9/oLq6GoMHD8Znn32Gnj17qrzfTxJHQ7Gpezwe3a/62hs6/g8ePMCyZctw/Phx5OXlwd3dHatXr8a0adMajLW+PAilpqYGEyZMwPXr13HlyhUYGhoKHRK1UcXFxbCzs8P69evbXDEPIiJqOzZs2IDPPvuMxQz+v5s3b8LDwwPrfzwJ157eKq0z2dNB8e/DN2SKf6enJOG/n32EKzHRqKqshFN3d0wKXYQBwaMaXVfV7TW0XsrNeOz+9we4fvE8AMCr/wC8EPYOurr3VFquIDcH2z9cjbizUSgrLcXTASIs+L+PFRMM5X3nZ2dh56fv4bLkDIoL8uHg0g1TFv4Lny15RWm5hvbnSXIEAGcjjmH3+g+Rk5EOG3tHvLhyLfyGjYAqVM1FY1JvJ2DXp+/j2p/noK2tDW+/QLy0+gO8+syAOsdA1byqk4PGPMn51pTzEABkyYlYFCLGpUuX0KdPH7XibY1GjhwJCwsL7N+/v1n65/Wl/V1fnnQbqu67fD83nzqPb99/B9f+jEF1dTW8/QIwZ8UaPNWth2I5Vfv8O0aCX7/fjviL51FaXAQrO3sMGB6CaYuW1Znw35DmiF+T5yAAxF88j3dmTcS6A7+gh0/fJsefcDkWuz59D3euXYG5lTVCZryIiaGvN6kvTf1eaumc1lRXY+rTXXHwWqqiTRPvM03lAwCWTxqBaRPG4cMPP1R7XVWUl5cjNDQUu3fvxhtvvIHVq1fDysqqWbbVGrSXMYDm+Lxb1e01tN7ff/+N5cuXIzo6GgAwaNAgfPrpp3j66aeVllP1GDTl83RVPr9XJUfA44+xKqKjozF48GCcP38e/v7+Sq896b6pkmtVjpkquTh16hS++uorREdHo7CwEI6OjpgwYQLefffdOgUaHkfVcSJVcwMA165dQ1hYGKKioqCtrY2goCBs3LgR7u7uqKqq0ki+W+t4E6D6e64xjY0nqnNMGuurOd6vmjpH26K///4bixYtwvnz5/Gf//wH8+bNq2+xWyxkQERERERERERERERESEhIQExMDKRSKc6ePYv4+HjU1NTA3d0dAQEBCAwMxMCBA+Ht7Q0dHR2hwyUiIiLSqFWrVmH9+vU4duwYRoxQ7YZqalu0tLRazWR8arply5bhyy+/RGRkJAYNUv1JhkSP2rNnD+bMmYO0tDTY2toKHQ4REbVT+/btw6xZs1BWVsbPVNG0icbUsU32dFBr8n970t4KGYSHh2PNmjXIzMys9+mcT4rXF3oSbf1a09bjb41aIqenf9yPwWMnQUe3E3IeZGDVzPHYHHmuWbf5JJq7kIHczp07ERYWhoqKCixbtgwvv/wybGxsmnWbRNRxtNQ40bVr1zBmzBgkJyc3+7aIhPL3339j/fr1+O9//4t+/fph27Zt6N27d0OL39JuyeCIiIiIiIiIiIiIiEh4paWliI6OxieffILx48fD1tYWnp6eWLhwIRISEjBu3DgcOXIEDx48QEJCAnbu3IlXXnkFPj4+vOGWiIiI2qUPPvgAM2bMwNixY7F7926hwyGiR5SVlWHevHkIDw/Hjh07WMSAnti+ffsQHBzMIgZERNSsHB0dUVVVhYyMDKFDISIS1JgxY5Cfn4/Tp08LHQoRUavw1VtL8MPWr1BaXIRfdn0D8ejxQofUKsyZMwd37tzBG2+8gfXr18PJyQmzZ8+GRCJBdXW10OEREdWhpaWF8PBw5ObmoqysDJcvX8bLL7+M1157TejQiDSupKQEe/bsweDBg+Hj44Pz589jz549uHDhwuOKGAAAWMiAiIiIiIiIiIiIiKidu3//Po4dO4aVK1dCLBbDysoKgwcPxsaNG1FdXY2lS5ciOjoaubm5iIqKwscff4yxY8eic+fOQodORERE1CK0tLTw3XffYcmSJZg9ezbmzZuHwsJCocMiDdHS0lL6Tm3LtWvXEBAQgEOHDuHIkSOYMWOG0CFRG5ebm4sTJ05g+vTpQodCRETtnIODAwAgLS1N4EiI2p7Jng5K36lt6969OwIDA7Fjxw6hQyFS0tavNW09/taopXIauuZjHN+7CwuHB6CksBBTFi5p1u21Jaampnj33Xdx7949fPHFF/j7778xaNAgdO3aFUuWLMHZs2dRVVUldJhE1MY01zjRsWPHcPToUTg7O8PW1hbz58/HggULEBYWptHtEAmluLgYhw8fxrRp09C5c2fMmTMHNjY2OHnyJOLj4zFt2jSV3le6LRArERERERERERERERG1kKqqKty4cQOxsbGQSqWQSCSIj4+HtrY2PDw84Ovri9mzZ0MkEsHb21vocImIiIhaDS0tLaxbtw5Dhw7F3Llz4ebmhnfeeQevvfYadHV5e0Vtjd2QUlNT00KRqKa1xUOqycnJwaeffoqNGzeid+/eiI2NRY8ePYQOi9qBw4cPQ0tLC+PH82mHRETUvOSFDGQymcCREND4hMTDN3ic5DSVqyfppyWOB8+JljV37ly88cYbyM3NhaWlpdDhaBTPJdW1tlwJcWw0mQOeW+pRJfctldORM+Zg5Iw5LbKttsrY2BgLFizAggULcPXqVRw4cAAHDx7Exo0bYW1tjREjRiAkJAQjRoxAly5dhA633WnpMYC2NuYgJOaqLlVy0lx5efbZZ/Hss882S9/tAc/Xtunvv/9GREQEjh8/DolEgsrKSgQFBWHDhg2YNGlSkx6MxJF2IiIiIiIiIiIiIqI2rKioCJcvX1YULZBKpcjNzYWJiQl69+6NsWPHYt26dRCLxe3uxjAiIiKi5jBy5EhcvXoVn376KVauXInNmzfj/fffx5QpU4QOrdXgjUXUnMrLy7F582asXbsWurq6+OSTT1hQhDRq3759GDNmDMzNzYUOhYiI2jlDQ0NYWVmxkEErwcmeqtNUrlp7zlt7fO3NjBkz8Oabb2LPnj147bXXhA5Ho3guqY65Yg6ExNy3Xb169UKvXr3w3nvv4fr16/jtt98QERGB0NBQlJWVoWfPnhg8eDAGDx6MoKAgODo6Ch1ym9fSYwAcc1Adc1UXc9J68di0ftXV1bh69Sr++OMPREVFISoqCg8ePICNjQ1GjBiBb775BiEhIU0qXlAbR/iIiIiIiIiIiIiIiNoQmUymVLTg0qVLqK6uhr29PcRiMdasWQOxWIy+fftCW1tb6HCJiIiI2iQrKyusW7cOoaGheOuttzBt2jR8+umnWLhwIaZPnw5DQ0OhQyRqd2QyGbZu3YqtW7eisLAQy5Ytw7Jly2BsbCx0aNSO3L9/H2fOnMG+ffuEDoWIiDoIBwcHFjIgIgJgYmKCqVOn4quvvsKrr77KMSwiImoSLy8veHl5YenSpSguLlZMuoyKisL27dtRUVEBZ2dn9OvXD76+vorvdnZ2QodOREQkqOrqaty+fRuxsbH466+/FN/z8/NhYWEBsViMsLAwBAUFwdfXV6P/Z2MhAyIiIiIiIiIiIiKiVqqyshJxcXGQSCSIjY1FVFQUUlJSoKuri969e0MkEuGNN97AkCFD4OzsLHS4RERERO2Om5sb9u/fj2XLlmHjxo145ZVXsGzZMsybNw+vvPIKunXrJnSIRG1aTU0Nzpw5g02bNuGnn36ClZUV5s+fj0WLFqFLly5Ch0ft0IEDB2BkZIQxY8YIHQoREXUQjo6OLGRARPT/hYWFwdvbG4cPH8aUKVOEDoeIiNo4Y2NjjBo1CqNGjQIAlJSU4Ny5c7hw4QJiY2Oxfft2rF69GsA/f5f7+voqFTewt7cXMnwiIqJmU11djYSEBKWCBZcuXUJBQQE6deqEXr16oV+/fpgyZQoCAwPh4+PTrMXmWMiAiIiIiIiIiIiIiKiVyM/Px59//gmJRAKpVAqpVIrS0lLY2dnBz88PL774IsRiMcRiMQwMDIQOl4iIiKjD8PPzw/fff4/PP/8c27Ztw9dff40NGzYgKCgIU6ZMwaRJk/hEJyI1XLlyBYcOHcKBAweQkJAAkUiEnTt34rnnnoOenp7Q4VE7tm/fPkyYMAGGhoZCh0JERB2Eg4MD0tLShA6DiKhV8PT0xOTJk/Hhhx/iueeeg5aWltAhERFRO2JkZIRhw4Zh2LBhirbc3FzExsYqJnHu2rULa9asAQB06dIFXl5e8PT0RM+ePeHp6QkPDw84OTkJtQtERERqqaiowJ07dxAfH48bN27gxo0biI+PR3x8PIqKiqCnp4enn34a/fr1w4wZM9CvXz/4+PhAX1+/ReNkIQMiIiIiIiIiIiIiIoEkJiYqihZIJBLEx8ejpqYGbm5uEIlE2LhxI0QiEby8vHgzFxEREVErYGtri7fffhsrVqzAzz//jD179iAsLAyLFi3CoEGD8Nxzz2HSpEl8khNRPS5fvoxDhw7h4MGDuHnzJpycnDB58mTs27cPffr0ETo86gDu3r2Lc+fO4Z133hE6FCIi6kAcHBxw8eJFocMgImo1Vq1ahb59++LYsWMYN26c0OEQEVE7Z2lpieHDh2P48OGKtry8PMWTqW/cuIErV65g//79yM7OBgCYmprCw8NDqcCBp6cnunfvziKsREQkiIKCAkWRghs3biAhIQHXr19HYmIiKioqoKWlha5du8LDwwNisRgLFixAv3798PTTT7eK310sZEBERERERERERERE1AKKi4tx6dIlRdGCmJgYZGdnw9jYGH369MHYsWOxbt06iEQiWFlZCR0uERERET2Gjo4Oxo8fj/Hjx6O0tBS//vorDh06hJUrV+KNN96An58fgoODERwcjICAgFZxgwhRS8vNzcXvv/+OkydP4uTJk0hMTISzszMmT56MHTt2ICAggAXbqEXt2bNHcfM6ERFRS3FwcIBMJhM6DCKiVqN3796YNGkSli9fjpCQEH5mQkRELc7CwgLDhg3DsGHDlNqzsrKUnmh9/fp1bNu2DSkpKaiuroauri5cXFzg4uICV1fXOt+7dOki0B4REVFbV1FRgdTUVCQnJyMpKUnxXf6Vnp4OANDX11cU25k6dSq8vLzg4eEBDw8PGBkZCbwXDWMhAyIiIiIiIiIiIiKiZiCTyRAbG6soXPDnn3+ivLwc9vb2EIvFWL16NXx9feHv78+btIiIiIjaMENDQ0yePBmTJ09GaWkpIiIiEBERge+//x4ffPABTExMEBQUhOHDhyM4OBje3t5Ch0zULMrKyhATE4PIyEicPHkSsbGxAABfX19Mnz4dY8eOxYABA1i8gASzb98+TJkyhf8HJyKiFuXo6Ijs7GyUlpbC0NBQ6HCIiFqFDRs2oGfPnvjiiy+wbNkyocMhIiICANjY2GDQoEEYNGiQUntpaSkSEhKQkJCAW7duITk5GXfu3MGpU6eQmpqKiooKAP+MFdQubFD73127doW1tbUQu0VERK1AVVUV0tPT6xQokP987949VFVVAQCMjY0Vvz98fX3x3HPPwd3dHZ6ennBxcYGOjo7Ae6M+FjIgIiIiIiIiIiIiInpClZWVSEhIUBQtkEgkSEpKgq6uLtzd3SEWixEaGorBgwfDxcVF6HCJiIiIqJkYGhpi4sSJmDhxIgAgMTERkZGRiIyMxPvvv48lS5bAzMwM/v7+EIlE8PX1hVgshqWlpcCRE6kvPT0dFy9eVBRwk+15F60AACAASURBVEqlKC0thZubG4YPH45ly5bhmWeegZWVldChEuHGjRuIi4vDxo0bhQ6FiIg6GAcHBwD//O3k5uYmcDRERK2Ds7MzwsLC8N5772HmzJmKayUREVFrZGhoiD59+qBPnz71vp6bm4vExESlr4SEBPz2229ISUlRTEzV19eHlZUVHBwc4ObmBnt7ezg4OCh9d3FxgbGxcUvuHhERPaGHDx9CJpNBJpMhPT29zvfExETcvXsXlZWVAIBOnTrByckJbm5ucHJywoABA+Dm5qb4cnV1bXdFwVnIgIiIiIiIiIiIiIhITTk5OTh79izOnj0LqVSKP//8E6WlpbCxsUFgYCBCQ0MhEonQv39/PmWLiIiIqANzc3NDaGgoQkNDUVVVhdjYWJw9exYxMTHYvn073n33Xejo6MDb2xuBgYEICAhAnz594OXlxSeGU6uSl5eHK1eu4K+//kJMTAxiYmKQmpqqdP7OmjULgwYN4gQ9apX27NkDe3v7Ok/UIyIiam7yybkymYx/JxER1bJixQrs3LkTS5cuxd69e4UOh4iIqMksLS3h6+sLX1/fOq+VlZUhJSUFycnJkMlkSE1NRXp6Ou7duweJRAKZTIaMjAzU1NQAALS0tGBnZwcHBwc4Ojriqaeegr29PZycnNC5c2fY2dnBzs4OnTt3hoGBQUvvKhFRh1JYWIj09HRkZmYiMzNTUZggNTUVMpkMaWlpSEtLQ35+vmIdPT092Nvb46mnnoKjoyN69eqFkJAQ2Nvbw9nZGS4uLnBwcIC2traAe9byWMiAiIiIiIiIiIiIiKgRt2/fVjxhVCqVIj4+HgDg6emJgQMH4sUXX8TAgQPh4eEhcKRERERE1Frp6OjA398f/v7++Ne//gXgn8lM8knh586dw65du1BaWopOnTqhZ8+e8PHxgY+PD/r06QMfHx/Y2dkJvBfU3lVXV+POnTuIi4tDXFwcrly5gitXriA5ORkAYGNjg4CAALz88ssIDAyEn58fTE1NhQ2aSAX79+/H9OnToaOjI3QoRETUwdja2kJLSwuZmZlCh0JE1KoYGhpi8+bNGD16NMaOHYuZM2cKHRIREZHG6evrw93dHe7u7g0uU1FRgfv37ysVOUhLS0N6ejquX7+OU6dOITU1FaWlpUrrmZqawt7eHp07d0bnzp3RpUsX2Nra1il4YGtrC2tr6+beVSKiVq+yslJRlKB2gYKMjAxkZGQgMzMTDx48wP3795GZmYmHDx8qrW9lZQUHBwc4OTnByckJgYGBdQrPcCy3fixkQERERERERERERERUS2VlJRISEiCVSiGRSPDHH3/g7t276NSpE3x8fDB8+HCsXbsWQ4cOhY2NjdDhEhEREVEb5uDggMmTJ2Py5MkA/vlb9ObNm7hy5YpiInl4eDjS0tIAAHZ2dvD29lbc+Ojp6Ql3d3d07doVurq8BYRUV1JSgps3b+LWrVu4efMmEhISkJCQgGvXrqG4uBg6Ojro0aMHfHx8EBoaqiiq4eTkJHToRGqLjY3FzZs3sXv3bqFDISKiDqhTp04wMzNDVlaW0KEQEbU6ISEheP3117Fw4UIMHDgQLi4uQodERETU4jp16qSYFPs4xcXFuH//Ph48eFBnsm1mZiZu3LiB6Ohoxc81NTVK25AXPLC2toaVlVWd749+WVtbQ09Pr7l3n4ioSYqKipCTk6P4ys7ORnZ2dp02+ffMzMw6n83o6enVKf7i6enZYJEYXhObjqPYRERERERERERERNShFRYW4vz585BIJJBKpZBKpSgtLYW5uTn8/Pwwd+5ciMViiMViGBgYCB0uEREREbVjurq68PLygpeXF6ZPn65oz87OxuXLl3HlyhXEx8cjPj4eP/30E+7fvw/gnxttunXrBg8PD7i7u6N79+7o2rWr4ot/x3ZMubm5SElJQUpKCpKTk3Hz5k3FV2pqKmpqaqCrq4uuXbvC3d0dIpEICxYsQJ8+feDt7Q1DQ0Ohd4FII/bu3Qs3Nzf4+fkJHQoREXVQ1tbWyM7OFjoMIqJW6d///jf++OMPvPDCCzhz5gx0dHSEDomIiKhVMjY2Rrdu3dCtW7dGl62qqlIUNJAXPMjKykJmZqZisu+tW7eUJvwWFRXV6cfExKROcYPahQ/Mzc1hbm4OCwsLmJubw8zMTPHd2Ni4OdJARO1IXl4eCgoKkJ+fX+d7fQUJan+VlZXV6a/2tUr+765du8La2rpOUQI7OztYWFgIsNcdEwsZEBEREREREREREVGHIpPJIJVKFYULLl26hOrqari5uUEkEmHjxo0QiUTw8vKClpaW0OESEREREcHa2hrPPPMMnnnmGaX2/Px8xcT0hIQE3Lx5EydPnsTmzZtRWFioWK5Lly6KogbOzs7o2rUrXFxc4OTkBDs7O9ja2kJbW7uld4ueQFlZGTIyMpCWlobU1FRFwQJ50YK7d++ioKBAsXyXLl3QvXt3eHh4IDg4GO7u7vDw8EC3bt34BBlq16qrq7F//37Mnj2b/8cnIiLBsJABEVHD9PX1sXv3bvj7++P//u//8OGHHwodEhERUZuno6ODLl26oEuXLiqvU15eXu9k4Uefan7z5k1Fe35+PvLz8+vtT1dXF2ZmZrCwsICFhYVSkYPa3x8tgmBoaAhzc3OYmJjA0NAQpqammkoLEWlATU0N8vLyUFJSgpKSEhQUFKCoqKjeYgS5ubkNFipo6Nqho6MDc3NzpSIqVlZWcHJyUipQUF/RAo4BtF4sZEBERERERERERERE7VZlZSUSEhIUhQuioqKQkpICXV1d9O7dGyKRCCtWrMCQIUPQuXNnocMlIiIiIlKLubk5/Pz86n3KeE5ODu7evauY2J6cnIyUlBScPn0aKSkpyMrKUiyrq6sLW1tb2Nvbw97eHl26dIGDg4Piu52dndKTlqh5VFRUKG4Gzc7ORlpaGjIyMiCTyZCeno779+9DJpPh/v37ShPhdHR04ODgoChQMX78+DpFKwwMDATcMyLhnDp1Cvfu3cMLL7wgdChERNSBsZABEdHj+fj44Ouvv8bcuXPRs2dPzJo1S+iQiIiIOhw9PT3FGIG68vLy6p2oXFBQoHit9s93795V/Jybm4v8/HxUV1c32L+ZmRkMDQ1hbGwMCwsLGBoawsjICBYWFjAyMqq3+MGj68gnR+vo6MDMzAydOnWCiYnJk6SMqFXLzc1FdXU18vPzUVlZicLCQpSXl6O4uBh5eXkoLS1FSUlJvUUJSkpKUFRUhIKCAsVr8uUePnzY4DYNDAxgZmamKExiaWkJMzMzdOnSBe7u7kpFSx4tZCJvNzY2bsEsUUthIQMiIiIiIiIiIiIiajcKCwtx/vx5SCQSSKVSnD17FiUlJTAzM4O/vz9efPFFiMViiMViTuQhIiIionZN/vSRPn361Pt6cXExUlNT8eDBA9y7dw8PHjxQTJxPSkpCTEwM0tPTkZOTo7Setra24gkn8sIGtb9bW1vDzMwMJiYmMDExUdyAJP+5PT89Sf4UmsLCQhQVFaGwsBCFhYXIy8tT3PD16NOrcnJykJmZiZycHBQUFCj1p6Ojo1RgwtnZGQEBAbCzs4Ojo6Piu729PTp16iTQXhO1bjt37sSAAQPg6ekpdChERNSBsZABEVHj5syZg2vXrmHBggXo1q0bAgMDhQ6JiIiIVGRhYQELC4sn6qP2pOn8/HwUFxejpKQEhYWFKCgoQGlpqWICdklJCUpLS5GXl4fMzEyUlpaioKAAhYWFKCkpQXFxcaPFEeT09PRgbGwMAwMDGBoawtDQEAYGBjA2Noaenh5MTU2hq6sLMzMz6OjowMLCAlpaWrC0tIS2tjbMzc0BAEZGRtDX1wfwTxFqbW1t6OrqKsZE5P0CUPRVe31qP6qqqhTjPQ8fPkRpaSmAf+5pq6ysVBQXAICysjKUlJQA+Oc9UFFRoVi/oqICRUVFiuID8r5KSkpQVlaG4uJilJeXK/otKChAVVUV8vLyUFNT02ic+vr6SgVBjIyMFIUEjIyMYGtrW6cgiLxwiIWFBYyNjWFoaAgzMzNF8RD5e4DoUSxkQERERERERERERERtlkwmg1QqVRQuuHTpEqqrq+Hm5gaRSISPPvoIYrEY/fr1g5aWltDhEhERERG1GsbGxvD09Gx0cm9ZWRkyMjKQnZ2N7OxsZGVl1ZmMn5WVhYSEBMXP8qe6NMTCwkJR2MDY2Fjx5KPaN+3JbwaU3yRY+yZAefx6enp1+m7oxr/aN449Sn6zl5z8ZrHS0lI8fPhQcZNY7T5yc3MBQFGkoKioCMXFxQ3us7GxMUxNTZWKPjg6OsLHxwc2Njb1FoWws7ODtrZ2g30S0eMVFBTgxx9/xPr164UOhYiIOjgbGxskJycLHUarceXsH0hPSRQ6DKJWLTfzgdAhCGLdunW4ceMGJk6ciPPnz6Nr165qrc/rCxG1SzU1qCgvRycBJ4cWFeQLtm3qOORjBpr08OFDxZPk5U+kl08Ol08gf3RyuHx8QD45XF4Q4e7du6iurkZeXl6dp9wD/5uk3lTySeXAP7mQFy+2tLRUWq72a8A/BZHNzMyUlnl0PKW+fuSFGxry6FhLTU2NSvddNdZvfeQT8NXxuDGfhvqVH/va5Mf7cf3Kz436+qn9mqrFMxoiP25aWlqwsLBQHFt5QQx50Q0rK6t6i27Izw15oQx5QQ1LS0tFn/LxOPkyRC2FhQyIiIiIiIiIiIiIqE2oqqrCjRs3FIULoqKikJKSAl1dXfTu3RsikQgrVqzAkCFD0LlzZ6HDJSIiIiJqF/T19eHs7AxnZ2e11pPf8Jefn694EpJ8wn9ubi6KiopQWFiI0tJSxQ2D8pv+ampqkJSUBOB/N349ejNZQ0+UkRcfqI/8pq1HyW/+kpPfLCa/cVB+k5iuri7c3NyU+pI/aUZ+k6WlpaXSz2ZmZg1ul4ia16FDh1BZWYmpU6cKHQoREXVw1tbWyMrKEjoMwVlYWMDYxAS7/v2B0KEQtQmGRkawtrYWOowWpa2tje+//x5isRghISGIjo6GjY1No+vx+kJE1PyeeuopoUMgUpuBgQEMDAxgZWXVYtusqalBXl4eACiKJAPKBZXl4xu1CyHUHtuQj4vUN6n+0bGR2tuQy8jIUCqqUHs7co8WeH5U7dfLy8tRVlYGU1PTRvdfXgRaHfLJ9epqqOB1Q6/XVwhbXgxATkdHB66urkpFG2oXmXi0n9qFG+TjSPKiAYDy+FPteOTFvOXjT0TtnVZNfaO6REREREREREREREQCKywsxPnz5yGRSBAbG4vo6Gjk5+fDzMwM/v7+EIlEEIvFEIlEalfzJiIiIiKi9mnRokX466+/IJVKhQ6FiAQWFBQEOzs7HDhwQOhQiIiog9u0aRPWrFmDzMxMoUMhUktxcTFsbGywadMmzJ07V+hwqAN58OABBg0aBENDQ5w5c0YxEYyIqCPKzc3Fzp078c033+D69evo27cvFixYgOeff77OU9iJiDQtKysL3t7emDhxIrZs2SJ0OETUNt1iIQMiIiIiIiIiIiIiahVkMhmkUikkEgmkUikuXbqE6upq2NvbKwoWiMVi9OvXT6nyNRERERERkdyECRNgYGCAffv2CR0KEQkoOTkZbm5uOHbsGMaMGSN0OERE1MHt378fzz//PMrLy6GtrS10OERqGTVqFIyNjXHo0CGhQ6EOJjExEWKxGB4eHvjtt9+UnpRLRNRRxcbGYuvWrfj+++9RVVWFsWPHIjQ0FMOHDxc6NCJqp6ZOnYqzZ8/i6tWrLC5FRE11i5+GEREREREREREREVGLq6qqwrVr17B161bMnj0brq6ucHR0xMyZMyGVSiESibBv3z5kZGRAJpPhwIEDWLx4MXx9fVnEgIiIiIiIGpSamgonJyehwyAige3YsQOdO3fGiBEjhA6FiIgI1tbWqKqqQn5+vtChEKnt2WefxfHjx1FWViZ0KNTBuLm54fjx44iLi8PUqVNRXl4udEhERILz9fXF119/DZlMhvDwcNy+fRvBwcHo2bMnPvnkE2RlZQkdIhG1I0eOHMGhQ4ewbds2FjEgoieiVVNTUyN0EERERERERERERETUvhUWFiImJgZSqRTR0dG4cOECiouLYW1tjYEDB0IkEkEkEqF///58ogoRERERETWZra0t3nnnHbzxxhtCh0JEAqmpqUGPHj0wfvx4fPbZZ0KHQ0REhMuXL6Nv3764efMmevToIXQ4RGq5e/cuunbtihMnTiA4OFjocKgDOnfuHEaOHIkhQ4bg4MGD0NPTEzokIqJWJTY2Flu3bsXevXtRXl6OqVOn4q233kLPnj2FDo2I2rDs7Gx4e3tj7Nix+Oabb4QOh4jatlssZEBEREREREREREREGpeeng6JRKL4iouLQ1VVFbp37w6RSASxWAyRSARPT09oaWkJHS4REREREbUDDx8+hJGREX744QdMmDBB6HCISCBRUVEICgrC5cuX0bt3b6HDISIiQmpqKpydnRETE4OAgAChwyFSm4+PD4YOHYrw8HChQ6EOKiYmBiEhIRCJRPjxxx+hr68vdEhERK1OYWEhdu7ciY0bNyIpKQnjxo3Dm2++iUGDBgkdGhG1QTNmzEBUVBSuXr0KS0tLocMhorbtlrbQERARERERERERERFR25eYmIhdu3bh5Zdfhre3NxwdHTFjxgxERkaif//+2L59O5KTk3Hr1i3s2LED8+fPR8+ePVnEgIiIiIiINObevXuoqamBk5OT0KEQkYB27tyJvn37sogBERG1GtbW1gD+eaIlUVv07LPP4tixY0KHQR1YYGAgfvvtN0gkEkybNg3l5eVCh0RE1OqYmpri9ddfx82bN/HTTz+hqKgIgwcPRr9+/bBr1y5UVlYKHSIRtRFHjhzBvn37sG3bNhYxICKN0KqpqakROggiIiIiIiIiIiIiajsqKyuRkJAAqVSKyMhInDlzBpmZmTAyMkLfvn0hFoshEokgFos5oEVERERERC3m9OnTGDZsGDIyMmBrayt0OEQkgNLSUtjb2+Pdd9/F4sWLhQ6HiIhIwcjICFu2bMHs2bOFDoVIbWfPnoVIJMK1a9fg5eUldDjUgUmlUowePRqBgYH44YcfYGRkJHRIREStWmxsLMLDw7F371507twZoaGhWLx4Me/jIKIG5efnw8vLC8HBwdixY4fQ4RBR+3BLW+gIiIiIiIiIiIiIiKh1Ky4uhkQiwSeffIKxY8fCxsYGvXr1QlhYGHJzc7F06VJER0cjJycHEokE69atw9ixYzn4TURERERELSo1NRX6+vro3Lmz0KEQkUB++OEHFBcXY/r06UKHQkRE/4+9O4+Lst7///8cFhEEXFAUBHHLDbUEVAwwLbdULHMrLW1xSe0cTsdKP5WmHjNtMZf6pGaLlJV2LA00K6yU4aSi5IZLIqEYbkCICMqwfP/4/OSXR8sNebM87rcbN2TmmpnHXDDqxVzX68IlPDw8lJGRYToDuCHBwcHy9PRUdHS06RRUcSEhIfr++++VkJCg7t27KzMz03QSAJRrgYGBioyM1C+//KIhQ4bojTfeUJMmTfTss8/q+PHjpvMAlENTpkxRfn6+XnvtNdMpACoRS3FxcbHpCAAAAAAAAABA+XHy5Elt27ZNcXFxslqtio+PV35+vry8vBQaGqqQkBCFhoYqICBAFovFdC4AAAAASJJefvllffDBB0pKSjKdAsCQXr16ydnZWWvXrjWdAgDAJe644w71799fs2bNMp0C3JBRo0YpJSVFmzZtMp0CaN++ferVq5c8PT21YcMGeXp6mk4CgAohKytLS5cu1YIFC5SVlaXx48frueee4+9RAJKkLVu2KCQkRB9//LEeeugh0zkAKo9DDDIAAAAAAAAAgCouOTlZVqu1ZHDB/v37ZWdnp5YtW5YMLrjrrrvk5+dnOhUAAAAA/tSTTz6pgwcP6ocffjCdAsCA3377TX5+flq1apUeeOAB0zkAAFzinnvuUYsWLfTOO++YTgFuyKpVqzR8+HCdPHlSHh4epnMA/frrr+rZs6fs7Oy0fv16NW/e3HQSAFQY+fn5+vDDDzVjxgydOXNGTzzxhJ5//nnVr1/fdBoAQ/Lz89WhQwc1atRIX3/9tekcAJXLITvTBQAAAAAAAACAslNQUKAdO3ZowYIFGjp0qDw9PdWsWTONHz9eiYmJCg8P19q1a3X69GklJiZqyZIlGjlyJEMMAAAAAJR7qamp8vX1NZ0BwJCPPvpINWvWVL9+/UynAABwGQ8PD2VkZJjOAG5Ynz59ZG9vrw0bNphOASRJTZo00datW1WvXj117txZVqvVdBIAVBjVqlXT2LFjlZycrHnz5mnVqlVq3ry5pkyZot9//910HgADZs+erZSUFL399tumUwBUQgwyAAAAAAAAAIBK7Ny5c7JarZo7d67Cw8NVt25dBQUFafbs2crLy9OkSZMUGxurzMxMWa1WzZkzR+Hh4apdu7bpdAAAAAC4LgwyAKq2yMhIDR8+XE5OTqZTAAC4TM2aNXXmzBnTGcANc3d3V1hYmNatW2c6BSjh4eGhb7/9ViEhIerZs6dWrVplOgkAKhQnJyeNHTtWSUlJmjVrlj788EP5+flpypQpysrKMp0HoIwcPHhQc+fO1axZs9S0aVPTOQAqIUtxcXGx6QgAAAAAAAAAQOk4ceKE4uPjFRcXJ6vVqvj4eOXn58vLy0uhoaEKCQlRaGioAgICZLFYTOcCAAAAQKmpXbu2XnnlFT355JOmUwCUsW3btqlz586Kj49XUFCQ6RwAAC7zz3/+U1u2bNF//vMf0ynADXvzzTc1Y8YMnT59Wo6OjqZzgBIFBQWaOHGi3nvvPb388st67rnneB8UAG5Adna25s+frzfffFN2dnaaNGmSIiIiVKNGDdNpAG6RoqIi3XXXXcrJyVF8fLwcHBxMJwGofA7ZmS4AAAAAAAAAANy45ORkRUZGaty4cfL395e3t7cGDhyoqKgo+fv7691331VKSorS0tK0atUqRUREKDAwkJ13AAAAAFQqOTk5ysrKkq+vr+kUAAYsX75cbdq0YYgBAKDccnd319mzZ01nADdlwIABOnPmDAM5UO44ODhoyZIleu211/Tiiy/qwQcf1Llz50xnAUCF4+7urmnTpunXX3/VxIkTNWfOHLVo0UIffPCBioqKTOcBuAWWLVumLVu26P3332eIAYBbhkEGAAAAAAAAAFBBFBQUaMeOHVqwYIGGDh0qT09PNWvWTOPHj1diYqLCw8O1du1apaenKzExUUuWLNHIkSPl5+dnOh0AAAAAbqnU1FRJYpABUAVduHBBn332mUaNGmU6BQCAP+Xm5qbs7GzTGcBNadasmVq2bKno6GjTKcAVPf3009q4caM2bdqkLl26KDk52XQSAFRItWrV0syZM/Xrr79q8ODBGjt2rNq1a6evv/7adBqAUpSRkaEXXnhBERER6tChg+kcAJUYgwwAAAAAAAAAoJzKycmR1WrV3LlzFR4errp16yooKEizZ89WXl6eJk2apNjYWGVmZspqtWrOnDkKDw9XrVq1TKcDAAAAQJlikAFQda1evVrZ2dl65JFHTKcAAPCn3NzcdPbsWdMZwE0LDw9nkAHKta5du2r79u2qXr26OnbsqG+//dZ0EgBUWB4eHlqwYIF27typRo0aqW/fvrrvvvuUlJRkOg1AKXjmmWfk6OioadOmmU4BUMkxyAAAAAAAAAAAyokTJ04oKipKU6ZMUWhoqOrUqaOwsDAtWLBAzs7OmjFjhrZv316y3OTJkxUaGionJyfT6QAAAABgVGpqqmrUqKHatWubTgFQxpYuXaoBAwbIy8vLdAoAAH/K3d2dQQaoFPr166cDBw7o0KFDplOAP+Xj46PNmzdrwIAB6tu3r+bOnavi4mLTWQBQYfn7++vrr7/Whg0bdPjwYbVr107Tpk1TXl6e6TQAN8hqtWr58uVauHCh3N3dTecAqOQsxWyRAQAAAAAAAIARycnJslqtiouLk9Vq1f79+2VnZ6eWLVsqNDRUISEh6tatmxo1amQ6FQAAAADKtenTp2vlypXav3+/6RQAZejgwYNq3bq11q9frz59+pjOAQDgT61bt079+/dXbm6unJ2dTecAN6ygoECenp6aNm2a/vGPf5jOAa5q6dKleuqpp/TAAw/ovffeU40aNUwnAUCFVlBQoLffflvTpk2Tu7u7Xn75ZY0cOdJ0FoDrUFBQoKCgINWvX1/ffPON6RwAld8hO9MFAAAAAAAAAFAVFBQUaMeOHVqwYIGGDh0qT09PNWvWTOPHj1diYqLCw8O1du1apaenKzExUUuWLNHIkSMZYgAAAAAA1yA1NVW+vr6mMwCUsXfffVe+vr7q2bOn6RQAAP6Sm5ubJCk7O9twCXBzHBwc1Lt3b61bt850CnBNxo4dq5iYGP34448KCgpSQkKC6SQAqNAcHBwUERGh/fv3q2vXrnr00UfVr18/paSkmE4DcI3efPNNHThwQIsWLTKdAqCKYJABAAAAAAAAANwCOTk5slqtmjt3rsLDw+Xh4aGgoCDNnj1beXl5mjRpkmJjY5WZmSmr1ao5c+YoPDxctWrVMp0OAAAAABUOgwyAqic/P1+RkZEaM2aM7O3tTecAAPCX3N3dJUlnz541XALcvP79+2vTpk3KysoynQJck65duyo+Pl5eXl7q0qWLXnvtNRUVFZnOAoAKzdvbWytWrNAPP/yglJQUtW3bVvPnz1dhYaHpNAB/4dixY5o5c6b+53/+Ry1atDCdA6CKsBQXFxebjgAAAAAAAACAiu7EiROKj49XXFycrFartm3bJpvNJi8vL4WGhiokJEShoaEKCAiQxWIxnQsAAAAAlUrr1q01bNgwTZ8+3XQKgDLy6aefauTIkUpJSVHDhg1N5wAA8JcOHz6s5s2bKyEhQR06dDCdkbihfgAAIABJREFUA9yUzMxM1a9fX5988omGDBliOge4ZsXFxVq4cKGee+45hYSEKDIyUj4+PqazAKDCs9lsmjdvnl566SW1bt1ay5YtU2BgoOksAFcwaNAg7d69W3v27FH16tVN5wCoGg7ZmS4AAAAAAAAAgIooOTlZkZGRGjdunPz9/eXt7a2BAwcqKipK/v7+WrZsmY4cOaK0tDStWrVKERERCgwMZIgBAAAAANwCx44dk6+vr+kMAGVo6dKl6t+/P0MMAAAVgrOzsyQpNzfXcAlw8+rUqaMuXbpo3bp1plOA62KxWBQREaHt27crPT1dbdu21SeffGI6CwAqPEdHR02ePFkJCQlycXFRly5dNHXqVOXn55tOA/AHGzZs0BdffKG33nqLIQYAypSD6QAAAAAAAAAAKO8KCgq0a9cuWa1WxcXF6ccff9Tp06fl4uKiDh06KDw8XHPmzFFYWJhq1aplOhcAAAAAqpTff/9dOTk5DDIAqpDDhw9r06ZNHDwHAKgwXFxcJEl5eXmGS4DS0a9fP73xxhsqLCyUvb296RzgurRr105bt27VlClT9PDDD2vDhg16++235ebmZjoNACq0Nm3aKDY2Vu+8844mT56s6OhoRUZGql27dqbTgCovPz9f//jHPzRo0CD17t3bdA6AKsbOdAAAAAAAAAAAlDc5OTmyWq2aO3euevbsqZo1ayooKEizZ89WXl6eJk2apNjYWGVmZspqtWrOnDkKDw9niAEAAAAAGJCamipJDDIAqpDFixfLx8dHvXr1Mp0CAMA1cXZ2lsQgA1Qe4eHhOn36tLZt22Y6Bbghzs7OWrBggdasWaMNGzaoQ4cOio2NNZ0FABWenZ2dJk6cqD179qhmzZoKDAzU9OnTVVhYaDoNqNIWLlyoo0eP6vXXXzedAqAKcjAdAAAAAAAAAACmnThxQvHx8YqLi5PVatW2bdtks9nk5eWl0NBQzZ49W6GhoQoICJDFYjGdCwAAAAD4g4uDDHx8fAyXACgL+fn5ioyM1FNPPcXZfwEAFYaTk5Ps7OyUm5trOgUoFW3atFHz5s0VHR2tLl26mM4BbtiAAQO0a9cujRkzRnfddZdGjx6tuXPnqnbt2qbTAKBCa9KkiTZu3KjXX39dL730kmJiYhQZGammTZuaTgOqnFOnTmnWrFl69tln1bhxY9M5AKogO9MBAAAAAAAAAFDW0tLS9Pnnn2vcuHHy9/eXl5eXBg4cqKioKPn7+2vZsmU6cuSI0tLStGrVKkVERCgwMJAhBgAAAABQDqWmpqpWrVpyc3MznQKgDHzxxRfKzMzU448/bjoFAIDr4uzsrLy8PNMZQKnp27evoqOjTWcAN83Ly0vR0dFau3at1q9fr9atWysyMtJ0FgBUePb29po8ebLi4+OVk5OjgIAArVy50nQWUOX8z//8j9zc3PTcc8+ZTgFQRTHIAAAAAAAAAEClVlRUpN27d+utt97SsGHD5O3trYYNG2rUqFH65ZdfNHjwYH333XfKyspSYmKilixZopEjR6pRo0am0wEAAAAA1yA1NVW+vr6mMwCUkaVLl6pfv35q2LCh6RQAAK6Ls7OzcnNzTWcApaZfv37avXu3UlJSTKcApSI8PFx79+7VsGHD9Nhjj6lfv346cuSI6SwAqPDatWunrVu3atSoUXrooYc0cuRInTt3znQWUCUkJCToww8/1Ouvv64aNWqYzgFQRVmKi4uLTUcAAAAAAAAAQGkpKCjQrl27ZLVaFRcXp++//14ZGRlydXVVcHCwQkJCFBoaqtDQUFWvXt10LgAAAADgJo0cOVIZGRlat26d6RQAt9jhw4d12223KTo6Wn379jWdAwDAdWnUqJEiIiI0adIk0ylAqcjPz1fdunU1Z84cTZgwwXQOUKqsVqvGjRunlJQUTZs2Tc8884zs7e1NZwFAhbdmzRo98cQTatCggT777DO1a9fOdBJQaRUXF+uuu+5SUVGRYmNjZbFYTCcBqJoO2ZkuAAAAAAAAAICbkZubK6vVqrlz5yo8PFx169ZVUFCQZs+erby8PD377LOKjY1VZmamvvvuO02fPl09evRgiAEAAAAAVBKpqany9fU1nQGgDCxZskQ+Pj7q3bu36RQAAK6bs7Oz8vLyTGcApaZatWrq1asXQ+VQKYWGhiohIUHPPPOMpk2bpuDgYMXHx5vOAoAK7/7779fOnTvl4eGhTp066f333zedBFRaK1asUFxcnObPn88QAwBGMcgAAAAAAAAAQIVy9uxZxcTEaPr06erZs6fq1KmjsLAwLViwQM7OzpoxY4a2b9+uEydOKCoqSpMnT1ZoaKgcHR1NpwMAAAAAbgEGGQBVQ35+vpYvX67Ro0dzJlQAQIXk4uLCIANUOv369dPGjRuVk5NjOgUodU5OTpoxY4Z27twpFxcXde7cWSNHjtSxY8dMpwFAhebr66sffvhBERERGj16tMaNG6f8/HzTWUClkpubqxdeeEFjxoxRUFCQ6RwAVZyD6QAAAAAAAAAA+CsnT57Utm3bFBcXp5iYGP38888qKipS06ZNFRISooULF6pnz55q0qSJ6VQAAAAAQBkrLi7WsWPHGGQAVAFffPGFMjIy9Oijj5pOAQDghlSvXp1BBqh0+vXrJ5vNpo0bN+q+++4znQPcEq1bt9amTZsUFRWlp59+Wi1bttTf/vY3vfDCC3JzczOdBwAVkr29vebMmaM777xTI0eOVGJiolatWiVvb2/TaUCl8Morryg7O1v/+te/TKcAgOxMBwAAAAAAAADAH6Wlpenzzz/XuHHj5O/vLy8vLw0cOFBRUVEKDAzUZ599plOnTunw4cOKjIzU2LFjGWIAAAAAAFXUqVOndOHCBQYZAFXAu+++q379+qlRo0amUwAAuCGOjo6y2WymM4BS5enpqY4dO2rdunWmU4BbLjw8XPv379fs2bO1ePFitWrVSkuXLlVhYaHpNACosAYMGKD//Oc/Sk9PV1BQkH766SfTSUCFd+zYMc2bN09Tp05VvXr1TOcAAIMMAAAAAAAAAJiVnJysyMhIjRs3Tk2aNFHDhg01fPhw7dixQ+Hh4Vq7dq1Onz6txMRELVmyREOGDOFNFgAAAACoovbt26d9+/bp3LlzkqTU1FRJYpABUMkdPnxYP/zwg8aMGWM6BQCAG+bg4KCCggLTGUCp69+/v6Kjo1VcXCxJOn36tN5//3299dZbhsuA0ufo6KiIiAgdPnxYgwcP1sSJE9WpUydt3rzZdBoAVFht2rTRtm3bFBQUpLvvvluffvqp6SSgQnvxxRdVv359TZw40XQKAEiSLMUXf2MAAAAAAAAAALdYYWGhDhw4oLi4OMXExOiHH35Qenq6atSooS5duigkJEShoaEKDQ1V9erVTecCAAAAAMqZWrVq6cyZM5Ikd3d31alTR6dOndJjjz2mZs2aqVGjRmrUqJHatWvHdiVQiUyePFmffPKJUlJSZG9vbzoHAIAb0rt3b/n6+mrZsmWmU4BStXPnTnXo0EF///vftXXrVsXHx6uoqEgeHh5KT083nQfcUnv37tWkSZP07bffauDAgZoxY4batWtnOgsAKqTi4mLNmDFDM2fO1HPPPafZs2fLzo5zOAPXY9euXQoICNCnn36qoUOHms4BAEk6xCADAAAAAAAAALeMzWbT7t27FRMTI6vVKqvVqqysLLm7u6tTp07q0aOHQkJC1KlTJ1WrVs10LgAAAACgnOvcubO2bdt22eUXtyltNpuKi4s1ZcoUvfLKK2WdB+AWyM/Pl6+vryZMmKCXXnrJdA4AADesf//+8vDw0PLly02nADetqKhIP//8s6KiorR69Wrt3btXjo6OKiwsVFFRkSSpYcOGOnbsmOFSoGysX79eL7zwgnbv3q3BgwfrpZdeUps2bUxnAUCF9N5772n8+PG6//77tXz5cjk7O5tOAiqMXr166cyZM9qyZYssFovpHACQpEMOpgsAAAAAAAAAVB45OTnasmWLrFar4uLiZLVadf78eXl5eSk0NFTTp09XaGioAgICeLMEAAAAAHDdunbtqp07dyo/P/+Sy//768GDB5dlFoBb6PPPP1dmZqaeeOIJ0ykAANwUR0dHFRQUmM4AbtrevXvVvXt3paenq1q1aiXbYzab7ZLlOOgQVUnfvn117733Kjo6WtOnT1e7du00aNAgzZw5U61atTKdBwAVyhNPPKHGjRtryJAh6tWrl6KiolSrVi3TWUC5t379en333XeKjY1lvzwA5YqluLi42HQEAAAAAAAAgIrp1KlT2rp1a8nQgm3btslms6lp06YKCQlRaGioQkJC5O/vbzoVAAAAAFAJrF69WkOGDNGf7e7i4OCge+65Rxs2bCjjMgC3SnBwsPz8/LRy5UrTKQAA3JQhQ4bIYrFo1apVplOAm3L69Gm1atVKWVlZKioq+tPl2rdvr127dpVhGVA+FBcXKzo6WtOmTdPu3bs1aNAgzZo1Sy1atDCdBgAVyr59+9S7d2/Vrl1bGzZskLe3t+kkoNwqLCzUHXfcoRYtWmj16tWmcwDgjw7ZmS4AAAAAAAAAUHGkpaXp888/V0REhIKCgtSgQQMNHDhQUVFR8vf317Jly3T06FEdPnxYkZGRGjt2LEMMAAAAAAClpkuXLn86xECSCgoKNHXq1DIsAnArJSQkaOvWrZo4caLpFAAAbpqjo+NlZ6wHKqJ69erp3//+91WXc3V1LYMaoPyxWCwKDw/Xjh07FBkZqV27dsnf31+PP/64Dh06dNXbR0VFafTo0crNzS2DWgAov9q0aaOtW7dKku68804dPHjQcBFQfr3//vs6ePCgXnnlFdMpAHAZS/FfvbsLAAAAAAAAoEpLTk6W1WpVXFycvvvuO/36669ycHDQ7bffrpCQEIWGhuqee+5RnTp1TKcCAAAAAKoILy8vnThx4rLLHRwc1LVrV23cuNFAFYBbYdSoUUpISNDu3btlsVhM5wAAcFNGjRqljIwMRUdHm04BSsXzzz+vuXPnqqio6IrX9+zZU99++20ZVwHlT2FhoVasWKF//etfSk5O1n333adnn31WXbp0ueLy7dq10969e9WhQwdt2LBBnp6eZVwMAOVLRkaG+vXrp+TkZK1fv15BQUGmk4ByJScnRy1atNDgwYO1cOFC0zkA8N8O2ZkuAAAAAAAAAHDz9uzZo8DAQD300EM3fB+FhYVKTEzU0qVLNXToUHl6eqpZs2aaMGGCEhMTNXToUH333XfKzs7W9u3btWDBAg0ZMoQhBgAAAACAMhUWFiZ7e/vLLi8oKND06dPLPgjALZGenq5Vq1bp73//O0MMAACVgoODgwoKCkxnAKVm5syZ6tixoxwdHa94vauraxkXAeWTvb29Ro4cqYMHD2rNmjU6efKk7rzzTgUFBSkyMlKFhYUly8bHx2vv3r2SpL179yowMFAHDhwwlQ4A5YKHh4c2btyowMBA9ejRQz/99JPpJKBceeONN5Sbm6upU6eaTgGAK2KQAQAAAAAAAFCB5efn66WXXlJAQIB27typdevW/elZT/5bQUGBduzYoQULFmjo0KGqV6+e2rZtq2eeeUa///67Jk2apNjYWGVmZspqtWrOnDnq0aOHnJ2db/GzAgAAAADgz3Xp0kV2dpfu8uLg4KCwsDCFhYUZqgJQ2pYuXarq1atr+PDhplMAACgVDDJAZePg4KB///vfcnZ2vmwbzc7OTjVq1DBUBpRPdnZ2Cg8PV1xcnGJjY9W0aVM9/vjjatmypRYsWKC8vDwtXry4ZDiIzWbTiRMn1LlzZ23evNlwPQCYVaNGDa1du1bdu3dXz5499eOPP5pOAsqF06dP64033tDkyZNVr1490zkAcEWW4uLiYtMRAAAAAAAAAK7fli1b9OijjyopKemSszTs2rVL7du3v2z5c+fO6eeff1ZcXJxiYmIUFxenvLw8NWjQQGFhYQoJCVFoaKg6dOhw2c5GAAAAAACUF1u2bFGXLl0uu/z7779X9+7dDRQBKG2FhYVq1qyZBg8erNdff910DgAApeLJJ59UUlKSYmJiTKcApWrdunUKDw/XHw9LcHBw0GOPPaalS5caLAPKv/379+v111/XihUrVLNmTWVlZSk/P/+SZezs7GRvb6/ly5froYceMlQKAOWDzWbTgw8+qG+++UZfffWV7r77btNJgFGTJk3SRx99pOTkZLm6uprOAYArOcTeyAAAAAAAAEAFk5eXpylTpigkJOSyIQYODg4lZ2PIzs5WTEyMpkyZotDQUNWpU0dhYWFasGCBateurfnz52vv3r06fvy4Vq1apYiICAUGBjLEAAAAAABQrnXo0KHk7ISSZG9vr6CgIIYYAJXImjVrdPToUY0bN850CgAAAK6iX79+mjBhguzt7Usus7Ozk4uLi8EqoGJo3bq13nvvPf3666+64447VFBQcNkyRUVFstlsGj58uKZPn172kQBQjjg6Ouqzzz5T3759NWDAAP3www+mkwBj0tLS9M4772jq1KkMMQBQrlmK/zj6EAAAAAAAAEC5tnnzZo0aNUrHjh274k4M9vb28vf3V0FBgfbv3y+LxaJ27dqpa9euCgsLU1hYmBo0aGCgHAAAAACA0hMUFKQdO3aUfP3NN9+oV69eBosAlKbu3bvL1dVVUVFRplMAACg1Tz75pJKSkhQTE2M6BSh1Fy5cUMeOHXXgwAHZbDY5OTnp6aef1iuvvGI6Dagw2rVrp8TERP3VIT4Wi0WPP/64Fi9eLAcHhzKsA4DypaCgQI888oiio6P13XffKTg42HQSUOaefPJJff311/rll1/k5ORkOgcA/swhTq0GAAAAAAAAVABZWVkaM2aMunXrptTU1CsOMZCkwsJCHT58WP3799dXX32ljIwM7dy5UwsXLtSQIUMYYgAAAAAAqBS6du2qatWqyd7eXgEBAQwxACqRxMRE/fjjj5o4caLpFAAAAFwjJycnffHFF3J0dJTFYpEkOTs7G64CKo4tW7Zo7969fznEQJKKi4v14YcfauDAgcrNzS2jOgAofxwcHPTxxx+rd+/e6tOnj37++WfTSUCZSklJ0QcffKCXXnqJIQYAyj0GGQAAAAAAAADlXFRUlFq1aqXly5eruLhYhYWFf7n8uXPn9MQTT6h///6qVatWGVUCAAAAAFB2goODZbPZVFhYqBkzZpjOAVCKFixYoBYtWqh3796mUwAAKHVXO0AVqMiaN2+upUuXqri4WDabTS4uLqaTgApj8eLFcnR0vKZlCwsLtWHDBoWFhenUqVO3uAwAyi97e3t98sknCg4OVp8+fXTgwAHTSUCZmTp1qvz8/DRy5EjTKQBwVQ6mAwAAAAAAqKyKi4v19ddf69y5c6ZTAFRQZ8+e1ZIlS7Rt2zZZLJZr3rnNzs5O8+bN0z333HOLCysPFxcX9e3bt+QMMQAAAACAslNUVKQzZ87o7NmzysnJUV5ens6fP6+8vLzLlrkoIyNDxcXFatKkiZycnBQTEyN7e3u5u7uXfHZ3d5erq6uqV69u4mkBuAHp6en6+OOP9frrr/N7GgBApcO/bago/rg9du7cOeXn50v6v/cuCwoKSpa7uO32R/Xr11evXr307bff6ujRo1q3bt01nTXe2dn5qttuTk5OlwxHuLjtJ0nVqlVTjRo1JEnVq1eXs7PzNTxToHTs2bPnpg+eXb16tWw2W8nX9vb2slgsJf92FBcXX3LSg4KCAiUkJMjf31/Tp0+Xp6fnTT0+AJRX3bt3V926df/0+mrVqunzzz9Xjx491KdPH1mtVvn4+JRhIVD2EhMT9emnn2rFihVycODwYADln6WY0Z4AAAAAANwShw4dUosWLUxnAACu0b59+9S6dWvTGQAAAABQ4WVmZuro0aP67bffdPr0aaWnp+vEiRNKT09Xenp6yWXZ2dk6d+7cJQMLboU/DjZwd3dXvXr1VL9+fdWtW1f16tVT3bp11aBBA3l6esrPz09eXl6yt7e/pU0ArmzWrFmaN2+ejh49KldXV9M5AACUqvHjx+uXX37Rxo0bTaegAiooKFB2draysrJKBsHl5eUpOzu7ZKBAdna2bDabzpw5UzKM4OzZs7LZbMrKylJ+fr7OnTunnJwc2Ww2FRQU6OzZs5JUcl1l4+LiIicnJ0mSm5ubHBwc5OjoKFdX15LratasqWrVqsnNza1koIK7u7uqVasmd3f3ksEIF693d3dXzZo1VatWLbm7u3PwGBQY1FEJO7abzgCASmnq1KmaOXPmVZfLyMjQXXfdJXt7e1mtVrm5uZVBHWDGAw88oKSkJO3cuVN2dnamcwDgag6x1QwAAAAAwC1y8UwE877aKL8WHBgL4MbY8vN1JuO0Mk6e0Jn008o4eVxnMtKVcSJNmadO6vRvx3QmM1052WekP8wsbdCosd7+9j8GyyuOY4cPKaLfXZecQQYAAAAA8Ofy8/N16NAhHThwQIcOHdLRo0d19OhRpaSk6MiRI8rJySlZ1sXFRXXr1lX9+vVVr1491atXT61atVLdunVVs2ZN1ahRQzVq1FDNmjXl6upa8rWDg8NlO5vWqlXrkrPY/vHMoJJ04cIF5ebmymazKScnR2fOnNG5c+d07tw5ZWdnl3ycOnVKJ0+e1M8//6z09HSdOnVKmZmZJffj6Oiohg0bqlGjRvLz85Ofn5+aNGmi1q1bq2XLlqpTp84tXLtA1WWz2bR48WKNHTuWIQYAAKDSsdlsyszMVEZGxmWfz5w5o+zsbJ09e1bZ2dk6c+aMsrKyLtmOyc3N/dP7/uPB946OjqpZs6acnJzk4uIiV1dXOTo6qmnTppcdwG+xWFSrVi1JumQbrFq1aqpRo4YklRzEL0k1atRQtWrVSh734tC4v/LHx/grWVlZutr5GbOzs0vORi9dOnzh4uAG6dJtxbNnz5a8B3jmzBkVFRWVbDteXC4rK0vnz5/X6dOnrzgU4uLyf8bFxUXu7u5yc3OTu7u7ateufckwvYuDD+rUqSMPD4/LPjs6Ol51/aB8KyiwadC4v2v401NMpwBApfLcA70u+bf/r3h4eGjdunXq3Lmzhg0bpqioKIbVolLasWOH1qxZo6+++oohBgAqDAYZAAAAAAAAAOWYY7VqquvVUHW9Gv7lcoUFNp3JyFDGyePKSj8tV/eaZVQIAAAAAKisCgoKtG/fPu3YsUP79u3TgQMHdODAAf36668qLCyUnZ3dJQf7BwQEqFGjRiUfvr6+JQe/3AoXhx6UBpvNppMnT+rIkSM6cuRIyXCGo0ePKiEhQcnJySUHxdSrV69kqEGrVq3UoUMHBQQEqGZNtsWBm/HZZ5/p5MmTmjhxoukUAACAqzp79qzS0tJ06tQpHT9+XCdOnLjikIL09HRlZmYqOzv7svtwdXVVnTp1VKtWrUsOem/atOlll138qFWrlmrWrCl3d3c5OztXmrMNX8uwg9q1a5dByZ/LyclRbm5uybCJiwMo/vvj999/Lxmil5SUVLJ8RkbGJYP/LnJzc5OHh8clHxeHHHh4eKh+/fry9vZWvXr15O3tfdXhEQAAVFV+fn6Kjo7WXXfdpWeffVbz5s0znQSUuhdeeEHBwcHq37+/6RQAuGYMMgAAAAAAAAAqAXsHR9Wp30B16jcwnQIAAAAAqICKioq0Z88excfHKyEhQTt27NDu3bt1/vx5OTs7q02bNmrZsqVGjRqlli1bqkWLFmrZsqWqV69uOr1UODo6ysfHRz4+PgoJCbns+uLiYh05ckQHDx4sGehw8OBBffXVVzp58qQsFouaNWumgIAABQYGKjAwUJ07d+as8sB1WLRokQYPHixfX1/TKQAAoIoqLi7WiRMnlJqaqhMnTpQMKDh16tRlQwsuDjqTJDs7O3l6el5yELqPj4/at2+vunXrXnJg+h8/Ozk5GXy2uF6urq5ydXWVp6fnDd9Hfn7+FQdeZGZmKj09veTPe/bsUUZGhjIyMnTq1CkVFRWV3Iezs7Pq168vLy8veXp6ytvbW/Xr1y+5rEGDBvL19ZWXl5csFktpPHUAACqMoKAgffjhhxo2bJiaN2+uCRMmmE4CSs2WLVv0zTffKCYmxnQKAFwXBhkAAAAAAAAAAAAAAABUMYWFhdq5c6esVqvi4uL0/fffKyMjQ9WqVVPz5s0VGBio4cOHKzAwUB07dqzyB9hYLBY1btxYjRs3Vu/evS+5Li0tTTt27NC+ffuUmJio5cuXa/LkybK3t1fLli0VGhqqHj166O6775aHh4ehZwCUb5s3b1Z8fLwWLVpkOgUAgFvGZrPJwYFdt03Ky8vT8ePHlZycrOTkZKWlpZV8nZaWpiNHjujcuXMly1evXl3e3t7y8vJS7dq11bZtW/Xs2fOSy7y9veXr6ytHR0eDzwwVRbVq1eTl5SUvL6/rut3vv/+utLQ0/f777zp+/HjJz25aWppSU1O1bds2paWl6eTJkyVDDxwdHVW3bl15e3uradOm8vLyKvnzxa8ZdgAAqIyGDBmiffv2KSIiQrfddpt69uxpOgkoFTNnzlRwcLDuuece0ykAcF34bRgAAAAAAAAAAAAAAEAVcPToUa1bt07R0dHatGmTzp07p/r16yssLEzTpk1T165d1a5dO9nb25tOrVC8vb3l7e2t8PDwksvS0tIUGxur2NhYbdq0ScuWLZMktW/fXn379lX//v3VqVMn1jXw/3nzzTfVpUsXde7c2XQKAAC3jM1m42D3W6ygoEBHjhxRUlKSDh8+fMnn/x5SUKdOHfn4+KhRo0a67bbbdPfdd8vHx0d+fn7y8fGRt7e3qlevbvDZAP+/2rVrq3bt2ldd7vz58zp+/LiOHTumI0eO6NixY0pNTVVqaqo2bdqkY8eOKSMjo2R5FxcXNW7cWE2bNlXz5s3VvHlzNWvWTM2bN5efnx9/ZwEAKqxp06YpKSlJgwcPVlxcnNpGFxrNAAAgAElEQVS2bWs6CbgpP//8szZs2KD169ebTgGA68YgAwAAAAAAAAAAAAAAgEpq69atWrt2rdatW6fdu3fL1dVVvXr10rx589S1a1e1atXKdGKl5O3trWHDhmnYsGGSpMzMTFmtVsXExOizzz7T7NmzVbduXd17773q37+/+vXrpxo1ahiuBsxISUlRVFSUPv30U9MpAADcUgwyKB1FRUVKSUnRvn37dOjQoUsGFhw5ckQ2m03S/w0quHhg9qBBg9S4cWP5+PjI19dXfn5+cnFxMfxMgNJXvXp1NWnSRE2aNFFYWNgVl8nNzS0ZcnDs2DGlpKQoKSlJP/30kz766KOSQQcODg7y8/NTs2bNSoYbNG/eXP7+/mrSpIns7OzK8qkBAHBdLBaL3n33XSUnJ2vAgAHasmWLPD09TWcBN2zGjBnq0KGDevfubToFAK4bgwwAAAAAAAAAAAAAAAAqkZSUFK1cuVLvvfeeDh06pCZNmqhnz56aNWuWevXqJScnJ9OJVU6dOnU0YMAADRgwQAsXLlRycrKioqIUHR2tRx55RPb29urfv78eeeQR9enThwPcUKXMnz9fDRs21MCBA02nAABwSzHI4PqlpaVp3759SkxMLPm8a9cu5eTkSPq/s9Q3bdpUTZs21aBBg0r+7O/vLy8vL8P1QPnk4uKi1q1bq3Xr1le8/vz58zp8+LD27dun5ORkJScn69ChQ/rmm2+UkpKioqIiVatWrWSoQZs2bUo+t27dmgEHAIByo3r16vryyy8VHBysoUOHKiYmRg4OHEqJiicxMVFRUVH68ssvZbFYTOcAwHXjX18AAAAAAAAAAAAAAIAKLicnR5GRkXr//fe1Y8cONWzYUA8++KBGjBihDh06mM7Df2natKkiIiIUERGh9PR0rVy5Up988onuu+8+1atXTw899JAmTpyo2267zXQqcEtlZWXpgw8+0IsvvsiO5ACASs9ms6lGjRqmM8ql8+fPa+fOndq+fbsSEhK0d+9e7d+/v2RggY+Pj9q0aaPOnTvrscceU9u2bdW6dWu5u7sbLgcqn+rVq8vf31/+/v6XXXf27Fnt37+/5DW6Z88effDBBzp69KgkqUaNGmrdurX8/f0VEBCgoKAgdejQQc7OzmX9NAAAkCR5enpqzZo1Cg4O1osvvqg5c+aYTgKu24wZM9SuXTuFh4ebTgGAG8K7PwAAAAAAAAAAAAAAABVUSkqK3n77bS1btkwXLlzQgw8+qFdffVXdunXjLIgVRN26dTVx4kRNnDhRycnJWrFihT744AMtWrRI9957ryIiItSjRw/OtIRKafHixZKksWPHGi4BAODWKygoYHCP/m+gw969e7V9+3bFx8dr+/bt2rt3r2w2m2rVqqWgoCCFhIRozJgxatu2rdq0aaOaNWuazgYgyc3NTZ06dVKnTp0uuTw7O1v79u27ZMBBVFSUMjMz5eDgIH9/fwUFBaljx44KCgpS+/bt5ejoaOhZAACqmvbt2+vdd9/VI488os6dO2vgwIGmk4Brtn//fq1evVorV67kPQIAFRa/DQMAAAAAAAAAAAAAAKhgDhw4oJdeekmrV6+Wl5eXJk+erDFjxsjDw8N0Gm5C06ZNNXXqVD3//POKiorSggUL1KtXL/n7+2vatGkaMmQIOyui0rhw4YIWLVqkcePGcXAiAKBKsNlsVfLA3bNnzyo2NlY//vijYmNjtXPnTp0/f16urq4KCAhQ9+7d9eyzz6pjx45q1qwZ/98FKiB3d3cFBwcrODj4kssPHz6s7du3l3ysWrVKZ8+elZOTk+644w6FhoaqW7du6tq1q9zd3Q3VAwCqghEjRuiHH37QE088oTvuuENNmjQxnQRck5dfflktW7bUAw88YDoFAG4YgwwAAAAAAAAAAAAAAAAqiGPHjmnGjBn68MMP1apVK61YsUKDBg3izK6VjL29ve6//37df//92rVrl1599VU99NBDeu211/TKK6+oR48ephOBm7ZixQqdPn1af/vb30ynAABQJqrKIIOcnBzFxsZq06ZN+vHHH7Vjxw4VFhaqTZs26tatm8aPH6+goCC1bNlS9vb2pnMB3ELNmjVTs2bNNGzYMElSUVGRDh48qO3btys+Pl7ffvut5s2bJzs7OwUEBKhbt27q1q2bwsLC5ObmZrgeAFDZLFq0SNu3b9eIESO0efNmfqeOcu/w4cNauXKlli9fLjs7O9M5AHDD+BsMAAAAAAAAAAAAAACgnLPZbJo+fbpatGihmJgYvffee9q1a5eGDRvGDpeV3O23364VK1YoISFBnp6e6tmzp/r06aOUlBTTacANKy4u1rx58zRixAj5+vqazgEAoExU5kEGv/zyi+bMmaM777xTtWvXVt++fRUVFaXAwEB98sknOnHihPbu3au33npLI0eOVJs2bRhiAFRBdnZ2at26tR555BEtXLhQu3fv1qlTp7Ry5Up17txZ69evV//+/VWnTh0FBwdr9uzZ2r9/v+lsAEAl4ezsrE8//VQ7d+7UrFmzTOcAV/Xyyy/Lz89PQ4cONZ0CADeFd7IBAAAAAAAAAAAAAADKsT179mjUqFE6ePCgZs2apYkTJ8rJycl0FsrY7bffrnXr1mnz5s2aMGGC2rdvr9dff11jxoyRxWIxnQdcl+joaO3bt08rVqwwnQIAQJkpKCioVIMMEhIS9OWXX+rLL79UYmKi6tWrp/vuu08RERHq1q2b6tevbzoRQAVQt25dDRo0SIMGDZIknTp1Sps2bVJMTIwWLlyoF154Qa1atdLAgQM1cOBABQUFsQ0MALhhrVu31quvvqqIiAh1795dd911l+kk4IpSU1P18ccfa+nSpQyzBlDh2ZkOAAAAAAAAAAAAAAAAwJXNnz9fHTt2lIuLi3bt2qV//vOfDDGo4rp27aodO3ZowoQJmjBhgvr27avff//ddBZwXV577TXde++9uv32202nAABQZnJzc+Xs7Gw646YcOHBAzz33nJo0aaLAwEB99NFH6tGjhzZt2qTjx4/r3Xff1bBhwxhiAOCGeXp6asiQIVqyZInS0tIUGxurvn376rPPPlOnTp3k5+enf/7zn0pMTDSdCgCooCZOnKh7771Xjz/+uHJyckznAFe0YMECeXp6avjw4aZTAOCmMcgAAAAAAIBKZMbjw0wnAAAAAAAAoBQUFhbq73//uyZNmqTp06dr8+bNat68uekslBNOTk6aM2eOrFarEhMTFRYWpqNHj5rOAq5JfHy8YmNj9eyzz5pOAQCgTOXl5VXIQQY2m00ff/yxQkJC1Lp1a61atUojRozQ9u3blZKSovnz56tr166yt7c3nVpl9OzZ03QCUCbs7OwUGhqqN954Q8nJyUpISNCjjz6qtWvXqm3bturSpYsiIyOVn59vOrXMsX8QANw4i8WiZcuWKSsrS88//7zpHOAy2dnZWrZsmSIiIlStWjXTOQBw0xhkAAAAAABAOTKolbcGtfK+4dsXFxeXYk3ldDPrFzfvZn/GUfXw8wIAAACgKsrPz9eQIUP07rvvatWqVZoyZYrs7Mzt4mGxWG7oOtx6wcHB+umnn2RnZ6c777yTM1KiQpg7d66CgoLUrVs30ykAAJSp3Nxcubi4mM64Znl5eZo3b56aNWumxx57TD4+Pvr222+VnJysWbNmKTAw0HTiXyrP2zEWi+WmGtgv4OpMf48ri5v9WS1tHTp00MyZM5WUlKSNGzeqSZMmGj16tJo0aaJXX31Vubm5phOvGfsH3XrsawDcWhX9NdagQQPNnz9fb7/9tmJjY03nAJdYunSpioqKNGbMGNMpAFAqGGQAAAAAAEA5svpA2k3dfvoHq0qpBLg1bvZnHAAAAACAquDpp59WTEyMYmJiNGjQINM5KOcaNmyo2NhYNW3aVOHh4crIyDCdBPyp5ORkrVmzRs8995zpFAAAylxFGWRQXFys9957Ty1atNC0adM0ZMgQJSUlaeXKlerZs6fRIWuVxc0egBwTE1NKJcBfK68Hy1ssFt1999365JNPlJycrBEjRmjWrFlq3rx5yYF/5R37BwGAeY888oj69OmjMWPG6Pz586ZzAEmSzWbTokWLNHr0aNWqVct0DgCUCn6TBAAAAAAAAAAAAAAAUE58/PHHeuedd/T+++8rJCTEdA4qiJo1a2rNmjWyWCwaNmyYCgsLTScBV/Taa6/Jz89PDzzwgOkUAADKXF5eXrkfZJCcnKy7775b48eP14ABA5SUlKQ33nhDfn5+ptMA4Ip8fHz06quv6vDhwxo8eLCeeuopde3aVYcOHTKdBgCoABYvXqy0tDTNnTvXdAogSVq5cqV+++03PfXUU6ZTAKDUMMgAAAAAAIAK4OihA3p53CMaEXCbRgTcpn+NHq6jhw5cssygVt4a1Mr7uu734m1OHE3Rq397QiM7tbrsfo4eOqCXxz5c8tgvj334mh/7zy6P//5bPf/QAD3YvrGevLuTPnjlJeWdy7nibdOPp2nOhEc1IuA2PR7SXguefUpns36/4XX0x/se1Mpb//vipGteX6lJB/Xy2Ic1vENzPRzYQjOfeEjHkn657Hle7/q4nu/vscOHNGVYfz10R1O9OOJ+nTiaotSkg5oytJ+Gd2iuaSMHK/34b9f8nC6576Rf9K/Rw/VwYAsN79BcL497RMcOX/7m/rX8TFy2voJaau5Tj/9p27Wsg6vJPZutD155SeN7BOvB9o31ROgdWjTlHzq0++frfqxreW38letZp6X9OizN7+Oteh1e631e7TVbGj83AAAAAFCepKamaty4cZoyZYoGDx58yx7HYrHIYrFc0+UXv754ncVi0ejRo696nSTt3btX/fr1k5ubm9zc3NSnTx/t3bv3io95+PBhPfDAA6pdu/af9v3Vc9m/f7+Cg4Pl4uKisLAwJSUlKTExUZ07d5arq6u6d++uo0ePXnb762lMTU3VfffdJzc3N9WvX18PP/ywMjIybnjdlrY6dero888/V1xcnBYtWnRLHwu4ESdOnNDy5cv1zDPPyN7e3nQOAABlqqioSBcuXCjXgww2btyowMBApaen6z//+Y/efvttNWjQwHRWicq0HfNnruexr8e19O7du1d9+/Yteey+ffte82P/2eVfffWVQkJCVL16dTVu3FhPP/20zp49e8XbXsv21vWsoz/e939/j6/mWtbFtUhMTFTfvn3l6uoqd3d39e7dW/v27btsfV3ver2WdXAtrud+rvX7Y1K9evW0cOFCJSQk6MKFCwoICFBUVJTprOvG/kHm9w+65nV1C/fzuZ71fCv36/irdXAt31tJSjmwTzMff1DD72imhwNbaNaYEdpp/fGSZa71vq51f6W/wv487M/z33x9fTV16lTNnTtXycnJpnMAzZs3T0OGDFHTpk1NpwBAqWGQAQAAAAAA5dyJoyma8diDCureU+/EbNHi77fprgGDNGfCY8o4cbxkudUH0q77vi/eZun0Kbrv8fFatnmnXlj68SWPPWvMCHXp3V/vxGzR/373kzr37Kt/jR6uE0dTrvrYf3b5nAmPqvvAoVq+bb/mrIpWzpksLfvXi1e87f++OEm9Hxql96w79eq/N+jC+TwtnzvzkmWvdx2tPpBW8jFh1hvXtK7+uC4Wb9yqdzZu1d0PPKh5/xx/2XO9nvVxve0r33pDT81+U+/F7lTjVv6a/+xT+mzh63rqlflatjlBPs1u04dzZlzTc/rv+37j6SfVfeAwvbNxq96J2aLOPe7Vv0YP16nfUq+4Hv7qZ+K/19f/fveTuvTqp3lPP3nD6+BqFk2JUA03d72yMkofbf9FLy79WCeO/qopQ/td92Nd7bVRmuu0tF+Hpfl9vJWvw2u5z796zZbWzw0AAAAAlCezZs2Sl5eXpk+ffksfp7i4+Jovv3hZcXFxyceyZcuuel1SUpJ69uyp8PBwJScnKyUlRQ8//LDuu+8+HTt27LL7Hz9+vJ555hmlpaVp/fr/x96dxzdR530A/7SlR5rm6p30gnK3IEcBkZZTBBVFQFmUBznEVVlBUFaUXRVREI8VF/dRAUXAYxUB8WBdFAWUghcFQbnP0rtpm6tJ2rRNnz98MiZN2qb0mLR83q9XXs38kpn5zi9J25n85jNfNHlbnn76aWzcuBEFBQXo168fZsyYgWXLlmHTpk3Iy8tD7969sXix64D1ptZ47733Yt68eSgoKMChQ4dgsVjw17/+tdE+bKi9pQ0cOBCPPPIIVqxYAYvF0ibrJPLWyy+/DIVCgdmzZ4tdChERUZuzWq2ora2FRCIRuxSPdu3ahZtuugkTJkzAoUOHMGjQILFLctOR9mM8aeq6m6Kxes+dO4ebbroJd9xxBy5cuCAEHtx44404d+5co+uur/22227DrFmzUFZWhh9++AFlZWVYsGCBx3m92d9qah95eo0b421fNOb8+fPCci5evIiLFy9izpw5uPPOO11qrHvfU99cSR94s51NWU7d18dms7m9Pr6iT58+OHDgAKZOnYrJkyfjk08+Ebskr3F8kG+MD/Kmr1p7nE9T+rk1+6+hMTPevLb5ly7g5Yfvx6R7H8TGH37D81t2osJqwbP3Tm/ysrx9jzaG43k4nseThx9+GN26dcPDDz8sdil0lfvmm29w5MgRLFq0SOxSiIhalF9tW31TSkRERERERHSVOXnyJFJSUrD6s2+Q1KO31/Pd3kvj8sXTmkfnI6lnCibd+xeX5+3Z/iEunTqOe/7+bL3zeru+Z97ZhtQhw9weW/PofHTr2x8TZrpeneDzjetw4eRvWPjiH1d2q2/d3tRUbjTgwRuuw+YfT7jN+9hrGzHk+vFCW/7F81g26w68+d0Rlzpbs48AYM2SBejWp59bX2T+51O8snie2zK97Y+m1v7Mu9uROvg6AEBZcRH+PGKAS1tpYQEevX083j5wrEnbd3svDR5ZvRbpN090af984zpcOn0SC57/p1CvN++J+vpr744t+N+lD19xHzTkfwZ2x7q9PyNMoRTainMvY97YocL6mtzf9Xw2vOFtnza2rqZ+DlvydXQsszU+h94s0/FcT5+llnrfAEDu+bNYOGEkjh07hr59+3o9HxERERERUUsym82IjY3FqlWrMH/+/FZfn5+fn8eTIjy11/fchh6bMWMGrrnmGixZssSl/e2338bRo0exZs0al2Xs3bsXo0aNuoIt+X3+ffv2YeTIkQCA/Px8xMXFubTl5uYiLS0NRUVFV1zjJ598gttuu01oO336NMaMGYO8PNer5jWlb1uDVqtFfHw8NmzYgBkzZrT6+oi8UVZWhs6dO+Opp57y2ROeiIiIWpNWq0V0dHSz/u9tLZcvX8Y111yDKVOmYMOGDR6vAO8rOtp+jHMNTV13U/ctGqp3xowZGDx4MBYuXOjSvnr1ahw5cgTvvvtuo+v2piadTodu3bqhtLTUbV5v9rdau48c6/C2Lxpy9913Y9CgQW7L+fDDD3HXXXd5/X5tzvukIc3dH7548SIyMjLc9od9zbx58/Dee+/hyJEj6NatW6utp1///ug+dCSmP/x4k+bj+CDXeX1lfJBj3ob6qi3G+TSln1ur/5oyZsbTa/vK4r9g4IgxGHnbHS51LbhpeIOvjadlNeU92hiO5/ldexjPs2TKOEybNBErV670ep4rtWfPHlx//fXYtWsXxo8f3/gMRK3g5ptvhtVqxd69e8UuhYioJZ31F7sCIiIiIiIiImrYsYP73b7EAICBo67H0YPftcg6ul0zoN51Dxl7o1v7tTfchGMH97fIugEgTK5AuUHv8bGUwUNdpqPiEqDTFrvV2dp9dOzAdx77ol/6iOYtt4m1J6f8cZK1KjLKrS08OgbGslK3+bxxzbDhbm3X3nATjh741qVeb94T9fXXgOGj3dpa6vXr2T8Nq+bNwpH9e1FTUw0AiI5PdPnSrKnrqu+z4S1v+rSxdTX1c9iSr6NDa3wOvVlmQ9ric09ERERERNSWvv/+e5SXl2PKlClil9Iivv76a0ybNs2tfcKECdi9e7db+5AhQ5q1voEDBwr3Y2Nj3do0Gg20Wm2zahwxwvU4UOfOnVFQ4HtXEYuKisKIESPw9ddfi10KkeDVV19FYGAg7r//frFLISIiEoXFYgEAhIaGilyJu+eeew6RkZFYu3atT4cYtIW23o9pzrqvRH31fv3115g0aZJb++TJk1t0v0KlUqGsrMzjY97sb7VFH7VUX+zevdvjcm644YZm19cSfdDc/eHExESf3B+u69VXX0ViYiKefdb7k2bFxPFBvjE+yKGhvvKVcT7OWqP/mjJmxtNr+9sPB9D3OtcxLJouXRsNmPC0rJZ+j3I8D8fz1DVmzBhMnDgRjz76KOx2u9jl0FXo1KlT2LVrFxYvXix2KURELa6T2AUQERERERERUcNMeh0eGON5QEFQSEiLrCM4ROKx3agvgzIy2q1dFRUDk87zAIPGGMtK8d7q53Bk/17oS7Sw19Q0+PwwucJlOjAoyO1KBG3RR/X1hUypatZym1q7RBom3Pfz9/fYdqVX9vO0Laoo1y9MvX1P1Pc8T20t9fr9dc16fPTaarz5zN9gLCtFl5Q+GHrDzbhx+iwEdAq8onXV99nwljd92ti6mvo5bMnX0aE1PofeLLMhbfG5JyIiIiIiaktnzpxBZGQkNBqN2KW0iNLSUnTu3NnjYxKJ+z5wc0/okslkwn3//z9mUret7n5nU2tUqVz3uYODg6/4OExr69evHzIzM8UugwgAYDab8dprr2HBggUun0siIqKridVqBeCbQQZffPEF5s+fj6CgILFLEV1b78c0Z91Xor56S0pKhEA4Z2q1GiUlJVe0Lq1Wi6VLl2LXrl0oLCxETSPjArzZ32qLPmqpvqhvOREREc2qr6X6oLn7wwEBAT67P+wsMDAQDzzwAJYvXy52KV7h+CDfGB/kUF9f+dI4H2et0X/1vl+8fG2N+jLIVeEN1t2UZbXke5TjeX7H8TyuXnzxRfTp0wfvvfceZs6cKXY5dJV56aWX0KNHD9x8881il0JE1OIYZEBERERERETk42SqcKz54lu3LwnaglwZDp22CNFxCS7tOm0RZHW+aPLz80OVzYZApwEunlLU1yxZgLguXbHy358iIlaNgIDfD0/c3uvKB+m3RR/JleHQlxQjShPv0q4v8Zw47W1/iPn61qUv1UIZEeXSptMWQR7+x2AKb98T9fVXa/ZBqEyO2Y8/jdmPPw2jrgy/fp+JnZvfxIlDP+LRV99s0XV5y5s+bUxTPoferrOpy/RGW/etL312iIiIiIiIWoLZbIZUKm2z9fn5+aGyshLBwcFCW31XxrwSkZGROHHihNvJDr6ktWps7b71RlhYGMrLy9t0nUT1eeONN2C1WjF//nyxSyEiIhKNwWAAAMjlcpErcVVbW4vi4uJ2E6jWkfdjxF53QUGB24ntBQUFiIyMdGnz9jW4++670bNnT2RmZiI+Ph6dOnUS5m9Ona3dR03pi8aWU1hYiKSkJJf2wsJCj8/3tl9bqg/awz57S4mLi4NOp4PNZvP5wBaOD2qcL4wTaKsavO3npmip2r19bWVKFYy6MoRHxzR7WS09zoXjeVqPL3xOr1TPnj0xe/ZsPPnkk5g2bZrL32Wi1lRSUoJ///vf+Oc//ykENRMRdST8zUZERERERETk4/pnjMLxHw+6tZ889CMenTK+Vdd9zbDh+PGrL9zaf9z9X1wzbLhLmzIyGiUFeS5tJ37+wW3e00cOYdqCRxEdlyB8+WSrqGhWnU3poysdGNEvYyR++nqXW/svmfs8Pt/b/hDz9a3rl/373Np+3P1f9EsfKUx7+56or7+OHfzOra2l+uD2XhqUFhYAAOSqcKTfPBF/X/8ujh74tsXX5S1v+rQxTfkcervOpi7TG63Vt/V9Zn3ps0NERERERNQSIiIiUFJSArvd3ibri42NxeXLl13avvvOfb8daPh4Sn2PjR8/Hvv27XNr379/P9LS0rwvtBW1Vo1N6dvW0tSTbIhaS2VlJV555RXMmzeP70kiIrqqOYIMlEqlyJW48vPzQ8+ePfHTTz+JXYpXOvJ+jJjrHjt2LD7++GO39h07dmDs2LEubd6+BgcPHsTy5cvRuXNnIcTAarU2q86m9NGVjgtoSl80ZNy4cfjkk0/c2r/88kuPz/e2X1vqfdIe9tlbyo8//ojk5GSfDzEAOD7IG20xPqgla2gOb/u5KVqqdm9f29Qhw9zGCV06dQILJ/wxfsXbZbX0OBeO5+F4nvosW7YMRUVF2Lhxo9il0FXkrbfeQkhICGbMmCF2KURErYJBBkREREREREReMplM0Ol00Ol0KC4uxoULF4TbL7/8gqysLGRlZeHgwYP4+uuv8f3337fIeqctWIwt//oHvv9yJ0x6HazmchzatxurF8/D1L883CLrqM+f5i/GZ5vW4eut/4ahtATGslJ8s+0DfLZpHabNX+zy3H7pI/D+6lUoLSxAhcWMXzL34csP33FbZs8Bg/DuP55FcV4OqquqUHj5EtY9/Viz6mxKH4XHxOL0L1moqa7C0QPf4v7Rg7xbx/zF+GzjWuzZ/iGMZaUw6XXI/M8n+GrLex6f721/iPn61vXVlnexf+cOmPQ64bXe+c5bmLbgj9fa2/dE3f4qN+hx8L+fYfu6V93W25J98PoTi5Fz7jSqbDboS7X4dMMbLl/ktXV/e9OnjWnK59DbdTZ1md5orb6t7zPrS58dIiIiIiKilpCWlgaz2YxffvmlTdZ3ww034G9/+xtyc3NRXl6OL7/8EmvXrvX43Li4OHz//feoqqrCV199hcTExEYfe/rpp7Fs2TJs27YNpaWlMJlM2LlzJ+666y48+eSTbbKNjWmtGpvSt63lwIEDGDTIu+NeRK1p48aNKC0txcMP83gNERFd3fR6Pfz9/REWFiZ2KW7+/Oc/Y8OGDThz5ozYpc/vQx0AACAASURBVDSqI+/HiLnuZcuWYfXq1XjrrbdQXFwMrVaLDRs2YPXq1Vi2bJnLc719DYYNG4YlS5bg0qVLsNlsOHfuHB544IFm1dmUPmro9W9IU/qisVpffvllvP3229BqtSgtLcUHH3yA9evXe3y+t/3aUu+T9rDP3hIuXryItWvX4r777hO7FK9wfFDj2mJ8UEvW0Bze9nNTtFTt3r62d8xbiK2vv4JjB/ej0mpB9umTeO1vD+PmGfc0eVktPc6F43k4nqc+8fHxmDNnDlatWgWbzSZ2OXQVsNvtWL9+PWbPng2pVCp2OURErcKvtra2VuwiiIiIiIiIqOOz2Wwwm80AAIvFgsrKSgC/hwNUV1cD+H3wRm1tLex2u3BFiqqqKpSXlwvLMRqNqKmpcVum8/wAUFFR4ZLmr9PphPvO63deFwCYzWbhAHR1dTVMJlOzt331Z98gqUdvr557ey+NcH/7qXzhfkH2Rbz38nM49v1+1FRXI6FbD0y5bwGuveGmRuf1dn31zZd95iTefWkFThz6EQCQMuha3P3oE27bZNSV4e2VT+Lowe9QabWi79B0/PmpVcKXFI5lG0pLsPnFZ/BL5j6YjQZoOnfF1L8swssPP+DyvPq2pzl9BAAHd32Od/+xEmVFBYhUx2H2409j8JhxXvVXzrnTeOfFZ3H85x/g7++P1MHXYe6TKzDv+mvd+s7b/vC2dk/b7W2bN27vpcEb3/yIDc8+geM/fw+73Y7UwUMx67FliO/a3eW53r4nnPvLz88PPQcMwj1Ll2PhLaOuqA8a8+v3mfji/bdx8tCPsJrLER6jxrVjb8S0BX+FRPrHoLCm9nfdWr3lbZ+25OewpV/H1vgcNnWZDX1mW+J9AwC5589i4YSROHbsGPr27dukeYmIiIiIiFpKbW0tunfvjgkTJmDNmjWtvr6SkhIsXLgQu3fvhsViwZgxY/Daa68JJ3c4DyfZunUrHnvsMeTl5SExMREvv/wyJk6c2OhjZ8+exdKlS/H111+juroaKSkpWLp0KSZPniwsu+6Vu5o6jMV5fse83rZdSY3O89bX3pS+bQ2HDh3C4MGDkZmZifT09FZdF1FDampq0KtXL4wdOxZvvPGG2OUQERGJ6s0338SSJUtcvrf2FZWVlRg1ahTKysqwZ88exMXFiV1SvTryfsyVrNvb9XpT76+//oolS5Zg//79AIDhw4fjxRdfdPvuzNvXoLi4GH/961/x5ZdfQq/Xo0ePHnjyyScxbdo0l+c1dX/Lmz4CGn6NG+NtXzTm+PHjePTRR/Hdd9/B398fI0eOxL/+9S906dLF7TVoynvb2z5oTGvsD/uSoqIiXH/99QgODsb+/fsRGhraauvq178/ug8diekPP+71PBwf5Lvjg7zpq7YY5+NtP7f2uA5PfeDtawsAp3/JwjsvPoPzx49BER6BG++ajcn3zb+iZXn7Hm0Mx/O0n/E8S6aMw7RJE7Fy5comzddc2dnZ6N69O9544w3MnTu3TddNV5+dO3di4sSJOHnyJHr27Cl2OUREreEsgwyIiIiIiIg6AMeJ+c4n/TcWCmC1WlFRUQEAKC8vR1VVFQDAYDDAbrejtrYWer0egOsJ/ZWVlbBYLABcT/p3DhhwDL6oqamB0Whs1rb5+/tDoVAI01KpFEFBQQCATp06QSaTCY/JZDJ06tQJABAYGOhyNQuFQgF/f38AQHBwsMsXlEqlUviSNSQkBBKJBMDvX7wqlUrheaGhoQgODvZYV1hYGAIDA13qOnPmDIYOHdqkIANqn27vpbmiE919SUfYBl8jRp/ydbwyDDIgIiIiIqKW5jiGptPpYLFYYLFYYDQaYTKZYLFYYDabodfrhccMBgPKy8vx66+/4syZMzhz5ozXV4skquumm25CSUkJfv75Z7FLoavc+++/j9mzZ+P06dNITk4WuxwiIiJRvfTSS3j99ddx8eJFsUvxqLCwEGPGjIHRaMTHH3+MIUOGiF0SUYfl5+fnsyf/dxRHjhzBlClTEBgYiD179iA+Pr5V13clQQZEJB6O52k/xAoyAIC5c+fi4MGDOHHihFsoFFFLmjBhAmw2G3bv3i12KUREreVsJ7ErICIiIiIias8cYQDOoQB121r7MUfwwJVynLjvfAJ/Y/eDg4OvaL6mrs85mKA9ksvlYpdARERERERERESNsFqtLmECFosF5eXlMBgMQtCAXq+H2WyG2Wyu9zGLxQKTyeQS+OmJI2RTpVIhNDQUoaGhkMvlkMlk6NOnD0wmE+666y7s3btXCPQk8taaNWuwe/du7Nu3T+xS6CpXU1ODFStW4K677mKIAREREX7/Xt85KN/XxMbG4uDBg7jzzjuRnp6Ov/71r3jyySdb9QrmREQtzWq1YtWqVXj++eeRkZGBrVu3IiIiQuyyiIioHXrkkUewceNGfPXVVxg/frzY5VAHlZ2djS+//BIfffSR2KUQEbWq9ns2CBEREREREQCTyYTq6mphcLBer0dtbS10Oh1qa2uh1+tht9thMBhQU1MDo9GI6upqmEwmVFVVoby8HDabDWazWXgeAGF5jtAAx7zOjzWV46R8x0Blf39/YaCC4zHHSfz+/v7QaDT1PuaYTy6XIyAgQHgsICBAOHne8RgAqFQqAHB5nIhaxu29NMLP9pqc3RG2wdeI0ad8HYmIiIiI6GphtVqh0+mg0+mE43d173v7WGlpKWw2W4PrCwkJgUqlgkqlEgI6HfeVSiVSU1Nd2j09z3E/PDwcISEhDa7vzJkzGDJkCBYuXIg33nijJbuOOrjMzEw8+uijWLVqFTIyMsQuh65yW7ZswdmzZ/HJJ5+IXQoREZFPMBgMUCqVYpfRIKVSif/+979Yt24dlixZgnfeeQfLli3DnDlzEBgYKHZ5RB2C44rOfn5+qK2tFbmajqO6ulr4naXX6/Hyyy/jwQcfhL+/v9ilEZGP4Xge8lZqaipGjx6NNWvWMMiAWs3rr7+OmJgY3HrrrWKXQkTUqhhkQERERERELcZxgr/BYIDdbvcqVKBumEBlZSUsFoswkNhqtaKiogIWiwWVlZUwm82w2WwoLy9HVVWV17WpVCr4+flBqVQKQQCOk/o7deoEmUwGf39/4apAYWFhCAwMRFBQEKRSqTCvt485wgqcHyNqa44vQerDL0b+0Jy+8vV+9GbbfH0bAN96P/tqn7aH15GIiIiIiK4ujmN7zQkacL5fUlLS6DHBhsIEVCoVkpOTGwwacJ6OjIxEUFBQG/XWH3r06IHNmzdjypQpCAsLw4svviic6HC1aWy7edLHH/bu3YvbbrsNdrsdr7zyCrZs2QK1Wg2VSgWNRiPcd56Ojo5Gp04cOkQtz263Y9WqVZg+fTp69uwpdjlEREQ+Qa/XCxcs8GV+fn544IEHMGXKFDz77LNYsGABVqxYgYceegj33XcfL5zghbbej+F+k/daqq+as5y2eD2upveEyWTChg0b8M9//hP5+fm499578dRTTyE2Nlbs0tqUL42n8HXsq46N43mopS1cuBCTJk3CuXPn0K1bN7HLoQ6msrISmzZtwvz58xkcR0QdHr+NJCIiIiK6CjjCAYxGI2w2G4xGozCIWK/XC8EAjiABvV4vzGMymWCz2WAwGOoNFTCZTKiurva6Hk+hAo4wgcDAQISFhUEul0OtVguBACEhIZBIJMIg4tDQUAQHB0MqlSIoKEgIEJDL5QgICIBCoYC/vz+USuVVO8iXiF+CeK8j91VH2TZf2g5fqoWIiIiIiKglNTdwwHlaq9U2eMzQcbyvsTABbx+LiopqtwO9ampqUFRUhLy8PBQUFCAnJweFhYUYMWIEVq9ejdOnT+Ojjz5CSEiI2KW2uY50ckVr2r59O2bMmIEbbrgB48aNg06ng1arhVarRU5ODg4fPoySkhJotVrY7XZhPn9/f0RFRQm32NhYREVFITIyEjExMYiOjhYei4mJaRcn3pFv+PDDD3Hy5Els27ZN7FKIiIh8hsFggEqlErsMr0VHR+Nf//oXHn30UaxZswbPPvssli9fjj/96U+YO3cuhg0bJnaJPqut92O43+S9luorX+9zX6+vJfz444946623sGXLFtTW1uKee+7BokWL0KVLF7FLEwXHMHiPfdWx8fWlljZhwgTEx8dj06ZNWLFihdjlUAezZcsW6HQ6zJ07V+xSiIhaHYMMiIiIiIh8gMFgEAIBHCEBOp0ONpsNZrMZ5eXlqKyshMFgEAYCG41GVFZWuszjCCBwzGOz2aDX6xtdvyNEwBEOoFQqhXAAqVSK4OBgJCcnNxoq4AgTkMlk6NSpE0MFiIiIiIiIiIiIWkl1dTVMJhMMBoNwPNB52mw2w2g0wmg0CtMGgwEmk0kINXVMm81mWCyWetflOFaoVCqFY4ZSqRQqlQpSqRTR0dFITU11eTwsLAwKhQKhoaEIDQ2FUqkU5gsLC2vDnhKX0WhEbm4u8vPzkZ+fj9zcXJewgtzcXBQVFbmEPkRERECtViMhIQHjxo3Dt99+i1GjRmHz5s28sjm5sFqtePLJJ/HKK69g0aJFeOmll+Dv79/oPAUFBcjPz4dOp3O5r9PpcOLECWG6qKjIJfggODgY4eHhQqiIRqOBWq32OB0XFwelUtnaXUA+yG63Y9WqVZg+fTp/ZxERETnR6/Xo3Lmz2GU0WWJiIl5++WU89dRTeO+99/DWW2/h7bffRrdu3TB58mRMnjwZ1157baP/hxIRNUdtbS1++ukn7NixAzt27MCZM2fQp08frFixAjNnzuT+JxERtYqAgADMmDEDmzZtwvLlyxEQECB2SdSBvPHGG5gyZQo0Go3YpRARtToGGRAREREReckREKDX61FeXg6LxYLy8nLo9XphILDJZILRaERFRYUwGNhms0Gn06GyshIWiwUmkwk2mw0GgwFWqxUVFRWNrjssLAzBwcFQKBRCiIBcLkdQUBDkcjkiIiIQEhLiFkAQFBQElUolBBDIZDIEBQW5LYcH14iIiIiIiIiIiFqf1WoVThZ2BJZ6mm7oMce0Xq9v8Ap7ISEhwsnFjkBSlUqFqKgoJCYm1vt43enw8HCEhIS0YS+1DzabDSUlJcJJ4J5+nj9/3iVo1nESuONk7379+mHy5MlQq9VCW0JCAuRyucu6Tp48iVmzZmHAgAFYsWIFFi1axJOECD/88APmzJmDgoICbNiwAbNnz/ZqPolEguTkZCQnJ3v1fJ1OV2/oQUFBAbKysoT7Op3OZV7n3yvOIQeeAhDi4+MRFBTU1G4gH7RlyxacPHkS27ZtE7sUIiIin6LT6dr1ibYKhQIPPvggHnzwQRw+fBhbtmzBjh078NJLL0GtVuO2227DlClTMGrUKAQGBopdLhF1ANXV1fj222+xY8cOfPLJJ8jLy0NycjImT56MqVOn4tprrxW7RCIiugrMmTMHzz//PHbv3o0bb7xR7HKog/jll1/www8/4Pnnnxe7FCKiNsEgAyIiIiLqsOq78pjFYhHCCByP63Q6WCwWIYzAMa/FYhGuSuZ8Ray6pFKpEBTgCAlwXFksKCgIycnJQpiAcwCBY0CwQqFAcHCwWwBBUFAQpFJpG/YaEREREREREREROXgbPODtdH0coaP1hQk09Fjd6YiICAQHB7dhL3U8jivWX7hwod6QguzsbNTU1AjzqFQql0CC1NRU3H333dBoNEhOToZarUZsbOwVBRD07t0bBw8exAsvvIClS5fio48+wgsvvICRI0e25GZTO1FQUIBnnnkGb775JsaOHYuvvvoKCQkJrbY+x+8Zbzj/zvMUepCfn48LFy5g586dyM3Nhc1mc5nf8XussdADtVqN6OhodOrEYU++xm6347nnnsNdd92Fnj17il0OERGRTykuLkZ0dLTYZbSIgQMHYuDAgXjhhRfw22+/4ZNPPsGOHTuwdu1aKJVKjBw5EqNHj8bo0aPRp08fBrERkVdqa2tx/Phx7N27F3v37sW+ffug0+nQr18//PnPf8akSZPQr18/scskIqKrTPfu3TFkyBB89NFHDDKgFrN27VqkpKTwex4iumrwGz0iIiIi8hlNudpYY1cqKy4udhlEWpenAcCO+2q1GikpKV4PDo6MjORVgoiIiIiIiIiIiERmtVqv6Fiip8dKS0vdTrB11ljwQHJystfHF6Oioni1yjZSWVmJ0tJSl0CCumEFOTk5MJlMwjwhISHCidMajQZpaWku08nJyUhISGj117BTp074+9//jokTJ2Lx4sUYNWoUbrrpJjz33HPo379/q66bfIPBYMCLL76INWvWIDw8HBs2bMDMmTPh5+cndmkCiUQCiUQCjUaD1NTURp/v+J3rHHpQNwDhxIkTyM/Ph1ardQucdv58NhR64Aga8aW+6qi2bNmCkydPYuvWrWKXQkRE5FPsdjtKS0s7TJCBsz59+qBPnz544okncOnSJXz++efYs2cPnnnmGSxatAgREREYOXIkRo0ahdGjRyM1NZX/lxERgN+DC06cOIF9+/Zh3759+Pbbb6HVaqFSqTB8+HAsW7YMt956K5KTk8UulYiIrnJ33HEHVq5cibVr13K8ODVbRUUFtmzZgieeeELsUoiI2gyDDIiIiIioWWw2G4xGI4xGI3Q6HQwGA4xGo8efOp1OeK7RaITZbIbBYIDJZHIbfOYsNDQUUqkUMpkMCoUCUqkUoaGhUCgUiI6OhlQqhVQqhVKpFO6HhYW5TMtkMsjlckilUkgkkjbsISIiIiIiIiIiIvKktrYWer0eJpMJ5eXlMJlMMJlM0Ov1KC8vF9ocxxid23Q6nTBdXl4Og8FQ73r8/f2hUCggk8lcjiWGhYVBKpUKJ9w6jitKpVKoVKoGjzWS79HpdC6BBJ5CCoqKimC324V5HCc3OwIJ0tPTXUIKHD99Sd++ffHVV1/hm2++wdKlS5GWlobrr78eS5cuxejRo8Uuj1pBbm4uXnvtNbz66qsAgBkzZmD58uWIjY0VubLmcw4+SEtLa/T5Vqu1wdCDCxcuIDMzEzqdzu3zHhwcjPDwcI8hB3Wn4+LioFQqW3PTOyS73Y7nnnsOd955J3r16iV2OURERD6lrKwMNTU1iIqKEruUVtW5c2csWLAACxYsgN1ux7Fjx7Bv3z7s3bsXTz31FPR6PSIjIzF48GAMGjRIuPnafhcRtY7CwkIcOnQIP//8s/BTq9VCoVBg+PDhePzxxzFq1Cj0798f/v7+YpdLREQkuOOOO7BkyRLs3bsX48ePF7scauc+/fRTlJeXY/r06WKXQkTUZhhkQERERHQVs1gs9YYNONqc7+v1euj1epc2q9XqcdmOoAG5XA65XA6FQgGVSoX4+HihXSqVCo87wgqcBxA7BgwTERERERERERGRb6iurq43SMBoNAqhBOXl5cJzHG2O44qONrPZXO96wsLChJvjeKJMJkNYWBiioqKgUqkQFhYmtDmOMzqOKzoHF4SGhrZhD1FLq6ioQH5+vltIgXNYQU5ODqqqqoR5nK/SrtFoMHbsWLdwgsTERHTq1L6GTJSXl+OXX35BVlYWsrKyYDabUVtbix9//BFjxoxBv3798NBDD2H69OkICQkRu1xqpoMHD2LNmjX4+OOPERUVhb59+yInJwfr16/H+vXr0bVrV6SlpSEtLQ2DBg3CwIEDO/zJ9xKJBMnJyV5djbOyshKlpaVCyEHd0IOCggJkZWUJISh6vd5l/pCQEI8hB54CEOLj43klNgBbt27FyZMnsXXrVrFLISIi8jnFxcUA0OGDDJz5+/ujf//+6N+/PxYtWoSamhocPXoU+/fvx88//4yPPvoIK1asQG1tLTQajUuwwaBBg66qviLqiEpLS3Ho0CGXW25uLvz8/NCtWzcMGjQIS5cuxfDhwzFgwAAEBASIXTIREVG9OnfujAEDBuDzzz9nkAE12+bNmzF+/Hio1WqxSyEiajPt61t5IiIiIhJYrVbodDpUVFQI9z3d6nu8rKwMlZWVHpftGJwlkUhcBmqp1WqkpKQI03Ufd9wiIiIQHBzcxj1CRERERERERERE9XE+RujpmKE3bRUVFdDr9aitrfW4jpCQEI/HDCUSCZRKpVub8/OcpyMjI3lC6FXCcQX1+kIKHD8dgoKCEBERIZxInJycjPT0dGg0GiQnJ0OtVgthuu1ddXU1Tp8+LYQWHDhwAEeOHIHdbodarUZiYiIkEgnkcjkMBgO6d++OAQMGYP78+XjkkUcwceJETJ06FTfffDNPBmhHcnNzsX37dmzevBlHjhzBwIED8dprr2HmzJlCOIVer8dvv/0mvDc2b96Mxx57DACgVquFcIO0tDRcd911iIyMFHOTRBMcHAyNRuP11X2d/955Cj3Iz8/HhQsXsHPnTuTm5sJms7nM7/gb1ljogVqtRkxMTIf7XNbU1GD58uW488470atXL7HLISIi8jlarRbA1RVkUFdAQAAGDhyIgQMHCm0mkwlHjx4V/rf98MMPsWzZMtTW1kKlUiElJQWpqanCz759+yImJkbErSCiugwGA86dO4fjx4/jxIkTws+LFy+itrZW2E+dO3fuVb+fSkRE7duNN96IDz74QOwyqJ0rKirC7t278e9//1vsUoiI2hSDDIiIiIhE4rgiWd2bXq93m3ZcqczxU6fTeVymn58flEollEol5HK5cKUyhUKBhIQE9OnTB0qlEgqFwuUxx9XKFAoFVCpVG/cEERERERERERER1WW1Wj0GCXgTNuDpOfWpL9S0sbCBum3R0dHt7ur21HqsVqtLEIGnsILLly+jurpamMcRpus40Tc1NdVlWqPRoHPnzvD39xdxy1pPfn4+Dhw4gMzMTGRlZeHw4cOwWq2QyWS45pprMHToUFx//fXIy8vD7t278eOPPyIlJQWLFi1yOXF41apVeP/99/Hee+/h3XffRUJCAqZPn4477rgDaWlp8PPzE3lLqa6CggJ89tlneP/995GZmYmIiAhMmzYNr7/+OoYOHer2fKVSiYyMDGRkZAhtOp0Ox48fF0Iv1q9fL4SA1A03GDZsGCIiItps+9oLiUQCiUQCjUaD1NTURp/v+FvrHHpQNwDhxIkTyM/Ph1ardfl9B/zxO69uyIGnabVa7fOf3XfffRdnzpzBjh07xC6FiIjIJ2m1Wvj5+fH/sDpkMpnb/7YlJSU4fPgwfvvtN5w4cQJHjx7FBx98AJPJBADC/2uOW/fu3dG1a1fExcX5/P9MRO1ZXl4ezp8/j7Nnz+LEiRPCZzQ3NxcAEBYWht69e6Nv374YOXIk+vbti4EDB17VAS5ERNSx3HTTTXjuuedw5swZ9OjRQ+xyqJ165513IJVKccstt4hdChFRm+JIEiIiIqJmcIQK1A0fqC+UwPlWd8ASAEilUpdBwI6rjyUnJ7sED6hUKregArlcDplMJkIvEBEREREREREREeA5fKApYQOOttLSUrcrPTtrKFygKYEEsbGxHfakcGodNpsNJSUlLoEEdcMKcnNzYTQahXmCg4MRHh4OjUaD5ORkpKWluYQTqNVqJCUlISwsTMQta1v5+fnCFUezsrLw/fffo7S0FIGBgejevTvS0tIwc+ZMDBo0CLm5udi2bRvee+89GAwGpKSkYN68efif//kfdO/e3W3ZsbGxWLx4MRYvXowTJ07g/fffx7///W+88MILiI2Nxc0334wJEybghhtu4HcKIrHb7Th06BA+//xzfPrpp/jtt98gkUgwceJEfPbZZxg/fjwCAwObtEyVSiWcALZw4UIA7u+zhsIN0tPTER4e3uLb2pE5Bx+kpaU1+nzngBdPoQcXLlxAZmYmdDodioqKYLfbhXkdv0c9hRzUDUCIj4+HQqFozU13U1VVhWeffRb33HMPevbs2abrJiIiai+Ki4sRHh7OAEAvREZGYty4cRg3bpxLe3Z2tsvJ05mZmXjzzTdhNpsB/H6spFu3bujatavw03E/MTGRfU/UiJqaGly+fBnnz5/HuXPn3H5arVYAQGhoKHr37o3U1FRcf/31QqhIUlISw0SIiKhDGzp0KORyOfbs2cMgA7pi7777Lu666y5IJBKxSyEialM8KkNEREQEwGg0oqysDCUlJSgrK0NpaSnKyspc7tdt0+l0LoOIHORyOVQqFZRKpcuAotTUVGHa+THnW1MHphEREREREREREVHzOMIDmho2ULfN09WWnTUUNpCcnOx1AIFSqeSgYGoVOp3OLZygbkhB3ZNrHVcKd5xIm5aWhuTkZJe29nAl8dZkNBpx7Ngx4WTyzMxMXLx4EQCQnJyM9PR0PPnkk0hLS8OgQYNQW1uLnTt3YuvWrXjkkUdQUVGBjIwMPPvss5gyZQri4uK8XndKSgpWrlyJlStX4ujRo/jPf/6D//znP9i8eTMCAgKQnp6OESNGYMSIERg6dChCQ0NbqxuuarW1tThx4gS+/fZb7N+/H3v27EFxcTGio6Oh1WrRr18/PPTQQ7jzzjtbdPCiRqOBRqPBrbfeKrTVDTdYt24dCgsLAbiHG2RkZEClUrVYPVc7iUSC5ORkJCcnN/rcyspK4btIT6EHBQUFyMrKEn5v6/V6l/md/3doKPRAo9EgISGh2d9Pvvnmm8jNzcXf/va3Zi2HiIioI9NqtbwqeTMlJSUhKSkJN910k0t7fn6+ywnX58+fx7fffou3334bOp0OABAYGIjOnTsjKSkJ8fHxSEpKQkJCAuLj45GQkICkpCRIpVIxNouozVgsFmRnZyMnJwe5ubm4fPkyLl++jNzcXGRnZ+PSpUtCsKpSqRSCQG699VaXYJCmHJcgIiLqSDp16oTBgwfjhx9+wAMPPCB2OdQOZWVl4ddff8X69evFLoWIqM0xyICIiIg6FIvF4hY+4LjVF1BQVlaGqqoql+UEBAQgIiIC4eHhCA8PR0REBKKiotCrVy+hLTw83GMgQUBAgEhbT0REREREREREdHWwWCww5jMB2gAAIABJREFUGo0wmUwwGo3Q6/Uu0yaTCQaDAXq9HiaTCeXl5cJjBoMB5eXlwq0+UqkUMpkMYWFhUCgUkMvlCAsLg0wmE4JLw8LChJtCoYBCoXBpU6lUkMlkvOofiaqiogJlZWUugQR1wwqys7OFq1gCv58E6zjhVaPRID09HRqNxiWkoCVOfu1oqqqqcObMGRw4cACZmZnIysrCqVOnYLfbhZPEZ86cibS0NKSnpyM8PBwAYLfbsW/fPvzlL3/Bxx9/jPLycowePRovv/wyJk2ahJiYmGbX1q9fP/Tr1w9/+9vfUFJSgl27dmH37t145513sHz5cgQGBmLw4MEYPnw4hg4dioEDByIxMbHZ670amUwmHDlyBFlZWfjuu++QmZmJkpISyGQyZGRk4JFHHsHNN9+MlJQU7N27F+vXr8f999+Phx9+GNOmTcPdd9+NjIyMVqnNm3CDtWvXoqioCIBruEFGRgauu+46nuDVBoKDg4XXyhvOIUvOoQfO9y9cuICdO3ciNzdXODnJwfl3vqcABOfpmJgYl+9CKyoqsGrVKsybNw+dO3duyW4gIiLqULRaLaKjo8Uuo0Ny/N80fPhwt8fKyspcAg6ys7ORm5uLn376CZcvX3Y5LqRSqdxCDuLi4hAdHQ2NRoPo6GhER0dzXBj5nJqaGmi1WhQXFyMvLw/FxcXIz893CysoKysT5pFKpcJ7PTExEcOHD3cJK4iIiBBxi4iIiHzX0KFDsX37drHLoHZq8+bN6NGjB6699lqxSyEianN+tbW1tWIXQURERFQfx5VEnK9w5unKI/VdcQSA21XMPA2+qXurOwiHiIjoSpw8eRIpKSlY/dk3SOrRW+xyiIioHrnnz2LhhJE4duwY+vbtK3Y5REREHZrJZHILGzAYDG4hBHq9HgaDwe35Op0ORqMRNTU1HpcfGhoKmUwGuVwOuVwOpVIJmUwmBBLI5XIoFAphOiwsTHiOI6RAJpNBqVRe1VeQp/bDcWy8oZCCwsJCOA8LUKlULoEEdX927doVSqVSxK1qH2pqanDq1CmXE8APHTqEyspKyOVy9O3bVzj5e/jw4YiNjXVbxvHjx7F161a88847uHjxIlJSUjBz5kzMmjXL4/NbS05ODr799lvs378f+/fvx+nTp2G32xEZGYm0tDQMHDgQAwcOxDXXXIPk5GSGszgpLCzE8ePHceTIERw+fBiHDx/G2bNnYbfbERUVhWHDhmHkyJEYPnw4BgwYUO93T2VlZdi2bRtee+01HDt2DL1798asWbMwZ84cUU54qxtu8NNPP6G4uBgBAQHo2bOnEG6QlpaGAQMGMNygnXEEH9QXeuA8XVxc7PZ/l0qlEr5nLSsrw9mzZ7Fo0SLEx8e7fQerVqv5PxURERGAadOmoaamBtu2bRO7FHKi1+uRk5PjcpV6x3Rubi4KCgpgtVqF5/v7+yMqKkoIN4iJiXEJOlCr1YiMjBQuniORSETcOmrPKioqXC7g5PjfvLCwEIWFhUJYQXFxMYqLi2G324V5Q0JCoFar3YI5EhMTkZiYiISEBKhUKhG3rmPq178/ug8diekPPy52KUREHcqSKeMwbdJErFy5UuxSAACff/45brvtNpSWlvLvKTWJzWZDXFwcHnnkESxdulTscoiI2tpZBhkQERFRmyktLUVJSYnw03ErLi52aSstLUVxcTEMBoPL/H5+foiIiBC+8ImMjERkZCSioqIQFRUltIWHhyM8PFz4Usjf31+kLSYioqsdgwyIiNoHBhkQERE1znHCW0VFhctVfx03T+1120pLS92uAOwQEhICiUTiMZTU2/aIiAgEBwe3cc8QtQ6r1eoWSFA3rODy5cuorq4W5nFcUbuhkIKkpCSG+F6huid2HzhwADqdDoGBgbjmmmuQnp4unNidkpJS74m7er0eH330EdatW4fDhw8jISEBkydPxj333IN+/fq18VZ5ZjQa8csvvwgn5h8+fBinTp1CTU0NgoKC0LVrV/Tu3Rs9e/ZEr1690LNnTyQmJkKtVotdeqsoLy9HdnY2zp49i9OnT+P06dM4ceIETp8+LQRsq9VqIfDBcUtMTLyi9WVlZWH9+vX44IMPUFlZiXHjxmHmzJmYPHmyqCESTQk3GDhwIEJDQ0WrlVpW3eB555CDjRs3IjY2FqGhodDpdG7hOXX/h3MOOqgbehAfHw+FQiHilhIREbWe9PR0DBo0CGvWrBG7FGoio9GI/Px8aLVaFBQUoLCwEFqtVrjyvfOJ5VVVVS7zhoaGIiIiQhjDFhUVJYxpc7Q57juCNx3hnNQxOAJajUYjDAYDysrKhHAC5/uOMZOOdrPZ7LKcwMBAREdHIyYmBmq12iVAw7lNrVbzf2qRMMiAiKh1+FqQQXFxMWJiYvDll19i3LhxYpdD7ciOHTtwxx134NKlS0hISBC7HCKitnaWMflERER0xSoqKlBWVubVFTtycnLcvqzxNHBlyJAhbgOSHYNYoqKiEBgYKNLWEhERERERERERtT/OQQLehA14atdqtS4nSztzHOPzFDbgbQBBZGQkgoKC2rhniMRhs9lQUlLSYEhBXl6eS9BvcHAwwsPDhWPlqampuPXWW11CChITEyGTyUTcso7FYDDg119/xYEDB5CZmenxhO1ly5YhLS0NQ4YMafR3WE1NDXbv3o23334bn332GYKCgjB16lS8+uqrGDZsmM9drVwul2PEiBEYMWKE0GaxWHDq1CmXk/h37tyJ1atXo7KyEsDv71XnKzwmJSUhPj4e0dHRQjB1bGysz7xXKysrhcDtoqIiaLVaFBYWIicnB5cuXcLly5eRk5ODsrIyAL8HbicmJqJnz5649tprMXv2bPTs2RMpKSmIiYlpsbrS0tKwbt06rF69Gtu2bcOGDRswbdo0aDQazJo1C/feey+6dOnSYuvzlkajgUajwa233iq01Q03WLlyJbRaLcMNOhjH/2x1LV++HMHBwcjKykJ4eDiA3z9XpaWlbqEHzvezsrKg0+nc/t4Bf/xvWTfkwNN0QkICvzsmIqJ2Izc3F7fddpvYZdAVcAQL9OrVq9HnOi7i09DJ6idPnnRpq6io8LgslUoFuVzuEm4gk8mEdsdNIpFAoVAgMDBQmA4JCYFcLkdgYCAUCgWCg4P5v7gXLBYLKisrYTAYUFVVBaPRKBwjNZlMqKqqgl6vh9VqhdFohMlkgsFggF6vF6YdoQVGoxE6nc7jekJCQtwCLbp27YohQ4YIbXWDLqKiotq4N4iIiMiT6OhodOnSBT/88AODDKhJ3nnnHYwZM4YhBkR01fKrdY7BJiIioqueVqsVbo60aK1Wi6KiImEQlyNNury83GVeqVSK6OhoxMbGIioqClFRUUIAgfMtMjISERERCAkJEWkriYiI2sbJkyeRkpKCWY89hUh1nNjlEBFRPcqKCrFx1TIcO3YMffv2FbscIiIiAI0HEHjTXlxcjJqaGo/LbyiAwNt2Bo8SubJarS6BBJ7CCrKzs10+lyqVyiWQwPlncnIy1Go1YmNj4e/vL+KWdWxmsxlHjhxxORn75MmTqK2thVqtFk7CzsjIwLBhw5p08selS5ewYcMGbNq0Cbm5ucjIyMA999yDqVOnIiwsrBW3qu3U1NTg8uXLuHz5MrKzs5GdnY2cnByhLTc3FyaTyWWe4OBg4fsimUwGqVQKmUwGhUIBqVQKqVQqXIE0LCzM5W+NVCp1CY7Q6/UuV393TFdUVMBsNsNgMMBkMsFsNsNsNkOv18NkMqGwsBBGo9GlrqCgIMTExCApKUkIZHDckpKS0KVLF0il0tboxkadPXsWGzduxObNm1FYWIhx48bh/vvvxy233IJOnXzrGiZ1ww1++OEHlJSUoFOnTujRo4dLuEFaWhokEonYJdMV0Ol0SE5OxuLFi/HEE09c8XKc/5e90uD8hkIPnO/HxMQgICCguZtORETUZHa7HRKJBBs3bsT06dPFLod8jMViQWlpqbDv4nwSvPO0475Op3OZtlgsMBqN9R4DdObYv1KpVAgMDBT2S0NDQxEcHAwAkMlkwj6GQqGAv78//Pz8oFQqAQABAQHC/pozT8FXzhoLU7BarfWGOjh4CgYwmUxCAKtjf7C2thZ6vR4AUF1dLeyT2mw2mM1mAL8fC7DZbNDr9aiqqnLbb/XE398fCoUCEonEJUxCqVS6TDvCJzyFUURERIi2X0mtq1///pBEa5AxYZLYpRARdSjv/WMF5s68GytXrhS7FMFdd90Fk8mEnTt3il0KtRNGoxHR0dFYu3YtZs+eLXY5RERiOMsgAyIioqtAeXk58vLyUFxcjPz8fBQWFqKwsBAFBQUoLi5GXl6eEF7gfGU1f39/IXygoYCC2NhYREdHM7mZiIiojsLCQnTt1g2W//8ynIiIfJckNBRnz5xBXByDZ4iIqHnqBgs0JYTA0VZUVAS73e5x+c7hAlcaQsCTuIiaxnF16YZCCnJyclwGvTufWFlfSAGvJN32qqurcfr0aZeTrH/++WfYbDYolUoMGjQI6enpSEtLw9ChQ6/oiod2ux1ffPEF1q5di//+97+IiYnBrFmzMGfOHPTo0aMVtsr3VVRUoKSkBMXFxSgqKhKuUqrValFeXg6z2QyTyQS9Xi8EDjg+TwaDweVvYt0TdJxPsnGeDg4OhlQqhVKpRFhYGKRSKcLCwqBUKiGTyRATE+MSwB0bG+vxZBxfY7fbsWfPHqxfvx4ff/wxoqOjMXPmTDzwwAPo3Lmz2OXVi+EGHc9jjz2Gt99+GxcuXIBMJmuz9TpCg+qGHHia9hTq5QgQaiz0wPE8Pz+/Nts2IiLquAoLC6FWq7Fv3z6MHDlS7HKog6qpqYHRaBSOLxqNRlRVVcFgMAhtJpMJNpsNBoMBlZWVsFgsAFzDABz7YM5hAI5lA65hAA6e2upyXocn9QUkOKsbbFe3zXn/UKlUws/PzyWEoVOnTsL/ro7jpAqFAoGBgZDL5UKbXC5HUFAQ5HI5QkJChOACHk+lhtxyy634z394QisRUWt4/fXXMW/ePLHLEKxcuRIbN27EuXPnxC6F2on33nsP99xzDwoLCxEeHi52OUREYmCQARERUXtVU1MjDPhyDMTIy8tDUVERCgoKhLCC/Px84UsH4PdwgujoaMTExCAuLg7R0dGIi4tzCyVwTPMqT0REREREREREdDVoatiAp+fWvSq0s7rBAk0JIXC08arsRC1Pp9O5BRPUDSsoLCx0+WyrVCokJyfXG1Lg+Enic5w8feDAAWRmZuLw4cOwWq0ICwtDv379XE6cTk1Nbda6ioqKsGnTJqxbtw4XL15Eeno6Fi5ciEmTJjGwooWtXLkSmzdvxpkzZ8QuRVS5ubl466238MYbb6CkpARjxozBfffdh8mTJ7uEO/iquuEG33//PUpLSz2GGwwaNAghISFil0z/Lz8/H927d8ezzz6LRx55ROxyGuT4O+8p9KBuAELdv/fO/5PXDTmoO52QkNAuwlCIiEgcWVlZGDRoEM6dO4euXbuKXQ6RT0hOTsb999+Pxx57TOxSiIioGXbs2IHbb78dn3zyCSZOnCh2OURt4sMPP8Tdd98Ni8XCY//klcmTJ6OyshJffPGF2KUQEYmFQQZERES+xm63o7CwEHl5eSgoKMDly5eF6eLiYuTn56OoqMjtChKhoaHQaDSIiYlBbGwsNBqNEFIQExMjPBYdHc10YCIiIiIiIiIi6hCsVisMBgNMJhOMRiN0Op1w32QywWQywWAwQK/Xu7QbjUYYDAYYDAbh6mSeBAcHQy6XQyaTQaVSCfedfyqVSrd2hUIhXPHZceUuImpbzlds9vTzwoULyMnJcfn8h4SEuAQReAorSExMbBcnCF+NCgoKcOjQoUav+J6RkYEBAwa0WDDMwYMH8eqrr2LHjh0ICwvD7Nmzcf/996NHjx4tsnxyxyADVzabDZ9++inWr1+Pb775BhqNBjNmzMCDDz6IhIQEsctrkrrhBgcPHkRZWRnDDXzMvffei6+//hqnTp3qUK9BZWUlSktLvQo9yMvLg8FgcJnfEXzQWOiBRqNBQkICB7oTEV1FPv30U0yePBkWi6VD/e0kao5u3bph7ty5WLp0qdilEBFRM82ZMwc7d+7EsWPHoFarxS6HqNUdOnQIgwcPZlAZeaW8vBzR0dH417/+hblz54pdDhGRWBhkQERE1JYsFgsuX76MgoIC5ObmIj8/H3l5ecjNzUVBQQFycnJQVFSE6upqYZ7IyEio1WohkECtViM2NtYtrCAsLEzELSMiIiIiIiIiImoaq9WKiooKWK1W4YSgujdvHq+P8xVUHTeJROJ1e3h4OAeXE/konU6HCxcuNBhSoNPphOcHBQUhIiLCJZCgblhBfHw8FAqFiFtFTWEymXD06FGXE55PnDgBAFCr1cjIyEB6erpwwrNEImnR9VdVVWH79u145ZVX8NNPP2Hw4MF48MEHMW3aNP7taAMMMqjf2bNnsWHDBmzYsAE6nQ6jR4/GQw89hFtuuQV+fn5il3dF6oYbHDhwADqdDoGBgejevbtLuMHgwYMRHBwsdskd2qlTp9C3b19s3LgRM2bMELscUTn2U+qGHHiarhueBLgGKHkKPXC+HxMTw4sVEBG1Y6+//jqWLVsGrVYrdilEPqNnz564++678cQTT4hdChERNZPZbMaAAQPQpUsX7Nq1q90egyLyll6vh0qlwq5duzB+/HixyyEft2XLFsyYMQP5+fmIiooSuxwiIrGc5aUiiIiIWkBtbS0KCws9BhM42upelSEoKEgYHBkXF4ehQ4di6tSpQptGo0FcXBwHvBERERERERERkc8xm80wGAwwGAwwGo3CfZ1O5zJd975OpxOmncM8nSmVSsjlcigUCigUCuF+fHw8UlNToVQq3R6Ty+WQyWRQqVSQyWS8WjpRO2W1Wt0CCeqGFGRnZ6OmpkaYR6VSuYQTpKamuoUUxMbGwt/fX8Qto+aoqqrCmTNnhBOYMzMzcerUKdjtdqjVaqSlpWHq1KlIS0vDsGHDEBER0Wq1GAwGbNq0CatXr0Zubi5uvvlm7N69G2PHjm21dRI1Rffu3fH888/j6aefxkcffYR169Zh4sSJ6NGjB+bPn4/Zs2dDJpOJXWaTaDQaaDQa3HrrrUKbc7jBgQMH8Pe//x1ms5nhBm3g0UcfRUpKCqZPny52KaKTSCSQSCTQaDRIS0tr9PnO/+d4Cj0oKChAVlYWdDodiouLXf7fAf74n6ex0APHNBER+Y68vDzExcWJXQaRT/H394fdbhe7DCIiagFSqRSbN2/GiBEj8Nprr2H+/Plil0TUqpRKJcLDw3H+/HmxS6F2YPv27Rg1ahRDDIjoqsdRXERERF6oqKhAfn6+y6DJCxcuCNPZ2dkwm83C852vnqDRaDBw4EC3qzwlJSXxqglERERERERERNTmHFcOraioEO57utX3eGlpKWw2m8dlh4SECCfPqFQqSCQShISEID4+3qW97uOO6ejoaIYQEHVAlZWVKC0tbTCkIDc3F0ajUZjH8bvBEUiQlpbmcoxdrVYjKSkJYWFhIm4ZtYYLFy4gMzPT5QrsFRUVkMvl6Nu3L8aOHYvHHnsMw4cPR5cuXdqspn/84x/YvHkzgoKCcO+992L+/PlISkpqk/UTNVVISAhmzpyJmTNn4tdff8X//u//4vHHH8cTTzyB2bNnY/78+ejevbvYZV6xuuEGNTU1OHXqlMvvjY8//pjhBi3su+++w86dO/Hll18yIOgKSCQSJCcnIzk52avn63S6BkMPjh8/jszMTOh0OhQWFqK2tlaY13kfy1PIgfN0YmJiuws4ISJqb3JzcxEfHy92GUQ+hUEGREQdy3XXXYelS5fisccew/jx49v1cScib3Tt2pVBBtQoi8WCL774Av/4xz/ELoWISHR+tc7fYhAREV2FampqhKs4Xb58GTk5OcjJyXGZLisrE54vk8mQmJiIpKQkJCQkICEhQZhWq9WIj4+HRCIRcYuIiIiIiIiIiKij8jaEoL7nXEkIgacAAoYQEJGD4yQ755CCumEFRUVFLoPTHVcUdoQU1A0CVqvVUKvV8PPzE3HLqC04X1U9KysLBw8eRFlZmXDicUZGBtLT05GWlobevXu3+YmzR48exQsvvICtW7ciMTERDz/8MGbPns0ADZGtXLkSmzdvxpkzZ8QupV0xGo3YuHEj1qxZg0uXLuH666/HfffdhylTpnTI8HVP4QZHjhyBxWLxGG4wZMgQBAUFiV22z6qtrUV6ejpCQkKwZ88escuhOioqKlBWVlZv6IFzIELd8CjANUCqvtADx/2oqCgEBgaKtKVERO3TDTfcgC5dumD9+vVil0LkM6655hpMmjQJzzzzjNilEBFRC6mursbQoUMRFBSE/fv3d8jjTUQOd955J2w2Gz7++GOxSyEftn37dvzpT39Cbm4u1Gq12OUQEYnpLEeTERFRh2ez2ZCdnY0LFy7g4sWLyM7OdgkqyM/PR3V1NQD8H3t3HhZlubgP/GYHUWCGdZBFJlFhXM8IpqDfzKWjRzPLNis9Zmket7SyXMtcCjPXVlPL4zmW6ckWNSvTjkG5AOIGiIWKOOwMqwPDwPz+6Mz8ZoYB0ZBngPtzXe81C7zD/Vo6w/s+z/3A0dERnTt3RnBwMEJDQzFq1CizooLg4GB4eXkJPiIiIiIiIiIiImqNTEsFblZEYO3rhYWFqKmpsfra1goH3NzcIJFIIJfLb1pE4O/vzwFFRGSmqqoKKpWqwZIClUqFq1evorKy0riPq6urWSFBTExMvbKCkJAQlp60U2VlZTh79iySkpKQkJCAn3/+Gbm5uXBwcED37t2hVCqxbNkym1gtPT4+HnFxcThw4AB69uyJbdu2YeLEifx/l1o1Dw8PzJ07F7Nnz8aRI0ewceNGPProo7jrrrvwzDPPYNq0aZBIJKJjNhsHBwcoFAooFApMmjQJgPVyg//85z9Wyw1iY2PRt29ffkb+n7179+LEiRM4efKk6ChkheEzWGBgYJO+3/C7pmXJgenjzMxM7N+/H9euXav3e6jpZ77GSg8kEgkCAgJavIiIiMjWXL58Gffcc4/oGEQ2xd7e3qz0koiIWj9HR0ds374dUVFR2LRpE+bNmyc6EtEd4+vrizNnzoiOQTbuP//5D4YMGcISAyIiALzKTkRErZ5erzeu7HT58mXjrWG7fv268aS3RCIxFhL07dsXY8eORUhIiLG4QCaTcTAKERERERERERHVcyslBNa+506WEHBiCBHdKrVabSwkyMzMbLCswMDZ2Rne3t7GSWlyudxYUmAoKLjrrrtYBExGNTU1OHv2LOLj442ThdPS0qDX6yGTyaBUKjF9+nTjZGFbmTx98OBBrF69GgkJCRg8eDD279+PUaNGwc7OTnQ0omZjb2+P4cOHY/jw4cjIyMC7776LFStWYNWqVXj88ccxd+5cREZGio55R1grN9DpdLh48aJZucHevXuh0Wjg7u6Ovn37GssNlEolevTo0e6uJ9fU1GDx4sWYOHEilEql6DjUDNzc3ODm5obAwMAm/TfVaDSNlh7k5OQgKSkJarUa+fn5qK2tNdtfIpFYLTlo6DERUVtSW1uLrKwsyOVy0VGIbIq9vX29zwxERNT69e7dG4sXL8aiRYtw3333tdlzTERSqRTFxcWiY5ANq66uxoEDB7Bq1SrRUYiIbIKdXq/Xiw5BRER0M4aVnzIzM+ttFy9eREVFBYA/BlMGBQVBLpdb3WxlIBwREREREREREbUcy9KBmxURWH69oKAAOp3O6mtbKyGwLBpo7OssISCi5mQ6yayhkoKsrCyzf9MMK+rK5XJjKYHlbWhoaLubtElNZ22F81OnTkGr1cLT0xM9e/ZEbGwsYmJiMGDAAPj5+YmOXM+hQ4fw2muv4eTJk/jb3/6GV155BTExMaJjUQNWrVqFHTt2ICMjQ3SUNqOsrAwff/wxNm7ciCtXrmDYsGGYNm0aHnzwwXb577+1coPk5GRoNBp07NgRffr0MSs3iIiIaNOf6d955x288MILSEtL4yRMahJDaVZDpQeWXzNl+nt0Y6UHgYGBCAoKgrOzs6CjJCJqmsuXL0Mul+P48eMYMGCA6DhENiMqKgr33nsv4uLiREchIqJmptPpMHDgQDg5OeHnn39ul+eWqO3buHEj4uLioFKpREchG/X1119j/PjxuHbtGos7iYiAS46iExARERnk5+cjIyMDly5dMm6XL19GZmYm1Go1AMDOzg6dO3dGWFgYwsLCMHbsWMyZMwdhYWGQy+UIDAzkqjhERERERERERG3IrZYQWH6PtdUgDf5sCYFMJuO5KCJqEVqtFoWFhWaFBJZlBdevX0dpaalxHxcXF0ilUuOEL4VCgbFjx5qVFISEhKBTp04Cj4xaI5VKZZzYm5CQgF9++QU3btwwW7l82rRpUCqViIyMtOn3yvj4eCxduhQ//fQThg8fjhMnTiAqKkp0LKIW5+Hhgblz52LWrFn45ptvsHnzZjzyyCOIiIjA/Pnz8dRTT8HFxUV0zBbj6OgIhUIBhUKBSZMmAbBebrBlyxZUVVW16XKDiooKrFy5ErNnz2aJATWZ4XfnpqiqqkJxcXGDJQeGBS/UajWys7NRVlZmtr/hd/eblR7IZDL4+fnB0ZHDJYmoZWVmZgIA30eJLNjb26Ourk50DCIiugMcHR2xbds2REVF4b333sPs2bNFRyJqdlKpFEVFRaJjkA3bt28f7r77bpYYEBH9D8/MExFRi1Kr1caSAsvSAsMASzc3N4SHhyM8PBz33nsvpk6daiwu6NKlS7saJENERERERERE1JqVlZWhpKQEpaWlZrclJSUoKyuz+ri0tNR4v7y83Orruri4wNPTEx4eHvD09IREIoGnpyd8fX3RtWtXs695eHgYv276vJubWwv/aRARWWdYsda6Plp9AAAgAElEQVRaSYHh9urVq2alLBKJxKyQQKlUQi6Xmz3HshVqDiUlJUhMTER8fDySkpJw4sQJFBQUwNHREd26dYNSqcTq1auhVCoRHR3dalZFjo+Px6uvvoojR44YCwyio6NFxyISzsHBAQ888AAeeOABnD9/HuvXr8fMmTOxdOlSzJkzB88991yTJye3NbdabtCpUyf07t271ZcbxMXFobq6GosWLRIdhdooV1dXBAYGIjAwEAqF4qbfbygtbKj0QK1WIzU1FSqVCoWFhaipqbH68yxLDqwVIAQEBLS6v7NEZHsyMzPRqVMn+Pr6io5CZFPs7e0bLCAmIqLWr3fv3njppZewePFijB8/HkFBQaIjETUrb29vaLVaVFZWwt3dXXQcsjF6vR7fffcd5syZIzoKEZHNsNPr9XrRIYiIqG2prq7Gb7/9htTUVGRmZtbbAMDJyQnBwcGQy+WQy+WIjIyEQqGAXC5Hly5deDGYiIiIiIiIiEgwvV5vLBkwbNYKCaw9p1arUVpaanVFJRcXF3h5eRkLBby8vMwem5YNGDYvLy+zr7m6ugr4EyEiujXV1dUoKipCTk4OMjMzrZYUZGVloaKiwriP6cQqa7dyuRzBwcFwcnISeGTUVlVUVCAlJcVsQm5qaioAGAszYmNjERMTA6VS2SpLgc6fP49XXnkFBw4cQExMDFauXIl77rlHdCy6RatWrcKOHTuQkZEhOkq7kJeXh/fffx+bN2+GVqvFxIkT8eKLLyI8PFx0NJtUU1ODjIwMs39LExMTUV1d3erKDbKzs9G9e3esWLEC8+fPFx2H6LZoNJpGSw9M7+fl5dU7j2EoELtZ6UFgYGC7LXohosYtWrQIBw8eREpKiugoRDYlNjYW/fv3x4YNG0RHISKiO6S6uhp9+vRBz549sXfvXtFxiJrV8ePHMXDgQGRlZSE4OFh0HLIxKSkp6NevH5KTk9GvXz/RcYiIbMElFhkQEdFtU6lUSE1NRVpaGi5cuID09HRcvHgRubm5AP5YlSI0NBTh4eEIDw9Ht27djPdDQ0Ph4OAg+AiIiIiIiIiIiNo2w0qFjW1VVVVWvy8/P9/qikiurq6QSCRwc3Mz3m/q5ubmxoH9RNQmqNXqesUElmUFubm5ML0UK5FIIJfLGywpMNwStQTLVcQTEhJw+vRp1NXVGUsLDNvAgQPh4+MjOvKfcvnyZSxZsgSffvopBgwYgDVr1mDw4MGiY9FtYpGBGBUVFdi2bRvWrVuH7OxsjB49GkuWLMGAAQNER7N5jZUbeHh4oFevXmb/7kZGRsLOzk50bDz++OM4deoULly4ABcXF9FxiFqE4XO+ZclBQ49NmZ4juVnpQVBQEJydnQUdJRG1pMceewxarRZffPGF6ChENmXIkCHo27cvNm3aJDoKERHdQT/99BPuvfdefPnll7j//vtFxyFqNmlpaYiMjMS5c+fQs2dP0XHIxsTFxWH9+vXIycmxifO8REQ24JKj6ARERGT7srKykJ6ejgsXLhhLC1JTU1FSUgIA8Pb2hkKhQEREBO6//35jaUFYWBgvvBIRERERERER/QlNKSJoqJTA2kqCAOqVD5gWEsjl8kaLCLy9vTmBhYjaNNMVWxsqKbh27RpqamqM+7i6upoVEQwfPrxeOUFISAgcHXlplsRRqVRISEhAfHw8kpKSkJycDI1GY1wdPCYmBnPmzIFSqYRCoRAdt9kUFxdjzZo12LhxI0JCQrB7925MmDCBA8eIbkPHjh0xd+5czJ49GwcOHMDKlStx9913IyYmBi+//DLGjBnDv1sNcHJygkKhgEKhwKRJkwBYLzf48MMPbabc4Ndff8Xu3buxb98+/g5I7Yrh/EdTVFVVobi4uNHSg8zMTOTk5OD69euorq42299wLsay5MBaAYKfnx9/nyBqpTIzMzFkyBDRMYhsjr29vdUiZSIialvuueceTJw4EbNnz8a9996Ljh07io5E1CwMc2S0Wq3gJGSLvvvuO4wcOZLny4mITNjpTZcBISKidk2lUiE1NdVYVHDhwgWcO3cOZWVlAP64YBsZGQmFQgG5XG52n4iIiIiIiIiIzJmWEJgWDNxKKYE1lkUEDZUSWNt8fX3h5OTUwn8SRES2Qa1WmxUSWN7+/vvvxgJf4I9BSN7e3maFBHK53KykIDg4GB4eHgKPiqg+lUplNjH2119/RVFREZycnBAeHg6lUonY2FjExMQgIiIC9vb2oiM3u6qqKqxfvx5xcXFwdXXFq6++imeeeYafg9qIVatWYceOHcjIyBAdpd2Lj49HXFwcDhw4gF69emHmzJmYNGkSXF1dRUdrlayVG5w6dQparRaenp7o2bNni5Qb6PV63H333XB3d8eRI0ea/fWJ2ivDeaGGSg9M7xcUFECn05ntb1qg1ljpgUQiQUBAQJv8jEfUGvn4+GD58uWYOXOm6ChENmXYsGHo1q0b3n//fdFRiIjoDsvPz0dERASmTJmCtWvXio5D1CyuXbuGkJAQHD9+HAMGDBAdh2xIZWUlvL29sW3bNjzxxBOi4xAR2YpLLDIgImqHiouLkZKSgpSUFJw9exYXLlxAWloaKisrAQCdO3dGZGQkIiIiEBkZaSwskEqlgpMTEREREREREbUcwwDzkpISlJSUNHjfdFOr1SgtLUVJSYnV1YScnJzg5eUFLy8veHp6wsvLCxKJxHjf9Hlrz3GyLBFRfRqNBjk5OY2WFFy9etXs32WJRGJWSGCtrICTf6g1KCsrw9mzZ40TXuPj43H58mUAgFwuR0xMjHHCa//+/dvF5OKvvvoK8+fPR15eHl588UW8+OKLXOmrjWGRge1JSUnB2rVr8fnnnyMgIADPP/88pk2bxr97zcCy3CAhIQEpKSmora29Y+UGO3fuxJQpU5CcnIzevXs305EQ0a0y/J5jWXJgrQAhLy8PdXV1xn1dXFwglUqtlhxYPu7cuTO8vLwEHilR21VaWgovLy8cPHgQo0aNEh2HyKaMGDECYWFh2LJli+goRETUAj744APMmTMHZ8+eRY8ePUTHIfrTcnNzIZPJcOzYMQwePFh0HLIh33zzDR544AHk5OTAz89PdBwiIlvBIgMiorZMr9cjMzPTWFpw5swZnDlzBllZWQAAf39/9OnTB7169UKPHj2gUCgQERHBC5RERERERERE1CbU1tZaLSCwLCFoqKCgurq63ms6OzsbywcMJQOmm2kpgbUigg4dOgj4kyAiap2qq6tRVFRkVkhgWVZw7do1lJeXG/cxXaW0odsuXbrA3d1d4JER3R7DZNaEhATEx8cjKSkJ6enpqKurg0wmM5vIGhMT0+4Kqi9duoTnn38eBw8exJgxY/DOO+8gNDRUdCy6A1hkYLuysrKwYcMGfPTRR3B1dcW8efMwa9YsFrI1s8rKSpw+fdpYbpCUlISLFy+itrYWXl5eUCgUZu8JCoWiya+t0WjQo0cPjBo1Ch988MEdPAoiam5qtbpJpQc5OTlQq9Vm+7q6ujap9CAwMBBBQUFwdnYWdJRErUtiYiKioqKQkZGB8PBw0XGIbMp9992H4OBgbN26VXQUIiJqAXV1dRgwYAC8vLzwww8/iI5D9KcVFxfD29sbhw8fxrBhw0THIRsya9YsHD9+HImJiaKjEBHZkkuOohMQEVHzsFyJITU1FadPn0ZRUREAGAewTZkyxThYQS6XC05NRERERERERNQ4jUZjHHRtuVVVVTX69fz8fLPVtw1MB2cbNl9fX3Tr1q3e825ubmbfL5PJ/vTqlkRE9P8n2ZiWFFiWFViuKmr4dzgwMNC40rxlSQH/naa2ora2Funp6WaTVBMTE1FdXQ0PDw/06tULw4cPx2uvvYbBgwcjICBAdGRhKisr8dZbb+HNN99EWFgYvv/+e4wYMUJ0LKJ2KSQkBOvWrcPixYuxefNmvPXWW4iLi8OMGTPw8ssvQyKRiI7YJri7uyM2NhaxsbHG5yoqKpCSkmJ8zzh8+DDeeecd1NXV3VK5QVxcHNRqNV577bUWOhoiai6Gc1dNYXo+raHSg8zMTOTk5CA7OxtardZsf8O5MsuSA2sFCH5+fnB05DBVap9SU1Ph4uKCsLAw0VGIbI6Dg4PZeT8iImrb7O3tsWHDBgwePBj79+/HmDFjREci+lMMBX+Wvy8THTp0CI8++qjoGERENsdOr9frRYcgIqJbU15ejsTERCQmJiIlJQVnzpzBxYsXodPp0LFjR/Tq1Qt9+/ZF37590adPH/Tq1Yur/RERERERERGRMI2VDTS2FRUVWb3waxgsbVky0JSNg6eJiO6sqqoqqFSqRksKrl27hpqaGuM+rq6u9QoJDGUFhvshISH895vaNJVKZVZakJCQALVaDScnJ/Tu3RsxMTHGyaeRkZEs7Piff//733jppZdQXV2NFStWYPr06XBwcBAdi+6wVatWYceOHcjIyBAdhW6ivLwc7733HtasWQOtVounn34aixYtgr+/v+ho7YJluUFSUhLS09NRV1cHiUSCyMhIs3IDLy8vdO/eHa+++ipeeukl0fGJyIYYzu2Zlh40VIBQUFAAnU5ntr/p73yNlR5IJBIEBATA3t5e0JESNa+FCxfi4MGDOHPmjOgoRDZnzJgx8Pb2xo4dO0RHISKiFvToo48iKSkJFy5cgIuLi+g4RLeturoarq6u+PLLLzFu3DjRcchGXL58GXK5HP/9738xZMgQ0XGIiGzJJRYZEBHZOJ1OhwsXLuDEiRM4ceIETp48ibS0NNTW1qJz587GsgJDccFdd93FC3pERERERERE1Kxup4igqqoKGo0Gubm5sHYa+lYLCAybVCqFq6urgD8FIiJSq9VmhQQNlRUYODs7w9vbu9GSgqCgIHh6ego8KqKWV1painPnziEhIQHx8fE4efIk8vPz4eDggO7du5tNKo2Ojjau7EP/35UrVzBjxgx8//33eOaZZ7B69Wp4e3uLjkUthEUGrU9FRQW2bduGN998E+Xl5Zg6dSpeeeUVyGQy0dHanfLycpw5c8ZquYGbmxvs7Owwf/58REdHo3///vxvRES3RaPRNKn0QK1WIy8vz2xFbhcXF0ilUqslB5aPO3fuDC8vL4FHStS4cePGwc3NDZ999pnoKEQ2Z9y4cfDw8MDOnTtFRyEiohaUnZ2NHj16YNmyZViwYIHoOES3rba2Fo6Ojti7dy8eeugh0XHIRrz77rtYuHAhioqK4OTkJDoOEZEtYZEBEZGtsVxxJz4+HiUlJejYsSP69OljHLg2ePBghIWFiY5LRERERERERK1ATU1Nk8oHSkpKUFJSYna/pKTE6mt6eHjAy8sLEokEXl5exs30cUP3O3Xq1MJ/AkRE1BjTSSYNlRRkZWWZrappWFHTUEhgrawgNDSUK6NTu1dZWYnTp0+bXftJS0uDXq+HTCYzXveJjY3FoEGD0KFDB9GRbVpdXR22bt2KF198Ef7+/tiyZQuGDh0qOha1MBYZtF6VlZXYunUr1qxZg6KiIkyePBnLli1D586dRUdr18rLy7Fr1y7MmDEDQ4YMQUFBgbHcwPS9SqlUIioqCgEBAaIjE1EbYyjNu1npgUqlqneu0rQs1bTkwFoBQlBQEEvCqEV169YNTzzxBF599VXRUYhszvjx49GhQwf8+9//Fh2FiIha2PLly7Fu3Tr8/vvv8PHxER2H6LZotVq4uLjgyy+/xLhx40THIRtx//33w8HBAfv27RMdhYjI1rDIgIhIpIqKCqSkpJiVFly+fNnqijsDBgxgKxcRERERERFRO6bVam9aQtDQ1yoqKuq9npOTk3Egr6FowPS+ZQGB5XP29vYC/hSIiOhWaLVaFBYWmhUSWJYVXL9+HaWlpcZ9DKtfNlZSEBoaio4dOwo8MiLbpNPpcPHiRbPSglOnTkGr1cLLywv9+/dHTEwMlEol7r77bvj6+oqO3KqcO3cOzz77LJKTkzF//nwsX74cLi4uomORACwyaP2qq6uxY8cOrFixAvn5+fj73/+OJUuWIDg4WHS0dqm2thYDBgyAp6cnfvzxRwBAWVkZzp49e9MiHqVSiejoaPj7+ws+CiJqLzQajdWSA8vHOTk5yM7OhlarNdvfUHxws9IDmUwGf39/lvPRbauurkbHjh2xa9cuPPzww6LjENmchx56CE5OTvjss89ERyEiohZWWVmJrl274vHHH8e6detExyG6LTdu3IC7uzu++eYbjBkzRnQcsgE6nQ5SqRRr1qzBc889JzoOEZGtueQoOgERUXtSXFyMn3/+GT/99BN++uknnDt3DrW1tQgKCkJ0dDRmzJiB6OhoKJVKDgIlIiIiIiIiaqNMB9veypabmwtrvbSmq44ZtpCQEPTp06fe86ZbQEAAywiIiFoxw2qUjZUU5OXloa6uzriPRCIxKyRQKpX1ygpkMhns7OwEHhlR66FSqZCUlISEhATEx8cjOTkZGo0GHTt2RJ8+faBUKjFt2jQolUooFArRcVut6upqLF++HGvXrkV0dDRSUlIQGRkpOhYR/QkuLi6YNm0aJk+ejG3btiEuLg6ffPIJpkyZgkWLFiEkJER0xHZly5YtOHPmDJKTk43PeXh4IDY2FrGxscbnLMsN9uzZg9dff53lBkTUotzc3ODm5obAwMAmfcY2nIu1LDkwLUBITU2FSqVCQUEBdDqd2f6G36MtSw6sPebv02Tq4sWL0Ol0iIiIEB2FyCY5ODiYnbckIqL2w93dHUuWLMH8+fMxe/ZshIWFiY5EdMsMvzs6OnJaJv0hOTkZ5eXluOeee0RHISKySXZ6ayNfiYioWRQXF+PYsWNmxQUA0Lt3b9xzzz0YMmQIoqOj0blzZ8FJiYiIiIiIiOhWtEQZQVM2Do4lImp7qqqqUFxcbFZIYFlWkJWVhYqKCuM+rq6uxskT1m7lcjmCg4Ph5OQk8MiIWrecnBwkJiYaJ28eP34chYWFcHR0RLdu3YwTN2NjY9GvXz8WRjWTs2fP4qmnnsLly5cRFxeH6dOn88+WsGrVKuzYsQMZGRmio1Az0Wq12LFjB9544w2oVCrMmDEDixYtgq+vr+hobV5RURF69OiBp59+GnFxcbe8f2lpKc6dO2d8f0xKSkJaWprVcoMBAwbAz8/vDhwFEVHz0Wg0jZYemD62LA90cXGBVCq1WnJgWYAQFBQET09PgUdKd9ru3bvx5JNPoqKiAi4uLqLjENmcxx57DDqdDnv37hUdhYiIBKipqUFkZCRiY2Px8ccfi45DdMvUajWkUim+//57jBgxQnQcsgFr167FmjVrkJeXx3FcRET1XWKRARFRMyovL8eJEydw+PBhHD58GKdPn0ZdXR3kcjmGDx+O4cOH495774W3t7foqERERERERETtmkajQVVV1W0VEuTk5Fh9TZYREBHRzajVamMhQUMlBZalNxKJBHK5vNGSAolEIvCoiNqe8vJynDlzxmxSZmpqKgBAJpMhNjYWMTExxomZbm5ughO3PXq9Hps2bcLLL7+Mfv36YefOnejatavoWGQjWGTQdtXU1ODjjz/G8uXLUVpailmzZmHhwoWc6HkHPfPMMzhw4AAuXrwIDw+PZnnNWyk3uPvuu1lYQUStVnV1NYqKiqyWHFg+VqlUKCkpMdvf9HxyY6UHgYGBLCdshV577TV89tlnSE9PFx2FyCZNnDgRGo0G+/btEx2FiIgE2bVrFyZNmoQzZ85AoVCIjkN0SwoKCuDn54cjR45g6NChouOQDRg3bhycnJxY1EVEZB2LDIiI/ozS0lIcOXIEP/30E3766SecP38eANCnTx/83//9H4YOHYrBgwdzECkRERERERHRHaDVaqFWq1FcXIzi4mLj/aaUEVRVVdV7vaYWEXh5edV7rkOHDgL+BIiIyFaYrthoemtaVpCVlQWdTmfcx9XVtV4hgWVJQWhoKBwcHAQeGVHbV1NTg4yMDCQlJSEhIQHx8fFIT09HXV1dvcmWgwYNYll1C8jKysLkyZORkJCARYsWYenSpfy3kMywyKDtu3HjBjZv3oy4uDjY29vjpZdewty5c+Hq6io6WpuSmJiIAQMGYNeuXXj00Ufv6M8qKSnB+fPnGywJYrkBEbUHpqW6piUH1goQsrOzodVqzfY3PY9grQDB9LG/vz8/Qwv2yCOPoKamhpO0iRrw1FNPoaysDF999ZXoKEREJIher4dSqURoaCg/M1Grk5ubC5lMhmPHjmHw4MGi45Bger0evr6+WLp0KebOnSs6DhGRLWKRARHRrbpw4QL279+Pw4cP49ixY9DpdOjRowdiY2MxfPhw3HvvvRzERkRERERERHQLysvLzYoIDPcNq1lZ+1pxcTEqKirqvZabm1uTywcsN66kS0RElrRaLQoLC62WFBhuf//9d7NVFV1cXCCVShstKQgODm62FW+J6NZkZmYiPj7ebCJlVVUVPDw80KtXL+MkysGDByMsLEx03HZnz549mD59OmQyGXbu3Im//OUvoiORDWKRQfuhVquxceNGrFu3Dp6enli6dCmefvppODo6io7W6tXV1WHgwIFwdXXFTz/9BDs7uxbPcCvlBgMHDoSPj0+LZyQiEslQfHCz0gOVSoWCggKz8kQAkEgkDZYeWBYgyGQyIe8FbVnPnj0xbtw4rFq1SnQUIps0efJkFBcX45tvvhEdhYiIBDp48CD+9re/ISkpieeCqVXJzs5GcHAwEhISMGjQINFxSLBz586hd+/eSE5ORr9+/UTHISKyRSwyICK6mbKyMhw6dAgHDx7EoUOHkJeXB39/f9x3333461//ipEjR7K4gIiIiIiIiAjmK0pZbpYDLA1bUVFRvZWlgD9Wl7pZ8YC1LTAwUMCRExFRa6TRaJCTk4PMzMwGSwquXr2K2tpa4z6Gwf2mJQWWZQUBAQGwt7cXeGREZKBSqcwmR/7yyy8oLi6Gk5MTwsPDERsbi5iYGCiVSkRERPDvrkAajQazZ8/G9u3b8eyzz2L9+vXo0KGD6Fhko1hk0P4UFBTg7bffxoYNGxAWFobXX38dEyZM4ITLP+H999/HnDlzkJycjF69eomOY6RWq3HhwgXje3dCQgIyMzMB1C83GDRoEMdqEBGZUKvVVksOrD3Ozc2F6dBhy/PxjZUeBAUFwdPTU+CR2j6NRgMPDw98+umnmDBhgug4RDZpypQpyMvLw8GDB0VHISIiwaKiohAaGoq9e/eKjkLUZL/99hvCw8NZwkEA/jjXunDhQhQVFcHBwUF0HCIiW3SJFeVERFbk5OTg66+/xpdffomjR49Cp9Nh0KBBmDNnDv7617+iX79+HBRBREREREREbVJjZQSNbfn5+WYTPQ0MAyBNBzvK5fJGywh8fX3h5OQk4OiJiKgtqK6uRlFRkVkhgWVZwbVr11BeXm7cx9XV1ayUQKlU1ispCA4O5vsTkQ0rKyvD2bNnjZMef/75Z+Tm5sLBwQHdu3eHUqnEsmXLoFQqERUVBRcXF9GR6X/Onz+Phx9+GEVFRTh06BBGjhwpOhIR2RhfX1+8+eabmDFjBlavXo3HH38cb731FlavXo3hw4eLjtfqFBcXY9myZZg3b55NlRgAfxSHxcbGIjY21vicZTHRli1bkJOTA6B+uUFMTAykUqmo+EREQhnOrzeF4dyJtZIDw/2kpCSo1Wpcv34dpaWlZvtbO+/f0OP2eD7l7Nmz0Ol0XImTqBEODg6oq6sTHYOIiGzAwoULMWHCBJw/fx49e/YUHYeoSTQaDQDAzc1NcBKyBcePH0d0dDRLDIiIGsEiAyKi/7l8+TI+//xzfPnllzh58iTc3NwwcuRIfPjhhxgzZgyb/ImIiIiIiKhVaWohgekAxeLiYlRXV9d7LcvVmAzbzQoJZDIZiwCJiKhZGVYXbKykwHJVQcN7kqGQICYmxqykwHBLRK1HTU0Nzp49i/j4eOOkxrS0NOj1euOExunTp0OpVCI2NrbJk3mo5e3cuRMzZsyAQqHAt99+iy5duoiOREQ2LDQ0FB9++CHmzJmD5cuXY8SIEYiJicGbb75pNvGdGvfyyy/D0dERS5YsER2lSQIDAxEYGIixY8can7MsN/jwww+Rm5sLgOUGRERN4eLiYvz3tSlMrzdYKz1Qq9XIzMzE/v37ce3aNdTU1Jjtb1ogaa30wPS+v79/q5/8cfr0aXh4eEAul4uOQmSz7O3tWWRAREQAgPHjx0OhUGDNmjX45z//KToOUZOwyIBMnTx5Eg899JDoGERENo1FBkTUrmVlZWHPnj3YvXs3Tp06BR8fH4wbNw6LFi3C8OHD+YsFERERERERCVVVVYXi4uImFRKYbgUFBdDpdPVez1ohgWFwt+kAQtPNx8cHzs7OAo6eiIjak6qqKqhUqnolBaZlBZYD4U0HwQcGBmL48OH1yglCQkLg6MjLYUStWW1tLdLT080mK546dQparRaenp7o2bMnxo4dizfffBMDBgyAn5+f6MjUBFVVVXj55ZexefNmzJ49G2vXrm13q7QS0e1TKBT4/PPPcezYMSxcuBBDhgzBhAkT8Oabb3LC4E0cP34c27dvx65du+Dh4SE6zm1rSrnBBx98gLy8PAD1yw1YdEREdGvc3Nzg5uaGwMBAKBSKm36/RqMxKzmwLD1Qq9VITU2FSqVCfn4+amtrzfY3XLu4WemBrRYqnz59Gn379rW5XES2xN7evt7ffSIiap/s7OywYMECTJkyBcuWLUPXrl1FRyK6KRYZkEFpaSkyMjIQHR0tOgoRkU2z05suSUNE1A4UFRVh165d+PTTT3H8+HF4eXlh/PjxePTRR3HvvfdyUCsRERERERE1u+rqahQVFaG4uBjFxcVm9wsLC+s9Z9gMF75Mubu7QyqVQiqVQiKRWL1v+ZxEImnVg9OJiKh1M6zK11BJgeHWwNnZGd7e3maFBIZbuVwOmUyGoKAgeHp6CjwqIrpTTCchJiQk4CXbqTgAACAASURBVJdffsGNGzfg7u6Ovn37mk1CjIyM5MSQVui3337Dgw8+iOvXr+OTTz4xm4RK1BSrVq3Cjh07kJGRIToK2Yivv/4aL7/8Mi5fvoy5c+di0aJF/KxoRU1NDfr37w9/f398//33ouO0CMtyg1OnThnLDeRyOWJiYoyfK/r16wd3d3fBiYmI2ie1Wt1g6YFlAUJubi5Mhz1bFjg3VnoQHBzcItdKoqOjMWjQIGzYsOGO/yyi1mrmzJlITU3F0aNHRUchIiIbUFtbix49emDYsGH44IMPRMchuqlDhw5h1KhRKC0t5Xisdu7w4cMYMWIEVCoVZDKZ6DhERLbqEmfrElG7UFtbi++++w6ffPIJvv76azg5OWH8+PFYvHgxRowYwZUliYiIiIiIqEl0Ol2DhQSG+0VFRWb3i4uLUVlZWe+1PDw8IJVK4e3tDW9vb0ilUvTs2dNqEYHpff4OS0REtsJ0db2cnByrZQVZWVnQ6XTGfQwr5RkGkisUinplBV26dIG9vb3AIyOillJSUoLExETEx8cjKSkJJ06cQEFBARwdHdGtWzcolUqsXr0aSqUS0dHR/CzcBhw9ehQTJkxAWFgYkpOTERoaKjoSEbUB999/P0aPHo3t27dj6dKl2LZtG5YuXYqZM2dyIQMTb7/9Ni5duoQvvvhCdJQWExgYiMDAQLPSHMtyg9WrVyM/Px8ODg7o3r27WWnSX/7yF3To0EHgERARtQ+GooGmMBRHN1Z6kJSUBLVajevXr6O0tNRsf0PxgWXJgbXHwcHBcHJyuqVj0el0OH/+PGbOnHlL+xG1N/b29qirqxMdg4iIbISDgwNeeOEFzJs3DytWrICvr6/oSESNMixM4+bmJjgJiXbixAmEhoayxICI6Cbs9KbVpEREbcyVK1ewZcsW7NixAzk5OYiNjcXTTz+NCRMmoGPHjqLjERERERERkUAajcY40M3agDdrW15eXr1BNZar/TS0mQ6C8/Hx4SQsIiKyWVqtFoWFhWaFBJZlBdnZ2SgrKzPu4+LiAqlUisDAQMjl8nrlBDKZDKGhoTwvS9SOVVRUICUlxWziYGpqKgBAJpNBqVQiNjbWuDIyB3+1PVu3bsXMmTNx//33Y8eOHZwYSk1SVlaG0aNHm01AKy4uRmlpKcLCwozP2dnZYeXKlbj//vtFxCQbolarERcXhw0bNiAsLAxvvfUWxowZIzqWcFeuXEHPnj2xZMkSvPLKK6Lj2BzLcgNDuRLLDYiIWj/DtSDL6z/WHl+7dg01NTVm+7u6ujZaemB639/fH2lpaejVqxfOnDmD3r17CzpqIts3d+5cJCUlIT4+XnQUIiKyERqNBkFBQXjhhRewaNEi0XGIGrVr1y5MmjTJrNCf2qfx48fD0dERe/bsER2FiMiWXWKRARG1OXq9Hj/++CPeeecd7N+/HwEBAZgyZQomT56Mrl27io5HREREREREzcxaIcHNigkKCgqsXkwyrBLdlGICiUSCzp07w8vLS8BRExER3R61Wl2vnMCypMCyuMfw/mhaTGBZViCTyWBnZyfwyIjIluh0Oly8eNE4GTAhIQGnT59GXV2dsbTAsA0cOBA+Pj6iI9MdVFtbi8WLF2PNmjVYsGABVq9eDXt7e9GxqJWorq6Gj48PKioqbvq9u3fvxiOPPNICqag1uHTpEhYsWIAvv/wSo0ePxoYNGxAeHi46ljAjR45ETk4OkpOTb3ll6faqoXIDR0dHdOvWzezzDEuYiIjaDo1G06TSA5VKhfz8fNTW1prt7+7ujhs3bmDgwIHG0k9rpQeGx0Tt1fz583H8+HH88ssvoqMQEZENefHFF/H5558jMzMTjo6OouMQNWjbtm2YN2+eWfE/tU9dunTB9OnTsXDhQtFRiIhsGYsMiKjt0Gg0+Pjjj/HOO+8gLS0NQ4YMwaxZs4wNV0RERERERGTbGiskaGiwWFFREbRabb3XcnV1tToorLGNEzCJiKg1q6qqgkqlarCkQKVS4erVq6isrDTuY7qiXEMlBcHBwZzoREQ3pVKpkJCQgPj4eCQlJSE5ORkajQadOnVC7969zSb5KRQK0XGpBZWXl+OJJ57A999/j61bt+LJJ58UHYlaoalTp+Jf//qX1d//Ddzc3FBYWMhV0qmeo0ePYu7cucjIyMD8+fOxePFiuLu7i47Vov71r39h8uTJ+PnnnzFo0CDRcVo1y3KD48ePo7CwkOUGRETtmKE01HDdatOmTbhw4QIefvjhete0cnNzYTpk23Atq6GSA9PHwcHB8PDwEHikRM3rxRdfRHx8PI4fPy46ChER2ZArV66ga9eu+Pzzz/Hggw+KjkPUoE2bNmH16tXIzc0VHYUEKikpgVQqxf79+zF69GjRcYiIbBmLDIio9SsvL8f777+PdevWoaysDE8++SRmzZqF3r17i45GRERERETULlVVVaGoqAjFxcXG2+LiYhQWFtZ7zvR+dXW12evY2dlBKpXC29sbUqn0pvd9fHwglUo5kIuIiNocw4DonJwcZGZmWi0psBwILZFIzAoJLG/vuusueHl5CTwqImqtLCfw/frrrygqKoKTkxPCw8OhVCoRGxuLmJgYREREwN7eXnRkEiQrKwujRo2CWq3GV199haioKNGRqJX68ccfMXz48Aa/7uTkhEcffRQ7d+5swVTUmuh0Omzfvh2LFy+Gs7Mz3njjDTz11FPtotCyuLgYERERePjhh/HOO++IjtMmNfTZiOUGRETt09ChQ3HXXXdh69at9b5WVVWF4uJiq+XdlqUH2dnZ9VZ3bajE2/Sx4b6vry/LScmmLViwAEePHsWpU6dERyEiIhszduxY3LhxAz/++KPoKEQNeuONN7B161b8/vvvoqOQQP/9739xzz33IDs7G507dxYdh4jIll3iEuVE1Gqp1Wps2LABmzdvhk6nw4wZMzB//nz4+/uLjkZERERERNRmaDQa46Ap081yQJXpZjmREjBfVcawhYaGom/fvvUGXBk2Pz8/ODry9BUREbVdGo2mXiGBZVlBVlYWdDqdcR9XV1cEBgYaSwoUCkW9koLQ0FA4ODgIPDIiaivKyspw9uxZ48S8+Ph4XL58GQAgl8sRExODpUuXQqlUon///nB1dRWcmGxFWloa7rvvPnh5eeHkyZMICgoSHYlasaFDh8LX1xcFBQVWv15TU4OJEye2cCpqTRwdHTFt2jRMmDABy5cvx9NPP43t27dj06ZNbX6BhBdffBEODg5YuXKl6ChtVmBgIAIDAzF27Fjjc5blBq+//jqKi4utlhvwMxQRUduh0+mQmJiIJ554wurXDef1AgMDm/R6hmt0ltfkTB9nZmZi//79uHbtGmpqaqz+vJuVHkgkEgQEBLCIkFqUg4MD6urqRMcgIiIbNHPmTIwaNQrnzp1Dr169RMchsqqyshLu7u6iY5BgZ86cgbe3N0sMiIiawE5vOaqciMjGabVavPvuu8YL7XPnzsXs2bMhkUgEJyMiIiIiIrJtZWVlKCwsRGFhIYqKiupthYWFKCgoMHuuqqrK7DUcHR3h7e1db/Px8YGPj4/xvre3N6RSKaRSKby9vTmZkoiI2hWtVovCwsJGSwquX7+O0tJS4z4uLi6QSqVmhQSGsgLDcyEhIejUqZPAIyOitqympgYZGRlISEhAfHw8kpKSkJ6ejrq6OshkMrMJdzExMZBKpaIjk41KTEzE6NGjERYWhoMHD8Lb21t0JGoDnn/+ebz33nv1JmcBgKenJwoKCrjiLDXZyZMnMWvWLJw+fRqzZs3C66+/3iY/Z//3v//F0KFDsXfvXjz44IOi47R7luUGv/zyC8sNiIjamOTkZCiVSpw/fx4KhaLFf75paaq10gPT+/n5+aitrTXbXyKRWC05aOgx0Z+xePFiHDhwACkpKaKjEBGRjdHr9ejevTvuu+8+bN68WXQcIqvmzZuH48eP49dffxUdhQSaOnUqrl69isOHD4uOQkRk6y6xyICIWg29Xo/du3dj8eLFyMnJwdy5c/HKK6/A09NTdDQiIiIiIqIWZ1iFxdpKLJZbTk4OsrOzodVq672O6aAky81yUJJEIoG/vz9LCYiIqF0zDAg2FBJYKyu4evWq2UBgw/ttYyUFXPWMiBqi1+uxa9cuXLlyBYsXL26W16ytrUV6errZZLrExERUV1fD09MTPXv2hFKpRGxsLIYMGQJ/f/9m+bnU9h09ehQPPPAAoqOjsW/fPnTs2FF0JGojTpw4gbvvvrve805OTnj22Wfx7rvvCkhFrVldXR22b9+OV155BW5ubti0aRPGjx8vOlazqa6uRr9+/RAWFoYDBw6IjkMNsCw3SEhIgFqthpOTE8LDw83KDaKiouDi4tJsP/uXX35BYmIinnvuOTg7Ozfb6xIRtWfvvvsulixZgqKiolZxnk+tVjep9MDw2JSrq2ujJQemhQhBQUF8r6F6li1bhi+//BJnz54VHYWIiGzQqlWrsHHjRly/fp3lpWSTpk2bhszMTE5gb+eio6MRGxuLdevWiY5CRGTrWGRARK1DZmYmpk+fjiNHjuChhx5CXFwcwsLCRMciIiIiIiJqFoZSgsYKCUy/VlhYWG8FQtMBQ00pJJBIJJwwSUREZKK6uhpFRUWNlhRkZWWhoqLCuI+rq6tZOYG1soLg4GAOsCGi23bhwgVMnz4dCQkJcHJyQnl5+W1NYLOcJBcfH4+SkhI4OTmhd+/eiImJMU6Si4yMhJ2d3R04GmrrvvrqKzz22GN48MEH8cknn/D9j5pdly5dcPXq1XrP//zzz4iNjRWQiNqC4uJiLFy4EB999BH+9re/YfPmzejSpYvoWH/akiVLsGnTJly4cAHBwcGi49AtyMzMRHx8vPFzW0pKCiorK5u93OCRRx7Bnj17IJfL8f7772PkyJHNfCRERO3Pk08+icLCQhw6dEh0lGZXVVWF4uLiBksOTB9nZ2ejrKzMbH/DdcyblR7IZDL4+fnB0dFR0JFSS3nttdewd+9enD9/XnQUIiKyQVevXkVYWBi+/vprjBkzRnQconqeeOIJVFRU4KuvvhIdhQTR6/Xw9PTEunXr8Mwzz4iOQ0Rk61hkQES2TafTYf369Xj11VcRHh6OrVu3IioqSnQsIiIiIiKiBhlWaW5KIYFarUZBQQF0Op3Za1grJWiojMD060RERGSdYXUx02ICy7KC3NxcmF4ykUgkkMvlDZYUGG6JiO6E8vJyLF++HBs2bIC9vb2xyOzkyZM3vU5SWlqKc+fOISEhAfHx8Th58iTy8/Ph4OCA7t27m01+i46O5qqI1Cy2bduG6dOnY+bMmVi/fj1L8+iOWLp0KeLi4szKHQMCAqBSqVjAQn/asWPHMGPGDFy5cgUvvfQSFi1a1GrfI0+fPo0BAwZgw4YN+Mc//iE6Dv1JtbW1SE9PNyulOn36NG7cuGG13KCpn++Cg4ORnZ0NBwcH1NbWYuzYsdi0aVObKPIgIhJFLpdj8uTJePXVV0VHEa6hEnfTx4b7DRW4Wys5sHbdlMXtrdPrr7+OTz/9FGlpaaKjEBGRjRoyZAg6d+6MTz/9VHQUonoeeOABdOjQAbt27RIdhQS5fv06goKCcOzYMQwePFh0HCIiW8ciAyKyXVevXsUjjzyCs2fPYsmSJViwYAFXbiEiIiIiohZTXV2NwsJCFBUVoaioCIWFhWaPDc+Zfs1ydREA8PT0hK+vL7y9va1uvr6+8PHxMXvudlfRIiIiam9MC4Ss3WZmZuLatWtmA2FNB8EGBgZaLSsICQnhql9EJMw333yD6dOn1ys9c3R0xIYNGzBz5kzjc5WVlTh9+rTZxLa0tDTo9XrIZDLjhLbY2FgMGjQIHTp0EHFI1Mbt2LEDTz/9NJYsWYLly5eLjkNtWHp6OiIiIoyPnZycMH/+fLz55psCU1FbUl1djbi4OLzxxhvo3r07Pvroo1a30IJWq0X//v3h7e2NI0eOsOSjjfqz5QZqtRre3t5mZX5OTk6ws7PDvHnzsHTpUri7u4s4NCKiVis/Px/+/v747rvvMHLkSNFxWh1rRfHWSg/UajXy8vJQV1dntr9EImlS6UFgYCAkEomgoyRTK1euxM6dO3Hx4kXRUYiIyEZt2bIFc+fORW5uLjw9PUXHITIzYsQIhIWFYcuWLaKjkCBHjhzBsGHDkJeXBz8/P9FxiIhs3SWOwiMim3To0CE8+eSTkMlkSE5ONhuQQkREREREdDsaWvmjoecsV2UG/pj4aDnoJTw83Pic5dd8fHxa7cptREREoqnVamRmZjZaUqBWq43f7+zsDG9vb+P7sFwuR0xMjFlZQXBwMDw8PAQeFRFRwy5duoSZM2fihx9+gL29fb1B+cAfg2IcHBxw6tQpnDx5EmlpaaitrUVAQACioqLw2GOPITo6GlFRUZBKpQKOgtqbvXv34plnnsG8efNYYkB3XI8ePaBQKJCamgq9Xo+amho8/vjjomNRG+Li4oJly5bh8ccfx/Tp0zFw4EC88MILeO211+Dm5iY6XpOsWLECv//+O7744guWGLRhDg4OUCgUUCgUmDRpEgBAp9PhwoULxmKDxMRE7NmzB1VVVXB3d0ffvn3Rv39/KJVK1NbW1jv3bSgAfPvtt/HJJ59gzZo1xtcmIqKbS0hIgL29fasrQbIVbm5ukMvlkMvlTfp+tVptteTA8DgpKcnssSlr13sbKj0ICgritd47pKFzX0RERAYPP/ww5syZg3379uHvf/+76DhEZiorK1kC2c6lp6fDy8uLJQZERE1kp7e8KkFEJNiqVauwbNkyTJw4ER988AE/4BMRERERUT1VVVUoLCxEYWEh8vPzjfcbeq6oqMhsJVMA6NSpE3x9feHr6wsfHx/4+PjA29sbvr6+8PPzMz42bD4+Phz8S0RE1AxMV9cyFBJYlhRcvXoVtbW1xn0MK2oZBpKa3hpKCgICAmBvby/wyIiIbs+NGzewZs0arF69GsD/n0Rmja+vLzQaDfr06WO2yq5CoWipuERGX3zxBR599FHMmjUL69evFx2H2ok1a9Zg8eLF0Ol0kMvl+P3330VHojZKr9dj586deP755yGVSvHRRx9h6NChomM1KiUlBdHR0Vi3bh1mzZolOg7ZAJ1Oh4sXLxrLDZKSkpCcnIzw8HCkp6dDq9Va3c8wsXDIkCF4//33ERkZ2cLJiYhanwULFuDbb7/FuXPnREchC1VVVSguLm6w9MC0EOH69euorq42299QfGBZcmCtAMHPzw+OjlxjsCni4uLw4YcfIjMzU3QUIiKyYQ899BDKysrwww8/iI5CZKZPnz4YO3YsVq5cKToKCTJ37lycPHkSv/76q+goREStwSUWGRCRzdDr9Xj55Zfx9ttvY+PGjbywTkRERETUjmg0GquDRxp6Ljc3t96KUYYJjoYBI9YGkRg2rsZMRETU/Kqrq1FUVNRoSUF2djbKysqM+5gOAjUUEliWFYSGhqJjx44Cj4yI6M755ptvMGPGDOTl5dUrX7PGzs4OhYWFkEqlLZCOqGHffvstxo8fj2nTpmHTpk2i41A7kpWVhS5dugAAli9fjqVLl4oNRG1eTk4O/vGPf+Crr77Cs88+i7Vr16JTp06iY9Wj0+kwYMAAuLm54dixYyx5owbV1NRg/PjxOHTokFmBoDVOTk6oq6vDzJkzsWLFCp5TJyJqxODBgxEREYEtW7aIjkJ/UkPXrS1LD1QqFQoKCuqdz3F1dW1S6YFEImnX5bxvvfUW3n33XVy5ckV0FCIismGfffYZJk2ahIKCAnh6eoqOQ2TUtWtXTJ06FQsXLhQdhQQZNWoU/Pz8sGPHDtFRiIhag0usfSQim6DX6zF79mx8+OGH2LlzJyZOnCg6EhERERER3SbTVS0aKyMwPFdYWFhvxVHDpEbTwRxyubzBggJ/f384ODgIOmJqj/R6Pb799ltUVlaKjkLUKnTo0AGjR4+GnZ2d6Ch0m9RqtVkhgbWygry8PNTV1Rn3MZQMGUoKYmJi6pUUyGSydvP/xbfffouKigrRMYjIRhQVFeGDDz7AmTNnjCveNoVer8fGjRvRs2fPO5zQuvDwcPTt21fIzybbcfDgQYwfPx5PP/00Nm7c2KR9+D5IzSk8PBwZGRnw9PTEnj17RMehNmLo0KHw8fGp97xMJsO+ffvwz3/+E/PmzcMPP/yAjz76CMOGDROQsmErVqxAenq68bMFNU17fX/69ddfb1piAMB43n7z5s3YsWMHnnnmGQwYMOBOxyMiajYNvb83N61Wi6SkJEyZMuWO/yy689zc3ODm5obAwEAolcqbfr9Go7FacmC4Jp6ZmYn4+Hio1ep659AB87L+xkoPOnfuDC8vrzt12C3uVs6HtSS1Wo0ff/yx3qIKRET0593O9YX77rsPer0eP/zwAyZMmHCHkhHdusrKSri7u4uOQQJdvnwZAwcOFB2DiKjVsNPzN20isgELFizAhg0bsHv3bowfP150HCIiIiIiMtHQqhONPWfJdABGQ2UEhuc6d+4MFxcXAUdK1HSXLl1Ct27dRMcgalVSU1MREREhOgZZqKqqgkqlarCkQKVS4erVq2bFLaYrSpneyuVy4/2QkBA4OrJL2SAzMxN33XWX6BhERH9a9x4RSE9LFR2DBIqPj8fIkSPx+OOP46OPPmrSZFm+DxJRa7B06VK8/vrrjX5Pbm4uZs6ciX379mHGjBlYs2aNTQxYPnPmDKKiorB27VrMmTNHdJxWg+9PRERtX1Pe35vDzz//jCFDhuC3337jewvdlKE02Nq1dstCBLVabbavtcUArD0ODAxEUFAQnJ2dBR3lzW3YsAFvvfUWrl+/LjqKmbi4OLzyyiuiYxARtUm3e31h8ODBCA8Px/bt2+9AKqLb4+HhgfXr12Pq1Kmio5AAer0e7u7ueP/99zF58mTRcYiIWoNLHEVIRMK99957WLt2LT7++GOWGBARERER3WGGUoLGighMny8oKIBOpzN7DWsDJORyeYODJgICArgKGLU5hr8X677+EaHdODGbqDHZv1/C3L/9X733E7rzDAMic3JykJmZ2WBZgYGzszO8vb3N3t9jYmLMygruuuuuNrXqU0sx/P+/dt8PCItQCE5DRLZCV1ODAlU28rOzkJedhbxrV5GffQ05Vy8jLzsLN8rLjN/r5OwM2NmhRqtF9LD78PI7LT9g7z8fbMSJ/f9p8Z9LtuP8+fMYN24cRowYgQ8//LDJv+vzfZCIbN2CB0c2aXX6gIAA/Oc//8GePXvwj3/8AwcPHsT27dsxdOjQFkhpnU6nw9SpUxEVFYVZs2YJy9Eatdf3pzO/HMPrTz8GAHBwcISdvR10NTXGr3eSSBEQHIrg8O6QhYYhIDgU/iFdIAvpgg6dPETFJiK6ZU19f28OR44cQUhICEsMqEkM19CbwvTafkOlB5mZmcjJyUF2dja0Wq3Z/obr+pYlB9YKEPz8/Fq0nNje3h51dXV39GdUVlbC2dkZTk5OTd5Hp9Ohcxc5Nh2Kv4PJiIjanz9zfWH06NHYtGkT9Ho97OzsmjkZ0e25ceOGTRSckhh5eXnQaDTo0qWL6ChERK0GiwyISKjPPvsMs2fPxltvvcUmKiIiIiKi23Djxg0UFhYiNzcXBQUFxi0vLw8FBQUoLCxEXl4e8vPzUVRUhBs3bpjt7+zsDB8fH+Pm5+eHLl26oH///mbPmX7PrVzoJyIiouan0WjMigislRRkZWWZlUe4uroiMDAQcrkcMpkMCoXCWE5guA0NDYWDg4PAIyMial8cnZwgCw2DLDTM6tdvlJchL/sa8rOzjGUHOVcvs0iLhLh27RpGjx6N3r17Y/fu3S06uYGIyNY8/PDDGDJkCJ577jkMGzYMzz77LNatWydk8PLq1auRlpaGlJQUlslSkzg6OSEgpAt8ZJ3RWd4VASGhCAgJ++M2uAucXV1FRyQianWOHj2KYcOGiY5BbZCbmxvc3NwQGBgIheLmxUuG4oOGSg/UajVSU1MbXdCgKaUHzbGYQUsUGdx///04d+4c5s2bh+nTp0Mqld7Rn0dERHfG6NGjsWjRIiQnJ0OpVIqOQ4SqqirU1tayyKAdu3LlCgAgNDRUbBAiolaEowuISJijR4/i73//O2bMmIEXXnhBdBwiIiIiIptQXV2NgoIC5OfnIy8vD4WFhcbH+fn59YoKKisrzfbv0KEDfHx8EBAQAF9fX/j5+UGhUMDf3x8+Pj7w9vaGj4+P8WudOnUSdKRERERkSavVorCw0KyQwLKs4Pr16ygtLTXu4+LiAqlUahxAqFAoMHbsWLOSgpCQEL7nExG1Qh06eSAsQtGuVggm21RYWIiRI0fCy8sL+/btgysnOBIRwd/fH/v27cOePXvw3HPP4fDhw/j4448xZMiQFsuQlJSElStXYs2aNQgPD2+xn0utmyJqIN79/hfRMYiI2owbN27g+PHjmDp1qugoRGbFB02Z6GlammytAOH/sXffYU2dfxvAbwgC4gKUkTCU4Cpqq2LrtnXWXbeWiritCnVWW7dSrVhtq7b6c9RZa9Faa6u2VVoXbq1djoKgzDCUKA5AIHn/6JuUJSSQ5CFwf66LixDOuJ/nnOQ5SU6+Jzo6GuHh4VAqlUhOTs5XeEDz2URRRQ4K/u3m5gZ7e/t865ZIJMjNzTV4H+QVFRWF1NRULFy4EEuXLsX48eMxffp01K9f36jrJSIiw3rppZfg6emJI0eOsJABlQua8zVZyKDyiomJgUQigZubm+goRERmg4UMiEiI33//HQMGDMCgQYOwbt060XGIiIiIiIxKqVQ+94oHBf9OSkqCWq3WzlvUCQCtW7cu9oQAIiIiKn80xwNFFSnQ/I6Jicl34p6Dg0O+ggS+vr6Qy+X57pNKpbCwsBDYMiIiIqrInj59iv79++PZs2c4ceJEoS8eEBFVdkOHDkXHjh0xceJE3cwCaQAAIABJREFUdO7cGYGBgVi1ahVsbGyMut7MzEyMHj0abdu2xTvvvGPUdREREdHznT17FllZWejcubPoKER6q1q1KuRyOeRyuU7T5z3voahzHq5evaqd5sGDB/nmtbW1zXdOw6NHj/D48WOEhIQUOt/B3d0d1tbWZW7fvXv3AAC5ubnIzc3F5s2bsWHDBvTs2RMzZ85Et27dyrwOIiIyje7du+OXX37BokWLREchwtOnTwGARZ8rsZiYGLi5uaFKlSqioxARmQ0WMiAik0tMTETfvn3x8ssvY8eOHbC0tBQdiYiIiIhILyVdmSDv3ykpKYWuJKD5UqLmw3i5XI727dsXWZyAX04kIqLKSKlUIjIyEq+88oroKCXKysrC/fv3oVAoEB0dXWSRgtjYWDx+/Fg7j62trXa811wZKe/fcrkcHh4e/NCTiIiIhMrOzsagQYNw+/ZthIeHw9XVVXQkIqJyydXVFd9//z127dqFwMBA/PLLL9ixYwdatWpltHXOmjUL8fHxOHLkCM+5ICIiEujEiRNo1KgR3N3dRUchMjrN+Qy6yMjIKPZCDxcuXEBOTg42b96M+Ph4PHv2LN/8msIHec+dKOoiD1KpFC4uLpBIJPnmz8rK0n7JUCM7OxsAEBYWhh9//BHNmjXD7Nmz4efnBysrfqWCiKg8a9u2Lfbu3YucnBw+Z5NwmZmZAP4tCkWVk0KhgJubm+gYRERmhUdwRGRSGRkZGDhwIGrUqIH9+/cbpGoqEREREVFZFSxMUFxxgtTUVOTk5OSbP++XEUsqTFDUh+hERET0r8TERHz88cfYsGEDcnNzkZGRIfQLGZorB+UtTFCwWEFSUhLUarV2Hs2xgFQq1R4TFCxSoOuJfkRERESiqNVqjB8/HufPn8eJEyfQsGFD0ZGIiMq9UaNG4dVXX8XYsWPRtm1bzJo1C8uWLTP4eRHHjh3Dxo0b8dVXX8HT09OgyyYiIiL9/Prrr+jSpYvoGETlTtWqVVG1alXIZDI0adKk0P+3bduGadOmISoqCsC/n8ckJyfj3r17SE1NRVJSElJTU5GamoqUlBTExsbi6tWr2v/n/VxGIpHAyckJTk5OcHZ2houLC2xsbPJNk5emoMGNGzcwevRozJs3D0FBQZg0aZIReoKIiAyhdevWePr0Ka5fv46XXnpJdByq5LKysgAANjY2gpOQKMnJyXB2dhYdg4jIrLCQARGZjFqtxpgxYxAVFYXz58/zhG0iIiIiMhpNdX9dihPExcVpP6jWKFiYwMHBAU2aNCmyur+zszMrPRMREZVRZGQkQkJCsGvXLgD/nUSWkpJilCv/5i1i9LwiBQWPEfIeH8hkMnTr1k17W/O7bt26LFhEREREFcLMmTPx9ddf4/Dhw2jZsqXoOEREZqNu3boICwvDli1bMGvWLBw9ehQ7d+5EixYtDLL8e/fuYfTo0fDz88OIESMMskwiIiIqnUePHuHq1auYNWuW6ChEZsfS0hIqlUr7t+Y8DF3k5uZqCxoUVfQgOTkZN27c0Gk5AJCQkID58+dj2bJlaNmyZb5cRERUPvj4+KBmzZq4ePEiCxmQcJmZmQD+PYeEKqfk5GTUr19fdAwiIrPCb1oQkcnMmzcP3377LX7++Wc0aNBAdBwiIiIiMiOZmZlITU1FYmKi9sNnzYfReSvya24/e/Ys3/z29vZwcXFBnTp14OTkBJlMhubNm2ur8ru4uGhv16lTh4UJiIiITOTPP//EqlWr8PXXX8PS0rJQcaHExES9Cxkolcp8BQkK/o6KisKDBw+001tbW6N27draggRNmjRBv3798hUp8PDwQM2aNQ3SZiIiIqLybvny5Vi/fj327duH7t27i45DRGR2LCwsMHHiRHTv3h1jxoxB69atMXPmTAQHB6NKlSplWvaUKVMgkUiwfv16A6UlIiKi0jp58iRyc3Px2muviY5CZHYKFjLQh0QigYuLC1xcXJ47zc8//4yePXvqvEwLCws8ffoU4eHhcHR6/nKJiEgMS0tL+Pr64uLFi5g4caLoOFTJsZABpaSkoH379qJjEBGZFX4zg4hMYufOnQgJCcH27dvRuXNn0XGIiIiIqBx48uQJkpKSkJycjNTUVCgUCqSkpGiLFOS9Pz09Pd+81atXh4uLC5ydnVGnTh24ubmhZcuW2r+dnJzg6uqqvW1tbS2olURERFSU8PBwLF++HD///DOsrKyQm5urvfJNXgkJCdorAGdkZEChUBRbpCAmJibfchwcHPIVJGjSpAn8/f0hk8kgl8shlUrh6uoKS0tLk7WdiIiIqDzbuXMnFi5ciI0bN2LQoEGi4xARmTUvLy+cOHECW7ZswYwZM3DixAns2LEDL7zwQqmWt23bNhw4cADHjx/X+Wq1REREZDy//vormjVrBicnJ9FRiMyORCIp8nMhQ0lOTi62WIJEIoFarYZKpYKbmxu6dOmCDh06ICoqCnv2fWO0XEREVHqtW7fG999/LzoGEQsZEJKTk4stqkVERIWxkAERGd2VK1fw9ttvY86cOQgICBAdh4iIiIiMKCMjA0qlUvuFwufdVigUUCqV+ea1tbWFg4OD9ouGPj4+kEql+e5zcHCAm5sb7O3tBbWQiIiISkutVuOHH35AcHAwLl++DCsrK6jVamRnZxc5vZWVFTZv3ozp06cjMTFR+2EwANjZ2cHDwwNSqRTu7u5o164d3Nzc4ObmBplMBnd3d7i6urKYEREREZEeTp06hUmTJmHevHmYNGmS6DhERBWChYUFJk6ciI4dOyIgIAAtW7bEkiVLMHv2bEgkEp2Xc+fOHcyYMQOzZs1Cly5djJiYiIiIdHX06FEMHDhQdAwis1RckQFDuHfvHqysrPDs2TMA0B575+bmwtXVFT169EDXrl3RpUsXuLu7a+dbvny50TIREVHZtG7dGqtWrcKjR49Qo0YN0XGoEsvKygIA2NjYCE5CIuTm5iItLQ3Ozs6ioxARmRUWMiAio7p//z6GDRuGDh068A0+IiIiIjOlufpxcYUJlEol4uPjkZ6enm9eW1vbfEUI5HI52rdvX6g4gaenJz9gICIiquD69++PmJgY7cliOTk5xU4vkUhQtWpVjBs3Du7u7pBKpdpiBbVq1TJFZCIiIqJK48aNGxg4cCAGDBiA4OBg0XGIiCqcF154AefOnUNISAgWLVqEw4cPY8eOHfD29i5xXpVKhTFjxsDDwwPLli0zQVoiIiIqSVRUFCIiItCnTx/RUYjMkkQiMXohA00RA0dHR3Tv3h1du3ZF586dUb9+faOtl4iIjOeFF16ASqVCVFQUmjdvLjoOVWKai3DY2toKTkIiPHz4ELm5uXB0dBQdhYjIrLCQAREZTU5ODoYMGQK1Wo29e/fqdTUBIiIiIjIupVJZYmEChUKBuLi4QldJdnBw0BYgkMlk8PX1LVSYQCaTwcPDA1WqVBHUQiIiIiovnj76t9CRpohBbm6uTvPl5uaiZs2amDdvnjHjEREREVV6CoUCvXv3RtOmTbFz505YWFiIjkREVCFZWVlh/vz56Nu3LwICAtC8eXN8/PHHmDBhQrHzrVixAhcvXsSlS5d4gjQREVE5cejQITg4OKBt27aioxCZJUtLS6jVaqhUKlhaWhp8+X5+fvDw8ECnTp3QpEkTgy+fiIhMr169erC0tMSdO3dYyICEyszMRJUqVfj9qEpKc7G3mjVrCk5CRGReWMiAiIxm9uzZuHjxIsLDw1GnTh3RcYiIiIgqvJKKE2h+p6amFroCsqY4gaYYgVwuL1SYQCqVwtnZGVZWfClJREREurOr8e+Hdzt37oRCocDPP/+Mc+fOISsrC9bW1sjJySnyqjs5OTmIjY01dVwiIiKiSuXp06cYOHAgrKyscODAAdjY2IiORERU4b300ku4fPkyli9fjsmTJ+PAgQPYtm0bZDJZoWnPnDmDpUuXYs2aNWjWrJmAtERERFSUI0eOoFevXvzsnKiUNMULjFXIoGnTpmjatKnBl0tEROLY2NhAKpUiOjpadBSq5LKzs2FtbS06BgnCQgZERKXDd9CIyCj27t2LdevWYc+ePWjZsqXoOERERERmKSsrC/fv339uYYK8t1NSUvJd3djW1hYODg75ihA8rziBq6urUT4YJiIiIsqrRYsWGDVqFObOnYtnz57hypUrCA8Px8mTJxEeHo5Hjx7BysoKFhYWyM7OBgAWMiAiIiIyotzcXPj5+SEqKgrnzp2Dk5OT6EhERJVGlSpVsGTJErz++usYNWoUmjdvjs2bN2PAgAHaadLS0jBy5Ej07NkTQUFBAtMSERFRXunp6QgPD8f27dtFRyEyW5orGBdV6JqIiOh55HI57ty5IzoGVXI5OTnaYxmqfB4+fAiAhQyIiPTFQgZEZHCRkZGYNGkSgoKC8Oabb4qOQ0RERFSu5ObmIiUlBUlJSdoCBAkJCUhJSUFiYiKSk5ORmpqKxMREPHr0KN+81atXh1QqhbOzM5ycnODp6QlfX184Oztr79fcrl69uqAWEhGRsSwdOxyLt4WKjkFkENbW1mjXrh3atWuHOXPmQKVS4fr16zhz5gzOnDmDX3/9FSkpKXjw4IHoqERmi+MGmRPur/9hX5ApTZ8+HceOHcMvv/yCBg0aiI5jUHwsEZG5aNu2LX777TfMnj0bAwcOxNChQ7F582bUqlULY8aMgVqtxo4dO2BhYSE6KhkAxycyNEPvU9xHjY99XDH89NNPyM3Nxeuvvy46CpHZ0lxsI+8FOyorjg1ERLrz8vJiIQMSTqVS8cJhlVh6ejoAFjIgItIXCxkQkUFlZWVhxIgRaNiwIVatWiU6DhEREZHJPHnyRFuIQKFQQKFQIDk5OV+xguTkZKSkpOSrKF+tWjXIZDK4uLhAKpWiRYsWcHJyyleYwNXVFS4uLqhatarAFhIRUVkNbiwDABy4lViq+dVqtSHjVEiDG8tK3b/0n7Luq6VhaWmJZs2aoVmzZpgyZQoA4O7du3j69KnJMhCVNxw3jK88jBsinnPLI+6v/8nNKd3J2+Vhfybzsnr1amzYsAH79+9H27ZtRccphOOg8fF5w3zx+KHiqVGjBjZt2oQBAwZg3LhxaN68OXr16oWjR4/i5MmTqF27tuiI9P84Phkfxyf9lHafet6+zH3U+OMs+7hiOHLkCNq3b88xmqgMNF/+y3v+jLniMaLx8RiRyLjM6THm5eWFS5cuiY5BlVxubi4kEonoGCRIeno6JBIJ7OzsREchIjIrLGRARAY1e/ZsRERE4MqVK7CxsREdh4iIiKjMlEolEhMToVQqoVAokJiYWOi35n95OTg4QCqVwsHBATKZDK+++ipkMhmkUqn2t+Z/RERUORy4lag9kaU0lmzfZ8A0RM9X1n3VUOrVqyc6ApFQHDcqh/LynCsa99f/LNv1jegIVAl88803mDt3LtasWYNBgwaJjlMkjoNEz8fjh4qrV69e+P333zF06FD873//Q/v27dGqVSvRsSgPjk9U3pR2n3revsx91PjjLPvY/KlUKvz000+YNWuW6ChEZk3z5b+KUMiAx4hERKbj6emJhIQE0TGokmMhg8otIyMDVatWhYWFhegoRERmhYUMiMhgDh8+jM8//xy7d+9Go0aNRMchIiIieq7MzEykpaU9tyCB5r64uDhkZ2dr57O1tdUWH5BKpZDL5Wjfvn2++2QyGTw8PFClShWBLSQiIiIiIiIiIirst99+Q0BAAKZOnYrp06eLjkNERAVYW1sjLi4OzZo1wx9//IFWrVph9+7daN68uehoREREBODixYtISUlB3759RUchMmuWlpYA/v0iIBERka5q1aqFR48eIScnB1ZW/DocicFCBpUbn3+IiEqHz5xEZBDx8fEYNWoUxo8fj7feekt0HCIiIqqkMjIyChUnKKpIQVJSEtRqtXY+W1vbfIUIfH19tX/nLVIglUpZRZOIiAwuNvIWdq9ejhuXLwAAGrd8GQFzF8GzQWPtNJqreBy4lajzcjXzfH7sHHZ9FIy/L57Fk/T0fMuJjbyF3R99gBtXLgIAfFq1hv+7C3Ra9/Puv/zrMRzc8hmir/8J+zrOaN29F0a88y6qVqteaN5NJ65ga/A8/HXhLGyqVsVL7Tph7Pxg1LB3KHUf5b3iSdchb2LKB2t06i9d+kIXcbf/wa5Vwbh++QIsLS3RsLkvxr6/FNP6vgbgv/7St1916QOd26njcu4pEnXaPkRkWhw3xI4beadftusbNHmlHcKPHMInsyZr79e0UZe2PY8+fV3cNtOlLWuPnMJn82Yg5p8b8G7yIgI//BTZz7Lw+byZiI38B/WbNcc7IWtRR+qWb/6S2pe3r2as2YgOfd5A1N9/YM6QXvn6qqh9o6zZDDGuazMcPontK5fgn2tXoFKp0OSVtgiYswju3g0KTWuMx48h9mdDHeeQ+UtOTsaAAQPQrl07fPzxx6LjlArHQfGvn0Q+Pxp7XLh76wZ2rVqGW79dhqVEgsYtX0bfgAlo3uE17TS6ju9GeY0pkaBZm/YYNz+4yGkN8brR2McHeddR3H5hyG1hTtRqNcaOHYuMjAycO3cOmZmZCAgIQNu2bbFkyRK8++672i98UfnC8Un8+ATo9txhsnFHx7aW5bmwLNuvKMW9NiuoirU1vv7zrl7r4zhbfB/r+ljS9/3nEp8/SmjT00fpCP1sDS798jOUKUmoVtMezTu8hp5+AWjwYgudp9Gur4TtpuuyRDp8+DDq1asHHx8f0VGIzJrmuFalUglOYjw8RhR/jGio8bAsx4f69LMx+6+4PjDX4zmh71HpsE59l2mM7a7LMnX6fMEA5ykYir29PQDg4cOHqF27tpAMRCqViu/RVWLZ2dm80B0RUSlw5CSiMlOr1ZgwYQJq165ttic9ERERUfmVlZWFxMREXL16FT/88AN27dqFkJAQTJs2DcOGDUOHDh3g7e0Na2tr2NnZwdvbGx07doS/vz9CQkIQFhYGpVIJBwcHdOvWDXPnzkVoaCjOnDmDqKgoZGVlISMjA1FRUQgPD8e+ffuwdu1azJ07F6NGjUK/fv20hQ1YxICIiAwtKfYulo4ZgVadu2Nj2AX879dLeLX/YKycMgb3kxTa6fQ5eaXgPJuXvIc3xk7G1tO/Y/7mL/Ot+4MJb6Ht632xMewCNhw/j9bdeyN4vB+SYu+WuO7n3b9yymh0HjgMOy/dxMp9h/H44QNsDV5Q5LwbFszC628G4Ivw37Hqm5+QlZmBnSHL8k2rbx8duJWo/dH1JGdd+0Kf5fzvl4vY+MtFdBk0Ah/PnJwvY8HbRfVNweXq0ge65NNnOQW3T052dqHtQ0SmxXFD/Lix/3ocXD3rYeelm2jySjsAQIc+b2DrmWuoXrMWvrp2W6+2FUXfvn7eNiuJZv7Qz9YgcMUn+OLM76jXuAk+fTcQX69bjcAPP8XW07/B3bsBdqxcWmj+ktq373osWnbqgklLQ9ChzxsAAO+mL+HddVvgUb8Rtp/7K18OQ2Uz1LiuybBmxtvoPHA4Nv5yERvDLqB1t14IHu+HlIS4QtMa+vFjiP3ZUP1B5i87OxvDhg2DlZUV9u7da5ZXi+E4KH4czDuviOdHY44LiXejsWbGJAwYPxXbL/yNlaGHkZnxFMHj/fItT5dtZqzXmBuOn0fbHn3w8Yy3i5zWEK8bjX18kHcdz9svDLktzM26detw6NAh7NmzB66urqhXrx5OnDiBlStXYtGiRejYsSOioqJEx6QCOD6Vj/FJl+cOU407+rS1LM+FZdl+RSluP9H8hP4VA++mL2HMvP+2sS7r4zj7r+Je/+r6WNL3/efinj90adP696ahWo2a+DD0B+y+EoEFm79EUuwdvDesj17T6LrddFmWaPv378eQIUNExyAye5qrGFfUQgY8Riwfx4iGGg/LcnyoTz8bs/+K+xzBXI/nRL5Hpcs69V2mMba7Lsss6fMFQxwHG1KNGjUAAI8ePRKyfiIAyM3N1R7LUOXDQgZERKVjfmcnEFG5s27dOoSFhSE8PBzVq5vv1Q2IiIjItDIyMqBQKJCYmKj9rVQqC92XnJyc74NLW1tbyGQySKVSyGQy+Pr6wsHBId99UqkUrq6urHpKRETlXuj61eg3eiJeHzFKe1+n/oORk52NQ19swNjnXP1JH4PffgeNWrQCALTs1OW/Ey3Wr8YbYyejy+AR2mm7DfVDxuNHCP1sDaatWl+q9eU96cLGtirGzFuGqd3bFjltT7/RaNGxMwDA1q4aRs6ch8UB+U8ANEUfGaovQj9bg/5j3s63HM0XN/Neqbs0+QzRB/oup+D28Z89H/P93ih1O4io7DhuiB83LCUStOvZD2d++Ba93hqjvf/kwf1o3/sN2FS1K1XbCrZBn75+3jbTVU+/AO1VggZNegcTOrWA/+4D2vsGT3oH7w5+vdB8JbVPIrHC7LWbsWT0cNjXdsIr3Xrij7On8NWnIViyfR9qOpZ8pZzSZDP0vjpk8nS0792/8LLWr0HQyk/zTWvox48h9mdjPXbJ/EydOhXXrl3D+fPnUadOHdFxSoXjoPhxMC8Rz4/GHBdC16/GkLen4cV2HQEA7vUbYkrwagT16phvebpsM2O+xuzUfzByc3Pwz+9XC63TkNveWMcHeRW3XxhqW5iTK1euYO7cuViyZAm6dOmivd/S0hLTpk3TFnD29fXF+vXr4e/vLzAt5cXxqXyMT7o8d5hq3NGnrWV9LiyKIZ8fC76+3LZiEaR1vfK1T9exkeNs8XR6LJXi/efi9jFd2vTn+XBMXfEJqtf698q3Xj5NMW3Vekzu1kY7ny7T6LrddFmWSL/99hsiIyMxdOhQ0VGIzJ7mfJ7c3FzBSYyDx4jl4xhRo6zj4X/tKt1rZX0Zo/+K+xzBXI/nNES8R6XLOvV//WH47a7LMotjyseprjRfHs7JyTH5uok0WMigcsvJyTHLYuFERKLxWz1EVCa3bt3C+++/j4ULF6J169ai4xAREVE58ODBA1y/fh3Hjx/Hrl27sGLFCrzzzjsYOHAg2rVrB09PT9ja2sLOzg7e3t7o2LEjRo4cidWrV+Onn35CUlIS3Nzc0LdvXyxatAgHDx7E+fPnERsbi8zMTGRkZCAqKgrh4eHYt28f1q5diyVLlmDixIno168ffH19IZPJWMSAiIjMwp/nzuT7gFuj5Wtd8ce50wZZR/0XWzx33a9061no/tbde+HPc2cMsm4AqF6zFh4/fFDk/3xezn/yoZObB5SpKYVyGruPDNUXf549XeRyXmrfqcz5DNEH+i6n4PapI3UrtH2IyLQ4bpSPcaPL4BE48W1ovvt+ObAX3YeNLHa+4tqWl759/bxtpiu5TzPtbYc6ToXuc3R2QXra/RKXU1T7bKra4b0N27F37Sr8sGMztn6wAAu27IGji6vRshl6X9WcmFlwWX+cPVXofkM/fgyxP5vqsUvl29q1a/HFF19gz549aNKkieg4pcZxsHyMgxoinh+NOS78feEsmrXN3yaZl3eJBYKK2mbGfo2pOQG94DoNue2NeXyg8bz9wpDbwlzcv38fQ4YMQceOHTF//vwip2nZsiWuXr2Kt99+G6NHj8aQIUPw4IF5trei4fhUPsYnXZ47TDXu6NNWQz8XFsVQz4/hR77D3xfPYnLwR3qvj+NsyXR6LJXi/efinj90aVOj5r74cHIArp05gdzcf78s5uzumW/b6TKNrttNl2WJtG/fPnh6euLll18WHYXI7GnO6cl7YZOKhMeI5eMYUaOs46GGoV4rl8QY/afP5wjmcjynIeI9Kl3Wqe8yjbHddVlmcUz5ONWV5svjLGRAIrGQQeWWnZ2tLapCRES6YwkYIiq1nJwcBAQEwMfHB++//77oOERERGRkGRkZiI+PR1JSkvZ3XFyc9m+FQoGEhARkZGRo57G1tYVMJoNMJoObmxtat26NQYMGwcXFBVKpFFKpFC4uLmZ7FTgiIqKyevRAibe7vFLk/6xtbQ2yDhvbqkXen/4gDfZ1nAvd7+DkgkfKtFKtKz3tPr78eAWunTmBB/dSoSrhKirVa9bK93cVa2uo1ep895mijwzVF89bTg17hzLlM1Qf6LucgtvHUiIptH2IyLQ4bpSPcUNa1wvWtra4e+sG6jX2wY3LF2BXvQa8fJpqp9G3bXnp29fP22a6qlqtuva2xf+fQFzwvoL9rE/7atWug0GTgrB+7jT0HT0Rzm4exs1m4H21qHHcwanoE1IN/fgxxP5sjMcumZewsDDMnj0by5cvR79+/UTHKROOg+VjHNQQ8fxozHEh/UEaajo4FplTO42O28zYrzGLus/Q297YxwdA8fuFobaFOVCpVBg5ciTUajW++uqrYos029raYuXKlejevTv8/f3RvHlzfPXVV2jXrp0JE1NBHJ/Kx/ik03OHCcYdfdtalufCIucz0vNjQvRtbFuxCEt27IOtXTW918dxtmS6PJZK8/7z8/YxXds0e+1m7Pv8Y2xZNg/paffh5dMUbbr3Rk+/AEisqug8ja7bTZdlifTNN99gxIgRsLCwEB2FyOxpvvxXUQsZ8BixfBwjapR1PNQozfFhaRij/567v5jx8ZyGiPeodFmnvss0xnbXZZnFMeXjVFeaq6DnmvF7QWT+1Go1XxNUYiqVihfaIyIqBRYyIKJSCwkJwd9//41r166xohQREZGZUyqViI6ORmJiIhQKRZG/k5KS8r2R7eDgAKlUCplMhnr16qFdu3aQy+Xa+6RSKVxdXfmGDRERUTFqODhi7dFThT5ANoWa9o5QpiYX+jKhMjUZNQqchGBhYYHsZ89Qxdpae19RV9hYOycIbl7eWP7VIdR2lUIi+fftx8GNZaXOaYo+0qcvSlrOg3spcJK557v/wb2ir2qga78aqg9E7m9EZBgcN0pmqj7qMmgEfj2wF2PnB+OXA3vRffjIfP8vS9sMNS4Zkz7tS7xiQo+PAAAgAElEQVQbjW/+txYfffszVgWNQ/ve/eHd5EWjZTN0/z24nwr72k6FllXTsbbRMxlifzaH/YmM586dO3jzzTcxYMAAzJ07V3ScMuM4WDJT9pHI50d96LqOGvYOSFemwdHZ5bnL0nWbGfs1pjFfN5aFofZpQ24LczB//nycPHkSp0+fhpOTU8kzAOjatSv++OMPBAQE4NVXX8X8+fOxaNEifh4jCMenkpmij3R57jDFuGOw9/F0aE9RjLH9sjKeYtU74+E/ez48GzQu1fo4zhqGvu8/F0fXNtnVqInR7y3B6PeWIF2Zhr/Oh+Pwzi24ceUi3l23RedpdN1uuixLlMuXLyMqKgpDhw4VmoOootAcu1bUL6LyGLFk5WF8NVUGXftZH4bKbs7Hcxoi3qPSZZ3GeP1h6sdNeXicFpSZmQng32KPRERERGQ++AkWEZVKREQEPvjgAyxZsgQNGzYUHYeIiIieQ6lU4vr16wgLC8OuXbsQEhKCadOmYdiwYejQoQO8vb1hZWUFR0dHtGrVCv3798e0adOwe/duREdHw8HBAd26dcPcuXMRGhqKM2fOICoqCtnZ2UhLS8P169dx/Phx7Nq1CytXrsTEiRPRr18/+Pr6QiaT8aQ5IiKiEjTv8BquXzxX6P6bVy7i3UGvG3XdL7briIvHjha6/+LxH/Fiu4757rOv44x7ioR89924fKHQvP9cu4LhQe/C2c1De2LCs///ILm09Omj0lY816cvivNSh1dxKeynQvf/Hn6yyOl17VdD7Sci9zciMgyOGyUzxbgBAO169cOlX35Getp9XDtzAh36DMj3/7K0zVDjkjHp2r4H91OxcspoTAlejbqNXsD0jz7DhvkzkZ2VZbRshu6/38+cLHJZL7V/1eiZDLE/m8P+RMbx6NEj9O/fHx4eHti5c2eFuDoQx8GSmWocBMQ+P+pD13U0eaUd/jx3Ot80d2/dwLQ+/7VH121m7NeYBXMC5eP1nqH2aUNui/Lu0KFDCAkJwWeffYaXX35Zr3mdnJxw5MgRrF69Gh9++CF69OgBhUJhpKRUHI5PJTPF+KTLc4cpxh1D7Q+6tKcoxth+/1s8Fw1fbIHOA4dr79N8GU3X9XGcNQx9338ujq5tGtxYhvtJ/44vNR0c0b53f8zfvBt/nD2l1zS6bjddliXK/v374eXlBV9fX9FRiCoEzflEKpVKcBLj4DFiyUz5HoYhMpSFrv2sD0NlN+fjOQ0R71Hpsk5jvP4w1j77vMdYeTkOzuvJkycAADs7OyHrJyIiIqLSsRIdgIjMj1qtxuTJk9GoUSNMnz5ddBwiIqJKKSMjAwqFAomJiUX+jo6ORlxcHLKzs7Xz2NraQiaTQSqVQiaTaYsNaP6WSqWoW7cuqlevLrBlRERElcvwoFlYOXk0VKpcNG3dHlZVquD65fPYtHguJixcYdR1DwuchUWjBqNq9Rp4uUsPWFhY4PKvx/D9jk0I3v1tvmlfat8Jez7+EGPeX4pqNWvi1m+X8fPXuwots1GLVti9OhiDJr0DR2dX3FMkYP+GT8qUU58+cnRxxT+/X0X9pi/i74vnsGHBLGw6ccWgfVFsVs1yqlVHq87dYWFpiT/OnsKx0C+LnF7XfjXUfiJyfyMiw+C4UTJTjBsAYGtXDU1bt8en7wbi5S49ULVa/tfSZWmbocYlY9KlfVkZT7Fi0igMGD8VjVq0AgA0eKklOg8cji8/XoEx7y81SjZD99+x0N2QWFmheYfXoFapcPnXYzi8ayuCv9R9WaXNZIj92Rz2JzI8lUqFkSNH4t69e7h06VKFOamT42DJTDUOAmKfH/Wh6zqGTJ6GVYHj4OjsikYtfJEUG4PP581A75FjtdPous2M9RrTUiLBn+dO48CmdYWnLQev9wy1TxtyW5RnERERCAgIwKRJkzBu3LhSLcPCwgLTpk1DmzZt4Ofnh5YtW2L37t3o1q2bgdNScTg+lcwU45Muzx2mGHcMtT/o0p6iGHr7HQvdjbs3ryNkf+EvYOmzPo6zhqHv+8/FLkuPNm1YMAuj31sMV08vPHn0EEd2bi305buSptFnu+myPlNTq9XYv38/RowYUSGKxBGVBxKJBACQm5srOIlx8BixZKZ8D8MQGcpC137Wh6Gym/PxnIaI96h0WacxXn8Ya5993mOsvBwH55WRkQGAhQyIiIiIzI2FWq1Wiw5BROZl06ZNCAwMxIULF1hhmIiIyMCysrJw//79QkUJ8hYqSEhIwMOHD7Xz2NjYwNHRsVBRgry/vb29YW9vL7BlREREFcvNmzfh4+ODj7//BXUbvqDTPJqrVAHAgVuJ2tuKmDv4cs0K/Hn+DHJzcuBRvyEGTQxC6+69SpxX1/U9b76YiJvY/dEHuHHlIgDAp1Vr+L+7oFCb0pVp2LZ8If44dxpZGRlo1qY9Jiz6EJM6t8q37If372HnqmX4PfwknqQ/hKyeN4ZOmY41M97ON93z2lOWPgKAcz/9gN2rlyMtWYE6UjeMfm8JXu7SQ6f+0rUvShJ3+x/sWhWM65cvwNLSEk1ebotxCz/A5K6tC20DXftVnz4oSVn2t9LshwAQHxWJaX1exZ9//olmzZrplZeoooiIiECjRo2w+uBxeL3QRKd5OG6U73ED+PeKMwtGDsTKfUfQ4MUW+f5X1rbp0te6bLPiFLVuXe/TpX2a+exrO+GLs38AAB7cS8G4Ds3zLa8sOcrSf7oY3FiGjb9cxBfBC3D98nmoVCo0ebkNAuYuhrt3g3zT5VXax49apcKwZnWx/3qc9j5D7M+G6o8D/1uLi4cP4HZkpF7zkemtWLECS5cuxYkTJ9CuXTvRcTgOVsBx0NTPj6YaF/75/Sp2rVqGqOt/opZjbfR8czQGTgzU/l/XbabPOkuS9zWmhYUFGrVohbHvL8W0vq8VWqchXjca+/ig4LwF26BhyG2hizmDemD4gP5Yvny5XvOV1uPHj9G6dWvUqFEDp06dgo2NTZmX+fDhQ0yaNAn79+/H4sWLsWDBAu1VbqloHJ8q3vhU0nOHrv1V1nFH3/2h4Py6tsdQz8XF3TfixXrIfvasUDbNNPo8H3Oc1W8/et79Rb3/PGbeUgT27IBvbsQXOX/BZejTpr/Oh+Ponm24eeUiMp48hqOLFK279cTwoNnaoo66TAPott10XZYuDDm+X7x4EW3atMHVq1fRsmXLMi+PiIDffvsNvr6+iIyMRP369UXH0Vq+fDk2bt2GdT+F6zwPjxHL7zGiocbDsh4f6trPxui/kvrA3I/nTP0elT7r1HWZxt7uuiyzuMeYoc5TMNTnC19++SXGjRuHzMxMFpgiYZYvX46dO3ciIiJCdBQSgNufiKhUIlnIgIj0olAo4OPjg4kTJyIkJER0HCIiIrOiVCqfW5xA8zspKQl5D9EdHBwKFSWQy+X57nN1deXJaERERCZWmkIGVLkNbizT+4sUFQULGRCV7gsyRCSeKcbvEwdD0anfIEisqiAtJRnz/d7AxrALRl1nabGQgXk4ffo0unbtio8++gjTp08XHQcAx8GKqDK/vqGKyZSFDNRqNYYPH47Tp0/jypUrcHd3N+jyN2/ejKCgIHTo0AFfffUVXFxcDLr8ioTjExFVFHG3/8Hyif7436+XREcpVww5vs+aNQuHDh3C7du3DZCMiADg999/R4sWLRAREYEGDRqUPIOJlKaQARGJI+I9Kr4vVjqG+nxh9erVWL9+PWJiYgyUjEh//CJ75cbtT0RUKpFWohMQkXmZM2cOHBwcsHjxYtFRiIiIyo0nT54gNjYWiYmJiI+PR1xcnPZ2fHw8FAoFkpOT8xUocHJygqurK9zd3eHq6oqWLVvC1dUVbm5ukMlkkMlkcHFxgUQiEdgyIiIiIiIiIiIyps/en4F7ikT0DZiAI7u2oEPvN0RHIjOWkpICPz8/9OzZE9OmTRMdh4iIihASEoKDBw8iLCzM4EUMAGDixInw9fXF0KFD0apVK+zfvx9t2rQx+HqIiEiMwY1lGDtvGV4dMBQ2tlURHxWJrcHz0Out0aKjVVi5ubnYt28fRo0aJToKUYWiuYq2SqUSnISIiMxJcnIyizYSERERmSEWMiAinZ09exZ79uzBwYMHYWdnJzoOERGRSaSlpSExMRGxsbFISEhAQkKCtlBBXFwc4uPj8fDhQ+30tra2cHd3h0wmg6enJxo3bpyvOIGbmxukUilsbGwEtoqIiIiITGlwY5n2N6/OQEREZB5MNX5PXPwh9m/4FEd3f4E2PfpgzPtLjbYuqthUKhX8/f0hkUiwc+dO7RcCiAyNr2+ISi8sLAwLFizARx99hFdffdVo6/H19cXly5cxcuRIdOzYER988AHmzp1rtPUREZHpvP+/nTi8Ywu++jQEFpaWkNX1Qm//sXhtwDDR0Sqs48ePIz4+Hv7+/qKjEFUolpaWAJDvojBERPoQ8R4V3xcT786dO6hbt67oGERERESkJxYyICKd5ObmIjAwEF27dsUbb/BqQEREVDEolUokJiZCoVAgOjpae1vzOzIyEunp6drpbW1tIZPJIJVKIZPJ0LdvX+1tuVwOqVQKV1dX7YdtRERERMai+YD8efih+X8M1VdlWY4ptgf3CSIqDp8jdFdR+qqitMNYdOkfU/XR628G4PU3A0yyLqrYgoODceLECZw6dQqOjo6i45QrfE7UXXl6fqzoROyXfCyIFRERgWHDhmHYsGGYMWOG0ddXu3ZtHDlyBMHBwZg3bx7++usvbNmyBVWrVjX6ukk3fEzqjn1F+qrI42yr17qj1WvdDbIs0s327dvRoUMHNG7cWHQUogpFU4BRpVIJTlK+8LhHd+yriq28vkfF/Uq8W7duYcCAAaJjEBEREZGeWMiAiHSyadMmXL9+HX/++afoKERERCXKyclBUlISYmNjkZCQgISEBMTFxSExMRHx8fGIi4uDQqHAs2fPtPPUrl0bbm5u8PDwgJubG15++WV4enpCJpPB3d0d7u7uqFmzpsBWEREREf2HH5DrzlB9Vd77vLznIyKx+Byhu4rSVxWlHcbC/qGK5uTJkwgODsann36Ktm3bio5T7vAxrzv2lenwZPvKRalUol+/fpDL5di6davJ1mtpaYnFixejTZs28PPzQ6dOnXDw4EG4u7ubLAM9Hx+TumNfkb44zpKhpKWl4dChQ9iwYYPoKEQVjuYiMWq1WnCS8oXjie7YVxUbty8VRaVSISoqCo0aNRIdhYiIiIj0xEIGRFSitLQ0LFy4ENOmTWNlYSIiKheUSiUSExOhUCgQHR2N6OjofH/HxsYiJydHO72DgwOkUilkMhl8fHzQtWtXyGQyyOVySKVSeHh4sEgBERERERERERERmZ3k5GT4+flh0KBBCAwMFB2HiIgKyM7OxtChQ/H48WP8+uuvsLOzM3mG119/HZcuXcIbb7yBli1b4ptvvkGnTp1MnoOIiMjc7NmzB1ZWVhg6dKjoKEQVjoWFBYB/v5RKRESki1u3biEzMxNNmjQRHYWIiIiI9MRCBkRUopUrV0IikWDhwoWioxARUSWQlpaG+Ph4xMbGIi4uDvHx8YiLi0NsbCzi4+MRHx+PrKws7fQuLi5wd3eHu7s7fHx80KNHD3h4eGh/pFIpqlSpIrBFRERERERERERERIanUqkwcuRIVKtWDVu2bBEdh4iIijBt2jScP38ep06dgpubm7Ac3t7eOH/+PPz9/dGjRw9s3LgRY8aMEZaHiIjIHGzfvh3Dhg1DjRo1REchqnAsLS0BAGq1WnASIiIyFxcuXICtrS2aNWsmOgoRERER6YmFDIioWAkJCfjss8+wcuVKXqmaiIjKLDMzE4mJiUhMTIRCoUB0dDSio6O1f9++fRsPHz7UTm9rawuZTAa5XA5PT0+0adMGcrkccrkcUqkUdevWRfXq1QW2iIiIiIiIiIiIiEiMJUuWIDw8HOfOnUOtWrVExyEiogI+/fRTbNq0Cd9++y1atWolOg5q1KiBgwcPYunSpRg3bhwuXLiAzz//HFZWPH2MiIiooL/++gvXrl3D2rVrRUchqpAsLCwA/FukkYiISBcXL16Er68vL2xGREREZIb4SRQRFWvBggVwcXHBpEmTREchIqJyLicnBwkJCYiNjcXdu3cRFxeH+Ph4xMXFISYmBvHx8VAqldrp7ezsULduXbi7u8Pd3R2+vr7w8PCAu7s7PDw84OnpySIFREREREREREREREW4cOECVqxYgXXr1qFFixai4xARUQE///wz3n33XXz44Yd44403RMfRsrCwwJIlS9CgQQOMHz8e8fHxCA0N5WdyREREBWzduhUNGjRAhw4dREchqpAsLS0BAGq1WnASIiIyF+Hh4ejdu7foGERERERUCixkQETP9ffff2P37t3YtWsXbGxsRMchIiLB0tPTtUUKYmNjERcXh9jYWMTExCAmJgYKhQK5ubkAAGtra7i5uWkLEjRr1gzu7u7w9PTUFiuoXbu24BYRERERERERERERmZ+nT58iICAAnTt3xuTJk0XHISKiAm7evInhw4fjrbfewpw5c0THKdJbb72F+vXro3///njttddw5MgRuLi4iI5FRERULjx79gxfffUVZs6cqb1qPBEZluaxpVKpBCchIiJzEBcXhxs3bmDt2rWioxARERFRKbCQARE918KFC9GsWTOMGDFCdBQiIjIBpVKJ6OhoREdHIzExEQqFotDfGra2tpDJZJDL5WjSpAm6deum/Vsul6Nu3bqQSCQCW0NERERERERERERUMb333ntITk5GWFgYv1RDRFTO3L9/H/369UPTpk2xadMm0XGK1bp1a1y4cAG9evVCmzZt8OOPP6Jx48aiYxEREQl36NAhKJVKjBo1SnQUogrL0tISAAsZEBGRbo4cOYJq1aqhY8eOoqMQERERUSmwkAERFen69ev4/vvv8e2332rfMCQiIvOVlZWFhISE5xYpuHv3Lp4+faqd3sHBQVuUoFu3bpBKpdpCBd7e3rC3txfYGiIiIiIiIiIiIqLK6ddff8Vnn32GXbt2wcPDQ3QcIiLKIyMjA2+88QbUajW+++472NjYiI5UIi8vL5w7dw79+/dH+/bt8d133/FLAUREVOlt2LABvXv3hpubm+goRBWW5rxktVotOAkREZmD77//Hl27djWL91qIiIiIqDAWMiCiIi1ZsgTNmjVD//79RUchIiIdPHjwAHfv3kVMTAzu3r2r/YmJiUFsbCzu37+vnbZmzZrw9PREvXr10LBhQ3Tt2hWenp6oW7cuPD09IZPJIJFIBLaGiIiIiIiIiIiIiApKT0/H2LFj0b9/f4wcOVJ0HCIiyiM3NxdvvfUWbty4gfDwcNSpU0d0JJ05OjoiLCwM/v7+6N69O3bt2oVhw4aJjkVERCTE33//jVOnTuHYsWOioxBVaBYWFgAAlUolOAkREZV3qampCAsLw86dO0VHISIiIqJSYiEDIirkxo0b+Pbbb7Fv3z7tm4VERCRWWlqatkhBwWIFd+/excOHD7XTSqVS1K1bF/Xq1UOPHj3g6emZr1BBrVq1BLaEiIiIiIiIiIiIiEpjxowZePLkCTZt2iQ6ChERFTBjxgz8+OOPOH78OHx8fETH0ZutrS2+/vprBAYGws/PD48ePcK4ceNExyIiIjK5Tz/9FI0bN0bXrl1FRyGq0CwtLQEAarVacBIiIirv9u3bB2tra/Tr1090FCIiIiIqJRYyIKJCgoOD4ePjg4EDB4qOQkRUaSiVSiQmJkKhUCA6OjrfT1RUFB48eKCd1sHBAXK5HHK5HD179oRUKoVMJoNcLkejRo1QvXp1gS0hIiIiIiIiIiIiIkM7fPgwtm3bhv3798PFxUV0HCIiyiM4OBiff/459u3bhw4dOoiOU2oSiQQbN26Ek5MTJkyYgIyMDAQGBoqORUREZDJKpRJ79+7F6tWreQEoIiPTPMZUKpXgJEREVN5t374dAwcO5LnRRERERGaMhQyIKJ87d+5g//792L17t7biKRERlZ1SqUR0dHSRxQpu376Nhw8faqfNW6igW7du8Pf3Z6ECIiIiIiIiIiIiokrq/v37mDBhAvz9/TFkyBDRcYiIKI8vv/wSixcvxtq1azF48GDRcQxi2bJlqF69OoKCgqBUKrFw4ULRkYiIiExi06ZNsLa2hr+/v+goRBWe5vxktVotOAkREZVnZ8+exdWrV/HZZ5+JjkJEREREZcBCBkSUz7p16yCVSnkSFBGRnrKyspCQkJCvQIGuhQomTpwIqVQKmUyGxo0bo1q1agJbQkRERERERERERETlSVBQECQSCdauXSs6ChER5XH06FGMGTMGCxYsQFBQkOg4BjVnzhzUqFEDgYGBePLkCVauXCk6EhERkVHl5uZi06ZNGDduHC8wQmQCFhYWAACVSiU4CRERlWfr1q2Dr68v2rRpIzoKEREREZUBCxkQkdajR4+wfft2LFiwAFWqVBEdh4ioXMnJyUFcXBzu3Lmj/YmOjtbeTk5O1k7r4uICLy8veHl5oWfPnvDy8kK9evVQr149eHh4wNraWmBLiIiIiIiIiIiIiMhc/PTTT9i7dy8OHz4MBwcH0XGIiOj/Xb58GcOHD8eIESOwdOlS0XGMYvLkyahSpQomTZqE3NxcrFq1SvuFMyIioormu+++Q2xsLKZMmSI6ClGlYGlpCQBQq9WCkxARUXkVFRWFb7/9Ftu3bxcdhYiIiIjKiIUMiEhr69atUKlUGD9+vOgoRERCKJVKREdHF/pJTEzEnTt3kJGRAQCwsbGBm5sb5HI5XnzxRQwYMAByuRxyuRwNGjRAzZo1BbeEiIiIiIiIiIiIiMxdRkYGAgMDMXToUPTp00d0HCIi+n9RUVHo168fXn31VWzfvr1Cf7l//PjxsLW1xZgxY6BSqbBmzRrRkYiIiIxi/fr16Nu3L+RyuegoRJWC5hhapVIJTkJEROVVcHAwvLy8MGLECNFRiIiIiKiMWMiAiAD8+2bg+vXrMXr0aNjb24uOQ0RkFBkZGdriBHfu3NH+1tx+8uQJAMDKygqenp7w8vKCl5cXunTpor3t5eUFZ2dnwS0hIiIiovLij7OnkBB9W3QMk1Cr1RX6xHwynrTkJNERiMqNP8+dgiImWnQMIqJSiY28JTpCpfPBBx8gJSUFn3zyiegoBsFxkIjKq8fpD3WeNikpCT169EC9evUQGhoKK6uKf+rVyJEjIZFI4O/vj2rVqmHZsmWiIxkUxycioopJn/H977//xunTp3Hs2DEjJiKivCwtLQH8+/ljeZPx9AnO/fSD6BhERBWKvp8vREZGYs+ePdixY0eleO+FiIiIqKLjER0RAQCOHz+Ou3fvYurUqaKjEBGViVKp1BYrKPhz9+5dbRVnBwcHyOVyyOVy9O7dW3tbLpfD09OTb3wRERERUbEcHBxgV60adoZUrBO3iYylqp0dHB0dRccgEsbe3h7VqlfHro8+EB2FiKhMXnuts+gIlUZERATWrFmDjz76CG5ubqLjlAnHQSIyB+7u7iVOk5qaim7dusHKygqHDx9GtWrVTJCsfHjzzTfx7NkzjB07FnZ2dnjvvfdERyozjk9ERBWfLuM7AKxcuRI+Pj7o2rWrkRMRkYameLrmXL7ywt3dHcrUFKyZPkl0FCKiCkefzxfmzJmDhg0bYsSIEUZMRERERESmwm/oEREAYMuWLejYsSMaNWokOgoRUYkSEhIQFRVV5E9aWhoAwMrKCnXr1oW3tzcaNGiAnj17wtvbW/tjZ2cnuBVEREREZM5cXV3x5PFj0TGM7ujRo5gzZw4iIiLw9ttvY8mSJfwyOhFRKTg7O+Pxo0eiY5AZ27p1K4KCgqBQKGBvby86DhGZwNSpU9G0aVNMmTJFdJQy4zhIpvbFF18gMDAQSUlJqFWrlug4VEHcu3cPXbt2xePHj3Hq1CnUqVNHdCSTCwgIwKNHjxAUFARra2vMnDlTdKQy4fhEZBqPHz9G165dcevWLXzxxRcYMmSI6EhE+URGRiI0NBRffvml9ovVRGR8lpaWAAC1Wi04SX4BAQEICAgQHYPIpAIDA7Fnzx5cvXoVcrlcdBwihIWF4bvvvsOPP/4IiUQiOg4RERERGQALGRARkpOT8f3332Pbtm2ioxARAQBycnIQGxuL6OjoQj8RERF49P8nlFhbW8Pd3R1yuRwtWrTA4MGDIZfLIZfL4ePjg6pVqwpuCRERERGRebp+/TrmzJmDo0ePom/fvjh48CAaNGggOhYREVGltWfPHvTr149FDIgqiUOHDiEsLAynT5/miZpEpTB48GBMnToVhw4dwqhRo0THoQrgwYMH6NmzJ9LT03Hy5EnUrVtXdCRhAgMDkZ2djVmzZqFGjRqYMGGC6EhEVM5Vr14dZ8+exYIFCzB06FBMnDgR69evh7W1tehoRACAxYsXo2HDhhg6dKjoKESViqZwiEqlEpyEiFavXo3z589j0KBBOH/+PM+7JaGys7MRFBSEgQMHomfPnqLjEBEREZGBsJABEWHnzp2oVq0aBg0aJDoKEVUiWVlZiIqKQkREBKKiovL9xMTEICcnBwDg6OgIb29veHt7o2fPnpg6dar2bzc3N8GtICIiIiKqWOLj4xEcHIwvvvgCvr6+OHXqFDp16iQ6FhERUaWWmJiIM2fO4MCBA6KjEJEJPHv2DHPmzMGIESPQsWNH0XGIzJK9vT169OiB0NBQFjKgMnvw4AG6d++O1NRUnDx5EvXq1RMdSbgZM2YgLS0NkydPhr29Pb/4SUQlsrKywsqVK/Hiiy9i0qRJuHbtGvbv31+pC8NQ+XDz5k2Ehobi66+/1l4dnohMQ/OYU6vVgpMQka2tLUJDQ9GqVSvMmjULGzZsEB2JKrE1a9YgJiYGR48eFR2FiIiIiAyIhQyICDt27MDIkSNhZ2cnOgoRVTDZ2dm4c+cObt++jX/++Qe3bwkYyqEAACAASURBVN9GZGQkIiMjERsbq62o7Obmpi1O0KlTJ+1tb29vODo6Cm4FEREREVHF9/jxY6xevRqrVq2Cs7Mztm3bBn9/f+3VUIiIiEicPXv2oGbNmrzyDFElsX79esTFxeHYsWOioxCZteHDh2PMmDG4f/8+ateuLToOmamHDx+iR48eSE5OxsmTJ+Hl5SU6UrkRHByM9PR0+Pv7w9XVlcV3iEgnfn5+8PX1xZAhQ9CqVSvs2bMHPXr0EB2LKrGlS5fihRdewODBg0VHIap0NJ9Bas4fJCKx6tevj127dmHAgAFo27Yt/P39RUeiSigiIgLLli3D4sWL+R4MERERUQXDQgZEldy1a9dw8+ZNbN++XXQUIjJjiYmJuHHjBqKjo/P9XL9+HZmZmQAABwcHyOVyyOVyBAQEoEmTJpDL5WjYsCFq1KghuAVERERERJVTdnY2tm/fjoULFyInJweLFy/G9OnTYWNjIzoaERER/b89e/Zg6NChHJ+JKoH79+/jgw8+wKxZs3h1WqIyGjBgACZNmoQDBw5g4sSJouOQGdIUMVAoFDh58iTkcrnoSOXOJ598goSEBAwYMABnz55F48aNRUciIjPQqFEjnD9/HhMmTEDv3r2xYMECLFq0SHtlbiJT+euvv7B//37s27eP+x+RAJrHnVqtFpyEiDT69++PoKAgTJkyBa1atcILL7wgOhJVIiqVCuPHj0fDhg0xc+ZM0XGIiIiIyMBYyICokgsNDUXdunXxyiuviI5CROWcUqnUFifIW7Tg5s2bePr0KYD8xQq6deuGiRMnwsfHB82aNUOtWrUEt4CIiIiIiPL64YcfMHPmTMTGxuLtt9/G0qVLYW9vLzoWERER5XHz5k388ccfWLdunegoRGQCISEhsLa2xty5c0VHITJ71apVQ58+fRAaGspCBqS31NRU9OnTR1vEwNvbW3SkcsnS0hK7d+9Gt27d0KtXL5w/fx6urq6iYxGRGahevTr27t2Lzp07IygoCJcvX8bu3bvh6OgoOhpVItOmTYOvry8GDRokOgpRpWRhYQHg3y+uElH5sXr1aly5cgXDhg3DxYsXYWdnJzoSVRKff/45zp8/j0uXLqFKlSqi4xARERGRgbGQAVElplarERoaCj8/P+2bgkRUuaWlpeHWrVu4desWIiIiEBkZqf3JzMwEANSqVQsNGjRA/fr10bt3b0yfPh0NGjRAgwYN+KEyEREREZEZuHTpEmbPno3w8HAMGTIEx44dg5eXl+hYREREVITdu3fDw8MD/8fenYdFWS7uA79nWGQXEBFwQU1lcwc1t1zS0nI7GqDiV3ODrBQzEwtzy93K0FzQUsNwAeu4HZdcT+IKqSWbqaSmKAQO+zYD8/uj3ztnWHODB2buz3XNNc7MO3CrMPPM+z7P/fbq1Ut0FCKqZsnJyVi/fj2WL18OCwsL0XGIdIKvry+8vb2RnJwMJycn0XGojrhz5w4GDRoEpVKJ06dPs8TgH5iamuLAgQPo0aMHhgwZgjNnzvB9jIiemL+/Pzp37gxvb2907NgRkZGR6Natm+hYpAd27dqF//73vzh//jznTRIJIpfLAfw9j5mIag8jIyPs3r0bnTt3xtSpUxEeHi46EumBuLg4BAUFITg4GJ06dRIdh4iIiIiqAYsMiPTYxYsXcefOHfj6+oqOQkQ1SKVS4Y8//sCNGzeQmJiouU5MTERaWhqAvyecuLi4oFWrVhgyZIimqKBNmzawt7cX/DcgIiIiIqJncfPmTQQHB2Pv3r3o168fYmJi0LlzZ9GxiIiIqBJqtRq7d+/G2LFjNRN7iUh3LVy4EA0bNkRAQIDoKEQ644033oClpSX27t2LGTNmiI5DdUBsbCwGDx4Ma2trnDx5Eo0bNxYdqU5o0KABjhw5gu7du8PX1xf79++HoSGnpBHRk/Hy8kJ0dDTGjRuHPn36YOXKlQgMDBQdi3RYdnY2PvroI0yePJnFGUQCSSUiJSUlgpMQUVlNmzbFd999hyFDhmDAgAGYOHGi6EikwwoLC+Hn54e2bdsiODhYdBwiIiIiqiY8akSkx/bt24c2bdqgQ4cOoqMQUTXIzMzErVu3kJSUhLi4OMTHxyMpKQkJCQnIy8sDANjY2MDd3R0eHh4YMmQIWrZsCXd3d7i5uXFyNBERERGRjnj8+DFWrVqFr776Ci1atMCePXvg7e0tOhYRERH9g6ioKPzxxx/w8/MTHYWIqtmtW7ewfft2hIaGol69eqLjEOkMExMTDB8+HHv27GGRAf2jM2fOYMSIEejUqRP27duH+vXri45Up7Rs2RL79u3Dq6++ilmzZmHt2rWiIxFRHWJnZ4cjR45g1apVmDVrFqKjoxEaGgpzc3PR0UgHLV68GHl5eVi6dKnoKER6TZqbqFarBSchooq88cYbmDNnDt5991106tQJHTt2FB2JdFRQUBD++OMPXL16FUZGRqLjEBEREVE1YZEBkR47cOAAhg0bJjoGET2n5ORkTUmBdmHBH3/8AbVaDSMjIzRt2hTu7u4YMGAA/P394e7ujvbt28PKykp0fCIiIiIiqiZFRUXYuHEjFi5cCCMjI6xcuRLvvfcez4hHRERUR4SHh8Pd3R3t2rUTHYWIqtmyZcvQokULjB8/XnQUIp3j6+uLIUOG4M6dO2jevLnoOFRL7du3D2PGjMHgwYOxc+dOmJiYiI5UJ3Xv3h3bt2/H6NGj0bFjR0yaNEl0JCKqQ2QyGYKCgtClSxeMGTMGXl5e2Lt3Lzw8PERHIx0SHx+PkJAQrF27Fg0bNhQdh0ivyWQyAEBJSYngJERUmSVLluD8+fPw8fFBTEwM5xvTCxcZGYm1a9di586daNmypeg4RERERFSNOGuZSE/dvn0biYmJCA0NFR2FiJ5AYWEhEhMTkZCQgLi4OCQmJuLGjRv4/fffUVhYCABo1KgRXF1d4eLigsGDB8PNzQ0uLi5wdnaGgYGB4L8BERERERHVFLVajb179yIoKAipqal4//33ERwcDEtLS9HRiIiI6AkplUrs3bsXH330kegoRFTN/vzzT4SHh2PTpk3cl09UDQYOHAhbW1tERERgzpw5ouNQLbR+/XrMmDED06ZNw9q1azVnhqVn4+Pjg2vXruGdd95BmzZt0KtXL9GRiKiO6d+/P2JiYuDj44Pu3btjy5Yt8PX1FR2LdEBxcTGmTp2KDh06YOrUqaLjEOk9adytVqsFJyGiyhgaGiIiIgKdOnXC1KlTsWfPHtGRSIfcvHkTU6ZMwXvvvYfRo0eLjkNERERE1YxFBkR66sCBA7C1tUWPHj1ERyEiLfn5+UhMTER8fDzi4uI0xQVJSUkoLi6GoaEhWrVqBTc3N7z55puYNWuWprDA2tpadHwiIiIiIhLs5MmT+Oijj/Drr7/Cz88PK1euhKOjo+hYRERE9JSOHDmCx48fc7EGkR5YvXo17O3t4efnJzoKkU4yMjLCqFGjsHv3bhYZUCklJSX45JNPsGrVKixZsgSffPKJ6Eg6Y8mSJbh+/Tq8vb0RExODxo0bi45ERHVM06ZNcfbsWcybNw+jR4/GqVOnsG7dOhgbG4uORnXYihUr8MsvvyA6OpolckS1gEwmA/D3uJyIai8HBwfs3LkTAwcOxIYNG/Duu++KjkQ6IDMzE//617/g6uqKL774QnQcIiIiIqoBLDIg0lOHDx/GoEGDYGjIlwEiEYqKinDz5k1NYYF0fePGDU1hQbNmzeDu7o6RI0fC3d0dHh4ecHd3h6mpqej4RERERERUyyQkJGDBggWIjIzEgAEDcPXqVbRv3150LCIiInpG4eHh6N27N5o3by46ChFVo/T0dGzduhXLli3joiyiauTr64vNmzcjISEBbm5uouNQLZCZmQk/Pz+cOHEC27Ztw4QJE0RH0ilyuRw7d+7Eyy+/DG9vb5w+fRr16tUTHYuI6hhDQ0OsWLEC7du3R0BAAK5evYrIyEg4OzuLjkZ10NWrV7F48WIsX74c7dq1Ex2HiP4/mUwGtVotOgYR/YN+/fph3rx5mDVrFrp16wZPT0/RkagOUyqV8Pb2hkKhwJEjR7hfnIiIiEhPcAUzkR4qLCzEuXPnsGHDBtFRiHReYWEhbt26Va6wIDExESUlJTAyMkLTpk3h7u6OoUOHIigoCB4eHvDw8ICJiYno+EREREREVMslJydj0aJF+Pbbb9GxY0ecOnUK/fr1Ex2LiIiInkN2djYOHTqENWvWiI5CRNVs7dq1MDMzw5QpU0RHIdJpffv2hZOTEyIiIrBgwQLRcUiwmzdvYsSIEVAoFDhz5gxefvll0ZF0kqWlJX788Ud069YNAQEB2L59u+hIRFRHjR07Fp6enhg1ahS8vLwQHh6O1157TXQsqkMKCwsxYcIEdOvWDTNnzhQdh4i0yOVylJSUiI5BRE9g/vz5uHDhAkaNGoUrV67A1tZWdCSqo2bMmIFz587h9OnTaNq0qeg4RERERFRDWGRApIcuXryI/Px89O3bV3QUIp1RWFiIuLg4XL9+HbGxsYiNjUVCQgLu3r0LADAxMYGbmxvc3Nzg5+cHNzc3tG3bFi1atIChId+OiYiIiIjo6eTm5uLrr7/G0qVLYW1tjQ0bNmDKlCmQy+WioxEREdFz+vHHH6FSqTBq1CjRUYioGhUVFSE0NBQBAQEwMzMTHYdIp8nlcrz11lvYvXs3iwz03NGjRzFmzBi0bNkSFy9eRLNmzURH0mkuLi747rvvMHLkSHTv3h0BAQGiIxFRHeXi4oKLFy9i6tSpGDRoEObMmYNly5Zxfzg9kY8//hj37t3DwYMH+TNDVMvIZDKo1WrRMYjoCcjlcuzYsQOdO3fGhAkTcODAAchkMtGxqI5ZunQptmzZgh9++AFdu3YVHYeIiIiIahBXThLpodOnT6NFixZo3ry56ChEdY5arcadO3dw/fp1XL9+Hb/99huuX7+OmzdvQqVSwcTEBO7u7vDw8EDfvn3h5uYGDw8PtGjRggfDiIiIiIjouZWUlOD7779HUFAQCgsLERwcjMDAQJiYmIiORkRERC9IeHg4Bg8ejAYNGoiOQkTVKDIyEunp6VzUSVRDfH19sXbtWvz666/o0KGD6DgkQEhICD788EP4+vrim2++gampqehIemH48OH49NNPERgYiC5duqBz586iIxFRHWVhYYFdu3ahX79+mD59Oq5fv44dO3bwbMBUpWPHjiEkJATbtm2Ds7Oz6DhEVIZcLkdJSYnoGET0hOzt7REZGYk+ffpgzZo1mDVrluhIVIdERETg008/xdq1azF8+HDRcYiIiIiohrHIgEgPnT59Gv369RMdg6jWy8rKws2bNxEXF4dffvkF8fHxuHbtGtLS0gAAjo6O8PDwwMCBAzF37lx4eHigbdu2qFevnuDkRERERESki06cOIFZs2YhMTEREydOxGeffQZ7e3vRsYiIiOgFSk1NxenTp7Fz507RUYiomq1fvx4jRoxAkyZNREch0gvdu3dH8+bNsWfPHhYZ6JmCggIEBAQgPDwcS5cuRVBQkOhIemf+/Pk4f/48fHx8cOXKFVhZWYmORER1mL+/Pzp37gxvb2907NgRERERePnll0XHolrozp078PPzw9ixYzF+/HjRcYioAiwyIKp7unfvjsWLFyMoKAjdunVDz549RUeiOiAqKgrjx4/Hhx9+iPfff190HCIiIiISgEUGRHpGqVTi8uXLmDRpkugoRLWGSqXCvXv3ShUWxMXFISEhAWq1GvXr10erVq3g7u6OIUOGwMPDAx07doSdnZ3o6EREREREpAdiYmLw0Ucf4cyZMxgyZAj+/e9/46WXXhIdi4iIiKrBzp07YWZmhiFDhoiOQkTV6MqVK7hw4QJOnTolOgqR3pDJZPDx8cHu3buxdOlSyGQy0ZGoBty4cQO+vr64f/8+jh07hldffVV0JL0kl8uxY8cOdOrUCVOnTsWePXtERyKiOs7LywvR0dEYN24c+vbti5UrVyIwMFB0LKpFCgoK4O3tjcaNGyM0NFR0HCKqhEwmg1qtFh2DiJ5SUFAQLl68iNGjR+Pq1aucS01Vio6OxtChQzFkyBCsXLlSdBwiIiIiEoRFBkR65rfffkNBQQG6desmOgqREI8fP8aVK1dw7do1XLt2DbGxsUhISEBRURGMjIzg6uqKtm3b4v/+7//Qvn17tG3bFs2aNRMdm4iIiIiI9NCff/6JJUuW4JtvvkHXrl1x9uxZ9OrVS3QsIiIiqkbh4eEYNWoUTE1NRUchomq0bds2uLq6ol+/fqKjEOmV0aNHY9WqVbh8+TKPl+uBHTt24N1334Wbmxuio6PRokUL0ZH0WqNGjRAeHo6BAwdi8+bN8Pf3Fx2JiOo4Ozs7HDlyBKtWrcKsWbMQHR2N0NBQmJubi45GtcD777+PW7duISYmBmZmZqLjEFEl5HI5SkpKRMcgoqckk8mwbds2eHp6YvTo0Th27BgMDAxEx6Ja6OrVqxg0aBC6deuG77//HnK5XHQkIiIiIhKERQZEeiY6OhqWlpZo06aN6ChE1e7evXu4du0arl69qrncu3cPAODo6IgOHTrg9ddfx0cffYS2bdvCzc0NxsbGglMTEREREZG+UygUWLlyJUJCQtCsWTPs3r0bb731Fs8WSUREpOOkCfYrVqwQHYWIqpFSqcTu3bvxwQcfiI5CpHc6deoENzc37Nmzh0UGOiw/Px9z587FunXrMH36dKxevZrHgGuJfv364eOPP0ZgYCC6dOmCTp06iY5ERHWcTCZDUFAQunTpgjFjxsDLywt79+6Fh4eH6Ggk0ObNm7F161b88MMPeOmll0THIaIqyGQyqNVq0TGI6BnY2Nhg9+7d6N27N1asWIHg4GDRkaiWuXbtGgYOHAgvLy/s27cPJiYmoiMRERERkUAsMiDSM9HR0fDy8mKjHemc5ORk/PLLL5pLdHQ0UlJSAPxdWuDp6YmJEyfC09MTXl5ecHR0FJyYiIiIiIioNKVSiW3btmHevHkoKSnBwoUL8cEHH3CyPRERkZ7YsWMHHB0d0bdvX9FRiKgaHT58GOnp6Rg7dqzoKER6ycfHB5s3b8bq1at5tkAdFB8fD19fXzx69AgHDhzAkCFDREeiMhYtWoQLFy7A19cXMTExsLKyEh2JiHRA//79ERMTAx8fH3Tv3h1btmyBr6+v6FgkwIULFxAYGIjg4GD861//Eh2HiP6BXC5HSUmJ6BhE9Iy6du2KlStX4sMPP0S3bt0wYMAA0ZGolrh27RoGDBgAT09P7N+/nyUGRERERMQiAyJ9ExMTg9dff110DKJnplQq8fvvv5cqLbh27Rpyc3NhaGiINm3awNPTEx988AHc3d3Ro0cPNGjQQHRsIiIiIiKiSqnVauzduxcff/wxHj58iOnTp+Pjjz9G/fr1RUcjIiKiGrR7926MGTOGiyqJdNyOHTvQt29fNG/eXHQUIr00evRoLFq0CFFRUejTp4/oOPQChYWFYdq0aWjXrh2io6P5OltLyeVyhIWFoWPHjnj//fcRFhYmOhIR6YimTZvi7NmzmDdvHkaPHo1Tp05h3bp1LArWI7du3cKwYcPw2muvYdGiRaLjENETkMlkUKvVomMQ0XOYOXMmoqKiMG7cOFy5cgVOTk6iI5Fgv/76KwYMGIDOnTtj3759LDEgIiIiIgAsMiDSKyqVCjdu3MCcOXNERyF6IgUFBbh27Rqio6M1hQXx8fFQKpWwsLBA+/bt0alTJ0ycOBEdO3ZEu3bteACSiIiIiIjqlIsXL2L27Nm4cOECRo0ahVWrVnGiPRERkR66dOkSfv/9d/j5+YmOQkTVKCsrC4cOHcKGDRtERyHSW66urujQoQP27NnDIgMdkZGRgYCAAOzduxfBwcGYP38+DA05Hao2c3JywnfffYc333wTb7zxBkaPHi06EhHpCENDQ6xYsQLt27dHQEAArl69isjISDg7O4uORtUsPT0db775JpydnbFz507I5XLRkYjoCcjlcpSUlIiOQUTPadu2bejSpQv8/Pxw4sQJljXrsUuXLuHNN99Ep06dsH//fpiamoqORERERES1BPfWEemRW7duobCwEO7u7qKjEJVTXFyM2NhYbN26FdOmTYOXlxesrKzQvXt3LFy4EMnJyXj99dcRFhaGxMREZGZm4ty5c/j6668xefJkeHp6ssSAiIiIiIjqjN9//x0+Pj7o3r07TE1N8csvvyAiIoIlBkRERHoqPDwcrq6u6Ny5s+goRFSNjhw5ApVKhWHDhomOQqTXfH19ERkZCaVSKToKPacjR46gbdu2iIqKwvHjx7F48WKWGNQRgwcPxrvvvotp06bh3r17ouMQkY4ZO3YsYmJikJeXBy8vL/z000+iI1E1KigowPDhw1FUVIRDhw7B3NxcdCQiekJyuRxqtVp0DCJ6TpaWloiIiMClS5ewaNEi0XFIkIMHD6J///7o3r07Dhw4wBIDIiIiIiqFRQZEeiQhIQFyuRxt2rQRHYUIycnJOHjwIBYuXIihQ4eiYcOGaNeuHd555x1ER0ejZ8+e+OabbxAbG4u0tDT89NNPWLlyJUaPHg0XFxc2ZxMRERERUZ2Unp6OuXPnol27doiLi8PBgwdx/PhxdOzYUXQ0IiIiEkSlUiEiIgJ+fn6ioxBRNdu/fz9eeeUV2NnZiY5CpNdGjx6N9PR0nDx5UnQUekZZWVkICAjAm2++iR49euC3335D//79Rceip/T555+jcePGmDRpEhewEdEL5+LigosXL2LAgAEYNGgQ5s6dy7N+6yC1Wo0pU6YgNjYWBw4cgIODg+hIRPSUOA4k0g3t27fHl19+iaVLl+Lo0aOi41AN27p1K0aOHAlfX1/8+9//ZokBEREREZXDGnIiPRIfHw9nZ2e2DlONy8jIQGxsLM6dO4eoqChcvnwZqampMDAwgIuLCzw9PbFgwQJ4enqiS5cuqFevnujIREREREREL1ReXh7WrVuH5cuXw8LCAuvWrcPkyZNhYGAgOhoREREJdvz4caSkpMDX11d0FCKqRkqlEkePHsWCBQtERyHSey1atEDXrl2xZ88eDBo0SHQcekpRUVGYOHEisrKyEBkZiVGjRomORM/IxMQEYWFhePnll7F27VoEBgaKjkREOsbCwgK7du1Cv379MH36dFy/fh07duyAra2t6Gj0ggQGBmLv3r04duwY2rVrJzoOERGRXnvnnXdw/vx5+Pn54cqVK3B2dhYdiaqZWq3GokWLsGjRIgQFBWHFihWiIxERERFRLcXTWRPpkd9//x2urq6iY5COKygoQFRUFFavXg1vb280b94cNjY26N27N7755htYWVnh448/RlRUFLKyshAXF4ewsDAEBgaiV69eLDEgIiIiIiKdUlJSgsjISLi7u+Ozzz7DO++8g8TERPj7+7PEgIiIiAAA4eHh6N69O1q3bi06ChFVo59//hkKhQLDhg0THYWIAPj6+uLHH39EQUGB6Cj0hPLz8zF37lz06dMHLi4uuHbtGksMdEDnzp3x6aefIigoCNevXxcdh4h0lL+/P86dO4f4+Hh07NgRFy9eFB2JXoBPPvkEGzZswPfff48+ffqIjkNEz0Amk0GtVouOQUQv0MaNG+Hg4ABfX18UFRWJjkPVSKVSISAgAEuWLEFoaChLDIiIiIioSiwyINIjd+7cQfPmzUXHIB2TkpKCffv2Yfbs2ejZsyesra3Ru3dvfPnllygqKsKUKVNw9OhRpKen4+bNmwgPD8fMmTPRs2dPmJmZiY5PRERERERUbU6cOAFPT0+MHTsWr7/+Om7duoUVK1bAwsJCdDQiIiKqJfLy8rB//374+fmJjkJE1ezkyZNwdXVFixYtREchIgCjR49Gbm4ujh49KjoKPYGzZ8+iffv22LJlC3bs2IFDhw7B0dFRdCx6QYKDg9G1a1eMHz+eC12IqNp4eXkhOjoa7u7u6Nu3L0JCQkRHouewdOlSrFixAqGhoXjrrbdExyGiZ8QiAyLdY25ujoiICMTGxiI4OFh0HKom6enpeOONN7Br1y4cPHgQ/v7+oiMRERERUS1nKDoAEdWcu3fv4o033hAdg+q4pKQkREVF4dy5c4iKikJCQgLUajVatmyJnj17YsKECejZsyfc3d0hk8lExyUiIiIiIqpx8fHxCAoKwqFDhzBgwABcvXoVbdu2FR2LiIiIaqF9+/ahoKCAk+6J9MCZM2fQt29f0TGI6P9zdHREr169sGfPHowYMUJ0HKqEQqHA3Llz8c0332Dw4MHYsmULCwx0kFwux/bt29GxY0csWLAAy5cvFx2JiHSUnZ0djhw5glWrVmHWrFmIjo5GaGgozM3NRUejp/D111/j008/xfr16zF58mTRcYiIiKgMDw8PbNmyBX5+fujRowf+9a9/iY5EL9C1a9cwcuRIqFQqnDlzBp6enqIjEREREVEdIBcdgIhqRnFxMR48eABnZ2fRUagOycvLQ1RUFEJCQuDj4wM7Ozu89NJLePfddxEXF4ehQ4di//79SEtLw+3btxEWFgZ/f394eHiwxICIiIiIiPTOgwcPEBAQgPbt2yMlJQVnzpzB8ePHWWJARERElQoPD8drr72GRo0aiY5CRNUoJycHMTEx6NOnj+goRKTF19cXBw4cQE5OjugoVIGDBw+iXbt22L9/P7Zt24ZDhw6xxECHtWzZEp9//jlWr16N8+fPi45DRDpMJpMhKCgIx48fx/Hjx+Hl5YW4uDjRsegJffvtt5gxYwZWrVqFadOmiY5DRM9JJpNBrVaLjkFE1WDMmDGYNGkSJk2ahKSkJNFx6AXZtWsXevbsiSZNmiA6OpolBkRERET0xFhkQKQnHjx4AJVKhWbNmomOQrVYamoqIiMjMXPmTHTt2hX169dH79698fnnn8PAwAALFixATEwMMjIyEBUVhRUrVmDo0KFo0KCBjhmZkQAAIABJREFU6OhERERERETC5OTkYOHChWjdujWOHj2KrVu34tKlS1ykRERERFX666+/cPz4cfj5+YmOQkTV7Ny5c1AqlXjllVdERyEiLd7e3lAqlTh06JDoKKQlKSkJgwcPxvDhw9G/f3/ExcVh/PjxomNRDfD398drr72GSZMmIT8/X3QcItJx/fv3R0xMDKytrdG9e3fs2bNHdCT6B6GhofD398eCBQswe/Zs0XGI6AVgkQGRbvv666/RokULjBw5EgUFBaLj0HNQqVSYO3cuxo4di3HjxuHkyZMs6CYiIiKip8IiAyI98ejRIwCAk5OT4CRUm2RnZ+PEiROYO3cuvLy84ODggDFjxuD48ePo1KkTvv32W8TGxuLPP//Erl27MH36dHh6esLQ0FB0dCIiIiIiIuGUSiU2b96MVq1aYd26dViwYAFu3LiB8ePHQyaTiY5HREREtVxERASMjY0xbNgw0VGIqJpduHABrVq14nE6olrGzs4Or776Khcu1hIqlQohISHo0KEDkpKScPLkSYSFhbFUX89s2bIFKSkpWLx4segoRKQHmjZtijNnzmDixIkYPXo0AgICUFRUJDoWVWDjxo2YNm0a5s+fjwULFoiOQ0RERE/AxMQEERER+OOPP1hCVIelpaVh0KBBCAkJwbZt2xAaGgojIyPRsYiIiIiojuFKVCI98ddffwEAGjZsKDgJiZSbm4sLFy7gxIkTiIqKwqVLl1BSUgJXV1f06tULQUFBGDBgAGxsbERHJSIiIiIiqtVOnDiBmTNn4ubNm3j77bexZMkSfuYmIiKiSm3YsAFmZmYYOXIkrKysAADh4eEYMWIELCwsBKcjoup29epVeHp6io5BRBXw9fXFO++8g4yMDFhbW6OwsBDHjh3D5cuXsWDBAk7MriFRUVGYNm0abt++jU8//RSzZ8/mv72eaty4MZYvX47p06dj5MiR6NKli+hIRKTj6tWrh5CQEHTr1g3+/v64cuUKIiMj0bx5c9HR6P9btWoVgoKCsGTJEgQHB4uOQ0QvkEwmg1qtFh2DiKpRq1atsGXLFvj6+uLll1/GuHHjREeip3Dq1CmMHz8eBgYGOHv2LLy8vERHIiIiIqI6Si46ABHVjPT0dJiYmMDc3Fx0FKpBeXl5OHHiBBYuXIiBAwfC1tYWAwcORGRkJDw8PLBz506kpqYiLi4OoaGh8Pb2ZokBERERERFRFaKjo9GnTx+89tprcHd3R0JCAkJDQ1liQERERFVatGgRJk6ciIYNG8LX1xdbt27FxYsX4efnJzoaEdWAa9euoUOHDqJjEFEFRo4cCZlMhsWLF2PChAlo0KABhg8fjqVLlyI5OVl0PJ13//59jB07Fq+88gqaNGmC2NhYfPzxxywx0HMBAQHo168fJkyYgMLCQtFxiEhPjB07FjExMcjPz0eXLl1w7Ngx0ZEIwMqVKzF37lx89dVXLDEgIiKqo3x8fPDee+9h2rRpSEhI0NyvUqkQHByMLl26oKSkRGBCKquoqAhz5szBwIED0aNHD1y7do0lBkRERET0XAxFByCimpGWlgY7OzvRMaiaFRUV4fz58zh9+jROnTqFy5cvo6ioCC4uLujXrx+mTp2Kvn37wt7eXnRUIiIiIiKiOuXevXuYN28evv/+e7z88suIiopCjx49RMciIiKiOkKlUgH4ex/uv//9b0RERMDQ0BA//vgjLC0t0bNnT8hkMsEpiag6pKen4969e+jYsaPoKESkpbi4GBcuXNC8J69ZswaGhoaa92wAMDAwEJhQt+Xn52Pt2rVYunQp7O3tsWfPHnh7e4uORbWETCbD5s2b0a5dOyxbtgyLFi0SHYmI9ISrqysuXryIqVOnYvDgwZgzZw6WLVsGubz8+cKysrLw6NEjtGnTRkBS3XHlyhV07ty53P0lJSWYPXs2QkJCsHnzZkyZMkVAOiKqbjKZDGq1WnQMIqoBa9aswZUrV+Dj44NLly7h8ePH8PX1xcWLF1FSUoKLFy9y/kUtkZiYCD8/PyQkJODLL79EYGCg6EhEREREpAPK72ElIp2kUChga2srOgZVg5SUFISFhcHHxwf29vbo168ftmzZAkdHR6xbtw537txBYmIiNm7cqNmGiIiIiIiInszjx48xd+5ctGnTBpcvX8aePXtw/vx5HkQnIiKip6I9IVepVAL4u9zgu+++Q+/evdGiRQssWbIERUVFoiISUTW5fv06AKBDhw6CkxCR5MMPP0TDhg3Ru3dvbNq0CTk5OQBQqsQAQIWLFun5HTx4EB4eHvjss88wa9YsxMbGssSAymnevDmWLFmCZcuW4cqVK6LjEJEesbCwwK5du7Bp0yasWbMGQ4cOxePHj0ttU1xcjGHDhqFz5874888/BSWt+7Zu3QpPT0+sX7++1P1FRUX4v//7P6xfvx7ff/89SwyIdBiLDIj0h5GREXbv3o2HDx/irbfeQocOHRAdHY2SkhIYGxtj3759oiMSgLCwMHh5eUEul+PXX39liQERERERvTA86kqkJ3Jzc2Fubi46Br0ASqUSZ86cQVBQENq1awcHBwe8++67KCgowIoVK5CUlITk5GRERETA398fzs7OoiMTERERERHVKmUnHVakqKgIISEheOmll/Dtt99i5cqVnFhPREREz6ykpKTC+6VSg7t372Lx4sVISUmpyVhEVANu3boFCwsLODk5iY5CRPi7XOjQoUPIyMgA8L/34oqwyODFSkhIwKBBgzB8+HB4eXkhISEBCxcuhImJiehoVEtNnz4d3bt3x6RJk6r8XSUiqg7+/v44d+4c4uPj0bFjR1y8eFHz2MKFCxEVFYXCwkJMnjxZYMq6Ky0tDbNmzQIABAYG4r///S+Av+c4Dh8+HAcOHMD+/fsxZswYkTGJiIjoBXJycsKAAQNw9OhRZGRkaD7nFRUVYc+ePYLT6bZ9+/bh0qVLlT7+8OFDjBgxApMmTcKMGTNw/vx5tG7dugYTEhEREZGu41FXIj2Rl5cHU1NT0THoGaWmpiIyMhLjx4+Hvb09+vXrh71796JHjx44cOAA0tLScODAAbzzzjto0aKF6LhERERERES11pdffgl7e3v8+uuvFT6uVqsRGRkJNzc3fPLJJwgICMDt27cRGBgIQ0PDGk5LREREuqKyIgNt69evR9OmTWsgDRHVpLt377J0mqgWkclkOHjwIMzMzCCTyarclvsB/tmmTZtw8ODBKrdJTk7G1KlT0a5dO2RmZuLixYuIiIjguIf+kVwux5YtW/D7779j9erVouMQkR7y8vJCdHQ03N3d0bdvX4SEhODw4cNYunQpiouLoVKpcOLECYSFhYmOWufMnj0beXl5mtvDhw/H5cuX0adPH1y9ehX//e9/MWjQIIEJiagmyGQyqNVq0TGIqAb8+eef6N27N/bu3Qu1Wl3umMm9e/cQGxsrKJ1uO3jwIEaNGoW33noLBQUF5R7fvn07PDw8cP36dZw8eRLLli2DkZGRgKREREREpMtYZECkJ/Lz81lkUIcUFxfjl19+wcKFC+Hl5QUHBwdMmDABDx8+xNy5cxEfH4/bt28jNDQUQ4cO5VkqiIiIiIiInsCuXbswe/ZsqNVqfPDBB+UeP3/+PHr16oXRo0ejZ8+euHXrFlasWAErKysBaYmIiEiXVFVkYGBggPfffx9Tp06twUREVFNYZEBU+7Rp0wbh4eH/uJ1czik1Vfniiy8wbdo0TJo0Cfn5+eUez8zMRHBwMFq3bo3jx49j+/btOH/+PLp27SogLdVVLi4uWLBgAT777DPcvHlTdBwi0kN2dnb4z3/+g6CgICxbtgxjx44tV4b03nvv4cGDB4IS1j1RUVEICwvTnIW5uLgYeXl5GDRoEBQKBc6fP4/OnTsLTklENYFFBkT64fDhw2jXrh1++eUXFBcXV7iNkZER9u3bV8PJdN8vv/wCHx8fqNVqPHz4EGvWrNE8lpycjOHDh2PSpEnw9vbGr7/+ij59+ghMS0RERES6jEddifQEiwxqv6KiIhw+fBgTJ06Evb09vLy8EB4ejh49euDw4cNIT0/H8ePHERQUBDc3N9FxiYiIiIiI6pTTp09jwoQJAP5eSHj69GkcO3YMAJCYmAgfHx/07NkTZmZmuHLlCsLCwuDo6CgyMhEREemQyooMjIyM0KVLF3zxxRc1nIiIagqLDIhqp+HDh2P27NkwMDCodJuqHtN3X3/9NT766CMAgEKhQGhoqOYxpVKJzZs3w8XFBZs2bcL8+fORmJiIcePGlVv4SfQkPvzwQ7i6usLf358L3YhICAMDA8ybNw+NGzdGXl5eqc/4arUahYWF8Pf3F5iw7lCpVAgICChXGKVUKpGdnQ0XFxe0aNFCUDoiIiKqDl988QUyMzM1JUYVUSqViIyMrMFUuu/+/ft48803oVKpoFarUVxcjM8++wzJycnYvHkzXF1dER8fj9OnTyM0NBQWFhaiIxMRERGRDmORAZGeUCqVMDIyEh2DyigsLMShQ4cwYcIENGrUCEOGDEFiYiI++eQT/P7777h58ybWrl2LQYMGsYiCiIiIiIjoGV2/fh3Dhg1DcXGxZrKzgYEBpk+fjqlTp6Jt27a4ffs2Tpw4gePHj6NDhw6CExMREZGuqWjBlYGBARo2bIgDBw7A2NhYQCoiqgkPHz5E48aNRccgogosX74cr7zySqXH0csusKO/bdu2DTNmzNCMb4qLi7FkyRLk5uYiMjISbm5umD59Onx9fXH79m0EBQXBxMREcGqqywwNDREaGoqzZ88iPDxcdBwi0lOBgYH47bffKlyAp1QqcfjwYS6+ewKff/45bty4UeHZmFUqFY4dO4YVK1YISEZEIshkMhZVEemBQ4cOISgoCDKZrMrSyN9++w137typuWA6LCsrCwMHDsTjx4+hUqk096tUKrz66qt4//33MWPGDMTGxqJPnz4CkxIRERGRvuBRVyI9wR1+tUdhYSEOHjyI8ePHo1GjRhg6dChiYmIQGBiImzdv4sKFC/jwww/RunVr0VGJiIiIiIjqvD/++AP9+/dHQUFBqbMkFRcX4/bt2zh69Cg2bNiAy5cv49VXXxWYlIiIiHSZ9jgEgGbC3oEDB9CwYUNBqYioJmRkZMDa2lp0DCKqgIGBAXbv3g1bW9sKJ9JXNbleX+3YsQOTJ08uN/cgIyMD7dq1w5gxY/DKK6/g9u3bCAkJ4esfvTBdu3ZFQEAAPvjgA6SlpYmOQ0R6Zvfu3di4cWOFi+8lMpkM/v7+SE1NrcFkdcu9e/ewaNGiKv8dS0pKEBwcjEOHDtVgMiIiIqpOpqamWLFiBc6ePYsmTZrA0NCwwu0MDQ1x8ODBGk6ne5RKJUaMGIHbt2+XK+FSKpW4ceMGtm/fjiVLlqBevXqCUhIRERGRvmGRAZGekMvlLDIQqKCgoFR5wYgRIxAfH4+ZM2fi1q1biIuLw8KFC/HSSy+JjkpERERERKQz0tLSMGDAAGRkZJRqmZeo1WoUFhbCz8+PixOIiIioWlW0fz4sLAyenp4C0hBRTcrKyoKVlZXoGERUCXt7e+zfvx9yefnpMxXdp89++OEHvP322xWOa4qLi/HXX3/h0qVL2Lp1K5o0aSIgIem65cuXo169epg7d67oKESkRxQKBSZPnvyP26nVauTm5mLmzJk1kKpumjZtWpUlBtomTpxYzWmIqDbgCdqI9EvPnj0RHx+PadOmQSaTldvvUlJSgr179wpKpxvUajUmT56Ms2fPlisxkBgYGCAkJISvv0RERERUo3jUlUhPyGSycmd8oupVXFyMn376CePGjYO9vT1GjBiBO3fu4LPPPsO9e/cQExPD8gIiIiIiIqJqkp+fjzfeeAN//vlnhSUGwN8HcRUKBb766qsaTkdERET6Rnv/vFwuR3BwMHx9fQUmIqKaUFhYiMLCQhYZENVy3bp1w1dffQWZTFbqfpYe/s++ffvg6+tb5ST3goIC/PzzzzWYivSNlZUV1qxZg61bt+LUqVOi4xCRnrCyssKCBQvg7u4OADAyMio3ZpAolUrs2rULhw4dqsmIdcK+fftw+PDhShfUyeVyyOVy1KtXDz4+PoiIiKjhhEQkAosMiPSPmZkZ1q5di2PHjsHe3h5GRkaax0pKShAVFYW0tDSBCeu2hQsX4vvvv690jgwAqFQqREdH44cffqjBZERERESk71hkQKQnDAwMnrjRmJ5PYmIiPv74YzRv3hyvv/46kpKSsHz5cty/fx8///wzpk+fjsaNG4uOSUREREREpLOKi4vh6+uLa9euVTopTqJSqbB06VI8evSohtIRERGRPpKKDIyMjPDqq69i4cKFYgMRUY3IysoCABYZENUB7777LsaPHw9DQ0PNfWXPDKivfvrpJ/j4+ECtVle5yEilUmHJkiXIy8urwXSkb7y9vTF06FBMmzYNhYWFouMQkR4wMDDAnDlzEBcXhz/++AOrV69Gly5dIJPJKiw1kMlkmDhxIhQKhaDEtU9eXh7ef//9cmMr7X/Drl27YuPGjfjrr7+we/du9OvXT1BaIiIiqgkDBw7EjRs3MGHCBMhkMs04QSaT4T//+Y/gdHXT9u3b8dlnnz1xQcysWbP4uZqIiIiIagyPuhLpCVNTU+Tn54uOobNycnKwZcsWvPzyy3Bzc0N4eDjGjx+PxMREnD9/Hu+99x4cHR1FxyQiIiIiItJ5arUaU6ZMqfLMPtoMDQ2Rn5+PjRs31kA6IiIi0mcymQzOzs7Yu3cvz/BMpCekEhMuhiaqGzZu3AgXFxfNgkT+7gInTpzAkCFDUFxcrHlNq4pCocCmTZtqIBnps3Xr1iE5ORmrVq0SHYWI9Ezz5s0RGBiIS5cu4fbt21i6dCk6deqkWZAvl8uhVquhUCjw0UcfiY5ba8yfPx8pKSmasYSxsTEAoFWrVvjkk0+QlJSECxcuwN/fH5aWliKjElENk8lkT7zgloh0j5WVFbZs2YKDBw+iQYMGMDIyQklJCX744QfR0eqckydPYsqUKVW+phoYGGjGYWq1GgUFBUhLS6upiERERESk5wz/eRMi0gXm5ubIzc0VHUPnxMbGYtOmTdixYweKiorw1ltvYcmSJejfvz8nthARERERkRBZWVkoLi4GAM0Zf0pKSpCZmVlqu8zMzH+cgJ6dnQ2VSvWP37N+/fr/+BnI0tKy1FkNTU1NYWJiAgCwsLCAkZERgL8PVj/Pwr5PP/0UYWFh5f5uhoaGkMlkmnIDMzMzuLi4wNPTE+7u7hg5cuQzf08iIiISR6lUIicnR3NbpVIhOzu70tuVPe9JFBYWPtMZhk1MTKBWq2Fqaop58+bh8uXL//gc7fGRtrJjqrLbVfY8IhJD+n2VPqMR0YuRm5uLoqIize2cnJxSZYba+0a0PcmZkefMmYNp06YhPz8fhw4dQkFBwVNlk8lksLa2fqrnmJmZoV69euXuL7uPxNrautRZn21sbJ7q+zytn3/++R9LDAwMDGBoaAilUomSkhKo1WqcOXMGs2bNqtZspN+aNWuGBQsWYN68efD29oarq6voSESkR6RxhrW1NaZMmYIpU6YgNjYWR48exX/+8x/89ttvKC4uxrfffgsvLy906dKl1PMrOl7zNJ70uE1lDA0Nn6ssoKrjQWX3WQDAgwcPsGbNGs1YolGjRpg0aRL8/Pzg4eHxzDmISDewyIBINxQVFZVbo5CRkVHq97ugoKDSEzKamJhg8+bNWLduHU6dOqUZV1W0r0Tb84yLtOerPA1jY2OYm5tX+FjZ/TgVbVt2386LEBsbi+HDh5fad2NoaAi1Wo3i4mLI5XI4OzujS5cu6Ny5M9q3b48OHTrAycnpheYgIiIiIqoKiwyI9ISFhQWLDF4QlUqFvXv3YsOGDTh79ixat26N+fPn4+2330aDBg1ExyMiIiIiolooLy8PWVlZyM7ORlZWFhQKBfLz81FQUICsrCwUFRUhKytLc/A2OzsbRUVFyMzM1CyYkyblS5PupecD5Sfs6wrpIK5cLkf9+vUB/F3UZ2xsDGtraxgZGcHS0lIz4f/+/fs4fPhwqa9hbGwMR0dHuLq6onXr1mjbti06dOgANzc3zdckIiKiJ6NQKDQFANICQmlsIk1Ky8vLQ2FhIYqLi5GVlQXgf5PJtIsApOdJ22sXDmgvPiw7Ae5ZCghqi/z8fLz99ts1+j2lsVNFtw0MDGBlZQXgf4sNtCfWSYsjpbFWRdvXq1cPZmZmpba3traGsbExLCwsNN+vuhdaEtVWLDIgXSC9R0vv2QqFQvOeLl1rL8iT3velfRxVPaY9XtB+/y87uV17H0hNGjZsWI1/z2elve8EKP0+D/xvMr2JiQlMTU1LPS49Jk3iNzAwQHZ2NjZt2gSlUgkDAwPI5XLNhHiZTIb69eujcePGaN26NZydneHi4oJWrVrBzc2NE+GpRsycORPh4eGYMWMGfvrpJ9FxiOgZSe//Za+lImbt/QjS2AMofUxEu7S5onJn7f0IlX29so9Jym7ztKZNm/bMz9VVKSkpWL58OZYvX665r6JFfmUXF2rvf3iSomxpP4T2GEm7xKGirydtW/a67LiKiIioJmVmZqK4uBgZGRmafTQV7Y/R3ncijY+0j7toj2uk4znax1+k8ZVarUZGRobm+1dUFv28xUr/RKlUYsiQIdX29WuTsmOesgWZ2uMX7SJMaaxjbGyMgwcPav4fjY2N0bBhQzg7O8PR0RHOzs5o2bIljIyMNGOl/Px8xMfHIz4+HtbW1pDL5bC2ttZ8L+1xEhERERHRi8IiAyI9YW5uziKD55SdnY1vvvkGISEhuH//PoYPH46ffvoJAwYMeOHtiEREREREVLvk5ubi8ePHSE9Px+PHj5GWlob09HRkZmYiIyMDWVlZ5S7aj1V1ELd+/fqag4bSZHJLS0sYGRnB2toalpaWcHBwKLWAXyaTPfOkLcmTNMw/yQHKJ1lMqL0wQaI90VB7sYJ00Fz7oLv2wXHtQgfpe6elpaGwsBBJSUmwtbUt9X1zc3Nx9+5d3L17F8eOHSuXTfo3trKyKnWxsbHR/Ll+/fqwtbVFgwYNNNcNGjTggjwiIqqV8vPzkZOTg+zsbGRkZCAnJ0dzOzMzE1lZWSgsLCy1IDEjIwNFRUXIycmp8L6yZz2uijR+0J5sJY1jtCdcSRPCbW1tYWpqWmp77fFM2cniZRfplb1ddpJXVWdFruhMgf+kqjMPVqTspL8nUdHEQEnZsxhpL9io6HbZM1Jr39Yex0nP0150mpSUBOB/4y/t7aUcT7OwVFqYoF1uIN1nYWGhGetKP0MWFhYwMTHRjMcsLCw0FxsbG1haWsLCwgKmpqZP9P2JRJBeY6pzYi+RRPocLRUpSpfMzExkZmYiJycH+fn5yMzM1LzeSwWK0vu9NAaQJsSXfR+pirS/QnqdNzIygoWFBYD/7ZOQHrOysoKjo2Opx7Tf/8ueKbjs4jZp/4mk7D6OskU+lW33T6oaR1TmaRc8VnVWZmkxZkXbld3XUnb/TNkyqLKlU9rb37t3D2q1WjPmKyoqQmpqKuRyOYyNjSGXy0sVaErjm4yMDMTFxZXLbWVlpfl/libZa7/vS5PiraysNP8n0nu79kXaZ2NpaflMZ0kk3WZoaIj169ejV69e+OGHHzBq1CjRkYh0Rk5OjqaEOTc3F/n5+Zo/FxQUIDMzU/N+In1elK6lRW2VXZctLHga2scrtBdxaY8htD+zS2MMExMT2NvbA0Cp8UnZ4x9lxx8VbVP2e0vKnn1X+/tXpOxY5mmU3Q/ytJ7l315S1ZmUgdJjFwCaUori4mLNZ6OKzthc0fip7ALJysq9tf8+d+/eBYBKjy9pl1U8S1GWtI+qsmvpZ6iya+nnqX79+jAxMYG5ubnm2KCFhYVmzFP255BIl8lkslL7OonqGumYSk5OjmaMlJeXpzk2Iz1WduxUVTlB2W2flPa+E2l8pD1u0B5/aBcaNmrUCEDpMY60j0dSdlxTdjxUUemP9hgNKD0Oqyr706ho/PYknuW4jaTsMRptZcdCZcc4Fe0DKvv/XNX+HWlb7a+TlZUFZ2dnzRjY0NAQxcXFePToER49eoRz586VK7B4UtL/szSekQqeKio9kLaV/t9tbGxgZmam2Q8k7SMyMzPTPFZ2TE1EREREuo1FBkR6on79+s/8oVvfJScn46uvvsLmzZtRXFyMSZMmYebMmWjRooXoaERERERE9AzUajVSU1ORmpqK5ORkpKSk4K+//kJaWhrS0tJKFRZI12UnM8lkMtja2sLa2hrW1taoX7++ZoJ1s2bNNIutrK2tyy2Qt7KygrW1tc4cmJMOQv4TOzu7GkhTMelAdG5uLrKzszVlExkZGZpFHmUvSUlJpUopHj9+XG4inVwuL1VuUPba3t4eDg4OsLe3h5OTE+zt7XXi/5yIiKqHWq2GQqGAQqFARkaG5s/SJTs7W1NIULakICcnBxkZGVWeBUeasKY9QVq7KMnMzAz29vaaMYq1tTWMjIxgaWlZ5X3SIoGKJu3T3+PGZyk/atiwYTWkqT7SxDlp3CVNuszJyUFRUZGmGCM3N7fS+5RKJZKSkjT3aS+SqWqhhTRJUio7kAoOpMWPUvmBNA63sbGp8MLCYqoO9erVg0wmq3KxDxHw9+uoQqHA48ePS10rFArN51epoEC7sEi7tKCqUntpv4WpqWmpxeP169fXjAHMzc017/fSJOSKFpxbW1vD2NhYMzG5skno+kqalP00GjRoUE1pXjzpfVr7PbywsLBUQUZFxVkKhULznIcPH5Z7jjTerWwsK41BpX1t0nt82fukckobGxvY2tqW+jPLEHRPjx49MG7cOHzwwQcYNGjQMy18IarrpOIhab+39Hoq7duWFtIVFBQgLy9P89qbm5uLrKwsFBQUaMYWBQUFlZbqabOxsdEshJP2DUjX0n4GBwcHzYK0iq7tKFHpAAAgAElEQVS1xxEVXUuLpTjWePHKLjKk/y0KrKyEQ7uso6LrsuOjvLw8/PXXX+Xul8oTyi5yrIh2uaO5ublmHG9ubl5qHC+Nz83MzMqNh7RLvHlWZSKi/1EoFJrSR+2LNJ9AoVBoCgWkcVZeXh5yc3ORkZGheayyUkKJtH9A+4QWZReGt2jRAgYGBpqTX0iv/xVta21tXW5boOryJKrYsx63AXTj31u7LEGhUGiKxsqOWbSLN6R9l2W3zcjIwKNHj0ptq1KpNKWqVZVxSMd2pGOO5ubmmnGNVP6k/ZiNjQ3q169f7mJtbc39AURERER1AIsMiPREw4YNkZaWhpKSkqc6W5Q+e/ToEVasWIHQ0FDY2tpi7ty5CAgI0ImdEEREREREuqiwsBD379/HgwcPNAUFKSkpePjwYanSgtTU1FKLoExMTNCwYUPY2dmhQYMGaNCgATw8PKpcoG5ra8uFTnWIdCD6eT/P5eTkaMot0tLSyhVepKenIy0tDTdu3MDjx4+RkpJSbgKDjY0NHB0dS5UbODg4aAoPmjZtiqZNmz7XGZWIiEisvLw8pKWlITU1tdQixKpKCqT7KyK9h1lZWWkWZFtaWqJ58+alFm1LJQXa29jY2Ghuc8IyVSe5XK4Za9na2lbL98jPz9cs4FUoFJoSD2mRjjQxTrooFAokJydrbksLgRUKRYVnHZJKDqoqO9C+NGrUCHZ2dvzdoioZGhrCxsYGf/31l+goVENUKhXS0tI0hYnaY4GyJQXa1xVNfpd+fqQiFmlir6WlJRwcHDTv/dpnsJcm8Eq3pTEC0YtibGwMY2Pjavv60iLa7OxszWJc6SK9v2vfl52drSmj1F7EK51tWZupqWm5coOKCg+kawcHB77X1wGrV6+Gi4sLVq5cicWLF4uOQ/RUtPcPPH78uNRrmfZrWmX3V1UAIy2aMzMzg7W1NUxMTDSLgSwsLNCoUaNKzwRvYWGhKS7UXigtlRoR6RrtsoyaKpaUCiCfpFwkJycHBQUFmnKSgoICJCUllSpGkMqkKis3kxYKahccaBcdVHW/NDaytraukX8b0i8ymeypzg5OBKDU8XnpxAUZGRmaP0u3KysrqIhUEiMtltYuIXByciq3yNrU1FSzeFoqgix7xnmi2kr7ZCXV/bMqlSZkZmZqSkCk0pC8vDzN55v8/PxyZSFJSUnIycnRlGZLv9cVlV4bGhpq9ouWLTyQTk5T9j5p/leDBg1YhEBERERUA1hkQKQn7O3toVKpoFAo6tQZHURITU3FqlWrsHHjRlhbW2P16tWYOnUqz5pJRERERCSYQqFAUlISkpOT8fDhQyQlJZW6fffu3VIHrKQF4zY2NnBycsIrr7wCJyenUvc5OjrCwcGBhW/0RKSFoM7Ozk/8nMLCQqSnp+Phw4dITk6GQqHQ/Pnhw4eIjo6GQqHA/fv3kZWVpXmeiYkJnJyc0LJlSzg6Opb7c5s2bWBpaVkdf00iIipDOkOs9mu5dKnsvrJMTEzKLYJ2cnKCh4dHlQul7e3tYWjIQzlEwN+LD01NTWFvb//cX0v6vf6ny6NHj5CQkKC5nZaWVu4MQmV/v7U/c1R0X6NGjWBgYPDcfweqOxo2bMgigzpOKkap7P1f+3bZ8kSg4nGAo6Mj3N3dqxwHcH8F6SMTExNN6ejzqmocr/3efvPmTc3t9PR0FBUVlctU2ft82duNGzfmIr8a1qhRI3z66acIDg7GuHHj0KZNG9GRSM886WeLil5/Kjo7qXQG3rLjB1tbWzRu3LjCcUXZ7Rs0aMA5TkS1XL169VCvXr1qWTyo/bpUUFBQ4euU9v3JycmIi4srdX9KSgpKSkrKfe2KXoOe5OLo6MiCeKoQiwz025OMo8p+nqtqDFXRGOlJXqNsbW1Z1kRUTaTShBc55pFeOyob51S030d724r23wKl55hVdtHeD2RnZ1etZZ9EREREuoaz34j0hHSgPzU1lUUGlVAqldiwYQMWLFgAY2NjzJ8/HzNmzICpqanoaEREREREeiEnJwe3bt3C7du3S11LZQXSAWkDAwM4ODjA2dkZTZo0Qbdu3dCsWTM0a9YMTZo0QZMmTdCoUSNO9qdaoV69enBycoKTkxM8PT2r3DYzMxP379/HvXv3cP/+fdy/fx93797Fn3/+iUuXLuHevXsoKCjQbG9vbw9nZ2e0atUKL730UqlrBweH6v6rERHVaYWFhUhJScH9+/eRkpKCBw8elLp9//59zZmUy57d0NLSEvb29mjYsCHs7OxgZ2cHV1dXzdnZpYv0OM+CTFT7SKUITk5OT/3czMxMPH78GKmpqUhLS9NcUlJSNGdhv3z5sua+7OzsUs83NDTUvEZIn10aN26suXZwcNBcc/GRbmCRQe1UWFiIR48e4cGDB3j48CEePHiA5ORkzeXhw4ea33NtBgYGpd7nGzVq9P/Yu++wqK78f+DvoSuIiEqVKkMbqoAKWEDFgjFRNCb2Fk1Mnt2s6cmm6Eazm25++myKibvGJMZEIWoUDRZsoIIFAelDlS6KNIGZOb8/8p27jrQBZuYyzOf1PDzA5c49n3vOnbkf7sz5XHh6emLy5MkYNWoUbGxsFHIES0tLKl5CCE8ePt/3dE3mYffv30ddXR2qqqq4/wmqq6u5c31tbS2ysrK431taWhQeb2pqCisrK64Y5aNftra2GDNmDMzNzVW9yzrrxRdfxJ49e/DKK6/g8OHDfIdDtJhUKuWe5zU1NQqvAzU1Naiurubyg7q6OtTV1XUofgL8WRDX0tJSYXKcPGd4dPnDP5ubm1PeQAjpt/5c85CTSqW4f/8+Nwmwrq6uy5/LysqQnp7OLX/0OggAGBkZcYVW5P9Pya+lyv9/srGxUbiuSq+HhGgfmUzG5UyVlZVcLlVRUaHwc01NDerq6jr8LwUAI0eOVLhLuqWlJUJCQhSWyV9LLC0tYWFhQf9bEaJj5LlOX8lkMty7dw937txBXV2dwveHf66srERGRgb3e2NjY4dtmZubc9eIR48eDRsbG1hbW8PKyor7efTo0bC1taX3iwkhhBCi86iQASE6Qn6Hourqanh5efEczcBz8OBBvPbaa6iqqsJrr72GV155BUOHDuU7LEIIIYQQQgadlpYWZGVlIScnR6FYQX5+PqqqqgAAenp6cHBwwNixYyEUCjF79mw4ODjA0dERDg4OsLOzozsTk0Fp+PDhGD58OEQiUZfr1NTUoKysDKWlpSguLkZRUREKCgoQFxeHgoICrtCBmZmZQnED+fPJ19cXo0aN0tQuEUKIxjHGUFlZieLiYpSVlaG8vJybpFhZWcn9/uikRCsrK4XJxIGBgQofprWysuI+SEsTiwnRbfKczcXFRan1W1tbuclQ1dXVChMi5UVUrl69iqqqKlRXVys8duTIkbCxseEmPconRMonQDo5OdFdDbWAlZUV9/8u0Yx79+6huLgYxcXFXA5QWlqKqqoq7vvDzzeBQABra2uukIiLiwsmTZrE5QfyiTXy7/ScI2RwMzc3h7m5OZydnZVav7GxkZvw/PDkZ/mdQ69evYpDhw6hsrISra2t3OOGDh2KMWPGwMbGpsN3R0dHODs7w9bWloq1KsHAwADbt2/H9OnTcfToUcydO5fvkMgA0tTUxBUtLC8v5/Lx2tpa7vrAw8seviu0np6ewqRaKysr7vrqyJEjOy1GMGLECBgaGvK4x4QQ0n/6+vp9vnuyRCLpsvDBnTt3UFNTg5qaGmRmZioUj5HJZArbefh/sIcLHciX2dnZwdraGmPGjIGZmZmqdp1omEAgUDj3koHp/v37XBH+yspKVFdXcwUJ5P/7yAsYPPxcNjIy4ib2yif0+vv7w8rKqkOxAvnPdM2FEKJuenp6sLS0hKWlZa8e19ra2mnBA/nrX01NDfLz85GUlMT9/vA5zsTEhCtqYGVlxRXBlP9sb2/PfdF70YQQQggZjOhT/4ToCCsrKxgZGaGsrIzvUAaUkpISbNiwAX/88QeWL1+Of/7zn7C3t+c7LEIIIYQQQrRee3s7cnNzcevWLWRmZnLfc3JyIJVKYWBgAEdHR7i6ukIkEmHevHlwdXWFq6srPD09YWpqyvcuEDIgjR49GqNHj0ZgYGCnf7979y7EYjHEYjH33Dt16hS+/vpr1NfXAwBGjBgBb29viEQi7ruPjw9sbGw0uSuEENInbW1tXIGCiooK7jVP/ntOTo7CHTFGjBihMPE3MDAQtra2GDFiBLfMycmJPuxKCFEbY2Nj7sNnyrh79y73mvbo9wsXLqCiogIlJSWQSCQA/vxA8MiRI2FnZ8f9T+Xq6sq99nl4eNBrHM9cXFxw9uxZvsMYVB5+nshzgYe/7t69y61rYmLCnfPt7OwQGRmp8LurqyscHBxowiEhpM/MzMxgZmamVJGjlpYW7rXr0fP85cuX8dtvvymc5w0NDbmJeg+f5+Vfjo6OVPD1/0ybNg2LFy/Giy++iOnTp8PExITvkIiayZ9PneXOd+/eVVj2sIdzgxEjRsDJyQmhoaHc7w9fL7CysqLnGCGE9JKBgQE3Ia83Hn5dlxc+ePj30tJSXLlyBeXl5aitrUV7ezv3WBMTE4XX7+6+k4GFChnwr7NrkQ//v/LodRZjY2OueJP8ueXp6amQX8l/trGxocJshJBBw9jYmCs4rSz5a+yjeY3855ycnA7v+QAd39+WXxeS/zx27FhYWFioYzcJIYQQQtSGrrQToiP09PQwZswYFBcX8x3KgMAYw65du/Dqq6/C3t4eFy9eRGhoKN9hEUIIIYQQopWqq6uRmpqKlJQU3Lx5E+np6RCLxZBKpTA0NIS7uzu8vb2xePFiiEQiiEQiuLm50SQBQtRgxIgRCAoKQlBQEJ588kmFv92+fZsrKpKZmYn09HTs37+fK3BgbW0NHx8f+Pr6IigoCCEhIRAKhfQBE0KIxlVUVCA3Nxd5eXnIz8+HWCxGSUkJSkpKFCYgDBkyBM7OznB0dISjoyMmTJgAJycnODk5wdHREfb29pRvEEK0jnzylEgk6nIdiUSC27dvo6SkBEVFRdxrZElJCY4cOYKioiI0Nzdz68vv7CwvJicUCuHm5gZ3d3f6EL8GeHh44OuvvwZjjO4qpySpVIri4mLk5uYiJycHubm5KCoqQlFREYqLi9HU1ATgzwkPtra2cHZ2hpOTE6KiorhcwMnJCS4uLhgyZAjPe0MIIf8zZMgQrghBV6RSKcrLy1FcXIzCwkIUFxdzX3FxcSguLkZrayuAPycK2tvbw8nJCc7OzhAKhXB3d4e7uzuEQqHOFYv95JNP4OXlhc8++wxvvfUW3+GQfmhoaEBxcTF37i8uLsbt27dRVlaGqqoqlJWVcfkA8OdzwdraGvb29rCxsYGDgwNCQkK43+Xfra2tKR8jhJABSpk8SY4xhurqalRWVuL27dsdvqelpeHYsWOoqqpSKHgwdOhQjBkzBtbW1hgzZgyXR8lzKScnJ5ibm6tzNwnRKIlEgtLSUojFYhQWFiq811JeXo7bt2/jwYMH3PojRoyAvb09HBwcYGdnh6CgIIwZMwZ2dnZwdHSEnZ1dr+9gTgghukz+fk9PZDIZKisruWL+paWluH37Nvc+0KVLl1BWVoaWlhbuMcOHD8eYMWO4nMbFxQWurq7cd2tra3XuGiGEEEJIrwkYlTIkRGdMmzYNQqEQX3/9Nd+h8Kq2thbLly/HyZMn8corr2Dz5s1UjZ8QQgghhBAl3bt3D1evXkVKSgpXvKCkpAQA4OrqinHjxnHFCry9veHu7k4TCAkZ4EpLS5GVlYX09HRkZWUhLS0NN2/eRFtbG8zNzREUFITg4GCEhIQgJCQEzs7OfIdMCBkEamtrkZeXh7y8PK5ogbxwQUNDA4A/72wqFAq5O43KCxTIv0aPHs3zXhBCyMBVW1vLfTBZPvmrtLQUBQUFyMvLQ2NjIwDA1NQUQqFQ4Us++ZFeZ1XjwoULmDx5MkpKSuDg4MB3OANKTU0NV6hA/pWTk4OCggJukq6VlRXc3d3h6urKTSyRfzk4OMDY2JjnvSCEEM2rqKjgzu/yokaFhYXIy8tDUVERdxc/BwcHrrCBu7s7PDw84O7uDmdnZ+jr6/O8F+qxdetWfPTRR8jNzYWNjQ3f4ZAu3LlzR6FIx8MFC4qLi1FXV8etO3LkSDg6OsLBwaFDYQIqUEAIIaQ7PRU8KC0tRUlJCWpra7nHjBgxQuH/zkf/Dx01ahSPezT4eHp6YtmyZXjnnXf4DkVr3blzhytS8HDBArFYjNLSUq6Yx7Bhw+Dq6sq9z2JnZ8dNgLWzs4ODgwOGDh3K894QQgjpzp07d1BeXq5QkKakpAS3b9/mimG2tbUB+PO9n4cLGzz6M82d6Z9t27Zhz549yM3N5TsUwgMaf0II6ZM8KmRAiA5Zs2YNKioqcPz4cb5D4c3Vq1excOFCAMD+/fsxYcIEniMihBBCCCFkYCsqKkJiYiLOnDmD5ORk5OfngzGGMWPGIDg4mJvcHBwcTNX3CRlE2trakJaWhtTUVO7r1q1bkEgkGDVqFMaPH4+IiAhMnToVQUFBg/bD74SQ/qutrUVaWhrS09ORnp6OjIwM5OXl4e7duwAAExMTuLm5dZhEKxQK6S7hhBCiRhUVFQqFZB4uKCO/E5uFhQXc3Nzg4+MDX19f+Pn5wc/PD1ZWVjxHr13u3LmDUaNG4Y8//kBUVBTf4fCivr6eK5gmzwtyc3O5fEBeUOPRibbu7u6wsLDgOXpCCNEubW1tEIvFCoVi8vLykJ2djaqqKgCAkZERxo4dC29vb/j7+8PPzw/+/v6DonhlS0sLvLy8EBUVhV27dvEdjk4rLy9XKFaUm5sLsViM4uJirqgWANja2ipMEH104qiZmRmPe0EIIUQXNDU1dSiqU1xcjJKSEhQVFaGiogLyj9oPHToUzs7OcHV1VSgY5e7uDnt7e573RPtQIQPltLW1IScnB9nZ2bh16xZu3bqFvLw8iMVi1NfXAwD09fXh4ODQYaKq/HcqWEoIIYOfVCpFWVmZQlGbhwvdVFdXc+va2tpi7Nix8PT0hKenJ0QiETw9PeHk5ESFApVAE9l1G40/IYT0CRUyIESX/OMf/8APP/ygswnTvn37sHbtWkyePBn79u3DyJEj+Q6JEEIIIYSQAaekpIQrXJCYmIiioiIMGTIEEydOxOTJk7miBXQ3K0J0T3NzM65fv47U1FQkJycjMTERVVVVMDc3x+TJkxEREYGIiAgEBgZSYQNCdFBbWxsyMzO5YgXySYoVFRUA/rybsp+fH3x8fLg7fQuFQjg4OEBPT4/n6AkhhMjJZDKUlpYqFDeQF6ORT360trbmihr4+vrC19cXIpEIxsbGPEc/cNna2uLll1/GK6+8wncoasUYg1gsRlpaGvd18+ZNFBYWAgAsLS0REBAAX19fhWIFDg4OPEdOCCG6ob6+XqGwwa1bt3Djxg2IxWIwxmBhYaFQ2MDf3x8+Pj5ad5e+H374AatWrUJKSgrGjRvHdziD2v3795GXl4fc3FyF4hm5ubloaGgAAJibm3PXAdzc3LhCBY6OjnBycqIckhBCyIDX2tqKkpISlJSUcEUO8vPzuXOgfCK5mZmZQmED+f+9QqEQw4cP53kvBiYvLy8sWbIE7777Lt+hDAhNTU3Izs5GVlYWbt26hezsbGRmZkIsFkMikUBfXx+urq7w9vaGh4eHQqECJycnGBoa8r0LhBBCBrDGxkaFwgb5+fnc9aHKykoAfxYd9vT0hJeXF7y9vbnvrq6uMDAw4HkPBg6ayK7baPwJIaRPqJABIbrkl19+wdKlS9HU1KRzbwTu3r0b69evx9/+9jd89NFHNKGCEEIIIYSQ/yORSHD27FnExcUhPj4eYrEYJiYmmDhxIiIiIhAZGYkJEybo3P8QhBDl3Lp1C4mJiUhMTMTZs2dRXV2N4cOHY9q0aZg/fz4ee+wxWFpa8h0mIUTFZDIZsrKykJSUhKSkJKSkpCAnJwcSiQTGxsYQiUTcxFZ/f3/4+vrC2tqa77AJIYT0U3V1NW7evImbN29yxQ0yMzPx4MEDGBgYwN3dHSEhIQgNDUVYWBhEIhEVq/k/CxYsAADExcXxHIlq3blzBxcvXsTFixeRlJSEtLQ0NDQ0QE9PD25ubvD390dAQAA3KZYKFhBCyMDU0NCA9PR0pKWl4caNG0hLS0NGRgaampq4c/z48eMxadIkhIeHw9PTk++Qu8UYw8SJE2FqaorTp0/zHc6g0N7ejqysLNy4cYP7ys7O5ooXGhoawtXVVaFQkXwCJxVFJoQQMthVVVUpFPSRF40Si8Voa2sD8GdRSC8vL+7/5ICAAIhEIp2feO7t7Y2nnnoK7733Ht+haFxNTQ1SU1ORkpKC1NRUpKeno7i4GIwxGBkZwcPDA56envD29oa3tzc8PT3h4eFBn9sghBCiFnfv3u1QSCc7O7vDuSkgIADBwcEICQlBQEAAhgwZwnfovKCJ7LqNxp8QQvqEChkQokvS09Ph5+eHjIwMiEQivsPRmF27duG5557D22+/jS1btvAdDiGEEEIIIbxraWlBQkIC4uLicOTIEdy5cwf+/v54/PHHMW3aNEycOFHr7rJFCOEfY4wrbHDs2DGcOnUKUqkUERERWLBgAebPnw87Ozu+wySE9EFDQwMuX76MpKQkJCcnIzk5GfX19TAzM8P48eMxYcIE7u7KQqGQ7sZACCE6RCqVIi8vjytwcPnyZVy+fBkNDQ0wNzdHaGgo9zVx4kSYm5vzHTIvPvnkE3z44Yeorq6GQCDgO5w+y8/Px8WLF3HhwgVcvHgR2dnZEAgE8PLyQnh4OIKCgri7d5uamvIdLiGEkH6QyWTIz8/nihskJSXhypUraG5uxqhRoxAWFsYVNggODoaRkRHfIStITk5GeHg4Dh8+jMcee4zvcLRKQ0MDN+7yr4yMDLS2tsLExAQ+Pj4IDAyEp6cnPD094e7uDmdnZ7oWQAghhDxCIpGguLgYubm5yMnJQVZWFq5fv46MjAy0tLTAyMgIIpGIK2wQGBgIf39/nbp2oiuFDOrr63H16lWuaEFKSgqKi4sBAK6urggODkZAQAA8PT0hEonorteEEEIGjKamJmRnZyMrKwuZmZm4du0aUlNTUVdXBwMDA4hEIoSEhHDFDXx9fXWiUBNNZNdtNP6EENInVMiAEF3S2toKU1NT/Pzzz1i0aBHf4WjE6dOnMWvWLLzzzjt49913+Q6HEEIIIYQQ3kilUpw4cQJ79uzB0aNH0dLSgtDQUMyfPx8xMTFwdXXlO0RCyCBz//59HDt2DLGxsYiPj0dTUxMmTJiAZcuWYdmyZRgxYgTfIRJCutDY2IgzZ84gISEB586dQ0ZGBqRSKVxcXBAWFsbdadvX15c+TEcIIaQDqVSKjIwMXLx4kSuAU1BQAD09PYhEIkyZMgVRUVGYNm0ahg0bxne4GpGcnIywsDDk5uZCKBTyHY7SSkpKcOLECfzxxx+4cOECKisrYWJigpCQEG7yalhYGOX2hBCiIyQSCa5du8YVtUlKSlI4N0ybNg1z5sxBcHAw9PX1+Q4XTz75JNLT05Genq4TH6LvC4lEguvXr3OFC69evYqCggIwxjBixAgEBgZykysDAgLg5eVF1wEIIYSQfpJIJMjJyeEKBl2/fh3Xr19HXV0dBAIBXF1dMW7cOK4wZFBQ0KDNZUQiEZ588kls3ryZ71BUKi8vD2fPnsXZs2dx5coV5OXlgTEGe3t7bqJncHAwgoODMXLkSL7DJYQQQnqtoKAAqamp3NfVq1fR0NAAY2Nj+Pv7IzQ0FBEREZg8efKgPNfRRHbdRuNPCCF9QoUMCNE1QqEQK1as0IlJ/aWlpQgKCsL06dOxb98+vsMhhBBCCCGEF5WVlfj3v/+N3bt3o7y8HFOmTMGSJUvw+OOPw9bWlu/wdFJUVBQSEhL4DoMQjXrw4AESEhJw4MABHDx4EFKpFDExMXjxxRcxfvx4vsMjhODPOywfPHgQ8fHxSEpKgkQiQUBAACIjIxEeHo7Q0FDKHQYYyimINqHj9X90tS+qqqqQnJyMpKQknDlzBteuXYOenh5CQ0MRHR2NBQsWwMPDg+8w1aa1tRUWFhb48ssvsXr1ar7D6RJjDFeuXMHBgwdx7NgxZGZmYujQoYiMjMTUqVMH7F23dZmuvqYQQgaO/Px8XLx4EefPn0dCQgJKSkowcuRIzJw5E/Pnz8fcuXNhamrKS2yFhYXw8vLCxx9/jL/85S+8xDDQtLe349KlSzh58iTOnTuHK1euoLm5GZaWlggLC0NQUBB3R2gnJye+wyXdoByAqJqqjyk6RtWP+njwKSkp4YobXL16FUlJSaitrcWQIUMQEhKCKVOmYMaMGQgNDR00/5f7+Phg0aJFWl/IoKamBvHx8fjjjz+QmJiI27dvw9TUFGFhYZg4cSJXuIDeYxmY6PWUEEL6TyaTIScnhytscP78eaSlpQH483wfGRmJ6OhoTJkyBSYmJjxH2380kV230fgTQkif5FGJZEJ0jJ+fH27evMl3GBrxwgsvwMrKCt9++y3foRBCCCGEEKJxYrEYH3zwAX744QcMHz4c69atw9q1a+Hm5sZ3aEoRCAToqvZid3/TBIFAAAB9joFqSvaM7zEeLPp7rKqSiYkJ5s2bh3nz5mHnzp3Yv38/vv76a0yYMAGTJ0/GG2+8gejoaL7DJETnFBQU4IcffsDBgweRnp6OUaNGITo6GuvXr0dUVBSsrKz4DrHfKKfQbXyPsTwGgMZL1/f/YRKJpE+PGwjHc39YW1tj/vz5mD9/PgCgtrYWCQkJ+OOPP/DZZ5/hzTffhEgkwsKFC7F8+XIIhUKeI1YtY2NjTJkyBceOHRuQhQxu3LiB77//HgcPHkRJSQmEQiHmzZuHzz//HJMnT9b6DxZSPqDb+B5j0neUR2kHN9VEp6gAACAASURBVDc3uLm5YdWqVQCAzMxMHD9+HMeOHcPSpUthZGSEOXPmYOnSpZg3b55GJ925uLjgL3/5C9577z0sW7YMlpaWGmt7ICktLcWhQ4dw4sQJJCYmorGxEc7OzoiIiMCyZcsQHh4OT09P7jk3mFAOoNv4HmNt09e+6upYpr5Xfy5DfTz4ODo6wtHREY8//ji3LDs7G0lJSbhw4QJ++uknbN26Faamppg6dSpmzZqFJ554QuuLD2nrsZydnY1ff/0Vv//+O1JTU2FoaIjJkyfj+eefx9SpUzF+/HgYGhryHabKUF6l2/geY0IGu8HwHNPT04OXlxe8vLywYsUKAMDdu3dx/vx5JCYm4tSpU/jiiy9gamqK6dOnY968eYiJidHZazWEEEKILhIwbc94CCG9snXrVuzevRtisZjvUNTq/PnzmDJlChISEjBjxgy+wyGEEEIIIURjamtrsWXLFnzzzTdwdnbGyy+/jJUrV2rdpIOB/Eb4QIlhMKP+VZ2B3pdnz57FJ598gqNHj2LKlCn4+OOPERISwndYhAxqbW1t+OWXX/Ddd9/h7NmzsLGxwcKFC7FgwQJMnToV+vr6fIeoUpRT6LaB0r8DJQ6i3QbzcSSVSnH+/HnExcXh4MGDKC8vx6RJk7B27VosWbIExsbGfIeoEjt37sSbb76J2traAbFPLS0t2Lt3L3bt2oXU1FQIhUIsXrwYixYtQkBAAN/hqRTlA7qN+le70fhpt5qaGsTFxeHXX3/F6dOnMWrUKKxevRrPPfccXFxcNBLDvXv3IBQKsWbNGnz00UcaaXMgKC4uxr59+xAbG4vU1FQMGzYMM2bMwIwZMxAVFaU1BY/7i3IA3Ub9qznU112jviGqJhaLkZCQgJMnT+LkyZO4d+8egoKCEBMTgyVLlmgsx1IVX19fxMTEYMuWLXyHopTKykrs3bsX+/btw/Xr12Fra4vHHnsM0dHRmDFjBszMzPgOUW0or9Jt1L+EqJeuPMdKS0tx7NgxHDt2DAkJCZBKpZg5cyaWLl2KmJiYAfG+ibK2bduGPXv2IDc3l+9QCA9o/AkhpE/y9PiOgBCiWYGBgSgqKkJdXR3foajVtm3bEBUVRUUMCCGEEEKITomLi4OPjw9iY2OxY8cOZGZmYsOGDVpXxIAQojumTp2KI0eOICkpCTKZDKGhoXj11VfR0tLCd2iEDDpNTU3Yvn07xo4di3Xr1mHkyJE4cuQISktLsWPHDkybNm3QFTEghBCiHfT19REREYEvvvgCxcXFOHr0KGxsbPDcc8/B1dUVn3zyCRobG/kOs98ef/xxNDU1ITExkdc4mpub8dlnn8HV1RUvvvgiPD09kZiYiJycHGzdunXQFTEghBDCn9GjR2PDhg1ISEhAUVERnn/+efz888/w8PDAmjVrNPJhXwsLC7z99tvYsWMHSktL1d4enyQSCeLi4jBnzhy4urris88+g7+/P37//XdUV1fj4MGD2Lhxo84UMSCEEEIGI1dXVzz77LP49ddfUVVVhfj4eAQFBeGLL76Am5sbZs6ciV9//RXt7e18h6o0bZi4mZKSghUrVsDJyQn/+te/EBwcjNOnT6OsrAzffPMN5s+fP6iLGBBCCCGq4ODggGeffRaHDh1CVVUVvv32W8hkMqxatQpOTk549913UVFRwXeYhBBCCFETKmRAiI4JDAwEYwxpaWl8h6I29+/fx5kzZ7B27Vq+QyGEEEIIIUQjGGPYvHkzYmJiMGXKFKSnp2PDhg0wMDDgOzSOQCCAQCBQarn8d/nfBAIBnnnmmR7/BgAZGRmYO3cuhg0bhmHDhmH27NnIyMjotM2CggLExMRgxIgRXcbXG71puzeUiTcjIwPR0dFc29HR0Uq33dXyw4cPIzw8HCYmJnB2dsamTZvQ0NDQ6WNLS0vxxBNPYNiwYbC2tsby5ctx586dPvfRw9t+dIx7okxfKCMzMxPR0dEwMzODubk5Zs2ahVu3bnXor972qzJ9oIzebEfZ8eHTxIkTce7cOezbtw+7d+9GWFgYysrK+A6LkEHjyJEjEIlEePvttxETE4P8/HwcOHAAc+fO1briBZRTdN8P3aGcQrmc4uH15ZONf/75Z4Xlvdm3rvSmr/t6jMnXzcrKwsSJEzF06FBMnjwZ+fn5yMzMxIQJE2BmZobIyEiUlJR0eHxP+/dwn/z8888AgNTU1A591dXzsz+xqSLnk8dw69YtzJ49G+bm5jAzM8PcuXORlZXV6brqeP6o4nhWVQ48EOjr62POnDn45ZdfUFJSgvXr12Pbtm1wd3fH999/rxUfbu+Ko6MjAgICcPjwYd5iOHr0KEQiEd59910sXrwYBQUF2Lt3L6ZOndrv85cmUT7QfT90h/IB5a8x8HmeUPf5MS0tDTNnzoSpqSnMzc0xZ84cnDhxQmEdZfMcdVyHGT58OBYsWNDpPsrb7O+1FXXnSQ+30d1xocqxGOgcHBzw3nvvobCwED/++CMuXboEkUiEF198Ue0FizZu3Ag7OzutudNvb8lkMvz666/w8fHBokWLIJFI8PPPP+P27dvYtWsXoqOjtequht2hHKD7fugO5QC9e59BmddnTZ3bVXEs9rQ//Rm/znR3HeDRr4eLsSvbHuUy3fexss+l3r4P1tPrR0/7VF9fj02bNsHV1RUmJiawtbXF6tWrceXKlV6tI2+vp3FTdlvazMjICLNnz8bXX3+NiooKnDhxAhYWFli6dCmEQiG++eYbSCQSvsPslkAwsO9AnZOTg8WLF2PChAnIyMjgimN98803iIyMhJ6e9k7DoLyq+37oDuVVvb+20t9zSH9yqt4e6+rov576QFtzID6vnSnTZm+3qY5xV2abqngd1UbDhg3DihUrcPToUZSWlmLTpk3YvXs3xo4dizfeeAP19fV8h0gIIYQQVWOEEJ1jY2PDPvroI77DUJu4uDhmYGDA6urq+A6FEEIIIYQQjVi3bh0zNjZmP/74I9+hdKuryxCdLe/ukkVXf8vLy2M2Njbsyy+/ZNXV1ay2tpbt3buXubq6stLS0g7biIqKYhcvXmTNzc3s2LFj3bbZUwy9bbu3uos3Ly+PjRkzhn333XesurqaVVVVsV27djF7e3uWl5enVNtdjcHXX3/NmpqaWEVFBVu5ciVbtWpVp+vNnDmTxcfHs4aGBlZSUsIWLFjAVq9erbCeuvtI3oayfdGd/Px85uDgwG2ntraW7du3j/n6+vbqeO3PcdLTfvamLx8dnyeffLLD+AwkeXl5zMPDg7m6urLq6mq+wyFEqz148IAtW7aMCQQCtmrVKlZZWcl3SCpBOUXP+9Zde5RTdE8ikbCxY8d2uL5cXl7ORowYwRobG/u0b4/uQ2/6ur/H2OLFi9mtW7fYvXv32AsvvMAmTJjAFi5cyC3buHEjW7RoUaeP7W7/2tvb2Zw5c9hXX32l8LgDBw4wkUikcB7v6tjoS2yqyvnkMfj4+LB9+/ax2tpabluOjo6ssLCww7qqfv6o4nhWZX8MVDU1NeyZZ55henp6bNGiRay5uZnvkPps8+bNzNbWlrW3t2u0XYlEwjZu3MgAsGXLlg2KnIDygZ73rbv2KB9QDl/nCXWeH3NycpiHhwdLSEhgTU1NLDMzk02ePLlDPykzZuq6DlNTU8P27t3LQkND1XZtRb6P6sqTHl6vq+NClWOhjSQSCdu5cycbPnw48/LyYmKxWK3t7dmzh+nr67PMzEy1tqNp2dnZbNy4cczAwICtWrVq0OR/3aEcoOd96649ygF6pszrs6bO7ao4FntzvnlUX697dLbs0d9bW1tZcHAw+/LLL3vVHuUyivvY2TJlnkt9eR+su9cPZfbpiSeeYJs3b2aVlZXswYMH7Nq1ayw8PFyhPWXWUXbclNnWYCUWi9m6deuYoaEh8/PzYxkZGXyH1CU/Pz/29ttv8x1GBzKZjH344YfMwMCA+fn5sfj4eL5DUgvKq3ret+7ao7xKOao4h8i305//4buKrbNl6ui/7o5vbc2B5O3xce1MmTZ7u011jLsy25Sv2xlV5o7a4MGDB+zTTz9llpaWzNbWlp09e5bvkLq0detWJhQK+Q6D8ITGnxBC+iR38F+RIYR0sGDBAjZ//ny+w1CbnTt3MhsbG77DIIQQQgghRCO++uorpq+vz44dO8Z3KD1S9xvhy5YtYx9++GGH5d999x3761//2mEbZ86c6Sba7j0aQ2/b7kt7XcW7bNkytn379g7LP/30U7Z8+XKl2lYmprq6OmZpadnpY3/77TeFZdnZ2czOzq5DnOrsI3kbyvZFd5YvX97pdvbt29er47U/x0l3etuXj46PWCzuMD4DTU1NDRs7diyLjIzkOxRCtFZ7ezuLjIxkI0aMYAkJCXyHo1KUU3T+WGXbo5yiZ2+++SbbuXOnwrJ//vOf7Lnnnuv2cd3t28N629f9PcYSExO532/fvt1hWWlpKbOysupxW53tX2NjI5s4cSKLi4tjjDF24sQJ5unpycrKyjrEoarYVJXzyWP4+eefO93Wox/uU8fzRxXHsyr7Y6BLTExko0aNYmFhYay1tZXvcPpELBYzPT09duTIEY22+9RTT7GhQ4dyz9XBgPKBzh+rbHuUDyiHr/OEOs+PS5YsYd9//73COtnZ2T32U2djpu7rMP/5z3/Udm2FMfXnSfI2ujouVDkW2qy0tJSNGzeO2djYsKKiIrW1I5VKWUBAAIuJiVFbG5oWHx/PTE1N2fjx41lWVhbf4WgM5QCdP1bZ9igH6Jkyr8+aOrer4lhU9nzT3/FTZtnDNm7cyJYsWdLr9iiX+Z+u+l2Z51Jf3gfr7vVDmX0yMzNjd+7cUVhHLBYrtKfMOsqOmzLbGuzy8vJYeHg4GzJkCDt06BDf4XTKz8+P/f3vf+c7DAUymYytWLGCGRoask8//ZRJpVK+Q1Ibyqs6f6yy7VFepRxVnEPk2+nr//C9PdbV0X+9Ob61JQdijL9rZ8q02dttqmPcldmmfN3OqDJ31CZ1dXVs4cKFzMDAYMDe1Ikmsus2Gn9CCOkTKmRAiC76+OOPlXqzXVt9+OGHzMPDg+8wCCGEEEIIUbvm5mZmY2PDXn31Vb5DUYq63wi3trbu9MOulZWVzMvLq8M2mpqaugu3W4/G0Nu2+9JeV/F21bZYLO5Q5K0/b4R3tR6ADncsfvDgARMIBErFqao+6q6NzvqiL9upra3tVyGD3vRBX+Lrqi8fHR+JRNJhfAailJQUJhAIBu1dTghRty1btjBTU1OWnp7OdygqRzlF549Vtj3KKXqWm5vLgoKCFJYJhUJ27dq1Hh+rzHHY277u7zF2//597nepVNrpMmVzg872r6qqivn4+LDPPvuMeXh4dLjLTleP62tsqsr55DHU1tZ2ui1bW9sO66r6+aOK41mV/aENsrOzmbm5OXvjjTf4DqXPIiMjNTqJ8r///S/T19dX+FDvYED5QOePVbY9ygeUw9d5Qp3nR2tra3b79u1O4+xJf3Ka7nS1nYqKCrVdW2FMM3lST8eFqsZC2zU0NDA/Pz82ffp0tbZz5MgRBoAlJSWptR1NkOdEq1atYm1tbXyHo1GUA3T+WGXboxygZ8q8PvN5bu/tsajs+aa/49eb7f3000/M09OTNTQ09Lo9ymX+Rx3Ppe7eB+vt68ej+xQVFcXCw8NZfHw8a29v73Rbyqyj7Lgpsy1d0N7ezp599llmamrKbt68yXc4Hfj7+7O33nqL7zAUbN++nRkaGg66AtGdobyq88cq2x7lVcpRxTlEvp2+/g/f22NdHf3X2+NbG3Ig+bb5uHamTJu93aY6xl2ZbcrX7Ywqc0dtI5PJ2CuvvMKGDBkyID/vQBPZdRuNPyGE9EmugDHGQAjRKUlJSQgPD0deXh7c3Nz4DkflJBIJDAwM+A6DEEIIIYQQtbt48SImTZqE4uJiODo68h1OjwQCATq7DNHZ8q7W7e5vhoaGkEgknT5myJAhaG5uVmr7ynj08epuu7vHGBgYoKmpCcbGxgrLHzx4gGHDhqG9vb3H7Ty6vKamBm+++SaOHz+OyspKSKVS7m/KjpWm+wjoXV/0ZTtdxaaOPuiOKvqyv88BTQkPD8e4ceOwY8cOvkMhROu4uLhgzZo1ePfdd/kOReUop+h725RTKG/y5MnYuXMn/P39ce7cObz00ktITU1Vyb6poq+Vpezzoj9jBwA//fQTVq1ahU2bNuGjjz5SWRydLVNVztdVe11tSx3PH1Ucz6rsD23x8ccf45NPPkFVVRXfofTJDz/8gDVr1qC0tBQ2NjZqb2/atGlwcnLCf/7zH7W3pUmUD/S9bcoHlMf3eaI3y5Rtw8DAAM3NzTAyMupyv5UdMz6uw6jq2kpn21Z2mSqOaUC1YzEYnDlzBtOmTUNJSQkcHBzU1k5kZCRkMhnOnj2rtjY0YcOGDbh8+TJSU1NhaGjIdzgaRTlA39umHEA5yrw+a+Lcrqp9VWZ/OttGf8evq5iys7MxdepUnDp1Cj4+Pr1uj3KZrrfd1bLOlqvqfTBA+X2qr6/Hli1bcOjQIdTU1CAwMBAxMTF4/vnnuXOZMusoO27KbEtXSKVShIWFwd3dHXv37uU7HAWBgYGIjo7Gtm3b+A6FY2Njg/Xr1+P999/nOxS1o7yq721TXqU8VZxDutpOf5b1d11V9Z8250Dd7Zumr511tq46novq+qyOKl5HByOpVIrx48cjMDAQ3377Ld/hKNi2bRv27NmD3NxcvkMhPKDxJ4SQPsnT4zsCQojmBQUFwdjYGElJSXyHohZUxIAQQgghhOiKqqoq6OnpwdbWlu9QlCIQCNDa2qqwrK6uTmXbHzVqFOrq6sAY6/Cl7jdv+G67oqKiw/KKigqMGjVKYZmyY7BixQqYmpriwoULePDgAbcv/Y1T3X3Um77oaTuVlZUdlne2DFC+X1XVB3web5pmb2+vtRPUCOGTRCLB7du34enpyXcoakE5hfrappzif9asWYPdu3cDAL777jts2LBB4e/92TdV5Szq1Jv9y83NxbZt23D16lXExcXh6tWrao1N1f3XWa5RUVGB0aNHqz0mVRzP2nA8qZqXlxdqamrQ2NjIdyh9snDhQpiamuLHH3/USHvFxcXw8PDQSFuaRPmA+tqmfEARn+eJ3lC2jZEjR6K2trbbbSk7Zuq+DqPOayv9oapjWpVjMRjI/38tKipSazv/+te/cP78eRw/flyt7ahbaWkpAgMDdW4iJkA5gDrbphzgT8q8Pmvq3K6KfVVmfzqjjvFramrCwoUL8eGHHyoUMehNe5TLqEZv3wfraVvK7NPw4cPx2WefoaCgAGKxGM8//zx+/vlnLFmypFfrKDtuymxLV+jr6yMoKAglJSV8hzLgtbe3o7q6GgEBAXyHohGUV6mvbcqrBlYM6jjWVRW7NudAcnxcO1OmTXXk7Jp+3gyE5ymf9PX14e/vj7KyMr5DIYQQQogKUCEDQnSQsbExJk6ciFOnTvEdilq8+OKL+Otf/8p3GIQQQgghhKidh4cHZDIZUlJS+A5FKTY2Nh0+IHHu3LlO1xUIBF1up6u/zZo1C4mJiR2Wnz9/HkFBQcoH2gd8tj1jxgzExsZ2WB4XF4cZM2YoLFN2DJKSkrBlyxY4OztzxeJaWlr6FWdv+qi78e9Ob/qiOzNnzsRvv/3WYfmJEyc6XV/ZflXVccLn8aZJUqkUKSkpg3YiNiHqZGBggICAABw8eJDvUNSCcgr1oJxC0eLFi7k7th0/frzDh5z7s2+qylnUSdn9q6qqwhNPPIFdu3bBz88PP/zwA9atW4cHDx6oLTZV919nOV5cXBxmzpyp9phUcTxrw/GkagcOHIBIJIKZmRnfofTJkCFDsGrVKuzcubPLuympUnBwMA4dOgSZTKb2tjSJ8gH1oHygIz7PE72hbBsRERE4efKkwjppaWnw9vbmfld2zNR9HebROIGBcU1EVce0KsdiMIiNjYWhoaHaJ41NmDAB8+bNw+uvv67V58bw8HAcPnwYYrGY71A0jnIA9aAc4H+UeX3WxLldVceDMvvTGXWM33PPPYcJEyZg9erV3DL5OCnbHuUyqtHb98G6o+w+CQQCbhLaqFGj8NRTT+Ho0aP4448/erWOsuOmzLZ0RUlJCQ4cOIBJkybxHcqAZ2hoiHHjxuHbb7/V6lxRWZRXqQflVeqJoT96c6wrS1Wxa3MOJMfHtTNl2lRHzq6uY3Ygvo4OBOXl5Thy5AhCQ0P5DoUQQgghqsAIITpp27ZtzMbGhslkMr5DUamTJ08ygUDABAIB36EQQgghhBCiEeHh4SwiIoJJJBK+Q+nRypUr2aJFi1hpaSlraGhgx48fZ7NmzWKdXZ4YM2YMS0pKYm1tbezEiRPMwcGhx78VFhYyX19f9uuvv7La2lp2//59duTIEWZvb8/i4uIUtt/fSyKPPl7dbXf3mNzcXGZvb8927drFqqqqWHV1Nfv222+Zvb09y8vLU1hX2TGYNWsWW79+PSssLGStra0sLy+PrVy5stM4uoqtP33U3fh3pzd90Z2CggLm4ODAvvvuO1ZdXc1qa2vZTz/9xMLCwjrdX2X7tTd90B1VHG/acFlwx44dzNDQkInFYr5DIUQrya+TffTRR3yHonKUU/S9bcoplMsp5FavXs1mzpzJnnnmmQ5/68++9aavVX2MKbtMmf1rbGxkwcHBbPfu3QqP/fzzz9nf/vY3lcTR2TJV5XzybYeFhbEff/yR1dbWcttydHRkhYWFPcbWl5ge3o4qjmdV9oc22LFjBxMIBOzIkSN8h9IvhYWFzMDAgP3www9qbys9PZ0ZGxuzl19+eVC9L0j5QN/bpnxA+XyA7/NEb5Yp28bNmzfZ2LFjWUJCAmtsbGRpaWls3Lhx7N///je3jrJjpq7rMHfu3GH79+9n/v7+aru2wph686TutienyrHQdufPn2dmZmbsnXfe0Uh7GRkZTF9fn+3fv18j7alDS0sLmzBhAnNzc2M3btzgOxyNohyg721TDqBcDqDM67Mmzu2qOh6U2Z/OttHf8Xt02VdffcV8fHxYc3Nzp+sp2x7lMh37rqdlnS3v7ftg3R1jyu4TADZr1iyWkZHBHjx4wCorK9mbb77JFixY0Kt1lB03ZbalCzIyMpiXlxcLCAhgjY2NfIfTQUBAAHvrrbf4DkNBSkoKMzY2Zhs3bmRtbW18h6NWlFf1vW3Kq3p3baUr/R0nZZf15lhXR/911wfanAPJ942Pa2fKtKmK9+LUMe69eY1VZe6obUpLS1lQUBATiUQDMofZunUrEwqFfIdBeELjTwghfZI7uN7ZIoQoLTU1lQFgaWlpfIeiMtXV1czOzo65ubkxAKylpYXvkAghhBBCCFG7q1evsqFDh7INGzYwqVTKdzjdqqmpYUuXLmWjR49mpqambN68eaykpIQB6PBGzS+//MJcXFyYkZERc3NzY4cOHVLqb7m5uWzhwoVs+PDhzNTUlIWEhLDY2FiFbcvb66xdZXT12N623Zf2unrczZs32ezZs5mpqSkzNTVls2fPZjdv3uywnrJjUFVVxVasWMGsrKyYkZER8/HxYfv37++wXldx9aePGOt+jHuibF/0JCMjg82ZM4eZmpqyYcOGsccee4wVFhZ2Oga9ObaV7YOe9Od468/xrylHjx5lhoaGbMuWLXyHQohW2759O9PT02Nr165ld+/e5TsclaGcgnIKTeQUjDF27tw5BoBdvny5w9/6u2/K9LU6jjFllymzf/Kfra2tucdVVFR02F5/4uhP/ynbR4WFheyxxx5jw4YNY6ampmzOnDns1q1bXfZlf54/UqmU6evrKyxTxfGsqv4YyOrr69lzzz3HBAIB+/DDD/kORyWWLl3K/Pz8NFJc4Mcff2RGRkZs8eLFrLa2Vu3taQLlA5QPaCIf0PR5QlPnx6SkJBYeHs5MTEyYg4MD++c//6nwd2XHrDdt9uTh6zBmZmZs5syZLDMzU23XVtSdJz362K6OC1WOhTaSyWTsm2++YSYmJmzhwoWstbVVY20vXbqUeXt7D/hr6t2prKxkERERzNjYmP3jH/9g9+/f5zskjaAcgHIATeQAPb0+K9tf/T23q+pY7Gl/VHW+626ZsbFxh1gfXqc35zzKZXp3HHW1vLP3wfLz85menl6Xj+/qGFNmn06ePMnmz5/PRo4cyYyMjJiLiwvbtGmTwvlLmXUYU27clN3WYNXY2Mg++OADNmTIEBYeHs7Kysr4DqlTA7GQAWOMxcbGMjMzMxYaGjqoi0ZRXkV5lbrzKlWdQ/qbUynbz+rov576QNtzIECz185606ay21T3uCuzvL+vo4OJTCZjP/30Exs9ejQTiUQsPz+f75A6RRPZdRuNPyGE9EmugDHGQAjROTKZDLa2tnjllVfw6quv8h1OvzHGMH/+fFy/fh0bNmzAO++8g6ysLHh6evIdGiGEEEIIIWp36NAhPP3005g1axb++9//wsLCgu+QCBm0BAIB6HKa+jDGsHPnTrz00ktYtWoVdu3aBYFAwHdYhGi1w4cPY8OGDQCArVu3YuXKlTAyMuI5KkIIGRg0kdv997//xbJly2BoaIjy8nJMmjQJYrFYrW0OJhKJBD/++CPeeusttLW14auvvsLChQv5Dkslbt68iYCAAMTHx2PWrFlqb+/UqVNYuXIl2tvb8cEHH2DVqlUwNDRUe7uEaDO6BkCI+qSmpuKll15CcnIyXnvtNbz//vvQ09PTWPt5eXnw9vbGnj17sHTpUo21q2oymQyffPIJPvjgAxgaGuKll17CunXrYGVlxXdohBBCtFBmZibmzp2LoqIivkMhfVRbW4v//Oc/+OSTT9DS0oI33ngDr7/+OvT19fkOrVOBgYGIjo7Gtm3b+A6lg6ysLKxZswYpKSlYsWIFXn/9dXh5efEdFiGEDCh8XDuj63WDk0wmw4kTJ7B582akCdPFtwAAIABJREFUpqZi3bp1+Pzzz2Fqasp3aJ3atm0b9uzZg9zcXL5DITyg8SeEkD7J09w7QISQAUVPTw8zZszAiRMn+A5FJb744gscO3YM+/btg0gkAvDnG8+EEEIIIYTogieeeAKnTp3ClStXIBKJcOjQIb5DIoSQXisoKEBUVBQ2bdqEzZs349tvv6UiBoSowOOPP47s7GwsWrQIzz//PNzc3LB9+3bcu3eP79AIIUQnrFmzBv/617/Q0NCAL774Ak8//TTfIWmF+/fvY+fOnRAKhXjmmWcwd+5cZGdnD5oiBgDg5+eHqKgojX1Yf/r06cjKysJTTz2F559/Hu7u7vjqq6/Q1NSkkfYJIYQQxhgSExMxZ84chISEoL29HVeuXMG2bds0WsQAAIRCIZYsWYLNmzdDIpFotG1V0tPTw2uvvQaxWIxnn30WH330ERwcHPDkk08iPj4ebW1tfIdICCFkgBIIBPjiiy9w9+5dtLa24saNG3j22Wfxwgsv8B0a6aX29nacOHECTz/9NMaMGYOtW7di9erVEIvFeOuttwZsEYOBzsvLC8nJyfjpp5+QlJQEkUiEmTNn4tChQ5RjEUIIISpSW1uLL774Al5eXpg7dy4sLS1x7do1fPPNNwO2iAEhhBBC+oYKGRCiw2bOnInz589r/QeU0tPT8eabb+K9995DeHg4xo4dCwB0RyNCCCGEEKJTwsLCkJGRgWnTpmH+/PmIjIzEpUuX+A6LkEFFPqmeJterVnV1Nf7617/C29sbVVVVSEpKwt///ne+wyJkULGwsMDOnTtRUFCAmJgYvP3227Czs8Py5ctx8uRJSKVSvkMkhBCN01Ru9+9//xtffvklXF1dUV9fj3feeUet7WkzmUyGM2fOYOXKlbC1tcXrr7+Oxx57DHl5efjmm28wcuRIvkNUuffffx8XLlzA77//rpH2zM3NsWPHDuTl5SE6OhqbNm2CnZ0dnnvuOVy5ckUjMRCiLegaACGqU1lZiY8//hheXl6IjIxEU1MTjh8/juTkZAQGBvIW17vvvovCwkL89NNPvMWgKpaWlti6dSvKy8uxa9cuVFZWIjo6GtbW1li+fDliY2PR2NjId5iEEEIGkCNHjuDw4cNwdHSElZUVnnnmGaxfvx6vvvoq36ERJTQ2NuK3337DypUrYW1tjdmzZ6O0tBRffvklysvL8eGHH2LUqFF8h6n1BAIBnnrqKWRnZ+P333+Hvr4+YmJiYGtri/Xr1+PUqVNaXRSLEEL6g49rZ3S9bnC4d+8evv/+e0RHR8POzg5vv/02pk+fjoyMDMTHx8Pf35/vEAkhhBCiBgLGGOM7CEIIPyorK2FnZ4ejR49izpw5fIfTJ01NTQgODoaVlRVOnz4NfX19lJeXw97eHi+88AJ27tzJd4iEEEIIIYRoXFJSEt544w2cP38eERERePnllzF37lx6I0cJPfWRqi+jaLo9baaqvhrofT7Q41OlnJwcfP755/j+++9hYWGB9957D+vWrYOBgQHfoREy6N2/fx/79+/H7t27cenSJYwePRpPPPEEFixYgOnTp8PY2JjvELUe5RQD12Dpq8GyH+pC/aM92tracObMGcTGxuLQoUOoqqrC+PHjsWbNGjz99NOwsLDgO0S1W7RoETIzM5Genq7xXPjOnTvYu3cvdu3ahVu3bsHFxQVPPvkkFi1ahODgYLqO0E+UDwxc1Feaw0df0/gODBUVFYiNjcWBAwdw/vx5DBs2DMuWLcMzzzyDgIAAvsPjrF27FufOnUN2dvaguyZVXFyMuLg4xMbGIikpCXp6epg4cSJmzJiBqKgohISEDLp9HigoBxi4qK9Ib1EuQwYKiUSC1NRUnDx5EgkJCbh06RIkEglCQ0MRExODBQsWwMXFhe8wey0wMBDR0dHYtm0b36EorbS0FPv378e+fftw7do1WFhYICoqCnPnzsXs2bNhbW3Nd4iDCuVVAxf11eBG40tULT09HceOHUN8fDwuXrwIPT09zJo1C0uWLMHjjz8OU1NTvkPslW3btmHPnj3Izc3lOxTCAxp/QgjpkzwqZECIjvP390dkZCS2b9/Odyh9sm7dOsTFxeHGjRtwdHQEALS0tGDo0KGYNm0aTp06xXOEhBBCCCGE8Of06dP49NNPER8fDxcXF6xduxZr1qyBnZ0d36ERQnTUgwcPEBsbi++++w5nzpyBm5sbNm3ahNWrV2PIkCF8h0eITsrNzUVsbCxiY2ORmpqKoUOHIiIiArNnz8asWbMgFAr5DpEQQsggU1BQgBMnTuDEiRM4ffo0GhsbERQUhJiYGMTExMDT05PvEDUqNzcXPj4++Oqrr7B27Vre4khJScGBAwdw4MABiMVi2NnZYfbs2Zg9ezaioqJ0oqgEIYSQvpNKpbhy5Qr3ofRr167B1NQUjz32GBYtWoTo6OgBee2nuLgY7u7u+PLLL3k9D6tbdXU1Tp48yU1+LCsrg6mpKSZMmIBJkyYhPDwcoaGhGDZsGN+hEkIIIQRAY2MjLl26hAsXLuDixYu4dOkSGhsbYWdnh6ioKK4wkbZPmtfGQgYPy8/Px9GjR3Hs2DGcPXsWbW1tEIlEiIiIQGRkJKZMmYJRo0bxHSYhhBCicbm5uUhMTMSZM2eQmJiIyspKjB49GrNnz0Z0dDRmzZqFESNG8B1mn9FEdt1G408IIX1ChQwI0XWvv/46Dh8+jKysLL5D6bUDBw5g8eLFiIuLwxNPPKHwN0NDQ9jb26OoqIif4AghhBBCCBlAsrKysGvXLuzduxd3797FlClTMH/+fMyfP58rCEYIIerS1NSE48ePIy4uDkePHkVjYyPmzp2L9evXY86cOdDT0+M7RELI/ykpKUF8fDw3sbS+vh5jxoxBWFgYQkNDERoainHjxsHQ0JDvUAkhhGiJ9vZ23LhxA8nJyUhOTkZSUhJKSkpgbm6OadOmYdasWZgzZw6cnJz4DpVXGzduxO+//47c3NwBMcnz+vXr3ETUS5cuQSAQwN/fH+Hh4QgPD8ekSZOoSCIhhOi45uZmpKSk4Pz580hKSkJSUhLq6+vh4uLCfSh9+vTpA+K81pP169cjISEBubm5MDIy4jscjcjOzsa5c+dw8eJFXLx4EQUFBdDX14dQKERAQAACAgIQGBiIgIAAWFlZ8R0uIYQQMqjV1tbixo0buH79Om7cuIEbN24gJycHUqkULi4u3P/iU6ZMgbe3N9/hqpS2FzJ4WFNTk8KEzRs3bkAmk0EoFCIkJATBwcEIDg5GYGCg1t11mhBCCOlOZWUlUlNTFb6qqqpgZmaG8PBwREREYNq0aQgODh40nw+iiey6jcafEEL6hAoZEKLrzp49i4iICGRnZ8PDw4PvcJRWWloKf39/LFu2DDt27OjwdwsLCzQ1NaGlpQUGBgY8REgIIYQQQsjA09raiqNHj+LgwYM4evQo7t+/j6CgICxYsAALFiyAl5cX3yESQgaJO3fu4MiRI/jtt9/wxx9/oK2tDeHh4ViwYAGeeuop2Nra8h0iIaQHEokEly9fxrlz57jJp7W1tRgyZAiCgoIQFhaGsLAwTJw4Uevv+kQIIUR1ampqFIoWpKamorm5GZaWllxRnClTpmDixIlUGOchFRUV8PDwwIsvvoj333+f73AU1NXV4fTp0zh//jwuXryItLQ0SCQSODs7c3dwDg8Ph0gkGjQfQiSEENJRZWUlkpKScOHCBSQlJeHatWtob2+Hg4MDJk2ahLCwMMyYMQOenp58h9prJSUlEAqF2LlzJ9avX893OLyoqKhAcnIyrl27xk2gvH37NgDAzs6OK24gL3AwduxYCAQCnqMmhBBCtAtjDGKxmDvXyr/KysoAKJ5zAwMDERYWNuiLCA6mQgaPqq+vx/nz53HlyhVuUmdNTQ309fXh5eXFFTYIDg6Gv78/TExM+A6ZEEII6dGdO3c6FC0oKyuDQCCAm5sbd26bOHEiQkJCBu37QDSRXbfR+BNCSJ9QIQNCdJ1MJoODgwOeffZZvPvuu3yHoxSJRIKpU6eivr4eKSkpnVbwd3V1RWFhITIzMwddFVpCCCGEEEJUoa2tDWfOnEFsbCwOHz6MyspKCIVCREZGIiIiAhERETTRmBCitObmZiQnJ3N3Grl8+TL09fUxY8YMLFiwAI8//jhGjx7Nd5iEkH7KycnBpUuXuLtt3rp1CzKZDC4uLvD394evry/8/Pzg5+eHsWPHQl9fn++QCSGEqIlMJkNBQQHS0tKQnp6O9PR0pKWlQSwWQ09PD15eXggNDUVYWBhCQ0Ph4eFBk916sH37drz++uu4fv36gH5vq7GxEZcvX+bu4JycnIyGhgYMHz4c48aNg5+fH/z9/eHv7w+RSARjY2O+QyaEENJLhYWFSEtLQ1paGm7evInr16+jsLAQ+vr68PX15QoXTJo0CQ4ODnyHqxIbN27E8ePHkZubO2g/ZN9btbW1CneGfvju0MOGDYOnpyfc3d3h6ekJoVAId3d3uLu70x2GCSGE6Lzm5mbk5uYqfOXk5CA7Oxv379+Hvr4+3N3d4e/vzxUtCAgIgJWVFd+ha9xgLmTQmeLiYqSmpiIlJQWpqam4evUq7t27B0NDQ3h5ecHT0xPe3t7w9vaGl5cX3N3dYWRkxHfYhBBCdNC9e/eQnZ2NzMxM7ntWVhaKiooAAE5OTgpFeYKDg2FhYcFv0BpEE9l1G40/IYT0CRUyIIQAf/nLX5CYmIj09HS+Q1HKm2++if/3//4fUlJSuvwgV2hoKK5cuYK9e/di6dKlGo6QEEIIIYQQ7SKTyZCcnIz4+HicOXMGKSkpaG9vh6enJ1fUICIigu62TAjhPHjwQKFwwZUrV9Da2gqhUIiIiAjMmDEDc+bMwbBhw/gOlRCiRvfv30dycjJSU1Nx8+ZN3Lx5E3l5eZBKpRg6dCi8vb25Age+vr7w9/fHyJEj+Q6bEEJIL925c4crWJCRkYG0tDRkZmaiubkZ+vr6cHNz4wrZyO+0o0sfWFMVmUyGsLAwGBkZ4ezZs1pT+EEqlSI9PR1JSUncJMeMjAy0tLTA0NAQnp6eXHGDgIAA+Pv76+TkDEIIGYhaWlqQmZmJGzducEUL0tLSUF9fDz09Pbi6unKv3ePHj0doaOigvdZTUlICoVCIr7/+GqtXr+Y7nAGrpaUF6enpXFGDnJwc5ObmorCwEBKJBAAwZswYrqiBu7s7PDw84O7uDmdnZxgYGPC8B4QQQohqSKVSFBUVcUUKHi5aUFZWBsYYDAwM4OzsDKFQCE9PT3h4eCAgIAC+vr4YOnQo37swIOhaIYNHMcaQn5/PvceSlZWFW7duQSwWQyqVwsDAAK6urhCJRFyRA3nBAyoeRQghRBVqamq4YgW3/j97dx4XVb3/D/wFyL4Oy7DKMuCSuGCgqaBYQZZkZQZq3uvahRY1swXK/GqLKVlpe6C3rpWW0I1rZWVSmbsFuC+IgMq+DsuwCAPz+8PfOc0AIiJyWF7Px2MeM3OYGd6IzPnMOZ/363PmjLgvys/PBwCYmZlh6NChuO222+Dr6ws/Pz8EBAT0+4VM2Mjev/H3T0TUKQwyICJg7969CA4OxunTp3v0Ci8AsHPnTjzwwAOIi4vDY489ds3H3X///fjzzz8xffp0xMXFdWOFRERERES9X01NDfbv3489e/Zgz549SElJgVqtxpAhQ3SSlEePHs0T5ET9QFNTE9LT08XVQVJSUnDs2DHU19fD29tbDDu588474erqKnW5RCSx+vp6nD59GidOnMDJkyfFgIOSkhIAgJOTE4YMGYJBgwbBx8cHgwYNEi8mJiYSV09E1H/V19cjIyMDFy5cQEZGhnhJT09HYWEhAMDOzq5VQI2vry9MTU0lrr7vOH78OAICAhAfH48FCxZIXU6nNTU1ISMjA8ePH9dpjs3LywMAODo6iqs4Cys4Dx06FF5eXlxpkIjoFsjPz0d6ejoyMjJ0mu0yMzPR1NQECwsLDB8+XCd0ZsSIEbCwsJC69G61YMEC7N+/H+fOnYOBgYHU5fQqjY2NyMrKatXIqT2WNDIygoeHh3hxd3eHp6eneN/NzY1BB0RE1GOo1Wrk5eXh0qVLuHTpEi5evIjLly/r3G9oaAAAyOVy8TOu8Dl36NChUCgU/Ix7Hf09yOBarly5gvT0dJw9e1ZsKD179izOnz+PhoYG6OnpYeDAgVAoFFAoFPDy8tK5zQUqiIhIoFarkZOTg+zsbGRlZYmX7OxsZGZmoqysDABgbW0thhVoh+d4enr2mtDl7sRG9v6Nv38iok5hkAERXV3hxd3dHY899hhWr14tdTnXdPnyZdx+++2499578eWXX7b72H/+8584cuQINBoNMjIyuqlCIiIiIqK+SaVSYd++feKKyykpKSgpKYGBgQFuu+02MdhgzJgxGDlyJJsQiXox7ZU/hEtaWhpUKhVMTEwwatQojBkzBmPHjkVwcDDc3d2lLpmIeonCwkJxJW/tBtmcnBw0NzeLE++EUAMh5GDw4MHw8vKCsbGx1D8CEVGvd+XKFXG1QO33YuH9WKPRiO/H2mEzw4cPx4gRI+Di4iL1j9AvLFu2DF9++SVOnz7d5yael5aW4tixYzh16pROQ21OTg4AiKtVaq/eLDSBuLm5ccIkEVE7KisrWwUVCBeVSgXg6qR04XPWkCFDcNttt8HPzw/e3t7Q19eX+CeQ3oULFzB06FBs3boVM2fOlLqcPqOqqkr8v5iZmanTBHrp0iVcuXIFAGBgYAAXFxd4eHjAy8sL7u7uOqEHHh4eDNAiIqIuU1dXh5ycHJ19knZgQV5eHtRqNQDA2Ni41X7J29tb/MxqbW0t8U/TezHI4Mao1WpkZWXh9OnTOH/+vNiUmp2djUuXLqGxsREAYG5ufs2QAy8vL46piIj6mLKyMp19gnZYweXLl8X9g4WFhc6+wdvbWzw+xEVLbgwb2fs3/v6JiDqFQQZEdNWyZcuwa9cunD17VupS2nTlyhUEBQXhypUrOHz4MMzMzNp9/NKlS7Fnzx6cPHkSly5dYmMFEREREVEXy8/PR2pqqng5fPgwSktLAQDOzs7w9/eHr68vhg0bJl7zhDhRz5Kfn48zZ87g9OnT4vXx48ehUqkwYMAADB48GP7+/uJlzJgxbCQmoi7X0NCA3NxccUKF8J6UlZWFixcvorm5GQAgk8mgUCjg7OwMFxcXceKd9jYiov6urq4OBQUFOqvq5Ofni9suXbqEpqYmAH+/ryoUCvFzm0KhwJAhQ/rd6ss9TXV1NUaNGoVhw4bh+++/7xfN+8J4QHsckJWVhZMnT6KoqAjA1VWc3dzc2hwLKBQKuLu7cxVnIurTlEqlzn69rf09ABgaGuqszqq9n/fy8uoX+5WbMWvWLJw6dQonTpxguEM3USqVbY5ds7KykJmZiYqKCvGxJiYmcHFxEccDbV0PHDgQVlZWEv5EREQkpStXrqCsrAwFBQXifqWt68LCQgjT54X9S8vjzcJ9Dw8PGBgYSPyT9U0MMuha2uOqlpfs7Ow2/89r/39vObYiIiLptTwe1HJck5GRgaqqKvHx2ud+Wl54XKjrsJG9f+Pvn4ioUxhkQERXHThwAEFBQTh58iSGDx8udTmtPPHEE/jyyy/x119/YejQodd9/KpVq/DNN98gMzMTmzZtwj//+c9uqJKIiIiIqP/SaDTIyMjA8ePHcerUKZw5cwanTp3ChQsXoFarMWDAAAwaNAi+vr5isIG3tzd8fHy4SgXRLdTQ0ICLFy/iwoULOHfunPi3efbsWfFkpouLi/i36evrixEjRmDUqFEwMTGRuHoi6u9qamqQkZEhrhYhrIYlrN5YUlIiPtbS0hLu7u7w9PQUV8dyc3ODm5sbHB0d4erqCktLSwl/GiKim6NSqZCbm4vi4mLk5uYiNzdXfD8U3h+1J6vZ29uLqwRqvz96eXlh0KBBDCvo4Q4ePIhJkybh/fffxxNPPCF1OZIqLi4WVxm8ePGizkqZly9fFldxNjQ0hJubm7hCpqenJzw9PeHi4gJXV1c4OzvD1tZW4p+GiKht9fX1yM/PR35+PvLy8sTVgS9evCi+91VXV4uPd3Z2hqenZ6v3PB8fH3h6ejLY5SacPn0aI0eORFJSEh544AGpyyEA5eXluHTpEnJzc5GXl4fCwkKd64KCAhQXF4tBiMDVxg2hAU+4ODs7w9HREY6OjnBwcIC9vT3s7e3ZmEpE1As0NzejpKQEpaWlKC0tRXFxMQoKCnT2BUIzX3l5ufg8PT09ODo6wsnJCa6urq2uhc+QdnZ2Ev50/RuDDLqPSqUSj63k5uYiPz8fly9fRl5enni7pqZGfLy5uTnc3d3h6uoKV1dXDBw4UBxXyeVy8W/reovSERFR28rLy1FUVISSkhIUFBSgoKAAOTk5yM/PR05ODnJzc1FQUICGhgbxOQ4ODnBxccHAgQPh5uYGFxcX8b3ay8sL7u7uMDQ0lPCn6j/YyN6/8fdPRNQpDDIgoqs0Gg08PT0xb948vPrqq1KXo+Prr7/Go48+ioSEBDzyyCMdes7GjRvx1ltvwdvbG56entiyZcstrpKIiIiIiNrS0NCg0zwtXGdlZYkrgdrb28PHxwfe3t5iuIFwXy6XS/wTEPV8tbW1uHDhAjIzM5GZmSnevnDhAnJycsS/NUdHR53AAuEik8kk/gmIiDqnrq5OJ9ygZUNvXl4e1Gq1+HgzMzNxoqqLi4t47ezsLF5cXFz4vkhE3UqpVIqT1IQVAYXrvLw8FBUVIS8vT2ci8YABA8QJakIToxBYIGzjJOLeb+XKlXjrrbfw119/9cgQ8p5Ao9GgoKAA2dnZOgEHQtPvxYsXUV9fLz5eWHFQu6FRCDkQxghubm4MPyKiLtPQ0ICioiLk5uaisLBQvBYa7oRr7YY7fX19MahAuGgHFri7uzN88hZ76KGHUFBQgCNHjkhdCnWQWq1GUVGR2MTaVuBBYWEhioqK0HKqpHaogYODAxwdHcXb9vb2OsEHDg4ODAohIuoCarUapaWlYjiB0MQnBBVo3xeutd+/9fT0IJfLxc9wjo6ObV7L5XI28/VwDDLoWSoqKsRgtby8PDFMVTv0QKlU6jzH3NwcTk5OcHR0FP8uhfGTs7Mz5HK52HjL4y1E1JdpNBqUlJSguLgYRUVFKCwsRElJiXi75XbtgAJ9fX1x/CKExwhBMu7u7nBxcYGbmxuPB/UgbGTv3/j7JyLqFAYZENHfli9fjp07dyI9PV3qUkTp6ekYM2YM/vWvf+Htt9/u8PO2bNmCJ598Eq+99hpee+01FBYWwtjY+BZWSkREREREN0JYJV678Vpovs7OzhZXVLSysoJCocDAgQPFlZUHDhwId3d3MfWfE1CorysuLhYT14XVx3JycpCTk4OsrCwUFBQAuDpxy9XVtVUwiHDb2tpa4p+EiKh7aTQaFBUViU3AQgORsJq59nZh7AFcbXJ0dnaGk5OTTjODXC4X72s3M5ibm0v4UxJRT1NTUyNOuhcm4AurBRYXF4v3CwsLUVBQoNNkbWRkpDPZXph87+rqKl47OTlBLpdDX19fwp+SuoNarUZQUBAaGxtx6NAhGBkZSV1Sr1ReXq7TLCw0Mmo3FRcVFelMHDU3N8fAgQPFpkUnJyedBkZhjCBs40rORP1LVVUVCgsLxcY6YVK60GQnTEwXLtqElUsHDhwo7vOFBjxhZWBHR0c2SkssLS0NAQEB2LVrF0JDQ6Uuh7pQc3OzOB7X/vvV3tbyvhASK7C1tYWDgwPs7Owgk8kgk8lga2vb7m1bW1uO5YioT2poaIBSqUR5eTmUSqXO7WttKykpQVlZmc7rGBgYtHncVfjMJZfLWx2b5eewvoFBBr1PfX29uHp4cXExSkpKkJ+fLzbvam8vKSnRea6JiYkYdmBraws7OzvY2dmJt7W32dvbw87OjuEHRCQJjUaDsrIylJWVoby8vM3bZWVlKC0tRVlZmfgeqP350dDQUDy/7OzsLAbnCed4hNvCmIdjm96Fjez9G3//RESdwiADIvrbkSNHMG7cOPz5558YM2aM1OVApVLhjjvugJWVFf74448bOqn33Xff4cEHH0RmZiZ8fHzw3Xff4f7777+F1RIRERERUVdpbm5GTk6OGHKQlZWFnJwcsYE7Ly8PjY2NAK6mUjs5ObUKOZDL5XBxcRFPCNnY2Ej8UxG1VldXh+LiYuTn54sTO/Lz81uFFWg3twmT3IX/656enmJggUKhYAI7EVEnCU3F2quhazcvCBPvSktLUVdXp/NcU1NTnUm22hNq7e3txQYGGxsb8bZMJmMTMlEP19zcjIqKCnHSvXCpqKjQWRGwo+8RLQNRhM8s2k2LDg4OEv201FNlZGRg9OjRiIyMxDvvvCN1OX2a0HCsHXDQVoNySUkJmpubdZ6rHXIgTEgVtmk3M2o3NLJJmahnqKysbNVgp1Qqxb9/7QAi4b52CBoAWFpathl4oh1CJAQVsJG595gyZQquXLmCPXv2SF0KSazl2F8YF7TXqKt9PFdgbm7ebtCBTCaDpaUlrKysxGvtbVy8hYhuhStXrqC6uhpVVVVQKpWorq4W71dXV7f7XqdUKqFSqVq9prGxcbvvdS0/MwkXPT09Cf4FSGoMMujbGhsbdQIOhGMsxcXFrZqChWu1Wq3zGoaGhq0CD4TbDg4OsLa2hkwmg7W1dauLmZmZRD85EfUUlZWV17xcL6igJVNT02uGrmgHFmgHMFHfxUb2/o2/fyKiTsng2XEiEt1xxx0YNWoUNm/e3COCDJ544gmUlJRg165dN3xCXyaTAbh6InD8+PFISEhgkAERERERUS+hr68PDw8PeHh44K677mr19ebmZhQWFuo0e1++fBk5OTnYt2+fuNKydtK1sbEx5HI5XF1dxZR/IeVaCDzQPunNpGvqrKqqKjF5XVh1VwgqKCoqElehyM8N66pBAAAgAElEQVTPR1VVlc5zbWxs4OrqCnd3d/j4+GDy5Mnw8PDAwIEDxfACBhUQEd0awoTZ4cOHX/exHVltPTMzU1yFQ6lUoq1MaWtr61bhBm0FHgjbLC0tYWFhASsrK9jY2HByL9F1aDQaVFRUiJPwVSpVq0CC9u5XVla2+boymUxnor2zszNGjhzZamVAYVK+ubl5N//k1JcMGjQImzZtwqOPPgo/Pz/MnTtX6pL6LEdHRzg6OmLkyJHtPk6j0eg0NAqf9YRtxcXFOH36tPh1pVIphjFqs7S0vO7qzdr3LS0txYuFhcWt+mcg6nUaGhpQXV0tTkKvrq5ut9lO+7ZSqWy10jpw9fiMnZ2duG93cXHB6NGjdVYF1l4lmM3FfdOKFSsQHByMAwcOIDAwUOpySELC+P5G1NXVXbf5t7y8HPn5+Th9+rS4vbq6ulVYisDIyAhWVlbiMQHtwANLS0vxGIP2NktLS9jY2MDMzAwmJiawsbGBqakpjzET9XL19fWoq6tDRUUF6uvrUVtbi8rKSjF8QAgiqKioQFVVlbhduFYqleLt673ntPxcMmzYsOt+jmHjMBEJDA0N4eLiAhcXF/j5+XXoOUJzcWlpaZvNxeXl5cjNzcXx48dRWloqhtNd6/sLoQY2NjawsbFpFXbQcpuNjQ3Mzc1hZmYmjqs4d4So+wljnIqKCtTU1KCmpkY89lNRUYGKiop2Qwo68t6gHUpgb2+PwYMHi/PGhG3aoQWmpqbd/K9ARERE1LcwyICIdMyfPx8rV67EW2+9BUtLS8nqeP/997Ft2zb8+OOPcHNzu+HnC0EGSqUS4eHh+L//+z/U19fzZBwRERERUR+gr68vnvC+lubmZnFVVGFFZe0m8gsXLuDAgQPiY1qSyWQ6J6jaSvgXVljWnhzIzxx9Q3Nzs3gCVJjkJUySECZOtExjF+63bFAxNzeHs7MzHB0dIZfLMWLECDGJXdjm6uoKBwcH/v8hIuolzM3NYW5uDg8Pjw4/R7tBur3m6dzcXJw8eVJnW8sViLTrEJoZhUl2FhYW4jZhjCLct7S0hEwmg4WFBYyNjWFtbQ1jY2NxQh5XhiapqdVqVFdXo66uDvX19aiqqhJXBhRW+RMCCYQJ+SqVStyuPWlf2N6WAQMGtBkYMnjw4A6FihB1t9mzZ+PIkSN4/PHHMWLECIwePVrqkvo1PT09sXm5o1QqVavm6baaGi9fvozjx4/rfK2tMCQ9PT2dBkbhIowHWm4XVnO2tLSEiYkJZDIZjIyMYG5uDgsLCxgaGnblPxHRdVVUVKChoQEqlQo1NTWor6/XCSJo2YDXcmVg4XhNe813FhYWrRrvXFxc4Ovr22ZYiPZtBoYRAEyaNAkTJkzA+vXrGWRAN8zU1BSurq5wdXW94ee2tTq6dnOycNxae3tBQYH4Pipsq6ura/f7yGQymJiYwNTUVOe2jY0NTExMYGZmBmtra5iamoq3TUxMYG5uLp4LEY4vmJmZiWML4ZqoP6utrcWVK1daXWuPe7Rv19bWor6+HhUVFairqxNDCoTjI0qlUie8oK3PCAITExPx84DQnCt8VnBzc9MJQ9H+3CCEFgi3GdRERFIRjm0oFIobet71Gpq1G58LCwuRnp6u8/Xq6uprvraxsTHMzc3bDDkwMzODmZkZZDJZu18bMGAALC0txbETw6Wor6iuroZarUZlZSWamppQUVGBxsZGqFQqcZzTMpCgI19rbm5u8/sJx0XbCiHx8PDQ2SaTyVqFl1hbWzN0iYiIiEgiepr2jmoRUb9TVlYGNzc3fPjhh1i4cKEkNfz555+YNGkSVqxYgZUrV3bqNfLy8uDm5oaDBw/C3d0d7u7u2L59Ox555JEurpaIiIiIiHq7xsZGFBcX6zSlC43qLZvVtW+3deLMyMhIZ/Uj7YlAwm1hIpCJiQksLS3Fk9RWVlbiCifCpEE2FXZMZWWluAKfduNbY2MjKisrxYliwiQEIZygqqpKZ4KncKmpqWnz+1hZWcHW1hYODg6tgi1a3ra3t4dcLuekTSIiumlCs5Z2A7ewT2uvgVtoeBAe095EPODvyT8tGxtlMhkMDQ1hYWEBMzMzGBsbw8bGBoaGhjpjGe1mBRsbG+jp6YmPNzAwgJWVFQCIKxgJ4x3qmYQxVVNTE6qqqgD8PSFNGFsBEFe0qampQUNDg/i16upqNDY2io2KwiS0hoYGcXVylUolTlSrrq5udyI+AJ1QDmFCvnZ4x7UCPaysrMRtQsAHUW+jVqsREhKCS5cuISUlBXZ2dlKXRN1ECDdq2cSo3cit3dh4rUbw9t5jhTGAdsCRkZGR2LBoamoKa2tr8ZiH9nhAT09PPHYhPFZ7v29tbQ19fX3xOcLEfeo5hP20RqNBRUUFgL/3+ULDnPZ4oKqqCk1NTVCpVGhoaEBFRYXO/r+hoQGVlZXic7WP2QhNfO3R3te3DOLQHgO0F+QhjGmJblZSUhJmzJiBU6dOYdiwYVKXQ3RDGhsbxTGDdjN0W43R17rdsqlaWBW1I1oGG9zotXAcAoC4HYDOqsjCIjfaYw/tYxM87tC/CP9vgb+PUQB/j10AiONiIcwagHh8Qvt5Hb2+VmBBRwjH02Qy2TVvtxU20jJ4xNTUVLxtaWnJkDLqdUaPHo2pU6dizZo1UpdC/Zywb1AqlaitrUVNTY14XEW4LzRbC59/hUZsYaV44Xi3SqW67rEYgXAeRhjjyGQy6Ovrw9raWhwPCe/7wrEV4TiMcMxFe8wjvI728RfhecDf4yeGT/Udwv817TGNSqVCY2OjzrEe7bGSMD4Sxi/CGEZ4nhAkoFQqxWNCwusLr9PRcY9wvFEmk8HMzEwMaRfCPtoKCRHCBszMzMTzQEK4mjDuJ5LamjVrsGXLFpw/f17qUkgC/P0TEXVKBoMMiKiVRx99FBcvXsTBgwe7/XsXFxdjzJgxGDZsGHbu3Al9ff1OvU5tbS3Mzc2xc+dOTJ06FdOmTYNKpcLvv//exRUTEREREVF/JayO2LIJXntVJOG+9teF7VeuXBEngbenZVOh9qQ9oWlAOJkNQOektHBSEECbqf7akwGv5XphCu2loQN/T4jXdq1JYtpNccKESuDvE60AWjW+deTkqHbjRctwCSF0Qjtsoq0wCjs7O04AIyKiXi03Nxc//PADkpOTceDAARQWFsLMzAwjRoxAUFAQxo4dq9N0Lux/lUplm43oLbdpT4K6EcJYB/h70l7LMUrLcUzLZoTr3dceE7X3/W+03o7o6IRFQXtjK+3xUUfut/ydtLwv/O60x2PXG9tdi/A7En53wphVGMdea5uZmRny8/Pxww8/ID09HY2NjfDw8MC4ceNw5513YtKkSXBychInWBL1Z0VFRfD398fo0aOxY8eOTp9Do/5JCDYSGhEbGhqgUqlQU1ODK1eu6DSjV1VVoaGhAVVVVeK+5VrPAW58XycQjmkI+4eWk+i1j38ArY9PaDcyar+eoL19hzDZvyO0myOvR/u4RkcIgQFtaXnMQ/vYCKDblAe03ocLYUOA7rEXYXvL1+soYbymHWghrE5pYWEh7uuF8Ziwom/LEAzt5xgbG4tBBHxvo55Eo9HA19cXgYGB2LRpk9TlEPUY2qEGwlih5XVb227kWnuf2nKf1xnXC0MQtBV+0HJM0vI1gLaPFXQkwKmzYQva54RuRGc/83fkmE9bY4uW40Ttc0MC7XGKoOXxDeDvMYx2wFJbz71R2mM94djG9a478pi2rrVDB4joKgYZUF8mNHsLAX81NTXiPk44Ni+McyoqKtDU1ITKykqo1WpUV1eL4yHhOW01mQOtjx/cKOF4i/b4ouU5mbaCD1p+hq+rq4OTk5O4ra3xkXaoQlvamtNyPTcamqnd3H8j2juGA7QeCwm/R20tx7VtHUdqOX4Svq/2GKitsdKNaHkurr2wDAMDA9jY2IhjJuH/gvAcYawsPMfGxgYDBgwQ591w4Rbqq9jI3r/x909E1CkZHBkSUSuPPfYY7r77bhw/fhyjRo3qtu/b2NiIiIgI6Ovr44svvripSQrCh2nhQM3ixYtx77334sSJExg5cmRXlUxERERERP2YTCa76YYqtVqNuLg4vP7666iursZjjz2GWbNmoampCXV1dWKyeWVlpc7qdmq1WmfCl/ZJ0JqaGpSUlADQPYGpvQKNoK1t2tqaVNZSR04mt/XvJGzTPiGu3bRoY2PTZgiD9iqQwnZhRQIrKytxm3ASlYnsRETUX5WWluLQoUM4cOAAkpOTkZaWBgMDA4waNQrz5s1DSEgIJk2a1OWr1WqPH4SJW9rBRsIkLGFyXVsr/LacIN9yAljL+2VlZTpjmpZjnPYm8t3oJL8bnSB2o00J7YUutJws2PJ+ywAIS0tLODs7X/PrwrhJe9K+MLFMuw5h3CZMSNOeGNhVDYdr165FXV2d+P81OTkZiYmJ0NPTg5+fH0JCQhASEoKJEye2O9GRqC9zdHTEN998g8mTJyM6Ohrr16+XuiTqRSwsLK4bZHizhH1qe03zwrEN7UnjwnGOlvv/lpO7W07kvnTpkni75fEL7fFFS20FLrbnesdOWmoZqNCetgImm5ubUVRUBLlcDnt7e3F7y+MvLZsqXV1ddQIYtRsstff1wr5beD3t/Xp74RIMFaL+SE9PD8uWLcPSpUvxyiuvwMXFReqSiHoEKZuwr9fMrj2e0N6Ha48rhDFFW+c/2trvt2z+12g0OuMQoO1Gtes1/3e2ie5adXaEoaEhjI2Noa+vrxPE0BHXG+O0da5IaJJr73WMjY0hl8tb1dlyjNRWAIX2GEd73KJ9LKajIRZERERdTQiwsbOz67bvKYyVtI99CMdktMc+2uc5hLFOyzkn2mONludFtF9Lo9Hg/PnzOHXqFIYMGQJXV1cAHWvk13arAgbacisCE1q+ZltBDi2P5ZiZmcHJyUnnMS2b/4XnaL+e9vkbYXyjPS7SDowQxl5thVEQEREREXUnBhkQUSt33nknfHx88J///AcbNmzotu+7dOlSpKam4uDBgzqTMjrLxsZGPChzzz33YMiQIfj444/x8ccf3/RrExERERER3azk5GQsX74c586dw4IFC/DKK6+0OknZUwwbNgwRERFYvXq11KUQERHRNdTW1uLgwYNiE/jRo0d1msBXrVqFyZMn39DKNJ2hr68vTgbvL5PCz58/jyFDhuDo0aPw8/OTupxey9TUVAwsAK6Gcfz+++9ITk5GQkICYmNjYWZmhgkTJoiPu/322zvcLErUF4wbNw5btmzB7Nmz4eHhgcWLF0tdEpHIzMxMnETdshmNOk6j0WDBggVITEzEtm3bMGHCBKlLIurX5s2bh9WrV+P999/H2rVrpS6HqN/TPs7QFXPL+qPAwEAMHjwYn332mdSlEBERURfr7nMyRUVFmD9/Ps6cOYOVK1fi//7v/7ok+JiIiIiIiPoeflIgolb09PSwcOFCfPHFFze0stTN2LJlC+Li4vDvf/8bI0aM6JLXlMlkYpCBnp4ennzySXzxxRedTrMmIiIiIiLqCkeOHMHkyZNxzz33YOjQoThz5gzi4uJ6bIgBABQXF7MJgYiIqIdRq9VITU1FbGwsQkNDYWtri9DQUCQmJsLf3x9ff/01SkpKkJKSgnXr1mHatGm3PMSAqCvZ29sjPDwccXFxyMrKQmZmJjZs2ACZTIY333wTAQEBcHJyQkREBOLj43H58mWpSybqFjNnzsSrr76KZcuWYceOHVKXQ0RdTE9PD5s2bcLkyZPx4IMP4uzZs1KXRNSvGRsbY/Hixfjoo49ardxORNQbTZ8+Hd99990Nr1xMREREpC0pKQm+vr5IT0/H3r17sXr1aoYYEBERERHRNfHTAhG1acGCBaiqqkJSUtIt/16HDh1CVFQUVq5ciYiIiC57Xe0gA+BqUv6AAQPw3nvvddn3ICIiIiIi6qj09HRERERg/PjxaGxsxL59+5CQkAAfHx+pS2uXWq2GUqlkkAEREZHEmpqakJqainfffRcRERGws7NDQEAA3n33XchkMrz33nvIyclBZmYm4uLiEB4e3u2r7xDdSgqFApGRkUhISBBDOpYvXw6lUomnn34aHh4e8Pb2RlRUFBITExlqTH3ayy+/jPnz5+Mf//gH0tLSpC6HiLqYoaEhvvnmG9x2220IDQ3FxYsXpS6JqF974oknoNFosHnzZqlLISK6aTNmzEB5eTn27t0rdSlERETUC9XV1eHpp5/Gww8/jKlTp+LEiRMYP3681GUREREREVEPxyADImqTk5MTwsLC8Mknn9zS71NQUIDw8HBMmTIFq1at6tLXbhlkYG1tjWeeeQbvvPMOysvLu/R7ERERERERXUtJSQmefvppDB8+HKdPn8b27dtx4MABBAYGSl1ah5SUlKC5uZlBBkRERBLIyspCfHw8IiIiIJfLERAQgDfeeAMAsH79emRlZSE/Px8JCQmIjIyEm5ubxBUTdQ99fX34+/sjOjoau3fvRnl5OXbv3o3w8HCkpqZi1qxZsLe3R0BAAGJiYpCcnIyGhgapyybqUh9//DEmTJiA++67D+fOnZO6HCLqYqampvj+++8hl8sRGhqKoqIiqUsi6rdkMhkWLVqEDRs2cExJRL2el5cXRo4c2S2LGxEREVHfcvLkSYwdOxZbtmzBtm3b8Pnnn8PCwkLqsoiIiIiIqBdgkAERXdOSJUuwd+9e/PXXX7fk9evr6/HQQw/BwsICn3/+OfT1u/YtqWWQAQA8++yzMDIywjvvvNOl34uIiIiIiKilmpoaxMbGwtvbG99++y0+/PBDnDhxAuHh4VKXdkOKi4sBgEEGRERE3aCgoACJiYmIioqCu7s7vL298eyzz0KpVOKFF15ASkoKCgsLxeACLy8vqUsm6hFMTU0REhKCdevWiX8nX331Ffz9/bF9+3aEhobC1tYWoaGhiI2NRWpqKjQajdRlE90UQ0NDJCUlYejQoQgJCUFWVpbUJRFRF7O2tsbPP/8MfX19TJkyBRUVFVKXRNRvPfPMMyguLsb27dulLoWI6KZNnz4dSUlJ/FxMREREHaLRaLB+/XoEBATAwcEBp06dwuzZs6Uui4iIiIiIehEGGRDRNd11113w8/PDe++9d0tef/HixTh37hySkpJgbW3d5a/fVpCBhYUFli9fjo0bN4rNOERERERERF2psbER8fHx8Pb2RmxsLFasWIHz588jMjISBgYGUpd3wxhkQEREdOsUFxeLwQW+vr5wcXHBvHnzkJWVhYULF+qsNB8dHQ1/f3/o6elJXTZRj+fg4IDw8HDExcUhOzsbmZmZeOeddyCTyRAbG4uAgAA4OzsjIiIC8fHxyMnJkbpkok4xMzPD999/D2dnZ9x55524dOmS1CURUReTy+X48ccfUVRUhIcffhhXrlyRuiSifsnd3R2PPPIINm7cKHUpREQ3bfr06cjLy7tlixsRERFR31FaWoqwsDCsWLECr776KpKTk+Hm5iZ1WURERERE1MswyICI2vX0009j+/btyM3N7dLX3bhxIz777DNs27YNt912W5e+tqCtIAMAWLJkCSwsLLBmzZpb8n2JiIiIiKh/0mg0SExMxLBhw7BkyRI8+OCDSE9PR3R0NExNTaUur9OKi4thaGgImUwmdSlERES9nkqlQnJyMmJiYhAQEAAnJyfMnj0bqampmDZtmk5wwerVqxESEgJDQ0Opyybq9RQKBSIjI5GQkICSkhKkpKTgmWeegVKpxNKlS+Hu7g5vb29ERUUhMTERlZWVUpdM1GFWVlb46aefYGlpiSlTpqCgoEDqkoioi3l7e2PXrl1IS0vD/Pnz0dzcLHVJRP3S8uXLkZaWhr1790pdChHRTRk1ahS8vb2RlJQkdSlERETUg/35558YM2YMTp06hT179iA6Ohr6+mw/IiIiIiKiG8dPEkTUrtmzZ8Pe3h4ff/xxl73mr7/+iueffx5r165FWFhYl71uS9cKMjA3N8drr72GDz/8EMeOHbtl35+IiIiIiPqPgwcPYuLEiZg1axZGjx6Nc+fOIS4uDg4ODlKXdtOKi4vh4ODA1Z+JiIg6oa6uDvv370dsbCxCQ0Nha2uL0NBQJCYmwt/fH9u3b0dZWRlSUlKwbt06hISEwMTEROqyifo0AwMD+Pv7Izo6Wic8JDw8HKmpqZg5cybs7OwQEBCAmJgYJCcno6GhQeqyidplb2+P3bt3Q09PD5MmTcKlS5ekLomIutjIkSOxY8cOJCUl4YUXXpC6HKJ+KSAgAOPHj8fGjRulLoWI6KY99NBD+O9//yt1GURERNQDaTQavPvuuwgKCsLw4cNx7NgxTJgwQeqyiIiIiIioF2OQARG1y9jYGE888QQ++eQT1NTU3PTrZWRkYObMmZgxYwaef/75Lqjw2q4VZAAAixYtwtixYxEVFcUVK4iIiIiIqNPOnDmDiIgIBAYGwtTUFKmpqUhISICXl5fUpXWZkpISODo6Sl0GERFRr9DU1ITU1FSd4IKJEyciPj4eCoUCW7duRWlpKTIzMxEXF4fw8HBYW1tLXTZRv2ZmZoaQkBCsW7cOKSkpKCoqwldffQV/f398/fXXOiEksbGxSE1NhUajkbpsolacnZ3xxx9/wMLCApMmTcL58+elLomIulhwcDC2bNmCDRs2sJGaSCLLli3Djh07kJmZKXUpREQ3Zfr06cjIyMDp06elLoWIiIh6kLKyMkybNg3PPfccXnrpJezYsQO2trZSl0VERERERL0cgwyI6Loef/xx1NXV4Ysvvrip1ykvL8e0adPg6emJf//737d8NU+ZTIaampo2V0rS19dHXFwcjh49is8+++yW1kFERERERH1Pbm4uoqKiMHLkSGRnZ+PXX3/F7t274efnJ3VpXa64uBhyuVzqMoiIiHqsrKwsxMfHIyIiAvb29ggICMDGjRshk8nw7rvv4uLFizrBBXZ2dlKXTETtcHBwQHh4OOLi4sS/33feeQcymQyxsbEICAiAi4sLIiIiEB8fj9zcXKlLJhLJ5XL89ttvcHZ2RnBwME6ePCl1SUTUxWbOnIm1a9fi2WefxTfffCN1OUT9zowZM+Dh4YEPP/xQ6lKIiG7K+PHj4ezsjKSkJKlLISIioh7ir7/+wpgxY3DixAns2bMHq1evhr4+242IiIiIiOjm8ZMFEV2Xg4MD5syZgw0bNqC5ublTr9HY2IiIiAioVCrs2LED5ubmXVxlazKZDABQUVHR5tdHjBiBp556CjExMSgpKbnl9RARERERUe+nVCoRExODwYMH4+eff8ZHH32EI0eO4K677pK6tFuGQQZERES6hOCCuXPnwtXVFd7e3lixYgXq6uoQExODlJQU5OfnIyEhAZGRkfDw8JC6ZCK6CQqFApGRkUhISEBJSQlSUlKwbNkyKJVKLF26FAMHDoS3tzeioqKQmJiIqqoqqUumfk4mk2H37t0YOnQoJk2ahF9//VXqkoioi73wwgtYsmQJ5syZg99++03qcoj6FQMDAzz++OPYvHkzKisrpS6HiKjT9PX18eCDDzLIgIiIiKDRaPDuu+8iKCgIvr6+OHr0KAIDA6Uui4iIiIiI+hAGGRBRhyxbtgwZGRn4+eefO/X8JUuW4M8//8TOnTvh6uraxdW1TQgyUCqV13zMK6+8AnNzczz22GPdUhMREREREfVODQ0NiI+Px5AhQ7B582asWrUK58+fR2RkZJ9PoGeQARER9XdFRUVITExEVFQUvLy84O3tjeXLl6OgoABLly5FSkoKioqK8P333yM6Ohr+/v7Q09OTumwiugUMDAzg7++P6Oho7N69G+Xl5di9ezfCw8ORmpqKmTNnws7ODgEBAYiJiUFycjIaGxulLpv6IUtLS/z888+4//77ce+99+Ljjz+WuiQi6mLvvPMOpk2bhocffhgnT56UuhyifiUyMhIajQb/+c9/pC6FiOimTJ8+HWlpacjOzpa6FCIiIpJIeXk5HnjgATz33HN4/fXX8d1338HOzk7qsoiIiIiIqI8ZIHUBRNQ7+Pr6IjQ0FG+//TamTp16Q89dt24dNm3ahKSkJIwaNeoWVdhaR4IMrKyssHXrVgQHByMuLg5RUVHdVR4REREREfUCzc3N+O9//4vo6GgUFRVhyZIlePHFF2FtbS11ad2mqKgIDg4OUpdBRETUbaqrq3HkyBEkJycjOTkZaWlpMDAwwKhRozBz5kyEhIRg0qRJMDIykrpUIpKYmZkZQkJCEBISAuBqCNgff/yB5ORkfPXVV4iNjYWFhQXGjRsnPs7f31/iqqm/MDY2xueffw5vb2889dRTOHfuHDZs2NDnw/iI+gt9fX188cUXCA0NxbRp03Dw4EG4uLhIXRZRv2BjY4O5c+fi3XffxeLFi2FgYCB1SUREnXLnnXdCJpNhx44dWLZsmdTlEBERUTc7ceIEHn74YTQ0NOCPP/7AhAkTpC6JiIiIiIj6KAYZEFGHvfDCCwgJCcHhw4cxbty4Dj3n22+/xYoVK7BhwwY88MADt7hCXR0JMgCAwMBAxMTEYPny5QgODsbQoUO7ozwiIiIiIurhkpOT8fzzz+PEiROYM2cO1q1b1y8nhBcXF0Mul0tdBhER0S1TW1uLgwcPisEFR48ehZ6eHvz8/BASEoJVq1YhODgYVlZWUpdKRD2cXC5HeHg4wsPDAQBZWVnie8u6desQExMDJycnTJw4ESEhIQgLC4Orq6vEVVNfpqenh9WrV8PLywuRkZG4ePEitmzZAhsbG6lLIwJwNUBKrVajoaEBNTU1AICKigpoNBpoNBro6ekBAExNTWFiYgILCwtYW1vD2NhYyrJ7DFNTU+zYsQOBgYF44IEH8Mcff8Dc3Fzqsoj6haVLl+Ljjz/GDz/8gAcffFDqcoiIOsXQ0BBhYWFISkpikAEREVE/8/XXX+Oxxx7D7bffjoSEBDg5OUldEqR3fE8AACAASURBVBERERER9WEMMiCiDrv77rsRGBiI119/HT/88MN1H5+Wloa5c+di4cKFWLp0aTdUqMvc3BxGRkbXDTIAgFWrVuGXX37BP/7xDxw4cICTX4iIiIiI+rGUlBRER0fjt99+Q0hICI4dO4YRI0ZIXZYkVCoVamtrGWRARER9ilqtxvHjx8Xm4n379uHKlStQKBQICQlBdHQ07r77btja2kpdKhH1cgqFApGRkYiMjERTUxOOHTsmvvcsWbIEUVFR4ntPSEgIpkyZwtAUuiXmzZsHb29vzJw5EwEBAfjmm2/g5+cndVnUBzU1NSEnJwfZ2dnIz89HSUkJSktLUVBQgNLSUpSUlKCkpARFRUWorq7u9PcxNTWFtbU15HI53NzcxGsPDw8MGjQIgwYN6jdhlHZ2dvjpp59wxx13YO7cuUhMTIS+vr7UZRH1eUOGDMG9996LDz74gEEGRNSrPfTQQ5g5cyZKS0thb28vdTlERER0izU1NWHFihV488038a9//QsffPABDA0NpS6LiIiIiIj6OAYZENENeemllxAWFoaUlBQEBARc83H5+fl48MEHERQUhI8//rgbK9RlY2PToSADQ0NDbN26FWPGjMETTzyBTz/9tBuqIyIiIiKinuTSpUt44403sHnzZowZMwZ//PEHJk2aJHVZkiouLgYABhkQEVGv1tzcjKNHj2L//v04cOAAdu3ahaqqKjg7OyMoKAjvvfce7rvvPgwcOFDqUomoDzMwMIC/vz/8/f0RHR2NmpoaHDp0SAw22LRpEwwMDDBq1Cgx2CA4OJiTSKnLBAUFIS0tDbNnz8aECRPwwQcfYOHChVKXRb1QbW0tzp07h6ysLPGSnZ2NrKwsXLp0CY2NjQCunn91cHCAvb09nJyc4ODgAIVCAQcHBzg5OcHS0hJWVlYwMDCAkZERzM3NAVw9v6unp6fzPVUqFRobG1FVVYWqqipUVlaisrISRUVFyMvLQ1FREVJTU5GdnQ2VSgXgaui9r68v/Pz84Ofnh1GjRmH06NEwNTXt3n+wbuDl5YVvv/0WISEheOmll7Bu3TqpSyLqFxYvXoywsDCcPn0avr6+UpdDRNQpU6ZMwYABA/DTTz/hn//8p9TlEBER0S1UVlaGWbNmYf/+/fj0008xf/58qUsiIiIiIqJ+gkEGRHRDpk6dioCAAKxduxb//e9/23yMSqXC1KlTYWVlha+//hoDBkj3ViOTyToUZAAAgwYNwvbt2xEWFoZRo0bh6aefvsXVERERERFRT1BWVob169dj48aN8PT0xNdff41HHnmk1aT5/ohBBkRE1FtlZWWJzcG//vorysvLIZfLERwcjPXr1yMwMJCNJkQkKXNzczGwAACKioqwd+9eJCcnY9u2bYiNjYWFhQXGjRsnPs7f31/iqqm3c3R0xO7du/Hyyy/jsccew08//YRPPvkEdnZ2UpdGPVB9fT3Onj2LM2fO4NSpU+L1xYsX0dzcDH19fbi6ukKhUEChUCAoKEi8rVAo4OjoKEndBQUFyMjIQEZGBk6ePIljx45h+/btqKyshJGREcaMGYOJEyciKCgIwcHBsLCwkKTOrhYUFIT4+HjMmzcPCoUCkZGRUpdE1Ofdd999GDRoEOLi4vDee+9JXQ4RUadYWFhg0qRJ2LlzJ4MMiIiI+rCjR4/i4YcfRlNTE/bt29fuYoZERERERERdjUEGRHTDXnrpJcyYMQMnT57EiBEjdL6mVqsxa9YsFBYW4vDhw7CxsZGoyqtuJMgAuJoy/frrr+PZZ5/F4MGDcd99993C6oiIiIiISEq1tbV4//33sXbtWhgZGSE2NhZPPfWUpGFsPQ2DDIiIqLcoKCjA/v37kZycjJ9++gk5OTliA/ALL7yAkJAQ3H777QwqIqIey9HREeHh4QgPDwegG8iydu1axMTEwNnZGUFBQQgJCcH9998PFxcXiaum3sjAwABr167F3XffjYULF2L48OH497//jalTp0pdGkmopKQEaWlp4uX48ePIyspCU1MTjIyMMHjwYPj6+mLBggW47bbb4OvrCy8vLxgbG0tdeivOzs5wdnbGpEmTdLZnZWXhwIED2L9/P3bs2IHY2FgYGRlh4sSJmDp1KsLCwjB48GCJqu4ac+fOxblz57B48WL4+Pjgrrvukrokoj5NT08PkZGRePXVV/H666/DyspK6pKIiDolLCwMq1atQmNjIwwNDaUuh4iIiLrY1q1bERkZibFjx2L79u2c/0FERERERN1OT6PRaKQugoh6F41GAz8/P/j6+mLbtm062//1r3/hq6++wm+//YY77rhDwiqvmjp1KpycnPDpp592+DkajQZz5szBrl27cOjQoV4/YYWIiIiIiHQ1Nzfjyy+/RExMDKqrq/HUU09hxYoVsLS0lLq0Hmfz5s1Yvnw5qqqqpC6FiIhIR0lJCfbs2YPk5GTs378fZ86cgampKW6//XaxyTc4OJiTr6lbnD9/HkOGDMHRo0fh5+cndTnUBzU1NeHYsWNisMHevXvR0NAAhUKBkJAQhISE4N577+VnGrphFRUVWLJkCbZu3YpFixYhNjYWtra2UpdFt1hhYSHS0tKQmpoqBhdcvnwZAODu7o7bb78do0aNgq+vL3x9fTFo0KA+OaYqLi7Gzz//jB9//BG//PILlEolhg8fjtmzZ2PWrFlQKBRSl9gpGo0Gjz76KH755Ree6ybqBkqlEm5ubnj77bfx+OOPS10OEVGnZGVlwdvbG7///jsmT54sdTlE1I+MHj0aU6dOxZo1a6QuhahPUqvVePnll/Hmm2/ihRdewJo1a2BgYCB1WUREvd6aNWuwZcsWnD9/XupSSAL8/RMRdUoGgwyIqFO+/vpr/OMf/8Dp06cxZMgQAMDKlSuxdu1afPPNN3jooYckrvCqOXPmoLa2FklJSTf0vNraWtx1110oLCzE/v374ebmdosqJCIiIiKi7pScnIzly5fj3LlzWLBgAV599VU4OjpKXVaP9cYbb+DTTz/FhQsXpC6FiIj6uZqaGhw6dEhs4k1LS4O+vj78/PzEJt6goCCYmJhIXSr1QwwyoO7W1nuigYEB7rjjDkybNg0hISEYPXo09PX1pS6VeolvvvkGS5cuhVqtxvr16zF37lzo6elJXRZ1gYaGBqSlpeHIkSM4fPgwDh06hEuXLgEAvLy84O/vj9tvv128ODg4SFyxNNRqNQ4cOIDt27cjMTERZWVluOOOO7Bo0SLMnj0b5ubmUpd4Q+rq6nDnnXeitLQUhw8fhr29vdQlEfVpixYtwuHDh3Hq1CnuP4mo17rttttw//33Y/369VKXQkT9CIMMiG6dkpISzJgxA0ePHsVnn32GRx55ROqSiIj6DDay92/8/RMRdUoGZ68QUaeEh4fDx8cH69atAwDEx8djzZo1iIuL6zEhBgAgk8mgVCpv+HlmZmb4+eefIZPJcNddd6GoqOgWVEdERERERN3lyJEjCA4Oxj333IOhQ4fizJkziIuLY4jBdZSUlEAul0tdBhER9UN1dXXYv38/YmNjERoaCltbW4SGhiIxMRH+/v7Yvn07SktLkZKSgnXr1iEkJIQhBkTUb5ibmyMkJATr1q1DSkoK8vPzsW3bNvj6+uKDDz5AQEAA5HI5IiIiEB8fj+zsbKlLph7ukUcewdmzZzFz5kwsWrQIkydPxokTJ6QuizohJycHCQkJWL58OSZMmAArKyuMHz8er732Gqqrq7Fo0SL88ssvKC8vR1ZWFhITE/Hiiy9iypQp/TbEAAAGDBiA4OBgfPTRRygoKMDOnTvh7e2NxYsXw9XVFUuWLMHp06elLrPDTE1N8b///Q8NDQ2YMWMGGhoapC6JqE9bsmQJzpw5g71790pdChFRp4WFhWHnzp1Sl0FERERd4MyZMxg3bhxyc3Nx+PBhhhgQEREREZHkGGRARJ1iYGCAl156CV9++SU2bdqEp556Cq+++ioWLVokdWk6OhtkAAA2NjbYuXMn1Go1pk2bhurq6i6ujoiIiIiIbrX09HRERERg/PjxUKvV2LdvHxISEuDj4yN1ab1CcXExgwyIiKhbNDU1ITU1VSe4YOLEiYiPj4dCocCmTZuQl5eHzMxMxMXFITw8HDY2NlKXTUTUIzg5OSE8PBxxcXHIyclBZmYm3njjDQDA888/D4VCAW9vb0RFRYkrjRO1ZG1tjffffx9HjhxBXV0dRo8ejfnz5+Py5ctSl0bXIAQ/vfXWW5gxYwZcXV3h7u6OOXPmYM+ePRg9ejTi4+ORnp6O0tJS/PDDD1i5ciVCQ0Mhk8mkLr/HGjBgAO677z58+eWXyM3Nxcsvv4xdu3ZhxIgRCAsLw759+6QusUOcnJzw3XffIS0tDcuWLZO6HKI+zc/PD+PGjcOHH34odSlERJ0WFhaGs2fP4sKFC1KXQkRERDdh9+7dCAwMhKOjIw4dOgRfX1+pSyIiIiIiImKQARF13qOPPgonJyc8+eSTWLhwIV5++WWpS2rlZoIMAMDFxQW//PILcnJyGGZARERERNSLlJSU4Omnn8bw4cNx+vRpbN++HQcOHEBgYKDUpfUqxcXFcHR0lLoMIiLqo7KyshAfH4+IiAjY29sjICAAGzZsgEwmw7vvvovs7GwxuGDu3LlwcXGRumQiol5BoVAgMjISCQkJKCsrQ0pKCiIjI5GVlYU5c+ZALpcjICAAMTExSE5ORn19vdQlUw/i7++PI0eOYOvWrdi/fz+GDBmC559/HiUlJVKX1u9lZmZi69atWLJkCcaMGQNra2tMnDgRb7/9Npqbm7F06VLs2bMHFRUVSEtLw4cffoi5c+di8ODBUpfea9nb2+O5555Deno6fvjhB1RXV2PSpEkICgrCjz/+KHV51+Xn54cvvvgCn3zyCTZt2iR1OUR92lNPPYWkpCTk5eVJXQoRUadMnDgRNjY2vWKMQ0RERG3btGkTwsLCMGXKFPz666+c60FERERERD0GgwyIqNMyMjJQUVGBpqYmLF68WOpy2nSzQQYA4OPjg927dyM9PR333HPPTb8eERERERHdOiqVCrGxsfD29sa3336LDz/8ECdOnEB4eLjUpfVKxcXFkMvlUpdBRER9hBBcMHfuXLi5ucHb2xvPPfcclEolYmJikJKSgoKCAiQkJCAyMhKenp5Sl0xE1OsNGDAA/v7+iI6Oxu7du1FeXo5du3YhJCQEycnJCA0Nha2tLUJDQxEbG4vU1FQ0NzdLXTZJTE9PD7NmzcKZM2fw5ptv4vPPP4enpyeefvppXL58Wery+oXq6mr89ttvWLNmDR544AHI5XL4+Phg4cKF+OuvvxAYGIgtW7YgOzsbBQUFSEpKQnR0NIKDg2Fubi51+X2Onp4epk6dir1792L//v2QyWS4//77MXHiRBw8eFDq8tr10EMP4aWXXsJTTz2Fffv2SV0OUZ8VHh4OW1tbbN68WepSiIg6ZcCAAbjnnnuwc+dOqUshIiKiG9TU1ISYmBhERUXhpZdewldffQVTU1OpyyIiIiIiIhIxyICIOiU/Px/33XcffH19MWLECLzyyitSl9QmmUwGlUqFxsbGm3qd4cOH4+DBgygqKsJdd93FVWeIiIiIiHqYxsZGxMfHw8fHB7GxsVixYgXOnz+PyMhIGBgYSF1er1VcXAwHBwepyyAiol6qqKgIiYmJiIqKgpeXF7y9vfHMM8+goKAAS5YsQUpKCioqKrB7925ER0fD398fenp6UpdNRNSnWVhYICQkBOvWrRMDZLZs2QKFQoH3338fAQEBcHR0REREBOLj45GdnS11ySQhIyMjLFmyBNnZ2Vi7di3+97//wcfHB/Pnz0dqaqrU5fUZzc3NOHPmDD777DNERkZi5MiRkMlkuPvuuxEXFwdTU1O8+OKLOHDgACorK3H48GFs3LgRs2fPZvCTBAIDA/H999/j8OHDGDBgAAIDAzF9+nScO3dO6tKu6dVXX8WUKVMQERHB1eKJbhFjY2PMnz8fmzdvRlNTk9TlEBF1SlhYGPbs2YPq6mqpSyEiIqIOUqlUmD59OjZu3IgvvvgCq1ev5rk2IiIiIiLqcRhkQEQ3rKqqCmFhYTAzM8OPP/6I119/Hd9++y2OHDkidWmtyGQyAEBFRcVNv5aXlxd+++03VFdXY/LkyZzkQURERETUA2g0GiQmJmLYsGFYsmQJHnzwQaSnpyM6OpoJ8zepubkZpaWlkMvlUpdCRES9RHV1NZKTkxETE4OAgAA4Ozvj0UcfRWpqKmbOnCmuBK4dXKCvz9MURERScnJyQnh4OOLi4pCbm4vMzEysWbMGAPD8889DoVDA29sbUVFRSExMRHl5ucQVkxTMzMywdOlSXLhwAZs2bUJaWhoCAgIwduxYfPrpp6itrZW6xF6lvLwcP/74I1atWoUpU6bA1tYWvr6+WLx4Mc6dO4d7770XCQkJyMvLw+XLl7F9+3Y888wzmDBhAkxMTKQun/6/sWPH4vfff8ePP/6IrKwsjBw5Ei+++GKP/HvQ19fHtm3bYGtri0ceeQRXrlyRuiSiPikqKgr5+fn46aefpC6FiKhTpk6diqamJiQnJ0tdChEREXVAbm4uJk2ahL/++gt79+7FnDlzpC6JiIiIiIioTZwhSEQ3pK6uDg888ACKi4vx008/wdbWFtOmTcP48eOxcuVKqctrRQgyUCqVXfJ6np6e2Lt3LwDgjjvuwLFjx7rkdYmIiIiI6Mb9+uuvGDNmDGbNmoXRo0fj3LlziIuLg4ODg9Sl9Qnl5eVQq9UMMiAiomuqra0VgwuCgoJga2uLe++9F8nJyQgMDMT27dtRVlaGlJQUrFu3DiEhITA2Npa6bCIiaodCoUBkZCQSEhLE9/DIyEhkZWVhzpw5kMvlCAgIQExMDJKTk1FfXy91ydSNDA0NMW/ePJw4cQJ79+7FoEGD8OSTT8LFxQULFizArl27oFarpS6zR1GpVNi/fz/ee+89zJs3D0OHDoW9vT3CwsLw1VdfwdHREWvWrEFKSgoqKyuxd+9evPnmm3j44Yfh4uIidfnUAffddx/S0tKwYcMGfPLJJxg2bBi+++47qctqxdLSEt9++y3Onj2LqKgoqcsh6pMUCgXuvPNOxMfHS10KEVGn2NvbY+zYsdi5c+f/Y+++45q4/z+Av8JSpoSlYl2gFcWBghOQoiAoThRQxFFKsVZwVFFaR50tWLWCuHBQB1ZBSx1VK9S6qxXEgVtxM2QEFEVZ+f3Rr/mVihoUcozX8/HIQ7ncfT6v++SSyyW59wkdhYiIiN7h9OnTsLKyQlFREU6fPo0uXboIHYmIiIiIiOiNVIQOQETVR2FhIdzd3XHp0iUcOXIETZs2ld0XFBSEnj174vDhw+jVq5eAKUur6EIGAGBsbIzTp0/Dw8MDNjY22LZtGwYOHFhh7RMRERER0dtduXIFc+fORXR0NBwcHJCQkAALCwuhY9U4jx8/BgAWMiAiIpmioiJcuHABcXFxiIuLw/Hjx/Hy5UuYmJjAwcEBkyZNQu/evaGnpyd0VCIiqgAqKiqwtLSEpaUlZsyYgby8PJw+fVq2HwgODoa6ujqsra3h4OAABwcHdOzYEUpKrKVfG9ja2sLW1hbLly9HZGQkfv75Zzg7O8PIyAhDhw5F//79YW9vD3V1daGjKkxubi4SExNx7tw52e369esoKSmBnp4eLC0t4ebmhm7duqFr164wMDAQOjJVEGVlZUyYMAFDhw7FtGnTMGjQIAwbNgyrV6+uUo9zq1atsHnzZgwZMgTdunXDF198IXQkohrH19cXnp6euH//Ppo0aSJ0HCKicnNxcUFYWBikUilEIpHQcYiIiKgMO3bswNixY+Hg4ICff/4ZWlpaQkciIiIiIiJ6K/6KhIjkUlJSgjFjxuDw4cPYs2cP2rVrV+p+W1tbODo64uuvv4ZUKhUo5esqo5AB8M8VK/bs2YMxY8bA1dUVwcHBFdo+ERERERG97sGDBxg3bhzat2+PO3fu4I8//kBsbCyLGFQSFjIgIqKSkhJcvnwZ4eHhcHd3h76+PqysrBASEgKxWIzQ0FDcv38ft2/fxtq1a+Hm5sYiBkRENZiWlhYcHBwQFBSE+Ph4pKSkYNOmTTAxMUFoaCisrKzQoEEDuLu7Izw8HPfu3RM6MimAoaEhJk+ejDNnzuDWrVvw9/fH6dOn0b9/f+jr68PFxQUrVqzAxYsXUVJSInTcCvHixQskJiYiMjISX3/9NQYOHAhTU1OIxWLY29tj8eLFyM7OhqurK6Kjo3Hnzh1kZWXh0KFDWLBgAVxcXKrUye1UcRo0aICtW7ciNjYWf//9N9q1a4d9+/YJHauUgQMHYs6cOZg4cSKOHTsmdByiGmfw4MHQ19dHRESE0FGIiN5L//79kZaWhoSEBKGjEBERURlCQkLg6emJcePG4ddff2URAyIiIiIiqhZUhA5ARFWfVCrFhAkTsGvXLuzZswfW1tZlzvf999+jc+fO2Lt3LwYOHKjglGXT0tKCqqpqhRcyAP65EtHKlSvRtGlTfP3117h+/TpWrlxZq64sQ0RERESkCBKJBMHBwQgJCUH9+vWxatUq+Pj48CqflSw9PR3KysrQ19cXOgoRESlQcnKy7Erbf/zxB7Kzs2FoaIhPPvkEP/zwA6ytrWFubi50TCIiqgIaNmwINzc3uLm5ASi9D5k2bRrGjRsHExMTODg4yG6vClBTzWRqaopZs2Zh1qxZSElJwf79+7F//37Mnj0bubm50NXVhbW1Nbp3746OHTvCwsICxsbGQscuU0lJCVJSUpCcnIw7d+7g5s2buHr1Ki5duoTk5GQUFxdDTU0NrVq1Qps2beDt7Y327dujU6dOaNSokdDxSWAODg64ePEiJk2ahAEDBuCzzz7D8uXLq8zJBXPmzEFiYiI8PDyQkJBQZZ+HRNWRmpoaxo4di/Xr12PWrFlQVlYWOhIRUbl06NABTZs2xW+//QYrKyuh4xAREdH/SKVSzJs3D/Pnz8ecOXMwd+5coSMRERERERHJTSStSpdOJ6IqKTAwEEuWLMH27dsxbNiwt847dOhQ3LhxAxcuXKgyJxUZGRlh7ty5+PLLLyutj71792LMmDFo0qQJdu7ciRYtWlRaX0REREREtUVBQQFWr16NefPmQUlJCQEBAZg8eTLq1KkjdLRaYcWKFVi4cCHS09OFjkJERJUoNTUVJ06cQFxcHA4ePIj79+9DS0sL3bp1k5102qlTJ4hEIqGjElVZN27cQKtWrZCYmAgLCwuh4xBVCUVFRbhw4QL27t2Lffv2ITExESKRCBYWFrL9i62tLY/vaoni4mIkJSXh2LFjOHHiBM6cOYN79+4BAOrXr4/27dujRYsWaNGiBVq2bAkTExMYGxtXWuGL4uJiZGZmIiMjAxkZGUhLS8OjR49w584dWeGCu3fv4uXLlwCAunXrwsTEBG3atEGbNm3Qtm1bmJubo2XLllBVVa2UjFRzxMTEYNy4cTA0NMSuXbtgZmYmdCQAwNOnT9GlSxcYGhri8OHDUFHhdVCIKkpycjJatmyJ3bt3o3///kLHISIqty+++ALnzp3D33//LXQUIqrhOnbsiH79+mHRokVCRyGq0oqKijB+/Hj89NNPWLNmDT777DOhIxER1WqLFi3Cpk2bcOPGDaGjkAD4+BMRvZeb/CaSiN5q+fLlWLx4MdavX//OIgYAsGDBArRv3x5bt27F6NGjFZDw3XR1dSGRSCq1jwEDBuD8+fNwd3dHp06dsGHDBtkViIiIiIiIqHxKSkqwa9cuzJgxA+np6fD398fXX3+NevXqCR2tVsnIyICRkZHQMYiIqIJlZGTgyJEjOHHiBE6ePImEhASoq6ujU6dOGDFiBBwcHGBnZ8eT8oiI6IOoqKjA0tISlpaWmDt3LrKysnD48GHExcUhOjoawcHB0NDQQI8ePVg4pxZQVlZGhw4d0KFDB/j7+wMAJBIJEhMTcf78eVy5cgWXL1/G7t27kZKSIltOXV0dxsbGqF+/PnR0dKCjowNdXV3Uq1cPSkpKqFOnDjQ0NGTz5+TkQCqV4uXLl3j+/LlsWklJSanCBRkZGfj39R6UlZXRoEEDmJiYoHnz5ujWrRuaN28OExMTmJiYoGHDhtw26b0NGTIEVlZWcHd3R5cuXbBu3Tp4eHgIHQva2tqIjo5G165dMWvWLAQFBQkdiajGMDExgb29PcLDw1nIgIiqJRcXF4SHhyMtLQ0NGjQQOg4REVGt9uzZM7i7u+Po0aPYs2cP+vbtK3QkIiIiIiKicmMhAyJ6o4iICHz11VdYunQpvL295VqmTZs28Pb2xjfffIOhQ4dCU1OzklO+m1gsrvRCBgDQpEkTHD16FJMmTYKHhweOHz+O4OBgqKurV3rfREREREQ1RVxcHAICApCUlARvb2/MnTsXDRs2FDpWrfT48WMWMiAiqgGePXuGv/76C3FxcYiLi3vtithBQUGwsbFB3bp1hY5KREQ1mL6+Ptzc3GRFoJOTk2X7ph9++AGBgYEwMjKCnZ0dHBwc4OTkhKZNmwqcmiqTWCxGr1690KtXr1LTnz17hrt37yIlJQWpqal49OgRHj9+jNzcXOTm5iI5OVn2vd/z58/x8uVL2bKvChzUrVtX9v2cWCyGSCRCmzZtYGhoCAMDA9SvXx9GRkYwNDSUTWOhAqpMjRs3xtGjRzFt2jQMHz4cf/31F5YsWQIVFWF/stO2bVusW7cOXl5e6NatGwYPHixoHqKaxNfXF56ennjw4AEaN24sdBwionLp1asX1NTUEBsbi1GjRgkdh4iIqNbKzs7GgAEDcP36dcTGxqJ79+5CRyIiIiIiInovLGRARGXatWsXPv/8cyxYsABTpkwp17ILFy7Ejh07sGzZMsyePbuSEspPUYUMAKBOnTpYs2YN7Ozs8OWXXyI2NhZbtmyBlZWVQvonAfV+7gAAIABJREFUIiIiIqquzp49ixkzZuDPP/+Eg4MDzp07h3bt2gkdq1bLyMiAoaGh0DGIiKicioqKcOHCBdnJoceOHUNBQQFMTEzg4OCAGTNmwNHREbq6ukJHJaq2AgICcPDgQdnfBQUFUFNTg7u7O+rUqSOb3rNnT6xcuVKIiERVnomJCXx9feHr64uSkhIkJibK9l2TJk3CixcvZPsuBwcH7rtqEU1NTZibm8Pc3FzoKEQVSk1NDaGhoejRowc+++wz3LhxAzt27IC2traguTw9PfHHH3/A29sbHTp0QPPmzQXNQ1RTDB48GHp6eti0aRNmzZoldBwionLR1NRE9+7dERcXx0IGREREArl79y6cnZ1RUFCAU6dO4eOPPxY6EhERERER0XtTEjoAEVU9e/fuxYgRIzB58mTMnDmz3MsbGRlh+vTpWLx4MVJTUyshYfkospDBKyNGjMDVq1dhYmKC7t27IzAwEIWFhQrNQERERERUHdy7dw+jR49G165dkZ+fj6NHjyI2NpZFDKqAzMxMFjIgIqoGiouLkZCQgODgYDg6OkJbWxtWVlYIDw+HiYkJ1q1bh4cPH+L27dtYu3Yt3NzceCIo0Qd6/PgxLl++jKSkJCQlJeHGjRsoKCjAzZs3ZdMuX76MtLQ0oaMSVQtKSkqwtLTEjBkzEBsbi+zsbMTGxsLNzQ0JCQkYPnw4DAwMYGVlhcDAQMTFxeHly5dCxyYiei/Dhw/HyZMncenSJfTo0QP37t0TOhJWrlyJZs2awcPDg6+vRBVETU0NXl5e2LhxI0pKSoSOQ0RUbo6Ojjh06BCkUqnQUYiIiGqdpKQk2NjYQE1NDcePH2cRAyIiIiIiqvZYyICISjl48CDc3NwwduxY/PDDD+/dzldffQV9fX3MmTOnAtO9HyEKGQBAgwYNsG/fPixZsgShoaGwtrbG+fPnFZ6DiIiIiKgqysrKQmBgIFq1aoWzZ89ix44dOHXqFHr27Cl0NPqfzMxM6OvrCx2DiIjKkJycjPDwcLi7u8PQ0BBWVlb48ccfIRaLERISgjt37sgKF4wePRqNGjUSOjJRjeLp6SnXD/m9vLwUkIao5lFXV4eDgwOCgoIQHx+P9PR0/Pzzz7C0tERUVBQcHR2hp6cHR0dHBAcHIyEhgSfXEFG1YmFhgRMnTgAAunfvjnPnzgmap27duoiKisL169cREBAgaBaimsTb2xt37tzB0aNHhY5CRFRuDg4OSEtLw5UrV4SOQkREVKscOXIENjY2+Pjjj3H8+HF+x0dERERERDUCCxkQkUxcXBxcXV0xfPhwrFmzBiKR6L3bUldXx8KFC7Fx40bBf3ghVCEDABCJRJg0aRISEhKgqqqKzp07IyAgAM+ePXvrcqdOnUJ6erqCUhIRERERKc7z588RHBwMU1NTbNmyBaGhobh06RLc3Nw+6BiEKl5WVhYLGRARVRHJycnYvHkzxo0bh48++gimpqaYNm0aJBIJZsyYgfj4eKSmpiIqKgq+vr5o1qyZ0JGJarTevXtDT0/vrfOoq6ujb9++CkpEVLMZGBjAzc0Na9euRXJyMm7fvi0r4LN48WJYWVmhQYMGcHd3R3h4OB48eCB0ZCKid2ratClOnjyJtm3bolevXrLCBkJp0aIF1q1bhxUrViAyMlLQLEQ1Rdu2bdG5c2dEREQIHYWIqNwsLS2hp6eH2NhYoaMQERHVGr/88gucnZ3Rt29fHDx4EPXq1RM6EhERERERUYVgIQMiAgCcOHECQ4YMwYABA7B+/XooKX34y8PIkSNhaWkp+FUbhCxk8Err1q1x4sQJbNiwAREREWjVqhViYmLKnDc9PR29evWCtbU10tLSFJyUiIiIiKj8cnJy0Lt3b+zbt++N8xQVFSE8PBwtWrTAwoUL8cUXX+DatWvw9fWFioqKAtOSPKRSKSQSCQsZEBEJJD09HdHR0Rg3bhxMTExgamqK8ePHIzk5Gf7+/oiPj0dOTg5iY2MxY8YMWFpasiAQkQKpqKjA09MTampqZd6vqqoKDw8P1K1bV8HJiGoHExMT+Pr6IioqCo8fP0Z8fDy++uorSCQSTJo0CU2aNIGpqSnGjRuH6Oho5OTkCB2ZiKhMOjo62LdvHxwdHeHk5ITff/9d0Dzu7u7w8/OTfW5HRB/u008/xc6dO/l+hIiqHWVlZdjb2yMuLk7oKERERLXC9u3b4eHhAR8fH0RGRr7x+wciIiIiIqLqiIUMiAinTp1C37594ezsjMjIyAo7iUgkEiEkJAR//vknDhw4UCFtvo+qUMgA+Gc8Ro8ejaSkJNjY2MDV1RWurq64detWqfmWLl2KkpIS3L9/H7a2tkhPTxcoMRERERHRu+Xn56Nfv344fPgw/Pz8UFhY+No8cXFx6NixI/z8/DBgwADcunULQUFB0NbWFiAxyePJkycoKCiAgYGB0FGIiKq0hw8f4vbt2x/cTl5eHuLi4hAYGAgrKys0bNgQnp6eSEhIgLu7O2JjY5GdnV2qcEFFFCIlovc3YsQIFBQUlHlfYWEhPD09FZyIqHZSVlaGpaUlZsyYUWp/6ebmhoSEBAwfPhwGBgawsrJCYGAg4uLi3vjclVd6ejqSkpIqaA2IqLZTU1OTnawwcOBA/PLLL4LmWbJkCVq3bg0PDw/k5+cLmoWoJvD09IRIJMKOHTuEjkJEVG6Ojo44cuQIXr58KXQUIiKiGm3btm0YNWoUJk2ahBUrVvA7QCIiIiIiqnF4lENUy/31119wdnZGnz59sG3btgq/Emr37t0xZMgQTJ06FUVFRRXatrzEYjGePn1a5glVQmjQoAG2b9+OgwcP4vr16zA3N0dAQAByc3ORlZWFsLAwFBYWorCwEPfu3UOPHj2QmpoqdGwiIiIiotcUFxdjxIgROHv2LIB/TuZcu3at7P7Tp0/Dzs4Offr0QevWrXH16lWsXbsW9evXFyoyySkrKwsAoK+vL3ASIqKqSSqVYvXq1fj444/h4eFR7uWfP38uK1xgY2MDPT09ODk5IS4uDtbW1tixYweysrIQHx+PoKAgODg4oE6dOpWwJkT0vrp3746PPvqozPvEYjE++eQTxQYiIgCAuro6HBwcEBQUhPj4eKSlpeHnn3+GpaUltm/fDkdHR+jp6cHR0RHBwcFISEiAVCotVx/Tp0+HhYUFZs6c+cFFEYiIgH+Ksqxfvx7e3t7w8PBATEyMYFnq1KmDqKgoPHjwAAEBAYLlIKop6tWrhyFDhiAiIkLoKERE5ebk5IRnz57hzJkzQkchIiKqsdatW4dRo0Zh6tSpWLJkCUQikdCRiIiIiIiIKhwLGRDVYufOnYOLiwtsbGywbds2qKqqVko/wcHBuH37NtavX18p7b+LWCwGAOTm5grS/5s4OTnhwoULWLp0KSIiIvDxxx/Dx8enVMGFwsJCPHjwALa2tkhLSxMwLRERERFRaVKpFL6+vti3b5+saFlxcTFmz56N+Ph4uLu7o0ePHlBVVcXZs2cRFRUFU1NTgVOTvDIzMwGwkAERUVnu3r0Le3t7+Pn5IT8/H+fPn8eTJ0/eukxRURESEhIQHBxc6gTK6OhomJubIzIyEhkZGYiPj0dISAjc3Nygo6OjoDUiovchEong5eX12ufqampqGD16dIUXDSai92NoaAg3NzesXbsWd+/exe3bt7Fs2TKIxWIEBwfDysoKDRs2hLu7O8LDw/HgwYN3tnngwAEUFxcjODgYFhYWuHDhggLWhIhqOiUlJaxatQq+vr4YPnw4Dh48KFiWZs2aYd26dVi1ahX27t0rWA6imuLTTz/FmTNncPHiRaGjEBGVS7NmzWBiYoLY2FihoxAREdVIa9aswRdffIGAgAAEBQUJHYeIiIiIiKjSsJABUS11/vx5ODo6okuXLoiJianUK7q1aNECfn5+mD17NrKzsyutnzd5VchAIpEovO93UVFRgZ+fH27evAlXV1ccOHBAdhLYK4WFhbh//z6LGRARERFRlTJz5kxERESguLi41PS8vDx07doVN27cwIEDBxAXFwdLS0uBUtL7ysrKAgAYGBgInISIqOqQSqUIDw9HmzZtcOrUKZSUlAAASkpKcOzYsVLzlpSU4PLlywgPD4e7uzsMDAxgZWWFkJAQiMVihIaG4t69e7h9+zbWrl0LNzc36OnpCbFaRPQBRowYUaowLQAUFBRgxIgRAiUioncxMTGBr68voqKiZEWEpkyZAolEgokTJ6JJkyYwNTXFuHHjEB0d/VqR7CtXriAjIwPAP8X8bt68iU6dOiEwMPC11wMiovISiUQICwvDmDFj4OrqiiNHjgiWZejQoRg9ejQ+++wzpKamCpaDqCbo1asXTE1NsXnzZqGjEBGVm6OjI+Li4oSOQUREVOMsWbIE48ePx7x581jEgIiIiIiIajwWMiCqhc6dO4fevXujc+fO+PXXXyu1iMEr3377LVRVVfHtt99Wel//VZULGbwiFothbGz82klgrxQWFuLevXvo1auX7MqoRERERERCWbVqFb7//ntIpdLX7isqKoKKigr2798PJycnAdJRRcjKyoKamhq0tLSEjkJEVCWkpqbCxcUFX3zxBfLz80udqKiqqorDhw8jOTlZVrjAyMgIbdu2xaxZswAA8+bNQ3x8PFJSUhAVFQVfX180adJEqNUhogrSvn17tGrVqtS0jz76CF26dBEoERGVh7KyMiwtLTFjxgzExsYiOzsbsbGxcHNzQ0JCAjw8PGTFiAIDAxEXF4fff/8dKioqsjaKiopQUlKCJUuWoGvXrrh27ZqAa0RENYFIJMLq1asxYMAADBw4EGfOnBEsS1hYGMRiMcaOHVvm54BEJB+RSITRo0djy5Ytr13YgoioqnNwcMDZs2er9O/uiIiIqpvg4GBMnz4dP/74o+y7RCIiIiIiopqMhQyIapmzZ8/CwcEBlpaWiImJQd26dRXSr46ODhYuXIjVq1fjwoULCunzlepQyODZs2dYtmzZW7+0LiwsxK1bt2BnZye7OioRERERkaJt374dfn5+b51HKpViwYIFCkpElSEzMxMGBgZCxyAiqhKio6PRqlUrxMXFlXnyTkFBATZv3gxTU1MEBATgxYsXmDVrFi5evIj09HRERUVh0qRJsLS0FCA9EVW2UaNGQVVVFQCgpqaGsWPHQiQSCZyKiN6HhoYGHBwcEBQUJCtAFBERgbZt22Lr1q1wdHTEsmXLynw/UFxcjKSkJLRv3x7BwcFvLFxNRCQPZWVlbN26FXZ2dujfvz9u3rwpSA4tLS1ERkbizz//RGhoqCAZiGqKMWPGICMjA4cOHRI6ChFRufTu3RsAcOTIEWGDEBER1RBz587F119/jdDQUEyePFnoOERERERERArBQgZEtUh8fDycnZ3RtWtX7N69G+rq6grtf+zYsbCysoKfn59Cr9igra0NFRWVKl3IICwsDE+fPn3nfIWFhbh58yaLGRARERGRIA4fPozRo0e/c77CwkKsW7cOV69eVUAqqgxZWVnQ19cXOgYRkaBSU1PRv39/eHh4IC8vD4WFhW+cNzs7G7/99huysrKwZ88eTJ48Ge3atePJzES1gJeXl6xAbUFBAYYPHy5wIiKqKA0aNICXlxd++uknPHz4EJcuXUJWVtYbixQUFhaisLAQ33zzDXr06CHYicdEVDOoqqoiKioKLVu2hLOzMx4/fixIDisrK8yaNQszZsxQ+AULiGqSpk2bokePHoiMjBQ6ChFRuYjFYnTq1AmxsbFCRyEiIqr2Zs+ejYULF2LDhg3vvIAIERERERFRTcJCBkS1xMmTJ9G7d2907doVMTExCi9iAABKSkpYuXIlTp06hejoaIX1KxKJoKurW+ULGUilUqipqb3zB+6FhYW4ceMGevXqVaXXiYiIiIhqlvj4eAwYMAAlJSVyFSYrKSnBnDlzFJCMKgMLGRBRbRcdHQ0zMzMcOnQIUqn0nfs+kUiEvLw8qKioKCghEVUVTZs2RadOnQAAZmZmMDc3FzgREVWW3Nxc5Ofnv3O+kpISJCYmol27dggJCVFocW8iqlnU1dWxZ88eKCkpoX///nj+/LkgOWbNmoXu3bvD09NTrtdBIirbyJEj8euvv8p1kQsioqrE0dGRhQyIiIg+gFQqxaRJkxAUFITNmzfj008/FToSERERERGRQvFXlUS1wIkTJ9CvXz/Y2dlh586dqFOnjmBZLC0tMWbMGEydOhUuLi7Q1NRUSL9isRjZ2dkK6etNsrOzcfjw4TJ/sObj44M7d+4gIyMDmZmZePz4MTIzM5GXlyebR0lJCcrKyigpKUFhYSEuXryIjh07Yv78+YIUpiAiqsk+/vhjdOjQQegYRFRFvXjxQvaD3VeFpfLz8/HixQvZPLm5uSgpKSlzealUipycnLf2oaGh8db37dra2rITJZWUlFCvXj0AgKamJtTU1KCiogJtbW35V+odbty4gT59+uDly5dlXnnyVZZXV6LV0NBAy5YtYWlpWWEZSLGysrJgYGAgdAy5SSQS/PHHHzxBiIg+2LNnzxASEoLz58+XazmRSIR169a9s0AlvR91dXW4uLhU2vhyP0Ifqn379khISIClpaVCi/hSzWNvb1+p78MPHDhQ6nsHKp+dO3dCRUVFduz7NoWFhQCAyZMnY8OGDZg4caLs2J2I6N9atmwJCwuLN95vYGCAvXv3wtraGmPGjMGOHTugpKTYa5YoKSlh8+bN6NChA2bMmIHQ0FCF9k9UU3h4eGDKlCmIiYnB6NGjhY5DRCQ3R0dHfPfdd7hz5w6aN28udBwiIqJq56uvvsLq1avx888/Y9iwYULHISIiIiIiUjgWMiCq4Y4dOwYXFxc4Oztj27ZtUFVVFToSgoKCEBMTg+DgYMyfP18hferp6clOMhPKmjVrMHPmzPdevqSk5LWT4e7du4cxY8Z8aDQiIvqPNubmuJyUJHQMIvoAL1++RE5ODiQSCSQSCfLy8pCTk4Nnz54hPz8fT548QV5eHp4/f468vDw8efIE+fn5ePbsGXJycpCfn4/8/HwUFBTg2bNnAN5enKAqe1X0QFVVFVpaWlBWVoaOjg60tLSgoaEBLS0t6OjoQENDAxoaGtDV1YW6urrs/wUFBZgyZQokEgmUlZWhrKwsK2ZQr149mJmZwcLCAq1bt0abNm1gZmaGxo0bC7zW9KEyMzPRsmVLoWPILTw8HIGBgULHIKJarLi4GHFxcYiLixM6So116dIltG3btlLa5n6EKkpkZCQiIyOFjkHV2OzZsyvte5Pk5GT069evUtqmt7t06RI+//xzoWMQURXVyqw1rl298tZ5zMzMEBMTA0dHRyxatAizZ89WULr/17hxY6xduxYeHh7o06cP+vfvr/AMRNWdnp4enJ2dERkZyUIGRFSt9OjRA5qamvjjjz/g4+MjdBwiIqJqZebMmVixYgW2bNnCIgZERERERFRrsZABUQ126NAhDB48GAMGDEBkZKTsKqlCMzIywuzZs/HNN99g1KhRCjk5Rk9PD9nZ2ZXez9sUFRWhsWlLLP/tqKA5iIjo7aJXLsO5Q3uFjkFE/1NcXIyMjAxkZmbi8ePHSEtLQ2ZmJrKzsyGRSEoVK/j338+fPy+zPU1NTairq8tO5FdXV4e2tja0tbWhqamJ+vXrQ0dHB+rq6tDU1ISKigq0tbUBvF4QAPjnRH4lJSXUqVMHGhoasn40NDRQp06dN67Xq7be5G1FE6RSKXJycmR/FxUV4enTpwCAJ0+eoLi4uMwCDC9evEB+fj4KCwtfK97w4MED5Ofn4/nz56UKOfy3GNirAgbKysrQ1dWFvr4+pFIp7t69i9zcXFy/fh26urrQ09ODoaEhDAwMYGRkhPr168PQ0BDq6upvXGeqWrKystC9e3ehY8itqKgIjZqZIPTgCaGjEFEN8uzJE+RmZ+JJdhaeSLLxJDsLuVkZ//xfko2cjMfIfpyGJ5JsPHuSC1U1NWw5ex1KyspCR69RUu4mw9/ZRq6rX78v7keIqCqY7tpHdsxVGV69ji6JiUXz1uaV1k9N5udkjczUR9DQ1oG2rhi6BobQNTCCtq4Y2mK9f/59dRPrQed/0+pqaAodnYiqqF1rQnBm3y655u3ZsyeWLVuGiRMnonPnznB2dq7kdK9zc3PDnj174OPjg4sXL8LIyEjhGYiqu5EjR2L48OF49OgRGjVqJHQcIiK5qKmpwdbWFrGxsSxkQEREVA5z585FUFAQNm3ahBEjRggdh4iIiIiISDBV46xmIqpwBw4cgKurK9zc3BAREQHlKvYD6okTJ+Knn37C9OnTERMTU+n96enpvXYSFhEREREJJysrCykpKbh//z4ePXqE1NRUZGZmIj09HY8fP0ZGRoasgIFUKpUtp6KiAkNDQ+jp6UFXVxdisRhisRjNmzcv9fer26tp2traqFevnoBrXD7vyqqnp6egJEB+fj6ePn1aZsGI//597do1SCQSZGdnIzMz87WCElpaWqhfvz6MjIxkhQ4aNmwIQ0NDfPTRRzA2NkaTJk1Qv379KlOIrbbKysqCvr6+0DGIiASlqaMDTR0dGDczkWv+kuJiFjEgIiKqwcJ+Pyl0BCKq5SZMmICzZ89i5MiRiI+PR/PmzRWeISwsDO3bt8eECRMQHR2t8P6JqrsBAwZAR0cHUVFRmDJlitBxiIjk5ujoiO+++w4lJSVQUlISOg4REVGVt2zZMsyfPx+rV6+Gl5eX0HGIiIiIiIgExbMCiGqgXbt2wdPTE15eXli3bl2V/PJARUUFy5Ytg6OjIw4ePFjpV4wQi8V48OBBpfZBRERERP/IyclBcnIyHj58KCtU8OjRIzx48ACPHj3Cw4cPkZ+fL5u/Xr16MDY2hoGBAYyMjGBubg5DQ0MYGhq+dtK7oaGhgGtWO6mrq0NdXf29rrD27NkzPH78GOnp6bLiFGlpabL/P3jwAPHx8bLpr4pWKCsro0GDBmjcuDGMjY3RuHHjUoUOmjdvDmNjY4hEoopeXfofFjIgIio/FjEgIiIiIqLKtnLlSsTHx8Pb2xuHDx9W+Odj9erVQ0REBBwcHBAdHQ03NzeF9k9U3dWtWxeurq6IjIxkIQMiqlYcHR0xdepUJCYmwtLSUug4REREVdqPP/6IadOmISwsDOPGjRM6DhERERERkeBYyICohomMjMTYsWPx+eefIywsrEoWMXjFwcEBw4YNg5+fH5KSklC3bt1K60tPTw/Z2dmV1j4RERFRbSORSJCcnPzG2ytisRgNGzaUnYzetWtXmJiYyKaZmppCV1dXwDWhyqSpqYnmzZvLdXW4wsJCZGRkIDU1FSkpKUhNTUVycjJSUlJw+fJl7N27Fw8ePEBhYSEAQE1NDR999BFMTExeu7Vs2RI6OjqVvXo11vPnz5Gfn89CBkREREREREREVYympia2bt2KLl26YM2aNRg/frzCM/Tq1QufffYZvvzyS9jZ2b1XAVSi2mzkyJHYuHEjLl++DHNzc6HjEBHJpW3btmjYsCHi4uJYyICIiOgtIiIiMHXqVCxduhRffvml0HGIiIiIiIiqBBYyIKpBVq9eDT8/PwQEBCAoKEjoOHIJDQ1F69atERQUhLlz51ZaP2KxmIUMiIiIiMopNzcX165dw+XLl0v9e//+fRQVFQEAdHR0ZCePW1hYwNXVVfZ348aNK7VYFdUsqqqqMDY2hrGx8Rt/AFVSUoK0tLTXCme8KnSQmpoqm9fIyAitWrVC69at0bp1a7Rp0watW7dG48aNFbVK1VZmZiYAwMDAQOAkRERERERERET0XxYWFpg2bRoCAgLg5OQEExMThWdYunQpDh06hIkTJ2L79u0K75+oOvvkk0/QuHFj/Pzzz1i4cKHQcYiI5CISiWBnZ4cjR45gxowZQschIiKqknbv3g1fX1/Mnj0bU6ZMEToOERERERFRlcFCBkQ1RHBwMAIDAzFv3jzMmTNH6Dhya9iwIWbPno2ZM2dixIgRaNWqVaX0o6enx0IGRERERG+Ql5eHCxcuICkpCVeuXMGVK1dw9epVPHr0CACgrq4OMzMztG7dGt7e3jA1NZUVK+CJzqRISkpKsmIHNjY2r92fn58vK25w+/ZtXL9+HdeuXUNMTAwyMjIA/FN8w8zMTFbYwNzcHB07doSxsbGiV6fKysrKAgDo6+sLnISIiIiIiIiIiMry7bffIiYmBoGBgYiKilJ4/zo6OtiwYQP69OmDYcOGYdiwYQrPQFRdKSkpYcSIEdi6dSsWLFgAkUgkdCQiIrnY2dkhICAARUVFUFHhT4+JiIj+7fDhwxg+fDh8fX0xb948oeMQERERERFVKfw0kaiak0qlCAwMxA8//IDly5dj0qRJQkcqt0mTJmHLli3w9/fHoUOHKqUPsViMFy9eID8/H+rq6pXSBxEREVF18OTJE1y8eBEJCQmy2/Xr11FcXAwdHR20bNkSJiYm8PHxgbm5Odq0aQMzMzMoKysLHZ3ondTV1WFubg5zc/PX7pNIJEhOTsbly5dx5coVXL58GWvXrsXdu3dRUlICXV1dmJubw9LSUnZr06ZNrfwR6asicHp6egInISIiIiIiIiKistSpUwfBwcEYNGgQTp06hR49eig8g4ODAz799FOMHz8ePXv2hJGRkcIzEFVXo0ePxuLFi3HixAnY2toKHYeISC52dnbIy8tDYmIiOnfuLHQcIiKiKuPs2bMYPHgwXF1dsWLFCqHjEBERERERVTksZEBUjUmlUkyePBkrV67Exo0bMXbsWKEjvRcVFRWsXLkStra2iI6OhpubW4X38eoEnOzsbDRq1KjC2yciIiKqioqKipCYmIgTJ07gr7/+QkJCApKTkwEA9evXR6dOnTBkyBB06tQJnTp1QrNmzYQNTFSJxGKxrEDBv+Xk5CAxMRHnzp3DuXPncOjQIYSFhaGkpAR6enro1KkTunTpAmtra1iUT1iFAAAgAElEQVRbW6NevXoCrYHiZGVlQUlJCbq6ukJHISIiIiIiIiKiNxg4cCBsbW3x9ddf4+jRo4JkWLZsGWJjYzF58mRs27ZNkAxE1ZG5uTnat2+PyMhIFjIgomrDzMwM9evXx9GjR1nIgIiI6H+uXLmCvn37omfPnvjpp5+gpKQkdCQiIiIiIqIqh4UMiKqp4uJi+Pj4YNu2bYiKioKrq6vQkT6ItbU1Pv30U0yaNAl9+vSp8JODXhUykEgkLGRARERENdbz58/x999/49ixY7LiBXl5eTAwMECPHj0wZswYWdECY2NjoeMSVQm6urqwt7eHvb29bFpeXh7Onz+Pc+fOITExEb/88gu+++47KCsro127dujZsydsbGxga2uLBg0aCJi+ckgkEtSrV49fsBMRERERERERVXHfffcdbG1tcfLkSVhbWyu8/3r16mHDhg1wcnLCsGHDqv3vFogUaeTIkQgKCkJISAjq1KkjdBwioncSiUSwtbXF0aNHMW3aNKHjEBERCS4lJQV9+/ZF69atERUVBVVVVaEjERERERERVUksZEBUDeXn58Pd3R1HjhzB/v370bt3b6EjVYjFixdjz549mD9/PpYuXVqhbb8qZJCdnV2h7RIREREJSSqV4ty5c9i/fz8OHjyI+Ph4FBQUoEmTJujZsyeWLFkCW1tbtG7dGiKRSOi4RNWGlpYWbGxsYGNjI5v2+PFjnDhxAsePH8fx48excuVKFBcXo2XLlnBwcICLiwvs7e2hoaEhYPKKIZFIIBaLhY5BRERERERERETvYGNjgy5dumDFihWCFDIAAEdHR4wZMwZffPEFbG1tYWhoKEgOourGy8sL33zzDQ4cOIDBgwcLHYeISC49e/bE7NmzUVxcDGVlZaHjEBERCebJkydwcXGBpqYmdu/eXSN+K0JERERERFRZeGk9omomJycHTk5OOHnyJH7//fcaU8QAAPT19bFo0SKEhobi/PnzFdo2CxkQERFRTfH06VP88ssv8PHxQaNGjWBlZYW1a9eiTZs22LhxI+7du4d79+5hy5YtGDduHNq0acMiBkQVwMjICK6urvjxxx8RHx8PiUSCgwcPwt3dHX///TcGDBgAAwMDuLi4YNWqVbh7967Qkd+bRCKRHUMREREREREREVHV5ufnh19++QUpKSmCZfjxxx+hqqqKKVOmCJaBqLoxNjaGnZ0dIiMjhY5CRCQ3Ozs75Obm4uLFi0JHISIiEkxhYSGGDRuG9PR0HDhwgL+vICIiIiIiegcWMiCqRtLS0mBvb49bt27h6NGj6NGjh9CRKpyPjw86d+4MPz8/SKXSCmtXVVUVWlpaLGRARERE1dLz58+xdetWODs7w8DAAO7u7rhy5QomTJiAc+fO4cGDB1i3bh1GjhyJJk2aCB2XqFbQ1taGk5MTFi5ciPj4eKSkpCAsLAx169ZFYGAgmjdvjnbt2mHRokW4f/++0HHLRSKRQCwWCx2DiIiIiIiIiIjk4O7uDk1NTezcuVOwDLq6ulizZg0iIyNx6NAhwXIQVTcjR47Evn37kJOTI3QUIiK5tGvXDvr6+jh69KjQUYiIiAQhlUrh4+OD06dP47fffkPTpk2FjkRERERERFTlsZABUTVx584d2Nra4sWLFzh9+jTatWsndKRKoaSkhFWrVuHMmTNYt25dhbatp6cHiURSoW0SERERVRapVIpjx47B29sbDRo0gLe3N+rWrYsNGzYgLS0Np06dwsyZM9GxY0eIRCKh4xLVeq+ep7t27UJmZibi4uJgb2+PkJAQNG/eHL1798bmzZuRl5cndNR3YiEDIiIiIiIiIqLqo06dOujbty92794taI4BAwZgyJAhmDBhAl68eCFoFqLqYtiwYRCJRIIWIiEiKg+RSAQbGxsWMiAiolorMDAQ27dvxy+//IKOHTsKHYeIiIiIiKhaYCEDomogKSkJNjY20NXVxbFjx2r8VXYtLCwwefJkTJ8+HY8ePaqwdsViMQsZEBERUZWXnZ2N77//HqamprCzs8PFixexcOFCpKSk4Ndff4WXlxcMDAyEjklEb6GmpobevXsjNDQUjx49QkxMDHR1deHr64uGDRvC29sbFy9eFDrmG2VnZ7OQARERERERERFRNTJw4EAcP35c8Ku6h4SEIC0tDYsXLxY0B1F1oaOjgwEDBmDbtm1CRyEikpudnR2OHTuGkpISoaMQEREp1Lp16/DDDz9g/fr1cHBwEDoOERERERFRtcFCBkRV3NGjR2FjY4NWrVrhjz/+gKGhodCRFGLevHnQ19fHlClTKqxNPT09ZGdnV1h71cE8bw+hIxAREZGcUlJS4O/vjyZNmuCHH36Aq6srLl26hPj4eEycOJHFC4iqKVVVVQwcOBC7du1CSkoKgoKCcPbsWXTo0AF9+vTBiRMnhI74GolEwkIGcuDxFlUn3F6rvsp8jD60bW4/lYPjStUJt1d6X9x2qDrh9lr71LTH3N7eHoWFhTh79qygORo3bow5c+bgu+++w40bNwTNQlRduLu74+jRo0hNTRU6ChGRXOzs7JCdnY0rV64IHYWIiEhhjh07Bj8/P8yZMwejRo0SOg4REREREVG1wkIGRFVYTEwMnJ2d4ezsjIMHD0JHR0foSAqjoaGBVatWITo6Grt3766QNqtjIYOhZsYYamb83stLpdIKTFMzfcj40of70G2cah9uL1QTPX36FIGBgWjZsiV2796N7777Dvfv38eSJUvQtm1boeOVSSQSvdd9tRXHhF7R09PDhAkTcPHiRRw8eBCFhYWwtbWFi4sLLl++LHQ8mdpSyIDHW5WvKrx34zHHP7i9Vn3FRcWV1ra8j/+bni/cfsrG/Ujlqwqv39yP/IPba/nUpO2Gr3WVrypsKzVpm/0Q3F6rvuz0NIQE+MHHtiOGtfmIr1H/Ub9+fXz00Uc4d+6c0FEwZcoUmJmZwd/fX+goRNVC3759oaGhUWG/jSEiqmwdOnSAtrY2Tp06JXQUIiIihUhOTsbQoUMxcOBAfPvtt0LHISIiIiIiqnZYyICoilq5ciXc3Nzg7e2Nbdu2QU1NTehICufk5ISRI0fC398fT58+/eD29PT0IJFIKiCZ4uy6lvJBy8+NiKqgJESV40O3cSKi6m7v3r0wNzfH+vXrsXDhQty4cQMTJ06ElpaW0NGIqBKJRCI4OTnhzz//RGxsLNLT09GpUyfMmjULL1++FDoeJBIJ9PT0hI5R6Xi8VTvwmOMf3F6rvvmbd1Za2/I+/m96vnD7KRv3I7UD9yP/4PZaPjVpu+FrXe1Qk7bZD8HtteoLDZyIhk2bY/m+P/Hz+WQErFj/Qe3VxMe8Y8eOuHDhgtAxoKKigrCwMMTGxmLXrl1CxyGq8jQ0NNCvXz9ER0cLHYWISC7Kysro0qULTp48KXQUIiKiSpednY2+ffuiadOm2LRpEy9mQkRERERE9B5YyICoipFKpZg7dy78/f0xa9YsrFy5EkpKtfepunz5crx48QKzZs364LbEYjGys7MrIBURERHRhykqKsLUqVMxaNAg2Nvb4+rVq5gyZQrq1q0rdDQiUjAHBwecOXMGS5YsQWhoKHr27In79+8Llqe4uBhPnz6FWCwWLAMRERERERER0X9dS/gbQ3z9oVVPF6pqaujm2I+FOP6jadOmePTokdAxAAA2NjYYM2YM/P398eTJE6HjEFV5w4YNw9GjR/H48WOhoxARycXa2pqFDIiIqMYrLCyEu7s78vLysHv3bmhoaAgdiYiIiIiIqFqqvWdHE1VBBQUFGDVqFBYtWoTw8HDMnTtX6EiCMzAwwOLFixEWFoa//vrrg9qqSYUM7t+8hkXjRmFkp5YY2aklFvh44v7Na6XmGWpmjKFmxuVq99UyaffvYrH/Zxjdxey1du7fvIZFvl6yvhf5esnd95umnz18CN+MGIjh7Zvhi15dEPH9t8h/llfmspmpKQj6cixGdmoJb+v2CAnww9McyXuP0b/bHmpmjFWzpso9Xg9uXcciXy94dmwBL8uPMf+zEXh468Zr61ne8SjP4/vw9k0EevTHCAsTzBo5GGn37+LBresIdHeBZ8cWmDN6GDJTy/eDJVnbt25ggY8nvCw/hmfHFlg0bhQe3r5Zdt53bBOvjZdVKwT7eb8xmzxj8C7Pnz5BxPffYrxDNwxv3wyf2VhgReBk3LyYWO6+5HluvE15xrSin4cV+ThW1vNQ3jbf9ZytiO2GSBEKCgrg5uaGVatWYcOGDdi0aRMMDQ0FzSQSicqsGF7W9Fd/v7pPJBLBx8fnnfcBQFJSElxcXKCtrQ1tbW04OzsjKSmpzD5v374NV1dXiMXiN+Z727pcvXoV3bp1g4aGBmxtbXHr1i1cvnwZXbt2hZaWFuzt7cs8WXzPnj2wtrZG3bp10axZM0yZMgVPnz4ts48HDx5g0KBB0NbWRv369eHl5YWsrCy5x0tRYwIAFy5cQJ8+faCpqQkdHR307dsXv//+e6l5kpKS0K9fP1mWfv36vTHLu9b93+t75MgRAMD27dtLTa/IMcjNzcWUKVNgYmKCunXromHDhhg7diz+/vvvUu3I8/gKQVlZGf7+/khISEB+fj66dOmCK1euCJIlJycHJSUltbqQAY+3hD3e+vf8l/8+BQA48dvuUtPLs25vUp6x/uDjgPc8bnvX+v17TE78thsAcDvpwmtjVVbmD80m73GgXONTnmOWd2x38hwHlutYUY51/JDt8L9j8aa/3zb9Xdvpm9qS9xj9TcvfvXYF872Hw9PCFF6WH2Ph5yNx/sSRUvNUxNhUR9yPcD/y3yzcj1TOfgSQ//NZWZ8V8BlgbX1t+y++1vG17r9Z+FrH98yKeM9cWFCA4e2blXr8ynrs5MlfU9/nGhoaVqmToJcsWYLCwkLMnz9f6ChEVZ6Liwvq1q2LX3/9VegoRERy6dGjB27fvo3U1FShoxAREVUaf39/nDlzBvv370ejRo2EjkNERERERFRtsZABURXx9OlTDBw4ELt378bevXtLndxU240dOxa9evXCuHHjUFhY+N7t6Onp1YhCBmn372Lep8NhZe+I1XGnsebw37AbOBRBX36KrLT//3Lofa5A8mqZ8LmBGOQ9HuuPncfM8K2l+l74+Uh0d+qP1XGnsSr2L3R17IcFPp5Iu3/3nX2/aXrQl2NhP8Qdm/6+iqCofcjLzcH6BbPKXHbVrKlwGjEGG06cx+KdB/HyRT42BZf+8Ut5x2jXtRTZ7cuFS+Uaq3+PxZo/zmD1H2fQy3U4ln01/rV1Lc94lDf7jrCl8PvuR2w4fh7NzMyxPMAP20OXwO/75Vh/7Bw+Mm2Jn4LmybVO/2176ZQvYD/EA6v/OIPVcafR1aEvFvh44vGjB2WOw9u2if+O16rYv9C9jwuWTfnivcfgXVYEToKmtg6+37EXW+JvYFb4VqTdv4NAd5dy9/Wu50ZFjmlFPw8r8nGszOehPG2+7TlbUdsNkSJ8/vnnOHz4MA4fPoxPP/1U6DgAAKlUKvf0V9OkUqnstn79+nfed+vWLTg6OmLAgAFITk7G3bt34eXlhUGDBuHhw4evtT9+/HhMmzYNKSkp2L9/f7nXZe7cuYiIiEBqaio6dOgALy8vfPvtt/jpp5/w6NEjtG7dGlOnvn5ywKBBgzBmzBhkZ2fj9OnTyM7Ohr+/f5l9+Pj4YPz48UhNTUV8fDyeP3+OadOmyT1eihqTGzduwMPDA9OnT0dGRgZOnz6NZ8+ewdnZWTbPrVu30LdvXwwbNgzJycmyggHOzs64detWude9qKgIpqamyM7OxieffAIAGD58OFJSUiAWi5GXl1ehYzBmzBjo6urir7/+Qm5uLvbv349bt26ha9eupcZCnsdXSC1btsSJEydgYmICJycnZGZmKjyDRPLPCTi1tZABj7eEP96KvvwADZo0w6a/r8K8Sw8AgI3LIKw/nggtnXrYlvj/r0nyrFtZyjvWH3oc8L7Hbe9av6jL99GpZy+MmxcMG5dBAADTth0QELoOjVu0QsSpS6VyVFQ2ecdP3vGR95hFnu1OnuNAeY8V5V3H990OyxqLN/39tunv2k7f9NmDvMfoZS2fcjcZS6eMw2CfCYg4nYSgHfvwIv85Fvh4lpqvIsamuuF+hPsR7kcUtx8pz+ezFfkZYG18bfsvvtbxtY6vdXzPXN51rMj3zP9+vry6/Zc8+Wvq+1x9ff3XCq0KSV9fH4sWLUJISAguXLggdByiKk1DQwPOzs7YuXOn0FGIiOTSvXt3KCsrf/CFiYiIiKqqTZs2ITw8HBs3bkSHDh2EjkNERERERFStiaRvOmOFiBQmJSUFLi4uSE9Px2+//YaOHTsKHanKuXXrFtq3b485c+YgMDDwvdrYuXMn3N3dUVhYCGVl5QpO+G7z58/H+s1bsfy3o+VabqiZcakf04QE+KFpqzYY7PNlqfkO79qOu9cuw3vmgjcuK29/8zfvlP347d9CAvzQop0FXEaXLrSxN2Itkq8mYdLiFe/sW55MeU9yMcGxOzadKX0V2qFmxpixMgJdejvJpqXcuY1vxwzDumP/fxWVyh4jAAiZ7o8WbTu8NhYnftuNH6eOf61NecejvNnnb9kF887dAQDZj9Pxec+OpaZlpaUiYKgTNp68WK71G2pmjK+WrYF1v4Glpu+NWIu716/CP2i5LK8828SbxuvPmB0I+3rKe4/B24zs1BJr/zwLrXq6smmPH97HeIdusv7KPd5veG7IQ94xfVdf5X0eVuTj+KrNyngeytPmq3nLei5V1HYDANErl+Hcob24fq38VwIkepdffvkFw4YNw/79+0udRF4ViESiMgsXlDX9TfO+7T4vLy+0b98e06dPLzV948aNuHDhAkJCQkq18eeff8pOgC8vkUiEI0eOwM7ODsA/77cbNWpUatrDhw9haWmJ9PT0t7YlkUjQokWL134ALBKJ8Ouvv2LQoEGyadevX0evXr3w6NGj1+YVckw8PT3Rt29fjBo1qlRWMzMzWS4vLy907twZkyZNKrXssmXLkJiYiC1btpR73b/55hs0atQIEyZMkE0LCgrCvXv3sHr16godA21tbdy7dw96enqyaXfu3IGJickbt1XgzY+v0HJycmBhYYFu3bph+/btCu377Nmz6NKlC+7evYumTZsqtO8PsWjRIqxevxGhB0+Uazkeb5Vetqocb0Uu+x569Rug78j/L/gTEx6GjJSH8J0b9F7r9t/HuTxj/aHHARV13FbW+r3Mf465Yz0w5PMJ6OLgjAsnj2LDotmYGxEFvfoN3jgGH5KtPOMnz/jIe8wiz3Ynz3GgvMeK77uOb9oO5RmLfz9G5Xmev2s7fe05UI5j9LKW/3Hql+jUsxfsBg2TTUu5cxv+fW3f+px/37FJuZsMf2cbJCYmwsLColzLyov7EfkzcT/C/ciHZquo/Uh5Pp+tzM8A5d1u5DHdtQ88Bg/EokWLyrWcvG7cuIFWrVphSUwsmrc2l3s5vtaVXpavdXyt43vmqvOe+U3T5clf1nKKfp8LALvWhODMvl24dfNmuZctS1hYGBYuXIi0tLQKaa8ilJSUwMbGBkpKSjh+/DhEIpHQkYiqrO3/x959h0Vxrm0Av6nSmxQFCxYQ5VhQY0cDtliwxX6wG7Bg7KJiQZMYsaCYaOyFmKjBEkVjwQ6CvaNYkqgUQXDpIlL2+yMfnCAoi5R3l71/1+UlzM7s3PNO23eZeWbvXowYMQIxMTEwMzMTHYeIqFhNmzZFly5dsHq1bA+NISJ6n4ODA3r27Flu34cRfaqwsDA4OTlhzpw5WLp0afETEBGRUvnuu++wa9cuPH78WHQUEoDrn4jokzxRFZ2ASNmFh4ejbdu2ePfuHS5fvswiBh9Qv359LFy4EN7e3nj06NEnvYexsTGkUimSkpLKOF3FuhsaXOhiJQBo/nln3Am9WCbzqN+k6O3wbmgwWnUpfNNl6649cDc0uEzmDQB6BoZISy56PTX6rE2B382saiIx/lWhnOXdRncvXSyyLZq271i69y1h9rqNGuf/bGxqVmiYibkFUiSfdmNek3aOhYa17toDdy79rxiHrNvEh9rLwdGp0LCyWn8NmrXA9xNH4VbwOeTkZAMAzGvUKnCxWUnn9aF9Q1aytGlx8yrpfliW6zFPeeyHsrznx1TEfk9UFnx8fDBkyBC5K2JQEU6fPo0hQ4YUGt6rVy8EBQUVGt6qVatSza958+b5P1erVq3QMEtLS8THxxf7PsbGxpBIJEW+1rFjwfO+tbU1Xr58WeS4RamoNjl79iw6d+5cYFiDBg0K3OB/+vRp9OvXr9C0/fv3x+nTpwsNl2XZx4wZgx07dhQYtn37dri5uRWYb1m0Qdu2bdGnTx+cOHEC2dn/nPfr1Knz0SIGwMfXr0hGRkZYs2YNAgIC8Ndff1XovBMTEwH80zbKiP0t+ehvOX85FOcO7isw7MyBPeg62PWj031s2f6tpG1d2n5AWfXbilq+Kto6mLthB/b4rUDgzs3Y+u0CLNjyS4Ebsso6W1lvq7L2WWTZ7mTpB8raV/zUZZR1OyxrJdlOS9JHL8r9y5fQuG3B9WZZp16xN2GKapuKxPMIzyM8j1TceaQk38+W53eAynBsex+PdTzW8VjHz8ylXcbyPnbKkr8oleFzbk5ODtTV1UXHKEBVVRUbNmzAlStXsHPnTtFxiORa7969oaGhgcOHD4uOQkQkk/bt2+PSpUuiYxAREZWp2NhYDBo0CJ9//jkWL14sOg4REREREVGlIF9/wSRSMufOncOAAQPQsGFDHDlyBKampqIjybXZs2cjICAAEyZMwNmzZ0v8tIa8p7NKJBJUrVq1PCJWiNSkRExwLvoGLk0trTKZRxUt7SKHpyRJYGRqXmi4sZkFUhM/7QawFMlr7PZdhlvB55CUEI/cnJyPjq9nYFjgdw1NzUI3qFVEG32oLfSNSnfDV0mza+vq5f+soqpa5LDibuD7kKKWxdis4AV5sm4THxqvqGFltf5m+W3Gb+t9sWXpfKRIXqNOo/+gTdee+GL4KKipa3zSvD60b8hKljYtbl4l3Q/Lcj3mKY/9UJb3/JiK2O+JSistLQ3Xrl3DggULREcR4vXr17C2ti7yNW3twsc8HR2dUs1PX18//2fV/z9Hvj/s/eNMfHw85s2bhxMnTiA2NhY5xXwuef9G7ypVqpTo2FVRbZKQkFBsXyMhISG/4MO/Va9eHQkJCYWGy7LsNjY20NbWxp07d9C0aVNcvHgRBgYGBYq3lVUbBAQEYMmSJZg8eTLi4+Ph4OCAAQMGYNKkSdDQ+Oe8X9L1K1qfPn2gq6uLc+fOoW7duhU2X4lEAjU1tQL7izJhf0s++lvVa9eBppYWnkU8gLVdIzy4dhk6evqo0+g/+eOUdNn+raRtXdp+wKf020qyfIZVTTHAfQp+8JyK3qPdYG5Vs3yzlfG2KkufRdbtTpZ+oCzjyNzXLcV2WNZKsp2WpI/+oekNjE0+Po4ctU1F4nmE5xGeRyruPFKS72fL6jtAZT22vY/HOh7reKzjZ+aSLKOIY6cs+YtSGT7nvnnzBlpy+DeRZs2awd3dHQsWLMDgwYOhq6srOhKRXNLT08MXX3yB/fv3Y/z48aLjEBEVq3379ti6dSvevHlT6r/tEhERyYOsrKz8fuvevXuhpqYmOhIREREREVGlwEIGRILs378fI0aMQK9evfDzzz8XeZMOFaSuro5Nmzahbdu28Pf3x6hRo0o0fV4hg7wnjCoqfWMT+P1xodDFchXBwMgEifFxhS7wSoyPg/57F/aoqKgg6907aGhq5g8r6mkkfnOmwKpOPXz362FUrVYdamr/nJq+tLP85JwV0UYGRiZISngFM8saBYYnJRT9BHlZ20Pk+n1f0ut4GFU1KzAsMT4OBib/KwQi6zbxofYqzzbQ0TfA6LneGD3XGymJEtwLC8HRXVvw4PoVzF63pUznJStZ2rQ4JdkPZZ1nSd9TFhXdtvK07xB9yOvXryGVSmFuLtsNYhVNRUUFmZmZqFKlSv6wsnxSvampKR48eCDXT3kfMWIEGjRogJCQENSoUSP/6WUlLaAlq4pqk6pVqyIhIQGWlh/+fGVqaoqXL18WKirw8uXLUhVcGzNmDLZv3w4/Pz9s27YNbm5uheZbFm1gaGgIX19f+Pr6IiEhAWfOnMHatWsRHByM/fv3A6j49VtaampqMDU1LbKQRHlKTEyEkZGR3LZLeWN/q3gV1UbOA4bi7IE9GOv1zT9Plh1S8MmypVm28vj8W9ZKsnwxz/7C/o1+WHnwJFZMGYf2Pfugnn2TcstW1u0nS59F1u1Oln6gLOPIuozlsY/lkXU//xQl6aMXRd/IGCmJEpiYW3xwnPJsG3nG80jxeB6pGMpwHinJ97Nltd0p67HtfTzWFY/HuoqhDMe6PPzMXDKy5C9KZficGxkZiRo1ahQ/ogDe3t7YvXs3Vq5cCW9vb9FxiOTWwIEDMXr0aEgkkvxrXIiI5FX79u2RlZWF69evo2PHjqLjEBERlZqHhwfu3LmDy5cvw8jISHQcIiIiIiKiSkNVdAAiZeTn54chQ4bAzc0Nv/32G4sYlMBnn32GyZMnY8aMGXj1qugbxj8k74+8ZXlDngjNOnyO8CuhhYY/vH4Fswd0L9d5N2nniCun/ig0/ErQcTRp51hgmJGpORJeRhcY9uDa5ULTPrp1HUOmzIa5Vc38i33evX1bqpwlaaNPvUGraYdOuHr6RKHht0POFzm+rO0hcv2+73bw+ULDrgQdR9P2nfJ/l3Wb+FB73Q29WGhYWbXBl3aWeB37EgBgYGyC9j37wGvzz7hz6UKZz0tWsrRpcUqyH8o6z5K+pyzKq20/tM/K075D9CFWVlbQ0tLCvXv3REcpUrVq1fDixYsCwy5eLHycBj5+/vzQa927d8f58+cLDQ8ODkaLFi1kD1qOQvUxUXoAACAASURBVENDsWTJElhbW+ff5J6RkVHq9xXdJp9//jlOnz5dYNidO3fQqFGj/N+7dOmCgwcPFpr20KFD6NKlyyfPe/DgwTh8+DDi4+Nx4sQJDBs2rMDrZdUGKioqiIqKAvBPcYQhQ4bg2LFjOHXqVP445bV+y4tEIkFUVBTq1atXofNNTExU6gtk2d8qXkX0twCgXQ8XXD1zEimS17gVfA4devUr8Hpplq08Pv+WNVmXL+l1PJZPGo1J36xC7QYNMW3lj9jgNQNZmZnllq2s20+WPous250s/UBZxpF1GctjH8sj637+KUrSRy+Kfat2hcZ9FvEAU3v9b52VZ9vIM55HisfzSMVQhvNISb6fLat9U1mPbe/jsa54PNZVDGU41uXhZ+aSkSV/USrD59zIyEjUrFmz+BEFMDU1xbx587BixQpERkaKjkMkt1xcXKCmpobDhw+LjkJEVCxra2vUqFEDly5dEh2FiIio1H7++Wds2bIFO3fuRMOGDUXHISIiIiIiqlRYyICoAuXk5MDDwwPTp0/H999/Dz8/P6iqcjcsqWXLlsHQ0BAzZswo0XT6+vrQ0NBQ+EIGQ6bMxL4fViHs5FGkJiUiIz0N188HwXfmRAyaNL1c5z3YYyaO7NyE0wG/Ivl1AlIkr3Fm/x4c2bkJQzxmFhi3afuO+MX3e7yOfYm3b9JxO+Q8Tu71L/SeDRxa4udV3+BVdCSys7IQ++IZNnl7lipnSdrIxKIaHt2+gZzsLNy5dAHuTi1lm4fHTBzZsRFnD+xFiuQ1UpMSEXLsd5zat7vI8WVtD5Hr932n9v2M4KOHkJqUmL+uj/pvxZAp/1vXsm4T77dXWnISQo8fwYFN6wrNtyzbYMOCmYh8+ghZ794h6XU8Dm/7qcAFdBXd3rK0aXFKsh/KOs+SvqcsyqttP7TPytO+Q/Qh6urqGDhwINatW4esrCzRcQrp2rUr5s+fj6ioKKSlpeHkyZPYuHFjkeNaWVkhLCwMWVlZOHXqFGrVqlXsa97e3li8eDH279+P169fIzU1FUePHsWwYcOwcOHCClnG4rRr1w5z5szBs2fP8O7dOzx9+hQTJkwo9fuKbpMFCxZg6dKlOH36NNLT03H37l2MHTsWU6ZMyR9n8eLF8PX1xdatW/Hq1SvEx8dj27Zt8PX1xeLFiz953np6enBycoKrqyv69OkDfX39Aq+XZRuMHz8e4eHhyMzMRFxcHFatWlWgCEN5rd/ysm7dOujq6qJHjx4VOt/ExEQYGxtX6DzlCftbxauI/hYAaOno4j+t22PtbA985twN2rp6ZbZs5fH5t6zJsnyZGW+wzH0k+o2fjAYO/7StTdPmcOo/BLt9l5VbtrJuP1n6LCXZ7orrB8oyjqzLWB77WB5Z9/NPUZI+elEGTpyKgA1rcDc0GJkZb/D80UOsnz8dPV3H5o9Tnm0jz3geKR7PIxVDGc4jJfl+tqz2TWU9tr2Px7ri8VhXMZThWJeHn5lLTpZlfF9l+Jz75MkT1KlTR3SMD5o6dSrMzc2xZMkS0VGI5Ja+vj66deuGgIAA0VGIiGTSunVrXL5cNgVYiUj5ZGdn5z+EgEikx48fY/LkyZg+fTr69+8vOg4REREREVGloyKVSqWiQxApg8zMTIwcORKHDx/Grl27MGTIENGRFNrx48fRs2dPBAYGonfv3jJPZ2FhgYULF8LDw6Mc0xVt6dKl2Oq/G2uPffxpH//2pZ1l/s8HImLyf375/G/sXr0Md8OCkZOdjZr1bTHAbQpad+1R7LSyzu9D0z1//BA/r/wWD65fAQA0atkaI2YvQG3bghVIUxIl2P7dQtwJvYjMjAw0btMeXy36Pv8ivLz3Tn6dgF0rluJ2yHmkpyTD0roeBk2ahtXTJxQY70PLU5o2AoDQE4H4edV3kMS9hGl1K4ye643PnLvJ1F6RTx/Bf8U3CL92GaqqqrD/rC3GLfwWEzu3LtR2sraHrNmLWm5Zh8niSztL/HTmCrZ9swDh18KQm5sL+8/aYJTnYtSoZ1NgXFm3iX+3l4qKCho4tMTYeUswtffnn9QGxbkXFoI/ftmOh9evICM9DSYW1dG6yxcYMmVWgQs6S9re72eVlaxtWpb7YVmvx/LYD0v6nh/bZ8tiuwGAgPW+uHkqEI8iIko0HZEsnjx5AgcHB7i5ucHX11d0nAISEhIwdepUBAUF4c2bN3B2dsb69evzb7r/d9cxICAAnp6eiI6ORq1atbB69Wr06dOn2NeePHmCefPm4fTp08jOzkajRo0wb968An8EfP9JhCXtsv57+rxpZR326tUrzJo1CydPnkRSUhJsbW2xcOHC/M/uH5v2Y8NFtwkAhIWFYfbs2bhx4wbMzMwwadIkzJ07t8A49+7dw5w5cxAcHAwAcHR0xIoVK9C4ceNil/FDwwEgODgYHTt2xJUrV9CqVatC2cqiDc6cOYMff/wRwcHBSE1NhZWVFfr164clS5bkF0+Qdf3Kg+DgYHTu3BkrVqzAtGnTKnTe48ePR1RUFE6cKPx0W3n23Xff4aet27HuRIjM07C/Jd/9LeCfJ4cucO2P5b8dg00ThwKvlXbZSvr59/3pZVGafpssy5c3nVFVM2y7dAcAkJTwCuM6NCvwfqXJUZr2k0VJ+iyybHey9ANl7SvKsoyybofFkebmYnDj2ggI/99TSWXdz4vbTj+0DmXto39o+ke3b8B/xVL8GX4XhiZV8cWw0ejv9r/v28qqbQAg5tlfmPJFB9y6dQvNmjUrfoJPwPMIzyM8jyjmeaSo72fHzF8Cjy86YP+DqALjlsV3gKXdboozZ0A3DOnXB999953M05TE48eP0aBBA6w6FIQ6De1lmobHOh7reKz7tGEAPzPnKavPhSXZB2XJLw+fcwHgwEY/XDl6AE+fPCnRdEVJS0uDoaEhDhw4gH79+pX6/crLL7/8gpEjR+L69etwcHAofgIiJfTzzz9j3LhxiI2NhYmJieg4REQftWLFCqxZswYvX74UHYWIFJCdnR3++9//ys3DL0g5paeno1WrVtDT00NwcDA0NTVFRyIiIjn33XffYdeuXXj8+LHoKCQA1z8R0Sd5wkIGRBVAIpGgb9++CA8Px++//46OHTuKjlQpDB48GFevXsX9+/ehp6dX/AQAGjZsiOHDhwv54vNTChmQYvrSzvKTbnSXJ5VhGeSNiDblevw0LGRA5e3XX3/FiBEjMGfOHCxbtqzQDdpEpNwuXLgAFxeX/KduVfQx4ssvv4Smpib27NlTofMtrU+5AZWIxFPmPsu5Q/vQ0WUA1NQ1IHkVB6/hffHTaT65rCjyWsiAiORT5NNH+M5tBDaevSo6SonJYyEDIhJPmT8zK4OyLGSQV0z0+fPn+cVp5ZFUKkXr1q2hr6+PM2fOiI5DJJdSUlJgYWGBjRs3YtSoUaLjEBF91Pnz5+Hk5IQXL16gZs2aouMQkYKpX78+xo0bh3nz5omOQkps9OjROHLkCG7evAlra2vRcYiISAHwRnblxvVPRPRJnqiKTkBU2f31119o27YtoqKiEBoayiIGZWjdunVISUnBkiVLZJ7G2NgYiYmJ5ZiKiIiI6OOGDx+OHTt2YPXq1ejbty8kEonoSEQkB3Jzc+Hr64uuXbviiy++wJ49e4QUOpFIJDA2Nq7w+RIRKZsf503Hwc0/IiM9Dcf8t6BDz76iIxERKZwv7SxxzH8r0lKSkfXuHf5+GI6Ni+agx39Hi45GRERU4S5evAhLS0u5LmIAACoqKli1ahXOnj2LEydOiI5DJJcMDAzQpUsX7N+/X3QUIqJitWzZEmpqarh6VfEKChKReFlZWdDQ0BAdg5TYtm3b4O/vjx07drCIARERERERUTliIQOicnT58mW0bdsWenp6CA0NhZ2dnehIlUq1atWwfPlyrFmzBjdu3JBpGhMTE94sSOXqSzvLAv8rosqwDPJGRJtyPRLJt5EjR+L8+fO4desWGjZsiN27d0MqlYqORUSC3L9/H46OjvD09MS3336Lffv2CbtgIykpiYUMiKhCKHufxW3x9zi5xx+TurTBm9RUDJo0XXQkIiKFM2/jLlw7ewrun7fEmHaN8dOCmeg6+L/oO26S6GhERGVC2T8zU8mcOnUK3bp1Ex1DJh07dkS/fv0wY8YMZGdni45DJJcGDhyIU6dO8UEdRCT39PT00LBhQ1y7dk10FCJSQNnZ2VBXVxcdg5TUw4cP8fXXX2POnDno25cFx4mIiIiIiMoTe/9E5eTgwYMYMWIEHB0d8dtvv8HAwEB0pErpq6++wr59+zBu3Dhcv3692C81lbmQQXEXOR2IiKmgJPKvNG0l7+0oy7LJ+zIA8rU9y2ubKsJ6JFJ27dq1w/3797Fo0SKMHj0a69atw8KFC+Hi4iI6mtwq7un0ylgMgm2i2CIjI/Htt99i+/btaNKkCcLCwtCyZUuhmZKSkmBoaCg0gyKSp8+n8q6ytFVlWY7yIq/9JBG4rZAsuJ3IrrK0VWVZjvIia/u0/LwrWn7etSIiURngdi+7ytJWlWU5ygs/M/8Pt5XSS01NRVhYGCZMmCA6isx8fHzwn//8Bzt37sT48eNFxyGSO3379oWbmxuOHj2KESNGiI5DRPRRrVq1wtWrV0XHICIFlJWVJazAPym3zMxMDB8+HI0aNcI333wjOg4REREREVGlx0IGROXAz88PM2bMwLhx47BhwwZWDC1HKioqWL9+PZo1awY/Pz/MnDnzo+ObmJjg77//rqB08oUX+ciuMrdVZVk2eVoOecpCRIrH0NAQfn5+GDNmDLy8vNCnTx+0adMGs2bNQv/+/aGqqio6olzhTfmFsU0U071797B69Wrs2bMHNWvWxI4dOzB8+HC52OeTk5NZyOAT8DOh7CpLW1WW5SgvbJ//YVuQLLidyK6ytFVlWY7ywvapnLheZVdZ2qqyLEd5Yfv8D9ui9I4dOwYA6Natm+AksrO1tYW7uzu8vLwwZMgQ6Ovri45EJFeMjIzQuXNn7N+/n4UMiEjuffbZZwgICEBOTg7U1NRExyEiBZKdnc3rq0kILy8vPHnyBDdv3mQxDSIiIiIiogog/gp5okokJycHHh4emD59OhYuXIjNmzfzS7YKYGdnh/nz52PRokX466+/PjqusbExJBJJBSUjIiIikk2zZs1w7NgxhIaGonr16hg8eDDq1q2LhQsX4smTJ6LjEVEZSE5OxrZt29CxY0c0bdoU169fx8aNG/Hw4UO4urrKRRED4J8n+LGQARERERERERGR4ti3bx86d+6MqlWrio5SIosWLUJmZiZWr14tOgqRXBo4cCBOnTqF1NRU0VGIiD6qVatWSE1NRUREhOgoRKRgsrKyeBM5VbgLFy5gzZo1+OGHH2Brays6DhERERERkVKQj6vkiSqBtLQ09OvXD9u2bcOePXvg7e0tOpJSmT9/Pho0aIBx48Z99Km0LGRARERE8qxt27Y4ePAgIiIiMHToUOzYsQO2trZo3749Nm7ciMTERNERiagEcnJycPz4cQwfPhzVq1eHh4cHLC0tcfz4cdy7dw9jxoyRqwsz0tPTkZ2dzUIGREREREREREQKIjU1FSdOnMDAgQNFRykxMzMzzJkzB76+vkhISBAdh0ju9O3bF1lZWTh58qToKEREH9W4cWNoa2vj6tWroqMQkYLJzs7mw+KoQiUmJmLEiBHo168fxowZIzoOERERERGR0mAhA6IyEBMTg06dOuHy5cs4ffo0hgwZIjqS0lFXV8e2bdsQEhKCbdu2fXA8ExMTFjIgIiIiuWdjY4Ply5fj+fPnOHnyJOrUqYOZM2fC0tISvXr1wk8//YTnz5+LjklERUhLS8OhQ4cwfvx41KhRA7169UJkZCT8/PwQGxuLvXv3onv37lBRUREdtZDk5GQAYCEDIiIiIiIiIiIF8euvv0JFRQUDBgwQHeWTTJ06Fdra2li1apXoKERyp2rVqmjbti0CAwNFRyEi+igNDQ04ODjg2rVroqMQkYJhIQOqaHkPy9uyZYvoKEREREREREqFhQyISunevXto06YN3r59i2vXrqF9+/aiIyktBwcHTJs2DTNnzkRUVFSR45iYmODdu3dIT0+v4HREREREJaempoZu3bph9+7diI2NxcaNG6GlpQVPT09YW1ujcePGmDt3Li5evIjs7GzRcYmU1tOnT+Hn54du3brB1NQUgwYNwoMHDzBlyhQ8efIEwcHB+Oqrr+S+QEBeIQMDAwPBSYiIiIiIiIiISBYbNmzAsGHDYGxsLDrKJ9HV1cXs2bPx448/Ii4uTnQcIrnj4uKCo0eP8m9ARCT3WrVqhatXr4qOQUQKJCsrC9nZ2dDR0REdhZTE7t27cfjwYfj7+8PExER0HCIiIiIiIqXCQgZEpXDq1Cl06NABNjY2uHTpEqytrUVHUnpLly6Fubk5JkyYUOTreV8+SSSSioxFREREVGr6+voYNWoUDhw4gISEBAQFBaFLly44ePAgOnXqBDMzM7i4uGDFihUIDQ3Fu3fvREcmqrSePHmCHTt2YMyYMahfvz5sbGywZMkSmJiYYMuWLYiNjUVoaCjmz5+PevXqiY4rs7xCBvJecIGIiIiIiIiIiICLFy/i7t27mDhxougopeLh4QEjIyMsX75cdBQiudO/f39IJBKEhoaKjkJE9FGfffYZ7t27h8zMTNFRiEhBpKamAgD09PQEJyFlEBsbi6lTp2LSpElwcnISHYeIiIiIiEjpsJAB0SfaunUrevXqhQEDBuD48eMwMjISHYkAaGtrY+vWrfjjjz+wb9++Qq/nPYmChQyIiIhIkWlqaqJLly5Ys2YNHj9+jMePH2PJkiXQ0tLCmjVr0L59exgZGcHJyQmLFi1CUFBQ/h+BiahkcnJycOvWLaxbtw6DBw9G9erVYWtri8mTJ+PZs2cYPnw4zp8/j1evXmHv3r0YMWIETE1NRcf+JCkpKQBYyICIiIiIiIiISBFs2LABrVu3RsuWLUVHKRUtLS14enpi48aNiIqKEh2HSK7Y2NigQYMGCAwMFB2FiOijmjdvjnfv3iE8PFx0FCJSEHnXsOjr6wtOQspg8uTJMDAwwLJly0RHISIiIiIiUkrqogMQKRqpVIolS5Zg6dKlWLRoEby9vUVHovd06tQJX331FTw8PODs7AwzM7P810xMTAAAiYmJouIRERERlTkbGxvY2Njg66+/BgDExMTg0qVLOH36NA4cOIBvv/0WUqkU1atXR4sWLfL/tW3bVmFvuCYqD9nZ2Xj06BFu3LiR/+/27dtIT0+Hvr4+WrduDXd3d3To0AEdOnSAlpaW6MhlKjk5GaqqqnzqBRERERERERGRnIuNjcWhQ4ewdetW0VHKhJubG1auXInly5fjxx9/FB2HSK706dMHhw4dwsqVK0VHISL6IFtbW+jp6eHWrVto3ry56DhEpADS0tIAsJABlb9ff/0Vhw4dwsmTJ7m9ERERERERCcJCBkQl8PbtW4wZMwaHDh2Cv78/XF1dRUeiD1i5ciWOHz+OmTNnwt/fP3+4sbExVFRUIJFIBKYjIiIiKl+WlpYYNGgQBg0aBOCfwgaXL1/GzZs3cfPmTWzcuBFxcXFQUVFBvXr10Lx5czRv3hxNmzaFnZ0dateuDRUVFcFLQVS+EhMT8fDhQ9y/fz9/37h79y4yMzOhra2Npk2bonnz5hgzZgxatWoFe3t7qKqqio5drpKTk6Gvr1/pl5OIiIiIiIiISNFt3rwZBgYG+d8BK7oqVarA09MTs2bNwvz582FpaSk6EpHccHFxwcqVKxEREQE7OzvRcYiIiqSqqorGjRvj1q1boqMQkYJITU0FABbZp3KVkJCA6dOnY8KECejatavoOEREREREREqLhQyIZPT69Wv069cPDx48wMmTJ9GpUyfRkegjDAwMsHHjRvTq1QsDBw5Enz59AADq6urQ19dnIQMiIiJSKpaWlhgwYAAGDBiQPyw6Ojr/5u2bN2/ixx9/RFRUFABAV1cXdnZ2aNiwIRo1agQ7OzvY29ujbt26UFdnN5IUy8uXL/HgwQNERETk/x8eHo64uDgA/zzhoWnTpmjXrh08PDzQvHlz2NnZKeW2npycDENDQ9ExiIiIiIiIiIjoIzIzM7Fp0yaMGzcOWlpaouOUmXHjxmHZsmVYs2YNnzxP9C/t2rWDqakpDh8+zEIGRCTXHBwcWMiAiGSWlpYG4J+/1xOVl0mTJkFbWxs+Pj6ioxARERERESk15bsqn+gTREREoGfPnlBTU0NYWBhsbW1FRyIZ9OzZE8OGDcOkSZPQsWNHGBkZAQBMTExYyICIiIiUnpWVFaysrODi4pI/LO8J9f++2Xvz5s14/vw5pFIpNDU1YWNjg3r16qFu3br5/+rVq4c6deqgSpUqApeIlFVubi6io6Px119/Ffj3559/4tGjR0hKSgLwTz8grzhHr169YG9vDzs7O9SqVQsqKiqCl0I+pKSkwMDAQHQMIiIiIiIiIiL6iO3bt+P169f4+uuvRUcpU1paWpg+fTq8vb0xZ84cmJmZiY5EJBfU1NTQq1cvBAYGwtPTU3QcIqIPatasGXbt2oXc3FyoqqqKjkNEci41NRUAoKenJzgJVVbHjh1DQEAATpw4wYIZREREREREgrGQAVExLl68iP79+6NBgwY4cuQITE1NRUeiEli3bh3s7e3h5eWF9evXA/jnBqbExETByYiIiIjkj7GxMdq1a4d27doVGJ6eno6IiAg8fPgQERER+PPPPxEWFoZffvkF8fHxAAAVFRVYWVkVKHBQu3ZtWFlZwdLSErVq1YKurq6IxSIFl5WVhdjYWERGRiI6OhpRUVH4888/8wsWPHv2DJmZmQAAbW3t/O2vTZs2GDVqFOzs7NCoUSNYWFgIXhL5l5ycDENDQ9ExiIiIiIiIiIjoA7KysrBy5UqMGzcOlpaWouOUuYkTJ2LFihX44YcfsHTpUtFxiOSGi4sLBg8ejLi4OH7XTURyy8HBAenp6Xjy5AkaNGggOg4Rybm0tDRoaWlBQ0NDdBSqhDIyMvD1119j6NCh6N69u+g4RERERERESo+FDIg+Yv/+/RgxYgR69OiBX375Bdra2qIjUQmZmprC19cXI0eOxJAhQ9CxY0cYGxuzkAERERFRCejq6qJFixZo0aJFoddSU1Pzbyj/97/Q0FC8ePECb9++zR/X0NAQNWrUQI0aNWBpaYmaNWvCysoqv9iBubk5zMzMoKmpWZGLR4JIpVIkJCQgPj4ecXFxiIqKQlRUFGJiYvDixQvExMQgOjoacXFxyM3NBfDPk6eqVauGOnXqoG7dumjdunWB4hnVq1cXvFSKjYUMiIiIiIiIiIjk26+//oqoqCjMnj1bdJRyoauriylTpmD16tWYMWMGjIyMREcikgvdu3eHpqYm/vjjD4wZM0Z0HCKiIjVu3BgaGhq4desWCxkQUbFSU1Ohp6cnOgZVUkuWLEFCQgJWr14tOgoRERERERGBhQyIPsjPzw8zZsyAh4cH1qxZA1VVVdGR6BP997//RUBAAL766ivcvn0bJiYmkEgkomMRERERVQr6+vpo2rQpmjZtWuTrCQkJiImJQWRkJKKjoxEdHY3IyEjExMTg6tWriIqKQnJycoFpjIyMYGFhATMzM5iZmaF69er5P1tYWMDc3BwmJiYwMjKCsbExdHV1K2JRqRhZWVlITExEUlISJBIJ4uPjER8fj9jY2Pyf4+LiEBcXl/97Tk5O/vRVqlSBpaUlrKysULNmTXTq1Ak1a9bML3xRq1YtWFhYQF2dX2WUFxYyICIiIiIiIiKSX7m5uVi5ciVcXV1hbW0tOk65mTJlClatWoVNmzbB09NTdBwiuaCnpwdnZ2cEBgaykAERya0qVarAzs4Ot27dwtChQ0XHISI5l5aWBn19fdExqBIKDw+Hr68v1qxZA0tLS9FxiIiIiIiICCxkQFRITk4OpkyZgs2bN8PPzw8eHh6iI1EZ2LBhA+zt7bF06VKYmJjg6dOnoiMRERERKQVTU1OYmpqiSZMmHxwnPT0d0dHRBW52f/XqFeLj4/Hq1SuEh4cjPj4eCQkJiI+Ph1QqLTC9pqZmflGDvP///bORkREMDQ1hYGAAbW1t6OrqwtDQENra2tDR0YGxsTG0tbWhpaVV3s0hl3Jzc5GcnIy0tDRkZGQgNTUVqampyMjIQFpaGpKTk5Genp5fpKCo/xMTE5Genl7ovfX09GBhYQELCwuYmprC2toabdq0yS9MUa1atQJFKkislJQUrgciIiIiIiIiIjm1f/9+RERE4MCBA6KjlCsjIyO4ublh3bp1mD59OjQ1NUVHIpILLi4umDlzJt68eQMdHR3RcYiIiuTg4IBbt26JjkFECiAlJQUGBgaiY1AlI5VK4eHhgaZNm2LChAmi4xAREREREdH/YyEDon9JS0vD0KFDcf78eRw8eBB9+vQRHYnKiKWlJb7//ntMmTIFI0aMgEQiEZIjIz0NoScChcxb3kilUuTm5kBNjaciIpIvL54+Fh2BSOno6urC1tYWtra2xY6bk5OD+Pj4/JvnP3ZjfURERP4wiUSC1NTUQkUQ/k1FRQVGRkbQ0dGBtrZ2/pPpDQwMoKamBk1NTejq6gL452JaFRUVaGlpQVtbGwBgbGxc4P0+VhxBXV39g08XePv2LTIyMop8La/owL+lp6fj3bt3yMnJQUpKCoB/+jZZWVnIyspCcnIy1NTUkJKSgpycHGRkZCAjIwNJSUl48+YNMjMzP9gmAGBoaAhdXd1CxSFq16790QISZmZm+W1DiiE5OVmhLxbJeJPO/hYRUSWUGP+qQubD8wgRiZaWklz8SGXgbugFvHz+V4XMiypGTnY21NT5txYiRfTiSYTM40qlUvj4+GDgwIFo0KBBOaaSD9OmTYOfnx/27duHESNGiI5DJBf69OmDSZMm4dy5rVVG5gAAIABJREFUc+jVq5foOERERXJwcMCxY8dExyAiBZCQkABTU1PRMaiS2blzJ4KDg3H16lWoqamJjkNERERERET/j1c0EP2/ly9fonfv3oiJicH58+fRsmVL0ZGojLm7u2P//v04ceKEkKc21KhRA6/jYrF6mnuFz5uIiEqmc+cuoiMQ0QeoqamhWrVqqFatmkzjSyQSLF68GBs3bkTz5s2xdu1a2NvbIzk5GW/evEFGRgYSExPzf05OTkZaWhoyMjKQmpoKAEhKSoJUKkVGRgbevn0LqVSKv//+GwDyCwEUVWAgr3BAUfLe60PL+LGbyfMKK+TJK5iQV4gBAHR0dFClShVERUXh6dOn6N27N5o0aQINDQ1UqVIFOjo6+UUbdHR08osV6OjoQF9fH/r6+tDR0ckv3EDKITk5Ob+Ah6KpUaMGEuNfsb9FRFRJaevooGrVquX2/jyPEJG8qFGjRrm9t5GREXT19OC/8ttymwcREZXc5587yTTeb7/9htu3b2PHjh3lnEg+WFlZYfDgwVi5ciVcXV2hoqIiOhKRcJaWlmjRogUCAwNZyICI5JaDgwNev36NqKiocu3jEpHiYyEDKmupqamYP38+JkyYgObNm4uOQ0RERERERP/CQgZEAO7fv49evXpBU1MTFy9ehI2NjehIVA5UVFSwZcsWNGzYUMj8x44di7FjxwqZt2gvXrzAr7/+il9++QX3799H3bp18d///hejR49G3bp1RccjIiKiSig3Nxe7d+/GrFmzkJubi1WrVsHDwyO/AICxsbHghBUjLi4Ozs7OuHr1Ks6dOwdLS0vRkUiOKXIhg1GjRmHUqFGiYxDJtYEDByIiIgK3b9+GOp/YS1QAzyOkCCQSCdq2bYvc3FwEBQXB2tpadCRSMObm5kj7/4J9pJikUilCQkKwc+dOBAQE4O3bt+jZsyfGjBmDvn37io5HROXo3bt38PLygqurK5o0aSI6ToWZM2cOmjVrhjNnzqBLFxagJgIAFxcXbNy4ET/99BMLfBCRXMr7rHL//n0WMiCij0pISMB//vMf0TGoEvn++++RmZkJb29v0VGIiIiIiIjoPaqiAxCJdubMGXTo0AE1atRAWFgYixhUcnXq1MHgwYORmZmJe/fuiY5TqaWlpWHbtm34/PPPUadOHaxatQqOjo64dOkSnj59iqVLl7KIAREREZWLc+fOwcHBAePHj8ewYcPw559/YurUqflFDJSJhYUFzp49C3V1dTg5OSEmJkZ0JJJjycnJMDAwEB2DiMrJihUr8PTpU2zbtk10FCIi+gQmJiYIDg6Gvr4+2rVrx++3iZRIVFQUfHx8YGtri44dO+Ly5cvw8vJCZGQkfv/9dxYxIFICfn5+iImJwTfffCM6SoVq0qQJnJycsHr1atFRiORGnz598PLlS1y7dk10FCKiIhkbG6N69eoIDw8XHYWI5FxCQgJMTU1Fx6BKIjIyEn5+fli0aBG3KyIiIiIiIjnEQgak1Hbu3IkePXqgW7duOHPmDL+8UBKjR48GAIwZMwY5OTliw1RCN27cgLu7OywtLeHh4QFzc3McOnQIMTEx2LBhA9q1a8cnAxAREVG5iIyMxMiRI+Hs7Axzc3Pcvn0bfn5+CvuE+bLCYgYki8zMTGRmZir9/kJUmdWtWxcTJkzAokWLkJKSIjoOERF9AnNzc1y8eBGNGjVCp06dEBYWJjoSEZWTt2/fIiAgAC4uLrC2toaPjw+cnZ1x/fp1hIeHw9PTExYWFqJjElEFkEgkWL58OWbOnIlatWqJjlPhZsyYgZMnTyIiIkJ0FCK50KxZM1hbWyMwMFB0FCKiD7K3t2chAyIqVkJCAqpWrSo6BlUSs2bNQvXq1TFx4kTRUYiIiIiIiKgILGRASkkqlcLb2xtjx47FxIkTsXfvXmhpaYmORRUkr2DFnTt3sGHDBsFpKofU1FRs3rwZLVu2RMuWLXHhwoX8pwH99ttv6NOnDzQ1NUXHJCIiokoqPT0d3t7esLW1xZUrV3D06FEEBQWhUaNGoqPJDRYzoOLk3dTMQgZEldvixYuRk5ODFStWiI5CRESfSE9PD8eOHUOnTp3QtWtXBAUFiY5ERGUor1i0ubk5hg0bhrdv32LPnj2Ii4vDpk2b0KJFC9ERiaiCLV68GOrq6pg9e7boKEL07NkT9evXx08//SQ6CpHc6N27N44ePSo6BhHRB7GQAREVRyqV4vXr13z4HJWJsLAwBAQEYM2aNahSpYroOERERERERFQEFjIgpfPu3TuMGjUK3377LTZs2AA/Pz+oqnJXUCbGxsYAAFdXV8yfPx/Pnz8XnEhx3b59G25ubrC0tMS0adNgb2+P4OBgREREwNPTk180ExERUbmSSqUICAhAo0aN4OfnB29vb9y7dw+9evUSHU0usZgBfUxycjIAFjIgquyMjY0xb948+Pr64sWLF6LjEBHRJ6pSpQoCAgIwcOBAuLi44MCBA6IjEVEpREVFwcfHBzY2NmjZsiVCQkLg5eWFmJgYBAUFYdCgQdDQ0BAdk4gEePz4MTZt2oRvvvkGBgYGouMIoaKiAjc3N+zYsSO/ECeRsvviiy9w584dfsdPRHLL3t4eDx48gFQqFR2FiORUUlISsrOzeX0plZpUKsW0adPg7OwMFxcX0XGIiIiIiIjoA3j3NimVlJQU9OzZE7///juOHTuGCRMmiI5EApiYmAAA+vXrh9q1a2Ps2LH8w0kJ5Obm4tixY+jcuTMcHBwQGhqKZcuWITo6Grt27UKHDh1ERyQiIiIlcP36dXTo0AFDhw5Fp06d8OjRI3h6ekJTU1N0NLnGYgb0ISxkQKQ8pkyZAisrKyxYsEB0FCIiKgV1dXXs2LEDEyZMwJAhQ7B9+3bRkYioBN6+fYuAgAB07doVtWrVwooVK+Ds7IwbN24gPDwcnp6eMDc3Fx2TiASSSqWYMGECGjZsiHHjxomOI9S4ceOQk5ODX3/9VXQUIrng5OSEKlWq4NSpU6KjEBEVyd7eHmlpaXy4EBF9UEJCAgCwkAGV2u+//45r165h5cqVoqMQERERERHRR7CQASmNuLg4fP7553jw4AEuXryI7t27i45Egujq6qJKlSpITU3Ftm3bcOHCBezevVt0LLmXmZkJf39/NG7cGL1790ZmZiaOHDmCe/fuYcqUKTA2NhYdkYiIiJTAy5cv4e7ujtatW0NTUxM3b96Ev78/L+4vARYzoKLkPdFOWZ/uR6RMNDU1sWzZMuzevRvXr18XHYeIiEpBRUUFa9euxXfffYfx48fD19dXdCQiKsaNGzfg7u4Oc3NzuLq6QktLC/v27UNsbCw2bdqE5s2bi45IRHJi/fr1CA4OxtatW6GmpiY6jlDGxsYYMmQIfvjhBz6ggAiAjo4OHB0dcfLkSdFRiIiKZG9vDxUVFYSHh4uOQkRyioUMqCzk5uZiyZIlGDhwIBwcHETHISIiIiIioo9gIQNSCn///TccHR2RnJyMixcvolmzZqIjkWDGxsaQSCRo3bo1Jk6ciOnTpyMuLk50LLkUFxeHBQsWoEaNGnB3d0f79u0RHh6OkJAQuLi4QEVFRXREIiIiUgLv3r2Dn58f7Ozs8Mcff2DHjh04e/YsmjZtKjqaQmIxA3pfXiEDfX19wUmIqCIMGjQI7dq1w6xZs0RHISKiMuDp6Ym1a9di1qxZmDt3rug4RPSeqKgo+Pj4wMbGBi1btkRISAi8vLwQGRmJwMBADBo0CBoaGqJjEpEcefbsGebPn4+5c+fis88+Ex1HLkyePBkPHjxAcHCw6ChEcqF79+44efIkcnJyREchIirE0NAQVlZWuH//vugoRCSnXr9+DQCoWrWq4CSkyPbs2YP79+9jyZIloqMQERERERFRMVjIgCq9e/fuoUOHDjAwMEBYWBjq168vOhLJARMTE0gkEgDA8uXLYWBggGnTpglOJV8SEhIwd+5c1K1bF1u2bMG4cePw559/YvPmzWjUqJHoeERERKREAgMD0bBhQ8yfPx/Tp0/H48ePMXLkSBZUKiUWM6B/S0tLg6amJjQ1NUVHIaIKsnr1aly8eBFHjhwRHYWIiMrA119/jZ07d2L16tXw8PBAbm6u6EhESi0jIwMBAQHo2rUratWqhRUrVsDZ2Rk3btxAeHg4PD09YW5uLjomEckhqVQKNzc31KxZE15eXqLjyI0WLVqgVatW2Lx5s+goRHLhiy++QGJiIq5duyY6ChFRkezt7REeHi46BhHJqZiYGBgaGkJHR0d0FFJQOTk5+Oabb+Dq6oqGDRuKjkNERERERETFYCEDqtTOnz8PR0dH2NnZ4ezZs7wgiPKZmJggMTERAKCrq4v169dj7969+P333wUnEy8hIQHe3t6oV68etm/fjkWLFuHZs2dYvnw5LC0tRccjIiIiJRIREYEePXqgb9++aNGiBR48eABvb29oa2uLjlZpsJgB5UlLS4Ourq7oGERUgVq3bo1BgwZhzpw5yMrKEh2HiIjKwMiRI7F//35s27YNI0eO5PGdSIAbN27A3d0dFhYWcHV1hZaWFvbt24fY2Fhs2rQJzZs3Fx2RiOTc+vXrce7cOezatQtaWlqi48iVsWPH4uDBg/l/5ydSZvb29qhduzZOnDghOgoRUZFYyICIPiYmJobXolKpbN++HX/99RcWLVokOgoRERERERHJgIUMqNL6/fff0aNHD3Tu3BnHjh2DgYGB6EgkR4yNjQtc4NCjRw+4urpi0qRJSEpKEphMnH8XMNiwYQPmz5+PZ8+ewdPTkzcLEhERUYWSSCSYOnUqGjdujPj4eFy8eBG//fYbateuLTpapcRiBgQA6enp0NPTEx2DiCrY8uXL8ezZM2zatEl0FCIiKiN9+/bFsWPHcOTIEQwYMAAZGRmiIxFVepGRkfDx8UH9+vXRsmVLhISEwMvLC5GRkQgMDMSgQYOgoaEhOiYRKYCnT59i3rx5mDt3Llq2bCk6jtwZNmwYVFRUsHfvXtFRiORC9+7dWciAiOSWvb09Hj58iJycHNFRiEgORUdHw8rKSnQMUlDv3r3DN998g/Hjx6Nu3bqi4xAREREREZEMWMiAKqX169fjyy+/xPjx4xEQEMAnFVAhJiYmkEgkBYatXbsWOTk5mDdvnqBUYrx58wbe3t6wtrbGxo0bsXjx4vwCBjo6OqLjERERkRLJzs7G5s2bYWdnh4CAAKxfvx5XrlxBhw4dREer9FjMgNLS0ljIgEgJ1alTB1OmTMHixYsLfU9CRESKy9nZGWfOnEFYWBh69OiBlJQU0ZGIKp2MjAwEBASga9euqF27NlasWIHOnTvj5s2bCA8Ph6enJ8zNzUXHJCIF8ubNG3z55Zdo0KABFi5cKDqOXDIwMMDAgQOxY8cO0VGI5EL37t1x7do1xMfHi45CRFSIvb09MjIy8OzZM9FRiEgORUdHw9LSUnQMUlA///wz4uLiMH/+fNFRiIiIiIiISEYsZECVjo+PD6ZMmYKFCxfihx9+gKoqN3MqrKhCBlWrVsXatWuxadMmnDlzRlCyiiOVSvHLL7+gQYMGWLNmDRYuXIi//voLM2bMYAEDIiIiqnBnz55F8+bN4eHhgWHDhiEiIgJubm5QU1MTHU1psJiBcktPT2chAyIl5eXlBVVVVfj4+IiOQkREZeizzz7DhQsX8PTpUzg7O/PmJqIykJubi5CQELi7u8Pc3Byurq7Q0tLCvn37EBsbi02bNsHBwUF0TCJSUJMnT0ZUVBQCAgKgqakpOo7cGjNmDK5du4Y7d+6IjkIkXJcuXaCmpobTp0+LjkJEVIitrS0A4MmTJ4KTEJE8iomJgZWVlegYpIByc3OxevVqjBgxAjVq1BAdh4iIiIiIiGTEO7yp0sjJycGECRPg5eWFjRs3wtvbW3QkkmPGxsZFPmlw2LBh6NOnDyZOnIiMjAwBySrG9evX4ejoiJEjR8LJyQmPHj2Cp6cnCxgQERFRhXv69CkGDx6Mzp07w8LCAnfu3IGfnx8MDAxER1NKLGagvNLS0ljIgEhJGRkZYeHChVi7di3+/PNP0XGIiKgM2dvbIzg4GMnJyejUqROioqJERyJSSJGRkfDx8YGtrS0cHR0REhKCBQsWICoqCoGBgRg0aBA0NDRExyQiBbZhwwb4+/tj9+7dqFOnjug4cq1Tp06oX78+duzYIToKkXAGBgZo27YtTp48KToKEVEhxsbGMDU1ZSEDIipSdHQ0LC0tRccgBXTw4EE8evQIM2bMEB2FiIiIiIiISoCFDKhSyMzMxLBhw7Bz507s3bsXbm5uoiORnDMxMUFiYmKRr23YsAHx8fFYunRpBacqf9HR0XB1dUWrVq2gqamJGzduwN/fH9WqVRMdjYiIiJRMeno6vL290bhxY9y9exfHjh1DUFAQGjZsKDqa0mMxA+XEQgZEym3ixImwtrbGwoULRUchIqIyVqdOHQQHB0NdXR0dOnTgDQREMsrIyEBAQAC6du2K2rVrY+3atejVqxdu3bqF8PBweHp6wszMTHRMIqoErly5ghkzZsDb2xs9evQQHUfuqaioYNSoUdizZw+ys7NFxyESrnv37jh58iSkUqnoKEREhdjY2PB7CCIqJDMzE69fv4aVlZXoKKSAVq9ejf79+6NRo0aioxAREREREVEJsJABKbykpCR069YNQUFBCAoKwsCBA0VHIgVgbGwMiURS5B9zLS0tsWzZMqxatQo3btwQkK7sSaVSbN++Hfb29rh8+TIOHDiAs2fPolmzZqKjERERkZKRSqXw9/dH/fr1sW7dOnh7e+Pu3bvo2bOn6Gj0LyxmoHxYyIBIuWloaGD58uXYu3cvQkNDRcchIqIyVq1aNVy4cAGWlpZwdHTE7du3RUcikku5ubkICQmBu7s7zM3NMWLECGhpaWHfvn148eIF/Pz8+HcVIipT8fHxGDRoEDp37gwvLy/RcRTG8OHDER8fj9OnT4uOQiTcF198gdjYWH7GJyK5ZGtri8ePH4uOQURyJiYmBlKpFJaWlqKjkII5c+YMLl++jFmzZomOQkRERERERCXEQgak0GJjY+Hk5IQnT57g/PnzcHR0FB2JFISJiQmys7ORlpZW5Ovu7u5o164dxo0bh6ysrApOV7ZevnyJfv364auvvsKQIUNw584d9O/fX3QsIiIiUkLXrl1D+/btMWbMGHTt2hURERHw9PSEpqam6GhUBBYzUC4sZEBE/fv3h5OTE2bNmsWn+BERVULGxsYICgpCkyZN4OTkhEuXLomORCQ3IiMj4ePjAxsbGzg6OiIkJAQLFixAZGQkAgMDMWjQIGhoaIiOSUSVTEZGBvr16wcNDQ3s3r0bqqq8fEdWdevWRevWrbFnzx7RUYiEc3BwQPXq1XH8+HHRUYiICrGxscGTJ09ExyAiOZN33YGVlZXgJKRoVqxYAScnJ7Rp00Z0FCIiIiIiIioh/iWUFNbjx4/Rtm1bvH37FmFhYWjatKnoSKRATExMAAASiaTI11VVVbFlyxY8fvwYvr6+FRmtzOQ97dje3h7h4eE4d+4cNm3aBF1dXdHRiIiISMnExMTA3d0dbdq0gZaWFm7dugV/f3+Ym5uLjkbFeL+YQXR0tOhIVE7S0tLYVyAirFq1CleuXMHBgwdFRyEionKgq6uLwMBAdO7cGd26dcOJEydERyISJiUlBf7+/ujatStq164NPz8/9O7dG7du3UJ4eDg8PT1hZmYmOiYRVVK5ublwdXXFo0ePcOzYMRgbG4uOpHCGDRuGQ4cO4c2bN6KjEAmloqKCbt264eTJk6KjEBEVYmNjg+fPnyMzM1N0FCKSI9HR0VBVVUW1atVERyEF8uDBAwQFBWH27NmioxAREREREdEnYCEDUkj37t1Dp06dYG5ujuDgYNSuXVt0JFIwxRUyAABbW1ssXLgQixcvxsOHDysqWpmIjo5Gt27dMHbsWHz11Ve4f/8+OnbsKDoWERERKZl3797Bz88PdnZ2OH78OHbs2IGzZ8+iSZMmoqNRCeQVM9DQ0GAxg0osLS0Nenp6omMQkWAODg4YNmwY5syZw4tLiYgqqSpVqmDfvn0YOnQo+vbti99++010JKIKk5ubi5CQELi7u8PKygpubm7Q0tLCvn378Pz5c/j5+aFZs2aiYxKREpg2bRr++OMPHD58GHZ2dqLjKKShQ4ciIyMDR48eFR2FSLju3bsjNDQUycnJoqMQERVga2uLnJwc/P3336KjEJEciY6OhoWFBdTV1UVHIQWyfv161KtXD927dxcdhYiIiIiIiD4BCxmQwrlx4wacnZ1hY2ODoKAgmJqaio5ECkiWQgYAMHv2bNjb22PChAmQSqUVEa3Uzp8/jxYtWiAyMhKhoaHw8fGBlpaW6FhERESkZAIDA2FnZ4f58+djxowZePz4MUaOHCk6Fn0iCwsLnDlzBpqamixmUEmlpaVBV1dXdAwikgPLly9HbGwsfvrpJ9FRiIionKipqWHr1q3w8PDA8OHDsWXLFtGRiMrVixcv4OPjAxsbGzg6OuLGjRv49ttvERUVhcDAQAwaNAgaGhqiYxKRkvj++++xfv167N69G+3btxcdR2GZm5vD2dkZe/bsER2FSLju3btDKpXizJkzoqMQERVgY2MDFRUVPHnyRHQUIpIjf//9N6ytrUXHIAWSmpqK3bt3Y/LkyVBV5a0vRET0f+zdeViU5eI+8HuYYd8HBQVFQMUNxa3EBXfSDDK11Iwwd7MSc8s6nZNmuNW3JNPjkpZLdiBTSUtLNHc0cWFTFpVFQRFBkG1wBub3Rz/mgkRFYeYZmPtzXV7IzDvv3DPM8MDL+9wPERERNUT8bY4alJMnT2Lw4MHo2bMnfv/9d9jY2IiORA2UnZ0dpFIpcnNzH7udTCbDli1bEBUVhY0bN+oo3bNRq9UIDQ3FCy+8gF69euHs2bN4/vnnRcciIiIiA3PlyhUMHz4cI0eORM+ePXHlyhUsXryYxUqNAMsMGreioiJYWVmJjkFEeqBFixaYPXs2Pv300yceNyEiooZLIpHg//7v/xASEoIZM2Zg1apVoiMR1av79+9j27Zt8PPzg5ubG0JDQ+Hv749Lly4hOjoawcHBLEsnIp378ccf8a9//QtfffUVxowZIzpOgzdu3DgcPHgQRUVFoqMQCSWXyzXnURER6RNLS0s0b94cycnJoqMQkR5JTU2Fu7u76BjUgHz//fdQqVRcPIWIiIiIiKgBY5EBNRhHjx7Fiy++iAEDBmDPnj0wNzcXHYkaMCMjI9ja2iIvL++J23p7e+P999/HwoULcePGDR2ke3qFhYUYN24c5s2bh6VLl2Lv3r2wtbUVHYuIiIgMSF5eHoKDg9G5c2fk5ubixIkTCA8Ph6urq+hoVI9YZtB4sciAiKr66KOPYGpqipCQENFRiIhIyz744AOsWbMGH374IRYtWgS1Wi06EtEzq6iowMmTJzFjxgy4uLhg+vTpMDMzQ1hYGDIyMhAaGgpvb2/RMYnIQO3duxcTJ07EggULMHv2bNFxGoWRI0dCpVLhwIEDoqMQCTd8+HC+F4hIL7Vt2xYpKSmiYxCRHmGRAT2tDRs2IDAwEHK5XHQUIiIiIiIiekYsMqAG4ddff8WLL76IgIAA/Pzzz1zNleqFg4NDrYoMAODTTz+Fs7MzZs6cqeVUTy8pKQnPP/88jh8/jsjISHzwwQeQSCSiYxEREZGBUKlU2LhxI9q1a4effvoJ69atw9mzZ9G3b1/R0UhLWGbQ+FRUVKC0tJRFBkSkYW1tjX//+99Yu3YtTzIlIjIA77zzDrZt24Yvv/wSs2bNQkVFhehIRE8lIyMDK1euRJs2beDr64vz58/js88+w82bN7Fv3z689tprkMlkomMSkQH79ddfMX78eLz11ltYsWKF6DiNhoODA/r27YuIiAjRUYiEe+GFF3Djxg0kJSWJjkJEVI2npyePMRNRNenp6SwyoFqLjIxEQkICZsyYIToKERERERER1QGLDEjvhYeHY9SoUXjzzTexY8cOGBsbi45EjYRcLq91kYGpqSnWr1+PAwcOICwsTMvJai8qKgp9+/aFra0tzp8/j4EDB4qORERERAbk8OHD6NatG9577z1MmDABiYmJmD59OoyM+KtmY8cyg8alqKgIarWaRQZEVM2MGTPQtm1bfPTRR6KjEBGRDrzxxhvYvXs3tm7dijfeeANKpVJ0JKLHun//PrZt2wY/Pz+4ubkhNDQUAQEBuHTpEqKjoxEcHIwmTZqIjklEhF9//RVjxoxBUFAQNmzYwEL6ejZy5Ejs378fDx48EB2FSKjnn38eNjY2OHLkiOgoRETVtG7dGteuXRMdg4j0xJ07d1BUVMQiA6q1TZs2oW/fvujevbvoKERERERERFQHnF1Cem3Hjh2YMGEC3n33XWzYsIEToqheyeVy5Obm1nr7AQMGYNq0aXj33XeRk5OjxWS1s3//fgwdOhR9+vTBkSNH4OLiIjoSERERGYirV69i7NixGDp0KNzc3HDlyhWEhobCxsZGdDTSIZYZNB5FRUUAwCIDIqpGKpVixYoV2LVrF06ePCk6DhER6YC/vz8OHDiA3377Da+88gpKSkpERyKqpqKiAidPnsSMGTPg7OyM6dOnw8zMDGFhYcjIyEBoaCi8vb1FxyQi0mCJgfaNGjUKBQUFOHr0qOgoRELJZDL069cPhw8fFh2FiKgaV1dXZGZmQqVSiY5CRHogNTUVAFhkQLVSUFCAffv2YdKkSaKjEBERERERUR1xVjjprbCwMEyaNAlz5szBl19+yT/qU71zcHBAXl7eU91m1apVMDExwYIFC7SUqnb27NmD0aNHY8KECdizZw8sLCyE5iEiIiLDUFxcjMWLF8PLywtxcXH47bffsG/fPnh4eIiORoKwzKBxYJEBET2Kv78/hg4dinnz5kGtVouOQ0REOjBgwAAcOXIrN106AAAgAElEQVQE586dw+DBg5/6GDqRNiQnJ2Px4sVo06YNfH19cf78eYSEhODmzZvYt28fXnvtNchkMtExiYiq2bNnD0aNGoXJkyezxECL3Nzc4O3tjYiICNFRiIQbMmQI/vzzT1RUVIiOQkSk0apVK6hUKty6dUt0FCLSA6mpqZDJZGjRooXoKNQAhIWFQa1WY8yYMaKjEBERERERUR2xyID0UlhYGAIDAzFnzhx88cUXouNQIyWXy5/6JExbW1t8/fXX2LZtm7Am+z179mDcuHGYNm0aNm7cCKlUKiQHERERGQ61Wo1t27ahTZs2+Prrr7Fy5UrExcXhxRdfFB2N9ADLDBq+yiIDS0tLwUmISB998cUXiI6ORlhYmOgoRESkIz169MCxY8eQmZmJAQMGICsrS3QkMkD379/Htm3b4Ofnh/bt22PTpk0ICAhATEwMoqOjERwcjCZNmoiOSURUo++//x5jx47F1KlTsXbtWpYYaNnIkSOxf/9+0TGIhBsyZAjy8vJw6dIl0VGIiDRcXV0BABkZGYKTEJE+SE1NRYsWLWBsbCw6CjUA27dvx8iRI2FnZyc6ChEREREREdURiwxI71QtMfj8889Fx6FGTC6XIzc396lvN2bMGAQEBODtt9+GQqHQQrJHO3ToEMaPH4/p06fjm2++4UkvREREpHXnzp1Dnz59MGXKFLz88stISkpCcHAwVzqkalhm0LAVFxcDAKysrAQnISJ95O3tjTfffBMffvihzo+DEBGROB06dMDJkydRVlYGX19fXL9+XXQkMgAVFRU4efIkZsyYAWdnZ0yfPh329vaIiIhAeno6QkND0aVLF9ExiYgeKzQ0FFOmTMGsWbNYYqAjw4YNQ0ZGBhITE0VHIRKqS5cummP1RET6onnz5jA2NkZ6erroKESkB9LS0uDu7i46BjUAaWlpOHXqFN58803RUYiIiIiIiKgesMiA9Mr//vc/lhiQzsjlcuTl5T3TbdesWYNbt25hxYoV9Zzq0c6fP48xY8bg1Vdfxddff82TXoiIiEirMjMzERQUhF69esHCwgIXLlzAhg0b0LRpU9HRSE+xzKDhKioqAsAiAyJ6tJCQEOTk5GDNmjWioxARkQ61atUKJ06cgI2NDfr164f4+HjRkaiRSkpKwuLFi9G6dWv4+vri/PnzCAkJQWZmJsLDwxEQEMBCRSLSe2q1GgsXLsT777+PlStXIjQ0lH/P1ZFevXpBLpfj999/Fx2FSCiJRIIBAwawyICI9IpUKoWLiwsyMjJERyEiPZCamsoiA6qVrVu3omnTpnjhhRdERyEiIiIiIqJ6wCID0hv/+9//8Oabb7LEgHTGwcEBeXl5UKvVT31bV1dXLF68GMuXL8eVK1e0kK66mzdvwt/fH3379sX3338PIyN++yYiIiLtKC0txcqVK9GhQwecPn0aYWFhOHz4MDp37iw6GjUALDNomIqKiiCRSGBpaSk6ChHpKRcXF8ydOxdLly5Fdna26DhERKRDTk5O+PPPP+Hh4YEBAwbg7NmzoiNRI1FQUIBt27bBz88PHTp0wKZNm/Dyyy8jJiYG0dHRCA4OhoODg+iYRES18uDBAwQGBiI0NBQ7d+7E/PnzRUcyKFKpFIMHD2aRARGAIUOG4MSJEygrKxMdhYhIo1WrViwyICIAQEpKCtq0aSM6BjUAP/zwAyZMmABjY2PRUYiIiIiIiKgecCYs6YXt27cjMDAQ8+fPZ4kB6YxcLodSqdSsPvq05syZAy8vL8ycOfOZyhBqS6lUYvz48bC1tUVYWBgPzBEREZHW7Nu3D506dcLSpUsxd+5cxMfH47XXXhMdixoYlhk0PEVFRbCwsGBhGhE91sKFC2FlZYXPPvtMdBQiItIxOzs7/PHHH3j++ecxdOhQREZGio5EDVRFRQUiIyMRFBQEFxcXzJgxA/b29oiIiEB6ejpCQ0PRpUsX0TGJiJ5KQUEB/P39sX//fvz2228YP3686EgGadiwYTh69ChKS0tFRyESasiQISgpKWEBGRHpFVdXVxYZEBEUCgVu3LgBT09P0VFIz8XExCAlJYW/XxMRERERETUiPEOdhNu1axcmTZqE+fPnY/ny5aLjkAGRy+UAgNzc3Ge6vVQqxYYNG3Dq1Cls3bq1PqNVM3v2bMTHxyMiIgI2NjZaux8iIiIyXJcuXcKAAQMwcuRI9OzZE1euXMHixYthZmYmOho1UCwzaFiKiopgZWUlOgYR6TkrKyssWbIE69evx+XLl0XHISIiHbOwsEBERARGjBgBf39/7NmzR3QkakCSkpKwePFitG7dGn5+frh8+TJCQkJw8+ZNhIeHIyAgADKZTHRMIqKnlpKSAh8fHyQkJODo0aMYMmSI6EgGa/jw4SgtLcWpU6dERyESqnXr1nBzc8Phw4dFRyEi0nB1dUV6erroGEQkWEpKCsrLy9GuXTvRUUjP7d27F87Oznj++edFRyEiIiIiIqJ6wiIDEuqPP/5AYGAg3n77baxYsUJ0HDIwDg4OAIC8vLxn3kfPnj0xa9YszJ8/Hzk5OfUVTWP//v1Yv349vv32Wx7AJSIionqXl5eH4OBg9OzZEyUlJTh58iTCw8PRsmVL0dGoEXBycsKRI0dYZtAAFBcXw9LSUnQMImoAJk+ejA4dOuCjjz6qdrlarcYff/yBwsJCQcmIiEgXTExMsHPnTgQFBeG1117D999/LzoS6bGCggJs27YNfn5+6NChA7799luMGzcOSUlJiI6ORnBwsObvNEREDdGhQ4fQq1cvmJubIyoqCt26dRMdyaC1aNECHTp0QGRkpOgoRMINHjwYR44cER2DiEiDRQZEBADJyckwMjJC69atRUchPbd3716MHDkSEolEdBQiIiIiIiKqJywyIGGOHDmCkSNHYvz48QgNDRUdhwyQXC4HULciAwAICQmBubk5Fi5cWB+xNHJycjB16lQEBQXh1Vdfrdd9ExERkWFTKpUIDQ1F69atsWvXLqxbtw5nz55Fnz59REejRsbR0fGJZQb37t3jaq6CFRcXw8LCQnQMImoApFIpVq1ahYiICM3KfqdOnULPnj0xbNgwbN26VXBCIiLSNqlUig0bNmDevHmYPHkyVq9eLToS6ZGKigpERkYiKCgIzs7OmDFjBuzt7REREYG0tDSsWLECnp6eomMSEdXZxo0b8dJLL2HYsGE4efIkXF1dRUciAP3798eJEydExyASbsiQIThz5gwLJ4lIb7i6uqKwsBD5+fmioxCRQMnJyXB1dYW5ubnoKKTH0tPTERMTg1deeUV0FCIiIiIiIqpHLDIgIc6cOYNXXnkFL730EjZv3gwjI74USfdsbW0hlUqRm5tbp/1YW1tj9erV2Lp1q+Yk/vrw4YcfwtjYGF9//XW97ZOIiIgoMjIS3bp1w8KFCxEUFITExERMnz6dP5OT1jyuzCAvLw8DBgzA6NGj8ddffwlMadgUCgVPGCGiWhs+fDiGDRuG2bNnY8yYMfD19UVsbCykUiliY2NFxyMiIh2QSCRYuXIlli9fjrlz52LRokU1bhcSEoJDhw7pOB2JkJiYiMWLF6N169bw8/PD5cuXsWzZMty8eRPh4eEICAiATCYTHZOIqM7KysowZcoUvP3221i6dCl+/PFHlkPqEV9fX5w7dw4lJSWioxAJNWTIEJSXl+PkyZOioxARAQBatWoF4O/JqURkuJKTk1lwSU+0Z88e2NjYYODAgaKjEBERERERUT3iTBXSuZiYGLz00ksYNGgQfvzxR0ilUtGRyEAZGRnBzs4OeXl5dd7XmDFjEBAQgLfffhsKhaLO+7tw4QK+++47fP7557C1ta3z/oiIiKhxq82JmSkpKRg7diz8/Pzg7u6OK1euIDQ0FNbW1jpISIaupjKDvLw8DBo0CImJiZDJZFi6dKnomAartLSURQZEVGtFRUXw8PBAcnIy9u3bB7VaDZVKhfLycpw/f150PCIi0qEPPvgA69atw+eff4733nsPFRUVmus++ugjfPzxx5gyZQqUSqXAlKQtBQUF2LZtG/z8/NCxY0d8++23GDduHJKTkxEdHY3g4GA4ODiIjklE9FQWLVqEOXPm1Hhdamoq+vXrh127diEiIgIffPCBjtPRkwwYMABKpZKFqWTwnJyc0KFDh3pdiIOIqC5cXFwAAFlZWYKTEJFILDKg2ti7dy9eeuklmJiYiI5CRERERERE9YhFBqRTSUlJGDZsGLp3746wsDAYGxuLjkQGzsHBoV6KDABgzZo1uHXrFlasWFHnfc2dOxd9+/bFuHHj6iEZERERNWaffPIJmjdvjlu3btV4fVFRERYvXozOnTsjLi4OBw8exL59++Dh4aHjpGToHB0dERkZCalUioEDB2LgwIG4cuUKlEolVCoVfv31V8TFxYmOaZAUCgXMzMxExyAiPVdRUYFt27ahVatW2LRpE1Qq1UMTUy9fvlxtEisRETV+M2fOxA8//IANGzZg4sSJUKlUWLFiheY4eWZmJjZv3iw4JdWXiooKREZGIigoCM7OzpgxYwbs7e0RERGBtLQ0rFixAm3bthUdk4jomYSFhWHlypUIDQ3Fr7/+Wu26X375BT169EBJSQlOnz4Nf39/QSnpcVq0aAFXV1ecOHFCdBQi4YYMGcIiAyLSGzY2NjA3N8edO3dERyEigZKSklhkQI91//59nDp1Ci+//LLoKERERERERFTPWGRAOnP9+nUMGjQInp6eiIiI4CQJ0gtyubzeigxcXV2xePFiLF++HFeuXHnm/Rw7dgzHjh1DSEgIJBJJvWQjIiKixmnbtm1YunQpioqKsGjRomrXVU42bNOmDdasWYOVK1ciLi4Ow4YNE5SWCGjWrBkiIiJQUlKCxMTEahNgZTIZQkJCBKYzXKWlpTA3Nxcdg4j02IMHD+Dl5YVJkyYhLy8PKpWqxu0UCgVSU1N1nI6IiEQbP3489u7di927d6Nv37748MMPoVarAfz9u+m///1vlJSUCE5JdZGYmIjFixfDw8MDfn5+uHz5MpYtW4bMzEyEh4cjICAAMplMdEwiomd29epVTJ48GRKJBBKJBG+99Zbmd59FixbhlVdegb+/P86dO4dOnTqJjkuP4evryyIDIvxdZBATE4OcnBzRUYiIAPxdeJ6dnS06BhEJkpeXh9zcXBYZ0GMdP34c5eXlGDhwoOgoREREREREVM9YZEA6kZOTg+HDh6N58+bYv38/LCwsREciAlC/RQYAMGfOHHh5eWHmzJmaEzWf1meffYZBgwbB19e33nIRERFR43P8+HFMnToVarUaFRUV2L59O/766y8AwF9//YU+ffpgypQpGDlyJJKSkhAcHMxJBSRcfn4+xo0bh5ycnIdW8VYqlfjpp5+QnJwsKJ3hYpEBET2JsbEx2rVr98TCRYlEgtjYWB2lIiIifTJixAjMmzcP586de+i6/Px8rF+/XkAqqnT79m1UVFQ81W3y8/OxceNG9OvXDx07dsS3336L8ePHIzk5GdHR0QgODoZcLtdSYiIi3VEoFBg9ejSUSiXUajXUajUKCgowffp0DBgwAF9//TU2bdqEbdu28TyHBsDX1xdRUVEoLy8XHYVIqIEDB8LIyAhHjx4VHYWICADg5OTEIgMiA5aUlAQALDKgx/rzzz/RuXNnODk5iY5CRERERERE9YxFBqR1JSUlGDlyJMrLy/Hrr7/CxsZGdCQiDQcHB+Tm5tbb/qRSKTZs2IBTp05h69atT337pKQkHD58GAsXLqy3TERERNT4XLt2DS+//HK1kzGlUimmT5+O8ePHw8fHB7a2toiJicGGDRvQpEkTgWmJ/pafn49BgwYhISHhoRKDSlKpFMuXL9dxMlIoFDAzMxMdg4j0mEQiwe7duzFv3rzHbmdsbIy4uDgdpSIiIn3yyy+/YNmyZTVep1KpsHTpUhQWFuo4FQHAd999B1dXV2zYsOGJ21ZUVCAyMhJBQUFwcXFBcHAwnJ2dERERgfT0dKxYsQJt27bVQWoiIt157733cOXKlWrHq5RKJX7++Wfcvn0bf/31F6ZMmSIwIT2N559/HkVFRUhMTBQdhUgoW1tb9OzZE4cPHxYdhYgIAIsMiAxdYmIizM3N4erqKjoK6bEjR45g8ODBomMQERERERGRFrDIgLRKqVTi1VdfRUpKCg4cOIBmzZqJjkRUjVwuR15eXr3us2fPnpg1axbmz5+PnJycp7rtli1b4OLiAj8/v3rNRERERI1Hbm4uhg4diuLi4mqrKapUKsTGxuLChQuIiIjA77//jo4dOwpMSlSdv78/Ll269MgSA+Dv3yG3b9+O9PR0HSaj0tJSmJubi45BRHpOIpFg5cqVWL16NSQSCSQSyUPbqFQqxMTECEhHREQiHTlyBK+++qpmFeuaFBUVITQ0VMfJDFt5eTnmz5+PKVOmQKVS4b///e8jt01MTMTixYvh4eEBPz8/XL58GV999RXu3LmD8PBwBAQEQCqV6jA9EZFuhIWF4dtvv4VKpXroOolEgvv378PZ2VlAMnpWXl5eMDMzw/nz50VHIRJu4MCBOHbsmOgYREQAWGRAZOgSEhLQoUMHHl+iR8rNzUVsbCwGDRokOgoRERERERFpAYsMSGvUajWmT5+OY8eOYd++ffD09BQdiegh2igyAICQkBCYm5tj4cKFtb6NWq3Gjh07MGnSJB6wJSIiohopFAqMGDECmZmZNZ5cCwAFBQX8wx7ppaCgIDRp0gRSqbTGya+VjIyMsGrVKh0mIxYZENHTCA4Oxq5du2BsbPzQ8YuKigpOFiEiMjA5OTkICAiASqWqVrb3TyqVCitXrtTK8Xh6WFFREUaNGoWvvvpKUzARFxeH2NhYzTb5+fnYuHEj+vXrhw4dOmDz5s0YP348UlJSEB0djenTp8Pa2lrgoyAi0q6UlBRMnjz5kcep1Go1CgoKEBwcrONkVBfGxsbo3LkzfzclAtC/f38kJSVx4jAR6QUWGRAZtvj4eHTq1El0DNJjf/75JyQSCfr37y86ChEREREREWkBiwxIaxYtWoQffvgBu3fvho+Pj+g4RDWSy+XIzc2t9/1aW1tj9erV2Lp1Kw4fPlyr21y8eBFZWVkYNWpUvechIiKihk+tVmPy5Mm4cOHCI1e0V6vVyMvLw8qVK3WcjujJpk+fjszMTGzZsgUtW7aEkZFRjSeKK5VKbNq0CVlZWQJSGiaFQgEzMzPRMYioARk9ejSOHTsGa2trGBsbV7suIyMDxcXFgpIREZGu2dnZYe7cubC2toZUKoWR0aP/9KhQKPD555/rMJ1hunnzJnr37o0DBw5UK5cwMTHBtm3bEBkZiaCgILi4uCA4OBjOzs745ZdfkJaWhhUrVqBNmzYC0xMR6UZJSQkCAgLw4MEDqNXqR26nVCqxY8cO7N+/X4fpqK569OjBIgMiAP369YORkRFOnDghOgoREYsMiAxcQkICiwzosY4ePYru3bvDzs5OdBQiIiIiIiLSAhYZkFasW7cOn3/+OTZt2oRhw4aJjkP0SHK5HHl5eY89QeVZjRkzBgEBAXj77behUCieuP1vv/0GZ2dndO3atd6zEBERUcP38ccfIywsDCqV6rHbVa5yefXqVR0lI6o9ExMTBAUF4erVq/juu+/g4eEBiURS42Sn1atXC0homEpLS2Fubi46BhE1MD4+Pjh37hxcXFyqlRmo1WpcuXJFYDIiItIlY2NjLF26FHfu3MGWLVvg4eEBAJDJZA9tq1KpsHr1ak5c0KLTp0+ja9euSEpKeuj4wYMHD7B+/Xq88MILSE9PxzfffIM7d+4gPDwcAQEBkEqlglITEenerFmzcO3atScea5VKpZBIJFiyZImOklF96NGjBy5evIjy8nLRUYiEsrGxgbe3N4sMiEgvODk5ITc3l+MzkQEqKChAZmYmvLy8REchPRYVFQVfX1/RMYiIiIiIiEhLWGRA9S48PBzvvfceVq1ahYkTJ4qOQ/RYDg4OUKlUKCws1Mr+16xZg1u3bmHFihVP3PbUqVMYPHhwjavSEhERkWH77rvvsGzZsmorKT6KTCaDUqnEN998o4NkRM/G2NgYQUFBSE5ORkREhOakhcqJM0qlEmvWrMHdu3dFxjQYpaWlMDMzEx2DiBqgNm3aICoqCp06ddJMWJVKpYiNjRWcjIiIdM3U1BRBQUFISkrCoUOHMHToUEgkkocKDcrLy7Fs2TJBKRu3nTt3YuDAgcjPz4dSqaxxm+LiYmzatAnHjh3DpEmTYG1treOURETibd26FVu3bq2xxKDq2GVlZYURI0Zg9erVCA8P13VMqoMePXqgpKQESUlJoqMQCde/f38cP35cdAwiIjg5OaG8vBy5ubmioxCRjsXHx0OtVqNTp06io5CeKisrQ3x8PHr06CE6ChEREREREWkJiwyoXp05cwYTJ07E7NmzMX/+fNFxiJ5ILpcDgNb+SOLq6orFixdj+fLlT1yN8OLFi+jevbtWchAREVHDdeTIEUybNq3G64yNjTUr2RsbG6NTp06YNGkS1q1bx5/HqUEwMjJCQEAALl26hL1798Lb2xvA34UcCoUCa9asEZzQMCgUCpibm4uOQUQNVLNmzXDixAkMGTIEUqkUFRUViIuLEx2LiIgEMTIywtChQ3HgwAFcvHgRkyZNgomJCYyNjQH8XVq2bt06pKWliQ3aiKjVanzyySd44403oFQqH7u6pUwmw4EDB3SYjohIvyQkJGDmzJmazyUSiWaMMjMzw9ChQ7Fs2TJER0cjPz8fv/zyC2bPng13d3dRkekZdOzYEVKpFAkJCaKjEAnn6+uL2NhY5OXliY5CRAbOyckJAJCdnS04CRHpWkJCAqysrNCqVSvRUUhPxcTE4MGDB+jZs6foKERERERERKQlsidvQlQ76enpeOWVVzBo0CB88cUXouMQ1YqDgwMAIC8vT2snoMyZMwc7d+7EzJkzcfToUUgkkoe2uX37NrKzszUTt4iI9FVsbCxXsCHSoczMTHz44YcoLy+HTCbTrBJmZmYGNzc3tGnTBm5ubnB3d4ezs7NmNXsAiIqKEhWb9MTgwYM1P+/WN22NB4sWLUJMTAx27dqFpKQkfP7552jbti1MTU3r/b4aA09Pz3r5HaK0tBRmZmb1kIiIGpPy8nLcv39f83l+fj7UajUAoLCw8KHVS99//30YGRnhwIEDOHz4MCIjI2vcb1FR0SNXif4nCwuLWo0BJiYmsLS0fORtq15vZGQEW1vbWt0/ERHVjbe3NzZu3IjFixdj7dq1WLt2Le7fvw+VSoV//etfWLp0KYC/J+Ln5+dXu61SqURRUVGt7ufevXu1zmRnZ1fjMfp/srS0hImJSbXLbG1tNWWCVa83MzMTVgxWVFSE119/Hb/99luttlepVIiIiMDdu3fRpEkTLaejxiguLg6JiYmiYxA9E5VKhXnz5kGhUAD4u9ylbdu26NKlC7y8vNCmTRvN8dXr16/j+vXrIuPqrbZt26Jr166iYzyWqakp3Nzc+P2KCED//v2hVqtx+vRp+Pv7i45DRAbM0dERwN9FBp07dxachoh0KSEhAZ06darVMTkyTNHR0bC1tUWbNm1ERyEiIiIiIiItYZEB1YvCwkK8/PLLaNKkCX788cdqE6iI9JlcLgcArbbPS6VSrF+/Hj4+PtixYwfefPPNh7ZJT08HALRu3VprOYiI6sObQUGIjYkRHYPIIFWdLKhQKJCYmMgTMemxlixZgv/85z9a2beuxoPS0tIaf36mv3Xs1AkJ8fF13o9CoRA28YqInuzBgwcoLi7GvXv3UFRUhOLiYhQXF2sKAe7fv4/y8nIUFBSgoqIC9+7d00wIrSwjUKlUKCws1OyrrKwMJSUlAIDi4mI8ePAAAKpdXhdxcXHw8/Or83504VGTUisvt7e3h0QigZ2dnaYEQSaTwdraGsbGxrCysoKpqSksLCw0E1krSxTs7OxgaWkJKysrWFlZ1XryLBGRtlWOI1XHlwcPHtQ4dlQWClSOEQqFAqWlpSgpKUFZWZlmHKlacvOk8hsA2LlzJ3bu3KnTx60LlWNEJXt7+2qXP2nsqByLrK2tIZPJYGNjA6lUCltbW5iammrGEysrK9y9exejR49GSkqK5vmuDZVKhbCwMLzzzjv1/vip8Xtr0mRcOB8tOgZRvVCpVLhy5QquXLmCsLAw0XEajHbtOyDxymXRMZ6oQ4cOLOYmAtCkSRN06NABJ06cYJEBEQlVeWz0n0WGRNT4xcfHw8vLS3QM0mPnz59Hjx49NH+vIyIiIiIiosaHRQZUZ+Xl5XjjjTdw584dnD17liuaUYNSefJ5bm6uVu/nueeew7Rp07BgwQIEBATAzs6u2vVZWVmQSCRo1qyZVnMQEdWVSqXCa+/Mxfj35ouOQkREjzHv5cEoLy/X2v45Hoj309ovceGPfXXej0qlgkqlYpEBkRY8ePAA9+7dQ35+/kMf79+/j/z8fM1E0qKiIuTn52smlRYVFeHevXvVSgYexcrKCsbGxpoJj5UT8Csn3tvZ2cHExAQeHh4PTaIEqq8i/ajJlwA0EykBaCZbVmVubg4zM7MnPi9V7/tJarvCdk2TZCuLHgBoJt0C1Vf4/ucK4JWlEJX3XVFRgYKCAs2k3rKyMly/fv2hQojS0lIoFArNpN7HsbS01JQb2Nvba/5vaWkJe3t7zf+tra1hZ2cHe3t7zceq/2chApFhqhwvahpfCgsLHzueVC0ueBJ7e3tNeYtUKoWNjY3m+7eJiQksLS0hl8thbm6u+f5ftQzmUWNG5W0rv/96eHho7rOmspeqZTOPU9O4VJPK799P8s/xoabLqo4ZVb//Vy0Fqhw/qt73P8eOvLw8lJWVacatyjGtsqCoailEXchkMkilUkgkEpiYmCA+Ph5xcXGacaW2YzORSqXEmBmzMeH9RaKjEJEAP68Pxdn9P2q52icAACAASURBVIuOUSvt27fHkSNHRMcg0gsDBgzA8ePHRccgIgNnZGQEKysrFBQUiI5CRDqWkJDAQiV6rOjoaAwfPlx0DCIiIiIiItIiFhlQnc2ZMweRkZH4888/4erqKjoO0VOpXFEvLy9P6/e1bNky7N69G0uWLMFXX31V7bq7d+9qVlQiIiIiIiLSlcqJvbWZfExkqMrKynD37l3cvXsX2dnZyMnJwd27d5GXl/fIyaT37t3TTGKsSiaTwc7ODjY2NprVlCsnsru5uWn+X7nack2fV05yr+2kzYasapFCfWynK1VXNq86mbjq51VXQa/8/Pr165ptCwsLkZ+f/8gVyuzs7B4qOqj6US6Xw9HREY6OjmjSpAmaNGmCpk2bsgCBSE8UFRVpxpTKceXu3buaMaTqeFJ1jKksaKnKwsICdnZ2sLa21owXleOLo6PjI8eTf35uampaY5lAY2JiYqIpW3gSuVyu5TS1V1miUFZWhuLiYs14kpWVhRs3bkClUqG4uBilpaWa8oPKMqSSkhJNmUVhYSHu3buH+/fvY/369Vi/fr3mPmQy2SPLcyo/Nm3aVDOmVI4xVQuQiIiI9En79u3x3//+F2q1ulH/fENUG76+vti0aROKiopYYEVEQtna2moK/4jIMOTk5CA7OxudOnUSHYX0VFlZGS5fvoyPPvpIdBQiIiIiIiLSIhYZUJ2sWbMGa9euxc6dO9GrVy/RcYieiYODg06KDORyOUJCQjBr1iy89dZb8Pb21lynUqkgk/FbMhERERER6VZlkUHlauxEhiI7OxvZ2dnIysrC3bt3NZNIb9++rZlMWnly1T9PrDQxMUGTJk00k/wqJ/i5u7s/NOHvn5MAOdnPMFROCqiPSbCVk1crJzQ/qjgjPz8fmZmZSEhI0FyWk5NTbV9GRkbVSg3+WXRQ+bmTkxNatGjB1yvRU3jw4AGys7Nx8+ZNzZhStfwmJycHd+7cwZ07d3D37l0oFIpqt7e0tETTpk2rjR0tWrSAl5fXIyeVV35s7KU29Hchc32W9pSVlT22jKnqZcnJyZrL7969i6Kiomr7MjMz04wrTk5O1cYZJycnTflBixYt0KxZs1oXSRAREdVV+/btUVxcjBs3bnBBDjJ4AwcOhEqlwpkzZzB06FDRcYjIgNnY2KCgoEB0DCLSoUuXLgFAtXNliaq6du0aVCoVOnToIDoKERERERERaRFnzdIz+/333zF37lwsW7YM48ePFx2H6JnJ5XKdFBkAwJQpU7Blyxa8++67OH78uGb1h4qKCq4EQUREREREOlc5iY5FBtRYlJaW4tatW8jKynrkx/T0dBQXF1e7nb29PZo3b66ZLOrl5VXtc2dnZ83nzZo1g5GRkaBHSIamcvLqs05grfqeqJyIWvXz9PR0nDlzBllZWcjJyYFKpdLc1szMTPP69/DwQPPmzTXvhcqPLVq0gK2tbX09XCK9dO/evceOK7du3UJ6ejrKy8s1t6l8/1QdQzw9PR8aU+zt7eHi4gI7OzuBj5AMjampKZycnODk5PTUt1UoFMjLy6txTKn8/Ny5c5rPb9++DbVarbm9mZnZY8cVZ2dntGzZEsbGxvX5kImIyAC1bdsWwN+TYlhkQIauefPmaN26NY4fP84iAyISysbG5qHiYCJq3C5dugRnZ+dnOg5FhiE5ORkSiQStW7cWHYWIiIiIiIi0iEUG9EySkpIwbtw4BAYGYtGiRaLjENWJLosMjIyM8M0336BXr1744YcfEBgYCODvEwf/uQoXERERERGRtpWWlgL4e0IRkb5TqVS4efMm0tLSkJ6ejrS0NKSmpiI9PR0ZGRnIysqq9ru1ubm5ZlKci4sLvLy8MGzYMDRr1kyzKrCzszNsbGwEPioi7TI3N4eHhwc8PDyeuG1FRQVycnI0q8rfvn1b8zEzMxNRUVHIzMxEdnZ2tQnbtra2cHFxgZubG9zc3NCqVatqH3mCIumz4uJipKWlaf5Vji/p6em4ceMGsrOzUVFRodm+soigcnzp37+/ZpypHF8cHR35sxU1WpVFBM7OzrXaXqFQICcnp8Zx5datW7hw4QJu3bpV7W80RkZGcHR0RMuWLR8aU9zd3dGqVStYWVlp6yESEVEj0bRpU5ibm+PGjRuioxDphf79++P48eOiYxCRgbO1tUVBQYHoGESkQ5cuXULXrl1FxyA9lpKSAhcXF1haWoqOQkRERERERFrEIgN6akVFRRgzZgzat2+P9evXi45DVGcODg7Izc3V2f316NEDU6dOxfz58xEQEABbW1s4OjqisLAQpaWlXAmViIiIiIh0prLIgL+HkL7IyspCcnIyUlNTH5pYmpmZqVkt3szMTDOpzdPTE35+fmjRooVmJV9nZ+dnXsGeyFAZGRlpVuju0qXLI7erqKhAdnY2srKyNP8yMzORlpaGuLg47Nu3D1lZWZqyA3Nz8xoLDtq0aYO2bdvC1tZWVw+RDJBSqURqaqpmbKlaVJCeno6cnBzNtnK5XPMa7du3L1q1aoVmzZrBxcVFM77wZyaip2NmZoaWLVuiZcuWj91OoVBUG1du3bqFjIwMpKWl4c8//0RaWlq1v+M4ODg8NLa4u7vD09MTHh4eMDY21vZDIyIiPSeRSODi4oKMjAzRUYj0Qv/+/bFz504oFAoWrxGRMDY2Nrh//77oGESkQ5cuXcKoUaNExyA9lpKSAk9PT9ExiIiIiIiISMtYZEBPRa1WY/LkycjJycHBgwdhamoqOhJRncnlcly9elWn97ls2TL8/PPPWLJkCb788ks4OjoCAHJycuDq6qrTLEREREREZLgqV6/npDzSJYVCgWvXruHy5cu4fv06rl+/joSEBMTFxWlOYjQ1NYWLiws8PDzQvn17DBo0CM7OzpqV5d3c3GBkZCT4kRAZJiMjIzRv3hzNmzdHjx49atxGqVQiJycHt27d0rzPr1+/jqtXr+KPP/5ARkaGppjE3t5e897u2LEjOnXqBA8PD3To0AEWFha6fGjUgN27d08znvxzfKn8eafytda8eXN0794dr776qua117p1a9jZ2Ql+FESGy8zMTPN+fJTKsoOq40pWVhZiY2Oxd+9epKWloaKiAjKZDK6urpr9VR1f+DMkEZFhcXV1xY0bN0THINIL/fv3R1lZGc6dOwdfX1/RcYjIQNna2iI9PV10DCLSkdLSUiQnJ8Pb21t0FNJjycnJaN++vegYREREREREpGUsMqCnsnLlSuzZsweHDh1CixYtRMchqhdyuRx5eXk6v8+QkBC88847mDhxItzd3QEAV69eZZEBERERERHpTGlpKQBwFS7Sinv37iEmJgaxsbGIi4tDcnIykpKSkJ2dDQAwMTGBh4cH2rVrhz59+mDixInw9PREu3bt0KxZM8HpiagujI2N4ezsDGdn5xrLDlQqFdLS0pCSkoKkpCQkJycjOTkZ3333HW7cuAG1Wg2pVAo3Nze0bdsWHTt2ROfOndGlSxd06tSJBbsGLDU1FbGxsYiNjUVCQoLmtVNcXAzg7xPiPT090bZtW4wcORLz58/XfG5tbS04PRHVxZPKDoqLizXfEyrHl0uXLiE8PBz5+fkAAAsLC3h6esLT0xMdO3ZEly5d4O3tDXd3d0gkEl0+HCIi0oGWLVuyyIDo//Pw8EDLli1x/PhxFhkQkTA2NjaaMmMiavzi4uKgUqnQtWtX0VFIjyUnJyMgIEB0DCIiIiIiItIyFhlQrR0+fBgff/wxvvjiCwwcOFB0HKJ6I5fLkZubq/P7nTp1KrZs2YJ3330Xx48fh6OjI2JjYzF48GCdZyEiIiIiIsNUuUKxubm54CTUkJWXlyMlJQWxsbGa4oLY2FhkZGQAAJo0aQJvb2906tQJo0aNQrt27eDp6YlWrVpBJuPhSSJDJJPJ0KZNG7Rp0wYvvvhitetKSkqQkpKimYyanJyM48eP47///S9KS0shk8nQrl07zeRTb29vdOnSBc7OzoIeDWlDcXEx4uPjERMTU60Up6CgABKJBB4eHujcuTP8/PzwzjvvaIpwHB0dRUcnIkEsLS3RrVs3dOvW7aHrcnJyqhXnpKSkYMeOHbh+/ToqKipgY2OjKcypHFc6d+4MKysrAY+EiIjqi6urK6Kjo0XHINIbvr6+OHHihOgYRGTAbGxsUFBQIDoGEenIpUuXYGVlhdatW4uOQnqqrKwMt2/ffmRxKRERERERETUePFOYaiUjIwOvv/46xo4dizlz5oiOQ1Sv5HI57t27B7VardMVd4yMjLB27Vr06tULO3fuROfOnREbG6uz+yciIiIiIiotLQXw9+qmRLV17do1REVF4cyZM/jrr78QHx//0OTiWbNmcXIxET0TCwsLTUFBVVVLUy5duoTY2FisXbtWs8JqkyZN0LVrV/j4+KB3797w8fGBXC4X8RDoKSmVSly8eBFnzpzBmTNnEB0djWvXrqGiogLW1taaycWBgYHo0qULvLy8YG1tLTo2ETUgTZs2RdOmTdGvX79qlxcVFSE+Pr5aIdcPP/yA+/fvw8jICO7u7ujZs6dmbOnWrRtMTEwEPQoiInpaLi4uyMrKEh2DSG/4+vpi4cKFKC8vh1QqFR2HiAyQra0tiwyIDEhMTAy8vb1hZGQkOgrpqezsbKjVajRv3lx0FCIiIiIiItIyFhnQEykUCowZMwbNmzfHpk2bRMchqncODg5QqVS4f/8+bG1tdXrfPXr0wNSpU7FgwQIEBgZi9+7dOr1/IiIiIiIybJWTz2UyHiKimpWUlCA6OhpRUVGa8oLs7GyYmJige/fu6NOnD95++214e3ujU6dOMDU1FR2ZiBopqVSK9u3bo3379hg7dqzm8nv37mkmn164cAE//fQTPvvsM0gkErRr1w4+Pj7o06cPevfujY4dO/KkST1w+/ZtnDlzBqdPn0ZUVBTOnz+P0tJSyOVy+Pj4YMKECZoyC3d3d52WzxKRYbGysoKPjw98fHw0l6nVaqSlpWnGlnPnziEkJAR3796FmZkZevToUW1s4YnWRET6Sy6XIz8/n5O2if6/Pn36oLCwEHFxcejatavoOERkgGxsbFBYWCg6BhHpyKVLl9CtWzfRMUiPZWdnAwCcnJwEJyEiIiIiIiJt41nq9EQzZ87EtWvXcO7cOVhaWoqOQ1TvKldmy8vL03mRAQAsW7YMu3btws2bN3Ht2jWkpaXBzc1N5zmIiIiIiMjwKBQKmJubi45BekSlUiEqKgoHDx7EoUOHcPHiRahUKjRv3hy9e/fGggUL4OPjgx49esDMzEx0XCIi2NvbY+DAgRg4cKDmsrt37+LMmTM4c+YMTp06hV27dqGoqAg2Njbo27cvXnjhBbz44oto166duOAG5N69e4iMjMTBgwfx559/IjU1FUZGRujYsSN69+6NKVOmwMfHB+3atWNpAREJJ5FI4O7uDnd3d7zyyiuay5OSknDmzBlERUXhjz/+wOrVq1FeXo5WrVph0KBBGD58OPz8/DR/cyIiIvHkcjnUajXy8/Ph4OAgOg6RcF5eXrC1tcXp06dZZEBEQhgbG+PBgweiYxCRDlRUVCAuLg5vvfWW6Cikx+7cuQMAcHR0FJyEiIiIiIiItI1FBvRYmzdvxvbt27Fv3z60bt1adBwirag8qSw3Nxfu7u5C7v8///kPFixYAHNzcxw6dAjTpk3TeQ4iIiIiIjI8ZWVlMDU1FR2DBLt58yYOHjyIgwcPIjIyEgUFBWjdujWGDRuG999/H3369EGrVq1ExyQiqrUmTZrA398f/v7+AP4uaYmLi8Pp06dx7NgxLFmyBO+//z7c3d0xbNgwDB8+HEOGDIGVlZXg5I1DRUUFLl68iIMHD+LAgQM4c+YMAMDHxwcTJ05E79690atXLyGlskREz6pdu3Zo164dJk6cCAC4f/8+/vrrL5w+fRqRkZEIDAyEWq3Gc889hxdffBHDhw9Hz549YWRkJDg5EZHhqrqgAYsMiAAjIyP06tULUVFRmDVrlug4RGSAjI2NoVQqRccgIh1ITExEYWEhevbsKToK6bHs7GxYWlpykUUiIiIiIiIDwCIDeqTLly9j9uzZWLhwIUaMGCE6DpHWVJ60kJeXJyzDrFmz8O233yI3NxdhYWEsMiAiIiIiIp1QqVSQyXh4yBDFxcUhLCwMv/zyC+Li4mBhYYGBAwdi6dKlGD58ONq2bSs6IhFRvZHJZOjWrRu6deuGd955ByqVCmfPnsWBAwfw+++/Y+PGjZDJZOjXrx9Gjx6NV199FU5OTqJjNyhKpRKHDh1CeHg4Dhw4gDt37sDZ2RnDhw9HcHAwhg4dCnt7e9ExiYjqjY2NDYYOHYqhQ4fiP//5DwoKChAZGYmDBw9i06ZN+OSTT9CkSRMMGzYMY8eOxbBhw1giR0SkY1WLDIjob71798b27dtFxyAiA2ViYgK1Wo3y8nJIpVLRcYhIi86dOwczMzN4eXmJjkJ6LDs7m3+LISIiIiIiMhBcAoJqpFAoMGHCBHh5eeHTTz8VHYdIq2xsbCCTyZCbmyssg0wmw1dffYWsrCwcOXIEmZmZwrIQEembJZPHiY5ARERUJ/o8limVShgbG4uOQTpy69YtLFu2DJ06dUKXLl2wfft2DB06FL///jtyc3Px66+/4r333mOJgQB+fn6iI1AjV9fXWGN7jcpkMvTt2xefffYZzp07h1u3bmHz5s1wdHTEokWL4OLighdeeAE7duyAQqEQHVevnT17FtOnT0ezZs3g7++PlJQUzJs3DzExMcjMzMTmzZvx2muvscRAgMb2viX9w7GlOltbW4wZMwabNm3CjRs3EBsbiw8++ADp6ekYNWoUmjVrhilTpuD06dOiozY4+vw7NRFfn/qNRQZED+vTpw+uX7+O27dvi45CRAao8u9RSqVScBIi0rbo6Gh07dqVf4emx7pz5w6LDIiIiIiIiAwEiwyoRu+99x7S09MRFhbGA0nU6EkkEtjb2ws/gWHIkCHw9/eHkZERduzYITQLEVF9GtPeGWPaOz/z7dVqdT2maZzq8vxS3dX1NU6Gh6+X6hrTe+hRj0WfxzIWGRiGo0ePYvTo0XB1dcVXX32FIUOG4NSpU0hLS8OXX36JF154AWZmZqJjPpFEInmm63RBIpHUKYM+f5/QF6K/xpUZ9CHHs6jra6yxv0YdHR0RGBiIH3/8EdnZ2di5cyesrKwwefJkuLi4YO7cuUhLSxMdU28oFAps2LABXbt2hY+PD86ePYtFixYhLS0Np06dwsKFC9GlSxfRMWuFY4thE/01rsygDzmeBceWx+vcuTPmz5+PEydOIC0tDf/+979x8eJF9O3bF126dMG6detQWloqOqZO8Piw9tX3cZXGdKymPjzuueDrU79ZW1vD2NgY+fn5oqMQ6Q0fHx9IpVJERUWJjkJEBohFBkSG49y5c+jZs6foGKTnCgoKYGdnJzoGERERERER6QCLDOghP/30EzZv3owtW7bAzc1NdBwinZDL5cKLDAAgNDQUALBq1SqUl5cLTkNEVD9+Tsyq0+0XfxdeT0mItKOur3EiQ9eY3kOPeiz6PJapVCrIZDLRMUhLfvvtN/Tp0weDBg1Cbm4utm7dips3b+Lrr79Gnz59GuykOX1U18krkZGR9ZSEtKkhT1Kq62vMkF6jFhYWGDt2LHbv3o2MjAzMnz8fu3fvhqenJ9566y2kpKSIjihMaWkpvvjiC3h4eGDOnDno3r07oqKiEBMTgwULFsDV1VV0xEaFY4th4NhiGFq2bIm5c+fiwoUL+Ouvv9CrVy8sWLAA7u7uWLFiBYqLi0VH1CoeH254GtOxGm3j61P/mZmZGUxxDFFt2NjYoGPHjiwyICIhKosMHjx4IDgJEWmTUqlEbGwsnnvuOdFRSM8pFIoGUbZPREREREREdcciA6rm2rVrmDZtGt59912MGjVKdBwinXFwcNCLIgMPDw9MmTIFeXl52L59u+g4RERERETUyCmVSs2JY9R4pKSkYMSIEfD394eDgwNOnz6NY8eOYcKECTA1NRUdj4iowWjWrBk+/PBDpKSk4Ntvv8XZs2fh5eWFRYsWoaioSHQ8ndqzZw86duyIJUuWIDAwEKmpqdiyZQt8fHxERyMialCee+45bNq0CampqZg0aRKWL1+ODh06IDyck6GJiLTB1NSUkyWJ/qFPnz44ffq06BhEZIAq/x6lVCoFJyEibYqLi0NpaSmLDOiJysrKWGRARERERERkIFhkQBpKpRKBgYFwdXXFypUrRcch0im5XK4XRQYA8MUXX8DMzAwffvih6ChERFqVkZKIkBlv4o3ubfFG97ZYOnUCMlISq20zpr0zxrR3fqr9Vt7mdkYaVr03BUHPt39oPxkpiQiZHqi575DpgbW+70ddfu7IH/jo9ZcxvosbZg5+Ht8t/wSlxUU13vburSysmPUW3ujeFpP7dkHogndRmH/vmZ+jqvse094Z6z6eV+vn68bVJIRMD8SEbm0Q2MMTn055HTevJj/0OJ/2+Xiar+/NaylYNM4fr3f1wMdvvILbGWm4cTUJi8a+hAnd2uA/Qa/i7q3MWj+mavu+moylUycgsIcnJnRrg5AZb+LmtYdXUK3Na+Kh56tnO6x8d/Ijs9XmOXiSksL7+G75J3h7qA/Gd3HDlH5dsWbRHKTEXnzq+6rNe+NxnuY5re/3YX1+HbX1PqztPp/0nq2P140+q+/3UG3eI8/0OqrF16C2j6Wm91ld34/1iUUGjc+2bdvQrVs3pKam4vfff8e+ffvQu3dv0bFqJJFIIJFIanV55eeV10kkEkydOvWJ1wFAfHw8XnrpJVhbW8Pa2hrDhw9HfHx8jfd57do1jB49Gvb29o/M9zSe5r6fRm3yxsfHY8SIEZr7HjFiRK3v+1GX//LLL+jbty/MzMzg5uaG999/H4WFhTXe9saNGxg5ciSsra3h5OSEwMBA5ObmPvNzVHXf//waP+l5kkgkOHr0KADgf//7X7XLn+axPcrTPNfP+hqr3PbKlSvw8fGBhYUFfH19cfXqVSQkJKBXr16wsrLCoEGDkJGRUeNta7qsNl+nx93+WfLU9jnTJ8bGxggKCkJCQgI2bdqEzZs3o3v37oiJiREdTetKS0sxbdo0jB49Gl5eXrh8+TJWrVqFZs2aiY5WI44tj38eHodjC8cWji265ejoiOXLl+P69esYNWoUXn/9dYwePRoFBQWio+kMjw/r4fHhejhWU9djvrU9TpuWeBmfTh6PCV1bI7CHJz6b9gYunTz6UI7HvQ5q+zV71PP7uGM+//w3vovbU91vbR7j0+yrts9rY2RiYoKysjLRMYj0Su/evREdHc33BhHpnImJCQAWGRA1dufOnYOVlRXatWsnOgrpOYVCwRJ+IiIiIiIiA8EiA9JYuHAh4uPjER4eDnNzc9FxiHTKwcHh/7F353FR1fv/wF/si6zDqqIsKigEiIAC4lbi1lUzTckts3JJymvuW+rXTG+5ZCmWmZqa1+WalXpDsVRwAcEFzAUwFVNB2QZkk/X3R7+ZK4Iwg8BnZng9Hw8ewuHM+bzO55zDBw/zeZ8a3/AogqmpKWbOnIn09HRs2rRJdBwiokaRfvcOlr0dCr8+Idh0PAZf/34evYYMx6r330ZWepp8vQM3Hii9bdlrNi+dh6ETp2JL1GUs3LyrStufvDcGgf3/gU3HYxAeeQ7dQgZh+bujkX73Tp1tP2/5qvcnoM+wkfj+/HWs2ncY+blSbFm+qMbXhi+aif5vvoXvTl/GZ/+JwJPiInz/r/+rsq6yfXTgxgP5x/ufrFGor57ui69/i8Wm32Lx8uuhWPvR1Gr7qkx/KJt974Y1CPt0Hb6Lvgynjh74YnYY9ny5GmErv8CWqItwaNcB21ctU2ifnt32mhlT0GfYKGz6LRabjsegW9+BWP7uaDy6/1eN/VDbOfFsf4VHnkNgv1exdsaUevdBXb6aNx0tTM2wcu8h7IxPxqLNu5B+9zbmjXxV6bbqujYask8b+jpsyOPYmNehItus7ZptqPNGVTXGNaTINaLseaRIu8rsS00/J1/0emxIZWVl0NXVFdI2NbwFCxZgwoQJCAsLw5UrVxASEiI6Uq0qKysVXi5bVllZKf/YsmVLnd+7efMmQkJCMHjwYNy6dQt37tzB2LFjMXToUNy7d6/a9qdOnYpZs2bhwYMH+O9///tC+6ds28qoK+/NmzcxcOBAjBgxArdu3ZJPcBwwYABu3rxZZ9vPWz506FC89dZbyM7ORkxMDLKzs/HBBx/U+Np3330XU6dORVpaGuLj41FYWIhZs2ZVWVfZPqrpGNemrKwM7dq1Q3Z2Nnr37g0ACA0NxYMHD2BpaYn8/P9N8FFk32qibF/X9xyTvX7p0qXYtm0b0tLS4O3tjbFjx2LJkiXYvn077t+/j06dOmHmzJk1vramZYocp9peX588ivaZKtLW1sb48eORmJiI1q1bIzAwEL///rvoWI0mNzcXPXr0wMGDB3HkyBEcOnQIbdq0ER2rVhxbau+H2nBs4djCsUUMKysrrF+/HkePHsWZM2fQs2dPlSm83Zh4f1g17w83xL2aF7nnq+ixeXDnFtbMmIzX3p2GbTF/YNXewyguKsTyd0dXy1HbvRdljllN/VvbOSL72HslFe1e8sbbC/53fBVpV5F9VHRbivarptLX10dJSYnoGEQqJSgoCE+ePMHFixdFRyGiZkZWWJuFDIg0W1xcHHx9faGtzSkKVLvi4mIYGhqKjkFERERERERNQKuyPu9mIo3z66+/4tVXX8XOnTsxZswY0XGImtxHH32EmJgYnD17VnQUAH+/YU8ikaC8vBy5ubkv/JQuIqKG4vHSS/Do3R+hH8yqe+WnDO/Yqsqb+tbPDoOjmztee/f9Kuv9fmAP7ty4iokLlz/3tYq29387/gOPrkHVvrd+dhjae3bGq+OrPmXv0LZvLbZoigAAIABJREFUcOv6H5j+2Vd1tq1Ipvy8XEwLCcT3sdeqvXbuxm3o+kp/+bIHt//EkrdG4Nuo/z1BvLH7CADWz/kA7V/yrtYXp4/8jHUzp1bbpqL9oWz2/9t5AB7+fz8pOvvRQ7zX06fKsqz0NMwe3h9bzyQqtX/DO7bCR2u/RvdBQ6osP7TtG9xJuo4PVn0hz6vIOfG8/jpxcC82zJ9R7z6ozZguHfDNiTiYmFvIlz26dxdT+wbI21O6v59zbShC0T6tqy1lr8OGPI6ybTbGdajINmXr1nQtNdR5AwAzh7yM8aEjsWyZckVAFFWf8aAxriFFrhFAufNIkXaV2RdZ+zUte5Hrcf/Gtbh47BCSbrzY0/NmzJiB2NhYlfm/ENXfpk2bEBYWhu3bt2PcuHGi4yhMS0urxolsNS1/3rq1fW/s2LHw8vLCnDlzqizfunUrEhISsH79+irbOHHihHxSorKezaBs28repq0t79ixY+Hv74/p06dXWb527VpcunQJO3furLNtRTLl5OSgffv2NT5l+aeffsLQoUPly5KSkvDyyy/j/v3/PXW1sfsI+LvAR+vWrTFt2jT5slWrViE1NbXWApK17duzx1mZvn7Rc+zkyZPo1asXAODBgwdo3bp1lWX37t2Dr68vHj58WGtu2TJFjlNtr69PHmX6TJWVl5dj/PjxOHToEGJjY9GpUyfRkRpUZWUl+vbti6SkJERHR8PZ2Vl0JIVxbKk9f13tcWypG8eWmnPLlnFsqb+//voLPXv2ROvWrREVFaWSb/j37twZHQJ6YfSMeUq9jveHq75W1e8Pv+j9zvre81X02Kyb+T669HwZvYaOkK/z4Paf+GBgj2r3g5S591LbMXte/9bV95uXzUdBXi5mrAlXql1F91GRbSlzztflwNfrEXv4AG6mpCj8GtHc3Nwwbtw4LFq0qO6ViZoRe3t7zJ49u1qBKCKixpSYmAhvb2/cuHGDT2on0mDe3t7o168fPv/8c9FRSMUFBwfDz88PX3zxRd0rExERqZAVK1bg+++/R3JysugoJACPPxFRvaSo3rsfqMlJpVJMmjQJY8aMYREDarYkEolKPeFGS0sLX375JR4/fqw2b7AjIlJG4tnoapNJAaBL71eQcDaqQdpo7+Xz3La79h1QbXm3kIFIPBvdIG0DgImZOfJzpTV+z90/oMrXNq3bICfjUbWcjd1HiWeiauwL7+49X2y7SmZ3cfeUf25pbVNtmcTWDnnZWdVepwivoB7VlnULGYiEM6eq5FXknHhef/n06FNtWUMdP7fOvlg59S1cij6B8vIyAICtQ9sqb1ZVtq3nXRuKUqRP62pL2euwIY+jTGNch4psszZNcd2L1BjXkCLXiIyi55Ei7SqzL7V50euxIZSWlsqfgEPqKzs7GwsWLMD8+fPVqohBUzh+/DhGjRpVbfmrr76KyMjIasu7du0qrO36eF7e48eP47XXXqu2fNiwYTh+/HiDtA0AlpaWz72f0rNn1d8pnZyckJaWVmVZU/TR22+/jW3btlVZtnXrVkyaNKnW19W2b09Ttq9f9Bzr0qWL/HN7e/tqy1q1aoWMjAyFt6fIcWroPE11fjY2HR0dbN++Ha6urpg9e7boOA1u//79OHXqFH755Re1KmLQFDi2VMWx5W8cW/6HY0v9tWnTBocPH8b58+c1/m9DvD+s2veHG+J+Z33u+Sp6bP6IOQPPwKr3eVo5t6vxfpAy915qO2b1cfrIT/gj9gymLq998k5N7Sqzj3Vtq6nOeVWlr6+PkpIS0TGIVE5AQADOnTsnOgYRNTOyv0dxbCbSXIWFhbh27Rr8/PxERyE1UFxcDAMDA9ExiIiIiIiIqAnoig5A4k2ZMgWVlZVVnkJD1NxIJJJqT0ESbdy4cXB2dkZwcLDoKEREDe6xNAdTXq75Tdb6hoYN0oaBoVGNy/Ok2bCwtq223NLGDo9z6lfUJi87C7vWfopL0ScgzcxARXl5reubmJlX+VpPX7/aE+iaoo+e1xemFpYvtF1lsxu1MJF/rvX/nzT37LL6PCERqHlfLG2qvklW0XPieevVtKyhjt+s9Zuxb+NafPt/C5CXnQVn95cQEDIIA0a/BR1dvXq19bxrQ1GK9GldbSl7HTbkcZRpjOtQkW3Wpimue5Ea4xpS5BqRUeQ8UrRdZfalNi96PTaEsrIy6Ory9pC6+/3331FQUIB585R7KmpzkJWVBScnpxq/Z2RU/Ro0NjYW1nZ9PC9vZmamfOLf01q2bInMzMx6tZWRkYH58+cjIiIC6enpKK/jd15Ly6o/dw0MDKqNi03RRx06dICRkRESEhLg7e2NqKgomJmZwcfnfxOalN23pynb1y96jpmamso/lz2l+dllyvz+ochxaug8jXF+iqKnp4f58+dj1KhRKCwsbNCfIaL9+OOPePXVV6tMHqa/cWypimMLx5ZncWx5MR4eHhg+fDgOHDiAt956S3ScRsP7w6p9f7gh7nfW556vMvdpzSwlNWZ51nPPAyWPmbLu37qJrZ9+jKXb98HQuIXS7Sqyj8psq6HPeXWiq6ur1DhM1FwEBgZi3bp1omMQUTOjo6MDABybiTRYfHw8ysrKEBAQUPfK1OyVl5fzvQpERERERETNBP/318z9+9//xr59+3DkyBFIJIr9sZ9IE0kkEuTk5KCiokL+xjhVwCIGRKSpTC0lWP/fU9XesNkUzCwkyMl4CNvWbaosz8l4CNNn3hiopaWF0pIS6Onry5fV9ESm9XM+QGvndlix+2dY2beEjs7fv2YP79iq3jmboo/MLCSQZj6CTSuHKsulmTU/QV7R/hB5fJ8lzcqAhZVNlWU5GQ9hJrGSf63oOfG8/mrMPjA2NcOEeUsxYd5S5OVk48q50zj8/be4Fh+L2V9+26BtKUqRPq2LMtehom0qu01FNHXfqtK10xga4xpS5BqRUeQ8UrRdZfZF1ZWWlsqfgEPqKy0tDVZWVjAxMal7ZRWjpaWFJ0+eVHnahiJPKlaUtbU1rl27Vm1CXVMQ3XZaWlq1iZxpaWmwtrauskzRYzBu3Di4ubnh9OnTcHBwkL+xSEtL64VyNkUfvf3229i6dSvWr1+P7777rtoTs19k35Tpa/qbpvWZk5MTysvLkZ6eDhcXF9FxGsyDBw/g7e0tOka9cGxpvLY5tvwPxxbVoml95ujoiMjISNExGhXvD9dN5P1hUfd8FT02phaWyMvJhsTWrt5tNcYxk3lSVIjPPnwX42YtRNsOHevVriL7qOi2GuO+KRGpv6CgIMybNw+3b9+Gs7Oz6DhERESkIc6dO4eWLVvC0dFRdBQiIiIiIiIiUiGqM1uXmtyDBw8QFhaG999/HwMHDhQdh0goKysrlJeXIy8vT3SUKq5cuYIDBw6IjkFE1OA6B/fG1diz1ZZfj4/F7Nf7N2rbXkE9EHvsv9WWx0b+Cq+gHlWWWVjbIjPtfpVl1+Jiqr026VI8Rn0wG7at28jfLFhSXPxCOZXpo/q+wd87uBfOH4+otvzy6ZM1rq9of4g8vs+6HH2y2rLYyF/h3b2X/GtFz4nn9Vfi2ahqyxqqD4Z3bIWs9DQAgJmlBN0HDcHCzTuRcOZUg7elKEX6tC7KXIeKtqnsNhXRWH37vGtWla6dxtAY15Ai14iMIueRou0qsy+qjoUMNIOHhwfS09Nx48YN0VGUZm9vj7t371ZZFhVV87VU2+88z/te//79cfLkyWrLo6Oj4evrq3jQehDZdt++ffHjjz9WW37w4EH07du3yjJFj8HZs2exbNkyODk5ySdjFhUVvVBOZfroRSa1jhw5Ej///DMyMjIQERGBN998s8r3X2TflOlr+pum9dmJEydgamr63CfAq6uXXnoJUVFRqKioEB1FaRxbGgfHlqo4tqgWTeqzyspKnDx5Ep6enqKjNCreH66byPvDjXm/szaKHhuPrkHVMt65cQ3TX1X8/qQyx0zZ/v16yVy4evmgz7BR8mWy4gKKtqvIPiq6rca4b0pE6s/Pzw/6+vo4e7b6z3YiIiKi+oqJiUFgYKDoGERERERERESkYljIoJmqrKzEe++9BwsLC6xatUp0HCLhJJK/nzbRkE/maghHjhzBhAkTkJaWJjoKEVGDGvXBTOz9ajXOHT2Mx9IcFBXkI/5kJNbOnIo33p/RqG2PDJuJX7Z/g+P7dyM3KxN52Vn47T//xi/bv8GosJlV1vXu3hM/rF2JrPQ0FBcW4PLpkzi6Z0e1bbr5+GHn6uV4dP8vlJWWIv3uHXyzdO4L5VSmjyR29ki6fAHlZaVIOHMKk/v4KdZG2Ez8su1r/H5gD/Kys/BYmoPTR37Csb27alxf0f4QeXyfdWzvTkQfPojH0hz5sT68YwtGffC/Y63oOfFsf+XnSnH2119w4Jsvq7XbkH0Qvmgm/rqZhNKSEkizMvDzd5uqvMG0qftbkT6tizLXoaJtKrtNRTRW3z7vmlWla6cxNNY1VNc1IqPIeaRou8rsi6orKytjIQMN0Lt3b/j4+OD9999HSUmJ6DhKCQkJwYIFC3Dv3j3k5+fj6NGj+Prrr2tct3Xr1jh37hxKS0tx7NgxtG3bts7vLV26FEuWLMF//vMfZGVl4fHjxzh8+DDefPNNLF68uFH3TWTbS5Yswdq1a7FlyxY8evQIGRkZ+O6777B27VosWbKkyrqKHoOgoCDMmTMHd+7cQUlJCW7evIkpU6a8UE5l+qi2418XExMT9OnTB2PHjsWQIUNgamraYPumTF/T3zSpz27evImVK1fiww8/hLa2Zv25JSwsDNeuXcOXX6rf7zccWxoHx5aqOLaoFk3qs82bNyMuLg7Tp08XHaVR8f5w3UTcH26q+53Po+ixGTF1OvaHr0Pi2Wg8KSpEatJ1bFwwA4PGTlS4LWWOmTL9e2zvTty5fhXvfbzyhdpVZB8V3VZj3DclIvVnZGSEzp0749y5c6KjEBERkQaJiYlBQECA6BhEREREREREpGK0KisrK0WHoKb39ddfY9q0aTh58iR69GCVfaLbt2/DxcUF58+fh7+/v+g4coWFhfD09ISHhwd++eUX0XGIiODx0kvw6N0foR/MUvg1sicNAcCBGw/kn6el3sauNZ8i8Vw0ysvK0Ka9K16f9AG6hQys87WKtve816UmX8fOzz/BtfhYAIC7XzeMm70Ijq6dqqyXl5ONrSsWI+FsFJ4UFcEzoDve+3il/I2Ksm3nZmXi+8/+D5dPn0RBXi5aObXDG+//E2tmTKmy3vP250X6CADORhzCztUrkP0wDdYtW2PCvKXwf7mfQv31180k7PhsOa7GxUBbWxse/oF4Z/EnmPpKt2p9p2h/KJq9pv1WdJkihndshU2/xeK75YtwNe4cKioq4OEfgLfmLoFDuw5V1lX0nHi6v7S0tODm44eJ85dh+j9616sP6nLl3Gn894etuB4fi6KCfEjsWqJb3wEY9cEsGLUwUaotRa6Nuijapw15HTb0cWyM61DZbdZ2zTbEeQMAM4e8jPGhI7Fs2TKlXqeo+owHQMNfQ4peI8qcR4oeA0X3pa6fa8/ut6L2b1yLi8cOIenGDaVf+7Q33ngDWlpa2Ldv3wtth8S7fPkyevfujT59+mDXrl1o0aKF6EgKyczMxPTp0xEZGYnCwkK8/PLL2Lhxo3wi4dO3Lvfv34+5c+fi/v37aNu2LdasWYMhQ4bU+b2UlBTMnz8fx48fR1lZGdzd3TF//nwMGzZMvu1nn7Cp7C3Tp1//9GuVbVvRdhXJe+XKFcyZMwfR0dEAgB49euCzzz6r9nRfRY/Bo0ePMGvWLBw9ehRSqRSurq5YvHgxRo0aVWW95+3Pi/QRUPsxVkR0dDR69uyJ2NhYdO3atcr3XnTfFOnrxjjHGnpZU7aj6Pmpym7cuIGBAwfC1tYWv//+u9r83FXGZ599hvnz5yM8PByTJ08WHUdhHFs4tnBsUQzHFtWzfft2vPvuu1i8eLHKFmDw7twZHQJ6YfSMeQq/hveH1ef+cEPcq3nRe76KHpukyxew47P/w59XE2EuscKANydg2KSwGnM82wag+DEDnt+/Ne1DqJcTSp9TYPDAjQdKtVvXPiqzLUX7tS4Hvl6P2MMHcDMlRanXieTj44NBgwZhxYoVoqMQqZzp06fj7NmziIuLEx2FiJqJ5ORkuLm54dKlS+jcubPoOETUwGTvwY2OjkZwcLDoOKQG+P81IiJSVytWrMD333+P5ORk0VFIAB5/IqJ6SWEhg2bo9u3b8Pb2xocffohPPvlEdBwilZCXlwdzc3NERESgf//+ouNUcfr0afTp0wfLli3DggULRMchomauvhNXSf0M79iqXhNrVYkm7IOqEdGnPI71o6qFDETRxPOooQoZvPbaa2jRogV++OGHBkpGIp05cwbDhg2DjY0Ndu3aBR8fH9GRiIg0TmVlJXbs2IGwsDB4enri8OHDkEgkomM1muXLl2PJkiUYP3481q1bB0tLS9GRiIg0Tl5eHmbNmoUtW7ZgwYIFKv332/oUMiAizcFCBkSaZdeuXXjnnXeQl5cHAwMD0XGIqBlgIQMizbZ7925MmDABUqkUxsbGouOQGuD/14iISF1xInvzxuNPRFQvKdqiE1DTqqiowIQJE+Di4oKPP/5YdBwilWFmZgY9PT1kZ2eLjlJNcHAwvvjiCyxatAjbt28XHYeIiIiIiDRIWVkZ9PT0RMegBtK9e3dcvHgR1tbW8Pf3x9SpU/Hw4UPRsYiINEZcXBx69OiBiRMnYtKkSTh16pRGFzEAgMWLF+Pw4cOIiIiAm5sbNm/ejNLSUtGxiIg0QllZGbZu3QpXV1ccPHgQBw8eVOkiBkRERKRZunbtipKSEly+fFl0FCIiItIAMTEx6Ny5M4sYEBEREREREVE1LGTQzHz55ZeIjY3Fzp07oa+vLzoOkUqxtLREVlaW6Bg1mjZtGhYuXIh33nkHmzdvFh2HiIg03PCOrar8q440YR9UjYg+5XGkhsDzqHalpaXQ1dUVHYMakIODA06ePIlt27bh559/hrOzMz788EOkpqaKjkZEpLZOnTqFAQMGoGvXrgD+LmiwZs2aZlMMaNCgQUhKSsKYMWMQFhYGV1dXhIeHo6ioSHQ0IiK1VFxcjM2bN8PNzQ2TJ0/GG2+8geTkZAwdOlR0NCIiImpGOnToACsrK5w/f150FCIiItIA586dQ2BgoOgYRERERERERKSC+E71ZuTu3btYvHgx5s+fD09PT9FxiFSORCJBdna26BjPtXz5cujr62PKlCn4448/sHbtWk44IqJmp65JqAduPGiiJKrvRfpK1ftRkX1T9X0AVOt8VtU+VYfjSKqP51HtSktLm80kzOZES0sL48aNw4gRI/Ddd9/h888/R3h4OAYOHIhJkyZh0KBB0NHRER1TbWhpadX6/crKSrVuT51pSl9pyn5oGqlUip07d2Lz5s34448/0KtXL0RERKB///6iowlhbm6OdevWYfr06Vi9ejVmzpyJRYsWYdy4cZg0aRI8PDxER1QrHFtUl6b0labsh6a5fv06Nm/ejB07dqCgoAATJkzAnDlz4OLiIjqa2lCl+2mqjn1FRER10dLSgq+vL+Li4kRHISIiIjVXVFSExMREfPTRR6KjEBEREREREZEK4gzYZiQsLAytW7fG3LlzRUchUklWVlYqXcgAABYvXozOnTtj7NixuHz5Mvbv3w87OzvRsYiImgzfXKk4Te4rTdk3VdoPVcpCRE2rrKyMhQw0mJGREcLCwjB58mT8/PPP2Lx5M1577TXY2NjgjTfewJtvvonAwMA6J7o1d0090Y8TCxWnKX2lKfuhCYqKinDo0CHs2bMHv/76K3R1dREaGopt27bBz89PdDyV4OTkhA0bNuDjjz/G9u3b8e233+LLL7+Ej48P3nzzTYwaNQpt27YVHVPlcWxRXZrSV5qyH5rg3r172Lt3L/7973/jwoULcHFxwaxZszBx4kT+faceeA9LcewrIiJShL+/Pw4cOCA6BhEREam5+Ph4lJSUICAgQHQUIiIiIiIiIlJB2qIDUNPYvXs3jhw5gi1btsDQ0FB0HCKVJJFIVL6QAQAMHjwY0dHRuHfvHrp27YrIyEjRkYiIiIiISE2VlpZCV5d1LjWdnp4eRowYgWPHjiElJQVhYWE4ceIEunfvjjZt2uCdd97B/v37kZOTIzoqEVGTu3nzJjZu3IjBgwfDxsYGo0ePRn5+PsLDw3H//n18++23LGJQA1tbW8yZMwfJyck4ceIE/Pz8sGrVKjg5OcHX1xcLFy5EVFQUysrKREclImpSZWVlOH36NBYtWgR/f384Ojrik08+gbe3N44fP46UlBTMnz+fRQyIiIhIJfj7+yMpKQlSqVR0FCIiIlJjp06dgoODA5ydnUVHISIiIiIiIiIVxEIGzUB2djZmzJiBSZMmITg4WHQcIpUlkUiQlZUlOoZCvLy8EBcXh27duqF///6YOHEiJ5wQEREREZHSSktLoaenJzoGNSEXFxcsWrQIf/zxBxITEzF16lQkJydj9OjRsLGxQffu3bF8+XLExcWhoqJCdFwiogZXUFCAI0eOICwsDB06dECHDh2wYMEC6OnpYc2aNbh//z6OHTuGt99+G2ZmZqLjqjwtLS307t0bmzdvRnp6Oo4cOYLAwEDs27cPvXr1grW1NYYPH45vv/0Wd+/eFR2XiKhR3Lt3D1u2bMEbb7wBGxsb9OjRA7t374afnx9++uknpKen47vvvsMrr7wCbW3+eZ6IiIhUR7du3VBZWYn4+HjRUYiIiEiNRUdHo1evXqJjEBEREREREZGK4iP3moGPPvoIOjo6WLlypegoRCrNysoKSUlJomMozMrKCvv27cPBgwcxbdo0REREYOPGjRg2bJjoaEREREREpCbKyspYyKAZ8/T0hKenJxYuXAipVIrjx48jIiIC33zzDT7++GNYWVkhKCgIgYGBCAoKgr+/P4yNjUXHJiJSSnp6OmJiYnD27FmcO3cOcXFxKCkpQefOnTFixAgMGDAAQUFBHA8bgJ6eHgYOHIiBAwcCAG7evImIiAhERETgn//8JwoLC+Hm5iYfVwIDA+Hu7s5JvUSkVioqKnD9+vUqY8v169dhZGSEXr16YenSpRgwYADc3NxERyUiIiKqk729Pdq0aYO4uDj07dtXdBwiIiJSQ2VlZTh37hxWr14tOgoRERERERERqSgWMtBwJ0+exI4dO3DgwAFYWFiIjkOk0iQSCbKzs0XHUNqwYcPQp08fzJ07F8OHD0dgYCA+//xzBAUFiY5GREREREQqrrS0FLq6vD1EgIWFBUaMGIERI0YAAK5cuYLjx4/jzJkz2LBhAxYsWABdXV14e3sjKCgIAQEBCAoKgpOTk9jgRERPKSsrQ2JiIs6dOyf/uHXrFrS1teHu7o7AwEC899576NevH+zt7UXH1Xjt27dHWFgYwsLCUFxcjOjoaJw8eRJnz57F/v37UVBQAHNzc3Tr1g2BgYEIDAxEQEAAzM3NRUcnIpLLy8tDbGysfFyJiYmBVCqFsbEx/P39MXToUKxbtw49e/aEkZGR6LhERERESuvatSvi4uJExyAiIiI1dfHiRTx+/Bg9e/YUHYWIiIiIiIiIVBTfqa7BioqK8N577+HVV1/lE9qJFCCRSJCVlSU6Rr1YWFjgm2++wcSJEzF79mwEBwdjxIgRWLVqFVxcXETHIyIiIiIiFVVaWsonUFONPD094enpiRkzZgAA7t69i7NnzyImJgbnzp3D119/jdLSUtjZ2cHb2xudO3eGl5cXvLy80LFjR55XRNTo8vLycOXKFSQmJiIhIQGJiYlITEyUT44PCAjA+PHjERAQwMnxKsDQ0BAhISEICQkB8HfRiStXrsjHll27dmHZsmXQ1taGq6srvLy84O3tLR9b2rZtK3gPiKg5+Ouvv5CYmIgrV67g8uXLSExMRFJSEioqKuDs7IzAwEAsX74cgYGB8Pb2ZlE4IiIi0gj+/v5Yv3696BhERESkpqKiomBjYwM3NzfRUYiIiIiIiIhIRfHdFRps6dKlePToEU6cOCE6CpFakEgkkEqlqKiogLa2tug49dKtWzecOnUKP/74I+bPnw93d3dMmzYNs2bNQsuWLUXHIyIiIiIiFVNaWsrJN6SQtm3bom3btggNDQXwdwHNCxcu4Pz580hISMCxY8fwxRdfoKSkBPr6+nB3d5dPPpVNRLW1tRW8F0SkjioqKnDr1q0qxQoSExNx+/ZtVFZWwsLCAl5eXvD19cU777yDgIAAdOrUSW3v7zUXurq68PHxgY+PD6ZNmwYAePjwIWJiYnDhwgUkJiZiy5YtuH37NgDA0tJSPq54eXmhc+fOcHd3h7GxscjdICI1VVRUhKtXr8qL4Vy5cgUJCQnIzs4GADg5OcHT0xOvv/46fH19ERgYCHt7e8GpiYiIiBqHv78/0tLScP/+fbRu3Vp0HCIiIlIzUVFR6NWrF7S0tERHISIiIiIiIiIVxXeqa6jExESsXbsWX375JRwcHETHIVILVlZWKC8vR25uLiwtLUXHqTctLS0MHz4cQ4YMwTfffINPP/0U4eHhmDBhAmbPng0XFxfREYmIiIiISEWUlZVBT09PdAxSQ0ZGRggODkZwcLB8WVlZGe7evYurV6/iwoULuHDhAsLDw3Hr1i0AgIWFBdq1awcXFxe4uLjA3d0dHh4ecHNzg4mJiahdISIVkZOTg1u3buHWrVu4evUqrl27hlu3buHGjRsoKCgAALRs2RK+vr4YN24cPDw84O7uDnd3d75BUkPY2dlh6NChGDp0qHxZXl4eUlJSqowt27ZtQ35+PoC/CxzIxpOnx5eOHTtCR0dH1K4QkYp48OCBfDx5enxJTU1FeXk59PX10b59e/j6+mLo0KHw8PCAt7c3bGxsREcnIiIiajL+/v7Q1tbG+fPnMWzYMNH1XfYvAAAgAElEQVRxiIiISI1UVFTgzJkzWLp0qegoRERERERERKTCWMhAA1VWVuLDDz9Ely5dMHnyZNFxiNSGRCIBAGRnZ6t1IQMZPT09hIWFYdKkSdizZw9WrFiBzZs3Y9CgQVi6dCl8fX1FRyQiIiIiIsHKy8s5yY8ajK6urnwS6eDBg+XLMzIykJiYiOTkZCQnJyMpKQn/+c9/cOfOHZSXl0NLSwtt2rRBhw4d4OrqCldXV7Rr1w5OTk5wcnKCqampwL0iooaUnp6O1NRUpKam4ubNm0hKSkJSUhJSUlLkT8E2MjKS/ywYMGAAPvzwQ3Tq1AkeHh4wNjYWvAfU1MzMzODr6wtfX1+MHz8ewN9vjr116xb++OMP+dhy/fp1/PTTT3j06BEAyCcny84lV1dXODs7w9HREW3atIG+vr7I3SKiBlJaWoq//voLqampuH37NpKTk5GSkoKkpCTcvHkTT548AQDY2NjAzc0Nrq6uCA4OhqurKzw8PNC+fXtoa2sL3gsiIiIisUxNTdGxY0fExcWxkAEREREp5cqVK8jOzkbPnj1FRyEiIiIiIiIiFcZCBhpo7969iI6OxtmzZ/nmGyIlyAoZZGVloV27doLTNBx9fX2MHz8eo0ePxt69e/Gvf/0L/v7+6N+/P8LCwjBw4ED+rCAiIiIiaqYqKyv5FGtqdDY2NnjllVfwyiuvVFleUlKCP//8E0lJSfJJZ1evXsWBAwfkE1GBv/+/7ujoKP+QTUSVfcj+P09EYlVWViItLQ23b9+WFytITU3FnTt35P8WFxcDAHR0dODo6AhXV1cEBARg/Pjx8snmbdq04dhEtdLW1kb79u3Rvn37at+TSqVVCuckJycjMjISGzduREFBgfz1rVq1gqOjo7xoztPjiqOjIwwNDZt6t4ioBk+ePKkypsg+ZGPNgwcPUF5eDgAwNjaGq6srOnTogNdee01euMDV1VUjilcTERERNaauXbsiLi5OdAwiIiJSM1FRUTA3N8dLL70kOgoRERERERERqTAWMtAwhYWFmDdvHiZMmIBu3bqJjkOkVqysrABA/vQ3TaOrq4sxY8Zg9OjROHz4ML766isMHjwYzs7OmDJlCiZOnCjvAyIiIiIiIqLGpq+vj06dOqFTp07VvldYWIg7d+7IP2ST1mJjY7F3716kp6fL1zUzM0Pbtm3Rpk0b2NnZyf91cHCAvb09HBwcYGdnB11d3golqq+ioiLcv38faWlpuH//PtLT03Hv3j2kp6fjr7/+woMHD3D37l2UlJQAAPT09ODg4CCfKB4YGFhlsriDgwP09PQE7xVpIgsLC3Tt2hVdu3at9r1Hjx7VWGDj559/RmpqKh4/fixft2XLlmjbti3s7e1rHFfs7e1hbW3dlLtGpHGysrJqHFdk/6ampiI9PR2VlZUAABMTE3lRK29vbwwZMqTK2GJnZyd4j4iIiIjUl7+/P3766ScWviUiIiKlREVFoWfPntDR0REdhYiIiIiIiIhUGN+9q2FWrFiBnJwcfPLJJ6KjEKkdU1NT6Ovra2whAxktLS0MHjwYgwcPRlJSEsLDw7FixQosWbIEb775JqZMmQJ/f3/RMYmIiIiIiKgZMzY2hru7O9zd3Wv8fnFxcZUCB3fv3sW9e/eQlpaG+Ph4pKWlISsrS76+trY27Ozs0LJlS7Rq1Ur+YWdnBzs7O1hbW8PGxgbW1tacmErNRmlpKTIzM5GRkYGMjAw8evQIGRkZSEtLw4MHD6p8SKVS+et0dHRgZ2eHVq1aoWXLlnB3d0ffvn3lT7Z3cnJCq1at+MZFUjm2trawtbV97r3P7OzsKmOLbBJ1QkKCfLJ1UVGRfH0DAwO0bNkSrVu3rja2yMYTOzs72NjYoEWLFk21m0RCFRQUIDMzEw8fPkRGRgYyMzPx6NGjKsVwHjx4gLS0NBQXF8tfZ2RkJB9XWrdujYCAAIwcOVJepMDJyYmFmImIiIgaUZcuXSCVSvHnn3+iffv2ouMQERGRGqisrER0dDRmzpwpOgoRERERERERqTgWMtAgf/75J9auXYuVK1eiZcuWouMQqSVLS8sqEx00nZubG9avX48VK1Zg9+7d2LhxI7p27YpOnTrhrbfewltvvQV7e3vRMYmIiIiIiIiqMDQ0RMeOHdGxY8fnrlNcXFzjhOy0tDSkpKQgOjoaaWlpVSZoA39P0n66qIFsEuqzX1taWsLS0hIWFhYwNTVt7F0mqlVlZSVycnIglUqRk5MjL1CQmZlZbUKpbFJpTk5OlW3o6OjA2tpa/sR5R0dHBAUFySeVygqB2NnZsUgBaSSJRAKJRIIuXbo8dx2pVFrjuHL//n3ExcXh/v37ePToUZWCB8Dfk7Stra3lxRRkBXRsbGxga2srH2dk44qlpSUMDAwae5eJavXkyRP5uCIbW2RjyKNHj2oshlPTuW9jYwMHBwfY29ujS5cuePXVV6uMK61atYKlpaWgvSQiIiIiAPD29oauri4uXrzIQgZERESkkKSkJDx8+BC9evUSHYWIiIiIiIiIVBwLGWiQf/7zn3BxccG0adNERyFSWxKJBNnZ2aJjNDkTExNMmjQJkyZNwoULF7Bjxw58/vnnWLhwIfr06YNJkyZh6NCh0NfXFx2ViIiIiIiISCGGhoZwdnaGs7NzrevV9FT6pyeBP3z4EAkJCfLJe5mZmaisrKyyDV1dXXlhg6cnoT7va3Nzc5iZmaFFixZo0aIFzM3NG7MrSA2Ul5cjLy8PeXl5KCgoQH5+vnziqOzj6cmkz379bEEOANDX15cX4JBNnnZ0dKxxMrVsPSKqnYWFBSwsLODu7l7rerKn0qenp1cZP54uKpKSkiKfEJ6fn19tG8bGxgqNKU8X1TEzM5OPL0ZGRo3VDaQmioqKUFBQIB9fnh1bahtXcnJyUFhYWG2bJiYmVQpw2NnZwcPD47mFn1q0aCFgz4mIiIhIWUZGRujUqRMuXbqEkSNHio5DREREaiAqKgomJibw8fERHYWIiIiIiIiIVBwLGWiIyMhIHD58GBEREdDT0xMdh0htWVlZNctCBk/z9fWFr68vVq1ahR9//BHbt29HaGgoJBIJQkNDERoaiqCgIGhpaYmOSkRERERERPTC9PT00LJlS7Rs2VKh9SsqKpCZmanQRMAbN25U+To3N/e52zU1NZUXNrCwsICJiYn8a0tLS/nnJiYmsLS0hI6ODszMzKCnpwcTExMYGBjA2NgYhoaGMDIygrGxMQwMDGBiYsL7hQ2ksLAQT548QX5+PkpLS5GXl4fy8nLk5uaioqICOTk5qKioQG5uLkpKSlBQUICcnBwUFBTIixNIpVL5148fP0Zubi4KCgpQXFxcY5s6Ojo1Tlx2dXWtdXKztbU1zMzMmriHiEhG9jPb0dFRofWLi4urjC3PG1eys7Px559/Vvl+UVFRjdvU1taGubm5UuOLkZERDA0N0aJFC+jr68vHEDMzM+jo6MDCwgLa2tqwsLBoyO5q1qRSKSoqKuT/5ubmoqysDI8fP5aPJU+ePEFhYWGN40l+fv5zx5eKiooa2zQyMqpxDHFycqq1aIaVlRULZBARERFpsC5duuDChQuiYxAREZGaiIqKQlBQEP8GRURERERERER1YiEDDVBSUoIPPvgAw4cPR//+/UXHIVJrEomk2RcykDEyMsKYMWMwZswY3L17Fzt27MDu3buxYcMGtG3bFiNHjkRoaCh8fX1FRyWiJnbvZjLORhwSHYOIiGpR8Phxo7fB8UCsuzeTRUcgara0tbXlT7NXlmyye25uLvLy8uQTDnNzc/H48WPk5+dX+Vo2QfHWrVvyrwsKCiCVSuWTGxUlm4Rqbm4ObW1tWFpayr9nYWEhL1hoamoKXd2/bxvLJrQCkBdMkPWBubl5tTZ0dXVhampaZxZZkYXayIoF1KayshJSqbTactkEUJmcnBz5548fP0ZZWRmAv59ULSsg8HR/lpaWIj8/Xz5x9On1FGFpaSnvC3Nzc/kEYVNTUzg6OsonDcuenC6bVPz0k9RlBStYjICoeTA0NISDgwMcHByUfm1xcTGkUiny8/MVHl8eP36MtLS0KuONbKJ8SUmJQu3KxgLZzzt9fX20aNECQNUxQ0tLq0rhA9k4BEBeMAGAvCDPs54ei2rz9FhWk+eNGc+S/ex/1vPGDFnxAZmnCwg83Z+yz2XjkKwYjiJk/WlsbIwWLVpUGV9atGgBW1vbKl8/b3yRjS2K9CdRbe7dSuH9AKJm6m7KDdERiKgR+fj44PDhw6JjEBERkZqIjo7Ge++9JzoGEREREREREakBFjLQAOvWrcPdu3cREREhOgqR2pNIJHj06JHoGCqnbdu2WLRoERYtWoTExETs2bMHe/fuxerVq9GhQweEhoZi1KhR8PDwEB2ViBpZG4c2OHr0MM4d5ZtYiIhUmZaWFlq3bt1o2+d4oBpeeaWv6AhEpCRtbW1YWVnBysqqwbb57GT7wsJCPHnyRF4IQDZRUiqVorKyEjk5OVUmXdY2ATMzM1M+AbO4uFj+1O9nCwXIyNquiyxLbZ6eEFsbExMT6OrqIjs7GyYmJjAwMKg2aVZWxAGoOmnWwsJCPmlWR0dHXjRA9rls4qhscq2hoSGMjIzkhRhkTyqXFX94enIuEVFTMTQ0hL29fYNuUzbZXjYmSKVS+b/l5eXIy8uTjwWySf1PjxO1jRl37typ1g7w/DFEkTFDVoCmLk+PAbV5utiPzNOFFp4eM4CqRRRat24tfwrd00UYZJ/LMsjGENkYJduGpaVltSIRRKqkjUMbHDlyGLGRv4qOQkSC9O7dR3QEImokXbp0QVZWFlJTU+Ho6Cg6DhEREamw27dv4+7du+jVq5foKERERERERESkBljIQM2lp6djxYoVmDt3LpycnETHIVJ7VlZWuH79uugYKs3LywteXl749NNPcfXqVezfvx87d+7E8uXL4eLign/84x9444030L1791qfgEVE6ikigm9QJc3j6emJ119/HcuWLRMdhUhtNKfx4KWXXkLv3r2xYcMG0VEaRWVlJX9vJ1JzBgYGMDAwqHHSZXNRWVmJoUOHIiEhAfHx8c26L4iIGoJs8ry6/jxNTk6Gm5sbLl26hM6dO4uOQ6RRDh8+JDoCNQE3Nze8/vrrWLlypegoRETUhHx8fKCtrY2LFy+ykAERERHVKioqCgYGBvD39xcdhYiIiIiIiIjUAB8PpeaWLl0KMzMzzJ49W3QUIo1gaWmJ7Oxs0THUhoeHB5YuXYqUlBRER0dj2LBhOHz4MHr06IE2bdpg2rRpOH78OEpLS0VHJSIiIiKql9DQUOzbt0/+pFgiIlI9Wlpa+O6771BaWorJkyeLjkNEREREpLZu376N5ORk9O/fX3QUIiJqYiYmJujQoQMuXbokOgoRERGpuOjoaHTr1g2GhoaioxARERERERGRGmAhAzWWnJyMrVu3Yvny5TA2NhYdh0gjWFlZISsrS3QMtaOtrY3g4GCsXr0af/75Jy5fvoz33nsPZ8+eRUhICOzs7DB+/Hjs27cPUqlUdFwiIiIiIoW9+eabyMzMxO+//y46ChER1cLGxga7d+/GgQMHsG3bNtFxiIiIiIjU0n//+1+YmpoiKChIdBQiIhKgS5cuuHDhgugYREREpOJ+++039OnTR3QMIiIiIiIiIlITLGSgxubNm4f27dtj3LhxoqMQaQyJRAKpVIqKigrRUdSat7c3lixZgkuXLuHWrVtYtGgRUlNTMWbMGNjY2KBPnz74/PPPce3aNdFRiYiIiIhq1a5dO/j5+WHPnj2ioxARUR169+6NmTNn4oMPPsCNGzdExyEiIiIiUjtHjx7FK6+8An19fdFRiIhIABYyICIiorqkpKTgzp07CAkJER2FiIiIiIiIiNQECxmoqdjYWPz0009YvXo1dHV1Rcch0hgSiQQVFRWQSqWio2gMZ2dnfPTRRzh16hSkUil+/PFHuLq6Yt26dfDw8ICzszMmT56M/fv3Iz8/X3RcIiIiIqJqQkNDceDAARQXF4uOQkREdVixYgU8PT0xcuRI/twmIiIiIlJCSUkJTpw4gQEDBoiOQkREgnTp0gUPHz7EgwcPREchIiIiFRUZGQlTU1N07dpVdBQiIiIiIiIiUhMsZKCmZs6ciZ49e2LQoEGioxBpFCsrKwBAdna24CSaqUWLFhg8eDC++eYb3Lt3D/Hx8ZgyZQquXr2KUaNGwdbWFiEhIfjXv/6FCxcuoLKyUnRkIiIiIiKEhoaioKAAERERoqMQEVEd9PT0sGvXLqSmpmLhwoWi4xARERERqY3o6Gjk5+ejX79+oqMQEZEgXbp0gZaWFi5evCg6ChEREamoyMhI9OnTB3p6eqKjEBEREREREZGaYCEDNXTw4EGcPXsWq1atEh2FSONIJBIAQFZWluAkmk9bWxu+vr6YO3cuTp8+jXv37mHDhg2wsrLC6tWr4efnh9atW2PChAnYvXs3Hj16JDoyERERETVTrVq1QnBwMPbs2SM6ChERKaBdu3b49ttvsW7dOhw6dEh0HCIiIiIitRAREYFOnTrB2dlZdBQiIhLEwsICzs7OLGRARERENSovL8epU6cQEhIiOgoRERERERERqREWMlAz5eXlWLRoEUaNGoWAgADRcYg0jpWVFQAgOztbcJLmp1WrVpg4cSL27NmDhw8f4vz58wgLC8OdO3cwYcIE2Nvbw9fXF/PmzUNERATy8/NFRyYiIiKiZiQ0NBSHDh3i76FERGpi5MiRGDNmDN555x2kpaWJjkNEREREpPIiIiIwYMAA0TGIiEiwLl26sJABERER1ej8+fPIyclhIQMiIiIiIiIiUgoLGaiZLVu2ICUlBcuXLxcdhUgjmZiYQF9fn4UMBNPW1oa/vz8WLFiAkydPIjs7Gz///DOCgoLw888/Y+DAgbC0tERgYCALGxARERFRkxgxYgRKS0vxyy+/iI5CREQK2rRpEywtLTF69GhUVFSIjkNEREREpLLu3buHq1evspABERHBx8cHly9fFh2DiIiIVFBkZCQcHBzg5uYmOgoRERERERERqREWMlAjBQUFWLZsGd5//320b99edBwijSWRSJCVlSU6Bj3FxMQEgwcPxldffYXr16/j4cOH2L17N7p27Yrjx49j0KBBsLCwgJ+fH6ZPn479+/dDKpWKjk1EREREGsTa2hp9+/bFvn37REdpUJWVldDS0hIdg4ioUZiYmGD37t04e/Ys1qxZIzoOEREREZHKioiIgKGhIXr06CE6ChERCebt7Y3U1FTk5OSIjkJEREQqJjIyEv369RMdg4iIiIiIiIjUDAsZqJG1a9eioKAACxcuFB2FSKNJJBJkZ2eLjkG1sLW1xRtvvIH169cjPj4e6enp+Pe//43u3bvjzJkzGDVqFKytrVnYgIiIiIga1GuvvYZjx46hsLBQdBQiIlKQr68vli9fjoULFyImJkZ0HCIiIiIilXT06FH06dMHRkZGoqMQEZFg3t7eAIArV64ITkJERESq5PHjx4iNjUVISIjoKERERERERESkZljIQE3k5ORgzZo1mD17NmxsbETHIdJoVlZWLGSgZmoqbHDw4EH07duXhQ2IiIiIqMEMHToUT548wfHjx0VHISIiJcyePRv9+vXD2LFjkZeXJzoOEREREZFKKSsrw/Hjx9G/f3/RUYiISAU4ODjA2toaCQkJoqMQERGRCjl58iTKysrw8ssvi45CRERERERERGqGhQzUxNq1a6Grq4vp06eLjkKk8SQSCQsZqDlbW1sMHjwYq1atQnx8PNLS0vDDDz+ga9euiIyMxMiRI2FjY4OAgADMnj0bP/30E9LT00XHJiIiIiIVZ2dnBz8/Pxw6dEh0FCIiUoKWlha2bt2KgoIChIWFiY5DRERERKRSzp07B6lUigEDBoiOQkREKsLT05OFDIiIiKiKyMhIdO7cGba2tqKjEBEREREREZGaYSEDNSCVSrFhwwbMnDkTpqamouMQaTwWMtA8dnZ2GDVqFMLDw3Ht2jWkp6fjhx9+QJcuXXD06FEMHz4cLVu2hIuLC8aOHYuNGzfi0qVLKCsrEx2diIiIiFTM4MGDcejQIVRUVIiOQkRESrC1tcW2bduwa9cu7Nq1S3QcIiIiIiKVcfToUTg7O8PV1VV0FCIiUhHe3t4sZEBERERVREZGIiQkRHQMIiIiIiIiIlJDLGSgBj7//HPo6OjwaWFETcTKygpZWVmiY1AjsrOzw8iRIxEeHo7ExETk5uYiOjoakydPRm5uLpYsWYIuXbrAwsICwcHBmD59Ovbv34+MjAzR0YmIiIhIsCFDhuDhw4eIi4sTHYWIiJQ0YMAA/POf/8TUqVORnJwsOg4RERERkUqIiIjAoEGDRMcgIiIV4uXlhatXr/LhD0RERAQAuH//Pm7cuMFCBkRERERERERULyxkoOKysrLw1VdfYfbs2TA1NRUdh6hZsLS0RHZ2tugY1IRMTEwQHByMuXPn4tChQ8jMzMSff/6J8PBw+Pr64syZMwgNDYWtrS1atWqFkSNHYv369bhw4QKfxEtERETUzHh5ecHR0RG//vqr6ChERFQPK1euhKurK0aPHo2SkhLRcYiIiIiIhMrIyMClS5fQv39/0VGIiEiFeHt7o6ioCCkpKaKjEBERkQo4duwYDA0N0b17d9FRiIiIiIiIiEgNsZCBiluzZg309fXx/vvvi45C1GxYWVmxkAHBxcUF48ePx/r16xEfH4+cnBxERkZi0qRJKCoqwtKlS+Hn5wdzc3MEBwdj3rx5OHToEM8dIiIiomagX79+iIyMFB2DiIjqwcDAAHv37kVycjIWL14sOg4RERERkVARERHQ1dVFnz59REchIiIV4uHhAT09PSQkJIiOQkRERCogMjISPXr0gJGRkegoRERERERERKSGWMhAhWVlZWHDhg2YM2cOTE1NRcchajYkEgmkUinKy8tFRyEVYmZmhr59+2Lp0qU4dOgQMjIycPHiRaxatQpOTk7Yv38/hgwZAhsbG3h6emLixIkIDw9HXFwcnjx5Ijo+ERERETWgkJAQxMbGIicnR3QUIiKqh/bt2+OLL77A6tWrWZiGiIiIiJq1iIgI9OjRAyYmJqKjEBGRCjEwMICrqysSExNFRyEiIiLBKisrceLECYSEhIiOQkRERERERERqSld0AHq+1atXw8DAAFOnThUdhahZkUgkqKiogFQqhZWVleg4pKJ0dXXh4+MDHx8fTJs2DQCQnp6OmJgYnDt3DnFxcfjxxx+Rm5sLPT09eHl5wd/fH35+fvDz84OHhwd0dTkMExEREamjvn37AgBOnDiB119/XXCaF6OlpSU6AhGREBMnTsRvv/2GsWPHIiEhAfb29qIjERERERE1qYqKChw/fhyzZ88WHYWIiFSQt7c3EhISRMcgIiIiwRISEpCeni7/GzkRERERERERkbK0RQegmmVlZWHjxo2YM2cOTE1NRcchalZkxQuys7MFJyF1Y29vj9deew3/+te/8Pvvv0MqleL+/fs4cOAA/vGPf+DmzZuYPn06OnfuDGNjY3h4eGDy5MnYsWMHrl69ioqKCtG7QEREREQKsLS0hJ+fn0Y8xVtHRwdlZWWiYxARCREeHo4WLVrg7bffRmVlpeg4RERERERNKj4+Ho8ePcKAAQNERyEiIhXEQgZEREQEABEREbC3t4e3t7foKERERERERESkpvgoaBX12WefwcDAAFOnThUdhajZkUgkAFjIgBpGq1at0KpVKwwePBgAUF5ejhs3buDChQvyj507d6KoqAgmJibw9vaGr6+v/MPd3Z1PySUiIiJSQf369cOuXbtEx3hhurq6LGRARM2Wubk59u7di+7du+OLL77AjBkzREciIiIiImoyERERcHBwgIeHh+goRESkgry9vXH//n1kZmbC2tpadBwiIiIS5MiRIxg4cCC0tfnsRCIiIiIiIiKqHxYyUEGZmZnYtGkTPv74Y5iYmIiOQ9TsyAoZZGVlCU5CmkhHRwceHh7w8PDA+PHjAQClpaVISEhAfHw84uPjcerUKYSHh6OsrAxWVlbw8/ODn58f/P394evrCwcHB8F7QUREREQvv/wyli9fjrt376Jt27ai49QbCxkQUXPn7++PJUuWYP78+ejduzd8fHxERyIiIiIiahIREREYMGAAC2oTEVGNvLy8AABXrlxBnz59BKchIiIiEXJychATE4Pp06eLjkJEREREREREaoyFDFTQmjVrYGRkhKlTp4qOQtQsmZiYwMDAANnZ2aKjUDOhp6cnL1YgU1paiuTkZFy4cAFnzpzBwYMHsXLlSlRUVMDCwgIeHh7w9fWFr68vPDw84OnpCX19fYF7QURERNS8dOvWDfr6+jh9+jRGjx4tOk696ejosJABETV78+fPx4kTJzBy5EhcvHgRpqamoiMRERERETWqnJwcnD9/Hh999JHoKEREpKJatmwJa2tr/PHHHyxkQERE1ExFRERAS0sLffv2FR2FiIiIiIiIiNQYCxmomMePH+Prr7/GnDlz0KJFC9FxiJotiUSCrKws0TGoGdPT04OHhwc8PDwwfvx4AH+PEZcuXcKlS5dw+fJlREVFYdOmTSgtLYWxsTFeeukl/D/27jwuqnr/H/hrYIYdhl3ZFEZZBxHBJfcVRf2ZmV0XxNTSTDPL0rJvdbWstDK9rVrmkumt1OpWYuB+1Wx1l1UEFFkE2RGQbX5/eGdiYIAZGDgMvJ6PxzyEM2fOeX3OOTPO53A+79OvXz8EBwejX79+6NOnDywsLARuCREREVHnZG5ujpCQEJw+fdqgCxmIxWIWMiCiLs/IyAhffPEFgoOD8eyzz2L79u1CRyIiIiIialOHDx/mYBQiImqWXC5HbGys0DGIiIhIIFFRURg2bBhsbW2FjkJEREREREREBoyFDDqYrVu3oqamBkuWLNfWmY4AACAASURBVBE6ClGXZm9vj4KCAqFjEKmxtrbGiBEjMGLECNW06upqJCYm4ty5c4iLi0NsbCy+/fZb3LlzB8D9uySEhoaqHgMGDED37t2FagIRERFRpzJ8+HAcOnRI6BitIhaLUVNTI3QMIiLBubm5Yffu3Zg8eTLGjh1r0EVqiIiIiIiaExMTg8GDB3MwChERNUkul+PSpUtCxyAiIiIB1NTUICYmBqtXrxY6ChEREREREREZOBYy6ECqqqrw4YcfYvHixbxggEhgDg4OyMvLEzoGUbPEYjHkcjnkcrna9MzMTJw7d071+PLLL/Haa68BuF/cQC6XIyAgQFXgwN/fH0ZGRkI0gYiIiMhgDRs2DBs3bkReXh4cHByEjtMiLGRARPS3iRMn4qmnnsLSpUsxePBgeHl5CR2JiIiIiEjvFAoFYmJisHTpUqGjEBFRByeXy7F3714oFAqIRCKh4xAREVE7+v3333Hnzh1MmjRJ6ChEREREREREZOBYyKAD2b17N7Kzs/H0008LHYWoy7O3t0d+fr7QMYhazNXVFa6urpgyZYpqWm5uLi5evIgLFy7g4sWLOHz4MD7++GPU1NTAxsYGffv2Rd++fdGnTx8EBQVBLpfD2tpawFYQERERdWzDhg2DSCTCL7/8ggcffFDoOC0iFotRXV0tdAwiog5j48aNOHPmDGbOnIlffvkFEolE6EhERERERHp1+fJlZGZmIjw8XOgoRETUwQUGBqKoqAgZGRlwd3cXOg4RERG1o0OHDsHLywv+/v5CRyEiIiIiIiIiA8dCBh2EQqHApk2bEBkZiR49eggdh6jLs7e3R2ZmptAxiPTKyckJYWFhCAsLU00rKyvD5cuXVQUO/vzzT+zatQulpaUQiUTw8vJCnz59EBgYiKCgIAQGBsLHxwdiMb9CEBEREdnb28PHxwe///47CxkQEXUSpqam2Lt3LwYMGIDXXnsNb7zxhtCRiIiIiIj06ueff4aTkxP69esndBQiIurg+vTpAwC4evUqCxkQERF1MVFRUZg8ebLQMYiIiIiIiIioE+AoxA7ihx9+QHx8PPbt2yd0FCIC4ODggCtXrggdg6jNWVhY4IEHHsADDzygNj0zMxNxcXGIjY3FuXPnEB0djY0bN+LevXuQSCTw9vaGXC5HQEAAQkNDIZfL4eXlBZFIJFBLiIiIiITRv39/nDt3TugYLcZCBkREDQUEBGDz5s1YsmQJRo8ejbFjxwodiYiIiIhIb2JiYjBx4kQYGRkJHYWIiDo4Ozs7uLq6IjY2FuHh4ULHISIionaSmZmJS5cuYf369UJHISIiIiIiIqJOgIUMOoh3330XU6ZMgVwuFzoKEeH+H2Pz8/OFjkEkGFdXV7i6umLcuHGqaVVVVUhKSlIrcPDll1/i9ddfh0KhgFQqRWBgoKrAgVwuR3BwMBwdHQVsCREREVHbCg0NNei7dbOQARGRZk888QROnDiBefPm4eLFi+zbEhEREVGnUFJSgrNnz2LRokVCRyEiIgMhl8sRGxsrdAwiIiJqR1FRUTAzM8PIkSOFjkJEREREREREnQALGXQAp0+fxtmzZ3HmzBmhoxDR/zg4OLCQAVE9EokEcrkccrkc//jHP1TT8/PzcfnyZVy9ehVXrlzBlStX8NVXX6GkpAQikQienp7o06cPAgMDERQUBLlcDh8fH5iYmAjYGiIiIiL96N+/P/Ly8pCWlgZPT0+h4+iMhQyIiBq3ZcsW9OvXD/PmzcPBgwchEomEjkRERERE1CrHjh1DdXW1WiFrIiKipgQGBvKaNiIioi4mKioK48aNg7m5udBRiIiIiIiIiKgTYCGDDuCdd97BoEGDMHToUKGjENH/2Nvbo7CwENXV1RCL+VFJ1BR7e3uMGjUKo0aNUpuemZmJuLg4xMbG4ty5c4iJicGmTZtQUVEBsViMHj16ICAgAHK5XPWvv78/LCwshGkIERERUQuEhITA2NgY586dM9hCBlVVVULHICLqkGxtbfHll19i9OjR+Pjjj7Fs2TKhIxERERERtUp0dDT69+8PZ2dnoaMQEZGBkMvl+PTTT1FbWwsjIyOh4xAREVEbq6ysxPHjx/HOO+8IHYWIiIiIiIiIOgmOzhVYfHw8Dh06hP/85z9CRyGiOuzt7aFQKFBYWAgrKyvk5eUhPz8fjo6OcHFxEToekUFwdXWFq6ur2l19KisrkZCQgPj4eMTGxiI+Ph4//vgjNm3ahKqqKhgbG0MmkyEwMBD+/v6q4gb+/v4wMzMTsDVEREREmllYWMDPzw/nzp3D9OnThY6jMxMTE1RWVgodg4iowxo2bBheeeUVrFy5EsOGDUNwcLDQkYiIiIiIWuzw4cOYO3eu0DGIiMiABAYGoqysDPHx8aiqqkJSUhKSkpJgZmaGlStXCh2PiIiIWuH27duYM2cOhg0bhilTpiAkJAT//e9/UVJSgokTJwodj4iIiIiIiIg6CRYyENjbb78NHx8fTJ48WegoRF3a/v37ceLECeTl5SErKwvZ2dmwsrKCu7s77t27p5pv2LBhOH36tIBJiQybiYkJgoKCEBQUpDa9uroaN2/eRGxsLOLi4hAbG4uYmBhs3rwZ5eXlAAAXFxfI5XIEBASo/g0ODoaVlZUQTSEiAxUdHY0XX3wRtbW1qmlpaWnYtm0bvvvuO9U0a2trHDx4EPb29kLEJCIDExwcjEuXLgkdo0VMTU3V+jxERNTQq6++iv/+97+YM2cO/vzzT1hYWAgdiYiI6li1ahWio6NVv1dWVsLExAQzZsyAqampavqIESPw8ccfCxGRiKhDiI+PR2pqKsLDw4WOQkREHVhxcTHOnj2LxMREJCYm4sqVKzAzM0NgYCAAQCQSQSQSoVu3bixkQEREZOCysrJw7NgxnDx5Eq+99hqcnJzQvXt3eHp6olu3bkLHIyIiIiIiIqJOgoUMBJSZmYmvvvoKW7duhZGRkdBxiLq0L774AocOHQIAKBQKjfOIxWL079+/PWMRdRlisRgymQwymQxTpkxRTa+qqsK1a9cQFxenKnBw4sQJbN26FZWVlTAyMoKnp6dacYOAgAD4+fmxwAERaVRZWYnLly83mF5aWoqsrCzV7+bm5jAzM2vPaERkwPz9/bFjxw6hY7SIqakpCgoKhI5BRNShGRkZYffu3QgODsZzzz2HrVu3Ch2JiIjqyMnJQWxsbINz+9euXVP9LBKJ4OPj097RiIg6lOjoaNjZ2WHgwIFCRyEiog5s/fr12LBhAyQSCYD7f7OvS/m9OyQkpN2zERERkX5ZWloCAGpqagAAubm5KCgoQHV1NWxtbREWFoZp06ZhypQpcHJyEjIqERERERERERkwFjIQ0NatWyGVSjF79myhoxB1ecuWLUNUVFST81RXVyMsLKydEhERAEgkElVxgrqqq6tx8+ZNxMbGqgocHD16FB9++CHKysoAAHZ2dqoCBzKZTPWzl5cXRCKREM0hog4gPDwc1tbWKCkpaXQeiUSC6dOn8067RKQ1f39/pKWloayszOA+O8zMzFBRUSF0DCKiDs/d3R3btm3Dww8/jFGjRmHWrFlCRyIiov+JiIjA7t27m50vMjKyHdIQEXVcMTExGD9+PIyNjYWOQkREHdi8efPwzjvvNChgUJeJiQlCQ0PbMRURERG1BU1/266urgYA3Lt3Dz///DMOHToEKysrFBQU8KZ9RERERERERNQiLGQgkMrKSmzbtg2LFy/mnV6JOoAJEyagd+/euH79eoO7NimJxWKMGDGinZMRkSZisRgymQwymQxTpkxRTa+urkZKSgri4uKQmJiIhIQEXLp0Cfv27UNhYSEAwMbGBr6+vvDz84Ofnx98fX3h7++P3r17w8TERKgmEVE7MTExwYwZM7B79+5GL8CqqqpCREREOycjIkPm5+eH2tpaXLt2DX379hU6jk5MTU1x7949oWMQERmEadOm4cknn8SSJUvwwAMPwNPTU+hIREQEYOzYsbC3t0d+fn6j85ibm2PixIntmIqIqGMpLy/HqVOn8PHHHwsdhYiIOjg/Pz/MmzcPe/bsafRvaZWVlejXr187JyMiIiJ9s7S0bPL5mpoaGBsb48knn2QRAyIiIiIiIiJqMRYyEMg333yDO3fuYPHixUJHISIAIpEIK1aswNNPP62xkIFIJMKgQYNgZWUlQDoi0pZYLIaPjw98fHwaPFdQUICUlBTExsYiLi4OKSkp2Lt3LxITE1FTUwOxWIwePXpAJpMhICAAcrkcMpkMcrkcLi4uArSGiNpKREQEtm/f3ujzUqkU48aNa8dERGTovL29IZFIEB8fz0IGRESd3ObNm3H27FnMnTsXJ0+e5N1siYg6ALFYjIiICHz22WeorKxs8LxEIsHMmTNZWJyIurQTJ06goqICEyZMEDoKEREZgHXr1mHv3r2NPq9QKFjIgIiIqBNorpCBWCyGXC7HunXr2ikREREREREREXVGLGQgkI8++gjTp0+Hu7u70FGI6H/mz5+P1atXo6SkpMFzEomEd2siMnB2dnYIDQ1FaGio2vTy8nIkJiYiMTERCQkJSEhIwOnTp/H555+jrKwMAODk5AR/f3/4+vrC19cX/v7+8PPzQ8+ePTlohcgAjRo1Ck5OTsjNzW3wnEQiQUREBCQSiQDJiMhQSSQSyGQyJCQkCB1FZ2ZmZqioqBA6BhGRwTAzM8O///1vDBgwAOvWrcPatWuFjkRERABmz56Njz76SONzVVVViIiIaOdEREQdS0xMDPr27QtXV1ehoxARkQFwc3PD0qVL8fHHH6OqqqrB81ZWVujRo4cAyYiIiEifJBIJjI2NUVNT0+A5kUgEiUSCffv2wcTERIB0RERERERERNRZsJCBAH7//Xf88ccf2LRpk9BRiKgOCwsLLF68GO+//36DP8RWVlYiLCxMoGRE1JbMzc0RHByM4ODgBs9lZmYiLi4OKSkpiI2NRVxcHI4dO4bU1FQoFApIJBJ4eHhAJpMhICAAcrkcMpkMMpkMXl5eEIlEArSIiJpjZGSEyMhIfPTRRw3+z6+qqsLs2bMFSkZEhszPzw+JiYlCx9CZqakp7t27J3QMIiKDIpfL8e6772L58uUYOXIkRo8eLXQkIqIub/DgwXB3d8etW7caPGdnZ4dRo0a1fygiog4kOjoaDz/8sNAxiIjIgLz88sv47LPPNBYyCA4O5t/CiYiIOglzc3OUlpY2mK5QKLBt2zb4+PgIkIqIiIiIiIiIOhMWMhDAhx9+iODgYAwdOlToKERUz7JlyzQWGbGysmpwF3ci6vxcXV013p2osLAQiYmJSExMRFJSEq5du4ZTp05h+/btuHv3LgBAKpXC29sb3t7e8PX1hY+PD3x8fODt7Q0bG5v2bgoR1TN79mxs3ry5wfTu3bvzezoRtUjPnj3x119/CR1DZyxkQETUMk899RSOHj2KRx99FBcvXoSDg4PQkYiIujSRSITIyEi89957agOtTExM8Oijj0Is5p9EiajrSk1NRVJSEiZMmCB0FCIiMiCOjo5YtWoV3nzzTVRXV6umm5iYYODAgQImIyIiIn3SVMhALBYjMjISc+bMESgVEREREREREXUmvGqnneXk5ODAgQPYsmWL0FGISIOePXti6tSpOHjwoOpiR2NjY4SFhcHY2FjgdETUUdja2mLQoEEYNGhQg+cKCgqQkpKC2NhYxMXFISUlBT/99BPi4uJQXl4O4P5d4GQyGWQyGQICAiCXyyGTyeDv7w8LC4v2bg5RlzRgwAB4enoiLS1NNU0ikeDRRx+FkZGRcMGIyGB5eHjgu+++EzqGzljIgIio5Xbs2IHg4GAsWrTIIP8PICLqbGbPno0NGzaoTausrMTs2bMFSkRE1DEcOnQI1tbWGDJkiNBRiIjIwKxcuRIffPABCgoKVNNqamoQHBwsYCoiIiLSp/rXqonFYri7u+ODDz4QKBERERERERERdTYsZNDOtmzZAmtra8yaNUvoKETUiBUrVuD7779Xm8Y7lBCRtuzs7BAaGorQ0FC16VVVVUhLS0NSUhISExNx7do1JCUlYceOHUhPTwdwv3BKz5494ePjo/bo3bs3evTowYIqRHo2d+5cbNiwQVW8qKqqioMbiKjFevTogaysLFRXVxvU3V5NTU1RUVEhdAwiIoNkZ2eHL7/8EmPGjMGnn36KxYsXCx2JiKhLCwoKgq+vLxITE1XT3N3debdYIuryYmJiMHbsWJiYmAgdhYiIDIyVlRVeeeUVvPDCC6ipqQHAQgZERESdjaWlpdrvIpEI3333HaytrQVKRERERERERESdjeFcWd8JVFVVYdu2bVi0aBHMzc2FjkNEjRg+fDiCg4Nx+fJl1NbWoqamBmFhYULHIiIDJ5FI4O3tDW9vb0yePFntucrKSty6dQuxsbGIi4tDSkoK4uLisH//fmRlZale7+HhAZlM1uAhl8thZmYmRLOIDFpERATWrVun+l0mk/HCKyJqMQ8PD9TU1CAzMxM9evQQOo7WzMzMcO/ePaFjEBEZrBEjRuCll17Cs88+i8GDByMoKEjoSEREXdrcuXPx2muvoaqqCiYmJpg/fz5EIpHQsYiIBFNZWYkTJ05g48aNQkchIiIDtXTpUrz77ru4ffs2FAoFJBIJ/Pz8hI5FREREemJlZaX6WSQS4b333kO/fv0ETEREREREREREnQ0LGbSjAwcOIDs7G0888YTQUYioGStWrMD8+fMBAK6urpDJZMIGIqJOzcTERFWUYMqUKWrP5eXlITk5GcnJybh27RqSk5Nx6dIlfPvtt8jLywNwv8iBp6cnevfurXp4e3ujV69e8PLygkQiEaJZRB2en58f5HI54uLiIBaLsWDBAqEjEZEB8/DwAACkp6cbVCEDU1NTFjIgImqlNWvW4MSJE4iIiMCff/7JIrZERAKKjIzEq6++CuD+4N1Zs2YJnIiISFinT59GaWkpxo8fL3QUIiIyUGZmZli3bh0WL14MhUIBPz8//v2ZiIioE7G2tgZw//qzMWPGYNmyZQInIiIiIiIiIqLOhoUM2tGHH36Ihx56CJ6enkJHIaJmzJw5EytWrEB+fn6DQcVERO3JwcEBDg4OGDRoUIPnCgsLcf36daSkpKge8fHxiIqKQmpqKhQKBQDAxcUFcrlcVSxB+fD394eFhUW7tWXVqlW4ffs2/vnPf6J3797ttl6ipjz66KNYvXo1qqqqOLiBiFrFxcUFYrEY6enpQkfRibm5OWpqalBZWQkTExOh4xARGSSxWIyvvvoKwcHBWLVqFT766COhIxERdVk9e/ZESEgIzp07pypgSETUlUVHR8Pf3x9eXl5CRyEiIgO2YMECvP3220hOTtb4d2siIiIyXDY2NgAAOzs77N27FyKRSOBERERERERERNTZsJBBO7lw4QJ+/fVXnDx5Uqv58/Pzcfz4cdUARCJqf2PHjsX+/fthZWWF/fv3Cx2HiP7Hx8cHffv2FTpGh2Bra4vQ0FCEhoY2eK6oqAjJyclqj7i4OPz444/Izs4GABgbG8PDwwO9e/dG7969IZPJ0KtXL/Tq1QsymUxVcVtfDhw4gBs3bmDv3r2IjIzEmjVrIJPJ9LoO6riqq6tRUlKiNq2srKzBXcALCws1fgdWKBQoLCxs0bprampQXFys8TnlH2S9vLxw4cIFXLhwocE8xsbGqvl0JZFIYGVlpfE5U1PTBsVErK2tIRb/3U0zMjKCVCpt0bqJqH0ZGxvDwcEBubm5QkfRiaWlJYD7n8ksZEBE1HIeHh749NNPMWPGDISFhWHq1KlCRyIianOa+ur37t1DWVmZ2rTi4mLU1NRo9XptaVqPUlBQEM6dO4fQ0NBGz+1bWFjA1NS0Reu2tbXVeEG3pj68ubk5zMzMtHo9EVFbiI6ORnh4uNAxiKiDuXLlChISEoSOQQZmypQp2Lx5MxQKBa+hIb0aPXo0HB0dhY5BRHrC7xmGJy8vDyKRCEuXLsXx48eFjtNlmJubY/LkyTxPSERERERERF0CCxm0kw8//BB9+vTByJEjtZp/69atePnll9s4FRFp47333hM6AhHVESCXI/bqVaFjdHhSqbTRIgelpaUNihzEx8cjKioKt27dUg0id3Z2blDcQPmzi4uLTnlqa2uRkZEBhUIBhUKBr776Cnv37sXs2bOxZs0a9O7dWy/t7mqUAwGKiopQW1uLgoICtUEApaWlqKqqAvB3gYC6g/rrXvRft6iAcrl1l1VVVYXS0lIAQHl5OSoqKlQ56v8OQJXJUKSmpmLGjBlCx9CKmZkZzM3N1abZ2NjA2NhY9Xvdggh2dnYA7t8pWFmgpO4yrKysIJFIAPw9mKJu8Ya6BRcsLS1hYmKiKtBgYmICS0tL1TyaBmgQdSW2trYtHoglFGUhg7t378LW1lbgNEREhu2RRx7BY489hgULFuDixYvo0aOH0JGIyAAp++LK/ruyP15ZWYm7d+822lfX1K+vra1FUVERAPVzAHfv3kVlZSUAzecLAM0FCeu+zhDs3bsXe/fuFTpGs5R967rqFzpU/i4SiVTf2+sWT6xbmEEqlcLIyEitsIKmvj3w93kA5euV5wiU5xmUyyIiw3Tr1i3Exsbyb51E1MD8BY/h/Lm/hI5BBmr79u3Yvn270DGoE3n11Vfx+uuvCx2DiPSE3zMM19q1a4WO0OVcuXIFgYGBQscgIiIiIiIianMsZNAOCgoK8M033+h0gUB1dTU8ennjX1H/bcNkREREhmX/x5tw/vBPQscweFZWVggODkZwcHCD5yorK3Hr1i2kpKSoPaKiopCYmKi6ON7U1BRubm6QyWQNHv7+/g3uMp+RkaEaUA9A9fM333yDr776CrNnz8batWvRq1evNmx5+ykqKkJ5eTnKyspQWFiI8vJylJeXo6CgABUVFaqflYMC6g9KUM6jLBCgHIygHDBQUlKC6upqnTK1ZGC7SCSCl5dXkwPbAfUL55XqXhSvpFyvkqYL9esOqq+v/np10Zo7LbZkeys1VdCh7iATJeUAEqW6g1KUNA0cKSgo0LjeuoNWlMcXAOTn57e4cIU2lNtbeRw0NhDC1tZW7V+pVKo6nmxsbGBubg5LS0tIpVKYm5vDwsICtra2MDc3b1DMgagjsLW1Vb3nDIXyc1X5+UBERK3z/vvv4+zZs5g7dy6OHz+uVmyKiAxfSUkJysrKcPfuXY19f+XPjfXzG+vfK/tw9fuEzWmsr163b63pHICjo6OqCJ2mAfJK9fvxmvrl9Qvr1V2PkqZzBEqaivVpq/66tVW/aIMumuoj1+13K9UtMglArZ/e1DLrHwvKY6RuduVxBQA5OTmq9SjPETTWt1eeB9CFnZ2dqt+u3MfK/nv94ob1iyLU7cfb2dmp5pVKpbC0tIS5ubnqOCYi/YqOjoaZmRmGDx8udBQi6mCqq6swffFyRKxYLXQUIuriXnh4vM79EyLq2Pg9g6h5mWkpeDp8WIuvRSIiIiIiIiIyNCxk0A62b98OY2NjRERECB2FiIiIqEkmJiaqggT1KRQKZGRkICUlBdevX8f169eRkpKCixcv4rvvvsOdO3cA3L+I3t3dHb169YJMJkOvXr0aDNZW0lTQ4LXXXtO4/raivIC8sLAQxcXFKC4uRlFRkdrPpaWlKC8vR0lJCUpKSlBeXo7S0lK1n4uLi1FeXt7sQFDlxd3KC7+lUqlq4IHyQnAbGxu4uLio5lVe1K+8ILz+4HDloIO6g8NFIpFqfmqd+gMwdFF/0IehUw6yUd7Js37RDeVgHOVAjcYG5RQUFEChUCA1NVU1CENZ2EO5bG0G8NjZ2aneH3Z2dqr3ia2tbYOBERYWFrCxsYGtrS2kUilsbGxU/9rY2LRqPxMp2draNigs0tEpC8oo785LREStY2lpiX379mHgwIFYv349XnnlFaEjEXVppaWlqj5+3X8LCgpQXFyMu3fvqooNKvs2hYWFKCsrQ1lZGYqLi9XOCTRF2Ye3tbVVFXBT9vOVhfzs7e019u+V/XrlwPy6Rd/qnzMAoOr/U8sYGxu3uL/emfr5dQsaKvvxyiIHdfvvynNnyn67smCDsv+uPCdw584dtXMCyr6+8j3V2PlBJSsrK1hYWGgsbqjs4yv7/spza3Z2dmr9e+W/7OMT3RcTE4PRo0ezICgREREREREREREREREREQmGhQzamEKhwLZt2zBv3jzeTYSIiIgMmkgkgru7O9zd3TFixIgGz1dUVCAzMxMpKSmIjY1FXFwcUlJScPz4caSlpcHY2LjRuykoCxrs27cPX3/9NRYsWIA1a9bAzc2t2VxFRUXIz89Hfn4+CgoKGgxQUD4KCwvVihUoH40NRFDePV4qlcLKygrm5uawtraGtbU1LCws4OzsDGtra5ibm6susDYzM9N4sbVycAIHGpCha++BAMpCCcq7myoHGCmn1x9sVPfnO3fuoKKiQm0QkrJoiSbKu49KpVK1AgfKzwGpVApbW1u1aTY2NrC3t1c9eFE42draNnqMdVTKQgbNFeIhIiLtBQYGYv369Vi5ciXGjBmDIUOGCB2JyCBVVVWp+vv5+fkoKipS9fXr9vE1FSooLCxUFVTTxM7OTuPgaHNzc8hkskbvGN/UQGv298nQiEQiVWGG9ijQoCyIoCwgUr9QSGMFQ5Xv/aysLFXfXzm9sSKIRkZGqn583T5+3YIH9c8BSKVStT6+iYlJm28TorZUU1OD48ePY82aNUJHISIiIiIiIiIiIiIiIiKiLoyFDNpYTEwMkpKS8O233wodhYiIiKhNmZmZQSaTQSaTYdy4cWrPvfLKK9i4cWOjhQyUKisrAQA7duzAzp07MWbMGIwcORK3b99GQUFBg8edO3dURRDqZ1He3dDOzk716N69O/z9/VUDFOo/r3wo7+guEon0t4GISGdmZmaq96k+aSqIUP9R97lbt27hypUrDZ7XlFfTHiXgFAAAIABJREFUZ0pzj+7du3PQUydha2uLa9euCR1DJyxkQETUNpYvX47jx49j1qxZuHjxIuzt7YWORCSo8vJyZGVlITMzU+P3b02P27dvayxEoOl7t7If39h37rrnALp16wZjY2MBtgJR12ZkZKR6T+qTNn38us+np6fj8uXLqun5+fm4d+9eg+Xq2sd3dXWFm5sbTE1N9do+opY6e/Ys8vPzER4eLnQUIiIiIiIiIiIiIiIiIiLqwljIoI1t2bIFo0aNQmBgoNBRiIiIiNpNVVUV7ty5g9zcXGRnZ+PEiROqIgXaUBY8OHbsGG7cuAEnJyfY29vD0dER3t7eandHq/tQ3lGRA4KJqCnKO622xr1791BUVKR2h9j8/HzVIAjlIzc3F4mJiWrP1b9bpFgshr29PRwcHODk5AQnJyd0794dTk5OcHR0RPfu3eHs7AxHR0c4OzvDwcGhVdmp7VhZWaG0tFToGDpRFjIoKysTOAkRUeciEonw+eefIzg4GIsXL8b+/fuFjkSkN5WVlcjNzUVOTg6ys7ORm5ur6v/X/zk/P19jwSRLS0vVd2Bln97NzQ19+vRptM8vlUpV312IiJT00ccvKytr0MfPy8tr8HtGRgauXLmimqap/6f8fHNyckK3bt1U/XwXFxe1Pr+zszOcnJxgYmLSquxEjYmJiYGXlxd8fHyEjkJERERERERERERERERERF0YCxm0oZs3byIqKgpfffWV0FGIiIiIWu3evXvIyspCRkYGsrOzkZ2drVasICcnB3fu3EFOTg7y8vLUXisSiRoM3AUAY2Nj1NbWQqFQwNzcHN7e3hg6dChGjx6NESNGoFu3bu3VPCIinZiamsLZ2RnOzs46v7ax4gd37tzBnTt3cPv2bVy5ckX1GZubm6v2eolEAkdHR7XBD8oiB8oCCK6urnB1dUW3bt0gEon01WxqhvL/NUMiFothYmKicYAhERG1jpOTE/79739j7Nix2L59Ox5//HGhIxE1qrKyEtnZ2bh165aqz1+3KEFOTg5yc3Nx+/ZtFBQUqL3WzMxMNWC3W7ducHZ2RmBgIJydnRstSsA7lhNRR2JhYQELCwu4uLjo9LrKysoGfXxl0QPlZ2Zubi7i4+NVn6sVFRVqy7C1tVUVPKjbr1f2+bt37w53d3e4uLiw6AHpJDo6GpMmTRI6BhERERERERERERERERERdXEsZNCGtm7dCmdnZzz00ENCRyEiIiJqUkFBATIzM5GVldXg35SUFGRmZuL27dtqgzPNzMzg6uoKFxcX2NnZwdPTE0OGDFH9Xve5Pn36oLCwEABQW1sLc3NzhISEYMiQIRg4cCAGDBiAnj17CtV8IqJ2pRy8pQvl53RBQQEKCgpUn9PKn//880+15+qys7ODTCaDi4uL6rO5/r8uLi4seKAHRkZGBlfIALh/x1AWMiAiahsjR47EypUr8cwzz2Do0KHw8/MTOhJ1QeXl5Wr9e019/xs3bqCmpkb1Gl36/PwuSURdlYmJiarYgLbKy8sb9Ovr/n7z5k38/vvvyMzMRE5Ojtpns/IzV1PfXtnv7969O4yMjNqiuWRAcnNzceHCBaxZs0boKERERERERERERERERERE1MWxkEEbqaysxI4dO/Dkk09CIpEIHYeIiIi6sPz8fKSlpak9bt68qbrT4u3bt1FdXa2a39bWFq6urnBzc4OLiwsmTJgAFxcXuLu7o3v37vDw8EC3bt0gFmv/VXLGjBkwNjbGgAEDMGDAAPj5+fGCWiIiHdjZ2cHOzk6recvKylR30k1PT1d93mdlZSEuLg5Hjx5FZmam2l0gLSwsVJ/77u7u8PDwgKenp9rDzMysrZrXaRhqIQMLCwuUlZUJHYOIqNN64403cOrUKcyYMQN//PEH/08lvaqoqEBqaipSU1ORlpaG1NRUpKenIyMjAxkZGcjKylL73mdpaQkPDw/V975hw4bB1dVVdbdvZZ+ff9cgImob5ubmMDc3h6urK0JDQ5uct7q6ukHfPjMzU/UZ/9dffyE9PR2lpaWq15iamsLV1VV1ftfDwwNeXl7w9PSEl5cXvLy8YG5u3tbNJIFFR0dDLBZj9OjRQkchIiIiIiIiIiIiIiIiIqIujoUM2sj+/fuRl5eHhQsXCh2FiIiIOrnCwkK1IgXKwQvKR3FxMQBAJBLBxcUFXl5e8PDwwODBg+Hh4YHu3burBiy4ubnBwsJC7xm3bNmi92USEZFmFhYW8PHxgY+PT5Pz5eXlISsrS63oQVZWFjIyMhATE4O0tDQUFhaq5ndxcWlQ3ED56NmzJ0xNTdu6aR2eoRYysLS0xN27d4WOQUTUaYnFYuzZswf9+vXDSy+9hM2bNwsdiQxIZWUl0tPT1QoVKP9NTU1Fdna2al57e3t4enrCw8MDwcHBmDhxItzd3VUDWt3d3WFjYyNga4iISBdisRju7u5wd3dvcr6SkpIGRQ6ysrKQnp6OkydPYufOncjPz1fN3717d1Vhg/r/9ujRAyYmJm3dNGpj0dHRGD58OKysrISOQkREREREREREREREREREXRwLGbSRLVu2YOrUqc1eWEJERESkjeLiYiQlJSEhIQEJCQlITExEcnJyk4NMJ0+ezEGmRETUKAcHBzg4OCAwMLDReRorlhMVFaWxWI5MJoOPjw98fX3h4+MDf39/yGSyLnNHX0MtZGBlZcVCBkREbUwmk2Hbtm2YNWsWRo8ejQcffFDoSNSB1NbW4saNG0hMTERcXBwSExORmJiI1NRUZGRkoKamBsD9/7OVg00HDBiAGTNmqA1AlUqlAreEiIiEYG1tDX9/f/j7+zc6T3FxscaCOFFRUUhNTUVJSQmA+/1aNzc3eHl5wdfXF76+vvD394efnx88PT1hZGTUXs2iFqqtrcXRo0exatUqoaMQERERERERERERERERERGxkEFbuHz5Mn755RccPXpU6ChERERkQBQKhWrggrJYgfLnzMxMAICJiQl69+4NPz8/TJgwocEdsc3MzARuBRERdSa2trYIDg5GcHCwxufz8/MbFDpITEzE0aNHkZ6eDoVCAYlEAplMBj8/P9UgCD8/P/j5+cHe3r6dW9S2RCKRwRYyUA5aISKitjNjxgxERUVh4cKFuHjxIlxdXYWORO2srKxM1dePj49X6/tXVFQAuH+XbOV3pUmTJqndJdvR0VHgFhARkaGysbFBUFAQgoKCND6fl5enVuQgJSUFiYmJOHjwILKysgAApqamav16f39/1e+Wlpbt2Rxqwl9//YWcnByEh4cLHYWIiIiIiIiIiIiIiIiIiIiFDNrCJ598Am9vb4wZM0boKERERNRBlZSU4OLFizh//jzOnz+Py5cvIzExEeXl5QAAJycn1YWgEydOVP3s6ekJsZhf4YiIqGOwt7eHvb09QkJCGjx39+5dJCUlqYryJCQk4MiRI/joo49QVlYGAHB0dERAQACCg4MREhKCkJAQ+Pv7G+z/dWVlZbCwsBA6hs6kUimKioqEjkFE1CV88sknCA0NRUREBI4dOwZjY2OhI1EbSU9Px/nz53Hu3DmcP38esbGxuHHjhlqhJ39/f4SHh+PZZ59V9fttbW2Fjk5ERF2Qg4MDHBwc0L9//wbPFRUVNSjCs3//fly/fh1VVVUQiUTo0aMHAgICEBoaipCQEISGhqJHjx4CtISio6Ph7u4OuVwudBQiIiIiIiIiIiIiIiIiIiIWMtC3kpIS/Pvf/8Ybb7wBkUgkdBwiIiLqAAoKCnDu3DlcuHBBVbggOTkZtbW1cHR0REhICCZMmIDly5fD398fPj4+ne4O1URE1PVYWlqiX79+6Nevn9p0hUKBmzdvqu4+HBsbi19//RWfffYZKioqYG5ujj59+qgKG4SEhKBPnz4wMTERqCXaKy4uhlQqFTqGzqRSKYqLi4WOQUTUJVhaWmLv3r0YMmQINm7ciBdffFHoSKQHN27cUBUsUP6bk5MDIyMjeHt7IyQkBIsXL4avry/8/f3Rq1cvSCQSoWMTERFpRSqVYuDAgRg4cKDa9KqqKqSmpiIuLg6JiYm4cuUKDhw4gLfeekvt3Hfd4gZeXl4CtaLriI6ORnh4OK9VICIiIiIiIiIiIiIiIiKiDoGFDPRs165dqKmpwdy5c4WOQkRERAKorq7GhQsXcObMGfzyyy84d+4c0tLSAAAuLi4ICQnBzJkzVQMzeVcqIiLqakQiEXr27ImePXti/PjxqunV1dWIi4tTFf05f/489uzZg9LSUkgkEgQGBqJ///4YPnw4hg8fDk9PT+Ea0Yji4mLY2NgIHUNnNjY2uHXrltAxiIi6jNDQULz55pt46aWXMGLECAwePFjoSKSDsrIy/Pbbbzh9+jTOnj2L8+fP486dOzA2NoaPjw9CQ0OxevVqhIaGIjg42CC/GxAREWlDIpHAx8cHPj4+atNLSkpw8eJFVXGfH374Ae+88w5qampgZ2eH0NBQDBkyBMOHD8fgwYNhaWkpUAs6n4KCAvzxxx947rnnhI5CREREREREREREREREREQEADASOkBn8+mnnyIyMhJ2dnZCR9HZa4/NFDoCdUJCH1dCr78tdMY2NacrttnQdaV9Vltbi3PnzuGtt97C+PHjYWdnh4EDB+Ktt95CVVUVHn/8cURFRSErKwuZmZk4ePAgXn/9dTz00EMsYtCBhIWFCR2BiKjLE4vFCAoKwvz58/HBBx/gzJkzKCoqQlxcHHbt2oUxY8YgLi4OixYtgpeXFzw8PDBnzhxs3769wwzCLyoqMsjBilKpFEVFRULHICLqUp5//nlMmDABkZGRKC4uFjoONaGqqgonT57ESy+9hCFDhsDW1hZjx47FF198gW7duuHVV1/F6dOnUVhYiLi4OHz55ZdYsWIFRowYYZDfCzor9vvJkPB47Xo62z63trbG8OHD8eyzz2L37t2IjY1FUVERzpw5g7Vr18LV1RV79uxBWFgYbG1t8cADD+DFF1/E8ePHUVlZKXR8g3b48GGIRCKMGzdO6ChERA10pb8fGzLup7bXEbdxR8xERKQLfo5RW+GxRURERERERKQfYqEDdCbHjx9HbGwsdu/eLcj6p/u5AgC+Tchs0esVCoU+43RK0/1cW7R9W7tv2lP+7Wx8ufENXPntFxTm5UJRWwvAcI8rodffUk0da4baptaoqa5p0eta+p7tyBr7POlobe3sx2lxcTEOHjyIqKgoHDlyBLm5uXB1dcXYsWPx3nvvYdiwYfD394dIJBI6ql6JRKJG921Tz7UH5bZuaYbOfszqg9D7uKtr7TFOXU9nec8aGRnB398f/v7+iIiIAABUVFTgzz//xKlTp3D69GksX74cZWVlkMvlmDBhAqZOnYphw4bByKj9azcWFxejd+/e7b7e1mIhAyKi9icSibBjxw707dsXixYtwjfffCN0JKrjzp07+P7773Ho0CEcO3YMJSUl8PHxwZgxY7Bs2TKMGDEC7u7uQsfUO/b7uzah97EyA8D91dXbbwgyMjJUA+9v376N2v/9LY2fUY2ztLTE0KFDMXToUNW0jIwMnDp1CmfOnMEPP/yAd955B1ZWVhgzZgwmTZqEadOmwdnZWcDUhicmJgaDBw+Gra2t0FGIqBPiNUltryP8zb+z7ichrttqbJ2t2cZt1Y7Out+JyHDwe0bb0/f3DEO6Jro1eGwRERERERER6Uf7X9XfiW3ZsgVDhgxBSEiIIOtv7QmhtTv36SkJ1WdIJ+s+WL0cLj298K+DJ/DVxRSs+vDzVi1P6ONK6PW3hc7Ypua8vvuA0BE6DEP5POmMx2l5eTn27NmDqVOnolu3bpg/fz5ycnLwwgsv4NKlS8jIyMDu3bvxxBNPICAgoNMVMejoWvuHo6NHj+opCVHb4B9Hif5mZmaG4cOH4+WXX0Z0dDTy8vJw+PBhhIeHIyYmBiNHjoSbmxueeuopnD59ul2zFRcXG+Sdl21sbHg3cCIiATg7O2PXrl3Yv3+/YMVx6W/FxcX4/PPPMX78eLi4uODZZ59FbW0t3n77bVy/fh2JiYnYsmULIiIiOmURg46O/f6ugX3f+3i8dnzz5s2Dt7c3rl69irKyMnz77betWl5X3edubm6YPXs2Pv74YyQkJCA1NRXvvvsujIyM8Pzzz6uKB3/66acsvqcFhUKBmJgYTJgwQegoRNRJ8ZqkrqGz7ichrrNobJ2t2cZt1Y7Out+JyHDwe4bhMZRrGFuLxxYRERERERGRfrCQgZ5kZWXhhx9+wJIlS4SOQtQqCef+wLQnnoaV1BYSExM8EDapy5x0JCLSJCkpCc899xzc3Nzw+OOPo6amBlu2bMHt27dx5MgRrFy5EkFBQULHJCIi6rLMzMwQFhaGjRs34urVq4iPj8dTTz2FM2fOYMSIEZDL5fjoo4/aZaB+bm4uHB0d23w9+iaVSjkohIhIIBMmTMBzzz2HpUuXIjExUeg4XdLVq1exdOlSuLu7Y/ny5bCxscGePXuQk5OjOucvk8mEjklERB3ImTNnsHr1atjb28PU1BQPP/wwC3HogaenJ5588kl8//33yMnJwddffw0HBwfV+fnFixfj0qVLQsfssC5fvozMzEyEh4cLHYWIiIiIiIiIiIiIiIiIiEiFhQz05NNPP4VUKsUjjzwidJQGbl5LwJuL52JOiDfmhHhj3cII3LyWoDbPdD9XTPdz1Wm5ytdk30zDO08/jkcH+jVYzs1rCXjziUjVut98IlLrdTc2/c/jh/F/sx/ErCBPPDlmIHauX4Pyu6UaX3snKxMbls7HnBBvPDY0CO+vWoaSwoIWb6O6y57u54pPXnle+w0G4E5WBt5e9hgi+/siol9vvLl4Lm5dv9biPG3RxqrKSswK8lRrZ2P7Ii0hDq8/NgsRwb0QGeqDNxbNwcUzJxtk1JilmeOirKQYO9evwZJxD2BWkCceHxaMD1c/i2uXLzS5jTVto9Zst+baqGqPHvdXU8da/TbVnSf2j7MAgDNRP2jcb9psd2236a3kJKxbGIHIUJ9Gj+W2/IzQx3u2vY5DoOXvFW0/m3U5Zppatjb7TJfP4Lr0tS3b040bN7B48WIEBARg3759WL58OdLT03Hw4EHMnz8fdnZ2QkdsNZFIBJFIpNV05e/K50QiERYuXNjsc8D9QSGTJ0+GtbU1rK2tER4ejqtXr2pc5/Xr1/Hwww/Dzs6u0Xy60GXdutAm79WrVzFp0iTVuidNmqT1uhub/uOPP2Lo0KEwMzODp6cnVqxYgZKSEo2vTU9Px9SpU2FtbY1u3bohMjISeXl5Ld5GdZddfx83JzY2FpMmTYKVlRVsbGwwYcIExMXFNWinrttDl/0bHx+PBx54ABYWFhg+fDiSk5MRGxuLQYMGwcrKCqNHj8bNmze1blPdZcfFxSE8PBw2NjawsrLC5MmTER8frzFvc8dE/e0llUoxbdq0RrNpsw2aU1RUhBUrVkAmk8HMzAwuLi6YP38+/vjjD53X1dr3si7bVN/vQ33ux7Z6H2q7TH18LhsyPz8/vPLKK7h06RJiY2Mxbtw4vPTSS/Dy8sLatWsbfG7qS0VFBbKzs9GzZ882WX5bkkqlqKqqQnl5udBRiIi6pPXr1yMwMBBz5sxBZWWl0HG6jLS0NCxevBh9+/bFkSNH8PLLLyM9PR0HDhzAzJkzYWlpKXTEVmO/v+nt0BT2+7Xr99ed/+TJkwCAr7/+Wm26Lm1rjC7burX90ZaeP2iufXW3yddffw0A+Ouvvxpsq8ben63Jpu35CG22jy595+aOO23OR+hyzkKbNrbmOKy7Le7duwczMzO1/adp32mTv7Hj9NKlSxg/fjwsLS1hY2ODiRMnIiYmRu/t6agsLCzwyCOPYN++fcjKysKmTZvw66+/Ijg4GGFhYbh8+bLQETucn3/+GU5OTujXr5/QUYioi+E1SR3jmiRdtkVj27SxbZKenIg3n4hERL/eiAz1weuPz8at5KRWXcsx3c8Vt65fw+qZ/w+zg2V4Zc5DyL6ZhvTkRKyeMRkR/Xrjn48+gjtZGVpvA415+/vi7WWPNbocfVxHo8s69XEdEwC9H3stuXZEX9uOiKgp/J7RMb5n6Px/q56vpdX12kd9XRvcmv1IREREREREROpYyEAPqqur8fnnn2PhwoUwMzMTOo6a7JtpeG3BLPQfHYYtR3/D1uN/YOSD07Fh6QLkZWep5vs2IVPnZStf89na1Zj62BJ8fuoiXv5sj9q631g0B4Mn/D9sOfobPjnyKwaFTcK6hRHIvpnW7Lobm75h6XyMnjYDX/wRjw37DqK0qBCfr3tF42s/eeV5TJg9D9vPXMQ7B6Jxr6IcX7z9utq8um6jbxMyVY+lb7yn5da6b9OKJzF4/GR8cuRXbDn6GwaNm4h1CyOQk5He4jxt3Ublo77MtBS8t2IxHlr4FHb+dhUbvjmIivIyrFsY0WB59bNoc1x8uPoZWFrbYP03P+HLv5Lwymd7kH0zFatnTNZ6e2tavy7bTZs2tsX+aupYq9+m/bHp6N7DE1/8EQ/5wCEAgGGTp+Lz0xdgZSPFvy8k67Tdtd2m7614EqOnzcSWY783eiy31WeEPt6z7XkctvS90tT0xubT5phpatnN7TNAt8/guvSxLduLQqHAu+++C29vb5w8eRJ79uzBzZs3sXbtWjg7OwsdT68au0uYpunKaQqFQvX4/PPPm30uOTkZYWFhmDJlClJSUpCWlobIyEhMnToVt27darD8JUuWYOXKlcjMzMShQ4da1T5d162L5vImJydj4sSJeOSRR5CSkqK6iD48PBzJycnNrrux6VOnTsW8efOQn5+P3377Dfn5+Xj66ac1vnbhwoVYsmQJsrKy8Ndff6GsrAwrV65Um1fXbaRpHzfn+vXrqm2RmpqK1NRULFiwALNmzWrQVl22h67Z165di507dyIrKwt9+/ZFZGQk1qxZg127diEjIwP+/v54/nndilQplz1z5kzMnz8fqampSElJwbRp0xAeHo60tDS1vNocE/W31/Xr1zF9+nTV9mrJNmjOvHnzYGtri19//RVFRUU4dOgQkpOTMWjQIJ3X1dr3si7bVN/vQ33ux7Z8H2qzTH18LncWAQEBeP/995Geno6lS5fivffeQ2BgIH755Re9rystLQ0KhQKenp56X3Zbk0qlAO4PsiEiovYnkUiwd+9eJCUl4eWXXxY6TqenUCiwfv16+Pj44MyZMzhw4ACSkpLw4osvwsHBQeh4esV+f9PboSns92vX76+urkavXr2Qn5+PUaNGAQBmzZqFzMxM2NnZobT07wt4tWmbJrpu69b2R1t6/qC59lVVVWHixInYunWrqo/fv39/HDhwAHK5HDk5OWo59JVN2+2n7fbRtu+szXGnzfkIbc9ZaNvGlh6HmrZF3feL8lGfNvk1vS4pKQkzZ87ECy+8gNzcXPz222+4e/cuwsPD9d4eQ2BjY4MnnngCly5dwo8//ojbt28jNDQUr7/+Ompra4WO12HExMQgPDwcRka8BISI2g+vSeoY1yTpui0a26bNXeOz9djv2HLsd4x5eBY2PbekwWt0bes3H72HZW9txvbTF+HpJ8e/Vi3D1x9sxLL1/8Lnp87DvZc3dm14Tatt0FjeT478isHjJ2PTiidbvN30uc7WXsekVH/e6qqqVh97mjK19v1HRNQa/J7R8b5naPN/a1tdS1tfe1wb3Jr9SERERERERETqRIqWXMFFapR3aEpOToaXl5delvn666/j89178K+o/+r0uul+rmonT95ftQw9fQPw0MKlavMd//ZrpCXE4rGX1zX6Wm3X9/ruA6oB1HW9v2oZevcJxuRH1e/a89POT5ESfxXPvPNhs+vWJlNpcRGeChuML36Pa/DaFz/eiYFjJ6imZaZex5p5j2Dbqb/vAN7W26jua5et34zR02aqTf9p56dIS4zH0xv+1aI87dXG+tM3P78UISPGYOTUR9TW/fTE4WrzaTomtTku5oR449MTf8JKaquaJ+fWTSwZ94BO+0BTe7Tdbtq0sS32V2O5G3tu76b1sO/WHRPnLFBN+/6zj5CbeQtPrN2gyqnt+7E50/1c8dymrRg66cEGy6p7LCvn1fdnhD6O5/Y8Dlv6XmlqurbTWrrsxvaZJk19Btddtr7e0/s/3oTzh39CYkLbVPKvra3FjBkz8OOPP+LNN9/EihUrIBaL22RdHYVIJNJ4saym6Y3N29RzkZGRCAoKwgsvvKA2fceOHbh06RLef/99tWWcOHFCdeG7rupn0HXdun4tbipvZGQkBgwYgGeeeUZt+qZNm3DhwgV8+eWXza5bm0wFBQXo3bu3xrux/+c//8HUqVNV0xITEzFmzBhkZPxdFb2ttxEAzJ07F/3792+wLb7++mvMnj1b6+Ostfv35MmTGDlyJAAgMzMTbm5uatNu3bqF0NBQ3L59W6f2Ke+kOHOm+ne8TZs24fLly9i1a5cqrzbHRGPba9euXViwYEGLt0FTrK2tcePGDdjb26umpaamQiaTqdbX3u9lbbZpc+vS9X2oz/2oXGZbvA+1WaZy3tZ+LndGOTk5WLRoEQ4dOoTPPvsMCxYsaP5FWoqOjsbEiRNRUFAAW1vb5l/QgVy+fBl9+/ZFQkICfH19hY5DRNRl7dq1C4899hh++uknTJ7c8Qr/dQY1NTX4xz/+gaioKGzYsAHLly+HsbGx0LHaFPv9Tedvbn3s9zfv//7v/+Dm5oannnpKNW3Dhg24ceMGtmzZ0qK21d/Pumzr1h5j+jp/oKl9d+/exbhx4/Diiy/ioYcewuHDh/HMM8/g6NGjcHNza3QbtCabLttPm+2jbd9Zm+NOm/MR2p6zaGkbGzsOtdkW2ryvtcmv6XURERGYOHEi5s6dq5qWmJgIPz+/Jt+nLW2PoamtrcUnn3yClStXYuzYsfjhhx86/Xn85pSUlMDR0RE7d+5ERERE8y8g6kIW9aSuAAAgAElEQVT69euHSZMm4c033xQ6SofSNzgY3g+MRMSK1Tq9jtckqb+2o1yTpOu2aOp6gAb7+IWn0Tuwb4Nln4n6AZufX9Kq4+H1L7+FfMBgAEB+zm0sGtFPbVpedhZWTZ+AHb9c1n5bNJL3xPff4KOXVrTo+iV9rhNo3XVMjc2bc+smXo6YqtdjT1/vv+a88PB4zHzoQX5OdxFJSUnw9fXFhQsXEBwcLHQcaiP8nqF9JoP4nqHj/63teS1tW18b3NS662psPzYlMy0FT4cP6/Kfh+yvERGRoXrzzTfxxRdfICkpSegoJADufyKiFrnGcvx68Mknn2Dy5Ml6K2KgT5fPnm4w2BgAQkaNxaWzp/Syjt5B/Rpd98Bx4Q2mDwqbiMtnT+tl3QBgZSNFaVGhxucCBjyg9ruTmwcKcnMa5GzrbaTUb8SYBtMGhU3EpV/+Llihax6h2nj1t1/QZ/BwtWmuXr2aPWmn7XHhGxyK9Uvm4cLpE6ipqQYAOLv3aHEhifq02W7atLEt9peuxkyfhRPffaM27di3XyFsRqRaTn2+H4OGDG8wrf6xrKTvzwh9HM/teRy29L0ipMb2mSZNfQbX1dbvaX355z//iUOHDuH48eNYtWpVl7/4UR+OHj3a4OJmAJg8eTKOHDnSYPrAgQMFW3dLNJb36NGjeOihhxpMnzZtGo4ePaqXdQOAnZ0d8vPzNT43YsQItd89PT2RlZWlNq09ttGRI0c0bouwsLBWLVfX7CEhIaqfu3fv3mCaq6srcnNzW5Rl3LhxDaZNmzYNhw8fVsurzTHR2Paqf8c95TL1sf8GDx6MBx98ENHR0aiuvv8Z7eXlpXZhfHu/l7XZps2tS9f3oT73o1JbvA+1WWZT2uN935E5OzvjP//5D1544QU8+eST+O233/S27Bs3bkAqlRpcEQMAkEqlAICioiKBkxARdW3z589HREQEHnvsMWRnZwsdp1Nas2YNoqOjcfz4caxYsaLTFzFoD+z3q+uK/f4FCxZg586datN27NiBJ554osnXNdW2unTd1q09xvR1/kBT+ywtLfHDDz/g1VdfxebNm7F8+XL8/PPPakUM9J1N38eqtn1nbY47bc5HaHvOoqVt1PY4bClt8mty/PhxjB07Vm2ar69vs69r6/Z0FEZGRli2bBlOnz6NU6dOYfVq3QbHdEbHjh1DdXW1xvcoEVFb4jVJHeOaJF23hS7XA1z+5ZTGZfcdOqLhvDq2VRbQR/WznaNTg2n2zt1QnK9bgabG8vYbPlpjXn0cQ7qssym6XE9Uf15HF7c2OfaEfv8RUdfG7xkd5HuGjv+3Cn0trbbL1ec1ndpeP0lERERERETUlXF0XivFx8fj5MmTiIqKEjqKRiWFBXhyjOaLtkzMzPSyDlMzc43TiwvzYevo3GC6nVM3lBS07CKa4vw87Nn0Fi6cPvH/2bvzuKjK/Q/gH/ZN9nVYFTc2BQHNBcncoMzr1VJvWbj1cyuv1c3Mul21srylFnbLrVIxK7XULprgrphLijuQS4iK7DvCsPP7w2Yuq8zADM8MfN6vFy9glnM+55kzy3Pmeb4HBTnZqKmufuTtu1hY1vvfwNCw0SCf9mgjGStb+0aXWdvX/+JN2TyitrGoIA8W1jYt37CJ+ymyX7wRuQE7vliNje+9jaK8XHTz8cPAUU8h/Pmp0NM3aFXmuhRpN0W2UR2Pl7IkHt1gaGyMlN8T0dXLB4nnzsC0izm6+fjJb6Pq56O5lXWTy2rqS2RVv0aoYn9uz/2wtc8VkZp9zJR8Da5L3c9pVSgpKcGqVauwcuVKhISEiI7TYeTm5qJr165NXmdi0nhfMzU1Fbbu1mgub05OjnxAeV0SiQQ5OTmtWld2djYWL16MmJgYZGRkoLqF56C1df3XaiMjo0bvOe3RRs21ha2tbZuWq2x2c3Nz+d+6urpNXtba9+SmtkUikdSbPKDoPtHc7Zq6TFWP386dO7Fs2TK8/PLLyM7ORr9+/TBhwgTMmzcPBgYGrVpXW5/LirRpS+tS9nmoysdRRh3PQ0WW+Sjt8bzXdDo6Ovjggw9w5swZ/Pvf/8bu3btVstw7d+5oZIFDRbCQARGR5li3bh2CgoIwbdo07N+/Hzo6OqIjdRilpaVYvXo1/v3vf2PIkCGi43QY7PfX1xn7/T179oSJiQkuX74Mf39/nDhxAhYWFujX738DwZXdtrqUbeu27mOtOX6gzPY5ODhg8eLFmDp1Kl577bVmHx9VZVP1vqpI31nR/U6R4xGK3EbRbWzLfthaiuRvSk5ODuzs7B65bBHbo2n69++P1atX45VXXsG7774r79t2RjExMQgODoaDQ+PvvoiI1IljkjRjTJKybdFcmyqz7KbGjCi7rSZmXeR/6/z5+bbhZcp+d9dc3qYuU9U+pMw6H0WZ8UQNb6urp6eWfa89n39ERA3xc4Zmf85o6jJNGEur6HJbPf65DeMniYiIiIiIiDozFjJoo7Vr16Jbt24ICwsTHaVJ5tY2iPzleKMDM+3BwsoG+dmZcHBxq3d5fnYmzBscANLR0UFlRQUMDA3llzVVoTLyzflw6dYdy7/7GbZOEujpPdyFn/FybnXO9myjB4UF6GJZ/+yc+dmZsLD538AvdeRRyzKtrFGUnwcbB0el7qfofmFqboFpby3FtLeWoig/D1dPn8TeLRuReP4sFq7ZqJJtaIki2yjyOVbX8Al/w5GfvseMd97H4Z++x6jJL9S7XpnnoyIKcrMbFeZouC+3pLWZVNHm7bkfKvpcUfR1sDVUtey2vAZrwnO6JTk5OSgrK0NQUJDoKO1KR0cH5eXlMDIykl+myrN22dnZITExsdHg+vYget3p6emNBm2np6c3GoSs6GPw4osvonfv3jh58iRcXV2hr68vv39bcqq7jezs7JCRkQEPD496lzd3hllF20Pk49tQZmYmHB3rv86np6fD3v5/75WK7hPNtZc628DS0hKrV6/G6tWrkZOTg8OHD+Ozzz5DXFwcfvzxR5WuS1GKtGlLlHkeKrpOZZepaM72bFtNeu6IpKOjg6CgIBw+fFhly7x165ZWFzIwMDBAbq5yZ7ciIiLV69KlC7Zt24YhQ4bg008/xeuvvy46UoeRm5sLqVTKfj/Y71fVutnv/5/p06fjm2++QWRkJL7++mvMmjWr3vVt2TZ19MNUTZntu3HjBpYvX474+Hg888wzmDx5slpfl1Tdfor2nRXZ7xQ5HqHoMQtFtlEdz7GWKJK/Kba2tsjJyYGzc/PH3kVsjyYKCgpCRUUFMjMzO3UhgwMHDuDFF18UHYOIOiGOSWpZe7SRqseDNFx2QU4W7J1d611ekNP4bMmaMH6mubxNPd6qajdl1tme1Pl4qHOfIyKS4eeMlrXX5wxF3+fUlUcd4ypbO/5ZHY8jERERERERUWegKzqANistLcW3336LOXPmyM98omkCQoYh4eypRpcnnT+LhRPUW3yh7+ChOHvgl0aXnz24H30HD613mZWdA3LS79e7LPHcmUb3vX7xPCbPXwgHFzf5AaCKsrI25VSmjdo6+OfKqRONLjt7cD/8hzzeqjyKUscyfQcMbrQ9Kb8nYsGYx5u5x0OK7hfPeDkjNyMdAGBhbYMhT/0F72zYisu/Hm9V3tZQZBvV9RxTdl8b/ORY/HY4FkV5ubgYdxQhY/5a73plno+KuBR3rMll1d2XW9LaTKp4zrbnfqjoc0XR18HmPGqfaeuyZdryGqwJz+mWuLq6ws3NDV988YXoKO3KyckJd+/erXfZiRON36+AR+9nzV0XFhaGY8eONbo8Li5O7ZNHRK575MiR2LVrV6PLd+/ejZEjR9a7TNHH4NSpU1i2bBm6du0qH5gslUrblFOZNmrt56DRo0djz549jS6PjY1t8vaKtofIx7ehprZl9+7dGD16tPx/RfeJ5trr0KFDjS5TVRvo6OggNTUVwMPB/5MnT8a+fftw4MABla9LUYq0aUuUeR4quk5ll6kIdbWtJr4ua5KcnBz88MMPKj0b87lz5xAYGKiy5bUnHR0dWFtbt/rswUREpFrBwcFYunQp3nrrLZw9e1Z0nA7DxcUFHh4e7PeD/X5VYL+/vkmTJuHnn39GdnY2YmJi8Nxzz9W7vi3bpo5+mKopun2ZmZkYN24cNm7ciL59++Lbb7/FzJkzUdbG77keRdXtp0jfWdH9TpHjEYrcRtFtVMdzrCWK5G/KsGHDGh0Lunz5Mnx8fOT/i9geTfTFF19AIpFobWFBVUhKSsLt27cRHh4uOgqRRlLFGV2peRyT1LL2GJOk6vEgdfmHPI7fDsU0uvzSyWONLhO5P8g0l7ep8Vqqajdl1tme1Pl4qHOfIyKS4eeMlrXH5wxl3ufU9ZipauxjXa0d/6yOx7GzY5+NiIiIiIioc9DM2fdaYuvWrSgtLcW0adNER2nW5Pn/wPbPV+J07F4UF+RDWvIA548dxOp/zMXEea+pdd2TXvkH/rt5PQ7t/A6FuTkoysvF4R+/x383r8fkV/5R77b+Q0KxbfVHyM1IR1lpCS6dPIbYH6IaLbN3v2BsXfk+su7fQ1VlJTLupmD90kVtyqlMG9k4OuH6pXhUV1Xi8q/HMfuJYKXW9dP6NTi1/78oLsiXt8feqK8wef7/2kMdj5k6lvns3AXY+eWnuHIqDuXSUty5noQv3n4NT70w45H3U2a/+PKf/8C9W9dRWVGBgtxs/Pz12nb9wkuRbVTXc0zZfc3Y1Ax+jw3BZwtfQf/ho2Fi1qXe9cq0uyIObN+KuL27H7kvt6S1mVTxnG3P/VDR54qir4PNedQ+09Zly7T1NVj0c7olenp62LRpE3744Qe8+uqrqKysFB2pXYwaNQpvv/02UlNT8eDBA8TGxmLdunVN3tbFxQWnT59GZWUlDhw4AHd39xavW7p0KZYsWYIff/wRubm5KC4uxt69e/Hcc8/h3XffVeu2iVz3kiVLsHr1anz11VfIyspCdnY2vv76a6xevRpLliypd1tFH4PBgwfjzTffREpKCioqKnDr1i3MmTOnTTmVaaNHPf4trWPVqlX45ptvkJ2djdzcXHz//ffYsGFDk7dXtD1EPr4NrV+/Ht999x1yc3Plj3VkZCSWLl0qv42i+0TD9srLy8OOHTvw4YcfNlqvKtvgpZdeQkJCAsrLy5GZmYmVK1fWG+zf3u2tSJu2RJnnoaLrVHaZilBX22ri67KmuHv3Lp566ikYGRlh2bJlKllmdnY2UlJS0L9/f5UsTwRbW1vk5uaKjkFERH9atGgRHn/8cbzwwgsoLi4WHadD0NXVxddff43t27fj9ddfR1VVlehI7YL9fvVgv7++Ll264IknnsALL7yAv/zlLzA3N1fZtqmjH6ZqimxfSUkJnn76abz55psYPHgwAOCxxx7DtGnTsHjxYrVlU3X7KdJ3Vma/a+l4hCK3UXQb1fEcU4Qi29jQP//5T7z33ns4dOgQSkpKcOXKFcyYMQPz58+X30bU9miK6upqLF68GJs3b8ZXX30FAwMD0ZGEiYmJgbW1NQYMGCA6CpFGqqys7NSvEerGMUkta48xSaoeD1Iv/yv/wH83rcORn35AUV4uigvycXLfHhzY/m2btlVdGuZ9UFiAU/v/i5/Wr2l0W1W1mzLrbE/qfDzUuc9Rx1ZTUwPg4fgcopbwc0bL2uNzhjLvc+p6zFQ19rGu1o5/Vsfj2Jnp6OiwkAEREWml8vJyGBkZiY5BRESkVXRq2QNstaCgIPTp0webN29W+bLfe+89fBX1LT7bp/iZqp/xcpb//dPvafK/0+/cxrerPsSV03GorqqCW49emDBrPh4b9WSL91V0fc3d786NJGz95AMknn945jCf4Mfw4sJ/wqOXd73bFeXn4Zvl7+LyqRMol0rRZ+AQ/N+/PpIfLJMtuzA3B1s+fg+XTh5DSVEhnLt2x8R5r2LVa3Pq3a657WlLGwHAqZhobF25HHmZ6bCTuGDaW0vRf3jLZ4WVrTdy7zF889ESXL94HrW1tfDtPxBTFy2Ba/ee9W7flsdMHftBc5dfvxSPqI/fwx8JV2BpY4vw56Zh/KxXWryfIvvF1dMn8cu2b5B0/iykJQ9g4yjBYyPDMXn+G40m6TenqfWrehsB9bRtc/vao56rSefP4p8vjMeKHfvQs2+/Ru2h6POxJc94OWPt4bP4+v1/IuHcadTU1DS5L6vqNaK2pgaT+nhgZ8I9+WWqeM62134IKLYfKfo6qOw+09plN1w+0LbXYFW15c4vVuPCgWhc//13he+jrO+//x6zZs2Cj48P1qxZg8cee0xt69IEOTk5WLBgAQ4ePIjS0lIMHz4cX3zxhXywet2Pijt37sSiRYtw//59uLu7Y9WqVfjLX/7S4nU3b97E4sWLcejQIVRVVcHHxweLFy/G+PHj5ctuWPlb2Y+ode9f977KrlvR9SqS9+rVq3jzzTcRFxcHABg6dCg+/vhj9OnTp97tFH0MsrKy8MYbbyA2NhYFBQXo1asX3n33XUyePLne7Zrbnra0EfDox7glCQkJWLhwIU6cOAFdXV08/vjj+Pzzz9GtW7dGbafMPtnax1fRyxSho6OD27dvY/78+Th+/DhqamoQGhqKVatWwdu7/nusovtE3fbS0dHB4MGD8emnn8LX17dVbdCSw4cP4z//+Q/i4uJQXFwMFxcX/PWvf8WyZcvqTT5pj+eybBmKtKkqn4eqfhzV8TxUdpltfV3uiKqqqrBlyxa8+eabkEgk2LVrF3r16qWSZf/yyy94+umnkZ2dDVtbW5Uss72FhoYiICAAa9aIHVxJRET/k5mZCX9/fzz55JPYtGmT6DgdxrZt2zB79mz07dsXa9asQXCwcsVqtQ37/ez3t0e/HwDi4uIQGhqKs2fPNppM29ZtU7Yf1vD+imjL8QNFtk92P0dHR2RkZAAAMjIyIJFI6i2vLTna0n6KUKbvrMh+p8jxCEWPWSiyjYruh4q0g0xLz0FF8je3vNOnT2PhwoWIj4+Hvb095s2bh7feekvl26ONLl26hPnz5yM+Ph5ffvmlRp90oD2Eh4fDysoKP/zwg+goRBqpZ8+emDZtGt555x3RUTSKf0AAeg58HM+/9lbLN/4TxyRp7pgkRduipTZtLv+9W9cR9fH7SDh3Brq6uvDtPwjT316GV8JD8GNiar1ltHZ/UGZ8T0vq5tXR0UHvfsGYsXgZFjw9rNGyVDWORtF1tnUcU3uNFVPl868lb04Yjcl//QuWL1+u1P1IOyUkJMDPzw/Xrl2Tf/dNHQ8/Z3S8zxnKvLeqYyxtW8dVqnL8s6KPY0vSUpIxPzwEFy9eREBAgEL36Yj69++P4cOH49///rfoKEREREpZuHAhjh8/jt9++010FBJg+fLl2LJlC27cuCE6ChGRNrnJQgat9OuvvyIkJARnzpxRywTH1hQyICJqD894OSv1JXFrHN29HaFjJ0BP3wB5WZl45/lxWHvojFrXSdqhPQoZAMD169fxf//3f4iLi8O4ceOwaNEiDBo0SK3rJOqMOkJl7Y6wDZpGRJvycezYysvLsWPHDixfvhzJycmYO3cuVqxYARMTE5WtY9myZYiKisIff/yhsmW2t/Hjx8PU1BTbtm0THYWIiOrYv38/xowZg61bt2LKlCmi43QYiYmJeOmll3DmzBk8++yzWLRoEYKCgkTHIiLSaOw7k2iXLl3CJ598gh9++AFBQUH46quv0LdvX9GxhJJKpbC1tcUXX3yB6dOni45DpJE8PDzwyiuvYOHChaKjaJTWTDAkquveretYPutFrDvCAfvUNixk0LlcvXoVffv2RVJSEry8vETHITXh5wyilrGQwUOPPfYYQkND8cknn4iOQkREpJT58+fjypUrOH6c8/06IxYyICJqlZu6ohNoq7Vr16Jfv34d/izNREQi/Gfxa9i14T+QljzAvqiNCHlqnOhI1Mn07t0bJ06cwC+//IL79+9j8ODBCAgIwNq1a5Gbmys6HhERESkgISEBCxcuhKurK2bOnIn+/fsjKSkJkZGRKi1iAADnzp1D//79VbrM9mZra4ucnBzRMYiIqIEnn3wS8+fPx5w5c3Dz5k3RcToMHx8fnDp1Crt27cL169cRHByMxx57DJs3b0ZRUZHoeERERPSn4uJiREVFYfDgwejXrx8uX76M7du34+zZs52+iAEAHD16FGVlZQgLCxMdhUhjVVZWwtDQUHQMIq32jJcz9kV9hQdFhaisqMDtpASs+9ebeHLKNNHRiEjLVFdXAwD09PQEJyEiIk2gq6srf28gIiLSJlKpVOXjD4mIiDo6FjJohezsbPz000945ZVXREchImpXz3g51/utLrOWfITY76Mwb+RAlBYXY+K819S6PqLmPPnkkzh37hzOnj2LwMBAvPHGG3BycsLo0aOxceNGZGZmio5IpLV0dHTq/dZGHWEbNI2INuXj2LFcvnwZS5YsgY+PD/z8/LBz5068+uqruHPnDrZu3Yru3burfJ21tbUdppABCzYREWmmjz/+GD179sSUKVNQUVEhOk6H8te//hWXL1/G8ePH4enpidmzZ8PR0RF//etfsW3bNhQUFIiOSESkEdh3pvZUVFSE77//HhMmTICjoyNeeukluLq64siRI7h69SqeffZZ7ot/io2Nhb+/P5yd1fu9HZE2Ky4uhrm5uegYRFpt8botOHfkAGYPC8b0wX2w9p//wKhJUzBu5jzR0YhIy8gmq+rqctgyERE9LGxTU1MjOgYREZHSWMiAiIhIefqiA2ijjRs3wtjYGH/7299ER1GbliYp//R7Wjsl0XxsKzHY7qqnSJu2V7uGPTcVYc9NbZd1tQX3w85jwIABGDBgANasWYN9+/bhxx9/xKuvvorZs2cjICAAYWFhGD16NIYMGcKzuqhBS4NSa2trtXp92qwtbaXp7ajItmn6NgCatT9raptqw+NIzcvJycGhQ4cQGxuLAwcOIC0tDW5ubnjmmWewceNGDBo0SO2Doc6fP4+srCyMHDlSretRNxYyICLSXEZGRti+fTuCgoKwdOlSfPjhh6IjdTihoaEIDQ1Ffn4+9uzZg507d2L69Omora3FwIEDER4ejrCwMAQGBnKgtRqw36+5OkpbdZTtUBdN7a+LwH1FjJqaGly6dAkxMTGIjY3FqVOnAAAjRozA559/jvHjx8PGxkZwSs0UExODCRMmiI5BpLGqq6tRUlICCwsL0VGoAX7PrjhNaKvgYaMQPGyU2tfTEhFtoQntT9SRyCar6unpCU5CHRlfuxXHtiLRdHV1WciAiIi0EgsZEBERKY+FDJRUU1ODjRs3YsaMGTA1NRUdR214AEpxbCsx2O6qxzZVHtus8+nSpQsmT56MyZMno7S0FEePHkVsbCx27dqFFStWwMTEBAMGDEBoaCiGDh2KQYMGoUuXLqJja732HiDMAcmK68ht1VG2TZO2Q5OykPZKTU3FiRMncPLkSZw4cQKJiYnQ19fHoEGD8PLLL2P06NEICgpq1zMz7t27F25ubujbt2+7rVMd7OzskJOTIzoGERE1o2fPnli9ejVmz56N4cOHa30BHU1lbW2N6dOnY/r06cjPz8fBgwcRGxuLL7/8Ev/85z9hbW2NkJAQeeGDwMBA6Ovza5a2Yr9fc3WUtuoo26EubJ//YVu0j6qqKly8eBFxcXE4fvw4Tp48iby8PDg5OSE8PBxz587F6NGjWbygBbdv38aNGzcQFhYmOgqRxioqKkJtbS0sLS1FR6EG+D274thW/yOiLdj+RKpVXV0NACwUSmrF127Fsa1INF1dXfl7AxERkTYpKyuDtbW16BhERERahSPslLR3717cuXMHs2fPFh2FiIiIBDI1NcWYMWMwZswYAEBKSgqOHTuG48eP47vvvsP7778PfX19eHl5ITAwEP369UNgYCACAgJ45hciIiIFpKam4sKFC7hw4QIuXryICxcuIDU1FQYGBggKCsJTTz2Fjz76CI8//rjQ99bo6GiMHTu2XYsnqIOtrS0ePHiA8vJyGBkZiY5DRERNeOmll3DkyBG88MILuHz5MhwdHUVH6tCsra0xadIkTJo0CQBw9epVHD16FHFxcVi5ciUWLlwIMzMz+Pv7IzAwEIGBgQgKCoKPjw+LGxAREf2pqqoKSUlJiI+Pl/fxL126hJKSEtjb22Po0KH417/+hWHDhqFv375a37duT/v374e5uTkGDx4sOgqRxioqKgIAFjIgIiLSELKzbuvp6QlOQkREmkBPT0/+3kBERKRNHjx4ADMzM9ExiIiItApH0ylp7dq1GDVqFHr16iU6ChEREWmQrl27Ytq0aZg2bRoAIC0tDb/++qt8gOYvv/yCnJwc6OjooEePHvJJDrIfnl2KiIg6q9raWiQnJzcqWpCdnQ0dHR10794d/fr1w8svv4z+/ftj4MCBGvNFQFpaGi5duoTly5eLjtJmtra2AIDc3Fw4OzsLTkNERM358ssv0a9fP0yfPh379u3jZL921KdPH/Tp0wd///vfAQBJSUk4ffo04uPjcf78eXz99deQSqUwNjZG3759ERQUJO/z9+nTBwYGBoK3gIiISL0qKytx7do1ef8+Pj4eV65cqff+GBgYiGnTpmHQoEHw8fHhZ5k2iImJwYgRI2BoaCg6CpHGKigoAABYWVkJTkJEREQA5Gfd1tXVFZyEiIg0ga6urvy9gYiISJukp6cjPDxcdAwiIiKtwkIGSvjjjz9w4MAB/PTTT6KjEBERkYZzdnbGxIkTMXHiRPlld+/elU/OvHDhAtasWYP79+8DANzd3eHl5YXevXvLf/fu3Ruurq6iNoGIiEilKisrkZycjKSkJFy/fh3Xr19HUlISkpKSUFhYCD09PXh5eSEwMBCLFy9GYGAgAgICNPqMaf/9739hamqKJ554QnSUNrOzswMA5OTksJABEZEGs7Kywvbt2xESEuv9F40AACAASURBVILPP/9cPqme2p+3tze8vb0xY8YMAP8743TdyZtbt27FgwcPYGhoCG9vb3mfX/Z37969YWpqKnhLiIiIlCOVSuv163///Xf53+Xl5TAzM4O/vz/69++P2bNnIzAwEL6+vtDX59AEVamoqMDRo0excuVK0VGINFp6ejoAwMnJSXASIiIiAv5XyEBPT09wEiIi0gT6+vosZEBERFopPT2d4+uIiIiUxNECSli3bh1cXFzw9NNPi45CREREWsjd3R3u7u4YN26c/LLMzExcvHgRly9fxvXr13Hu3Dl8++23yM/PBwCYm5vLJzfULXDQu3dvGBkZidoUIiKiZuXl5eH333+XT2SQTWa4ffs2KisroaOjA3d3d/Tu3Rv9+/fH1KlTERAQgL59+2rdRL69e/di5MiRMDY2Fh2lzRwdHQE8/GxCRESabcCAAXj33Xfx5ptvYujQoejXr5/oSISHA+769OmDPn36YOrUqQAeDs6+ceMGLly4gGvXruH69evYvn07kpOT5Z+LPDw85H1+2Y+3t7f8vZmIiEiUrKwsJCYmNipacPfuXdTU1EBfXx+enp7w8fFBWFgYXn/9dQQGBsLLy4sTk9QsLi4ODx48wOjRo0VHIdJoGRkZMDExgYWFhegoREREhIcFuQBwrAsREQEADAwM5O8NRERE2iI/Px8lJSUsZEBERKQkFjJQkFQqxaZNm/Daa6/xbBFERESkMo6OjggPD0d4eHi9y7OzsxudsXrz5s1ISUlBdXU1dHV14ebmhq5du8p/unXrJv/bxcWFn1mIiEgtpFIpbt++jZSUlEY/t2/fRk5ODgDA1NRUXnznueeeq1eQR9sKFjQlMzMTBw4cwJYtW0RHUQlra2sYGxvLz1RHRESa7Z133sGxY8cwefJkXLhwAV26dBEdiZqgp6cHb29veHt717u8srISycnJ8smhv//+O06fPo3NmzejsLAQAGBlZQVPT89Gff5u3bqhW7duHeLzFBERiVVaWirvy9f9nZKSguTkZHmxXQsLC/Tu3Rve3t4IDQ2V/92jRw8YGBgI3orOKTY2Ft7e3ujWrZvoKEQaLT09HRKJRHQMIiIi+lN5eTkAwNDQUHASIiLSBEZGRixkQEREWictLQ0AWMiAiIhISZzdpqAffvgBRUVFmD59uugoRERE1AnY29vD3t4eoaGh9S4vLy/HzZs3cf36ddy6dUs+sPTs2bNISUlBWVkZgIdngnRzc4OHh0eThQ6cnZ1Z6ICIiJpUWlqKO3fuNFmo4M6dO8jMzJTf1sbGRv7eMnToUERERKBXr17o3bs33N3doaOjI3BL1Gvr1q0wNTXFuHHjREdRGUdHR2RkZIiOQURECtDV1UVUVBT8/f3x+uuvY8OGDaIjkRIMDAzkBZ4aSk9PR1JSEm7cuIHk5GSkpKQgLi4OUVFR8oJRAODg4NCowIHsc5mHhweMjY3bc5OIiEgDlZWV4e7du42KFMj+rtu/t7W1lb+XPPHEE5g5cyZ69eoFLy8vuLi4CNwKasr+/fsbFUcmosYyMzPh5OQkOgYRERH9STZZlYUMiIgIePh+UFJSIjoGERGRUljIgIiIqHU4e01Ba9euxbPPPssPG0RERCSUkZER/Pz84Ofn1+T1+fn5SE5Olv+kpaUhPT0d0dHRuH79Oh48eCC/rbW1NSQSCZydneW/PT09613m5OQEXV3d9to8IiJSs/z8fPl7Q933ibq/MzIyUFtbCwAwNjaWvz8EBARgwoQJ8PT0hKenJ7p37w4rKyvBWyRGbW0tNm3ahOeee65DnQ1ZIpGwkAERkRZxcXHBli1bMHbsWDzxxBN47rnnREciFZBIJJBIJBg+fHij68rKypCWllav35+cnIxDhw7hjz/+QEFBgfy2dT/HNez7y357eHhAT0+vPTePiIhUpG7/vuFvWX8/MzMTNTU1AOq/L/j7+2P8+PHy/n2PHj1gaWkpeItIUampqUhISMCqVatERyHSeBkZGSxkQEREpEHKy8uhr6/P41FERATg4TjI/Px80TGIiIiUkpaWBmNjY1hbW4uOQkREpFVYyEABFy9exLlz5zgYgIiIiDSetbU1goKCEBQU1Oi62tpapKen4/bt27h//z7S0tKQmpqKjIwM3LlzB2fPnkVqaipKS0vl95ENcHV2doarqyucnJzg5uYGJycnODo6wsHBAfb29rCzs4O+Pj9aEhGJIJVKkZ2djYyMDGRnZyM7Oxv37t1DRkYGUlNTkZaWhvv379ebwAAAdnZ2kEgkcHV1hUQiQWBgICQSCVxcXODu7g4PD49OW6igJYcOHUJiYiK+++470VFUysnJCenp6aJjEBGREsaMGYO5c+di3rx5GDRoELp27So6EqmRsbGxfNJpU/Ly8pCSkoJ79+7JPw/eu3cPaWlpiI+PR2pqKoqKiuS3NzQ0lH8erNv3l0gkcHR0hKOjI+zt7WFvb88B5kRE7aC6ulrer8/KykJGRkajvv39+/eRnp6O8vJy+f3Mzc3h5uYmfy0PCwuDRCKBm5sbXF1d0a1bN9jY2AjcMlKlmJgYGBsbY+jQoaKjEGm89PT0ZguDExERUfurqKiAoaGh6BhERKQhDA0N6x3jIiIi0gYZGRmQSCTQ0dERHYWIiEircLaZAj7//HP4+PggJCREdBQiIiKiVtPR0ZEPZn2UwsLCeoNiU1NT5b/PnDmDnTt3IjMzE1VVVfXuJ5vcYGdnV6/Igb29PZycnOR/Ozg4cOAsEdEjVFVVyScuZGZmIisrS/6/rFhBTk4OMjMzkZmZiZKSknr3NzU1rVd85vHHH5dPSHNxcYGLiwskEgmMjY0FbaH2i4yMxLBhw+Dv7y86ikpJJBIkJiaKjkFEREpatWoVfv31V0yePBknT56EgYGB6EgkiI2NDWxsbBAYGNjsbUpKSnDv3j15Pz8tLU1e6PC3337DTz/9hMzMTFRWVta7n6xPL+vjy/r8Dg4OcHJygp2dHezt7SGRSGBubq7uTSUi0hoPHjxAenp6vX5+ZmZmo36+7Ke2tlZ+X319fTg6OsLNzU1egPDpp5+Gi4uLvJ/v5uYGMzMzgVtI7S02NhZPPPEETExMREch0ngZGRkYOXKk6BhERET0p/LychYyICIiOUNDQ1RUVIiOQUREpJSbN282e+IBIiIiah4LGbSgoKAA27dvx8qVK1kxiYiIiDoFS0tLWFpawsfH55G3y8nJqTfINiMjQ35ZZmYmrl69Kr8uJyen3n0NDAzkRQ9sbW3lky1sbGxga2sLa2vrepfJfkxNTdW56UREKldQUIC8vDzk5uYiPz8feXl5j/zJyspCbm5uvWXIXjPt7e3lhWK6d+/eaNKY7DpOYFCv33//Hfv378ePP/4oOorKOTk54ciRI6JjEBGRkoyNjbFt2zYMGDAAH3zwAZYtWyY6EmkwMzMzeHl5wcvL65G3y83NlRfUysrKqjfpNj09HRcvXpT3/wsKCurd19jYuF6xw6b693WPAcj+1tfnV1ZEpLmqqqqa7cvn5uY2+l/2GlpWVlZvOZaWlvWKvnp7eyM0NFTer3d0dKz3GkpUV3V1NY4cOYIlS5aIjkKkFTIyMuDk5CQ6BhEREf2poqICRkZGomMQEZGGMDIyQnl5uegYRERESrl27RoGDhwoOgYREZHW4aiwFnz99dfQ09PDlClTREchIiIi0ih2dnaws7ODt7d3i7ete3Zx2QQIWdED2QDflJQUxMfHy/8vKipqtBxjY2P5BIfmih1YWFg0+rG2toalpSV0dXXV0RRE1IGVlZWhqKgIRUVFKCwsREFBAQoLC1FUVIT4+Hjo6OigtrZWXrCg4U9NTU295enp6dV7zZK9lnXr1g22traws7ODRCKRFydwcHCAjY2NoK2npnzwwQfo3bs3xo0bJzqKykkkEqSnp4uOQUREreDr64uVK1filVdeweOPP47hw4eLjkRaztbWFra2tgr1+SsqKuT9/bpnFs/KypJ/Lk5MTKw32VcqlTZajoWFRaMCB3ULHTTs41tYWMh/s/AhESmitLS0Xh9f1s+X/d9UgQLZ61ZTxypNTEwaHZt0c3NDQEAAHBwcGhUltLe356QdapPTp08jLy8P4eHhoqMQaTzZaz4LGRAREWmO8vJyGBoaio5BREQawtDQEBUVFaJjEBERKay2thaJiYmYOXOm6ChERERah4UMHqG2thYbNmxAREQELCwsRMchIiIi0lr6+vqQSCSQSCQK30d2lrOWzmCekZEhnxAhG1RcWVnZ5DK7dOnSZJGDuv/LJkHUvc7ExARmZmawtLSEiYkJJ0gQaYGCggJIpVJIpVLk5+dDKpXKJysUFRUhPz+/3v+y4gQNr2vuS1MzMzNIpVLU1NRAT08PFhYWsLe3h4uLC4YOHQovLy+4ubk1mtBgaWnZzi1BqnTz5k1s374dUVFRHbI4jpOTE4qKilBSUgIzMzPRcYiISElz587F8ePHERERgcuXL8PW1lZ0JOokDA0N4eLiAhcXF4XvI5VKH3lmc9nE4Yb9/aYmEgMPjztYWlrC0tISVlZW9fr3Dfv5df83NTWFpaUlzMzMYGJiwu+CiDRUcXExSktLUVJSgsLCQkilUnk/vmHRwbp9/IbXNXfMUPaaULf/7u7ujoCAgHoFVer+bWNjAxMTk3ZuCersYmJi0K1bN/Tq1Ut0FCKNl5GRAQBwdHQUnISIiIhkKioqWNyNiIjkjIyMUF5eLjoGERGRwu7cuYPi4mL4+fmJjkJERKR1WMjgEQ4ePIgbN27gp59+Eh2FiIiIqNPR19eHg4MDHBwclL5vcxOW6w5orntdampqo8sLCwsfuQ4rKyuYmJjAxMQE1tbW8r+trKxgamoKExOTRpMhunTpAhMTE5ibm8Pc3Fw+0UJXVxdWVlbQ0dGBtbV1a5uMSKtUVFSgpKRE/ru8vBylpaUoLS2VT0goKSmRP58fPHgAqVSK4uJiFBcXQyqV4sGDBygqKoJUKq03maG0tLTZ9cqKDsgKldSdxOTs7NxkgZO6hU5k1+np6aGiogI3b95EfHw8EhMTkZCQgHPnzuHo0aMAAGtra/j4+CAoKAi+vr7w8fFBcHAwjI2N26uZScXeffdd9OjRA5MmTRIdRS1kBYcyMjLQvXt3wWmIiKg11q1bh4CAAEydOhXR0dHQ0dERHYmoSSYmJkoXP5DJz89vcsJyUVERCgoK6p1dvaCgAHfv3pXfRnZ8oLq6utnlm5ubw8TERF4M0dTUFKampvLjALK/6/b9m+rv1+3n6+rqsqgZdXiFhYWoqalBQUGB/Hd1dTWKiooa9eNl/X9ZEULZ33WPCdQ9DtAc2XOrbj9e1s93dnaWFzdpWNik7m/Zc5VIG8TExOCpp54SHYNIK9y9excA4O7uLjgJERERyZSVlfF7UiIikjM2NkZZWZnoGERERAq7du0adHR04OPjIzoKERGR1mEhg0dYt24dQkNDWS2JiIiISMvIigq09Uw7+fn5LQ60rnu299LSUhQWFiI7O7vZyddVVVUtrldHRwdWVlbywdiyidf6+vowNzeHgYEBunTpAkNDQ5iZmcHIyAimpqYwNjaWb7tsAIBsMLbsvgDktwOALl26wMDAAADkRRTq3pY6npqaGnmhDlkRAQAoLS2VVzqXTT5o7rayiT91JynU1tYiPz8ftbW18kkLhYWF8kkLVVVVKC4uRmVlJR48eKBQ1roFQpoqCuLg4FBvkpGlpWW9iUV1i42YmprC3NxcpWeZNzQ0hK+vL3x9fetdfv/+fVy9ehVXrlzBlStXcOzYMaxduxaVlZUwNDSEl5cX+vTpA39/f/Tr1w/9+vXjGZO1wJkzZ7Bjxw7s2bMHenp6ouOohZOTEwAWMiAi0mZWVlbYunUrnnjiCaxbtw5z584VHYlI5aytrdtcBLBuUbSCgoJ6RdTqHgeoWywtPz8f+fn5uH//vrzwWmlpqVL9fVn/vrl+vaw/b2pqCiMjI3mfXVYcQVZUTXZ/APLbApAXS5StB6h/DEC2HOpYZP1t4GFxT9ngX9l+KeunA/X79rLigrL+e8N+u+y2ZWVl8mNgZWVl8vs9ePAAlZWVSu//zfXjPT095X/LioPK+vLm5uYwNTWFmZkZLC0tYWpqKj8+QNRZZGdn4+LFi1iyZInoKERaISUlBcbGxm3+noiIiIhURyqVyo9REBERGRsbQyqVio5BRESksGvXrsHNzY0F7ImIiFqBo5WakZ6ejr1792LLli3CMkhLHuBUTLSw9RMR1fWgsABdLK1Ex6BO7u6tG6IjUCejiskRDckGgcsmgCsz8bvhmeuLioqQmZkpH0gum4jecCB6W7RU9ECm7sQJmYZntKs70ULGzMwMhoaG9S5rqc3rZlJGUxlbouhg/IZaOsNn3YkDMrIJADJ1JxrIyB77R92vueIELWVqSd0CF81NppFNmunWrZv8zKPAw8dU0QIdssdX1c+99iQ7s2x4eLj8ssrKSiQlJeHq1au4evUqLl++jE8//RTp6ekAHp4ZTFbUQPbj5uYmahOogdraWrzxxhsYNmwY/vKXv4iOozaOjo7Q1dVFWlqa6ChERNQGQ4cOxTvvvIPXX38dgwcPhr+/v+hIRBqnS5cuKp8AXbe/X11dXe9s9A3797K+XXMTxLOyslBZWdlsETnZ/VpL1j8DIC+mADTuozfVj697bACAvI9XV90CizItnfW+qfsoQtYfVZTsMVFWU/3xuprqwzf1OMkeS5mmiv3J9gOZpooPAJDvD61Vt82tra2b7a9bWFhAIpE0KqQpO84i22+aOkagp6cnL07Y8PgPESknJiYG+vr6eOKJJ0RHIdIKKSkp6Nq16yM/f3R2qck3OSaJiIR7UNS277JJu5SVlbWq70/ah58ziB4tPztLdASNYGJiIi/KSkREpA0SEhJ4omQiIqJWYiGDZmzYsAGWlpaYMGGCkPW7uroiNzMDq16dLWT9REREmmrEiJGiIxC1iaGhIQwNDdt9knZzk9tlA+jrFj1Q5rYyDSfJN3Wb4uJiZGVlPfJ+LU0oaGpigCJaW9Sh7lksldHUZI+6mpro0VSBhoYTMkxNTeVnTJdpONmjbsGB5gpRyCaQKHJbbS4ooEkMDAzQt29f9O3bt97l+fn5SEhIQHx8POLj47Fjxw689957qKmpgaWlJfz8/BAUFCT/8fLyUmqSDqnGpk2bcObMGZw/f150FLUyMDCAk5MT7t27JzoKERG10ZIlS3DixAk8//zzOHfuHExNTUVHIurwRPX3i4uLkZKSgl27dmHHjh1ITEyEvb09Ro4ciZkzZ8LQ0LBRv75u37vuZPuGxfxkBRbqajgRv7y8HMnJyfVu07DgXkt98tb22ZsqEqiI1hQ6BCAv3techn34un1umYYT+g0NDeHp6VnvNg2PDzTXd5cVDlCkMEVTxwGISLvExMRg6NChKi/EQ9RR3blzB127dhUdQ2O5ubph3769OHtwv+goRERwdXUVHYHaiVQqbdUJC0i78HMGkWJMTE1ha2srOoZQJiYmbSrYS0RE1N4uXbqEMWPGiI5BRESklVjIoAnV1dX45ptvMHPmzFYNZFKFGTNmYMaMGULWTUTUlPj4eERFRWHHjh3IyMiAj48PIiIiEBERAYlEIjoeERG1QDahAuDEdCJNYm1tjZCQEISEhMgvKyoqwqVLl3Dx4kVcvHgRx48fx9q1a1FZWYkuXbrA398fAQEBCAoKQnBwMHx8fFjcQI1yc3OxaNEi/P3vf0dAQIDoOGrn7u6Ou3fvio5BRERtpKuri61bt8Lf3x9vvPEGvvzyS9GRiEjF8vLysHfvXmzduhWHDx+GlZUVnn76aaxYsQJPPvkk9PX5FaCMbCLjr7/+isGDB4uOQ0SktJqaGhw6dAgLFy4UHYVIa6SkpMDLy0t0DI21dy/PkEyq99hjj2HQoEH47LPPREchIg1VVlbGQgadAD9niPHMM8+gtLQU+/ezgARpD2NjY1RUVKC6uppjXoiISOPl5eUhMTERH330kegoREREWomjmJoQHR2Ne/fu4aWXXhIdhYhIY8jOArx69WqcPn0aW7duxYcffoi3334bgwYNwsSJEzFlyhTY2dmJjkpERESk1SwsLBAaGorQ0FD5ZeXl5bh27Zq8uMGFCxewadMmlJaWwszMDP369UNwcDCCg4PRv39/9OzZEzo6OgK3ouN49dVXYWJigmXLlomO0i48PDxYyICIqINwdXXFhg0b8Oyzz2LYsGGYNGmS6EhE1EaFhYX4+eefsXPnTsTGxkJfXx8jRozA9u3bMW7cOHkBQ6rP3d0dFhYWSEhIYCEDItJK58+fR1ZWFsLDw0VHIdIaKSkpCAsLEx2DqFPx8/NDQkKC6BhEpMGkUimMjY1FxyDqcMrLy3Hw4EGsWLFCdBQipciK25SXl8PU1FRwGiIiokeLi4tDbW0tv2skIiJqJRYyaMK6desQFhaGHj16iI5CRKRx9PT05GcNjoyMxMGDB7Fz5068/fbbWLRoEUaNGoWJEyfimWeegZmZmei4RERERB2CkZGRvLCUTHV1NX7//XfEx8cjPj4e586dw7p161BWVgZzc3P07dtXfp+goCD4+PiwuIGSjh07hm3btmH37t0wNzcXHadduLu74/Dhw6JjEBGRijzzzDP4v//7P8yZMwePPfYYPDw8REciIiWVlZXJj8H+9NNPqK6uxqhRo/DVV19hwoQJ6NKli+iIGk9HRwfe3t6cVEVEWismJgaurq7w9fUVHYVIK1RVVSE1NRVdu3YVHYWoU/H19eVZoInokaRSKSwsLETHIOpwjh07huLiYjz11FOioxApRVbcRiqVspABERFpvLi4OPTp0wc2NjaioxAREWklFjJoIDk5GQcPHsSuXbtERyEi0njGxsYYO3Ysxo4di88//1x+NrCZM2di7ty5GDNmDF588UWEh4fDwMBAdFwiIiKiDkVPTw++vr7w9fVFREQEgIeV6i9fvozz58/j3LlzOHLkCL744gtUV1fDwcEBwcHB6N+/v/y3o6Oj4K3QXOXl5ZgzZw7Gjx+PcePGiY7Tbtzd3XH37l3RMYiISIXWrFmDM2fO4MUXX8TRo0ehp6cnOhIRtaC6uhpHjx5FVFQU9uzZg9LSUgwcOBAffvghpkyZAjs7O9ERtY6vry+uXbsmOgYRUavExsYiPDycBSqJFJSamoqqqioWMiBqZ76+vkhPT0dOTg77LETUpLKyMvmkVSJSnejoaAQEBPDzL2kdExMTAA8LGRAREWm6EydOYOjQoaJjEBERaS1d0QE0zfr16+Hs7IwxY8aIjkJEpFUsLS0RERGB6OhoZGRk4NNPP0VaWhrGjRsHJycnRERE4NChQ6itrRUdlYiIiKjDMjIywoABAzBv3jxs2rQJV69eRWFhIeLi4vD222/D1tYWO3fulH9Gc3Z2xqRJkxAZGYmTJ0+ivLxc9CZojPfffx9paWmIjIwUHaVdeXh4ICcnByUlJaKjEBGRihgbG+O7777D+fPnsXz5ctFxiKgZNTU1OHnyJBYsWACJRIKwsDAkJyfj/fffR2pqqvw6TghqHV9fXyQkJIiOQUSktPz8fPz2228ICwsTHYVIa6SkpAAAJ3IRtTNfX18AQFJSkuAkRKSppFKpfNIqEanOvn37MHbsWNExiJQmK25TVlYmOAkREdGjlZSU4NKlSyxkQERE1Ab6ogNokoqKCmzevBkvv/wy9PXZNERErWVra4tZs2Zh1qxZuHv3Lnbv3o2oqCiMGjUKbm5uGD9+PCZOnIiQkBDRUYmIiIg6PDMzM4SEhNT77CUbBH/69GmcOXMGS5YsQWFhIUxNTREcHIxBgwZh0KBBGDhwIBwdHQWmF+P69etYuXIlPvnkE7i6uoqO067c3d0BAHfv3oW3t7fgNEREpCp+fn5YsWIFXnvtNYSGhmLYsGGiIxHRnxISErB161ZERUUhPT0dPj4+mDdvHiIiIuDp6Sk6Xofh5+eHjIwMnh2WiLTOgQMHAAAjR44UnIRIe6SkpMDY2LhTHtckEsnV1RVWVla4du0aB/YTUZPKysrkk1aJSDUuX76MlJQUFjIgrSQrbiOVSgUnISIierRTp06hsrISQ4YMER2FiIhIa3G2fh07d+5EXl4eZs6cKToKEVGH4e7ujgULFmDBggVISEjAzp078e2332LNmjXw8fHBxIkTMWXKFPTs2VN0VCIiIqJOw9raGmFhYfXO5pecnIyTJ08iPj4ehw4dwieffIKamhpIJBKEhIRgyJAhCAoKQv/+/WFkZCQwvXpVV1dj+vTp8Pf3x7x580THaXceHh4AWMiAiKgjmj9/Po4cOYKIiAhcunQJNjY2oiMRdVqy46Tbtm3DrVu34O3tjVmzZuG5555D7969RcfrkGRnh01MTERoaKjgNEREiouNjcWgQYNgZWUlOgqR1khJSUHXrl2ho6MjOgpRp+Pj44OEhATRMYhIQ0mlUhYyIFKx6OhoSCQSBAcHi45CpDTZe0JZWZngJERERI927NgxdO/evdOdEImIiEiVWMigjnXr1mHcuHFwcXERHYWIqEPy9fWFr68vli5divj4eERFRWHdunVYtmwZfHx8EBERgalTp8LJyUl0VCIiIqJOx9PTE56enoiIiAAAFBYW4syZMzh9+jTOnDmDJUuWoLCwEGZmZggODsaQIUPkBQ4sLCwEp1edTz75BBcuXMC5c+egp6cnOk67s7KygoWFBe7evSs6ChERqZiOjg42bdqEgIAAzJo1Cz/++KPoSESdSkpKCrZv344tW7YgKSkJbm5uGD9+PCZOnIiQkBDR8To8FxcX2NjYICEhgYUMiEhr1NbWIjY2tlMWWiRqizt37siLdRJR+/Lz82MhAyJqVllZmfzs20SkGtHR0Xj66adZxIu0kuw9QSqVCk5CRET0aD///DOefvpp0TGIajXC/gAAIABJREFUiIi0mq7oAJoiKSkJv/76K+bMmSM6ChFRpxAUFITIyEjcv38fcXFxCAkJwYcffggXFxeEhIQgMjISOTk5omMSERERdVqWlpYICwvD0qVLERMTg7y8PFy7dg2RkZHo0aMHdu3ahaeeego2NjYICgrCq6++il27diErK0t09FZLSkrCsmXLsGzZMvTp00d0HGHc3d1ZyICIqIOytrZGVFQU9uzZg40bN4qOQ9ThpaamIjIyEiEhIfD09MQnn3yCoUOHIi4uDnfu3JFfR+3D29ubk6qISKtcuXIFaWlpCA8PFx2FSKvcunULPXr0EB2DqFPy9fXFtWvXRMcgIg0llUpZyIBIhbKysnD+/HmMHTtWdBSiVpG9J5SVlQlOQkRE1Lxbt24hISEB48aNEx2FiIhIq7GQwZ++/PJLeHp6Yvjw4aKjEBF1Knp6eggJCcH69euRmZmJPXv2wNPTE2+//TZcXV0xduxYREVFoaSkRHRUIiIiok5NV1cXvr6+mDlzJr766iskJSUhMzMTu3fvxqhRo3D+/Hn87W9/g6OjI7p3746IiAhs2LABycnJoqMrpKqqClOnToW/vz/eeOMN0XGE8vDwQEpKiugYRESkJo8//jjefPNN/P3vf8fVq1dFxyHqcPLy8hAVFYVRo0bBw8MDS5cuhaenJ37++WdkZGRg/fr1CAkJ4VnSBOCkKiLSNjExMbC3t0e/fv1ERyHSKrdu3UL37t1FxyDqlHx9fZGTk6PVBY+JSH3KyspgbGwsOgZRh/Hf//4XRkZGGDFihOgoRK0ie0+QSqWCkxARETVvz549sLGxwdChQ0VHISIi0mosZACgtLQU27Ztw9y5c6GryyYhIhLF2NhYXrggLS0NGzZsAADMnDkTDg4OmDRpEqKjo1FZWSk4KREREREBgIODA8aOHYsVK1bg5MmTyMvLw8GDB/Hiiy8iPT0dCxYsQPfu3eHs7IxJkyYhMjIS8fHxqK2tFR29kY8++ghXrlzB119/DT09PdFxhOrevTv++OMP0TGIiEiN3nvvPfTr1w/PP/88B4gRqUBhYSGioqIwduxYODk5Yc6cOTA2NsYPP/yAzMxM+XX6+vqio3Zqvr6+SEhIEB2DiEhhMTExCA8P5xgGIiU8ePAAmZmZ6NGjh+goRJ2Sr68vAPBzNxE1SSqVys++TURtFx0djREjRsDU1FR0FKJWMTIygq6uLsrKykRHISIiatbPP//M73mJiIhUgN94A9i2bRtKS0sREREhOgoREf3J0tISERERiI6ORkZGBj799FOkpaVh3LhxcHJyQkREBA4dOqSRk+CIiIiIOqsuXbpg5MiRWLp0KQ4ePIi8vDwcPXoUc+bMQV5eHt555x0EBwfDyckJkyZNwvr163Hr1i3RsXHlyhV88MEHWL58uXygZWfWs2dP3Lx5U3QMIiJSI319fWzbtg337t3DW2+9JToOkVYqKytDdHQ0IiIi4OzsjFmzZgEAvvrqK2RlZSE6OhoTJ06EoaGh4KQk4+fnh5ycHGRmZoqOQkTUouLiYpw6dQrh4eGioxBplVu3bqG2tpaFDIgEcXJygp2dHa5duyY6ChFpmOrqalRWVsrPvk1EbSOVSnH48GGMHTtWdBSiNjE2NmbBbSIi0lhZWVk4ffo0xo0bJzoKERGR1mNJIADr16/H5MmTYW9vLzoKERE1wdbWFrNmzcKsWbNw9+5d7N69G1u2bMGoUaPg5uaG8ePHY+LEiQgJCREdlYiIiIjqMDExwbBhwzBs2DAAQFVVFc6fP4+4uDgcOXIE//jHP1BSUgIPDw+MGDECI0aMwPDhw+Hk5NRuGSsqKjBt2jT0798fr732WrutV5P17NkTOTk5yMvLg42Njeg4RESkJt26dcPGjRsxefJkDB8+nF++EymguroaR48eRVRUFPbs2YPS0lIMHDgQH374IaZMmQI7OzvREekR6p4d1tHRUXAaIqJHO3z4MKqqqjBy5EjRUYi0yq1bt6Crq4tu3bqJjkLUafn4+CAhIUF0DCLSMOXl5QAenn2biNruyJEjKC0txVNPPSU6ClGbGBsbo6ysTHQMIiKiJkVHR8PQ0BCjR48WHYWIiEjr6YoOINpvv/2G+Ph4zJkzR3QUIiJSgLu7OxYsWIALFy7g2rVrmDFjBvbt24ehQ4fC19cXS5cu1Yiz+hIRERFRY/r6+hg4cCAWLlyI/fv3o6CgAOfPn8fcuXNx9+5dzJgxAxKJBN27d8fs2bOxc+dO5OfnqzXTO++8g5s3b2LTpk3Q1e30h0kAAL169QIA3Lx5U3ASIiJSt4kTJ2Lq1Kl46aWXkJaWJjoOkUaqqanByZMnsWDBAjg7O2PUqFFITEzE+++/j9TUVPl1LGKg+RwdHWFvb89JVUSkFWJjYxEcHAwHBwfRUYi0yh9//AE3Nzee7ZlIID8/P37mJqJGWMiASLWio6MRFBQEV1dX0VGI2sTAwACVlZWiYxARETVp165dGDlyJMzMzERHISIi0nqdfoT+unXr0LdvXwwaNEh0FCIiUlLdwgXnz5/HyJEjsW7dOvTs2RPBwcGIjIxERkaG6JhERERE1Ax9fX0EBQVh0aJFOHjwIPLy8nDw4EFMnDgR8fHx+Nvf/gZ7e3sEBwfjrbfewqFDh1RajT82NharVq3C559/jp49e6psudrOw8MDxsbGuHHjhugoRETUDv7zn//Azs4Ozz//PKqrq0XHIdIYCQkJeOutt+Dq6oqhQ4fi0KFDmDt3rvxY5IIFC+Dk5CQ6JimJZ4clIm1x4MABhIeHi45BpHX++OMP9OjRQ3QMok7N19eXn7mJqJGKigoAgKGhoeAkRNqvtrYW+/btw9ixY0VHIWozQ0ND+XsEERGRJsnIyMCBAwfwwgsviI5CRETUIXTqQgYFBQXYvn075s6dKzoKERG1UVBQECIjI3H//n3ExcUhKCgI//rXv+Di4oKQkBBs2LABRUVFomMSERER0SOYmppi5MiRWLFiBc6fP4+MjAx89913CAoKwo8//ohRo0bBxsYGYWFh+Oyzz9o00T4rKwvTpk3DxIkTMW3aNNVtRAegq6sLT09P3Lx5U3QUIiJqB2ZmZti2bRvOnDmDjz/+WHQcIqESEhKwdOlS9OrVC35+ftixYwciIiKQlJQkv6579+6iY1Ib+Pr64tq1a6JjEBE9UlJSEpKTk1nIgKgVbt26xUIGRIL5+voiPz8faWlpoqMQkQaRTVI1MDAQnIRI+128eBGpqaksZEAdgoGBAQsZEBGRRtq8eTMsLCwwbtw40VGIiIg6hE5dyCAqKgp6enqYMmWK6ChERKQienp6CAkJwfr165GZmYk9e/bA09MTr732GhwcHDB27FhERUWhpKREdFQiIiIiaoG9vT0mTZqE9evX49atW0hJScF//vMfWFlZ4b333kPv3r3Ro0cPzJ8/H/v374dUKlVoubW1tZgxYwZMTU2xceNGNW+FdurVq1ebCkUQEZF2CQwMxIcffoh//etfOH36tOg4RO3qzp07iIyMRFBQEPz8/PDNN9/gySefRFxcHJKTk7FixQp4eXmJjkkqwkIGRKQNYmJiYG1tjQEDBoiOQqR1bt26xcJTRIL5+voCeFgojohIprKyEsDDM2//P3v3HR9VmagP/JlMeg/pk16BzFATmibYQFDJwq6CetEooCLXdVl/rqK4YARdu2tWvVLElSBXBb2UWAEVTRSUIpBCSO+dJJOQQibJ/P7wnnNnUqhJ3snk+X4+85k+eUbJ5Lxnzvu8RHR19u7dC5VKhYkTJ4qOQnTVrK2t5b8RREREpmTr1q1YvHgxbGxsREchIiIyCyO6yOC9997D3XffDScnJ9FRiIhoENja2srFBRUVFdi0aRMAYNmyZfDz80NCQgJSUlK4I5SIiIhomAgKCsLSpUvxySefoLa2FkePHsU999yDQ4cO4bbbbsOoUaMwe/ZsvPzyy8jKyur3dV577TV88803+PDDD+Hs7DyE72D4iIyMRG5urugYREQ0hB577DHMnTsXixcvhlarFR2HaFCVl5cjKSkJsbGxCAkJwfr166FWq7F//3652CA2NlZ0TBoEGo0GWq0W5eXloqMQEfXrm2++wc033wylUik6CtGw0t7ejvLycoSHh4uOQjSieXh4wNvbmwViRGREWm2bRQZEVy8lJQXz58+HQqEQHYXoqrHIgIiITNFPP/2E7OxsLFmyRHQUIiIiszFiiwwOHz6M9PR0PPDAA6KjEBHREHBxcZGLC6qqqvDKK6+goKAA8+fPh4+PD5YvX460tDTo9XrRUYmIiIjoEiiVSkRHRyMxMRFHjx5FVVUVkpOT4evri5deeglqtRphYWFYvnw5UlJS0N7eDgA4evQo/v73v+P555/HjBkzBL8L0xUREYGcnBxuHxMRjSAKhQLvv/8+2tvb8eCDD4qOQzTg6uvrkZycjPj4eAQFBSExMRGhoaHYs2cPKisrkZycjFmzZvEAYDPH1WGJyNS1tbXhxx9/xJw5c0RHIRp28vPz0d3djbCwMNFRiEY8tVrNbW4iMsIiA6KBUVFRgd9++w3x8fGioxANCCsrK/lvBBERkan497//jXHjxmHSpEmioxAREZmNEVtksGXLFowbNw5TpkwRHYWIiIaYu7s7HnroIaSlpaGoqAhr167FkSNHEBcXh6CgIKxcuRLHjh0THZOIiIiILoOXlxcWLlyI5ORk1NTU4Pvvv8cdd9yBQ4cO4Q9/+AM8PDwwd+5czJ07FzNmzMATTzwhOrJJi4iIwLlz51BVVSU6ChERDSFPT0988MEH+Oyzz/DBBx+IjkN01VpbW7Fz507Ex8fDx8cHDz/8MADgo48+kouw4uPjYWVlJTgpDRV3d3f4+PhwUhURmayDBw+ivb2dRQZEVyAvLw8KhYJFBkQmQKPRcJubiIxIq22zyIDo6qSkpMDe3h433HCD6ChEA8La2ppFBkREZFJaWlqwY8cOLppMREQ0wEZkkQE3LIiISBIYGIiVK1fi+PHjyMjIwNKlS/HFF18gJiYGarUaiYmJyMvLEx2TiIiIiC6DlZUVrr/+erz88ss4deoUSkpK8Prrr+PEiROor69Hamoqrr/+erzxxhsoLCwUHdckjR49GgBw5swZwUmIiGio3XzzzXj88cfx5z//GdnZ2aLjEF229vZ2pKSkICEhAV5eXrj33nsBAO+99x6qq6uRkpKChQsXwsbGRnBSEoWrwxKRKfv6668xYcIEqFQq0VGIhp38/Hz4+vrCwcFBdBSiEU/a5tbr9aKjEJGJ6OrqAgBYWIzIQ5aJBkxKSgpmz54NW1tb0VGIBoSFhQW3GYmIyKRs374dOp0OixcvFh2FiIjIrIzIvYIff/wx2tvb8R//8R+ioxARkQkxLC44evQoZs2ahQ0bNiAiIgIxMTFISkriirREREREw1BAQACKi4uh1WqRmpqK3bt3Y+zYsXj55ZcRGhoKtVqNp556CmlpaaKjmgwfHx94enri1KlToqMQEZEAL7zwAjQaDRYvXozz58+LjkN0UV1dXThw4AASEhLg7e2NBQsWoKCgAC+88AJKS0vlYgMnJyfRUckEqNVqZGRkiI5BRNSnr7/+GnPnzhUdg2hYysnJQUREhOgYRITft7mbm5tRWloqOgoREZHZaGtrw/fff4/4+HjRUYiIiIjMkl6vx5tvvol7770X7u7uouMQERGZlRFZZLBlyxbcfvvt8PDwEB2FiIhMVHR0NJKSklBeXo7U1FRER0dj7dq18PPzQ2xsLDZt2oSmpibRMYmIiIjoEuzduxcvvfQS3n77bVx77bWIj4/Hxo0bUVFRgdTUVMyaNQsffvgh4uLiEBISgpUrVyItLQ3d3d2iows1btw4pKeni45BREQCWFlZYfv27cjLy8Pq1atFxyHqU3d3N9LS0rBy5UqoVCrMnj0bWVlZWLduHcrLy+X7PD09RUclE8PVYYnIVBUWFiInJwdz5swRHYVoWMrNzWWRAZGJ0Gg0UCgUyMzMFB2FiIjIbOzbtw/t7e249dZbRUchIiIiMkt79+5FdnY2/vrXv4qOQkREZHZGXJFBdnY2Dh8+jGXLlomOQkREw4BSqURsbCw2btyI6upq7N69G6GhoXjsscfg5eWF+Ph4JCcno6WlRXRUIiIiIupDbm4uEhIS8OCDD/baFyBt6yUlJaGsrAwZGRm47777sG/fPsTFxcHb2xsJCQlISUlBR0eHoHcgzvjx43Hq1CnRMYiISJCwsDC89dZb+Oc//4nPP/9cdBwiWWZmJp566ikEBAQgLi4OBw4cwIoVK5CXl4ejR49i5cqV8PHxER2TTJhGo8G5c+dQUlIiOgoRkZGvvvoKTk5OuOaaa0RHIRqWWGRAZDpcXFygUqmQkZEhOgoREZHZSElJwdSpU7nvk4iIiGiQvP7664iPj0dUVJToKERERGZnxBUZbN68GcHBwbjhhhtERyEiomHG1tZWLi4oLy/Hpk2bAADLli2Dn5+fPMlNp9MJTkpEREREANDU1IQ//vGPGD16NP71r39d9PFqtRqJiYk4ffo0MjIy8Le//Q0FBQWYP38+fHx8kJCQgAMHDoyYlVvHjRuHjIwMdHd3i45CRESCJCQkYPHixVi6dCkqKytFx6ERLDMzE4mJiYiMjIRGo8Enn3yCe++9F6dPn5bvCwsLEx2Thgm1Ws3VYYnIJH399de46aabYG1tLToK0bDT1taG8vJyFhkQmRC1Ws1tbiIiogGi1+vx1VdfIT4+XnQUIiIiIrN05MgRpKam4vHHHxcdhYiIyCyNqCKDjo4ObNu2DUuXLoWFxYh660RENMBcXV3l4oKqqiq88sor8iQ3X19fLF++HGlpaSNmkhsRERGRqens7MSiRYtQX1+PTz/9FDY2Npf1fLVajVWrViEtLQ35+fl48sknceLECcyePRvBwcF4+umnkZ6ePkjpTcP48ePR2tqKvLw80VGIiEigd999F25ubrj//vtZbkNDqri4GElJSYiOjoZGo8GWLVtwyy23IDU1FYWFhXjppZcwZswY0TFpGHJxcYGfnx8nVRGRSeno6MD333+PuXPnio5CNCzl5+eju7ubRQZEJkSj0XCbm4iIaIAcOXIEFRUVLDIgIiIiGiSvvPIKYmJiMHPmTNFRiIiIzNKIms2/Z88e1NfX47777hMdhYiIzIi7uzseeughpKWlobCwEGvWrMGRI0cQFxeHoKAgrFy5EsePHxcdk4iIiGhEWblyJX788Ufs2rULAQEBV/VaISEheOqpp3Dq1ClkZGRgyZIl2LlzJ8aPHw+1Wo3ExETk5+cPUHLToVaroVQqzb6wgYiILszR0RHbt2/HwYMH8cYbb4iOQ2auvLwcSUlJiI2NRUhICNatWwe1Wo39+/ejpKREvo/oanF1WCIyNampqTh37hxuvvlm0VGIhqXc3FwoFAqEhYWJjkJE/0utViMrK4uliERERAMgJSUFgYGBGDdunOgoRANKoVBwsTAiIhKuoKAAu3btwt/+9jfRUYiIiMzWiCoy2LJlC+bOnXvVExiIiIj6Y1hckJGRgaVLl+KLL75AdHS0PMmNK9oSERERDa7XX38dGzZswPbt2zFt2rQBfW3DbbqjR49i1qxZePfddxEeHo6YmBgkJSWhurp6QH+mKHZ2dggPD2eRARERISYmBuvWrcPq1avxyy+/iI5DZqahoQHJycmIj49HcHAwnn32WYSGhmLPnj2oqqpCcnIyZs2aBYVCIToqmRG1Wo2MjAzRMYiIZN988w3Gjh2LkJAQ0VGIhqXc3Fz4+/vDzs5OdBQi+l9qtRqtra0oKioSHYWITICVlRUAoLOzU3ASouEpJSUF8+fPFx2DaMB1dHTIfyOIiIhEWbduHUJCQnD77beLjkJERGS2RkyRQWlpKQ4cOIBly5aJjkJERCNEX5PcNmzYgIiICHmSW1VVleiYRERERGbliy++wKpVq/Dqq6/ij3/846D+rOjoaCQlJaGsrAwpKSmIjIzE6tWrERAQgHnz5uG///u/0d7ePqgZBtv48eNx6tQp0TGIiMgEPPHEE7j++uuxePFiNDU1iY5Dw1xrayt27tyJ+Ph4+Pj4YPny5QB+L6SuqKiQiw14ACMNFrVajdOnT3N1WCIyGV9//TXmzp0rOgbRsJWbm4uIiAjRMYjIgFqthkKhQGZmpugoRGQCpLKhtrY2wUmIhp+SkhKcOnUK8fHxoqMQDbi2tjYW0hERkVBnzpzB9u3b8dxzz8HS0lJ0HCIiIrM1YooMtmzZAg8PD8ybN090FCIiGoGkSW7l5eVITU1FdHQ01qxZA39/f8TGxmLTpk2cBEBERER0lY4cOYJFixbhwQcfxP/7f/9vyH6ulZWVXFxQV1eH7du3Q6FQ4P7775cn5p08eXLI8gykcePGsciAiIgAABYWFvjwww/R0tKCRx99VHQcGoba29uRkpKChIQEeHl54e6770Z7ezs2b96Mmpoa+T57e3vRUWkE0Gg0aG1tRWFhoegoREQoKytDRkYGiwyIrgKLDIhMj6OjIwIDA5GRkSE6ChGZABYZEF25lJQUODg4YObMmaKjEA04FhkQEZFoq1evxtixY3HXXXeJjkJERGTWRkSRQXd3Nz744APcd999XL2HiIiEUiqViI2NxcaNG1FTU4Ndu3YhNDQUjz32GLy9vREfH4/k5GS0tLSIjkpEREQ0rGRnZ+O2227Dddddh7feektYDjs7OyxcuBApKSkoLS3F008/jW+//RYTJ05ETEwMNm3aNKy29SZMmICCggKWbhEREQDAy8sL//73v7Ft2zZ8+OGHouPQMNDV1YW0tDQsX74c3t7eWLBgAQoKCvDCCy+gsrIS+/fvR0JCApycnERHpREmKiqKq8MSkcn4+uuvYWtri7i4ONFRiIYtFhkQmSa1Ws1tbiICwCIDoquRkpKCuXPnwsbGRnQUogHHIgMiIhLp6NGj2LVrF1544QVYWIyI6ZVERETCjIi/tPv27UNxcTHuv/9+0VGIiIhktra2cnFBeXk5Nm7cCABYtmwZ/Pz8kJCQgJSUFOh0OsFJiYiIiExbWVkZ5s6di7CwMOzYsQOWlpaiIwEAvL29sWrVKuTm5mL//v2IiorCypUr4efnh+XLl+PEiROiI17UlClToNfrceTIEdFRiIjIRMydOxcrV67EihUrkJOTIzoOmaDu7m6kpaXJ2z1xcXFIS0vD6tWrUVZWJt/n6ekpOiqNYI6OjggKCuKkKiIyCd988w1uuOEGHrhPdIVaWlpQWVnJIgMiE6TRaLjNTUQAWGRAdKXOnTuHH374AfHx8aKjEA0KFhkQEZFIq1evxpQpUzBv3jzRUYiIiMzeiCgy2LJlC2bOnImxY8eKjkJERNQnV1dXubigqqoKr7zyCgoKCjB//nz4+vpi+fLlSEtLg16vFx2ViIiIyKTU1tZi9uzZcHZ2xhdffAFHR0fRkXpRKBSYNWsWkpOTUVFRgVdeeQU//fQTJk2ahJiYGGzatAktLS2iY/bJ19cXQUFBOHz4sOgoRERkQl566SVERERg8eLF6Ojo6HW/VqsVkIpEy8zMRGJiIsLDwxEXF4cDBw7g4YcfRm5uLjIzM7Fq1Sr4+vqKjkkk4+qwRCTCs88+i2effRaHDx9GV1cXurq68N1332HOnDmioxENW3l5edDr9SwyIDJBarUa2dnZ6OrqEh2FiASzt7cHwCIDogupqKjAmjVr8N1338kLH+3btw86nQ633nqr4HREg6OtrU3+G0FERDSUfvzxR+zfvx8vvvgiFAqF6DhERERmz+yLDOrq6pCSkoJly5aJjkJERHRJ3N3d8dBDDyEtLQ2FhYVYs2YNjhw5gri4OAQHB2PlypU4fvy46JhEREREwjU1NWHu3LnQ6XTYt28fRo0aJTrSRbm5ueGhhx5Ceno6Dhw4gPDwcDz66KPw8/PDn//8Z6Snp4uO2Mv06dNZZEBEREZsbGywY8cOnDlzBmvXrpVvP3/+PB577DG4u7sjIyNDYEIaKllZWUhMTMTo0aOh0WiwdetWLFq0CFlZWUbFBkSmSK1W87OKiIbcpk2bsH79esyYMQPu7u6YN28etFotpk6dKjoa0bCVm5sLCwsLhISEiI5CRD2o1Wq0t7cjPz9fdBQiEkypVMLa2ppFBkQXcPjwYTz//PO46aab4ObmhoULF+LNN99ETEwMPDw8RMcjGnB6vR7nz5+Hra2t6ChERDTCdHd34/HHH8fs2bNx4403io5DREQ0Iph9kcHWrVtha2uLO+64Q3QUIiKiyxYUFCQXF2RkZGDJkiX4/PPPER0dDbVajcTEROTl5YmOSURERDTkWlpacNttt6G6uhoHDhyAj4+P6EiXRaFQ4KabbsLHH3+MqqoqvPLKK/jhhx8wfvx4xMbGYufOnSazStW0adNw6NAh6PV60VGIiMiEhIeH480338Srr76K/fv3Izs7GzExMXj77bcBALt27RKckAZLSUkJkpKSEBsbC7VajS1btmDu3LlITU1FQUEBXnrpJYwdO1Z0TKKLklaH7ezsFB2FiEYQFxcXeXyt1Wqxf/9+6PV6XHPNNZg4cSKeffZZlgkSXabc3FwEBgZy8guRCRo7diwsLCyQmZkpOgoRmQBXV1fU19eLjkFkshwcHOTLLS0t2LVrF3766Sf8+uuvmDBhAhITE3Hs2DF+Z0tmQ6vVoru7G25ubqKjEBHRCLN582acOHECr732mugoREREI4bZFxm8//77uPvuu2Fvby86ChER0VWRigvy8/Nx9OhRzJo1Cxs2bEBERARiYmKQlJSEqqoq0TGJiIiIBl1zczNuueUW5OTkYN++fQgODhYd6aq4ubnhoYceQnp6OlJTU+Hm5oY777wTo0ePxssvv4zGxkah+aZPn46zZ89y1SwiIupl6dKlWLhwIR544AE6JnV3AAAgAElEQVRMmjQJZ86cQWdnJ7q6ulhkYGbq6uqwadMmxMbGIjg4GOvWrUNoaCj279+P4uJiudhAoVCIjkp0yTQaDc6fP8/tXCIaUq6urkbXu7q60N3dDb1ej5MnT+LFF1/EjBkzkJKSIigh0fCTm5uLiIgI0TGIqA/29vYICQlBRkaG6ChEZAK8vLxQW1srOgaRyXJycjK6bjheTE9Pxz/+8Q/ExMRg5syZghISDayamhoAgKenp+AkREQ0ktTX1+Pvf/87/vKXv2D8+PGi4xAREY0YZl1kcOjQIWRlZWHZsmWioxAREQ2o6OhoJCUloby8HKmpqYiOjsaaNWvg7++P2NhYbNq0CU1NTaJjEhEREQ04rVaLOXPmICcnB99++y2ioqJERxpQsbGxSElJQVZWFmbPno1169YhJCQEq1atQmVlpZBMkydPho2NDQ4dOiTk5xMRkenSarXo6OhASUkJ2tvbodPp5PtOnDjBwsVhrqGhAcnJyYiPj4evry+efPJJhIaGYs+ePaiqqkJycjJmzZoFCwuz/qqJzNjYsWOhVCq5OiwRDSkPD48L3q/X6xEZGYlZs2YNUSKi4Y9FBkSmTa1Wc5ubiAD8PlFVmrRKRL05Ojr2e59er4dOp4OFhQWmTp06hKmIBo/0N8HLy0twEiIiGkmeeuopWFpaYu3ataKjEBERjShmfXRZcnIyoqKiEBMTIzoKERHRoFAqlYiNjcXGjRtRU1ODXbt2QaVS4dFHH4W3tzfi4+ORnJyM1tZW0VGJiIiIrlpjYyPmzJmDwsJCfPfdd9BoNKIjDZoxY8bg3XffRWlpKZ566ils27YNISEhePjhh4d8xVgbGxtMmjQJv/zyy5D+XCIiMm2HDx+GRqPpd7VgCwsLfPXVV0Ociq5WW1sbdu7cifj4ePj4+GD58uUAgC1btqCiokIuNrCyshKclOjq2dnZISQkhJOqiGhIubq6XrAESKFQ4JNPPoGdnd0QpiIa3lhkQGTaNBoNt7mJCMDvE1VZZEDUPwcHhwveb2VlBbVajRdffHGIEhENrpqaGigUiouWPhIREQ2UY8eOYcuWLXj99dfh4uIiOg4REdGIYrZFBh0dHdi5cyfuv/9+0VGIiIiGhK2tLeLj47Fjxw5UV1dj48aNAIBly5ZBpVIhISEBKSkpRqsjXkxjYyMef/xxrqBIREREwkklBhUVFUhNTUVUVJToSENi1KhRWLVqFYqKirBp0yYcPHgQkZGRiI+Px5EjR4Ysx/Tp03H48OEh+3lERGTa3nnnHVx77bWorKxEZ2dnv4/rr+SABoder8fOnTtRV1d3Wc87f/48UlJSkJCQAC8vL9x9991ob2/H5s2bUVNTI99nb28/SMmJxOHqsEQ01FxcXKBUKvu8z8LCAv/4xz8wceLEIU5FNHw1NzejurqaRQZEJkytVuPMmTPo6OgQHYWIBGORAdGFOTo6XvB+pVKJHTt2wNraeogSEQ2u2tpauLi48N80ERENie7ubjzyyCO45pprcPfdd4uOQ0RENOKYbZHBnj170NDQwA0MIiIakVxdXeXiguLiYjz33HMoKCjA/Pnz4evri+XLlyMtLQ16vf6Cr7Nt2za88cYbmDBhAlfgJSIiImHKy8sRFxeH6upq/PDDDwgPDxcdachZW1sjISEBmZmZ2L59O0pLSzFt2jTMnz8fJ06cGPSfP23aNJw6dQqtra2D/rOIiMj0WVhYQKFQQKFQ9PuYrq4ufPPNN5yoMETOnTuHhQsXYtGiRXj99dcv+viuri6kpaVh+fLl8PLywoIFC1BQUIDnn38eFRUV2L9/PxISEuDk5DQE6YnEUavVyMjIEB2DiEYQFxcXWFj0PkzDysoK06dPx2OPPSYgFdHwlZubCwAsMiAyYWq1GjqdDnl5eaKjEJFgnp6eLDIguoALFRkoFAr813/9F8aMGTOEiYgGV01NDby8vETHICKiEWLjxo04fvw43n333Qse50BERESDw2yLDJKTkzF79mz4+/uLjkJERCSUSqXCypUrkZaWhsLCQjzxxBP48ccfERcXh+DgYKxcuRLHjx/v87nJyclQKBSoq6tDbGws3nvvvSFOT0RERCNdVlYWZsyYAb1ej9TUVISEhIiOJJRSqcRdd92F3377DXv37kV5eTkmT56M22+/Henp6YP2c2NjY6HT6fDTTz8N2s8gIqLhY8WKFfj5558REBAAS0vLfh/X2tqKH3/8cQiTjUy5ubmIiYnB3r17Afy+P6ev8sru7m6kpaVh5cqV8PPzQ1xcHNLS0rB69WqUlpbK9/HAQRpJ1Go1cnJyWLpCREPGxcWl120KhQI2Njb46KOPoFQqBaQiGr5yc3OhVCoRHBwsOgoR9WPMmDGwtLREZmam6ChEJJi3tzeqq6tFxyAyWfb29n1OqrO0tMSCBQuwZMkSAamIBk9NTQ08PT1FxyAiohGgsLAQq1atwuOPPw6NRiM6DhER0YhklkUGNTU1+Oabb5CQkCA6ChERkUkJCgrCqlWrcPr0aWRkZGDJkiX4/PPPER0dDbVajcTEROTn5wMAiouLcezYMej1enR3d6OzsxMPPfQQHnzwQR7YS0REREPi8OHDuO666+Dn54eDBw8iICBAdCSToVAoMG/ePBw5cgS7d+9GQUEBJk6ciEWLFiErK2vAf56/vz9Gjx6Nb7/9dsBfm4iIhqepU6ciMzMTK1asgEKh6HNlYWtra3zxxRcC0o0cX375JaKjo1FQUACdTgcAqKiowOHDh+XHZGZmIjExEREREYiLi8OBAwfw8MMPIycnB5mZmVi1ahVUKpWot0AklEajgU6nk1dzJiIabK6uruju7ja6Ta/XY/PmzQgMDBSUimj4ys3NRXBwMKytrUVHIaJ+2NjYICwsjEUGRITg4GBotVrU1dWJjkJkkhQKBWxtbY1uUyqV8PDwwJYtWwSlIho8eXl5CA0NFR2DiIjMXHd3N5YuXQp/f388++yzouMQERGNWGZZZLB9+3bY2dlhwYIFoqMQERGZLKm4IDc3Fz/88ANmzpyJt99+GxEREYiNjUViYmKvVRX1ej0++OADTJ06FSUlJYKSExER0Uiwe/du3Hjjjbj22mvx3XffwcPDQ3Qkk6RQKPCHP/wBx48fx86dO5GdnY3x48fjoYceQmVl5YD+rNmzZ2P//v0D+ppERDS82dnZ4V//+he++uoruLu7w8rKyuj+jo4OfPrpp4LSmTe9Xo+XX34Z8+bNQ0tLi1xiAPxeILFhwwasXbsWERER0Gg02L59OxYvXozMzEyjYgOikW706NFcHZaIhpSLiws6Ozvl61ZWVrjnnntw1113CUxFNHzl5uZyu5ZoGFCr1cjIyBAdg4gEi4yMBADk5OQITkJkuuzt7Y2u6/V6fPbZZ3BzcxOUiGjw5OTkyH8biIiIBsvbb7+NtLQ0bN26tVdpFBEREQ0dsywySE5OxsKFC3vt0CEiIqLeLCwsMHPmTLz77ruorKxESkoKgoODceDAAaOD4CWdnZ3IysrCxIkTcfDgwaEPTERERGbvjTfewB133IElS5bgs88+g52dnehIJk+hUOBPf/oTTp48iY8++ggHDhxAeHg4nnrqKTQ1NQ3Iz5g1axZOnDiB2traAXk9IiIyH3PmzEFmZibmzp0L4Pe/S5KysjJkZ2eLimaWmpubsWDBAqxevRp6vb7Xqs4dHR347LPP8P777+PWW29FamoqcnJysG7dOkRFRQlKTWSabGxsEB4eziIDIhoyLi4u0Ov1AH5fWdPb2xvvvPOO4FREwxeLDIiGB41Gw21uIkJgYCDs7OyQm5srOgqRyXJ0dJQvK5VKPPfcc7jmmmsEJiIaHB0dHSguLmaRARERDarCwkI888wzWL16NaZMmSI6DhER0YhmdkUGGRkZOHHiBBISEkRHISIiGnasrKxw2223YdWqVSgrK+v3cTqdDk1NTbjpppvw8ssvD2FCIiIiMmft7e1ISEjAk08+iRdffBHvvPMOlEql6FjDikKhwMKFC5GZmYk1a9Zgw4YNGD16NDZv3txrkuPluvHGG6FUKvH9998PUFoiIjInnp6e2Lt3L7Zu3Qo7OztYWVkB+H1fw+effy44nfk4c+YMJk+ejC+//PKCf9tbWlrwwQcfICkpCbGxsUblEkRkTK1Wc1IVEQ0ZFxcX+XJ3dzc+/PBDODs7C0xENLyxyIBoeFCr1cjLy8P58+dFRyEigSwsLBAWFsYiA6ILkIoMrKysMHXqVDz99NOCExENjry8PHR1dWH06NGioxARkZnq7u7G/fffj7CwMDzzzDOi4xAREY14Zldk8MEHHyAkJARxcXGioxAREQ1bH330kTzhoD9dXV3o7u7G008/jcWLF6OtrW2I0hEREZE5Ki8vx3XXXYc9e/Zg165deOKJJ0RHGtbs7Ozw1FNPIS8vD4sWLcIjjzyCadOm4ddff73i13RyckJMTAz2798/gEmJiMjcJCQk4NSpU5g0aRKUSiV0Oh12794tOpZZ2Lt3L6Kjo1FcXIzOzs4LPtbKygoff/zxECUjGt7UajUyMjJExyCiEUIqMlAoFHjmmWdw3XXXCU5ENHw1Njairq6ORQZEw4BarUZnZyfOnDkjOgoRCRYZGYmcnBzRMYhMlpOTEwDA1tYWO3bsYOk/ma2cnBwoFAqEh4eLjkJERGbqn//8Jw4fPoytW7fC2tpadBwiIqIRz1J0gIHU3d2Njz/+GEuWLOHqQkRERFdIr9dj27Zt0Ol0l/z4HTt2ID09HSkpKQgKCrrin63VanutJtjV1YWmpqZej21ra0N7e3u/r9Xd3Q2tVnvFWQw1NjZCr9cPyGtZW1vDwcHhql/H0tJS/vKqP87Ozr2+0LKwsDBa8Ulia2sLOzu7q85FRER0JX7++WfcfvvtcHZ2xi+//IIxY8aIjmQ2PDw8kJSUhEceeQSPPvoopk+fjnvuuQevvfYavLy8Lvv1Zs+eja1btw5CUiIiEqmvMXRHRwdaWlqMbrvQWPz8+fNobW2Vr69fvx4ff/wxtm7disOHD2P37t3yalI96fV6NDY2XtV7sLOzg62t7RU990Jj7L7G0VZWVr3ey2COq7u6urBu3TqsX78eAC5pH4VOp8OOHTvwzjvvwMbGZlByEZkLtVqN/Px8nD9/nr8vRGbM8PuHntstfX0H0NTUhK6urkt67ebm5ouWDEnOnj0LAAgNDcW1116LAwcOXPDxfe3nd3R0lMuoe27HODk5wdLSrA4DIeqXtJoziwyITF9kZCSsra2RmZmJ8ePHi45DRAJFRETg66+/Fh2D6KIMx4TSmLGv/eh9HevW06WOGV1cXOTHPf7448jOzkZ2drbRY3qO+Qz3izs4OMiT9PoaSxKZkpycHPj7+w/IcZREREQ9/frrr1i9ejWee+45TJgwQXQcIiIigpkVGRw8eBDl5eW46667REchIiIaVIaT+6UvTtrb29HW1mb0pUlnZyeam5vl5xl+ySI9HjCeMFBVVYWysjJYWFhAoVBAr9dDr9f3WxKk1+vR1dWF9PR0hIWFISAgABYWFn3+fElrayvOnz8/QP81aDD1ddCjQqGAq6ur0W1KpRLOzs59Ps/Gxgb29vbyfW5ubvJlwy/Reh5w6eLiIv9bMpwQYjiJxPA50uOlL+l6ZiIiItOj1+vxz3/+E08//TRuueUWbNu27aJFPXRlIiMj8c033+Cjjz7C3/72N4wdOxYvvfQSHnjggcsqg5w1axbWrVuHvLw8ro5ARNQPacze3zlgfOCidKCj4djc8LGGhQKGY3nDsXVfryfp6yDJgSzsu1R//OMfh/TnmQLDSYYSw7Fuz8cY3ieNnZVKJdLS0lBWVnbZP7+5uRmvvvoqrr/+enms3Nc50Uin0WjQ2dmJ7OxsHsxENEh0Oh3OnTuHpqYmtLa2orW1FQ0NDfJ3CNK2j/T9huF2UUNDA4D/236RtnWk7SvDbR3Dy32VMpmS/Px83HLLLYP6M3qWLxlOZJEuS/vypW0S6Vzad29vbw8bGxt520HafpD2+zs4OMDe3h5OTk5wcnKSbyMaCrm5ubCyskJgYKDoKER0EVZWVoiIiEBmZqboKEQkWFRUFJKSktDR0cFVUemytbW1oampST41NDTI5btNTU3o6OhAU1OTvB+9ubkZOp0OjY2NcqHduXPnoNPp5LGmYXmvdJ8pSExMHLDXcnV1hUKhMDreShrrubq6wsrKCk5OTvK4z8XFBVZWVnB2dpbHgM7OzrCysoKLiwscHBzg7OwMZ2dnODk59TqGjOhSpKenY+zYsaJjEBGRGWpsbMRdd92FuLg4PPnkk6LjEBER0f8yqyKDjz76CJMmTYJarRYdhYiIzJx0EJ10kJ30ZYc0iUA6WK6hocFo8oH0JUhLSws6Ojrkg/eA/zsIT3oNwxIA6cC8C618eCkMJ433PIBN+tKiq6sLgYGB8oHzCoXCaCUye3t7eYK6paWl0QH5zs7OmD59ulGjs+GkdYm1tXWfB7IZ5jMkZTPU1+qHl/pzLteFVma8HH01c1+pi0066W81y/4O3uzvyzjp36whw3+3/d1mmM/w321XVxcKCgrkxxkeWGq4ClbP/NLvzJWSDsqUvmAz/HJOOlBTOvDSsKhBOmhT+rcklSNI16Uv8aTHubq6QqlUyl/qXezfKBHRSFZbW4v7778f+/btw/r167Fq1arLmlBPV+buu+/GvHnzkJiYiBUrVuCTTz7B5s2bERIScknPnz59OpycnLBv3z4WGRDRsCKNMaTxSUNDg3wwY2NjI9rb29Ha2gqtVouuri55TGN4Lo3pLnZ+uQyL4KSJ7IbjEsOSNsNx7qhRo+RJ6Ibj6QutyCTpa4J9z7G34bhJcrFx9tWs8nQ1k+oN971ciQutuNzXGLiv/TN9jat7lkpcbMUuaQxu+H7a29thYWEBb29vdHV1yTkNL3d2dspjcJ1OZ7S/YM2aNRd9/9J/+wuVHRieSwe5SueOjo6wtbWFs7Oz0WUHBwf5wFfpsUSmKCIiQl4dlkUGRP+npaUFWq0WWq0WjY2N8mWtVouGhga0tLSgtbUVzc3NRgUFjY2N8mWtVntJE0EMt32k7xSkbRNp+0jazvD39zeaeG+4HWR4uWfRreH2T899/n0V+l7O9wuX89i+ti36019ZtOG2i+F+dcB437xhCRZgvL+/ZzGEdF5RUWFUECH9/5P20V9qUbWrqyvs7e1hZ2cHV1dXo8IDZ2dn2Nvbw97eXr7P1dUVLi4u8km63td3TESS/Px8BAcH9xrbEJFpUqvVyMjIEB2DiASbPn062tvb8dtvv2HatGmi49AQa21txdmzZ1FfX4+zZ8/KJ2mcaVhSIJ2kMWlTU1Ovwl5DfU2+d3Jyko/lcXJygo+PjzxulMachouzGO5LNxxDGu737rkf/VL2a1/KmLG/8Z+hvvYvGx5PZThWlMZ8/S2IZFjoII1Tz549i/Pnz0Or1UKn0/UqhbjYf3+p3MDw5ObmJhceuLi4wN3dHaNGjep1TiPPzz//jHvvvVd0DCIiMjN6vR5Lly5FW1sbPvzwQ6MFBoiIiEgssyky6OjowK5du7Bq1SrRUYiIyAQ0NzejtbUVLS0t8kQF6QA6w4PrpAPPpZ3zWq0WnZ2d8g75c+fOyTvkpR3/Fzq4vScXFxcolUr5ALwLTaYOCAi45MnUF7oP+L8D/QwfR+JZWFgM2EF3I/ngPcMDPQ2LGQaqKKSzs1MuW5B+36XPgZ6fC5dC+n2Xvgw1/FyQDpiVfu+liR3Ozs6wtLS84AGebm5unAhCRMPWwYMHcc8990CpVOLgwYO49tprRUcaUZycnPD666/j3nvvxdKlS6HRaLB27Vo88cQTF/0Cx8rKCnPmzMGuXbvwn//5n0OUmIhGosbGRnlSXFNTE5qbm+UDFqXxfHNzs7x93tTUZHS5paUF7e3t0Gq1lzTZShpTS5PYpIMRDc8tLCwQEhIChUIhj8n6Ou/5vJ7nALgtP8CUSuVVjZPNcYxtWBAo/Q5c7FwaT/d3XltbK4+LDc+lA1ovNilT+h2QDgh2c3OTx8yurq5ySYKLiwvs7OzkyY3SeFg6lyY3SgciE10tKysrREZGcnVYMkvSRISamhqcPXsWdXV1OHv2rFExgXS5sbHR6HJfExQsLCzg6uoKV1dXODo6yhNDpAkKPj4+fU5gl1ZvdHJygr29PRwcHODi4gJLS8texUnmzsrK6rK2PTw9PQcxzZWT9qdL2+bnzp2DVquVv4+TVkY1LLSQtuHLysrk792k7+2k5/alZ7lBz+uurq5wd3eHh4cH3N3d5ZOHhwdLM81cQUEBwsLCRMcgokukVquxbds20TGISLCIiAh4enri559/ZpHBMKfX61FTU4OamhpUVlaiurq619hTKiyQznuWwyoUCowaNUouMZPGlq6urggMDDTaF9jXJHlp/GkO+9otLS0vaazo7u4+BGn6Ju1zbm1tNSqbkPYl9FVEUVhYaPS4+vr6Xt/XWFhY9Ftw4O7uDk9PT/j4+MDLywt+fn7w8vIyi//nI1lNTQ0KCgowY8YM0VGIiMjMJCUlYe/evdi3bx98fHxExyEiIiIDZlNk8NVXX6G+vh4LFy4UHYWIiC5TZ2dnr53aLS0tFy0hMFzhp6GhQb58sRX4pAPoXFxcek0eliYshIaGXtHK6z0nLBPRwLvcAz0Hk2HBSWdnp3yAb3NzszwZRJoQIrWTNzQ0yKtrShNCGhsbUVVVJT9Geh1pwtaFWs2lzyrDg4CliSGGK1pdqAzBsBl9pB04TERDS6fTYd26dXjxxRcxf/58vPfeeybzmT4STZw4EYcOHcLzzz+PNWvW4Msvv0RycjKCgoIu+Lw77rgDixcvRk1NDby8vIYoLRENF9IKPtLJcMWkCxUT9Ly9P9IBi3Z2dnB0dISTkxNsbW3l1ZQMV4K3sbG55EnTbOInc9NX4cZQaG5ulic19lcuIk18bGhokIsCpVXVqqqqoNVq0d7eLk9qbGpq6nclb8MJtNKkRml8e6HbR40aBTc3N7i5uV3yCtpk3tRqNYsMyOR1dnaipqYG1dXVqK6uNpocIl2ura01ur3n5ABra2u4u7vDzc3NaDJ4eHi4XFBwoQnjTk5Ogt49mRo7OzvY2dkN6HaGtPKnYcFGQ0NDr9uky2VlZfLlurq6XqVKCoWi34IDT09Po9t9fX3h4+Mjr8RKw0N+fj7GjRsnOgYRXSKNRoOCggK0tLRwHEY0gikUCkybNg2HDh3CY489JjoO9eH8+fMoLy9HWVkZKioq5DFoZWWlXFpQVVWF2tpao2NZbGxs4OXlZbSdHRUV1e/kdOkyy8eGD2mfs5ubG/z8/K74dc6dOyeXW/Q8SbfX1dXhzJkzqK+vR3V1da/vjdzc3HqVG/j4+Mi3BQQEICAggMdAmaiff/4ZCoUCU6dOFR2FiIjMyJEjR7Bq1SqsX78eN954o+g4RERE1IPZFBl89NFHiIuLQ3BwsOgoREQjinTgcVtbm9FEBel0KfdVV1eju7u7z9eXJhhIEw4ML3t5efV7n+Flw+seHh4sGCCiAePg4AAHB4chmRQifZYafq72/Izt676Kioo+H9fU1ISurq4+f1Zfn5/SdcNTf/eNGjUKtra2g/7fhIiGl99++w1LlixBbm4u3nrrLaxYsUJ0JMLvBxWtX78et99+O+69915MnDgRmzZtumBRZHx8PGxsbLBnzx48+OCDQ5iWiIZSf2P5i536G+P3N1738fHB2LFj+9227LkfwNLSbHZpE5klJycnODk5Dcrq0X19LvW377GtrQ319fV9Pr4vfX3+qFQq+Pr69jkednNzg7u7O1f+MiNqtRpbt24VHYNGqLa2NlRWVqKiogINDQ3y5Z63lZSU9Co8dXNzM/qs8vf3x7hx4/r9HPPx8WGBE5ksaeLT1ZQmNjQ0yL83hifp96m2thY5OTny7VVVVdDr9fLzpW0C6ffH8PfI8LaAgABYWVkNxNumq1BQUID58+eLjkFEl0itVqO7uxtnzpzB5MmTRcchIoFmzJiBd955R3SMEauhoQEFBQXyuLOgoMDoenFxsdGxJIbjTpVKhbi4uD63kznepEvl6OgIR0dHBAYGXvJzzp8/j7Nnz/a73yQjIwP79u1DeXm5UemBra0tVCoVQkND5fGc4eXIyEiWNgpw6NAhREVFcdELIiIaMGfPnsWdd96JG2+8EatWrRIdh4iIiPpgFkd9trS04PPPP8drr70mOgoR0bAkrYBWX1/f69TX7Q0NDfKqJ/1NgpVWO5NWOpOuq1QqjB071ug26bLhCj/SquJERPQ7aYWrgdTY2IiWlhZ59VvD1awMb5MuV1ZWIisrS77e1NSEtra2fvNKn+2jRo2SV7uULhueet7OL7eJzItOp8Mbb7yBtWvXIiYmBr/99hsiIyNFx6IeJk6cKDdT33nnnUhJScG7777b5za5vb095syZg88++4xFBkTDRFtbG+rq6lBTU4Oamhp5td7a2lpUV1ejrq5Ovk0a+/ckrbRjuIr5qFGjEBAQgPHjx/e6Xbosjf2JiK6WNC5WqVRX/BpSsZ9hyUF/lzMzM5GWlibf3nNVc+D3gkNpLOvt7Q1PT095hWfpurTqs5eXF1xdXa/mPwENIrVajcLCQq4OSwOuvr4eZWVlKC4uRklJCcrKylBaWori4mKUlZWhqqrKqGRFqVTKqwj6+vrCy8sLEyZMgJeXlzwxxNvbGz4+PnB2dhb4zohMkzQOuVTt7e04e/asvNJsVVWVvNJseXk5MjMzceDAAVRVVaG1tVV+noWFBby8vKBSqeDv74+goCB5xc+AgAAEBQXB19cXSqVyMN4m4ff/d5WVlQgNDRUdhYguUXh4OOzs7JCZmckiA6IR7pprrsEzzzyD0tJSBAQEiI5jds6dO4f8/Hzk5eUZnRcUFKC8vBw6nbm1TgAAACAASURBVA7A7+NPHx8fBAYGIiAgANOmTZMv+/v7IyAgAF5eXtymJZNgY2MDlUoFlUoFtVp9wcdqtVp5/0tpaam8X6asrAy//vorSkpKjI518vT0RHBwMMLCwhAeHi6fh4eHw8fHZ7Df2oh06NAhzJgxQ3QMIiIyEzqdDosWLUJ3dzeSk5N5/DEREZGJMosig127duH8+fP405/+JDoKEZFQer1ennhgOAHh7Nmz/ZYS1NfXGx14IzE8CFc6BQcHY/LkyXBzc5NLB3oWFTg7O7MplYhomHB1dYWrqyv8/Pyu+DU6OjrkUoOGhoZe5QeNjY1Gf3MKCwuN/h51dHT0mauvwoOexQfSRBBvb284OjpezX8KIhokx44dw9KlS5Gfn4/XXnsNjzzyCL8sMGG2trZISkrCDTfcgGXLlmHKlCn4n//5H4wZM6bXY++44w7cf//9qK+vx6hRowSkJaKamhpUV1ejrKxM3g9QXV0tFxQYFhecO3fO6Lm2trbyxFpvb294eHggPDwcHh4ecHd371VIMGrUKE6+JSKzYGtrC1tb2yta6bm1tbXf4oOzZ8+iqqoKdXV1KCwslItimpqajF7D2toaHh4eRkUHUtmBtAK1t7c3/P394e3tDWtr64F663QRGo0G3d3dyM7ORnR0tOg4NEzo9XqUlZUhLy8PJSUlKC4ulg+Sl8oKWlpa5Me7u7vD398fgYGBmDBhAm677Tb4+vrC29sbKpVK/hzguJlo6Nja2sLPz++S9pE3NzejoqICNTU1cvFBWVkZysrKcPz4cezevRuVlZXo7OwEAFhaWkKlUiEwMNBoQlhQUBDCwsIQGhoKW1vbwX6LZquwsBDd3d0sMiAaRpRKJSIjI5GZmSk6ChEJNmXKFFhaWuKnn37CXXfdJTrOsNTe3o7Tp08jOzu7V2lBVVUVgN/Lt/z9/eUJ2TfffLO8XRoYGAiVSgVLS7M4hJzIiLSQ1oUKD2pra+Wyg5KSEhQVFSEvLw+7du1Cfn6+XDrp4OBgVG4QFhaGiIgIaDQaeHp6DtVbMivnz5/HsWPHcN9994mOQkREZuKvf/0rDh06hNTUVP59JiIiMmEKvV6vFx3ias2bNw96vR5ffPGF6ChERAOura0NDQ0NqKysREVFhXyQrOF16XJdXZ3cmiyxtbWVJyBc7KRSqeDr6wt3d3fY2NgIesdERDSSSH/nLvdUVVUFw6FMz7930t+0vq6rVCqW7hANsoaGBvz973/Hxo0bERcXhy1btvCg4mGmtLQUd955J7KysrB9+3bcdtttRvc3NzfD29sb77zzDpYsWSIoJZF5amhoQEVFhTzW73ne0NDQa1KcjY2NXDpwsW0hNzc3+Pr6QqFQCHyXREQjh/S53td+3Z7Xq6ur0d3dLT/X1tZW/gzv7zwoKIjlfgOgq6sLTk5O2LBhAxISEkTHIROi0+lQWlqKgoKCXqfs7Gx5m8zGxgZ+fn7y72doaChCQ0Pl6+Hh4XBxcRH8bohoKDQ0NMifE9JYzvByUVGR/Pfezc1N/rwIDQ1FVFQU1Go1wsLCWCZ3EV988QXmzZsHrVYLZ2dn0XGI6BItXrwYWq0Wn3/+uegoRCTYddddh8DAQGzbtk10FJOm0+mQk5ODrKwsZGZmyudnzpxBV1cXLC0tERgYaLRNKZ3GjBkDBwcH0W+BaFgyHNcVFBTIv395eXnQarUAfh/PSWM46Vyj0cDHx0dwetP29ddf49Zbb0VxcTECAgJExyEiomHu/fffxwMPPICPP/4YixYtEh2HRogXXngBW7duRU5OjugoRETDSe6wr9NsaGjA/v378d5774mOQkR0ydra2lBeXo7KykqUlZWhqqoKpaWl8kqJ1dXVqKurQ21tba9iAjc3N3h5ecmrdfn7+2PSpEnydR8fH3lVRQ8PDyiVSkHvkoiI6OLs7OxgZ2cHlUp1Wc9rb29HbW2t/LdTWnnYcBXiw4cPyytitra2Gj3fwcFBXoFY+hvq5+cHHx8fBAQEwMfHB/7+/vDy8uIqBESXQa/XY9u2bXjyySfR2dmJ119/HY8++ihXkxyGAgIC8P333+ORRx5BfHw81q5di2effVae+Ozk5ISbb74Zn376KYsMiC5DVVUViouL5VNJSQlKS0vllTyrq6uN9gPY29vL2yh+fn6YMmWK0XXpnJM2iIhMl1Qicyk6OjpQVVWF8vLyPs+zs7NRVVWF2tpao+dJ41t/f3/4+PggKCjI6BQQEABra+vBeHtmQ6lUYvTo0VwddgSrq6tDenq6PClEWs2ypKREXl3d3d1dXn3v1ltvxV/+8hf5ure3t+B3QESmws3NDdHR0YiOju7z/tbW1l6r5ubn52PHjh0oKSlBV1cXAMDDw0P+jImKikJUVBQ0Gg1CQkL4/S+A/Px8eHl5cTxMNMyo1Wps3rxZdAwiMgHz58/H+vXrodPpYGVlJTqOSaitrcXRo0dx5MgRnDx5EhkZGSgoKEBnZyesrKwQEREBtVqNRYsWyZOmIyIi+N+PaBBcaFxXUVGBzMxMudwgPT0dn3zyiVxw4O3tDY1GA41Gg5iYGMTExCAyMpLHTPyvPXv2YNKkSSwxICKiq5aWloYVK1YgMTGRJQZERETDgEJvuIzpMPTBBx/g4YcfRnV1NVexICLhOjs75ckHUjlBVVUVysrKUFlZifLycnl1LYmlpaV8kKk0mdKwjKDndX75QEREdPlaWlpQW1srFxv0VYIg/b0+e/as/DylUgkvLy95RT1pUohUdiCde3h4CHx3RKbh+PHjePTRR/Hrr79ixYoVWL9+PcfpZuJf//oXHn/8cSxcuBD//ve/YWNjAwD48MMPsWzZMlRWVmLUqFGCUxKJ19XVhYqKChQXF6OoqMiosEA6tbe3A/h9G8PX1xfBwcHy9gULCoiI6FJdqPCgsrISJSUlKCoqQltbGwDAwsJC/rvTs+QgMDAQISEhsLOzE/yuxLvnnnvQ2NjI1WHNXENDg3ywuXTKyMhATU0NgP9bTW/06NEICwtDWFiYPJGYq6MT0WDr6OhAUVGRXHAgnU6fPo2ioiLo9XrY2dlh7NixUKvV8oqfUVFRCA4OlgsoR4LHHnsMhw8fxqFDh0RHIaLLsHfvXixYsABarRZOTk6i4xCRQPn5+QgPD8d3332HG264QXScIafVanHs2DEcOXJELi8oLi4GAISEhCA6OtpopffRo0fzmEEiE1dWVoasrCxkZGQgKysLJ0+exKlTp9DR0QFnZ2dER0fLxQZTpkxBSEiI6MhDTq/XIzAwEA8++CDWrl0rOg4REQ1jRUVFmDp1KuLi4vDpp5+OqP2iJN4LL7yArVu3IicnR3QUIqLhJHfYFxnMmzcPCoUCKSkpoqMQ0QjQ3NyMoqIiFBUVobCwEIWFhSgqKkJpaSkqKipQXV2N7u5u+fEeHh59Tnr09/eHr68v/Pz84O3tzbZVIiIiE9Le3o6KigpUVFTIk0D6KilqbW2Vn2NrawtfX1+oVCoEBwcjJCQEwcHB8ikwMJAHFpDZKigowN///nd8/PHHuOaaa/DOO+9gwoQJomPRAPv2229x++23IyYmBrt374ajoyPOnTsHlUqFf/zjH/jzn/8sOiLRkNDpdCgsLMSZM2eQk5ODnJwc5ObmoqioCGVlZdDpdAAAa2trBAQEGE0UNZw86u/vz20DIiIadDU1Nb1KdQzLdqRVwgDAy8sLQUFBCAsLQ2RkJEaPHo3IyEhERkaOmGKdF198ERs3bkRRUZHoKDRAKisrceTIEXliSHp6OsrLywEATk5OiIqKwrhx4+RVzqOiouDn5yc4NRFR386dO4fTp08jPT1dPs/KykJpaSkAwNHREVFRUYiOjsaUKVMwZcoUjB07FkqlUnDywTF//nw4Ojpi+/btoqMQ0WWQJi7/8ssvmDp1qug4RCSYRqPBrFmz8Oabb4qOMuiKi4tx8OBBfP/99zh06BByc3Oh1+vh5+cnT2qWJji7u7uLjktEA6SjowOnTp2SC0uOHj2KrKwsdHZ2wt3dHdOmTcN1112H66+/HpMnT4alpaXoyIPq119/xbRp03Dy5EmMHz9edBwiIhqmGhoaEBcXBysrK6SlpcHBwUF0JBphWGRARHRFhneRQVNTE7y9vbFhwwbcd999ouMQkRlobW2VSwoMCwuky4YrNHt5eRlNTvTz84NKpYJKpZIvSyuVEhERkfnRarUoLy83Kj2oqKgw2n5oaWkB8PuqyyqVSi446Fl04O/vb/ZfSJL5OXv2LF599VW8+eabCA4Oxvr163HHHXew4diMZWRkYM6cOVCpVPjyyy/h6emJZcuW4ejRozh58qToeEQDqqKiAmfOnEFubi5ycnLk4oLCwkK5rEClUmH06NGIiIhASEiI0arWPj4+LC0kIiKTp9VqexUc5OXlITs7G4WFhejo6AAA+Pj4GBUbSEUHoaGhZlXMw9Vhh7fGxkb5oHDpVFZWBoVCgYiICEyZMgUTJkyQCwuCgoJERyYiGhBarRaZmZnIzMxERkYGjh49it9++w1tbW1wdHTE5MmT5WKDKVOmIDQ0VHTkATFu3DgsWLAA69evFx2FiC5Dd3c3nJ2d8dZbb2HJkiWi4xCRYM888wy2b99uloWCpaWl+P7773Hw4EEcPHgQhYWFsLW1xfTp0zFz5ky5tMDX11d0VCIaYq2trThx4gSOHj2KQ4cO4eDBg6iqqoKTkxNmzpxpVGxgbsV05vy5T0REQ6OtrQ1z5sxBUVERfvrpJwQEBIiORCMQiwyIiK7I8C4y2LZtG5YtW4aqqiqMGjVKdBwiGiY6OztRUFCArKwsZGdn4/Tp0zhz5gwKCwtRU1MjP87d3d1ogqHhhMOQkBDY29sLfBdEREQ0HNTW1vYqRjIsS2pvbwcAWFpaIiAgAKGhoRgzZgyioqIwZswYjB07lgcvkMlpaGhAUlIS3njjDTg6OuLZZ5/FsmXLWMYxQuTl5eHmm2+Gra0tDhw4gMLCQsTGxuLYsWOYPHmy6HhEl02r1eLkyZP47bffcOLECZw6dQq5ublobm4GALi4uCAiIqLXytSRkZFwdHQUnJ6IiGjwdHZ2oqioyKjQJycnB7m5ufLKz5aWlggODoZarcbEiRPlU3BwsNjwV6igoABhYWE4fPgwpk2bJjoOXUR1dTW+++47fPvtt0hLS0NOTg70ej38/f2NJuzGxMTA1dVVdFwioiHV2dmJjIwMo3KXjIwMedXPGTNm4MYbb8RNN92EcePGDbtiUr1e///Zu/O4qOr9f+Av9l0E2XdBdhBEWWQRRHBLU7TUzMxSb5qW6a1rdTO9t2xPLdNM0xIry1xTcwHcAEFFFlkFWWQfVkHZhc/vj/tjviLbMMzMmYH38/GYB3CYOZ/XOXO2z5k57wMtLS26EJoQGTVhwgQEBQXhq6++4joKIYRjQ+nO3O3t7bh69SpOnDiBc+fOITc3FyoqKvDx8UFQUBAmT54Mb29vqKqqch2VECKFMjMz+YVPrl69Ch6PhxEjRiA4OBhz587F7Nmzh8R1Ei4uLggJCcGOHTu4jkIIIUQGtbe3Y+HChYiMjMS1a9dkvg9BZBcVMiCEEKHIdiGDOXPmoK2tDX///TfXUQghUqipqQlZWVnIysrqUrQgJycHra2tkJOTg4WFBRwcHODg4ABra+suxQrojkuEEEIIEbfy8vIuRQ5yc3P5xy21tbUAgJEjR3YrbuDo6AgrK6shV32dSLeqqips27YNu3btgqKiIjZs2IC33noLGhoaXEcjElZaWorQ0FAAwNWrVzFp0iT4+/tj7969HCcjpG/FxcVITk7mP5KSkpCfnw/GGPT09PgXX9rb28PW1hYODg4wNDTkOjYhhBAidRoaGvhFDbKzs5GamoqkpCTk5uaio6MDOjo6XQobuLu7w9HREUpKSlxH71Pn3WG//fZbvPrqq1zHIU95+PAhrl69iqioKERFRSEtLQ0KCgrw9vbG5MmT4eXlBU9PTxgZGXEdlRBCpFJTUxOSkpJw69YtxMTE4PLly6iuroaBgQG/qMGUKVMwevRorqP2q6ysDCYmJrhy5QoCAwO5jkMIGaCXX34ZPB4P58+f5zoKIYRjjDFYWFhg6dKl2Lp1K9dxBqy5uRkRERE4ceIE/vrrL1RXV2Ps2LF49tlnERwcDB8fH6ipqXEdkxAigzIyMnD58mWcO3cOkZGRaG9vR2BgIMLCwjB37lyYmppyHXHAUlNTMXbsWOrHEUIIEdobb7yB/fv34+LFi/D39+c6DhnGqJABIYQIRXYLGTx8+BAGBgbYtWsXfZmIkGGOMYa8vDwkJiYiKSkJKSkpyMzMxP3799HR0QElJSXY2NjwL/7r/Ong4EAXXRFCCCFEavF4vC7FmDIzM5GVlYXi4mIAgKqqKuzt7eHo6Ihx48bBw8MDHh4eQ6IKO5Eu5eXl+Oqrr7Bnzx6oq6tj/fr1WLt2LRX+GuZKS0sREBAALS0tvPTSS9i0aROKioowatQorqMRAgB48OAB4uLicP36ddy4cQNJSUmoqqoCAFhbW3e5sHLcuHEwMzPjODEhhBAi+x4+fIg7d+50KRqUlpaGlpYWqKiowMXFBRMmTICvry98fX0xZswYriN34+npiUmTJuHrr7/mOgoBkJWVhePHj+Ps2bO4efMm2tvb4erqyr/YNjAwEJqamlzHJIQQmdTR0YHk5GRERkbi0qVLiI6ORmNjI6ytrREaGop58+Zh8uTJUlmIKDY2Fv7+/igsLIS5uTnXcQghA/TFF19g586dKCoq4joKIUQKvP/++wgPD8f9+/dlooh/e3s7Ll68iIMHD+Ls2bNobGyEt7c3wsLCMG/ePNjY2HAdkRAyxDx8+BB///03jh8/jnPnzuHRo0fw8vLCiy++iBdffFFmviO0du1anD9/Hjk5OZCTk+M6DiGEEBmzefNmbN26FUeOHMG8efO4jkOGOSpkQAghQpHdQga//fYbXn75ZZSVlUFPT4/rOIQQCSorK+NfjHD79m0kJyfjwYMHUFBQgL29Pdzd3eHs7My/Y/GYMWOk8gsWpHehoaGIiIjgOgYZYrherrhuXxyG4jT1ZzhOs6wbiu9ZfX19l+IG6enpSExMRGlpKQDA0tISHh4e8PT0hK+vLzw9PaGurs5xaiKLUlJSsHv3bhw6dAiampp4/fXXsWHDBowYMYLraERK5ObmYtKkSbC2tkZ6ejo2btyIjRs3ch2LDFM1NTW4dOkSoqKiEBMTg4yMDHR0dMDOzg4+Pj4YN24cxo0bBzc3N4wcOZLruKQPQ/H4jQxdtLxKP3G+R4Md93BZftra2pCZmckvbnDz5k0kJCSgpaUFRkZG8PX1RVBQEEJDQ+Hg4MB1XCxbtgzl5eV0d1gO3bt3D+Hh4Th69CgyMzNhYGCAWbNmISQkBFOmTIGBgQHXEYe94bL9IrKJlk/htbS0IC4uDlFRUfj777+RmJgIHR0dzJ49Gy+++CJCQkIgLy/PdUwAwC+//IIVK1agsbFRajIRQgT3999/45lnnkFtbS2dpyOEIDs7Gw4ODjh//jymTp3KdZxe8Xg87N69GwcOHEBJSQkCAgKwaNEizJkzByYmJlzHG5bo2J+IizQvW83NzYiMjMTRo0dx7NgxPH78GGFhYXjzzTfh4+PDdbxeNTU1wdTUFO+//z7efvttruMQQgiRMXv27MHrr7+OvXv3YsWKFVzHIYQKGRBCiHByFLlOIKxjx45h8uTJVMSAkGEgNzcXkZGRiI6OxvXr15Gfnw8FBQU4OzvD09MTzz//PP9ihOF0kZ6cnBx6q0XT1/8kobNiqrAZZLTGjkQJ+x4P9r2RpJKSEmzcuBGXLl0Cj8dDR0cHANldrrhuX1h9LWuyOk2D8fjxY6Fex/V2WRx6255I27RKUxZRGTFiBLy8vODl5dVlOI/HQ2JiIpKSkpCYmIhdu3bh/fffh6KiIsaNG4eJEyciKCgIwcHB0NbW5ig9kXYdHR34+++/sX37dly6dAnOzs745ptvsGTJEqipqXEdj0gZGxsbXLhwAYGBgTA0NMSuXbuwYcMGKiRHJIIxhhs3buCvv/5CZGQkbt++DTk5OUyYMAHTp0/HRx99BF9f3yF7oRudExjeuH6POzMA9H4N9+mXBcL24wUh6Pvf2/oyXJYfJSUljB07FmPHjsXSpUsB/O9CyYSEBFy/fh0xMTHYtGkT3nzzTZiZmSE0NBQzZszAjBkzoKmpKfG8zs7OiIyMlHi7w11LSwt+++03HDhwALGxsTA2NsaCBQuwZ88e+Pn5ycRdOZ9Gx2vDm6jfYzr26oo+txAPFRUVBAUFISgoCB999BEKCgpw/PhxHD16FNOmTYOZmRleeuklrFq1ChYWFpxmvX//PszNzamIASEyytnZGQCQkZEBX19fjtMQQrhmZ2cHX19f/Pjjj1JZyCA/Px+ffvopDh06BC0tLSxfvhyvvvoqbG1tuY4mEOqbDm/UNxWONE+fqqoqZs2ahVmzZmHnzp04cuQIfvjhB0ycOBF+fn5477338Mwzz3Ads5vDhw+joaGBf36YEEIIEdShQ4ewZs0a/Pe//6UiBoQQQoiMk2PS3OPuRVNTE/T19fH111/jtdde4zoOIUTEmpqacO7cOVy8eBERERHIy8uDpqYmfH194evri4kTJ8LHx2fY3wlWmj9okJYMQ9lg5q+svDchISEICAjAG2+8AQ0NDZw9exbz58+XiexDiawsL9JuqM7HnqZrqE6rrCosLERsbCzi4uIQGxuL5ORkyMvLw8vLC6GhoZg5cyY8PT35HziT4auyshIHDx7E3r17ce/ePUybNg3r169HaGgoLR+kX1FRUZg+fToYY9i7dy9effVVriORIYoxhujoaBw5cgQnT55ESUkJrK2tMW3aNISEhCA4OHjY3MWNzgkMb9Iyf6UlByGygNaXvj1+/Bi3bt1CREQEIiIiEBcXB2VlZYSGhmL+/PmYN2+exIoadN4dtqamBjo6OhJpczirqanBzp078f333+PBgwcICwvDyy+/jNDQUJksXvAkOl4b3sQxf+k9+z80LyQvOzsb4eHh+Pnnn8Hj8TB//nz861//goeHByd5Vq1ahZycHERFRXHSPiFkcBhjGDlyJL766iusXLmS6ziEECnw66+/YtmyZcjPz4eZmRnXcQD8r7/6n//8B3v27IGFhQXefvttLF26VOYKv1PfdHijvunwER0dja+++gqnT5+Gv78/vvrqq243R+GSt7c3bGxs8Ntvv3EdhRBCiAw5evQoXnjhBbz55pv4+uuvuY5DCN/WrVtx8OBBZGdncx2FEEJkSY5MFjI4ffo05syZg6KiIpiamnIdhxAiAi0tLTh79iz+/PNPnD59Gs3NzRg/fjxCQ0MRGhqKiRMnQllZmeuYUoU+aBjehkMhA1VVVdTV1UFFRYXrKMOarCwv0m6ozkcqZCB7qqurcenSJf7FIQUFBbC0tMTzzz+PBQsWwNPTk+uIRIIYY7h8+TL27t2LkydPQk1NDUuWLMHrr78OR0dHruMRGfPll19i48aNMDIyQmFhIRQVFbmORIaQqqoqHDx4EPv27cPdu3fh6uqKefPmISwsDG5ublzH4wSdExjepGX+SksOQmQBrS8DU1VVhVOnTuH48eOIioqCiooKXnjhBfzjH/8Q+wWThYWFsLS0RExMDPz8/MTa1nDW2tqK7777Dlu3boW8vDxWrVqFNWvWwMjIiOtoIkPHa8MbXSwiXjQvuNPW1oY///wT27ZtQ2JiIhYtWoRPPvkEVlZWEs0xc+ZMGBoa4qeffpJou4QQ0fHx8YGPjw927NjBdRRCiBRoa2uDlZUVXnnlFXz88cdcx8GpU6ewatUqyMnJ4cMPP8Ty5cuhpKTEdSyhUN90eKO+6fBz48YNbNy4ETExMVi3bh0+/vhjzguw3LlzB25ubrh8+TKCgoI4zUIIIUR2HD9+HAsXLsTatWuxfft2ruMQ0gUVMiCEEKHkyHOdQBinT5+Gp6cnFTEgZAgoLy/H559/DhsbGzz//PMoKirC1q1bUVRUhBs3buDjjz9GYGDgsChiICcn1+Pdbnsa3vl35//k5OSwYsWKfv8HAGlpaXjmmWegpaUFLS0tTJ8+HWlpaT22mZubi3nz5kFHR6fXfAMxkLYHQpC8aWlpmDlzJr/tmTNnCtx2b8P/+usv+Pn5QVVVFVZWVli/fj0ePnzY42uLioowZ84caGlpwdDQEEuWLEF1dbXQ8+jJcT/9HguisLAQYWFh0NbWhqamJp555hlkZmYKnUcc09jS0gJVVdUu09nbe5GSkoKpU6dCQ0MDI0aMwIwZM3DhwoVuGXvK0t9yUVdXh/Xr18Pa2hqqqqowNjbGsmXLcPPmzb5ncg/zaDDzrb9p7JweUb5f/W1rnpymJ59z5coVAMDvv//e4/smyHwXdJ5mZGRg+vTpGDFiRK/Lsji3EaJYZyW1HALCryuCbpsHssz0NW5B3rOBbIOfJKp5KatGjRqF559/Hnv37kV+fj7S0tKwbNkynD59Gl5eXvDw8MDevXvR1NTEdVQiRgUFBfj4449hb2+PKVOmoLCwEHv27EFJSQl27txJRQyIUN5++23MnDkTZWVl2LdvH9dxyBBRXV2NLVu2wMbGBv/9738RGBiIxMRE3LlzB1u2bBlSRQzonEDf86EvdE5AsHMCA+mzCTJtvRnIvBZ2Get8bmZmJnx8fKCuro6AgADcu3cP6enp8Pb2hqamJiZPnozCwsJur+9v+p6cJ7///jsAICEhodu86qsvI2w2SfeXO9vsb7kTpB8laF9L0GkczHL49Lzo7e++hve3nPY2rvT0dMycOROamprQ1tZGWFhYj++1sOe4ANHMG2mnp6eH5cuX4+zZsygvL8eXX36JuLg4fvFjcfbhzc3Noa2tjfT0dLG1MdxlZGTAx8cHH3zwAVauuSUoSwAAIABJREFUXIl79+7ho48+kvoiBnS81vd86Asdrw3sMxxB9yUDySOJ4xNBzz2L4pxvb/O3r3360w9VVdUBtSvINA5kXKI47uOCkpISFi9ejISEBFy8eBGpqalwcnLCN998I9GLmQoLC2FhYSGx9gghoufs7CwT2z1CiGQoKSlh5cqVnH9OzRjDli1bMHfuXAQEBCAtLQ2rVq2SqiIG1Dftez70hfqm0tE3FfT7agM9jyuq798N5n2UBt7e3rhy5QoOHz6Mn3/+GRMnTkRRURGnmXbv3g17e3sEBgZymoMQQojsOHfuHBYvXozVq1dTEQNCCCFkKGEypqOjg5mamrKPPvqI6yiEkEF4+PAhe/vtt5mSkhIzNDRkH374ISspKeE6Fud62yz3NLyvTXhv/8vJyWFGRkbs+++/ZxUVFayqqoodOnSIWVtbs6Kiom7jCA0NZbGxsayxsZH9/ffffbbZX4aBtj1QfeXNyclhZmZmbP/+/ayiooLxeDy2b98+ZmpqynJycgRqu7f34IcffmANDQ2srKyMLV26lL388ss9Pm/q1Kns3Llz7OHDh6ywsJCFhYWxZcuWdXmeuOfRk6+dOHEiO3ToEKusrOTPDwsLC5afny90HklN49PD7969y+zt7VlERARraGhg6enpLCAgoNvzelomBVku5syZw7Zs2cLKy8tZc3MzS0xMZH5+fgN+D3pbhgSZb4JMozjer95y9/S/x48fMxsbG1ZTU9PlOaWlpUxHR4c9evSIn1PQ9bE/AJiLiws7fPgwq6qq6nVZ7nyuqLcRolieJbkcCruu9DVcVPun3sbT135oINvgJ4lqnR6K4uLi2OLFi5mysjIzNTVlhw8f5joSEaGamhr2ww8/sICAACYnJ8f09fXZG2+8we7cucN1NDKE1NfXM01NTaahocFaWlq4jkNk3K+//sq0tbWZvr4++/LLL/nHk0MZnRPof9r6ao/OCfRN0D7bQKft6WkYyLwe7DK2YMEClpGRwR48eMDWrFnDvL292fz58/nDVq9ezZ577rkeX9vX9LW1tbEZM2awPXv2dHnd0aNHmbOzM6uoqOh1HgwmGxf9ZUGXO0H6UYI8Z6DLiCDLoSDzoq+/+xouSL/0Sffu3WPm5ub86ausrGSHDh1iEydOFGhbPpB+uyjmjSy6cOEC8/HxYQDY8uXLxXZ84OPjw958802xjHu4O3PmDFNVVWV+fn4sLy+P6zgDRsdr/U9bX+3R8Vr/BrIvGWgecR6fDGQfJo5zvn397+m/W1pa2IQJE9j3338/oHZFuZ8W5XEf11pbW9n777/PFBQU2CuvvMLa29sl0u6IESPYvn37JNIWIUQ8vv76a2ZkZMR1DEKIFCkvL2fq6ups+/btnGV47bXXmIqKCjt48CBnGQRBfdP+p62v9qhv2j9x9k0H+301cX//rq82ZO2cbG5uLnNwcGBWVlasvLyckwzFxcVMVVWV7d69m5P2CSGEyJ7z588zFRUVtnz5ctbR0cF1HEJ69PHHHzNbW1uuYxBCiKzJlrmrdeLj4xkAlpyczHUUQoiQkpKSmJmZGdPV1WXff/89a25u5jqS1BD3Bw0vvvgi+/zzz7sN379/f7cvZgJgly9f7iNt357OMNC2hWmvt7wvvvgi27FjR7fhX3/9NVuyZIlAbQuSqaamhunq6vb42pMnT3YZlpWVxUxMTLrlFOc8evK1P/30U7fhX3/9dZcT7APNI6lpfHr4Cy+8wMLDw7u13d+HDIIuF5qamqy6urrLc/Ly8gb8HvS2Hgsy3wSZRnG8X73l7u1/7733Hvvuu++6DPv000/ZqlWruuQUdH3sDwD2+++/9ziupz8sEsc2QhTLsySXQ2HXlb6Gi2r/1Nt4BrIf6msb/CRRrdNDWWlpKVu5ciWTl5dnM2fOZA0NDVxHIkKqq6tjv/76K5s7dy5TUVFhampqbNGiRezMmTOstbWV63hkiPrjjz8YgB6/cEKIoN544w0mJyfH1q1bxx4+fMh1HImhcwI9v1bQ9uicQP8E6bP1RNBj7YHO68EuY1euXOH/XVJS0m1YUVERMzAw6HdcPU3fo0ePmI+PDztx4gRj7H8XTzs4OLDi4uJuOUSVjYv+sqDLnSD9KEGeM5hp7G057M9g+7x9LadPv2bJkiU9Tt9PP/0k0LZc0H7704SdN7Ls6NGjTE9Pj9nb27OysjKRj3/58uVsypQpIh/vcBcdHc1UVFTYypUr2ePHj7mOIxQ6Xuv5tYK2R8dr/RvIvmSgecR5fDKQc8/iOOcr6P8YY2z16tXshRdeGHC7otxPi/K4T1qcO3eOqampsTVr1oi9rdraWgaAnT9/XuxtEULE58KFCwwAq6ys5DoKIUSKbNiwgRkZGXHy+fSPP/7I5OXl2V9//SXxtgeK+qY9v1bQ9qhv2j9x9k0H+301cX//rq+2nyQr52SrqqqYra0tmzRpEicXg65du5aZm5vTd8QJIYQI5PTp00xVVZWKGBCpR4UMCCFEKLJXyODf//43s7CwoAMTQmRUZmYm09PTY1OnTqUPJHsg7g8aDA0NWUFBQbfh5eXlzNHRsds4BvPB0NMZBtq2MO31lre3tvPy8rpV+R/MBw29PQ9AtzseNjc3Mzk5OYFyimoePfnanqrs5uXlMWNjY6HzSGoae1q2SkpKenxuf68TZLkIDQ1lfn5+7Ny5c6ytra3fdgRtv3OYoPOtv2kUx/vVW+7e/pednc3Gjx/fZZitrS1LTEzsN2dP62N/ALCqqqoex/Xkstz5XFFvI0SxPEtyORR2XelruLgLGQx0PyRIHlGt08NBXFwcMzAwYCEhITSvZEhtbS0LDw9nzz77LFNVVWVKSkps+vTp7KeffmJ1dXVcxyPDxNixY5mysjJtO4hQduzYwRQUFNixY8e4jiJxdE6g59cK2h6dE+ifIH223giyHA50Xg92Gauvr+f/3d7e3uOwnvq5vY3vaTwej7m4uLBt27Yxe3t7lp+fL9DrhM3GRX9Z0OVOkH6UIM8Z7DQKu30QZBzC9EsFXQfKysoEXocE6bcLkmU4KCkpYY6OjszHx0fkhdq2bdvGDA0NRTrO4e7x48fM2dmZzZ49W6Y/46XjtZ5fK2h7dLzWv4HsSwaaR5zHJwM59yyOc76C/u+3335jDg4OAhXME+d+WpTHfdLkyJEjTE5OjsXFxYm1nZSUFAaAZWRkiLUdQoh4FRcXMwDs6tWrXEchhEiR8vJypq6uzrZv3y7Rdpubm5mJiQlbv369RNsVFvVNe36toO1R37R/4uybDvb7auL+/l1fbQv7PK4lJiYyOTk5dubMGYm2W1paytTU1NiuXbsk2i4hhBDZ9PvvvzMlJSW2YsUK1t7eznUcQvpEhQwIIUQoslfIwNXVlb3xxhtcxyCECGnRokVs/PjxrKmpiesoUkncHzQoKioyAD0+1NTUBB6/IJ5+vbjb7us1CgoKPVZ1bWpqYoqKigKN5+nhFRUVbPny5czU1JQpKCh0mR5Bs0l6HvX32qfnhyjyiGManx6uoKDAWlpaep7Yfl4nyHLx4MEDtn79emZtbc20tLTYpEmT2I4dOwb8BenBLBuCTKM45m1fz+3tf/7+/iw5OZkxxtjVq1e7XSQzkPWxP4Iuy309d6CZnhyPKOa5JJdDYdeVvoaLav800PEMZhssqnV6uEhJSWFKSkrszz//5DoK6UNOTg7bsWMHCw0NZcrKykxZWZnNnDmTHThwoNtdcQmRhOLiYpadnc11DCKD2tvbma6uLtu8eTPXUThB5wSEb5vOCQiuvz7bYKZNFPNaUML2TwYyfYwx9uuvvzJFRUX2zjvviDRHT8O46C8LutwJ0o8S5DmCTuNA36eBzAtRbWt7+n9v0yfo+AXpt4ty3gwFd+/eZQoKCuzUqVMiHS/dHVb0kpOTGQCWmprKdZRBoeM14dum4zXBDGRfMtg8ojw+Gey5Z8ZE85719b/MzExmYGDQbTskaLui3E+L8rhP2owfP17sFwCePn2aARCoIAUhRLrp6uqy3bt3cx2DECJlNmzYwIyMjAZ1cfxAxcfHMwAsNzdXYm0OBvVNhW+b+qaCkWTftLfh4niusH3XoXBO1t/fn61evVqiba5du5aZm5v3uiwRQgghncLDw5mioiJbs2aNTBfDJsMHFTIghBChZMtDhty/fx+pqamYPXs211EIIULKz89HQEAAVFVVuY4ileTk5NDS0tJlWE1NjcjGr6enh5qaGjDGuj0aGxtF1o40tl1WVtZteFlZGfT09LoME/Q9eOmll6ChoYGYmBg0Nzfzp2WwOSU1j3qaprKyMujr64s1jzjGOWrUKFRVVQmVRZDlQltbG9u2bUNubi7y8vLw+uuv4/fff8cLL7wgVF5hCDKNXK5jT3rllVdw4MABAMD+/fvxj3/8o1tOQddHQfB4vB7H9eSy3B9hM4linktyORR0XRHnvkhU4x7MNlga1mlZMnbsWBgZGSEvL4/rKOQJra2tiIyMxIYNG2Bvbw9bW1ts2bIFOjo6+PHHH8Hj8XD27Fm88sor0NXV5TouGYZMTU1ha2vLdQwigxoaGlBTUwMvLy+uo3CCzgmIr206J/B/+uuzDWbaRN3fE4eBTF92dja2bt2K27dv48SJE7h9+7ZYs3HRXxZ0uROkHyXIcwSdRnGsY53Eua3V09NDeXl5t+GCjl+Qfrs4540ssrOzg66uLgoLC0U6XhcXFwBAenq6SMc7nBUXFwMARo8ezXGSwaHjNfG1Tcdr/9eGoPsSSeUR5L0R9nOaJ4lzH9fQ0ID58+fj888/52/jB9quKPfTsnDcLCxra2sUFRWJtY3CwkLo6upCU1NTrO0QQsTP0dGRjrkJId3861//Qn19Pfbt2yexNjvPo5mYmEiszcGgvqn42qa+6f+1wXXfVBzLubB916FwTtbMzKzHzwzEpaysDPv378e7774LFRUVibVLCCFE9uzatQvLli3DP//5T3z33XeQk5PjOhIhhBBCxESmChn89ddfGDFiBAIDA7mOQggR0pQpU3Dw4EHcuXOH6yhSycjIqNuXLq9du9bjc/vqqPX2v2nTpuHKlSvdhkdHR2P8+PGCBxUCl22HhITg+PHj3YafOHECISEhXYYJ+h5cv34d//nPf2BlZQVFRUUAQFNT06ByDmQeDbajHhkZ2W3YiRMnMHXqVKHyCEoc4wwKCuo2PSkpKXBycurzdYIuF3Jycvwv2urp6WHhwoU4e/YsLl68KFReYQgyjeJaxwa6rC1YsACnTp1CZWUlzp8/3+3i8IGsj4K4cOFCj+N6clnuj7CZRLHOSnI5FHRdGci+qCd9LTODHXenwWyDpWGdliU7duxAcXGxUOsnEa3KykqEh4djwYIFMDAwQGhoKE6dOoXp06cjIiICPB4Pf/zxB1566SWMHDmS67iE4OjRo/QlVDJgWlpaGDt2LL799lu0t7dzHUfi6JyAeNA5ga7667MNZtpE3d8TB0Gnj8fjYc6cOdi3bx/Gjh2LX375BcuXL0dzc7PYsnHRXxZ0uROkHyXIcwSdRnGsY51E1S/tydSpU3Hy5Mluw3s6D9cTQfrt4pw3sig8PBxVVVXw9/cX6XhNTEygq6tLx7MiNHbsWMjJySEiIoLrKINCx2viQcdr/2cg+xJJvGeCvjfCfk7zpIG8ZwOdv6tWrYK3tzeWLVvWbRyCtivK/bQsHDcLo7GxEbGxsXB3dxdrO0VFRbCwsBBrG4QQyXB2dkZaWhrXMQghUsbQ0BCvvfYaPvvsM4md87C3twcA3Lx5UyLtDRb1TcWD+qb/Rxr6puI4jyts31XWz8m2t7fj1q1bcHBwkFibn3zyCfT09LB8+XKJtUkIIUT2fP7553jjjTfwxRdf4LPPPuM6DiGEEELEjcmQ6dOns+eee47rGISQQWhqamJTp05lo0aNYr/88gvr6OjgOpJUWbp0KXvuuedYUVERe/jwITt//jybNm0a62lzbWZmxq5fv85aW1vZhQsXmLm5eb//y8/PZ66uruzPP/9kVVVVrL6+np0+fZqZmpqyEydOdBn/YHcRT79e3G339Zrs7GxmamrK9u3bx3g8HquoqGA//vgjMzU1ZTk5OV2eK+h7MG3aNLZy5UqWn5/PWlpaWE5ODlu6dGmPOXrLNph51Nf73x8AzM3Njf3xxx+sqqqKPz8sLCxYfn6+UHnEMY2CjvPOnTvMxsaGRUREsEePHrGUlBTm4eHBdu/e3efrBF0uALBp06axtLQ01tzczMrLy9l7773HwsLCeszXm8EsG4JMozjmLWN9L2u9jWfZsmVs6tSpbMWKFd3+N5D1sT8AmK+vL/v111/7XJb7yjrQTE+ORxTrrCSXQ0HXlYHsiwa6zAx23J0Gsw0W1To91NXV1bG33nqLycnJsW+++YbrOMNSU1MTu3TpEvv3v//NPDw8mJycHFNTU2MzZsxgu3bt6radI0SadHR0MHd3dzZ//nyuoxAZdPv2baaurs4WLVrE6uvruY4jUXROQPi26ZyA4OcEGOu7zzaYaRO2byUMQee1MO/do0eP2IQJE9iBAwe6vHb79u3srbfeEkmOnoZx0V8WdLkTpB8lyHMEncaBLIeCzIsniapf2tP/c3Nzmbm5Odu/fz+rqKhg1dXV7I8//mBubm4CjV+Qfrso542sO3jwIFNVVWXvv/++WMbv7+/PXn/9dbGMe7h68cUXmaWlJSspKeE6itDoeE34tul4TbDjtYHsSwb7nony+ETYz2meNJD3bCCfW+zZs4e5uLiwxsbGHrMI2q4o99OiPO6TFh0dHWzFihVMV1eXVVRUiLWtxYsXs9mzZ4u1DUKIZHzzzTdMT0+P6xiEEClUVlbG1NXV2eeffy6xNidNmsQCAgJYW1ubxNoUFvVNhW+b+qbS1zftbbgozuOK6juGsn5Odvfu3UxRUVFi/c3c3FymqqrKdu3aJZH2CCGEyJ6Ojg62fv16Ji8vz/bu3ct1HEIGbPPmzczJyYnrGIQQImuyZaMXzf53EYe6ujr78ccfuY5CCBmkxsZGtnr1aiYvL88mTZrEzp07RwUN/r/Kykq2ePFipq+vzzQ0NNjs2bNZYWEhA9DtxOeRI0fY6NGjmbKyMhszZgw7deqUQP/Lzs5m8+fPZ9ra2kxDQ4N5enqy48ePdxl3Z3s9tSuI3l470LaFaa+31925c4dNnz6daWhoMA0NDTZ9+nR2586dbs8T9D3g8XjspZdeYgYGBkxZWZm5uLiwP/74o9vzess1mHnEWN/vsSDzKj09nU2dOpVpamoyDQ0NNmPGDJaRkdHt+YN5z8SxHPQ2/Pr168zPz4+pqqoyc3Nz9umnnwr0OkGWi8jISDZ37lw2atQopqyszEaPHs3Wr18/oIuqempf1NPImHjmbW/LWl/r3LVr1xgAduPGjR7nh6DrY38AsPz8fDZr1iympaXV67Isqm1Ee3s7U1BQ6DJMFOuspJZDxgRbjgTdDg50mRF23D29Z4PZBotqXg5V9fX1bOfOnczExITp6emx8PBwriMNG21tbSw2NpZ99NFHLDg4mKmqqjIAzNramq1evZqdOXOGNTQ0cB2TEIGdOnWKycnJsaSkJK6jEBkUERHBDA0NmY2NDTt58uSwOWdA5wTonIC4zwl06qvPNthpE2Rei2MZE3SYINPX+buhoSH/dWVlZd3GN5gcg5l/gs4jQfrLjAm23AnSjxK0ryXINAq6HPanp368qPqlvf0vLS2NzZgxg2loaDBNTU02depUlp6eLvAy0F+/XVTzRpbl5OSw+fPnM3l5efbOO++w9vZ2sbTz2muvscDAQLGMe7iqqKhgzs7OzNbWlqWnp3MdRyh0vEbHa5I4XhN0XyJoHkkdnwzkc5qeloOB7OMG8rmFiopKt7affM5A2hXlflpUx33SoLGxkb366qtMWVl5wH0TYQQEBLA1a9aIvR1CiPhFRUUxAKy8vJzrKIQQKbR582ampaXFiouLJdJecnIy09DQYMuXL2ePHz+WSJvCor4p9U2HSt+0r+GD/e6SsOdfe3qdLJ+TPX/+PFNWVmYffvihxNqcPXs2c3R0ZK2trRJrkxBCiOxobm5mCxcuZMrKyuzw4cNcxyFEKO+//z5zd3fnOgYhhMiabDnGGIMMuHjxIqZNm4b79+/DwsKC6ziEEBFISEjAe++9h6ioKNjZ2WHVqlV4/vnnYWpqynU0QgghMkBOTg7iPpT9+eef8eKLL0JJSQmlpaXw9/dHXl6eWNskhAu3bt3Cr7/+ip9++gnt7e149dVXsWXLFujq6nIdbcjq6OhAZmYmYmNjERkZiYiICDx48ACGhoaYNGkSQkJCEBoaitGjR3MdlRChMMbg7e0NExMTnDx5kus4RAbxeDy8+eab+PPPP+Hh4YF3330Xc+bMgZKSEtfRCCFE6kmivyytqB8/dKWkpODbb79FeHg4xowZg507dyIkJERs7e3cuRP/+c9/UFVVJbY2hqOKigrMnTsXycnJ+OSTT7BmzRo6viOEEBkWHx+PFStWoKSkBL/88gueeeYZsbdpZWWF1atXY+PGjWJvixAiXjweD0ZGRoiKikJwcDDXcQghUqapqQkuLi7w9vbGb7/9JpE2z5w5gwULFmDKlCkIDw+Hjo6ORNolhBBRY4xh9+7deOutt7BkyRIcOHAAcnJyYm/3woULmD59Os6fP49p06aJvT1CCCGypba2FmFhYUhMTMSff/5J+wois9555x1cu3YNN27c4DoKIYTIkhx5rhMI6sKFC3B2dqYiBoQMIRMmTEBERARSU1MRGBiIzZs3w8LCAgEBAfj2229x7949riMSQggZ5l555RV89tlnePjwIb755hssWrSI60iEiMTjx48RGxuLf/3rXxg9ejS8vLxw5swZfPDBBygqKsK3335LRQxErL29HcnJyfj2228RFhYGPT09uLi44IMPPgAAfPrpp8jKykJ5eTmOHDmCf/zjH1TEgMg0OTk5vPfeezh9+jSKioq4jkNkkKGhIf744w8kJSXB3NwcixYtgrm5OTZu3Ii0tDSu4xFCCJFS1I8fWqqrq7F37154e3vD3d0dsbGx2L9/P9LS0sRaxAAAnJ2dUV1dDR6PJ9Z2hhsDAwNcu3YNGzduxLvvvgsXFxccPXoUHR0dXEcjhBAyAFlZWViwYAF8fX1hZGSElJQUiRQxaG9vR2lpKX1viJAhwtDQEHp6ekhPT+c6CiFECqmpqWHHjh04fPgwLl++LJE2Z82ahUuXLiExMRHOzs44ceKERNolhBBRysvLw7Rp07Bu3Tp8+OGHEiti0NLSgjfffBMLFiygC1MJIYR0U1JSgsmTJyMnJwfXrl2jfQWRaW1tbVBWVuY6BiGEyByZKmRAByuEDE3Ozs744YcfwOPxcPz4cVhaWmLTpk2wtbWFtbU1XnvtNRw9ehSVlZVcRyWEECIlOj9gEfcHLbt378b3338Pa2tr1NXVYdOmTWJtjxBxYYwhKysLu3fvRlhYGEaNGgV/f38cO3YMCxcuREJCAu7du4d33nmH7iwhIi0tLYiJicGnn36KZ555BqNGjcK4ceOwefNmdHR0YPPmzUhJSQGPx8ORI0ewatUq2Nvbcx2bEJGaNWsWdHV18euvv3IdhcgwNzc3nDhxAvn5+Vi1ahUOHz4MV1dX2NnZ4d1338WNGzfQ3t7OdUxCCJEakuovSyvqx8u+oqIi7Nq1CyEhITAyMsK6detga2uLK1euIDMzE0uXLoWCgoLYczg7OwMAFVASA0VFRWzevBmZmZkYP348Fi5cCHt7e+zatQsPHz7kOh4hhJBeMMYQFRWFWbNmwcnJCenp6Th16hQiIyMlVligoqICbW1tMDU1lUh7hBDxc3Z2pkIGhJBezZ49G7NmzcLatWvR1tYmkTZ9fHyQlpaGqVOnYv78+QgMDMT169cl0jYhhAxGZWUl3nrrLTg6OqKkpASxsbHYtGmTxD4r+OKLL1BcXIwvvvhCIu0RQgiRHampqfDx8UF7ezvi4+Ph7u7OdSRCBqW1tZUKGRBCiBDkGGOM6xD9KSkpgbm5Oc6fP4+pU6dyHYcQIgFtbW2Ii4tDREQEIiIikJCQgPb2dtjb22PixInw9fWFr68vHB0dIS8vMzVZhoT+TmyKerci6fZkGc0rbtB8Fz2apwNH84w8rbGxEQkJCYiNjUVcXBzi4uJQVVUFLS0tTJ48GaGhoQgNDaUL50WooaEBSUlJiI2NRWRkJGJjY9HU1AQjIyNMmDAB/v7+CAkJwbhx4+j4lQwrb7zxBi5evIi7d+9yHYUMER0dHYiPj8eJEydw/Phx5OXlQVdXF8HBwQgJCUFISAhsbGy4jjlk0TkB6TVU5tVQmQ5xofnzf2heDB319fW4fPkyIiMjERkZiaysLGhpaWHGjBmYN28eZs6cCS0tLU6yGRgY4IMPPsCbb77JSfvDxd27d7Fjxw6Eh4dDTk4O8+fPx8svv4ygoCDqPwuBjtekF80rIqvy8/MRHh6O8PBw5OXlISgoCOvXr8esWbMkvp1OSkqCh4cHsrOzYWtrK9G2CSHisWbNGqSkpCAmJobrKIQQKZWbmwsXFxd88sknWL9+vUTbjo+Px7vvvourV69i0qRJePvtt/HMM89QX1UA1DeVXjSvhp7s7Gxs374dBw8exMiRI/Hhhx9i+fLlUFJSkliGwsJCODk5YdOmTdi4caPE2iWEECL9Lly4gOeffx7e3t44duwYRowYwXUkQgZtxYoVKCkpwblz57iOQgghsiRHJgoZHDhwAGvWrEFNTQ3U1NS4jkMI4cCDBw9w/fp1xMXFITY2Fjdv3kRDQwM0NTXh7u4ODw8P/sPR0RGKiopcRyaEEEIIkYiHDx8iOTkZiYmJSExMxO3bt5GVlYX29naYmJjA19cXfn5+8PHxwYQJE+g4SUTKy8sRGxuL6OhoxMTEIDkp5PqfAAAgAElEQVQ5Ge3t7bCzs4O/vz8CAgIQEBBAF9OSYe/WrVvw8vJCcnIy3NzcuI5DhqC0tDREREQgMjISV69eRUNDA0xNTeHn5wc/Pz/4+/vDzc1NInduJoQQQkj/iouLERMTg9jYWMTExCA1NRWMMbi5uSE0NBQhISEICAiAqqoq11ERFBQEe3t7/PDDD1xHGRZqa2tx+PBhHDx4EDdv3oSxsTHmzp2LefPmISgoiM5nEEKIBGVnZ+P48eM4duwYbt++DUNDQyxevBjLli2Dq6srZ7nOnTuHmTNnoq6ujr70TMgQsXv3brz//vt48OAB11EIIVLsww8/xI4dO5CVlQUTExOJt3/lyhV89dVX+Pvvv2FlZYVXX30Vy5Ytg5mZmcSzEEIIALS0tOD48ePYv38/Ll26BBsbG6xfvx7Lli2Durq6xPPMmzcPaWlpSE1NhYqKisTbJ4QQIp22b9+Od955B0uWLMHevXvpDvZkyHjppZdQX1+PU6dOcR2FEEJkiWwUMli4cCHq6upw/vx5rqMQQqTE48ePkZqailu3bvEv2ktNTUVzczNUVFRgb28PBwcHODo6wtHREQ4ODrC3t5eKLz8SQgghhAijuroamZmZyMzMxN27d5Geno67d+/i/v376OjogJ6eXpfiTl5eXrC0tOQ69pDAGENWVhb/QpvY2Fjcu3cPCgoKGDt2LL9ogb+/P4yMjLiOS4hUYYxBX18fmzZtwrp167iOQ4a41tZW3LhxA9HR0bh+/TpiY2Px4MEDaGhowNXVFe7u7hg3bhzc3d3h6upKBVMJIYQQMWKMITc3F0lJSUhOTuY/SktLoaioiHHjxvELDwUGBkJfX5/ryN2sXbsWycnJdHdYDmRlZeHPP//E8ePHkZycjJEjRyIoKAjBwcGYMmUKnJycuI5ICCFDSnV1NS5fvoyoqChcunQJ2dnZ0NfXx5w5czB//nyEhIRIRUGZn3/+Ga+//joaGxu5jkIIEZGrV68iKCgIxcXFMDU15ToOIURKNTU1wdnZGR4eHjh69ChnObKysvDjjz8iPDwcNTU18Pf3R1hYGObOnUufyxNCxK6xsRHnzp3DyZMncebMGTx69AgzZ87EypUrMXPmTMjLy3OS6+TJkwgLC8OFCxcwdepUTjIQQgiRLi0tLXj99dfx008/4cMPP8SWLVu4jkSISM2aNQt6enr4+eefuY5CCCGyRPoLGbS3t8PAwAAffPAB1q9fz3UcQogUa2trQ0ZGBlJSUpCZmYmsrCxkZGQgLy8Pjx8/hry8PKysrLoUN3BycoKDgwN0dHS4jk8IIYQQAsYYCgsLkZWVxS9a0Pl7ZWUlAEBTUxMODg78YxlHR0d4eHjAwsKC4/RDx+PHj5GSksIvWnDlyhVUVlZCXV0d48aNg7+/P/8u33QcSUj/5s6dCwUFBRw7dozrKGSY6ejoQEZGBuLj4/kXT965cwcPHz6EgoIC7O3t4e7u3qXAgZ6eHtexCSGEEJnT0tKCtLS0LgULUlJSuu1z3dzc4OnpCS8vL2hoaHAdu1/ff/893nvvPdTW1kJOTo7rOMNWbm4uzp49i6ioKFy9ehV1dXUwNjbGlClT+A9zc3OuYxJCiExpaGhAdHQ0v3BBcnIy5OTkMH78eAQHB2Pq1KmYNGkSFBQUuI7axWeffYa9e/ciLy+P6yiEEBGprq6Gnp4eXfhGCOlXdHQ0goKC8NNPP2Hp0qWcZmltbcXZs2dx7NgxnD17Fg8ePMD48eP5RQ2cnZ05zUcIGTpqampw+vRpnDx5EhcuXEBrayt8fX0RFhaGhQsXwsTEhNN8lZWVcHV1xaxZs/Djjz9ymoUQQoh0qKqqwnPPPYfExEQcOnQIc+bM4ToSISLn5+cHb29vbNu2jesohBAiS6S/kEFSUhI8PDxw584duLq6ch2HECKDWltbkZOTw797cUZGBrKyspCVlcW/W4OhoSGsra1hZWXFf4wePRpWVlawsLCAiooKx1NBCCGEkKGirq4O+fn5KCgoQEFBAf/3/Px85OXloaGhAQBgYGDAL7rk4ODAL8REBQtEr7a2FrGxsYiNjUVMTAwSEhLQ3NwMIyMjfsECPz8/jBs3TiruPEaIrNm2bRs+/fRTVFRU0AVghHMdHR3Iy8vr8e7QAGBqagp7e3vY2dnBzs4ODg4OsLW1hZWVFe0DCCGEDHsVFRXIzs7G3bt3kZ2djZycHGRlZeHevXtoa2uDhoYGXF1duxQJcnV1hZqaGtfRhXLt2jUEBgbS3WGlSHt7OxISEhAVFYWoqChcv34dzc3NsLGxgZeXFzw9PeHp6QkPDw+oq6tzHZcQQqRCR0cH7t69i1u3biEhIQG3bt1CYmIiWltb4eTkxC8KExgYiJEjR3Idt0/r169HfHw84uLiuI5CCBEhIyMjbNy4kW5wRAjp14YNG3DgwAGkpKTA0tKS6zgA/nfjpcuXL+P48eP466+/UFZWBhsbGwQHByMoKAiTJ0+GsbEx1zEJITKiqakJcXFxuHLlCi5fvoz4+HgoKChgypQpCAsLw7PPPgsDAwOuY/I9++yz/AK3I0aM4DoOIYQQjiUnJ2Pu3LlQUlLCqVOn4OTkxHUkQsTC0dERixcvxqZNm7iOQgghskT6Cxls374dH3/8MSorKyEvL891HELIEMIYw/3795GVlYW7d+8iPz+/y0WF9fX1AAB5eXkYGxvzCxt0/ux8mJubQ0lJieOpIYQQQoi0ePToUbcCBZ3HFwUFBaitreU/19jYuEsRJWtra37BAl1dXQ6nYmjj8Xi4efMmYmNjERkZiaSkJHR0dMDa2rpL4QInJye66JoQEYiOjsakSZPoAjAi1SoqKpCcnIw7d+4gOzubf5FmeXk5AEBZWRnW1tZdihzY2dnB3t4ehoaGHKcnhBBCRKexsZG/L3yyaEF2djYePHgAANDQ0ODvC21tbeHi4gJ3d3fY2toOqc/yampqMGrUKJw/fx7Tpk3jOg7pQXNzM2JjYxEdHY1bt27h1q1bqKyshKKiIpycnPiFDby8vODi4kKf5RBChoXCwkL+NvHmzZu4ffs26uvroaKiAnd3d3h6esLHxwfBwcEyd1Hd4sWL0dTUhBMnTnAdhRAiQiEhIbCysqK7+BJC+tXS0gJPT09oa2vjypUrUFBQ4DpSFx0dHYiPj8e5c+dw+fJl3Lx5E21tbbC3t0dQUBD/YWRkxHVUQoiUaG5uRnx8PL9wwY0bN9DS0oIxY8YgKCgIoaGhmD59ulQWCdi7dy9Wr16NS5cuITAwkOs4hBBCOPbbb79h5cqV8PPzwx9//AEdHR2uIxEiNoaGhti0aRPWrl3LdRRCCJEl0l/IYO7cuZCXl8fx48e5jkIIGWaqq6u7XHT49MWIjY2NAAAFBQUYGxvDzMwMRkZGMDc3h5GREczMzGBsbAxTU1OYmJhI/R0sCCGEENK3jo4O8Hg8lJaWorS0FCUlJSgrK0NxcTHKy8tRVFSEsrIyVFVV8V+jr6/fpVDBk8WQRo8eDVVVVQ6naPjIy8tDdHQ0rl69ipiYGOTk5EBRURHjxo1DQEAAJk2aBH9/f4waNYrrqIQMSSUlJTAzM8O1a9cQEBDAdRxCBqS+vr7HCzmzs7Px6NEjAIC2tjasrKxgaWnJ/2lhYQFLS0tYWlpK1Z1RCCGEkMbGRhQUFOD+/fu4f/8+CgsL+b8XFBSgtLQUjDEoKirCysoKtra2cHBw6FK4wNzcnOvJkBhjY2O888472LBhA9dRiIAKCgpw8+ZN/kW8iYmJePjwIVRVVeHs7AwnJyc4OzvDxcUFTk5OsLKyoiKGhBCZVFtbi/T0dGRkZCAtLQ0ZGRlITU1FRUUFFBQU4OjoyC/o4unpCTc3N5kv6BIcHAw7Ozvs2bOH6yiEEBFat24dbty4gfj4eK6jEEJkQHJyMry9vbF161a8/fbbXMfpU0NDA2JjY3HlyhVcuXIFt27dwuPHj2FnZ4cJEybwH+PGjYOmpibXcQkhYtbR0YGsrCwkJCTwH0lJSWhuboa1tTW/2MnkyZNhZmbGddw+5efnw83NDWvXrsUnn3zCdRxCCCEcam1txT//+U989913eOutt/Dll19CUVGR61iEiJWysjJ+/vlnLF68mOsohBAiS6S7kAFjDPr6+ti0aRPWrVvHdRxCCOmCx+PxixwUFRWhpKSEf2Fj56O5uZn/fHV1dZiamvZY9KCz2IGxsTHU1dU5nCpCCCFkeKqurkZ5eXmPxQnKy8tRXFwMHo+Hx48f818zcuRImJiYdNm/GxsbdylUoKGhweFUDV95eXmIiYlBbGwsLl68iIKCAigqKsLNzQ0hISHw8/NDQEAAFZoiREIYY9DU1MSuXbuwbNkyruMQIjIlJSX8ogadF4B2XgRaVlaGjo4OAICamlqPBQ46Cx8YGRnRB7mEEEJEpqampltxgicLFlRWVvKfO3LkSP7+afTo0bC0tIS1tTUcHBxgbW0NZWVlDqdEOoSEhMDS0hL79+/nOgoRUnt7O/9L4qmpqfyLfYuKigAAmpqacHR0hKura5efFhYWHCcnhJD/qa+vR2ZmJlJTU7sULSgpKQEAaGlpwcnJCS4uLnB2dsb48ePh4eExJC+Gc3Z2xvPPP48tW7ZwHYUQIkJ79+7FP//5T9TX11OBKUKIQD755BP897//xc2bNzF27Fiu4wjs0aNHiImJQVxcHBISEnDr1i1UVlZCQUEBDg4O8PT05Bc3cHNzo5siECLDGGPIzc3lr+udRQs6i226ublhwoQJ8PLyQlBQkEydh+ro6MDkyZNRX1+PGzdu0DlkQggZxoqLi7FgwQKkpqZi3759WLRoEdeRCBG7+vp6aGtr49y5c5g+fTrXcQghRJZIdyGDO3fuwM3NDUlJSXB3d+c6DiGEDFhTUxPKyspQWlqKsrIy5OXl8X/v/FlYWNjlokhVVVXo6OhAR0eHX9ygp787L5xUUVHhcAoJIYQQ6dTU1ITa2lrU1tby97tP/975d3FxMVpbW/mvVVFRga6uLn+/a2JiAmtra/7vnUULtLW1OZxC8qT09HRcunQJly5dQnR0NKqrq6GlpcUvWDBp0iR4enrScRMhHHJycsKCBQvoi+Zk2Ghra0NlZSX/XMCTj9LSUhQUFKCxsZH/fB0dnS7HGj39tLCwoIIHhBAyjD19rrmnn8XFxaivr+e/RkdHp0t/1traustDR0eHwymSDW+99Rbi4+Pp7rBDUH19PXJycvh3M+/8mZ+fD8YYlJWVYWZm1mWdcXJygrOzMx2XEUJErra2tlvfsfPx5HZpzJgxcHZ25m+PnJyc4OjoCHl5ea4nQSL09PTw0UcfYfXq1VxHIYSIUGxsLPz9/VFQUABLS0uu4xBCZEBHRweCg4NRVVWFhIQEmb7gv7S0FLdv3+Y/4uPjUVVVBQAwNjbmH/ONHz8ezs7OcHR0pJskESJlSktLu5xbSk9PR0pKCh49egRFRUXY2dlh/Pjx/MeECRNkeru1detWfPTRR7h16xZcXV25jkMIIYQjly9fxgsvvICRI0fi2LFjcHZ25joSIRKRk5MDOzs7JCQkYPz48VzHIYQQWSLdhQx27tyJTZs2obq6GgoKClzHIYQQsWhvbwePx0NpaSnKy8tRWVkJHo+HiooKVFVVobKykj+8qqoKLS0tXV6vra0NIyMj6OnpQV9fH4aGhjAwMOD/raurC11dXejo6PB/J4QQQmRJW1sbampqujxqa2u77CM7H+Xl5aiqqkJTU1OXcWhqavL3kfr6+tDT04ORkRH09fWhr68PAwMDmJiYwMTEhC7kkAG5ubm4dOkSLl++jEuXLoHH40FbWxuBgYGYPHkyAgIC4O7uTv1IQqSIj48P/Pz88PXXX3MdhRCp0NHRwS9oUFJSgvLy8i4/Oy9Iraur479GQUGhyzFL50WpJiYmMDQ0hJ6eHvT09GBoaEgFlwghREY0NzfzzwHzeDxUVVWhrKysx33Ck/1cFRUVGBkZwdTUtNtPY2NjWFhYwNLSEmpqahxO3dCwb98+bNiwge4OO4zU1NQgPT0dOTk5yM3Nxb1795Cbm4vc3Fw8ePAAAKCsrAwrKyuMGTMGNjY2GDNmDEaPHg1zc3OYm5tj1KhRHE8FIUTaNDc3o7CwEMXFxbh//36X7cu9e/e6bV9sbGz425cxY8bA0dERVlZWw6ZgQU/a2tqgoqKCo0ePYt68eVzHIYSIUF1dHXR0dHDmzBnMnDmT6ziEEBmRl5cHNzc3rFy5Etu2beM6jsgwxnDv3j0kJycjPT2d/8jJycHjx4+hqKiIMWPGwMXFBU5OTnBycuL3TUeOHMl1fEKGrNbWVhQUFCA3NxdZWVnIyMhAWloaMjIy+IVlO4uPdK6fY8eOhZubm0wXLXjazZs3ERAQgE8//RQbNmzgOg4hhBAOMMbwxRdf4N///jcWLFiAvXv3QlNTk+tYhEhMZGQkQkNDUVVVRZ8HEkLIwEh3IYPnnnsOra2t+Ouvv7iOQgghUqOurg48Ho9f2KCz6EHnBZyd/+t8tLe3d3m9nJxct8IGPRU76OlvJSUljqaaEELIUNDQ0MAvQvB0UYKamhpUV1f3+P9Hjx51G5eamlq3YgT6+vpdivsYGBjwL+qjizdkG4/Hw7Vr1xAZGYmIiAjk5+dDXV0dvr6+8PPzg7+/PwIDA+lYhRApFhwcDAcHB+zevZvrKITIlMbGRv6dtnsqeND588m7bwP/u/jlyWOizoKHenp6Xf7uPIaiooeEECIajY2N/HO2nedvn/y7c1jnedyn+7vKyspdChOYmZnB0NCwy8/Ofi+RjOvXr8PPz4/uDksAAFVVVd0uPu78vaKigv88NTU1WFpawtzcHGZmZrCwsICFhQXMzMxgbm4OS0tLuoMmIUPI48ePUVZWhsLCQhQVFaGoqIhfsKDz96e3EU8WQnmyaIGFhQUVZ+1FcXExzM3NERsbC19fX67jEEJEzMzMDOvWrcM777zDdRRCiAz55ZdfsHTpUvz+++9YsGAB13HEqrW1FXfv3u1y8XRaWhpyc3P53w3U09PrVhCr83cDAwOOp4AQ6dfY2NitqGXn74WFhfx1zcDAgF+s4MmfQ/2mKZWVlRg/fjxcXFxw5syZYV1ojxBChisej4eXX34Zly9fxrZt27BmzRquIxEicfv378e6det6/F47IYSQPuUocp2gN4wxREdH41//+hfXUQghRKpoa2tDW1sbdnZ2Aj2/vr6+212se7p4tLi4uMvfT9/JGvjf3aw7ixp05hgxYgT/MXLkSIwcOZL/95P/19bWHvInawkhZChrbW1FfX096uvrUVtbi7q6Ov7fT/7+4MEDPHjwoMvfnfuWlpaWbuMdMWJEt8I6dnZ2/RbZocIEQ1tVVRXi4uIQGxuLyMhIJCYmQkFBAW5ubliwYAFCQkIQEBAAFRUVrqMSQgSkpqbWYx+DENI3dXV1/hcO+9LTHb2f/js/P59/MW1dXV2X1yspKfELHTx53NV57PX0708Oo7tTE0KGoqcL8dXW1nb5/elhnQUKGhoauoxHVVWVXzTGwMAA+vr6sLW1hb6+Pr/wXmdhGUNDQ4wYMYKjKSa9cXZ2hpycHNLS0qiQAeGvs97e3t3+19TUxL+I+ckLmIuKihAfH4/79++jsbGR/3xdXV2YmprCzMwMBgYGMDY2hpGREQwNDWFiYgIDAwOYmJjQdoEQDrW2tqKiogIlJSXg8XgoLy9HWVkZeDweSktLUVFRgaKiIpSVlfEvaFFUVISxsTG/gMmUKVP4BUw6i5vo6+tzPGWyicfjAQAMDQ05TkIIEQcXFxekp6dzHYMQImOWLFmCmzdvYvny5fwLiYcqZWVluLq6wtXVFQsXLuQPb2trQ0FBQbcLr48cOYL8/Hz+dzS0tLRgbW0NCwsLWFpawszMDGZmZvzjVBMTE7ppABnyKioqUFxc3K3wXGFhIfLz81FaWgrgfzcKMzU15RcCCQ4O7lIkRFtbm+Mpkbz29nYsWbIE8vLyOHToEBUxIISQYejChQt4+eWXoa6ujujoaHh5eXEdiRBO3L9/nz4zJoQQIckxxhjXIXqSmZkJJycn3Lp1CxMmTOA6DiGEDDtNTU193jX7/7F352FRlo378E9l3xmJVUAYFIERlyiXcNfcAnesNJesHsvKsn5P6mObmW2WqZWVZWVmmbiggIpLZaGYibkAsgmyIwjDvs/w/tH3vt9hsdTEC4bzcxxzzDDODOcQTPdyXeclTVq93uTVhoaGVl/3eiUHtra28n02NjYwMzODjY0NLC0tYWZmBisrK1hbW8Pc3Bzm5uawtbXlZAkion9QV1eHyspKlJSUoKqqCtXV1SgpKUFlZSWqq6tRVlaG8vLyFp/npaWlUKvVTb6uqalp9XuYm5s3+TyXPtN172utiEC6cHUpAv5atezkyZM4dOgQDh06hPPnz6NLly4ICAjAqFGjMHr0aAwdOpSrFRJ1YJMnT4atrS2+/fZb0VGICH9tJ15vlfDWJuxKt7VabYvX+ruSg27dusnFh9bW1vK+vZWVlbztyMFORNQWKioqWuzzSvu95eXlf1tKoFarUVdX1+I1raysrvt5J5UVSJOcHRwc4ODgAEtLSwHvnm43Nzc3PPvssyxfp3+tuLgYWVlZyMzMRGZmJnJzc+XJ0Dk5OSgoKEBBQYE8IRr4qxSutZIDR0dH2Nvbw87ODnZ2drjrrrtgZ2fHiSdE/0CtVsv7QkVFRfJF+hvMzc2VSwuKioqaPNfGxgbOzs5wcHBA9+7d4eDgIE8Ak8oKnJ2decy7jURGRiIoKAgVFRWwsLAQHYeIbrMXX3wRx48fx5kzZ0RHIaIOpr6+HmPHjkVeXh7++OOPTjnB+Hq0Wi2ys7PlkoO0tLQmE7hzcnJQX18PAOjatSucnJxalBxIJXsODg5wcnLiIkbULtXU1DQpnMvPz0dubm6LsgLdcU+Ojo5Nftd79OiBnj17yoUFpqamAt9R+/PSSy/ho48+QnR0NAICAkTHISKiO6i+vh5r1qzB6tWrMX36dGzevJnbhNSpzZ8/H4WFhThw4IDoKEREHU2KoegE1xMTEwMzMzP069dPdBQiok7JzMwM3bt3R/fu3W/p+VVVVX87Kbb5pNm0tLQmX0vP/6eM5ubmsLGxgYWFBczNzWFlZQUrKyuYm5vDwsICtra28uNsbW3lIgRra2tYWlrCyMgItra2MDAwgI2NDYyNjTn4hYjuOLVaDY1Gg7KyMtTW1qKqqkq+lJWVoaKiAlVVVfJEDOnf1Go1qqur5c/MyspKVFVVyRM1dAc9N2doaChPJNO92NjYQKlUQqFQ3FD5DAdH063KycnBwYMHcejQIRw9ehSlpaXw8vLChAkT8Prrr2PEiBEcaEKkR8rLy+Hq6io6BhH9H2NjY7i4uMDFxeWmnldaWnpDK5MnJyfLt6Xiw+v16VpaWjYpOJC2NXXv0y1DkO6TjgfoHhtgKQJRx1ZeXo6amhqUl5c3uS0dU5T2daVrqVBV9/7S0tIb+szRLSKws7NDr169Wi1j0b1taNhuT6lRG1OpVFwdlm4Lqdjz785/a7VaFBQUNBmAn5ubi/z8fFy9ehUXLlyQ/72kpKTF862treViFankQLfoQCo/kLa5bG1tOeiQOqTKykr5//ulpaVNigmuXbuGwsLCJkUF0v3Nj5mbmZnBzs4OLi4ucHR0RM+ePTF06NAmxSHSv5mZmQl6twQAhYWF8vlfItI/KpUKn332GbRaLY/vENFNMTIyws6dOxEQEIC5c+di3759XBjn/3Tt2hXu7u5wd3fH6NGjW/y7VqtFfn4+MjMz5cne0sTvEydOYMeOHS3K9kxMTORiL3t7ezg5OcllX9L2s52dHbp16wY7OzuWfNEtKysrk/fjCgoKUFhYKBfPXb16FXl5eSgoKEBeXl6LMaa2trbo3r073N3d4eXlhZEjR8olHW5ubnBzc2NRwU3Yt28f3n//fWzZsoUlBkREnUx6ejpmz56N8+fPY926dXjuuedERyISLiMjA76+vqJjEBF1SO121NXp06cREBDAiVFERB2UVBjg7Oz8r16n+aRcafKutLq4NHm3+STf8vJyXL16FWq1Wl6FXHqc1Cb9T/lNTExgZWUFQ0NDKBQKGBgYwNraGiYmJvL7MzExgbW1NQwNDWFraytPDDY1NYWZmRksLCxgbGwsT6iQniM9DvhrYCFP3BC1HzU1NaiuroZWq5VPdkmfHdK/VVZWoq6uDqWlpdBoNCgpKUF9fT0qKipQXV2Nmpoa+TklJSXQaDQoLS1FXV0dKisr5ceUl5ejoaHhHzNZWFjAzMysyaQtqaxFoVCge/fusLW1/dtSF3Nzc5iZmcmPMzY2busfJVETGo0G586dQ3h4OCIiInD27FmYmpoiMDAQK1aswNixY3nSk0iPlZeXy9u/RNRx2djYwMbGBp6enjf93H9aHV26liYmFxQU4PLly01WT/+nsi6pnNDa2hqmpqbyhGUzMzP5tqmpKaysrGBpaQlTU1O56FC6LW0rS+WHza+JOjOpIKD5tVqtlveXS0pKUFNTIx+/k26XlpaipqYGlZWVKCsrk/ety8rK5H3ov6NbZCJdKxQKuLi4NLlft/hE97HS5xcnxNCt6NOnD3755RfRMaiTkFbBdHJy+sfC/4aGhlYnaksTuKWJ3ampqfLXxcXFrb6WbnnpP10rFIomxdFS2TSPN9KNkgp6pW2HiooKuZRAKiYoKSnBxYsX0aVLF2i1WqjV6ibFBa2d6zM3N29R2tG/f/8WpR7Sv9nZ2cHc3FzAT4BuRUlJCYtXiPSYSqVCVVUV0tPT4eXlJToOEXUwjo6OCA0NxciRI/H222/jf//7n+hIHULXrl3lwuPBgwe3+hitVovCwkK5ZO/q1avy7YKCAqSlpeHkyZPyRPPmbG1tmxTtSQUHrd3WXWCDk6/gKX0AACAASURBVMz1gzTuqqSkRC6hlY5fFBcXy8cviouLm9xfVFTUYp/PwsJCPl7i4OAAf39/ODg4NLlPKtPg78/tk5ycjHnz5mHx4sV49NFHRcchIqI76Ouvv8aSJUvQu3dvnD9/Hr169RIdiahdSEtLw8SJE0XHICLqkNptkcHvv//eagsoERF1LhYWFrCwsIC9vf1te01psnFZWRkaGhqaTECWBl1LE5BLS0vR0NAgD4rSnaRcUFAgT1JuaGhAWVmZPEm5qqoKtbW1N5VLKj/o2rWrvAK1NFFCmowBQB6k83elCNJrAWjyXN3nA2gyuFCamCGxtbWVW8ql70X0b+lO3K+trUVVVRUAyBMgJLqlI9LflUStVsu3S0tLodVq/7Z8QPf50nOlv9GGhgaUl5c3ea2bcSNlJ+7u7jAwMIBCoZD/XqXHSH+DWVlZOH/+PAoKCpCVlYWsrCyUlZUB+GtFKC8vL/Tq1Qve3t7ytbe39239bCRqC1evXkVUVBQiIiJw+PBhlJaWQqlUYuzYsVi2bBkmTJjAic1EnQSLDIjI0tKyyT7nrZLKDqUVWP9pYrTu7ZycHPl2eXm5vP9/owVj0vtoreBAupa28f/pGvj/98+lfQmg6T687r697vNYiNi56BZ4SPu0uvu+9fX1KCsrQ9euXeV9YwByAZ/u85pfX6+Y4HrXN8LGxgampqZyqYhU9CmVhjg6OjYpG7nebamExMrKCra2trfpp0l0a1QqFTZt2gSNRsPPX2pXDA0N4ejoCEdHxxt+jkajQVFRkVwqVVJS0mKCuO51RkZGi/uvR9qm0S2Ssra2lo+V2trawszMTL4tHT9tvh0l3W9mZiZvD5mamjbZNqK2odFoUFZWJm9rNN8eAJpuR2i1Wrl4XLdQvLq6GuXl5SgvL0dVVZW87V5dXS2fE2iNVMQrFWfExcWhoqIC3bp1g5+fH4YNGwZvb+9WCzbs7Oz4+6HnSktL5f0mItI/KpUKXbp0QXx8PIsMiOiWDBkyBGvXrsXSpUsxYMAATiy5Tbp27Srvd/r7+//tY+vr61FQUNBkUrpuqZ70dXp6epNJ662VFxsbG8vlpM1LS6WLQqFoUl4s7TtaW1vDyMgINjY28tgcaWwP/T1pfKR0vqWmpgZlZWXyGEppnFdpaalcUK1bUi2VV0v3Xa+81srKSi6ak8osXF1dm5TQSUUXd911FxwcHJqMfaQ7o6KiAtOmTYOfnx/WrVsnOg4REd0hhYWFePLJJ7F37148++yzWLt2LUuMif5PSUkJsrOz/3HfiIiIWtcuj8xUVVUhLi4Oy5cvFx2FiIj0kJGRERQKxR1ZtUOaDCEN7LrZidXSYPXWJmlLRQp/91oA5BMLt4vuBAug6QSK1gYS6hYz6LreoMPWTh516dKl1UHr0gmnG3E7/nv/m9eQijD+jZt5jdYmGej+bum6XvFGaxP7pYGMzelOrNCdOKH7O3u76P7O3UjZh7m5uTyYV1p98VaLQ6R/k06AtiW1Wo20tDSkpaUhPj4eCQkJOHz4MD766CP598DW1hZeXl5QKpXyxc/PD/7+/q3+3RG1tZqaGkRHR+PQoUM4ePAgEhISYGFhgVGjRmHNmjWYOHEilEql6JhEJEBeXh6cnJxExyAiPSBNhLvdpP0laT9e2se51ev8/Hz5NVu7vt6+1c1qrQyheVEh0Pq+dvN93Ob7+0DLckTgxsoOb7Vs4Wb28yX/5mepuy/bmuale0Dr+9a6+8ES3SKB630/3f3865UQ3Crd4y7SvnDza+m/k1TAJ339T9fS75N0rVteQKSPVCoVqqurceXKFU6qog7PwMAADg4OcHBwuOXXkIoPKisrUV1djZKSEvm2NFlBd/K6NMk9PT29xYR3aYLE3/3/uDlpe0G61t1eaX4uQbcMqvm2jnQ8GECTwujmdEuf/86NbCO1tm1xPbplv7p0C4KBpucCmm+T6JYC654rkrZBpO2aW9mekrYLmhdUSMfP7e3tm5Ra2NjYyI9TKBTybRsbG1haWsLW1rbFgFitVouTJ08iNDQUu3btQnR0NPz8/BASEoJZs2bBz8/vpjJTx1ZWVsbzHkR6zNLSEu7u7oiPj8fkyZNFxyGiDmrJkiU4ffo05s6dizNnzsDDw0N0pE7FyMgI3bt3R/fu3W/qeWq1Wt7P1J0EX1ZWJpfq6U6az8vLk+8vKytDbW3tDe3PSPuL0j6k7v6itN+nO4ZIdz9Rd7+ztfFCrR2Tb+6fyhT+afGV5ovAAE3HZOket9bdb9TdF9Tdz1Sr1fK+4Y0u2CQdc7axsWlRLqFUKuX7pUvzMgpra2vY2dnJ++LUfjU2NuLRRx9FUVERDh8+zAmsRESdxMGDB/H444/D0NAQR44cwZgxY0RHImpXLl68iMbGRhYZEBHdoi6NN7qMzh0UHR2NYcOGIT09nQcTiYiIbqPmg9F0V53UPYnRfDCd7omM5idGdAfCtTbQvrUTKc1fU5fu60muN4H/Rgf2X+973YzbMYlA9yRYW7+G7iBMXa2VMbQ2MeXvvldrAzd1v1/z19N9vO5gzuaDQ6WJFEDTE3+tTabp7NRqtVxuIJUdpKWlISEhQR6oqlAompQbqFQqKJVK+Pj4cHIJ3VZJSUmIiorCoUOHcPz4cVRVVcHX1xcTJ07EhAkTMHz48H8cxE1E+u3atWuwt7fHkSNHMHbsWNFxiIjanRuZzK47wU+arKY7SPF6ryFpvq/d2mS15pPigNaL73SPJbSmtde5Ua0dE7gRt7q//XeTFiW6+6pA62WLrb1OawWOzXPq7u9ebzCs7nN0CyKk/fuysjIcOHAABw4cwKlTp2BoaIgxY8ZgypQpCA4OhrOz8439MIjouioqKmBtbY29e/diypQpouMQ6S1pG0M6ni9dS9tE0naJNAlDutbd9mleOKS73dL8XIXuJJHrbb9c7/xGa250O+ZGt1uuNxGm+XaH7mSY5s/R3XbQLYyStkGkSTrS9o3udo60rSHd37wQ6U5rXmqQm5vLUoNO5oknnkBmZiaioqJERyGiNhIUFARbW1t89913oqMQUQdWVVWF++67Dw0NDYiOjm510RTST9K+YVlZGerr61FaWirfV15ejrq6OpSWlsr7f9L+4vXKAHT3B3XLAFobP/ZPY8puZBEY3WPC1dXVMDQ0bDHuq7UxX9J91yth0N0X1P0eNjY2MDY2lgvoTE1NYW1tDWNjY1hbW8vHt62trWFkZMRSsU5m5cqVWLt2LQ4fPoyRI0eKjkNERG2srKwM//3vf7F582aEhITg888/vyOLRRJ1NJs2bcL//vc/qNXqGyrAJiKiJlLaZZHBBx98gHfffRcFBQWioxARERERdRgNDQ3IzMxsUm4gFR5kZGTIE58UCkWTcgPpolKpWjTHEzVXWVmJmJgYhIeHY//+/bhy5QosLCwwZMgQBAUFYcqUKSykI6Im/vjjDwwcOBCpqalcwZaIiKgNFRcX49ixYwgPD0dYWBjKy8vlCX7BwcEICAgQHZGow/L09MQTTzyB//3vf6KjEBF1etcrNQgODkZQUBCGDh0qOiK1gVmzZgEAdu7cKTgJEbWVZcuWISoqCufOnRMdhYg6uNzcXAwZMgQeHh6IioriGAjqcAYPHoyAgAB88sknoqNQJ7R582Y8+eST2LJlCx599FHRcYiIqI1FR0djwYIFKC8vx+eff46pU6eKjkTUbi1evBgXL17Eb7/9JjoKEVFH1D6LDGbNmoXq6mqEh4eLjkJEREREpBfq6uqQnZ3dpNxAKjtIT09HY2MjjIyM4Obm1qTcQCo88PDwELLSFomn0Whw9uxZREVFISoqCqdOnUJjYyMCAgIwfvx4jB8/HoMGDZJXfiMiam7Hjh2YO3cuKisrb2m1bCIiIrp5NTU1iI6ORnh4OEJDQ5GXlwdPT08EBwcjODgYI0eO5DY80U0ICgqCjY0Ntm/fLjoKERHp0C012L17N3JycqBUKhEUFISQkBCWGuiRCRMmwNXVFV9++aXoKETURr799lv85z//QUVFBfdXiehfi4uLw7BhwzB+/Hhs374dBgYGoiMR3bClS5fi+PHjOHv2rOgo1MlERERg2rRpWLVqFQtdiYj0XEVFBVasWIFPPvkE06dPx6effgp7e3vRsYjatWHDhsHf3x+bNm0SHYWIqCNqn0UGHh4eeOyxx/DKK6+IjkJEREREpPdKS0uRkpKC5ORk+ZKSkoKUlBSUlpYCAMzMzODt7Y1evXrJF29vb3h7e/MApp7RaDQ4d+4coqOjceLECRw9ehRqtRoODg4YMWIExo4di+DgYDg7O4uOSkQdxPLlyxEZGYmLFy+KjkJERNQpabVa/Pnnn3KpQUJCAuzs7DBp0iQEBwdj4sSJsLS0FB2TqF1bvnw5Dh06xNVhiYjaMa1WixMnTsilBrm5ufDz88ODDz6I2bNno2fPnqIj0r8wZMgQDBkyBOvWrRMdhYjaSGxsLO655x4kJiaid+/eouMQkR745ZdfMHHiRMyaNQtfffUVywyow9i5cydmz56NkpISHrelO+b06dMYPXo05syZg88//1x0HCIiakOHDh3Ck08+iYqKCmzYsAFz5swRHYmo3WtoaIBCocAHH3yA//znP6LjEBF1RO2vyODatWuwt7fHgQMHMHHiRNFxiIiIiIg6NbVajbS0NKSlpSE+Ph4JCQlIS0tDUlISKioqAAC2trbw8vKCUqmEUqmEn58fVCoVfHx8YGFhIfgd0D+pq6vD6dOncfz4cfz66684efIkKioq4OTkhOHDh2PEiBEYMWIEVCqV6KhE1EGNHz8eTk5O2Lp1q+goREREBCAtLU0uNYiJiYGJiQnGjBmD4OBgTJ48GU5OTqIjErU727ZtwxNPPMHVYYmIOgitVouTJ08iNDQUO3fuRH5+PgYPHozZs2fjwQcfhIODg+iIdJNUKhVCQkLw+uuvi45CRG2kuroaVlZW2LlzJ6ZPny46DhHpiSNHjmDKlCmYMmUKtm3bxn166hCysrLg7u6On3/+GSNHjhQdhzqB1NRUBAYGYuDAgdi7dy8/K4mI9JRarcby5cvxxRdfYObMmfj44495nJToBv3xxx8YOHAgEhIS4OvrKzoOEVFH1P6KDH766SeMGTMGubm5XOGTiIiIiKidamxsRGZmJlJSUpCcnIzExEQkJycjOTkZGRkZ0Gq16Nq1K3r06AFvb294e3vDx8dHvu3m5oYuXbqIfhudUnV1NX7//XccP34cx48fx6lTp1BdXQ1XV1eMGDFCLi/gajdEdLs4OTlh+fLleP7550VHISIiomauXbuGAwcOICIiAgcOHEBNTQ0GDx6M4OBgTJkyBT4+PqIjErULZ8+eRUBAAFeHJSLqgKRSg23btmHHjh2orKzE4MGDMW/ePDz88MOwsrISHZFugKurK1588UUsXbpUdBQiakM9e/bE/Pnz8corr4iOQkR65PDhw5g6dSqmTZuGr7/+GsbGxqIjEf0jNzc3LF68GCtWrBAdhfRcVlYWRowYAUdHRxw7dgzm5uaiIxERURsIDQ3FM888AwMDA3z88ccsECS6SR9++CHeeustFBQUcOw7EdGtaX9FBhs2bMDq1atx7do10VGIiIiIiOgW1NXVITs7G/Hx8UhISEBaWhrS0tIQFxeH/Px8AICxsTFcXV3h5+cHlUoFpVIJPz8/+Pv7w8bGRvA70C+5ubmIjY3FiRMnEB0djdjYWNTU1MDZ2RlDhw7F2LFjERgYCJVKJToqEemh9PR0KJVK/Prrrxg2bJjoOERERPQ3qqqqcOzYMURERCAsLAwFBQVQKpUICgpCSEgIAgMDeVKeOi1pddgff/wRM2bMEB2HiIhuUVVVFfbv34/t27cjKioKxsbGmDp1KubMmYNx48bBwMBAdES6Dmtra3z44Yd47LHHREchojY0depUmJqaYseOHaKjEJGeOXbsGKZNm4ZBgwZh9+7dsLa2Fh2J6G/NmjULNTU12L9/v+gopMcyMjIwevRoWFhY4KeffsJdd90lOhIREd1mWVlZWLx4MSIjI7Fo0SK8++673BYmugXTp0+HVqtFWFiY6ChERB1V+ysyePzxx5GWloaffvpJdBQiIiIiIrrN1Gq1XGygW3Rw6dIlVFVVAQAUCoVcbCCVHCiVSqhUKpiamgp+B+1beXk5/vjjD5w6dQqnTp3C77//joKCAhgZGWHAgAEYPHgwBg0ahKFDh8Ld3V10XCLqBL766is8++yzKC4uhomJieg4REREdIM0Gg1iYmIQERGBvXv3Ijk5Gfb29pgwYQJCQkIwbtw4/r+dOp1evXph7ty5ePXVV0VHISKi2+DatWvYuXMnvv/+e5w8eRLOzs545JFHMH/+fPj5+YmORzq0Wi0MDQ3x448/IiQkRHQcImpDK1euxL59+xAXFyc6ChHpoT///BMPPPAAHB0dERkZCRcXF9GRiK6LK75SW8vMzMSoUaNgZWWFo0ePssSAiEjP1NfXY8OGDXj99dfh6uqKzZs3Y/jw4aJjEXVIjY2NcHJywksvvYQXX3xRdBwioo6q/RUZDBo0CIMHD8aGDRtERyEiIiIiojsoNzdXLjbQLTlIT09HY2MjDA0N4e7uLhcb6BYdeHp6dsqTt2lpaYiOjkZsbCxiY2Nx+vRp1NfXw9nZGQEBAQgICMDQoUMRGBgIMzMz0XGJqBOaO3cu8vPzceTIEdFRiIiI6F+Ij49HREQEwsPDcfLkSZiZmWH06NEICQnB5MmTYWtrKzoiUZubOnUqTExM8OOPP4qOQkREt1lWVha+//57fPHFF7h8+TL8/Pwwb948LFy4EPb29qLjdXolJSVQKBSIiorCuHHjRMchojb0/fffY8GCBaioqICxsbHoOESkh65cuYJJkyahtLQUu3btwpAhQ0RHImpVTEwM7rvvPly+fBlKpVJ0HNIzGRkZGDVqFGxsbHDkyBGWGBAR6Zno6GgsXrwYKSkpWLZsGZYvX84FxIj+hUuXLsHPzw+nTp3CoEGDRMchIuqo2leRgVarhbW1NdavX4/HH39cdBwiIiIiImoHamtrkZqaKhcbSEUHFy5cQHl5OQDAxsYGPXv2bFFy0Lt3b1haWgp+B7dHbm6uXFgQGxuLmJgYFBUVwcjICH379kVgYCACAgIwbNgweHp6io5LRAQAcHNzw5NPPomVK1eKjkJERES3SWZmJg4dOoTw8HAcPnwYGo0GgwcPRkhICKZPnw43NzfREYnaxMsvv4ywsDCuDktEpMe0Wi1OnjyJbdu24fvvv0d9fT3uv/9+zJs3D1OnToWRkZHoiJ1SZmYmevTogZiYGAwePFh0HCJqQ+fPn0f//v0RFxcHlUolOg4R6any8nLMnz8f4eHhePPNN7Fs2TLRkYhaqKiogLW1NcLCwjB58mTRcUiPXLlyBaNGjYJCocCRI0dgZ2cnOhIREd0mxcXFWLVqFT7++GOMHDkSn3zyCXx8fETHIurw3n//fbz99tu4evUqDA0NRcchIuqo2leRQWpqKnr16sWWGiIiIiIiuiFqtRrx8fEtSg6SkpKg0WgAAAqFQi420C068PHxgYGBgeB30JJGo0FSUhLOnj0rlxacO3cO5eXlMDIygr+/PwICAhAQEIB77rkH/fr148ExImqXLly4gH79+uH06dO49957RcchIiKiNqBWq3H06FGEh4dj3759KCsrg5+fH0JCQhAcHIy7774bXbp0ER2T6Lb44YcfMH/+fK4OS0TUSZSXl2P37t345ptv8Ouvv8LR0RHz58/HY489hl69eomO16nExcXB39+fE5uJOoHa2lpYWlpi+/btmDVrlug4RKTHtFotVq9ejTfeeAOzZ8/GJ598Amtra9GxiJrw9PTEf/7zH6xYsUJ0FNIT58+fxwMPPAAXFxccPnwYtra2oiMREdFtoNVq8dVXX2HZsmUwMzPD+vXrMXPmTNGxiPTGiBEj0KNHD3z77beioxARdWTtq8hgz549CAkJQWlpqd6smkpERERERHdeXV0dUlNTkZSUhOTkZCQlJcmXoqIiAICpqSm8vb3lS+/eveHj44PevXvDxsbmjuTUaDRITExEbGysXFxw7tw5eVKEbmnB3Xffjb59+3KyBBF1GG+++SY2bdqEnJwcTmAkIiLqBGpra/Hbb78hPDwcu3fvRk5ODjw8PDBu3DgEBQVhwoQJXMWYOjSpqIuTKImIOp/09HRs3boVX331FbKzszFixAg8/vjjmDFjBkxNTUXH03uxsbG45557kJqaCi8vL9FxiKiN+fj44MEHH8SqVatERyGiTuDgwYN49NFHYW5ujm3btiEwMFB0JCLZAw88gG7dumHbtm2io5AeiIyMxMMPP4x7770Xe/bsuWPjooiIqG3FxMRgyZIlOHfuHJ599lmsWrUKVlZWomMR6Y3i4mI4Ojri+++/R0hIiOg4REQdWfsqMnjjjTfw7bffIjU1VXQUIiIiIiLSU0VFRUhOTkZiYiKSk5PlS0pKCmprawEAzs7OcqmBj4+PfLtHjx63PBm3tLQUFy9eREJCAuLj4xEbG4s///wTVVVVMDIyQq9eveTSgoCAANxzzz0cBEtEHdqgQYPQr18/bN68WXQUIiIiEiA+Ph6hoaGIiIhAbGwsunXrhjFjxiAoKAjTpk3jIBrqcKTVYb/77js8+OCDouMQEZEAWq0WP/30EzZv3oywsDCYm5vjwQcfxJNPPokBAwaIjqe3YmJicN999yEzMxNubm6i4xBRG5NWjdy1a5fgJETUWRQUFGDhwoU4dOgQXnrpJbz66qs8T0/twksvvYRjx44hNjZWdBTq4DZv3oynn34ac+fOxWeffcYFVIiI9EBeXh5ef/11fPnllxgxYgTWr1+Pvn37io5FpHe2b9+ORx99FAUFBbC1tRUdh4ioI2tfRQZz5sxBWVkZwsPDRUchIiIiIqJOKDc3FwkJCUhLS0N8fLx8Oy0tDQBgbGwMV1dX+Pn5QaVSQalUws/PD/3794elpSUAoKGhAUlJSbhw4QIuXLiA8+fP4+LFi8jOzgYA2NnZoX///vD390ffvn3Rv39/9OnThyuTEpFeycnJgbu7O8LCwhAcHCw6DhEREQmWnp6O/fv3IyIiAr/88gsMDQ0xdOhQBAUFISQkBC4uLqIjEt0QX19fhISE4I033hAdhYiIBMvPz8fWrVuxZcsWpKSkYODAgXj88cfx0EMPsbDpNjt+/DhGjhyJ/Px8ODo6io5DRG3stddew48//ojExETRUYioE2lsbMRnn32GZcuWwdnZGZs3b8aIESNEx6JO7ptvvsHixYtRXl4OAwMD0XGoA9JoNFi5ciXee+89vPrqq3j99ddFRyIion+pvr4emzZtwquvvgpra2usWbMG8+bNEx2LSG89/PDDKCwsxNGjR0VHISLq6NpXkcGgQYMQGBiIdevWiY5CREREREQkU6vVcqGBbsFBXFwcamtrAfxVcmBsbIzq6mpoNBoYGBigZ8+eCAgIQL9+/dC3b1/07duXE3SIqFNYu3Yt3n77beTl5cHExER0HCIiImpHioqKEBkZiYiICBw8eBBVVVUYMGAAgoKCMGvWLPj5+YmOSHRdM2fORGNjI3bv3i06ChERtSOxsbHYvHkzvvvuOxgYGODhhx/G4sWL0a9fP9HR9MKRI0cwbtw4FBcXQ6FQiI5DRG1s586dmDNnDioqKnhsmYjuuKysLDz99NOIiIjAwoUL8dZbb8HBwUF0LOqkTp8+jUGDBiE1NRVeXl6i41AHU1JSgkceeQQ//fQTtm7dipCQENGRiIjoX9q3bx9efPFF5OfnY/ny5fh//+//wdTUVHQsIr1VUVEBJycnvPfee1i8eLHoOEREHV1KV9EJdPFgCxERERERtVfV1dVQq9XyJScnRy4xsLS0RPfu3eHh4QFvb28oFApoNBokJSVh9+7d2Lp1K7766its3rwZoaGhiI2NRVVVleB3RETUdrZv345Zs2ZxoCkRERG1YGdnh3nz5mHnzp0oKChAWFgYAgIC8Pnnn0OlUsHLywvPPfccoqOjodVqRcclaqJPnz6Ij48XHYOIiNoZaVsmOzsbq1atwi+//IL+/ftj+PDh+OGHH1BXVyc6Yocm/fyMjY0FJyGiO0GlUqGhoQGJiYmioxBRJ+Tm5ob9+/fjxx9/xKFDh+Dt7Y3333+f23MkhJ+fH7p06cJjUXTTTp8+jbvvvht//vknfvrpJ5YYEBF1cLGxsRg1ahSmTZuGQYMGITExES+//DJLDIjaWGhoKOrr6zFr1izRUYiI9EKXxsbGRtEhgL9WOO3WrRsOHTqE8ePHi45DRERERESdUH5+PuLj45GQkID4+HhcunQJcXFxKC4uBgB069YNffr0ga+vr3zt7+/f6ioMarUaaWlp8utJt5OSkqDRaGBoaAh3d3colUr4+flBpVJBqVRCpVLB2dn5Tr91IqLbJiEhASqVCr/++iuGDRsmOg4RERF1EBqNBjExMYiIiMC+ffuQmJiIu+66CxMnTkRwcDAmTZoECwsL0TGpkwsNDcXDDz+M8vJymJmZiY5DRETtWHR0NDZu3IiwsDAoFAo8+uijWLRoETw9PUVH63D27t2L6dOno66uDkZGRqLjEFEbq6+vh6WlJb7++mvMnj1bdBwi6sQqKyvx3nvv4f3334eLiwvefPNNhISEoGvXdrV+HOk5Dw8PPPnkk1i+fLnoKNQBNDY2YuPGjXjppZcwbNgwfPfdd3BychIdi4iIblF2djZWr16NLVu2ICAgAB988AGGDh0qOhZRpzFy5EjY29sjNDRUdBQiIn2Q0m6KDP744w8MHDgQqamp8PLyEh2HiIiIiIj0VGNjI7KyspCUlITExMQmxQV/V1jQp08fODo6/uvvX1dXh+zs7BYFB+fPn0dFRQUAQKFQtCg48PPzQ+/evWFoaPivMxAR0BnubAAAIABJREFUtaXly5djx44dSE9PR5cuXUTHISIiog4qLS0N4eHhCA0NxcmTJ2FmZobRo0cjODgYU6dObbVQjqitSaVd586dQ79+/UTHISKiDiAnJwebN2/GF198gYKCAkyaNAlPPfUUxo8fz0lwN2jXrl0ICQmBRqPhz4yok+jTpw+mTJmCNWvWiI5CRISsrCysXLkS27dvR58+fbBq1SpMmTKF58Dojpg0aRLs7e2xdetW0VGonbt27RoWLFiAqKgorFy5Eq+++ir3n4iIOqiKigq8//77eO+992Bvb4/Vq1dj7ty53P4kuoMyMjKgVCqxb98+BAUFiY5DRKQP2k+RwQ8//IB58+ahqqqKDepERERERPSvVVVVISkpSb4kJiYiKSkJycnJqKysBADY2dlBpVK1SWHBrVCr1S0KDhISEpCeno7GxkYYGRnBzc2tRcFB3759YW1tLSQzEZEurVYLDw8PzJs3D2+++aboOERERKQnCgoKcOjQIYSGhuLIkSNoaGjA4MGDERwcjGnTpsHb21t0ROokGhoaYGlpiS1btmDOnDmi4xARUQei0Whw4MABbNy4EceOHYNSqcQTTzyBRYsWwdbWVnS8do1FBkSdz0MPPYSamhqEhYWJjkJEJEtISMBrr72G3bt3Y8CAAVi2bBlmzJgBAwMD0dFIjz311FNITEzEzz//LDoKtWORkZFYtGgRDA0N8cMPP2DIkCGiIxER0S2oq6vDF198gVWrVkGj0eCVV17B4sWLYWxsLDoaUaezatUqfPrpp8jOzubic0REt0f7KTJYvXo1tm3bhuTkZNFRiIiIiIioA7ne5P8rV65Aq9XC0NAQ7u7uUCqV8sR/qQRAqVSKjn9DamtrkZqa2uI9Xrp0CVVVVQAAhULRouBApVLBw8ODgzuJ6I75+eefMXr0aMTFxUGlUomOQ0RERHqoqqoKx44dQ2hoKMLDw1FSUgI/Pz8EBwcjKCgIgYGBXJGE2pS/vz+Cg4Px1ltviY5CREQdVEJCAjZu3Iht27bByMgICxcuxDPPPNNhjlffaXv27MGMGTPQ0NDAiYJEncTq1auxdetWpKamio5CRNTCuXPn8NZbb2HPnj3w8PDACy+8gAULFsDc3Fx0NNJDb731FrZs2YLLly+LjkLtUH5+Pp577jns3LkTs2fPxscffwyFQiE6FhER3aSGhgZs27YNb7zxBvLy8vDMM89g5cqV/EwnEqSurg6enp6YO3cu3nnnHdFxiIj0RfspMliwYAEKCgpw4MAB0VGIiIiIiKidKS4uRkpKClJTU5GcnIyUlBQkJycjKSkJFRUVAP6ayN+7d2/4+vrC29sbvXv3ho+PD7y8vPS6lTY3N7dFwUFaWhrS0tIAAMbGxujZsydUKlWTogOVSgVTU1PB6YlI3yxcuBDnz59HbGys6ChERETUCWg0GsTExCA0NBR79uxBdnY23N3dMWHCBAQFBWH8+PF6vT9IYjz00EOorq7Gvn37REchIqIOrqysDF9//TU+/PBDZGVlYfTo0ViyZAmCgoJYzKRj7969mD59Ourq6mBkZCQ6DhHdAXv27EFISAjKyspgYWEhOg4RUavS09Oxfv16fPnllzA0NMRDDz2EJUuWsOibbqvvvvsOjz32GKqrq7mABckaGxuxbds2vPDCC7C2tsamTZswYcIE0bGIiOgmabVa7N69Gy+//DLS09Px0EMP4fXXX2fZKZFgW7duxRNPPIHLly/Dzc1NdBwiIn3RfooMhg8fjn79+uGjjz4SHYWIiIiIiAQoKSmRywpSUlLkS2pqKoqKigD8NSnf09MTvXr1go+Pj1xY4OvrC3t7e8HvoH0pKirCpUuXkJiYiMTERMTHxyMxMREZGRlobGyEkZERevXqBV9fX/j4+EClUsHHxwc+Pj4wMzMTHZ+IOqCSkhJ0794d7733Hp5++mnRcYiIiKgTio+PR2hoKCIiInD27FnY2tpi7NixCAoKwtSpU2FtbS06IukBrg5LRES3m1arRWRkJDZu3IijR4+id+/eeOqpp/DEE09wZV8A+/btw9SpU1FbW8uSKqJOIikpCT4+Pjhz5gwCAgJExyEi+luFhYXYsmULPvvsM2RmZuL+++/HggULMGXKFG7L0b92/PhxjBw5Erm5uXB2dhYdh9qBc+fOYcmSJYiJicHzzz+PVatW8bOGiKgDOnr0KF566SWcP38eM2bMwJo1a9CrVy/RsYgIwIABA9CnTx9s27ZNdBQiIn3SfooMlEolFi1ahGXLlomOQkREREREbaSmpgaXL19GQkIC0tLSWlwAwNDQEO7u7lAqlU0ufn5+6N27NwwNDQW/i46trq4OKSkp8n+D+Ph4JCQkID4+HjU1NQAAZ2dnqFQq+eeuUqng7+8PR0dHwemJqD1bv349XnnlFeTk5HCSIBEREQl35coVHD58GOHh4YiKikLXrl0xbNgwBAUFYebMmejevbvoiNRB7d27FzNnzuTqsERE1CbOnDmDDRs2YOfOnbC1tcUzzzyDxYsXw87OTnQ0Yfbv348pU6agpqYGJiYmouMQ0R2g0WhgZWWFzz77DPPmzRMdh4johmg0GkRGRmLz5s2IioqCqakppk2bhtmzZ+P++++HgYGB6IjUAaWmpqJXr16IjY3F3XffLToOCZSWloZXXnkFO3bswMCBA/Hpp5+if//+omMREdFNOnr0KFasWIHY2Fg88MADePPNN9GvXz/RsYjo/xw9ehT3338/Tp8+jXvvvVd0HCIifdJ+igzMzc3x+eefY+7cuaKjEBERERHRLWpsbEROTg4uX77calFBQUEBgL/KCjw8PNCzZ0/06tVLvvTs2RMeHh4sKxCgoaEBmZmZcrGBVHJw/vx5VFRUAAAUCoVcbKBbcuDp6YkuXboIfgdEJFJjYyN8fX0xevRobNq0SXQcIiIioiaKi4tx7NgxhIeHIywsDOXl5fDz80NISAiCg4O5wifdlOTkZPTu3ZurwxIRUZvKy8vDxx9/jE8//RR1dXV47LHHsHTpUnh4eIiOdsdFREQgODgYlZWVXGmUqBPp378/xo8fj3fffVd0FCKim1ZcXIxdu3bh22+/xcmTJ6FQKDBz5kzMnTsXgYGBPLdON6ykpAQKhQJRUVEYN26c6DgkQFFREdauXYv169fDw8MDq1evxsyZM/k5QkTUwURHR+OVV17BL7/8grFjx+Ldd99lSRFROzRhwgTU1tbi559/Fh2FiEjftI8ig+LiYtjZ2eHIkSMYO3as6DhERERERPQ3qqqq5GKC5oUF6enpqK2tBQCYmZlBqVQ2uUjFBR4eHjAyMhL8TuhG5ebmNik3SEhIQFxcHPLz8wEANjY26NmzZ5NyAz8/P/j4+HBlCaJO4tixYxg7dizOnj2LAQMGiI5DREREdF01NTWIjo5GeHg4QkNDkZeXB09PTwQHByM4OBgjR45kuR79LWl12E8//RTz588XHYeIiPRcRUUFtmzZgg8//BBZWVmYNGkSXnnlFQwcOFB0tDvm8OHDGD9+PNRqNWxtbUXHIaI75JFHHkFJSQkiIiJERyEi+ldSU1Px/fffY/v27UhOTkbPnj0RFBSESZMmYfjw4TAxMREdkdqxxsZGmJiY4JtvvsHs2bNFx6E7KDc3Fx999BE++eQTWFlZ4bXXXsPChQt57JqIqIM5deoU1qxZg4iICAQGBuKtt97C8OHDRcciolb89ttvGD58OI4ePYoxY8aIjkNEpG/aR5FBfHw8+vTpg/j4ePj5+YmOQ0RERETUqWk0GuTk5ODKlSu4cuVKi7ICafI6ADg7O7coK/Dy8oJSqYSzs7PAd0F3glqtblJuIF2np6ejsbERxsbG6NmzJ1QqVYuSAzMzM9Hxieg2mjlzJq5evYrffvtNdBQiIiKiG6bVavHnn38iPDwcO3fuxKVLl2BnZ4dJkyYhODgYEydOhKWlpeiY1A4NGDAA999/P9577z3RUYiIqJPQarWIjIzE6tWr8ccffyAwMBDLli1DUFCQ3q/EGR0djWHDhiE3N5fnHYg6kbfffhuff/45rly5IjoKEdFt88cff2DXrl04cOAA4uLiYGFhgTFjxmDSpEmYOHEi3N3dRUekdsjZ2RkrVqzAkiVLREehO+DChQv44IMPsGPHDnTr1g3PP/88nn32WZibm4uORkRENyE2NhavvfYaIiMjMWzYMLz55pssMCBq5wIDA2FpaYmoqCjRUYiI9FH7KDI4cuQIxo0bh+LiYigUCtFxiIiIiIj0WmNjI/Ly8pCeno709HS5sEC6ZGZmor6+HgBgamoKT0/PVosKlEolJ6NTq8rKypCSktKi5CApKQkajQaGhoZwd3dvUW7Qr18/WFlZiY5PRDcpLy8PPXr04EogRERE1OGlpaUhPDwcoaGhiImJgYmJCcaMGYPg4GBMnjwZTk5OoiNSO/HII49ArVYjMjJSdBQiIuqEDh8+jLVr1+Lo0aPo378/li9fjpCQEHTt2lV0tDZx9uxZBAQEIDU1FV5eXqLjENEdsn//fkydOhWlpaU8d0REeikzMxMHDx7EgQMHcOzYMVRWVqJPnz6YMGEChg8fjsDAQHTr1k10TGoH/P39MX36dKxatUp0FGojGo0GBw8exMaNG3HkyBH06dMHL7zwAmbPng0TExPR8YiI6CZER0fj3XffRWRkJPz9/fHyyy8jJCREdCwi+gdhYWGYPn06YmJiMGjQINFxiIj0UfsoMvj222+xaNEiVFVV6X1TPBERERHRnaBWq5GWliZfcnNzkZeXh7S0NCQmJqKyshIAYGRkBDc3Nzg7O8PFxaVJYYFSqYSHh4feDn6kO6++vh5ZWVlNyg0SEhJw6dIlVFVVAQAUCkWTcgOVSgWVSsWVtojasVWrVuGTTz5BVlYWB1IQERGR3rh27RoOHDiA0NBQHDlyBA0NDRg8eDCCg4MxZcoU+Pj4iI5IAnF1WCIiag/Onj2LtWvXIjQ0FD179sSKFSswZ84cGBoaio52WyUmJsLX1xcXLlyAv7+/6DhEdIdcvnwZPXv2xKlTpziAnIj0Xm1tLX799VccPHgQhw8fRkJCAgDA19cXQ4cOlS+enp6Ck5IIQ4YMwX333YcPPvhAdBS6zRISEvDNN9/gu+++Q35+PsaMGYMXX3wR48eP53wKIqIOpLGxEZGRkXjnnXdw4sQJDBs2DCtWrMCECRP4eU7UAWg0GvTr1w++vr4IDQ0VHYeISF+1jyKDd955B5s3b0ZaWproKERERERE7V5NTQ2ysrLkS0ZGhnw7MzMTV65cQXV1NYC/igpcXV3h6ekJDw8P+SJ97eLiwqICahdyc3OblBvEx8fj4sWLKCsrA/BXwYFSqWxRcsCyDSKx6urq4OHhgQULFuCtt94SHYeIiIioTVRVVeHYsWOIiIhAWFgYCgoKoFQqERQUhJCQEAQGBnIgUicTHh6OKVOmoKSkBNbW1qLjEBFRJ5eeno7169fj888/h5OTE5YuXYpFixbB1NRUdLTbIiMjAx4eHvj9998xcOBA0XGI6A7RarWwtrbGxo0bsXDhQtFxiIjuqOLiYpw4cQInTpxAdHQ0zpw5g9raWri4uGDo0KEICAjAgAED0K9fPzg4OIiOS21s9OjR8PHxwaZNm0RHodsgJycHYWFh+Pbbb3H69Gn06NED8+bNw/z58+Hl5SU6HhER3QStVovIyEi88cYbOHPmDAIDA7Fq1SqMGTNGdDQiugkff/wxXnzxRVy4cAG9e/cWHYeISF+1jyKD5557DmfOnMGJEydERyEiIiIiEkqr1SI/Px+ZmZlNygl0v7569ar8eDMzM/To0QNubm5wdXVFjx49mhQWuLq6wsDAQOA7Ivp3srKykJiYiEuXLiEhIQGJiYlISEhAYWEhAMDa2ho+Pj7o06cPfH194e/vDx8fH/To0UNwcqLOYdu2bVi4cCHS09Ph6uoqOg4RERFRm9NoNIiJiUFERAT27NmDlJQU2NvbY8KECQgJCcG4ceNgYmIiOia1sbS0NHh5eXF1WCIialcyMjKwbt06fPHFF7C2tsbSpUvx7LPPwtzcXHS0f6WwsBAODg74+eefMXLkSNFxiOgOuueeezBixAiuQE1EnV5NTQ3OnDmD6OhonDhxAn/++SdycnIAAC4uLujfvz/69euHAQMGoH///vDy8uJiAHpk0qRJcHR0xNdffy06Ct2iCxcuYP/+/di3bx9iY2Nhbm6OadOmYcGCBRg1ahT/XomIOpi6ujrs2LEDa9asQWpqKiZNmoTXXnsN99xzj+hoRHST8vPz4evri8WLF2PNmjWi4xAR6bP2UWQwe/ZsVFdXY+/evaKjEBERERG1qerqauTl5SEtLQ25ubnybenrK1euoKqqSn68tAq9s7MzXFxcoFQqm3zN1eipsyoqKpLLDRISEhAfH4+EhATk5uYC+P8LDqRiAxYcELWNQYMGwdPTEzt27BAdhYiIiEiI+Ph4REREIDw8HCdPnoSZmRlGjx6NkJAQTJ48Gba2tqIjUhuQVofdsGEDHnvsMdFxiIiImrh69So+/PBDfPTRR7CwsMDixYuxdOlS2NjYiI52S2pra2Fqaop9+/Zh8uTJouMQ0R20YMEC5Ofn49ChQ6KjEBG1OyUlJYiLi0NsbCxiY2ORkJCAuLg41NbWwtjYGK6urvDz84NKpZLHmfTp0wdOTk6io9NNmjFjBoyMjHg+tgPJycnBL7/8guPHj+Po0aNIT0+Hs7MzgoODMXnyZIwZMwampqaiYxIR0U2qqKjAli1bsHbtWhQWFuLBBx/Eyy+/DG9vb9HRiOgWPfTQQzh16hTi4+NhYWEhOg4RkT5rH0UGbIskIiIiIn1QX1+PwsLCFuUEul+r1Wr58aampq2WE0hfu7m5wcjISOA7Iup4SktLkZqaKhcbSNfp6elobGyEtbU1evXqJQ/akK5ZCkJ0806ePInAwECcOHEC9913n+g4RERERMJlZmbi0KFDCA8Px+HDh6HRaDB48GCEhIRg+vTpcHNzEx2RbqN7770Xw4YNw7p160RHISIialVBQQHWrVuHTZs2wdjYGP/973/xzDPPdMgBmVZWVtiwYQMWLlwoOgoR3UFr167Fhg0bkJ2dLToKEVGHUFNTg7i4OFy8eBHJycnyJSUlBbW1tQAAe3t7eHt7Q6lUokePHnB3d5cvHh4eMDMzE/wuqLk5c+agsrISYWFhoqNQKxoaGnDp0iXExsbixIkTOH78OFJSUmBkZISBAwdi1KhRCA4Oxr333osuXbqIjktERLfg2rVr+Pjjj/HRRx+hrq4OCxcuxEsvvYTu3buLjkZE/8KRI0cwbtw4hIeHIygoSHQcIiJ91z6KDAIDA3Hvvfdi/fr1oqMQEREREV2XWq1uUUyg+3VGRgY0Gg0AwNjYGHZ2dtctKvDy8uKqjER3EAsOiG6/hx56CCkpKYiNjRUdhYiIiKjdUavVOHr0KMLDw7Fv3z6UlZXBz88PISEhCA4Oxt13382Bqx3cggULkJeXh6ioKNFRiIiI/lZxcTHWrVuHDRs2wMLCAsuXL8eTTz7ZoVYA9fDwwNNPP43//ve/oqMQ0R104MABPPDAAyguLoZCoRAdh4iow9JqtcjIyEBycjKSkpKQnJyMjIwMpKenIzMzE+Xl5fJj7e3t4ebmBjc3N7i6usLBwQHOzs5wcnKCk5MTnJ2d4eDgAGNjY4HvqHN5+OGHUVtbiz179oiO0umVlZUhMTER8fHx+PPPPxEbG4tz586hqqoKpqamCAgIwMiRIzFixAgEBgbC3NxcdGQiIvoXUlNTsXHjRmzZsgUWFhZ47rnn8PTTT3PcL5EeKCsrQ//+/XH33Xdj165douMQEXUG7aPIoE+fPpgxYwZWrVolOgoRERERdUK1tbUoKiqSCwmkcgLd68zMTFRUVMjPUSgUTYoJmhcV9OjRAwYGBgLfFRHdCBYcEN2a3NxceHh4YMuWLZg7d67oOERERETtWm1tLX777TeEh4dj9+7dyMnJgYeHB8aNG4egoCBMmDABRkZGomPSTdJdHbawsBBxcXG4dOkSfH19MWrUKNHxiIiIWigqKsLatWvx0UcfwdLSEi+88AKee+65DlFocM8992Ds2LF45513REchojsoIyMDHh4eiI6OxoABA3Dp0iUkJCSgoqICTz31lOh4RER6Q61WIzMzE5mZmbhy5QoyMzORnZ2N3NxcFBQUICcnp0nZAfBX4YG9vT26desGhUIBhUIh327tPum2oaGhoHfZcc2aNQuNjY0IDQ0VHUXvNTY2Ij8/X/4byMrKwuXLl5GYmIjExERkZ2cDAMzMzNC3b18EBATg7rvvRkBAAFQqFY/xEhHpiWPHjmHDhg2IjIxEjx49sHTpUjz22GMsqCHSI3PnzsXhw4dx/vx5ODk5iY5DRNQZtI8iAzc3Nzz//PN48cUXRUchIiIiIj2i1Wpx9epV5OTkIDc3F9nZ2cjPz0dWVhby8vLkE69qtVp+jqGhIRwdHeHm5gZnZ2e4urrC2dkZ3bt3l1vn3dzcYGJiIvCdEVFbY8EB0d97+eWX8eWXXyIjI4P/TyQiIiK6SfHx8QgNDUVERARiY2PRrVs3jBkzBkFBQZg2bRqsrKxER6Tr0C0sOH78OE6fPg21Wo3S0lL5MTNmzODKHURE1K4VFhbigw8+wIYNG+Dg4ICVK1di4cKF7XpS2fjx4+Hm5oYvv/xSdBQiamNVVVXySscJCQnYvXs3ysvLcfXqVUjDHA0MDFBTU9OuP7eIiPRNdXU18vLykJ+fL4/DuXbtGtRqNYqLi6FWq1vcrqura/E6VlZWLcoNrKysYGFhAUtLS9ja2sLS0lL+WqFQyLctLCzkr42NjQX8FMSYMWMGjIyMsGPHDtFROrTKykoUFhbi6tWrKCwsRFZWlnzJzMxEVlYWcnJy5N/brl27wsnJCT169ICvry98fHzg5+cHHx8feHp6clwIEZGeqa2txY8//oj3338fFy9eREBAAJYsWYLZs2dz35NIz+zatQuzZs3C/v37ERQUJDoOEVFn0T6KDKytrbFu3To8/vjjoqMQERERUQchnSTNzc1tcp2WlibfzsrKQn19vfwcU1NTuLi4wNnZGS4uLlAqlfJt6drd3Z0HHonoulhwQATU1dXB3d0dixYtwqpVq0THISL6/9i787io6v1/4C+2ARQYBtmGfRFBUBSxMpdc09xulpqlVnrTMlOre+ta+c3Kbllqq5VdK1tssczK5WYuuVzXriIgiyCxCMLAzMDMsA3bwO+PfufcGRa3gDPA6/l4nMecM8uZ9wCOn3PO5/P6EBF1abm5udi1axf27NmDI0eOwN7eHiNHjsS0adMwe/Zs+Pn5SV0i/X8zZ87EDz/8AADi7Grm550AwNHREf/4xz+wZs2aTq+PiIjoehUUFGDDhg3417/+BaVSiWeffRYPPfQQ7OzspC6thXnz5qGqqgo//fST1KUQUQfatm0b5s6di6amJtja2sLBwQF1dXVo3r0xNDQUOTk5ElVJRETXqrKystWAg+brlZWVqKqqQkVFBfR6PaqqqlBZWYnKyso29y2TycRgAxcXF7i6usLFxQVubm5wd3eHq6trq/cJzxXuc3Nzs/o+QnfeeSdcXV3x5ZdfSl2K1WhsbERpaSm0Wq14q9VqUVJSIq5rtVqo1WpoNBpotVoYjUaLfXh4eCAgIABBQUEICgpCQEAAAgMDERwcjMDAQPj5+fWowAwiop6quLgYH374Id5//32Ul5fjzjvvxN///nfccsstUpdGRB3g8uXLGDRoEObNm4d3331X6nKIiHoS6YMMGhsbYW9vj2+//RazZ8+WshQiIiIishI6nc4ikKD5bXZ2NvR6vfh8mUyGPn36WAQSNA8rCAwMhJubm4Sfioi6MwYcUE/y5ZdfYuHChcjNzUVAQIDU5RARERF1G6Wlpfj3v/+NPXv2YO/evaiurkZcXBymTZuGe+65B9HR0VKX2KOtX78eK1eubDGIypyNjQ22bduGe+65pxMrIyIi+nMuXbqEV199FVu2bEG/fv3w4osvWl3/nSeffBKnTp3C6dOnpS6FiDrQxYsXER0dDZPJ1OZzbG1tMWPGDOzYsaMTKyMiIqk0DzbQ6/Vi8IH5dkVFBSoqKlBeXt7mfW2d03Fzc0OfPn3g6ekJDw8P9OnTR9z29/eHr6+veOvt7d3p1/cnT54MpVKJLVu2dOr7drampiaUlJSgsLAQhYWFyM/PR3FxMYqLiy0CC4Tb5r9PNzc3+Pj4wNPTU1y8vLzg7e3dYtvb2xu9evWS6JMSEZE1SEhIwDvvvINt27bBw8MDCxYswIoVKxgwTtSN1dbWYsyYMaioqMCZM2fg7OwsdUlERD2J9EEGBoMB7u7u2LdvHyZOnChlKURERETUgerr66FWq6FSqcQLTUVFRSgqKkJhYaG4XlJSYnGxydfXF76+vggICICfnx/8/PwQEBAghhP4+vrCy8tLwk9GRNQ2vV6P7OxsBhxQt3LrrbciMDAQ3333ndSlEBEREXVbRqMRBw8exJ49e7Br1y4UFxcjLCwM06ZNw+zZszF8+HAeM3SympoahIeHo7i4GI2NjW0+Lz09Hf379+/EyoiIiNpHeno6nn32WezatQsTJkzAunXrEBcXJ3VZAIC3334br7/+OlQqldSlEFEHe+yxx/DRRx+hvr6+1cdlMhlWrVqF1atXd3JlRETU1VVVVVmEGxgMBhgMBpSWlrZYysrKoNFoUFBQgKqqKnEf9vb28PHxQXh4OMLCwhAeHi6uR0REwMPDo93rvuWWWzBy5Ei88cYb7b7vzlRTU4OsrCxkZWWhoKAA+fn5KCoqwuXLl3H58mUUFRWhrq5OfL6npyeUSiWUSiU8PT3FcAnzUAJhvU+fPpDJZBJ+OiIi6grq6+vx008/4Z133sGJEycwZMgdX1EaAAAgAElEQVQQPPLII3jggQfg5OQkdXlE1MEWL16Mb7/9FqdPn+YEAkREnU/6IIP8/HwEBwfj1KlTGDZsmJSlEBEREdENMBgMKCoqglqtRmFhIdRqtRhIIIQVqNVqqNVqi9e5uLggICCgRUiBv7+/GFbg6+vLC01E1C2VlZVZBBsIt0JHXDc3N/Tv3x8DBgxA//79MXDgQMTExMDf31/iyqmnS0xMxJAhQ3DkyBGMHj1a6nKIiIiIegSTyYRTp05hz549+Omnn5CZmQlPT09MnjwZ06dPx5QpU9C7d2+py+wRtm7digcffLDNGfwcHBxQXV0Ne3v7Tq6MiIio/Zw+fRpPP/00Tpw4gVmzZuG1115DWFiYpDX9+OOPmDlzJqqrq9mxnKib02g0CAkJQXV1dauP29jY4Pvvv8fdd9/dyZUREVFPVVVVhcuXL6OkpASXL1+GSqVCdnY2cnJykJ2djUuXLokBPEFBQYiLixOXIUOGICAg4E+9f79+/fDAAw/g//7v/9rj43Q4o9GIlJQUJCUlISUlBZmZmcjKykJ+fj4aGxtha2sLHx8fBAYGws/PD4GBgfD394e/vz+CgoLEPmNs9xMRUXtRqVT45JNPsGnTJqjVatx99914/PHHMXz4cKlLI6JO8u677+LJJ5/Ezp07MW3aNKnLISLqiaQPMsjMzERUVBSSk5MRGxsrZSlEREREZEan06GoqAgqlcriVqfTieuXL19GeXm5xesUCgWUSiX8/PygVCqhUCjEdeHW398f7u7uEn0yIiLrpdfrkZ2d3SLgIDc3F01NTZDL5ejbty+io6MRHx+PmJgYxMbGwtvbW+rSqYf461//it9++w2pqamwsbGRuhwiIiKiHiknJwe7d+/G9u3bcfLkSTg7O2PcuHGYPn06ZsyYweODDtTY2IghQ4YgLS0NDQ0NLR6PiorChQsXJKiMiIio/e3evRt/+9vfkJ+fjwULFuCf//wnvLy8JKnl3LlziI+Px8WLFxERESFJDUTUeV555RW88MILMJlMrT6emZmJfv36dXJVRERErTOZTMjPz8fFixeRmJiIxMREnDt3DtnZ2WhqakJ4eDgmTpyIiRMnYty4cXBzc7uu/Xt5eeHFF1/EY4891kGf4MY1NDQgMTERJ06cwNmzZ5GUlITMzEw0NDTA1dUVAwcORFRUFCIiItCvXz/069cPERERcHR0lLp0IiLqYnQ6HXQ63TWHbTY2NuLAgQPYvHkzdu3aBXd3dyxatAhLly5FYGBgB1dLRNbk8OHDmDhxIl566SU899xzUpdDRNRTSR9kkJaWhgEDBiA1NRUxMTFSlkJERETU7RmNxlYDCZrfqtVqi44hTk5OrQYSNA8rCAoK4oxzREQdQK/XIzU11SLcIDk5GRqNBsAfITLm4QbR0dEYMmQIevXqJXHl1J3odDoEBATgjTfewJIlS6Quh4iIiIgAqNVq/PLLL9i+fTv2798Pk8mEYcOGYfr06bjrrrtuaHDPyZMnYTKZMGrUqA6ouOs7cuQIxo4d2+J+Ozs7zJkzB1999ZUEVREREXWM+vp6fPrpp1i9ejXq6uqwcuVKPP74450+O2ppaSk8PT1x4MABTJgwoVPfm4g6n9FoRFhYGEpKStC8a6NMJkN1dTXs7Owkqo6IiOjalJeX49y5czh48CD279+PhIQE2NraYuTIkXjooYcwe/bsaxrQL5PJ8Omnn2LevHmdUPWV1dTU4Pjx4+Jy+vRpVFVVwdPTEzfddBMGDx6MuLg4xMXFITw8nMH4RETULpKTkzFlyhQAQEFBAWxtbdt8bklJCT777DNs3rwZOTk5iI+Px8MPP4z58+ezHx1RD3T+/HmMHj0aEydOxLZt29g+JSKSjvRBBsnJyRg8eDAyMjIQGRkpZSlEREREXZLRaIRGo4FKpYJarYZKpUJxcTFKSkpQWFgItVqNoqIilJSUoKamRnydvb09vL29oVQqoVQq4ePjAz8/P3h7e8PPzw8+Pj7iY87OzhJ+QiIiaktRUZFFuEFaWhoSExPFTnzBwcGIjo4Www3i4+MRFRXFDn50QzZu3IjnnnsOKpUKLi4uUpdDRERERM1UVVXh0KFD2L59O3bt2gWDwYDo6GhMnz4d06ZNw4gRI66pc0ZERASys7OxatUqvPDCCwytbMXEiRNx5MgR1NfXi/fJZDK89NJLeOaZZySsjIiIqGOUl5fj9ddfx9tvvw1vb29s2LABM2fO7NQaXF1d8dZbb2HRokWd+r5EJI0tW7Zg0aJFLYIMBg4ciPPnz0tUFRER0Y3TarU4ePAgduzYgZ07d0Iul2PBggVYsmQJwsPDW32NRqOBt7c3Dh48iPHjx3dyxX8oKSnBvn37sGfPHuzbtw/l5eVQKpUYOXIkRowYgZEjRyIuLu6Kg0qJiIhu1E8//YS5c+eirq4OJpMJv/76K8aNG9fiecePH8e7776LnTt3wtnZGXPmzMGyZcswcOBACaomImuQk5ODkSNHIjIyEnv37u30cF4iIrIgfZBBQkIChg4dit9//73NEzFEREREPY3RaIRKpUJRURF0Op3FevPt4uJiiw4cTk5O8PPzg1KphEKhENeb3/r4+HAgKxFRN9TQ0ID8/HyLcIOEhARkZmbCZDLBwcEBERERFuEGMTExCA0NZeIsXdFNN92EmJgYfPbZZ1KXQkRERERXYTKZcOrUKWzfvh0//PADLl++jKCgINxxxx2YNm0aJk2aBJlM1uJ1WVlZ6NevHwDAzs4ON998M7777jsEBAR09kewaikpKRg8eDAaGxst7t+9ezemTZsmUVVEREQdr7CwEM888wy++uorjB07Fu+88w4GDBjQKe8dHx+PsWPHYsOGDZ3yfkQkrcbGRsTGxiIjIwMmkwnAH8co8+fP5zlqIiLq8lQqFbZs2YKPPvoIhYWFWLx4MdasWQNPT0+L5/33v//FLbfcguzsbISFhXVafRcuXMA333yDn376CSkpKejduzcmTJiAKVOmYMqUKTxXSEREneKdd97Bk08+CRsbGzQ2NsLBwQH33nsvvvjiCwCATqfD9u3b8e677yItLQ3x8fF4+OGHMX/+fPTq1Uvi6olIShqNBqNGjYKjoyOOHj0Kd3d3qUsiIurppA8yEE6y5OXlITg4WMpSiIiIiDpMTU0NNBoNiouLoVarodFoUFJSgpKSEmg0GqjVahQXF0Oj0UCj0aChoUF8ra2tLby8vMRFqVSK676+vvD29hbXfXx84OzsLOEnJSIia1VXV4esrCyLcIP09HTk5uaiqakJcrkcffv2tQg3iI2Nhbe3t9SlkxW4ePEiIiMjJZ3tg4iIiIhuXFpaGrZv3449e/YgISEBCoUCEyZMwLRp0zBjxgy4ubkBANavX4/nnntOPDfl4OAAmUyGzz77DLNmzZLyI1idhQsX4quvvkJ9fb14H693EhFRT3H27FmsWLECv/32G+bNm4c33ngDXl5eHfqeCxYsgEqlwr59+zr0fYjIeuzduxdTpkwRt2UyGV555RU89dRTElZFRETUfkwmEz7//HM8//zzaGxsxCeffGLxf993332HuXPnwmg0wsHBoUNruXz5MrZt24avv/4aiYmJ8Pf3x8yZMzF16lSMHj0ajo6OHfr+REREgtraWixatAhfffUVmg93c3Jywv79+/Hll19i69atkMlkmDNnDpYuXYpBgwZJVDERWZOysjKMHz8eVVVVOH78OPu/EhFZB+mDDE6ePIkRI0agoKCACY1ERETUpRiNRqhUKhQVFUGn00Gn01lsm68XFxdbnFBzcnKCQqGAQqGAn58flEplm+ve3t6wt7eX8JMSEVF3ZjAY8Pvvv1uEG5w/fx5qtRoAoFAoLMINoqOjERcXh969e0tcOXWmVatW4fPPP8elS5dgZ2cndTlERERE9Cfk5eVh586d2LNnD44ePQpbW1uMGjUK06ZNw+eff46kpCSL81i2trZobGzE8uXLsWHDBshkMgmrtx5FRUUICwtDbW0tAMDZ2RlVVVWwsbGRuDIiIqLO0dTUhK1bt2LlypWora3FCy+8gGXLlnXYuaM33ngDGzZsgEql6pD9E5F1GjduHI4fPy4GiO3duxd33HGHxFURERG1L4PBgOXLl+Orr77Cm2++iccffxwAsG7dOrz//vu4dOlSh7xvQ0MDfvrpJ3zwwQc4evQo5HI5Zs6ciblz52L06NGwtbXtkPclIiJqi0qlwrRp03D+/HmLCeEEtra2kMlkiImJwcMPP4x58+axDxsRiTQaDW6//Xbo9XocOXIEISEhUpdERER/kD7I4D//+Q9Gjx4NlUoFX19fKUshIiKiHq6qqgparRZqtRoajQYajQYlJSUoKSmBRqOBWq1GcXGx+Jj5bGs2Njbw8vISF6VSKa77+vrC29sbXl5e8PHxgY+PD0+cERGR1SsqKkJ6ejrS0tLE28TERFRXVwMAlEqlRbhBfHw8oqKiOMi9G2pqakJ4eDjmzJmDtWvXSl0OEREREbWjsrIy/Prrr9i9ezd+/PFHVFVVtZjdRmBvb4/o6Gjs2LEDffv27eRKrdOqVauwbt06NDQ0ID4+HmfPnpW6JCIiok5XVVWF9evX47XXXkNYWBjefvttTJw4sd3fZ//+/Zg0aRLUajW8vLzaff9EZJ2Sk5MRFxcnHqdwsiQiIurO1q9fj5UrV2LTpk145JFHsGTJEly4cAFHjx5t1/fRaDT4+OOPsWnTJhQWFmLatGn461//ijvuuAOOjo7t+l5ERETXKikpCVOmTIFWq7Xon23Ozs4OQ4cOxenTpzu5OiKydmq1GhMmTEBFRQUOHTqE0NBQqUsiIqL/kT7I4NChQxg/fjw0Gg08PT2lLIWIiIi6GaPRCJ1OB5VKhaKiIuh0ula3dTodioqKoNfrLV7v5OQEhUIBhUIBPz8/KJXKFuvCdmBgIBwcHCT6pERERJ3DZDLh0qVLFuEGCQkJyMzMhMlkgoODAyIiIizCDWJiYhAaGspZSbuwo0ePYsyYMUhJScGAAQOkLoeIiIiIOsimTZuwbNkyNDY2tvkcBwcH2Nvb45NPPsF9993XidVZp/LycoSEhECn02Hx4sXYvHmz1CURERFJJjMzE0888QR++eUXzJkzB2+++Sb8/Pzabf8qlQp+fn44dOgQxo4d2277JSLrN2/ePHz99ddwcXFBRUWF1OUQERF1qJdeegmvvPIKTp8+jaVLl+Kmm27Cxo0b22XfFy5cwLp167Bt2zY4OzvjoYcewqOPPoqwsLB22T8REdGN2r59O+6//36YTCY0NDRc8bk2NjbIzs7mIGUiEhUVFWH8+PFobGzEr7/+yhBMIiLrI32QwcGDB3H77bejrKwMCoVCylKoi2tsbITBYEBNTQ2MRiPKy8thMplQV1eHqqoqi+c2NTW1GKwK/NEBz8XFpcX9wt+ms7MznJycIJfLIZPJ4Orq2jEfhoiIWqipqYFWq4VWq4VarRbXhaWkpKTFfc07Xcvlcvj4+KBPnz7w9PSEp6cnvLy84O3tLW57enrC29sb3t7e6N27t0SfloiIqGupq6tDVlaWRbhBeno6cnNz0dTUBLlcjr59+1qEGwwcOBA+Pj5Sl07X4LHHHsPJkyeRmJgodSlERERE1IGmTp2Kffv2wWQyXdPz582bh82bN6NXr14dXNn1qaqqQl1dnbhdWVlpMXNP822BwWC4YohDc/X19aisrMQvv/yCLVu2YOHChZg8efJVX+fi4nJdgag2NjZwd3dvcb+9vb3Fdarm17hkMhnPbxIRkST27NmDJ554AhqNBq+88gqWLl0KW1vbdtm3r68vnnrqKTz11FPtsj8iunFC/yxBdXU1amtrxe2KiooWg0/a6q91JRUVFVCpVHj88ccREhKCV1999aqvEfp3Xavmbeu29tO8Le/m5gY7O7trfh8iIqJr0dTUhNtuuw1NTU1ITEzEe++9h4ULF/6pfV68eBFr1qzBN998g6ioKDz++OOYP3++1Z3XIyK6Ec2PTQBAp9NZbDc/XrnSc6+VMFblRjg5OcHZ2fm6X9fWWBeg5fFKa8+1xmOYpqYmrFu3Ds8++6y4fTUODg5YvXo1/u///q+jyyOiLiA9PR1TpkxB7969cfDgQSiVSqlLIiKilqQPMjh8+DDGjRsHtVoNLy8vKUshK1BeXo6ioiJxgKr5TNk6nQ5lZWUW20ajEdXV1a1e/OosvXr1gqOjI9zd3eHs7CzOzm2+eHh4iOt9+vSBv78/fHx84OjoKEnNRETWwGg0it/nKpUKRUVFbW7rdDoUFxe3OEGlUCigVCotvnP9/PxavS8gIAAymUyiT0tERNQz6XQ6pKSkIDU1VbxNTU0VOyr6+/tjwIABGDhwIAYMGIABAwYgJibmujoYUscLDQ3Fgw8+iBdffFHqUoiIiIiog1RXV0OhUFgEAFyNvb09wsLC8MUXX8DLy0sMlhau2Qi3tbW1qK6uthi0JIQJmIdRC50FhSACISgAAPR6vXhu0Gg0oqamxqL2tjog0v84OjpadE5vvi2Eevfu3Rsymcyik6O7uztsbGyu+JhwvUwYBCbcCvcrFAqGKxAR9SBGoxGvv/46XnvtNURHR+Nf//oXbrrppj+931mzZqG+vh47d+5shyqJuhahHazX61FbW2vR9hYG0AjPEdrjwP/a0kI7W2iDm7fPhf2YDwAymUwoLy8X39+8fU6tM5/EydbWFnK5XNwWBgwJ4Qjm4QnN29tCu9k81ExoYwsDnoT9uLu7w8nJCb169bLKQUlERHRjjh07httuuw0AkJSUhEGDBt3QfvLy8rB27Vps2bIFEREReOaZZzBv3jz+f0FE10SYZFI4FhCOF4Rz8ubn94Vz/ubHGcK1AeB/xxzCPgHLc/1C0LD5sQyAVie0NL9eQH9Oa+fsheMTwDJo2Tx8QTj2sLOzg5ubGwDLIDi5XA5bW1uL4x7hWoH5e9jb2+Oll17CkSNHrrv24OBg5OXlXffriKh7OXnyJO6880707dsXu3bt4rhUIiLrJX2QwalTpzB8+HAUFBQgICBAylKoAzU2NkKlUiE3Nxd5eXnIz89HcXExVCoVVCqVuC4crArc3NyuGArQq1cvODs7w9XVFTKZDHK5XOx4JaTKNb8wZL7v5ifjmnd+A2BxQCwceOv1etTX16OiokK8z2AwoLq6+orBC8333adPH/j6+sLX1xd+fn7w8fGBv78/goODERISgpCQEIuLXERE1qqiogKlpaXQaDQoLS0Vl7KyMpSWlkKr1aKkpARarVZcms965uLiAk9PT/j4+MDT0xN9+vSBp6cnvL294eXlBU9PT3Hx9vZudRYyIiIi6hp0Oh3S0tKQkJCA9PR0pKWlITExEdXV1bCzs0NwcDCio6MRHx+P+Ph4xMTEIDQ0VLxQRp0nJSUFsbGx+O9//9sunc2JiIiISBqVlZWoqKhAZWUlysvLodfrxe2KigqcPn0aX3zxhfh8Gxsbi/a3+eXE6720aN5RTei81nzQu/ljQmc38w5w5td0mnesaz4gv/lMRs1nUTXvLGeu+X6uhTCY6Fo1Hwx2LdoKajDvBAq0nHXqaoEP5tvmnUebD2Jr7bErhVNcCxcXFzg6OkIul4u/Lzc3Nzg6OlqEH7i7u8PR0RG9e/eGm5sbXFxc4OrqChcXFygUCri6uorbrc2gS0RE0svKysKjjz6Kw4cPY9GiRdiwYcOf+s5+55138NJLL0Gr1cLW1rYdKyVqP0Ibqby8HBUVFeJiMBjEdnhNTQ3Ky8vFNplOpxPbWOXl5aitrUVFRQWqqqpQU1MjtseuRmjTmveVupEB9IIrDcxvPrtn83Z4W+3utu5vy5VmHG3L9c6o2lZbtvn9wuCq1t7nasEPNxIo0VogxdUIv9/evXuLbWrhdyP0q3NxcbFokwshCK6urnBzc4O7u7vY1hYWIiLqXE1NTfDx8UFZWRmMRqPFDNvXoqysDKtWrcLHH3+M8PBwPP/887jvvvvYhibqRoR2ZFVVlTgppHCMIYxnMB/j0NjYCJ1OJ7Zbhfao0PYU2qlCSNr1tqlbG6Ru3pYXjjmA/x1nmB9/COM+zAfOA7C4TiAQnito7Zih+TiRK53/v5FrA4DltY/rYX4McL2aH5Nc6bHm1wyAlsdKza8bmF8PAFofRwP87/jE/LhH+Bsyf5/Wwi6uh3CtytbWVrxmJYwP6t27N0aPHg13d3fxb8B8HJFwKxzz9OrVC+7u7ujduzd69erF4xyibuD777/H/fffj6lTp2Lr1q0W56WIiMjqSB9kcO7cOcTHx+P3339HeHi4lKXQn1RXV4esrCxcuHABFy9eRF5enrhcunRJPDCRyWQICAiAUqlsMYDf/LZPnz7X1fmrKzAajdBoNCgsLIRarUZhYSFKSkpQVFQkhjkUFRVBpVKJr5HL5WKoQUhICMLDwxEZGYmoqCgEBQVJ+GmIqDtqbGy0CCIwDyQQAghae6z5TG0ODg7o06ePuAjhA+ZhBOahBZ6enpx5mYiIqIczmUz4/fffkZycjOTkZJw/fx7nz59Hfn4+AMDDwwODBw9GbGysuAwYMOC6OjzS9XvnnXfw8ssvQ61Ws2MLERERkUT0en2bIcrmA6MqKyvF+4SAgoqKiit2OHRycoKLiwtkMhnKy8vFIAF7e3s4OjrC2dkZMplM7AAmDDIXBo/L5XIolUoMGjRIfJ7QIfF6ByhR9yB0TBRuKysrUVdXJ84cLHSqraurg8FgEDtTmg/YMw8Wr6urs/h7bh4abk6hUIihBsJiPgjLxcXliiHqDM8lIuoYTU1N2Lp1K5566ik4ODjg7bffxuzZs29oX0lJSYiLi0NycjJiY2PbuVKiP5SXl4tt7rKyMnHR6/UwGAwWbXDzkDAhuMB88HpzQttEmLSltcHm5gFP1/K4MPhHGBRE3Zt5W1toMwttaoPBgLq6OjEE41ofF9rozWe6NadQKMSwA2GRy+WQy+XitpubGzw8PMT2tfk6BxMQEV2/vn37iu2Qa9XY2IhPPvkEzz33HBwcHLB27VrMnz+/xaRvRCQN4ZyosOh0OvE4w2AwoKqqClVVVWIbrbq6GgaDAZWVlaiurkZlZaU48WLzAerNCYO3nZ2dxYH/crkcdnZ2cHd3FwfhC8cTQvCZ+XNtbW2hUCjEMIHmz73RgfzUszUPcxP+3u3s7GAwGMRwBOF6gnC9QAh+0+v1aGxshF6vF4MWmj/XPNTjStzc3MSQA2GSVfOgNyH0QAhAkMvlcHd3F4+FhG0hvIOIOkdjYyNeeuklvPzyy/j73/+O119/nf0aiYisn/RBBmlpaRgwYADS0tIQHR0tZSl0jerq6pCSkoL09HSkp6cjMzMTaWlpyMnJQUNDgzh7pvng+5CQEISGhiIkJAR+fn5sJFxFTU2NGABhHgiRl5eH7OxsaDQaAH8kCkZFRaF///7o378/oqKiMGjQIISFhUn8CYjIGtTU1Fh0am6+COEp5vdpNBo0NDRY7MfJyalFx05h8fPzg1KpbHG/r68vv+uJiIioXRgMBvEYNC0tDQkJCUhKSkJVVRXs7e0RFBSE6OhoxMfHIz4+HjExMQgNDeUFonYyZ84cVFdXY/fu3VKXQkRERNSlmUwmaLVaaDQaaLXaFoEErYUUCNutXcoTzsOZz1LffNB285nrzZ8nDPi+3tnciKQmdEzU6XQWAQdCh0fzYA9hYKH588rLy8V/X83Z2Ni0CDe40rZ5aG93C2cnIuoIZWVlePbZZ/HRRx9h6tSpeO+99xAcHHxd+2hsbESfPn2wZs0aLF++vIMqpe6isrISJSUlUKvV4iBA8zZ38/uE9ebXy4E/gnaFwQrmg7aFtnXz2evd3d3h5uZmMfC7+SyiRNZGmH1VCOwQwjmE9rd5m7qiosLiucK20E5vztnZuUW4QVvrXl5e4sJwPCLqyYT2hBD8fzXnzp3DsmXLcObMGSxduhQvv/wy2x9E7ay2tlac/Ku0tNQilOBKAQXC0lb4gJubG+RyOXr37o3evXvD3d1dHFAtl8vh4uIihqFdaeC1+Sz0RPQHnU4nhhqUl5e3GgxSXV0NvV6PqqoqMXhZCF0WwkWqqqqu6d+xecBBa4EH5vcJkwV6eHiwzz3RNdLr9Zg/fz4OHjyIjRs3YvHixVKXRERE10b6IIPs7Gz07dsX586dQ1xcnJSlUCvq6+tx8eJFJCQkWCw1NTVwcHBAYGAgoqOjERMTI95GRUWhd+/eUpferel0OuTk5CAtLQ3p6eniekZGBhobG+Hm5oaBAweKA3ni4+PRv39/HuAQdWFC54nS0lJxab6t1Wqh1WrFx1pLyxdOepif/DDf9vLyavGYk5OTBJ+YiIiI6MqKiorEY1Qh5ODChQtoamqCu7s7YmJixGPV+Ph4DBkyBL169ZK67C4nODgYDz/8MFatWiV1KURERERWR6fTWQSFNg8ONd++3gDRKy3e3t4cNE3UDoxGY5tBwFdaSkpK0NjYaLEv4d9z8/Df1rYDAgI4YzIR9WiHDx/GkiVLoFKpsG7dOjzyyCPXFUo6Y8YMmEwmBm/2QM2D/M3b283b4oWFhTAYDC324eTk1GZYP9vfRO3HvK3d2iQbrS1arRb19fUW+7mednZgYCDD+oio2xD61sfExCA1NfWKz62srMQ//vEP/Otf/8KoUaPw3nvvYcCAAZ1UKVHX1fzc4LW0WYqLi1sNHr6Wc/3Ozs6tPs/Ly4ttGKIu5mrXFmpqatp8TmlpKerq6lrss7Xvh6udv+Ckg9TTZGZm4q677oLBYMCOHTswbNgwqUsiIqJrJ32QweXLlxEYGIhTp07xPxErUFRUhP/85z84duwYjh07hvT0dJhMJsjlcgwZMsRiiYiIgJ2dndQlk5mqqiqcP38e586dE5e0tDTU19fDxcUFN910E0aNGoVRo0bh1ltvZeAEkQRu5ORna5mcpOwAACAASURBVBdrgT9mXbvSCYrmJzB4wpOIiIi6O4PBgJSUFDHYICEhAYmJiaiuroa9vT2CgoLEYIP4+HjExMQgLCxM6rKtVkVFBdzc3LBnzx5MnTpV6nKIiIiIOkV1dTUKCwtRXFyMy5cvo6SkBJcvX7bYLikpaTGbu52dHby8vMTZ2X18fMRtLy8veHt7w9vbW3zcw8ODg6GIuqiGhgYxoESr1UKj0aCkpEQMGxa2hce1Wm2LIBN3d3f4+PjAx8cHgYGB8PHxQUBAgHjr6+uLgIAABvIRUbdVW1uLNWvWYN26dRg9ejQ+/vhjhISEXNNrP/vsMyxZsgQlJSWQy+UdWyh1CqPRKLa5CwoKxFuVSiW2zYuLi1vM8u7s7AwvLy/4+PiIbW0vLy/4+vqKbXHhMQ8PD/aRIeoC9Ho9NBqNxVJcXGzRzlar1WJbu3k728vLC15eXvD394dSqURAQECLWx8fHx6PE5HV27RpE1asWIHp06fjhx9+aPN5p06dwv333w+DwYB33nkH991333WFhBF1J1VVVSgpKUFxcbHYhhDO0alUKovzdWVlZS0CCZycnCwmBhPWhfP5ze/38PCAu7s7HB0dJfrERNRVVVZWQq/XixMalpWVQaPRWGw3n/CwrKwMJpPJYj8ymUz8bvLx8YGvry+8vb3FdeEciXDNkgHL1JVt3boVS5cuxeDBg7F9+3b4+vpKXRIREV0f6YMMNBoNvL29cfjwYYwZM0bKUnqk/Px8/Prrrzh69CiOHz+O7Oxs2NvbIz4+HiNGjMCwYcMwZMgQhIWF8eRWF1VbW4uUlBQkJCTg1KlTOHbsGHJycsTf88iRIzF69GiMHTsWLi4uUpdL1CUIMz2YLzqdrsV9zZfy8vIW+xJOfioUCnh4eLS6CI+ZnwR1dXWV4JMTERERdT0mkwmXLl0Sgw2EkIMLFy6gqakJ7u7uiImJEYMNhKADZ2dnqUuXXFJSEuLi4pCRkYHIyEipyyEiIiL601QqFS5duoSCggIUFRWhqKjIYnBU81lb7ezs4OPjA39/f/j6+ooDIYROQEIogTBIioioLaWlpRbBB2q1WuxYbf4dVFJSYjEYy83NrcV3kHAbGBiI4OBgKJVKXscloi4rOTkZCxcuRGZmJlavXo2nn376qjPJ6fV6+Pj44JNPPsH8+fM7qVK6UXq9Hnl5ecjPz281pEAI/RfY29uLQT++vr5i4I9SqWwRTsA+LkQktK/N29hqtRqFhYVQqVTi945GoxFfY2trCx8fH/j5+cHPz8+ife3n54eQkBAEBwfDyclJwk9GRD3djBkzcOjQISxbtgyvvvpqi8cbGhrwxhtv4Pnnn8fYsWOxZcsW+Pv7S1ApUcdqaGhAcXEx8vPzUVxcDJVKBbVaDbVaDZVKJQYdFRcXo6qqyuK17u7uFgN5zQPPmgcUMPiMiLoCvV4vhrGYBxxotVoxvEWtVovrRqPR4vVC4IGXl5d4vdPLywt+fn7w9vZGQECAuE5kLcrLy7F06VJ8/fXXeOKJJ/D6669zYk8ioq5J+iADYXa/X375BZMmTZKylB7BZDIhKSkJu3fvxp49e3Du3Dk4OzsjLi4OI0eOxIgRIzBq1Ci4u7tLXSp1oOLiYpw5cwYnTpzAwYMHkZiYCFtbW9xyyy2YPn06JkyYgPj4eKnLJOpw5eXlYqKhsAgH9W0FE+h0OlRXV7fYl4uLS5tBBK2FEggLZ1MiIiIikobBYEBKSooYbJCQkIDExERUV1fD3t4eQUFBYqiBEHIQFhYmddmdaufOnZgxYwZqamo4iwARERF1CTqdDjk5ORaLEFaQmZlpMYOrQqGAUqmEn59fm7dBQUGcpZGIOp1OpxO/u9q6zc/PFwMPZDKZOMOsn58fwsLCxEWpVCIsLIxhfURk1err6/Hmm2/i+eefx7Bhw7Blyxb07dv3iq+ZPHkynJyc8OOPP3ZSldQWo9EIlUrVoh0uLOYhBU5OThbtbeH/KrbBiaij1dXVQavVttq2Fs4dNA83VCgULdrWwndXZGQkw1SIqMOUlZVBqVSivr4eP//8M+644w6LxzMyMnD//fcjLS0Na9euxYoVKxhwSF1SbW0tSktLLf4/br5ufg4MsDymUCgUba4HBQVxsjAi6vGMRiN0Op14/HO1dYFMJkOfPn3aPHcTFhbG8zfUKc6cOYO5c+fCYDDg008/xdSpU6UuiYiIbpz0QQb19fWQyWT48ccfMWPGDClL6baqq6uxc+dO7NixAwcOHEB5eTn69euHqVOnYvLkybjttts4IKGH02g0+OWXX/Dzzz9j//79KCsrQ2hoKKZOnYp7770Xw4cP54lOslrCQfb1LqWlpairq2uxPycnJygUiqsu5ic9+/Tpw+9RIiIiom7AZDLh0qVLYrBBQkIC0tPTkZubi6amJri7uyMmJkYMNhCCDrrrgJCvv/4aDz74IOrr66UuhYiIiAjAH+HYFy9eFJfs7Gzk5eXh0qVLKCoqEjs0Ojo6IigoCMHBweKtMKNicHAw/P39OVMDEXVpDQ0NKCwsxKVLl3Dp0iVxpmthOz8/HzU1NQAAOzs7+Pn5id+F4eHhiIyMREREBCIiIiCXyyX+NEREf0hOTsaCBQtw8eJFrF69Gk8//TRsbW1bfe4nn3yC5cuXo6SkhINTOkFRUREyMzORmZnZoh1uPuhXqVSK7e7mt6GhoZzdnIisXllZmdi+br5c6TsvPDwcUVFRiIyMRL9+/djGJqI/ZdOmTXjiiSdgZ2cHjUZjMUv8119/jcWLF2PAgAHYunUr+vXrJ2GlRFem1WqRm5uLnJwc5ObmIjc3F4WFhcjPz0dRURFKS0vF58pkMvj5+SEgIECcETwwMBD+/v7w9/dHYGAgfH19eV6fiKiDVFdXo6CgAEVFRbh8+TIuX76MoqIi8Tu7sLAQxcXFEIYf2tnZwcfHB4GBgWIwZVhYGEJDQ8UwuO7an446Xn19PV599VW88sorGD9+PD777DP4+PhIXRYREf050gcZAH/MYr1x40YsXLhQ6lK6jYaGBuzfvx9ff/01du7ciZqaGowbNw7Tp0/H5MmTER4eLnWJZKVMJhNOnz6Nn3/+GTt37kRaWhpCQkJw3333Ye7cuRgwYIDUJVI3U19fD71ebxEycK3ber2+1X26u7uLgQPm6823hXUPDw9xYWgHERERETWn1+uRmpqK9PR0MeQgMTER1dXVsLe3R79+/SyCDWJiYhAWFiZ12X/a559/jkcffRTV1dVSl0JEREQ9SF1dHXJycsRBUllZWWJwgTAbiIODA0JDQxEREYGQkBAxrEBYfH19eZ6PiHo8YdY683CDvLw8ZGVlIScnRwyt8/HxEQdcRUREoF+/fujXrx/Cw8MZ4kxEna62thYvvvgiNmzYgLFjx+Kjjz5CcHBwi+fpdDoEBATg9ddfx7JlyySotPuprq7GxYsXxXZ4RkaGuF1RUQEAkMvliIyMRHh4uEVQgbDOoAIi6u50Ol2rQQdZWVn4/fffxQlVfH19ERUVJbathZCDkJAQzlpKRFc1fPhwXLx4EZMnT8bWrVsB/NGv99lnn8WGDRvw5JNP4vXXX+f3CUmutrZWDCgQwgrMb8vLywEA9vb2CAwMRGhoKAIDAxEYGAilUikGFfj5+cHX11fiT0NERFdTX18PlUqFgoICFBYWWgQd5OfnIycnByUlJeLzfX19LcINzEMO/P392wwwpZ4tKSkJCxcuxMWLF7F27VosX76c1/2JiLoH6wgyCA4OxvLly/HUU09JXUqXl5OTg/fffx9ffPEFSktLceutt2Lu3LmYPXs2vL29pS6PuqDk5GR8/fXX2LZtG/Lz8zFw4EAsWbIEDzzwAFxcXKQuj6xERUUF9Ho9DAYD9Hq9uFxLGEFlZWWL/dnZ2V1TEEFb2zxYISIiIqKO1tDQgPz8fDHYICEhAenp6cjNzUVTUxMUCoVFsIGw3pXSprdv34777rsPRqORMxsQERFRuzOZTLh48SLOnz+PpKQkpKSkICMjA3l5eTCZTACAwMBAcVBtRESEONA2NDSUHXWJiP6EhoYG5OXliUEx5sExBQUFaGpqgp2dHYKDgxEZGYnY2FgMGjQIsbGxiIyM5HcwEXW45ORkLFiwQOwDM3/+/BbPWbJkCQ4dOoSMjAx2fL4ODQ0NyMzMRHJyMpKSkpCUlITMzEzx+9/e3h6hoaGIjIwUF2EQLmc+IyJqm8lkEtvYFy5cENvZmZmZKCoqAvDHbNPh4eGIiYnB4MGDMWjQIAwaNAiBgYESV09E1iIrKwuRkZFoamrC4cOHMWbMGJSXl2P+/PnYv38/PvzwQyxYsEDqMqmHyc/PR0ZGBtLT03HhwgVkZGQgJycHhYWF4szcffr0aTFIVVgPCgriuSQioh6iqqqqRbCNsOTm5sJoNAL449goJCQEYWFhiImJQVRUFKKjo9G/f38oFAqJPwVJob6+Hm+++SZWr16NoUOHYsuWLYiMjJS6LCIiaj/WEWQwZMgQTJo0CWvXrpW6lC7r0KFDePfdd7F7924EBATg4Ycfxrx58xASEiJ1adRNNDU14fjx4/jiiy/w1VdfwdHREQ899BAee+wxhIaGSl0e/UlGo9EiZECn06GmpqbV+5svpaWlYqJ4c05OThYhA9e6+Pj4wM7OrpN/CkREREREf55Wq0VycjLOnz8vLqmpqairq4ODgwP69++P2NhYDB48GIMHD0ZcXBw8PDykLrtVv/32G4YNG4a8vLxWZ74jIiIiulZlZWUWbaTk5GSkpaWhpqYGDg4O4iDZ6OhoixnBe/XqJXXpREQ9jtFoFIMNsrKykJ6ejvPnz+PChQuor6+Ho6MjYmJixGAD4RjXWo9tiajrqqmpwT/+8Q+89957uP/++/Hee+/B1dVVfDwzMxP9+/fH7t27MXXqVAkrtV4VFRVITk4Wl8TERKSmpqKmpgYymQzR0dEYPHgw+vfvL4YVhIeHM9SUiKidlZeXi8EGGRkZSE1NRXJyMnJycgD8MfhTuG4khBv079+f38dEPdDy5cvFQVsJCQnIysrCnXfeiYqKCvzwww+4+eabpS6RuimTyYTc3FykpaUhIyMDFy5cQHp6OjIyMlBRUQEA8PLyEgebhoeHWwQWyOVyiT8BERF1BSqVyiLkICsrSwzJqaqqAgD4+voiOjoaUVFRFiEHvr6+EldPHeX48eN49NFHkZubi1dffRXLli1jcC0RUfdjHUEGt99+O0JDQ7F582apS+lydu7cieeffx4pKSkYNWoUVqxYgRkzZjC5kDpUaWkpPv74Y7z//vsoLCzE3XffjX/+85/tlnhlMBhw8uRJ3HHHHbCxsWmXfXZ3VwocuFoggVarRX19fav7vZEgAmdnZzg5OUGpVPL3R0RERESEP2Y5y8jIEAftCUtxcTEAICgoyCLYYPDgwVYRTKjVauHt7Y1du3Zh2rRpUpdDREREXURtbS0SEhJw4sQJnDhxAufOnUNBQQEAwNPTU+yQLwx+jYmJgUwmk7hqIiK6mrq6OjHUQDi+PX/+PNRqNQAgICAAcXFxGDFiBEaMGIGhQ4fCyclJ4qqJqDs4cOAAHnzwQTg6OuLLL7/EiBEjxMcmTZqEpqYm7N+/X8IKrUNjYyPS0tJw7NgxnDhxAr/99htycnLQ1NQEhUIhDo4VbmNiYjhAlohIYgaDAcnJyUhKShJv09LSUFtbKwaIDR8+HCNGjMCoUaPg7+8vdclE1IHUajWCgoJQV1eHn376CU5OTpg1axZiY2Px/fffc/AetRuj0Yjk5GScOXMGZ8+eRVJSEjIzM1FbWwsACA4OFgeNms+Q3adPH4krJyKi7qqpqQmXLl1CRkZGi1AdnU4HAFAoFIiOjkZ8fDyGDh2KoUOHIjIykgPeuzCtVouVK1fi008/xcSJE/H+++8jPDxc6rKIiKhjWEeQwb333ouGhgZ8//33UpfSZZw+fRpPP/00Tpw4gdmzZ+OZZ55BXFyc1GVRD9PQ0IAff/wRa9asQUZGBhYvXowXXngBPj4+N7S/pKQkfPDBB/jyyy9hNBqRnp6O/v37t3PV1sVkMqG8vBw6nQ7l5eXiYjAYxHXzx4T7DQYDDAYD9Ho99Hp9q/vu1asX3N3dxUUul7fYVigUbT7H0dGxk38aREREREQ9i06nQ1paGhISEsQlIyMDjY2NcHNzw8CBAxEfH4+YmBhER0dLMgjk5ptvRnx8PDZt2tSp70tERERdh1arxcmTJ8XggrNnz6K2tha+vr4YPnw4br75ZjG4wM/PT+pyiYionalUKjHY4MyZMzhx4gRUKhVkMhmGDh0qDrwaPnw4vL29pS6XiLootVqNhQsXYv/+/Vi1ahWef/552NnZYf/+/Zg0aRKOHDmC0aNHS11mp6qtrcXZs2dx/PhxHD9+HCdOnIBOp4ObmxuGDx+OYcOGieGpwcHBUpdLRETXqL6+HhkZGUhKSsK5c+dw8uRJnDt3Dg0NDQgNDcXIkSMxatQojBw5ElFRUZxkhqgbWbVqFdavX4/4+Hj87W9/w/z583HPPffgk08+YRAs3bD6+nqkpKSIoQVnz55FamoqGhoaoFAoMHToUAwZMgTR0dFicIGLi4vUZRMREYlKSkrEcIOUlBQkJCTg/PnzqK2thaurq0WwwdChQzkQvgtoamrCli1bsHLlSjg6OuKtt97CPffcI3VZRETUsawjyGDp0qW4cOECDh8+LHUpVk+j0WDZsmXYvn07brvtNqxbtw4333yz1GVRD2cymfD5559j9erVMBgMWL16Nf7+979fU7pZTU0Ntm/fjo0bN+LMmTNwcHBAfX09AODkyZO49dZbO7r8G1ZdXW0ROCAECzQPIhC2m4cVlJeXo7KystV9y2QyuLm5wc3NDQqFAnK5XNx2c3ODXC63CB0QAgnM7+PsCUREREREXU9lZSUyMzMtAg7OnTsHo9EIBwcHREREID4+Xgw4GDJkCDw8PDqsnldffRVvv/02srOz4erq2mHvQ0RERF2HXq/HwYMHsX//fhw7dgwZGRmwtbVF//79MXLkSHHAKjuJEBH1XLm5uThx4gROnjyJ48ePIy0tDY2NjejXrx9GjhyJSZMmYcKECR16PEtE3U9TUxPeffddrFy5EsOHD8cXX3yBgIAATJkyBSqVCmfPnoWdnZ3UZXaYxsZGJCQkYO/evTh48CDOnDmDmpoaKJVKjBw5UhzYGhsb261/DkREPVFVVRVOnz6N48eP49ixYzh9+jSqqqrg6ekptq8nT57M4BqiLqy8vBxKpRI1NTV48cUXsWbNGjz88MPYuHEjZxmm66LVanHs2DEcOXIEp0+fRnJysjjQc8iQIRYDPfv27St1uURERDekvr4e58+fF0N6zIN6PDw8MHToUIwYMQJjxozBLbfcwgk+rciZM2fwxBNP4PTp01i0aBHWr18PNzc3qcsiIqKOZx1BBs8//zx27tyJ8+fPS12KVdu/fz8WLFgAmUyGjRs3Yvr06VKXRFbq9ttvx4EDBzr9faurq/Hmm2/i5ZdfxogRI8SOA63Jzs7GRx99hM2bN0Ov18PW1hYmk8niOfv27cPEiRM7pFaj0QidTgedToeamhqL7eZLa4+XlZWhtra21X07OTlBoVDA2dlZXG++XO0xd3d3JmYTEREREREAoKGhAZmZmUhPTxcDDn777TdoNBoAgFKpFMMNhICDsLCwdnlvvV6P8PBwPP7441i9enW77JOIiIi6nosXL2LHjh3497//jd9++w1NTU24+eabMW7cOAwfPhy33norFAqF1GXS/yfVNQKiG8G/1//pzj8Lg8GAkydP4tSpUzh8+DBOnz4t/l8ydepUzJw5E1FRUVKXSURdRGpqKubOnYv8/Hx8+OGHGDx4MGJjY/HBBx9g0aJFUpfXrmpqarBv3z788MMP+OWXX6BWqxEQEICJEyfitttuw4gRIzj4yIp05//LuxP+njqeNf6MrbGmP6OhoQGJiYk4fvw4jhw5gkOHDqGyshLR0dGYOnUqZs+ejZtuuknqMonoOqxYsQLvvfcehg0bhtOnT+Mf//gHXnvtNanLoi7AaDTi6NGj2Lt3Lw4fPozU1FTY2toiNjYWI0eOxNChQ3HTTTchMjKSoRhWqru1U4hIWj35O8VoNCIpKQlnz57FmTNn8J///AeXLl2Ck5MThg0bhvHjx2PKlCmIi4vjOB0JFBQU4JlnnsE333yDMWPG4K233sKgQYOkLouIiDqPdQQZvP3221i/fj0KCwulLsUqmUwmrFy5Em+++SbmzJmDDz/8EHK5XOqyAAA2NjZo60/oSo9JSWh0WmNt16utzzJhwgQcPHhQipIAAImJiZg7dy40Gg0+/fRTMXSjsbERhw4dwgcffICdO3fCzs4O9fX1be5n+/btmDVrVov72woduFIggfljarW6RWiCoLVwgesJJPDy8oKDg0P7/CCJiIiIiIiuIDc3F0lJSeKSmJiIgoICAICvry8GDx6MwYMHIy4uDoMHD0bfvn1vqHPCa6+9hjVr1uDo0aPs+EZERNSD5OXl4YsvvsD333+PlJQUeHt7Y/r06eIs2l09uMCar2/82esYUl8j6Aqk/h0LNQDd43rVn8G/1//pST8LvV6PX3/9Ffv27cPu3btRXFyMmJgYzJo1Cw888EC7hfMRUfdVVVWFJ554Ah9//DFWrFiBpqYmfPfdd0hPT4eHh4fU5f0pjY2NOHDgAL788kvs2rULlZWVGD58OKZNm4bJkycjNjZW6hL/FLbDezapf8dA9/09SXF80RH91jrqc3TX37ugtrYWx44dw969e7Fz505kZ2cjNDQUs2fPxsKFCxkaRmTlsrKyEBUVBScnJxiNRmzYsAF/+9vfpC6LrJhWq8WOHTuwe/duHD58GEajEYMGDcK4ceMwZswYjBo1Cu7u7lKX2a54HNGzdcbvWOq/I6L2MnbsWBw+fPi6X9dd/w3k5eXhyJEjOHLkCA4cOICioiIolUpMnjwZM2bMwKRJkyCTyaQus1urrKzEhg0bsH79eiiVSqxfvx533XWX1GUREVHns44gg61bt2Lx4sUwGo1MNmqmtrYW9913H/bt24dNmzbhgQcekLokC9Z8YuBKrLm262Wtn6WqqgorVqzA559/jnXr1qG+vh4bN25EYWEhHBwcrhhgAAD29vaIiIhAr169oNPpYDAYUF5e3ubrXFxcIJfL4ebmJi7u7u6Qy+Ut7hcec3d3t7ivV69eHfGjICIiIiIi6jQGgwEpKSlISEhAQkIC0tPTkZqaitraWri6uiI2Nhbx8fGIiYlBdHQ0br755qtekDGZTPjLX/6CpKQkHD9+HKGhoZ30aYiIiKizmUwm/PDDD/joo4/w66+/wtvbG7NmzcLMmTMxatQo2NnZSV1iu7H26xvWUEN3Zi0/X2upg0hKjY2NOH78OHbs2IHvv/8eKpUKY8eOxeLFizFr1izY29tLXSIRWbFt27Zh8eLFiImJweXLlzFo0CDs3r27S840qtVqsXnzZnz88cfIzc3FiBEjcM8992DWrFnw8/OTurx2w3Z4z8afb8eS4ufbEe/Jv5M/79y5c/juu+/w7bffIi8vD7fddhseeeQR3HPPPWxfE1mhQYMG4fz587Czs8Onn36K+++/X+qSyAoZjUZs374d27Ztw4EDByCTyTBp0iRMmTIFkydPhr+/v9QldigeR/RsDDIg6ng94d9AU1MTkpKS8PPPP+Pf//43fvvtN8jlctx9992YP38+xowZI3WJ3UpNTQ02bdqEtWvXoq6uDs899xwef/xxODo6Sl0aERFJwzqCDA4fPoxx48ahpKQE3t7eUpdjNZqamjB37lzs3bsXe/bswciRI6UuqQVrPzHQFmuu7XpZ+2dZsWIFNm7ceN2vk8lkuPXWW3HrrbeKgQRC4ID5uvBYV+yIQERERERE1BmMRiNSUlJw7tw5JCYmIiEhQQw3cHZ2xqBBgxAXF4chQ4ZgyJAhGDBgQItwg/LycowbNw55eXn49ttvMX78eIk+DREREXWE+vp6bN26FWvXrkVubi4mT56MRYsWYerUqd22g7u1X9+whhq6M2v5+VpLHUTWoqGhAXv37sXHH3+Mn3/+GUFBQVi5ciUWLFjAWZGIqE2ZmZmYOXMmioqKUFlZiRdeeAGrVq2SuqxrptVqsWHDBrz//vtwdHTEAw88gIcffrjbzp7NdnjPxp9vx2KQATXX2NiIAwcOYPPmzdi1axeCg4Px3HPP4f7774eDg4PU5RERgI0bN2LFihWwsbHBN998gzlz5khdElmZgoICfPDBB/joo49QWVmJSZMm4d5778Vf/vIX9O7dW+ryOg2PI3o2BhkQdbye+G+goKAA3333HbZt24azZ89iwIABWL58OebPn88JUv+E+vp6fPPNN3jxxRdRUlKCRYsW4bnnnoOPj4/UpRERkbSyrGLkb1BQEAAgPz9f4kqsyxtvvIEdO3bghx9+6LQQAxsbG9jY2FzT/cK28JiNjQ0WLVp01ccAIDU1FVOnToWrqytcXV1xxx13IDU1tdX3zM7Oxt133w2FQtFmfW1JS0vDlClT4OLiArlcjrvuuqvNv7NrqclgMODJJ59EWFgYnJycoFQqsWDBAvz3v/9tUXd6ejruuOMOuLm5wcXFBVOnTsWFCxdu6H2v57O09bv6sz/LG/XWW2/h9ttvh52dnZiedS0pWjY2Nhg/fjzWrl2LlStXYsmSJZg7dy6mTZuGUaNGYdCgQQgN/X/s3Xd4VFX+P/D3pJMeSJs0ktBS6FUIWHZRQFAQAQULuAIqTcGGu19XsK8Ng7AKCiooqEivCgJLW1eKwJKEFNJ7722SnN8f/u7dmWSSzJAJd5K8X89zn5ncmbn3c87cyZwz95zPDYKbmxuTGBAREREREbWgW7duGDlyJJ5++mls2LABFy5cQHl5Oa5du4bPXE1VkgAAIABJREFUPvsMI0eOxNWrV/Hcc89h2LBhcHBwQHh4OB5//HFERkbizJkzsLKywqlTpzBhwgRMnDgRixcvRm5urtJFIyIiIhM4c+YMhg4diqeffhqjR49GVFQU9u/fj6lTp3aoJAad7fyGPsbs2xiGxHvt2jXce++98r7vvfdeg/fd3Pp9+/YhIiICdnZ2CAwMxPLly1FWVqb3tWlpaZg6dSqcnJzg5eWFRx99FAUFBTddR9rbbvwet1ZPKpUKJ0+eBPDHVaC11xtTtuYYU9c3e4xJz42JicFtt90Ge3t7jBs3DgkJCYiKisKoUaPg6OiIu+66S++5qNbKp10n3333HQDgwoULTeqqpXNaNxubIfVnaP209pkw9vyes7MzJkyYgOjo6Cbba8vnxFTlNgdWVla47777sHfvXsTHx2PKlCl47rnnEB4ejqNHjyodHhGZqX79+uHf//43xo8fj/r6erz66qs4duyY0mG1SgiBLVu2IDQ0FJs2bcLzzz+PxMREfPTRRx0qiQHb4S3XQ0vYDjesHX4zddFcnTZXJ4a22Ywpa1vatK0xdjycKdqJphi3ZujxBMDkx97NjKXrDG1sCwsLTJgwATt37kRCQgImT56MxYsXY9iwYfj111+VDo+oy7tx4waee+45AMD69euZxIB0FBUVYeXKlejbty++/PJLzJ8/Hzdu3MDevXsxe/bsDp/EgP2IluuhJexHGN+PaOs+jCm7ofNHDNmmIfNWDGHq+E1xDLbH+ZYrV67gnnvugYODA5ydnTFp0iT89NNPRteFIfEb4lbXqfZ2GpelrZ+BztA30sff3x/PP/88zp8/j99//x1jxozB8uXL0adPH2zcuBH19fVKh9ihNDQ0YMeOHQgPD8f8+fNx9913Iz4+HpGRkUxiQEREfxBmoKamRlhYWIidO3cqHYrZSEpKEnZ2duLtt9++5ftu7rDQt76lQ6i5x+Lj44W3t7f49NNPRW5ursjPzxdbt24VwcHBIi0trck27r77bnH27FlRWVkpDh061OI+tSUkJAh/f3+xadMmkZubK/Ly8sTWrVvF6NGjm2zD0JimTp0qVq1aJbKzs0V1dbW4dOmSiIiIaLI9AKJ///5i+/btIj8/X+Tk5IjPP/9cBAQEiKSkJKP3a0xZmqv7ttRlW2k0GjFy5EgREREhTp8+LV5++WXRv39/AUBYWloKCwsLAUBnsbW1FS+++OItiY+IiIiIiIj+kJGRIfbt2ydee+01MWXKFOHu7i733cLCwsTMmTPFtGnThLu7u3B0dBQrV64UsbGxSodNREREN6GhoUG89tprQqVSiUmTJokbN24oHVKbdZbzG/piMHbfxmop3vj4eOHn5yefo5DOefj6+or4+HiD9t3ce7BhwwZRUVEhsrKyxOOPPy7mzp2r93n33HOPOHz4sCgrKxOpqanigQceEPPmzdN5XnvXUV1dnejVq5coLCzUWZ+ZmSnc3NxEeXn5TZWtcRmMqeu2HmOzZs0S0dHRori4WCxevFiMGjVKPPjgg/K6Z555RsyYMUPva1sqn0ajEZMmTRKfffaZzut+/PFHER4eLnJzc5utg7bEZkz9GVI/LX0mbub8Xn5+vti+fbsYMGCAUef3WjuWTFluc5ScnCzuv/9+oVKpxMsvvywaGhqUDomIzNiGDRuEhYWFsLa2FsePH1c6nGZVVFSI+++/X1hZWYnnn39epx3REbEd3nrZWtof2+GtM2U7uXEMxrTZjC3rzba3W2LseDhTtBNNNW7NkOOpuefOnDnT5MeeqT5/HU18fLz485//LCwtLcVHH32kdDhEXVZdXZ1wcXERAMSKFSuUDofMzJEjR4S7u7vw9PQU69atEzU1NUqH1C7Yj2i9bC3tj/2I1plqH8aU3ZD5I4Zu09B5K61pr/jbcgya+nxLbGys6Nevnzh69KioqKgQUVFRYty4cXrn+NzK39tvZZ1qb0e7LG39DHTmvpE+2dnZYtGiRcLa2lqMGjVKpKamKh1Sh3D06FExePBgYWFhIWbOnNkpjw0iImqzOLNIZCCEEGq1WqxZs0bpMMzG0qVLRVBQkNBoNLd83+39w8Ajjzwi/vGPfzRZv2nTJrFs2bIm2zhx4kQL0Tbv0UcfFR9//HGT9V9++WWT2AyNydHRURQUFOg8JzExUW8n57vvvmuyvQ8//FCns2Pofo0pi7R/fetuti5N4d///rcAIE6ePCmvS0hIEGvXrhXjx48XNjY2AoB8a2lpKRYuXKhYvERERERERPSHxskNvLy85CR0lpaWAoDw9/cXCxYsEMePHxf19fVKh0xEREQGWLp0qbC2thaff/650qGYTGc5v6EvBmP3fTP7ay7eRx55RO85ig8//FA8+uijBu3bkJgKCwtF9+7d9b52z549OuuuX78ufHx8msTZnnUkhBCvvPKKWLdunc66d955Rzz99NMtvq6lsmkztq7beoxpn7PJyMhosi4tLU14enq2ui195SsvLxe33Xab2L17txBCiJ9++kmEhISI9PT0JnGYKjZj6q81rX0m2nJ+b/v27Ub/X5Loq2tTltucff3118LGxkbMnz9f6VCIyMz98ssvwtbWVlhaWoqvv/5a6XCa0Gg0Yty4ccLDw0OcO3dO6XBMgu1w/a81dH9sh7fOlO3kxjEY02Yztqymam8bEm9z4+FM0U401bg1Q46n5p6bmJho8mPPVJ+/jqihoUF88MEHwsLCQrz55ptKh0PUJUkJcyZOnKh0KGRmPvvsM2FhYSEee+wxUVpaqnQ47Yr9CP2vNXR/7Ee0rr320VLZDZk/Yug2DZ23YixTxG+KY9CU51tmz54ttmzZorPu+vXrrdZVe//efqvrVNqO9uva+hno7H2j5kRHR4sBAwYId3d3cfXqVaXDMVs//fSTGDlypFCpVGLGjBkiOjpa6ZCIiMh8mU8ig1GjRjGr5P/X0NAgfHx8FPuRuL1/GPDy8hLJyclN1mdnZ4vQ0NAm26ioqGgp3GY1t5+srKwmsRka09133y0iIiLE4cOHW0wyAUDk5+c3WZ+YmCjUarXR+zWmLNL+9a272bo0lSFDhoglS5bofayiokLs27dPPP3008Lb21sAaLXTTkRERERERMpITU0Ve/bsEa+++qoYNWqUsLe3l5MbWFhYiFmzZikdIhEREbXg4MGDQqVSiR9//FHpUEyqs5zf0BeDsfu+mf01F29z+05MTBTe3t4G7dvQmJp7rxpflae6ulqoVCqD4jRVHQkhRFxcnBg2bJjOuj59+ohLly61+lpDjkNj67qtx5j2YOj6+nq96xrXc0vbaywnJ0f0799ffPTRR6Jfv35NrjDU3OtuNjZj6q81N/OZMPT8Xn5+/k0nMtD3PFOW29wdOHCgU35/EZHpJSYmih49egiVSiViY2OVDkfHW2+9JRwcHERUVJTSoZgM2+H6X2vo/tgOb50p28mGvsf62mzGltWU7e3WYjBmPJyx7URTjVsz5Hhq7rl1dXUmP/ZM9fnryNatWyesrKzEhQsXlA6FqEs5fPiwACB69+6tdChkZn799VdhbW0tXn/9daVDuSXYj9D/WkP3x35E69pzH82V3ZD5I4Zu09B5KzejrfGb4hg05fkWLy8vkZGR0errDN2WKc8z3Mo6lbbT2uuM+Qx0lb6RPhUVFeKuu+4Sffv2FWVlZUqHYzYaGhrEvn37xG233SYAiPHjx7NPSUREhohTCSEEzMCsWbMghMCOHTuUDkVxeXl58PT0xPHjx3HXXXfd8v2rVCroOyz0rW/uuS09Zm1tjbq6Or2v6datGyorKw3afmusrKxQUVEBW1vbVmMzNKaSkhKsXr0ae/fuRV5eHoYMGYLp06dj0aJFsLa2bjXu6upqODk5QaPRGLVfY8pizLpbbenSpbh8+TJOnz7d6nOjoqLQvXt3qNXqWxAZERERERERtVVWVhZ27dqFw4cPY+zYsVi5cqXSIREREVEzZs2ahaqqKuzfv1/pUEyqs5zf0Pf69t53S69p7hxF43MeLW2n8fq8vDy88sorOHLkCLKzs1FfXy8/Zuh7davrSDJu3DisW7cOgwYNwqlTp7BixQpcuHDBJGUzRV0b6mbPLxlTPgDYtm0b5s6di+XLl+O9994zWRz61hlTf61pqX5v1fk9Q+valOXuCB566CFUVFTgwIEDSodCRGauuroa//znP7FixQqlQ9EREhKCGTNm4M0331Q6FJNhO/zm9812uGFM2U42tA2p77ltLaspxnMZE6+p2ontOW6tLc9tj/dD0lXa2EIIDB06FH/605/w4YcfKh0OUZfy/vvv44UXXoBKpVI6FDIjM2bMQEFBAY4fP94ljg32I25+3+xHGMYU+zBF2RvXvaHbNHTeSkvaI/6WngsYdwya6nyLlZUVKisrYWNj0+a6uBXnGdqzTrW3Y4rPQFfpGzUnNzcXQUFBWL9+PebNm6d0OIqqq6vDd999h3fffRfR0dG477778Morr+C2225TOjQiIuoY4i2UjkASEBCA1NRUpcMwC2VlZQAAZ2dnRfavUqlQU1Ojs66wsNBk23d3d0dhYSGEEE0W7cawKfaTnZ3dZL2+shgak4uLCz766CPcuHEDiYmJWLRoEb777jvMnj27yTZzcnKarMvKyoKHh4fR+zWmLObMxcVFPr5bEx4eziQGREREREREHYharcbixYtx4MABJjEgIiIycykpKejXr5/SYZhcZzm/YY77zsrKarI+KysL7u7uOusMfQ8ee+wxODg44MyZM6iurpbL0tY4b0UdPfHEE9i8eTMAYNOmTVi4cKHO420pmzF1rRRjyhcXF4e33noLFy9exO7du3Hx4sV2je1W1V9bz+/pW6ePoXXdEY4bUwoJCUFycrLSYRBRB2BnZ2d2SQyEEEhNTUXfvn2VDsWk2A5vv32zHf6/fbRXe8eYNpuSx4N2DMaMhzNFvZnruLX2fD+6ShtbpVKhb9++SElJUToUoi7nxRdf7BIT1ck4GRkZGDx4cJc5NtiPaL99sx9hun0YW3ZD5o8Yuk1j5q3cyvhbY8wxaKrzLT169EB+fn6LcSn1e/utrtPGr2vrZ6Cr9I2a4+npCV9fX6SnpysdimJqa2uxZcsWhIeHY+7cuQgKCsKFCxewd+9eJjEgIiKjmE0iA39/fyYy+P88PT2hUqmQlpamyP69vb2bvBenTp3S+9yWfixp7rEJEybg5MmTTdafPn0aw4YNMzzQVtxzzz3Ys2dPk/XHjh276ZhUKpXcCHV3d8dDDz2EgwcP4ueff27y2p9++qnJut27d+Oee+4xer/GlMWcpaamMjkBERERERFRF/DRRx8hPDwcs2bNwqpVq7B//369J7aIiIhIGcOHD8ehQ4eaDFDr6DrL+Q1z2/f48eOxa9euJut3796N8ePH66wz9D04d+4cVq9ejcDAQFhZWQEAqqqq2hSnMXXUlsHAs2bNkq+AdOTIkSaDBttSNmPqWimGli8nJwdTp07F559/joEDB+Kbb77Bk08+ierq6naL7VbVX1vP7+k7h6iPoXXdEY4bU9FoNNi3bx9GjhypdChE1EFkZGRg8eLFbW5nmIpKpcKwYcOwd+9epUMxKbbD2wfb4f/Tnu0dY9psSh4PEmPGkJmq3sx13Fp7vh9dpY1dXFyMkydPYvjw4UqHQtSlvP3220hISFA6DDJDt912G3788UcUFBQoHcotwX5E+2A/wrT7MLbshswfMXSbxsxbaU57xN8aY45BU51vufPOO5v0T65cuYKwsDCjt2XqvsCtrlNtpvgMdJW+UXN++eUXJCQkdMkJ++Xl5YiMjERwcDAWLFiAUaNGISYmBvv378fQoUOVDo+IiDoiYSZ2794tVCqVqKysVDoUszBs2DCxYMECRfb9+OOPixkzZoi0tDRRVlYmjhw5IiZMmCD0HS5+fn7i3Llzora2Vvz000/C39+/1ceSkpLEgAEDxI4dO0R+fr4oLS0V+/fvF76+vmL37t0622/LIXrjxg3h7+8vNm3aJHJzc0VBQYH4/vvvxaBBg5ps19CYAIgJEyaIa9euierqapGdnS1eeeUV8cADDzSJe8yYMeLbb78V+fn5Ijc3V3zxxRciICBAJCUlGb1fY8rSXL0p/XGvra0V3t7e4u2331Y0DiIiIiIiImp/586dEytXrhSTJk0SPj4+AoAAINRqtZg4caJ4+eWXxfbt20V0dLSoq6tTOlwiIqIuJyUlRbi4uIi5c+cKjUajdDgm01nOb+h7fXvvu6XXxMXFCV9fX/H555+LnJwc+ZyHr6+viI+P13muoe/BhAkTxIIFC0RSUpKoqakR8fHx4vHHHzfq/EZb6qil998Q8+bNE/fcc4+YP39+k8faUjZj6trUx5ih6wwpX3l5uRg+fLjYvHmzzmvXrFkjnnvuOZPEoW+dMfXXmpbq92bP7+Xn54tt27aJMWPGmKyuTV1uc1ZXVycWLlwoHBwcREJCgtLhEFEHce7cOdG9e3cxYsQIkZGRoXQ4QgghfvnlF6FSqURkZKTSoZgM2+E3v2+2ww1rh5uyndz4cWPabG09HkwxnsuYMWSmaie257i1W3XsGVv3XaGNXVVVJe677z7h6+srioqKlA6HqMt47bXXhKWlpdi5c6fSoZAZKiwsFEFBQSIiIkLk5OQoHU67Yz/i5vfNfoRh/QhT7MPYshsyf8TQbRo6b6Ul7RG/9NzmGNuWNsX5lqtXr4pevXqJo0ePivLycnHlyhUxdOhQ8c9//tPobZn6PMOtrlPt7ZjiM9AV+kbNOX36tPDw8BCPPvqo0qHcUnl5eeLVV18Vbm5uwsnJSbz44osiKytL6bCIiKjjizObRAZRUVECgLh8+bLSoZiFdevWiW7duon09PRbvu+8vDwxZ84c4eHhIRwcHMR9990nUlNT5UkH2n744QcRFBQkbGxsRO/evcXevXsNeiwuLk48+OCDwsXFRTg4OIgRI0aIXbt26Wxb2p++/Rrq2rVrYtKkScLBwUE4OjqKe+65Rz7W9HU6Wovp2LFjYtq0aaJHjx7CxsZGBAUFieXLl4vS0tImsSclJYkpU6YIJycn4eDgICZNmiSio6ObxGjIfo0pi746M0VdttWGDRuEjY2NSE1NVWT/REREREREpJyioiJx+vRp8fHHH4uFCxeKiIgIYWdnJwAIa2trERYWJh577DHx8ccfi6NHj4q8vDylQyYiIur0Dh8+LBwdHcXdd98t0tLSlA7HJDrL+Y3mXmvsvm9mf8297urVq2LixInCwcFBODg4iIkTJ4qrV682eZ6h70FOTo547LHHhKenp7CxsRH9+/cX33//vUHnPNpaR0K0/B4b4tSpUwKA+M9//tPksbaWzZC6bo9jzNB1hpRPuu/l5SW/Lisrq8n22hJHW+rPmPpprn5v5vyek5OTmDJlikhISBAWFhbN7lNi6LFkqnKbs8zMTDF58mTRrVs3sWfPHqXDIaIOJiEhQYSGhgofHx/x22+/KR2OEEKI999/X6hUKvHcc891igu+sB3OdvitaIebop3c3GOGttkMLWtb27StMWY8nKnaiaYat6atrc8VwjTvR1s/fx1RYmKiiIiIEN27dxfnzp1TOhyiLmPt2rVCpVKJjRs3Kh0KmbGoqCjRu3dv4evrq7c91ZmwH8F+xK3oR7R1H8b8RgsYNn/E0G0aOm+lJe0Rv6nb0qY43yLEH8kspbFI/v7+4p133rnpbZmqL3Cr67S+vl5YWlrqrDPF56wz9430qaioEKtXrxbW1tZi2rRpoqKiQumQbon4+HixbNkyYW9vL9zd3cVrr70mCgoKlA6LiIg6jziVEELADGg0Gjg4OODrr7/G7NmzlQ5HcdXV1RgwYAD69OmDAwcOwMLCQumQyAgqlQpm8tEyC+np6Rg4cCDmzp2LNWvWKB0OERERERERmQGNRoO4uDhcvHgR0dHRiIqKwm+//Ybc3FwAgFqtxrBhwxAeHo6wsDAMGzYMoaGh/I2EiIjIhC5evIg5c+YgKysLf//737Fo0SLY29srHRYRUacWFRWFyZMnIzk5WelQzF5VVRU2bNiAVatWoUePHvj2229x2223KR0WEXVAxcXFeOihh3DmzBl88803eOCBB5QOCdu2bcOiRYvg7u6ONWvWYMqUKVCpVEqHRUT/H9ts1BlVVlZi3bp1WL16NYKDg/H9998jLCxM6bCIuoS1a9fiueeew/vvv4/nn39e6XDIzBUXF2PJkiXYtm0bIiIi8Nprr+HPf/4z+wtEZq6jzx/p6PGbo1tRp1999RUeeeQRWFtbIzMzE2PHjkViYmK77rOzqqysxNatW/HGG2+gtLQUq1evxnPPPdepv3+FEPjll1+wZs0aHD58GL1798Zzzz2HuXPnwsHBQenwiIioc4k3m5Hf1tbW6N27N2JiYpQOxSzY2dlhy5Yt+OWXX7By5UqlwyG6aaWlpZgyZQrUajXeeustpcMhIiIiIiIiM2FtbY3w8HA8/vjjePfdd7F//37k5OQgJSUF+/btw6JFi2BnZ4edO3fiiSeeQP/+/dG9e3eMHj0a8+fPx4cffogjR44gOTmZJ1OJiIhu0rBhw3DlyhWsWLECq1atQmBgIN5++23k5+crHRoRUaegUqkQGRmJoqIi1NTU4PLly3jqqaewePFipUMza4WFhfjHP/6BoKAg/PWvf8XixYtx7do1JjEgopvm6uqKgwcPYt68eZg5cybWr1+vdEiYM2cOoqOjMXToUEydOhXDhw/Hrl27UF9fr3RoRF0O22zU2RUXF+O9995DUFAQXn/9daxcuRIXL15kEgOiW+T999/Hs88+i9dff51JDMggrq6u+Oabb/Cf//wHtra2uPvuu9G/f398+umnKCoqUjo8IiIyI0888QTeffddlJWVITIyEg8//LDSIXU4cXFxeOmll+Dv749nn30W999/P+Lj47F8+fJOm8SgtrYWW7ZswaBBg3D33XejpKQE33//PWJiYrBo0SImMSAionahEmY00vvBBx+EhYUFduzYoXQoZuPbb7/F448/juXLl+P999/vtA2hzkT7PTKjj5ci8vLycO+99yIzMxNnz55FYGCg0iERERERERFRB1ReXo6rV6/i6tWriI6OlpesrCwAgKOjI0JCQhAWFqazBAYGwtLSUuHoiYiIOoa8vDxERkZi3bp1qK6uxtSpU/GXv/wF48eP5/cpEdFNOnDgANasWYPffvsNFhYW6NOnD5YuXYq5c+cqHZrZqa+vx4kTJ7B582bs2rULtra2eOaZZ7B8+XJ4eXkpHR4RdSKRkZFYsWIFlixZgjVr1sDCQvlrwFy+fBmvv/469u7dC7VajSeffBJPPPEEx1gQ3SJss1FnJITAuXPnsHHjRuzYsQNWVlZYvHgxVqxYAQ8PD6XDI+oyVq1ahddffx2RkZFYunSp0uFQB3XlyhWsW7cO27ZtQ11dHSZMmICHH34YU6ZMgbOzs9LhERE6/vyRjh6/ObpVdfrpp5/ijTfegEajwYMPPog1a9agW7du7ba/ziI5ORk7duzAd999h0uXLsHPzw/PPPMM5s+fD09PT6XDazd5eXnYvHkzPvnkE+Tl5WHq1Kl4/vnnMWrUKKVDIyKizi/erBIZvPrqq9i1axeioqKUDsWsbN++HXPnzsUdd9yBr7/+Gj4+PkqHpLjWEjqY0WHdZf3666+YM2cOhBD4+eef0adPH6VDIiIiIiIiok6mpKQECQkJiIqKQnR0tHybnJyMhoYG2NjYoHfv3ggPD0dwcDDCwsIQHh6O8PBw2NnZKR0+ERGRWaqoqMCOHTvwxRdf4OzZs/Dw8MC0adMwY8YM3HXXXbC2tlY6xA7tVp/f4PkUw3WWuuos5WgvrB/zUldXh5MnT+LHH3/Enj17kJOTg9GjR+PJJ5/EQw89BEdHR6VDJKJOauvWrXjyyScxe/ZsbNq0CVZWVkqHBABITEzEF198gS+//BI5OTkYNWoUZs6ciRkzZiAgIEDp8Do0tsPNF+vqf5SoC9Z/5yKEwG+//YYdO3Zgx44dSE1NxdChQ7Fw4ULMmTMHTk5OSodI1GXU1dVh0aJF2Lx5Mz777DPMnz9f6ZCoEygrK8OePXvw3Xff4ejRowCAsWPH4t5778W9996LsLAwhSPsfNiPMF+sK9aBklj3HY9Go8GZM2dw+PBhHDx4ENHR0ejevTumT5+O2bNn44477ujUif2vXbuGjz/+GN9++y0cHBzw1FNPYcmSJVCr1UqHRkREXYd5JTLYtm0b5s2bh4qKCg6Ea+T8+fOYM2cOSkpK8OWXX2Ly5MlKh0SkV11dHd588028+eabuO+++/DFF1+gR48eSodFREREREREXUhNTQ0SEhJ0khtERUUhNjYW9fX1sLa2hr+/v5zYQLoNDQ2Fvb290uETERGZjfj4eOzcuRM//vgjLl68CGdnZ4wfPx4TJkzAxIkTOZmKiIiMlp6ejiNHjuDIkSM4duwYSkpKMGTIEDz44IOYMWMG+vXrp3SIRNRF/Pzzz5g+fTomTJiA7du3w8bGRumQZBqNBseOHcMPP/yAvXv3oqioCIMGDZInKI0ePbpTD64mIiLDlZaW4tixYzh06BAOHTqErKws9OnTBzNnzsSsWbMwaNAgpUMk6nLKy8vx8MMP4+TJk9i+fTvuu+8+pUOiTqigoAA//fQTDh48iJ9//hn5+flQq9W46667cOedd+KOO+5A3759lQ6TiIhIEXV1dTh//jxOnjyJkydP4uzZs6ioqEC/fv0wefJkTJo0CbfffrtZ/R5oag0NDTh+/DgiIyNx8OBB9OrVC0uWLMH8+fPh4OCgdHhERNT1mFcig99//x1Dhw5FdHQ0QkNDlQ7H7JSWlmLx4sX49ttvMWfOHLz55psIDAxUOiwi2dGjR/HSSy8hNjYWH330EZ5++mmlQyIiIiIiIiKSVVZW4vrZjQMLAAAgAElEQVT164iJiUFUVJR8m5SUhLq6OlhZWSEoKAh9+vRB37590bdvX/Tp0wd9+vSBv78/LCwslC4CERGRYpKTk3Ho0CEcPnwYJ06cQEVFBXr37o0xY8YgIiICY8aMQVhYGL8viYhIJoRATEwMzp07h7Nnz+LcuXOIi4uDvb097rjjDkyaNAmTJ09GcHCw0qESURd15swZTJkyBaNHj8auXbvQrVs3pUNqora2FidOnMDBgwdx6NAh3LhxA87OzoiIiEBERATGjRuHESNGmGXsRERkenl5eTh79ixOnz6Ns2fP4tKlS2hoaMDIkSMxefJkTJ48GYMHD1Y6TKIuKzU1FdOmTUNmZib279+PESNGKB0SdQH19fU4f/48Tpw4oTNZ08vLC8OHD8fw4cMxbNgwDB8+nFdeJiKiTqehoQFxcXG4cOGCvFy+fBkVFRVykp877rgDf/7zn9GrVy+lw213xcXF2LRpE9avX4/k5GRMmDABy5Ytw8SJE6FSqZQOj4iIui7zSmRQVVUFR0dH7NixA9OnT1c6HLO1a9curFy5EqmpqVi8eDH+9re/oXv37kqHRV3Y77//jpdffhlHjx7FlClT8MEHH/BqKURERERERNRh1NTUIDY2FjExMYiNjUVcXBzi4+MRFxeH4uJiAICdnZ2c1EBapGQHXl5eCpeAiIjo1qqpqcGZM2dw6tQpnD17Fv/5z39QXl4OV1dXjBkzBqNHj8bYsWMxYsQIXtGBiKgLqaysxPnz5+WkBf/+979RWFgIBwcHjBw5EmPHjsXYsWNx++23w87OTulwiYgAAJcuXcKECRMQFhaG/fv3w9nZWemQWhQXF4ejR4/Kk1jT09NhY2OD4cOHy/9nIyIiOI6IiKiTuHHjBs6cOSMv169fh4WFBcLDwzFu3DiMGzcO48ePh7u7u9KhEnV5//rXvzBz5kx4eXlh7969TNpHitFoNDh//jx+/fVXeUJnQkIChBDw9fWVkxtIC79DiIioI0lISMDFixfl77hLly6htLQUNjY2GDhwIIYPH44RI0YgIiKiS81piouLw/r167Fp0yZYWFhg9uzZWLZsGcLDw5UOjYiICDC3RAYA0KtXLzzxxBP4v//7P6VDMWsajQYbN27E66+/jtraWixYsACLFy9Gz549lQ6NupB//etfiIyMxN69ezFixAi89957uP3225UOi4iIiIiIiMhkioqKkJiYKC9RUVGIjo5GXFwcysrKAPyR5CA4OBjh4eEIDg6WlwEDBjDJARERdQn19fW4evWqPHH1zJkzSEtLg5WVFfr374+BAwdi4MCBGDRoEAYNGgQPDw+lQyYiojYqKCjA5cuXcfXqVVy9ehVXrlzBtWvXoNFo4Ofnh4iICIwZMwYREREYNGgQrKyslA6ZiKhZMTExGD9+PHx8fHDkyBH06NFD6ZAMlpycrDPBNTo6GgDQr18/DB48WF4GDRoEb29vhaMlIqLmNDQ0ICEhAZcvX5aX33//HdnZ2bCzs8OIESPkhDVjxoyBq6ur0iETkZZ169ZhxYoVuP/++/HVV1/B0dFR6ZCIdBQXF+tM+rxw4QKSk5MBAD179kRoaCjCw8MREhKCsLAwhIaGws3NTdmgiYioS0tNTcX169cRFRWF69evIzo6GlFRUSgqKoKVlRXCw8N1EvMMHDgQNjY2Sod9SzU0NOD48eOIjIzEwYMHERwcjAULFmDhwoX8HiciInNjfokMpk+fDpVKhZ07dyodSodQVlaGTz75BP/85z+RnZ2NadOm4dlnn8W4ceOUDo06qerqamzfvh1r167F5cuXMWbMGDz//PN44IEHoFKplA6PiIiIiIiI6JaRkhxIyQ2kZAfR0dGoqqoCALi5uekkNwgLC0N4eDj69evHQUxERNSppaen4+zZs7h06ZI80TU7OxsAoFarMXDgQAwePFhOchASEsJJrkREZqiurg5xcXFysoIrV67g6tWryMjIAAB4eXnJ/9OHDBmCiIgIBAQEKBw1EZHx4uLiMH78ePTo0QM///xzh02+VVhYiLNnz+K3337D5cuXceXKFaSlpQEAvL29MWjQIPl/9qBBg9CnTx9YWloqHDURUddSWVmJa9eu6SQt+O9//4vy8nJYWVnpJKMZPXo0hg8fDltbW6XDJiI9SktL8cwzz2D79u146aWX8Pbbb8PCwkLpsIgMkp+fjwsXLuD3339HTEwMoqOjcf36dVRUVAD4o/8QFhaGkJAQnSQHTJBGRESmUl9fj6SkJERHRyMmJkbn+0i6uIynp6f8PRQeHo6hQ4di8ODB6Natm8LRK6e4uBibN2/G+vXrkZSUhHvuuQfLli3DxIkT2RYlIiJzZX6JDN566y1s3LgRKSkpSofSoWg0GuzcuRORkZH49ddfMWDAAMyZMwezZ89Gz549lQ6POjghBM6dO4ft27fj+++/R2lpKWbNmoVnn30Ww4cPVzo8IiIiIiIiIrOTmZmpk9xASnaQkpKC+vp6AE2THGgvgYGBPLlERESdTm5urs4k2KtXryImJga1tbWwsbFBv3790KdPH/Tt21e+7devX4edREZE1JHk5+cjLi4OsbGxiI+PR3x8POLi4hAXF4fq6mpYW1sjNDRUTkAzaNAgDBo0CF5eXkqHTkRkMsnJyRg/fjysra1x7Ngx+Pr6Kh2SSRQUFMgTZa9cuYLLly/j+vXr0Gg0sLe3R0hIiNz27tevH/r27Yu+ffvCyclJ6dCJiDq0nJwcXL9+XW5XX79+HbGxsUhMTER9fT2cnJzkpGDS0r9/f9jZ2SkdOhEZ4MKFC5g9ezZKS0vx9ddfY+LEiUqHRNRmQgikpKTIV76WJpTGxMSgqKgIQNNz3EFBQfJtz549YW1trXApiIjInJSXlyMxMRFJSUlNbm/cuIGamhoAQEBAgJysIDQ0FKGhoQgLC0P37t0VLoH5iI+Px7p167B582YAwJw5c7Bs2TKEh4crHBkREVGrzC+Rwc8//4wJEyYgJycHnp6eSofTIf3222/48ssvsWPHDhQWFmLMmDGYM2cOZs6cycF+ZJSrV69i+/bt2L59O1JSUhAeHo45c+bgL3/5CzNqEhEREREREd2EmpoaJCQkID4+HomJibhx44ac7CA5ORm1tbUAAHt7e70JDnr16oWgoCBefYmIiDoNjUaD6Oho/Pe//0VMTIw8cTY+Ph6VlZUAAFdXV53EBtL93r17w9nZWeESEBF1HGVlZUhISJD/z8bGxsr3pcHo3bp100kqExISgoEDByIsLAw2NjYKl4CIqP1lZ2fjnnvuQWlpKY4dO4bevXsrHVK7qKmpQVRUFC5fvozY2FjExsbi+vXrSExMhEajAQD4+vrqJDaQEh707NkTVlZWCpeAiMg8VFVVyYkKtJMVxMXFoaSkBADg5OQk/z8NCQlBaGgohgwZguDgYKhUKoVLQETGamhowAcffIBXX30Vd955J7Zs2cIkf9QlZGdnIzo6GrGxsbhx44bORFTpO8/S0hL+/v46yQ20E/nzs0JE1PnU1dUhPT1d/l5onKwgNzdXfq5ardb5bujVqxdCQ0MREhLChJrNaGhowJEjRxAZGYmjR4+iV69eWLJkCZ544gmeJycioo7E/BIZFBYWwt3dHQcOHMC9996rdDgdWn19PU6cOIEtW7Zgz549qKiowJAhQzB+/HhMmTIFERER/CGcdFRXV+PMmTM4duwY9u3bh5iYGPj5+WH69OmYOXMmxo4dq3SIRERERERERJ1aUVGRfGKv8ZKUlATpp7zGV7pofNUL/uZDRESdQVFREaKiohAdHa3znRgVFYXq6moAgJ2dHXx8fJp8H6rVavj4+PB7kYi6lKKiImRmZiIrK0vn/6a0TupTWFlZISAgQOf/ZlhYGMLDwxEYGAgLCwuli0JEpKiioiJMmjQJKSkp+PnnnzFgwAClQ7pl6urqkJqaqtP2ltrjhv42FRAQwEQHRNRp1NTUICMjo0nbWjtBcUNDA4A/JuWEh4frtK/5mz1R53Ljxg3MnTsX58+fxxtvvIEXXniBfWgi6J7jbvxdGR0djaqqKgCAjY0NevToIf+mL/2OL92yP0FEZF5qampQUFAg/1/X/h8v3U9NTUVdXR0AwNbWFr6+vnp/L+rbty+TFRihrKwM27dvR2RkJKKjoxEREYFnn30W06dPh6WlpdLhERERGcv8EhkAQK9evTB37lz8/e9/VzqUTqOiogKHDx/G4cOHcejQIWRnZ8PHxweTJk3CxIkTMW7cOGY57IKEEIiJicHJkydx6NAhnDhxApWVlRg8eDAmTZqEKVOmYPTo0TyRQkRERERERGQGysrK5AEfN27c0JmYlJKSgtraWgCAg4ODnLm8cYKDwMBA2NnZKVwSIiKittFoNEhKSkJCQgJSUlJ0luTkZGRnZ8sTrBwcHNCzZ08EBgaiZ8+e6NmzJ/z9/eHn5wcvLy/4+fnBwcFB4RIREbWusrIS6enpyMnJQXp6OtLS0nT+96WkpKC8vFx+vlqtlv/vaS+9e/dGcHAwrK2tFSwNEZH5Ky8vx9SpU3H58mUcPnwYI0eOVDokxZWUlCA2NlaeuCst0neRlGzMysoKfn5+CAwM1Fl8fX3h4+MDX19fuLi4KFwaIqI/xs7l5OQgKysLGRkZchtb+39cTk6O/Hw3Nzf594XAwED5N/fevXujd+/esLGxUbA0RNSehBD4/PPP8fzzzyMwMBBbtmzBkCFDlA6LqEOor69HWloakpOTkZaWhvT0dGRmZiI1NRWZmZnIyMjQ+U3f0tIS3t7e8Pf3h4+PD/z8/ODn5wcfHx94e3vDy8sLHh4e8PT05Ph2IqKbVFtbi9zcXOTk5CA7Oxu5ublIS0tDRkaG3DfKzMxEfn6+/BobG5sm/5cDAgLg6+sLf39/BAUFwdPTU8FSdQ43btzA559/jo0bN6KqqgozZ87ESy+9hP79+ysdGhERUVuYZyKDhx56CFVVVdi3b5/SoXRKQgj8/vvvOHToEA4dOoTffvsN9fX16NevH8aOHYuxY8fi9ttvR3BwsNKhkonV1dXh0qVLOHPmDE6dOoWzZ88iPz8fTk5OGD9+PO69915MmjQJvr6+SodKREREREREREbSvtJF40XfFfO0r2whLb169YKrq6vCJSEiImqbmpoapKamNklwIN3PyMiQrwwCAI6OjvDz84O3t7dOggNvb2/4+vrKt/b29gqWiog6q6qqKnnAdkZGhjyJSvpbui0tLZVfY2lpCV9fXwQEBCAoKKhJsoKAgAAmMCMiMoGKigo88MADOH/+PPbv34+xY8cqHZJZy8rK0pvgQLovJToAAHt7e7nN7e/vL7fF1Wq1nPDAx8eH32dEdNNKSkqQkZGBzMxMeZJkVlYW0tPTkZ2djbS0NOTk5ECj0civcXV1lZOv9OzZU05UIC1MwkLUNcXFxWHx4sU4ceIEXnjhBaxevRq2trZKh0XUqdTW1srf09qJDrQn1GZnZ+t8b1tYWMDZ2Rn29vawtbXF8OHD4e/vD7VaDU9PT3h4eOjcZ1JPIursKisrkZubi6ysLOTl5clJChrfz87ORlFRkc5r7e3tmySQkRIU+Pr6wtfXF15eXkwg047OnDmDtWvXYteuXfDy8sKCBQuwdOlS9OjRQ+nQiIiITME8Exm8//77+Oijj5CVlaV0KF1CaWkpjh07hq+++gqnT59GeXk56urq4Ovri5EjR2Lo0KHy4u3trXS4ZKCGhgbExcXh0qVLuHTpEi5evIjz58+joqICHh4eGDt2LMaNG4dx48Zh8ODBsLKyUjpkIiIiIiIiImonpaWlSExM1DuZMyUlRSeLevfu3XUmQWlfwbpnz548SUZERB1eQ0ODPGBHmsiQmZnZ5DYnJwf19fXy61xcXODj4yNf7UkaAOnu7g4PDw94eXnJ993d3WFpaalgKYlIKQ0NDcjLy0N+fj7y8/ORk5ODvLw8eV1ubi5yc3ORl5eHzMxMFBcXy6+1tLSEp6cnfHx85MRj0q20qNVqeHl5wcLCQsFSEhF1HTU1NZg9ezYOHz6MrVu3YsaMGUqH1GHl5+fLk4e1b9PT0+VEPjk5OWhoaJBf4+7uLl91VbryqrTOw8NDXry9veHk5KRg6YiovQkh5Da1NBFHaldLk3Hy8vKQm5uL9PR0VFZWyq+1s7NrkijF19cXarVaJ6kKExgSkbaKigqsXr0aH3/8MQYPHoxPP/0Uw4YNUzosok6rurpaJ7Gnvt/sMzMzUVhYqPM6BwcH2NjYYNCgQaiqqkJmZiby8vJ0EqkBkPsO7u7u6N69O3r06IEePXo0+Vu63717d9jY2NzKKiAiklVUVKCwsBAFBQUoKChAfn6+zt/S/cLCQrk/VF5errMNZ2dnqNVq+bymvvteXl7w9vaGo6OjQiXt2qqrq/HDDz/g/fffx7Vr1xAREYFnn30WDzzwAOd3ERFRZ2OeiQxOnDiBP/3pT0hPT+eV4duREAInT57El19+iZ07d6KhoQHTpk3DggULYGNjg9OnT+PChQu4dOkSkpOTAQC+vr5yUoP+/fsjNDQUffr0YUddYcXFxbh+/Tqio6Nx9epVXLx4EZcvX0Z5eTmsra3Rv39/DB06FKNGjcLYsWMRGhqqdMhEREREREREZEZqamqQkZGBxMREJCYmygNCpL9TUlLkiZx2dnbw8fFBcHAwgoOD5YlV0t+BgYGcVEVERJ1CfX09cnNz5QGS0mBJfROT8/PzdSZcAZAHRWonOpDWubm5yUv37t3l+zzfQmReamtrUVRUpHc5d+4cgD8GmkkDCaX/Cdqn4FUqVbP/DxonK/Dy8mISFCIiM1RfX4/ly5dj3bp1+Pvf/45Vq1YpHVKnVVdXh5ycnCZXTteesJyfn4+srCyUlZXpvNbOzg7u7u5y0gPpe9fb21tuc2vfdu/enZOWiRRUXFyMoqIiFBYWorCwUL6vnaxASk4grdNONmhhYSF/zqU2tpRwUDs5gbe3N9zd3RUsKRF1RPv378fSpUtRUlKCVatWYcmSJeyvE92kmpoaFBQUNJtQWDuxsPZv7G5ubk1+O2t86+fn1+xv6mVlZXJSA+0rlGtPAs7Pz5f/bty/AAAnJyc5wYH2IiU7cHFx0VlcXV3h6uoKFxcX/s8gIlRXV6OkpERnKSoqku/rS1Ig3TZOxqJSqXT+/zS+LyVi9/DwkO/b2dkpVHJqTVJSEjZs2IDPP/8cFRUVmDVrFl544QUMHDhQ6dCIiIjai3kmMigrK4Orqyt27dqFqVOnKh1Op5OSkoKvvvoKX3/9NZKSkjBixAjMmzcPs2fPhpubm97XFBYW4tKlSzpLYmIi6uvrYWVlheDgYISGhiIkJAShoaHo168fgoKC4OXldYtL13lpNBqkpaUhMTFRTloQGxuLmJgYZGVlAQC6desmJy0YOnQohg0bhgEDBnDgIxERERERERG1SU1NDVJTU5GSkiIvycnJ8v2MjAzU1dUB+GPQeEBAAHr27KmzBAQEwM/PD35+frC1tVW4RERERKbV0NAgJzSQJlnk5OTorNP+u7CwELW1tU224+DgoJPkoHGig8aLk5OTvDR3joeoqysqKkJ5eTnKyspQVlYmJyKQJks1txQWFqKioqLJ9mxsbODq6orc3FwAfwwgdHZ2hpeXF/z9/dG7d2+EhYVh8ODBCAkJgbu7OxN9ERF1Eh9++CFeeuklLF68GB999BGvjKawmpoaeVKSlGgsPz9fZ+KzNBG6qKhI78QkW1tbvUkOtJMdaK9zdnaW298uLi4KlJrIfNTX16O0tBTFxcUoLS1FWVmZTkKC5m6l+42TAapUKri5uelcLVk7OYGUmER6zMPDg+1sIjK5xMRELFu2DAcPHsTMmTPxySefcBw0UTPaM0GBv78/rK2tb2l5NBqN3iudS5OMtf+W7peUlKCyslLv9hwdHZskOpAWNzc3vevt7e3h5uYGe3t72Nvbw9nZ+ZbWARH9oaGhASUlJSgvL0dlZSXKy8ubJCRovBQXF6O4uFhnXU1Njd7tS5/57t27w93dXW9iAum+9jrq+M6cOYO1a9di9+7d8PDwwMKFC7FkyRIm3yMioq7APBMZAEBYWBimTZuGt99+W+lQOoWGhgYcP34cGzduxO7du+Hk5ISZM2fi6aefxpAhQ25qmzU1Nbh+/TquX7+OmJgY+X5sbKycAaxbt24ICgpCUFAQAgMD5SUgIAC+vr7w9PS85T80mKvKyko5o3xycjKSkpJ0btPT0+Ws0j169EBoaKicNCIsLAwhISHo2bMnT9AQERERERER0S1XV1eHjIyMJgkOpCU1NVXnJK23t7ec1CAgIAD+/v7w8/ODv78/AgICoFarORmAiIg6vYqKilYnUTf3mEaj0btN7cQGjo6OTZIdODk5wdXVVZ6A5ejoKK/r1q0b7Ozs4OLiAmtraw6SJMWUlZWhtrYWJSUlqK6uRlVVFUpKSuREBGVlZfKEKe0EBdI67efpm7AIAFZWVi0mCWkpmYiDgwMAoLa2Funp6YiKikJ0dDQSExMRFRWF//73vygtLQXwx4DE3r17Izg4GMHBwQgLC0N4eDhCQkLk7RARUceyY8cOzJ07F+PGjcN3333HZFIdiEajaXVidXO3zbW/XV1d4eTkpJPgQLoCa+P12okQ7Ozs4OrqCjs7O3Tr1g3Ozs68YivdElL7urS0FDU1NSgrK5Pb1FIyAmnyjXY7W0oIJt0vKyvTm/QLgDwBT18ykNZuiYiUUl1djQ8++ABvv/02goODsX79etxxxx1Kh0WkCEMTFGRnZ0N7Goq5JihobxqNpsWJzPoW7Suyl5SU6E16LHFycoK9vT0cHBzg6uoKBwcHOclB48ekBAguLi5wdHSEvb09HB0d5d/+HR0d5d/+2f+gzkDq31RWVsr9m7q6OhQVFaGyshKVlZVyH6ayshIVFRUoLi6WH5P6PY0fk+ZC6ePo6AhnZ2e57+/s7AwXFxe4urrK61pa2O/pempqavD999/jww8/xNWrVzFs2DAsW7YMs2fP7nTfiURERC0w30QGTz31FK5du4azZ88qHUqHlp+fj82bN2PDhg1ISkrCnXfeiWeeeQbTpk1rt0ZPfX09UlNTkZyc3GRCflJSErKysnQyK0qZk318fODl5QW1Wg21Wo0ePXroHSBkY2PTLnGbWkVFhc4gQ+l+bm4usrOzkZ2djczMTOTm5iIjIwPl5eXya21tbXUSP0iJIIKCghAcHMyMW0RERERERETU4RQVFcmDWxITE3XuJyYmIi0tTWdQuJubG4KDg+WBLY3v9+zZkwMsiIioyyovL5evKqt9lXntSd3SOu2/G7+upcFYAHSSG9jY2MgDI21tbeHq6gpra+sm62xsbODo6AgLCwv5KrVOTk6wsrKSJ2q19BiZl6qqKlRXV8tXWwWA0tJS1NfX632spKQEDQ0NKC8vlycL1tbWoqKiAuXl5aitrUVxcTFqampQWVmJsrIyaDQanXUtsbW1lScFShMHtRc3Nzc5QYf2usbJPJycnNq13oqKinQSHEhJDmJjY+XE5Wq1GuHh4ToJDoKDgxEUFASVStWu8RERUdtcvnxZHnezd+9ehIWFKR0StTPttrU0CUKadCT9rT0JvLS0VGfCd2lpKYqKilrch5WVlU7b2s3NDba2trC3t4eTkxNsbW3h7Owst9G1296WlpZyIjJXV1eoVCo4ODjAxsYGNjY2cHBw0GmDc+KS+ZAm3mi3qYuLiyGEQEVFBWpra+V2snRVUAA67eyysjLU1NSgtLRUbqMXFxejtrYW5eXlOu3wlkiT2qQJNtrJOKT2t/bf+ta7ubnBzs6u3euNiMhUGhoasHPnTqxcuRLZ2dl48cUX8de//rXDjFMmMkZ1dTUKCwuZoMAMSYmmpInUFRUVOhOwpb8bT84uLS2V/5Yek9qHhnB1dYWlpSVcXFzk/ojUB2ku+YGbm5tO30Lqd6hUKri6ugKAvA3gf7//a/dZpG1TxyclDtDuq0h9EuB/5wvq6urk41Lq50h9IKlf01xSgpKSEtTX16O4uLjJa1ojHZfaiT1cXFzkBCCNk37oSwji4OAgJwtxcXFhX5oMlpWVhQ0bNmD9+vUoLS3F1KlTsWLFCtx2221Kh0ZERKQE801ksG3bNsybNw9FRUW8GsVNuHjxIjZu3IhvvvkGVlZWePjhh7FkyRIMGDBA6dBQU1OD9PR0vZP5pducnBwUFhbqXKlPIl1BSDrxoX2SztnZGTY2NnB2dtYZ8KbdIZboGxAndZaaW1dSUgKNRqNz4qe0tFTOplhZWSknLNCXHdHR0REeHh5Qq9Xw9PSEr68vvLy8miRxUKvVHKBERERERERERF1OUVGR3iQH0t8pKSnyxC9ra2u4u7vrTXIg3Q8MDISFhYXCpSIiIjJfGo1GnmylfWXO2tpanXMh0lWhpCvT1NTUNDsxRppkoz0wzRiGJDmQ1jf3d+OJWS4uLjptAmlylz6Nt9WalralTQjR6sQhba3Vn/ZEuMbb1h40CEBnUpS+bbeUrMBY0sBWfcktpEGtUuJyBwcHODo6wsbGBq6urq1O1HNycurwA6Jra2uRnp6uk+QgKioK165dk98zW1tb9OrVq0mSg379+sHR0VHhEhARkSQ7OxvTp09HTEwMtm3bhkmTJikdEnUAUlKDmpoaFBUVyW1naZ12e9uYxw2dxNGY1NaytraW2xnaV4dsPN6q8YQjR0dH1NfXy+sat8NbutKkoe1oQP8Yr+YY045tqd40Go3ORWmk/pJEeh8k0iQbiZSMoPG2pHZ84+cbSqpTFxcX2NrawtHRUadNLdWVsY9LY+2IiLqSY8eO4fnnn0dMTAyeeOIJvPbaa/Dx8VE6LCKjMUEB6aOd5ECaOC61laUJ4SUlJfJvxVLbWPqtWN9rGhoaUFxcrPP78s3+jiyR+gXafRLpd2RJ4/6AdgwoZtEAACAASURBVNIEifR7tET7PINE+u26OY23YQjtuA3VWpI7faTEwc1p3D9pfE5A3zYa93mApu+ndBxox32z/U+J9H5K76OUREM6ZyA9Lh0H0jkbV1dXWFhYGPQaKVkBk2eTEv71r39h3bp12LNnDzw9PfHMM89g4cKF8PT0VDo0IiIiJZlvIoOsrCz4+Pjg6NGjGD9+vNLhdAh1dXX48ccf8eGHH+LChQsYPHgwFi1ahDlz5nTYZBAVFRUoKiqSFylJgLRIiQS0B9I1TjQgbadxYgF96xp3fAHdTqvU4XFxcZE7PNrJE+zt7dG9e3c50YKbm5vO3/wxh4iIiIiIiIjo5tXW1iIjIwPp6elISUlBeno60tLSkJaWhtTUVKSnp6OgoEB+frdu3RAQEABfX1/4+fnBz88ParUa/v7+UKvV8PPzg5eXF7PmExERtTNpEo80mE57oKMxjzXeXnN/GzPJX5uxyRekiWOGMnYgZEtJFYxN1qA9iazxQE9pgpr2eun8mLGP0c2Tkno1TnIQGxsrDx5Vq9VyggPtJAdM4EVEpIyamho89dRT2Lp1K1avXo2//e1vvGgFKUq77StNlJfGT+lrZ0sTWaR2beO2cuN2uPbEl4aGBly8eBGZmZkYPXo0rK2tddrh+ibOSIxtR+u7ME1z9F3spiWN29GSxhOfGk9QajyZqnFbX7str331WWl/0hg1aeKNdptaautLiSOkSTpERGQa586dw8qVK3HmzBnMmDEDb731Fvr06aN0WERNMEEBdSTa7X/tORxS30N70rw0h0O7/6LdR2hpMj2g/3f8xonC9E22b6lf0dJ5g5bcTCIHYxK1SbT7FPro6wc1PkfQODGdvt/1W0oiIfVltPsn2s+XzkFIfRzgf/0ifYkliDqTgoICbNmyBRs3bsT169dx2223YdmyZZgxYwa/b4mIiP5gvokMAKBPnz54+OGH8cYbbygdilkrKyvDF198gcjISKSnp2P69OlYvnw5Ro8erXRoREREREREREREt1RVVZWc5CA9PR2pqalIS0tDZmYm0tLSkJWVhfz8fPn5VlZW8PLy0kly4OPjA19fX/j6+kKtViMgIKDDJgolIiIioo5No9EgLS2tSZKDa9euITs7G8AfA1V79erVJMnBoEGDOOmNiOgW2LhxI5YuXYq7774bW7dubfEq9ESdQVpaGmbPno1Lly5h7dq1mD9/vtIhERERteratWt4/fXXsWPHDowfPx7vvvsuhg0bpnRY1AUZmqAgKytL53WGJCgICAhoNjEqERERmU59fT1OnDiBr776Cjt37oSNjQ3mzJmDhQsXYsiQIUqHR0REZG7MO5HB/PnzERcXh1OnTikdilnKzs7GZ599hrVr10Kj0WDOnDlYsWIF+vXrp3RoREREREREREREZqumpgYFBQU6A4ESExN1BgelpqbKV4UA/rjagL4BQcHBwRwcRERERESKKCoqapLgQPpbuuqZm5sbwsLC5CQH0v3AwEC9Vx8mIqKbc+HCBTz44IOwsbHBzp07MXDgQKVDImoXBw4cwLx58+Dh4YEffvgBAwYMUDokIiKiFl29ehVvvfUWduzYgZEjR+Kdd97BXXfdpXRY1AkxQQEREVHnVl9fj9OnT+OHH37Azp07kZubi1GjRmHBggV46KGH4OjoqHSIRERE5sq8Exls3boV8+fPR1FREezt7ZUOx2xER0fjnXfewffffw8PDw8sXboUTz31FDO6ExERERERERERmVBubi6ysrKQlpaGzMxMZGZmIj09XV6XlZWF/Px8+flWVlbw8vKCv78/1Go1/Pz84OPjA19fX/j5+UGtVsPf3x8ODg4KloqIiIiIOjuNRoO0tLQmSQ6ioqLkwfI2Njbw8/NrkuRg4MCBcHZ2VrgEREQdU15eHmbPno2zZ8/i008/xbx585QOichk6urq8Oabb+KNN97AI488gk8//ZS/cRERkVk7c+YM3n33XRw6dAj9+/fH6tWrMW3aNKhUKqVDow6mqqqq2aQERUVFTFBARETUiVVXV+PUqVPYt28fdu7ciezsbAwaNAizZs3CrFmz0Lt3b6VDJCIi6gjMO5FBWloaAgICcPz4cWa/xB8JDN544w388MMPCA0NxYsvvojZs2fDxsZG6dCIiIiIiIiIiIi6pJqaGhQUFOgMUkpMTNQZxJSamory8nL5NXZ2dnBzc2tx4JJarYZareaAOiIiIiIyqaKiIiQmJjZJchAdHY2qqioAfwy0105wICU5CAkJgaWlpcIlICIyb3V1dfi///s/vPfee1iwYAE++eQTjuuhDi89PR0PP/wwLl26hMjISCxYsEDpkIiIiJp15swZ/OMf/8CBAwcwbNgwvPzyy5gxYwbPt1ATLSUo0L4tKirSeR0TFBAREXVuaWlpOHToEA4dOoRffvkFFRUVGDhwIB588EE89NBD6Nevn9IhEhERdTTmncgAAIKDg/H4449j1apVSoeimOjoaLz77rvYtm0bQkJC8NJLL+GRRx7hIBEiIiIiIiIiIqIOIicnB1lZWcjIyEB2djYyMjKQk5Mj36anpyM3Nxe1tbXya7p166aT1EBafHx84O3tLd+6u7srWDIiIiIi6gzq6uqQ+v/Yu/v4puq7f/yvtGl6k6bJaZs0aWlLU6TQFgp2glyiCHNz6sS7icrdbvS6ppuOzcubr3M6FdzQuV2PwbVLpgLqVG68diNuD+dQQUUcICqUFsqgpU2bNjftSZqkSZo0/f3hL+dKmhYK0p7evJ6Px3nknJNzTt6fWGx68vm8Ps3NCQEH0QUAVCoVJk2aFBdyUF5ejhkzZkCr1crcAiKi0WXr1q244447MGvWLLz++uswmUxyl0R0Tt555x0sX74cgiBg+/btmDFjhtwlERERJYhEIvjb3/6GJ554Ap988gkuueQSPPjgg7j22mvlLo1kMJSAAqvVCpfLFXfeUAIKiouL2X+fiIhonPF6vfjwww/x3nvv4R//+AcOHz4MtVqNRYsW4ZprrsHVV1+NwsJCucskIiIay0Z/kMF3v/tdNDY2Yvfu3XKXMuIYYEBERERERERERDSxDKVzVUtLC7q6uqRzVCoVcnJyEjpUCYLAzlVERERE9KW5XC6cPHkyIeTg6NGj6O7uBvBFZ/9osEFsyMG0adP4GZSIJqxjx47hpptugsPhwNatW7Fo0SK5SyIasnA4jDVr1mD16tVYtmwZnn32WajVarnLIiIiiuP3+/Hiiy/imWeeQXNzM26++WY8+OCDqKqqkrs0GgYMKCAiIqLzIRAIYO/evdi1axfee+897N+/H+FwGOXl5bjiiitw9dVXY8GCBUhLS5O7VCIiovFi9AcZvPLKK7j99tvhdDqh0WjkLmdENDU14ac//Sm2bt2KyspKPProo7jhhhuQlJQkd2lEREREREREREQ0CnR2dqKtrS1usVqtaG9vlx5bW1ulgWUAkJKSAoPBgIKCAhiNRuTn58NoNCIvLw8mkwkGgwEmkwl5eXlIT0+XsXVERERENFZYrVYp2CA25KCxsRF9fX1ISUlBYWFhQshBZWUljEaj3OUTEQ07j8eD7373u3jjjTewZs0aPPjgg3KXRHRGLS0tuO222/DJJ59g7dq1WLVqldwlERERxWltbcXzzz+P3/3ud+jq6sItt9yCn/3sZ5g6darcpdE5GEpAQWtrK9xut3RO/5Dv/uHeDCggIiKiqI6ODuzduxcff/wxPvroI+zfvx+BQAClpaVYtGgRFi5ciIULF/I7CyIiouEz+oMMnE4n8vLy8Mc//hHXX3+93OUMK5fLhV/84hdYv349CgsL8Ytf/AI33XQTFAqF3KURERERERERERHRGOTxeNDa2gqbzYaWlhbY7Xa0tLTAZrNJ+9vb2yGKYtx5WVlZyM/Ph16vh8lkgtFohF6vR0FBAQwGA4xGI4xGIwwGA1JSUmRqHRERERGNVm63GydOnEBDQ0NcyMGxY8fg8/kAfDEjYv+AA7PZjIqKCs50RETjSl9fH55++mk8/PDDWLJkCZ5//nnObE+j1rvvvotly5ZBp9Nh+/btmDlzptwlERERAQAikQjefvtt/O53v8Nbb72F/Px83HnnnbjjjjuQl5cnd3k0gPMRUDDYY15eHgMKiIiIKEFfXx+OHj0qhRZ8/PHHqK+vBwBMmzYN8+bNw2WXXYaFCxeiqKhI5mqJiIgmjNEfZAAAc+fOxaxZs/D73/9e7lKGRSgUwubNm/HII48gHA7jgQcewI9//GOkpqbKXRoRERERERERERFNAMFgEB0dHRBFMaETWey+6HqstLS0hA5ksTPfRNeLioqgVCplaiERERERjRZWqxV1dXVxAQcNDQ1obGxEX18fUlJSUFhYmBByUFFRAZPJJHf5RETnbPfu3bjllluQnZ2NP/3pT5g+fbrcJRFJwuEw1qxZg9WrV2Pp0qV49tlnkZmZKXdZREREcLvd2LZtG37729+irq4Ol1xyCVatWoXrr7+eQcsyGUpAQUtLC7q6uqRzhhpQYDQakZSUJGPriIiIaCyxWq04ePCgtHz88cfo6OhARkYGZs+ejerqasyfPx8LFy5Ebm6u3OUSERFNVGMjyOCxxx7Dxo0b0dzcDIVCIXc559Wbb76Je++9F83Nzbjzzjvx+OOPQ6fTyV0WERERERERERER0YB8Ph/a2tpgs9lgt9thtVpht9vj9rW2tsLhcCAQCEjnJScnw2AwwGAwID8/HwaDAUajEUajMW5fXl4ecnJyZGwhEREREckhGAzixIkTCSEH9fX18Hq9AABBEGA2mxNCDsrLy5Geni5zC4iIzqypqQk33XQTTp48iRdffBHXXXed3CURobW1Fbfeeis++eQTrF27FqtWrZK7JCIiInz22WfYsGEDXn31VSQlJeG2227D3XffjRkzZshd2rjFgAIiIiIazVpaWvD555/jk08+wSeffIIDBw7AbrcjOTkZ06dPx1e+8hVcdNFFuOiiizB79mxOtEFERDR6jI0gg/3792Pu3Lk4fPjwuLkBdfToUdx5553Ys2cPli5diieffBJFRUVyl0VERERERERERER03sR2ehNFMaHDW3SfxWJBKBSKO1cQBJhMJgiCIHV0G2h90qRJUKlUMrWQiIiIiEaC1WqVAg5iQw5OnTqFSCQCpVKJoqKiAUMOzGaz3OUTEcUJBAK45557sHHjRvzkJz/B2rVrOZswyebdd9/F8uXLodVqsX37dsycOVPukoiIaAJzuVzYunUrXnzxRezbtw/l5eX44Q9/iBUrVkCj0chd3pg1lIACi8UCj8cjnZOamors7GwGFBAREdGIC4fDqK+vR11dHWpra3Hw4EEcOHAANpsNAGAymVBdXS0t8+fPhyAIMldNREREpzE2ggwikQhMJhP+8z//Ew888IDc5XwpgUAATz75JJ5++mnMnDkTzz77LL7yla/IXRYRERERERERERGRbPr6+mC32+FwONDe3g6bzQaHwwGbzSat2+12tLW1weFwIBAIxJ0vCALy8vKg1+thMBhgNBqldZPJBL1eD71eD6PRiKysLJlaSURERETnWzAYxIkTJxJCDg4fPiwNwNDpdCgtLU0IOJg+fToyMjJkbgERTWSvvPIK7rrrLkybNg3bt29HSUmJ3CXRBNLb24vVq1dj9erVWLp0KZ599llkZmbKXRYREU1AkUgE77zzDl588UX8+c9/hkKhwI033ojbb78dl19+ORQKhdwljloMKCAiIqKxzmazoaamBrW1taipqcHnn3+OI0eOIBgMQqVSobKyElVVVZg1a5b0qNVq5S6biIiIzs7YCDIAgJUrV8JisWDXrl1yl3LO3n//fdx5552wWCx45JFHcN999yE5OVnusoiIiIiIiIiIiIjGFL/fD1EUpY54/ddjt+12O3p7e6Vzo530BEGQOuQJgpCwnZ+fj8LCQs6KSURERDRGiaKI2tpaKeQgun7q1ClEIhEAX8zcFA02iA05KCkp4WAZIhoR9fX1WLJkCZqamrBx40bcdNNNcpdEE4DNZsPy5cuxZ88erF27FqtWrZK7JCIimoCam5uxZcsW/P73v0djYyOqq6uxYsUKLF++HDk5OXKXJysGFBAREdF443K5cOTIESmwoK6uDocPH0ZHRwcAQK/XY8aMGVJYwaxZszB9+nT21yAiIhofxk6QwZYtW7By5Uo4HA7odDq5yzkrnZ2deOihh/D888/jmmuuwe9+9zsUFRXJXRYRERERERERERHRuBcKheBwOGC329HW1gaHwwGHwxG33t7eDrvdDofDgZ6eHulchUIBvV4vLXl5edDr9cjNzU3Yju7jgDciIiKi0a2npwctLS0JIQc1NTXo6uoCAGi1WkyZMgVmszku5GDatGlQq9Uyt4CIxptAIIAHH3wQ69evxz333INf/epXUKlUcpdF49R7772HZcuWISsrC9u3b0dVVZXcJRER0QTS1dWFv/zlL/jDH/6Ad999FyaTCd/61rdw++23Y+bMmXKXN+yGElDQ3NwMr9crnTPUgAKTycTvJ4iIiEhWkUgETU1NOH78OOrr61FfX4/jx4/j2LFjaGlpAfDFvfeKigpUVlZKj5WVlTAYDDJXT0RERMNo7AQZiKIIg8GALVu24Fvf+pbc5QzZ1q1b8cMf/hCZmZlYv349Fi9eLHdJRERERERERERERDQIURRhs9ngcDhgs9mkdbvdjvb2djidTjidTjgcDjidzrhzk5KS4oINDAYDDAaDFHIQux3dx5mPiIiIiEYPURTjAg6iIQf19fXo7e0FAJhMJlRUVMQFHJjNZpSUlHDQCBF9KX/4wx9w1113oby8HNu2bUNJSYncJdE40tvbi9WrV2P16tW44YYbsHHjRmi1WrnLIiKiCSAQCODvf/87tm/fjjfeeAORSATXXXcdvvOd7+BrX/sakpOT5S7xSxNFEVarFaIoDjmgIC0tDYIgMKCAiIiIxhxRFKWAgmhYQXQJBoMAAL1ej2nTpmHq1KkoKyuTggs4KTAREdGENHaCDABg/vz5mDp1KjZt2iR3KWfk8Xhw99134w9/+AN+8IMfYO3atcjMzJS7LCIiIiIiIiIiIiI6j2JnUBJFMa6jYv9th8OBcDgcd35aWprUIVEQhLiOi/239Xo9UlJSZGopERER0cTV09ODlpaWhJCDw4cPw263A/hilszS0tKEkIOysjL2FSCiITt27BiWLFkCq9WKl19+GVdffbXcJdE4YLfbsWzZMuzZswdr167FqlWr5C6JiIjGuZ6eHuzcuRPbtm3DG2+8Aa/Xi/nz5+PWW2/FrbfeCkEQ5C5xSKIBBYOFE7S1taGlpQU9PT3SOQwoICIiovEgFArBYrFIYb+x98UbGhoAACqVCpMmTYoL/DWbzaisrITRaJS5BURERDSKjK0gg6eeegrPPPMM2traoFQq5S5nUAcOHMDSpUvhdruxceNGXHvttXKXREREREREREREREQyi0QicDgccDqdcDqdsNlscDgc0j673Q673Q6n0ynti0QicdfQ6/XIzc2VFqPRKO3LycmBXq+POyYtLU2m1hIRERFNDKIoJnTmrK2tRX19PXp7ewEAgiDEdeaMrk+ePBlJSUkyt4CIRhu/349Vq1bhhRdewD333INnnnmGoXZ0znbt2oWlS5ciKysL27dvR1VVldwlERHRONXb24uPP/4Yr7/+OrZs2QKHw4Hy8nKsXLkSK1asQH5+vtwlSoYSUGCxWBAKhaRzGFBARERE400wGERjYyMaGhqkx/r6etTX1+PUqVMIh8NQKBQoLCzE1KlTMXXqVJSVlaGsrAxTp05FcXEx728TERHRUIytIIPGxkaYzWa88847+OpXvyp3OQkikQjWr1+P+++/HwsWLMBLL700qm68EREREREREREREdHY0dfXFxd8EA06iO5zOByw2WzS806nE+FwOO4aarUaubm5MBgMUrhBTk4OcnNz40IPovtyc3PZ2YCIiIjoPBhsxqojR46gvb0dAJCamorS0tK42arKy8tRVVUFjUYjcwuISG4vv/wyfvCDH6CiogLbtm3D5MmT5S6JxpDe3l6sXr0aq1evxvXXX49NmzZBq9XKXRYREY0zkUgEe/fuxeuvv45t27bBZrOhvLwcN998M1asWIHS0tIRrWc4AwrYH5yIiIjGIqvVGhdUELtutVoRHVKYk5MDs9mMCy64ANOmTZPCCqZOnYqMjAyZW0FERERj3NgKMgCACy+8EHPnzsWzzz4rdylxLBYLli1bhgMHDmDt2rX40Y9+xERNIiIiIiIiIiIiIhpRfr8foihCFEWpc2Z0e6B9drtdmik4qn/HTUEQpGWgfUajkeEHRERERGdBFMWEgIPodiAQAAAIgoDy8nIp5CC6PnnyZH72IppAjh07hptvvhnt7e14+eWXcdVVV8ldEo0Bdrsdy5cvx4cffoi1a9di1apVcpdERETjSHd3N3bu3IkdO3bgzTffhMPhwIUXXoglS5ZgyZIlKCkpOe+vyYACIiIiooEFg0G0trZK95hjl/r6eni9XgCASqXCpEmTpEDd2KW0tBQ6nU7mlhAREdE4NvaCDJ588kmsX78era2tSE5OlrscAMDu3buxZMkS6PV6bN26FTNmzJC7JCIiIiIiIiIiIiKiMwqFQujo6IDT6ZQWu90et6+jowM2m03a5/f7466hUqmQm5uL3Nxc5OTkIC8vDzk5OXH79Hq9tJ6dnQ21Wi1Ti4mIiIhGr1AoBIvFkhByUFtbi7a2NgD/1+G0f8jBzJkzkZWVJXMLiGg4eL1e3HXXXXjttdfw0EMP4bHHHoNSqZS7LBqldu3ahWXLliEzMxPbt2/HrFmz5C6JiIjGAbvdjr/+9a/YsWMHdu7ciUAggLlz5+K6667DjTfeiAsuuOCcrnuuAQVnCieIBhgQERERjXV+vx/Nzc2wWCxoampCQ0MDGhsbpbACh8MhHZufn4+SkhKYzWbpMbpeUFDAyXqJiIhILmMvyOD48eMoKyvDrl27cPnll8tdDp577jncfffd+MY3voFXXnmFHQOIiIiIiIiIiIiIaFzz+/0QRTFuiXYsHWif0+mM62gK/N9sWGdaYjue5ubmQqVSydRqIiIiInmJoih1To0NOairq5OCpgRBiAs4iIYcTJs2bdRMFEFE5+7ll1/GXXfdhRkzZuC1116D2WyWuyQaRfr6+vD000/j4YcfxuLFi7Fp0ybOpkhERF9KQ0MD3nzzTfz1r3/F7t27oVQqMX/+fHzzm9/EzTfffNqggKEEFDQ3NyMcDkvnDCWgID8/H4IgjETziYiIiEZE9L5v9DNS9B5wdPvUqVOIRCIAgNTUVBQUFEj3fmOXsrIyZGZmytwaIiIiogGNvSADAJg5cyYWLFiA9evXy1ZDb28v7rnnHmzYsAEPPPAAfvGLXyApKUm2eoiIiIiIiIiIiIiIRquOjg50dHSgs7MzYT366HQ647Z9Pl/CdbRaLXJzc5GTk4OcnBxkZ2fHPcauR4/TaDQytJiIiIhoZITDYTQ3Nw8YctDQ0AAAUKlUmDRpUkLIwcyZM2EwGGRuARGdjaNHj+LWW29FU1MTNmzYgFtvvVXukmgUsNvtWLFiBd5//3089dRTWLVqldwlERHRGBQOh/HPf/4Tb775Jt544w3U19cjNzcX11xzDa677jp8/etfR09Pz7AEFBQUFDCAh4iIiMYdv98/YDhBdNtiscRNCCAIgnTvNvpZKXbbZDJBoVDI2CIiIiKiczI2gwwef/xxbNiwAa2trbKEB/h8Ptxyyy3YtWsXtmzZgsWLF494DURERERERERERERE41105i5RFAddop1kRVFER0cHenp6Eq4T21lWEITTLvn5+SgoKEBqaqoMLSYiIiI6f1wuF06ePJkQcHD06FF0d3cD+L/OsbEhB+Xl5Zg2bRqSk5NlbgERDSQQCODBBx/EunXrsGLFCmzYsAEZGRlyl0Uy2b17N5YuXQqVSoXt27djzpw5cpdERERjiM1mwwcffIA//vGPeOutt9DV1QW9Xo+pU6fCYDAgKSkJ7e3tDCggIiIi6sfn88FisaCtrQ0WiwVNTU1oaWmBxWJBc3Mzmpqa4PV6peOzs7NRWFiIoqIiFBUVobCwUNouLi6GyWSCUqmUsUVEREREw2ZsBhnU1taisrISH374IebPnz+ir22323HVVVehtbUVO3bs4Jc/RERERERERERERESjiN/vP2PgQf/FZrMhEonEXSctLe20YQcDhSLk5eVxwB8RERGNCVarVQo2iA05aGxsRF9fH1JSUlBYWJgQclBZWQmj0Sh3+UQE4M9//jPuuOMO5OXlYevWrZg5c6bcJdEI6uvrw9NPP42HH34YixcvxqZNmzhQlIiIEkSDYqP3RltbW/Hpp5/iyJEjaGlpiRtcFzWUgIJJkyZBq9XK0CIiIiKi4SeKIhoaGuI+Rw30GKVSqZCTk4P8/HyYzWaYzWbps5PZbMaUKVP42YmIiIgmsrEZZAAA5eXluPLKK/Ff//VfI/aara2tuOKKKxAKhfCPf/wDZrN5xF6biIiIiIiIiIiIiIiGj9/vP23YQf9QhNbWVgSDwYTrxAYgDBZ40D8UQRAEGVpMRERElMjtduPEiRNoaGiICzk4duwYfD4fAEAQhISAA7PZjIqKCqSlpcncAqKJxWKxYNmyZThw4ADWrl2LVatWyV0SjQCHw4EVK1Zg9+7deOqpp/jfnYhoAuofUDDQY3NzM8LhsHROcnIy+vr6EIlEoFarUVJSgqqqKlx22WXSYDsGFBAREdF4Zrfb0d7eDovFIn3fa7VapcCntrY22Gw2xA6zy8vLg9FoxKRJk2AymVBQUID8/Hzk5+ejoKAAJpOJwa9EREREpzd2gwweffRRvPjii2hqaoJCoRj212tsbMRXv/pVpKenY+fOncjPzx/2GP0aqgAAIABJREFU1yQiIiIiIiIiIiIiotHL6/Wis7MTHR0dcDqd6OjoQEdHh7Qv+th/X38ZGRnIzs5GTk4OsrOzkZubi5ycHGmJfS76mJ2djeTkZBlaTURERBOV1WpFXV1dXMBBQ0MDGhsb0dfXh5SUFBQWFg4YcsCJIoiGTzgcxpo1a7BmzRosXrwYL7zwArKzs+Uui4bJ7t27sXTpUqhUKmzbtg1z586VuyQiIjqPhhJQ0NTUhN7eXumctLQ0KVA1Pz8fWq0WPp8PbW1tqK+vR1tbG7KysnDFFVfgG9/4Bq688koUFRXJ2EoiIiKi86ujowM2mw02m00KJGhtbZXWW1pa0N7eHhdSn5mZmRBOEBtSMGnSJBiNRqhUKhlbRkRERDQujN0gg5qaGsycORMffPABLr300mF9rZaWFlx66aXIzs7G22+/jdzc3GF9PSIiIiIiIiIiIiIiGr/8fj9EUYQoilIn5Oj2YEtbW1vCddLS0iAIwlkvBoMBSqVShpYTERHReBQMBnHixImEkIP6+np4vV4AgCAIUqBBbMhBeXk50tPTZW4B0fiwe/duLF++HElJSXj11VeHvT8Vjay+vj48/fTTePjhh3Httddi06ZNEARB7rKIiGiIzkdAwUCPhYWF6O3txe7du7Fr1y689957qK2thVKpxJw5c7Bo0SJ8/etfx7x583g/kIiIiMaU6Pep/T839d/X0tKCnp4e6TyVSoWcnJwzfo7i5LZEREREI2bsBhkAwOzZs3HRRRfhueeeG7bXcDgcuPzyy5GUlITdu3cjJydn2F6LiIiIiIiIiIiIiIhoIH6/Hx0dHejs7ERHR4cUcNDZ2RkXeDDQdn8KhQKCICA7O1sKN4hdP912ZmamDK0nIiKisUoURSnYIDbk4NSpU4hEIlAqlSgqKhow5MBsNstdPtGY43Q68b3vfQ9vvfUWHn74YTzyyCNITk6Wuyz6khwOB1asWIHdu3fjqaeewqpVq+QuiYiIAPT09MDpdJ5xcN25BBQUFRVBo9EM+Lo+nw8ff/wx3nnnHezZswf79+9Hb28vpk2bhvnz5+OKK67A1772Neh0upF6K4iIiIiGJBgMSt9znu4zlNVqhcvlijt3oM9QgiAk7MvLy+O9ECIiIqLRZWwHGfzmN7/B448/jvb29mFJ6Pd6vbjsssvg8XjwwQcfwGQynffXICIiIiIiIiIiIiIiGk7RGUvOdrHZbIhEIgnXS0tLiws5ON0S7TSUnZ2NtLQ0GVpPREREo1EwGMSJEyekgINoyMHhw4fh8XgAADqdDqWlpQkBB9OnT0dGRobMLSAavfr6+vD888/jxz/+MebOnYtXXnkFBQUFcpdF5+j999/H0qVLkZKSgq1bt+Liiy+WuyQionFvsICC/o92u/28BhQMxuPxYO/evfjwww+xa9cu7N+/H+FwGOXl5Vi0aBEWLVqEBQsWIDs7+3y/FURERERn5PP54HA40N7eDqfTCYfDAZvNhvb2dtjtdulzU3t7O0RRjDs3KysL+fn5MBgMUghBXl4e8vPzodfrYTKZYDQaYTAYoFQqZWohEREREX1JYzvIwG63o6CgAK+++iqWLFlyXq/d29uLG264Afv27cM///lPlJSUnNfrExERERERERERERERjXbnGoLQ1taWcK2zCUCIXXJzc6FSqWRoPREREclBFEXU1tZKIQfR9diZbE0mkxRsEBtyUFJSAoVCIXMLiEaH2tpa3HrrrWhvb8emTZtw7bXXyl0SnYW+vj6sW7cO9913H6655hps3rwZgiDIXRYR0Zg21ICC/uGewxVQMJi2tjbs2bNHWg4dOoTe3l5MmTIFCxculBaj0XheXo+IiIgoViAQgMPhgN1uh81miwsncDgc0hINLuju7o47X61WS8EEer0e+fn5UkCByWSCwWCQwguGY0JbIiIiIhp1xnaQAQBcffXVSE5Oxptvvnler3vvvffi2WefxXvvvYd58+ad12sTERERERERERERERGNd6Iowmq1nlUAQmdnJ4LBYMK1zjUEgTO0EBERjR89PT1oaWlJCDmoqalBV1cXAECr1WLKlCkwm81xIQfTpk2DWq2WuQVEI8/r9eKee+7BSy+9hLvvvhtPP/000tLS5C6LzsDhcGDlypV49913sXr1ajzwwAMMaSEiOo1gMIiOjo5hCSgoLi5GZmbmsNbf0NCAPXv24KOPPsKePXtw9OhRJCUloaysDPPnz8cll1yCBQsWoLi4eFjrICIiovGr/3d20c9H/ddFUUR7eztih5mlpqYiOztb+u4t+jlpoO2CggLodDoZW0pEREREo9DYDzLYsmULVq5cCYvFct7SRbdt24bbbrsNr776Km677bbzck0iIiIiIiIiIiIiIiI6M6/Xi87OzoSAg4HW+2/3/9pLoVDEBRvEdrSKXRcEATqdTlqi2xwsRERENDaIoigFG8SGHNTX16O3txcAYDKZUFFRkRByMHnyZCQlJcncAqLhtWXLFtx1110oLCzEa6+9hhkzZshdEg3igw8+wG233QalUolt27bh4osvlrskIiLZnGtAgSAI0mA6OQMKBmvTp59+io8//hgffvghPvroIzgcDqjVasyZMweXXnopLrnkEsybNw8ajWbE6yMiIqLRTxRFOJ1OOJ1OdHR0oKOjQ1q32+3StsPhgN1uhyiKceerVCrk5uZCr9cjLy8PBoNB2jYajdK6wWBAXl6eLJ+ZiIiIiGhcGftBBoFAACaTCY899hhWrVr1pa934sQJVFdX49vf/jbWrVt3HiokIiIiIiIiIiIiIiKikeD3++NCDoa62O12aZBjrLS0tLiwg+iSnp4+6HPRRa/XIyUlRYZ3gYiIiKJCoRAsFktcwEFDQwNqampgs9kAfDGrXGlpqRRyEA04KCsrY0dtGleam5uxYsUK7N+/H4899hjuv/9+hniMIn19fVi3bh3uv/9+XH311di8eTMEQZC7LCKiYfFlAwoGCyfIz8/HpEmToFKpZGxdPKvVioMHD+Kjjz7Cnj17cPDgQQQCARgMBsyZMwfz58/HJZdcgosuugipqalyl0tEREQjzO12S+EDsYEEHR0dcDgcCYEFHR0dCIfDcdfIyMhATk4OcnJyYDAYkJOTA71ej9zcXCmMIDa4QKfTydRaIiIiIpqgxn6QAQDcfvvtOHToED755JMvdZ1QKCSlWO/du5c3BYmIiIiIiIiIiIiIiCaIswlBCAQCccf371gfdbqwgzOFIRgMBiiVShneCSIioolBFEU0NDTEhRzU1tbi+PHjUodwQRCkYIPYkIPJkydzADiNSZFIBOvXr8f999+PBQsW4KWXXkJ+fr7cZU14TqcTK1euxM6dO7FmzRo88MADUCgUcpdFRHTWhjOgoLCwcNQHRno8Hhw6dEgKLnj//fdht9uhVCoxdepUKbSguroa5eXl/H89ERHROON2u+OCB84USuB0OhNCCdLT05GTk4Pc3FwpfCAaUjDY/oyMDJlaTEREREQ0JOMjyGD37t1YuHAhDh8+jBkzZpzzdVavXo21a9fi888/xwUXXHAeKyQiIiIiIiIiIiIiIqLx7GyCEPqHITAIgYiIaPQIhUKwWCwJIQdHjhxBe3s7AEClUmHKlClSwEE05KCqqgoajUbmFhCd2f79+7Fs2TK43W5s3LgR1157rdwlTVgffPABli5diuTkZGzduhXz5s2TuyQiogRDDShob29HbJfk8RJQMJCenh7U1NTgwIED2LdvH/bt24f6+npEIhEUFxdj3rx5mDt3LubOnYvZs2cjLS1N7pKJiIhoiM70fU/0s0/sPqfTiVAoFHedwb7DiX4WGuw5IiIiIqJxZnwEGfT19aG0tBRLlizB2rVrz+kax44dw+zZs/Hkk0/i3nvvPc8VEhEREREREREREREREQ3uywQh9B8oEHW6oIMzhSHk5eUhOTlZhneCiIho9BJFMSHgILodCAQAfDFgr7y8XAo5iK4XFxfzdyuNKh6PB/fddx+ee+45rFixAhs2bBh0Fseuri6kpqYiNTV1hKsc244cOYJ7770Xr7zyCgwGQ9xzfX19WLduHe6//35cddVV2Lx5M7Kzs2WqlIgmqkAggM7OTgYUnEE4HEZ9fT0OHjwoLZ9++in8fj8yMzNRVVWF6upqVFdXY8GCBSguLpa7ZCIiIgLQ2dmJjo4OdHZ2ntXSP3haqVQiOzs7YcnJyRlwn16vR05ODtRqtUwtJyIiIiIaVcZHkAEAPPLII9i8eTNOnTp1TrPLLFiwAIFAAHv37uUXx0RERERERERERERERDSmnG0QQmwYwrkGIZwuDIFBCERENJGEw2E0NzcPGHLQ0NAAAFCpVJg0aVJCyMHMmTORlZUlcwtoIvvf//1ffP/730deXh5ee+01zJo1K+55r9eLGTNmYOrUqfj73/8OhUIhU6VjSygUQnV1NWpqarBw4UK88847SEpKAgA4nU6sXLkSO3fuxJo1a/DAAw/wfSWi84oBBeduoNCCgwcPIhAIJIQWVFdXY9q0abz/QURENIy8Xq/0nYbL5Yr7jiO6PVggQf/vPVJSUs4YRDDQc7xvQ0RERET0pYyfIIPGxkZMmTIFf/7zn7F48eKzOvcvf/kLbrzxRnz00UeYN2/eMFVIRERERERERERERERENPoEg0G43W64XK6EJdoZ8HRLdAbqWElJSdDpdNDpdNBqtdKSlZUV9xg9Jrod+5xGo5Hh3SAiIjq/RFGUAg1iQw7q6urg9/sBfDFoMBpsEBtywIFxNFKam5uxYsUK7Nu3D48//jjuv/9+adD9v//7v+PFF19EJBLBr371K9x7770yVzs2PPHEE3jiiSfQ29uL5ORkPProo3j00Uexf/9+3HLLLejt7cXWrVvxb//2b3KXSkRjyHAGFBQVFZ3TJGJjmdfrxeHDh3Ho0CF89tlnOHjwIGpqahAKhaDRaDBr1qy40IKysjLp9yMREREN3elCCM70XDgcTrieWq2GTqeTgpWHEkaQnZ3N7xyIiIiIiOQxfoIMAODKK6+EUqnE3/72tyGf09vbi5kzZ2LGjBnYunXrMFZHRERERERERERERERENP4Eg8EBAw7cbjdEUYTb7Ybb7UZXV1fCevTYgb6yTEpKksIOYgMO+q8LgpAQkBC7TkRENBqFw2E0NzcPGHLQ2NiIvr4+pKSkoLCwMC7gwGw2Y8aMGcjLy5O7CTTORCIRrF+/Hg888AAuu+wyvPTSS6ipqcFVV10lfVZLTk7G3r17MWfOHJmrHd3q6upQVVUVN+BGoVDg+9//Pl544QVcc8012Lx5MwRBkLFKIhpNhhpQ0NbWFnceAwqGrrm5GYcOHZKWzz//HA0NDYhEIsjKykoILZg6dSpDC4iIiP5//cOQhxJAELs+kOi9fUEQ4kIJBluP3VapVCP8DhARERER0ZcwvoIM/vSnP+Hmm2/GyZMnMXny5CGd89prr+Hb3/42jh49iilTpgxvgURERERERERERERERESUwO/3QxRFBAIBaX2gZbDnOzo60NPTM+C109LS4jo7pqenJ+w73fMGg4GDPoiIaES5XC6cPHkyIeDg6NGj6O7uBvDFwEWz2RwXclBeXo6ysjL+3qIv5Z///CeWL18Ot9uNUCgEj8eDSCQCAFAqlSgoKEBNTQ1nshxEOBzGRRddhNraWoRCIWl/UlIS0tPTcd999+HnP/85FAqFjFUS0UiJ/v3KgIKREwqFcPz4cRw8eBB1dXWora3F/v37YbfbAQAmkwnV1dWoqKhAeXk5qqurMX36dIYWEBHRuBZ7T/1M9+AHuic/WBjB6e6zn27R6/VISUkZ4XeBiIiIiIhkMr6CDMLhMIqLi/Hd734Xa9asGdI5c+bMgdlsxtatW4e5OiIiIiIiIiIiIiIiIiIaLn6/f0idMAc7prOzE8FgcMBrx3bIPNsgBHbMJCKi88lqtUrBBrEhB42Njejr60NKSgoKCwsTQg4qKythNBrlLp/GCI/HgwsvvBCnTp1COByOe06pVGL58uXYvHmzTNWNbmvWrMHPf/5zKfwhVkpKCubMmYPdu3dz8DHRGOf3+4cUTtB/0B8DCs6fSCSChoYGHDlyBHV1daipqUFtbS2OHTuGUCiE9PR0VFRUYNasWaiqqkJVVRVmzpwJrVYrd+lERERnpbe3Fy6XC263G6IoSuvRx9j1/vtEUYTb7R7w7xOVSgWtVgutVgudThe3xO7v/6jT6SAIArKysmR4N4iIiIiIaAwaX0EGAPDII4/ghRdeQHNz8xk7A73//vu4/PLLsW/fPsyZM2eEKiQiIiIiIiIiIiIiIiKi0WgoYQhDeX4g0XCDMwUhDHZMbm4uVCrVCL8jREQ0Vrjdbpw4cQINDQ1xIQfHjh2Dz+cD8MXgSbPZnBByUFFRgbS0NJlbQKPJpk2bcMcdd+B03cpeffVVLF26dASrGv2OHj2KqqoqhEKhQY9JTk7G//t//2/Ik/QQ0cgaSkCB1WqFy+WKO48BBcPr1KlTqKurw5EjR1BbWyt9zvH7/VAoFJg8eTIqKytRUVEhBRaUlZUhOTlZ7tKJiGgCi0QiUqiAx+NBV1cXPB4PPB4PRFGUtmMfXS6XtB091+v1Dnh9jUYzaOBAdF0QhAH3a7VaZGRkjPA7QkREREREE9T4CzKwWCwoKSnB9u3bceONN5722G9/+9s4duwY9u3bN0LVEREREREREREREREREdF45vf70dXVJXU07T8TVuxz0fVox9Xo/mAwOOC1NRoNsrKykJWVJa0LggCNRiNtx3ZgjT1Oo9FAp9MhKyuLgzmIiCYYq9WKurq6hJCDU6dOIRKJQKlUoqioKCHgILrQxNLY2IjKykp0d3cPeoxCoUBGRgZqampQUlIygtWNXuFwGBdddBFqa2tPG2QAfPH+vfXWW7jyyitHqDoiGs6AguLiYv6NdZ40Nzejvr4eR44cQV1dHWpqalBXVwePxwMAKCwsRHl5OWbMmIHy8nJUVlZi+vTpyMzMlLlyIiIaT0KhEDwej3RPNxo+EA0YEEUxIYAgGkIQu3+wAAKFQiHdp429d9v/Xm//4AGtVgtBEKRtfv4gIiIiIqIxYvwFGQDANddcg3A4jLfffnvQYwKBAIxGI5544gn86Ec/GsHqiIiIiIiIiIiIiIiIiIgGFwwG48IORFGM2+7fQTZ2Nq/YQIRIJDLg9dVqdVz4wWBhCDqdLmF/tKOsRqOBSqUa4XeGiIjOp2AwiBMnTkghB9GAg/r6emnAhSAIUqBBbMhBeXk50tPTZW4BnW99fX2YP38+9u3bh97e3tMem5KSglmzZmHv3r2cYRzAL3/5SzzyyCNDet9CoRDuvfde/PrXvx6h6ojGLwYUjD2hUAgWi0X63BH9DHL48GEpsEAQBOlzR/Rx5syZMBgMMldPRESjnd/vhyiKcUsgEEjYP9C+6H6Xy4XBhtikpaVBEAQIgoD09PS47aHuz8vL42cMIiIiIiKaSMZnkMGOHTtw/fXX4/jx45gyZcqAx/zpT3/CkiVL0NLSAqPROMIVEhERERERERERERERERENL7/ff9pOuWfTgXcw/TvlnksHXp1OB4VCMYLvDBERnYkoigkDDOvq6nDq1ClEIhEolUoUFRUNGHJQUlLC/6+PUcFgEBdffDE+//xzaWDN6QbmJycn46GHHsLq1atHqsRR6ejRo6iqqkIoFEp4TqFQQKlUIhQKYcqUKVi2bBmuvfZaVFdXy1Ap0dgxlICC1tZWuN1u6RyVSoWcnJxBwwkEQWBAwQhyu904ceJE3OeIhoYGHDlyBMFgEABgMpniQpIqKipQUVEBk8kkc/VERDSSeA+TiIiIiIhoXBufQQa9vb0wm81YunQpfvnLXw54zPe//30cOXIEH3300QhXR0REREREREREREREREQ0tnA2MyIiAoCenh7861//kgYjDjSLsk6nQ2lpaULAwfTp05GRkSFzC2gobDYbPvjgA+zYsQM7duxAV1cXUlJSEA6HE36XKxQKvPPOO1i0aJFM1corHA5jzpw5OHLkiBRkoFAokJSUhEgkghkzZuCGG27A0qVLMXXqVJmrJZLfcAQURB/598DICwQC+Ne//hW3HD9+HMePH4fNZgPwxd9606ZNQ1lZGaZPn47p06ejrKwMZWVlSEtLk7kFRER0LsLhMDweD7q6uuDz+dDd3Q2XywWv14vu7m54vV64XC50d3fD5/Ohq6sLLpcLXV1d8Hg80rlutxtutxuRSGTA11Gr1dBoNMjKyoJGo4EgCHHbGo0GWq0WOp0uYb9Op4NWq4VGo4FKpRrhd4iIiIiIiIhijM8gAwB47LHH8D//8z+wWCxITU1NeH7q1KlYsmQJ1qxZI0N1REREREREREREREREREQTSygUgsfjkTouRzsvRx9FUYzb9ng8cLvdcLlccfu9Xu+A11coFNDpdFKn5djHgfZrtVqpQ3NmZiYyMzOl4zgAiojo7ImiGDfjcjTkoL6+Hr29vQAGnnnZbDajpKSEM1uOUr29vdi/fz/efvtt/PWvf8Vnn30GAFAqlejp6YFCoYDBYEBtbS1ycnKGfF2Px4NwOIxQKCT9bu/q6pJ+VqKDowbT09MDn8932tc43Yyp0c8NUWlpaUhPTwcACIIAAFJY0umsXbsWDz30EBQKhbRceumlWLJkCa6//nrOKk4TxlACClpaWtDV1SWdM9SAAqPRiKSkJBlbN7GFQiE0NjZKAQWxoQUWiwV9fX1QKBQoKirCBRdcIC3R8ILJkyfzvx8RkcxcLpcUOBC9JxcNGYg+5/P54PV64Xa7pWPdbjc8Ho90rCiK6O7uRjAYHPS1VCoV1Go1dDod1Go1MjIykJWVJYUQ9L83Fw0hiN3P+3NERERERETjyvgNMmhpaUFJSQlefvll3HbbbXHPWa1WFBQUYOfOnbjiiitkqpCIiIiIiIiIiIiIiIiIiM6F3++HKIoQRRGBQCBue7B9/fc7HA6Ew+FBXyMtLQ2CIEhLdDDjYNuDHXO6QZRERBNBT08PWlpa4kIOamtrUVNTIw1oTU1NRWlpaULIwbRp06BWq0es1r///e8oLy9HUVHRiL3maOb1eqXfodFgIbvdjn379uHQoUM4cuSIFEJgNptRXV0Nr9cLv98vhRKFw2H4fD709PScMZxgtIoNPVCr1VCpVNLv/Giwg9FoxNSpU1FeXh43U2x6ejrUarUUniQIAnQ6HQRBGHByHqLR5lwCClJTU5Gdnc2AgjEkEAjg5MmT0tLQ0ICTJ0/iX//6F06dOiX93RT9f11sYEF0OVPwCxERDY3f74+7f9X/HtdQn4tux4aFDSR6Hyv2ntbp7oGd7rns7Gz+PiAiIiIiIqL+xm+QAQDccsstaGhowIEDB+L2v/322/jGN76Bjo4OZGdny1QdERERERERERERERERERHJKTqznNfrhdfrlQZpRre7urrgcrmk7f7HRAdpulwuDPbVu1KplAYuZmZmSotWq0VWVhYyMzOh0WiQmZk56DHR5zMzM0f4HSIiGl6iKErBBrEhB/X19dJgG5PJJAUcxIYcnO8ZnsPhMDIyMgAAd999N376058iNzf3vF1fTn6/H06nEzabDXa7HQ6HAw6HIyHwx+Vyxa2HQqEBr6fT6ZCeno6MjAykpqYiEAggNTUVlZWVUKvVSE9Pl37HpaSkSIObBgoESE5ORlZWFgBIx0dptdpB/xvHXmsgZwpNCAaD6O7ulrajM8tGIhG43W4AGDCAIRrO0N3dDb/fj5MnT0KpVCIcDqOrqwterxfd3d3S5wi/3w+fzzdgDRkZGVKoQXTpv63X65GXlweDwQC9Xg+9Xs+Zaem8GEpAgcViift3xICCsc3pdMaFFMSGFrS2tkrHGY1GlJaWorS0NCGsQKPRyNgCIqLR6VxCBgZ7zul0DvoZHPgidOBcQwYGeu50n7eJiIiIiIiIzpPxHWSwd+9eXHLJJdi7dy/mzZsn7V+3bh3WrFkDu90uY3VERERERERERERERERERDRe9J8xb6CO6UOZLS+6bzBD6Zw+2L7Ybb1eHzdYlIhoNAmFQrBYLHEBBw0NDaipqYHNZgPwxYDa0tJSKeQgGnBQVlZ2TsEvx48fR1lZGYAvQmhSUlLw0EMP4Sc/+cmoDJLp7e1Fe3s7LBYLWltb0dLSAofDgfb2dimowG63w2azwev1xp2bnp4OvV6P7OzsQQfQD7St0WiksAc6O9HwpNiwiP7hEf33dXZ2wuFwSDOhR0UDDXJzc+NCDoxGIwoKClBUVIT8/PxxE8RBZ4cBBROX2+1GU1MTmpqacOrUKTQ3N+PUqVNScEE0pCUlJQXFxcVSWIHZbI5bV6vVMreEiOj8c7vdCAQC8Pl88Hg8CAQC8Hg88Pl8CAQCcLvd0n0dURSl0Kvo/u7uboiiCJ/Ph+7ubng8HrjdbkQikUFfMyMjA2q1GhqNBllZWVCr1VKQVWZmJjIyMpCZmQmdTicdGw2zjB4rCELcdYiIiIiIiIjGoPEdZAAAc+fORUlJCbZu3Srtu/vuu3Ho0CF8+OGHMlZGREREREREREREREREREQ0sPMViHC6jvVnmslvKIEIgiAgJycHqampI/wOEdFEJYoiGhoa4kIOamtrcfz4cWnAtyAIUrBBbMjB5MmTBx2Eu2PHDlx33XVx+5RKJdRqNR566CGsWrUKaWlpw94+AOjr64PVakVjYyMsFos08LilpQVWqxXNzc1ob29Hb28vAEChUMBoNEKv18cNbI8Obo8d9J6Xl8dBqmOM0+lMCKdwOBxwOp1ob2+H3W6H0+mE1WqVBioDX/yeLywsRH5+PoqKilBQUCCtFxYWoqSkBIIgyNgyOhtDCShobm6OCy5hQMH4YrPZ0NTUhObm5rjAgug+l8slHavX61FcXDxgYEFhYSGUSqWMLSEiShQKheD1euH1ehEIBNCTEf13AAAgAElEQVTV1YXu7m4EAgG4XC7pnofL5UIwGITP50NXVxeCwSA8Hg+8Xi+CwSDcbje6u7sRDAbj7pWcTnJyMrKyspCRkYG0tDTodDrpfkl0Xa1WQ6fTQa1WQ61WIzMzE1qtVgoc0Gq1UuiXWq3mZywiIiIiIiKi/zP+gwxeffVVfOc738HJkydRVFQEALjlllsQiUTw+uuvy1wdERERERERERERERERERHR8IoGHHyZQAS/3z/grNCxBgs7OFMQwkDbWq2WA+qI6KyEQiFYLJaEkIMjR46gvb0dAKBSqTBlyhQp4CAaclBVVYUNGzbgZz/7GXp6ehKunZSUhLy8PDz22GO4/fbbkZyc/KXrDQaDaG1tRUNDQ8JSX18fNxhZEASYzWZp4HHsuslkwuTJkxlOQACAQCAAq9UqDW5vaGhIGPB+6tQpKeQo+rPV/+cr+m8jPT1d5haNf8MZUGAymaBQKGRsHZ2NaFBPdIn9d3z8+HF4PB7p2Nh/u/3//V5wwQXIysqSsSVENJ4NdH9hoPUzPT/Q+pkMdI8huj7YPYgzrUfDCvj7koiIiIiIiGjYjP8gg1AoBLPZjGXLlmHt2rUAgKuuugr5+fnYuHGjzNURERERERERERERERERERGNHW63W5ol0ev1QhRFeL1e+Hw++Hw+iKIorXu9XrhcLmnb4/HA7XZL211dXYO+jkKhgE6nQ2ZmpjTjoSAIcbMf6nQ6abbDrKwsZGVlSc9HZ0OMbut0uhF8l4hotHE4HKivr8exY8dw/Phxab2xsRGhUAgAkJubC5fLNWhgS3Rw05QpU/Dkk0/i5ptvHtJrt7S04OjRo6irq8PRo0dx9OhR1NfXw2azSceYTKa4AalmsxklJSXS4FQGu9D5FAwG0dzcPGCIRkNDg/T7WalUoqioCGVlZaioqMC0adNQUVGB6dOnQ6vVytwKwOfzYePGjXjqqafwve99D6tXr5a7pDiiKMaFEYiimBBQ0NTUBJ/PJ50THVzJgILxp6enBy0tLXHhBLGLxWKRfh+lpKQgNzc3LlgkNrCgpKQEGRkZMreIiEajYDCI7u5u+Hw+9PT0wOVyIRgMSn+PBwIBeDwe+Hw+BAIBuN1uKXRAFEXpfLfbjWAwCK/XC4/Hg2AweNq/36M0Gg3S0tKg0WiQmZmJ1NRUaLVaZGRkIDU1FYIgSOEBWq0WaWlp0t/zqamppz2PiIiIiIiIiMas8R9kAABPPvkkfv3rX8NisUCtVmP+/Pmorq7Gb3/7W7lLIyIiIiIiIiIiIiIiIiIimrD6z9R4uhkaz7Td2dmJYDA46GudbpbGs93Ozs5GWlraCL5TRDQcQqEQGhoacOzYMdx33304ceLEGc9JSkpCJBJBdXU1fv3rX2PBggUAgLa2Nnz22Weora2NCy6IDvrKzc2VBoGXlZWhtLRUGpjKWe9pNHE6nXEDrKM/y8eOHUN3dzcAID8/H+Xl5Zg+fTrKy8tRWVmJqqoqaDSaEanvv//7v/Hb3/4WXq8X4XAYixcvxhtvvDHsrw0kBhQM9NjS0oKenh7pHAYUjG9utxutra1obW2F1WpFS0sL2traYLFYYLVa0draira2Nun4jIwMTJ48GcXFxdJSVFSE4uJilJSUwGg0MsCGaBzq/7dvdL3/49k+F90XDS84k9P9XTzQ+lCP1Wg0UCqVI/BOEhEREREREdEYMzGCDDo7O1FYWIhnnnkGd911Fy677DLMmjUL69atk7s0IiIiIiIiIiIiIiIiIiIiOk+iAzjcbje8Xi98Ph98Ph9EUZTWvV4vXC6XtO3xeOB2u6Xtrq4udHV1wefzwe/3D/paKpUKarUagiBArVZDrVYjMzMTOp1O2tZoNMjKypK2tVotNBoN1Go1MjIyIAgCMjIykJGRgaysrBF8p4ioP0EQ4HK5zvq84uJi9PT0SINUBUFAeXk5KioqpMeKigqYTKbzXTLRiLNarairq0NtbS3q6urQ0NCAw4cPw263AwBMJhOqq6ul5eKLL4Zerz8vr93U1ITf/OY3eO655xAOhxEOh6XnZs+ejU8//fRLXX8oAQUWiwWhUEg6hwEF41soFILNZoPFYpECKqxWK6xWKywWC9rb29Hc3CwFfABf/EwUFBQgPz8fkyZNgslkQmFhoRRUUFxcjNzcXBlbRUSxuru7EQwG0dXVhXA4DJfLhZ6eHvh8Puk5t9uNcDgMt9uNYDCI7u5uKTTA5XIhHA6jq6tLes7r9SIUCsHlciEUCsHj8QypFrVaDZVKBZ1OB6VSiaysLClIIDMzEykpKdDpdEhJSYFGo5GeiwYICIKAlJQUZGZmSiED0eOif4OqVKphfkeJiIiIiIiIiBJMjCADAPiP//gPvP/++zh69Ci++c1vwmg0YtOmTXKXRURERERERERERERERERERKNY/5kv+6+fzbbT6YwbANnfUGe8HMrMmYIgIDs7G2lpaSP4bhGNTZ2dncjJyTntMUlJSejr60NsVyu1Wo3Kykp861vfwoUXXojZs2dDEIThLpdo1GlqasKnn34at7S3twMAzGYzLrzwQsybNw/z58/HhRdeeFYzNtfU1OCpp57C1q1boVAo4gIMooxGY9yM97GGM6AgPz//LN8pGi38fn/cz0BDQ0PCz0Vzc3Pcz5sgCIP+HJjNZphMJhiNRiQlJcnYMqLxIRoG4Ha7EQqFzhgUEP17K/qcKIoIh8PweDzw+/0IBALweDxx53m93iHVcqaggNiAgczMTGRkZCA1NRVZWVlISUmBVquVQvCiYQJarRZKpRJarRapqanIyMgY5neUiIiIiIiIiEg2EyfIoLa2FjNmzMDf/vY3bN68GQCwfft2masiIiIiIiIiIiIiIiIiIiKiicTj8UgzfIqi+P+xd+/xUZUH/se/k8lMLnPNPTMJqEEugugKrVW52uXiDa1uS19YtVtrW+293Wp/tRfR7vZeu75q1+6r2qp0XWovrt2loK2CgKCtQEGDiBAl5D5J5pK55Tb5/WHnNJNMQgJJJpDP+/U6r3PO85zznOc5MSHC83xHsVhM0WhUwWBQ4XDYWJwTDAaNOr/fr2g0qmg0qlAoNOi6RCIx5POSi2bcbrfy8/OVn58vl8tlLMBxOBxyOp1GXTIMof91+fn5stvtcrlcRh1wJtm9e7cuu+wy49xsNiuRSKSEFjidTs2ePVsXX3yxrrrqKi1ZskQOhyMT3QVOCw0NDSnBBrt27ZLP55PNZtOll16qJUuWaMmSJXrPe96T9s+VnTt36lvf+pa2bNmi7OzsYYOAzGazvv71r6upqSllMXpzc3PKQnSbzaZp06aptLRUlZWVKisrS7u32+3j8k4wvnp6euTz+dTS0qKGhgbjuLGxUS0tLTp+/Liampp0/PhxRaNR4768vDxVVFTI4/Fo+vTpKi8v17Rp0+T1euX1elVZWSmPx8MnmWNKS4YBjGTfP8jtZPahUEi9vb0j6tfAMLd0AW+nUud0OmU2m8f57QIAAAAAAJzRpk6QgSStWrVKWVlZmjlzpvbt26edO3dmuksAAAAAAAAAAAAAAACnbOCiIb/fP+h8qON0dScKSBi44Kf/op/hjoeqKy4uZoEgMiIWi+m73/2u7r33XmVlZSmRSMhkMmn69OlatGiRrr32Wi1fvlxlZWWZ7ipwWuvr69OhQ4e0Y8cO7dy5U9u3b9exY8dksVj07ne/W6tXr9aVV16puro6fetb39Irr7wii8UybIBBfzNnzjQWnQ8MJigtLdW0adNks9nGeZQYa93d3fL5fGpublZjY6Nx3NTUpJaWFjU1Nam5uVktLS3y+XwpATS5ubkqKSmR1+tVSUmJEUgwbdo0eTweVVZWyuv1qrCwMIMjBEans7NT0WjU+N09ufg/Eomoq6tL4XBY3d3d6ujoUE9Pj/E7fSAQUF9fn/x+v/r6+hQIBNTb26tQKKSenh51dHSou7tb4XB40DNGKrno3+VyKSsrS263O2XvcrlkNpvldDplsVhkt9uN0LWcnBzl5+cb/2+Qn5+vnJwcORwOWSwWud1u455kHQAAAAAAAE4LUyvIYNOmTVqzZo3uvPNOPfbYY2pqasp0lwAAAAAAAAAAAAAAACad5AKnSCSiaDSqjo4OhUIhRaNRRaNRBQIB4zgYDCocDisWiw26zu/3KxaLGdcNx2azKT8/Xw6HQw6HQ3l5ebLb7XI4HMrNzZXD4ZDdbldeXp5xnJubK6fTKZvNptzcXLlcLuXn5ys3N1dut9tYDAX0d+zYMf3hD3/Qpk2b9Pzzzysej+v888/XmjVrtGTJEi1atEgOhyPT3QTOeHV1ddq+fbu2bdumzZs3q66u7qTb2r9/vy644IIx7B3Gk9/vV0NDgxobG9XQ0CC/35/2uKWlJeWT2fsHI3m9Xnk8npTj/mUej0cmkymDo8SZLPm7siQjLCAZHpAMFThRyEAoFFJvb++oQgZGymazyWq1ym63y2KxjEvIwMBnAAAAAAAAAGlMrSCDvr4+XXDBBSotLdXzzz+vQCAgl8uV6W4BAAAAAAAAAAAAAABMCeFwWNFoVOFwWMFg0Ag58Pv9RvhBKBRKCUYYeByPxxUKhRSJRBSPx08YkCBJBQUFys3NVV5eXsqx2+02FmS5XC7l5ubKZrPJ6XQqNzfXCFIYKlSBRVtj6//9v/+nLVu26I477tC6devkdDrHrO3jx49rw4YN2rhxo1599VU5HA6tWLFCV199ta666ip5PJ4xexaAk7Njxw498MAD2rFjh1paWozy7Oxs9fT0DHvvli1btHr16vHuItIIhUJqaWlRa2ur2tra1NbWZhz3L29tbVVLS4va2tpS7s/Pz1d5ebnKy8tVUlKi8vJylZWVqbS0VB6PR6WlpcYxITMYKBkWcLL7U2ljNJK/e45kX1BQMOJr0+2ToQUAAAAAAADAJDC1ggwk6fHHH9dHP/pR9fT0aNu2bVq2bFmmuwQAAAAAAAAAAAAAAIBTFIvF5Pf7jQVmY3Gc/MTc4Qy18OxUjgsLC5WbmztBb27yuOKKK/TMM88oKytLVqtV69at0+23366LL774pNqLRCL63e9+p8cee0xbt25VYWGh1q1bp2uvvVZLly6V1Wod4xEAGCttbW361a9+pUcffVR79+5VX1+fEomEJMlqtaqrq8u41mw26+GHH9Y///M/n9Szuru79fvf/17hcFgf/vCHx6L7p61IJKLW1lb5fD61tramhBC0tbWlLe/u7k5pIy8vT0VFRSouLlZJSYmKi4tVXFysoqIilZSUyOv1qqSkRGVlZfJ4PLLZbBkaLU5VIBBQX1+fQqGQent7FQ6H1d3drWg0qs7OTnV2dioajaq7u1vhcFi9vb0KhULq6+tTIBCQJAWDQSUSCeN3rkgkoq6uLiMsINlGT0+POjo6lEgkRhRi1V92drYcDodMJpPcbrckye12y2QyGYv+kwFVyd/FcnJylJ+fL4vFIrvdLrPZLKfTmdKGy+VSVlaWHA6HsrOzZbPZZLVaB7UBAAAAAAAATGFTL8igu7tbs2bNUltbm+688059/etfz3SXAAAAAAAAAAAAAAAAMEml+xTesQhJSC7cG85Qn8p7KiEJRUVFysnJmaC3NzqLFi3Srl27jHOLxaLu7m6de+65uu2223TbbbepqKjohO28+uqreuCBB/Tkk0+qs7NTV199tT784Q/rqquuksViGc8hABgHra2t+u///m/9/Oc/11//+lc5nU7l5eXJ5/MpkUjIZDLp3/7t3/SVr3xlVO3W1tbqZz/7mX7605+qtbVVxcXFeumllzRjxoxxGsnEicfj8vv9abf29nYjhCAZTJA8H/gp81ar1QglSAYRlJSUpJQlgwqS5QQTjK/k7xP9F/QngwRGUpcMExhpXfL3n1MJEkgXApAMEjhRCEAyhCArK0sul0uSVFBQIGlwkEB+fr5ycnKM35msViv/PQIAAAAAAACZNfWCDCTpxz/+sb7whS9o8eLF2rZtW6a7AwAAAAAAAAAAAAAAgCnoVMIRhqtPfkLycE4mBOFE9SUlJacUFHDBBRfo1VdfHVRuMpmUlZWlrKwsXXfddfrEJz6hf/zHf5TJZEq57sUXX9R9992nP/7xjzrvvPN0++2368YbbxxR+AGA00N1dbUee+wxPfLII4rFYlqxYoVmzJihm2++WQsWLDjh/YlEQlu2bNF//Md/aPPmzcrOzlZXV5dRf+GFF+qvf/3reA5hxIYLIzjRFovFBrWX/JldUFCQEkyQDCJIF1jgcDgyMPLJp7OzU9FoVH19fQoEApKkcDis7u7utHUdHR3q6ekZUV3/YIBkXbpAgmTdaNntdlkslpRF/ckggIF1/YMGBtb1DxJIhhA4nU6ZzWbj2oFBAhaLRXa7/WRfOwAAAAAAAIDT39QMMohGoyovLzf+op/EVQAAAAAAAAAAAAAAAJwpkgsfI5GI4vG4gsGgotGoEXKQDEIYKiQhEAgoHo8rGo0qGAwqHo8rEokYn848HJvNptzcXLlcLuXn5ys3N1dutzsl+CC5wNHtdis3N1f5+flyu9268847VVtbO2z7FotF3d3dmjFjhj72sY/pox/9qHw+n+68805t2rRJy5Yt05e//GVdccUVg4IOJguTyTRk0MRwdVMV7wTpRCIR/eIXv9D3v/99+Xw+ffrTn9bXvvY1OZ3OtNc3Nzfr0Ucf1YMPPqi6ujqZzea0P8+qqqp09OjRMeljOBxWKBRK2fx+v4LBoHEeCAROOoxgtFteXt6YjGu8BYNBJRIJdXV1KRKJSJLx509PT486Ojok/T1IoLe3V6FQSNI7c0M7OztTggOSf+ZJMoJ+kiEC6Z6XLqxgtJIL+vsv5E8u/rfZbLJarSOuS4YOJOvSBRIMVwcAAAAAAAAAGTQ1gwwk6e6779a3v/1tPfLII7r11lsz3R0AAAAAAAAAAAAAAABg0ksu9AyFQorH4wqHw+ro6FA8HldHR4fC4bDi8bhCoZAikYhisZhxfKJQBbfbbSwePZHk4naz2SzpnU9R//a3v61Vq1aN5/DHBEEGo8M7wXA6Ozv105/+VN/85jeVm5urn/zkJ7ruuuuM+j179uhHP/qRNm7cKJPJdMJPtK+srNRbb71lhAz0Dx0YGEDQ/7x/fbIukUikfYbL5ZLT6ZTT6ZTb7c5IGEH/QIB0i/+TwTZS+sX/yWCB7u5uhcNhSVJHR4d6enpSggUikYi6urqMgB0pNVjA7/cPet7JSC7aTwblSH8PB+i/uN/pdMpsNqcEBdjtdlksFmVnZ8vhcKTcmwwkGK4uXSABAAAAAAAAAEDSVA4yCAaDKi4u1pw5c/Tqq69mujsAAAAAAAAAAAAAAADAlFZQUDCiIAOTyaSsrCz19vYqKytLN954ox599FEj1GCyI8hgdHgnGInW1lZ96Utf0mOPPaY77rhDVVVVeuihh1RTUyOz2aze3t4RtTPcf285OTkpAQT9AwkGhhPk5eUpNzdXDodDVqtVFotFDodDFovFWLSfXMx/ouPRXDuS+5IhBCcrGRbQPzRgvMpOVG+z2WS1Wk96LAAAAAAAAACAcTV1gwwk6YorrtCzzz6r+vp6eTyeTHcHAAAAAAAAAAAAAAAAmLJyc3PV2dmZts5isRgLby+88EK9/fbbcrvd+t///V/NmzdvIrs5SPLTtwdOw0pXnu6Tuj/60Y/q4YcfHrZOkl577TV9+ctf1vbt2yVJixYt0g9+8AOdf/75g9o/cuSI7rzzTm3dutUIhxjJNLHk/QcPHtRHPvIRHThwQAsXLtQvfvELdXZ26tZbb1V1dbXe/e5367HHHtP06dNT7v/973+v7373u9qzZ4/Ky8t1/fXX67777jM+ybz/M2pra/XpT39azz//vPLz87Vy5Uo98MADKioqGtH7mqh3Ikn79+/XnXfeqRdffFFms1mLFi3S5z//ea1evdq45rXXXtNdd92lHTt2SJKWLFmi733ve2n7cqKx9x/31q1btXz5cm3cuFHr1q0zypN9H4t3EAwGtX79ej399NNqaGhQQUGBVq9erU9+8pO6+OKLjXZG8vXNtKeeeko33nijsWh/tKxWq971rnfJYrGop6dHfX19ys7OVjQaVV9fnxKJhILBoCSpq6tLkUhEkhSNRof8+TVSTqdTZrNZJpNJbrdb0js/++x2uyQZi/klyeFwKDs7W5LkdrtlMplkNpvldDolvRO6kJ+fL0kpi/1dLpeysrKUlZUll8slKTU0IFlvtVpls9lS+gUAAAAAAAAAwChN7SCDt956SzNmzNB1112np556KtPdAQAAAAAAAAAAAAAAAKakvr4+mc3mlIXlOTk56uzslMPh0KpVq3Tttddq6dKlWrZsmTwej7Zs2WIs9s20oT7FPV35cJ/4PlTdkSNHtGTJEt1zzz36p3/6J2VlZWnz5s2655579MILL6iysjKljZUrV2r9+vW66KKLtG3bNl111VUjXrRvMpm0du1arV+/Xl6vV1/96lf1yiuvqLKyUt/85jfl9Xr1la98RT6fT7/+9a8H3fuf//mfuummmxQKhfTlL39ZJpNJjz766KDrVq1apS984QtavHix/H6/Pve5z8nlcukXv/jFpHonhw8f1rXXXqsHH3xQl112md5++23dfvvt2rFjh3H/kSNHdPnll+vee+/VmjVr1NfXp9///vdav369tm3bpnPPPXdUY+/t7dXs2bP1l7/8RQUFBca9jY2Nmjdvno4fPy6bzTZm7+B973ufLrroIt1+++1yu906ePCgPvOZz+jFF18cFMQxkq9vpr300ktaunSpuru7R32v1WrVddddJ2no4IDk1yQ7O9sIcegfBmC322WxWCSlDw7oHxKQn5+vnJyckx0qAAAAAAAAAACT2dQOMpDeSWivrq5WKBQyEogBAAAAAAAAAAAAAAAATJxIJCK73W4sWp8+fbo+8IEPaM2aNVq8eLHxaeA333yzXnjhBf31r39VYWFhhnv9d+MdZHDTTTfpggsu0F133ZVS/vOf/1z79+/XAw88kNLG1q1btXz58pMYyTv3b9u2TcuWLZMkNTQ0qKKiIqWsrq5OCxcuVHNz87Bt+f1+nXvuuWpraxv0jP/5n/8xFoxL0htvvKH3vve9qq+vH3RtJt/JjTfeqCuvvFI333xzSl/nzJlj9Oumm27Su9/9bn3uc59Luff+++/Xvn37tGHDhlGP/e6771ZFRYU+9alPGWXf+c53dOzYMT300ENj+g4cDoeOHTuW8j311ltvqaqqatiwh6G+vpPBs88+qyuvvFI33HCDdu/erfr6emVlZSmRSAx7X05OjuLx+AT1EgAAAAAAAACAMxpBBtu2bdPll1+uBx54QJ/97Gcz3R0AAAAAAAAAAAAAAABgykkkEvr4xz+uWbNm6dprr9WcOXMGXXPs2DHNmDFDTzzxhNauXZuBXg5tvIMMysvL9fLLL+uss85KKW9ubtbll1+ugwcPprQRiURO+kNdTCaTQqGQ8UnziURCZrN5UFl2dvYJF4UPNSaTyaT29nbjk+0lqbOzU3l5eYPazPQ7KS8v1969e+X1eoe9Jl1f3nrrLV122WVqbGxM6ctIxv7mm29q3bp1euWVV4yyWbNm6Ve/+pUuuuiiYZ872newatUqRaNRfe1rX9OKFSuUnZ19oteS0u5knYJ4yy236LXXXtPevXtVXV2tX//619qwYYNqamqGDDXIzs5Wd3d3BnoLAAAAAAAAAMAZhyADSdqzZ48WLlyY6W4AAAAAAAAAAAAAAAAAGMKGDRv0iU98QqFQaFQLrSfCeAcZWCwW9fT0pL0nLy9P0Wh0RO2PxEj7PLDM5/PpK1/5irZs2aKmpib19vYadSN9B6N5XxP1TrKzsxWNRmW1Woe9JhKJKCcnJ6U8Ho/L4XCkLIwfzdiXLFmiBx98UBdeeKG2b9+uL37xiynBBmP1DoLBoO699149/fTT8vl8uuiii3TDDTfok5/8pCwWi6TRfX0ni2eeeUZXXHHFoOCIAwcO6Le//a02btyow4cPy2w2G+MxmUwjCugAAAAAAAAAAAAn9GZWpnswGRBiAAAAAAAAAAAAAAAAAExubW1tKiwsnHQhBtI7i587OztTytrb28es/eLiYrW3t6uvr2/Q1n+xeibdfPPNstls2rlzp+LxuNG/8TJR76SoqEitra0n7EtjY+Og8sbGRhUXF5/0sz/ykY/o5z//uSTpkUce0cc//vFBzx2Ld+ByuXT//ffr6NGjqqmp0Sc/+Ult3LhR69atM66Z6K/vWCgrK5OkQV+/Cy64QPfee6/eeOMNHTp0SPfdd5/mz58v6Z3v5f4hDQAAAAAAAAAA4OQRZCDp9ddf16OPPprpbgAAAAAAAAAAAAAAAAAYQlVVlZqamuTz+TLdlUHKy8tVW1ubUrZ9+/a015pMpiHbGapu9erV2rZt26DyHTt2TJoPcdm1a5fuvfdenX322UbYRCwWO+V2M/1Oli9frj/96U8pZfv379fcuXON8xUrVuh3v/vdoHufeuoprVix4qSfvXbtWj399NPy+XzasmVLSrCANHbvwGQyqa6uTtI74Qgf/OAHtWnTJj377LPGNeP19R1P+/fvl8Vi0fTp04e8Zvbs2br77rt14MAB1dTUaMuWLTKbzRPYSwAAAAAAAAAAzlwEGUh68cUXddttt+mZZ57JdFcAAAAAAAAAAAAAAAAApLFy5Uq53W79+7//e6a7MsjKlSt19913q66uTuFwWM8884x++tOfpr22oqJCu3fvVnd3t5599tmURdZD1a1fv1733HOPfvOb36itrU0dHR36v//7P61bt05f//rXJ2SMJ3LZZZfprrvu0ttvv62uri4dOXJEt99++ym3m+l38rWvfU333Xef/vSnPykSiejAgQO69dZb9ZnPfMa45p577tH999+vhx9+WC0tLfL5fHrkkYcJpPMAACAASURBVEd0//3365577jnpZ9vtdl1++eW66aabdO2118rhcKTUj+U7uO2221RdXa3Ozk41NzfrBz/4QUoIw3h9fcdLT0+PHnjgAd1www3KyckZ0T3nnHOOVq5cOc49AwAAAAAAAABg6iDIQO/8I8yNN96oG264Qc8991ymuwMAAAAAAAAAAAAAAABggLy8PK1fv17f+973tHXr1kx3J8UPf/hDWa1WLViwQOXl5frJT36in/3sZ5Le+bT7/u6//3596EMfkt1u16c+9Sk9+OCDJ6w7++yz9dvf/lYbN27UjBkz5PF4dN999+nHP/6x3ve+9xn3J59lMpkGPXck+t8/2rLHH39c8Xhc73nPe+RwOHT99dfr6quvHtG9w5Vn+p3Mnz9fGzZs0Pr161VcXKxrrrlGH/jAB3THHXcY18ycOVObN2/Wb3/7W1VVVemcc87Rb37zG23evFnnnnvuSY9dkm699VY9++yz+tjHPjaobqzewZ/+9Cfl5eVp2bJlcjqduvTSSxWPx/XYY48Z14z06ztZ3H333XrjjTdOKUgCAAAAAAAAAACcGlNfX19fpjsxGfT09OjDH/6wnnzySf3gBz/QZz/72Un5DywAAAAAAAAAAAAAAADAVNXX16d169Zp06ZNevrpp/Xe9743010CMIn09fXpG9/4hr71rW/p0Ucf1c0335zpLgEAAAAAAAAAMFW9mZXpHkwW2dnZ+uUvf6l7771X//Iv/6IrrrhCtbW1me4WAAAAAAAAAAAAAAAAgL8xmUz65S9/qTVr1mj16tX6/ve/r0QikeluAZgE/H6/rr/+en3nO9/Rz372M0IMAAAAAAAAAADIMIIM+jGZTLr77rv14osv6vjx45o5c6Y+8YlPqKWlJdNdAwAAAAAAAAAAAAAAAKB3PrDkv/7rv/Ttb39bX/3qV7V48WIdOHAg090CkCF9fX164okndN555+mVV17R1q1bdeutt2a6WwAAAAAAAAAATHkEGaTxnve8R/v27dN3v/tdPfXUU5o1a5b+9V//VeFwONNdAwAAAAAAAAAAAAAAAKY8k8mkL33pS9qzZ48k6aKLLtLatWt19OjRDPds8jKZTMNuUxHv5PS3c+dOLVu2TDfddJNWrVql/fv3a/HixZnuFgAAAAAAAAAAEEEGQ8rJydHnP/951dTU6Itf/KK+//3va8aMGfrGN76hurq6THcPAAAAAAAAAAAAAAAAmPLmz5+vnTt3asOGDdq3b5/OO+883XLLLTpw4ECmuzbp9PX1DbtNRbyT01MikdBTTz2lRYsWacmSJbLb7XrllVf0+OOPq6ioKNPdAwAAAAAAAAAAf2Pq419cRqStrU0/+tGP9PDDD6utrU1r1qzRHXfcoRUrVpC+DQAAAAAAAAAAAAAAAGRYd3e3nnjiCf3whz/Ua6+9pkWLFumWW27R2rVr5XK5Mt09AKfoyJEj2rBhgx5//HHV1tZqzZo1uuuuu3TZZZdlumsAAAAAAAAAAGCwNwkyGKWuri797ne/00MPPaTt27dr5syZ+tjHPqYPfvCDmj59eqa7BwAAAAAAAAAAAAAAAEwZfX19amtrM7bW1la1trbqpZde0s6dO3X48GGZTCa9//3v180336zVq1fLbDZnutsARigQCOjJJ5/U448/rl27dsnj8ehDH/qQbrvtNs2aNSvT3QMAAAAAAAAAAEMjyOBUVFdX66GHHtITTzyhQCCgSy65RGvXrtX73/9+VVZWZrp7AAAAAAAAAAAAAAAAwGkjGUrQ2to6KJzA5/OlrWtra1MikUhpx2azqaioSCUlJXK73bJYLIpEItq5c6dKS0t1zTXX6KqrrtLKlSvlcDgyNFoAQ6mtrdWmTZu0adMmPffcczKZTLr++ut1yy23aMWKFYSRAAAAAAAAAABweiDIYCx0dXXpj3/8o5588kk9/fTT6ujo0GWXXaa1a9fqhhtuUEVFRaa7CAAAAAAAAAAAAAAAAEyoWCwmv9+vxsZGNTQ0yO/3D9r61/l8PvX09KS0kZubq4KCgpTN6/XK4/EMKi8oKFBlZaVcLlfa/tTU1Gjjxo3atGmTXn75ZZnNZi1dulRXXXWVrrnmGs2cOXMiXguAAXp7e7V7924jvODVV1+V3W7XqlWrtGbNGt1www1yOp2Z7iYAAAAAAAAAABgdggzGWmdnp5599ln9+te/1tNPP61QKKSqqipdc801WrNmjZYuXSqr1ZrpbgIAAAAAAAAAAAAAAAAjdqJQgoHl4x1KcKpaW1u1ZcsWbdq0Sc8884z8fr+qqqq0ZMkSLV26VIsXL9asWbPG5dnAVNfd3a1XXnlFO3fu1I4dO7Rz5075/X6de+65uvrqq3X11Vdr6dKlysnJyXRXAQAAAAAAAADAySPIYDzF43Ft27ZNf/jDH7R582YdOXJEbrdbK1eu1JVXXqkrr7xS5eXlme4mAAAAAAAAAAAAAAAAppCJDiXwer2qqKiYtIuSe3p6tGvXLj333HPavn27/vznPysajaqsrExLlizR4sWLtWTJEl144YUym82Z7i5w2gmHw9q9e7cRXPDyyy8b32OLFy/W0qVLdcUVVxAeAgAAAAAAAADAmYUgg4n05ptvGqEGL7zwgjo7O3X++edr+fLlWr58uZYuXari4uJMdxMAAAAAAAAAAAAAAACniVgsNmQgQbpQgpaWFvX29qa0cSaFEoyFnp4e7d+/Xzt37tSLL76o559/Xm1tbbJYLJo5c6YWLlxobO9617uUm5ub6S4Dk0ZHR4f279+vPXv2GNsbb7yh3t5eeTweLV68WIsWLdLixYu1YMECmUymTHcZAAAAAAAAAACMD4IMMiUajWrr1q167rnn9MILL2j//v1KJBKaN2+eLr/8ci1btkxLly5VSUlJprsKAAAAAAAAAAAAAACACTAeoQRDBRJMlVCCsZBIJFRdXa2//OUv2rt3r/bu3av9+/crGo0qJydH8+fP14IFC7RgwQLNmzdPc+fOVWFhYaa7DYyrvr4+1dbW6tChQ9q/f7/xvXHkyBH19fWptLTU+L5YsGCBLr30Unm93kx3GwAAAAAAAAAATByCDCaLQCCgHTt26IUXXtALL7ygffv2KZFIaO7cuVqyZIkuvfRSXXLJJZo1a1amuwoAAAAAAAAAAAAAAIATyEQoQWVlpaxWa4ZGPLX09vbq0KFDxuLtvXv3at++fero6JAklZaWat68eZozZ47mzp2r8847T+eddx4LuXHa6enpUU1NjQ4ePKhDhw7p4MGDev3113Xo0CGFw2FJUkVFhS666CItXLjQCC6orKzMcM8BAAAAAAAAAECGEWQwWQWDQSPYYNeuXdq7d6/i8biKiop0ySWX6JJLLtGll16qiy++WA6HI9PdBQAAAAAAAAAAAAAAOGMNF0qQrvxUQgmS5cXFxYQSnIaOHTuWstj79ddf18GDB9Xe3i5Jcrvdmj17tqqqqgZtlZWVysrKyvAIMBV1dnbqrbfeUk1NTcp25MgRvfnmm+rq6pLJZNJZZ501KJxj7ty5KigoyPQQAAAAAAAAAADA5EOQwemiq6tLe/fu1csvv6yXXnpJu3btUm1trcxms+bOnWuEGixYsEDnn3++LBZLprsMAAAAAAAAAAAAAAAw6RBKgExoaWlRdXW1Dh06pMOHD6csFo9Go5KknJwcnX322YPCDSoqKjRt2jR5PB7mBOGkRKNR1dbWqqGhQXV1daqtrVVNTY2OHj2qmpoa1dfXKzmNsLi4OOW/wWRgwZw5c2Sz2TI8EgAAAAAAAAAAcBohyOB01tDQoJdeekm7d+/WSy+9pL179yoajSonJ0fz58/XggULtHDhQi1YsEDz589XTk5OprsMAAAAAAAAAAAAAAAwZvx+f9pAgqFCCZqbm5VIJFLa6B9KMFQgAaEEGE9NTU0pwQb9t6amJiNIw2Qyqby8XBUVFfJ6vZo+fbq8Xq8qKytVWVmp0tJSlZSUqKSkRCaTKcOjwkTo6uqSz+eTz+dTfX29sR0/flyNjY06fvy46uvrFQgEjHtyc3M1ffp0nXPOOSmBBcnN6XRmcEQAAAAAAAAAAOAMQpDBmaS3t1eHDh3S3r17tWfPHu3du1f79u1TOByWxWLR+eefb4Qb/MM//IPOP/98ORyOTHcbAAAAAAAAAAAAAACAUAIgjZ6eHjU3N6u2tlYNDQ2qq6tTXV2dGhoajEXq9fX16uzsNO4xm81GoEFpaanKysqMc4/HYxwnvx/cbjffB5NEJBJRIBAwfs61tLSoqanJCCtoampSS0uLWltb1dzcLL/fn3K/0+k0gi36h11UVFQYx8XFxRkaHQAAAAAAAAAAmGIIMpgKGhoatGfPHmPbvXu32traJEkej0cLFy7UvHnzNHfuXC1cuFBz5syR2WzOcK8BAAAAAAAAAAAAAMDpKhOhBCUlJbJYLBkaMZBZLS0t8vl8gxa+Nzc3D6oLh8OD7rfZbEaoQf99/2ObzSaXyyWbzab8/Hw5HA45HA7l5eXJbrfL6XRO2TlH8XhcsVhMfr9fsVhM0WhUwWBQkUhEsVhMoVBIoVDI+JmXDCsYuO/q6hrUdjJ4oqSkRGVlZSorK1NxcbFKS0tVXl5u1Hm9Xtnt9gyMHgAAAAAAAAAAIC2CDKaivr4+vfXWWzpw4IBeffVVHThwQPv379fRo0eVSCRks9k0b948XXjhhZo/f74uuOACzZ8/X4WFhZnuOgAAAAAAAAAAAAAAmGBDhRKkCyQ4lVCC/uWEEgDjJxaLqbW1NeX7dqiF9f2PI5GIgsHgsG1brVbZbDa53W7l5eUpLy9PZrNZTqdTkmS322WxWJSdnS2HwyFJcjgcys7ONu7tz+VyKSsrK+2z8vLylJubm7auo6NDPT09aes6OzsVjUZTygKBgPr6+hSLxRSPx9XX16dAICBJikaj6uzsVG9vr0KhkCQpFAopFospEokY9w4lOVaXyzUoKGKofXIrKSmZsuEQAAAAAAAAAADgtEeQAf6uq6tLb775pvbs2aODBw+qurpaf/nLX9Tc3CxJKigo0Ny5czVv3jxVVVWlHAMAAAAAAAAAAAAAgMmts7NTbW1tg4IHhgslaGpqGrRAl1ACYGqLRCKKRqPq6OhQR0eHotGoEXIQjUYVi8Xk9/uNAIDu7m6Fw2FJ7wQA9Pb2qqurS5FIRNLfQwTi8bhisZjxnP7BAekk20onNzdXeXl5aeuysrLkcrlSypxOp8xmc0qYgtvtlslkSmmroKBA0juBDPn5+bLb7XI6ncrPz1d+fr7cbrdx7HK5ZLPZZLVaR/JaAQAAAAAAAAAAzjQEGeDE6uvrVV1drerqar3++uvG3u/3S5KKioo0d+7clO28885TRUVFhnsOAAAAAAAAAAAAAMCZKR6Pq729fcxCCYYKJCCUAAAAAAAAAAAAAABwEggywMnz+/2qrq7WwYMHU/aNjY2SpJycHM2YMUPz5s1TVVWV5s6dq3nz5mn27Nmy2+0Z7j0AAAAAAAAAAAAAAJNDpkIJSktLlZ2dnaFRAwAAAAAAAAAAAADOYAQZYOz5fD699tprOnz4sA4fPqzXX39dhw8f1ttvv63e3l6ZTCZNmzZNs2fP1qxZszRnzhzNmjVLs2bN0vTp05WVlZXpIQAAAAAAAAAAAAAAcFKGCiUYKpCAUAIAAAAAAAAAAAAAwBmIIANMnK6uLh05ckRvvPGGEXJw6NAhvfHGG2pra5P0zkSMc889V1VVVZoxY4axnzFjhs4++2xZrdYMjwIAAAAAAAAAAAAAMFWcTChBY2PjoHZOFEowsJxQAgAAAAAAAAAAAADAaY4gA0wObW1tRrDB0aNHVVNTo6NHj+ro0aNGyEFWVpamTZuWEm7QP/CgoKAgw6MAAAAAAAAAAAAAAExWsVhsyOABQgkAAAAAAAAAAAAAABhTBBlg8ovH42poaFBNTY2qq6t18OBB1dTUqKamRrW1terp6ZEkFRQUqKqqKu121llnyWw2Z3gkAAAAAAAAAAAAAICxMNpQgsbGRvn9/kHt5ObmDhlIkC6UoKysjH97BgAAAAAAAAAAAADgxAgywOmtu7tbx48fN4IN+m9vvvmmQqGQJMlqtaqysjJtyMHs2bNlt9szPBIAAAAAAAAAAAAAmJpGG0rQ0NCgQCAwqB1CCQAAAAAAAAAAAAAAmDQIMsCZrampSUePHlVNTY2OHj2actzc3CxJMplM8nq9Ouecc3TWWWdp+vTpxnbWWWfp7LPPls1my/BIAAAAAAAAAAAAAGDySxdKMFQgwcmGEqQrJ5QAAAAAAAAAAAAAAIBJhSADTF2RSCQl2ODtt9/WsWPHdOzYMdXW1qZMlikqKkoJNxgYeFBeXp7BkQAAAAAAAAAAAADA2BttKEF9fb2CweCgdgglAAAAAAAAAAAAAABgyiHIABhKPB5XQ0ODampqVFNTo4aGBjU2Nhrnx44dU29vryTJarWqsrJSHo9HXq9XVVVVxubxeHT22WfLZrNleEQAAAAAAAAAAAAApqqxCiUoKChIG0gwVChBeXm5srKyMjBiAAAAAAAAAAAAAACQQQQZACeru7tbPp8vJdygf+DB4cOH1dHRYVxfUFBgBBukCzvwer0ZHA0AAAAAAAAAAACA08VoQgkaGxtVX1+vzs7OQe0QSgAAAAAAAAAAAAAAAMYJQQbAeGpublZtba2xHTt2TMeOHTPOW1tbjWudTqemT5+uadOmyePxaNq0afJ6vaqoqFBlZaW8Xq9KSkoyOBoAAAAAAAAAAAAAY41QAgAAAAAAAAAAAAAAcAYiyADIpGg0qrffftsINjh+/LiOHz+uhoYG1dfXq66uTqFQyLg+JydHFRUV8nq9QwYeeDweWa3WDI4KAAAAAAAAAAAAmJoGhhIMFUhwsqEE6QIJCCUAAAAAAAAAAAAAAACTEEEGwGQXj8fV0NCghoYGY6JTY2OjampqjOPa2lr19PQY9yQnNiUnMnm9XlVVVQ0qAwAAAAAAAAAAAJDeaEMJ6urq1NXVNaid0YYSeDwemUymDIwYAAAAAAAAAAAAAABgzBBkAJwp/H5/SrjBwMCDuro6hUIh4/rc3NyUUIN0gQfTp09XdnZ2BkcFAAAAAAAAAAAAnLqRhhIky9va2gaFEuTm5g4KHSCUAAAAAAAAAAAAAAAAIC2CDICpJBaLpYQbpAs8aG5uViKRMO5JTrAaGHrQf0LWtGnT5HQ6MzgyAAAAAAAAAAAATBWEEgAAAAAAAAAAAAAAAEx6BBkASBWPx9XQ0KD6+nrV1dWpublZDQ0NampqUmNjoxobG9Xc3KzW1taU+5KTt8rKyuT1elVWVqaKigqVlpaqoqJCZWVlxoQvAAAAAAAAAAAAQEoNJRgqkIBQAgAAAAAAAAAAAAAAgNMOQQYATk5XV5daW1tTJo6l29fV1aVMJsvJyVFhYWHKpLHkcf/9tGnTZLFYMjhCAAAAAAAAAAAAjMZ4hhIMFUiQrAMAAAAAAAAAAAAAAMCkQpABgPHX0tKilpYW1dfXq7m5WY2NjWpsbFRzc7Pq6+uNunA4bNxjMplUVlam0tJSVVRUqKysTF6vV2VlZfJ4PPJ4PCopKZHH45HT6czg6AAAAAAAAAAAAM48ow0laG1tVXd3d0obhBIAAAAAAAAAAAAAAABMWQQZAJg84vG42tvbjQlvA/fJyXC1tbXq6ekx7svJyVFhYWHaiW/9z71er6ZNmyaLxZLBUQIAAAAAAAAAAEyskYQS9C8fi1ACr9ergoKCDI0YAAAAAAAAAAAAAAAAGUaQAYDTT09Pj1paWtTS0qKmpia1tLTI5/OpsbFRPp9PPp8vpbyrq8u412QyqaSkRCUlJSotLVV5eblx7PF4jLry8nKVlpYqPz8/gyMFAAAAAAAAAABIlYlQgoqKCrnd7gyNGAAAAAAAAAAAAAAAAKchggwAnPlisdigiXz9z/sfNzU1qf+PxeREvoET9/qfJ4/LyspkNpszOFIAAAAAAAAAAHA6SYYSDBVIcLKhBEMFEhBKAAAAAAAAAAAAAAAAgAlCkAEA9BeLxeTz+dTY2Cifz2cct7S0yOfzqampyTj2+XxKJBLGvRaLRSUlJSopKZHH4zGOi4uLVVZWpuLiYmMrKSlRQUFBBkcKAAAAAAAAAADG0mhDCXw+n3p6elLaIJQAAAAAAAAAAAAAAAAAZwiCDADgZCUSCSPQoLm5WU1NTfL5fGppaTGOW1tbjeCDjo6OlPstFktKuEG6sIPS0tKUsuzs7AyNFgAAAAAAAACAqSMToQSVlZVyuVwZGjEAAAAAAAAAAAAAAAAwpggyAICJ0tnZqba2tiEnOQ4sG27SY7qJjgPLvF6vCgoKMjRaAAAAAAAAAAAmhxOFEgwsP9VQAq/Xq4qKCuXk5GRoxAAAAAAAAAAAAAAAAEDGEWQAAJNVIpFQa2trytbS0iKfz5dS1tzcbBx3dnamtJGfn6/i4mKVlpaqpKRExcXFxlZWVpZyXlxcrKKiogyNFgAAAAAAAACAEyOUAAAAAAAAAAAAAAAAADgtEGQAAGeS5ATOoSZxDixrbm5WIpFIaaP/BM6hJm4ygRMAAAAAAAAAcKpisdiQgQTp/k67paVFvb29KW0MDCUY7u+1+TttAAAAAAAAAAAAAAAAYMIQZAAAU1lnZ6daW1tTtra2NmNrb29POff5fAoGg4PasdvtKioqUnFxsYqLi1VUVKSioiIVFhYaxwPr7XZ7BkYMAAAAAAAAABgPhBIAAAAAAAAAAAAAAAAA6IcgAwDA6MVisbQTT4eamNrW1qaurq5B7RQUFAw5CTXdJNWSkhJZLJYMjBgAAAAAAAAApo7hQgnSlY9FKEFlZaWsVmuGRgwAAAAAAAAAAAAAAABgjBFkAACYGMFgUK2trWpraxu0tbe3q62tTa2trSnXRKPRQe0UFRUZW2FhoQoLC1VQUGAcD1WWlZWVgVEDAAAAAAAAQGZNZChBsry4uJhQAgAAAAAAAAAAAAAAAGBqI8gAADB5xePxlMCDZNBBMvigvb09ZfP7/Wpvb1dXV9egttxu96Cwg5GEIOTk5GRg5AAAAAAAAAAwmN/vTxtIMFQoQXNzsxKJREobhBIAAAAAAAAAAAAAAAAAmAAEGQAAzjyxWCztRN4TbU1NTRr4x+LASb0j3Twej0wmU4beAAAAAAAAAIDJbqxDCYYKJCCUAAAAAAAAAAAAAAAAAEAGEGQAAEBSZ2en2tvb1d7eLr/fbxz339KVBwKBQW1ZrVYVFhaqsLBQBQUFxnHyPLm53e5Bx7m5uRkYPQAAAAAAAICTlYlQgpKSElkslgyNGAAAAAAAAAAAAAAAAACGRZABAACnKpFInDDsoH9Z/wnLXV1dg9rLy8sbMuRg4PHAc7vdnoE3AAAAAAAAAJw5hgolSBdIcCqhBP3LCSUAAAAAAAAAAAAAAAAAcIYhyAAAgEyKxWJpP6XN7/crHo8PW9/U1KR0f4z3nyQ9mq20tFTZ2dkZeAsAAAAAAADA+BhtKEG6v3MjlAAAAAAAAAAAAAAAAAAARo0gAwAATlddXV3y+/0KBAIpk637nw91HAwG07aZnHjtdruHPO6/uVwu4zg/P3+C3wAAAAAAAACming8rvb29rSBnycTSjBUIAGhBAAAAAAAAAAAAAAAAAAwJggyAABgKkokEkOGHAwXgJAMQejp6RnUptVqNYINkvtk+EH/wIP+x/3PHQ5HBt4EAAAAAAAAJlqmQglKS0uVnZ2doVEDAAAAAAAAAAAAAAAAwJRCkAEAABi9WCxmTCKPx+Mp5yPZ4vF42naTk8+H2vLy8oa8honoAAAAAAAAE49QAgAAAAAAAAAAAAAAAABAGgQZAACAiReLxRQIBBQIBBQMBlP2gUBAfr8/5XzgcTQaTdtuQUGBXC6X3G633G532mOXyyWn02mUO51OoywvL2+C3wQAAAAAAMDkMVQowVCBBMm6gU4USjCwnFACAAAAAAAAAAAAAAAAADjjEGQAAABOP11dXYMCDgZuQwUhhEIhhUKhtO1arVYj2CAZepAMORi4T4YmDKyz2+0T/DYAAAAAAAAGi8ViQwYPEEoAAAAAAAAAAAAAAAAAABhnBBkAAICpaeBk/ng8PuQE/3T1ra2t6u7uTtt2coJ/csvLyxtUNlw9E/4BAAAAAEB/YxlKMFQgQbpQgrKyMpnN5gyMGAAAAAAAAAAAAAAAAABwmiPIAAAA4GQFg0GFQqG0e7/fP2RdMBhUIBBQMBhUb29v2rbdbrecTqdcLtegfbLO6XTK4XAY+4KCgpSy/Pz8CX4jAAAAAADgREYbStDY2Ci/3z+oHUIJAAAAAAAAAAAAAAAAAACTGEEGAAAAmRSJRAaFHQQCAQUCgSGDEJJ1oVBIHR0dikajadvOzs5OG3CQ3BcUFAwqczqdRlBCssxms03wWwEAAAAA4PSQLpRgqEACv9+vhoYGBQKBQe0QSgAAAAAAAAAAAAAAAAAAOMMQZAAAAHAm6L9wIh6Pp11IcaLy5uZmJRKJtO3n5uYaiyXy8vJSzkdaziILAAAAAMBkNhGhBOnK+f9lAAAAAAAAAAAAAAAAAMAZiCADAAAAvCORSCgYDCoQCKijo0OhUMjYB4NBBYNBhUKhIcuTZeFwOG37JpNJbrdbLpdLDodDdrtddrtdbrfbOLbb7XK5XHI6nca5w+EYdI3b7Z7gtwMAAAAAOJ2MNpSgvr5ewWBwUDujDSUoLy9XVlZWBkYMAAAAAAAAAAAAAAAAAMCkQpABAAAAxlZfX58CgYCCweCgQIRAIGCch8NhhcNh+f1+4zgcDhvBCOFwWPF4fMjn9A9DcDqdcrlcstlsw4YfpLvHbrcrJydnAt8QAAAAAGA0RhNK0NjYqPr6enV2dg5qp6CgIG0gAaEEAAAAAAAAAAAAAAAAAACMOYIMAAAAMLklF6zE4/FBvnrJLAAAGKpJREFUi1cGlg133traqu7u7iGfk5ubayxWycvLG9V5/7KSkhJZLJYJfEMAAACp2tvb1djYqGAwqGg0qu7uboXDYUnvLOKVJJfLpaKiInk8HuXl5WWyuwCmGEIJAAAAAAAAAAAAAAAAAACYEggyAAAAwNQRi8VOGH4w0oCEQCCgoX6Vzs3NHVX4wXDnycWGAAAA/XV3d2vfvn06cOCADh48qOr9+/XmoUNqbG1VvKtrVG25bDZN83p13oUXau68eZo7d64WLlyoGTNmjFPvAZwpBv6/1FCBBCcbSpAukIBQAgAAAAAAAAAAAAAAAAAATgsEGQAAAAAn60RhByMNTGhtbVV3d/eQzzlR2MFIAxJKS0uVnZ09gW8IAACMlUQioT//+c/avHmzdmzdqpf//GdFOztlN5t1ntmseV1dmi3JK8nzt32BpDxJFkl2SX2SAn9rLyTJJ6nxb1utpNezslRtsehoV5d6+vrkKS7WkuXLtXT5cl1zzTU666yzJnjUACYSoQQAAAAAAAAAAAAAAAAAAGAMEWQAAAAATAYdHR0Kh8MKh8MKhUIKBoPGeTgclt/vTzkPBoMKhULGeUdHhwKBgCKRSNrFRP+/vXsPsrMs0AT+nNPndKdP34GAJsDKVaioAREcJAqD61TtukpSDFJeYQZNKMqZkVVhd9jFcWGdwkGtrRVBENxdLUvXC0gpoMiggo4jUOxaiNRmZRyIckvS99OXc7rP/qHdm4RO0iHdfXL5/aq6vq/f732/9zlfpSDVle/pGT09Pens7Jz96unpSaVSSaVSSW9v7+x5d3d3urq6UqlU0tHRMXutvb09vb296ejoSKVSSVdX1xI+JQA4uDQajdx///352te+lju/+c08u2VLXtHamrNrtbyx0ciaJCcmKSzwvhNJHk7yQJIHW1ry40Ihw/V6Tl21KuddcEHe85735LjjjlvgXYGFtKelBJs2bcrk5OR292hra8shhxzyouKBXZUSvPzlL0+hsND/VQIAAAAAAAAAAAD2Q4oMAADgQFOr1eZdfjA0NJRqtZpqtZr+/v5Uq9WMjY3NFilUq9WMjIzscr/u7u7ZAoS+vr7ZwoOZ0oRKpbLHpQlefgLgYPbcc8/ltttuy6033ZRfP/VUXlcuZ22tlrcneXUT8kwmuT/Jt5PcUS7n2Xo9577pTXn/pZfm/PPPT7lcbkIqOHjMt5RgZnzLli0vKiVYtmzZnIUESgkAAAAAAAAAAACARaLIAAAA2L2xsbGMj4/PvkS17fmO389n3lwvV+1o5mWr9vb27V682vb7+V5rb29XkADAPu+pp57Kp66/Pl+4+ea0Tk3lHfV6LkuyutnBtjGd5O+T3NzSkjsajbz8iCPyb6+8MuvXr097e3uz48E+TykBAAAAAAAAAAAAcJBQZAAAADTP3pQhzHXe39+/y/12VnLwUksTurq6UiqVluhpAXCg6u/vz8euvjqfv+mmvKxQyEdrtVySZF+vBfjnJH9XKOTWYjF9fX35z5/8ZC666KIUi8VmR4Mlse3fUXdWSPBSSwl2VkiglAAAAAAAAAAAAADYTygyAAAADhz1ej3Dw8MZGhpKtVpNtVpNf39/qtVqxsbGMjg4mJGRkVSr1YyMjGRwcHB23sDAwOz50NBQhoeHU61WMzo6uss9e3p6UqlUUqlU0tvbO3ve3d2drq6uVCqVdHR0zF5rb29Pb29vOjo60tbWlt7e3u1KEpYtW+Y3WgMcJBqNRm699db89RVXpDAykmtqtVycpLXZwfbQs0muTfL5QiGvPeWUfPbzn8/pp5/e7FiwR/a0lGDz5s2p1Wrb3eOllBKsWLGiSZ8YAAAAAAAAAAAAYFEpMgAAANidsbGxjI+Pz77gtu35jt/P59pcv413RzOFBjMvxM2czzW2J+ddXV0plUpL9OQA2Jlnnnkmf/be9+a+++/PB6en87Ekvc0OtZd+keSvSqU8OD2d/3D11bnqqqv8P4emUEoAAAAAAAAAAAAA0HSKDAAAAJplrvKD3Z3v7vqeliTsbTGCkgSAPXf33Xfnfe96V/pGR/PlWi1nNDvQAmokuSHJFS0tOfW1r83/vP32rFy5stmx2I/Np5Rg2/GFKCVYsWJF+vr6mvSJAQAAAAAAAAAAAA4IigwAAAAORAtVjLDt+datWzMxMbHbvfe2GGGuseXLl6dcLi/BkwNYXJ/73Ofyl3/xF3l3o5EbGo10NjvQInk8yQXlcoYOOSTf+d73snr16mZHYh8w83eLnRUSLEYpwcqVK9Pb29ukTwwAAAAAAAAAAABw0FJkAAAAwPxNTEykWq1mcHAw4+PjGR0dzdDQUMbHxzMyMpLh4eGMj49neHg4o6OjGR8fz+DgYKrVasbHxzMwMDBboLBtScLg4GCmp6d3uXelUsmyZcvS29u7XdlBW1tbKpVKenp6smzZsnR0dKS7uzvLli1LZ2dnOjs709ramt7e3tm5XV1dKZfL240BLLarrroqf/uJT+TaJH/d7DBLYCDJ+aVSHiqXc+ddd+Wcc85pdiQW0J6WErzwwgup1+vb3WOuUoKdFRIoJQAAAAAAAAAAAADYrygyAAAAYN8wOTm5y2KEkZGRjI+PZ2hoaLfFCAMDAxkfH0+1Ws3Q0FCmpqZ2u39XV1daW1tnCxHa29vnHOvu7k5ra+tsWcKOYzMlCz09PSmXy9uNAQeva6+9Nh+7+up8sdHI+5odZglNJnlPsZh72trygx/+MGeccUazIzGHZpQSHHnkkenp6WnSJwYAAAAAAAAAAABgkSkyAAAA4OAwU3gw87LmzPlCjG3dujUTExO7zTBTfLDtsa+vb8HGenp6UiwWl+BpAnvi5ptvzqUbNuTGJBuaHaYJaknWtbTkZ52d+YeHHsoJJ5zQ7EgHtN2VEuw4rpQAAAAAAAAAAAAAgEWgyAAAAAAWymKWJWzZsiWTk5O7zbDYZQm9vb0pFApL8DThwPDoo4/mDa9/fa6s1fI3zQ7TRGNJ3lQqZeqkk/LThx7KsmXL9vgejUYj/f39OeSQQxY+4D5qqUsJVqxYkZUrV6atra1JnxgAAAAAAAAAAACAA4QiAwAAANifLEZZwsz56OjoSy5L2FUZwnyu7Tins7Mz5XJ5CZ4oLJ5qtZpTVq3KUZs25d56PcVmB2qyJ5O8tlTKezdsyH/97GfnvW50dDRf+tKXcv311+eFF17I4ODg4oVcRGNjYzstJJirlOD555/P1NTUdvfYsZRgZ4UESgkAAAAAAAAAAAAAaDJFBgAAAMD/N1N2MDg4mFqtlqGhoTnHJiYmUq1WZ8sPBgcHU6/XMzg4mMnJyYyOjqZarWZiYiLDw8Op1+vp7+9PvV7P8PDwvLLMFBzMlBr09vamVCqlu7s7bW1tqVQqqVQqaWtrS3d3d0qlUnp7e1Mul9PZ2TlbjtDV1ZVSqZS+vr60tLRst76joyOtra2L/FQ5WH384x/Pp6+9Nk/U63l5s8PsI/5Hkj8vFvPwI4/klFNO2eXcp59+OjfccENuvPHGjI6OZnp6Oo1GI4ODg+nu7l6awDuhlAAAAAAAAAAAAAAAdkmRAQAAALD0xsfHMzY2lpGRkdRqtQwMDKRer2doaOhFRQhDQ0Op1+sZGBhIrVbLyMjIbLnCXOt3LFmYj56enpRKpfT09KS1tTUdHR2zJQnbFiGUSqV0dXXtsmRhx/Uzc2buw/7l8ssvz69+9ausX78+b3vb21Iul+e1btOmTXnl8cfnYxMTuWIvMxTmMWfbH/DNzD88yWNJlu/ifo05xpJkWZJDk5ya5Pwk70qyEJUfjSRnlsvpOPPM3PejH80555FHHslnPvOZfPWrX02xWEytVtvu+q9//esce+yxC5Dm95pRSnDkkUcqUQEAAAAAAAAAAADgQKbIAAAAADjwjY2Npb+/f7ZAYcfjS702c9y6dWsmJibmnWemCGHbY19f34vGFuLY09OTYrG4iE/3wHb66afnkUceSfL7wotLLrkkl1xySU4++eRdrrvyyivzlc98Jv+3VkvbAuQoZPuygt1dKyT5aJLnkvz3PVgzMzaW5NkkP09ya5JnknwryQl7GnwOP05ydpKf//znOf3005Mk09PT+e53v5vrr78+P/7xj1Mul19UYDBj23U72lUpwVzje1NKMDN+2GGHKSUAAAAAAAAAAAAAgO0pMgAAAABYCLVaLSMjI7PlBiMjI6nVahkaGsrU1FQGBwczPT2dgYGBNBqN9Pf3Z3p6OoODg5mamsrQ0FDq9XqGh4dn7zU5OZnR0dFMTEykWq3O3numRGG+uru709LSMltq0Nvbm0KhkL6+vhSLxfT09KSlpSXd3d0plUrp6upKuVxOZ2dnWltb09HRkba2tlQqldmChJmyhI6OjrS2tqazszPlcjldXV0plUqL+KSX1qpVq/L444/Pfj/zgv3q1atz2WWX5Z3vfGe6urq2W1Or1fIvVqzIhs2b87EFyvFSigxGk7w6yReS/PE81+xsj1uSfCLJ/0rSM7/Iu3RquZzXve99+dSnP50vfvGL+eQnP5lnnnkmxWLxRcUCO1q3bl26urqyZcuWbN68OVu2bMkLL7yQwcHBF83t7e3N8uXLc+ihh85+HXbYYbPHHa8deuihKZfLC/AJAQAAAAAAAAAAAOCgpsgAAAAAYH82U2own2N/f/+85851HB4eTr1en3e2mdKDbY99fX0vGluI40xJw0I77rjj8uSTT75ovFAopFgsplgs5rzzzsuGDRvy5je/OYVCIXfddVf+zVvfmn9OctQC5dhVycCu5n8/yV8m+UWS1t3cb3d7bEhyeJJr9iDHzvxdkqtKpbSUSqnX6/P+c1UsFnPsscfmpJNO2q58YPny5bMFBduWFRxIpRoAAAAAAAAAAAAAsB9RZAAAAADA/FWr1UxMTGRkZCS1Wm223GBoaChTU1MZHBzM9PR0BgYG0mg00t/fn0ajkYGBgUxPT2dwcDD1ej3Dw8Op1WoZGRnJ5ORkRkdHMzExkWq1OlueMFOgMF/d3d1paWmZLTXo7e1NoVBIX19fCoVCent7UywW09PTk1KplK6urpTL5XR2dqa1tTUdHR1pa2tLpVKZLUh497vfneeff36X+5bL5dRqtRxzzDHZsGFDnn766dx/yy355eTk3j7uWXtaPLDttXcnOSnJf9yL+yXJw0n+PL8vRdhbdyV56x/Oy+VypqamMj09vdt1ra2tue666/KhD31oAVIAAAAAAAAAAAAAAItEkQEAAAAA+76ZUoP5HPv7++c9d67jTDlDkrS3t2dsbGyPshYKhby20cjDC/j5CzsZn0+RwQtJTknyoyTHz3F9rjVzGU1yRJKR3YWdh0aSI8rlrL/iihx99NH53ve+l3vuuSfVajVtbW2ZmJiYc11bW1s++tGP5pprrlmAFAAAAAAAAAAAAADAItlYanYCAAAAANid9vb2tLe3p6+vb0n2q1armZiYyFFHHTWv+cVicfa8VCzmlD8UISykuYoH5mN5kmuTXJbk+wu4/94oJDmxUMjw8HDWr1+f9evXZ3JyMj/96U9z33335e67786jjz6aRqORcrmcycnJJMnU1FQ2b968gEkAAAAAAAAAAAAAgMVQ3P0UAAAAADi4VCqV9PX1pVar7XROuVxOsVhMuVzO2WefnU9/+tPZtGlTisVizl6CjHtSLPBnSepJvrIX+z2e5Li9WL+j5fX6dqUEra2tOeecc3LNNdfk4YcfztatW/Otb30rH/jAB3LMMcckSer1erZu3bqAKQAAAAAAAAAAAACAxVBqdgAAAAAA2Bc1Go0XFRm0tbVlYmIiy5Yty7nnnpsLL7wwa9euTXd3d5JkamoqE7VaKs0IvBs3JfmTJP/6Ja7/fJK1CxcnHdPTGR4a2un1np6erF27NmvX/n7Xp59+Ovfdd19OPPHEBUwBAAAAAAAAAAAAACwGRQYAAAAAMIeJiYk0Go0Ui8VMT0/nsMMOywUXXJB169blnHPOSblcftGalpaWdFcq2To6umQ5C0ka85h3YpL3J/n3L2GPG5Pcl+R/v4S1O7OlVMqKww+f9/yjjjoqF1988QImAAAAAAAAAAAAAAAWiyIDAAAAAJhDa2tr1q5dm1e+8pVZt25dzjjjjBQKhd2uO6yvLy8sYZHBnrgyyWnzmDee5NkkP0vyhT+c35ukZwGzPF8s5tWHHrqAdwQAAAAAAAAAAAAA9hWKDAAAAABgDsViMbfffvser3vVqafmkWeeSaamFiRHYYfjnsxv7HCtnOSmJGt2s0dbkkOTnJrk3Une9YexhTKR5PGpqXzo1a9ewLsCAAAAAAAAAAAAAPsKRQYAAAAAsIDeePbZ+eQ996QxNTXv8oFd2bGMYG/nvyHJ9F7usbd+nmR8aipr1uxYqQAAAAAAAAAAAAAAHAiKzQ4AAAAAAAeSt7zlLXm+VssDzQ6yD/tmkuOPPjrHHHNMs6MAAAAAAAAAAAAAAItAkQEAAAAALKDXvOY1ed3q1flC0Y/e5jKe5EulUt5/2WXNjgIAAAAAAAAAAAAALBL/mhoAAAAAFtiGD34wXy8U8ptmB9kH3ZpktFDIxRdf3OwoAAAAAAAAAAAAAMAiUWQAAAAAAAvsoosuytFHH51/V/Tjt20NJPmbUil/dfnlOeKII5odBwAAAAAAAAAAAABYJIVGo9FodggAAAAAONDceeedWXveebknyZ80O8w+4rJCId/o6cnG3/wmPT09zY4DAAAAAAAAAAAAACyOjX4lHAAAAAAsgre//e258B3vyPvK5TzT7DD7gG8kuanRyA0336zEAAAAAAAAAAAAAAAOcIVGo9FodggAAAAAOBANDQ3ldatX52WbNuV79Xramx2oSX6R5E2lUt6zfn0+e8MNzY4DAAAAAAAAAAAAACyujYoMAAAAAGARPfbYYzn7rLNyZrWa2+v1lJsdaIltTPLGUimr3vCG3PX976etra3ZkQAAAAAAAAAAAACAxbWx2OwEAAAAAHAge9WrXpW77703Py6X846WllSbHWgJ/TLJm8vlvOI1r8kd3/mOEgMAAAAAAAAAAAAAOEgoMgAAAACARXbGGWfk7nvvzQOdnTm3XM5zzQ60BO5LclZLS15x2mm5+wc/SFdXV7MjAQAAAAAAAAAAAABLRJEBAAAAACyBs846K//w0EPZunJlTi+Xc3+zAy2SqSSfSPKvisW89YILcu8Pf5i+vr5mxwIAAAAAAAAAAAAAlpAiAwAAAABYIieccEJ+9sgjOeOtb82/LBRyZaGQsWaHWkD/lOTcUin/qVTKdddfny9/5Stpa2trdiwAAAAAAAAAAAAAYIkpMgAAAACAJXTIIYfkG7ffnptvuSU3trdnVbmc25sdai9Vk1ydZFVLS7Yce2z+8eGHc/nll6dQKDQ7GgAAAAAAAAAAAADQBIoMAAAAAKAJLrnkkjyxcWPe8Kd/mvMLhZxbKuWHzQ61hyaS3JjkpHI5/6VSyTXXXZdHH3ssq1evbnY0AAAAAAAAAAAAAKCJFBkAAAAAQJOsWLEiX/7KV/Lggw+mceaZ+eMka1pbc2eSerPD7cLWJJ9Kcmy5nMtLpbzt/e/P/3nyyXz4wx9OuVxudjwAAAAAAAAAAAAAoMkKjUaj0ewQAAAAAEDyk5/8JJ+45prc8/3v52WlUi6u1XJRkhObHSzJVJL7k9xWLOb2QiGl1tZ84NJL85GPfCQrVqxodjwAAAAAAAAAAAAAYN+xUZEBAAAAAOxjnnzyydx22235b7fckt8+/3xWtbbmvMnJvD3JaUlKS5RjKMnfJ/l2oZDvlErZXKvlj047LZdcemkuvPDCdHV1LVESAAAAAAAAAAAAAGA/osgAAAAAAPZVU1NTeeCBB3LHHXfk21//en7zu9+ls6Ulf1QoZE29nlOTrEpyTJLiXu41luSJJL9M8o9JHmhtzWO1WhpJXn/aaVl7wQVZt25dTjjhhL3cCQAAAAAAAAAAAAA4wCkyAAAAAID9xeOPP54HH3wwDz7wQH76ox/l108/nSRpb2nJiaVSjqzXc8TUVFYm6f7DVzFJT5J6kuEk00kGk7yQ5Lkkvy2X83SxmH+anMxUo5HWUimrV63KmnPPzZo1a7JmzZocfvjhzfi4AAAAAAAAAAAAAMD+SZEBAAAAAOyvhoeH88QTT+Sxxx7Lxo0b87vf/S7PbtqU3z71VIaHhzM0MpKp6ekMVatpKRbTXamkpaUl3Z2dOWz58rzsyCOz4sgjs3Llypx88slZtWpVjj/++JRKpWZ/NAAAAAAAAAAAAABg/6XIAAAAAAAAAAAAAAAAAAAAAFgwG4vNTgAAAAAAAAAAAAAAAAAAAAAcOBQZAAAAAAAAAAAAAAAAAAAAAAtGkQEAAAAAAAAAAAAAAAAAAACwYEpJvt7sEAAAAAAAAAAAAAAAAAAAAMAB4Zn/B5FsbONcBaNBAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 541it [00:03, 172.63it/s, # examples=545]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=546]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=547]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=548]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=549]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=550]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=551]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=552]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=553]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=554]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=555]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=556]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=557]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=558]\u001b[A\n", + "Processed actions: 541it [00:03, 172.63it/s, # examples=559]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=559]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=560]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=561]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=562]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=563]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=564]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=565]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=566]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=567]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=568]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=569]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=570]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=571]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=572]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=573]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=574]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=575]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=576]\u001b[A\n", + "Processed actions: 559it [00:03, 146.44it/s, # examples=577]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=577]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=578]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=579]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=580]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=581]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=582]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=583]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=584]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=585]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=586]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=587]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=588]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=589]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=590]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=591]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=592]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=593]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=594]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=595]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=596]\u001b[A\n", + "Processed actions: 577it [00:03, 153.28it/s, # examples=597]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=597]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=598]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=599]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=600]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=601]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=602]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=603]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=604]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=605]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=606]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=607]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=608]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=609]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=610]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=611]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=612]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=613]\u001b[A\n", + "Processed actions: 597it [00:03, 162.91it/s, # examples=614]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=614]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=615]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=616]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=617]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=618]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=619]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=620]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=621]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=622]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=623]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=624]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=625]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=626]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=627]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=628]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=629]\u001b[A\n", + "Processed actions: 614it [00:03, 153.71it/s, # examples=630]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=630]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=631]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=632]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=633]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=634]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=635]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=636]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=637]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=638]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=639]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=640]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=641]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=642]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=643]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=644]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=645]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=646]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=647]\u001b[A\n", + "Processed actions: 630it [00:03, 154.25it/s, # examples=648]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=648]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=649]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=650]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=651]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=652]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=653]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=654]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=655]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=656]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=657]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=658]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=659]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=660]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=661]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=662]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=663]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=664]\u001b[A\n", + "Processed actions: 648it [00:03, 160.24it/s, # examples=665]\u001b[A\n", + "Processed actions: 665it [00:03, 159.36it/s, # examples=665]\u001b[A\n" + ] }, { "name": "stderr", "output_type": "stream", "text": [ - "Processed Story Blocks: 100%|██████████| 19/19 [00:00<00:00, 348.92it/s, # trackers=1]\n" + "Processed actions: 665it [00:03, 159.36it/s, # examples=666]\u001b[A\n", + "Processed actions: 665it [00:03, 159.36it/s, # examples=667]\u001b[A\n", + "Processed actions: 665it [00:03, 159.36it/s, # examples=668]\u001b[A\n", + "Processed actions: 665it [00:03, 159.36it/s, # examples=669]\u001b[A\n", + "Processed actions: 665it [00:03, 159.36it/s, # examples=670]\u001b[A\n", + "Processed actions: 665it [00:03, 159.36it/s, # examples=671]\u001b[A\n", + "Processed actions: 665it [00:03, 159.36it/s, # examples=672]\u001b[A\n", + "Processed actions: 665it [00:03, 159.36it/s, # examples=673]\u001b[A\n", + "Processed actions: 665it [00:03, 159.36it/s, # examples=674]\u001b[A\n", + "Processed actions: 665it [00:04, 159.36it/s, # examples=675]\u001b[A\n", + "Processed actions: 665it [00:04, 159.36it/s, # examples=676]\u001b[A\n", + "Processed actions: 665it [00:04, 159.36it/s, # examples=677]\u001b[A\n", + "Processed actions: 665it [00:04, 159.36it/s, # examples=678]\u001b[A\n", + "Processed actions: 665it [00:04, 159.36it/s, # examples=679]\u001b[A\n", + "Processed actions: 665it [00:04, 159.36it/s, # examples=680]\u001b[A\n", + "Processed actions: 665it [00:04, 159.36it/s, # examples=681]\u001b[A\n", + "Processed actions: 665it [00:04, 159.36it/s, # examples=682]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=682]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=683]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=684]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=685]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=686]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=687]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=688]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=689]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=690]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=691]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=692]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=693]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=694]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=695]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=696]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=697]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=698]\u001b[A\n", + "Processed actions: 682it [00:04, 159.72it/s, # examples=699]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=699]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=700]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=701]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=702]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=703]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=704]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=705]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=706]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=707]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=708]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=709]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=708]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=709]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=710]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=711]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=712]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=713]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=714]\u001b[A\n", + "Processed actions: 699it [00:04, 159.08it/s, # examples=715]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=715]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=716]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=717]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=718]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=719]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=720]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=721]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=722]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=723]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=724]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=725]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=726]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=727]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=728]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=729]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=730]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=731]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=732]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=733]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=734]\u001b[A\n", + "Processed actions: 717it [00:04, 163.40it/s, # examples=735]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=735]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=736]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=737]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=738]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=739]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=740]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=741]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=742]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=743]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=744]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=745]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=746]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=747]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=748]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=749]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=750]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=749]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=750]\u001b[A\n", + "Processed actions: 737it [00:04, 171.46it/s, # examples=751]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=751]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=752]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=753]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=754]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=755]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=756]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=757]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=758]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=759]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=760]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=761]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=762]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=763]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=764]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=765]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=766]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=767]\u001b[A\n", + "Processed actions: 755it [00:04, 162.97it/s, # examples=768]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=768]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=769]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=770]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=771]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=772]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=773]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=774]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=775]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=776]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=777]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=778]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=779]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=780]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=781]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=782]\u001b[A\n", + "Processed actions: 772it [00:04, 150.96it/s, # examples=783]\u001b[A\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "salic\n" + "Processed actions: 772it [00:04, 150.96it/s, # examples=784]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=784]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=785]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=786]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=787]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=788]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=789]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=790]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=791]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=792]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=793]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=794]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=795]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=796]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=797]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=798]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=799]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=800]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=801]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=802]\u001b[A\n", + "Processed actions: 788it [00:04, 150.04it/s, # examples=803]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=803]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=804]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=805]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=806]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=807]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=808]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=809]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=810]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=811]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=812]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=813]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=814]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=815]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=816]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=817]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=818]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=819]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=820]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=821]\u001b[A\n", + "Processed actions: 807it [00:04, 159.52it/s, # examples=822]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=822]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=823]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=824]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=825]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=826]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=827]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=828]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=829]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=830]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=831]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=832]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=833]\u001b[A\n", + "Processed actions: 826it [00:04, 164.11it/s, # examples=834]\u001b[A\n", + "Processed actions: 826it [00:05, 164.11it/s, # examples=835]\u001b[A\n", + "Processed actions: 826it [00:05, 164.11it/s, # examples=836]\u001b[A\n", + "Processed actions: 826it [00:05, 164.11it/s, # examples=837]\u001b[A\n", + "Processed actions: 826it [00:05, 164.11it/s, # examples=838]\u001b[A\n", + "Processed actions: 826it [00:05, 164.11it/s, # examples=839]\u001b[A\n", + "Processed actions: 826it [00:05, 164.11it/s, # examples=840]\u001b[A\n", + "Processed actions: 826it [00:05, 164.11it/s, # examples=841]\u001b[A\n", + "Processed actions: 826it [00:05, 164.11it/s, # examples=842]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=842]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=843]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=844]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=845]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=846]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=847]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=848]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=849]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=850]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=851]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=852]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=853]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=854]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=855]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=856]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=857]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=858]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=859]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=860]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=861]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=862]\u001b[A\n", + "Processed actions: 846it [00:05, 170.86it/s, # examples=863]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=863]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=864]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=865]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=866]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=867]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=868]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=869]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=870]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=871]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=872]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=873]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=874]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=875]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=876]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=877]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=878]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=879]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=880]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=881]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=882]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=883]\u001b[A\n", + "Processed actions: 867it [00:05, 179.27it/s, # examples=884]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=884]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=885]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=886]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=887]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=888]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=889]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=890]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=891]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=892]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=893]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=894]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=893]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=894]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=895]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=896]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=897]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=898]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=899]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=900]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=901]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=902]\u001b[A\n", + "Processed actions: 888it [00:05, 186.96it/s, # examples=903]\u001b[A\n" ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADWsAAAM7CAYAAACGTSNhAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeXgc92Hm+bfvA33iahwEL10UKVPiIVkWKcsrUUocn3l2M9lVbMdPPJlN7DjXTGI/fp7ZnUmyyUzsHHay8SR2EvnYZ5NJZpyxEzvr0LJkURclkpJMUqREiScaQAONvu9r/6Cq3A10AyAJsAHw+3meerq6urr6Vw0QaBTrrdfSaDQaAgAAAAAAAAAAAAAAAAAAAAAAAABcE2u3BwAAAAAAAAAAAAAAAAAAAAAAAAAA6wFhLQAAAAAAAAAAAAAAAAAAAAAAAABYBoS1AAAAAAAAAAAAAAAAAAAAAAAAAGAZ2Ls9AAAAAAAAAAAAAADrU7VaVTweVzweVy6XUyqVkiSVSiXl83lJktvtlsfjkST5/X55vV719fWpr69PLpera2MHAAAAAAAAAAC4GoS1AAAAAAAAAAAAAFyVfD6v48eP6/XXX9fZs2d17tw5vX72dZ2/dF4zUzPKpXLXtH2Pz6PwQFhjG8Z025bbtGXLFm3ZskU33XST3va2tykYDC7TngAAAAAAAAAAACwPS6PRaHR7EAAAAAAAAAAAAABWt0KhoBdeeEHPPPOMjh47qhdfflHnz5xXvVaX1WGVY6NDtS01VbdUpY2SBiUNSOp7a/K/NUmSU1LPW/NFSYW35nOSspJmJMXfmmKSLkq2szbZz9pVOVdRvViXJI1uGdWeO/do1527dO+992rfvn3y+40XAQAAAAAAAAAAuP4IawEAAAAAAAAAAACYp1qt6tChQ/rud7+r7/3gezr24jFVShU5NzhV3VVV/c66dKekuyRtkWS7joM7L+mVy5P1Zavsx+wqnynLarNqx1079ND9D+nAgQN66KGH5Ha7r+PAAAAAAAAAAADAjY6wFgAAAAAAAAAAAABJUj6f1z/90z/pf3zzf+hb3/6W0rNpOW91qvzOsvROSfdL2tzlQXYyJempy5PzSafKr5Tl9rr1yCOP6Cff/5N6//vfr97e3m6PEgAAAAAAAAAArHOEtQAAAAAAAAAAAIAb3JEjR/SVr35Fj339MWWTWdl22VR9b1X6V5K2d3t0V2la0nck+z/apW9LlqpFDz/8sD76kY/qgx/8oBwOR7dHCAAAAAAAAAAA1iHCWgAAAAAAAAAAAMANKJ/P67HHHtNn//izOvf6OTnudKjy0Yr0qKTBbo9umaUl/b1kf8yu6qGq+of69Ssf/xX94i/+ovr6+ro9OgAAAAAAAAAAsI4Q1gIAAAAAAAAAAABuILOzs/rCF76gz//fn1cml1H9Z+tq/EJDurPbI7tO3pD0Zcn+53bZyjb9/M/9vH7j3/2GNm7c2O2RAQAAAAAAAACAdYCwFgAAAAAAAAAAAHADKJVK+pM/+RP91u/+lgrWgqofr0q/pPXXorVUWUlflhx/7JCmpF/95K/qM5/5jEKhULdHBgAAAAAAAAAA1jDCWgAAAAAAAAAAAMA6941vfEOf/PVPajI2qdqv1aTflBTo9qhWibKkL0r237bLK6/+02//J/3CL/yCLBZLt0cGAAAAAAAAAADWIMJaAAAAAAAAAAAAwDoVj8f1iU9+Qn/7N38ry0csavxfDWm026NapZKSfley/pFV++7fp6/+1Ve1efPmbo8KAAAAAAAAAACsMYS1AAAAAAAAAAAAgHXo+9//vn7q0Z9S2p5W5S8q0ru7PaI14kXJ8VGH7Bfs+vJ/+bIeffTRbo8IAAAAAAAAAACsIdZuDwAAAAAAAAAAAADA8vriF7+oh3/sYSXvT6ryQ4JaV2SvVDlSUeFjBf3Mh35Gn/r0p1Sv17s9KgAAAAAAAAAAsEbQrAUAAAAAAAAAAACsI7/6a7+qz3/+89J/kPTvJVm6PKC17CuS9X+36j3vfo/+/m//Xk6ns9sjAgAAAAAAAAAAqxxhLQAAAAAAAAAAAGCd+NSnPqXP/eHnVP96Xfrpbo9mnTgk2X7Cpvf/2Pv1d3/zd7LZbN0eEQAAAAAAAAAAWMWs3R4AAAAAAAAAAAAAgGv3e7/3e/rs5z6r+l8T1FpW+6XaP9b0zW9/Uz/38z/X7dEAAAAAAAAAAIBVjmYtAAAAAAAAAAAAYI174okn9NCBh1T/w7r0y90ezTr1HcnyXou+9Bdf0sc+9rFujwYAAAAAAAAAAKxShLUAAAAAAAAAAACANSwej2v7ndsVvzeu2t/Xrn2DDUlfk/Rnkl6XlJd0q6T3SHpU0h1vrWdZ4raaFSQNS7pT0pMdntNuuyFJt0n6dUn/agnrLzaOq/UZyf0Ft469eEzbtm1bpo0CAAAAAAAAAID1xNrtAQAAAAAAAAAAAAC4er/zO7+jRD2h2peWIaglSf9R0t9K+gtJ45ImJP2xpO9IetucdRtNU7v7c/29pLdLek2Xg2DtzN1WRdJxSR+X9ElJf9LhOVcyjqv1H6XabTX92r/7tWXeMAAAAAAAAAAAWC9o1gIAAAAAAAAAAADWqImJCW2+abPKny1Ln1imjUYk/VDS4JzlJyXt0I8CUBa1hqEWuy9J75L0K5KelWST9HsdxtDuuZJ0UNK/kfTmFbxup21drf9P0o9Lzz77rO69995l3DAAAAAAAAAAAFgPaNYCAAAAAAAAAAAA1qg//dM/VaOvIf3rZdxoXlKwzfLtag09LRaAmvv4GUmnJL1X0sckfUVS9QrHdo+k6CKvs9g4rtWPSfZ9dv3+H/z+Mm8YAAAAAAAAAACsB4S1AAAAAAAAAAAAgDXqv/7Df1XlpyuSaxk3+j5Jn5aUWMZtStJfSvqwJIek2yRtlfTtK9zGYUmbl3dYV6P6oar++Z//WcVisdtDAQAAAAAAAAAAqwxhLQAAAAAAAAAAAGANevPNN3Xm5JnL4arl9OW3bm+W9BOS/kzS+DVusybpq7rcqGX417oc4FrKc6OSvqbLYa/PXONYlsP7pEKuoCeffLLbIwEAAAAAAAAAAKsMYS0AAAAAAAAAAABgDTp16tTlmb3LvGGvpD+S9Kakj0h6TtJdkn5GUuoqt/ltSVskbWta9lOSnpI02eE5lrcmu6RRSZ/S5cDWR65yDMtpVHKOOPXqq692eyQAAAAAAAAAAGCVIawFAAAAAAAAAAAArEHRaFT2gF3qWaEXCEr6X3W5EeucpKKkX77KbX1Zra1a0uVx/y+SHuvwnEbTlJD0u5L+zVtjWQUswxZNTEx0exgAAAAAAAAAAGCVIawFAAAAAAAAAAAArEHZbFZW/3X6774eXW7b+oereO6kLjdr/Zx+1JZlTF+S9FdL2EZI0kffmv7PqxjDCqgH6kqlrrZqDAAAAAAAAAAArFf2bg8AAAAAAAAAAAAAwHzValWZTEaSVKvVlE6nJUn1+uWQUC6XU3W6erl5yrKML2yRdFbS5jnLHZJ8V7G9r+hyUOvPOzy+XdIPJL1zCdv6uKSbJc1K6r2KsSwj66RVobtDyufz8nq93R0MAAAAAAAAAABYNSyNRqPR7UEAAAAAAAAAAAAA10sqlVK9Xle5XFYul+u4LJ1Oq1artSzLZrOqVCqSpFwup3K5LEnK5/MqlUqSpEKhoGKxKEkqFosqFAqSpFKppHw+P2++efuVSkXZbPbKdmhSUuRq3okOLJL2S/p9SXdIskl6VdKndDlQ9X8s8Lx2//N4m6SvS7q7w/P+UNJLkr66hG1J0ocl3SXp317hOJZTQ7J6rKqX6vNf3mKR1Xq58cxqtcpms8lischut8tuv3wtTYfDIYfDIafTKZfLJUlyOp1yu92SJLfbLY/HI7vdLq/XK6fTKa/Xq56eHjkcDvl8PrlcLjkcDvn9fgUCAblcLrlcLvX398tqtZrbMG4lyefzyeFwrPCbAwAAAAAAAADAjY2wFgAAAAAAAAAAAFaMET4ymqEajYaSyaQkKZlMqtFotASaEomEpNaQU7v1jGXNoad2y4wQVvOyK2Wz2RQIBCTJDL9IagnBuFwus12ped7pdKqnp0eSzJCNJNntdvn9flUqFdVqNTkcDuXzeZXLZdntdhWLRXO8xn5Xq1Vls1kVi0WVy2Wl02mdOn1K9a/WpUevatfae07SX0n6vqQLuhzW2qbL7VifUPsWr+ZljQ7LvyHpg3Oe98+S3j3nuZ22ZXhW0n1vzU9L6l/COJbbYUlvlz784Q8rEAioUCioVCqZ32e1Ws0M8DUaDeVyOdXrdVWrVfN7uFwuq1qtSpIZ7jPWMeZX6r9y7Xa7LBaLLBaLGd6y2+3mvMfjMUNmxvesy+WSx+OR1Wo1A2QOh0M9PT1m0MwIkTmdTvn9fvl8PtntdoXDYfP5xr8fv98vu93e8u/LWAYAAAAAAAAAwFpGWAsAAAAAAAAAAOAGYLQ9Xe3t1WyjuXnqSrRrBFqOZVfznLlNREboLJVKKZvNmlMymVzwfiqVUjqdVi6XUzabNbdRr89vZpIutzN5PB45HA4zNGOxWNRoNFStVlWpVFSv11Wr11T7yZrqf9N+O1gh/14a+fqIxs+Or/hLNbetGc1uxvehdDngaDwei8VULpeVzWaVyWQkXQ4xlstlczvValXFYlGlUkmVSkW5XM5skDO2XSqVVK/XzftG65x0+d9ArVZb8f222Wzm977NZjPbyBwOh6xWqxwOh/lvpLl9zGazyePxqKenRx6PxwyChUIheTweBYNB+Xy+BX8GND8WCARks9lWfH8BAAAAAAAAAOsHlyUDAAAAAAAAAAC4jowgUyaTUbVaVSKRULVaVSaTMYNORiAjmUyqWq0qnU6bjT1GW4+xbrlcVi6XM7dRr9eVSqUk/ailaqmMtier1apgMCiLxaJQKCTpctDBYrGYwQWfz6dwOCyv1yuXy2WGG4xWKaNFymjNWWhbze1TK6E5RJZIJJRIJObdb7es3X2jvasdp9Mpp9Mpu90uj8cjp9NpBqyM20qlonK5rFqtJpvN1jasZbVaFQqFFAqFFA6HFQqFFAwGzWXN09GjR/WFL37hcgPWxhV7C9EsLzn+0qEPffhD1+XlHA6HwuGwJJm3q0U6nVatVjN//kg/CpQZP4vK5bJSqZT5c2t2dlbS5RBZsVhUrVZTIpFQvV5XLpdTsVg0g2WNRkOZTEaNRkOFQqElVNYcILuaUOiVsNlsZuNXc5ue0UZmNI4ZP/OMn4tGYMwIjblcLvX29srtdisUCslms7U0kxnhs+afndLq+7oDAAAAAAAAABZGsxYAAAAAAAAAALjhNYcKcrmcGYi62kCV0SiVSqVUq9WUTCZb2nEWY5zoHwgEZLfbFQqFzBP4jTCUEXCaG7CSfnRifzAYlNVqld/vl91uN1ui5gasVjosdbXy+bzZSGU0USWTyZb7nR5Lp9Nmo1UnxnsaCoXkdrvlcrnkcDjkdDrNJp1Go6F6va5qtdoSksvlcspkMiqVSm237Xa7FQ6HF5yMBp+5yyORyJKbfCqVim7adpPGD4yr/ue0a10Xn5Wsn7Zq79692rJli0ZHR7Vx40Zt2LBBo6OjGhsb09DQEG1MXbKUlsBUKqVMJqN8Pm+GxtLptAqFgvL5vBmqzGQyKpfLKhaLKhaLKpfLKhQKqlarZvOYMRlBspX873cjAGqEQh0Oh/lzy+PxmD/nbTabQqGQ7Ha7GRILBALyer0KhUItv0PahcKMIK0RJDN+VgEAAAAAAAAAloawFgAAAAAAAAAAWPWy2awKhYIymcyS5o2T8pcaqGrXbjSXEYYyTnBfKFBlnNhuhKTmnjTv9XrNk+CDwaDsdnvLttc6I/y21GBVp8eq1Wrb7QcCgZbJ5/PJ7XbL7XbL4XDIarVKkmq1mhmgaA5ZGSEuI6TRzlLCVp0CV1cStloOjz32mD728x9T/am6dO91e9kb0wXJfqdd79z9Tu3YsUMXLlzQ+Pi4xsfHNTk5aQZ17Ha7hoaGtHHjRo2Ojmp0dFSbNm0y5zdu3KihoSGzrQnrh/E7prltzGg5NJr5mm+N9r5yuazZ2VlVKhWzaSyRSLSsn06nJclsHSsUCmo0Gh1/jnVisVgk6YqDZUYTos1mk9vtbmkTM36n+f1+83eby+VSOBw2b42GRePW+L1q3BrBMePWCCMDAAAAAAAAwFpDWAsAAAAAAAAAACyLWq2mdDqtXC6nQqFgNhsZjSVLnW8XvlqIcZJ3T0+P3G73VQeqwuGweWK40TjVHKgyAkDrXXMLTSKRmDct5bFYLKZardZ2++1CUE6nU1arVS6Xy2yMsVgsZgihUCioVCqZrTfJZLLlNZf6Oqs1bHWtGo2G3vuB9+pfXv4XVV6qSOFuj2idqkv2h+zaEtuil154SV6vt+XhcrmsmZkZTUxM6M0331Q0Gp03f/78+ZZ/G+FwWFu3btXw8LBGRkbmzY+NjcnhcFzvPcUatliz2NzbbDZrtoqlUikVi0WzRTKXy5k/e4vFokqlkkqlkiqVikqlkqrVqgqFwpLHZoTEpCsLilmtVrndbtntdrNBzPj97vV65Xa7zd/rRnOYsdz4Ge/xeFrm3W53yzZcLpf5O9+4BQAAAAAAAICrRVgLAAAAAAAAAIAbkBG2aQ7eXOu80fyxECMU0xyQudZ5o6UDmheiutLQ1ezsrEqlUtttt3v/jckIuDUaDdVqNTPYVq/XVa1WVSqVlM1mlcvl2o5jode7EcJWy+HYsWN610PvUm5XTrV/rknke5ad5ZMWWf+LVb/1H39LH/zgB7Vt27arCnEmEomOYa4333xTFy5caGmVmxvomhvs2rx587po5MPaZTSHNd8ajWBGw1hzu2G5XFY6nValUlEsFjMbMI3wmBEOy+VyqtVqymazqtVqS24Qs1gsslqtslgsZvDXmJbSpGkwAmJer9cMejscDrMRs7e312zGbG4JC4VCstlsbcPj7QLiRmAMAAAAAAAAwPpBWAsAAAAAAAAAgFWuUqkom80qkUiYjVOZTEaZTEbJZLJlWTqdViqValmWSqWUz+fN1oyF2Gw2BQIB9fT0yOPxXPW80XDVPI+FJZNJc0qlUvPup1Ip8+ubTCaVTqfN+0YrWTsOh0OBQEDBYFChUEjBYFCBQMCcjAYSj8cjm81mnsxerVZVLpfNVpV2ga+VClsNDQ3dME1mV6rRaOiNN97QsWPHdOTIER07dkxHjx7VzMyMrFar7E67au+rqfb/1qQbK6+2sj4tWf/Aqpu23KSLFy+qWCzK7/drz549uvvuu7V3717dfffd2rJly7K83NUEujq1cw0PD2vTpk3y+XzLMjagm8rlsnK5nPL5vEqlkjKZjKrVqpLJpGq1mlKplLlOc3tYpVJRKpVStVpVPB5XuVw2m8Ty+by5PSMglsvlljwmh8NhBsOMcJh0ObBcr9c7Nk3O5Xa75XQ6WwJdRsDL+F1pBMZCoZDsdrsCgUDbNlGbzbZgYygAAAAAAACAlUVYCwAAAAAAAACAFWA0SSQSCTM0lc1mlU6nlUwmW5YZQZzmZUYYJ5vNLtgkYbQa+Xw++f1++f1+hUKhlmVXErLiBN6rYzSIJBKJjmGrhe4nk8m22/V6vQqFQgqFQma4am7oyjiB2+VymQ1jtVrNDFoZQT/CVmtTNBrVkSNHzOm5557TzMyMbDabbrvtNu3Zs0c7duzQ9u3btW/fPh0/flyPvPsRVd5TUf2xukRZy7WpSfpNyfLHFn31K1/Vhz70IVWrVZ0+fbrl6/LCCy+oXC4rGAzqjjvu0J49e7R//37df//9GhoaWpGhLRbounjxoiqVirn+YoGujRs3yu/3r8hYgbVooVawWq2mRCJhrlMqlVpCX0aILJFImOGxdDqtfD6vVCqlUqlkBsmW0vblcrlktVpltVrNYLURDKvX62azZad2zE7bDIfD8nq9Zpir+bb5d3yn24XW6e3tldvtvpYvAQAAAAAAALBmEdYCAAAAAAAAAKBJc4OQcXLu3GDLUtZJJpPqdAh+7smtCwVfFlonEonIZqM6Z7ks1B610Nc7kUgoFou1bc5Y7GsZDofl8/nMRgwj4GQ0cRiBv5UMW7UbG2Gr669dAOill15SLpeT3W7Xrbfeqj179pjT7t275fW2T2I9+eST+sD//AHlN+dV+YeKtOE678x6kZZs/5tN1seteuwvH9Ojjz7acdVKpaJXXnlFhw4dMr9+p06dUr1e1/DwcMvX7h3veIf6+/uvyy7MDXTNDXadP3++pUFosUDX2NiYAoHAdRk7cCMxWsCMzxjGfLtliz0+MzPT8ngmk+n4mdRgt9tls9lks9nMUJjVapXFYjHDYMZnk0ajseCFBJpZrVYFg0Gz/cv4vOH3+80WMGNZMBiUy+UyPxc5nU6zXczr9XZ8Dp9XAAAAAAAAsBoR1gIAAAAAAAAArHlGq5HRWDR3SiaTymQyLW1VRoNVIpEw5wuFQsfXCIVCZlOVz+dTMBhUMBhsWWa0HzUva9d8hZWRz+fNAJPRctVuam7AMr5nMplM220GAgGzxcpouJp73+v1mq0UVqtV9Xpd1WrVbN8gbIW5KpWKXnvttZZg1tGjR1UoFORwOHTLLbe0hHv27t17xe0kb7zxht79/nfr3Ow5Vf6iIr1vhXZmvXpecvysQ8F0UP/4jX/U29/+9iveRDKZ1IsvvqgXXnjBnC5duiSLxaJbbrlFd999t/bu3au7775bu3bt6hi+W2mJRKJjO1c0GtWFCxeUzWbN9d1ud8cw18jIiG6++WYFg8Gu7AuA9hKJhNn+ZTSBpdNpM9CVTCZVLpeVzWaVzWZVLpeVTCbN0Fc6nTYbw4z2sOaA2GKcTqdsNptcLpcZCLPb7ebjVqtVlUrFbAgrl8uq1WpL2rbD4Vgw4OV0OhUMBq8oFDb3OQAAAAAAAMCVIqwFAAAAAAAAAOi6dDrdNmRlTIlEYsHH0+l02+16PB4zVBUIBMzb5vBUKBQyQ1TGMqPtyFhGi8j1YwTo2oWrFgpeGSchz+XxeMwAUygUagk4GWErj8cju90uj8cjp9OpRqOharWqSqWy4GsnEgnNzs62fV2JsBUuK5fLev3111uCWUeOHFGxWJTf79fOnTu1Z88e7dixQ9u3b9c999wjp9O5LK+dTqf1iV/6hL7+ta/L+hGr6p+vS6Fl2fT6VZT0HyTL5yx614Pv0tf++msaHR1dts0bAS6jgevw4cOKxWKy2Wy67bbbtGfPHu3fv1/79u3T9u3bZbFYlu21r8Viga6LFy+2hF4XC3TddNNNCoX4ZgTWi6sJgCWTSeXz+Zb5fD5vXlihUCh0DNMbnE6nnE6nPB6PHA6H7Ha72RJmsVjUaDTMIH2j0TBbwYzPeZVKZdHXkC7/TDM+qzV/Zlto2WKPG7f9/f3L9nsfAAAAAAAAqwdhLQAAAAAAAADANcvlcm3DM3Pn5zZfGcvaHaq22+1m0CocDpvznabmxiNjcrlcXXg3UCgUFm2TupLg02KhJ5/PZ56oa7QfGO1W7cJfhK2wUjKZjF5++eWWUNbp06dVq9UUDAZ1xx13tDRm3X777dfl++Q73/mOPvrzH9VscVbV36hKvyaJ88Ln+5bk+HWHrFGr/vPv/mf98i//8nUJS509e1bPP/+8nn/+eT333HM6duyYSqWS+vr6dO+99+rtb3+77r33Xt1zzz2rurFqsUDXpUuXWsLViwW6tm7dqnA43MU9ArAaGOEv4/PlUuYXWy+VSqler3d8TSME5nA41NPTI5vNZjaDSZebwIwwWKPRMLdVLpdVLpdVr9eVzWZVqVSW1A5mhLeCwaCcTqf8fn9L65fT6VRPT4/8fr/cbrd5oQmPx2NeWMLj8ainp8dsBPN6vQqFQqsm9AsAAAAAAHCjIawFAAAAAAAAAJCkjkGrhcJXxnylUpm3PeMEwbktRosFrIypp6enC+8CDMViUbOzs+ZkBJvmTu2ap9qd/BoIBOY1W80NW3m9XrndbvPk12q1qnK5rHQ6veJhq7mBK8JWWEwqldIPf/jDlmDWqVOnVK/XFQqFtGPHjpZgVrdbkmZnZ/Xbv/3b+tM/+1NZtlpU+d2K9AFJfJtLT0n2T9tVe7amn370p/X7v/f7Ghsb69pwqtWqTp8+raefftps4Hr11VfVaDS0detW7du3z2zg2rVr15r6WVUoFDqGuSYmJnTmzBmlUilzfSPQ1SnMZcwDwJVoNBpKJpPK5XIqFApmm1c+n1c2mzUbwnK5nJLJpAqFghn2MtrAUqmUcrmc8vm8MpmMMpmMqtVqx9e0Wq1m2Mrlcsntdsvtdstms8lut8vlcqler8tms5ltYBaLRZVKRY1GQ7VaTYVCQdVqVcViUZlMRoVCQfl8fsF9NYJgxmddj8djNssa816v1wyL9fT0yOPxKBAIyOfzyePxtA2H2Wy25f6yAAAAAAAArCuEtQAAAAAAAABgHcnn85qdnVU8Hm8J1Bj3FwpctWMEqpoDV0udp9VqdchkMh2DVu0mY912J376fD719vaqt7dX4XDYvPX7/XK5XObJnUbYql6vq1KpqFQqtQ11EbbCWpFIJHTixImWYJYRnhkeHjYDWTt27ND27du1Y8eObg+5ozfeeEOf/syn9d/+7r/JfptdlV+vSB+RdKP9yK5L+obk+JxDlecquv9/ul9/9Nk/0p49e7o9srYmJyf1wgsvmN9/hw4dUjKZlM/n05133mmGtx544AENDg52e7jXZLFA1xtvvKFkMmmuv5RA1/DwMO0yAFZcuVxWLpdTKpUyg1SJRMIMey0WEMvn88rn8+Z6mUxGuVyu4+v19PTI5/PJ5/PJ7/fL6/XK6XTK5XLJ5XLJbrfL4XDIZrOZQTCLxaJSqaR6va56va58Pm8GwJpbyKanpxcMn0k/+qze/Bn8WudpVAQAAAAAAOsFYS0AAAAAAAAAWIVyudy8EE08Hp8Xwpo7FYvFedsKhULq7e1VX19fx4BVp8AVYZfVw7ia/0LTxMSEotHookGouSGoQCCgnp4ec7Lb7bJarXI6nbJarSqXyyqVSm0brlYqbMWJ9eiWaDTaEso6cuSIJgNkiL4AACAASURBVCYmJKklmLVnzx7dc889ikQiXR7x1Tl58qQ+9wef09f/n69LIany0Yr0s5Ju7/bIVthFSV+THH/lUPVsVe/7wPv0m//2N7Vv375uj+yK1Go1nTp1SkeOHDEbuIxmt+HhYe3fv99s4Lr77rvXXYB6sUDXm2++2RJEJ9AFYC0z/g4wglTG5/C59xdbZ2Zmpm0jsqH5s7vH45HT6VQgEDAvzGD8jWC32+V0OiVdDqgZbWClUknValW1Wk3JZLLltY35eDyucrm84P6uRAgsFArxMx4AAAAAAFxXhLUAAAAAAAAAYAWVy2XF43HNzMy03LYLWjUvbxd+CYVC6uvrM5uNjABW8/12k81m68Keo51ardb269+p+ap5+dzD+Xa73fwaB4NB+Xw+eb1e89Zut5sNV7VaTeVyWcVi0bzCP2ErYH4w6/Dhw4rFYpLmB7PuvfdeDQwMdHnEy29iYkJf/OIX9aXHvqTJi5NyvN2hyocr0gcljXZ7dMskLumfJPvX7ap9r6ZAb0A/++jP6pd+6Zd0yy23dHt0y2Z2dlbPP/+8nn/+eT333HN6/vnnlUwm5fF4zO/hffv26b777lvz7VtL0S7Q1S7YZXC5XBodHW0b6DJuN2/eTJAdwJpWKBSuOOTVbtlCf0NI7QNXxuRwOGS32+V2u+XxeGS1WlWr1cwmMEmqVCqq1Wqq1+tmG5nRQFYoFOY1mCWTyXl/LzWzWq0KBoNmE7ARQjMuVhEKhebd9/l85v1wOGzO+3w+wl8AAAAAAGBRhLUAAAAAAAAA4AoYJ6fNbTDqtGxqakr1er1lGwsFYIwTgucuHxgYME9cw+qwWNNVu++HWCymWq3Wsh23261QKGS2WxlhK6fTKZvN1jFwlcvlCFsBS1Sr1XT+/HmdOHHCDGY999xzmpmZkd1u16233mqGsnbs2KHdu3ert7e328O+rur1uh5//HH99Vf+Wv/9G/9dxXxRjt0OVd5Xkd4jaZektZL9bUh6VdK3Jce3HKo+XZXNZtMjP/aIPvbRj+m9732v2QiynjUaDZ06dUrPPfecOZ04cUK1Wk233nqr9u3bp/379+u+++7Ttm3buj3crigWi4pGox3buaLRqCYnJ80AgMvlUm9vb8d2LgJdAG4kRoAqk8kokUgom82aUyqVUjqdNh/PZrNt10mlUspmswsGv4wLU/j9fjMoZcwHg0FzMoJYRkOw3W5XrVaTzWZTo9FQMplUPp9XoVAwXzebzSqXyymZTJrzxt9ZuVxuwRawueEt477f7zfH09PTo0AgoEAgYIa/jPvG48FgUH6/X3a7fSW+TAAAAAAAoEsIawEAAAAAAAC4YSWTSU1PT89rvZqentb09HTbRqy5h1QDgYAGBgY0MDCgvr4+9ff3m7eDg4PzlvX19XEC7yqUSCQ0MzNjNpy1m4zvAWMqFAot27BYLGboyu/3y+v1yuVymQ1XkloCV7lcTul0WolEYtnCVs2BK8JWuFFVq1WdPn26pTHrpZdeUi6Xk8Ph0C233NLSmLV79255vd5uD3tVKRaLevzxx/XNb35T3/jHbyg2HpM9YFdjf0O1d9ak/ZLulOTr9kjfUpJ0XNLTkvVJq2yHbKrEKgr0BvS+n3if3v++9+vHf/zHFQgEuj3Srstms3rppZf09NNP69ChQ3rqqaeUSqUUCAR0zz33mAGu/fv3y+12d3u4q8KVBrqcTqf6+voWDHRt2rSJ5lMAaFKpVOYFujKZjNLpdEuwyljHCIAZga90Oq1kMtmxYcto1gqHwwoGgwoEAmbIq3k+FAq1BMACgYBcLpfq9brsdvuC7WNLuZ9KpeZdzKVZ899/c1vJmu8v9Jhxn/YvAAAAAAC6i7AWAAAAAAAAgHUjlUppamrKDFtNTU0pFouZ9ycnJ1tCWNVqteX5Xq9X/f396u/v18DAwLyQVbtQ1o3QzLHWFAqFtq1WnVqvZmZmVKlUWrbhdDrV09NjNlw5HA4zZFev11WpVFSpVFQoFJROp+c930DYClhZlUpFr732Wksw6+jRoyoUCnI6nbr55ptbgll79+4lgHKFGo2Gjh8/rh/84Ad68gdP6vtPfV8zEzOyWC1ybHWoeldV9Z116TZJW96a+ldoMClJZ9+aXpcsL1vkfMWp8qmyGtWG/GG/7t9/vx584EHdf//92rNnD4GYRRjhRiO89eSTT+rChQtyOBzauXOnGd568MEH1dfX1+3hrlqlUknj4+MLBrqa21YJdAHAyjECUnPDUu2mduvE4/GOjVpz/76bG5JarL04EomoXC5fcdir02PtmpvbjXcp4a7F7geDQS48AwAAAADAFSCsBQAAAAAAAGDVKhQKLaGrmZkZxWIxTU5OamZmpiWANT09Pa+dKBQKKRKJmCGroaGheWGrwcFBM6Dl8Xi6tKdoJ5/Pt7SdGY1W7dqvjMczmcy87bjdbrndbrlcLtlsNlksFtXrdVWrVZXLZeVyuXnBvebnErYCVodsNqvTp0/rxIkTZjDrxRdfVKlUkt/v186dO81Q1o4dO/S2t72NQO0KefPNN/Xyyy/r5Zdf1kuvvKQXX35RE+cnVK9dDqLY/XbZNtlUH6ir0l+RBiT1SeqRFJBke2syiq6ykozMa0JSQVL88mSfscsWs6l+sa7K7I+CsZGxiO56213atXOX7rrrLu3cuVO33XYbJxEvg2g0aoa3nn76aR09elSNRkNbt241w1v79u3Tjh07uj3UNaVUKikej3cMc01MTOjcuXNmoMvhcKi/v18jIyNtw1xbt27Vxo0bZbfbu7xnALD+LDXw1enx5Qx8zX18cHCw5Wd/MplULpdTLpdTJpNRKpUy76fTaaXTaWWz2Zb7xuOpVEqZTMa8n0wmO74nRpO0z+dTT0+Penp6FA6HzXmfz6dQKCS/3y+/3282Tje3TxvLaTsFAAAAANwICGsBAAAAAAAAuG4ajYZisZhisVjH1qvp6Wnz8Ww22/J8o/lqeHjYbL6KRCKKRCJmG5YRyBoYGOAk/VWmU+PVxMSELl68qFgspng8rkQioXQ6rdnZ2XnbsNlsstvtcjgcslgsZuCq09XECVsBa1M6ndYrr7zS0ph1+vRp1Wo1BYNB3XHHHS2NWbfffjshnS6rVCq6cOGCzp49q7Nnz+rChQuXQ9bTMU3FpzQdn758InDmckC2Xqsrn85Lktw9btmddlmtVvmDfrndbg30D2iob0j9fZd/v2/YsEFbtmzRli1btHnzZhrSrqN0Oq3Dhw+b4a1Dhw6pWCxqaGhIe/fuNcNb99xzD5+9rlG5XNbMzMyCga7z58+3fO4Jh8Md27kIdAFA92SzWaVSKaXTaaVSKXM+kUi03DfmjfvJZFLJZFKpVKrj37nhcFiBQEDBYFDBYLBlPhgMKhQKzbsfCoUUDocVCoUWvFDN3PCWEfTK5XJKJBLmfDabbXncuJ/JZFqmThYLdjXfGus2h76MdWmhBAAAAACsVoS1AAAAAAAAAFwz40rSRhCnOZDTvOzixYuqVCotzw2HwxoeHjaDMkZ7wNx54z5Wh2w2azadzczMKBqNanx8XOPj45qYmGgJYxlX7p7LaLmq1WrqdKja6XQqGAyqt7dX/f39hK2AdSiZTOr48eMtwaxTp06pXq8rHA5r+/btLcGs7du38297nfj4xz+uU6dO6fHHH+/2UHAFKpWKXnnlFTO89fjjjysej6unp0d33XWXGd66//77FQqFuj3cdWclAl1jY2NyOBxd3CsAQDuFQmHRdq+FGr5mZ2fnNZAbrubCJu2avZayDwuNsd3yucsWaypr107WqbGs07qhUIi/MQAAAAAAy4qwFgAAAAAAAIC2yuWyYrGYotGopqamNDU1pWg0qunpaY2PjysWi2liYkKTk5PK5/Pm86xWqwYHBzU4OKiRkRFFIhENDQ1paGhIkUhEIyMj5uN9fX1d3EM0m52d1enTp3XmzBlFo1HNzs4qkUgoGo0qFosplUopk8kon88rl7vcirIUdrtdXq/XvAr23Da0hQJX4XB4hfcawPUWjUZ18uRJnThxwgxmvfrqq2o0GhoeHm4JZe3YsUNbt27t9pCxgghrrQ/1el0nT55sad46d+6c7Ha7du3apXe961164IEHdP/99ysQCHR7uDeESqWi6enpeSGu5mDXhQsXWj7PLRToGh4e1pYtW+T1eru4VwCAq7FYEGqhKRaLtW33utqgV29v71W3o3YKrl1pCCyRSHR8jaUEvhYLgUUiEdq+AAAAAACSCGsBAAAAAAAAN5x0Oq1Lly5pYmJCExMTZgirOXw1NTWlmZmZluf5/X4zaGWEsJrDV8aywcFBTkzpguaTkCYnJzUzM6OZmRlduHBB4+PjisfjSiQSSqVSSqVSyuVyKpVKqlQqqtfrHbdrtVrlcDjkdrvN0FVvb68GBgbM4NXw8LA2b96s3t5ewlYATNFotKUt68iRI5qYmJCkecGse+65R5FIpMsjxvVGWGv9Gh8f16FDh/TUU0/piSee0MmTJ2W1WrV792498MADZngrGAx2e6g3tEQi0bGdq1Ogq1M7l/F5sKenp4t7BABYTrVaTclkUolEYt5tu2Vzb9td5MU4VtDb22seQ1hsvre3d1nbOq818FUoFDoG2aQfhb6utN2reVl/f7+cTuey7TMAAAAA4PojrAUAAAAAAACsE+VyWTMzMy1XzZ97+8YbbyiZTJrPcTqd6uvrUzgcNq+ab9w2L9uwYQMn066whU4Mmpyc1KVLl8wQVjweVzKZVDabVaFQUKlUWjBwZbFYZLfb5XK55PF4zJarcDisgYEBDQ0NmV/nTZs2acuWLerp6SFsBWDJ5gazDh8+rFgsJml+MOsd73iH+vv7uzxirAaEtW4c09PTeu655/T000/r4MGDOnbsmCwWi2677Tbt379fBw4c0EMPPaTe3t5uDxVzLBbounjxoiqVirn+YoGuTZs2yefzdXGPAADXSzabNcNbzUEuo8l7dna24/zcYxxWq3XJ4a658ysRemo0Gkomk0qn00qn08pkMspkMkqn0+ZyY1kmk1EymTQby5vXXajpq6enR4FAQH6/X36/X+FwWH6/X8FgcN4UCoUUDAYVDodblhP4AgAAAIDuIawFAAAAAAAArAFTU1NmYCcajWp8fFzRaFTRaNQM8UxNTZnrWywWs/VqZGREo6OjGhkZ0YYNGzQ0NKSxsTENDQ1pYGCgi3u1viz1KsyJRELxeFyxWEzxeFypVErpdLrtFac7cTgc6unpkd/vVygUUl9fX0vT2YYNGzQyMqKbbrpJ/f398nq9K7jnAG4ktVpNp06d0smTJ3XixAkdOXJEzz77rOLxuOx2u2699daWYNauXbtoWUFHhLVuXIS31peFAl3RaFTnzp1TPp83118s0LVx40b5/f4u7hEAoNuMcJfREt4u2NUu6FUoFOZty+fzLRjo6uvrU19fX8t8X1/fdQs6zQ1wGY3ozcsymYwSiYQymYz5ePOUTqfbbtvj8cwLdLULdbVbx1gPAAAAAHB1CGsBAAAAAAAAXVQsFnXx4kWNj4/r0qVLmpiY0Pj4uBnGGh8f18TEhMrlsvkcv9+vDRs2aHh4WKOjoxodHTVbkYaHhzU2NqZIJCKHw9HFPVt7riRsNXeamZlpaRRoZrPZ5HQ6ZbVa1Wg0VKvVVCqVWtZxOBzy+XzmiTCjo6PatGmT+vv7W5rOwuGwxsbGFAgErsdbAuAGV61Wdfr06ZbGrJdeekm5XE4Oh0O33HJLSzBr9+7dhENxRQhrwZBOp3X48GEdPHjQDG9J0rZt2whvrROJRKJjO1c0GtX58+eVy+XM9ZsDXe2CXbfccgufiQEA8xQKhSU1d82dUqnUvG35/X719vaqv79f/f3988Jczff7+/vV19fX1d9N13Jcq1gsdmz5crvd5jGpcDgsj8czb1m7yVhvaGhIVqv1Or8bAAAAANB9hLUAAAAAAACAFdTuKvPN98+dO6d6vW6uHw6HW05CbHeCIle1bW+lwlZOp1M9PT3yer2y2+2yWq2yWCxqNBoqFovK5XLKZrMtX0dJCoVCGhkZMU9SaQ5dzQ1gDQ8Py2KxXI+3CQDaqlQqeu2111qCWUePHlWhUJDT6dTNN9/cEszau3ev3G53t4eNNY6wFjrJZDJ6/vnnFwxvPfjgg+rr6+vySLGcFgt0XbhwQdls1lzf7XZ3bOcaGRnRzTffrGAw2MU9AgCsJYVCwWyFXOgYkrFOPB5vubiSwfj91HzcZ+7U/Hh/f/91a/FazGLH0BY6ztbp/ZDmB76uJPzV19cnl8t1nd8JAAAAALh2hLUAAAAAAACAqzQ7O6tLly7p/PnzunDhgi5duqSLFy/q/PnzunjxoqLRqBkAstlsGhoa0qZNmzQ2NqYNGzZo48aN2rhxo8bGxjQ6OqpIJHJDB3ZWKmxlnPARCoXk8/nk9XrlcDhksVhks9lUqVRULBZVLpfNKwlPTU3N2167k2063Y9EIrLZbNfjbQOAK5bNZnX69GmdOHHCDGa9+OKLKpVK8vv92rlzZ0swa9u2bfxMw4ogrIWlahfeqtfr2rp1qw4cOEB46wayWKDr4sWLymQy5vqLBbpuuukmhUKhLu4RAGAtS6fTisfjmpmZUTweVzwe1+zsrDlv3J+ZmTHXaQ4eG4LBoNnOZTR5GdPg4OC8Zav1M0/zMbwrafUy1ovFYqrVavO263a7r7jRq3nZ4OCg7HZ7F94RAAAAADcywloAAAAAAABAG6VSSePj4x1PBDxz5oxSqZS5fvNJgHNPBNy6davGxsbkcDi6uEcrr9MJGEs5OWMpYat2k9/vN68+XKlU1Gg0lM/nlU6nVSgUFIvFFI1GFY1GlUwmO253odarkZGRG+LrB2B9SqfTeuWVV1oas06dOqV6va5gMKg77rijJZh1++23y2q1dnvYuEEQ1sLVmp2d1Q9+8AM98cQTeuKJJ/TDH/5QkrRz50498MADevDBB/Wud71LgUCgyyNFNzQHutr9Pff6668rnU6b6y8W6DJuAQBYDuVyeV6YKx6Pa3p6uiX4NTMzo+npacVisZYgsiTZ7faWYNfAwEBLqKuvr0+Dg4MaGBgwl62Fdqp6va5UKqVEIqFkMqlUKtVxSiaT5tS8vFQqtd12KBRSMBhsmeYuC4VCLctCoZB5Aai18P4BAAAAWF0IawEAAAAAAOCGVCwWdf78eZ09e1bnzp3T2bNnzfnz588rFouZ63o8Hm3atEkbNmzQ2NiY2Yhl3N+0aZO8Xm8X92Z5rETY6kqufNt8BdxyuaxSqaRUKqVoNKpYLGYGr2KxmKampjQ5OalcLtfyen19fYpEIhocHNTIyIgGBgY0NDSkoaEh88SVSCSigYEBeTye6/XWAsB1kUwmdfz48bbBrHA4rO3bt7cEs7Zv335DNzqi+whrYbnMzs7qqaeeMsNbr7zyiqxWq/bu3auHHnpIDz30kO677z5OsoWpUCh0bOeamJjoeHGOdmEuY354eJjfqwCAFWOEkY1jcUYoufn4nLGs3XG6Thct6rRsaGhozV7I40obvZZ6jLNTc9diUyQSoa0aAAAAuAER1gIAAAAAAMC6VK1WdfHixZYwVnMoa2JiQsahsXA4rC1btmjz5s3asmWLNm3apE2bNmlsbExjY2Pq7+/v8t4szWoJWxlTb2+v3G63pMvhuNnZ2ZYTR5pPKpk7P3cMnZqvmk+Y3LBhg9myBQDrXTQa1cmTJ3XixAkzmPXqq6+q0WhoeHi4JZS1d+9eDQ8Pd3vIwDyEtbBSZmZm9Oyzz+rpp5/WwYMHdeTIEXk8Hu3bt0/79u3T/v379cADD9CcigUtFuh64403Wtp7CXQBAFaT2dlZTU9Pa2ZmxmzrmpqaMu8bUywW08zMjLLZbMvzHQ6HBgYGzAshGfORSMS8ENLg4KD5mHEMcD1Ip9Nme5fR8jX3ttNjc99HSbJYLGZDl3HctLm1q9OtMc/xTgAAAGBtIqwFAAAAAACANSuRSOjNN99sO124cEHValWS5HK5NDo6qq1bt86bbrrpJoVCoS7vyWWrOWzVTqlUUjweX1IAa3JyUs2HIpcSwAqHw9q4caP8fv+KvN8AsFZEo9GWtqwXX3xRk5OTkjQvmHXPPfcoEol0ecTA0hDWwvUyMTGhQ4cO6eDBg/r2t7+tS5cuyefz6d5779WBAwd04MAB7d69mxANrthigS7j1mD8bbpQoGstN5kAANauYrFoBriMUNf09LSmp6c1OTnZMh+LxZTP51ue7/P5NDw83DbUNTfwNTAwsG4/d1Wr1UUDXp0eTyQSqtVq87bp9XqXHPCae3zX5/N14V0AAAAAIBHWAgAAAAAAwCqWTqd15swZnTlzxmzEMtqxzp8/r1KpJOnyCW+bNm1qacdqvh0cHLwu410oULVY4KobYat22gWwOoWx2gWw5rZdtQtgjY2NKRAIXPP7DQDr0dxg1uHDhxWLxSTND2a94x3vWDPtj0A7hLXQDY1GQ8ePH9f3vvc9fe9739OTTz6pTCajsbExPfjggzpw4IAefvhhgq9YNsViUdFotG2Yy5hv/ttqbqCrXbBr8+bNBLoAAF3VfJyz08WbjPl2xz3D4bB5rHChCzmNjIwoHA53aS+vv8Uu2LXQceapqSnV6/V521zKceXm9/xqjysDAAAAaEVYCwAAAAAAAF1VKpU0Pj6uEydO6OTJky3tWGfPnjVPWAuHw22bsbZu3apNmzbJZrNd81iuJWw1PT1tNnk1M/4z/GoCV319fXK5XNe8X5I0OzuryclJ8ySJycnJlttYLKbJyUklk8mW5/l8Po2OjppXxB0eHtbg4KCGhoYUiUQ0ODiokZERDQ4O8h/4AHAFarWaTp06pZMnT+rEiRM6cuSInn32WcXjcdntdt16660twaxdu3app6en28MGlhVhLawG1WpVhw8fNsNbzz77rCqViu688049/PDDeuSRR7R//34+62JFXWmgy+l0qq+vr2M718jIyLL9nQwAwHIw2ijbhbrm3r+aC0SNjIxobGxMDoeji3vZXZVKZd4x69nZ2SXNF4vFedszGr16e3tbQlyLzYfDYT6DAAAAACKsBQAAAAAAgOtgqYGs4eFh7dixY14Ya/v27fJ4PIu+znoOW7XTaDQUi8UUi8V06dIlTU1NaXx83LxtDmQ1/4e7y+VSJBLR6OioBgcHtWHDBg0ODioSiWhoaEiDg4MaHh5WJBJZ0vsOAFhYtVrV6dOnWxqzjh07pnw+L4fDoVtuuaUlmLVnzx5+/uKGQFgLq1E+n9czzzyjgwcP6uDBgzp69Kjcbrf27dunAwcO6MCBA9q9e7csFku3h4obDIEuAMCNolAoaHp6WhMTE5qenlYsFjMvNhWNRjU1NWVelCqXy5nPs1gsGhwcNC8uFYlEFIlEzAtNGbdG0As/0nzcfKkBL2O+3TH1YDC4YKhrbrjLuB8MBruw9wAAAMDKIKwFAAAAAACAZXGtgazbb79dFovlhgpbLSSRSJgn3nW6vXjxoiqVyrx9nXuV2bm3Q0NDslqtXdkvAFjvKpWKXnvttZZg1tGjR1UoFOR0OnXzzTe3hLLuvvvurv2uAbqNsBbWgsnJST311FM6ePCgvvWtb2liYkKDg4N64IEHdODAAb3nPe/R6Ohot4cJSPrR3+Vz/3ZsDnadO3dO9XpdkuRwONTf30+gCwCwZhnHi+ceO527bO5xVJfLZQaEOh1DDYfDGhsbUyAQ6OIern4LHbNfaFrseL4xNX89Ok2RSITPKwAAAFh1CGsBAAAAAABgyer1us6ePatXX31VJ0+e1GuvvaYzZ87o9ddfVzQalSRZrVYNDw9reHhYAwMDCoVC8vl8CgQC8ng8SqfTN0TYqp1yuayZmZmOJw0YtxcuXGh5L9xud9uTBeYuGx4e5gr/AHAdZbNZvfTSSzp58qROnDihI0eO6MUXX1SpVJLf79fOnTtbglnbtm3j5CGgCWEtrDX1el1HjhzRd7/7Xf3Lv/yLnnnmGdVqNd111116+OGH9cgjj2j//v1yOp3dHirQUalUUjwe79jONTfQJUnhcLhjmGvr1q3auHGj7HZ7F/cKAICFNRoNxWIxxWIxTUxMaHJyUlNTUy2NXcZjiUSi5bmhUEgjIyPmNDo6quHhYY2OjmpoaEhjY2OKRCJ8BrxCjUajpaVrdnZ20Skej2t2dla1Wq1lWzabTb29vQtOfX198+6HQqEu7T0AAABuBIS1AAAAAAAAYDKugjk9Pa0f/vCHOn78uM6cOaOzZ88qGo1qZmbGDBG53W65XC5ZrVbVajXlcrl5/0lqrLdewladFItFzc7OLtiCFY1GNTU11XLCW7sQ1tzb0dFR/tMYAFaBdDqtV155paUx69SpU6rX6woGg7rjjjtaglm33347LYbAIghrYa3L5/N65plndPDgQR08eFBHjhyR1+vVfffdpwMHDugDH/iAtm3b1u1hAles+UIjnQJd58+fbzkGQKALALBelEqleUGuyclJXbp0qeV2amqq5XmRSERDQ0PasGGDeVzX+F1ozEciEY4VLIOltHk1XzAtkUgoHo+rXC7P21a7/7NYrM1rcHCQzzUAAABYFGEtAAAAAACAdWSx/6QsFost68zOzmpqakqzs7NKpVItQSKDxWKR0+lUT0+P/H6/fD6fRkdHFYlE1k3YqpNCoTAvcNWuDWtyclLNh9nC4XDb4FXzf/Ru3LhRfv//z96dx0VV7/8DfzEDw46AbMM2gIDICC6IyqKVS2a5lZFdS8syK29d697bzZ91u1pd2/vlN7PVe7v6vZWZlVcrs8wFURQRFSH2nWGTHWWd4fdHvzmXgQEGnOEAvp6Px3nMcDhzzvucWc76Oh97EeeOiIh6U1dXh8uXL+sEs3799Vd0dnbCyckJoaGhOsGs0NBQtmxINAgMa9FoU1hYiEOHDuGHO8vRlAAAIABJREFUH37AkSNH0NTUhAkTJmDhwoW47bbbMHv27BG9f0TUlSkCXT4+PrCwsBBxroiIiAzXdV3Y1w28+jp23HVd2PXRw8ODoS4TaGho0Gmhq/vz3rr29nad8ZiZmeltqatr5+LiAhcXF+FvZ2dnWFtbizTnRERERCQGhrWIiIiIiIiIiIaRgYatunZVVVVCq1ddWVlZwdHRETY2NtBoNOjo6IBarca1a9fQ0NCAzs5OSKVSODs7w8/PD8HBwVAqlZgyZQqmT58OZ2dnEZaE6dXW1upcRNb9MTc3F3V1dTqv6S2E1fWRF5cREY0sKpUKycnJSE9PR1pamvAcAORyuU4oa9q0aZDL5SJXTDR6MKxFo1lHRwcSExNx8OBB/Pzzzzh//jysrKwQExODefPmYcmSJZgwYYLYZRKZXPd97+7Pi4qKdI5ldA90db+Y3c/PD7a2tiLOERER0cBcu3atR6tcJSUlKCsrQ2lpqfDY3NwsvMbKygqenp5Cq1xeXl7w9fWFj48PvL294ePjAw8PD944Zog0NjbqBLu6B7yqq6uFruvf3S/NtbGx6TPMpS/s5eDgINJcExEREdH1YliLiIiIiIiIiMiITBW20rZUZW1trfN3987a2ho1NTVQqVQoKipCYWEhMjIyUFZWBgCwtbVFSEgIQkJCEBoaipCQECiVSowbNw7m5uZDvbhMoqmpCcXFxVCpVCgtLUVpaSlUKhWKi4tRVlaGkpISVFRU6Nzd283NDXK5HD4+PsJJcO0Jb29vb7i7u8PNzY0nv4mIRjhtMEvbnTt3DuXl5QB6BrNmzJgBNzc3kSsmGt0Y1qIbSUVFBX788UccPHgQhw8fRn19PQICAjBv3jzMmzcPCxcuhJ2dndhlEoliMIGu3lrnksvlUCgU/D4REdGIU1tbC5VKJXSlpaUoLy9HcXExSktLUVxcLBzDAACZTAZPT094e3vD19cX3t7e8Pb2hkKhgJeXl3Bcm8TT9VyQ9kZxvZ070ob2Wltbe4xHG96Ty+W9nhvq+n9XV1feUI6IiIhoGGBYi4iIiIiIiIioi+sJW1VWVuoEgLQGErbq3rm4uEAmk+mttaioCBcvXsSlS5dw8eJFXLhwAbm5udBoNHBwcMDEiRN1AlkhISFQKBQjOnCkPWHd/eKt7o9aMpkMY8eO1Xs3bm0/XsRFRDQ6dQ9mnTlzBlVVVZBKpVAoFAgNDRWCWdHR0Rg7dqzYJRPdcBjWohtVe3s7Tp48iR9++AGHDh1CamoqbGxscPPNN2PRokVYtGgRfHx8xC6TaFjpL9BVXFyM9vZ2Yfj+Al2+vr6wt7cXcY6IiIgGrq2tDVeuXNG7LtQ+LygogEajAaB7fLz7+lD7t1wuH9HnDEabxsZGVFdX48qVKzotdnXvrly5Igxz9erVHuPp3lJX965ry17ax97ORRERERHR4DCsRURERERERESjSn9hq74CV0MdtjJUe3s7srKykJycjPT0dKSlpeHs2bOorKwE8N+WQJRKpXDh+YQJEyCRSK5rukOppaUFNTU1vYaw9F14pb2bZPfwVdd+Hh4eI2o5EBHRwKnVamRkZOisJ0+dOoWamhqYm5sjODhYp8WsKVOmwNbWVuyyiQgMaxFplZSU4IcffsAPP/yAn376CU1NTZg8eTLuuOMOLF68GJGRkdyvITJA90BX9wvYCwsLdS5m7i3QpX0MCgqCg4ODiHNEREQ0cC0tLSguLkZJSQmKi4uF5yUlJSgqKkJJSQlqamqE4a2trXVa41IoFDqtdPn5+cHGxkbEOSJDaG9011fLXV3/X1VVpdNyKaB7Lqy3lry69ndzc4O5ublIc0xEREQ0/DGsRURERERERETDiqnDVgMNXBkjbDUQtbW1SEtLE1oB0V503tLSAgsLCwQFBQkXmyuVSkyePBkuLi5DVt9gdG0Nq7dWscrLy6E9TKWvNazuF0/5+PjwgikiohtQR0cHMjMzdVrMSklJwbVr13qsJ7WdtbW12GUTUS8Y1iLqqaOjA4mJiTh48CC+/fZbZGZmwsXFBbfccgsWLVqEpUuXYsyYMWKXSTRi9dZit/Z5UVERmpqahOH13Sim6/PAwEB+J4mIaMRpbW1FaWlpn+vEsrIyYXgnJye9LXMFBARg3LhxcHR0FHFuaDA0Go1OC17alroqKyt7tNxVWVmJK1euoLGxUWccEomkRwtdLi4ucHNz69F6l5ubG1xcXGBnZyfSHBMRERENPYa1iIiIiIiIiMiobvSwlaHUajUyMzNx4cIFXLx4UejKy8sBAF5eXpg0aRLCw8MxefJkTJo0CUFBQZBKpSJX/l+tra2orq7utTUsfXet1l7k1NedqxUKxbCaTyIiEkfXliW7di0tLbCzs8P48eOFFiUjIiIQGRkJS0tLscsmogFgWIuof3l5eThw4AAOHjyI48ePo7OzEzNmzMDixYuxdOlShISEiF0i0ajTX6CruLhY52Ll/gJdvIidiIhGosbGRhQWFqKgoEDoCgsLhX5VVVXCsM7OzvDz84NCoRBa4/L39xf+5npw9NDXglf3Vru0XWlpKerr63Veb2lpCWdn5z5b7Oraz8vLi8f7iIiIaMRiWIuIiIiIiIiIdDBsZRoqlUrnQvOEhATU1tbC3NwcwcHBUCqVwgXnkZGR8PDwELXetrY2lJaWori4GIWFhSgpKUFxcTGKi4tRVFSE0tJSVFdXC8Obm5vD3d0dPj4+QstX2hNp3t7eQj8bGxsR54qIiIarxsZGXLx4UadVyaSkJLS1tcHBwQFhYWE6rWWFhIQw2Es0CjCsRTQw1dXV+OWXX3DgwAEcOHAAdXV1CAgIwKJFi7B48WLcdNNNsLCwELtMohtCf4GukpISNDQ0CMP3F+gKCAiAk5OTiHNEREQ0MNrWufLy8nqsC/Py8lBQUACNRgNAdz3YtdOuB/39/WFmZibyHJEpNDU1CS12dW/Fq6qqSnje9X/az42Wvb09XF1d4erq2qMFL22LXa6ursLfbL2LiIiIhguGtYiIiIiIiIhGGUPCVr0Frhi2Mo7c3FycO3dO6M6fP4+GhgZYWFggPDwc06ZNw7Rp0xAREYGJEycO+cV0nZ2dKC8vR1FRkRDCKiwsRHFxMUpKSlBUVITy8nJoDxvJZDIhdKVQKIQglq+vL+RyOby8vODh4QGJRDKk80FERCNTQ0MDLl26pBNizsjIgEajgaOjI5RKpU4wa8KECVzHEI1SDGsRDZ5arcbp06dx8OBBHDhwAOnp6XB2dsbcuXOxaNEi3HnnnbC3txe7TKIbWnNzc69hrrKyMuTk5Oi0NtFXa+RdnxMREY0ELS0tQmtc3VvlKigoQFlZmXAOwt7eXmiRa9y4cTqdv7//DXeO6UbW2dkphLa6B7uqqqp0+lVWVqKyshJXr17VGYeVlZVOeKt7mEv7t6urK9zd3RnuIiIiIpNhWIuIiIiIiIhomBmKsNVAAlc3YthqIOrr63HmzBkkJiYiMTERZ86cQU1NDczNzaFUKoVQ1rRp0zBp0qQhWZZdLwbSd0FQYWGhzskrJyenPu/srFAo2HoJERENSl1dHS5fvqwTzPr111/R2dkJuVyu07JkREQEQkNDeSdlohsIw1pExpOZmYn9+/dj//79SExMhJWVFW699VYsXboUixYtgouLi9glEpEe/QW6cnNzUVdXJwxvSKBLLpdzm5qIiIa91tZWFBUV6YS58vPzkZubi9zcXFRVVQEApFIpfHx8eoS4tB1vUEAtLS2oqakRzpWWlZVBpVL1+nfXmxUCPc+hare1evub21pERERkKIa1iIiIiIiIiIyMYavRS6PRID09HYmJiTh9+jQSExOFlkD8/f0RFRWFGTNmIDIyEpMnT4a1tbXRa2htbUVpaaneC3jy8vJ6vYgnICBA7wU8fn5+sLW1NXqdRER041GpVEIgKz09HWlpaUhPTwcAyOVyndaypk2bBrlcLnLFRCQ2hrWITOPKlSv4/vvvcfDgQXz//fdoaWnBzJkzsXjxYixbtgzjx48Xu0QiGoD+Al15eXmora0Vhmegi4iIRoOWlhaoVCrk5eUJx5i0N6grLCwUzqVpb0anr/P39+f6jnq43nCXpaUlnJ2dGe4iIiKifjGsRURERERERNTN9YStKioqoNFoeozzesJWrq6usLCwEGFJUFNTE06fPo2TJ08iISEBSUlJaGhogJ2dHaZNm4aZM2cKnbu7u1GmWVtb22uLWGVlZSgoKBA+Y5aWlvDy8tK54KbrBTiBgYEYM2aMUeoiIiLqqmswKzk5GefOnUN5eTmAnsGsGTNmwM3NTeSKiWg4YliLyPSuXbuGI0eOYO/evThw4ADq6uoQGhqKxYsXY9GiRYiJieGFg0SjgL5Al77jSlr6jilpn2sf/fz8IJFIRJwrIiIi/drb21FcXCycS+na/frrr7h27RqA/67vAgICEBoaCqVSKZxHUSgUkEqlIs8JjQTNzc24cuUKKioqUFVVhaqqqj7/bmpq0nm9lZUVXFxc4ObmBnd3d7i6usLV1RVyuVx47uHhATc3N7i6uvIGnERERKMIw1pEREREREQ06jBsRYNVUVGBkydPCt2FCxfQ0dGBwMBAxMTEYObMmYiKisLEiRMHdRKvtrZW50KZ7oGsoqIidHR0CMN3vSOkvotneFdIIiIaCt2DWWfOnEFVVRWkUinGjx8PpVKJ0NBQREREIDo6GmPHjhW7ZCIaIRjWIhpa7e3tOHbsGL799lv85z//QUlJCRQKBZYuXYqlS5di9uzZMDc3F7tMIjIRbQslvbXOpVKpdFqO0LYa0VvrXAx0ERHRcKRWq1FSUoKcnBzk5ub26BobGwEAMpkMQUFBGD9+PMaPH4+QkBCEhIQgODgYjo6OIs8FjWTacFdlZSUqKyuFMFfXvysrK1FWVoaqqiq0tLTovN7JyUkIdbm7u8PDw0NvwEsul8Pe3l6kuSQiIiJDMKxFREREREREw46hYSt9gSuGrWgg8vLycOLECZw4cQIJCQnIysqCVCpFeHg4Zs2ahdjYWMTGxkIul/c7rqamJhQWFqKoqAjFxcUoKSlBYWGh8Ly4uFjnhIuHhwd8fHzg7e0NX19f+Pr6wtvbG97e3lAoFPDw8OBdHYmIaEh1dHQgMzNTCGWlp6fj/PnzqKmpgbm5OYKDg3VazJoyZQpsbW3FLpuIRjCGtYjElZaWhr179+LgwYNITk6Gs7Mz7rjjDsTFxWHBggW8ozvRDWiggS6ZTIaxY8f2GehiyyVERDScVFZWIjc3Fzk5OcjIyEBWVhYyMzORlZWF1tZWAIC7uzsmTJiA4OBgjB8/Xnju5+fHdRoZnfY8t7Zl1O7Pu/7d/Ty4Nlzv5OQktJDa/bn2bx8fH57vJiIiGmIMaxEREREREZHRDVXYytDAFcNWpFVRUYETJ07g559/xk8//YT8/HxYWFggPDwcMTExiI2Nxdy5c+Hs7Nzjtfpaxep6wUp+fr5woYqVlZXei1S0fysUCtjZ2Q317BMREQna29uRlZWl02JWSkoKrl27BgsLCwQFBekEsyIiImBtbS122UQ0yjCsRTR8ZGdnY9++fdi3bx/OnTsHJycnLF26FMuXL8f8+fNhaWkpdolENEy0traitLRUb6BL+1hQUCAc42Wgi4iIRgqVSoX09HTk5eUhLS1NeK49/2NhYQEfHx+EhoZCqVQK533Cw8Ph5uYmdvl0g9Cer+wr4FVWVoaSkhK0tbXpvFZ7/lJfqKv7cycnJ5HmkIiIaPRgWIuIiIiIiIh6YNiKRouqqiocO3YMR48exS+//ILMzEzIZDLMmDEDc+bMwZw5czBjxgzIZDLhQhJt61iFhYVCV1BQgKtXrwIAzMzMhMCVtvP19YVCoYCfnx98fX1hb28v8pwTERH9l75gVnJyMlpaWmBnZ4dJkyZBqVQiNDQUERERiIyM5AXZRGR0xcXFWL58OZqbm4V+lZWVaGtrg7e3t9DP3Nwc7733HqKjo8Uok4gAFBUV4ZtvvsHevXtx6tQpWFtbY86cOYiLi8Py5cvZsiYR9au1tRXV1dW9ts7VPdBlYWEBFxcX4SJhfcEuX19fmJubizxnRER0I6qvr0dmZiYyMzORkZEhPM/OzhZa45LL5QgJCdHbGpdEIhF5DuhGVVNTg4qKClRVVaGiokJ4XllZifLycuF5WVkZmpqadF5ra2sLd3d3uLu7w9XVFR4eHvDw8ICbmxs8PT3h5uYGd3d3yOVy7iMSERH1gmEtIiIiIiKiUYhhK7pRtba24uTJk/jxxx9x+PBhXLp0CRKJBFOnTsWMGTMQEhKCMWPGoLS0VOfikIyMDCGM1fXiEO1dEbteHBISEsKTDkRENGw1Njbi4sWLQiArPT0dqampaGtrg4ODA8LCwnRay5owYQIvGCGiIVFZWQlPT0+o1ep+hz158iRiYmKGoCoi6k9JSQn27duHgwcP4tixY7CwsMDcuXMRFxeHO++8kzcrIaJBa2trw5UrV/oMdBUWFupsOzg5OfXaOhcDXUREJIb+WuOSyWQIDAxERESEcLMkbatcRMNJc3MzqqqqUF5ejsrKyh7Py8rKUFFRIfzdla2tLeRyOdzd3XXCXPoCXlZWViLNIRER0dBjWIuIiIiIiGgYGkjYqnvgimErutHk5OTg+++/x/79+3Hq1Cm0tLRg7NixcHV1hUQiQV1dHSoqKoQLO6ysrODn56e3VSyFQgFPT09IpVKR54qIiKh/9fX1SE1N1WktKyMjAxqNBo6OjlAqlTrBrNDQUJiZmYldNhHdwObNm4djx471Gdjy9PRESUkJf6+IhiGVSoVvvvkGX331FeLj42FpaYnbb78dy5cvx6JFi2BnZyd2iUQ0ypgi0OXj48Nj3UREZHJ1dXXIyspCamoq0tLSkJqaitTUVFRUVAAAXFxcEB4ejokTJ2LixIkIDw9HaGgob4ZAI0Ztba2wPaZSqVBbWys879qvvLwcXS9Tt7KyElpTdXJy0vvc09OT22xERDQqMKxFRERERERkAgxbERmXWq1GaWkp8vPzkZWVhaNHj+L8+fMoKipCc3OzzrA2NjYICAiAv7+/3lCWu7u7SHNBREQ0eLW1tUhLS9MJZv3666/o7OyEXC7XuTuv9jkR0XDzr3/9Cw899JDefV4AkMlk+NOf/oStW7cOcWVENFDV1dX47rvvsHfvXvz444+QSqWYN28e4uLisHz5crZITURDpr29XWjtQV+YKy8vD0VFRejo6BBe01egSy6Xw9/fHzY2NiLOFRERjVbaY3zp6enCsb6LFy+iqakJACCXy3sc41MqlWyNiEas1tZWVFdX9xrm0j5XqVSoq6vTeW3XYFdfAS+2rkpERMMVw1pERERERER6XE/YqvvdobT6ClT1F7hyc3PjAUYa9Wpra5GXl9ejU6lUyMvLQ0tLi87wtra2CAoKwrRp0xAVFQVfX18hpMW78BMR0UimUql0Qlnp6enIy8sDACGYpe0iIyPh4eEhcsVERIZpbGyEi4sL2traeh3m0qVLCAsLG8KqiOh6VVdX4+uvv8bnn3+OEydOwNbWFsuWLcO9996LefPm8QZCRDQsaI89DiTQ1VvrXHK5HH5+fgymEhGR0ahUKp0Al/Z5S0sLzM3N4evrqxPgCg0NxYQJEyCRSMQunchompqaUFZWhoqKClRUVKCsrAyVlZVCv8rKSqhUKlRWVqK1tVV4nVQqhZubG9zc3ODp6Qk3Nzd4eHjAw8MD7u7u8PLyEh7ZIjQREQ0lhrWIiIiIiGhUYtiKaPjpGsbqeiFEXl4eMjMzhbsGWlhYwMfHB3K5HG1tbaiqqkJRURHMzc0RGRmJu+++G3FxcfDy8hJ5joiIiK5f92BWUlISKioqAPQMZs2cOROurq4iV0xEdH2WL1+OAwcOoL29vcf/AgMDkZ2dLUJVRGQs1dXV2LdvH3bt2oVTp07B0dERixYtQlxcHBYuXMjjY0Q0rPUX6CouLtbZhukv0KVQKHhBMBERDVp7ezuysrKE4Jb28ddff0VnZyccHBwQFhYmHDtUKpUICwuDTCYTu3Qik9Ne19E1wFVeXt6jX0VFBdRqtfA6W1tbIbzl6ekJDw8P4VG7Lefu7g4XFxcR546IiEYLhrWIiIiIiGhYYtiKaORpa2tDSUmJ3taxsrOz0dDQIAzr5OSEgICAHl1LSwtOnjyJb775BllZWXB1dcWiRYuwePFi3HrrrbxbLRERmZRGo8HevXsxc+ZMKBQKo4+/ezArMTERV65cgVQqxfjx43XujBsTEwNnZ2ej10BEJLavv/4ad999d4/9dgsLC2zevBmbNm0SqTIiMrbi4mJ8/fXX2Lt3LxISEuDp6SncgCUmJoatYhPRiNRXoEulUqGgoADXrl0Thu8v0OXr6wt7e3sR54iIiEaa+vp6XL58GRcvXkRKSgpSUlKQmpqKtrY2WFtbIzw8HFOnTsWUKVMwdepUTJw4EZaWlmKXTSSa2tpane017WNtba3wvLi4GI2NjcJrZDIZxo4dC09PT8jlcjg5OQnPuz76+vryOhIiIuoVw1pERERERGQSAw1bdQ1cMWxFNDx1dnbqtIbVtcvPz4dKpRKGdXNzEwJY/v7+wqO/vz+8vb11vo+pqan48ssv8eWXXyIrKwt+fn6Ii4vDkiVLEBUVBalUKsbsEhHRDebUqVN4/PHHcenSJfz5z3/GG2+8MehxdXR0IDMzUyeYdeHCBVy9ehXm5uYIDg7WaTFr6tSpsLGxMeLcEBENX62trXBxcRFa1tUyMzNDbm4u/P39RaqMiEzp119/xZ49e/DFF18gMzMTvr6+WLZsGeLi4hAbGyt2eURERtX1gmB9wa7CwkJcvXpVGL5roEtfsCsoKAgODg4izhEREQ137e3tSEtLQ0pKCs6fP4+UlBRcvHgRTU1NsLCwgFKpRGRkJKZPn47IyEgolUqeOyfqprm5uUegq7eAV1f6tuW6B7wY0CciujExrEVERERERHoNddiqv8AVw1ZEQ6O1tRWlpaV6A1mZmZnCBZUymQze3t56W8cy5OKB/Px8fPnll9i1axfS09Ph7e2Nu+66i3fXJiKiIadSqfDMM8/g888/h1QqRUdHB2bPno3jx48b9Pr29nZkZWXpBLNSUlJw7do1WFhYICgoSCeYNW3aNFhZWZl4roiIhrc1a9bgs88+Q1tbG4DfgloRERFISkoSuTIiGgrJycn44osvsGfPHhQXF0OpVGLVqlW477774O3tLXZ5RERDor9AV1FRkU643crKqtfWuTw9PREYGIgxY8aIOEdERDTcaDQaZGdnIyUlBUlJSUhKSsL58+dx9epV2NjYYMqUKYiMjBS6oKAgsUsmGhFaWlpQU1PTb7CroqICGo1GeJ12e05fsKvro5OTk4hzR0RExsSwFhERERHRKMWwFRHp09nZidLSUuTm5vZoGSsvLw8VFRXCsHK5vEfrWNrO09NzwIGquro6IaCVkJAAFxcX3HXXXVi1ahUDWkRENOTa29uxY8cObNq0Ce3t7Whvbxf+Z29vj/r6+h7rpra2NmRnZ+sEs5KTk9HS0gI7OztMmjQJERERUCqVCA0NxfTp0yGTyYZ61oiIhr2ffvoJt956q/C3ubk53n77bTz55JMiVkVEQ62zsxMJCQn4/PPP8cUXX6Curg633HILVq9ejbvuugt2dnZil0hEJKr+Al3FxcVobGwUhu8v0DVu3Dg4OjqKOEdERCQ2tVqN9PR0Ibx19uxZpKamor29HU5OTpg+fTqioqIQFRWFmTNnsmVHouvQ1taGK1eu9GiVq3uwq6ioCB0dHcLrDAl1+fn5wdbWVsS5IyIiQzCsRUREREQ0TDFsRUSD1dHRgaKion5bx7K0tISXl5fe1rGCg4Nhb29/3bWo1WocOnQIn376KQ4cOAALCwvcfffdeOCBBzB79mxIJJLrngYREdFA/fzzz3jsscdQUFAAtVqtd5jU1FTU1dXphLIyMzOhVqvh4OCAsLAwnRazJkyYwPUaEZGB1Go13N3dUV1dDQCQSCRQqVRwd3cXuTIiEktbWxt+/PFH7N69G/v374dEIsHixYuxatUqLFy4kMcliYh60TXQpS/YlZ2djYaGBmH4/gJd2kciIrpxtLS04MKFC0hKSsKZM2dw6tQp5OfnQyKRQKlUIjo6WghwBQcHi10u0aijVqtRWVmJ8vJyYRuutLQUKpUKKpUKpaWlKCsrQ0VFhc51QO7u7vDw8IC3tzfkcjm8vLzg5eUFuVwu9OOxNiIicTGsRURERERkIgxbEZEptbS0IC8vDzk5OcjNzRUec3NzUVhYKLQO4uzsjHHjxiEwMBDjxo3TeS6Xy01WX2ZmJv7xj39g9+7dKC8vx6xZs7BmzRrcfffdvDM2ERGJJjs7Gxs2bMAPP/wAiUQCjUajdzgzMzNYWVmhubkZ7u7umDp1KqZMmYKpU6di6tSp8Pf3H+LKiYhGnz/84Q/48MMPoVarcdNNN+HIkSNil0REw0RdXR3+85//YPfu3Thy5Ajkcrlw45epU6eKXR4R0YjT3Nzca+tcZWVlyMnJQX19vTB899Yc9AW75HJ5j9aoiYho9CgvL8fp06dx6tQpnD59GsnJyWhpaYGrqyuioqIQGxuL2bNnIyIigtcgEA2h2tpane243h61ZDIZxo4d229LXQzrExGZBsNaRERERES9GEzYShu4qq2t1TvO6wlbubu7QyqVDvFSICIxtbS0QKVSIS0tDenp6TotZBUWFgotgTg5OeltHUupVJo0kNWdRqPBL7/8gm3btuG7776Dp6cn7r//fqxduxaBgYFDVgcREVF3V69exRtvvIGtW7cCgBBq7o2lpSVWrFiBrVu3wsvLayhKJCK64Zw+fRrR0dEwMzPDzp07sWbNGrFLIqJhqLCwEF988QU+/vhj5ObmIjQ0FKtXr8YDDzyODaQIAAAgAElEQVQADw8PscsjIho1+gt05ebmoq6uThh+JAW6Dh8+jHfeeQdPP/005s+fL3Y5REQjUltbG5KTk5GYmIhTp04hPj4eFRUVsLOzQ0xMDGbPno2bbroJkZGRkMlkYpdLdEPTXmPQV6CrqKgITU1Nwmu6b9vpe1QoFLwpKxHRADGsRWQip0+fRklJidhlEJEJTZkyhRcdEw1zYoSt+gpcMWx1fbh9RYPl6uqKm2++2eDhtZ8zb29vE1Wkq76+HllZWcjKykJOTo5OC1mVlZUAAKlUCh8fn15byLK1tR2SWvuah08//RTbtm1DQUEB5s6di3Xr1uHOO+/k3fRGsPb2dnz33Xf9BhqIiIa7+Ph4fPrpp7h27ZoQdDZEeHg4nn/+eRNWNjyZ+njH2bNnUVhYaLLxE9HIsn79etTV1eGTTz6BjY2N2OUQ0TDg7OyMuXPn9ujf2dmJ+Ph47Nq1C1999RWuXr2KW2+9FatWrcKyZctgZWUlQrVERDeW/gJd3VtysLS0hJeXV5+BLg8PD0gkEpPW/eyzz+KNN95AZ2cnJk+ejM2bN2PJkiV9BslUKhUSEhJMWhcR0UgjkUhw6623wt7eHgCQkZGBEydO4Pjx4zh+/DhKS0thY2ODmTNn4qabbsJNN92EGTNmcFudaJiqrKxEeXk5iouLUV5ejpKSEiHkVVpairKyMlRUVKBrzMDd3R0eHh7w9vaGXC6Hl5cXPD094eXlBYVCAR8fH4wZM2bI5+XgwYN48skn8eyzz+Khhx4yKDTK7T0iXeHh4Rg/frzYZYw6DGsRmYjDmDFobGgQuwwiMqHFS5bgP/v3i10G0ajGsBV1xe0rGiwzMzM0NzfD0tKyz+Gamprwyiuv4I033kBsbCx++eUXo9WgVqtRUFCAzMxMZGRkIDMzE1lZWcjIyEB5eTkAQCaTwc/PTwhgBQYGCs/9/f2H5V3o0tLS8NZbb+Hzzz+HpaUlHnzwQaxfvx7BwcFil0ZGcOjQISxcuFDsMoiIaIiZ+niHh4ccFRXlJhs/ERERjXy1tbVwdHTs9f/Nzc3Yv38/du/ejcOHD8Pe3h733XcfHn74YUyePHkIKyUiou66t+SgL9hVXl4uXPTbPdClL9jl5+d3XYGulStXYs+ePdBoNJBKpdBoNAgODsamTZuwcuVKvTcce/LJJ7F9+/ZBT5OIaLT68MMPsW7dOr3/y83NxYkTJ3Ds2DGcOHECBQUFsLKywvTp03HzzTdj9uzZiIqK4s1aiEaQ9vZ2VFRUoLi4GGVlZSgtLRXCXF2DXQ1druWxt7eHr68vfH194ePjA29vbyHIpe36u3ZjoDZt2oTXXnsNAODp6YmXX34Z999/f5/XeHF7j0jXvHnz8dNPh8UuY9RhWIvIRGxsbfHwX/+OW+5cIXYpRGQC7258CjZtV/HddwfFLoVoWGPYioyJ21c0GOeO/YRXHnsAV69e7fXAv0ajwa5du/DMM8+grq4OHR0dcHR07PV3qC8NDQ1IT0/vEcjKyclBW1sbAEAul2P8+PEYP348goODERISgvHjx8PPz2/E/EadO3cOW7duxf79+xESEoInn3wS999/P+zs7MQujYzo4MGDWLx4MT67kAtLK2uxyyEiGjSNWo0qVQnKCvN/6wryUJKXA1V+LqrLy6DR/NbalrmFBcwkErS3tgqv/fj4eTi7e4hV+pAbiuMdY11csfz3f8RtKx802TSIiIhoZEpNPInND96DqqoquLi4GPSa8vJy7NmzB5988gkuX76M0NBQrF69GmvXrsXYsWNNXDEREQ3GQANdMpkMY8eO7bV1Lk9PTygUil6Pr8+cORNnzpzR6SeRSNDZ2QkvLy/8+c9/xqOPPqrT8sv69euRkHIJf/t0r+kWBBHRCPNQdBi2vvQi1q9fb9DwhYWFQqtbx48fR25uLmQyGSIjI4XwVnR0NM8vEo0CjY2NKCoqQlFREUpKSlBcXIyioiIUFxcLXUtLizC8tnUuHx8f+Pr6QqFQwN/fX+gcHBwGNP24uDh8/fXX0Gg0QuupXl5e+Otf/4qHH35Y73Yit/eI/uujLf8HLWWFOHb0qNiljDo9bw1CRERERPT/DTZspQ1c6dNb2CogIIBhKyIacmfPnsUTTzyBc+fOAYBw8reurg4qlQqenp56X9fW1obs7Gykp6cjLS1NeMzIyIBGo4FMJoO3tzdCQ0OxePFiBAQEIDQ0FOHh4QM+sDicnDx5Eq+99hq+++47hIeH45///Cfuu+8+/jYTEdGwJpFK4e6jgLuPApNjb9b5n7qjHRUlxSgryIOqIA/lRQUoyc1GaX4OGmtrcK2x4YYKaxERERGNNB4eHtiwYQM2bNiA5ORkfPTRR3j55Zfxt7/9DUuWLMG6deswd+5c4WItIiISn5WVFQICAhAQENDrMNeuXUNRURFKS0tRWloqPC8pKcHx48dRWlqKK1euCMNrW+jy8vKCr68vvLy8hAuA8/Pze4xfo9EAAEpLS/HHP/4RL774Iv7yl7/gySefZIsvRERGolAosHr1aqxevRrAbzdaiI+Px8mTJ3Ho0CFs3boVEokE48ePR2xsLGJiYjBr1iz4+/uLXDkRDZS9vT2USiWUSmWvw1RUVKCkpAQlJSUoLCwUQlxJSUnYu3cvysrKhOs1xo4dC39/fwQEBOiEuAICAuDr6wuZTKYz7vT0dGH7TjsOlUqFxx57DG+99RZefvll3H333Tw2QERDjmEtIiIiolFMrLBVb4Erhq2IaLgoKSnBxo0b8dlnn0EqlUJfo9MXLlyAi4sLMjMzkZ6ejtTUVKSlpeHy5cvIy8uDRqOBlZUVJkyYAKVSidWrV2PixIlQKpVQKBSj6kBffHw8nnvuOcTHx2PWrFn4/vvvcdttt4ldFhER0XWTmlvA0y8Ann4BiBC7GCIiIiK6LhEREfjwww/xxhtv4Ntvv8Xu3bsxf/58+Pj4YOXKlXjsscfg5+cndplERGQAGxsbhISEICQkpNdhWltbUVpaKrTK1bV1roSEBJSVlaGgoKDP6XR2dqKzsxM1NTV47rnn8Oqrr2LDhg1o7dLqNhERGYeHhwfi4uIQFxcH4LcgRXx8PE6dOoWEhAT84x//QEdHBxQKBWJjYxEVFYXY2FhMnDiR15kQjQLu7u5wd3dHRIT+szEtLS0oKChAfn4+8vLykJ+fj/z8fBw+fBh5eXmor68HAEilUnh5eekEuPLy8nqMTxveysnJwT333IMJEyZgy5Ytwm8QEdFQYFiLiIiIaBhj2IqIyLiuXbuG119/Ha+88opwErajo6PHcDKZDG+++SaWLVuG9vZ2WFhYICgoCEqlEqtWrYJSqURYWBjGjRs3qn8Xs7KysHHjRnzzzTeYO3cuTpw4gVmzZoldFhERERERERFRrxwcHIQ7+KempmLnzp345JNP8Oabb+K2227D2rVrsWjRIpib83IJIqKRzNLSst8WuoqKiqBQKAwan1qtRl1dHbZs2QILCwt4+o8zVqlERKSHp6cnVqxYgRUrVgAArl69ipSUFCQkJODkyZN44YUXUFNTAzs7O0yaNAkRERFCFxoaOqpunElEv13P1ldYv6amRghwdQ1zxcfH93qNHPDf0FZ2djbuueceTJ8+Ha+88opJ5oGIqDsefSQiIiIyIYatiIiGh87OTuzduxcbNmxAZWUl1Gp1n8N3dHTAzMwMu3btQmhoKEJCQiCTyYaoWvHV1NTg9ddfxzvvvAN/f398+eWXvMMUEREREREREY04YWFheOedd/Daa69h//792LlzJ5YvXw65XI61a9fikUcegZeXl9hlEhGRiVRVVRk0nEQigUQiQUdHBywtLeHk5AQJz6kSEQ0pW1tbxMbGIjY2Fs8++yzUajUuX76MxMREJCUl4ejRo3jvvfegVqvh5uaG6dOnIzIyEpGRkZg+fTrGjh0r9iwQkQk5OzvD2dm5R8tcCQkJiI2N7ff12pv4JicnY+7cufDy8oK9m4dJaiUi0mJYi4iIiKgXzc3NaGlpGXTgyhRhKw8PD0gkkiFeEkREI19MTAwuXboE4LfgVn80Gg3y8/Nx7733mrq0YUWtVuN//ud/sGXLFtjY2ODdd9/FQw89xKAvEREREREREY1olpaWuOeee3DPPfegpKQEn3zyCd5//3289NJLmDNnDtatW4e77rqLx0CIiEaZoqIivf1lMhk6Ojqg0Wjg7OyMmTNnYvbs2YiJiUFkZCSefvppJKRcGuJqiYioK6lUikmTJmHSpEl49NFHAfy39a3k5GQkJydjz5492Lx5Mzo7OyGXy4WWt2JjYxEVFQVbW1uR54KITC0nJwcSiURoQas3ZmZmkMlkaGtrA/BbqN/CzmEoSiSiGxjDWkRERDRqMWxFRERaFy9eFA6+dXR09NuyFgAUFhbi2rVrsLGxGYIKxZeWloaHH34YFy5cwF/+8hf85S9/gZ2dndhlEREREREREREZlbe3NzZv3oxNmzZh//79+Oijj7BixQp4enpi7dq1WL9+Pdzc3MQuk4iIjKC0tBRmZmYwNzdHe3s7JBIJAgMDMW/ePERHRyMmJgZ+fn5il0lERAbq2vqW1pUrV5CUlISzZ88iKSkJ77//PrZs2QJzc3OEhoZi+vTpmDZtGiZPnoywsLAb5twv0Y0iJycHFhYWaG1t1elvbm4OtVqNzs5O2NjYICwsDDNmzBBCne+99x7D+URkcgxrERER0bAldthKX+CKYSsiopHp7NmzKCwsRGZmJjIyMpCWloasrCxcvXoVAGBhYQGJRIK2tjah5S2NRoPU1FTMmDFDzNJNrqOjA2+99Rb+9re/ITQ0FKdPn8aUKVPELouIiIiIiIiIyKRkMhni4uIQFxeHrKws/OMf/8D27dvxyiuvYOnSpVi3bh3mzp0LMzMzsUslIqJBCgoKwrx58xAVFYXo6GhERUXBwYEtKBARjSYuLi5YuHAhFi5cKPQrLCzE2bNnhQDXl19+iYaGBkilUgQHB2Py5Mk6HW/WQDRy5eTkoK2tDWZmZujs7ISjoyOmTZuG6dOnC8EshUIhdplEdINiWIuIiGgIZGdnY8eOHfjss8/w448/YvLkyWKXNCQYtiIiouFCqVQiMjKyR//S0lJkZmYKIa7Lly8jIyMDZWVl6OzsRGFh4agOa6Wnp2PlypXIzs7G3//+dzz11FOQSqVil0VERERERERENKSCg4Px6quv4oUXXsCePXvw4YcfYv78+ZgwYQIeffRRPPjggxgzZozYZRIR0QAtWLAACxYsELsMIiIaYgqFAgqFAnFxcUI/lUqF5ORkJCcnIz09Hf/617+wceNGdHZ2wsnJCaGhoUKwIyIiAhMmTOD1RUQjwIoVKxAYGIipU6ciIiICvr6+YpdERCRgWIuIiMhENBoNfvjhB2zbtg0///wzLCws0N7ejpycnBET1rqesFVNTU2P5oW1GLYiIqLhwsvLC15eXpgzZ45O/+bmZuTn5yM4OFikykzvq6++wpo1axAeHo6LFy8iMDBQ7JKIiIiIiIiIiERlY2ODNWvWYM2aNUhJScGHH36I559/Hs8//zzuv/9+PPHEE1AqlWKXSUREREREA+Tp6QlPT08sXrxY6HflyhVcuHABKSkpuHDhAo4cOYIdO3ago6MD9vb2CA8Px6RJkzB58mSEh4dDqVTCzs5OxLkgou6WLVuGZcuWiV0GEZFeDGsREREZWUNDA7744gu8/vrryM3Nhbm5OTo7O9HW1gZzc3PU1tYOWS3akNVgAlcMWxER0Y3M2toaoaGhYpdhEmq1Gs899xxef/11PPLII3j33Xchk8nELouIiIiIiIiIaFiZMmUKPvjgA7zxxhv4/PPPsW3bNnzwwQeIiYnBhg0bcOedd8LcnJdcEBERERGNVC4uLpg3bx7mzZsn9Gtubsbly5eFAFdKSgp27dqFpqYmmJmZISAgAGFhYUIXHh6OwMBASKVSEeeEiIiIhiMeOSQiIjKSjIwM7NixAx9//DE6OjrQ0dEBAMIjAEilUtTV1Rk8ToatiIiIyJhqa2sRFxeHU6dO4dNPP8Xq1avFLomIiIiIiIiIaFizt7fHunXr8Mgjj+DIkSP46KOP8Lvf/Q5ubm5Yt24dfv/738PV1VXsMomIiIiIyAisra0RGRmJyMhInf4qlQrJyclIT09HWloavv/+e7z22mtoa2uDhYUFgoKCoFQqERoaioiICCiVSgQEBIg0F0RERDQcMKxFRER0HdRqNb7//nu8/fbbOH78OMzNzdHe3t7na86dO4cdO3agrq6u307fuCwsLODo6AhHR0eMGTMGjo6OcHJyglwux4QJE4T/df1/187W1tZUi4OIiIiGsdraWsyfPx+VlZVISEjAlClTxC6JiIiIiIiIiGjEMDMzE+66n5eXh48++gjbt2/Hq6++iiVLluCpp55CdHS02GUSEREREZEJeHp6wtPTE4sXLxb6tbS0IC0tDampqUhNTcWlS5fwwQcfoKKiAgDg5uYmtL6lfQwNDYW1tbVYs0FERERDiGEtIiKiQcrNzYVcLseVK1cgkUjQ2dnZb1BLo9Hg+PHjOHr0aI8QlZ+fX49++gJXDFsRERHRQNXV1WHBggWorKzE0aNHMW7cOLFLIiIiIiIiIiIasQICAvDqq6/ir3/9K/79739j+/btiImJwcyZM/HEE08gLi4OMplM7DKJiIiIiMiErKysEBERgYiICJ3+VVVVuHTpkhDiio+PxwcffIDm5mZIpVIEBgYiPDxcCHGFhYXB398fZmZmIs0JERERmYJE7AKIaOhseWiF2CUQjRqdGg1UKhWqqqogkRi+OlWr1Zg7dy4qKyuRlZWFs2fP4vDhw/jyyy/x0Ucf4fXXX8emTZuwfv16rFy5ErfffjtiYmKgVCrh5eXFoBYREQHgdh0NTE1NDebMmYPKykocP36cQS0a8fgbOLS4vA3HZUU0cvH7O7S4vOlGwM850Y3D1tYW69atw6VLl3Du3DkEBQVhzZo18PX1xcaNG6FSqcQukYiIRhFuZw4tLu/Rhe8nDSVXV1fMnTsXTz31FHbu3ImkpCQ0NjYiIyMDn3/+Oe655x60t7fjn//8J+68806MGzcOY8aMQXR0NB577DHs2LED8fHxqK+vF3tWiGiIcX01tLi8ydQY1iIahZaHeGJ5iGeP/p2dnSJUc/16mx9jT4NGh6F6L80kEsyaNQt5eXnYsWMHli5dKgSpLC0te32dRqNBTU3NkNRIRESj10jYruP21fDQ1taGZcuWoaamBseOHYO/v7/YJREZbLTt2w4XA93HHgnLe7isc4bTshqKYynGVJyTib89EIf7pgaNuNqHCpeJcXDdYhpctwxPPK4+MMZeXiPhc96b0bQuHk3z0pWp5mm0Lq+hFBERgV27diEvLw8PPvggPv74Y4wbNw6PPPIILl++LHZ5REQ0gnD/1TS4/yousbc3R8L7SaObVCrF+PHjERcXhxdffBHffPMNcnNzUV9fj3PnzmH79u2IjIxEbm4utmzZgtmzZ8PR0RGenp5YvHgxNm/ejAMHDqCiokLsWSEiI+D2nmlwe4+GG4a1iEahfRn679C2+Z9fDnElxtHb/BANB/7+/li3bh327dsn7Dxv3LgR4eHhMDMzg1Qqhbm5uc5rqqurRaqWiIhGi5G6XUdDb8OGDbhw4QIOHjwIPz8/scshGpDRtm87XAx0H5vL23DDaVmNtGMp7258Cgt+txqfJqbhb//YI3Y5NIpx3WIaXLcMTyNtXSA2Yy+vkfw5H02fndE0L0OBy8t4vL298eqrr0KlUuHDDz/E6dOnERYWhtjYWOzduxdqtVrsEomIaJjj/qtpcP9VXGJvb/L9pOHK3t4eERERWL16NbZt24affvoJFRUVKCwsxP79+7Fu3TpIJBLs3LkTS5YsgYeHB3x9fbF06VJs2bIFBw4cQElJidizQUQDxO090+D2Hg035v0PQkRERIaQSqWIiIhAREQENm/eDJVKhR9//BE//PADDh06hMbGRpiZmbFlLSIiIhoSBw4cwAcffICvvvoKEydOFLscIiKiXhX8moaZ82+HRCpFePQs0S/cICIiIiIyBktLS6xevRqrVq3CkSNHsG3bNqxYsQLjxo3DE088gbVr18LW1lbsMomIiIiIaBjy9fWFr68vlixZIvSrqqrC+fPnkZKSgvPnz2P37t3YsmULOjs74ebmhilTpmDq1KmYMWMGoqKi4ObmJuIcEBEREcNaRMPEtcYG7Nn+Fs4e+RG1leWwdXDE5NibcdvKBxAUPkUYLumXw/jm4+3IS7sERxc3zJi/EPf+4RlY29r1OX5tM4jdL3YpyEjHrtdfRMb5JEikUoRMjcSiBx7B5NibDa7dkHEYWndxTiZ2vf4S0pISIZFKETYzBg8/95Le6RoyTkOWq3bZdG0qcu7dv8P6l98S+r13+BR2vfESLp9JwNWGBp1lWZSdgd1vvIz0c2cAAKHTZmDVM8/DNyjE4GWonc62g8fwz1c3IzPlHDQaDZTTo/DAX16A97igHsNeb00DmeZAx/nh0XP45KVNSE1MgKW1NSZFz8ZDz70Ee0ennuN88+9IT0oEAIRMjcQDz74w6HH29V4aOj1j8vT0xJo1a7BmzRqo1WokJSXh0KFDsLKyMsn0iIiop/62U3rbRtLXX1h3fncc2zc9jcLMdIxThuOJV95Be1sr3tv0RxRlZyIwbDL+8No2uMi9er7WCOt6Y9cGDP062ZDtOEO2eah3jY2NWLduHR544AEsX75c7HLoBjJS921Nsk9mwL6HsX9/B7IsrpSpDP49H8nrnOvdZ+863hd3fQXl9Gic/G4//u+fHhf697d+NtZ7N5Dtlt4Y4xjGQGodyHcqTukDALjzkd/j/j89128No+VYyvUeuwIG/5s6UnDdwnXLaFu3DGS58rh63waz/9z1dfrWnVfKSrHz739FamICNGq10fbbAeO+5/0x5mfH0O0hwPD3VWe6EgmCJ0fgof+zBRsW3dxj2ZniezCU32Njn1sx1naBsZcXj+P0zczMDPPmzcO8efOQlZWF9957D5s2bcILL7yABx98EH/605/g6+srdplERHSduP/K/dfRtv86kH2B69mXGYrtTWMcvzV0P8ZY3xNDflMM/d0x1j4Qic/V1RULFizAggULhH719fVISUkRuv379+O1116DRqNBYGAgoqOjERUVhejoaCiVSkilUhHngGhk4/Yet/dG2/YemZ5E7AKI6DfvbtwAW3sHvLLnAHafy8LzH/0vyovysfGeO3SGe3X9g7jlznvwr7O/4tUvD6Kpvg6fvPR8v+PXt2OqKsjDW08/imVrf49/Jl7Gq3sOoqX5Gl5au9Lgug0dhyF1lxcV4OVH7kPUgkX44MgZ7PjpNKJuvQNvP/2Y3mkbMk5Dlqt22ezLUAmddkWm/d9Hmzdi6UOP45MTF/DcR/+rt+b3f07Ejp9OY8b82/HS2pUoLyoweDlqp/PW04/hljtX4P0jZ/D+z4mYMW8hXlq7EpWlxT2Gvd6aBjLNgY5zx/N/woLfPYCdJy/g9a8OobWlGf967UWdeS4vKsCWNfdi2i3z8f7Pifjgl7O4aclyvLp+DarLywY1zr7eS0OnZypSqRQzZ87E5s2bsXHjRpNPj4iIDNtO6e3gvb7+2n57tr+FJ7b+X+yMvwC/ECXeeeYJfPE/b+KJV97BJyfOw3tcED59dYve1xpjXW/s2oZ6nQwYth3X33Kgvv39739Ha2sr3nrrrf4HJjKikbpva+x9MkN+V03x+zuQZdF9fB3t7b3+nuvrNxLWOcbYZ9+bVgwPXz/86+yvUE6PBgDE3rEUn8SnwM5hDD5Lyel3WRnrvRvIdos+xjqGMZBaB/Kd0r5/hgS1BjuN4Xgs5XqPXQGD/00dKbhu4bpltK1bBrJceVy9b4PZf+6rPwC8/fRjiLr1Duz46bRR99uN+Z4bwpifHUO3hwx9X7tP9/0jZzDnrnvx9h8f17v8jP09GMrvsSnOrRhju8AUy4vHcQwXHByMbdu2oaCgAM888wz27t2LwMBA/O53v8O5c+fELo+IiK4D91+5/zra9l8N3RcABv+5Hqrtzes9fjuQ/RhjfU8M+U0xZBhj7QPR8DVmzBjcfPPNePrpp7Fr1y6kpaWhrq4O8fHxWLt2LWpqarBp0yZMmjQJjo6OiI2NxcaNG3HgwAFUV1eLXT7RiMLtPW7vjbbtPTI9hrWIholLp0/i9lUPw3GsKyxkMviHTsSG19/tMdy+DBXm33M/LK2s4ejihjWbXsS5o4cHNc09776Jux/bgPDoWbC0soZ3YDDWv/SmScZhSN17tr+FJWsew5zl98LBeSwcnJwxe8lyzF9xv95pGzJOQ5drf5Y/9geMnzINMisrTJ09578r5HffxNKHHhdqHjPWBfPiVmLJg49iz/aBXxh79+NPIfaOpbB3dBLGtWj1Wux5t+e4jFWTIdMc6DhvW/kgpsy6BVY2tnCRe+L+P27CxYRjOsPsefdNLH5wHRbcuxoOzmNh7+iE2UuW4+7HNmD/zh2DGmdfBjo9IiIa+YyxraPPbSsfgPe4INjYO+CuR/+A7Ivncfuqh4R+yx/9A9LPJep9rTHW9caubajXycDAtmkHsxxudDU1NXj33Xfx/PPPY+zYsWKXQzeYkbpvq2WsfTJDfldN8fs7kGXRfXyr/vzcgH7PR8I6xxj77BKpFNG3LUb8ga91+h/7Zi9ibl8KS2ubfsdh7PdusIx1DGMgtQ7kOzVYI/1YijGOXRnzN3U44rqF65bRtm7RjofH1Y13XN2Y+43zV9yP2UuWw8HJ2aj77cZ8zw1hzM+OodtDhr6v3adr7+iE2DuW4q5H/2DyeRlInf0x5D01xbmV/oi9vHgcx3Curq54/vnnUVBQgJ07dyIzMxORkZG45ZZbcPDgQXR2dopdIhERDRdEthIAACAASURBVBD3X7n/Otr2XwdybHSwn+vhsL1p0OdrgPsxfdVq6GfBkN8UQ4Yx9j44jQz29vaIjY3Fs88+iwMHDqCqqgoXLlzAa6+9Bn9/f+zduxdLliyBm5sbwsLC8Oijj+Lf//43ysvLxS6daFjj9h6390bb9h6ZHsNaRMPE+MkReOXxB5ASfxRqdQcAwM3bt9+dSjuHMWiqrxvUNC8nJiAsapZOP0//cQPakR3sOPTVfSnhBKbPu63HsFNm3WJQLfrGOdjl2l1glyZKdWo+Fa+35hnzF+LSqfgBTQMAwqNn9eg3Y/5CXEw4brKaDJnmQMcZGjlT529XLx/UVlX2qDPm9iU9Xjv15rm4eOrEoMbZl4FOj4iIRj5jbOvoExAaJjx3cnHt0c/ZzR0NNfrvQGWMdb2xaxvqdbI+fW3TDmY53Oi+/fZbyGQyrFu3TuxS6AY0UvdttYy1T2bI76opfn8Hsiy6j89F7jWg3/ORsM4x1j77nOX34ujXe3T6Hdn3Oebfo/8i+O6M/d4NlrGWx0BqHch3arBG+rEUYx276up6flOHI65buG7RGk3rFh5XN+5xdWPuN06ZPadHP2PstxvzPR+M6/3sGLI9ZOj72tt0J8XM7n9GcP3zMpTfY1OcWxmooV5ePI4zcDKZDKtWrcL58+cRHx8POzs7LFmyRGiBq7m5WewSiYjIQNx/5f6r1mjafx3ssVFDP9fDYXvToGucBrEfc73fE0N+UwwZxtj74DQySaVSTJo0CevXr8fu3buRm5uLsrIy7Nu3D7fddhvS0tKwZs0ayOVyTJw4ERs2bMB//vMf1NfXi1060bDC7T1u72mNpu09Mi1zsQsgot/8edtH+PK9t/Hxi5vQUFMN/9CJmDn/dty28gFIzS0AAA011fjft7ciJf4o6q5UQaNWX9c0G+pq4ODkbPJxGFp3Q10NHF3cevTX18/QcRqyXA1haWU9oJqdXN3RWFtj8Pi17B2d9I5L3wXfxqrJkGkOdJx2DmN0/raQyXrcAbCxrhaPzZmudx5kVlaDGmdfBjo9IiIa+YyxraOPta2d8NxMItHbr7d1lDHW9caubajXyQPdph3McrjRPfTQQ1i0aBHs7Oz6H5jIyEbqvq2WMX6nDf1dNcXv70CWRffxSaTSAf2ej4h1jpH22eUKf8isrFCQkQ6/kFCkJyXCxs4e/qETDXq9sd+7wTLW8hhIrQP5Tg3WSD+Wcr3Hroz9mzoccd3CdUvXfqNl3cLj6sY9rm7M/UbHsa49+hljv92Y73m/0zLBZ8eQ7SFD39fehtP3e2mS78FQfo9NcG6lz+kNg+XF4zjXJzY2FrGxscjOzsb27duxceNGbN26FY8//jiefPJJtqBORDTMcf+V+69d+42W/VeD9gWu43M9HLY3Df18Gbofo3W93xNDflMM+t0x8j44jR4eHh5YtmwZli1bBgBoampCfHw8jhw5giNHjmD79u0wMzNDZGTk/2PvzuOiqvc/jr8HUEHBDZfKfV8oxC3XcgsVzfCGkKWXshSv5lZaesubqNXFFovcrcy0zA2XXFAUtTTFfcWFtNxwRwV3tvn94dVfpigo8J2B1/Px6FHNnDnnPWcOc77f75zP+ap9+/Zq166dateuLYvFYjg5YA7tPdp7f30sp7T3kLUo1gJsRH63gnptSLBeGxKshAvntXvDOi3+/mvt3bJR73z1tSQp9N2+KlWhkj6asVDujz0uR8ebf8J+1Z94qG26FS6ihAvnVbREyYfOnZ51pDd3wcJFdfHcGRV/ovQdj9+rojy960zPfn0UBQsX1YWzp1WiVJk7Hr9w9rTcHqKBdDHu7F0/Bl84e1oFi6b/x5eMZkrPNjP7fUqSW5GiCl36y10NjqyS3dsDAJiX3raOxWJRUmKi8uTNe/uxrJqJIDPO9Zktu8+Rmd2mxb2VKHH3gAyQHey1b3tLZnxPp/d7NSu+fzNzX2SF7D7nZGZftuWLnbUq7Ce9/v7Im3eOfSl9s2qlV3a0WzJrf2TkOMuOto+9j6U86thVbmhbcW7h3HI/9npuYVw988eb05LRc+fl+ItyLVT4rlyPeu7KzM/8QbLi2JEe3B5K7+ea1nYvnrv7rrFZ8V6y8+84O491ybb3FzKmSpUqCg0N1XvvvacJEyZozJgxCgkJUUBAgN5//31Vq1bNdEQAwD3Qf6X/ej/22n+VHtwXeJTj2l7amxnpxzxIeo+F9HynpGcZe9nHMM/V1VU+Pj7y8fGRJJ07d06rVq1SRESExo8fr//85z96/PHH1a5dO7Vr107e3t5yc3MznBrIXrT3aO/djz2395B1HEwHAHCTX/UnFHfqpCSpYJGiatLuBb0/efod00se2L5FL/V9RyVKlbl9Ak+8fv2ht+nxdGPt+tvUiof371X/9s0ydR3pzV2raTNtWrnsrsf/vv6MrDM9+1XSQ9/xwbPxM9oYsfSuxzeuCL/nlKEPsmPtmnuuq1aT9H8mGc2Unm1m9vuUJK+mzRW9cf1dj+/bslHvvNjmodYppf1ZZtX2AAC2K71tncLFSujcydg7Htu7OSpLMmXGuT6zZfc5ObPbtLjbO++8oxUrVpiOgVzKXvu2t2TG93R6v1ez4vs3M/dFVsjuc05m9mUb+3TQpsjlSjgfp+1rV6tp+44PlTUt2dFuyaz9kZHjLDvaPvY+lvKoY1e5oW3FuYVzy/3Y67mFcfXMH29OS0bPnffab5lx7srMz/xBsuLYkR7cHkrv55rWdnesW5Mt7yU7/46z6lh/1HaBif2Fh1OyZEkFBwfryJEj+uqrr7Rx40bVrFlTHTp00Pr1d5//AABm0X+l/3o/9tp/lR7cF3iU49pe2psZ6cc8SHqPhfR8p6RnGXvZx7A9xYoVU0BAgL755hudOHFCe/bsUf/+/XXkyBG99NJLKlKkiJo2barQ0FCdOZPxwkXAHtHeo713P/bc3kPWoVgLsCHjhw7UsYMHlJSYqItxZ7Xw2wl3fGFWq11P0z8bqTOxx5SclKRTRw9rUvDgh95ep179NWf8F9q1fq1uXLuqIwf2adx7b6ld19czdR3pzf1Sn4H6+buJWhU2Uwnn43Q5/qLWh/+ssElf3bVsRvbFg/arJBUt+ZgO7NiqlOQk7fztF/VsUS9d7z+gz0D9PHWSVs6Zofi4c0o4H6fIuT/p56mT9FKfgelax19FzJqutYvn69LFC7fXtXjaN3qpb/rXldFM6dlmZr9PSXqp70DNGvOZNixfrEsXL+jalcvasmaFRg/sJf/ebz3UOqW0P8us2h4AwHalt61Tq8mz+nH0fxV36qSuX72iHevWaPnMaVmSKTPO9Zktu8/Jmd2mxZ0SEhL0+eefa+zYsaajIBezx77tLZnxPZ3e79Ws+P7NzH2RFbL7nJOZfVnn/AX0ZIMm+vKdPqrfsrVcCrg+dN57yY52S2btj4wcZ9nR9skJYymPMnaVW9pWnFs4t6TFXs8tjKtn/nhzWjJ67gyb9JXWh/+c6eeuzPzMHyQrjh3pwe2h9H6uf9/upYsXtG7JAkXM+iFb3kt2/h1n1bH+qO0CE/sLj8bV1VVBQUGKjo7WjBkzdOrUKTVp0kTNmzdXeHi4rFar6YgAgP+h/0r/NS322n+VHtwXeJTj2l7amxnpxzxwXRk4FtLTN3/QMvayj2H7PDw8NHjwYK1YsUInT57UlClT5O7uriFDhqh06dJq06aNJk+erLNnz5qOCmQp2nu099Jiz+09ZB2LlZE7IEvkL1BAb/znI7X4x0vpWn73hnVa+uMU7duyUdeuXFbRko+rwXNt9VLfQbc7ufFx5/T9JyO0Y90aXUmI1xPlK8m/9wB9/ta/JElh+09IunO6zPs9JkkHdmzVtE9G6FD0LhUq6q62L7+mfwT1ydB7fdA60ptbko4dPKBpn4xU9OYoWSwWVatdT6//e7j6P9/8jmXTu8707FdJWr9skaZ/9pHOnz6pYo+X0mtDglW/Zeu7ph79a9ZbjsTs0/RPP9TeLRslSTXrNdA/3xmqclVrZGg/+lV/QhMiN+rbkUMVvXmDUlNT5VG/oV4dPEylK1W5Y7nMypTebaZ3nWkdZ2k9fvLIn/rh84+1a8NapSQnq0zlqnoxqK8aePs89DrT+izTu730GjNkgPInXtGSJYsz/FoAwMPJaPtKSl9bJ+HCeU356D/auf5X3bh2TU81bKIeH/z3duc2o22s+527MuNc/yg5bOGc/DBt2nvth/TasmaF/vuvV3XlyhXlz5//odZhTwYNGqTPP/9c27ZtU+3atU3HgZ1bvHixOnTooBk7Dimfs0u6XmPPfdvM7JOlt++RFd+/D9oXGVmfvZ9zpMzrs0s373o2tOs/FDJ7iap43vkdm9E2wb0ez+p2i5R5+yM9WTPzbyotOWEs5VHHrjIy7pYe2THe4V6suPzefFttX3ktXctzbrmJc0vOO7cwrv7o+zE928nouTN08RpN+e8wHdi+RVarNdP67VLmfub3kxXHzi33aw9J6f9c/7pdBwcHedRvpG7vDVeftk01d+/xLH8v2dkmyorfVjKjXZDZ+yuzxnF2R61T8GsBOnv2rIoVK/ZQ68gt1qxZo1GjRmn58uXy9PTUu+++q4CAADk5OZmOBgA5Qu/evfXb9l0aNnVOul9D//Um+q85r/8q3b8v8CjHdXpzPmp7MzPGb9Pbj8msv5P0fKekt/+eWcfC642f0scjR6h3794Zeh1ytqtXryoyMlJz5szR/PnzdfXqVbVs2VL//Oc/5efnpwIFCpiOCNwT7T3ae7T3/t/k4f/W9ZNHtGb16gy9Dg9GsRaQRR7mYmLkbn7Vn3joH6/saZs5BcVaAJD97L19xXnXjNxWrFWqVCnduHFD586dMx0FOcDDFGvZM76ngcyVHX9TjKVkPlss1rJnOf14AYDMdOzgAX0U9E9NXLXJdBQYRLFWxu3atUufffaZfvrpJ5UuXVoDBgxQjx49csU4GABkpYe5eNee0X8FHk5u68dQrIUHuXr1qhYtWqTp06dr+fLlKlCggDp16qTAwEA988wzslgspiMCt9HeA/4fxVpZx8F0AAAAAAAA8OhOnjypEydOqH379qajAAAAAACQJr/qT2jJtG90OSFeSYmJ+nNftCZ+8K58urxmOhpgdzw9PTVt2jT9/vvveuGFF/Tee++pfPnyCg4O1vnz503HAwAAyDHoxwAPlj9/fr300ktavHixjh8/ruDgYG3btk3NmjVTpUqV9N///ldnzpwxHRMAgGxDsRYA2IBb01f+fQrRnLZNAAByK867yA6jRo2SJA0cONBwEsD+8D0NZK7s+JtiLAW2juMFANL274nfa/OqCPVsXk/dGj+lCUMHyjugi3zf4O7swMMqX768QkNDdfjwYfXu3VtjxoxRuXLl1L9/fx0/ftx0PACADaP/CqQP/RggY0qWLKkBAwZo27Zt2rVrlzp27KhPP/1UZcuWVZcuXbRu3TrTEYFcg/YeYI6T6QAAbNeDTsxMiZk+6dmPJvYlnx8AANmH8y6yw4IFC+Tq6ipPT0/TUQCbYqt9MtgGxj7ulFn741H3m63+3ea24wFps9VjFLaBc0vmYD/eW07ZL/Wae6tec2/TMdKUU/YzcqfixYsrODhYAwcO1KRJk/TFF19o4sSJ+uc//6l33nlH1apVMx0RAJCN6L/ifnJKuze73oet92MAW/bUU09p9OjR+uijjzRz5kyNHz9ezzzzjDw9PdW7d28FBgbKxcXFdEzALtHeA2wbxVoA0sQJOnOwHwEAAJDVTp8+raNHj6pZs2amowA2hz4Z7ofj4062sj9sJQeQFo5R3A/HR+ZgP94b+yV7sJ+RE7i5uWnQoEHq16+fZs6cqZCQENWsWVPt2rVTcHCw6tatazoiACAb0K7B/eSU4yOnvA8gN3BxcVG3bt3UrVs3bd68WRMmTNCAAQP0wQcfqF+/furdu7eKFCliOiZgVzgPArbNwXQAAAAAAADwaObOnSur1aoXX3zRdBQAAAAAAADYiLx58yowMFB79uzRzJkzdezYMdWvX18dO3bUli1bTMcDAAAAkEvVr19fU6ZM0dGjR9WrVy+NHj1aZcuWVf/+/XXs2DHT8QAAyBQUawEAAAAAYOd+/PFHSVKTJk0MJwEAAAAAAICtcXBwkL+/v3bs2KGIiAidOnVK9evXV9OmTbVq1SrT8QAAAADkUsWLF1dwcLAOHz6s4OBgzZs3T5UrV1b37t115MgR0/EAAHgkFGsBAAAAAGDHLly4oE2bNslisahatWqm4wAAAAAAAMCGPffcc4qKitLatWvl7OysVq1aqWnTplq0aJHpaAAAAAByKTc3Nw0cOFCHDh3SxIkTtXr1alWrVk39+vXT6dOnTccDAOChUKwFAAAAAIAdW758uaxWq8qUKaMCBQqYjgMAAAAAAAA70LRpU61cuVJr165VkSJF9MILL6hx48ZatGiRrFar6XgAAAAAcqG8efOqW7du2r9/v7766ivNmzdPFStW1JAhQ3ThwgXT8QAAyBCKtQAAAAAAsGNLlizRY489pooVK5qOAgAAAAAAADtza1atbdu2qXTp0vL19ZWXl5emTZumlJQU0/EAAAAA5EJ58uRRUFCQfv/9dw0fPlzffvutKlasqM8++0yJiYmm4wEAkC4UawEAAAAAYKdSUlK0bNkyFSlSRE888YTpOAAAAAAAALBTtWvX1uzZs7Vjxw7VqlVLr7/+umrVqqVp06YpOTnZdDwAAAAAuZCLi4sGDRqkQ4cOqW/fvvrggw/k6empZcuWmY4GAMADUawFAAAAAICd2rhxo86dO6e8efOqePHipuMAAAAAAADAznl6emratGnauXOn6tSpozfeeENVq1ZVaGiobty4YToeAAAAgFyoYMGCGjFihGJiYvT000/Lx8dH3t7e2rdvn+loAACkiWItAAAAAADsVEREhMqVKyeLxaL8+fObjgMAAAAAAIAcwsPDQ9OmTVNMTIw6dOigwYMHq1q1agoNDdX169dNxwMAAACQC5UuXVrTpk3TypUrdfLkSdWuXVvvv/++rl27ZjoaAAB3oVgLAAAAAAA7FRkZqVatWun69evKly+f6TgAAAAAAADIYSpUqKDQ0FAdOHBAvr6++ve//63y5ctr1KhRunr1qul4AAAAAHKhVq1aaceOHRo1apTGjh0rLy8vrVu3znQsAADuQLEWAAAAAAB26MqVK9q0aZNatmwpBwcHpaammo4EAAAAAACAHKpcuXIKDQ3V4cOH9dprr2nEiBEqX768goODFR8fbzoeAAAAgFzGyclJ/fv31/79+1WzZk09++yz6tmzpy5dumQ6GgAAkijWAgAAAADALv36669KTExU8+bN5eLiomvXrpmOBAAAAAAAgByuRIkSCgkJ0Z9//qlu3bpp9OjRqlSpkkaOHEnRFgAAAIBs9/jjj2v+/PmaNWuW5s2bJ09PT61YscJ0LAAAKNYCAAAAAMAerVq1SjVr1lSpUqXk5ubGHcIAAAAAAACQbUqUKKFRo0bp8OHDevPNNzV69GhVqFBBI0eOZJwKAAAAQLbz9/fXnj17VK9ePbVp00ZvvvkmNzwFABhFsRYAAAAAAHZo3bp1atasmaSbdwuLjY01nAgAAAAAAAC5TdGiRTV8+HAdO3ZMgwcP1ujRo1W+fHkFBwcz0xYAAACAbFWyZEnNmTNHM2fO1IwZM9SgQQPt3bvXdCwAQC5FsRYAAAAAAHbmxo0b2r59uxo1aiRJKlWqFMVaAAAAAAAAMMbV1VWDBw/W0aNH9e677yo0NFSVKlVScHCwEhISTMcDAAAAkIsEBARo586dKlSokOrWravQ0FDTkQAAuZCT6QBATnZw907lc8lvOobdSrxxXXnzOZuOAdzT2dhjKle8qOkYAJDr0L5CRv2xd7fpCFli27ZtunHjhho2bChJqly5ssaPHy+r1SqLxWI4HXKajRFL5ZQ3r+kYAIBskF3jHX/u26P1yxZl+XYAAIB9Ofr7AdMRkAnc3Nw0ePBg9ejRQ1999ZW+/PJLjRs3ToMGDVLfvn2VPz/juwDsw8W4c/Rdgb+yWiV+g8rVkhJvmI4AZEjZsmW1evVqffjhhxo4cKB++eUXffPNNypalGv+cBPtPeCmU0cPq3Ae2nlZwWK1Wq2mQwA5UdWq1fT77zGmYwDIQj179tTEiRNNxwCAXIP2FR5W8RIldCI2Vk5OOed+JV988YU++ugjnT17VhaLRRs2bFDjxo31xx9/qEKFCqbjIYfYsmWLGjdurKSkJNNRAADZKKvHO7y8amvnzh1Ztn4AAGDfihQtqtjjx+Xi4mI6CjJJXFycxowZoy+++EL58uXTwIED1a9fPz5jADbt448/1vvvv286BgDYFAcHB82bN0++vr6mowAZtnr1anXt2lX58uXTvHnz5OXlZToSDKO9B9yp6z//qenTppmOkeNQrAXApixatEhvvfWWTp48qb59++r999+Xm5ub6VgAAABGBQcH65tvvtHRo0fl4OBgOg5sQOfOnXX58mUtXrxYknTp0iUVLVpUM2bMkL+/v+F0AGCf4uLiVKxYMUVGRqply5am4wAAYDOOHj2qpk2bqmzZsvr111/plwIAHsq5c+f02WefacyYMXJ1ddXbb7+t/v37y9nZ2XQ0AADwAPHx8erXr5+mTZumbt266YsvvlChQoVMxwKADDl79qw6d+6sjRs3asqUKQoICDAdCcB9VKlSRQEBAfroo49MRwEeGr+mALAJ27ZtU/PmzeXr66s6deooOjpaISEhFGoBAABImjt3rvz8/LggDrdFRUWpQYMGt//fzc1NXl5eWrduncFUAGDfbs0ilydPHsNJAACwHWfPnlWbNm1UuHBh/fzzz/RLAQAPrVixYgoJCdHhw4fVrVs3DR8+XFWrVlVoaKiuX79uOh4AALiPQoUK6fvvv9fSpUu1fPly1ahRQ0uWLDEdCwAypHjx4oqIiFCfPn3UuXNnDRkyRCkpKaZjAUhD27ZtFR4ebjoG8Ej4RQWAUSdPnlTPnj319NNP6+rVq1q7dq1mz56t8uXLm44GAABgEw4cOKDo6Gj5+fmZjgIbcfLkSR05ckQNGza84/FmzZopMjLSUCoAsH8UawEAcKeEhAT5+PgoKSlJy5cvV9GiRU1HAgDkAMWLF79dtPXKK69oyJAhqlatmkJDQ3Xjxg3T8QAAwH34+PgoOjparVq1UocOHdSzZ09dvnzZdCwASDdHR0eFhIRo+vTp+uqrr/T888/r4sWLpmMBuAcfHx/t2LFDJ06cMB0FeGgUawEwIjExUaGhoapevbqWLl2qKVOmaOPGjWrSpInpaAAAADZl9uzZKlmyJO0k3BYVFSWLxaL69evf8Xj79u0VHR2tmJgYQ8kAwL5RrAUAwP+7du2aOnTooJMnT2rFihV6/PHHTUcCAOQwJUqUUEhIiGJiYtSxY0cNHjxY1apV0+TJk5WcnGw6HgAASEPhwoU1ffp0zZo1S2FhYfL09NQvv/xiOhYAZEiXLl20atUq7dq1Sw0bNtTBgwdNRwLwNy1atJCLi4uWL19uOgrw0CjWApDtFi1apOrVq+u9997TW2+9pZiYGAUGBspisZiOBgAAYHPCwsLk5+cnR0dH01FgIzZu3KiaNWuqcOHCdzz+zDPPyN3dXQsXLjSUDADsG8VaAADclJKSoq5du2rXrl1aunSpKlSoYDoSACAHK1OmjEJDQxUTEyNfX1/169dPVapUoWgLAAAb5+/vr+joaHl6eqpFixbq2bOnrl69ajoWAKRbw4YNtXnzZhUsWFCNGzfW5s2bTUcC8BcuLi569tlnFR4ebjoK8NAo1gKQbbZs2aJnn31Wvr6+qlevnvbt26fg4GC5uLiYjgYAAGCTfv/9d+3cuVOdOnUyHQU2JCoqSg0bNrzrcScnJ/n7+2vq1KnZHwoAcgCKtQAAkKxWq3r06KFly5Zp8eLFqlWrlulIAIBcomzZsgoNDdWBAwfUunVrvfnmm6pataomT56slJQU0/EAAMA9lCxZUgsWLNCsWbM0Z84c1a9fX1u2bDEdCwDS7YknntDq1av19NNPq0WLFlqyZInpSAD+wsfHRxEREbd/xwXsDcVaALJcbGysevbsqQYNGigxMVG//fabZs+erbJly5qOBgAAYNPmzJmjYsWK6ZlnnjEdBTZkx44dqlOnzj2fe+ONN7R3716tX78+m1MBgP27Ncjv5ORkOAkAAOYMHDhQP/74o8LCwtSkSRPTcQAAuVC5cuU0adIkRUdHq0mTJurdu7c8PT01Z84cWa1W0/EAAMA9+Pv7a/v27XrsscfUqFEjDRkyRImJiaZjAUC6FChQQAsXLtQrr7wiX19fff3116YjAfgfHx8fxcfHKyoqynQU4KFQrAUgy1y9elWjRo1SjRo1FB4eru+++04bNmxQo0aNTEcDAACwC2FhYfLz8+Oicdx2/PhxxcfHy8PD457P16tXT/Xr19enn36azckAwP4xsxYAILcbNmyYvvrqK/3www9q27at6TgAgFyuatWqmj59uvbs2SNPT0917txZ9erV07Jly0xHAwAA91CuXDmtXLlS48aN09ixY1W/fn3t2LHDdCwASBdHR0dNmjRJQ4cOVc+ePRUcHGw6EgBJVapUUeXKlRUeHm46CvBQKNYCkOmsVqvmzJmjmjVrauTIkXr77bcVExOjwMBAWSwW0/EAAADswp9//qnt27fLz8/PdBTYkL1790qSatasmeYyQ4cO1cKFC7Vly5bsigUAOUJycrIkirUAALnTuHHjNHLkSE2YMEH+/v6m4wAAcFv16tX1008/affu3apUqZLatWunxo0ba82aNaajAQCAv7FYLAoKCtKuXbtUuHBhPf300woODlZKSorpaADwQBaLRcHBwRo7dqw+/PBDDRgwgNl9ARvg4+NDsRbsFsVau4BGoQAAIABJREFUADLV5s2b1bBhQ7388stq3bq1Dh06pODgYDk7O5uOBgAAYFfmzJmjokWLqkWLFqajwIbs3btXJUqUUPHixdNc5oUXXlC9evX08ccfZ2MyALB/zKwFAMitfvjhB/Xr10+jRo1Sjx49TMcBAOCeatasqdmzZ2vDhg1ycXFRixYt5O3trW3btpmOBgAA/qZixYpavXq1Pv30U4WEhKhp06aKiYkxHQsA0qV379766aefNH78ePXp04eCLcAwHx8f7dy5U7GxsaajABlGsRaATHHu3DkFBQWpYcOGcnZ21tatWzV58mSVLFnSdDQAAAC7FBYWpo4dO8rJycl0FNiQvXv33ndWrVuGDh2qBQsWMLsWAGRAamqqJMnBgSFTAEDusWjRInXr1k2DBw/WO++8YzoOAAAP1KBBA0VGRmrFihW6ePGi6tWrp4CAAC4ABwDAxjg4OKh///7aunWrkpKS5OXlpVGjRt0ehwUAW+bv76/58+fr22+/VVBQEN9dgEHNmzeXi4uLli9fbjoKkGFceQDgkaSmpmratGmqWbOmFi9erO+++05r1qxRrVq1TEcDAACwW8eOHdPmzZvVqVMn01FgY/bu3SsPD48HLtehQwfVrVtX7777Lnf6AoB0cnR0lCQlJycbTgIAQPZYs2aNAgIC1LVrV3300Uem4wAAkCHPPfecNm/erIiICB04cEAeHh4KDAzUn3/+aToaAAD4Cw8PD0VFRWnYsGH64IMP1KxZMx06dMh0LAB4oPbt22v+/Pn64Ycf1KNHDwq2AENcXFzUrFkzhYeHm44CZBjFWgAe2pYtW9S4cWO98cYbevnll7V//34FBgbKYrGYjgYAAGDX5syZo0KFCqlly5amo8DG7Nu3TzVq1HjgchaLRV9//bXWrVunyZMnZ0MyALB/efLkkUSxFgAgd9i5c6f+8Y9/yMfHR9988w3j+gAAu/Xcc89p+/btmjFjhn777TdVr15dPXv21OnTp01HAwAA/+Pk5KTBgwdr8+bNunTpkurUqcPvVwDsgo+Pj+bPn68ZM2aoS5cu/IYEGOLj46OIiAglJSWZjgJkCMVaADLs/Pnz6t+/vxo0aCBnZ2dt375doaGhKliwoOloAAAAOcLcuXPVsWNH5c2b13QU2JCTJ0/q/Pnz6ZpZS5K8vLz01ltv6d1339WxY8eyOB0A2L9bxVoM8gMAcrrff/9dbdq0Ub169fTTTz/dnl0SAAB75eDgIH9/f+3bt09jxozRzz//rMqVK2vIkCGKj483HQ8AAPyPp6enoqKi1KtXL/Xu3Vs+Pj6KjY01HQsA7qtt27aaP3++FixYoG7dujHDFmBA+/btlZCQoA0bNpiOAmQIxVoA0i01NVXTpk1T1apVNXfuXH333XdavXq1nnzySdPRAAAAcozY2FhFRUXJz8/PdBTYmOjoaElSzZo10/2aESNGqHTp0urZs2dWxQKAHMPJyUkSxVoAgJzt+PHj8vb2Vvny5TV//nzly5fPdCQAADJN3rx5FRQUpIMHD2ro0KGaNGmSKlWqpFGjRunatWum4wEAAEnOzs4KCQnR2rVrdejQIT355JPMsgXA5rVt21YLFy7UnDlz1K9fP9NxgFynYsWKqly5ssLDw01HATKEYi0A6bJ582Y1bNhQ3bt3V5cuXbR//34FBgbKYrGYjgYAAJCjzJ07V66urnruuedMR4GN2bt3r9zd3VWiRIl0vyZfvnyaNGmSli9frnHjxmVhOgCwf7dm1kpOTjacBACArHHu3Dm1bt1abm5uWrp0qVxdXU1HAgAgSxQoUECDBw/WoUOH1KdPH3300UeqWrWqJk+eTJ8PAAAb0ahRI+3cuVM9e/ZUr169FBAQoHPnzpmOBQBpat26tWbNmqVJkyZp2LBhpuMAuY6Pjw/FWrA7FGsBuK9Tp04pMDBQDRo0kJubm7Zv367Q0FC5ubmZjgYAAJAjhYWFydfXV87OzqajwMbExMSoRo0aGX5d06ZNFRwcrAEDBmj16tVZkAwAcoZbM4tcv37dcBIAADJfQkKC2rZtq8TEREVERKho0aKmIwEAkOWKFi2q4OBgHTp0SF26dFG/fv1UpUoVTZ48WSkpKabjAQCQ67m4uCgkJETLli1TVFSUnnzySS1YsMB0LABIk6+vr7799luNHDlSo0ePNh0HyFV8fHy0a9cuxcbGmo4CpBvFWgDuKTk5WaGhoapevbpWrVqlqVOnKjIyUh4eHqajAQAA5FinTp3S+vXr5efnZzoKbNCRI0dUvnz5h3rt0KFD5efnJ39/fx06dChzgwFADlGgQAFJ0pUrVwwnAQAgc127dk0vvPCCTp48qRUrVujxxx83HQkAgGxVvHhxhYSE6MCBA2rdurV69+6tWrVqac6cOaajAQAASd7e3tq9e7d8fX31j3/8QwEBAbpw4YLpWABwT4GBgfryyy81aNAgTZkyxXQcINdo0aKFXFxctHz5ctNRgHSjWAvAXX755RfVqVNH77zzjl599VXt379fgYGBpmMBAADkeGFhYXJxcVGbNm1MR4ENOnr0qMqWLftQr7VYLPruu+9Uvnx5vfjiixQiAMA9uLq6SpIuX75sOAkAAJknJSVFXbt21Y4dO7RkyRJVqFDBdCQAAIwpV66cJk2apO3bt6tSpUoKCAjQM888o/Xr15uOBgBArleoUCFNmjRJS5Ys0W+//SYvLy9FRkaajgUA99SvXz+98847CgoK0rx580zHAXIFZ2dnNWvWTOHh4aajAOlGsRaA206ePKnAwEC1aNFCJUqU0M6dOxUaGnr7YiUAAABkrbCwMD3//PNycXExHQU26MiRIw9drCVJLi4umjt3rk6cOCF/f3/duHEjE9MBgP0rUKCALBYLBa0AgBzDarWqR48eWrZsmRYvXiwvLy/TkQAAsAlPPfWUFi5cqA0bNsjR0VFNmjTRiy++qP3795uOBgBArteuXTvt2bNHzz77rLy9vdWzZ09usAXAJoWEhKhbt27q2rWrNm7caDoOkCv4+PgoIiJCSUlJpqMA6UKxFgAlJSUpNDRU1atX1+rVqzV16lStXLlSNWrUMB0NAAAg1zh79qzWrl2rTp06mY4CG5SQkKD4+HiVK1fukdZTvnx5RUREaOPGjerYsSMFWwDwFw4ODsqfPz8//AMAcoxBgwbpxx9/VFhYmJo2bWo6DgAANqdhw4Zas2aNVqxYoT///FMeHh4KDAzUiRMnTEcDACBXK1KkiKZPn65Zs2YpLCxMnp6e+uWXX0zHAoA7WCwWTZw4US1atFDHjh115MgR05GAHK99+/ZKSEjQhg0bTEcB0oViLSCXW7VqlTw9PfXvf/9bb7/9tmJiYhQYGGg6FgAAQK4TFhamvHnzqm3btqajwAYdPnxYkh5pZq1bateurSVLlmj9+vXq3LkzdxwCgL9wdXWlWAsAkCMEBwcrNDRU06dPp58JAMADPPfcc9q6datmzpypdevWqUqVKhoyZIji4+NNRwMAIFfz9/dXdHS0nnrqKbVs2VL9+/fnRoQAbIqjo6NmzpypEiVKqF27dvQhgCxWsWJFValSReHh4aajAOlCsRaQS505c0aBgYF67rnnVKVKFUVHR2vYsGFycXExHQ0AACBXCgsLU/v27VWgQAHTUWCDjh49KkkqU6ZMpqyvYcOGWrp0qVauXKlXXnmFgi0A+J+CBQsqISHBdAwAAB7J+PHjNWLECE2YMEEBAQGm4wAAYBccHBzk7++v/fv364svvtCUKVNUqVIljRo1StevXzcdDwCAXKtkyZJauHChZs6cqenTp6tOnTrasmWL6VgAcJubm5uWLl2q+Ph4de7cWcnJyaYjATmaj48PxVqwGxRrAbmM1WrVtGnT5OHhocjISE2dOlU///yzKlSoYDoaAABArhUXF6c1a9bIz8/PdBTYqCNHjsjd3V1ubm6Zts4mTZpo8eLFCg8Pvz1VPADkdkWLFlVcXJzpGAAAPLQff/xRffv2VUhIiHr06GE6DgAAdidv3rwKCgrSgQMH1L17dw0fPlzVqlXT5MmTlZqaajoeAAC5lr+/v7Zv367HHntMjRo10pAhQ5SYmGg6FgBIkkqVKqWFCxfq119/1cCBA03HAXI0Hx8f7dq1S7GxsaajAA9EsRaQi+zevVtNmzbVG2+8oVdeeUX79+9XYGCg6VgAAAC53vz58+Xk5KR27dqZjgIbdfToUZUrVy7T19usWTOtX79e+/btU+PGjXXkyJFM3wYA2BN3d3eKtQAAdmvRokV67bXX9O677+rdd981HQcAALtWpEgRhYSEKCYmRm3btlXv3r1Vq1YtLVmyxHQ0AAByrXLlymnlypUaN26cxo4dq/r162vHjh2mYwGAJKlu3br6/vvvNWbMGI0bN850HCDHat68uVxcXLRs2TLTUYAHolgLyAWuXr2q4OBg1atXT9evX9f69esVGhqaqXflBwAAwMMLCwuTj48P7TOk6ciRIypbtmyWrNvT01NRUVHKkyePGjVqpK1bt2bJdgDAHhQrVoxiLQCAXVq/fr1efvlldenSRR9//LHpOAAA5BilS5fWpEmTtGvXLtWoUUPPP/+8vL29tW3bNtPRAADIlSwWi4KCgrRr1y4VKlRIjRo10qhRo5SSkmI6GgCoU6dOGjFihAYMGKDIyEjTcYAcydnZWc2bN1d4eLjpKMADUawF5HCLFy+Wh4eHQkND9cknn2jTpk2qX7++6VgAAAD4n4sXL2rVqlXq1KmT6SiwYcePH1eZMmWybP2lSpXSmjVr5OHhoebNm2vu3LlZti0AsGXu7u46d+6c6RgAAGTIzp071b59e3l7e+vbb7+VxWIxHQkAgBynZs2amj17tn777Tddu3ZN9erVU0BAgP744w/T0QAAyJUqVqyo1atXKzg4WMOGDVPTpk0VExNjOhYA6P3339eLL76ol19+WceOHTMdB8iRfHx8tGLFCiUlJZmOAtwXxVpADnXixAkFBgaqQ4cOevLJJ7V79271799fjo6OpqMBAADgLxYsWCCLxaLnn3/edBTYsDNnzqhkyZJZuo1ChQpp6dKlCgwMlL+/v/r27asbN25k6TYBwNa4u7szsxYAwK4cPHhQbdq0Ud26dTVz5kx+AwAAIIs1btxYa9eu1axZs7Rjxw7VqFFDPXv21JkzZ0xHAwAg13F0dNTgwYO1detWJSYmysvLS6NGjVJqaqrpaAByMYvFom+//VYlSpRQp06d+M0dyALt27dXQkKC1q9fbzoKcF8UawE5TGpqqsaMGaPq1asrKipKK1as0KJFi1S6dGnT0QAAAHAPc+fOVZs2bVSwYEHTUWDDzp07J3d39yzfTp48eTRu3DjNmzdPP/zwgxo3bqyDBw9m+XYBwFYUK1aMmbUAAHbj+PHj8vb2Vvny5bVgwQLly5fPdCQAAHIFi8Uif39/RUdHa8yYMfr5559VqVIlDRkyRJcvXzYdDwCAXMfDw0MbN27UsGHD9J///Edt2rTR0aNHTccCkIu5urpq3rx52r9/v95++23TcYAcp0KFCqpSpYrCw8NNRwHui2ItIAfZs2ePmjRpooEDB6p///7atWuXnnvuOdOxAAAAkIaEhARFRkbKz8/PdBTYsJSUFMXHx6tYsWLZts1//OMf2rx5s6xWq+rVq6dZs2Zl27YBwKQnnnhCFy5c0JUrV0xHAQDgvs6dO6fWrVvL1dVVS5culaurq+lIAADkOnny5FFQUJBiYmL09ttva+zYsapRo4amTJnCjB4AAGQzJycnDR48WL/99ptiY2P11FNPafLkyaZjAcjFqlatqmnTpmnChAmaOnWq6ThAjtOuXTuKtWDzKNYCcoCkpCSNGjVK9erVU2JioqKiojRy5Eg5OzubjgYAAID7WLhwoVJSUtShQwfTUWDD4uLilJqamq3FWpJUuXJlrV+/Xl26dNHLL7+sgIAAnTlzJlszAEB2uzUzeWxsrOEkAACkLSEhQT4+Prpx44YiIiJUtGhR05EAAMjV3NzcNHz4cB08eFDPP/+8evbsqTp16mjFihWmowEAkOvUr19f27ZtU69evdS7d2/5+Pgw3gvAGF9fX7399tvq1auXtm3bZjoOkKP4+Pho165dzKYJm0axFmDn1q1bp1q1amnEiBEaPny4Nm3apDp16piOBQAAgHQICwuTt7e3ihQpYjoKbFhcXJwkZXuxliQ5Oztr3LhxWrNmjbZv365q1apxF0IAOVqZMmUkSceOHTOcBACAe0tMTFSnTp109OhRhYeH6/HHHzcdCQAA/M9jjz2mCRMmaM+ePapatapat24tb29v7dq1y3Q0AAByFWdnZ4WEhOjXX3/VoUOH9OSTT2r69OmmYwHIpUJCQtSgQQO99NJLunjxouk4QI7RrFkz5c+fXxEREaajAGmiWAuwU/Hx8erfv7+aNWumChUqaN++fRo8eLAcHR1NRwMAAMDfpKamatiwYZo3b56uXr0qSbp8+bIiIiLk5+dnOB1s3blz5yRJ7u7uxjI8++yz2rZtm15++WX961//kq+vr06cOGEsDwBkFXd3d7m4uOj48eOmowAAcJeUlBS98sor2rRpk5YvX66qVauajgQAAO6hWrVqmj17tiIjIxUXF6fatWsrMDBQp06dMh0NAIBcpXHjxtqxY4cCAwP16quvKiAg4PbvbgCQXZycnDRz5kxduXJFQUFBpuMAOYazs7OaN2+u8PDw24/t27dPo0ePZqZr2AyKtQA7tGjRIj355JOaNWuWvvvuOy1ZskRly5Y1HQsAAABpuHDhgkaMGCE/Pz+5u7urU6dOeu+995SUlKQXXnjBdDzYOFso1pIkNzc3jR8/XmvXrtWBAwdUtWpVBQcH68aNG0ZzAUBmslgsKlWqFMVaAABjTp8+rfXr19/1uNVqVVBQkMLDw7V48WJ5eXkZSAcAADKiZcuW2rp1q2bOnKm1a9eqcuXKGjJkiC5dumQ6GgAAuUb+/PkVGhqq5cuXKyoqSk8++aQWLlxoOhaAXOaxxx7TTz/9pLCwMH333Xem4wA5RqtWrbRs2TL961//UqlSpVSzZk0NHDiQvzPYDIq1ADty8uRJ+fv764UXXlCjRo20Z88eBQYGmo4FAACAB8iTJ8/t/75+/boWLFigsWPHSpICAwM1bdo0xcfHm4oHGxcXF6dChQopb968pqNIkpo0aaJt27Zp0KBB+uSTT+Tp6amlS5eajgUAmaZ06dIUawEAjHnrrbfUtGlTTZw48Y7HBw0apOnTp2vu3Llq2rSpoXQAACCjLBaL/P39FR0drf/85z+aMGGCatSoocmTJyslJcV0PAAAcg1vb2/t3r1bvr6+6tixowICAnThwgXTsQDkIs2aNdPAgQPVt29fHThwwHQcwG798ccfmjx5stq1a6chQ4bo6tWrmjJlik6cOCHp5jVahQoVMpwSuIliLcAOWK1Wff3116pRo4Z27NihyMhIzZ49W8WKFTMdDQAAAOnw12ItSUpJSZHValVycrIiIiL02muvqVixYurYsSOzFOEu586dMz6r1t/lz59fwcHB2rdvn2rVqqX27dvr+eef1++//246GgA8svLly+vPP/80HQMAkAvFxsZq9uzZslqt6tWrl0JCQiRJw4cP15dffqnp06fLx8fHcEoAAPAw8ufPr8GDB+vQoUPy8/PTm2++me6bICUnJzMbFwAAmaBQoUKaNGmSlixZot9++01eXl6KjIxMc/n58+frhx9+yMaEAHK6jz76SB4eHurSpYsSExNNxwHszsiRI1WpUiW9+eabWr58uZKSkiTp9r8lycHBQQULFjQVEbgDxVqAjfvzzz/l7e2tXr16KSgoSLt27VLLli1NxwIAAEAG/L1Y669uFW6lpqZq9+7dcnCgm4Y7nT9/3uaKtW4pV66cZs+erTVr1uj48ePy8PBQz549FRsbazoaADy0KlWqKCYmxnQMAEAuNHbs2Dv6hO+9955at26t4cOHa8KECXrppZcMpgMAAJmhWLFiCg0N1e7du+Xh4aH27dvfnukjLUFBQapWrdrtu4QDAIBH065dO+3YsUP169eXt7e3evbsqcuXL9+xzMGDB/XKK6/otdde04YNGwwlBZDT5MmTRz/++KNiYmI0bNgw03EAu9OmTRs5OjoqOTlZqampaS5HsRZsBVcBAjbKarVq8uTJ8vT01KlTp7R+/Xp98skncnFxMR0NAAAAGeTk5CSLxXLfZRwdHRUWFnbfwi7kTgkJCTY/RXuzZs20detWTZw4UcuWLVOVKlU0aNAgnTt37r6vO3XqlNq2baudO3dmU1IAeLCqVavqyJEjun79uukoAIBc5OrVqxo/fvwddwC1Wq2KjIzUs88+q+7duxtMBwAAMlv16tU1e/ZsrVy5UufOnZOXl5cCAwN16tSpO5bbtm2bpk6dqtOnT6t169bMsAUAQCYpXry45s6dq1mzZiksLEyenp769ddfJd282WbXrl2VkpIiSerUqZMuXLhgMi6AHKRy5coaPXq0Pvnkk/vO7gfgbk8//bSCg4PveyNsq9Vq89fYIPegWAuwQX/88YdatWqlN998U2+++aa2bt2qp59+2nQsAAAAPAJHR8f7Pj958mR5eXllUxrYk6tXryp//vymYzyQo6OjXn/9dcXExCgkJEQ//PCDKlasqGHDhik+Pv6er5k0aZKWL1+uxo0ba8WKFdmcGADurWrVqkpNTdWhQ4dMRwEA5CLff//9XXfxlqTU1FStXbtWnTt3vqOQCwAA5AytWrXS1q1bNXPmTP3666+qXLmygoODde3aNUlS37595ejoqNTUVMXExMjPz0/JycmGUwMAkHP4+/trz549euqpp9SiRQv1799fISEh2rx5s5KSkpSSkqKzZ8+qW7dupqMCyEG6d++ugIAAvfrqq4qLizMdB7Ar7733nho3bpzmzbBTUlKYWQs2g2ItwIakpqbenk0rLi5OUVFRCgkJUb58+UxHAwAAwCNycnJK8/Hu3bvrtddey95AsBv2Uqx1S758+dSvXz8dOnRI77//vsaMGaMyZcqof//+io2Nvb1cSkqKJk2aJEm6du2a2rZtq6+//tpUbAC4rUqVKnJwcFBMTIzpKACAXMJqtWr06NGyWq33fD41NVXz5s3T888/f/vCbQAAkHM4ODjI399f0dHRevfdd/X555+rWrVqeuutt7R+/frbxVlJSUlatWqVgoKCDCcGACBneeyxx7Rw4UJ99913mjdvnoYPH67U1NTbzyclJennn3/W+PHjDaYEkNOMHz9eDg4O6tWrl+kogF1xcHDQjBkz5OzsLIvFctfzKSkpzKwFm0GxFmAjoqOj1ahRI/Xp00d9+vTR5s2bVbduXdOxAAAAkEnuVayVJ08eValSRV999ZWBRLAX9lasdUuBAgU0ePBgHTlyRCNHjtTcuXNVsWJFBQYG6sCBA1q0aJFOnjwp6ebFqampqQoKClJwcLDZ4AByPRcXF5UuXZpiLQBAtgkPD9fBgwfTLNaSbv7AHBERoffeey8bkwEAgOxUoEABffDBB4qJiZG3t7emTp0qB4c7L+tJSUnR999/r48//thQSgAAcq5XXnlF7u7u93zOarVqwIAB2r59ezanApBTFSlSRFOnTtXcuXM1Z84c03EAu1KmTBmNHz8+zTF1ZtaCraBYCzAsOTlZo0aNUt26dZWYmKhNmzYpJCREefPmNR0NAAAAmejvxVoODg7Kly+fFi1aJBcXF0OpYA/stVjrFjc3N/Xv31+HDh3Sl19+qXXr1snDw0MDBgy4ZxHjyJEj9eqrryopKclAWgC4qVq1ajpw4IDpGACAXOLTTz9NczZm6WZ/0mKxyM/PT/369cvGZAAAwITHH39cVatW1aVLl+6Y1eOW1NRUDR06VNOnTzeQDgCAnGv48OHas2dPmr9RWa1Wvfjii7p06VI2JwOQU7Vs2VI9evRQ7969dfr0adNxALvStWtXde7cWXny5LnrOWbWgq2gWAswaOfOnapfv76GDx+uDz/8UFu2bJGXl5fpWAAAAMgCf7/wzmq16vvvv1elSpUMJYK9uHLlil0Xa93i7OysXr16KSYmRp9//rmOHj2q5OTku5ZLTU3VjBkz1KZNGyUkJBhICgCSp6enduzYYToGACAX2LNnj3755Zd7to0dHR0lSU2bNtXmzZs1d+5cVahQIbsjAgCAbHbmzBmNHDlSKSkpaS5jtVrVrVs3RUZGZmMyAAByrm3btum///3vfc+/ycnJOn78uPr06ZONyQDkdKNHj1bBggW5SRPwECZOnKgSJUrcHku/hZm1YCso1gIMSE5O1scff6ynn35arq6u2rlzpwYNGnTXyQIAAAA5x1/v5OLo6Kh33nlHL774osFEsBdXr17NUbOvOTk56dSpU/edOSA5OVnr1q1To0aNFBsbm43pAOCm2rVrKzo6Wjdu3DAdBQCQw33++ed3tY1v/VZQt25drV69WqtXr1bdunVNxAMAAAa8//77SkxMfOByVqtVvr6+2r17dzakAgAgZ/vXv/51zxkt/y45OVnTpk1jhksAmaZAgQL6+uuvNWfOHM2ZM8d0HMCuFCpUSDNnzpTVar3rccAWUKwFZLNDhw6pRYsWGjlypEaMGKE1a9aoSpUqpmMBAAAgi926+C5PnjyqU6eOPvzwQ8OJYC+uXr2aI2bWuiUxMVGTJ09WUlLSfZdLSkrS77//rgYNGmj//v3ZlA4Abqpdu7YSExO1d+9e01EAADnYmTNn9OOPP95uGzs4OMhisahq1aqaPXu2Nm7cqObNm5sNCQAAslVcXJymTJkiq9UqB4f7X9KTmpqqGzduyMfHR6dOncqmhAAA5EwjR45UYGCgSpQoIenmb7v3u/F6UFCQYmJisisegByuZcuW6t69u3r37q0zZ86YjgPYlaZNm2rIkCF3nLeZWQu2gmItIJvXg4cwAAAgAElEQVRYrVZNnjxZtWrVUkJCgqKiojR48GBm0wIAAMgl8ubNK0lyc3PTggUL7phpC7ifnFasNX/+fJ0/fz5dyyYlJen06dNq0KCBfvvttyxOBgD/r1q1asqfP7+2b99uOgoAIAebMGGCkpOTZbFYZLFYVLFiRc2ZM0fR0dHy9/c3HQ8AABjg7u6un3/+WUOHDpWvr6/KlCkji8Ui6eZF47fGmW9JTk7WmTNn1LZtW125csVEZAAAcoQ2bdpo6tSpOn36tA4dOqRx48bJ19dXrq6ukm7ekPPWOVmSUlJS5Ovrq2vXrpmKDCCH+eyzz5Q/f37169fPdBTA7gQHB8vT01MWi0V58uRRvnz5TEcCJEkW69/nfQOQ6Q4fPqzXX39da9eu1cCBAzVixIi7BlEBAABgTnx8vFJTU3X58mUlJSXp2rVrun79uqSbswCl9SP3/Z6Tbk6rfevup6+//rqOHz+uTz75RF5eXipcuPDtAX1XV1flyZNHLi4ucnZ2Vt68eVWgQIFMfpewV25ubgoNDdXrr79uOsojOXbsmKKiojR+/HitWbPmjuccHR1vX6Aq3bwrcGpq6h1T1Ts5Oentt99WvXr1sjM2gCzm6Oiotm3b2mRRasOGDVW/fn2NGTPGdBQAsCtXr17VjRs37no8JSVFCQkJ93zNpUuXlJycfN/1Jicn69KlS5mS8ZYrV64oMTExU9cp6Xbf7n6SkpLUuXNnJSQkqFixYnr99dfVqlWrNGfQ+GsfMi3Ozs5ycXG553NFihS55+P58+fnh2sAud6mTZt05MgR0zGANF27dk1Hjx7V0aNHdfjwYf355586duyYbty4cXtMLTU1VXXq1NGQIUNMxwVgQNGiRdWqVSvTMYAcKTk5WVFRUVq5cqWWLl2qbdu2KTU1VQ4ODkpJSVH37t31ySef3P6d+Zbr16/fs5DrfuMj95PWeEt6pGdM4e/S+r3aYrGocOHCdzxWsGDBO25Yz1gD8PAiIyPl7e2t2bNnq1OnTqbjANnur9dr/fV3gwsXLtyx3K3rvP4qNjZWQUFByps3r+bPn3/Xa+7lfmPqtxQoUOCOa/7/Ov7v5uYmJycnSWmPwSN3o1gLyEJWq1Vff/21Bg0apLJly+r7779X3bp1TccCAACwa8nJyYqLi1NcXJzOnz+v+Ph4Xb58WfHx8bf/+9Y/Fy5cuOP/4+Pjb1/gZ7VadfHiRdNv574cHR1vT81dpEgROTg4qFChQipYsKBcXV3l5uYmV1dXFSlSRK6urrf/ubVMoUKF5O7uLnd3dxUtWtTwu8HDypcvn6ZMmaIuXbqYjvJI3njjDU2ZMsV0DAA2aPr06eratavpGHfp1auXdu/erXXr1pmOAsDOXbx4UVar9Y5io79eYHPreenu4qH/Y++846K41v//AekdpEgREAUREEQpir1GYxdjxQSNRmPL1xRvkmuixtyo18TE5FpijHpNYjcx9q6xgmJUZK30XqSKNNH5/eFv5u6yuzALszu78Lxfr3nBnjlzznPqnPPMec4pKyvDixcvuN/SHxfrLu6pu5mE9EdNAHKLhqQ/ZiqbHylbWKQL8ymiabDzT0WwG47U59/Q0JDbfRyQ/+hd9wN33YVd0h+2pefGgPyCMemP4wYGBrC0tAQguziMXZhWVy6CIAgAaNPGGXl5uWKLQRAEQRBNori4WM6AgiB0mbKyMtTW1qKkpATPnz9HeXk5p+uQ1oGwuhPWD/C/xd3SuhhWLyKtT2H1MC9fvkRpaSkXd119iDo2kGlJ1J2L1zX4kp7ns/oBRW7S4bCL46X1AKy+ou43dtYPq5tQpNcgCG3i7bffxvHjx3H//n2l+jmC0DTV1dUoLS1FWVkZSktLUVxczL2XS0pKUFNTg/Lycu7dWlxczL2vy8vLuefZd6z0Nwbpd3hzQPrdxL572HefsbExzMzMYGlpCWNjY1hZWXH6bWtraxgZGcHS0pLTbdvY2MDMzExmHRj1C7qFgdgCEERzJTc3F7NmzcKxY8cwf/58/Pvf/6YdIwiCIAiCIBRQVVWF3NxcZGdnIz8/H1lZWXjy5AmKioo4oyz2evLkicKdxuoaMbGGTDY2NnByckL79u1hYWEBGxsbmQVk7GItVpnLTnbZyTGgeHewuvEqor5d0eoq9NmPCKzSglVOsAoJ9gMB+1xJSQlngJaXlyfzmzVKUyQra7QlbcDF/t+mTRs4OTnB2dmZ+196oRwhHi9evFC6u74u8eLFC4T0G4RPNu0QWxSCILSIqcHtGzxJRSxCQkKwY8cO1NTU0AnpBKFjsAZNrBEUa5TE/mXH3+zCHXaxjjJjKva5xt5vCkIatDg4OMic9lR3YYr0ycAs0h8V6yK9Y6Q09Z0UrGwnZz67VwKQmasJhaJ0NwV1fFjmc/IYIG+Qx0emugaBLNXV1aioqFD4jLSBobI46i5sq2uImJOTI5ghYmNpyJirofvS7ZO9z9Zltq6y7YH9yz7Ptq267ZYgCHF4XluLWZ9/haFTosUWhSAIgiBU5m7MZSyLnqC1Ojai+VJRUYFnz57h6dOnKC0t5RZjS/+uqqrivnGWlpZy8ztWb1KfQRZfFBnosPMw6W+57BzPwMAAXl5eAGQ3/5DWsSja6KPuaRmsXoRhGOjp6cmdsl3fZiGNOXmqvm/W9aFsI56GUHRiCaDYcK3uySV19Rh1y7RuGNL32bCk5U5PTwfDMDK6ClY+RYZ7fLGxsYGBgQGsrKzkDLmk77FzfLZe2drawtzcHObm5twaBPa3paWl4LomouWxZs0aHD58GEuXLsV3330ntjhEM6KoqAhPnjyRW4vFbo7NGmKVlZWhuLhYxq2+7x02NjYwMjKChYWFTF/J6kSdnJzk3Njn9PT0ZN7X0vel35d1v43Ufe8qou73FUXweXfUfc9J67rZ95G04bf0u4kd87A6b/adV1ZWhpqaGiQnJ3Nu7Fjp6dOnDX5jsrGxkTHgkv5rY2PD3XdwcODWhbFXQ/lGCAsZaxGEGti3bx/mzJkDGxsbnD9/Hn369BFbJIIgCIIgCFHIy8tDWloa0tLSkJGRgczMTOTn5yM7Oxt5eXnIycmRm9Ta29tzk0U7Ozs4OzsjICAArVu3hr29vZyhkbW1teCL9YSgVatW9R5x7eDgoNb4y8rKUFJSolTZUlRUhIKCAjx48ACFhYXIycmRWfymr68PR0dHODk5wdXVFY6OjnBxcYGzszM8PDzg6ekJDw8PWlSmAdiPPARBEIRm6d27NyoqKvD333+je/fuYotDEDqN9A6KT58+5RbjsB+bSkpKUF1djWfPnnGLLlj/7EId9i+7mIP9sMV+AGvMSU/shzr2g5/0ohdpoyB28Y2RkRG3mEfRfekPitLGRw3dl/7IyNdoidBeDA0N650LNgahw2tuSBupSS/cYt2l+wfp++zisYbuS39oLy8vR35+vtL7bL+m6uJCtn+Q7ofYcmf/sosX2EVfbN/B9jHsAjJLS0uZRRFsfyV9nyAIgiAIgiCIlgk7/ykuLkZJSYncxZ6IIf3/s2fPUFxczP1fXl6ucBMPadh5CXtyhIGBgcwJR3Z2dkoNY/gYzdS3uQwhi4mJSaMWZeuyLqLuhqiqGAlK36uqqsKTJ0+4e0+fPkVNTQ1KS0sb3FiHrcOs8RZrzGVlZQUrKyvud92F9ezievZ/bVwHQagfOzs7rFy5ErNnz0Z0dDS6dOkitkiEFsIwDPLz87lNsfPy8pCXl4eCggK59UHsVdcI19TUFK1bt5Yz/PHy8oKtra3caU7SBkG2traNMj7WNviseRLznVhSUoKKigoZQzp23Ma6SRvV5efny4ztCgsL5cI0Nzfn1t7VNeayt7eHi4sLt9m3s7MzfbNqImSsRRAC8uTJE7zzzjs4ePAgFixYgJUrV9KAmSAIgiCIZk1hYSEePXqElJQUziiLvVJTU7ndrvT19eHs7AxXV1c4OTnB29sbffr0QZs2beDi4gJHR0fuHp1cIQysotfd3Z33M8+ePUN2djZyc3ORk5OD3Nxc7tSz3Nxc3Lx5Ezk5OXjy5An3jK2tLWe4JW3E1a5dO/j4+NB4WADIWIsgCEIcfHx84OzsjIsXL5KxFtHsYQ2fysrKuIU4ZWVl3O6AxcXFnAFDWVkZqqurZXb2k76vyBirIaytrWFkZARLS0ulp84YGxvD0dGxXoOGhgwZ2L91T5QiCEK3UbZTuTbALuhidwRXZpBa1xC1PoPU1NRUAPKnB0obvjYEu5BC2pjL0tISxsbGsLKykrnP7mar7D67kzi7mzhBEARBEARBEOqlurpaZqNGRUZXyi7pU4ylsbS0hI2NDXciBvu/hYUFnJyclJ4kxG4MUdf4hCDERHojndatW6stHnYOXlJSImfMyP6WPmmO1blmZmZyv6UX3isy/jIyMpIx5JK+bG1tFbqzi+9pjq7bzJgxAz///DMWLlyIixcvii0OoUEYhkFubi7S0tKQl5cnsyk2u4YnJycHeXl5Mv2GqakpHB0d4ejoyBneeHp6yhniSG+STet5tB+2b3dxcWnU8y9fvlRqvPfkyRNuTHnnzh3Ojd2sjMXa2lpmbZ/0Gj9nZ2e4ubnBw8ODjLqUQMZaBCEQJ06cwIwZM2BgYICzZ8+if//+YotEEARBEAQhCDU1NcjMzIREIsG9e/eQnJyM5ORkSCQS5OTkAHil8GR31/Dy8sKoUaPg5eUFLy8vODs7o127djTJ1wHMzc3h7e0Nb2/vev1VV1cjKyuLqwvZ2dnIycmBRCLB4cOHkZqayu3IY2trCz8/P/j7+3N1ws/PD76+vjJHlBPKIWMtgiAI8ejZsycuXbqExYsXiy0KQcjBGgBUVlaiuLgYxcXFcr8VuSn6zS70Vwa7o7GJiQlsbW25/9m/7M56yvwpeoZ1kz5ViiAIorlhamoq2kdqtq+X7vfZ/xtyq6ioQGFhISQSidz9wsJC1NTUKI23bl9f932gym8nJyd6RxAEQRAEQRDNmqqqKhQVFcnoctgrJycH2dnZcu65ublyp1opG197eHigS5cu3D1Fl729PW2mSRCNwNjYGMbGxrCzsxMkvIb0vNJXdnY2JBIJ91vZXN3ExAQuLi5wdnZW2P7r3qN5uPagp6eHdevWITw8HIcPH8bIkSPFFokQCHa9DbvOhl13w669SUtLk9mMSbodu7i4ICIiQqbtsv87OzvTuhJCDn19fTg4OMDBwUGl59h3DTself5748YNnDp1Cunp6SgvL+eesbW15eqp9JpB9renpyf09fWFTqLWQ8ZaBNFEqqqqsGzZMqxZswaRkZHYtGmTYANwgiAIgiAITfLy5UskJSXhzp07uHPnDuLj43H37l2kpaXh5cuX0NfXh4eHB3x8fNCpUyeMGTMGPj4+8PHxgZubGyntWhDGxsbcxFoR1dXVSE5OxsOHD/Ho0SM8evQI9+/fx8GDB7kdWIyNjeHt7Y3AwEAEBQUhKCgIgYGBcHZ21mRSdAZSqhEEQYhD7969sWzZMm4sRBBCwe6aKr2zsfTv0tJSFBcXy91nT7tStgsyAO4EFFtbW24HZHZHZEdHR+63tbU1t+uxhYUFrKysYG1tzf22tLSEubk5LdYhCILQUdRpKMYab5WUlHAnMpaXl6O4uFjmd0lJCZ4+fcr9zsnJwcOHD7nfZWVlDRoMs+8zdqd/a2trbkdZ9n/p3cTr3jcxMVFLHhAEQRAEQRCEMiorK7lTL/Lz85GVlYX8/HzuNIy8vDzk5OSgsLBQ7mRcfX19mRMwWrduDUdHR3Tq1AkODg4yp2GwJ2TY2NjAwICWgRKErsPO4xt7esrTp09RUlKCwsJC5Ofny5ycwv6fm5uLu3fvcr8rKipkwmjVqhV3Mhd7YoqjoyNcXFzg5OSENm3acG6Ojo5CJJuoh9DQUIwbNw6LFy/GsGHDqK/XIYqKipCYmIjHjx9zV2JiIlJSUlBQUMD5s7CwgLu7Ozw8PODl5YV+/fpxv93d3eHs7AxjY2MRU0K0VFgjXn9//3r9PXnyBJmZmcjIyEBqairS09ORkZGBu3fv4siRI8jNzeV0v8bGxnB3d0eHDh3QoUMH+Pj4oEOHDvD29oaHh0ez7eOaZ6oIQkPcvXsXUVFRSE1NxcaNG/HOO++ILRJBEARBEAQvampqcOvWLdy6dQu3b9/GnTt3kJCQgPLycrRq1Qo+Pj4IDAzErFmz0LFjR/j4+MDb25uUAAQvjI2N0alTJ3Tq1EnuXklJCWfAde/ePcTHx+OHH35AZmYmAMDR0VHGeCs0NBQdO3ZsscZKrNKipaafIAhCbHr37o3i4mIkJCQgMDBQbHEILYJhGBQVFXEftQsLCxUaXJWUlMgYXbFuz58/lwvTwMCAW1wufbm7uyMwMJAzrmIXrFtbW3PGWBYWFrCxsYGFhQUZVxEEQRBqh11AZmtrK0h4lZWVKC8v5xaWscZcrAEYa6gs/S598OCB3Lu27ukCwKvdh+sacbG/FRl5sQte7e3tYWVlJUj6CIIgCIIgiOZBWVkZMjIykJ6ejry8PGRnZyMvL0/GMCs7OxtPnz6Vec7e3h5OTk5wcnKCi4sL2rdvD2dnZ87wqq4BFn0TIgiiMVhaWsLS0hJt27bl/Qx7snZhYSEKCgo4w66CggLOwDQpKYkzOq2uruaeNTAwgKOjo4wBl6urK+fm6urKGZvQxr+N51//+hcCAgKwa9cuTJs2TWxxCCmqq6tx//593L9/H4mJiXj06BFnlFVYWAjg1eZ67dq1g7e3N3r27Ilp06Zxhlht27alg0EInYfVo3bp0kXh/ZqaGmRlZSE9PR3p6elITU1FYmIi4uLisGvXLjx58gQAYGhoiHbt2skYcfn4+CAgIEDnN/0mYy2CaAQMw+D777/H4sWLERISglu3bik9VYAgCIIgCEIbyM7Oxs2bN3Hz5k1cuXIFV65cQWVlJaysrODt7Q0/Pz9MmjQJ3bp1Q3BwMMzNzcUWmWim2NjYICwsDGFhYTLupaWluHv3Lu7duweJRIJr165h/fr1qKyshKWlJQIDA9GrVy/07NkTERERaN26tUgp0CzsQjM6zYUgCEIcgoKCYGNjg7/++ouMtZoxVVVVKCoqQnFxsdIrJycH2dnZ3O+CggLU1tbKhWViYsLtNsdezs7O8PPzk3O3tbWFqakp90ybNm3onU8QBEG0SFjjLwcHhyaFU1lZKfcOr6qqUuienZ0NiUTC/S4sLERNTY1cmCYmJnBxcYGzs7PCdzl7sX7s7e3JcJogCIIgCEIHqa6uRlZWFrKzs5GTk4Pk5GSZ/5OTk1FcXMz5Z/U57DjQ09MTERERcHZ2lhk/enh4wMLCQsSUEQRBKMfMzAxmZma8DbwqKytldOXs/+zf+Ph4ZGdny+nPbW1t4eXlxfWRXl5eMr89PDzIoEsJHTt2xOTJk7F69WpERUWRQa9IsGuu2PUs9+7dQ0JCAqqrq2FgYAB3d3d4eXkhKCgIY8eOhZeXF/z8/NCxY8dme1oQQfCBNVhs166dwvslJSVISkrixtvJyclISEjAnj17kJOTA+DVOjN/f3/4+/vDz88P/v7+CAoKarIuWVNQD0AQKpKWloa33noLV69exaefforPPvuMBooEQRAEQWgdDx8+xJkzZ3DhwgVcu3YNWVlZMDAwQEBAAHr06IFp06ahe/fu8PHxEVtUggAAWFtbo1evXujVqxfn9vz5c9y+fRsxMTGIiYnB3r17sXr1aujr68PX1xcREREYMGAABg4cCEdHRxGlVx+ssRYpXQmCIMRBX18fgwYNwrFjx7BgwQKxxSF4UlVVxe1kLL0DaH5+PrczKPu3sLAQz549kwvD1taW29XYzs4OrVu3RmhoKLfDsZ2dHRwcHGR+m5mZiZBagiAIgiBYWKMvFxeXRj3/9OlTuXFCYWGhzGma+fn5uH//Puen7qkJAGBlZcXtKsuOIxwcHODk5IQ2bdpwu4w7OTnB0dERhoaGTU06QRAEQRAE0QAVFRVISkriruTkZG6H/8zMTBQVFXF+TU1N4eHhATc3N7i6umL48OFwc3ODm5sb3N3d4ebmBmtraxFTQxAEIQ6mpqacoVV91NbWIicnB+np6cjIyEBmZiYyMjKQkZGBW7du4fDhw8jNzeW+hRsZGcHV1RVubm7w8PCAp6cn2rdvz12Nnec3FxYvXozAwEAcPXoUI0aMEFucZk1NTQ1u376N69evIy4uDgkJCbh37x4qKyuhr6+Pdu3aoXPnzhg6dCg++ugjBAQEwMfHh3Q7BNFIbGxs0K1bN3Tr1k3uXkFBAeLj4yGRSJCQkID4+Hjs2rWL08e6u7vD398fwcHBCAsLQ2hoqFa+L8hYiyBUYN++fZg9ezacnZ0RGxuL4OBgsUUiCIIgCIIA8GqCcvbsWZw5cwanT59Geno6rKys0LdvX8ybNw89evRASEgI7dxG6BSGhoYIDQ1FaGgot0A+Ly8PMTExuHbtGq5cuYLt27fjxYsXCAoKwuDBgzF48GD06tULpqamIksvDGSsRRAEIT7Dhw/HnDlzUF5eTmMpEalrgJWXl4ecnBw5Y6ycnByUlZXJPGtlZQVnZ2c4OjrC3t4eHh4eCAkJkTHEkr7s7OxocyaCIAiCaIFYWlrC0tISnp6evJ+pqamRM+hSZPCVkpKCnJwc5OXloaKiQiYMBwcHODo6wtHRkRuzSBt2OTs7w8nJCQ4ODrT4hyAIgiAIoh4KCwtlDLKkr+zsbACvvre4uLigffv28PDwQGBgINzc3NC2bVu0bdsWbm5uaN26tcgpIQiC0G0MDAy4flUZNTU1yMzMRFZWFtLS0pCZmYnMzEykp6fj4MGDSEpKQmVlJYBXRmLSxlvs1aFDB7i7uzf7uXJAQACGDRuGb775hoy1BIRhGDx69AjXr1/nrtu3b6OmpgY2NjYICQlB3759MXfuXHTu3Bl+fn4wNzcXW2yCaDE4ODhg4MCBGDhwIOfGMAzS0tKQkJCAhIQE3L17F3/88QdWrVqFly9fws3NDWFhYQgPD0dYWBi6desGS0tLEVNBxloEwYvS0lLMmzcPO3fuxKxZs/Dtt9/STrkEQRAEQYjO/fv3sX//fhw8eBC3b9+Gvr4+wsPDMWPGDAwaNAjh4eF0nDbR7HBycsLo0aMxevRoAK92vb5w4QJOnz6Nw4cPY82aNTAxMUHv3r0RGRmJcePG6czR1/XBGm0RBEEQmmf48OF4/vw5zp49y71/CGHJy8uT+yiblZWF9PR0FBQUICcnB6WlpTLPWFpawsXFhTulIigoSO6UCnaxc3Mx4iYIgiAIQvswMjKCs7MznJ2deT9TXl6OnJwc5Ofncwbo7P+5ubmIjY3lDLvYhWksrGFXmzZtuJMdpHcfd3V1ha2trdDJJAiCIAiC0BoYhkFKSgokEgl3PXjwAImJiSgpKQHwajNADw8PtG/fHp07d8aYMWNkFvabmJiInAqCIAjCyMiIO6Wrd+/eCv1kZWXJGd9evHgR27ZtQ3FxMYBXhmEeHh7o0KEDAgIC4Ofnh4CAAHTq1En0BfpCMn/+fAwfPhyPHz+Gt7e32OLoJC9evMDff/+Nc+fO4fz584iNjUVJSQmMjY3RpUsXhIWFYf78+QgLC4OPjw9tqEsQWoienh48PT3h6ekpY7xaWlqKuLg4xMbG4saNG1i3bh2ys7PRqlUr+Pr6ok+fPhgwYAD69esHe3t7zcrM0IovgqiXCxcuYNq0aWAYBtu3b8egQYPEFokgCIIgiBaMRCLB/v37sW/fPkgkErRp0wZjxozB0KFD0b9/f1hZWYktIkGISmZmJk6fPo2jR4/i+PHjqK6uRt++ffHGG29g7NixcHJyEltElWnVqhV27tyJiRMnii1Kk4iOjoYkLQufbNohtigEQWgRU4PbY+OGDYiOjhZblHrp3r07AgMDsXnzZrFF0TkKCgpkdsSU/j8rKwuZmZmorq7m/Ds4OMDNzY1bfMwuRm7Tpg0cHBy4kyXIAIsgCIIgiJZAeXk5srOzkZ+fL3PKaHZ2NmfcnpmZKWPYbmZmBg8PD7i5ucHV1RXu7u4y4ys3NzdYW1uLmCrto7W9AyLnvY+hU6LFFoUgCIIgVOZuzGUsi56AgoICjS88VDdpaWm4d+8eEhISuL/379/Hs2fPAADu7u7w8/ODv7+/zEkrHh4etKElQRBEM6eoqEjGiOvhw4eQSCS4f/8+KisroaenBw8PD/j7+8tcfn5+Ovl94eXLl/D09MSbb76JL7/8UmxxdAaJRIKzZ8/i3Llz+Ouvv1BSUoI2bdpgwIABiIiIQGhoKLp06QIjIyOxRSUIQmAyMzNx48YNxMTE4K+//kJcXBwYhkFgYCAGDBiAAQMGoE+fPmo37KVZCUEooba2Fl988QW++uorjBo1Clu2bIGdnZ3YYhEEQRAE0QIpKSnBtm3bsGXLFty7dw8uLi4YN24c1q9fj969e0NfX19sEQlCa3Bzc8P06dMxffp0PHv2DMeOHcP+/fvx4YcfYv78+ejXrx9mz56NMWPGwNDQUGxxeWFoaCiziJ0gCILQPMOHD8fGjRvBMAztpFeHyspKJCYmIikpCYmJidyVnp6OjIwMVFVVcX7t7e3h6uqKtm3bIiAgAK+99hratm2Ltm3bcu60szFBEARBEMT/sLCwgI+PD3x8fOr1V15eLmMYn5GRgYyMDGRlZeHGjRvIyMhAWVmZTLju7u7c7uPe3t7o0KEDOnToAE9PT53RmRAEQRAE0XxITExEbGwsrl+/jhs3bkAikXDjFxcXF/j7+6NXr16YPXs2d3IKbWJJEATRcrGzs4OdnR1CQ0Nl3F++fInk5GQZQ9+TJ0/iu+++Q01NDfT19dGuXTsEBwcjPDwcYWFh6NatG8zNzUVKCT/09fURFRWFHTt2YMWKFfStSgnV1dU4c+YM9u/fj+PHjyMvLw82Njbo27cvvkDWPtgAACAASURBVPjiCwwYMAD+/v5ii0kQhAZgN68aO3YsgFenb/311184d+4cTp06hW+//RatWrVCeHg4xo4di8jISHh6egouB52sRRAKyMjIwNSpU3Hjxg2sWrUK7733ntgiEQRBEATRArl9+zbWr1+PnTt3olWrVpg2bRomT56MiIgIMtAiCBWpqKjA8ePHsWPHDhw9ehROTk6YPXs2Zs2aBWdnZ7HFqxdra2t88803mDlzptiiNAk6WYsgCEXoyslat27dQteuXREXF4du3bqJLY7GefbsmYwhlvSVlZXFGbG5ublxi3w9PDzkDLF0cbdKgiAIgiCI5kJZWZmMEVdGRgZSUlLw+PFjJCYmoqCgAABgYGAAd3d3blzHXt7e3mjXrh2MjY1FTonw0MlaBEEQhC6jiydrFRUVcYZZ169fR2xsLAoLC2FoaIigoCCEhYUhMDCQOwXF1tZWbJEJgiAIHae2thZJSUlISEiARCJBXFwcrl+/jry8PBgYGMDf3x/h4eGcAVenTp3QqlUrscWW4e+//0a3bt3w999/Izg4WGxxtIaqqiqcPHkS+/fvx+HDh1FWVobw8HCMHj0aAwcORNeuXbWuLAmCEJ+8vDycP38eJ06cwKFDh1BcXIyQkBCMHz8e48ePR/v27QWJh07WIog6HDx4EG+//TacnJwQExODoKAgsUUiCIIgCKKFcebMGSxbtgxXrlyBn58f1qxZg2nTpqn92F2CaM6YmZkhMjISkZGRSEtLw6ZNm/Cf//wHX375JcaPH4/ly5fD29tbbDEVYmRkRCdrEQRBiEyXLl3g4eGB/fv3N2tjrdzcXO5DpUQiwcOHD/H48WPk5OQAeLVzI7twt2PHjhg+fLjMAl46FYsgCIIgCEJ7sbKy4hY8K6K0tFTuxNT4+Hj8/vvvyM3NBfBqPNi2bVt06NABvr6+6Ny5M/z9/REQEAAbGxtNJocgCIIgCB0iPT0d586dw7lz5xATE4PHjx8DALy8vBAeHo4lS5YgPDwcwcHBpF8iCIIg1IKBgQE6duyIjh07IjIyknNPS0tDbGwsZ0T866+/oqKiApaWlggJCUGfPn0wcOBAhIeHw8jISMQUAMHBwXB1dcXRo0dbvLEWwzA4f/48tm7dikOHDuHZs2eIiIjA8uXLMW7cOLRt21ZsEQmC0HKcnJwwadIkTJo0Cc+fP8e5c+ewf/9+fP311/j444/RpUsXTJs2DW+++WaTNsWgk7UI4v9TVVWFf/zjH/j+++8xbdo0bNy4UeuPNiUIgiAIonkRHx+PxYsX4+TJkxgxYgTef/999O/fX2yxCJEZPHgwTp8+LbYYzZLq6mrs3bsXq1evxqNHjzB79mx8/vnncHBwEFs0Gdzc3PDBBx9g0aJFYovSJLT1ZK3lMyZi6dY9YotBEC0WXTlZCwA+/fRT/Pbbb0hJSdH5U05ra2tx//59xMXF4e+//0ZCQgLu3r2LwsJCAICDgwM6d+4MX1/fFnGSAiELjT81C+U30RKgek4Quk95ebncCasSiQT37t1DWVkZgFf6C39/fwQGBqJbt27o1q0b2rdvDz09PZGlbxhtPFmL9BWahfKbIBRDbUMY1J2P2niyVmVlJc6ePYsjR47g3LlzePz4MUxMTBAREYFevXohLCwMYWFhWvc9huAHzfE0C+V384LKU/upra1FQkICYmJiEBsbiwsXLiA1NRXm5ubo1asXXnvtNYwaNUqwE1dU5e2338ajR49w6dIlUeIXm/Lycvz000/YuHEjHj9+jO7du2Pq1KkYN24cXFxcxBaPUAD1e5qF8rvpvHjxAhcuXMDevXuxe/duVFdXY9y4cXj//fcREhKicnh0shZBALh//z4mTZqE1NRU7Nq1C5MmTRJbJIIgCIIgWhAFBQVYvHgxduzYgZCQEFy4cAF9+/YVWyw59PT0oGyvh/ruEU1DF/JVV8vf2NgY06ZNw5QpU7Bt2zYsXboUO3bswCeffIIPP/wQBgbaMWU2Njamk7UEINL3lXL2wINsGXddrLuEuCirS7pMc0yTOpg2bRpWrlyJixcvol+/fmKLoxLp6em4ePEiYmNjcfPmTdy+fRuVlZUwNTVFYGAggoKCMHbsWAQEBKBz584tfqFMSxn3sgun66anuaRPLJTlqzJ0Ib+bQ71XtVwaG4eu5xOL0Pmly/miibqjKZpTWqRRV9trrvnVWCwsLNClSxd06dJF7l5aWhokEgkSEhKQkJCAkydP4ttvv0VtbS1sbGzQtWtXdOvWjVucrS2LyLUF0leoB1XnubqQ35G+Ljo/b9eE/qE55JM2oa620dJ0UbrQxwhBWVkZfv/9dxw8eBCnT59GZWUlQkJCMGHCBAwYMAARERHN5tQs0h01j/SJBemOxEXsuZ6u5FNLxsDAgJv/zpkzBwCQnJyMs2fP4ty5c1ixYgXef/99+Pn5YeTIkZg0aZLCubK6iIiIwO7du1FbW6s16xk0QWlpKb755husX78eNTU1eOutt7B//34EBgaKLVqD0LiheaRPLGjcoHlatWqFgQMHYuDAgVi7di12796NDRs2IDQ0FAMHDsTnn3+OPn368A6PTtYiWjw7duzA3Llz4e/vj127dsHLy0tskQiCIAiCaEEcP34c06dPh4mJCVavXo0JEyZo7W6zLUWBQKhOcyn/Z8+e4dtvv8XKlSvRuXNn/Pbbb6LtiCVNp06dMHnyZHz++edii9IktOFkLVqsQQhFc6xLYqVJl07WAoBu3bohODgYW7ZsEVuUeklJScGpU6dw6dIlXLp0Cenp6TAyMkJwcDB3ykFISAj8/Pxa1Mc8vrSkcW9zS4+20NzytbmkR93paC75xNLc0tMUmlNeNKe0sKgzTc0xvzRFZWUl7ty5g5s3b+LmzZuIi4uDRCIBwzDo1KkTevfujd69e2PIkCFasVGA2CdrNcc5pjbQ3PK1uaRH3eloLvnUEqCyEg4xT9ZiGAYnTpzAjh078Oeff+Lly5cYMmQIRo4ciREjRsDZ2Vmj8mgK0h0RTaW55auupUfX5CW0i9raWly6dAlHjhzBwYMHkZycjICAAERFRSE6OhpOTk5qjf/OnTvo0qUL4uPj0blzZ7XGpQ28ePECGzduxPLly8EwDN577z3MmzcPdnZ2YovGGxo3EE2lueWrrqbnzJkzWLlyJc6dO4cxY8ZgzZo16NChQ4PP6WtANoLQSkpLSzF58mRER0fj7bffxuXLl8lQiyAIgiAIjfLDDz9gxIgRGDRoEOLj4zFx4kStNdQiiJaAubk5lixZgps3b6Kmpgbdu3fH1atXxRYLxsbGqKmpEVsMgiAIAkBUVBT27duHyspKsUWR4eXLl7h06RI+/vhjBAQEwMvLCx9++CEKCgowc+ZMXLhwASUlJYiJicH69esxY8YMBAYGkqEWQRAEQRAEoRZMTU3RvXt3zJs3D1u3bkV8fDwKCwtx6NAhjBw5Enfv3sWMGTPQpk0bRERE4KuvvkJ8fLzYYhMEQRAEwZOqqir89NNP8PPzw/Dhw5GVlYXvvvsOOTk5OHToEGbNmtVsDbUIgiCIlo2BgQH69++Pb775BomJibhy5Qp69+6Nf//73/Dw8MCsWbNw7949tcXv5+cHIyMj3L17V21xaAtJSUno27cvPvzwQ0RHRyMxMRGfffaZThlqEQTRfBg0aBDOnj2LEydOIDExEUFBQVi/fn2DhmdkrEW0SK5du4bAwEBcvHgRZ8+exbp162BoaCi2WARBEARBtCC+++47vPfee1i5ciV+/fVXWFlZaVwGPT09hcZhitzZ3+w9PT09zJw5s8F7AJCQkIDhw4fD0tISlpaWGDp0KBISEhTGmZSUhHHjxsHW1lapfMq4c+cOhgwZAnNzc1hZWWHYsGE4efJko9Orp6eH+/fvo3v37jAzM0Pv3r2RmJgIiUSC8PBwWFhYoH///khPT1f47L179zB06FBYWVnBwsICw4cPx/3791VKt9CyAaqVR0ZGBkaPHg1LS0s4OTkhKioKhYWFcn6ln6lb/ocOHULPnj1hYmICT09PLFq0CE+fPlUpHzSNr68vLl++jF69emHw4MGIjY0VRQ4WIyMjVFdXiyqDWFQ8LcO2lUvx7qDumBToibd7dcEPH/8fHsffkvF349wpfDp5FCYFemLOgDBsW7kUlc/KGww/0tcFkb4ucu6pD+7hixmTMKVLe0R188GXs6bi9uULvOVmw81NT8W/F7yNN8N85eJKf/wA/5o9DVO7emNqV2+smDkF6Y8fqCyLsjQocmfdMhMfYcXMKYjq5oMpwR3wr9nTkJn0WC4MPjLySSvf8uGT73zDSn/8AP96J4qT/V/vRCnM34bISHyIf70ThSnBHRAV0hGr58/Ak5wshX75lml98K3zqpTNk5xsrJobjaldvTGjZyDWfTQfT0uKFcbP129j21xzYOrUqaioqMCRI0fEFgUAkJGRgdWrV8Pb2xt9+vTBvn370LNnTxw6dAiFhYU4efIkPvvsM/Tt2xempqZiiysazWncW1paikWLFsHLywsmJiZwdnZGdHQ0rl+/LuOPzxhMEcpkaWiszTdcIcbIAL+85utPlbGvKnnBdyyt6+P9hIQEvP7661x8r7/+usKyaAg++cq3XkskErz++uuwsLCAtbU1xo4dqzCv+IbJp9011HfwqdNNzcfGzC/rcweA9PR0jB07FtbW1oLOawFhy7whhKw70mV84cIFAMDu3btl3Fn4lqt0vFZWVnjttddw7949hXmnjnagyXbMJy5N6yTUkV/apufQFmxsbDBixAisWrUKV65cQXFxMU6ePInQ0FBs2LABQUFB8Pf3x+rVq5Gfny+2uPWi6/oKPnoBIXUb6pjD8s0LPuHVq0NJeoyPJ47A5C5eWDJ1DHLTU5GR+BAfTxiOKcEd8Pmb4xXqCYROMysf+0ykrws2LPlANj4B9CBC6mZU0anwCZNPu6svn3jXaQHysVF51M0HX7w9GZmJjxTWSTHakbK+SEi90JOcLKyePwNRIR3r1VPyiVMd/Ygq8SqrW5rIR01z+PBh+Pv7Y/78+QgNDUV8fDwuXryId955B7a2tmKL1yhId0S6I9Idaa/uSJV5eFP0CJqY69VXnnzrF18dglDthE+fwrffEUr/oE3o6ekhIiICGzZsQHZ2NjZv3oxr166hc+fOePPNN5Gbmyt4nIaGhnBxcUFGRobgYWsTV69eRXh4OEpKSnDt2jWsWbMGNjY2YosFgMYNNG6gcYM2jxs0wWuvvYZbt27h888/x6JFizBhwgRUVVUp9U/GWkSLgmEYrF27Fn379kXnzp1x584d9O/fX2yxCIIgCIJoYZw5cwYffPAB1qxZg8WLF4smh7KdHRS5s24Mw3DXli1bGryXmJiIwYMHY+TIkUhOTkZqaiqioqIwevRoZGZmyoX/7rvv4sMPP0R2djaOHTvGOy2PHj3CxIkTsXjxYhQUFCAmJgbPnj3D0KFDm5TeZcuWYdu2bcjJyUFQUBCioqKwdOlSbN++HVlZWejUqRM++OADhc9OnDgR0dHRSElJQXJyMsaOHYuhQ4ciNTWVd7qFlk3V8pg5cybeffdd5OTkIC4uDhUVFfjwww8VyqOo/AFg9OjReOutt1BUVISYmBgUFRVhwYIFCsNobPmrAzMzM+zbtw8DBgzAqFGjUFBQIJospqamWneCi6b44eP3YG5phZV7DuOXuEdYsvlX5Kan4OMJw2X8rZobjf5jJ+C/1+9j1d4jKC8twZYVSxoM/8CDbDm37NRkfLNoNsbMnIdtMQlYtecIqiorsGLmFN5ys+FuXvYxRs94F1su3sY/N//K3c9NT8Xy6ZMQ0n8wNp6JwaZz19F3VCRWzZ2OwtwclWRRlAZl7qzbN4vmoP/Yidh4NhYbz8QgfNAwrJg5BflZ/1Pq85WxobQC/MqHb77zCSs3PRVfzpqKHq+NwMYzMdhw+hrCB7+OFTOnIDc9VWF+KUI6nE1nY7Hh9DX0GDIcaxfNUeiXT341BJ86r2rZbFjyAV6b/BZ+vnwb/95/AtVVlfjv6i8Uxl/Xb+3z5wr9NrbNNQccHR0xePBgbN26VVQ5Hj58iPHjx8PDwwPr1q3D+PHjIZFIkJSUhB9//BEjR46EkZGRqDJqE81p3PvWW2/BxsYG165dQ2lpKY4dO4bExESEh4fL+OMzBuObJ3zG2nzDFWKMzDev1TH2VSUv6oZXU1OjdCytyE0XxvuJiYkYNmwYxo8fj+TkZO5j59ChQ5GYmCiXNmXwzVc+9TopKYmTKSUlBUlJSYiMjMSkSZMUxs0nTD7tjk/fUV+dFiIfGzO/rM8dACZNmoTIyEgkJSUJOq8Vssz5IGTdqa2tRfv27VFUVIR+/fpx+ZSdnQ1bW1uUl79aYMu3XOvGm5KSgunTp3Px1s0/oduBJtsx37g0rZNQR35po55DGzEzM8OgQYOwbt06ZGRk4PLly9wpW23btsXChQu11mhL1/UVfPQCQuk21DGHVSUv+Mxz69Oh7PnPN5j/1bf4+dJtePr647uP5mP3919j/srvsOXi33Br743tq5bLPKuONLN+DzzI5q65X37DxSeEHkRdupmGdCp8w+TT7urLJz51Woh8bGwebTwbiwHjJmHt++/KyMv6FaMdKdM7CqkXWrtoDnoMGY4Np68p7Y/4xqmOfkSVeJXVLU3ko6YoKyvDqFGjMGbMGPTu3RspKSnYsWMHAgICxBatyZDuiHRHpDvSXt0R33k40Ph6ram5Xn3lySevVdEhCNVO+PQpfPwIpX/QZoyNjfHmm2/i7t27+OWXX3DhwgV06tQJR48eFTwuNzc3ZGUp3gihOXDx4kUMGDAAAwcORFxcHIKDg8UWSQYaN9C4gcYN2jtu0BQGBgb4xz/+gWPHjuHUqVOYPHkyXr58qdCvHtPQ2VsE0UwoKyvDzJkz8fvvv2PJkiX4/PPPoa9P9ooEQRAEQWiW2tpadOrUCcHBwdi7d6/Y4kBPT0/hZE2RuzK/9d2LiopCYGCgnFHa1q1bcefOHaxbt04mjPPnz3NKVlWYMmUKhg0bhmnTpnFuDx8+hK+vr4xcqqb3woUL6Nu3LwAgOzsbrq6uMm6ZmZno1q0b8vLy5J7dvXs3Jk6cKOO+du1axMfHY/v27bzTLaRsqpbHwYMHMXr0aM7t4cOHGDBggJzir766UZfi4mJ06NBB4e4pjS1/dfL06VP4+/tjyJAhMgu+NMmIESNgb28vU290kejoaEjSsvDJph28n5na1Rs/nr8BC+v/7ZKVn5mOdwd1V/qRGwDKy0oxb3AP/Df2nox7pK+L3HN13b79YC669hmAvqPHc27ZKUlYMKx3vXHWJdLXBV/s2A//sAi5e+s+mg+Pjn4YM3OujPu5A7uR+kCCGf9coZIsitJVX3rfX7sJPV8fJeN+eNuPSH14HwtWfaeSjA2lVRGKyqex+a4orHUfzUeHzl0w/M2ZMn4Pb/sRyfcT8N6/f+Al57rFC9AhIEgunPN/7MF/PlkkI5cq+VUffOq8qmXzj/XbEDbwNc4tOyUJS98aj58uyu74rshvfmY6/jlltJzfuihrc7zSHNweGzdsQHR0tMrPisWRI0cwatQoSCQSdOrUSaNx19TU4JNPPsH3338PX19frFixAiNHjkSrVq00Kocu0lzGvZaWlkhLS4OdnR3nlpKSAi8vr3rHY/WNwRpKP9+xdkMINUbmm9fqGPuqMu+oG15KSgp69erFayytK+P9qKgohIaG4r333pNxX7t2LW7duoVffvlF7hlFNLaOKarX06ZNQ0hIiJxM27dvx/Tp0xuss4rC5NvuGuo76qvTQuRjQ/HUJ6Oyerht2za5d7QQ81ohy7wxNLXufPrpp3B1dcW8efM4t1WrViEtLQ0bN24EwL9clcW7e/duTJ48uVF1VpW0aLIdqxKXJnUS6sovbdVz6AIVFRXYsWMHvvzyS5SVlWHVqlWYO3duww82gdb2Doic9z6GTonm5V/X9RV89AKs36bqNtQxh1VFX8J3nqusDL745QD8Q3sAAIry8zCrT7CMW2FuDj6KfA1br8SrnDeqpFmZjGx8QuhBBNXNqKBT4Rsm33anLJ/Ye/XVaSHykW96lOXR5aN/4tsP3m203kkd7agx5cWHSF8XzF/5LfqPlZ0jKuqP+MYpdPpVibc+/ag68xEA7sZcxrLoCSgoKIC9vb3Kz/OhpKQEvXr1QnFxMfbu3YuePXuqJR4xId0R6Y6U+WPjI92ReLojPvNwRfCt15qc6ykrTz55raoOQYh2wqdP4eNHSP2XrlBRUYGFCxdi27Zt+OmnnzBjxgzBwh43bhxMTEywc+dOwcLUFgoLC+Hn54c+ffpgz549WrvGm8YNNG5Q5o+Nj8YN4o0bNM21a9fQv39/LFu2DB9//LHcfe3sxQhCYG7duoWuXbvir7/+wokTJ7Bs2TKtfYkTBEEQBNG8OXnyJJKSkrBq1SqxRdEIZ86ckZsYA8Dw4cNx+vRpOfewsLBGxXPu3DkMHDhQxq1jx44qTeQV0bVrV+7/Nm3ayLm5uLgoPXFp0KBBcm5jx47FqVOn5Nwbk+7GyKZqefTp00fmt6enJ3Jy+J8QowhbW1sUFRUpvNfY8lcnlpaWWLp0KX777TeUlJSIIoOVlRXKyspEiVtsOnbphpXvvoVbl87jxYtaAICjm3uDH7YtrKxRXtq48kqIuYLOPXrLuLm0a6/SwieWDoGKd/mKv3pJblEUAHTtNxB3rl5UiyzSBEb0lnMLHzwMd678pbKMLMrSqghF5dPYtCoKK/7qJYQNkt9tKnzwMMRfvcRbzvgrFxWGE9xb/oRuVfNLGXzqvKpx+YV2l/nt4NoWxQWKd6ev69fe2VWpX2ma0uZ0keHDh6Njx474/vvvNR73lClTsHnzZmzatAl37tzBmDFjyFBLS9DUuLdHjx4YNWoUTpw4gdraV/1Eu3btGhz31jcGawghx9pCjJH55rU6xr6q5EXd8Nzd3VUaS+vCeP/MmTMYM2aMnPvYsWNx5swZ3uE0to4pqtenT59WKBPfXTkVhdnYdleX+uq0EPnYUDyNYdiwYXJuQsxrhSzzxtDUujN9+nRs27ZNxm3r1q145513uN98y1VZvIMHD244IWh6WjTZjlWNS1M6CXXmlzbqOXQBMzMzzJkzB48ePcKiRYuwcOFCrFjBbwMMTaHr+go+egGWpuo21DGHVSUvGjvPZfHy68z9b2vvIOdm5+iEsiLZxWnqnLcrQig9iKC6GRV0KnzDbGy7q0t9dVqIfFSEKnkU1LOPnJvY7aghmtK3BfcZIOemrD/iG6c6019fvKroR1UNWxuYPXs2SktLcePGjWZpqKUJSHfED9Idke5IEXzm4YrgW6+1Ya7HJ68bo0Noajvh06fw8SO0/ksXMDMzw5YtW/Dpp59i3rx5uHv3rmBhGxoacnnd3Pj+++/BMAy2bt3aotd407iBHzRuoHGDNtCjRw989tlnWL16tcK1XQYiyEQQGmXHjh2YM2cOwsPDsXPnTjg7O4stEkEQBEEQLZgrV64gMDAQXl5eYouiEQoLC+Hp6anwnqmpqZybmZlZo+J58uSJWnYLtLS05P5nFUF13ZQpDFq3bi3n5uzsrNC4qzHpboxsqpaHra2tzG9jY2OVFCQFBQX45JNPcOLECeTm5uLFixf1+m9s+aubMWPGYObMmYiLi1Oo7FE3VlZWyM/nv0CjOfHhus3Yu34tfvriU5QVFaKdXwC6D34dQ6e8hVYGhgCAsqJC/Lr2K9y6dB4lTwrwsoF61hBlJUWwsrVr2CMPjE3k2xUAPC0pxpwBipWBRiYmapFFGksbWzk3WwfZxUV8ZWRRlla+5cMnraqEZWPvKOdu6+CEp8X8lcbKwlHkpmp+KYNPnVc1Lgsra5nfhkZGSvvyun71W7WS8yt0m9NF9PT0MG/ePPzjH//Al19+qfCdrw5Onz6NP/74AxcuXEDv3vKLKwlx0dS4d9++fVi+fDnmzZuHgoICBAcHY9y4cZg7dy4MDV/1E6qOwRpCyLG2EGNkvnmtjrGvKnlRN7xWCvrU+tCF8f6TJ0+4j3rSODs748mTJyqF01C+8q3XymRS5MY3TD7tjg/K6rRQ+dhQPI3ByclJzk2Iea2QZd4Q6qg73t7eMDU1xZ07dxAUFISLFy/CysoKwcH/W6DLt1yV+VPUX6ojLZpsx6rGpSmdhDrzS1v1HLqCmZkZli9fDkdHR/zf//0fZsyYAVdXV7HFAqD7+go+egGWpuo21DGHVSUv+Mxz68PU3IL7X+//j8nqutUNT53zdkUIqQdRt25GkRvfMPm0Oz4o1WEJlY9NzCNF7VPsdiTznMB9m01rBzm3uv2RqnEKlX5V41VWt4QIW2yKi4uxf/9+7N+/Hy4uLmKLo7OQ7ogfpDsi3ZEi+MzDm1KvtWGux7d+8dUhsDS1nfDpU/j4EVr/pUssX74cR48exQ8//IDNmzcLEqaBgQEqKioECUvbOHHiBKKiomT6s5YIjRv4QeMGGjdoC3PmzMGSJUtw7do1vPbaazL3Wq7ZKdHsKS8vx5QpUxAdHY2FCxfizJkzZKhFEARBEIToFBUVaWxBLx/09PRQXV0t4ybELtUs9vb2KCoqAsMwcpeQyqPWrVvzmpipO73SSB8NzZKTkwMHB/mPj5pCU+XBMm3aNJibm+Py5cuoqqri4tI1bG1t0apVK7XVlYZoySdrmVlaIfrjZdhw+ho2nInB0MnRuHz0T6x9fy7nZ93iBTAxNcO/dv6J3fEpOPAgu0knT1na2KJMhQUYjYrD1g7/vX6fk1X62nU7WWVZ9PT08LymRsatvl1YSwrllZPFBXmwsvvf+4mvjA3Bt3z4pJVvWFY2digukO+DiwvyYKnCIhQrGzuUPJE3lFSUt0LlF586L1RcjUXoNqerzJgxAyYmJvjpp580FmdiYiJskrucAAAAIABJREFUbGxo9+JG0lzGvdbW1li7di2SkpKQnJyMuXPnYvfu3Zg8eTLnR+gxGN+xNh+EGCPzzWt1lImQeaEOND3et7e3V7grYk5OjkofW/nkK996bW9vj9zcXDl3Re2db5h82l1TECof+aBqX6jonhDzWiHLvCHUUXeAV7t6b926FQDw888/y+3mzbdclcWryE0dadFkO9ZkXQe0O78I1RgxYgRqa2uRmpoqtigcuq6v4KMXaFAevroNNcxhNaG7aQqanrcLpQcRWjfDV6fCN0w+7a4pCJWPTc0jRW7a1I6E7tsU1Ym6/ZE6dFFC1vfGoGv6tdTUVLx8+RIBAQFii6JWSHdEuiPSHWmv7ghoeB7elHqtK3M9VXQIfMLiUxf49Cl8/OhKHqsDfX19dO7cGVlZWYKFWVFRodBQojmQl5enE+u8adxA4wYaN2j3uEHT2NnZwdTUVGGdJGMtolny4MED9OjRA6dPn8axY8ewatUqtGrVSmyxCIIgCIIg4OHhgUePHmmNwUqbNm2Qnp4u43bx4kWFfvX09JSGo+zea6+9hgsXLsi5X7p0Cd26deMvaAP069dP7sjjO3fuwM/PT8ZNlfQ2lZMnT8q5/fHHHxgyZIha4uODuspDWflfvXoVy5cvh6enJwwMXh3sXFlZ2eh4xOLRo0d48eIFPDw8RInf0tKyxRprRfq6oDD3lTLGytYOPV8fhX9u/gV3rvzF+Xl4Kw4TF3wER9e2aNXqVT2rqapqdJz+YRGIvyrbL6Q+uIf3hvdtdJh16dKrHySxV+Xc78fF4qNx/9tlh68sNvaOeJIjq+C/dyNGafy3L12Qc4s9fRxBPf8XLl8ZG4Jv+fBJK9+wAiN6I/bUMTn32NPHERjB/zSioF59cf3MCTn3unICwuUXnzovVFyNReg2p6uYmZlhxowZ+M9//oPnz59rJM7Bgwfj6dOn+PTTT7VmLKlLNJdxr56eHjIzMwG8+mgxceJEHD16FKdOneL8CD0G4zvW5oMQY2S+ea2OMhEyL9SBpsf7gwYNwu+//y7n/scff6h0Ii2ffOVbr4cMGYKDBw/KudcNX5Uw+bQ71l9jECof+aDqnFhRvgkxrxWyzBtCHXUHACZMmIA///wTBQUFOHHihJzxHt9yVRavov5SHWnRZDtWV11vqk5CjPwi+FNVVYWFCxfC2dlZZtd8sdF1fQUfvUBD8J2bqmMOqwndTVNQ17xdWX8nlB5ESN2MKjoVvmHyaXdA48dkQuVjU/Po9uULcm7a1I6E7tsU1Ym6/ZE6dFFC1vfGoGv6tYCAAFhaWmLnzp1ii6JWSHdEuiNl/lSBdEeyCDmHamge3pR6rStzPVV0CA3Bty7w6VP4+NGVPFYHubm5OHbsGMLDwwULs7CwUKs2iRYSHx8f3LhxQ2wxGoTGDTRuUOZPFWjcIIsuvyvu3r2LyspK+Pr6yt0jYy2i2fHLL78gJCQEpqamuHHjBoYOHSq2SARBEARBEByjR49GZmYmTpyQ/wgnBoMHD8ann36KzMxMlJeX4+TJk9i0aZNCv66urrh27RqeP3+OU6dOwd3dvcF7y5Ytw9KlS7F//34UFhbi6dOnOHLkCCZPnozPPvtMsHQsWbIEX3zxBc6cOYNnz54hPj4eM2bMwIIFCxqd3qby448/YufOnSgsLERBQQF+/vlnrFu3DsuWLVNLfHxQV3koK/+IiAgsXrwYqampqKmpQWJiIubMmSNUcjTGli1b4ObmhpCQEFHib8knawHAhiUfICPxIZ7X1KCksAB//rxRZoFEx+AQ/PL1CuRnZaD2+XPkpqfix2X/aHR84999D/s2fIv4q5dQXVmBtIf3sf7TRXg9aoYQyQEATFzwAfb88DWunTyCpyXFqHxWjrgLp7H2g3fxxtxFKssS1LMPflu7EoW5OaiqeIbbly/g5O4dSuM/tecXXDryB56WFKOsqBBn9+/CkR1bMHHBByrL2BB8y4dPWvmGNWH+Bzi0/Uec2bcTpYVPuDQe2v4jJs7/QM6/MibO/wCHtm3CuQO7UVZUiPLSElw9fggHfvxe3q9A+QU0XOeFjKsxCN3mdJl58+YhNzcXe/bs0Uh8HTp0wJYtW7B27VoMGTIEt27d0ki8zYXmMu4FgJkzZ0IikaC6uhp5eXn4+uuvZT5SCD0G4zvW5oMQY2S+ea2OMhEyL9SBpsf7S5cuxdq1a7Flyxbk5+dzZbp27VosXbqUd/h88pVvvV62bBm++eYbbN26FQUFBSgqKsLevXvx1VdfyflVpa001O7qy6eGECof+aDqnPirr77C3r17BZ/XClnmDaGOugMAFhYW6N+/P6KiojBq1ChYWlrK3OdbrnXjLSwsxK5du7B582aNpEWT7Vhddb2pOgkx8ovgx4kTJxAWFoaLFy/iwIEDMDMzE1skGXRZX8FHL9AQfOem6pjDakJ30xTUNW+3c2qDh7dv4kXtc9y58hdm93+lqxRKDyKkbkYVnYoqbaWhdldfPjWEUPnY2Dx6WlKMy0cP4tSeX+X9alE7ErpvO/Dj97h6/FC9/ZE6dFFC1vfGoGv6NUNDQ6xevRpffvllszbYIt0R6Y5Id6S9uiOg4Xl4U+q1rsz1VNEh8AmLb13goxdryI+u5LHQFBQUYNy4cWjdujXef/99wcItKipqtsZab7/9Nn7//Xf8/fffYotSLzRuoHEDjRu0e9ygSRiGwWeffYbAwECEhoYq9EAQzYLKykpm4cKFjJ6eHrNw4UKmpqZGbJEIgiAIgiAUMm7cOMbb25spLS0VWxSmoKCAmTJlCuPg4MCYm5szI0eOZNLT0xkATN3pwt69e5l27doxRkZGTIcOHZg///yT171Hjx4xkZGRjLW1NWNubs6EhoYyv//+u0zYbHyK4uXL1atXmZ49ezImJiZM27ZtmZUrVzY6vYpk4evGuqekpDAjRoxgLC0tGXNzc2bYsGHMvXv3VEp3U+RQFq6q5cHHXVn55+XlMdOmTWMcHR0ZIyMjJiAggNmzZ0+9smrbNDUuLo4xNDRk1q9fL5oMW7duZczNzUWLXyjeeustJqTfIObAg2ze17Jte5mwQUMZSxtbxsDQkHF0c2dGRr/D/HrzEedn65V4pu/o8Yx1a3vGwNCQcff2ZT74dhNXn1h/0nWsPrcDD7KZr3YfZny7hjKGxsaMvbMLE/X+pyrJXbdOK/Lzn5NXmO5DhjNmllaMsakZ06FzF2bxDz/L+eMjy7ZrCUzvEWMZK7vWjLGpGRPSfzDz4/k4hfEDYDaejWVC+g1mTM0tGGNTM6ZrnwHMuqN/NUrGhtLKt3z4pFWVsNYeOssE9+7PGJuaMcamZkxw7/7M2kNnVSrHAw+yme+OnGe69hnAGJuaMSZm5kxQz77MuiMXFMbJt0ybWucbUzYNuaviV5Vy4HOZmJoy27ZtE7uLajTR0dGMp6cnU11drbE4r127xoSHhzP6+vrMG2+8wZw5c4Z58eKFxuLXVZrLuPfMmTPMmDFjmNatWzNGRkZMu3btmEWLFjFlZWWcn8aMwepzYxh+Y+2GEGqMzDD88pqvP1XHvg3lhSrh6fp4n2EYJj4+nhk6dChjbm7OmJubM0OHDmXi4+MZVWkoX/nWa4ZhmISEBGbYsGGMubk5Y2FhwQwZMoSRSCRyfvmGyafd1ZdPfOq0EPnIJx5V58QSiYQZMmQIY2FhIei8lmGELfP6UEfdYbl48SIDgImNjVUYN99ylY7X0tKSGTFiBJOYmMjo6+trJC2aasd84xKqjxIzv5r6vm/JVFVVMXv27GH69OnDAGDGjBnDJCUlqT1eu9b2zKzPv2r2+gpV9AJ163FTdBtCz2H55IUq4Qntpq40f/Ddj4yjmztjYGjItHH3ZD7esJ27J5QeREjdDF+dCt8w+epMlOUTnzotRD42No9MzS2YkH6DmfWnrjJ6+vpa246E0gux/tcducAE9ezLmJiZK+2PmtKfNiX9jYlXUR6oMx+59rF9LwOAKSgoUOv78qOPPmL09PSY+fPnMyUlJWqNSwxId0S6I9IdNT7NmtAdMUz98/Cm1Gu+cja1fapSTsrc+eoQhGonfPoUvrozIeuCLnDy5EnG3d2dad++PXP//n3Bwn3x4gVjZmbGbN++XbAwtYna2lpm0KBBjIeHB5OWlia2OEqhcQONG2jc0Pg0a2rcoCn++c9/MoaGhsxff/2l8L4ewzAMCELHSUlJwbhx45CWlobt27dj1KhRYotEEARBEAShlOzsbISGhqJTp044fPgwTE1NxRaJEBg9PT3QVEv3SU5ORu/evREQEIDjx49DX1+cw6kPHDiAN954A8+fP0erVq1EkUEIoqOjIUnLwieblJ/4RKifSF8XHHiQLbYYBMExNbg9Nm7YgOjoaLFFaRRpaWno2LEjvv32W7z77rsai5dhGPz+++/4+uuvERMTAw8PD7z55psYPXo0unbtCj09PY3JQhB8oTEyQRAEfyQSCYYPH47U1FSxRSEItfP8+XNcvnwZf/zxB3777TeUlpZi6NCh+Oc//4kePXpoRIbW9g6InPc+hk6J1kh8YkJ6AYLQbjISH+Jf70zDpnPXxRaF0CHuxlzGsugJKCgogL29vVrj2rVrFxYuXAh9fX18/vnnmDFjBn3nJASDdEcE0ThIh6Bd3Lp1C0uXLsXhw4cRGRmJzZs3w87OTrDwk5OT0b59e8TGxiIsLEywcLWJwsJCDBw4EAUFBTh48KDik2qIFg+NGwixqa6uxnvvvYctW7bgp59+wvTp0xX6E2elGUEIyKlTpxAaGgqGYRAXF0eGWgRBEARBaD0uLi44duwYbt26hYEDByI/P19skQiCqENMTAwiIiLg4uKCffv2iWaoBQBWVlZgGAZPnz4VTQaCIAhCMR4eHpg9ezZWrFiBiooKjcWrp6eHyMhIXLt2DRKJBG+88Qa2bduGkJAQuLq6YubMmThw4AAKCgo0JhNBEARBEI1DT08P69atQ3FxMaqrq3H79m3Mnj0b8+bNE1s0glAb7AacEyZMgIODAwYMGICzZ8/io48+Qnp6Oo4cOaIxQy2CIAixiPR1wdEdW1BeVornNTVIuS/Bps8XY9jUaLFFIwilTJ48GY8fP8bUqVPx4Ycfwt3dHZ999hnS09PFFo0gCKJFQDoE7eT58+c4ePAg+vfvj65duyIzMxNnz57F/v37BTXUAl4Z5+np6cHX11fQcLWJ1q1b4+LFiwgMDETPnj2xbNkyVFdXiy0WQRAER1xcHEJCQrBz504cOHBAqaEWQMZahA7DMAxWr16N119/HUOGDMGVK1fg5eUltlgEQRAEQRC8CAoKwtWrV5Gfn4+goCAcP35cbJEIgWBPsqATLXSTFy9eYOXKlejTpw9CQkJw/vx5WFlZiSqTjY0NAKCkpERUOQjdJ9LXReYvQRDCsGTJEpSXl+P7778XJX4/Pz+sWbMG6enp+PvvvzFv3jxIJBJMmDABjo6O8PPzwzvvvINffvkFSUlJoshIEDRGJgiCUM7hw4dx6NAhuLu7w9HRETNnzsSsWbPw0UcfiS0aQQjCixcvcPfuXWzatAlRUVFwd3eHp6cn3n33XZSVlWHFihVISkqCRCLBxx9/DBcXmrOqC9ILEIR28cmm/+LGuVOY3S8E0yM6Y+OSDzB4wlSMfnuu2KIRRL3Y2Nhg7dq1SE9Px4IFC/DTTz/h/7F332FRXgnbwG+69N5GuopIUYmIBtGIYpR1LbGkaIKarBpjjIlJNO9q8pIviWU3a9aoidHNqrgmG0viiooRFCUWVLCCBUR6FaT39v2R93l2QFBU4FDu33XNNcw4DPcgMPOcOfc5jo6O8PPzw/fff4+CggLREakL4tgRUetwDKHzaGhoQFRUFJYsWQKFQoFp06ZBR0cH4eHhuHTpEsaMGdMuX/f06dNwdXUVPoehvRkYGODIkSP429/+hr/+9a8YMGAAfvrpJ9TX14uORp0AXzeQKGlpaZgzZw6GDRsGMzMzXLt2DVOmTHno56g0cA846oJKS0vx+uuv45dffsHnn3+OFStWiI5ERERE9ESKi4vx4YcfYuvWrfD398f69evh4eEhOlan8qiDax7SUFsJDw/HBx98gBs3buDPf/4zPvnkE6E7akmSkpLg5OSECxcuYOjQoaLjPLG5c+ciLiUD/7MlWHSUp/KoCU37b2V2UBJ6GiL+H/mz07zZnn3w7TffYO7cuaKjPJWPP/4YmzZtQmJiYpuvkvikCgsLcebMGZw+fRq//fYbLl68iOrqahgbG2PIkCGNTo6OjnxDoxPoqq97u2pu6hj8+Wgb/D42j9+XjsHvMz2O2tpa3L59G9HR0YiJiUFMTAyuXLmC8vJy6Ovrw8fHB76+vhg1ahS8vb3Rq1cv0ZEBAKZm5pi+eBkmzJorOsoT4zEnPQx/PtoGv4+tw+9Tx7sedRpBc1/EvXv3YGZm1uFfv6amBkePHsW//vUvHDx4ELW1tRg5ciQmTZqESZMmoW/fvh2eqbvqqq/Nu2pu6hjd5eejuzwOerjy8nIcP34cISEhOHToELKysuDq6orZs2dj9uzZsLe3b/cMPj4+GDhwILZs2dLuX6uzSE9Px6pVq7Br1y64uLjgww8/xKxZs6CpqSk6WqfWVf8uddXc1L3dunULf/nLX7B7927Y2NhgzZo1mDlzZqveX2dZi7qcO3fu4IUXXkB2djb+/e9/Y+zYsaIjERERET218PBwLF++HNevX8frr7+OTz/9FFZWVqJjEfUIcXFxWLFiBQ4fPgx/f3/8/e9/h5ubm+hYstLSUujr6+PIkSMICAgQHeeJdZeyFhG1re5S1ioqKkKfPn0QGBiI9evXi47TrIqKCly+fFmeNBsTE4ObN2+irq4O+vr6cHNzg4eHB9zd3eHm5oaBAwfC3NxcdGwiIiIi6qRSUlIQFxeH69evIzY2FnFxcbhx4waqqqqgpaWFQYMGNVogwN3dHerq6qJjN6s7lLWIiKjnEl3WUlZcXIzQ0FCEhIQgNDQU9+/fh5OTE8aOHYsxY8ZgzJgxsLCwEJqRiIioterq6nDx4kUcP34cx48fx7lz51BdXQ0vLy9MnjwZkyZNwsCBAzssT3FxMczNzfHPf/4Ts2fP7rCv21ncuHEDf/nLX/DDDz/A1NQU8+bNw/z58+Ho6Cg6GhF1QzU1NfjPf/6D7777DsePH0f//v3x4Ycf4tVXX32ssmjnHA0lasGRI0cwe/ZsODo64uLFi3BwcBAdiYiIiKhN+Pv7Izo6GsHBwfj444+xe/duvPrqq3jrrbc6dHCHqKeor6/Hr7/+is2bNyM0NBTe3t44ffo0RowYITraA/T09KCtrY179+6JjkJERC0wNDTEmjVrsGjRIsyaNQteXl6iIz1AW1sbPj4+8PHxka8rLy/H1atXcf36dVy/fh1xcXH4+eefkZ+fDwAwNTVFnz590LdvX/Tt2xf9+vWTPxY9+YeIiIiI2l96ejru3LmDxMRE3Llzp9GptLQUAGBjYwN3d3f4+/vj3XfflRcA0NDQEJyeiIiIOpqBgQFeeuklvPTSS6itrcXZs2cRHh6O48ePY/v27airq4OzszO8vb3l0+DBg7kzBhERdQoZGRm4cOECzp8/j/PnzyMmJgYlJSVQKBQYO3YstmzZgueffx7W1tZC8h09ehR1dXUYP368kK8vmqurK3bs2IHPPvsM27Ztw/fff49169bBx8cHM2bMwLRp02Brays6JhF1YTU1NThx4gT279+PX375BQUFBQgICEBISAgCAgKgqqr62PfJnbWoS2hoaMBf/vIX/PnPf8asWbOwdetWaGtri45FRERE1C7Ky8vx/fff45tvvsGtW7cwcuRIvPXWW5g2bRrfrCB6Svn5+di+fTu2bNmCu3fvYsyYMViyZAkmT57cqu2pRbGzs8PSpUvx/vvvi47yxLizFhE1p7vsrAX8Pn41btw43Lt3D9HR0V16cmpWVhZiY2Nx+/ZtJCYmIiEhAXfu3EFSUhKqq6sB/F5Qk4pbyqd+/frB0tJS8CMgIiIiotaor69HWlqaXMBqWsqqqKgAAOjq6qJv376NivwuLi5wd3eHsbGx4Efx9LizFhERdWWdaWethykpKUFkZCSioqJw4cIFXLhwAYWFhdDS0oKnp2ejAle/fv1ExyUiom6upKQE0dHROH/+vPy8lJGRAVVVVQwYMADe3t4YNmwYRo0ahQEDBoiOCwB47bXXkJaWhpMnT4qO0inU1tbiyJEj2Lt3L0JCQlBcXIxhw4Zh+vTpmD59OnfcIqJWqaqqQlhYGPbv34///Oc/KCgogJeXF6ZPn45Zs2bBzs7uqe6fZS3q9EpKSjBnzhyEhITg888/x4oVK0RHIiIiIuoQDQ0NOHHiBL755hscPHgQpqammD59OmbOnImRI0dCTU1NdESiLqG0tBSHDx/Gvn37cOjQIWhpaWHOnDlYtGgRXFxcRMdrlWeeeQbjx4/HmjVrREd5YixrEVFzulNZCwASEhIwcOBAfPrpp1i+fLnoOG2urq7uoZN5KysrAfy+K6S9vT3s7OzQu3dv2Nrayh/b2NjAzs4Ourq6gh8NERERUfdXUFCA9PR0pKamIj09HRkZGfLH6enpSE5ORlVVFYDfy/jKZSypnNWvXz9hq4Z3FJa1iIioK+sqZa2mGhoacPv2bXmC/IULF3DlyhXU1NTA2NgYgwYNwoABA+Dh4QFXV1e4u7vD1NRUdGwiIupiampqkJCQgLi4OPkUGxuL+Ph41NfXQ6FQyMWsYcOGwcvLC/r6+qJjP6CyshLW1tb4+OOPsWzZMtFxOp2qqiqEh4dj3759OHjwIO7fv49BgwZhzJgxGDt2LEaNGtUp/1+JqOM1NDTgxo0bOH78OI4fP46TJ0+ipKQEw4cPl8ueDg4Obfb11NvsnojawY0bN/DCCy+gpKQEp06dgo+Pj+hIRERERB1GRUUFY8eOxdixY5Geno7t27dj3759+Oabb2BpaYkXXngBM2fOxHPPPcfiFlETJSUlOHToEPbt24fQ0FDU1NRg9OjR2LRpE1566SXo6emJjvhYzM3Nce/ePdExiIjoEfr164dVq1YhKCgI06ZNQ9++fUVHalNqampwcHCAg4MD/P39G/1bQ0MDMjIy5OJWWloaUlJSkJycjNOnTyM1NRXl5eXy7Y2NjdG7d2/Y29s3KnHZ2NjI12tra3f0QyQiIiLqMoqKihoVsZqWslJSUhq9/jIyMpJfc/Xp0wejRo2Co6OjXMwyNzcX+GiIiIiop1FRUYGLiwtcXFwQGBgI4PeJ6JcvX0Z0dDRiY2Nx9epV/PjjjygsLAQAWFlZwc3NTT65u7vDzc0NhoaGIh8KERF1AnV1dbh79y5iY2Nx48YNXL9+HTdu3MDt27dRXV0NNTU1ODk5wcPDAzNmzJB3dbSxsREdvVUOHjyI4uJivPjii6KjdEpaWlqYOHEiJk6ciJqaGkRERODIkSMIDw/H3//+d6ipqcHb21subz377LPQ0tISHZuIOkhSUhJOnDiB48eP48SJE8jJyYGRkRFGjx6N1atXY8qUKe32fMCdtajTOnz4MGbNmgV3d3fs27ev26/YRkRERNRat2/fxr59+7B3715cvXoVZmZm8Pf3x7hx4zBu3DjY2tqKjkjU4RoaGnD16lWEh4cjLCwMkZGRqK2txZgxYzBjxgy88MILXWpFyaZmz56NsrIyHDhwQHSUJ8adtYioOd1tZy3g91Uavby8YG5ujrCwMKioqIiO1Gncv3//gQnFaWlpSEtLk3d5kHbnAgATExNYWVnBwsICCoUC5ubmsLS0hLW1NczNzWFlZSX/u4aGhsBHRkRERNQ2KioqkJubi6ysLOTm5iInJwfZ2dnIzc1FdnY2srOzce/ePWRkZKC0tFT+PH19/Ua7mdra2sLW1hY2NjZyQaurLVzTkbizFhERdWVddWetx5Geni7vhCJNwL9586b8ekihUMi7gkrn0snY2FhweiIiais1NTVITU3FnTt3kJiY2Oh0584dVFZWQkVFBY6Ojo3KvW5ubhgwYAB69eol+iE8sYkTJ6K+vh6hoaGio3Q5ubm5OHHihHxKTEyEtrY2hgwZAm9vbwwdOhTe3t5wcnISHZWI2kBZWRliYmJw8eJFXLhwAVFRUUhNTYWOjg58fX0xZswYjBkzBs8880yHLI7PnbWoU9qwYQPef/99vPTSS/j++++79IskIiIiorbWv39/rFy5EitXrkRCQgIOHDiAsLAwvP3226ioqED//v0xbtw4+Pv7w8/PDwYGBqIjE7WLtLQ0uZx1/Phx5ObmwszMDGPHjsXmzZsxZcoUmJqaio7ZJszNzZGcnCw6BhERtYKGhga2bduGESNG4KuvvsKyZctER+o0TExMYGJigoEDB7Z4G2nysVTikiYpZ2VlITk5GVlZWcjJyWm0SwQAmJmZwcLCosVil7W1NSwtLWFmZsbVEomIiKhDlZeX4969e48sYGVmZqKkpKTR5xoYGMDa2hoWFhawtLTE4MGD5dc7CoUCdnZ2sLW15fgfERERdWtSAX38+PHydQ0NDUhOTsaNGzdw8+ZNebL+qVOnkJqaitraWgC/j0cpl7eUTwqFggstERF1MmVlZbh79+4DZazExESkpKTIf9+NjY3lv+eTJ09Gv3794ObmBldXV+jq6gp+FG0rPT0dx44dw65du0RH6ZIsLCzw8ssv4+WXXwYApKSkICIiAlFRUYiIiMDXX3+N2tpamJmZwdvbWy5wDR06lLuQE3VyNTU1iIuLw4ULF+TTjRs3UFdXBysrKwwdOhTz58/HyJEjMXz4cCHvEXNnLepUqqur8eabbyI4OBhffPEFVqxYIToSERERUZdRW1uLqKgoHDp0COHh4bh8+TJUVFTQv39/DBkyBL6+vhgxYgQGDBgAVVVV0XGJHkttbS1u376NM2fO4PT4tGuSAAAgAElEQVTp04iJicGNGzegrq6OYcOGYdKkSfD394enp2e3/Pn+/PPPERwcjPj4eNFRnhh31iKi5nTHnbUkq1evRlBQECIjIzF8+HDRcbqdiooKFBQUICsrC5mZmS1+nJmZicLCwkaf26tXLxgbGz9wUigUsLa2bvbfrKysuuVrDCIiIno80msQ6aT8+qO508Nei0ivPZRfgyh/bGNjA0NDQ0GPtGfhzlpERNSV9YSdtR5XbW0tUlNTcffu3QdO8fHxckFeU1MTpqamUCgUcHJykl+bKX/s4ODAMSEiojZSXV2NvLw8ZGVlyX+XMzMz5cuZmZnIzs6GNK3d2NgYTk5OLZ56ilWrVmHbtm1ITU3lYnTtoKamBteuXZPnocTExODmzZtoaGiAsbExXF1dMWTIELkMOHjwYO5eTiRAZmYmbty4gbi4OPn80qVLqKiogK6uLgYPHowhQ4bIJ1dX106xMAN31qJOIz8/HzNmzEB0dDR+/vlnTJ48WXQkIiIioi5FXV0dvr6+8PX1BfD7rgSRkZE4d+4coqKisHfvXlRWVsLExATDhw/H8OHDMXToUAwaNAjW1taC0xP9V319PRITE3HlyhWcP38eUVFRiImJafTz+/LLL8PHxwc+Pj7Q1tYWHbndWVlZISsrS3QMIiJ6DB999BFOnjyJV199FdHR0TAyMhIdqVvR1taGtrY2FAoFhgwZ8tDblpWVyTty5eXlIT8/H/n5+Y0+Tk5ORkxMDO7fv4/8/HzU1NQ0ug9p8o50MjExgZmZGczMzOTrjIyMYGhoCCMjo0anzvBGABEREf1XbW0tCgsLUVRUhMLCQhQUFMgf5+XlNXqNkJ+fL78+yM/PR11dXaP76tWrV6PXB6amprCxscGgQYMeeN2gUChgYWGBXr16CXrkRERERD2Durr6QyfyZ2Zm4u7du0hOTkZ6ejrS09ORmpqKyMhIpKenIy8vT76ttrY2bG1tYWNjA1tbW9jZ2cHGxgYKhULe1d3CwgKampod9fCIiDqlgoICeRfpjIwMZGZmIi0tDampqfLf2uzsbPn2Wlpa8s6JdnZ2GD9+vPy31tHREX369OHxM34vuP3jH//Am2++yaJWO9HQ0JDLHZK8vDzExMTg2rVriIuLw+nTp7F161ZUVlZCVVUVTk5O8PDwgLu7O9zc3NCvXz/07duXO58TPaW6ujqkpqbizp07uH37Nq5fv47r168jLi4OxcXFAABbW1u4u7tjxIgRWLhwIQYPHgxXV1eoqakJTt88lrWoU7h+/TqmTJkCFRUVREVFwc3NTXQkIiIioi7P3Nwc06dPx/Tp0wH8vhrM5cuXERUVhaioKPzzn//EJ598It920KBBGDRoEAYOHIiBAwfC1dWVbyxQuysuLsa1a9dw7do1XL16FVevXkVsbCzKysqgpqYGNzc3PPvss5g/fz6GDx8OZ2fnHjnhuXfv3igtLUVJSQn09fVFxyEiolZQVVXFrl274OXlhVdeeQWHDh3qtIPE3Z2uri769u2Lvn37tvpziouLH5isrTxRWyp4Xbx4Ub6+rKys2fsyNDRsVOJq7mPl64yNjRtdVlfnMD4REZGyyspKuVwlnTd3au42RUVFKC0tbfZ+DQwMYGpq2qiM7eDg0Kiw3fTfdXV1O/jRExEREdHTUigUUCgU8gKYTVVUVDQqF6SkpMgfR0dHIy0tTZ4sKjEzM4OlpWWjApdU6FK+zsLCoke+z0VEXVN5eTmys7MblbByc3Obva6qqkr+PHV1dVhZWcHe3h42NjYYPXp0o8KrjY0NrKysBD6yruPHH3/E/fv3sWDBAtFRehQzMzOMHz8e48ePl6+rq6tDYmIirl+/jtjYWMTGxmLPnj24c+eOvLiPpaUl+vXrJ5e3lM+5GxfR7+rr65GWloaEhATcuXNHPo+Pj0dSUpL8fGJiYgJ3d3d4enoiMDAQ7u7ucHd373ILpPJdXhIuNDQUr7zyCtzd3fHzzz/DwsJCdCQiIiKibklDQwPe3t7w9vbGO++8AwC4f/8+rl69KpdlTp48ic2bN6OyshIaGhpwcXGBi4sLnJ2d4ezsjP79+8PZ2RnGxsaCHw11Nenp6YiPj5dPt2/fxs2bN5GcnCxvHz9w4EB4e3tj/vz5GDRoENzc3HrErlmt0bt3bwBARkYGXFxcBKchIqLWsrS0xMGDB+Hr64uVK1di7dq1oiNRKxkYGMDAwKDFFZibU1NT0+KE8aaTxAsLC5GcnNxoEnlRUVGz96urqysXuvT19aGvrw8jIyPo6elBV1cXenp6MDY2hp6ennydkZER9PX15cuGhoYwMDBgYZCIiISprq5GaWkpCgsLUVpaKp+KiopQXFyMsrIylJaWori4GEVFRfLlkpISFBYWoqSkRH7erKysfOD+VVRUHtjd0tDQEBYWFujXr1+ritKqqqoCvjNERERE1Nloa2ujf//+6N+/f4u3eVSBITExscUCg1TasrCweGAxAFNTU5ibmzfa0Z3vlRFRW2hoaEB+fv4Du0nn5eXh3r17ja7Py8tDRkbGA4udNC2m9unTh8XUdlRfX4+//vWvmD17tjxfgMRRU1OT505Ji2YDv495JSUlyWWTO3fu4M6dOzh16hRSUlLkIpeVlRX69OkDOzs72NnZwdbWFvb29rC3t4etrW2XK6AQtaS2thYZGRlITU1FSkoKUlNTkZqairS0NCQlJeHu3bvy62MjIyO50Dhz5sxGZUczMzPBj6RtsKxFQm3YsAHLli3D66+/js2bN3PnBiIiIqIOZmJiAj8/P/j5+cnX1dbWIj4+HlevXsX169cRHx+P//znP0hISJAPlszNzeU3Kfr16wdHR0d5EIErIPVMtbW18uqCKSkpSExMxO3bt5GQkID4+Hh5INfIyEgewPrTn/4EDw8PDBo0CHZ2doIfQeemUCgAsKxFRNQVeXp64ttvv8XcuXPh7OyM119/XXQkaicaGhryRJon0dDQgMLCQhQUFDRb7ioqKkJJSYk8af3evXtISkpCaWkpCgoK5EntLe3wBfw+2UhPTw/6+vowNDSUC156enpyAUz5spaWFnR0dKCvrw8tLS0YGBhAW1sbvXr1gpGRETQ1NbkaJBFRN1RUVISqqir5eaW6uhoFBQWoqqpCeXk5SkpKUFVVheLiYhQXF8vFK6lQpVzGkp6jqqurW/x6BgYG8vNP0+coc3NzuYT8sN0pDQ0NO/A7REREREQ9nY6ODpycnFq10E9BQcEDpS7plJ+fjytXrjQqUEiTupW/llTqkopcyuWuposWKC/6Q0TdT3OLhhUUFMhjyNLfluZKWQ0NDY3uS09Pr1FJVNph2szMrNkSFuf3dqx9+/bh5s2b2LNnj+go9BCampry/KmJEyc2+jepyJWQkICEhAQkJycjOTkZx44dQ2pqKvLz8+XbGhgYwM7ODvb29nKZq3fv3rCysoJCoZCLkEQiVVRUIDs7G1lZWcjJyUFGRgbS09PlQlZKSgqysrLk17OampqwtbWVd1f08vJC37595YJWdylkPQzLWiREVVUV3nzzTezatQurV6/GihUrREciIiIiov+jrq4OV1dXuLq64pVXXpGvr6+vR0pKirwr0u3btxEfH4/w8HCkp6fLB1q9evWSi1vSQIK9vT0cHBxgZWWF3r17Q0dHR9TDoyeUn5+P7OxsZGRkyIWs1NRUJCUlISUlBZmZmY1+BhwcHNC/f3+MHTsWixYtgrOzM1xcXDh49IRMTU3Rq1cvZGRkiI5CRERPIDAwEImJiViwYAFMTEwwdepU0ZGoE1JRUYGxsfFT72Irlb4ed9eS5ORkeVK+NLm+urr6oeUvia6uLrS0tBoVvAwMDKCpqdliwUtPTw+ampoPlMLU1dXlcz09PWhoaMjnREQ9XWVlJSoqKuRzqTylXKKqrq5GUVERKioqUFJSgtjYWJibm8t/05srXil/TnO7VjVlYGAALS2tRsUqXV1d6Ovrw97e/rF3fyQiIiIi6s6k8Z4BAwa06vb3799/YIcb5d1v8vPzkZaWJl8vLbbQlJqaWqMCl7SjbEvlLiMjo0av2XV1dfmeLlEbq6+vlxflksZilUtXTU9NS1mFhYUtjtdKv8fNFa+UC59S0dPMzAxaWlod/B2gx7Fu3TrMmDEDrq6uoqPQE1IucjWnrKys0c5D0ikuLg6hoaHIyspq9ByvoaEBCwsLKBQKWFlZwcrKCtbW1rC0tETv3r0b7dppYmLSUQ+TurjKykr5daXyTrGZmZmNFhvIzMxEUVFRo881NzdH7969YWtri2eeeQZTp05ttHOctbV1j99pkWUt6nA5OTl44YUXcOPGDRw6dAgTJkwQHYmIiIiIWkFVVRWOjo5wdHTE+PHjG/1bTU2NvFJGSkqKXOBJSkrCyZMnkZqa2mgFZT09PdjY2MDCwgK9e/eGpaWlPJigUCgaDRL26tWrox9qj1FSUiK/uZOTkyOvepKbm4v09HTk5OQgMzMT2dnZjQaA9PX1YWdnB0dHRwwaNAiTJ09uVMyztrYW+Ki6JxUVFVhbW7OsRUTUhQUFBSEjIwOvvvoqjh07Bh8fH9GRqJtqq9KXsuYm8jfddaWqqgqFhYVygaC4uBhVVVXya86qqqpGBTDlXVlaS1dXF5qamg+c6+joyIUvLS0tuRwmnSt/rK2t3ei2yufA7wUENTU1qKqqygUC5X8nop6tpKQEtbW1cjEWgFx6AoDi4mLU1dXJt5POS0tLUVNTI59Lpamm58rFq6qqqkbFrNaUqIDfnwekIqyampp8HKmrqwsTExOYm5vLC+ro6+tDX18fmpqaMDQ0lP9WGhoaQktLSy5USYVc6e8oERERERG1HxMTk8eeYF1RUfHIgoe0m3t6ejpiY2Mb3bal4w3p+EI6NtDV1YWxsbG8OIPyZek6qfQlLdogjb1Ii/O05ZgVUXuSjsWlY/nCwkLU1NTIu0orL4QlXS4rK2u0C7Xy5bKyMlRUVLT49ZorUpqZmaFv377NliubljGpezl06BAuXbqEbdu2iY5C7UhXV1deTLsl9+/fR3Z2tjx/R3lez927d3H27FlkZ2c32qUL+L20rbwTp1Tikk7SZVNTUxgaGsLQ0BAGBgYwMDBo74dN7aS6ulperFF67ZeXl/fATov5+fm4d++efH3TErCWllajAqCrqyv8/PxgbW0tlwOl3d644+KjsaxFHerOnTsICAhAQ0MDzp49y8Y3ERERUTehoaEhF7ma09DQgKysLPkkrcAhDSKcP38e6enpyM3NfWDlNx0dHZiamsLExKTRYIF0WRoskFZylk7Sys3deQX+8vJyebeEgoKCB3ZPKCwslA+u79+//8C5coEO+H0gSLlE5+3tLZfopINuhULBFXgE6d27N8taRERdmIqKCrZs2YK8vDwEBATg119/xfDhw0XHImoVfX19AL/v9tkelAtg0uqyyudS+aG1JYi8vLxWlR+ehDSxSJqsBEAujgH/LZQBkCdJSLuDAZAnKAG/T8BQUVGRdxOTND2OMTQ0hKqqKgA0KpE1vW8ADxQpuvsxEXVNTX8Hpd9difS7D/x3xWmJ9Lve0n0VFhaioaGh0e2k333l+5b+hjS9D+nvjPLXlcpST6K1pVJTU9MHrmuuXNq0sKq8+6A0UbLpG+RFRUW4ePEiTp8+jZiYGJw9exaXLl2ChoYGBg4ciBEjRmDIkCEYMmQI3NzcnuhxEhERERGRWNra2tDW1n7iBRUrKyvlHXuUd2x/2OWSkhJkZ2fLl6XiirSwxcNIYyHSsY90XGNkZAQ1NTUYGhrKxz3SMZGBgQHU1dXl8Rjpc9TU1OSJ5dIxUXPXNR1Toa5BGuMD/ntMr3yddBzf3HXS8bxy2aq2tlZeZKq8vFweMyguLkZtba1cyFIee2hJr1695B2jDQwM5NKioaEhbGxsGl1u+u/Kl6XCFZGytWvXYtKkSXjmmWdERyHBpBL3o+bbV1VVITc3V16wubmSTnp6Oi5fvtxiSUci7capPB9L+lj6m2VgYIBevXpBX19ffq42NjaWn7/19PSgqanJv28Pobz4oVS0Un6/rLq6GiUlJSgpKZFLWFIBuKioCAUFBY0uN/e+l3JpT5pvZ2Njg8GDBzcq7kknc3NzzglrYyxrUYc5d+4cJk+ejL59++LgwYMwNzcXHYmIiIiIOoiKigoUCgUUCsUjb6s8YNBcwSgvLw+3bt2SL0sHni2RVoKWBg/U1NTkCZbSgIE06Uma3NR0sP5hg/fNTYQCIE8MbarpRDNp0ikAFBQUAPjvALJ0H9IBurRzgXQAXldX12wmKa+02pZUbLOxsWlUdJPOTU1NYWVlJU8wpc6pO5S1Cu7l4OzRENExiKgTqaurFx2hQ6mrq2PPnj2YMWMGJkyYgGPHjsHb21t0LCLhpAlFHb0CbHM71khFD+UiR3NFD+XX8Y8qepSWliI3NxdA87vyKE8mUf4a7eFxil+SpmUyZdKxVVPKBbaHZVD2uDv2tGURra12C2paOnoaj1sQaulrP2yCUUvHlco7RTUlHbc29TgFq7bU9Getud3xlP9/pZ9ZDQ0NODk5PXAfyj9XzRUulccAmitcSp/f0liBCIaGhvD394e/v7983d27d+XyVkxMDLZs2YLq6mpYW1vLxS1fX1/4+PhwZ0HqMZJuxnLMgoiIuqTUhNuiI1A30KtXL1hZWbXZ/UnlLanAVVNTg6KiItTW1sqTj8vKyhoVZerq6lBQUCCPyRQXFyMnJ6fZog3Q8jFtazRX4FJeYKe5y02PP5t7/1g6Jm3pPppqevtHedzC2cOO71vS0nvcEmnsrKXbN/2aymNoLd2HNKag/LlPMz4mHZs/rPCnp6cHKyurZguD6urqMDAwkOcQKH++hoZGo3kHRO3h+PHjOHPmDM6cOSM6CnUhWlpasLW1ha2tbas/p7KyEvn5+fIcJOlcKgE1LQfl5ubKu3JK5SDpfZRHZdPR0YG+vj40NTWbHbdVHpeVxl2Vy9fSfSh72PsQABotutecRz1PNvccpjz2rfzejvL7SNJrFOX3gaSvVVJSgurq6kbj5y2RxqX19fUfKM85OTnB2Nj4gTKddFnadZE7L4qn0qD8qoeonezfvx+vvvoqAgICsHv37jZ505OIiIiISFlRUZG8ipu0apv0sbTSiDTwK51LEyWlg2bp4Fh5Yibw8AP0lgaKWzs5UXlwQLpeGoSQVtNWXjlbT08PRkZG0NfXlw/K9fX15UFladUa6n6WLVuGM2fO4Pz586KjPJFVq1bhiy++EB2DiDoZNTU1HDlyBM8//7zoKB2qqqoKM2bMwKlTp7B//36MGzdOdCQi6qSU38wDHiy9NC30NJ0go3y80vS+mh73tFQOaun6pvenTPmNSWXNvbkpkY7PWuNpdjpqqun34WlJbyS3hccppD2scNbSG7ItTRp72OSvljI1vV75+9D0/poeL0vHvk9yX9Q2SktLER0djaioKJw/fx7nz59HVlYW1NXV4eHhgeHDh2PYsGF49tln4ezsLDouUZsbPNgTV69eER2DiIjoiRmbmCAjPZ3zsahHUh4rkSZHK18njTc0d53ymEDTcYmmZbCmOzs3HaNpbpzkYWMdTRfveZja2lp5nOVhRarmtLRoTkuUJ8Y3p+nCPU3HI5pb9KfpuETT437lhVWkxVKk65pbIKW56x6Vm6iraGhogI+PD/T19XHs2DHRcYhaRXo/oLCwEFVVVXJZu7q6GoWFhc3uIAU0fj9Dei9DuQyl/Fzb9HkYaH4Bs9raWqiqqkJVVfWRZazWjDU3V86VntdaKpMpL+QlPQ9Lz3HKO45Jz6EGBgbQ1NSEgYGBPGbflu8zkFgsa1G727BhA5YtW4a3334bX3311WO9+CciIiIi6gp++eUXTJs2DdXV1W22sjtRU+vXr8eXX36JzMxM0VGIuqykpCT4+/ujoqICP/74I5577jnRkagHq62txZtvvomdO3diy5YteOONN0RHIiIiIpJlZmbKO29JqzlXVFTA0tISQ4cOha+vL/z9/eHp6cn3/oiISJisrCx4e3vD2toax44de+iq6URERF3VggULcO7cOVy/fl10FCJqZ8HBwXj99dcRExODQYMGiY5D1OW4ubkhICAAX375pegoRAAAjpxTu6mrq8Pbb7+N9957D6tXr8aGDRv4Zg0RERERdUtlZWXQ0NBgUYvalYODA7Kzsx9YLYiIWs/R0RGXL1/GyJEjMXbsWAQFBTW7OyJRR1BXV8e2bdvw3nvvYf78+Vi9ejW4rhYRERF1FgqFApMmTUJQUBDCwsJQVFSEs2fPYtmyZWhoaMCaNWvg5eUFCwsLTJ06FV999RViYmIarTxPRETU3qytrfHbb7/h3r17GDt2LO7fvy86EhERUZuqqKjA3r17udgXUQ9QXl6OVatWYf78+SxqET2BtLQ03LhxAwEBAaKjEMm4sxa1i/Lycrzyyiv49ddfsXPnTrz00kuiIxERERERtZvvvvsOH330EQoKCkRHoW7s0qVLGDJkCG7duoX+/fuLjkPU5W3duhVLliyBr68vdu/eDSsrK9GRqAfbuHEjli1bhilTpmD79u3Q19cXHYmIiIjooerq6nDr1i2cOXMG4eHhiIiIQF5eHvT09DB8+HCMGDECvr6+GDlyJLS0tETHJSKibi45ORl+fn4wMTFBWFgYTExMREciIiJqEzt37sSCBQuQnp4Oc3Nz0XGIqB2tWrUKmzdvRnx8PH/fiZ7Ali1b8MEHHyA/P5/jkdRpsKxFbS4/Px9TpkzBzZs3ceDAAYwcOVJ0JCIiIiKidrV+/XqsX78e6enpoqNQN1ZQUAATExMcPXoU48ePFx2HqFuIiYnBiy++iKqqKvz4448cwyChTp06hRdffBFmZmb45Zdf4OzsLDoSERER0WO5e/cuwsPDcfr0aURGRiIlJQU6Ojrw9PSEr68v/P39MWLECGhra4uOSkRE3RALW0RE1B2NHj0a5ubm2Lt3r+goRNSO0tLS4OLigi+++ALvvvuu6DhEXdKUKVOgoqKCAwcOiI5CJFMVHYC6l8TERPj4+CAzMxNnz57lJCciIiIi6hHKysqgq6srOgZ1c8bGxjA0NERycrLoKETdxpAhQ3D58mX4+PhgzJgxCAoKQn19vehY1EM999xzuHTpEgwMDODp6YkNGzaIjkRERET0WJycnLBgwQIEBwcjOTkZ8fHx+Prrr9GnTx/89NNPGDduHIyNjTFy5EisWrUKx48fR2VlpejYRETUTTg4OCAiIgL379/HuHHjcP/+fdGRiIiInkpSUhIiIyMxb9480VGIqJ0tW7YMdnZ2WLx4segoRF1SdXU1IiIiEBAQIDoKUSMsa1GbiYqKwrPPPgsjIyNERUWhf//+oiMREREREXUIlrWoozg4OLCsRdTGDAwM8NNPP+HLL7/EmjVr8PzzzyMnJ0d0LOqhevfujcjISHz44YdYtmwZpk+fjvz8fNGxiIiIiJ5Iv3798MYbb2Dnzp1ISkpCSkoKtm3bBhcXF+zZswf+/v4wMTHBuHHjsG7dOsTExHDxBCIieiosbBERUXfy/fffQ6FQYPz48aKjEFE7OnjwIPbt24f169dDQ0NDdByiLikyMhIlJSWYMGGC6ChEjbCsRW3i4MGDGDNmDHx8fBAREQELCwvRkYiIiIiIOgzLWtRRHB0dkZSUJDoGUbejoqKCpUuX4syZM7h79y68vLxw+vRp0bGoh9LQ0EBQUBCOHTuG8+fPY/DgwThy5IjoWERERERPzc7ODq+99hq2bduG+Ph4ZGVlYefOnXBycsKmTZvg5eUFIyOjRuUtIiKix8XCFhERdQf19fUIDg7GnDlzoKamJjoOEbWTvLw8LFy4EPPmzeOOQERPITQ0FK6urrC3txcdhagRlrXoqQUHB2P69OkIDAzE/v37oaOjIzoSEREREVGHYlmLOgp31iJqX15eXrh8+TKGDRsGPz8/BAUFcWV/Embs2LG4du0aRo4ciYkTJ2L27Nm4d++e6FhEREREbcbKygozZ87Ed999h9TUVFy7dg2ffvopNDU18fnnn8PLywuOjo548803ceDAAZSUlIiOTEREXQQLW0RE1NX9+uuvSEtLw2uvvSY6ChG1o0WLFkFdXR1/+9vfREch6tJCQ0Pxhz/8QXQMogewrEVPZfPmzZg3bx7ef/99fPvtt1zFgYiIiIh6JJa1qKOwrEXU/gwNDbF37158+eWXWLNmDaZMmYL8/HzRsaiHMjExwQ8//IBDhw7ht99+w4ABAxAcHIyGhgbR0YiIiIjalIqKCjw8PPDee+/h8OHDuH//PiIjI/Haa6/h0qVLmD59OkxNTeHn54e1a9fiypUrfE1EREQPxcIWERF1Zdu3b8eoUaPg4uIiOgoRtZOdO3fi559/RnBwMIyNjUXHIeqy0tLScPPmTe5OR50Sy1r0xNatW4clS5ZgzZo1WLt2LVRUVERHIiIiIiISgmUt6ihOTk7Izc1FaWmp6ChE3ZqKigqWLl2K06dPIy4uDp6enjhz5ozoWNSDTZw4EXFxcXjllVcwb948+Pr6IiYmRnQsIiIionajoaGBkSNH4v/9v/+HCxcuIDs7Gzt27ICtrS2++uoreHp6QqFQYN68efjpp584AZ+IiJrFwhYREXVF+fn5OHjwIF5//XXRUYionWRkZOC9997D0qVL4efnJzoOUZd26NAh6OrqYsSIEaKjED2AZS16bA0NDXj//fexcuVKfPfdd1i+fLnoSEREREREQrGsRR2lX79+aGhoQEJCgugoRD3C0KFDcfHiRXh4eGD06NEICgpCfX296FjUQ+nr62Pjxo2Ijo6Gmpoahg4disDAQOTk5IiORkRERNTuzM3NMWvWLAQHByMnJwexsbF49913kZ6ejsDAQFhYWMDLywtBQUEstRMRUSMsbBERUVezY8cOaGlpYUu/Ga8AACAASURBVMaMGaKjEFE7qK+vR2BgIKysrPDFF1+IjkPU5YWGhsLf3x9aWlqioxA9gGUteix1dXV44403sGnTJvz444+YP3++6EhERERERMKxrEUdxcnJCerq6oiPjxcdhajHMDU1xaFDh/Dll19i9erVmDp1Kif1kFCenp44deoUdu/ejYiICDg7O+Ozzz7jrotERETUo7i5uWHFihUICwtDbm4ufvzxR7i7u+Obb76Bl5cX+vTpg3feeQfHjh1DVVWV6LhERCQYC1tERNRV1NfXY/PmzZg3bx7ffybqplatWoWzZ89i165d0NbWFh2HqEurrq5GREQEAgICREchahbLWtRqVVVVePHFF7Fnzx4cPHgQM2fOFB2JiIiIiKhTYFmLOoqmpibs7e1Z1iLqYCoqKli6dClOnz6N69evY/DgwTh37pzoWNSDqaio4JVXXsGtW7fw4Ycf4ssvv0Tfvn2xadMmVFdXi45HRERE1KEMDQ0xc+ZM7NixA9nZ2Th79ixefvllREZGYvz48TAzM8P06dPxz3/+E7m5uaLjEhGRICxsERFRVxASEoLk5GQsWrRIdBQiage//PIL1q5di02bNmHIkCGi4xB1eZGRkSgtLcWECRNERyFqFsta1CqlpaX44x//iIiICBw7dgzjx48XHYmIiIiIqNNgWYs6krOzMxISEkTHIOqRvL29cfHiRbi7u2PUqFFYt24dGhoaRMeiHkxXVxerVq1CYmIiZs2ahQ8++AADBgzA9u3bUVNTIzoeERERUYdTVVXFs88+iy+++AJXrlxBdnY2Nm/eDDU1NSxduhTW1tbw8vJCUFAQbt++LTouERF1MBa2iIios9u4cSMCAgLQv39/0VGIqI3dvHkTc+fOxVtvvYU33nhDdByibiE0NBRubm6wt7cXHYWoWSxr0SPdv38f/v7+iI2NRUREBHx8fERHIiIiIiLqVFjWoo7k7OzMnbWIBDIzM8Phw4fx5Zdf4uOPP8bUqVNRUFAgOhb1cGZmZli/fj3i4+Ph5+eHhQsXwtnZGVu3buVOW0RERNSjWVpaIjAwEHv27EFOTg727t0LV1dXfP3113BxcYGnpyc+/fRTXLt2TXRUIiLqICxsERFRZ3Xz5k2cOHECS5YsER2FiNpYQUEBJk+eDHd3d6xfv150HKJu48iRIwgICBAdg6hFLGvRQ6WlpWHEiBHIy8vDmTNnMGjQINGRiIiIiIg6HZa1qCP169ePZS0iwVRUVLB06VKEh4cjOjoagwcPRlRUlOhYRLCzs8M//vEPxMfHY8KECXjnnXfQt29fbNq0CWVlZaLjEREREQmlo6ODadOmITg4GDk5OQgLC4OPjw+2bduGQYMGoU+fPvjggw9w+vRp1NfXi45LRETtiIUtIiLqjDZu3Ig+ffrg+eefFx2FiNpQfX09Xn31VZSVlWHv3r3Q1NQUHYmoW0hOTsatW7dY1qJOjWUtalFqaipGjx4NDQ0N/Pbbb3BychIdiYiIiIio06mvr0dlZSXLWtRhnJ2dUVBQgLy8PNFRiHq8UaNG4cqVK3B1dcWoUaOwbt06NDQ0iI5FBAcHB3z77be4c+cOpk6dihUrVsDe3h4ff/wxcnJyRMcjIiIiEk5DQwP+/v7YvHkz0tPTERsbi9deew2hoaEYOXKkvCNXSEgIamtrRcclIqJ2wMIWERF1JoWFhdi1axeWLFkCVVVO6yXqTt59912cOHECBw4cgEKhEB2HqNsIDQ2Fnp4eRowYIToKUYv4qo6alZqaCj8/P+jr6+PEiROwtrYWHYmIiIiIqFMqLy9HQ0MDy1rUYZydnQEAt2/fFpyEiADA3NwcR44cwWeffYaVK1di2rRpKCgoEB2LCABgY2ODr7/+GikpKXjnnXewdetWODg4YMGCBYiNjRUdj4iIiKjTcHNzQ1BQEOLi4hAXF4e3334bly5dwuTJk2Fvb4+lS5dyxy0iom6IhS0iIuostm/fDhUVFcyZM0d0FCJqQ5999hk2b96M4OBgeHt7i45D1K2EhobC398fWlpaoqMQtYhlLXqAVNQyMDBAeHg4zMzMREciIiIiIuq0ysrKAIBlLeowtra20NPTw40bN0RHIaL/o6KighUrVuD48eM4f/48PD09cf78edGxiGRmZmb45JNPkJKSgg0bNiAyMhIeHh4YOXIkdu/ejaqqKtERiYiIiDoNV1dX/O///i9iY2ORmJiI5cuX48yZMw/suFVXVyc6KhERtQEWtoiISLSGhgZs2bIFc+bMgaGhoeg4RNRGtm7dik8++QRfffUVZs6cKToOUbdSVVWFiIgIBAQEiI5C9FAsa1EjKSkpGD16NItaREREREStJJW19PT0BCehnkJVVRWurq7cEYWoE3ruuedw9epV9O/fH8899xw2bNggOhJRI7169cKCBQtw69Yt/Pbbb7C2tsa8efNgZWWFhQsXIi4uTnREIiIiok7FyckJS5cuRXR0NGJjY7F48WLExMRg8uTJcHBwwIcffogrV66IjklERE+JhS0iIhLp8OHDSEhIwOLFi0VHIaI2cvDgQSxevBiffvop3nnnHdFxiLqdyMhIlJaWYvz48aKjED0Uy1okS0lJgZ+fH4yMjBAeHg5TU1PRkYiIiIiIOj3urEUieHh44Pr166JjEFEzzM3NcfToUXz66ad4//33MW3aNBQWFoqORfQAX19f7NmzB6mpqfjoo48QFhYGd3d3eHl5ITg4GDU1NaIjEhEREXUqbm5uCAoKQlxcHGJjYzF37lz8/PPP8PT0hJubG7744gskJSWJjklERE+IhS0iIhJl48aNeP755+Hi4iI6ChG1gZMnT+Kll17Cn/70J3zyySei4xB1S6GhoXB3d4e9vb3oKEQPxbIWAQCSk5MxevRoGBkZISwsjEUtIiIiIqJWYlmLRGBZi6hzU1FRwYoVKxAWFoaoqCh4e3tztX3qtKysrLBixQrcuXMHhw4dgrW1NV5//XXY2dlh1apVnHBMRERE1Aw3Nzd89tlnSExMRGxsLCZNmoRNmzbByckJXl5e2LBhA3JyckTHJCKix8TCFhERdbSEhASEh4djyZIloqMQURs4d+4cpkyZgkmTJmHz5s2i4xB1W6GhoQgICBAdg+iRWNYiJCQkwNfXFyYmJtxRi4iIiIjoMbGsRSJ4eHggLy8P2dnZoqMQ0UP4+fnhypUrcHBwwLPPPosNGzaIjkTUIlVVVUycOBEhISFITU3Fu+++i127dnHCMREREdEjuLm5Ye3atUhLS8ORI0fg6uqKVatWwcbGBhMnTsSPP/6IiooK0TGJiKiVWNgiIqKO9NVXX8HR0ZETzom6gd9++w3jx4/Hc889h127dkFVlVP0idpDUlISbt26xedO6hL4TNDDxcfHw8/PD1ZWVggLC4OJiYnoSEREREREXQrLWiTCwIEDAYC7axF1ARYWFggNDcWKFSuwbNkyTJ8+HUVFRaJjET2UQqFotNtW//79sXLlStja2uKPf/wjfvjhB/k1EBERERH9Tl1dHQEBAQgODkZOTo48MSswMBAKhQJvvvkmzp07JzomERG1AgtbRETUEXJzc7Fjxw68//77LHUQdXGRkZH4wx/+gNGjR2Pv3r3Q0tISHYmo2woNDYWenh58fHxERyF6JL7C68FY1CIiIiIienplZWVQU1PjYBt1KDMzM1hYWLCsRdRFqKmpISgoCGFhYTh79iy8vb1x9epV0bGIHklDQwMTJ07E7t27ce/ePezfvx86OjqYO3cuzM3N8eKLLyIkJAQ1NTWioxIRERF1Kjo6Onj55ZcREhKCnJwcrFu3DhcuXICPjw9cXFwQFBSE5ORk0TGJiOghWNgiIqL2tmHDBujr62Pu3LmioxDRU/j1118xYcIETJw4Efv37+fcEaJ2FhoaCn9/f/6uUZfAslYPFR8fj9GjR8PBwQEnTpyAsbGx6EhERERERF1SWVkZd9UiITw8PBAbGys6BhE9hjFjxuDKlSuws7PD8OHDsWHDBtGRiFpNW1sbkyZNwp49e5CRkYG//vWvyMjIwJQpU9C7d28sWbIEp0+fRn19veioRERERJ2KiYkJFixYgEuXLiE2NhZTp07FN998gz59+sDX1xdbt27lrqVERJ0UC1tERNReSkpK8M033+Ddd9+Ftra26DhE9ISOHDmCqVOn4oUXXsC//vUvaGhoiI5E1K1VVVXh5MmTCAgIEB2FqFVY1uqBUlNTMW7cONjb2+Po0aMwMDAQHYmIiIiIqMtiWYtE8fDw4M5aRF2QpaUljh49ihUrVmDZsmV47bXXUFpaKjoW0WMxNzfH4sWLcebMGaSkpGDlypU4c+YMRo4cCQsLCwQGBmLv3r2cdExERETUhJubG9auXYu0tDTs2bMHxsbGWLx4MWxsbPDOO+/wOJ+IqBNiYYuIiNrDt99+i7q6OixatEh0FCJ6Qrt27cILL7yA1157Dbt27YK6urroSETd3qlTp1BaWooJEyaIjkLUKixr9TD37t3D+PHjYWhoiMOHD0NfX190JCIiIiKiLo1lLRLFw8MDcXFxqKurEx2FiB6TmpoagoKCcOzYMYSFhcHLywvXrl0THYvoidja2mLp0qW4dOkSEhMT8fHHH+Pu3bt46aWXYGFhgUmTJiE4OBiFhYWioxIRERF1GlpaWpg+fTpCQkKQlpaG//mf/0FoaCgGDhwIHx8f7NixA+Xl5aJjEhHR/2Fhi4iI2lJVVRU2bNiARYsWwcjISHQcInoCn3/+OebMmYP33nsP3333HVRVOR2fqCOEhobC3d0ddnZ2oqMQtQqfHXqQoqIiTJgwAbW1tfj1119hYmIiOhIRERERUZfHshaJ4uHhgYqKCty9e1d0FCJ6QmPHjkV0dDTMzc0xbNgwbNiwQXQkoqfi5OSEpUuX4vTp08jJycG3334LAJg/fz7MzMzg6+uLDRs2ID09XXBSIiIios7DysoKy5cvR0JCAqKjo+Hh4YG33noL1tbWWLhwIa5cuSI6IhERgYUtIiJqOzt37kR+fj6WLl0qOgoRPSZpR7ygoCBs3LgRa9euhYqKiuhYRD1GaGgoAgICRMcgajWWtXqI8vJyTJo0Cbm5uQgLC4O1tbXoSERERERE3QLLWiSKm5sbVFVVcf36ddFRiOgp2NjYICIiAitWrMCyZcsQGBiIsrIy0bGInpq5uTkCAwMREhKCnJwcBAcHQ6FQYNWqVbCzs4O3tzc+++wzXLhwAfX19aLjEhEREXUKQ4YMwXfffYeUlBSsWrUKERER8PT0xLPPPovt27dzty0iIsFY2CIioqdVU1ODtWvXYs6cOVAoFKLjENFjKCsrw5QpU7Br1y788ssvWLx4sehIRD1KUlISbt++zbIWdSksa/UA1dXVmD59Om7duoVjx47BwcFBdCQiIiIiom6DZS0SRUdHB05OTixrEXUD6urqCAoKwsGDB3HkyBF4eXnxd5u6FSMjI8yaNQt79uzBvXv3EBISgsGDB+O7777DsGHDYGFhgVdeeQU7duxAZmam6LhEREREwpmbm+PDDz9EfHw8oqOjMXDgQCxevBgKhQILFy7ErVu3REckIuqxWNgiIqKnsXPnTqSnp+Ojjz4SHYWIHkNmZiZGjRqF6OhoREREYNKkSaIjEfU4R44cgb6+PkaMGCE6ClGrsazVzdXV1eHVV1/FuXPncPToUQwYMEB0JCIiIiKiboVlLRLJ3d2dhQ6ibmTixIm4cuUKTE1NMWzYMPzjH/8QHYmozfXq1QsTJ07E1q1bkZ6ejsTERKxevRqlpaVYtGgRevfujT59+mDhwoUICQlBZWWl6MhEREREQinvtrV8+XKEhobCzc0NkyZNwrFjx9DQ0CA6IhFRj8PCFhERPYmamhqsWbMG8+bNg6Ojo+g4RNRKZ86cgZeXF8rKynD27FkMHTpUdCSiHik0NBT+/v7Q1NQUHYWo1VjW6sYaGhqwcOFCHD58GCEhIXjmmWdERyIiIiIi6nZY1iKRPDw8EBsbi6KiIpw4cQJr167FtGnTsGPHDtHRiOgJ2djY4OTJk1i+fDkWLlyIwMBAlJWViY5F1G6cnJywYMEChISEID8/H6GhoZg8eTIiIyMxefJkmJmZYeLEidi4cSNu374tOi4RERGRMObm5vjzn/+M5ORkHDhwAJWVlZgwYQKcnZ2xbt06FBQUiI5IRNSjsLBFRESPa9euXUhLS+OuWkRdyNatWzFmzBh4enoiKioKTk5OoiMR9Qhff/01du/ejdzcXABAVVUVTp06hYCAAMHJiB6PSgOX2uq2li1bhs2bN+PAgQP840RERERE1AYOHTqEadOmQUtLCzo6OtDS0kJpaSm0tbXh7OwMc3NzaGlpwdjYGJ999hkMDQ1FR6ZuqLKyEleuXMHFixcREhKC8+fPo6SkBA0NDdDU1ERNTQ0WL16MjRs3io5KRE8pJCQEc+fOhaWlJfbs2QN3d3fRkYg6VHZ2No4dO4ZDhw4hPDwcBQUFsLS0xKhRozBixAj4+vrimWeegYqKiuioRERERELExsZi8+bN2LVrF1RVVREYGIi3334bLi4uoqMREfUYycnJ8PPzg4mJCcLCwmBiYvLAbTIzM6FQKASkIyKizqKurg4DBgzAc889h23btomOQ0SPUFVVhbfffhvff/89li9fjtWrV0NVlfujEHUUbW1tVFZWQkVFBW5ubnB3d8e///1vJCYmsjRJXQrLWt3UypUrsW7dOvzwww948cUXRcchIiIiIuoWLl++/Mgda6XJwklJSbC3t++IWNSDzJ8/H9u3b0ddXR3U1dUBALW1tY1uo6mpibX/n737Dovi2v8H/l56XYq0pYg0BWw0RQFrLIi9xVhDEqNfk6vGJJrE5KJRk5iiebyJeo1JNHqtuSbWxF6xA6KyIBakd1iWXnaZ3x/+Zu4uLLDgwlA+r+eZZ3dnZ3c/M7s7c+bM+ZyzcSNWrFjBR4iEEA1LS0vDa6+9hgcPHuDf//435s6dy3dIhPBCJpPhzp07uHz5Mq5cuYLr16+jrKwMIpEIw4cPx7BhwzBs2DBqmEwIIYSQLqm4uBgHDx7Eli1bkJCQgFdeeQXLli3DhAkTKLGdEELaQGMJW+vXr8eaNWtw9epVhISE8BglIYQQPu3atQuLFy/Go0ePqJE5Ie1cRkYGZsyYAbFYjN27d2PatGl8h0RIl2NjY4O8vDzusa6uLmpqamBoaIiRI0ciLCwMY8eOhZubG49REtI0SvPthL7//nt89dVX+OWXXyhRixBCCCGEEA3y9fWFSCRqdBktLS2MGDGCErVIq7C3t0dtbS2AF43W6yZqAUB1dTVcXFzaOjRCSCtxcnLClStX8O6772L+/PlYsGABysvL6y2Xm5uLgQMH4tKlSzxESUjr09HRQVBQEFavXo0zZ85AKpUiKioKH330EWQyGT7++GN4eXnB1tYWr776KrZs2YLo6GhQX2WEEEII6QqEQiEWLVqEuLg4nD17FgYGBpg0aRL8/PywZ88e1NTU8B0iIYR0aj169MClS5dQWFiI0aNHo7CwEMCLRK2IiAgIBAKsXbuW3yAJIYTwprq6Ghs2bMCCBQsoUYsQnj18+BBfffVVg8+fPn0afn5+KCoqwp07dyhRixCemJubKz1m67YqKipw+vRpLF++HB4eHoiMjOQjPELURiNrdTJ//PEHZs6ciW+++QYffPAB3+EQQgghhBDS6bzzzjv4+eefG2zkIhAIcPjwYcyYMaONIyNdQUVFBXr27InMzEwuaUuV+/fvo1+/fm0YGSGkLRw/fhzh4eEQiUQ4fPgwevfuDQCora3F6NGjcfHiRdjb2yMhIQFCoZDnaAlpWzKZDFFRUbhy5QquXLmCyMhIlJSUwNbWFsHBwQgKCsKgQYPg7+8PAwMDvsMlhBBCCGl19+7dw/fff48DBw7AysoKixcvxvLly2FhYcF3aIQQ0mkpjrA1ceJEfP7550rP37lzBwMGDOApOkIIIXz54YcfsGrVKiQmJqJ79+58h0NIlyWRSNC/f3+kpaVh3759mDNnDvdcTU0NVq9ejU2bNmH27NnYvn07XWsjhEeDBg3C7du3G3xeR0cHrq6uuH//Pl33I+0aJWt1IlFRURg+fDjmzJmDn376ie9wCCGEEEII6ZT+/vtvhIWFNfi8paUlsrOzoaur24ZRka7k2LFjmDJlSqPLFBcXw9TUtI0iIoS0pdTUVMyaNQtisRg7duzA7NmzsX79eqxduxa1tbXQ0dFBeHg4du7cyXeohPBKJpMhOjoaV69exfXr13Hr1i3k5ORAT08Pfn5+GDx4MAYPHoygoCA4ODjwHS4hhBBCSKtJSUnBli1b8PPPP0MgEGDhwoVYtmwZjQpPCCGt5OnTpxg6dCiysrKU5uvq6mLcuHE4duwYT5ERQgjhQ2lpKdzd3TF37lxs2rSJ73AI6bJqa2sxYcIEnD9/HjKZDEKhEE+ePIG1tTVSUlIwZ84c3Lt3D1999RWWL1/Od7iEdHkTJkzAqVOnGnxeW1sbt27dQkBAQBtGRUjzUbJWJ/H8+XMMHjwYfn5+OH78OHR0dPgOiRBCCCGEkE6pqqoKFhYWqKioqPecrq4uPvjgA3z11Vc8REa6krCwMJw/f17lCG8WFhYoLCzkISpCSFupqqrCypUr8cMPP2DKlCk4fvy40mh7AoEAf/31F0JDQ3mMkpD2JzMzE9evX0dkZCSio6Nx9+5dVFdXQyQSwd/fHyEhIQgODkZAQAD1wkcIIYSQTqekpAS//vorNm/ejPT0dEyfPh2ff/45vLy8+A6NEEI6la+//hoff/yxyucEAgEePHiAPn36tHFUhBBC+LJu3Tp89913ePr0KWxsbPgOh5Aua8OGDVizZg13PU1XVxfTpk3DzJkzsXDhQjg4OODgwYNUTiOknXj99dexb98+yOXyes9pa2tjw4YNDZ53EdKeULJWJyCVShESEgJdXV1cvXoVJiYmfIdECCGEEEJIpzZ16lScPHkSMplMab5AIEBiYiI8PDx4iox0Fc+ePYOXl5fKZC0/Pz9ER0fzEBUhpK39+uuvWLZsGSorK5UqqrW0tGBlZYXExESYm5vzGCEh7VtpaSnu3r3Ljbx18+ZNFBYWwtDQEP7+/hgwYAD8/f0REBCAnj17QiAQ8B0yIYQQQshLq6mpwf79+7Fx40Y8fvwY06ZNw+rVq+Hr68t3aIQQ0uE1lqgFvGgUPGPGDOzfv78NoyKEEMKX/Px8uLm5YeXKlfjss8/4DoeQLuvixYsYPXq0UseHLFtbW8ycORPffvstdeJGSDvy3nvvYfv27aiurlaar6urCz8/P1y/fh3a2to8RUeI+rT4DoC8nJqaGkyfPh0SiQTHjx+nRC1CCCGEEELawOTJk+tV5Glra2PYsGGUqEXahJubG1avXl1vVGUtLS306tWLp6gIIW2ptrYW+/btQ3V1db0exWprayGRSPDhhx/yFB0hHYOJiQlGjBiBzz77DCdPnkR+fj4SEhKwdetWeHt748qVK3jjjTfg6ekJc3NzjBgxAitXrsShQ4fw7NkzvsMnhBBCCGkRXV1dvP766xCLxTh69ChSUlLg5+eHkJAQXLhwge/wCCGkw/ruu++a7Nm9pqYGhw4dwtOnT9soKkIIIXz64osvYGBggOXLl/MdCiFdVlpaGmbMmKHyOYFAALlcjvXr11OiFiHtjIWFhcpOFLW1tfGf//yHErVIh0HJWh0YwzBYuHAh7ty5g1OnTsHR0ZHvkAghhBBCCOkSxo8fX29ebW0tlixZwkM0pKv65JNP4OjoCC2t/53a6+rqws3NjceoCCFtZd26dbh8+bLKEfaAF41/fv31V5w+fbqNIyOk4xIIBPD09MQbb7yBHTt2IDo6GmVlZYiLi8MPP/yAfv364ebNm3j99dfh7u4OMzMzhISEYPny5dizZw/EYjEYhuF7NQghhBBC1KKlpYWJEyfizp07uHbtGgwMDDBq1CiEhITgxIkTVK4hhJBmKi8vh7a2NnR1dRtdTltbGxs3bmyjqAghhPAlJSUF27dvxz//+U+YmpryHQ4hXVJNTQ1mzpyJ0tJSlaNqMQwDqVTaZMI9IaTtWVhY1KubEggE2Lp1K9zd3XmKipDmEzBUy9phRUREYOPGjTh58iTGjBnDdziEEEIIIYR0KQMHDkRUVBRXOWBubo7s7Gzo6+vzHBnpSk6fPo1x48Zxj7W1tfHTTz/hzTff5DEqQkhru3TpEl555ZUmG09qaWnBxsYGiYmJEAqFbRQdIZ1feXk5YmNjER0djaioKERFRSExMRFyuRxWVlbw9fVF//79ucnT07PJxnqEEEIIIe3BlStX8OWXX+Ls2bMYMGAAPv/8c6V6B0IIIY1LSUnBpk2bsGPHDjAM02AnO9ra2nj27BmcnZ3bOEJCCCFtZfbs2YiKioJYLIaenh7f4RDSJb377rvYsWMH5HJ5o8sJBAKcO3cOr7zyShtFRghpyt69exEeHs4lWurq6mLs2LE4ceIEz5ER0jw0slYHdeDAAWzYsAFbtmyhRC1CCCGEEEJ4MG3aNOjo6AB4USmwePFiStQibS40NBTjx4/nGoDL5XK4uLjwHBUhpLXFxMQAeNGwR1tbu8HlamtrUVBQgBUrVrRVaIR0CUZGRggKCsLSpUvx22+/QSwWo6ioCFevXsXq1ashEolw/vx5vPXWW+jXrx9MTU3h7++PN998E1u2bMHly5chkUj4Xg1CCCGEkHqGDRuGM2fO4O7du7C1tUVYWBiCgoJw/vx5vkMjhJAOwdnZGf/617+QlpaG1atXw9jYWGXnHVpaWti0aRMPERJCCGkLN2/exKFDh7Bp0yZK1CKEJ/v378e2bduaTNRiLV68uJUjIoQ0h4WFBZeoJRAIYGJigp9//pnnqAhpPhpZqwO6cuUKxo4diw8//BAbNmzgOxxCu2d3vgAAIABJREFUCCGEEEK6JLFYjD59+gB4UTGQmJgIDw8PnqMiXdHz58/h6emJ6upqAEBycjL1yEpIF1BQUIBTp07h4MGDOH/+PGQyGbS0tFRedBIIBDh16hT1iE9IG6upqUF8fDzu37/PTbGxsSgoKADwohEfO/pWv3794OPjAxcXl0aTMAkhhBBC2tL9+/fxxRdf4Pfff0dQUBDWr1+PkSNH8h0WIYR0GAUFBfjhhx+wefNmVFRUQCaTcc/p6ekhOTkZIpGIxwgJIYRoWm1tLQYPHgwTExNcuHCB73AI6ZLEYjECAgJQVVUFVU3kBQIBdHR0UFNTAx0dHfj6+mLGjBlYtWoVD9ESQlS5fv06QkJCALz4zx47dgwTJ07kOSpCmo+StTqYxMREDBo0COPGjcO+ffsgEAj4DokQQgghhJAuq3v37khLS8PQoUNx5coVvsMhXdi6deuwZs0aaGtro6qqihp5E9LFlJeX48KFCzh8+DD++OMPVFRUcBeZgBe9NXfr1g2JiYmwsLDgOVpCiEQigVgsRnR0NDclJiZCLpdDT08P7u7u6N27N7y9vblbT09POr4TQgghhDc3b97El19+iZMnTyI4OBgbNmzA8OHD+Q6LEEI6DKlUiq1bt+K7775DSUkJZDIZBAIBVq5cia+//prv8AghhGjQ7t27sXDhQsTExKBfv358h0NIl1NaWgpfX18kJydzifICgQC6urqorq6Gvr4+fHx8MHz4cIwaNQrBwcEwNDTkOWpCSF3x8fHo3bs3BAIB3nzzTRpVi3RYlKzVgUilUgQGBsLCwgKXL1+Gvr4+3yERQgghhBDS6RQVFaGsrAylpaUoLS1FTU0NSktL6y3DMAx+++03nDp1Ch988AFCQ0OVlmEbw1tYWMDY2BgmJiYwNjZus/XoKmpqanDq1CkuIaGrqqmpwXvvvQeGYbBt2za+w+lwtLW1ERoaCiMjI75DIeSlVVRU4MyZM/jjjz9w7NgxFBcXQ0dHBzKZDOHh4di8eTO3bFlZGTcqX21tLaRSab33Y4956mCPm+oyMjJSu35LT0+v3nFUS0sLZmZmKt+v7nOEtHfl5eUQi8WIi4tDfHw84uLikJCQgJSUFAAvft9eXl7o06cPl8TVu3dvODs7U4dehLQDVVVVKC8vV5pXUVGByspKpXmNHSsrKytRUVHR4hiac8xWRUdHB6ampi1+vYmJCXR1dVU+Z2hoCAMDA6V5xsbG0NPTU5pnamoKHR2dFsdACGl9ly5dQkREBCIjIxEWFob169fDz8+P77AIIaRVqbpGALxow1NbW6s0T1W5sO5r/vvf/+LAgQMoKiqCvr4+Dh48CBMTk2bF9LJlP9bLlgFZQqGw0Q5GVJXzVNX1AICZmRm0tLReOiZCCOFDaWkpevXqhUmTJmH79u18h8O7O3fucPWbhLSVTZs24fbt2xAIBGAYBvr6+ujVqxf69OkDLy8vuLu7d/iO0SwtLfHKK6/wHQbpoth6b4ZhUFRUBED5mjPwotPChsjlchQXFzf6GSYmJigpKcGsWbNgY2ODn3/+WSmpUvGcQfGchj3v0NXVbfY5FiGthZK1Ooja2lpMnjwZUVFRiIqKgoODA98hEUIIIYQQ0u6VlZUhOTkZ6enpyM3NRX5+PvLy8pCTk4P8/HzucUlJCZec1drY5C2hUAgrKytYW1vD1taWu29lZQV7e3s4OjrC0dGxXuM1ouz06dMYN24c32GQTmDv3r2YN28e32GQToxNhiotLUVFRQVKSkq4npTZCmu2oU1xcTHkcjnXoJut4GYrv9nG3NXV1SgrK4NMJkNJSQkAKN0HwH1GV6eYyCUQCGBubs49xyZYsxX7bAMjttE525icbWhuYGAAQ0NDrlERexHAwMAARkZGMDc3h5GREQwNDSlhjLy04uJiJCQk4OHDh0hISOCSudLT0wG8uGDl5eWF3r17o1evXujVqxc8PT3h5uZG5UjSYdU9Lta9VUxqKi8vR1VVFQDlRCj2WAooN6Jl31sxSVnx2MkeW1mqkpkbaqxLWoe5ublSUmrd4zig3DiYXV5xOW1tbQiFQgBQulCvr6/PddjAHt8B5XIDWx5gj/cN3RLS1Zw9exYRERG4e/cuwsPD8cUXX8DOzo7vsAgh7QhbrlJswMeW0RTLcIrlNsX5iuWyumUyxfKdYqNAxUSpug0A6yZWNdRAkOpR2ifFspqiuiPIK5b16pYbFcuMiuU9xaSxup3/KDYCbeg1bL0RO0/xPSjxjJCu57PPPsMPP/yAx48fw9bWlu9weGdnJ0JOTjbfYRDSKUkkknp1ZISwKisrIZFIuKm0tBTFxcUoLS1FeXk597iiogJlZWUoKipCRUUFKioqIJFIuHMzxbr4xhKw2jO2TM7WBbPnDEKhEIaGhjA2Noa5uTkMDQ1VXuc1MTGBiYkJLCwsYGFhAXNzc+qomzQLdU/XQXz66ac4d+4crly5QolahBBCCCGE/H9yuRzJycl49OgRHj9+jOTkZKSkpCA1NRWpqakoKCjgltXT0+OSoezs7GBtbQ1XV1dYWVnBzMyMG/2Kvc8mVKlqCFa3F8i6PaCzF3rZC9GlpaUoKytDWVkZJBIJysrKUFxcjLy8POTl5UEsFnOJY/n5+dxFYy0tLdjZ2aFHjx7o3r07unfvDhcXF64RrkgkauUt3P6xF873xz6DvkH9i7WEqGOurxs1wiAqFRcXQyqVNjg1VaFdXl6OoqIipcZGjWGPL2yjYLYRCJskxFYiC4VCiEQirnGwYgPkusct9rUMwyA/Px89e/bknqvb0KVuAxdVyzSmuY2Vm1Opr6qxVN3G8orL1E1aU2zAr/icYoOvuskBmZmZkMvl3PuyDcBUXaBojImJCQwNDWFqagpTU1MYGRnB2NgYZmZmXMW/hYUFd0HAzMwM5ubmMDc3h5mZGczMzCAUCmFmZkYjAHZBQqEQgYGBCAwMVJpfVFTEjcAVHx+P+Ph4XLx4EWlpaWAYBjo6OnBxcYGnpyeXxMWWIa2trXlaG9JRsfvNsrIyVFZWQiqVory8HJWVlSgqKuL2h0VFRaitrW0wyYptpMvubxu6bQ7FZBvF0ZsUR21SPH9jL8xqaWnB1dUVgHKDTFXHMnWShRSPxSxVIwU0dVx9mcacDY1MoC7FhtLN1VQCm6oRxVR9Xt3fgLrJcqqS8BQbYFdWViI/Px+AciNuxdHPFBt6t6SRNvsbaOqW/b3VvWV/eyYmJjAwMIBQKISRkREMDAy4xgIGBgYqy2uE8GHMmDEYM2YMTpw4gWXLlsHd3R0ffvghPv7443oj6RFC+CWVSiGTySCVSrnjIHvcKyoqgkwmQ3Fxcb2OYRSPq2yiE3s+rGoZVYlYzaVYtqtbvlIskymO6KlYvjI2NlZKHFU8bqoa2aluOQ9QPSKoqvIf+3l1O8lQVS5U53XNpame4lWNDtZcqkaUrUtVWV/V6xoa+b1uT/1A/bofoPGEPcXRyHJzc7nyqWL9Tt33VIz7ZRL52Do+VQldbFmx7jKKv7u6HQtZWFhw5Uf2N2tqagpdXV2Ym5vTSAKE8CQpKQmbN2/G+vXrKVHr/6uRyfB2xJcInRPOdyiEdBoPb0VibfirdG27i6ipqVHqlDo3Nxd5eXkoLCxEUVERl4yleF8ikTRYPmfLj3WTldjrkSKRiKuLNDQ0VCpX1k16Av53TlX3PKqpc56mRuZtzshcih19sOc3qpLM2PMPdnnFBLXnz59z99lr+xUVFSrPTYAXdfFs4habxKX42NLSUqnzbhsbG1hbW3OdP5CuhUbW6gD++OMPzJgxAz/99BMWLlzIdziEEEIIIYS0OYZh8PTpU8TExODBgwdITExEYmIinjx5wl34FYlEcHV15ZKa2KlHjx5wdHTsML0K1dbWIjc3l0s4S01NRUpKCpeE9vz5c66Ro5mZGdfo1tPTE/3794efn1+X6sn45MmTmDhxIiVrkZcy19cN27dtQ3h4ON+hEA2Ty+UoKChQORUVFUEqlapMyCoqKlJqwKFIR0eHq7BuqEJbsRKbTcIxNDRU2ROXrq4u9bLbwbENgRQr7svKylBRUYHi4mKUlJSgoqKiXlKfVCqtl9THzmeP9XWxvxdVCV2K87t166Y0WVtb0yhfXUR5eTlXVk5MTOQ6NUhMTOQuVllaWnJlSDaJy93dHe7u7m3euPrQoUO4evUqPvzwQ7i4uLTpZ3dW1dXVKCkp4Y5p7H6opKQExcXF3AVItmdNxUSrqqoqrmOJyspKlJaWqtUgUTGZWFtbm7tAW/dWVYJKY7cNJby8bFISIc3BXuBnL+I3dcsmkzV0yzYArnvLvr45/zkzMzMYGBhwnc0YGBhwPb2yCV/GxsYwNDSEUCiEubk5TE1NIRQKuSRytixBZVHyMsrLy/Htt9/im2++gb29PbZu3YoxY8bwHRYhHQZ7jlhcXIzi4mKu0y+pVMolzJeXlyuNzs0eV9hyXXFxMWQyGYqKirhjirpJU2x5re7o0cD/kp3Y+gs2MUpxGbas15JlAM0kLhHS1hQTzdj/JntupZjwxTYMZcuDLV2GracsLi5GTU1Ng41G62ITwIRCIVenxP7X2f+emZkZdHV1IRQKuXKmqakpt4y5uTlMTEy4xxYWFvS/JaQBEydOxPPnzxETE0P/kf+vm5U1pr/7PiVrEaJBbLJWXl4erKys+A6HtFBOTg4yMzORnp6O9PR05OTkIC8vD9nZ2Vynz3l5eUodVAMvrhNaW1vD0tKyXoKQqqQhdmLrAknzsXW2qpLiVM0rKipCYWEh8vLy6iXNCYVCrnNxKysrLpHLxsYGTk5OsLe3h6OjI+zs7Ki+thOhkbXauQcPHmD+/PlYunQpJWoRQgghhJAu4+nTp7h9+zZiYmK4qbi4GDo6OlzD0kmTJnFJSr169Wqyt8qOgh1Ny87ODgMHDlS5THZ2Nh49esQ1wH306BGuXr2K5ORkAICDgwP8/Pzg7+8PPz8/DBo0iEZQIIR0ChKJBNnZ2cjNzUVBQQFXSa045efnc/cLCwvrvYepqSm6detWL8mle/fu3OhFDSXBsKMvEqJIX18f+vr6Gh/porFR3RSTCqVSKbKzs5GYmMjNLygoqHcBQEdHp14SV7du3WBlZQUrKyuleXZ2dhCJRDSSVwdkZGQEX19f+Pr61ntOIpFALBYjPj4eSUlJEIvFuHLlCpKTk7me1C0sLODq6gpXV1d4e3ujd+/ecHV1hYeHR6uUtw8dOoQ///wTO3bswLx58/DZZ5/B3d1d45/TUUilUqWLemyiFXtbVFTENeJVTMCSSCTc44Z6zNTV1eUSMxRH62Ebyvbo0QMGBgZc0pWqpA9Vr1M1GgEhnQkfyc5sw9zS0lJUVVVxo9lVVVUpJVlKpVJUVlZyDfyrqqpQUlKC7OxspdexyzY2coaxsbFSIhfbiEMxsYstJ7OPhUKhUqMPGr2h6zIyMsKaNWvw5ptv4oMPPkBoaCiWLFmCb775hs6fSKckl8vrnZOpSrBie+ouLS3lHkskEq6jDjbBvrFRjdjkCDZRom5iBVu2Y5Og2BF1TE1NufIaO6KUhYUF1ys62+t5U72ZE0JUYztmAlSPVN8W2MRMtuMAqVSKmpoarlxYXl7OJYAVFRWhpqaG61CosrISJSUlqKmpQXJyMpcAypY52f1aYyOmsfsTc3Nzbl/FlhnZx2xZsm7il4mJSb2Ohwjp6A4fPoxTp07hwoULlKhFCCFdXEFBAZKSkpCeno60tDSkp6cjMzMTqampyMjIQEZGhlLHGpaWllwCj62tLfr37w9ra2tYW1vXS+zhq+zZlbFl2ZZ0ms3W1bLJd7m5uVxiXn5+Pp4+fYobN25wI6exdHV1YWdnh+7du8PBwQH29vbcfUdHR7i6unapTrw7OhpZqx2TSqUYMGAARCIRLly4UG9IdkIIIYQQQjqLpKQknD9/HpGRkbh69SpSUlKgo6ODnj17wt/fn5v8/Pyo0XAjiouL8eDBA0RHR3PTo0ePUFtbC1dXVwQHByMkJARjxoxBjx49+A5XI2hkLaIJNLIWvyoqKiCRSJCVlYXMzEyl+4rz0tLSuN5kWQYGBkoNRO3t7SESier1HsY+5+DgAH19fZ7WlJC2xf636k6K/6u6U3Z2ttKIcux/jP1vKf7HFO93796deuTrwMrLy/Hs2TM8ffq03pSens41HhWJRPDw8ICbmxs3Epe7uzvc3NxanMzQt29fxMXFAXhx8Ukmk2HatGlYv349vLy8NLaObamh/15TU35+PmpqalS+Z93jHTtqY935quax8ympihAC/G8UCFX7KlXzG1tWFVX7IHUmkUhE+6hO5Pfff8eSJUsgFArx22+/YciQIXyHRIgSxf1aQ/u5xvaROTk5DSZYsftBxXJZ3TKauo+trKyosTchhHfsvq/u/lLxcWPPKT5uznlvQ+e3DZ0b0+gDhE/FxcXw9vbG2LFj8csvv/AdTrtCI2sRonk0shb/ampqkJaWhqSkpHrTs2fPUFRUxC3L1nvZ29vD1dVV6Vqbvb093N3deeksirQ/1dXVyM/PR1ZWFpKSkpTaSrDzUlNTIZPJALzoTNTBwYHrgFFx6tmzJ123bUcoWaudYhgGM2fORGRkJGJiYmBvb893SIQQQgghhGhMQUEBTp8+jZMnT+LcuXMoKCiAUChEcHAwhgwZgqFDhyIgIIAa1GtAUVERIiMjce3aNVy7dg1RUVGoqamBm5sbxo0bhwkTJmDYsGEwMDDgO9QWoWQtogmUrNV6JBIJ0tPTkZKSwvUclpaWxvUclpWVhbKyMqXXWFtbw8bGhhvZx8bGBiKRCLa2trC1teXmWVlZUe/PhGhYZWUlCgoKkJWVxY1il5mZidzcXGRnZ3PzMjIyUFpaqvRaS0tLiEQiODk5wdHREU5OTujevTscHR3h6OgIZ2dnrtdp0nFUV1cjPT293gVHsViMx48fcxeF6l5wVJw8PT0bHFXDwsJC6cIlAOjp6aGmpgbjxo3D+vXr4efn1+rr2ZDKykrk5+cjPz9fqbdDVY8LCwshkUi4baKo7ugzipOlpWWDzwmFQujq6vKw5oQQ0rjKykpuZD/Fid0XNjQVFhaivLy83vuxo5RaWlrCysqK60mYHQG07mMrKyvaP7ZzmZmZeOutt3Du3Dn885//REREBCXkEY1jR9RWHF277mN2BG52FKyioiKoaiKjq6urNMKLqtG2685TXM7Y2JjOdwghRA3saIN1R45nRypsbJJIJA3ux3V0dGBmZsaVKbt169boLTvKfGuMIk66nmXLlmH//v1ISEiAtbU13+G0K5SsRYjmUbJW2yksLER8fDzi4+ORkJCA+Ph4JCYmIj09HXK5HMCLaxyqkmVcXV3h6OhIHXAQjZLL5cjMzFSZKJiUlITc3FxuWXt7e/Tq1Quenp7o3bs3vLy84O3tTSNy8YCStdqp7777Dh9//DFOnz6NUaNG8R0OIYQQQgghLy0xMRF//vknTp48iVu3bkFbWxtDhw7FuHHjMGzYMPj4+FCj+zZQVlaGW7du4eLFi/jrr78QGxsLY2NjjB49GuPHj8eUKVM6VKUeJWsRTaBkrZaRyWRITU3lenFKTU2tl5ClmIhlYWHBJWw4OjrCwcEBDg4OXGKWnZ0dbGxsqNElIR1EeXm5UgJXZmYmcnJykJKSgvT0dKSnpyM1NRUVFRXca6ysrFQmcrm4uMDNzY0uEHQw1dXVSE5ORlJSEp4/f640JSUlQSKRAAAEAgGXxOXi4sJNIpEIoaGhKhtZAf8baSs0NBTr1q1DQEDAS8dcW1uL3Nxc5OTkID09vcHEq7y8POTk5NRLStTT0+OSBGxsbLjkYbaRV0PJWHSeQwgh/1NVVdVgMhebVJGbm4vc3Fxuv5yfn881gmFZWFgo7YfrJnTZ2trC3t4ednZ26NatG09r27UxDINt27bh/fffR1hYGPbs2UO9+hKVGIZBXl4e8vLyuP+/YrJVQ7d1y5EGBgYNNsi3sLBQmYTFPjYyMuJp7QkhhDRXcXFxowldqhJ32du6Hazo6Og0mtjVrVs3rqzJljctLCx4WnPSHkVHRyMwMBA///wzXWNSgZK1CNE8StbSPKlUinv37kEsFkMsFuPRo0eIj49HTk4OAMDU1BSenp7w9vaGp6cn3NzcuIQsKheQ9qS0tFRplLfExEQu2bCwsBDAizpVNnHLy8sLffr0gY+PD2xsbHiOvvOiZK126ObNmxg+fDg2bNiAlStX8h0OIYQQQgghLVZQUIAjR45gz549uHHjBrp164YRI0ZgwoQJmDx5Mg3n3Q7k5uZyo5ydPn0a5eXlGDFiBObPn49p06bBxMSE7xAbRclaRBMoWathVVVVyMjIUNkzU3x8PJeEYWBgAHt7+3qjqrCP3d3daZ9PSBclkUiQmZmJrKwsJCUl1bufkpLCJXbq6+vDwcFBZQ+E3t7e1FN9B1NZWdlgD3+JiYn1EqEaoquri5qaGowYMQIbN27EwIEDVS6n+Ftr6DYtLQ01NTXcawwMDJQSq9hjWUOP7ezsoKWlpZHtQwghpHkqKiogkUi4/Tqb4KXqcXp6Oqqrq7nX6unpoVu3bkrnLOz+XXGes7MzJdi2guvXr2PGjBkwMzPDsWPH0KtXL75DIm2gqqoKBQUFTf5vVZXRgKbLaaomkUhEI7gRQghpFFumrDvVPVYpTrm5uSo7DqhbnlR138nJiTon68TkcjkGDRoEIyMjXL58mcohKlCyFiGaR8laL0cqleLhw4eIjo7mpkePHqG2thbm5uZwc3ODt7c3evfuzd326NGDrguQDk8ikUAsFiM+Ph5JSUnc/efPn4NhGIhEIvj7+3O/ffY+eXmUrNXO5OXlwcfHBwMGDMCff/5JhXhCCCGEENLhyGQy/PHHH9i5cycuXboEU1NTTJs2DXPnzsXw4cOpEqMdKysrw7Fjx7Bv3z6cPXsWBgYGmDp1Kt555x0MGjSI7/BUomQtogldPVlLLpfj+fPnXIXco0eP8PTpUyQlJSE7OxvA/0ZFcXNz4yZXV1fuPvVUTwhpKYZhkJGRgWfPnilNbK9vbE9vOjo6cHJy4vY7ihfKaESujunAgQOYM2eO2stra2tDLpfD1dUVAwcORElJCTIyMrjR3Wpra7llzczMuNFUHBwcYGtry906OjrCxsYGjo6O7b5jAkIIIS1XWFiIrKwspSkzMxPZ2dncbUZGBsrLy7nX6OrqwsbGBg4ODtwxpHv37ujevTucnZ3Ro0cPiEQiqttqgbS0NEyZMgUpKSk4ceIEBg8ezHdIpIXKy8uRlpaGzMxMbkTdzMxMZGZmIjc3F3l5ecjOzoZUKlV6nZGRETeytrW1NWxsbCASibiRShTvU2/OhBBC2hOZTMaNAMnWQbD32ZG6c3JykJOTg9zcXKVOAwAoHd9EIhFsbGzg5OTEJXM5ODjA3t4e+vr6PK0haalvvvkGERERiImJgbe3N9/htEuUrEWI5lGylvqqqqoQFRWFa9eu4fbt24iJiUFqaioAwNHREX5+fkqTg4MDzxET0vby8/MRExODe/fuITo6GjExMUhKSgLDMLC1tYWvry8CAwMREhKCwYMHw9jYmO+QOxxK1mpHGIbBhAkTEB8fj3v37sHc3JzvkAghhBBCCFFbYWEhdu7cia1btyIzMxMTJkzA/PnzMX78eBgYGPAdHmmmvLw8HDp0CLt370Z0dDQGDhyI9957DzNmzGhXvQBSshbRhK6SrFU3KYu9TUhIQGVlJQQCAZydneHp6Ql3d/d6SVm0LyeE8EEikdRL4Hry5AnEYjEKCgoAAJaWlvV6OvT29oZIJOI5etKYnTt34p133oFMJmvW63R0dODj4wNvb2+ux2rFyd7enkZhI4QQorbi4mJkZGQgJyeHu01PT0dubi7S0tKQmpqKjIwMbtQfXV1dODk5cUlcLi4uXDIXO48a2qpWXl6O2bNn4+LFizh27BhGjhzJd0ikjoKCAmRmZiI1NRWZmZnIyMhAWloaN/pVRkYGJBIJtzw7Mi5bJrO1tYWNjQ1sbW1ha2sLa2tr2Nraws7OjhrzEEII6TIkEolSEld2djby8vKQm5vLJXilpqYiJydHqU7E1tYW9vb2cHR0hKOjo1Iyl4ODA5ycnKjTmXbk0aNH8PX1xZo1a/Dxxx/zHU67RclahGgeJWs1rKSkBDdu3EBkZCSuXr2KO3fuoLKyEiKRCEFBQfD394efnx98fX2pkxBCGiGVSnHv3j3ExMQgJiYGN2/eRFJSEnR0dODn54chQ4ZgyJAhCAkJoU591UDJWu3I5s2b8dFHH+HKlSsICgriOxxCCCGEEELUkpOTgy+++AK//PILdHV1sXDhQrz77rtwcXHhOzSiIZGRkdiyZQuOHj0KGxsbrFq1CkuWLIGenh7foVGyFtGIzpisVVVVhfv37yMqKgpRUVGIjY2tl5Tl5eWFPn36KN3SxV5CSEeSm5uLuLg4JCQkKN0qJnH17t0bfn5+CAgIQEBAAHr27EmjYfCgoKAAjx8/RmJiIp48eYLHjx8jMjISOTk5qHuJQiAQAHjRuZmWlhacnJy4XvsmTJhA5xmEEELanFwuR2ZmJlJSUrgpNTUVqampSElJQXJyMjdCl0AggJ2dHZydneHm5oZevXrBw8MDPXv2hIeHB0xNTXleG37J5XK89dZbOHjwIA4ePIgpU6bwHVKXkpOTg6SkJDx//lzpNiMjA+np6aioqOCWFQqF9RqL121ATo3bCCGEkJaTy+XIycmplxjNJkuzo1gqHp9NTU3h5OQEJycnuLi4wNXVVenWwsKCxzXqOmQyGYKDgyGTyXDr1q121clle0PJWoRoHiVr/Y9cLsft27dx6tQpnD17Fvfu3YNcLoeHhwdCQkIwdOhQhISEwN3dne9QCenwMjIycO3aNS4ZUiwWg2EYeHt7Y/To0RhR0I3+AAAgAElEQVQ/fjyGDh3aLtqRtTeUrNVOxMTEICgoCGvWrMEnn3zCdziEEEIIIYQ0qbi4GN999x2+//57mJmZ4aOPPsIbb7xBDf07sdTUVGzZsgXbtm2DnZ0d1q1bh7lz5/La4JmStYgmdPRkLZlMhri4OC4xKyoqCg8ePEBNTQ3MzMy4XsK8vb0pKYsQ0iUoJnE9fPgQ0dHRePDgAaqrqyEUCuHv788lbw0YMICSfzSkrKwMjx8/xpMnT/DkyRMkJiZyjwsLCwEABgYG8PDwgIeHBxITEyEWi6GtrY3a2lowDAM7OzsMGzYMQUFBGDRoEHx9fanBCyGEkA4hPz+fS95KTU1FcnIyl6CcnJzMjcwlEonQs2dPLnnLw8MDvXr1gpubW5dpzCCXy7F48WLs3bsX//3vfzFx4kS+Q+o0KioqlJKw6iZmlZWVAQD09PTg7OzMNe52dHTkkrFo5A5CCCGkfSksLFQa+TI9PR1paWncsT49PR21tbUAAAsLC6UELsX7zs7OVMeiIV9++SXWrVuH6Oho9O7dm+9w2jVK1iJE87p6slZhYSHOnj2LkydP4syZM8jPz4eLiwvCwsIwbNgwDBkyBHZ2dnyHSUinJ5FIcP36dVy9ehWnT5/Gw4cPYWJiwiVuhYWFQSQS8R1mu0DJWu1AWVkZ/P39YWdnhwsXLkBbW5vvkAghhBBCCGnUrl27sGrVKsjlcnz00UdYunQpjIyM+A6LtJG0tDR8/vnn2L17N3r37o2dO3di4MCBvMRCyVpEEzpaslZFRQWuX7+Oixcv4sqVK7h37x4qKipgbGwMX19fLgGBHUGGHaGEEEK6surqaqURB6OiohAfHw+ZTIZu3bohMDAQI0aMwMiRI+Hj40OjbzWipqYGCQkJuH//PmJjY3H//n08evQIGRkZAAAdHR306NGDG0VEsUG6k5MTt23XrVuHM2fOYMiQIRg0aBAGDRpEF1EJIYR0SjU1NUhOTlYaZZJN5EpPTwfDMNDW1uZGQPbx8UH//v3h6+sLV1fXTlkuYRgGixcvxn/+8x+cPXsWISEhfIfUoWRmZkIsFkMsFiM+Ph4JCQl49uwZsrKyuGVsbGzqNdZmHzs6OlKbBEIIIaSTqK6uRkpKSr1EbfZ+UVERAEBbWxuOjo5wd3eHt7c3evfuzd1aWlryvBYdR0JCAvz8/LBu3TqsXLmS73DaPUrWIkTzumKyllQqxeHDh7Fv3z5ERkZCS0sLISEhCAsLw/jx4+Hl5cV3iIR0eSkpKfjrr79w6tQpXLx4EZWVlfDz88PcuXMxe/bsLn39j5K12oHw8HD89ddfiI2Nhb29Pd/hEEIIIYQQ0qCsrCwsWrQIf/31F5YtW4aIiAhYWFjwHRbhSUJCApYtW4bLly9j1apViIiIgL6+fpvGQMlaRBPae7JWTU0N7ty5g4sXL+LixYu4efMmqqqq0KtXL4wYMQKBgYEICAiAl5cXNbYihJBmKC8vR2xsLKKionD9+nVcvnwZubm5sLS0xPDhw7nkLW9vb75D5Y1UKuUSstjkrLi4OFRXV0NfXx99+vSBj48PvLy8uKQsFxeXLjMyCCGEEPKyysvLlZK34uLicP/+fSQmJkIul8PU1BT9+vVD//794ePjAx8fH/Tp0weGhh2/DqS2thavvfYazp49i8uXL8PHx4fvkNqdzMxMxMfHc0lZbIIW2+ja2tqaG0Hb3d1dKSGLRsYihBBCCPBiBBLF5K0nT55wI9IXFxcDAOzs7JSStyiJSzWZTIagoCBoa2sjMjKSrseogZK1CNG8rpKsJZfLce7cOezZswdHjx4FAEyZMgVTp07FmDFjYGZmxnOEhJCGVFRU4NKlSzh69Ch+//13lJaWYuzYsViwYAEmTZoEAwMDvkNsU5SsxbM//vgD06dPx4kTJzBhwgS+wyGEEEIIIaRBJ06cQHh4OCwtLbFr1y7q8ZYAeNET8r///W+sWrUKLi4uOHLkCDw8PNrs8ylZi2hCe0zWysjIwLFjx3Dy5Elcu3YNpaWlcHJywsiRI7nJ0dGR7zAJIaRTYRgGcXFxuHjxIi5cuICrV69CKpXCzs4Oo0aNwqRJkzBu3LhO2/C1srISUVFRuHnzJm7evInY2Fg8f/4cANCtWzeugTg72oeXlxd0dHR4jpoQQgjpnCoqKhAXF4d79+5xCdMPHjxAaWkptLW10atXL/j6+mLw4MEIDg5G3759O2Rj0crKSowbNw6PHz/G7du3u+x5rkwmQ3x8PKKjoxEVFYX79+8jPj4eEokEAGBlZcUlZbG3ffv27dQN8wghhBDS+lJTU5GQkMAlb9VN4hKJRPD29oaPjw8CAgIQEBAANzc3CAQCniPnx+eff46vv/4aMTEx8PT05DucDoGStQjRvM6erJWVlYWtW7di165dyMrKQnBwMF5//XXMnDmTErQI6YAqKytx7Ngx7NmzB2fOnIFQKMScOXOwfPnyNm1bxidK1uJRXl4e+vbti0mTJuGnn37iOxxCCCGEEEIatH37dixduhTh4eHYsmULjI2N+Q6JtDNJSUl47bXXkJycjBMnTiAwMLBNPrcrJGt9/uYsrPn1EN9h8K41t0N7SdbKyMjA/v378fvvvyMqKgrGxsYIDQ3FqFGjMHLkyC5TWdXRjR49GufOneM7DEKIBsjlckRHR+PChQs4c+YMIiMjoauri1GjRmHWrFmYOnVqhy4Xl5WV4dq1a7hw4QKuX7+O6OhoVFdXw87ODoMHD4afnx+XmOXk5MR3uOQl0fGpbdH2Vh9tK0LUV1tbi2fPniE2NhaxsbGIjo7GrVu3IJVKYWJigsDAQAwZMgSjRo1CYGBgh0mqlkqlCAoKgrGxMa5evdoletfNyspCZGQkrl+/jrt37yI2Nhbl5eUwNDRUGkGNTc6ytrbmO2SiQXTsa1u0vQlRjf4bmtFZt2NKSgqXvBUfH4+YmBiIxWLIZDKYm5vD398fgYGBCA4ORnBwcJdoPH/16lWMHDkS33//PZYuXcp3OB1Ge0zWouuupLW19m+ssyZrJSUlYcOGDdi/fz/Mzc2xaNEiLFiwAO7u7nyHRgjRkKysLOzfvx/bt2/H8+fPMWnSJERERMDX15fv0FpVx6ih7aT+7//+D0ZGRti0aRPfoRBCCCGEENKgTz/9FF999RU2bNiA1atX8xqLQCBAQ/1NNPYcaX2urq64dOkSXnvtNYwcORK///47wsLC+A6rWaZ72gMAjjzKbNHrC3Oysfe7DXh46zqKCvLA1Na+1PuxutrvuqHvobNuh5qaGhw5cgS//vorLl68CKFQiGnTpiEiIgKjRo3qkI3Uusq+mu09tO76dJb1I22nod9SR9ZZ1klbWxsDBw7EwIED8cknnyA/Px/Hjx/Hn3/+iTfffBNLlizB9OnTsWjRIgQFBfEdrloePnyI48eP49y5c7h58yaqq6vRu3dvDB06FEuWLEFwcDBcXV35DrNV0PGpc6wfX5q7X+sI27u9/O7bQwysjnb8EovFWLp0Ke7evYvS0lIAHSf2ttJefueaoqWlBQ8PD3h4eGDmzJkAXiRwicVi3LhxAzdu3MCvv/6KtWvXwtTUFMOGDcOYMWMwefJkdO/enefoG2ZmZoaTJ09iwIABePvtt7F3716+Q9K4nJwcnDlzBpcuXUJkZCSePn0KbW1t9O/fH4GBgXjrrbfg7++P3r17d5gku5dB5bLOsX58oXJZ+9QW5ajOsJ3ak9balh2tTP2yOut6Ojs7w9nZGaGhody8iooKrsOAqKgoHDlyBF9++SW0tbXRp08fDB06FCNGjMCoUaNgamrKY/SaJ5FIsGDBAowdOxb/+Mc/+A6HqKmzXW982evY6n5Ga75/V9FRf2N8yc/PR0REBH7++We4uLhg69atmDdvHvT19fkOTaWucj6rKbRNiCKRSIQPPvgAK1aswNGjR7Fx40b4+/tj5syZ2LhxI1xcXPgOsVXQyFo8+eWXX7Bo0SJcvHgRw4YN4zscQgghhBBCVPrpp5+wZMkS7Nq1CwsWLOA7HKr46ABkMhkWLVqE33//HTdv3kSfPn1a9fM0PbLWy1RCr33jVXj7ByJs/lvQNzRC9JXz+HbpQqrUboG2vhjAx8haUqkU27Ztw9atW5GdnY3x48djwYIFmDBhQrutfFZXV9pXd7b1IfzpjL+lzrhOivLy8nDgwAH89ttviImJwYABA7BixQrMmjULWlpafIen5O7du/j999/x559/4unTpxCJRBgzZgxeeeUVjBo1CiKRiO8Q2wQdn8jL6mzbtbOtj6Z0pO0yYMAArFq1CpMmTcK1a9cwevToDhN7W+lI36cmPX78GBcuXMD58+dx4cIFSKVS+Pv7Y+rUqZg1a1a77ZX69OnTmDBhAjZt2oTly5fzHc5LYRgGt27dwokTJ3DmzBncu3cPenp6GDx4MIYMGYKQkBAMHjy40zVkVheVy8jL6mzbtbOsT2uvR2fZTl0BfVddR25uLq5fv45r167h2rVriImJgba2NoKDgzF27FhMmTIFnp6efIf5UhiGwbRp0xAVFYV79+51qlFs2gLfI2t1tuSj1l6fzra9OqvONLLWnj178MEHH0BfXx9r165FeHh4u+/ApCudz2oCbRPSGIZhcPToUaxevRqpqalYu3Yt3n//fWhra/Mdmka1r6vGXURKSgref/99rFixghK1CCGEEEJIu3X79m0sW7YMERER7SJRi3QMOjo6+OmnnxAQEICJEyeioKCA75DazKPoO5i6aClMzMyhq6eHQaPDqEKb1FNdXY0tW7bA3d0d33zzDWbPno1nz57h2LFjmD59eodP1CKEkK7C2toay5YtQ3R0NCIjI9GjRw/Mnz8fPj4++Ouvv/gOD0VFRfjxxx/h4+ODgQMH4ujRo5g2bRpu3ryJ9PR07N69G/Pnz+8yiVqEENIZxcbGYtq0adDX18eoUaOo4QPh9OzZE0uWLMGRI0eQm5uLv//+G/7+/vjxxx/Rs2dPjBw5Evv370dVVRXfoSoJDQ3FunXrsGrVKsTExPAdTouIxWJ8+umncHV1RVBQEA4fPozBgwfj+PHjKCgowKVLl7Bu3TqMGTOmyyZqEUIIIaTzsLGxwdSpU7F582bcvXsXOTk5+O233+Dk5ITvv/8eXl5e8PPzw7fffov09HS+w22RH3/8EcePH8dvv/3W4ZMiCCGkvaioqEB4eDjeeOMNzJkzB/Hx8Vi4cGG7T9QihGiWQCDA1KlTcf/+fXzyySeIiIhAaGgo8vLy+A5NoyhZiweLFy+Gg4MDNmzYwHcohBBCCCGEqFRVVYU5c+Zg1KhR+Oc//9lqnyMQCCAQCNSazz5mnxMIBFi4cGGTzwFAXFwcxo8fD1NTU5iamiI0NBRxcXEqP/PZs2eYNm0aLCwsGoyvsXVJSEjAoEGDYGRkhCFDhuDp06cQi8UIDAyEiYkJRowYgdTU1Hqvb06MaWlpmDx5MkxNTWFra4t58+bVS4pqzrbVNB0dHRw6dAgymQwffvhhq35WS6U9TcQXi+Zhjq875gX0wtf/eBP5WRkql0198ghfLJ6PuX4emOvngfUL5yD1ySOlZaZ72qOmuhqv9euB6Z729aa6y073tEd+ViY2vhOOuX4eeDO4H7as/AdKiiQql60r+VE81r35Gub4uGGef09seHsuYiMvKy1z9+JZrJ49Ca/164H/GzkQu75ag4qyUtXrt2get35fLJpXb/2aUl5SjF1frcGSUYPwWr8eeCvEBz98/B6ePLjXopjqepnt0J6IxWIMGjQIq1atwpw5c5CUlIRvv/0Wzs7OfIfWqM60r5ZKpVixYgVcXV1hYGAAkUiE8PBw3LlzR2m548ePIzg4GAYGBujRowdWrFiBkpKSJt+/oVju37+PMWPGwNjYGEKhEOPGjcOZM2fUilnxfRtbb3W2nzqxNPf7FggEiI+PR2hoKIRCIUxMTDB+/HgkJCTUew9Nfcfqfj/qbHd13ysuLg5hYWFc7GFhYSq3b1PEYjHCwsJgYmICMzMzTJ06VWW5QN3t1RR1f/OaLoew1F22pf+59iI4OBiHDx+GWCyGp6cnJkyYgFdffZWXpPWSkhJ8/fXXcHFxwcqVK9GzZ0+cO3cOjx8/xtdff41Bgwa1u5G/WoqOT+3n+KTOcUCTx7LW2Gepuy1aei7WHs8XFV+j6nf/Msc9xfe9fPkyAODgwYNK85vaVpr67jRxbqypcoC6sar7n5LJZNDR0YFAIMDHH3+sVgyt8b9tatu0pMzY1Huqs99s6nfe0csf6tLT00NoaCh27NiBjIwMnD17FlZWVggPD4eHhwe2bNmCyspKvsPkfPzxxxg6dChmzZrVYb4PhmFw/vx5TJw4EX379sWePXu4Ee+ePn2KH3/8ERMmTICxsTHfobYaKpdRuYzKZe23XMbSZB1Jc+o21HnPlz2ua6rMoo6WbCOhUIixY8ciPj5e5W+Sj/9RQ/siTZaPUlNTMXXqVJiZmTVa9lPnM1tjP9Kcz23ot9UW27GjsbKywuzZs7Fnzx5kZWXh2rVrGDJkCHcdZOLEibh58ybfYaotLi4OH330ESIiIjBy5Ei+w+kSOvL1Rk1eu23OdWx13lOd7cpuF8Xr29s++0BpXnZqMr5Z+hYWDPSsty01cb25oe9H1Xx110nd9wPU25ZNbYuG3lsT26ezKCsrw/jx43H06FEcOXIEW7ZsgVAo5C2eznQ++7LnOpoul7WHbQKoVzZsTh1nU+uubt24prZBa9djtAU9PT189tlnuHHjBpKSkhAcHIyMDNXHvQ6JIW1q9+7djJaWFnPt2jW+QyGEEEIIIaRBW7duZYyMjJi0tLRW/6yGTktUzW/sFKah5548ecLY2dkx27dvZ3Jzc5n8/Hxm7969jKura731A8CMHj2auX79OlNeXs789ddfjX6mqhheffVVJj4+nikqKmLeffddJjAwkJk+fTo3b8mSJcyMGTNeKsYxY8Ywf//9N1NSUsKkpqYyU6dOZcLDw9XeJm11Knjw4EFGS0uLSUhIaLXPOHHiBAOA2R/7jDnyKFOtaevZG4yVyJ5594vNzK4bD5ldN+OY5d/8wPTy8WcA1FvW3MqGWbR2I7PrxkNm9y0xs/ybHxhbJ2fmp8vRSsvWfW1j8wEw/YOHMZ/t3Mfsi3nC7LgUxQSOHseMmDqrydf/cDqSsXdxY9b8eojZH/uM2XLyMuMVEFhvOQDM/637htkf+4z5JTKWGT5lJjN8yqv11q+bnYjbFr9ef8AsWf8dY2lrx2w9e0PtbTrwlbHMrH98wPxy/T5z8EEy890fZxlPvwEtiqmxbdaS7aDOZGBoyOzatavVfqcMwzBHjx5l9PX1meDgYObZs2et+lmtobPsqydPnsysXbuWyc7OZiorK5mYmBgmODi43usBMDt27GDKysqYrKwsZsGCBczrr7+u1vrUnZeYmMj06tWLOXfuHFNWVsaIxWJmyJAhzd4XN7be6m4/dWNp7vfdp08f5sCBA0x+fj6Tk5PD7Ny5k+nevTvz/PlzbjlNfsfqfD/NWdem3uvJkyeMo6Mj88svvzC5ubncOjo4ODBPnjxRua1Uefr0KePk5MS9T15eHrN3715m8ODB9eJqzvZqjDq/+dYsh9RddubMmQ0uq85/rqM4c+YM4+DgwDg7OzNPnz5ts889dOgQY2lpyXTr1o3ZsGEDI5VK2+yz+ULHp/ZxfFLnOMAu+7LHstbYZzXnmNGc/ZqqeR3hfFETxz2ZTMa4ubkxhYWFSvMzMzMZCwsLprS0tMltpenvThV1/iuaKgc0J9bm/KdaQpP/W3W3TXPKjOq8Z3P2m41th85U/miu9PR0ZunSpYyBgQHj5ubG3Lx5k++QONnZ2YytrS3zxhtv8B1Kk2JiYpiAgABGIBAwY8eOZc6cOcPI5XK+w+IFlcuoXEblsvZZLmMYzdaRNKduQ9331NRxXRNllqa0ZBvl5+czBw4cYPr27ftS9T9tUUbWVPkIADN48GBm7969TF5eXpP7I3X3p5pef3U/t6l6SlWv6crlTFWqqqqY//znP4yfnx8DgJkyZUqbXIN+GcXFxYynpyczdOhQRiaT8R1Oh2XZzYp5O+LLTn+9UdPXbtW9jq3uezZnuza0jgCY/kFDmS8PHGcOxCYxn/70H255TV1vbs719pddp5Zuy6a2har31uT2OfIok1m7+zADgMnLy+P7L95scrmcGTt2LGNnZ8eIxWK+w+F0lvNZ9vUtOddhX6vJcll72CbqlA2bW8fZ1LqrWzeuqW2g6XoMvmVnZzPe3t6Mt7c3U1ZWxnc4GiFgGIYBaRP5+fnw9vbG7NmzsWXLFr7DIYQQQgghpEG+vr4ICAjAzp07W/2zBAIBVJ2WqJrf0LKNPTdv3jz069cPq1atUpr/66+/4v79+0plc4FAgEuXLmH48OEtWBNwPaMMGzYMAJCZmQkHBweleenp6fD390dOTk6LYzx69CgmT57MzUtMTMTIkSPr9SzSnG3bGmpra+Hu7o7p06fj22+/bZXPOHnyJCZOnIj9sc+gb2Co1mu2rFoK9z79MX7BQqX5l/48hB8/WYEjjzL/t+zKf8C5lzemLHxHadmLRw4i+ZEYb366nps33dNe6bWNzZ/uaY+Ptu7CwFfGcvMynz/DmtdnYOfVe42+/vsP3oHf0JEYNnmG0muXjhui8vNZpcVSvDt6MH67Ha+0fu59feptixO7diApIQ7Lv/mhwfdTNNfPAzsu3YWJmTk3Lzc9FUtGDWp2TEDD20wT20Fl/L5u2L5tG8LDw5v1OnVduHAB48aNw9tvv41//etf0NbWbpXPaU2dZV9tamqKlJQUWFpacvOeP38OV1fXRveLEokE7u7uKnsEa2r958yZg3HjxmH+/PncvMTERHh6ejZrX9zYequ7/dSNpbnf98GDBzFr1iyl+Zs3b8aDBw+we/fuZsXY1Lqqour7ael2V/Ve8+bNw4ABA7B8+fJ663jv3j3s3btXrTjnz5+PgICAeu+ze/duvPHGG0pxNWd7NUad33xrlkPqLvv8+XOEhIQ02RtaQ/+5jqSgoABhYWHIzMxEdHQ0bGxsWvXz3nvvPfzrX//CO++8g6+++gqmpqat+nntBR2f2sfxSZ3jALvsyx7LWmOf1Zzjo7r7tYa+g45wvqip497q1avh4OCAd999l5u3ceNGpKSkYPv27Y3G0RrfXUv3FZraHs2JtTn/qZac22vyf6vutmlOmVGd91R3v9mcbdQZyh8tkZ6ejsWLF+Ps2bPYtm0b3n77bb5DAgD8/fffGD9+PPbu3Yu5c+fyHY5KmzdvxkcffYSgoCD8+OOP6Nu3L98h8YrKZVQua2g59vOoXMZfuUyTdSTNqdtQ9z01cVzXVJmluZqzjQ4ePIjZs2e3uP6nrcrITa2fOgQCAXbt2lWvvl3V/kjdz9T0+jfncxs7prTmduyszp49i6VLlyI7Oxv79u3DhAkT+A6pHoZhMGPGDERGRiI6OhqOjo58h9RhdbOyxvR330fonHC1lu+o1xs1eu22Gdex1X1PdbdrQ9e62efW7fkveg8Mqvecpq43NxZD3fkvu06NrSursd9VQ9tC1XtrcvsAwMNbkVgb/iry8vJgZWXVrNfybevWrXj//fdx48YN+Pv78x0Op7Ocz7Kvb8m5jiovWy5jl+Vzm6hTNmxuHac6665O3bimtoGm6zHag/T0dPj4+GDu3LmdIt+GkrXa0Kuvvoo7d+7g4cOHXeZiOSGEEEII6Xhyc3NhZ2eHU6dOYdy4ca3+ea1d8WFnZ4fbt2//P/bOOz6Kcvv/n5Dee9lsKiGQhJIQmkBCMzSxUERUvmC9WLGBot6rV6zXclUUu1gQFOQKKgSRIi2hSGiBVCRls0k2ddM2PXl+f/CbcTa7SWaT3cwmOe/Xa167mczOnHl2dp4zz3M+5yA4OFhrfUlJCWbOnIn09L8H1ywsLKDRaODg4NCTU4GFhQVqamp4f7+9vR2WlpY666ysrNDe3t5jGysrK+Hu7s6va2pqgr29vdY+uW2lFGsBwJo1a/DHH3/g/Pnz3W/cA3oi1rpvajT+syMR3v7akytV5aW4Ly5Ga/C0020ryvDvlbdiQ+JRfp2hYq1v/8yAk4srv66luRl3RIfifxmFXX7+vqnReHvXfnj4+Io63+72pe/8SpUKPHf7zdiUdEHUfl++93Y0NTbg1oeewJgp8bC0tOqxTWLX9aYdOmJKsVZTUxNGjhyJ2NhYbN++XausfX9ioNyr58yZg/r6evzrX/9CQkICrKzEX6tiz7XjOj8/P5w7dw7+/v4G29txv52dt9j2E2uLod93eXk5PD09tdbn5uZi6tSpKCoqMsjG7s5VrM29aXd9+9Jne25uLqZMmYLi4mJR++1sPyqVCjKZTNQx9bVXV4i55k3ph3Tctq2tDdbW1jrb6qMv/RVTUV1djZiYGMyYMQNff/21yY6zYcMGrFmzBtu2bcOtt97a/QcGENQ/mUf/JKYf4LY1Rl9m7HuWIf2j2PtaZ99Bf3heNFa/d+XKFdxxxx1ISUnh1w0fPhzbt2/H2LFju7TDFN9dT+8VxvQDxNpqyG+qp2ItU/5u9bVNb33GjvsUe980tI0Ggv/RExhjeOWVV/DKK6/gt99+Q0JCgtQmAQAee+wxfP311zh37hzCw8OlNkeLL7/8EqtWrcI777yDJ598st8+6xsT8svIL+tsO+545JdJ55f1xRiJvrENsfs0Rr9uLJ+lJ4hto4qKCnh5efV4/KevfOSebtfxMyqVCr6+2mP3+u5HYo9p7PM35Lhd9SmmbMeBTGNjIx5//HFs3rwZ+/fvR3x8vNQmacH5xvv37+9xsDxxDUPFWv11vrEv5m71zWOL3afYdu1OrNXZfLyx5pu7ssHY5yRGrNXZdl21hb7PGLN9gP4r1mpra8OwYcOwcOFCvPfee1Kbo1BluGcAACAASURBVMVAeZ7lPt+TZ52u9tdTv6yzzwN91yZifENDxzjFnLuYsXFjtYGxxzHMhU8++QRr165FQUGBlhCtPzJEagMGC7/88gt27NiBzz77jIRaBEEQBEEQhFmTnZ0NxhjGjBkjtSlGoaKiAiEhIbCwsNBa/Pz8kJeXp7N9Twc9OIT+/pAhQ/Su6/iwa6iNwgd/ALC1tTXbB+iYmBhkZmZKbYYWNVWVcPPSrW6hb11tlRoPzpqIJRH+Wst9U6NRWljQKzuEQi0AsLaxEfU91lRVwsW968GImsoKfPyvNfjH9FgsHRnI261vX/rO293bF7Xqym5t4Vi74XOEjxmLL15+HndNjMILKxYjcfOXaGttMdgmsYhpB3PgzJkzuHr1Kt566y0K3uqCvrpX79ixAxMnTsQjjzwCDw8PTJ8+HRs2bEBLy9/XallZGe6//34EBATAysqKt6WnlJeXG22ypLPzFtt+xrRFSMdAMACQyWQoKysz2EaOzs5V7Pcj5lwN2Zefn5/ecywvL+/yGGL2o2+doe3VGWKueVP6IR23tbS01NnW2L85c8LV1RX//Oc/sWPHDrS1tZnkGG1tbVi/fj1eeOGFQSfU6guofxKHmH6Ao7d9mSnuWYa0hZj7Wlf0h+dFY/V74eHhsLe3x8WLFwEAx44dg4uLi5ZQqyuM/d31FGP6AWJtNeQ31VOM8bs1tG3EHFPsPsXcN7tiIPsfPcHCwgIvvvgibrrpJrz88stSm8Pz1ltvISwsDCtWrBD93fYFra2teOaZZ/D888/jqaeeGtTXTl9Cfpk4yC8jv6yz/Zh6jETfOrH77G2/zmEsn6UzettG+n6fUv+OhBj73tZRqAXo3o8MPaaxzt/Q4xrSp5CfKQ47Ozt8+umnmD17Np577jmpzdHi999/x/r16/Hee++RUEsC+ut8Y1/M3epbJ3afYtpVDJ2Jk4w132wIxjonDkOvK7FJZAFp2sccyc3NRV5entlWzzYl/SFmyRR+WVf0VZuI8Q0NfV4Qc+5ixsaN1QZSjGP0BcuXL0dDQwNOnjwptSm9hsRafYBGo8Hq1auxYsUKzJ07V2pzCIIgCIIgCKJL6uvrAQBOTk59cjwLCws0NTVprausNN6glJeXFyorK8EY01m4c5UaU9lo6rYVg6OjIxobG9Ha2tqnx+0KFzcPVJWX6qyvq67SWefs7oFv/8zAT5lFOssPF3L6wlxdm9zcUdPNwO2GZ1bDzt4Br33/C7al5vI2d8TFzQPqMt3y9uqyEjgbMDHh4OyCu599CR8fOImPD57CvDvuRlLiL3j3qYcNtkksYtrBHCgsLIS1tTUCAwOlNqVXDJR7taurK959911cvXoVOTk5ePjhh7Ft2zbccccd/DYrVqyAo6MjkpKS0NjYyNvRUzw9PQ0K/OgJYttPrC2Gft8lJbr3keLiYnh7extsY3eI/X7EnKvYfXl5eenNslxcXGxQ8IuXlxdUKpXOen1ta6z2EnPNS+0rGfs3Z26EhYVBo9GYzAerq6uDWq3GpEmTTLJ/c4f6J/Pon8T0A90htq1N8Z30RV/dG/r6Pm2sfg8A7rnnHnz11VcAgE2bNmHVqlVGsZHDVL6NEGO1hyHXmTF+U31xDEPbRqzPKGafYu6bXTHQ/Y+ect111yE/P19qM3js7Ozwww8/4NKlS/j3v/8ttTk81dXVUKvVmD59utSmmBXkl5FfRn6Z+fplxh4jETu2IXafve3Xu8NY7djbNtK3zpx+R8a+t+m7Jjrej0zhkxnzeu8J5GeKx8LCAtOnTzcoMZWpyc7Oxu23344777wTjzzyiNTmDEr663yjseduxc5ji92nmHbtDcaabwau3Rtampu11uk7d7HnJHZ/xr6uhBizffozXP/s46MrXJOagfI82xv62ofpqzYR4xsaczxcSHdj4305F9wffVQXFxfY29ub9RiBWEis1Qe8+uqrqK6uxptvvim1KQRBEARBEATRLVx2P30Tu6bAz88PCoVCa92xY8f0bttVZo/O/jd37lwcOXJEZ/3x48cxbtw48YaaEFPZaEjbmgqVSgV3d3eDSm2bmui46fjz4D6d9akndNsmJm4G0k6f0FmfkXIaTy+WJhnHyIlTdGzNy0zH4wv+DhLKOp+CZaufho88EJaW19q+ubFRZ19jpsTj9P69OutPH/gNY6bEi7ZpSYQ/KlTXBrBc3D0w9Yab8c/Pv8PF5KMG2yQWMe1gDkRHR6OlpQV//PGH1Kb0ioFyr7awsIBSqQRwbQB02bJlSExMxP79+/ltTpw4gfXr1yMkJIS/dzU0NPT4mDNmzMDBgwe11l28eBFRUVE93mdHxLafWFsM7T9+//13nXW7du3CnDlzDLaxO8R+P2LOVey+EhISsHPnTp31u3btQkJCgmjb58yZg59//llnfUc7AeO1l5hrXmpfydi/OXNj3759kMvlRg2wF+Lq6opRo0bh/fffN1n1LnOG+ifz6J/E9APdIbatTfGd9EVf3RtMdR12dt0bq98DgNtuuw2//PILysrKsG/fPqMF3HKYyrcRYqz2MOQ6M8ZvqjuMcQxD20bMMcXuU8x9k9tOHwPd/+gJVVVV2LRpE+LjxY8F9AWRkZF477338Oabb+LQoUNSmwPg2tjpmDFj8Nprrw3660YI+WXkl3W2nSGQX6ZNX/ohYq9rQ8Y2xO6zt/16dxirHXvbRvp+n+b0OzL2vU3fNdHxfmQKn8yY13tPID9TPEVFRfjoo48wa9YsqU0BcC0h0uLFizF06FB89tlnUpszaOmv843GnLs1ZB5b7D7FtCvQ877WWPPNwLUKYuXFhVrr0s+c0tlO7DmJ3Z+xryshxmyf/szQoUNhYWGBS5cuSW2KDgPlebY3mMqHkbpNxPiGxhwPF9Ld2HhfzgX3Rx/1ypUrqK+vR1hYmNSm9B5GmJTs7Gxma2vLPvzwQ6lNIQiCIAiCIAhRNDY2MltbW/bVV1/1yfFWrlzJbr31VlZQUMBqa2vZvn372Ny5c5m+x5WAgAB24sQJ1tzczH7//XcWGBjY7f9yc3PZ6NGj2Y4dO1h5eTmrqalhu3fvZnK5nO3atUtr/719RNL3eTHrjGGjvvWGtK2puPPOO1lCQoLJ9r97924GgH1/4Sr7KbNI1PLxgZPMS+bPHnntXfb1iUvs29PpbM17n7KQiCgGQGvbTw6dZsHDI9naDZ+zb06lsS1ns9lzn37LPHz92LqNX2lt2/GzXa3vzbbv/nqI+QWFsH9/tZ19f/4v9u4vh9jQqNFs1b/f4LeJiZvBZt+2nH1y6DTbfimffbT/BJuxcKnOvjb+nsw8fP3YQ6+8w75KTmVfn7jEHn71v8zD1499tP+E6DYFwGLiZrD39xxm21Lz2Kbki2zxqtVs0uz5BttkzHYQu9jZ27Ovv/7aZNfpokWLWHh4OFOpVCY7hqkZKPdqAGzu3Lns8uXLrLGxkalUKvbcc8+xRYsW8dvMnTuX/eMf/2C5ubmsqamJXblyha1cubLH9/jU1FQWFhbGDhw4wOrq6tjFixdZbGws+/jjjw22vTPEtp9YWwz5vgGwKVOmsK1bt7Ly8nJWWlrKvvzySxYUFMRyc3MNtrG7cxX7/Yg5V7H7ys7OZnK5nH3xxRespKSEP0e5XM6uXLnSqa0duXr1KgsMDGSbNm1ipaWlrKKigm3fvp1FR0f3yjfoCjHXvKn8ELHbGvKb628cPXqU2djYsI0bN5r0OGfPnmWOjo5s2bJlrKqqyqTHMjeofzKP/klMP9CZXRxi29oU9yyxbdHbe6C5PS92dt0bq9/juPvuu9mcOXPY/fffL9o2Y393hvo2QozVHoZcZ8b4TXWFsY5hSNuIPabYfYq5bzLW+XU+kP2PnpCXl8euu+46FhwcbLbPrcuWLWNyuZyVlZVJbQpjjLH09HTm7e3N4uPjWXZ2ttTmmAXkl5FfRn6Z+fplxhwjMWRsQ+w+e9uvd9auHMZqx562UXl5Ofv+++/ZlClT+uSa6unvyJj+EQAWHR3Ntm/f3uX9qLf3056evzGO29n/yc8Ux/Hjx1l4eDgbPXo0q6iokNoc1tbWxhYuXMj8/PxYQUGB1OYMKDw8vdg/Xnx9wM83GnPu1pB5bLH7FNOuP2UWMU8/GXt922724+V89uKmH5iXzL/buW1jzjf/lFnEZixcyibPvZF9fuQs23ruCnvhy+9ZTNyMHp+T2P319rrq6v/GbJ+fMovYS9/8yACYzfOxIVx//fVs1qxZrL29XWpTtBgoz7OdfV7MOlP4ZYxJ3yZifENDxzjFnjtjXY+NG6sNjD2OYS488MADLCQkhLW2tkptSq8x31YeIMybN4+NHj2atbS0SG0KQRAEQRAEQYiisLCQTZs2jU2fPr1PjldWVsbuvPNO5u3tzRwdHdlNN93EFAoFA6DzYPjjjz+y0NBQZmNjw4YNG8Z++eUXUf/Lzs5mS5YsYa6urszR0ZFNmDCB7dy5U2vf3PH0HVcM+j4rdl1PbBSz3pC2NQVqtZo5Ojqyjz76yGTH6IlY66fMIvb+nsMsdtosZmvvwOwcHFn01Olsw54jfNt0HEC9bs4C5uDswmztHdiw0THsmQ836Qy66vusvvXG2Pb1bbtZROwEZm1ry7xk/uz/nnpe6/9fJaey6bfcylw9vZiVtTULCo9ga977VO++3v31EBsbP5PZ2jswW3sHNjZ+Jnv310OGDQp//SObmDCPObu5Mytra+YTEMRuunsV23I222CbjNkOYhdTi7WKi4vZiBEjWEREBEtPTzfZcUzJQLlXHzx4kC1cuJB5enoyGxsbFhoayp588klWU1PDb1NSUsJWrFjBfHx8mI2NDRs1ahTbvn17r+7xJ06cYFOnTmV2dnYsMDCQvfHGGwbZLea8xbSfWFsM+b4BsNzcXHbjjTcyZ2dn5ujoyObPn6/3WjfGdyz2+xFzrobsKzU1lc2bN485OjoyR0dHNm/ePJaamqpjX3dcvnyZzZ8/nzk6OjInJyc2Z84clpaW1mPfoDvEXPNij2WIH2LItoZ8D/2JnTt3MkdHR7Z06dI+mUg4dOgQ8/PzYyEhIWzHjh2sra3N5Mc0B6h/krZ/4vYtph8wZl9mimen7tqit/dAc3xe7Oq6N1a/xxhjx44dYwDY6dOndf7X2z6EMeP6Np0dw1jtIcZWY/6mOsOYxxDbNob4jGL2KdbH6ew6H6j+h6E0NjayDRs2MFdXVzZq1CiWkZEhtUmdolarWXBwMLvhhhvMJqjr0qVLLCYmhtnZ2bHnnnuOFRcXS22SpJBfRn4Z+WU9P+e+8MuMOUYidmxD7D57268b02fpip62kbOzM7vxxhvZX3/9xYYMGaKzX3P5HRnLP+K2T0tLY3PmzGFOTk6d3o96cz/tzfn35Lj62sCU7ThQSU9PZ3fddRezsLBgCxYsMJtEAY8//jiztbVlSUlJUpsy4DBUrNWf5xuNOXcrdh5b7D7FtOtPmUVszfufMZ+AIGZlbc38gkLYsx9/o9NuHW015nzzT5lF7OuTl1n8jYuYi4cns7V3YONnzmafHU7p8TmJ3V9Prit9bdHZ/4zVPj9l9m+x1qlTp5iVlRV76623pDZFi4HyPNubZx1T+WVStwlj4p63xTwvGHrujHU9Ns6YcdrAmOMY5sLOnTuZhYUF++GHH6Q2xShYMMYYCJPw448/4vbbb8eRI0cwbdo0qc0hCIIgCIIgCABAc3MzlEolcnJydJasrCzU1dXx2x44cKBXZZ2Jwc2zzz6LL7/8Ejk5OXBxcTHJMfbs2YObbroJ31+4Cls7e5Mcgxj4LB8bhk8+/hh33323yY6hUqmwcOFCpKam4tVXX8Wjjz4KGxsbkx2PIPoKCwsL0PAiQfxNWVkZnn32WXz11Vd44IEHsHHjRlhZWfXZsZ944gls27YNo0aNwrp167B48WLY2dn1yfGJwQn1AwRhXPriNyXF75buFeaFWq3G5s2b8c4776CiogKrV6/G+vXrzd5nSEpKwowZM/Dhhx/ioYcektocAEBrays2bNiAt99+G1VVVbjzzjtx7733YurUqbCwsJDaPGKQQfdagjBv0tLSsGDBAuTl5UltCkH0Kc3Nzdi/fz8+++wzJCYmIjw8HK+88gpuu+02qU0DALz99tt49tlnsW3bNixdulRqcwYcnl7eWPLIU5h3591Sm0IQA4ZLp5Lw0t23oaysDF5eXlKbYzDvv/8+nnrqKbz77rt44oknpDaHIAgzY9euXbj99ttx//3346OPPpLaHKMwRGoDBioNDQ14+umnsXLlShJqEQRBEARBEJJQU1ODs2fPYseOHXjppZdw2223YeTIkXBwcEBYWBhmz56NZ599FgcPHgQAJCQk4L///S8OHDiAq1evYvHixbjnnntQUlIi8ZkQ/ZGDBw/inXfewauvvmoyoRZB9Cf8/PyQlJSEZ599Fv/85z8RFRWF77//Hq2trVKbRhAEQRiBqqoqvPzyywgLC8Nvv/2Gn3/+GZ9++mmfCbUAwNvbG1u3bkVqaioiIyNx1113QS6X4/HHH0dKSgoFbhIEQRDEIKa1tRUHDhzA//3f/8Hf3x//+te/sHjxYly9ehVvvvmm2Qu1ACAuLg7//Oc/8dRTTyE1NVVqcwAAVlZWWLNmDfLy8rBx40akpKQgPj4eISEhWLduHf7880+0t7dLbSZBEATRx1hYWGDDhg1Qq9VoamrChQsX8MADD+CRRx6R2jSC6BOamppw4MAB/OMf/4BMJsPNN9+Muro6/Pzzz8jIyDAboda2bdvw7LPP4r///S8JtQiCIPqIJ554Am+//TbWrFmDu+++GxqNRmqTCIIwA1pbW/Gvf/0LS5YswX333YeNGzdKbZLRoMpaJuL111/HG2+8gezsbMhkMqnNIQiCIAiCIAYwDQ0NuHz5Ms6fP4/Lly8jIyMDGRkZKCwsBADY29sjIiICERERiIqKQkREBIYNG4awsDA4Ozt3ut/a2lpMmjQJ7u7uOHz4MFWAIUSTn5+P8ePHY86cOdi6datJj0WVtQhj0BeVtYQoFAq8+OKL2LJlC+RyOR555BHcf//98PDw6JPjE4SxEGaKpyFGYrCSmZmJDz/8EJs3b4alpSWefvppPPHEE3B0dJTaNKhUKnz77bfYtGkTrly5gsDAQCxcuBALFy5EXFwc+fdEr6F+gCCMS1/8pqT43dK9Qjrq6upw4MAB7Nq1C4mJiaisrMR1112H++67D8uWLetyXNBcaW1txcyZM1FeXo5Tp07B1dVVapN0uHTpEn744Qds27YNubm58PLywuzZszF//nwkJCRQ7ABhEuheSxDmxZ49e/Dee+/hzz//xJAhQxAeHo7Vq1fjrrvukto0gjAZ2dnZOHDgAPbt24fDhw9Do9Fg7NixuOOOO7Bs2TIEBQVJbaIWR44cwbx58/DYY4/hrbfektqcAQtV1iII49PfK2tx7N27FytXroSTkxM2btyIG2+8UWqTCIKQiFOnTuGBBx7AlStX8MEHH+D++++X2iSjQmItE1BaWorw8HCsXbsWL7zwgtTmEARBEARBEAOIiooKXLhwAefPn8eFCxdw4cIFZGVlobW1Fc7Ozhg5ciQvyIqKikJkZCRCQkIwZEjPiuqmpaXhuuuuw8yZM7Ft2zY4ODgY+Yz6B8LJbn3QY9XfXLlyBfPmzYOzszNOnDhh8muGxFqmZ0mEf5f//ymzqI8sMR19LdbiyMnJwYcffoivvvoKTU1NWLBgAVauXIn58+dTAH0P6K/36v5qN6GNFN8jXTvSUVlZie3bt+O7777DyZMnMXToUKxevRr33nuv2VYUPX/+PH7++Wfs2rULly5dgqOjI6ZNm4brr78eCQkJGD16dI+fGYiu6a+/1f5qN9E30PWhjbm0h7nYQUhHS0sLTp8+jUOHDuHgwYM4ffo02traMGXKFCxatAiLFi1CaGio1Gb2GpVKhfHjxyM2NhY///yzWfswly9fxr59+7Bv3z4kJSWhqakJYWFhiIuLQ3x8PKZOnYoRI0Z0+/sljEN/vU/2V7uJvoGuD+NA7SgOaieCo7W1FRcvXkRSUhKOHz+O5ORkqFQquLi44Prrr8e8efMwb948sxNocVy+fBnx8fGYN28etm7datb+ZH9nIIi1BsM8aV9A7Wg8BopYC7g21/Lcc8/hiy++wJQpU/D6669j2rRpUptllpAfpgu1Sf8nKysLr732GrZu3Yr4+Hh8+umniIiIkNoso0NiLRPw4IMPYs+ePcjKyjKLDKoEQRAEQRBE/6SmpgZ//vknTp48iZSUFJw/fx4FBQUAAJlMhpiYGMTExGDs2LGIiYlBWFiYUQaTW1paUFxcjIKCAhQUFODkyZP44osvMHToUPzxxx/w8fHp9TGIgcmZM2dw4403Ijg4GHv27OmTa4XEWoQxkEqsxVFbW4uffvoJmzdvxtGjR+Hi4oIFCxZg4cKFmD9/Po0tEARBmAFFRUX49ddfsXPnThw5cgQ2NjZYtGgRVqxYgYSEhH4V1JGbm4sDBw7g4MGD+OOPP1BRUQF3d3dMnjwZU6ZMQVxcHCZMmDBoEzUQBEEQRH9BrVbjxIkTOHHiBJKSkpCSkoL6+noEBQUhISEBCQkJuP766wfkWN7Jkycxc+ZMrFu3DuvXr5faHFFoNBr+uzp+/DhOnz6N+vp6uLm5Yfz48Rg/fjwmTJiA8ePHm21gM0EQBEEQg4/29nZkZ2cjJSUFZ86cQUpKCi5cuID6+np4eHhg6tSpiIuL48eTrK2tpTa5S3JychAfH4+IiAj89ttvlDjPxAwEsRZBmBsDSazFkZSUhOeffx7Hjx/H9ddfj7Vr12Lu3LmU2IQgBih//vkn3n77bezatQuRkZF49dVXccstt0htlskgsZaRycjIwJgxY/DFF19IFuRFEARBEARB9D8YY8jIyMDp06dx4sQJnDp1Cunp6Whvb0dISAgmTpyIsWPH8sIsX1/fHh2ntbUVxcXFUCgUUCqVKCws5N8rlUoUFBRApVKhvb0dAGBpaQk/Pz/4+vpCpVLB1tYWX331FWbMmGHEsyf6O4wxfPTRR1i3bh1mzZqFbdu29Zm4hMRahDGQWqwlRKFQYOfOndi1axeSk5NhbW2NyZMnY9asWZg1axYmTpwIKysrqc0kCIIY8NTU1ODYsWP4448/cPjwYaSmpsLe3h433HADFi1ahJtuuglOTk5Sm9lr2tvbceHCBSQlJeHEiRNITk6GUqmElZUVIiIiEBMTg+joaD5RxECZ/CUIgiCI/oZCocDFixf55fz588jJyQFjDBEREZg8eTJfrSk8PFxqc/uEzz77DA899BC2bNmCO++8U2pzDKalpQVnz57VCnzOzMxEe3s7PDw8MHLkSERFRWm9+vn5SW02QRAEQRADFMYY8vPzkZ6ejrS0NP41IyMDdXV1sLGxwZgxY3iB+cSJExEVFdXvEhjNmDED3t7eOHToEFxdXaU2acBDYi2CMD4DUazFcfDgQbz99ts4cOAAhg8fjpUrV2LFihUIDAyU2jSCIHpJeXk5tm3bhs2bN+PMmTOYMGECnn76aSxZsqRf+ZM9gcRaRubmm29GQUEBzp49O+AvHoIgCIIgCKLnNDQ04OTJkzh27BhOnz6NU6dOoaqqCg4ODhg3bhwmT56MyZMnY9KkSZDJZKL3q1arkZOTg6KiIhQXF+u8VygUaG1t5bd3d3fH0KFDIZPJ4O/vr/M+KCiIFwWUlZVh1apV+PXXX/Hoo4/ijTfeoGz7BHJzc3HvvfciOTkZzz33HF544YU+FZKQWIswBuYk1hJSVlaGvXv34tChQzh8+DCUSiWcnJwwbdo0zJw5E7NmzUJMTAyNPxAEQRiBhoYGJCcn8+KslJQUtLW1YdSoUZg1axZfmcLefuD7GwqFAidPnsSFCxdw4cIFXLx4EcXFxQAAuVyuI+AyVoVfgiAIgiCuCXjS09N5URbXH1dWVsLCwgKhoaF8Xzx27FhMnjx5wAVnGcLatWvxwQcfYPfu3Zg7d67U5vSa2tpanD9/HhcvXuSDo9PS0lBRUQEAJOIiCIIgCKLXMMaQl5enI8rKzMxEXV0dgGvjP0J/g/M/+3MVKoVCgRkzZsDV1RUHDx6Ep6en1CYNCkisRRDGZyCLtThSU1OxadMm/PDDD6ioqMCMGTNw1113YfHixQMiiR5BDBaam5uRmJiIzZs3Y+/evbC1tcWSJUtw7733Ij4+Xmrz+gwSaxmRs2fPYsKECUhMTMT8+fOlNocgCIIgCIIwI5qbm3H69Gn88ccfOHLkCE6dOoXGxkYMHToUkydPxnXXXYfJkycjOjq6U6GLsYVYgYGBsLa2NvhctmzZgsceewzu7u547bXXsGzZMio/Pgipq6vDe++9h7feeguhoaH45ptvEBsb2+d2kFiLMAbmKtbqSHZ2Ng4fPswLCcrKyuDu7o6JEydi/Pjx/BIQECC1qQRBEGZNe3s7MjMzkZKSwi/nzp1DU1MThg8fjlmzZmHmzJmYOXMmvL29pTbXLCgtLdUSb124cAHZ2dlobW2Fk5MTRowYgeHDh2st4eHhlKGYIAiCIDqhrKwMWVlZyM7OxpUrV/jXrKwsNDc3w87ODiNHjtQSSY8ZM4b61g4wxnDPPfdg586dOHLkiCRjU31BSUmJVjA19yoUcQ0bNgyhoaEYOnQov4SGhiIwMJAqdBMEQRDEIKOpqQl5eXnIyclBTk4OcnNz+fd//fUXNBoNACAgIACRkZE6YnA3NzeJz8C4KBQKzJw5Ey4uLiTU6mNIrEUQxmcwiLU4WlpasHfvXmzevBl79uyBtbU15s6dixtuuAE33HCDQYmvCYLoG9RqNX7//XckJiZi7969qKqqwvXXX4+VK1di0aJFcHR0lNrEPofEWkZk/vz5qKiowOnTpylYlSAIgiAIYpDT1taGCxcu4ODBg0hKSsKxiOeCeQAAIABJREFUY8dQU1MDmUyGuLg4JCQkYPbs2QgNDQXQvRCroKAALS0t/P7d3d07FWHJZDKEhoaatOpVUVERnnvuOWzZsgUxMTF4/fXXB0T2WqJ7mpub8fnnn+PVV19FY2MjnnnmGaxdu1aybHok1iKMQX8RawlhjOHy5cs4cuQIzpw5g5SUFGRlZaG9vR1+fn4YP348JkyYwAu4fHx8pDaZIAhCEhhjuHr1KlJSUvj75fnz51FbWws7OztER0dj/PjxmDRpEmbNmgW5XC61yf2GhoYGpKWl4cKFC3yweVZWFnJzc9Hc3AwA8PHx4YVc4eHhvJBr2LBhsLW1lfgMCIIgCMK01NbW6gixuPdVVVUAAAcHB76fDA8PR1RUFKKjoxEREUECG5E0NzdjwYIFuHTpEg4cOIDRo0dLbVKfwYm4MjIycPXqVa1gbK4yhrW1NYKCgnjxllDMNXToULi7u0t8FgRBEARB9ASVSqUjxOKWoqIitLe3AwA8PT21fICwsDBelDUYEgFwQi1nZ2ccOnSIhFp9DIm1CML4DCaxlpDKykr8+OOP2L17Nw4fPozGxkbExsZiwYIFWLBgAcaPH48hQ4ZIbSZBDErS0tKQmJiIxMREnDhxAgAQHx+PBQsWYNmyZYM+2TCJtYzEiRMnMHXqVBw4cAAJCQlSm0MQBEEQBEFIQGFhIfbu3Yu9e/fi4MGDqKurg0wmw/Tp0xEdHQ1/f38A4AVY3GB5Xl4e6uvr+f10J8QKCQkxm0wTly9fxvPPP4/du3dj6tSpePzxx7Fo0SIKJhmAVFVVYdOmTdi4cSNUKhUefvhhPP/885JPapBYizAG/VGspY/a2lqcPXuWrxJz5swZ5OTkALiWITMqKgqjRo1CZGQk/zoYJmMJghg8FBUVaVUbSE9Px+XLl1FVVQVra2uMHDmSF7JOmDABo0aN6lGlWaJrWltbkZ+fj+zsbK3lypUrUCgUYIxhyJAhCAgIQFBQEEJCQhAcHIygoCB+CQ0Nhb09+XYEQRCEeVNVVQWFQoH8/Hx+USgUUCgUyMvLg0qlAnBNLBMSEoLhw4djxIgRvIA5PDwcgYGBEp/FwKC+vh4333wzzp07h3379mHixIlSmyQ5paWlWsHbwvdKpRJtbW0AADc3NwQEBCAwMBD+/v4ICAiAXC6Hv78/goKC4O/vL/n4H0EQBEEMJhhjUKlUKCoqQmFhIQoKClBUVASlUonCwkIUFRUhPz+fn1u2sbFBSEiIjjCbez+Y5wAKCgowY8YMODs74+DBg4NK1GAukFiLIIzPYBVrCWloaMAff/zBi0MUCgW8vb0RHx/PL9HR0RS3RBAmgDGG9PR0JCUlISkpCUePHkVBQQG8vb0xf/58LFiwAHPmzBlwlVp7A4m1jERCQgIaGxuRlJQktSkEQRAEQRBEH9He3o7k5GRs374d+/fvx19//QUrKyv4+/vDyckJTU1NKC0tRU1NDf8ZNzc3BAYGIjg4GIGBgfwSFBTET4T3xwzzycnJePvtt7F79264ublh3bp1uP/+++Hh4SG1aUQvycrKwgcffIDNmzfDwsICd999N9auXYugoCCpTQNAYi3COAwUsZY+Kisr+SoynIAhMzMTGo0GABAYGIjIyEg+k+bIkSMRGRlJg2cEQZg1hYWFvBhLKMxSq9UAAC8vLy1xamxsLGJiYmBnZyex5URjYyMv3MrJydEKbs/Pz9d6dvL29ubFW8HBwQgJCeH/DgwMpKqRBEEQhElpb2+HSqXiBVjCV+59dXU1v72+fissLAzDhw9HaGgoCcT7gPr6eixatAh//vknfvvtN1x33XVSm2S2tLS0ID8/nxdxFRYWQqFQoLi4GEqlEkqlUssvs7e31xFwyeVyBAQEwN/fn/fN6DonCIIgiK5pbGxEcXExCgsLoVQqUVRUhIKCAl6EVVBQgOLiYrS0tPCf8fLy4vtbuVwOuVzOJ7oJDQ1FQEAAVRLRQ3p6OubPnw83NzccOnRo0AoapIbEWgRhfEispculS5ewf/9+HDt2DMnJyaioqICzszMmT56MuLg4TJs2DRMnTqQEcQTRA1paWnDu3DkkJSVp/cacnJwwZcoUxMXFYc6cOZgwYQL5pJ1AYi0jcPz4cUybNg1HjhzB9OnTpTaHIAiCIAiCMCJqtRpFRUV8NaysrCycP38e2dnZUKlUfAZSALCysoKXlxfkcjmftUxYFSssLGxABb/X1tbi9OnTSE5ORnJyMk6dOoXa2lrY2trC3t4eDQ0NmD17NpYuXYpbb70VDg4OUptMiEStVmP37t347rvvcOjQIYSGhmLVqlVYtWoV3N3dpTZPCxJrEcZgIIu1OqNj9Zm0tDRcvHgRdXV1AK5VeeT6so5LSEgIDbQRBGFSWltboVAo+Mz/wiU7Oxu1tbUA/r5XcWJT7nXo0KESnwHRUxoaGrQqEXPViLl1eXl5aG9vB3Atc7Snpyf8/f355y6ZTAZ3d3etdcHBwbC0tJT4zAiCIAhzQjje19lrQUGBVpBsx2ck4ZhfeHg4XFxcJDwjgqOxsRFLlizB8ePH8cMPP2DBggVSm9RvaWxsRFFRkZYv1vF3kp+frzU+bmdnp9cn6/heLpcPqHFygiAIYnDT0NAAtVrN95FdvVepVBCGanI+pnBcg/MxZTIZgoKC4OzsLOHZ9U9OnjyJm2++GcOGDcPu3btJzCAhJNYiCONDYq3uycnJQVJSEpKTk3HgwAHk5ubC0tISI0aMwLhx4zBu3DiMHDkS48aNM7v4F4KQkpaWFmRnZ+Ps2bP8cu7cOTQ0NMDHxwcTJ05EXFwcpk6diokTJ8LGxkZqk/sFJNYyAjfccAM0Gg2OHj0qtSkEQRAEQRCEAXATzh0DALn3WVlZfNA6AFhbW6O1tRUA4Ofnh5iYGMTFxWHixIkYOnTogA8CLC4uRkpKCpKTk5GUlIQzZ86gubkZMpmMfxiLi4vD2LFjodFosGPHDmzZsgVHjx6Fq6srli5dimXLliE+Pp6yrJoh1dXV2L17N1577TVkZWXB2toa8+fPx6pVqzBv3jyzFWaQWIswBoNRrKUPxhjy8vKQmZmJq1evai05OTlobGwEADg4OPAiZG4JDg7mq0TSoDZBEN3BGINKpUJBQQFSU1NRXl4OhULB33Py8/N5v9vd3Z2/13D3nmHDhmHkyJE0ETkIaWxshEKhQEFBgVawsEql0vq7vr6e/4y1tTV8fX0hl8vh6+uLgIAA/m8fHx94eXnBy8sLvr6+FGhPEATRjykvL9dajh8/jsrKSmg0GtTW1qKkpAQqlQolJSW88BcAXF1d4e/vDz8/P52+IiAgAEFBQZDL5bCyspLw7AhDaG5uxoMPPojNmzfjzTffxJo1a6Q2acDS3NyMoqIiKJVKlJaWori4GGVlZVrvy8rKUFxczCdc4HBycoKfnx98fHzg7e0NPz8/+Pr6wtvbG97e3vDy8oKnpyc8PDzg6ekJR0dHic6SIAiCGGzU1NSgoqIC5eXlqKysREVFRaf9W2lpKT9uzuHp6am3f+Pe+/r6IjAwEL6+vgN6Xlkqdu3aheXLl2PevHnYunUrVVGRGBJrEYTxIbGW4eTn5+PUqVM4d+4cv1RWVmLIkCEYMWIEYmNjERsbi9GjRyMyMhIBAQFSm0wQJqesrIxP6suJstLS0tDS0gJnZ2fExMTwv42JEyciIiJCapP7LSTW6iWpqamIiYlBYmIi5s+fL7U5BEEQBEEQhAC1Wq03Gzv3tzB7GZf1k8tU5unpCbVajYyMDJw7dw5WVlaYN28eli5divnz5w/4QPS2tjZkZmbywqyzZ88iPT2dzzbDibOmT5+O4ODgLvelVCqxbds2bNmyBRcvXoSLiwvmzJmDBQsW4IYbboCPj08fnRXRkYyMDCQmJmLnzp1ISUlBW1ubVsASANjb22P8+PFYvHgxFixYgPDwcIms1Q+JtQhjQGKt7mGMobCwEDk5OXqFXBUVFfy2jo6OvHCLC24MDAyEXC7n31M2UIIY2JSWlkKpVEKpVEKhUOi8LywsRHNzs9ZnhgwZAkdHR3h4eEAmkyE4OBgjRoxAWFgY76cHBgaS6J8QRU1NDQoLC1FSUsK/KpVK/pW7RoXJOYBr1bo48ZaPj4+WmIsTdHHBw9xiYWEh0VkSBEEMXFpbW3nRVVlZGUpKSrSEWKWlpSgtLdVaJ6zuAwCWlpZa66ysrODq6soLQIKCgvjkS8JKBn5+fmabsIYwjA0bNmDNmjW466678Mknn1C2X4lpaGjgA9u7Cnjn/u4YxmJra6sl3hK+enl56V3v6elJ3ztBEMQgpr6+HpWVlbzgqrKyEuXl5fz7jq/cey6BEIeVlRUvJpbJZLwQS/ieEyD7+PjQ2JWEbNiwAU899RQeffRRvPfee+TXmwEk1iII40NiLeOQl5enJd46d+4cSkpKAAAuLi6IiIjAyJEjERERgaioKERGRiI0NJT6FqLfoVAokJmZifT0dGRkZCAjIwPp6el8fIebmxvGjh3LC7NiY2MxfPhwutaNCIm1esny5ctx6dIlXLx4kSZlCYIgCIIg+hC1Wg2FQgGFQoH8/HwUFBSgoKCAX1dcXMwPpltbW8Pf3x9BQUEIDg5GYGAgHzzO/e3m5ob6+nokJiZi8+bNOHDgAABg9uzZWLp0KRYuXDigs6xrNBqcP3+eF2clJydDrVbD2dkZkyZNwtSpUzFu3DhMmzYNrq6uPT5Obm4uEhMTsWfPHhw9ehTNzc38fqdPn464uLgBL4STkry8PBw7dgzHjh3D4cOHkZOTA09PTzQ1NQG4dr17eHggIyMDFy9ehEaj0dmHjY0NoqKicNNNN+GWW25BbGyspM9CJNYijAGJtXqPRqPhK50olUq+X+beKxQKrYB4V1dXBAQE8MGQPj4+fIUTPz8/rcltgiDMg5aWFpSWlkKlUkGlUqG0tBRFRUX8uuLiYr5aljCjsLe3Ny/eDA4Ohlwu598HBASgvLwcKpUKhYWFKC4u5l+VSiV/HA4LCwv4+vrCz8+Pv4f4+/tDLpdDJpMhICCAz1JMY7WEGBobG1FWVoby8nIdIUBJSQn/P04sUFlZqfX5IUOG8KItDw8PuLu7868dl47rKXCYIIjBQENDA9RqNdRqNSorK/n3wkW4vrKystv7rZeXF7y9veHr66sjqBX+39raGmq1WqvyYsdXbnxR+Kxia2sLDw8PXrzl7u7Ovxe+BgUFUbWtfsCePXtw5513IjIyElu3bsWwYcOkNokQAWNMJ7i+q1du6Vi9C7hWwYsTb7m5ucHV1RWurq5a74XruPXcK/lsBEEQ0lFfX4/q6mqdRa1Wo7q6GlVVVTr/q6qq4vuIhoYGnX26u7vD09NTR+DbmRjY09NzQM8PDxQYY1i/fj1efvllvPjii3jppZekNon4/5BYiyCMD4m1TEd5eTnS0tJ0hC1KpRLAtSTgXJLBoUOHai3BwcH0/EhIQltbGwoKCvjk9Vzy3ZycHGRlZfFjJd7e3joCxMjISMjlconPYOBDYq1ekJeXh/DwcHzzzTdYvny51OYQBEEQBEEMKLqqinX16lVUVVXx27q7u/OBEtyDsPDvroInWlpasGfPHnz77bfYt28fGGOYPXs2brvtNtxyyy29EiaZM8XFxUhJSeHFWWfOnEFzczNkMhlfNSsuLg5jx441WbYMjUaDgwcPYv/+/Th27BjS0tJgYWGBUaNGYdq0aZgyZQpiY2MRHh5OGTt6QFNTEy5dusR/z8eOHYNCoYCtrS0mTpyI6dOnY968ebjuuuugUCjw66+/YseOHUhOToaXlxfmz5+PBQsWoLm5GVu3bsWff/4JtVqtcxwrKyuEhIRg/vz5WLlyJWJjY/v0+yKxFmEMSKzVN1RVVUGpVCI/P5+vrFNUVISSkhKUlJTwWbSF1Xasra35zKRcplJ/f3/4+Pjwk+qenp7w9vaGp6cnVewiCANgjPFBjR2DHAsLC3WEWULRFHCtip5MJoOvry98fX353yYnwgoICEBgYCDs7XvXPzc3N6O8vLzTIGvhqxB3d3et5wJ9rzKZjERdhEEIK710FHR1JULoWEkOuPYb6k7c5ezszC9cwDD3t4ODgwQtQBDEYKO2tha1tbWoqalBbW0tHwTLretOfCUUcHM4ODh0KWrVJ8QydSVDTjxeXFzMC9C5ZxXOL1IqlVpJbYYMGcL7QVziiYCAAD4RBbdeJpNRsI7EZGZmYvny5cjOzsb777+P++67T2qTCBPR0tLSaZWUyspKraD+jgH+NTU1evdpb2+vV9Tl7u6utc7R0RFOTk78e0dHR7i4uMDZ2RmOjo7kuxEEMaiora2FRqOBRqNBVVUV/76urg5VVVVaIizh/ZgTYXGLvmdp4NqYjz7RLXeP7qzaooeHB803DkCqq6tx1113Yd++ffjmm29w++23S20SIYDEWgRhfEis1ffU1NQgMzMTaWlpyMrK0hLFcDE0lpaWCAgI0BJwBQYGIjAwEP7+/kaZLyMGJ01NTSgqKkJhYSGfLFd4Debn56OlpQXAtYQ13PUXFhaG4cOHIzIyElFRUfD09JT4TAYvJNbqBY899hh+/fVXXLlyhUoYEwRBEARBGEBzc7NWFay8vDzk5+drVcniKv1YWVlBLpcjKCgIISEhCA4O5itica89eaDNyMjAV199hc2bN6O8vBzXX3897rjjDixcuHDAVXZqa2tDZmYmzp49y4uz0tPTYWlpiREjRvDirGnTpiEkJEQyOysqKpCUlISjR4/i+PHjuHjxIlpaWuDs7IyYmBiMGzcOsbGxGDNmDEaMGAE7OzvJbDU31Go1MjIycP78eb5Ee1paGt9+kyZNwrRp0zBt2jRMmjSpy7bLzc3VK9xaunQp4uLicODAAfzvf/9DUlISSkpK0N7ervX5IUOGQCaTISEhAbfffjvi4uLg5ORksnMnsRZhDEisZV5UVFTwAq6ioiKUlZXxAZPCSj4VFRX8wCOHjY2NlojL09OTD+7suF44iW/K+xRB9AUdg1k40VVZWZmWCKvj0nFo2MHBAZ6enloirI5CSU6Y5ejoKNHZ6kej0aCgoAAlJSUoKCiASqWCUqnkxVxcxS5h0LiDgwPkcjn8/PwQGBjInxtXvYs7d6ryR/QWjUbTraCh4/qqqirU1NToFToA1yZ/XVxc4ObmxgcCC4VdLi4uWuu5bZ2dnWFnZwcXFxc4OjrCzs5uwCYpIYjBCGMMVVVVaGhoQGNjIy+Y4kRXarVaS3ylT4Al3LYznJyc4OzsrFd01ZUQ1d3dvV+P5zQ2NqKysrJbEXlpaSna2tr4z9nZ2fFJpToTklOlLtPS3NyMF154Ae+88w4WLlyIzz//nIJUCC24+2dXgi7heuG2NTU10Gg0eit7cVhYWMDNzY0Xcjk5OcHNzQ0ODg46wi5HR0edbV1dXWFtbQ0XFxfY2dnB3t4ezs7OdN8gCKJXNDY2oqGhAXV1dWhpaYFarUZLSwvq6upQXV3Ni6w4H7EzAVbHbbuCu7/pE1oJhbCdibHo+ZUQcvHiRdx6662or6/Hjz/+iKlTp0ptEtEBEmsRhPEhsZZ5IUxEzi25ubnIycmBUqnkY98A8JXcg4KC4O/vzyc+9Pf3h1wu16oWTwx82tvbUVZWhrKyMqhUKl6MVVRUBKVSCaVSySeT4rCystJKZC9cQkNDaT7TTCGxVg+pqalBQEAA1q9fjyeffFJqcwiCIAiCIMyKxsZGFBUVdVoZKz8/nw9YsLW1hVwu16mGxS3GDFRoaGjAnj178Pnnn+PQoUPw9/fH//3f/2HVqlUYOnSoUY5hDmg0Gpw/f54XZp04cQKVlZVwcnJCdHS0ljjLnCc1mpqakJqayouPzp07h0uXLqGpqQlDhgxBSEgIIiIiEBkZiREjRmDEiBEIDQ2Fv78/LC0tpTbf6DQ2NkKhUCA3NxcZGRnIzMxEVlYWMjIy+IdzNzc3xMbGai29qUyWlpaGHTt2YMeOHUhPT4dcLseSJUuwdOlSTJkyBRYWFkhNTcX27dv5RBb6Mh3a2toiLCwMS5cuxW233YbIyEijZcQmsRZhDJaPDcNL//43Hn30UbMTHxBdU1NToyVI6VgdqKKigq9+wv1dX1+vsx9LS8tOs2N3FiDg7u4OBwcHPsu2o6MjZcwnDKa+vh4NDQ18UEt9fT0f8NcxULCzYEFhxVkhrq6ueoWK+qrScctgyOpXUVGB4uJiKJVKqFQqLWEXJxItLS3VmkDjqvzJZDL4+fnxFTN8fHx01lE/QhiblpYW1NbW8uItoZiipqYGVVVVOpVvhNty67sLmHNwcICdnR3c3Nxgb28POzs7uLu7w9bWFg4ODnB1dYWdnR0fTGxnZ8eLNezs7ODs7AwnJydYW1vrvFIfSRB/w4mouMBY7pV7X1VVhcbGRr7aQGNjIx/02tjYiLq6OtTW1vICLI1Gg8bGRlRXV6O+vl6r/+oIJxToKPDkfF3hOk6IpW9bV1dXqkjQDc3NzSgtLdXyM/QJyYV+nKWlJXx9fREQEAA/Pz/+NTAwUOtvCsTqHYcPH8Zdd90FjUaDF198EatXr6brmTAq3Ykb6urq9IodOPFsfX09NBoNL6JtbW3t8njcvZ3zvRwcHGBra9upuMva2rrb7QHwCe04f47bB0EQpof77XN+YltbG/88JxRTcb5fdXU1WlpaeH+xM/GVvu27w9bWlheQOjk56RWUcj4iV0WQqwjdmfiUIIzFd999hwcffBDjx4/Htm3bIJPJpDaJ0AOJtQjC+JBYq3/BzTsJxTcKhQKFhYX8e2EldwDw9PSEj48PvL294ePjw48HcfNU3t7eWomR6FnNPGhqaoJarUZVVRUqKytRXl7OJ6jlRFnFxcUoKytDeXk5ysrKtJJj29nZaVVik8vlkMvl/DpubJDGsfofJNbqIRs3bsS6deugVCoHXOUFgiAIgiCI7lCr1ToCLKEwS6VS8Vn6hZljhQsnzAoJCTH5g8TZs2fx+eef44cffkBzczNuvvlmrFixAjfccMOAEPUUFxcjJSWFF2edOXMGzc3NkMlkvDArLi4OY8eO7fcPbS0tLcjOztYSKnHvucylXDW2wMBAhISEICgoCHK5HDKZjB/A4AKTzYHW1lb+QbysrAwlJSUoLS3lq80pFAo+uIfDx8cHUVFRvEgtMjISERERJq2Mxgm3fvzxR2RkZCAgIACLFy/G0qVLMXXqVF58VVdXh4MHD2L79u04fvw4SkpKdIIKLCwsYGdnh9DQUNx666145JFHepzhhcRahDFYPjYM9nZ2UKvVkMlkGDduHEaOHImoqCiMGzcOERERA6K/IK7R0NDAVyzpLju2vv93lSmbq3Li5OTEB0I5OzvD3t4eTk5OcHFxgb29PR/ozr3nAuFtbGzg6OjIB01x+xsyZAhcXV35ICzC9LS2tqK2thbt7e2orq7ms6wD4KtMVFVVgTGGmpoatLW1obq6Gg0NDbzgigu8VqvV/PuqqirU19fzwdidwX3XQpFgZxmF9YkMPT09KcN6L2loaOCDqdVqtUGVM9zd3flKGcL3wteAgAASrxB9Dhcg3NDQwFeAEIo8uHtTx4o83P2rMwGJ8DfQFZxoiwsK5l45cRj3Knxvb2+vta2DgwOAvwOHAcDFxYX31bj5Gq7vBK49Izo7OwMA39cSgwvhdcr138K+nev3gWsiGy5Agrv+hfvggme5AFjuVaPR8J9tbm7mg2G5V+53JQbuOu1KGKmvQp4wkUBHASa3D8K8aGpq4oXkwrFWoa9RWFiI6upq/jO2trZ8JubOqnRxr4R+qqur8eKLL+Ljjz/G+PHjsXHjRowbN05qswhCL1xfYmyBBrdfbnuxcOMUAHjxLufjcf2XcOyC89M4307olwnjbITvhRXDuM8B2n6c0NcT2kIQYuB+GwC0fELgWh/BBUxyfh3w928R0PYdhe85P5P7HPcZbmwJ+Nun5H6XQlu6qmqqD31CTO53YgzhpvA5iyDMiaamJjzzzDP48MMPsXr1arzzzjtUgcSMIbEWQRgfEmsNPGpqalBUVKRVZalj/FBZWRlKS0tRUVGh83lbW1u4u7vz84XC99wrJ7Dnxg85kZe9vT1f9dnW1laCs5cezqevra3VSqAinPOtq6tDVVUVL8ZSq9Va77n53464uLjAz8+Pj1Pjkj96eXnxQjxvb2/4+vqaTQwbYXxIrNVDRo8ejcmTJ+Pzzz+X2hSCIAiCIAij07FMszBYIDs7WytI2d3dXUeAxf09bNgwySo31dfX47vvvsMHH3yA9PR0REdH47777sPy5cvh4eEhiU3GIicnB0lJSbw4Kz09HZaWlhgxYoRW1SxTCnfMkcLCQuTl5fHiJoVCgfz8fOTn56OoqEhn0MLKygre3t7w8vLis/x1zA7ITRILJ4UB6GQS7ZjllPubm2jTlyW1rq6Oz5gixNLSEj4+PggMDERQUBCCgoIQHBzMvw8NDZU8YYRY4RZHfX09EhMTsWXLFpw8eRKVlZU6AZ0WFhawtbVFQEAAZsyYgccffxyjRo3q1hZOrPX4Wx/CigKeiR7ywTOP4dVXXkZ4eDguXbqES5cuITU1FVevXkVbWxvs7e0xcuRIjBkzBqNGjUJUVBSGDh2K4OBgCrQfhHABFmq1WqcqEhf8zgXCc9VMGhoa9A7scgKe7qog6IPrC7iAJGEARcd+SthvdPyfm5sbf98WBsF3drzuEJttW0yGcEA76KUjwsBrYXBLd/8THpsLaOOCqztuKwZOMODs7AwHBwc4OjrC1dUV9vb2cHBw4IOkO5v8cHBw4EV+XAZiLviNMH9aW1tRWloKlUqF4uJilJaW8iIu4brCwkKda8vLywu+vr7w8/ODTCaDj48P/P39+UkZYWZEd3d3CjwhzBbu3sndX7kAR+5ebCyRi1DsIgyi7CnCPktY/UsYIAxoByVzcEGNne1isu16AAAgAElEQVSPQ98kt1Bo1hk9DYzUZ5cYetqeQmFTZwgFTxz6fB99voE+uzoGsQoDZ4X7NTT4XB/CoPCOleJ6Kzrk9s29CqvYUbA50ZHq6mo+4zIn4CouLuZfuQqhwmrnTk5OCAgIgEwmQ0BAAAICAuDv74+goCD4+/tDLpfDz8/PaJXP+yOpqal49NFHkZycjFWrVuGVV16hQDdi0CIUdxkqLOmqClBH8QrnOwiPIXxvDIS+ltA/EwrFODqKvjj0VYbV93lA13cExCcI6GocRgyd2S+GjiKlniB2bEdfggehDyeEu2aE6BO9d2a/8PNCf9AQ4Xx3CAWJwu+gozhR6Jt3Vq1OnwCS8xn1CSA7VsEjiMFGTk4Oli5dipycHHzzzTe45ZZbpDaJ6AZPL2/EzpqD6KnTpTalz2GMDernLcJ0KK5kYcdH75JYa5DS0tKCsrIyHaGQPvGQ8JWLU+pqDFhfUlLg77lk4fMV599yvqu+ZxN9z1UcXY1jd+W765s35vx+4fMq9wwiHL/mnhXq6+tRX1/Pz+l3N4bs7u7Ox5PpE8J1ts7b23vQCuAIbUis1QMOHz6MWbNm4ezZs4iNjZXaHIIgCIIgCINoampCYWGhjgiLWxQKBT+5YmNjw0/qd6yOJZPJEBoa2quJJFNQVFSEjRs34vPPP4dGo8Hy5cvx0EMP9dvsqPX19Th37hwvzDpx4gQqKyvh5OSE6OhoXpwVHx9PlTa6oaWlRaeCFfd3XV0dNBoNqqqqUFJSgnPnziE0NJR/aO/4gC7MqAjoBuBxf3MTuK6urrwAzMXFBa6urnBycoKXlxefKcXLy4uv/NWf4IRb27dvR2ZmJgIDA7Fo0aJOhVscjDGcO3cOH3/8MQ4fPoyioiI0NzfrTMRyk5NBQUGYPn06lixZgqlTp/LiuZSUFEyZMqXXQXjE4MbS0hJ79+7FnDlztNY3NDQgLS0NqampWiKusrIy/nMBAQF83xgcHIzAwED4+fnx/SdlQCIMgQts4gJWuAFkbuCZC3gSBjJ1rPIEaPdTHYOeuvpfZ6KxzgJo9CE22NuQyiadBawLA7A6BtILJwA6ThAI+23ODq7P7ljNDPh7woGbjOCCZ/QFZBFEV9TX1+sVdRUXF0OlUqGkpIRfJ/Q1OZycnODh4aEj4uKqrbi5ucHW1haOjo5aFVg4EYCbmxs/mUZiAGIgwfWFwn6ts0pJwoleYZ8oDDTt2JfpEyTpmzDu+JzYcb8c+gJQhRjS73akp6Krnoq8AP0BykL0BTbrC0zumCQF0D+h39EvENou3K9wf51VYuP6dmEArD5xHkH0F0pKSqBSqaBUKnkxFyfuUigUOsmMbGxsuhRzBQYGQiaTDWjBOGMMW7ZswTPPPIP6+nqsXbsWTz75ZI/viQRB9J7OxDZCAXhXlZGEwiDhOIc+H6sz4bk+n0qfAB3QXw1JjDCoM7GRRqOBjY2NqHuvWLFUZ4hNuNMZYsVi+ny6znwufb5lZ76qvvEi4ef1jf/os1uYyKgzsV9v/GWCIHoPYwyffPIJ1q1bh2HDhuF///sfwsLCpDaLEEFMzFhcvHhBajMIYsDh7uGBQqWyV74cMTgRVm/mEopySUnr6+t1KkwJn1u45ythgg7umU2fiIpL4qxv7LirRKadJcrg6Di/xfn9wmcMzq8X7ot7VhAm1XR0dIS9vT1cXFzg7OwMe3t7ODk5aSXlJIjeQmKtHrB06VIUFRUhOTlZalMIgiAIgiB00Gg0yMvLQ25uLnJzc5GXl4f8/Hy+ylBpaSm/rYuLC4KDg7UWrnpPSEhIv8quev78eXz66afYvHkzXFxccM899+Cxxx6Dv7+/1KYZhEqlwpkzZ3hxVkpKCpqamiCTyXhh1rhx4zBp0qQBHSghJatXr8aePXvw119/9SiT+WCmp8ItIW1tbdiyZQu+++47XL58GZWVlXqFWFwlLrlcjpiYGEyZMgWzZ89GVFQUfW+EyeEqUF69elVL8Jyfn4/CwkKtwA07Ozv4+/vD398fnp6e8PDw0Fo8PT111tPEP0EQBFFbW8tnQuxu4ar5VVVVoampia/m2l3QnnDiigty44LRhMFr3AQWJ4IQihqEgWzCoLiuMtgLA+GEQXsdRZz6hBsEQRAEQfSOpqYmVFRU8Am8hMm8uPfCZF7AteQFwmRe3HvuddiwYT2u7GIuaDQabNy4Ef/5z39gZWWFtWvX4vHHHydfhCCIPuXbb7/Fvffei6NHjyIuLk5qcwiCIMyCvLw83H///Th69CjWrFmD9evXU5UKwiypqKjA22+/jY0bN8LV1RXPP/88HnzwQZq3Jghi0PLUU09h586duHr1Kt0LiUENibUMpKysDHK5HJs2bcKKFSukNocgCIIgiEFIQ0MDL8LSt3DVPgDAx8cHISEhvAgrODgYISEh/Pv+Xompvb0diYmJ+OCDD3Dw4EFER0fj4YcfxooVK/pNBpmcnBwkJSXx4qz09HRYWlpixIgRWlWzQkNDpTZ1UFBbW4uAgAC89NJLePLJJ6U2p1/DCbe2bduGrKysHgm3hOTn5+P777/H//73P/z111+oq6vrNGO8nZ0dvL29MWrUKEyYMAHx8fGIjo7ud1XLiP5LVVUVn8G8uLgYSqUSKpUKFRUVqKys1Fk6YmtrqyPqEoq77Ozs4OjoqJXRSfieq5xCmZ4IgiAGN1wmQ41Gg8bGRlRXV/MZ3tVqtVY2ei57PZfNUJgFkcsqz31WmDVRmLW+swp/xqRjRVtAf5Z2oYiMQ1+Gdn2Z2PVVHRMKzDi4qnscQhFbd/YBXVfv0We/KT5DEARBEPpobW2FSqXiq3EVFhaioKAARUVFKCgo4J93hRmQ3d3d+Wpc/v7+fLUubp1cLtfpO82R8vJyvPHGG/j444/h5+eHl156CcuXL6eKugRBmByVSoWRI0dixYoVeP/996U2hyAIQnIYY/jiiy+wdu1aBAUF4euvv8aECROkNosgdKirq8NHH32E//znP7C0tMTTTz+N1atX0xwdQRCDmoaGBgQEBOCZZ57BunXrpDaHICSFxFoG8sEHH+D555+HSqWiTNcEQRAEQZiE5uZmKJVKvkqHMLtpTk4O8vLyeIFCx6ymwiU8PHzABmQ1Nzdj06ZNeOedd5CXl4cbb7wRTzzxBGbOnCm1aV3y/9i79/im6vt/4K+kaZImbdP0mt7btLSlBUULbIPyU1GYTlGc9+l8oGxOJ7Kv6OYQFPA+p27gpl/n/QZueMHLGJNNUYtOoEUopff0nrZJ29zT3PP7g+/57CRNS4GW09L38/E4j5zcTt5JL0nO+bw+b6fTierqahbM+uabbzAwMIDY2FicffbZIeGsqR6km6o2b96M+++/H52dnUhMTBS6nDMGF9zatm0bGhsbkZOTg+XLl590cItjMpnwn//8Bx999BE+//xzdHR0hHQ0CicSiRAfHw+tVovS0lLMnz8fpaWl0Gq1yM/PnzKdBMmZJRgMYnBwcMQgF38ZGBiAyWTC0NAQHA4HGzw/moSEBMTExCAmJiZkXa1Ws44l3IA57pQb7M3vcDKW60YajE4IIWR683g8cDgcAI6975nNZnYdP+zFhcE4kbqD8W/PifR+yA+OcUwmU8j58FqAYxOCWCyWkMv44TQOP8zG4YffjlfLZDGeobDo6OiIx0xGCrEBkcNyQORQHjC8+xqH3wlOiMeIFPAb6XUihJAziclkYvuuI3XoamlpCXmv5TpP87tz8deLiopCunEKqbOzE5s2bcLrr7+O3NxcrFu3Dj/96U8ptEUImTBXXXUVqqurUVNTQ2ORCCHTXmtrK372s5/hyy+/xG9+8xs8+OCD1E2LTDpOpxMvvvgiHnvsMQwNDeGXv/wl1q5dO+W7DhNCyHh4+eWX8ctf/hKdnZ1ITU0VuhxCBEVhrRM0b948zJo1C6+++qrQpRBCCCFkivJ6vWwmUn4IK1IYi38AO3wpKCiYdoEej8eD1157DY8++ij6+vqwcuVK3H333SgsLBS6tIh6e3uxf/9+Fs46cOAA3G430tPTUV5ezsJZ3/ve92gQ1yQQDAYxc+ZMXHjhhfjzn/8sdDlnrPDgVm5uLq644opTDm5xBgcHsX//fuzevRtff/01jh49CqvVetwBstHR0dBoNNBqtZg9ezbKy8tRVFSEwsJC2nlEJjW32w2n08m6pTidTpjNZgwNDWFoaIiFu4aGhkIuN5vNcDqdGBoagsViidglxeVyjRqAHMlYglzhHUr4M6yHD+oOHxwdPoA8fHD4SIOsRxpEHmmb4UabAT7SAO2xooHcp8/J/j5HwnUeGg+Rwign6mSCIJGCJmMRHqYZq0gBm+OJFJoZC+7/4skID/OcCtoWOZ7R/m5Hui4mJiZi8AjAiAHuYDA44vYCgQC7Ti6Xs20HAoERt8f/W46KimLvY36/P+J9gsHgsL9/7j5erzfiY3i9XgSDQYjF4pDPCz6fL+QxuPdfv98/bFsikQjBYPCk/mdNlPj4eIhEIvacoqKiEBcXF/I5QiaTDZt5OVIgPjyEFikUF+mzDxfW54vUdS78s0+kz0pjrZX/WUkikUyaIAYh5PSwWCzo6upCZ2cnO21vb2fnOzo6Qv5Xp6amIjs7G1lZWcjNzUV2djZbcnNzodFoRnwvnAjt7e145pln8MILL0Cj0eDuu+/G7bffToOFCSHjavv27bjuuuuwa9cuLF26VOhyCCFEMENDQ3jyySfxu9/9DgUFBXj11Vcxd+5cocsiJAQ3ZmXjxo2wWq1YtWoV7rvvvinRSZgQQk6XefPmoaSkBG+++abQpRAiOAprnYC6ujqUlpbi3//+NxYvXix0OYQQQgiZpLxeL4xGY8Qglk6nQ3t7OxuoNFoYS6vV0g6d/+P1erFt2zY8/PDD6OjowIoVK/DAAw8gKytL6NJC6HQ6VFZWsnBWXV0dxGIxiouLQ7pm5efnC10qieDvf/87LrvsMtTU1GDWrFlClzMtcMGtrVu3oqmpadyDWxy73Y5Dhw5h//79+PLLL3Hw4EF0dHQgEAiwQZyjkUgkSE1NRUlJCWbPns26cVFHLjJdjBbk4ocpRruOH0gJD2CEdywJD5GEdyrhd2gBhodwTjZMQv5rsnwGHalLDRHWyfx+jBaWHM1InW+O52RDlCdb50RvazzDDZN1W2S4sXTQHC8nG+A8mRpP5H16tEDraCHc44U9rVbriNsdGhoat0DuqeAHqrjgGhdyCwaDCAQCiIqKYoEF/mXc9xMudMcPNfh8PrY9jsfjCXnsYDB42l4DfuhMLpcjJiYGwPDwGT8EFv6/h7+N8AAZ/z2L/54SHj7jB9ZOdhuEkJPH79DF78zF7U/v6OgI+b+tVqvZfplIHbomYl9Na2srHnvsMbz++uvIzMzEmjVrcOutt0acKIQQQk7EwMAAysrKcPnll+Mvf/mL0OUQQohgPv74Y/zqV7+CwWDAvffei7Vr11JAnkwq3JiVjRs3oru7GytWrMCmTZug0WiELo0QQiaVffv24Xvf+x727t2LBQsWCF0OIYKjsNYJuP/++/HGG2+gvb39tM7YRQghhJDJx2QyRQxihR88lslkyMzMHBbCmsgDx2eSQCCA9957D+vWrUNbWxuuv/56bNy4EVqtVujS4HQ6UV1djaqqKuzduxefffYZBgYGoFQqMWfOHBbOqqiomDQDnsnoLr74YgQCAXz66adClzItna7gFsfn86GjowO1tbXYt28f9u/fj9raWnR3dyMYDA4LcY0U6pJIJEhKSkJubi5mzZqFoqIiaLValJaWori4eNgM9YQQ4YzWDWm0Ad+jBYbCg2ZjdbL3m2jj2X1qvETqAHKyxrOT2al0VOOL1AnlREXqbDIW1NmNEEJOzGihtkifFyIF0yIF0MK71I3ntiLVHP5+73A4WGArPBTP3x7/duNBKpWy70tisRgymSyk0xsXBORuEwwGIZFIIBKJ4Pf72XuYz+dj78nBYDDkvMvlCln3+/0QiUTw+Xzj/pmHH/gK7/TK7yrL/2wT3kGW2wb/cn6IjQum8QNr/AAZ9zj8x+fe78fjMwchQvH5fOjp6UFHRwc6OjpCOnRx60ajkd0+JiaGdeXKyspCTk4OcnJy2HpeXt5Jf8doa2vDU089hVdffRUxMTG48847sWrVKqSkpIzX0yWETDM//elP8e9//xu1tbV0LIkQMi01NTXhf/7nf7Bz505cdtlleO6555CdnS10WYQw4WNWbrnlFjz44IPIzMwUujRCCJmUbrnlFlRXV+PQoUNCl0LIpEBhrTEKBoPIz8/H9ddfjyeeeELocgghhBAywU4ljMWfzZPCWCeH2+G1fv16tLa24vrrr8eGDRtQUFAgWE19fX3Yt28f65p14MABuN1upKeno7y8nIWz5s+fz2Z7JlNHU1MTSkpKsGPHDixbtkzocqY9Lrj19ttvo7m5GXl5ebj88stxzTXXoKKiYkIf2+PxoKmpCVVVVfjuu++wf/9+NDQ0sEE/3P907qu0WCwO6SbAD3WJxWKkpqaisLAQZWVlKCgoQEFBAbRaLQoKCqgTBSGEEEIIIWRKGi3UZbfb4fV6T/p2wWAQZrM54u24wBg/+M5dzw+mcUG2k+0aBxzrnBUbG4tgMIiYmBgWFOOCU1zQQyKRQC6Xw+PxQC6Xs3AY1w0tKioKfr8fUVFRkEql8Hg8rAOaWCzG0NAQpFIpRCIRnE4new24uvkTDnCvX/jreqIiBcD4ncIiBcC4kBkXBOPfnrsNFzbj7j+W2xIyXtxuN7q7u0fs0NXS0hLyv4XrzsXfl88tBQUFxw039vf3409/+hP+/Oc/w+l0YsWKFVi9ejWKi4sn+qkSQs4gO3fuxKWXXooPPvgAy5cvF7ocQgg5rQYGBvD4449jy5YtKCsrw7PPPjvhxwAJORHBYBCffPIJ1q9fjyNHjuCqq67C448/LuiYFUIImexMJhOysrLwzDPP4Be/+IXQ5RAyKVBYa4yqqqowd+5cHDhwAOXl5UKXQwghhJBTFCmMxR28raurY4MjpFIpsrKyRjxwm5eXNy4z6pP/+vjjj/Gb3/wGzc3NuPnmm7F+/Xrk5+ef9jp0Oh0qKytZOKuurg5isRjFxcUhXbMmQ5cvcuruuusufPLJJ2hubqYuupMMF9x666230NLSclqDW3wDAwOoqalBbW0tvvvuO1RVVaGxsZENkJNIJAgEAiy4xf0e+f1+AMcG6kVFRcHn87EwV0JCAgoKClBcXBwS4tJqtcjIyKCwLyGEEEIIIYSMEy7Axe9cZrVa4ff7I17GD0RZLBYEAgG43W62zzDSZWazGcFgkHUv44JWXKCM2/ZYcJ0zuZCUUqmEVCplISeuy2dsbCyAY125/H4/lEolRCIRoqKiIJfL4ff7WRgsGAyyoJjP54NCoYDD4YBEIgl5vly9/OAcdxn33LjXjH8b7jU5EScS7Aq/bXR0NGJjY8f8WqnV6pDtk+nHZDKx7lytra1ob28PWfjdudRqNXJzc5Gbm4u8vDy2zi3JyckAjgUqX3nlFfzxj3+ETqfD0qVLsXr1alx88cV03IAQMiqHw4HS0lIsXLgQW7duFbocQgg5bWw2G/7whz/g6aefhkwmw6ZNm3DbbbfR8VkyqfzrX//Cfffdh++++w5XXXUVHnnkERQVFQldFiGETHpPP/00Nm3ahO7ubpq8mJD/Q2GtMXrggQfw2muvoaOjgwbMEUIIIVMAN5NmpM5YDQ0NbABGdHQ0srOzIwaxtFotcnNzacfgaVJdXY17770Xe/bswdVXX43HHnsMhYWFp+WxvV4vDh8+zMJZn332GQYGBqBUKjFnzpyQcJZarT4tNZHTx2azISsrCxs2bMCaNWuELoeMIjy4lZ+fj2XLlp324BafyWRCbW0tqqqqcPToURw8eBA1NTVwuVwAjr3PBINB1pGRGzQXHuySSqVsNnjufunp6SgqKooYGKbOjYQQQgghhBAydQ0NDcFkMrHw04mejvW+Yw2Icd225HI51Gr1iOujXcfvviWRSCCVSuF2u1mwKxAIwGKxAPhvsGukENhot+WeGxeU485zndfG4lSCXse7b3x8PGQyGeLi4thlZGoIP6bA78yl0+nQ3t7O/p5kMhkyMzPZfhqNRoOBgQF88803OHjwIAoLC7Fq1SrcfPPNx+3SRQiZntavX48tW7agoaEB6enpQpdDCCETzuPx4LXXXsODDz4Ih8OBO++8E2vXroVKpRK6NEKYyspKrFu3Dl9++SUuuugiPPnkkzjnnHOELosQQqaEYDCIkpISLF26FM8++6zQ5RAyaVBYa4xmz56NxYsXY/PmzUKXQgghhBAc61TS1dUFnU6H1tbWkDBWa2srDAYDu2344HbuNC8vD5mZmTTDpcD0ej3Wrl2Lt956C/Pnz8fTTz+NBQsWTOhj9vX1Yd++faxr1oEDB+B2u5Geno7y8nIWzpo/fz4NqJgGNm/ejPvvvx+dnZ1ITEwUuhwyRlxw680334ROp5sUwS2O3+9HW1sbGhsbUVdXh8bGRhw9ehT19fVslmaxWIzo6Gh4vV4W2pJIJJBIJPB6vSEdubj/Q263m3XlUigUIe9t3JKXl4f8/HyapYgQQgghhBBCCID/dhXjQk8mk4mFobiwk8VigcPhwNDQEKxWK+x2O4aGhmCz2WCz2TA0NAS73Q6r1YqhoSE4HI7jdtISiURISEhggSaVSgWlUomYmBjEx8cjNjYWCoUCsbGxiI+PR0xMDJRKJVQqFWJiYhAXF4f4+Hio1WrEx8dDpVIhOjp6TM/5ZIJtJxOKO9Uw3FgCcqPdNikpCTKZbMy/C+TUeDwedHV1DQtxcUtHRwebhEcsFiMYDEIkEiE7OxsVFRX4f//v/7F9OTk5OZBIJAI/I0KIUHQ6HcrKyvDYY4/h7rvvFrocQgiZUB6PBy+//DIeeeQRWCwWrF69Gr/+9a9pglQyqXzzzTdYv349PvvsM1x00UV4/PHHMXfuXKHLIoSQKeWf//wnLr74YtTU1GDWrFlCl0PIpEFhrTFoaWlBYWEhPvvsM1xwwQVCl0MIIYRMGy6XC3q9PmJ3rLq6OjidTgDDZ7HkL8XFxYiNjRX4mZBIvF4vnn32WWzcuBFJSUl44okncO21105IpxidTse6ZlVWVqKurg5isRjFxcUsmFVeXo6ysrJxf2wyuQWDQcycOROLFy/Gc889J3Q55CRVVVXhjTfewHvvvYfu7m5otVpcc801uPnmm1FaWip0eSHcbjeam5tx9OhR6HQ6HDlyBN999x1aWlowNDQE4NgM3yKRiM0ILhKJIJfLIZFI4HK54PV6ARwb+KNQKBAVFQWv18veFwEgOTmZBbfy8/ORk5ODnJwc5ObmIjs7mw6CEUIIIYQQQggZF+GhppNZj3TdSPhdvsKX8C5gka5LT08f1/2PXEcvLhRnNpvhdrvhcDhgs9ngdrthtVrhdDrhdrthMplYVzCr1Qq32w2bzQaHwwG32w2z2cxei+MF4gCwDl/hHb3kcjkLvnGviVKphFKpRGxs7LDzCQkJ7DxNAHPyTCZTyDGM3bt3o6amBhaLBWKxOGTCnpycnGGd1KmjOiHTwxVXXIGmpiYcOnRozEFkQgiZaux2O15++WU8/fTT6Ovrw4oVK7Bx40bqJkgmlcOHD+ORRx7B9u3bsXDhQjzyyCM4//zzhS6LEEKmpOXLl8NiseDzzz8XuhRCJhUKa43BM888g0cffRR9fX00wxUhhBAyjnw+HwwGQ8RZKLmFo1arI4ax6MDl1PTll19i1apVqK+vxx133IFHH3103EJ1Xq8Xhw8fZuGszz//HP39/VAqlZgzZw4LZ1VUVFBYgWDnzp249NJLcfjwYcyePVvocsgpCgQC+Prrr7F9+3a8++670Ov1KC0txTXXXINrr7120gW3+ILBIDo7O9HQ0IDGxkbU19ejvr4etbW16O3tZbMxy2QyBAIBFuQCwIJcHo+HXR4VFYW4uDjIZDL4/X428zknNjY2JLyVnZ2N3Nxc5OTkIDs7G1lZWdRZkBBCCCGEEEKIILjwk8VigclkgtVqhcVigdVqDVk3m80wm80jXh9JdHQ069SVkJAAlUrFzvNPuevCL1er1ad1cjCv1wu73Q673Q632w2LxcI6e51I8MtsNsNut8PhcMBut8NsNmO0YQIqlQqxsbEsvMV1RlMqlYiPj0d8fDwLevHPc93RuNCYUqlEQkLCaXu9Jquqqiq89NJLePvtt+F0OjF79mwUFxcjJiYGnZ2d0Ol06OzsZJ254uPj2QQ83DEQfnd1uVwu8DMihJwsbrb5Tz/9FEuWLBG6HEIIGXc9PT3YvHkz/vd//xeBQAA///nPcffddyMrK0vo0ghhamtrsWnTJrz77ruYP38+1q1bh2XLlgldFiGETFmdnZ3Iz8/H1q1bce211wpdDiGTCoW1xuCHP/whEhMTsW3bNqFLIYQQQqYc/kyS4UtHRwc7+CiXyyPOIKnValFSUgKlUinwMyHjob+/H2vWrMFbb72FSy65BJs3b0ZhYeEpbbOvrw/79u1DVVUV65zlcrmQnp6O8vJyFs6aP38+BQ/IMJdccgn8fj8+/fRToUsh42y04NZ1112HmTNnCl3imA0NDaGxsRGNjY1obm6GTqdDU1MTmpqa0NvbGzIrs1gshtfrZQOupFIppFIpgsEgnE4nuzwmJgZqtRoymYzdx2g0su5ewH+D0uGzPHPnKSxNCCGEEEIIIWQyG6lzV6Ql0vUDAwMhk6XwjdTBKyMjA+np6RGvS0pKgkwmO82vwsicTifrAGaxWFiQi3/e4XCwEBx3Pf+8w+GAxWJhncVGEh7e4kJe/DCcSqWCWq2OeDm3PtUNDQ1hx44deOutt/Dpp59CoVDg6quvxrXXXotFixbBbDaPOLlda2sr268z2uR2ubm5iIqKEviZEkIiCQQCON7o69cAACAASURBVOecc5Cfn48dO3YIXQ4hhIyrlpYWbNmyBS+++CLi4uJwxx13YPXq1UhMTBS6NEKY1tZWPPHEE3j55Zcxc+ZMPPjgg7j66qvpeCchhJyiBx54AC+99BI6OjqoezAhYSisdRwejweJiYn44x//iJ/97GdCl0MIIYRMOl6vl838GL60tLTAbDaz21J3rOnt7bffxt133w2ZTIZnn30Wy5cvP6nt6HQ61jWrsrISdXV1EIvFKC4uDglnlZWVjfMzIGeapqYmlJSUYMeOHTRT1hmOH9zavn07enp6WHDr+uuvR0lJidAlnjSv14v29vaQgTvNzc2or69He3s766YlEokgkUjg9/tZuEssFkMulyM6OhrBYDBk1nGlUonk5GTExMSwx3E6nejr62P3l8lkyMzMHDHMVVxcfFpnGyeEEEIIIYQQQsabzWYL6dbFBbkGBwePe+p2u4dtLzY2FomJiVCr1UhJSUFycjKSk5ORlJSEpKQkdj4lJYWd576bT3ZutxsOhwNms5l1+OLOc129HA4HTCYTC3lxry23mM1mWCwW+P3+iI+hVqtHDHJxnc/CL+evT6YuX319fdi2bRvefvttHDhwACqVCpdeeimuvPJKXHLJJcMmsHO5XNDr9RGPxTQ0NMButwM4NnFPVlZWxOMwBQUFk+o1IGS6ef3117Fy5UocOnSIjmERQs4IgUAAn332Gf7yl7/g/fffR25uLlavXo3bbrttynyGJdNDR0cHHn30UbzyyiuYMWMGfvvb3+Kmm26CWCwWujRCCJnyvF4v8vLysHLlSjz00ENCl0PIpENhrePYs2cPLrjgAuh0OuTn5wtdDiGEECKI0bpjtbe3swOnarV62IBtbiktLaUdctOUXq/HnXfeiQ8//BA///nP8fvf/x7x8fFjuq/X68Xhw4dZOOvzzz9Hf38/lEol5syZw4JZCxcupFm5yAm766678Mknn6C5uZlmm51GzuTgViSR3sPr6urQ0tKCvr4+9h4uFoshEokQCATYLM1RUVGQSqUQiURwu93sttHR0UhLS0NKSgrkcjkCgQC8Xi8cDge6u7vZ4CBg5M8G3GV5eXl0IIQQQgghhBBCyBnJ6XSOGOQaHByE0WhEf38/BgYG2OnAwMCwDlUKhYIFt7iAFxfuSklJQXp6OlJSUpCSkoK0tLQzIozDdfAKD3SZTKaQ8+HrJpOJrXu93ojb5gJckbp6cUG6kU4n6hhHR0cHdu3ahY8//hj//Oc/ERUVhYqKClx22WW47rrroNFoRr1/MBhkHblaW1uHnXZ3d7P9PUlJScjPz2fhrcLCQhQWFmLGjBlIT0+fkOdHCDk2UfTMmTOxePFivPjii0KXQwghp6SjowMvvfQSXn75ZfT29mLp0qW4/fbbsWzZMjrmQyaVrq4u/P73v8cLL7wAjUaD+++/HytXrqSxAYQQMo7eeecd3HTTTWhpaUFubq7Q5RAy6VBY6zgeeOABbNu2Dc3NzUKXQgghhEwYj8eDrq6uiGGspqYm1mkjOjoa2dnZI3bHUqvVAj8TMtm89NJLWLNmDTIzM/Hiiy+ioqJi1NsbDAZ8++23qKqqYp2zXC4XNBoN5s6dy8JZ8+fPh1QqPU3PgpyJbDYbsrKysGHDBqxZs0bocohA+MGtv/3tb+jt7WXBrRtuuAHFxcVClzihvF4vurq60NnZifb2dnba1NSE1tZW9PX1YWhoiN1eLBYjGAyywT1cty4A8Pl87HKJRILExEQkJSUhLi4OUVFR8Hq9sNvtbAAad1uZTIbs7Gykp6cjOzsbaWlpyM7OhkajQVZWFjQaDTIzM6FQKE7zq0MIIYQQQgghhAjDZDKhv78/JMDFnTcajSHhLoPBgIGBgZD7y2QyJCcnIzU1FRqNhgW5wkNdqampSElJgUwmE+iZTiyn0zks0MV17ooU9goP1XHdyvliYmKgVqvHFOwKPx3rwOX+/n589NFH+OCDD/Cvf/0LXq8X5513HpYvX44f/vCHKCoqOuHXwu12o62tbViIq7m5Gc3NzXA6nQCOdVrnwlv8ZcaMGcjMzDzhxyWE/NczzzyDdevWobGxEdnZ2UKXQwghJ8zv92PXrl144YUXsHPnTiQnJ+OWW27BbbfdRhPgk0mnv78fTz31FLZs2YLk5GTcc889uP3228/Y7z6EECKk8847D4mJifjggw+ELoWQSYnCWsexYMECzJ49Gy+88ILQpRBCCCGnZGBgAC0tLezgW0tLCzsop9fr2aDp5OTkYSEsbpbF7OxsmmGGjInBYMDPf/5zfPLJJ7j33nvx0EMPRdzxpdPpWNesyspK1NXVIRgMQqvVYuHChSycVVZWJsCzIGeyzZs34/7770dnZyd1ZSMAKLg1EpfLBb1ezz4v9PT0oK6uDnV1ddDr9TAajXC73ez2YrEYgUCAnReJRIiKikIwGGSduYBjs4KnpKRApVJBKpUiOjoaXq8XQ0NDbMAZfybxhIQEZGRksCUzMxPp6enIzMwMCXZRkJcQQgghhBBCyHRkMpmg1+thMpnQ09PD1sPPd3d3w2KxhNxXLpcjIyODdcEe6XS6Tdbm8XgidkUby2l4dzTg2L6NsYa7kpOTkZycDJlMht27d+ODDz7Azp07YbVakZWVhcWLF7NlPEIf/M7stbW1OHr06LDJ/KRSKbKysthxo9LSUpSVlUGr1VLndEKOw+FwID8/H7fccgt+97vfCV0OIYSckNraWrz55pt444030NPTg/Lyctx22224+eabIZfLhS6PkBCDg4PYsmUL/vCHP0Amk+Gee+7Br371K/pdJYSQCVJXV4eysjLs2rULS5cuFbocQiYlCmuNwuVyIT4+Hq+//jpuuOEGocshhBBCjquvr4+FsfihrObmZphMJgDHumPl5+ejoKAgJIjFLXFxcQI/CzLV7dq1C7feeiukUilee+01nH/++QCOdV05dOgQC2ft2bMHRqMRCoUC55xzDgtmLVy4kMIzZEIFg0HMnDkTixcvxnPPPSd0OWQS8vv9+OabbyIGt37yk5+c1AzGZ6pgMIje3l50dnaiq6sLXV1d6OjoQFNTEzo7O9HX14eBgYGQQFc4bjAPP+Qll8uRlpaGlJQUJCUlQaFQICoqCj6fD0NDQ7BYLDAYDGhvbw8JganV6uMOLsvJyWEdwQghhBBCCCGEkOnGZrOht7cXRqMRBoMB3d3d6OvrY6d6vR69vb0wGAwh37mVSiWysrKQmprKJk/hJlXJyclBZmYmMjMzabZ6AENDQywsdyJLX19fyP4R4Ng+Em5/h1KphMPhgNFoRE9PD3w+HzQaDc4++2x8//vfx7Jly1BeXj6uz4Uf5OKHucYa5MrNzaVJAMm099RTT2Hjxo1obW1FSkqK0OUQQshxNTc3Y+vWrdi6dSsaGhowY8YM/OQnP8GNN96IGTNmCF0eIcPY7Xb8+c9/xhNPPIGoqCisWrUK99xzD41/IoSQCbZq1Srs2rULjY2NNIkLISOgsNYovv76ayxcuBAtLS3QarVCl0MIIYQAOLkZDvkHyIqLi2mAMpkQLpcLa9aswfPPP48VK1bgkUceQV1dXUjnLJfLBY1Gg7lz57Jw1rx58+gAPjmtdu7ciUsvvRSHDx/G7NmzhS6HTHL84NZf//pX9PX1seAWHZQaO5fLhcHBQTabd0tLC44cOYL29nZ0d3ejv78fFosFHo9nzNuMjo6GSqVCcnIykpKSkJiYCJVKhUAgAI/HA5vNhv7+fjbIjL/7I1KoS6vVhlym0WhohyIhhBBCCCGEkGnL7/fDYDCgp6cHPT096O3tRXd3NwwGA7q6uthpb28vvF4vux8X5srKykJ2djYyMjKQnZ2NrKwsZGZmIjs7GwqFQsBnNnn5fD4MDg6iv7+fLQaDAUajMeSyvr4+GI1GGI3GkNceODYpjkKhQFJSEjIzM5GXl4e0tDQkJyezU25JSUk5pYnTwoNc3HGrI0eOsA5ukY5XcWEuCnKR6cDlcqGgoAA33ngjnnzySaHLIYSQEel0Onz44Yf429/+hv/85z9IS0vDddddhxtvvBHz588XujxCInI6nXjxxRfx+OOPw+Fw4M4778TatWuhUqmELo0QQs54drsdmZmZ2LBhA9asWSN0OYRMWhTWGsXmzZvx0EMPob+/HyKRSOhyCCGETCN6vZ6FsPhLQ0MD7HY7AEAmkyEzM3PYLIU0UyERQkNDA6688kq0t7djwYIF0Ov1qKurQzAYhFarxcKFC1k4q6ysTOhyyTR3ySWXwOfzYffu3UKXQqYYCm5NPIvFwmbybmpqgk6nQ1tbG7q7uzE4OAij0Qir1QqPx4Ox7M7gBiipVCokJiYiNTUVKpUKcXFx8Pv9cDqd6O/vR09PD7q7u+F0Otl9ZTIZUlJSoNFokJqaipSUFKSmpkKj0SAlJQUpKSlIT09n69HR0RP50hBCCCGEEEIIIZNSIBBAb28vurq6oNfr0dHRge7ubnR3d4es87tuJyYmIiMjA3l5ecjNzWWn3HpqaqqAz2hqsdlsMBqNaGtrwxdffIEDBw6gsbERnZ2dcLvdEIlEUCgUkEgkcLvdcLlcIfeXSCQhAS5uH0hycjI0Gg3S09ORlpaGzMxMpKamjnnitZGCXLW1tTCbzQCOTcSTnZ0dcoyrtLQUZ511FuLj48f9tSJECFu2bMF9990HnU6H9PR0ocshhJAQ1dXV2LFjBz788EMcPnwYarUay5Ytww033IAlS5bQmBMyaXk8Hrz22mvYtGkTLBYLVq1ahfvuuw9qtVro0gghZNp4/vnncc8996Crq+uUJoIh5ExHYa1R3HTTTRgYGMA//vEPoUshhBByhvF6vejs7Bx2oEqn06Guro4NFE5ISEBBQcGwDllarRb5+fkUJiaC8fl8OHToECorK7F161bs378fwWAQMTExOPfcc1kwa8GCBUhKShK6XEKYpqYmlJSU4IMPPsDll18udDlkCuMHt9555x0YDAYW3LrppptQWFgodIlnvKGhIfT09KCpqQktLS3Q6XRobW1Fd3c39Ho9rFYrhoaG4PV6jxvsioqKgkwmg1KphFKphEqlYgvXkdTlcsFgMLDZq/mDzAAgKSlpxFBXeMCLBhwRQgghhBBCCJlu+vr6oNfr0dXVhc7OThbmamtrQ1tbG/R6PQKBAAAgJiYGeXl5w0Jc3CkFHo4vGAyiqakJBw4cYMvBgwdht9shk8lQUFAAjUaDxMRExMbGQiqVIhgMsslyuMltTCZTyHYTExOh0Wig0WiQkZHBOqmlpqYiIyMDaWlp0Gg0ox4X6O/vR3NzMxobG1FfX4+GhgbU19ejubmZdV3PzMxESUkJioqKMHPmTBQXF6O4uBg5OTl0bIxMGW63G4WFhbjqqqvwxz/+MeJt/H4/rFYrgGPdQbh9jlarFX6/H8FgkAUcOdxA9KioKLafUSqVQqlUAjj2P1Qul0/IcyKETG0ulwuVlZX48MMP8dFHH6GjowPZ2dm44oorcMUVV+C8886jienIpOb1erFt2zZs2rQJXV1dWLFiBTZu3EjfDwghRADnnnsu5syZg1deeUXoUgiZ1CisNYqioiJcf/31eOihh4QuhRBCyBTk8XjQ1dUVcebAxsZG+Hw+AMd2qEcKY3ELIZOB1WrFvn37UFlZib1796KyshIulwsKhQJOpxOLFi3Cpk2bsGDBgjHPrEmIEFavXo2PP/4Yzc3NNBscGTcU3JrcgsEgjEYjurq60NDQgIaGBrS2tqKpqQkGgwFmsxkOhwNerxd+v3/UbYlEIkgkEsjlciiVSqjVaqhUKqjVaqjVajawyePxwGg0Qq/Xw2QywWAwhGxbJpMhMTGR3S8jIwPp6ekR17OysiCVSif6ZSKEEEIIIYQQQgTl8XjQ2dmJ9vZ2trS2trL1rq4udlxFJpNBq9WisLAQhYWFKCgoYKe5ubk0yHgEfr8f9fX1OHDgAGpqalhIqq2tDT6fDyKRCLm5uSgqKkJJSQmKi4uRnp6O2NhYxMTEwOVyQa/Xo6enZ9hpV1cXC1oBx4IjSUlJIfs6wk/VajVyc3MRGxsL4NgkcR0dHSHH044ePcrOc9stLCwM6cRVVlaG4uJitp3JwOVyYWhoCCaTCYFAABaLBT6fDzabDR6PBw6Hg90GODbw2G63s/uHn+fExsYO+/2Wy+WIiYmBSqVi+6zi4uIgl8sRFxeH2NhYpKSkUMhNAFu2bME999yD3//+97BYLCyoOjAwwBaLxTJhj69SqRAbG4u4uDjExcWxyam483FxcYiPj0dCQgLi4uKgVquRlJSEpKQkJCcnQ6VSTVhthJDTp6amBrt378bu3bvx5Zdfwul0Yvbs2bjiiiuwfPlynHvuufQeQSa9QCCA9957D+vWrUNbWxtuueUWPPjgg8jMzBS6NEIImZYqKyuxaNEi7Nu3D/PmzRO6HEImNQprjcButyM+Ph7vv/8+li9fLnQ5hBBCJim3243u7u6IB43a29vZoNxIgazS0lLMnj2bdnSTSUmn06GyshJVVVXYu3cvqqurEQwGodVqsXDhQsyaNQtbt25Fa2sr3nzzTepQRKYEm82GrKwsbNiwAWvWrBG6HHKG4ge3tm3bBqPRyIJbP/3pT1FQUCB0iWQUwWCQdc9qaGhAY2Mjmpqa0Nrait7eXpjNZtjtdrjd7uMGu4Bjs9tKpVIoFArExsZCqVQiISEBsbGxiIqKQlRUFPx+PxwOB8xmMwYGBtDf3z+sa1diYiLS0tKQnJyMxMREtiQlJbFTbp1buJl0CSGEEHJqhoaG4HK5hl3ODbo9HrPZfNwun3a7HV6v96RrPFEJCQknPBCLGwTMFxcXx7qQAoBYLKb9XIQQQiaMz+eDXq9nnbiam5vR0tLCTgcGBgAAEokEubm5IQEu7rSgoIC6zUTg8XjQ3NzMJrnhQlxNTU3sdQWOfR7IzMxERkYGcnNzkZGRgczMTKSlpSExMRHAsZ+Ty+WC3W5Hb28v9Ho9DAYDuru7YTAY0NPTM6xLUFJSEuvWlZ6ejrS0NPY42dnZyMnJgVwuR3t7+7DjcbW1teyzmlqtZuEtfpArPz9/xM8+brcbTqeThagsFgsLUZnNZjidTjidTlgsFtjtdjidTtjtdlgsFnYdNxGQw+Fg13Fd4kYjk8mgUCgADP8cFelzVaQOS8B/P6+O9rlTLBYjOTkZycnJrPs71yE+JSUF+fn50Gq1yM/Ppwn5TlJ3dze++OIL7N27F0eOHEFNTQ3rTCeXy5Gbm4vs7GxkZWUhOTmZBaISExNZdyylUskmbYqPj2cTznGdtIDQ7yH8UB//ewv3/cJsNsNms8Fms8Fut8NqtY56Wfh3EolEMuI+SK5+7ncpNTUVGo1mUoUmCZmu9Ho9PvvsMxbQ6unpQVJSEi688EIsWbIES5YsQW5urtBlEjImwWAQn3zyCR544AHU1NTgqquuwmOPPUYTZRJCiMBuvPFG1NXVobq6WuhSCJn0KKw1gurqapSXl6OhoQFFRUVCl0MIIURAZrMZLS0twzpk6XQ6tLa2sgMfXCCLfyBIq9WiqKgIcXFxAj8LQkbm8/lw6NAh1jVrz549MBqNUCgUOOecc1BeXo6KigosXrwYSUlJ+Prrr3H11VcjNjYWO3bsQGlpqdBPgZAx2bJlC9auXYvOzk42eICQiTRacOvmm2+mDppnAJPJBL1ej76+Phw6dAg1NTXo7OyEXq/H4OAg7HY7XC4Xm/l7LMRiMRsMrVQqoVAoIJVKIZVKERUVBZ/PB6/XC5fLBafTCavVCqvVOmw7crk8YrArUriLvx4+CJsQQgg5UfwOAfwBg06nkwWSHQ4H67zADyrZbDb2vskf5MofeMoNeATAuhJw/H5/yPtipAGt4YNY+Y8ZXhs5dfxByJxIHSH4A1CBY10zuPC5RCJh+9a4+0ZFRQ0b1Mof1BwTE8MG43Pb5gfOuMAavz6VSgWxWDxuz50QQsjpNdqxnLa2Nva5Ij09fViYp6ysDOnp6QI/g8nJ6XSybkBdXV3o6upCd3c3u4zbLxJp2Am/q3hCQgJ7f4+KioJIJILH40EwGMTQ0BA8Hg+sVivsdntIiIT7uXHv84mJiUhISIBCoUBCQgLi4+PZ50+Hw4HBwUH09fXBbDazz3QSiQQymQzR0dEQi8Xw+/0IBAKw2WzHff4xMTFQKBSsQxE3IY9KpYJCoWB1cOvx8fGIi4uDQqGAUqlkny/UajV7DvzPNuON+3xss9ngdrthtVphs9lgMBhgMBjQ39+P/v5+9PX1wWg0wmg0ore3F4ODgwCOdZXPyMhgwS2tVouCggLMmjULpaWl1P2dJxAIoLKyEtu3b8euXbvQ3NyM6OhozJ07F2eddRaUSiWeeeYZ/P3vf8ePfvQjocsdE7vdzjp+9ff3s/XBwcGI6/39/cMmsFAoFEhNTUV6ejpSUlKQlpYGjUYTcZ2O0xBy6oLBII4ePYq9e/eyY/06nQ5SqRQLFizAkiVLsHTpUpx77rn0fZdMOf/617/w29/+FtXV1bj66qvx8MMPo7i4WOiyCCFk2jMajcjOzsbzzz+PW265RehyCJn0KKw1gq1bt2LFihVwOBzDDhoSQgg585hMpogH8LgFOHYwJycnZ1iHLK1Wi5KSEupeQKYMq9WKffv2sR22e/fuxdDQENLS0jBv3jxUVFRg4cKFmDdv3rAZFF955RXccccduPjii/Hmm2+ygVGETHbBYBAzZ87E4sWL8dxzzwldDpmGuODWm2++ib/+9a+wWCwoLS3FzTffjJtuugmZmZlCl0gmkN/vZ7NHt7W1oaWlBW1tbWhtbUVnZycb2OByuY7beQM4NnAm0u2io6Mhl8shl8shk8nYAhwbQOLz+eDxeNgAJqfTOWwbMTExw7p0RQp3qdVqxMfHQ6VSscFR/M4ahBBCTh8uEMV1BeAHlqxWK/x+P7uOH17iQlL82di5IBO3zbFui7vsVPFnkucHevgdnPgzzPMDO5zw0E94ACe8G5RCoQj57hveQYofGgoXvq1I+KGhkYz2GONtrJ0ewkUKsfGDc0DozP4cfkiPEx6Y8/l8wwZL84N+/FAe93vIfywucMffzql0K4uOjmYdAbifcUJCAqKjoxEXF8d+piqVCtHR0YiPj2eXxcfHIzo6GiqViv0uxcXFITo6GgkJCSwcFimwRgghZOI4HA60tLSgqakJDQ0NOHr0KOrr69HQ0MDeT1JSUjBz5kyUlJSgpKQEpaWlKC4uRm5u7gl3pJyOzGYzBgcHYTKZ2MI/bzab2fs3997OnYZ/luR/DggGgwgEAvD7/Ww9EAiw0BX//V4kEkEikUAul7MJcGQyGcRiMUQiEdxuNywWC/r7+xEIBBAVFYWUlBTk5eVhxowZKCoqwrx581BWVsa6o0+Xn73FYmGTVPJPdTod2tvb4Xa7ER0djbKyMsyZMwdnn3025syZgzlz5iAhIUHo8k+r3t5ebN68Ga+//jp6enowa9YsLF++HOeddx5+8IMfsM/1N9xwAxobG1FVVSVwxRPL4/Gw0F9fXx8MBgP6+vrQ29sLo9EYsm40GkO+i0il0lEDXRqNBmlpaax7FwVNCDn2nbi6uhrffvstKisr8fXXX2NwcBCxsbH4/ve/j4qKClRUVOD73/8+jV8hU1ZlZSXWr1+PL774AhdddBGefPJJnHPOOUKXRQgh5P88/vjjePLJJ9Hd3T1sojZCyHAU1hrBhg0b8Le//Q11dXVCl0IIIWSc9PX1oaGhAc3NzWhpaUFzczNb52b9kslkyM/PR2FhIVsKCgpQWFiI3NxcGkRBpiS9Xh8ym1Z1dTWCwSC0Wi0WLlzIwlmlpaUjHngMBoNYv349Hn/8caxbtw4PPfTQtDlISc4MO3fuxKWXXorDhw9j9uzZQpdDpjm3241PP/0U27dvx0cffQSbzYYf/OAHuOaaa3DNNdcgIyND6BKJQAKBAPr6+tDT0wO9Xo/u7m40NTWhvb0dXV1d6Ovrw+DgIKxWKxvgzA1EAsBmhuYTi8WQSCRs1moutDVSt6/o6GgW8uLuA4B19HK73cMGXHNiYmIQHx/Pwlv8IBe3qFSqEa/jZp8mhJCpiAutcCEULlDCBUa4wajhwSpugCoXMgkEAmwfxVi3eaK4QadcuIQfeOKCUFygRCQSscGXXJCKH2ThtsXvDsC/nt+1iB+C4geYwsNShIwnfuCQC47xg4b8weDc3xy/Oxz392cymdjfK/e3xw06t9lsbNsWiwVerzdi59Nw3N8XF9bj/sbUajX7O+L+PhISEljwKy4uDmq1GrGxsex8XFwcEhISWDCMEELI2HV0dKC+vh719fWoq6tjYa6+vj4Axz4DlZWV4eyzz8bs2bNx1lln4ayzzhoWECfC8Hg86O/vR09PD3Q6HfR6PVvnzvf29rL9KDKZDBkZGSxYLRKJYLfbYTAYWJBELpezrmuzZs1i3dfy8vKEfbIC8fl8qK+vx6FDh/Ddd9+xpb+/HwCQn5+PBQsW4Pzzz8f555+PwsJCgSueGEajERs2bMCrr74KlUqF22+/Hddddx1mzpw57La9vb3IycnBSy+9hJtvvlmAaienQCDA/ta4cNdo6/zvu2KxmIW2Rgp0paens3X6TEzOBDabDdXV1aiqqkJVVRUOHDiApqYmBINBpKens+P8FRUVOPvss2kyNTLlffPNN3jggQfw73//GxdddBEee+wxzJs3T+iyCCGE8AQCARQWFuLKK6/E008/LXQ5hEwJFNYawfXXXw+Xy4UdO3YIXQohhJATYDab0dLSEtIVq7a2FkeOHGGDnaRSKbKyslhXLO6Ai1arRW5uLpudmZCpyOfz4dChQyyY9cUXX8BgMCA6OhpnnXUW22m7ePFiJCUljWmbbrcbK1euxF//+lf86U9/wi9+8YsJfhaEjL9LLrkEPp8Pu3fvFroUQkLwg1sfPg3QdwAAIABJREFUfvgh7HY7BbfIcXm9XnR3d6Orq4sFubq6utDR0cHODwwMsNtzHR/kcjkbqOD1euFyueBwONgAZT6JRAKZTAapVBoS2vL7/axDV6T7cWQyGaKjoyEWi9mst8FgkM16PVLgSywWs8HGkcJc4ZfHxsaygcoymQzx8fFQKpVsUDMhZHrgd9PhwhZcoIkLXfADG9xtuA5D4SEoLnQRHqziOgFEClaNFRde4oIYXFBKLBZDpVIB+G9nKK4jFBeg4jrxcOENLvAUvs3jBawIIacH9//HZrPB4/HAYrGw/yfc/5vjhcC4/0MWi4Xdz2q1DutOxieTyRAXF8c+O3GflWJjY6FSqaBSqdj5uLg4FqbnQl+xsbHs8xbtJyWETGcmkwn19fU4evQoampqcPjwYRw6dAiDg4MAgOzs7JDw1uzZs1FcXEwBgUnI7Xaju7s7JMgVHuridwzlf1b3eDyw2WwIBoOQSqXQarWs+xZ3fDE/P39aTm7X1dWF7777DgcPHsRXX32FvXv3wul0IisrCxdccAELb2m1WqFLPWXbtm3D6tWrERMTg7Vr1+KWW24ZtXvu008/jYceegi9vb0hXXvJiRkYGIDBYIDBYEBvb2/IOhfo6unpgcFgYJMtcJKTk5GamoqUlBRkZGSErHOhr/T0dKSmptLkIURwfr8fLS0tqKmpwdGjR3HkyBEcPnwYjY2NCAQCSE1NRXl5OebOnYvy8nKUl5cjKytL6LIJGTc1NTV4+OGHsX37dixYsACPPPIILrjgAqHLIoQQEsHHH3+MK664AvX19SgqKhK6HEKmBAprjaC8vBwXXnghnnzySaFLIYQQEoY7qFJbW4ujR4+GBLN0Oh2AYwdSsrOzIway8vLy2IBRQqY6q9WKffv2sXDW3r17MTQ0hLS0NMybN491zZo3b95JHWwYGBjAFVdcgdraWrz33ntYvHjxBDwLQiZWU1MTSkpK8MEHH+Dyyy8XuhxCRkTBLTKejjcQiVvnJCQkICcnB+np6UhOTkZCQgILPbndbvT09MBkMg1bRgpsRUdHh4QIJBIJRCIR69AFHDsIzQXG/H5/xO1ERUUhKioKYrGYhcb4oa+R7sfhurgkJCRALpdDoVCw4BoX9JLL5YiPj4dCoYBcLme35e4nk8mgVCoRHx/PBj9zgQlCpjsuvMTvUmOz2eDz+VjAgB+k4sIFXEiBCy3wg1RcgIoLTHEhBv5jcOEqfkecE8GFoOLi4iCRSIaFoLj/AeMZrOJ3lSKEkPFgt9tht9ths9lYgIs7b7fbYbFYYLFY2HmbzcYu49+O+98aiUKhYKEurnMXF/BSq9VsSUxMDDnPLfR/jxByJuru7sbhw4fZUlNTg/r6eni9XkilUpSVleHcc8/F3LlzMW/ePJx11ln0/XEKsFgsbFKcjo4OtLa2orW1FW1tbdDpdCGT4shkMohEIvZdRKFQICsrC2VlZVi0aBFmz56NWbNmQaPRCPV0BOHxeLBv3z7s2bMHe/bswTfffAOn04mcnBxcfPHFuOqqq3DBBRdMqb+HYDCIu+66C8899xzuuOMOPPHEE2PqCj9nzhzMnz8ff/nLX05DlQQ4ti+CC24ZjUbo9XoYjUYYDAZ2ObfucDhC7qtSqZCeno6UlBTWtSs1NTWkaxe3znWOJuRkuFwuNDU1obm5GQ0NDThy5AiOHj2Ko0ePwu12QywWIz8/H7NmzcKsWbNYQCs7O1vo0gmZEEePHsXGjRvx7rvvYv78+Vi3bh2WLVsmdFmEEEJG8aMf/Qg+nw+ffvqp0KUQMmVQWGsEGo0G69atw1133SV0KYQQMi15vV50dnaGdMfiglltbW0IBAIAgPT0dBbC4gezSkpKaOZXckbS6/XYu3cvC2cdPHgQgUAAWq2Wdc1auHAhSktLT3kmR71ej6VLl8Jut2Pnzp0oLS0dp2dByOm1evVqfPTRR2hpaaH3BjJluFwu7N69O2Jw69prr0V6errQJZIzgMvlgl6vHzb5gU6nQ0NDA+x2O4DhnWn5S0ZGBgKBAAYHB2EymWC1WmGxWNip2WwOOR/p+ki7pkQiEQs4REdHQyKRsMBXMBhEIBBAMBiE1+tlXb5cLteIHSakUinbVlRUFOv6xT2W3+9ni8vlgsfjgcfjGfX148IaXJiDH97gAiBcOIN/HRfk4MJsXPgD+G/Yg7tOIpGwQUAJCQnDXhfqknNm43dtGss6P/A00jo/ODXSOtfZhQtS8R+DC0lxQaoTxf3+R/o95kJP4X8/kf4OuG5Rkf7+uL+j8Mfgd5sihBASymq1hoS6zGYzrFZrSKjLZDLBZrOx0Bc/wD84ODismwFwLDg/UpBrtJCXWq2mDgeEkCnF4/GwDlyHDh3CgQMHUF1dDZvNBplMhjlz5rDw1rx581BSUkKTCk4xkfah1NXVob6+Hp2dnRHfBxUKBTIyMlBcXIxzzjkHF154IebOnTttvst7PB58++23+Oyzz/Dxxx+jqqoKarUay5Ytw49//GMsXbp0Uge7g8Egbr31Vmzbtg3vvPMOli9fPqb71dbWYtasWfjyyy+xaNGiCa6SnAyn04m+vj7WrYtbNxqNrGsX18ErvJt2bGwsNBoNUlJSkJSUhOTkZNbFi1vnLk9JSWH7Osj0YbFY0NnZiZaWFhbM4k47OzsRDAYhEomQk5ODmTNnYvbs2SgrK8OsWbMwc+ZMCgSSaaGtrQ2PP/44Xn75ZZSUlGDDhg24+uqrp2WnUkIImUp0Oh1mzJiBd999F1deeaXQ5RAyZVBYKwKfzwe5XI533nkHV199tdDlEELIGU2v1w/rjlVbW4uGhgY2S75arR7WHUur1dLOKnLG8/l8OHToECorK1FVVYU9e/ags7MT0dHROOuss1g464ILLkBycvK4PnZbWxuWLFkCiUSCTz/9lGbsIlOWzWZDVlYWHnzwQdxzzz1Cl0PISeEHt3bs2AGHw0HBLTLhgsEg9Ho9WltbodPphp3q9XoWjEpKSkJ+fj4KCgpQVFSEkpISFBUVoaioiIWQRmO1WiOGucxmM2w2GxwOB5xOJ0wmExwOBxwOB+sCwZ3nBg1zkzpEIpVKWVALACQSCfvO4ff7Wdevkbp1cQEqrltYTEwMoqOjIZfLIZVKWShLoVCwGdW5UJlIJGLhNy6gxgViuM5EAGAymcb+Q+KJFELhQjEcLtzCCe/yEx7+4odfOFxQhm88QmPj2amM69h0PPxw0vFwnaJGexwu2MThB5w4XNCJE94Vih+qOlX834mR1vk/Y/4697seKUjF/ay43x9+2DA8SCWVSqFUKiP+LhFCCDnzuFyuYV1YuUB/pIV/XaQAsFKpPKGQV1JSEtLS0sb0+ZMQQk6HQCCA+vp67N+/HwcOHMD+/fvx3Xffwe12Iy4ujnXf+sEPfoCKigqkpaUJXTI5Bf39/dDpdGhpaUFNTQ0OHjyI+vp69Pb2DusGLJPJoNFoUFxcjDlz5mDRokVYsmTJGR9Ubmtrw/vvv4/3338f33zzDRQKBS655BL8+Mc/xmWXXTbpQmxbtmzBvffei08++QRLly4d8/1+/etfY/v27WhtbaVB52cAl8sFo9E4rDvXwMAA+vv72WIwGNDf3z+sa5dEIgkJcaWkpCA1NRVJSUkjftZVq9VQKpUCPWMyGrvdju7ubhgMBtaJsbOzE52dnew8f99eVlYWCgsLMWPGDBQWFoasT+awKiETpaOjA48++iheeeUVFBYWYu3atbjxxhtpslVCCJki7rvvPrz11ltoa2ubUh2TCREahbUi0Ov1yMzMxFdffYWKigqhyyGEkCmvp6cH9fX1aGxsRFNTE5qamtDY2AidTsdmq09OTsaMGTNQXFyMGTNmhCy0M5JMFzabDd9++y3rmrV3714MDQ0hLS0N8+bNQ3l5OSoqKlBRUQG5XD5hddTV1WHJkiVIS0vDrl27kJKSMmGPRchE27JlC9auXYvOzk4kJiYKXQ4hp2y04NZ1110HjUYjdIlkmnC73WhtbQ0JcbW0tKC+vj7kc75GowkJbxUVFaG4uBj5+fkTshN3aGgIDoeDBcCcTiccDgfMZjMLxnAhG7PZDL/fD4vFAo/HA4fDwW5jsVjgdrthMplYmMrr9Z5UJyGOWCxGdHQ0C7oolUrExcVBoVAgLi4OcrkcarWahWGSkpKgUCggEokgl8vhcDhYEMzv90MqlcLlcrGuYw6HAzKZDFFRUQgGg8M6g4UHhbiwGMflcoXMBM4PkQGRw0cARuyONlbcaz9eTiQ8Fh5oO5FtcoEmDr/7Eyc83BYemIu03fAZl/nb4K/zbzfSOiGEEDJVcMH80QJeI10eHtKWSqVsQCw3GJY7n5ycjLS0tJDrk5OTqbsNIeS08Xq9qKmpwf79+9lSW1sLv9+P4uJiVFRUYNGiRVi0aBG0Wq3Q5ZJx4nK50NzcjD179mDfvn04evQoOjo6YDKZQiYGiYmJQUpKCoqLi/G9730PCxcuRFFR0Rn5u9Df34+dO3di+/bt+Oc//4moqCgsW7YMt912Gy688ELBQ06NjY2YM2cO7r//fqxfv37M9wsGg8jJycGKFSvw8MMPT2CFZLJyuVzDAlz9/f0s3GU0GmE0GjEwMMA+z0baLyaVSkftQssPdSUkJCA2NhaxsbEh52kA7fE5HA4MDg5iYGCAnQ4MDMBoNMJgMECv17POaz09PSETNUmlUmRlZSE7Oxs5OTnIzc1l6zk5OcjLy6OJhwn5PwaDAc888ww2b96MtLQ03H///bj11lshkUiELo0QQsgYud1u5OTkYNWqVXjggQeELoeQKYXCWhFUV1ejvLwczc3NKCgoELocQgiZEhwOBxobG9nChbMaGxvZ7EHx8fEhISx+MIsGlJHpSK/XY+/evSycdfDgQQQCAWi1WtY1a+HChSgtLT1tB6YOHjyIiy66CLNmzcLHH39MsxGTKS0YDGLmzJm44IIL8PzzzwtdDiHjjoJbZDLjd9Ctra1l621tbQgEApBIJMjJyWFdc/lddPPz8wUflDMap9MJt9vNui2ZTCbWEYm7fGBgAGazGUajEQ6HAwaDAU6nE2azGU6nky1ut5t11/L7/RFDTyKR6JTCUFx3IyA0LMR9BxvpeplMFjKgIPw8/37A8OBReHiJ34Ep0vnw7kuRuoXR90ZCCCGEhLPb7WxgZV9f37AOB0ajMeSy/v7+kPuLRKKQMFdycjJSU1NZkCtSyGsiJ1EihEw/drsd//nPf4ZN4qbRaDB37lxUVFTgoosuwjnnnEPh0jNQT08P/vGPf+Crr77C4cOH0dbWBrPZHNI5XCaTISMjA6Wlpfje976Hs88+GyUlJdBqtWfEIOeBgQFs3boVr732GqqrqzFjxgysXLkSK1euRHJysiA13X777fjqq69w6NChE3qNDx48iHPPPRdVVVU499xzJ7BCcibxeDxj7k4bvvDDQ+GkUiliY2NZeEupVLLutUqlkl2mUqkgFotH7ZTO3UahUEAmk52Wbur8DvTcftRgMAiz2QwgtGM9N5mU2+1m+2DtdjtsNhtsNhusVissFgs7Pzg4iMHBwWGdDwEgMTGRTfqQnp4OjUaDtLQ0ZGRkIDU1FRkZGUhLS0NaWhq9LxNyHP39/XjqqaewZcsWJCUl4d5778Xtt99+xncTJYSQM9Ebb7yBlStXoq2tDZmZmUKXQ8iUQmGtCHbu3IlLL730/7N33+FRlGsbwO9sCRCSkBDSewikESCEIiR0EKSJIkUpIiJyFFCRDkoRKQIqVVEQDiBHBI6iCAKhdzABQgslPWwKhE0PKZt8f/DtnPTshk0mm9y/69prd2dnZ56ZnXmn7Pu8L9LT02tdV+tERGIrWumyaMXLulDpkqg65efn48aNGzh37hyCg4Nx+vRpxMTEQC6Xo3Xr1kJyVs+ePUX78+nGjRvo3bs3/Pz88Mcff6BRo0aixEFUFUFBQfj2228xadIkDBo0CBKJBIcPH8aAAQMQGhoKX19fsUMkqlbZ2dkICgrC3r178dtvvyE7OxsvvfQShg8fjlGjRsHa2lrsEIkAPO9JVN3T7r1793Dv3j2hkYf09HQAz//8V/fA5eXlBR8fH7Rq1Qqurq51/g/w7OzscitfxMfHIzo6uljFjbS0NCQnJxfrMQv4XyKVusKFugcvqVQKExMTGBsbQ6VSCa3sqnvYUiegAf+rBKFW8n3RChFA6Z651JUjqlNFvVAB/6tIolayJy0TE5Nila5Kvi/ZCnHJnrHUFVTKmn/J5LaisZRMdCs637J66CIiIiLdUalUZSZ0FU3qKpnkVbL3LmNjY1hZWZXqtatkkpelpSVsbGyKHfeJiCqTk5ODq1ev4uzZs0ICV2pqKpo2bYo+ffqgX79+6NevHytH1WH5+fm4d+8eLly4gFOnTuHatWuIiooqds0NPG8ExcHBAX5+fmjTpg18fHzg7e0NLy8vvb1/cuPGDWzbtg07duxAdnY2Ro4ciSlTpqB9+/Y1FkNWVhbs7OywaNEifPzxx1p9d+nSpdi0aRMePXrE/8SpRqiTlzIyMpCRkYHMzEykpKQgPT0dmZmZpd5nZGQISUtFPwf+d1+w5D2/F6Vt40sZGRmlzr81pb6vZmpqChMTE+HRpEkT4R6piYkJmjZtKjwsLCyKvea+S/Ti0tPTsWnTJixbtgyGhoaYMWMGpk2bxvonRER6YtWqVWjdujX69u0rXFt27twZTk5O2LNnj8jREekfJmuVYffu3Rg/frxQUYWIqL5JSUlBeHh4qYSssLAwZGZmAnh+U62shCxvb29eYBPh+Q2oy5cvl2oNs0mTJujQoYOQnBUYGFgrWuMNDQ1F79694eXlhcOHD7MSCemdRYsWYcmSJSgsLISDgwM++eQTHD58GABw7NgxkaMjqllM3CJ9pVAoiiVv3bt3D3fv3kVkZCQKCwvRuHFjeHt7o1WrVvDx8YGvry9atWoFOzs7sUMXVWFhodCbxNOnT/HkyRM8fvwYiYmJSEpKEt4nJCQIFZFL3vMyNzcXKhdbWlrC2tpaqHxsZWUFa2tr4bNmzZpVqdJXyeSt3Nxc4foSAPLy8pCRkSG8z8/PFxL4gOKt6Zb1vqCgAKmpqcXWi7qyiZpSqazwvboVXrXU1NRirZmnpaUVS4wrmtxWcv66UjRhrGRvZEWTxUr2RNaoUSPhOkOdZFa0tWNdDyMiIqrL1An18fHxUCgUpRLqyxpWVMOGDWFubg47OzvY2tqWelZ/5uTkVCd6SCEi3VKpVLh58yZOnjyJI0eO4MyZM8jOzkarVq2ExK2uXbvWiv8ZqHopFAoEBwfj0qVLOHv2LG7evClc90qlUuF6tWHDhvD09ETbtm2FBnC8vb3h5OQkZvhaycrKws8//4yNGzfixo0b6Ny5M2bOnIlXX3212hPRTp48iV69ekGhUMDW1lar73bu3BmtWrXCjz/+WE3REdWcovfm1PfQ1IlU6kabSt6/K6kqiVdF73epE70aNmwo1EFRN5ZUtDGkkg00EZE4MjMzsWHDBqxcuRIGBgaYOnUqpk+fXuyeNhER1W7Z2dlCY5TOzs6YOnUq2rdvjx49euDkyZPo0aOHuAES6SEma5Vh69atmD59erVUsCAiqi3y8vIQGxtbLBlLnZylrgwpl8vh6OhYKiHLx8dH65vTRHWdQqHA+fPnheSsa9euoaCgAG5ubkJiVkBAALy9vWtdi1y3bt1Cr1690KpVKxw8eLBYDwBE+mLq1Kn44YcfhMrnMpkMBQUF6N69O9atW4dWrVqJHCGROIombv33v//Fs2fPhMStN998E1ZWVmKHSFSp3NxcPHjwAMHBwbhz506x6xfgeY9F7u7u8Pb2hr+/v5DIxcTE8qWkpCAxMVHoMUKd2KVO5lIndqkTvYomLEkkEiFpS91bhPrZ3t6+2LNYPcbWBkV7IiuZOFayF7KiSWIlk9qKJoyVTHArmixWsnJM0cow6vGKJsRVNKwq1BVpiiZwaTpMnfzVpEkTyGQyNGnSRKhwox7f1NQUMpkMZmZmkMvlMDY2LpaQRkREVJtkZWUJPXSpz7MePXqExMREKBQKJCYmIiEhAfHx8cWO+1KpFFZWVrCxsYGdnR2srKxgb28PKysr2NnZwcbGBjY2NrC1teX9O6J6LDs7G2fPnsWRI0fw999/486dOzAyMkL37t3Rv39/DBkyBC4uLmKHSTVEncAVEhKCK1eu4J9//kFSUhIACIkN6utPU1NTtG3bVni0adMGrVq1KtaDdG109uxZrFmzBn/++SdatGiBmTNnYsyYMcV6utalzZs3Y/bs2aUagKnMkydPYGNjg3379mHo0KHVEhsREVFtlJOTg3//+99YuHAhMjIy8OGHH2LOnDnFGhcjIiL9kJiYCBsbG+G9VCqFgYEBnJycsHv3bnTq1EnE6Ij0E5O1yrB+/XosW7asVMt3RET66PHjx7hz547QMr36ERkZKVTCcnBwgIeHB1q2bAkPDw/htbOzM1sgIipDfn4+7t27JyRnnT59GjExMZDJZGjTpo2QnNWjRw9YWlqKHW6FIiMjERAQgJYtW+Kvv/5ij1qkt8aOHYvdu3cXq0wOAHK5HPn5+ejevTumT5+OQYMG1bqESaKawsQtqmtSUlJw69atYglcoaGhQqUkc3PzYglc3t7eaNu2LYyNjUWOXL8UFBQISVsle+xSV0B+/PgxFAoF4uPjiyUhNWjQoMzeI9TP6qQuCwsLEZeQSiorgatoMlh1DVMqlcLwkgltFakokcvExAQymQzm5uaQyWQwMTERWmNW91pmZmYGmUwGU1NTNGjQAEZGRkICWdHPiIiIqkPJXrvKe05KSirWw2dlvXWpn62trXmPn6iOi42NxZEjR3DkyBEcP34cSqUS7du3x7Bhw/DGG2/A3d1d7BCphiUmJiIkJATBwcG4cuUKLl++jKSkJEgkEpiZmUEqlSIlJQV5eXmQy+Xw9vZGmzZtiiVyqXuzqU3CwsKwatUq7Nq1C1ZWVpg7dy4mTpyo82SzefPm4fDhw7h27ZpW39u3bx9GjRoFpVIJExMTncZERERUG+Xl5WHbtm1YvHgxUlJSMHHiRMyfP5//NxIR6bH79+/Dw8Oj1HC5XI68vDy0atUKU6dOxejRo1nHkEhDTNYqw8qVK7F582ahhWYiIn2gUChKtTJ/69YtJCQkAHheSa558+ZC71jq3rLatGnDG8ZElUhPT8fly5eFXrMuXLiArKwsmJqaomPHjkJyVmBgoF617P7kyRMEBgaiQYMGOH36NFs2Ir3Wv39/HDlypNzPpVIpVCoVfv75Z7z11ls1GBlR7ZSVlYXjx4+Xmbj11ltv1fpkY6KKxMbG4vbt27h58yZu374tJHRlZ2dDIpHA1dUVvr6+aNOmDdq1awc/Pz84OjqKHXadkZ2dXWll47i4OKSlpQnfadCgAZo2bVppZWMbGxtIJBIRl45qWmZmJnJzc5Gamor8/HykpqYKPYypey9LS0tDfn6+UNkwIyMD2dnZePbsWYWJYOrex4r2bFaRoolcRkZGMDExgampKYyMjGBkZARzc/NSn6nfm5mZoXHjxmjcuDGMjY3RpEkTGBkZCS3dExERVSYvLw9JSUmIj49HQkICEhIShCSuR48eISkpCQqFAgkJCXj27JnwPZlMBmtra+FcytraGnZ2drC2thYS5x0dHWFjY8OkLqI6QKVS4eLFi9i7dy9+/fVXJCQkwNvbG8OHD8eIESPg7e0tdogkkpiYGFy9ehVXrlzBlStXEBwcjPT0dMjlclhaWkImkyE1NRWpqakAAGdnZ7Rt2xb+/v7o0KEDOnToUGsaWlEoFEKdHmtrayxYsADjx4+HXC7XyfQXL16MPXv24M6dO1p9b8aMGQgKCsL169d1EgcREVFtVVBQgP3792Pu3LmIjY3F+PHjsWjRItja2oodGhERvaDg4GC0b9++3M8lEgkKCwvh7e2NW7du1WBkRPqLyVplWLRoEfbt28eChIhqnZycHDx8+FBIxlInZt29exdZWVkA/td6vDopS/3axcWFldqINKRQKIRes86fP49r166hoKAAbm5uQmJWQEAAvL299baHnvT0dPTs2RMpKSk4d+5csS6MifSRv78/QkJCyv1cJpOhbdu2OH36NIyMjGowMqLar2ji1v79+5GTk8PELapzVCoVIiIihASumzdv4tq1awgPD0dhYSEsLS3h5+eHdu3aCQlczZs319tzPX3w9OnTSpO64uPji1U2btiwYbnJXM7OznB0dISDg4POW9Wmuk+lUiEtLQ05OTnIysqqMEksOzsbmZmZSEtLQ3p6ujC+UqlEVlYWsrKykJaWhrS0NOF9eQwMDGBmZgZjY2MYGRnB2NgYZmZmQrKX+rlJkyZo0qRJsWEmJiYwMzNDkyZNYGJiwu2eiIgERZPnK+q1KzExsVgP5ebm5nBzcxPOr4q+trW1haurK++pEOkRlUqFU6dOYd++ffjtt9+QmJiIVq1aYeTIkXjnnXdgb28vdogksoiICJw7dw7BwcHC49mzZ2jcuDFsbW3RoEEDJCcnCw2DNm/eXEjc6tChA9q1aydqS+pxcXFYtmwZtm7dCkdHRyxbtgzDhw9/4Xs569atw4oVK6BQKLT6XteuXeHt7Y3Nmze/0PyJiIhqK3WS1oIFCxAZGYlRo0Zh8eLFcHV1FTs0IiLSkZMnT6JXr16Vjrdx40Z88MEHNRARkf5jslYZFixYgIMHD7LFGyISjVKpLNZDlvp1VFQUCgoKIJfL4ejoWCwZy9vbG61bt4apqanY4RPplfz8fNy7d09Izjpz5gyio6Mhk8nQpk0bITmrR48edaayem5uLgYOHIhbt27h3LlzaN68udghEb0wFxcXREdHl/mZXC6Hq6srLl68iKZNm9ZwZET6RZ24tXPnTvzxxx/Iz8/HSy+9hHHjxmHkyJFo0qSJRtMwWTmwAAAgAElEQVRZu3Yt1q9fj/3796NNmzbVHDVR1aWnp+PGjRsIDg4Weiq+evUqcnNzYWJigtatW8Pf3x/+/v7w8fGBr68vEyJqmDqp69GjR0hISCjzOT4+Hjk5OQCeJ7/Y2NjAyckJjo6OcHR0FBK51A82VEA1TalUCr2BpaenC4lcmZmZSElJKfZZamqqkAimfk5JSUFqairS09ORm5tb5jwaNmwoJHKZmZnB1NS0VHKXubm58Lk60Uv92szMjBXwiYjqmdzcXKHX09jYWCgUCsTGxiIuLg6PHj1CbGwsEhISoFKpAPzvPMvBwQH29vZCorydnR2cnJxgb28Pe3t7NGzYUOQlI6KSVCoVzp49i3379mHPnj1QKpUYMGAA3nvvPQwYMIA96xGA542GBgcH4+LFi7hw4QIuXryI+Ph4yOVyuLm5wdzcHLm5uYiJicGTJ08glUrh7e0tJG+99NJL8PX1rfHtKTo6Gp999hl+/vlndOzYEWvWrEGXLl2qPL19+/bhzTffREpKisbJaPn5+TAzM8O6deswYcKEKs+biIiotgoKCsLMmTMRGhqKYcOGYdmyZXB3dxc7LCIi0rHff/8dr732WrmfSyQSzJkzB19++WUNRkWk35isVYbFixfj119/xe3bt8UOhYjqsPz8fMTExBRLxoqIiEBoaCiSkpIAAE2aNIG7u3uxpCw3Nzf4+PjwD0+qVwoKCvDdd99h27ZtOHnyJExMTKo8rfT0dFy+fFloLfDs2bNITU2FqakpOnbsKCRnBQYG1tn9bOLEifj1119x+vRp+Pn5iR0OkU6YmZkhNTW11HC5XA4LCwtcvnwZTk5OIkRGpL9SU1Nx4MAB7N27F0ePHoWBgQH69u2L4cOH49VXX60wccvDwwMPHjyAXC7HDz/8gLfffrsGIyd6MXl5ebh//36xlqVDQkKQnZ0NuVyOFi1aCAlc6kejRo3EDrveUyqViIiIEHqLKPk6OjpaqGhsaGgIBweHMnuNcHNzg7u7u8bJqUQ17dmzZ2UmcRVN8EpJSRF69yr6mVKpFD7Pz88vNW1DQ8MyE7nMzc2LJXWVlejFZC8iorqrsvOs2NhY5OXlCeObm5uX6gW16PkWz7WIxJWbm4sDBw5gx44dOHz4MKysrDBu3DhMmjQJbm5uYodHtUxUVJSQuHXhwgWEhoYiPz8fdnZ2aN68ORo3boysrCzcunULT58+RePGjdG2bVsEBgYiICAAXbt2hZmZWY3EGhISghkzZuDUqVMYNmwY1qxZU6X/BBQKBezt7XHixAn07NlTo+9cv34dfn5+uHnzJlq1aqX1PImIiGqroKAgzJ07F8HBwRg4cCC+/PJLtG7dWuywiIiomuzYsQMTJkwQ/lMtSiqVYvjw4di9e/cL92hMVJ8wWasMy5cvx08//YQHDx6IHQoR1QGpqakICwvD3bt3ERYWhnv37uHu3buIiIhAXl4eDAwM4OTkBA8PD3h5ecHT01N4zda+iYBbt25hwoQJCA4ORkFBAf7++2/069dP4+8rFAqh16zz58/j2rVrKCgogJubGwICAuDv74/AwEC0a9euXlxIfP3115g5cyZ+++03DBkyROxwiHSisLAQcrm81M0CqVQKY2NjXLp0CZ6eniJFR1Q3pKSk4I8//igzcWvo0KHFencNCwuDl5eX8N7AwABvvfUWfvzxRya0kN5S98ZaNIHr+vXryMzMhEwmQ8uWLYslb/n5+Wnc+jLVjNzcXDx58kSoVFyyknF4eDhSUlKE8Rs2bChULC6ZzOXm5gYnJyfIZDIRl4joxah79SrvkZqaKrxWKpWlPq8s2atp06ZlPszNzcscLpFIRFgLRESkK0qlstxkLoVCgZiYGGRkZAjjFz3XKiuhS/1MRNUrPDwcW7duxfbt25GYmIiXX34ZH3/8MV5++eV68X8JaS8zMxNXr17F+fPnhQQupVIJMzMztG7dGhYWFsjOzsbdu3cRHR0NmUyGNm3aICAgQGgssbrL9z///BOffvopFAoFFixYgOnTp2vdS7qLiwsmTpyIBQsWaDT+L7/8gnHjxiErK4v3CoiIqE44d+4cFixYgNOnT6NPnz5YuXIl2rVrJ3ZYRERUzTZs2IBPP/0Uubm5xYbL5XJ06dIFR48e1fr6iqi+Y7JWGdasWYN169YhOjpa7FCIqIoKCgoQFxdXoz1oqFuXVPeSpX6OjIwUKpE7OjoW6yHL29sbbdu2hbGxcY3FSaQvnj17hhUrVmDZsmUoLCxEfn4+DA0NMXv2bCxZsqTM76hUKoSFhQnJWWfOnCn1Z1BgYCB69OgBS0vLGl4i8R05cgQDBw7E8uXLMXPmTLHDIdKZ1NTUUq1zSiQSNGjQAGfPnoW/v79IkRHVTZUlbn399ddYtmxZsZbVZTIZvLy8cODAAbi6uooYPZHuqFQq3L9/HyEhIbh27ZrwnJKSAqlUCi8vL3Tq1El4+Pj4QCqVih02VUCpVCI2NhYxMTGIiYlBbGwsYmNjER0djdjYWCgUCqFsk8lksLW1hbOzM5ycnODo6AhHR0e4uLjA1dUVrq6uTFClOq2yZK+nT5+W+yj5Jx/wvKdcCwsLjZO71A+5XC7C0hMRUVUkJSXh0aNHiIuLE86tYmNjERcXh0ePHiEmJgbZ2dnC+CYmJnB0dISDgwOcnJzg5OQEZ2dn4WFvb8/jAJGO5OXl4eDBg/juu+9w7NgxtGnTBjNmzMDIkSO5n1GlIiIiEBQUhHPnzuHUqVOIjY1F48aN4e3tDVtbW0gkEkRFReHmzZtQqVRwdXVF9+7d0atXL/Tu3btakrdycnKwatUqLFu2DM7Ozti4cSN69eql8fffffddhIaG4urVqxqNv3z5cmzZsgXh4eFVDZmIiKhWuHTpEj777DMEBQUhICAAy5YtQ7du3cQOi4iIasiyZcuwZMkS5OTkCMPkcjm8vLxw/vx51nMmqgIma5Vhw4YN+PLLLxEfHy92KERUBUePHsXHH3+MBw8eQKlU6vwEIT4+Hnfu3MHdu3dx+/ZthIWF4datW3jy5AkAwNTUFJ6enmjVqhU8PT3h7e0NT09PuLi4sGIekYbOnDmDCRMmICoqqlRPOV27dsWZM2cAABkZGbh+/bqQnHX27FmkpqbC1NQUHTt2FJKzAgIC6n1FyTt37qBz58547bXXsH37drHDIdKpqKioYskfBgYGkEql+Ouvv/Dyyy+LGBlR3ff06VP8/vvv2Lt3L44fPw6pVApLS0vExsaWGlcul8PIyAi//PIL+vfvL0K0RDUjIiICISEh+Oeff3Dp0iUEBwcjIyMDxsbGaN++fbEELl1VSFqzZg3MzMwwYcIEtn5ejVQqFRISEoTkLXViV9H36nsDAGBtbQ1XV9diCVzq105OTjXW8tyZM2cwYsQITJ8+HVOmTIGRkVGNzJeoPNnZ2VAqlVo/yrpf37BhQ5ibmwsPdW8sRYcVHW5packKx0REtdjTp0+FxC2FQoG4uDghiV59zqWuLCKVSoXkeRcXlzITutjbLZH2QkNDsXr1avznP/+Bvb095s2bhwkTJrC3INLY3bt3cfbsWZw5cwanT59GXFwcGjVqhPbt28PNzQ1SqRQPHjzA5cuXkZubC09PT/Tu3Ru9evVCjx490LRpU53FEhcXh3nz5mHnzp0YPnw4vvvuO1hYWFT6vVOnTqFnz54IDQ2Fr69vpeNPnjwZDx48wPHjx3URNhERUY27efMmvvjiC+zbtw8vvfQSli5dqlWiMxER1Q1z587FN998I9x/k8vlsLa2xtWrV2FjYyNydET6iclaZdi6dSumT5+O1NRUsUMhIi3cuHED06dPx4kTJyCVSqFSqXD58mV07NixStNTKBS4c+dOsd6ybt68icTERADPW/xt3ry50FOW+tnV1ZWV44iqSKlUYtasWdi6dSukUiny8/NLjdOgQQOMHz8eFy5cwO3bt1FQUAAPDw907twZgYGB6NKlCzw9PbkfFpGRkYEOHTqgadOmOHHiBBo0aCB2SEQ6FRISUqz3LIlEgl9++QXDhw8XMSqi+ic5ORmbNm3C559/Xu44EokEhYWFmDVrFpYtWwaJRFKDERKJQ937a3BwMIKDg3H+/Hlcu3YNBQUFsLW1hb+/P/z9/YVzWW0TaVQqFUxNTZGVlYXOnTvjp59+gqenZzUtDVUmJycHjx49QkRERKlHeHg4UlJShHHNzc3h5uZW5sPJyUlnlSFXr16N2bNnw8DAAGZmZvj888/x/vvv87qA9E52djaePn0KpVIp9NKVnJyMx48f48mTJ3jy5AmSk5OF58TERKSlpZWajoWFBZo1a1bq2crKSnivHmZpaQlzc3MRlpaIiMpSWFgoJM+re0ONjo4WHjExMcXOtywsLISeUIsmcanfW1pairg0RLVbZGQklixZgl27dqFFixZYtmwZhg4dKnZYpIciIiJw9uxZnDp1CsePH0dsbCxMTU0RGBgIZ2dn5Obm4vr167h27RoAwM/PT+h1q2vXrjppcOTgwYOYPHkyVCoVNmzYgGHDhlU4fmFhIdzd3TFs2DB89dVXlU6/f//+sLe3x9atW184ViIiopp09+5dLFy4EPv27YOvry8WLFjA/9iJiOqxDz/8ED/++CPy8vIglUphbGyMy5cvw8PDQ+zQiPQWk7XKcODAAQwdOhTPnj1jpQUiPfDo0SMsWrQIP/30E6RSKfLy8gA8b1Vxy5YtGD9+fIXfVydlqROybt++jdDQUKSnpwN4XnlKnYjl5uZW7DUR6c7evXsxefJkpKenC/txedq2bYs+ffogMDAQnTt3hpWVVQ1FqZ/GjRuHv/76CyEhIXB2dhY7HCKdO378OPr06QPgea9amzdvxnvvvSdyVET108KFC7F8+fJKj+USiQR9+/bF7t27ddpaLpG+UPcQq07gOnv2LKKioiCVSuHh4VEsgcvPz6/CxMbr16/Dz88PwPPWzQoLC/HZZ59hzpw5NdZzE2lOqVRCoVAgPj6+VDLX/fv3hXsRcrkcjo6OZSZyeXh4aNWL+Pvvv49t27YJZbNEIoGlpSXmzp2LyZMn8/4n1Wl5eXnFkriePHkiJHcVTex6/PgxHj9+jOTkZGRmZhabhkwmE5K3mjVrBhsbG1hZWcHS0hJWVlawtraGpaUlLC0tYWtrCxMTE5GWloiIAODZs2dQKBTCOVbJc6/o6GioVCoAzxsGs7e3L/Ocy9bWVmc94VaFQqFgj5BUK9y/fx+ff/45fv31V/Tp0wfffvstvL29xQ6L9FhERASCgoIQFBSE48eP4+nTp7CyskJAQACcnZ2Rk5ODK1euICQkBA0aNEBgYCD69OmDoUOHvlAFQaVSienTp2P79u0YMWIENm3aVGEvW1988QXWrVuHyMjISq/BfXx8MHz4cCxatKjK8REREdWkqKgoLF++HFu3boWnpycWLlyIN954g40iExHVc2PHjsXu3btRWFgIuVyOkydPokuXLmKHRaTXmKxVhgsXLiAgIACxsbFwcHAQOxwiKkdGRgZWr16NFStWoKCgoFSFUENDQ0ybNg2rVq1Cfn4+YmJihIQsdW9Z169fFypgFE3KUj/7+vrC2tpajMUjqjciIyMxadIkBAUFwcDAAJWdmsjlcqxatQofffRRDUWo377//nt8+OGHOHToEPr16yd2OETVYt++fUILX0uXLsX8+fNFjoio/mrRogUePnyo0bhyuRwWFhY4cOBAlXvDJapLFApFsd63Lly4gKysLJiYmKB169ZC8lb37t2LNVawYcMGfPLJJ8V6pZXJZHBwcMDWrVvRq1cvMRaHqig+Ph6RkZGIjIxEeHi40CNXeHg44uPjhfHs7e3RvHlzuLm5oXnz5sLDzc0NzZo1KzbN7t2748yZM8WGGRgYwMDAADY2Nli4cCHeffddSKXSGllGotouOztbSOQq2WvX48ePER8fLyR3JSYmFuvBBQAaNmwIS0tLWFtbF0vqsrGxEZK6ir7Wh8Tav/76C8ePH8e0adPg4uIidjhERC8kNzcXsbGxiI6ORmRkJKKiohAVFSWcg8XHxwv3qM3MzODi4gJXV1e4uLgIr9XvtUmg10ZhYSHMzc1hYWGBdevWYeDAgdUyHyJtnDt3Dh999BFCQ0Mxa9YsfP7552z4gV6YSqVCSEiIkLh1/vx5PHv2DF5eXujWrRuMjY0RHh6OoKAgZGRkoFWrVhgwYAAGDhyILl26VKlH6iNHjuC9996DSqXCtm3b8PLLL5c5XkpKClxdXTFnzhzMnj27wmm6uLhgypQpmDFjhtbxEBER1aTY2FgsXboUP/30ExwdHTFnzhzeGyYiIsHgwYNx8OBBSCQS/P777xg8eLDYIRHpPSZrleHhw4do0aIFgoOD0a5dO9HiuHDhAh49eiTa/IlqE6lUiv79+8PIyAh5eXnYtm0b5s6di7S0tGIV0kpydHSEqakpHjx4gNzcXEgkEri6usLLywve3t7w8vKCj48P0tLS8PTp0xpcIiIqLCzEwYMH8csvv0ClUqGgoECj70kkEnTo0AGffvqpVvPz8/ODu7t7VULVWyEhIQgICMCsWbOwePHiSsePjY3FpUuXaiAyIt06fvw4Nm/ejAEDBlTaoybRiyp6XlodLl68iLi4uGqZdnWLjY3V+vhsYGAAqVSKSZMmoUePHtUTGJEesrS0REBAAEJDQ3Hp0iVcuXIFly9fxv3791FYWAg3Nze89NJL6NixIw4fPoygoCChdwA1qVSKgoICjB49Gt9++22x1qJ53qefcnJykJiYiMTERCQkJCAtLQ3Pnj1DeHg4oqOjhUZsmjRpUix5a8uWLUhOTi5zmuqWUt3c3PD5559jzJgxkEgkUKlUOHjwIHJzc2ts+Yj0VX5+PtLS0pCamoqUlBSkpaUhLS2t2OvU1FSkpqYiLS2tVINT5ubmxXrnKpnUZW1tDRsbG9jZ2VXbOWhl3n77bezYsQMSiQQjR47E3Llz4evrW+F3WI4Qkb5S98qYlJSEpKQkGBgYIDU1VUjqSkxMFMZt1qxZqUQuNzc3uLu7w9nZuUpJBMDzXmeaN28uNG7Wq1cvrFu3Dj4+PuV+h+Uu6YJEIsHLL79cbk+hBQUF+P777zF79my4uLhg+/bt8Pf3r+EoqS7Lzs7GuXPncOzYMRw6dAi3b9+GiYkJevfuDTc3N6Snp+PUqVN48OABzM3N0a9fPwwePBiDBg2CqampxvNJTU3FlClT8PPPP+O9997DN998U+a59vz587F582ZERUVVmKBrZ2eHOXPmYNq0aVVabiIiour2+PFjrFmzBmvXroWVlRXmz5+PCRMmVPmahai2UigUOH/+vNhhEOmtzz77DPfu3cP777+P3r17ix0OUY2o7H7Yi2KyVhnS0tLQpEkTHD58GP379xctDhNTU2Skp4s2f6LaZteuXTA1NcW0adMQExOjUWKHsbExPvroI/j4+MDT0xOenp5o1KhRqfFMmzRBelpadYRNRLXE4CFD8MeBA2KHUWOysrLQrl072Nvb4+jRoxq1hPTuu+/ip59+qoHoiIj0286dOzFmzJhqmTbPS4kIeJ5Ak52dXaqV8rS0NISGhuL8+fM4d+4cLl++jMzMTGRlZZU7LblcDlNTU3z99dcYN24cAJ731RVFtxN1j+JFe+IKDw/Hw4cPcfPmzUp7MJZIJCgsLISHhweWLFkCKysrJtESVZMePXpi8+bvhd65EhISkJSUhMePHyMpKQmJiYnCZ48fPy72XWNjY9jb28Pa2hp2dnawtraGra0tbG1tYWVlBXt7e1hZWcHKykpIxtRNzD1w+vRpAM+PK3l5eejZsye++OILBAQElPmdM2fOoHv37jqLgYhILH369MWxY0eF91lZWUKPXCV75oqKihIaBpTL5XBxcYG7uztatGiBFi1awN3dHe7u7nBxcamwUuRvv/2GYcOGCedwMpkMKpUKo0ePxurVq2FtbV3qOyx3SVc2b96MSZMmVThOZGQk3n33XVy4cAFr167F+++/X0PRUX0THR2NI0eOICgoCH///TfS09Ph7e2NgIAASKVS3L9/H2fPnoVUKkW/fv0wYsQIDB48WOMKVrt27cKUKVPg4OCAPXv2lEqKTU5OhqurK+bOnYu5c+eWO51mzZph6dKlmDx58gstLxERka4lJydj1apVWL9+PZo2bYoZM2Zg8uTJ7CGV6qypU6diw4YNYodBRER6RpP7YVXF1PgymJqaolGjRkhKShI1jvz8fExd8S16DB0hahxEtcGbrV3w2WefITIyEhKJROMeeDIzMzFr1qxKW9LKz8/HlOXfoOdrI3URLhFpSKXKR8rjx3gS/wjJifF4mpiAx4o4PE1MQGJcDJ7EP0K68mmxfV4ikaKgQIXNJ6+ima29RvNZP+djqHIzq2sxaqU5c+YgISEBx44d07jLepVKhfY9+mDu9zuqOToiIv012q95hT27vih9Pi9VqfIRHxUJuaFhseFSmRwNGzcuNkxiYAAjE81buyWqT/45dQzLJ79dqqcs4Pk9q8DAQAQGBmL27NmIi4uDo6NjhdPLy8uDUqnE+PHjsXv3bmzevJnnfXVAye1EJpPBzc0Nbm5u6NOnjzDenTt3KuyBQU19zXX//n2MGDECHh4eAIBtF2/B1LxpNSwBUf30w+K5eBYfjZYtW6Jly5YafUepVEKhUCA+Pr7Ys1KpxO3bt3Hs2DHExcUhrUTCv7m5OWxtbWFnZ1fs2dzcXHjt6OioUQ8EMTExwmt1z2Dnzp1DYGAgOnXqhPnz52PQoEHFEsTU58wsR4hIn6nL7aKMjIzg4+NT7jlWSkoKwsPDERERITzu3LmDgwcPIiIiAsDzRC5HR0d4e3vDx8dHePby8oKRkRFu3LgBQ0ND5OTkAPhfmbpnzx7s378fs2bNwty5c4tVsGS5S7owoYuvRve9XF1dcfz4cXz11Vf44IMPcO7cOWzevFm0XkCp7nJ2dsakSZMwadIkZGdn4/Tp0/jrr79w6NAhREREoFmzZhg5ciSsrKwQFhaGd955BxKJBH369MHw4cMxdOjQCs93x4wZg8DAQIwePRqdOnXCpk2bhIZuAMDCwgKzZs3CsmXLMHbsWDg4OJQ5ndzcXBiWuCdKREQkpvT0dGzatAnLly+HXC7H559/jmnTppXZwDlRXaJSqdD6pQAs3L5X7FCIiEhPaHo/rKqYrFUOFxcXhIeHix0GEf0/VUEBoqKiADxvOdrQ0BC5ubmVfq+wsBB37tzBSy+9VM0RElFVSKUyWNjYwsLGttxxCgsKoHzyGMnxj5CclIDkeAWyMtLRpGmzGoxUvxw/fhwbNmzAzp07K628S0REpCtSqQwOzVuIHQZRvXLu3DmNGjRRf37ixAl4eXnB19cXhY00a2Wa9NvDhw81Gq/kvZa4uLjqDIuItGBubg5zc/NKEy9TUlIQHx+PxMREPHr0CElJSVAoFEhMTER8fDxCQkKQmJiIJ0+eFPuemZkZbG1tYW1tLfTMVbLXrsTExFLzUydt/fPPPxgyZAg8PT0xd+5cvPXWWxX2FkNEVNeZmZnB398f/v7+pT5TKpV4+PAhwsLCcOfOHYSFheG///0v1qxZg/z8fCEBPycnRyhni8rLy0NeXh6WLl2Kbdu2YfXq1Rg+fHhNLBZRKQYGBpg9ezZ8fX0xduxYBAQEYN++fWjevLnYoVEd1ahRI/Tv3x/9+/fH+vXrERYWhj/++AP//e9/8fPPP8PU1BRDhgyBlZUV7t+/j3fffRfvv/8+XnnlFYwZMwaDBw+GXC4vNV0XFxecPn0aS5cuxTvvvIOgoCB8//33QvLhrFmzsGvXLkyfPh2//vprmbFJpdIyy20iIqKalpmZiQ0bNmDlypUwMDDAxx9/jOnTp2vUWA8RERER6R7/MSuHh4cH7t27J3YYRPT/ZDIZ1m/aBD8/P9y6dQu3b9/G9evXERoaKvSCJ5fLIZVK8ezZM+F7EomEyVpEes5AIkFTK2s0tbIGq39XLjs7GxMnTsTrr7+O0aNHix0OEREREVWj8+fPQyaTVdqYiYGBAeRyOQoLC5GdnY0rV67A1avy3pZI/z148KDMBm9kMhlUKhUKCwthZGQEX19fdOrUSahYnJCQUKyHLiKq/czMzGBmZgYvL68Kx8vNzcWTJ0+gVCpL9dYVHx+PK1euQKlUIiYmBhkZGZXOV93D3/379zF+/HjMmzcPM2fO1LjnMCKi+sTc3BwdOnRAhw4dig3PycnB/fv3cffuXdy5cwfffPNNhQ0yqFQqxMXFYcSIEejatSvWrVtX3aETlWvAgAG4evUqhg0bho4dO+KXX35B3759xQ6L6gFPT094enpi1qxZiIuLw6FDh/Dnn3/ihx9+gFwuR69eveDg4ICIiAgMHz4czZo1w9ixYzFhwgR4e3sXm5ZMJsOiRYvQrl07jB8/Hp07d8b+/fvh7u4OQ0NDrFu3Dv369cPhw4fxyiuvlIrF2toaCQkJNbXoREREpeTm5mL79u1YuHAhMjIy8OGHH2LOnDkwMzMTOzQiIiKieo3JWuVo2bIljh49KnYYRFSEoaEh2rdvj/bt2xcbrlQqhQSumzdv4vr167h58ybS09NRUFDAXvKIqF5ZsWIFkpOT+Qc9ERERUT1w8uRJ5ObmQiaTwcDAAPn5+SgsLATwPEGradOmcHR0hIuLC5ycnODo6Ag7Ozvs2rULSZk5IkdPNSEiIgJ5eXkwMDBAYWGhUEG4Y8eOaNeuHfz9/eHk5FTqe2X1okNEdYOhoSHs7OxgZ2dXaW9dycnJuHTpEgYNGlTpdNVJBQqFAh9//DFMTNiDIxGRpho0aABfX1/4+voiPT0dS5YsqfQ76nL34sWL8Pf3R//+/as7TKJyubm54cKFC5g4cSIGDRqEnTt3YsSIEWKHRfWIg4MDJk2ahEmTJiE5ORl//fUX9u7di127dsHAwFCkCv8AACAASURBVAC9evWCtbW10Juhv78/xo4di7Fjx6Jp06bCdIYMGYJr167hjTfeQKdOnfCf//wHL7/8Ml5++WW8/vrrmDZtGq5fv47GjRsXm395vdESERFVt7y8PGzbtg1LliyBUqnExIkTMW/ePFhbW4sdGhERERGByVrlatmyJTZu3IjCwkIYGBiIHQ4RVcDc3Bxdu3ZF165diw1XKBS4c+cOWrVqJVJkREQ1KyIiAl999RWWLl0KOzs7scMhIiIiomrWu3dveHt7w8HBAU5OTrC3t4e9vT2cnJxgY2MDmazsW39Hjx7F4+hHNRwtieH111+HpaUl/Pz84O/vDwcHB7FDIiI9YmFhUaoiankMDAwgk8mQl5cHQ0NDODs749atW9UcIRFR3XPz5k2hAYbKGBgYQCKRID8/H4cOHarmyIgq1qhRI+zatQu2trYYNWqUkMBNVNMsLCwwbtw4jBs3DkqlEr/99ht27NiB//znP7CwsMDQoUORlZWFOXPmYP78+RgxYgSmTZuGtm3bAgCcnZ1x7tw5TJ48GQMGDMCXX36J2bNnY8OGDfD19cWnn36K77//vtg8bWxs2LMWERHVqIKCAuzfvx9z585FbGwsxo8fj4ULF7KeCBEREVEtw2Stcnh4eCAzMxNxcXFwdHQUOxwiqgJ1C7FERPXFnDlz4OrqimnTpokdChERERHVgLVr14odAtVyvXv3Ru/evcUOg4j02KNHjyCRSIQeXNTUCcH5+flo1KgROnXqhO7duyMwMBCBgYG4cOECyx8ioiq4ceNGqXJXIpFAKpUiLy8PACCVSuHk5ITWrVvD29sbnp6eyMzMxAcffCBW2EQAnicQrl69GpaWlvjkk0+QkJCAFStWiB0W1WPm5uaYMGECJkyYgJiYGOzatQu7du3C3bt34e7uDk9PT1y4cAHbtm1Dnz598Omnn6Jfv35o0KABtm3bBh8fH8yZMwe3bt3Cjz/+iB9//BHDhg3D4MGDMXDgQGE+NjY2uHjxoohLSkRE9YU6Seuzzz5DREQERo0ahUWLFsHNzU3s0IiIiIioDEzWKkerVq0gkUgQEhLCZC0iIiKq9W7fvo39+/dj7969kMvlYodDRERERERERHVAfHw8gOeJAYWFhSgoKIClpSV69uyJbt26oVu3bvDx8YFEIhE5UiKiuuHhw4dCopaxsTFatGiBtm3bwsPDA56envDy8oKbm1upXnRPnDghRrhEZZo9ezZMTU0xZcoU5Obm4uuvvxY7JCI4OTlh3rx5mDdvHm7fvo2dO3di+/btePz4Mdq3bw+lUokBAwbA3d0dH374ISZNmoQZM2bA19cXo0aNQu/evXHgwAGMGTMGEyZMwM2bN2FlZQUA8PLywpYtW1BQUMDzYiIiqjZBQUGYNWsWbty4gWHDhuHPP/9EixYtxA6LiIiIiCrAZK1ymJmZwcPDA5cvX8arr74qdjhEREREFVq8eDG8vLwwdOhQsUMhIiIiIiIiojrC0tIS7u7u6Nq1q/Bga81ERNVn5syZePXVV9GyZUvY2NiIHQ5Rlf3rX/+Cubk5xo4di4YNG2LZsmVih0Qk8PHxwYoVK/DFF1/gr7/+wsaNG3H8+HHY29vD1NQUs2bNwsqVKzF16lRMnToVV69exYABA9CpUyf88ssvOH36NCZNmoTffvsNBgYG8PPzQ0ZGBh48eAAPDw+xF4+IiOqYoKAgzJs3D//88w8GDhyIbdu2oU2bNmKHRUREREQaYJMuFejUqRMuX74sdhhEREREFXr48CH279+PxYsXs8U+IiIiIiIiItKZt99+G/fu3cOWLVvw9ttvM1GLiKia2djYoFu3bkzUojph1KhR2LZtG1auXIlVq1aJHQ5RKXK5HEOHDsWxY8dw9+5dvP7663j48CEMDAzQrFkzLFu2DO7u7jhy5AjOnDkDOzs79O/fHzNnzsShQ4fw1VdfAQDatGmDxo0b48yZMyIvERER1SXnz59Hr1690LdvXzRp0gRXr17Fn3/+yUQtIiIiIj3C2rwV6NSpE65evQqVSiV2KERERETl2rJlC+zs7NirFhERERERERERERER1RpjxozB2rVrMXv2bPz4449ih0NULg8PD6xduxYJCQn44YcfIJFIkJGRAblcjunTp6NTp04YOXIkunXrhhkzZuDNN9/EvHnzcOzYMRgaGqJbt24ICgoSezGIiKgOuHz5MgYPHozAwEDk5ubi1KlTOHbsGPz9/cUOjYiIiIi0xGStCnTq1Anp6em4e/eu2KEQERERlSk/Px87duzAu+++C6lUKnY4REREREREREREREREgilTpmDBggX417/+hb1794odDlGFGjZsiHHjxuH69es4ceIEWrZsidzcXDx79gzTpk1DdHQ0XnnlFfz888/w8/PDmDFjEBcXh1deeQV///03nj17JvYiEBGRnrp16xZGjBiBzp07Izk5GUFBQTh37hy6d+8udmhEREREVEVM1qqAr68vTE1NcerUKbFDISIiIirT0aNHkZCQgHfeeUfsUIiIiIiIiIiIiIiIiEpZsmQJJk+ejLFjx+LixYtih0OkkZ49e+L48eM4f/48OnbsCACIjIzEgQMH0LJlSwQHByM/Px8jR47Eq6++iszMTBw6dEjkqImISN/cvXsX48aNQ5s2bRAWFoY9e/bgwoUL6N27t9ihEREREdELYrJWBWQyGXr37o2///5b7FCIiIiIyvTnn3/C398fzs7OYodCRERERERERERERERUpnXr1qFv3754/fXXERcXJ3Y4RBrr0qUL/vzzT1y7dg19+/YFAERERMDQ0BBKpRL//PMPPv/8c/Tq1Qs//vijyNESEZG+iI6Oxvvvvw9fX18EBwfjl19+wY0bNzB8+HCxQyMiIiIiHWGyViVeeeUVnDhxAtnZ2WKHQkRERFTK4cOHMXDgQLHDICIiIiIiIiIiIiIiKpdEIsHu3bvRtGlTDB8+HDk5OWKHRKSVNm3a4Ndff8XVq1fRtm1b5OXlAQDy8vKwY8cO2Nra4siRIwgLCxM5UiIiqs1iY2Px0UcfwcPDA0ePHsWmTZsQGhqK4cOHw8DAQOzwiIiIiEiHmKxViVdeeQXPnj3DmTNnxA6lVlg8YaTYIdQrXN/1G39/IqrMw4cPER0djX79+okdSrVieUhEJC6Ww7rF9Vm/8PfWDtcXVYbbCFU3bmN1H39j/cbfj6h+YxnwnL6vBxMTE/z2228ICwvDpEmTxA6HqEr8/f1x8eJFbN++Hebm5jAwMEBhYaGQsLV8+XKxQyQiolro8ePHmDNnDlq2bInff/8d69atw4MHDzBp0iRIpVKxwyOiaqTv13H6huubqHqItW/p+z7NZK1KODg4wMfHB4cPHxY7lBo1zNMOwzztSg0vLCwUIZq6o7z1Wh59WN/aLA+Vra7tb9pu51WdB9UN/C1fTEhICKRSKdq0aSN2KDpR18pDfVYTZXltI9by1sd1XV24Hl8cy+GaUZvWp76VQbEP72Hh28Mxul0LvYldla8SO4RaieUNVaaubSO8V6I/9HUbo9LqWjlSm9XkeVnJ36+sedem88TaFAuRNl50232amIC1M6dgYlc/vOHtoLN9ob6V4XX5WNayZUvs3LkTu3btwsaNG8UOh6hKDAwMMG7cOISHh2Py5MlCTyjx8fHYtWsXbt++LXKERERUWyQnJ2PRokVo3rw5tm3bhkWLFuHevXuYNGkSZDKZ2OERkQ7V5es4MbHeNemDuvSbalOW1cRy68M+XREma2lg4MCB+OOPP/T+x9bG/jBFmcMXbfu1hiOpW8pbr+Xh+q4f6tr+pu12TkRVd/36dXh6esLIyEjsUHSirpWH+oxlec3huqbahOVwzahN61PfyqD1cz5GvzfHYful21j40x6xw9HIkh37xA6hVmJ5Q5Wpa9uIvpW39Zm+bmNUWl0rR2qzmizjSv5+Zc27NpW5tSkWIm286La7bs402Dq74tuDJ/Gf6xGYuX6LTuKqb2V4XT+WDRo0CIsWLcL06dNx/fp1scMhqjIzMzNs3LgRISEhaNasGQoLC1FQUICJEyfWqzpGRERUWkZGBlauXInmzZtj48aNmD9/PqKiojB79mw0bNhQ7PCIqBrU9es4sbDeNVHNqm1lmb7v00zW0sDIkSMRGRmJS5cuiR0KERERkSA8PByenp5ih0FERERUI6Lu3sZLfQdAbmiI1l26svIrERERERFRLRQWfAWvTZoK4yZmkBsa4qW+A3j9RmWaP38+AgICMHr0aGRnZ4sdDtELadu2LWJiYtClSxcAwKVLl7BixQqRoyIiIjFkZmZi7dq1aN68Ob788ktMnjwZ4eHhmD17Nho1aiR2eERERERUg9iPqgb8/Pzg4+ODn3/+GZ07dxY7nHJlpadhz4Y1uHL8CJRJCWhsaoa2gT3Q/6230aK1nzDe1RNH8duPGxBxOxRmzazQqe8rGDVtJho1Nq5w+uqu6kreTI8Ku4MdXy1BWMhVSKRSeLbrgEFvv4e2gT00ils93bUHT2HbikW4d+0fFBQUwKdjZ7w963M4NG9RatyNRy9gx6ovcOvyeWSmpRWLK+ZBGHau/hJ3rj5PrvNs1wFvz/4cTi2KV2bXZDz1/Daf/AdbvpiHm5fOo0GjRmjTpRsmzP8CJmbmVVoXT+IVlU6vrPUtrKu/TmPDvE8Qfe8Omvu0xpTl3yIvNwcb501HzIN7cPdti2kr16KZrX21LrN63KLdGPZ+4018sHTN/+a3ainu/HMZAODdvhPGzlxQ6rfQR/q6v2k6DU3jjn14Dzu++gK3r16CRCqF70sBeHf+F2XOV5NparJeK9ruNC4jXnC7rJZyq5KYtJmnttPUtIwTpQzRoDyvz+Lj49G6dWtRY9Dn8lCbbbq8fVhX+7im67Ei1flbFN1Pl+zYB5+OXXDurwP45tN/CcPVy6vJ9OvrOY02x01dlIF15Xj1oucHQNXLIH3Acrh2lMOalpMVXefp6rqzvN+svOFl0VW5p2ms2pRTw30cAQCvvfchxnw6X6dxaHPM0CbmulIpkeVN7ShvajN93kZ4r0R390o0Of5os0yaHs+0uQ6pbD8vOe26fI+zttHncqSuHWu0vbYrizb7pTbnYZqeW2nyP4ymcWpC19f8utwftP09dVGmarqcgGb7oDb72ItcC9VHut521et7VGuXMqdR1evhFynDNd3PdXHM1+djmRgkEgl27NiB1q1bY86cOVi7dq3YIRG9kEaNGuH8+fMYN24cdu7ciXnz5qFTp07o1auX2KEREVENyM3Nxfbt27Fo0SKkpaVhypQpmD17NszNzSv/MhGJRl+v41jvmvWuK6OreyYvsv6qow6RLpa9uv7Tqu7fVJvfS9N7pJreG6xo33qR5a7qf3f6VA+MPWtp6M0338Svv/6KvLw8sUMp1/o5H6GxiSmW7/kTO/+5jwU/7EJCTCTmjBhYbLwVH4xHz9dG4N9X7mLFrweRkZqCLV8sqHT6Zf2JoYiKwJpP3sfQiR9i26VbWLHnIJ5lZ+GLiW9pHLd6ums+mYyer43Ed8cv47ugS+jU5xV8MfEtJD2KLTXuD4vm4NUJ/8KWM9cx/4ddwucJMVFY/M4otO/ZF98FXcL3J66g+5BhWPHBO0hOiNd6PPX8Ni34FP3efBtbz13HV/v+Rs6zbPx75ZIqr4uS08vPyys1vbLWt3rYng1rMGXZN9h69jpcPH3w7cwp+GXdakxZ/i22nAmBQ/MW2L5icbHvVscyq8fdH6YQHupCNiEmCkvfG43O/Qbhu6BL2HTsIjr1HYAvJr6FhJioUsumb/R1f9N0GprEXfQ3/v74ZWw6dhGdXx6Irz+ZXOa8NZmmJuu1ou1OkzJCF9ulrsstTWLSZp7aTlOT/V2MMkST+dV3SUlJsLKyEjUGfS0Ptd2my9uHdbWPa7oeK1Kdv8Xe27GwcXLBv6/chU/H561CBg58FVvOXoOxaRPsvvZQq+nXx3MabY6buioD68rx6kXPD4Cql0H6gOVw7SiHNS0nK7rO09V1Z3kVEDWtmKirck+bWLUpp9T7uKaJWtrEoc0xQ5uY6wqWN7WjvKnN9HUb4b0S3d4r0WS4Nsuk6Xy0uQ6pbD8vqq7f46xt9LUcqYvHGm3OecqjzX6pzXmYpjT5H0bTOCtTHdf8utwftP09dVGmarqcmuyD2u5jJdW183Jdqo5tt6zzEvWjpBctA6rrPO5Fjvn6eiwTk4ODA9avX4/169fj0KFDYodDpBM7duzABx98AADo3bs3IiIiRI6IiIiqU15eHnbs2AFPT09MmzYNgwcPxsOHD7FixQomahHpAX29jmO9a9a7rogu75m8yPqrjjpEulj26vpPq7rr0mvze2mybNrcG6xo33qR5a7Kf3earovagslaGhozZgyePHmCY8eOiR1KuUIvnsOAse/CzMISckNDuHq3wkdfrS813v4wBfqOGIMGDRvBrJkV3pm3BP+cPFqlee5ZvxpvTP4Irbt0RYOGjeDg3hIffLG6StN6418fI3DgqzAxM0cTi2boM/wtDBo3EXvWryk17rDJ0+Dh1x6GDRuiXbde/zsYrF+NweMnod+ocTBtagETM3N0GzIMb0z+CAe2bioWtybjqfV/azz8uvZEQ6PGaGZrhzHT5+HG+VNVXhclpzd2xvxS06tI/7fehkPzFjAyMcXr70/DgxshGDB2gjBs2PvTcOefS6Xi0/UyV2TP+tV4dcK/0GvYKJg2tRB+0yHj38eeDaV/U32jr/ubptPQJO49G9ZgyDuThd/Y1Lwpug0Zhr4jx5Q5b02mqel6rUxFZYQut0tdlVvaxKTJPLWdpqZlXE2XIdrMr77Kzc1FgwYNRI1Bn8tDbbax8vbhyj7XdH/URflXnb+FRCpFl/6DcfbP/xYbfuq3vQgY8CoaNDKq0vTr0zmNNsdNXZeB+n680sX+ocsyqLZhOVzx5zW1nWlTTpZH19edVaWzck+LWLUpp6qyPFW9Vq/omFGdMddWLG8q/rwmj2u1lT5vI7xXUrP38KpjP9Bmu6psPy+qrt/jrG30uRypq8eaFznn0e7+wItdu2syzfL+h9HF9lQd1/zVsT9o+nvqokzV5v+6yvZB3iuuPmLeryqqqmWATs/jdHTM19djmdhGjx6NN998ExMnTsSTJ0/EDodIJzZu3IgRI0YAANzd3ZGbmytyREREpGsFBQXYu3cvvL29MXHiRPTt2xcRERHYvHkzbGxsxA6PiDSk79dxrHd9qsxxy/5+PaqjpMN7Jv9bNu3Xn1p11Hl90WXX1Iveb9fl/0y6rvuk7f+aWk1by+XW5r87QL/qgTFZS0POzs4ICAjAv//9b7FDKZdHW38s/9fbuHb2JFSqfACAlYNTpRussWkTZKSmVGmety6dh2/nrsWG2bk2r1Irda27dC01rFPfV3Dj/OlSw92LdC9aVOiFswgYMKTU8HY9euPGhTNaj6fm3eGlYu8t7R2hfJxUbJg266Lk9JrZ2peaXkXcvH2F1+bNLEsNa2pljbSnycW+Ux3LXJHQC2fRsU//UsM79X0FoRfOajyd2kpf97eqTqOsuEPPnynzN/br2lOjWMqaZlXXa0kVlRG63C51VW5pE5Mm89R2mprs72KUIdrMr76SSCQoLCwUNQZ9LQ+13cbK24cr+1zT/VEX5V91/xa9ho3Cyf/uKTbs+P7/oO+Iii/QKpp+fTqn0ea4qesyUN+PV7o6PyjqRcqg2oblcMWf1+R2VtVyUk3X151VpatyT5tYtSmntPUi1+oVHTOqM+baiuVNxZ+LeVyrLfR1G+G9kpq/h1cT+0FF21Vl+3lRdf0eZ22jr+VIXT7W6PKcp6Lf6UWv3TWZpqb/w1Rle6qOa/7q2B+q+ntWpUzVdDk12Qd5r7j6iHm/qqiqlgE6PY/T0TFfX49ltcHGjRshk8nw6aefih0Kkc7s2bMHHTp0QGFhITw9PcUOh4iIdKSwsFBI0ho1ahT8/Pxw9+5dbN68GXZ2dmKHR0Ra0vfrONa7Zr3rsujynolaVdafWnXUeS2Pru+TvOj99ur8n+lF6z696P+aFU5by+XW5r+7stTmemAysQP4P/buPKCm/PH/+OtWyk7IVhgkjKVIYykRZQyTXcwMoZAU2cWY0YxlyjJUtjIV2ZKZQRilrBVJiGyNDNnXsiVaf398vjO/WSz31rm97/J6/DWTOvd57j3nfe4997zvVSfjx4+Hi4sLbt++DRMTE9E5/zHDPxiRq3/E+u/n4nnWEzT+uDU6OfRB7y9HQVevHADgedYTbP5xMc7GH8bTx49QVFhYqtt8/jQLVQ1rSJGPKtX/+7W/hkZvH7wNyld46zJePM3GhB6fvPXf9MuXV/j3/lS5arV//H85ff3/XByvyH3x7+Xp6OoqdLF9hUqV//pvmY7OW3/27+UpY53f5/nTLFSvVfs/Pzc0qoMX2VlyL0dVqev+Js8y5O1+12P8tp/Ju0x57ld5vGuMkHq7lGLcUrRJnttUdJny7O9lPYYoenvaqly5cigoKBDaoK7joaLb2Lv24Q/9u7z7oxTjn7Ifi3qNGkO/fHncuHIJH7X4GJdOJaFi5Spo/HHr/7++Ci5fm57TKHLclHoMVPfjVWn3D6nHIFXDcfj9/16W47A84+T7SP26s6SkHPfkbVVknFJUaV6rv++YocxmVcXx5v3/XpbjjapS122E50rK/hye1PuBotvVh/bzfyxbw89xqhp1HUc0+VhT0uc8ij5OpX3tLs8y3/Y+jFTbkzJe8ytjf5DrtbpEY6q86ynPPshzxcoj8nzV35V0DCiL53GKHvPV9VimCqpXr46AgAAMHDgQo0aNQo8ePUQnEUkiOTkZX331FTZs2CA6hYiIJBAXF4fZs2cjNTUVgwcPRlRUFMzMzERnEVEpqPvrOF53zeuu37Ucqc6Z/Kkk99+flHHN67tIfZ6k1NcsSbVeSrj2SZFzg1It+13rrdB7d2p2HRgnaylg2LBhmDVrFtatW4eFCxeKzvmPilWqYrS3D0Z7++B5dhbSTiRg78b1uJRyEjMD1gMA/GdNgnHjpli0dTdq1q0HXd3/bQKDW5TsUx2qVDfE8+ws1Khdp9T9T588QvWaRv/4WfajB6hao6b8PYY14P/b0f8c8Er6e4qQ8r5QBmWs8/tUrV4D2Y8eoLZxg3/8PPvRA1TRgDcM1HV/k2cZ8nZXrV4DTx8/hFH9f05efdvsZHmXKc/9WhpSb5dSjFuKNslzm8rY/8p6DCnr21NXtWrVwqNHj4Q2qO14WEbbmLz7oxTjX1k8Fj0GDcehX7bB5esF//u2mH997bHUj/XbqOtzGkWOm1Kvo7ofr0q7f5TFdikSx+H3K8txGPjwOFla8t73MpkM+Xl5KKev/9fP5P0UIanGPUW2EynGKSk6FKHMZlXF8eb9ynq8UUVqu43wXIlk5xDkPf7Iu07yLk+Zz/c0/RynqlHbcUSDjzUlfc6jLq/DpOpUxmt+ZewP8jyeUt0ncr9fJ8c+qMg+VprXQtpI5PkqKUj9PE6KY766HstUxYABA9CvXz+4u7vj3LlzKM8JmaQhtmzZIjqBiIhKKS4uDnPnzsWpU6dgb2+P06dPw8LCQnQWEUlA3V/H8bpr5VLXa5SkPGcihbK85lXqaypKe75dqvVS5PGSd90UOTeoKGW+v6Yu7z/8SUd0gDrR19eHm5sbgoKC8Pr1a9E5/zG4RX08uX8PAFDVsAas+/TD18Gb/vE1gelnUzBs0kzUNm7w18aZV4p1afVJF5z/11c53rhyCV59uym8rNT4I//52cnY/TC3ln9ZFjbdcfHk8f/8/HLKScwc9KnCv6cIKe8LZVDGOgP/G9Tfpm2Xrjh54Lf//Pxk7P63fqWlulHX/U2eZcjbbW7TDclx0f/5+b+Xr8gy5blfgXdvdx8i9XYpxbilaJM8t6mM/a+sxxBl3Z6mqVu3Lu7duye0QV3Hw7LaxuTdH+Ud/96nLB6LLp85IvlgDJ5nPcHZ+MOw6TvgH/8u9WP9Nur6nEaR46bU66jux6vSPj8oi+1SJI7D71eW4zDw4XGytOS976vXqo3H9+7842eXTiXJdRtSjXuKbCdSjFNSdChCmc2qiuPN+5X1eKOK1HUb4bkS6c4hyHv8kXed5F2eMp/vafo5TlWjruOIJh9rSvqcR11eh0nVqYzX/MrYH+R5PKW6T+RdT3n2QUX2sdK8FtJGIs9XSUHK53FSHfPV9VimSgIDA3H37l0sXbpUdAqRZF68eIGFCxeiUMU/7ZuIiP7r+PHj6NGjBxwcHFCtWjWcOnUKsbGxnKhFpEHU/XUcr7tWLnW9RknKcyZSKMtrXqW+pqK079NJtV6KPF7yrpsi5wbfRcQcAnV5/+FPnKylIDc3Nzx//hzbtm0TnfJWa+ZNx62MdOTn5eHpk0fYHbL2Hxt183YdsGnZAjy8cwsF+fm4f/MGgnxml/j2hrh7YceaFTh/PB5vcl8hM/0yVs+dij4jXBRe1oHtmxC/dydePM3G86wnOPjzNuwN/wnDJk2XexnDJk3H9sBlOBGzFy+eZiM35yVSjsTix+nuGDpxqsK/pwgp7wtlUMY6A0CNOnWRnnoahQX5OJd4FG52HQAATp7TEbUhCHE7tuLZk8d/PaZRG4IwzFP+x1SVqeP+Js8y5O0e5jkdUWHrcOiXCDzPeoKXz57i+P4o/BIU8J/fVeS++ND9Crx7u/sQqbdLKcYtRZvkuU1l7H9lPYYo6/Y0jbGxMW7evCk6Qy3Hw7LaxhTZH+UZ/z5E2Y9F+YqV0LqjNVbO9IRVj17/+DprKZYvD3V9TqPIcVPqddSE41Vpnh+UxXYpGsfhdyvrcfhD42RpyXvfm1vbYsuPP+DJ/Xt4/SoHqQlHEBMRLtdtSDXuKbKdSDFOSdGhCGU2qzKON+9W1uONqlLHbYTnSqQ7h6DI8UeedZJ3qpfXhwAAIABJREFUecp8vqcN5zhVjTqOI5p8rCnpcx51eR0mVaeyXvNLvT/I83hKdp/IuZ7y7IOK3GeleS2kjUSer5KClM/jpDzmq+OxTJU0bNgQ8+fPx6JFi5Ceni46h0gSmZmZWLRoERYvXiw6hYiI5JScnAxHR0dYW1sjLy8PR44cQWxsLDp0kO+cGxGpF3V+HcfrrpVLXa9RkvKciRTK8ppXZVxTUZr36aRaL0UeL3nXTZFzg+8iYg6Burz/8CdZcXFxsegIdTNixAhcvHgRZ86cKfEnlsqjQsWKGDf/B3Qf4CTX76edSMBvW0JxOeUkcnNeokadeuho3xvDJs346wKxZ08eY+OS75GacAQ5z5+h/kdNMXTiFCyfOgEA8MuVuwD++VVw7/sZAKSnnkb4ku9x7eJ5VKtRE72/GI2B4z0VWtfBLepj7cGTCFkwDxdPnUBRURFaWXXCqNnzYdK02T9+7+/+3vGne5nXsXn5Ypw/EY/CggI0MDXDoPGT0NHhM4V/713rXNL7QpHlSf0zZa3z8eg92LRsEbIe3EOtesYY7e0Dqx69AACZv1/GpqULcSnlJADg4w4dMXLmPDQyawlFfWnRBEHr1mHUqFEK/608KlaqBNdvFsFu4DC5fl+d97cPLUPebgC4lZGO8CULcPFUEmQyGZq36wCXOd/B6/Pu//hdeZcpz/0KvHu7k2eMkGq7lHLckrdJ3tuUd5mK7u9lPYbIO57LI9B7Cirm5WDfvr0K/60qW79+PaZOnYrnz59DR6f0c/BHjx6Ni5l3MGed/BcwqPN4qOg2/e8Gef4dkG9/lHf8ex9lPxZ/upxyEvNGDIRv5D40a9vuH/8m9WOtKuORVMcOeY+b8q6jPDTheFXa5weKPLeRx1ftmmLtmjUYPXq0Qn8nL216Xqpp4/Cf3jdOKnIfl+a+f56dhdBF3+Dc8WN4k5uLNp2sMe7bH/46Mfah25Zq3JOnVcpxqqQdij4G8jYXFxXBqU0j7Lh4S+5WAEg5EosfJoxCTk4OKlasqNDfyovP+9R/vFH2dnLo0CH07NkTYScuoKphDbn+Rp23EZ4rkWbcl/f4I+86ybu8kmxXb7svlH1cBIDg7+bg9b1MHDl8WOG/VTfaNo5o4rGmJM/TSrNfKvM9k9J2ykPq1/xS7g9/rr88j6dUY6q86wnItw/Kuyx5jx3yUqdxuyTjLiD9tlva/VrR35XyeZwUx3x1PpYBgEuXNli84HtMnDhR4b+VUkFBASwtLdGwYUPs2bNHaAuRVPz9/TFjxgwcO3YMnTt3Fp1DRETvcPHiRXz33Xf4+eef0bFjRyxYsAD29vais4hIThMnTkTi2fOYv2GH3H+jzq/jeN01r7t+H6nOmUhxXlbKa4ikWHdA+ve0lP2YKnKOS5FzpPKeG1TWtlyS9+6kvg5M2efDOFmrBFJTU9G+fXvs3LkT/fv3V9rtKDpZS50NblFf4Z2DtIuqTdYiEjFucawsOU2drJWcnIyOHTvi6tWrMDU1LfXySnLRLhGpNh6vpKdqk7WI1J06jhnvaz68cztsHQdBV68csh4+wNdf9sfauCSFlq+qk7VItajiZC0i+jB1uui/tDiOqD91fJ5G78bHs2TUadzmuEtSUJXJWgBw5MgR2NnZIS4uDj179hSdQ1RqxcXF6NevHy5duoSzZ8+iatWqopOIiOhvrly5gsWLF2Pr1q34+OOP8c0332Do0KGis4hIQSWZrKXOeL6H1AG3U1J1yj4fVvqvYNBCFhYWGDBgAHx8fMC5bkRERCRK69atUa5cOSQnJ4tOISIiIiIAq+ZMxa/Bq5Cb8xL7wtfDpo/yPuSHiIiIiIiISFN1794dvXv3xsyZM1FUVCQ6h6jUZDIZQkJC8OrVK0yaNEl0DhER/Z/MzEy4ubmhTZs2SElJwbZt23Du3DlO1CIiIiIiSXCyVgl9//33OH/+PHbt2iU6Re39+RV1//4qOyIiVSVi3OJYSW9TsWJFfPLJJzisBp/sSkRlj8crIlJ16jhmfKh5/PwfELMtHBPtO+HVixcYOnFqWeYRERERSUIdn6fRu/HxJCJ1tWTJEpw/fx6RkZGiU4gkUbt2bYSFhWHTpk3Ytm2b6BwiIq12+/ZteHl5oXnz5jhw4ABWr16NtLQ0DB06FDKZTHQeEdEH8XwPqQNup0SAnugAddW6dWsMHDgQ3377Lfr37w8dHc57e5sPDbC/XLnLrzckkog8+xt9mKqOW3z86F169OiBrVu3is5QKZo4HmriOmkSEY8Pj1ekyjRxzNLEdSoNqe6P0t5vIh6XDy3z0y9G4dMvRkl+u/R23DfpQ7iNSIP3I2kzTdz+VfX1pKrShG1AHRqJ1IEmjAfqpk2bNhg5ciTmzJmDgQMHwsDAQHQSUan17t0bHh4emDhxImxsbNCgQQPRSUREWuXx48dYtmwZAgICUKtWLQQEBMDFxQV6eryMlohUB8/f0fuo0/kJqVvUad0VoanrRf/DZ5ml4OPjA3Nzc/zyyy/86tt34ABBVHa4v0mD9yOpGwcHByxYsABXrlxBixYtROeoBE3cjzVxnTQJJ0UR/ZMmbp+auE6loSr3h6p0kDjcBuhDuI1Ig/cjaTNN3P41cZ2UifcXEf2J44EY33//PZo3b45169bBy8tLdA6RJJYsWYLY2FhMmDAB+/btE51DRKQVsrKyEBAQgBUrVsDAwADz58+Hl5cXypcvLzqNiOg/+PqT3kebtw9NXXdNXS/6H34dVCm0bt0aX3zxBby9vfH69WvROURERKSFrK2tUbduXfz666+iU4iIiIiIiIiIiIiIiCTToEEDTJgwAUuWLOE1GaQxKlSogLCwMERHR2Pz5s2ic4iINNrLly/h5+eHpk2bYtWqVZg7dy5u3LiB2bNnc6IWERERESkdJ2uVkp+fHx4+fIjly5eLTiEiIiItpKOjg379+nGyFhERERERERERERERaZxZs2YhOzsbYWFholOIJNO5c2e4u7tjypQpePDggegcIiKN8+rVK/j7+8PU1BSLFi2Cm5sbrl27htmzZ6NixYqi84iIiIhIS3CyVikZGxtjzpw5WLx4MTIzM0XnEBERkRZycnLC6dOncfHiRdEpREREREREREREREREkqlbty7GjBkDX19f5OXlic4hkoyfnx+qVq2KKVOmiE4hItIYeXl5CA4OhqmpKb7++muMHj0amZmZ8PX1RbVq1UTnEREREZGW4WQtCcyYMeOvSVtEREREZa1Hjx4wNTXFTz/9JDqFiIiIiIiIiIiIiIhIUt7e3rh//z42b94sOoVIMpUqVcLq1asRERGBXbt2ic4hIlJr+fn5CA8PR4sWLTBp0iQ4OjoiIyMDvr6+MDQ0FJ1HRERERFqKk7UkoK+vj6VLlyIiIgLx8fGic4iIiEjLyGQyuLi4YMOGDXj16pXoHCIiIiIiIiIiIiIiIsk0aNAAI0eOxOLFi1FQUCA6h0gyn332GUaOHAlPT088f/5cdA4RkdopKirCjh070KpVK4wdOxYODg74448/EBQUhLp164rOIyIiIiItx8laEunfvz969+6N8ePH4/Xr16JziIiISMu4uLggJycHv/76q+gUIiIiIiIiIiIiIiIiSXl7e+PGjRv8BiLSOCtWrMDr16+xYMEC0SlERGqjuLgYe/bsQfv27TF8+HBYWFjg8uXLCAoKgrGxseg8IiIiIiIAnKwlqfXr1+P+/fuYP3++6BQiIiLSMnXq1EG/fv2wfv160SlERERERERERERERESSMjU1haOjI/z9/UWnEEmqZs2aWLBgAfz9/ZGeni46h4hI5cXFxaFDhw4YMGAAzMzMcOnSJURGRqJp06ai04iIiIiI/oGTtSRkbGyMJUuWYNmyZUhMTBSdQ0RERFpm3LhxOHbsGC5duiQ6hYiIiIiIiIiIiIiISFKTJ09GQkICUlJSRKcQSWr8+PH4+OOPMWnSJNEpREQqKyEhAd26dYODgwNq1KiBlJQUREZGonnz5qLTiIiIiIjeipO1JDZ27Fj06tULY8eOxevXr0XnEBERkRZxcHBAkyZNsGbNGtEpREREREREREREREREkrKzs4O5uTlWrVolOoVIUrq6uli1ahXi4uKwd+9e0TlERCrlxIkT6NmzJ7p27Qp9fX0kJycjNjYW7dq1E51GRERERPRenKwlMZlMhqCgINy9exffffed6BwiIiLSIjo6OpgyZQpCQkJw//590TlERERERERERERERESS8vT0REREBB48eCA6hUhSNjY2GDp0KKZMmYI3b96IziEiEu78+fNwcnJCly5d8ObNGxw+fBixsbGwsrISnUZEREREJBdO1lKChg0bYtmyZVi6dCkOHTokOoeIiIi0iKurK6pUqYLVq1eLTiEiIiIiIiIiIiIiIpLUV199hcqVK2P9+vWiU4gkt3TpUty7dw8BAQGiU4iIhLl48SKcnJxgYWGBmzdvIioqCgkJCejevbvoNCIiIiIihXCylpKMGzcOw4YNw5dffol79+6JziEiIiItUbFiRUyaNAmrV6/GixcvROcQERERERERERERERFJpkKFChgzZgxCQkJQVFQkOodIUg0bNsS0adPg6+uLZ8+eic4hIipT169fh5ubG8zNzXH58mVs374dJ06cgKOjo+g0IiIiIqIS4WQtJQoKCkL16tXx5ZdforCwUHQOERERaQlPT08UFBQgODhYdAoREREREREREREREZGkxo4di8zMTBw6dEh0CpHkZsyYAQBYsWKF4BIiorJx8+ZNuLm5wczMDPHx8QgNDcW5c+cwdOhQyGQy0XlERERERCXGyVpKVLlyZURGRuLkyZNYtGiR6BwiIiLSEoaGhhg3bhxWrFiBvLw80TlERERERERERERERESSad68OTp16oTQ0FDRKUSSq1atGqZNm4bly5fj4cOHonOIiJTm4cOH8Pb2hpmZGWJiYrB69WqkpaXB2dkZOjq8rJWIiIiI1J+e6ABN17ZtWyxduhReXl7o2rUr7OzsFPr7jLRz0C9fQUl1ROqjqLBI6beRkXYOBhUqKv12iKjsPbpzC42MaojOKFPTpk3DqlWrsHnzZri4uMj9d9mPHuB49B4llhERqbdCPi8lIiX741JamdwOn/ept7LaTlIOHUD5SpXK5LaItMH9mzdQvZx2fSI0xxEiUmfqOG5z3FVxxcWACn87RH7eG9EJCnFxccGkSZOQnZ0NQ0ND0TlEkpoyZQoCAwOxfPly+Pn5ic4hIpLU48ePsWzZMgQEBKBWrVrw8/PDhAkTYGBgIDqNiDTA0yeP+f4XERHJTdnnwzhZqwx4eHjg6NGjcHJyQlJSEpo2bSrX35kYm2D/ljDs3xKm5EIi1aerq4v69esrbfkmxiaI3roB0Vs3KO02iEgsGzc30QllytjYGCNHjsTixYsxYsQI6Ovrf/BvTExMcG3jRiyfol33FRGRIvi8lIjKglHt2nI9fyspPu/TDMrcTurUqQN9fX2s/nqaUpZPpM1GjBwpOqFMcBwhIk2hLuM2x12Sgo6ODoyNjUVnyG348OGYNm0atm7dCg8PD9E5RJKqVKkSZs2ahXnz5mHy5MlqtW8SEb1LVlYWAgICsGLFChgYGGD+/Pnw8vJC+fLlRacRkYYwMTHBzavpfP+LiIjkpuzzYbLi4uJipS2d/pKbm4vu3bvj+fPnOH78OD/ZSQUMHz4cjx8/RlxcnOgUIiqBoKAgeHp6IiUlBebm5qJziFTSnTt30KxZM/j5+WHSpEmic4jURk5ODiZMmICtW7fim2++wbfffgsdHR3RWUSk4tauXYvJkyfj5MmTaN++vegcIiGKiorg6+sLHx8f2NvbIyoqCnp6/KwoopK4cOEC2rZti5iYGDg4OIjOISJSS8XFxWjWrBn69euHH3/8UXQOEWm5hw8fwsXFBTExMfj6668xb948vl6SgIuLC9LS0nDq1CnRKUSSe/36NUxNTTFkyBCsXLlSdA4RUYm9fPkSq1evhq+vL3R1deHp6Ynp06ejSpUqotOIiIiEysrKQp8+fZCZmYkDBw6gTZs2opOISGK84rCMVKhQATt37kROTg769euHly9fik7Sam/evMH+/fsxcOBA0SlEVAL379/HnDlzMGXKFE7UInoPY2NjeHh4YMGCBXj+/LnoHCK1UalSJWzatAlhYWFYsmQJ7O3t8eDBA9FZRKTC7t69i7lz52LmzJmcqEVa68GDB+jTpw98fHwwd+5c7N27lxceEpXCihUr0KxZM9jb24tOISJSWzKZDKNHj0Z4eDjevHkjOoeItFzt2rWxd+9ehISEYOnSpbC2tkZGRoboLLX31VdfISUlBVevXhWdQiS58uXLY/r06Vi/fj2ePHkiOoeISGGvXr2Cv78/TE1NsXDhQri5ueHatWvw8fHhRC0iItJ69+7dQ/fu3fHgwQPEx8dzohaRhuJkrTJUv359REdH4+rVq+jbty9ycnJEJ2mtAwcO4MWLF+jfv7/oFCIqAS8vL1SpUgXz588XnUKk8ubOnYvCwkIsX75cdAqR2nF2dkZCQgIyMzPRoUMHHD9+XHQSEamoiRMnwsjICN98843oFCIhdu3ahVatWuHGjRs4efIkfHx8+K2URKXw+PFjbNu2DVOnToVMJhOdQ0Sk1saMGYOnT59i7969olOIiAD875xjSkoK8vLyYGlpieDgYNFJas3Ozg716tXD9u3bRacQKcXYsWOhr6/PsYKI1EpeXh6Cg4PRrFkzfP311xg2bBiuXbsGX19fVKtWTXQeERGRcNevX0fXrl1RUFCA+Ph4mJqaik4iIiXhVRNl7OOPP8bBgwdx5coV9O3bF8+ePROdpJV27tyJjh07wsTERHQKESkoOjoakZGRWLVqFSpXriw6h0jlGRoaYtasWVi+fDnu3bsnOodI7bRv3x5nzpzBJ598gm7dusHPzw/FxcWis4hIhURERCAqKgpr165FhQoVROcQlanXr1/Dy8sLgwYNQp8+fZCSkoJ27dqJziJSe0FBQTAwMMDIkSNFpxARqT1jY2M4ODggJCREdAoR0V9atmyJpKQkuLu7w93dHU5OTsjOzhadpZZ0dHQwePBgbN26VXQKkVJUqVIF48aNg7+/P16/fi06h4jovfLz8xEeHo6WLVti0qRJ+Pzzz3H16lX4+/ujdu3aovOIiIhUwuXLl9G1a1dUr14dx44d43XsRBqOk7UEaNWqFQ4ePIirV6/C1tYWd+7cEZ2kVQoLC7Fnzx4MHDhQdAoRKejVq1fw8PDAsGHD4OjoKDqHSG1MnjwZhoaG+P7770WnEKmlatWq4eeff8ayZcvwzTffYNCgQfzQBSICADx9+hRTpkzBuHHj0LNnT9E5RGXq0qVL6NixIzZu3IgtW7YgPDycH6hBJIGCggKsW7cOY8eORaVKlUTnEBFpBFdXV8TExODmzZuiU4iI/mJgYABfX1/ExMQgMTERFhYWOHbsmOgstTRs2DBcvnwZFy5cEJ1CpBReXl7Izs5GRESE6BQiorcqKirCjh070KpVK4wdOxbW1ta4cuUKgoKCUK9ePdF5REREKiMlJQW2trZo2rQpDh06hFq1aolOIiIl42QtQVq3bo0TJ06gsLAQnTt3xvnz50UnaY2jR4/i8ePHGDBggOgUIlLQt99+iydPnuDHH38UnUKkVipUqICFCxdi/fr1SE5OFp1DpJZkMhm8vLwQGxuLkydP4pNPPkFaWproLCISbN68eSgoKMDixYtFpxCVmeLiYgQHB8PKygoVK1bEmTNn8MUXX4jOItIYP//8M+7du4eJEyeKTiEi0hj9+vVDzZo1ER4eLjqFiOg/7O3tkZqaCnNzc/To0QPe3t7Iz88XnaVWrK2t0ahRI2zfvl10CpFSGBsbw8nJCcuXL0dxcbHoHCKivxQXF2PPnj1o3749hg8fDgsLC1y6dAnh4eFo3Lix6DwiIiKVcvToUfTs2ROffPIJoqOjUbVqVdFJRFQGOFlLoIYNGyI+Ph5NmzZFly5d+Ck4ZWTnzp1o27YtzMzMRKcQkQLOnz+PgIAALFmyBPXr1xedQ6R2nJ2d0aNHD4wdOxZ5eXmic4jUVrdu3ZCamooGDRrgk08+QUhIiOgkIhIkLS0NQUFBWL58OWrWrCk6h6hMPH78GP3794eHhwdmzpyJhIQENGnSRHQWkUYJCAhA//79eUELEZGE9PX1MWLECISGhqKoqEh0DhHRfxgZGSEqKgqhoaEIDAyEjY0NMjIyRGepDZlMhsGDB+Pnn38WnUKkNNOmTcOFCxdw5MgR0SlERACAuLg4WFlZoX///jAzM8OlS5cQGRkJU1NT0WlEREQqZ9++ffjss8/Qp08f7Nq1CxUqVBCdRERlhJO1BDM0NERsbCzGjh2LL7/8EjNmzEBBQYHoLI1VXFyM3bt3Y+DAgaJTiEgBRUVFcHNzQ/v27TF27FjROURqSSaTITg4GH/88QeWLFkiOodIrdWuXRvR0dGYPXs2xo0bB2dnZ+Tm5orOIqIy9Ofz044dO8LZ2Vl0DlGZOHToEMzNzXHu3DkcOnQIPj4+0NXVFZ1FpFFOnz6NEydOYPLkyaJTiIg0jqurK65fv84LnIlIpTk7OyMlJQV5eXmwtLREcHCw6CS10b9/f1y5cgXp6emiU4iUol27drCyskJoaKjoFCLScgkJCejevTscHBxgaGiIlJQUREZGonnz5qLTiIiIVFJERAQGDhyIoUOHYtOmTShXrpzoJCIqQ5yspQL09PSwcuVKhIeHY+3atbCxscG1a9dEZ2mkkydP4tatWxg0aJDoFCJSQGBgIM6cOYOQkBDo6PDQRVRSH330EXx8fLBw4UJcunRJdA6RWtPT04OPjw927dqFvXv3wtraGn/88YfoLCIqI6GhoTh16hRWr14NmUwmOodIqQoKCuDj4wMHBwd07twZqamp6Nq1q+gsIo20cuVKtG7dGra2tqJTiIg0TqtWrdCxY0de4ExEKq9ly5ZISkqCu7s73N3d4eTkhOzsbNFZKs/a2hq1atVCVFSU6BQipXFxccEvv/yCp0+fik4hIi2UlJQEe3t7dO3aFeXKlUNycjJiY2PRvn170WlEREQqKygoCF999RUmTJiADRs2QE9PT3QSEZUxXvGuQkaMGIGUlBS8efMG7dq1w4YNG0QnaZzdu3ejSZMmaNu2regUIpLT3bt3MX/+fMyaNQutWrUSnUOk9qZOnYo2bdrA1dUVRUVFonOI1F6/fv2QnJyMoqIitGvXDr/++qvoJCJSsqysLMyZMweTJk2Cubm56Bwipbpx4wZsbW2xZMkS/Pjjj/j5559haGgoOotIIz18+BA7duzA1KlTORGYiEhJ/rzAmZMeiEjVGRgYwNfXFzExMUhMTISFhQXi4+NFZ6k0XV1d9O3bl5O1SKN98cUXkMlkiIiIEJ1CRFokLS0NTk5O6Ny5M3Jzc3Ho0CHExsbCyspKdBoREZFK8/Pzg7u7O2bOnImAgAC+90OkpThZS8W0bNkSycnJmDZtGlxdXdG3b1/cunVLdJbG+O233+Do6Cg6g4gU4OHhASMjI8ydO1d0CpFG0NXVxU8//YTTp0/D399fdA6RRjA1NUVSUhKGDx+OIUOGwMvLC/n5+aKziEhJFixYAF1dXfj4+IhOIVKq8PBwtGnTBnl5eUhNTYWXl5foJCKNtnr1alSpUgVffPGF6BQiIo315ZdfQk9PD9u2bROdQkQkF3t7e6SmpsLc3Bx2dnbw9vbmecf36NevH44fP44HDx6ITiFSimrVqmHQoEEICwsTnUJEWuDSpUtwcnKCubk5MjMzERUVhcTERNjZ2YlOIyIiUnl+fn6YM2cOli9fDl9fX9E5RCQQJ2upoHLlysHHxwfHjh3DH3/8gdatW8Pf35/fflFK9+/fR1paGj799FPRKUQkp507d2LXrl1Yu3YtKlSoIDqHSGOYm5vDx8cH3t7eSE5OFp1DpBHKly+PoKAgbNiwAT/99BPs7e1x79490VlEJLFr165hzZo1WLBgAapWrSo6h0gpnj9/jhEjRmD06NFwcXHB8ePHYWZmJjqLSKPl5eUhODgYbm5uPP9BRKRElStXxuDBgxESEiI6hYhIbkZGRoiKikJoaCgCAwNhY2ODjIwM0VkqqVevXtDX18f+/ftFpxApjYuLC5KTk5GWliY6hYg01I0bN+Dm5oa2bdvi0qVL2L59O5KSkvjh6ERERHIoLi7G1KlT8fXXX+Onn37C1KlTRScRkWCcrKXCrK2tcfbsWUydOhUzZ85Ep06dkJiYKDpLbUVHR0NfXx+2traiU4hIDi9evMDkyZPh7OwMe3t70TlEGsfb2xt2dnYYOnQosrKyROcQaQxnZ2ckJibi7t27sLCwwMGDB0UnEZGEpk6dClNTU4wZM0Z0CpFSJCcno3379oiNjcW+ffvg7+8PfX190VlEGi8iIgKPHz/GhAkTRKcQEWk8V1dXnDlzBmfPnhWdQkSkEGdnZ6SkpCAvLw+WlpYIDg4WnaRyKleujG7duiE6Olp0CpHSdO/eHQ0bNkRkZKToFCLSMDdv3oSbmxuaNWuGY8eOITQ0FOfOncPQoUMhk8lE5xEREam8wsJCuLq6Ys2aNYiIiICLi4voJCJSAZyspeLKly8PHx8fJCcno1KlSujatStGjBiB27dvi05TOzExMbC1tUWlSpVEpxCRHObOnYvc3FwsXbpUdAqRRtLR0cGmTZtQWFiIUaNGobi4WHQSkcawsLDA6dOnYWtri969e8PHx4ffkkukAQ4fPow9e/ZgxYoV0NPTE51DJKmioiL4+/vDxsYGTZo0QWpqKj777DPRWURaY9WqVRgyZAhMTExEpxARabyuXbuiRYsWCA0NFZ1CRKSwli1bIikpCe7u7nB3d4eTkxOys7NFZ6kUBwcHxMXF8XwsaSyZTIaBAwdi586dolP8b46TAAAgAElEQVSISEM8fPgQ3t7eaN68OWJiYrB69WqkpaXB2dkZurq6ovOIiIjUQl5eHoYNG4bt27cjKioKQ4YMEZ1ERCqCk7XUhIWFBQ4fPozdu3cjKSkJzZs3h7e3N168eCE6TS0UFRXh4MGD+PTTT0WnEJEcTp06hbVr12L58uWoXbu26BwijWVkZIStW7ciOjoagYGBonOINErVqlURGRmJZcuWYfHixRgwYAAvnCBSY0VFRZgxYwYcHR3Rq1cv0TlEkrp16xbs7Owwe/ZsLFiwANHR0ahXr57oLCKtkZiYiFOnTmHy5MmiU4iItMbo0aOxefNm5Obmik4hIlKYgYEBfH19ERMTg8TERFhYWCA+Pl50lsro1asXnjx5gjNnzohOIVKagQMH4uLFi0hPTxedQkRq7MmTJ/D29sZHH32ELVu2wNfXF+np6Rg/fjw/sI6IiEgBOTk5cHR0xMGDB3HgwAFep05E/8DJWmrG0dERly9fxuLFi7Fu3Tq0bNkSwcHB/GSoDzh79iwePXrEi+qI1EBBQQHc3NxgY2MDZ2dn0TlEGs/W1hY+Pj6YOXMmkpOTRecQaRSZTAYvLy8cPHgQp0+fRrt27XDq1CnRWURUAhs3bkRaWhq/9ZU0zs6dO2FhYYGHDx8iKSkJs2fPho4OTxcSlSV/f39YWlqic+fOolOIiLTG6NGjkZOTg127dolOISIqMXt7e6SmpsLc3Bx2dnbw9vZGfn6+6CzhWrdujXr16uHAgQOiU4iUxsbGBkZGRnwuQ0Ql8uLFC/j5+aFp06YICQnB/Pnz8fvvv8PLywsGBgai84iIiNTK06dP0atXL6SmpuLw4cOwtrYWnUREKoZXX6ihcuXKwcvLC+np6ejTpw8mTpwIS0tL/Prrr5y09Q5Hjx5FzZo10apVK9EpRPQBP/74Iy5duoR169ZBJpOJziHSCnPmzEHPnj0xYMAA3Lx5U3QOkcbp2rUrUlNTYWZmBltbW/j7+4tOIiIF5OXlYcGCBRgzZgyaN28uOodIErm5ufDy8sKgQYPQt29fpKSkwMLCQnQWkda5c+cOdu3ahalTp4pOISLSKnXq1MFnn32G0NBQ0SlERKViZGSEqKgohIaGIjAwEDY2NsjIyBCdJZRMJoODgwNiY2NFpxApja6uLvr164edO3eKTiEiNZKTkwM/Pz80atQIS5YswZQpU3Dt2jXMnj0bFSpUEJ1HRESkdh48eAA7Ozvcvn0b8fHxfK+ViN6Kk7XUWJ06dRAcHIyzZ8/C1NQUQ4cOhbm5OSIiIjhp61+OHj2Kbt268dOhiVRcZmYmvv/+e8ybNw8tWrQQnUOkNXR0dLB9+3YYGRmhT58+ePbsmegkIo1jZGSE/fv3Y/bs2Zg2bRqcnZ3x6tUr0VlEJIfg4GDcu3cP8+bNE51CJImLFy+iY8eO2LhxIyIiIhAeHo5KlSqJziLSSqtWrYKhoSGGDBkiOoWISOu4uLjg4MGDuHbtmugUIqJSc3Z2RkpKCvLy8mBpaYng4GDRSUL16tULx48fR05OjugUIqUZMGAAkpOTcf/+fdEpRKTi8vLyEBwcDFNTUyxcuBDjx4/HtWvX4OPjg6pVq4rOIyIiUks3b96Era0tnj17hsOHD8PMzEx0EhGpKM5c0QBt2rTBjh07kJaWhnbt2mHkyJFo1qwZgoODUVBQIDpPuKKiIiQmJqJbt26iU4joAzw9PWFiYoKZM2eKTiHSOlWqVMFvv/2Gp0+fYvjw4XwOQaQEurq68PHxQVRUFPbt2wdra2ut/6RbIlWXm5sLX19fTJgwAQ0aNBCdQ1QqxcXF8Pf3h6WlJWrWrIkLFy5g2LBhorOItFZubi7Wr18PDw8PGBgYiM4hItI6ffv2Rd26dREeHi46hYhIEi1btkRSUhLc3d3h7u4OJycnZGdni84Sonv37sjLy0NSUpLoFCKl6d69O/T09HD48GHRKUSkovLz8xEcHIzGjRtj6tSpcHJyQkZGBnx9fVG9enXReURERGorPT0dNjY2KFeuHBISEtCkSRPRSUSkwjhZS4N8/PHHCA8Px8WLF9G1a1d4eHigRYsWCAkJQV5enug8YdLS0vDkyRNO1iJScREREdi3bx/Wrl3Li5SIBDE2Nsbu3bsRHx+PiRMnis4h0lh9+/bF2bNnYWBggPbt22PHjh2ik4joHQIDA/H06VN4e3uLTiEqlUePHsHR0REzZsyAt7c34uLiYGJiIjqLSKtt3rwZL168wPjx40WnEBFpJT09PYwcORKhoaEoLCwUnUNEJAkDAwP4+voiJiYGiYmJsLCwQHx8vOisMmdsbIymTZvi2LFjolOIlKZy5cqwsrLiZC0i+o+ioiLs2LEDLVu2xKRJk/D5558jIyMD/v7+qFOnjug8IiIitXbx4kXY2dmhbt26OHr0KOrXry86iYhUHCdraSAzMzNs2LABGRkZ6Nu3Lzw9PdGwYUN4e3vj9u3bovPK3LFjx2BoaIg2bdqITiGid3j27BmmT5+OcePGwc7OTnQOkVaztLTExo0bERISAn9/f9E5RBqrYcOGOHr0KMaMGYNhw4bBy8sL+fn5orOI6G9evnyJZcuWwcvLi29gklqLi4uDhYUFLly4gCNHjsDHxwe6urqis4i03qpVqzB8+HDUrVtXdAoRkdZydXXFnTt3EBcXJzqFiEhS9vb2SE1Nhbm5Oezs7ODt7a115x5tbW05WYs0np2dHSdrEdFf/j5J66uvvkKXLl1w5coVBAUFoV69eqLziIiI1F5ycjK6deuG5s2b4+DBg6hZs6boJCJSA5yspcEaNWoEf39/XL16FS4uLggJCUHTpk0xcuRIJCcni84rM4mJiejSpQt0dLi5E6mqmTNnorCwEL6+vqJTiAjA4MGD4evri2nTpiE8PFx0DpHGMjAwgL+/PzZt2oSQkBD06NEDd+/eFZ1FRP9n5cqVyM/Px4wZM0SnEJVIfn4+fHx88Omnn6JLly44e/YsrK2tRWcREYBDhw7h/Pnz8PT0FJ1CRKTVzMzMYG1tjZCQENEpRESSMzIyQlRUFEJDQxEYGAgbGxtkZGSIzioztra2SEpKwuvXr0WnECmNnZ0dMjIykJmZKTqFiASLi4uDpaUlhg8fDnNzc1y8eBHh4eFo3Lix6DQiIiKNcPjwYdjb26NLly7Yv38/qlSpIjqJiNQEZ69oARMTEyxevBi3b9/G5s2bkZGRgY4dO6JDhw4IDg7W+BOUJ0+eRKdOnURnENE7JCUl/fUNPoaGhqJziOj/zJw5E7Nnz4aLiwsiIiJE5xBptK+++gopKSnIzs6GhYUFYmNjRScRab1Xr14hICAAnp6efI5Kaik9PR2dOnXCjz/+iLVr12LHjh3clolUSEBAAGxsbGBlZSU6hYhI67m6umL37t149OiR6BQiIqVwdnZGSkoK8vLyYGlpieDgYNFJZcLW1havX7/GqVOnRKcQKU2XLl1gYGCAo0ePik4hIkHi4uJgZWWFXr16wcTEBGfOnEFkZCSaNWsmOo2IiEhj7NmzB3369IGjoyN++eUXlC9fXnQSEakRTtbSIgYGBhg6dChOnDiB+Ph4NGnSBB4eHmjcuDF8fHxw8+ZN0YmSe/jwIW7cuIFPPvlEdAoRvUVeXh5cXV3Rq1cvDBs2THQOEf3L4sWLMXXqVDg7O2Pv3r2ic4g0WosWLXDixAn06NEDn332GXx8fFBUVCQ6i0hrrV+/Hjk5OZg8ebLoFCKFhYeHo0OHDtDR0cHp06cxfvx40UlE9Dc3btzA3r17eYwhIlIRQ4cORfny5bFlyxbRKUREStOyZUskJSXB3d0d7u7ucHJyQnZ2tugspWrSpAnq16+PpKQk0SlESlOhQgW0b98eJ0+eFJ1CRGUsISEBdnZ2cHBwQPXq1ZGSkoI9e/bA3NxcdBoREZFG2bJlCwYNGoQxY8Zg06ZNKFeunOgkIlIznKylpWxsbBAZGYnr16/DxcUFa9euRePGjdGrVy9s3boVubm5ohMlcfLkSchkMn5KLZGK8vPzw40bN7B69WrRKUT0DkuWLIGLiwsGDx6M6Oho0TlEGq1KlSqIiIjAmjVr8MMPP6Bfv37IysoSnUWkdfLz87FixQqMHTsWRkZGonOI5Pb8+XN8+eWXGD16NFxcXJCYmMhPUCVSQYGBgahbty4GDBggOoWIiABUqlQJTk5OCAkJEZ1CRKRUBgYG8PX1RUxMDBITE2FhYYH4+HjRWUrVoUMHpKSkiM4gUioLCwucPXtWdAYRlZGkpCQ4Ojqia9euyM/Px9GjRxEbG4v27duLTiMiItI4a9asgbOzM6ZPn441a9ZAR4dTLohIcRw5tJyJiQkWLVqEu3fvIiYmBtWrV8fo0aNRt25dODs7Iy4uDsXFxaIzSyw5ORlmZmYwNDQUnUJE/3L16lUsXrwY3333HZo0aSI6h4jeQSaTYc2aNRgyZAiGDBmChIQE0UlEGm/8+PFITEzExYsXYWFhwU9/JSpjmzZtwt27dzFt2jTRKURyO3nyJNq1a4dDhw7ht99+g7+/P/T19UVnEdG/vHr1Chs2bICnpyc/fZGISIW4urriwoULOHXqlOgUIiKls7e3R2pqKszNzWFnZwdvb2/k5+eLzlKKDh06cGwnjdeuXTucP38eRUVFolOISIkuXLgAJycndOnSBU+ePMHBgweRkJAAW1tb0WlEREQayc/PD56envjhhx/g6+srOoeI1BgnaxEAQFdXF/b29oiMjMT9+/exdOlSpKWlwcHBAS1btoSPjw8yMzNFZyrs5MmT6Nixo+gMInoLd3d3mJmZwcvLS3QKEX2Ajo4ONm7ciN69e6N37944cOCA6CQijffnhQStWrVC9+7d4e/vLzqJSCsUFRVh+fLlGDFiBBo1aiQ6h+iDCgsL4efnh65du6JZs2ZITU1F7969RWcR0TuEhYUhNzcX48aNE51CRER/06lTJ7Rt25bfrkVEWsPIyAhRUVEIDQ1FYGAgbGxskJGRITpLch06dMD169fx6NEj0SlEStOuXTvk5OTg6tWrolOISAkuX74MZ2dnmJubIz09Hdu3b8fx48fRo0cP0WlEREQaqbi4GDNnzsScOXOwcuVKzJo1S3QSEak5Ttai/6hRowbGjx+Ps2fPIjk5GT169EBAQABMTU3Ru3dvhIWFITs7W3SmXM6ePQtLS0vRGUT0Lxs3bsThw4exbt06fpI0kZrQ09PD9u3b4eTkBEdHR/zyyy+ik4g0Xq1atfDbb7/hu+++w7Rp0zBixAjk5OSIziLSaLt378aVK1d40pXUws2bN2FnZwcfHx8sXboU+/fvR926dUVnEdE7FBcXY9WqVRgxYgRq1qwpOoeIiP5l1KhR2LZtG169eiU6hYiozDg7OyMlJQV5eXmwtLREcHCw6CRJWVlZAQDOnDkjuIRIedq0aYNy5crh7NmzolOISEI3btyAm5sb2rRpgzNnziAiIgKpqakYOnSo6DQiIiKNVVhYCDc3N6xcuRJhYWGYPHmy6CQi0gCcrEXvZWVlhTVr1uDu3bvYtGkTypcvD3d3d9StWxeOjo7YtGkTnj9/Ljrzre7evYvHjx+jbdu2olOI6G+ePHmCmTNnwsPDA507dxadQ0QK0NXVRUhICCZOnIhhw4YhLCxMdBKRxpPJZJg9ezbi4uIQFxeHDh064OLFi6KziDRWYGAg+vTpgxYtWohOIXqvX375Be3atcPjx4+RlJQELy8vyGQy0VlE9B4xMTG4cuUKPD09RacQEdFbjBo1Cm/evMHPP/8sOoWIqEy1bNkSSUlJcHd3h7u7O5ycnNTmg1s/pFatWmjUqBFSUlJEpxApjYGBAczMzHDhwgXRKUQkgVu3bsHNzQ3NmjVDbGws1qxZg3PnzmHo0KE8/0tERKRE+fn5+PLLLxEeHo7IyEiMGjVKdBIRaQhO1iK5lC9fHsOHD8euXbuQlZWFzZs3AwDGjh2L2rVrw9HREeHh4Xjx4oXg0v8vLS0NANC6dWvBJUT0d9OmTYOenh4WLFggOoWISkAmk2HFihWYN28eXF1d4e/vLzqJSCvY2dkhJSUFhoaG6NSpEyIiIkQnEWmcy5cv48iRI/Dw8BCdQvROubm58PLywpAhQ9C3b1+kpKTA3NxcdBYRySEgIAA9evTgB0sREamomjVr4vPPP0dISIjoFCKiMmdgYABfX1/ExMQgMTERFhYWiI+PF50lCSsrK07WIo3XpEkTXL9+XXQGEZXCo0eP4O3tDTMzM0RHR2P16tX4/fffMX78eOjq6orOIyIi0mhv3ryBk5MT9u3bh71792LgwIGik4hIg3CyFimsYsWKGDp0KPbs2YP79+9jzZo1yM/Ph6urK+rWrYthw4Zh+/btePbsmdDO8+fPo379+qhVq5bQDiL6/44ePYpNmzZhzZo1qFatmugcIioFHx8fLFy4EFOnTsV3332H4uJi0UlEGs/ExATHjh2Dh4cHvvjiC7i5uSEvL090FpHGWLVqFZo0aYJevXqJTiF6qzNnzsDCwgJbt27F7t27ER4ejooVK4rOIiI5XL16FTExMZg8ebLoFCIieg9XV1ccO3YMV65cEZ1CRCSEvb09UlNTYW5uDjs7O3h7eyM/P190VqlYWlpyshZpvCZNmuCPP/4QnUFEJfDkyRN4e3vjo48+QlhYGHx8fP6apKWnpyc6j4iISOO9fPkSn3/+OY4ePYq4uDjY29uLTiIiDcPJWlQqhoaGcHFxQXR0NO7du4cVK1bgyZMnGDFiBGrXro1evXph1apVyMzMLPO2tLQ0tGnTpsxvl4je7s2bN5gwYQL69OmDAQMGiM4hIgnMnTsX69atw8KFCzFq1ChOGiEqA3p6evD19cXOnTuxfft2WFtb48aNG6KziNTeixcvsHnzZnh4eEBHh6dKSLUUFxfD398fXbp0gbGxMVJTU9GvXz/RWUSkAH9/fzRs2BCff/656BQiInqPTz/9FA0aNEB4eLjoFCIiYYyMjBAVFYXQ0FAEBgbCxsYGGRkZorNKzMrKCrdv38a9e/dEpxApTePGjfnNWkRq5sWLF/Dz80PTpk0REhKCb7/9Fjdu3MDs2bNhYGAgOo+IiEgrZGdnw8HBARcuXMCRI0fQqVMn0UlEpIF4BRJJplatWhg/fjzi4uLw8OFDbN68GXXr1sW8efPw0UcfoVWrVvD29kZCQkKZfPsGJ2sRifHq1au3TtBcsGAB7ty5g3Xr1gmoIiJlGT9+PPbv34+oqCjY2dnh8ePHopOItMKAAQOQnJyMN2/eoEOHDoiOjhadRKTWNm7ciIKCAowaNUp0CtE/PHz4EJ9//jlmzJgBb29vxMbGwtjYWHQWEb3DkydPsGDBAqSnp//1sxcvXmDTpk2YNGkSdHV1BdYREdGH6OjowNnZGWFhYSgoKAAAFBUVITY2Fj4+PigsLBRcSERUdpydnZGSkoK8vDxYWloiODhYdFKJdOjQATKZ7K9v13rx4gXOnDmD6OhoFBUVCa4jkkbjxo3x4MEDvHz5UnQKEX1ATk4O/Pz80KhRIyxZsgRTpkzBtWvXMHv2bFSoUEF0HhERkda4f/8+unXrhnv37uHYsWNo27at6CQi0lCy4rKYNUNaLS8vD0eOHMHu3buxZ88e3Lp1CyYmJnB0dISjoyO6d+8u+QvOoqIiVK5cGatXr8aYMWMkXTYRvd8333wDX19fTJ8+Hd9++y0qVqyI9PR0mJubY+nSpZg0aZLoRCJSggsXLqBv377Q19fHvn37YGZmJjqJSCvk5ubC09MTYWFhmDVrFhYtWsSLgIlKoFWrVujSpQvWr18vOoXoL7GxsRg1ahQMDAywZcsWdOnSRXQSEX3Arl27MHDgQMhkMtjZ2WHKlCm4evUqvvnmG9y6dQs1atQQnUhERB9w/fp1mJqaIjQ0FLdu3UJQUBBu374NALh58yYaNGgguJCIqGy9efMG8+fPx9KlSzF48GAEBQXB0NBQdNZ75efn448//kB6ejp+//13BAYGomLFinj8+PE/PnDu6tWrMDU1FVhKJI20tDS0bdsWFy5cQKtWrUTnENFb5OXlYcOGDZg/fz5evnwJDw8PeHt7o3r16qLTiIiItM6NGzfg4OAAPT09xMbGwsTERHQSEWkwTtaiMnfx4kXs3bsXe/bswfHjx2FgYAAbGxvY29vD3t4e7du3h0wmK9Vt3L59Gw0aNEB8fDxsbGwkKicieVhbW+P48ePQ1dVF/fr1ERwcjEWLFuHNmzc4ceIELyAn0mB3796Fo6Mjbt26hV9//ZXHYKIyFB4ejgkTJqBTp07Ytm0b6tSpIzqJSG0kJyejY8eOSE5OhpWVlegcov9cCBccHMw37YnUxIYNGzB27FgUFhZCT08PBQUFMDQ0hJWVFSIiIlT+olYiIm1XUFCAvXv3YsqUKbh58yb09PSQn5//17+np6fzA4qISGvFxcVh1KhR0NPTw+bNm9G1a1fRSW917Ngx9OzZ869vSNTX10dxcfE/xvM/f56TkwM9PT0RmUSSevjwIerUqYPDhw+je/fuonOI6G/y8/MRFhaG77//HtnZ2Rg7dizmzp3L9/GIiIgEuXz5Mnr16oXatWsjOjoaRkZGopOISMPpiA4g7dOqVSvMnj0bCQkJuH//PsLDw9GkSROsXLkSHTp0QL169eDk5ITw8HBkZWWV6DauXbsGAGjSpImU6UT0Afn5+Th9+jQAoLCwEHfu3MFnn32Gs2fPYuHChZyoRaTh6tevj6NHj6JLly7o0aMHVq9e/dbfGzx4MHr27ImioqIyLiTSXM7OzkhISEBmZiY6dOiA48ePi04iUhubN2+GmZkZJ2pRmcjNzX3vv1+5cgWdO3fG2rVrsXHjRkRGRnKiFpEaycrK+uvcx58Xh2ZnZ+PQoUOoU6cORo4ciXPnzolMJCKit7h+/TrmzJmDevXqYdCgQbh79+5bL+x/9eqVoEIiIvHs7e2RmpoKc3Nz2NnZwdvb+z/j5N9lZWWhsLCwDAv/p2XLlihXrtxf/5+Xl/fWzhYtWnCiFmmMGjVqQCaTlfj6GiKSXtH/Y+++46K48/+Bv5Zl6VU60kSK0gUFCzYQu0ZiiVFjuGiMJkbPM/7iJdGYb5KTGBPjJbmcxphEL2psGHsUERWlSVSKgPTeey+78/sjN3MsLAgKDCzv5+Mxj2Vny7yX3f3szHs+789HIsGpU6fg4OCAt99+G/PmzUNKSgr2799PhVqEEEIIT2JiYjBlyhSMGDECISEhVKhFCOkXVKxFeGVoaIilS5fiwIEDyM3NRUREBN58803k5ubitddeg6GhISZOnIj/+7//Q3h4ONfJ4WnS0tKgqqoKExOTPn4FhJC2Hjx4gKamJu46W4jR1NSExYsXY//+/VScQYic09DQQFBQED7++GNs2rQJq1atkurIcujQIQQFBSE0NBR79+7lMVJC5I+7uzv++OMPjBs3DlOnTsVnn33Gd0iEDHitra04efIkVq9ezXcoZAjIzs6GiYkJ/vGPf8i8/ciRIxg7diwUFRURExODVatW9XOEhJDnVVVVBYFA0GF9a2srWlpa8Ouvv8LNzQ2BgYE8REcIIaQzc+fOxWeffYbS0lKZRVqspxXeE0KIvDMwMMD58+dx+PBhfP311/D29kZqamqH++Xn58PGxgbr16/nJcZt27Z1WYglEokwfvz4foyKkL6lqKgILS0tlJWV8R0KIUMewzBckdbKlSsxYcIEJCYm4sCBAzA1NeU7PEIIIWTIun37Nnx8fDBu3DhcvXoV2trafIdECBkiqFiLDBhCoRBeXl7YuXMn7t27h8rKSgQFBcHZ2RmHDx/GxIkToaOjAz8/P3z22WcICwvr9IRZWloarK2tZXaOIIT0nfDwcKnR6litra2ora3Fli1bMGnSJCQnJ/MQHSGkvwgEArz77ru4ePEiLl++DG9vb2RmZiItLQ2bNm0CwzCQSCR47733EBUVxXe4hMgVbW1tnDlzBnv37sUHH3wAf39/VFVV8R0WIQPW1atXUVxcjBUrVvAdCpFzEokEq1atQk1NDXbs2IHw8HDutqqqKrz88ssICAjAmjVrEBYWBhsbGx6jJYQ8q8rKSjAM0+ntra2tUFZWxvTp0/sxKkIIIU+zb9++bp1PomItQgj50+rVq3H//n00NzfDw8MDBw8e5G5jj3+rq6tx6NAh/Pbbb/0e37Zt26Cpqdnp7QzDYMyYMf0YESF9b9iwYTSzFiF9JCQkBO+///5T7xccHAwPDw8sX74cLi4uSEhIwJEjR2Btbd0PURJCCCGkM5cvX8bs2bMxffp0BAUFQU1Nje+QCCFDCBVrkQFLQ0MDCxYswIEDB5CZmYnExER8/vnn0NXVxRdffIHJkyfD0NAQixYtwv79+xEbG8t1hkhPT8fIkSN5fgWEDD1hYWFdzpzFMAwiIiKwa9eu/guKEMKbOXPmIDIyEs3NzfD09IS/v7/ULJkCgQDLli1DbW0tj1ESIn8EAgE2b96M4OBgREREwNPTE3FxcXyHRciA9Msvv2Dy5MkYMWIE36EQOffll19yx0sCgQAvvvgiKioqEB4ejjFjxiA0NBRXrlzB/v37oaSkxHe4hJBnVFFRIXXM055AIMCJEyfg5eXVj1ERQgh5mtmzZ0sVGnSGirUIIeR/Ro8ejYiICGzYsAEbNmzAsmXLUFFRgX379iE0NBRisRgKCgoICAhAQUFBv8amoaGB9957D0KhUObtra2tVKxF5I6enh4VaxHSB+7du4d58+bhH//4B27evCnzPsHBwfD09MTMmTMxfPhw/PHHHzh58iRsbW37OVpCCCGEtPfrr79i0aJFWLJkCU6fPg1lZWW+QyKEDDFUrEUGjVGjRmHDhg04efIkioqKEBsbi48++ggCgQAfffQRXF1dYWhoiKVLlyIiIgLa2tpdFo0QQnrf7du3IRaLO7sm3H8AACAASURBVL1dKBRi1qxZ+O677/oxKkIIn2xtbREREQE3NzckJCRIzYrZ2tqKvLw8bN26lccICZFfU6dOxaNHj2BmZgYvLy/88MMPfIdEyIBSXV2N8+fPY9WqVXyHQuTc48eP8d5773EDzIjFYpSWlmLKlCmYPHky3NzcEB8fj1mzZvEcKSHkeZWXl3eajxQIBPj++++xaNGifo6KEEJId6xZswZbt26FgkLnp06pWIsQQqQpKysjMDAQly5dwu3bt+Hk5IS///3v3PGvRCJBXV0dVq1a1eUMtH1h48aNMDAwkDlzooKCApydnfs1HkL6mrq6Ourr6/kOgxC58vDhQ8yaNQstLS0QCoV49913pW6/e/cufHx84OfnB21tbURHR+PChQtwdXXlKWJCCCGEtHXkyBGsWrUKb7zxBn766ScoKiryHRIhZAiiYi0yKAkEAjg7O2PTpk0ICgpCaWkpYmJisH37djQ2NiI7OxtHjx6Fvr4+5s+fj8DAQISFhaGpqYnv0AmRW1lZWSguLpZ5m0AggEAgwDvvvIPLly9DR0enn6MjhPDp0aNHuHHjhsxOi62trTh48CBOnTrFQ2SEyD9DQ0P8/vvv2LRpE15//XWsXr2aOpcR8l8XL15ES0sLlixZwncoRI41NTVh6dKlHTqltba2IiEhAatWrcLZs2ehp6fHU4SEkN5UUlIic71AIMBnn32G1157rZ8jIoQQ0hN79uzBggULZHbcUFBQoA7QhBDSidmzZyM6OhpisbjD8W9LSwtCQ0PxzTff9GtMKioq3MCv7VlbW0NNTa1f4yGkr4lEIqkBEwkhzyclJQUzZsxAY2MjxGIxxGIxoqOjcfnyZURGRmLBggXw9vZGc3MzQkNDcf36dXh4ePAdNiGEEEL+6+uvv0ZAQAC2bt2Kr7/+ussBmgghpC9R60PkgoKCAtzd3bF161ZcuHABIpEIu3fvRmBgIIYNG4YDBw5g8uTJ0NDQwNixY7F582acOnUKZWVlfIdOiNy4d++ezJ1aRUVFqKio4MyZMwgMDKQdX0KGmNraWqxcuVLmCVGWgoIC1q1bh/z8/H6MjJChQ1FREYGBgTh37hwuXLgAb29vpKen8x0WIby7ePEipkyZAl1dXb5DIXJsx44dSE5ORmtra4fbGIbBr7/+iuTkZB4iI4T0hYqKig7rFBQUsGHDBmzbto2HiAghhPSEgoICjh8/Djc3N4hEog630eAnhBDSud27d6OsrEzm8a9EIsHWrVsRGxvbrzGtWbMGVlZWUucmhUIhPD09+zUOQvqDSCRCc3Mz32EQIhdycnIwbdo0VFVVSf2uKSgoICAgAOPHj0dFRQVCQkIQFhaGqVOn8hgtIYQQQtr77LPPsHnzZuzduxeBgYF8h0MIGeKoxzyRO5WVlWhqaoKHhwfWrVuHI0eOICMjA2lpafjhhx/g7u6O4OBgvPTSSzA0NISzszM2bNiAn3/+GUlJSR1G+yKEdM+9e/c6jDgqEolgbm6O+/fvw9/fn6fICCF8evPNN5GbmwuxWNzpfSQSCerq6rBq1Sr6HSakDy1cuJAb4XbMmDE4e/Ys3yERwhuxWIxr165h3rx5fIdC5FhYWBi++OKLLveDxGIxli5dSp1pCJETVVVVUteFQiGWLVuGr7/+mqeICCGE9JSqqiouX74MExMTqXw3FWsRQkjnrl69in//+98yC7VYDMNg6dKlaGxs7Le4hEIhPvnkE6nzDgoKChgzZky/xUBIf6GZtQjpHcXFxZg+fTpKSko6/K5JJBKUlpbivffeQ1hYGKZPn85TlIQQQgiRhWEY/O1vf8P777+P77//Hn/729/4DokQQqhYi8ifwsJCAICRkZHUemtra6xevRoHDx5EQkICiouLERQUhDlz5iAuLg4bNmzA6NGjMWzYMMyePRsffvghLl++TLNvEdJNoaGhUh0MFRQUMGPGDDx48AAODg48RkYI4VNERATEYjFEIlGXs2u1tLTg1q1b2LdvXz9GR8jQY2Njg4iICLz00ktYsmQJNm/eTCdwyZB09+5dlJWVYf78+XyHQuRUdXU1li9f3uX+D/DnPlB8fDx27tzZT5ERQvpSdXU197dIJMLkyZPx888/0yzjhBAyyBgYGODKlStQUVHh2nCBQID6+nqeIyOEkIGntLQUK1eufOr9WltbkZ6ejvfff78fovqf5cuXw9HREUKhEMCfx+FUrEXkERVrEfL8qqqq4Ovri+zs7E6/TwKBAMePH++yQJkQQggh/U8sFmPt2rX49ttvcfz4caxZs4bvkAghBAAVaxE5VFRUBKBjsVZ7+vr6WLhwIfbs2YOwsDBUV1cjPj4e+/fvh6WlJU6fPo358+dDX18fpqamWLZsGfbv34+wsLB+HfGLkMGgrq4OiYmJAP4s0hIIBNi2bRsuXrwIbW1tnqMjhPDpyZMniI+Px8cff4wpU6ZAKBRCIBBAJBJ1uK9EIsH27dvx8OFDHiIlZOhQUVHBwYMH8dNPP+HQoUPw8/NDQUEB32ER0q8uXbqEkSNHwtbWlu9QiJzauHEjioqKupxViy1mFwqFqK2t7cfoCCF9oaWlhcsZikQiODo64sKFC1BSUuI5MkIIIc/CwcEBFy5ckCq4pZm1CCGko9raWhgYGIBhGCgqKnJFUbK0trZi3759CA4O7rf4BAIBAgMDpY7PXV1d+237hPQXgUAAiUTCdxiEDFr19fWYNWsWkpOTuyx8lEgkyMrKwrFjx/oxOkIIIYR0pbm5GcuXL8eJEyfw22+/YenSpXyHRAghHAHTds53QuTAyZMnsWLFCjQ1NXWZDO6O6upqxMbG4u7duwgLC0NERARKS0shEolga2sLDw8Pbhk3bhyUlZV76VUQMrjcvHkTPj4+EAqFUFVVxYkTJzBv3jy+wyKEDEDl5eW4du0aLl++jEuXLqG8vBxKSkpoaWkBwzAQCoWwtrbGo0ePoKqqyne4hMi9hw8fYunSpaiursaxY8fg6+vLd0iE9AsnJyfMnDkTX375Jd+hEDl07tw5+Pv7y7yNHeVYW1sbfn5+WLBgAV544QUa5IIQOVBaWgoDAwMIBAJYW1sjIiIC+vr6fIdFCCHkOR06dAivv/46BAIBtmzZgi+++ILvkAghZEDKzMzEtWvX8Pvvv+Pq1auor6+XOdOPgoIC9PX18fjxY+jp6fVbfOPHj0dkZCSMjY1p4CoilxYsWIBhw4bh559/5jsUQgadxsZGzJo1C+Hh4d2aoU4gEGD48OFIT0+XOUApIYQQQvpPfX09XnzxRURERODixYvw9vbmOyRCCJFCxVpE7nz//fd49913UV5e3uvPzTAMkpKSEB0djfv37yMmJgYPHz5EfX09VFVV4erqirFjx8LDwwNjx47F6NGjn7tgjAxtDQ0N3KjMYrEY1dXV3G3V1dUdRmmXtU4WhmFQWVnZ7ThUVVWhoqLS6e3Hjh3Djz/+iOHDh2Pfvn2wtraWul1TUxOKiooAAGVlZaipqQH4M4mlo6PT7TgIGehycnIQERHBdxiDBsMwSE9Px8OHD3H//n2kp6eD3TWdPXs2XnvtNZ4jJOTpDAwMMG3aNL7DeC7V1dVYs2YNzp07h/fffx8ffvghBAIB32ER0meys7NhaWmJ69evY8aMGXyHQzrBHrO0traipqYGTU1NqK+vB/DnqN2yTpp3djykoqIiswi87XGOlpYWhEIhdHV1IRQKoaWl9UxxFxQUwMHBAVVVVVwhOvDn8ZyDgwP8/f0xf/58eHp6Ss3SQAh5fm1zKDU1NWhtbQUAVFRUSN2vqqrqqaONt3+MLO3blvz8fLz66qvQ0dHBN998AyMjI6irq0vNrNW23WmbK9HV1e3GKySEENKVyspKtD3l2b6976z9b/84WQ4dOoRff/0VCxYswFtvvSWVp+8uJSUlqKur9+gxneXl2/++qKmpSQ0m2P46IYT0t4aGBoSGhuLy5cv47bffkJOTA5FIBLFYDIlEAgUFBSxcuBBBQUE9el42H8Du+zc3N6Ourg5A1+c+GYZBeHg4PvzwQ7i7u2P79u1St3eWN2h/W9t8AbsP33a/nhA++fn5wdraGgcOHOA7FDKIsPvIbdvQlpYW1NbWcvdh87Ndadsed4XNwXalfY5EW1sbCgoKUFBQ4Aa8epZ96860tLRg0aJFuHbtGpdLak9BQYErQGaPKfT09BAXFwcTE5NeiYMQQgghPVdZWYn58+cjMTERV65cgaenJ98hEUJIB1SsReTOvn378OWXXyInJ6dfttfa2orExESueOv+/ft49OgRGhsboaamhjFjxsDd3R1ubm5wc3ODk5OT1Em03rJ7926oq6tj/fr1ffL8QxWblKqtrUV9fT1qa2tRWVmJlpYWruNPdy7ZQqv2l0DHZFd3Tg7Lq7YnmUUiETQ0NAD8r8DreS81NDS4S21tbairq3dZhEZIT61ZswaHDx/mOwxCSD8SCARoaGgY9J2gGIbBP//5T2zbtg1z5szBTz/9RJ2Gidz6z3/+gzVr1qCqqor2BftIU1MTSkpKUFRUhNLSUlRVVaGyspJbqqqquHXs33V1ddwx1EA5JmJP+rOdZLW1taGjowNtbe1O/96zZw+ioqK4x0+bNg3+/v6YN28ezM3NeX5FhPCjqakJVVVVqK6uRlVVFSoqKrjOlZWVlWhubkZtbS3q6urQ3NyMiooKrpNPbW0t9/jGxkY0NDR02YFosFNUVISmpiaA/3UKZQe6YXMbmpqaUFZWhpaWllT7pKSkBE1NTS4PoqOjAzU1NWhra0NLS4trrwgh5Hmx7XF1dTWam5tRXV3NtevsbRKJBFVVVQD+17G+bQdOdn+PfVzbfDm7T9i2WL/tYzq7TjrXVTFX206vGhoaEIlEUp1fdXR0IBAIuMe0LVRgO9uyv1FtB2fT1dXlnkdDQwNKSko0cBshQ0xLSwvKyspQXl6OBw8e4ObNm4iIiEBSUhI30MrcuXNhZmbGnYtll8rKSqnfksHQ5rPtJNsmqqioQENDg9sX19DQ4BZdXV3ub3V1dejo6EBXVxd6enrQ09PjjgkI6YnJkyfDw8MDX331Fd+hkF5QU1PD5VGqq6tRW1uLqqoqNDc3o6amBvX19WhqauqQQ2lubkZlZSW3Ly1r35rNv8iLtvu2bAFt2xyKkpIStLW1uTyLlpYWlJWVuRzK0aNHER0dDYFAAKFQCLFYzP3maGhowNraGo6OjrC1teUWGxubfp0dkhBCCCEdFRcXY9asWSgqKsK1a9fg5OTEd0iEECITFWsRufPJJ5/g6NGjSE5O5i2GlpYWJCQkcAVcMTExiI+PR0NDA0QiEUaPHs0Vb7m6umLMmDHP3RlWS0sLNTU1MDc3x+eff45ly5YN6RkR2ncGZDsBssn+6upq1NTUoK6uDvX19aioqOD+ZhNfdXV1aGho6HI77MnHZ70EpE+GAt2fhar96Jnt7/80sh7fme6eBGk/+5esx7OJQ1n3bzsSPntiH/jf6NjPetkV9v/PJuPU1dWhq6sLNTU1qKmpQUtLC1paWlyRl46ODnfShO2UyS40xT0JCAhAQlYe/v7vI3yHQgjpB/dDr2P3+ldRV1fX7d/fge7OnTtYvnw5RCIRTp06hXHjxvEdEiG97q233kJMTAzNhvkMKisrkZubi6ysLOTm5qKgoAAlJSXcZUlJCQoLC7nOVCz2WIZd2hc4sQUFbGdPHR0dKCgoQEdHhytcaNthtLMRrzubQaA7M3GxHcEqKyu54xS2owN7bNG+yKx94Vn7EWYVFBRgYGDALSYmJtzfZmZmMDc35y47G8GbkIGivLwcpaWlKCsrk1rY70DbDkQVFRVS69gcgCw6OjpQUlLiOikqKSlJde6WtY59nEAg6HRU5bbtQftRm582ezjQvZxJd2Y3bz9DV9sOUezo1W07obYtZGDzJ2ybxOY4ZBVHyOqw1Rm27WU7jba9bNtOGxgYcJ1F2YWKnAkZXKqqqlBbW4uamhqu43tNTQ13nc2PyyqUldXJs7m5ucN+XleetciHbYPbDuYFdJy5pP11ttCou9dZXc2m0pme5NZZ3ZnZsa2uZohp/xvUdkbJnl5vO1MCG2NPi+6e9tvT1tM6ziopKUFLS0tqHVvwwBY3aGpqShVAsM9FCOlbdXV1yMvLQ3FxMQoKClBQUMAdF5SXl3c4VpA1C4uCggK0tLQgEonQ2toKfX19WFpacsVM6urq0NTU5H5D2PPn7O9G+4KotoMdAF3PctXVbe3byc5uYweLkFVI1n7WL3YQUPY3mP27rq4OFRUV3PW2hckskUgEPT09DBs2rMOlvr4+jIyMYGhoiOHDh8PQ0BBGRkY0ezfBuHHj4Ovri8DAQL5DIfhfwaqspbKyUiqP0vaSzTd2tt/I7iO3zZfIWte2aF4kEskcHAaQ3kdm2962++2sZ5kRq73O+pK0JWuGLja30na/tW1fkra53/aDQjwth1JXV4eSkpIu99NFIhG336mrq9tpPqV9DoVdqH0mhBBCel92djZmzpyJ5uZmXL9+HSNHjuQ7JEII6RTNx07kTl1dXa9Nd/2sRCIRV4y1du1aAH8mDp48eYKHDx/i0aNHePDgAa5cuYKSkhIAgIWFhVQBl4uLC6ytrbt14F5YWMglJfLy8vDyyy9j9+7d+PLLL+Hj49N3L7SP1dfXo6ysDCUlJSguLkZZWRlKS0s7LcJil/YdYViqqqrQ0dHhTuJpampCXV0dampqsLa2llmco6amxhXusCcItLS0oKioOKRGgezJa9XX1+/DSJ4Nm3hrX6BXX1+P+vp6mcV77G3p6emorq6Wmlmts5PkampqHTqhtr2uo6MDfX196OvrQ09PT+pvQgghZCCYPHkyHj58iJUrV2LKlCnYv38/1q1bx3dYhPSq8PBwTJ06le8wBqSysjKkpKTgyZMnyMjIQE5ODnJzc5GTk4Ps7Gyp2Wt0dHRgamoKAwMDGBsbY8yYMTAwMICRkRGMjIy4vw0MDDqc3O9vbTv5ttXbMwhKJBKUl5dLFa4VFRVxx7SFhYXIzMxEcXExcnNzpQaWaFvAZWFhAXNzc1hbW3OjtcpLUTAZGBiGQXFxMYqLi5GXl4eioiLus9pZR6L2nVZUVVWhp6fXofDH2tqaG9yk7WxObTuwsHmWwT4zaXfaNj5nKq2srORyHmzHLzanwa5r2yGsuLhYKr9WVlbW4TnV1dW5zkbti7n09fVhamoKIyMjmJiYwMTEhApRCXlGbPGUrKWmpkZqdH228Irt9M1e76oTpKqqqlTBCzvjEdvx3djYuMM6WfeTta5t4SyR9iyzGw4bNqwPIuk7bAdctoiB7UTbttivO+vS09Ol1rG5/c7O/QDgir91dHSgqanJfb7Zoo+213V1dWUufB+3EMKX1tZW5OXlISsrC5mZmcjJyUFRUREKCgq449r8/HypzvMKCgowNDSU2h80NzeHm5sb9PX1ZRYZ6ejoDNj9w65msurrfXq2OLeiokLqGIwtgGMv8/PzERcXh9LSUhQVFUkVeQmFQq5oy9TUFIaGhjA1NYWxsTGsrKxgaWnJFcUR+VVfXz9gv2PyoKmpicujFBcXIz8/X2YehV0na39cW1uby6WweRIdHR3u+9l2EJX2BUHsLHyDecBmoVDIa57kadhiMFk5k7azxbN/l5eXIyMjg8u3lJWVyZz9vbMiLj09PRgbG3N5FPbvpxXFEUIIIUNdRkYGZsyYARUVFYSFhcHU1JTvkAghpEs0sxaRO5s2bcKDBw9w584dvkPploqKCiQkJHAzcMXExCApKQkSiQRKSkqwsbGBh4cHHB0d4eDggLFjx8LExETqOUJCQuDr6yu1TlFREa2trZg2bRr27dsHNze3/nxZMtXU1HDJq9LSUu6SXcrKyqTWtR9JTElJCXp6etDV1e2yIIa9vf16GlmR9Kb2RYOyCgfbr2NPtLQfTVAoFHYo4DI0NOxQ2MUm6GiEvIGLZtYiZGiRx5m1WGKxGB9//DE+/vhjrFy5Ev/+97/l7jWSoamurg46Ojr45ZdfsGzZMr7D4UVDQwMSEhLw5MkTpKSkSC1s50dlZWWMGDGCm/mJLR5qW0zUWQEU6T62g0dOTg6ysrKQl5fHzVyWk5ODnJwcrkBm+PDhXOGWjY0NbG1tMWrUKNja2nY6MjgZehiGQWFhIbKyslBUVITc3FyuA1FhYSEKCwtRUFCAoqIiqVHjVVVVYWho2KGzZftCHPb4VE9Pj/YLhgCJRNJp8V7bXF7bdcXFxVLPoa2tzXUWZUf9Hz58ONcRyczMDJaWltShkMit6upqFBUVobS0FOXl5aioqOByhF0t7UeSB8CNkK+pqckVwmpoaMgsRmEHK2MHLmPvw3b2pM5/ZDBjZ6Kpra3lOtGy12tqargZ5Njr7Dr2PuwsoLI6ULMdiNsv7Hmn9ouBgQG3jyRr1jZCBgqxWIysrCykpqYiOzsbWVlZXGFWVlYW8vPzueMDZWVlmJmZwdjYGMbGxh325djifOpMzr+2593z8/NRVFQkdcyXl5eHwsJCbuBY4M+BdywsLGBpaSlVxGVlZQU7OzsqWh3kjI2N8cEHH2Djxo18hzKoNDU1ITc3F7m5udyANux3ip1FkN2nb2vYsGEy8yjt8ydtF8rhyb+mpqZO8yeyZqwvKCiQWQxtZGQkM49ibGwMS0tLmJqa0u8wIYSQISkhIQEzZ86Eqakprly5MiAnFSCEkPaoWIvInTVr1iAvLw9Xr17lO5RnVldXh4SEBMTGxiI+Ph5xcXGIi4vjkqlGRkZwdnaGs7MznJyc8OTJE3z55Zfc1N5tKSoqQiwW48UXX8Tnn3+OESNG9Hq8FRUVyM/PR0VFBQoKCpCfn9/hMj8/v8NsRCoqKtDV1YWpqSlMTEw6nOhqv97Y2JgKVIjcaPu9YRf2+9J+XV5eHpqamqQer6urCxMTE+570vb7wv5tYWHR5WiApPdRsRYhQ4s8F2uxLl26hNWrV8PCwgKnTp2CjY0N3yER8lxCQ0Mxffp0ZGdnw9zcnO9w+lx+fj5iYmLw+PFjbpCQ5ORkiMViiEQibvYmdnFwcICjoyMsLS3pZO8A0NLSgpycHKSnpyM9PR0JCQl4/Pgx0tPTkZmZCYlEApFIBFtbW26AF3awF2tra77DJ32gqakJeXl5XL6F/Wykp6cjPz8fWVlZUh08VFRUOhwzyjp2NDExGdQjM5OBhc13dJYjrKio6DBbY9scB/ub1Pa6lZUV5QTJgNDQ0NBp/q7tuoKCAuTm5qK5ubnDc7A58Z4u1FYT0vsaGhqeWjwpaykuLoZYLJZ6rrbf7fbntmSdA6NRn0lfqKiokHn8mJiYyA2QyR4jyNrnsra2pnyAHGKPI9njxvbHkllZWVybpqur2yFHZG1tjdGjR8tt/lteMAwDJSUlHD16FMuXL+c7nAGl7TFq2xwKe73tdwCgc/Ck/zU2NqK8vLzLPEpBQYHMz2rb3H7b3/SRI0dCR0eHx1dFCCGE9L7o6GjMmTMHTk5OuHDhAu2PEUIGDSrWInJn5cqVqKurw7lz5/gOpdexs3C17Wj38OFDaGpqoqysTGaxFkskEoFhGLz55pv46KOPun1gXl5ejuzsbOTk5CAzMxPZ2dnckpOTI3M0ZrajDzviWttRX8zMzLgZg2jkIEK6r7q6mhu5ix3Ni03SFRYWcutkjeplYmICKysrbhYEdtQ8S0tLmJiY0HexF1GxFiFDy1Ao1gKA7OxsLFu2DImJiTh06BCWLl3Kd0iEPLPdu3fjm2++QV5eHt+h9LqMjAxEREQgMjISkZGRiI2NRX19PRQUFGBtbQ1XV1c4OTnB2dkZLi4usLa2pg5Yg1hDQwMeP36MuLg4xMfHc4O9FBQUAAAMDAwwduxYeHp6wsvLC15eXhg2bBjPUZPuKC8vR2pqqtSsd6mpqcjIyJAaEV1DQ4M7tmt/rGdhYQETExMoKyvz+EoI6VppaSlyc3Olco45OTncbA+FhYXc7ILKysqwsLCAjY0NbGxsYGdnx80yaGlpSXkN8lzq6+u5GQjZGSjad5ArKSlBaWkp2p9O09PTk5pZx8DAgMt9s4uRkREMDAygq6sLdXV1nl4lIaQ3icViVFRUcDMlsLNLFhcXS61j8/WlpaVobGyUeg41NTXo6+tz59DMzMykLtkZFIyMjKhQk3RQVVWF2NhYxMbG4tGjR4iNjUViYiI3Y5yGhgZsbW1hZ2cHW1tb2Nvbc/tPdFxI2mtpaUFWVhaePHmC5ORkpKSkcLOx5+TkgGEYCIVCWFpawsXFBS4uLnB2doabmxusra1pUIUBoqKiAsOGDcO1a9fg5+fHdzj9imEY5OTkcPmTtpeZmZlcsSrw56DIFhYWXB6FzaGYm5vD3NycfnfJgNbS0oKioiJkZWVJ5VDYPEpOTg4qKiq4++vo6GDEiBFc/oS9tLW1hZGREY+vhBBCCOm50NBQLFy4EFOnTsXJkyehqqrKd0iEENJtVKxF5M4rr7yC6upq/Pbbb3yH0i/EYjEmTpyIqKiobt1fJBJBVVUV7733HjZv3oyamhqkpqYiLS2tQ6eIrKwsqVFuDQwMuM4/7NL2pJGpqSm0tbX76qUSQrqhubkZRUVFyMvL4wq62BHW2WRdbm4uV9ypqKgIU1NTWFhYwMrKiktIW1lZwcbGBlZWVtTpqQeoWIuQoWWoFGsBf47A+v/+3//D119/jbfffht79+6FSCTiOyxCemzZsmVoaWlBUFAQ36E8l8bGRkRERODu3buIiopCZGQkioqKoKioCBcXF3h5ecHd3R2urq5wcHCgjsFDSGlpKWJjYxEXF4fo6GhERkYiNTUVAGBnZwcvLy94enrC29sbLi4u1KmKJ01NTUhMTERiYiJSU1O5jnCpqakoKysDACgpKWHEiBFcJwp2lHv2mI06WRJ519zcjLy8PC6XkZmZKVXIWYCHUAAAIABJREFUyA5WIxKJuM5HbCdkOzs7ODk5wcTEhOdXQfgkFou50cdzcnKkirHaFmVVVVVxj1FQUICRkVGHkfQNDAxkFmJRzowQ0l21tbUdCrpKSkq4Qdhyc3O5vH7bmVJFIhEMDQ0xfPhwGBsbd7i0srKCpaUlNDQ0eHx1pC9lZ2cjKiqKK8qKjY1FZmYmgD9n1HB1dYWLiwscHR25Aq3hw4fzGzSRGw0NDdzxanJyMlcgmJqaCrFYDHV1dTg5OXGfwzFjxsDd3R0qKip8hz7kpKSkwM7ODn/88QfGjBnDdzh9ory8HHFxcUhOTkZqaqpUYRZbFK2trS1VlDJixAipAW7os0nkXU1NDdffKzs7GxkZGVLflYaGBgCAlpZWhyKu0aNHw8HBgfYrCSGEDDgXLlzAsmXL4O/vj59//pn6qRBCBh0q1iJyJyAgACUlJbh06RLfofQbPT09lJeX9/hxioqK3KxYIpGIG8VP1lTZtra20NLS6u3QCSE8qaioQHp6OtLT07lRgttfB/5sJywsLKTaBXZxcHCgkSraoWItQoaWoVSsxfrPf/6D9evXw93dHSdOnICpqSnfIRHSI+7u7pg5cyYCAwP5DqVHxGIxHj58iODgYAQHB+Pu3btoaGiAiYkJPDw84OHhAW9vb0ycOHHItEek+6qqqhAdHY2wsDDExMQgIiICpaWl0NfXx/jx4+Ht7Y0ZM2bA3d2dRg/uA/n5+YiJieFmSX/8+DHi4+PR1NTU6fGWg4MD7O3tqQiAkC5UVlYiLS2Ny2WwS0JCApfT0NHRgaOjIxwdHeHg4ABHR0e4urrCwMCA5+hJb2hqakJeXl6nua2MjAyuIxrwZ4f29kVY7S8tLCyo7SWE8K6hoUFqdj9ZlxUVFdzvHQCoqKh0en7P2toaVlZWNFDDIFBXV4cHDx4gJiYGMTExuHPnDjIzM7lZjRwcHODh4cHt2zg4ONAxHOFFS0sLnjx5InWsGxUVheLiYigqKsLOzg7e3t6YNGkSPDw86LPaDyIiIjBhwgRkZWXBwsKC73CeS3NzM1JSUrjPFvs5y8jIAMMwUFZWxvDhw7ljvLa/fSNGjKDPGiFdYPuIsDlK9hg6KSmJGzDAxMSE29dg9zscHR2p2JEQQggvjh07hoCAAKxZswbffvst5TYIIYMSFWsRubN27Vrk5ubi6tWrfIfSL8rKyqCvr9/t+ysqKkJPTw9WVlaYOHEi5s2bBxsbG5ibm9PODCGEU1lZyY1K1nbk6tTUVJSUlAD4sz1hZ+BiR612dnaGo6MjNDU1eX4F/KBiLUKGlqFYrAUASUlJWLJkCYqLi/HLL7/Az8+P75AI6TZtbW3s3bsXr7/+Ot+hPFVhYSF+++03XLp0Cbdu3UJ1dTVMTU3h4+MDHx8f+Pr6DvrOF4QfEokEsbGxCAkJQUhICG7duoXa2lqYmZlhxowZWLBgAWbPnj2kftt6Q3NzMx4+fIioqCjcv38f8fHxePz4MRoaGqCgoIARI0Zwx0vOzs5wcnKCnZ0djQBISB8oKSlBbGwsEhISEB8fj7i4OCQkJKCmpgYAYGFhAUdHR4wZMwaenp4YN24cDUIwQOXl5XGzOaSkpCAjI4MbJby4uJi7n4aGBiwtLbkZCC0sLLjrlpaWMDExgVAo5PGVEEJI76uuruZmn2Rnomw7I2VBQQEkEgmAP4u52raP7Oyt7EKdb/lRVlaGmzdvIiQkBPfu3UN8fDzEYjGGDx8OLy8vTJgwAV5eXvDw8KDjMzIopKWlITIyEhEREYiMjMSDBw/Q0tICAwMDjB8/HpMnT8aMGTPg6upK/RJ62alTp7B8+XI0NDRASUmJ73C6rby8HFFRUYiKisLDhw8RGxuLjIwMSCQSqKiowMHBAU5OTlLnoM3NzfkOmxC5I5FIkJ6e3iGXkpKSgtbWVohEIowaNQqOjo4YO3YsPD094e7uDnV1db5DJ4QQIse+++47bNy4Edu2bcPu3bupKJ8QMmhRsRaRO2+88QbS0tIQHBzMdyh9Ji8vD/Hx8YiNjcXNmzdx5cqVDvcRCoUwNDSEnZ0d3NzcMGXKFEyfPh26uro8REwIkSeyCrkSExORmJiI2tpaCAQCWFlZSSXPnZycYG9vP6hOEDwLKtYiZGgZqsVaAFBTU4PXX38dp0+fxgcffICdO3fSCXYy4BUVFcHY2Bg3btyAj48P3+HIlJ6ejrNnzyIoKAgRERFQVVXFzJkz4evrCx8fH4wePZrvEIkcam1tRWRkJEJCQnDt2jWEh4dDWVkZs2bNwqJFi7BgwQLKJbTDMAyePHnCdShiOxU1NzdDR0cHY8eOhYuLC1eY5eDgQJ0XCOEZwzDIyspCfHw81+nowYMHSE5OhkQigZmZGTw9PeHl5QVPT094eHgM2YFo+ltpaSmePHkiVZTFLuzI3lpaWrC1tYW1tTVXbGBlZcX9PWzYMJ5fBSGEDDwtLS3Izc3lilzZoq6srCykpqYiOzsbEokEAoEA5ubmUsVbdnZ2sLOzw4gRI2hwgV7U2NiIsLAwbtbsBw8eQCAQYOzYsZg0aRJXnEWFCEReNDY24o8//kBERAQiIiIQGhqKkpISGBgYwMfHBzNmzMCMGTNgZWXFd6iD3t69e7F//37k5OTwHUqnGhsb8eDBA6lcSmpqKgBgxIgR8PDwkBrkZuTIkTTgAiE8a25uRmJiolQu5f79+ygqKoJQKISjo6NULsXR0ZG+t4QQQnrFZ599hu3bt2PXrl348MMP+Q6HEEKeCxVrEbnz5ptvIjExETdv3uQ7lF6RnZ2NyMhIREZG4v79+4iNjUVFRQWAP6eftrKyQnp6OqysrDBu3Dj4+PjAw8ODRlgnhPQ7hmGQkZGBuLg4LlkXHx+PJ0+eoKWlBSKRCPb29hgzZgyXsHNzc5Ork71UrEXI0DKUi7VYBw8exNtvvw0/Pz8cOXKEOkmSAe3evXuYNGkSsrKyBtTxUklJCY4cOYKjR4/i0aNHGDZsGBYsWAB/f3/MnDkTqqqqfIdIhpji4mL89ttvCAoKQkhICCQSCXx8fBAQEAB/f38oKyvzHWK/E4vF+OOPPxASEoKbN28iMjISlZWVUFZWhpubG8aNGwdPT094enrCzs6ORvcjZBCpqqrC/fv3ERkZiejoaERFRSE/Px9CoRCjRo3ClClT4OPjg2nTpkFfX5/vcAe10tJSPHr0CHFxcdxo3SkpKVyuW0VFpcNML7a2trC3t4eRkRHP0RNCiPxpampCamqqzGLZ/Px8AICioiKsrKxgb28PZ2dnuLq6wtnZGfb29lBUVOT5FQwORUVFOHfuHM6ePYs7d+6goaEB9vb2XJHKtGnToKOjw3eYhPQLhmHw6NEjrmDxzp07qK+vh42NDebPn4/Fixdj4sSJNCjYM9i0aRNiYmJw9+5dvkPh1NTU4Pbt2wgJCcHt27fx6NEjtLS0QE9Pj5vhmM2lGBgY8B0uIaQHsrKyEBkZiaioKERHRyMmJgZ1dXVQV1eHh4cHpk+fDh8fH4wfP17uB/MlhBDSuxiGwfbt2/H5559j37592Lx5M98hEULIc6NiLSJ3Nm3ahAcPHuDOnTt8h9Jj1dXViI6O5oqzoqKiUFhYKDUiiaurKzdTjZ6eHt8hE0LIUzU3NyMpKUlqtKXo6GhUVVVBRUUFY8aM4ZLxXl5eGDlyJN8hPzMq1iJkaKFirT/dv38fS5cuhUQiwcmTJ+Hl5cV3SITIdOTIEaxbtw719fW8d/qQSCS4fv06Dh06hPPnz0NVVRXLly/H0qVLMXXqVOr0RgaM6upqXL58GcePH8fly5ehra2NVatWYe3atXBycuI7vD6VkJCAGzduICQkBLdu3UJlZSWMjY3h4+ODiRMnYty4cXBzc6MOB4TIodzcXERHRyMiIgK3bt3C/fv3wTAMXFxc4OPjAx8fH0yZMoVm3upEc3MzHj9+jLi4OMTFxXEFWgUFBQAAIyMjODs7w9nZGXZ2dlxRlrm5ORW7EkLIAFFbWytVvMW260lJSWhpaYGSkhI38wlbxOXi4kLFtf+Vl5eHoKAgnD59GmFhYVBWVsbcuXMxd+5czJgxg2bOIuS/mpqacO/ePVy/fh1BQUFISkqCqakp/P39sWTJEkyePJlmaOmmRYsWQU1NDceOHeMthsbGRoSHhyMkJAQ3btxAdHQ0xGIxnJycMH36dG4gTxsbG95iJIT0DbFYjISEBERFRXHtQGZmJtTU1ODt7c3lUtzd3aldJ4QQ0imGYfDXv/4V3377LQ4dOoSAgAC+QyKEkF5BxVpE7rz//vu4ePEiHj16xHcoT1VVVYWQkBBcv34dt27dQlJSEiQSCczNzbmiBS8vL7i7u0NDQ4PvcAkhpNdIJBIkJycjKioKUVFRiIyMRGxsLFpaWqCvr4+JEyfCz88Pfn5+sLe35zvcbqNiLUKGFirW+p/S0lKsWrUKoaGh+Oyzz2iEIzIg7dq1CydPnsTjx495i6G+vh4HDx7EV199hezsbHh7e2Pt2rVYsmTJkG9HyMBXUFCAn376CYcPH0ZqaiomTJiA7du3Y8GCBXLRub6pqQnBwcE4ffo0rly5gqKiIujo6GDq1Knw9fWFj48PHB0d+Q6TEMKDqqoq3Lp1i+t0mJCQAKFQCC8vL/j7+2Px4sWwsrLiO0xeMAyDxMREhIeH4+7du4iOjkZycjJaWlqgrKwMBwcHuLi4wNnZGS4uLtSRnxBCBrnm5mYkJiZysySyC1uQa2hoiDFjxmDChAmYMGECxo8fDy0tLZ6j7h9NTU04efIkDh48iHv37kFdXZ2bKWjOnDl0zE9INyQkJODMmTM4ffo04uLiYGhoiBUrVmD9+vWD6lwhH9zd3TFz5kwEBgb263aLi4sRFBSEM2fOICwsDA0NDRg5ciSXR5k+fToMDQ37NSZCyMCQnp6OkJAQbmFzrX5+fli8eDHmzZtH/eAIIYRwxGIx1qxZgxMnTuDYsWN48cUX+Q6JEEJ6DRVrEbnz5Zdf4ssvv0Rubi7foXTQ2tqKiIgIXL9+HdevX0d0dDQkEgnc3d3h6+uL8ePHw9PTE6ampnyHSggh/a6hoQEPHjxAVFQUbt26hZs3b6KqqgoWFhbw8/PDjBkzMGPGDOjr6/MdaqeoWIuQoYWKtaQxDIM9e/bgvffew8svv4wDBw5AXV2d77AI4axfvx4pKSm4ceNGv2+7rq4O3333Hfbu3Yva2lqsW7cO69evh52dXb/HQsjzYhgGt27dwj//+U+cO3cOrq6u2LFjB/z9/Qdd0VZjYyN+//13nD59GhcuXEB1dTW8vLzwwgsvwNfXl0Z7JYTIVFRUhJs3b+Lq1as4f/48KioqMHbsWCxZsgRLliwZ1DOGP01dXR2io6Nx9+5dhIeHIzw8HOXl5VBXV8fYsWMxYcIEuLq6wtnZGfb29jRbKCGEDBGlpaXcTIoxMTG4d+8e0tPTIRQK4ejoiEmTJmHChAmYOHGi3P1OZmRk4N///jcOHz6Mqqoq+Pv7Y9WqVfDz84OKigrf4REyaD158gSnTp3CDz/8gMzMTPj6+mLDhg1YuHAh7WO2wzAMtLW1sXfvXqxbt67Pt1dQUICzZ8/i9OnTuHPnjtTsgT4+PrC0tOzzGAghgwvDMEhISEBISAguXLiA0NBQiEQizJo1C0uWLMGCBQuGTIE/IYSQjpqamvDyyy/j2rVrCAoKgp+fH98hEUJIr6JiLSJ3fv75Z6xfvx4NDQ18hwIAqKiowPnz5xEUFISbN2+iuroaVlZW3IwxPj4+0NPT4ztMQggZcFpbWxEVFYXg4GBcv34dERERkEgkcHNz40akdHFx4TtMKVSsRcjQQsVasoWEhGDFihXQ1dXF6dOnaRYSMmAsW7YMDMPg1KlT/bZNiUSCb7/9Fh9//DEaGhrw1ltvYevWrTAwMOi3GAjpS7Gxsfjkk09w5swZODo6Yt++ffD19eU7rC4xDIObN2/i8OHDOH/+POrq6jBx4kQsWbIEL774IszNzfkOkRAyiLS0tCAkJASnT5/GuXPnUFpaCjc3N7zyyitYvXr1gB5wpjvq6+tx+/ZtXLt2Dbdv38ajR4/Q2toKc3NzqY73bm5u1GmWEEKIlMLCQm7mxfDwcMTExKCpqQlGRkaYOHEid57UxsaG71CfSUxMDHbt2oXLly/D1NQU69atw9q1a2FiYsJ3aITIFYlEgitXruBf//oXrl69ChMTE/z1r3/Fxo0bqSDyv/Ly8mBmZoZbt25hypQpfbKN2tpanDhxAkeOHMHdu3ehpqbGnaudO3cunR8hhPRIaWkpzp07hzNnzuDGjRtQUFDAzJkz8dprr2H+/PmUXyCEkCGkrq4OixYtwv3793H58mVMmDCB75AIIaTXKfAdACG9TU9PD42Njaivr+cthoaGBhw9ehSzZ8+GkZER3njjDYjFYuzevRtPnjxBRkYGDh48iKVLl1Kh1gBFFfqE8E9RURETJ07Ezp07cefOHZSXlyMoKAgTJkzA4cOH4erqCnt7e+zYsQNpaWl8hzugffTaS3yHQAgZQnx8fHD//n3o6upi/Pjx+PXXX/kOiRAAQHl5OXR1dftte48fP4a3tzfeeecdvPbaa8jIyEBgYCAVavGMjvV6l4uLC06ePInY2FiMHDkSfn5+WLt2LSorK/kOrYPa2lrs27cP9vb28PX1RVpaGv7xj38gJycHd+7cwebNm6lQi8glPtu9odDmsiNBf//99ygsLERwcDA8PT3x0UcfwczMDCtWrMD9+/f5DrNHsrOz8dVXX8HPzw96enqYM2cOgoOD4e3tjV9++QU5OTnIzs7G8ePHsWnTJowdO5Y6Ug0CQ+H7KM/o/SODkbGxMfz9/bF3717cvXsXVVVVuHv3LrZt2waxWIx3330Xtra2sLGxwZtvvonr16+jtbWV77CfKi0tDS+//DLGjRuHsrIynD59GhkZGdixYwcVaskZanv/xPf/QUFBAfPmzcOlS5eQmpqKFStWYNeuXbC3t8fPP/8MiUTCa3wDQVJSEgBg1KhRvf7cKSkp2LBhA4YPH46NGzfCzMwMZ86cQXFxMY4fP44lS5ZQoRaRS5RL6Vv6+vpYu3Ytrly5gqKiIhw4cADNzc1YvHgxLC0t8eGHH6KkpITvMAkhhPSxiooK+Pn5IS4uDqGhoVSoRQiRW1SsReQOW/xUVlbW79uOj4/H+vXrYWJigjVr1kBFRQU//vgjiouLceHCBbz55puwtbXt97iehUAgeKbbBhuBQCDz9QzWSQc7ez29vQ0iHwbbe6mpqYmFCxfim2++QXZ2Nu7du4f58+fj8OHDsLW1xfTp03H8+PFBcUK3ryweZYrFo0w7rB+sbdpg1tl7QfoP/f/5ZWZmhtu3b+Ott97C8uXL8cYbb6C5uZnvsMgQV1tbC01NzT7fjkQiwSeffAJ3d3dIJBLExMQgMDBwwMysQcd6tF/UFxwdHREUFIRTp07h0qVLcHBwwMWLF/kOCwBQVVWFnTt3wtLSEjt37sTMmTPx6NEjhIeHY+PGjTA1Hbj7DEPl+9oZynH0zEBs97q77f54r/uDUCiEr68vDhw4gPz8fHz77bdITk7GuHHjMGPGDNy+fZvvEDuVl5eHPXv2wNPTE1ZWVti1axf09fXx3XffIS8vD7Gxsfjqq6+wbNkymJmZ8R3uMxkqbepAbAvkVX+2Xe3fP1nbHkht6UCKhQwcysrKmDhxIrZu3YrffvsNZWVluHXrFl566SWEh4dj5syZMDIywl/+8hf8/vvvA64Ao7q6Gps3b4aDgwMePnyIM2fO4N69e/D39x9QRcuD8ffueduMvLw8rFq1CqamphAKhb3WBg21387BsA8xYsQI7NmzB0+ePMHs2bOxdu1ajBkzBjdv3uQ7NF4lJydDR0cHhoaGvfac8fHxWLp0KUaNGoXg4GDs2rULeXl5OHbsGBYtWgRVVdVe21ZvG4ztYG+iXErPDMS2b6jlUnR1dfHqq6/i6tWrSE1NRUBAAP71r3/B0tISGzduRH5+Pt8hEkII6QOFhYWYNm0a8vPzcefOHbi6uvIdEiGE9Bkq1iJyh49irdu3b2Pu3LlwcXHB7du3sXPnTuTm5uLcuXNYuXIltLS0+i0W0jOdJTqCg4P7OZLeMZAS5oT0JYFAgAkTJuCLL75AdnY2Lly4gGHDhmH16tWwsbHBV199hYaGBr7D7HdnkmQnK3f9eLKfIyGdvReEDCWKiooIDAzE2bNn8euvv2LSpEnIzMzkOywyhLW0tEAkEvXpNmpra7Fo0SJ8+umn2L17N+7evQsnJ6c+3SaRTd6O9QaLxYsX4/Hjx5g5cyZeeOEF7N69m7dYxGIxvvnmG9jY2OBf//oX/vrXvyIrKwvffPMNXFxceIuLdB/lOHpmILZ73d22PL7X6urqWLNmDWJiYnD9+nUwDIOpU6fC398fqampfIcH4M8C86CgIMyfPx+WlpbYs2cPXF1dcenSJW6k/ICAgAFd1Eo6Gohtgbzqz7ar/fsna9sDqS0dSLGQgUskEmHKlCn49NNP8eDBA6SlpeHvf/87kpOTMXv2bFhZWXHnW/kWFhYGV1dXnDhxAl9//TXi4uLg7+/Pd1hy43nbjFdffRW2traIj49HfX09zpw50ytxDbXfzsG0D2FqaooDBw4gLi4OlpaW8PX1xZYtW9DU1MR3aLxITk7G6NGje+W5ioqKsHbtWri5uSEtLQ0nTpxAUlIStmzZwvXDIQMb7Yf1zEBs+4ZyLmXEiBH49NNPkZWVhT179uDChQuws7PDrl27hmTfD0IIkVdZWVmYMmUKmpubcefOnUEz+QUhhDwrKtYicocdMaiwsLDPt5WSkgJ/f39MnToVDQ0NuHjxIhISEvC3v/2tV0cuIoQQ0jmhUIh58+bhzJkzSElJwaJFi/DBBx9g1KhROH78uFwmKgkhZDDx9/dHZGQkmpqaMG7cOFy9epXvkMgQ1dfFWg0NDViwYAEiIyMREhKCLVu2QCgU9tn2CBmodHV18dNPP2H//v3YsWMHPvjgg36PIS0tDVOnTsU777yDgIAApKamYseOHRg2bFi/x0IIITNmzMCNGze4UaJdXV3x7bff8pavaGlpwY8//ggHBwcsWbIEEokEx48fR15eHr7//nvMmTMHSkpKvMRGCCFk6LK2tsY777yDe/fuISkpCStWrMChQ4cwcuRIrF27FikpKbzEdeTIEfj6+sLFxQVxcXFYt27dgJpJi/xZTLd9+3YMGzYMysrKePHFF+m80BAxatQonD9/Hj/99BMOHz6MWbNmoby8nO+w+t3jx48xatSo536es2fPwtnZGdevX8fPP/+MmJgYLF26lPKbhJB+p6amho0bNyI5ORk7duzAV199BXd3d0RHR/MdGiGEkOeUlJQEb29vaGho4Pbt2zA3N+c7JEII6XNUrEXkjo6ODvT19fs8aX/kyBG4ubkhKSkJFy9exM2bNzF37twBO810Z1Ngy1rPXmdvEwgEWLt27VNvA4D4+HjMmzcPmpqa0NTUxOzZsxEfHy9zm2lpaXjxxRehq6vboym6q6qqsGXLFlhbW0NFRQUmJiYICAhAVFSU1P3Onz+PSZMmQUVFBVZWVtiyZQtqamqe+vydxfLo0SPMnDkT6urq0NLSwpw5c/D77793K+aePEd3405ISMDcuXOhoaEBbW1t+Pv7Izs7W+Z2u/Oc3fm/Pu2z8bT3NT4+HnPnzuU+H3Pnzu3w+Xga9jkfP36M2bNnQ0tLCxoaGpg3bx4SExNl3vd5Y+rJNnv6nDk5OXjhhRegqakJIyMjrFq1SubMgD35bnXnOXvjuzwQWVlZ4auvvkJmZiYWLVqEV155BbNmzeqXAt5nVV9TjR93f4gNM8ZjuYsV1ni74evtf0VK7AOp+0WHXMN7Ly/EchcrrPfxxI+7P0RDXe1Tn3/xKFMsHtVxFOzMpMf4v9eWY4XbSKzysMMnr6/Ew7DQHsWenZKET994BSvdbbHS3RYfr12B7JQkmdsvzM7EnrfXYLXnKKmYnnY7t511q7jtfLpuVYftdPf/+DTd/T939/9XWpCPwDcDsNLdFq9NcsH+bRtRU1nxTNvtzv+qK+x9c1Of4OO1K7DKww4rxtjg0zdeQW5aisz7Pu/70pNtdvc5u/Net/98LR5lin99sLVH/2/Su+zt7REZGYmFCxdi7ty52L59OyQSCd9hkSFGIBD0aWedv/zlL4iPj8eNGzcwYcKEPttOe3SsNzCO9Xrj/9Nbxy/d/T/2tY0bN+KHH37A7t27cejQoX7b7r179+Dl5YXKykqEh4fj888/h46OTr9tvyvy9H0FKMfRGzmOwdjutf1/hYaGAgBOnDghtb6rbffkve5ubqI33ov+MGvWLDx48AA7d+7Eli1bsGzZMjQ2NvZrDLdv34a7uzveeOMNeHp6IiEhAZcvX8bSpUuhrKzcr7E8L3lqUwdjW8CSt32gnuaBZenO+9TTPG5Pfp+7m29+1s9Te73drvfm96Gn72dPnvNpn9fu/H515zvYk+9Yez397Awk9vb2CAwMRFZWFr7//nvcvXsXDg4O2Lx58zN9Tp/Vf/7zHwQEBGD9+vUICgriZaBOefq9A3q/zRAIBGhqaoKKiorUa+vs//O8bW9vHgMN1eOJvrB69Wrcu3cPmZmZmD59OiorK3mLhQ8PHz6Em5vbMz+eYRjs2rULixcv5r5nK1euHDC/IfLWDlIuZWi2fZRLeTYqKip49913kZiYCGtra3h7e+OXX37hOyxCCCHP6I8//sCUKVNgamqK4OBgGBgY8B0SIYT0D4YQOTRhwgTm7bff7pPnlkgkzJo1axihUMjs2LGDaWlp6ZPt9IXOvvKy1nfVPHR2W0pKCmNsbMx89913THFxMVNaWsocPXqUsba2ZnJycjo8h5+fH3P37l2mvr6euXz5cpfbbOuFF15gdu3axRQutB65AAAgAElEQVQWFjKNjY3MH3/8wUyaNKnD4wEwBw4cYOrq6piCggJm9erVzKuvvtqt19N+XXJyMmNvb89cv36dqaurYxISEpjJkyd3O+aePEd34k5NTWXMzc2ZH374gSkuLmZKSkqYo0ePMhMmTOj09TztOXvyf+1MV+9rSkoKY2ZmxsVcVFTEfP/998zw4cOZlJSUbv8f2e04OTkxx48fZ0pLS7nnsrCwYDIyMvokpu5us6fPOXPmTObKlStMTU0Nk52dzfj7+zMBAQFS9+vpd6s7z8neV5aebG+gCwsLYywtLRkLCwsmLS2tz7f36quvMmOnzWDOJOV3e/H0ncW8tHEr88PdR8yJ2Exm79lrzCj3cQwAqfsBYNb/3x7m2MM05oewh8y0RUuZaYuWdXi+9o+Tte7rq2GM6YiRzIeHf2WOPUxj9l8M/f/s3XdYFNf6B/AvvUkv0kEERRAhooAaSxQlXhNL7DWa4o03yU25Md7ceNMTE5ObxFSNMUZNNBYs8SYRKXYEBFSqEaX3XqXunt8f/mbuLiywC7sMu7yf55kHGJZz3p1hzs6cOe8ZNmZCsMy/7W75+mwss7CxYxvf+pDtjU1lP8alsxe2f8mGu7ix784ndanff/I09sGhX9mhG9ns9e9+kqqrp99/fTaWWds7sGff/5TtjU1lP1xJYZve/YRZDbdnX5+NVXg79rbIs53l3X4AmP+U6Wzr7p/Zz8lZbNe5RDb54UfZQ4uW96leebalPO/P1cubvfSfb9mPcen89rRxcGLfRsfLXZe8+0WROpW9r3vaLvJu796W13buYwBYU1OTytsXTbJv3z5mZGTEHnroIVZaWip0OGQICQoKYq+88opKyt63bx/T0dFh0dHRKim/N3StJ+y1njK3jzKuX+TdjgNl69atzMjIaEDOxy9cuMAMDAzYsmXLWHNzs8rr6wtNOV6pj0M5fRzq2O51dHSwkSNHsurqaqn1xcXFzNLSkjU2NnZbtyL7Wt7/ZWX2Nw2kyMhIZmZmxhYuXMhEIpHK6xOJROzVV19lWlpa7NFHH2XZ2dkqr3MgaEqbqo5tAWOaew6kaN+zrL+Xdz/1px+3u3Wdy1y6dGm3ZcoTZ09U0a6r4nhQZH/KW2ZP/6/yvE95jkFFjzFZNGUogEgkYt9++y2ztLRkI0eOZBkZGSqvMzY2lunq6rJ///vfKq+rN5ryeaeKNqOn9yVvOylv26vMa6ChfD2hStnZ2cze3p4tXLhQ6FAGTH5+PgPALl682OcyXn75Zaanp8f27t2rvMCUTFPaQepLGbptH/Wl9J9YLGabN29mWlpabP/+/UKHQwghREEXL15k5ubmbObMmayhoUHocAghZEAJ32NCiAqsW7eOPfzwwyop+9VXX2UGBgbst99+U0n5qqTqTqzVq1ezjz76qMv6PXv2sL///e9dyjh37lwP0XZv2LBhrKqqSmpddnZ2rx0h1dXVzMrKqst6ed7/ypUru1zw37p1S6GO576WISvuNWvWsM8//7zLa/fu3StXTLLKlHe79va/0d1+Xb16tcyY//Of/7A1a9b0GnPnen755ReZZXXuYFNWTPLWqWiZJ0+elFp369Yt5ujo2CVORY4tecrkXiuLIvWpg+rqajZhwgTm7u7OampqVFpXX5K1DI1N2L74DKl130bFMaDnBJx9CZlsmLlFn5K1Hpy3kP39oy+kE5D+uNRrnZLLtEcfY2tf2dpl/bPvf8rmrX2yS/3v7D/WY+JMd7+f9uhj7Il/vdNl/fotb7Jp8xf3ezv2tsjazvJuPwBsy9d7u8RkZTe8T/XKsy17WwCwlz/dKXN7dk5WUsZ+UaROZe9rRfZ9d9u7t4WStfouKSmJeXh4MGdnZxYbGyt0OGSImD59OnvuueeUXm5HRwdzdXVlf/3rX5VetrzoWk/Yaz1lbh9lXL/0dTuqSnt7Oxs9erTCg38VVVlZyezs7NiSJUsGJPGhrzTleKU+DuX0cahru/faa6+xr776Smrdtm3b2DPPPNNj3Yrsa3n/l5XZ3zTQYmNjmYGBAdu2bZvK63r88ceZgYEBO3DggMrrGkia0qaqa1ugqedAivY996an/dSfftzu1nUuMzs7W2aZ8sbZE1W066o4HuTdn4qU2dP/qzzvU55jUNFjTJbBkDyhTKWlpWzKlCnM0tKSpaSkqKwesVjM/Pz8VHavWVGa8nmnijaDi0kWedtJedteZV4DDfXrCVU6d+4c09LS6rKfNdWpU6eYlpYWq62t7dPfHzt2jGlpabFDhw4pOTLl0pR2kPpShnbbR30pyrFlyxZmaGjI0tLShA6FEEKInH7//XdmbGzM5s+fP2gnWiSEEFXSYowxEKJh3nvvPezduxd3795VarlpaWl44IEH8N1332HDhg1KLXsgaGlpQdYhL2t9d6/t6Xf29vaIj4+Hm5ub1PqysjI89NBDyMjIkCqjqakJxsbGCr+POXPm4N69e9i6dStCQ0Ohq6sr99/K+147r7O3t0dycjIcHR0VjlcZZciKR9a2Li0thYODQ7f7rqcy5d2uvf1vdLdfu4s5JycHkydPRklJSa8xS9ZTWVkJa2vrLmVNmTIFxcXFSo9J3joVLbO6uhqWlpb8utbWVhgZGUEsFvcaZ3fHljxlcq/t77GsLqqrq+Hr64sVK1bgs88+U1k969evR3peEV7buV/uv3nniRVobWnGkk0vYtzkqdDRkb9NW+ztiPBbxQqve3KKPz4+cRZWdsPlrquzJ6f448Ojv8HW0VlqfW1VBd5ctwQ7frsgVf/BG3dhYGjU7fvo7vfd1VNemI/XVszHnss3APRvO/amr9tvsbcj9iVkYpiZOb9OLBJh2VhXHMssUrhebl1P21KeMn+MS4ephaXU+vLCfPxr5QJ8f+m6XHXJu18UqVPZ+1rW9uuJoq8HgMTzkdj2zON9PqcZ6urq6rBhwwacPn0a7733HrZs2SJ0SETDPfLII7C2tsa+ffuUWu65c+cwc+ZMZGVlwdPTU6lly4uu9YS/1lPW9lHG9Ut/tqOq7Ny5E5s3b0Z5eTmMjPp2HtObN998E99++y3u3r0LU1NTldShDJpyvFIfh3L6ONS13cvKysLKlSuRmJjIrxs1ahQOHz6MBx54oMe65d3X8v4vK7O/SQjvv/8+PvnkE+Tl5cHMzEwldRw8eBBr167FH3/8gTlz5qikDqFoSpuqrm2Bpp4DKdr33JfPKW5df/px5S1TJBJBT0+vS5nyxtkTVbTrqjge5N2fipSp6P+rrM+v3o5BRY8xedtDddfa2oo5c+agtrYWiYmJ0NPTU3od58+fx0MPPYTU1FSMHTtW6eUrSlM+71TRZvT0vpTd9g7ENdBQuZ5QtYULF6KpqQmRkZFCh6Jy77zzDvbv3487d+4o/LeMMYwdOxYTJkxQen+psmlSO0h9KUO37aO+FOUQiUSYOHEiRo8ejUOHDgkdDiGEkF6cOnUKy5cvx9KlS7F3795Bcc+SEEIGmrbQARCiCqNGjUJeXh5aW1uVWu6JEyfg5uaG9evXK7VcTVFVVQV3d3doaWlJLfb29sjNze3y+r4Oaj569CiCgoLw7LPPwsrKCtOnT8eOHTvQ3t7Ov6aiogJPPfUUnJ2doaury8fSV5WVlbCxsenz38tbhrxxV1ZWwt7evst6WevkLVOe7SqP7vZrdzE7ODigsrJSoToAdLm5ypVVUVGhspjkqVPRMiVvCAGAgYFBl85ARY8tecrsiaL1qQMrKyu89NJLOHLkiNChdPHKju/gNe4B7H7nX3g8yAf/XvsYftv/PUQd/zv26qur8M3Wf+Dp6eOx1NcFi70dsdi7753B9bXVMLO06lfcDbU1eGZmEB8Ltzw5xR/lRQVdXt9bclF3v6+vrYaFjV2X9Za2w9FQU83/LM927I2821mR7SeZqAUA2jo6XY5HRfdvXxO1OJ2TpoD727O+ukruuuTdL4rUOVD7WtnHE+k7c3NzhIeH47333sPrr7+ORYsWoa6uTuiwiAazt7dHWVmZ0stNSkqCq6urYIlaA4Gu9Xqm7O3T3+sXZV3bKdPMmTPR2NiIW7duqayOM2fOYM2aNYM6UWsgDNTxSn0cyunjUNd2z8vLC0ZGRrh58yYA4OLFizAzM5MaXNRd3fLua3n/l5Xd3zTQnnnmGdTW1uLq1asqq2Pv3r1YvXq1xiVqDQQ6B+qZJp8DKdL3LEnR/dTfflx5ytSR0RelrP8nVbTrqjge5NmfipbZ3f+rIp9fvR2DmthPrwwGBgbYvXs3UlJSpAY7K9Ply5fh5eU1KBK1BsJAXkMou83oi762vQNxDTRUridUbdGiRbhy5YrGJavKcuPGDQQEBPTpb/Py8pCRkYFNmzYpOSr1Q30p91FfSveoL2Xw0NHRwcaNG/HHH38IHQohhJBeHDhwAEuWLMFTTz2Fffv2UaIWIWTIomQtopFGjx4NkUjUpxmEelJUVAQ3N7d+XcQLSUtLq0sCW3V11wHVfWVjY4Pq6mowxros9+7dU1o95ubm+PTTT3H37l1kZ2fjb3/7G3755ResXLmSf83atWthYmKCy5cvo6WlhY+jr6ytrfvdKSFPGfLGbWNjg9LS0i7rZe1PecuUZ7v2h42NjcwZeEpKSvrUsSVroG1JSQlsbW1VFpM8dSr7fXJlDsSxJVR9A2XEiBEoKytDR0eH0KFIMTY1w/p/voVvIq/im6g4PLxyPS7/dgqfvvw3/jU7Xn0ehkbGeP/gKfySkoPwW8UKPwFIkqmFJeplJNQoVIalFfYlZPKxSC6HbmT3q2xJZhZWqKnoeuzVVJTBVCJhSp7t2Bt5t7Mytl9f6lWW2qquA4tqKspgZtV14Ep35N0vitQ5UPt6oLc36ZmWlha2bNmC6OhoxMXFISgoCKmpqUKHRTSUvb29zHPo/qqrq4O5uXnvL1QhutYT9lpvoLaPvNcaqr626wtuMFxtba3K6igrK4ODg4PKylcWTTleqY9DOdf+6truAcCGDRvwww8/AAD27NmDjRs39vo3iuxref+XVdEPM5CsrKxgZGSkkoRyTm5uLry9vVVWvpA0pU1V17ZAk8+B+tr3rOz9pCrKilMV7boqjgd59qcyt4k871OeY1CRY0zV7eFg4+HhAQMDA5UlrVVXV8tM8hOKpnzeqaLNGEjKvgYa6tcTqmRjY4Pm5ma1vqcpr4SEBAQFBfXpb7nPR+pLob4UDvWldI/6UgYXJycn1NfXo7m5WehQCCGEdOOrr77C+vXr8Y9//ANfffUVtLUpVYEQMnRRC0g0ko+PD4yNjREfH6/UcseNG4fk5GSVDi5SJXt7e+Tn50utu3jxoszX9pSQ1t3vwsLCcP78+S7rL126hMDAQPkD7YWWlhYKCwsB3O9EWL58OX777TecPXuWf01sbCzefvttuLu781n5/blQnzFjBqKioqTW3bx5Ez4+PkotQ96458yZg5MnT3ZZ37l8RcqUZ7tyr+uL0NBQHD9+vMv6EydOIDQ0VOHyIiIiZJalyCzBisYkT53Kfp+A6o4toY/lgRYdHQ0fH59BN1PHYm9HVJXe7ww1s7TClL/Mx+vfHcDNKxf41/x5PRHLn98MOycX6Ojcj7+tpaXPdfoGTUZKrHT7n3srAy/Mmy53GQEPzkB6fGyX9ZmJ8dj8WFifY+ts3OSpiD/7e5f18ZF/YNzkqfzP8mzH3si7nZWx/fpSr7LcuHS+y7r4yD/gP0X++OXdL4rUqex93V0bN9Dbm8hn+vTpSExMhK2tLYKDg/mbVYQok4ODA4qKipRerqOjIwoKCiASiZRetrzoWk/Ya72B2j7yXmvIe203kLKz7yfzOzs7q6yOUaNG4dq1ayorX1k05XilPg7lXPura7sHAMuWLcOpU6dQUVGBM2fOyDV4S5F9Le//sir6YQZSamoqmpubVZpMNXHiRJw8eVLQcxVV0ZQ2VV3bAk0+B+pr37Oy95OqKCtOVbTrqjge5Nmfytom8r5PeY5BRY4xRdpDTXD69Gm0trb2OUGhN25ubrhz586gmfhNUz7vVNFmDCRlXgPR9YRqZWZmws7ODiYmJkKHolKFhYUoKipCcHBwn/7ey8sL2tra1JcC6kvhUF9K96gvZXBJSEiAm5sbjIyMhA6FEEKIDB999BH+/ve/Y/v27fjwww+FDocQQoTHCNFQU6dOZU899ZRSy6yrq2P29vZszZo1TCQSKbXsgbBu3Tq2ZMkSVlBQwBoaGtiZM2dYWFgYk9UUODs7s9jYWNbW1sYiIiKYi4tLr7/Lyclhfn5+7OjRo6yyspLV19ez06dPMycnJ3bixAmp8vvT/ABgYWFhLC0tjbW0tLDS0lL22muvsUWLFvGvCQsLY08//TTLyclhra2tLCsri61bt05mvfKsS0lJYSNHjmSRkZGssbGR3bx5k40fP5598803csctTxnyxn337l3m4uLC9uzZw8rLy1lVVRU7fPgw8/f37/JaecuUZ7sy1vP/Rk/79fbt28zJyYnt3r2blZWVsfLycvb9998zJycnlpWVJfd25OqZPHky+/nnn1llZSVflqurK8vJyenyWmXEJG+dipbZ3fuTpIxjS5HjXJH61EV0dDTT1dVl+/fvV2k9jz/+OJswI5SF3yqWewHAAh6cwT7/7zn2S0ou23PlJnts4/MsePZc/jUBD85gs5etZt9Gx7PDqXns67OxbMbCpQyAzPJ6W/fpr9HM3tWdvfnDYXbw+h326alo5uHjxza+uU3uuL+Njmduo8awV3Z8x36MS2c/Jd1mr+3cx6yG27MtX/3Qa0zy/v6riCvMarg92/TuJ+yHKylsb2wq+9t7/2FWw+3Z12djFdqOvS3ybmd5t19376vz+v7uX0X/30Y/MIG9+MnX7Me4dH572jg4sW+j45W+XxSpU9n72tregX3wy2l2JC2PvbHnELNxcFR4e/e2vLZzHwPAmpqaVNq2DCXt7e1sy5YtTEtLi61du5bdu3dP6JCIBomIiGAAWGVlpVLLzcrKYgBYRESEUstVBF3rCXutp8zto4zrF3mv7QbS5s2bmbu7OxOLxSqr45dffmE6OjosKSlJZXUog6Ycr9THoZw+DnVt9zjr169nc+bM6bYPtj/7Wt7/ZWX2Nw00sVjM5s+fz8aNG6fS9jEzM5MZGRmxv/3tb6yjo0Nl9QhBU9pUdW0LNPUcqD99z/3dT92t78+6/sbZE1W066o4HuTZn8rYd4q8T3mOQUWOMUXaQ3WXnJzMbG1t2dNPP62yOnJycpi2tjY7fPiwyupQhKZ83qmizegpJmW3vcq8BqLrCdVpb29nY8aMYRs3bhQ6FJU7evQo09HRYQ0NDX0u47HHHmP+/v6sublZiZEpn6a0g9SXQm0fY9SX0l9FRUXMysqKvfPOO0KHQgghpBOxWMxefvllpqOjw3bv3i10OIQQMmhoXg8tIf9vy5YtzNfXV+nlRkREMAMDA7Z+/fpB32nVWUVFBVu1ahWztbVlJiYm7NFHH2X5+fkMQJeL+CNHjrARI0YwfX195unpyU6dOiXX727fvs0WL17MzM3NmYmJCZs4cSI7fvy4VNlcfbLqlUdUVBRbuHAhs7a2Zvr6+mzEiBHspZdeYvX19fxrysrK2Nq1a5mdnR3T19dnY8eOZYcPH+5Sp6w4uostNjaWTZkyhRkaGjIXFxe2bds2hWPvrQx542aMsbS0NDZ37lxmYmLChg0bxubMmcPS09O7vFbeMuXZrox1v//l2a8pKSns4YcfZiYmJszExIQ9/PDDLCUlReHtCIDl5OSwRx55hJmamjITExM2d+5clpGR0eV1yopJ3jrlLbO7uLpbr+ixJc/6/h7L6uL06dPMxMSErV69WqWDnxjrW7LWW3uPsKDQh5mphSXT1dNjds6u7NH1G9lPSbf51/xwJYVNX7CEmVvbMF09Pebq5c3+8dlOfr9KJrHIsy78VjH74JfTzHv8RKZnYMBsHBzZmpf/pXCiylcRV1jInHnM2NSMGRgZM0+/APbql3u6JOp0F4M8v+eSox6Y+hAzMDJmBkbG7IGpD7FPf41WeDv2tsi7neXZft29J1nr+7J/u9tW8iRrfRsdzybMmM2MTIYxAyNjNn7aTLbjtwsq2S+K1Knsff2Pz3cxO2dXpqunx+xd3dk/v/lR4f1MyVrCOXXqFLOwsGDjx49nd+/eFTocoiFycnIYABYbG6v0sufMmcOCgoIEGwBN13rCX+spY/so6/pF3mu7gVJQUMBMTEzY9u3bVVpPR0cHCw0NZW5ubiwvL0+ldfWHphyvjFEfhzL6ONS53WOMsYsXLzIALD4+vsvvuqtb3n3NmPx9E8rqbxpor7/+OtPT02MXLlxQeV3h4eHM0NCQzZs3jxUWFqq8voGiKW2qOrcFmngOJG8/sKyY+7Ofulvfn3X9jVMeym7XlXk8cO9fnv3Zl33X3baS9/NLnmNQ3rIUaQ/VlVgsZnv37uX/zxobG1Va37p165izszOrqKhQaT3y0JTPO8aU32b0tz1V9LXKvAai6wnVePvtt5mRkRG7ffu20KGo3CuvvMLGjRvXrzKysrKYhYUFW716NWtvb1dSZMqnSe0g9aVQ20d9KX1XU1PDJk6cyMaMGSNYXzchhBDZOjo62JNPPsn09fUHzcQnhBAyWGgxxhgI0UCnTp3CokWLUFVVBUtLS6WW/fvvv2P16tVwdXXF3r17MX78eKWWTwjpmZaWFgb640uIOkn/NDQ04N///je++OILbNiwAbt27YKurq5K61y/fj3S84rw2s79Kq2HkL5a7O2I8FvFGl/nQEk8H4ltzzyOpqYmGBsbCx2OxsnKysLSpUuRm5uLvXv3YtGiRUKHRNScWCyGmZkZPv/8czz11FNKLTs1NRVBQUF4+eWX8f777yu1bELUWVtbG2bNmoWqqiokJyfD0NBQpfVVVVVh1qxZqKiowMmTJzFx4kSV1kcIIX3R2tqKF154Ad9//z12796NDRs2DEi9V69exZo1a1BRUYE33ngDmzZtgomJyYDUTYg6oX5gzUL7UzNcu3YNmzdvxuXLl/H888/j448/Vnlff2VlJYKCgmBnZ4ezZ8/CzMxMpfURQvrvwIEDePzxx/HFF1/gueeeEzoclZs2bRq8vb3x3Xff9aucqKgoLFy4EDNmzMBPP/0ECwsLJUVICCHKk52djQULFqC2thYxMTHw8vISOiRCCCH/r62tDWvWrMFvv/2GY8eOYe7cuUKHRAghg4q20AEQoiqTJk0CYwwJCQlKL/svf/kLrl+/DgsLC0ycOBEbNmxAfn6+0ushhBCiuLa2NuzatQteXl7Yv38/Dhw4gD179qj85i0hhBDl8vLyQlxcHJYtW4bFixfjhRdeQEdHh9BhETWmra2NwMBAxMXFKb1sPz8/fP3119i2bRt27Nih9PIJUUdtbW1Yvnw5UlJScOTIEZUnagGAtbU1Ll68iHHjxmHKlCl466230NraqvJ6CSFEXomJiZgwYQIOHjyI8PDwAUvUAu73l6elpeHFF1/EW2+9BXd3d7z77rsoKysbsBgIIYQQeYnFYkRERCA0NBRBQUFobW1FXFwcPvvsswHp67exscGZM2eQn5+PqVOn0n1gQgYxxhg++ugjrF+/Hv/85z+HRKJWW1sbkpKSEBIS0u+yQkNDERMTg+vXr8PPzw9nzpxRQoSEEKIcYrEYO3fuhL+/P3R1dXH16lVK1CKEkEHk3r17WLBgAf744w/8+uuvlKhFCCEyULIW0Vh2dnYYOXIkrly5opLy3d3dcf78eRw6dAgXLlyAp6cn1qxZg+vXr6ukPkLIfVpaWlJfNbVOorja2lps374dHh4e+Pvf/44VK1bgzp07WL16tdChETIoLPZ2lPqqqXUSzWJoaIjvvvsOP/74I77//nuEhoaitLRU6LCIGps8eTKuXr2qkrKfeOIJfPzxx3jppZewefNmiEQildRDiDqorKzEnDlzEBMTgz/++ANjx44dsLrNzMzw+++/4z//+Q8+/vhjjBkzBocPH4ZYLB6wGAghpLOCggI8/vjjCA4Oho2NDVJSUrBgwYIBj8PIyAjvvPMOcnNzsWnTJnz22WdwcXHBokWLcPr0abS1tQ14TIQMJtQPrFlof6qnnJwcvPXWW/Dw8MDDDz8MAIiMjMTVq1cxYcKEAY1l1KhRiIuLg1gshr+/Pw4dOjSg9RNCeldSUoJ58+Zh69at+Pzzz/HBBx8IHdKAuHbtGu7du4fp06crpbygoCCkpKRgypQpmDt3LubNm4f09HSllE0IIX0VHR2NCRMm4Pnnn8dzzz2H+Ph4ODs7Cx0WIYSQ/1dXV4ewsDAkJCQgKioKs2bNEjokQggZlLQYY0zoIAhRlU2bNiE+Ph7Jyckqrae9vR2HDx/GJ598gps3b2LChAnYsGEDVq5cCUtLS5XWrWl6u2k2WJssdY17sKHtSBQlFotx7tw5/PDDDzhx4gT09PSwceNGvPDCC4J01K1fvx7peUV4bef+Aa9bmXpLrAm/VTxAkSiPJr4nSZr+/garxPOR2PbM42hqaoKxsbHQ4Wi8GzduYMmSJWhoaMChQ4cwc+ZMoUMiauj06dNYuHAhysrKYGNjo5I6Dh8+jA0bNsDb2xt79uzBAw88oJJ61I26nuura9xC+u9//4tNmzYBAH799VdBj4HCwkJs3boVBw4cgLe3NzZv3oxVq1ZBX19fsJjUAf3fK4e6bkd1jXuwunXrFrZv346ff/4Zzs7O2LZtG5YuXTpoEgeam5sRHh6OvXv34vz58zAzM8Ojjz6KRYsWISwsjK5zlEBdjyl1jbsnmvieVIm2FxlImZmZOH78OI4fP47k5GTY29tj7dq12LBhA8aMGSN0eGhpacFbb72Fjz/+GDNmzMAXX3wBX19focMaVKjNUD7apj3r6OjA119/jTfffBOWlpbYv38/pk6dKnRYA8/bzwAAACAASURBVOaDDz7AN998g8LCQqWXHRMTg82bN+PGjRuYP38+tmzZopQneGk6OmaVQ123o7rGPRiJxWKcPn0a27dvR2xsLObNm4ft27fDx8dH6NAIIYRIqK6uxty5c1FQUICIiAj4+fkJHRIhhAxalKxFNNrZs2cRFhaG7OxsjBgxQuX1McZw6dIl/PDDDzh27Bg6Ojowe/ZsLFmyBAsWLICFhYXKYyCEEE0nFotx5coVHD16FOHh4SguLkZISAieeOIJLF++HGZmZoLFpinJWoQQ+VCy1sCrr6/Hk08+iZMnT+K9997Dq6++OmgGuhL10NjYCBsbG+zevRtr165VWT3p6el46qmnkJSUhJdffhlvv/02DAwMVFYfIYNBWVkZNm/ejAMHDmDp0qX49ttvYW1tLXRYAICMjAxs374dBw8ehLW1NTZs2ICnn356QPqKCCFDT3t7O06dOoVdu3YhOjoao0ePxubNm7FmzZpBnSyan5+P8PBwHD9+HLGxsdDX18e0adMQFhaGsLAwGpROCCFEaRoaGhATE4OIiAhEREQgOzsb9vb2WLBgARYvXoyHHnoIurq6QofZRUJCAp5//nlcv34dK1aswBtvvAFPT0+hwyJkSBGLxQgPD8frr7+OvLw8PPPMM3jvvfdgamoqdGgDKiwsDDY2Nvj5559VUr5YLMapU6fw0UcfIT4+HhMnTsTGjRuxcuVKmJiYqKROQsjQVl5ejr1792L37t3IycnBI488gi1btmDy5MlCh0YIIaSTkpISzJkzB42NjYiKisLIkSOFDokQQgY1StYiGq29vR3Dhw/HG2+8gRdffHFA666vr8fJkydx9OhRREZGQiwWY9KkSZg9ezZCQ0MxceJE6OjoDGhMhBCirgoLCxEZGYmoqChERUWhvLwcPj4+WLp0KZYtWzZoZlKiZC1ChhZK1hIGYwxffPEFNm/ejLlz52Lfvn00KQJRyJw5c2BlZYVffvlFpfWIRCJ8+eWX2Lp1K5ycnPD6669j1apVg3LAGSH9UVNTgx07dmDHjh2wtLTErl27MHv2bKHDkqmgoAC7d+/Gnj17UFpaismTJ2PJkiV47LHH4OLiInR4hBA11t7ejpiYGISHh+PEiROoqanB3Llz8cwzz2Du3LnQ1tYWOkSFlJaW4vfff0dERASioqJQXV0Ne3t7TJo0CVOmTMGkSZMQGBhIyeiEEELkUlBQgCtXruDq1au4evUqbty4AZFIhMDAQISFhWHu3LkICQlRi89LkUiEAwcO4N1330VBQQEee+wxbNq0CdOnTxc6NEI0WmVlJX744Qfs2rUL+fn5WLt2Ld544w24u7sLHdqA6+jogJWVFT755BNs3LhR5fVdunQJO3fuRHh4OPT19TFv3jwsWbIEc+fOpfsihJB+qaqqwsmTJxEeHo7o6GiYmJhg3bp1eOaZZ+Dt7S10eIQQQmTIycnB7Nmzoa+vj8jISDg5OQkdEiGEDHqUrEU03tq1a5Gfn48LFy4IFkNdXR1+//13nD17FlFRUSgsLISFhQVmzpyJ0NBQzJ49m2ZeI4QQCQ0NDTh//jyfoJWZmQlDQ0M8+OCDmD17Nh555JFBk6AliZK1CBlaKFlLWJcuXcKKFStgbGyMY8eOwd/fX+iQiJrYsWMH3nzzTZSUlMDIyEjl9eXm5uKdd97BTz/9BFdXV/zrX//C2rVroaenp/K6CVGlqqoqfPbZZ/jyyy+hq6uLF198ES+//LJazLDc0dGB33//HUePHsXp06dRX1+P4OBgLF68GIsXL6YnbhFC5NLa2orIyEiEh4fj1KlTqKmpwYQJE7B48WKsWrUKrq6uQoeoFCKRCImJibh48SJiY2Nx9epVlJWVwcDAAIGBgZg0aRImT56MSZMmwcHBQehwCSGECKy9vR3Jycl8YlZsbCwKCwuhq6uLgIAATJ48GZMnT8asWbNgY2MjdLh91t7ejsOHD+Prr79GXFwcfH19sWnTJqxduxZmZmZCh0eIxoiNjcW3336Lo0ePwsjICOvWrcPzzz8/pMdWJCQkIDg4GJmZmQOazFBZWYlffvkF4eHhuHTpEgwMDPCXv/wFixcvxrx584bc080IIX1TVlaGEydOIDw8HOfPn4eenh7CwsL4CbUG4p4NIYSQvsnIyMCcOXNgb2+PM2fOqPU1PSGEDCRK1iIa7/jx41i6dCmKiopgb28vdDgAgMzMTERGRiIyMhLnz59HY2MjXF1dMWnSJAQFBSE4OBjjx4+ni1BCyJBx+/ZtJCQkICEhAfHx8UhOToZIJEJAQACf1Prggw8O+naRkrUIGVooWUt4FRUVWLVqFS5fvowvvvgCTz/9tNAhETVQVlYGFxcX7N+/HytWrBiwenNycrBt2zbs27cP9vb2ePLJJ7FhwwZ6mg9RO9euXcP333+PgwcPwsjICC+//DKeffZZtR2U09raiqioKBw7dgy//vorqqur4e/vj5kzZ2LWrFmYNm2a2r43QohyMcaQkZGB6OhoREdH4/z582hoaEBISAif7DlUZva/c+cOPwj/ypUrSE9Ph0gkgpubG/z9/TFu3Dh+8fT0hI6OjtAhE0IIUYGamhqkpKQgJSUFqampuHnzJlJTU9Hc3AwbGxuEhITwyVkTJ07U2P6z69ev49tvv8XBgwehpaWFRx99FIsXL6anzhDSR+np6Th27BiOHj2K9PR0jB8/Hps2bcLKlSvVYoIYVfv444/xySefoLS0FFpaWoLEUF5ejhMnTuDYsWM4f/48dHV1MXXqVMyaNQszZ87E+PHj6RqAEAIAaGlpQWxsLGJiYhAdHY1r167B0NBQKtlz2LBhQodJCCGkF4mJiZg7dy58fHxw+vRpmqSEEEIUQMlaROM1NTXB1tYWO3bsGJSDN9vb2xEXF4fz58/zSQoVFRXQ1dWFn58fQkJCEBQUhKCgIHh7e0NbW1vokAkhpF8qKyv59o5L0Kquroa+vj4CAgIQFBSEKVOmYNasWbC1tRU6XIVQshYhQwslaw0OIpEI7777Lt59912sXr0aO3fupP1BevXoo4+ivb0dZ86cGfC68/Pz8dVXX2H//v2oqKhAWFgYnnzyScyfP5+etkUGrZqaGhw4cAB79uxBSkoKxo4di40bN+KJJ57QqIFS7e3tOHfuHH7//XfExMQgLS0NOjo6CAoK4pO3Jk2aBAMDA6FDJYQMkJycHH5AUUxMDMrKymBhYYEZM2YgNDQUCxYsgLOzs9BhCq6hoQFxcXG4du0aP2g/KysLHR0dMDIygq+vL/z9/eHn5wc/Pz/4+/vD2tpa6LAJIYTIqaOjA3/++SefkMUlZxUUFAAArK2t+STdgIAATJo0CaNHjxY46oFXV1eHn3/+GUePHpV66sySJUtoIDIhvbh58yaOHTuG8PBwZGZmwtHREY899hjWrl2LoKAgocMbVB555BEYGxvjyJEjQocC4P6T13/99VdERkbi3LlzKC0t5a+ZZs6ciZkzZ8LX11foMAkhA6SjowOJiYmIiYlBTEwMrly5gpaWFnh6emLmzJkICwvDww8/TPfxCCFEjVy4cAHz58/H1KlT+SfeEkIIkR8la5EhYcWKFSgoKMCVK1eEDkUu2dnZUkkMycnJaGlpgZmZGfz8/DB27Fipr1ZWVkKHTAghXbS1teHPP/9EWloaUlNTkZaWhrS0NOTk5AAAPD09+acJBgUF4YEHHlD7QY+UrEXI0ELJWoPLf//7X6xbtw5ubm44evQoPD09hQ6JDGLHjx/HsmXLcOvWLcH+V9rb2/Hrr79iz549iIiIgJWVFRYuXIhFixZh1qxZan9eRNRfVVUVTp8+jZMnTyIiIgJ6enpYvnw5nnzySYSEhAgd3oAoLy/nBxbExMTg7t27MDIyQmBgIIKCgjBx4kQEBQXBw8ND6FAJIUrQ1NSEpKQkXLt2DQkJCYiLi0N+fj6MjY3x4IMP8gMNaZZ4+bS0tCA9PR2pqal8AldKSgoqKioAAA4ODhg9ejQ8PT3h5eUFLy8vjBo1Cp6ennQeRAghAikpKcHt27eRlZUltdy+fRttbW3Q09ODt7c3xo0bxyff+vn5wcnJSejQB52ysjKcPHlS6qkz06ZNQ2hoKEJDQ+Hv708TdJIhraqqCjExMYiKikJkZCRycnLg4uLCP7F28uTJdIzIIBKJYGNjg/feew/PPvus0OHIlJ6ezk92ceHCBdTW1mL48OEIDg7m+1GCgoJgYWEhdKiEECUoLi5GQkICrl27hvj4eFy7dg319fVwdHTk+1FmzZoFV1dXoUMlhBDSB//973+xbNkyLFiwAPv376eJRwkhpA8oWYsMCVFRUZg9ezbS0tLUctae9vZ23Lx5E4mJibh58ybS09ORlpaGmpoaAICjoyOfuOXr6ws/Pz+MGTNGo2a3JoQMXmKxGLm5uUhNTUV6ejpSUlKQnp6OP//8E+3t7dDT08OoUaP4duqBBx5AUFAQbGxshA5d6ShZi5ChhZK1Bp/8/HwsW7YMmZmZ2LNnD5YsWSJ0SGSQEolE8Pb2xuzZs/HNN98IHQ4KCgrw888/4/jx40hMTISpqSnmzp2Lxx57DHPnzoWpqanQIZIhoqCgAKdOncKJEydw8eJF6OrqYtasWVi8eDGWLl065GeCz8vLw7lz5xAXF4eEhASkpqaio6MDNjY2/GCjiRMnYuLEiWr3lGBChpr29nakp6fzk2UlJCQgIyMDIpEI9vb2/CDCqVOnIiQkhJKHlKi0tBQpKSlIS0uTSgQoKCgAYwza2tpwcXHhE7i4JC4vLy+4u7tDX19f6LdACCFqraKiAnfu3JGZlNXY2AgAGDZsmFQ77O3tzd97pHZYcZWVlTh9+jTOnj2LmJgYlJeXw8bGBjNnzuSTt0aMGCF0mISoVHNzMy5fvoyoqChER0fj+vXr0NLSwsSJExEaGop58+YhODgYWlpaQoc6qCUnJyMwMBApKSnw8/MTOpxeiUQiJCUl4dKlS/xkxXl5edDS0oKXl5fURDgBAQEwNDQUOmRCSA/q6uqQlJQk1ZdSVFQEbW1teHt7Y+LEiQgODsaMGTMwZswYocMlhBDST4cOHcLjjz+OJ554At988w1NpkAIIX1EyVpkSGCMwdPTE4888gh27NghdDhKU1NTg/T0dCQlJSEjIwPp6em4ceMGmpqaAACWlpbw8PCAh4cHfHx84OvrCw8PD4wePXrID7AihCiOa3MyMjKQnZ3NL7du3eLbHQcHB/j6+sLHxweBgYH890PlEciUrEXI0ELJWoNTa2srXn31VXz55Zd4/vnn8cknn9AMT0Smb775Bq+88gpyc3NhZ2cndDi8iooK/PHHHzh69CgiIiIgFosREBDAD+CaOnUqDRgnStPY2Ii4uDhERUUhKioKycnJMDIywsyZM7F06VIsXLgQZmZmQoc5aLW3tyMlJQWXL19GUlISkpKSkJmZCcYYLC0tu1wXBQQEUH8MIQIoLi7m+065r8nJyWhuboaJiQkCAgIQGBjILz4+PjRIVABtbW0oLCxEdnZ2l/6nnJwccLeyJPu8HRwc4OjoyP88cuRImqGfEDLk1dTUSPXfFxcXo6SkBNnZ2bhz5w7q6uoAAPr6+nB2du5yD9HDwwPu7u40CEuFsrOz+WuwiIgI1NfXw8HBgT8XefDBBzF58mTqbyRqrbi4GElJSbhy5QouX76MxMREtLa2wsPDg+/jCg0NhaWlpdChqpXPP/8c7777LioqKtS2na6trUViYiLflxIfH4+Kigro6OjAzc2N/0zi+lS8vb3pycaEDLD29nbcvn27S1/KrVu3IBaLpc5bAgMDMXnyZFhbWwsdNiGEECXauXMnnn32WTz33HP4/PPPqb+cEEL6gZK1yJDxn//8B2+//Tby8/M1+oatSCTC3bt3kZGRgaysLNy5c4dfuNlJtbS04OTkBC8vL3h6esLLywsjR46Ei4sLXF1dMXz4cKHfBiFEAM3NzcjNzUV+fj7y8vL4NiQrKwt3795FS0sLAMDc3Byenp58++Hp6Qlvb2/4+PgM+ac+ULIWIUMLJWsNbj/99BOeeeYZjB8/Hr/88gscHR2FDokMMs3NzfDw8MCyZcsG7aQeVVVViIiIQExMDKKjo5GbmwsTExM8+OCDmDVrFqZMmYLx48fTrLNEbtXV1UhISMCFCxdw4sQJZGVlAQD8/f0RGhqKWbNmYcaMGZQQ2A+VlZVISkrinzicmpqKjIwMtLS0QFtbGx4eHvDz88PYsWPh6+vLX1NRUhwh/SMSiZCfn487d+7gzz//RGpqKv8E8Pr6egCAi4sL/9TvsWPHIiAgAD4+PjTwTw00NDQgKysLOTk5yMvL4xeuD6u6upp/raWlJVxdXeHq6gp3d3e4ubnB2dkZjo6OsLe3h5OTE12/EULUklgsRnl5OUpLS1FUVITi4mK+HeSWoqIidHR0APhfMparqyvc3Nzg7u7Of+/p6QkXFxe1HeivSVpbWxEfH4+rV68iLi4OcXFxKC0tha6uLvz9/RESEoLg4GD4+/tjzJgxNCERGZTKysqQkpKCa9euIT4+HnFxcSgvL4eenh4eeOABBAcHIyQkBNOmTYOzs7PQ4aq1+fPnQ1dXF8ePHxc6FKVhjCErKws3btxAamoq0tLSkJqaipycHIjFYhgZGcHHxwd+fn58EpenpydGjBhBbSIh/dTc3MyPB8nMzOSPwdu3b6O9vR16enoYPXq0VF9KYGAgnJychA6dEEKICn300Ud47bXX8Oqrr+LDDz8UOhxCCFF7lKxFhoyGhga4uLjgtddew5YtW4QORxAtLS184pZkIldWVhYKCwv52UkNDQ35G9ouLi5wc3OT+tnV1ZUGAxKiZhhjKC0tRV5eHgoKCpCfn8/fyOV+rqys5F8vmZDFJWVxgwgH05MnBhtK1iJkaKFkrcHv1q1bWLx4MSoqKvDzzz9j9uzZQodEBpnvvvsOzz33HNLS0jBq1Cihw+lVdnY2oqOjERMTg3PnzqGsrAx6enoICAhAcHAwgoKCEBwcrBbvhahee3s7rl+/joSEBMTHxyMhIQFZWVlgjGH06NEwNDRERkYGf+Ode/KTv78/AgICEBAQQDNcKwk3sQ434IEbeHTnzh2IRCIAwPDhw6WuuyS/0tO4CLlPLBajoKBAanKZO3fu4Pbt28jJyUFraysAwMrKCmPHjpUaTDR27FiNnsBrqGtsbEReXh4/CRHX55Wfn4/c3FyUlJRALBbzrzczM4OTkxOGDx8OZ2dnDB8+XOpnOzs7uLi4wMTERMB3RQgZKkQiEcrKylBSUoKSkhL+SVjc91xyVnl5OZ+IBQDDhg2TSsLiErG4ZFUHBwdKxlJTeXl5uHr1Kp/0cv36dbS2tvLXbX5+fhg3bhz8/f0xbtw42NvbCx0yGSLa2tqQnp6OlJQUpKam4vr164iLi8O9e/cA3J8cISQkhE8yDAwMpDEFStTR0QFra2t8+OGH2LRpk9DhqFxTUxMyMjK69KWUlpYCAHR1deHm5ibVf8Itbm5ulMhFyP+TNU6M+8qNE9PS0oK7u3uXvhRvb286lgghZIh566238M477+DTTz/Fiy++KHQ4hBCiEShZiwwpr7zyCg4dOoS7d+9Sx2AnbW1tKCws5G9m5+bm8gkcBQUFyM3NRXNzM/96e3t7ODs7w8HBAfb29vzMpI6OjvzNbTs7O+jr6wv4rggZGiorK1FaWsrfwOWW0tJSFBcXo7i4GIWFhfygJW1tbTg4OMDd3Z1PwOQSM93c3ODi4kKDMvuIkrUIGVooWUs9NDQ04Omnn8axY8ewdetWvPHGGzRYifBEIhH8/f3h6emJkydPCh2Owu7evYv4+Hg+EYcbwGVlZYXx48dj3LhxGDt2LMaNGwcfHx8YGRkJHTJRkerqaty8eZMfuHLz5k3cvHkTra2tMDc3R3BwsFRCn62tLYD7x0BeXh7S09ORlJSEpKQkJCYm8gNfHBwcEBgYyM9cHBgYiDFjxlA7qiRtbW3Iycnhk00kn46el5fHJ3LZ29tj5MiRXSbW4a7fKAGFaIqOjg4UFRVJJdpwfZM5OTnIzs7m+zYsLCy6JDZy39vY2Aj8TshgwyVCSCZAyJMIYWJiAmdnZ9ja2sLGxgZ2dnaws7ODjY0NvwwfPpz/nu45EEI4VVVVqKioQGVlJSorK1FRUYG4uDh0dHSgvb0d1dXVKCsr45fuEko7J5ZyCaXOzs6U0D+EtLe3488//0RKSorUUlRUBACwtbXF2LFj4eXlhVGjRmHUqFEYPXo0PXWG9FlFRQVu377NL1lZWbh16xb+/PNPdHR0wNDQEL6+vnBzc8PFixdRWVkJNzc3rFq1CsuXL4e/v7/Qb0EjXbx4EdOnT8edO3cwcuRIocMRTF1dXZfEE65PpaKiAgCgp6cHNzc3jBgxgr8X3vm+OD1VnmiKpqamLn0o3FNXuXFfXEKWs7Oz1GS9kpP30r0DQggZ2hhjeOmll/DVV19h9+7d2LBhg9AhEUKIxqBkLTKklJSUwNPTEx988AFeeOEFocNROxUVFVIX9wUFBfxNbi5RpKamRupvbG1tpW4ocUld3A1sW1tb2NrawtramgY5E/L/RCIRKisrUVVVxX8tLy/nb9xyg0cKCwtRVlaGtrY2/m8NDAy6JE46ODhIzarp5OREN+hUhJK1CBlaKFlLvXz33Xd4/vnnMXv2bOzfvx9WVlZCh0QGiaioKMyZMwdHjhzBkiVLhA6nX9ra2vgnKd24cQMpKSlIT09Hc3MzdHR0MHLkSIwbNw5+fn7w9vbmb8qampoKHTqRU3l5ObKysnD79m1kZmbys1kXFxcDuP80GW4fBwYGIigoCN7e3tDS0lKonpqaGqkErqSkJNy6dQtisRhmZmbw8/OTSuAKDAykG/pKxiVyZWVlISsrC7m5uVIT61RVVfGvNTMzk7rmc3FxgZOTE39tyCUXECKk5uZmlJaWoqCgAFVVVSgqKpKaOCovLw8lJSV8kqK+vj5cXFykBtZJDiiihCyiCmKxGOXl5XzyFtcPxyVclJeXo6Kigv+5vb1d6u9NTU1ha2srldDF9Y9bWFjA0tKyy2JmZibQuyWEyKOtrQ01NTX8Ultby38vmYhVVlbG/1xZWSmV+AncP19rbGzkk7IMDAxgaWkJe3t7uLq6ws/PDxMmTEBISAg9JYnIraqqCjdv3kRqaioyMzP5xBouiUtXVxcjRoyAl5cXRo8eDU9PT6mnsVFfwNAlEolQXFzMD+bPycmRSs7i7vcbGRnxCYBeXl4YN24cxo0bBy8vL+jq6vLlJSUl4fDhwzhy5Ajy8vIwevRoLF++HMuXL4ePj49Qb1Pj/Pvf/8ZPP/2EnJwcoUMZtOrq6vgErjt37vBP3uXGt0hOTszdP+euOd3c3GBvbw8HBwf+Hjs9aZcIraamBiUlJVKTj3CTbXP/27L6CLnkRHd3d6mkLOq/JYQQIotIJMJTTz2FgwcP4uDBg1i8eLHQIRFCiEahZC0y5LzyyivYv38/srOzadY5FWhpaeGf5tM5qaS8vJy/yS3rZraxsTGsra35BC4bGxtYW1t3SeyysLCAhYUFzM3NafZoMug1NzejtraWXzonYEnewJX8XWcWFhawt7fnZ820s7PrkgTp4OBAA88FRslahAwtlKylfhITE7F06VKIxWIcOXIEwcHBQodEBomnn34aJ0+eRHp6usYlNIhEIty9e5efeTstLQ0pKSnIzc2VemqP5BNJvLy84OHhARcXF/4JTGRgiEQilJSUIC8vD3fv3uUTdbjZguvr6wEAhoaG8Pb2xtixY+Hn58cnaDk5OakstsbGRqSkpODmzZu4ceMGbty4gdTUVDQ3N0NPTw9jxozh4/H19cXYsWPh7u6ucKIYkU/nWXMlE17y8/NRUlLCP4EIuD+rtJ2dHX/92HkAkp2dHd8HQ9eVRF4tLS1SfRylpaV8vyDXD1heXo7i4mLU1dVJ/a2xsTEcHBzg7e0NDw+PLk+Oc3BwoPaDDHq1tbVd+vfKysq6PE2nvLwcNTU1aGho6FKGjo5Ot4lc3CL5ewsLC5iZmWHYsGEwNTWlexyE9KKjowMNDQ2oqalBY2Mj/71k0lXnRfJ3TU1NXcrU09ODpaVlt0/Z4+5lSSZu6uvro7W1FUVFRcjOzuaX9PR0ZGRkSD1V1dLSEh4eHjKXESNG0Ocj6VVjYyM/ycft27fx559/8teV1dXV/OusrKz4czB3d3d+8gdnZ2f+/pO+vr6A74T0VVVVFZ98zl0r5ubm8teLRUVF/H16fX19uLq68kl9kslZLi4uCrc56enpOHDgAA4cOIDi4mL4+Phg3bp1eOKJJ6iPqZ9CQkIQEBCAnTt3Ch2K2iovL+cTXLjjgvu5oKAA5eXlUk+7NDEx4SdIdXBw4PtRuIlxuEmKra2tKbGLyK2+vl5qQhBuYmzJ8VXceKuWlhb+7/T09DB8+HD+81qyD4VbZ25uLuA7I4QQoo5aW1uxatUqRERE4Pjx45gzZ47QIRFCiMahZC0y5FRUVGDkyJF49dVXsXXrVqHDGdLq6+tRVlYmlaDC3cCuqKjgf5b8nSzcTWp5l2HDhsHCwgImJiYwNjammeNIt9ra2tDU1ITa2lrcu3cPjY2NUolX3E3bzuskF8nBcRxjY+MuT5aTTE7kbuJKJitKzlBHBi9K1iJkaKFkLfVUWVmJNWvW4Pz58/joo4/oibsEwP1ZV/38/DBx4kQcO3ZsSAx+6/zUHslZZ/Pz8/mBgkZGRvxgLWdnZ7i5ucHFxYUfvMWd0+ro6Aj8jga/1tZWVFRU8IkM3BOrJZ8sU1JSws/Cb2BgIPUUGcmvfRkwpQoikQi3b9/GjRs3+Bnd09PTkZeXBwAYNmwYfHx8MG7cOPj4+PCJXA4ODgJHPjRUV1ejtLSUn31XctBHSUkJn1jTecIQHR0dWFtbSy2Sg5El5QkSEAAAIABJREFUr2HNzc1hbm4OMzMzejqMGmtra0N9fT3q6ur4vg7JPjnJhRtQVFVV1WUAu4GBgVQCYOdBbSYmJkhOTsaNGzdw6dIl5Ofnw9DQEMHBwZgxYwamT5+OkJAQmumZaKyOjg65E0Q6r6+tre22XEtLSz5xy9TUFKamprCwsOC/HzZsGMzMzPi+cW6dubk5jIyMYGhoCHNzc+jp6VFbTgTH9ck3NTWhra2N72NvaGhAXV0d6uvr0dDQgIaGBr6/vr6+nk/Eamxs5JMjGxoapAa4SuKebNVTcmR3v1NFkmR7ezsKCgqkErm4JTMzE/fu3QNwf9IGDw8P+Pr6dknkcnd3h7a2ttJjI5qlsbEReXl5fIICl7zDrSstLZVKVOCSEbnzOcmn9zo7O8Pa2hpWVlawtramxC4Vq6ur48/Dy8rKZA7u5yZNlbw3OWzYMH4gPzeYn/vq7u4OBwcHlbQdYrEYFy5cwI8//ojw8HB0dHRgwYIFWL9+PebMmUP9SAqqra2FjY0NDh8+TE86UCGRSISysjK+H6XzJCRcP0pJSQn/2cwxNDTk+0q4CYol+08kF24CBjMzM7r+VWONjY2or69HfX09P2kvt3Q3YW9VVVWXSa3NzMz4z1YuWZr7zJX83NW0SeYIIYQIr6mpCYsWLcK1a9fw22+/YfLkyUKHRAghGomStciQtG3bNrz77rvIzMyEm5ub0OEQOYnFYlRWVspMiOFuWnODSmQtko+178zMzAzGxsYwNjaGpaUl/72ZmRlMTU1hbGwMExMTWFhYwNjYGIaGhjAxMYG+vj7/ddiwYdDT0+v2K1G+uro6iMXibr/W1taCMYba2lr+56amJty7dw8NDQ2or6/HvXv3cO/ePdTU1PDfczd8uUGSnWlra/PJf4okC5qbm8PGxoY6XTUYJWsRMrRQspb6Yoxh+/bt+Ne//oWVK1di165dNPMlwfnz5zF79mxs27YNr7zyitDhCKqtrQ25ubkoLCxEQUEB8vLy+O+5pKLGxkb+9VpaWnzSlq2tLRwcHKR+trS05J+MLPlVnc+LGxoaulyD1tXVoaamhn+CRmlpKT8ZSWlpKf9ULI6trS2f+MYlwXGLm5sbHB0d1XawZX19PbKysvgnBXBfs7OzAdx/cvDIkSPh4+ODwMBA+Pr6ws/PD8OHDxc48qGptbUV5eXlMgeTyJukw+GOd27QkeT33LWxmZkZDA0N+f4WbrA018cybNgw6Ovr09PUe9DS0oLm5mbU19fziVbNzc1oaWlBXV0d2tra+EHqXBIWN4CIa6skf5Y1kF0yaU9ycFnnxD3JgWiKPpWtuLgYV65cQVRUFC5fvoyMjAzo6urC398foaGhmDJlCqZNm0YzQxOC+9cwXB+4ZKJK5ycGcQMGuddx67njvaGhAW1tbT3WZWhoCCMjI5iZmUFPTw/m5ub8OlNTU+jr68Pc3BwGBgYwNjbu0m6bmZlBR0eH/xttbW3+ODY1NYWuri7f5gP3PzvI4MR9tohEIv5clus3b21txb179/j+d+D+gNX29nb+c4r7f6urq+Nf39DQgPb2dtTW1vKJWdzf1dTU9BqTubm5VHIid64hua5zsqKpqalUUqOlpaXaXYvU1NRInVNzy+3bt/mn9unr68PZ2blLEpePjw9Gjx5NE8IRubS1taG4uFgqSUFy8oeSkhKUlJSgvLy8yz20YcOG8Ylb3ML9bGVlJXWNMGzYMJiYmPDHLPdZosnq6urQ2NjIL7W1tfz39fX1qK6uRnV1NaqqqqS+ct9zk+pwZA3u7/wkZQcHB1hbWwv0jv+noaEBR44cwd69exEbGwtHR0esXbsWTzzxBLy8vIQOTy0cO3YMK1asQHl5OT0Ne5BoaGjgJ8DpvHATFHdeL+s8XF9fn28buT7Tzv0p3EQ5XB+KhYUFPz6FG6si2a9CZOutD+XevXtobm7m+3tl9afU19fzfSqd22Xg/sRnkv0nXNKerEmRuCexqtt5KSGEEM1QW1uLv/zlL8jOzsaZM2cQEBAgdEiEEKKxKFmLDEltbW3w8/NDYGAgDh48KHQ4ZIC0trbyyTpcYk5TU5PMpJ2eEnq4GR17SuaRhbsR3fkrAL5jDQD/O465uTk/QI+b6RSA1E3uzuS9wW1hYdHrbOzc++3NvXv3ZD5FirsxC4BPpOJwN2GB/82YyZG8Mct1dnFfuWQseXEDBHpKxJPnd1zCHs0wS7qzfv16XE5MxsKnnxM6FELIAMjOSMWJ776iZC01FhMTg1WrVsHS0hLHjh2Dr6+v0CERgX3yySd47bXXEBkZiRkzZggdzqBWW1uL4uJiVFZWorS0FOXl5V2SlLiBCTU1NZDV/WRgYMAPRDA1NeWvd7hBBtw1k4WFBT9hAkfWpBg6OjpdztU7X4NwJK9fOjo6+IGkTU1N/DWM5LUfN6CUW2Rdj3CDlGUlrQ0fPhx2dnb8TXgnJ6cheSO+srKSf/pWWloa0tLSkJ6ezg/wdXJy4hO3fH19MXr0aHh6etLMsYNQS0sLqqqq+IEqnQesyBrMwiU1cslB3MDinnCJAJLJAcD/EgkA6faA6+eQbA+4MiT1NoBJS0urx2QxbsB5dyQHtXMk2yPJPhDJ9ojr95Ac+C45uJ0b8N4bbvIgyUHskoO9LC0tuwz+khwcxj1BZKCVlJTg8uXLMpO3pkyZggcffBCzZ8+mRD5C+ok7v+Ha487Jn/1ZB0CuhBtZuHNArg0DpPvGO/eH9/fnziT76+WhyOsl+8H7+/rOn0H9/Zn7HOLOiQEo3P/O4c7nZSVgS67T09Prkqjd0zoDAwOYmppSv3w3ampqZD6RKz09HSUlJQDunxu4uLh0SeTy8PCAt7c3DewmCmOMoaysrNvkosrKyi6/4+65dodLPOCSt/T09PjPBu78n/uMkDxfl/yskPUzR/LzRZJk+9dZ53uk3M/cZyD3t5Ln71wbyiVNc8lYPb1vU1PTLslt3X3PPe1MXfsU8vPzcejQIezatQu5ubmYNWsWNm7ciEWLFlFSaQ/++te/4ubNm4iLixM6FNIP9fX1Un0pnftPampquv0dNzlxd08NlSR5DibZJ2JmZgbGGPT09Pg2VLJtlByLIutct7dJimX1v0jqbXyN5LgSWesk22Sure2ur0WyD0VWubKYmJjwTx2WTJzr3H8ia6Iic3NzWFtb071CQgghaqGsrAxhYWGoqalBZGQkRo0aJXRIhBCi0ShZiwxZp0+fxoIFCxAREYHZs2cLHQ5RY50Tibr72t3TnwDpjqnON0slb25LdkC1t7dLzWbP6W3AEKdzclR3OiePdUfWwEig680PyQQxySS1zn/PJVgB6PZpZd0lwHFfJcsgZCBs3boV77//vtBhEEIGkK2dHYqLiuhGshorLCzEsmXLkJaWht27d2P58uVCh0QExBjD8uXLcfbsWZw5cwYhISFCh6QxJBM1On/lBh50TpLirqVqamq6JF1xT9GV1N21kKyBWpKJGtzAXe5agxsExg0KMzMz45PGOj8lTPJ7uhnfdwUFBUhPT5dK5MrMzOT3p6mpKTw9PeHp6YmRI0fy348YMQIODg70NGs1xg0Qr62tRWtrK/90jba2NtTW1nabCNDbAB3JPhNZg5l6GzTfW99KbwP+Acjsk+ASoLpLJuPaHeB/bRfXNkkOtpJ86g3XTknOsN3bxDzqorS0FJcuXcLly5dx5coVJCcnQ1tbGwEBAXzyVmhoKD2Vh5BBqqckIK5tlmy7e3piE9C1P7y/P0vqaaC+Ml4vbx+7PK/v/Lv+/tzTE9AkP6O4tlZWUp0mffZomu4SubKzs5GTk8NfU1laWko9icvX1xceHh7w8vKiJDmidJ2fMMU9IZJbuD4CkUjEfzZwnyncZ4Tk5AiS91G7m7AFkH1dwOmuHes8yUPnpFTJtpMrQ/JeJrdwg/q5n4fSE8W6IxaLERMTgx07duC3337DiBEjsHHjRjz55JOwsbEROrxBZ+TIkVi9ejXeeecdoUMhgwD3hNLGxkY0NTVJ9atwk720trZKPUEKAC5duoTk5GQsWrRI5tgUWX0tnM7n5rL0lowlOfGOLLLGm8iTTMadp0qe50o+cUxyIiADAwOYmZnxZXFPDJaVzEsIIYRoory8PMyePRva2tqIjIyEi4uL0CERQojGo2QtMqQtWbIEiYmJSEtLo4tvMmT985//RFRUFBITE4UOhRBC+i03Nxfz589HeXk5zp07hzFjxggdEiFEDXR0dGDr1q346KOPsHHjRnz55ZdDdqAEuX+DetmyZTh//jx+/fVXTJ8+XeiQCBmSGGMoLCzEnTt3cOfOHdy9e1fqe26wtba2NoYPHw4nJyc4OjrCxcUFjo6OcHZ25tfZ2NjAxsaGBhEToubK/o+9u4+r+f7/B/7oUpSSi5LLLlXndIFYLCIqoaTRzCaGzfgYPuwzzHxYu2Rjvpjtg9klMiIqS2lYam2o0HVZuk6KdH15Or8/9un89GGGVa8uHvfb7X07R51z3o+326bT+7wfr2dhISIiIh5Z3nJ1df3LIh0RERH98btvXl6eYgpXUlKSosiVlZUFmUwGoHmR62EbEdHflZqaij179uDbb79FfX09XnzxRbz++usYPny46Gjtwo0bN2BmZoaIiAiMHz9edBzqgGQyGVavXo3PPvsMmzZtwjvvvNOq+zt48CAWLVrUbDIhERERiZeamgoXFxdoa2sjLCwMAwYMEB2JiKhLYFmLurRbt25BIpFg4cKF2L59u+g4REKsWrUKsbGxuHjxougoRER/S3R0NLy8vKCnp4fAwEAYGhqKjkREHUxAQAAWLlwIMzMzHDt2jP+OdGF1dXWYN28eAgIC8O6772LdunUPTGYiIrFu3bqFmzdvIj8/H7m5ucjNzUVBQQGys7ORn5+PvLy8ZqumKysrK0pbTZu+vn6zPzdNSbv/lov7ELVfhYWFuHDhAi5cuIDz588jNTUVampqeOaZZzBp0iQ4OTlh7NixipW3iYiI6PHU1dUhNzf3oRO5kpKSUF1dDeDRRS5DQ0P+Hk1ET6SiogKHDx/Gnj17cP36dTg4OGDdunXw8PAQHU2ozz//HOvXr8edO3c4WZyeWEVFBebOnYvw8HB89dVXmDt3bqvvc+/evVi/fn2zyYdEREQkVlxcHNzc3DB06FCEhISgT58+oiMREXUZLGtRl3fgwAEsWbIEkZGRGDt2rOg4RG1uyZIlyMzMRFhYmOgoRERPzc/PD4sWLcKkSZPg5+cHbW1t0ZGIqINKTU3F7NmzcevWLRw8eBBTpkwRHYkEkcvl2LlzJ9atWwdHR0fs27cPRkZGomMR0RMoLi5GQUEBiouLUVhYiOLi4mZb09fu3LmD4uJi1NfXP/AaKioqiuKWrq4udHR0oKOjAzU1NfTq1Qvq6urQ1NSElpYW1NTUoKurCzU1NWhpaaFHjx7o1q0bdHR0oK6ujp49e6J79+7Q0NCAtrY2VFRUBPytEHVeTZO3wsPDERkZiaSkJKiqqsLW1hbOzs5wdnbG+PHj0a1bN9FRiYiIOqyGhgZkZ2crJt42TcBtum1aMKFHjx4wNTWFmZlZs23YsGHQ19cXfBRE1N6FhYVhy5YtOH/+POzt7bF+/XrMmDGjS5ZAvby8IJPJEBgYKDoKdTB5eXnw8PBATk4OAgICMG7cuDbZ76effopPP/0Uubm5bbI/IiIierRLly5h6tSpsLW1xalTp9CzZ0/RkYiIuhSWtajLk8vlmDJlCm7duoUrV65AXV1ddCSiNjVv3jxUVFTg5MmToqMQET0xuVwOX19f+Pr6YuXKldixY0eX/LCOiFpWdXU1Xn/9dXz99ddYu3YtPvzwQ/7b0oVduXIFPj4+yMrKwrp167B27Vp0795ddCwiagWVlZUoLS3FvXv3mt023S8pKUFpaSnKyspQX1+PkpIS1NXVobKyEpWVlairq0NJSQnq6+tRUVHxl/tTVlaGjo4OunXrhh49eqBnz55QVVVVFL8AtPp9AFBVVX3gw7mmwtn9moppRB1FQUEBIiMjER4ejrCwMGRmZqJHjx4YMWIExo0bB2dnZzg6OvJ8MBERUQuRy+XIy8trVuJKT09XbFVVVQAAbW3tZgUuc3NzxX1dXV3BR0FE7UlcXBx27NiBw4cPw9DQECtWrMDSpUu7zAIMMpkM/fr1g6+vL1asWCE6DnUgV69ehYeHB3r16oWgoCAYGhq22b7fe+89HDx4EKmpqW22TyIiInq4c+fOwdPTE05OTjh69Cg0NDRERyIi6nJY1iICkJmZCSsrK6xfvx4bN24UHYeoTc2aNQvq6urw8/MTHYWI6IlUVFTAx8cHISEh2Lt3LxYsWCA6EhF1Mt999x2WLl2KMWPGwM/Pjys/d2F1dXXYuXMn3nvvPfTt2xfvvvsu5s6dy6k4RPRIVVVVqK2txb1791BfX4/y8nLF10pLS1FfX4+ysjJUV1ejpqYGZWVlkMlkilsALXa/tWhoaDxQYG2aHna/pilj99PU1HygJNNUWLvfw6aQ6ejoPFCk/t8Le+9/rf8tpN2/76bS3J/lv/91m4p11DHl5+cjKioK4eHhOHPmDLKzs6GpqYmxY8fC2dkZDg4OsLe3b1ZmJCIiopZTUlKCjIwMJCYmIikpCRkZGcjIyEBycrKiyKWrqwtjY2PFJpFIIJVKYWZmBm1tbcFHQESiJCUlYevWrfDz84OBgQH+/e9/4+WXX37g98fO5pdffoGDgwNSUlJgbm4uOg51EAEBAZg3bx4cHBxw7NixZuc82sL69esRFhaG2NjYNt0vERERNRcYGIg5c+Zg1qxZ+Oabbzr9e2ciovaKZS2i//rkk0/w73//G7GxsZBIJKLjELWZadOmoX///vjqq69ERyEiemy5ubnw9PREdnY2jh8/DkdHR9GRiKiTio2NxezZs1FfX4+jR49i7NixoiORQPn5+Xj77bdx8OBBmJiYYOPGjSxtEVGHUFpaisbGxgfuA0Btba3i4tgmTQWy+zUVze7XNFHsfhUVFaivr2/2tYcVx/43BwDcu3cP95+ulsvluHfvXrPHNDY2orS0tNnXmkpuf/ZaDzvGlnB/aaypVNZUBGsqsjVNKbu/FNb0vKYpZ00FsabpZSoqKoqLkZvKYk3ls6biG4tjf19ycjIuXLiA8+fP48KFCygqKoKuri4cHR3h5OSEyZMnw8rKSnRMIiKiLiE/P79Zgaup1JWWloaGhgYAzYtcTSUuY2NjWFhYcAIsUReRlZWFrVu34ssvv4SxsTHef/99zJo1C0pKSqKjtYp33nkHBw4cQE5Ojugo1EHs3LkTa9aswaJFi/D5558LWYxk5cqViIuLw8WLF9t830RERPSHgwcPYuHChViyZAl27979wOJ3RETUdljWIvqvhoYGjBkzBt26dUNERAQvtqMuY+LEiZBKpdizZ4/oKEREjyU6OhpeXl7Q09NDYGAgDA0NRUciok7uzp078PHxwdmzZ/H+++9j3bp1oiORYOnp6fjggw9w6NAhGBkZ4Z///Cfmz58PLS0t0dGIiOgx3F8eq6+vR0VFheJ795fN/rcEdn9h7X+LZE3lsPLycjQ0NCge21QUa2hoQHl5ebPnNeVoKr3V1NSgurr6iY5FR0cHGhoa0NTUhLa2NjQ0NKClpQUtLS1oaGhAW1sbmpqa0NDQgI6ODnr06AFNTU307NkTurq66NmzZ7OtV69eT/eX2sHJ5XIkJibi3LlzOH/+PH7++WeUlJSgf//+mDRpEiZPnozJkydj6NChoqMSERF1KfX19cjJyWlW4GoqdWVmZirK/7q6us0KXPeXuv53EiwRdXxZWVn48MMPceDAAYwYMQKbNm2Ch4eH6FgtzsHBAZaWlvjyyy9FR6F2rqGhAatWrcIXX3yBTZs24Z133hGWZfHixcjLy8OZM2eEZSAiIurK9uzZg5UrV+LNN9/Eli1bRMchIuryWNYiuk9CQgJGjRqFf//733j77bdFxyFqE/b29hg/fjy2bdsmOgoR0V/y8/PDokWLMGnSJPj5+SlWmyciam1yuRwff/wx3n77bcyYMQNff/21YjoGdV3p6en45JNPcPDgQXTr1g2LFy/G8uXLYWRkJDoaERF1YE0FsvuniDWVwZrKZE3Tz0pKShSFsNLSUtTW1qKiogLl5eWora1FWVkZKisrUVtbi3v37qG6uhqVlZUPTCK7n7a2drMCl46ODnR0dBQFr0dtvXv3FrJyd0trbGxEXFwcIiMjERUVhTNnzqC8vBzGxsZwdnaGg4MDnJ2dMWDAANFRiYiIuqy6ujrk5uY+UOLKyMjAzZs3IZfLoaqqiiFDhjxQ4JJKpRg6dCgX7yTq4K5evYoNGzYgJCQEkydPxkcffYTRo0eLjtUiysrK0LdvX3z//feYM2eO6DjUjpWXl+OFF17Azz//jEOHDsHT01NonhdeeAH19fU4fvy40BxERERd0datW/HWW29h69atePPNN0XHISIisKxF9IBPP/0U69atQ1RUFJ555hnRcYhanY2NDWbOnIl3331XdBQioj8ll8vh6+sLX19frFy5Ejt27OCYbiIS4sKFC5g7dy60tbXh7+8Pa2tr0ZGoHbhz5w7279+Pzz//HPn5+XBzc8PChQvh4eEBdXV10fGIiIge6t69eygvL2+2lZSUoKysrNnXSktLUVpaqvj+/VtdXd0Dr6ulpfVAiatPnz7Q19dHv3790LdvX/Tt27fZnzU0NAT8DTy+hoYGXLt2DeHh4QgPD0dERATq6uoU5S1nZ2e4urqyzE9ERNRO1NTU4Pfff29W4MrIyEBCQgJu3boFAFBXV8egQYOaFbiaCl2GhoY8/0zUgURHR2P9+vW4ePEi5s2bh23btkFPT090rL/l5MmTmDVrFm7duoV+/fqJjkPt1M2bN+Hu7o6SkhIEBgZi1KhRoiPBw8MDurq6+O6770RHISIi6jLkcjnWrl2LHTt24IsvvsCrr74qOhIREf0Xy1pE/6OxsREuLi7Iz89HbGwsunfvLjoSUasyNTXF4sWL8dZbb4mOQkT0UBUVFfDx8UFISAj27t2LBQsWiI5ERF1cXl4e5syZg9jYWHz22WdYtGiR6EjUTjQ0NODUqVP48ssvcfbsWfTu3Rvz5s3DokWLYGVlJToeERFRi6usrMTdu3cfKHH971ZcXIzCwkIUFxejqKjogZJXz549oaenh379+ikKXHp6ejAwMED//v0xcOBAxW17OF9bWVmJ6OhoRXkrNjYWKioqsLW1VZS3HB0dWdomIiJqh0pKSpoVuJqmcqWnpyumj3br1g0DBw58oMTVtBFR+3T06FGsWbMGVVVV+OCDD/Daa6912OLl8uXL8dtvv+HKlSuio1A79dtvv8HT0xN6enoIDg7GkCFDREcCAEyaNAnm5ub44osvREchIiLqEmQyGZYuXYpvvvkGBw4cwPz580VHIiKi+7CsRfQQeXl5sLGxwUsvvYRdu3aJjkPUqgYPHozVq1djzZo1oqMQET0gNzcXnp6eyM7OxvHjx+Ho6Cg6EhERgD9KORs3bsTHH3+MefPmYe/eve3iwmFqP/Lz8/H999/jyy+/xI0bNyCRSODt7Y2XXnoJZmZmouMREREJVVZWhlu3bqG4uFixNf25qKhIUe66desWCgsL0djYqHiujo5Os/JW//79MWDAABgYGGDAgAEYMGAABg8e3KZFqdu3b+Pnn39GeHg4wsLCkJmZCU1NTYwdO1ZR3hoxYkSHvVCUiIioq2gqcjUVuJoKXSkpKaisrAQA9OrVCyYmJs3KWxKJBNbW1pyySdQOVFVV4eOPP8ZHH30EqVSKPXv2YOzYsaJjPTEzMzN4e3vjww8/FB2F2iF/f3/Mnz8fjo6OOHr0KLS1tUVHUrC3t8f48eOxbds20VGIiIg6vbq6Ovj4+ODUqVM4cuQIZs6cKToSERH9D5a1iP7EoUOH4OPjg9OnT2Pq1Kmi4xC1mkGDBuGNN97A6tWrRUchImomOjoaXl5e0NPTQ2BgIAwNDUVHIiJ6QGBgIBYsWABjY2McO3aMqyvTA+RyOS5evAg/Pz/4+/vjzp07GDNmDObMmQNvb28MGDBAdEQiIqJ2r6SkBPn5+SgoKPjT2+zsbDQ0NCieo6urq7iAuqnI1fRnU1PTVr2YOi0tDT/99BN++uknXLhwAXfu3IGenh4mTZoEZ2dnuLi4tJtVz4mIiOivNTY2Ijs7G+np6YotLS0N6enpyMzMRH19PQBAX18fw4YNg5mZmWIzNzeHmZkZunXrJvgoiLqWxMREvP7664iIiMCrr76KDz/8EL179xYd67FkZmbCyMgI586dg5OTk+g41M7s3LkTa9aswSuvvII9e/ZAVVVVdKRmrKysMGvWLPj6+oqOQkRE1KnV1tZizpw5+OmnnxAQEABnZ2fRkYiI6CFY1iJ6hLlz5yIiIgLXr19Hnz59RMchahUsaxFRe+Tn54dFixZh0qRJ8PPza1crwhER/a/09HTMnj0bWVlZ+Prrr+Hl5SU6ErVTMpkM0dHR+P777/HDDz+gtLRUMXFrzpw5sLS0FB2RiIiow5LJZCgsLEReXh6ysrKQnZ2NrKwsZGZmKu6XlJQoHt+nTx8MHToUQ4YMgaGhIUxMTBQXVQ8dOhQqKiotkquxsRFxcXGK8lZkZCSqqqpgbm4OV1dXuLq6YuLEidDS0mqR/REREVHbamhoQHZ2tmIK1/2TubKysiCTyQAABgYGkEqliklcTfeNjIygpKQk+CiIOq+goCAsX74cdXV12L9/Pzw8PERH+kv79u3D6tWrcffuXRY9SaGurg5LlizBwYMH8emnn2LlypWiIz2UkZERli1bhrVr14qOQkRE1GlVVFRg5syZiI2NxY8//ogxY8aIjkRERH+CZS2iRygpKYGNjQ1Gjx6N48eP80Q5dUqDBw/G6tWrsWbNGtFbNDMRAAAgAElEQVRRiIggl8vh6+sLX19frFy5Ejt27ICysrLoWEREf6mmpgYrVqzAgQMHsGLFCmzfvr3drWhJ7UtNTQ3Cw8MREBCAoKAgFBUVQSKRwMvLCx4eHhg1alSLXSROREREfygvL1cUuO4vdGVlZeHGjRsoLi4GAKirq8PIyOiByRhmZmYYPHjw3zpP3NDQgF9//RXBwcEIDw9HXFwclJSUMHz4cDg7O8PZ2RkTJkyAmppaSx02ERERCVJXV4fc3FxFeaupzHX9+nXcvn0bANCtWzeYmJg8UOQyNzdnmZuohZSWlmLt2rXYt28ffHx88Pnnn7fr/7+8vb1RWVmJH3/8UXQUaidKSkowa9YsXL58GYcPH27XpUM9PT1s3rwZy5cvFx2FiIioU7p79y6mTZuGrKwshIWFwdraWnQkIiJ6BJa1iP5CREQEJk+ejI8//piTh6hTYlmLiNqLiooK+Pj4ICQkBHv37sWCBQtERyIiemLfffcdli1bhtGjR+PIkSPo37+/6EjUAchkMkRGRuLkyZM4efIkMjMz0adPHzg7O2PKlClwc3ODgYGB6JhERESdXklJCdLT05Geno60tDTF/fT0dJSWlgIANDQ0YGpqimHDhsHS0hI2NjaQSqUYNmzYUxWsioqKcOHCBYSHhyMkJAQ5OTnQ0tLCxIkT4eHhAVdXVxgaGrbwkRIREZFoJSUlzaZwNd1PS0tDQ0MDAEBXV7fZFK6m+4aGhlzkjOgp+Pv7Y+nSpdDW1sa3336L8ePHi470AJlMBj09PWzcuJHXpxAAICMjA9OnT0d5eTkCAwMxcuRI0ZEeSVNTE3v27MHLL78sOgoREVGnc+vWLbi6uqK8vBxnz56Fqamp6EhERPQXWNYiegwfffQRNm/ejPPnz8PBwUF0HKIWNWTIEKxatQpvvPGG6ChE1IXl5ubC09MT2dnZOH78OBwdHUVHIiJ6alevXsXs2bNRU1ODH374gb9D0BPLyMhAeHi44qLtiooKGBsbw9nZGe7u7nB1dUW3bt1ExyQiIupSbt++rShx3bhxA2lpaUhISMCNGzfQ0NAAdXV1WFpaQiqVwtraGlZWVrCysnriotX97wNCQ0NRVlameB/g7OwMV1dX6OjotM5BEhERkXD19fXIycl5aJGroKAAwB9TQAcNGvRAkcvGxgba2tqCj4CofSssLMQrr7yCM2fO4I033sC7774LdXV10bEUrly5gtGjR+P69euckkCIjo7GzJkzYWBggODgYAwaNEh0pEeSy+VQUVHBDz/8AG9vb9FxiIiIOpXMzEy4uLhATU0NYWFh7f59ARER/YFlLaLHIJfL4eXlhdjYWMTGxqJv376iIxG1GENDQyxfvhxvvvmm6ChE1EVFR0fDy8sLenp6CAwM5IrhRNQplJWVYfHixTh58iTef/99rF27FkpKSqJjUQdUXV2NqKgoxUXbsbGx6N69O5599lnFRdt2dnaiYxIREXVZtbW1SEpKQkJCAhISEhAfH4/ExERkZ2cDALS1tSGVSmFlZYXhw4dj1KhRGD58+GNdENrQ0IBr164hKCgIwcHBiIuLg5KSEoYPH654HzBhwoSnmuhFREREHU9xcTFSUlKQmpqKtLQ0pKamIiUlBRkZGaivrwcADBw4EObm5hg2bBjMzc1haWkJc3NzDB06lOemiP5LLpfj888/x9q1a2FjYwN/f38MHDhQdCwAwJYtW7Bjxw7cunWL/892cUePHsWCBQswdepUHDx4ED169BAd6S9VVlZCS0sLp0+fxrRp00THISIi6jSSk5Ph4uKC/v37IyQkBP369RMdiYiIHhPLWkSPqaSkBCNHjoREIkFQUBCUlZVFRyJqEebm5vDx8cHGjRtFRyGiLsjPzw+LFy+Gk5MT/Pz8uOonEXUqcrkcu3btwptvvompU6fi22+/Ra9evUTHog4uKysLoaGhCA0NxU8//YTS0lIYGxvDxcUFEyZMwIQJEzBgwADRMYmIiLq80tLSZgWuhIQEXL16FaWlpVBXV4etrS1Gjx6N0aNHY9SoUbC0tISKisojX/P27dsIDw/H2bNncfbsWeTl5aF3796YPHkyXF1d4eLigqFDh7bRERIREVF70dDQgIyMDKSmpjbbUlJSUFRUBADo0aMHLCwsYG5uDolEAgsLC1hYWGDYsGHtaqoQUVtKSUmBl5cXSktL4e/vj2effVZ0JLi4uKBfv344fPiw6CgkiFwux8cff4y33noLK1aswI4dOzrM9Um3b9+Gvr4+Lly4gAkTJoiOQ0RE1CnExMTAzc1Ncd0yr6siIupYWNYiegKXLl3C+PHj4evri/Xr14uOQ9QibG1tMWPGDLz33nuioxBRFyKXy+Hr6wtfX1+sXLmyQ33QQET0pCIiIvDCCy9AS0sLx44dg62trehI1Ek0NDQgOjoaoaGhOHfuHK5cuYL6+nqYmprC0dFRUd7iRdtERETtR35+PmJiYhAVFYXIyEjExcWhqqoKWlpasLW1hZ2dnWKTSCSPXE0/IyNDMX0zNDQUZWVlMDY2Vkzdmjp1KrS0tNrw6IiIiKi9uXfvHn7//XdkZGQgMTERSUlJSExMRGpqKmQyGVRVVTFkyBAYGxtDIpFAKpXC2NgYNjY20NPTEx2fqNWVl5djwYIFOH36ND777DO8+uqrwrLU1tZCV1cXu3fvxuLFi4XlIHFqa2vxyiuv4MiRI/i///s/LF++XHSkJ3Lz5k0YGxvj8uXLGDVqlOg4REREHV5ERAQ8PDwwbtw4+Pv7o3v37qIjERHRE2JZi+gJffrpp1i3bh3CwsLg5OQkOg7R32Zvbw9HR0d88sknoqMQURdRUVEBHx8fhISEYO/evViwYIHoSEREra6oqAgvvvgiIiMjsWvXLqEf+lPnVVVVhdjYWERFRSE8PByRkZGoqamBgYEBxo0bB2dnZzg4OPzlhd9ERETUdhoaGpCamoqYmBjFduXKFdTW1kJPTw/PPPOM4uf4yJEj//RneG1tLaKionDmzBmcOXMG8fHx6NGjByZOnAg3Nze4ubnBzMysjY+OiIiI2qv6+nrk5OQ0K3AlJSUhJSUFlZWVAABdXd1mBa6m+0ZGRjyvQJ1K0ySjDRs24JVXXsHu3buFTJw7f/48Jk2ahIyMDBgZGbX5/kmsu3fv4rnnnkNsbCyOHDmCadOmiY70xBISEmBtbY2kpCRYWlqKjkNERNShnT59Gt7e3pgxYwa+//57qKmpiY5ERERPgWUtoickl8sxZ84cnDt3DpcuXYKxsbHoSER/y8SJE2FtbY3du3eLjkJEXUBubi48PT2RnZ2N48ePw9HRUXQkIqI2I5PJ8N577+G9997DSy+9hP/85z/o0aOH6FjUiTU0NODatWuK4tbFixdRWloKfX19ODo6wsHBAePGjXvkhd9ERETU9qqrqxEXF4fIyEj8/PPPiIyMRFlZGfT09ODo6AhHR0dMnDgRVlZWf/ozvLCwEBEREQgKCkJwcDBKSkqaTd2aMmUKtLW12/jIiIiIqCPIz89HUlLSA9O4CgoKAADdunWDiYkJpFJpszKXVCqFhoaG4PRET+/EiRNYsGABRowYAX9//zafLrdx40YcOXIEN27caNP9kng3btyAu7s76urqEBwcDIlEIjrSU/ntt98wZswYZGdnY/DgwaLjEBERdVhHjhzB/PnzMXfuXBw4cACqqqqiIxER0VNiWYvoKVRXV2PChAkoLy/Hr7/+Ch0dHdGRiJ6am5sbBg8ejP3794uOQkSdXHR0NLy8vKCnp4fAwEAYGhqKjkREJERwcDDmz5+PoUOHwt/fHyYmJqIjURfRVN6KjIxUTN8qKSmBtrY2rK2tMW7cODg4OODZZ59Fnz59RMclIiKi/5LJZIiNjUVERAQuXLiAyMhI3Lt3D3369MH48eMxceJEODk5wcbG5k+ff/XqVYSHhyMoKAjR0dFQVlaGvb09PDw8/nJqFxERERHwx+T45ORkpKSkICUlBUlJSUhNTUVWVhbkcjnU1dVhamoKS0tLmJubQyKRwMLCApaWllywiDqMhIQEeHp6QkVFBaGhoW064Wrs2LGwsbHB3r1722yfJF5UVBRmzpwJExMTnDp1Cvr6+qIjPbVz585h8uTJuHPnDnr37i06DhERUYe0b98+LFu2DMuXL8fOnTt5zpaIqINjWYvoKeXn5+OZZ56BtbU1goODoaKiIjoS0VPx8vKCpqYmDh48KDoKEXVifn5+WLx4MZycnODn58fVu4moy8vOzoa3tzdSUlJw4MABzJ49W3Qk6oIaGhoQFxeH6Oho/Prrr/j1119x8+ZNKCsrw8LCAvb29hg7dizGjBkDiUTC33uJiIjaicbGRiQnJyvK1+fOncOdO3egp6eHKVOmwMPDA25ubujZs+dDn19UVIQLFy4oylsFBQXQ19eHq6srPDw84OLigl69erXxUREREVFHVVdXh/T09AemcSUnJ6OqqgoAYGBg0GwSl0Qiga2t7Z++XyESqbCwENOmTUN+fj5CQkIwfPjwVt9neXk5evfujUOHDuH5559v9f1R+/DNN9/gtddeg4eHB7777rsOX2wNCgrCjBkzUFNTg27duomOQ0RE1OHs2rUL//znP7F27Vps2bJFdBwiImoBLGsR/Q1XrlyBo6MjVqxYga1bt4qOQ/RUFixYgJKSEgQGBoqOQkSdkFwuh6+vL3x9fbFy5Urs2LEDysrKomMREbULtbW1WLt2LXbv3o0VK1Zg27ZtUFNTEx2LurjS0lJcvnwZkZGRiImJQVRUFEpKSqClpQVbW1vY2dlh3LhxcHR07NCrvBIREXUmjY2NiImJQXBwME6fPo3Y2FhoaGhg8uTJmD59OqZPn47Bgwf/6XPj4uIQHh6O8PBwXLhwAXK5HMOHD4e7uzs8PDw4dYuIiIieSkNDA27evImEhAQkJycjMTERycnJSE5ORk1NDZSUlDB06FBYWlrCysoKlpaWkEqlsLS0ZImLhCsrK8PMmTNx9epVhIaGYvTo0a26v8DAQMycOROFhYXo169fq+6LxOusn58eOXIE8+bNQ0NDg+goREREHc7WrVvx1ltvYfv27Vi9erXoOERE1EJY1iL6m77//nvMnz8fX375JRYvXiw6DtETW7VqFeLi4hARESE6ChF1MhUVFfDx8UFISAj27t2LBQsWiI5ERNQuHTx4EEuXLsXIkSNx5MgRDBgwQHQkIgWZTIaEhATF5K3ffvsNKSkpkMvlMDExwZgxY/DMM8/Azs4Ow4cPh6ampujIREREXV5BQQFOnz6N06dP4+zZs6isrIStrS2mT58Od3d32Nvb/+mFgMXFxTh79ixCQkIQGhqK27dvw8DAAG5ubnBzc4OrqyunbhEREdHflp+fj6SkJMUUrsTERFy7dg0VFRUAAF1d3WZTuKRSKWxtbVlioTZVU1OD5557DtHR0QgLC2vVwtaqVavw888/4+rVq622D2ofamtrsWjRIhw9ehS7d+/G0qVLRUdqMQcOHMCaNWtQWloqOgoREVGHIZfLsWbNGuzevRv79u3DokWLREciIqIWxLIWUQtoWg0/NDQUjo6OouMQPZHNmzcjICAA169fFx2FiDqR3NxceHp6Ijs7G8ePH+fPRyKiv5CcnIzZs2ejqKgIhw4dgouLi+hIRH+qpKQEv/32G3777Tf8+uuvuHTpEu7evQsVFRVYWFjAzs5OsbHARUREJFZDQwN+/fVXBAcH49SpU0hJSUHfvn0xdepUzJ8/H5MmTXrkCu6JiYkIDg5GeHg4IiIiIJPJMGbMGHh4eMDZ2Rl2dnZteDRERETU2T1Nicva2prTv6nV1NbWwsvLC9HR0Th79ixGjRrVKvuxsrKCm5sbtm3b1iqvT+1DcXExvLy8kJiYiOPHj8PJyUl0pBa1a9cubNmyBfn5+aKjEBERdQgymQyvvvoqDh06hEOHDmH27NmiIxERUQtjWYuoBTQ2NmLOnDmKD6ytra1FRyJ6bJ9++il27NiBnJwc0VGIqJOIjo6Gl5cX9PT0EBgYCENDQ9GRiIg6hPLycrzyyis4fvw4Nm7ciE2bNj3ywlmi9iQ/Px8xMTGK7dKlS7h9+zYAwMDAoFmBa9y4cdDV1RWcmIiIqGtKTEyEv78/fvjhByQnJ2Pw4MHw9vbG3Llz//LC08rKSpw7dw7BwcEIDAzErVu3YGRkBBcXF7i7u8PV1RXdunVroyMhIiKirkIulyMzMxPJyclITExEcnIyEhISkJKSgvLycgDAgAEDIJFImhW5JBIJevfuLTg9dQa1tbXw9PREbGwsLl68CHNz8xZ9/cLCQhgYGOD06dOYOnVqi742tR+JiYlwd3eHsrIygoODYWlpKTpSi/voo4/w1VdfIT09XXQUIiKidq+urg4vvvgiQkJCcOLECUyZMkV0JCIiagUsaxG1kLq6Ori7uyMxMRFRUVG8MJ06jK+++gqrVq1SfJhBRPR3HDlyBIsWLYKTkxP8/Pygra0tOhIRUYezb98+rFixAq6urvj22295UQl1WE9S4HJwcOB/60RERG0sPj4eR48exQ8//ID09HRIpVIsWLAAL730EgYMGPDI5zY2NiIuLg5BQUEIDg5GbGwsunfvjkmTJsHDwwPTp0/HwIED2+hIiIiIqKtqmsSVkZGhmMZ17do1FBUVAfj/k7js7OwUJa4RI0ZwCjg9saqqKri6uiIrKwu//PILBg8e3GKvfeTIEfj4+KCkpARaWlot9rrUfoSHh8Pb2xuWlpY4efIk9PT0REdqFRs3bkRwcDCuXr0qOgoREVG7VllZieeeew6XLl1CcHAwHBwcREciIqJWwrIWUQsqKyvDxIkTUV5ejqioqE57goU6lxMnTmDWrFmoq6uDmpqa6DhE1EHJ5XL4+vrC19cXK1euxI4dOzgNhojob7h8+TK8vb0hl8tx9OhR2Nvbi45E1CIyMzObFbhiYmJw584dKCsrw8zMDLa2torNxsamRS98ISIioj8XHR2N7777Dj/88APKysrg4uKCxYsXw9PT87HOGWZlZSE0NBTh4eEICQlBRUUFJBIJPDw84O7uDgcHBygpKbXBkRAREREBOTk5SEpKQnx8PBISEpCQkICkpCRUV1dDRUUFRkZGsLGxgZWVFaysrGBtbQ1TU1OoqqqKjk7t2J07dzB+/HioqakhKiqqxYpVy5cvx+XLl3Hp0qUWeT1qXw4cOIBly5bBy8sL33zzDbp37y46UqtZvXo1Ll26hKioKNFRiIiI2q179+5h+vTpuHHjBkJDQzF8+HDRkYiIqBWxrEXUwm7fvo1x48ahV69eOHfuHFc+onYvIiICEyZMQEFBAfr37y86DhF1QBUVFfDx8UFISAj27t2LBQsWiI5ERNQpFBcXY968ebhw4QK2bt2KVatWiY5E1CqaClxXr17F9evXce3aNWRlZQEAevfujeHDh8PGxkZR4JJKpejWrZvg1ERERJ1TbW0tAgMD8c033+DMmTPQ19fHokWLsGTJEgwZMuSxXqO6uhpRUVEICgpCQEAAcnJy0K9fP7i5ucHDwwNTpkzhJG4iIiISomkKeFJSkmISV0JCAmpra6GmpgYzMzPFBK6mW4lEwtI5KWRlZWH06NEYN24c/P39W2ThQltbWzg7O2P79u0tkJDai6aFLt99912sXbsWH330Uaf/t2TJkiXIzMxEWFiY6ChERETtUmFhIdzc3FBYWIizZ89CKpWKjkRERK2MZS2iVpCWloZx48Zh1KhROHnyJNTV1UVHIvpT6enpGDZsGGJjYzFixAjRcYiog8nNzYWnpyeys7Nx/PhxODo6io5ERNSpyOVyfPzxx9iwYQNefPFF/Oc//4GmpqboWEStrqysDNevX1dcPBUTE4O4uDhUVVVBVVUVQ4YMgUQigZ2dHezs7DBq1CgYGBiIjk1ERNSpZGVlYf/+/Thw4ACKioowbdo0/POf/8SkSZOe6HUSExMRHByM8PBwXLhwAQBgb28PDw8PeHp6wsLCohXSExERET2e+vp6pKWlNTsHkZSUhJs3b0Iul0NbWxtmZmbNClzPPPMM9PX1RUcnQS5evAhnZ2esXbsW77333t96rdLSUvTp0wfHjh2Dl5dXCyUk0SorKzFv3jyEhIRg//798PHxER2pTbz00kuoqqpCQECA6ChERETtTnZ2NlxcXFBfX4/w8HAYGxuLjkRERG2AZS2iVnLlyhU4OztjwoQJOHbsGAtb1G5VVVVBU1MTwcHBmD59uug4RNSBREdHw8vLC3p6eggMDIShoaHoSEREnda5c+cwd+5c9O7dG/7+/lxli7qkhoYGpKWlKaZvNW35+fkAAH19fdja2sLW1hZWVlawsrKCpaUlunfvLjg5ERFRx1ZfX49Tp07hs88+w88//4wRI0ZgzZo1mDNnDtTU1J7otW7fvo2QkBCcPn0aoaGhKCsrg1Qqhbu7O6ZPn45nn30WKioqrXQkRERERI+vtLQUN27caFbgio+PR2FhIQBAV1dXsZBMU4lrxIgRXGipi9i/fz9ee+01nD59GlOnTn3q1/nxxx/h7u6OW7duQU9PrwUTkigFBQWYMWMGMjIycOLECUyYMEF0pDYzc+ZMaGlp4eDBg6KjEBERtSsZGRlwcXGBhoYGzp49iwEDBoiOREREbYRlLaJWFBMTAxcXF4wZMwYBAQHo1q2b6EhED6Wjo4Nt27bh1VdfFR2FiDqII0eOYNGiRXBycoKfnx+0tbVFRyIi6vRycnIwZ84cJCQkYP/+/ZgzZ47oSETtQnFxMa5evaooccXHxyMpKQm1tbVQUVGBkZERrK2tIZVKYWVlBalUCnNz8ye+uJyIiIj+OOe9fft2+Pv7Q19fH6tXr8bSpUvRo0ePJ34tmUyG6OhoxdStmJgY9OnTB9OmTYOHhwfc3NzQs2fPVjgKIiIioqeXl5eHhIQExMfHIyEhAQkJCUhKSkJ1dTWUlZVhYmKiWEymaRsyZIjo2NQK5s+fjzNnzuDq1atPfcHthg0bcOLECaSkpLRwOhIhPj4e7u7uUFdXR3BwMMzNzUVHalMuLi4wNjbG3r17RUchIiJqNxITE+Hq6oqBAwciJCQEffr0ER2JiIjaEMtaRK0sOjoabm5uGDduHE6cOMHCFrVLlpaWmDt3LjZt2iQ6ChG1c3K5HL6+vvD19cXKlSuxY8cOKCsri45FRNRlNDQ0YOPGjdi6dSuWLFmC3bt3c4ov0UPIZDJkZWUhMTERSUlJzW5ramqgqqqKIUOGQCKRKFa/trOzg4WFBad5EBERPYbs7Gzs2rUL//nPf6CpqYk333wTy5Yt+1uTJFJTU3Hq1CmcOnUKv/76KzQ0NODi4gJPT094eHigb9++LXgERERERC1HJpPh999/R3x8POLj4xXTwG/evAngjylcw4cPh42NTbOp4Dyv17GVl5dj1KhRGDx4MMLCwp7q87Lx48fDwsIC+/fvb4WE1JbCwsLw/PPPw8rKCidPnuz0v7/4+/tjwYIFUFZWRs+ePaGmpoaysjJoamrC1NQUvXv3hrq6OvT19fHBBx9AS0tLdGQiIqJWUV1dDXV19Yd+vnj58mVMnToV1tbWCAwM5MJURERdEMtaRG0gOjoaU6ZMgYuLC44cOcLVu6ndmTx5MoYNG4YvvvhCdBQiEiwnJwfdu3d/6AcIFRUV8PHxQUhICPbu3YsFCxYISEhERAAQEBCAhQsXwszMDMeOHYOhoeFDH1dVVQUNDQ0Wa4n+q66uDsnJyUhKSkJ8fDwSExORkJCAzMxMNDY2onv37ooCl1QqhbW1NSQSCYYMGQIlJSXR8YmIiNqdoqIibN++HXv27EH37t2xdu1avP7669DQ0Phbr1tcXIwff/wRwcHB+PHHH1FdXY0RI0bA3d0dL7zwAiwsLFroCIiIiIhaT1lZGdLT05GYmIiYmBjExMQgLi4OVVVVUFVVxbBhw5otIjNq1CgYGBiIjk1PIDY2Fvb29ti5cyf+8Y9/PNFza2tr0atXL3zxxRd4+eWXWycgtZjPPvsMLi4uD52WtW/fPixfvhzz5s3D3r17u0QRMzIyEuPHj3/kY5SUlKCsrIy8vDzo6+u3UTIiIqK2I5PJYG1tjcGDByMoKKjZe4Dz58/D09MTEyZMwLFjx/72+VIiIuqYWNYiaiNRUVFwc3ODq6srDh8+zAlb1K74+PigtLQUgYGBoqMQkUDV1dUwMzODpqYmLl++DG1tbcX3cnNz4enpiezsbBw/fhyOjo4CkxIREfDH5IHZs2fj1q1bOHjwIKZMmdLs+0VFRbC1tYWXlxf27NkjKCVRx1BXV4f09HTF9K2YmBgkJSXh5s2bkMvlUFdXh6mpqeICKqlUCmNjY0ilUn64QkREhD/KVZ9++il27dqFPn364P3338dLL73UIosGVFdXIzw8HMHBwTh16hQKCwthbGwMd3d3eHt7w8HBgaVqIiIi6jDunwbeVOBKSkpCRkYGgD+mcDWVt+zs7CCVSmFlZcXrC9qxt99+Gzt37kR8fDyMjIwe+3lNZZcbN27AxMSkFRPS3xUWFoYpU6Zg0KBBiImJgZ6eHoA//n9+++238fHHH2PTpk145513xAZtQ42NjejXrx/u3r37p49RVVXF1KlTeR0KERF1Wt999x0WLlwIJSUleHp64ujRo1BRUUFQUBCef/55PPfcc/jmm2843IGIqAtjWYuoDUVGRsLDwwMjR47EyZMnOdaU2o1NmzYhICAA8fHxoqMQkUCbN2/Ghx9+CCUlJUyePBnBwcFQUVFBdHQ0vLy8oKenh8DAwD+d3kJERG2voqICS5YswZEjR7B27Vp8+OGHUFZWhkwmg4uLCyIiItDY2Ijz589jwoQJouMSdTj37t1TTOJKSUlBUlISkpOTkZWVhcbGRqipqcHU1BQSiQTm5uaQSCSwtLSEubk5NDU1RccnIiJqc1Q+ZnsAACAASURBVPn5+di8eTO+/vpr2NjY4JNPPsHkyZNb7PVlMhmio6MRHByMgIAApKWloV+/fnBzc4O3tzdcXV15ITMRERF1SPfu3UNCQoKivNVU5qqpqYGamhrMzMwU5S2JRIIxY8agX79+omMTgJqaGowYMQImJiYIDg5+7Odt2bIFO3fuREFBQSumo7+rvr4eEokEN2/ehLKyMmxtbXHx4kU0NDTgxRdfRFhYGL766iu8+OKLoqO2uZdffhmHDx9GfX39nz7m9OnTmDZtWhumIiIiahv19fUwMTFBXl4eGhsboaKigpdeegkuLi5YuHAhXnnlFezZs6dFFrMiIqKOi2UtojaWmJiIKVOmoH///vjxxx8VK+4QifTtt99i2bJlqKio4C8IRF3U77//DktLS8XJdBUVFaxatQqjR4/GokWL4OTkBD8/v2bTtoiIqP3Yt28fVqxYgXHjxuHw4cP47LPP8NFHH0Emk0FFRQUGBgZISUlheYSohdw/iSsjIwOJiYlISkpCUlISqqurAQAGBgaKCVxN07ikUikMDAwEpyciImp9iYmJWLduHU6fPo05c+Zg+/btGDhwYKvsJzg4GEFBQfjll1/QvXt3TJo0Cd7e3pgxYwZ69erV4vskIiIiait1dXVISEjAtWvXcP36dVy7dg1Xr15FSUkJAMDIyAi2traws7PDyJEjYWdnB319fcGpu6bz589j0qRJCAkJgZub22M9x93dHT169MDRo0dbOR39HTt27MC//vUvNDY2Avj/06JycnKQn5+PU6dOYcyYMYJTihEQEIBZs2bhzy491NfXR15eHlRUVNo4GRERUev7/PPPsWLFCsV7BACK6y7Xr1+PDz74QFQ0IiJqR1jWIhIgMzMTrq6ukMlkCA0NhampqehI1MVFRUVh3LhxyMnJwaBBg0THISIBpk2bhvDw8AdWPpNKpfDw8MAHH3zAMicRUTt36dIlPP/886iurkZRUVGzD0hVVVWxatUqbNu2TWBCos6voaFBUd5KSUlBcnIykpOTkZKSgoqKCgBAv379YGFhgWHDhsHc3BzDhg2DhYUFjI2NoaamJvgIiIiIWtZPP/2E119/HTk5OfjXv/6FDRs2QF1dvVX2lZ2djTNnziAoKAhhYWGQyWQYM2YMvL298dxzz2Hw4MGtsl8iIiKitpadnY1r164pylsxMTHIzMwEAAwaNEhR3GoqcXHhmLbx3HPPISUlBdeuXfvLczyNjY3o168fNm/ejJUrV7ZRQnpSt2/fhomJieK8XhNlZWWMHj0afn5+MDIyEpROvKqqKvTu3Ru1tbUPfE9NTQ0bNmzAO++80/bBiIiIWllNTQ0MDQ1x+/btB0rLSkpK8PX1xb///W9B6YiIqD1hWYtIkMLCQkydOhWFhYU4c+YMrK2tRUeiLqywsBD9+/fHuXPn4OTkJDoOEbWxoKAgzJgx46HfU1FRwdmzZ/lvAxFRB3H9+nXY29ujrq6u2SpewB8nhi9evAgHBwdB6Yi6tqysLKSmpiI5ORmpqalIS0tDamoqcnNzAfxRqjQyMoKFhYWixNVU5OKq2ERE1JFVV1djy5Yt2Lp1KyQSCb799ttWPx9+9+5dnD59GoGBgThz5gwqKysxevRozJ49G7NmzYKxsXGr7p+IiIiorZWWliI+Ph4xMTGKLTk5GXK5XDH9WyKRKEpcUqlUdORO58aNG5BKpdi1axdee+21Rz72+vXrsLW1RWxsLEaMGNFGCelJLV68GN9///0Di10Cf5xv/+abbzB//nwBydqPqVOn4uzZs5DJZM2+rqSkhJs3b2Lo0KGCkhEREbWeTz75BG+99dYDP//ut23bNrzxxhttmIqIiNojlrWIBCotLcXMmTMRGxuLw4cPY/r06aIjURemo6ODbdu24dVXXxUdhYjaUG1tLSwsLJCdnf3ARf3AH2UtLS0tXLlyhZMgiYjaufr6ejg4OODq1asP/fBYVVUVQ4cORUJCAjQ0NAQkJKKHqa2txY0bN5CUlISMjAzFZK74+HiUlZUB+OP3NVNTUxgbG8PY2BgSiQRSqRTm5ubQ0tISfARERESPJy0tDQsXLkRMTAzeeecdvPnmm1BRUWn1/dbU1OCnn37C8ePHcerUKdy9excjR47E7NmzMXv2bJiZmbV6BiIiIiIRysrKcP369WYFrpSUFDQ2NkJXV7dZeYsFrpaxfPlynD59Gunp6Y+crvXFF19g3bp1KCkpaZP3xPTkYmNjMWrUqAemZdyPi14C+/btwz/+8Y9mF6urqKhg8uTJCA0NFZiMiIiodZSVlWHo0KG4d+/eIx/HYjcREQEsaxEJV1dXh2XLluHrr7/Gpk2bOAKchBk5ciRcXV2xZcsW0VGIqA35+vri/fffR0NDw58+Rk1NDUZGRrh8+TK0tbXbMB0RET2JZcuWYf/+/Y9cwUtFRQUbNmzAu+++24bJiOhp5ebmIi0tTTGFKyUlBWlpacjKyoJMJoOysjKGDBkCMzMzmJqawtTUFCYmJjAzM4OxsTGLmURE1O7IZDJs27YNmzdvxogRI3Do0KE2nXIlk8kQHR2NY8eO4ejRo7h16xYkEgm8vb3x/PPPQyKRtFkWIiIiIhEeVeDq1asXpFJpswKXRCKBkpKS6NgdRk5ODkxNTfH5559j8eLFf/q4l19+Gbm5uQgPD2/DdPS45HI5xowZg9jY2Ed+hqqsrIyePXsiNja2y07vLSgowMCBA5uV2pSUlHDixAnMnDlTYDIiIqLW8TjXWTW9f7a2tsa1a9faKhoREbVDLGsRtRP79u3D8uXL4e3tjQMHDqB79+6iI1EX88ILL6C6uhqnTp0SHYWI2sjNmzdhYWGBurq6Rz5OSUkJcrkc77//Pt5+++02SkdERE8iMDAQnp6ej/VYFRUVxMTEwNbWtpVTEVFrqa2tRXp6uqLElZ6ejt9//x3p6ekoKCgA8Md7uMGDBysKXE1lrqatR48ego+CiIi6soSEBMybNw9ZWVn4+uuvhVzE19jYiF9++QXHjh3DsWPHUFBQAGNjY7i7u8Pb2xvjxo1r80xEREREIpSVlSE2NhYxMTGK2/T0dDQ2NqJfv36ws7PD6NGjYW9vD3t7e/Tt21d05HZtyZIlOH/+PFJTU6GsrPzQx0gkEsycORMffvhhG6ejx3Hw4EHMnz//kVO1lJSUoKysDFVVVZw6dQpTpkxpw4Tty8iRI3H16lXF31efPn1QUFDwyOlyREREHdGdO3cwZMgQVFVVPfT7KioqaGxsxKBBg7B8+XK89tpr6NWrVxunJCKi9oRlLaJ2JDQ0FC+88AIsLS1x4sQJ9O/fX3Qk6kI++ugj7N27F5mZmaKjEFEbcXd3R1hYGOrr6x/6fTU1NdTX18PKygpLlizByy+/jJ49e7ZxSiIiehyXLl3CihUrcPnyZcVJ4MbGxoc+VlVVFZaWloiNjYWqqmobJyWi1lZbW4u8vDxkZGQgMTERSUlJyMjIQEZGhmIiFwDo6urC2NhYsUkkEkilUpiamkJHR0fwURARUVdQU1ODdevWYffu3VixYgW2bdsm7GK++4tbx48fR15eHoyMjODh4QFvb284ODhwogQRERF1KeXl5YiLi1MUuC5duoS0tDQAgJmZmaK4NWbMGNja2rKUcZ+UlBRIJBKEhIQ8tMBTXl6OXr16wd/fH15eXgIS0qNUVFTAxMQExcXFDz3Hrq6ujrq6OpiZmWHx4sV45ZVX0KdPHwFJ24/3338f7777Lurr66GmpoY333wTH3zwgehYRERELW7t2rXYsWPHA1O1mq6vsre3xxtvvIHnnnsOKioqglISEVF7wrIWUTuTnp6OGTNmoKSkBAcPHoSzs7PoSNRFhISEYNq0aSguLu7yJxOJuoKwsLCHfkCkqqqKhoYG9OzZE3PnzsXSpUsxYsQIAQmJiOhpFBUVISQkBIcPH0Z4eDgAQC6XP/ChsoqKCt577z289dZbImISkSB1dXXIzc1VlLfuL3RlZ2crPlz63yJX0yaVSmFgYCD4KIiIqLP59ttv8Y9//APPPPMMTpw4AV1dXaF5GhsbERcXh6CgIBw6dAg3btzA0KFD4enp+VTFre3bt2PKlCmwsrJqxdREREREra+srAzXr19HVFQUIiMjER0djTt37kBNTQ02NjZwcHCAnZ0d7OzsIJVKRccVysnJCb169UJAQMAD3zt37hwmT56M3NxcDBw4UEA6epS33noL27Zta3YRtoqKCuRyOXr06IEXX3wRr732GkaOHCkwZfsSHx8PGxsbAH9MHEtLS4OpqangVERERC2roKAARkZGqK2tVXxNTU0NjY2NmDlzJv71r39hzJgxAhMSEVF7xLIWUTtUUlKCxYsXIygoCJs3b8aGDRugrKwsOhZ1cgUFBRgwYADOnTsHJycn0XGIqBXV1tbC0tIS2dnZkMlkUFJSgrKyMpSUlODi4oKFCxdi5syZ/4+9+46L4tr7B/5ZQHrvSwc7CFgQBARUsJdobLGbm8RYovd6nydGk/tEY57kau41MU/KTTTeRFPVxBhLFKNiLygqCojSpEjvvZ/fH/5m7i67wC7s7rDwfb9e+4KdnZ05M7O735k553sO9YJICCFarri4GL///nu7iVv9+vXD3bt3+3zDCULIM01NTcjOzpZK5OIeSUlJqKurA9B+IpeXlxc8PT1p1BFCCCFdEh8fjxkzZsDU1BQnT56El5eX0EXiJSYm4vDhw/jxxx/x+PFjuLm5Yfbs2QolbnGNFo2MjPDzzz9j2rRpGiw5IYQQQoj6paen48qVK4iLi0NcXBxu3bqFxsZGiMViPnFr7NixCAkJgbGxsdDF1ZiDBw9i6dKlyMzMhJOTk9RrO3bswP/93/8hNzdXoNKR9qSlpWHo0KFoamoC8OweenNzM8LDw7F69WrMnj0bhoaGApeyZ3JxccHTp08xbtw4xMTECF0cQgghROXWrl2LL774AsCz5GRTU1OsW7cOr732msz5HiGEEMKhZC1CerA9e/Zgw4YNCAkJwffff0+9VxO1c3R0xBtvvIGNGzcKXRRCBFdeXg7uNKmurg719fUAnvWuXFFRITUvYwzl5eUKLbelpQWVlZUKl8PAwEDhyisjIyOZCgJDQ0MYGRkBeHazwNLSEv/85z/x/vvvQ0dHB62trfD19cUrr7yCxYsX08h6hBDSS6WkpOD48eM4cuQIrl+/DuBZTPPz88Mvv/yC5uZm1NTUyH1vWVmZ0utrbGxsd3mdMTY2hoGBgdLvs7S0lNtQtu3y9PX1YWJiwj/n4iMhpH3Nzc3IysqSm8iVnJzMf98NDQ35EbjaJnJ5eHhQRzSkx6mqquJ7ym5qakJ1dTX/WmVlJVpaWqTmr6mpQWNjo0LLrq2tlephszPKxD95135t45uFhQX/nVPmupIQIeXm5mLGjBl4+vQpjh07hqCgIKGLJOP27dv4+eef8csvvyA1NRWurq6YO3cuFixYgDFjxsicj27cuBGff/45mpqaIBKJ8NFHH2HDhg3tLj82NhaZmZnq3gytpaOjg0mTJsHMzEzoohBCCCGkHTU1Nbh79y6fvHX58mU8efIEurq6GDx4MJ+8FRoaiqFDh/baewUNDQ1wcHDAO++8gz//+c9Sr82dOxeMMRw5ckSg0nUsNzcXV69eFboYgtixYwfu3LkD4Nn95qioKIwfPx52dnZS8/n5+WHw4MFqL09LSwtOnDih8L0IIX3zzTf4/fffsXHjRgQHBwtdnHZZW1sjMjJS6GIQQojWaG5uRlVVldQ0ee2eOmsLVV1dzSdDd4Wy99vl0dPT6/I9pYKCAqxYsQItLS1wcnLCihUrMH36dKn79KampjKdYpuYmEBfX19qWlfrwgkhhGgnStYipIeLi4vDwoULUVNTg2+//RZRUVFCF4n0YlOmTIGDgwP2798vdFEIQXl5OWpra1FbW4uKigr+wp1rMM4lU3F/Kyoq+ESq1tZWvmEd95drhCfZGE/y/+40Ku8N2t6UMDc3h66urtT/3F8zMzN+fj09Pf6GA/eXu9nA/eVuNFhYWMDY2BjGxsawtLSUe1OCEEK0VVlZGR9n6uvrUVdXxzfolkz65eJWQ0MDamtrAYCPXZKxiItRkjfAuVjY9mY3tz6OsonBRBYX4ziSyc+Sr0vGTy4OcjET+M/NdsmEMMkG9lZWVgD+04ieWx63Pm6Z7SWiEdITtLa2IisrC2lpaUhNTZV6pKWl8b9Ppqam/Ohbkg9uWk9KJGlubpb6DSDqwSVHVVRUoLa2FnV1dVLxlItn3HWeZCcZba8LuVjKxU/Jil/J/+VVLPdFknFFMsZx/3Nxibuu4673uBino6MDCwsLqfjGxTRLS0vo6enB3NwcZmZmfDyTTB4jpCPV1dV44YUXcPHiRZw6dQpjx44VukjtunfvHp+4lZycDE9PTyxatAiLFi3CsGHD0NjYCAcHB6kOfkQiEV566SV8/vnnckc0d3QUo6AgX5OboXW+/PJLrFq1SuhiEEIIIUQJmZmZuHHjBm7cuIGbN2/izp07aGhogLW1NcaMGYMxY8YgPDwcgYGBUvfgtN2yZcuQkZGBK1euSE13d3fH6tWrsWXLFoFK1rH169fj008/FboYPVpU1ET88ccZta/n0qVLiIiIUPt6+pqysjLqwI0QolFcXS5XP8zdG5e8Xy3ZUVh797dV9T8gv41U2w7NiObIS+Bq22mbZB20uv/n2nNxZeDqDtp2GkcIIaRzlKxFiBaoqKjAqlWrcPjwYaxduxY7d+6kkx6iFm+88QZOnz6N+Ph4oYtCtBDXcI57VFRUSP2tqalBZWUlqqqqUFtbi5qaGj4hS95rneluAhEg3YNJR8lKbXsh5xqhSVIm8ahtA/COyOvNvT2So4FxJG/ocDd6SkpKYGlpiZqaGn7ZkkkDgPQoKp0lxnWWINcRbr+bm5vDxMREKpHL2NiYf83Y2BgmJiawtLSElZUVLCwsYGlpKfW3bc/yhBAiiYtFNTU1qKqqQkVFBf+8srISlZWVaGxs5P/W1NTwPXRVVlaiubkZ5eXl/E1qLgFLkd86SVx84WIUID/Jh4srXGNoQPomrWQsktcLWNtY1bYnLy62tba2QkdHR2o9bbVNVFKUMvGOI28ES0W0TViT1PYYSSbPAfIb7reNqW0rMOQl2HHxT7Iig1u3ZAIdF5uV3Vbu88EdO+4zYmFhAT09PVhYWPDnOtyNczMzM34eMzMzmJiY8PHU1NSUfy7v3IYQVWCM4enTp3zyVnp6OjIyMvhHYWEhP6+Dg4NMIhf3cHV1ldugXR1aWlpgZ2eHESNGYPv27QgNDdXIerUFF0O5B3fNxz0kr+m4JKza2lqpzji4a7/O4md7iUAikYhP/Gl7Pdi2wwhAukKz7WiKkvO1jYXyrvGU6Xmzo9jaljKjNQPyr/0k41vb5Un2Oto2/kheM3Lzcctq24iAi3vtJdR1hjunsLKy4jvyMDc3h6mpKYyNjfmkLiMjI5nrv7aPnpTgSVSvqakJCxcuxJkzZ3Dy5EmtaJwYHx+PH374AT/99BOysrLg5+cHPz8/fP/99zLfV11dXYSHh+PIkSMyDQRtbO0wd91fMWXxSg2WXnv8KcQX77+7HWvXrhW6KIQQQgjphsbGRty9exc3b97EzZs3ceXKFWRlZUFfXx8BAQEYO3YswsLCEBoaqtX3rY4dO4Y5c+YgKysLzs7OAICSkhLY2tri9OnTmDx5ssAllG/t2rW4evc+tn5zWOii9Eh73tmC+rxMXIiJUfu6zp8/j8jISHx9PQHmVtZqX19v9+DGFWxbuQBFRUWwtbUVujiEEAFVV1ejoaEBFRUV/L3Q8vJyNDY2orq6Wup1efdA23Ym1raNDHfPtaujQUne01bH/4D8+9dt75+3Nw2Q326qo84n21uOMrrbuSVXv9tVndVryFu+vGny2oHJW3bbaZJ10Mr+L1mn3d7/ymivgzdAtj6nbT2OZHs+ruNv7vNpaWkJAwMDmJiYSL1OCCHajLqIJUQLWFhY4ODBg5g3bx7Wrl2LkydPYt++fZgwYYLQRSO9TGBgIHbt2oWKigo60e3DysrKUFRUhJKSEhQXF/N/5SVgtW2cJw+XfGNqason3nANrzw8PPgGWhYWFjINtCRHYZIcnakv9cbNNdpXRE+tsOJuIJSVlUk10KyurkZtba1Ub/pcQ04uSaKoqAiVlZVSCX6SiWSSDA0N5SZxWVlZSf1vZ2cHW1tb2NrawsbGBra2thpr/EsIUU5dXZ1UInDb2FNZWcknXHENxLnfj7KyMv61jnoA424MczcFraysZEY3cnJy4kc34kaKUCRhhotd1MOU4nR0dHpsPFMnrrKmK4mCkqPQVFZWoqCggK8EqqioQGNjI59c0VEFBJe4xZ2Hcc/Nzc35pGoTExNYWFjA3NxcKt5KPqjxPJEkEong4uICFxcXjBs3Tub1hoYGPH36FOnp6VKP6OhopKamSl1jWFlZwcvLS+7Dw8NDZdcIubm5KCsrw4ULFzB27FiEh4fj3XffRXh4uEqW3xOUl5fz13zcQ/Kar+2DOwdv73eEi39cYigXH7nfCLFYzCfnGBkZ8dd+RkZGMteIlpaW0NXV7XP3JEQikVLxr6fGSi5JjItZ3LWcZMIed35XU1ODuro6qWvDwsJCmes/eYlpAPjzL+4hmdQlGaNsbGz46z47OzvY2NjwCfOk5+rXrx8OHjyIBQsWYPr06fj99997/O+wv78//P398fe//x1Xr17FDz/8gCNHjkBXV1emoUVLSwuuXLmCoKAgnD59Gp6engKVmhBCCCFEGPr6+ggKCkJQUBA/LSsrC5cuXcKVK1dw4sQJ/OMf/4BIJIKPjw/Cw8MRGhqK8PBwPulJG0yaNAn6+vr4448/sHLlSgDA3bt3AQDDhw8XsGSEEEKIduDqebl6Lq4jsKqqKlRXV6O8vLzTZCt5r3eGq/+1srKSSjJq25mYq6urVPJJZ6MRdZTg0jaZiqhed+sdeup9eVWRTNxqL/Gws1HiuORGyQ7lMjMzAfwncU2yI/CGhgaZTlXl6SyZS97rZmZm/MPU1BRWVlb8/9x0QgjRBErWIkSLzJ8/H+Hh4VizZg2ioqLwyiuvYNeuXdTAgKhMeHg4Wltbcf36dUyZMkXo4hAVaG5uRmFhIfLy8lBYWCiVfFVcXIyioiKpaSUlJTINSExMTGBjYyM1mpGlpSU8PDxkGkFJPrhplARDuAtcVd646ChxUPJveXk50tPTpRI9iouLZZZnbm4Oe3t7PoGLa8xnY2PDT7e1tYWDgwOcnJwo6YIQJUg2BG+beNXRo6KiQm5PY5INwtsmkDg5OfENxK2srDpNPuGSggkRmqY+i3V1daitrZVKbuQaw0smN0omTldWViInJ0cqMbKyshIVFRVSo41xuMRGZR5c7LWxselWj3hE+xgYGPAJV/KUlZXxCVy5ubnIy8tDeno6zp49i4cPH/Ijw+rr68PFxaXdZC5lzkOfPHkCAHxS0rVr1xAREYGgoCC89dZbmDlzZvc2WsXq6+tRWFiI3Nxc/pqOexQWFkolY3H/t73mMzIygo2NjdS1nIWFBcRiMX9dJ290I25eOjcmHMmkM3t7e5Utt7KyUiaZsO1zLqEwNzcXSUlJ/DwlJSX8yGEcAwMDqWs/rkMPyXhka2sLe3t7ODo6wt7eXunRQkn3cQlb8+fPx8yZMxEdHY0xY8YIXaxO6ejoICwsDF5eXtizZ0+7yfJNTU3IyMjAiBEjcOzYsR6fjEYIIYQQom5ubm5YunQpli5dCuDZdUBsbCzOnj2LK1eu4KuvvkJDQwO8vLwQGhqKsWPHYtq0aXBxcRG45O0zNDREcHAwYmJi+GSte/fuwcnJCQ4ODsIWjhBCCFEj7n5eWVkZysvL+QSrqqoqqedch0/l5eV8UhbX2W9HnRDq6+vDzMyM7wTawMBAKklDLBbznT1xSRwWFhYwMDCAqakpTE1Noa+vD0tLSz6hiuuskxI4SF+lr68PfX19AJpPTOOSwcrKyvhEsKqqKr5zU8mky4aGBr5Om0vKLC0tRX19Pd/GRPL3pK6urt31WlpaSiV0cR2WSiZ0mZub850VctO5TsO5v4QQ0hGqYSREyzg4OODIkSP47rvvsGHDBpw7dw4ff/wxpk+fLnTRSC9gZ2eHQYMG4fLly5Ss1cPV1dWhrKwMeXl5fKNFyb/ca5mZmTJDJ1tZWfE9m1tZWcHd3R3BwcFS07iHs7MzXVSQHolrINpVbb9DZWVl/IOblpaWxk8rKCiQuhFoaGgIKysrODk5QSwWy/zlXnNzc6NGfaRX6ei70/Y7VFZWhuLiYrnJHNx3SPLh4OCAIUOGyEznbqBzzx0dHfvUCIuEqJKRkRGflKEK3G8C14uavN8Eyd+GpKQk/nlpaanchMy2Mbbtb0Lb1+zs7KhzgF7MysoKo0aNwqhRo+S+LpnMJfk4e/as1LWQoaEhnJyc5CZyDR48WKoTnMzMTOjo6PDnflxiU1xcHGbNmqWxpK2ysjKpazt513u5ubntnqdKPjq65uO+U4T0ZFyifVe1jVHyzmWzsrIQHx+PvLw8PH36VCZGcb8jHV3/icViOldVMX19fRw+fBhz587FzJkzcfPmzXYTfHuab775RiqeyMP1PBsVFYV9+/Zh2bJlGiwhIYQQQkjPZm5ujqioKERFRQF4NrLGtWvXEBMTg5iYGPz4449oaWmBt7c3JkyYgPHjxyMiIgLW1tYCl1za+PHjsXfvXv75vXv3aFQtQgghWqGzep/2HvI6T+JI3r+WrAN2dHSUWy8sb5qRkVGvH+GIkL6G69hUXd9tyd8zefXabacVFxcjJydH5n1lZWVyly+vbk6Rh7W1NY2oR0gfQC1HCdFSS5cuRWRkJDZu3IgZM2bgueeew0cffQRPT0+hi0a0XFhYGC5duiR0Mfq00YNpvgAAIABJREFU2tpaPHnyBNnZ2cjKykJ2djYyMzORlZWFnJwc5Obm8j3IA4Curi7s7e35EX/s7e3h7+8PBwcHvqEQ96CR+Ah5hmus7uTk1G7jX0mNjY0oLi5Gfn4+8vLyUFBQgKdPn/KjGCQmJuLs2bPIy8uT6pWF+366uLjA1dUVbm5ucHd3h5ubG1xdXeHq6gpHR0d1biohHeJGYOQ+29xnWnJaUVERioqKUFJSIvN+U1NTmdEIvL29ERYWJnekAq4XIkJI78DF067iRvXiRvuRHPVVcjSg5ORk/neoqqpKZjnW1taws7ODnZ0dHB0dIRaLYW9vz58bS06jxK7epaNkroaGBmRmZiIjI0PqcefOHfzyyy98XBOJRBCLxfD09ISXlxdKSkrQr18/mUSNtklbAQEBePvtt5VO2mptbUV+fj4yMzORnZ2NnJwcZGVl8dd+3DmmZKcbhoaGUtd7Li4uCAgI4K/57O3t4ezsDFtbWxoxkhA5JK//FFVVVYX8/HwUFBTIPVe+evUq8vPzUVhYKNU5gYGBAezt7eHm5sZfB7q6usLd3Z1/rspRx/oCfX19HDp0COPGjcP06dNx/fr1Ht+xEGMMe/fulRnJUJ6Wlha0tLRg+fLlSExM1EDpCCGEEEK0k4mJCSZOnIiJEycCeHbOfunSJT5567PPPgMA+Pv7Y+LEiZg8eTJCQ0NhYGAgZLERHh6Ot99+G9nZ2XB1dcXdu3cxe/ZsQctECCGkb2loaODrXoqLi1FYWIji4mK500pLS/lRrtrS0dGRGkmGSzYQi8Xw9vaWeU3yr7m5OSUkEEIE05U6AnkaGxtRVVXFjxoo+bfttIKCAjx69Ehqurz7xVwCqrW1Nd++hmtjw7WzsbW1hb29PT+tO/XzhBDNo2QtQrSYWCzGTz/9hDVr1mDdunXw8fHBpk2bsHnzZrrAIV0WFhaGb7/9FnV1dXRipyalpaVIS0tDeno63yCPS87Kzs6WagxvZmbGJ3cMHjwYkZGRcHFx4RufOjg4wN7eHrq6ugJuESG9n76+PpycnBS6cK+srOQb8D19+hQFBQV88uX169dx8OBB5OfngzEG4FljPsnkLQ8PD74x34ABA+Dq6krfcaK0+vp6vgG4ZGJh28SswsJCqfeZmJhALBbDwcEBDg4O8Pf3l7rpI3lDyMbGRvCKbkKIdjMxMYGJiQmcnZ0Vfk9jY6NUIpdkkldhYSHy8vJw9+5d/nevbYWinZ2dVAKXnZ0df17t5OQEZ2dnuLm5UcJLL2BgYIBBgwZh0KBBcl+vrKyUSeTKyMhAamqqzOjEkriKlLt372LWrFnw8fHB1q1bMW/ePIhEIjQ0NCA9PR1paWnIzMxETk4O3wFHdnY2cnNz+cQOXV1dODo68kkcERERcHFxkUrMEovFPT4pgZDeyMzMDGZmZhg4cGCn83Ln1Xl5ecjPz0d+fj6fiBkTE4OcnBwUFBTw8xsaGkolc7m7u/Ode/Tv3x/u7u40QnMbRkZGOHr0KAIDA/HCCy/gxIkTPXofxcbGIjMzE3p6evz1PDfCVmtra7txZufOndDXNwBj7Y/GRQghhBBCnjEzM8P06dMxffp0AM9GqL548SLOnz+P3377DR988AFMTEwwbtw4TJ48GZMnT273HoE6DR8+HCKRCPHx8bC1tcXjx49pZC1CCCHdUl9fj4KCAr7ut20ClmTdSVFRkUwneLq6unzjf67ed+DAgQgODoa1tXW7CVcWFhYCbTEhhPQM+vr6fFuZrqiurpab6FVeXo7S0lIUFxejqKgIDx8+lEqolewwDng2Epmtra1UYpfk77q9vb1UfbiJiYkqNp8Q0kU9tzaLEKKwiIgI3L17F7t378b27dvx3Xff4f3338f8+fMhEomELh7RMmFhYWhoaMCtW7cQHh4udHG0VllZGdLT09t9cKysrODl5QUvLy+Eh4fDycmJfy4Wi7vdowMhRPPMzc1hbm6OIUOGtDsPN1JXXl4e/7uQm5uLvLw8nDhxAmlpaSgvLwcA9OvXD66urvxvg+TD29ubEmv7oLafH+6zI/n/kydP+MaAAPhezZycnCAWizF06FD+f+6vlZUVxR1CSI+nr68PsVgMsVis0Pz19fUoLS1FXl4ecnNzUVZWxv+fl5eH2NhYlJWVITs7W6rC0tDQkD83534rJc/T3dzcYGZmpq7NJBpgbm4Of39/+Pv7S02fMGECHj9+3On7uYb2iYmJWLBgASwtLWFtbY3MzEz+NcnPkbe3NyIjI6U+S66urjTaGyG9AFfxOWzYsHbnaWxs5EdLb3vufvLkSaSnp6OsrAwAoKenBzc3N7nXgIMGDeqz8UcsFuO3335DWFgYNm3ahA8//FDoIrXL29sbu3btQmNjI39tX1VVhebmZtTV1aG+vh5NTU38MS8tLQVjDNXV1cjOzkZTY6OQxSeEEEII0UpWVlaYPXs2P2rVkydPcObMGURHR+N//ud/sGHDBnh4ePCJW5MmTdJIo0ULCwu4u7sjPj4eDg4OaG5ulrkXQQghhABAXV2dVP2F5F/Jug3JjmGBZ/ehuVGuuPreAQMGyEzj6oPt7e17dCc4hBDSW5mamsLU1BSurq5Kva+uro4fvUsyLkhOu337Nv+8sLBQqsMwLk60bSPUtq2Qm5sbxQdC1IC+VYT0Ev369cPrr7+OxYsXY8uWLVi0aBH+8Y9/YMeOHYiMjBS6eESLeHp6ws3NDefPn6dkrU40NTUhJSUFCQkJSEhIQHJyMlJTU5GWlobKykoAz3pz9/LywoABA+Dr64s5c+ZgwIABGDBgAJ3gEtKHSY7UNWrUKLnzFBcX878pKSkpSE1NRXx8PH755Rd+BD49PT1+BK6BAwdi2LBh8PHxwbBhw2gEBi3W0NCAjIwMpKWl8SMxPnnyBE+fPkVOTg7y8/P5efX19eHs7AwXFxe4ublh7NixcHZ25kfocHZ2hoODg4BbQwghwuKSZTqKuZzi4mJ+FCRudEJuZJRr164hJycHDQ0N/Pz29vZwdnbmR0Xx8vJC//790b9/f3h5edGI11pKsnMNRYhEIlhaWmLIkCGYM2cO+vfvjwEDBqB///7UUx0hhKevr88nXLWnrKyMvwbkHg8fPsSJEyeQm5vLz+fs7Mz/1gwZMgS+vr4YOnQo3N3dNbEpgho5ciT27duHxYsXY9SoUViyZInQRZLLzMwMf/3rX7v0XhtbO+gb0DkEIYQQQkh3eXh4YNWqVVi1ahWam5tx48YNPnlr79690NfXR1RUFGbNmoUZM2Yo3DFQV/j5+SEhIQFisRjGxsYYMGCA2tZFCCGk52loaODrHbKzs5GZmYmcnBx+lHZuhCzJkVMMDAz4Ogh7e3u4uLggICAADg4OcHJyknrNwMBAwK0jhBCibkZGRjAyMoKTkxN8fHw6nb+5uRmFhYXIy8tDXl4eCgsL8fTpUxQWFiI3NxeJiYk4e/Ys8vLyUFdXx79PV1cX9vb2fKxxcHCAm5sbXF1d+b/u7u7UqTghSqIW4oT0Ms7Ozjhw4AA2b96Mbdu2ISoqClFRUdi5cydGjhwpdPGIlpg6dSpOnDiBbdu2CV2UHqG1tRVPnjzBgwcPkJiYiAcPHiApKQnJyclobGyEnp4e+vfvD29vb0RFRWH16tV84zxXV1fo6OgIvQmEEC3EDU89ZswYmdfKy8uRmpoq9bh9+zYOHDjAJ4u6uLjAx8cHvr6+fAKXt7c3jI2NNb0pRI7y8nKpRpjp6en8/zk5OfyoWPb29ujfvz88PDwwfvx4PimLS9BydHSkkVQJIURFuNg7fPjwducpKCjgk2czMzP5/+/cuYPDhw/zCbUikYhvTC+ZxMU9rK2tNbVZpBOtra3IyMhAYmIiEhISkJ2dLTOPSCQCYwwikQh2dnYYOXIkwsPDMW3aNPj6+tI1HyFEJaysrDB69GiMHj1a5rXa2lqp6wfuOvD06dN8Ipe5uTmGDh0KX19feHt7w8fHBz4+PnB2dtb0pqjVCy+8gBs3bmDdunUIDQ2Fh4eH0EUihBBCCCE9nJ6eHsaOHYuxY8di+/btKCwsxPHjx3H8+HH85S9/werVqzF69Gg899xzmDlzZoej5naFp6cnYmNjkZSUhCFDhtB9BEII6WXy8/P5RKysrCxkZmZKJWfl5eXx8xoaGsLV1ZXvdHPgwIF80pWTkxMcHR3h6OhIdQiEEEK6TE9Pj+/MtDNVVVVSiVwFBQV8ktfTp09x8+ZNPHnyBLW1tfx7bG1t4erqCldXV3h4ePD/c8lcYrGYrnkIkUDJWoT0Ut7e3jh06BAuXryIN954A6NHj8bs2bPx1ltvUdIW6dTMmTOxZ88e5OTkwMXFRejiaFRLSwuSk5MRGxuL2NhYxMXFISkpCTU1NQCe9cLm4+ODqVOn4vXXX4ePjw+8vb2ppxpCiEZZWloiICAAAQEBMq89efKEb2yckJCAc+fO4dNPP0V9fT10dHTg6emJ4cOHIzAwEIGBgRg1ahTMzMwE2IrejzGGJ0+eICkpCYmJiUhKSsLDhw+RlpbGj46mq6sLV1dX9O/fHwMHDsSUKVOkGvPTsSGEkJ7FwcEBDg4O7V5X19TUyE3EvXTpEjIzM9Hc3AzgWYP8/v37Y/DgwXxCtY+PDzw9PenmtRo1NzcjISEBt27dwq1bt3Dnzh08fPiQr2BwcXHhE6YBwMLCAiEhIQgLC0NwcDACAgJgamoqVPEJIX2YsbExfH194evrK/NaWVkZEhMT+evApKQkHDt2DIWFhQCeXT8OGzYMo0aNwujRoxEQEIBBgwZpdacPO3fuRExMDJYuXYqLFy9CV1dX6CIRQgghhBAtYm9vj5deegkvvfQS6uvrceXKFRw/fhyffvop3nzzTXh6emLBggVYuXIlhgwZ0u31ubi44MiRI0hMTFSoJ3xCCCE9S319vVQnqikpKUhLS+OTshoaGgA86/TL0dGRH30kNDQU7u7u/HNXV1c4ODgIvDWEEELIf5iZmWHIkCGdXveUlJQgJydHJik5Li4Ov/76K3Jzc9HS0gIA6NevH5ydneHm5oYBAwbIPKgdFOlrKFmLkF4uIiIC169fx2+//Yb//d//xahRozB16lS8+eabGDt2rNDFIz1UVFQUTExMcPLkSbz66qtCF0etsrOz+cQsLjmrqqoKRkZGGDFiBIKDg7Fq1Sq+V2I6WSSE9HQeHh7w8PDA9OnT+WktLS1IS0vjRwi8c+cOdu/ejby8POjo6GDo0KEYPXo0n8Dl5+eHfv36CbgV2iczMxMPHz7kG0cmJCTg4cOHqK6uBvCsMtbb2xshISFYvnw5P9KKh4cH9PX1BS49IYQQVTExMYGfnx/8/PxkXmtqakJWVpbUyChJSUn44osvkJmZCeBZY/yhQ4fyo6FwnUN4eHhodaN6ITDG8OjRI9y+fZtPzrp37x7q6upgamrKj461Zs0a+Pr6YujQoTAyMsKHH34INzc3BAcHw93dXejNIISQTllZWfGjBEgqLi7mr08ePHiAq1ev4vPPP0dTUxMsLCwQEBDAj+Q1evRouLq6CrQFyjMwMMAPP/yAgIAAfPDBB9iyZYvQRSKEEEIIIVrK0NAQUVFRiIqKwkcffYQbN27g4MGDOHDgAHbu3ImRI0di0aJFWLBgAdzc3Lq0DhcXF+Tm5kIkEmHNmjUq3gJCCCGqUFdXJ5WQJZmYlZOTA8YYRCIRPxrWgAEDMH78eLi5ufHJWC4uLlTvSwghpFeysbGBjY0N/P395b7e3NyMvLw8ZGZmIisrix9tMiUlBTExMcjKyuKTuRwdHflYyj2459Q2l/RGIsYYE7oQhBDNOX36NN5//31cvnwZERER2Lx5MyZPnkyNvoiM2bNno7m5GSdOnBC6KCqVkpKCs2fP4uzZs7h27Rry8/Ohq6sLb29vqUQFX19f6OlRTjMhpHfLyclBbGwsbt26hZs3byIuLg6VlZUwNDTEyJEjMWHCBERFRSE4OJhuLP9/jDGkpKTwSb63bt1CUlISKisrAQBisViqgT3XyN7S0lLgkhNCCOnJqqqq+GRfyaTf7OxsAICpqalMcvXgwYNpFC4JLS0tiIuLw7lz5xATE4PY2FhUVFRAX18fw4cP55MSAgICMHToUBqFhRDSJzU0NCA+Pl4qkTU5ORktLS1wdHREcHAwJkyYgMjISAwdOlTo4nbqww8/xObNm3H9+nWMGjVK6OKohI2tHeau+yumLF4pdFF6pD+F+OL9d7dj7dq1QheFEEIIIb1cS0sLLl68iB9//BFHjhxBWVkZwsLCsGrVKsybNw8GBgYKL+vcuXOIioqCSCTC0aNHMWvWLDWWvPvWrl2Lq3fvY+s3h4UuSo+0550tqM/LxIWYGLWv6/z584iMjMTX1xNgbmWt9vX1dg9uXMG2lQtQVFQEW1tboYtDBFJfX4+kpCTEx8fjwYMHuH//Ph4/ftxuQpZkA/IBAwbAyMhI6E0ghBBCtE5jYyMyMjKQkpKClJQUPiE6NTVVKpHLwcEBgwcPxrBhw+Dn5wd/f38MGzYMpqamAm8BIV1HyVqE9FGXLl3C+++/jzNnzmDQoEFYv349VqxYQUGN8Pbt24f169ejqKgIJiYmQheny4qKinDu3Dk+QSszMxNmZmaIiIhAREQEAgMDMXLkSPrsE0IIgNbWViQnJ+PWrVu4du0azp07h7S0NJiYmCA8PByRkZGIioqCn59fn0n0LiwslBqBMTY2FmVlZejXrx+GDx+O0aNHw8/Pj0/MsrKyErrIhBBCepGKigo+eevBgwf86FD19fX8qChBQUF8ApdYLBa6yBqVlJSEc+fO4dy5c7h48SLKy8shFosRGRmJkJAQPk5T0jkhhLSvuroad+7cwa1bt3D58mVcuHABFRUV/O9pZGQkJkyY0OVRBNSptbUVUVFRKC8vx61bt3pFIi4la3WMkrUIIYQQIoTGxkZER0fjm2++wbFjx2BpaYmVK1di1apVGDhwYKfvv3HjBoKDgwEAqamp6N+/v7qL3C2UrNUxStbSXpSs1fdkZ2fj/v37ePDgAe7du4cHDx7g8ePHaG5uhqGhIXx8fODn54chQ4ZQQhYhhBAikLaJXI8ePcL9+/eRkJCAqqoqiEQieHl5wd/fH76+vnwSl5eXV59pu0a0GyVrEdLHPX78GJ999hn27dsHHR0dLFq0CH/5y1+0oudUol75+flwdnbGkSNH8NxzzwldHKXExcXhyJEj+P333xEfHw9dXV0EBQUhKioKUVFRGDNmDI2aRQghCsrIyMDZs2f5htDFxcWwt7fHxIkTMXv2bEybNg3GxsZCF1NlUlNTcf78eVy4cAE3btxARkYGAGDgwIF8Q/jAwECMGDFCqZ4zCSGEEFVpampCfHw8bt68yY/y+OjRI7S2tsLV1RVjxozBuHHjMGHCBAwZMkTo4qpUbW0tTp8+jaNHj+Ls2bPIy8uDpaUlIiIi+IQCb29voYtJCCFaraWlBbdv38a5c+dw/vx5XL16FfX19Rg4cCAmTZqEOXPmICIiosfcW0tJSYGvry8+/PDDXpHAQ8laHaNkLUIIIYQILTc3F/v27cNXX32F7OxsREZGYtOmTZg4cWK777l//z78/f1hYGCAmpqaHt/JACVrdYyStbQXJWv1bjk5Obh+/Tpu3LiBO3fuID4+HmVlZQAAd3d3qcbdvr6+GDRoUI//PSaEEEL6MsYYMjIycP/+fT75Oj4+HmlpaWhtbYWpqSmGDRuGUaNGISgoCEFBQRg0aJDQxSZEBiVrEUIAPOut+5tvvsHu3buRlZWF4OBgLF++HEuXLu1VDbCJciIiIuDg4IBDhw4JXZROJSQkYP/+/fj555/x5MkTeHh4YNasWYiKisK4ceNgZmYmdBFJJyZOnIg//vhD6GIQQjrQ2tqK+Ph4nD17FqdOncKlS5dgYGCAKVOmYMmSJZgxY4bWjVxRWVmJ6Oho/P777zh//jyysrJgYmKCsWPHIiQkhE/OsramSjBtRLGFENJXVFRU4NatW4iNjcX169dx6dIlVFZWwsnJCRMmTMC0adMwZcoUrRwBsr6+HsePH8ePP/6I6OhoNDQ0ICQkBFOmTEFkZCQCAgKoUl0LUExWLdqffYvQx7u+vh5Xr17F+fPnceLECdy/fx82NjaYNWsWlixZgvHjx0NHR0ew8gHA5s2bsWfPHjx69Ah2dnaClqW7KFmrY5SsRQghhJCeoqWlBadOncInn3yCM2fOICQkBFu3bsWkSZNk5k1NTcXAgQMxePBgJCcnC1Ba5VCyVscoWUt7UbJW78EYw4MHDxATE4NLly7h5s2bePr0KfT09ODj44OgoCD4+fnxCVqWlpZCF5mogND3yPoa2t+EqIdQ363e9J2uqalBYmIi4uPjcf/+fcTFxeHOnTtoaGiAjY0NxowZg9DQUIwfPx4BAQE9puM50nfRJ5AQAgCwsLDAn//8Z7z22ms4ceIE9u3bh3Xr1mHLli1YsmQJ/vSnP2H48OFCF5No2PLly7F27VqUlJTAxsZG6OLIqK2txYEDB7Bv3z7cvn0bXl5eWLRoEebOnYtRo0YJXTyliUQitJdD3dFr2oYbfrbt9vSW7dMm7R0Lojna9t3W0dHBiBEjMGLECLz++usoKirC0aNHcfjwYcyfPx/W1tZYvHgx1q1b16N7KykqKsKhQ4fw22+/4eLFi2hpaUFoaCheeuklTJgwAUFBQejXr5/QxVQJii29Y/u0SV+MLUJ9l/rivlaX3vB7aGFhwY8kDADNzc24ffs2zp8/j3PnzmHFihVgjCEsLAyzZs3CwoULIRaLBS51x+Lj4/HFF1/g4MGDqKysxMSJE7F7924899xzsLe3F7p4SqOY3Du2r6foSftT2+JRYmIi1q9fj1u3bqG6uhpAzy97c3OzoOs3NDTkRy987733kJaWhl9//RU///wzoqKi4OrqiuXLl+PVV1+Fq6urIGV8++238dNPP2HLli346quvBCkDIYQQQgjpW3R1dTFjxgzMmDEDN27cwPbt2zF58mQEBwdj586dCAsL4+dtamoC8GxkF0J6ktKCfHz7z//FgxtXUV5SBNbaCgD4JTlX4JIRIis3NxcnTpzA2bNnceHCBRQVFcHa2hphYWF47bXXEBwcjICAAJiYmAhdVLWhe8y9Y/uEoux9XG3Y373pc0+e6U3HVJnfMk1sd2/ZrwBgYmLCd7zNaWhowN27d3Hz5k3cuHEDn3zyCd58802YmZkhIiICEyZMwMyZMzFgwAABS076KhpZixDSrry8PBw4cAD//ve/8fjxYwwfPhyLFy/GwoUL4ebmJnTxiAZUV1dDLBbjgw8+wJo1a4QuDq+4uBi7d+/GF198gdraWsyfPx8vvvgiIiIi+BNdbdRXbqwAvW97tBkdC2H1pv2fk5OD/fv34+uvv0ZGRgZmzJiBN954AyEhIUIXDcCzytBffvkF3333HaKjo2FkZISpU6di1qxZmDp1aq8dOYtiCxFCXzsWQm5vX9vX6tIX9mNFRQVOnz6N48eP4+TJk6iqqsKECROwdOlSLFiwAIaGhkIXkXfq1Cns2rUL586dg7e3N1588UUsWbKkxyeXdYZiMunNtOmYjx49Gps2bcKsWbNw+fJlTJw4UWvK3hMlJyfjwIED2L9/P4qKijB37lxs2rQJI0aM0HhZDh8+jBdeeAHXrl1DUFCQxtevKjSyVsdoZC1CCCGE9GSxsbF4++23cebMGaxYsQK7d++GhYUF7t27hxEjRuDVV1/FF198IXQxO0Uja3WsN42ste3FBfAeFYRpy16CgZEx4i6exT/Wv9xrk7VoZC3tk5ycjMOHD+PYsWOIi4uDsbExxo0bh/Hjx2PChAnw9/cXfLRvTaJ7zKS7ett+7W3bQ3rfMVV0e3rbdvcUycnJOH/+PGJiYnD+/HmUlpZi6NChmDVrFubOnYvRo0cLXUTSR/Sds1VCiNLEYjHeeOMNJCcn49KlSwgMDMSOHTvg4eGBsLAwfPbZZygsLBS6mESNTE1NMXv2bOzfv1/oogAAGhsb8c9//hMDBw7E3r17sX79emRmZmL//v0YN26cVidqEUKItnNxccFbb72Fx48f4/DhwyguLkZoaCjmzZuH1NRUwcpVXl6OnTt3wtPTE8uWLQNjDPv370d+fj4OHjyIJUuW9NpELUIIIYRjYWGBhQsX4rvvvkNeXh5++uknGBsb45VXXoG7uzveeecdFBUVCVrGW7duYdy4cZg+fTr69euH6OhoJCQk4L//+7+1PlGLENJz3Lt3D88//zwMDAwQFRVFFaDdNGTIELz//vvIyMjA119/jcePH2PUqFFYvHgxnjx5otGyzJ8/H2FhYdiyZYtG10sIIYQQQggnMDAQp0+fxuHDhxEdHY0RI0bgzp07qK+vBwDqxZ30OMlxsZizaj1MLSzRT18fYyZO67WJWkR7VFZWYs+ePQgJCcHQoUPxxRdfYOTIkTh+/DiKi4tx4sQJ/Nd//RdGjBjRpxK1CCGEEKKcIUOGYO3atTh8+DAKCgoQExODqVOn4ueff0ZgYCB8fHzwz3/+EwUFBUIXlfRydMZKCOmUSCRCWFgYvvzyS+Tl5eHYsWNwd3fH5s2b4ezsjMjISHzyySfIysoSuqhEDVasWIGbN2/i4cOHgpbj4cOHGDNmDLZu3YpXX30VKSkp2Lp1K+zs7AQtV0dEIpHcBDJ507nn3GsikQgvv/xyp68BQEJCAqZPnw4zMzOYmZlhypQpSEhIkLvOtLQ0PP/887Cysmq3fPJUVFRg48aN8PLygqGhIcRiMVauXInY2Fip+Y4dO4bQ0FAYGhrCw8MDGzduRFVVVafLb68s8fHxmDRpEkxMTGBubo6pU6ciOjpaoTJzVLF/FNl/CQkJmDZtGr+eadOmyaxH0f3YGUX3s6L7Lzs7G8899xzMzMzg4OCApUuXoqSkpEvr7e4BpmWiAAAgAElEQVRnjZs3KSkJU6ZMgbm5OUxNTTF9+nSZ3yFVHRdl1qnoMhU51p19t7v6fRKajo4Onn/+eVy9ehV//PEHUlJS4Ovri48//lijDSGbm5uxZ88eDBo0CO+99x7mzp2L1NRUnDx5EosXL4axsbHGyqJKFFsotqgjtqjzWEh+xi5cuAAA+Omnn6SmK7N87j3cuaGxsTHCwsKQmpqKxMREBAUFwdTUFOPHj5d7faLMsVMkPiryXersGCoiMTER06ZNg6mpKSwsLDBnzpx2r78U2cbOUDzW/njcEUNDQ8ybNw9Hjx5FVlYW1qxZg08//RSenp7Ytm0b34BIU5qamrBt2zYEBwejvr4eFy9exKlTpzBp0qQe3SEHxWSKyaqOyYrGzPY+Y4rGLqDzfa/M57s9qoqBipZV0ZjV3NwMPT09iEQibN68WeXlUPT8Qdk429Pp6+tjyZIliIuLw5kzZ/DgwQN4e3tr/DrwvffeQ0xMDP8d6gvmDnHC3CFOKM7LxY61K7Fk5ED8KdQPH7/+GqrKy2Tmz0pJxnuvLsOSkQOxZORAvPvyYmSlJMvMl536CO+tWorFIwZg6ahB2P7SIuSkPubXJ+nW+TN4c9EsvODngdUTAvH137eirqZabjnzs57gg/UvYXngELnLIoQQQgjpDebOnYt79+7By8sL48ePx9mzZwE8ayzYW9F5ac+i6L5oamzEC34e/D6QfLSdt6P9xv2fk5aCzQtnYNFwL/xtyWzkZz1BduojbF4wHYtHDMDby+ehOO9pl8vbF45dX1ZSUoJt27bBw8MDGzZsgIuLC44dO4bMzEx8+eWXmD59OgwNDYUupkrRPWbh7zGroz5MkTo6VddXKrMvlLl/KW9aX6ujVWS/qruOWx11qKrYdmV+w1RRZ6uq7VLmeCmybYDidfnK/r4rut2K1oN1ZV/0Fnp6ehg3bhx27dqF1NRU3L59G1FRUdi5cyfc3NywfPlyQTsiJ70cI4SQLqqpqWEHDx5kL7zwArOwsGAA2MiRI9n27dtZfHy80MUjKtLS0sLc3NzY5s2bBStDdHQ0MzIyYiEhISw9PV2wcnRFe6FW3vSOwnJ7r6WkpDBHR0f2r3/9ixUWFrLi4mL27bffMi8vL5adnS2zjIkTJ7KrV6+y2tpa9vvvv3e4TknPPfcc27ZtG8vPz2f19fXszp07LDQ0VOb9ANiXX37JampqWF5eHlu+fDlbsWKFQtvTdtqjR4/Y4MGD2R9//MFqampYYmIiCwsLU7jMjKl2/3T0ekpKCnNxcWH79u1jhYWFrKCggO3du5c5OzuzlJQUpfdjZxTZz4ruPwBs0qRJ7NSpU6yqqoplZWWx+fPns5UrV3ZpvYrsS0W2b9iwYezHH39kxcXF/P50c3NjGRkZCq9L0eOizDpVfaw7+94rsr97uqamJrZ161amp6fHVqxYwVpaWtS+zidPnrCRI0cyAwMD9sYbb7CKigq1r1OTKLZQbFF1bFHnsWhubmb9+/dnpaWlUvPk5uYyKysrVl1d3aXlL1iwgCUlJbHy8nK2bt06FhQUxObOnctPW7NmDZs3b57U+5Q9dm3j45w5c9qNj/IoE4c6kpqaylxdXfnlFBUVsW+//ZYFBwfLrFuZbewMxeP/vNYb4nFnampq2DvvvMNMTEzY0KFDWXJyskbWW1FRwUJCQpiZmRn76quvNLJOVaKYTDFZlTFZ2ZjZlqKxS5lrRXkUOb6qioHKlFWZmKWs7lxfd3T+oM4yC62xsZG99dZbTFdXl61YsYI1NzdrbN0TJ05koaGhGlufqlnb2LJX3n6f/ZKcq/ADAPMPjWB/2/s9+/5OCvsy5jYLmjiVjZ+zUGq+z85cY5a29mzVth3s62sP2Dc3EtmfP/iEObi6sz0X4qTmsxU7sXXvfcjPt3HXv5j7oKEMgNz1r97+AfvhXhrbd+UeGzd7Phs3e4H8coaEs/d/PMZ+vJfO3trzndzldfSwsLZhn332mdCHiRBCCCFEIQ0NDWzWrFnM1NSUAWA5OTlCF0kha9asYX5jQpU6T+tL56WTF61gEePGaeRYnDt3jgFgX19PUPpYKLov2nu/svsNAAuZOot9fPIi+/ZWMpu65EU20H8kGzNpOj9t8qIVLHjyDMGO3bZvDjEArKioSCPHjyhu7969zNzcnNna2rJ3331X5v5Yb0b3mIW9x8wtV1X1YYrsa3XUV6qrfZC8aX2pjlaZ/arOOm7uvaqsQ1XltsvTdnp362xVtV3cOrr6OyRvujJ1+e0tVxXbrUg9WFf3RW9WW1vLPvvsM+bu7s709fXZ9u3bWVNTk9DFIr2M9tXyEUJ6pObmZnb58mW2YcMG5uzszAAwBwcHtmzZMnbo0CFWXl4udBFJN7z99tvM3t6e1dbWanzdsbGxzMjIiK1cuVIrT4TUfWNlyZIlbOfOnTLT9+3bxzZs2CCzjJiYmA5K2z5TU1NWUlIiNS09Pb3TmxylpaXM2tpaZroi279o0SJ24MABqWnJyclK3VhR5f7p6PUlS5aw3bt3y0zftWsXW7p0Kf+8q/uxM/L2s6L7DwA7evSoTJmcnJy6tF5umV39rHHv/+mnn2Sm79q1S+aiUBXHRZl1qvpYK3Ps29vf2oJLvH3ttdfUup6kpCRmZ2fH/P39lb4poy0otlBsUXVsUfex2LJlC/v000+lpv39739nq1ev7vLyL1y4wD9/+vSpzLTs7Gxmb28v9T5lj13b+JicnCw3Pnb0XVI0DnVk6dKlcpfz9ddfy6xbmW3sDMVj+bQ9HncmKyuLjRkzhllYWLDY2Fi1rqu5uZmFhoYyZ2dnjSWHqRrFZIrJqo7JisbM9vaxIrFLmWtFeRQ5vqqKgcqUVZmYpazuXF93dP6gzjL3FNHR0czY2Ji9+uqrGlvntWvXGAB25swZja1TlbqarPXGZ19LTfvk1GVmbe8gNS185vNs2X//Teb96977kE1f9tJ/5ps1l/3pze0y823c9S+FGkLuj33ITC0s5ZZz+4GflW70K/mgZC1CCCGEaJuKigpmaGjIRCIRa21tFbo4CulOslZfOC/VhmQtZfZFe8dS2f0GgG3/9hf++d5Ld2Wm7bkQxyxsbAU7dpSs1fM0NTWx+fPnM11dXbZp0yZWVVUldJE0ju4xC3uPmVuuqurDFNnX6qivVEf7oPaOQV+qo+3qZ0zVddzce1VZh9oZVdcjdLfOVlXbJY8yv0PypitTl9/eclWx3YrUg3Wmt9eDd6SxsZF99NFHzMjIiAUHB/e6TsGJsESMMQZCCFEhxhhu3bqF33//HadOncLt27ehp6eHsWPHYsqUKYiMjMTw4cOho6MjdFGJggoLC+Hh4YEPP/wQq1ev1th6GWMIDAyEpaUloqOjtfIzIxKJIC/Uypve3rwdvebo6IibN2/C3d1danpBQQHGjx+PpKQkqWXU1NTA2NhY6e2YNGkSamtr8be//Q1RUVHQ09NT+L2KbmvbaY6Ojrhz5w6cnJyULq/kMlS1fzp6vb31ZGRkICQkBHl5eQC6tx8709X9JxKJUFpaCisrK35aS0sL+vXrh9bWVqXXy03r6meNe39xcTFsbGykpmdkZCA0NBS5ubkKrUvR46LMOlV9rDv63qti/p7m4MGDWLx4MW7cuIHRo0erfPmNjY0ICAiAubk5oqOjYWJiovJ19AQUWyi2qDq2qPtYpKSkYNGiRbh9+zY/bdCgQTh48CBGjBjRpeVXVlbCzMwMANDa2gpdXV2ZaXp6elKxTNlj1zY+NjQ0wMjISCY+KvtdkheHOtLecvLz8yEWi2U+44puY2coHrdP2+NxZxoaGjB79mw8evQI9+7dg7m5uVrW8/nnn+Ovf/0r7ty5A29vb7WsQ90oJlNMVnVMVjRmtrePFYldylwrdvXzrcoYqGhZlYlZyv6Gd+f6uqPzB3WWuSf59ddfMXfuXFy6dAljx47VyDqnTZuG8vJyXLt2TSPrUyUbWzvMXfdXTFm8UuH3zB3ihP2xD2FqbsFPa2psxCJ/T/z88Ck/7aVQf+w4fBJ2Ti5S7y8vKcLW5fPw8cmLHc5XVV6GlWN88EtyLjozd4iTzHxzhzjhh3tpMDA0Unjb2vpTiC/ef3c71q5d2+VlEEIIIYRompOTEwoLC9Hc3Cx0URSydu1aXL17H1u/OazU+/rKeemed7agPi8TF2JiuvR+ZZw/fx6RkZH4+noCzK2su7Ws9vaFvP3Ylf02d4gTvot7DCMTUwAAa23FPG8XmWnzfVylPg/Klrc7x+7BjSvYtnIBioqKYGtr26VlENVav349vv76a5w8eRIRERFCF0cQdI9Z2HvM3HLVWR/Wdl+ro75SHe2DqI62e58xVe4/7r2qrEPtjKrrEbpbZ6uq7VJmOxTdNmXq8pVdl7L17J3VgylSz6Dt9RHdlZycjKioKAwbNgynTp2CSCQSukikF9C+Vu+EkB5PJBIhMDAQ27Ztw82bN5Gfn499+/bB0dERH3zwAUaNGgVbW1vMnj0bH3/8MR48eNCnA7w2sLe3x/Lly/GPf/wDLS0tGltveno6bt++jXfffVcrE7U0oaSkBB4eHhCJRFIPR0dHPHnyRGb+ribPHD58GIGBgVi3bh2sra0RERGBjz/+GE1NTfw8RUVFePnll+Hi4gI9PT2+LF1VXFzc7Zukqt4/7b1eXFwMR0dHmelisRjFxcX8c0X2Y2cU3c/K7D/JmxwAoKurK/O7rOzx7epnjdP2BgPwbH8WFRUpvC5Fj4sy69TUsVb196mnWLhwIXx9fXH4sHIVfIq6fv06EhIS8O233/baRC1NoNjSsd4YW9R9LAYOHAgjIyPEx8cDAC5dugRzc3OpRufKLp+7YQ2AP09sO61tLFP22LWNjwYGBkpdtygbh5Rdjrxpym5jZyge98543BkDAwN8++23KCwsxM8//6y29Rw8eBArVqzQ2kQtTaCY3LHeGJMViZkdUSR2qWLfd0aVMVDRsioTs5TVnevrjs4f1FnmnmTOnDkIDAzEwYMHNbbOt99+G9evX8eVK1c0tk6hSTaIBYB++voyn72q8jKsnhCIuUOcpB4vhfqj8Gk2P19leSksbe1l1mFmaSUzrbK0BJ//7b/wSsRIzPdx5ZfZnu4kahFCCCGEaKvc3NxuNyDVFnReKjxl94UyOttvXFIWAIj+/337ttPafh7o2PVdOTk5+Pzzz7F3794+m6ilCXSPWTGqqA9TdF+ro75S1e2DOtLX6mg726+aqOPmqLIOtTOqrkfobv2JqrZLHXW/ytTlq2rZ7W23Mr/hfbUevDNDhgzB0aNHcebMGVy8eFHo4pBeglq+E0LUzs7ODkuXLsX333+PoqIipKWlYceOHdDX18f27dvh5+cHe3t7zJw5Ezt37kRcXBwlb/VAmzZtQmZmJo4ePaqxdT59+qxHJQ8PD42tU9VEIhEaGhqkppWWlqps+ba2tigtLQVjTOZRW1ursvVYWFjgww8/RFpaGtLT07F27Vr89NNPWLRoET/PsmXLYGJigitXrqC+vp4vR1fZ2NgodUElj6b2j62trdxKlry8PKmLV0X2Y2cU3c+q2H9dWa+qFBQUyEzLy8uDnZ2dwstQ9Lgos05NHWtN729N8vT0RE5OjlqWnZ6eDlNTU62OG4qg2EKxRdWxRRPH4sUXX8S///1vAMC+ffuwatUqqdc18bunqWMnuT5l4lBHy8nPz5eZLu97r+ptpHjce+NxZ2xtbeHs7Mxfk6lDTk4OPD091bZ8TaCYTDFZ1TEZ6Dxmdpei+747n29VxUBlPieqiFmqKIcy1FnmnqZ///7Izs7ufEYVGTNmDMaMGYOPP/5YY+vUBmZW1tgf+xC/JOfKPH68l87PZ25pjfLiQpn3y5v28ab1MDQyxns//Iaf7mfwyyOEEEIIIdJ643l+V9F5qXpp277QtvIS1cnJyUFrayuCg4OFLoqg6B6zsPeYOaqqD1NkX6vjmKjr/qWqaGsdrSL7VZN1iaqsQ+2MqusRult/oqrtUuZ4KbptytTlK0tV2y1PX64H78zIkSNhZGSEzMxMoYtCeglK1iKEaJyXlxdWrVqFQ4cOobCwELdv38bmzZvBGMN7772HgIAAODk5YfHixdizZw8ePnxIJwI9gJeXF5577jns3LlTY+scNmwYdHR0cPbsWY2tU9UcHR2RlZUlNe3SpUty5+2od4L2Xps8eTIuXLggM/3y5csYNWqU4gXthEgk4pMrbG1tsXDhQpw8eRJnzpzh57l27RreeecdeHh48MMV19XVdXmd48aNkzn28fHxSvW8r6n9ExUVhSNHjshM//XXXxEVFcU/V2Q/dkbR/ayK/deV9apKdHS0zLRff/0VkyZNUngZih4XZdap6mPd3ndb0/tbU6qrq3H9+nX4+/urZfljxoxBVVUVjh07ppbl9xQUWyi2qDq2aOJYLFiwAL/99huKiopw+vRpmRuvmvjdU9exa++7pGwcas+kSZPkdpgg7xxZ1dtI8bh3xmNFXL58GSkpKQgKClLbOvz9/fHHH3+obfmaQDGZYrKqYzLQeczsLkX3vTKf77ZUFQOV+ZyoImapohzKUGeZe5K6ujpcunRJ4RHiVGXDhg349ddfkZGRodH19mTDx45D4s1rMtMf3r6J15+fzD/3HxuB2LOnZea7d+WCzLRHd29j4frXYe/sCl3dZ/Ghsb5edYUmhBBCCOkFLl++jNjYWKGL0WPQeal6adu+0LbyEtXx9fWFlZUVduzYIXRRBEX3mIW9x8xRxX06Rfe1Oo6Juu5fqoq21tEqsl81WZeoyjrUzqi6HqG7dbaq2i5ljpei26ZMXX571L3d8vTlevDO7N69Gw0NDRg7dqzQRSG9BSOEkB6kubmZ3b59m+3evZvNnz+fWVhYMADMzMyMRUVFsa1bt7Jjx46x8vJyoYvaJ8XGxjIA7OLFixpb5yuvvMKcnJxYZmamxtapSsuXL2fz5s1j2dnZrKqqip0+fZpNnjyZyQvBLi4u7Nq1a6yxsZFFR0czV1fXTl/LyMhgvr6+7PDhw6y4uJhVVlay48ePM2dnZ/brr79KLb87YR8Amzx5MktISGD19fUsPz+fbdmyhc2ZM4efZ/LkyeyVV15hGRkZrKGhgaWkpLDly5fLXa8i0+7fv8/69+/P/vjjD1ZdXc3i4+PZyJEj2eeff65wuVW5fzp6/fHjx8zZ2Znt3buXFRQUsMLCQvbVV18xZ2dnlpKSIrWMzvZjZxTdz4ruv/a2q+307h5fZQBgISEh7Pvvv2fFxcX8/nRzc2MZGRkKr0vR46LMOlV9rNv7biuzv7VFa2sre/nll5m1tTUrLi5W23pWrVrFrK2t2ZUrV9S2DqFRbKHYourYooljwRhjK1euZJMmTWIvv/yyzGuqPtbypqni2CnzPVMmDnUkLS2Nubq6sn379rHCwkJWUlLCDh48yPz9/bu1jZ2heNw747Ei7ty5w8RiMZs3b55a13P9+nWmo6Oj1G9wT0MxmWKyqmMyp6OY2V55FY1diu57ZT7fbaepKgYqc12ripilinLI094+U2eZe4rW1la2evVqZmlpyfLz8zW67sbGRubi4sI2bdqk0fV2l7WNLXvl7ffZL8m5Cj8AKDT9X+duMvdBQ9l/f7yHfXMjkX0X95ht+WI/s3ZwZG98+m9+vs//uM5sxU5s3Xsfsq+vPWDf3EhkG3d9zgaPCJBZ5vCx49jEBUvYv87dZAcfZLLPzlxj42bPl1um9sqpzMPC2oZ99tlnQh8mQgghhBClBAQEsD//+c9CF0Nha9asYX5jQpU+V+sr56WTF61gEePGaeRYnDt3jgFgX19PULh8qtgXXdlvir5HyGO37ZtDDAArKirSyPEjnTt27BjT1dVla9euZbW1tUIXRxB0j1nYe8zcclVxn07Rfa2O+kp13b9U1TRtraNVZL9qoo6bm6bKOlRVbDtjiv+GdbfOVlXbpczxUnTblKnL5/ZFW6rYbmXrwfpqPXhHmpub2Y4dO5iOjg7bvXu30MUhvUjf/VYRQrRCU1MTS0hIYF9++SVbtmwZ8/T0ZACYrq4u8/b2ZqtWrWL79+9nCQkJQhe1zwgPD2fjNHTzkTHGSktLmb+/P/Py8tLK41xUVMQWL17M7OzsmImJCZs5cybLyspiAGRObg8dOsQ8PT2Zvr4+GzBgAPvtt98Ueu3x48ds7ty5zMLCgpmYmLDRo0ezI0eOSC2bW5+89Sri7NmzbPbs2czGxobp6+szT09PtnHjRlZZWcnPU1BQwJYtW8bs7e2Zvr4+GzZsGDt48KDMOuWVo72yXbt2jYWGhjJDQ0Pm6urK/v73vytddlXsH0X23/3799mUKVOYiYkJMzExYVOmTGH379+XmkeR/fj/2LvzsKiu+3/gb/Z9GWCGWdhEUGHEjV1RZNHECEZjSJtojE0Tbc3SLM83TZp+27Rp06TpN03SpPGxaZO4tC6JS0BNFMEFFERElCUqomwDMyzDIDADzDC/P/zd25lhWFTgMvB5Pc99ZmNmPpftzj3nvM8Zzki/z3r98N+/wfbJ3P338vO91xM4APqbN2/q09LS9G5ubnoXFxf9ihUr9BUVFYPWeT8/l7t5z5G+5kh/1oP9bd/Nz9kSqNVq/TPPPKO3t7fXf/vtt2P6Xt3d3frVq1fr7e3t9e+9956+p6dnTN+PC3RsoWOLodE4toz1z4Jx+vRpPQB9YWHhgMdG+2c9WB13+7Mbyf1D/S2N9Dg0nLKyMv2KFSv0Li4ueldXV/3y5cv15eXl97yPI0HH48l3PB5OX1+f/pNPPtE7OTnpU1NTx2WSlD/84Q96Kysr/fvvv6/v7+8f8/cbbXRMpmOyodE4JjOGOmbezff4fr73I/39Huw9RusYOJJaR/OYda913O3PYKQ163Q6vY2NzV3VOlEw54F2dnb39FlkNPzhD3/Q83g8fWdnJyfvfy/uNqxl+Ds2kvs/+T5fH7d8pd7ZzV3v4OSsD4mYp3/tb/8c8LofZuXqFyxJ1js4OeudXFz1UUuX6T89dlZvZW1t9HX/yr+sT3z4Ub2Ht4/e1s5OHxA6S//qX7cOeG/Tv797HVxJYS1CCCGEWJrOzk69nZ2dfs+ePVyXMmL3EtaaSp9LJ3pY616+F8P9zIb7vg33nKHuG8+fHYW1Jqa9e/fqeTyefubMmfoDBw5YZDvx/aA2Zu7bmEezbXGkfXRj0V85mu2Xo33fWO3zePTRDvd9Ha8+7pH+no7nvuv1I/8fdr99tqO1X3fT93s3/59H2pc/Vr/Lw/1/MvfYVOsHH86pU6f08fHxekdHR/0HH3zAdTlkkrHS6/V6EEKIBamrq0NeXh7OnTuHs2fPorS0FFqtFn5+fli0aBEWLlyIuLg4zJs3D/b29lyXO+kUFhYiPj4eBw4cwMMPPzwu79nS0oI1a9aguLgYf/rTn/Dcc8+xy68SQiYfKysrjPdHVC7ec6ooLi7G008/jZqaGuzYsQPp6elj/p56vR7vvvsu3n77bfj5+eHtt9/G2rVr6dhBCCF3gY7HU0d/fz8yMzPx61//GteuXcNrr72Gt956CzY2NuPy/h988AFef/11JCUl4bPPPkNwcPC4vC8hZPKwxOPHUDV/+eWXWLduHezs7CCTyZCQkIDq6upxrvD+FBYW4plnnkF9fT127NiBtLQ0Tupobm6Gv78/tm7dio0bN3JSw93y9uFj7XOv4MEnNnJdygB1VVfxx01PYmvOec5qeHphBN55+/fYsmULZzUQQgghhNyN7du349lnn0VdXR0EAgHX5YzIli1bkF9yGb/9ch/XpZjF9efSbb97A5rGGpzMzR3z98rJyUFKSgq+OFcGd57XmL/fZHelIA9vbXwMzc3N8PHx4bocYqChoQEvv/wyvvnmG4SHh+PVV19FRkYGXFxcuC6NTAGW2LZIph76PSVk9PX29uLIkSP44IMPcObMGSQlJeFvf/sbpFIp16WRScaa6wIIIeRu+fv74/HHH8fHH3+MCxcuoL29HTk5Odi8eTNu376Nt956C7GxsfDw8MCiRYvwyiuvYM+ePaitreW69EkhNjYWP/rRj/Dqq6+it7d3XN7Tx8cHJ0+exC9/+Uu89tpriIiIwMGDB9Hf3z8u708IIeTuVVdX48knn0RMTAw8PDxw6dKlcQlqAXcaqt544w388MMPiI6Oxrp16xASEoL/+7//Q3Nz87jUQAghhEx0SqUSf/vb3zBz5kysWbMGISEhKCsrw9tvvz1uQS0AeOWVV5Cfn4/6+nqEhYXhpZdeQlNT07i9PyGETDQ/+clP8O677+L27dv46KOP8OMf/5jrkkassrISjz32GOLj4+Hr64vS0lLOgloAwOfzsXLlSuzYsYOzGizV2lliHN7+OTo7VOjr7cXNynJs/c1rWLFuI9elEUIIIYRYlE8++QQZGRkWE9SaaOhzKSFTg0Qiwd69e3H58mXMmTMHmzdvhkgkwtNPP42cnBxotVquSySEEELIJKDX63H+/Hm89NJL8PPzw9q1a+Hq6oozZ84gJyeHglpkTFBYixBi8VxcXJCUlIRf//rXOHz4MNra2tDQ0IDt27cjKioK58+fx4YNGxAYGAiRSIT09HS89dZbyMzMRHt7O9flW6Q///nPaGxsxNatW8ftPW1sbPDb3/4WlZWViIiIwCOPPAKpVIpt27ahu7t73OoghIwtKysro8vJ+p6T2blz55CRkYEZM2agoKAAe/bswalTpxAUFDTutQQEBGDXrl24du0aVq9ejd/97neQSCRIT0/Hnj170NXVNe41EUKIJaDj8eSlVqtx4MABPPLIIxCJRHj99deRmpqKiooKHDhwAKGhoZzUFR0djdLSUnz88cfYu3cvgoKCsHHjRpSUlHBSDyHEclji8WO4mv/+97+zKw2qVCr87//+73iWd9f0ej2OHz+OlStXQiqVoqKiAocOHdu2JDAAACAASURBVEJ2djYCAgK4Lg9PPvkkcnNzcevWLa5LsShvbP0KRTnHsHlpFH6yMAKf/fpVLHtsHR7+Ka1oRQghhBAyUkePHkVRURGef/55rkuxWPS5lJCpRSqVYteuXWhoaMAf/vAHlJaWIiUlBQKBAOvWrcPevXuhVCq5LpNMIpbYtkimHvo9JeT+dHV14fDhw9i8eTMkEgliY2Nx5MgRvPjii7h16xaOHDmChIQErsskk5iVntZGJIRMAV1dXbhw4QIKCwtRUFCAgoICNDY2wtbWFrNnz0ZcXBy7zZw5k+tyLcLrr7+Obdu24fr16/D29h739y8vL8df//pX7Ny5E46Ojnjsscfwk5/8BPHx8eNei6Ub7mRuon5UsNS6hzIZ98nQZN+/qaypqQk7d+7El19+ifLyckRHR+PVV1/F2rVrYWtry3V5rK6uLhw8eBC7du3C8ePHYWtri6SkJKxatQppaWnw8/PjusRJw1L/3i217qFMxn2aTLj4+dDvxNTT1NSErKwsZGZmIjs7GxqNBklJSVi/fj0eeeQRuLu7c12iEY1Gg127duHDDz9EWVkZ5s+fj6eeegpPPPEE+Hw+1+VZHEv9m7fUuocyGffpfkyU78dEqcMSVVVVYceOHdi+fTtu3bqFpKQkvPzyy1i5ciWsrSfOPIF9fX0Qi8V4+eWX8atf/Yrrcobl7cPH2udewYNPbOS6lAnp6YUReOft32PLFhqcSwghhJCJTa1WY/bs2YiOjsbu3bu5LueubNmyBfkll/HbL/dxXcqEtO13b0DTWIOTublj/l45OTlISUnBF+fK4M7zGvP3m+yuFOThrY2Pobm5GT4+PlyXQ0boxo0b+Pbbb5GZmYkzZ86gv78f8+bNQ3JyMpKSkrB48WK4ublxXeakZqntZ5ZaNxkfU/n3Y7Lu+2TdL3L3NBoNzp07h9zcXOTm5qKwsBBarRZRUVFYtWoV0tPTMXfuXK7LJFMIhbUIIVNWbW0tG9wqLCzExYsXodFo4O3tjbi4OMTHxyM+Ph4xMTFwdXXlutwJR6VSITQ0FOvXr8cHH3zAWR0KhQK7du3CF198gStXrmDatGlYu3Yt1q5di9jYWJpVghBCxkhjYyMOHDiAr7/+GqdPn4abmxt+/OMfY+PGjYiNjeW6vGE1NzcjKysLWVlZOHbsGDo7OxEWFobk5GQkJydj6dKl8PKiji9CCCGWp6OjA6dOncKJEydw4sQJlJeXw8nJCSkpKUhPT0daWhpEIhHXZQ5Lr9cjLy8PX331Ffbt24euri4kJiZizZo1WLNmDSQSCdclEkLIlFNZWYn9+/dj//79uHjxIsRiMdatW4ennnoKUqmU6/IG9cILL+DYsWP44YcfJnxbIYW1hkZhLUIIIYRYipdffhlffPEFKisrLaIdxhCFtYZGYS3LRWEty6dUKnHq1Cnk5OQgJycHFRUVsLa2hlQqZcd4xcbGYubMmRP+/J8QQggho6O2thZnz55lx4KXlJSgt7cXwcHBSEpKYseBCYVCrkslUxSFtQgh5P/TarW4evUq8vPzkZeXh+LiYlRUVMDGxgYzZ85EZGQkEhISsGjRIoSHh9OJPYBt27bhueeeQ2FhIRYsWMB1OSgpKcHevXvxzTff4Pr16xAKhUhNTUVKSgpSU1NpxRRCCLkParUaeXl5OHHiBLKzs1FSUgJnZ2esXLkSjz76KNLS0uDo6Mh1mfekp6cHp0+fZge1l5SUQK/XY9asWYiJiUFMTAxiY2MREREBOzs7rsslhBBCWFqtFuXl5Th//jy7lZeXQ6/XY86cOUhJSUFKSgqWLl0KJycnrsu9Z2q1GllZWdi/fz8OHz6Mzs5OzJkzB8nJyUhJScGSJUto9lRCCBkDCoUCubm5OHHiBHJycnDjxg34+vpi9erVWLt2LZKTk2FjY8N1mcMqKipCTEwMzp8/j+joaK7LGRKFtYZGYS1CCCGEWIKdO3diw4YN2L59O9avX891OXeNwlpDo7CW5aKw1uSjUCiQl5fHDtAuLi6GRqOBh4cH5syZg4iICMydOxcRERGYPXs2tSETQgghFkyj0aCiogKXL1/GlStXcPnyZZSWlqK5uRm2traYO3cu4uPjERcXh4SEBAQGBnJdMiEAKKxFCCFDamhowLlz53Du3Dn2xL6npwd8Pp9dfWvhwoWIiYmx6IFv90qv12PZsmVobm7GhQsXJtQA9suXL+PIkSPIzs5Gfn4+NBoNZs2axYa3kpKS4OHhwXWZhBAyYel0Oly8eBHZ2dk4ceLEgP+ly5cvx7Jlyyw2oDUUpVKJ06dPo6CgAOfPn8eFCxfQ0dEBR0dHLFiwANHR0WyIKyQkhOtyCSGETCG3bt1CYWEhioqKcP78eVy8eBFdXV1wcXFBZGQkYmJiEBcXh8TExEk74ECj0eDEiRM4fvw4cnJyUFZWBhsbG8TExLDhtLi4ODg4OHBdKiGEWJzbt2+zqzPm5OTgypUrsLGxQXR0NFJSUrB8+XIsWrQI1tbWXJd614KDg/H444/jj3/8I9elDInCWkOjsBYhhBBCJrrCwkIsXboUzz//PN5//32uy7knFNYaGoW1LBeFtSa/vr4+lJSU4OLFiygtLcXly5dRVlaGjo4OWFlZYdq0aWx4iwlyTZ8+3SLbOQghhJDJrKamhg1llZaW4sqVK7h+/Tq0Wi2cnJwQHh7OHtMXLFiAqKgoODs7c102IWZRWIsQQu7CYKtvMcnsRYsWISEhASkpKfDymhqNZdevX8fcuXPxq1/9Cr/+9a+5LscstVqN/Px8ZGdns6vBWFlZYe7cuexg+5iYGMyaNcsiZgMmhJCxIJfL2YHfRUVFKCgoQHt7O0QikdEqhRKJhOtSx11/fz9++OEHdsWSwsJCXLlyBX19ffDy8sKcOXMQFhaGiIgI9tLb25vrsgkhhFgwpVKJ8vJyo+3KlSvszGBSqZRd+TE6OhpSqXTKnsvI5XKjVV+qq6vh7OyMyMhIREdHs9v06dO5LpUQQiYUnU6HiooKFBUVsVtpaSl0Oh27emFycjISExMnxczTL730ErKzs1FWVsZ1KUOisNbQKKxFCCGEkImsoKAADz74IJYsWYIDBw5YbFsNhbWGRmEty0VhralJr9fj5s2bA1bhuHHjBvr7++Hi4oIZM2YgJCQEoaGhCAkJQUhICGbMmAFfX1+uyyeEEEImrdbWVlRVVaGqqgrXr1/H9evXUVVVhatXr0KlUgEAgoKCEBERgTlz5rBbaGioxZ5rkamJwlqEEHKf6urqcOrUKZw5cwZnzpxBZWUlbGxsMGfOHCxZsgSLFy/G4sWLIRAIuC51zHz44Yd47bXXcObMGcTGxnJdzrBaW1uRm5uL/Px8FBUV4eLFi1Cr1XBzc2MH9MXGxiImJgb+/v5cl0sIIaOus7MTFy9eZMNH58+fR01NDaysrBAaGsqGWJOTkyGVSrkud0JSq9UoKSnBhQsXUFZWhvLyclRUVKC9vR0AIBAIMHv2bISHhxtd8ng8jisnhBAykahUKlRUVKCsrMzoUiaTAQDc3d0RFhaG2bNnQyqVIioqCgsWLICLiwvHlU9cN2/exMmTJ1FQUICioiJcuXIFWq0WXl5ebHArKioK0dHREIvFXJdLCCHjpqqqyiiYVVJSgq6uLjg7O2P+/PmIjo5GfHw8kpKSwOfzuS531OXm5iI5ORlXr17FjBkzuC5nUBTWGhqFtQghhBAyUZ05cwYrV65EUlIS9u7da9ErflNYa2gU1rJcFNYihrq7u1FeXo7S0lJcu3bNaLC4RqMBALi5uQ0IcYWGhiI0NJSCXIQQQsgItLW1GYWxmEBWVVUV2traAAD29vaYNm0ae5ydMWMGuwqmh4cHx3tAyP2jsBYhhIyy5uZmFBQUsKtvnT9/Hn19fQgODmZX3lq0aNGkGvyu1+uxatUqVFRUoKSkBO7u7lyXdFe0Wi2uXLliFFqorKyETqeDQCDAnDlzIJVKIZVKERERgfDwcIvbR0LI1KTT6VBVVcWGicrKylBWVoZr165Bp9PB19fXaIXB6OhoChPdp/r6+gGD7isrK9HR0QEA8PX1RWhoKKZPn85uwcHBmD59+qQcEEkIIeROI/SNGzfMbg0NDQAAV1dXNpRluFpjYGAgx9VbPrVajUuXLhkFFK5duwa9Xg+RSMQG4QwD1tTwTwixZAqFYkAIuKysDEqlEnZ2dpg9ezaio6MRExODqKgoSKVS2Nracl32mNPpdBAKhXj99dfx6quvcl3OoCisNTQKaxFCCCFkItq5cyeeffZZrFy5Ev/5z39gZ2fHdUn3hcJaQ6OwluWisBYZCb1ej/r6eqPwFnO9qqoKarUawJ0gV2BgIAIDA+Hv789uzG2JRAJ7e3uO94YQQggZOzqdDo2NjaipqUFtbS3q6upQX1+PW7duoa6uDrW1tWYDWcyKlswWGBhIK2WRSW3y98ARQsg44/P5SE9PR3p6OgCgo6ODDW6dPn0ae/fuRU9PDwICApCYmIjU1FSkpqZa9IzeVlZW+PzzzzF37lw8++yz2L17N6ysrLgua8RsbW0xf/58zJ8/H5s3bwZwZ9WZ4uJiFBcXo6ysDGfPnsXnn3+Orq4uAHeWWA0PD0dERAQb5AoLC4OTkxOXu0IImaL0ej1u3bqF8vJyNpTFrPTU09MDa2trBAcHY/bs2XjkkUcwb948xMTEICAggOvSJx0/Pz/4+flh+fLlRvfX1NSgsrISFRUVqK6uxo0bN3D27FncunULfX19AO6snmIY4jLcJBLJlBhASQghlqi/vx8NDQ2DBrKYVRdtbW0RGBiI6dOnIzw8HOnp6QgLC0N4eDiCgoIs6hzKkjg5OSE+Ph7x8fHsfSqVij3fq6ioQH5+Pv7xj3+w53v+/v4DVsecNWsWTdpBCJlQWlpa2PM+w1BWS0sLAMDLy4tts/rRj36EBQsWYP78+XB0dOS4cm7Y2NhgxYoVOHTo0IQOaxFCCCGEEMuh0+nw5ptv4r333sOmTZvw6aefUjs+IYRYOCsrKzZ4lZSUZPSYYZDrxo0bqK2tRU1NDX744QccP34c9fX16OnpYV9HJBIhICCAfb2AgAD2tp+fH3x9falfgBBCyITV2tqK+vp69nhXX1+Puro6NpzV2NgIrVYL4E4/uFgsRkBAAAIDA/Hggw8iICAA06dPp0AWmfKolYAQQsaYu7s7VqxYgRUrVgAANBoNzp8/j1OnTuHUqVPYvHkzNBoNpFIpli1bhtTUVCQmJsLV1ZXjyu+Or68vvv76ayQnJ+P999/Ha6+9xnVJ98XV1RWJiYlITEw0ul8mk6GiogLl5eUoLi5GdnY2Pv74Y3b2HB6Ph+DgYAQHByM8PBxSqRTBwcGYMWMG3NzcuNgVQsgkolQq2cF41dXV7Hb16lV0dnYCuPN/KDw8HIsXL8bPfvYzhIeHY/78+XBxceG4+qmNmVntwQcfHPCYUqlEdXW10c82OzsbW7duhUqlYr+OOcaIRCKIxeIB16lxgxBCxoZSqYRMJkNjYyOqq6uNrldXV6Ouro4N3jo4OEAikSA4OBiRkZHIyMhgzw+kUumUHSA/0Xh4eCA5ORnJyclG9xue71VUVKCgoABbt25lQ1yG53vmNkIIGW3MuYLhxkzSwYSBPTw8EBISgvDwcDz44INse9S0adNowI+JtLQ0rFu3Dh0dHRTAJYQQQggh96W2thYbN27EuXPnsGPHDqxfv57rkgghhIyxoYJcDKYtx7QfobCwEAcPHsStW7fQ39/Pfj2Px2P7ew0veTweBAIBRCIRpk2bRu0YhBBCRo1h37e5S6VSibq6Oty+fZt9jqOjIzs2SSqVsotTMH2kAQEBNHEFIYOw0uv1eq6LIISQqUytViM/Px/Z2dnIzs5GSUkJrKysMG/ePHbVrcTERNjZ2XFd6oj89a9/xf/8z//gyJEjA1YVmay0Wi2uX7+OyspK3Lhxw2gJ9Pr6erahRSwWGy3hGhwcDH9/fwQFBUEoFMLa2prjPSGEcE2lUqGuro5dGUupVKKmpgZVVVWorq5Gb28vAMDT0xMhISHsDCQhISGYOXMmwsPD4eHhwfFekNHU3NyMGzduoKamBg0NDUZLh9fV1aGpqQnMKZ2dnR3EYjE7M5tEImFnZhMIBBAKhRCJRHB2duZ4rwghZGJQq9VoampCY2MjmpubUVdXh4aGBtTX17OzgzU0NLDHXwAQCoXsKorMDJgSiYRdMcvX15fDPSJjob+/Hzdv3kRlZSU7Yypz3ldTU2P0+Yz5bMasjBkYGMj+rtAqzIQQczo6OoxmomT+vzCXzORATk5OA/7HhISEICwsDH5+fhzvheVobW2FQCDAoUOHkJaWxnU5Znn78LH2uVfw4BMbuS5lQnp6YQTeefv32LJlC9elEEIIIWQK27lzJ55//nmIxWLs3LkTCxYs4LqkUVFVVYU9e/bg9OnTaOrowm+/3Md1SRPStt+9AU1jDU7m5o75e+Xk5CAlJQVfnCuDO89rzN9vsrtSkIe3Nj6G5uZm+Pj4cF0OmWLUajWUSiXkcjmuXr2K6upq3LhxAw0NDWhubkZ7ezs6OjrQ3d2Nnp4e6HQ6o+d7enpCJBLB19cXEokEAoEAYrEYvr6+8PHxgY+PDwQCAby9vS1ucnBCCCH3R61Wo6WlBa2trZDL5WhtbYVCoYBMJkNTUxPbHy6Xy9Hc3Gz0XA8PD4jFYggEAqPji1AoZPvFAwMDaZwRIfeBYoyEEMIxJycnNpQF3BmUffLkSWRnZ2P37t1477334Orqiri4OPbrIiMjOa56cC+//DJKSkqQkZGB06dPY+7cuVyXNOZsbW0RFhaGsLCwAY/19PQMCHBVVVUhNzcXtbW1bAOLnZ0dO6g+MDDQaBl05jYFMAixbL29vWhoaDAaiFdXV8ferqurQ0dHx4Dn2djYwN3dHUFBQfDz88Ps2bMRHBxsNLsWrag0efH5fPD5fMTFxZl9vLe3FzKZDHV1daitrUV9fT27DPmJEydQX18PhUJh9BwXFxe28d7X1xcikYidmY25j2mMsbe3H4/dJISQUdPX1weFQoHGxkY0NTWhubkZDQ0NUCgUbGM00zhtOBsYAPj4+EAikSAgIAARERFYsWIF2wAtkUjg5+cHBwcHjvaMcMXa2poNRpjS6XQDwhU3btxAVlYWqqqq0N3dzX6tj48PG6JmQlzMOZ+/vz/EYrHFTNJCCBkZjUZj9BmdCQIzn91NzwF5PB77/yY9Pd0omCWRSDjck8nD29sbs2fPRm5u7oQNaxFCCCGEkImrvr4eL774Ig4ePIgXXngB7777rsVPzlJTU4N9+/Zh9+7dKC4uhkAgQGhoKNdlEULIhNXV1YW2tja0traira2NHRxveJ+5S8PVtADAwcEBXl5e8Pb2hpeXFwIDA9nbPj4+cHd3h62tLYRCIXQ6Hdvn0dTUBJlMxga9FAoFenp6jF7b0dERPj4+8Pb2ZvuamdumwS7mNvUJE0LIxKDVatlji2kAy/D+5uZmNDc3o6Wlxag/ErgzlpUZAyQSiRAQEIC4uDg2kMWMExIKhRZ/PkOIJaCwFiGETDB8Ph8ZGRnIyMgAAFRWViI7OxvHjx/HH//4R7z++usICgrCsmXLsHz5cixfvnzCLXf9z3/+E01NTVixYgXOnj2LoKAgrkvijIODA8LDwxEeHj7gMa1WC5lMhtra2gGhjcuXL6Ourg5KpZL9end3d3YQHzN7ATOYnlk1RSwWT7jfB0Imu97eXigUCjYUYzozSVNTE+rr69HY2MiugOTg4GA0QDcyMtIopOnt7Q2FQoHa2lrIZDJ2lQ+ZTIacnBzs3LkTbW1tbA329vYQiUTsSh/MybZYLDa6jxpZJx97e3sEBQUNeazt7e1Fc3Mz+/vI/J4ywYXS0lIoFAo0NDSgs7PT6LleXl4QCoVsA763tzfbeG+68fl88Hi8Md5jQshUo1Kp2Ibm1tZWo41piGauKxSKAbOBmQZU586daxRQZT5DCwQCCmKRu2ZjY4Np06Zh2rRp7AQshlpbW43O85jAxqVLl5CZmQmZTIa+vj4Ad0JhQqEQ/v7+8PX1ZVfENJzJjuk4cXR0HO9dJYQY6OzshEwmg1wuZ8/7mM/TzGdt5vM2w9HREQEBAex5YHR0tNFKjQEBAXBzc+Nwr6aO5ORk5OTkcF0GIYQQQgixIFqtFh9//DF++9vfQigU4tixY2bbASzFzZs3ceDAAXz99dcoKCgAj8fDmjVr8Kc//QnJycl44YUXkF9ymesypzSFQoFdu3bhu+++47oUQiY1tVqNxsZGyGQyKJXKITfm6zQazYDXcXR0BI/HYzexWIyoqCij+0w3kUgEKyurUdmP27dvs30kpoP5FQoFWlpacOnSJaP7TcNjbm5u4PP58Pb2hqenJ3g8Hns52HXmkiaVJYQQY3q9Hu3t7ewxxNx100ulUonm5majsaIMLy8v9n+0j48PRCIR5syZYzaMy+fz4enpycFeE0IGQ2EtQgiZ4JgVm1544QX09fWhsLAQx48fx/Hjx/Gvf/0LNjY2WLx4MVauXIm0tLQJMdOVnZ0d9u3bhyVLlmDFihXIzc2FUCjkuqwJx9bWlh2QM5jOzk6jFXjq6+vR0NAAuVyO8vJydtC9Vqtln+Pk5MTOjMCsjsIM9jMcbM9cp4YTQgZiGjQNB4e3tLSwA/IaGxvZJaJbWlqMnuvp6cn+/UkkEkyfPp0NYjFhLKFQOGzjq6+vLyIiIgZ9vKenB62trWhsbER1dTVkMhl7vaioCN9++y1qa2uN/j8wDb+Gq3IFBwcbXaewzeRjb28PiUQyotn41Wo1O+C0ubmZ/Z1n/gZu3bqFCxcusLfVarXR821sbAYcZ5jrfD4fHh4e8PT0ZBvvDW/b2tLpKSGTlU6nQ3t7u9lNpVKxx9iioiLo9XpoNBp2dkrD4xhgPCMkExSdPXs2GyZlgldM0MXZ2ZmjvSYE7O/pvHnzzD7e39+PpqYmo9V2mAkArl+/jry8PDQ1NRmF9AHAw8MDYrEYfD7fKMg1WKDa2tp6PHaXEIvV19c3IAzc0tICuVzOhq/kcjnkcjlkMpnRLJVWVlYQCATsMYg5j2NWamRW1BMIBBzuITGUlJSEjz76CC0tLfDx8eG6HEIIIYQQMsFlZ2fj1VdfxdWrV/HLX/4Sb7zxhkVOolJWVoYDBw7gwIEDKCkpAY/HQ3p6Ot58800sW7aMJvubAPr6+nD48GF88cUXOHr0KJydnbF48WKuyyLEIqjV6kHDVYOFr+Ry+YDAkmnoitmYPnSmj93wMYFAwHkfp5ubG9zc3DBt2rQRfb1erzdqAzOcHK+trY0NDty4cWNAwICZnNb0/c2FuAyvu7q6ws3NDZ6ennBzc2NvM/eNVnCNEEJGg0qlwu3bt9HZ2YnOzk60t7ejo6MDnZ2duH37ttmgleF97e3tZl/Xw8NjwP9JsVgMqVQKHo/HjqthglfMWBsa20mIZaPRcIQQYkHs7OyQkJCAhIQE/O53v0NbWxtOnDiBzMxMvP3223jllVcQHByM1NRUpKWl4YEHHuCsYdXDwwNHjx7F0qVLkZKSgtzcXBqYcg9cXV0hlUohlUoH/Zr+/n4oFIoBszgzK/tcunSJXT2lo6NjwPNNB9UbLodu+OGfGUzv4eEBV1fXsdxtQkZNX18fOxC8vb3daFUO5joTyDJsiOzt7TV6HQcHB/j4+LADvwMDA7Fw4UKjlQ6YVe/Gq5POwcEBYrEYYrEYkZGRZr9Gq9VCLpebXaHr1q1bOHfuHOrr641mAHNzc4O/vz8kEgnEYjEkEgmEQuGAS1p9ZHJycnJiVwgZie7ubvZvarCVb+rr61FSUoKWlhaoVCqoVCqzr+Xq6moU3jK8bnibabzy8PCAi4sLXFxc4OHhATc3N847QwiZjHQ6HTo6OtDR0YGuri50dXVBpVIZNTYzx1lzt5nGbHOYTjhvb2+4uLigtrYW3d3dbAepq6srJBIJpk2bhtDQUEilUoSHh2P69OkQi8Xj+W0gZExYW1uzn+eG0tPTY3S+Z7qSz/nz59HY2IiWlpYBq2QCMAo4Gm5Mpw9zmzm+MhshloaZrdI0EMyswjjYCo3m2ko8PDwgFArZMGRkZOSAle6YFRrpM6hlSUxMhLW1NU6fPo1HHnmE63IIIYQQQsgEdfHiRbzxxhs4duwYVq5cia+//npCTJo6Ur29vcjLy8PRo0dx6NAhXL9+HSKRCKtXr8Z7772HpUuXws7OjusyCYCKigps374dX375JZqbmxEfH49PPvkE69atQ2FhIbKysrgukZBxYy50NVwIq6WlBX19fQNei5nE1FzoynRj+sSnSv+3lZUVOxbobjHtbkOtDtPe3g6FQoGrV6+yX8+EHgbj6urKBrjc3d3Zvl/mPg8PD7i7u7O3XV1dwePx4ObmBgcHB7i7u8PZ2RkODg4U/iJkClKpVOjp6WHDVT09PVCpVOjo6GD//zAhK8Pb5u4z11/AcHZ2hqur64Bw6qxZswbcZy64Sv+bCJmaqBeREEIsmJeXFzIyMpCRkQGdTodLly4hMzMTWVlZ2LZtG1xcXJCUlISMjAysXr0a7u7u41qfWCxGbm4uG9g6fvw4rbA1BqytrSEUCiEUCjFnzpwhv7avr88okNLa2jpgKfSmpiaUlZWxg+7NNZjY2toaDZ5nTiyGGlzv4uLCXjo5OY377yOxPD09Peju7kZ7ezu6u7vR1dU15Koc5m53dXUNeF07O7sB4cRZs2aZXQmIWZ3AUgOKtra2I1pRiVnRpK6ujg111dXVoampCRcvXoRCoYBcLjd6DhNeGyzMRaGuqcHZ2RnOzs7w9/cf8XMMl3wfLuDR3t4OmUxmdL+5Zd8ZDg4O7PHG1dWVDXPxeDz2OtN4xtxmGvhdXFzg6OgId3d39jhnZ2dnsX//ZGrq6upCb28vXrzCbgAAIABJREFUVCoVtFotVCoVent70dXVBaVSyYatmBnAmOvM7e7ubrYhWqVSoauryyjQa8rc5z8fHx9Mnz7d7GOmnxvNrfbT19eHuro6VFdXG21nz57FF198wX42dXBwgEQiQXBw8IBNKpVa5AzHhAzGwcGBXaV1OBqNxuwKQYbnfHK5HBUVFexj5jqerKysBpzXMX/PhpeG15njLXO+5+rqSgO/yIhpNBp2QI5arWbDwaafG5nwv+HnReZysE5U05CiQCBAWFgYO1GN6bmgt7c3BbAmMQ8PD0ilUhQUFFBYixBCCCGEDFBZWYm3334be/bsQXR0NE6ePInExESuyxoRmUyGI0eO4OjRozh+/Dhu376NsLAwrF69GqtXr0ZcXBytvj1BtLe3Y+/evdi+fTvy8/Ph7++PjRs3YtOmTQgODua6PEJGBdPOM9wKV8wmk8nMrkRiutoVM5GpudAVs4lEIhoQP0aY9uKgoKB7er5SqTQblGBud3Z2su1/zH1NTU1smMLwuUOxt7dn+4FNw1w8Hg8ODg5wdnaGu7s7HBwc4ObmBhcXFzbs5ejoyLZz29jYsJdMmzfzWoSQoWm1Wty+fRv9/f3spL7MeA+lUsmOC+vo6EBPTw9u376Nrq4u9PT0oL29ne03GO7xoTg7O7MhT09PT7b/ytXVFXw+32j1P1dXV7i7u7PjTUwDo7TCFSHkXlCPIyGETBI2NjaIjIxEZGQk3nrrLVRXVyMzMxMHDhzA008/jc2bN2PZsmVYs2YN0tPT72mGlHshkUiQm5uLlJQULFq0CN9//z1CQkLG5b3JQHZ2dhCJRBCJRCN+Tk9PD1pbW4cMxTCz49TW1g4YaD/UAF83Nzc4Ozuzq6Iwg/49PT3Z6+7u7nBzc4OTkxNcXV3ZRpPBLplGF+aSjA3mhNr0kll9w/Syr6+PbVhTq9Xo7u6GUqlEd3c31Go129imVqvZmUp0Op3Z9zYdOMpsAoEAM2bMGDI06O3tTUFBM5iZs4YLfDIN5UyjuuHlqVOn0NjYiJqaGqOfnaOjI8RiMUQi0aCXAQEBcHNzG+vdJBOElZUV21lyrwwDmcxAXqZhjvlfw9xmgp5yudwopNLZ2ck+PhymQZ5pgPfw8ICtrS08PDzY442TkxMcHR3ZFb54PB7beA+AbbwzDIAxX2tra8v+DTDvYfhcYlk6OzvR19fHHhsN72OOi8B/g1WGjdPMMbW9vR1arZZteO7u7kZ3dzd6enrYY6RSqWTfYyQN0QDYz12GIUWmkTkwMJANMbq7u8Pd3Z193PA287ntfv6Gh2JnZ8eGrsxRKpUDglzMuU9jYyOAO2HlgIAAs0GuGTNm0DGHTGqOjo4jCusb6u3tRVtb24AgjOl5H7NK0Y0bN4zuG2qWQea45+7uDicnJ/Z/iJOTE5ydncHj8eDk5AQnJyf2PNDBwYE9HjLndsz9zPGWOTYzl2RsMccn5njGHMOYY5NarYZarYZGo4FGozE6z+vq6kJ3dzc7mEKtVqOzsxMdHR3s8a29vR16vX7Q9+fxeAPCgl5eXpg2bdqAAKHpeaC3tzcNRiQDxMTEoLCwkOsyCCGEEELIBFJaWoo//vGP+OabbzBz5kzs2bMHa9eundCD/ZVKJU6fPo3c3Fzk5OSgrKwMjo6OSEpKwp/+9Cc89NBDmDZtGtdlkv+vv78fOTk52L59O77++msAQFpaGo4fP46UlJQJ/btGpjZzq10NF8CSy+Xo7+83eh3T0JXpaldMv7HhY7Si+eRzv33EhpRKpdEKOkz7ZHt7O3p6etDV1YXbt2+zfWvd3d3s4yqVCk1NTYOuxjNSTBs1M16JaQ9n+nmtra3h4eHB7jtwZyIha2trtp+YaQM3fAyA0Qphg103/F6OVb8dsSyGY61UKhX7v9jwumF7vLnrTH82Mwkv8N+AFfM6TJ8B01dg2D+gVqvZyURHytXVlZ1Y11yw0s/Pb8hgpaenJzuxr2FI0/BvihBCuEKfZgkhZJIKDg7GL37xC/ziF79Ac3MzG9zasmULnn32WSxevBhr1qzB6tWrERAQMKa1+Pn5IS8vDytXrsSiRYtw+PBhREVFjel7ktHj4OAAsVgMsVh8T89nGjuYwfLMYCxmqWHDFZOYx1QqFRQKhVFwh3mMGQw2UqbhLcNB8oYNIwCMZn43XU3F8ARusAGBhoPthzOShpKR7utgJ7mGA8KB/w6wM/ccwxNw5iQaABuyYi4NB56PBBOsYhqjDAN6THiKOXF2cXFhZzRhTsCZAZyGQT7DnxkZX0zjqVQqHfRrent7oVAoUFdXB4VCgfr6esjlcvby5MmTkMvlI16pSywWQygUwtfXFyKRiEKYBADYlTxGC7PiUG9v7z2HZFpaWtgVjXQ6Hdrb29n/nQCGHYQ8FOY4ZnjcMp2xzfS2uVXBTI89TCcAY7gB74adBSN1Nw2ghg2+I2X4PTbHNMRkemwEjBungf+GqBimx0zD92SOrXd7fDTFdKww32NzK7x5eXnddWjQ09MT9vb27Exhk6HDn8fjsZNUmBosyJWdnY1bt26xP2emA9jcilx3M6kBIZOFvb09u1rzvWBCp8xkDMz5XmdnJ7tin2kwh5nAobq6esBz+vr6hpy8wRzTyTtMj4OGx0DmfyXw3/MVhuHx1PR80ZDpMXS4uoYz0v1lPpuYMj2GGp5LGoaCAePjnOlxkTkmMpd3+3NgZpcdbCIWkUgEJycn9pyPCfB5enqyAT7D59D5HxkrsbGx+Pe//w2tVjshB33drCzD2e8yuS5jQurrHXmbICGEEELISOTn5+PPf/4zMjMzMWfOHOzevRtr166dkIM6W1tbce7cOZw8eRInT57EpUuXoNfrMWfOHKSkpOC9997D0qVLR2VSk/bWFvpMOoim2lvwtBt5O2t5eTm++uor7Ny5E01NTViyZAk+++wzrF27dkAb/mAu5ByDI/WP3bfa61e5LoFT5kJXw4WwWlpa0NfXN+C1DCfrNA1dmW5isRgSiYRWISKjbjSDX6YMg19M26ter2fbSwcLqjDtt6bja/r7+1FdXQ1g8NDLvfSTmmPY5j3YdYa5/mRz95kbC2Vu4tGRTkZ6P32W9xq+uZ++etO+ZHOYvg1Dpn3OgPlxYObuMxy3xTAc82XYdn+37fiDYSafNfxdYX5WpiFDoVAIe3v7AYFFpo+G+Z0ZKrDo4eHBTt5HCCGTmZX+Xo9AhBBCLFJnZyeOHj2KAwcO4MiRI1CpVIiMjMTq1auxZs2aIQfgj8Z7P/roozh16hT+8pe/4Oc///mEbOgmloE5MTW9NHef4aXh4DbTgdWGJ7Cmg+CYBhNg8BCVuRNtcwYbYGfqblZVGawxw7BxynDgoelrGw42NFyVzHBJd8OZfwa7ZE7azTX0EGKICXWZhrlML01DXS4uLhCLxfD19WUDXAKBwOg+sVgMPp9/16ESQsaDYXiIaRQ2PC4wjb2GASHm+GQuJMQwvW0aUjIXJjJtlB7qOGYu5DScu50xCzAeQD9SQw2YH0lozTCsDQwcWG96zDS8PVSQzvBYaLhfzPvTajDjq6enBw0NDWbDXOXl5WyHx2BBruDgYAQFBdH5CyHjbCQrOpk7HzQ8tpoewww7TU2Pj4bH08ECwXdzTDQ9Pg9mpKEuYPCJPwzPCU2PMUM9Zvh6zDGVuRzpCmcdHR3Ytm0b/vnPf6KlpQVpaWn42c9+huXLl9P/TTIhXb58GXPnzsWlS5cwd+5crssxMm/efJSWXuK6jAnL2toa+/fvx8MPP8x1KYQQQgixYH19fdi3bx8+/PBDFBUVIS4uDr/61a+QlpY2YSY70uv1qKysxLlz55Cfn49z587h6tU7QROpVIqkpCQkJSVhyZIl8Pb2HtX3fuedd/Dmm2+O6mtONuuffBI7tm8f9PGGhgbs3r0bO3fuxKVLlxAYGIinnnoKTz31FIKDg0f8PuXl5ViwYMGI+p/JyPC8vNBQX2/xbfNM8Gq4Fa6YTSaTmQ2BmK52ZW51K9NNKBRSew8hY8wwuGU4Gddg1w3brAe7bq6v2FwgyNx9pv3OgPlxTyPpG77bCbqHq2OkDMdB3S1z/c2mzPX7mmv3N3efudrMvafhxKqDXTfs9za8btifPth1QgghY4PCWoQQMoXpdDqcO3cO+/btwzfffIOGhgZMmzYN6enpyMjIwMKFC0e9kUWn0+H3v/893nnnHURFReGdd95BUlLSqL4HIYSQyYXpRDDscGCum95nyHBWN8POBdP7fH19YWNjw9HeEUII4ZpWq0Vtba3ZINe1a9fYzit7e3v4+fmZDXKFh4dbfAc/IYTcr97eXhw6dAjbtm3DiRMnIJFI8NOf/hTPPfcc+Hw+1+URwtLpdODxePjLX/6CTZs2cV3OqFKr1UhISIBWq8WFCxeMJiUghBBCCJnq5HI5/vnPf+Lvf/875HI5HnnkEbz88suIi4vjujR0dXWhpKQE+fn5yMvLQ0FBAVpaWuDs7Iz58+cjMjISCQkJWLp0KZ1fTVAqlQqHDh3Cvn378N1338HV1RXp6enYsGEDkpOTKdxCzBpstauhQlgKhWLACiqmoStzq1uZhrD4fD6dMxJCCCGEEDLGKKxFCCEEwJ0ZN0pKSpCZmYk9e/bghx9+gI+PD1asWIGMjAw88MADo7pCyeXLl/HKK6/gxIkTiI2Nxeuvv45Vq1ZRIyUhhJB7ptFo0NbWNmyoq66ubsCsUTweb9hQF/M1E2VmTUIIIeNDqVSaDXIxGwDY2toiICDAbJBrxowZcHNz43gvCCFkfF27dg3/+te/8Pnnn+P27dt4+OGHsWnTJqSkpNDnaTIhLFmyBOHh4di6dSvXpYyqp59+GgcPHkRRURGmT5/OdTmEEEIIIZzT6/U4ceIEtm3bhkOHDsHV1RXPPPMMnn/+efj7+3NWl0wmY4NZxcXFKCoqQm9vL0QiERvMWrRoEaKjo+Hg4MBZnWRoOp0Oubm52L59O/bv3w+tVotly5YhIyMDjz766IhX0SaWb7DQ1VABrJaWFnb1d0OGk1EOFcBi+jIlEgn9nyCEEEIIIWSCorAWIYQQs6qrq5GZmYl9+/bh7NmzcHZ2RlJSEjIyMrB69Wq4u7uPyvsUFhbi3XffxbfffovQ0FA89dRTWLduHQICAkbl9QkhhBBz1Gr1iFbqqq2thVarZZ/HzEw3XKgrICCABuYTQsgUMFSQ69atW+jv7wdwJxRsLsjFbIQQMllpNBpkZmbio48+Qn5+PmbNmoWNGzdi06ZN4PF4XJdHprDnnnsOpaWlyMvL47qUUfPpp5/ixRdfxLfffouVK1dyXQ4hhBBCCKfq6+uxa9cufP7556iqqkJCQgI2bdqEjIwMODo6jmstarUaxcXFKCwsxNmzZ3Hu3Dk0NjbCzs4OCxYsQHx8PBYuXIiFCxdCIpGMa23k3hQXF2P79u3YvXs3WlpaEB8fj4yMDKxbtw4+Pj5cl0fuExO8Gmp1K9MQllKpHPA65la7Gi6EJRQKaYJjQgghhBBCJhEKaxFCCBlWTU0NDh48iIMHD+LMmTOws7NDamoq1qxZg/T0dPD5/Pt+j8rKSnz66afYs2cP2trasHjxYqxfvx5r166lwTuEEEI4o9PpoFAoIJfLIZPJoFAo0NjYCLlcPuA+lUpl9FymU0UgEEAikUAgEEAoFLL3iUQiCAQC8Pl82NnZcbSHhBBCxkpvby/q6+vNBrkqKiqgVqsBDB3kCgoKos55QsikUVxcjG3btmHXrl2wtrbG448/jp///OeYN28e16WRKeizzz7DG2+8AaVSOSlWeysoKEBiYiLefPNN/OY3v+G6HEIIIYQQTiiVSnz99dfYtWsXzpw5A09PT6xfvx6bNm2CVCodlxr0ej2uXr2K8+fPo7CwEAUFBbhy5Qr6+vogEAgQFxfHBrOioqLg5OQ0LnWR+1dZWYk9e/Zg586duHHjBsLDw5GRkYENGzbQZEwT1GCrXQ0VwlIoFNDpdEavYy50NVwIi/r+CCGEEEIIIQCFtQghhNyltrY2ZGVlISsrC0ePHkV3dzfmz5+PtLQ0pKenY8GCBfc1wEGn0yE3Nxfbt2/H/v37odFoMG/evFF7fUIIIWSsaDQas6GupqYmNDY2QqFQsI8xA/QZfD4fAoHAKMTl6+sLoVAIPp/Phrz4fD7s7e052kNCCCGjSSaToaKiYkCQ69q1a7h9+zYAwN7eHn5+fmaDXOHh4TSghxBikVQqFfbs2YO//e1vKCsrQ2RkJDZt2oT169fD2dmZ6/LIFHHmzBksWbIENTU1CAgI4Lqc+yKXyxEZGYn58+fj0KFDFPQmhBBCyJSi0Whw/Phx7Nixg/0slJqaig0bNuDhhx8e8/Z0lUqFoqIi5OXlobi4GAUFBWhpaYGtrS1mzJiBhIQELFq0CJGRkQgPD6d+bgsjk8mwb98+7Nu3D/n5+ZBIJFi7di2eeuopLFiwgOvypgyNRoO2trYRrXDFhLBaW1vR29s74LUcHR2HXd3KMIAlFovHfTU+QgghhBBCyORBYS1CCCH3rKurC99//z0OHz6MI0eOoKmpCf7+/li5ciXS0tKQnJx8X4MHOzo68N133+Hw4cM4evQompubERQUhIceegjLli3D4sWL4e3tPYp7RAghhIwPZjY/w44j5rrhfTKZDO3t7UbPNe1IGux6QEAA3NzcONpDQggh90OpVJpdkYvZGCKRCFKpdECQKzQ0FO7u7hzuASGEjExxcTE++ugj7N69Gy4uLnjsscfwi1/8AuHh4VyXRia59vZ2eHl5ITMzEytXruS6nHum1WqRmpqKhoYGFBUVwdPTk+uSCCGEEELGXH9/P86ePYsdO3Zg9+7d6OzsRHx8PDZs2IAf//jHY9YmotVqcfXqVeTn57PhrMrKSuj1eohEIkRGRrLhrKioKAp4WKiOjg4cPHgQ+/btw3fffQcXFxesWrUKGRkZeOihh2BjY8N1iRbNXP/YSEJYpsytdjVcCEsoFNLkFoQQQgghhJBxRWEtQggho6a8vBxZWVnIzMzEuXPnYG9vj4SEBKSlpWHNmjX3NUttf38/zp8/zwbDLl26BACYPXs2li5disTERCxevBh8Pn+0docQQgiZEIYKdpm7bmikwS5/f38a1E8IIRZCo9Hgxo0bZlflunXrFvr7+wEAPB7P7IpczEYIIRNJU1MTvvrqK2zduhU1NTVISUnBpk2bsHr1atjZ2XFdHpmkAgIC8Nxzz+GXv/wl16Xcs5deegnbtm1Dfn4+5s+fz3U5hBBCCCFjpq+vD2fOnMGBAwewb98+yOVyxMXF4YknnsCPfvQjCASCUX2//v5+XLt2DUVFRbhw4QLOnz+PkpIS9PT0gMfjITY2FrGxsYiJiUFsbCxNMGrhdDodcnNzsX37duzfvx9arRbLli1DRkYGHn30UVoF2gym72qo1a1MN4VCAZ1OZ/Q65kJXw4Ww+Hw+tRUQQgghhBBCLAKFtQghhIyJ5uZmHD16FFlZWTh27BhUKhWCg4ORlpaG9PR0JCYm3lcDmlKpxJkzZ3Dy5EmcPn0aly5dQn9/P8LDwxEXF8c2jkulUtja2o7inhFCCCETl0ajQVtb24iCXU1NTTA8HWQ6xJhOr8GCXX5+fvDw8OBwLwkhhAymt7cX9fX1ZlfjqqiogFqtBnDnf35wcLDZVbkCAwNphmBCCGf6+/uRk5ODbdu2Yf/+/RAIBNiwYQO2bNlyX5MAEWJOamoqgoKC8Pnnn3Ndyj35z3/+gyeeeAJfffUVNmzYwHU5hBBCCCGjTqVS4bvvvsOhQ4dw9OhRtLe3IyIiAo899hieeOKJUZ2M5ubNm2wwq6ioCBcvXkRHRwfs7e0xd+5cNpQVExODGTNmwMrKatTem3CnuLgY27dvx+7du9HS0oL4+HhkZGRg3bp18PHx4bq8ccH0K41kdSumf6m1tRW9vb0DXst0AsHhNolEQqsDE0IIIYQQQiY1CmsRQggZcz09PTh16hSysrJw+PBhVFdXw8fHBw8++CDS0tLwwAMP3HcjnEqlQl5eHs6cOYOCggIUFxejs7MTLi4uiIyMZBvQo6KiEBQUNDo7RgghhFgwtVoNuVyOxsZGNDc3o6mpCU1NTex1uVwOhUKBxsZGdHR0GD3X1dUVYrEYAoEAAoEAIpEIfD4ffD6fve7j4wOhUEgdbYQQMoEolUqUl5cPWJXr+vXr7P96e3t7+Pn5mV2NKywsjGYSJoSMm4aGBvzjH//AZ599hpaWFiQnJ+PFF19EWloaDYwko2Lz5s24du0acnNzuS7lrl25cgXx8fHYtGkTPvjgA67LIYQQQggZNTU1Nfj++++RmZmJY8eOQafTIS4uDunp6Xj44Ycxa9as+34PmUyG4uJidjt//jwUCgVsbGwwc+ZMREZGsltUVBQcHR1HYc/IRFFZWYk9e/Zg165dqKqqQnh4ODIyMrBhwwaLX43ecLWroVa4Mg1hmTK32tVwISyhUAhra2sO9poQQgghhBBCJi4KaxFCCBl31dXVyMzMRFZWFk6fPg2dTod58+YhNTUVqamp973qFgDodDr88MMPRg3tRUVF6O3thbu7OyIiIiCVShEeHk4N7YQQQsgwNBoNFAoFZDIZmpub2RCXQqGAXC5nQ14KhQKtra1Gz7W3tzcKcvn4+IDP50MoFEIgEIDP50MgEMDX1xd8Pp+Ox4QQwhGlUml2Ra7q6mrcvHmTXY2Rx+MhPDx8wKpcoaGhcHd353gvCCGTUW9vLw4dOoRt27bhxIkTmD59Op555hn89Kc/nTIznZOx8ec//xmffPIJamtruS7lriiVSsTExEAgECA3Nxf29vZcl0QIIYQQcl/Ky8uRlZWFzMxMnD17Fk5OTkhOTkZ6ejpWr14NgUBwz6+tUqlw5coVtr84Ly8PN2/eBACIRCJERkYiISEBixYtwoIFC2iSmklKJpNh37592LdvH/Lz8yGRSLB27VpkZGQgISGB6/IGMAxdDba6lemmUCig0+mMXsdc6Gq4EBafz7/vsRqEEEIIIYQQQu6gsBYhhBBOtbe349ixYzh27Bi+//571NfXw8vLC6mpqVi+fDkeeOAB+Pn5jcp7dXV14dKlS7h06RJKS0tRUlKCsrIyaDQa2NvbIzw8HPPmzcPs2bMxe/ZshIWFISAgYFTemxBCCJlKlEol22Fo2nloeFsmk6G9vd3ouUznoWkHoeFt5rpAIICtrS1He0kIIVOHRqOBTCYzuypXTU0NOxCEx+OZXZErODgY06ZNo5VwCCH37YcffsCXX36Jbdu2obu7G6tWrcKmTZuQmprKdWnEAu3fvx8ZGRno6uqymEkj+vv7sWrVKnawsVgs5rokQgghhJC7JpfLceLECWRnZ+P777+HTCZDYGAg0tPTsWrVKiQmJt5TIL2pqQkXL1402mpqagAA06ZNQ3R0NKKiohAVFYXIyEiadGaSU6lUOHDgAHbt2oXc3Fy4ublh7dq1WL9+PZYsWTIuq0BpNBq0tbWNaHUrpt+ktbUVvb29A15rsL6TwTaJRAJPT88x30dCCCGEEEIIIYOjsBYhhJAJpbq6GtnZ2cjOzsZ3332H27dvIzg4mF1168EHH4Sbm9uovZ9Wq8XVq1cHBLiampoAAO7u7uys8eHh4WyIy9/ff9RqIIQQQqYywxkiDTskzV1vbm6GVqs1ej6Pxxs21GX4GCGEkNHV29uL+vp6sytyVVZWoru7G8CdASVisdjsqlyBgYGwsbHheE8IIZZEo9Fg7969+PDDD1FSUoKwsDBs3rwZP/3pT+Hq6sp1ecRClJaWYt68eaioqEBYWBjX5YzIW2+9hXfeeQc5OTkTcgUAQgghhBBzurq6cPr0abYP+MqVK7C1tUVcXByWL1+OtLQ0zJs3765es66ubkAwSyaTAbgTzFqwYAG7RUdHw9vbeyx2jUwwarUaWVlZ+M9//oOjR49Cr9fjoYcewrp167By5cr7mqRhsL6M4UJYpgZb7WqoEJZQKByXcBkhhBBCCCGEkNFFYS1CCCETlkajQV5eHttwf/HiRTg4OCAhIYENby1YsGBMZmdva2tjZ40vKytDRUUFysvLIZfLAdwJcYWGhiI0NBQhISEIDQ3FjBkzEBISAh8fn1GvhxBCCCF3qNXqQUNdprebmppgeMpr2Ak6XKjL398fdnZ2HO4pIYRMDkqlEtXV1QNW5bp+/To6OjoAAPb29vDz8zO7IldYWBicnZ053gtCyERWXFyMbdu2YefOnbCxscHjjz+OLVu2YO7cuVyXRia4zs5OuLm54fDhw3jooYe4LmdYWVlZePjhh/Hpp5/iZz/7GdflEEIIIYQMSqfT4dKlS2wf75kzZ9DT02M0Qefy5cvh4eExoteTyWTsyqLFxcUoKipi+2xFIhEiIyPZLTY2FgKBYCx3j0wwOp0Oubm52L59Ow4dOoTOzk7Ex8cjIyMDTzzxBPh8vtHXG4auhlrhynBTKBTsyvKMwUJXQwWw+Hw+9TsQQgghhBBCyBRCYS1CCCEWo6GhAceOHcP333+P7OxstLa2QiKR4IEHHsDy5cuRnJw8oLF1tLW2tqKsrAyVlZWoqqrC9evXcf36dVRXV6OnpwfAnRU+mABXSEgIG+IKDQ2Fl5fXmNZHCCGEkP/SaDRoa2sbNtTV2NiI+vp69Pb2Gj2fWQVmJCt30cyWhBBy95ggl7nt5s2bbOCWx+MhODh4wKpcISEhIx7YRQiZ/FQqFfbs2YOPP/4Y5eXliIyMxKZNm/Dkk0/CycmJ6/LIBOXp6Yn3338fzz77LNelDOnWrVuIiorCihUrsGPHDq7LIYQQQggZoLKyEjk5OcjOzkZubi5UKhUkEgkbzkpJSYFIJBryNbRaLa5evYrS0lKUlJSwK2a1t7fDxsYGM2fONFoxa/78+XB3dx+nPSQTSX9/P06ePIl///vfOHDgANra2hANitZoAAAgAElEQVQSEoLY2FjMnDkTOp3ObAirtbV1QD8A8N/g1VCrWxluEokEnp6eHOw5IYQQQgghhBBLQmEtQggh/4+9O49uq7zTB/5Y1mJb1mbJluV9SeLYjpM4TsISB6aBYS2U5RjoKYVO26QdmMJpT6dTplPKj2l7oDOFGaZrKF2gpaUpa0s3IGVJAiQ4wUm8JI7jXba1L5YlWZb0+yPn3kqy5CWJLdt5PufcI90r6eq9iiPd5X3e77IUiURw5MgRcUS2t99+G5OTk3Ejsv3jP/7jop4kdTqd00aLP336NDo7OzExMQHg750ME6d169ahsLBw0dpKRERE0wkjaqaq3BV7P3EkTYVCgby8vDlV7iotLWUnAiKiWQQCAZjN5qRVufr7+8Xv4FTHWFVVVaisrFyQSsxEtLRFo1G88cYb2L17N1566SUolUrcdddduP/++1FVVZXu5tESU1dXh9tvvx3f+MY30t2UlPx+P7Zt24ZoNIr9+/ez4iQRERGlXTgcRldXF/bv34/XX38db775JqxWK5RKJS655BLxWu2mTZtSHpd7vV60tbWJ05EjR3D8+HEEAgHIZDLU1dXFBbM2bNgApVK5yFtKiyW22lWq6lZOpxPDw8MYGhqCw+GYVukKSF3taqYQltFoRGZmZhq2moiIiIiIiFY6hrWIiGhF8Pl8ePfdd8Xw1pEjR5CRkYGNGzeKFwSam5uRlZW16G0Lh8Po7++Pq8TV3d2NU6dOobe3F6FQCABgMBiwatUqlJeXo6ysDOXl5SgvL0dFRQXKy8uhUqkWve1ERESUmtPpTBrkSpwfHh6G2+2Oe22ykTpTVfHixWIionihUAiDg4NJK3LFDpYhVEhMVpWrvLyc361EF4CRkRE8/fTT+MEPfoChoSHs2LEDu3btws033wypVJru5tEScOWVV6Kqqgq7d+9Od1NSuvvuu/GHP/wBH3zwASorK9PdHCIiIroATUxM4L333sM777yDffv24b333sP4+Dj0ej22bduG7du3o7m5GZs3b066n202m9HR0YH29na0traitbUVXV1diEQiUKvVaGhoQH19Perq6tDU1ISmpiZWx12mYkNXiVOqEJbVasXU1FTcemJDVwqFAj6fD6Ojo/B4PNBqtWhqasKVV16JzZs3i+fUDQYD5HJ5mraciIiIiIiIaDqGtYiIaEWyWq148803sW/fPuzfvx+tra2QSqXYsGGDGN667LLL0n7CdmpqCv39/WJ4q6enB/39/eJkt9vF5+p0OjHAJYS4YkNd+fn5adwSIiIimkmyql2pKncluzit0+mSBrmS3dfpdGnaSiKipcHpdIrhrdiqXKdOnRLDszKZDKWlpUkrcq1du5ajdROtMJFIBHv37sX//u//4tVXX4XJZMInP/lJ3HvvvSgtLU138yiN7r77btjtdvzhD39Id1OSevzxx/HlL38Zr776Kq655pp0N4eIiIguEB6PBwcPHhSvs77zzjsIBoMwmUxobm7Gtm3b0NzcjMbGRkgkEvF1oVAInZ2daGtrw4cffihWzHI4HACAyspKbNy4ERs2bMCGDRuwceNGVFRUpGkraTaxg5XNNAnnte12OyYnJ6etJ9nAZTNNRUVF8Hq9ePHFF7Fnzx7s378fJSUluOWWW9DS0oJt27axkjoREREREREtCwxrERHRBWF0dBTvvPMOXn/9dfz5z3/GwMAAlEolLrnkEjG8tWnTpiV3YjcQCMBsNosdDc1mM0ZGRsT5/v5+hMNhAIBCoUBxcTGqqqpgMpnEEeSFqaysjKNGExERLQORSARWqxVWqxUWiwWjo6Ow2WywWq0YHR2FxWIRHxsbG8P4+Hjc65VKJQoKCmA0GpGfn4/8/HyYTCbk5+fDYDDAaDTCaDTCYDDAYDBAJpOlaUuJiBZfbJArcert7YVwqlSn04nHUrFVuVatWgWNRpPmrSCic3Hq1Cn85Cc/wVNPPQWn04lrr70W999/P6644oold16IFt4DDzyAv/zlLzh8+HC6mzLNgQMH8JGPfAT/7//9P3z1q19Nd3OIiIhohQqHw2hvb8fBgwfx/vvv48CBA+js7ERGRgbq6uqwfft2bNu2DZdddlncQAdOp1OslCVUzTp8+DD8fj9kMhlWr16NpqYmsWLWxRdfzIEn0yS22lWq6laJ0+joKBK7k8VWu0oMV6UKYRmNxjlXNrfZbHjhhRfw9NNP48CBA9DpdLj++utx1113YceOHXHBQCIiIiIiIqLlgGEtIiK6IHV2dmLv3r3Yu3cv3nzzTTgcDhiNRlx++eW47LLLcPnll6O+vn7Jd9KZnJzEwMAA+vv7xdu+vj6xMtfQ0BBCoRCAMyPHl5SUoLS0FKWlpTCZTCgpKUFRURGKiopQUlICk8mU9mpjREREND+BQAAOh2NOlbuGhoamjW4608imicuKi4uh1WrTtKVERAsrGAxieHh4WkWuxIEyYoNciVNlZeWSP44kojOCwSBeeeUV7N69G6+//jrWrFmDT3/60/jsZz8LvV6f7ubRInn88cfx3e9+F0NDQ+luSpzR0VE0NTVhy5YtePHFF/nbQkREROfNwMCAGMw6ePAgWltb4fP5oFQqsWnTJlxyySVi9ay8vDz4fD60t7fj6NGjOHbsGI4dO4a2tjaxWlZxcTEaGhqwfv16rF+/Hg0NDaitreUAUQsgNnSVqrpV4nKr1Yqpqam49aQKXc0UwjIYDAtyDdnpdOL3v/899uzZgz//+c9QKpW48cYb0dLSgmuuuYZ/R0RERERERLSsMaxFREQXvEgkgiNHjmDv3r146623sG/fPrjdbuj1emzfvl0McG3YsGHOI38tFeFwGCMjI9MCXENDQzCbzTCbzdNGRjMajSmDXELIy2AwpHGriIiI6FzY7XZYLBbYbDbYbDaxUpcwb7VaMTY2Js4Hg8G41yuVSrFCl8FgECt2FRQUiPeF5UajESqVKk1bSkR0/oRCIQwODiatyNXV1QWfzwcgvuJxYlWu8vLyZXdMSXSh6OzsxI9+9CP89Kc/xdTUFG644Qbs2rULV155ZbqbRgvs6aefxuc+9zn4/f50N0UUCoWwY8cOWCwWHDx4kBUdiYiI6Kx5vV60tbWhtbUVra2teOedd9DX14fMzEzU1NSgqalJnLZu3QqbzRZXKau1tRUnTpxAOByGXC7HqlWr4qplbd26FUajMd2buSw5nc45VbgSQlgOh2PaeVogPng1U4WrxBBWOvn9frz++ut45pln8PLLL0MikeDKK69ES0sLbr31ViiVyrS2j4iIiIiIiOh8YViLiIgoQTgcRldXF/bv34/XX38df/vb32Cz2ZCbm4uLL74Y27ZtQ3NzM7Zv3w6FQpHu5p4XTqcTp0+fhtlsFk/6x9729PTA5XKJz1coFMjLyxNP+hcVFaGqqkq8bzKZUFZWxs7ZREREK0DsiK0zVe4SpsQgOHCmCk1sR4HEjgOx8wUFBZBKpWnaWiKisyMcUyVW5Tp16hTcbjeAM9WOS0tLk1bkWrt2LTsjES0BXq8Xv/71r/GDH/wAbW1taGpqwq5du/CJT3yC/0dXqFdffRUf/ehHMT4+vmT+je+55x4888wzeO+991BfX5/u5hAREdEyMTExgWPHjqG1tRXvv/8+Dh06hK6uLkSjUZSVlWHr1q246KKLsGXLFhgMBvT394vHr8Ktz+eDRCJBdXW1WCWroaEBGzZsQGVlJSQSSbo3c8lJrHaVqsLVbOdPU1W7mimAZTQal82gMMFgEH/961+xZ88evPjii/D7/fjIRz6CT37yk7jpppugVqvT3UQiIiIiIiKi845hLSIiojk4ffo0Xn/9dezbtw9vvfUWBgYGkJOTg8bGRjQ3N+PKK69Ec3MzsrKy0t3UBePxeOIqcg0NDWFkZASDg4MYGRnB0NAQxsbGEA6Hxdfk5+ejsLAQJpMJRqNRrNpVUFAgLisoKEBBQUEat4yIiIjOp0AgAIfDMWMHhdhlFoslbv8BONM5YaZAV+yykpISyOXyNG0tEdHsYoNciVNvb6/YQUun08UFuISqXNXV1dBqtWneCqILT2trK3bv3o1nnnkGMpkMd9xxB/7lX/4FDQ0N6W4anUfvv/8+Lr74YvT396OsrCzdzcEvf/lL3HXXXXjuuefQ0tKS7uYQERHREuVyuXD48GF8+OGHOHLkCI4cOYKuri6Ew2FoNBps2bIFF110EcrLy5GdnQ2z2SyGsjo7O8Xq0CUlJeKxZ11dHTZs2ID6+nrk5OSkeQsXX2LoKlWFq9hlVqsVU1NTcetJFbqaKYRlMBhW5PnNcDiMd999F3v27MGzzz4Lh8OBSy65BC0tLfj4xz/O68NERERERES04jGsRUREdBZOnDiBt99+G2+//TbeeustDA4OIisrC1u3bsXll1+OSy+9FJdeeukFNwpYOBzG2NhYXJBrbGwMw8PDsFqtGB0dxcjICKxWKyYnJ8XXyWSyuGBXfn4+ioqKxDBXUVERCgoKUFhYyE6KREREK5DT6Zwx0BU7b7PZEAqF4l4vdIJIFeiKXVZcXMz9CSJaMoLBIIaHh5NW5RoYGBA7fSUGuWKnyspKZGRkpHlLiFYul8uFX/ziF3jiiSdw+vRpNDU14b777sPHP/5xyGSydDePztGpU6ewevVqHD58GI2NjWltS1tbGy699FJ84QtfwCOPPJLWthAREdHS4XQ60d7ejtbWVnHq7OxENBqFTqdDXV0d1q5dC71eD4lEArvdjo6ODrS1tWF8fBwAxOcJoaz6+nqsX79+xYZlkp1rnCmA5XA4EAwGp60nNng1U4WrxHORF7JIJIL9+/fjueeew549e2CxWHDRRRfhjjvuwG233XbBfz5ERERERER0YWFYi4iI6Dzo7e0Vg1v79u1Dd3c3JBIJ1q1bh23btuHSSy9Fc3MzKioq0t3UJcPv98d1whbuJy6L7aAIAAqFAnl5eXEXRmIvkMQu0+l0adxCIiIiWijCSLepAl2x88PDw9M6WySOcDtbFS+TycQgBBEtulAohMHBwaQVubq6usSR0BUKBYqLi5NW5SorK4NUKk3zlhCtDJFIBHv37sXu3bvx4osvQq/X41Of+hQ+//nP83zPMmaz2ZCfn4+9e/fiIx/5SNra4XA4sGXLFlRUVOAvf/kLv7uJiIguQJFIBKdPnxYrZQnT2NgYAKCyshK1tbUoKCiAXC7HxMQEent7Zw1lbdiwAfn5+enctLOWWO0qWXWrxGl0dBSJ3aBmqnaVKoRlNBqRmZmZpi1fXqLRKN577z0899xz+N3vfofh4WE0NDTgjjvuwB133IGqqqp0N5GIiIiIiIgoLRjWIiIiWgBjY2M4ePAgWltbsX//fuzbtw+BQACFhYXYvHkzmpubsW3bNmzZsgUKhSLdzV3yYkfASxXqMpvNsFgsCIfD4uvYEZuIiIiA+I4dswW8hGWxYsPic9mvKCgoYAdbIlpwTqczLsAlVOXq6emBy+UCcKaKcWlpadKKXDU1NcjNzU3zVhAtT2azGc888wy+//3vY3h4GDt27MCuXbtwyy23sEPnMuPz+ZCbm4s//vGPuPbaa9PShkgkguuvv16smLFcO1MTERHR3AnVsjo6OsR9ACF0lZmZiZKSEphMJmi1WkSjUfH5wqAdyy2UlRi6SlXhKnaZ1WqNG8wRmDl0leq8ncFggFwuT9OWr2zt7e3Ys2cPfvnLX6KnpweVlZW47bbbcNddd6Guri7dzSMiIiIiIiJKO4a1iIiIFkEoFMLRo0exb98+7N+/H3/7299gs9mQk5ODxsZGNDU1obm5GTt27IBer093c5etUCgEi8WCkZERjI2NwWKxwGq1irc2mw02mw1jY2OwWq2YmJiIe31WVhby8/ORn5+PgoIC5Ofnw2AwwGAwwGg0TpvXaDRp2lIiIiJaSIFAAA6HY9ZAl7AsMTAOnNmvmC0oLiwrKSlhpxEiOq8Sg1yxU19fHyKRCIAzHfwSQ1x1dXVYt24dtFptmreCaOkLh8P44x//iCeeeAJvvPEGioqK8NnPfhb33HMPCgoK0t08moNIJILMzEw8//zzuOWWW9LShn//93/H448/jrfffhtbtmxJSxuIiIhoYYyPj6O9vR1Hjx7F8ePHcfz4cRw7dgxWqxUAYDAYUFpaCrVajWg0CrfbjVOnTomhLJPJFBfIqqqqwsaNG2EwGNK2TbEDLM42pap6D8QHr1JVt0qcOOhi+gkBrWeffRbd3d2oqKjAjTfeiJaWFjQ3N6e7eURERERERERLCsNaREREaRCNRtHZ2YkDBw5g3759OHDgALq7uyGRSFBXV4fm5mZccskluOiii7BmzRpeeFggExMTceEtIcxlsVhgsVimzXu93rjXy+VyMbxVUFCAgoICGAyGaYGvvLw86PV66PV6VtkgIiJagUKhkLjfYLVaMTY2Js4L+xLCvoZwKwQlBEJFLmHfIj8/H0ajUZyPXa7X61kNh4jOWjAYxPDwcNKqXAMDA+LI5cmCXMJUUVEBiUSS5i0hWlq6u7vx1FNP4Sc/+Qm8Xi8+9rGPYdeuXbjiiit4XmeJUygUeOqpp3DnnXcu+nu/8soruOmmm/Dkk0/iM5/5zKK/PxEREZ0foVAIJ0+exPHjx+OCWb29vYhGo8jJyYHJZIJarQYAeDweDA0NIRgMIiMjA+Xl5aitrUV9fT1qa2uxbt061NbWQqVSLVibE6tdJRusKHEaHR1FYhejmapdpQphGY1GVqRdRoSA1m9+8xucOHECZWVluOmmm9DS0oJt27bxeIeIiIiIiIgoBYa1iIiIlgiLxRIX3jp8+DCCwSB0Oh0uuuiiuCkvLy/dzb0gBYNB2O32GS9ezaXKxlwvVnGkQCIiopXL7/fPWrFrphGIU3WESbVfUVxczCo5RDSrUCiEwcHBpBW5Tpw4gfHxcQBngg3FxcVJq3LV1NRwkAq6oAWDQbzyyivYvXs3Xn/9ddTU1OCf/umfsHPnTp7PWaK0Wi3+67/+Czt37lzU9z158iS2bt2KO+64Az/60Y8W9b2JiIjo7ExOTqK7uxsdHR3ioBfCABiBQACZmZnQarVQKpWQSCRwuVxwuVwAAJlMhqqqKqxduxZr1qwRQ1lr1649p1BWYugqWXWrxPNPVqtVHKhDMFPoKtX5J4PBwGrxK1RHRwd++9vf4re//S06OztRWlqKm2++mQEtIiIiIiIionlgWIuIiGiJmpqawokTJ7B//37s27cPra2t6OzsRDQahclkQnNzM7Zt24ampiZs2bIFCoUi3U2mBEKVDbvdHjcJyxwOx7THHA5H0oBXbHUuYTIYDNDr9Ukfy8vL40j3REREK8hcRzsWlttsNoRCobh1zCc0XlRUhJKSEna4IaI4TqdzWoirvb0d7e3tcR0QS0tLk1bkqqmpYWVAuqC0trZi9+7d+NWvfoVwOIyWlhZ88YtfRGNjY7qbRjFMJhMeeOAB3HfffYv2nuPj47j44ouRm5uLt956i+f1iIiIlhi73Y6Ojg50dXWhs7NTvD8wMIBoNAqpVIq8vDzI5XKEw2HY7XZMTk4C+HuV4rq6OtTX14vHQ/X19cjKyprxfVMN7pMqhJVsgB8g/hzQbAMGcuBAEvT19eHll1/Gnj17sH//fhQXF+PWW29lQIuIiIiIiIjoLDGsRUREtIy43W4cOnRIDG+9++67sNvtkMlkWL9+vRjeampqQn19fbqbS2fJ6XTCZrNNC3PFzieGwCYmJqatJza4FRvk0ul0yMvLEy/AJd7PzMxMw1YTERHR+RYb8Jot3DXXUZVnCneZTCbk5+dDJpOlaYuJKJ2SBbmEqa+vD5FIBMDfOy4mTvX19TCZTGneCqKF4fF48Jvf/Abf+973cOzYMTQ1NWHXrl248847kZOTk+7mXfCqqqrwuc99Dv/2b/+2KO8XjUZx++2346233kJraytKSkoW5X2JiIgoXjQaxeDgoBjI6uzsRFdXFzo6OmC1WgGcqSqsVqshlUrh9Xrjqg1XV1fHhbHq6uqwfv16qNXqpNWuZgthjY2NicdNgpmqXaU6R1NQUMBqxzRn/f39eOmll8SAll6vx3XXXYeWlhZcd911vGZIREREREREdA4Y1iIiIlrGIpEIurq68P777+O9997De++9h/b2doTDYRQVFeGiiy7Cli1bsGXLFmzevBlarTbdTaYF4vf7p4W7EgNdwuMOh0O8+JdYcQMA1Gr1rIGuZPf590VERLT8CZ2JknUgSrZsto5EyToOJS5jJyKilS8YDGJ4eDhpVa6TJ0+KQdFUQa6qqipUVFSwejCtCEK1raeffhoKhQK333477rvvPg66k0b19fVoaWnBQw89tCjv9+ijj+I//uM/8Nprr+Ef/uEfFuU9iYiILmSxA0u0t7ejo6MDp0+fRldXF3w+H4Az5zIUCgXC4TAmJibEcx2FhYVYvXo1CgsLodfrYTAYoNVqkZmZCZfLlfRcSbJq5wDE6lWzVbgSzpvo9XpW36QFMTg4iBdeeAF79uzBgQMHoNPpcP3116OlpQXXXnstz9MRERERERERnScMaxEREa0w4+Pj+OCDD/Dee+/h4MGDOHToEIaGhpCRkYFVq1Zh8+bNYnirsbERubm56W4ypVGy0R3nMiWrvAHMPMrjTJPJZEJGRkYaPgEiIiI6V06nc9aqXbHT6OgoEk9HZWVlzVq1K3ZZYWEhQxtEK8TU1BQGBgaSVuQ6ceJE3Mj1xcXFKatyZWVlpXlLiOZnbGwMP//5z/HjH/8Yvb292LZtG+6//37cdNNNrFK5yDZv3owrrrgCjz766IK/1969e3H11Vfj0UcfxZe+9KUFfz8iIqILhdfrRXd3N06ePInu7m6cOHFCvHW73QAAqVSK7OxsRKNR+P1+hMNhAH+/rpGTkyPuh42Pj8NqtSIYDE57r7lWIec1EFpKhoaG8Pzzz4sBLa1Wi49+9KNoaWnBNddcw2MQIiIiIiIiogXAsBYREdEFwOVy4YMPPsC+ffvQ2tqKQ4cOYWxsDJmZmaipqUFTU1PclJ2dne4m0zIQW6FrLveFeaGzZSy5XA6dTgeNRgOtVhs3CVW7kj0mTPybJSIiWj4CgcC0fYSZwl1msxkul2vaelKNSJ2qkxQ7RhEtT7Gj4CdW5RoZGQFwptNlWVlZ0iDXmjVroFKp0rwVRKlFIhHs3bsXu3fvxosvvgiDwYC7774b//zP/4zy8vJ0N29FcrvdiEQiUCgUyMnJwfbt29HY2IgnnnhiQd93cHAQTU1NaG5uxvPPP8/9EiIionmamJhAT08POjs7cezYMXR2dqKnpwd9fX3ieYOMjAxIpVJEo1GEw+Fpg8XEksvl0Gq1MBgMcz63wOrgtJzYbDa88MILePrpp/Huu+9CrVbjhhtuQEtLC66++mrI5fJ0N5GIiIiIiIhoRWNYi4iI6AI1MDCAQ4cO4YMPPsChQ4fQ2toKl8sFmUyG9evXx1Xgqq+v58UnOm9CoVDSUJfL5YLb7YbL5YqbnE5n3GPJKnoJF1WTTalCYLEBsJycnDR8EkRERDRXyaqBpgp3jYyMYGhoCJOTk3HrSFUBNFUHrJKSEmg0mjRtMRHNRaog1+nTp9HX14dIJALgTLgzWZBLmIiWiuHhYTz55JP44Q9/CJvNhh07dmDXrl245ZZbkJmZme7mrQi///3vceONNyZ9LLb6vEajwRtvvIGampp5v8fOnTtRWVmJBx54QAxkBYNBbN++HV6vF++//z7UavXZbQAREdEKkuxYf2hoCD09PRgYGIDZbMbIyAjsdjsmJiYQCoVmXJ9EIkF2djZUKhX0ej2MRiNKSkpQUVGByspK6PV68RyAXq+HQqFYpC0lWjxjY2N4/vnn8dxzz2Hfvn3Izc3FjTfeiNtvvx1XXXUVA1pEREREREREi4hhLSIiIhKZzWa0traK0/79++F0OiGTybB69eq46lubNm1iwIXSYnx8fFqgK1nIKzbsFfv4XMNeGo1GrOolTGq1Gmq1GhqNRrwvhMEkEkkaPg0iIiJKxePxwGq1wmazwWazwW63i7cWiyVuXrgNh8Nx61AqlTAYDMjPz4fBYIDBYIBerxdvCwoKxPvCcplMlqYtJqJYk5OTGBoaShrk6ujogN/vBzBzkKuiooL7+ZQWk5OTePnll7F792688cYbqKqqws6dO/HpT38a+fn56W7estbX14eqqqoZq2wAZyr2jY6OQq/Xz2v9g4ODKC8vRzQaxbXXXotnn30WWq0WO3fuxHPPPYf3338ftbW157IJRERES5Lf7085qEriNDw8DLPZPG2QlUQSiQQZGRmIRCLib3d2djZMJhPKy8vFSrqNjY2orq5GZWUlK1fSBclut+PVV1/Fnj178Oc//xkymQxXXHEFWlpacOutt0KpVKa7iUREREREREQXJIa1iIiIKKVwOIzOzk60trbiyJEjOHz4MNra2uDxeCCVSlFbW4tNmzahsbERjY2N2LhxI0cGpiUvNuw1U8jL7XaLVb2EebfbnfICcm5u7rQglxD6EpbFPiZU9Ypdlp2dvcifBhEREcWKHdU7WSezxGVWq3VaEDxZBa9U1buEyWQysUMZ0SKamprCwMBA0iDXyZMn4fV6AZwZ1KGkpCRpkKuuro7777QoTpw4gZ/97Gd48skn4fP5cOONN2LXrl248sor0920ZWvjxo04evRoysCWVCrF9ddfj5deemne6/7ud7+Lr371q5iamoJMJoPBYMCnPvUpPPLII/jd736HW2655VybT0REtKDmU9lamMbGxsSqtgK5XA6lUgm5XA6JRIJwOAy/3w+fzyc+VyqVQi6XIxqNioMpAGcqXFZXV6O6ulrc966vr0d1dTW0Wu2ifh5ES9XIyAheeOEF7NmzB++88w5ycnJw/fXXo6WlBddddx2PV4mIiIiIiIiWAIa1iIiIaN4SK3AdOnQIY6JIdWMAACAASURBVGNjAACTyRRXgWvr1q0wGo1pbjHR+RMIBODxeOB2u+HxeOB0OuPmY+/HhrxiHxsfH0+6brlcPq1iV7JqXjNV+tJoNIv8iRAREV24wuFwXGUuYYqt5uVwOOIeS1bBS6FQiNW59Ho98vLy4ip5Cctin6PX6xnwIlogTqczaZBLmAQmkwn19fXTglxr1qyBSqVK4xbQShQIBPDb3/4W//M//4MjR46gtrYWd999N3bt2gWdTpfu5i0rjzzyCB588EGEQqGkj2dkZOCll17CjTfeOO91NzY2oq2tTQyCSaVSAMCNN96I559//uwbTURENE/JQlezhbBsNlvS30dhkBFhwBGlUgmJRIJIJIJgMAifzwe32w2HwwGz2YyJiQkAZ35Ts7KykJmZicnJSXEgNJlMhtLSUtTU1IihrOrqaqxatQpVVVVQKBSL+lkRLRc2mw1//OMfk1bQuuWWW5Cbm5vuJhIRERERERFRDIa1iIiI6LwYGBgQq28Jt8PDwwCA0tJSNDY2YsOGDeJUVVUFiUSS5lYTpU/ixfJAIJDyAnqyx+x2e8oqX0JFj+zs7GnVPeazTKvVshM4ERHRAkj8XZ9tlHLhOYlif79nq96l0+lQUlLCYDfROZopyNXX1ydWCdDpdEkrcgkT0blobW3F7t278ctf/hKZmZn4+Mc/jnvuuQcbNmxId9OWhdOnT6O6ujrl4zqdDmNjY5DJZPNab29vL6qrq1NW7Nq5cye+973vQS6Xz2u9REREfr9/TseNwmQ2m+FyuaatJ/EccKrjSLlcDr/fD7fbDZfLhb6+PnHq7e2F2+0GcCaMlZ2dDZlMhnA4jImJCXF/WC6Xo7i4WKyOFVshq6ysTAw0E9HMrFYr/vSnP4kBLblcjh07dqClpQW33norlEpluptIRERERERERCkwrEVEREQLxmKxxAW42tracOrUKUQiEeTm5qKhoQEbNmzAxo0bsX79ejQ0NHDUN6J58Hq906p5CZW8xsfH4fV64fV6xWXCvPA6YVmq0JdUKoVKpYJOp4NKpUJubi5UKlXcsthJqPYV+zxhWWZm5iJ/OkRERCtLIBCAw+GY84joTqcTFotlWhWvxM55c+moV1hYyIEWiOZgcnISQ0NDSYNcHR0d8Pv9AM78P6yqqkpalauiooL/32jO3G43nnvuOTzxxBNob29HU1MTdu3ahU9+8pPIzs5Od/OWtHXr1qG9vX3acrlcjnvuuQePP/74vNc5W8UuqVSKdevW4eWXX0ZZWdm8109ERMtfssG6ZgthjY2NiQEowUzHdamO7QoKCsSAVOwABGazGSMjI+L84OAgLBaL+F4KhQJyuRyRSAR+vz8ujFVeXi7uwyZOhYWFi/fBEq0wQ0NDeP7557Fnzx68++67yMrKYkCLiIiIiIiIaBliWIuIiIgW1eTkJLq7u9Ha2orW1lZ0dHTgww8/hM1mAwCYTCY0NTWhqakJ9fX1qKurQ11dHav7EC2gYDAoBrhcLpcY6BofH5+2TJicTmfc84RlqeTk5IgBLo1GA7VaDZVKhZycHKjVaqjVaiiVSuTk5ECr1SI3NxdKpRJKpRJarVa8r1KpGP4iIiKaB6Ez4Fyrdw0PDyMYDE5bT1ZW1qzVu2IfNxgMrBxClMBsNqOjo2NakOvkyZPwer0AznR6LSkpSVqNq66ujgEcSmnfvn144okn8NJLL0GpVOKuu+7CfffdN2MFKeBM4KupqQlf+tKXcM899yxSa9Pvm9/8Jh5++OGkwaojR45g48aN815nQ0MD2tvbU1bWElx22WV466235r1+IiJaOpKFrmYLYdlstqS/O3M51oo95iouLoZCoUjZNp/Ph/7+fvT392NwcBADAwMYGBhAf38/BgYGMDw8LLZDIpEgJycHcrkcGRkZ8Hg84mMymQwlJSWorq6GyWRCUVERBxkgWkAMaBERERERERGtPAxrERERUdpFo1H09vaira0NbW1tOHr0KNra2tDb24toNAqtVosNGzaI1bcaGhpQX18PlUqV7qYTUYLEUFeyoJfL5YLH48H4+Dh8Ph88Hg+8Xi98Ph98Ph9cLhd8Pl/Kil/AmU4MSqUSGo0mLtil0+mQk5MjBrs0Go04r9FoxICY8FwhIMbvEyIior9L1fFwpsDXXEd7n0vgi+hCFFvdINkk0Ol0qKurm1aVa/Xq1VCr1WncAloqRkdH8Ytf/AI//OEPMTg4iB07dmDXrl24+eabxWoasb7//e/jC1/4AqLRKL7yla/gkUceuSAGzDl58iRqamrilmVkZGDNmjXo6uo6L+tLJJFI0NDQgKeffhrr16+f93sQEdHCmM8AF06nE2azGS6Xa9p6Eo9/5hLAmm8V40AggOHhYQwPD4vBq+HhYfT19YnBLIfDIT5foVBAqVRCJpMhEonA7XaL51xlMhlKS0uTBrGqqqpQXl7OAbOI5igajeKxxx7Dd77zHXz44YcwmUxzet3g4CBeeOEF7NmzBwcOHIBGo8ENN9yAG264Addffz1ycnIWuOVEREREREREtJAY1iIiIqIly+Px4OjRo2J4q62tDe3t7RgfH0dGRgYqKiqwbt06rFu3Dg0NDVi3bh1qamo4gj/RCiJ0lggEAnEdx2eaT/VYqtFrBVlZWcjOzo7rWBE7P9NjyZ6r0+kW8ZMiIiJKP6Hj4rmMLJ8s4DVbh8eCgoKkAQSilSIQCKCnpydpVa7+/n6Ew2EAZ4JcySpyVVVVobKy8oII4NDfRSIR7N27F7t378YLL7yAgoIC3HXXXbj33ntRWloqPq+2thYnTpxANBqFRCLBxz72MTz77LPIyspKY+sXR01NDU6ePCnOS6VSfOc738EXv/jFea/r4Ycfxn/+539iampq2mNSqRQSiQQPP/wwvvzlL7PjOxHRAlnIQScW45jE7/djaGgIw8PDGBwcxODgoHhfWG6xWMTnZ2ZmQqVSib/Zk5OT8Hg84m+RXC5HWVkZKioqUFFRgfLyclRUVKCyshIVFRUoKiri/iHReeByuXDXXXfh1VdfBQA88cQTuPfee1M+P1VAq6WlBVddddWMlfOIiIiIiIiIaHlhWIuIiIiWHbPZjI6ODrS3t6O1tVW8HwgEIJVKUVZWhrq6OjQ1NaG+vh51dXWora2d1wiVRLQy+f3+OQW75hoCc7vd0zp0xDrboFeyx/Lz8yGTyRbx0yIiIlp4DocDdrs96eRwOGCz2WCz2eKW+f3+uHVIJBLo9Xro9Xrk5eWJ9xMn4bG8vDzk5eVxhGpaESYnJzE0NJS0GldnZycmJiYAnNkvLSoqSlqVi1UTVr6enh48+eST+OlPfwqHw4Frr70W999/P+RyOS6//PK450qlUlxyySV45ZVXoNVq09TixfHQQw/h29/+thgczszMxNDQEAoLC+e9rjVr1qC7u3va8oyMDGzbtg1PPfUU1qxZc85tJiK6EKQKXc13IAjg7/tAs1W4EkJYxcXFCxKU8Hg8GBoawsjISFxVrKGhITGUZbPZxOfLZDIxiCWRSBAKheDz+TA+Pi4+Jzs7G+Xl5SgtLUVpaakYyooNY/GaCNHCOnLkCG666SaYzWZMTU1BIpHg0ksvxTvvvBP3vIGBAbz44otiQEur1eKjH/0oWlpacPXVV3MQSiIiIiIiIqIVimEtIiIiWhFCoRC6urrQ3t6Oo0eP4vjx4zh+/Dj6+voQjUaRm5uLuro6rF+/XuycVltbGzeaNBHRfEUiEbjdbni9XkxMTMDn88HpdMLn82FiYgJerxdut1ucF54rzAvPFTpbuFwuzHSIlpubC6VSCaVSCZ1Oh5ycHCiVSqhUKmg0GnFeo9FApVKJ81qtFgqFAkqlEmq1GllZWcjNzUVubi4DYEREtOxMTEzEhbpiw1yJYS/hcZfLNW09WVlZceGt2DCXwWBIujwvL++CqDZDK4fT6UR7e/u0qlzd3d3weDwAzlRdKCkpSVqRq7a2lsHGFSQQCGDPnj340Y9+hAMHDqCoqAhWq3Va53aZTIbKykq89tprKCsrS1NrF97x48fR0NAA4ExI7aqrrhIrIpztegRSqRTZ2dn47//+b+zcuZOVS4jogiUEr2aqbpUYwnI6ndPWk6za1WwhrMLCwgUPK01OTsJms4nbl+y2p6cn7nhEKpVCqVQiOzsbCoUCkUgEPp8PbrdbrJgKxFdNNZlMKCoqips3mUz8fSFKo6effhq7du1COByOq64qkUgwMjKCQCDAgBYRERERERHRBY5hLSIiIlrRvF4vOjo6cOzYMTHA1d7ejtHRUQCAWq3G2rVrsW7dOtTW1oohrvLycl7oJKK0mU91r9nmPR5PXEePZLKyslJW90p2f67PVavVrNJARERLRuII/XPpMDo2NjatimayjqIzjc5vMpmg1+sXZIR+onPhdDqTVuQ6ffo0ent7xUEEhI7CiVW5Vq9eDbVaneatoLP11ltv4corr4zrWBpLJpNBo9Hgtddew8aNGxe5dYunuroap0+fRkZGBvbs2YNbb7113uv4+te/jkcffRShUAgSiQSRSAS33norfvCDH6CgoGABWk1EtPhSVbuaaZ/aYrFMOyc12750sgBWOqrNRyIRWCwWsRKW2WyG2WzG0NAQRkdHMTg4iNHRUVgsFvE1GRkZ0Ol0UKvVyM7OBgAEg0EEAgE4nc64CsE6nS5pAEuYLysrg1QqXdRtJqK58fv9uPfee/Gzn/0s6eOZmZnYvn073nzzTej1etx0001oaWnBjh07OHAaERERERER0QWGYS0iIiK6ILlcLvT09IgjjAu3Qoc0uVyOVatWob6+XuyQVldXh7Vr1zJ4QETLjt/vF4NcqcJf87kv3Npstmmj8CeKDXfNJxA2W1AsHR11iIjowjTfagBOpxOjo6PTqmXOJeSV2DnVYDBwtG1Ki0AgALPZnLQqV39/v9jxOrbiQ+JUWVnJQVCWsO985zv42te+ljKsBZzpaCqXy/Hiiy/i6quvXsTWLZ6vf/3r+OY3vwm1Wg2LxXJWwdqqqir09vZCKpWioKAATz75JK677roFaC0R0blLFbqaKYRlt9sxOTk5bV1ZWVmzVreK3c8tKipKe5XaxH37xFvhscHBwbhzXgqFAjqdDiqVCnK5HBkZGQiFQhgfH4fT6cTExIT4XLVajdLSUpSXl6OkpASlpaUoKytDaWmpOHEgB6Ll6cSJE7jppptw6tSplPvREokEjY2N+Pa3v40dO3YweElERERERER0AWNYi4iIiCiGy+VCR0eHOLW3t6OzsxODg4MAgOzsbNTW1qKmpiZuWrNmDZRKZZpbT3R23G43IpEIIpEI3G43AGBychI+n098ztTUFLxe74zrCQaDcR0TUtFoNJBIJDM+R6fTxc1rtVpkZGRAIpFAo9EAAORyOf/fLRHnEvhK9bjD4UAwGJz1vc93NbCsrCzk5eWlvfMQEREtf06nc87hrthOsYlmCnml6hzLUDMtpMnJSQwNDSWtyNXZ2SkeEwgduJNV5SovL+dAKGkUjUZRVVWFvr6+WZ8rkUggkUjw85//HJ/4xCcWvnEpxB6Ter1eTE1NiZ3kBT6fL2mYQJCs6nBfXx++8pWv4KqrrsI999wz4zGmcLwg0Gg06Orqwg033ICMjAx89rOfxWOPPYbc3Nyz3UwionmZ76ACIyMjcDqd09aTbH9zthBWYWHhrOf3Fsvk5CQsFgvMZjPGxsYwOjqKkZERWCwWDA8Pw2KxiMtiq1tJJBLo9Xqo1WqoVCpx/zkcDsPn88Hr9cJut8edn8rJyUFJSQmKiopQVlaGsrIyMZAlhLOEc5dEC21iYkL8+4y9n7hPNJdz+wAwPj4+68BcwN8H55qNcE5fELsvlZOTI4YWY+8vZb/61a+wc+dOcT90JpmZmbBYLMjLy1uk1hERERERERHRUsSwFhEREdEceDwedHZ2iuGtrq4unDhxAr29veLoeaWlpVizZs20EFd5efmSuXBNy4vX64Xb7Ybb7YbH44HP54PL5cLk5CTGx8fFi65Op1MMV3m9XkxOTsLtdouhF6FDWmyYarZObMtN7AVdtVqNzMxMKBQK5OTkQK1WQy6XQ61WixeENRoN5HI5VCqV+FqdTicGwLRaLdRqNTQajfg6WnzC36zH40EgEMD4+DjGx8cRCATE/xPBYBAul0sMgDmdTvF1wv8D4f9GIBCA1+udU8cDmUyG3NxcqFQqKBQKqNVqKJVK8e8nNuQldFDQaDTIysqCUqkUO/lotVrx70r4W5tLYJGIiC5MgUAADodjXuEus9mMQCAwbV2pQl4zdbw1Go0M0NA5czqdOH369LSqXN3d3fB4PADO7GuVlpYmrchVW1uLnJycNG/FyvbXv/71rCplPfroo/jKV76S8vFwOAyXyyV+RwnHshMTE5iYmBD324X7ExMT8Pv9cLvdGB8fh9/vh9frjRtIZLkeuwrHCxkZGdBqtQDOdFjOzs5GTk4OtFotcnJyxGPW3NxcZGdnQ6VSicegubm5cd/RwnqIaOVJVe1qphCWxWKZFkA9m0quSznk7/f7U1a+il02NjaGSCQivk44dyMEsbKysiCVShEMBsVzSk6nE1arNa4ark6ng8lkEsPmwv3YW5PJxMqhlFIwGITX64XH44HL5RLPR3o8HvF8pbBv43a7EQqFUj42NTUl7g8J5z2B+FDWSqRUKsXq0sJ9YX9KOF8r7Gep1WpIpdKkj6lUKkilUvHcrUqlgkqlEivkzafaVTAYxL/+67/i//7v/5CRkTGtinYymZmZeOqpp3D33Xef9WdBRERERERERMsfw1pERERE5yAUCmFwcDBpR7TTp08DOFP9p6SkZNpI4g0NDTAajWneAlpIk5OTsNvtcZPNZoPT6YTL5RI7riXeulwuuFyulBf9hOCHcLEyNmSUm5sLuVwOrVYrhpVyc3Mhk8nEC5ZA/CiWsRcnhYpWUqkUKpUq7n1nC5jEdkJL5WwqdEWjUbhcLgCIGzk99iK1MLI6AHGEYOFxt9uNyclJeL1e8WK2y+VCKBSatmymz1wIb2m1Wmg0GjHIJdxqtVro9fqkEztxLE1zqfA1n2pgwv1kI/YnE1vxa6ZqYHOtFJZ4ywphREQXjlQdfGfq8JuqimViJ9/ZqiostcoKtLQJQa5kU29vr7g/rtPpxGPn2GPpVatWpbVaxYEDB9DQ0DDtWGm5+e53v4svf/nLKR+XSqXi/+loNIpIJCLu327evBnr16+P+24RAlpCGC+RcGwqhJWys7PF/djs7GwxuCQMgAD8/dg0WehJOBbOzMyEWq0W32e26suJlbESzbcyl3DsKRxTJguZCcfAwnFtbEDN5/OJA6zEhtVij28TJYa3Eufz8/PjpsLCwmX/90q0nMw1eB+7T2a325N+9wgVKmfbDxOm5VLRSfiMZgthDQ4Oxg20I5fLodfrodVqkZeXh9zcXGRlZUEikYjn/bxeL5xOJ4aHh+NeG/tZpgpilZWVzSu8QStPJBKBw+FIOnk8Hni9XrhcLvG+MAmDrQmDqKUinLMTztVrtVpkZmaKg4rFDvQUGzQC/r4vlXg/tsJVqvsCYYCzmcy2LyWYy7lPYXC5WLEDaMXej933ib0vvE84HI4LtQn7Xh6PB1NTU+K5fmGQL7/fP+tgXUJIXqVSiQO3CfNqtVo83x+JRPDjH/8YAwMDs34usSQSCa655hq8+uqr83odEREREREREa0sDGsRERERLZDYTmixQa7Ozk4xiCJ0QEsMctXX17OD/RIUDAYxNjaG4eFhWCwWDA8Pw2azTQtkWa1W2O32pKEkoUOBTqeLC/rE3sYGgmKX5eTkiBdoaWEIF3VjK5ol3saOEB/7PJfLBbvdPu0idEZGRlxwKy8vL27eZDKhoKAAxcXFMBqNKCgoYEWLFSB2dNzETgJOp1P8WxNCYB6PB6FQSAwX+ny+pCPtzrXDgUAIXsaOKjtTxS+ZTAa1Wj0t7KnT6aatK3b0WiIiWp68Xi8cDkfcvmxsp8RU84kd86RSqbifI0x6vR46nS5umbAfHHufSBAIBGA2m5MOhtLf3y/+3cUGuRKnysrKBRsowePxiMdxX/va13DPPfcsuwpgPp8PAwMDGB4eRn9/P3p7e8WKJFarFTabTeyEnPj/XKFQiPuK69evTxkYil0mHMsyzDl/wuAiyUJxMy2zWq3TQnNZWVkwGAwwGo0wGo0wGAzIz8+HyWRCYWEhysrKUFRUhOLiYp6LIooRG4afqcJVYggrUbJqV7OFsJZTED4xoJb4WSWbjyUEqYQgVk5OjlhVJxAIIBgMwu12w+VyYXBwMG6AJ+G1wneYyWRCaWkpCgsLUVpaCpPJhOLi4mmhFVr5IpEIrFYrLBYLxsbGMDo6CqvVmjKM5XA4xMHCYsnlcuTl5UGj0SQN9ahUKnF/Rwj5JFZwEs7HUXq4XC4EAgGx4pnT6YwL280WwrNarWIYf76ys7Pxpz/9CQUFBTAajcjLyzvPW0dERERERERESx3DWkRERERpYDabxY5nsZ3QhJHEZTIZSktLkwa5qqqq0t18BAKBFdWBJxgMih3WYoNYY2NjGBkZwcjICEZHR+FwOOJep9frkZ+fP62KkrDMYDCInVaF+wzhrHyBQGBaNbVkoT7hsdHR0biAV2ZmpngBt6ioCEajEcXFxSgoKEBRUREKCwtRXl4Ok8nEvyeKq/g1UwWwmZbN9phQMWA251IhbC7Vw4QKCkRElH5utzsu3BUb6koMeAmdd5OFvDIyMlIGuWabl8lkadp6SofYqtaJU1dXl7g/rVAoUFxcnPRYury8/Jz2n48cOYJNmzYBOLPPrtVq8eCDD+Jzn/scFArFednOcxEIBHD69Gn09fXBbDZjaGgIg4ODMJvNGBwcxNDQUFxH06ysLPE4I7YKU35+ftJgD6uNLB/BYDCug7oQxBsdHYXFYoHNZoPFYsHo6ChGR0fjBoEQjjtLSkpQWlqKoqIilJaWoqSkBBUVFSgrK+P3Ly07qSqQzhTAslgs0/ZbkoWuZgth5efnL7v/M4FAQPwOsVgs4neI8H0SO2+xWKYNWpSdnS3+juj1emRnZ0OhUEAqlSIajWJqagp+vx8+nw92u118n9jPOzs7G4WFhTCZTOL5sYKCApSUlMQFsQwGw2J/PJRmdrtd3M+xWq1iECsxlGW1WuP+puRyuXjOPvH4InFZ7DSXKlN0YXC73dOOc4XvQafTCZvNJob+YgP1kUhEXIfwd2g0GsX97sLCwrj7JpMJZWVlyM3NTePWEhEREREREdH5wrAWERER0RLi9Xpx4sQJnDx5El1dXTh58qQ4L4wampeXhzVr1mD16tWorq6OmwoKCha8jW1tbWhqasLtt9+OBx98EDU1NQv+nufK6XTCbDZjZGRE7NAXO9/X1xd30Uyn08FkMokdLBJvdTodysrKOCImnTdCxyGho1Cq28TOK4lVBYS/06qqKqxatQoajSaNW0UrRSQSSVrxy+VyYWpq6rxUD3O5XJjL6Ym5VvwSOlBLJBLxVqPRiM8VqooJ6xNeK1QZE9ZPRETnV6rO0rNVqEgWHJ5Lh+lkk8lkWrDKS5Q+qSpbnzp1SgwoxQ6KkjitXbt21s64v/vd73DbbbfF7bNIJBLk5+fjgQcewOc///kFD23FbmfiFHtcK1QaiT0+SLy/nKq20MJKPGeSeH9oaCiuWle6qtsRJVZwmmnfQQhh2e12TE5OTluXsB8xW4UrYSouLl62VaWDwSDsdvucK1+Njo7G/dYpFAox1CJ8Znl5eWIAOiMjA5mZmfD5fGIFLLPZDLPZPK1SkbAvFvvZx/4bCPe5v3ZhSvV7JNx2d3fH/R7F/m0m+zuKvc/9HkoX4e868fs28f7Q0FDc75WwPx+7H5+4P8/vSiIiIiIiIqKlj2EtIiIiomUgGo1icHBQDG+dOHECPT096OnpQW9vr3gRR6VSTQtwCVNpael5qcLz61//GnfeeScyMzMRDodx22234Rvf+AbWrl17zus+W5FIBAMDAzh16hROnTqF7u5udHd349SpU+jr64Pf7xefW1hYiLKyMpSWlqKsrAzl5eXifGlpKQoKCniBi5asUCiE0dFR9Pf3Y2BgAAMDAxgcHMTAwIC4LHa0/Ly8PFRUVGD16tVYtWoVVq9eLU75+flp3BKi6cLh8HkLfkUiEbhcLnGdU1NT8Hq94nPnSgh+aTQaSCQS6HQ6MfiVmZkJtVoNmUyG3NxcMfglVAUTgl9CRTCVSgWpVCquKzZMJqyLiIiSO5uQV6qqGEB8kGWuIa+CggJWFlqmZgo4CdWtgfgASmxVLmEQhEceeQTf+MY3knb6l0gkMBqNeOihh/DpT3/6nP5WgsEgurq60NXVhY6ODnR0dKCrqwunTp1CIBAAcKZzcmVlZdKwTEVFBQcWofPObrejt7c36f+jwcFBTE1NATiz/7x69WrU1tairq5OvK2qquJ3KMWJ/W2fqcJVYggrUbLw9my/8cs9tOHxeKZVcbfZbLBarRgdHRXvCxX1vF5v3OsVCoVYNbGwsBAGgwF5eXniMWxGRgYikQhCoRD8fj8cDgcsFguGh4fFKlix3QuUSqVYGV6oClNQUBBXJd5oNHJfiuByueJ+P3p6esT9saGhIQSDQfG5er0excXFYnXHoqIilJWVobi4GMXFxSgpKeF5FFpxhO/xgYEBDA8PY3h4eNr98fFx8flKpRLl5eVJjwuqq6uRnZ2dxq0hIiIiIiIiIoBhLSIiIqIV4VxHEa+pqUFubu6c3uvb3/42Hn74YfHiqVwuRygUws0334xvfetbCxrastvtOHr0KE6ePBkXyurp6RHbo9VqxTDKqlWrUFlZGRfOWuiRzonSzePxxIW3ent74/6vCB08NRrNtBCX0JEuJycnzVtBtPCE4Ndcbp1O55yfm+x2rpXDAIhhr7O51el083qNEEYjIlrJkgW9jcFhXQAAIABJREFUZusUbrPZEAqFpq1rtmpeyTqH6/V6HoMsYV6vVxwIJXY6deoUhoaGxLBffn4+FAoFRkdHxVBKooyMDGRkZMBkMuHBBx/EZz7zmRl/Z0OhENrb23H06FF0dnais7MT7e3t6O3tRTgchlQqRXV1Nerr67F27VqsXr1aPIYvLi7mICO0ZIRCIQwMDIjnpbq7u9He3o6uri709/cjGo1CLpejpqYGtbW14nHnxo0bsWrVqmUdmqGZA9Wpfm+ThannUjEz8Xc2Pz9/2VdE9vv9cwqrCc9JVSkstmKV8FkJg4wIla8ikQj8fj/8fj/GxsZgtVphtVoxNjY2rQKWQqFAfn4+CgoKxPCVELoSqhQZjUYUFRXNWpmSLiwWiwXt7e1iECs2lOVwOAAAmZmZKCkpibs+IQykVlRUhNLSUoZMiFLweDwYHBzE0NCQGOCK/X82OjoqPtdkMk27FrhmzRrU1tZCo9GkcSuIiIiIiIiILhwMaxERERGtcDONIt7X14dIJAIgfhTx2Km+vh4mk0lc365du/Czn/1sWge12NDWN7/5TdTW1p51mycnJ9Hd3Y3W1lZ0dHTEBdCAMx0GhE5rydpMRKk5nc64/1PC1NnZiYmJCQBnLuQ2NTWhvr5erCpQX1+PrKysNLeeaPlyu92IRCJwOp2IRqNxlb+EymFC5S8h6DUxMYFgMChWDfN6vZiamoLH40E4HI6rIhaJROB2u8UqYnOVm5sLmUw2rfKXTqdDRkZGXOUvoYqYXC6HUqkUQ19CAEyoIibcCsuF5wnVx4iIloOzqeY1MjICp9M5bV1z6YCebDKZTAzkpNHk5CR6e3vFANdjjz2Gvr6+WV8nkUgQjUZRVVWFBx98EHfeeSfC4TBOnjyJ1tZWcTp8+DD8fr84sIqw3x17y47KtNwJ53cSz+0cP34cwWAQubm52LBhQ9zx59atWyGXy9PWZqF674VWjToQCMDhcMzpt04IFqUKDgm/e3OtYllcXAytVpuGrT5/Fjq0VlRUBIPBALlcjszMTLHqVSgUgs/nE/dBhPcbHBycFjxPrCya+O8TO7/cq4/RwjObzeJ3uvD9fvz4cTEoolAoUFxcnPTcfW1tLc8NEC2QYDCI4eHhpNcDu7q64PP5AJy5HhhbTVi4X1lZyWNQIiIiIiIiovOIYS0iIiKiC5jP50s6inhPTw8GBgbEQFZeXh6qq6tRXV2NgwcPiqGpZITQ1rXXXotvfetb2Lhx44xtsNlsOHjwIA4ePIgPP/wQx44dQ29vL6LRKHJyclBbW4uGhgbU19dj/fr1qK+vR3Fx8Xn9HIgICIfD6OnpwbFjx3D8+HEcP34cx44dQ09PD6ampiCXy1FbW4v6+nps3rwZW7duRWNjIztXEC1hZ1MJ7GyriAlhtLmarerXXJ4z39ucnBxWtyGiBef3++FwOMTJ6XQmnbfb7XGPeTyeaetSKBTIy8tDXl4edDpd3H1hPtX9C71yos/ng9VqRUVFxXlbZ1FREUZGRub9OrVajYmJCUxNTUGlUqGxsRGNjY3YtGkTNm3ahLVr10IqlZ63dhItB4FAAMeOHcPhw4fF6dixYwgGg8jOzsaGDRuwefNmbNu2Ddu3b1+U80AnT57EE088gZ/+9KdoamrCO++8s+DvuVBig0NzqdrkdDoxOjo6rRrwTMGhVCEso9G4rH+DwuFw3G+13W6Pu2+322Gz2eLm7Xa7WMVcIJFIoNfr46a8vLy4eSF4FY1GEYlEEAwGxQqfwmS1WjE6Ogqr1Qq/3x/3HiqVCoWFhcjPzxerYBmNRnE+9rH8/HyGr+isuN1u8Xu6ra0NHR0dcYGPwsJC1NbWYu3atWI10NraWhQVFaW55USUKBKJoL+/H52dneL/5Y6ODnR2dooVFvPy8sQqqMIxy/r16zmIBBEREREREdFZYliLiIiIiJIKhULo7++fFuJ67bXXxOo7M0kW2vL7/Th8+LAYzooNflVXV6OpqUkMZjU0NKCqqoodCYjSLBgMiqPjCgGuDz74AFarFVKpFOvWrcNFF12ErVu3YuvWraitrV3WHbOI6OwJlb+EW6EimFAhTAh2BYNBTExMiJXEhMpiQqUxoUqYUIEMAFwuF6LRqBgKE95jfHx82ojxM5FIJNBoNADOjCIMAFqtFhkZGWJVMaHKmFB1bLZKYULFMalUCpVKJb6HUJks9r2IiFKZmpqaFuxKDHsJ92NvnU5n0u9BtVo9p1BX4v3lXtlE8PDDD+Ohhx7Cjh078MUvfhHXXnvtOR1bCgGSmS6nCBW1hOdIJBIYjUZccsklaGlpwaZNm7Bq1Soe4xKlEAqF0N7eLoYCDh06hMOHD2NqagpVVVXYvn07tm/fjubmZtTU1JyX94xGo/jrX/+Kxx57DK+99hpkMhkmJydRUVGB3t7e8/Ie52KhqzXNFMLKz8+HTCZL05afu7OpkHm2n19RURFUKhWAM39ToVAI4XAYDocDVqtVDHcl3ib+pqhUKhgMBuTn58Pw/9m78+i26jN94I8syZvkRd53x85uZ3f2fTHZSZrJArRkoS2ZEpahdDoUTn+ndKYt5XSg0JmWCYS2SWlDgISQQCCEOOCYQEIWsthxsBMntmPZlm3J+ybr+/sj595KlmzLju1r2c/nHB3JV1dX771SlLs99w0Lkx93FMhi93PqbVVVVXL3T+l2/fp1CCEQGRmJyZMny4GslJQUjB07ltu6RIOE0Wh0CHDl5OTgwoULqK6uhkajwdixY5GWliZfcGLSpEnQ6XRKl01EREREREQ04DGsRURERERus9ls8PHxkTtuuUulUiEqKgomkwlWqxXh4eGYPn06pk2bJgc8QkND+6hqIuoLN27ckEOX0kl0DQ0N0Ov1mDZtGhYuXIjFixdjxowZHn2CFxF5BikYJgXCpK5fUjBMCoRJYTIpGGYfCDObzQAgB8JqamrQ1tbWZfisO6RAWGBgINRqtRwMkwJhUvcvKRgmBcK8vb2h0+nkYJharUZgYKBD+EyatjQN6TX24xDR4NTTE9Kl7bP23D2pv/0tOjoaKpVKgSXg7NFHH8XOnTuhUqlgtVqRkJCAH//4x3jooYd69JuYm5uLsWPHyn/bd0KR+Pj4YNSoUViwYAE2bNiA2bNncz2Y6C7V19fjyy+/RFZWFjIzM3H69Gk0NDQgMjISCxcuxKpVq7B8+XKEh4d3a7pNTU14++238fzzzyM3Nxcajcbh9zAoKEheR+wtZrPZrQ5XUgirsrISLS0tTtORfqM7627VPkjkqWGK6upql8vIPrDc0fD2VCqVy+VjH1yWbt7e3vDy8kJbW5u8PSCFrKRuV+3DV+0DXjqdDqGhoQ7hK+nvjoZ7e3v316Ilgs1mw5UrV5CZmYmTJ0/izJkzuHnzJgAgNjYWU6ZMcQhm9EeHQyIaWIQQuH79ukOI89y5czCbzVCr1Rg1ahRmzpyJ+fPnY968eRg+fLjSJRMRERERERENOAxrEREREZHbiouLER8f3+V4Xl5eDietBQYGYuHChXjggQcwY8YMJCUl9WWZRKQAq9WKK1eu4MyZMzh16hROnDiBwsJC6PV6zJs3D4sXL8bixYsxadIkdhMgokFHCm51dd+dcbu6l8Jj3SV1Bmt/39lzvTWO9JiIBo6eBr3Kysoctvkk7nQfaR8uCAkJ6fXfhgceeAD79u1z6Fqi0Wig0WiwefNmPPHEExg3bpzb08vIyMCSJUugUqnkzju+vr6YOXMm1q5di/T0dKSkpHA9l6iPtba24ty5czh58iSOHTuGzMxMtLa2Yvr06Vi1ahVWrVqFSZMmdRgcLSkpwWuvvYaXX34ZdXV1sNlsLjvmeXl5obW11eW/6S+//BK1tbWIjY3tsLtV+1tpaanT+3T0e9lZCCsyMtKjOlnbbDZYLBb5Vl1dDYvF4nb4qn0ACrgTpOsoZNV+uL+/P1QqlRzc7aormdlsRkVFhVPHyu5+VrGxsYOmUyUNHlarVf79zMzMRFZWFsxmM4KCgjB37lzMnDlTDmdFRkYqXS4RDWAFBQVyeCsrKwtnzpxBU1MTYmNj5eDW/PnzkZKSMmAu5kFERERERESkFIa1iIiIiMhtWVlZmDdvnsMwtVrtdHKLwWDAtGnTsG7dOmzYsAFhYWH9XSoRDQB5eXnIyMhARkYGTpw4AZPJhJCQECxduhTr16/HypUr4e/vr3SZREQeS+oUBvyzM5jUCUwKdtmPY7FYIIRAXV0dWltb5XGkTmP240hhMKk7mc1mQ3V1NYB/dh/raWAsODgYKpVK7igmdRCTOoYB/+wUJo3jqlNYR93EVCqVfIKs1MVMCopJ3cmI6O51N+glnRzvqithT7t5hYeHu+xelZ6ejuPHj7us29vbGy0tLZgxYwZ+8pOfYN26ddBoNE7j2Ww2HD9+HHv27MEHH3wAi8WCkSNHYs2aNVi5ciXmzZvHzllECqurq8OxY8dw5MgRHDlyBCUlJYiJicGGDRuwZcsWpKWlAQDOnTuH3//+93jrrbfkIFZXNm3ahLq6OlRWVqKyshJGoxH19fVO4/n5+SE0NBQhISHyvdQtyX5Y+3tXvzsDjf3FAtz5nW8/bnl5ucvAVXd+8/39/eHl5SXvd6ypqZEDXvY3s9mMyspK+bG03mrPx8dHDnOFhITIN1d/h4aGyp2vdDpdny9ror5QWFiIw4cP4/Dhw8jKykJ9fT0iIiIwb948OUwxYcIEjwqBEtHA09zcjK+//hqff/45Tp48iVOnTqG2thZhYWFYtGiRvP0UEhKidKlERERERERE/Y5hLSIiIiJy2z/+8Q9873vfAwCoVCr4+vqiqakJ3t7eWLhwIe6//36kp6cjLi5O4UqJaKARQuDy5cs4fvw4Dh06hJMnT8LHxwcrV67E+vXrsXr1ap48T0TkoVpaWlBfX+8Q6KqpqUFbWxsaGhrQ3NwsjyOEgMVicRhHOhG4tbUVdXV1AJzDZ9I4rgJqUvisO+wDXQEBAdBoNHKgS6PRICAgAMCdixAAgF6vh1ardQh7SUEwKWwG/DOIJk3L/n2k4Jl9KE16b6KhRDqRv30nFfu/O3pstVqdpid1WbHvqHLhwgVcv3690zo0Gg2sVivi4uLw2GOP4Yc//CFCQ0ORm5uL3bt3480330RxcTFmzZqF+++/H6tWrcLw4cP7arEQ0V0SQuDChQv44IMP8I9//APXrl1DcnIyGhsbYTQaodVqu7W+sHjxYgQFBeHWrVvIzs6WX2uz2TBs2DA89dRTaGhowNNPP91Xs3RXpHUu+65WUmerjh5LISfpb1fLSwrOGwwGBAUFITg4GEFBQQ6P7YcFBQVBrVZDpVKhra0NbW1tqK2tdajN1U36/W9sbHSqQa/Xdxi0an+zf56hKxrspN/BQ4cO4dChQ7hw4QICAgKwbNky3HPPPZg3bx7Gjh2rdJlENMhZrVZ88803yMzMxMcff4zPP/8cNpsNc+fOxb333ou1a9dyu4qIiIiIiIiGDIa1iIiIiMgtNTU1ePXVV/F///d/uHXrFvR6PdasWYMNGzZg2bJl8PPzU7pEIvIg5eXleO+997B//36cOHECGo0GK1aswPe//32sWLGCV/UlIqJu66xTmBTokjqF2Y/TvlOYq25iUrBMes5+2lKQzD6I1l32ITCpY5h9CEwKjUkhMPsOY1IIzD5kJgXJpG5jwD+DZL6+vvDz83MIkkndyeyDZEQDUW1tLfLz8/HJJ59g/PjxDh1c7ENdn332GcrLy7s1ba1Wi6ioKBQVFSEhIQGbN2/Gli1bMGrUqD6aGyLqS1999RV+9atf4aOPPoLNZoNKpYJKpYLNZnPr9WlpaTh//jw0Go1TaMnLyws2mw06nU4Omvem6upq1NbWoqamBrW1taitrYXZbJb/tr83m80Ow6SglbSe056/v79TuEp6LAWw2j+n0WgghIDNZkNra2uXQav2ITFXAgMDERwc3OHNPoDbPnzl7e3d68ucyJOdO3cOe/bswXvvvYeioiLExcXJgYiFCxfCx8dH6RKJaAirrq7G0aNHcejQIRw5cgRmsxmpqalyJ9Tk5GSlSyQiIiIiIiLqMwxrEREREVGnrl69ipdeeglvvfUW2trasH79emzatAlLly7lgd4B6p577sGxY8eULmPI4PK+e5WVlTh48CD27t2LjIwMxMbGYvv27dixYwdCQ0OVLo+IiKjbpOCXfShM6hImdRkD/hkUk4JmwD87hkldyexDY1LozL7DmBQks5+uFCSzn2539bSbWFdBMqmbmH0wTAqQ2T9vHyazD50Rvfrqq9ixYwd8fX2xadMmPPTQQ1iwYAFUKpU8jsFgcCs8qVar5QCCSqXC1KlT8dvf/hYLFy6El5dXX84GEfWT5uZm7Nq1C3/605+Qk5MjB628vb3R2tqKjg6TSuN1Rq1WO3T8sw9USQGqmpoaOTzlKlRlP67UcaojgYGBCAwMREBAgHxvMBgc/rYPWvn5+UGr1cq/Z1arFQ0NDQ61SfVVV1c71FhTUyPX6GoZ6XS6TsNWrsJXBoNB/pu/sUR3p7q6Gn/5y1+wa9cuZGdnY/To0bj//vuxZs0aTJ482WG9iAYO7kemvjbQv2NWqxUnT57EoUOHsG/fPpSWlmLevHnYvn07Nm7cyEA2ERERERERDToMaxERERGRSxcuXMB//ud/4tChQxg1ahR27NiBBx98UL6q/0CmUqk6PNmms+c8jXTQvf38pKen49NPP1WipEGho+XaEU9Y3p70vc/Pz8frr7+OXbt2obm5GQ8//DCeeeYZREREKF0aERGRx5O6gEn3roZ19lxvTUMKmPWUfbjL1eO+fr6jcaWgGfWtl19+Gf/xH/+B1tZWaLVatLa2IjY2Fg8//DC2bNmCYcOGQavVdvgd02g0sFqtDgGGrVu34v/9v/+HuLi4/pyVbhkq27m9hcuEXLl8+TJ+97vf4e9//zvCw8MRGhqK3Nxct7ttuRITEyMHrjrSPlBlH6qyHx4YGIigoCCo1Wo52AxADoS5CoC1v9mHwNp3BJPodDqH95TCXe3DYPYdt9qHr7RabY+XGRH1XGFhIX73u99h9+7dAIAHH3wQW7ZswcyZMxWuzD1DZX1msO237+7+8p6+x2D5/JXkSd+xtrY2HD16FH/9619x8OBBhIWF4ZFHHsHjjz8uX7iFiIiIiIiIyNMxrEVEREREDkpKSvDMM8/gzTffxNSpU/Gzn/0Ma9eu9agr3g6Vg77A4JufgWKwLVdPnJ+6ujq8/vrrePHFF1FTU4Of/exn+MlPfsKOfkRERINMZwGv3ny+O+NKXc3uRl8Hw3ryvDSOp3vhhRfwi1/8wukzkoJb48ePx+XLlx2GW61WqFQqTJgwATNmzEBWVha+/fZbPPLII3j22WcRGRnZ37PRbUNpO7c3cJlQZ3Jzc/Hzn/8c+/fvv+tp/frXv0ZISIj8GyuEQFtbG9RqNVQqFZqbm2E2m+X/f8xmc6d/l5eXdxpo9vX1lbtUSTfpvd0ZHhoayu1qIg9UXl6OX/3qV3jttdcQExODJ554At///vflTrWeYiitz3B+Btb0aWC7ffs2/vjHP2Lnzp0QQuCnP/0pnnzySXmbloiIiIiIiMhTMaxFRERERLK9e/fi0UcfhcFgwPPPP4+NGzfKV030JDzoS3drsC1XT56fhoYGvPTSS3jhhReQlJSEPXv2YNKkSUqXRURERENEXwfDevr8YO1OFhgYKHeS6ch//dd/4de//nWHgTq1Wi0vGx8fHyxcuBAPPfQQ0tPT8eGHH+KRRx7BxIkTsXPnTowfP74HS08ZQ2k7tzdwmZA79u7di8ceewy1tbWwWq29/p1Rq9VyhyqdTge9Xi931dLr9dDpdAgICEBwcLD8vF6vR3BwsPxYp9PBYDBAr9ezmxXRELVnzx489dRT8PPzw89//nN8//vf99jfg6G0PsP5GVjTJ89QXV2Nl156Cb///e8RFRWFnTt3YtGiRUqXRURERERERNRzgoiIiIiGPJvNJn7xi18IlUoltm/fLmpra5UuyQEA4WrV1dVwaZj97Qc/+EGXzwkhxOXLl8XKlSuFXq8Xer1eLFu2TFy+fNnl9PPz88W6detEcHBwh/W5YrFYxJNPPimSkpKEj4+PiIqKElu3bhWnT592GO/9998Xs2fPFj4+PiIxMVE8+eSToqamxuUycGdZffPNN+Kee+4R/v7+IiAgQCxfvlx8/PHHbtVsP93s7GyxbNkyERAQIHQ6nVi5cqXIyclxOW5ny8idZe3ueNK0CwsLxZo1a4RerxcRERHie9/7nqioqOjRsnB3ep19B3NycsSMGTOEn5+fmDt3rsjLyxNXrlwR06dPFzqdTixcuFDcunWrz+fZne/9ihUr5PdbsWKFy89CaTdv3hQLFy4UPj4+4q233lK6HCIiIiLFNTc3i6qqKlFVVSWKiorE9evXxfXr18W5c+fE2bNnxVdffSWOHTsmjh07Jg4dOiTefvtt8fbbb4vXX39d7Ny5U/zpT38Sv/3tb8Vvf/tb8dxzz4mnn35aPP3002LHjh1i+/bt4uGHHxYbN24UGzduFGvXrhXp6ekiPT1dzJo1S6SlpYm0tDQxfPhwkZycLOLj44XBYBAGg0H4+Pi4XAd196bRaORpxcTEiOTkZJGcnCwmTZok0tLSxMiRI91+D61WKwCI+Ph4sWLFCqFSqcQTTzwhWlpalP74BtV27t1uA7mz/dvb20B9vUyEcG/b053tMXfn3X5+T5w4IYQQYu/evQ7De3MZ9Pb+DaXU1NSItLS0Hv9mvfTSS+Kjjz4SJ0+eFBcuXBDXr18XJpNJNDY2Kj1rROThmpqaxLZt2+R99gPpt1MymNZnPHW/vbvTcLfuK1euiBUrVgidTicCAwPFd77zHXHr1i2XtbszTXeWqzvfja6ONdzt/u3ufJe7M0/uvk931oc7WhYdTdtT9v/bKykpEevXrxcqlUo8/fTToq2tTemSiIiIiIiIiHqEYS0iIiIiEj/60Y+Ej4+P2Lt3r9KldKijg6odHfDq7nTy8vJEVFSUePXVV0V5ebmoqKgQf/vb30RycrIoKipymsY999wjvvjiC9HQ0CCOHDni9kHftWvXiueee06UlpaKpqYmcf78eTFnzhyXB2937twp6uvrhdFoFFu2bBFbt251a37aD7t27ZoYPXq0OHbsmKivrxfZ2dli3rx53TrJTJruuHHjxN69e0VFRYUoKysTr7/+ukhISBAFBQVO43a0jNxd1t39TJYuXSo++ugjUVtbKwoLC8W6devEtm3berQsXE1v48aNTtNztbylYZs2bRI5OTnCYrGIRx99VMyYMUOsX79eHvbII4+IDRs2OLyuL+a5oxql94uLixNvvPGGKC8vlz/T2NhYkZeX5/I1SrJareKxxx4TXl5e4p133lG6HCIiIiLqgsViEVVVVcJkMslhsuzsbHH27Flx9uxZceLECXHs2DHxySefyGGyN998U+zcuVPs3LlTvPjii3KgTAqTLViwoFuBMLVaLT9+8cUXlV4kDgbLdq70+p5sA0mvdXf7tze2gfpjmbiz7dmd7TF35t1qtYrhw4eLqqoqh9eWlJQIg8Eg6urqenUZ9Pb+DSXZbDbx4IMPCo1GI2bOnCm0Wq1QqVTCy8ury9+YM2fOKF0+EQ1CTU1NYsGCBcJgMHQ7uNPfBsv6jKfut+/O/u6u6s7Pzxfx8fHyuonJZBJ/+9vfxKxZszqcn66m2Z3l2pGujjX01v5td7/LdztPPV2W0nidfcfbT9vT9v+398c//lFotVqxY8cOpUshIiIiIiIi6hGGtYiIiIiGuL/97W/Cy8tLHDx4UOlSOtXXB32/973viRdeeMFp+BtvvCGeeOIJp2lIV6nuLr1eLyorKx2G3bhxo8sDsFVVVSIkJMRpuDvz/8ADD4g9e/Y4DMvNze1RWMtVR6MXX3zR6cBhZ8vI3WXd3c+k/Xc4NzdXxMTEOAxzd1m4mt6NGzecpieN62rYZ599Jv99+/Ztp2FFRUUiIiLC4XV9Mc8d1Si938svv+w0/MUXXxQPPvigy9cMBI8//rjQ6XQecUCZiIiIiHrXj3/8Y+Ht7d1peELqqBURESG2bdsmfH19xbPPPqt06U4Gy3au9PqebAO50tn2b29sA/XHMnFn27M722Puzvszzzwj/vd//9dh2PPPPy9+9KMfObxvbyyD3t6/oTSbzSZWr14tkpKSRFVVlTh06JB4+OGHRVhYmADudP1z9XuTkZGhdOlENAht375dBAUFDfjuN0IMnvUZT91v39NpuKr7wQcfdLlu8pe//MWtmlxN093l2tV3o7NjDb21f9vd7/LdzlNPl6X02s6+4+2n7an7/+0dPHhQqNVq8cc//lHpUoiIiIiIiIi6TSWEECAiIiKiIamtrQ2jRo3C0qVL8eqrrypdTqdUKhVcrbq6Gt7RuJ09FxUVhdOnTyMxMdFheFlZGRYtWoScnByHadTX18Pf37/b87F06VI0NDTg5z//OdLT06HRaNx+rbvz2n5YVFQUzp8/j5iYmG7X2366FRUVCA0NdRheUFCAOXPmoKSkxGHcjpaRu8u6u59JVVUVDAaDPKy5uRl+fn6w2WwO7+3OsnA1vba2Nmi1WofpSeO6+gxqamoQEBAAALDZbFCr1U7DNBqNU329Pc8d1djZ+xUUFGD27NkwGo0dLyQFWa1WjB8/HrNnz8Ybb7yhdDlERERE1I8ef/xxvPbaa2hpaXEYrtVq0draitjYWKxfvx4bN27EnDlz8NOf/hTvvvsu8vLyoNVqFaratcGynSu9vifbQJ1Nz9Uy6KttoN5eJu5se3Zne8zdec/Ly8MDDzyAs2fPysNGjRqFffv2YfLkyZ2+b3eXQW/v3xgISkpKkJSUhF27dmHz5s0A7nxvT58+jcOHD+PAgQO4du0a1Go1hBCw2WwD4IgiAAAgAElEQVQ4dOgQ7r33XoUrJ6LB5OrVqxg/fjzefPNN3H///UqX06XBsj7jqfvt72YarupxtaxLS0sRHR3t1v/d7afp7nLt6rvR3WMNPdm/7e53+W7nyd31oI6+Q519x939TAf6/v/2nnnmGezatQsFBQXQ6/VKl0NERERERETkNi+lCyAiIiIi5Vy7dg03btzAI488onQpiqusrMSwYcOgUqkcblFRUbh586bT+D09ge2dd97B9OnT8eijjyIkJAQLFizAK6+8gtbWVnkck8mEH/7wh4iLi4NGo5Fr6amKigqEhYX1+PX22ge1ACA6Ohomk8lpeEfLyN1l3d3PxP6kNQDw8fFxOpjZnWXRfnrSyVjukk5IBAAvLy+Xw9pPry/muTMVFRWIiopyGh4dHY2Kigq3p9PfNBoNHn74YXz00UdKl0JERERE/aylpQVtbW0AIJ8YOXLkSDz77LO4ePEiiouL8corr2Du3LlQqVQ4ceIE7rvvvgEX1OoP/bWdK+nJNlB3t3/vdhuov5aJO9ue3d0ec2feR44cCT8/P1y8eBEAkJmZicDAQDmoBfTeMlBi/0Zfi4mJwaJFi3D8+HF5mJeXF2bNmoXf/OY3yM3NRUFBAV5++WUsXLgQ3t7ePGGYiHrdkSNHEBUVhfvuu0/pUgYE7re/+2m4W3dH6yauhrk7TXeWqzs6+lyV2L/dW/Mk6e73qjvfcU/d/9/eU089hYqKCnz55ZdKl0JERERERETULQxrEREREQ1hZWVlAO4cmBnoVCoVmpubHYZVVVX12vTDwsJQVVUFIYTTraGhodfeJygoCC+99BKuX7+OGzduYMeOHXjrrbfwwAMPyONs3rwZOp0OWVlZaGpqkuvoqdDQ0F478CZ9Z+wZjUaEh4e7PQ13l3VffCa9uSz6Qn99D+3fz9XVM41GY68F/PpKbGwsTCaTW1flJyIiIqLBw8vLC21tbZgwYQJ++ctfIjc3F99++y2ee+45TJgwwWn8iooKREREKFBp1wbLdu7d6O3t36701zJxZ9uzr7bHHnroIfz5z38GALzxxhvYvn270/v2xjJQYv9Gf4iMjOz0sxs2bBgee+wxHD9+HA0NDVi0aFE/VkdEQ0FpaSliY2MHdLjV3mBZn/HU/fbuTMPdusPCwlBaWuo03NXn6e403Vmud6M316fc/S67O0/uTq8v15c8ef+/vbCwMPj5+XlMJzAiIiIiIiIiCcNaREREREPYqFGjAABff/21wpV0LSoqCoWFhQ7DMjMzXY7b2YHsjp5btmwZPvvsM6fhJ0+eRFpamvuFdkGlUqG4uBjAnQNM9913Hz788EN88skn8jinTp3CL3/5SwwbNky+UnxjY2OP33PhwoX49NNPHYZdvHgRKSkp3Z7W0aNHnYa99957WLp0qdvTcHdZ98Vn0pvLoi/01fewo+99eno6Dhw44DT8vffeQ3p6eo/frz+cOXMGo0aNkq/YT0RERERDw29+8xvcvHkTFy9exLPPPovRo0d3On5ycjIuXbrUT9V1z2DZzr0bvb39K1F6mbiz7dlX22ObNm3C+++/D5PJhI8//tjpxOHeWgZK7N/oDxcvXsSIESPcGletVvdxNUQ0FI0dOxY5OTmwWCxKl+KWwbI+46n77d2Zhrt1L126FAcPHnQa3n763ZmmO8tVGq8nenN9yt3vsrvz5O70+nJ9yZP3/9u7cOECGhsbB8xxHCIiIiIiIiK3CSIiIiIa0pYvXy6mT58uWlpalC6lU1u2bBEbNmwQRUVFora2Vnz88cdi2bJlwtUqbVxcnDh16pRoaWkRR48eFfHx8V0+V1BQIMaPHy/eeecdUVFRIWpqasThw4dFbGyseO+99xymfzer0QDEsmXLxJUrV0RTU5MoLS0VzzzzjFi3bp08zrJly8TDDz8sCgoKRHNzs8jLyxNbtmxx+b7uDLt06ZIYPny4OHbsmKirqxMXL14UU6ZMEX/605+6Xfvs2bPF3//+d1FRUSHKy8vFrl27REJCgigoKOiyLom7y7o3PpOeLgt3p9fbw/pinoXo+Hv/7bffitjYWPH666+LsrIy+TONjY0VeXl5Lqc/EBQUFIiAgADx3//930qXQkREREQD3M6dO4Wfn5+4deuW0qU4GSzbuR293p1hd7v929FwpZeJO9ue3dke6868CyHEtm3bxNKlS8UPf/hDp+d6axn09v6NgeDYsWMCgPjyyy+VLoWIhrCamhoRFhYmHnvsMaVLcctgWZ/x1P327kzD3bqvX78u4uPjxRtvvCHKy8tFZWWl2Ldvn5g4cWKP1+HcWa5CdP7d6Oxz7c392+5+l92dJ3en1xvrwx0976n7/+21traKRYsWienTpytdChEREREREVG3DcyjIURERETUb65cuSL0er34wQ9+INra2pQup0Mmk0l897vfFeHh4UKn04l7771XFBYWCgBOB6DefvttkZSUJLy9vcWIESPE+++/79Zz3377rVi/fr0ICgoSOp1OTJs2TRw4cMBh2tL7uXpfd3z66afiO9/5jggNDRXe3t4iKSlJ/PjHPxY1NTXyOGVlZWLz5s0iIiJCeHt7i3Hjxol9+/Y5vaerOjqq7dSpU2LOnDnC19dXxMfHi+eff77btQMQBQUFYvXq1SIgIEDodDqxYsUKkZOT4zReV8vInWXt7ngdvVdPl0V3ptfbw/pqnjv73l+6dEksX75c6HQ6odPpxPLly8WlS5fEQFVRUSEmTpwoJk2aJOrr65Uuh4iIiIgGuMbGRpGamirmzp0rGhsblS7HwWDZzr2bbaC72f7tbLjSy0QI97bD3dke6+68CyFEZmamACBOnz7tsrbeWAa9uX9jICgpKRHx8fHiX/7lX5QuhYhI7N27V6hUKvG73/1O6VK6NFjWZzx5v31X0+jO/8dXrlwRK1asEDqdTuj1erF06VKRnZ3d43U4d5arEB1//u58rr21f9vd77K78+Tu9HryveooyOXqOU/b/2+vtbVVbN26Veh0OnHu3DmlyyEiIiIiIiLqNpUQQoCIiIiIhrQPPvgAGzduxMqVK/HXv/4VAQEBSpdEA5BKpQI3H0hJ165dw9q1a9HS0oITJ04gMTFR6ZKIiIiIyANcuXIFCxYswNSpU7F//37o9XqlSyKiAaSoqAhLly4FAGRlZSE0NFThioiIgFdeeQVPPfUUHnroIbzyyivQ6XRKl0RE1G+MRiMefPBBnDlzBu+88w6WL1+udElERERERERE3ealdAFEREREpLzVq1fj2LFjyMrKwoQJE5CRkaF0SUREsra2NvzhD3/AlClTEBQUhFOnTjGoRURERERuGzduHI4dO4ZvvvkG06dPR3Z2ttIlEdEAcfToUaSlpUGj0SAjI4NBLSIaMP7t3/4NBw8exIEDBzBu3DgcOXJE6ZKIiPpcW1sbdu7ciZSUFNy6dQtZWVkMahEREREREZHHYliLiIiIiAAAc+fOxeXLlzF58mQsWbIE69atw7Vr15QuiwYIlUrlcE/UXz766CNMmjQJ//7v/46f/vSnyMrKQlRUlNJlEREREZGHmTJlCs6fPw+DwYC0tDT84he/QFNTk9JlEZFCTCYTtm3bhhUrVmDp0qX46quvEB0drXRZREQO7r33XuTk5GD69OlYtWoV5s+fj8zMTKXLIiLqdTabDfv27cO4cePw+OOPY/v27bh06RImTpyodGlEREREREREPcawFhERERHJIiIicODAAXz88ce4fv06UlJSsGnTJpw9e1bp0jyCSqXq9DZQuVO3EEK+EfU1m82G/fv3Y/r06Vi5ciVGjhyJK1eu4LnnnoNWq1W6PCIiIiLyULGxsTh58iT+8Ic/4OWXX8bIkSPx2muvwWq1Kl3agOWp27l9icvEs9XX1+OFF17AqFGj8Mknn2Dfvn148803odPplC6NiMilqKgo7Nu3D1988QW0Wi0WLFiA6dOn4+9//ztaWlqULs8jeOr/3Z5a90DD5TiwVVdX4/e//z1GjhyJ7373u5g6dSpycnLwwgsvwN/fX+nyiIiIiIiIiO6KSvBsSyIiIiJywWaz4d1338ULL7yA8+fPY9asWdi+fTvuu+8++Pn5KV0eEQ1CRqMRf/7zn7Fr1y4UFhZi3bp1ePrppzFt2jSlSyMiIiKiQcZoNOJXv/oVdu3ahZiYGDz55JP4wQ9+AL1er3RpRNQHysrK8D//8z949dVXYbPZ8JOf/ARPPvkk/80Tkcf58ssv8corr2D//v0wGAz47ne/i61bt2Ly5MlKl0ZE5BabzYYTJ05g9+7d2L9/P9RqNbZu3YonnngCI0eOVLo8IiIiIiIiol7DsBYRERERdSkjIwM7d+7EwYMH4efnh9WrV2PDhg1YtmwZg1tEdFfKy8tx8OBBvPvuuzhx4gSCgoKwbds2/Ou//isPzBIRERFRn7t58yZeeukl/PnPf4ZGo8GmTZuwdetWzJ49m1faJ/Jwra2t+Pjjj7Fnzx4cPnwYwcHBeOyxx7Bjxw6EhIQoXR4R0V25ffs2/vrXv2L37t3Iy8vDmDFjsGbNGtx7772YNWsW1Gq10iUSEcmampqQkZGBQ4cO4YMPPsDt27cxY8YMbNu2DQ888ACCgoKULpGIiIiIiIio1zGsRURERERuKy8vx969e7F//3588cUX8Pf3x6pVq7B+/XqsXLkSOp1O6RKJyAOUlJTgvffew7vvvouTJ0/Cx8cHK1aswMaNG7F27Vr4+voqXSIRERERDTFVVVXYvXs3du/ejYsXL2LEiBHYvHkzNm/ejKSkJKXLI6JuOH/+PPbs2YO9e/eioqIC8+fPx7Zt23Dfffdxe5OIBqVTp07hwIEDOHToEPLy8hAWFoZVq1ZhzZo1WLp0KbsIEpEiysvL8eGHH+Lw4cP45JNP0NDQgLS0NKxZswYbNmzA2LFjlS6RiIiIiIiIqE8xrEVEREREPWI0GuWwRWZmJnx8fDB//nwsXrwYS5YswaRJk+Dl5aV0mUQ0ADQ2NiIrKwsZGRk4fvw4zp07B51O5xD29Pf3V7pMIiIiIiIAwMWLF7F792784x//QHl5OWbMmIHVq1dj5cqVmDRpEjtuEQ0wVqsVWVlZOHLkCA4fPozc3FyMGjVKDlwmJiYqXSIRUb/Jzc3FoUOHcOjQIXz11VfQarWYOXMm5s+fj/nz52PmzJm86BoR9YnKykp88cUX+Pzzz5GZmYnz58/D29sbixcvxpo1a7B69WrExsYqXSYRERERERFRv2FYi4iIiIjumslkwvvvv49PP/0UJ06cQHl5OUJCQrBw4UIsWbIEixcvxpgxY5Quk4j6idVqxZkzZ3D8+HFkZGTgyy+/RHNzM0aPHo3Fixdj+fLlWLp0Ka9oTkREREQDmtVqxdGjR3Hw4EF8+OGHMBqNiI2NxcqVK7Fy5Urcc889PNmZSCEmkwkfffQRjhw5gqNHj8JisWD06NFYvXo11q9fj1mzZildIhGR4kwmE44cOYITJ04gMzMTBQUF0Gq1mDp1KubNm4f58+djzpw5CA4OVrpUIvJARqMRmZmZOHnyJD7//HNkZ2dDpVIhNTUVCxYswKJFi7Bs2TJuMxEREREREdGQxbAWEREREfUqIQQuX74sd9DJzMxETU0NoqOjMWPGDEybNg0zZszA1KlTERQUpHS5RNQLiouLcebMGZw5cwYHDhzArVu30NLSgrCwMMyaNQv33HMP1q1bh7i4OKVLJSIiIiLqESEELly4gA8//BAffvghvv76a2i1WkyfPh3z58/H3LlzMXv2bAQGBipdKtGgVFZWhqysLJw8eRInT57EN998A61Wi/nz52PVqlVYtWoVRowYoXSZREQDWnFxsRysyMzMxNWrV6FSqZCSkoIpU6bIt0mTJiEgIEDpcoloAKmoqMD58+dx/vx5nDt3DufOnUNBQQE0Gg2mTJkiB0Dnzp2LkJAQpcslIiIiIiIiGhAY1iIiIiKiPmW1WnH27FlkZmbi9OnT+Prrr1FUVASVSoXRo0dj+vTpmDZtGqZPn46JEyfCx8dH6ZKJqBMWiwVnz56Vw1lnzpyB0WiEWq3G2LFj0djYiNraWtTW1qKxsVF+nVarRWRkJGJjYxEZGYm4uDj576ioKPk+IiICXl5eCs4hEREREVHXysvLcfToUXz22WfIysrCt99+C7VajYkTJ2LevHmYN28e5syZg6ioKKVLJfJI169fl8NZWVlZuHbtGtRqNSZMmIB58+Zh0aJFSE9Ph16vV7pUIiKPZTKZkJWVhdOnT8shjMrKSnh5eWHkyJFIS0uTA1yTJ09mBy6iIcJoNMq/CdKtsLAQABAfHy//LsycOROzZ8/m+hgRERERERFRBxjWIiIiIqJ+ZzQacfbsWfnqe1999RUqKiqg0WiQkJCAlJQUpKamIiUlBWlpaRgzZgzUarXSZRMNKa2trfj222+Rk5OD7Oxs+f7q1asQQiA6OhppaWnybc6cOU5XzGxsbITRaERJSUmn92az2eF1BoMB0dHRiImJ6fA+ISEBGo2mPxcJEREREVGHysvLcfr0aXzxxRfIysrCmTNn0Nra6rDeLG3npqamKl0u0YBSUlIi7yM6d+4czpw5g/Lycmg0GkycOBFz5szB3LlzkZ6eDoPBoHS5RESDWvvf5HPnzsFoNAK4s8/Oft99amoqkpOTkZycrHDVRNQTJSUlyMnJwY0bN+RjAFeuXEFpaSkAOB0DmDZtGi9GQURERERERNQNDGsRERERkeKEELh27RouXryIS5cu4cqVK7hy5QoKCgoghIC/vz9SUlIwYcIEpKamYuzYsRg5ciQSExOh1WqVLp/IozU0NCAvLw/5+fnIycnB5cuXceXKFeTl5cFqtcLb2xtjxozBuHHjMH78eIwbNw5paWmIjo7utRoaGxthNpu7DHaVlpbCfhPWnVBXfHw8fyeIiIiIqN/V1NTgq6++kq9Ef+7cOdy4cQMAEBUVJV+NftKkSUhJScGIESO43kqDXmNjI3Jzc5GTk4MLFy7I/z6qq6uh0WgwZswY+d/G1KlTMXXqVHZgJyIaAEpKSnDx4kVkZ2cjNzdXvrdYLACAkJAQpKSkYOzYsRg7dixGjRqF5ORkJCUlwdfXV+HqiYa22tpa3LhxAzdu3MC1a9eQk5ODq1evIjc3F3V1dQCAyMhIpKSkYMyYMfIxuMmTJzMkT0RERERERHSXGNYiIiIiogGrrq4OOTk5DgGuy5cvo7y8HACg1WqRmJiIkSNHyrcRI0bIQS523SG6o7GxEfn5+XIoS7rPz89HcXExAEClUiEpKQnjx49HamoqJkyYgHHjxmHUqFED5qTRpqYmVFVVMdRFRERERB7JYrHI4RTplpeXB5vNBq1WixEjRjicJDlmzBiMGTMGfn5+SpdO1C0Wi8XhZP6cnBzk5ubi5s2b8vd93LhxcjBrypQpmDBhAvz9/ZUunYiIuqGkpARXr17F1atX5d/67Oxsef+9SqVCTEyM3H1r+PDhSE5ORnx8PEaPHo3IyEiF54DI89lsNhQXF8uBrPY3k8kE4M6/x4SEBIdtDSlkGRISovBcEBEREREREQ1ODGsRERERkcexWCwOYZO8vDz574qKCgB3glxJSUkYNmwYEhISEB8f7/A4Pj4e3t7eCs8JUe+oq6vDrVu3UFhYKN+Kiopw8+ZN3Lx5E8XFxRBCQKVSIT4+Xg41jhgxQn48fPjwQXOl2+bmZlRWVnYZ6iorK4PNZpNfJ4W6DAZDh8GuxMRE6PV6BeeOiIiIiAYTqdNQ+2BLfn4+Wltb4eXlhWHDhmHEiBFOJzonJycjMDBQ6VmgIcpkMrk8Ifjbb79FSUkJAMDf318OHdqfFDx8+HBeLIOIaBCTOvlcunQJp0+fRnZ2NgoLC1FWVoaGhgb5Iks6nQ5JSUlITExETEwM4uLiEB8fj9jYWPlxQECAwnNDpKyKigqUlJSgsLAQt2/fxu3bt+XHhYWFuHnzJlpaWgDcWfeSthPa39jpjoiIiIiIiKj/MaxFRERERIOK2Wx2CHG1D7A0NTUBuHMVwaioKCQmJsoBroSEBERHRyM6OhqRkZGIiYmBTqdTeI5oqKusrERpaSlKS0thNBphNBrlIJYUyqqqqpLHDw4ORnx8PBITE5GYmCif2CndeED2n3oa6vL19e20S1d0dDQSEhJ4MgkRERER9Vhrayvy8/PlLhX5+fm4ceMGCgoKcPv2bXn9NCwszOEkzGHDhiEmJgYJCQmIiYlBaGiownNCnkgIgbKyMvmE4KKiIhQUFDiEsmprawHcuVhOQkKC/B2UOsSNHTsWiYmJ8PLyUnhuiIioL1mtVhQUFODq1atyAD0nJwfXrl2DxWIBcGd/5ejRo5GSkoLRo0cjIiICSUlJ8rpNUVERiouL5fBJQ0ODPP3AwECHEFd8fDyio6MRFRWF8PBwREVFITIykvvxyeNYLBaUlpbCZDKhrKwMpaWlKCkpQXFxMYqKilBSUoKioiI0NjbKrwkODkZcXJy8rh8fH++wLRAVFaXgHBERERERERFRewxrEREREdGQUlZW5tR5SPq7uLgY5eXlsF9F1ul0iI2NRWRkpHwQWAp0RUREICoqCmFhYQgNDYW/v7+Cc0aepLq6GiaTCZWVlSgvL5dDWGVlZXI46Pbt2ygvL0dzc7P8Om9vb0RGRiIhIUEOGrbvHMcr6/e+lpYWVFRUdBjmMpvNMBqNuHXrFtra2uTXuRPqiouLQ1BQkIJzR0RERESeprm5GTdv3nTZ1ejmzZuoqamRx/Xz80NcXJx8MmdsbKx8onNUVBSioqIQERHB7dkhpKamRj4xuLi4WO7UUFJSIgezSktL5Q4NABAeHo7ExESXXRri4+Oh0WgUnCMiIuoPLS0tyMvLQ05ODm7cuIHs7Gzk5OTg6tWrcrjKYDAgJSUFqampSE5Olh8nJSVBpVK5/V5ms9mhe1BxcbH8f5UU6qqurnZ4jb+/vxzcioiIQGRkpFOgKyQkRL75+Pj06vIhqq+vR1VVFaqqquQLsJWXl6O8vNzhsdFohMlkctjvD0A+3pSQkCCvs7d/zFAiERERERERkWdhWIuIiIiIyI7VanUZnikvL8ft27dRVlYGo9GI0tJShysaAndOggsNDUVoaCjCwsIQHh4u/y0Nkx4HBQUhKCgIgYGB7HTkwerq6lBdXY2amhpUV1ejoqIClZWV8s1kMjkNq6iogNVqdZhOUFAQYmJiEBERgdjYWERERCAmJkY+eVLq9hYeHq7QnJK7zGZzp126jEYjCgsLHb4D7oS6YmNjERwcrOCcEREREZGnqKurQ1FRkUNXJOnkZimcU1ZW5vAanU4nn9gcHh6O8PBwREdHIzw8HGFhYYiKikJoaCiCg4NhMBh4wYEBQggBs9kMi8WCqqoqmEwm+SYFsqRuDWVlZU4nBqvVakRGRiI+Pl4O9EnhPqljQ2xsLPdbEBENIWaz2SGMJT3Ozc2FzWaDRqOROypKYayUlBRMmDChXy8i1dzc7BSC6eixyWRC+9NidDqdQ3grJCQEoaGhLh8HBgYiMDAQwcHB0Ov18Pb27rf5pP7V2NiI2tpa1NXVwWw2o6amBpWVlXIASwpjubo1NTU5TEuj0SAiIkJer5Yex8TEyOvb9o8ZficiIiIiIiIafBjWIiIiIiLqoZqaGpSVlckBnPaBHOlmP7y1tdVpOj4+Pg4HfIODg+W/pUCX9Fin08Hb2xsGgwHe3t7Q6XTyAeLg4GD4+PjwiuidqK6uRktLC2pra9HQ0IDm5mZYLBa0tLSgrq4O9fX1aGpqQnV1tXwwVgpi2T+2WCyorq6GzWZzeg8/Pz85mBcWFubw2D68J530GB4eDj8/PwWWBimpr0JdBoMBMTExCs4ZEREREXmC5uZm+WIk9oEe6YRmk8kEo9GIiooKmEwmp21ZLy8vObgl3Us3++F6vR5+fn7y9qyfnx8CAwMREBAAPz8/6PV6hZaA8qqrq9HQ0IDGxkaYzWY0NjaisbERFosF9fX1qK+vl4NYru7NZrNTVxHgznZDeHi43FkkPDxc7tQgbYdKQbzIyEieGExENESVlJQ4dcnKzs6G0WgEcGef9fDhw+Uwln23LE/bl9nW1gaTydRp0MZVIKe2ttbl9Hx8fBAQECDvzw8ICHC4GQwGBAQEOKwHaTQaBAUFyfv0/f395eMCGo2GF2nqpra2NtTU1KC5uRkNDQ3yvv6amhpYrVZYLBa0trairq4OdXV1qK2tlW8Wi8Xh79raWpjNZtTW1jpdZE1iMBgcAnzu3HjhNSIiIiIiIiJiWIuIiIiIqB9JV2Ksrq52CgDV1NTIISBXz0knctlfBbsjAQEB8Pb2RlBQEHx9feUD6IGBgVCr1VCpVPIBYK1WK58g5+fnJ18xOyAgwOmkLb1eD61W2+H72r9XR/Pf1tbW4fONjY1OV6BsamqSu5jV1dXJJwlaLBYIIeQDswDkg7PSe7W0tKCmpsbldF3R6/Xw9fVFYGAgDAaDy8CcdBDevjua9FxoaCjDctSr3Al1FRUVOZw86+vrK4e2Ogt2RUdHQ6VSKTh3REREROQppBOXuwoPtR8uXRCjM4GBgfDz84NOp0NQUBC8vLzkE5i9vLzkLl7S9qhGo0FAQAAA5+1W++1bVwwGg8vhVqu1wxOyAThdrMN+21PaNpW2XYUQsFgsACBvw0snC0vbp/X19Z0uE51OB51O5xR+c3Vv/zg8PFxeNkRERK2trSgqKnLqknXx4kXU1dUBuPN/Y/suWampqRg2bBi8vLwUngNltba2yqEtaZ+9fcBH2p8vdWJqP6y2thaNjY1d7hOXSOsx0j56+33xwcHB8n48+8f26zYdPZZI61ed6Wr/v/2++o64OoZhvw/f/rH9OlhHj6X3lI4NSOteXbG/2J2rMJ100+v1TsMCAgLki+qFhIQM+X8LRERERERERNQzDGsREREREQFcVE0AACAASURBVHkgi8WC5uZm1NfXo66uDi0tLbBYLPKBS/ugkv3BUbPZDMD1wU7AdRhKYn/CWUc6u/ok0HWYS61WIzAw0GGYdFAVcDyg7Cp4Zn/Snn3HMel9AwMD4e3tjcDAQHlawcHB8Pb2HtJXdCfPx1AXEREREQ1UNpsN1dXVqK+vR0NDg3zyckNDA+rr6506TAH/3DaVQk7APy/+0dLSIoed2oeoOrvAif20XLE/8bm99ic324fCpG1T+21XKXQmbYtK27p6vR7+/v7Q6/UICgqCn58f/P39YTAY5MdSOI2IiMhdFosF169fd+qSde3aNTkkFB0d7dQla/z48YiMjFS4+qFB2rcurce46gTl6rm2tjaH/fLSelVnj+3DUPa6Cjm5s//fPkjfEft99PakAJn9/nz7x/bTtn/cvhtZZ53K7J8jIiIiIiIiIlIaw1pEREREREREQ0T7UJfZbHYKdhUWFjqcxOrj44OQkJAuQ11RUVG8yiwREREReYSMjAwsWbIEJpMJYWFhSpdDRETkFrPZ7BDGkrplFRQUQAgBb29vjBgxQg5jScGssWPHwt/fX+nyiYiIiIiIiIiIhhSN0gUQERERERERUf8wGAwwGAxITU3tdLzGxsYOu3TduHEDWVlZKCoqkjv0AQx1ERERERERERHdLavVisLCQqcuWZcuXZL3wxgMBjmMlZ6eLj8eM2YM1Gq1wnNAREREREREREREAMNaRERERERERNSOn58fkpOTkZyc3Ol47oS6iouLUVNTI7/G29sboaGhHYa5DAYDYmJikJiYyBOMiIiIiIiIiGhQam5uRn5+vlOXrOzsbDQ1NQEAoqOjkZqaitTUVGzcuFHumNXV/hoiIiIiIiIiIiJSnkoIIZQugoiIiIiIiIgGr85CXdJ9SUkJLBaLw+sMBkOnXbpiYmKQkJAAjYbXoiEiIiIi92VkZGDJkiUwmUwICwtTuhwiIhrEzGazUxgrJycHN2/ehM1mg1arRXx8PFJSUuQwVkpKCiZNmgS9Xq90+URERERERERERNRDPJuJiIiIiIiIiPpUb3TqMhqNOHfuHIxGI8xms8PrGOoiIiIiIiIiIiWVlJQ4dcm6fPkyysrKAABBQUEYMWIEkpOTsXnzZqSmpiIlJQWjR4/m/goiIiIiIiIiIqJBiHv9iIiIiIiIiGhA6E6oy2w2dxjsysnJkf+2506oKz4+Hlqtti9nk4iIiIiIiIg8UEtLC/Ly8py6ZF29ehUNDQ0A7ux7kLpkpaeny4+TkpKgUqkUngMiIiIiIiIiIiLqLyohhFC6CCIiIiIiIiKi3tbU1ISqqqpOu3WVlJSgtLQU9rtHGOoiIiIiGtwyMjKwZMkSmEwmhIWFKV0OERENMGaz2SGMJT3Ozc2FzWaDRqNBQkICkpOT5TBWSkoKJkyYgMDAQKXLJyIiIiIiIiIiogGAnbWIiIiIiIiIaFDy9fVFTEwMYmJikJaW1uF4zc3NqKys7LJTV1lZGWw2m/y69qEug8HgFOxKTEyEXq/vj9klIiIiIiIiom6Qtvntg1nZ2dlyp24fHx8MHz4cqamp2LhxI1JTU+WAlp+fn8LVExERERERERER0UDGsBYRERERERERDWk+Pj59GuqSQmOddetKSEhAQEBAf8wuERERERER0ZDR2tqKoqIipy5ZFy9eRF1dHYA7F2ORQljp6elyt6xhw4bBy8tL4TkgIiIiIiIiIiIiT6QSQgiliyAiIiIiIiIiGixaWlpQUVHRYahLui8vL0dbW5v8OndCXfHx8QgMDFRw7oiIiIg8X0ZGBpYsWQKTyYSwsDClyyEiol5QXV2N/Px8py5Z165dk7e9o6OjkZqaKoexkpOTMX78eERGRipcPREREREREREREQ02DGsRERERERERESnEbDZ3GugyGo24detWt0NdsbGxCA4OVnDOiIiIiAYuhrWIiDyX2Wx2CGNJ3bIKCgoghIC3tzdGjBghh7GkYNbYsWPh7++vdPlEREREREREREQ0RDCsRUREREREREQ0wLkT6iosLITVapVf406oKyYmBgaDQcE5IyIiIup/DGsREQ1sVqsVhYWFTl2yLl26hNraWgCAwWBwCGNJj8eMGQO1Wq3wHBAREREREREREdFQx7AWEREREREREdEg4U6oq6ioCK2trfJrfH19YTAY3Ap2EREREQ0GDGsREQ0Mzc3NyM/Pd+qSlZ2djaamJgBAdHS0U5es5ORkJCcnK1w9ERERERERERERUccY1iIiIiIiIiIiGmL6MtQVHR0NlUql4NwRERERdY5hLSKi/mU2m53CWDk5Obh58yZsNhu0Wi3i4+OdumRNmjQJer1e6fKJiIiIiIiIiIiIuk2jdAFERERERERERNS/DAYDDAYDUlNTOx2vo1CX2WzGjRs3kJWVhcLCQtTV1cmv8fHxQUhISJehrqioKHh5efX1rBIREREREVE/KSkpceqSdfnyZZSVlQEAgoKCMGLECCQnJ2Pz5s1yMGvcuHHw8fFRuHoiIiIiIiIiIiKi3sOwFhERERERERERueRuqKuxsbHDLl1SqKuoqAi1tbXyaxjqIiIiIiIi8jwtLS3Iy8tz6pJ19epVNDQ0ALizLSl1yUpPT5cfJyUlsRMzERERERERERERDQkqIYRQuggiIiIiIiIiIhr8Ogt1SffFxcWoqamRX+Pt7Y3Q0NAuQ12RkZFQq9UKzh0RERF5ioyMDCxZsgQmkwlhYWFKl0NENCBJHZXtu2RlZ2cjNzcXNpsNGo0GCQkJSE5OlsNYKSkpmDBhAgIDA5Uun4iIiIiIiIiIiEhRDGsREREREREREdGA4k6o6/bt26iurnZ4ncFg6DTQFRMTg8TERIa6iIiIhjiGtYiI/qmkpMSpS1Z2djaMRiOAO12Rhw8fjtTUVKdglp+fn8LVExEREREREREREQ1MGqULICIiIiIiIiIisufn54fk5GQkJyd3Ol5Xoa5z587BaDTCbDY7vM6dUFdCQgI0Gu46IyIiIiIiz9fa2oqioiKnLlkXL15EXV0dgDvbSVIYKz09XQ5lDRs2DF5eXgrPAREREREREREREZFn4RknRERERERERETkkXoS6jKbzU7BrpycHPlve+6EuuLj46HVavtyNomIiIiIiNxSXV2N/Px8py5Z165dQ1tbGwAgOjoaqampSEtLw5YtW5CcnIxx48YhKipK4eqJiIiIiIiIiIiIBg+VEEIoXQQREREREREREZHSmpqaUFVV1Wm3rpKSEpSWlsJ+lxpDXURERJ4lIyMDS5YsgclkQlhYmNLlEBF1m9lsdghjSd2yCgoKIISAt7c34uLi5O5Y0v2YMWOg0+mULp+IiIiIiIiIiIho0GNnLSIiIiIiIiIiIgC+vr6IiYlBTEwM0tLSOhyvq1CX1KmrrKwMNptNfl1HoS6DwSA/TkxMhF6v74/ZJSIiIiKiAcxqtaKwsNCpS9alS5dQW1sL4M42RnJyMlJSUpCeni4/HjNmDNRqtcJzQERERERERERERDR0sbMWERERERERERFRH2hubkZlZWWXnbrah7qk0Fhn3boSEhIQEBCg4NwRERF5LnbWIqKBpLm5Gfn5+U5dsrKzs9HU1AQAiI6ORmpqqhzGkh4nJycrXD0RERERERERERERucKwFhERERERERERkYJaWlpQUVHRZairvLwcbW1t8uvcCXXFx8cjMDBQwbkjIiIaeBjWIiIlmM1mpzBWTk4Obt68CZvNBq1Wi/j4eIcwVkpKCiZNmsTuu0REREREREREREQehmEtIiIiIiIiIiIiDyCFusxmc6fBrlu3bnU71BUXF4egoCAF546IiKj/MKxFRH2ppKTEqUvW5cuXUVZWBgAICgrCiBEjnLpkjRs3Dj4+PgpXT0RERERERERERES9gWEtIiIiIiIiIiKiQcZsNnfapctoNKKwsBBWq1V+jTuhrpiYGBgMBgXnjIiI6O4xrEVEd6ulpQV5eXlOXbKuXr2KhoYGAIDBYHDqkpWamoqkpCSoVCqF54CIiIiIiIjo/7d3/0F21vW9wN9n95xNYgjJISHJhs2vTYRkNwJtRaj8soAiWNHaAkpl7lUUf3W8QEfwR/FeB2XqvbaXziDWSvVqnfoDEbVT4dZKWwGlxKghZmMkJpBNNgmBHBJCks3Z3XP/wOxlWdhswmbPJnm9Znaek3Oe7/O8v5mBOcPDez8AwKGkrAUAAAAAR6nhlLo6OztTrVb71zy31FUul4csdgHAWKSsBQxXpVIZUMba93r16tXp7e1NsVjMnDlzBpSx2tracvLJJ+fYY4+td3wAAAAAAOpEWQsAAAAAGNLBlrr2V+Zqbm5Oc3OzyQIAjCplLeD5urq6Bk3JWrlyZTZt2pQkGTduXBYsWDBoSlZbW1smTJhQ5/QAAAAAAIw1xXoHAAAAAADGtnK5nHK5nPb29iHPG6rUtXLlytx///157LHH8swzz/SvGW6pa+bMmWloaDjUWwUA4AhVrVbT2dk5aErW8uXLs3PnziTPfu/dV8a64IIL+ktZ8+bN810UAAAAAIBhM1kLAAAAABhVu3fvHnJKV1dXVzo7O/P000/3rxk3blyOO+44pS4AXjKTteDItn379qxZs2bQlKzVq1ent7c3SdLc3Nw/GWvftKwlS5Zk5syZdU4PAAAAAMCRQFkLAAAAABiThlPq2rBhQ3bs2NG/pqmpKVOnTt1vqWvGjBlpbGys4+4AqBdlLTgyVCqVQVOyOjo6sm7dutRqtTQ1NaWlpaW/kLXvuGjRokycOLHe8QEAAAAAOIIpawEAAAAAh7XhlLo2btyY7du396/ZV+oql8tDFrvmzp2r1AVwhFHWgsNHT09P1q9fP2hK1ooVK/oL++VyOa2trQOmZLW1tWXRokW+xwEAAAAAUBfFegcAAAAAAHgpJkyYkNbW1rS2tg553v5KXcuWLUtXV1eeeuqpAevK5fKQU7pmzZqVOXPmpFj0n1sBAA5Gd3d31qxZ01/Geu60rD179iRJmpub097envb29lx66aX9xaz9fQcEAAAAAIDRZrIWAAAAAMBzvFCpq1KpvGDB67mGU+qaPXt2SqVSnXYGcHR6+9vfnuXLl/f/edeuXdmwYUMWLFgwYOrOZZddlhtvvLEeEeGoUalUBk3J6ujoyKOPPpq+vr6USqXMnj170JSsU089Ncccc0y94wMAAAAAwLD4Va8AAAAAAM8x3Elde/bsybZt2150WldHR0e6urqyefPmPPd3Zil1AYyujRs3ZuXKlXn+7y9ctWpV/+tCoZBt27aNdjQ4Yu37LvTcKVkrVqzIli1bkiSTJ0/OwoUL09ramiuvvLK/mLVkyZKMGzeuzukBAAAAAOClMVkLAAAAAOAQ2l+pa9/xQEtd5XI5c+fONWUCYD+++MUv5uqrr05vb++Q5z300EM57bTTRikVHP727t2bRx55pL+Mta+YtWrVquzatSvJs99nnj8lq729PfPnz0+hUKjzDgAAAAAA4NBQ1gIAAAAAGAO6u7vz5JNP7rfUtWXLlvT19fWvGz9+/JBTupqbmzNnzpxMmjSpjrsDqJ8dO3Zk2rRpqVarL3rO7Nmz89hjjymPwAuoVCoDylj7Xq9evTq9vb0pFouZM2fOgDJWW1tbTj755Bx77LH1jg8AAAAAAKNOWQsAAAAA4DCyd+/ePPHEE/stdT3++OMDpsgMp9Q1e/Zs/1M1cES65JJLcvfdd6enp2fQZ6VSKR/5yEfyiU98og7JYOzo6uoaNCVr7dq1Wbt2bZJk3LhxWbBgwaApWW1tbZkwYUKd0wMAAAAAwNihrAUAAAAAcATaV+qqVCpDFrsee+yxAy51tbS0ZPLkyXXcHcCB+eY3v5m3vvWtebHHYitXrkxbW9sop4LRV61W09nZOWhK1vLly7Nz584kSblcHlTGam9vz7x589LQ0FDnHQAAAAAAwNinrAUAAAAAcJSrVCpDTunatGlT1q9fP2AizXBKXSeccEKmTJlSx50BPGvPnj2ZOnVqdu3aNeD9QqGQ9vb2rFixok7J4NDYvn171qxZM2BK1sqVK7N69er+knZzc/OAMlZra2uWLFmSmTNn1jk9AAAAAAAc3pS1AAAAAAAYlpEqdZXL5RcseAEcSldeeWW+8Y1vpFqt9r9XKpXyqU99Kh/60IfqmAwOXqVSGTQlq6OjI+vWrUutVktTU1NaWloGTclatGhRJk6cWO/4AAAAAABwRFLWAgAAAABgRA2n1NXZ2TmgMDF+/PgXLXE999jc3JxCoVDH3QGHq7vvvjsXX3zxgPcKhULWrVuXuXPn1ikV7F9PT0/Wr18/aErWihUrsmPHjiTJlClTsmDBggFTstra2rJo0aI0NjbWeQcAAAAAAHB0UdYCAAAAAKAuhlPq2rBhQ/bu3du/RqkLOFg9PT2ZPn16KpVKkqShoSGnn356fvzjH9c5GTyru7s7a9as6S9j7ZuW1dHRkd27dydJmpubB5Sx9r1ubW2tc3oAAAAAAGAfZS0AAAAAAMa03bt3D1no6urqyvr167Nz587+NePGjctxxx2331LXzJkz09DQUMfdAaPp/e9/f26//fZUq9U0Njbm1ltvzXvf+956x+IoU6lUBk3J6ujoyKOPPpq+vr6USqXMnj170JSsU089Ncccc0y94wMAAAAAAPuhrAUAAAAAwBFhOKWuDRs2ZMeOHf1rmpqaMnXq1P2WumbMmJHGxsY67g4YCffdd1/OOeecJEljY2M2b96cadOm1TkVR6qurq5BU7JWrFiRLVu2JEkmT56chQsXDpqStWTJkowbN67O6QEAAAAAgIOlrAUAAAAAwFFlOKWujRs3Zvv27f1r9pW6yuXykMWuuXPnKnXBGFar1TJr1qxs3rw5F154Ye655556R+Iwt3fv3jzyyCP9Zax9xaxVq1Zl165dSZJyuTxoSlZ7e3vmz5+fQqFQ5x0AAAAAAAAjTVkLAAAAAABewHBKXV1dXXnqqacGrCuXy0NO6Zo1a1bmzJmTYrFYp53B0aNarebxxx/Pli1bsn379vT29ua2227LXXfdleuuuy4XXXRRmpqaMnny5MyYMSPTp09PQ0NDvWMzBlUqlQFlrH2vV69end7e3hSLxcyZM2dAGautrS0nn3xyjj322HrHBwAAAAAARpGyFgAAAAAAvARDlboqlcqA955LqQtGzuOPP56lS5f2F2lW/vzn6ezszONPPZUDeRRWbGzM9HI5CxYuTNspp/SXbl71qldl0qRJh3AHjBVdXV2DpmStXbs2a9euTfLspMWFCxcOmpLV1taWCRMm1Dk9AAAAAAAwFihrAQAAAADAKNizZ0+2bdu232ldmzdvHlAuGU6pa/bs2SmVSnXcHYyup556KnfffXfuvffe3H/vvfnVb4s0c5qasrivL+09PZmX5IQkM5NMT3JckkKSY5KUkuxJsjtJNUklyeNJNibZnOTXSVaVSvllkieq1RQbG3NKW1vOOu+8vPa1r83555+f8ePHj+qeGTnVajWdnZ2DpmQtX748O3fuTPLsv3ufX8Zqb2/PvHnzTF8DAAAAAACGpKwFAAAAAABjyKEsdbW0tKSpqamOu4ODV6lU8rWvfS133XFH/uO++5JaLac3NubsajVnJTkzyeRDcN9NSe7/7c+PmpqyfO/evGz8+Lz+oovyx5demj/6oz9S3Bqjtm/fnjVr1gyYkrVy5cqsXr06vb29SZLm5uYBZazW1tYsWbIkM2fOrHN6AAAAAADgcKWsBQAAAAAAh6Hu7u48+eST+y11bdmyJX19ff3rxo8fP2Shq7m5OXPmzMmkSZPquDv4/370ox/lC5//fL51xx0p9vXl4lotb+rry8VJptQhz8Yk/5TkO8Viftjbm0nHHJMr3/GOXH311Wlvb69DIiqVyqApWR0dHVm3bl1qtVqamprS0tIyaErWokWLMnHixHrHBwAAAAAAjjDKWgAAAAAAcAQbbqnr8ccf7580kwyv1DV79uwce+yxddwdR7J//dd/zY0f/nAeXLYsv1cq5epqNW9LMpZqhJuTfDnJ7aVS1lSrueAP/iA33XxzzjjjjHpHO+L09PRk/fr1g6ZkrVixIjt27EiSTJkyJQsWLBgwJautrS2LFi1KY2NjnXcAAAAAAAAcLZS1AAAAAACA7N27N0888UR/eatSqbxgseuxxx474FJXS0tLJk+eXMfdcTi57777cs0HPpCfr1iRP2xszMd6e3N6vUPtRy3PTtv6VKmUh6rVvOHCC/NXf/M3Oemkk+od7bDT3d2dNWvW9Jex9k3L6ujoyO7du5Mk5XJ50JSs1tbWtLa21jk9AAAAAACAshYAAAAAAHCAKpXKkFO6Nm3alPXr16enp6d/zXBKXSeccEKmTJlSx51RT11dXfnQn/95vvaNb+R1jY35dE9PTql3qIPwL0muL5WyqlbLf7v22nz84x/PMcccU+9YY06lUhk0JaujoyOPPvpo+vr6UiqVMnv27EFTsk455ZRMmjSW5qsBAAAAAAAMpKwFAAAAAAAcEiNd6iqXywPe48hx55135j1XXZXJu3blr6vVvKnegV6i3iSfT3JjsZipLS356je+kVe96lX1jlUXXV1dg6ZkrVixIlu2bEmSTJ48OQsXLuwvY+0rZrW3t2f8+PF1Tg8AAAAAAHDglLUAAAAAAIC6Gk6pq7OzM9VqtX/N+PHjB5W3XujY3NycQqFQx90xlO7u7nzgfe/L33/pS7m6oSF/3deXifUONYI2JfmvxWL+rVbLTZ/6VG644YZ6Rzok9u7dm0ceeaS/jLWvmLVq1ars2rUrSVIulwdNyWpvb8/8+fP9MwoAAAAAABxRlLUAAAAAAIDDwnBKXRs2bMjevXv71yh1jV3btm3Lm//wD7Ni6dJ8uacnl9Q70CFSS3JLkusbGvL2t789n//CF9LU1FTvWAelUqkMKGPte7169er09vamWCxmzpw5g6ZknXLKKTn++OPrHR8AAAAAAGBUKGsBAAAAAABHlH2lrkql8qLFrvXr12fnzp39a8aNG5fjjjtuv6WumTNnpqGhoY67OzJs3Lgx559zTvZ0duafq9W01zvQKLg7yeXFYk4/66x87/vfz4QJEw74GmvXrs1HP/rRPPjgg1m3bt0hKxh2dXUNmpK1du3arF27NknS1NSUhQsXDpqS1dbWdlD7AgAAAAAAOJIoawEAAAAAAEel3bt3Dzmlq6urK52dnXn66af71wy31DVjxow0NjbWcXdj1xNPPJFzX/3q5NFH88NqNTPrHWgU/TzJBcVizjj//Hznn/4ppVJpWOu2bt2am266KZ/73OdSq9XS29ubRx99NHPnzj3oLNVqNZ2dnYOmZC1fvry/yFgulweVsdrb2zNv3jylRQAAAAAAgBehrAUAAAAAADCE4ZS6Nm7cmO3bt/evaWpqytSpU/vLW+Vy+QWLXXPnzj2sSl179uzJpk2bMn/+/INef/YZZ2RbR0fuq1Yza4TzHQ4eyrOFrTddemn+4R//cchzn3nmmdx666256aab0t3dnZ6env7P7rnnnlx44YX7vd/27duzZs2aAVOyVq5cmV//+tf912tubh40JWvJkiWZOfNoqtIBAAAAAACMjGK9AwAAAAAAAIxlEyZMSGtra1pbW4c8b3+lrmXLlqWrqytPPfXUgHXlcnnIKV2zZs3KnDlzUizW/7HOrbfemuuvvz4XXXRRPvKRj+Sss846oPXXXnNN1qxcmZ/29ByVRa0keVWSO3t68vqvfz2vPvvsvO997xt0TrVazZe+9KV87GMfS6VSSW9v74DPS6VSVq1aNaCsValUBk3J6ujoyLp161Kr1dLU1JSWlpa0tbXljW98Y38pa9GiRZk4ceKh3jYAAAAAAMBRw2QtAAAAAACAUTScSV2VSiWbNm0asG4slLo++MEP5rbbbktDQ0Oq1WpOP/30fPSjH80b3/jGFAqFIdfeeeedufRP/iTfSvKWQ5bw8PHfk/zPUikPLVuWV7ziFUmSWq2Wb33rW7n++uuzfv361Gq1vNCjvFKplPPPPz/Tp0/PqlWrsnr16uzYsSNJctxxx2Xx4sVZvHhxTjrppLS1tWXRokWZN29eGhoaRnOLAAAAAAAARyVlLQAAAAAAgDFoz5492bZt236LXZs3bx5Q6BlOqWv27NkplUoHnOktb3lLvvOd7/Tfr6GhIX19fZk7d26uvfbavOc978n48eMHrdu1a1dOam3NhVu35va+voP/SzmC9CY5s1jMy844I/fed18eeOCBXHfddVm6dGkKhUL69vP31NramoULF/aXsU466aS0t7fn+OOPH50NAAAAAAAA8IKUtQAAAAAAAA5jh7LU1dLSkqampv41r3zlK7Ns2bJBGQqFQgqFQsrlcv7sz/4s1157bSZPntz/+Sc+8Yn89Sc/mV/39GTGS9jr0LO7nvXcB1/7zp+e5JdJnl9jeu71ai/wXpKMTzI1ye8k+eMkVyRpysj4SZIzk7zi5JPz8MMPp1gspqenZ1hrp0yZkkqlMkJJAAAAAAAAGCnKWgAAAAAAAEeB3bt3Dyhw7ft5fqHrySefHLBuxowZmT59elpaWvLAAw9kx44dQ96nsbEx48aNy7ve9a7ccMMNKZfLOWHGjFz39NP5ixHYRyEDC1n7+6yQ5ENJtiT58gGs2ffe7iSbkzyU5O+TbEry7SQvP9DgL+KEQiFdtVoKhUKampqyd+/eDPfx3datWzNt2rQRSgIAAAAAAMBIUNYCAAAAAACg3549e7J58+b+8tbGjRv7j1/96lfT29s7rOsUi8U0NDTk7LPPzn/ce2/W12ppHoF8B1PWeibJK5LcnuQPhrnmxe7xhSQ3J/lFkskvcs6B+GGSC5LccsstqVQq+eUvf5lf/OIXWbt2bWq1WorFYgqFQqrV6qC19913X84666wRSAEAAAAABVeb4QAACOdJREFUAMBIUdYCAAAAAABgv7Zt25apU6cO+/yGhob09fUlSVoLhfxmhB5JDVWkGur8f0nywSQPJ2naz/X2d4/3JJme5KYDyPFiaklObGrKW665Jp/+9Kf7369UKnn44Yf7f5YuXZpf/epX6e7uTqFQSK1Wy+23356rrrpqBFIAAAAAAAAwUpS1AAAAAAAA2K+VK1dmyZIlL/p5Y2NjkqS3tzeTJ0/OOeeck3PPPTcf/9jH8pnu7rxvhHIcaLnquZ/9aZJFSW58CddLkp8meWeeLX6NhPcn+fnv/m5+smzZkOf19vbmN7/5TZYvX55Vq1bliiuuyMKFC0coBQAAAAAAACOhWO8AAAAAAAAAjH2bNm0a8OfGxsbUarX09fVl2rRpOe+883Luuefm3HPPTVtbWwqFQn72s59lV3d3zhnhLIWDXHdLklOTvC3JS6k4LU6y9iWsf76zkty+fHl2796dCRMmvOh5jY2NOfHEE3PiiSeO4N0BAAAAAAAYScpaAAAAAAAA7NfWrVv7X7e0tOS8887La17zmpx99tkvOt1p3bp1KSQZ6WrRC03CGo7jk3wyz06y+pcRvP9LtShJtbc3GzduNCkLAAAAAADgMKesBQAAAAAAwH5dfPHFueuuu/LKV74yLS0tw1rzxBNPZEqplFK1ekizHUh56h1J/iHJPya54iDv15FkwUGufSHTfnt84oknlLUAAAAAAAAOc8paAAAAAAAA7NfkyZPz5je/+YDW7N69OxMKw517NXr+Nsnrklx8kOs/n+TA/iaGNvG3x2eeeWYErwoAAAAAAEA9KGsBAAAAAABwSJTL5VR6e0ftfoUMb8rWiUneleQjB3GPzyX5YZLlB7H2xTz52+PUqVNH8KoAAAAAAADUg7IWAAAAAAAAh8S0adOyu7c3O5McU+8wz3NDkt8bxnl7kmxO8mCS23/7+gdJJo9glq2/PU6bNm0ErwoAAAAAAEA9NNQ7AAAAAAAAAEemJUuWJEmWjdD1Cs85vtDPUOc/XynJ377AZ8+/x5QkZyb5apI/zbN7efnBxX9RP01SnjQps2bNGuErAwAAAAAAMNpM1gIAAAAAAOCQmDt3bubMnJkfbd6cc0fgerURPv/VSfpe4j1GwgMNDTnzrLPS0OD3LAIAAAAAABzuPPEBAAAAAADgkHntxRfn26VSvWOMWTuT/N+Ghrz29a+vdxQAAAAAAABGgLIWAAAAAAAAh8w7r7oqv6hWs7TeQcaoryXpLhRyxRVX1DsKAAAAAAAAI0BZCwAAAAAAgEPm1a9+dU5evDj/q8FjqefrSXJLqZTLL78806ZNq3ccAAAAAAAARoCnYgAAAAAAABxSn/z0p3NHX1/uq3eQMebvkqyp1fIXH/94vaMAAAAAAAAwQgq1Wq1W7xAAAAAAAAAc2S54zWvy5I9/nAer1Yyrd5gxYFOSk0ul/JcPfjCf+cxn6h0HAAAAAACAEaKsBQAAAAAAwCG3Zs2a/N4pp+TK3btz61H+eKo3yQXFYrpmz85Ply/PpEmT6h0JAAAAAACAEdJQ7wAAAAAAAAAc+RYuXJi/++IXc1utlq/UO0ydXZ/kwUIh37zrLkUtAAAAAACAI4yyFgAAAAAAAKPi8ssvzw0f/nCuamjId+odpk4+meSWQiFf/PKXc8opp9Q7DgAAAAAAACNMWQsAAAAAAIBRc/PNN+fdV1+dtzY05M56hxlln0zy8UIhn73ttrztbW+rdxwAAAAAAAAOAWUtAAAAAAAARk2hUMitn/1s3v3+9+eyQiF/Ve9Ao6Ca5KpCIf+joSGf/exn8973vrfekQAAAAAAADhECrVarVbvEAAAAAAAABx9brnllvz5ddfl8kIht/X1ZUq9Ax0C65K8vVjMw6VSvn7HHXnDG95Q70gAAAAAAAAcQiZrAQAAAAAAUBfXXHNN7r7nnvz71Kk5takp/1bvQCOoluQrSU4tFrPz5S/Pg0uXKmoBAAAAAAAcBZS1AAAAAAAAqJvXve51ebijI79z4YU5P8nbGhqyod6hXqJfJHlNsZh3FAp55wc+kP/82c/S3t5e71gAAAAAAACMAmUtAAAAAAAA6mratGm563vfy3e++90sbWnJosbGfDTJ1noHO0CPJHlnQ0NeWShk76mn5sH//M/871tuyfjx4+sdDQAAAAAAgFGirAUAAAAAAMCYcMkll+SXq1fn4zffnL8/7rjMa2zMtUnW1DvYfjyU5IqGhiwuFHL/7Nn5P1/5Sn780EM57bTT6h0NAAAAAACAUVao1Wq1eocAAAAAAACA59q1a1e+8IUv5K/+8i+zYfPmvKZYzLt6evKmJBPrHS7PTv36epLbS6U8XK3m5MWL8+Ebb8xll12WxsbGescDAAAAAACgTpS1AAAAAAAAGLN6e3tzzz335PbPfz7//P3vp5jkgiRv6u3N65OcMIpZVif55yTfLZXyQE9PJowfn8ve+ta8693vzu///u+PYhIAAAAAAADGKmUtAAAAAAAADgtbt27N9773vXz329/OD37wg+ypVjO/qSlnV6v5/Votr0jSlqQ8AvfalKQjycNJ7m9oyAONjdlSraY8aVLecMkledOb35yLLrooEyeOhTlfAAAAAAAAjBXKWgAAAAAAABx2nnnmmfzkJz/J/fffn/v//d+zdOnS7Ni1K0kyq6kp85M0V6uZVatlepJjk4xLMiHJ+CTPJNmbZFeSHUm2JNnY0JDNxWIeqdWyrVpNkkwvl3PGmWfm7HPPzZlnnpnTTjstxWJx1PcLAAAAAADA4UFZCwAAAAAAgCPCY489ll/96ldZsWJFOjs707VxYzatX5/Ht2zJ0zt3pnvv3uzq7k53tZqXjRuXcaVSXjZhQiYdc0xmNDenZf78TJ8+PQsXLszixYuzZMmSHH/88fXeFgAAAAAAAIcRZS0AAAAAAAAAAAAAAACAEdBQ7wAAAAAAAAAAAAAAAAAARwJlLQAAAAAAAAAAAAAAAIARoKwFAAAAAAAAAAAAAAAAMAKKSe6odwgAAAAAAAAAAAAAAACAw93/A1dJmdLsIfPYAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 888it [00:05, 186.96it/s, # examples=904]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=904]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=905]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=906]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=907]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=908]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=909]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=910]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=911]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=912]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=913]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=914]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=915]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=916]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=917]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=918]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=919]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=920]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=921]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=922]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=923]\u001b[A\n", + "Processed actions: 910it [00:05, 192.76it/s, # examples=924]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=924]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=925]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=926]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=927]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=928]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=929]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=930]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=931]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=932]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=933]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=934]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=935]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=936]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=937]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=938]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=939]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=940]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=941]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=942]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=943]\u001b[A\n", + "Processed actions: 930it [00:05, 191.84it/s, # examples=944]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=944]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=945]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=946]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=947]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=948]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=949]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=950]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=951]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=952]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=953]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=954]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=955]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=956]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=957]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=958]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=959]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=960]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=961]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=962]\u001b[A\n", + "Processed actions: 950it [00:05, 182.11it/s, # examples=963]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=963]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=964]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=965]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=966]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=967]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=968]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=969]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=970]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=971]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=972]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=973]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=974]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=975]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=976]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=977]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=978]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=979]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=980]\u001b[A\n", + "Processed actions: 969it [00:05, 168.24it/s, # examples=981]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=981]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=982]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=983]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=984]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=985]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=986]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=987]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=988]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=989]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=990]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=991]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=992]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=993]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=994]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=995]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=996]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=997]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=998]\u001b[A\n", + "Processed actions: 987it [00:05, 168.24it/s, # examples=999]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=999]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1000]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1001]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1002]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1003]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1004]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1005]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1006]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1007]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1008]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1009]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1010]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1011]\u001b[A\n", + "Processed actions: 1005it [00:05, 168.54it/s, # examples=1012]\u001b[A\n", + "Processed actions: 1005it [00:06, 168.54it/s, # examples=1013]\u001b[A\n", + "Processed actions: 1005it [00:06, 168.54it/s, # examples=1014]\u001b[A\n", + "Processed actions: 1005it [00:06, 168.54it/s, # examples=1015]\u001b[A\n", + "Processed actions: 1005it [00:06, 168.54it/s, # examples=1016]\u001b[A\n", + "Processed actions: 1005it [00:06, 168.54it/s, # examples=1017]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1017]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1018]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1019]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1020]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1021]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1022]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1023]\u001b[A\n" + ] }, { "name": "stderr", "output_type": "stream", "text": [ - "Processed Story Blocks: 100%|██████████| 79/79 [00:00<00:00, 283.69it/s, # trackers=1]\n" + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1024]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1025]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1026]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1027]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1028]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1029]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1030]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1031]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1032]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1033]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1034]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1035]\u001b[A\n", + "Processed actions: 1023it [00:06, 169.63it/s, # examples=1036]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1036]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1037]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1038]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1039]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1040]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1041]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1042]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1043]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1044]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1045]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1046]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1047]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1048]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1049]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1050]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1051]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1052]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1053]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1054]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1055]\u001b[A\n", + "Processed actions: 1042it [00:06, 173.74it/s, # examples=1056]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1056]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1057]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1058]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1059]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1060]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1061]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1062]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1063]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1064]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1065]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1066]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1067]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1068]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1069]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1070]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1071]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1072]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1073]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1074]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1075]\u001b[A\n", + "Processed actions: 1062it [00:06, 179.10it/s, # examples=1076]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1076]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1077]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1078]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1079]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1080]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1081]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1082]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1083]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1084]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1085]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1086]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1087]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1088]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1089]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1090]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1091]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1092]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1093]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1094]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1095]\u001b[A\n", + "Processed actions: 1082it [00:06, 183.54it/s, # examples=1096]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1096]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1097]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1098]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1099]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1100]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1101]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1102]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1103]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1104]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1105]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1106]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1107]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1108]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1109]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1110]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1111]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1112]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1113]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1114]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1115]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1116]\u001b[A\n", + "Processed actions: 1102it [00:06, 186.58it/s, # examples=1117]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1117]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1118]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1119]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1120]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1121]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1122]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1123]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1124]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1125]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1126]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1127]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1128]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1129]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1130]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1131]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1132]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1133]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1134]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1135]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1136]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1137]\u001b[A\n", + "Processed actions: 1123it [00:06, 191.08it/s, # examples=1138]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1138]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1139]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1140]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1141]\u001b[A\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "processo\n" + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1142]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1143]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1144]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1145]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1146]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1147]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1148]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1149]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1150]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1151]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1152]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1153]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1154]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1155]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1156]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1157]\u001b[A\n", + "Processed actions: 1144it [00:06, 194.03it/s, # examples=1158]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1158]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1159]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1160]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1161]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1162]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1163]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1164]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1165]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1166]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1167]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1168]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1169]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1170]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1171]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1172]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1173]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1174]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1175]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1176]\u001b[A\n", + "Processed actions: 1164it [00:06, 181.59it/s, # examples=1177]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1177]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1178]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1179]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1180]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1181]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1182]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1183]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1184]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1185]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1186]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1187]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1188]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1189]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1190]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1191]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1192]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1193]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1194]\u001b[A\n", + "Processed actions: 1183it [00:06, 174.74it/s, # examples=1195]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1195]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1196]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1197]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1198]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1199]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1200]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1201]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1202]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1203]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1204]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1205]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1206]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1207]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1208]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1209]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1210]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1211]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1212]\u001b[A\n", + "Processed actions: 1201it [00:07, 173.30it/s, # examples=1213]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1213]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1214]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1215]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1216]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1217]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1218]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1219]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1220]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1221]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1222]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1223]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1224]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1225]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1226]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1227]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1228]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1229]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1230]\u001b[A\n", + "Processed actions: 1219it [00:07, 171.49it/s, # examples=1231]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1231]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1232]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1233]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1234]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1235]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1236]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1237]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1238]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1237]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1238]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1239]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1240]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1241]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1242]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1243]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1244]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1245]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1246]\u001b[A\n", + "Processed actions: 1237it [00:07, 172.91it/s, # examples=1247]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1247]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1248]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1249]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1250]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1251]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1252]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1253]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1254]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1255]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1256]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1257]\u001b[A\n" ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAdMsAAAObCAYAAACzZlQoAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzYa4xc9X3H4e+cmV3f7U2Wgtokkp1gMNhgSkmoCQ4gSl+YNg6ERDQEWuoGNZFIqXgBiRQ1iUSo1FSplKoVVUABt1KTjYuLsQMqUNWGOCqgAjUJAmJTxxcq23TXy7KXmdnTF7iVsQzYZnaPvX4e6Whu5/z+n9mdGc2cWlmWZQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA40VfUXUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBWRdUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBbFVUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABv1ag6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAk8/Q0FD27duXffv2ZWhoKCMjI0mS/fv3p91uJ0nmzZuXoihSr9czd+7czJkzJ729vent7a0yHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgUjSqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYOrZuXNntmzZkm3btmXbtm3Zum1rXnrlpezatSsD+wYyNjJ2zLNrRS3zeuel91d6s3DBwpy+4PTMnz8/CxYsyKJFi3LGGWek0Wh08NkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEy+WlmWZdURAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcuHbu3JmNGzfm6aefzlPPPJVnnn0mA3sHkiSNnkbqC+ppLmhmfP548sEkvUlOOXDZm2ROku4Dw+YkaRy4PpBkPEmZpD/JYJK9SfYk2Zfkv5O8knRv7U62JWO7x5Iy6Z7enUVLFuVj530s5513XpYvX54lS5akKIrJ+HMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHRCX60sy7LqCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAThx79uzJhg0b8ti/PpbHNj2WHVt3pNaopevcrowtHUuWJjk3b16+fxLDRpM8n+S5JM8mjecaydNJa6CV2T2zs/zi5bnsE5dlxYoVWbx48SSGAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAActb5aWZZl1RUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzfXn755dx///1Z88CaPLn5yaSRFMuKtD7RSpYnWZZkVtWVhzGe5LkkG5NiU5H6v9XT3NPMhz7yoVzzyWuycuXKLF++PEVRVF0KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCwvlpZlmXVFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHH/279+ftWvX5p7V92TjoxtTf1897cvbKX+nTD6VZG7VhcdgPMl/JFmXTHtwWkafHs2pHzg1N37+xqxatSoLFy6suhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEn6amVZllVXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw/HjhhRfy7b/8dlb/w+q0y3bKlWXGf388+e0k9arrOuz5JPcmXX/fldarrXz8ko/ntltvy5VXXplarVZ1HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw8uqrlWVZVl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1Nm/enG/9+bey/sH16fpIV8ZuGUs+l6Sn6rJJ0E7ycFL/bj3th9s5/azT85Vbv5IbbrghjUaj6joAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4OTTV1RdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAtV588cWsvHplLrroojy85+GUPyoz9sJY8qUkPVXXTZJ6khVJ+8ft5NnkFx/9Rb7wxS/kzCVnZu3atVXXAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnoaLqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqjE4OJibv3xzzl5ydh566aFkfdL8STO5KklRdV2FzknK75cZ//l4Xln6Sq66+qos+8SybNmypeoyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAkUlQdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA5Hv00Udz1rln5a5/vCvtv21n7JmxZEXVVceZDyfjPxhPNidPjT2V8y84P3feeWdarVbVZQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASaCoOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMnTarVyy5/ekiuuuCKv/saraW5pJquS1KsuO45dmLSeaKX5zWa+9s2v5cKLL8yOHTuqrgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAprhaWZZl1REAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEy81157LZ/+7Kez6aeb0r6rnVxXddEJ6GdJ12e7Mnff3Kz7p3VZtmxZ1UUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNTUV1RdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAxNu+fXvOv/D8PPHiE2lvaifXVV10gjo7af6kmf4L+nPJZZdkzZo1VRcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNUUXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATa/fu3bn0ty7Nrhm70nyymfx61UUnuLlJ+5/baa1q5drPXZsHH3yw6iIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAoqqg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDiDAwM5NIrLs2OYkea/9JMTqu6aIookvKvy7RvaOfqz1ydjRs3Vl0EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwxRdUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMnJv++KZs27ctzUeayWlV10wxtaS8q0x7RTvX/N412bt3b9VFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAUUlQdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAxLjnnnvS98O+NO9rJh/swMAyyX1JfjNJb5IZSZYm+WqSLQftVzuC7VDDSXqSXPIO6x9uzvsO9PzwCPd/t46jVSTjd4+nv7s/1994fQcGAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8qag6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzhscHMytt92a8pYyuaJDQ7+R5AdJ/i7JziS7k/xVkh8nOeeQfcuDtsPdPtSPklyY5MUkL73NPofOaibZkuRLSW5O8t23OeZoOo5FT9Jc3cxD6x/K+vXrOzgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADiZ1cqyLKuOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgs+644458/S++ntbWVvL+Dg09Lcl/Jjn1kPt/lmRxkvLA7dpB14/kdpJcmuRPkmxOUk9y59s0HO7YJHkkyU1Jth7Fum836xgVnyqy+JeL8+xTz6ZWq3VuMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwMuqrlWVZVl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDntNvtnPKrp6T/i/3JNzo4eE6SvUmmHeVxtSTlOzz+cpKLk/wyydYklyXZnqRxFLP2Jzk1ych76HivnkuyNHnkkUdy+eWXT+BCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBJoK+ougAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM56/PHH07+nP/l8hwf/bpLbk/xPh+feneT6JF1Jzkzy4SQbjnLGvyeZ39mso3Zu0r20Ow888EDFIQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAVFBUHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGetX78+3Wd1Jws7PPh7By5PT7Iiyd8k2fkeZ7aT3Jdk1UH3/VGSu4/w2F1JVie5PslX32NLB4x9cixr1q2pOgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmAKKqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOis53/+fMY+Otb5wTOTfCfJ1iQ3JPlpkvOSXJdk4BhnbkiyIMmig+77TJJNSV59m2NqB7ZGkg8kuS3J6gNNVbsg2fXKroyMjFRdAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACc4BpVBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMen4eHhjIyMVJ0B76pWq6Wnp6fqDAA4rmzfvT1ZPIELzEty7YFtKMkNSb6c5N5jmPW9JKsOuW9WkmuSfD/J7Yc5pjzoen+StUluSvJYkvnH0NBJv5aUZZndu3dnwYIFFccAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeyRtUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJEZGBjI+Ph4x+YNDg6m1Wp1bN7Q0FDGxsY6Nm94eDgjIyMdmzc6Opo33nijY/OazWZef/31js1rt9vZv39/x+aVZZn+/v6Ozfs/nf4/T4RWq5XBwcGqM95Vp9/TE6HT78OJMD4+noGBgaoz3lWnP3MnQqc/JwGYfLNnz05XV1fVGZXq7u7OrFmzqs6YcPV6PXPnzq20oaenJ7VarbL1q369z5gxI9OnT69s/a6ursyePXtKrV3l3OHh4aP+fdZoNCakt9FodOxz7LV9ryWT9TKZleQ7Sc45hmNfTbIhyQNJ/vAwjy9Mcvu7zOhJ8gdJtif5syT3HkNHJ/3Xmxfr1q3L/Pnz33HXwcHBlGU5IRllWXb0fNOhBgYGMjw8nLIsMzo6OmHrHKmyLDt6vu54Nzo62pHzdK1WK+12uwNFx4/p06enXq9XnTHpqnof1mq1zJw5c1LWqtfrk/YdrLu7O41GY1LWmjFjxv+/ZkdGRib0POLMmTPT1dU14c+tKIoJ+181Go1MmzZtQmafyIqiqPx34vGmqt9MMJVVfT5kKpo2bdqkfZc6WTQajcyZM6fqjCmlKIrMmzev6gwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4qdXKsiyrjgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI7N0NBQ/pe9e4eVJDsT/P7FO/J9b7MJsopNjlgkq3uq5Y0kQ8bsujuAAM06awgiFoKANUayJECWLAECZk2tjBG0WDkCZBDCWgPIGwjYhVbjDrun2c1tcXaa1STY5M2bz3iHjJoTfeKZEZF5H1X1/wGFvhlx4mQ8z+M7J7KjKGK7t2y7NsfjUYIguFh+YRjK4XC4WH5xHMtut7tYfmmaymazuVh+eZ7Ler2+WH4iIuv1WvI8v2ieeFwmk4n4vn+x/DzPk+l0erH8HMeR+Xx+sfx019fXd5LvJc1mM3Fd96F3o9NdXqNLWq1WYprmQ+9Gp0s/j3fBsixZLpcPvRsnLRYLsW37oXcDrzHuIdynS/erXkeX7mtdUhiGkqZp7/RxHEscx73TZ1kmx+NRRER2u12v/pdK31cURYOOIUmSQcfQJMsyCcOw8zv63vdhGEqWZZJl2eB90M9nHMdFHlmWSZIktW3UecrzvPX78jwvnU/9e/ruo8ojSZLefe5qOv1z9VjbtumzPs/z0XGAS8UPLhmHIKbxhvivReR/unCehoj8fyLy71WWfyki/4GI/LJju6bb6k9F5HMR+V9atnshIn8mIn/YI6+vROSHf5ffOwP345KMO84fAAAAAAAArzXbtsUwHjaI1PX9D7Vvap7PQ3y/YRijvvexz1Vp4rpur3lAj2nc33GcB98f27YHzZ+yLEs8z7vDPbobXfMXLcsSx3HucW/6mUwmYllWaZlhGI/6+XRdtzS38ZLzRu+KbdsynU5lMpk8+rmEymQykW984xsPvRu9OI5TlBnL5bJ2Tz8WDzEv9yHmor0Oc2YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvHV+8nj+72IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcM8Oh4OEYdgrbRzHstvteud9c3PTO+1ut5M4jnulDcNQDodDr7RZlsnt7W3v/dhsNpKmaa+0x+NRgiDolTZJEtlut733Y71eS57nvdLu93uJoqhX2iiKZL/f996PIXk/5HZoZpqmrFarR7+diMhqtRLTNEdt22SxWIht2xfJy/M8eeedd8R13YvkJyIymUzE9/2L5ed5nkyn04vl5ziOzOfzi+VnWZYsl8uL5WcYhlxdXV0sPxGRq6srMQzjYvktl0uxLOti+c3nc3Ec52L5TadT8TzvYvkBAAC8Dvr0zfM8l/V6fTKv29tbybKsM812u5UkSTrT9InL9ImD3PexKUPjDH33Qc//1P7keS5pmhbxnDAMG2MLKo9qvCVJktI10Ne3xWaOx2PvY3ib9e1j9Y2BAcA5zC9MyaRf/TbIfy4i/1RE/n0RsUTkr0XkvxORfzIir38hIv97x/r/UkT+uYj8YY+83hWR/0RE/jcR+W9G7MulGCJCMQ8AwNkuOYaFbvRRgcsyDOMiZdjQPC45Vt+XYRgXnffSJc/zory6r+/U9T1WfT+blg8tcy91Pw1V/c4sy+6lvhh6rGqfTu3bfe1/X0OPM03TR7X/ON+psbS3Vd953XdpaLm72WzuZB/eZvrxP0TZV/3+t6n87TrWt+k8AMBDME3zXtsAhmGcFUcY0y83DONi77oM+U7Xde81jmBZ1ujvsyxr1HWxbfve40Ke51303aC+3zmGYRgymUxGbTt2uz5s2669r3XOvvbleV7pWbQs686/U+TVuVT3qeM493b/zOdzMQxDPM+7t3eJDMOQ5XIpk8nkou9DnWLbtnz729++97L20u/2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADaGTn/RykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8po7HowRB0JkmyzK5vb09mdd2u5UkSTrTRFEk+/3+ZF43Nzcn0xwOBwnDsDNNmqay2WxO5rXZbCRN0840YRjK4XA4mVeffd/v9xJFUWeaJElku92ezOv29layLOtM0/c8DMnzbTKbzcR13V5pXdeV2WzWK61hGHJ1ddV7PxaLhdi23Sut7/symUx6pbUsS5bLZe/9WK1WYppmr7SmacpqteqdN9s9ru0AAAAA1HXFUrpiB10xka4YwKm4zHq9ljzPO/e5T8ymT5ylT2ykTzzj1DHleS5Jkshms2k9tizLJMsy2e/3rcemYhtBEEgcx43fo/KP4/jk8b/OLMs6mcYwjNLnpnOvp1Hrq+ma0rTl12ZIWgBoK3fw+BiGUfxTn/U6yrIsMU1TDMMQ27bFtu3imlqWJZZliWEYkue5OI5TrHMcp1iu0qr2RJ7nYhiGZFkmaZpKlmWSJEnx73g8NrYTdC9evJDPfvWZxL+ORfqF6Pv5NyLyL0TkL0Tk34mIJSIfiMh/ISJ/IiJGwzb6srxl+b8Ukf+0st3/JSL/oLJtW17K/yMi//Hf/f0bEXm3x35c2ndE5GV5keM4xb/pdCqmaYpt28U94fu+OI4jSZKIbdtiWZZkWSamaYplWRJFUXEPRVEkSZKIaZoSx7FEUSSGYUgYhkXbPUkS2e12Fzkcy7LE8zwReRW39zyvaJP6vl+k8zyvaMvq4zHqmcjzXEzTFNM0JU3T4rmJ47j0XGVZJoZhFPe+2l6dD/UcVJ9LdQ7UOp16tqrjqipftd/VdmDTcvX5bS67q+f30t7Wc3vX53WIt/Ua3LVzr3Hf7U/1i5vWVdum+ryLU9u2OTWXBQ/Hsqzeczh0+r2l2r7nUO0hXZZlrWWQvly1KcZQ7ewx9H5A037med46r0rf3z7lrEqj+geXkiQJc6tw7/rUYdX6qIl6jmN0ETsAACAASURBVJpiu11lwqm8q9vq+enfWX12uvKt9leq39EV+9a3rZYBal3T9n2Os229ilGIvCqLzx13ULGQIVR/rqprv/tquz/UeM0pfe7PPlQeQRC80WM7uCzP84q4zKUtFovaskvEPDzPE8dxRm3bVN4qhmHIdDo9Z9da+b4vtm1LmqYX7cuYplmKn53SFL9q43ne6DZxGxVzHnv9TvE8r7M8DcNw1Pkf28epOh6Ptfvvrs6FGjvQbbfbi7T9x+7zqfduzumHtVHnIM9zWa/XF8t3aJ8nTdNe77/cBRW77tMmAfrwPK/XXJuhDMMQ3/fvJOanxlebnNM2yfNcbNseXHb1OUbDMC5aR8RxXBznXZS3im3bpf7mGHme185RWz+1ut2YmNSpPn+XJEk6x9Qv0d+sStO0GBMdqs81adpf9Z3nGtL3VWPX92lsTHPsdmPv2aHf0WcZgGaXitmpvPoaEvu85D7q9bjaj7ug52sYRu/30/vkO+Td7r7fq+ZVXYKax6XcVUzOcZzSuXBd9yJty652dZPJZNIrveoLXMp8Pi/uZd/37+Retm27dg8N+U2EJqZp9v7tA2XobyBcypDfi7ikyWRy0XulryG/pXFJy+XyzspiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6/MTI+b8bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAN0gcx7Lb7VrXB0Egx+Oxdf1+v5coilrXbzYbSdO0df3NzU3rujRNZbPZtK6Pokj2+33r+uPxKEEQtK7fbreSJEnr+vV6LXmeN67Lskxub29bt83zXNbrdet6ZbfbSRzHnWlOXSOla3/fBLZty2KxOJluuVyKZVmdaTzPk+l02pnGMAy5uro6+X2z2Uxc1+1M03ffV6uVmKbZmcb3fZlMJifzWiwWYtv2yXRD8hQRsSxLlstlr7Qi/Y5JmU6n4nler7SO48h8Pu+9H1dXV2IYRu/0AAAAAHCfumIY973uMexPmqZFPCkIgsbtsiyTw+EgYRgO/r4wDCWKIsnzvBZLiaKoM9b1GJmmebLvbRiGGIbReMxD4kldafvm8ybHrwClTxxKT9OWXn92u7bTy4DqM9aURsmyrPTZsqza9+n55nle5GcYhpim2Rj/z7Ksts+GYUiapo15n4qR3xfHcURESscoIrU4a57nYllW7bzneS6maZauUZ7nxXGrdUmSFOnVOVXnR78meZ7XziXO1/S89Y0dq+vVVJ9eguM4xX3ouq74vl/sm+u64rpuUe+7rlvE0yeTicxmsyIfz/NkNpsVYyW+74vv++K6rkyn09J4gD4+UB0r8H1fTNOUOI6L9pNhGBKGYXEOwjCUMAyL9lsYhpIkiWy322KMse2/Nzc3EgTBybFGndrHpv9eX1+3rutKa9t2sU+Hw0EOh4P8+Mc/FvkLEfn7oy8nhspE7G/a8o//4T+Wf/SP/pGs12uJokh2u11xj9zc3BTjw7vdTqIokvV6LWEYyuFwkO12K1EUye3t7ckxbkXdF8vlUlzXleVyWdwby+VSDMOQ+Xwu0+lU8jyXxWIhjuOIaZrieZ64riu2bYthGMUzm2WZTKfTUr9GH+/Vx8CrY8r6eK8+zq4/J3pfRx179TvO5bpuUa7o45ymacpqtSrS6eNv6m99LFHPRx8H1Mcxr6+vJU1TieO4+B7XdYvySNW7IiLz+VxM05QkSRrbNmruQZqmxfU/HA61Mma32zXOQ1DzB/R+pirnlDiOJUmSxnkK+/2+1kdNkqS4XnpbSF03Jc9zOR6PtbZVlmVFuatrWnZfVDtQpNz2rF6TpvpSpWlrFz4mbePWhmHU2o2KbdutbWTHcUrpVdvPMIzG9qY6P9U2u6Lalqo+rq6rUveh2oem8x9FUev3vQlUf0fXdI/q93fT+dDPfZVapvedmtKMja+8ydfnTWRZVuPz3cS27cY5Pk33kWmaRfujKb2+XM83z/POeXJN+6tkWVba1rKsk3OzlDRNe/e5qnHOIAhaz1lXTDTLslJbUK+7Tqm2BbpUz/fxeHw0MY43led5RT08tC2h+ri6ahymKU/DMHrNZ6vWG6ouUPvblq5NU4ypabum2JH+LLdtp5ZX2y36s90Vl2pap3/umjPctE4da5Zlreen77l7TLrKnq72c1e5WY1dNq2vltt4eJPJpPfcWKX6jA2Zt9vEtu2ijz427uz7fq1c03U9w8qQeb861YcyTbP3fOc2nucVZWWSJKOel8lkcrJ9oWIITVRsaYwoiiSOY3Ecp3ebrI3neaXyZOhYuWEYJ+fQi7xq17XlO6Rt2ZZ3V73TR1Pf/NScinPcVd6vW754/Ia8Y3KXeTzWfTmnzaXG7rpkWXayj+l53sl8msRxXJSdnueNrpN0auyyGvsek0cTPdbeJ58+9ZMSBEHjudbHbsc6Ho9n5yHyqi2n5xNF0eBzrcaaTxkydjtU1zuk5zj1fuk5+rz3ORbnA2+iPu/1jjH0fdYh1PyAIbriVIZhXGxfXdctyv/qvLIhTNMszSs6RT3nSZLUvnMymVzkGtu2Xar38zwv+rtDj3MymYx+bzhJEjkcDpLneetYzVBq/kiXU7+7oKj5KWPleS5BEBRjS5cYD1bj3kP642rOvq5tnCdN04u1RfR8msbVL0Wfv3FqPG6INE175zUkfp7n+cXq8+rYyl3Fpc8pAwG8XSzLGhQTUPq2JTzP62wLDZmb0ERvs52bl84wjFFjVU1M02w8B/P5fHA7sS2vKtu2T44v2bY9up065DduxrjL37nR5+jehfl8fpHYVpPqfORLu1Q8uM2Q31Eaqu/vUw3Fby4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC33E+M/LH/X9UBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHgAURTJfr9vXLff7yWKosZ1Nzc3jcvjOJbdbjc4v/V6LXmeD95ORGSz2Uiapq3r2/ZVRCRNU9lsNq3ru86PiMjxeJQgCFrX73Y7ieO4df3t7a1kWda4Lssyub29bd32sVutVmKaZuM6wzDk6uqqdVvbtmWxWLSu9zxPptNp6/rpdCqe57WuXy6XYllW6/r5fC6O47SuFxFxHEfm83lnGhGRq6srMQyjM81kMhHf9zvTWJYly+Xy5PctFguxbbszjeu6MpvNTuZ1fX19Ms2pcw0AAAAAuBthGMrhcKgtb4ujNMVekiSR7XZbS9sW72iKwbTFL/ruXxRFkue5BEFQ+84kSSTPcwnDsLYuTVPJskySJJHj8VjbpyzLJE1TORwOteNW6/U8VZo8z4v9eV2cijucoy1eB7xpDMNofJb0ZdV4olqn/mvbdmcetm2LaZqNMVPDMMS27SKuZxhGLZ1hGOJ5Xm0/TNMslqkYo2matRihYRji+36Rb5qmkud5KZ3Kx7bt4m9V3qp46WQykTiOJUkSsSyr2D6OY8myTGzbFs/zxDRNiaKoiI87jiOGYUgURZIkifi+X2wbhmGt7gqCQOI4LsVpgyCQMAxr6ZIkKZ374/FYSqfKfP078jyXzWbz4OWcft3VvujnNcuy0nLLsiTP89K4grqvkiQplql7SNWV+nJ1HarHnqZp51jLfdCfEbV/6lhUHa3WmaYphmGUzoe6D/S0uuqyh7r+Y+ruc/a1Wsapc9e0P+qc5nle+lvtw6XuEdu2ZTabFddXHzPSx5f08Rp9LEUf56iOn+hjG33yEimP5VTHf/TtTo1vnXI8HuXm5kaCICja3E3/7ZOmLe12uy0991183y/Ohfrv9fV1bVnbf/ukfeedd06OgVXPz5dffikvX76Um5ub0r/q8l//+tel8vCP//iP5d/+u38rH/3eR5L+nw9bnr1V/g8R4z97VV6o++L6+lqePn0qT548af383e9+9+TYZ/Ueb3o2xi7rmkOgq97rTff92GVNY7HV+Qv6fupzC/RnXe9n6/15fa6D3v/X+/F5nst6vRaR8lwPPR99zoOKLVxiLoNe3qpzIlIud1X5bJqmrFYrESnXAXp5ro+Tq3Or1xH6HAN9jFvNHdDL+FPzFS6tKQ7Tdo6byvmmeS1N2zfFapriSNUYUlP8qGmf9X1TcZnqPqh91cvv4/EocRyXvnO327XOpbkLlmWJ67oi8nW7y3GcWv/Ldd1aW9xxnCLWpJbp26Vp2tjndBxHkiQpzlm1H6j6WDrTNCWO4+KaVfM8Ho8P3qY/xXXd4lyLfH2+q8v19fr1qbJtW1zXrc3Nchyn1i9WsUbLslrnBKl2cBPVJ8uyrNTnVMur+RyPx9Y4gMir6xmGYbFfin4vqHz0+0TfP3WPxHEsYRiW1jX1+apx1NeZKrvb+n/qXHX1pdrW3Wf5c4rqv1WPpa1fp/eV9fTqfFWpezrLss44mPqOakxC35/qvjSVY2p9dV/Us/C2M02zVxtElVV95i6qfFVavc5qS9s2r7BaXpmm2TmHU9/fJEmK9t4phmEUadM07Zx/a5pma59TxSH1fPvOcwzD8OQcTPX9ep2SZVnjfOOmeG3T/sZx3Fpv6KrP9OFwaDxP1bKiSdcc5i5j+wSn5nujzrKszvuiqS48VU+q7fRrX71XXrfrpI/R6HFikeb2WnW76jl2Xbfx/OlxQj3PtvaqqmtFvo5/G4bRmr7aTrVtuzZWohiG0bi82rbOskyOx2NresMwGstzveyqjrGoca0hut7H6KNtbsMQp9776GNsuamcencF96/PexynnHo35ZS+74k0mc1mrWVKl6Z9TpLk5P09ZoxkSDtM57ruyTZkEAS1str3/ZPvAjWZzWbFOdHjL3226zP2t9/vi301TbN3+1jX1ic7xXGc0jnZbre96nrXdVvv7a53B4cYMq7V5hJ1hMjpdxf7uNR7gIfDoTY3Yig9/n+OS9SfuHuXeLfv3LFw5RJ1q0i/dxpP0cefztH1jmxffd/lPOXcdodI/3diT1ksFmJZVuM84b4sy2qNh8VxfLL8UeOHQ6j+3ND6p088Ts1Hq253iWvfNif7Ek69Az/WpeqiJndxPi7RLhE5/ZsEQ3T97sIQl6rPL/mbB5e67y7VLsX9u1TbQ2R837jq3Lki525/bh197vbntldO/fbHJbdP07TWZ/I876y2n+/74vv+6P6l7/udbXI1N6Zr+zH3cRzHcjgcRsdD9O/XY75959YpSZI09mOzLLtYPDRN09r1Ue80DJUkyVn1dRzHRWylT7u1ryiKOvOqzq86lde5cQ5lv99frL3YNDdgbMwrDMPe41mnzlsYho9qrgiGO7evXB2DH3M/9I0dtL2TcW7sQeRVG6tPrB9vt9lsdnKsd8g7T5PJpNYOOud+PrddWXXpOeGX7Msol4g/6vr8bt4Ql4r5KpeKlSrnjLW2uUR8WneJuK7uUv1g5VKxdOVSMWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Ds/MfJL/HI/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBsYRjK4XBoXLfdbiVJktryPM9lvV4Pzm+320kcxw+aXxRFst/vB+UnInJzczM4v/1+L1EUDcrvsZjP5+I4TuM6x3FkPp+3buv7vkwmk9b1s9lMXNdtXb9arcQ0zcZ1hmHI1dVV67a2bctisWhd73meTKfT1vXT6VQ8z2tdv1gsxLbt1vVXV1diGEbjOtM0ZbVatW7ruq7MZrPW9ZPJRHzfb13fdc0AAAAAAFCyLJPb21sReRV3OR6PIvIqxtEUg9nv97JeryXLstLyzWYjeZ6X8t1sNrU80jSV7XZbxEjiOC7iTfv9XoIgKKXP81yOx6OEYViKq6RpWvqcJIlkWSZBENTiOVmWSRiGxf5lWSZZlkme5xLHcWm/9fVpmtaOqZo2z/PauQDwMEzTLMURq3E50zRLsTy13jTN4m/LssS2bTEMo7Re8X2/Fss0DKPI23VdcV23ti+K53m1WKqen+d5RcyvLfbn+35pne/7pWM9FY+96/V6miAIJAzDYnmaprLf78V13eIYbm9vS2Xr8XisXaum2HpT/H6z2UiapqVlt7e3tXJ6vV7XyvNqjL5pXEGvM/Vj2mw2pWVxHMtutyvyEWmvV++a4zjFuVT74jiOWJZVLMvzXGzbLu5ZVbfpy9I0LZap+y1NU0nTtMhLX6bf/0mS1MaW4jiuXav7oj/nIl+fF7Vc5Os637IssSyrOCd5nhfPvMjX50XR2wUqbZ7ntWNVbY3XkWmaxTVX50dR51DdV2q9Og+WZRXnQp1//VwYhlHcP6odpp97ta26n6pttSHHoMp5vfzMskwMw7jo9dHLdcMwinEpwzBK5enQv8ds0zevrnG5h3I8HuXm5kaCIJDj8Vj8t2nZmHVNdUUbda5835fr6+vi77b/9klTTXtq7PSS51T9+/LLL+Xly5elZfryr776qlbvqn1W/54+fSpPnjypLfvWt74lh8NB1uu1/Pmf/7n8s//5n4n8vyLyH97pIUJEJBUx3zHl2beeyR/9gz+S2WwmpmnKbreTr776Sn7zm9/Ir3/9a/nNb34jX331Va29tVgs5Nvf/rZ885vflHfffVfefffdxs/vvvuufPOb3+wcVx+863/XxtKf0yiKZLvdyuFwkDAMZb1eSxRFstvtivbizc1NMWdjt9tJFEWyXq+LeSYqHlFt0zVR4/nqOV0ul+K6riyXy+K5vbq6Et/3ZTqdynK5FM/zZLFYyGw2E9/3ZbValdJ6niez2UyWy2WpDr0P1fJQX9b295C052zX1D4fYmw9eB/bnZrX8aZo6hepe0HX1I+r9sX0/pSinntdtf/X1F9rmmPWtA/VezBJEtlut6U0+j3btu9NfdJLs227mEuk9rk6L0rFHVT7xvf90vwh0zRrnyeTiSRJUux/dS6Vbdul9pJt20UeURRJlmWlPFVbW69bXNct2t9BEEiWZaV2p+prBEEgQRCU+h5K03XoWn5q3ZB24EOottv1+9TzvFp8RvWf9H6IzvO8os/WtM7zvCJmrnNdt1TPx3FcnDfHcWptV9WHa2vTqn1oel7UvZWmaakMsW27NkfveDwWcQnTNGuxh2oeTfsYhmFpP9I0LfUVsyyT/X7fODag0gdB0NjvV/I8L+7BtvpOPUeo02NYimEYjXM2DcMopVdlTFt627aLuI9OxXar21XjCGr/HMep9aNVLETPo2kupyob9Xuoms7zvOJ5iqJI4jgu5avWVWOqarysaw5pteytUs+XrqtcrXoMad8EffsPfWM619fXJ9Ocmt+s2Lbdqy/oum7RvsjzvHUuveu6jeMPaZqW6idVb3WJoqgUH+8ynU7Fsiw5HA6d5fF0Oi2d4zzPa21Xla5NkiRF/XRqrEVESu2nLqZpFuVBHMey2Wwa34HIsqz13Yjtdltrd1f3vVrHqXcm1Nh617Yir65l9Tva4ryqbVMdY1Bx47b06vtUmrb6t5rPQ41ZvM70cSSR+ths03LP80rjLLqmZZZlNb5P0VQuqvEI27aL56upLtPbDMpkMpH5fN56DE3a3tXQ+1ZVq9Wq13eEYSi2bXeWJzrHcUppsyxrbQv3zVe1UfuUVSKvznU1391u11iuqn7oKao93ncfDMOopW2KTww1tr/fFC/po+udtC5j20ht7wmeMiam1xS/6aMpXoTxut5za9O3fVh16n3DNmPjqmPfoxszPnrqfcY2Y89Jn7k6TcaOO1b7IWEYtrYjdafuk+ocUJFXdciQc6LmIjmOM+o+UXO/LtG3vFT/9DHlw768PftyH2Mab6uxZTbbsd2buN2p32AY4lLjepfoJ4p0/3bJUF2/PzJE0zj3WGP7ilVj+7hNzp1bcu49dO725+7/ub9Fc872597vY+MBuJxzf3fm3PL83Lly524/dl70qd/7aTO273/qt5HaWJYly+Xy3rYbGycaG0sR6Te+2aQpDlZ9f6nJcrnsdc9c6nfCLllOjo1LN7lU2+Lcts4l2hPnXqtzj+ESMe6+bYm2GN7xeLzIMZzTHtput53HcOr4giC4SLsZ51NjvmPpcwHH3FOGYbS2bfrGuxzH6XUM+twDEWmc19qHGqNO03RQX6tpbFtXnU+jG9P+UXMqx2g7n5fqE+LxGts+rDqnvagbG8eqGjOmWjW2T1F1iRjb2P5G1SXeebzUPXOpd3XG9jd0p37Ltq9LvNc7tk9adcnYLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeOP9xMjP+RVuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG+V3W4ncRyXluV5Luv1upY2DEM5HA615dvtVpIkKS3Lskxub29raYMgkOPxWFu+2WwkTdPSsjRNZbPZ3Ekex+NRgiCoLW87RpHm4xRpP9bHZLFYiG3bteWmacpqtWrcxvM8mU6nD5qfYRhydXU1OL/5fC6O4wzKz3Vdmc1m95IfAAAAAOD1sN/vJYqizjRtcZSqrpiDrim+UdUW76g6HA4ShuHJdL/73e9ku93WvjcIAsnzXERexVK2223tfIRhWMSW0jSV4/EoWZaVtlXyPJcgCCRN01I8Ksuy4p9Kl+e5JEkiaZrW8smyrEjT9FlPry+r5lNNU/0brzfDMAalqV77Ptv3deq+epPuO9M0ReTr86efR9u2a+fVMAwxDENs2y62VWn1PB3HqaVRFotFka9lWcU2tm2L7/vFMhERx3GKPBzHEc/zxDRNcV23dhzvvPNOaVtlMpnIcrks7YvjOEX8cDqdiud5jefHcRyZz+eN60RErq+vW9e1xVCVq6urzvv21Pavi6bYfnXZqc+PaZvD4VAa72jKY7vdFnXkXbNtu3afWJZVexYMw6g9j233X1s9rkvTtGiHqHVRFD1I+aifgzzPizLKtu1Se8KyLDFNs3Rt1HnSl6nzpLez1Hb6MsMwJE3T2jhUFEX3dv2V6jXP87xYpu9Lnue14zMMo3SN0zS92P5bliWu6xZ1x2QyKb5zPp8X96Dv++I4TpFelfG+78t8Pi/O8Ww2kyzLxLIsmc/nEoah5Hkui8Wi2GfXdSWOY7EsS5IkKf7FcSxBEBRt2N1uJ3meSxzHEsexHA4HMU1TwjCUMAyL8xCGoSRJInmeF9+n1qlzeFfXW9Wn1fNnmqZMp1MxTbP4W52z+XwurusWdepsNhPbtsVxHPnGN75RnH99rGy1WhX3hV736PWjPsZn27YsFouTeb3pVN/z9vZW4jiWzWZTjImr8fybmxuJ41h2u11RX2w2G4njWG5vb4s+p8prvV5LHMey3W5bx9ebXF9fF20Wdd2Wy6U4jiOr1aq4frPZTFzXlaurK3EcRxaLhfi+L5PJpBhbXa1WYlmWXF1dFde6a4z3MQjDUH7729/Kzc1N6d+XX34pL1++rC375S9/Wet3+74v19fXtX9Pnz6VJ0+e1JZ95zvfqbUfv/jiC/nss8/k5z//uXz22WfFv5///OfF973zzjvy3WfflY/cjyT5vxOR17+p97j9jyLGf2/I+8/fl1/84hdFm+2b3/ymvP/++/L+++/L8+fP5fnz5/LBBx/IkydPZL/f1+6dps+n7qPqvVP9/N3vfleWy+VDnJWCKmc2m41EUSSbzaYoq25vbyWKItlut0Wsar1eSxRFstvtZL/fF8vUNuv1WsIwlP1+3zpXR6fKmNlsJr7vy2q1kslkIr7vy9XVlXieJ7PZTJbLpXieV6T1PE+urq4a06pyTdVTrxu9bzHk77tK27bdWKrO6fP3kLSX2K4rLoDxqrHuKIpkv98Xn5vm763X61K/sjpPstpGUm0tpSn2X43fV/erOg7QFMuv7le1nLvEM3JK05y35XJZ6gtW7+XqXDjLsmr1j4pPqf7tbDYrzbnzfV9M0yzOoed54vt+KQ99H1TcL01TCYKg9P0qthcEgYRhKL7vl2Ia0+m0cdxDpHu+Z9dYTteYUfW6KkmSyHa7bdym61q3jRWN3ffHonqfKV3zTrvmYap+SZO2eKllWa3l9GQyEc/zJI7j2vmfz+fFvqvxLpGv4xJVURSJYRi1e1yts227dj+psTXVZ1JjcCqG4Hle6ZgOh4McDodS3FvFHNSxqjiGvlzXNuaYZVlRNunnQ4/j6dT4YFP+Ku6hPyNN439tcST9+5rGAt8Utm03Ph/qmruuW1zntrGSKpWfYRgynU6LWGc1/2pfXY2xKK7riu/7tWdKxQz1eFJTPFPFlHT6WLIe26s6Ho+d4yqmacpkMim1C3S2bRfPvIrj6VzXrc0PV/E9tb7puoi8ekazLDs5pti3bu87tt/07keTPvMORNrrMF3fORF95zG8KfrGufR+Q5e+fYm29xqq2urdqlNjjCLd70zouup0nR4XFnl1jzXFLx3HkdlsJkmS1J6PNE2LmILruqVzl6Zp4/OUJEljey6O49JyVeap+Gq1XGt7BqMokiiKJAzDUplbzb/6vWp8QV/e9B1RFBX1sz7PpulYm+bsRFHUq1y4K21jjrZt185xZOBIKgAAIABJREFU09wCNY4h8vXxq3ybvkunzmfbfAWdantVNT0nag7U265vGTE0rUj3HIpz0vYp+5Qh41VD0vYtp4emHTI3pG+dIvKqTO47jqnHAw6HQ2d8dzKZNO7DZrOpfZ/v+619QJHx73dWY0J9DRl/0/WZk9rk9vZ28Fhy33ZcVVc8o8vY2MTYc9K3zVt1c3MzeJu3ra1714aUa7ohZb3SFMfsY8y49pDxgaF1ohq36GvIuRp6rEPqu6HvWA+px6r9ilOG1Htj75suY8pxpW/M4FLbjS2Xx27XN9bx0Nv1Gbe+5HZj67n73m7svX3OM4G6vvGnqqH1y7nbjR1Lv+/tusaf7mK7IXXUJbYb+07BfW83ts04dru3xbl9m3O3H9vfVMb24S+1fXWuylDnjumfu/3YWIZyznyWPuNRTca2Gca2bca23ca2MdFubHk+tt4ZW6/ed7thbPtmbPttbDtz7PsCY36rbeg5GRpPEBl+Pw49b0PjRI/BuXW6yPn9wnPnWV4i5vsmHMPYOlMZ274YO34hMv68j41djT3GsW3P1+H3TF9Hal7J0DapmhvXputeHPP7o2maFnOth1LvgIq8Kqf7Pifq9xuqqnNZqtS8w1Oa5uOOaQcdj8fi3dih1O9TqHk9Q7Zr+j71LnGVYRi92wxxHMvxeBx8ravv9rfNla9u0+US9Tru3qXGrsb2RXSXar+O7adUDZkDdBd5nBOPPOd6nHP+zvmd7DF9KuXce+ec63TOb+3wniAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAe/YTI38T/4+tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIgcj0cJgqC2/Pb2VrIsKy1LkkS2220t7eFwkDAMa8vX67XkeV5aFsex7Ha7O8ljv99LFEW15Tc3N7VlURTJfr+vLd/tdhLHcWlZnueyXq9racMwlMPhUFt+32zblsViUVs+nU7F87za8tVqJaZpnpXH1dWVGIZRWuY4jszn81pay7JkuVw27rvv+zKZTBrXLZdLsSyrttw0TVmtVg+eHwAAAADglbbYwl2me6x5Df3OJEkkTdPWdEEQyH6/r8VodGmatsZVRESyLJMsyyQMw8a4SZ7npfyjKCrFRtT2ujiOJUmSImZT/a+ermvf8Waoxoi60rSlNQyj17qmNGq9YRjFPainV8v1+9M0zSJOpN/j+ndlWVbbTuTVM6en18VxXEv/NrNtu3SO1HnXlzmOU3xW6x3HqeVjWVbxT0TE87xaPtPptLSd4zjiOI7Ytl3kOZlMStt5nleLXbquK67rlv6ezWalmKplWXJ1dSW+7xfLfN8vvsf3ffF9XxaLRS0Weyrm2BS/xd2ojoNU6/CmMZHqmEV1XKJp/KI6RlEdh6iONTSNSWy3W0mSpPiOMAyLfc2yrLaveZ7LbrcrHV8QBI1tgUuzLEts2y6VybZtF/sq8nX5kKap5HkupmkW930cx7XyOE3T0rN7qg11V0zTFM/zanWKKjMUwzDEcZzS+VdlXLVtZJpmbZlhGMX1Vp/zPC8tE3lVJ1WXHY/HcQd3Bs/zamWw53ni+36pramXr6r+dV1XLMsqzmmSJOI4jliWVRybuv6O40gURZLneWl9lmUSRVFxLtXzFUWRZFkmhmFIFEVF+iRJLvYsWJYl8/m8uD+vrq5E5NV1XSwWxb2vj7fp56s6Pnd9fV38vVwui+dbpU+SpKgD4zgunrcoiopnTR2baZoSx7EEQVCcM9UHsW27VObpf282GzkcDpJlmex2OwmCQLIsk+PxKHEcS5qmEsdx0W+o3oOXpsoHy7LENM2i7aDqecuyxPM8cV23WDabzcQwDFksFsW9qK7JdDoV13VlPp/LYrEQ3/dlNpvJO++8I5Zllerptr9FmsdK0Z+6547Ho9zc3BR/dy0bsk6vN7uo69r03+vr60Hr2tK/iffK8XiUL7/8Ul6+fCk3Nzelf03Lf/WrX9X6Sb7vy9OnT+XJkydyfX1d+te0/MmTJ73O483NjXz++efy+eefy0cffSQff/yxfP755/Lpp58WbSXP8+QHP/iBfPjhh/Ls2TN58uSJWJYlh8NBfvvb38pf/uVfyr/+N/9a4v82Fvkf7uQUQkTkn4sY/8SQv/eHf09+/OMfy4sXL+Tq6kr+9m//tnYNf/GLX0iWZWLbtnzve9+TZ8+eybNnz+TFixfFdfz+979fu0dUuVC9L5s+//KXv6zF1tSz3XRfVj+/9957rfNOHrO28vVU2Xwq7VdffVWbe9WkWn6eKl/7pn0Ty96+9P6m6r9mWSa3t7ciUp4vp7cB9bpT9WHTNJXNZiMi5X6r3g/ebDZFv071Y/X+qbonqvs2lj73S7Wd9Ta13mZT94GK6+jb69vM53NxHKc0f0zdU/r36O14FbtpmyuHx68av9GfE6UaN6rGgKrxnKY4UjUmVG2nVsd2qnNa++xX9dmq7mfTPOBLqM4JrfaZ1LOl6GXz67LtEF1jg2PWPfb8Hsu+t80Zf2htYwBDl18yr3OXx3FclDWe58lkMpEoikrn3/M8SZKkNq8+z/PiOVTlbxzHpbEblZcaf7ZtW8IwLJVvKp5VzV/fDxU3ro53i7y6l6ptfj1mqOKVTfEu/fiVPvMGLs00zVo7Vy3T+93VcVc15tk2zpokyWs7pn9qzO11Xn+JvC3Lam2Dq2dZRBrnkqi4qi4Mw+I58jyv8R0TETl5P3meJ47jvPZzjd6kdHfVZnwszn2ezkmjxjn1NNUxRJFXfXCVznXd4vlrGhNNkqQ2PpkkSan+chxHXNftrNds2y7GsZrqOrX/1X2ttgFM02wde1Np9bqpqcxRY1APoam808c09XTVck+NTTWNhepp1Hbqeqrr0/Wd6nzoy9Q4mM5xHMnzvHRO9XZWdZmaZ6Bffz0v/Z27Ie9MDknb9j5nk7b3R89N2/Z+bBM9Rva202Nml0w75N3NIWmb5jG00WOIl0w7JH44JG3be8BNut7rPSdt1/u4ur7XbEhcf+w73V3zrLv0HXuuanqn/ZSxZc6QslXXt71YNfacNP1WQJe29/rbDD2eIddo6H03pI099vq96dp+26CJYRjFnK0+htRTIuX5XKcMqX9Ehs0XHlIHiUhp7topQ+oWkWHx9CH1i8jjuvZvy7jz0PL53O3G1JH3vd3QOujc7ZrGBO9yu7Ftjvvebkjf7RLbDelXop+x78UM3W7obwINrQ+G1E0iw8edh9TZIsPPz5D6bGjd2rdvqAxtFwydlzO0vcTvSb19xvaD2Y7t7mO7h/jOsW36t83Q+mJM/fImfAf79Hi+Y2h7F+O9LnXM21CnvS7bPcR33vd2Y8fj3mZd5XxTW02f99dHnufiOM6guqFpLo3+Gztt2/SJn6j5Lfp8mr7U3Br1jnvf9G3Uu/c627Y7t6kyDGPwvLumeT2Hw6H1dzOa5vg0Ub89JiKl3+Xpu08q/eFw6DU/X/+doKpzyslzfuN9bGxYZHy8XaF/dX/Oiemd8x7g0Nhm1ZAx56pzfoPqnPekhsbGdUPHzXXnXKehMeuqc65T2//zoI+x12nM83DuOQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhN/cTI+ZUYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA106aprLZbErLoiiS/X5fWnY8HiUIgtKy/X4vURSVlm02G0nTtLTs5uam9DnLMrm9vS0ti+NYdrtdaVkQBHI8HkvLDoeDhGFYWrbdbiVJktKy9XoteZ53fmeSJLLdbkvLms7HQzAMQ66urmrLXdeV2WxWWz6fz8VxnF55eJ4n0+m0tnyxWIht26VlpmnKarWqpfV9XyaTSW35crkUy7IunodlWbJcLmtpJ5OJ+L5fW75arcQ0zdpyAAAAALhLTX3nh0zzGPfp3DQqDhEEQWOaNE2LeEAQBLUYQpZlpXhBGIalNHmel9arNHr8o7pe7XOWZZ3H9SYwDEMMwygtq54Ptb7pPHVth7tRvV7V5eqaquuhPle3MwyjMdZiGEYRx1HbqWfBNM3in8jXz19T/CnLslL+Kq84jovv1vcpTVNJ07R2HCKvnsem4w6CoBZDfAxM05T5fC4i9TLI9/1SnEw/h47jlModtc7zPDEMQ9I0LdZnWVa6hvo6kVfnTz83+vlN07S0LoqiOy/vXNcV13WLffM8TzzPK9brny3LEs/zSjFC9dm2bTEMQ3zfL633fV/m83npXqzGKu/6s4jI1dVV6zOKx6865lAd46i2Z3a7ncRxXHy+vb0tPaPn5PXVV18V4zIqL/U5SRLZ7/dFGaG3fbIskyiKSm2hNE1r4zJ3wTCMWn2gyjtVDqqyXx9zUnWGOneqDquWa3fNtu1S+WwYhjiOU3qmTdMsldXqmPW6UuWlH5Nappe/6rj18tg0TYnjuLTMMAyJouhB6rumcq7PsrHbnVqWpmnRhjdNs7jfVLvddd3ScxIEgbiuK3meF9upNoXjOMXYoWEYxfOonifTNCUIguK53Gw2xXVW24VhKIfDQUSax1eHUnWIPn6mj//NZrOiLlVjZvp4nT7eOJ1Oi3pVjbsdDgdxHEcmk4kcDgcxTVOm02lRPvi+X5wHdS+KSOleDoKgeCb08WM1hpvnuazXaxEpj8/qZaB+3vSy8BLn0LIs8X1f8jwXy7KKZ1GdK9V+UseU57nEcSxZlkkcx736M47jyGw2E8/zxHEc8X2/aMdMJhOZTCbiuq7M5/Pi3C+XS7m+vpbJZCLX19cynU6L+7rtv7Qp7p+6H4/Ho9zc3BR/V/87dJ1aVq3ru/i+X9wz+r3RtGzMOsbdX1HX5+bmRr788kt5+fJl8blp+W9+85tafazO7/X1tTx9+lSePHlSfG5a/q1vfas2b2KIm5sb+fzzz0v/PvroI/npT39atD1d15X33ntPnj17Ji9evJAPP/xQrq6uJI5jub29lY8//lg++eQT+eu//mt5+fKliLyqNz744AN5//335fd+7/fkT//pn0r+k1zkH44/v2jxhYj9H9nyDfmGfOfJd+STTz4p6sWnT5/K7//+78sHH3wgH374obz//vvy/e9/X9brtXz66afy6aefyieffFL8rerZ1Wolz58/l+fPn8sHH3wgz58/lw8//FCeP39em3PURj0P1Weh6dn44osvanOwup6F6uf33nuvcb7Rm6ZaL3TVEUPSVufONTlVP+jL2v5uWvbuu+8W7VGMp2IHetxAby/rbWR9/qS69no7W58PqtrTeptcz0ttr2+j2vRN8y2HUPMT9b6M6r/ocx31/p5q7+r9GDW/0LZtWSwWIvL1/Em976P3d66vr2t509ZBl2pMbsjnx7qtHpO8pHPi5Y9126b51G+KtjZC0zx+keb596fyanqXQKQ9ptP0voBI8/sMIu1z/fW6rart/m/rgze9ryBSjlfpzq0j70LbewQi7WNUbfe+Xqfq2t4FcBynGP/UmaYps9ms1GdOkkSSJCm1/fXY92w2K2KQ+rVSsb2me6p6X0ZRJGmaltqoenxXLdfnmKj2R9PclCRJ5Hg8lu7z6vwUNd6iL9PHaPR5LefGOsdQ481Nn/WYqb5efU6SpBR3F5FS+iiKxDTNxndKLMsqnvdqGtUu09dXx130cazqvAYVq9fPefU+v0Rs+aHobd8mbe8IibS/i6OotnKTrjZz0ztMStt7PiLt70Sdu69N7yHd9b7med6rfdWnj96nLmmrh3R95ub1iUGfajt21btKn2Nqq+9193VMIvX3H6seyzuHlzadTsU0zdp9qn9WZUz1HKpxPzW/R6WpplNjb3r90XTN0jQtlTvVcfK2/NU43n2qzusyDKNWZqj2j14nua5ba1upMUXdfD4vnQvXdWvxUtu2S9+px+uq+as5Dfr4o76f1byr5Wo131N101B950STlrTnpG3r673p2vpuY9K9DXk9xHc+RF5vcvxLpD0+1WRoXGfInI6h7cch5VSfNrluSHkpcrptrOvTV9ENiVX36TPomn5zpM1juvZvi674RZMhY3ldffgmQ8rBoW3frjhE1alYSFVbrLZJV4y4SVeMpMmQeYuP5doPuTa4rLZxqLvabmj9ce52Q+vCc7drG1vr0idGqRvSFhjaLhlaTw6ts4dex6HXYWi76m0ztD7R33voY2hZ3jV20GToXKIh9eHQurnt99raDGmzDKmbh5zzrnEcXdt4cpMh7Z+h1xsYq2suTZshfUqRce2gofX90DptTF93SD9dZFz7aEi7RWT4vIExc4KGztMb2r67j3vwbTb0Pb2h7Z+hdfyQGMaQttWQOnbIMfaNUYsM69MPaT8MaRcNic0Mbc/1bRuJ8JsT+NqYemdoGT+mTh9af97Hd4ypD4eOFw+NedzXd4yJTQxtM93Hd7zNhsbMRYbHLIaOm4gM71cP/Y4hdenQ8ZO+bRX12w9K12+zqN/a6BJFkcRxLK7r9t4HNXes+puGbWmb2ndNv6uofs/ilOPx2Pj7b32cExt9qG0f8rtfx23f1rlVd21IP+nc7e5rm/v8Lvbv/rcZux0xegAAAAAAAAAAAAAAAAAAAAAAAAAAAAB47f3EyIf8siUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA92Ww2kqZpadl6vZY8z4vPWZbJ7e1tKU0cx7Lb7UrLgiCQ4/FYWnY4HCQMw9Ky7XYrSZJ0fmee57Jer0tpkiSR7XZbWhaGoRwOh9Ky4/EoQRCUlu12O4njuLTs9vZWsizr/M77sFgsxLbt0rKrqysxDKP4bJqmrFarUhrbtmWxWJSWeZ4n0+m0tGw6nYrneaVl8/lcHMcpLVutVmKaZvHZMAy5urqq7W9130REHMeR+XxeSzubzcR13dry6+vr2jLXdWU2m9WWN+0rAAAAgMehbz/q5ubmImmqfcexaar9wbFpmvrUY9I09ZPHpGnq+zaliaKo8xzt93uJoqh1fZ7ncjweT37X68gwDHFd9+Q95DiO5Hnemc6yrM57KMuyWv+6ur4rTZqmJ++t14FpmqV4RPWcGoZROwf6udfXN12Tpmt06tq9zqrnQ+TVvViln3P12TCM0nltui7VvPTzqNKbpil5nhdlVjUvVQZVr2uapo+2XKnGzZTJZCK+79eWN8XylKZYoEh7bEzkVTwuy7LinOZ5LlEUyWQyEdd1JYqiorxJkkSyLJPZbCZZlpVis0EQiOd5YpqmRFFU5JemqSRJUuzXfr8vtlH56Xmo7SzLKsWIkySRw+FQ3IdBEJTqk+12e7JuHaN6HZbLZXGvVq9FNX5ajT3qcctqzLMaZ9XvC8uyZLlcFut835fJZFJ8rsZJq+ur17+aH94s1TGX6nhLdayl2sbT26l6XkmSyH6/L55h1VbXy4HNZlP6vNvtJAzDom7c7/dFGZ6maTHWosoTfT+CICi1RYIguLP61bKsWh2V53lxHlSdkmXZvdbxlmXV6kbHcWp1quu6pX1T26n2nr6d3sZTeatlej2fJIkkSVKqT8MwvJNytku1PHtMyx5qP5bLpURRVDwjm81GRL7u00VRVDynej9P9Yn18VC9PNDLAtXv1fPXx0z1Pp0qM5rGe4fS61G9blN1ol7v6nWbXoeqelofh6zWueqZMU1TLMuSKIqK7VV7RpVLrusW5Y9lWcU51Y9XPzdqvR7P0NfrY9v6Oe/Ttx9y/vT2i94e0dsxV1dXEsdx0bZT7WjXdYuy27Ks4vjVOcmyTOI4Lu5BNXau6olqG62Jun6LxUJ835fFYiHz+Vx835flcimz2Ux835fValUcy/X1dfFMXF1die/7Mp1OZbVaie/7RX5NbWHcD3Uv6P+9ubnptazPut/+9rcn7y1F3TPq/qn+d+i66jL9WcIwQRDI7373O7m5uSn+ffnll/Ly5cvSMrX8iy++qF13dU30f0+fPpUnT540Lnv33Xcb55Vc4lg++eQT+dnPfiY/+9nP5NNPP5XPPvtMPvvss6Le9TxPnj17Js+fP5cf/ehH8qMf/Uh++MMfynK5lJubG/n444/l448/ls8//1z+6q/+Sn7961+LyKsy+gc/+IG8ePFCPvzwQ3n27Jm8ePFCPvjgg9K99yf/1Z/In/2vfybZv8xE/ujih/j2+pWI8/cdeeY8k3/1F/9K3n33XRERefnyZXG9PvroI/n444/lpz/9qfzqV78SkVdtlh/+8IfF9frwww/lxYsX8q1vfUv+5m/+pthGbf/pp58W8ZLvfe97pW3+4A/+oHa9x1Bla9OzVv38xRdfFG0/RX/eqs9Z9fN7773XGq96Ww2pE9v+blrWt07sU6+1/d21nnrwcVD9Cb1vovc3VF2k9/tU/02PFak+jN7/U30+vV+jz5lVfUa9r3NOn0bvs6k2vR6/VP1DvZ+n93nUfFO9T6TuU30OrOob6X1Llbeejnscd60t/ioipbiOSH1c/XXY9pL0mEY1vqPPNddjQ9W57/pYi152VMdJ9Gdfj8lVx4H02INe7lTnxDM3/XHoilm2zf1pmzvTNs+l6f0WkfZnQ69zq9rmNbXNL2qbw9P0rotI83sxIs3v0Ih0z9nqM3fqvrXFBpvedRGpj+uqcRbbtovYc5qmxXGapimLxULiOK4de1P+YRjKZDIpyqAsy4p7yPO8IvaqS5KkNG8gCALJsqxoC4VhWLo/1bi+EsexRFFU5JGmaXEfqrGv6rXebDZ3fi2r7wdVr5Vqk6n2pOd5pfF513VlOp0W97tlWaWxb8MwZLFYlMYoF4tF6Ts9zyudO9/3S+W0PvYm8qo+0a9rHMe1OR36/bPf74uxiaq2ckLlW31vTukqL0S650J2tc+75u2N3dfHqOmdMqWrzd/2jppI+xweke45OafmZ9zFvjaNMT7Wfb20Pu3TtrpS12eubJ++8Kl5y6eedZF+x9T1/Cqn5u2K3M0xNc2zCMOwVKY0zbcMw7DxOunpqnUjXqnOp6zOoVXr9bqrmkatV/Vldf6K/lnvZ+lpVIzHsizxPE9s266119Qyx3HE9/3ib3294zjiOE5R99q2XZsnN51OW8s9kfY2oXKqD3cqXtT0PrTS9g41vtanfFKafk/g3LR93uno2xbqU3/0nV/Td//7vCPT1h+s6lMPtPUhqy55LvrU3W+CPvGkrvnjuq62q66r/FK62o+6PrH1pt+taNKn/di3fO1qG+sueS76zF/qO4/7VB2GuzWk/BlaVpH3m7Mvd5n3kLbPm6xvWX7JdI81L76z7D5jTnh9DS1Lh/RRRfq9l68bOr9m6Jhcnz6iMvT9jz6xTN3QcYWhcw/69nWVoXX20HunTz9Y6ROLeJP17duKNP/WYZsh8zS6xjt0bb952KRvX1yk//y0x3Cu+vSXRfr3+UUe/lwBr4Mxc/KGthuG1o1D2wIiw9tKQ+t3kWHtH5Fh7b0hxzykbTX094iHXNsh7YwhbdOh1/JN1va7ME2GvOs6pH4e0h8eEmPu22cXGdb26BtbFxnW/hryeylD2gpDx3f7ti1F+t8/vCeN+9BnrlHV0PbGfXzHmPbD0H75mLbZfXzH0DjTXY1PDGlfDYmf0P54ZUidMOR9uCFtmr6xAZH+9eKQ+nZIPT6kfTAkljGkPTOknTSk/TWZTGrvDrSZTqe19mIYho1l8nQ6PdkOPWcO+dA+m8jwOL3I+HfbxuzfkLJMGbN/Y/9fNmP2b0x9Onb/xpTvY/YPZUPKcmXMWOyQPp1uSL9KGbN/Q8pzZewc4DHvlg6pQ8akH1L/D72WQ9osQ3//lHkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAeIv8xMgf2/8hFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASBzHstvtis9Zlsnt7W0pzc3NTenzZrORNE2Lz/v9XqIoKj4fj0cJgqD4HEWR7Pf74nOSJLLdbovPeZ7Ler0ufcd6vZY8z4vP2+1WkiRp/c7qd4iIBEEgx+OxtKy63X3wPE+m02lp2WQyEd/3S8vm87k4jlNatlqtxDTN0rLr6+vSZ8uyZLlclpa5riuz2ezkd85mM3Fdt7RsuVyKZVmd32mapqxWq9Iyx3FkPp+Xlvm+L5PJpLRsOp2K53kCAAAAvE7CMJTD4dCZpqkPMiZNn+/qk6apnzQmTbXf2KTazxubJk1T2Ww2Z6dp6tuOSdPUX31T2LYttm03rlP9ccuyamn0eIBKo/qQWZaV+vKKaZpiGEZtW12SJGIYRuv+qJhAU5o8z++9r38XfN8X13Ubz2Ge5+K6bqlfn+d5Ka1lWTKdTiXLstr26tzPZrMizpCmae27HMepLdPPv+M4YllW6zlP07QWx4jjuPh+wzDENE1JkkTiOC7yV/dOFEViGEZpH8IwLB2TYRilPB+COkZ9P6v73XQd74o6r/rn6rOiPuvL1T7neV5an2WZZFlWyyNJkns9ri6e59ViToZhNMailLZ1l9zmseYl8v+zdy+xkmR3ft9/8cr3k8MmWdUkxS42R+y6PWqOquUZQKOFdl54YUGZPjBWAAAgAElEQVTaWPDAsGRAAkawBpIFAQYMjwEZA3u8sWHJA28sSAIMiIA3s9FGgAwMtDFa6te9aoqYYs+IXdV8dOW9+X5FpheFc3giMjIi8r7vre8HKFTGIyMjH3HO//zPOXFffn8mDzifz+01HASBvR4l2bqxUqlotVrZ/dyYIV0/urlbN9ZJ19lnZ2f2ep5Op1osFpJ2Yw03Hz0ejxPnd1HtdtvWbe7nlc6xunnZMAzVbrfttnSe1c2npvOm6dxwOgfs5l3T+dV0HjXvnHA/pftaDlleLBYaDof2OpvNZjvX6ng8tsuLxUKTycQuL5dLTadTW98ul0tb/87nc3tdxnGsxWJhn7fZbLRarezydrvdqbfNOd1Vvu/vxDsm3s1aZ+pZd9nUp2a9qXvddev1WnEc23p9vV4n+smuS7VaVa1WS7y/arW60weVVQeVWXfe593Uuqy+ttvELQfM4/T/Wdsue3+3zj+U+5lnPS7aXmbfOI5Vr9dtfFur1bTdbu21PZ/PVa1WbbulUqloOp0qCAJ5nmf7sd08hxvbmPfvbs/6fNxYKV2mH8qNI9z+316vJ8/zEtvdGMNsd2ML97Ny93XjGDf+MceYz+eKosjWOe7nMpvNNB6PNZ1ONR6PNRqNNJ/PNRqNNB6PNZ/PNRwONZlMNJ/PdXZ2lvhM9zGxVqfTUa1WU6vVUrvdVq1WU7vdVqvVUq1WU6fTUbPZVLVaVa/Xs7+Pfr9v32+v11OtVlOj0cjso8fVOzs703K51Gg0st//YDCwbZHxeKzlcqnT01Nb7gyHQy2XSw2HQ3sdnZ6earlcajwe2/Eh6fEn+5jfQ7vdVhRF6vV6duyFuR663a6iKFKn07G/QXN99Pt9ez2Z31mn01EYholj4XoNBgM9e/ZMg8Eg8e/58+d716f1+309ePBA/X4/8e/hw4c76x8+fLgzxuaqvXjxQp988olOTk70gx/8QCcnJ/rkk0/06aefarPZKAxDvfHGG/rOd76jX/7lX9Z3vvMdfec739G3vvUtSbLPffr0qY6Pj/X+++/bHEC/39fjx491dHRk/3/06JHeeOONvflc13a71V/7r/6a/un//U8V/9NY+stX+Um8Ip5K0X8S6evx1/Wv/99/ra997WuFTxkMBvb7PTk5sf//6Ec/srnnN998036/5rt+88039emnn+rk5EQfffSRjo+P9fHHH9vfVr1et/seHR3pV37lV/T222/rG9/4xpW9/dlstvc6Ti//+Mc/3ulPMjFA1jWcXv7617++Mz4O5Zn6+uzsTIvFQuPxOBH7ufX9IfuW6SOVXubSqtWqjRGr1ao6nY6t0/fFgunH9Xrd7mMe4344b/u3aN1Fj3Oosu3hMtsusr+bewduu/RcAjeXlR5Hkh5Tk/dct48sfRw3P+/WZek+N7dfLP3abv/ZZc+HSLdX3TaNm2tK92WZvJCUzCOl+7HcXIubY033z7k5J7esSfe/uXkq2to4VHpekrHvuto31m/feLq8cW3peVlGen6Wsa+vfF/ssG8c4L4xe3nj4vbl07Ly/2XG4F2XSqViyw73/Gu1msIw3BnXU6/XbTlmxi55npfoTzDvNwxD269nmHFSpowz/XvSyzLTXTbb3XMw/aruOJ/VamW/d8/zNJ1Or3ysjjsGJ2vszUWXL+MYl/Gabn2UF4NfxbabeM27dK5l+oRuk/OM6bqJbbftfK7qXO9De3RfLOAq6usqUx+XmQ9gYh93LJD0sg4z1/B8Ps/M0S0WC/s+zDXvHmOz2SSu9el0qvl8nnhfbt253W41m8124iH3GJvNZucYcRwnPs/NZrMT56XjQbfOxy7f93fmjbt9ROm2YnoMc1G7rah8KJqPnjUv35U1X97ltm3TPM9Tr9fb+9ysuf2urDn3rqx7D7iKxill3R/AdR/KyPumzNiFMnO8pHL1R5k5XFK5XFPZuVVl5sxJ5caXlf0s9rX1XWXmoUnlY9N9bXzXZX4W90GZcRRFdYJRZmxXURlsFNUjUvZ9VbKUvYdKmc+iqI4wiuo5qfy8g6LPouj7KfM61z2eBjenbL++cUhZWLZ+MMrUE1L5PGfZ8r1MXV22firbn1zmcywbH5StE8vEN2Xao9LN3A/sJpQt48vE80VtEqPsHIgydWzZeqVsvZjXJjPK1utFbSSjTH1Utg+yTCxR1LY0yv42gNvkkH7CQ+KDQ+YUl2mfSeXrI+mwfosydb50tz6rsvGCdNhcqKv4rO6rQ+qEsvWfVK7elcrX42Vih7Jt6rLvuUzdK5Wr78vGGPfh8wBQ7JA67dBx31d1bPa9//veR2X7AW7zfrf53Mrud5vPTSoXVwF3Tdk2sXRYn0nZtv4h91I9pF1etp9DOizfcEge55B+o0NyLofU2Yfkkg7pCzkk71O2P+y+O6SdfMi4qjL98kbZ/Mtl9t2U7S8qWxeXeb9lcxxlX7PM93HZ/S03nVc5bx70PNd72T5u13nP75A6zzjP+R1SB7nOc37naced9/zOM47sPOd3SL3sKnvvJuNVGRd3iLJlmXHo/Q7L1kPS4f3Th7TVyubfjUPq5bL1nnFIP8pd/n4OiVcO/X4AAAAAAAAAAAAAAAAAAAAAAAAAAAAc3/e2V/1XFQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuIDZbKb5fG6XF4uFptOpXV6v1xqNRnZ5s9no7OwscYzT01Ntt1u7PBqNtF6v7fJkMtFyubTL8/lcs9nMLi+XS00mE7scx7GGw6Fd3m63Oj09Tbzm2dmZNpuNXR6Px1qtVnZ5Op1qsVjsfV9XoVKpqNls2uUgCNTpdOyy53nq9XqJ53S7Xfm+b5fb7bbCMLTLjUZD1WrVLlerVTUaDbvs+7663W7imFEUqdVqJdbVajXV6/XEuvSxs15fknq9njzPy30fYRiq3W4LAAAAr4Z0O+I8+7xKx7gr5ylJw+FQcRzn7nMXRVGkSqWys95ty0ZRpCiKEtvc7dLLtk8URdpsNjvbjCAIcs9lvV7L9/3M/eI4tm1d3/cT7cXtdptoW6f3WSwWmefkeZ7W63Wine7abDaJ9vNdYNrBblvVaDQa9rv2PC+xT1Z72dXv9/duazabmb8haTcfYKzXa8VxnGhDp7+LZrOp7Xa78/2sViut12s1m83Ee1itVon8R71e13q9TqyTXuZaVquVoiiy7fzFYrHzG1qv15m/m/l8ruVyKc/z7HUxn893fivz+XynzJjNZon9zG/UlEHu643H472/zeuQdZ2lfzfmfM06c42ml4308lXI+u17nnctr10kCALVarWdc6zX64lryPM8+b6fyJ2Z76NWq9mcVRiG9ljpHJW0//rLynHty19lXd9Z+S8pO8d2GeeWleO7jdycrPvYzQ8PBgNJyZyu+9jNL7t5YDcPvVqtNB6Pdx67eWQ33+s+zspfX0Q6x+vmc938arqOceuUVqtly1I3v5v+3judjo0P6vW6arWapN3frvt7c3+/7m9u328Y99doNNLPf/5zuzyfz/XTn/7UPjbXidtfs1wuNRqN7PJsNkv0zSyXS7tsYovVaqXFYmFjj81mo9lsZuOB1Wpl2xxxHNt4yCybeNeNe+M43htb37R0XLBv2T1/3/cTbQmzj9uGMMdwP4frVK1Wd+rrarWqer1uy7isOu82r7vIsdxyGsXc+tvkENy62MQCprxx63gTP5i+YjdGMH29bt1vYgzTlnDr+XR/dFlunW3qVFPvunWzidnc+tXU7yYGcOMEU497nqcwDLVcLm1d7vu+NpuNgiCQ7/taLBa2LJSS+RrzOGvdeben++oP5V43WY9varsbOx1iNptpPB5rNBrp7OxM4/FYk8lEo9FIp6enmkwmGo/HGo/Hmctm//F4bH/vWUw81m631Wg01Gw21el0VKvV1Gq11G63VavV1G631Wq1VKvV1Ol01Gg0VKvV1Ov17Pvv9/v2vWe1PXB1TBtkPB5ruVzq9PTUXmPD4dDGS+aaOz091XK5tL+T5XKpwWBgy0kTe52dnZXK1Uq/KHN6vZ6q1aqazaZarZYqlYpd12g01Ol0VKlU1Ol07G+n0+koiiJ1u127n2lD9Ho9RVHEOI87YjabaTAY6Pnz53r27JkGg0HiX3r9T3/6052cnSlPHj58qAcPHqjf7yf+pdd/7WtfS+TNbtJgMNDx8bFOTk7s/0+fPtXTp08lvWwPv/nmmzo6OtKjR4/0+PFjHR0d6dvf/rY+++yzned9/PHHNn/54MEDHR0d2ec8evRI77zzjl577bULn3ccx/rbf/tv6x/+o38o/Y6k/04SRfj5/Csp/CuhvvvN7+pf/MG/0Ouvv36hww2HQ/3whz/U06dPE7+tH/zgB4rjWGEY6pvf/Gbi9/T48WO99dZb+vzzz+3+7733nk5OTvSjH/1I2+1W3W5Xb7/9tp48eWKf8+6779q48DqZciOrjEgv//jHP07kA6RflBlZ5UN6+fXXXycPdY3Ozs60WCxsjDqfzzUcDu14WTf2SO+7WCx0dnam6XRqY5fZbKbZbLYzPjeLiVFNXFr02I1j8x4DJr/g5gRMu9/tFyiTJyi7f14e4lBu7iCda3BzB1m5hrzchMlZHbo/8KrZlyfL23ZT+6WXL3uMVl7efN/j27IfZRjuq305wKz1h+z7qh/7JgRBYMf6pPuGgyDY6fPdbreJ3Focx4m+5nQf13X0G5u+LellH0alUkmMlwrDUPV63Z5jFEU25vR9X/V6PVFW9/t9e7woiuxYGDPGxZ2v2O121Wg0bD+am5d2x8eYfc1nlx6zk973vH1Ft1Ven156Lq7LbdekFY2jymsH5fXH3qVzTc8xvoxzvY325VjyxpClr6kyx9s3flLanSdt7BtHKe2/jvPGe2eNv5Ty5zfvGwOeN24za+61dL/H5aXvJSDtzuNPX1NZ10q6Hz099z8919+9/s04+9FolGgvzedzTSYTey7r9TpxTwLpZTnhnutsNku87nK5TFzz6/X6SmONarWauCbSvyf3+jN1pDuPxK13fd+X53n2MwmCIHHtbDabxHs341MMM47P3e4yY3/c13PPbbFYJLanxyycdwzPbZFXtuVte9W33/S57asPcP+VbStexjzM+3Csm3jNmzhWOt646666DL2O1+AcXsqbjwpc1F2vL27iNe/6+ZfdLy8fdt9cRll/U8fiNa/2NRmThvvukPupHjKnrOz4uaxc8j6H9PmWHUdzyH0E0ve3zVPm/Zd972Xfd5n3XPb9lv1dXHSe4V1Spj4ougeRsa/fKG1ff5mr7H1F0vcc3qfsuKvb+nmkxwXscxOfB4Crd0gbNm+MR9oh8VLZeCF9n/yLHu+y899lYpmyccVNvYf0+IQsl31PqdvuMmOLsvV82bZ32fx3mfdQdizOTb2HMuMUy76Hsn+/ocy5lflsAfzCIfN3ytRJxiHzEfPuT+M6pL4rG6NIh+V0DhlDe1P5l7KxZJnvs+zneJvmN1y1Mu3mvPHBrrJ1bpn7Kd1E7qJs/Z03LttVJrYomy8pG/eUGWt32TkrlHNIGSodNl73kHJfOix3fGjb7NDys2ydKR3+N+gOqecPnVNyyPdzSB0uHfb9ZP1tvzyvUv12iEPmPJctt42y9ZR0+PyVsvWRccj9DA+tAw6Z91f2PMq2hcuOMy8bp5T9XMvWzWXjKAAAAAAAAAAAAAAAAAAAAAAAAADArfF9b3uev3gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALhRk8lEy+VSkrTdbnV6emq3zedzzWYzu3x6eqrtditJWi6XmkwmdttoNNJ6vbbLZ2dn2mw2e7dPp1MtFou9r7VarTQej+3yZrPR2dlZ4twHg0FieTgcKo5juzwej7VarYo+ggtpNBqqVqt2uVarqV6v2+UoitRqtexyEATqdDqJY/T7/cRyp9NREAR2udVqKYoiu1yv11Wr1exytVpVo9Gwy2EYqt1u22Xf99XtdhOv0ev15HmeXW632wrD0C43m01VKpW97wsAAOC+c+PkLHEcazgc5h6jKB5dr9cajUa5x0jH0WnpuDlLOk5OS8f2WdLxfdpisdB0Or3yY7htkizpdkWWdDviLmu324m2Q/qziaLIxvHb7TbzszPtlX3fTaVSURiGe7dvNhtVq9VE+8KI41hxHCsMw0SbJr1d0s4xVqtV4ncbBIF9r+v1OvPaMm2Y1WqVud33/b3PlV5eC3nXymKx0Gq1ynyvk8kk97m3TVEbL2/7ebfd1eNGUaT5fJ5YP5lMFEWRbZvHcZwoR6vVqtbrdaL8juPYlteVSkWVSkXT6TRR12y3W83nc/m+b9fNZrOd10+XY1nlZ7rMzSrr99VDWeVkUX10lTzPS+ReTFkWRZE8z0uUbe5nlz5Guhz0PC9x3W6328R+5p9Z536e5jjuMd1j59VVNy0Mw53Pyff9RB7I8zx5nqcoihQEgTzPs8/xPE+NRiNR//i+r1qtZo/h+77d3mq1FIZhIu9Ur9cT+TKz3a3XarWaPM/byXMZ6dyVed10Dsy8nptLM9L5Menl9dlsNnf2TefrcBg3dnbLHjeWdcsp97Fbxrmxnls+uo/dvLMb07uxufvYLd+K4uay3N+Wm/s1jz3PU6/Xk5T83bq5Y/e3v+9x+rXc68L9LbuvJyVzweR977asOCG9ziyba3A+n+v09NT+7ieTSaLvZTKZaLFYaLlcarlcar1ea7lcarFY2GvLHM/Ud3EcazqdarVaabvd2ljejb3N8mazsfWqG1uY9e4/4ybq1ayYP2/fvLbuVYmiKBEjSS/jULfO8zxPtVrNrvN9X77vJ/YzbbWs8uC86y7zWIes63a7e+NB3B2m7jfxgBs7mLraxARu37ap3934wrSLTFno9jebGMCNO0zeKd2PXZZbr5v+XbdONvW26V92635TP7v9vt1uV/P5XI1Gw5Yz9Xpd0+lUrVZL8/ncxsyTyUTNZlOTycReB6bsN5+NG5OVXefWKxeNldxYxXwWbl+62+9utruxj7vdXO/udjfuN9vdz9jdbuL7rL7722A4HNp/o9FIw+FQp6enOjs7s8tmm1lvlsfjsYbDYWEuttfrqdVqqdlsqtVqqd/v28fNZjNz2d3fPL/VaiXGKuDqmOvR/X8wGBy8Lmv7ixcvSpV7pv51/+/3+5mPy64zj9PjYnA/mN+c+ff8+XM9e/Yssc5d//Of/3wnf29+J+bfw4cP9eDBg8Q6d/1rr712J35Lg8FAx8fHOjk50fHxsd577z19+OGHNu7p9/t69OiRHj9+rKOjI/v4a1/7mj799NPEc09OTvTpp59qs9koiiJ94xvfsM8z/7/11lvXUl7//u//vv7Wf/23pP9Yiv/PWPralb/k/bGW9D9L/u/4+kv/6V/SP/nH/+RKv7PVaqX/8B/+w85v6ZNPPrHxcb/f3/ktffnLX9ZwONQHH3yg999/Xx988IE+/vhjLRYLVSoVPX78WO+88479973vfU9f+tKXrux9nIdbNqXLpfTyZ599tjNm1S2X0mVSevn1119P5OVwu+TFSed9XBSHS8qNoc77mJwIzisrZ5KXYzG/+UP3d3M4pu/GzfmUuXayuHkFcx2YtkdWniZvf7cvxeQw8vZ3cwpcg0B57tg/Nw+bHr/ilgtujjI9ZtPNWbp9yem5R26fsNv/nJ4/5fYjp8fZXPaYQzcX4uYub9tj+pOB67dvfPq+8dH7xqpnjbfeN17w0GNnlYmHHtuUzXEcJ2LBwWCwM05vtVolymSz3YxtSL9PE7PeV6YPzYxrcMfqmbGWZpvneapUKgqCwO7n5k+bzWZiTJyJjavVqu27NBqNRiJfZfpAzfgDt76oVqv60pe+ZM+j3W7L8zwFQaBut5sYn1er1fSVr3xlJ6beN+YP1ytrTrcrb25H3rjjvD75vPkgeXNn8ubE7DuXvPk8+8rAvHlE++Yg5X2OWeO/jNs87yXvGk3PlzfyYst9bet9Y3ql/eN603P6Xel59Ma+scrS7vx+I2+8Qfq+A0Z6LKfrPJ/peaWvs/TvMP1bLrp/hPtbTbez0tdM+jpOz4NIn0u6vEhfm+mxLEVzzi4ifS8HMy7PvF69Xk98781mMzHXodVqJX6znU7HjrmUtHNfiFarZb+nIAh27l1RrVZtuWfmpxim/jefdaPRsPVyGIaqVCo2xjJj9tOK5vjllV9S8bzMovkpRTnDvDKyqP4qM5/zNttXxhhF4y+K5kVkzbEw8soxKb9slPLLaGn3OksrylNc5LPJe+3zbiOvgutSVOZKu3V0lqKyuajsL5rrXuYcisapFo3vLZorX1RHSMV1UNHnXVSHlrk3wVXGNNelzPjcvDpHKq7TisrZvDjfKIq1b8M57GvHGEU5lKL6t6h+l5hXibulzP1KpHJz5svUG1K5+5tI5eZjlKknpOJ62SgzHqNsG6nsPJsy9ViZe+RI5eIcqVwerexv467bN88+rWx7pUwdUKa+K6qPpOI6j2McfgwA5ZSpu8rWl2Xr6DJxQdlYpGwdV7Ze5fNIug9t9DLK1Ctl4ocy8wOL8gFlcgqcS7aiHHvZcwFw95Wtg29iv9t8bmX3u83nVna/895P5S4pU0df5N6m170P55KNcabAzbvMNn3Z/pYyfTxlxidI5fMIZf7eVdnXLPM3AKTL7SMp2y9zmX1Bd32M3iGK8vlSuX55KX/ctKts+77M+OOy/Q1Fr1kmd5F1D2lXmX6uojGCZT7rohjiMo6B++GQ+RyH9kcfcm+FsuW4ccjfECg7RsEoWz9J5etGo2y71zgkf3/o93PI/TYP+X7KxgGHfuf3QZlxB1K5+kYqX/dKxfl5o+wYujKxgVRcLxpl65yy40DKxhtlv5Oy41Ru8jsBAAAAAAAAAAAAAAAAAAAAAAAAcJDve9tX4Q58AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF5Z6/Vao9HILo/HY61WK0nSZrPR2dmZ3TabzTSfz+3y6empttutJGmxWGg6ndptw+FQcRxnvsZkMtFyuTz4NZbLpSaTid02Go20Xq8zX+OyNBoNVatVu9xqtRRF0d7t1WpVjUbDLodhqHa7bZd931e32028Rq/Xk+d5drnT6SgIArvcbDZVqVTscr1eV61Ws8uVSkXNZtMuB0GgTqdjlz3PU6/XS7xmt9uV7/t2ud1uKwzDfR8DAAC459Ix2KHbOcbtPYYbT991tVpN9Xq9cPt2u937niuVSiK2dm02G0VRlIjv09s3m03mMeI41mazkSRFUZTYvl6vbdvIiKJIURRpvV7bNk3W9tVqZdtnaXnvc7VaabPZJNoVruVyqeVyKd/3d/ZZLBa2veb7fqLdsFgstFgs7LLneYm2THq7u99kMtn7Xm6jsr+3y9zGccttP2/7NavMHAwGieX5fK7ZbJZYd3Z2Zq9vaTc3ISVzINLLa3A8Hif2cfMt0styYzgcJvZx8yXSy+v89PT0St7HVTLloFtGme/TrPN9X2EYarPZ2HVRFGm73drP0vM8BUGQKGNNuWPWbbdbW07FcWyf6/t+ZvlrynJzLuZYt7WuTJezplw269wy3Pf9RP3j+76iKLL7hGFoP6sgCFSv1xNlfLPZtNdWEAQ2/xVFkRqNRiIf1mq1EteoyYVVq1XV6/XEtiiK1Ol07LparaYwDPde51nr9+2bzqHh/nLLPvM4a91Ftx/yHDc3fRHu7/uQx+d93nkep3PiuF7T6TQRY6djinQc4rYB3VhiuVxqPp8n+lGGw6G++OILSS/bLfP5XOPxWHEc2+XlcmnbJeaxqU/n83miTp7P54l6drlcJurY9XqdWHbjgFeFiYEMz/MUhmGiDpZ+EU8FQWDjgWq1qlqtZuMB3/dVq9XU7XZtbGCWXWXr1ptYl+7vAq5DmVjgsv9Pl91l5dX7ZbeZNpVpK5i813q9VhiGdpspv8Mw1Hg8VhiGiVjHtF9Nu9Vt0x667jzM+3H7vS+yzu3TN7GOu93tf3djoX6/v7P9VTAajTQcDjUcDu3jwWCQWDaPzfr0tnR+w9XtdtXpdNRut9XpdNTpdNTtdu36TqejVquldrutbrerVqulZrOpdrutXq+nZrOpVqulVqt1jZ/Kq8Mt0waDwU45564r2p5el45l96nVaur3+ztlXNG6Ms9Jj9fBq2kwGOjZs2caDAb23/Pnz3fWDQYDffbZZ4lxbka/39eDBw/U7/ftv4cPH+6s6/f7+vrXv74Tt981X3zxhT7++GMdHx/ro48+0snJiT7++GO9ePFCkvTVr35Vb7/9to6OjvT222/rrbfe0ltvvaXFYqGTkxM9ffpUx8fHOjk50fHxsZ4/fy7pZZ3w5ptv6tGjR3r8+LGOjo70+PFjffe7373xPOAf/uEf6q/+F39Vn599rtX/tpL+6o2ezt1wLEX/ZSR9JP3uP/hd/Z2/83dutMx99uyZ/c2Z3+GHH36on/70p5JeXsfub+9P/ak/pVqtpvF4rA8//FDvv/++3n//ff3sZz+TJH3zm9/U9773PT158kRPnjzRu+++q69+9as39v4OZerkrDIvvZxV9pl6Nau8Sy+//vrrO+NXcfeUiQEPffzFF18UthPLxHqHPv7yl7+8d1jmqZUAACAASURBVNwIcFXK5KKytl32/mXbYWmH5KmuYh/absD1cHO46bFPbh+k23+Znsfljk9yc+OHPnbPpczji7jOvvfLegwAWfbNK7iM9Xn7np2d2Rhzu93afReLheI4TpTVo9EoMbbVHZey2WwSfaqz2SwxXsZsW61WO+PvzXPNebj/u2NGzTm6Y0bdcSu3YQxLemy/53l2nTt2VHrZZ2nGm5htYRiqWq0mjlGv120/sTmO9LLP1J33HIahjcXd8ai1Wi0zJr/I+JHLeD7jR++3vLlSh5Zrl/2c23AOl/2c8+YLrsN55qRc13Nu+hwWi4UdQ2iW03NR3LLb1M+VSkXVanWnrp3NZrbeMcvubyZv+ZB9yyxf1hjttLw2Vt7ybdqWvq/JRVx03upNbr/N53Yd29NzyG6z6yp32bZ/W/peRcBdctXl6XW8BufwUnpe1F1VlKcvk8e/6DGuevurcg6XGVcDd0WZtnb6XqD7ZN3HIkuZnFPW/TaylKnPpHL30yh7r9Iy9VdRn3WZz/S2HOMuKbrfTPq+rxzj7hyD+xkAt0vZOrNsPV0mNihbZ6Xvfb5PmbndReeVde+vtKz7jKWV+Zxu07lcVV/NTSoai5y+j3uW9P3ms5Spz67rXMrkh1/FcwHwaikb05TNd5Qdv17Up1vmvMqcU5l4p+h+1GXyM7fpXMrEgpc1z+A2KRNjmPvh7FOmbV4mh3/X4p303+JJy/qbQWll7jFUpu/hMs4FwN1wmf0aZftSLrP/5rJzNGXyDGXyHoe8ZpnYpMxrlvkui2K/st/NXVEUc5SJJ4pihTJxQFG9Wqb+voxjFM1riaKo8L5419HHUib+op8Gt0XZuq9s3SGV/1tNZf+GR9kcetn2adnYoWydkvU3VLKUzZvc5HdSdr7TfezXKFK23C47lrzs/cHL5uHL3q+3TD0nHdZmLopXjLL3sSk7j7XMd3JZ+Y6ic8r6e8UAAAAAAAAAAAAAAAAAAAAAAACvuO9729vwF+oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3Bqz2Uzz+bzU8lVsu6rXuCy1Wk31ej1z+bzbLus4h7xGq9VSFEXn/RgAALiT5vO5ZrPZ3u1F8cN0OtVisdi7fTwea7Va7d0+Go20Xq/3bh8Oh4rjeO/2s7MzbTabvdtPT0+13W73bh8MBnu3SdJkMtFyudy7PY5jDYfD3GMUfQbr9Vqj0Sj3GEWf02q10ng8zj3GXeH7vrrdbu4+jUZD1Wr1QsdoNpuqVCp7twdBoE6nk3uMer0uz/N21sdxrPV6rTAM1Ww2E9vW63Xiu2w2mwqCQNLL7zH9PQdBoDAM9/6GVquVgiCQ7/uJ9cvl0j4nCILEe10sFju/62q1quVyuff3vlqtMq/F+Xxuy4AwDPdukyTP8+T7fm65sm9bUVlz26TbHYdsP+82jltu+6vS7su6loryDndhn33PS8cyw+EwNz64TGEYKoqiRLwRhqHCMLTnEASBLetNWWrWbbdbrddr+b5v99lsNnad53nabreK43jnPa1Wq511y+UyN/a5Cua8973uVXwX5jN2l926LgxDVatVWz+a7UEQqFqtJvZtNBqq1Wp2uVKpqNVq2edWq1VVq1V5nqdut5vYt1qtqtPp2HKlWq0m8kyH5KxelfIJt4dpK7ltCdN22W63Oj09lZRsM5r2mdsOcuM0c8zlcqnJZHLQMcu0i/JUKhUbe5vryfM89Xo9SclrrtPp2Di73W5LSrYxer2ePM8rPKbb7nAfu20J9zVwcW4bfzab6Sc/+YndNpvN9POf/9wur9drvXjxwraLVquVZrOZbSstl0v72zXXgdseG41GiTaI+d3GcaztdqvpdGrraHM86WW9t9lsEnXyZrNJtOnMPmb7dru99vr7MrntYhO/uOvcNqvZbmIh3/fttkqlojAMbVxkrlNTFxvNZtNemyYmaLfbqtVqiXq60+nY/aIoUhRFmW2Fon6kQ9ZRnwP7mfymiQ3M/yb/amIK0+Yz/5vHi8VC0+nUxhnmf7cMH41GNk7ZbDY6Ozs76Bzb7bbCMLTXsskfmv9NvFCv122ZU6/XbVnkeZ4tb0x7LwgCxXGsRqOh5XKpIAhs/RIEgW3XZfXpn2ddUT48j3k/We2W617X7XZ38p04zGw202AwyPxnfjf7tn/xxRd788S1Wk39ft9+Z/1+P/GvzPqvfOUrO7lkHMZ8f+536ZYHZdZlbX/x4kWpPHz6us36XeRtz1v32muvEU/hYOY3/fz5cz179ixRpmWt+8lPfrKTs6zVanr48KEePHiwU4ZlrX/w4EFmH+F9MB6P9fHHH+ujjz7S8fGxjo+P9fHHH+vzzz+XJPX7fb399ts6OjrS22+/rcePH+utt97SdDrV8fGxTk5O9PTpUx0fH+vDDz+0+Z5+v6/Hjx/r6OhIjx49so/feOONW/1ZzmYz/c7/8Dv6vd/7PQV/MdD699bSr970Wd1CA0n/kxT8r4Heeecd/bP/65/prbfeuumz2mswGOz8Xk9OTvSjH/1I2+1WlUpFb775po6OjvT48WM9fPhQi8VCZ2dn+uCDD/Tee+/pRz/6kSTp61//up48eaInT57o3Xff1ZMnT/SVr3zlht/h5XBjxnR5ml7+7LPPdtpgblyYLkvTy6+//rrNu+LVkBefnvdxmTZxXux63semTwG4zUxuTfrFeEmTjzP5Nbcvz+TyTJvR7cczzzf5PXMtuvuY69Hs477+IUy+zs3DmX43c+2ZXJ7Zx+2nM/uY/F61WlWj0Uj065k8lNnH5APLjD8EcPP2zZe7zY8vat/Yo9v2mBgJwF00HA41nU4TY5KHw6GNk7fbrR0zt1gsNB6PE+X7ZDKx2008LL0cc+SOUzLHNf1xq9XKjisyfeSGmd/hjlGSXo49cvdbr9d2TJMZE3iZ0mW653nXNk57H3ecr9FoNOwYP7MtiiK12+2d99Dv93eOmTXHKIoitVqtnX2z6rqseU77xg9m9YmbnMNlPr/MvCggr92+b96mO044bd9c0Ly5j/vmXubN29w35zNvzNC+uWluXiQtL57fl5M8z2d6G5jcSZZ9Y3n2lZPSL3I7aXljq2u1WuJ1zNiqIAjUbDYT35+Zo1mr1RRFUaION2PXTbnsfh/b7TbxHZjxwGYOkPt9T6dTOybW5MsMM6ZYevlbNdeE53l2XNtlcse1S78YDy/tfg/uZ5/+vN1xrul6wq0L0/kxt55zx9NLu3WQW8+mx9rSXry4vDJLyp8TnzfXPW9b3vz2827Lu3fAebfllbF52/L6mM677TZxy4tDtuWN4zzvtrwy4LzbsmL7om3pcuwytuX1K9DnAOTH6UZRrFx035eiPsky94UpKttvwzkU3bum6P5BZeZwFt2Dp+jeN3dFXh0i7W/TGFm5GFdee0nKr1ek/PtlFD03b35b0Xnl1eW38ZwAnF/RfZzK1N8c4/qPUZQXKHOMu6TMfRqK5nUXHSOdd0srukddXj1V1B4seu2ie+zd5Gvn5RRoBwP3U5k6qMy9UMuMpStqd3Iu+xW16S/rXO6ai95ztqjdmtfPKhXfM7Oo3i2Kd4pyGEXt6rwcSVF7/6KfXVFMUvTZAcAhivohyrTb88ZMGWXa5UX32i8TY9ymc7lN8c5F72V5GxXVl1JxvJDX517Uji+qz4v6S+7yuV0k91J0bgBQNDagzLzsovimTLxQFAtcxjHKxApFcUCZOr5oPEWZMRuX8TeJio5xl5SZj1KUd7mMvzlUlJ+Qiut9qXicSJk8xGUco2gsdVGuSSrO9+Tli5hnBJTPg9+X/e7COd72/e7TOIy0i/zdr9u4D+eyX1EcAwAAAAAAAAAAAAAAAAAAAADAPfR9b3sX/poEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAfM53PNZjNJ0mKx0HQ6lSQtl0tNJhNJ0mq10ng8liSt12uNRiNJUhzHGg6HkqTNZqOzs7Odx9vtVqenp/b1BoOBfTwajbRer3eOJUnT6VSLxSLzee45X6ZOp6MgCCRJYRiq3W7bba1WS1EUSZJ831e327Xb6vW6arWaXe71evI8T5JUrVbVaDRKvUaz2VSlUjn4NSqViprNZuZrAABeHem6M20ymWi5XO7dPh6PtVqt9m536+0sw+FQcRzv3X52dqbNZrN3++npqbbb7d7tbiyQlo430tzYJEs6Dklz458sbqyUxY2rsrgx2F1Uq9VUr9f3bk/HMWmNRkPVanXvdjdGypKOhbIUxUdljtHtduX7/t7t1WpVQRBkXgebzUbz+VztdtvGcMZisbDXVqVSsZ/VZrPJ/N20223N5/PM63m73WqxWNi41TWfz20Zkf6+0tdPFEUKgiA37t53zZ7nOXnXwL6yo+i6umn7fi95v7V9v9MoitRqtTKf0263FYbhzvp0W8Pltm0u+pwgCNTpdDKfU3Rd9fv9vdv2vd5Fj4ubNZvNNJ/P9y6fd5+rPPZ59tlutztx2Ww2y43TLlsYhjtlQxAEiTImCAL5vp8oY812s873fVu3mfrNPMcse54nz/O0Xq8TsaLneVosFrnx31UIgsCWH6bOMe/dPRfP82w5vd1utd1u7XIcx9psNva9uTHyer2+9PdUrVbt9+X7fqLMr1arqlar8n1fnufZbUEQJGKkKIrU6/Xs85rNphqNhn3vblntlrHpst+tV/K2pesmclG4L9wY07RBTVv6vNvc9mLeNhMrF7Xti5hr3PM8Wy64OWpzvbplg9smM3ln9zrPOqbbDix7zPvkvDHKYrHQ2dmZ/Y4Xi4WWy6Vtr5nfhdmWztVMJpNE22kymSTaX+v1WvP5XKvVKlF/r1YrLZfLRHvVfS3pZf3n1nObzSbxz9SX0su6M10f5uV07gpT30q/iIvM9WAEQaAwDO2+lUrFxlWVSkW+78v3/UQdHoaharWawjC016M5fr/f3+mLqlQqqlarqtfrtu5ttVqJtk6n01GtVlOtVlOj0bAxQVHuAsDdYOqPy/q/zDGL8vdpJhZI/1+pVGw5Zsq9dHkZhqG2260qlYpWq5WiKLJ1YxAEWiwWCsNQ6/VacRzL931NJhNFUWTb127O38RWWevOw41zTNmbtc7Ne1/HOtwuy+VSg8FAZ2dnOj09tf9nrcv6f1+fVLPZVK/XU7fbzfzf/dftdtXpdOy/drtNbrQktwwcDAY75aK7rmh7el1Rf6lRq9XU7/d3ytKidWWecx/bYLhdzG/e/Hv+/LmePXu2d93PfvaznXEG5rfb7/f18OFDPXjwwC5nrf/KV76S2R/2Knj27JlOTk50fHys9957T++9954++eQTbTYbVSoVvfnmm3ry5ImOjo70+PFj/fIv/7JWq5X+3b/7d3r69KmOj491cnKik5MTm0N48OCBjo6O9OjRIz1+/FhHR0f6lV/5FX31q1+94Xd7MX/4h3+o3/5vflv/5v/7N/L/c1/x78TSGzd9VrfARNLvS+H/GKodtfUP/vt/oL/xN/7Gnc3pn56e6o/+6I/sb9v8zn/wgx8ojmOFYahvfvObevz4sb797W/L8zzNZjP95Cc/0fvvv69PP/1UkvSNb3xDT5480ZMnT/Tuu+/qyZMneu211272zV0DtwxPl9/p5c8++2xnrFVe+Z21THyKLGVi70Mf//znP88d9yipVIx96OPXXntt79gW4C4rk1fM23bRfYrGMu+zL2eZt+2y9iGPB9wf7piNu/L4ItzxJBd57I7rLfPYLTfNmBN3HqV77LzxxABwX7gxcHp+mtuX787VSc+jc/vI03Pg3P4rM3fH9Me7x5jNZprNZnacuDmPzWaj8XicGIs2m83seLHJZHKpY8fcseCSEvPJzDhF83qm78DzPIVhaMeAp/sU3HHwZmx4HMe2T82MK0+PqTP5xbz5lFdt35y9rPVl192l5x+yb9H8Q+Ci8uYy7hsrkDfveN987by5zvvGROXNn97Xfsibk501JtrYN8/7PPND953befNDV8WdE2zGU5v5Pe77MvOQTPmUnmPl1k/m/Zn2kLvvarWy45E3m83OnCb39czv4armcEVRZMdDSy/baOazSM8rajabiXHPpt0XhqFarZZ831cURYn+I3eekttWdNuQ6fvuuGOl3bLfbUvmzXkFsuSVe2y7vm2HjmW+KXn31WDb9W1jPAJwMXnlsVR8D6WiezxJxfegKurrKLqfTNF9pK7jHPLuw1V0H6m8e2jlnVfR/bFuo7zy3J2znCUv35N3Hx4pf57lq3ROefcRKjonADenTF1bVI/dp2MU5Qvz7l1ZVHcW1dlF81Qv8tq3WdH93YruGZl3D6Kieu0mX7uoLr/J1y4ao8h9nwCkFd07Wspvm0rF+QGpOMdwWedS9DoXjScuei/tvPO/6L2wy3wPt9lF7zW97167RlG7Nm/OfVH9XNTnWNTmLoprLnof74t+dkXxA/crAHCTyvwdqjLji4r+3kXR35y4rHMpyo8UncdF8xdFsU5eLHPV53abFdXVRXNd8uKU9HiotKI8wat6bhfNrwDARRTlJsrkSDjG7TxGmdzVbXfeMXhX+dzbel43+Z7oywGuX5kxhtLl9GOUGR9Q5m9TlmlHF/VZlBmncZ19QEX5mcv67C7r/hu3SVEfi1Sufikad1/U3yEV13NSufuCFPXrFOUlpHJ/Y7TMfaCK+lGky/ns0n/HPgtzowEAAAAAAAAAAAAAAAAAAAC8wr7vbS/zL58BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl2C1Wmk8HkuS1uu1RqORJCmOYw2HQ0nSZrPR2dmZJGm73er09NQ+fzAY2Menp6fabreSpLOzM202G0nScDhUHMeSpNFopPV6vfN4PB5rtVpJkiaTiZbLpSRpOp1qsVhIkmazmebz+YXfs+d56vV6drnf79vHvV5PnudJkrrdrnzflyR1Oh0FQSBJajQaqlarmc+vVqtqNBp22T1GFEVqtVp2W6vVUhRFkiTf99Xtdu22er2uWq1W6jUA4FVUVCfc5u23+dyuY7tb/99FtVpN9Xr9Xm6/6XPzPM/GTWmLxUKe5yXiI0maz+c2VqxUKokYzd1mXj8Mw3Ndn/ftOVIyjr9t9v1Wzvv7vczj3bfnpNs2gMvNF0jJPIG0mx+QdssWNzcg7cYBbvtfSuYApJdl+Ww2s8vL5VKTycQuu3kMKZm/cI85n89tvmK73ers7MwuSy/rmcvIN5RVq9USrx8EgcIwtLkT6WW9tt1u7efneZ6CINBms7HrfN+X53mK41hxHCfq0uVyqe12a3Mckq71PRrdbteew3a7VRAE6nQ6ifcWhqGt4837q1arqlQqiuPY7lepVOxxzXuu1+v2sVlv8jfSy9+xed31em1zT5vNxj5nuVxqtVrJ932tVqud36T7XV1Uujx2l+/KtmazmfgugFfVYrGwZYSpD02OO2+bqcvOu036RX3r5tQPYXLPpkyWfpHHztpmcuN529yctVnn7ufmu00OPp0vv6is9s951xXts9lsbJyyWCy0XC5tvTKfzzUajRIx0HA4TNQv5jmmnjLfo/mu3XhpuVwmnrvZbLRarezrbTYbrddr+3qm3nLr0NvCjUsk7eQA0svu/um4xixvNhv7nt3HFxGGoa3rzGPf91WtVm37ydSNZn2r1ZLv+2o2m/a3XqvV1G63FQTB3nr2Io/b7bbCMLzw+wVw/5i2tumjHwwGtk1vYgpTr5l4wuxr2u1mvTmW+d+0283z0+32IqZP3PM8dbtdbbdbdbtdxXGsTqejOI7VarW02WxUq9VsW9j3fdsGDoJAcRwrDEMtFgtFUaTFYmHbdKaOnE6n8n3f5jbMObu5hHTeoiwT77jlsunPv6l1eLXMZjMNBoOD/33++eeZ8VKtVlO/30/8MzF8en363y/90i+RY9Yv8pbD4dCWr6PRyLYPTPl5enqq5XKp8Xis8Xis5XKp09NT244cjUZaLBYaDoe23CpbVvX7fVUqFTWbTbVaLVWrVXW7XVtmdDodVSoVdTod2zfQ6/VUqVTUarXUbDbtOtPGa7fbqlQqifFMwG0wn8/14sWLRBn3/PlzPXv2bKfse/78uT777LNE34OUXfY9fPhQDx48yFz/9a9/nbxohtlspuPjY73//vv68MMP9eGHH+qDDz7Q6empPM/TG2+8oXfeeUd/5s/8Gb3zzjt64403tF6vdXJyopOTEz19+lTHx8f65JNPtNlsFEWRvvGNb+jx48c6OjrSo0eP9PjxY/3qr/6qms3mTb/dK7PdbvXP//k/19/7b/+efvzHP5b3lz1t/t5Gevemz+wG/ETS/y6F/0eoYBbo7/7239Xf//t/3+YZ75vlcqkf/vCHievBXB+mrfXgwQP96T/9p207ZDQa6U/+5E/0wx/+UNvtVg8ePNCTJ0/0G7/xG/rzf/7P6913390ZW/OqcePldP2QXn727NlOn7dbR6Trhqxl2mW4KPObNXmWy3jszunYx/zW3fbfRR9zPeBV5461Mn26JudqrlM3P2muVZOPNfu4Y7TMPiZHa3II7j4md5Aeh1WW6b8185tMXiCrP9nsY3ILJu9gchJhGKrdbifmR5mywRzD9HEx/gSAOw7jrjw+r6x+/6JxARfdXmZfdx4tALzK0mMD3fkI7jjN9PwKtx+v7DHc/dxxoem5Gu68DPceDfuOdVGVSkX1et2OuzfjQT3PU6PRsHmGVqtlx+1VKhU7br9SqdjxG+74uyAI7P7uvMD1ep2og8wYvfF4rDAM7XGDILBjLT3Ps+Pl1uv1Tt+PpMycSFZbKf1d5j3/OmW1k/aNtc2qx7PmiJl2Wpp7/wsjfW8LSYm2oSudB0rfu2Pfc7POJ+s9mnami/tr4D44dI5w2bHw92X9bDZLlMNmzL4p8822+Xx+rjzYVUmPcb8sYRjaY0dRZB+buRq+7ysIAnvPIs/zbP0cBIGtX82xqtWqwjBM1NVRFCXK6nq9bud6dDodW/dGUaRKpWLLZ3fOWbvdtrnCZrOZmNd36FxoxsfjrkvPf76MbaZf4DK35Y3/ztt23nta5G1Lzym/jG3n7S+5bnn3hciKzS+6Le+eEnnb8vpz9m3bF7vva59ktSeMrLaLtL/O2PdeaE8At1vevcjy6kkp/95JefVFOh93388pL+91kXO6jfLq2Lw6R8qv9/bVY4Z7n9pDtu0bb5X3enn1Wl484N73Nm1fnZv3mZ33HAHcbXntTam4TZY3T66o3rmvr511v7Treu3brKjeLrpfTV6dKOXnItP3hz/kvPLGUu+rb6X8eCGvDs+LX/La+3kxU149ntWHBwDnUVS/Fd3HJK8tKxXfl63ovuhF9Wde2z/r/qyuorhj35gWoygHcNHPrii2uMv3lC+qx/NiAKk4N1BUTxa1lfNihbzYJS8eyIuJ8s4nL9baN5ZIKv6M88Yt58VDAHDbuON6s+TFCun7qKcVxUlFdTnndr5zu82K/q5L0RzNvBjjovmXqzy3vNgr77yuexu5EgC3RVE+QSpu0xfVt0U5j6KcRN64haJ8R965F+VaiuKAvBikKMbIi2+KvpPz/l2Bm5ZXfxfFDnn9HUV5maK/qZXXP1OUk8nLSRTlg/LinaJYqyiWyvusi2IQxuQD90tRe7qojpbKxQpl7jFfpv4qmqNbZkxiUWwglWvrX8ZnVxQjSZf32d3V8R158uozqTgGkC6en8ir6/P6PKTisSfnzW1IxfFNXp9K0WdSlJPJi53IdQAAAAAAAAAAAAAAAAAAAAClfN/b3uRfuAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMC1mM1mms/nN/q47H5nZ2fabDYXfs+1Wk31ev1SH1/VcdvttsIwvPB7BnA3pMvG69x+k699H7YPh0PFcbx3+22XrtPu0vbbfG5XtX0+n9vfY6vVSsQK+36r57n+b/NzrvMcTk9Ptd1uM7fdtPNcGzznfM+p1+uq1WqZzwFuo3RsMh6PtVqt7PJkMtFyubTL6XJwsVhoOp3a5dVqpfF4bJfX67VGo5Fd3mw2Ojs7S5zDYDBILKfb9EXnOJ1ONZ/PbRk8n881m83s9uVymVi+ClEUKQgCew5BENh6d7PZyPd9BUFgl80+Znmz2dhlSTvx4nq9Tnwmy+XyUvIeZVSrVdVqNXmel1jXaDQS6/JyH/vWbTYbhWGoWq2m7XZrf2vValWe59nPc7VaKQgCVatVrVYrrddr+5kvFgtJ0na71Wq1UhRFkl7+LszxV6uV/UwXi4XiOFYQBFqv1/b363meJpOJPTf3dzyZTLRareR5XmG8f4ggCNTpdOxyr9ezn6mb53HrlkqlomazeSnP931f3W7XPt99ThRFarVadlun07G/UfcYAC6fqQdN/TcajbRer239Z+pmUx6Zes/Uycvl0pZb4/FY2+1Wp6enkmSPZfbN2naoRqOharWqMAzVbrclSd1uV77vl9omyZZRnU5H6/XalvlhGKrZbGqxWNi6oVqtqlqtarlc2jKrSFbENAAAIABJREFU2WzuLaOvep1Z3mw2tq6ZTqeJ2GOz2Wg+n2uxWGi73dr6bbFYaLlcJtqRs9ns2up4l1vvXjY3DpJe1l++79s6y2w3rx+GoXzft59DVhwVhqG2262Ns9xtm81G2+1WnucpjmPFcSzP87RerxXHsdbrdSKWvIis/pqr6P+5yONms6lKpXIp7xcA0kwsYdr+JsYw9aOJX87OzhTHcea+0+lUi8XCxiKnp6eK41hnZ2c2nkm38/NUq1VbHkdRpHq9riAIVKlUbIzh+77CMJTnebaO8TxPURTt1CemPe77vuI41nK51Hq91nK51HK51GKxkO/79j2fN6bKq0euYxs5TVym0WikFy9eaDAY2H/uctbjFy9e2LaJy/d9felLX1K/31e/3y983O121ev17P+vktlspsFgYMtM87+77tDHL168sLm3PLVaTf1+f6d8Oc+69HbThgTuqtlspufPn+vZs2eJcjFrnVmfVqvV9PDhQz148MCWe/1+P3OdWY/DfP755/q3//bf6oMPPrD//v2///eK41iNRkNvv/22vve97+mdd97RG2+8Id/39cd//Mc6Pj7WycmJnj59qqdPn0p6GY9++9vf1tHRkR4/fqyjoyM9evRIR0dHr3S8tV6v9f3vf1+/+7/8rj76Nx8p/I1Q67++lv6KpFbh0++ujaR/JXn/2JP/fV/tdlu//Vu/rd/6rd/Sl7/85Zs+uxuxXq/1J3/yJ3r69Km9ho6Pj/Xhhx/aPuVer6fXXntNjUZD8/lcz54902g0Uq1W05/9s39Wv/Zrv6Zf//Vf16//+q/rm9/85g2/o9vNxHdZdU96+dmzZzsxuYnP9tU9WcvAVTNjTiaTiebz+aU+zmP65lutlur1utrtttrtthqNhprNpnq9nhqNhhqNhrrdrlqtlhqNhlqtlrrdrt3W6/XUbDbVaDRs3xmA8kxfuDv+zPSrm1yz2cftCzf7mJyJO77NjFsz+5i8tjmeyZOY4x7C5DhMnsOMtzH95+64nX6/L+kX/elmDI/p6zPHMmO2zLgeUz55nmfzYe74IQAoq2i+7kW3n/dY5+17M4rGVRwyBuMyj8VYDgAoz43F4zjWcDiUpETMLyXnoLjzTdx6xZ374s5zyTuWWxeZdsIhx7qoffMD3LrErWvcOQDpuQKm3WEemzkWZh/f99VsNjWbzRQEgT2OO17TjMWRZMdmmtetVquJ78iVNac6a4zuIc/PGk+UNV9Jyo4p0nOhpN35T9LuHKnrkjWWxx17bWTFFa1Wy86rMbLuQ5LVH5/VpnR/O5ISbVAj/XuTlBg/bqTnqUjZ81NM+9dVNL8auM8One9+HevdstXM9ZvP55pMJoky18zdM2MvTXlu9jf1kTvvz53LGsexnauxWq12xnia57pzIcx6sy79/23izkF1y98oihRFkTzP25nTaeoCd06GW0aa+RpmTqg7H8PU5YfMp78r68mL4lWXvheAKz0n/zK25eXt8rbl3W/pvNvy7jN43m377huz73M+ZL7DdcmKvaXs2N3YV5buu6/hvjznvrL6POeUbo8Y7pz3i5zTvvny6fn7Zc4JwP2SV58VjR/Iu/+Ym2NM25cbu+pzyrt/St457cvFSfk5tbx6My+muQv3bczK3xl59wneVwfn1ZH76lUpP4+W10+5r36V9td/eXVm3n1p8uYyZuU3jX1zjLJylgBebXn1lFRcd+bVSVJ+m/Kir50XL1z0tbP6x8qcV17dft54Qdq97+BtldXnZeTVhUX1U177Mi/fmVdn58UceXFAXhyTV29n9ekZebHAeT/TvPgIAK5a0d+8yWt7F40nKsoJZI1ncRXFF0U57KJ7qxbFRnk5i7z3VvS55H2meXmCvP6N2yavfj5vHZyXM7hI7HLe+CSvnZ8Xg+TlN84bZxTFEuT/AdxHRbn1vLZ5UYySl2eQinMct/nciuYyXeTc8mKvovO6LfLq4qvYlhf7XMW28/6tq+vexn0jAdxFRf0GRTmKvFxBUX7kvPkLKb+OLspvFOVl8nJORfOZ8nIgV/lZ31Z5eQ8pPw8h5ecF8mIHKT83kperkPLzQ0W5jLx4IG/bvvPNe728zyAv/0O+BUAZRfWWVFzXS+Xa1WXuX1I0lqGo30YqN7/gIv0vRZ9Z0evn5WUuktuQivvUbqu8+qyoD6Vo7nNerFAUwxS1//Pu214UhxTFR3l9Q3n9UVLx30fKixGK/iZi3ncFAAAAAAAAAAAAAAAAAACAC/u+t71rM4sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuge12q9PTU0nSfD7XbDaTJA2HQ8VxrPV6rdFoJEmaTqdaLBaSpMFgIElaLpeaTCaSpNFopPV6rc1mo7OzM0nSYrHQdDrd2Xe1Wmk8HktS4jXiONZwOJSkxHEuqtlsqlKpSJIajYaq1aokqV6vq1ar7Tyu1Wqq1+uSpGq1qkajIUmqVCpqNpuSpCiK1Gq1JElhGKrdbkuSgiBQp9ORJPm+r263K0nyPE+9Xs+eU7/ft497vZ48z9t5DNwHbtmSxZQnWdxyJ80tL7KMx2OtVqvMbW4ZlOXs7EybzSZzm1uuZcl7P245eJ5jF32Ws9lM8/l87/a8z1OSJpOJlsvl3u23XavVUhRFe7e3222FYbh3e6fTURAEe7d3u135vr93e1H57Zb7aek6Is2tT7K49VAWt87K4tZvWdy6MItbb2Zx69gsbt182fZdV/uup33X0b7rY19ZY+KiNBNjld3fjZPKvnZe+bjvfeTFXfvKDjeOvI3c+M+Vdz3t+y3mXaN5v+99133eNbOvLMm7DveVT3nX9r4yL6+82FeOFpVBAA6Xro/SZb4br6bL8HSsm67z0nVBejn92unnp2Pa9Xqt4XC4cz5uPJ2uY0ajkbbbbZmP4lw8z1OlUkm8hokTzXmFYSjP8xTHsbbbrYIgsMubzcaWq9vt1tbRpnzOi6kv8z2Y3IKRLofr9Xqibsiq49LlfbreyirD03VRuk5N1y+mnlytVvaziaLIxjxmXbVa1Xw+12KxkO/78jzP/vam06l835fv+4nfpPvYvQ7c36n7m09fD+5vcd/zL8rNA0nJz8/9ztzP3v0Mb/r5AG4vk2MyZZlpT5r2oynXTFlpyjZTdy8WCw2HQ83nc00mE/vc1Wpl627T3jRlZ16uLUsURapUKgqCwP5vypooiuT7vqrVquI4VhRF8jxPYRgqDEPFcWzLK9MO22w22mw2dj+zbrlcKggCW3+YOset47LK9qx1p6enVxqHZAmCwL4f89q+7ysIgkTMlG4Lms/IjVnMMbJyCBdl4goTS5l4arvd2nbidrtVFEX2+9hut7Z9u16vFUWRarWarb/r9bpWq5V831cYhva8wzC073273drveLPZaDqdKooibTYbTSYT+zomBnUfx3Gcm+cty61P9z124yb3sduO3vfYrXv3PXbb/fseF+XgAOA2MTHJcDjUarXS2dlZ7joT05iYZzAY2Fy3yUWYut3EQXn9eWmNRkO+76vRaMjzPNVqNVtHm5xAEATabrfyfV9xHNvYQ3pZz8VxrDiOtVqtbJ22XC61XC41nU739kvmMWW7W8an1131NsYn4DaL41hffPHFzr8XL17oZz/7Wea2L774IjNe7na76vf79t+XvvSlncdZ6/L6aO8ak0cbjUaaz+cajUYaj8eaz+caDoeaTCaaz+c6OzvTdDrVfD7X6empLX8Hg4Ett09PTzWfzzWdTkuVx41GQ7VaTb1ez5ZD/X7flke9Xk+1Wk2NRkOdTke1Wk2tVkvtdlu1Wk3tdlutVku1Wk2dTkfNZlO1Wu1efT9AGbPZTIPBQIPBQM+fP9ezZ8/scta6n/70pzvjE8z11+/39fDhQz148CBRPqbXffWrX80dS4PDPXv2TCcnJzo+PtZ7772n9957TycnJ5KkBw8e6OjoSN/97nf1rW99S91uV6PRSJ988omOj4/10Ucf2Rxev9/Xo0eP9PjxYx0dHdn/v/Wtb+WOb4L0L//lv9Q/+v1/pD/4gz/QNtxq85c32vxnG+kvSrqa4UvX731J/48U/ZNIqz9e6Vf/o1/V3/zrf1O/+Zu/SX4px2Aw0PHxsb1GT05O9PTpUz19+lTSy5xfu92W7/u23fpLv/RL+rVf+zX9uT/35/TkyRP9hb/wF3LHASJfXl2XXn727NnO2DW3nsuq17KWgdvEbZeZfJhpr2U9Ho1Gmk6nmkwmtv02nU51enqqyWSi6XS6d/yp0el0VK/X1Ww21ev11Gg01Gg01O121Wq11Gg01Gq11O127bZer6dms6lGo6F2+/9n785+HEnPO9//gvu+VGWpO6utsbtaNtyZx1JLsCEcLwPLGLt1MTgGxkDfnBv/Y3NzLgw0BMzFQAZku0c2LMmSutWSRj5VsmC7dbRl1k5mcl/jXLTf6JeR7xskM8kks+r7ARIkI4LBIJOM53nXqKpWqy2so64J2D5TX2O3iceXXfY2aV++fvBJfPXTy26v8txtjk0A8HJLOmf67m97vXT1/lBJ597Lrt/EvpaN4wMArMaOE/YYVnvMqD0GN2l8hm9f9rgPewySb1/2fXv87LKx/6uyx07Y5QN7bIw91sIed2PHH7uew4wTtceZ2mN4fP1Kff1EN9kfdJU+1Kv2s35Rlu2iv7jrf/oyLXNts2xuAeBlNxgMdHZ2FsVNMx5I+vg8ZuKjGY8pKWo/kD6O33YsHwwGUTwejUZR/9bhcBj1bx2Px5pMJppMJgrDMLpv1tnjNU2ct7eZTqcbHctixpOavrsmBptxNGZ8kf1nxv/abRFmnNG6dZfb5Gov8c1X4Zv7wjd/g28uCN9cFL68w1WP6jtG11w+rtfzPd81R4XruJbNqwPganxj65PG3K/7nG0v39djSppvbld85/9tL9/la1/HsS6bvw7Ay8sXC5LmAkyakzQp7iTNr+ob35M0V2DSHIdJ86ImzWnqm09R8tfdJc2BmFR3vGxu1n2QND9f0ryCSf1fkmKSrw9fUpkrad5BX1xM2p/v+C6zL99cib59xedhAoDLSmpvShpTmxQHk+J4UmxNyg2SYmFSvpEUX5Pyg6SYvWx+4st+ppfpu7orSfOOJ/WzT5oPPSnuJ83DnpRLJLXjJZWjk+Yu9L1eUpz3zRmdFM9975k5kQHcFEkx/7Jx/bKxW0qOz0kx+LJ5zS7eY1Id/jpzV+1aUr/qpHzBF2+l5Jwgqc4iKe4ua/NNypeu+z0m5T2+42S8EgB87DJt+qzb/Lqbcn25y7TZs27z68hjALxIll3jNalOI6mOQUqOr8vaQZb1X0iqh1g2pi6pLmbZdXyXXbM2qe7kKp/1vrfvJPWTSIqbvvqLpLaNpBjtq/NIulZmUntNUj2Jr60qqa4nqW7F176VVD+07Dq4ALBty3KBZXEzqV1l2XXqk+L5sjxjWUxO6quyrB1lWQ6TFNOX5SHLrg+ZlB8t+1/tq2XXpF8WC5PaQ5b1jVw2pjupHWZZn4tl9QpJfWKS8i4pOX+RktuWll2D0/d5MoYRAAAAAAAAAAAAAAAAAIC99pUgvO4rDgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKxoMpmo2+1KkrrdriaTicIwVLvdliQNh0MNBgNJ0vn5uWazmabTqTqdjiSp3+9rNBpJklqtliRpPB6r1+tJkjqdjqbTqebzuc7OziRJg8FAw+FQknR2dqb5fL5wHL1eT+Px+NLvqVarKZ1OK5PJqFqtSpJKpZLy+bwkqdlsStLC+nQ6rVqtduF+KpVSvV6XJAVBoEajEb2O2Y8kNRoNBUEgSarX60qlUgvHIknValWZTEaSVKlUlM1mL/0esV/M99jF/g3F2b81F/v3FTebzXR+fu59rvntudi/N5fLvh/pk/OAy1Xejzk/uVzl/ewr+/wSVywWVSgUnOvsc5ZL0rknfo5bd9/2udPFPue6ZLNZVSoV7/pcLqdyuexdn8/nVSqVvOsLhYKKxaJ3fdLnKi3GEZdyuaxcLuddfxONRiP1+/0Ly33nATu+23y/fV+8952/TB4S5/uNt9tthWF4YbnrPOU7H/vOTXYuZPOdj+zcaB/4vu++73nS78fOgWxJv0k7V7Il/c7tnMqWdO6wcy9b0vnId568zHOWnRcBvJji8cqOO/G4Eo8P8ZgZj4l2bLPL2NLFGBSP1/G4a45zPp8vxMEwDDWdTqN9hWGoyWSSWAa4ilQqtXAOTaVSUYwIw1BBEETnf3Os5vFsNou2MY/n83n0eDKZbL0ckMvlVCgUotfM5/MqFAoLca5QKCzEt3hcdcXZZdts4jmX2YedK9g5mP3dtO+b73/8O2bu299j+779W7HzLvu+/Z2379u/K18+uy77c7Dv2zmVfd/OaeL5gJ072bnKtp4PYHdcZeRVlq3zvPPzc02nU41GI81mM7VaLY1GIw2HQ4VhGN3v9XpRvf50OtVwONRoNNJ0OtVsNtNsNtNoNNJkMoniqVln6uOm02mUJ6zDLi+6yujbls/nF8q5YRgqm81Gy8IwjJZlMpmFY0ylUgt5SBAEUd5iPjc7L7Ffw+zHfOZBECiVSmkymUSfoVlnDAaDjX9G+Xw+ilumnG7+J7745lqXzWYX3nOhUNB0OlU6nVY+n4/eVxAEzjqC8XisMAw1n881Ho+VyWQ0m800Ho81HA6j/Q6HQ00mE6VSqeh7arYxn5G576v3WZXv/e/bfV99CAC8yMz5/uzsTOPxWJ1OZ2HZZDLR+fl54jJz//z8XP1+X4PBQN1ud626elO+z2Qy0bk4k8loPp8rnU5HMT8IAk0mk+jW5FKX6e9gl+dMW6Gpfzbr7PY8s86O82adKTOauGK385n4YtbZZU9iD15Wo9FIz549W/h78uTJhWXm7+nTp842x0qlotu3b+vg4EAHBwe6ffv2hb9ms6lms6lbt25F92/S786caweDgVqt1kbvL1MoFNRsNqO6sHXvu5YdHBy8cO38wCaY36b9d3p6qpOTE+eyp0+fXujXZX5v5u/u3bs6PDxcWGYvv3PnDv0pr9mvfvUrffjhh/r+97+vDz/8UB9++KFOT08lSW+88YY+//nP6969e6pWq5pMJvrpT3+qBw8e6Mc//nHU/nJ4eKjj42Pdu3dPR0dHOj4+1vHxsQ4PD3f51l4Iz58/11/91V/pv/8//10//OCHSlfSCt8ONf+/5tKfSrpJH3Ff0jcl/U8p99Wcxj8b687dO/rL//sv9Zd/+Zc6Ojra9RHeaK1WSx999JHu37+vBw8e6P79+7p//75+9rOfaT6fR23wpg737t27+uIXv6gvf/nL+vKXv6xPf/rTu34LLyw7nsbjqOtxvIyxLJa6HgM3UVI5c9Uypf342bNnS+vm7N/XKuXKpHW3bt1K7H8O4PrZ55Wk23W2XWUf67Zhu9qIr3q7yr58/esBYJvsPvKm/7HdV9ju9276z9v9je12XrtPvDn32v2LXWPXl73WZdnjpuxxRaat1x7vZPfBNmOq7HZa+1xuztV2+6/dlmyPYTT9iu31vnFeAIDN8Y1bseOMHZPsWGjPl2DHIns8mm+8jmuMjm/8zbK5F1Zlj1Wx45kd++xyht33yB5HbMcnEyvt/kx2XLTH8trx1I53dhxeNj/ATXCVMQUv6rKkOUu2ZZWxdi/KslWft2x+DWAf2bE5Pqbbjqt2HLbPQ+vGdrucasf5dWP+ZQVBEMXHVCoV3Q+CIIqPqVQq+n2bvtGSojFBZrmRyWQW+tSZY8xkMtFzwzCM3ofd19oeK2XKttLH+ZNrzijfXFKuuWV8+c1Vxxddlavvteuc6pt7xPV8V37jm+/ENXeL6/zte76rHsH1fN+8Lq7nu+ZfYtwzsH9884TtavmLcky++dF2yTdv2LrLN7mvF+GYKC8BuKqkObeT4omv3ixpLt+kcbVJcTBp/l9fmTZpfmXf3J1S8hxRSXMY+9p8fe952fzPu+Qb2+urA0+a49I3z6dvX0lzbPr25YuFSfvytWX79pU0x6hvvmbfnMCUSwHsQlIsTcoFkuJz0nUBkuJpUvtxUoyOz3dqWxZXk9r7kurHk3Khy36m+1heN3z9epPioC9vSJoH3BeHk8rcvnjryymSrm3gi/dJ1zvwxfWkPOgynycA3HSXqeO+6nNvyrpdvOZV+6dfh13W0e/zczb9+r46FQB4WSXFyG2sS6oLuO51SfUg171u133tVpV0bcXLrvPVGSTVTfjiua/Owlc3k1SX4at/8R2vr17GV/eRVF/DvLMAsNwm+xxedt2+728br7XvOctl6hCS1u37/vbl2JNyPQDYd9tq52Dfmz+uTYz3vC77Hrv3+Rguuz/afgAAAAAAAAAAAAAAAAAAkr4ShPs86gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyLwWCg4XC4cN+17Krr13nO+fm5ZrPZpd9ToVBQsViMbu1ly9Zv4zmlUkn5fP7S72ef2P+nddbt6rn7eExXee6y/V71t7ML9m9mnXVXee629nsTn7tsv/V6XalUyrseyXy/2Zu8fFfH0u12NZlMLizfFd9vZ5+W79OxJC2vVqvKZDIXlgPAdYvHoKs83vS++v1+lOeb8vN8Po8eD4dDhWEoSRqNRhqNRtHjXq8X3d+0dDqtdDod7T+VSimVSmk+nysIgiiPnM1mCoJAQRAoDMPovQRBoPl8rul0upXjk6R8Pq9cLqcgCCR9HI/sx+VyWYVCIdq+Wq0ulN/jcapWqymdTkeP4/lyo9GI9i1JzWYzuh8EgRqNRvQ4lUqpXq9Hj9PptGq1WvQ4k8moWq16t3cdz7Ysq9Ox76+z7SbvbypfXFbHsy/37e8WgI+tWobdl2XX8ZqdTmercXYTUqlUlDek0+mF2yAIlMlklM1mo1wilUopl8spk8ksxNxMJqNcLreQm5jtwjCM9hsEQXQ7mUw0n8+jWD8ejzWZTJRKpTSbzTQej6P9TyaT6LM0+ZY5JvNYkvr9/sbrL+LlaV9s2MY683kUi0WNx+PoPZv3GIZh9H+Yz+cKwzD6PDKZjGazmUajkbLZrCaTyUbaj676vb6udqF11lM3AgBXN51O1el01O12NRwOdX5+rn6/r9FopHa7rclkEq0/Pz/X2dmZut1u9Hg8Huvs7Ezj8Vi9Xk+DwUCTyUS9Xk+z2SyxfdZmchQTH03dh6RL5QiVSkXpdFqVSkW5XE6lUkmFQmGhzsDUTZg+CfY6U09h1mWzWVUqlYV15XJZuVxuYZ0pc5p1ADan3W7r0aNHevr0qZ48eaLHjx/r8ePHevLkiZ4+fapnz57pyZMnevbsmZ49e6Zut3thH7du3dLt27e9f3fu3LmwbF/6LNk5fqvV2uj9ZQqFgprNZpSPr3vftezg4IDzJHBFrVZLJycnarVaC3+np6cXlp+cnKjdbl/YR7PZ1OHhoZrNZvR39+7dC8uazaZee+21hbYa7N7JyYk+/PDDhb/T01NJ0quvvqrf/M3f1KuvvqpMJqNer6d/+7d/009+8hPNZjNlMhn9p//0n3Tv3j0dHR3p+PhYR0dH+tznPrfQxobt+fnPf66vfvWr+h//83/oH//hHzUZTZT7rZzGfzSW/rOk/1PSG5L2pfvhY0nfk/SPUvYbWc0+mGk+mevNz72p//Zf/5v+/M//XL/7u7+7UPeMzRuPx/rXf/1XPXjwQPfv39f3vvc9/fjHP9bPfvazhf7PpVJJr7/+un7v935PX/rSl/T222/rlVde2eGRv7xM3u2K0a7HrVZr4fkmj/bFaddj4EVm/6ZWKfOusi7JsnLvuusYWwDcTGasmeljZ9pQzDnFtI+Y9pb5fK6zszOFYRiVxdvttsIwXHtf68jn8yqVSlGbhelTafe9NO0b5ta0adi39nr71vTBjN8CwL67rjkA1t3WxIbLSOpPdZX+W+tuT5s4AOyHfRqbtI24Z2yy7/Emt32R5sK5TuZ7anON6ej1egvjEiT3GDhXH3nX3DFnZ2dRn0QjXi9vl+cNU9a3zWYznZ+fLyybTCYX+iuZsr5tNBqp3+8vLHN9JtehUqkom80uLHP1z3eNw3TVd8bH7MXHhErucZ7xsaHSxfGh0sfjXMrl8sIyUydii/82Xcdhfu9Jxw9swq5j8SrbmnrKq7rOMcKpVCo6V+XzeRWLxWi8mvltm/PAaDRSLpdTPp9XoVDw9m+/yjjEfX3+rsdHXnUun5fp+fE5FgDsL9952JX7S+6yg+QuexiusovknxPEd0yusockb1vkZY7JF2t8+YXvmFzlqV1zlSMMX/8PVxlLulhGMVzlGcldHlp2TL5Y4huD7TsmX6yyx87ZfO3GvvdA2wKA6+aLn76YlBQPfXHPty9XveKyffnqCZP25ZtH27cvX36StC9fvpG0r13z1fX54rWr7lFKjr++fflifNK+fDHbt6+kvlu+ffnivG9fvuP1xXkA2Ee+GJa07mV5zqZff5+v7bHuXO8853LPcbW/AsCLKqk/XFJM9NUHJNWR++rnffUR0sX+UIYvlifVO7j6b0n+tgbJ/z59bSmS/33uqk/VKnyxL6nM7qsjTypr+8r5vroMyd+OkRT7fXUpvvaEpPfpqzNJep+OBAxcAAAgAElEQVS+6wQkvU8AwHJJecs21vnykOte58s7kvKedftq+PKUy4wPvw7r9ltw9e02fP0TfDmALwe5TN8IX87ge3++XCIpl1m3T0hSjgUAcLtMe0NSHE+qJ0m6Fpsvl0iqq0kae+HLJ5L6ViTVffjqWJL6tiTVv/jqefZFUnz25SySP0ZL/voOX39IyZ9XSP48ISl38uUKvpzH9zn4XsOXU/neI3UtAJBct7FsXENSPE2K0Un5ii//ScohknISX46TdAy+vOM6j2EfJJXxfXlAUl7hy1OS6j42fQy+tqlNH0NSG9BljgEAAAAAAAAAAAAAAAAArtlXgvCqV1UCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArabfbCsNQvV5P4/FYk8lE3W53Yd14PFav15MkdbtdTSYTzedznZ2dSZKGw6EGg4Ek6ezsTPP5XNPpVJ1OR5KifUtSq9WSJI1GI/X7fUlSp9PRdDrVbDbT+fn5pd9LLpdTuVyWJFUqFWWzWaVSKdXrdUlSoVBQsViUJNXrdaVSKWUyGVWrVUlSPp9XKpWSJDUajWifpVIpuj+fz5VOp1WpVKJ95vN5jUYj5XI5BUGgTCYTvU6pVFImk9FgMNBwOHQed9K6Zet3sd9dPXfZfveR/Z1bd/22nruPx3SV515lv6VSSfl83vtc7Ifz83PNZrOFZXasspl4YrPjkc3EM5svDtlxzLDjoK3f72s0Gi0sC8NQ7Xb7wra+85qJlTY71tpMrLbZcXsf+H6HxWJRhULhwnLfb9PE9rhqtapMJnNhea1WUzqdvrDc5ABxjUZDQRBcWN5sNi8ss/MLWzqdVq1Wu7Dczjds2Ww2yilsdk5jy+fzUV4CAPhEPC7HY6wdL+Nx0s414nmDnQPE43k8Ni97DbOf2Wyms7OzaNvhcLiQO3Q6nQuxfVOy2WwU68IwjOKneT0TH+fzuSRF25r8KgiCqLy/Lfl8PipbS5+UuY1KpbLwuFqtLjyOx/943I/HezvOB0EQ1QVIF+N9PM7H43s8rsfj9rKyy76wc2K77sb+PZjvu72t/Zuwc22zrf37sre1c3iTB9vb2rm/rxywLvt/Y9+3/0f2fTtvtXNV+365XFYul7tw385h7bzVvm9/b+37vrwV2Deusu22l+3iNddZ5iqrb5srzlx22Ww2Uy6XUyaTURiGmkwm0fvJZrOaTCaazWYKgkBBEGg6nWo8Hkfn+1QqpcFgoPl8Ht3OZjONRiNNp1ONRiPN53MNh8OVP6dcLqdUKhXdmvNvJpNROp2O6uXT6XS0z0KhoMlkEh2neS8mF+j3+9F51sSdIAi8dTBXES/n2+f761hnx5RV1w2Hw6jNZDgcajabqVQqRd95+7vvun+Z9cue46p3W4cv1pv721i/7DnUUQPA/hgMBmq322q323r48KE6nY7Ozs709OlTdbvd6K/X66nf76vdbms4HGo4HKrb7Wo0Gmk8Hqvf72s6nUY5U7x9aVMymYxyuZxyuZzy+byCIFA+n1ehUFCpVFKpVFKxWFS5XFatVluIS0kxa9mt5G9PAbBfOp2OHj58qCdPnujp06d68uSJHj58GN1/8uSJHj16FK2Pn68ajYZeeeUVHRwc6M6dO7p9+7Zu3769cN/83bp1S7dv33a2zW6SXXZotVobvb9MoVBQs9mMzonr3nctOzg4iOoRAWyX+b2fnp7q5ORErVYr+nMte/ToUdReZpjf8N27d3V4eKhmsxn9uZa9+uqr1PHfIOfn5/rggw/0ne98R9/97nf1/vvv69GjRwqCQL/2a7+mV199VZVKRcPhUKenp/rZz36mMAyVy+X0mc98RsfHx7p3756Ojo50fHyso6OjG9Eu+LLodrv61re+pW984xv6X//4v/Th+x9qMpooXUkr/X+kNf7cWPodSff+4+83JG2jym4u6VeSfvoffw+kzP/OKPWjlManH+dib7z5hv7Lf/4v+qM/+iP98R//sV577bUtHAjWNZ1O9fOf/1wffvih/vZv/1Y/+MEP9O///u8LfUiy2azu3r2rz33uc/riF7+o3/md39Hx8bFef/11ytB7xOQErhzAlyfYTD7gywHijw8PD/n/46W3rEy+7jozXs0nXgZPKrOvUp7/1Kc+5eyjDuDFYPc9Nn0XzXnG9Gs0/SZN3aTpU2n6Mpo+lGZfy27XHTtr+rGa/qvxW9OP1Xdr+rXGb03/EN8tALwI7P5nZsyIa14Ee5yIOe/bfdlNTLDHiJg+ouY1lu3DNT52FfZ4BnMet8csmJhg94c34yNMv7Rl+zD9B5P24RsvCQDYH3acsseC2fHQ7oftGiO2zrgve3yXK+basXETcx6YmGeP/bPLL3Z/bBPb7Bhoxzl7zJfpB2ePEbT7ydljv0x8tOOob54E3Cz7NBZpn8dnbdMq45z2bZtN7ps+uS8Pe9y1HV/t+3b50W4Tsccqmnhsx1u7vGvXQdr3feO2fXnEVdgx0sRxX2y2x2C74q0rztvlVFfs9uUMdh6wLb5z6FXO3Tf9+b59Xra+ZFNWPd+vs+0+Pv+q+yTnBV4el5n/dVfLb9oxLevrcp2uGhe2uY99PjbmAgCw7/Yxxr5I+7rqPDfbcN2xcNvLd/GalHcB3GRJdfm+uQ+T5tRzXQdB8sdG33UWJH/cTOo/7bpGhOS/poTkvgaFlDxXra9OOqlPwz6V6eN8113w9QX3XQPBd60DX1zd1HUjfPPsuq4DEZ8n2vD1a1z3eg83ZZ5oALhuvhzBF+99122SLhfvLxO7182FriuvuUyOsg98fZp8sdMXsyV/DpE0TsGXX/hiveTPkXz1AL7XcL1337WpfDnGuq8JANisF7nfwq5fYx/rSy5zbdtNLb+O19j1+3PV1wAA1uOrs0iqG0mK0776hKT6maT2JV+dhuSvI0qq79iHY9/U9Q03Zd32GN9yX32Dr+7FN4Zmn64H7qtTWvc64QCAZL5+FkntHkl9J335TVI7zmWOISmv2OQxJOUimz6GfZBUD+CL+/Frdtt8OUdS25EvP9r0MUj+uo1NH4MvJ/PtCwAAAAAAAAAAAAAAAHiJfCUIXb2tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYU51OR9Pp1Lnu/Pxcs9nswvLhcKhOp6NWq6XxeKzRaKTRaCRJGo1GGo/HevbsWbRuPB5LksbjscbjsXq9nvr9vsbjsSaTSbRuMploNBppMBhoPB5Hx2XWTSaT6L7vmJdJp9PKZDIL99PptFKplObzudLptNLptCQplUpFj2ezmcIwjJaZ9alUSrPZTPP5XJIUBEG0PAgChWGofr+vIAii9WabIAjU6/W872U6narT6Vzqfe5KLpdTuVz2rm80GtFnEVcoFFQsFp3rgiBQo9Hw7rdcLiuXyznXZTIZVatV73Or1Wr0nYjbx/eTTqdVq9W8z73K+wEk97l/Mpmo2+1e2NYVQ3znrm63G53zjdlspvPz8wvb9nq9KHYY8/lcZ2dnF7bt9/tRDDLCMFS73b6w7WAw0HA4vLC81WpdWDYcDjUYDC4sPzs7i875holtu+Y6J+XzeZVKpQvb1ut1pVKphWW+c0StVotin5HNZlWpVC5s6zoH+c7DlUpF2Wx2YZnv/JhKpVSv1y8s9+3bd3y+9+j7nAAA+8XOPeJ5hJ0/xHOBeFy343k8z7FzlvhrxPMOO4cYDAYL+UC73Y5yqul0urCu3+9fukybxC5DmDKn/TgMQ0kfx9t4PmPnf5PJJNp2k6rVanRMmUxmISZXKhXl8/no+G7duhVtGy9b2blJPBcolUrRfiSp2WxG9+Nlqfhz43lCPD+IH0exWFShUFj3Y7ix7N+KnVeb36X9u7O3tX83pqxhb2vn0va25ndqlwPsbe3fvCtHX4edO9rfIfNds3NU+3tib2vyaztvte/b3z/7u2fft4/Dvk9ZHpflKgOvsuyyz9vVslWf56pruA6uOsJVll32ebtaFn88m800nU6jWHlychLV63c6HfV6PXW7XXW7XZ2fn0f/s1arpdlspsFgoG63G7UpmPXz+Vz9fl+z2Uyj0Uiz2Uzj8Th6vVWYOnrzZ+dIm8zR7Dhhn8vjdRx2fY5dV2J/pna8iNed2LlRvD5k1XXxWOOqC4oz/xP79+a6v431vudcNScwn7n92bvub2O97zmuOjwAwH6Kxyn7tt/v69mzZzo7O1On01G73Y7KuOfn5+r1elH+MxwOo+fZfSim06mm02lUrjZl5suw+0Fks1lls1nlcjnl83nlcjllMhkVCgUVCgWVy2WVy2UVi0XV63WVy2VVq9XoflJci98mtYEDeLH1+309evRIjx490tOnT/XkyRM9fvxYjx8/1pMnT/T06VM9fPhQT5480ZMnTy60/1erVb3yyiu6c+eO7ty5o4ODA7366qvR/Tt37iw8vuy5xj53t1qtjdw3Zd1lCoWCms1mdN5c5f6y9Vf5LABshzlHmL/T01OdnJx4lz158uRCfZX5rZu/u3fv6vDw0LvsU5/6lLcvIW6e2Wym+/fv67vf/a6+853v6Lvf/a5+/OMfaz6fq9Fo6NatW0qn03r69GkUfxqNht544w0dHR3p+PhY9+7d09HRkd58803qnW6g4XCof/7nf9YPf/hD/ehHP9L3/vf3dP//va9O6z/6awZS7m5O+jVpdnum2e2ZdCDptqSCJNM8XpKUlzSXZLpkjiT1JbUlPZFSz1LKPM0oeBxo8v9NNB9/XAbN5rP6zG9/Rr/72d/VZz/7Wb311lt66623dHBwcF0fAzZgNBrpa1/7mr761a/q/fff109+8hONRqOFdpNKpaLf+q3fWjiHHB0d6bd/+7eXtiFg94bDoZ4/f+7NO1yPbctyjvjjw8ND75gKAJ+I1z0k1S2sUu/gKjPYkuoPVq2HoK4BgEtSu9g2bl3j0ZIsa7Pa9O0q/WwA4EWwbv++q/QHTFrnGk+8qnX78K3SJ+Iy+0iaBwAAsJ+WjXkbjUbq9/uSFseutNtthWG4MP+GPdbVHi9r2vd8Y/iWjcu7rKuOn7PHYNrjIcw4CXsshD0e04z7tGOleQ5j6bAJrrwxPj+Oax6d+Dau+XPidRWueXPi49hc8+XEj9E1T45rjFy8P5prbhxz/rkO8XHdrjljXOOx7fHfknv8WnwOHde8MPFxN65zSLz+xjUfTTxPd81lE58jZ9kcYNgN+zfhG4Nm//7s36v9+3bFZldOYJ8D7Ndetq/LWhZjzfd9lXhtfof2b+Kq+3pZrTrOeZ1tX9TnX2eMcrnKuOqX6fmM/wEQ52uz9Z3vfXUW68zt6cud1pnP1Nem4BrnY9fv2NaZl9V1bL75U6/bOvOR+ubwdM0b6psf1Dcvlytv9B2bqy1+nTlN1z22deZxBYCbxjdHt+SP877Y6IuDvjjvm/PLd90LV5z2zXPuO0ZfDuC7DoerrOqL4Zuo39kUX/2kr53FFwNdcVRy5wm++OrLH3zlU1+509cXz5VDrPv+43XZBn04ALxMfLFT8tfd+mJ8Un7hi8VJZWRfzuCre/Bt78ttfLmH7327chLf8e/b9aR8Md8Xf32x0BeXXeXnTV1XZN3rh6z7Xn15zzrvFQCQ7DL5hi/eJ+UbvlzA114g+esFksr6vjmOk96nb64x3/tMypHWqcvYFVe89OUAm6qzeNFek7oJALh+vroLX4xPyjF8cdlXR+Gra/HVLyTlRL76Dt/78/XlSMpHfPnQuu9v13xlf1/bga8uwtc24VvuqqPw1aNsoi/DOteZdeU9vvfh+5wAALuxTj//l235uvu4yrwV27DOGACWL1/+so9zAoBt8sXWpHXX9ZwX8Rgkf/vTLm0iZr/M+2DuSgAAAAAAAAAAAAAAgBvhK0G4L6O6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAPDQYDDYdD1l1i3Xw+VxiGms/nms/nC8+Zz+cLt8PhUJPJRGEYRvsx98fjcbTdTZDJZJTNZhUEQbTM3A+CQLlcToVCQUEQRH+SlEqlVCgUVCwWlU6nnfs269ddd5Xnbmu/u3pusVhUoVDw7he4Tt1uV5PJZGGZ6/w6Ho/V6/UWls1mM52fn6+0T9+2vV5P4/F4Ydl8PtfZ2dmFbfv9vkaj0cKyMAzVbrcvbOuLEe12e+E8L0mj0Uj9fv/CtmdnZxfO/a7PYRcajcbCOV6S8vm8SqXShW3r9bpSqdTCslwup3K5fGHbWq124fyfzWZVqVQubFutVpXJZBaWZTIZVavVC9uWy2XlcrmFZalUSvV6/cK2pVJJ+Xx+YVkQBGo0Ghe29Z1Pm83mhWXLzukAAEhSp9PRdDqVtJgjxPMTO9+Jr4vnIa1WK7ofzzvOz881m80kSdPpVJ1OJ1pn50km5zHl28FgoNFoFD230+lEectkMtFgMNjAp7Eok8ks5BTxnMHkJvFcyxyjWRfPEzchnU4v5DbFYjHKPYIgULPZjI6vUCgs5DaVSkXZbFbSxfwknj/YeVU874nnO3Y+Es/T7DwqnU6rVqstHDvlxdXZv7dl9697W/v3fRn292/Z/eve1lVuwP5zlZP3edl1vOZVf6eX4Sqb7vOy63jNbZxT1jmPr3rfnPPt++PxWP1+X91uV9PpVKPRKMrLTF1YGIaazWYaDAZRO8VkMtFsNotyu01+D9PpdJSvZLNZpdNpBUGgbDYbPTa5UxAEUS6STqej/Ma0HTQaDRUKBeXz+YW6pHjOZNdT2bmV/f+O5052rrTJ74Cdb5s83G4vMnm7yecnk4m63a6kT+oC7bzcro80+bj9HDtnN69n1x+66knXYT5P+zN3xWQ7p7TzSZO/2p+/Xfdm/nd2/Z+d15r/k/3/d9UJAgBuHhPPzK0dJ03MM/VkJt6ZHMg8x277e/r0qabTqdrttkajkXq9nkajUVSHNZlMNBqNNJ/PL7T1XVYqlVIqlVI2m1Umk1Emk4nyFhPb0ul0lN+Uy2WVSiXVajUVi0U1Gg3VajWVy2XduXNH5XJZt2/fVq1Wi2Ig5V8A29BqtXRycqLT01OdnJyo1WpF9+1lDx8+XKhvLxQKajabajabunv3rg4PD72PP/3pTy/UO9t1ma1WayP3h8PhQvuHjzluU1ZZ5f6y9QcHBxf6HwC4GYbDoZ4/f65Wq7XwZ5//7GW/+tWvLuSP9vnQ/oufC82y11577UI/JLzYHj58qA8++EAffPCBvvWtb+n9999Xt9tVJpNRoVCIyijSx/VfR0dHOj4+jm7v3bune/fu7fhd4Dq022399Kc/jf5OTk707NkzPX72WI+fPdbTZ081Go3UPf+4PnjUH2kymigIApUbH9eXFooF5Qt5NRoNvXrnVb1y+xXdvn1bBwcHev311/X666/r3r17Ojw8vNDfEzfffD7X/fv39Y1vfENf//rX9Q//8A969uyZ8vmPvxPT6VTPnz9XGIbKZrP69Kc/feGc8+abbzr7/eJmiOc28ZzG9dgWz2uWlfU4lwCbk1RXsmodif342bNnF8bExNm/+VXqSZLW3bp1iz6GAFYW7+u67dt1++TF+6tu+9Y1Hg8AXjZJ4yBWWbepfbjGb69i1XEPScs2sb1rHDQA4GbatzGJ9v1V+ub4rDqW8DqWSe75P4CbYlNjIbc5znKb21w2d7+MTY13vInbML/A6q4aYzcZr+1lrjnU1nWV+L3O+nW25bu5v1aNK+tsu43n7+MxXad9mS/AtWxXx8FYLQBX4TuvrzO/rKtNOz7vm7HOPLnrHJtvPlt77rvLHJtvXl57rpRdcsWAdeau9c1H62qzcc3L63stV72V61hdx+SKda7X8R27a55ge84WAHjR+eKnb74mV12lL/75YqgvR3DNeS+547PkjvG+ufd9sX+b739XXP3zfPPP++a7d8VXyR2LJXfc9r2ma94s33z+rhzBdQy+HMMV5111bb5jBYCXlT3Ho80Xw33x1BfbfXHW1wfe11bq6s/hqzPw5Qjrvldf+X7d97orrtjqi4O++OrLH3zx3NfO5ev/6SuT++q1XfFeWu+9xuelTzoW3/sHAGzGOm3T6y7f5r5vwmvugq9+YZvLX8TXZCwmAOyWr61D8o818bVr+OK0rw3DV88h+etLfP1ofXUd61w32FeP4nq/61wr+br5+g6sE4vXufawr47FVe+wzvWEpfWuEbzONZTXuS4yAGD3fHHXl8f4YrovJ1m3zWTd+g1fG4svb/C1vfhysHXbn1x9UXbJFe99+cy67SDrtgX5cgdfG5EvL/G1Ha3bpuTrw+LKs3yfGQDgevnieFIfzKRxGOv05/TlNL5jctX7+PIoX97iyit8OZovV3K9R1/+twvr9B315Qyueghf7PblI768wJVL+XIdX87hqhvy5VG+fMb1OflyNAAAAAAAAAAAAAAAgA35ShDuU69YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CUxmUzU7Xad60ajkfr9vnPdcDjUYDBwruv3+xqNRs51vV5P4/HYua7b7WoymTjXnZ+fazabOdednZ1pPp8717VaLefyMAzVbred6+bzuc7OzpzrptOpOp2Oc902Pst9Ui6XlcvlnOuq1aoymYxzXa1WUyqV0nw+VxiG0f9xNpupUqlEj6fTabQ+DEPlcjnN53PNZrPo1qwLgkBhGEbfJfN9G4/HSqVSGo1G0Xrfd8OnUCgolUopl8spk8kok8moVCpFn4HZJpPJKJfLqVKpSFJ0WygUlM1mVSwWVa1Wo89AkkqlUvS8O3fuKAgC57qDgwPvZ53JZKL9Akg2GAw0HA63uuy6Xmcbr50Uk69DoVBQsVhcafm2tr3u19vEtvV6XalU6sJyAAD2RTzvsB/77l/ndr1eL7ofhqEGg0FUpuz1eppOp5v6KCRJ6XRamUxGYRgqlUopnU4rDMPocRAEUbk1ft8+FlMm3pRisahMJqMgCJTNZlUoFBQEgdLptKrVqlKplFKplEqlkrLZbLRts9mM9pHP56PysrRYN5BOp6Pyrnm9QqEQPW40GgqCQJKUzWajMrX0cfk6m81Gn0Oj0YjWxXOkWq2mdDq9qY8FHnY9mv17MvVudt2Wqacbj8fq9XqSPqnXs+vOOp2OptPpQl2bKaPYdXN2PaPZd1Ld3ars76T5Htnft1wuF9UDlUol5fP5hW1TqZTq9XritiZ3t7e1fzd2XZvZNv7bwXq2XRbfVfn/Kst89ePbtGoZd5PLdvGa6yyz4+dNZbff2HVKm7pvn+83df8q7BwuCAKlUimFYRitN20V5naZTCYTtR2Y9oN8Ph8ty+VyajQayuVyUfuBuV+v11UsFlWr1VSv11WtVlUoFFSpVPTpT39a2Wx2Idbsgonrdvxvt9tRvj0cDhfit/nf23mAyRfs9rSkfZjvpGsf67Ljr8lF7bzA/l2bXMB+jp1XmJhut+XY+YHJg+0c2M4JzPnCzi8AAC8HE++u6/Yy7YSmPBwEQdRnIwzDqD9HEpPzFAoFlUql6H6tVlOpVFK5XFa1WlW9Xle5XFaj0VCj0VC1WtXBwYGazWa0fblcVqFQ2Gn+AwAuT58+1aNHj/To0SOdnp7q8ePHOjk5iZadnJzoyZMnevz48UJZslwu6/DwUK+88opu3bqlg4MD1et1VSoVVSoVlctlpdNp5XI5zWYztdttDYdD9ft9nZ2dRef18/NzDYdDdbtddTodDYdDdTqdxD6ZhinXmPNtsVhUo9GIztv1el2FQkHlclm1Wi0ql5oyarVaVaVS4VwNvKQGg4FOT091cnKiVqu18Oda/vDhwwt1aoVCQXfv3tXh4aGazebCn2v54eFh1NYIjMdjffvb39Zf//Vf65vf/KYePHgQ1SOasoskHRwc6HOf+5yOj491fHyso6Mjffazn6VtDmsLgkDvvvuu3nnnnV0fCvbURx99pPfee0/vvfeevv71r+vZs2dqNpu6d+9e1A5wcnKin/zkJ1GdyuHhYXRu4hz1YhsOh3r+/Lk3X3I9tpmymy9Xij8mbwKu32AwiH7Dpl4+6f4q65KY84Jdv2PfX3cd41UAbIqpm47fmn5GvlvT/yd+a/oQx29N/yJzuypzvjN9eeK3Jnd33bq2bzQaUR8u0y/I1LfbfYcAABeZvr/mvC990i/VHoNizv0mZ7bHuSTtw9W31bWPq4y5N/HA5Nd2v17TR9TuV2r6otrjS5L2Yfq2mhhj93E1+yLeAMCLzzVmetPL1nnOuuUwmz1Gw9y/jmW+9fZ4ZwCr2dR43OvcZpP7vso5cF2bGl97E7e5yeUcM7bbLte65kywy7H2fA2mTGuXW+3y7VX3dVn2PCCmztQeJ+maZ8Eeh2nKyK5ys2s717hPu3xtHw+wKte8v775S1xjll3Pt39/y54fjyGu36Zrf655ju3zQtLxucbeu8YYXHaM9lW45tV1ja92xY34PEaSe75k1zzJrnbx+HwQrrH7rvlg4nMmSRfnY1rneDm3AbhurvKNK8ZIn+SWNl8cdMUfX07qm5ffdb0B39z/rjjmOgbX9QFc19qi2Z8AACAASURBVBrwHWvSNRC2zRUPXXHIN/+Mqw7MFXdcMcsVn33zpLlexxWPXWU+Vwz1vY5rLifmIwSARb7r6fhir6/fhK+86Jrf0Jcb+PIL3zUXfGPjXbHYV673vabruF15Q9L1iK6LK4b65iVzxUZXudN3jRtXWdmVf/hyjX08VgDAaq56DaSXbblv203Ng3tVV70W0q6ff52vdZPbowHgpli3nsAXT13tE9J6dRO+6wff1NfcFVcbgK8e31cv4GqHkPzXQN7Ea7raD67aTrFqe4jv/QIA9tO26km2WSexD9v68pjrtuu6in15vXW2JVcBgJtnn9pMXoTlu+wTattGm8lN3qfvdZgfEQBujn2uN9n3fUj70za0z3Ul+74P6cW4fjkAAAAAAAAAAAAAAFfwlSC8ris5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYKcGg4GGw+HO1+3Lcexi3dnZmebzuXPdPikUCioWiysvZ13yumw2q16vp+l0qn6/r/F4rNlsplQqpX6/r9FoFH1vhsOh5vO5JpOJRqOR+v2+JpOJut2uZrOZzs/PFYah2u22JKndbisMQ52fn2s2m6nb7WoymSR+D30qlYqy2axKpZLy+Xz0vrLZrCqVitLptGq1moIgUKPRkCQ1Gg0FQaBaraZ0Ou3dRy6XU7lcViaTUbVade4D2BfT6VSdTmdhmf27s7nO6+Z3aBsOhxoMBgvLzG/bNp/PdXZ2duF1zG/d1ul0NJ1OF5aZc4rNnEtsrvcoSa1W68Iyc36x9Xo9jcfjC9teB3M+sZnzU5zr/FKtVpXJZBaWmXOWLZ/Pq1QqLSwz5zCbfT6z1et1pVKphWXmHGlzxRBz3rWlUinV6/ULr+N6j0lxCQAALLLzHzvHiedqdj5m51yrbhfPv1bdzs43+/1+VM6bTqcXcsmrKhQK0f1sNhvlGEEQRHnNfD5XOp2O7pv15rF5T9PpNFo/mUwu5JNXYcqaQRAon8+rWCxGx2fnQb77q253meckrSuXy8rlchv7HLBZps5F+uQ3aZcD7XoWc96wy3nmNz0ej9Xr9SR9UpayzxOmHGf/1k0Z0i4Pusp2q7LLLaYMYpeZzHfRLssUi8XoHNBsNiUtfn/tcpRZb7+O/Xyzrb1/VxnnJnHVs8WXrbLNPi27yr52VSfgKusmnYNvwrKr7Iu4cjn2+d4+Z9vfdbtuz65/W/e+vZ+r3L+KVfKXTCajXC6n2WymdDqtdDqt6XQa5Vfm/czn8yjHm81mms1mUVvHdDrVYDDQbDaL2jlWyf/q9bpyuZwqlYqq1ary+bzq9Xp0fGZ9tVpVuVxWPp9Xo9GI6u1qtZpyuZxqtVpUv2fWx+sPN8l8X+K3rnWrLrvK9utyfRfit651qy5bdXtXXSkA4OVl2jPNrcnVtn27qnQ6rXK5rFQqFcW0fD6vMAyVzWajOjNTPzadThWGoSaTSfRn+oskKZVKKpVKqlQqajQaKpfLKpVK0f1yuaxKpaJ6vR5ta29XrVZVq9UWngcAN9VsNtOjR4/0y1/+Uqenp/rFL36hx48f6xe/+IUePnyohw8f6vT0VM+fP18oQ5v+a9VqVaVSSZlMRul0WplMRqlUSuPxODpXn52daTgcrtSns1AoqNlsRmWcVe4vW39wcED9DoDIYDBQq9VSq9XS6empTk5Ooseu5Y8fP75QB2fOM81mU3fv3tXh4WH02LXslVdeidp+gWVarZbu37+vr33ta/rmN7+p+/fv69mzZ1EfAdM2+JnPfEa///u/ry984Qs6Pj7Wm2++eaEfJnBZQRDo3Xff1TvvvLPrQ8EN8dFHH+m9997Te++9p7/7u79Tu93WK6+8oj/8wz/UF77wBX3qU5/Ss2fPdP/+fT148ED/8i//EtUZNZtNHR0d6fj4OLq9d++e7t27t+N3hesyHA71/Plzb44Wf/zw4cOF8R52bubKxeKPDw8PGVcF7BnTltBut9Xv99Xv93V2dqZut6t+v69ut6vz8/NoXavViu6fn5+r0+mo3+8v7COpnd/k1PE6f9Me0Gw2F9oK7LaDarWqer0ePa7VatFYTwC4Tq4+Tq1Wy9nv6aq36/a19tXbL7tdZ9tisch4eQDYgE32sb3ufrqr9K9dZ5t19+ea2wAA8GJadbyrPd/QJsa7LhtzexlmPNCy8a72HEAm5tnzD5n6MHssqxm3Yi8z5TbzuvbYW+rUgJsjXjfkmhvOldfHz1euOeHi87ytso1rfrd431TXGIb4vG6u+ejic8z55o3blng5wzX3W/z86ZpXID7nm2set/hrxZ8TH1cdnzMuPhY7fqzx13TN52bizrbY3wN7vL75Ttn/X/s7bL4rdny2v3f2mGTzPXfF/GXL1mV/pub/5Vpmfydcy8x3yBXb7WWuHMAsc80XCNxkrjEO8TjmmrPUFSdcMcgV31adW8Q1/+kqx+uK1/bcD4brvOSKtdfBVUaItwW55iF1zYvqio+uuLrK3CKu13Q9Lx5bXccQH+/vio92GQ0A9okrTl117u9V5xh3xU1XzN3GHOOu13HFVOlq9XZX5ZobaxvzfLte56rzfK86n7grRrri+6oxHwCwmnWuf7Xqsm1tu+vnS+684zqtOq/mtrbd9fPX2dZ1nRQAwHp8bam++eZ8dc+u+gFXrPWVx13X93LVWfiugeaqi/C9B1fZ31Vn4vtsdn0dTVdM9JXXXdcZc9U1+OoVXHUIvjnzXeNCXLHaVa8hudsXtvFeAQDXzxf/fXmFbwykq01Acsf2m/qavlzHlStdF1fsv2qbxKptH5K7b5or7q/a/nDVdg5XfuI7dgDA/nPVJ/j6LPjyBVde4KrTkNx1Cr76C1ce4qurcNVr+N6Hr23E9T7WqQe6br76CVf89l2z3VVv4ctzfO0ZrvoQVw4iues+XDmIa5/xnMh1nK48x/feAQA3n6+uwBenff0gXMtd/UfXqbNw5U3b2Kcrj9rHupV16iJWrUfxxfht7NOVm2xjn1yTEQBuPl87ia+exFX34YvlvjoK37WrXfUcvjoY33XmV82TJH+9kSs3831OV7nG8ib5chdf3YirzcZVb+NqS3HlCq7X99XXuNqQXHmGK0dy1dO43osrR3HlQgAAAAAAAAAAAACAG+8rQbjLGacAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMALZTAYaDgcvpDr9uU4lq3rdDqaTqfOdfukUCioWCxey7rrfK2btK7RaCgIAue6F1m329VkMol+K+b2/Pxcs9lMZ2dnms/n0W273VYYhmq1WpKkVqulMAyj5e12O9p+NptF+zk/P4/2v6pcLqdyuRzdZrNZVSoVpdNp1Wo1BUGgRqMh6ZP/X61WUzqdVqVSUTabVbFYVKFQUD6fV6lUWmsfeLGZ77Bhvqe20Wikfr+/sKzf72s0Gi0sM99zw/wW4szvyGZ+gzZXXBuPx+r1ekuPWVL0e7S54qHrvbje83VJpVKq1+sXltfrdaVSqYVl5jduM793mzl/2MzvP67ZbF5Y5jofmPOSzRVfMpmMqtXqwjL7nGO7ynsEAAD7wc7X7LKPKR8Zdq5m54L28+P5pG87aTGv7fV6Go/Ha203mUzU7Xav+vYjQRCoUChE79HOm1Kp1EK529wPw1BhGCoIAoVhqOl0qlQqpfl8rslkoiAINJ/Po2PehGw2q1KppCAIFASB6vV6dL9arSqTyUhazPPieaSdw5VKJeXz+WjflUol2s7OMze9b7w4TDnQLg9e5zL7vqucuir7e+26f93L7N/cKlzl8X1ZtqvjiNd5XAdXGXtflu3qOKivvJmWnW999y/7vHX3sYnf97Lz/jbvFwoF9Xq9qL613+9rPB5rPp9rMBhoMBhoOp2q3++r2+1qPB6r3++r3++r1Wqp3++r1+up0+no/Pw8WpekVqupVCqpVCqpXq8rn8+rUqmoXC4rn8+r0WhEbRG1Wk35fF7VajXK55rNZlRfWa1Wlc/nVavV1qrzs8sKps7X/F/tcogpd5jc35QP7PKJ+Q64nm/qss33yX5dV73yqkw7jPl/2vWlpt7Vrlc1sdyu5zX7MJ/bsn2Yc6j539j7AABgFfEca9u365bL4+Vh120ul4vq5tLptNLptObzuWaz2UL922g00nA41Gw203Q6Va/XU7fbVafT0Wg00vn5+YV2aNdxNJvNhfvxx6usu3PnzoW2UgC4yTqdTlQWPTs702AwUL/fV7vdVqvV0snJiX75y1/q6dOnevbsmVqtls7OztTtdqMyr30ONm0qSUqlUlQGrVarKhaLqlQqC+XbRqOhYrGoYrEYnYdNubdcLqtQKKher6tUKqlQKDj7vADAMoPBQK1Wa+Hv9PRUJycnzuW//OUvL7QN2/mj+bt7964ODw+dyw4ODi708QMu4+TkRA8ePNBHH32kH/zgB3r//ff1k5/8ZKE/Rjab1SuvvKK33npLX/rSl/Rnf/ZnevPNN2nbwdYFQaB3331X77zzzq4PBTfQdDrVBx98oL//+7/X17/+df3TP/2TBoOB7t27p7fffltvv/22/uRP/kSdTkcPHjzQ/fv3o/Phj370Iz1+/FjSx20ub7zxho6OjnR8fKx79+7p6OhIb7755oW+8Xi5DIdDPX/+3Jv/xR8/fPhwoZybz+d169Ytb+4Xf3x4eEj7H3ADmT4Mpg6s2+0u9OEw/Tv6/b7Oz88X6tja7bZ6vV7U9+Ps7Ey9Xs87zlz6uGxZLpdVr9dVrVZVLpdVKpXUbDZVLpdVLpdVqVTUaDSix9VqNaorK5fLqtVqqtVqKpfL3nHKALArZryxGSNixgqb/l6mLdr0DWu1WheeY9quzXNMHzUzZ0C73V57roBmsxmNHTbjIUxfLtO3zoylrdfrSqfTajQa0RgL03fMtEmbPmKmb1mj0VAqlaINAwCugel7bGKMPdeF6bts4o2JKatsY8cWMwYyqZ/0OkzcMLHHHsNn+hObOGRijd0PeZVtzNhBE5tM/yfGAQIApNXHfV1mrNhlll12PFnSWN7Lrlt3e+ZcArCq+JgM1zx99pwr0sV5YaSL4yhd8wq6xubH5zY052JbfI7A+Lx/rteKPyc+n+F1zLkbnycvPpdDfM48e64U6eIY+vj8gPE5+1xzEsbnCYyPFY2Pyb/qMe16HhB7mWsOy1Xtar4P1zLG9wLb4YpJrjkBXGMXXeWEeNxxxSZXjHXV47nm0XXFx1WPN34+dM2fdpW5ky4jfm5zzYEbj5uuOXHjcUq6GPvsOROMePxz1U3G59B1xVlXuesy7w0AbqJV52NbZ9urLNvH19nVtV5e1DnlLnscrvnqAQDr8/VDcZWRXWVYV52y5C6PusrFkvtaMq6y8b4e63VyxcR1rmnjqpOMl7dd149xld1d155xlcNd5XfX+3CVxV31A64cgPI4AFwPVxnZd624VeOz75p268TneLu0tF4u4Wp7vOp73eX17gzXdedc15jz9fF15Q2u2Oy77p1rDvl1chlXfHfVy0urX2Mv/p58rw0A2D/X1X6wjX1e57G78qLrsmrd/jrbXmXZPr4O7RoAcPP5rm/q6kPgq0eI992X/PUjvpjvaqvw1UW46i1878NVH+N7H666F9f78L23bVu1DcNV17Dpdg1XfcyqbR2u+o1Ntv8AAF4uN6V+Y5d1M7vqG2rchPqRXe+T+hUAeDG56i98/T1dfU8kdxz31Uv4+p/4xmG62l9cuYTr2Fx1Nq7Xd9XXuPq5+OpqroOr3sNVP+KK4a76Fle9jKv+xlXP4+qr4uoD4qsPcfUzcdWvuOphXPU19GEFAAAAAAAAAAAAcEN8JQh3OXMSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr6Pf7Go1GznXdbleTycS5rtPpaDqdOtednZ1pPp8717XbbYVheGF5GIZqt9vO58znc52dnTnXzWYznZ+fO9dNJhN1u13nuvF4rF6v51w3HA41GAyc6waDgYbDoXPdNj7LfdJsNp3LgyBQo9FwrkulUqrX6851mUxG1WrVuS6bzapSqTjX5fN5lUol57pCoaBisehcVywWVSgUnOvK5bJyuZxzXaVSUTabda6r1WpKp9POdfV6XalUyrmu0WgoCIILyy/7WQIu5vxoznfm/GXOOe12W9PpdGGb0Wikfr8fnQfNc8ytOc+Z216vp/F4nHiOc6lWq8pkMtFvyNya3435jZjbZrO58LjRaES/CXNr9mPOLeY26XyC1Z2fn2s2my0sa7VaC4+n06k6nc7CMldMNd8bWzx3cOUFrrjuisuu72M8/3DlFq7cwLX/XcRtV7xxxS5XHHT9BnwxxRWfzO/JViqVlM/nF5blcjmVy+WFZeZ3GefKKTb9HgEAAAw7p7vK/U3uK+k1fHVnl5HNZpXNZhWGoTKZjLLZbJR3p9PpKPez87AgCKLXD8NQs9ksWjadThUEgebzucbjcXTfVx+2jiAIohzVlAPNfVNX4rtv57er3I/Xv9g5r51vxvNZu64nqS4JLw9TVjZlX7usacqOph7FLueacqtdDjVlbLscbc4HZh/SJ+Vnu4x8lXKqXddqvuN2+c78Puy63EqlEp0/zLJSqRSdE8yyfD6vIAg0mUyi35L53YzHY5XLZQVBEJ2nRqNRtB9XeXyflyW1G2yTq4y8yWXb3v+mlyW1AQAu5jxrn7/t86t9TrbrNO26UnP+ttsr7fO7fX6w6y3N+dyOD3b9qn3uvyy7zsz+vdh5jF0nZ/IvOweyY4L9G7Pbzkz8sHMsO27YscauV7xKPjUYDNRqtaL/Ufz+uuuS2rbtz69QKKjZbKrZbC48XnWdfX84HC78/008N8dmf6fM8ZnvofmOJT3f/j6Z73r8+esyx2//f02dsvlOmP+3nX+bfML+Tprvjfls7e+P+Z7Y30WzD1c9NAAAlxHvC7Ht23X7VNj5xyZuU6mUptNplAuEYagwDDUYDKK8YjweR/mSK4cyy5KOeVlutMqyO3fuePtpAcBNtEpZddX7vV5PT58+vdCHyycIAqXTaRUKBRUKBZVKJR0cHOj27du6deuWbt++rV//9V9Xo9FILMdybgawTa1WSycnJwt5Z6vV0unp6YXlp6enF/qtSh/XbR4eHi7kl81mU3fv3r2w/LXXXvP21Qc2YTqd6uc//7nu37+vBw8e6KOPPtL9+/f1wx/+MKqXTafTUV+MO3fu6POf/7z+9E//VH/xF3+h3/iN39jtG8BLKwgCvfvuu3rnnXd2fSh4AYxGI33729/We++9p7/5m7/R97//faXTaf3BH/yB3n77bb399tt66623or4nrVbrwnnzwYMH+ulPf6owDJXL5fSZz3xGx8fHunfvno6OjnR8fKyjoyPvGEK83IbDoZ4/f+7NLeOPHz58uNBnM5/P69atW968Mv748PDQOU4UwIthlb4nq/ZTefLkSWJfz3X7oSQ9pk4PwE2U1O5un09XvfU9Z52+96u0ydvn31Vv489Jms8EALBdpu3JxAcTL8y4Aru/thlHsMo2Zk4e02/bHrMQ32Zdpt+/6V9tYorpq233yzbjBUz/bNPX22xr+mvbzzH9w81zTZxyzTECAIDknjchfrvuuqvsa13xcptr2WXXrbo95UIAN8WyORau+vg6XuMyx7Rpl5nTYVuPJ5OJJpNJNKbXjDsKgkCFQiEq25qxSLlcTqPRSKPRSPP5PBqbPRwONZvNonHO0sdj70ej0coxf92xV77P67Ix+irL7HWueTsBvLg2Eds2+bzr3vd1z828iRi6yedd976TroMAADeZa+5VV4xZNc65yhauuaXiY9Rc1ztyzdFkz0lmuK63sMr1HFzXSEi6ttK2uK6N47qugGveJ9e8f655xVxxLH6NAtc1E1zXHXDFSVdbpqt8Fr/+gus1k66fBADYDlcfGtd1jyR3jHXFZ981EF25givmu57vit2u43TF81XzCld+c9k+Rlflit+uaxnFY7ort1g15rpivysHceUDrrzElSO4chVX3uB6/0nXIQQAXK9V6wm2te1Ner6r3uK63PRrIGx6/9TzA8DN4SrHu+oFJHcbhKv+wVUP4KpX8NVpuOpEXHUGrmN3tYFI7jYa17G7coxdtGfYXGV5V92Aq17Bdw1nV7l/1eso+9oWVr1e86rXhXZtF6+voZ0DAF4u274mo2vZLl5znWXX3a/ReBHqLja9jH71APByc9WZuNosXNdq9dVlbGOfrvqRbexz1fqi6+SK1Vet91i1zsbVP2SdfcaXuep7VmmrcfWVdR0vAODlsU91HLvsg+Jatuya79tynWM6L/u8bR+Tq+8uAAAAAAAAAAAAgJ34ShDGe4cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALwGg4GGw+Fa627ic3b9+pLUbrcVhqFz3b4oFAoqFosv3bp9OQ5JqlQqymazznUALmc+n+vs7Ezj8Vi9Xi86V3e7XU0mE7Xb7f+fvTvtceS47zj+azbvm3tIOytLjkd2JM8gUBAgAYwIhiOvEyCRnDyI9z0uBASwLQMxIsGwkSB55MROdixZ9tiWrF2t9uB9s8k8EKrULBaH5Azn2v1+gEGzit1NcobTVfWvoxVFkXefdrutyWSy9j7rXOeDIFC1WlUymVSpVFIqlVKxWFQ6nVahULDbTCajfD5vrxlmG3+czWaVz+eVyWTmjk2n0/Z6UiqVlEwmz+A3fXy+8vO4eds813mcv9fraTgc6iz5yqXj5m3zXKd9ft8+5v8JAADgPE0mE7XbbUlftGeMeLuj1WopiiJJsu0bab5OORgM1O/3JUnj8VidTkeSFEWRWq2WJGk2m6nRaKx8jW63q9FoJGm+HjscDtXr9bby2VOplNLptCQpDEP7WJKtp02nU2UyGc1mM00mE5s/Go2USqUUBIGGw6HCMLSPE4mEgiBQv99XEAQKgkC9Xk9BENjPtg21Wu3MH5s25nEeA+uIX4dMDMT838evH+Y6ZOImklSv1yV9cf2IX4fMtcZcs0ajkb0utVotTadT+1wURfa4TeXzeQVBoFQqpWQyqUQiYduC6XRas9ls7nqTTCY1m80UBIG9vgRBoCiKlEgkbOx2NpvZ66PJi6LIXotTqZQGg4HG47ESiYSkz69r68YL4tf1s3QR2v7bzjvJuYjX4zIy1954Hc1cv+N1wPi1x1yT49dpcx2KX+vjdUtTT4zXXeOvGa+Tmtc/CRP3lqRyuawwDCV9UScKw1DlclmSbJxcko2jS/P/05VKxdYRTd3IxOwl2fi8NB8zjMfbq9WqgiBQIpFQpVI50efbtlarpXa7bX+azaba7bZ6vZ663a4ajYZ6vZ56vZ6azaY6nY56vZ46nY6azaZ9rtFozLUDfMzvvlQqKZ/Pq1AoqFqtKp/PK5/Pq1KpKJvNKp1OK51O236ORCKhbDZrf4dBECgMQ02nU02nU0lffE/d7VHP+fY5brnq9s/Ey4rjPLfp8fHvOgAA22Lqb6buZsrLo8rVbWzX5Y6bMFszruK0tkan01Gr1VKz2VSr1VKr1VKj0VCj0bBp81yn01G9Xlen01Gn01G73bbPm/qMy9Q5q9WqisWiSqWSisWiKpWKyuWyisWiza/VajZt9qlUKnN5AHDZ9ft91et1W164j496zvf40aNHK9t/2WxWtVpNuVxOYRgqm83aPqfZbKbhcKh+v2/b0PFreqVS0bVr1/TCCy9oZ2dHL7zwgr761a/qpZde0osvvqidnR1dv379tH9tADDHXAvv37+ve/fu2eun+XHzHzx4sFBfNdfGmzdvamdnR7Vabe7Hzb9x44bt/wLO0mg00ocffqiDgwPdvXtXBwcHOjw81N27d21cuFKpKJfL2bZaMpnUX/zFX+iNN97Q66+/rtdff/3CxfTx7AqCQHfu3NHt27fP+63gKfTo0SP95Cc/0bvvvqsf/ehH+uSTT3T9+nV961vf0q1bt/Tmm2/q5s2bC8c1m0395je/sddXc8394IMPFEWRksmkXnrpJe3u7mpvb0/7+/va29vTa6+9ZvtagXUMBgM9efJkab3VTX/66adzc/YymYyuXLmytM7qpnd2dux4UQDPnniflS/uuEmM8smTJ0fO/YyPAzHXoHj6qOfc9JUrV+y4JwB4WvjGE8Svtau26+57VL+966jxfvFr86rtqn0ZDwgAF4uZ/xafN2fKDzN+3oyxi8/DWGcfMz/DjGE35ZPZNz5vY12mPDHj6cw4tPhcBjO3wsyVMHMfzDg8Uy6ZuRJm7JyZDxCfW2HmSlB+AQDWYcpH0y6Ll69HzT038w/j8xPNuUz56ZvjftQ89k3Fx5KbMtSUmfH5iqZcNeVovNw0ZW38XKYsPepc5jl3PDsA4HOr1v886/RpnPMs1hRZtfZGNptVNpu18VRT3sXXdDJzv806LOl0WuPx2ObNZjMlk0mNRiO7j1mLZTgc2r5608dmtlEUaTAY2PWgzLoFy9Z0X8VXFpty2rSn42W4KZPN7yReXpt6gVljIH5u0/4289JM/eAirjcA4OnmizO6ZYu7xRMFHAAAIABJREFUfqHkL+Pc9dTj7S7DXTcmHhM1fOtpm3ab4VuvML7OoTS/BqPhtvvcdRNPW3wdG8ONn7rlbLxsWXZMfE2cZceYcmnZMfG1cpYd46617TvGlJ/LjgGAZ41vnQxfWedbW80tW33llq+885WT665R6Y6V8b2mr/z2lfu+1zxuDPYk4mvAGb7yybdWpFsW+tbg9ZW7vjLfLXul+fXwlp3fPc63j/t5fG1L97UAAOfvtO9XdV55JznXedQVpKdj3ett512G+9MBwLPGF0/wxQXWbcv7+gdOElNwY/TSerGNdeMM68ZYTpsvDuAbt+WLR6wTG5AW+wCkxdj7SWIU695r0xcrWee9AQAuv5O07U96/Fmd86Svcx73ATvreMNFPY66BwA8ey5K/4cv77zex0W+J+l55Z3X++C+pACAOF+fh7TYXyL5y3NfX4ivL+i0zunO2Titc/re+2lyx4H65kD4+nDc43z9Qb7+FTd24TvO1z9k5hoavj4et+7h6y/y9VExBgQAYPjKbF8dxjefdNk8TLe8941H8Y0NXWe+qDvPxve+fHWTdeaZnvWYE1994yzrDb45Jr5YhzsuxDcWZZ3P4r5v33sEAAAAAAAAAAAAztjbwewsRy4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOJZWq6Uoihbyh8Oher2e95hGo6HZbLaQ3+/3NRgMFvJns5kajYb3XN1uV6PRaCE/iiK1Wi3vMe12W5PJZCF/PB6r0+l4j2k2m5pOpwv5R33Oer3uzV/2OafTqZrNpveYZZ/zIiiVSkomkwv5qVRKxWLRe0ylUlEikVjIz2Qyyufz3mNqtZo3P5fLKZvNLuQnEglVKhXvMYVCQel0eiE/mUyqVCp5j1n2OdPptAqFgveYoz5PNptVLpfzPpfP55XJZDZ67wBwnkx52G63NRqN1Gw2NRgM1O/31Wq1NB6P1Ww2bVlrysJOp6PxeKxGo6Eoilbu46s/+NRqNXtNN9dic/0sl8sKw3DlPslkUtVqdW6fXC6nKIqUSqVUKpUUhqF6vZ6Gw6F9bV8dxK17+OocvvqB+exx7u/B93qj0Ujdbncuz32fvvclLdZfJpOJ2u32XN5R9Z/T4is3i8WiUqnUXF61WlUQBDbtqw/4ym5ffcJX9rvnD8NQ5XJ5bh9f+e8r2813Mc6t7/jqJkfVIQAAAJ5G8digGyeMx+zi9dt4LC1e147XZeN1XTcuF68XL3uNeB3btH8kf338uNLptHK5nGazmZLJpLLZrGazmRKJhHK5nKbTqYIgUDabte8xnU5rOp0qiiIlk0klEglNJhMFQaAwDG0bYzqdajweK5FIKIoi+7miKNJ4PNZoNLL7DgYDbzx1E/F67EV+7GtnAIav7b5O3nA4VLPZ1HA41HA41Gg00nA4VLvdnmv7j0YjdTod9Xo9+384mUw0Ho/V7/c1Ho9tejAY2Otc/H92MpkoiiJFUaTpdKrJZDK33VQQBHPtYJNn+PqHTpuvXXxR8s7rfSzrcwFwtHh9MF5/NHXBeN3R1APj8dj49d7EbeN1QXONj9c14/VGU89c9j6Ow8Q043HLeOzTxDfjMVJT/wmCQNVqVdJ8XDIe74zHOePxU3PeeDw23lf8LMY0+/2+6vW66vW6/bub9LI8N//Ro0cLfQRxpj8jlUopnU4rn88rn88rDEMlEgn7twrDUEEQKJlMajgcKpPJ2DbCYDBQEAQaDoeKosh+7+Pf22VjQlYx8W7zHTPfg/j305Rh5rtlvjfx76P5rh11vOnfMd/t+PEAAJwlU0fcZBuvA6y7r6///yimHD2r7UnGt5kYcKPRUKvVUqvVUrPZnHtcr9eXPtdoNJaO9ZQ+r7uWy2VVKhWVy2WVy2UVi0XVajWVSiUVi0UVi0W7TzyvWq3a9LNWvwXw9KjX6+r1eur1emq1Wmq32+p2u+r1et7n+v2+Op2OWq2W+v2+ut2ums2mer2eLZuOYtp55XLZlhHValW5XE65XE61Ws0+rlarKhQKyuVy9vqcy+WUTCbVbrf16NEjPXr0SA8fPtTHH3+sP/zhD/roo4/0ySef2H6sVCqlF154QV/60pf0wgsv6ObNm3rxxRe1s7OjL33pS7p586Zu3rzpHXcOANvkxv7u37+ve/fuLcQDTb4vFpjNZlWr1ezPzZs3tbOzM5cXz79+/Tp93bhw6vW6Dg8PdffuXR0cHNjt73//e02nU6VSKb344ot6+eWXlclk9OTJE/3mN7/RZ599pmKxqL/+67/W66+/rm9+85v6y7/8S9piuLCCINCdO3d0+/bt834reAbcvXtX77zzjt5991397Gc/02g00t7ent566y3dunVL3/zmN4+MzY1GI3344Yc6ODiYu0YfHBzYvuydnR3t7+9rd3dXe3t72t/f1/7+vnZ2ds7qY+IpNhgM9OTJk6V1ZTf96aefzs2jy2QyunLlytJ6spu+ceMG46oALGVinqavycRKG42GOp2Out2uut2u6vW6fdzpdNRoNGy63W6r2Wyq2+161w8xMpmMjY8Wi0UVCgUVCgXVajX72PRHmXSpVFKlUrFp07dl4qgA8KwwYxjr9bod22jWajDjKcw4CjPet9lsKooiu4ZFq9WyY3zNMWbMrjlmk7UszLhIM4axVqvZsY2mf8yMoTDjI81YyEqlojAM59axMGMu4mtcHLWWEQDg4nHH+/nyNt2uc45laykeZdPxgMc5xt0uWyMQAICjHFUm+vKO+9yq/TdpLxqblKPr7LPJvketYwsAOBvumjOr0sc55rTT6+xz1PytbUkmk0qlUrYsDsNQYRhqNptpOp3OreUafy9mXryZT3/cNXey2awSiYTS6bRdwyGXy9m57ZLm5shns1kb4zXPZbNZ278XBIGuXr2qdDpt1zOu1WoqFotz6zuYtRtYgx7Asyq+No/hlju+td3dddx993zxlXnu/Dj3PO66kr575rjHuGu3+45x47tntd67794x7nrrbhnk67t011BfdYxvHRh3zUd3TXffMe568e4xvrXol91fBgDwOd/6Ym756CtXfeWxrxxf9/4obizW95rr3jPF95q+e764dQzf+U+L7/4mbtnou0fJOvu4ZZ+v/HfvkeIr7901Tn33X3HrEb71BtfZBwBw8fjqCL64sFuG+9rAvnLdd681X1nsu9+Dr/xftx7iW/PXV0/w1VfOIi7u8rVzfWX7OuW/u8869Yh16iPr1Gt8+7ixhHX2AQBcHse9p8tJ8s7jNU/y3s7CZbvfymm/N/oLAODp5Ith+GIC7n6+eIUvvuDGCHzH+WIV2zrOF2vxHeeLb5wmX1nr9j342vrrHOeLh2zzOLdO4DvO1yeyznEAgGePb96ZO+Zi230nvvEaJ+lP8cUttt3HchbcsQnS4jhH35hEdy6er2/ErXf46grua53neQEAOK5tzDm87McdZ12Bk9hWP8hFPG7dc7tjVQEA2FbZflHrG+scd5bjVVeV4duoB2zjmG29rhtrAQAAAAAAAAAAwJl5O5id5cgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXHr9fl+DwWCj57Z5zHm//lkdc9S5zls2m1Uul9voufM+5rxf/7jH1Go1bz4A4GIy5Xd8W6/Xj8zzPf/48WP1+331+30Nh0O732g0Wvke0un03E8ymVQ6nVYqlVIymVQYhsrn80qlUkqlUgqCQEEQ2Odns5lms5my2aySyaSSyaSiKFIURQrDUMlkUuPxWNPpdOFz+34Xm+zT7XbX+ozb4pbBvjJ5m3kX9VySVK1WFQSBAAAAsH3xeu+2H2/rfO12W5PJZCufN5vNKpvNSvq8fZLJZDSbzezjKIqUSqWUyWQ0Ho+VTqcVhqHNl6TpdKpUKqUoiiRJURRpOp0qDEONx2PNZjOFYaher6dEImE/TyKR0Hg81mg0UhAE6na7ms1mmk6n6nQ6J/pclUpFiURCYRiqXC7bz2rq1uVyWWEYKpFIqFKpSJIymYzy+bwkqVgs2jZYtVq1v59CoSBJKhQKSqfTkr6on6dSKRWLRUlSPp9XJpOZey/uY1wO67SP183b5rmOk2f+N2ezmbrdrobDof2/nU6nGgwGGg6Hms1mkqTBYKDxeCxJNm88Hm/t+rMp0w42W/M/bGIlkpRKpRSGocIwlCQlEgkbb0kmk5I+vxZkMhklEgmbVygUlMlkbCwmkUioUCjMXSNTqZQKhcKpxiLWzcvlcvZ9AbicoihSq9WSJHU6HY3HY43HY1sHMrHX2WymRqMhSRoOh+r1epKkVqtl48DmPL1eT8PhUJLUaDQ0m800Go3U7XbnXmc6narZbEqSraNKUrPZnIsjbyJeZ4rXqUydK14ni9eTTD0qXs8y9bB4PS1+HTT1qWQyqVKpJGm+bmb6a+PvAyfT7/fVbrfVbrfVaDTUarXUarXUbrf1+PFj1et1PXnyxD7XbDbV7XbVaDTU6/XU7XZt/8kymUzGluOmfE4mk5pOp0okErb+MR6PFUWRJpPJkedb9hr5fN5+d+LfMfNdLJVKSiaT9jtlvnvxur75jpnvqjlv/Hzme2q+7/HjAQC4CEx9stFoKIoiNZtNTSYTtdttW+808QRTjzTH1Ot1W6c0dVhzjKmTmmM2qWOa8teUx9VqVYlEQtVq1Zbfptw17WJTHpt6Z61Ws2WyKX9NXdPdnjUzjsT9iY9FOeq5zz77zMZxXNlsVrVabe7H/I7cfN9zzz33nK2DAcBFZ2Il3W5XvV5P7XZbrVbLlkP1ev3I58xj07Y16WVMzKNQKCifz6tUKqlUKimfz6tQKKhSqSiXyymfz6tardpyKv64UqksHL/Odbder+vw8FD37t3T/fv3dXh4aH/u3bunTz/91Mbus9msbt68qd3dXe3u7mpnZ2cu/dJLL3GtB3Aq6vW67t27N1ePvX///kJevV7XJ598YmPTRiaT0ZUrVxbqrDdv3tTOzs5C/osvvmhjzcBlUK/XdffuXR0cHNitKc+lz/8HXn75Ze3v72tvb09f/epX1W63dXh4qJ/85Cf6+c9/rjAM9dprr+nWrVu6deuWvvnNb9o+EeCiC4JAd+7c0e3bt8/7reAZ02639d577+nHP/6xfvzjH+t3v/udqtWqvvOd7+itt97S3//93+vq1atrnWsymeijjz7S4eHh3DX9l7/8pdrttqTP+w93d3e1t7dnr+n7+/v6kz/5E8YK4tQMh0PbX++rh7vpeBxB8tfF3Xp4PH3jxg2+zwBOxDdPe9m87WX9aCb98OHDI8cym34wt0/M13921D5Xr16149wAAP51OZZtfetxrHvMJutXuNd8d7vpc26eGY8CALiczLhGM87RzL+Jz9Mxc2/M+Egz9tGMhTTllJmbY8ZZxufl1Ot1SV/MyTnO/G8zn8GUPWZspJmPYMomM4bSbJeNjzRbM45y2RYAgJMybbj43FhTvprnTHlqytF4WWzKYLOvKb/NvtIXZa3Z15TT8fm2mzBzA025a8pWU77G58Kafc24z6P2decnmvalKZfj+wIAng2mjWnE14KQ5td5kDS3LoSkufJQ0lxbVNJcmWqYctgw5ec672k6narX62kwGGg6nWo6ndry1qx5PJlM5srfKIrO/X4MQRDY8QyJRMKuQ2HWDkokEspkMjbWG4ahstns3HrPuVzOrnFgynyzJkEqlZpbbyCVSunKlSu2nM9kMrp+/bp9P/E1MKTFNS/i62JIIg4NAMfglonS4rqcbjnrO8YtJ91j4ms6LTvGXe/Pd4w71949xi3zfce49YjT4q5zF19Hx3DLLvcYX/vXPcZdP893jLtep3uMW+b6jnHL3fiaV740AOB4jrPm7tOyj9sOP03Hue/Nee6zrfOy7i4AXF6+ctL0/Rq+9rqvbe1rO7sxdWmxbe97Td8+7ntdZx9ff7Xbnj9un/Zx+Nrwbrt3nX3ia0sbbnm8zj7S4r1819lnnfvzcQ8/AHj6nff9fC7D+zhtFz1ecFrnXXd9SADA02Nb5f9lOc6Xt8mc7m047n36nrbjGDcIADDcMYmS/x6S6/S7+OYXnKQvxn1vvn4P9z24Yx3XGYd5lv0pbhnsu7+l23fhjkP0jV08r/P6+mzWOS8AANtwmnGNyxJrOat5HsZFjXOc5XGMKQUAGL54gjvHdJ05pW55Hl8/yXDjH+56De57WWeO6TZe97SsmgvqizW4cQ+zzqHhxjTWmbfqvq5v3UT3dd1xH+58U3esqXs8AAAAAAAAAADAOXk7mJ3VSmYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABb0u/3NRgM1s4/zjHbPNdlfc+tVktRFHmfO2/ZbFa5XG7t/OMcs81zXeRjjjpXuVxWGIbe5wAA2JbpdKpmszmX1+12NRqNbHoymajdbs/t49ZVRqORut3u3D6NRkOz2cyeo9VqqV6vK4oijUYjDYdDNZtNDQYDRVGk8XisTqej8Xis0WikyWSiyWSibrer6XRq0+PxWOPxWLPZTFEUaTKZ2Nc5ShAEdhsEwZnVtZLJpEql0lxeqVRSMpm06XQ6rUKhMLdPpVJRIpGwabfeEASBqtXq3DH5fF6ZTMamwzBUuVye26dYLCqVStl0KpVSsVg88rUzmYzy+fzcPrVabS6dy+WUzWZtOpFIqFKpCAAAAE8PU1+X5tsEzWZT0+lU0hftgNlspkajIWm+3RFFkVqtliTZNoA036YYDofq9XqS5mOovV5Pw+FQ0ny7Zdn7Oq54XTZepzZ15yiKlEqllM1mNZ1OlUqlbP0+DEMlk0lNp1MlEgklk0mNRiOlUimFYajBYKB0Oq3ZbKbhcKhMJqPhcKgoipROp+3vIwgC9ft9+3syn888P5lM1Ol07H7L4szriLdZ4vV60y6I/w7i7RLTron/vuJth3jbw7Qf4m2fQqGgdDotSapWqwqCYO69uO0brOZ+F3zfjYuct+3zx68NZymdTiuTydhYhblGmGvjbDZTGIY2/j+dTu01w8QrTJ7ZP4oimy9pLm6ziVQqNfcjff5/m8lklEqllE6n5/7PzWfJ5XIqFAp2X+nz/+FSqWTzMpmMyuWyfZzNZpXNZnX16lUVi0V7Tvo+AGxL/NpvHrtb33Pr5q27/0nLG3PdjV9/j8o7jWPij+N1NJyPZd/FRqOhR48eqdVqqd1u68mTJ2o0Gur1eup2u+r3+2q1Wup0Oup2u+r1erYtMRwONRqNNB6PbX1iG0xdwZT7uVzOlvurvqOrtkcd4/axAABwEfnK9Hq97i3nj9quOiYem13lqPK3VqttVFYfdcxFL6t7vZ4ajYbq9boajYb98aWbzaZNt1ottVotG6N2FQoFVSoVlctllctlVSoVVatVm+c+Z56PP7dsLCkAXBRuGRUvp9zH6zy3qhxzy5142eM+Xuc5d0zctkynU/3xj3/U4eGhDg8P9dFHH+kPf/iDPvroI3300Uf6+OOPbfkRhqF2dnb05S9/WS+99NLcj8ljzB2AbXj06JEePXqkx48f28efffaZfWyeM3nuOPFEIqFr167p2rVrunr1qn383HPP2bTZPvfcc7p27drCWGTgMppMJvroo490eHiou3fv6uDgQHfv3tUvf/lL+39Sq9W0u7urvb097e/v2+2XvvQl/e///q/effddvfvuu/rZz36m0Wik3d1d3bp1S7du3dLf/u3fUtbj0gqCQHfu3NHt27fP+63gGffBBx/oxz/+sd555x399Kc/VRRFev311/XWW2/pu9/9rr72ta8d67z1en3u2n9wcGDbedLnY6xefvnluWv/7u6u9vf35+ZSAWdhMBjo0aNHevjwoR48eKCHDx8emXbr+5lMxtbxb9y4oevXr+vatWu6fv26nn/++bn0jRs3FuZFAsC2tVotdbtddbtdNZtNtdttdbtddTodNZvNuTFRrVZLzWbTptvtthqNhjqdjs1bJpvNqlgs2v65YrFox0NXq1UVi0WbV6vVbLpYLKpSqahUKtm0O28bAHC0dcfCbPqcyXPXRznKqnEyvuc22f+0+iQBAOfLlDWmHDLz4M08eTN3Pj633sy3N/PezfwjM1feLe+WlYHrMnPgzTztVVszd3zZ1swdX7UFAGDb1pn3u8kc4U32ja9ps4ltzJk8zlxMaXEtSAAAtiXexjXia0xLi2u9uWtv9Ho9tdttu8Z0u922afO8OWYymdj1O8za07PZTN1u1647PZlM1O/37WtGUaThcGjXaTL7SZrLOy+5XM6ugx2GoV2XLQgCpdNp5XI5u96UWecjkUgokUjoypUrc3M042W+u860u160u26bO99zm+cCAGzPcdZpvOzHtNttW3afFveeDk9b2r0nBADg5Nw48Tr3coqvtW64beR19vHdE8otL+NruRvr3DfKXdchvvb7sn1Ok7su8Tr3avLdL8msZ2747gO56p5K7mu7bWXfPaHc9+a2l9329FH3pwQAXH7baEef9z7HPe4s7wHhK09XtZufln0kxgYAwNPIN1bNV7b62uv1en0u7YtfuGPRffu4r+eLO7jjBNz6wDrnXXWP69O0zv2X17n3sxvLWOe87v0+fPezXnVeX1xinfMyvw0A4NYXfOW8b262W0Zv8zhf/cc9ztdXss3jTpOvr8N3/y+3zmDmBB51nBsrcMv/dfoy4veT9Z3TfR++uYNuv4x7TgAAjnIa4xQv+nnPsj6yjT6K0+r7OK3zMn4SAHBa3L6Z48Yr1o2ruHEcX7+K2/fim/vpGxfqjkFdp09JWhyXetrcGIMv1uHrm3HHbvriGb56hts/4+sbcusavvfkxnnceIz7Ou775d7xAADXRZkLelavu8k6wsdx3nM/N0lveiz1CAAAAAAAAAAALqy3g9lZzJ4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAp0u/3NRgM1s5/2o45q9fvdrsajUbeY85bNptVLpfb6LlN85+2Y45zrnw+r0wm4z0GAICngVsPiqJIrVZrbp92u63JZGLTo9FI3W53bp9ms6npdGrTg8FA/X5/bp96vT6X7vV6Gg6HR752p9PReDy26fF4rE6nM7dPq9VSFEU2PRwO1ev1jnzto+qG25ZIJCRp7vezav9EIqEwDJVMJhWGoRKJhDKZjBKJhNLptMIwVCaTUSaTsY+TyaRKpZKy2aySyaSSyaTK5bKt56RSKRUKBVUqlbnXK5fLCsPQpjOZjPL5/Nw+1WpVQRDYdC6XUzabtekgCFStVueOKRQKSqfT6/2SAAAA8MyL19HP+/Gy5902zHHFY5GbPk6lUkqlUoqiaK7NkMlkNB6PlUgkFASBxuOxUqmUpM/bUbPZTLPZTNLnba/pdKrhcKgoijSZTDQcDpVIJDQejzUYDDQej+1ndX8vJ/k9rPqMp/38sn3ddtFF5WvLnkfeRXkfktRoNOx3+6z4+hPOI8+0/aMo0mg00mw203Q6VSaTUb/f12w2s//b0ufXgiiKNBgMFIah/T/udrt2X+nzuMpwONRkMrG/73a7LUk2btPtdudiResw/3fpdFqFQkGJRMLGKEzcoVQqKZlMLuwbhqHK5bIkqVarSZLd1/TjmLiIJFUqFSUSCXue+PEAcBKm3DFl0nQ6VbPZlPRFLHsymcxdN6MomotZm1j1UeeIx8GPOsemUqmUisWipC+ulfF4sLnGmmtr/PpZLBZtXdQ9R7yMcs8Rv97H48rmWFxc5vtutqYfyGzNd9NsTV+S2Zrvs9l2u131ej11Oh31ej3btphMJur1eppOpyfqtzFtIVNHSqVSSqfTSqfTymazymQyKhQKymazqlQqymQyunLlirLZrK5evapSqaRarWb3Mf0qxWLRWxe5LG0IAABcbqwvvq3X60uf2/QYd5zJUdx4nW9bq9VW7rPqmKdtDMN4PFaj0bA/9Xp95eN42jc2Op1Oq1arqVqt2h+TrlQqqlarKpfLKpfLqlQqc49rtRp1JAAXklteuY+Pes63nztO0uWWQUc9Xue5ixZD6ff7+u1vf6vDw8OF7e9//3vb11AoFPTlL39ZL7300tyPyXvhhRdsXyYArKvX6+nRo0d69OiRPvvsMz169EiPHz/Wo0eP9PDhQz18+NA+b56Ljy+XPu9jfO6553T9+nVdvXpV165d07Vr13T9+vWFPPMYeJqNRiN9+OGHOjg40OHhoe7evauDgwMdHBzYuSA7Ozva39/X7u6u9vb2tL+/r/39fe3s7EiSZrOZ/vu//1vvvfee3n33Xf37v/+7er2eXn75ZX3729/Wt7/9bb3xxhv8P+GpEQSB7ty5o9u3b5/3WwGsXq+n9957T++8846+//3v68GDB9rd3dWbb76pt956S9/61reUTCZP9Br1en2urDCP33//fU2nU6VSKb344ou2rDDlxp//+Z/bMQbAeRsMBrb98ODBg7m2xIMHD2ybwqTN+B8jk8nY9sONGzfm2hLPP//8QtqMZwSA87JOTHydtMlbxu2j9cW7V8XHTdqdyw4AOJ51xwP5nltn/3XHBR13LJDvuWX7U3YAwLNlk/Flw/CQAAAgAElEQVSt29huug7tJmNcl81533RLWQgAOC3xuc9m7KyZK2rKSzN/1MxDje9rylGzr5l7Gt/XzE01+5p51PF52pswY27N3BFTXpp1KOJrZZp9zRwIs3aFmUtt5kibctecy8zJNutgxOdcAwBw0Zn2brysNWtJmPLYrDc+m8308OFDW96b9SM6nY6m06na7baiKLJl/2Aw0GAw0Gg0sutemdcwrzkej491v5cwDO263Gbuotkmk0lNp1PbNg7D0K6vFwSBgiDQZDKxY8rNei6nwV0b7CTpi3QuYg8AcHbc+2rE29CGey8Ot+/WTbv393DTbhzcXWfWTa9ak9S9L4mb9t07ZNvM2lDL0m7Z5qbdOb3u+glu2sQUlqVNrMFw17xw0+790dy0e28QAMDp85Vf7lrY69ybyy03fWW9W/bGY/Wb7OOW8evcB8x9f757km2bibUb7trRvntguWW1W/a6Zavbzr0IrwkAeHr5ytx1ymV3n3XK93XqCevUN3z7rFNv8d0v5LjrpR+H296O359i2T5u/75bD4ivoW64cYVV9QL3Nd12/ap6gvs5uLcGADy7jnPfsG3da+y8jpHO7v5j69wPbFV6W/uc5Xkv2rqmAIDz466t7Ru/7yurt3WcLz6yznFufMTtn3Hfjy+msWpd8W1w+/VX9U1Ii2MX3JiDG2OI32tu2TnduIY73sHt33DP6cYp1ulDAQBgXZcpzrGt87p9NKfpssUstrEPYysBAGfhuDENXwzFVzdw+0ni97U3fGshueM1fOM/3TGjvriJb7ysO0fluOtAbGLVHAo3huHGXjYdH+KLeWw6z2TVvJFV40cAAJD8dY14/cAtv91xpO7xbl3CrSO4/SyrYhlufcKtJ7h1oKPe+7a59YFVcQO3bHbLcrefxq0LuHWFeJ+MW9dw6yJuXSX+2u6xxDsAAAAAAAAAAJfY28HsLGaLAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2pt/vazAYrJ3f6/U0HA4X8rvdrkaj0UJ+p9PReDxeO3/ZeSaTidrttvcztNttTSaThfzRaKRut+s9ptlsajqdLuQPBgP1+33vMfV63Zu/7HcynU7VbDa9x5y3ZDKpUqnkfa5UKimZTC7kp9NpFQoF7zGVSkWJRGIhP5vNKpfLeY+p1Wre/Hw+r0wms5CfSCRUqVS8xxSLRaVSqYX8oz5nuVxWGIYL+Ud9zmq1qiAIFvKXfc4gCFStVr3nAgAAZ8Ot1552+jxec1l9eNt8dR437yT7JBIJTSYTRVEkSQrDUOPx2Na1gyDQcDjUaDTSeDzWZDLRZDLReDzWYDDQaDTSZDLRYDCw6WV1eyMMQxUKBRWLRWWzWeXzeZVKJRUKBZufy+V09epVlctlZbNZFYtFlctl5XI5FQoFlctlZTIZlUolW5ddVm8EAAAAjqvVaimKIs1mMzUaDUnzMfB4nNrsG49RL9vXxMrj+0ZRpFarJUkaj8fqdDoL5xgOh+r1epKW9ydsKh6zjcecTSw5Hm+Nx4vDMFS5XJYkpVIpFYtFSfOx3kwmo1QqpfF4rEQioUQiodFopDAMlU6nNRwOlUgkFEWRRqORcrncXHtkNBppMBhoNpspCAL7meOf3c3zPbesD2Qdpi0Vb1O5eUc9t43943+Po6zTVl43b5vnOos83z7L+pFO2zpt9HXztnmus8jz7bOs/0la/P/15a3zP36cfY8T19nk/3vb+y7rXwOAVeL1TVMHNXUjU7eMjwsx4zPMdTJe/2w0GprNZvZaGj+3OWf8XKZ+HD/HpsyYhHh901wTM5mM8vm8pC/qSqbciddbfecw9d5Nz4HLx7SnzNa0tczWfGfN1rTLzNZ8z83WtA3jbUTzf+Nu12W+b6lUSkEQKJFIaDabaTabaTqdKooiTSaTpW2aMAyVz+eVy+Vsn0m1WlWxWFS1WlW5XFalUlG1WlWtVtNzzz2ncrmsnZ0dlUollUqltdobAABcVOvGB/r9vur1+tr7usdsEmNcNwYQ39ZqtY2PuXr16tK4y7PC/I1W/cT/nubnwYMH3jHt5u+x7k/8b7izs8O4FQDnyi3vfNfATZ5bNv/HcMsw9/Gmzy2bH3PZ1Ot1HR4een9+//vf299prVbT7u6u9+crX/kKZQqAlfr9vu7fv6979+7N1XV9eSbfZeqx8TruzZs3vXkvvPDCM98GwbOr0Wjot7/9re7evauDgwMdHh7q7t27+uCDDxRFkZLJpF566SXt7u5qb29P+/v72tvb02uvveadZ9vv9/Uf//Ef+uEPf6h/+Zd/0R//+Eddv35d3/rWt3Tr1i195zvf0Ve+8pVz+KTA6QuCQHfu3NHt27fP+60AXlEU6T//8z/1zjvv6Ac/+IF+9atf6erVq3rjjTf05ptv6p/+6Z/s2NltGI1G+vDDD3VwcLBQzpixbzs7O9rf358rZ/7sz/5Mzz///NbeB3AahsOhHj9+vLSt4qY//fRTzWYze3wmk9GVK1eWtlXcNDF6ABfdsnj8pulHjx551w4z1onJL8uLp+mPBoDTt2o806bPuXlmTPQqm45pOmqc07LnGKsMAM+uZfN3Vs3nWbZ15/ksm/ezCTNmyd2aOWzLtmats1qtZo8z6/CaeWxm7popF4+acw0AwGkw811NeWrWYTFzv+NrHblzzM2+Zn6ub18z39aUx+Z1Nl3Pw5ShpqyNr3Vk2pSm7HXLarOmv5kLXigUlE6nbflr2qamXDbrIsXnnQMAcJnE13oxZa+JC8fXfDHltJkba+LHpmw3+8bPZ8p4U7abMt2c4zjrHubzeYVhqGw2q2QyObe+RjqdVhiGCsNQiURC2WxW0+nU3q8nl8tpMpkokUgoCAKl02mNRiMFQWCP6/f7CoJAyWRSs9lMvV7Ppt17Jrnv371vk/mdnYb4munuvX/ce/SYeowRn2/l1mHi6+G453XjEPFYfXy9HWl+LUr3PkOmfiVxDyAAuGjcss5Nx9c19qXdexLG2/6+tHs/QDfti9G7a3G5abf8ddOr5jmf1Kr1VN0y00275bhbVrtpt5x10/F1nn1p9/Xj5bQ0X2846n6DAIDzcxHvvXYa5zyLdeGPs1b6ttNn8RqMMwCAZ5eJ68e57WrfPm7bep19fOvHu21y9zzuMW7cwY0r+OIGZx0H8MW43XueuvcDMWMSDLct7sb03bb7qtiAr/3ujr1312Vz36O7dj71BwCAu4a22x8gaWHemVvW+8rudc67qg7hO6/bd+/WK3zndWMRbp/FaXLLfzeWLy3WIdz+BGmxHuKW4av6DFb1Oazqs3Dfk5t26zUAABzlIvZVnNY5T3OcoXER+y9O65xunQgAgFWOG7NwYyFuP8e2zrutGMuq854mt1/CjVm4/RJuv0W8fHf7Ztz4hhuvcOMRbhzG7adxYzDue4/3uTCmEgBwkV3EsaVnMXZ12y5DPOSkabc+BAB4tp13eb5JetNjN7l//CaOKms3KZdP47lN9mWcKAAAAAAAAAA89d4OZqc9cwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAM6XZbGo6na6d32g0NJvNFvLr9fpC3mw2U6PRWDt/Op2q2Wwu5EdRpFartZA/mUzUbrfXzh+Px+p0Ogv5o9FI3W53IX84HKrX662dPxgM1O/3F/LPSzabVS6XW8jPZDLK5/PeY6rVqoIgWMjP5XLKZrML+UEQqFqtes9VKBSUTqcX8sMwVLlc9h5TKpWUTCYX8lOplIrFoveYSqWiRCKxkH/U56zVat78ZZ8zkUioUql4j1n2OQEAwLPFrWu6dVK3TuvWfX11ZLeO7dbF3Tp7q9VSFEU23W63NZlMbLrT6Wg8Htt0t9vVaDSy6V6vp+FwaNP9fl+DwcCmz6K+69ZH3bpeuVxWGIY27dYfi8WiUqmUTbt1tXw+r0wmY9Nu/c+tQ7t1ynQ6rUKhMPee3bql+xq+uqT7Pn0ajYZ6vZ663a5arZZarZa63a663a6azaba7bZNNxoNdTodm67X6+r3++r3+/Y88b+tT6FQUC6XU7lcnntcLBaVzWa9j3O5nEql0tLHy+r3AAAAePaY9k28rRRvY8TbL7594+0T377xNplv33iba9m+x2XaMclkUqVSSdJ82yJe/zfth3hsPd5miJ8jHhePt0VMOyWKIs1mM6XTaXU6HWWzWftZxuOxwjBUr9ezbSrTJjW/k3jfiPk9mrZDvA3r29+0T0/y+zO/N9Mui/cdFAoFBUGgdDptP6v5XWSzWWUyGU2nU9uey+VySiaTms1mtg1izmHa0UEQzLXvJpOJwjC07TffZzlu3jbPJS2278+K20b29Ttd5Lxtn/8yt3HNd8hsTYzIxIbM9djsE79mmviTu6+5lsZjXGZfc/7jXCPMdTB+nTTxIXM9NX8fc52MX0fNtcXsa64x5joav9aYfc3f1o3pAMAmTF0pXo8ydSZzXXSvofHrrYnvm+utGZfiO5+5npvr7LKxMKuY66uJo8froiYWH4+Ru/W3+PXXXHdXncPUh33nwNPFfD/Pauv2ga1i6hPLttLnbbIwDBUEgYIg0HQ61Ww2UxRFto1k/l/7/b7t0+l2u0vrQOVyWZVKRZVKRdVqdW5rHpsf3z6+cWAAAJw3Ux63Wi2Nx2M1m01bnzVldL1et/VWE4NsNpsaj8dqtVp2f7dsN/Vk3xj1ZUw7v1KpKAxDVatVGw8w8QFT5pu6sDmmWq0qkUioWq3auq05xtQVzDHu+BWsZzAY6MmTJ3r8+LGePHky9/P48WOb32g07E+9Xl/6HSgWi7b+VKvV5upTq9LLxr8DwGlYNdbPPO50Omo0Gup2u+r1emq1Wmq327bNacYCHhV7N+VeqVRSoVBQPp9XrVZTPp9XPp+3z+XzeRUKBVWrVbuf77l8Pu+dY/OsGI/H+vjjj3V4eLjw8+GHH9rYXSqV0osvvqjd3d2Fnz/90z+1MTMAkD5vR5l6br1e1/3793Xv3r2leQ8fPlwYM5DNZlWr1VSr1XTz5k3t7OzYtC/vxo0b3vmXwLOsXq/r7t27Ojg4sNvDw0P97ne/s2OyvvrVr2p/f1+7u7va29vT/v6+9vb2Vsbrf/e73+lHP/qR3nnnHf30pz/VaDTSX/3VX+nNN9/UP/zDP+i1117zzuMGnjZBEOjOnTu6ffv2eb8VYC0HBwf6wQ9+oB/+8If6r//6L6XTab3xxhv67ne/q3/8x3/UjRs3TuV1J5OJPvroo7ny6O7du/rFL35hx4PUajVbFsXLpa985SuUKbiUTH/BsnaRm/7000/n5lZnMhlduXJlaRvITe/s7PC/AuDS6nQ69sesL2DSrVZLzWbT9jG0223bz2D2qdfrc/0Sy+RyORWLRZVKJdt3UCwWVSwWVavVVCwWbV61WrVrChQKBVUqFbv2gMkHAJwP0wexbNy177lN9l+2NqnLN0a7VqstHb/te+6o/a9cufJM92MDAOaZOXrLttIXayms2vqOn06ndttsNpeud72MmXdnxh6bOX21Ws3OrTNjvsy8aTMfz5R/Zv6zOVd8vLQ511FrQwMAcFa2PXd4nXOu21Y1jppXvGru8XG33L8AAHDZbaPMPk75v2k5Lx2vPM9mswqCwK5vmE6nNRwOlclklMlkFASBEomE0um0MpmMoiiaS49GIzsuxb3ngLsmkLu+f3ytFPf+BO6+8d+He974eZbd8+uk3HX54vcNcO8lFV970703lbvOW3xtf/deAPG53PE1jaT5+w64cZFN3isA4OJbtd7vZU+79wvaplVr9PriIhf92GX31gQAnD9fe9S9z557Xz23HHTLSff+0m5//UV5zW3z9f+79+9z18p3+yLcMtS9357bXve9plvuxtvwbjvdbdO77X/3/S67jzQAAGfdLj+P1zzNWIBxkra6L30a59zGe6JOAQAw3PuU+O7f48YM3DLa1+Z37xnoxg3WOW/8fkPrntes1b5uetvcdv6m5bQZj7Es7cYN3LQb53DT8TEJvrQbh3DTrCsPADiuixiHOI1zbuP+3uu4iPGK0zinWxcCAGBT7jwDabGvwbf+gTtewp2f4DuvG7Nw53TE7x3mxlLc9+DGO9zXN/evMza9D+0m3DEO7hgKt/x2YxVu7MGNLcTHV7jjL9zxGe58BjcO49Yd3LiIG+dwx5MAAHBRnfe8jbOIwbh9Rtt2EeIcp50mjgIAz7ZVsYTjrrXgxiDi8Q13/EU8nuLGOo56jbOoF7jxjHiM4Kj1HE6yDsM21oxwX58xGwAAAAAAAACw4O1gdpq9zQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAF1e/3NRgMyN9SfqPR0Gw2W8g/L9lsVrlc7lTyT/PcFzG/WCwqlUot5AMAAJwHtz66aXob5zjtdLfb1Wg0OurXcGJu3e9pS0tSrVY76ldw4Y3HY3U6HTUaDfV6PXW7XbVaLbVaLXW7XXW7XTWbTbXbbZtuNBrqdDo2Xa/X7eNOp7P0tcIwVLlcVrlcVqFQUKFQUKVSUalUUqFQUD6fV61WUz6fVy6XU6VSmXtcKBSUzWbt41wup3K5fIa/LQAAAJwG01aJt1lWPT6LfTudjsbj8Yk+m2lDxNsSqx6fxb6FQkFRFC39/L5tu91Wq9XScDjUYDDQYDCw7QJJGg6HGg6H6na76vf7Gg6HGo1Gc/uPRiMNBgNNJpONf5fJZFKpVEphGCqZTNofSQqCQIlEwj4XF4ahwjBUIpHQbDbTeDy2+yYSCU0mE5tnzjMejzUcDhUEgc0z7z/uPPqs1u1POu28i/I+JKlarSoIAuF0rXOdWGe7ybmazaam0+na7/Goa9+y7bb2LRQKSqfTW/6tA3hWbOOauc6+vn3a7fbGdbNNrqHr7LPp+S57TB7rMX1Y5jvaarUURZGtH9Trdc1mM1snbzQakqR6vT63jT8/m83s8WZrzmu26zLfS/c7mslklM/nF7bpdNrWFwqFglKplB0nVSwWlUwmVSqV7Na0Yzqdjv38o9FIjUZD9Xp97seX5+v/y+VyqtVq9qdarc6lTV6lUlGlUrGPa7WaKpWKEonEFv6yAACsx5TXw+FQvV7Pxmrr9bod49Dr9TQcDtVsNjUej9VqteZimePxWI1GQ6PRyI5nMOXpeDxWu91e671UKhWlUimVy2Vb5pdKJaVSKVWrVVt+m3Lf1A1MWW/K0VqtZsdMmDqAOZ+pN+BsDAYDPXnyRE+ePNHjx4/t43ieL7/X6y2cq1wu68qVK7py5YquXr2qK1eu2HqVqW/Ft/F8N5YNANvijuVrNBo23W631Ww2bdo3TtBNLxMEgarVqorFoh0LWKvV7DjAUqmkcrmsfD4/Ny4wn8/bMYTuc5SHx1Ov13V4eKi7d+/q4ODAPv71r39tY3+1Wk27u7veny9/+csKw/CcPwWA81Kv13Xv3r25+OL9+/cX8ur1uj755JOFsiGbzS7EGW/evKmdnR1v3rVr1+hXBTZw7949HRwczJXzv/jFL/Tw4UNJn4+Zefnll7W3t6f9/X3t7u5qb29PX//619eO60dRpP/5n//RD3/4Q73zzjv6+c9/rnw+r7/5m7/RW2+9pTfffFM3b948zY8JXEhBEOjOnTu6ffv2eb8VYGOPHz/Wj370I73zzjv613/9V3W7XX3jG9/Q9773PX3ve987s+u6Kcfibdb/+7//06effirp8/jq1772NVt+7e/va29vT6+++irtVDxVTL/EsjaXLx3ntrvcNpcvDQBPq36/r3q9bscGmGvnpmmTt4y59pr+//h12M07ap/nn3+eeg0AXDDNZlOTycQ7Ni0+riw+38Idh3bUuLV15ySbMWemzKhUKspkMrb/PZPJqFqt2vFlmz5PXwwAYB3HmSceb2Ntst1kvvi6cxF923ibbJ1tuVym3QYAuBC2tZ7LJusOHHc9l5OsJbDpljYuAOBpcJrrs61zrnWdZll/1DnWbZsvWz90k+cuwnk2XdtmXcvWIN3Wc2d1Hta2AYDLb1tl6EU6dtMYyro2KTPd9Hkdu+pc3HsUAC4n9x4LbtvVvbehW1aacXjGZDKZW9vNrCV3nq9p1ps9DWZNOcOsQ2e4a+mYNWeN+L0V3HOZtWsNE1NZ51yJREKVSmXtc7nlOPd8AACs4pav8fXhDbM+vOG2sd17I7h1ADNu3zB9IIYZ32+4dYJ13uOqesk27lm2ilvuun0nbjnt1i/c9rlbHzFr3xpuncOsJWi49Qb39eKx/FV1DsZ9AAA2cZLY/2VIn/Z9LrcZ/1+VPsvXkhbrIwAArMstf91YhBt7cGMNvv4FN97hxhLcc67q0/DFK1b1m7gxEnPvntPmxjDi/RRufMGNR7jleTz+4cYX3NiGG1+Ivw+zZoPh1iPcvpT4fS/d9wgAwGk4rXGQJ02f9FzHuf/1us467nCWMQ/mSwAALpPz7ldZld7GOU5rrqfh1gV8eZct7ctjvCkAPBsu03oORz13GjGNZbGFdR6f1zGsvwkAAAAAAABgi94OZqc5aw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADH0u/3NRgMnon8037NXq+n4XC4kH9estmscrkc+VvKr1QqSiQSC/kAAADPiul0qmazadPD4VC9Xs+mO52OxuOxTdfrdft4PB6r0+nYtFunbrVaiqJorddx693uuQaDgfr9/tLjR6ORut3u0vd2GkqlkpLJpE0XCgWl02mbzufzymQyNp3L5ZTNZm3araNmMhnl83mbTqfTKhQKNp1KpVQsFm06mUyqVCrZdBiGKpfLNp1IJFSpVGw6CAJVq9W5z1Cr1ebS1WpVQRDYNPXls9VoNNRut+1Pq9VSo9FQq9VSt9tVt9tVs9lUu9226UajoU6nY9P1el3dblej0Wjp6+RyORUKBZXLZZXLZRUKBRUKBVUqFZVKJRUKBeXzedVqNftcsVhUtVq16VKppEqlokKhMPe9BgAAwNkwbaZ422nV423uu+z5drutyWRyos9m2krxNtOqx8ueTyaTtt2WyWSUy+WUSCRsOyeTySibzWo4HCoIAtuGm81mkj5vl8XbdfH2sfvZjcePH2s4HGowGGg2m2k4HKrf76vb7WoymSiKIo3HYw0GA/V6Pc1mM1t/73a7iqLIpsfjsSaTiUajkWazmaIo0mw2s+eJ502n0xP93k+T+d0bQRB4+23cvHX2uUh56x7nxgsAE0Mz11CzNXE5szXtfRNHM1v32hx/3O/37b4mfubG0dZhYkhma2JIJnZktuVy2caowjC08TOzLRaLSqVSNo5mtub/wlzT3TgYAGwqfj2Nb6MostfdVqtl+y7MdjabqdFo2K30Rb+IOY+5xpprdLz/w5xrE6ZvIB7zN9dbc/0010lz7YzH/8012FxjTf3Ddz5zfXbPh2eXW49YZ1uv1zc+ZjAYzPUbrsNt75321u33W+d3V6/Xj/y5f/++7t27Z9OPHz/29t9ks1nVarWNf65cuUIfDQBgq5aV9UeV/5vsHx9zdJR4OV2r1RbKbl/eJvszFubiq9frc/WodX7u37+/cJ516lk3b97Uzs6OTV+7dm1u/BcAHJdbJprr1SZp8/izzz47sk3tlnfmmnacNOXk2RqPx/rtb3+rX/3qV/r1r3+tDz74QL/61a/0wQcf2LpTsVjUK6+8oldeeUWvvvqqXnnlFb388sva3d1dGAMM4OkULyfcmKMv78GDBwt9FeZ679Z/l+Xt7OzMzSkAsLnBYKD3339fH3zwgQ4ODvT+++/bMt/MnXrxxRf16quv6utf/7q+/vWv69VXX9Xe3p6ee+65Y73mkydP9N577+ndd9/V97//fT148EC7u7u6deuW3nzzTf3d3/0dbV4884Ig0J07d3T79u3zfivAiQwGA/3bv/2b3n77bX3/+99Xp9PRN77xDX3ve9/TP//zP+uFF1448/f02Wef2TLPbN9//319/PHHkj4fH2PatvGy75VXXqHfG8+EwWCgJ0+eLG3L+dJxbp+H25bzpQHgWTQcDtXpdOx6DO12W51OR+12W/V63T7udDp2HYd4XrPZVLPZVKfTWbrmoFmzo1QqqVQqqVgsqlQqqVar2cfFYlHlclnVanUur1KpqFKp2DzG8ALA5VKv1+08kvgY+fF4rGazaefsmfl79Xrdzutrt9saDodqtVp2TqD7/Kq52aYMio+Dy2QyKhaLKhQKymQyJ3qe+DEA4DjMfDEzr7Jer9v5lmYOpyk/TblnxsWZMtHMozflYfxcZp6nOde6TNlm5ouZeZXValWJRMJuK5WKnYdp5lqa+Z5mfJ05lzlHrVazc+nddSMBALgI3DVq3LVo3DVoTFntrscQX0PBjGs26zCY8tpdL2dd8XVoSqWSXWPGlMem7WrKY7M2wrIy3oyB95X17jrNAABcdqZcNuWxKYfdst+U+aasN2V8fE0lt2xfda5NmPLblOumnDflf3ztJHd9u1qtZmPibpm+qh5xnuLr6pi6lRG/X0D8byAt3nsjvn6Ve5+N+P1C3Ht+uPf4iM/rd/+G677XbYrPg4vHVNz7ZsT7LGMhlQgAACAASURBVNy1CONzH+P3+3DvxRFfQ8j9bsTfR3xNUPd+H6auKS2/3x0A4PIz9SFJC30RbvnplpHxMtstl901f91y+qj7eG1yrFuvOM17dLlracfLSrc8d8tw9z5d7np/8fLZLZPdctist2nE76/l9tvE6w7uc+59uQAATw/3viFHpTfZ9zzP5dYHtmnVfTaOSp/k2NM+N+vxAAA24bb53bLYjRG47W83zu629aX5mL20eC8Ld9yFe/9wtz7g9i2suo+3795q2xJvf7tjNNz2uDtvId4+d4/dJCawKp6wSSzCjWMAALCJixpr2Eb6tMYSGKcZZ7gI6Xi/CgAAx+GOD5AW4wtuPMEtz914gS+GcdQ4Cjce4cYz4vEP97U2GTexTUeNdXDHHW4zjnFULMIdU3GS9wgAwGm6rHGNixzjOM/4xEnPtel9ngEAuCjOu3/lLF5j07U+NnVadY6zqtusGn8CAHh6xPtJ3D6OeD+F+1y8byR+jniZ644TjfeJxMvi+DHxcZ1uX0i8j2ebsQp3nme8zyHeHxFff8Hti4iPCY33lcT7KNx+kngfSrysjZfD7ljNeN8JcQcAAAAAAADgwnk7mJnIKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJr6/b4Gg8Fa+Zvs+yzmt9ttTSaThfzzks1mlcvlnun8bZ07n88rk8ks5AMAAODstVotRVEkSZpOp2o2m/a54XCoXq9n051OR+Px2Kbr9bp9PJlM1G63bdqt52/rdcbjsTqdzlqvs02ZTEb5fN6mC4WC0um0TVerVQVBIElKJpMqlUpLj02n0yoUCjadSqVULBZt2j0+DEOVy2WbTiQSqlT+n727+43juu8//tlncpf7MJJIiZQU1Kob2yIiIFGKxBdFgQJNUfycNmlq1UDTpFfpP9SbojdNXSARlASp0Zsk6EXRNggaG0jsSLURV0YiiZQoUbOzT+Q+cX8Xxhl/d/aBu9zlk/R+AcTMnDk7O6K4e77nYc4phsexWEylUqnvfj3P6zu29ydJxWJR8Xg8PC4UCkokEuN+BXgOuc+17/uqVquqVCqqVquqVqsKgkBBEPSlubzRNPt5jyoUClpaWlIul1OhUFChUFAul1Mul1OxWFQ+n1cul1M2m5XneeG5paUllUql8Difzw/8XQMAAGA4V8eydbEgCLS3t9dX53L9NN1uV5VKRZLUaDTUbDbV6/VULpclSbu7u9rZ2ZEklctl9Xo9tVot1ev1vuvYemO9Xler1eq7zkGl02ktLCxI+rhfwtVtXD0rFouFfRLpdFrpdFrdblepVCqMH7PZrDqdjnq9Xpg3mUyq1+up3W4rnU6HeePxuFqtluLxuFKplHZ3d9XtdsP3TSaTajabajabSiaT4X1O2lc4LO2w6rrjxGIxxWIx9Xo9SQq3k4rH40okEorH44rH44rFYkomk0okEuFPKpVSOp1WIpEIz2UyGS0sLCiZTIY/i4uLYT06mUwqlUopm81qaWkpvMbS0pIKhULf38CkfV2TpuXz+b7/U+A0cd8t89pOck1XJkzKfe6Oauv2AeCgXEzrti5Wdtvo9+Ko70z7mkaj0XfNer0exujR/pFJuL4Ct3V9BW7r+gZcn4frz7D9Eu61LhZy35+ub8P2Wbg22mgfCjDPWMT3/bF5ov2M+xkWK3iedyjxR7S/7rBVq1U9ffpU29vbfVv3Ez12P9HfXzwe15kzZ3TmzBmdPXs23B/243le+FMqlZRKpY7s3wsAOJ0mLeeHnZsk/6TPI0wbEww7Ny6NGPnZU6lUtLW1pSdPnvT9bG9vj4y77Pg4J5/P98Va0XhrVPxFnAVgGq5stGXnsONx59zxfm3/rvyz5eIkx8PORcfB4mTyfV93797V3bt3dfv2bd25cyfcd31Knufp6tWrWl9f15UrV8L93/md32HMJ/AMaTab2t7eDssN97O5uamNjY2BtPv376vVavVdw5YFnudpbW1Nq6urfWk2fWVlhXEcwCEKgkAffvhhXzl/+/ZtffDBB+p2u0omk/rUpz7VV75fvXpV165d63sG6qB+85vf6Ac/+IF++MMf6r//+78Vj8f1B3/wB/p//+//6bXXXtOnP/3pOfwrgWdHLBbTzZs3dePGjeO+FWBudnd39ZOf/ES3bt3Sv/7rv6pWq+nVV1/V66+/rr/8y7/UxYsXj/X+ms2mPvzww7CMdHXiX/3qV2o2m5Kk1dXVsIx09eLPfOYzOn/+/LHeO3Ccdnd39fTp05H1Rnu8ubnZN8eAtH/d0R6vra3RzggAI4zrE5o0bXd3d+B72hrVDzRpmju+cOEC/QkA8AyYZjzgtOfHlUfONOP/pj1/1M8JAACeXYfxrN2o7TRzmEz73N1B8ri5QwAAOKnc8+vRuSWic0ZE54pw6S6fe53L467rnoFz88BNM2ePm/fBzXXt5oxw5axbE8Y93+bKXTd/hJsjwtVvPc8L56Rw8064ebKj82cDAPCscPM6uXlX7Ryprlx2dWlXfkfjAVf+uzlX3Tocbuuu7bbRNT3248r4aFnv6tf23Liy323dvFPDYgFpcI2LZ010Hlw7p670yfy80uC6KHZuo+h6K+7vQlLfPL5S/5yydi7g6L24WHHYe9v7GrXe40FF1zqx7TXROND2jdj5HKPrqdj5W6Nrtdi/MTsXQ3SNFrvuhJ0jNrpWC+1LAPB8ipaHw+ZMniTvSX3tvNgyNDrn+mk5x1pUAPBs229N0ug8w7Z+HK2bR68VrfOPu1a0jr7ftWwdfr9rzVO0Dh+tS0fL0egciHat0v2utd+6rdF1T219f79r2ddG13QFAGBWJ7GeP0veSedWPohJ6+r7HR/Va/fLy9pyAICDirYDRI/turzDju04gEmOo+0M0eP94gM7PmHYcbTdIno8b9E2A3scbX+Ilt92DEK0jcC2H0THLthxAtHxCm78zKzvDwDAYTgJbRGzvDZ67jDjjGet3SLarwIAwGGItllE2xyibQjRcRTReSjss67RsRDRZyai7SnR9pD94ohof4gdhyFpojmmDso+FyENtnVE+x+iYxrHjZcY14Yxrg0lek/2PcaNsaR9AwDwrInGFNF4JxqDRGOU/caZRuMjG4NErxWNrWz8Eo2VovcZjX2mmVNkGtEYwrZHRJ/J3G+MqO1DicY4s7xP9FlQG+dE+4Nsnw8A4PSy5Xm0fLVlom2nsOVudG4O20Zgy2Pb9mDL/Gg5bds/bCxgy+9oDDErW3bafVvW2bLYtkXYcta2Adiy2pWntn3BtkPYstyWt7YdIVpmAwAAAAAAAM+gW7HeYfTSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwTHZ2drS7u0v6nNLL5bJ6vd5A+nFZWFjQ4uLiTOnzuMazkJ7P55VMJgfSAQAA8HyL1g3s8bhzs+Q9zPepVCrqdrvT/hr2FY2zxx1Pk3eW187yPrlcTul0etpfA3DsdnZ25Pt+38/u7u5A+rA0lz6u7WNhYUGe58nzPC0uLvYdj0qLpi8vLyuVSh3xbwYAAOBouDhLkoIg0N7enlqtlp4+fapms6laraZut6tut6vt7W21Wi3t7Oyo3W6r1+tpe3tbnU5HzWZTzWZT0sd9U51OR+12O6zf1Wo1tdtt7e3the9nr+PSWq2WOp3Ogf89rl4Uj8cVj8fV6/WUTCYVi8XCn729PcXj8fC41+up2+2Gx5LU7XbV6XTCY0lqNBoHvq+DmrSfbJI09+9Op9Ph/2m321UikVAikQj/ze530+l01Ol0wv/DXq+ndrsd/t92u93w76XdbofnGo3GVH2T6XRaCwsL4T1nMhllMpnw/rPZrBYWFsKfYrEYnotu7b97vy31aGC0arWqTqcTtsu5Y7d13+n1el2tVivcNhoNNZvNcOva+dzW7ds8jUYjvMakYrGYSqWSJMnzPElSqVQK02OxmIrFouLxeLgtFApKJBLh1vW1Ly0tKZVKhVv33eC22WxWmUwm/P4AgFkM6xs57O20fSyTxlLz2vL9inEO8/Nh+x12d3fD2GRS0/yt2z6Hg2xd/HJaDOvL2dzc1MbGxtD0Bw8eDP3dD+u7WVtb0+rq6kC6+1lZWWE8JQA8h6Yp80eljTvn2sonsV/ZP+zcpGmLi4thuweeX51OR0+ePAl/tra29PjxYz158kTb29sDaU+ePFGr1eq7Rjab1blz53T27Nnw58yZMwM/0XTGzQAYxtYBo+P7DnI8yqhyctQYwHHHZ8+eVSaTOcLfEo7avXv39N577+lXv/qVPvjgA73//vv64IMPtL29Lenj8dYvvfSSXnrpJb388svh/qc//Wlls9ljvnsAB+HKk2HtkMPSHj58ODCuZWFhYWj747C0ixcvhv3VAI6W7/u6ffu27ty5o7t374b7H330kXq9ntLptF588UWtr6/rypUrunr1qtbX1/XKK6/MvZz/9a9/re9///v6/ve/r7ffflulUkmvvfaavvzlL+tP/uRPVCwW5/p+wLMkFovp5s2bunHjxnHfCnAodnd39ZOf/ES3bt3SW2+9pWq1qldffVVf/vKX9frrr+vKlSvHfYuhdrute/fuDZSvv/jFL8IxnZ7nhWWqLV9feOEF+iyACNveGa2PRo83NjZULpf7Xm/bNKP10egxdVMAOJhxfVXTpo0yqj9r2jT3LAwA4NkzzRjHac/7vr/v+08zfnHa84xxBAAcFjfHQblcVrfbVRAEarfbqtVqYTno5j8IgkCdTqcvjysv3ZwIQRCo2+2Gc+NUq9W+uXf248o+Nz9BsVhUIpFQqVQK5y2IzmtSKBSUTCZVKpWUTCaVz+eVyWSUzWb78iQSCXmeF+YBAOC0OIr5M6L14EnNMifGtPMEuPgAAIBn1VHNmTVNu7dz1PNm0ac7m0nXqZn03LzzTXONeZh0rZqD5JvHNVgfBwAwyt7enoIgCI9tOdnr9frGS9u5Hsedi17zoOdcv9B+57rdriqVyiy/hgF23mxJfXOuRs+5ea/3O+fm2J7knC2fD3rOzeENAHh+HdX6tcd5rXmZRx39uM8xRzwA4LDMq1w/Ka91Y1UPw6Tl9n7HJ+W1jKEBAMxLtPzd79g9fzLqOLqOmz12z5c44/oaonGCHePi1uV03PrQksLnXObNrmsVfR7Flsvj+hukT9YDlQbLdztWxq3xeZjvDwDAYTsJbRG0WxxPG8dpWxMUAHC6RdsUou0PrVYrnANa0sC8F9F1tqNlfrSto1wuh+uwRMdqRsdLjmvDiN6XbWOJ/hvmxZbRbt4Ox7YvRMc3jhsXGR0PMa7tw86dNa7tI3pv+Xw+XEObsZcAgGddNA6Itk/YmCEai0TjC9sPI/XHMfu9j42BovFWNMaJxk+2T+ew+m2k/n6VaIwQjUNsPDHNcyU2Ror2z9hrRmMbe29uDjTHxkuMLQWA08nW7215a8vIaBuBLYdt2Wn3bTlvy2L7fvY6rsy1ZbV933m1L4x6LsK2F9gy05aRtr5vy0fXRmDLZVsO27LdlsG2zcCWv9HyFgAAAAAAAJjArVjPtbYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5Ns9lUo9EYSA+CQHt7e31prVZL9Xp9IG+tVlO73R5Ir1ar6nQ6A+mVSkXdbnfi9GH3Iknlclm9Xm8g3ff9gbRR6b1eT+VyeSB9b29PQRAMpHe7XVUqlYnTj0symVQ+n584PZVKaWlpaSA9nU4rl8sNpGcyGWWz2YnTFxYWtLi4OJC+uLiohYWFidOz2awymcxAei6XUzqdHkhfWlpSKpWaOD2fzyuZTA6kFwoFJRKJgXQAAADgJNnZ2dHu7u5Ex4eVd57vM6quOQ+2jhKtr4w7nibvUb6P53nT/goAjNBqtRQEgYIgULlcDn/csT1nt5VKRb7vj2wPkz7+7ObzeeXzeXmep3w+r0KhEKYVi0WVSqXw2J0vlUp9+Ya11QAAAEiD9apJ0w76OpfmYqB2u61Op6Pd3V3V6/UwLup0Omo0Gmo0GmFfoMu3u7sbpnW7XTWbTbVarbBvcG9vT+12W+12O+wX7HQ64Wt6vZ56vZ663W54flj/4VFKJpNKJpOKxWKSpFgsplQqpXQ6rXg8HqZlMhktLCyEaQsLC2E/WzweVzweVy6XG4j/hvW7HUfasDydTkepVCrs3w2CQOl0Wjs7O2Ff8+7urnZ2dtRoNNRsNsO/H/ca3/fDvtd2u61arRb2abvXTNNm4PovXf+j6yd0/X+lUkmJRELFYjHsS42+xvVFute6Pkv3O3B9qqP6YgEM58qVg2x935/qNaPGo4ziPt9HtR01RgIAphWNm1ysVS6X1e12FQRBGGO578l6vR62i3a73TBvpVIJYzq3dWPtRo25G8eNy3JbF1u5rYu5olsXe7lt9Ht01HfrqHFsQFT0c+PiBls3GfXZsnlcncfFHy6Pu96ocbDDuM+G+yxE6yju8+A+P+5zZes5sVhMnucpHo+rWCwqkUioUCiEn8PotZ8nzWZTT5480fb2tp48eaKtra1w325t+s7OTt81UqmUzp07p7Nnz+rs2bM6d+6cVlZWwn23PXPmjM6cOaOzZ8/SpwsAz5D92ijGtVtMkn/SuGFYLOx53oHToudGPVsB7Mf9Xbufzc1NbWxsjEzb2toaaLtzf4tra2taXV2V53lDjz3P08WLF1UqlY7pXwvguNXrddVqNdVqNZXLZVWrVdVqNdXrdQVBoGq1qnq9rnq9rnK5HJ5z+d1xvV4f+UyqUyqVwv5bN97PHRcKBRUKBeVyOS0tLfUd53I5FYvFcOxfLpfjewsj1et1/epXv9K7776rd999V++9957efffd8O/z8uXLevnll/XSSy+F209/+tP61Kc+dcx3DmCc3d1dPX36dOI4+cmTJwPjYlyMPC42tmnnz5/nuXjghNnY2NCdO3d0+/Zt3blzR3fv3tW7776rra0tSR/Hm7/7u7+rq1evan19XVeuXNHVq1f18ssvH+rn+c6dO7p165a+//3v67333tO5c+f0la98RV/72tf0R3/0R0Pn8AAwKBaL6ebNm7px48Zx3wpw6HZ3d/WjH/1I3/ve9/TWW2+pVqvp1Vdf1euvv66/+qu/0oULF477Fkdy5fHdu3fDMvm9997To0ePJEnFYlEvvvhiWA6vr68fSXkMPEtsP1G07hs93tjYGBiHaOu/+/UT0UcEAPNnv8ftuJaDpI0SHbdi2zinSSsWi+FzmQCAZ9804zCnPb/feBFJU43JnPa8e/4DAIDDNu1cDQfJM81cMJM+DzFLnlHrWQAAcJLNMh/TtGW3mzthUgeZV2mSsnvYlmcbAQDPg4PMp3jQ7WHOw3jQ8t5tR60jieMRXc/W9qO4ueokhfPYOXaODDt3dXQdWLuGR3Q9XPteNlbtdDqqVqvhOfv37P7OpdFr0c7Crotq5+mycw+7+b0c2/dj41rbVmXnc7Zrx467ll1D1d7XqGsBAGDZcjy67rrt3xl3LlomH/ScjQfGnYvGG+PWAjsoW6a6uTodG6eOOxddk+Cg52zcMO6cXV8+GjsAAJ5v0XI8WseP9gvZenh0Hap5nLN19lnOzUO0vmzr2Kf1HAAAhyFattu6eLQNPlpvj8Yati0/2lcQ7R+Ivtb2OURfG41xbJtH9LXR+GieomuMjSu3bVu/7SuItjfYa9i2/1gs1vc8vW1fsO0E494r2tZg3wsAgMNk44tx62cfxrl5XWfasbaTsuX9uDWi91s/eh7XmeU9eD4WAHBUouW1bXuItltE2x6maT+I9lNEn5m1fRrR9pFZ7nGebL0/2q4QbUuw8zfZtoRx7Rt2rIW9XvS97FgHO/4yOtbB3i/rugMATpJxYytte0G0nB83liLaz2Hjkmh8YGOJcWM0o/dmY5/DeMZC6o8HomW7jSmi8cG4doXouuo2TonGJpPGMHb98HH9KwAAPOvGjcvYr21k3NiR/dpgyuWyer2epOmeHbFxUDR+stech2i8MukzJuPGe44byxGNh2y8YuOaaIxl72vc8yYAgJPFlnG23LTl26jxCbZcte0Atgy1ZaYt311bhC277VhMW/5Hy+iDsu37tkyzZZgtS135Zcs8W066ur8t9+y1XBlq2xPcNW0ZTr8DAAAAAADAiXMr1ptnbw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZ9bOzo52d3cnSifvxxqNhprN5kDe47CwsKDFxcXnIv2w3zObzSqTyQykAwAAABgtWmeyx6P2jzLfuHOHWbeL1jvs8bhzs+Q9zPcpFApKJBLT/hoAnELValXlcllBEITb6L7v+yPPNRqNodctFovhT6lUGtgvFAryPE/5fF75fF6FQkH5fD7Ml8/nlU6nj/i3AQDAs2PSvrGTknYY19/Z2QmPe72earWaut2ujlIsFlMsFlOv11Ov15vpWvF4XIlEIvyRpEQioVQqpVgspmQyGZ7LZDLhfiqVUiKR0MLCgpLJpFKplFKplJLJpBYXF5VOp8O0bDarfD4vSUqlUkqn00qn08rn88pkMkqn08pkMspkMjp37pzi8Xh4f5P29Z2G+qb7m9rZ2ZHv++H+pNtJXxMEgfb29ia6J/e7HLf1PG/fPPu9JpfLEYcDE3Kf5Xq9rlarpWq1qk6nE362y+VyuO12u6pUKmq326rVamo2m2o0GuE1XLtlrVZTu91WpVJRt9vtu8ak3GfafZ7z+bySyaSKxaLi8bg8z1M8HlexWFQikVChUFAqldLS0pIymYyy2ezANZaWlpRKpcJjt2XMBYDD4r5b3feh7/vhd6n7DnXfne77133fBkEQft+62Mtez+XtdDqqVqsT3Y/7vnTfge570n3HlkolxeNxlUolSZLneX3bUqmkWCwWbt13stu6GDm6BaYR/XsPgiCMJ9zf+ySfCfcZG/Y5nOZz4+KLaF3DxSClUknJZFL5fD7M42ILF3tE4xj3GRoWz2B6vu9rY2NDvu/L931tbm6Gx3bf9309fPhwoF3D1SnX1ta0uroqz/P6fqLpFy5c6GtHAACcHOVyWc1mU/V6PYy5q9Wq6vW6ms2myuVy2IZh81arVbXbbZXLZbVaLdXr9TBOL5fLarfbE8cOrn2iWCyG7RMuJvA8L4wtXLxQLBaVSqVUKBTCWCKfzyuVSqlUKoWxu4tBXBwBHJWdnZ2BmGpYnOX7vh48eKAgCPpe72KtcfGVTVtZWVEymTymfy2AoxDtg3TfIdHj/fJsb2+r1WqNfJ9o/6H7vpnm2O2fP3+eNi7M3cbGht555x3duXNHt2/f1jvvvKP3339fe3t7SqfTevHFF3X9+nVdv35d6+vrunbtmlZWVo77tgFouhjZpUd5njcyJo6mXbx4kb5s4JRot9u6d++ebt++HZbxd+7c0f/+7/+Gz6p4nqerV69qfX093F65ckUvvPDCkbX5/OY3v9F3v/tdfec739Evf/lLra2t6atf/ar+4i/+Qn/4h39I7AscQCwW082bN3Xjxo3jvhXgSDWbTf34xz/WrVu39NZbb6lWq+lLX/qSvv71r+srX/mKstnscd/iRHzf1927dwfK8I8++ki9Xk+pVEqXL18eKMNffvll5XK547594FSz7b/RenX0eL9+qGi9Onp86dIlFYvFY/qXAsDzxY3XqVQqCoJA1WpVtVpN1WpVQRCoUqn0pZXLZVWr1b403/fD55KGcWNu3Vwfdp6PUqkUptmtTXdplA0AAGn/Z/GjY1amOe/7/r7vv9/z9aPGs0xynjGnAICj5srAYc9Lu2c1XB5X7wuCIJzbIvpMtc0TfcZ0EtFnQ+f9bId7dhQAgNPKlauunHbzM7iyODonlSubXVlv55Xq9XryfV+9Xi+cZ8qV8+75zVqtNvG9RedrKBaL4XwNrhx3deBZ8wAA8LyYZh7ag85LG40fJjXNvLMH3bo2dHeMZ5sdcxCNRV38KvXPA+7mBnRc3Cv1rw3l4mZJfW1VLhYe9j6TXGvamHmc6Fxmbg5BqX8ubTtvs/1suLaw/a7l5lOTFMbc0Wu5eVckhfO0SQrnMhx2LQAAJjHvtSCP45xrX5uXSddznGT/qF5DfA4A2M9xl9fzOHcYa04fdF3nk3SOOAAAcJRse7ykgb4s26Yf7S9wfWBO9LlH+1qb142dGfY6N1bHsc+e2NghOmZ2mjUiJ2HL5mi7vW33t/0GkvqeVbHrvdl+AKm/T8K+l1ubZZL3sv0S494LAICjMGlbwDR5D+Pcfnlt/DIvh9F2MK/rTHPOrS8HAMBRirZT2Pr/tO0Uto0h2q4QjQlsXnsd244Sbd+w4xzGjb+cVbTeP6otIvpckG1HsO0NdhxjtF3Clv82NoiOnbRjHMe1UTDHBwDgpBoXC0RjDBuPRPs0bDwQfQbCxhTR+MDGPNEYY9J7iz6zMato38iouCAaP9j+Dzv2IRoXjIofJo1hbJ/JuHsFAOB5NC5GsOMuxo3diLad2GdAozGQjY+iY1Bs7GLjmuh92Xho3m0p0mCMYWMR2zYi9bdf2HgmGnPYGCbaVmLjlknHi0Tz2TiI+AYAjpet49ty0Ja5o56RjljTiwAAIABJREFUsGWcLWtt2WrLUjdmwZbF9hqubLVlrr3WQbiyz9a1XVlm6/223HJlqS2/7NwMrhyz5awrz2y5acvaYfcBAAAAAADwHLkV6837aRYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgBKjX62q1Wn1pe3t7CoJgIG+j0VCz2TySvL1eT+Vyeaa8Ozs72t3dPXBeSfJ9f+K8RymZTCqfzw+kLy0tKZVKHUneRCKhQqEwU95cLqd0On3gvPF4XMVicSDvwsKCFhcXB9IXFxe1sLAwkA4AAADg9Go2m2o0GpIG63y2zttut1Wr1cJz5XJZvV5PUn9ds9PpqFqthvmCINDe3p6k/vpgtI5brVbV6XT2vadaraZ2uz30nubB87xw39ajUqmUlpaWwnPFYlHxeFxSf10pWicrFApKJBKS+utasVhMpVIpzGfrgtFz6XRauVxu6H1JUqlUUiwWkzS6XgoAxyUIAj19+lS+78v3fZXLZQVBoCAIxu77vt9XhlipVEqlUknFYlHFYlGe5/Udj9t3P+57EwCAwzCsL2yeaYd9/aO436MQ7e/q9XrKZDJaXFxUr9fT3t6eer2e0um0UqlUGHf0ej0lEgklk8kwrdvtKpFIKBaLaW9vT91uV9LHdbBOp6Nut6tOpxO+ttPphD/unK3zDotxJpFOp5XJZBSLxcL9TCajhYUFxePxcF/6uK6ay+W0sLAQphWLxbAO6343bn9Y2n7nh/U/Pq9arZbq9bqq1aqazaYqlUr4t18ul9VsNgfOu/YUF/f6vq9ut6tKpRK2ebg2kmH9/KO4NoxMJqNsNhv+/7m2B9dWUSqVlEgkVCwWw/YE1wbhXuP+j/P5vJLJpEqlkuLxePjaYf3SAEbb2dmR7/va3d0NvyMOst3vGratdT/R7/lZtp7njc3jvksA4DDM83t0XJ5Zv2P3+66cNI/bnjlzhvF8mMm8Phvj8tr+3f0cxefm7NmzymQyh/ybRdT29rYeP34c/jx8+DDcf/Tokba2tvT48WM9efJEjx8/7nttMpnU8vKylpeXdf78ea2srITHFy5c0Llz53T27Nlwe/bsWfqBAOAIubI/2g7q4ud6va5ms6lyuTyyzXRc3v14nhe2hRYKBWUyGeXzeWWzWWUyGRWLxbBd1LZRuHEHrk3UtYWWSiWlUinl83men8GpsrOzo83NTW1sbIRb3/cH9n/7298O1GtdTL22tqbV1VV5nhf+DEtbXV0l3gJOuVarpVqtpnK5rGq1qlqtplqtpkqloiAIwuNqtbpvnnHjuLPZrJaWlrS0tCTP88L9paUlFYtFFQqF8Difz6tUKvXlKZVKyufzyufzlMk4UYIg0Hvvvac7d+7o9u3beuedd/TLX/4y/Dysrq7q+vXrWl9f19WrV3X9+nW98sor4bMHAA6Xa592PzYmHpb2+PHjkTHypHHyhQsX+IwDp1wQBPrwww919+5d3b59OyznP/jgA3W7XSWTSX3qU5/SlStXdPXq1bCcv3bt2rGNoXv69Kn+7d/+TW+++ab+/d//XaVSSa+99ppef/11/emf/iljdIAZxWIx3bx5Uzdu3DjuWwGOTbPZ1I9//GO9+eab+uEPf6hkMqnXXntNf/M3f3Nqy5pKpaJf//rXI8t86eN6vSvr19fXdeXKFV27dk0rKyvHfPfAs8nW46N1+OjxgwcPBubgHFeHjx5funRp6HyLAICj5cYWVyoVlcvlsF+yVquF841Uq1VVKhVVq1VVq1X5vt93XKlUVKlURr5HsVhUPp9XoVAI+xs9zxtIc3OQuGN3rlQq9c0XBQCA5eYCcM/++74fzgcwbB6Bac/v99yam5/QjYktlUpaXFzU4uJi+GxNNL1UKoVzDhSLxXAOCre/uLjInAEAgBPBPZ/i5kGuVCrqdDoql8vhPMeu3LR52u22giAIz7lnWn3fD+fvic7xsx/3PEmhUFAqlVKxWAyfXXHz93ieF87xc9BnWAAAeBa4+fdcWe6eDXXlryu3Xb23Uqmo2+3K9/2xZfyoPJOIzrtn59tz5feseaJrBgAA8Dxw9WxX/rvyOTrv1Kh4wG1d3T0aH7h6u9va9ZD249ZiddtZynw3R6/N4+r5w9aXBaZh51KZZP8gr5nntYat031Q0bni95sL/SD7874Wa9oAAA7K9klF27VsnOtiaGlw3U/f98N9O6bEltUuzpYG1wO192DLdHs/bhzMsHubletbkwbX9LRrhNo56+2cb3a90Oh6nnaMp+unk/rX+XR1A8euN2rjelv+s/YnAGBatiyXRpfzJ/ncNH1wk4qu+23L+3HnbPwQLZdt/GBjATsGx5br9n2icYGt79v3t3EFAADHadY2/3lc46DvNc16TpM4SB/AQc8dxnvZGAYAgMPW6/VULpfD43HtAbZ/QVI4dkca7K+w685F+xXsGtuH9f7zYtsA5tmGMKo9I9q3MaqfYpJrAQBwUsw6HvE489kxGLM6rraGWcdKSv0xCQAAJ5HtZ7BtC9HxkbYtwZb70XYFO47StmO456McGyvYthDbhhFt+xh1r/Ngy/Boe4UdM2HHXEbbEmy7hm1/iI7bsH0Zts3CjseMtnOMamehPQMAgH7zGOdxGOemuYaNu+bhqJ8dncd70p4CAIfLjkOw5ZAbY2Dr8K7Obuvotk7uyi3bPmDbA1z93z5D4er3o+7jIFz92tbpbfniyhZbj7bPRbi6uh1D4Ori9jlN9xpb13evHXYOAAAAAADgENyK9eY1WxUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmamdnR7u7uxOlk/djtVpN7XZ7IO9RWlhY0OLi4kTp5P2E53kDaQAAAABwUNE6oz0etX/Qc4edbx5sXWzU/kHPHXa+QqGgRCIxj18DADxzdnZ25Pv+1D9PnjwZ2o66sLAgz/PkeZ4WFxf7jsf9uLyrq6uKxWLH8JsAAEiT9bNN2hd3UtJmudZx9RtO0m82ad/aYaQlk0m1223t7e1pd3dXmUxGvV5P3W5XnU5HzWZT6XRarVZLktRsNtXr9ZRMJlWr1SRJjUZDktTr9cL9arWqWCymdrut3d1d9Xo9VSoVxeNx1et1tdtttdvt8BpBEGhvb2+f3+agdDqtXC4nSSqVSorFYmEsEo/HVSwWJUn5fF7JZHLi/EtLS0qlUkomk8rn831pNp97rUT/5rx0Oh1Vq1XV63U1m02Vy2Xt7u5qZ2dHQRCo2WyqVqupVqup2WwqCILwM7/f+XK5rF6vN/b93f95LpdTJpNRqVQKPz/u76hYLCoej8vzPCUSCRUKBaVSKS0tLYV5s9msMplM+HdjX2P/hgDsz32GJ9n6vj9x3mHbSb4nHPd5n2Rr68oH2boyCwAOk/s+rFQqajabqlarajQaYUzWbDZVr9f74iz7mm63K9/31e12ValU1Gq1VK/Xw+/YaepkNoZKJBIqlUphnJbJZJTNZpXL5ZROp8N+IxububjffZcOu56L34CDcp+PYX//zWZTjUYjzFOtVtXpdIZ+RqJ5yuWyOp1OX55JuM+Gq4sM+2xE87g6jvuMDfv82DyJRIK6zClVqVS0sbGhra0tbWxs6NGjR3r06FFf2tbW1tD+onPnzml5eVnLy8taWVnR+fPntby8rHPnzunChQtaWVnRuXPntLKyorNnzx7TvxAAnh37tXPYtFH7w9K2t7fDdv5xou0Yw9o0Rp0fl9e1jwLPqq2tLT1+/FgPHz7Uw4cPtbW1pc3NTT169EiPHz/WgwcP9PjxY21tbanb7Yavy2QyWl5e1urqqs6fP6+VlRWtra2Fcdf58+d17tw5nTt3TmfPnlUymTzGfyWASUXL42iZPSptVJ5RomXuqHF+++U5e/asMpnMEf6GgMPx29/+Vm+//bbeeecd/eIXv9B7772ne/fuSZLOnDmja9eu6TOf+YyuXbuma9euaX19PRw/AmA+fN/XxsbGwDj1zc3NgfQHDx4oCIK+1w8bp762tqbV1dWh6ZcuXVI6nT6mfy2Aw+b7vm7fvq07d+7o7t274f5HH32kXq+ndDqtS5cu6erVq1pfXw+3r7zyirLZ7HHfvnZ3d/XWW2/p29/+tn70ox9pcXFRf/7nf6433nhDX/rSl/j+AuYoFovp5s2bunHjxnHfCnAi+L6vW7du6Z//+Z/105/+VGtra/ra176mb37zm/rc5z533Lc3s3a7rXv37oWxgdu+//774Rgbz/PC2ODKlSvh/gsvvMBYXOAI2fbuaNtA9Pj+/fuqVCp9r7ftBNH2gejx5cuXVSgUjulfCgCYxLCxTuP6ToeljRv/NGnf6X59qDwjDACYhns+yD0X5Pt++BxQtVoNnzlqNBrh88uNRiOcM6Fer4fzI7hn8CqVykTP4Lk5DQqFgpaWlsJ5EPL5vBYXF7W0tNS3XygUtLi4qFwup2KxqIWFhXDfzYvAc8wAgJNq0nlFxs01Mi7/pM+/TzufyKRpbst4XgDAs2raucEOksfN1TGJaecEO0geN8cNAADPI9/31ev1wjk9y+Wy9vb2FARB2K7u5hx2WzdXV71eV6vVCvO4ebhG5bHP7I8zbN45V267eeymzePmw4vmAU4C295l5+i389m5z5ak8LPq2Dni7bVcn5ik8DO537Xs/L42bh91rVnZuSXdvHuS+uYBt+l23nm7b69j57K3+24+P2n0+mp23no3758kvjMAAIfiIGuhzvqaebznNOsB7GfWtVHn+fpJ89kYAQCAadlyNFq/Puxzo9ocXBug4/t+uG/b9Fw73zzYOrqt38diMZVKpTCfnRPX1s1t2WzbBKLritlxtm7Ofqm/PD/IvQAAcNxsv4At410fn2Pb+aNxgi3zbTlv16gd917RGGLUe0X7IeYZU0gaWMPKltm2zT8aJ9jYwMYDUv+6tjYGmfS9bL/GuPeyfRgAABwXO8YgGkvYcQJSf/zgxgQ7Nmaw5b3NZ+OM6HtNO1bBjnuY1bg2ADu+2Jb3thyPlv02lnBrEUqH17YBAMBJM8/xCvPON+4106zbPYlZxybMO9+kryHOAACcFichfjhIvmh7y6xmGWc5zzGbjL0EAGA2tp9kVN9IdJyGfY1t1xjVNxMdv2HHh9r3tONLx/XnzLMtJdrXMqp/xPbV2P6VaF+P7Z8ZNV503Hva/qFRfTrR9wQAHNywOvSkaYfxGql/fMQ0Rs13dlTnqHsDAAAAAPDMuRXrzWuWJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEk7Ozva3d2dKJ284/MetYWFBS0uLu6bRt5PFAoFJRKJgXQAAAAAOI3q9bpardbAvq23drtdVSqV8DWVSkXdbleStLu7q52dHUnS3t6egiAI81WrVXU6HUlSs9lUo9EIz/m+P/Qe2u22arVaeK5cLqvX60mSGo2Gms2mJKnT6aharc7jVxAqFouKx+OSpMXFRS0sLEiS4vG4isVimC+fzyuZTEqSMpmMstmsJCkWi6lUKoX5lpaWlEqlJEnpdFq5XC48VyqVFIvFJEnZbFaZTEaSlEwmlc/n972nRCKhQqEw9J4AACff3t6enj59Kt/35ft+uD9qa/dduWvlcjl5nqczZ87I87y+/VFbz/NUKpXCcgYATppJ+9eOI+247iMIAu3t7ekoTdqHdhxpx3Uftp42jvs/tP+XB02bJf9B/27sv93tj0s7rPzUd4+P/XvyfX/o/izn92P/LjzPG7p/kPNnzpwJ21cAjOY+s7VaTe12W+VyWe12W9Vqdei5TqejSqUStgO7Nl/XluzKI9/3w3bkadt4XZngxu24Om2pVArbS1OplJaWlsJ2W/dd4NpgXZutvUYsFpPneWE7cLSNFgCOUrVaVbPZVKVSCeOpcrmsVqulWq2mer2uZrOpcrkcfudWKpXwO9f1pdnX1Go1tVotlcvlfd/ffQe6703P88I+LvcdWiwWw+9Ql99977rXue9sz/PC72h3HdvfBcxiWF14v/rINPldrDOJYXXeYXWTWfLkcjml0+lD/q3ipGm1Wtra2tKDBw+0tbWlzc1NPXz4cGia7T9KJBJaWVnRysqKLl68qOXlZa2tren8+fM6d+6czp8/r5WVFS0vL2t5eZm2FwAYYpZ20XF57Vi4UebRNjos77lz54gngIidnR1tbm5qY2NDvu+H+9G0e/fuDdQPPM/T6uqq1tbWtLq6Ks/zhu5fuHCBsTnACTGszB52vF+eJ0+ejG0zcGVxtGwedjwuz8rKCvU1PNfu37+vt99+W++8847eeecdvf3223r8+LHi8bheeuklffazn9W1a9d07do1feYzn9GlS5eO+5aBU8eWdTYGHpW2tbUVPkvmuDLMxsLuZ1ja6upq+CwVgOfHxsaG7ty5o9u3b+vOnTu6e/eu3n33XW1tbUn6eFzuiy++qCtXrujq1ataX1/X1atX9fLLL5/IuX3+53/+R9/+9rf1ne98R5VKRV/60pf0jW98Q3/2Z38WPmcKYL5isZhu3rypGzduHPetACfO+++/r+9+97v6l3/5F/3f//2frl69qm984xv6xje+odXV1eO+vbkbFle89957evTokaTTF1cAz5txbRHR4/v37/fNcSP1t79H2x2ix5cvX+6bjwUAcHpEx1yN69fdL32U/fpsJ+nfZTwIAGAehpV704xTHrZv5wgdZdIxyNPs23k1AQA4idwz+EEQqN1uq1KphOVotVoN505ptVqq1+vhnCl2rhVXdlcqFbXbbQVBED7vP+kzye55e/dMfrFYVDqdVj6f75tvK5VKqVQqhfndM8alUkmpVEr5fD4sjwuFQvh8v53fGgCAZ9Gkc4nMkseuq7Gfw5xjxKXZdS4AAHgejSvH5xkXTDIXiHOYZb/bTjr/OXDa2DXpomvc2c+hjcvtmnZ2jTx7rVH7rr1P6l83z17H7tt5/e0aebOw8wfa+N7Ou2/37Vrp9rvA7tu+Oc/zJPWvmWf37Zp7dq07u888zACAw2bL516v1zdHth3rYstfW45H19C1cYPtp7PlenT9A7tmro01bPk/7j5nZefjtuvZRtfHnaZsn7act/tuLYfofnStXQAA5mnYWnuT7s/6+oNcy7ZJzGrcuouz7B/m61kzEABwUs1axh/2Ncblm2YNpEnMK6Y47H3WWgIAnEQntT1i0mvN6jjbIw5yLcZTAwBOKjv+wI5ZiI5zCIJAe3t7kvrL9ejYBjsewvZT2DEUUv8YCNveYMdJRsdo2vEZ844t7JiI6HhEO97RPgNtxypIn4yXkPrLfrdWutQ/fiJ67Vn2AQA46SaNH0aNwbRjI22cEh0naWMMG7/YmMfGHvb9bCxkY5JZ2T4GG3PYdgM77tHGInaM5bg4wj7DYcdKzPLeAABgtEmf+5jkWZNo+4eNYUY9lzrrsybzYOMP214y6lmTUc+XTLs/6nmUSfYBAPuLzmEyLO2wz9lybRqj5kQ5qnPMoQoAAAAAwFzcivUmnVEVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBn3M7OjnZ3d/dNI+8nKpWKut3uQPpRWlhY0OLi4kTp5P1YNptVJpMZyAsAAAAAmC9bnz7J+41GQ81mc27/blsXjdZLR507rnzR43w+r2QyOY9fAwDgObS9va0nT55oe3t7YN/3ffm+r6dPn+rp06fhfhAEA9dJJpPyPE9nzpwZux2WRtsvcPpM2jd30LTDvv5R3O9RmLT/7aBph339eactLi5qYWFBp5X7OxpWDx6XNu/8QRBob29v6vsfVoeNboedm3f+QqGgRCIx9f3j6Nm/P9/3B/5Obdq0533f3/f97d+P53lD9w9y/syZM6f6uwg4bJVKRZ1OR+VyWa1WS/V6PWzrtefa7bZqtVr4ua5Wq+p0OvJ9f+y5TqejarU60b24sUiFQkHJZFKlUkmpVEpLS0vhZzqXyymdTodtsMViUfF4XJ7nKR6Pq1gsKplMKp/Ph6/NZDLKZrMD1wCAk2CaGGzauGzSsbnziLmIw3CYXGwSBIHa7bYqlUr4N1+pVNRutxUEgZrNphqNhmq1mtrtdl+cMuwa7jPjYpf9uL91F2eUSiWl02nlcrkwvvA8L4xBXGxTLBaVSqVUKBTCaywtLSmVSqlYLCqRSPTFPcBBtFotbW5u6v79+9rc3NSDBw/04MEDbW5uamNjQw8fPtSjR4+0vb3d97pCoaC1tTWtrKxobW1N58+f14ULF7S6utqXtrKyong8fkz/OgA4GvNoCx2W98mTJ2q32/u+/7gYfJp4PZq3VCopFosdwW8QeHa12209fPhQ9+7d08bGhjY2NrS1tRVuHz16pM3NTT1+/FitVit8XTKZ1PLyss6fPx/GVxcuXNCFCxe0vLwcxmErKytaXl4+xn8h8HxxZXa0DB+VNirPuH78aJkdLauHHY/K43neEf+GgGdDEAT62c9+pp/97Gf6+c9/rrfffluPHj1SPB7X7/3e7+n69ev6/Oc/r+vXr+uzn/2s8vn8cd8ycCL5vq+NjY2+ctC1OUbT7t+/3xcPSxoo6zzP09ramlZXV4emLS8vK5VKHdO/FsBJ0263de/ePd2+fVt37twJt++//77q9bokyfM8Xb16Vevr67py5Uq4/8ILL5z4NrGtrS19+9vf1j/90z/pzp07euWVV/S3f/u3+vrXv661tbXjvj3gmReLxXTz5k3duHHjuG8FOLH29vb0n//5n3rzzTf1ve99T7VaTX/8x3+sr3/96/rqV7+qbDZ73Ld4qHzfD+OPu3fvhvsfffSRer2eUqmULl++HMYfbvvKK688878b4DRz7f3R9o1hxw8ePBiYP8e1dUTbN4YdX7x4kWf1AeAZtF//8iTp+/U1j+tTnqSveWVlhXnPAABzN+046kn2JxljPW7s9CRjqYftM/8JAOC0GTZX2bDnl6adr8Btt7e3B8Z9DTNsfrFZ5yJw+8zhDQB4HtTrdbVarb453dzcbK5cdnmCIFC32z1wnkm48tiVw6VSSclkUoVCIZxHxeUpFArh/Ch23pV0Oq1isRjO7zZsLhYAAJ53o+Ygn7TePmmecrmsXq830T2NqrNPUq+fNA9t8cBkTsJag5PsTzqn6X4mWRtwv/15XGPcvpsfEgCAo2DHk7p2P0nh3MqS1O12ValUwtfY2N/NvSypr23QrglhX2/3bR677+Zwju67tStm5doSo/ujyma73pXdd/M9R/ft2hN235bxtm/S7tt6DHUaAMBhs2si2Dq4LXOjcYBd983W1W0cYWMCW5bv7e31rXNsYwp7L24dB6k/JplmzalJ2HmSbXlsy3UbK7j1p6SP54kolUrhtdx6VVJ/mW9jB9t3mUgkVCgUwtfbeR5tDGBjCcY2AQBOA9tOEK3H27Lflvc2drD7Ng6w+/a6dt/GHaPaHEa1UczKlt+2zLZxgd0f1XZg45BR7RGj2i9GtXfYGIS1qAAAp8Es4wpmff1BrmXjn1mNKufHnZt2f96vt20iAACcNNG6vx0fYdsmbJuC1N8XMqqto9frqVwuh/lsP4dt3xh3DzamsO0X0f6UWdi+EFtun4R9xkcAAE47G0PYMj9altvYwsYCNn6wMceoPhTbVzLre8/CjneIjp2wsceovpNR4yBsfncde337vra/w/aJ2P4U+z4AAGAy0VjiIM+a2Phj1BjVScZ3TLs/i3g8rmKxeKr2AeB55Z5fcPVlW3ZNc86WXwc9Nw1bv3XjCF0d1vW/u/qt27pxf64O7J5lcPVjt3Xlg30P92yCracDAAAAAHDK3Yr1Jp3lFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwIu3s7Gh3d3eidPJ+rF6vq9VqDeQ9agsLC1pcXNw3jbyfKJVKisViA+kAAAAAgGdXp9NRtVodu9/tdlWpVMbu7+3tKQiCsfu9Xk/lcnnsviT5vr/v/iyWlpaUSqUG9nO5nNLp9Nj9bDarTCYzdn9xcVELCwtj923dPJPJKJvNSpJisZhKpVJ4r/a9AQB4lvi+r8ePH2t7e1vb29t68uRJuHXpLs3t7+3t9V0jl8vp7NmzOnv2rM6cOSPP8yba5vP5Y/pXA/M3Sb/epH1/JyVtlmvVajW1220dtUn64ybtszspabNcy9azMD/lclm9Xi/sj282m2o0Gn11c5fHfRYmybO7u6udnZ2+doAgCLS3txeei9bbp+HqwvF4XMViUdInfyOpVEpLS0uSpGKxqHg8Hv5N2frxtPldXTqZTIblvsuPZ9/Ozo583w//fn3fHzgetT/snPvMjOP+DhcWFuR5Xrg/LG2a82fOnAnbkgB8wsWBdms/v9OcG5XHlYX7sZ/lcZ/tac5F8xBbATipXB9grVZTo9FQrVZTpVJRo9FQo9GQ7/tqNBra2dlREATh92wQBGq1WqpWq2o0Gmo2m/J9X61WS/V6XdVqVZ1OZ9/3LxaLymQyWlpaCusAnueF/W75fF6ZTEaFQiH8bi2VSkqn0+FrMpmMSqW1Jkd1AAAgAElEQVRS+JpCoaB0Oq1CoXAEv0E86yaNS6aNY1zapO1g84hTxqXRn43j9PjxY21uburevXva3NzUgwcPtLGxoY2NDd2/f1+bm5t69OhRmD8Wi+nChQtaXV3VxYsXtbq6qgsXLmhlZUUXL17UyspKmDbsWQsAOMn2a/scF2eMyzvJeL1J2jqnaRd1+/l8Xslk8gh+ewCGKZfLevDgQRhXuZjr/v37Ydz16NGjsA8lFovp/PnzYUy1srKi8+fPh/sXLlwIY6/l5WWeYQXmwPXx+76varXa91Mul1WpVPrSgiAI2/Pcj+/7+7YxeJ6npaWl8KdYLKpQKCifz4dpo/K443w+z/PrwDHY29vT7du39bOf/Sz8ef/997W3t6cXXnhBX/ziF3X9+nVdv35dn/vc52gbx3PL1Yc3Nze1sbERjiEalfbo0aOB8QQLCwtaW1vT6uqqPM8Lf0aleZ53TP9aAKdJEAT68MMPdffuXd2+fVt37tzR7du39cEHH6jb7UqSVldXtb6+rqtXr2p9fV1XrlzRtWvXtLKycsx3P51er6f/+I//0D/8wz/oBz/4gXK5nN544w1985vf1Be+8IXjvj3guRKLxXTz5k3duHHjuG8FOBWazaZ+/OMf680339QPf/hDLS4u6o033tDf/d3f6XOf+9xx396Rep5iFwCj21OGHd+/f39gbmI3NiDadjLs+NKlS4xRBIDnhHsW3vaBu35v199t+8ErlUpf37jdjlIsFpXP58M+73w+L8/z+o4LhYIKhYJKpVK4XygUwn5w96w8AACH7SBzY4zbf/r0qZrN5tj3nHZc+CT7y8vLPCcPADi13Pxtbs63crmsZrOper2uWq2mZrM5ch4F9xrf98PrVKtVNZtNVSqVkWvARS0tLSmTyahYLIZldbFYVDqdVj6fn2qehUwmo1wu13dNAACeJ658DoJA3W5X5XJZ7XZbtVotLM+nyePO2TmUJp27zs0r53me0um0crlcX7nu5l11aXbOJLceio0JXJlfLBaVSqV4PgQAAGPcPLSzzFkb3U4aB0jadx64g8xbGz1XKBSUSCQO+bcLYNRaj64eISmcZzW679oNJYXfJ1L/+it239U7pE/qN9F9O3eEndd10jle92PXebDzR9h99/ysXTPCri1h13h031V2/QpXR4rmde9t89o1H5kTEwBwUowqy4ftT5N3nvs2fpiFXa/sJO8z7xUA4ChNUhZPmu+wXh+91iRr803ioOX1UcUF7r0AADhNjqvtYNp924cxq5PQljDJPv0SAICTrlKphHO/2X4BW4bbMQxuvg/HrlU16lp2rIMdJ+HWt3Vs24Mdv2BjCDuGYlbJZFL5fF5S/9gFqX/cg10n3K6P5foVRo1lsG0M9hrDxjXY8RI2lmCNcgDAadXr9VQul0/MvtQft4zan4Udk32U+zY+mWSfsREAgNPMtj3YZyJs24Ft07DtCLZNwrZvRNsnbGxgnwGz723TXX57HfvMyCxsGW7bKtyzGLZtwbZz2HYG+yyFbauw/RcHfR/bDgIAAA5m1HOnh7Fv46FZ9meRSCTCeW5O2r6Nc2xfDQA8a1z91vXj2zqyO+fq1sPOubEAri4eff7R7bs6uRtvcJCyxLVnu7qqaxt39Vi3df3qrq7r5h2Izq/i9l1d2dVr3dbWpwEAAAAAmJNbsd48ns4HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgClVq1V1Op2+tEajoWaz2ZfWbDbVaDT60jqdjqrVal9ar9dTuVweeJ8gCLS3t9eXVq/X1Wq1+tK63a4qlcrA62fNu7e3pyAIZso77Pdy1NLptHK53EB6oVBQIpHoS0ulUlpaWpopbz6fVzKZPJK8yWRS+Xx+prxLS0tKpVIT5QUAAAAA4Ljt7Oxod3d37P6k+Q57f1jbzkEsLCxocXHxxO9ns1llMpmZ/70AAKDfzs6OfN+X7/va3NzUxsZGeGx/3LknT56o3W73XWNhYUGe5w38rK2taXV1dSD94sWLKpVKx/QvxlGIxs/HlXZS7kOaX/w+DRtPn7S047qPYrGoeDwuPD/cmIJWq6V6vd439sB9Lt0YBTcGY5I8dmzEJHmmsbi4qIWFhbBvPxaLheWmG1vg6shuvILN4/ro7ViGUqmkWCwWXjsej6tYLPblt2MJ+KxgP81mU7VaTUEQqFqtqtFoqF6vq1wuq9FoqNFoKAgC1Wo1NRqNMK87Vy6XVa/X1Wg0VK1WValU1O12R75fJpNRNpuV53nKZrPKZrMqFArK5/PKZrPK5XIqFovhuVKppFwup8XFRRUKhfAzUyqVlMlklMvlho59AZ5nLoZ1dUS3H93Oem4SLo6zW8/zBtJmOUdZB+A0abfbE8VT7pzv++F+pVIZGq/t951cKpW0uLioxcVFeZ4X1i/y+bzS6bSKxWLfd2o6nVY+n1cul1M6nZbneWEMZ1/jvouBg3L1/HK5rHa7rWq1GsYclUpF7XZbQRCEdfNaraZ2uy3f98PP0n7XGFc3cdzffz6fVyqVCusa2Ww2rGd7nhfWtV2dpFgsKpVKqVAoTHQN4DTqdrva3NzUb37zG/32t7/VxsaG7t+/r42NDT148EAbGxva2Njoew4ol8vp8uXLWl1d1aVLl7S2tqa1tTVdunRJq6urunz5ss6fP8/nAsCxGdX+MWp/0rzDniGN2q+9Y9T+fufPnDlDbA6cUr7v6+7du9rY2AjH8mxuboZpDx486HsWO5PJ6MyZM1pbW9OVK1e0uroajudxaZcvXybWAiZUrVb7fsrlctgG536CIAj7Ud1PpVJRuVwOj3d2doZe3/XlF4tF5fP58KdQKKhUKmlpaSn8KZVKyufz4XGhUFCxWOzLA+D0qNVq+ulPf6r/+q//0k9/+lP9/Oc/V6VS0dLSkj7/+c/r1Vdf1Re/+EV94Qtf0Pnz54/7doFDsbu7q6dPnw4dv37QMe3DxrLbtPPnzw/M9QMA0/B9X7dv39adO3d09+7dcP+jjz5Sr9dTKpXS5cuXdfXqVa2vr4fbV155Rdls9rhvfyZBEOjmzZv6+7//e7333nu6fv26vvWtb+mv//qvh87FBuDwxWIx3bx5Uzdu3DjuWwFOna2tLb355pv6x3/8R33wwQf6/d//fX3rW9/SG2+88Vy3s7Xbbd27dy+Mcdz2/fffV71elyR5nhfGOFeuXAn3X3jhBcVisWP+FwCYBzfOIdpOM+z4/v37A3NJu/aaaDvNsONLly4pnU4f078UAHBSRPvhK5VKXz+8Pef7/kBaEAQql8vq9XpDr18qlVQoFPp+XD/9pOeYBw8AcFwmHc8+zf64ctMZNi59kjHto/bPnj1LeQoAeCbsN/fOfs+bzfrcmTRYTh/kOTOePQMAoN8sc+5NkjZJXVzSVGX7tGnUzQEAGBQEgTqdjoIgCOerc2W4m8tu0jzdbjec487mcfPXT8LNQ1cqlZRIJML5HnO5XN88d+PS7LyQw9IAnD52rky79o3dt3UO3/clSb1eT+VyeWDfrsdh19Sw++47TFL4XWev3el0VK1WB/IelJszPJFIqFAoSPpkfQJJffN0urU3bF67Po3N6773ksmk8vn8QF67XoHLa9ftYC5dAMBJMyousLHAsLjA7k8SI4yKF2wMYPddPSi6Pwu79pbdtzHCqPWvbRlu9+262Hbf1ZmkT9YHs+t7jYpLqGMBAI6TLXNt2S31xwN2PJKNH1xsYF9ry3e39qfUX/d3631I/W0GNk4Zdu1Z2LLa1uXtGmSuXLZluG0PsPGEjRtsTGDLeRcTSJ+0Rdj1Qm27hL02AACnjS3b7b4b8xTdt3GBWyMsum/jCLtv45dRbQyj+i3mFVdI/fGELf/tvo0/7P6otgXb/vD/2bvX2Ljyu/7jn7Hnfjkz40tiO5dtvNnuNt6uUCsQl5Y+WQS0TxBUkaointGqKm1BSFSCJzxFFaItggcrISiqQGFbgcRFSPxbiUIroVJBtxt3s02dTbJrx3Gcuc+Zm2f+D8Lv5HfGZ262Yzv2+yWN5pzfuczYSvz7nu/vNihfYecX7O1BORDaKAAATxO7PrfbHiR/PsLOJdgxhh0z2DHAsHuZbTtOsOMNO26x+2/Z99grk5OwcwWD+iUEtUFIwf0Z7BjBjjWCrhuUm7CvAwDgaTcoP3Hctu0YZz+CcgqD8gyjtg/6OtZaBwCcBOP0g7BzCEfR32LcsejDDOoTcVz6Xtg5DQAAcDCOQ35knO2DjnUOOz8yapt+HgCeNqZ93TzTmrZ687xr3u12e/NMbP6m2+d1u13vGdc8U5vnX/O8PcncK9LjZ1LzLGmeV8273WZvnmnN86d93tTUlPeM6jiOwuGwcrmcd3/zt9x+dgYAAAAAnDivhnr7zVACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAp1yz2VS9XveVdTodVSoVX1mv11OxWNx1falUUrfb9ZVVq1W1221fmeu6ajQavrJWq6VareYr29nZUblc3vU5hUJhV1m5XNbOzo6vrFarqdVq+coajYZc1/WVtdttVatVX1m321WpVNr1OcViUb1eb1f5YUin04pEIr6yeDyuRCKx69xcLqdQKOQri8ViSiaT+zo3m81qampqz+dGo1GlUqlDO9dxHE1PT+8qBwAAAAAAfnZuxs6p2DkXe7tSqajT6QzdtvNCg7btzxq0Xa/X1Ww2d23vRyQSUTqdHrodDoeVyWSGbk9PT8txnKHbU1NTymazQ7dDoZByudzQbQAAcDIVi0Xdu3dPW1tb2tzc9Lbv37+vzc1NbW9va3t7Ww8ePND29rYXaxmJREJzc3OanZ3V/Py8tz07O+ttz83N+Y4FtS2dZEFtk3stO8h7HUZZ0DkHFVNPKqhdc69lB3mvwygLOieZTCoWiwk4Tuy/GWZ70PuTOCeoz8ko9v8vsz3o/UmcQ58EPGmu66pQKHgv8/9nWNmgc4aJx+PK5/PK5/Pev/dh28OOzczMKB6PH9JvCDhehtV79v/PvZxjjgX1xxyk///ooPdh5ww7Njs7S0wL4ETo/xscFFdNemyYUbHWuHGX2ee5BPs1KA4Z9G993OMPHjwYK245iPhkWFkqlVI0Gj2E3yRwPJVKJd29e1dvvfWW7t69673M/jvvvOO1PYXDYZ09e1YXLlzQwsKCLly4oMXFRZ07d07nzp3T0tKSzp8/7/WZAYD9sOMI13Xluq6KxaJvu16vy3VdlUol1Wo1ua6rcrmsarUq13VVqVRUqVTkuq6q1Wrg+NJ+Jl7IZrOKx+NKpVLKZDKKxWJyHEfJZFLxeFy5XM53biwWUzqdHnkugNPDdV1tbGxofX1dGxsbWltb87bN++3bt31/l/L5vBYXF7W0tOS9Ly8v+8oWFxd3jfcGTqNx2j/7y/rLR+Um7DxbUC5unLKFhYVdcx4AOJm2t7f1n//5n/rWt76l//iP/9D//M//qNPp6LnnntPP/uzP6qd/+qf1Mz/zM3rxxRfJ2eOpZce4/XVsUPnGxsaue5iY1643TazbX+9euHDBG3sHAAdtfX1dq6urun79ulZXV7W2tqYf/OAH2tzclPRo/rLLly9reXlZV65c0crKiq5cuaIXXnjhxNXlP/jBD/SlL31Jf/M3f6NwOKyPf/zj+uQnP6mf+ImfOOqvBpx6oVBI165d09WrV4/6qwBPte9973t65ZVX9NWvflXT09P62Mc+pk9+8pN63/ved9Rf7VgJio9ee+013b9/X9Lpio8A+Jl2lf78T9D+22+/vWuOb9OG0p8DCto/f/48/TkBAAMNGqMzSV+Be/fuDVw7Ytw+AoOOnTlzRuFw+JB/KwAA7GbWUKrVat5cPf197RuNRmC/+0ajEdgH38xhMIzpL5/L5ZRIJJRIJALHv5pzksmk1xc/k8komUwqlUopn88rlUoplUp58/4CAHBSVKtVtVotFYtF71m1XC6r2WyqUql4c4AWCgVvLYBKpaJWq6VSqeSbi6/ZbKparapWq6nZbAauE9nPzJlv5rjM5/Peen6ZTEbRaFTZbNarv+0xc+l0WtFo1DdOzmwnk8nAtQIBADhNxp0zcK9l44yRl7Sv+XfGmdcnn88fwm8TAICnT6lU0s7OjorFojqdjpdzd13XW1+vXC6r0+kEnlMul71z7LJ2u61SqeSVjWLW1DPz6uVyOUWj0YFlJkcwqCwSifhyCTz/AwhaO8TeHnX8SZ5bKBT29bMFrTFib486/qTONecAAHBcTVKn29t7vW4v2/a653s1bt19kHHAOPciZwsAOE6Oss4f59xJ1nMbZi/1/qTb+7kHaxMBAE6Cw8wbHNT2fhx1joG4AgBwUj2pXMVBXHeQbRfjbB92joK+DgCAk6ZYLHrzlo3a7vV63phv02dcerwmq+SPBewxY6YfpH1ds9lUvV6XJG8cuiRVKhVvjen99p+UHvc/mJ6e9taHMWPQJXn9ySUpk8l4c63lcjmFQiFNTU0pm83uus6OC9LptCKRyMDrTF94yR9j2NcBAHBSHMf+lnaZHXfs1XHqb2mXmTF2AADgYJk584ZtT5Ln2NnZUblcHnrdXvMqe2XnKMyY+0lzG6OumySXMigHAwBHLWgutifxbn+Wna8fZdj8aqOOjXPOzMwMf5MBAAAA4HC9GuqN+1QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAU8V1XTUajT2V7ff6p+GzJalQKOwqOyzxeFyJROKJlj3Nn5NKpRSNRnd9DgAAAAAAePrYuZmg7aM6Xi6XtbOzs6+fzc5r7Gf7IO81aDuXyykUCu3r5wUAABik2+1qa2tL9+/f1+bmpjY3N7W1taV79+5525ubm7p37562trbUbDa9a0OhkObn5zU/P68zZ87o7Nmzmp2d1dzcnGZnZ73t+fl5rywUCvna/46qbXOvZQd9/0qlok6no8M2LKZ9GsoO+v6ZTEbhcFgAxtf/7D7sWf6gz6lWq2q32xN/Z/P/f9D7kzwnnU4rEons+/cOHDTXdVUul71XoVBQtVpVpVJRtVpVuVxWqVRStVr1yovFonfcnFMsFtXr9QI/IxKJKJ1OK5/PK51Oe69sNqtsNusry+fzymQy3r7jOHIcR8lkUslkUvl8/pB/Q8DRqVQqarVaKpVKXj1YLpfVarVULpdVr9fVbDZVLBbVarVUrVZVq9XUarVUKBTUbDZVr9d99zFl5rxx5PN5hcNhZTIZr14z8XPQMVPn5XI5hcNhOY6jWCymZDI59BgAnESdTseLlcrlsqrVqur1ukqlkmq1mvd32vxdr9frKhQK3na5XFalUvH+dg+LuaTHzyH5fN6LnxzHUSaTUTKZVCqVUi6X846ZWMz8je6Pu5LJpGKx2CH+xnASmBilUCio1WqpVqupUqmo2Wz6Ypi9Hh/F/D/IZrOKxWJKp9NKpVKKxWLK5XJjH3ccR5FIxDvPjmUA7E+hUNDa2pr3Wl9f18bGhrdvjxeLx+NaWlrS8vKylpeXtbi46Nu/ePEiuX0Au7iuK9d1VSwWVa/X5bquF4Ob/Eq1WpXruqpUKqpUKnJd18t1uq6rWq2mUqkk13VVr9dHxuJTU1PKZrNKpVJeLJFOp708SiaT8fImjuMokUgolUopm80qHo8rlUopk8koFot5cXk8HlculzvE3xyAp1mlUtGdO3d0+/Zt3blzR3fu3NHdu3f19ttva2NjQ3fv3lW9XvfOTyQSOnfunBYXF3Xx4kUtLi7q/PnzWlpa0tLSki5cuKCFhQXGiuPEs/siFAoF7xVUNqi80WgMjRXi8bjy+bzy+bzXh8Dsj1s2OztLng7ASFtbW/rmN7+pf//3f9e3vvUtra6uKhQK6cUXX9SHPvQhfeADH9AHP/hBLS4uHvVXBQL117EbGxtaX18fWLa1tbWr/7Vdfy4tLWlxcdFXx/aXLSwsaGpq6oh+YgCnUbvd1t27d3X9+nWtrq5672+88YZqtZqkR321rly5opWVFS0vL3vbly5dOtFjjLvdrv71X/9Vf/Inf6JvfOMbes973qPPfOYz+vjHP65MJnPUXw/A/wmFQrp27ZquXr161F8FOBGKxaL+7u/+Tn/2Z3+m1157Te9///v1iU98Qh/72Meo/4YoFApeHLW2tuZt37p1S71eT9FoVOfPn/fiKPP+nve8hz7rwCll8k79+aag/bt37+4at2pyTv25paD98+fP08YKAJjYuH0WBh3b3t4eOFbU1GNBfROG9VuwjzGuGwBwnPX3/280GoFjARqNhrdtxhv01632OIRhzLiBVCrlmw/FjN814xXNvtnOZDLKZrPeudlsljnPAACnQn+9a9e/w8rGuWac9SuDno375w0cdHzQ9tzcHLlgAAD+z17r+nHKxp2zPWhe4FF1/iRl2WyWcQcAAAxx3OKBg4wD4vG4ZmZmFI/HD+E3CeAksueAL5VK6na72tnZ8eZVNXPF959r5jCxzzV/IyX51mkx53Y6HVUqlaHnmpyqfe5epVIpL09q1lednp6W4ziS/GtC2fO4mnPNnPaDzjVzukny5kYOhULenGzm77Qkr39T0DpUAAAcd09iDfiDuNd+14sftUb7JOu5H+S97BgGAIDjwjyvd7tdlUolSf5nd7Nei+R/5jdrukj+53+7Hjd5g16v5/WRtvMN7XZb1WpVkj9PYccFk6xxN4idB4hGo0qlUpL89bW9NpKdS3AcR9PT05Ie5xXsHIGdjzDrZEryrYdn7mF/DxMX2PcCAOCksOOEQc/+o9oS7DjBvl9Qe4d9L9PGa8cfdjyz39jCjiWC2irs+t5uSzDxgN3+YMcLdvxh2h3s2MKOVUZ9FgAAT7uDbKc46OvsuGSvDrKN4kncw8QaAACcBHb+wM4P2PW73V/ctGvYbSaDrrPzGSZfYV9n5zbs3EVQv879MOPO7PaGQf0jg3IZdv7B5Cfse9n5CzNHjd02YuckzHexPx8AgJNmkv4Rg9ongsZgBPWftGMLu0/FqHaVvRrV/mDq+kHjNkysYMcSB9muAgAAnhw7rgkaAzpoHKq5zo6BDuK6QbmUvQoaX2rHGXbMYsck9ny9o64zsY593L6Xud6+hvmAATxp/W3eQe9B861Mco45No6gedqGzbUyyTnmmN3PDgAAAABOsVdDvV6vd9TfAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4ElyXVeNRmOs8sMoO46fUy6XtbOzs+v6wxCPx5VIJPZUtt/rj9vnDPrsXC6nUCi0qxwAAAAAAGC/arWaWq2WJKlQKEiS2u22qtXqruPFYlG9Xs93vF6vq9ls+o53Oh1VKhVJ/lxUqVRSt9vVzs6OyuXyruMmR2Uf36t8Pi9JikQiSqfTkqRkMqlYLCbpcb4lHA4rk8nsOp7NZjU1NeU7nkgkFI/Hfcenp6flOM6u46lUStFodOg2AADAk3BUbaD9Za7rqlareeXValUPHz5UrVZTvV5XrVZTs9lUrVbztnu9nu+ekUhE0WhUkUhE4XDYi79MWafT0c7OjsLhsNeWFvTdTJx6mI6qbbG/7Lh8D4k2T+AkMc/tvV5PxWJR0uO/tebZvlqtqt1uq9FoyHVdX67A5B8qlYo6nc5Y55i/7/Y5kzDP47FYTMlk0vc8b/4+jXNOOp1WJBIZ6xzzt9A+BziJXNdVoVBQoVDw/j+bffs16tgg8Xhc+Xxe+Xzey7+Z/XHLEokEsQhOJJOrN3n8QqGgVqulWq2marWqZrOpUqnk/f8rl8tqtVoql8te3VosFtVqtQbeZxRT3zmOo2g0KsdxvP+D2WxWsVhM6XTaq2fz+byXtzfnOY6jcDisXC6361gmk1E4HD6E3yYAHE9B8VNQXDUo1jJ/64flxgbFW0ExVdAxe3t2dtZrbwVGMf9mzb9f+99x0Pa4xx88eKB2uz3y8/v/DY/6Nz7u8bm5OfoEAMdAoVDQ2tpa4OvOnTvqdDqSpGg0qtnZWS0tLWl5eVnLy8taXFz09p999lnlcrkj/mkAPGnDYoygmHvU9vb2ttfncpBRsfVetsmBAniSer2e7t27p9u3b+vOnTve66233vK2TRuv9Kjt9OLFi7p48aLOnTunpaUlnT9/XouLi7pw4YKWlpY0MzNzhD8RsH/jtJOOyuWNymP0t4Pupc10YWFBU1NTh/ibAXCa1Ot1fetb39L/+3//T9/4xjf0/e9/X9PT0/rJn/xJffCDH9QHP/hBfeADHyC/giPjuq42Nja0vr7uq4+Dyt555x2VSiXf9bFYTDMzM7vq46WlJS0uLu4qO3/+PG0EAI6NZrOpmzdvanV1VdevX/feb9y44c01uLi4qJWVFV25ckUrKytaXl7WSy+9pDNnzhzxtz9c9XpdX/nKV/SlL31Jb775pn7hF35Bv/M7v6Nf/MVfJOcKHEOhUEjXrl3T1atXj/qrACfO9773Pb3yyiv66le/qunpaf3Kr/yKfuM3fkMvv/zyUX+1p0apVNLNmze1trYWGIOFw2FdvHhRy8vLXgx25coVvfTSS4w9A+Bj2pL681hB+3fv3t3V3mTajfrzWEH7Fy5cUCQSOaKfFABwkvSP+5h0nLnrutrc3FS3298peAUAACAASURBVA28/7h9KAYdm5+fp84DADxVho2pnGTMw6RjjYeNLR537PGZM2eYIwIAcGqYORnr9bpX55p63K6Xi8WiGo2G6vW6Nx9UrVZTuVz25uutVCpqNBqqVCrePI7DmDkOcrmc4vG4ksmkbzubzSoejyuVSslxHMXjcaXTaWUyGW9ep3Q67c3/lEqlvDmjAACA3zjzIE1aNsncBJJ88xtNMifSqHOZKwkAgPE8iXjAlJl1GEax6/Nx6/pJypi7CMBRsdcZs/8mBq2pG7Tmrb1mzqD1dc253W7XG09uz8Fvn2vW2t3rujiG+btq1rWRHq99G41GlUqlJEmO42h6etq33q6Zl99eQ9esgWOvfWPW3Q2FQt6cDvZaumYt36A1xAAAeJr051btskmOH/S97LkX98Kuo/uf+QYdn+TcvR5njSAAwHE3SZ0/aPsg7jFsez9xwl7q8IOKBQZdQ/4YAHCSPYm8wUHEJaa9Yq+Oa97BtIsAAPC0M/0QpMd5ADPOTHo0L3S9Xpfk75MQ1C/Cvs7uyzCoP4UZM273gRjUt2Kv7L4Hpr+C9Ljfw9TUlDcGze7vYNf7qVTK66durrP7N9h9Iuzrxu0fAQDASWL3g7T7LprcgSTVajVvDFpQLGJfNyoWsT/P/gxzXzs+2W9sYccEpk+j3YfS1P12fBGUS7BjBxMbSI/bMOyYxNzTjh3svpz0iwAAnHSjxkcEjcuw8wx2LGHPfxM0xiPos+xYwo41xh1DN4hdn9v5iqAYw45BTLxgxxN27sMcD+onMW4ZAAA4HCbemDSXEnSdHdPY19nxzyTX2fmaSQW1iUiP4xw7DgrKlZjYx86F2DGLaacJyp+M+mwAGId5DjTt3eZZ0fxtLBQK3t9r87fT/J0ulUrqdDoqlUre31jz3GqeI4vFojqdjvesOYp5PjTPfiYnnM/nvb97yWRS8XhcuVzONwdL0Byv2WxWiUTC256amnrCv1EAAAAA2LdXQ71hK1QBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjp1arqdVq+cqq1ara7bavrFKpqNPp+MrK5bJ2dnZ8ZaVSSd1u11dWLBbV6/V8ZYVCwbff6/VULBZ9Zd1uV6VSaWTZzs6OyuWyr6zT6ahSqYw8L+i7SME/22FJJpOKxWK+slgspmQy6SsLh8PKZDK+slAopFwut+ue2WxWU1NTvrJ0Oq1IJOIrSyQSisfjvrJoNKpUKuUrm56eluM4uz4nn8/vKnMcR9PT076yVCqlaDTqK4vH40okEr6ySCSidDrtK5uamlI2m931OQAAAAAAAKeF67pqNBq+7aCywzwuBefZJmHyQ3aeKGj7SR+3t4PyWAAA4OSwY5n9lh3kvQ6jLOicer2uZrOpwxaPxxWNRtXr9dTtdtXtdr22zZ2dHe/V3w49NTWlSCTiXR+NRpVMJpVOpxWLxRSPxxWLxZTNZne1oQa1TR5FWdA5Qe3FAHAY+nMA477v59q91D3DnvWHPfsfxLlScB8cAI8Ui0XvVSgUVC6XVS6XVSqVvO1CoeDbt7f7+w8apr9YLpdTNpuV4zhyHMe3nc/nBx7L5XLKZDIKh8OH/BsBDp7ruioUCl59am/vp8xsjxJUR+bz+aFlo46b97m5OfLxABCgWq2qXC6rUqmoUqmoWCyqVCp5++ZYoVDw7VcqFZVKJRWLRVUqlV3jQ4xYLCbHcZTJZJTP55XJZLz9TCbjxWFm3xzL5XJyHEfpdFrJZJL+/RhpkphkkuMPHjwY+O/bdhBxCzEMcHLV63XdunVLa2trge+1Wk3So3FuFy9e1PLysi5duuS9P/PMM7p48aIWFhYUCoWO+KcBMI52u61qtapSqaR6va56va5isaharaZ6ve7F1q7rqlarqVQqyXVd7zzXdb34xGwPym8aZqys4zhe38RsNqtEIqFkMqlcLqdEIqFEIuHFHYlEQrlcTslkUolEQtlsVqlUSolEwovH+8cIA8Bx0Ov1tL6+7oup3nrrLd2+fVt3797V3bt3vXbi6elpLS4u6plnnvHiqosXL+rChQt617vepYsXLwbOaQAcB/05DPMKKhtU3mg0AudjMUxOoj9HMUnZ7Ows/dEAHEvdblff/e539W//9m/6xje+oe985ztqtVpaWVnRyy+/rJdfflkf+tCHds2tBByESqWira0tbW1t6cGDB97r/v372tra0vb2tle2tbUVOG5ybm5Oc3Nzmp2d9bbPnDnjbZtjZ86c0fz8/K45tADgOCoUClpbW9P169e1urrqvd+6dUu9Xk+RSEQXLlzQlStXtLKy4r2/8MILu+YpPG2q1ar+4i/+Qn/0R3+khw8f6urVq/q93/s9vfjii0f91QAMEQqFdO3aNV29evWovwpwYhUKBf31X/+1XnnlFa2urup973ufPvGJT+jXf/3XT338sFftdlt3797dFbP98Ic/VL1el/Robuj+mM30c6FvC4BRTE7MvG9ubvr2792758ud9c/hPzc3p/n5eS9HtrCw4O3Pz8/v2me8LgDgSRq3T8egY9vb27vW8TGCxpz0v0Ydy+VyxOgAgKdW0PjPQeNBB9W3Zn9YnStp15jPQeM+B9XB9v7MzMyuddkAADgtxpnHYa/bowybu2Gv28wrBwBAMFNPVyoVtVotlUolNZtNbx4FU2Zig0Kh4B0vl8tqNBqqVquqVqtqNpu7zh3FPMdns1nFYjGl02llMhlvrrNkMql4PK5cLuc7Nx6PK5VK+c5NpVKKxWK+cwEAwHgOct7q/rJqtTr2/I+TzmM9SRlt7gCeZuOuFXzYZXsxzro/o8oO6j6sOwwAeNrZa/mVSiV1u13t7OyoXC5Lepz/lR7NndPpdNTr9bz5cFutljePdq1W8/pkHeS99iIcDntzSJl6XJIcx9H09LS3Lpn0uF4PhULe2rNmXVf7PDMfr31v04YcjUa98atmrcFYLKZkMinp0fhLAACeNvbzu5nD1q6vTX1u1/d2bGHaek3bsCSVy2Xt7Oyo0+moUqlIelzv23GBHTeYuMLM8b9X9rrtpm6262sTJ9h1vXnut+OEoDWGzVoA0uOYISjeGHQNAAAnWVA7gb096vgk505yr/3mHqT9tUNMcnySc+2YBwCAk+Ig44WDvk7SWP3dBznsPg6j7s3ahACAk860d9htDnaOIKhtw7SHdLtdlUolSf5YwLRj2G0fQe0ldhuL6Rtvt43sxfT0tLfWpt03wrRFBLV5SI/bSey+DqPaN0w7iv2Z5p52GWPxAQCnwTj9Hk0MYMcdT6K/pn3cvv+k7HrfjJ+z+1QcVRkAADg6BzGO9CCvMfHTXjzJtpe9XsOcBcDpZfLP5hmuXC6r0+moWCx6eWbzN9A8+5VKJXU6HZVKJe/ZsFaryXVdlctl1Wo1NRoNlUqlsZ4NTW7YcRzF43FvvrZ4PK5MJqN0Oq14PC7HcXzbqVRK8Xhc2WzWN6ebPT8LAAAAAByQV0O9Xq931N8CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJKpVK6na7vrJisaher+crKxQKvv1er6disegr63a7KpVKI8t2dnZULpd9ZZ1OR5VKxVfWbrdVrVZ9Za1WS7VazVfWbDZVr9d9ZY1GQ67r+spc11Wj0fCV1et1NZvNkWWHIZ1OKxKJ+MoymYzC4bCvzHEcTU9P+8qy2aympqZ8ZblcTqFQyFeWz+d9+6FQSLlcbtd36T9v0OemUilFo1FfWTweVyKR8JVFIhGl02lf2dTUlLLZ7K7PCfreQb8HAAAAAAAAHC0732a2g8oO8/hB5PZMfsvOcwVtH+bxoNwhAADYv6D2w+NcdhifWalU1Ol0dJiC2heftrL93GtqakrFYlH37t3TxsaG7t27p+3tbW1uburtt9/WvXv3dPfuXV87eSwW08LCgs6fP6+FhQUtLi5qfn5eZ8+e1cLCgm87lUoJAE4K05fI9DOy+yWZvk2mL5Sp06rVqtrttpczMPkF0wfJ3NP0Z7L7RJk+VOVyWTs7O2N/T7tPjOmDY/r2mD4wps9NMplULBbz6ohoNKpUKqVwOKxMJuPdy+7jY/rWmL48Jm9g7gXgyXNdV4VCYeLXgwcP1G63A+8Zj8eVz+d3vUyuMOiYfXxhYWFXH0LgOLLz/YVCwZf77y8bdby/bNw62/yfsnPxey3rPx7UnxcAMFjQ3377FVTeX7a9va1WqxV4//6/36NirKDymZkZxePxQ/7N4Lgy//6KxaJc1w3cNn0X7O1SqSTXdb3tRqOhWq2mSqWiZrO5a4xVEPPv2XEcxWIxZTIZpVIpxWIx5XK5fR8HAOlRW+Gbb76pN998Uzdu3NDNmze1tramW7du6d69e955Z8+e1aVLl7S8vKxLly75ti9cuLBrDCKAJ8+0exSLRdXrdS/uqFarqtfrqlarKpVKqtVqA4+Z64rFote+MogZM5zNZpVIJJRMJpXL5ZRIJJRIJLz4OpFIKJfLKZlMermTVCrlxSXpdFqJREKZTIZxxABOpO3tbd26dSvwdfv2ba/feywW06VLl/Sud71LzzzzjC5cuKCLFy/qXe96ly5evKhz587xNxKHznVdlUollctllctlFYtF3779KhQKvv1KpaJKpbJrnhpbMpn0YoBsNqtsNqtMJiPHcbzyfD7vbZtXLpfznUP/OAAnUa1W0ze/+U390z/9k/7xH/9RGxsbOnv2rH7+539eL7/8sn75l39ZFy5cOOqviadMt9vVgwcPfK/NzU3f/tbWlu7fv+/t94/TTCaTmpub09zcnM6cOaO5uTnNzs7uKjOv2dlZcoUAnmrr6+taXV3V2tqarl+/rtXVVb3++utem0k2m9Xly5e1vLysK1euaGVlRVeuXNELL7zA378+Dx8+1Je//GV9+ctf1s7Ojn7rt35Lv/3bv635+fmj/moAxhAKhXTt2jVdvXr1qL8KcCp8+9vf1iuvvKJXX31V8Xhcv/mbv6lPf/rTunjx4lF/tRPDxHkmxltbW9Nrr72m+/fvS3o0du/ZZ5/1YjwT7xHnAdiPra0tLwe3tbXl5ebsffsce82IUCik+fl5zc3NaX5+XmfOnNGZM2e8srNnz3q5ufn5eZ61AABHolqtDuxPEtTfxO5rYo73r0FkRKNROY4jx3GUz+e97Ww269vO5XLK5XJePxTzMv1YAQA4Kewx1v1jroftBx0LWrfQFjS/xqj9QcfOnDlDf2gAwKlm5rysVCpqNBqqVCqqVqvevFm1Ws2rn+v1uhqNhjeXRaPR8NXn/XNZDKvPpUdrXMTjcTmOo1QqpXg8rmw26xv3mUwmFY/HvXGipj4381SYOSv6x5ICAIDBJp1vc9xzx5lzs3/dq2FzaA6bW7O/bHZ2lrmvAQCYgFkbo1QqqdVqqVKpeHX9oLJ2u61yuTy0rFwuq9VqjTWHpfRorQyz/oVZH2NQmZlXKui8TCajeDyuTCbjyzcAwGkz7hrLh122F8PWVT6o9ZnHLTN1DwAAJ4FZ99Cssyj5YwiztqK9VqKZV1h6NP+UWXsj6F7muFlzUZI3j7Bpm5bk5ZPte0/K1N32+olmncTp6WnvudCsoWjWXZTkra9oniulx+s42vGAWeMx6LNMjGB/FgAAT6v95ACe9DV7cdj5hFHHWcsZAHBajMo7mHxAt9tVqVSSJDWbTdXrdUmPcwh7zUuM+qy9MusV2XmBWCzmjRE3+QNT5wflIMz5QbkF+/z+/IR9vslxAABw0pm+bdLjOt1uYzAxg90WYa6x4wg7NjCxgx17THrvvZiamlI2m5UkX37AxA92HsHEAXbbhYlD7HjBxBD2vU1Owr63Ha8E3RsAgJNuL+0To47v9552bmNSB90vcj/3yOVyCoVCe/o5AAB4Wh2n8RnjzOczyEHGEfstM20oAADgaJgYQ3ocXwS1mdj9LoLaXux+HWY8yqB2lkKhMNZn74VpP7H7WQS1w5j5CqTH/TDsMSGmbcZuUzG5kKDxKkHnm7YaACfHpHO0jTt3m/lbOsxe5mcbNVfb/Pw8/dAAAACA0+XVUG/U0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4MC4rqtGo3Esy47qe1SrVbXbbR22eDyuRCJx4sr2c69kMqlYLCYAAAAAAABgkEKhIEmq1+tqNpvqdrsqlUqSHuf6Op2OKpWKJKlcLmtnZ0etVku1Wk2SVCwW1ev11Gg05Lquer2eisWi7747Ozsql8u++7bbbVWrVUlSrVZTq9Xa889h58cymYzC4bCmpqaUzWYlSbFYTMlkUpKUTqcViUQUCoWUy+UkSdFoVKlUyndckvL5/K7jqVRK0WjUdzwSiSidTu86nsvlFAqF9vxzAQBwXJ2m9s9xy0xMdJietvbLwyg7TfFXoVDQ+vq6NjY2dr2vra1pfX1dm5ub6na73jX5fF6Li4taWlra9b68vKzFxUUtLCxoamrqCH8yAKedqWf3+z7JvfbS38nUQ+O+7+Wa/nf6AgFPh0qloocPH3qvQqGgYrGoYrE4crv/OUN6lHvM5XLK5/O+96Cy/mOO43i5SuCoBdXDhUJh4rKg4w8fPlSz2Rz5HYLq2Hw+H7g9adnc3Bz/3wDgALVaLS9W6n/ZcVSpVPIdK5fLqlQqXtt0kGw2K8dxlMlklMlk5DiOcrmcV2a/2+WmLJvNKpvNkkM7pUx/CNd15bpu4Haj0VChUBi4PSjGGcVxHCUSCaVSKTmOo3g8rnQ67dvOZDKKx+PKZDJKpVKKxWLK5XJe3OI4jmKx2K7jAHBQOp2Obt26pRs3bujGjRt68803vdf6+rqkR7mOS5cu6d3vfreWl5e1vLysS5cuee+mjxaAvQuKNYbFIeMcGyYoxzIo5zLq2MzMjOLx+CH9pgDgeOt0Orpz545u3rzpvW7duuW9TP5jenpa586d06VLl3a9TH+g09KfCk+eGW9icnHmVSqVvPf+Y+Zl8nnlcnlgHw2T6zCvbDarXC63K6eXyWSUz+d9+5lMxsvnTU9PH/JvBgCOt+vXr+uf//mf9S//8i/69re/LUn6uZ/7OX34wx/WRz7yEa2srBzxN8Rx02g0vH5P5mX6qgftb21tqdPp+O5hnvVNf3WTExhWBgAnTbvd1t27d3X9+nWtrq5qbW1N169f1//+7/96Y/Tz+byuXLmilZUVLS8ve9uXLl3ieX6E7e1tfeELX9Cf//mfKxKJ6HOf+5w++9nP0gYOPGVCoZCuXbumq1evHvVXAU6VUqmkv/qrv9If//Ef65133tGHP/xhfe5zn9PLL7981F/txCoUCrviwtXVVd26dUu9Xk/RaFSXL1/eFRe+5z3v8eZLAoCD4rru0HyfvT8o92fn+Przffb+2bNnabsDABwLZi7UQqGwq7+LednHgvrDDJpfLBKJeOPNzDh/sz/olc/nffuMTwYAnFTD5gsJGs8ybH97e3vo3OX9c4JMMq4l6Fwz5zgAANhdp4+aF2yc7XHmDBs2T9iwup7xqwAA7M+oeUNHzQ26n/pf2j1/xSR1/rDjjD0FAGBv9juX+LCyUbl/Y5Ln/3FjiNnZWdb8AIAJDFsH6ijL9mI/a0sdxDGeTwEAJ91B1vf7uUetVhvrmTPIOPX8QZcFHWO9SgDASVAul7Wzs6NOp6NKpSJJXj1t1n+S5NXp0qP5MLrdrtrttqrVqiR5602beZElf77CjPtqtVre3F6jrtkLs15ZJBJROp2W9Ggu5UgkoqmpKWWzWUny6ndJyuVyCoVCikaj3josmUxG4XB45DWpVErRaNR3rennbj4XAIDTpNlsql6vS3pc10vy1n+044d6ve71VzOxgh2TmLjAjhXMPe2Ywlxrzjdj1qVH69f3z8kyDjuWMPGFiQXs+MDU93YsYOIEc/709LQcx5H0OMaIxWLenFUmdjB5hnA4rEwmI0m0WQAATp1BuYigvEJQTsPECnY8YGKO/d57L0zdH1S/m7aGUCjkzdVtYgs7FjnI2AIAgNMkqI43eQK7zLR52DkNk8cIyk2YNpSg/IOd9wi676RMfW7X/yZeCIovgvITdl+H/jghKMdh39fEGvZ9AQA4TUwsYOcUDrNM2h2X7IVdl5s2j6Ayk3uw4wFzLCjPYOINcywon2H6VNjHAADA8bCXPp8mBxLUDiM9jl3sfIhpcwnKm5j2Gvs7TCoof7LXvhlB55t4Ztj5dlsPgOPH/I2p1+tyXdfbbjQaKhaL3t8+e76VYrGoRqOher2uUqnkjYMrl8tqNBqqVqtj9UtLpVJKJpPKZDLK5XJKp9PKZDJKp9PKZrNyHMdXls/nlU6nvTLHcZTNZpVOpxm/BgAAABx/r4Z6QSsnAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCEXNdVo9E4kLKDvNdRllUqFXU6HR22eDyuRCJx5GXH5XtIUjqdViQSEQAAAAAAAPA0qdfrajab2tnZUblcliRVq1W12221221Vq1VJUrlc1s7OjprNpur1uiSpWCyq1+t5ucter6disShJqtVqarVavvuafKZ931KppG63q0ajIdd19/QzpFIpRaNRhcNhZTIZSVImk1E4HFY0GlUqlZIk5XI5hUIhL78XCoWUy+UkSclkUrFYTNPT03IcR5KUSCQUj8clSY7jaHp62nfczhOa41NTU8pms3v6OQAAGOa0tIuOe52JNQ7bSWjXPMjva+IwnHy9Xk8bGxu6ffu297p7967u3r2re/fu6e2339bm5qZ2dna8a/L5vJaWlnTu3DktLi7q/PnzWlhY0IULF7SwsKDz58/r7NmzCofDR/iTAXhamHhg1Psk545zr0KhMNH3NPWlXW/2l+33Peie2WxWU1NTB/gbB3Bcua6rQqEw1mtjY0Pr6+t6+PChms3mrnvF43Hl8/mRL/P3xi5bXFxUKBQ6gt8ATptut6tSqaR6va5Go6FisSjXdeW6rrfdaDRUKBS8erz/nEajoXq9rkqlolarpVKpFJhrCGLaDnK5nKLRqNLptFKplFcWi8WUTCaVyWQUjUaVzWZ99XM0GlUmkxl4H56pAeBwdbtdPXz4UMVi0XsVCgXf/rCXaSe3mTbnfD6vXC7ne2WzWeVyOTmOo0wmI8dxlM/nlclkvP1MJkP78iljYnoTuxzEtum7MYyJ6e34fr/bpp8EABwXm5ubeuONN/Tmm296rxs3bmhtbU3tdluStLS0pOeff17PPfec3v3ud+v555/X888/r0uXLtFmBViC4o5hMck4x4YJijeGxSLDjs3MzHj9PgEAe9Nut3Xr1i39+Mc/1s2bN/WjH/1IN2/e1M2bN/XWW295sdXMzIwuX76s5eVlXbp0yfe6ePEic29gLHZfjaA2z3GObW5uqtvtBt4/qE00qP1zUPnc3BztOQBwgL773e/q61//ur72ta/pxz/+sebn5/VLv/RL+shHPqJf/MVf9Mb54XQwdbzp4xTU76m/rJ/px2TX30tLS74ysz8/P0+MCuBUaTabunnzplZXV3X9+nWtrq5qbW1Nr7/+utendHFxUSsrK7py5YpWVla0vLys9773vTp79uwRf/unT61W0xe/+EV94QtfUCwW0+/+7u/qU5/6lDfvAYCnSygU0rVr13T16tWj/irAqdRut/UP//AP+uIXv6jvfOc7ev/736/Pfvaz+tjHPsZz3SEplUq6efOm1tbWvFjy+vXrunHjhnZ2dhQOh3Xx4kUtLy97seSVK1f00ksveXMyAcCTVigUfDnE/pyivX///n3fPBjS7tzioLxiPp/XwsICY7gBAMfaoP68w172eUF1pTHOfASD+uLQ7wYAcJoMq4/HHYtj9s1c7YOMM85m3DE59KcBAGA3sw5LqVRSo9FQrVbz5iyr1+sqFAredqlUUq1Wk+u6KpfLqlQqcl1X1Wp11zXDmLVUstmsksmkEomE8vm8t53NZpVKpby5zsycZkHXJBIJJZNJ5rIBAGACrVZLtVpNlUpFjUZDlUpFtVpNzWbTN+dpsVhUs9lUrVZTuVxWs9n0zjXP9Pa5Zh7UURzHUTweVzqdVjqdViwW8+r4WCymfD7vzXuazWYVi8W8c+PxuBzH8Z1r5kM1a7QBAIC9GTYP6H7nDx1l2Fyge51DlHm5AOBwmPW6O52OKpWKpMdrg9vrepv1N+11vc380uaYeV611wg39zK5bLOOh/3Ze10X3NQz9nrdZi0sU5/Y64Wb506z3kYkElE6nZb0qK+2JKXTaUUiEe+51l4/3Kw3bj6XdcABAKfNJGtvjnv+Xu5rYoi9GGdtzXHL9nMPE3MAAHBSDKvPRx1/EteYfMSkJlnTe9g5+zlGuzkA4LQ7yLzDfs4fNV5ukIPMJeznfNNeAgDAaWNyAnbfhHq97s1tbsbM2f0UTL1v+jzY55lr7T4V5XJZOzs73j3sPhJBfSsmZdbcNnW73W/BtC/Y/R1MLsHEA3YfCtPPwfSBkB73jzD9+e1+Ff2fDQDAaWT6RZo8QVBdb/etNPGHXf+beMH0m7TvGxRDmJgj6L57YfICdp1uYgATM9j9H02fSjN/gB1/mPggqE/moH6X9K0EAOBxbsFueziIsv6xG/YxEz8EjeuYlKnn++ME+9g4/nMnuQAAIABJREFUYy+C4oNh4zLITQAA8PQ4ir4cQWWj5ksc5Cj6ctBnFDgapq23Wq2q0WioXC775l+r1+uq1+sql8sqFouqVqveq1gsqlwue/uVSsXL9QaJRCLKZDLK5XLKZDLenGuO4yiXy3n76XRauVxOjuN4+/3XmfZdAAAAAAfq1VBvUEQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwMd1XTUajQMpe9rvVSqV1O12ddji8bgSicTEZXu97mkocxxH09PTAgAAAAAAAHAwms2m6vW6ut2uSqWSpMc50Xq9rmazqVarpVqtpl6vp2KxKEmqVCrqdDpeTrXT6ahSqUiSCoWCJKlarardbnvX2/duNBpyXdd3z0mFw2FlMhlJj3OH0WhUqVRKkpTL5RQKhZRIJBSPxxUKhZTL5SRJqVRK0WhU09PTchxHkpTJZBQOhxWJRJROpyVJ2WxWU1NTisViSiaTkqR8Pi9J3n2npqaUzWb39DMAAI6Xg2yLPIyyw/jMcrmsnZ0dHabj1D55XNpnaSfFadLpdPTOO+/o9u3beuutt/TWW2/pzp07un37tm7fvq07d+6o2WxKevRMsLS0pGeeeUbnz5/XwsKCLly4oIWFBZ0/f16Li4s6d+7crv9TAJ5uJpdgchnmfWdnx4tdyuWyl6sw7+12W9Vq1du3cyEml2HuZ64zuQ2TI5mEqb/T6bQikYiSyaRisZiXTzC5BpOHMDkKO39hchAmP2FyFyavYe5p4gc7LwIA49rZ2dHW1pYePHighw8fant7Ww8fPvS2zcuUmfL+50fp0d+t2dlZzczMaGZmZqztfD6vUCh0BD85TqpSqSTXdVWv11UqldRoNFSr1VQul9VoNFStVlWpVOS6rrfdaDRUqVRUrVbVaDRULpdVq9Xkuq633Wq1hn6uqduz2azi8bhSqZQcx1EikfC24/G40um0V5fn83nvukwmo2g06l2fSCTkOI5isZjXFgIAOH4ajYYePnyoQqEw0ev+/fuBufd4PK58Ph/4Ms+Tg46fOXNG4XD4CH4LeJJc11WhUPD6WJh3u2zS7QcPHqjdbg/9XBOPmH9zB7E9OzurWCx2SL85ADgc5XJZP/rRj3T9+nWtrq7q+vXr+u///m/du3dP0qNnxWeffVYrKytaXl7W8vKyrly5opdeesnrswacJKVSSdVqVbVaTZVKRaVSSbVazcvNlMtl77jZr9VqqtfrKhaL3rnVanXk2P54PK5kMqlcLqd0Oq1kMql0Oq1sNqtkMukdS6VSXu7FcRxvP+gY/TIA4Gh0u13dvn1bN27c0BtvvKEf/ehHunnzpm7evKk7d+6o0+lIkubn53X58mVdvnxZzz33nJ599llvf2Zm5oh/Chw1k/8wLzsn0v8KOra9vT2wLSgo3zFJ7i6RSHhjWwAAR6fX6+m//uu/9LWvfU1f//rX9dZbb2l5eVm/9mu/pl/91V/VT/3UT2lqauqovyYOSKFQ0Pr6uq++39jY8JWZ/aB2E7teX1pa0uLioq9+7y9bWFjg3w8A6NHf37W1NV+7yerqqt566y11u11FIhFduHBBV65c0crKivf+wgsv0Af+ALTbbf3lX/6l/vAP/1CVSkWf/vSn9fu///u0SQFPuVAopGvXrunq1atH/VWAU+973/uevvSlL+lv//ZvNTc3p09+8pP6zGc+o9nZ2aP+aqdSq9XS22+/vSv2/OEPf6h6vS7p0Rin/tjT9N8BgKPUn78clLssFAra3Nz09aGKxWLemMygXGX//uLiIu2UAICnTlCfn2F9gfrPKxaL6vV6u+47Th+gYf2Bzp49S19jAMCpY+Z6M2OBarWaCoWC6vX6rrFDZo6XSqXinds/VmhQPW1kMhlvrE8+n1cqlVIqlVI6nVYul1MymfTmb+kfI+Q4jtLptNLptDKZDH13AQAYIWhOkr3MY2L2zfytw9jP2ZPOWxJ0jHHBAABMzp7DbJJ6f9xzR9lv/d+/PTc3p2g0egi/OQAATq6DmuO0v2xUm4B0cHOe9pfRRgAAx5O9PmrQ8+lhHNvreqx2fWO/H9Yxs64JAACnQavVUq1Wk/R4PdFms+mNGzVrjZr63fRxk+StM2rWMJXkrUFq1i2VHq/RHvRZJo6wP2tSU1NTymazkuQ9o5p1TE39btYttc8165Saut+cGw6HlclkfGubmvZyc65Z+8ycCwDASWavQ276rZk63I4DTJ1v4gY7HjB1v4kfzFrn0uMYwKxbamIGO+4Yp79cELMeuam77VjA1O8mJ2DWN5cexwlm/XITS0iP4w0TF9hrmpv10E0sYj4XAADsvd1i0vNH3WuctvUgT6I9Yi/n0z4PADjNTH7B1O1BOQu7LcLkHEw+IqjtwsQKdh7C5Cjs/EX/Z0/KbnMweYOgfENQnsLkN0wOIqito79dxG6/MPkKxgYCAE67Uf0YTM4gqB+DiSfs+COof0R/O4p9zNzfxBqTGtR2YccZJm4wMYEdUwxq3xjWdhIUUwAAgCfbljHp9ZMa1C5xWGM2TLwCAACOp6D2FpPTCBo/Ys4PGoMSdL7JyQw7386nTCqoDcbkVEx8YudCTGxi8i0mX2LnVExOZJxz6dMBTK5arXqvUqmkcrmsSqXilRUKBVWrVa+sXC6rVCr5yorF4tC+5ub/veM4ymQy3nzq+Xzem1c9nU7LcRxls1lfWS6X87az2SxrgAMAAACPvRrq7WVkBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE4c13XVaDR8ZeVyWTs7O95+r9dTsVj0ndNqtVSr1Xxl9XpdzWZz6L263a5KpdLIe9VqNbVaLV9ZqVRSt9v19nd2dlQul33nNJtN1ev1kfcqFovq9XpD7/WkJRIJxeNxX5njOJqenvb2Q6GQcrmc75xIJKJ0Ou0rSyaTisViQ+81NTWlbDbrOycajSqVSo28Vzab1dTU1NDvFXT/6elpOY7jKwuHw8pkMiN/JgAAAAAAAACnQ6PRkOu6vjytyeGa/K7JI9s5ZpN/NrnpdrutarUqSSoUCpKkSqWiTqfjfUan01GlUgn8jEnlcjmFQiGlUilFo1HFYjElk0lfrtTkaU3e1c6PZjIZhcNhX57W5GLj8bgSiYQkKZ/PS3qcu7Xvn06nFYlEJv+lA8ApF9RG+qTLjuIzJykzdedhsuu7wyo7is+cpMzU+wBOh1arpbffflvr6+va2NjQ2tqa73Xnzh11Oh1Jj/p3nD9/XouLi1paWtLy8rLvdfHiRYXD4SP+iYDTzcRYJk9h3k3ewbxXq1W1220vZ2HeTZ7DvJu+ciZ/Yd5N3DZJ/GZyCebd9Omy+4CZOMScZ/IWJu9h+rqZGMbkM0yuw9zbvqfJnQDAUSoUClpfX1ehUFChUNDGxsbA/fv37/v6PEuPnt3y+fzA19LSkhYXF31l8/Pz5G0xEdd1VSgUvLaMg9ju78MfxNTr5t/5QWzPzs7u6ocOAHi6NJtNbW9v68GDB9re3tbW1pYePnzovQqFQuC+67q77pVOpzUzM6N8Pq+ZmRnvlc/nNTs76zuWy+W8F7nyp5fJjRSLRdVqNdXrdVUqFVUqFdXrddVqNZXLZTUaDVWrVd92pVKR67qB2yZPOkgmk1E8Hlcmk1E6nVYikfC24/G4HMfxbadSKSUSCW87Ho8rm836toPG1wEAHrVvra6u6vr16/rBD36g119/Xa+//rpu374t6VF/uZWVFb33ve/Viy++qBdffFEvvPCCFhcXj/ibA4OZdphqtaparaZqterbr9VqKhQK3nb/cbNvjps+qkFMu4qJPVKplBzH8faTyaSy2azS6bSSyaTS6bRyuZySyWTgsf7x/wCAp0O9XteNGzd048YN/fCHP9Qbb7yhN998Uzdu3PByLGfOnNHzzz+vy5cv69lnn9Xly5e9V/+8LjgZgtp8+l+jjvXPpWQLave023pGHaMNFACefq+99pq+8pWv6NVXX9Xdu3f13HPP6aMf/ag++tGP6n3ve99Rfz2MwY4D+vtABZVtbm765myUHsUEQf2d+suWlpZ07tw52koAYIT19XWtrq5qbW1N169f1+rqql5//XXdu3dP0qN2k+eee07Ly8u6cuWKVlZWdOXKFb3wwgu+eWJxcP7+7/9en//853Xnzh196lOf0h/8wR9obm7uqL8WgAMQCoV07do1Xb169ai/CoD/s76+rldeeUV/+qd/qlqtpqtXr+rzn/+8VlZWjvqr4f+YeNXEqmtra/r+97+vra0tSY/Gfz777LNerGriVuJVAMeRGecwzjjRQqGge/fu+dpO+9tFg3KiZv/cuXO71mABAOBpNaiv0ai+SGbMYP8adMakfZH6z1lcXGQ+GgAA5K+r++vmQXPKDNrvX9/V1j+/zKC6e9Q5MzMzu9ZcBQAAu5m5aSeZN27UecPGDEnD55Pb65xyzP8DAMDemPXzqtWqms2mSqWS6vW6V6fXajW5rqtyuaxqtSrXdb152sy8a+VyWa7rqlarqVQqyXVd1ev1oZ+bSCS8eUnsOdbsOdkymYwSiYQ3X4m5JpfLKZFIeDGA2abtHACAgzFpruC4zEE/7DhznwHA08/UOfY68qbdOWiN+EFrzJu5PCV5a7KZddvs9ef715a3P3cSZs016fEaa6aesteL719vPhKJKJ1OSxq8RptZH97MS96/Rpt9DwAATiMTP9j1v4kN7LrdxAQmlrDPN8+y5joTN5j1XKXH67Oac01sYs6dlKn7HcfR9PS0V9fHYjElk0lffGHONfGBOdfEA/a5Jt4w55qYxJxr1nUFAOC0MLGCvT3ofdg5+zk2qp/dIHZOPOh92DkHcczEKQAAnHYmX2DnCUzbhan3g9ol7PYMc76JEey2CnO+aeOQHscPQe0mkzLtDHZ7Qn9bhp0vMOebXIL0ON9gzh+Wi+hvz6AdAwAABfZTsOt+0wZh2h7suMO0S5j2iKD2kGFxh7mXfd0k+tsk7LjBxBQmfjD1v91PYlB7yCT3AwAAjxxUm8de2z5MDmNSB92WQXsHAAB70z8uw84/mHaJScZsSI9zGv1tHcPGc0wqKIfQn28wuQQTD5h+mCZHYV9r2jXMtWZsR39fSzu/AQAAng79bSrS43glqO+HOT+o78ewviImvjE5ExM72e1BkziIcSL7PRc4rfrXQxk11/qgc8zfmiDjrpESdGxubk7RaPQQfyMAAADAE/NqqLeXEZYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4/+zda4wkV3n/8V9PX6dvVbWzO7e9enaN7ZldMGsDdgISIbxBRFGEQqSABMkbFBIUmyTAmxCJJChxIhFMQhSC9EckLyIH8iIkROFFwGDCWjFrjJcZ783jvXlmd3Znuvo+ff+/sE7RXdPd0zM7O7OX70dqnarTp6prWvbW0885dQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALjDlctlra6ubrhus8fdzudyXVetVkvbJRaLaXh4eMN1mz3udj6XbdsKBAICAAAAAAAAgJ1WrVZVLBZVr9eVz+fVaDSUy+XUarXkuq6kn+eTc7mcGo2GCoWCarWaSqWSKpWKd472Y0xbk5+u1WoqFAqSpEwmI0neeTbKcRxJUjKZVDgcVjQaVTweVzAYVDqdliRZlqWhoSElEglFIhFFIhElEgkNDQ3JsixJUjqdVjAY1PDwsGKxmMLhsJLJZMdnpFIphUIhL9fb/hkAcLva7j7Lnaob9Lhisahqtartdjv0aW5H3aDHmXsyANxLarWaLly4oFdffVWvvvqqLl26pIsXL3qvxcVFr20ymdTBgwd16NAhHTx40HsdOHBAhw4d0vj4OGNNgA0wceF2lfl8XvV6feDrM/HSrSgdx+moM9sAcDeo1Wq6fv26bty4oWvXrun69eve/tLSkpaWlnTjxg1vf2VlpeP4YDCoPXv2aPfu3dq9e7fGx8e1e/dur25sbMzbHhkZ0a5duxQOh3for8XtplwuK5PJeDHAzWyb8saNG+v2k/S6z9/M9q5du4gPAOAeUi6Xtbi4qIWFBWUymY5Xt/qrV6+ued7M3Ev6vSYnJzUxMeHtj4yMKBqN7tBfjUGZOKVfDDNorLOysqJKpdL387YypjHbZlwHAGDrLS8v64UXXtDJkyf18ssv69SpUzp37pzq9boikYgefPBBHT16VMeOHdPRo0d19OhRHTp0aKcvG/eIQeKWQfez2ayazWbPz2qPh3vFJYPuM8cAANxblpeXderUKb3yyis6ffq0Tp8+rTNnzujSpUtqtVoKh8OamprSQw89pAceeEAPPPCAt22eZ8CdoT2+6BV39HuvX59Rv/ii/dXrPfqFAODedu3aNf3Lv/yLvv71r+ull17S1NSUPvShD+nXf/3X9Za3vGWnL++e16sfr1vdlStXlMvlOo733/v9/XX+utHRUfpUAGATarWaLl++rNnZWc3NzWl+fl6zs7P66U9/6s2d4DiOpqenNTMzo6mpKW/7vvvuIye8Tc6dO6ff//3f13e+8x19+MMf1p/92Z/RbwXcZQKBgJ555hn9xm/8xk5fCgCfQqGgr33ta/rSl76kV199Ve973/v05JNP6r3vfS+x0G0qk8msiW/n5ub02muvqdVqKRKJ6MiRI2vi2+np6TXziADA7Wp1dVUrKytd867+HOzCwoI3d6LRnn/15179+/v372deQgDAXav9ufhu46DWGy816LioQcdC8ewiAAD9Dfq81Xpt1psPZ73xzes9Y2XqzBoCAABgfc1mU9lsVoVCQeVyWfl8XrlcTuVyWcViUa7rqlwue/fzUqmkcrm85ph8Pq9SqaRisbju89Vm7Z50Oq14PK54PC7HcZRIJJRIJJRMJmVZlrefTqeVTqe9fcuylEqlFI/HlUgkeF4OAIAt4M/bD7K9Xrv1YgKp+9xxNzN/3J49e5jvGQCALdIrPrjZefQHWX9nkLnzNxMvmPWFAQD3DvPb1NzD6vW68vm8JMl1XbVaLZVKJVUqFdVqNe/57kwmI+mNZ5tqtZqq1aqKxaJarZY3Ptzc08y9zuTb248f5LdxO7OufSAQkG3bkuTlwE0/uJkz3azfG4/HFY1GvftjJBJRIpHwcvEbOScAAPj57+H27fXKrWpr4pKNGnQt2kHabvR89NcDAO4l/lxAo9Hw5vHM5XJqNBqbzkEUi0VVq9W+OYhKpaJSqbTh6zb37qGhIVmWJUlevtzc203+QPp5vsDkHEyOQZK3HorJS5g8RHveIZlMKhwOKxqNeueIx+Ob/doBALhrbSRnsB3tB7WZHMJWHUOfPwAAnbai/2KQNt3amlzIRmy2L2Ir2phtAADwhs3mF7aqze0wPmLQkjgCAIC1+o1paH+uwj/OwoylaG9jxlSYXIMZP2HiBjOOwhzb/tmDah/TYMY9+J/L8D+P0e05DP/zF/5nOfzPcEiMsQQA4E63Xc+SdGtrxpduxFY/L7KRtibOAu5UtVpN+Xxerusqn8+rUCgom83KdV1ls1lvO5PJdOy3b/ca551Op2VZlizLkm3b3vauXbu8+dbMtr+O3CQAAABuI98ItFqt1k5fBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2FqlUkmVSqWjLpPJdOzXajUVCoWOunK5rNXV1Y66XC6nRqPh7bdaLbmuu+65ul2D/1zNZlPZbLajTbVaVbFY7KgrFouqVqsdddlsVs1ms++5KpWKSqWStlMqlVIoFOqocxynYz8cDiuZTHbUDQ8PKxaL9T1XIBCQbdvrnisejysajXbUpdNpBYNBb39oaEiWZXW0iUQiSiQS657LsiwNDQ31PVc0GlU8HhcAAAAAAAAAYHCu66rVank58Hw+r3q97uXJTR7f5L9NTr1eryufz3fkyk2/gDmXydEXCgXVajUvj7+6uqpyubyh60wmkwqHw14OORaLaXh4WKFQSKlUSpJk27YCgYASiYQikYiXN27PKZt8szmPyVO358NNrtzk0ds/A8C9q1u/5u1St1PX4e+L3Q7m3//bsW6nrsPfLwsAuHesrq7q1Vdf1fnz59eUly5dUr1elySNjIzo4MGDOnjwoA4cOKD77rvP2z548KBGRkZ2+C8Bbh0Tx25Hmclk1sTM/ZjYbrvKbuMMAQBvxFQrKytaXFzUwsJCz3JpaWlNHsRxHE1MTMhxHDmOo8nJyZ77Y2Nj/H6/y7XHA91ihM1sLy8vr3mmwa/9nu84zrrbg7Y1fS4AABjValXXr1/X0tKSrl696m0vLi5qeXlZN27c0PLyspaXl7W0tLTmmTtJ2rVrl3bv3q2RkZGOcs+ePV3rR0ZGuB/dBvrFNv1iml7v3bhxQ7Vare9nmrikX8wySOzjOI5GRkbWPKsIALi95HI5vfjii/rxj3+sF154QS+88IJee+01SdLBgwf18MMPa2ZmRm9+85t19OhRvelNb1I4HN7hq8adZDOxS699M+a2l16xykb3d+3atWYeCAAAuqlWqzp37pxOnjypubk5zc7Oam5uTq+99pparZZs29bhw4c1NTWl6elpzczMeNv+8ajYXqurq8pms97LdV3v1V6fy+U6Std1lcvllMvl1syzZcTjcaXTae9l27Ysy+qoMy/HcXq+BwDARtVqNf37v/+7vv71r+u///u/FY/H9cEPflAf/ehH9c53vpN+n1vEjH8yOQwz3sns++uuX7/ujTM3TE7CP/6pXx0AYOtUKhWdP3++47f9/Py8ZmdnvWcUJiYmNDMz0/H7/tixYxobG9vhq793lctlPfXUU3rqqad08OBB/d3f/Z3e+9737vRlAbhJX/7yl/UP//APHXVnz57VxMREx7wz9913n771rW9t9+UB6KHZbOq73/2unn76aX3729/WsWPH9Id/+If60Ic+xDOVdwjXdfXqq696cbCJjc+cOaNGo6FQKKQDBw509HlNT0/rLW95C/OCAbjjtY9R8+d3/ftXrlxRLpfrOL59DFp7Prfb86779u1TJBLZob8UAIDt1z4Oq9ur23it9lc+n+963ng8Lsuy1rzMWCzzMuO2bNvuePE7BgCA/vzPtnd7zmuQZ8FWVlZ6jreW1PP59UGeA2uv27NnD887AgCwCe337lKppHK5rGw2q2KxqFKppHw+r3w+r1KppGKxKNd1VSwWVSwWlc/nO9qa3/H+MdLtEomEEomEksmkbNv29lOplNLptLdvWZZSqZS33962/VjmsgEAYGtsZv7e9dqZtRP72ehcduttkx8AAGBrFQoFra6uKpfLqVQqefO/mdghk8l4aytns1mtrq56OYPV1VXl8/me51hPOp1WLBZTMplUKpVSNBr1cgexWEyWZXnrIDuO48377ziO4vG4N+dLMplUPB5XMpn01k8GAKCfm10/bzPnKBaL666H47fZtfNu5lhz7wUAAG88U23WAjL5cHNPN/f5Wq2mQqGgVqvl/RbO5XJqNBpr2tbrdW/cfCaT6WhbKpVUqVS83+CNRmPNs22DSKfTCgaDSiQSikQiikajisfjCoVC3th6x3E62pr7v2kbDAa9OVJNW7M2r2kbiUSUSCS6tgUA4F50M7mErXjPxBQbsdncwc3kJVizFwCAwWxHv0W3Y25FTDFIm80cQ38GAABr3UyMMEjbfm02MyZCunX5iV6l2QYAAJ3axzyYeQTMfb59rINZZ75QKKhWq3ljHUxcUK1WVSwWvWPM2If285tzmDyEOddGmP4GM+7BjGkwYyXMPd+MgwiHw0omk97YiaGhIVmWJennYx3Mcwj+c5kcRHveAgAArGXu8SaW8I+fNHFCt/jAjM80x/pjDDNOs31cpRmDOchcB37mvp9MJhUOh9eMoTSxQ7eYwcQf5lh/3NEt3vDHLgAA4M60kWdKtqKtya+0t90If7xingHpFqeYtv58iCn9fS69+mHMMcDtoFareeujZLNZZTKZjn3/9srKijfHupmz1c/MdbJr166Osl/dyMiIdu3atQPfAAAAAO5y3wi0Wq3WTl8FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbpVwua3V1tW/ddrbZ7s93XVetVkvbJRaLaXh4uG/dIG3u9HPF43FFo1EBAAAAAAAAAO5szWZT2WxWjUZDuVxO9Xpd+XzeK837rVZLrutK+nluPpfLqdFoqFAoqFarqVQqqVKpePn8SqWiUqmkWq2mQqHgfUb7uQYVDoeVTCYVDAaVTqc1NDQky7IkSY7jSJIsy9LQ0JBSqZRCoZASiYQikYiX0za57kgkokQioVAopFQq5Z0rEAjItm1Jkm3bCgQCSqfTCgaDW/iNA+hms/2Qg9bd6vNvx/Vuh63sT+xWd6vPv9V1w8PDisViAgDgXtZsNnXx4kWdOXNGr7zyis6cOaOzZ8/q/PnzunLlijdua2JiQkeOHPFehw8f9krzOwvYSSbG3q7S5FYGZWLRW1k6jqPh4WHiXADYJktLS1paWtLCwoKuXr2qxcVFLS4u6urVq1pYWNDS0pKuXLmiYrHoHTM0NKTR0VGNjY1p7969Gh0d1b59+zQ6OqrJyUkxGgxtAAAgAElEQVSNjY1p9+7dGh0d1a5du3bwr8NmFYtFlUol5fN55XI5lUollUolua6rcrmscrm8Znt1dVWlUknZbFarq6sqFovK5XIql8vedqPR6Pu5yWRSsVhM6XRaiURCw8PD3nYsFpNlWYrH44rFYrJtuyN+MPFE+7Zt24rFYorH49v0zQEA7lbFYlHXrl3T1atXdf36dV27dk3Xrl3zttvrV1ZWOo4dHh7Wnj17NDExoZGREe3evdsr9+zZ07FvSvr+b71yuaxMJuPlSfptD/LeerFOt9yH2fbvD/Lenj17FA6Ht/EbAwBst1qtprNnz+rkyZP63//9X/3whz/U6dOn1Ww25TiOHnnkEf3iL/6iHnnkEb397W/X2NjYTl8ydkChUFA+n1ehUFAul1M2m+2oc13X287n88rn83JdV4VCwXuZ/Vqt1vNzksmkEomEEomEHMdRIpHw6sy+qbNt29tPpVJr9s34WQAAbpVarabTp0/rZz/7mU6dOqXZ2Vn97Gc/02uvvaZWq6V4PK7p6WkdO3ZMMzMzOnbsmI4eParJycmdvvS7knnOJ5PJKJvNKpvNynVdb9v/ymQya96vVCpdz23btizL6nil02ml02lZliXbtr399lf7caFQaJu/EQDAvW5paUlf+9rX9OUvf1mvv/66Hn/8cX3kIx/Rhz/8YSUSiZ2+vDuO6a9ZXFzUwsKC13fTr87PcRxNTEx4/TKO42hycrKjzuzTPwMA2yeTyWh+fl6zs7Oam5vzygsXLqjZbCocDmv//v2anp7WzMyMVz744IPcU28z3/nOd/Q7v/M7WllZ0ec+9zl94hOf4Pc4cJf4/Oc/rz/+4z9et91DDz2kubm5bbgiABv10ksv6S//8i/1zW9+U/fdd58+9alP6aMf/SjrOdyhqtWqzp07p7m5uY5Y+pVXXlGpVJL0Rh7EH0NPTU1pampqh68eAG6N9jH/7Tljf/54cXFRV65cUbVa7TjejOHvlTNu39+/fz/5YwDAPa3bODH/q31cWLd23eY0DQaDsm3bezmO422bMWL9Xslkcge+DQAA7kxmTsJez5+Z98xzav3a9JurPJ1OK5lMKplMes+epVIpr86M806lUt7LjAFvr0ulUtv47QAAcHfayLw66+0PMu/OenPqDDr/zujoKGPQAADYQu1rFmx2Lj7/djabVbPZ7Pu5g8QAG9kmRgAAYOuZOKHX+gOmT8D0H5gcQalU8o7rdg6zvnQv0WhU8XhcjuMoHo8rHo97/QvxeNzrTxgeHu5oNzw8LMuyerYDAGAr9FoDsN97my3bz7ne/dPPvyZgt7qbLbudk/lmAQDobjP3/61uO6jtWKu4vUyn06zPBACA5N27G42GcrmcJHnj8vz3dv/9vlKpqFQqeWW1WlWxWFStVvPWoSkUCqrX68rn817Z/lmDMr/9zT08lUopFAp5ZTKZVDgc9spEIqFIJOKV8Xhc0Wh0TVzgjxFMX4EpAQDA4LayL2Mjx5h4ZCO2Ow9htgEAwFrteQIzRsHkFcw93+QUzDxD0htrCbQfY54lMHkNk4sw5yoWi6pWq17ssJm+DMdxJL2xdl0gEFiTr/DnJfz5CH/+weQuTE7D5DqCwaDS6bQCgYBs297CbxsAgLuP/95u+ixMH4WJNVqtllzXlfTzOMLEDyZuMPGC/1ym/6NbTDIoc9839/uhoSFZliVpbYzhjy1MTGFiCX8MYWKH9n6TVCrlvQ8AAPq7FX0Xgxy73pxJ3dxMf0X7/AiDlCYGAQAAdz6TAzG5D3//S3vexMQoG2nr75Px980Myt9/4s+B+PtT/KXJkZjS5F9Mafpd2vtfTF4G2EpmPjT/GmX9XsvLy13/f4nFYmvWKmt/+d8bGxvjWSkAAAD0841AayOzCAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbhu1Wk2FQqGjLp/Pq16ve/v1el35fL6jTaFQUK1W21CbRqOhXC7X0aZYLKparXr7zWZT2Wy2o02pVFKlUvH2W62WXNftaFMul7W6utpRl8lkOvZXV1dVLpc76lzXVavV0nZIJBKKRCLe/tDQkCzL6mgTj8cVjUa9/UAgINu2O9oMDw8rFot11DmO07Efi8U0PDzcUWfbtgKBgLcfjUYVj8c33CadTisYDPa9xkgkokQi0fdvAwAAAAAAAABgu5h+hFtZZjKZjrqNMHn9my03cq5kMqlwOHwrvm5gW3T7f81fN0ib26nuZs7l75vdLt36Jf11g7S5nepu5lz82woAANqVSiWdOXNGZ86c0SuvvKLTp0/r7NmzOnPmjDeObXR0VA899JAeeOABHTlyRIcPH9aRI0d05MiRNeO2gH7MuM9sNqtGoyHXdb1xnZVKRaVSyfstYX4/mNIca8pcLqdGo6FsNuuN6Ww2m954y42MuzTjC01pxk0Gg0FvLGI6nVYoFFIqlfLKcDjsxdfJZNIbk2jGNJrSn+/oNr4SAHBnWFlZ0eXLl3Xp0iVdunSpY/vSpUu6evVqR/4rFotpbGxMe/fu1ejoqPbu3auxsTFNTk5qfHxcExMTGh8f19jYWMfYd+ysXv0qmUxmzf4g7ZaXlzueR+kmFovJcRwvTriZbVOOjo4qFApt07cGAMAbVlZWtLi4qCtXrujq1ateefnyZS0tLenq1au6du2aSqVSx3GWZWl8fFx79uzR6OioJiYm1mzv2bNHExMTSqVSO/TX3T22Ks4x2+vlYTYS0wzynv/ZUQAAuslkMnruuef0ve99Tz/4wQ/08ssvq16va9euXXr00Uf1tre9TY8++qgeffRR7du3b6cvFzchm80qn8+rUCioUCjIdV3l83mvLp/Py3Vdb7tQKCibzSqXy3XU+ef9aBeJRJRMJmXbttLptJLJpJLJpFKplGzbViqV8uosy1IqlVIikVAikZBt2957Zh8AgNtVrVbT2bNndfLkSe/14osvqlwuKxQK6cCBA5qentYjjzyimZkZTU9P68EHH+R3+gb0yrf0e7W3XVpaUqPRWHPe9j4ik0fp9erWjn4lAMCd5uTJk/rHf/xH/fM//7MikYg++tGP6pOf/KQOHTq005d2W8lkMlpYWOiILRYXFzvqzP6NGzfWPPfXHjNMTk5qYmKiI4bw142Pj2toaGiH/loAgCQtLCxobm5O8/Pzmp2d1dzcnGZnZ7W4uCjpjfmbDx8+7P2un5mZ0dTUlI4ePcpczLe5QqGgT33qU/rKV76iD37wg/riF7+oiYmJnb4sAFtofn5eR44c6TsOKxwO68///M/16U9/ehuvDMBGvfbaa/riF7+or371q0qlUvr4xz+uJ598kvECd4l6va5Lly6tiblPnTrlrW9j27YOHz7cEXNPT0/roYceIncC4J5i+rl75aXb9y9fvtw1R+3PQ/fap88bAIDuBh2j1mvcWjeDjFHrNVaNPmUAADbHzL9onpEb5Dm69ja5XE75fF65XG7NPA/tHMdRKpVSKpVSOp1WKpWSZVne83Lt75ln6tpf5nh+owMAsDX88yGuNwdQv/mC1psLsduzaYPODeTf37VrF3MuAwCwxcyaC2YNh2w2q2KxqHK57M2fUy6XvTxBuVxWoVBQLpdTuVxWsViU67oql8tefDDI+pWpVMpbQ9KyLCUSCcXj8a5z65htMz+PaZtOp5VOp5VIJNasnwYAALbWVs81bNaA6sWfTxg0t9Cr3e7duxWJRLbxGwMA3OvMOohmfcRSqaRKpeLdE816imYNxUajoVwu562VKMmbx9bcNwc950YkEglFIhHvnmnWRTTrJpr5+s26i7Zte+stmnUVzTqK5hzmnKaP37IsDQ0NyXGcLf+eAQC4G5l7v7nnm3u9iRtMvGDiB1OasYDtazQXCgVVq1UVi0UvVjDnM+UgOf125l5v4gVzz29flzkYDHoxQPs6zoFAQI7jrFnX2b++s39dZwAA0Kn9Xt6tHKTNRksTdwyqPc+/FeUg5zTxBgAAGIwZOyitzUeYGMDkFUzpzzv4S5Of6FWaPMZGmP4FU/pzDf6yPdfQr/TnMvwlAADozeQM/DGC/55v+jTa4w4zFsJ1XbVarZ5jIkwMYsZGbLQ/Q1obP/jjANMXYfo8TB+IGTthcg7+8RD+MRWMiwAAYOO2qv9iI+cyccagtrqvo1tpnnkw+wAAYH3+PgyTj2jPP5i8gylNPqK9bH/fdV0vj+EvN9q30avvwT8u0pTmuQxTRiIRLwfRXprnNvxl+7gKAABwd9nqcaDrlaZvZiO2I3/SXjKmA375fF4rKyvKZDK6ceOG91peXvZeN27c0PXr1716/3PYwWBQIyMj2r17t0ZGRjQyMqI9e/ZofHxce/bs0djYmLc9OjqqkZGRHfprAQAAsEO+EWi1Wq2dvgoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2KhyuazV1dWe+3dzm3w+r3q9ru0Qi8U0PDzct+52a7OV57ZtW4FAQAAAAAAAAAAA3OtqtZoKhYKq1aqKxaIqlYpKpZJWV1dVLpe9Po1SqaRKpaJisahqtapCoaBareb1b+RyOTUaDWWzWTWbTbmuq1arpUwmo1arJdd11Ww2lc1mB762SCSiRCLh5fqHh4cVi8UUj8cVjUaVSCQUiUSUTCYVDoeVSqUUCoWUTqcVDAZlWZaGhoa8fgHHcRQIBGTbtoaGhrz3LcuSJDmOc6u+ZtzhBun/26m6nboO8//6dtpsn+J21O3UdZh/xwAAANCpXq/r0qVLmp2d1cmTJzU3N6fZ2VmdPn1azWZToVBIBw4c0NTUlKanpzUzM6OpqSkdO3ZMY2NjO335uEVM7sP8xjE5DpPTyGQyXu7C5EtMfsS0NXkQ13W9PIhpa3IqJocyiGg0qng87uU6/DkPf+6jVw7EnwvplhORyH0AAH6uUqnoypUrunz5si5duqSLFy/q8uXLHfvFYtFrPzIyov379+vAgQM6ePCg9u/fr4mJCU1OTmp8fFwTExPcZ7aBiWPK5bIymYwymUzH/qDvme3r16/3fYbF5CRjsZgcx+nY9u8P0m737t2KRCLb+I0BALA5xWJRV65c0dWrV3XlyhUtLi7q9ddf98qFhQUtLCx09KEODw9r7969mpiY0N69ezU+Pq6xsTGNj49rz549Gh0d1fj4uEZHRxWNRnfwr7u9ua6rYrGoYrGofD7v7RcKBRUKhTX72WzWy8eY90qlkvL5vJfz6cXkXmzb9vIzlmUpmUwqHo8rmUzKsizvPdu2lUgkFI/HlUqllEqlFI/HO84Ri8W28dsCANzLVlZW9Nxzz+nZZ5/Vs88+q5dfflmSdOzYMb373e/W448/rkcffVSHDx/e4SuFpJ65m/XyOf66QXI5Jh+zXi6nV92uXbuIaQAAd6VCoaCXXnpJP/nJT/Tiiy/qxRdf1NzcnOr1ulKplB5++GEdP35cb33rW/XWt75VDz74IH0a0pq4xP/qFruY1/LysqrVatfz+mOSfvGJ/zUyMkJ+DQBwz/iv//ovff7zn9ePfvQjPfzww/rEJz6hD33oQ2ueL7sbtccYi4uLWlhY6Ig1/HXXrl1b86xjLBbT5OSkN67JvPx1k5OT2rt3LzEGANym2p8Pmpub0/z8vGZnZ/XTn/5UhUJB0hvPSbQ/H2TK++67j7mn70AnTpzQb/3Wb2lpaUlPPfWUPvaxj+30JQG4RR555BH95Cc/UavV6vp+IBDQ/Py8Dh06tL0XBmBTFhYW9IUvfEFf+cpXFA6H9eSTT+qJJ57w5vXC3SeTyXhxenu8/tprr6nVaikSiejIkSPeM/zt8fq9kN8CgPWUy+U1ue5e+93GDnbLgffaHxsbUzAY3KG/FACAO8d64+XWG0vXTb+xcOuNnxsfH2euWQAAtsCgz+71q+s3Nl7qfs8f5Fm+9jru/QAAbK1SqeTNX5TL5bz5jLLZrPL5vLffPtdR+9xG5thsNqtisdjzt7/08zmMHMdRIpFQIpFQMpnsmKsonU4rnU5771uWpVQq5bW1LEvpdFrJZJJn/QEAuEXMGpqlUknlctm7z5fLZeVyORUKBZXL5a7xQ6FQ8PYzmUzHfIe9mLUiksmkFwP44wXLsrx9Ey+0z23YfqxZbwIAANw6G1kDYpB2N27cUK1W6/uZW7X+g9kmZgAA3I7M+o6NRkO5XM77jS698XySJGWzWTWbTW99yEKh4B1Xq9W89QZc11Wz2fTWj8zlcmvWjzT39EGY3++hUEipVMrL+Zu1msx6kmbdSLNOpG3b3vqQZv1Is76kWYfS3KfNGpRmzUkAADC49t/qN1u2/2bvVm5kDWqpc23H7Sj5zQ8AQHdbGS8MUm40ZpC2P24weQwAADA40+fgL5vNpteH0a80fR+9SunnfSL+clCmn6FXaWIA+jQAANheJm9gxixUq1UVi0VvLEO9Xlc+n18TN0g/jwdM3GDiCxOP+MdQFItFVatVb38QgUCgIw7wj4/wxwP+cRImLrAsy4sp2sv2MRcmxgAAAIMzMYSJHUwsYepNaWIOf3+FPz4w8YMpTVxh4gwTdwzC3Ov9cYS555t4wh9XmP4Kf3zR3jYSiayJN0wuAwAADG67x0yYGGNQ2z1ewuQvAADA3aM9z5HP5wce3zHIuI1e4zzMeQZlch+m9McpvWIXfy7FP2ajvU/G37+Du0u5XNby8rJu3LihGzdu6Pr161peXvZeN27c0NLSkq5du6br16/r+vXrHf+NhsNhjY6OanR0VOPj49qzZ4/Gxsa87dHRUU1MTHj1xMwAAAB3vG8EWoP2+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYUeVyWaurqz3375Y23eoKhYJqtZq2QywW0/DwcN+6Qdps9ridbmNZloaGhgQAAAAAAAAAAG5/lUpFpVJJxWJR1WpVuVxO9XpdruuqVqupUChodXVV5XLZ629xXVeNRkPZbFbValXFYlGlUkmVSkX5fF71el2ZTEbNZlPZbFb1el35fH7gazL9D8PDw4rFYorH44pGo0okEopEIkomkwqHw0qlUgqFQkqn0woGg14fhW3bCgQCchxHgUBAtm1raGhIlmUpGAwqnU4rFAoplUopHA4rmUzewm8Y7Tbb1zdo3a0+/3Zc73bYbF/loHW3+vxbXWf+rQEAAADWc/XqVb344ot6+eWXderUKc3OzuqVV15RtVpVKBTS/fffr2PHjunYsWOamZnR9PS0pqamFA6Hd/rSoZ//BttImclkNtzW5FgGYX6fDFI6jrPptianAgDArXLt2jWdPXtW586d0/nz53X+/HldvHhRly9f1uLiotcuFovpwIED2rdvn/bv369Dhw5p//793uvgwYOKx+M7+Jfcmfxxi397o+9ls1k1m82en+ePO9pjD/92v/fM9ujoqEKh0DZ+YwAAbJ/FxUVdvHhxzevChQu6fPmycrmc1zYcDmtsbEz79u3T+Pi49u3bp4mJCe3du9crJycn5TjODv5FOyebzapQKKhYLCqfz6+777quisViz/1ezDgSx3GUSCSUSCSUTCZl27bi8bji8bgsy1IymVQ8HlcymZRlWYrH4xoeHpbjOF67dDrtjW0BAOBOsbKyoh/84Ad69tln9eyzz+rUqVOSpDe/+c1697vfrXe/+91617vepV27du3wld49euVpuu33q+uX01kvnzNo3cjIiKLR6DZ/QwAA3L4ajYbm5uZ04sQJPf/883r++ed15swZNZtN7dq1S8ePH9fx48f11re+VcePH9eRI0fuynm5/LFJr5il22t1dVWZTKbredeLXbq92tuNj4/fld83AABbpdVq6dvf/rb+9E//VD/+8Y/1/ve/X5/+9Kf1rne9a6cv7aaUy2UtLi5qYWGhI+7oVnflypWO/jpJa2KOyclJTUxM9KwbGxtTMBjcob8WALAZlUpF58+f19zcnGZnZzU3N6f5+XnNzs56z/1PTExoZmZGU1NTmp6e1szMjI4eParx8fEdvnpshUajoc9+9rN66qmn9L73vU9f/epXNTExsdOXBeAWevrpp/VHf/RHqtfra94LBAJ6xzveoRMnTuzAlQG4GSsrK/rSl76kp59+WpL05JNP6oknnpBt2zt8Zdguruvq1VdfXRPXnzlzRo1GQ6FQSAcOHOiI66enp/WWt7xFqVRqpy8fAG5b3fLsvfaXlpbUaDQ6jnccpyOv7s+zt+/Trw8AwMb557vayGtlZUWVSqXreQcZn9drrN7ExIQCgcA2fxMAANy9et3vB60z9a7rqtVqdf2Mm33O0HEc7d69m/ktAQC4RW52Psn2/Rs3bqhWq/X8rH5xwSAxgdlnXD0AALdet5zBzcYL/QwaJ6wXQwwPD3triwIAgFtrkLhg0Phhvb4GaWPrVQzSbs+ePazxBgC4Y93s+peDrqG5kfUxJa253262XO8crMUAAMDG3UyMsJlyvd/5flsVRwxSEksAANBds9n01iHKZrNqtVrePd11XUny5vdvr2+1Wh3HNZtN5XI5NRoNr8zn86rX6yoUCqrVal650dxDJBJRIpHw1n00ZSgU8u7xqVRK0WjUW9cxGo16bS3LUjAYlG3bXltzThMvtLdl7AEAAJvXK25YL47oVZq4wnVdNZtNua7rxRsmvhiUbdsaGhqSbdsKBoNKp9NeXGHiCBMbJBIJRSIRL9YwMYLjOBoaGpJlWeseCwAANu5WjYvodc5B3YoxEL3KdDrNM5QAAGxQJpPx8g7+/ILJI9TrdeXzeS+fUK1WVSwWValUVCqV1sQLZrtUKqlSqXh9G6avY1Amp2DbtgKBgBzHUSAQ8PZNvsL0ZaTTaa8vw597MDkH08a2ba+NiSUAAMDGbfc4SxOrDGKrcxG92pCPAADg7rfeOM/1xnv6S5MzMaU/l2LONwj/OE4Tm/Qbo9FvnKjJsZhxoibmYTzH7SuTyXjrlfVby+zy5cvK5/MdxzqOo6mpKU1MTHhrlflL1jgBAAC4rX0j0NrIk+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADADimXy1pdXR14/04/plgsqlqt+r+GWyYWi2l4eLjn/t3cJp1OKxgMCgAAAAAAAAAAYCs0Gg3lcjlVKhWVSiWv3yeXy6ler8t1XdVqNRUKBa2urqpcLqtQKKhWqymbzaperyubzaparapYLHr9SPl8XvV6XZlMxvuMQUQiESUSCcXjcUWjUa9vxHEchUIhpVIprw8lkUgoEonIsiwNDQ3JcRwFAgHZtq2hoSFZluUdEw6HlUwmvfNHo1HF4/Fb/O3eOpvp47ud6rb6/Oa/ye22mT7A273uZs6VTCYVDocFAAAAYGMWFhZ08uRJnTx5UnNzc5qdndXc3JwkaWJiQjMzM5qenvbK48eP39G/aXeK+T3ZXmYymTV1vcpB27quq1arNdA1md9WsVhMjuN424OWgx7jOM4t/nYBANha169f17lz53T27FmdP39e586d88p8Pi9JisfjOnLkiO6//34dPHhQBw4c0IEDB7R//37t379fY2NjO/xX7Dx/DJPJZNbsD/re6uqqMplM38/zxyf+7X7vdWtn+n8AAIBUr9f1+uuv6+LFi7pw4YIuXrzY8bp06ZIqlYokKRgMau/evTpw4IDuu+8+HTx4UPv379fk5KT27t2riYkJjY2NKRAI7PBftXX8OZz14px++9evX1e9Xu/5WYPEOYPuk7MBANyL5ufn9R//8R/6z//8T33/+99Xo9HQgw8+qHe+851673vfq/e85z0aGRnZ6cu8rRQKBeVyOeXzeeXzebmuq1wu11GXy+W8elPX3taMAe7FsiylUiklk0klk0nZtq1UKuXVpVIp2bbtbSeTSVmWpXQ63VFHfAMAwNZZXl7W888/r+eff14nTpzQ//3f/ymfzyuZTOptb3ubHn/8cT366KM6fvy4Dh48uNOXO5Be/VO9Xv52S0tLajQaXc/dnnfp9fLnZ8xrz549PAcBAMAt9K1vfUuf+9zn9JOf/ES/+qu/qs9+9rN65JFHdvqy1lhdXdXKyooXeywuLmphYaEjPmmv69anZGKNyclJTUxMdMQcveoAAHeHTCaj+fl573kgU164cEHNZlPhcFj79+/3ng2amprS9PS0Hn74YSWTyZ2+fNwiy8vL+s3f/E0999xzevrpp/Wxj31spy8JwDZYWlrSxMSEms3mmvdCoZC+9KUv6eMf//gOXBmArZDP5/X3f//3+qu/+ivVajX97u/+rj7zmc8wXuIeVq1Wde7cOc3NzXX8Jpibm1O5XJYkOY7TMU+A+U0wNTW1w1cPAHeeTCbTkbv35/Lb969du7YmLnccpyNX35679+fxJyYm7qrnbgAA2AkbHTPY/lpZWfGemfUbZLxgr/GD3OMBALg16vW68vm8MplMx/ON7c84ttdls1m5rrumbb/5rRKJhPfMYzqd7ngGMp1OK51Oy7Is2bbt7be/bNtmPisAALZBoVBQsVhUoVDomOugUCh4sYHZN21MLOBvU61We36OmfugfX4EM/eBf36E9eZQIFcAAMD2GGQu7EHnyt7MfJEbmSuyfXv37t2KRCLb+E0BAHDv6rU+xmbW1BgkZpC06TU0erXj2QIAwN2mUqmoVCp560AUi0VxAckAACAASURBVEVVq1Xl83nV63Vls1k1m01lMhk1m01ls1lvDEG1WlWxWPTuzaVSSZVKRYVCQbVaTblcTo1GQ67rqtlsynXdga8rkUgoEokolUopFAp54wEcx9HQ0JAsy1IoFFIqlVIkElEikfDW84zH44pGo0omkwqHw0qn0woGg7JtW0NDQ7JtW+FwWMlk0msLAAA2ztzrTbxg1vk24wQzmYxarZYXC2SzWTUaDe+4XC7nxRW1Ws2LIcx4gmKx6MUqJt4YlLnHm1jCcRwvdjAxg4k3TFxhWZYXI5h8gDnetm2FQiGl02lFo1HF43HiCAAANsDkG0zuwJQmH2Hu9aZsb1MqlbzYwJSmrT8HkclkvDhjEIFAQLZtKxgMKp1OezkGEwv4cwuO4/Rsa2KLbm1NjAEAAG7OIH0apl/CxAQm17CZ/pBBbaYvYyP9IOYY0xYAAGyM6avw9034+yJMnOAf++CPF9rHQPjHUZjYY1Am99AtJvDHAqZttz6Lbn0eJv6gPwMAgJtjYoH2sQ69xkpsdIxEr3hkECY26Hb/7zfmwR8jtPdrmPjDH2MAAIDN88cQ/liivW/DxApm7ITpy+g2JsLEESaPYWKWQbTHCMFgsOvYyfZYwzyL0StW6DemAgAA3Fv8c0GsV26krf+YQfnnjBi03OgxzEGx9VzX1dWrV3X9+nVdvnxZV69e1eXLl7W4uKjXX39dr7/+uhYXFzv+e4jH49q/f7/Gx8e1f/9+TU5O6uDBgzp06JAOHTqk++67T8PDwzv4VwEAANzTvhFotVqtnb4KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdFcsFlWtVr39arWqYrHY0SaTyXTsFwoF1Wo1b79SqahUKnn7rVZLrut2HJPP51Wv17391dVVlctlb7/ZbCqbzXYck8vl1Gg0eh7TaDSUy+X6HlMul7W6uurt1+t15fN53WpDQ0OyLKujLp1OKxgMevuxWEzDw8PefjAYVDqd7nvM8PCwYrGYtx8KhZRKpTqOsSxLQ0ND3n48Hlc0Gu17jP9zwuGwkslkR5tUKqVQKNT3PP42AAAAAAAAAAAA95psNqtqtap8Pu/1xWUyGa9PLZ/Pq1qtKpvNev1fpv8tm82qXq975ygWi15/l+lv8/fd9WL6qyKRiBKJhNdnZPpzHMfx+nui0aji8bgSiYQikYgsy1IwGJRt216/kemnSiaTCofDsm1boVBI6XR6TZ+ctLafbjvqbpfrkN7476DZbGo7+fsfd6rudrkOaW3fKQAAAABsRi6X04kTJ3TixAm98MILOnnypK5du6ZAIKDDhw/r+PHjeuSRR7zScZydvuRbxvwG7ldmMpl126x3jH/ccT/m92C/0nGcddus15YxsgAAvPHM0enTpzU7O6tXXnlF586d0/nz53Xu3DnvmaBYLKb7779fR44cWVPu27dvh/+CrWXimPZYxr896HsrKyuqVCp9P88fqziOs2Z/0PeGh4fv6rgVAIDtlMlkND8/r9nZWc3NzWl+fl7z8/Oam5vznomORCLat2+fJiYmNDk5qampqY7XgQMHbvu8gz+Xs17c02//+vXrfXM/g8Q2g+4T8wAAsHHNZlM//OEP9a//+q/61re+pcuXL2tsbEzvf//79f73v1/vec97ZNv2Tl/mljNz5eRyOeXz+Y7Sdd2Ounw+37dtq9Xq+hmJREKpVErpdFqpVEqO4yiVSnXUWZblbSeTSSWTSTmOo2Qy6dX556YBAAA7Y35+Xs8++6y+//3v6/nnn9fZs2cVCAT0pje9SY899pgee+wxPf744zp69GjH/G7bpVaryXVdZbNZZbNZZTIZZbPZjjr/y3Vd75XNZjvm8zOCwaAsy5Jt27JtW5Zldbz8df52tm0rEols+/cBAADWNzc3pyeeeEL/8z//o1/7tV/Tn/zJn+jhhx/ets83/UqLi4taWFjw+pj61fk5jqOJiQmvv2hycrJjv71uz549CofD2/b3AcC9rlar7ci/uwsLC954DjO2Y3Z21ruPRKNRHT58WDMzM5qentbMzIympqZ09OjRjjndcfd76aWX9IEPfEC1Wk3/9m//pre//e07fUkAttEv/dIv6bnnnluTEw0Gg1pYWNDo6OgOXRmArZLL5fT000/ri1/8ohqNhp544gn9wR/8wZo1hXDvqtfrunTp0prfDqdOnfLWxXIcR1NTUx2/Haanp/XQQw9t+zxnO/UbCwButUwm09Ef0N4/4O8ruHr1asd4zWg0ql27dvXsI+i2DwAAtlaxWOwYh2jGIvrrXNdVJpNZU9ftudNIJOKNQ9zMyz9XNQAA2Hrmmctuz16al4kJzH4ul1Mul/Pqc7lczzkozDOV7S/HcdbUpdNp75kFf30qldrmbwUAgHvXRuaj6tdmaWmp6/ONRvs8U4PMRcX8VAAA7Lz15rPczNyW/Qw6b+Ugc1qyFiYAANsnn8+rVCp5YxDK5bJKpZJc1/XWeDf9EKZdNptVqVTq2a7fPNhmXfd0Oq3h4WElEgnZtq14PK7h4WHZtu2tCT9Iu2QyqUQisY3fGAAAO28j65XezFqnq6urfed9bjfo+qSbrSNXAADA1jD3eXOvL5VKqlQqXlksFlWtVlUoFFSr1ZTNZlWv15XNZlWtVr0cQPs66JlMRvV6Xfl83juXOc8g0um0QqGQbNtWOBxWMpn0YoBkMqlwOCzbtr35mSORiJc7iEaj3trnjuN4eQdzfCKRUCQSIZYAAGATzL3fxA/m/p7L5dRoNJTJZNRoNJTL5VSr1VQoFHq2dV1XjUZD2Wy2Z9tB+O/x6XRawWBQjuNoaGhIlmWtiSfa24bDYVmWpWg0qng87sUajuN4x5kYAwAAbI3t6MtoP3YQ3fo0NtqPsd57PDcBAMDNMf0N5l7fqx/D5B6y2ayazaYymYyazWZHv4Y51syv4Lqul58w8cQguvVnmPt/v76Kfu+194OEQiHWzQYAYAsNmmu4mTYmBhnEZnMMG2lj27YCgcAt/mYBALi7bXW/Rq82JqcxiI3GDJuJL8zYCgAAcG/oNfbT9KmYZ0Wy2aw3BtQ8M+J/rqTfeFFzzCACgYD33Eg6nfaeG+k1brT9GRPT/2LGhppYp70fJhwOK5VKMUa0ixs3bmhxcVGXL1/W1atXdeXKFS0sLGhhYUFXrlzRhQsXlMlkvPZjY2M6dOiQDh48qEOHDq15sU4JAADALfONQGuQ2V8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2ULlc1urqat+69fY3c8xOfa4kua6rVqulWy0Wi2l4eHjg/Tv9mEQioUgk4v8aAAAAAAAAAAAAcBuo1+vK5/MqlUqqVCpyXVeVSkXFYlGFQkGVSkXZbFarq6sql8vKZrMqlUpyXVflcrnjmEKhoGKxqFqtpnw+r9XVVVUqlXWvIRqNKhQKKZlMKhQKKRwOe2UsFtPQ0JCi0aiazabX1vQ/mTrTpl6vq9VqKRgMKhgMKhwOq1qtqtlsdnzmIH2M3eq6tTHf3XYbpO9u0LqtPNd21HVrE4/HFY1GBQAAAADYemfPntWJEyd04sQJ/ehHP9Ls7KyazaYOHz6sd7zjHTp+/Lj3sixrR681n8+rXq/LdV01m025ruvlPyqVikqlkvdbvlAoqFarKZvNqtFoyHVdNRoN5XI5VatVFYtFLxdg2uZyOTUaDWUymYGvKZ1OKxgMynEcBYNBpdNphcNhJZNJ7zeuGW9r2tq2rWAwKMuyvLbRaFTxeNz7DZxKpRQKhWTbtoaGhmTb9i38ZgEAwMLCgk6ePKlTp07p5Zdf1uzsrM6cOaNaraZIJKIjR47o/vvv1/333+9tHzlyRPv371cgENjpy+9gYp5sNuv1CeXzebmu6+0XCgVlMhkvfsrlcl6fUrFYlOu63nvZbLbv5yUSCcXjcaVSKaXTaS+mcRzH206n00qlUorH40okErJt23vPsiwlk0nF43Elk0lZlqWhoaFt+rYAAEA3lUpFs7OzOnfunM6ePavTp0972yY2SCaTetOb3uS9HnjgAU1NTengwYMaHx/f9hjJ5HnK5bIymYwymcym969fv656vd7zs2KxmBzH0fDwsLe92X3btm+7eBIAgHvFj370Iz3zzDP65je/qYWFBR09elQf+MAH9Cu/8it65JFHbuv8RHsM0y2u6VXXXr+0tKRGo9H1/L3inV5xTbe63bt3Mx8NAAB3uCtXruh73/uevvvd7+p73/ueLl68qHg8rscff1y/8Au/oMcee0yPPfaYdu3atWWf2S1+6fbqFutcu3ZtzfNFkvrmZ3q92tuNj4/f1rEhAADYuGKxqL/+67/WX/zFX2hmZkZf+tKX9M53vvOmz5vJZLSwsNARoywuLnbUmf0bN26oVqt1HN8ep0xOTmpiYqIjRvHXEacAwO2pWCzqb/7mb/TUU0/py1/+sj7ykY9s+WfU63VdunRJs7Ozmpub0/z8vGZnZ/XTn/5UhUJBkuQ4jqampjQ9Pa2ZmRmvPHToEPcP6JlnntFv//Zv6/HHH9czzzyj3bt37/QlAdhm/+///T997GMf6+gzDgaD+uVf/mV95zvf2cErA7DVcrmc/vZv/1Zf+MIXJEmf+cxn9IlPfELxeHyHrwy3s0wm4/3eaP/dMT8/L0nes3YzMzNrfnf4547bCv/0T/+k3/u939NnPvMZffKTn1QikdjyzwCAO0GlUtHy8vK6fRDt++384yXa+x38fRB79+5ljhMAALZBv+dd13stLy+rWq12Pe8g4yS7vSYmJnjeFQCAbdbr/t8vNmh/r9/cGIM+S9HvOVLHcbb5GwEA4N5m7vHrzZO1Xptuzyu028gcWf3ajI2NKRgMbuM3BADAvc2sr5LJZFQsFr15xs0c5MViUblcTrlcTsVi0VuP1qw/a44184/n8/menxUIBGTbtpLJpBKJhDefuNlOpVKyLMuba9yyLKVSKSUSCW9+cTMfeTKZVDKZ3MZvCgAASN3zDP3yCeu1M2u69cJ83QAA3Drta7aaNcnMmq2FQkHValWu695U3SBs21YkEvHyBZFIZOA6x3G89Vr71QEAgK3Vvp57rVZToVBYs467WRe+PcYw68LncjlvDXmzdrzJG7SvGd9tPmi/oaGhjjXczdrtvWKHSCTi9TuYGMOs+96tzqwBDwAANiefz3v3/UajoWw268UP5v5vYoRubU2s4I8n2tvWarW+YxXambghnU4rFotpeHhYqVRK4XDYix/MGAZ/nsHEGeudAwAAbK1ms9kRF5gxjyYuMPGFv5/D5CdMrGByF/l83nvPf671mDyEP2awbVuhUKgjPkgmkwqHwx3xhBnLkE6nFQ6Hu57Lsizm+AYAYIuY/EEmk+nZH9GtP6NYLKparXoxSDabXZObaH9vEKbfof2eHwqFOuIBk3tIp9MKhUKybXtNHGH6LRzHUSgUUiqV6shP0KcBAMDWaO+rMPmD9txC+5iHXuMiGo1G1zikPdYYZFyEpI57vz+u6BY7mPggnU57bUw8YeIP89ym6Q8BAABbY5BxEu3jJM1YzF7jI9rjCvPch4lPBuHPO6w3tnLQ8ZapVMrLcQAAgHuXyZd0K9vnlxi07HXMenNSGCYn0l62zz0xyHv96u62vphcLqcLFy54r9dee00XLlzQxYsXdeHCBWUyGa/t5OSkHnzwQT3wwAN66KGHvO0DBw7s4F8AAABwV/hGoNVqtXb6KgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+P/s3Xe8XFW9///39NnTJ5yckARCSJBUQlGkKmAFLyhNUZoQQiCkaMCCytcHVx9RIJaAIOIDRRAr14Lde0FElIsiIiJJKEZADKbOzJ6yp8/vD39735k5c+bMSXIKJ6/n47Efs9fabc1cueeT9VlrbQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzOsiwVi8WudUOVX2nXmKapWq2mkRYMBmUYxqDlXs55JV1jGIaCwWD7zwAAAAAAAAAAAIBxaldybSNZV61WVa1WVSqVlM/nlc/nValUVKvVVC6XnfMqlYrq9bosy1K5XFa9Xle1WlW9XlelUlGlUlGj0VCtVlO9Xle9Xh+V/OCu2pXc3Xiq29P3j0aj8nq9AgAAAABgNDz33HO67777dN999+k3v/mNtm3bpmAwqFe/+tU65phjdNxxx+noo4/WvvvuO6z72v0YlmUplUo5+93qhnP+cMZD2//+bv5MJpMD6ob6HOqaeDwut9u9K/9nAAAAYyiVSukPf/iD/vjHP+rRRx/Vo48+qs2bN0uSZs6cqYULF+qQQw7RokWLtHDhQs2ZM0c+n29E22SapnK5nHK5nLLZrDKZjFPO5XJKpVLK5/NOOZ1OtxzPZDLKZrPK5XKyLGvQ54TDYUUiEYXDYSWTSYXDYYVCIUWjUcViMYVCIYVCISWTSWc/FospGo0qFAopHA4rkUjIMAyFQiElEokR/V0AAMDIK5fLevbZZ/XYY4+1bMViUV6vVzNmzNCsWbM0a9YszZ8/XwsWLNCsWbM0c+bM3eoXaTQaSqfTMk1T2WzWiWW61dljazKZzIDyYDwej2KxmOLxuMLhsMLh8LDKkUhE0WjUKTOvHACAV7Z//etf+s53vqOvfOUrevLJJ3XggQfqXe96ly688ELNnz9/RJ/dngezt051g9UXi0WlUqlBn2Hnt5pzXHa51/r+/n7GtAIAsJfavn277rvvPj3wwAN64IEH9OyzzyoQCOjoo4/WSSedpDe84Q066qij5Pf7B71HPp9XOp1WKpVSOp12tvbyYOd0Eo1GlUgkWrZkMjloOR6PKx6PK5lMMrYHAAAM8P3vf19XXHGFarWa1qxZoyVLlnSMF5r7ZV5++WVt3ry5pZ+mvW7Lli2q1+st9wgGg5o2bZqmTp3a0g/TXjdt2jRNnz5dgUBgtH4GAMAIqFar+upXv6prrrlGqVRK9Xpdy5cv10033bTL97THdKxfv15PPfWU1q9fr02bNumpp55y1jCZOnWqM5bDHtexcOHCYc8Jwt7jtttu0xVXXKEVK1bos5/9LHkhYC9lmqb6+vpUqVScOrfbra997Wu64IILxrBlAEZKLpfTLbfcok996lMKBAK66qqr9P73v5/+CAxLOp3W3/72twH/Ptm4caPq9XrL2HP73yfz58/XoYceqmg0usvPXbVqlW655Ra5XC4lk0mtWbNGixcvJpYFgCEUi0Xt3LmzY26jPc+xefNmpdPpluubx5p2ym00l/fff3/FYrEx+qYjx14XuH39WAAAxgt7/m37WMzmrVNdKpVSoVAYcD+/3++MyWzfhqqfiLHA7ioWi8xJBgCMiva1Wzv97R/qWDqdVqPR6Hj/4cxT7XSsr6+v6zwUdFYqlcjjAAB2i712Vy6Xk2maHdc3tdc+Heqc5jFGzVwulxKJhKLRqCKRiCKRiLN2l12ORCJKJpOKRqPOmqf2el7xeNwp0xe/59hzW5hbCwDoRac1sTq9K2awPoZO5cG0v/ulW39Ct3NYH2tkVatVfl8AwKAymYwKhYIKhYLS6bQKhcKAd6fY71NpfrdKPp93+hnscvuYxWb2euKxWMx5r8pg64U390EkEgnnfLtPIhwOk6cAAKBHu/Ie2l7rduzYoXK5PGQben2X7K7WJRIJuVyuUfg1AQDYu9TrdWUyGZXLZeXzeRUKBZVKJWWzWVWrVaVSKVWrVWWzWZVKJadPoVwuK51OO3XZbFblclmZTMaJI0zTVLlclmmaQ7bD7XYrHo87f/tjsZj8fr9isZgTE8Tjcfl8vgF1fr/feVdrIBBQIpGQ3+93+hr8fr+SyeQo/JoAAEx8dp+BaZqqVCrKZDItMUKlUlEqlVKlUlEul3Nii0wmo0qlItM0nVihOX5ov8dQ/H6/895Se26lz+dzxjQGg0HFYjH5fD7F43EFAgGFQiFFIhHn/G73iEQi8vl8o/CLAgCw98lkMqpWqx1jgHQ6rUqlomw22xIzNB9rjjE6xST5fL6nvIY9vsHui7D//ieTSXm93pa4IpFIKBAIOGMaAoGA4vF4x+PRaFSBQIA1HAAAGAHNYxm6jXPYnWOZTGbA+6s6Gc6Yh+GOk4jFYvJ4PKPwiwIAsHdoNBot/Qr23/7m/ohardYydsKODZrHTtRqNZmm6fRB2P0T6XRa5XJZuVxuyLbYuYnmfIWdwxhsnET7mIhkMtn1PgAAYM9qjwuaY4dO8UUvYys71Q3F/lsfjUbl9/tHZLwlAACAPebCNE0n9rH7SzqNEbXPb+4faR43Wi6Xlc1mh52HaR7XaccqzfFL+3jRTrFP8xhSO25qjqXGi0wmo+eff14vvPCCnn32WT399NPauHGjNmzYoO3bt0v69+8xZ84czZkzR/Pnz9fcuXP1mte8RjNnzhzbxgMAALxy3ONqDPY2FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxolCoaBSqeSULctSsVh0yqVSSYVCwSlXKhXlcjmnXKvVZJqmU67X68pkMi3PSKVSLeVMJqN6ve6UTdNUrVZzyrlcTpVKZdA2FotFWZbV9Znt92z/XiMlEAgoFAo5ZbfbrXg83nJONBqV1+t1ysFgUIZhdL0mFovJ4/E4ZcMwFAwGnbLH41EsFmu5Jh6Py+12D3qN1+tVNBptuSaRSMjlcjnlUCikQCDglH0+nyKRSNdrAAAAAAAAAAAAMLY65cbGom68tEOS0um0Go2GRpPP55PH43Ge22g05HK55Ha71Wg0VK/X1Wg01Gg0VKvVemqfx+ORx+OR2+2W3++Xz+eTz+eT3++X1+uVx+NRIBBQIBBQMBiU1+uVYRgKhULOvs/nUygUUjKZdK7z+/1KJpMtuU5pYC5zd+vILQIAAAAAMHaq1ar+/ve/6/7779evf/1rPfTQQ9q8ebMMw9DChQs1d+5czZgxQ9OmTXPGc2ezWWfsdjabVaVSUTqdVrlcVj6fVz6fV7lcViaTUaVSaRlX3k00GpXP51MikZDf71c4HFY4HJbf71cikZDP51M0GnX6F7qdb4+zTiQS8ng8isfjHcc8AwCAwW3atElf/vKXNWvWLC1dunSsmzOitm/frt/85jd68MEH9eCDD+rJJ59UvV7XjBkzdOSRRzrbq1/96gHzu7qxLEupVEqpVMqJn+xyp7rBytu2bVO1Wh30OcFgUMlkUslk0pkrtivlvr4++f3+PfGTAgAwYRQKBX3zm9/Un/70J91yyy0TfnyDZVn6/e9/r8cee0yPP/64/vSnP+mZZ55RrVbTpEmTdMQRR+iII47Q4YcfrsMPP1yzZs2Sz+druUc2m23Z0ul0xzrTNJXL5QbUZbNZ5XK5lrUL2sXjcUUiEUWjUUWjUcXjccViMYXDYUUiEcViMcViMUUiEYXD4a7l5nn2AABgcA899JC+/vWv60Mf+pAOOuigsW7OHvfoo4/qhhtu0L333qtIJKJzzz1Xixcv1hFHHDHktXZezDRNpdNpZTIZp2yaprOfyWRaYh770z6/ed2lZqFQqCXuSSQSTjkajSoWiymRSCgWi7XU2fV2Xfv4XQAAMHxbtmzR7bffrkWLFum0004b6+aMik2bNunHP/6xfvKTn+jBBx9UvV7XokWLdOyxx2revHl61atepVKp1JIDG2zbuXNny9qRzZrzV8PZyG8BADD6Go2GfvGLX2jz5s265JJLxro5e8yOHTu0cuVKfetb39Jb3vIWnX766SqXy3r55Ze1efPmlrjmpZdeGjA+uj2emTZtmqZOnTpo3ZQpU1rWlAYATGz33XefVq5cqWeeecZZT0SSTjjhBP36178e8vpUKqVNmzbpqaee0vr1653P559/XvV6XT6fT/vvv7/mz5+vBQsWaNasWZo/f74OO+ww5tFgWK6//np95CMf0Yc+9CFdd911Y90cAGPsHe94h372s585cxn8fr+2bds24P03ACaW7du36zOf+YxuvPFG9ff362Mf+5guueQS+jGwW8rlsp599lmtX7++5d8269evd941l0wmnX/T2J8LFizQ1KlTh7z/iSeeqAcffNApu91uzZw5U9ddd53OPvvsCT8HAABGS/P85/b8SXu5Wy6lPYfSqbzffvu9IsaDfPzjH9fnPvc5XXbZZVq1apUOOOCAsW4SAAB7VPsaKb1uW7Zs6ThHZlfHivb397e863ui6Ovr07Rp03TVVVfp3e9+d8s7wgEAGG+q1WrLHFp7/mzzlkqlOtY3z60dbB215nVC7C2ZTCoWiykejw/Y7PmziUTCqWtf+2Qi+/nPf67TTz9dZ599tlatWqWjjjpqrJsEANjLlUolZw2NTCbjrB+Wy+WUSqVaynYs0bzOmH2OaZoD3i9os9emt9fWsNfXsD+TyWRLuXnNjea1OBhXK51//vl64IEHtGLFCl1yySXq7+8f6yYBAPYyu7tmu13X7T3Edk5iqLXZhzpn8uTJe1Wfw1CKxaL6+vp0xBFHaOXKlTr99NP5fQAAI8qyrJ7f5zJe3veyzz77kP/vwrIs7b///jrmmGO0YsUKvfnNb5bb7R7rZgEAxolSqaRCoaBsNuus972n63qRTCYHvBd3V+ri8bgMw1AoFGqJGbBrzj//fP35z3/WypUrdd5555HzAQB0ZPclmKapcrks0zSdukwmzivbHgAAIABJREFUo3K5rGw2q0KhoFKppHQ6rXK5rFwup3w+r3K5rFQqpXK5rHw+37FuKN3ig2g0qmAw6IxfCAaDzvvWgsGg4vG4QqGQgsGgEolES59DMBjkXSO76dxzz9WTTz6pFStWEE8AACS15iGa8wvtdd2OdauzY4mh2H/nO411sPeHOt7pXN7hsWf86Ec/0vLly3XxxRdryZIlmjFjxlg3CQAwjqTTaVUqFWWzWScWyGazqlarSqVSqlQqyuVyTl+EaZqqVCpOP4Xd/2D3U9j3ME3TmacxlFAopEAgMKAPIhAIKBaLtRwPBAIKhUKKxWIKBAKKRqMtfRidjmP3nHnmmfrLX/6iFStW6MILL9SkSZPGukkAgHEik8moWq22xAV2zGCPebDzF3as0DwOwo4t7D6J5pxHLpdTpVIZsg3xeFx+v3/QmKA5prD7GxKJhPx+vyKRiMLhsAKBgBKJREsc4ff7WcN+DzBNU9OnT9dxxx2nK664Qv/xH//B+uAAAEcveYvh5jWa44rB5m02G25eo9e6SZMmMdZyD/jOd76jSy+9VO9973t1+eWXa8GCBWPdJADAOLGnYoY9GUfsyXgiFovx7+c94IwzznDGW5LfAAC8Uu2JcaDd6jKZTMd3cbTb0/FOc92e6EdJpVIt75S0959++mnVajXF43EtXLhQxx9/vI477ji99rWv1ZQpU3brma8Uf/zjH3X99dfrwgsv1Nve9jbiTAAAMJR7XI1eescAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAONCvV5XJpNpqUulUi3lTCajer3ulE3TVK1Wc8q5XE6VSsUpFwoFlUolp2xZlorFolMulUoqFApOuVKpKJfLOeVqtapsNjuibRwJiURCLpfLKcdiMXk8HqcciUTk8/mccigUUiAQcMqGYSgYDDrlQCCgUCjklH0+nyKRSNdnhsNh+f3+rtckk8mWcnu7/H6/wuGwU3a5XEokEl2vAQAAAAAAAAAAwMhqz7n1Wrer142nuk7ntOckR0swGJRhGHukbk/eq7muWq2qXC6rUCjI5XLJ7XYrn8+rXC47W71eV6lUUj6fl2VZqtVqTh63WCzKsixnv1gsyjRNNRqNQX8XO6cYDodlGIZisZgikYgMw1A0GlU0GpVhGIpEIorFYjIMQ+FwWPF4XIZhKBQKKRaLye/3KxaLObnU9nwoAAAAAACYWOx+n06fqVSqp7rBjuVyOaVSqZ7HkNt9K8FgUMlk0tnvVjec89vHlgMAgLFRr9f1i1/8Ql/4whf0y1/+Uo1GQ8cff7weeuihsW7aHvfEE0/o3nvv1b333qvHH39cLpdLhxxyiF772tfqNa95jebNmyeXy9USR6VSKWdrr2su79y5s2uurj0eSiaTu1xunwsHAAD2jOeee0633nqrbr/9dpmmKUnauXPnhPvbW6vV9PDDD+v+++/X/fffrz/84Q8ql8uaNGmSDjroIB144IHq7+9XMpmUy+UaMi7avn171/6m5limU3zTS11/f7+8Xu8o/koAAOy9CoWCvvGNb2jdunVav369JOmrX/2qLr744jFu2Z5z77336oYbbtDDDz+sefPm6e1vf7sWLVqkfD6vTCYj0zRlmmbLfiqVaqlrH8dts8f/xuNx5zORSCgWiykWizljiOPxuHOOXReNRpVMJsmhAQAwTvzxj3/UTTfdpG9/+9uqVCo644wz9P3vf3+sm7XL2vt3mrcdO3bor3/9qzZs2KAXX3xRhUJBPp9P4XBYLpdL6XS64xyq9v6cXja7z2fatGlj8CsAAIDhsixLd999t2644QY999xzCofDLetljyfFYlE7d+50YpyXX35Zmzdvbol7muu2bt3ask639H/xzbRp0zR16tSWOGawOgAA2j3yyCO66qqr9PDDD8vj8Qz4ezN58mRt3brVKadSKT311FNav36987lp0yZt2rRJ0r/fyzB79mwtWLBA8+fP14IFCzRr1iwtWLCg5f0NwK742Mc+pk9/+tO68cYbtXLlyrFuDoBx4J577tE555yjRqMhr9er008/Xffcc89YNwvAKHnxxRf1iU98Qnfeeafmzp2rG264QaeccspYNwsTTLVa1YsvvqhNmza1/FvoL3/5i/NuvmQyqVmzZjn/BrI/Z86cKbfbLenf/7bavn17y73dbrcajYYOO+wwff7zn9cJJ5ww6t8PAPZ29viU9jxNp/JLL72kcrnccv1guZpO5f33339M3hl6wQUX6Bvf+Ia8Xq9qtZrOPPNMfehDH9KRRx456m0BAGC86TZWtdvWaQyHtGvjVJPJpCZPnjwu3y1eKBScsbkul0uxWEwrVqzQsmXLGIMCAJjQCoWCM1fXNE2l0+mW+bvNW/Nc3uYtn893vHcoFHLm6zZvyWSyZZ5vt3Psfufx7rbbbtMVV1whj8ejSqWiRYsW6corr9Q555zDGCIAwIQw1Nqv3ertui1btqher3e8f7c1XveGddCOOeYYPfLII/J4PHK5XHrnO9+plStX6phjjhnrpgEAMGyDrQ/f65rydl0mk+kaO/SybupQ5/T19cnv94/yL7Rnbd68WdOnT3fG502aNEnLly/X0qVLNX369LFuHgAAQ2p/l9+uxhBDxQ9S9/6H4ZQnQgzR7B//+IdmzJght9uter2u/fffXytXrtTFF1+svr6+sW4eAGAvsSvvA+61bseOHQPmRrTr1NfQ6f2+3faby/vss48CgcAo/Xpj54gjjtDjjz8ut9utQCCgiy66SMuWLdMhhxwy1k0DAOxlcrmcyuWy0um0SqWSCoWCstmsyuWyMpmMExeYpqlKpdJSZ+/n83nnHSe5XE65XE7FYtF5R1438XhcwWBQ4XBYsVhMwWBQkUhE0WhUwWBQ0WhUkUhEwWBQsVhM4XBYwWBQ8XhcoVBIwWBQiUTCiUns/VAoNAq/3tg67LDD9MQTTzjxxHvf+14tW7ZMixYtGuumAQAmMDsOyGazqlQqSqfTKpfLTjxQKpWUzWaVz+ed/IPd12DHG93OHUpzf0IgEHDepWbHEJFIRIFAQPF4fJfO3RusXbtWV199tbOe7Mknn6zly5fr5JNPfsXMQQEAvLLl83mVSiWl0+mWPoZSqeT0K5RKpQF9EJ2Od4ozhhIOhxUIBFr6E+LxuAKBgCKRyJDHO8UQzf0bE92iRYv05JNPyuPxyOPx6JxzztGyZcuYvwEAGHGNRqMlfmjuWygUCiqVSkqlUk4/RXOuw44ZmmOK5pjEzo8MJRQKOXFCIBBQOBxuiQ2aYwe/369oNKpwOCy/3z+gf8IwDIXDYSem2BvyGps2bdLs2bOd+Rv9/f1atmyZlixZwvwNAMCIqtfrA8Y/lMtlmabZEieUy2Unb1Eul1tii05jK5rvMxSv16toNNoST/j9fqcvoj1eaB8zYRiGotGootGoDMNwxlXY+3uD6667Ttdcc43cbrcqlYqOOuoorVixQmefffZek+MBAIyNoWKC5j6IocZgdopBus3ptMViMfn9fqdPwR5Padc1j7Ec7v7e4pBDDtFf//pXeTweud1uJ79x7LHHjnXTAAAYV9LptCqVSkv+pbnfxI5jmmOb5nGlneIie6xpr/kYj8fjjPU0DKPneSb2uYPNOanX69qwYYMeffRRZ3vuueckSQcccICOPvpovelNb9Jb3vIWzZgxY6R/6jFx4403avXq1Wo0Gpo6daqWL1+uSy65RPvuu+9YNw0AAIxP97gajUZjrFsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALvDsiwVi8URK4/GM4YqFwoFlUqlbj/DbgsGgzIMY5fLe+IeI12WpGQyOdhPAAAAAAAAAAAAgCH0kksbT3Wj8cxsNqtqtarR1EuubjzVjcYzo9GovF6vRlK9Xlcmk5Fpmsrlcsrn8zJNU5lMRrlcztlSqZQKhYIsy3KOWZalbDarbDYry7KUy+VkmqZqtdqgz3O5XEokEgqFQjIMQ/F4XOFwWKFQSNFoVNFoVIZhKBKJKBaLyTAMhcNhxeNxGYahUCikRCIhwzBkGIaSyaQMw1AwGBzR3wkAAAAAAIw+y7KUSqVULBadPqzmz07HhnN+JpNRvV4fsh12v03zZ3OfRHNdPp/X3/72Nz3zzDPavHmzwuGwDj/8cL3+9a/XUUcdpUmTJg24RyQSkc/nG4VfFAAAjKV0Oq0777xTn/3sZ/WPf/xDXq/XycctXLhQTz755Bi3sLP2eKo5prLLzXUvvfSSnnzySb300kuyLEter1d+v19ut1v5fF6NRqPjc9rjquZ4a7jlKVOmyOPxjPIvBQAAelGv1/WrX/1KX/ziF3XvvffK4/GoUqk4x59//nkdcMABY9jCgXqNg5rrLMvSyy+/rM2bN8s0zSH7oLrFOL3W7bPPPgoEAqP0qwAAgN21adMmffnLX9aXvvQl5XI5NRoN1et1+f1+XXfddVq9evVYN1GSeop9Bju2detW7dy5c9BYaKgYaKhjxD8AALzy1Wo1/exnP9PnPvc5/frXv5bP53P6io477jj99re/HbO2DScOat+2bdvWcV6e3++Xx+NRqVRSvV5XNBrVAQccoNmzZ2vGjBmaNGlSx3gomUyS/wIAYILbsmWLbrnlFt18880yTdPpK5KkYrE4Kn0gdqxj57ia45vB6tolk0lNnTrViWGmTZumqVOnavPmzbrzzjv1qle9SjfccIMOO+wwTZ48mfHTAIDdsnHjRn3sYx/TD37wA3k8nq5r5Jxzzjl67rnn9PTTTyuXy0mSJk+erPnz52vu3LmaN2+e5s2bp7lz52rGjBmj9RWwl/nCF76g973vffrqV7+qiy66aKybA2CcKBaL6uvrUz6fl8vl0ve//32dfvrpY90sAKPs6aef1kc+8hH94Ac/0Jve9CatXbtWhx122Fg3C3uBF198URs3btSGDRu0YcMGbdy4UevXr9e2bdskSZFIRHPmzNFBBx2k73znO4Pex54nedJJJ2ndunVatGjRaH0FAMAwDZYPai7b+9u3b2+Z8yX9e+yvnf9pzwe1l/v7+/fIespveMMb9MADDzhle3zRoYceqiuvvFLnnXceY2oAANgFvY6J7XWM7GBzgoba+vr65Pf7R+Q7/uMf/xiQ+/P5fKrVajr55JO1evVqvelNbxqRZwMAMBH0Opd4sHPS6XTH9eba1/PtFit0OmdP9TkM5brrrtO1116rUqkkSXK73XK5XDIMQ4sXL9bq1as1c+bMEW8HAADj3VDrs/VSP1h/gzR07NBL/VjMX5k7d66efvppp2znNw466CCtWLFCS5YsUTgcHtU2AQAwHrS/M2iomGGwdfG3bt066PuSe1nnvpe6sVrfbMOGDZo/f35Lnc/nU7Va1YknnqjVq1fr1FNPlcvlGvW2AQAwFgaLH3alPFjuwjZUvNBrebRyGYN56qmntHDhwpY6r9crl8ult7/97br88ssZLwEAeMVr/ltvWZYsy1I6nVY+n5dlWTJNU9lsVpZlKZfLyTRNFQoFFQoFpdNpWZbl7Nv1pml2fWYgEFAoFFIikVAoFJJhGEokEgqHwzIMQ7FYTNFo1Hk3cSwWUygUGvKa8WT27NnatGmTU/b7/SqXyzr00EN1xRVX6IILLpBhGGPYQgAA9ox8Pq9isahMJqNCoeD0G9jv7E2n0yoWiyoUCspkMioWi8rn8zJNU8ViUblcTrlcTsViUaZpttxvKPF4XMFgUOFwWLFYTMFgUJFIRNFoVMFgUNFoVJFIRIZhKBqNtsQUyWTS2bdjj1AoNK7GH8yaNUt///vfnXJ7PHH++ecrFAqNYQsBABi+5hihVCo5cUGpVFI2m22JBTrFE0OdO5RkMun0S7THD3YsEI/Hnb4HO2YwDEPxeHxAbGEYxriKHyTp4x//uG644QZn/oa9llF/f78uvvhiLV++XPvvv/8YtxIAgN3TafyDvd+prtfjpmkOOp7S1j6uspf9oc6Lx+Nyu92j9Ot1N3PmTL3wwgtOuXn+xpIlS7R06VIlk8kxbCEAALtnT8cR9ueOHTtULpe7PntX4oihYopYLDZu1o584oknBqwB7vV6VavVdOKJJ2rZsmU688wzx017AQAYDvvvfiaTUblcVjabVaFQUKlUUiqVUrlcVj6fVy6XU7lcdvIghUJB2WxW5XK5JZ/RPn5iqP6I5pxE8348HpdhGAqFQi37iURChmE44yzt/fZ4Yjy55ppr9JnPfKZlfSpJCoVCOvfcc7Vy5coBczsAAHglqNVqMk2zazyRTqdVLpeVy+WUz+dVLpeVSqVUqVScORz2eMvm/Ww22/V9s9K/35MUDAYVi8X26P54e3/6YPmN2bNn69JLL9Wll16qSZMmjWELAQDYe+RyOVUqlZY+EzvGaY57mmMhezzpYHNOstmsisWistls12e7XC6nL8SeU1KtVp17bt++XdVqVfvss48WLlyoI488UrNnzx50Xoo9vzUajY7pmhe9+uQnP6k1a9a0jB+t1+t661vfqiuvvFJvfOMbWWcLAAA0u8fV6LaCGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBXFMuyVCwWu9aNt/KuXGOapmq12mA/wx4RDAZlGMa4KY/EPaPRqLxeb7efAQAAAAAAAAAAYK/SSy5rT9eNxTOHU5dOp9VoNDSaesmV7em6sXjmcOoSiYRcLpcwfLlcTrlcTvl8Xul0Wtls1qkzTVOZTEb5fF65XE7ZbFbpdLrlmlQq5ZQLhcKgzwmHwwqHw4pEIkomkwqHwzIMQ7FYTJFIRIZhKBqNKhqNKhQKKRwOKx6PyzAMhUIhJRIJGYYhwzCUTCZlGIaCweAo/lIAAAAAAGAk2H1ulmUplUo5++2fnY71cn42m1W1Wh2yHXafU6fP5r6IbnXdjk2aNKmnvoxisagf//jH+vKXv6z77rtPkydP1sknn6x3vvOdeutb3yq/378nfnYAAPAK9dhjj+m2227TXXfdpVqt1jHOmTFjhl544YU99kw7tmqOvexyp7rBytu2besal9lxVDKZVKPR0NatW7Vz504Fg0EdfPDBmjNnjubOnatJkya1xF3NsVcymVRfXx8xEwAAE1w6ndadd96pz3zmM3rppZfk8/lUqVQGnPfEE09o0aJFu/289n6obrFQt7pu48za+5SSyaQikYi2bt2qZ599Vvl8XtOnT9fhhx+u448/XgceeGBLPGRfyxgqAAD2Ho1GQ/fff79uvfVW/fCHP5TH4xkQEwUCAV199dW69tprd/t57fFNt9in0/EtW7aoXq93vHd7XNMcF8ViMf3xj3/Uo48+qgMOOEBLly7V8ccf3xI39ff3s0YUAAB7sa1bt+qOO+7QunXrtGXLFrnd7gHrcM6ZM0cbN27cred0i3m6bTt37lSpVOp4z05xULdt+/bt+p//+R/98Ic/1ObNm3X00UfrPe95j0477TQdeOCBu/X9AADAK98zzzyjm2++WbfddpsajUbH/NlLL72k6dOnD/veqVRKmzdvbolzXn755ZY6u7x9+/YBz26Oe6ZNm6apU6e2xDntdfvuu6/cbveAdtx99926+OKLtXjxYn3xi1+Ux+MZ9ncBAKDZP//5T/3nf/6nvvrVr8rlcvU0/+joo4/Wscceq7lz52revHmaN2+e9tlnn1FoLfBvP/3pT/WOd7xDa9as0Yc//OGxbg6AcebCCy/U17/+dUUiEW3bto31uYC92O9//3t94AMf0O9+9zudffbZuuGGGzRz5syxbhb2Qjt27NCGDRu0YcMGbdy4UQ8//LAeeeSRIa/zer2q1Wo666yztHbtWv73CwATgGVZg+aX2sud5qQHg8EBOaXmcvP+lClTOuaR5s+frw0bNgyod7vdajQa2m+//XTVVVdpyZIlCofDI/ZbAACA/7Or43N37Nihcrk84H7DHZtrb/vss48CgcCg7XziiSd02GGHdTxmz3M/5JBDtGLFCl1wwQUD3qEBAAB2Xy9zmbvFD+3vGrMNtpbdYFv7OYP1QzS7+uqrtW7duo7zi/x+vyqVik488UStXr1ap556KuvGAACwm7qtGddrfae5Mbb2dxF0ixUGqx+qL6LZtGnT9PLLLw+od7lccrvdCgQCOv/887Vq1SotWLBgt347AAD2VsNZc7bbOcNZg3+w2KHb2vvDjSN+//vf6+ijj+54zOv1qlqt6oADDtCyZcu0ZMkS5kcBADBMg8UQw4kfhspjSJ37Ina13Eteo9kjjzyiY445puMxe7zE7Nmzdemll2rp0qVKJpPD/h0BAJjIBosJetnvdCyTyQy6xrs0MG7oZX+o8+LxeMe1wIYyZcoUbd26dUC9fa9QKKTFixdr1apVmj179rDvDwDA3qBQKDjvvLPjAnu/UCgok8moWCwqn8/LNE2VSiVls1nlcjkVi0WZpql8Pq9CoaBsNivTNFUoFFQoFLo+N5FIKBQKKRQKKR6PKxKJKBQKKRKJKB6PO8cSiYTC4bBCoZCi0ahisZhzLJlMOvuxWGyXvn9/f7+2bds2oN6OJwzD0HnnnaeVK1dq4cKFu/QMAAAmmuZYoTk+yOfzTt+CZVktMYYdVxQKBacfwrIspz6fz3ecy9kskUjIMAwnRgiFQk6/QiQSkWEYTrxgGIbC4XDHa+zYIRKJyOfz7dJvcOWVV+qWW27p2Gav16t6va63vvWtuvLKK/XGN76R+RsAALRpjyHK5fKAnIVlWU4/hd3XYJqmcrmcLMtSNptVNptVoVBQPp8fMr/hcrmcfgbDMJx4wO6PaI4h7L4JwzCcXIbdh9F+/a7EE5MnT9b27ds7ttHtdsvtduucc87R6tWrdcQRRwz7/gAATGTNfQ52vNAeO7THEZZlOf0PlmV1jCmGen9MPB5v6WMwDMOJFYLB4ID69r6L9hjC7scYrt/97nc6/vjjOx6z52/09/fr4osv1ooVK7TffvsN+xkAAExkwxlf2ev+UH0SkoY13rLX/V2ZV/H+979ft956a8f8hj1349BDD9UVV1yhCy+8kPcQAQDQZE/GEb2uGyHt2vyNofYnT548YvmNd7zjHXr/+9+v4447btj3BwAA48uuxjyFQkH//Oc/9eKLL2rbtm2qVCoKBALy+/0qFAqq1WpdnzsS8c9w1tIayoc+9CHddNNNA9b/tvM0Bx54oC677DLW2QIAALZ7XI1GozHWrQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2tGw2q2q16pQzmYzq9bpTTqfTajQakqRGo6F0Ou0cq9frymQyg5YlKZVKtZS3b9+uv/3tb84zLMtqeV6xWFStVmspN7evXC6rUqk45UqlonK57JSr1aqKxWJLmyzLGupn2C0+n09+v98pe71eBYNBp+x2u2UYhlN2uVwKhUIt5XA43HLPUCgkl8vllA3DkNvtdsrBYFBer9cpBwKBlrLf75fP52tpYyAQaGljc9nj8Qxoc3MbJQ1o41g48sgjNXPmzLFuBgAAAAAAAAAAmOAsy2rJOfVat6vXjVVdr9fl8/mWnNxoCQaDLXm2Xut29bqxquv1unA43JKXBKR//zebSqWUSqVULBZ3ubxjx46u/50Hg0Elk0kZhuHs21t7XbdyX18f/zsGAAzb888/r0cffXSsmwEAAEaIx+PR2972tpaxzL3YsmWLJGnKlCkj0Sy0SaVSsixLlmUpnU6rUCioUCjINE0VCgWVSiWZpqlKpaJMJqNSqaRCoaBcLqdKpaJUKqVKpaJcLuf0QTaf34tIJCKfz6dkMimfz6dIJKJQKKRAIKBYLCafz6d4PK5AIKBQKLTL54+19evX64tf/KLuvvtuFYtFnXHGGVq6dKlOOOGEljkFzYrFon72s5+1zMUAAAATy5FHHqmpU6fqRz/6kdauXatHH31UPp+vZa5lu0QioSeeeELZbNbZ0um0crmc8vm8crmc0um0stmsU85kMjJN0znHNM0Bc06buVwuJRIJRSIRZ4vH44pGo045FospHo8rHA4rEokoGo0qkUg45UgkomQy2ZIPtSxL/+///T/deOONevWrX63Vq1frjDPOGDLP9NBDD+lf//rXrv/QAABgXNt33331ute9To899phuu+023XXXXarVai3rUXTywx/+UAsXLlQ6nVYmk3FiIzv+aa7LZrNODNReNxg7xrG3RCLRUo5Go0omkwPO61TX7p577tGqVatULpe1ePFiXX755Zo9e3bX70t+FQCAic3Or5bLZX3729/W2rVr9dxzz8nr9Q4aF/n9fi1evFgf+chHnFjHNE1nP51Od6w3TVOpVMqpG2yscTQaVSwWc7Z4PK54PK5EIuGUm4/FYjElk8mWum754g0bNujd7363XnjhBd1444268MILW9bm6oT8GQAAE5+9LuXjjz+uW2+9VXfeeafq9XrXvqIpU6Zow4YNSqfTSqVSLZ/t+53qCoXCgHt6PB4lEglnSyaTLZ/t9e11vY6b27lzp+666y7dddddevzxx3XAAQfoggsu0AUXXKCDDz540OvInwEAMLHZ+TNJ+u1vf6s1a9bol7/8pbxeb9dxRY8//rhmz56trVu3atu2bdqxY4e2bdum7du3a+vWrdq+fXvLtmXLlgH5Mo/Ho76+PmebPHlYHdq2AAAgAElEQVSy+vv7B9RNnjzZKTevh76rbrnlFq1atUof/OAH9elPf3rIfiKJ/BkAYHCVSkX33HOPfvKTn0jSkGNQbG63W5dffrlOPPHEEWwderWr8xNfyR577DGdcMIJOu+883Tbbbf1dA35M2Dv8uc//1mf+tSndNJJJ2nZsmVj3RwAo2Sw97o1Gg1997vf1Uc/+lG9/PLLWr16ta6++uqOY5f3BuTPxodf//rX+tKXvjTovMV2Ho9HLpdLp556qt75zneOi3UhAAAjr9FoOOOY7fHN9pwv0zSdefL28Ww223K91+t1clX9/f2aMmWK+vr6dMcddww4t5nL5ZLb7VYwGNQll1yiD37wg9pvv/3oXwEAYJyyLMtZJ6d5a64b7Hinv+vhcLhlPHDzlk6n9bWvfa1re+y1AhOJhC699FKtWLFC++23H+NXAAAYJ8rlsrOmcqFQcGKJ5rrBtnw+r0Kh0LFv2+VyKR6PK5lMOvOs27f7779fjz32WNcxvvZ88QMPPFCXXXaZli5dqmQySX4DAIAxZL+boXnL5/MD6ux4wX4vZPO5hUJBjUaj4/0DgYDC4bD22WcfZz0We026WCymaDSqeDyua6+9dsD7ZdvZ6xQfddRRuuqqq3TGGWeoWq2S3wAAYAzYcYG92f0LzXW5XK7rOXaMMRifzyfDMJRIJNTX1+esb2u/J8COJTZv3jzk3BN7rITb7dY73vEOrV69Wsceeyz5DQAARlmlUlGpVOoYS7SX7fdA2u+KtN8j2RxHDNYfIf17fEQwGHTiCHu9fPs9Qs3vIXrhhRe0bt26rm234wm/36/zzz9fy5cv15w5c+iXAABghOTzeZXLZScWKJVKzpiIYrGocrnsxA32efY15XJZ+Xx+wDXd/ma7XC7nXdD2+5+nTZvW8o7CUCikUCikRCIhwzAUCoW0atWqnvIb1WpVr3/967V8+XLyGwAAjCI7JiiVSi19DZ3iCPu8bscsy+r6PMMw5Pf7FQwGNXnyZCUSCYVCIcXjcUUiEYVCISfPYccWvcYTlUpFhx56qK688kq95z3v0SOPPMK4SwAA9rBarebkIYbT92CPp7SvsSzLiR+Gymd4PB4Fg0GFQiH5/X4FAgFNnTpVkyZNcsZMhMNhGYbhjJMwDEPf+MY39OCDD3ZdY9aevzFjxgxdccUVWrx4sSZPnsz8DQAARlClUnFihcHyHO19Fb3EHd20xxORSET77befDMOQYRhKJpMKhUIyDEPxeFzhcFgf+MAHVCqVut7X7o845JBDtGLFCp133nnyeDzkNwAAGCF2v0RzTNCpj6I51ui03xx3lMvlrms/SK25DcMwNGnSJE2aNEnxeNwZG2GPkzAMQ5s3b9ZNN9005Pfxer2SpLe//e1atmyZ3vjGN+qFF15g/gYAACOkW3xg73fqo2jer1QqLWM0hxojYfdJ2PGEYRiaPn26M2cjFovJMAyFw2Fn/3vf+55+//vfd81veDwe1et1JRIJLV26VEuXLtWsWbPIbwAAMEIsy1KlUhmQt2iOCTrtdzqnOZ4YKpcQDAbl8/kUCoWcPMf06dMViUQUDAYVi8UG7F911VXDzm+ce+658nq95DcAAJjgBnu/aa1W03333ae1a9fq/vvv1yWXXKI1a9ZI+nd/immazjpZ2WxWxWJR2WxWuVxOlmU5+8ViUaZpOutkZDIZJ+5Jp9NOPNSNPW81kUg48U88HlcwGHT6T4LBoNOvYu9Ho1GFw2ElEgnF43GtXbtW3/3udwfNAbWvs3XZZZfpTW96kyTebwoAwES377776nWve1179T2uRrdZLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhQLMtSsVh0yvl8XuVy2SnncjlVKhWnbJqmarWaU85kMqrX6045nU6r0WhIkhqNhtLptHOsXq8rk8k45Wq1qmw265QrlYpyuZxTLpfLyufzTrlYLMqyrF1u+56WSCTkcrmcciwWk8fjccr1el3PP//8iD0fE9u73/1ufetb3xrrZgAAAAAAAAAA8IrVnksa73Wj8cz2XN9oCAaDMgzjFVM3Gs9szysCE539/48sy1Iqleq4dTteLBaVSqUGvb/931kwGFQymVQymRyyPNg57eMAAAAYbe95z3v07W9/e6ybAQAARtD3vvc9nXnmmT2d+5vf/EY333yzfvCDH+gtb3mLfvrTn45w615Z0um0LMty+hQKhYIsy1Imk1E+n5dlWTJNU7lcTpZlKZvNKpvNyrIs5XI5ZTIZWZalQqHQcq9u7H6ISCQin8+nZDIpn8+nSCSiUCikQCCgeDwun8+nWCymQCCgUCg05Pler1fxeNw5f6Jbv369PvGJT+iee+7Rq171Kl166aV673vfq76+viGv/f73v6+zzjprFFoJAADGypw5c/Tyyy8rn8+r0Wi0zF8djNvt7nheJBJxtng8rmg06pRjsZhisZhTjkajisfjLdckk0mFw2FFIhGFw+E9/l1N09Rpp52mJ598UmvXrtXixYt7zlX5fD5Vq9U93iYAADA+uN1uHXLIIXriiSfk9/tb1tEYrkAgoGg0qlgspkQi4cQ+zXV2nNReZ9fbdSM1ruZTn/qUrrnmGi1dulTXXXedEolET9eRXwUAYOJ7y1veooceekiVSkW1Ws1Z22wwHo+n45wJt9uteDyuRCKheDzu9A017yeTyQF19r59ndvtHqmvqj/84Q865ZRTdPDBB+ub3/ymDjzwwJ6uI38GAMDEd+yxx6per+uRRx6Rz+fraY3VwfJndmyTTCaVSCRatva69nIsFhuJr+d46qmndNNNN+nuu++W1+vV2WefrQsvvFCvf/3re+qXIn8GAMDE5vV69ZWvfEVr1qzRM888I6/X29Pf/k7xUygUUl9fnyZPnqz+/n719fWpr69P++yzj6ZMmeKUm7fR9t3vflfvfve79elPf1of/vCHe76O/BkAABPfcOYnvtJlMhkddthhmjNnjn7yk5/I6/X2dB35MwAAJr6h3utWLpd18803a82aNfL7/VqzZo0uuuiiER37Mx6RPwMAYGLzer3605/+pK1bt2rLli3avn27tm3bpi1btmjr1q3avn27/vd//7enufr2/STp3HPP1dFHH60rrrhiJJsPAADG2Ote9zotXrzYeRdEOp1ueTfEiy++qJdeeqnn+9mxxDnnnKNCoaAf/OAHI9V0AAAwDlx++eU68MADlclkBmymaeq5555z1hEcisvlksvlUjAY1Pve9z6tXbuW/AYAABOY2+3WJz/5SZmmqXQ6LdM0lc1mnc9MJqO///3vPcUR0v+tMzN16lRdeOGFuv7660f4GwAAgLF06KGH6pRTTlEul1Mul3PiB/vdVPZ4iV7Zc5Vf/epXa/r06frRj340gq0HAABj7T3veY9mzJihVCqlfD6vXC6nfD6vVCrVsp/P53u+p72mycEHH6xnnnlmBFsPAADG0imnnKKpU6c678QuFArK5/PKZDLOe7TT6fSw8xv77ruvLrjgAq1du3aEvwEAABhL8+fP15vf/GYVCgWl02nl83kVCgVnvEShUHCO9RpP2OvPT5o0SZlMpuM7egAAwCvfQQcdpGOPPdaJFey4wR4nYVmWcrmcJA0rjvB4PLrkkkt0++23M38DAIAJzO12a+nSpbIsS4VCQalUSpZlOXmNQqGgLVu2DLs/IhKJ6OKLL9YXvvCFEf4GAABgLM2ZM0cnnHCCMpmME0+k02kVi0UVCgVt3brV6ZfohT1WYtasWZo3b55++tOfjmDrAQDAWDv55JM1bdo0Z9ylndOw97ds2aJKpTKsfolGo6EzzzxT9957L/kNAAAmMLfbrSVLliifz8uyLJmmOWB/69atw85vhMNhXXTRRbrllltG+BsAAICxNNT7TSXpJz/5iS666CIdeeSRuvfee+X3+/d4O+wxGsViUalUSsVi0RmvYedaMpmMisWi8vm8TNNUsVhULpdr2c9msyoWi8pms8rlcqpUKi3PsWOdodjrbC1atEgf+chHdMEFF9C/AgDABOb1egfEDZLu8Y5FYwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMYjy7JULBbHpDzSz8pms6pWq738DLskGAzKMIyeyoMd8/v98vv9w7rXaJSTyWRPv8F3v/tdnXPOOfrexs09nQ/YPvv+y1Sr1ca6GQAAAAAAAACAcaw99zMadWPxzOHUpVIpjbb2PNKerjMMQ8lksmvuarzV9ZpLA/DKkE6nlclkZJqm82nvdzrW/GkfHyz3mUgkFIvFFIvFFI/Hnc9p06ZpwYIFLfXRaFSRSETJZFKRSESRSEThcFiJRGKUfxEAAEZWrVbTsSefpqvW3TbWTQEAACPgrLnThhzDn81mdffdd+umm27Sxo0b5ff7Va1WtXXr1lFq5Z5nWZay2axyuZxSqZQsy5JlWUqn0yoUCrIsS5lMRvl8XpZlyTRN5XI5FQoF5XI5maYpy7KUz+eVyWRkWZYKhULXZ4ZCIRmGoXg8rnA4LMMwFIvFFIlEZBiG+vv7FY1GZRiGIpGIYrGYQqGQQqGQEomEDMNo6Z81DIN+iD1g06ZNuv766/WVr3xFc+bM0R133KHzzjtPHo+n53vY/w0xTwMAgIlp5cnH6+mnnx72dfV6XQ899JCSyaSi0aii0agSiYRcLtcItHLPSKVSetvb3qbnn39eDz74oA455JBhXV+tVnXV57+kY095+wi1EAAAjJV7bvmcvv2Fz+iJJ56Qy+VSuVzu6Tq3262rr75aZ511ljMuJxqNKhAIjHCLd8+1116rT3ziE1q3bp1WrVo1rGvJrwIAMLGdNXea/vu//3tY19RqNR199NH6/Oc/P2As8nj20EMP6dRTT9Xxxx+v//qv/xowT6Mb8mcAAExsK956vB5++GGnXKlUerquXq/rZz/7mSZPnqxEIqFkMqlkMim32z1STd0l9Xpdv/rVr3TjjTfqpz/9qWbPnq2Pf/zjuuyyy4Y9Xov8GQAAE9eP7/iSvnb9J/Te977XqetlbX2Xy6UlS5botNNO0+TJk9Xf36++vj6FQqGRbO5ue/zxx7V48WKtWrVKH/7wh4d1LfkzAEA3paKll557Rs9vXK8Xntmgv2/4q57f8JQKuawkyevzq16vqd68TozLpcNfd5Ku+fLdY9RqNOtlfuJEsnz5chUKBd15553yer09X0f+DACAia2X97r5/X5deeWVuvjii3X99ddr2bJluvnmm7Vu3Tq9/vWvH6WWjj3yZ+PDmqXn608PPSA1Gk6dy+WS2+NR7f+PXY1wRDPnztesBYt0wMHzNHPufO130MEKBHsfRwYA2Ls8/PMf6bOrL+86Pz2dTg9rrfhGo6Faraa77rrLWeuf/hUAACamz77/Mu0bDeqiiy4a9Jzbb79dy5Yt6yk3ZY9Prlaruv/++3XooYcyfgUAgAnsrLnTdNJJJ+ld73rXoOe8+c1v1n333dfT/Xw+n8rlsqrVqv72t7+R3wAAYAKz8xsf/ehHBz0nl8v1vEaMy+WS2+1WrVaTy+Vy3l1BfgMAgInps++/TNOjQX36058e9Jw77rhDl1566ZDjTCXJ6/WqVqvJ7XYrGAyqWq2S3wAAYAI7a+40nX766V3zG5L0ta99TUuWLOkpnvB4PKpWq3K73arX65LolwAAYCI6a+40XXTRRV3jiHw+r0gk0tP9XC6X815Ft9utUqkkiTgCAICJys5vrFu3rut5hUJB4XC4p3s2xxPxeFw7d+5k3CUAABOQHUfceeedXc9729vepp///Oc93dPn86lSqcgwDDUaDeZvAAAwgdnzN2699dZBzxlOfsPj8ej/Y+/Oo6Qq7/zxf7qrl2rorVB2EUUBcUdwA8cN7AHZFKMYTUYjxqDZjFk0Jl/jNokxxjX+skyi0WRiJHFixrjFJVHiYX6DmbjEqIn7xuLSTXdDN9109++P748aabYGir5V8HqdU6fv89x7n3r3Pffces7z3LrV1dUVRUVFsccee2R/78X8BgBsn9aMS/zwhxv+fsVtt90Wc+fO7dH9lmVlZdHW1hbpdDr2339/v68GANu5k/YaEp/4xCc2et/l1KlT44EHHthkW0VFRdnvbgwePDjGjBkTd911l/kNANhOrZnf2NiYxJbOb4wePTqqq6sjwvwGAGyvevL7phER06dPj0ceeSSOOeaYmDNnTvzqV7/arN9M74lMJrNZvxnWU6tWrYqGhoZYvnx5nH322bFgwYIe7bfmuRjPPPNMXHHFFe4fBYDt2JrxlfXJbY8HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANjutLS0RGtra0GUN3ffFStWRFtbW08OwxZJp9NRUVGRk3Imk8lZW7ko19TURHFxcU8OAwAAAAAAwEZ1n8NZX11Ptsmnuq1pa1vPYW1I9/mg9dX1ZJsN1XWf79ra9rZ13r59+0ZZWVkAFIpVq1ZFfX39Oq+GhoZobGyMxsbGqK+vj+XLl0djY2P275rl5cuXr7fdVCoVNTU1UVtbGzU1NVFTUxPV1dVRU1MTw4YNyy5nMpnscnV19VrLtbW1vXw0AAAAIL+9+OKLceutt8bNN98cK1eujK6uroiI7NhwQ0NDr+ZZM1bd0tKy1rhC97pNbfPBBx/EqlWrNvpe6XQ6O168ZnlNefDgwbH33nuvtW5TyzvvvLOx3Dzz6quvxlVXXRW33HJLjBw5Mm655ZY4/fTTI5VKJR0NAMgzu43eO/bec0RMnjw57rvvvnjiiSeis7MzUqlUrF69eqP7jh49Ovr3799LSbfOkiVLoq6uLhobG2PBggWx5557Jh0JAMgjQ0f8377BddddF7/73e9iwYIF0dbWFmVlZRu9lzSVSsWQIUPioIMO6q2oW6WrqysuuOCCuOmmm+KWW26JM888M+lIAEAe+uQnPxlLliyJRx55JFauXBnl5eWbnH+MiDjssMN6IV1uPPDAAzF79uyoq6uLO++8M8rLy5OOBADkkV322DMGZqpj0KBB8cc//jFaW1t73CcaO3ZsDBo0qBdSbr6mpqa444474vrrr4/nn38+Jk6cGHfeeWfMnj3bPUUAwDr6VFVHRMQee+wRL7/8chQXF0cqlYr29vaN7ldaWhqjR4+OqVOn9kbMnPjggw9i1qxZMXHixLjmmmuSjgPAdqY8XRF77HtA7LHvAWvVf7Bsabzx9+fjtRf+Fq+/+Ld4+blnYsnrr0VHx+qIrq5455WXEkrMjmz+/Pnxi1/8Iu69994YOHBg0nEAgAKVyWTiqquuio9//ONxwQUXxFFHHRWnnHJKXHvttTF06NCk47GDePuVlyL+/+eHpFIlMWj4brHHPvvH8NF7x2577R27jhoT/Qbo8wKQe0uXLt3o+qKioux3+GtqamLixIlx5JFHxuTJk+Oll16Ke+65p5eSAgD56P3339/o837W3M9cVlYWEyZMiClTpsTkyZPjoIMOijlz5kRTU+t69wMAdgzvv//+BtelUqkoKiqK1atXx9ChQ2PatGkxefLkmDJlSlRVVcX8+fN7MSkAkG829LuZa5SWlsbq1aujuLg4xo8fHyeeeGJMnjw5xo0bF/Pnz4+bbrqpl5ICAPlo+fLlkUqloqOjY73rS0tLo729PWpqauK4446LGTNmxMyZM6O2tjZOOeWUaDC/AQA7vMbGxh71J6qqqqKuri7q6upi5syZ8fjjj8ecOXN6OS0AkC+ampo2ur60tDTbv9h///1j1qxZMWPGjOz8xo033tgbMQGAPNaT/sSa+yUOPvjgOOGEE2LmzJkxZsyYKCoq6qWUAEA+qq+v3+C6Dz9TYpdddonZs2fHjBkz4sgjj4yysrL44Q9/2ItJAYB8s6nxiLKysmhra4vy8vKYNGlSzJo1K6ZNmxZDhw71PVAAIJqamjZ4v2VRUVGUlJREe3t7DBkyJKZPnx7Tp0+Purq6KC8vj1NOOSWi3fc3AGBH1tDQsMF1qVQqurq6oqurK/bbb7848cQTY8aMGXHQQQdFUVFRXHnllb2YFADIN83NzRtdv+aZ2R+e35g+fXoMGTLE/AYAkHXAAQfEvffeG8cdd1zMnTs3br311iguLk461iaVl5fHwIEDY+DAgdHZ2bnRbdeMsXR2dsbIkSNj9uzZMX369JgwYUKkUqleSgwA5JOSpAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKFqaWmJ1tbW9ZY3ti7fy93X5Vo6nY6KioqclTOZTI+3z/V7dy9XVVVFSUlJTw4DAAAAAACwA1jfvEu+1CWVo7GxMTo6OqI3dZ/T2RZ13eeserpvb2RbX111dXWkUqkAIL+0tbVFfX39Rl8ffPDBeutXrly5Tnvl5eVRW1sb1dXVUVNTE7W1tVFTUxODBg2K0aNHZ+u7r/9wfd++fRM4EgAAALD96ejoiPvuuy+uvfbaeOyxx6K0tDTa2trWu21TU9NG2+rq6oqGhoZobGyM5ubmaG5ujqampmhoaFirvHz58g1u09TUFM3NzbF8+fINvk95eXlUVVVlxwoqKyuzryFDhsSoUaOiqqoqKisr17tNJpOJPn36REVFRdTU1GzV8SP/LVu2LL72ta/FrbfeGiNHjozbbrstTj311CguLk46GgCQr4qKIpPJxIUXXhgXXnhhvP/++/Hoo4/GQw89FL/5zW/ivffei9LS0mhvb19n1+XLl0f//v0TCL15Xn/99Zg0aVKUlZXFE088EUOHDk06EgCQp84///w4//zzo6WlJZ544ol4+OGH46677oqXXnopUqlUdHV1RWdnZ3b74uLijY7t5ZPOzs4466yz4pe//GX8+te/jhNOOCHpSABAnpo8eXKccsop0dHREU899VTcc8898Zvf/CaeffbZiIhIpVKxevXqtfapr69PIuoWufvuu2POnDlx2mmnxY9//GPf6wEA1lFaVh67jRwZ8+fPj9WrV8fTTz8dDz/8cPzHf/xHLFq0KCIiSkpK1jt/Vl9fH4MGDertyBv15ptvxne/+9249dZbo6OjI/7lX/4l7rrrrhgzZkzS0QCAPFbRtzIiIl566aVYunRpPP744/HQQw/FfffdF2+//XakUqkoKipaZ5yoqKgo3nvvvSQib7HzzjsvOjs744477vDbBgD0mn4DBka/AQPjwCOOztZ1rG6Pt155Kd74+wtRnq7Y8M6wDTQ3N8cXvvCFmDt3bkydOjXpOADAdmCfffaJBx98MO6555644IILYp999olrrrkm5s6dG0VFRUnHYzt35kWXxqrWlth11F6xy4g9I1VSmnQkAHYQ77777lrloqKi7H1Gffr0iaOPPjrq6uri2GOPjX333XetftHLL7/c23EBgDzT0NAQXV1d2XIqlcp+r33MmDExffr0qKuri4kTJ0Y6nU4qJgCQpxoaGtYqr3l2YEVFRUyaNCmmTZsWU6ZMid122y2ZgABA3ur+HL2ioqLss2UGDx4cs2bNiqlTp8akSZP8liYAsI7Gxsa17n8oLS2Njo6OiIg46KCD4oQTToipU6fG2LFj3T8KAKxX9/7EmmfEdnR0xMiRI2P27NkxefLkOOqoo6K01HcDAID/q7GxcZ26NfdK1NTUxHHHHRczZsyImTNnRm1tbQIJAYB819TUtE7dmv5EbW1tTJ8+PWbOnBl1dXVRU1OTQEIAIF9170d8+F6Jgw8+OE488cSYOXOm34MBANbR3Ny8VvnDz6caMmRITJ8+PftcifLy8oRSAgD5qqmpaZ37Ldc8r2rfffeNE088MWbMmBHjxo1LKiIAkMe6z2+Ul5fHqlWrIp1Ox7HHHhuzZs2KGTNmxODBgxNKCADkq+79CPMbAMCWOvzww+NXv/pVnHDCCVFbWxs33HBD0pE2S/fndkasf4xl2rRpMXTo0AQSAgD5piTpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsX1paWqK1tTUn5Vy2lYvy8uXLo7OzsyeHYbOl0+moqKjIWTmTyeS0vQ+XN3ffvn37RllZWU8OAwAAAAAAUEC6z6Xkum5bt98beXtD97mZXNd1n3fqjffcmrqKiopIp9MBAElqaWmJ+vr6zX4tWbIkurq61mkvnU5HJpNZ67XbbrvF2LFj16n/8Gvw4MFRVFSUwBEAAAAA1li8eHHcfvvtcd1118WyZcuiuLg4urq6oq2tbYP71NfXx2mnnRZNTU3R3NwcTU1N0dDQEM3NzdHc3BwrVqzY4L6VlZXZV01NTVRXV0dlZWVUVVVF//79I5PJrHebqqqqbN2abUpLS7fFIWE7097eHjfffHNcdtll0bdv37jlllvi9NNPj1QqlXQ0AKDA7LTTTnHyySfHySefHN///vdj0aJFcd9998U999wTTz/9dBQXF0dEREdHRyxfvjzhtJtWX18fU6dOjcrKynjooYeif//+SUcCAApARUVFTJ48OSZPnhxXXXVV/P3vf4/7778/fve738Xjjz8ebW1tUVZWFu3t7QXRJ4qI+NKXvhR33nln/Od//mfU1dUlHQcAKACpVCrGjRsX48aNi0svvTSWLFkSDz74YNx///3xwAMPxPLly6O8vDxWrVpVMH2iBQsWxEc/+tGYO3du3Hzzze7xBgA2qaSkJNsnuvDCC+Pdd9+Nhx9+OB588MG477774t13343S0tLo6GKrRgIAACAASURBVOiIzs7O+OCDD5KOnLVkyZL45je/GT/60Y9i4MCB8fWvfz3OPvvsyGQySUcDAArMwIEDs/cTRUT8/e9/j0cffTQeeeSRePjhh6OhoSHbJ2pvb49333034cQ9d8cdd8T8+fPjgQceiH79+iUdB4AdXKqkNIaPGhPDR41JOgo7oCuvvDJaWlrim9/8ZtJRAIDtzIwZM2Ly5Mlx2WWXxbx58+L222+PH//4xzFq1Kiko7EdO2TylKQjALCDeu+997LL6XQ6JkyYEHV1dXHsscfGQQcd5DlAAMBG1dfXZ5+NufPOO8fxxx8fdXV1cdxxx8WAAQMSTgcA5LumpqaIiCgqKooxY8bEjBkzYsqUKTFx4kTPtgYANqqxsTG7XFJSEhMnTowZM2bE1KlTY++9904wGQBQCJqammLVqlUREVFbWxvTpk2LadOmRV1dXey0004JpwMACkFzc3P2fok1vw0wY8aMOP7442Po0KEJpwMA8tWH75OIiNh///1j1qxZMW3atBg/fnz2dxYBADake3/igAMOiBNOOCGmTZsW48aN81s2AMAGNTc3R1FRUXR1dUW/fv1i5syZMX369Kirq4uqqqqk4wEAeay5uTm7nEqlYsKECTFz5syYMWNGjB49OsFkAEAhWLFiRfb7G1VVVXH88cfHzJkzY8qUKX53DQDYpBUrVmSXd9ttt5g9e3ZMnz49jjjiCM+nAgA26sP9iFQqFYcffnjMmjUrpk+fHnvttVeCyQCAQjR16tT4+c9/Hqeeemrsscce8bnPfS7pSD3W1NQURUVFUVxcHB0dHTFixIiYPXt2HH/88cZYAID1Kkk6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD2rrW1NVpaWrLl5ubmaG9vz5YbGhqiq6srIiI6OjqisbGxx/s2NjZGR0fHetuKiKivr88ud3V1RUNDQ7bc/b1Wr14dTU1N2XJbW1usWLEiW161alWsXLlyg9lyrbq6OlKpVLZcU1MTxcXF2XImk8kuFxUVRW1tbbacSqWiuro6Wy4pKYmqqqrsPqWlpVFZWZldX15eHn369MmW0+l0VFRUZMt9+vSJ8vLybLlv375RVlaWLVdWVkZpaekWZQcAAAAAAPJTS0tLtLa2brSuJ9vkU93WtNV9nqq3dJ+3WV9dT7bZUF0mk9nifbe0bmva6j4vBQBsWytWrIj3338/li1bFu+991729f7778d7770Xy5Yti/fffz/q6+uzr+bm5nXaKS0tjUwms85r+PDhceCBB0a/fv3Wuz6TyUTfvn0T+M8BAACAXLj33nvjtNNOW+u7Px9e3pC2trZobW2Nfv36xa677hpVVVVRW1sbVVVVUVlZGZWVlVFTUxPV1dXZ8oe/NwO95dFHH43Pf/7z8fe//z3mzZsXV155ZVRVVSUdCwDYDqRSqTjssMPisMMOi8svvzyWLVsW999/f9x7772xcOHCqKmpSTriRrW1tcXJJ58cjY2NsXDhwujfv3/SkQCAAjVq1KgYNWpUfP7zn4+VK1fGY489Fvfdd1/ce++9MWjQoKTjbdIPfvCDuP766+P222+Purq6pOMAAAVq0KBBccYZZ8QZZ5wRnZ2dsWjRonjwwQfjnnvuiaKioqTjbdLLL78cJ510Uhx33HFx0003FURmACD/9O/fPz760Y/GRz/60YiI+Otf/xq///3v4/7774//+q//Wuu5yklpbm6OK664Ir73ve9FJpOJa6+9Ns4+++y1nuEMALA11sydzZs3Lzo7O+OZZ56JRx55JB566KF4/PHHC2bcpbGxMb7whS/EvHnzzKEBADu0119/Pa6//vq45ppr3G8NAGwTFRUVcdVVV8VJJ50Uc+fOjYMOOiiuvvrqOO+885KOBgCQUxMmTIhrrrkmDjnkkDj00EPdrwMAbJaPfexjMWrUqDjuuONiv/32SzoOAFBgrrjiikin0zFlypSCeBYOAJA/9tprr7jwwgvj8MMPj0mTJkVlZWXSkQCAAnLiiSdGZWVlTJ06NcaPHx/FxcVJRwIACsyUKVOivb09pkyZEkceeWSUl5cnHQkAKAAjRoyIT37yk3HYYYfF8ccf714JAGCz7b777tn+xLRp02LgwIFJRwIACsTZZ58dbW1tMX36dPdKAACbZY899ogLLrggDj300Kirq4va2tqkIwEABeT444+Pjo6OmDJlSkycODFKSkqSjgQAFJALLrgg2tvbY8aMGTFy5Mik4wAABWTEiBHxhS98IQ455JCYMmWK+Q0AYKudfPLJ8Y9//CO++MUvxn777RfHHHNM0pF65IADDohRo0bFzJkz4/jjj48RI0YkHQkAyHPu7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS19zcHO3t7dlyQ0NDdHV1RUTE6tWro6mpKbuutbU1WlpaCmrfXKqoqIh0Op0t9+3bN8rKyrLlqqqqKCkpyZarq6sjlUplyzU1NVFcXBwREalUKkaMGJFdV1RUFLW1tdlyKpWK6urqbLmkpCSqqqqy5dLS0qisrMyWy8vLo0+fPtlyOp2OioqKbLlPnz5RXl6+weyVlZVRWlrak8MAAAAAAABshZaWlmhtbc3LuqRyLF++PDo7O6M3dZ9L2RZ1mUxmi/btjWzrq/vwXBYAQK61t7fH+++/H++99172tWzZsrXq3n///Vi6dGm27sP3C0VElJWVxc477xw777xz7LTTTjFw4MDYZ599IpPJRCaTiX79+mWXP/z68D02AAAAwI5j5MiRMWvWrHjwwQdjxYoVkU6n15mn2pBbb701ampqtnFC2DJvvvlmfO1rX4uf/exnMX369Pjtb3+71vfUAABybcCAAXHGGWfEGWeckXSUTerq6oq5c+fGokWLYsGCBTFs2LCkIwEA24k+ffrE1KlTY+rUqXHTTTclHWeT7rnnnvjMZz4T3/72t+NjH/tY0nEAgO1EcXFxHHrooXHooYfGJZdcknScTXrvvfdi6tSpsdtuu8Uvf/nLtZ4LCQCwNfbdd9/Yd99944ILLkg6SkREPPbYY3HWWWdFQ0NDXHnllTFv3rx1niUAAJBLxcXFceCBB8aBBx4YX/ziF2P16tVr/UZHPrviiiuivb09rrjiiqSjAAAk6tvf/nYMHDgwPvWpTyUdBQDYzh188MHx5JNPxpVXXhmf+9zn4pFHHomf/OQna/1uKwBAIRswYEB88YtfTDoGAFCgjjjiiDjiiCOSjgEAFKh58+YlHQEAKFC1tbVx1VVXJR0DAChQEyZMiAkTJiQdAwAoYEcffXQcffTRSccAAApMJpOJH/3oR0nHAAAKWG1trf4EALBFvv71rycdAQAoUFVVVfHd73436RgAQIHy/Q0AYGt89rOfTToCAFCgqqqq4tprr006BgCwnfnqV78aTz/9dJx88smxaNGi2H333ZOOtEm//e1vk44AABSYkqQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3T0tISra2tW1TO130bGxujo6Njcw5Dj6XT6aioqFhneXPKmUxmi/fdmvdd37rKysooLS3dgiMBAAAAAAA7lu7zEVtTl8u2eqOup/v1hu5zHVtTt75tMplMztrvjbqKiopIp9MBAEDutLS0RH19fdTX18fixYvjnXfeyZbXV7d06dLo7Oxcq410Oh2ZTCaGDBkSgwcPjgEDBsTo0aPXqstkMtnXoEGDori4OKH/GAAAACg0o0aNiq9//evR0dERTz31VNxzzz1x1113xXPPPZcdY9jQd6saGxujpqamN+PCJq1evTq+/e1vx5VXXhm77757PPjgg1FXV5d0LACAvHLhhRfG/Pnz44EHHoj9998/6TgAAIlYuHBhzJkzJz71qU/Fl7/85aTjAAAkYuXKlTFt2rTo6uqKe++9N/r06ZN0JACAnGtpaYkLL7wwbr755pgxY0b84Ac/iEGDBiUdCwDYAZWUlCQdoUdee+21uPHGG+O6666LnXbaKek4AACJWbx4cfz0pz+N6667zm+yAQC9oqysLC6//PKYNGlSnH766XHAAQfEL37xi5g4cWLS0QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHCsqKoqf/OQncfjhh8dHPvKR+NOf/hQVFRVJxwIAyKmSpAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABArrS0tERra2uPypuzbZL7NjQ0RFdX1+Ychh5Jp9NRUVGxReXu6zKZzBbvuzXv271cXV0dqVRqcw4DAAAAAAAUnE3NLeR7Xa7bb25ujvb29uhtm5q32Nq67vMvuX6PXOetrKyM0tLSAACArdXS0hKLFy+Od955J+rr69e7vHjx4njrrbeira1trX3T6XRkMpnsa8iQITFu3Li16tbUDx48OPr3768fCwAAAPSKVCoV48aNi3HjxsWll14ab775Ztx///3xu9/9Lh5++OFoaWmJdDq91nzo8uXLY9iwYQmmhrU9/fTTcdZZZ8Xzzz8fl19+eZx//vnG1wAAupk/f35cc8018bOf/SyOOeaYpOMAACTi3XffjY985CMxadKkuPHGG5OOAwCQmPPOOy9efvnlWLhwYfTv3z/pOAAAObdkyZKYNWtW/OMf/4jbb789Tj/99KQjAQDkvWuuuSaGDBkS55xzTtJRAAASdfPNN0dtbW2ceeaZSUcBAHYwRx11VPzlL3+JM844I4455pi47rrr4tOf/nTSsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHKusrIy77747xo8fH1/96lfj+uuvTzoSAEBOlSQdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgN7T0tISra2t6y1vbF2h7JtL6XQ6KioqelTe1LaZTGaL992a9+1erq2tjaKios05DAAAAAAA0GvWN+6fRF2+5IiIaGhoiK6uruhN3ecXcl1XUVGxztzJ+rbb1jk2p66mpiaKi4sDAADYMp2dnbF06dJYvHhxvPPOO/H222/H4sWL4+23344lS5Zk17377ruxatWq7H6pVCoGDBgQ/fv3jyFDhsSAAQNiwoQJMXjw4Ojfv38MHDgw+vfvHzvvvHPsvPPOkU6nE/wvAQAAAHpu2LBhcc4558Q555wTbW1tsWDBgnjggQfi7rvvjpdeeikiIlasWJFwSvi/2tvb49prr41LLrkkxo8fH//zP/8Te+21V9KxAADyzhtvvBHz5s2L8847L04//fSk4wAAJKKrqyvmzp0bqVQqbrvttkilUklHAgBIxJ133hm333573H333TFy5Mik4wAA5Nxbb70VRx11VJSUlMR///d/x5577pl0JACAvLds2bK45ZZb4uqrr46SkpKk4wAAJKazszNuv/32OPPMM6O8vDzpOADADqh///5x7733xr/+67/GZz/72XjhhRfiuuuuM2YDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANuZPfbYI66//vo466yzYvbs2XHkkUcmHQkAIGf8OjsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCHtLS0RGtr6zrLm1vOl32bm5ujvb19cw9Dj6TT6aioqFhveWPrupcrKioik8ls0b5b877dy3369Iny8vItORQAAAAAALBJ3cfwt6Yul231Rt36tlm5cmWsWrUqelv3uYKtqVvfNh+e89gW75nrvOZHAACArdXc3BxvvPFGvPnmm7F48eJ46623YsmSJWv9Xbp0aaxevTq7T01NTQwdOjSGDBkSgwcPjtGjR8eQIUOif//+MXDgwBg8eHAMGDAg+vfvH8XFxQn+dwAAAADbXllZWUyaNCkmTZoU3/nOd+L111+PhQsXxtixY5OOBvH000/HWWedFc8//3xcfvnl8aUvfSlSqVTSsQAA8s7q1avj1FNPjaFDh8Z3vvOdpOMAACTmu9/9btx///3x2GOPRb9+/ZKOAwCQiJdffjnOOeecOP/882PmzJlJxwEAyLkPPvggJk2aFBUVFfHHP/4xdt5556QjAQAUhFtvvTUqKirirLPOSjoKAECiHnrooXjrrbfijDPOSDoKALADKyoqiq9//esxZsyY+Jd/+Zd48cUXY/78+VFbW5t0NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgh84444y4++6748wzz4xnnnkmKisrk44EAJATJUkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsPy5cujs7MzIiJWr14dTU1N2XWtra3R0tKSLTc1NcXq1auz5fr6+uxyvu6bS9XV1ZFKpSIioqioKGpra7PrSktLo7KyMlvu06dPlJeXb3TfTCazxftuzftuaF8AAAAAAOiupaUlWltbN1jO97pct999zqK3pNPpqKio2GB5a+symUxO29vWeauqqqKkpCQAAADYMu3t7fHuu+/G4sWL45VXXol33nknu7ymvGTJkujq6oqIiPLy8ujXr18MGTIkBg8eHAcccECceOKJMXjw4GzdLrvsEjU1NQn/ZwAAAAD5a/jw4TF8+PCkY7CDa29vj0svvTSuvvrqOOKII+LZZ5+NPfbYI+lYAAB566tf/Wo888wzsWjRonXuZwUA2FE8+eST8bWvfS2uvPLKmDBhQtJxAAAS0d7eHqeffnqMHDkyvvWtbyUdBwAg5zo7O+P000+P1tbWeOyxx2LnnXdOOhIAQMH493//95gzZ0706dMn6SgAAIm666674uCDD47Ro0cnHQUAIE466aQYPnx4zJo1K4466qj4/e9/HwMHDkw6FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQQ9/73vdi3333jUsuuSSuvfbapOMAAORESdIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABge9TS0hKtra09Km/put5qp7GxMTo6OrbkMGxUOp2OioqKLSqvWU6n09nX5u67Ne+7oW2rq6sjlUptwdEAAAAAACBfdR837426JN5zc+oaGhqiq6srelP3Mflc11VUVEQmk9nkdts6x+bU1dbWRlFRUQAAAMCW6urqinfeeSdeeeWVeOWVV+LVV19da3nJkiXR2dkZERFlZWUxdOjQGDZsWAwfPjz++Z//OXbZZZdseZdddolMJpPwfwQAAAAAbK3XXnstTj311PjrX/8aN9xwQ5x77rnuUQEA2IhHHnkkvvvd78Ytt9wSY8aMSToOAEAiVqxYEXPmzImjjz46vvzlLycdBwAgMRdffHH87W9/iz//+c9RXl6edBwAgJy74YYb4g9/+EP86U9/ikGDBiUdBwCgYPzlL3+JZ599Nn74wx8mHQUAIHEPPvhgzJ07N+kYAABZ48ePj4ULF8bkyZPjyCOPjIcffjiGDRuWdCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEeGDh0a3/nOd+Lcc8+NefPmxahRo5KOBACw1UqSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwI6ps7Mzli9fni23tLREa2trttzQ0BBdXV0REdHe3h7Nzc3Zdc3NzdHe3r7edlpbW6OlpSVbXr58eXR2dq63nRUrVkRbW1tERHR1dUVDQ0N23apVq2LlypXZcmNjY3R0dERExOrVq6OpqSm7buXKlbFq1aotOQwbVVVVFSUlJRERkUqlorq6OruuT58+UV5eni3X1tZGUVFRRESUlZVF375912onk8lERERxcXHU1NRk11VUVEQ6nc6Wa2pqori4OCIiSktLo7KyMruusrIySktLIyKiqKgoamtrs+u6v2f3fNXV1ZFKpbbkMAAAAAAAsA11H5/vad2W7pdUXU/3+/DcQW9Kp9NRUVGx2XU93S+TyWxR+7mu6+l+3ecZAAAAgC3X2dkZr732Wrz44ovxwgsvxCuvvJJ9vfbaa9nxkXQ6HbvvvnuMGDEiDjrooDjppJNi2LBhMWzYsNh1111j0KBB2fsUAQAAAIDt029+85uYO3duDB48OBYuXBj77bdf0pEAAPJaa2trnHvuuXHCCSfEmWeemXQcAIDEXH755fHBBx/ET3/60+xz7AAAdjRPPfVUXH/99fH9738/Ro4cmXQcAICce+ONN+KSSy6Jiy++OMaPH590HACAgnLffffF0KFD47DDDks6CgBAop599tl44403YurUqUlHAQBYy6677hqPP/541NXVxZFHHhkPPfRQ7LnnnknHAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABy5BOf+ERcd9118Y1vfCPuuOOOpOMAAGy1kqQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMy0tLdHa2rre8pau21bbbqqd+vr6LTkEG5VOp6OioqJH5Q2ty2QyOWlna/NUV1dHKpXawiMBAAAAAEDEumPT+V7XG+/Z2NgYHR0d0Zu6j4Fvi7pMJpOz9nojb1VVVZSUlAQAAABALjU3N8eLL74YL774Yjz//PPZ5RdffDFWrVoVEREDBw6MPffcM0aMGBEHH3xwjBgxIkaMGBG77757DBkyJIqKihL+LwAAAACAJLS2tsaFF14YN954Y3z84x+PH/zgB9GnT5+kYwEA5L1vfetbsWTJknj00UeTjgIAkJjnnnsurrvuurjhhhti8ODBSccBAEhEZ2dnnHfeeXHooYfG3Llzk44DALBNXHbZZTFo0KC46KKLko4CAFBwHnrooZg8ebJnOgAAO7yFCxdGZWVljBs3LukoAADrGDRoUPzxj3+MKVOmxLHHHhsLFiyI4cOHJx0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMiBVCoVV1xxRXzkIx+Jr3zlKzF27NikIwEAbJWSpAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORaS0tLtLa2rrO8qXKutt1W7eRKOp2OioqK9ZY3tq57OZPJ5KSdrdm2pqYmiouLt+QwAAAAsI1ddtac+MYtdyYdAwC2W+sbQ97WdUm85+bU1dfXR2/rPm6d67qKioqNjsfnY11tbW0UFRUFAAAAANtOfX19PPfcc/HnP/85+3rhhReis7MzSktLY9iwYTFixIg4+uij49Of/nSMGDEi9ttvvxg4cGDS0QEAoCC5H45C4nwFYHO98MILceqpp8arr74ad9xxR5x66qlJR6IA6YNQSJyvQK784x//iKuvvjq++c1vxi677JJ0HPKAzxgKifMVyJWurq74zGc+EwceeGCcc845ScchT/icoZA4X4Fc+dGPfhSLFi2KJ5980vMWiAifMRQW5yvQE6+88kr87Gc/ix//+MdRVlaWdBwKhM8YConzFdiWVq1aFQsXLoy5c+cmHYWE+JyhkDhfgW3tz3/+c4wdO9bvj+6AfMZQSJyvsGPr169fPPTQQ3HsscfGpEmTYsGCBTF48OCkY7Gd8BlDIXG+AuQf12YKifMVIP+4NlNInK8A+cV1mULifAXIP67NFBLnK0D+cW2mkDhfAfKPazOFxPkKkF9clykkzleA/OPaTCFxvgLkF9dlConzFSD/uDZTSJyvAPnHtZlC4nwFyC+uyxQS5ytA/nFtppA4X2H7duKJJ8b48ePjkksuiXvuuSfpOOxgfMZQSJyvUBhKkg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSnpaUlWltb11neVHlL122rdlasWBFtbW1behg2KJ1OR0VFxXrLG1vXvZzJZHLSztbkqa2tjaKioi05DAAAALBFurq6ko6wSSftNSTueuGdpGNskZUrV8Zvf/vb2HvvveOAAw5IOg5AznUfE+5p3Zbul1RdT/fbVuPgm9J9rLmndT3dr/v4+da8Z2/k7du3b5SVlQUAAAAA9Kbly5fHE088EU888UQ8+eST8dRTT8WyZcsiImK33XaLAw88MObMmRP7779/7LPPPrH77rtHSUlJwqkBAGD7sr774Qr5/jOS9T+PPRI//fZlseT11+JLN/woDpk8Za31Hz63tuQ8c76SC1t7Hm6sjZP2GrLJfbu/34b26b7dc4sWxi9v/E689OxTUVJaFvsf/k9x5kXfiP5DdulRtiVvvBafnfpPMWDosPjEVy+L8ccc14P/FArbz3/+8/jUpz4VBxxwQDzzzDMxfPjwpCNRoPRByCV9ZgpBPvWZN7Z9UVFR/Pr5tyMi4vUXn4/Hfvvr+PNjD8fSN1+P8oo+MXDY8DjmxFOi7tSPRyr1v3OM+sw9c+6558aoUaPiM5/5TNJRyBM+Y8glfSIKQT71idZY9Ojv456f/ihe+duz0bG6PfY66OCY+Yl5Mfafjslu0/Desrj1W9+I/3n8DxERcdCRx8QnLr48anfq36Ns+kRru+WWW2LBggWxaNGiSKVSScchT/icIZf0iygE+dQv6ursjN/P/3k88qtfxOI3XouIiMG77hbHzflYTP7IaVFUXLzWvo/e9cv4/iVfjl899+ZmZ9Mv+l9Lly6Niy++OC644ALPgiLLZ69udAAAIABJREFUZwy5pE9EIcinPtHmzItF9GxMSZ8o4t/+7d9i0KBBcfrppycdhQLiM4Zc0ieiEPRmn6i0vDyqajMxYsx+cdg/Hx//NH12lJSWrrXNK397Nh6e/+/xlz/9MT5Yujhqdto5dttrnzhp3udj9IHj1nnf9Vnfvf07er9oSzz33HPR1tYW48ePTzoKCfE5Qy7pF1EI8mmsaHP6RB+2sqkxzp9xTLy/ZLE+UY49/fTTccghhyQdgwT4jCGX9IkoBIXYJ/L9s/9VU1MT999/fxx55JFRV1cXjz32WPTr1y/pWGwHfMaQS/pEFIJC7BNtrG3jRCTNtZlc0pegEGzLvsSHtbW2xtx/OjB222vvuOJn/7HR9jb1XSzjK+Qz12ZySV+CQpBv9/X2tJ+wOd8V15+gt7guk0v6ERSCfJrfWKOnz4fpSXv6EPQ212ZySV+CQpCPfYmePlelJ+3pS9DbXJvJJX0JCkE+9iV6Mi7huf/kK9dmcklfgkLQW32JnrTbk/6BeyTIZ67L5JJ+BIWgEMckNvc7o/oS9CbXZnJJX4JCUGhjEmv4nRrykesyuaQfQSHIpzGJjW1fVFQUv37+7c3abmPZ9CXYVlybySV9CQpBbzyfaskbr8XdP745nvrTY1H/7tIoS1fELiNGxn6HTYyJx8+K4aPHRMTm/yaKcQnykWszuaQvQSHIt+dT9bQ/4d5L8pHrMrmkH0EhyKf5jTU2NdagD0E+c20ml/QlKAS93ZeorKmNfQ+ZEGdf8q+R6T9wve315JkSPd2ukPsSRUVF8X/+z/+JWbNmxSuvvBIjRoxIOhI7EJ8x5JI+EYUgn8ZXNue+0OcWLYxf3videOnZp6KktCz2P/yf4syLvhH9h+zSo2y92Scq2fQmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBLS0u0traus7w565Jop3u5ubk52tvbt/QwbFA6nY6Kior1ljdnXSaTyUk7W7ptRUVFpNPpLT0MAAAAwIdceuv8pCNsdzo7O+MPf/hD3H777fGrX/0qWlpa4uyzz45/+7d/SzoasBm6j+Hme11vvGdjY2N0dHREb+o+Vrwt6rqPeW9Ne72Rt7q6OlKpVAAAAAAAyVq6dGk89thj8ac//SkWLFgQzz77bHR0dMRee+0VhxxySFx00UVx4IEHxtixY6O2tjbpuAAAsENwPxy5dNvVl8fJ530hDqubFqVlZTlv3/lKvrvrhXfipL2GxF0vvLPe9SftNWSD+23M3xb9V1x3wXlx5kWXxldu+kl0dXXFUwv+EFd/Zm5cfvuvo6KyapPZBu26W/zy6Vfi/33o/vjZNVfG+GOO2/Q/BAVq9erV8ZWvfCWuv/76+OIXvxjf+ta3oqSkJOlYFDB9EHJJn5kd3Zb0mde37aN3/TIW/v7ebPmCWZNilz1GxlkXXx577jc2SkpL4s2X/h4/u+Zf45W/PRuf/tdrN5lNn/l//frXv44//OEPsXDhwigtLU06DnnCZwy5pE/Ejm5L+kR3//j/iSVvvBrzLr86BgwdFkvffD1++I0L48pPnp5tp72tLS77xKlxxLRZ8clvXBUREQ/+4qdx+VmnxtW/fiBKevC5rk/0vxobG+Oiiy6Kz33uczF27Nik45BHfM6QS/pF7Og2t19061WXxot/eTLOuOgbMWLv/SIi4tW//TVuu/ryePvVl+PMC7+R3fa3P/l/4oE7bo/OLXzeh37R/7r44oujuro6LrnkkqSjkEd8xpBL+kTs6Da3T7Q582I9GVPamB2lT7R69eq47bbb4uyzz/acMjaLzxhySZ+IHV33PlFba2s0vLcs/vHMU/HIr38R/3nLD+Mr3/tJDB6+e3afL8/+5xi25+g49/LvxJ77HRAREX/974Vx7Rc+FZ/46mVxWN20dd5jS+0o/aIt9eyzz0Z5eXmMHDky6SgkxOcMuaRfxI5uc8eKNrdPtMat3/pGHDJpStz/77f2OJs+Uc+8+uqrcdpppyUdgwT4jCGX9InY0W2rPpHvn61twIAB8fDDD/9/7N1peBRV/vbxu7OREAgEFAcQHUEEBVE2RRYVBUdQUAcJ4oLijKCIgiIGd1zAwMimiIAMq4okgH+QEZUMIqsIjIiyKgguoLIECJBAEvp5kSeddJJOV3W6U1XJ93NdfUmqq08fmt85dVt1uqJ27dqpR48e+vzzz/keGUqNYwyCiUyEii7U54m4dgY7Ym5GMJElgHzrPluihs2aa9/O7Tqw7yev9TcFGfkuFudXYGfMzQgmsgQqukDW9RrNCWa+K+4LeQLBxryMYCJHoKIL5P56Zu4Pw/UN2BFzM4KJLIGKLlT36i3YfqDIEggV5mYEE1kCFV2ozktw33/YGXMzgoksgYrOX5YoyGg+YI0E7Ix5GcFEjkBFF6pzEoHeW6wgsgRChbkZwUSWQEUXinMSEr+nBvbFvIxgIkegogvknERx+y5f8KHWff6fgPbzhSyBUGFuRjCRJQBp8+oVmv/OePV4eJDuf/pFRURGKe3gH9q4IlVzJ4zWgilvenKBmesWnJeAXTE3I5jIEqjoQvl7Z1l7CTtiXkYwkSNQ0YXqnhJkCNgZczOCiSyBiq5wlsg6c0a///yT3ntjpN595Vk9/da/i7zG6L0uzdwTszhOyRJdunRR7dq1NWvWLL388stWdwcVCMcYBBOZCBVdqNaPbtvwlcY9OUAPDBuup9/6t9xutzav+kKjB/5Dr8yer5gqVf32rSwzUUTIWgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECFk5aW5vlzZmamMjIyin0uIyNDmZmZkiS3262jR48aeu7UqVM6ffp0sW2ePn1ap06d8vycnp6u7OxsSVJOTo6OHz9e7HtI0tGjR+V2uyVJZ86c0cmTJ83+1f2KiYlRdHS05+dq1aopLCxMkhQZGakqVap4nqtSpYoiIyMlSS6XS9WrV/c8Fx0drZiYGMXHxxdpJyIiQlWrVvXsGxsbq6ioKM/Pea+RpEqVKqly5cqen+Pi4hQeHi5JCg8PV1xcnOe5ypUrq1KlSsW2AwAAAAAAgNDbunWr5syZo5kzZ+qPP/5QZGSksrKyFB4erqysLKu7B3gpfP412NtC3X5Z9Lcs5J1LDtW2+Pj4kLYfim2c2wYAAAAAAABgZ7/88osWLlyoJUuWaMWKFXK73WrUqJHat2+vJ554Qh07dlS9evWs7iYAAAAAIAgO7Nura/52qyL+//dIAQTHh2/+S32feVntunb3bLu2ew+dPXtWn7w/Qz36P26onfCISF3VqYsmPP1YqLoKWO7w4cO66667tHr1as2YMUP333+/1V0CAC9kZsCcHg8PKnb70vdnqPfgRK9tT46brAsvudTz88WXX6nBb0zUo53b6tERYw29H5k5935WL774onr37q2rrrrK6u4AKKfIRIA5+3Zu194dWzX4jbc92+rWv1gDRozRoze19WxbvvBD/bXxZV4ZqsfDg/Tr7h/0xUfJ6pxwj6H3IxPlGjNmjLKzs/XCCy9Y3RUA5Ri5CDBn+cJ5GrsoVbXq5q89v6x1Gw0ZP0VDbu+sBxJf8mz/4qMUjfhgkR66tnnA70cuknbt2qXZs2dr5syZio2Ntbo7AMopMhFgnpHrYkbPKflTETLRmjVrdODAAd17771WdwVABUYmArxFRUer1vkXqNb5F6hd1+5alvy+XnnwLo35v2WqXDX/9449Oe4dXdCwsefnq278m6IqVdKMpOFqc9MtQe1TRchFgfrhhx90ySWXKCIiwuquACgHyEWAeWYz0TervtD3X6/T+I+Xa+n7M0y9F5moZKdPn9bBgwd1wQUXWN0VAA5HJgLMM5qJ+P6Zt/PPP19Lly5V27Zt1b9/f02fPt3qLgGAB5kIMI9rZwCQjywB5Pvv/Lm6pc8/tXPzJv13wVzd++Szxe5n9LtYnF8BUBGQJQBvxtf1+s8JZr4rXhLyBAC7IkcA5gXj/jBGkSEA2B1ZAjAnWPdVMYosAcDuyBKAeUbOS3DffwAVBVkCMM5oPmCNBICKghwBmGf8+xul/84oWQKA3ZElAOOMnpPg99QAqCjIEYA5BTNEQUvfn6HegxNN7+cPWQKA3ZElUNEd/v2APhiXpJdnz1dMbBXP9lrnX6Cu9z6o8+s31MsP9vJ6jZHrFpyXAFBRkCUAb8H8vbOsvQRQ3pEjAHOMnmsgQwCoKMgSgLfIqCjVu7iRHnntXxrU9bpi9zH6/Y1g3BPTCVkiIiJC9913n6ZPn64XX3xR4eHhVncJAEwjEwHmGF0X+uGb/1LfZ15Wu67dPduu7d5DZ8+e1Sfvz1CP/o8ber+yykQRIW0dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPmVnZys9Pd3zc3p6urKzsyVJWVlZOnHihOe548ePKycnx+9zZ86c0cmTJz3PHTt2TGfPnvX73OnTp3Xq1CnPc0ePHpXb7fb7XGZmpjIyMkrzMRRRqVIlVa5c2fNztWrVFBYWVuxzcXFxCg8PlyRFRESoatWqnufOO+88VapUyfNzfHy8z/eoWrWqIiIiJEnh4eGKi4vzPFe5cmWvdqpXry6XyyVJioqKUmxsrOe5KlWqKDIyUpIUFhamatWqBfIRAAAAAACACmbvjm2aPfoV7fjfBoWFh6txi9a69f6HdGX76yVJPRrXkSQt2LHf63XFbc/bNuE/X2ris09o385tatCkmQa+Pl5ZZ07r7Wef1M8/7NTFl1+px0dN0Dm16xZ97ZIVmpE0XDu/2aizZ8+qyVXX6P6nX9T5DRoW2fftz9dq9r9e1ffr1+jk8eOe/gS7b5L08w87NOeNEdq24StJUuMWrXV/4ou6oGHjIu8x5YuNmvbqs/ruqzWqFBOjK9peqwefe1VVq8cX2Tfvv5J04529NeC1MZKkDcs/10fvTtSerVtU/ZxaurpzF931+FDFxFYx/DmUxpEjRzR//nxNmzZNGzZsUGRkpLKysiTJ81+32+05x4eykZGRoczMzBK3GdnHTttK09aJEyc89ViWoqOjFRMTU+I2I/v42hYfHx/wawPdVpq2YmNjFRUVJQAAAAAAAACAs5w6dUqzZ8/WjBkztGHDBlWrVk3dunXT/PnzdcMNN3itjQYAAADyBHOdl/T/12X96zVt27heknRZq6t139DnvdZlSf7XuXna8rPG61T6cc2bOEZf//czpf35u2LjquvK9tfr5rvvV8NmzQ3vY6bvJTHyXiWthytu/ZmZNX+SsbVqkrF/A6NtBeOzoxYDr8Wc7CxF/P/voppBvVKvdpk7Qy3QNbg/frdZQ9+aVmR78w4dlTSgr3r0f9xwWxGRkcq2YH0kUBa2bNmi22+/XVlZWVq5cqVat25tdZeCjnmfzEwGcX4tkpnNtUW92m/uDLXCdXf34MQi++zcvEmnTqSreYeOPl+X51R6uqqfW8tUHyp6Zp41a5Z++OEHffTRR1Z3xSfGNZmIY4zza5FMZK4t6tV+c2eoFa67zz6crc697i2y318u+KvXvus//0S3/XNAkf2uv72nFs+Yos4J9xjuQ0XPRIcOHdL48eM1bNgwr3t92g1jm1zEccb5tUguMtcW9Wq/uTPUCtddVIH7aBcWFeX93Gsf/J+qxJX+/tkVPRc9//zzaty4sXr37m11V3xiXJOJOMY4vxbJRObaol7tN3eGWuG6M3pdzOg5JSPKeyb6z3/+o0aNGumSSy6xuisBY1yTiTjGOL8WyUTm2qJe7Td3hlrnhHu0+/tvtWj6ZPUe9LQk37mocYvW+uPnvSHpR3nPRYE6cOCA6tat63/HMsDYJhdxnHF+LZKLzLVFvdpv7gw1o+eKfGWijBPpmvzi0xr4+jhViqlc9IUGkIl8++OPP+R2u1W7dm1L+8G4JhNxjHF+LZKJzLVFvdpv7gy1QDMR3z8r3mWXXaa5c+eqW7duatq0qZ588kmruxQUjGsyEccY59cimchcW9Sr/ebOUCvteaJgKE+ZqDDGA1mCudn5tUiWMNcW9Wq/uTNYfv95r37b86Nadeykehdfohf73Kneg55WeHhEkX2NfBeL8yvGMB7IEszNzq9FsoS5tqhX+82doWZmXW/hnGDmu+L+lMc8wVggRzAvO78WyRHm2qJe7Td3hlpxmSFY94cxqjxmiDyMB7IEc7Pza5EsYa4t6tV+c2eoBXqv3mAiS3jvy3jwjbmZuZksQb1Sr/bPEpKx8xLc998YxgNZgrnZ+bVIljDXFvVqv7mzLBnNB6yRMIaxQI5gXnZ+LZIjzLVFvdpv7gy1QM9JBPM7o2QJ730ZD74xNzM3kyWoV+rVflmiIKPnJPg9NcYwFsgRzMvOr0VyhLm2qFf7zZ2hVrju7h6cWGSfnZs36dSJdDXv0NH0fkaQJbz3ZTz4xtzM3EyWoF6p17LPEh/PnKK/9b6/yL91nmZtO3jVntHrFpyXMIbxQJZgbnZ+LZIlzLVFvdpv7gy10vzeWdZeloyxQI5gXnZ+LZIjzLVFvdpv7gy1QO8pQYYwhvFAlmBudn4tkiXMtUW92m/uDCW33MVuN3qvy2DdE9MJWaJv374aPXq0VqxYoRtvvNHq7pQ5xjWZiGOM82uRTGSuLerVfnNnqAW6fvTH7zZr6FvTiuzbvENHJQ3oqx79Hzfch7LIRC632118AgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCpjIwMZWZmFvmzk55LS0srzUdQrOjoaMXExBT5c6DPBaMNM89VrlxZlSpVKu3HAAAAAAAAYJnk5GT16tVLC3bsN/ya/Xv36PVH7tdDL4xUoxatdPDXXzR5eKK2b1zv1U6PxnWKbbe47T0a11HbLt3Va+AQ1ah1nj4YP0o/fv+tap5XW70HPa0atc7Te2Nf1/Ejh/XUhKlFXntBw8bq8fAgXdHuWp3NydGG5Z8rZdI4vfreQtWqW89r3yvaXqtejz2liy5tqu+/XqsR/e719CeYffv957167u7blTDwSV1z0y1yhYXpm5XL9eFbb+jVOQtV8y+1vfvV7jp1e6CfLm15lU4cO6bpI19Q5SpxGvj6OL+fX8HnHn5ltK7t3kMZJ9I1540Rklx6LGl8kf1K+hyMGDO4v+pWjdbs2bO1bNkyzZw5U4sWLZLL5VJOTo7cbnexr3O5XLrrrrv0wQcfGH4vXwqfw7TTNqv6cezYMZ09e1ZlqfA5VDtts6of1apVU1hYmAAAAAAAAAAAKC/Onj2rd999Vy+88ILS09PVq1cvJSQkqFOnToqKirK6ewAAAChDCQkJ+i09U0PGTzH1umCt8/r95716sU8P3fXYULXq2Flut1sbln+ueRNz12X95YK/SjK2zs3oGq9Rj/bVRZc21U29+yi2ajX9+uMuTXvtOe343wZPW0b2Mdp3f4y8V97nWNx6uJLWn5lZ8+dvrZqZtYb+2grWZ5f3ftSi+c+zpNopCfVKvdpl7gyGQOr0lj7/1JpPFuvUieO66NKmuuuxoWrWtoNnn95X1tfUFZtUtXq812tPHD+mRzu10ayvt5e6j2b1aFxH8+bNU0JCQqnaAYJl3rx5+sc//qEWLVooJSVF5513ntVd8iuQ72lIzPt570dmJoM4tRbJzMbbol6tr9dQMVunhY1/6lE1aHqFuj3Qr9jnc3KylX40TTv/t1HzJr6hHv0HqV3X7qXuo1l536tLTk4uVTtl6cyZM2rcuLFuuukmTZ48ucze1+Vyaci4yWrbxfi/E+OaTMQxxtm1SCYy3hb1an29hoqZOh18a0c98tobmv/OeG39ep1cLpcaNmuuXgOH6NJWV3v2+0f7KzVm0TJVr3mu1+uPHvpTT93xN01b9U2p+2jW2qWLNeaJh33eU8CuhgwZojlz5mj37t2qWrVqmbwn11etH9scZzjOkIuoV+rV/rlo0fR3tO6z/+j+p1/UXxtfJknau2ObZo1+Rdf87Rbd9uAjhtoPRh8DacNp11e3bNmi5s2ba+HChbrtttvK5D25fmb9uOYYwzGGTES9Uq/2z0QFlXRdzOg5pdL00Sy7Xj9r0aKFrrvuOo0bN87/zmWE62dkIo4xFa8WyUTG26Jera/XUPE3DnZ//63efvZJjV383xLb+fPXn/XqQ/foraWrvNr2t2Y/WP30x6nXz0py66236pxzztHMmTOD2i7Xz6wf2xxnOM6Qi6hX6tU+ucjs2CguE0nS5BeHKiwsXP2GJwXUbqD98dWG066f+bN9+3Zddtll+u6779S0adOgtMn1M+vHNccYjjFkIuqVei1/mUji+2fFeeONN5SYmKiPPvpI3bub+yzKAtfPyEQcYypeLZKJjLdFvVpfr6ESqkxkp2tnUuivn3F+xfrxwNzM3EyWoF6pV2uyhCS9N3akzmbnqM/TL0iSnrv7Nt3+z0fV+oabfL7G6PipKOdXWL9i/XhgbmZuJktQr9Srfc5LFFTSut6SckIg3xUvTT+NvD6U61e4vkGOYF6ueLVIjjDeFvVqfb2GSqDXN/ztw/UNYxgPZAnmZmfXIlnCeFvUq/X1Gipm6tTMfVXsliW4vvFXSeV7PDA3MzeTJahX6tX+WcLoPna873+or29wXsL68cDczNxMlqBeqVf7ZIniGM0HdlsjkdcGOaJ8jwXmZeZlcgT1Sr3aJ0cEY61EcUq6j0aw36uwsrg/BusuyRLMzRWvFskSxtuiXq2v11AJ9jmJivp7asgR5Ajm5YpXi+QI421Rr9bXa6gEek4iz/inHlWDpleo2wP9grKf0T6axfc3/iqpfI8H5mbmZrIE9Uq9ln2WGHTLdXpuyhzVOv+CUrVT+LpFRTwvwfc3rB8PzM3MzWQJ6pV6tc95iYIC/b2zdlt7Gep1l1zfIEcwL1e8WiRHGG+LerW+XkPFTJ0aPddgtwwhcX2jIowH5mbmZrIE9Uq9Wp8lss6c0e8//6T33hip+Fq19PAr/zL0OqPtB6OPgQr19Y1LL71Uf//73zVixIiQtF+WOL9CJuIYU/FqkUxkvC3q1fp6DZVQrB/tfWV9TV2xSVWrx3vte+L4MT3aqY1mfb291H00q4TzKykud6jOugAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFvIyMhQZmZmsT875bmTJ0/qzJkzpfkYioiOjlZMTEyxPzvluSpVqigyMrI0HwMAAAAAAACCKDk5Wb169dKCHfsNv2bckAFqce0Nuu62Oz3b9v+0W4916eDVTo/GdYptt7jtPRrX0StzFqhJ62skSUf+/EMPXdvca9vh3w9oaI+/afqaLUVe++TYyWrXtbvX9o9nTNHendv1WNJ47/eZPV9Nrmpb7N8tmH2bMHSgLmx0mW7/5wCv9pYv+FB7d2zVg8+96vUeiW/P0FU3/s2zbf9Pu/XS/Xfq3ZXf+O2jLyeOH9Ojna/RrPXbiv6dSvgcjBgzuL8O7t6h/fv3KyMjQ2FhYcrOzjb02oSEBNWtW1eLFi3y2n769GmdOnXKa1vh87BlpXr16nK5XJ6fXS6Xqlev7rVPeHi44uLivLZFRkaqSpUqXtsqVaqkypUre22LiYlRdHS017bY2FhFRUV5bSvunGpcXJzCw8PLtL+Fz/sCAAAAAAAAAICK48yZM7rrrru0ZMkSPf7440pMTNS5555rdbcAAABgkYSEBP2Wnqkh46eYel2w1nlNGDpQF19+pW7p888i7ezZ/r0GjX5LkrF1bkbXeN3ToqGmfLFBVarlr8f589ef9UinNp62jOxjtO/+GHkvyfd6OF/rz8ys+SusuLVqRtcaGmkrWJ9d3t+HWjT3eWacSNdD17XUe5t2Ffkc/KFe81Gv1s6dz/buLpfLpREfLPK/sw89GtcpdruvGrm35SV68NlXdFXnLnLJpe/Wr9a0V57ToNFv6fJr2kuSnr/3DnW9p6/advH+N1732RKNffIRpWz9xVQf776ygf69erNiqlQ19bqCejSuo3nz5ikhISHgNoBgcLvdeuGFFzRy5EgNHDhQY8eOVUREhNXdMiSQ72lIzPtm+u4PGSQfGYTMbHR7QdSr7z6Vh3r1xYrMXNDRwwc1qMu1mpS6XrGFvv8kST//sENPdLtBkhQZFaWHXnxdN97Z23Qfg5GZxwzur7pVo5WcnBxwG2XtzTffVGJionbt2qV69eqV2fu6XC4NGTe5yP/zlIRxTSaSOMbkcVotkomoVyfVqy9lnYnuadFQ59Suo16PPaVm13TQ2bNn9e2aLzXz9eF6cvxkz70MEppeqLmbf1R4hPd3znOys3R384s177t9pvoYjEy0dulijXniYbnd7oDbKGv79+/XxRdfrFGjRumxxx4rs/fl+moucpE3jjO++1QeapFcRL06qV59seJc0cczpmjOmJHKyc6SJIWHR+ieIc/otgcf8dm+2WsxhVXU66tdu3bVwYMH9fXXX3vdryiUuH6Wi0zkjWOM7z6Vh1okE1GvTqpXX6y6fubvupjRc0pGldfrZ6dOnVK1atU0d+5c3Xnnnf5fUEa4fkYmKoxjjO8+lYdaJBNRr06qV1+ClYlKqofTGafUt20zffDNjyW2k/L2WLndbiUMHOLZZmTNvlGlzUVOvH7mT4cOHdSyZUuNHz/e/84mcP0sF7nIG8cZ330qD7VILqJenVSHiU2rAAAgAElEQVSvvli91jpPcZloy9pVmvT8EI37eLliYqt43iuQa2kV9fqZP998841atGihXbt2qWHDhkFpk+tnuchE3jjG+O5TeahFMhH16qR69cXOmUji+2cl6d+/v+bOnavVq1erWbNmVnfHC9fPyESFcYzx3afyUItkIurVSfXqi50zkZ2unUmhv37G+ZVcZAlvzM2++1QeapEsQb06qV59CUaWOJuTo/4dW2n4zBTVrX+xJOmLj+Zp/bKlGjZpps/XGanLinR+hfUrucgS3pibffepPNQiWYJ6dVK9+mLlul4jOcHsd8VLUto8Eer1K1zfIEcUxrzsu0/loRbJEdSrk+rVFyuvb/irS65vGMN4IEtIzM15nFaLZAnq1Un16otd79Ur2S9LcH2j/I8H5uZ8zM1kCaPbC6JeffepPNSrL3Y9L2HH+/6H+voG5yVykSW8MTf77lN5qEWyBPXqpHr1pSzWSuQxkw/stEZCIkdUhLHAvJyPeZkcYXR7QdSr7z6Vh3r1xa7nJHzxdR8Nf5xwfUNi3aVEliiMudl3n8pDLZIlqFcn1asvdjwnUVF/Tw05ghxRGPOy7z6Vh1okR1CvTqpXX6y+P9XRwwc1qMu1mpS6XrFxcaXezxe+v5G/L+PBN+bmfMzNZAmj2wuiXn33qTzUqy+lzRK9r6yvORt2KiIy0v/OJSh83aIinpfg+xu5yBLemJt996k81CJZgnp1Ur36YvffO2untZehXnfJ9Q1yRGHMy777VB5qkRxBvTqpXn2x8z0l7JQhJK5vVITxwNycj7mZLGF0e0HUq+8+lYd69SVUWeL8iy/Rk2Pe0YWNLi3xdUaOm4F8z6MwJ1zf6N+/v7Zt26ZVq1aFpP2yxPkVMlFhHGN896k81CKZiHp1Ur36Ytf1o8/fe4e63tO3yDF13WdLNPbJR5Sy9RdTfQzx+ZWUsIBbBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgnMrIyFBaWprnsX//fu3Zs0d79uzR1q1btWnTJs9j9erVSk1NVWpqqj7++GOlpKR4HrNnz9bUqVM1depUTZgwQaNGjfI8hg8frmHDhmnYsGEaNGiQ+vfv73n06dNHCQkJSkhIULdu3dS5c2d17txZ7du3V6tWrTyPJk2aqEGDBmrQoIHq1KmjGjVqeB6RkZFyuVxyuVyqXLmy13N169b1vK5p06ZebXbo0MHzft27d/f0IyEhQf379/f0+eWXX9aECRM8f7+UlBTP57Bp0ybP57Vnzx6lpaV5Ptv4+HjVr1/f82jZsqU6deqkTp06qWfPnurXr5/nkZiYqKSkJCUlJendd99VcnKy57F48WItW7ZMy5Yt06pVq7Rx40bP4/vvv9fu3bu1e/du/fbbbzpy5IjnkZ2dLbfbLbfbrYyMDK/n9u/f73nd1q1bvdpcvXq15/0+/vhjr77Mnj1bU6ZM0ZQpUzRhwgRPn5OSkjR8+HAlJiYqMTFRgwYN8vr79enTRz179lTPnj3VrVs3z+fQqVMntW/fXi1btlTLli3VpEkTr8+sTp06io+PV3x8vCIjIy0cKQAAAAAAAAiG779ao8uv6eC1rc5FDbRgx/5StVv/sss9f44/59wi22rUOk/Hjxwu9rXN2nYosu3qzl307Zovi2y/uFnzMunblrWr1K5r9yJttbj+Rn27dmWR7Ze1buP187l16ynt4J+m+1pQlbhqOnHsaLHPBfI5FJaVlaWsrCy53W5Tr8vJyVHr1q29zj/269dPgwcP9jpfmZSUpEmTJnmd30xOTtaiRYs85z/zHqtXr/Y6R7px40Zt377dcw417/Hnn396nWc9cuSIcnJyPOdh8x5paWle+xw+fLhIW7t27SrynuvWrSvStyVLlhT5O8yaNctznjbvMXbs2CJ//+eff95zzjbv8cgjjxT57BISEjznb3v27Kk777zT6xxup06d1LFjR8953LxHs2bNvM7n1q9fX3Xr1vWc0817xMTElLpeAAAAAAAAAACAM82ZM0epqan68ssv9cYbb+jcc8+1uksAAABwqGCs89qydpWu6nRzse1sWbvK87ORdW5G13g1urKlXn/kfn2z6gvl5GRLkmqdf4FXW0b2Mdp3f4y8V1krbq1aoGsNi2srWJ9dHmrR+Od5JjNTn34wS807dCz2c/CHes1HvVo7d7rPuk2vdy3Ogh37vR4leW/TLt3Q4y5Viaum2Lg4tencVQ8++7LmTXzDs0/CgCc1feRLWrt0sdKPpunEsaNa++nH+mD8KFWKNr928+JmzbV45lRlnDxh+rWAnZw5c0Z9+vTR6NGjNW3aNL355puKiIiwultlgnmfzEwGyeWkWiQzU69OqteSWJGZC0pNfl/X3NxNsXFxxT5/QcPGWrBjv2as/U6Dx0xSyqRxWrt0sen+VcTMfPr0aSUlJWnAgAGqV6+e1d0xhHFNJuIYk8tJtUgmol6dVK8lKetMdOZ0pu4ePExtb+6mKtWqKy6+hjrceoceeGa45r35hs/XlVZFzESSNHLkSNWqVUv9+vWzuiuGMbbJRRxncjmpFslF1KuT6rUkZZ2L1nyyWJ/OnaWnJ07T7K93aNbX2/X0xH/r0w9mac0n5s8BGVURc9FXX32lpUuXauTIkXK5XFZ3xxDGNZmIY0wuJ9UimYh6dVK9lsSq62f+rosF+5xSec1E33//vdxut1q3bm11V4KCcU0m4hiTy0m1SCaiXp1UryUJViYq8T0MtL93xzb9d8GH6vaA93UeI2v2jSqvuag0srKybPf7Bhnb5CKOM7mcVIvkIurVSfVaEqvXWkvFZ6LMUyf1zgtP6ZFX/6WY2Cql7h+ZqHg5OTmSpPDwcIt7kotxTSbiGJPLSbVIJqJenVSvJbFrJsrD9898e+utt9SiRQvddtttOnjwoNXdCQrGNZmIY0wuJ9UimYh6dVK9lsTOmYhrZ8YxHsgSzM25nFSLZAnq1Un1WpJgZIn/rVyuWudfoLr1L/Zsa3tzN23fuF5HD/1ZqrY5v2IM44Eswdycy0m1SJagXp1UryWxcl2vv5wQ7O+Kl9c8wVggRzAv53JSLZIjqFcn1WtJ7HB9wxeubxjHeCBLMDfnclItkiWoVyfVa0nsfK9esoRxjAeyBHNzLifVIlmCenVSvZbEzuclgokskY/x4Btzcz7mZrJEIKhX331yer2WpCzWSpjFGglzGAvkCOblXE6qRXIE9eqkei2Jk85JlHQfDX/IEvkYD74xN+djbiZLBIJ69d0np9drSex4ToLfU2MOY4Ecwbycy0m1SI6gXp1UryWx+pxEavL7uubmboqNiwvKfr6QJfIxHnxjbs7H3EyWCAT16rtPTq/XkgQjS5T29cVdt+C8hDmMB7IEc3MuJ9UiWYJ6dVK9lsTOv3eWtZfGMBbIEczLuZxUi+QI6tVJ9VoSu95TggxhDuOBLMHcnMtJtUiWoF6dVK8lCXaWmL/9N01fs0X3DXlO4596VBtXLCt128HghCzRoUMHbdiwQRkZGVZ3xTKMazIRx5hcTqpFMhH16qR6LYld148mDHhS00e+pLVLFyv9aJpOHDuqtZ9+rA/Gj1Kl6BjT/Qt1JooISasAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAolIyNDmZmZRf7spOeOHj0qt9tdmo+hiOjoaMXExBT5s5nn4uPjA3pdsJ6Lj48vzUcAAAAAAAAAwI/jR48oLr5G0NuNia3i+bMrLKzYbb7OiVatXvS8YPy55+n4kcNFtleKjimyLRR9Sz+apodvuKrY9qKio4tsqxJXzevnyKgoU+eAjx85rPfGjtQ3q77Q0UMHdTYnp8T9A/kcCmvdurVmzZql1NRUffjhh1q4cKFOnz6tsLAw5ZTw/tnZ2erdu3ep3x8AAAAAAAAAAACh949//EO33367atasaXVXAAAA4HDBWOd1/OgRVT+nVrHtpKcd8drP3zo3o2u8npowVclvj9W7rzyr40cO66LLmqpN5666+e77FR4RaXgfo333x8h7hZLRtWpG/g3MtBWMzy4PtWis7z9t36qn7uisxi1a65nJs0v8O/hCveajXq2dO1+f97Hhfc1YsGO/qf0vv6aD3npmsOfnZm07aNDot5QyaZwmPvOE5HKpSes2GjhynCa/+LTp/vzjuVf1/L13KHniGPV95mXdev9DptsArJaenq6ePXtqzZo1WrRokbp06WJ1l8oU8z6ZuTRtkUHIzIGgXs31ycn16o+VmTknJ1ufz5uj56a+53ffuBo11aZzV8VWjdOMkS+pbZfupvpTETPz3LlzdejQIT3xxBNWd8UwxjWZqDRtcYwhEwWCejXXJyfXqz9lnYmiK8eq6dXtimy/ot11euf5pzw/V60er/RjR1W95rle+6UfO6qq1c3f96EiZqK0tDTNmjVLI0aMUKVKlazujmGMbXJRadriOEMuCgT1aq5PTq5Xf8o6FyVPGquBI8fp0lZXe7a16thZMVWq6N2Xn1W7rubOARlVEXPR2LFj1bJlS3Xu3NnqrhjGuCYTlaYtjjFkokBQr+b65OR69cfqNWe+rosZPadkVHnNRFdddZWOHz+uypUrW92VoGBck4lK0xbHGDJRIKhXc31ycr36E6pMVNAvP+7SXy640Ofze3ds06v/6K0BI8YopkpVv+0VXrNvVHnNRaWRlZWliIgIq7vhhbFNLipNWxxnyEWBoF7N9cnJ9eqP1eeKfGWi2f96TZdf015XtLsuKP0hExUv7xxTRkaGxT3JxbgmE5WmLY4xZKJAUK/m+uTkevXHrpmoML5/VlRUVJQWLFigVq1aqXfv3vrss88UHh5udbdKhXFNJipNWxxjyESBoF7N9cnJ9eqPUzJRHq6dFY/xQJYoTVvMzWSJQFCv5vrk5Hr1JxhZIjXlfd14591e2yrFVNY1N9+qLxYm645+A0v9HpxfKRnjgSxRmraYm8kSgaBezfXJyfXqjx3W9frKCcH+rnh5zROMBXJEadpiXiZHBIJ6NdcnJ9erP1Zf3zCL6xvFYzyQJUrTFnMzWSIQ1Ku5Pjm5Xv2x6716fSFLFI/xQJYoTVvMzWSJQFCv5vrk5Hr1x67nJbjvvzmMB7JEadpibiZLBIJ6NdcnJ9erP2WxViKP0XzAGglzGAvkiNK0xbxMjggE9WquT06uV3/sek6iMLPfGS2MLJGP8eAbc3M+5mayhD/Uq7k+Oble/bHjOQl+T405jAVyRGnaYl4mRwSCejXXJyfXqz9WnpPIycnW5/Pm6Lmp7wVlv5KQJfIxHnxjbs7H3EyW8Id6NdcnJ9erP6XNEufUrqsjfxzQefV83zOiJL6uW3BewhzGA1miNG0xN5MlAkG9muuTk+vVHzvcn8pXnmDtpTGMBXJEadpiXiZHBIJ6NdcnJ9erP3a9pwQZwhzGA1miNG0xN5MlAkG9muuTk+vVn2BnCZfLpWo1z1Grjp0VV6OGJr/wtFpd3zmo7xEIJ2SJtm3b6vTp09qyZYuuvvpq/y8ohxjXZKLStMUxhkwUCOrVXJ+cXK/+2HX9aLO2HTRo9FtKmTROE595QnK51KR1Gw0cOU6TX3zadH9CnYkigtoaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCQjIwMZWZmFvlzKJ4LdfvBEh0drZiYmGJ/NvNcfHx8QK8LxnOxsbGKiooqzccAAAAAAAAAoIKpWj1ex9OOqEat80rcz+VyKevMGUUWOAd54tjRkPTp6OGDql7zXK9taQf/UFyNmiF5PyOqxtfQhE++VJW4amXyfhOefkx1L2qgER8sUs2/1FZ4eIQkqUfjOiF935iYGHXr1k3dunVTRkaGUlNT9eGHH2rhwoU6ffq0wsLClJOT4/Wa7OzskPYJAAAAAAAAAAAAwVWzpnXX3QAAAFB+BGOdV1z1Gko7+Idq1a1XpJ2q8TU8PxtZ52Z0jVflqnF6YNhwPTBsuI6nHdF361Zryax3tW3jeg19813D+xjtuz9G3isQRtf8GV2rZuTfwGhbwfrs8lCLxvp+0aVNNHfzHi39YIbefvYJJU6cbuzDMdnnQFCv1Gugn6cduFxhXj9ffk17XX5Ne69tW79eq0tbXW267SnDE3Xbgw/rlj7/VExslVL1E7DCb7/9pltuuUV//vmnVq5cqebNm1vdpTLHvE9mDrQtMkguMnM+6pV6dVJm/jr1U51X70JdeMmlhl/TsFlz7d+3x/R7VcTMPGHCBPXq1Uvnn3++1V0xjHFNJgq0LY4xuchE+ahX6tXumahu/YuVnXWmyHaXyyW5XJ6fL7yksfbt3K7qbb3/jfft3K4LGxnPUHkqYiaaOnWqwsLC9MADD1jdFVMY2+SiQNviOJOLXJSPeqVe7Z6Lft/3k+o3ubzI9gZNmun3n38K2ftWtFy0b98+ffTRR5o9e7bVXTGFcU0mCrQtjjG5yET5qFfq1e6ZyJfC18WMnlMyqjxnosqVK1vdhaBhXJOJAm2LY0wuMlE+6pV6tWMm+nzeHF3VqUuxz61duljvvvqc7np8qFpe38lwm4XX7BtRnnNRoKKjo4P+ez9Li7FNLgq0LY4zuchF+ahX6tWOuciXkjLR5x/Oltvt1n/nzy3yurzaWrBjv+H3IhMVLzY2VpJ08uRJi3uSi3FNJgq0LY4xuchE+ahX6rW8ZCJf+P6Zt5o1a+r//u//1LZtWz333HNKSkqyukulwrgmEwXaFseYXGSifNQr9VreM5HEtbPiMB7IEoG2xdyciyyRj3qlXss6Sxw99Kf+9+VybVj+ud5+9okiz9e+8CLd0W9g0N6P8yvFYzyQJQJti7k5F1kiH/VKvdrxvERJ63oLKpwTgv1d8fKaJxgL5IhA22JezkWOyEe9Uq92zBHBxvWNohgPZIlA22JuzkWWyEe9Uq92zxLBuK8KWaIoxgNZItC2mJtzkSXyUa/Uq92zhFHc998cxgNZItC2mJtzkSXyUa/Uq52zhNF8wBoJcxgL5IhA22JezkWOyEe9Uq92zhGBCvQ7owWRJfxjPDA3F8TcTJagXo2pCPVqJ0bPSfB7asxhLJAjAm2LeTkXOSIf9Uq92jlHFPZ16qc6r96FuvCSktc9GN2vJGQJ/xgPzM0FMTeTJahXYypCvYZa8w4d9e3albqp132mX1vSdQvOS5jDeCBLBNoWc3MuskQ+6pV6teN5iUB/7yxrL41hLJAjAm2LeTkXOSIf9Uq92jFHFGT0XAMZwhzGA1ki0LaYm3ORJfJRr9SrnbLEhZdcqv17d1vdDUnOyBL16tVTWFiYfvvtN6u7YhnGNZko0LY4xuQiE+WjXqlXO2Uif/ytC738mva6/Jr2Xtu2fr1Wl7a62vR7hToTmb+LKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUsbS0NM/j119/1Z49e7Rnzx7t2rVLmzZt8jyWL1+u1NRUpaamasmSJUpJSVFKSoqSk5M1depUz2Ps2LEaNWqURo0apddee03Dhg3zPB5++GH1799f/fv3V58+fZSQkKCEhAT17NlTnTt39jzatWunVq1aqVWrVmrRooUaNGjgedSuXVs1atRQjRo1VL16dblcriKPypUre/apW7eu1+ubNm3qabtDhw5e79u9e3f16tVL/fv31+DBgzVs2DC98sorGjVqlN58801NmzZNKSkpWrJkiVJTU7V27Vpt27ZNe/bs0d69e5WWlqbMzExJUmxsrOrUqaP69eurYcOGatmypdq3b69OnTrptttuU58+fdSvXz898sgjSkxM1PDhw5WUlKSJEydq9uzZSk5O1sKFC7Vs2TLPY926ddq4caM2btyozZs3a/fu3Z7Hn3/+qSNHjujIkSNKT0+X2+32emRkZHieP3LkiPbv3+957datWz3tbty4UatXr/a858cff6zk5GTPY/bs2ZoyZYqmTJmiCRMmKCkpyfMYPny4EhMTlZiYqEGDBqlfv36eR58+fdSzZ0/17NlT3bp1U6dOnTyP9u3bq2XLlmrZsqWaNGmi+vXrex516tRRfHy84uPjFRUVZfFoAQAAAAAAAOA0Ta5qqy1rV3pt27tjmwbdcp3Xturn1NKhA795bdu24auQ9GnzqhVFtq1ftlRXtLuu6M5l5Mr212vr+rVFtm/fuF5D//63gNt1uVzFbt/5zUb1emyoatWtp/DwCEnSmf9/fr2sxMTEqFu3bnr//ff1xx9/aPbs2br55psVGRmpsLAwRUTk9isrK6tM+wUAAAAAAAAAAIDAvfTSS/rkk0+s7gYAAADKgWCs82rWtoPWf140n65ftlTN2nbw/GxknZvRNV49GtfR4d8PSJLi4muoXdfuem7qHH275ktT+xjtuz9G3ssXX+vPJONr/oyuVTPyb2C0rWB9dnmoReOfZ1R0tG7ufb++XbOyyP5GUK/5qFdr585Q69G4TpGf9+/dU2S/zatX6JIrWvjdLzXlA/3trj6m+7Fn6xZ1e6CfYmKrmH4tYLXvvvtObdq0UU5Ojr766is1b97c6i5ZgnmfzEwGyeWkWiQzU69OqlcrFc7MBS19f6a63NPX5+t+2/Njke37dm5X9Zrnmu5HRcvMy5cv1+bNm/X4449b3RVTGNdkIo4xuZxUi2Qi6tVJ9Wqlwpmo1fWd9M2qL4rs9+2albr48is9P1/duYu+XDS/yH5fLpqvNjfdYrofFS0TZWdn6+2339ZDDz2kuLg4q7tjCmObXMRxJpeTapFcRL06qV6tVDgXVT+nlvZs/a7Ifru3blH1c2qFrB8VLRdNnDhR5513nu68806ru2IK45pMxDEml5NqkUxEvTqpXq1U3JozI9fFjJ5TMqq8ZqKFCxdq5MiRVncjaBjXZCKOMbmcVItkIurVSfVqpc/mztJ361ar+wP9vLZnnT6tKS8lau6b/9KL//6w2LX1RtfsG1Vec1FpxMXF6fjx41Z3wwtjm1zEcSaXk2qRXES9OqlerVTcWmsjmWj+9t+0YMf+Ig9JXn82ikxUvBo1akiSDh06ZHFPcjGuyUQcY3I5qRbJRNSrk+rVSoFmIr5/ZtwVV1yhKVOmaPTo0Zo/v+j6dCdhXJOJOMbkclItkomoVyfVq5VKk4m4dmYc44Eswdycy0m1SJagXp1Ur6H0xUcpuqHHXcVeH1qwY7/CIyKKrUF/OL9iDuOBLMHcnMtJtUiWoF6dVK9WKm5dr9GcEOzvipfXPMFYIEcwL+dyUi2SI6hXJ9WrlUq657C/13F9wzjGA1mCuTmXk2qRLEG9OqlerRTovXrJEuYwHsgSzM25nFSLZAnq1Un1aqVAz0tw339zGA9kCebmXE6qRbIE9eqkerVSwSxhNB+wRsIcxgI5gnk5l5NqkRxBvTqpXq0U6DkJydh3Ro0iS/jHeGBuLoi5mSxREPXqW0WpVysFck6C31NjDmOBHMG8nMtJtUiOoF6dVK9WKumcxNL3Z6rLPX39tmF0v5KQJfxjPDA3F8TcTJYoiHr1raLUayh179tfn74/Uyd9/L6xr5Z9ouEPJHhtM3LdgvMS5jAeyBLMzbmcVItkCerVSfVqpdL83lnWXhrDWCBHMC/nclItkiOoVyfVq5UCvacEGcIcxgNZgrk5l5NqkSxBvTqpXq2yd+d2VQvgd2WEghOyRGRkpGrWrKkDBw5Y3RXLMK7JRBxjcjmpFslE1KuT6tVKga4f9XXPztSUDwL6bmuoM1FYSFoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYLn09HSlpaUpLS1Nv//+u/bs2eN5bNq0yfNYuXKlUlNTlZqaqk8//VQpKSmex7Rp0zR16lRNnTpVb775pkaNGqVRo0bp9ddf17BhwzyPgQMHqn///urfv7/69u2rhIQEz+Omm25S586d1blzZ7Vv316tWrVSq1at1Lx5czVo0MDzqFWrlmrUqKEaNWooNjZWLpfL88jbXqNGDdWrV8/zmkaNGnnaa9WqlW688UbPe3Xr1s3Th169eikxMdHT3zFjxnj+XrNnz/b8/VNTU7Vz507P53TkyBHP5+lyuXTRRRepfv36ql+/vlq2bKlOnTqpU6dOuummm/TQQw+pX79+6tevn4YNG6akpCQlJSVp9OjRSk5O9jwWL16sZcuWeR4bN270PLZu3ardu3dr9+7dnvfPe2RkZMjtdsvtduvs2bNez/3666+e1/3www9eba5cudLzXp999plXX2bMmKEpU6ZoypQpmjRpkqfPSUlJeuGFF5SYmKjExEQ99dRTnr9bv379dPfdd6tnz57q2bOn7rjjDs/n0KlTJ7Vp00YtW7ZUy5YtdcUVV3g+r/r16+vcc89VfHy84uPjVaVKFQtHBwAAAAAAAADYx52PDFLKpHHasnaVTmec0r6d2/X2s0+o670Peu13Rbtr9f7Y13X49wPKPHVSm1ev0Gcfzg5Jnz6fN0erlnyk9KNpOn7ksP47f66WzJ6mXo8NCcn7GdHrsSGa99YbWvfZEqUfTVPGyRPauGKZxg55RD0HPBFwuzXO+4t2bt6knOwsfbvmS/Xv2EqS1Kh5K81541X9+dsvys7K0u8/79WU4YnB+uuYFhcXp3vvvVdLlizRwYMHNWPGDHXu3FkRERGqVKmSZSS6y1EAACAASURBVP0CAAAAAAAAAACAcWfPntWIESM0btw4q7sCAACAciAY67wSBg7R4plTlJrygY4dPuRpZ/HMKeo1ML8dI+vczKzxmvT8EP3y405lnTmjo4cPatG/31Gzth1M7WO070YY6U9xfK0/k4yv+TO6Vs3Iv4HRtoL52UnUotnPs1JMZZ3OOGX4symMeqVe7TB3Ptu7u567+zbD+wfDuCcf0faN63U645SOpx3RqiUfafboV9R70NNe+016foh+2/OjsrOydGDfT5o6fJjqNWykCxtdavo9s86cUaWYysH6KwBl5vPPP1e7du3UqFEjrV69WhdccIHVXbIM8z6ZmQzizFokM5tri3rNZ6e504rMLEm//LhTB/bt0dWdu/jcZ9xTA7R1wzplnDyhjBPp+t+X/9WEpx9T9wcfNv1+FS0zjx8/Xtdee61at25tdVdMYVyTiTjGOLMWyUTm2qJe89lp7izrTNT13ge1ZNZUrVy8QMfTjij9aJpW/2eRZiYN112PPeXZ74YevfXTtu+1cOpbOnn8uE4eP66FU9/S3h1b1fGOBNPvW9Ey0fz587V//349+uijVnfFNMY2uYjjjDNrkVxkri3qNZ+d5s4yz0X3Pag3hw3SxhXLPHln44plmjhssLre96D/BgJUkXLRyZMnNX36dA0cOFCRkZFWd8cUxjWZiGOMM2uRTGSuLeo1n53mTkvWnBm4Lmb0nJJR5TUTvf7663r11Vet7kbQMK7JRBxjnFmLZCJzbVGv+ew0dwY7E2WdPq0/f/tFq/+zSMP7Jmjp+zP10ox5qlw1zrPPr7t/UGLPrjpz+rTeWPiZLrq0iee5Ho3reLVndM2+ob6V01xUGtWrV/f6vah2wNgmF3GccWYtkovMtUW95rPT3FnW54rMZKJgIhMVr2rVqqpevbp++eUXq7siiXFNJuIY49RaJBOZa4t6zWenudPOmYjvnxl37733ql+/furbt6+2bdtmdXcCxrgmE3GMcWYtkonMtUW95rPT3GnrTMS1M8MYD2QJ5mZn1iJZwlxb1Gs+O82dpc0SyxfMVaeed/t8vtOddyt1/gcBtc35FeMYD2QJ5mZn1iJZwlxb1Gs+O82dVqzrlQx+3ynI3xUvr3mCsUCOYF52Zi2SI8y1Rb3ms9PcadU9h43g+oZxjAeyBHOzM2uRLGGuLeo1n53mTrveq1ciS5jBeCBLMDc7sxbJEubaol7z2WnutOt5Ce77bw7jgSzB3OzMWiRLmGuLes1np7mzLLOE0XzAGglzGAvkCOZlZ9YiOcJcW9RrPjvNnXY9JxHse4uRJfxjPBjvT3GYm3NRi2SJwqhX45+D3evVF1uek+D31JjCWCBHMC87sxbJEebaol7z2WnutOqcxC8/7tSBfXt0decuQdnPH7KEf4wH4/0pDnNzLmqRLFEY9Wr8c7B7vfpS2ixxTu26uvvJYXq5b4K+/u9nOnn8uLLOnNHvP+/VgskT9O/XnlffZ1/27G/0ugXnJcxhPJAlmJudWYtkCXNtUa/57DR32vn3zrL20hjGAjmCedmZtUiOMNcW9ZrPTnOnXe8pQYYwh/FAlmBudmYtkiXMtUW95rPT3BnsLOF2u3X8yGFt/GKZ3kp8XH/r3SdobZeGU7JE7dq1deDAAau7YRnGNZmIY4wza5FMZK4t6jWfneZOO68fnfT8EP2250dlZ2XpwL6fNHX4MNVr2EgXNrrU9PuFOhO53G63O2StAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6VkZGhzMzMEv8c6HPB3q/wz+np6crOzg7GxyBJio6OVkxMTLE/G32uLNsovF9cXJzCw8NL+zEAAAAAAAAAAOBXcnKyevXqpQU79pt63c7NmzR79CvavXWLqtWoqZt7P6A7+g302ud42hFNH/GCvl27UqczMnR5m3Z66MXX1b9jK0nyvGePxnU8rzG7LW/7O/9dr3+/+ry2blins2fPqknrNro/8SWd36Ch134FFf47l6Yfvvp2YN9Pem/MSG1Zt0o52dmqd/El+nu/x3R15y4lvm9J29d++rHmvDFCR/44oHNq19UDw4ar9Q036djhQ5o1+hVtXr1CJ48fU52/NlDPAYM15omHffa1uM/BqDGD+6tu1WglJyebet3Ro0fldrsVHx8f0PsCAAAAAAAAAACg7KxcuVLXXXedxo0bp8GDB1vdHQAAANhAQkKCfkvP1JDxU0y9LljrvCRp367tmvOv17Rt43pJ0mWtrtZ9Q5/XhZdc6rWfkXVuRtZ4fbdutT55f7q2b1yvjJMnVOO82rq6083q9dhTiomtYngfM30viZH3Mrv+TDK+5s/oWjUj/wZm2grGZ5f32VCL5j/PHo3rBLTekHqlXu0ydz7Tq5tcYS6NnLvY8GsKKvwZF6fg575909f6fN4cfb9+jY4dOqTKVauqcYvW6jngCTVoeoVnv/+tXK7FMyZr1zebFBYervqXXa5b739IV3W6OeB+Bro2uGAb8+bNU0JCQqnaAYxasGCB7r77bvXq1UvTpk1TVFSU1V0qtUC/p8G8b67vJSGDkEHIzNQr9Wr/zJxn6svPKP7cWuo54IliX7Ntw1f6fN4cbd2wTscOH1ZcfA2d36ChbunzT0+9m+1naTNzoN+rK2t79uxRw4YNlZKSor///e+W9MHlcmnIuMlq26W74dcwrs31vSQcYzjGkImoV+rVGZnoz19/1sxRL2vL2lXKyclWg6ZXqPegp9Wk9TVe+x099Kemj3xR/1v5hSSp5XU3qO+zr6h6zXMD6mdpM9HapYs15omH5Xa7S9VOWWjXrp3q1KmjlJQUS96f66vWj22OMxxnyEXUK/XqjFy08uOF+mTOv7V/725JUp2/NlDX+/6ha7t5n9coru1As01Fur46adIkDR06VL/88otq1KhR5u/P9TPrxzXHGI4xZCLqlXq1fyYyc13M6Dklo/0sj9fPqlatqgsvvFDff/+91V3xwvUzMhHHGHN9Kg+1SCaiXguye70WJ9iZKDIqSlWrx+uiyy5Xm5tuUYdb71BkobXDd1/ZQKczM3y2mffvZHTNvpm+liYXOen6mVFDhw7VihUrtGHDhqC2y/Uz68c2xxmOM+Qi6pV6tT4XFafg5240Exl5HzNjryJdPzOrWbNm6tatm0aMGBGU9rh+Zv245hjDMYZMRL1Sr+UnE/H9M/OysrLUsWNHHTp0SF9//bXi4uIs6wvXz8hEHGPM9ak81CKZiHotyO71Why7ZiK7XTuTQn/9jPMr1o8H5mbmZrIE9Uq9lm2WKPj5Jk6cXuR+ld+s+kKvPXSP5+e8z9/I9aOKeH6F9SvWjwfmZuZmsgT1Sr1af17CyLpeMznB6HfFjfa1NHki1OtXuL5BjmBeNten8lCL5AjqtSC712txrLiPjJFzElzfMI7xYK7vJWFuZm4mS1Cv1KszsoSR+6rYMUtwfSNfeR0PzM3MzWQJ6pV6dUaWMPpdW7vd9z/U1zc4L2H9eGBuZm4mS1Cv1Kv9s4TRfGCnNRJ5bZAjcpXXscC8zLxMjqBeqVf75whfrym8T6D3FvPFCdc3JNZdWj0emJuZm8kS1Cv1av8sYfScREX8PTXkCHIE87K5PpWHWiRHUK8F2b1ei2PFOQlJmvryM4o/t5Z6DniixNca3c8fvr/BeDCCuZm5mSxBvVKvZZ8l8vz64y7NnzxBW9at0qn044o/9zxd0e5a3f7PR/WXC/7q2c/MdYuKdl6C729YPx6Ym5mbyRLUK/Vq/XmJYP7eWcleay+5P1Wu8joWmJeZl8kR1Cv1an2OKE4g95SQ7JUhJK5vFFRexwNzM3MzWYJ6pV7tkSWiK8eq3sWXqOPfe+mmXvfJ5XL5fU1x/zZG9zPaT7tf35Ckq666Stdff71Gjx4dsvcoC5xfIRNxjDHXp/JQi2Qi6rUgu9drcey6fvR/K5dr8YzJ2vXNJoWFh6v+ZZfr1vsfKvJ7z8z0M4TnV1Jc7lCddQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECFk5GRoczMzCJ/Luk5o/sFo42S9jt58qTOnDkTjI/BIzo6WjExMSX+OdDnQt1GlSpVFBkZGYyPAQAAAAAAAACACiM5OVm9evXSgh37re5KwHo0ruPo/jvVmMH9VbdqtJKTk63uCgAAAAAAAAAAAEJkwIABeuedd/Tjjz+qQYMGVncHAAAANpCQkKDf0jM1ZPwUU69jnRfsgloMzF1XXKRZ67epUnSM/50RNNQrzDiTman721ymuZv3lKqdHo3raN68eUpISAhSzwDf3n//fT3wwAN66KGHNHHiRIWFhVndpaAI9HsazPuwC2oxMGRma1CvMCNYmdkp36t76aWXNGXKFP3666+KiIiwpA8ul0tDxk1W2y7dDb+GcQ27oBYDQyayBvUKM4KVidYuXawxTzwst9sdpJ6Fxq5du9S4cWMtW7ZMN954oyV94PoqnI5aDAy5yBrUK8yoaNdXW7Vqpcsvv1wzZsyw5P25fganoxYDQyayBvUKM8rr9bPDhw/rnHPOUd++fTV9+nSru+OF62dwMmoxMGQia1CvMCsYucgp18/MmDhxol5++WUdPHgwqO1y/QxORy0GhlxkDeoVZlS062dm3XnnnXK73VqwYEFQ2uP6GZyOWgwMmcga1CvMKK/Xz4rzyy+/qGXLlrr++us1b948uVwuS/rB9TM4GbUYGDKRNahXmOGU759xfgVORy0GhixhDeoVZjjl/ArrV+B01GJgyBLWoF5hVjDyRKjXr3B9A05GLQaGHGEN6hVmcH0DKBvUYmDIEtagXmEG1zeAskEtBoYsYQ3qFWY45fu5nJeA01GLgSFLWIN6hVHkCKBsUIuBIUdYg3qFGU65viGx7hLORi0GhixhDeoVRpEjgLJBLQaGHGEN6hVm8P0NoGxQi4EhS1iDeoUZTjkvwfc34HTUYmDIEtagXmEW96cCQotaDAw5whrUK8zg+gZQNqjFwJAlrEG9wgynXN+QpCZNmighIUEvvfRSyN6jLHB+BU5GLQaGTGQN6hVmlMH5lZSIUrUMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAUsvIyFBmZmaRPwf6XFm2UXi/YIiOjlZMTEyRP5f0XOH94uPjS91GIM9VrlxZlSpVCsbHAAAAAAAAAAAALOR2u3X06FEdO3ZMx48f93ocO3as2OeOHTumffv2Wd11AAAAAAAAAAAAADa1atUqSdI555xjcU8AAAAAAFY6v/7FWvOfRerQ7e+KjIqyujsACsnJztLaTz9Wnb/Wt7orgGHvvPOOBg4cqKFDhyopKcnq7gBAqZGZAXuraJnZ7Xbrvffe03333aeIiAiruwOgAiETAfZW0TKRJM2YMUN16tTR9ddfb3VXAFQw5CLA3ipaLtq6das2bdqkMWPGWN0VABUMmQiwt/KciVasWCFJat68ubUdAQCRiQAnKM+5qLTq16+vQ4cOKe3/sXfvUXaV9d3AvzOZyZyT2+QQTLholREFREEl3FQ0Ii0IiGC5KCSlXCLKsiIqgtQCVUBQrBcUulQQWYK3clUQykVxVeWmFqwiry1oi31BoCczyeQcJnN5/+ibWYRMwuTkzOy5fD5r7ZW9z7OfPd951rP3/NZ5Tmaq1VQqlaLjAJOcuggmNjXR89tll11y5ZVXFh0DmOTURDCxTbea6EUvelG+/e1vZ//9988nPvGJnHXWWUVHAqYJNRFMbNOtJgImH7UETGxqCWCiU0vAxKeeACYqdQRMbGoIYKJTS8DEppYAJjq1BExsaglgolNLwMSljgAmOnUETGxqCWCiU0vAxKWOACY6dQRMbGoJYKJTS8DEppYAJjq1BEx86glgolJHwMSmhgAmOrUETGyTrZbo7e3N7Nmzi44BsMnURDCxjVdN1DamVwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCO1Wi31en3E4w3tN9o2Ftfo7u7O4ODg5g7DsFKplHK5POLxhvafe1ypVEZ1XjO+1nPbKpXK5g4BAAAAAABAkv9dl+np6RneqtVquru713mtp6cn3d3dWbFixYhtPT09I167ra0t8+bNy/z589PZ2Zl58+Zl3rx56ezszLbbbpv58+fn0UcfzeDAQFpnzBjn73zz/eWO2wz/e81v/7vgNAAAAAAAADB19PT05KGHHkqSzJ49u+A0AABMZj7nxURhLjZu2Wl/l8vP+7v841kfyYc//+Xssd8BRUea8sxXRuvx//x9/uat+2SrF704x//tJ4qOA6Ny4YUX5owzzsg555yTs88+u+g4E4LnPhOFudg4NfP4M18ZrelYM99111155JFHsmzZsqKjbBL3NROFudg4NdH4M18ZrelYEw0ODuaqq67KsccemxmT7HdpuLeZKMzFxqmLxp/5ymhNx7roiiuuyItf/OLss88+RUfZJO5rJgpzsXFqovFnvjJaU70m+tGPfpSWlpYsWLCg6CibzX3NRGEuNk5NNP7MVzbFVK+LNteuu+6aJHnggQeyZMmSQrO4t5kozMXGqYvGn/nKaKmJRmfXXXfNI488kp6ensybN6+QDO5rJgpzsXFqovFnvjJa07UmevOb35xLL700y5cvzw477JCjjjqq6EjPy33NRGEuNk5NNP7MV0ZrOtRE7gcmCnOxcWqJ8We+MlpqCRg/5mLj1BLjz3xlU0zlesK9wERhLjZOHTH+zFdGayrXEGu5H5gozMXGqSXGn/nKaKklYPyYi41TS4w/85XRUkvA+DEXG6eWGH/mK6OhjoDxYy42Th0x/sxXRkstAePHXGycWmL8ma+MhjoCxo+52Dh1xPgzXxkttQSMH3OxcWqJ8We+MlpqCRg/5mLj1BLjz3xlU0zlesK9wERhLjZOHTH+zFdGayrXEGu5H5gozMXGqSXGn/nKaE3GWmLFihWF/d31IrmvmSjMxcapicaf+cpojWdN1DamVwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJpxarZZ6vb7R/WacNxbX6OnpycDAQDOGIUlSKpVSLpdHPB5tW6VSGdV5zfhazz2vs7Mzra2tmzsMAAAAAAAAE0atVku1Wk21Wk29Xl/n+Nnb87WNZO1aS6lUSqVSGd4WLVqUHXfcccS2tdvatq222mqj6zPf+c53cv3116d1xoyxGqIxdc1v/7voCAAAAAAAADAl3XHHHRkcHExra2taWlqKjgMAwCTmc16j95c7brPRdmO5YaMZO+PXuF1f98Z8/qa7io4xZZivNNNWf/aSfPfX/1V0DBi1c845Jx//+Mfzuc99LqecckrRcSYMz/3RUzM3Tg0yttTMzWW+0kzTsWb++te/nt122y277LJL0VE2ift69NREjfMzZmypiZrLfKWZpmNNdPvtt+e//uu/smzZsqKjbDL39uipixrn58zYUhc1l/lKM023uqi/vz9XXXVVli9fPun+Toz7evTURI3zM2ZsqYmay3ylmaZ6TfTDH/4ws2fPzuOPP150lM3mvh49NVHj/IwZW2qi5jJfabapXhdtrm233TYLFy7Mv/7rv2bJkiWFZnFvj566qHF+zowtdVFzma80k5podPbee+8kyU9+8pO89a1vLSSD+3r01ESN8zNmbKmJmst8pZmmc010wgkn5Be/+EWOO+64vPSlL83ixYuLjrRR7uvRUxM1zs+YsaUmai7zlWaaDjWR+2H01BKN82weW2qJ5jJfaSa1BM+mlmicZ/PYUks0l/lKs03lesK9MHrqiMZ5Lo8tdURzma8001SuIdZyP4yeWqJxns1jSy3RXOYrzaSW4NnUEo3zbB5baonmMl9pJrUEz6aWaJxn89hSSzSX+UqzqCN4NnVE4zyXx5Y6ornMV5pJLcGzqSUa59k8ttQSzWW+0izqCJ5NHdE4z+WxpY5oLvOVZlJL8GxqicZ5No8ttURzma80k1qCZ1NLNM6zeWypJZrLfKXZpnI94V4YPXVE4zyXx5Y6ornMV5ppKtcQa7kfRk8t0TjP5rGllmgu85Vmmmy1xB/+8Id0d3fnla98ZdFRxp37evTURI3zM2ZsqYmay3ylmcazJmobl68CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJPYqlWrsmbNmiRJvV5PrVZLkgwMDKSnp2f4vO7u7gwODiZJVq9enWeeeSZJsmbNmqxatWr4vGq1OuK1+/r60tvbO+J5z75ef39/Vq5cOdzW09OTgYGB9fINDQ1lxYoVm/vtr2PWrFnp6OhIkrS1tWXu3LnDbfPmzcuMGTOSJKVSKeVyOUnS0tKS+fPnD583e/bsVCqVJEl7e3vmzJkz3NbZ2ZnW1tYkSblcTqlUSpK0trams7Nz+Ly5c+emra0tSTJz5szMnj17uG3ttZ8vLwAAAAAAAM1Vq9VSrVbX29auYT1f25/+9Kfhda/nKpVKqVQqw9vataRKpZKurq4Ntq3dttxyy8ycOXOcRwQAAAAAAADgf916663Zcccd89BDD+Xpp5/OwoULi44EAABT3jW//e+iI0xaxo7JxHwFpqOhoaF84AMfyCWXXJIrr7wyS5cuLToSk5Sfo40zdkwm5is0rre3N9dcc03OPffcoqMwhjwnG2fsmEzMV9g8V155Zfbaa6/suOOORUdhDHlWNs7YMZmYr9C42267LY8//niWLVtWdBTGkOdk44wdk4n5CqPz9NNP5ze/+U122mmnPPzww0XHYRx5TjbO2DGZmK8w/nbbbbfcfffdRcdgE3hWNs7YMZmYrzD+Fi5cmB133DF33XVX3vrWtxYdh+fhOdk4Y8dkYr5C83z+85/Pww8/nLe//e257777ss022xQdiSbwnGycsWMyMV+BseL50jhjx2RivgJjxfOlccaOycR8BcaCZ0vjjB2TifkKjBXPl8YZOyYT8xUYK54vjTN2TCbmKzBWPF8aZ+yYTMxXYCx4tjTO2DGZmK/AWPF8aZyxYzIxX4Gx4NnSOGPHZGK+AmPF86Vxxo7JxHwFxornS+OMHZOJ+QqMBc+Wxhk7JhPzFRgrni+NM3ZMJuYr09kvf/nLtLa2Zpdddik6ChOY52TjjB2TifnKZNVWdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApq6hoaGsWLFi+HjlypXp7+9PktTr9dRqtSRJf39/Vq5cOXzeihUrMjQ0lCTp7e1NX19fkqSvry+9vb2bdO2BgYH09PQMn9fd3Z3BwcEkyerVq/PMM88kSdasWZNVq1YNn1etVpsxBEmS1tbWdHZ2Dh/PmzcvM2bMSJKUy+WUSqUkSVtbW+bOnTvieVtssUXK5XKSpKWlJfPnzx8+b86cOWlvb0+StLe3Z86cOcNtnZ2daW1tXe9rPTfT3Llz09bWliSZOXNmZs+ePdxWqVQ2dwgAAAAAAACYwGq1WqrVaqrV6vBa29rjZ2/P1zaSUqk0vE5VqVTW2bq6ujbYVqlUhtu22mqr4TUvAAAAAAAAgMnotttuy/7775+HHnooTzzxRBYuXFh0JAAAAABgkvrQhz6USy65JN/85jdz+OGHFx0HAGDKuvXWW7N69eq8853vLDoKAEBhnnnmmdx44405//zzi44CAFCo73znO9lrr72y/fbbFx0FAGBc/OIXv8jQ0FAOPvjgXHnllbnkkkuG/6YiAACbbp999snFF19cdAwAgAnhzW9+c+64446iYwAANF1bW9vw54wOP/zw/PCHP0xHR0fRsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEfzyl7/M9ttvnzlz5hQdBQCgIW1FBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABg42q1Wur1+kb3R3teI30avXZ3d3cGBwebNQwplUopl8sb3d9QW6VS2eQ+jZ733D6dnZ1pbW1t2jgAAAAAAADAs9VqtVSr1fW2er0+qrYnn3wy/f39I167VCqlUqkMb+Vyefi1rq6uDbat3bbccsvMnDlznEcEAAAAAAAAYGJ5+OGH88gjj+SII47I5ZdfngceeCCvetWrio4FAAAAAExCZ555Zr7whS/kyiuvzOGHH150HACAKe3666/P6173uixcuLDoKAAAhbnjjjuyatWqvP3tby86CgBAYQYGBvL9738/p512WtFRAADGzQMPPJCtttoqJ5xwQi666KJcd911Pq8EALAZlixZkjPPPDMPP/xwdthhh6LjAAAU6sADD8yll16axx57LC984QuLjgMA0FRbbLFFbrjhhuy9995597vfnSuuuCItLS1FxwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnuOmm27KkiVLio4BANCwtqIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIyVWq2Wer0+4vGG9kd73nhee3OVSqWUy+URj0eznySVSmVU5432eqM5b9asWeno6GjWMAAAAAAAAMCEUqvVUq1WU61WU6/X1zl+9vZ8bSNZu+5WKpVSqVTW2bq6ujbYtnZdsFQqZauttkpra+s4jwoAAAAAAADA1HPrrbdm/vz52Wef8pyY5wAAIABJREFUfbJ48eL85Cc/ydKlS4uOBQAAAABMMh/72MfyqU99KldccUWOPvroouMAAExpAwMDufnmm/PRj3606CgAAIW64YYb8trXvjYvetGLio4CAFCYn/zkJ3nqqafy9re/vegoAADj5oEHHsiuu+6al7/85Vm6dGlOP/30HHDAAZkzZ07R0QAAJqXFixdn/vz5+cEPfpAddtih6DgAAIXab7/9MmfOnNx44405+eSTi44DANB0O+20U771rW/lkEMOydZbb50LLrig6EgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLM88sgj+fnPf54LL7yw6CgAAA1rKzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDHVarXU6/X19jfWtrl9mnHeqlWrsmbNmmYNQ0qlUsrl8nr7G2t79n6lUtnkPqM9b2N95syZk/b29mYNAwAAAAAAAPAstVot1Wp1va1er4+q7cknn0x/f/+I1y6VSqlUKsNbuVwefq2rq2uDbWu3LbfcMjNnzhznEQEAAAAAAABgQ37wgx9kv/32S1tbW97whjfk2muvLToSAAAAADDJ/N3f/V0++clP5oorrsjSpUuLjgMAMOX9+Mc/ztNPP523ve1tRUcBACjM0NBQbrrpppx00klFRwEAKNQNN9yQHXfcMTvssEPRUQAAxs0DDzyQt771rUmST37yk3nNa16TpUuX5tprr01ra2vB6QAAJp/29vYceOCBufHGG/OBD3yg6DgAAIXq6OjI/vvvn2uuuSYnn3xy0XEAAMbEAQcckCuuuCLLli3LlltumQ9/+MNFRwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/r9vf/vb2XLLLfOmN72p6CgAAA1rKzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATEW1Wi31en2j+6M9r5E+jV67u7s7g4ODzRqGlEqllMvlje5vrK1SqWxyn0bOe26fzs7OtLa2NmsYAAAAAAAAgAmiVqulWq2mWq2mXq+vc/zs7fnaRrJ23bFUKqVSqayzdXV1bbBt7bpoqVTKVlttZa0SAAAAAAAAYArp7e3Nj370o1x66aVJksMPPzwXXnhh7rnnnuy5554FpwMAAAAAJoOzzz47559/fi6//PIsW7as6DgAANPCDTfckJ133jkvf/nLi44CAFCYe++9N3/84x9z6KGHFh0FAKBQ3/ve9/KOd7yj6BgAAOOmr68vDz/8cM4444wkyTbbbJPrr78+++67b971rnfl61//ekqlUsEpAQAmn0MOOSRLly7N008/nQULFhQdBwCgUMccc0ze8Y535Pe//31e8pKXFB0HAGBMHH300XniiSfyoQ99KC94wQty7LHHFh0JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKa9gYGBXH755TnyyCPT1tZWdBwAgIapZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhQarVa6vX6iMcb2h/teeN57c1VKpVSLpdHPB7NfpJUKpVRndfItTfUNmvWrHR0dDRrGAAAAAAAAACG1Wq1VKvV9bZ6vT6qtieffDL9/f0jXrtUKqVSqQxv5XJ5+LWurq4Ntq3dFixYYK0UAAAAAAAAgPXccccd6evrywEHHJAkWbx4cXbZZZdcccUV2XPPPQtOBwAAAABMdJ/+9KfziU98Il/96ldz7LHHFh0HAGDauOmmm3L44YcXHQMAoFDf//7385KXvCSvetWrio4CAFCYhx56KL/73e9yyCGHFB0FAGDc/OY3v0lfX1923XXX4df23nvv/OAHP8hhhx2WJUuW5Bvf+Ea23377AlMCAEw+Bx98cMrlcq666qq8//3vLzoOAEChDjrooGy55Za5+uqrc+aZZxYdBwBgzJx66ql58sknc8IJJ6StrS3HHHNM0ZEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFr79re/nUcffTQf+MAHio4CALBZ2ooOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHN0d3dncHAwSbJq1aqsWbMmSVKv11Or1ZIk/f39Wbly5XCfFStWZGhoKEnS29ubvr6+JElfX196e3uTJIODg+nu7h7u09PTk4GBgSRJrVZLvV5v+NpDQ0NZsWJF08ZgxowZmTdv3vBxZ2dnWltbkySzZs1KR0dHkqS9vT1z5swZPq9SqQzvz5kzZ/i4o6Mjs2bNSpK0trams7Nzs6/d3t7+vNcGAAAAAAAAmEpqtVqq1Wqq1erwGvba42dvz9c2klKplHK5nFKplEqlss7W1dW1wbZKpTLcttVWWw2v/wIAAAAAAABAM918883ZbbfdstVWWw2/dvzxx+dv//Zvc84552TRokUFpgMAAAAAJrKvf/3rOf3003PRRRfl+OOPLzoOAMC08Z//+Z/593//9/zFX/xF0VEAAAp1xx13qIkAgGnv9ttvT2dnZ/bcc8+iowAAjJsHH3wwHR0defnLX77O60uWLMlPf/rTHHPMMXn1q1+ds846K3/zN3+TcrlcUFIAgMll9uzZOfLII/PVr34173//+4uOAwBQqPb29hx99NH5yle+ko985CNpa2srOhIAwJg5//zz09LSkmOPPTaDg4NZtmxZ0ZEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFoaGhrKBRdckHe+85152cteVnQcAIDN0lZ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgImkVqulXq9vdH+0521un9H2X7lyZfr7+5s2BqVSKeVyeaP7G2qrVCqb3KfR857bp7OzM62trU0bBwAAAAAAAAD+d326Wq2ut9Xr9VG1Pfnkkxtc0y6VSqlUKsNbuVwefq2rq2uDbWu3BQsWpKOjY5xHBAAAAAAAAABG75Zbbslxxx23zmsnnXRSLrroopx//vn5/Oc/X1AyAAAAAGAiu+6663LiiSfm7LPPzgc/+MGi4wAATCt33HFHSqVS9tprr6KjAAAUZuXKlbn//vtzyimnFB0FAKBQd955Z5YsWZIZM2YUHQUAYNz87ne/y/bbb5/29vb12nbaaafcfffd+eQnP5lPfOIT+fznP5+PfexjOfHEE0c8HwCAdZ1wwgm57LLLcv/992fx4sVFxwEAKNQpp5ySL33pS7nmmmty1FFHFR0HAGBMnXfeeUky/PtJly1bVmQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJiWrr766vz617/ON7/5zaKjAABstraiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFPDwMBAenp6ho9XrFiRoaGhJMnKlSvT39+fJKnVaqnX60mSvr6+9Pb2JkkGBwfT3d093L+7uzuDg4NJklWrVmXNmjVJknq9nlqtliRZs2ZNVq1alSQZGhrKihUrRuzf29ubvr6+9fr39/dn5cqVTRuDefPmZcaMGUmS2bNnZ+bMmUmSjo6OzJo1K0nS1taWuXPnDvepVCrD+3Pnzh0+njVrVjo6OpIkM2fOzOzZs5MkM2bMyLx584b7zJ8/Py0tLcP929rakiTlcjmlUmm9/i0tLZk/f/6ImQEAAAAAAACYOmq1WqrVaqrV6vBa+drjZ2/P1zaSUqk0vC5dqVTW2bq6ujbYVqlUhtsWLVpkvRoAAAAAAACAKe3BBx/MH/7whxx00EHrvF4qlXLmmWfm1FNPzfvf//689KUvLSghAAAAADAR3X777XnXu96Vk046KWeffXbRcQAApp0777wzr3/961Mul4uOAgBQmB//+Mfp7+/PkiVLio4CAFCYgYGB3HXXXTnnnHOKjgIAMK4effTRbLfddhtsnzlzZs4+++y8973vzfnnn59TTz01F110UU4//fQsXbp0+O/3AgCwvr333js777xzLrvssixevLjoOAAAhdpuu+1y2GGH5aKLLspRRx1VdBwAgDF33nnnJUmOO+649Pb25j3veU/BiQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABg+vif//mffOhDH8pJJ52UnXfeueg4AACbra3oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLpqtVrq9fqo9xvps7n9n3vc3d2dwcHBpnz/pVIp5XJ5vf2Nta3dr1Qqm9W/0a8/Z86ctLe3N+X7BwAAAAAAAIBarZZqtbrOVq/XR3x9pLYnn3wy/f39I167VCqlUqkMb+Vyefi1rq6uDbat3RYsWJCOjo5xHhEAAAAAAAAAmHxuuummLFy4MK997WvXazvxxBPzj//4jznhhBNy5513prW1tYCEAAAAAMBEc/fdd+ewww7LEUcckS984QtFxwEAmJZ++MMf5uSTTy46BgBAoe6888688pWvzKJFi4qOAgBQmF/+8pepVqvZd999i44CADCuHnnkkSxevPh5z1u4cGE+97nP5YMf/GDOPffcnHLKKTnjjDNywgkn5OSTT8522203DmkBACaf448/Ph//+Mfzmc98JrNmzSo6DgBAoU477bTsscce+dGPfpQlS5YUHQcAYMydd955mTdvXt773vfm97//fS644IKiIwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAtHD66aenpaUl5513XtFRAACaoq3oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Gy1Wi31en3U+430aXb/FStWZGhoqCnff6lUSrlc3uj+xtoqlcpm9W+kz9y5c9PW1taU7x8AAAAAAAAAilKr1VKtVlOv14f3n7s9X1u1Wh3x2mvX2UulUiqVynrbaNoWLVqUGTNmjPOoAAAAAAAAAMD0dNNNN+Wggw5Ka2vrem3t7e258sors/vuu+eSSy7J+973vgISAgAAAAATyYMPPpgDDzwwb3nLW/K1r31txPcWAQAYW7/97W/zxz/+Mfvuu2/RUQAACnXnnXeqiQCAae/OO+/MwoULs/POOxcdBQBgXD366KM54ogjRn3+n/3Zn+XLX/5yzj///HzlK1/JpZdems9+9rM5+OCDc/LJJ+fP//zP09LSMoaJAQAml2XLluXMM8/MVVddleXLlxcdBwCgULvvvnv22WeffOYzn8mSJUuKjgMAMC5OP/30LFq0KMuXL8/KlStz8cUX+90CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCGbr/99lx22WX51re+lUqlUnQcAICmaCs6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE0+tVku9Xm9ofyL031ylUinlcnmj+xtrq1Qqm9W/ka8/b968zJgxo2ljAAAAAAAAAADTTa1WS7VaXWer1+sjvj5S25NPPpn+/v4Rr10qlVKpVIY/U/Ds466uruH9kdorlUoWLFiQjo6OcR4RAAAAAAAAAKBR1Wo199xzT0499dQNnrPrrrvmzDPPzEc+8pHsvffe2W233cYxIQAAAAAwkTz22GM56KCDsuuuu+Zb3/pW2traio4EADAt/fSnP82sWbOyePHioqMAABRm5cqVefDBB3PWWWcVHQUAoFD/8i//kje96U1paWkpOgoAwLip1Wp54oknst12221y3y233DIf/ehHc9ppp+W6667Ll770pey///7Zfvvt8573vCfHHXdctthiizFIDQAwubzgBS/IsccemwsuuCDHHXecz44DANPehz/84Rx66KH5zW9+k1e84hVFxwEAGBd//dd/nc7Ozhx99NF5/PHHc+WVV2b27NlFxwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAKeexxx7L0UcfnSOPPDJHHnlk0XEAAJqmregAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTTa1WS71eH/F4U/fHq8/q1avzzDPPNG0MSqVSyuXyqPefe1ypVDarfyNff/78+WlpaWnaGAAAAAAAAAAA46NWq6VaraZerw/vP3d7vrZqtbrB65dKpVQqlfW2crk8qrZFixZlxowZ4zgiAAAAAAAAAEDRbrnllrS0tGS//fbb6HlnnXVW7rvvvrztbW/L/fffn2222WacEgIAAAAAE0VPT08OPvjgzJs3L9dee21KpVLRkQAApq177rknu+22W9ra2oqOAgBQmPvuuy+Dg4PZY489io4CAFCoe++9N6eddlrRMQAAxtWjjz6aoaGhdHV1NXyNtra2HHHEETniiCPy61//Opdeemk+/vGP52Mf+1je9a535YMf/GBe+cpXNjE1AMDkc/rpp+fyyy/PN7/5zSxbtqzoOAAAhTr44IPzqle9KmeeeWauv/76ouMAAIybww47LLfeemv+8i//Mm94wxty/fXX58UvfnHRsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgylizZk3e+c53ZosttsiXv/zlouMAADRVW9EBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeq1arpV6vj3i8qfvj1b+3tzd9fX1NG4NSqZRyudzQfpJUKpVN7tOMrwkAAAAAAAAAsClqtVqq1eo6W71eH/H1kdqeeuqprFmzZsRrl0qlVCqV4c9RPPu4q6trg21rtwULFqSjo2OcRwQAAAAAAAAAmAq+//3vZ5999klnZ+dGz2ttbc03vvGN7LHHHjniiCNy2223ZdasWeOUEgAAAAAo2po1a3L44YfnT3/6U372s5/5/a4AAAW7995785a3vKXoGAAAhbr33nuz9dZbZ9ttty06CgBAYf7whz/kiSeeyO677150FACAcfXoo48mSV7ykpc05Xo777xzvvjFL+aCCy7IVVddlYsvvji77LJLDjzwwJx22ml505ve1JSvAwAw2XR1deXoo4/O+eefn2OOOSatra1FRwIAKExra2s++9nP5i1veUvuuOMOn+cGAKaVN77xjfnFL36RQw89NIsXL853v/vdLFmypOhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAlvO9978uDDz6Ye++9N/PmzSs6DgBAU7UVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaK6BgYH09PQkSYaGhrJixYrhtu7u7gwODiZJVq5cmf7+/iRJb29v+vr6kiS1Wi31ej1J0tfXl97e3iRJf39/Vq5cmSQZHBxMd3f38HWr1erwfk9PTwYGBta77jPPPJPVq1evd63n9t9cs2bNSkdHR5Kko6Mjs2bNSpLMmDEj8+bNGz6vUqkM78+dOzdtbW1JknK5PNw2c+bMzJ49O0nS2tqazs7O4T7z589PS0tLkmTOnDlpb28f7l8qlZIk7e3tmTNnzoj9Ozs709raul5/AAAAAAAAAIDJoFarpVqtpl6vD+8/d3u+to19ZqRUKqVSqay3rf1sxvO1LVq0KDNmzBjHEQFY109v+V7REZhknvq//51t53YVHQMAAAAAAIAmWLNmTW6++eb8/d///ajOr1QqufHGG/PGN74xhx12WG688cbh350BAMDU99T//W+fOQMAmKaGhoayfPny3H333bnrrrvy4he/uOhIE5aaGQCmpon2/+pWr16df/u3f8sZZ5xRdJQR/Z8HfpH8/7+PAABMHf/ngV8UHWE99913X/baa6+iY4zI+ioAMF7uvffezJgxI6997WuLjjIiNREATE0TYf3ssccey/z589f5O+DNMGfOnJx00kl597vfnZtuuimf+tSnsmTJkuy55575yEc+kkMPPXT4b32PlvUzAJiaJuL62Vj52Mc+lp122inXXHNNjjjiiIauYf0MAJgq9t133xxwwAE57bTTcv/992/ye0VqIqAphoa87wwTzERYPxsPL3rRi3LXXXdl2bJl2X///fPFL34xy5cv3+TrWD8DJpPBgYG0+rvTMCrjtX7m/RUAmJrG4/0Vn18BADaH9Q0AmJqsbwAAm8P6BkxcQ4ODadnE//cFMFWpJZguBvr7M6OtregYAFOKOoLJYPWqlWlvn5n2jo6iowBMGuP1+zF87pKxsnJFNR2lcmaWSkVHAZh21BEUqda7Kn31ejoXbFl0FAAa5P9vsKlWda9I/5o1mb/lC4qOAsAE4P9vTB+13t70/M9TWfSiFxcdBQA2ifWNzdP3TD3dTz2VuZVKSrNmFx0HAIZZ3xhb/WvWpOd/nk5aWrLFwkVFxwGAptvc9Y2zzjorl112Wa699trsuOOOTUw2MXl/BTbP4MBAWlpb0+I+AiaYjb2/4jcFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAIBgYG0tPTM3xcrVaH97u7uzM4OJgkWblyZfr7+5Mkvb296evrS5LU6/XUarUkSV9fX3p7e5Mk/f39WblyZZJkcHAw3d3dw9ddsWJFhoaGkiQ9PT0ZGBhIkqxatSpr1qxJkqxevTrPPPNMkuSZZ57J6tWrkyRr1qzJqlWrmvK9z5w5M7Nnz06StLW1Ze7cuUmS1tbWdHZ2Dp83f/78tLS0JEnmzZuXGTNmJEm22WabtLe3J0lKpVLK5XKSpL29PXPmzEmStLS0ZP78+cPXenb/2bNnZ+bMmUmSjo6OzJo1a70sSVKpVEbsDwAAAAAAAADAxtVqtVSr1XW2tZ93ee7rI7U99dRTw59nea5SqZRKpZJKpZJyubzOcVdX1wbb1m4LFixIR0fHOI8IQPNsvfXWaWtry2c+cFLRUZiEDtr3jUVHAAAAAAAAoAnuvPPOrFixIm9729tG3WennXbKP//zP2fffffNUUcdle9+97vDv78DAICp64UvfGG++93v+swZAExRbW1t2XrrrYuOwQR21lln5eqrr873vve9vOY1ryk6zoTk/2kAwNQ3kf5f3c9//vP09/dnjz32KDrKerZ94QvzvSu+XHQMAGCMbPvCFxYdYR333ntvTj755KJjrMf6KgBMbRNtffW+++7LzjvvPPz3NycK62cAMPUVvX72xBNPZNGiRWN2/ZaWlhx88ME5+OCDc/fdd+fTn/50jjjiiOywww4544wzcvTRR6etre15r2P9DACmtom2fjZWXvayl+Xwww/Pueeem8MPPzwtLS2b1N/6GQBMbRNt/Ww8/MM//EN22WWXXH311Vm6dOmo+lg/A4Cpr+j1s/EyZ86cXHPNNTn77LNz0kkn5a677soll1ySefPmjaq/9TMAmNrGcv3M+ysAMPWN5fsrPr8CAFPbWH9+xfoGAExt1jcAgM1hfQMAaNRYr294XwIApi51BACwucb692P43CUATF3qCABgc/j/GwDA5vD/NwCARvn9VADA5rC+AQBsjkbXN770pS/l3HPPzVe+8pUccsghTU418Xh/BQCmtg29v9IyNDQ0NM5ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhmarVa6vV6Q/ub27+R63Z3d2dwcLAp33upVEq5XN7s/WZea2NfY/78+WlpaWnK9w4AAAAAAAAAQHPVarVUq9XU6/Xh/eduz9e2YsWKDA0NjXj9UqmUSqWy3lYul0fVtmjRosyYMWOcRwUAAAAAAAAAYGI5+eSTc8899+TnP//5Jvf92c9+lv333z+vf/3r80//9E+ZPXv2GCQEAABgNB5//PHsvvvuecUrXpGbb77Z5+UBaKrLLrssy5cvz1e/+tUcf/zxRccBmLD22GOP7Lnnnrn44ouLjgJMA5/73Ody3nnn5cknnyw6CjANfeMb38iJJ564zt/VASjC448/nq233jq33XZb9ttvv6LjANNMf39/2tvbc9111+XQQw8tOg4wzb35zW9OV1dXLrvssqKjANPQG9/4xuyyyy754he/WHQUYBp63/vel1/96le56667xu1r/sd//Ec+9alP5Wtf+1q22WabnHrqqXn3u9+9zt9dB9hUvb29efWrX53tttsut9xyS1pbW4uOBDCiX/3qV3nNa16TK664IkuXLi06DjCN9PX1Zf/998/DDz+cH//4x9l+++2LjgSQJFm+fHluueWWPPzww5k1a1bRcYBp5sILL8xHP/rRfPazn80pp5xSdBxgGrv99tvzV3/1V5k5c2auvvrqvO51rys6EsD/Y+/ew6Ks87iPf0CEGRFlXE9QIo4HEioPlKWAm7tk2XraLFfd9bBmuq2lqz5abYqa2mmrVcvd0krTSs1sy6w2xU6CloppCR7QATyAmjaA4gynmeeP53IeTStX0Z8w79d1/a65hxvuef/mj74hw1ClSkpK9Morr+jFF1/Uvn371L17d40ZM0Z33nknP9cDAOAqcNttt6lBgwZ69913TacAAIBq5vDhw4qKitLrr7+ugQMHms4BAABXyFtvvaWhQ4cqLy9PkZGRpnMAAMBl9sEHH2jQoEHq3LmzPv74Y/6eFwAANdyJEyc0d+5cPf/88/J4PBo3bpzGjx+vunXrmk4DAACXwZYtW7RkyRItXbpUx48fV1JSkoYMGaKBAwfyvoAAANRAR44c0SeffKLVq1dr7dq1KiwslN1uV3JyspKTk3XHHXeoXr16pjMBAEAVKCkp0TfffKP09HRnFM4rAAAgAElEQVSlpaUpPT1dTqdTYWFhuuWWW5SQkKD4+Hh17dpV9evXN50LAACqQH5+vjIyMnxr8+bNOnLkiCQpIiJC8fHxvnXzzTeradOmhosBAMDFKiws1L59+5SZmamMjAxlZWUpMzNTBQUFkqTw8HC1bNlSsbGxio+PV1xcnK6//nrmPwAA1VRlZaVyc3OVnZ2t3bt3a8+ePdqzZ4+ys7O1f/9+eb1eBQYGqnnz5mrTpo3atGmjmJgYtW7dWm3atFFUVBTv/QsAQDVz4sQJORyO867c3FyVlZVJkurUqSO73e5bLVu29B23aNFCISEhhncCAAAuhNfrVUFBgfLy8rR///6zbnNzc5WXl6cTJ074Pr9p06aKiopSVFSUmjdvrqioKLVo0cJ3Pzw83OBuAAC4urz22msaMWKEnn76aU2cONF0DoCrVEVFhZYsWaKZM2fqwIEDGjp0qB577DFFR0ebTgOAC7UiwOv1ek1XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Je5XC653e6LOr7Ur7+Y6xYVFcnj8VTJ3i0Wi6xW6yUfV+W1fu4xwsPDFRAQUCV7BwAAAAAAAAAAAAAAQM3gcrnkdDrPWm63+7wfP9+5Y8eOqby8/LzXtlgsstlsstlsslqtZ90/c/3UuQYNGshisVzhZwQAAAAAAAAAAAAAAKDm8Xq9ioqK0v3336+UlJSLukZGRobuuusuNW/eXB9++KEaNWpUxZUAAAAAgF9SVlam5ORkHTlyRF9//bXCw8NNJwEAapAvvvhC3bt318SJEzVz5kzTOQBwVRszZoy++uorbdq0yXQKAD9w3333KS8vT6mpqaZTAPihBQsWaNKkSXI6naZTAPi5tWvXqnv37jp69CivXQNwxZWUlKhu3br66KOP1KNHD9M5APxcw4YNNXXqVD300EOmUwD4obZt22rAgAGaOnWq6RQAfqh///7yer1asWLFFX/svLw8Pf/881qwYIHCwsL0wAMPaNy4capfv/4VbwFQM2RkZKhLly564oknNGHCBNM5APCTRo4cqY8++ki7d+9WaGio6RwAfqS4uFjJyck6fPiw1q9fr+bNm5tOAgAVFBSoTZs2mjhx4kW/hxcAXIpnnnlGDz/8sB5//HFNmTLFdA4AP3b06FENGzZMa9eu1WOPPaaUlBQFBgaazgKAKuXxePTpp59qzpw5+vDDD2W323X//fdr5MiRstlspvMAAPBbb7zxhv785z8rLy9PkZGRpnMAAEA106dPH508eVLr1q0znQIAAK6Q3/zmN6pXr57ee+890ykAAOAymzNnjiZMmKChQ4fqpZdeUu3atU0nAQCAy6SkpESvvPKKnnzySZWUlGj06NF6+OGHeW0fAAA10KFDh/TOO+9o0aJF2rZtm2JiYjRgwAANHjxYLVu2NJ0HAACqUEVFhb766iutXr1aqamp2rp1qywWixISEpScnKzk5GTFx8ebzgQAAFWgoKBAW7ZsUXp6utLS0rR582aVlZUpIiJCiYmJSkhIUGJiojp06MB7mQAAUM1VVFRo9+7dysjIUFZWljIzM7Vx40YdP35ctWrVUkxMjOLi4hQbG6v4+Hh17txZDRs2NJ0NAAAuQlFRkfbu3avMzEzf3M/KypLD4ZAk1a9fX61atVJsbKxv/sfFxclutxsuBwAAF8PpdMrhcMjhcJw193fu3KlTp05Jkmw2m+x2u+x2+1mz/7rrruPv4AEAUM2cOft/vHJycuT1eiWdPf9/vKKjo3kNAAAA1UB5ebm+//57FRQUnDXz8/PzVVBQoF27dqmkpMT3+eeb/xEREYqMjFSbNm0UFhZmcDcAAFQfs2fP1vjx4zV58mQ9/vjjpnMAXIU8Ho9WrlypyZMnKycnRwMGDFBKSopatWplOg0A/lcrArynf7IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgB1wul9xu90UdX+rXX8x1i4uLVVlZWSV7t1gsslqtl3xcldf6uccIDw9XQEBAlewdAAAAAAAAAAAAAAAAuFgul0tOp1Nut9t3/OP1S+cKCwvl9XrPe32LxSKbzXbOslqtF3SuSZMmqlWr1hV+VgAAAAAAAAAAAAAAAHA+X3/9tW699VZt375dN95440VfJzs7W3fccYeCgoL0/vvvq23btlVYCQAAAAD4Jffff7+WL1+ujRs3Ki4uznQOAKAGyc3NVadOnZSUlKQVK1YoMDDQdBIAXNXefPNN/fnPf1ZRUdFZ72MPAJfDLbfcos6dO2v27NmmUwD4oTlz5ujpp59Wfn6+6RQAfu6f//ynnnrqKR05csR0CgA/9MMPP+hXv/qVUlNT9dvf/tZ0DgA/VlBQoMjISH366afq1q2b6RwAfqhhw4Z6/PHH9de//tV0CgA/dNtttykuLk7z5s0z1nD06FH961//0uzZsxUUFKQHH3xQY8aMUYMGDYw1Aai+nnzySU2dOlVpaWnq1KmT6RwAOK+jR4+qTZs2Gjt2rKZPn246B4CfOX78uH7961+rrKxM69evV5MmTUwnAYCee+45/f3vf9fWrVv5PW8ARrz00ksaPXq0Jk6cqKeeesp0DgA/5vV6NXfuXE2aNElJSUlavHixIiMjTWcBwGWRnZ2tF198Ua+++qoCAwM1cOBA/e1vf+M9mQEAMMDtdisyMlKTJk3SI488YjoHAABUM6tWrVLfvn21Z88etWrVynQOAAC4zBwOh1q1aqVVq1apZ8+epnMAAMBlUllZqb/97W+aN2+eUlJSNG3aNNNJAADgMiktLdXrr7+uadOmqbi4WPfdd58ee+wxNW7c2HQaAACoQi6XS6tXr9bixYv13//+V3Xr1lX//v01ePBgJSQkKCAgwHQiAACoIg6HQ6mpqUpNTdV///tfnThxQna7XcnJyerZs6duv/12WSwW05kAAOASVFZWateuXUpPT1daWpoyMjKUlZWlWrVqKSYmRomJiUpISNCvf/1rNW/e3HQuAAC4BOXl5dqzZ48yMjJ8a+vWrXK5XKpdu7Zat26t+Ph43+rYsaPq1KljOhsAAPyPiouLlZ2drczMTGVlZfluc3Jy5PV6Va9ePbVu3VqxsbGKi4vz3bZo0YKf9wMAUM2UlpZq7969ysrKksPhkMPhUGZmpnbs2KGioiJJUkhIiK655hrfzLfb7bLb7br++uvVtGlTwzsAAAAXqrS0VIcOHfLN/DPXrl27VFJSIun/z/7TM//MFRMTo7p16xreCQAA+CVut1v5+fm+WZ+fn6+CggLf/by8PFVWVko6e/ZHREQoMjLyrPkfFRWloKAgwzsCAKD6e/rpp/Xoo4/q6aef1sSJE03nALjKeDwerVy5UpMnT1ZOTo4GDBigKVOmqHXr1qbTAOBirQjwer1e0xUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB6cblccrvdF3V8qV9/MdctLi5WZWVllezdYrHIarVe8nFVXuvnHiM8PFwBAQFVsncAAAAAAAAAAAAAAACgunG5XHI6nWctt9t93o+f79yxY8dUXl5+3mtbLBbZbDbZbDZZrdaz7p+5fupcgwYNZLFYrvAzAgAAAAAAAAAAAAAAgMvp73//u5YuXaqcnJxLvlZBQYH69eunzMxMLV68WH369KmCQgAAAADAL5k9e7YmTJig999/Xz179jSdAwCoQU6cOKEuXbqodu3aWr9+vUJDQ00nAcBVb9++fWrVqpXS09PVpUsX0zkAajCv16v69evrueee0/333286B4Afeuqpp7RgwQLt27fPdAoAPzdixAjl5ORo3bp1plMA+KHDhw8rIiJC69evV2JioukcAH5s7dq16t69u44cOaLGjRubzgHgZyorKxUcHKzly5frnnvuMZ0DwA/Fxsaqf//+mjZtmukUFRcX69///reeeeYZlZWVadCgQRo3bpyuu+4602kAqhGPx6Pu3bsrLy9PW7duVVhYmOkkADivZ599VikpKdq5c6eaN29uOgeAn8nPz1dSUpLCwsL02WefyWazmU4C4Oc8Ho+SkpJUWVmp9PR01apVy3QSAD/0yiuvaNSoUZowYYKeeeYZ0zkA/NyWLVs0cOBAFRUVadGiRbrrrrtMJwHAZVNcXKyFCxdq9uzZ2r9/v37zm99ozJgx6tmzpwICAkznAQDgNx566CF99NFH2rt3LzMYAAD8TyoqKhQdHa2hQ4dq1qxZpnMAAMBl9uijj2rJkiXKy8vjdV4AANRQJ0+e1MCBA5WamqqFCxdqwIABppMAAMBlUFZWpkWLFmn69OkqKirSfffdp0cffVRNmzY1nQYAAKqIx+PRhg0btGTJEr311lsqKytT9+7dNWTIEPXp00fBwcGmEwEAQBU4deqUNmzYoNTUVK1atUo7d+5UaGiounXrpl69eunOO+9UVFSU6UwAAHAJSkpK9M033yg9PV1paWlKT0+X0+lU3bp11a5dOyUmJiohIUFdu3ZV/fr1TecCAICLdOLECW3fvl0ZGRnKyspSZmamtmzZotLSUoWFhenGG29UXFycYmNjFR8fr5tvvlkhISGmswEAwP+grKxM2dnZvll/+nbXrl3yeDwKDg5Wq1atfDP/9G3btm0VGBhoOh8AAFygiooK7d+/Xw6HQw6Hwzf3HQ6HcnNz5fF4FBQUpKioKNntdtntdt/st9vtio6OZvYDAFBNOJ1O38z/8crJyZHX65Uk2Ww239z/8WL2AwBw9XM6ncrPz1dBQcFZ8/70x86c+xaLRZGRkefM/IiICEVGRjL7AQC4zCoqKvTggw/qlVde0fz58zV8+HDTSQCuIh6PRytXrtTkyZO1d+9e9evXT7NmzVLr1q1NpwHApVoR4D39rxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCKcrlccrvdF3x8MV9TlY9RXFysysrKKtm7xWKR1Wq95OOqvNbPXTc8PFwBAQFVsncAAAAAAAAAAAAAAAAAv8zlcsnpdMrtdvuOf7x+6VxhYaG8Xu95r2+xWGSz2c5ZVqv1gs41btxYQUFBV/hZAQAAAAAAAAAAAAAAwNUuNjZWPXr00HPPPVcl1ysrK9NDDz2kBQsWaPLkyUpJSeF1KwAAAABwGa1bt0533nmnZsyYoUceecR0DgCgBvF4POrTp4+2bNmiTZs2qVmzZqaTAKDaaNKkiR5++GGNHz/edAqAGiw3N1ctWrRQenq6unTpYjoHgB+aOnWqVq5cqR07dphOAeDnbr31Vt1yyy2aM2eO6RQAfigvL0/R0dHatGmTbr75ZtM5APzY7NmzNWvWLH3//femUwD4oe+//16NGzfWZ599pttuu810DgA/1LBhQ82YMUMPPPCA6RSfEydOaMGCBXrhhRe0f/9+9erVS3/729/47ySAC3bo0CG1a9dOd999t+bPn286BwDOq6ysTDfccIM6duyopUuXms4B4If279+vpKQkXXPNNVq7dq1CQ0NNJwHwc7t27VKHDh30xBNPaNy4caZzAPipN998U8OGDdOoUaM0d+5cBQYGmk4C4MeKi4v1l7/8RcuWLdP48eM1a9YshYSEmM4CgMvG4/Howw8/1Ny5c7Vu3Tq1bt1af/3rXzVixAj+7QoAgCvgu+++04033shrmgEAwEWZPHmyXn31Ve3fv1+1a9c2nQMAAC6TiooKNW/eXMOHD9eMGTNM5wAAgMvg0KFD6tWrlwoKCrRq1SreGw4AgBqorKxMixYt0uOPP65jx45p6NChmjZtmiIiIkynAQCAKpKVlaW3335br7/+unJzcxUfH6/Bgwdr0KBBatSokek8AABQBRwOhz744AOtXr1a69evV2lpqWJjY9WrVy8lJyera9euCg4ONp0JAAAuUkFBgbZs2aL09HSlpaVp8+bNKisrU0REhBITE5WQkKDExER16NCB90cCAKCaKiws1I4dO5SRkeFbu3btksfjUXh4uOLi4hQfH+9bbdu2Ze4DAFCNlJWVKTs7W1lZWcrMzPTdnp73wcHBatWqleLi4hQbG+u7ZeYDAFC9OJ1OORwO37x3OBy++263W5Jks9lkt9t9M99ut/vuW61WwzsAAAC/pLS0VIcOHfLN+TPXrl27VFJSIkkKCQnRNddc45v1Z66YmBjVrVvX8E4AAMDPOf09/umVn5+vgoICORwOZWdnq7i42Pe5p7/Xt9vtioiIUGRkpO9+y5YtFR4ebnAnAAD4t2PHjql///7atGmT3njjDfXt29d0EoCrhMfj0cqVKzVlyhRlZ2erX79+mjVrllq3bm06DQCqyooAr9frNV0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDFcrlccrvdF3x8MV9TlY9RXFysysrKKtm7xWKR1Wq95OOqvNbPXTc8PFwBAQFVsncAAAAAAAAAAAAAAAAAVy+XyyWn03nWcrvd5/34+c4dO3ZM5eXl5722xWKRzWaTzWaT1Wo96/6Z66fONWjQQBaL5Qo/IwAAAAAAAAAAAAAAAPAH2dnZatOmjb744gt17dq1Sq89f/58jR07VvHx8XrjjTcUHR1dpdcHAAAAAEi5ubnq1KmTunbtqhUrVvA+qgCAKjVu3Di99NJL+uyzz3TrrbeazgGAaqVnz54KDQ3V8uXLTacAqMFWr16tXr16yel0Kjw83HQOAD/06KOP6pNPPtHWrVtNpwDwY16vV+Hh4frHP/6hkSNHms4B4If27NmjmJgYbdu2Te3atTOdA8CP3X///dq3b58+/fRT0ykA/NDevXvVunVrbd26VR06dDCdA8DPeDwe1a5dW8uWLdO9995rOuccHo9HH374oebOnavU1FS1b99eDzzwgAYPHiyr1Wo6D8BV7r333tPvf/97LVu2TH/4wx9M5wDAea1atUp9+/bVF198oaSkJNM5APzQnj17lJSUpHbt2umDDz5QSEiI6SQAfm769Ol65plntH37drVq1cp0DgA/9e6772rQoEG699579dprr6l27dqmkwD4uUWLFmnMmDGKjo7WG2+8oRtvvNF0EgBcdtu3b9e//vUvvfHGGwoKCtKwYcM0btw43p8ZAIDLrFOnTmrTpo3eeOMN0ykAAKCaycnJUatWrfTuu++qT58+pnMAAMBl8t577+nuu+9Wdna2WrZsaToHAABUsU2bNqlPnz5q2LChVq9erebNm5tOAgAAVai8vFxLly7V9OnTdfDgQQ0bNkxTp05VZGSk6TQAAFAFfvjhB73zzjtavHix0tPT1axZMw0aNEjDhw9XmzZtTOcBAIBL9MMPP2jdunVKTU3Vxx9/rAMHDqhhw4bq1q2bkpOT1bNnT77HBwCgmqqsrNSuXbuUkZGh9PR0paWlKSsrS7Vq1VJMTIwSExOVkJCgrl278rv2AABUU/n5+crIyPCtrKwsORwOSVJERITi4+MVFxen2NhYxcfHKzY2VgEBAYarAQDAhSgvL9eBAweUmZnpm/OZmZnavXu3KisrVbt2bbVu3do360/fXnfddapVq5bpfAAAcAEKCwu1b98+ORwO38rMzNS3336rEydOSJJCQkLUsmVLxcXFyW63y263KzY2VjfeeKPq1atneAcAAOCXOJ3Os2b9mSsnJ0der1eSZLPZfLP+xys6OlqBgYGGdwIAAM6nrKxMBw8eVH5+vgoKCs6Z9wcOHFB5ebkkKTg4WL/61a8UGRl5zryPiIhQdHS0QkNDDe8IAACcz3fffac+ffqovLxc//nPf3TTTTeZTgJwFfB4PFq5cqWmTJmi7Oxs9evXTzNnzuQ9OADURCsCvKd/ogEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Gsul0tut/uKHF/q1xcXF6uysrJK9m2xWGS1Wi/5uCqv9XPXDQ8PV0BAQJXsHQAAAAAAAAAAAAAAAADO5HK55HQ65Xa7fcc/Xr90rrCwUF6v97zXt1gsstls5yyr1XpB5xo3bqygoKAr/KwAAAAAAAAAAAAAAAAAF+bpp5/WP/7xDx0+fPiyvM5lx44dGjhwoA4cOKB///vfGjhwYJU/BgAAAAD4q5MnT6pLly4KDAxUenq6QkNDTScBAGqQ1157TSNGjNBbb72lAQMGmM4BgGpnxowZevXVV5Wbm2s6BUAN9txzz+n555/XoUOHTKcA8FOPPPKIUlNTtWXLFtMpAPzYwYMH1axZM3355ZdKSkoynQPAD+3YsUM33HCDdu7cqeuuu850DgA/lpiYqPbt2+vFF180nQLAD33zzTfq2LGjsrOz1apVK9M5APxMUVGRwsPD9cknn6h79+6mc37Wli1bNHv2bL399tv61a9+pb/+9a8aNWqUGjdubDoNwFXsL3/5i5YvX65t27apefPmpnMA4Lx+97vfad++fdq2bZssFovpHAB+aNu2berWrZu6deumt99+m78VBcCosrIy3XTTTWrUqJFSU1MVEBBgOgmAn/rss8/Up08fde3aVStWrJDVajWdBMDP5eXlaejQodqwYYP+/ve/a8qUKapVq5bpLAC47AoLC/X666/r+eef18GDB3XXXXdp7Nix+u1vf8v3jAAAXAbz58/X2LFjdejQITVo0MB0DgAAqGZuv/12Wa1WrVq1ynQKAAC4THr27KmysjKtWbPGdAoAAKhi7777rgYPHqzExES9/fbbql+/vukkAABQRcrLy7V06VI9/vjjOnDggIYNG6aUlBRdc801ptMAAMAlcrvdWrt2rZYsWaL33ntPderUUe/evTVkyBBecw8AQDXn8Xj0zTffKDU1Vampqfriiy/k8XjUvn17JScnq2fPnurSpYsCAwNNpwIAgP9RSUmJvvnmG6WnpystLU0bNmzQDz/8oLp166pdu3ZKTExUQkKCkpKSFB4ebjoXAAD8j/Lz85WRkeFbmzZt0tGjRyVJERERio+P961OnTqpSZMmhosBAMCFqKio0P79+5WZmamsrCzf7Y4dO1RaWqqgoCBFRUUpNjZWcXFxvtvrr79eISEhpvMBAMAvKC8v14EDB+RwOHxz3uFwyOFwKCcnR16vV7Vr11azZs1kt9tlt9t9895ut6tFixa8Xg8AgKtYaWmpDh065JvvZ65du3appKREkhQcHKxrr73WN+/PXG3atFFYWJjhnQAAgPNxuVwqKCg4a8bn5+f7PpabmyuPxyNJslgsioyM9M34iIiIs+43b96cvwcGAEA19NZbb2nUqFHq2LGj3nnnHTVq1Mh0EgDDPB6PVq5cqZSUFO3Zs0f9+vXTzJkz1aZNG9NpAHC5rAjwer1e0xUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBNUVlaquLhYkuTxeFRUVOQ753Q6fceFhYXyer2SpKKiInk8HklScXGxKisrJUknTpxQRUWFJOnkyZMqLy+XJJ06dUqlpaWSJJfLJbfbLUlyu91yuVySpNLSUp06dUqSVFZWppKSEklSeXm5Tp48eU7rpQoNDVVwcLAkyWq1ymKxSJIsFousVqskKSQkRHXq1JEkBQcHKzQ0VJJUu3Zt1a1bV5IUFBSksLAwSVJgYKDq168vSQoICFB4eLjv8Ww2m+84PDxcAQEBkqSwsDAFBQX9bNOZHQAAAAAAAAAAAAAAAABQk7hcLjmdzrPW6deW/fjj5zt37Ngx32vVfsxischms8lms/lek3X6/pnrp841aNDA9zouAAAAAAAAAAAAAAAAoKbq0qWL2rZtq1dfffWyPYbb7dbEiRM1b9489e3bV/PmzVNERMRlezwAAAAA8Ader1cDBgzQunXrtGnTJtntdtNJAIAaZNOmTeratasmTJigWbNmmc4BgGpp7dq16t69uw4dOqTIyEjTOQBqqNGjR+u7777Tl19+aToFgJ+aNGmSPv/8c23atMl0CgA/9uWXX+rXv/41338BMCYjI0M33XST9u3bx89tARgVGRmpiRMnaty4caZTAPih09+bFRQUqGnTpqZzAPiZAwcOKCoqShs3btStt95qOueCHD58WC+99JLmzZun4uJi9enTRyNHjtRvf/tbBQQEmM4DcJVxu93q1KmTwsPD9dlnn6lWrVqmkwDgHPn5+YqLi9OoUaP01FNPmc4B4Kc2bNig7t2765577tHChQv5/gqAUZs3b1ZCQoKefPJJTZgwwXQOAD+2ZcsW9ejRQ7GxsVq1apXq169vOgmAn/N6vZo7d64efvhhdezYUYsXL1arVq1MZwHAFVFZWamPPvpIc+fOVWpqqtq3b68HHnhAf/rTn1SnTh3TeQAA1BgnT55UZGSkZs2apYceesh0DgAAqGaWLVumP/3pT8rJyVGzZs1M5wAAgCp28OBBRUdH66233lL//v1N5wAAgCo0Z84cjR8/XiNGjNC8efMUFBRkOgkAAFQBj8ejlStX6rHHHlNubq4GDBigadOm8d6vAADUABkZGVq8eLHefPNNFRYWqlu3bho8eLD69eun0NBQ03kAAOAiff/99/r888+VmpqqDz74QAUFBWrSpIm6d++uXr166fbbb1d4eLjpTAAA8D86fPiwNm/erPT0dKWlpWnz5s0qK9KQ6Q8AACAASURBVCtTRESEEhMTlZCQoMTERHXo0EGBgYGmcwEAwAWqqKjQ7t27lZGR4Vvbtm1TSUmJgoKC1KZNG8XHxys+Pl5xcXHq2LGjGjRoYDobAAD8goqKCu3fv1+ZmZnKyso669btdisoKEhRUVGKjY1VXFyc7zYuLk4Wi8V0PgAA+AVOp9M33x0OhxwOhzIzM7V7925VVlZKkmw2m2/G2+122e12xcbGKiYmht+7AwDgKuZ0On3z/ccrNzdXHo9H0v+b9adn/I9XdHQ0P7cHAOAqdHrO5+fnq6Cg4JxZ73Q6fZ9rs9kUERGhyMjIc2Z9RESEIiIi+FvNAADUICdOnNBDDz2kxYsX68EHH9Szzz6r4OBg01kADDr9nlspKSnas2eP+vXrpxkzZigmJsZ0GgBcbisCvF6v13QFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJyPy+WS2+2+4scX8zVFRUXyeDyXvGeLxSKr1XrO8c+dM3Vcp04dhYSEXPKeAQAAAAAAAAAAAAAAAMCfuVwuOZ1Oud1u3/GP1y+dKywslNfrPe/1LRaLbDbbOctqtV7QucaNGysoKOgKPysAAAAAAAAAAAAAAABA9XLkyBFFRkbqP//5j3r37n3ZH2/9+vUaMWKEjhw5omeeeUb333+/AgICLvvjAgAAAEBNNH36dM2aNUtr1qzRbbfdZjoHAFCDHD16VPHx8Wrbtq0+/vhj1apVy3QSAFRLxcXFstlsWrlypfr27Ws6B0AN1aNHDzVp0kSLFi0ynQLAT/2f//N/lJaWpq+++sp0CgA/tmjRIj3wwAM6deoUr0cDYMSGDRuUkJCggwcP6pprrjGdA8BPuVwuhYaG6t133+XfpAEY8dFHH+l3v/udTp48qdDQUNM5APxMZmamrr/+eu3YsUNxcXGmc/4nLpdLb7/9thYsWKD09HS1atVKI0aM0LBhw9SkSRPTeQCuIjt27NDNN9+syZMn67HHHjOdAwDn9fLLL2v06NHauHGjbr75ZtM5APzUmjVr1Lt3b40aNUpz5swxnQPAzz311FNKSUnRF198oc6dO5vOAeDHdu7cqe7duys8PFyffPKJIiMjTScBgHbs2KHBgwfL4XDoH//4h0aOHGk6CQCuqK1bt+rll1/W4sWLFRYWpuHDh2v06NFq1qyZ6TQAAGqE++67T5s3b9a3335rOgUAAFQzZWVluvbaazVmzBhNnjzZdA4AAKhijz/+uObOnatDhw4pJCTEdA4AAKgCFRUVGjNmjObPn69Zs2bp4YcfNp0EAACqgMfj0cqVKzV58mTl5ORowIABSklJUatWrUynAQCAS5CXl6dly5ZpwYIF2rdvn2JjYzVkyBANHTpUTZs2NZ0HAAAuQmVlpbZt26YPPvhAq1ev1tatW1WrVi3dcsst6tWrl5KTk9WxY0f+nhQAANWMw+FQWlqa0tPTlZaWpqysLNWqVUsxMTFKTExUQkKCkpKS1KJFC9OpAADgApWVlSk7O1sZGRlnLbfbrdq1a6t169aKj48/a1mtVtPZAADgF+Tn5ysrK0uZmZnKyMhQVlaWdu7cqVOnTkmSIiIiFBcXp9jYWMXHxysuLk5t27ZVnTp1DJcDAICf43Q65XA4fCszM1NZWVnavXu3Tp48KUmy2Wyy2+2+FRsbq7i4OMXExKhu3bqGdwAAAM6ntLRUhw4dOmvOn15nzvng4GBde+21Z83606tNmzYKCwszvBMAAHCm8vJyff/99yooKDhrvufn56ugoOCsOS+d+z19RESEIiMjmfUAAPihLVu2aNCgQXI6nXrttdfUq1cv00kADPJ4PPrwww81ZcoUfffdd+rXr59mzJihmJgY02kAcKWsCPB6vV7TFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuL5fLJbfbbfT4Qj+vqKhIHo/nkvdssVhktVp/9vhCP+9yH9epU0chISGXvGcAAAAAAAAAAAAAAAAAwJXlcrnkdDrPWm63+7wfP9+548ePq6ys7LzXtlgsstlsstlsslqtZ90/c/3UuQYNGshisVzhZwQAAAAAAAAAAAAAAADwTy+//LLGjx+v77//XnXq1Lkij3nq1ClNnjxZc+fOVWJiol544QXdcMMNV+SxAQAAAKCmeP/993X33XfrxRdf1AMPPGA6BwBQg1RUVOj2229XTk6OtmzZooYNG5pOAoBqLS4uTr1799aTTz5pOgVADRUTE6NBgwZp6tSpplMA+Knx48dr48aN2rhxo+kUAH5s6tSpWrFihbKyskynAPBTn3/+ubp166ajR4+qUaNGpnMA+KnMzExdf/312r59u2688UbTOQD80PLlyzVo0CBVVFQoICDAdA4AP/PVV1+pc+fO2r9/v5o1a2Y656Lt3r1bCxcu1Kuvviqn06lu3bpp5MiRuvvuu1WrVi3TeQCuAv/85z81adIkffnll+rcubPpHAA4h9fr1R133KHDhw9ry5YtCg4ONp0EwE+9++676t+/v6ZOnaopU6aYzgHgxzwej3r06KFdu3Zp27ZtstlsppMA+LG8vDzdfvvtqqys1Jo1a9SyZUvTSQAgt9utyZMn65///Kf69Omjl19+mddhAvA7R44c0aJFi/TCCy/o8OHD6tGjh8aOHavk5GTTaQAAVGsbN25Uly5d9PXXX6tTp06mcwAAQDUzfvx4vffee9q7d68CAwNN5wAAgCri9XrVunVr9e3bV88++6zpHAAAUAWcTqfuuecebdq0SW+++aZ69+5tOgkAAFwij8ejlStXKiUlRXv27FG/fv00a9YstW7d2nQaAAC4SIWFhVq1apWWLFmidevWKSIiQvfcc4+GDRumDh06mM4DAAAXIScnR2vXrlVqaqrWrFmjoqIi2e12JScnKzk5WXfeeafCwsJMZwIAgAt06tQpbd26Venp6UpLS9OGDRv0ww8/qG7dumrXrp0SExOVkJCgpKQkhYeHm84FAAAXoLi4WN9++60yMjJ8a/fu3aqsrFS9evV0ww03KD4+XvHx8YqLi9MNN9zA+8kDAHCVy8/PV1ZWljIzM32327ZtU0lJiSQpIiJCcXFxio2N9d126NBBoaGhhssBAMBPKSsr08GDB33z3eFwyOFwKDMzUwUFBZKk4OBgXXvttbLb7b45b7fbfQsAAFx9nE6nb67/eOXm5srj8UiSbDbbWXP9zBUdHc373wEAcBUpLS3VoUOH5HA4lJ+fr4KCgrNm/P79+1VRUSFJCgkJ0TXXXCO73a6IiAhFRkaeNeejoqIUFBRkeEcAAMC0srIyPfnkk3riiSeUlJSkxYsXKzIy0nQWAEM8Ho8+/PBDpaSk6Ntvv1W/fv00Y8YMxcTEmE4DgCttRYDX6/WargAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqC5fLJbfbbfT4Qj+vqKhIHo/nkvdssVhktVov+PhivqaqjkNDQxUcHHzJewYAAAAAAAAAAAAAAAAA1GynX2/ncrnkdDrPWT937vT5wsJCeb3e817fYrHIZrOds6xW6wWda9y4sYKCgq7wswIAAAAAAAAAAAAAAADgYt11112yWq1auXLlFX/szZs368EHH9TWrVs1evRoTZ8+XfXr17/iHQAAAABQ3ezatUu33nqrfv/732vhwoWmcwAANcy4ceP08ssvKy0tTR07djSdAwDV3n333SeHw6HPPvvMdAqAGsjj8ahOnTpasGCBBg8ebDoHgJ8aN26cvv76a23YsMF0CgA/NnjwYDmdTq1evdp0CgA/tWbNGt1xxx1yOp0KDw83nQPAT33wwQfq3bu3iouLFRYWZjoHgB967bXXNHbsWJ04ccJ0CgA/VNO+L3O5XFqxYoUWLFigtLQ0tWjRQn/605/0xz/+UTExMabzABjk9Xr1u9/9Trt379Y333yjevXqmU4CgHPk5ubqhhtu0IQJEzRt2jTTOQD82KJFizR8+HA9++yzGj9+vOkcAH7s6NGjat++vRISErRixQrTOQD83OHDh3XnnXfq+PHj+u9//6u4uDjTSQAgSdqwYYOGDBmiEydO6MUXX9S9995rOgkArrjS0lItX75cc+fOVUZGhjp16qQHH3xQ/fv3V0hIiOk8AACqpfbt26tTp06aP3++6RQAAFDN7Nq1S7GxsVqzZo2Sk5NN5wAAgCpy+vcQMzMzFRsbazoHAABcIofDoZ49e6qoqEirVq1SfHy86SQAAHAJvF6vVq9erZSUFH377bfq16+fZsyYwXvtAABQTZWVlemTTz7RihUr9M4778jr9apXr14aPHiwevTooaCgINOJAADgf+ByuZSenq7U1FSlpqYqIyNDderUUZcuXZScnKzevXurbdu2pjMBAMAFOnz4sDZv3qz09HSlpaVpy5YtKi0tVUREhBITE5WQkKD4+Hjdcsstql27tulcAADwC5xOpzIzM5WRkeFbO3fulNfrlc1mU2xsrOLj432rbdu2CgwMNJ0NAAB+Qn5+vrKyspSZmem73b59u06ePClJioiIUFxcnGJjY3237du3V926dQ2XAwCAn3J6vjscDjkcDt+cz83NlcfjkfT/Z7zdbpfdbvfN+ubNm6tWrVqGdwAAAM5UWlqqQ4cO+Wb7mWv37t2+7+GDg4N17bXX+ub7matNmzYKCwszvBMAAHCa0+lUfn6+CgoKzprtpz+Wk5Mjr9crSbJYLIqMjDxrtkdERPg+Fh0dzc/kAQDAz9qyZYuGDx+uffv2aebMmRo7diz//wD4qcrKSr399tuaNWuWdu3apQEDBmjKlCm85xYAf7YiwHv6X2EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAK8jlcsntdl81xz93rrCwUF6v95L3bLFYZLVaL/j4Yr6mqo5DQ0MVHBx8yXsGAAAAAAAAAAAAAAAAAKCquVwuOZ1O33K73ed87OfOHT9+XGVlZee9tsVikc1mk81mk9VqPev+meunzjVo0EAWi+UKPyMAAAAAAAAAAAAAAAAATDp58qQaNWqkl19+WUOGDDHS4PF4tHDhQj366KMKDAzU9OnTdd999ykoKMhIDwAAAABc7ZxOpzp16qTGjRvr008/VUhIiOkkAEANsnTpUg0aNEiLFi3S0KFDTecAQI0wf/58jR8/XoWFhfz8A0CVO3DggKKiorR+/XolJiaazgHgpyZNmqTPP/9cmzZtMp0CwI8lJiaqffv2evHFF02nAPBTa9as0R133KHCwkLVr1/fdA4AP/XCCy9oxowZOnr0qOkUAH7qpZde0mOPPabjx4+bTgHgh9555x3de++9Ki8vr3E/m8/KytJrr72mpUuXKj8/XzfffLP++Mc/asCAAWrSpInpPAAGHDlyRO3bt1diYqJWrFhhOgcAzmvOnDmaNGmS0tPTddNNN5nOAeDHnnnmGT3yyCNauHAhvycDwKjPP/9cycnJ+te//qWRI0eazgHg5woLC9W7d2/t2LFD77//vpKSkkwnAYAkqbi4WBMnTtSCBQt0zz33aN68eWrUqJHpLAAwIj09XXPnztV//vMfhYeHa/jw4Ro1apRatGhhOg0AgGpl9uzZmjJlivLz8xUWFmY6BwAAVDMJCQlq1qyZli1bZjoFAABUkf79+6ugoEDr1683nQIAAC7RV199pT59+qhp06ZavXq1mjVrZjoJAABcgtTUVD388MPatm2b7rrrLs2cOVPt2rUznQUAAC5CRkaGFi9erGXLlunYsWPq3LmzhgwZooEDB/I6PgAAqhmHw6HU1FSlpqbq448/1smTJ2W329WzZ0/16tVLSUlJCgkJMZ0JAAAugMPhUFpamtLT05WWlqadO3cqMDBQMTExSkxMVEJCgpKSkvhddgAAqoH8/HxlZGSctQoKCiRJERERio+P9624uDjZ7XbDxQAA4Kc4nU5lZmYqKyvLd7tt2zYdO3ZMkmSz2RQbG6u4uDjfbfv27dWwYUPD5QAA4HycTqccDoccDodvtjscDu3cuVOnTp2S9P/mu91ul91u9813u92u6667TqGhoYZ3AAAAznTmbP/xys3NlcfjkXT2fP/xio6OVmBgoOGdAAAA6ezZnp+fr4KCAt/9vXv3qqioyPe5Z873iIgIRUZG+u63bNlS4eHhBncCAACqM5fLpWnTpun5559XUlKSFixYoJYtW5rOAmBAeXm53nrrLT3xxBPat2+f/vCHP2jKlCm67rrrTKcBgGkrArxer9d0BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6ey+WS2+2+Ko9/fL+wsFBer/eS92yxWGS1Wi/q+FK//n89Dg0NVXBw8CXvGQAAAAAAAAAAAAAAAACA6u70awpdLpecTuc560LOHTlyRB6P57zXt1gsstls5yyr1XpB5xo3bqygoKAr/KwAAAAAAAAAAAAAAAAAqO6WL1+uP/7xjzp8+LAaNmxotMXpdGr69On697//LbvdrieffFJ9+/Y12gQAAAAAV5vKykr16tVL27dv1+bNmxUZGWk6CQBQg3z33Xfq3LmzRowYodmzZ5vOAYAaY/v27Wrfvr22bdumdu3amc4BUMNs3LhRXbp0UV5enqKiokznAPBTkydP1urVq7Vt2zbTKQD8WPPmzTV69GhNmjTJdAoAP7Vu3TolJyfr+PHjatCggekcAH5q0qRJWrdunTIyMkynAPBTL7zwgmbOnKkjR46YTgHghxYtWqTRo0erpKTEdMpl4/F4tGHDBi1ZskTLli3TyZMn1blzZw0ZMkQDBw5UWFiY6UQAV9AXX3yh5ORkPffccxozZozpHAA4h8fj0Z133imHw6GtW7eqXr16ppMA+LHHHntMTz/9tJYtW6Z77rnHdA4APzZ58mQ9//zzSk9PV4cOHUznAPBzpaWlGjJkiN5//30tXrxY/fv3N50EAD5r1qzR/ff/X/buPbzp8v7/+KvnhCJtlIMp5ZSBQMrkUFCk5aDUKQIqjKnAAJ3QoeLQjW2eOMoUFRWUqWPCROALioJIkYMVBFoYh4AgKedwsKTAgEALTc/5/fH9kS8njzjuQp6P67qv3OQD8fnpP2+TfpIMUkFBgcaNG6f09HTTSQBgzKFDhzRt2jS9/fbb+uabb3TbbbcpPT1dPXv2VEREhOk8AAAqvWPHjikxMVGTJk3Sww8/bDoHAABcYaZOnapHHnlEubm5qlGjhukcAABwiY4eParExET94x//0IABA0znAACASzBnzhwNGDBAnTp10gcffMD77AEAuIJlZmbq6aeflsvlUteuXTVmzBjedwUAwBUoNzdXM2fO1NSpU7Vz5041bdpU9913nwYMGKAGDRqYzgMAAD/Q6dOntWbNGi1YsEDz58/X/v37de2116pz585KS0tTly5dVKdOHdOZAADgexQWFmrjxo1yuVzKzs7WsmXLdOzYMVWtWlXNmzdXamqqUlJSlJqaKpvNZjoXAAB8i/Lycu3fv19ut1sul0sul0v//ve/dfToUUmS3W5XcnJycLVt25b3wAEAUEn5fD653W7l5OQEb7ds2aIjR45Ikmw2m5xOp5KSkoK3N954o2rWrGm4HAAAnK+4uFi7d+9WTk6OPB6PPB6P3G63tm7dqpMnT0qSYmJiVLt27eBcdzgccjgcatasma6//nrDZwAAAM4oKSlRbm5ucKafvXbs2KFTp05JkqKjo5WYmBic6WevRo0a8R2tAABUAmfmutfrVV5e3jlz3ev1at++fSosLJQkRUVFqXr16kpISDhnrtvtdiUkJKhJkyaKjY01fEYAAOBqtGDBAj3xxBM6evSoxowZo8cff1zh4eGmswBcZiUlJZo9e7bGjh2rffv26YEHHtCzzz6rxo0bm04DgMpiTlggEAiYrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCprKxMBQUFP3hfUVGhkydPSpICgYBOnDgRfCyfzxfcnzhxQoFAQJJ08uRJVVRUSJIKCgpUVlYmSTp16pRKS0slSadPn1ZJSYkkqbCwUMXFxZIkv9+voqIiSVJRUZH8fv/Pct5xcXEKDw+XJFWrVk0RERGSpGuuuUaRkZGSpNjYWEVHR0uSqlSpopiYGEmS1WqVxWKRJFksFlmtVklSTEyMqlSpIkmKjo5WbGysJCkyMlLXXHONJCkiIkLVqlWTJIWHhysuLk6SFBYWpvj4+GCfzWa7aCsAAAAAAAAAAAAAAAAAALj8/H6/fD5fcJ25pvHs+77r2LFjx4LXSZ7PYrHIZrMFr0+02WwXrO87dvZ1hwAAAAAAAAAAAAAAAABwOfXp00eHDx/WF198YTolyOPx6JlnntGHH36olJQUjR07Vh07djSdBQAAAACVwp/+9Ce99dZbWrlypdq0aWM6BwBwFTl16pTatGmj6tWra9myZYqKijKdBABXjfLycsXHx+vVV19Venq66RwAV5m5c+eqV69e8vv9we/oAoDLbfTo0frggw+Uk5NjOgVAiAoEArJYLJoyZYp++9vfms4BEKK+/PJL3XrrrTpy5Ihq1KhhOgdAiPrtb3+r/Px8ffrpp6ZTAISo119/Xa+++qpyc3NNpwAIQW+//baGDx+uo0ePmk65LPx+v+bPn6+ZM2dqyZIlioqKUpcuXdSjRw917dpV8fHxphMBXAYvvPCCRo0apeXLlyslJcV0DgBc4MiRI2revLk6dOigDz74wHQOgBD35z//WRMnTtTHH3+s7t27m84BEKLKysp05513ateuXVq/fr1q1qxpOglAiCsvL9fQoUP1zjvvaOLEiXrsscdMJwFAUH5+voYPH65Jkybprrvu0j/+8Q8lJCSYzgIAYyoqKrRs2TJNnDhRCxcuVEJCggYOHKjHHnuM69cBAPgevXv31v79+7V69WrTKQAA4Apz+vRpJSQkaNSoUXryySdN5wAAgEs0fvx4jR07Vl6vV1WqVDGdAwAAfoJAIKCXX35ZzzzzjIYMGaLXX39d4eHhprMAAMBPkJmZqWeeeUbr169XWlqaXnrpJbVq1cp0FgAA+BHy8/P1ySefaPr06friiy9ks9nUq1cv9evXT6mpqabzAADAD+R2u5WRkaHMzEytXLlSZWVlatmypdLS0pSWlqaOHTvyHecAAFRyhw4d0vr165Wdna2srCxt2LBBxcXFstvtSk5OVmpqqlJSUnTzzTcz1wEAqKRKS0u1c+dOuVyu4Prqq690+vRpRUZG6oYbblBycnJwtWzZUrGxsaazAQDAeU6cOKE9e/bI7XbL5XIpJydHW7du1aFDhyRJNptNDodDTqdTycnJSkpKUrNmzXT99dcbLgcAAGcrKyvTgQMH5PF45PF45Ha7lZOTI4/Ho3379qmiokKRkZGqW7euHA5HcL4nJSXJ4XCofv36vOcNAIBKwufzBWf6+evMXJf+7zn7xVa9evUUERFh+EwAAAhtRUVF8nq958xyr9ervLw8eTwe7d+/X+Xl5ZIki8WihISE4Cy32+3n/JnZDgAALrcdO3Zo6NChWrp0qfr06aOXX36Z7+MEQlBxcbGmTZum559/XkeOHNH999+vESNGqGHDhqbTAKCymRNpugAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyd/H6/ioqKKv3+5MmTqqiouOTztVgsslqtP3pftWrVc+6/lMf6ofuqVasqKirqks8ZAAAAAAAAAAAAAAAAAABUfmeum/T7/fL5fBesH3Ls8OHD33q9pcVikc1mO2dZrVbZbDY5HI6LHjv739SsWVORkZGX+acCAAAAAAAAAAAAAAAAAD+P0tJSLVq0SKNHjzadcg6Hw6HZs2frT3/6k5566il16tRJt956q0aPHq327dubzgMAAAAAY2bMmKHXXntNU6dOVZs2bUznAACuMo8++qiOHTumzMxMvhMCAH5mERERat26tdauXav09HTTOQCuMnl5ebruuusUExNjOgVACIuKilJJSYnpDAAh7NixYyopKZHdbjedAiCERURESJLKy8sNlwAIZXl5eWrYsKHpDAAhrLS0lM9rBmBMcXFxSP3OzGq16oEHHtADDzygo0eP6qOPPtLcuXP10EMPKSwsTLfeeqt69uype+65R7Vq1TKdC+C/5Omnn9a6devUu3dvbdy4UdWrVzedBADnqFmzpt577z116dJFd911lwYMGGA6CUAIe/nll1VQUKBevXrpk08+UZcuXUwnAQhBkZGR+vDDD3XzzTerR48eWrZsWUi9pgWg8omIiNCkSZPUqFEjPf7449q5c6cmTJigsLAw02kAoGrVqmnixInq1auXfve736lZs2YaN24c79MFELLCw8OVlpamtLQ07dq1S1OmTNGkSZM0btw43X333UpPT1daWprpTAAAKqWBAwcqLS1NmzdvVvPmzU3nAACAK0hsbKx69+6tyZMn64knnuB3KAAAXOH+9a9/qU+fPqpSpYrpFAAA8BOUlJRo0KBBmjlzpt544w099thjppMAAMBPkJWVpeeee04rVqxQWlqa1q9fr9atW5vOAgAAP1BFRYWWLVum999/X3PnzlVZWZluv/12ffDBB7r33nv5DlQA/brr3wAAIABJREFUAK4Ax44d07Jly5SZmamFCxfq4MGDqlGjhjp16qQ333xT3bt35/ufAACo5Dwej7KyspSdna2srCxt27ZN4eHhaty4sVJTU5Wenq7U1FQ5HA7TqQAA4CJOnTqlr776Sjk5OXK73XK5XHK5XCoqKlJ0dLQaNmyo5ORk/eY3v1FycrJat24ti8ViOhsAAJzl5MmT2r17t9xud3Cm5+TkyOPxSJLi4uLUsGFDOZ1OpaWlyel0KikpiefqAABUMj6fTx6P55xZfubPRUVFkiSbzSaHwxGc6w6HI/hnq9Vq+AwAAEBJSYlyc3ODc/zstXPnThUUFEiSoqOjlZiYGJzlZ8/1Ro0aqVq1aobPBACA0HbmObrX61VeXt45M/3MfWfYbDbZ7XYlJCScM9fP3NegQQM+OxYAAFQKJ0+e1AsvvKAJEyaoadOmWrFihdq3b286C8Bldvr0ab377rt6+eWXdezYMQ0YMEDDhw9XYmKi6TQAqLTCAoFAwHQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4uMLCQhUXF0uS/H6/ioqKLnlfVFQkv99/yfvi4mIVFhZesL8UkZGRuuaaayRJERERqlat2k/ah4eHKy4u7pL3YWFhio+Pv2AvSTab7ZLPFwAAAAAAAAAAAAAAAAAA4Lv4/X75fL7gOnMt59n3fdexY8eOqaSk5KKPbbFYZLPZZLVag/vz1/cd43pKAAAAAAAAAAAAAAAAAKFuyZIluvPOO+XxeNSgQQPTOd9qxYoVGjlypFasWKHOnTvrueeeU6dOnUxnAQAAAMBltXHjRrVv315DhgzRSy+9ZDoHAHCVefvttzVkyBB99tlnuuOOO0znAMBV6emnn9ann34qt9ttOgXAVea5557Tp59+qi1btphOARDCxo8frzfffFP79+83nQIgRH399de68cYblZOTo6ZNm5rOARCiVq9erZSUFOXm5qp27dqmcwCEKKfTqfvuu0+jRo0ynQIgRL3wwgv617/+pV27dplOARCCXnrpJf3jH/+Qx+MxnWKUz+dTRkaG5s2bpyVLlqioqEjt2rXTvffeqy5dusjpdJpOBPAz8/l8atWqlRo2bKjFixcrIiLCdBIAXGDYsGF65513tGHDBjVp0sR0DoAQVlFRof79+2vevHn67LPP1LFjR9NJAELU9u3b1bZtW/Xo0UP/+te/TOcAgCTp/fff18CBA9W7d2+9++67ioqKMp0EAEEFBQX685//rMmTJ6tHjx6aNGmS7Ha76SwAMK6oqEgffvihJkyYoE2bNqlly5YaPHiw+vbtq9jYWNN5AABUGoFAQDfccIO6deum119/3XQOAAC4wqxfv1433XSTsrOz1a5dO9M5AADgJ1q1apU6dOggl8ulVq1amc4BAAA/0vHjx9WzZ09t3LhRs2bNUteuXU0nAQCAHykrK0sjRozQ8uXLlZaWpr/97W+66aabTGcBAIAfyO12a/r06Zo2bZoOHTqk5ORk9evXT3379lX16tVN5wEAgO9QXl6ur776SpmZmcrMzNSXX36pQCCgFi1aqFu3burevbtatWqlsLAw06kAAOAiSktLtWXLFmVlZSk7O1vLli3TsWPHFBsbqxYtWig1NVUpKSlKTU2VzWYznQsAAM5z8uRJff3113K5XMG1fft2VVRUKC4uTs2aNVNycnJwNWnShO+aAACgEsnPz9euXbvkdruVk5MTvN27d68CgYCqVaumRo0ayel0KikpKXjboEEDXncHAKCSOHHihPbs2SOPxyOPxxOc5zt37lRBQYEkKSYmRr/4xS+UlJQkh8Mhh8Mhp9OpG2+8UdWqVTN8BgAAwOfzBWf5+Wvfvn2qqKiQJNlstuAsP3/Vq1eP198BADDoYvPc6/UqLy/vnOfo0oUz3W63KyEhQQ6HQ40aNeK5OgAAqPRKSkr09ttva+zYsQoEAho9erQGDx7MaxNAiCkoKNDUqVM1btw4FRQU6OGHH9Zf//pXJSQkmE4DgMpuTlggEAiYrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4HLx+/0qKiq6ovaXymKxyGq1Vvp9XFycwsPDf5ZzBgAAAAAAAAAAAAAAAAAAMOnMtaB+v18+n++C9UOOHT58WBUVFRd9fIvFIpvNds6yWq0Xvf9ix2rWrKnIyMjL/FMBAAAAAAAAAAAAAAAAgKvPo48+qrVr18rlcplO+UGWL1+uUaNGaeXKlUpOTtawYcPUq1cvrikDAAAAcNU7fPiwWrduraZNm2rRokWKiIgwnQQAuIps2bJFbdu21V/+8heNGjXKdA4AXLU++eQT9ezZU8ePH1d8fLzpHABXkYcfflgHDx7U4sWLTacACGGTJk3S888/r8OHD5tOARCili5dqjvuuEM+n4/nXACMWbt2rdq2bat9+/apXr16pnMAhKj4+Hi9/PLLSk9PN50CIESNHTtWM2bM0Pbt202nAAhBY8aM0axZs7Rt2zbTKZVGYWGhFi9erHnz5umzzz7T8ePHVbduXd1xxx264447lJaWpri4ONOZAH4G69atU/v27TVixAg9++yzpnMA4AIlJSVKTU1VaWmp1qxZI4vFYjoJQAgrLy9X3759tWjRImVmZqpNmzamkwCEqPnz56tnz55644039Nhjj5nOAQBJ0qJFi3Tfffepffv2+vDDD1W1alXTSQBwjszMTKWnp+vEiRMaP368HnroIYWFhZnOAoBKweVyafLkyZoxY4YiIyP1wAMP6PHHH1ezZs1MpwEAUCm8+OKLevXVV3Xw4EHFxMSYzgEAAFeYli1bqmXLlpo6darpFAAA8BM9+OCD+vrrr6+Y72sEAAD/Z/fu3erWrZtOnz6tBQsWqEWLFqaTAADAj5Cdna2RI0fqiy++UEpKiv72t7+pY8eOprMAAMAP4PV6NWfOHL3//vvauHGj6tatq969e2vgwIFq2LCh6TwAAPAdjhw5ohUrVmjBggXKyMiQz+dTgwYNdPvttystLU2/+tWv+DxaAAAqqcOHD2vdunXKzs5WVlaWNmzYoOLiYtntdiUnJys1NVUpKSm66aabFB0dbToXAACcxev1yuVyKScnR263Wy6XS9u2bVMgEJDdbldSUpKcTqeSk5OVnJwsp9PJ52cBAFBJlJSUaNeuXcE5fuZ2+/btqqioUHR0tBo2bHjOPE9KSlL9+vUVHh5uOh8AgJBXWlqqb775Rh6PJzjLPR6PPB6P9u7dq0AgoKioKNWpU0cOh0NOp1NJSUlyOBxyOBxq0KABz9EBADCopKREubm5wfl99tq5c6cKCgokSdHR0UpMTAzO8LNXo0aNVK1aNcNnAgBAaCouLtbBgwfl8Xjk9XqVl5d3zjw/cOCAysrKJP3fPLfb7UpISLhgptepU0dRUVGGzwgAAOCnCQQC+uijj/TMM8/owIEDGjx4sEaPHq34+HjTaQAuo6NHj+qNN97Qm2++KUkaMmSInnjiCV133XWGywDgijEnLBAIBExXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuTH6/X0VFRZV+X1hYqOLi4ks+X4vFIqvVesH+u46Z2sfHxyssLOySzxkAAAAAAAAAAAAAAAAAACDU+P1++Xy+4CoqKrrgvu86duzYMZWUlFz0sS0Wi2w2m6xWa3B//vq+Yzab7TL/RAAAAAAAAAAAAAAAAAAAFxMIBFS3bl0NGjRII0aMMJ3zo2zcuFETJkzQrFmzlJiYqMGDB+v3v/+94uPjTacBAAAAwM+utLRUaWlpOnTokNauXctzHwDAz+rEiRNq3bq16tatq88//1wRERGmkwDgqpWXl6eEhAQtXbpUt99+u+kcAFeRbt266brrrtO0adNMpwAIYe+9954effRRFRYWmk4BEKKmT5+uQYMGBb8LGABM2LJli5o3b65t27apSZMmpnMAhKCioiJZrVZ98sknuueee0znAAhRL774oqZMmaLdu3ebTgEQgp599lktXLhQX331lemUSqm8vFzr1q3TkiVLtHjxYm3YsEFhYWG65ZZbdMcddygtLU3JycmKjIw0nQrgJ5o4caL++Mc/avHixVyfBKBS2rNnj1q3bq177rlH7733nukcACGutLRUPXv2VFZWlr744gu1atXKdBKAEDV27FiNGTNGixcv1m233WY6BwAkSevXr1e3bt2UmJioBQsWKCEhwXQSAJzD7/dr9OjRGj9+vNq1a6d//vOfaty4seksAKg0Tpw4oWnTpumNN96Qx+NRSkqKhg4dqnvvvVdRUVGm8wAAMObQoUOqU6eOZsyYofvvv990DgAAuMJMmjRJTz31lPLy8nTNNdeYzgEAAD9Sfn6+7Ha7xo8fr0ceecR0DgAA+BGys7PVo0cPORwOzZ8/X7Vq1TKdBAAAfqA1a9bohRdeUEZGhlJSUjRmzBjePwUAwBWgqKhICxYs0Pvvv6/FixeratWq6t69u/r376/OnTsrLCzMdCIAALiIsrIy/fvf/1ZGRoYyMzO1ceNGWSwWpaSkKC0tLfiZswAAoPLxeDzKyspSdna2srKytG3bNoWHh6tx48ZKTU1VSkqKkpOTlZSUZDoVAACcxev1yuVyBdf69et1+PBhSZLdbldycnJwtW7dWna73XAxAACQpJKSEu3atUs5OTlyu93B2+3bt6uiokLR0dFq2LChkpKS5HQ6g7dNmzZVeHi46XwAAEKez+cLznCPxyOPxyO3260dO3aovLxckmSz2YJz3OFwyOFwyOl0qnHjxnxPKwAABvl8vuD8Pn/t27dPFRUVkv53lp+Z4eevevXqKSIiwvCZAAAQevx+v/Ly8i6Y4V6vV3l5eefMcovFooSEhHNmuN1uD95Xv359Xm8HAABXnUAgoIULF2rUqFHatGmT+vXrp+eff1516tQxnQbgMjp48KBeffVVTZ48WRaLRU888YQef/xxxcXFmU4DgCvNnLBAIBAwXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkPx+v4qKiir9/tSpUyotLb3k87VYLLJarZV+b7VaZbFYLvl8AQAAAAAAAAAAAAAAAAAA8N915ppXv98vn893wfohxw4fPqyKioqLPr7FYpHNZjtnnbnW9Pz7L3asRo0aioqKusw/FQAAAAAAAAAAAAAAAADAf8u///1v3XLLLdq8ebNuvPFG0zk/yd69ezVhwgRNmTJFERERevDBB/XnP/9ZiYmJptMAAAAA4GeTnp6u2bNna82aNUpKSjKdAwC4yvzmN7/R6tWrtWnTJtWsWdN0DgBc9erXr6+BAwfqueeeM50C4CrSrl07tW3bVq+99prpFAAhbO7cufr1r3+t0tJSRUZGms4BEIImTJigV155RQcPHjSdAiCE7d69W40aNZLL5VKrVq1M5wAIQV6vV7Vr11ZWVpZSUlJM5wAIUa+88or+/ve/a9++faZTAISgYcOGadWqVVq7dq3plCvC8ePH9cUXXygzM1OLFi3SN998o9jYWLVo0UKpqalKS0tTSkqKrFar6VQAP8JvfvMbrVy5Ups2bVJCQoLpHAC4wNKlS3XXXXdpwoQJGjJkiOkcACGuuLhY9957r1wul7788ks5nU7TSQBCUCAQ0AMPPKClS5dq1apVatasmekkAJD0v5/x17VrV508eVIZGRlq2bKl6SQAuMBXX32lgQMHKicnRyNHjtSwYcMUERFhOgsAKo2KigotW7ZMkydP1ty5c1WzZk31799fjz32mOrUqWM6DwAAI7p166bS0lItWbLEdAoAALjCnDhxQgkJCXrzzTf18MMPm84BAAA/0uTJkzV06FB5vV7ZbDbTOQAA4Ad677339Pvf/1733HOPpk2bxvveAQC4Qqxdu1Zjx45VRkaG2rVrpzFjxqhz586mswAAwHeoqKjQ6tWrNX36dM2aNUuFhYW69dZb1a9fP/Xq1UtVqlQxnQgAAC7C4/EoMzNTmZmZWrJkifLz8+VwOJSWlqa0tDR16dJFVatWNZ0JAADOUlpaqi1btigrK0vZ2dlavny5jh49es5nw6ekpCg1NZVr3QAAqCTKysq0Y8cOuVwu5eTkyO12a82aNTp27JgiIiLUuHFjJSUlyel0Kjk5WbfccouqV69uOhsAgJBXWlqqnTt3Buf3mdsdO3aovLxcUVFRatSoUXCOn7lt0qQJn2kJAIBhPp9PHo9HHo8nOMc9Ho+2b9+u06dPS5JsNpscDkdwnZnnjRs35vfkAAAYUlJSotzc3OAcP3vt3LlTBQUFkqSoqCjVqVPnnFl+ZjVs2FBxcXGGzwQAgNBz9nNxr9ervLy84J93796tkydPBv/umefkdrtdCQkJF8xzrnsDAAChJBAIaOHChRo9erRcLpfuvvtujRkzRjfeeKPpNACX0d69ezVhwgRNnjxZcXFxGjx4sJ588kle6wSAn25OWCAQCJiuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICfm9/vV1FRUaXfFxQUqKys7JLP12KxyGq1Vvp9lSpVFBMTc8nnCwAAAAAAAAAAAAAAAAAAgKuL3++Xz+cLrqKiogvu+65jx44dU0lJyUUf22KxyGazyWq1Bvfnr+87ZrPZLvNPBAAAAAAAAAAAAAAAAABQ2f3xj3/UZ599pu3bt5tOuWTHjx/X22+/rUmTJun48ePq27evhg4dqubNm5tOAwAAAIBL8uabb+qJJ57QJ598ou7du5vOAQBcZSZPnqxHHnlES5cuVefOnU3nAEBIuP/++1VYWKgFCxaYTgFwFWnatKn69Omj4cOHm04BEMI+//xz/epXv9Lx48f5vCMARowcOVIff/yxtm7dajoFQAjLy8tTQkKCVq1apdTUVNM5AEKQ2+1Ws2bN5Ha75XQ6TecACFGvv/66xo8fr4MHD5pOARCCHn/8cW3evFkrV640nXJF2rZtm1atWqVVq1ZpxYoV+uabbxQTE6M2bdqoQ4cOuummm9SmTRslJCSYTgXwHU6dOqU2bdqoVq1ayszMVGRkpOkkALjA888/r+eff16ff/65OnbsaDoHQIgrLCxUly5dtGfPHq1YsUK/+MUvTCcBCEElJSW66667tG3bNq1Zs0Z169Y1nQQAkiSfz6df//rXWr9+vWbPnq2uXbuaTgKAC5SVlenVV1/VqFGj1LhxY7377rtq3bq16SwAqHQOHjyof/7zn3rrrbd0/PhxdenSRUOHDlXnzp0VFhZmOg8AgMtm3rx56tWrlzwej+rVq2c6BwAAXGF69+6t/fv3a/Xq1aZTAADAj3TzzTerUaNGmjFjhukUAADwAwQCAT377LMaN26cnn76aY0dO5bfbQMAcAXYsGGDRo0apYULF6pdu3YaPXq00tLSTGcBAIDvsH37ds2ePVvvv/++9u7dK6fTqf79++uhhx5SzZo1TecBAIDz+P1+ZWdnKzMzU5mZmXK5XIqNjdUtt9yibt266d577+U6eQAAKpnDhw9r3bp1ys7OVlZWllwul4qKimS325WcnKzU1FSlpKTopptuUnR0tOlcAABCXmlpqXbu3CmXyxVcmzZtUmFhoaKiotSoUSMlJycHV6tWrVSlShXT2QAAhLSysjIdOHBAbrdbOTk5wdutW7equLhYkZGRqlu3rpxOp5KSkoK3zZo1U0xMjOl8AABCVklJiXJzc4Oz2+PxyOPxyO12Ky8vT5IUHR2txMREORyO4Ax3OBzBBQAALj+fzxec2+ev/fv3q7y8XJJks9nOmdtnr3r16ikiIsLwmQAAEDrOPAf3er3Ky8s7Z357vV7t379fp0+fliRFRUWpevXqSkhIOGd+2+12JSQkqHHjxqpatarhMwIAADAvEAgoIyNDY8aMkcvl0t13360RI0aoVatWptMAXEZff/21XnnlFc2aNUt16tTR0KFD9fvf/14Wi8V0GgBc6eaEBQKBgOkKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJWb3+9XUVFRpd/n5+ervLz8ks/XYrHIarVW+n1sbKyio6Mv+XwBAAAAAAAAAAAAAAAAAACAn+rM9bx+v18+n++C9UOOHT58WBUVFRd9fIvFIpvNds6yWq0Xvf9ix2rUqKGoqKjL/FMBAAAAAAAAAAAAAAAAAFztAoGA6tevrwEDBmjMmDGmc342xcXFmjFjhl577TXl5OTo5ptvVnp6uu6//37FxsaazgMAAACAHyUrK0udO3fWiBEj9Oyzz5rOAQBcZbZt26bWrVvriSee0N/+9jfTOQAQMl599VW99NJLOnLkiOkUAFeRWrVqafjw4RoyZIjpFAAhbO3atWrbtq3279+vunXrms4BEIL+8Ic/aNOmTVq1apXpFAAh7OTJk4qPj9eSJUv0q1/9ynQOgBCUlZWl9u3by+v1ym63m84BEKImTZqk559/XocPHzadAiAEPfLII9qxY4eWLVtmOuWqsG/fPq1cuVIrV65UVlaWdu7cqUAgoISEBLVu3Vpt2rQJ3l533XWmcwGc5euvv1bbtm31hz/8QS+++KLpHAC4QCAQ0H333adVq1Zpw4YNSkxMNJ0EIMTl5+crLS1Nhw4d0sqVK1W/fn3TSQBC0MmTJ9WhQweVl5dr1apVstlsppMAQJJUUlKiQYMGaebMmZo4caIee+wx00kAcFHbt2/XoEGDtHbtWg0bNkzDhw+X1Wo1nQUAlU5xcbE+/fRTTZ48WZmZmbrhhhv0u9/9Tunp6TwXBQCEhLKyMtWpU0eDBw/WyJEjTecAAIArTGZmpm6//Xa53W45nU7TOQAA4AfaunWrfvnLX2rZsmW69dZbTecAAIDvUVRUpIcfflgfffSRJk+erAEDBphOAgAA32Pz5s0aOXKkPv30U7Vp00ajR4/WnXfeaToLAAB8i//85z+aNWuWpk+frg0bNqhu3br67W9/q379+qlJkyam8wAAwHk8Ho8yMzO1YMECZWZmqqioSE6nU927d1daWpo6dOig6Oho05kAAOD/83g8ysrKUnZ2trKysrRt2zaFh4ercePGSk5OVmpqqlJSUpSUlGQ6FQCAkFdQUKDNmzfL5XIpJydHbrdbGzZsUHFxsa655hrdeOONSkpKktPpVHJystq0aaOYmBjT2QAAhKyysjIdOHBAbrc7OLvP3BYVFSkyMlJ169aV0+kMzvCkpCQlJSXJYrGYzgcAIGR5vV7l5OTI4/HI4/EEZ/i+fftUUVEhSbLb7UpKSpLD4ZDD4QjO8Xr16ikiIsLwGQAAEFpKSkqUm5sbnN1nr127dik/P1+SFBUVpTp16gTn99mrYcOGiouLM3wmAACEjqKiInm93uDM9nq9ysvLC/55//79Ki8vlyTFxMSodu3acjgcstvtSkhIOGeO161bV5GRkYbPCAAAoPIqLS3VrFmz9Morr8jtduvuu+/WiBEj1KpVK9NpAC6j7OxsjRs3TgsXLlSzZs00bNgw9enTh+dTAPDzmRMWCAQCpisAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAUFBeXq78/HxJUllZmQoKCiRJpaWlOnXqlCSppKREp0+fliQVFxersLBQklRUVCS/33/B/uy/82P3Z/+3vm1/KcLDwxUXF3fJ+7CwMMXHx1/yXpJsNtv37gEAAAAAAAAAAAAAAAAAAIBQ4ff75fP5guvMtcpn3/ddx44fP67i4uKLPrbFYpHNZpPVag3uz1/fdyw+Pl5hYWGX+acCAAAAAAAAAAAAAAAAAMD3W716tVJSUrRlyxb98pe/NJ3zX+FyuTR58mRNnz5dUVFReuCBBzR48GC1bNnSdBoAAAAAfK/9+/erTZs2at++vT766CPepwQA+FkVFxerbdu2ioqKUnZ2tqKiokwnAUDIWLVqlTp06KC9e/eqfv36pnMAXCViYmI0depU9e3b13QKgBCWk5OjpKQkbd26VUlJSaZzAISgfv36KT8/X/PnzzedAiCElZWVKSoqSnPnzlWPHj1M5wAIQQsWLNDdd98tv98vi8ViOgdAiHrnnXf0zDPP6Pjx46ZTAISgwYMHa/fu3crMzDSdclUqKCjQ5s2b5XK5gmvbtm0KBAKy2WxyOp1KTk5WUlKSnE6nWrRooapVq5rOBkLWlClTNGjQIM2dO1f33nuv6RwAuMCpU6fUtm1bVa1aVStWrFBMTIzpJAAh7sSJE7rttttUUFCglStXym63m04CEIIOHjyoW265RQ6HQ0uWLOH/kQBUKhMnTtSTTz6pxx9/XK+//rrCw8NNJwHABSoqKvTOO+/o6aefVo0aNTRp0iTdeeedprMAoNLatGmT3nnnHc2cOVPh4eHq3bu3Hn30UTVv3tx0GgAA/1XDhg3Txx9/rD179vAaBwAA+FECgYAaNmyoHj16aPz48aZzAADAD/Tkk09q/vz52r17N68FAABQyR06dEj33HOPdu/erY8//lidOnUynQQAAL5DTk6Oxo0bp5kzZyopKUnDhw9Xr169+M5NAAAqIb/fr/nz52vGjBlasmSJrFarevXqpf79+6tDhw68fg4AQCVy+vRpLVu2TBkZGVq8eLEOHDig6667TrfddpvS0tLUtWtX1a5d23SFX/JjAAAgAElEQVQmAACQVFpaqi1btigrK0vZ2dlavny5jh49qtjYWLVo0UKpqalKSUlRSkqKrr32WtO5AACEtBMnTmjr1q3nfNfK9u3bVVFRofj4eCUlJSk5OTm4mjZtymvnAAAY5PV6lZOTI7fbLZfLpZycHG3btk2FhYWSJLvdHvyOtDPfl9a0aVNVqVLFcDkAAKHJ5/PJ4/HI4/HI7XYrJydHHo/nnPlts9nkcDjkcDjkdDqVlJQkh8PBDAcAwICzZ/f5a//+/SovL5d07vw+f9WrV08RERGGzwQAgNBwZnZ7vV7l5eWdM7vP3HeGzWaT3W5XQkLCObP7zH0NGjTgfeAAAAA/wenTp/Xuu+/qtddeU25uru666y6NHDlSrVu3Np0G4DLKysrSSy+9pIyMDLVq1UpPPfUUn7cFAP8dc8ICgUDAdAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwKfx+v4qKii5p/3M8xnft8/PzVV5efsnnarFYZLVaK/2+WrVqioiIuOTzBQAAAAAAAAAAAAAAAAAAAHChs6+D9vl8F6wfcuzw4cOqqKi46ONbLBbZbLZzltVqvej9FztWo0YNRUVFXeafCgAAAAAAAAAAAAAAAAAAl8+TTz6pRYsWafv27aZT/utOnDihDz/8UG+++aa2bt2q5ORkpaenq0+fPqpatarpPAAAAAC4gN/vV/v27VVWVqbs7GzFxsaaTgIAXGWGDh2qqVOnauPGjWrUqJHpHAAIKYWFhYqLi9PMmTN13333mc4BcBUoLCxUbGysMjIy1LVrV9M5AELYwYMHlZiYqKysLKWkpJjOARCCunfvrmuvvVbTpk0znQIgxFksFk2ZMkV9+/Y1nQIgBE2fPl3p6eny+/2mUwCEsKlTp2ro0KEqKCgwnQIgBKWnp2vv3r36/PPPTaeEjP/85z/asGGDtmzZoq1bt8rtdisnJ0fFxcUKDw9XgwYN1LRpUzVs2PCcVa9ePUVGRprOB656Dz30kObPny+Xy6UGDRqYzgGAC+zYsUM333yz7r77bk2bNk1hYWGmkwCEuCNHjqhTp06qqKjQihUrVKtWLdNJAELQ5s2b1aFDB3Xt2lUzZsxQeHi46SQACJozZ4769++vu+66S9OnT1eVKlVMJwHARR06dEh/+ctfNH36dHXr1k1vvfWW6tSpYzoLACqt/Px8zZ49+4LPbu7Xr5+sVqvpPAAAfnY7duxQkyZN9PnnnystLc10DgAAuMKMHj1ab731lnJzcxUVFWU6BwAAfI+SkhIlJibqD3/4g5577jnTOQAA4Dts3bpV3bp1U1RUlBYsWKAmTZqYTgIAAN9i7969GjdunKZMmaImTZpo5MiR6tWrF+8VBwCgkqmoqNDq1as1ffp0zZ49W6dPn9att96qfv36qWfPnqpatarpRAAA8P+53W5lZGQoMzNTK1euVHl5uVq0aKG0tDSlpaWpU6dOfIYrAACVwOHDh7VmzRplZWVp9erVcrlcKikpUe3atZWSkhJczZs3Z3YDAGCQ1+uVy+WSy+VSTk5O8DtUJMlutys5OVlJSUlyOp1KTk6W0+nk990AABji9XrPmddut1tfffWVTp8+Lel/Z/eZuX3mtmXLloqNjTVcDgBA6CkuLtbu3buVk5Mjj8cjj8cjt9utrVu36uTJk5KkmJgY1a5dOzi7HQ6HHA6HfvnLX/L9PwAAXEYlJSXKzc0Nzuyz165du5Sfny9JioqKUp06dYIz++zVsGFDxcXFGT4TAABCg8/nO2dee71e5eXlyePxaOfOnSooKAj+XZvNFpzXdrtdCQkJzG8AAID/on379umdd97RP//5TxUXF+vhhx/WH//4R9WrV890GoDLpKKiQgsXLtTYsWO1bt06paSk6K9//au6d+9uOg0ArmZzwgKBQMB0BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoXv9+voqKiS9r/HI/xXfuCggKVlZVd8rlaLBZZrdZv3X/f8cuxj4uLU3h4+CWfKwAAAAAAAAAAAAAAAAAAAADz/H6/fD5fcJ25/vrs+77r2PHjx1VcXHzRx7ZYLLLZbMFroW022wXr+47Fx8crLCzsMv9UAAAAAAAAAAAAAAAAAAC4cgQCAdWvX18PPvigRo8ebTrnsgkEAlqxYoUmT56suXPnKiYmRn379tVDDz2kNm3amM4DAAAAAEn/+9yld+/eyszM1Lp16+RwOEwnAQCuMosWLVLXrl01ffp09e3b13QOAISkFi1a6Pbbb9crr7xiOgXAVeA///mPatasqS+//FIdO3Y0nQMghBUXF8tqtWrevHm65557TOcACEG33XabmjZtqr///e+mUwCEuFq1amn48OEaMmSI6RQAIejtt9/WyJEjdeTIEdMpAELYBx98oD59+qisrIzPCgdw2Q0aNEgHDhzQkiVLTKeEtPLycu3Zs0dff/213G63duzYod27d2vPnj06duyYJCkqKkr16tVTgwYNlJiYqLp16yoxMVG1a9cO7uPi4gyfCXDlKywsVNu2bWWxWLRy5UpZLBbTSQBwgSVLlqhbt2567rnnNHLkSNM5AKCDBw+qQ4cOuuaaa7Rs2TJde+21ppMAhKDMzEx17dpVAwcO5HooAJXOihUr1LNnT91www2aN2+err/+etNJAPCtli9frkceeUS5ubkaPny4hg0bpoiICNNZAFBpBQIBffHFF3rrrbe0YMECXXfddfrd736ngQMH8lloAICrzi233KIGDRrof/7nf0ynAACAK0xubq7q16+vOXPmqEePHqZzAADA9/joo490//33a+/evapbt67pHAAA8C2WLl2q++67T82aNdO8efNUo0YN00kAAOAi9u3bpxdffFFTp05Vo0aN9NRTT6lv375cnwsAQCWTk5OjDz/8UO+//7727t0rp9Op/v3768EHH1StWrVM5wEAAElHjx7V8uXLlZmZqYyMDHm9XtWsWVMdO3ZUt27d1L17d9lsNtOZAACEtEAgoJycHGVnZ2v16tXKzs7W7t27FRERoaSkJKWmpqpdu3ZKSUlR/fr1TecCABCyvF6vXC5XcK1bty74/X12u13JycnBddNNN/E6OQAAhni9XuXk5MjtdgdvN2/erFOnTkn637mdlJQkp9MZvG3RooWqVq1quBwAgNBSVlamAwcOyOPxyOPxBGe3x+PR3r17FQgEFBkZqbp168rhcMjhcATnt8PhUP369RUeHm76NAAACAk+ny84s89f+/fvV3l5uSTJZrMF5/b5q169erwvDACA/7Li4mIdPHhQHo9HXq9XeXl558ztAwcOqKysTJIUHR2txMRE2e12JSQknDO37Xa7GjRooCpVqhg+IwAAgKtfIBDQ0qVL9dZbbykjI0PXX3+9Bg8erEceeUTVq1c3nQfgMikuLtb06dM1fvx47dq1Sz169NDTTz+t5ORk02kAEArmRJouAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAV+v19FRUU/2/7nfjxJKigoUFlZ2SWfq8VikdVq/db9tx232Wzf+e9+zn1cXJzCw8Mv+VwBAAAAAAAAAAAAAAAAAAAAhI6zr+f2+XwXrB9y7MiRIyovL7/o41ssFtlstnOW1WqVzWaTw+G46LGz/02NGjUUFRV1mX8qAAAAAAAAAP4fe3ce3VSZ+H/8U7qQ0haIsqVKgSCgKSAaBIcWkbGKIoygMI5gUQF3FsdxGVxxHEfRmUFQBsUNYRxkqiiyQ1XUFhUpi5CCFMJSSEtB0pV0S/L74zvkB4Ir0gea9+uc5+Qm9/ae982c8WnovbkAAAAAAAAAws+qVau0e/duDR061HRKnYqIiNCll16qSy+9VAcOHNCbb76pV155RdOnT1enTp00bNgwDR8+XO3btzedCgAAACCMPfXUU3r33Xe1fPly2e120zkAgHpm//79uvnmm5Wenq7hw4ebzgGAsNWjRw+tXr3adAaAeqK6ulqSFBMTY7gEQLhr2LChEhISVFRUZDoFQJiqqqridyIAp4QzzjhDBw8eNJ0BIEzxOxGAU0FCQoICgYAqKioUHx9vOgdAmAkEAoqIiDCdEfYiIyPVsWNHdezYUdddd91R67xer7Zt26bt27dr27Zt2rlzp/bs2aMvv/xS+fn5KisrC20bGxurFi1aqFWrVmrevHlouUWLFmrSpImaNGmixo0bq2nTpqHlxo0by2Kx1PUhA6esRo0a6Z133lHPnj1155136o033jCdBADH6Nevn1566SXdeuutstvtSk9PN50EIMydddZZ+vjjj3XJJZfo6quv1vLly5WQkGA6C0CYSUtL09y5czV06FDFxMRo8uTJppMAIKRPnz5atWqVBg4cqB49emj+/Pm64IILTGcBwHH17dtX69at06RJk/T444/r7bff1ksvvaSePXuaTgOAU1JERITS0tKUlpamPXv26JVXXtFrr72mSZMm6bLLLtNtt92ma665RtHR0aZTAQA4YaNGjdKYMWN04MABNWvWzHQOAAA4jZx99tm67LLL9Nprr2nw4MGmcwAAwI947bXX1K9fPyUlJZlOAQAA32PGjBm6++67lZ6erpdeeonvTwIA4BS0e/duPfXUU3r99dfVunVrTZs2TaNGjVJkZKTpNAAA8D8ej0cZGRnKyMhQdna2WrdurcGDB2vkyJE6//zzTecBABD2/H6/1q9fr8zMTC1YsECff/65GjRooJ49e2rcuHFKS0vThRdeyHfqAgBg0KFDh7R27Vrl5OQoOztbH3/8sQ4cOKC4uDh169ZN1113nVJSUpSSkqIzzjjDdC4AAGGntrZW33zzjXJyckJjw4YNKi8vV1RUlDp27Cin06l7771XDodDvXr10plnnmk6GwCAsOP1euVyuZSbmxt6XL9+vQ4cOCBJslqtcjgcSk5O1tChQ5WcnKxu3brx3S8AANQxr9crt9sdmq/dbnfoeWVlpaT/m7ftdrscDofS0tJkt9tDz2NjYw0fAQAA9V9NTY3y8/ND8/SRIy8vT6WlpZKk6OhotW7dOjRXHzlvt2/fXk2bNjV8JAAA1G8+n08FBQVHzdUejyf02s6dOxUIBCRJFotFiYmJR83bNpst9FqbNm24dhsAAMCg0tJSvf3225o6dapcLpecTqfeeOMN3XDDDdyvDQgjJSUleumllzRlyhR9++23uvHGG/X+++/r3HPPNZ0GAGElIhgMBk1HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/Fw+n0+VlZUnZfnX2l9ZWZlqa2tP+FgtFotiY2N/0vLP2fbXXG7SpIkaNGhwwscKAAAAAAAAAAAAAAAAAAAAACeDz+eT1+sNjcPnjh/52g+tO3jwoKqqqo67b4vFIqvVGjqn22q1HjN+bF3Tpk0VERFRx+8KAAAAAAAAAAAAAAAAAAD4Je655x4tW7ZMmzdvNp1ySnC5XJo9e7befPNNFRYWyuFwaMSIEbr55pvVsmVL03kAAAAAwsjSpUs1YMAATZkyRXfffbfpHABAPTR06FB98cUX2rhxo5o2bWo6BwDC1iuvvKJ77rlHJSUlioqKMp0D4DTndrvVvn175eTk6MILLzSdAyDMdejQQbfccoseeugh0ykAwtBFF12kyy67TM8884zpFABhLiUlRT169NDkyZNNpwAIQ88++6xefvllbd++3XQKgDCWlZWl3r17y+PxyGazmc4BEGZGjhypwsJCLV682HQKfqHS0lLl5+dr9+7dKioq0r59+7Rv3z7t379fRUVFKiws1P79+1VcXKxDhw4ddx8xMTFq3LixGjduLKvVGlqOjY1V48aNFRERETp/7vB9Nho3bqzIyEjFx8crOjpajRo1UsOGDWWxWBQbGytJodckKSEhIXTOB/fqwOlg+fLl6t+/v/75z39q3LhxpnMA4LgeeOABPf/881q6dKl++9vfms4BAOXl5alPnz6y2+1atmyZ4uLiTCcBCEP//ve/ddNNN2nixIl69NFHTecAwFG8Xq9+//vf6/PPP9esWbN07bXXmk4CgB+Ul5enu+66Sx999JFGjx6t5557To0bNzadBQCnvEAgoI8++kgzZszQe++9pzPPPFM333yzbr31VrVv3950HgAAv1hZWZlsNpsmTZrEd38CAICf7b///a+GDRum3bt3KzEx0XQOAAD4Hnv37lWbNm309ttva8iQIaZzAADAd/j9ft1777164YUX9Nhjj2nixImmkwAAwHfk5+fr73//u15++WW1atVKDz30kEaOHMl9dgAAOEX4fD4tXLhQs2bN0tKlSxUfH6+BAwdqxIgRuuyyy/huNAAADNu3b5+WLVumhQsXasWKFSouLpbdbldaWprS0tLUr18/rnMFAMCgwsJCffXVV8rOzlZWVpbWrFmjqqoq2Ww2OZ1Opaamhu5DFhMTYzoXAICwUl1drby8POXk5ITG2rVr5fP5FB0drQ4dOsjpdB41Dt9TBAAA1A2v1yuXy6Xc3NzQ49dff62ioiJJktVqlcPhUHJycuixa9euatGiheFyAADCR3FxsbZv3y632y232x2as7du3aqysjJJksVikd1uV3Jysux2u+x2uxwOh7p27crfswEAqANerzc0V3937Nq1S36/X9L/fc4+PFd/dyQlJXGtFwAAJ9GR87XH41FBQUHo+fbt21VcXBza9vCcbbPZlJiYeNScffg1AAAAnHq2bNmi6dOn67XXXlNERISGDRumu+++W127djWdBqAO7du3T9OnT9eUKVPk9/t1yy236P7779fZZ59tOg0AwlFGRDAYDJquAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5vl8PlVWVp6U5V9rf+Xl5aqpqTnhY7VYLIqNjf3Zy7/0537JcuPGjRUZGXnCxwoAAAAAAAAAAAAAAAAAAAAAp7Mjz0v3er3HjJ+yrqioSH6//7j7t1gsslqtR43D549/9/XjrWvevLmio6Pr+F0BAAAAAAAAAAAAAAAAAACmBAIBJSUlafTo0Zo4caLpnFNKIBDQqlWrNHv2bM2ZM0eHDh1S3759lZ6ermuvvVbx8fGmEwEAAADUY99884169uypQYMGaebMmaZzAAD10OzZs3XTTTdpyZIl6tevn+kcAAhrGzZsULdu3bRhwwZ17drVdA6A09zmzZvlcDi0ceNGde7c2XQOgDDXq1cv9ezZU5MnTzadAiAMde3aVYMGDdJf/vIX0ykAwtzAgQN1xhln6M033zSdAiAMPfnkk/rPf/6jzZs3m04BEMYO/y1sy5Yt6tSpk+kcAGHm5ptv1v79+7Vo0SLTKagDtbW1Ki0tVXFxsUpKSlRSUqLS0tLQOPxacXGxSktL5fP5VF5eLr/fr9LSUgWDQRUXF0uSiouLFQwGVVpa+r33BvkxDRo0UJMmTSRJcXFxiomJUUJCgqKiotSkSRM1aNBAVqs1tF10dLTi4+PVsGFDNWrUSHFxcWratGloWK3W0HJcXNyv9r4hfP3tb3/T448/ruXLl6tv376mcwDgGMFgUMOHD9eyZcu0atUqPlMCOCVs3LhRffv2ldPp1Pz582WxWEwnAQhDr7/+ukaPHq1Jkybp/vvvN50DAEfx+/16+OGH9eyzz+qBBx7Q008/rYiICNNZAPCDMjIyNGbMGDVo0ECTJk3SiBEjTCcBwGnD4/Fo9uzZeumll7Rz5045nU7ddtttSk9PV2xsrOk8AAB+thEjRmjr1q364osvTKcAAIDTTGVlpWw2mx555BH96U9/Mp0DAAC+x7PPPqtnnnlGBQUFatiwoekcAABwhPLycg0bNkwrVqzQ66+/rhtuuMF0EgAAOEJRUZH++c9/asqUKWrRooXuvfde3XHHHXy+BgDgFOD3+/Xxxx9r1qxZeu+991RTU6PLL79cQ4cO1ZAhQ9SoUSPTiQAAhK3KykplZWUpMzNTmZmZWrt2rSwWi1JSUpSWlqa0tDQ5nU7TmQAAhC23262srCxlZ2crKytLmzdvVoMGDdSpUyelpqYqJSVFTqdTycnJplMBAAgrpaWl+vrrr5WTkxMa33zzjfx+vxo3bqwuXbrI6XSG5ukuXbooJibGdDYAAGHD6/XK5XIpNzc39Lhp0yYVFhZKkqxWqxwOh5KTk0OPnTt3VqtWrQyXAwAQHmpqapSfny+32x2aq91ut9xut3bs2KFgMKjo6Gi1bt1adrs9NF/b7XbZ7Xa1a9eO75QHAOAkOnKu/u7Ytm2bSkpKJOmo+fq7o3379mratKnhIwEAoH6qqanR/v37VVBQcNQ87fF4VFBQoC1btqiioiK0vdVqPWauttlsSkxMVMeOHZWQkGDwaAAAAPBzVFdXa/78+ZoxY4YyMzPVoUMHjRo1SrfddpusVqvpPAB1aNu2bXrhhRc0Y8YMNWnSRHfccYfGjx/PfwsAwKyMiGAwGDRdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfeTz+VRZWXnSl09kH+Xl5aqpqTnhY7VYLIqNjf3Zy7/0537JcuPGjRUZGXnCxwoAAAAAAAAAAAAAAAAAAAAA+Gl8Pp+8Xq+8Xm/o/PfDz787jrf+4MGDqqqqOu6+LRaLrFZr6Nx0q9V6zPixdU2bNlVEREQdvysAAAAAAAAAAAAAAAAAAOB0lpWVpd69e8vlcsnhcJjOOWVVVFRo/vz5euutt7R8+XJZLBYNGjRIQ4YM0RVXXBH63mAAAAAA+DWUlpbq4osvVtOmTfXxxx+rYcOGppMAAPWMx+NRly5ddOONN2rKlCmmcwAg7Pn9fjVp0kTPP/+8Ro8ebToHwGluw4YN6tatm7Zu3aoOHTqYzgEQ5gYNGqS4uDi99dZbplMAhKFOnTopPT1djzzyiOkUAGHupptu0sGDB7VgwQLTKQDC0KOPPqoFCxZo/fr1plMAhLEdO3bIbrfrq6++Uvfu3U3nAAgzfCbDr6W8vFw1NTU6dOhQ6J4jZWVlqq2tlSQVFxcrGAwqGAyquLhYklRbW6uysrKjti0tLZXf71dxcbECgUDosaSkJLR9dXW1KioqVFFRoeLi4uPe4yQ6OlpNmzY9ZlitVjVr1kwtW7ZUq1atZLPZ1KJFC5111lmKj4+vo3cLp4tgMKgbbrhBmZmZWr16tex2u+kkADiGz+dT3759deDAAWVnZ6tly5amkwBA69evV1pampxOp+bPny+LxWI6CUAYmjJliv74xz9q+vTpuv32203nAMAxZsyYoTFjxmjQoEGaOXOmGjVqZDoJAH6Q1+vVxIkT9eKLL6pPnz6aPn26OnXqZDoLAE4bgUBAH330kWbMmKH33ntPCQkJGjp0qMaNG6fk5GTTeQAA/GTLly9Xv379tGXLFj4TAACAn+3WW2/VmjVrtG7dOtMpAADge5x//vn6zW9+o5deesl0CgAAOMLevXs1cOBAFRYWav78+broootMJwEAgP85cOCA/v73v2vq1Kk688wzdd999+n222/nukoAAE4BLpdLs2fP1ptvvqnCwkI5nU6lp6dr2LBhat68uek8AADCltvtVmZmpjIzM7V06VKVlZXJbrcrLS1NAwYM0OWXX87nagAADKioqNC6deuUnZ2trKwsrVq1SgcPHlR8fLzOP/98paamKiUlRampqbJaraZzAQAIG16vVy6XSzk5OaGxefNmBYNBWa1WORwOOZ3O0DjvvPPUoEED09kAAISFkpISbdu2TS6XS7m5uaFHt9stSWrSpInOOeccORwOJScnhx659xEAAHXj8Gfqw/Oz2+2Wy+XSN998I7/fL0mhz9aH52i73S6Hw6FOnTopKirK8BEAAFB/eb3e0Pz83bFr166j5urDc/R3R1JSEvM1AAAnQWVlpTweT2hu9ng8KigoOO5c3bBhQ5111lmy2+2y2WxKTExkvgYAAKiHDl+zP3PmTO3fv1+//e1vNW7cOA0YMEARERGm8wDUoaysLE2dOlXz5s1T27ZtNXbsWN12222KjY01nQYAkDIigsFg0HQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/hc/nU2VlZZ0u/9yfq6ioUHV19Qkfq8ViUWxs7Akt/xr7+KHlhIQERUVFnfCxAgAAAAAAAAAAAAAAAAAAAABOPT6fT16v95hx+Fz7H1tXVFQkv99/3H1bLBZZrdajxuHz4L/7+vHWNW/eXNHR0XX8jgAAAAAAAAAAAAAAAAAAAEjjx4/X8uXLtXnzZtMpp439+/dr7ty5mjNnjr744gs1atRI/fv317XXXqurr75a8fHxphMBAAAAnMb8fr8GDBigjRs3as2aNWrVqpXpJABAPRMMBnX11Vdr69atWr9+Pf+eBQCniEsuuUTnnXeeXn75ZdMpAE5zq1evVs+ePbVz5061adPGdA6AMHfrrbdq586dWrFihekUAGGoXbt2uuuuu3T//febTgEQ5v74xz9q9erVys7ONp0CIAw98MADWrlypVavXm06BUAYO3DggJo3b66PPvpIffv2NZ0DIMykp6erpKREH3zwgekU4Bfz+XwqLi5WcXGxvF5vaPl44/C9VQ6PQCAQ2k+jRo109tlnKykpKTTatm0bWm7dupL5AJsAACAASURBVLViYmIMHilM8Pl8Sk1Nld/v16pVq9SoUSPTSQBwjKKiIqWmpio+Pl4ff/yxmjRpYjoJALRu3TqlpaWpR48eev/999WwYUPTSQDC0MSJE/Xkk0/qlVde0ciRI03nAMAxPvvsM1133XU666yz9MEHH6h169amkwDgR2VnZ+uOO+7Q9u3b9cADD2jChAl85gOAn8nj8Wj27Nl66aWXtHPnTjmdTt12221KT09XbGys6TwAAH5QIBBQUlKSRo8erYkTJ5rOAQAAp5lPPvlEl156qb7++mt16dLFdA4AAPgOl8ulzp0767PPPlNqaqrpHAAA8D+rV6/WNddco+bNm2vBggV8nzYAAKeIb7/9Vi+88IImT56shg0b6k9/+pPGjRvHOWAAABiWn5+vefPm6Y033tCGDRvUpk0b/eEPf9Do0aN1zjnnmM4DACAsHTp0SKtWrVJmZqY++OADbd68WXFxcerbt68GDhyoK6+8UklJSaYzAQAIOwUFBVqzZo2ys7OVlZWlr776StXV1bLZbEpNTVVKSoqcTqd69uyp6Oho07kAAIQFj8ejnJyco0ZBQYEkyWazyel0hkZycrLsdrvhYgAAwkNpaany8vLkcrmUm5sbetyxY4eCwaAaN26sDh06yOFwKDk5OfTYrl07RUREmM4HAKBe83q9crvdcrvdoTna7XZry5YtqqiokCRZrVbZ7fbQODxXd+rUSfHx8YaPAACA+qmmpkb5+fmhefrIsW3bNpWUlEiSoqOj1bp166Pm6sOjffv2atq0qeEjAQCg/vF6vfJ4PCooKDhmnvZ4PCosLFQwGJQkWSwWJSYmHjNP22w2JSYmqm3btmrQoIHhIwIAAMDJsHfvXr311luaNWuWXC6XOnbsqPT0dN188806++yzTecBqEOBQECLFi3SpEmTlJ2dLafTqXHjxmn48OGKjIw0nQcA+P8yIoKH/2UPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABB2fD6fKisr63T55/5cRUWFqqurT/hYLRaLYmNjf7XlX3t/kpSQkKCoqKgTPlYAAAAAAAAAAAAAAAAAAAAAQPjy+Xzyer3yer2h8/gPPz9yfN+6gwcPqqqq6rj7tlgsslqtofPqrVbrMePH1jVt2lQRERF1/K4AAAAAAAAAAAAAAAAAAACcuEAgoKSkJN166616/PHHTeeclg4cOKDFixcrIyNDy5YtU2RkpNLS0jRw4EANGjRILVq0MJ0IAAAA4DRz3333adq0afr000910UUXmc4BANRD06dP15gxY/TJJ58oNTXVdA4A4H/uu+8+ffjhh1q3bp3pFACnuaysLPXu3VsFBQVq1aqV6RwAYW7ixImaO3euNm/ebDoFQBhKTEzUgw8+qPHjx5tOARDmnnrqKc2cOVN5eXmmUwCEofHjx2vt2rX67LPPTKcACGO1tbVq2LCh5s6dqyFDhpjOARBmbrzxRpWXl+v99983nQLUOb/fr6KiIhUWFqqgoEBFRUXavXt3aOTn52vnzp2qrKyUJEVGRqpNmzbq0KGDOnTooI4dO4aW27Rpo6ioKMNHhJNl586duuiii9SnTx9lZGRwDx4Ap6T8/HylpKTIbrdr6dKlslgsppMAQGvXrlVaWpouvvhivffee2rYsKHpJABhaOLEifrLX/6iF198UXfddZfpHAA4Rl5enn73u9+prKxM77//vrp37246CQB+VG1traZNm6ZHHnlENptN//rXv5SWlmY6CwBOO36/X0uWLNGMGTO0ePFinXHGGbrpppt06623qmPHjqbzAAD4Xn/60580f/585eXlcR4NAAD4WYLBoNq3b6/rr79eTz/9tOkcAADwHQ8++KDmzp2rHTt28JkfAIBTxLvvvqsRI0aod+/e+u9//6vGjRubTgIAIOwdPHhQU6dO1fPPP6/o6Gjdd999Gjt2rBo1amQ6DQCAsFVcXKwPPvhAs2fP1ocffiir1aohQ4YoPT1dKSkp/Js3AAAGuN1uLViwQAsXLtRnn32mqqoqORwODRw4UGlpabrkkksUExNjOhMAgLDh9/u1ZcsWZWdnKysrSzk5OcrNzVVkZKQ6deqk1NRUpaSkqHfv3mrXrp3pXAAA6j2/369du3bJ5XIpJydHOTk5+vLLL7V//35Jks1mk9PpDI2ePXuqRYsWhqsBAKj/qqurlZeXp9zc3NA8nZubqx07digYDComJkbnnHOOkpOT5XA45HQ6lZycrHbt2vF3aQAATqLq6mrt2bNHLpdLubm5crvdcrvdcrlcKigokCTFxMTo7LPPlsPhUHJysux2+1EDAAD8+rxeb2he/u7YtWuX/H6/JMlqtR4zNx8eSUlJ3AcaAIBf2XfnaI/Ho4KCArndbuXl5am0tDS07ZHztM1mU2JiYuj5OeecoyZNmhg8EgAAANS1yspKLViwQLNmzdLSpUsVHx+vgQMHasSIEbrssss4NwIIM1VVVZo9e7b+8Y9/aOvWrRowYIAeeOABpaSkmE4DABxfRkQwGAyargAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA+sLn86mystLY8k/ZtqKiQtXV1Sd8rBaLRbGxsb/a8q+9P0lKSEhQVFTUCR8rAAAAAAAAAAAAAAAAAAAAAAB1wefzyev1HjMOXzPwY+uKiork9/uPu2+LxSKr1Roah8/lP/K1H1rXrFkzxcTE1PE7AgAAAAAAAAAAAAAAAAAAcOr49NNP1adPH7lcLjkcDtM5p72DBw9q4cKFysjI0IoVK1RbW6uLL75YQ4cO1e9//3vZbDbTiQAAAABOcbNnz9ZNN92k2bNna/jw4aZzAAD10I4dO3T++edr7Nixeuqpp0znAACOMHfuXA0fPlwlJSWKi4sznQPgNPbhhx8qLS1N3377rc444wzTOQDC3Ouvv66xY8eqoqLCdAqAMNSsWTP99a9/1R133GE6BUCYmzlzpu666y4dOnTIdAqAMHTnnXdq69at+vDDD02nAAhzLVu21KOPPqoxY8aYTgEQZoYNGyafz6f33nvPdApwyioqKtLu3bu1c+dO5eXlKS8vT1u3btXWrVu1f/9+SVJMTIw6deqkzp07q2vXrurSpYs6d+6sNm3aGK7Hr2XFihW66qqr9Ne//lV//vOfTecAwHG5XC5dcsklSk1N1bvvvquoqCjTSQCgL774Qv369dNll12muXPnKjo62nQSgDA0adIkTZgwQS+88ILuvvtu0zkAcIyysjINGzZMmZmZmjZtmkaOHGk6CQB+kp07d2rs2LFatGiRRowYoeeee07Nmzc3nQUAp6WCggLNmjVLL7/8snbs2CGn06nbbrtNw4cP57sVAACnnHXr1unCCy/UqlWr9Jvf/MZ0DgAAOM08/PDDevPNN7Vr1y5FRkaazgEAAP8TCATUtm1b3XTTTXryySdN5wAAAElTpkzRvffeq9GjR2vatGlcKwYAgGHl5eWaNm2annnmGUVGRmrMmDG699571bhxY9NpAACEperqai1btkwZGRl69913FQgElJaWphEjRmjQoEF8rwEAAHXs4MGD+vDDD5WZmaklS5YoPz9fzZo1U9++fZWWlqYBAwYoMTHRdCYAAGGjoqJC69atU3Z2trKyspSdnS2v16uEhAR17dpVqampSklJUe/evdW0aVPTuQAA1Gs1NTXaunWrcnJyQmP9+vWqqKhQVFSUOnbsKKfTGRoXXHAB3zMCAMBJVl1drby8POXm5srlcoUet2zZokAgoJiYGJ1zzjlKTk6Ww+EIPZ533nlq0KCB6XwAAOotj8ej3Nxcud1uud3u0Dy9c+dOBQIBSZLNZlNycrLsdrvsdntorm7Tpg3fYQIAwK+spqZG+fn5obn5yLFt2zaVlJRIkqKiopSUlBSan787rFar4SMBAKD+qK6u1p49e+TxeFRQUHDMHJ2fn6+amhpJUkxMjM4880wlJiYeMz/bbDa1bduWv00DAABAgUBAq1at0uzZszVnzhwdOnRIffv2VXp6uoYMGaJGjRqZTgRQx0pKSjRz5kw999xz2r9/v66//nr9+c9/lsPhMJ0GAPhhGRHBYDBougIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvo/P51NlZeUpsfx96w8dOqSqqqoTPlaLxaLY2NiTsvxr7S8+Pl7R0dEnfKwAAAAAAAAAAAAAAAAAAAAAANQnPp9PXq9XXq83dA3C4edHju9bd/Dgwe+9NuHIawOsVusx46ess9lsioiIqON3BQAAAAAAAAAAAAAAAAAAoH4ZO3asVq5cqY0bN5pOqXdKS0u1cOFCzZs3T0uWLFFVVZV69OihAQMGqH///urWrZvpRAAAAACnmJycHPXu3Vvjx4/X008/bToHAFAPBQIB/fa3v9X+/fuVk5Mji8ViOgkAcIQdO3bIbrfrs88+U2pqqukcAKexxYsX6+qrr1Z5ebni4uJM5wAIcx9++KHS0tK0f/9+NWvWzHQOgDCTkJCgKVOmaOTIkaZTAIS5FStW6IorrtDBgwdltVpN5wAIMyNHjlRhYaEWL15sOgVAmOvatauuueYaPfnkk6ZTAISZG264QdXV1Xr33XdNpwCnpeLiYuXl5SkvL08bN27Upk2btHHjRu3atUuS1KRJE3Xp0kVdu3ZV9+7d1aNHD5177rmKjIw0XI5fYurUqbrnnns0Z84cXX/99aZzAOC4vvzyS1122WW69tpr9eabb3IPMwCnhM8//1z9+vXT5ZdfrrffflvR0dGmkwCEoUmTJmnChAmaMmWKxo4dazoHAI7h9/v18MMP69lnn9Wtt96qF198kd+bAJw25s2bp/Hjx6uiokJ//etfdfvtt/O3EAD4hfx+v5YtW6bXXntNCxYsUKNGjXTDDTdo1KhR6t69u+k8AABCunbtqt69e2vatGmmUwAAwGlm8+bNcjgc+uijj9S3b1/TOQAA4H8Ofx/epk2blJycbDoHAICwVl1drdtuu03//ve/NXnyZM59BgDAsPLyck2bNk2TJk1SbW2t7rrrLk2YMEFNmjQxnQYAQFjKycnRrFmzNGfOHH377bf6zW9+oxEjRugPf/iDGjdubDoPAICwEQgEtG7dOmVmZiozM1OffPKJAoGAunXrprS0NA0YMEC9evVSgwYNTKcCABAWPB6PcnJylJ2draysLH311Veqrq6WzWZTamqqUlJSlJqaqgsuuID5GQCAk6i8vFzffPONXC6XcnJyQqOyslIxMTE655xz5HQ6Q6N79+6yWCymswEAqLdqamq0detW5ebmyuVyhR6/+eYb+f1+RUdHq0OHDkpOTpbD4Qg9cl8pAABOHq/XK7fbHZqb3W633G63Nm/erEOHDkmSrFar7Ha77HZ7aI622+0677zz1KhRI8NHAABA/XJ4bj7e2L17t2prayVJFotFdrs9NC8fOZKSkhQVFWX4SAAAqB98Pp8KCgqOmpM9Hk/otZ07dyoQCEj6v/k5MTExNCfbbLajnrdp04Z/6wYAAMD32rBhgzIyMvTvf/9bu3btktPp1IgRI3TDDTeoefPmpvMAGLB161ZNnjxZs2bNksVi0e23364xY8YoMTHRdBoA4KfJiAgGg0HTFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqjs/nU2Vl5Smx/H3rDx06pKqqqhM+VovFotjY2JO+fCL7iI+PV3R09AkfKwAAAAAAAAAAAAAAAAAAAAAA+GV8Pp+8Xu8x4/C1Dz+2rqioSH6//7j7tlgsslqtoXH4OoQjX/uhdc2aNVNMTEwdvyMAAAAAAAAAAAAAAAAAAAD4rkAgoNatW+v222/XY489ZjqnXjt06JCWLVumRYsWafHixSooKNDZZ5+t/v37q3///kpLS1NcXJzpTAAAAAAGFRQU6KKLLlLnzp21aNEiRUZGmk4CAJzGvv32W3k8HnXp0uWo15977jk9/PDD+vzzz+V0Og3VAQB+SMuWLfXggw/q3nvvNZ0C4DT2/vvva/DgwaqoqJDX65XH41FhYaEcDofat29vOg9AmMnLy1PHjh21Zs0aPosCqHMxMTF64403dPXVV8vj8Wjfvn2KjIzUJZdcYjoNQJjJzc1VcnKyNm7cqM6dO5vOARBmbrzxRpWXl+u9995TUVGR9u3bpwMHDig1NZXviQZQp6644gq1adNGr7zyiukUAGHm+uuvVyAQUEZGRui1mpoaRUdHG6wCTn8lJSXauHGjNm7cqK+//lobNmzQ+vXr5fP5FB8fL6fTqYsuukgXXXSRevToobZt25pOxk80ZswYvf7661q5cqV69OhhOgcAjmvRokUaPHiw/vjHP2rSpEmmcwBAkrRq1SpdeeWV6tevn+bMmaOoqCjTSQDC0N/+9jc98sgjmjp1qsaMGWM6BwCOa+7cuRo1apQuuOACZWRkqFWrVqaTAOAnOXTokJ599lk988wzOu+88/Tiiy8qJSXFdBYAnNa8Xq8yMjL0r3/9Sxs2bJDD4dCIESM0atQoNWvWzHQeACDMPfPMM3ruuedUUFAQuvZi1apVWrlypR588EG+LxQAAPyg7t27q1u3bnr11VclSVVVVfrvf/+ruLg4XXvttYbrAACo/+bNm6eKigr9/ve/V8OGDSVJI0eO1KZNm7R69WrDdQAAhLeDBw/quuuu05o1azRnzhwNGDDAdBIAAGGroqJCr776qp5++mlVVFTo7rvv1p///Gc1bdrUdBoAAGFn165devvtt/Xqq69q27ZtcjgcGjp0qG666Sa1a9fOdB4AAGFj//79WrlypTIzM7VgwQIVFBSoZcuWuuKKKzRw4EBdfvnlfG4GAKAO+P1+bdmyRdnZ2crKylJWVpZ27NihqKgodezYUampqUpJSVGfPn3Upk0b07kAANRbh+9FkZOTExpbtmxRIBBQkyZN1LlzZzmdztA499xzuf4aAICTpLa2Vrt375bL5VJubm7ocdOmTaqqqlJUVJSSkpLkcDiUnJwceuzcuXPo2ioAAPDrqaqq0rZt25Sbmyu32y232y2Xy6VNmzappKREktSwYUO1b99eycnJstvtodGlSxe1bNnS8BEAAFB/1NTUKD8/PzQnHzm2b9+u4uLi0LZWq/Woefm7AwAAnDiv1yu32y2Px6OCgoJj5mev1xva9vDcbLPZlJiYeNS8bLPZZLPZFBERYfBoAAAAcLpZu3at3nnnHb3zzjvKy8tTUlKS/vCHP2jEiBFKTk42nQfAkKysLE2dOlXz5s1TmzZtNG7cOI0ePVpxcXGm0wAAP09GRDAYDJquAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5nPp9PlZWVp9zy960/ERaLRbGxsSd9+UT2ERcXp5iYmBM+VgAAAAAAAAAAAAAAAAAAAAAAcGrz+Xzyer3yer2haykOPz9y/Ni64znyGger1XrM+CnrWrVqpQYNGtTxuwIAAAAAAAAAAAAAAAAAAICT4ZNPPtGll16q3NxcnXfeeaZzworL5dLChQuVmZmplStXSpJ69uypgQMH6ne/+x3/ewAAAABhprKyUn369FFJSYm+/PJLNWnSxHQSAOA0d/vtt+vVV1/VhAkT9Pjjjys6OlqbN2/WhRdeqEcffVQPPfSQ6UQAwPcYMGCAEhISNGfOHNMpAE4j8+bN09q1a7V37155PB7l5eVp37598vl8CgaDoe1Gjhyp1157zWApgHBUVVWl2NhYvfvuuxo8eLDpHAD12JYtWzRv3jwVFhZq7969ys/P17Zt21ReXq6amprQdvHx8SorKzNYCiAclZSUqGnTplq6dKn69etnOgdAPVZVVaXZs2drz549Kigo0N69e+VyuXTw4EFVVFTI7/eHtl2yZImuvPJKg7UAwk16erqKi4u1YMEC0ykA6rmtW7dqz5498ng8Kiws1NKlS1VWVqbIyEgVFhaqsLBQPp9PH330kfr27Ws6F6hXampqtGnTJn311VdavXq11qxZI5fLpdraWrVs2VK9e/fWJZdcoksuuURdunTh/jenKL/fr2uuuUZr167V6tWrdfbZZ5tOAoDjeuuttzRixAg98sgjeuKJJ45Zv3LlSp177rlq1aqVgToA4SorK0tXXXWVrrrqKv3nP/9RVFSU6SQAYWjSpEmaMGGCnn76aT344IOmcwDguLZs2aLBgwerrKxM7777rnr27Gk6CQB+sry8PI0bN07Lli3TjTfeqOeee04tW7Y0nQUAp72cnBzNmDFDc+bMUXV1tX73u98pPT1d/fv3V2RkpOk8AEAY2rt3r9q0aaO3335bZWVlmjx5sjZu3ChJ2rFjh9q2bWs2EAAAnNKef/55Pf7441qzZo1mzpyp6dOny+v16vzzz9f69etN5wEAUO9169ZNGzZskNVq1Z133qlbbrlF3bt31xNPPKHx48ebzgMAIGxt27ZNAwYMUEVFhRYsWKBu3bqZTgIAICxVV1dr5syZmjhxokpLSzVmzBg98MADOuOMM0ynAQAQVrxerzIyMjRr1iytWrVKNptNQ4YM0dChQ5Wammo6DwCAsOD3+7V+/XotWLBACxcu1Nq1axUZGamePXtq4MCBSktL04UXXqiIiAjTqQAA1Gvl5eVav369srOzlZWVpaysLBUXFyshIUE9e/ZUSkqKUlNT1atXLzVq1Mh0LgAA9ZLH41FOTo5yc3PlcrmUk5OjzZs3KxgMymq1yuFwyOl0hobD4eDzMgAAJ0Ftba12794tl8sVmpcPP1ZWVioqKkpJSUlyOBxKTk4OPSYnJ8tisZjOBwCgXqmpqVF+fr7cbrfcbndoXna73dqxY4eCwWBobrbb7bLb7aG52W63q23bttyjEQCAX4nX6w3Nyd8du3fvVm1trSTJYrEoMTExNDcfORwOh2JjYw0fCQAAp7eamhrt379fBQUFR83HHo9HBQUF+uabb1ReXh7a3mq1HjUf22y20FzdsWNHJSQkGDwaAAAA1Bcul0sZGRmaM2eOtm7dqqSkJA0aNEhDhw5VSkoK5zoCYSoQCGjRokX629/+pi+++EJOp1Pjxo3TsGHDFBUVZToPAPDLZEQEg8Gg6QoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgSD6fT5WVlaf08pGvnQiLxaLY2Ng6Xf65PxcXF6eYmJgTPlYAAAAAAAAAAAAAAAAAAAAAAIDDfD6fvF7vMePwdRs/tq6oqEh+v/+4+7ZYLLJaraFx+HqKI1/7oXXNmjXjWgoAAAAAAAAAAAAAAAAAAAAcZcyYMfr000/19ddfm04Ja0VFRVqyZIkWLVqk5cuXq6SkROeee66uvvpqXXHFFerdu3foO9YBAAAA1E833nijFi9erC+//FIdOnQwnQMAqAdatWqlffv2KTIyUsnJyXrrrbc0cuRIBQIBff7554qOjjadCAD4Hk888YRmzZql7du3m04BcBrp2LGjtm/froiIiO/9DqPIyEi98MILuvPOO+u4DgAkm82mBx98UPfcc4/pFAD12GOPPaYnn3xS0dHRqq2tVTAYPGabiIgI9erVS1lZWQYKAYS7hIQETZkyRSNHjjSdAqAe27Bhg7p16xb6e2BNTc1xt4uIiJDH41GrVq3qMg9AmLv//vu1cuVKffXVV6ZTANRj69at04UXXihJatCggaKioiRJtbW1CgQCR227efNmnXvuuXXeCISbQ4cOad26dfr888/16aefKisrS16vV1arVSkpKerTp4969+4tp9MZ+v8szCstLVVKSoqio6P12WefKS4uznQSABzXzJkzNWrUKD355JN66KGHQq+/+eabuuWWW3TttdfqnXfeMVgIIBx99tlnuuqqq3T11Vfrrbfe4vdcAEZMnz5dY8aM0f3336+nn35aERERoXVlZWUaPHiwxo8fr4EDBxqsBBDuSktLNWLECC1dulTTpk3TqFGjTCcBwM+yYMECjR07ViUlJZo4caLuvvtuPgMCwK/A5/Np4cKFmjFjhj788EOdddZZGj58uO644w61bdvWdB4AIIzs2rVLQ4YM0ebNm+Xz+SQpdB7iunXr1K1bN5N5AADgFPfee+9p3Lhx8ng8ioyMDF3r2bp1a+3evdtwHQAA9V9SUpLy8/MlSdHR0fL7/UpMTNTUqVM1ePBgw3UAANRfX3zxha644gq98847uuKKK45al52drcGDB8tut2v+/Plq2bKloUoAAMJXdXW1Zs6cqSeeeELFxcUaPXq0JkyYwPcRAgBQhyorK7VixQrNnj1b77//vqKiojRgwAClp6frqquu4roUAADqwI4dO7RixQplZmZq+fLlKikpkd1uV1pamtLS0nTllVcqISHBdCYAAPWax+NRdna2srKylJ2drXXr1ikQCMhmsyk1NVUpKSlKTU3VBRdcoAYNGpjOBQCg3vF4PMrJyQmNNWvWqLCwUNL/3X/c6XSGRvfu3WWz2QwXAwBQP3k8HuXm5srlciknJ0e5ubnKzc0NfceJzWZTcnKyHA6HnE5naDk2NtZwOQAA9YvX65Xb7ZbL5VJubq7cbnfoeWVlpSTJarXKbrfL4XAoOTlZdrs99Jy5GQCAE1dTU6P8/PzQPHzk2L59u4qLi0PbHp6Xv28AAIBfrqqqSnv37pXb7ZbH41FBQcFR8/Lu3btVW1srSWrYsKHOOuss2e12EaK3UAAAIABJREFU2Ww2JSYmHjUnJyUlcZ0UAAAAThqXy6WMjAz95z//UV5entq0aaNrrrlGQ4cOVUpKylH38AYQXsrKyvT6669r8uTJys/PV//+/TVhwgT16tXLdBoA4MRlRASDwaDpCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJxcPp9PlZWVp/Tyka+dCIvFotjYWGPLP2XbuLg4xcTEnPCxAgAAAAAAAAAAAAAAAAAAAAAA1DWfzyev1yuv1xu6JuTw8yPHj607niOvz7BarceMn7KuVatWatCgQR2/KwAAAAAAAAAAAAAAAAAAAKjPAoGAWrdurTvuuEOPPvqo6Rz8T01NjbKysrR48WItWbJELpdLFotFKSkpuvzyy3X55ZerW7dunF8MAAAA1CPPPPOMHnnkES1YsEBXXXWV6RwAQD2Qm5ur5OTk0PPo6GhJUs+ePTVjxgydd955ptIAAD/BkiVL1L9/f+3bt08tWrQwnQPgNPGvf/1LY8eOVSAQ+MHtNm3adNTvigBQV3r16qXu3btr6tSpplMA1GN79uxRu3btVFtb+73bxMTEaMKECZo4cWLdhQHA/5x77rkaNmyYHnvsMdMpAOq5nj17KicnR36//3u3adeundxudx1WAYD0j3/8Q5MnT9aePXtMpwCox/x+v9q1a6c9e/YoGAx+73ZnnHGGDhw4oIiIiDqsA3CY2+1WZmamsrKytHLlSuXn56tRo0bq1auX0tLSlJaWJqfTaToz7O3YsUMXX3yxUlNTlZGRwbXNAP4fe3caHlWVtnv8rikDQUIAhTBTgECigKQBpaIIBBEICiogs0x22yogdKunfbUVfR3QhtZWW1BBQrfYQByaKIhhEBIQISJIAkgsRitqhCIJpEJqOh881CEmKAhkk+T/u6511a69Vm3ulQ88Vbtq7X3JevPNNzV58mQ9++yzevDBB7Vo0SLdddddCgQCMplMys7O5jf0ACpdenq6brnlFg0bNkzz58/nvRQAQ7z99tu66667NHHiRL3yyisym80KBAJKTk7WihUr1LBhQ+Xm5qp27dpGRwVQgwWDQc2aNUt/+ctfNGnSJP3jH/9QWFiY0bEA4KwVFxdr1qxZevbZZ9W+fXu9/PLLSkxMNDoWAFQbe/bs0YIFC7RgwQL9+OOP6t27t+6++27deuutvG8EAFw0GRkZ+vvf/673339fZrNZXq+33Jg1a9aoV69eBqQDAACXspKSEi1ZskTPPvusdu3aJavVWu76F9HR0Tp27JhBCQEAqDmio6NVWFhYZt+p2my32zVlyhRNnDiR304BAHCB9ezZUxs2bFBYWJg++eQTXX/99ZKkBQsW6A9/+INuueUWpaSkKDIy0uCkAADULF6vV4sXL9YTTzyhw4cP66677tLjjz+u2NhYo6MBAFAjBAIBbdy4UYsWLdI777yj48ePq3fv3hozZoxuu+02zlUDAHCReTweZWZmKj09Xenp6crKyipz7ctbbrmFa5QBAHAR+Xw+7dmzR5mZmcrIyNCGDRu0f/9+Wa1WderUSQ6HQ4mJierZsyf3cQcA4AI7VYezsrKUk5Oj7Oxsbdq0SUeOHJHFYlGLFi0UFxenhIQEJSQk6LrrrlODBg2Mjg0AQLXjcrlCtfjU45dffqkTJ05IkmJjYxUfH6+4uLjQ4zXXXKOoqCiDkwMAUH0cO3ZM33zzjZxOp5xOZ6guf/311yoqKpIkRUREyG63Kz4+Xna7XXa7XXFxcerYsaPq1Klj8AwAAKj63G53qBb/vB08eDB0ra6IiAg1btw4VI9Pb3FxcaxRBgDgPLjdbrlcLuXl5ZWpxaf27du3T8FgUFLFNTk2Nja0r2XLltyfFQAAAJXG7/dr06ZNevfdd5WamqqDBw+qTZs2uuOOOzR06FB16dLF6IgADJaXl6e5c+fqpZdektfr1ciRIzVjxgxdeeWVRkcDAFw4S03BU2cwAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcE48Ho9KSkpCj6fvu1S23W73ec8zIiJCkZGRhm2fzdhatWopPDz8vOcKAAAAAAAAAAAAAAAAAAAAAABQnXk8Hrnd7nLt1BqZX+vLz8+Xz+er8NgRERGKiYkJtVPrQk7f90t9DRo0UFhYWCX/RQAAAAAAAAAAAAAAAAAAAIBft27dOvXq1Us5OTnq0KGD0XFwBj/88IM+/fRTpaen66OPPtLhw4fVoEED9erVS0lJSbrpppvUsmVLo2MCAAAA+I0+/vhjDRw4UH/72980depUo+MAAKqJ2bNn66GHHiq3jt5sNqtnz55KSUlR06ZNDUoHAPg1R48eVYMGDZSWlqYBAwYYHQdAFVFSUqKmTZvqyJEjZxwTHR0tt9stk8lUickA4CcTJkzQt99+q48//tjoKACquXHjxmnx4sXyer1nHLN69Wr17t27ElMBwE8GDBigK664Qm+99ZbRUQBUc++//76GDBlyxn6bzabx48dr7ty5lZgKAKRly5Zp+PDhKi4uVnh4uNFxAFRjr7zyiqZOnSq/319hv8Vi0eDBg7Vs2bJKTgbgTHbv3q21a9dq1apVWr16tYqKitS6dWvddNNN6tevn3r37q3LLrvM6Jg10oYNG5SUlKQZM2bo6aefNjoOAJzRiy++qAceeEATJkzQggULFAgEJP10Lmzo0KH697//bXBCADXRJ598oltuuUV33nmn3nzzTZnNZqMjAaiB0tLSNHToUA0ZMkQLFy7UX/7yF82ZM0d+v19Wq1V/+tOf9MwzzxgdEwCUmpqqu+66S507d9bSpUvVqFEjoyMBwDnZu3evpk6dqpUrV2r06NF6/vnn1bBhwwrH3n333bLZbHr55ZdZ6wcAZ6m0tFTLly/Xm2++qVWrVql+/foaM2aMJkyYoLi4OKPjAQCqkWHDhmnp0qWyWq3lruF2unffffcX120AAICa5+jRo2rTpo0KCwsVCAQUDAYrHGexWOT1ejk3CADARRQMBmWz2c64vtBkMslsNqtOnTrKzc1VvXr1KjkhAADV04YNG3TDDTdI+um+KBEREVq7dq0++ugjPfHEE5oyZYrmzJnD2goAAC6AgoIC+f3+X/1M6/V6tXjxYs2cOVOHDh3SXXfdpccee0xNmjSppKQAANRsOTk5WrJkiVJSUrRv3z7FxcVp7NixGjduHOvnAAC4yJxOp9LT05Wenq4VK1bo+PHjstvtSk5O1qBBg3T99ddzfWwAAC6SoqIibd68WRkZGcrKytKGDRtUUFCgOnXqqFu3bnI4HEpMTJTD4VBkZKTRcQEAqDa8Xq++/vprZWVlhdq2bdtUXFwsm82mtm3bKiEhIdS6dOmiWrVqGR0bAIBqxeVyKScnR9nZ2aHH7du36/jx45Kk2NhYxcfHKy4uLvTYuXNn1a5d2+DkAABUD16vV4cOHZLT6QzVY6fTKafTqX379oXWHzdr1kx2uz1Uk+12u+x2u1q1asW1QAAAOA8+n08HDx4M1d+fN7fbHRobExMTqsEVNQAA8Nu43e4y9dflcikvL09Op1O5ubkqKCgIjT29HsfGxqpx48ah561bt1bdunUNnAkAAAAgnThxQmvWrFFaWpr++9//6rvvvlOrVq00aNAgDR06VA6Hg+92AGjz5s2aM2eOUlNTFRsbq/vvv1933323oqOjjY4GALjwlpqCZ7oTEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCVyu92SpEAgoIKCAkmS1+vV8ePHJUklJSXyeDySpOLiYp08eVKSVFRUJJ/PJ0kqLCyU3++XJBUUFCgQCEiSjh07pmAwqGAwqGPHjpX7d/x+vwoLCyVJPp9PRUVF5f790tJSnThx4rznGRUVpbCwMElS7dq1ZbPZJEmXXXaZrFarJCk6Olpms1mSVLduXZlMJklSTEyMJMlkMqlu3bqSJLPZrOjoaEmS1WrVZZddJkmy2WyqXbu2JCksLExRUVGSpPDwcNWqVUuSFBERocjISElSZGSkIiIiymUEAAAAAAAAAAAAAAAAAAAAAACA8Twej9xut9xud2idzannp7df66vIqTUmERERiomJKdfOpq9Ro0ah9TAAAAAAAAAAAAAAAAAAAABAdXPvvfcqIyND27dvNzoKzlIwGNSOHTuUnp6uTz75ROvXr5fH41G7du3Ut29f9e3bVzfccEPouv8AAAAALm27d+/Wtddeq8GDB+utt94yOg4AoBrp06eP1q1bF7r35elsNpvCwsL02muvafTo0QakAwCcjTZt2mj06NF6/PHHjY4CoAp58sknNXPmzNC90U9nNps1aNAgvf/++wYkAwDpueee06uvvqoDBw4YHQVANbdr1y7Fx8crGAxW2G+xWFRYWKhatWpVcjIAkKZMmaKsrCxlZmYaHQVANRcMBtWuXTt98803FX5naDablZKSolGjRhmQDkBNtm3bNnXp0kW7d+9Wu3btjI4DoBorKSlR06ZNdeTIkQr7rVar5syZo/vuu6+SkwE4G16vV5s2bdLHH3+sVatW6YsvvpDFYtF1112nQYMGafDgwWrTpo3RMWuUhQsXavz48Zo7d64mT55sdBwAOKNRo0bp7bfflslkKvN9odls1q5du3TllVcamA5ATbVq1SrdeuutGjlypF5//XXujQnAEKtXr9bgwYN14403Ki0trUyf1WrVV199pfbt2xuUDgD+v+zsbA0ZMkRFRUVavHixbrzxRqMjAcA5W758uaZMmSK3260nnnhC9957r6xWa6h/06ZNcjgckqRHH31UTzzxhFFRAaDKcrlcWrRokV5//XV98803iouL09ixYzVx4kQ1aNDA6HgAgCpu0aJFGjdu3BnXqEo/rVN9/fXXNX78+EpMBgAALnXBYFCDBg3Sxx9/XOE1wE5XVFSk2rVrV1IyAABqnuPHj+uyyy77xTFWq1X9+vXT8uXLZTKZKikZAADVW48ePbRly5bQ52KLxSKTySSz2aw33nhDY8aMMTghAADVQ35+vq677jpFRUXpyy+/rPBzbSAQUGpqqh555BHt379fd955px5//HHZ7XYDEgMAULO4XC4tXbpUS5cuVWZmppo2barbbrtN48ePV+fOnY2OBwBAtXXixAlt2rRJy5cv1wcffKADBw6oXr166tOnj5KSktS/f381a9bM6JgAAFRLLpdLmZmZysjIUGZmprZt26ZAICC73S6Hw6GEhAQlJiaqS5cu/FYLAIALpKioSNu3b1dWVpZycnKUnZ2trVu36uTJk6pdu7Y6deqk+Ph4xcXFKSEhQb/73e8UERFhdGwAAKoNt9ut7OzsUB3OysrSjh07VFRUJEmKiYlRXFxcmXrcqVOnX13vBAAAzs7ptdjpdMrpdCo7O1t79uyR3++XVLYe2+122e12xcXFqX379rJYLAbPAACAqsvtdofq78/bwYMHQ2uMIyIi1Lhx41AdPr3FxcUpMjLS4JkAAFD1lJaW6vDhw3K5XMrLyytTh10ul/bv36/i4mJJks1mU4MGDcrV49jYWDVu3Fjt27dXVFSUwTMCAAAAynM6nUpPT9fy5cu1atUq+f1+de7cWcnJyRo0aJASEhKMjgjgEuD1erVs2TK9+OKL2rx5sxISEjR9+nQNHTpUNpvN6HgAgItnqSn4S3cWBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVZ7H41FJScl5bV/MYxw/flxer/e85hgREaHIyMhLbvv0faeeAwAAAAAAAAAAAAAAAAAAAAAAoGbxeDxyu93l2qk1N7/Wl5+fL5/PV+GxIyIiFBMTE2qn1rCcvu+X+ho0aKCwsLBK/osAAAAAAAAAAAAAAAAAAAAAVUcgEFDTpk31xz/+Uf/zP/9jdBz8Rj6fT9u3b9fy5cuVlpambdu2SZLat2+vxMREJSUlqU+fPqpXr57BSQEAAAD8nNvtVvfu3dWgQQOtXbtW4eHhRkcCAFQTHo9HdevWVWlp6RnHmEwmBYNBLVmyREOHDq3EdACAszVy5EgVFBToww8/NDoKgCrk6NGjatq0qTweT7k+m82m559/XlOnTjUgGQBI77//vm677TYVFhaqdu3aRscBUM0NGDBAn3zySYXXvOzatas+//xzA1IBgPTSSy/pf//3f/X9998bHQVADfDmm2/q7rvvViAQqLD/wIEDat68eSWnAlDTFRYWKjo6Wh9++KEGDBhgdBwA1dzMmTP15JNPnvG+KDt27NDVV19dyakA/Bb5+flKT0/XihUr9OGHH+ro0aO66qqrdOutt2rIkCHq0qWLTCaT0TGrvZkzZ2rmzJlatmyZBg8ebHQcAChn2bJlGj58uILBoILBYJk+m82m0aNHa/78+QalA1DTrVy5UoMHD9bo0aM1b948mc1moyMBqIHmz5+v3//+9+XOl9lsNjkcDq1du9agZABQVlFRkSZPnqxly5bpf/7nf/TYY4/x/glAlVNcXKxZs2bp2WefVbt27fTKK68oMTFRwWBQ1113nb744gt5vV5J0ssvv6x7773X4MQAUDUFAgFt3LhRixYt0ttvvy2v16u+fftq7NixGjx4sGw2m9ERAQBV1HPPPaeHH374jP1hYWF65plnNH369EpMBQAAqgKPx6M+ffpo69atoXOAFTl48KCaNWtWickAAKhZDh48qBYtWpyx32azqVOnTlq3bp2ioqIqMRkAANXXihUrKryOiNlsVlRUlD7//HO1b9/egGQAAFQvx44d0w033KBdu3bJ7/dryZIluuOOO0L9gUBAqampevTRR7V3717dfvvtevrpp9WmTRsDUwMAULXk5eXpzTff1EMPPXTWv0f2eDxKS0tTSkqKVq5cqaioKN1yyy0aO3as+vTpw/WxAAC4SLKzs5WWlqb09HStX79ePp9P11xzjZKSkpSUlKSePXuyvggAgAvM5/Np+/btysjIUFZWlj799FMdPHhQVqtVnTp1ksPhUGJiom688UZdfvnlRscFAKBaOHbsmHbu3KmsrKxQ2717twKBgKKjo3XVVVcpISEh1Dp06MB12wAAuEDcbreys7OVk5MTetyxY4d++OEHSVJMTIzi4uIUHx8feuzYsaOuuOIKg5MDAFD1ud1uOZ1OOZ3OUB12Op3avXu3Tpw4IemnWmy320PtVD1u166dateubfAMAACouk7V4dNr8KnmdrtD435ei3/eAADAuSkpKZHL5SpTe10ul/Ly8uR0OnXgwAH5/X5JUkREhBo3bhyqu7GxsWWet2jRQhaLxeAZAQAAoLrz+/16//33lZycrPDw8N98jE2bNiktLU3Lly9XTk6O6tWrpz59+ig5OVmDBg1STEzMBU4OoKrKz8/X/Pnz9corr+jbb7/VgAEDNHXqVCUlJRkdDQBQOZaagsFg0OgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABURR6PRyUlJWW2K9p3rtsX+hjnIyIiQpGRkWW2K9p3rtsX4hinjgMAAAAAAAAAAAAAAAAAAAAAAABcDB6PR263W263O7Rm59Tz09uv9VXk9HU2MTEx5drZ9DVq1Ehms7mS/yoAAAAAAAAAAAAAAAAAAABAzbJmzRr16dNHu3fvVrt27YyOgwvkyJEjWr9+vdatW6d169Zp586dkqROnTqpZ8+e6tWrl66//nrFxMSc17/z0ksvqaioSDNmzOD+CgAAAMBv4Pf7NWjQIG3fvl1btmxR48aNjY4EAKhGVq5cqf79+//iGJPJpJtvvln/+te/VK9evUpKBgA4F3PmzNHTTz+t/Px8o6MAqGIeeOABvfLKK/J6veX6vvjiC11zzTUGpAIAaffu3erQoQP/FwGoFBs2bNANN9xQbn9YWJhmzJihp59+2oBUACCtWLFCAwYM0LFjxxQdHW10HADVnNfrVfPmzfXdd9+V62vSpIkOHz5sQCoAkBo0aKDHH39c9913n9FRAFRzR48eVZMmTSq8v0qdOnXkdru5NwpQBfn9fm3atElpaWl69913tXfvXjVr1kz9+/dXcnKy+vXrp7CwMKNjVlv33nuvFixYoNWrV+u6664zOg4AhKSmpmr48OEKBAIKBoMVjrFYLMrNzVXLli0rNxwA/D8rVqzQkCFDNHbsWM2dO1cmk8noSABqkAMHDqhLly4qKCiQ3++vcMzSpUt1xx13VHIyADizefPm6f7771ffvn2VkpLCemgAVVJubq6mTp2qjz76SMnJyRowYIDuvffeMuewzGazUlNTNXjwYAOTAkDV5/F4lJaWpnnz5mn16tVq1KiRhg4dqgkTJqhTp05GxwMAVEF/+tOfNGfOHAUCgXJ94eHheuihh/TEE08YkAwAAFzqCgoK5HA4tGfPHvl8vgrH7NixQ1dffXUlJwMAoObYsWPHGc8N22w2tWrVSps2beK3CAAAXEAJCQnasWNHhZ+FrVar6tevr88++4y1XQAAnIfi4mIlJSVp69at8nq9MpvNat26tXbt2iWz2ay0tDQ99thj2rFjh26//XY99dRTuvLKK42ODQBAlbJ9+3bdfPPN+u6777Rs2TLdfvvtZxzr9/u1du1apaSk6L333pPH41GvXr00ZswY3XHHHapVq1YlJgcAoGY4cuSI1qxZo/T0dH344Yf69ttvdfnll+vGG29UUlKSBg0apNjYWKNjAgBQrRQWFurzzz9XRkaGMjMzlZmZKY/HoyuuuELdunVTQkKCEhMTlZiYqIiICKPjAgBQ5blcLmVlZSkrK0s5OTnKzs5WTk6OJCk2NlYJCQmKj49XXFycEhISFBcXx/VtAQC4ANxud6junnrcuXNn6D6wMTExiouLC9Xh+Ph4XXXVVWrUqJHByQEAqNpKS0t1+PDhUP11Op1yOp3Kzs5WXl6eJCksLExNmzYN1WC73V6mAQCAc1dSUiKXyxWqvae37Ozs0H3AIyIi1Lhx43L11263q0OHDvxeGgCAc+R2u+V0OuVyuZSXl1emBp/ad0pMTIxiY2PL1eJT+1q1asV3xQAAADDUN998o5EjR+rzzz/X/PnzNX78+LN+bV5enlatWqUPP/xQq1atUkFBgeLj45WcnKyBAweqR48eslgsFzE9gKpm+/btevXVV/Wvf/1LNptN48aN0/Tp09WiRQujowEAKtdSU/D0O4IDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAwj8ejkpKSs9o+l7EX6hiFhYXy+/3nNceIiAhFRkae1fa5jL1Qx6hTp44sFst5zREAAAAAAAAAAAAAAAAAAAAAAAAwksfjkdvtLtdOrSn6tb78/Hz5fL4Kjx0REaGYmJhQO7WG5/R9v9TXoEEDhYWFVfJfBAAAAAAAAAAAAAAAAAAAAMBvMWnSJG3fvl1btmwxOgouoiNHjmj9+vVat26d1q1bp507d0qSOnXqpJ49e+rGG2/U9ddfr3r16p3TcZs3b65Dhw6pefPmmjdvnvr163cx4gMAAADV1rRp0zRv3jx9+umn6tq1q9FxAADVzAMPPKBXX31VpaWl5fqsVqtMJpOef/55TZkyRSaTyYCEAICzkZmZqcTERDmdTrVq1croOACqkMOHD6tVq1blrjUVFRWlgoIC7vMOwDBer1dRUVFauHChRowYYXQcADVA9+7dlZWVJb/fX2b/ihUrdPPNNxuUCkBNl5ubq7Zt22rr1q1KSEgwOg6AGmDWrFl65JFHypwrslqtGjVqlN566y3jggGo0bp37y6Hw6HZs2cbHQVADTBt2jS9+uqr8nq9oX1ms1kDBw7Uf//7XwOTAbhQsrOzlZaWpuXLl2vjxo2qW7eukpOTNXToUA0YMIDvyC8wv9+v22+/XZmZmcrMzNSVV15pdCQA0KZNm3T99dcrEAgoGAyecZzNZtOECRP02muvVWI6ACjrvffe0/Dhw/WHP/xBL774Iut6AFSK48ePq1u3bsrNzS1znux0ZrNZl19+uXJzc1W7du1KTggAZ7Z161YNHTpUfr9f//nPf3TdddcZHQkAfpN3331X06ZN04kTJ3Ts2DEFAoFQn8lkks1m07p16/h/DgAukEOHDuntt9/WvHnz5HQ6lZCQoDFjxmjUqFFq0KCB0fEAAFVEMBjUXXfdpX//+9/l1qmGhYXp97//vV566SWD0gEAgEudy+VSt27d9MMPP1T4Pe369et1/fXXG5AMAICaYf369erZs2e5/VarVfXr19eWLVvUrFkzA5IBAFA9ffDBBxo8ePAvjrHZbGrSpIk2bdqkRo0aVVIyAACqj9LSUiUnJ2vt2rVlritoNps1ZcoUrVmzRjt37tTw4cP12GOPqX379gamBQCgalq+fLmGDx8ur9erYDCopKQkrVy5sty47OxsLVq0SAsXLtR3330X+q3yiBEjdMUVVxiQHACAS9uePXs0btw4DRkyRA899NA5vdbv9+vLL79Uenq60tPTtW7dOgWDQXXu3FnJyckaNGiQunTpwjV8AAC4gJxOpzIyMpSVlaXMzExt27ZNgUBAdrtdDodDiYmJcjgciouLowYDAHCeXC6XsrKyQu3zzz/XDz/8IEmKjY1VQkJCqHXr1k0NGzY0ODEAAFXfsWPH9M033yg7O1s5OTmhR6fTKUmqW7euWrdurbi4OMXHx4ce7Xa7wckBAKjaXC5XqOY6nc5QDd6/f3/oGr2xsbGhumu320N1uEWLFtyHEACkKCqNAAAgAElEQVSA38Dtdodqb0XtlJiYmFD9/Xlr1aoV3wsDAHAOKqq/LpdLeXl52rNnj44fPx4a+/MaHBsbq8aNG8tut6tt27aqU6eOgTMBAAAAziwYDOr111/XtGnT5PP5FAgEdNttt2nJkiVnfE1xcbHWr1+vTz75RJ988om++uorhYeHq2fPnkpOTlZycrJatWpVibMAUBUEAgF9+OGHeumll7R69Wq1bdtWf/zjHzVp0iRFRUUZHQ8AYIylpmAwGDQ6BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg4vJ4PCopKTmv7QtxjDMd78SJEyotLT2vOUZERCgyMvK8ti/mMaKiohQWFnZecwQAAAAAAAAAAAAAAAAAAAAAAACqO4/HI7fbLbfbHVqHdOr56e3X+ipy+hqgmJiYcu1s+ho1aiSz2VzJfxUAAAAAAAAAAAAAAAAAAAAARigtLVVsbKweeeQRTZ8+3eg4qERFRUXavHmz0tPTlZ6erm3btikQCMhut8vhcCgxMVEOh0NxcXEymUwVHiM/P19XXHGFJMlsNisQCGjAgAH65z//qebNm1fmdAAAAIAqaeHChRo/frz+/e9/a8SIEUbHAQBUQ61bt5bT6Sy332q1qmXLllq6dKk6d+5sQDIAwLnweDyKjo7WokWLNHz4cKPjAKhiRo8erSVLlsjr9Ur66Xu9fv366aOPPjI4GYCarkOHDho6dKhmzpxpdBQANcAHH3ygwYMHl9lnNpt19OhRRUdHG5QKQE3n8/lUq1YtpaSk6M477zQ6DoAaoLCwUE2aNNHx48dD+ywWi15//XWNHz/ewGQAarIRI0aouLhYH3zwgdFRANQAhw4dUqtWreT3+0P7bDabnnvuOT3wwAMGJgNwMXzzzTdatmyZ3n77be3YsUNNmzbV8OHDNXLkSHXp0sXoeNVGcXGx+vTpo/z8fG3cuDG05hgAjOJ0OjVu3DhlZGQoLCxMpaWlZxxrs9m0b98+NWnSpBITAkBZqampGjFihCZNmqRXXnnljNd3AYALZejQoUpNTVUwGPzFcVarVX/605/0zDPPVFIyADg7R44c0ZgxY/TJJ5/oqaee0kMPPWR0JAD4TZ555hk9+uijZb67PMViseiyyy7T5s2bdeWVVxqQDgCqp0AgoI0bN2rRokV6++235fV61bdvX40dO1ZDhgyR1Wo1OiIA4BLn9XqVnJysNWvWyOfzhfabzWaNGjVKKSkpBqYDAACXutzcXHXv3l2FhYVl3ktIP10P45ZbbjEoGQAA1V9F156yWCyqXbu2PvvsM7Vv396gZAAAVD+BQEBXX3219uzZU+HvYk6xWCzy+/2aM2eOpk2bVokJAQCo+vx+v4YNG6b//ve/5c43m0wmRUZGqlevXnryySd1zTXXGJQSAICq7cUXX9T06dMl/fRZV/rpd2L79+9Xs2bNdPjwYaWmpuqtt97Sl19+qRYtWujOO+/UxIkT1bZtWyOjAwBwyQoGg3r11Vc1Y8YMlZaWqnXr1tq7d++vvu6HH37Qp59+quXLlystLU1ut1utWrVS3759lZSUpJtuuol7DgEAarSioiLNnDlT8fHxuuuuu87rWD6fT9u3b1dGRoYyMzO1bt065efny2azqWPHjnI4HEpMTFSvXr3UoEGDCzMBAABqIJ/Ppz179igrK0tZWVnKycnRF198oaNHj8pqterKK69UQkKC4uPjFRcXpx49eqh+/fpGxwYAoEorLCzU3r17lZ2drZycnNDjvn37FAwGVadOHbVt21ZxcXGhGhwfH69WrVpxzXgAAH4jt9stp9MZqrtOp1NOp1O7du1ScXGxJCkmJkZ2u112uz1Uf+12uzp06KBatWoZPAMAAKqWkpISuVyuUM09veXk5Mjj8UiSIiIi1Lhx41ANPr1RgwEAOHsnT57Ut99+K6fTKZfLpby8vDL19+DBg6E1wGFhYWratKliY2MrrMPNmjWTzWYzeEYAAADAufv+++81ceJEffTRR2XukV2nTh253W6ZzebQPqfTGVojmJGRoZKSEtntdiUlJSkpKUn9+vVTnTp1jJgGgEtcYWGhFixYoL///e86ePCgevfurSlTpig5OZnfdgEAlpqCp78TBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcE4/Ho5KSkjLbFe07n+3zOcaxY8cUDAbPa44RERGKjIwss13RvnPdvhDHkKSYmJjzmh8AAAAAAAAAAAAAAAAAAAAAAACAC8Pj8cjtdpdrp9ZJ/Vpffn6+fD5fhceOiIhQTExMqJ1ao3T6vl/qq1+/vsLDwyv5LwIAAAAAAAAAAAAAAAAAAACgKnvvvfd0xx136ODBg2rSpInRcWCgo0ePKjMzU5mZmcrIyNDWrVt18uRJNWrUSD169FBiYqIcDoeuueYa2Ww2SVJaWpoGDRpU5jg2m01ms1kPP/yw/vKXvygsLMyI6QAAAACXvI0bN6p3797685//rCeffNLoOACAaujw4cNq1qxZmX1ms1mBQECjR4/Wa6+9pqioKIPSAQDOVZcuXdS7d2+98MILRkcBUMXs3LlTHTt2VDAYlPTT93lPPfWUHnzwQYOTAajp7rzzTp04cULLly83OgqAGiAYDKpdu3b65ptvFAgEJEkdO3bU9u3bDU4GoKbr0KGDhg0bpieeeMLoKABqiIcfflizZ8+W1+sN7cvNzVXr1q0NTAWgJvvrX/+qd955R3v27DE6CoAaYtSoUVq6dGmZ90Nbt25VQkKCgakAXGw5OTlasmSJFi9erK+//lotW7bU8OHDNX78eLVr187oeFVefn6+HA6H6tatq7Vr1/LbVACXhC+++EJPPfWU3n//fVmt1jLv/06x2Wy655579OKLLxqQEAD+vw8//FB33HGHRo0apXnz5slsNhsdCUA1NnPmTP3tb39TUVGRLBbLGe+vLElWq1U7d+7kszOAS04wGNSsWbP0yCOP6JZbbtGCBQsUHR1tdCwAOGtut1stW7ZUYWHhGcdYrVbFxsZqy5YtatiwYSWmA4CawePxKC0tTfPmzdPq1avVqFEjDR06VBMmTFCnTp2MjgcAuIQVFxfrxhtv1Jdfflnme+iBAwcqLS3NwGQAAKAq2LJli3r27KmTJ0+GrnthNpu1YMECjR071uB0AABUXwsXLtTEiRPl9/sl/VR/bTab1qxZox49ehicDgCA6uU///mPRowYEboO9s/ZbDZ5vV51795dM2bM0G233SaLxVLJKQEAqLqCwaAmTJigRYsWhT7n/pzZbNbcuXM1adKkSk4HAEDV5/P5NHXqVL366qvl+mw2mwYPHiy3263Vq1erbt26Gjp0qMaMGSOHwyGTyWRAYgAAqobvv/9e48eP18qVK8ucPz5w4ICaN29eZqzP59Nnn32mtLQ0paen64svvlBERIQcDoeSkpKUlJTE9WMBAPh/3nvvPd1zzz36/vvv1blzZ23btu2cXl9QUKAtW7YoIyNDmZmZysjIUElJiRo1aqTf/e53SkxMlMPhUNeuXRUeHn6RZgEAgPGCwaD+85//6ODBg3rwwQcv6LFLS0u1d+9eZWVlhdoXX3whj8cjm82mtm3bKiEhIdS6dOmiWrVqXdAMAADUJKdqb05OjrKzs5WVlaWcnBzt27dPwWBQYWFhatOmjeLj4xUXF6eEhATFx8erVatWfOcLAMBvcPLkSeXm5ionJ0dOp1NOp1PZ2dnauXOnCgoKJEnh4eFq3bq14uPjZbfbQ+3qq6/mersAAJwjt9sdqrkVtVNiYmLK1N3TG5+BAQA4Ox6PR3l5eeXqrcvlUl5eXui8syRFRESocePGZWpubGxsaF/Lli25NykAAACqndTUVE2aNEknTpwoc9+WUz7++GMVFBQoPT1daWlpcrlcuvzyy3XjjTcqKSlJ/fv3V7NmzQxIDqCq2Lt3r15++WXNnz9fJpNJI0aM0LRp09ShQwejowEALh1LTcEzXQEZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzi8XhUUlJyztu/9XXneoyioiL5fL7zmmNERIQiIyPPavtcxl6o41122WWyWq3nNUcAAAAAAAAAAAAAAAAAAAAAAAAAVYPH45Hb7Zbb7Q6tszr1/PT2a30VOX1dU0xMTLl2Nn2NGjWS2Wyu5L8KAAAAAAAAAAAAAAAAAAAAgJpu2LBhOnLkiFavXm10FFxiTp48qa1btyozM1MZGRnauHGjjhw5olq1aqlbt25KTEzUoUOHtHjxYpWWlpZ7vdlsVsuWLTVv3jz16dPHgBkAAAAAly6Xy6WuXbuqa9euevfdd1ljCgC4KObNm6c//vGP8vv9kiSbzabw8HC98cYbGj58uMHpAADn6ve//71ycnK0YcMGo6MAqIJuvvlmrVmzRl6vV5L02WefqXv37ganAlDTPf/885o9e7by8vKMjgKghpg/f74mT56sQCCgsLAw3X///XrhhReMjgWghrvzzjvl8Xj0wQcfGB0FQA3x/fffq1mzZqHzRA0aNFB+fr7BqQDUZKmpqRo2bJgKCgpUu3Zto+MAqAG++uorderUScFgUJJUq1YtFRYWymKxGJwMQGXZvHmzFi9erCVLligvL0/dunXT+PHjNWLECEVHRxsdr8ras2ePHA6HHA6HUlNTZbVajY4EAJJ+ev/33HPP6Z133pHZbA6dFzslLCxM+/fvV2xsrEEJAeAnK1eu1JAhQzR48GAtWrSI91MALqqTJ09q1apVeuutt/TBBx/IZDLJ7/eHzpmdYrPZ5HA4tHbtWoOSAsAvW716tUaOHKmYmBgtWbJEHTt2NDoSAJyVadOm6dVXXy13rurnbDab4uLilJGRwW8qAOAiys3N1cKFC5WSkqKDBw/q2muv1bhx4zRs2DDVq1fP6HgAgEvQkSNH1L17dx08eDD0vr5bt27avHmzwckAAEBVsHr1avXv318+n0/BYFBhYWF6/vnnNWXKFKOjAQBQbb344ot68MEHQ/fYs1gsWr58ufr3729wMgAAqhe/36/27dvL6XQqEAiU6bPZbPL5fOrfv78effRRXXvttQalBACg6goGg7rnnnv0+uuvl6u1pzOZTGrUqJH27dun8PDwSkwIAEDV5na7ddttt2nDhg2h+37+nMlk0sCBAzV27FjdeuutCgsLq+SUAABUPampqZo0aZJOnDhRZk2lxWLR3LlzNXHiRDmdTqWnpys9PV0ff/yxCgsLZbfblZSUpKSkJPXv3581lgAAnMblcum+++7Te++9J7PZrEAgIIvFosLCQtWqVeuMr3M6ncrIyFBmZqYyMjK0a9cuBYNB2e12ORwOJSYmyuFwKC4uTiaTqRJnBACAcbZt26Z7771XmzZtUlhYmE6cOPGbrwdbWFioHTt2KCsrK9T27Nkjv9+vyy67TB07dlRCQoLi4+MVFxenrl278p0uAKDaOXr0qObOnauRI0eqRYsWF+3fKS0t1d69e5WTk6Ps7OzQ4+7du0P3rW/Tpk2o7p567NChg8xm80XLBQBAdeT1enXo0CE5nU45nc5Q7XU6ndq3b5+CwaCsVquaN28uu90uu90eqr92u10tW7ak/gIAcJZKSkrkcrlCdff0lpOTI4/HI0kKDw9XkyZNQrX39NahQ4df/N4YAAD8xO12h+qsy+VSXl5e6Hlubq4KCgpCY2NiYmS32xUbG6vGjRuXq78xMTEGzgQAAACoXIWFhZoxY4beeOON0HqGnzOZTAoGg4qMjFRiYqJuuukm9e3bVx07dmStAoBfFAgEtGLFCv3jH//QqlWr1Lp1a913330aP3686tSpY3Q8AMClZ6kpGAwGjU4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHJ4PB6VlJSEHk/fd67bF/oYxcXFOnny5HnNLyIiQpGRkRds+0Ifo1atWgoPDz+vOQIAAAAAAAAAAAAAAAAAAAAAAADA6Twej9xud5l2av3Wz/dX1J+fny+fz1fhsSMiIhQTExNqp9ZMnb7vl/rq16/PmioAAAAAAAAAAAAAAAAAAAAAVVJRUZEaNmyol156SZMmTTI6DqoAp9OpjIwMZWZmKiMjQ0eOHNEPP/ygYDBY4XiLxSK/369Ro0Zp9uzZuuKKKyo5MQAAAHDp8Xg86tmzp44fP65NmzYpOjra6EgAgGpqyJAhSktLk8/nk9lsVo8ePbR48WI1bdrU6GgAgN/gjTfe0NSpU1VQUCCr1Wp0HABVzPr169WzZ09JP113q7CwUDabzeBUAGq6NWvWqE+fPnK5XIqNjTU6DoAawOv1qnnz5vruu+9kMpn03nvv6dZbbzU6FoAa7plnntFrr72mAwcOGB0FQA0yadIkpaSkKBAIaNiwYXr77beNjgSgBsvNzVXbtm312WefqXv37kbHAVBD9OvXT2vXrpXP59NNN92klStXGh0JgAH8fr/WrVunhQsXatmyZTKZTLr99ts1ceJE3XDDDTKZTEZHrHI2bdqkvn376vbbb9dbb73F3xDAJWXfvn2aM2eO5s6dq2AwKK/XK0my2Wx64IEH9NxzzxmcEACkdevWadCgQRowYID+9a9/8TtPAJUiLy9PS5Ys0euvv67s7GyFhYWptLS0zJjU1FTddtttBiUEgF/27bffasSIEdqyZYuef/553XvvvZyXAnBJO3TokOx2u3w+31mNt1qtSkpK0vLly1lbDAAXWSAQ0Jo1a7Rw4UK9++678vv96t+/v8aMGaOBAwcqPDzc6IgAgEvI4cOH1a1bN+Xn58vn86lt27b6+uuvjY4FAACqiMWLF2vUqFEKBoMKDw/X//k//0d//etfjY4FAEC19fjjj+vZZ5/VyZMnZTKZtGDBAo0bN87oWAAAVDuLFi3SuHHjytzX1mq1ymazafLkyZo+fbpatGhhYEIAAKq2hx9+WLNmzTrjPeRPZ7FYNGfOHN1///2VkAwAgKrP6XSqX79+OnDgQOh6JGeyfv16XX/99ZWUDACAqquwsFAzZszQG2+8IbPZrEAgUKbfYrHo2muv1ffff6/c3FzVqVNHffr00c0336x+/fpxPhkAgAoEAgG98cYbeuCBB+T1est9hv300091ww03SPrpXn07duxQRkaGMjMztXbtWv3444+KiopS586dlZiYKIfDoR49eqh+/fpGTAcAAEPl5+frkUce0ZtvvimLxRKqqzt27NDVV1/9q693u93Kzs5WVlZWqO3atUvBYFB169ZVfHy8EhISQq1Dhw4ym80Xe1oAABjm5MmTevnll/XEE0+oqKhIs2bN0p///OfzPq7X69XXX3+tnJwcZWdnhx737Nkjv98vm82mtm3bKj4+XnFxcaHH9u3by2KxXICZAQBQ+Twej+bPn69u3bqpa9eulfbvnvqsm5OTI6fTGWrZ2dkqKSmRJMXExMhut4fqrt1uDz2PjIystKwAAFRlbre7TK39eTvlVN2tqLVq1Yr7cQAA8AtKS0t1+PBhuVwu5eXllam1LpdL+/fvV3FxsaSf7mfcoEEDNW7cuEy9jY2NVePGjdWuXTvVrl3b4BkBAAAAl4bVq1dr9OjROnLkyC+uyTeZTOrQoYO2bt3Kd0gAzsqPP/6o+fPn67XXXtP+/fuVlJSkKVOmaMCAAfwGGwDwS5aagmdzZUYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ+TxeFRSUnLG7V/rv9jHOHbsmILB4HnNMSIiQpGRkWfc/rX+i32MunXrymQyndccAQAAAAAAAAAAAAAAAAAAAAAAAKAyeTweud3u0Boyt9tdrv1an9vtrvDYp6/biomJKdfOpq9hw4ayWCyV/FcBAAAAAAAAAAAAAAAAAAAAgEvDwoULdffddysvL0/16tUzOg6qmGAwqDp16uj48eO/OtZmsyk8PFxPPfWU7rvvPn7LDwAAgBorGAxq1KhR+vjjj7V582a1adPG6EgAgGrK5/Opbt26OnHihMxms5588kk9/PDDMpvNRkcDAPxGX375pa655hp99dVXuuqqq4yOA6AK6tq1q7Zu3apevXppzZo1RscBABUUFCgmJkYffPCBBg0aZHQcADXECy+8oD//+c8ymUz68ccf+d0cAMOtWLFCAwYM0I8//qj69esbHQdADbFnzx516NBBwWBQ//znP/WHP/zB6EgAarBAIKDo6GjNnj1bkydPNjoOgBpi3bp16tWrl8xms55++mk99NBDRkcCYLDCwkK98847SklJUWZmppo1a6aRI0fqnnvuUYsWLYyOV6WsXr1aAwcO1KRJk/Tyyy8bHQcAyjl8+LBmz56tf/7zn/L7/fJ6vYqMjNShQ4c4Tw/gkrBhwwYNHDhQPXv21LJlyxQeHm50JAA1yJYtW5SSkqKUlBQVFRXJYrHI5/MpNjZWe/fuVVRUlNERAaBCfr9fL7zwgh599FH1799f8+fP5zMegEvWsWPH9PDDDysrK0u7du3SiRMnJEnh4eHy+Xzy+/3lXmOxWDRu3Di9+eablR0XAGosj8ejtLQ0paSkaOXKlapdu7YGDRqksWPHqk+fPjKZTEZHBABcAr766is5HA4dP35cl19+ub7//nujIwEAgCpkzpw5mj59ukwmk6ZNm6bZs2cbHQkAgGpr+vTp+vvf/65gMKjZs2frgQceMDoSAADVjs/nU5s2bXTw4EGZTCYFg0E1bNhQM2bM0OTJkxUdHW10RAAAqrSnnnpKjz32mILB4K+ONZlMMplMatSokb799ttKSAcAQNW2ceNGJScnq6ioSD6f7xfH2mw2jRo1SgsWLKikdAAAVE2bNm3SnXfeKZfL9Yv1tVatWrr//vs1YMAA9ejRQ1artRJTAgBQtXz55ZeaMGGCtm/frkAgUK4/LCxMo0ePVt26dbVx40ZlZWXJ6/WqSZMmcjgccjgc6tGjhzp37kzNBQDUaD6fT/Pnz9eDDz6o4uJieb3eUJ/FYtH8+fM1duzYMq9xuVzKysoq0/Ly8iRJsbGxSkhIUEJCguLj4xUXF6f4+PhKnRMAAEYKBoNavHixHnzw/7J37/FxlnX+/99zyBySOWSaNMe2KfOjB1ooLaWAtKJARYurCFgornThISJaeIju4mFZWGA5uICI6CLiinJwC/KgClVWFGFXKAKlnHqCVkLSNJNz55jMZCaT+f3R79ybyalJm2SS9PV8PO5H7uu+577mc08m87mu676vybfU3NysdDoti8WiSy+9dFTXVVOplBoaGrRz507t2rVLO3fu1LZt2/T+++8rnU6roKBAs2fPNnLtokWLtHz5ci1cuFAWi2UczxAAgImTTCb1s5/9TDfffLPa2tp0+eWX66GHHhrT5wiFQvrggw9UW1ur2tpaI/fu2bNH0WhUkuT1enXsscfK7/cby6JFi7RkyRJ5PJ4xjQcAgPGyY8cO/du//Zs+9alP6fLLL5/Q504kEgoEAka+7bvs3r1bXV1dkg5+J311dXVOzs0uCxcu5P8DAQAwjP75NhAIqKmpySjX19cb//elb86trKxUVVVVTt6dM2cO91MBAAAAh5BIJHTTTTfpzjvvlNlsHvT/LPZnsVh04MABri8BGNa2bdv04IMP6rHHHpPVatW6det0zTXX6Pjjj893aACAqeFJU2Yk384IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATLB4PK5EIjHq9cM9brT1xWIxpVKpIzpHh8Mhp9M56vXDPW60dbjdblmt1iM6RwAAAAAAAAAAAAAAAAAAAAAA8iUUCimTySgajaqnp0ddXV3q7u6WJCWTSXV2dg56XHd3t7q6uoast7i4WCaTadB9Pp/PWM/el19YWCi73S673a7CwsIjOCMAwGQSj8cVDAZzluyctP7bB9vX1tamnp6eQet2OBzy+XzGkp0T1nfbcPtKSkpkt9sn+BUBAAAAAAAAAAAAAAAAAAAAgOnlU5/6lJxOp37zm9/kO5QJUVdXp61bt+Y7jGmjqalJX//610d93DHHHKOrr75as2fPHoeoAABHq4qKCn30ox/NdxgAcEi33nqrbr75Zj333HM666yz8h0Opjj6uQCG8/777+uGG25QSUmJvvnNb2revHn5DgnAKFksFp177rlyOBz5DgWTRE9Pjzwej+6//35ddtllY14/7Utg+nv99dd199136+KLL9aFF16Y73AATLDJ2r489thj9cUvflE33XRTvkORJCUSCT377LNKp9P5DgXAOInH4/rKV76iGTNm6N577813OADyYMWKFZo7d26+wzAEAgFVV1frhRde0JlnnpnvcAwvvfSSmpub8x0GgHF01113aevWrbrnnns0a9asfIcDYIJNtvtuTz/9dJ100kn68Y9/nO9QcnD9DJjevvOd76i2tla33XYb91YBR6mhrp+9++67euihh/TYY48pFAppzZo1+tKXvqTPfOYzslgseYp2avntb3+rtWvX6vrrr5801wGnAtqfwMSKRqN69tln9eyzzyoej2vt2rVau3ZtvsMCMI2N5v6tLVu26Nxzz9XKlSu1adOmSXfP12RB+wkYP6lUSm+++aZeeOEFvfPOO+rt7dVFF12kz3/+8/kODcBR5HDuf3/ttdd0ySWXqKurS4888ojOOeeccYwQo0X7DRhcW1ubGhoa1NDQoH379qmurk6BQEDpdFomk0lWq1U9PT3KZDLMCwQwqU3W+ZnTOm0AACAASURBVItjIRAI6Mknn9Sjjz6qbdu2afbs2frCF76gyy+/XAsWLMh3eACAEYhEIjlzx8PhsHp7e41yKBRSJpPJOSaTySgUCh2y7h07duhb3/qWTCaTnnrqKcXj8VHH5/V6ZTabR/z4goICuVyuAdvtdrsKCwuNssPhkNPpNMpOp3Na5moAAMZTKpVSLBYzyslkUp2dnUOWs+LxuBKJxCHr/8///E898cQTOuecc/SVr3xl1N93Y7FY5PF4RnXMUG2CoqIi2Wy2Icsul0sFBQWjei4AwPSXSCRy+sL9c2BXV5e6u7sHHBeNRtXT0zPi5+nt7VU4HB51fNm8d9ddd+mPf/yjLr74Yl1xxRXDHlNcXCyTyZSzzWw2y+v1Dlk+nJwMADg6jOf4dF/9c/JIjeX49O9+9zt997vflSQtXLhQ3/jGN/S5z31OBQUFjE8DAHIcTflxrK7f3nfffQP+f7zZbDbuMc2+fna7XTU1NVq0aJEWLFigU089Veeff/6IzwUAkD+xWEypVMoo9x9D7Z8/s4LB4KieZ6Lyo81mU1FR0YDt/fNfYWGh7Ha7Ue5/jXIiPP7441q/fr16e3tHfL3W4XCotbVVbrd7nKMDgKMb/ceDptr4aiqV0q233qpbb71VJpNpRPl1y5YtOv300ycgOgCY+ug/HpSP/mM+dXV16ZZbbtFdd90ls9k85H1XZrNZlZWV8nq9Wr58uVatWqWVK1dq8eLFExwxAEws+o8HTbX+Y7688MIL2rBhg/bs2ZPzPsmy2Wy65JJLtHr1ar311lvGEgqFZDabNX/+fC1btkwnnXSSli1bpmXLlmnGjBl5OBMAGJl0Oq1IJDJkuaenR9FodMBx3d3d6urqGtVzDdUnHY7Vah31Nbf+fcQst9stq9VqlD0eT87/lhltTsbIvPLKK7r22mv1xhtvSFJOu+vEE0/U22+/PeCYnp4e7du3Tzt37tSuXbtyfiYSCVmtVs2ZM0eLFi3S4sWLjZ+LFy+mvQNgzHV2diqZTA5Z7j8mmzXavNc/B4/U4fT1+ufALJ/PN2TZZDKpuLh41PFh7PT09OiRRx7RDTfcoJaWFvX29iqTyei0007TX//611HXl0ql1NDQoNraWiPX1tbWGot0cAxi9uzZ8vv9Rr71+/3y+/065phjBsyzBXB0Yvz1IMZfp5bdu3frpptu0pNPPqlMJqPPfvazevrpp8f8eYLBYE5+7bt8+OGHxt+Gz+czcmz/hZwLTE3kx4PIj9NXIBDQXXfdpZdfflmvvfZa3sbWs7k2EAioqakpJ9dmt2X5fD5VVlaqqqoqJ9dmt5FzAeDIJBIJPfvss6O+HgwAmD7q6+v1/e9/X83NzaM6zmQy6brrrtPJJ588TpFhrKxYsUJz587Ndxg4inR3d+uZZ57RD3/4Q23ZskULFy7UVVddpS996UuDjlUBADCMJ02Z/ldmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMK3F43ElEgnjZ99tR7I+1nUcCYfDIafTafzsu22062NRR9/1bJ0AAAAAAAAAAAAAAAAAAAAAAOD/pFIpdXR06MCBA+ro6FA4HFYsFlMkEjHWo9GoYrGYQqGQsZ59TCqVUiwWU29vr8LhcL5PZ1hWq1Vut1smk0nFxcWyWCzyeDzyer1yuVzG4vP55Ha7jXL2MV6vVyUlJSopKZHP58v36QDAlBOPxxUMBo05bcFgcMByqH3BYHDI+h0Oh3w+34AlO7dssH1995eXl8tisUzgKwIAAAAAAAAAAAAAAAAAAAAA6K+trU1VVVX61a9+pYsuuijf4UyISy65RI8//ni+wwAAAOPAarUqlUrlOwwAGNbTTz+tCy64QPfdd582bNiQ73AwDdDPBQBg+nvqqad0wQUX5DsMTCIf+chHtHz5cv34xz8e87ppXwIAMP1NxvblxRdfrK6uLm3evDnfoUiSNm3apAsvvDDfYQAAgHG0bt06bdy4Md9h5KioqNC3v/1tfeMb38h3KIaCggL19PTkOwwAADBOJtt9t1/96le1Y8cOvfTSS/kOJQfXzwAAmP6Gu37W3d2tp59+Wj//+c/1/PPPa/bs2dqwYYOuuOIK/rfiCDzyyCO67LLLdOedd+qf/umf8h3OlED7EwCA6W80929t27ZN55xzjlasWKHf/OY3cjqd4xzd1EP7CQCA6e9w7n8Ph8O66qqr9MQTT+iaa67R3XffrYKCgnGKEKNB+w0AgOlvMs5fHGs7d+7Uk08+qYcfflh1dXVatGiR1q9fr8suu0zl5eX5Dg8AJoVIJKJkMqlIJKJ4PK5EIqFQKKRMJmP87OrqUnd3t3p6ehSNRiUd7NP39vYax6TTaUUiEaPOdDqtRCKheDyu3t5ehcNh4zljsVjOvdHRaJR5USNQWFgou91ulIuKimSz2SRJFotFHo9HkuT1emU2m+V0OuVwOHL2eTweWSwWORwOOZ1Omc1meb1eSZLb7ZbVapXdbjeeq7CwUB6PRzabTR6Px6gTAABJRq4frD0x2jZCtj3Q3d2trq4uoy0iSZ2dnUomk5KU0x6RpFQqpVgsNsFnPjVlc/1gZZvNpqKiIkky7rvOtjWsVqvcbrek0bUzsj9pSwA4mvXNld3d3YpGo0Yf+3D72sPtk2TUndW/jMH1zXfSwe9wcblcRnms+tomk0nFxcXGz7750m6358QAAEcDxqenDsanAWDikB+njqHyY3d3txobG43tFovF6Pt5vV653W6Vl5fL6/WqoqKC/AgAI5DNfaFQSN3d3ers7DTyV/bnYNcZs/uSyaQ6OzslScFgUNL/XYMcbF/f58zqe80SQ3O5XDnzwkZ6TXK4fX3Ha5977jlt2rRpyOc3mUzG85lMJplMJmUyGSWTST366KP64he/OMZnDAD5Q/9x6pjM46u7du3SunXrtGvXLuOa86HYbDZ95zvf0c0333xErwsAjAf6j1PHePcfs/fnZPdlf/p8PiNX9r+vdqxs3rxZV111lVpbW0fUVvJ6vQoGgzKZTGMeCwBI9B+nksncf8yHhoYGfec739F//dd/yWq1DvseKikpUTgc1vz587V8+XJjWbp0ac79wADQXzaHZfNdOBxWMpk0clc2L45VzpSU0x/tGwMOLZsDs7J9P0mjzosjyZlut1s2m01er9d4XP8YppL33ntP119/vTZt2jRkbnU6ndq7d6/efPNN7dq1Szt37tSuXbu0a9cu4z1cWVmp5cuXa/HixVq0aJHxk+9iB6anaDSq7u7unD5lNveNJgeOdDxWGjjm2r+MwWXnK2b1zW3S8OOo2T7iaL9TwO12y2635/Qnp3KuHKne3l499dRT+va3v636+nplMhllMhljf2lpqdra2oY8PhgMGjm2trZWtbW12rlzp95//33jmq3P5zPyrN/vl9/v16JFi7Rw4UJZLJZxP0cAI8f469TB+Ovk9OGHH+r222/XQw89JKvValxrX7Bggd57771R15dIJBQIBIwc23fZvXu38b0bdrtd1dXVRp7tuyxcuNC4Jg3g8JAfpw7y49S3f/9+/fu//7sefPBBpdNppdNpNTY2qqqqalyeLxgM5uTXQCCgpqYm1dbWas+ePTnfD+nz+Yz8WllZqaqqKqN87LHH5oxbAADG3qZNm3ThhRfmOwwAADCO1q1bp40bN+Y7DBwFGhsb9bOf/Uz/8R//oUgkovPOO09XXnmlzj77bOZCAQAO15NjP7MXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgKBSPx5VIJEa0PprHjlUd4XBYvb29R3SODodDTqdzyPWh9vt8vmGPG219Q617vV6ZzeYjOkcAAAAAAAAAAAAAAAAAAAAAADA24vG4mpub1dTUpJaWFjU2Nqqjo8NYDhw4oI6ODrW3t6ujo0ORSGRAHRaLRR6PR16vVy6Xy1h8Pp8qKiqMcnFxsfFY6eBcBknyeDyyWCwqKiqSzWbLmYdgMplUXFw8aOxms1ler3fQfel0etBYJSmVSikWixnl7HyOWCymVCplzPVIJpPq7Ow06soeFwqFFIvFFIvF1NLSolAopGg0amwb6jWaMWOGSkpKVFJSkrNeUlKiiooKlZWVqbq6WuXl5SorK5PFYhnmNwcAk1s8HlcwGMxZsnPu+m8fbF97e7tSqdSgdTscDvl8PmNOXN+y3+8fcl92KSkpkd1un+BXBAAAAAAAAAAAAAAAAAAAAAAwHh5//HE5nU793d/9Xb5DmTDpdFqnf+oz+sd7f5rvUKaF//y36/WH//qlTGazTDIpne4x9hV5vJpZNUtVx/hVPmuOZlbPVln17IPrVbNUwPwEAMAYeuW/n9H3v3FVvsMAgGHt3r1b//AP/6D169drw4YN+Q4H0wT9XAAAprcLF1app6fn0A/EUWXFihV6/fXXx6Vu2pcAAExvk7V9uWLFCt11113KZDIymUz5Dsd4jZ56L5DnSAAAwHj4/rVfUTqdzncYAyxZskRvv/12vsPI0dPTo3/8wQM6fc1n8x0KAAAYY5PxvtslS5Zo48aNk2aMKIvrZwAATG+Hun5mt9t10UUX6aKLLlJtba0efPBB3XHHHbrxxhu1du1afetb39Lxxx8/gRFPLevXr1c4HNbXv/51FRcX64orrsh3SJMe7U8AAKa30d6/tXz5cj3//PM655xz9KlPfUq///3v5XK5xjHCqYf2EwAA09vh3v/u9Xq1ceNGrVmzRl/72tf06quvauPGjfL7/eMQJUaD9hsAANPbZJ2/ONYWL16sxYsX68Ybb9Qrr7yiRx99VLfddpuuv/56nXnmmbr00kt14YUXqqioKN+hAsAhhcNhRaNRRaNRxWIxhcNhhcNhxWIxRaNRdXZ2KhKJKJlMKhKJqKurS93d3QqFQkomk4rFYorFYkomkwqFQuru7lZXV9eIntvhcMjpdMpsNsvr9UqS3G63rFar7Ha7CgsLZTKZVFxcLEmqqqpSQUGBbDab8Rnr8/mM+pxOpxwOh1EuLCyUvc934BcVFclmsxlll8ulgoICo5x97v761zMSxcXFo7ofOplMqrOzc1TPEY1GB8272d9RVmdnp5LJpFGOxWJKpVJD1hOJRIy5d33jCgaDOfUlEgm1t7dLkkKhkDKZjPHcPT09ikajkg6+x3p7e0d0TsXFxbLZbHK5XCoqKpLdbldxcbHxfnC73bLb7fJ4PMbv2+fzyeVyye12G0txcbGx7nQ6R/TcAIDR6+zsHLINEYvFFAqFFI/HlUgkFA6HlUwmjfZFMplUMBg0ck3f9sRI9G0jZHP6YG2EbP53uVyqqKiQdPAagtlszmk79K1PUk77ZLCyxWKRx+MZstxX3/bKSPQ9j5Hqn+9HIpvb++vbFhis3D+3Z9sBg5UTiYTi8bh6e3sVDocl/V/bo7OzU21tbcpkMsbvPdtOSaVSisVig9Y/nP5tCZvNJp/Pl9OWsNls8nq9Rlu0uLg4py3h8Xjk9XrldruNegDgcHV1dRm5MRQKKRKJ5OTKYDBofFb2zZXZvlX/XNnd3W18nh7KSPva2Tzq9XpVVVU16D5pYK6zWq1yu91GuaCgIOfexv75LPvc/fWvZyT69+8PpW+uGamhxjf69ncl5eQsaWD/vn892d93Vv++dt/69u3bN2Rfu38/fCSy4xvZfnZRUZFcLpdsNpuKi4uN3OjxeGSz2eTxeFRUVGTkRK/Xm5Mj3W53TvsIAA4H49OMTzM+DQADkR/Jj0Plx2QyqR07dhjjntk6+/cp4/G43nvvPfIjgGmlq6vLyI/hcFiRSCQnX/a9LjlUTsyOzfXNoyPRdwwze50xm4sG21daWiqHwzHoPmngWGk2/2aNNn8OddxIjDY/jqZdkdX/WmPWaPqH0vDXKAe7Jpk9PhKJqKWlZdDrlYMdN5RMJqNUKiWTyWT87gsKClRaWqof/OAHevjhhwfNlR6PRw6HQy6XSz6fz8iH2VyZ3TZYmwcADoX+I/3HyTq+ajab9cEHH4z6u6WTyaSeeuopbdiwgf4jgMNG/5H+Y777j1nZe62yr7fX65Xdbh9yrHW4/mNXV5duueUW/eEPf5DFYhnx/9oKh8P629/+pnnz5o3o8QCmL/qP9B8na/9xoq8/dnV16c4779Qdd9xhtA8O9b0Y2XvBR/v+ADB1ZD/PgsFgzlyPSCSiUCikaDSqRCKhSCSSM0+yu7tbsVgsZ55kNkcO9fk9mOHyYv99VqvV+A7FweZTSrn9SmlgvuqbV/vPp+xf7qt/vYfSf37JSPTPX4cyXB+t/3zEvvMo+88v6V/uX+9gcz2y9Xd0dAy5b7CceSjZMYK+8yKzv+PB5kVm+5rZ3OjxeHJyZjZfjte1yEAgoJtuukkPPfSQ8T4b6r0fj8c1a9YsSVJlZaUWL16slStX6sorr9SiRYu0bNky5nECk9RQOTK7raura9B5kWPRp+w7Rtr/ewP65ppsvisrKxtyPLZ/fYOV+4/BHmpMNutw8t5o50dKQ38vwFCG6odmx0OHKvfPXYeaT5lt+2R/t31za2trq1Kp1LB9z/71DWe4XDnUPMn+466D5cq+Ywf5kMlk9Lvf/U7f/e53tWvXLplMpkH72R0dHYpEItqxY4fef/997dmzR3v37tWePXu0Z88eY6ygpKRE8+bN08KFC/X3f//3mj9/vubPn6958+ZxDRYYB4y/Mv7K+OvkUl9fr1tvvVW/+MUvZLFY1Nvbm/P727dv35DHBoNB1dbWDrp8+OGHxliDz+eT3++X3+/X6tWrdeWVVxrlY445ZlTvXWC6Ij+SH8mPU9e+fft0991366c/Pfh/hPrn0aqqqlHX2d3drcbGRtXW1ioQCKipqSknz+7bt894v9hsNs2aNUuVlZWqqqrKybWVlZU65phjBv3+KgDAxMl+Zj/1XiDPkQAA8i3eGVMsHFIsHFYsHFRnJKxoKKTOyMHywX0hhTraFQsdLJ+yeo2u/Nc78h06hvH9a78y4jkrwOHo7e3VCy+8oAcffFCbNm1SWVmZvvSlL+nqq6827i8DAOBI8A1OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABg0orH40okEke0Pp51xGIxpVKpIzpHh8Mhp9M56nWn0ymfzyen03nYdfRdH2q/y+VSQUHBEZ0jAAAAAAAAAAAAAAAAAAAAAACYXpqbm1VfX6/6+no1NDSosbFRra2tamxsVEtLiwKBgMLhcM4xM2fO1MyZMzVjxgyVlJSoqqpKJ5xwgkpKSlRaWqqSkhJjX0lJibxerzG/YTKxWCzy+XxD7i8rKxvX5w+HwwqHw+ro6FB7e7s6OjqM5cCBA+ro6FBLS4t2796t9vZ2NTc3q7OzMyf+srIylZeXq6qqSuXl5aqurlZFRYVqamp0zDHHqKamRi6Xa1zPA8DRJx6PKxgMGnP2gsHggOVQ+4LB4JD1OxwO+Xy+AUt2/tyh9pWXl8tisUzgKwIAAAAAAAAAAAAAAAAAAAAAmMw2btyo888/X4WFhfkOBVPU/3f8Ep36iTUqn1WjmdWzVFY9W+Wz5mjmrNmyOybf3DkAAAAgXw4cOKDPfvazOv744/XAAw/kOxwAAAAAU9jy5cv1s5/9TKlUSgUFBfkOBwAA4Ih99KMf1XXXXaf33ntPxx13XL7DAQAAyItTTz1Vv/71r/MdBgAAQN6sWLFC4XBYu3bt0uLFi/MdDgAAwAB+v1/f+973dP311+uXv/ylfvSjH2nJkiVavXq1rrvuOn3iE5/Id4iT0jXXXKOWlhZdddVV8nq9Wrt2bb5DAgAAmFKWLVum559/Xp/4xCe0Zs0a/f73v5fH48l3WAAAAFPC+vXrtWLFCl1yySVatmyZHnjgAV1yySX5DgsAAADThNls1qpVq7Rq1Sr98Ic/1ObNm/XII4/oiiuu0DXXXKPzzjtPa9eu1bnnniuLxZLvcAFMM729vQoGgwoGgzpw4ICxHgwGFYlEFAwGFYvFFI1GFYvFFIlEFAqFjHI0GlUkEhmy/qKiIrndbhUWFsrr9cpmsxllu92uuXPnymazyeVyqaioSDabTT6fT3a7XYWFhXK73bLZbPJ6vXI4HHI6nfJ4PLJYLHK73bJarRP4ak1+NptNNpttVMf4fL5ximZ8xONxJRIJ42c4HFYymVQ0GlVXV5e6u7sVCoWUTCYVi8UUi8WUTCYVCoXU3d2trq4uBQIBJZNJhcNho67s+zqVSg36vBaLRR6PR8XFxXK5XHK73XK73fJ4PPJ6vXK73XK5XPJ4PPL5fMYyY8YMY93tdk/wqwUA4y8UCuW0H/q2KaLRaE6bYah2RSaTGbTubLvB6/UabYfi4mKj7VBWVma0HWw2m4qKiuRyuWSz2VRcXDxseyK7D7mKiopUVFQ0qmOmWlsi214YrN3Q2dmpZDKpYDCoZDKpzs7OQbc1NTUNaF+Ew2FFo1Elk8lBn9dsNsvr9crj8RjtBrfbreLiYqNdMVhbou9SXFw8wa8WgLGQzYH9+9zZfnc2L4bDYYXDYSNXRqNRhcNhRSIRpdPpQesuKCgwPkucTqccDkdO37u0tFR2u/2wcmX2J/6PyWSacnlvtHp6ehSNRpVOpxWJRHL63t3d3UPmy75973A4rKamJiMvhsNhdXV1KRqNqrOzc8jnzubIbE4sLi6Wx+PJ6YNnt/Xvb2cXs9k8ga8WgLHA+PT0wvg049MAxgb5cXohP5IfAYyd7FjrUDmy/1hr39yY3dbb2zto3UNdl7Tb7SoqKlJFRcWg46p2u10ej2fQ8dlsPdmf+D92u33Ur8lUy4/RaNQYb+2f4yKRiJLJpCKRyLDXLGtra41cGY1GlUgkjL+DoTgcDiMn+ny+nBzZ99rkcPmR9yswddB/nF7oPw7MiR0dHXrjjTcUDAYVj8fV1dVlPC6ZTCqdTg95LX3nzp0qLy+XRP8ROBrRf5w+6D+OX/8xnU7LZDJJ0pD3cWeZzWbdf//9+vznP0//EZii6D9OL/Qf83v9sbW1VU8//bRisdioz6mhoUHHHnvsWLxEAMZYIpE45PzI7GdI3/mSffcnEokh689es3E4HPJ4PDn9ycLCQpWVleXkyOHmfng8HtlsNnk8HmOuGnK5XK5RH1NSUjIOkYyf7NjFoXLkUHM/uru7VVtbm9P/TCQSxvt6KE6n08iR2XHT/vM9suv953tky337kp2dnfrxj3+sW265RalUasjx3v7uvfdeffnLX2Z+MDBBUqnUgDyZzZV95z/27UP2zZvZbUNxuVxyuVwqLCzM+Q6BQ/UpDzVX0mq10qccwlTrIx6O7PdXHG6uPNxxV7vdPuh1yOx1hb7zJwe7Junz+Q47vz3//PO67rrr9Pbbb8tsNiuTyQw59pvJZPTBBx/o4x//uEwmk2bNmqVFixbp3HPP1dVXXy2/328sAA6N8dfphfFX5n/s27dPd999tx544AFJGvL+pHg8rl/+8pfq6OhQbW2tsdTV1RnfO1RUVGTk1BNOOEHnnXeeUT7mmGO43oppjfw4vZAfyY+jUVdXp3vuucfIpf3P3Ww2q76+XqeddtqAY+PxuJqamnJyayAQMLbV1dUZ9/U5HA5VVVUZuXX16tWqrKw0ttXU1PAd/gAAAMAU4SxyyVnk0syqWfkOBcAUEA6H9cQTT+jee+/V7t27tXLlSm3cuFGf+9znVFBQkO/wAADTCFeLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CsXjcSUSiZz1wbaNdn0s6pCkYDB4xOfocDjkdDpz1gfb1n/d5/MN+5iR1HGo9Ww9AAAAAAAAAAAAAAAAAAAAAAAAk1F7e7v27NmjDz/8UPX19TlLXV2dMQfEYrGosrJS1dXVKi8v18KFC/Xxj39cFRUVqqysVHl5uaqrq1VWViabzZbns5oevF6vvF6v5syZM+JjOjs7tX//frW2tioQCKi5uVlNTU1qampSIBDQ1q1bFQgEdODAAeOYkpIS1dTUGMvcuXM1d+5cHXPMMZo3b54xXwbA0SEejysYDOYs2TmF/bcPtq+9vV2pVGrQuh0Oh3w+nzG3r2/Z7/cPuS+7lJSUyG63T/ArAgAAAAAAAAAAAAAAAAAAAACYzurr6/Xqq6/qxhtvzHcomMLOPP9inXn+xfkOAwAAAJjUenp6tHbtWqVSKW3atIl5wwAAAACOyIoVK5RIJLRjxw4tW7Ys3+EAAAAcseXLl8vtdusvf/mLjjvuuHyHAwAAkBcrV67UrbfequbmZlVUVOQ7HAAAgAm3dOlSud1uvfzyy1q8eHG+wwEAABiS2+3WNddcow0bNugPf/iDfvjDH+qcc87RqlWrdMstt+jMM8/Md4iTzq233qpQKKRLL71ULpdLa9asyXdIAAAAU8qJJ56ov/zlLzr77LN19tln67nnntOMGTPyHRYAAMCUcNxxx+mvf/2rvvnNb+oLX/iCXnjhBd1zzz1yu935Dg0AAADTiMPh0Nq1a7V27Vo1Nzfr8ccf16OPPqpHH31Us2fP1iWXXKJLLrlES5cuzXeoACaZZDKptrY2tbe3q729XQcOHFAwGDSW/uXstnA4PKAui8Uin88nj8cjn88nt9stl8slt9stv9+v4uJiud1uY7vH4zG2ZR/n8Xjk9XplNpvz8GpgOnM6nXI6nfL5fONSfyKRUCwWUyQSUSgUUiwWUzQaVTQaVSQSUTgcNsqxWEzhcFj79u0zHheJRBQMBhWJRAbUbbVaNWPGDPl8vpxlqG2lpaUqLS3VzJkzx+VcASCrp6cnpx0xVNthsHZFJpMZUF/2syzbS1g2LAAAIABJREFUXsi2Efx+f057we12D9mGcLvdstlseXg1MN0VFhaqsLBw3NoSyWRS0WhU4XBY4XDYaCPEYjGFQiFFIpGcbcFgUIFAYEBbIhQKDajbbDYPaDMM16bItiNKS0tltVrH5XyBo0UmkzHy5Ej63H3LPT09A+rL9rc9Ho+REz0ej+bMmZOTF71er7xer1F2uVwqLi42juN/VGCsWa1WI0eWlpaOef29vb0Kh8OKRCI5fetsjsyWo9GoQqGQotGoDhw4oPr6eiNvZnNlOp0eUH9xcfGw+bHvet88SbsTOHKMT+Nowfg0gNEgP+JoQX4EMFodHR1GjuybD4fLlQcOHDissdZsLsyOtQ61jfEhjLXsXLPxyo9982Hf8dShtsViMbW1tRnbsvkxkUgMqLuwsHBALhyqPGPGDJWXl2vmzJkqLCwcl3MFjgb0H3G0GK/+Y/Z6Y3Nzs5qbmxUIBNTd3a0TTzyR/iMwxdF/xNFgIvuPoVBI7733nurr67V//341Njaqra1Nra2tCgaDisViOffjmEwmSQfv97n33nt177335tRN/xGYePQfcbSYzNcf6+rqFI/HD+t5v/Od72jlypX0H4FxFIvF1NraarRxD9WHzC5dXV0D6sp+Dnk8npx5HDNmzFBNTU3OvMi+ObN/XuX7CTEevF6vpPHrS/bNg9FoVMFgMKec3dZ3juRorkX6fD4VFhaqrq5OqVRqVLHZbDYlk0n6lsBh6OrqUnt7u1paWoYdb+2fN2Ox2IC6CgoKjDzZf/5jeXm5kTf7zokcLEcWFxcbY1DAWCouLpY0/uOug/Uts/3I/t8xUFtba3zHQDZXdnZ2DqjbbrcPey2y//jr3r17dd999+mtt96SxWKRdHBMdzgmk0l1dXWqq6tTZWUlf4fA/8P4K44Wk3n8NZ/37zQ0NOiuu+7SAw88IEkj6q9efvnl8vl88vv98vv9Ov/88411v9+vuXPn8jeMKY/8iKMF+fHIffjhh7rjjjv00EMPyWw2D5lLrVarnnnmGdXX16u+vl779u1TXV2d6uvrFY1GjcdVVFRozpw5qqmp0YknnqjPfvazmjt3rrEt2/cHAAAAAABHh1deeUUPPvigfv3rX8tms2n9+vXatGmTFi5cmO/QAADTFP/VBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAMRKPx5VIJEa0PprHjlV9kUhE6XT6iM7R4XDI6XSOaL3vNp/PN+LjhqpjJOsej0cWi+WIzhEAAAAAAAAAAAAAAAAAAAAAAOBokEwmtX//fu3cuVO7du1SbW2tamtrtWPHDjU3N0uSCgoKVFpaqqqqKvn9fp133nny+/3y+/2qrKyU3+835nVg8ioqKtKCBQu0YMGCYR+XSCQUCASM90Jtba0CgYB27NihZ555RnV1dert7ZV0cL7QokWLtHjxYuM9sWjRIi1cuJD5PcAkEo/HFQwGjXmIwWBwwHKofcFgcMj6HQ6HfD7fgCU7P/BQ+8rLy/nMAAAAAAAAAAAAAAAAAAAAAABMOo899phKS0u1evXqfIcCAAAAANPatddeq7/+9a966aWXVFZWlu9wAAAAAExxCxculNvt1tatW7Vs2bJ8hwMAAHDErFarTjvtNP3lL3/RV77ylXyHAwAAkBenn366LBaLXnnlFV1wwQX5DgcAAGDCZceItmzZwhgRAACYEsxms84991yde+65evXVV3XbbbfprLPO0sqVK3XLLbforLPOyneIk8p9992nrq4uXXDBBfrtb3+rT37yk/kOCQAAYEpZuHChXnjhBZ199tn6xCc+oT/+8Y8qKSnJd1gAAABTgtPp1E9+8hOdc845uvLKK/XCCy/o4Ycf1qpVq/IdGgAAAKahiooKXXvttbr22mu1a9cuPfbYY9q4caPuvPNOHXfccVq3bp3WrVun+fPn5ztUAOMgkUjowIEDCgaDCgaDampqUiAQGLLc0tKi3t7enDocDod8Pl/OUlVVpcWLFw/Y3ncpLy+XxWLJ05kD+eVwOORwOFRaWnrEdcXjceNvdLilrq5Ob731llFubm5WJpMZEFdVVZUqKytz/p4HK5eVlclqtR5x/ACmru7ubnV0dOR81gzXlmhtbVU6nc6pY7B2RHl5uRYuXDhsO4LPIBztbDabSkpKxuRenJG2Jfbv36/t27cb5eH+pg/VnvD5fJo9e7Y8Hs8Rxw9MdvF4/JB97Wy5vb1dqVQq5/jBcmVpaanmzZs3bK4sLS2VzWbL01kD+WU2m42/hSM10jwZCAS0c+dOo9zW1qaenp6cuobKk4NtmzVrlrxe7xHHD0x2jE8D+cH4NDC5kR+B/CA/ApPfSMZas9saGhpGNNZaUlKiY489lrFWYAgul0sul0uVlZVHVM9Ic2NbW5v27NljlDs6OpRMJnPq6v+3fKg8WVlZKZPJdETxA5MV/UdgYmXz4qxZs8asTvqPwPig/whMvP79x1NOOWXYx4dCITU0NKi+vl4NDQ3av3+/Ghoa9LGPfUxr1qyh/wiMMfqPQH6MxfXH7u5u1dbWavv27dq+fbvee+897dmzR3V1dYpEIpIkk8kks9ms3t5eZTIZvfbaa9q9ezf9R2AU+o7RHCpPNjY2KhwOD6hjsFw5d+5cLVu2bNhcWVVVlYczBiYHt9stt9t9xPUMN87a0NCg5557Ts3NzQoGg8ZcSJPJNCBH9pVKpXT33Xdr69atw+bMiooKmc3mIz4HYDIbTZ5sampSMBgcUMdgeXL27NlasmTJsHmSvzEc7bLjrmNhpNcla2trc/6+E4nEgLr6f7fAUAoKCrRnzx6df/75Y3IOwGTF+CuQH1Nt/seMGTP0pz/9SS+++KLMZvOA+xSGYjab9fOf/1yXXXbZEZ8nMJHIj0B+TLX8OJrrk7W1tbrjjjv0i1/8QmazWel0etj+aSaT0eOPP67//u//lt/vl9/v16c//Wn5/X5VVlaqqqpK8+fPH5MxagAAAAAAMLUFg0E99thjevDBB7Vjxw4tXbpU99xzj774xS+O2TV7AACGwowdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCkFo/HlUgkjmh9LOoYqr7Ozk4lk8kjOkeHwyGn03lY6z6fT06n84jqGGy977aioiLZbLYjOkcAAAAAAAAAAAAAAAAAAAAAAADkRzqd1t/+9je9++67evvtt/Xuu+9q+/bt2rdvnzKZjCwWi2pqajR//nwtXrxYF1xwgebNm6f58+dr1qxZMpvN+T4FTBCHwyG/3y+/3z/o/kQioQ8++EB79uwxlp07d+o3v/mN2traJEl2u10LFizQkiVLtGTJEi1dulRLlixReXn5RJ4KMC3E43EFg8GcJTvHsf/2wfa1t7crlUoNWrfD4ZDP58uZo5gt+/3+Ifdll5KSEtnt9gl+RQAAAAAAAAAAAAAAAAAAAAAAmBiPP/64Lr74Ylmt1nyHAgAAAADT1i9/+Uvdf//92rhxo5YvX57vcAAAAABMA2azWcuWLdO2bdvyHQoAAMCYOeOMM/TAAw/kOwwAAIC88Xg8OuGEE7RlyxZdcMEF+Q4HAAAgL1auXKmHH34432EAAACM2mmnnabNmzfrpZde0o033qizzz5bq1ev1ve+9z3mEfw/ZrNZP//5z1VQUKDzzjtPTz31lD796U/nOywAAIApZcGCBXr55Zd11llnafXq1frTn/6k0tLSfIcFAAAwZZx//vlauXKlrrzySp1xxhm65pprdOedd8put+c7NAAAAExTixYt0u23367bb79dO3fu1KOPPqoHHnhA//qv/6pFixZp7dq1Wr9+vfx+f75DBXAI4XBYjY2Nam5uVmNjo5qamhQIBIylublZLS0tisViOcfZ7XaVlpaqtLRU5eXlmjlzpk4++WTNnDlTZWVlKisrM/aXlpZqxowZMplMeTpLAJLkdDrldDpVVVU1quO6u7t14MABtbe3q62tTS0tLWpvb88p19XV6Y033jC2ZzIZ43iTyaTS0lKVlZWpqqpKlZWVxs/q6mrjZ0VFBeNZwBQTiURy2g9NTU057YqWlhY1NzcrGo3mHFdQUKCZM2eqtLRUM2fOVHl5uRYtWqQzzjjDKPdvR1gsljydJYCsw21LpNNpoy3Rvz3R1tam9vZ2BQIBvf3228ZjUqlUTh1ut1sVFRUqLy832g992xMVFRWqrq6Wx+MZy1MGjlh3d/eA/Ni/3539OxisDZ3NlaWlpZozZ45OOumknPyZXff5fLSlgTw73DyZyWQG5Mn+fe+Wlha9++67xv5kMplTh8vlUkVFhSoqKobtd5MnMRkxPg0cPRifBkaO/AgcPciPwMilUim1tLRo//79amlpUUNDg1Fubm7W/v37jbHWdDqdc2xJSUnOtcnq6motW7ZsQN7MjrU6HI48nSWAw82NkhSNRtXR0THgOmRzc7ORD1999VW1tLSora1NXV1dA567tLRU1dXVKi8v16xZs1RRUaFZs2bllGfOnDlWpwscMfqPwNGD/iMwcvQfgemluLhYxcXFOuGEEwbdT/8RGBn6j8D0Z7fbddxxx+m4447TRRddlLMvFotp79692rt3r/bs2aM9e/Zo165duvzyy7VhwwZJ9B9xdOvt7VVra6sx76PvPMm+ubK9vV3d3d05x7pcrpycOHPmTC1atChnbmR27seMGTPkcrnydJYApEOPs959993Gen19vXbu3KkdO3Zox44d2rZtm/bu3atUKiWTySSr1ap0Oq3e3l6lUinF43G9/vrram1tVWtr65Bt6+ycj8HmRVZWVqq8vJw2NSaVTCajlpaWIb9HoKmpSc3NzWpraxuQJ4uKigZ8Z8CCBQtUUVGRkyfLyspUUlLCnCdgkjjc65LxeFzt7e3avHmztm7dqu3bt2vv3r2KRCKSDv5ft0wmk9OXzEomk/rud7+re+65x7g+M9T3CNCvxGTE+Ctw9JiI+3eam5sVDAYlacA9DcOxWq368MMPRxUXMJ7Ij8DRYzLd3/rWW29px44dkg6Oa40kl6ZSKX3yk5/UH/7wh9GdOAAAAAAAOGps27ZNDz74oH71q18pnU7rM5/5jH7wgx9o9erV+Q4NAHAUseY7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAxItGo+rp6ZEkBYNBSVJPT4+i0agkKZFIKB6PS5JisZhSqZQkKRwOq7e3V5lMRqFQaMBxyWRSnZ2dkqR4PK5EIjGgjkgkonQ6nfPc6XRakUhEkpRKpRSLxY7o/Mxms7xerySpoKBALpdLkmS321VYWChJKiwslN1ulyS53W5ZrVZJktfrlc/nk8lkUnFxsSTJarXK7XYPqMPpdMrhcEiSXC6XCgoKjDrMZrMkyefzSZIsFos8Ho8kyWazqaio6IjOEQAAAAAAAAAAAAAAAAAAAAAAAOivu7tbb775pt566y298847evvtt7Vjxw51dXXJarVq/vz5OvHEE/XVr35V8+fP14IFC3TsscfKZrPlO3RMAQ6HQ4sXL9bixYsH7AsGg9qzZ4/ef/997d69W++8847uvfdeBQIBSVJFRYWWLFmipUuXasmSJVqxYoXmz58/0acATIh4PK5gMGjM1QwGgwOWQ+0LhULKZDKD1u9wOOTz+QYs2TmPh9pXXl4ui8Uywa8KAAAAAAAAAAAAAAAAAAAAAABTQ3ZO1k9/+tN8hwIAAAAA09aWLVt01VVX6cYbb9TFF1+c73AAAAAATCMnn3yyXnzxxXyHAQAAMGY+9rGP6YYbblBtba38fn++wwEAAMiLVatW6eWXX853GAAAAHmzatUq3XTTTWpoaNDs2bPzHQ4AAMCoffSjH9WLL76oF198Uf/yL/+iU045RVdccYVuu+02lZaW5ju8vDOZTPrJT36iRCKhCy+8UJs2bdK5556b77AAAACmlLlz5+rFF1/U2WefrTPOOEN//vOfVVlZme+wAAAApoyysjL99re/1SOPPKKrr75af/7zn/Xoo49q2bJl+Q4NAAAA09zixYv1ve99T7fffrteeeUVPfnkk7r//vt18803a/ny5br00ku1bt06lZeX5ztU4KjS09OjQCCg+vp67du3T83Nzdq/f79aWlq0f/9+NTc3q7GxUV1dXcYxdrtd5eXlmjVrlioqKnTSSSepvLxclZWVKi0tVWlpqWbOnKny8nJ5PJ48nh2AiWS321VZWTnia3fpdFrt7e1qb29XW1ubWltb1draqra2NjU2Nqq5uVnvvPOOmpub1draqkwmYxxbWlqqiooK43OourraKM+ePVs1NTXcrwZMgJ6eHjU2NhrtiP7th8HaETabLacdsWzZMpWVlQ1oR5SVlam4uDiPZwdgolksFs2cOVMzZ84c8THBYFCtra05bYrm5mbj8+i1114z+jfJZNI4rrCwMKf90Pdzac6cOZozZ46qq6tltVrH41RxlGlvb1d9fb0aGhqMPNk/X7a3txuPN5lMKi8vN96XNTU1Ov3001VWVmb0tfvmTLPZnMezAzBRTCaTSkpKVFJSogULFozomEgkYnzGZJempia1tLSosbFRW7duNT6PhsuTffvdc+bMUU1Njaqrq2WxWMbrdHEUYXwawFhhfBrTCfkRwFghP2K6CYfDqq+vV319vQKBgJqamtTY2Gj8zF4fGO69efLJJ6usrMzYns2RpaWlXBMAjhJut1tut1tz584d0eO7urrU3t5ujLW2tbWpra1NgUBAzc3Nevfdd/XHP/5x0DZ6NidWVlYaP6uqqozrP7Nnz5bNZhunM8XRgP4jgLFC/xHTDf1HAGOB/iOmE/qPAEbC5XJp2bJlw34HGf1HTFfxeFwffvih9u3bp0AgYLw/++bJlpYW9fT0GMe43e6c9+fChQuNPJmdG5ntVzocjjyeHYDxVFNTo5qampz/NZNOp/W3v/1N27dv144dO7R9+3a9+eabqq6u1ubNm3OOTyQSRv+xpaXFyJvZvuT777+v//3f/1VjY6Oi0ahxnNVqNdrrfdvts2bNUmVlpWpqajR37lw5nc4Jey0wfXV1damurk719fVqamoa9HsE+udJl8uV876cP3++qqqqjDHWvnmS9ylwdHE6nZo9e7a+9rWv5WxvbW3Vtm3b9MYbb2jr1q16/fXX1dLSIulgXzSVSqm3t1cLFy7U1772NbW2thrjW2+99ZZaWlqMx2f17Vf2zZfV1dVGv3I032kADIXxVwBjZbTjr8lkUq+++qq2bNmiN954Q++8847q6uqUTqdlNpuVyWRyxlyzx9xyyy26//77GX/FuCI/Ahgr43F9MhAIyGw2K51OjyqWvXv3Hs4pAAAAAACAaSwcDuuJJ57Q/fffr3feeUeLFi3SDTfcoC9/+cuaMWNGvsMDAByFmAEPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOMgHo8rkUgYP/tuG2p9NI893OO6urrU3d19ROfmcDjkdDpHte5yuQ7ruP7rI3ms2+2W1Wo9onMEAAAAAAAAAAAAAAAAAAAAAAAApoJAIKBt27Zpy5Ytevnll7Vt2zYlEgl5vV4df/zxWrp0qb7whS9o+fLlOumkk1RYWJjvkDFN+Xw+nXrqqTr11FNztodCIe3YsUPbtm3Trl27tGXLFv3oRz9SPB6Xx+PRKaecopUrV2r58uVauXKlZsyYkaczAA6Kx+MKBoM5S3YuZ//tg+1rb29XKpUatG6HwyGfzyefz2fMmcyW/X7/kPuyy4wZM+RwOCb4FQEAAAAAAAAAAAAAAAAAAAAA4OiyceNG1dTU6CMf+Ui+QwEAAACAaam+vl4XXHCB1qxZoxtvvDHf4QAAAACYZk4++WTju86cTme+wwEAADhip5xyipxOp/7nf/5Hfr8/3+EAAADkxcqVK/XAAw8oFovJ5XLlOxwAAIAJd9ppp6mgoEBbtmzRunXr8h0OAADAYTvzzDO1ZcsWbd68WVdffbV+/etf66abbtKGDRtktVrzHV5emc1mPfTQQ8pkMvr85z+vzZs36+yzz853WAAAAFNKTU2NXnzxRZ111lk688wz9ec//1nV1dX5DgsAAGBKWb9+vc444wxddtllOvXUU/XP//zPuuGGG2SxWPIdGgAAAKY5s9msVatWadWqVbrnnnv04osv6pFHHtENN9ygf/zHf9Rpp52m9evX6+KLL5bX6813uMCUl0wmtX//fgUCATU1Nam2tjZn2bdvn3p6eozH+3w+VVZWqqqqSnPnztXpp58uv99vbKusrFRFRYXMZnMezwrAdGCxWFReXq7y8vIRPT4YDOZ8lmXXA4GAtm/frkAgoJaWFvX29kqS7Ha7qqur5ff7cz7HsuWamhrGwoBD6O7uVmNjY87f3JG2I8rLy/nbAzBmfD6ffD6fFixYcMjHxuPxQdsRTU1N2rp1q5555hk1NDQolUrl1J9tO/RvT8yfP19ut3s8Tw9TRDAYNHJj/3y5d+9eRSIR47EOh8PIiVVVVVqwYIHxnspumz17tgoKCvJ4RgCmC4/HI4/Ho/nz5x/yscPlyddff11NTU2HzJN9P8sWLFjA9wZBEuPTACYvxqeRT+RHAJMV+RH51v891XfJbs/qP9Z6xhln5JQrKys1Z84cxvEBHLHCwkLNmTNHc+bMOeRjs+Os/cdYA4GAdu3apeeff14NDQ2KRqPGMX3HWfvnxnnz5snj8Yzn6WGSo/8IYLKi/4h8o/8IYDKi/4h8ov8IYLKi/4jJou990oP1Ievq6oz3lcPhkM/nM3Li0qVLtWbNmpx5H9XV1SouLs7zWQGYrCwWixYsWPD/s3fvYVHWefz/XxyEGUlwzPCAiKcBTR1UdBFELUPxkIc0NSszyzx8d9Xa+tZW392yX7tbbVbb5pqWump2QLSDmhGmtgpqmsp4SKDk4AE1DTw1KIf5/dHFrCQmKnAz8Hxc11yNc9/cvD56N+/P+zNzzygsLEx33333b+5rMpkUHBys4ODgqx63oKBAP/30U7l1Mj09XRs3btTRo0eVn5/v+plL5/5XuvYDuNJ6a+ljmZmZcjqdkipWJ5s3by6LxWLwqAC4m8DAQA0aNEiDBg1yPXb8+HF9++23+vbbb7V9+3Zt27ZNTZs21R/+8IcrHqf0eu/y1l737t37m31leTWzZcuWdf479sD6K4Cay8fHR3369FGfPn1cj128eFGpqanasWOHtm/fri1btig9PV0lJSWqV6+eioqK1KFDB82cOZP1V9wQ6iOAmupaXp88ffq0NmzYoKSkJG3fvl179uxRQUGBPDw8JMm1Jlbq4MGDMplM1EcAAAAAAKBvv/1W8+fP13vvvaeSkhINHTpUr776qmJjY42OBgCo43inEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC34nA4VFBQUKH71b3vmTNnVFxcfEPjM5lMMpvNrv9e+tiV7lsslgrve72/o379+vL19b2hsQEAAAAAAAAAAAAAAAAAAAAAAAC4Md99952SkpK0ceNGbd26Vbm5ufL29pbNZlNUVJSmTp2qnj17ql27dkZHBSRJDRs2VExMjGJiYlyPXbx4Ubt27dLWrVu1detW/ec//9GsWbPk6empW2+9VdHR0brjjjvUr18/NW7c2MD0cCcOh0N5eXmu60Dz8vIuu11tW35+vpxOZ7nHN5lMslgsl91Kr9e82rYmTZrIy8urmv9WAAAAAAAAAAAAAAAAAAAAAADAtXA6nYqPj9d9990nDw8Po+MAAAAAQK3jcDg0atQoNW7cWIsXL5anp6fRkQAAAADUMt27d1dhYaHsdrsiIyONjgMAAHDDfH191bdvX61du1YPPfSQ0XEAAAAM0adPHxUXF2vz5s0aOHCg0XEAAACqnZ+fn7p166aNGzfqnnvuMToOAADADRs6dKhuu+02vfjii3ryySe1aNEizZkzR7169TI6mqG8vLy0aNEiOZ1ODRs2TKtWrVK/fv2MjgUAAOBWgoODtWnTJsXGxqp3795KSkpS27ZtjY4FAADgVlq1aqUNGzbozTff1FNPPaXExEQtWbJEVqvV6GgAAACoI7y8vBQbG6vY2Fg5HA6tW7dOS5cu1fTp0zVjxgz1799fo0eP1siRI3XTTTcZHReosU6ePKn09HSlpaUpIyNDBw8eVHZ2trKzs5Wbm+vaz8/PT61atVJISIisVqtiY2PVsmVLhYSEqFWrVmrWrBmf2Q+gxrJYLLJYLOrYseMV97lw4YKys7OVk5Pjeh7Mzs7WgQMH9OWXX+rw4cMqKiqSJPn4+Cg4ONj1HNiuXTuFhobKarUqNDRUJpOpuoYGGOr48eNKS0tTenp6mXlETk6Ojh8/7tqvQYMGrv9fQkND1b9/f9c8IiQkhHkEgBrPbDarTZs2atOmzRX3cTqdys3NVVZWlms+Ufrf1atXKycnR2fPnnXt36RJE9fzYJs2bWS1WmW1WhUWFqYmTZpUx7BQDRwOhzIyMly1MiMjwzXPPHTokC5evChJqlevnoKCglznxJAhQ8rUypYtW8rX19fg0QBA+SpSJ0tKSnTs2DFlZmZeVidXrVql7OxsnT9/3rV/s2bNytTJ0NBQhYWFyWq1qnHjxtUxLFQT1qcB1AWsT+NaUR8B1AXUR1yroqIiZWZmlqmRpedEZmamHA6HJMnDw0PNmjVz1chLX5csfczPz8/g0QDA5SqyzipJJ06cKFMXc3JylJmZqY0bNyonJ0f5+fmufQMDA13PgaXrrKVrrbweWTvQPwKoC+gfca3oHwHg9GTkAAAgAElEQVTUdvSPuB70jwDqAvpHXK+SkhJlZ2e7rvlIT09XZmam6/w4c+aMa98mTZq4amNkZGSZHjIkJEQNGzY0cCQAcGUmk0nNmzdX8+bNFRERccX98vLyXHUyKyvL9Vy4a9cuffLJJzpx4oRrX39/f9fzYOm146W1MiQkRJ6entUxNFSxoqIiZWVluXrK77//3nVuZGVlXXYdUGmdjIqKUsuWLcvUyYCAAANHAqCuadKkiQYPHqzBgwdX+GcsFosiIiJ+s1ZeuHBBOTk5Za6PLH1eTE5O1qFDh1RYWCjpl+vGW7Ro4XoeLP0cgdK+ktehag/WXwHUFj4+PurRo4d69OihadOmSZLOnz+vnTt3aseOHfrmm2/Upk0bTZ48udyfZ/0Vl6I+AqjtAgICNGLECI0YMUKSVFxcrL1792rr1q3aunWr/vvf/yozM1NOp1NeXl4qLi7WK6+8opMnT1IfAQAAAACog06fPq2PPvpIc+bMkd1u16233qq//OUvmjx5siwWi9HxAACQJHkbHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzeFwOFRQUFDmfnmPGbnv9TKZTDKbzVe8f6XtFovlun7uWvb19/eXl5fXDY0PAAAAAAAAAAAAAAAAAAAAAAAAQO1z/PhxffXVV0pKSlJSUpKOHDmihg0bqm/fvnr00UfVs2dPde/eXfXr1zc6KlBhPj4+ioyMVGRkpGbOnClJys3N1datW7VlyxYlJydr4cKFKikpUdeuXdW/f3/FxsaqV69eMplMBqdHVXA4HMrLyytzK72+9NePl7ft5MmTKiwsLPfYJpNJFovFdb3opX9u06bNFbeV3ho1asR5BwAAAAAAAAAAAAAAAAAAAABAHbFp0yZlZWVp3LhxRkcBAAAAgFrH6XRq4sSJysrK0rZt2+Tv7290JAAAAAC1ULt27dSwYUPt2LFDkZGRRscBAACoFEOGDNHTTz+tCxcuyNfX1+g4AAAA1a558+ay2Wz6/PPPNXDgQKPjAAAAGGLQoEGaP3++5s6dKw8PD6PjAAAA3LAGDRro5Zdf1sMPP6wZM2aoT58+evTRR/Xiiy/KbDYbHc8wXl5e+s9//qOioiINHTpUa9as0W233WZ0LAAAALfStGlTrV+/XnFxcerdu7cSExPVuXNno2MBAAC4FQ8PD82cOVOxsbEaP368unTpor/97W+aMWMGr1cCAACgWpnNZg0dOlRDhw5Vfn6+PvvsMy1fvlwPP/ywpk6dqjvvvFPjx49XXFycfHx8jI4LVLvz588rIyND6enpysjIUFpamtLT05Wenq68vDxJv/x/ZLVa1bZtW0VGRuqee+5Ry5YtFRISopCQEN18880GjwIAqpavr69CQ0MVGhpa7vbi4mIdPXpU2dnZysrKUnZ2tuv++vXrlZOTo5KSEnl4eKhly5YKDQ2V1WpVaGiowsLCZLVa1apVK3l5eVXzyIAbc/r0adcconT+UPrnM2fOSJJuuukm1zyid+/eCgkJUatWrVxzCYvFYvAoAKDqeXh4qHnz5mrevLmio6PL3eenn35STk5OmXlETk6OEhMT9dZbb+n8+fOSpICAAFmt1svmElarVQEBAdU5LFRAUVGRsrOzy9TJ0lqZk5Mjp9MpT09PhYSEyGq1ql27durXr5+rXoaEhKh58+bMEwHUap6enq462atXr3L3OXny5GV1Mjs7W2vWrNHrr7+ugoICSVKjRo1ktVoVFhbm6uNL66Sfn191DgsVxPo0AFwd69N1D/URAK6O+lg3HT16VGlpaWVem0xLS1NmZqYKCwsl/XJtcFhYmFq1aqXf/e53rtrYsmVLtWzZkvcHAqjVAgMDFRgYqB49epS7/fTp05etsWZnZ2vdunWaO3euzp07J+l/r0eW1trS2hgaGqoGDRpU55BwFfSPAHB19I91E/0jAPw2+se6h/4RAK6O/rFuO3HihKs+XtpLfv/997pw4YIkqXHjxq5aGR4eXqZOhoSE1OnvxABQN1gsFlksFoWHh5e73eFwuK6HLK2TOTk52rFjh95//32dOnVK0i81t7RGXtpThoaGKjAwsDqHhAo6fPiwq0Ze2lNeut7apEkT13pr9+7dXXWydL3VZDIZPAoAqHqlNc5qtZa7vaSkRLm5uWV6ypycHGVlZWnz5s3Kzs5WUVGRJCkoKKhMrSy9XrJ169a8hlUDsf4KoK7y8/NT79691bt376vuy/pr3UN9BID/8fLyUnh4uMLDwzVlyhRJUl5enrZu3apt27YpJydHkydPvmwNjfoIAAAAAEDttmnTJs2fP18JCQmqV6+exo0bp4ULFyoiIsLoaAAAXMbb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAXeBwOFRQUFCh+9W979mzZ1VUVHRD4zOZTDKbza7/XvrYle6bzWZZLJZr/rlr/R0mk+mGxgYAAAAAAAAAAAAAAAAAAAAAAAAA1Wnv3r1avny5Pv30U9ntdnl7e6tnz56aMmWK+vfvrx49esjLy8vomEClatasme666y7dddddkqTTp09rw4YNSkpK0sqVK/XSSy+pfv366tu3r0aOHKm77rpLN998c5Xl+eabb7RhwwY98cQT/P/2GxwOh/Ly8lzXsebl5V12u9q2/Px8OZ3Oco9vMplksVguu5VeP3q1bYGBgfL29q7mvxUAAAAAAAAAAAAAAAAAAAAAAOCuPvjgA9lsNnXq1MnoKAAAAABQ67zwwgtauXKlEhMT1bZtW6PjAAAAAKilPDw8FBERoR07dhgdBQAAoNIMGzZM06dP16ZNmxQbG2t0HAAAAEMMGTJEH3zwgd58802jowAAABjizjvv1PPPP6/du3era9euRscBAACoNKGhofriiy+0fPlyTZ06VZ988okWLVqkPn36GB3NMF5eXlq6dKnuv/9+DRkyRAkJCRo0aJDRsQAAANxKYGCgNmzYoDvvvFO33XabPv/8c0VGRhodCwAAwO107NhR27Zt01//+lc9/vjjWrt2rebNm6eQkBCjowEAAKAOatiwoR544AE98MADOnXqlFasWKElS5Zo+PDhatiwoe68806NHj1acXFx8vHxMTouUKkuXLigffv2KTU1VXa7XXv27FFaWpoOHz4sSfL29larVq1ktVoVFRWlCRMmyGq1KjQ0VMHBwfLw8DB4BABQc3l5eSk4OFjBwcGKiYm5bPuFCxeUkZGh9PR0ZWRkKCMjQ3v27FFCQoJOnDghSfLx8VGbNm3UsWNHde7cWTabTeHh4WrdujXPwTDcuXPntGfPHtntdqWmpmrfvn06cODAZedvaGiobr/9dk2ePNk1jwgKCjI4PQC4h0aNGqlRo0bq0qVLudsPHz7smkekp6crPT1dH374oTIzM3Xx4kVJUpMmTRQWFqZOnTopPDzc9R1qN910U3UOpU5yOp3KzMx09dx2u1379+/XwYMHXf8+gYGBCgsLU2hoqGJjYxUaGqrQ0FC1a9dOvr6+Bo8AAGq2xo0bq3HjxurWrdtl25xOp3JycsrUyPT0dCUnJys7O1tFRUWSpODgYIWGhspms7luHTt25Dm4mrA+DQBVh/Vp90V9BICqQ310bydOnFBqaqqrRu7bt0/p6ek6d+6cJMnf31+hoaGyWq269957XWutVqtV/v7+BqcHgJorICDAtTZaniNHjrjWV0vr5Pvvv6/MzEwVFhZKkpo1a6b27durU6dOstls6tKlizp27Ciz2VydQ6lz6B8BoOrQP7o3+kcAqBr0j+6L/hEAqg79Y+1w6tSpMtd87N27V+np6Tp9+rQkyc/Pz9U3jhgxwnX9R2hoqCwWi8HpAaBmM5vN6tChgzp06FDu9p9++kkZGRlKS0tz1cvExES99dZbOn/+vKRfPhPKarW66mRprWzUqFF1DqXOOnr0qOtzBEqvjczIyHD9+wQEBLDeCgA3wNPTU0FBQQoKClKvXr0u237x4kVlZmYqLS2tTH/5+eefX7a+1759e3Xu3Nn1WQKhoaHy8vKq7iHVOay/AkDVYf3VfVEfAeD6WCwWDRo06De/X5z6CAAAAABA7ZObm6v4+HgtWLBAe/bsUUREhP75z39q3LhxatCggdHxAAC4Im+jAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3yuFwqKCgoMz98h6r7n0lKS8v74bGZjKZZDabK3T/0scsFkuF972W4156v0GDBvL29r6h8QEAAAAAAAAAAAAAAAAAAAAAAAAAJLvdroSEBC1fvlwHDhxQUFCQRowYoRdffFG33XabbrrpJqMjAtUqICBAI0aM0IgRIyRJ2dnZSkpK0po1azR9+nRNmzZNt99+u0aPHq277rpLjRs3vuHf6XA49MEHH+jNN99UamqqJGn06NFq06bNDR+7JnI4HMrLyytzK72W9tePl7ft5MmTKiwsLPfYJpNJFovFdb3rpX9u06bNFbeV3ho1aiSTyVTNfyMAAAAAAAAAAAAAAAAAAAAAAKAuKywsVEJCgh5//HGjowAAAABArfPJJ5/ohRde0Jw5c3T77bcbHQcAAABALde9e3etWbPG6BgAAACVpmXLlurUqZPWrFmj2NhYo+MAAAAYYvDgwfrb3/6mtLQ0hYWFGR0HAACg2nXr1k1BQUFavXq1unbtanQcAACASjd69GhFRUVp0qRJ6tevn5544gnNmjVLvr6+RkczhLe3t5YtW6YpU6ZoxIgRWrp0qcaMGWN0LAAAALfSsGFDffnllxo5cqRiY2P1ySef6I477jA6FgAAgNupV6+enn/+eQ0YMECTJk1S586d9fe//13Tpk2Tp6en0fEAAABQR918882aPHmyJk+erKysLMXHx2v58uUaNmyYGjVqpOHDh2v06NG644475OPjY3Rc4JocOXJEdrtddrtdqampstvtSktLU1FRkcxmszp16qTw8HANHDhQoaGhCgsLU+vWrTnXAaCK+Pr6qlOnTurUqdNl206fPq309HRlZGQoLS1N+/fv13vvvaeDBw+qpKRE/v7+6ty5s2w2m8LDwxUeHq5OnTrppptuMmAkqO2cTqcOHjzomkeUziUOHjwop9Mpf39/2Ww2de7cWSNHjlRYWJisVqtCQkLk7e1tdHwAqNVatGihFi1aXPb5/EVFRcrOzlZ6errS09OVlpam1NRUvffeezpz5ow8PT3Vpk0bhYeHu57Dw8PD1bp1a3l4eBg0Gvd29uxZ7d27V3a7Xbt375bdbteePXt09uxZeXp6qm3btgoPD9eYMWNctTI0NFQBAQFGRweAWsnDw0MhISEKCQm57DMWL168qIMHDyotLU0ZGRk6cOCANm3apLffflsOh0Pe3t4KCwsr03PbbDY1b97coNHUDqxPA0DNwvp0zUB9BICahfpYMxQWFurAgQOuGlm63nrs2DFJUvPmzWWz2XTHHXdo2rRprhrZpEkTg5MDQO0UFBSkoKCgcl+PzMzMdL0WmZaWpm+++UYLFy7U+fPn5eXlJavVWmaNNTw8XC1atDBoJO6N/hEAahb6x5qB/hEAahb6x5qB/hEAahb6x5qlqKhI6enpZepkamqqjhw5IkkKDAyUzWZT79699fDDD7uu+WBeAgBVp1GjRoqMjFRkZORl2w4fPlymVu7Zs0erVq3Sjz/+KOmX6yptNptsNpu6dOkim80mq9XKde3XqaCgQPv373fVyD179mj37t06deqUJCk4OFg2m01xcXGaPn26rFarwsLCFBgYaHByAKjdfHx8FBYWprCwsMu2nT9/XhkZGa56uX//fq1atUqvvvqqCgsLZTKZ1LFjR9e6a2l/2ahRIwNGUjuw/goANQvrrzUD9REAahbqIwAAAAAA7uHChQtatWqVFi1apMTERAUEBOi+++7T4sWL1bVrV6PjAQBQIbxjFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFfkcDhUUFBQoftVte+Vfu7cuXMqLCy8ofGZTCaZzeYy98t77NL7ZrNZFoulQvtey3F//TtMJtMNjQ0AAAAAAAAAAAAAAAAAAAAAAAAAULOdOnVKCxcu1IIFC5SWlqbg4GCNHDlS7777rqKiouTp6Wl0RKDGCAkJ0aRJkzRp0iSdPXtWa9as0fLlyzVz5kxNmzZNsbGxmjJlioYNGyYvL69rOvb333+vuXPn6t1339W5c+fKbDt9+nRlDqNSOBwO5eXlua69zcvLu+x2tW35+flyOp3lHt9kMslisVx2K73+9WrbAgMD5e3tXc1/KwAAAAAAAAAAAAAAAAAAAAAAADcmMTFRp06d0j333GN0FAAAAACoVfbv368JEyZo6tSpmjp1qtFxAAAAANQB3bt316uvvqrz58/Lz8/P6DgAAACV4s4771R8fLxef/11o6MAAAAYomfPnrr55pv1+eefKywszOg4AAAA1c7Dw0ODBw/WmjVr9Oc//9noOAAAAFWiRYsWWrt2rd555x098cQTSkpKUnx8vNq2bWt0NEN4eXnpnXfeUUBAgO69916dOXNGkyZNMjoWAACAW6lfv74+++wz3X///RoyZIg+/PBDjRgxwuhYAAAAbik6Olqpqal67bXX9Mc//lHvv/++FixYoPbt2xsdDQAAAHVcq1at9OSTT+rJJ59UTk6OPv74Yy1fvlxDhgxRQECAhg4dqtGjR2vAgAHy9fU1Oi5QxtmzZ7VlyxalpKQoJSVFO3fu1KlTpyRJLVu2lM1m0/DhwxUeHi6bzSar1SovLy+DUwMASgUEBKhHjx7q0aNHmcfPnTunvXv3ym63KzU1VXa7XcuWLdOZM2fk6empNm3aqEePHoqOjlavXr1ks9l4fsc1O378uLZs2aLNmzdr69atstvtOnv2rDw9PdW2bVuFh4drwoQJstlsstlsat26tdGRAQC/4u3trbZt26pt27YaNGiQ63Gn06msrCzXPGLPnj1aunSpDh48qJKSEjVo0EA2m01RUVHq1auXoqOjFRgYaOBIaqbi4mKlpqYqOTlZKSkp2r59uw4ePCin06mAgAB17txZXbp00YQJExQeHq5OnTrx+aUAUIP4+Pioffv2l70vpbi4WBkZGbLb7dq9e7fsdrvmzJmjQ4cOSZIaN26sbt26KTo6WtHR0erZs6caNGhgxBBqPNanAcC9sT5dNaiPAODeqI9VJysrS5s3b1ZKSoq2bt2qffv26eLFi/Lx8dGtt94qm82mAQMGKDw8XOHh4brllluMjgwA0C+vR1qtVlmtVg0ZMsT1eElJiX744Qelpqa6auP8+fOVlZUlSWrUqJG6du3qei0yKipK/v7+Bo2iZqJ/BAD3Rv9YdegfAcA90T9WHfpHAHBv9I9VLycnR5s3b9aWLVu0ZcsW7du3TwUFBapXr57at28vm82mGTNmqEuXLrLZbGratKnRkQEAl2jRooVatGihfv36lXk8NzfXVSdTU1O1evVqzZ49W4WFhTKZTOrUqZOioqIUFRWlmJgYBQcHGzSCmsvpdOq7775TSkqKkpOT9c033yg9PV1FRUUym83q2LGjunTpomHDhslmsyk8PFwWi8Xo2ACAX/Hz81OXLl3UpUuXMo9fvHhR+/btk91ud91WrVqlH3/8UdIvNfbStdfu3bvLbDYbMYQajfVXAHBvrL9WDeojALg36iMAAAAAAMbbv3+/lixZokWLFunkyZPq16+fFi5cqLvvvlv169c3Oh4AANfEw+l0Oo0OAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBc5HA4VFBSUuV/eY5Wx77X+XH5+vpxO53WPzWQyyWw2V+h+de/boEEDeXt7X/fYAAAAAAAAAAAAAAAAAAAAAAAAAAC4ETt27NCcOXP04YcfytfXVxMmTNA999yjnj17ysPDw+h4gFs5f/681qxZo8WLF+uLL75QixYtNGXKFE2aNEmBgYFX/LmSkhKtX79e//73v/Xpp5/Ky8tLhYWFl+23ceNG9e3bt9LyOhwO5eXllbmVXv/768fL23bq1CldvHix3GObTCZZLBZZLBbXtbalf770dqVtjRo1kslkqrSxAgAAAAAAAAAAAAAAAAAAAAAAuJOxY8cqNzdX//3vf42OYpgxY8boyNkCPf7GPKOjAACASpSy9jPNfmzqDX1PLQBcr1OnTikyMlLNmjXTV199JR8fH6MjoQ6hzwUAoHYb1b65PvroI40ZM8boKKiBsrKy1Lp1a23atEkxMTGVckzmlwAA1G7uML9MTk5WTEyMvvvuO7Vv396QDPHx8Ro7dqxWHDhqyO8HAABVa/ajUxTUwKT4+Hijo1zRvffeqx9//FFJSUmG5vDw8NDjr7+t6EHDDM0BAAAqX01/3+2nn36qkSNH6siRI2ratKmhWXj9DACA2q0mvH6WnZ2tsWPHav/+/Zo/f77uuecew7LUBC+//LKefvpp/eMf/9Djjz9udJxqx/wTAIDarTrmn8XFxZoyZYqWLl2qpUuX1uj3ilUG5k8AANRuNWH9zm636+GHH9bevXv11FNP6dlnn1W9evUMy+PumL8BAFC71YT5W1116NAhrVy5UsuXL1dKSooCAgI0dOhQDR06VEOGDFH9+vWNjog6KCcnR5s3b1ZKSoqSk5O1Z88eFRcXq23bturVq5ciIiJks9kUHh4ui8VidFwAQCVyOp3KyspSamqqUlNT9c033yglJUX5+flq0KCBevbsqejoaPXq1Us9e/ZUgwYNjI6MGqSkpET79+93zSFSUlL0/fffy9PTU506dVJ0dLS6desmm82mTp06yc/Pz+jIAIAqcO7cOe3bt0+pqanauXOnUlJStG/fPpWUlMhqtbrmEtHR0erQoYM8PT2Njlytzpw5o61bt7rq5datW3Xu3DlZLBZFRUUpMjJS4eHhstlsat26tdFxAQCV7KefflJqaqrsdru+/fZbJScn6+DBg/Ly8lLnzp0VExOjqKgoxcTEqGXLlkbHNQTr0wBQd7E+fWXURwCou6iPV1ZUVKTdu3e7XpfcvHmzjh49Kh8fH0VERCgqKkpdu3aVzWZThw4duJYEAGqR/Px82e122e127dixQykpKcrIyJCXl5c6duyo3r17u9ZZQ0JCjI5bregfAaDuon+8MvpHAKi76B+vjP4RAOou+serKyoqkt1uL9NHHj58WPXq1VO3bt0UFRWlLl26yGazqWPHjvLx8TE6MgCgEl28eFH79u2T3W7Xrl27tGXLFu3atUuFhYUKDg52XRcZExMjm80mLy8voyNXq59//lnbt2931cmUlBTl5eXJz89PkZGR6tmzp8LDwxUeHq527drVub8fAKgrcnNzZbfblZqaqu3btyslJcX1+lu3bt3KfJaA0d9lbATWXwGg7mL99cqojwBQd1EfAaBmiI+P19ixY7XiwFGjowAAgCow+9EpCmpgUnx8vNFRUMXy8/MVHx+vJUuWKDk5WS1bttS4ceM0depUtWrVyuh4AABcr+UeTqfTaXQKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAyuRwOFRQUFCh+9ey7/X+3KWPnTt3ToWFhTc0PpPJJLPZXOZ+eY9V976SZLFYbmhsAAAAAAAAAAAAAAAAAAAAAAAAAADUVp9//rleeOEFbdu2TTabTb///e913333yc/Pz+hoQK1w8OBBzZ07VwsXLtT58+c1duxYPf/882rdurVrnxMnTmjRokX617/+pSNHjqhevXq/ee3vZ599pqFDh5a5bjgvL6/c229tLygoUH5+vpxOZ7m/x2QyyWKxXHYrvd73atsCAwPl7e1d6X+nAAAAAAAAAAAAAAAAAAAAAAAAdcGZM2fUtGlT/fOf/9QjjzxidBzDjBkzRkfOFujxN+YZHQUAAFSilLWfafZjU694nSsAVJXCwkLFxcXp4MGD2r59u2655RajI6GOoc8FAKB2G9W+uT766CONGTPG6CiooZo0aaKnn35ajz76aKUcj/klAAC1mzvML4uLi9W8eXNNnz5d/+///T9DMsTHx2vs2LFaceCoIb8fAABUrdmPTlFQA5Pi4+ONjnJFy5Yt00MPPaQTJ04oICDAsBweHh56/PW3FT1omGEZAABA1ajp77s9f/68GjdurDlz5uihhx4yNAuvnwEAULvVlNfPLly4oCeffFJvvvmmxo8fr3nz5slsNhuayUhvvfWWZsyYoSeffFIvvfSS0XGqFfNPAABqt+qafzqdTj322GN666239Pbbb2vSpElV+vuMxPwJAIDaraas3xUVFWnOnDl65plnZLVatWDBAkVERBiayV0xfwMAoHarKfO3uu7w4cNasWKFli9fri1btshkMqlfv34aPXq0Ro0aJT8/P6MjopY6evSoEhMTlZSUpE2bNunw4cOqV6+eIiIiFBUVpZiYGEVHR6tp06ZGRwUAGKCkpET79+9XcnKykpOTlZKSoh9++EFeXl7q3Lmz+vbtq4EDB6pv3751+r1zddW+ffuUmJior776SikpKcrPz9dNN92kyMhI9erVS9HR0YqKipK/v7/RUQEABjp9+rS2bNmilJQUJScn65tvvtG5c+dksVgUFRWl2NhYxcXF6dZbbzU6aqX7+eef9fXXXysxMVEbN27U3r17VVxcrLZt26pXr16uW4cOHeTp6Wl0XACAAXJzc101MiUlRTt37lRhYaFatGih3r17q3///ho4cKCaNWtmdNQqwfo0AOC31NX1adn5o9YAACAASURBVOojAOC31NX66HQ6tWvXLn3xxRf66quvtG3bNp0/f16NGjVSdHS0a621R48eMplMRscFAFSz48ePKyUlRZs3b1ZKSoq+/fZbFRYWKigoSL1799aAAQMUFxen5s2bGx21UtE/AgB+C/0j/SMA4HL0j/SPAIDL1dX+sVRpH1l6jeS2bdtc17tER0e7eskePXqofv36RscFABjg559/1vbt21295KXX0/fs2VN33HGH4uLi1KVLF3l4eBgdt1JduHBBmzdvVmJior7++mvt2rXLdb1L6ecI9OrVS+Hh4fL29jY6LgDAQFlZWa6eMjk5ucz19DExMYqLi1P//v3VuHFjo6NWOtZfAQC/pa6uv1IfAQC/pa7WRwAwUnx8vMaOHasVB44aHQUAAFSB2Y9OUVADk+Lj442OgipQUlKi9evXa8mSJVqxYoWcTqfuvPNOTZ48WXfccUete78SAKBOWu7hdDqdRqcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuw+FwqKCgoMz98h6ryP3K3jc/P19Op/O6x2YymWQ2myt0v6r2vdLP3XTTTapXr951jw0AAAAAAAAAAAAAAAAAAAAAAAAAABjj22+/1ZNPPqn169drxIgR+uMf/6jevXsbHQsG69+/v5KSkoyOUSs5HA59+OGHevnll5WVlaXf//73GjBggBYvXqyEhARJUmFh4VWP4+npKbPZrJ9//vmK1zA3bNhQ/v7+rltAQIDrvxXd5uvrW6njBwAAAAAAAAAAAAAAAAAAAAAAwLV55513NGPGDOXm5qphw4ZGxzHMmDFjdORsgR5/Y57RUXAVsx4aq+cWfmR0DKBCOF8B46Ws/UyzH5t6Q9/5CwDXY9q0aXrvvfeUnJwsm81mdBzUQfS57oO+Ae6E8xWoOUa1b66PPvpIY8aMMToKaqjBgwerUaNGeu+99yrleMwv3Qf1Gu6E8xWoOdxlfjljxgwlJSXpu+++M+T3x8fHa+zYsVpx4Kghvx8VR42BO+F8BWqO2Y9OUVADk+Lj442OckVnzpxR06ZNNWfOHE2cONGwHB4eHnr89bcVPWiYYRlwddQYuBPOV6DmcIf33Y4cOVJnzpzRunXrDM3B62fugzoDd8L5CtQcNe31s/j4eD3yyCMKCwvTxx9/rKCgIKMjGWbp0qV66KGHNGXKFL355pvy9PQ0OlK1YP7pPqjncCecr0DNUd3zz1mzZmnWrFn661//qqeffrpafmd1Y/7kPqhHcCecr0DNUdPW73744Qc98sgj2rRpkx5//HHNmjVLvr6+RsdyK8zf3Af1EO6E8xWoOWra/A3S4cOHtWLFCq1evVobNmyQr6+v+vXrp9GjR2vUqFHy8/MzOiLcmNPp1Pbt27Vy5UqtXbtWdrtdZrNZffr0UZ8+fRQTE6MePXrIbDYbHRW4If3791dSUpLRMYBa6dixY0pOTlZycrLWr18vu90uX19f9enTR0OHDtXIkSPVvHlzo2OiCly4cEHr1q3TJ598osTERB06dEg333yz7rjjDvXu3Vu9evWSzWaTl5eX0VGBG8I8AqhaRUVFstvtSk5O1ubNm7Vu3Tr99NNPCg4O1sCBAzVixAjFxsbKx8fH6KjX5fDhw/r444+1atUqbdq0SRcuXJDNZlO/fv0UExOj6OhoNW3a1OiYwA2hVgJV5+eff9b27duVnJysr7/+Wv/9739dtWTQoEEaOXKkunfvLg8PD6OjXhfWp1FXUCuBqlMb16epj6grqI9A1amN9VGSHA6H1q5dq08++URffvmljh8/rmbNmql///6KiYlRr1691KFDB7ftkYFS1Eig8jkcjsvWWR0Oh8LDwzVo0CCNGjVK3bt3NzrmNaN/RF1BbQSqDv0j/SPcGzUSqHz0j/SPcG/URqDq1Nb+sVRpH/npp58qMTFRx48fV9OmTS/rI+vKdyug9qJWAlWjpKRE3333nTZv3qzk5GQlJSXp2LFjatq0qeLi4jRixAjFxcW5bc914sQJ17WRGzdu1Pnz59W+fXvFxsYqOjpaMTExCg4ONjomcMOok0DVOnPmjLZu3aqUlBRt3LhRKSkpKi4uVkREhAYPHqyRI0fKZrMZHfO6sP6KuoJaCVSd2rj+Sn1EXUF9BKpObayPAFCTxMfHa+zYsVpx4KjRUXAVfIcX3AnnK1BzzH50ioIamBQfH290FFSijIwMLVu2TIsXL1ZWVpYiIiI0efJkjRs3Tg0aNDA6HgAAlWm5t9EJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADALxwOhwoKCq75fnXse/78eV28ePGGxmcymWQ2m8vcL++xX9+3WCzX9XPXsm/Dhg3l4eFxQ+MDAAAAAAAAAAAAAAAAAAAAAAAAAAC4VG5urp544gl98MEHioqKUnJysqKjo42OdRkPDw85nc5r3oYb4w5/r+767282mzVx4kSNHz9e77zzjv785z/rtddeu+bjeHl5acSIERo2bJj8/f3L3AICAhQQEFAF6QEAAAAAAAAAAAAAAAAAAAAAAFDdli5dquHDh6thw4ZGRwEqpLzrvka1b64VB44akAbubufXX+k/L8/SsewsPfHP+fpd7MAy2y89t67nPON8RWW40fPwt44xqn1z1z4VPe76FR9q7l/+r5bvO3TD+10p17GcLE0f1FuBQcGa+PQsdb+9f4WyAUBNMXfuXM2bN08rVqyQzWYzOg6AGo6+AZWJPhfuoCr73FLHcrL0ybtztHvz18r78bh8TGa1aGNV55691GvwcIWEdSizf0V62PyTJ7To789p5383SJK69bldE595QQ1vvqVC2eh1Ud26d++u+Ph4o2PAANRrVCbml3AH1TG/lKSLBQV6uHcXtWp/q/6/pSt/83hXm19e+vrMr3l4eCjhuyNXzVZX55f33Xef/vWvf2nnzp3q1q2b0XFQg1FjUJmYE8Ed1LQ1t4qupe3bvkUfvvkPfb9nt7zr+cgW1VsP/uk53dK8RYWy1cU5kb+/vwYPHqxly5Zp4sSJRsdBDUeNQWViTgR3UF3vt72SS39fRdd/Du7fo3Xxy7Rr80b9dDxXATc3Vqv2HTVq6kyFdYmoULa6OCcaP3687r77bh06dEjBwcFGx4EboM6gMjEvgjuoSfOiUtvXf6lV/5mvg/v3qLioUO279dCwiVPVtfft5R7j57Nn9OjQ23XqWO5lx6ur86IxY8aoS5cuGjFihHr06KGVK1eqZ8+eRscyxPjx4+Xr66v7779f586d0zvvvKN69eoZHQtwoZ6jMjH/hDuoSfPPa1lvq+vXBzz33HNq3LixZsyYoaNHj+qf//ynPD09jY6FOop6hMrE/AnuoDrnT/V8fdWgoUVtOnRWz7jB6n3nSHlfYR2lop8nVIo1vLLatm2rdevWac6cOXrmmWe0evVqvf3224qJiTE6GlDpqIeoTMzf4A5q0vpXRd+X5iwp0Zfx7+mr5e8rNydLktSsZSv1H3u/Yu++Vx6XrAPVxbkbftGiRQvNnDlTM2fO1JEjR7Ry5UotX75cEydO1B/+8AcNHTpUI0eO1MCBA+Xn52d0XLiJXbt2acmSJVq5cqVycnLUtm1bDRs2TK+88or69Okjs9lsdMQb4uHhUe784mrbUHuV92/OuYCq4nA41KxZM4WHh+vrr7/+zX0XLlyoyZMnq6ioqNztdrtdS5cu1Zo1a3Tw4EH5+fmpTZs2mjBhgqZOnSpvb++qGMI1adq0qUaNGqVRo0ZJknJzc/XFF18oMTFRzz77rGbOnKmePXtq9OjRuu+++3TLLbdc5YioyYqLi7V27Vp9+OGHWr16tc6cOaPf/e53euSRRxQXF6eIiAh5eXkZHfOGMI/ArzGPQFXz8PAo82eTyaSbb75ZXbt21ahRo3TvvffKx8enzD4VnSOUlJRo/vz5evfdd/X9999Lktq1a6fJkydr0qRJNeI9SN7e3urWrZu6deum6dOnq7i4WDt27FBiYqLWrFmjd999V/7+/ho6dKjGjRunuLi4Gl9rTpw4oWXLlmn58uXaunWr/P39NWjQIM2dO1dxcXFq1qyZ0RFvCLUSv0atRFX7da0sT3nn29V67t86dk05f+vXr6++ffuqb9++euaZZ+RwOPT111/riy++UHx8vF566SWFhIRo1KhRGj9+vLp06WJ05AphfbpmnF+oPtRKVLXrrZWfffaZXn/9de3cuVOFhYXq1auXHn/8cQ0c+L/3BNX0Wlmb1qepjzXjnEL1oT6iqlVlL3ns2DE99thjWrt2rSRp0KBBeuONN9SkSZPrD1yJalN9LCws1OrVq/XBBx/o888/V0FBgWJiYvTYY49p4MCBstlsFfq3rsmokfg1aiSq2qXPmxU5rypS92r6a5Jms1l9+vRRnz599PTTT5e7ztqqVSuNGjVKDzzwQI3/TnP6R54P6xpqI6paVfWPO3fu1DvvvKPExEQdOXJEgYGBCg8P17PPPquoqKgbzl0Z6B/dCzUSv0aNRFWriv6xVEVepzQC/aN7oTbi16iNqGrX2j/+1v4eHh4qKSm5pv2MVJv6x1KFhYVatWqVPvzww8v6yLi4OIWHh9NHotahVqK6/PDDD3r55Zf15ZdfKjc3V2azWR06dFC/fv00duxYVy91rWuoNbWX9PT0VMeOHdWxY0dNmTJFTqdTu3fvVmJioj7//HONGjVK9evX1+DBgzVu3DgNGTKkxn9XT15ent5//30tX75cmzdvlq+vrwYOHKjXXntNcXFxCgkJMTriDaNO4teok6hq1/NZAhWtlTX9fTuS5O/vrwEDBmjAgAGSpLNnz2r9+vVKTEzUggULNGvWLFmtVtc1krfeeqvBia+O9VeeH+saaiWqWlVdH+kOdbI2rb9SH3lOrGuoj6hq5dXHRo0a6bbbbtNbb711xc8wq8j1kdeynxFqU30EAOBG8B1eqEx85xzcQU38zuD8kye06O/Paed/N0iSuvW5XROfeUENb/5fH5Kd9p2+/jRB3369TscPZcvXXF9NgkN0+11jNOCe8fLy+t/3iPC9c7gW+fn5SkhI0OLFi5WcnKygoCA98MADevDBB2W1Wo2OBwBAlTH+W9gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgGDodDBQUFV7x/te1Vue/p06dVUlJy3WMzmUwym83XfN9isVR432s57qWP+fn5ycfH57rHBgAAAAAAAAAAAAAAAAAAAAAAAAAA4I4+/fRTTZo0SQEBAVqxYoXuuusuoyOhhlm3bp3REWo9b29vTZs2Tffff7/+8Ic/6P3331e9evXkcDjk7e0tSSoqKrriz3t6eurWW2/VmDFjqisyAAAAAAAAAAAAAAAAAAAAAAAAqllWVpY2b96sVatWGR0FqLDnF8UbHQG1yOJXXtDo//OYeg4YonpV8P2jnK+o6VYcOKpR7ZtrxYGjFdr/0wX/1hcfLFFJcXGl7HclTVu20oepB7Utaa2Wvvqiut/e/7qOAwBG2LBhg2bOnKlZs2bxeRsAKoS+AZWJPheQdm/eqIS5b2jU1Jma8ORf5F3PR3k/HteOjev0wT9f0Yp5b5bpgyvSwxZevKhZE+9RzJDheuS5lyRJie//Ry88dI9eSfhC3vXqXTUXvS6qW0REhF588UXl5+erYcOGRsdBNaJeozIxvwT+Z0vialltXZWd9p1yszPVLKR1uftV9DWS8l6bWb/iQ235ck2F8tTV+WVkZKRCQ0O1bNkydevWzeg4qMGoMahMzImAa1tzq+ha2v7tW/X6H/+PHvzT83ryXwvkdDq1e9MGvfKHh/XCkgSZb2pw1Vx1dU5033336e6779bhw4fVokULo+OgBqPGoDIxJ0Jdd7X3245q37zcn/m1X6///N+RcQpuF6ZpL/xD7TqHS5L2frNFrz02RROfnqWeA4ZcNVtdnBMNGTJEjRo10nvvvaenn37a6DhwA9QZVCbmRajrrmde9Mm7/9axnExNfeEVBQYF6/ihbM177im9+Mh9VzzOor8/p9/dMVBrly2qcLa6MC8KDQ3Vtm3bNH78eN12222aO3euJk6caHQsQ4wZM0b+/v4aM2aMjhw5ooSEBAUEBBgdC5BEPUflYv6Juu5a558VXW/j+oBf/P73v1dQUJDGjRuno0ePatmyZTKZTEbHQh1EPUJlYv6Euu7X86eLBQXKP3lCGfbd+irhfX22cJ6efGvBZe+Fv57PCWIN73Kenp6aPn26hg4dqmnTpqlPnz568MEH9fLLL+uWW24xOh5QaaiHqEzM31DXVdX70ha99LzSdu3QhD89pza3dpYkZe7fq8WvvKAjmT/owaeeu2q22j53Q1lBQUGaPn26pk+frtzcXK1YsUIrVqzQ2LFj5ePjo9jYWI0YMUJDhw5lbovLnD9/XkuWLNG7776rnTt3KjQ0VOPHj9fdd9+tLl26GB0PqFLr1q0zOgLqkISEBEVGRsputysjI0NWq7Xc/f7xj39o7ty5Kv6Ntb7w8HB16NBBb7zxhn73u9+pXr162r9/v5566int2rVLCxYsqKphXLdmzZpp4sSJmjhxogoKCpSUlKSEhAQ999xzeuqppzR8+HBNnjxZsbGxRkfFNcjJydG8efO0ePFiHT16VDExMXrhhRc0cuRIrp1Frcc8AlXN6XTKw8NDTqdTkuRwOHTs2DF98803WrBggWbPnq2VK1eWmVNUdI7wxz/+USkpKZo9e7br85927dqlJ554QmlpaZo9e3b1D/gqvLy8FBkZqcjISP3lL3/RoUOHtHLlSiUkJOjOO+9UUFCQHnzwQU2ePFnBwcFGxy3jyy+/1Pz587Vq1SqZzWaNGDFCzzzzjPr37y9fX1+j4wFVhlqJqvbrWvlrHh4elz1WkZ770uO7C7PZrIEDB2rgwIF64403tGvXLiUkJGj58uV67bXXFBERoUmTJumBBx5Q/fr1jY5bBuvTqMuolahq11MrX3nlFX3//feaN2+eWrVqpYMHD2rq1KkaNGjQZcdxp1rpbuvT1EfUZdRHVLWq6iUvXLig/v3765577tG///1vSdK///1vDRgwQNu3b5dPFby/9ka5W32UpMzMTL399ttavHixfvzxR91222169dVXddddd6lJkyZGxwOqFDUSVe1qNfJSFa177vaa5K/XWXfu3KmEhATFx8dr9uzZ6tGjhyZNmqTx48fLbDYbHVcS/SPqNmojqlpV9Y8RERHq2LGj5s+frx49ekiSNm7cqLFjx+r111/XqFGjKmcAlYj+EXAv1EhUtaroH6Vre53SaPSPgHuhNqKqXU//WN6+Cxcu1IoVK65rv5rCHfvHUj/88IPefvttLVmyRCdPntTtt99OH4k6g1qJ6pCYmKgXX3xRzz77rF599VX5+PgoNzdXq1ev1p///Gf97W9/c9W9a1lDdade0sPDQ127dlXXrl31pz/9SceOHdPHH3+shIQEjRo1SrfccosmTJigqVOnqnXr1lc/YDX6+uuvNW/ePH388cfy9vbWsGHDFB8fr4EDB9a461OAykadRFW7ns8SqGitdLf37UhSgwYNNHz4cA0fPlxz5szRtm3btGLFCn3wwQd66aWXFB0drYcfflj33ntvjfouFtZfUZdRK1HVqur6SHesk+62/kp9RF1GfURV+3V9vHDhgr7//v9n787joirb/4F/BgGRLUAtxXIBUQwxFSRMTFPwQRHXAEXFHcLlwS3B9Ps4WSrUI0m2CG6IuUGaiZEFaQWpFVSSiCiQ+iRq6OCOG8zvD38MwjBwZhg4M/B5v16+hDP33OeaMxf3dd9nlpOPiIgIzJ07F/v371e6j9Dv2lHnO3l0gb7VRyIiIm3hNbxIm3jNOWruNLlm8KOHD/H29Anw8BmN2SsjAQDf7IrHqhkT8N7nh2FoZAQAWDR6KJ63d8CMt1ahq3MfGBoZ4n/5Z7Hjv6tRePpPzF0dXWd8vO4cVXj48CFSUlLw2Wef4auvvoJEIsGoUaOQkpICLy8vtGjRQuwQiYiIGpyh2AEQERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERkf4rLS3F/fv3Ff8/vU3Vz43R9u7du3j48GG9HpuJiQlatWql8mdVt1tbWwtuq06/T//8zDPPwMDAoF6Pj4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi067333kNERARmzJiB9evXw9zcXOyQiJo1CwsLbN++HUuWLEFgYCD++ecfzJkzB9nZ2fjmm29w9+5dGBsb1/jZ9Nu3b4sQMRERERERERERERERERERERERERERERERETWWhIQEtG3bFsOGDRM7FCIiUVy+cB79/zUShkZGYodCpBeOfpGE1bu+xOxX+2ilXW1aGBrBzXM4YpbO17gPIqLGdv78eQQEBMDX1xcrVqwQOxwiImqGuM6l5u76lcvY9UEk3k74HK3MKr//7NnnO2LE5Bl43s4Bb88IqHIfIWvYI/v3oLPjixj/Rphi2/g3wvB3wTkc/SIRXv6TBMXHtS41Jjc3N8jlcvz2228YMmSI2OEQkZ7i/JKo0nef74ZP0Czk/ZGF7/btxuRFb9XYTsj88ul55dO+3rkNExeEC46puc4vJ0yYgE2bNuG9995DixYtxA6HiJoBzomouVP3nJvQc2l7Pnwf05e9jQEjRinavTpqPMrLy5GycxvGh/xbUHzNcU7k4+MDKysr7N27F4sXLxY7HCJqJjgnIlKPOud/Fn3wKTo6OCp+dxv6Lxi3bIltkVK4D/MRtL/mNicyNjZGQEAA4uPjsWzZMrHDIaJmhvMiIvVcyMvF+TM5WPDfjxXbOth1xZzV6zB32Cs13uf39KM49ctxrE8+gq93blNrf81hXmRhYYH9+/fjrbfewsyZM5Gbm4vIyEgYGBiIHVqj8/b2xk8//QQfHx8MGDAAKSkp6Nixo9hhERFpFeefROoTcr6Nnw+oNGbMGHz99dcYM2YMfHx88MUXX8DS0lLssIiINMb5E1FVxiYmePb5jnj2+Y4YMGIUUhN3YtWMCVh3IBWmFpU1X93vCeI5vNp17twZX3/9NZKTkzFv3jx069YNUqkU8+bN4/vfiYiq4fyNSD1C35d2ZP9eRH+Zhmc7vKDY9mI/dyxeH4vFY7wwLXyloP01h7kbKWvfvj3mzZuHefPmQSaT4dChQzh06BDCwsIwe/Zs9O/fH76+vhgzZgy6d+8udrgkolu3buGjjz7C+vXrcffuXfj5+SEmJgYeHh5ih0ZE1CRt2bIFYWFhOH78OLZu3Yq1a9fW2G779u3IyMhAhw4dau1v7969cHZ2Vvzer18/7Ny5E127dsWWLVu0Gru2mZiYwNfXF76+vrh79y6SkpKwZcsWeHl5oV+/fli+fDlGjRoFiUQidqikQn5+PtauXYvPPvsMbdq0wbRp0zBjxgzY29uLHRoRUZPVqlUrdOnSBV26dEFAQAA2bdqEYcOG4Y8//sAzzzyjaCdkjrBt2zacPHkSnTt3VrR79dVXkZiYiN69e2PdunWN9rg09cILLyAsLAxhYWE4d+4ctm7dii1btuC9995DUFAQIiIiRK1LcrkcX375JVavXo3MzEy8+uqr2LRpE15//XWYmpqKFhcRUXMndM2t7/r06YM+ffrg3XffRXp6OjZv3oxFixZh5cqVWLBgAebNmwcLCwtRY+T5aSIi3ZOdnY2TJ09i586dim2Ojo7YvHkzHBwcRIxMu3T5/DTrIxGRbhKylty2bRteeuklLF++XLFt+fLlyM3Nxfbt2zF79uzGCFVjulwfASAvLw9r167Fzp070b59e7zxxhuYPn06OnXqJEo8RETNndC6p++vSfbt2xd9+/bF6tWr8cMPPyje+/Wf//wHixcvRmhoKMzNzevuqAFw/UhEpJuEvha5Z88e9OzZU/H76NGjYWJigkWLFmH8+PENHWa9cP1IRETqELp+1PfXKbl+JCIidTxdF5/28ccf491331W7na7S9fVjhdzcXKxZswZ79uxBhw4dMGfOHEyfPp3XSCAi0qK///4by5cvx9GjR6t8hqFLly6YP38+evToAS8vryr3EXIOVd/Xku3atUNoaChCQ0Nx4cIFbN26Fdu2bUN0dDQCAwOxbNkyODo61t1RA/rqq6+wevVqHD9+HO7u7tiwYQMCAgJE/ywKEVFTJvS7BITUSn1/345EIoG7uzvc3d0RFRWF7777Dlu2bMGcOXOwYsUKLFmyBCEhITAzMxMtRp5/JSLSPULXivpeJ3X5/CvrIxFR42vZsiWcnJywadMmvPjiizW2Efr+Vn3+Th5dro9EREREuozXnCOqSsg1g4/s34POji9Wuf7c+DfC8HfBORz9IhFe/pMU2xd9sBGduvVQ/N7VuTcW/PcjzPV6BXNXRwuKideda96ysrKQkJCA3bt34/r16+jfvz8iIyMxefJktG7dWuzwiIiIGpWB2AEQERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERkWqlpaUoKSlBSUkJioqKUFhYiMLCQuTk5CArKwsZGRlIS0tDWloakpOTkZSUhKSkJCQkJCAuLg5xcXGIiYlBVFQUpFIpIiIiEBERgbCwMISEhCAkJARBQUHw9/eHv78/fH194eXlBS8vL3h4eMDV1RVOTk6wt7eHvb09bG1tYWNjAxsbGxgaGkIikUAikcDU1BQ2Njbo0KGDom3Pnj3h6uoKV1dXDBw4UNHvqFGj4O/vj6lTeoo4BQAAIABJREFUpyIsLAwRERGIiopSxJuUlKR4TFlZWSgsLMTly5dRWloKALC2toadnR3s7Ozg4uICT09PeHp6ws/PD8HBwQgLC8PKlSsRGRmJTZs2ITExEYmJiTh48CBSU1ORmpqK9PR0ZGZmIjMzE6dOnUJBQQEuXboEmUwGmUyGBw8eQC6XQy6Xo7S0VLG9qKgIBQUFKCgoQE5ODjIzM5GRkaHoNzk5WbG/hIQExMbGIjY2FjExMYiMjIRUKkV4eDjCw8MRFhaG4OBgBAcHIygoCH5+fvDz84Ovry88PT3h4eEBFxcXuLi4wMnJSfGYbW1tYW1tDWtraxgYGIicoURERERERERERERERERERERERERERERERERERET0tDVr1mDZsmVYv349Nm/eDHNz80aPoeIzwEK2V/xecZtEIsGsWbPqvA0ATp06BR8fH1hYWMDCwgLe3t44depUjfssKCjAuHHjYG1trTI+VU6ePIlhw4bBzMwMlpaWGD58OL755huNH69EIkFubi7c3d1hamqKgQMHIj8/Hzk5OXj55Zdhbm6O1157DRcvXqzxvqdPn4a3tzcsLS1hbm4OHx8f5ObmqvW4tR0boN7z8b///Q+jR4+GhYUFnnvuOUyePBnXr19Xavv0fao//wcPHsSAAQNgYmKCzp07Y+HChbh9+7Zax6GxOTs74/jx43BxcUF0dDT+7//+D9evX0dqairmzZsHe3t7AIChoSEMDQ3x6NEj3Lx5U5RYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqHHs2rULgYGBMDIyEjsUvTTe0RbjHW3xd/5ZvDMrEJNduiGwT1esDpmCvwvO1dj2ysXzeG/+TAS5OSq2Vbh47gxWB0/GpL4OmNTXAauDJ+PiuTNK+z1/5jRWzZiAwN72mOzSDe/OnoQ/Mr6v0ubiuTNYHTJF0dc7swKV+rp3+xa2rV2JUE93TOjVGTM9emNDxAKcy/5drTbqxF4bIfuqfswqtj1923hHW3yyYrHK9rVt//XIt3hr4ihM6NUZbwxxw7a1K1F6945SOyHPgdC+tHHsmIuaH8+yx49gqMEYyHxlvurK2NnY3t11ADbPPqe1dnUxNDLC40eP6t0PEVFjuH37Nnx9ffH8888jISFBtO8WIKoPztWq7Y/rXI364rqB61zmK/NVzHVucnws/jVxKlqZ1fz9Z71eGYh9Z4qqbBOyhv352xQMHuuvtH3wGD+c+PYrtWLkWpcaS/v27WFra4vMzEzRYuAYWW1/nF9q1BfrNeeXzFfmqy68jnLl4nlcKsyH62ue8Hx9Ir7/IgllZY9rbCtkfhm4IFxpW94fWbh35zb6DHxNrdia4/xyypQpuHz5Mr7//nuxQxGEf9fV9sc5kUZ9scZwTsR8Zb7q0zk3oefS8v/8A71eGajUrs/A15B5JFWtGJvbnMjY2Bjjxo3Dzp07xQ5FMP5dV9sf50Qa9cUawzkR85X5qgvniVSp/hqk0PM/+84UoaODo1Jbx779cPXiebViaG5zoqCgIJw9exa//vqr2KGohX/b1fbHeZFGfbHOcF7EfGW+6tO86Js9CfAKmKzUrl3HzkptAaD0zm1s/M9SzHn3v2jZylSjGJrDvMjAwACRkZHYsWMHPvzwQ0yYMAH3798XOyxRODs748SJEzAyMoK7uzt+++03sUPSKRxDq+2P80+N+mI95/yT+cp81af5p9Dzbfx8QFWDBw9Geno68vLyMGTIEPzzzz9ihyQajgHV9sf5k0Z9sR5x/sR8Zb7q8vzJy38SXhowCF9u3VhluzrfE8RzeML5+voiNzcXYWFhWLp0Kdzc3PDLL7+IHVaTwjGo2v44f9OoL9ZDzt+Yr8xXXZ6/afq+NOOWLVX2aWys+raaNJe5G9XMxsYGQUFBSExMxD///IMDBw7AyckJ0dHRcHR0hJOTEyIiIpCRkQG5XC52uNSIkpOT4eTkhMjISEycOBEFBQWIj4+Hh4eH2KGpRSKR1Ph9kTVtr/i94jaJRIJZs2bVeRsAnDp1Cj4+PrCwsICFhQW8vb1x6tSpGvdZUFCAcePGwdraWmV8tT2W06dPw9vbG5aWljA3N4ePjw9yc3PV3tepU6cwYsQIRcwjRoxQihkATp48iWHDhsHMzAyWlpYYPnw4vvnmmypthDz+mzdvYuHChbCzs4OJiQnat2+PadOmVVlHC2mjTuy1EbIvTfJEaL4BwMGDBzFgwACYmJigc+fOWLhwIW7fvq3UTshzILQvbRw75qJ2j2eF/Px8nDlzBiNHjsTMmTOxfft2PH5c8/ddpKenw9ZWeQ3zNLlcDmdnZ6XtN2/eRLt27TSKUSxmZmaYNm0a0tPT8ccff8DR0RHjx4/HoEGDkJOTI3Z4VE1paSmkUil69uyJo0eP4r333kNhYSFWr14Ne3t7scNTC+cRHLtV4TyC8whdycW6zJ49G8OGDcN///tfxTahcwQTExOV/dZ2m65ycHDA2rVrceHCBWzatAnp6eno0aMHwsLCcOeO8nnahnbu3DkMGzYM48aNQ7t27fDzzz/jhx9+QFBQEExNNXt9VgyslRyfVGGtZK3UlVysS03nvIWsuZsSiUSCV199FQkJCbh48SJCQ0Px/vvvo1u3bkhISBAtLp6fZq2s0FTHJ9ZK1kpdycW6VK+VGzduRHBwsFK7rl27NtnXknXp/DTrI+tjhaY6JrE+sj7qSi7WRdO15P79+zF16lSl7UFBQdi3b5/W4msMulQf7927B6lUil69eiEjIwMff/wxCgsLIZVK0alTp0aNpb5YIzkuqcIayRqpK7moDqF1r6m8JimRSDB48GDs2LEDFy9exBtvvIE1a9aIdp6V60fWxgpNdTxibWRt1JVcrIum60e5XI6ePXsqbR8wYAAKCgq0Fl9j4PqxYbBGclxShTWSNVJXclEdQtePTeV1Sq4fGwZrI8cjVVgbWRt1JRfrUr2Wvfvuu0ptjh8/jlu3bsHb21vtdvpAl9aPFSrWkb1798bvv/+OLVu2ID8/HytXrkTHjh1FiUlTrJUcn1RhrWSt1JVcjI6ORmhoKCwsLGq83dPTs0q9FHoOtamsJQGgU6dOePvtt3H+/Hns2rULmZmZcHZ2RlhYWI153tDy8/Ph7e2NkSNHwszMDMeOHcPx48cxa9Yslc+jrmKd5NikCusk66Su5GJdVH2XgJBa2VTetwM8ucafl5cX9uzZg4sXLyI4OBirVq0S9TOSPP/KWlmhqY5PrJWslbqSi3XR9PORTalO6tL5V9ZH1scKTXVMYn1kfdSVXKyNqnOjQr9rp6l8J48u1UcioqaO102qtj9ec06jvngNL15zjvnKfNXla87VdM3gn79NweCx/kptB4/xw4lvv1L8vu9METp166HU7t7t27Bq+6xacfC6c83LmTNnIJVK4eDgAFdXV6SlpWHOnDnIz89HRkYGwsLC0Lp1a7HDJCIianQGYgdAREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREJJbS0lKUlJSgqKgIhYWFKCwsRE5ODrKyspCVlYWMjAykpaUhLS0NycnJSEpKQkJCAuLi4hAXF4eYmBhERUUhKioKUqkUERERiIiIQFhYGEJCQhASEoKgoCD4+/vD19cXXl5e8PLygoeHB1xdXeHq6gonJyfY29vD3t4etra2sLGxgYmJCSQSCSQSCUxNTWFjYwMbGxt06NBB0bZnz55wdXXFwIEDFf2OGjUK/v7+8Pf3R0hIiCKeqKgoxMXFYceOHUhOTkZaWhqysrIUj7mkpERxTKytrWFnZwc7Ozu4uLjA09MTfn5+CA4ORnBwMMLDwxEZGYnIyEhs3boViYmJSExMxMGDB5Gamor09HRkZmYiMzMTp06dQkFBAQoKCnDp0iXIZDLIZDKUlZVBLpdDLpejtLQUMpkMRUVFirY5OTmKPjIyMpCamorU1FQkJycjMTERCQkJiI2NRWxsLGJiYhTxSKVShIeHIzw8HGFhYQgODkZQUBD8/Pzg5+cHX19feHp6wtPTEx4eHnBxcYGLiwucnJxgZ2cHW1tbWFtbw9raGsbGxiJmJhERERERERERERERERERERERERERERERERERERHpo+TkZKxYsQIfffQR/v3vf4sWh1wuF7y9YlvF53/lcjk2b95c5235+fnw8vKCr68vCgsLcf78eUyePBmjR4/G33//rdR/aGgolixZgqKiIqSkpAh+LGfPnkVAQACWLl2K4uJinDhxAnfv3oW3t3e9Hq9UKsW2bdtw+fJlvPTSS5g8eTJWrlyJ+Ph4XLp0CT169MDixYtrvG9AQACmTZuGv/76C4WFhRg7diy8vb1x/vx5wY9b27Gp+3zMmjULoaGhuHz5MjIzM3Hv3j0sWbKkxnhqev4BYPTo0Zg6dSpkMhlOnDgBmUyG+fPn19iHps9/QzA3N8eBAwfg5uaGkSNHorS0FJ6enli3bh3y8/NRWFiImJgYeHl5wcjICIaGhqLGS0RERERERERERERERERERERERERERERERA3n2LFjyMvLw5QpU8QORW/tO1MEAFi38A28NjYAn373Mz5NO4GXPYfjnVmB+OfS/5TaxkkjMHpGKDb/+AeWx32muP3KxfN4d/Yk9P/XSHyadgKfpB7Hy14j8M6sQFy5eF7Rruh8IdYtDMGYWXOx7cQpRO49hPul9/DOrMAqfb09fQJcX/PCp2knsPHILxg0ajwi50zH9SuXFe02RITBzMISa/cmY0fmWayI+wxXLv6FCH8ftdoIjb0uQvZVcRxreh72nSlS/Jvz7jqV7WvbHjlnGl4b64/tv+QiMvEQ7ty8gc3vrKjSRshzILQvbR075qJ2j2dNx7b6z8xX5mtj5quqPFSHNvoAAHPLZ7TaTltxERGJrby8HJMmTcK1a9fw5ZdfwszMTOyQiDTCuZp6sdeF6wauG3QlF2s6ttV/Zr4yX5vKOvf39KNwdh+gVl9C1rAXzp5Bp+49lLZ36t4DF/JyBcVGJAZXV1dkZWWJtn+OkerFXhfWa9ZrXcnFmo5t9Z+Zr8zXpjK/rJD2+S4MGv06WhgawbaLPZ57oSN+++FIjX0JfY2kuq8/2wrvwGmQSCRqxdYcde3aFW5ubti2bZvYoQjCv2v1Yq8LawxrjK7kYk3HtvrPzFfma1OZE6l7zk3ouTQ5av5+/RZGRij6K19QbM3Z5MmT8fvvvyMnJ0fsUATh37V6sdeFNYY1RldysaZjW/1n5ivztanMiVQZ72gruG9V539qckt2HW07vFCv2Jo6Nzc39OjRA9u3bxc7FLXwb1u92OvCOsM6oyu5WNOxrf4z85X52lznRad/PQFDI2OsDpmCwD5dMamvA6TT/JGb+XON7be/twoug4bC2d1Da7E1ZZMmTcLRo0dx9OhRvPbaayguLhY7JFHY2toiPT0dvXv3xqBBg/DVV1+JHZLO4BiqXux1YT1nPdeVXKzp2Fb/mfnKfG2u809Vqp9v4+cDlDk7OyM9PR23bt1C//79kZ+fX/edmiCOAerFXhfWI9YjXcnFmo5t9Z+Zr8zXpj5/epqX/yT8+t03Vbap8x54nsNTj6mpKaRSKbKzs2FtbY3+/fsjJCQEN2/eFDu0JoFjkHqx14X1kPVQV3KxpmNb/WfmK/O1qc/f6vu+tNEzQxG9KBS5Wb+g9O4dlN69g9ysXxC9KBSjZr5Rr9io+WrVqhV8fX0RGxuLoqIipKenw9PTE7t27cLAgQPRpUsXhISEIDk5GY8ePRI7XGog9+/fR0BAAMaMGQMfHx9cuHABMTExaNeundihaUQur/mzTTVtr9gml8sV/zZv3lznbfn5+fDy8oKvry8KCwtx/vx5TJ48GaNHj8bff/+t1H9oaCiWLFmCoqIipKSkqP1YAgICMG3aNPz1118oLCzE2LFj4e3tjfPnzwveV35+PoYPH47XX38dhYWFKCgowLhx4+Dt7V3l9YOzZ88iICAAS5cuRXFxMU6cOIG7d+/C29u7Sl9CHv/UqVNhZWWF48eP4+bNm0hJSUF+fj5efvlltdoIjb0uQvalaZ6ouk91o0ePxtSpUyGTyXDixAnIZDLMnz+/Shshz4HQvrR17JiL2j2eFbZs2YIpU6bAyMgI3bt3h52dncoxwtraWq2+Hz9+jKtXr+KLL75AQEAA1qxZo3Z8uuKll15CQkICTpw4gXv37sHFxUXvPm/QlOXn56N3796IiYnBunXrcO7cOYSFhaFly5Zih6YRziM4dqvCeQTnEbqSi0LMnj0bX375ZY231TZHePPNNzFhwgRkZGTg9u3buH37NjIyMjBhwgQsWbJEqzE2JiMjIwQFBSEnJwfR0dHYvn07+vXrh8LCwkaLYdu2bejZsydu3ryJX3/9FcnJyXBzc2u0/WsTayXHJ1VYK1krdSUXVantewDUWXMvWLAA7du3h6mpKQYMGIC0tLR6xyamNm3aQCqVIj8/H6NGjcL06dMxceJEPHjwoNFi4Plp1srmMj6xVrJW6kouqqKqVv74448wNjaGj48PzM3NYWFhgaFDhyI9Pb3G9k2tVop1fpr1kfWxuYxJrI+sj7qSi6rUdy35559/olevXkrbe/Xqhezs7HrFJiYxX7+teG3yww8/RExMDM6ePYvg4GAYGho2yv61jTWS45IqrJGskbqSi+oQWvea4muSbdu2hVQqxblz5+Dt7Y1p06Zh2rRpePjwYYPvm+tH1sbmMh6xNrI26kouqqKt1yKrKy4uRufOnTW+v9i4ftQe1kiOS6qwRrJG6kouqkPo+lHd1yn1AdeP2sPayPFIFdZG1kZdyUVVhFzTqsJHH32EOXPm1Hkfoe10mS58fvTMmTNwdnbGhg0b8PHHHyM7OxtBQUFcR7JWNrnxibWStVJXcvHw4cMYMmSI4PaqVD+H2hTXkgYGBvDz88Off/6JTz75BJ999hn69OmDvLy8Roth586d6NmzJ65evYrjx48jNTUV/fv3b7T9axvrJMcmVVgnWSd1JReFqO27BJ5WvVY2xfftAMCzzz4LqVSKs2fPwsvLC9OmTcP06dMb5dwrwPOvFf+zVj7RlMcn1krWSl3JRVXq+/nIplon+flI7WB95JikCusj66Ou5GJ1Dx48QE5ODmbPng0/P78a2wh9f2t93gerq3Th9UkioqaM101SL/a68BpevIaXruRiTce2+s/MV+ZrU7/m3NOqXzP4wtkz6NS9h1K7Tt174EJebo19lJU9xo3rxfg59WusWxiCSQuXaS0+ahpkMhni4uLg4eGBF198EZs2bcKIESOQnp6OnJwcSKVSdOnSRewwiYiIRCWRq3oFhYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiEhDpaWluH//vsqf67pdG/dTdfutW7dQVlZWr8dnYmKCVq1aKf5/epuqnxuq7dM/m5qaomXLlvV6bEREREREREREREREREREREREREREREREREREREREpL4HDx7AwcEBQ4YMQXx8vNjhQCKRQC6XC9quqm1tt02ePBm9evXC0qVLq2zfunUrTp48iZiYmCp9HD16FIMHD1b7cQQGBmL48OGYMmWKYlteXh4cHR2rxKXu4/3+++8xaNAgAEBRURE6dOhQZdvff/8NFxcXXL16Vem+e/bsQUBAQJXt0dHRyM7OrvLc1/W4tRmbus/HgQMHMHr0aMW2vLw8DBkyBJcuXaozRlVKSkrQtWtXXL9+XakPTZ//hlRSUoIXX3wRfn5++PDDD2ts8/DhQxgYGMDQ0LCRoyMiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqLGEBoaih9//BE5OTlih6IT/P39cen2fSxeH6vW/cY72mJR9EYMGDGqyvbkbbE4n5eL+ZHrq7RdlfA5nNxeUeon5s156OrcGz5Bs5T6Kcw9hbD3NgAAPlg8B31fHYJBo19XtCn6qwDzhw/EvjNFir46dX8RY2bNqdLXkX17cP5MDmYsfwcAMKmvA2KP/grzZ6wUbf75+yJCPd0VfQlpIzT2ugjZF/DkOD79u6ptdd1W230q3Ll1E3O9+mP7z6cV24Q8B0L70taxq3g8zEX1jmfpnduYPcgFn2WdVToOdWG+VmK+ijt2vjVxFCQSCVbv+lJQ+5oIyS9N76NJ39UF9rbHlow/0MrcQqP7H/v6INYtfEPw54aJiDQRHh6ODz/8EEePHoW7u7vY4RAB4Dq3Ate5VXHdoDqmppCLXOcyX/UpX1Wp7zp3Ym877Pg1D4ZGRmrft7a89O/ZCbv/yEcLw6r9lj1+hMA+XbH3zwtq7au+a92KePfu3Qt/f3+N+6Cmb9WqVYiPj0dhYWG9++L88gnOL6tivVYdU1PIRc4vma/6lK+qaON1lPKyMoS85gppfBI62HUFABz9Yi9+Tv0aEZ/Eq7yfOq+R3LhejLDhr+KTtJ9hZmmpdozNcX65bds2vPHGG7hw4QLatWvXaPtNTExEQECARq+t8e+acyLWmCf0LRc5J2K+6lO+qtLY59yEnktbMXksRkyajleGV32Oj39zCNGLQpGU8z+14tTGnGjdghB0sDBBYmKixn00lvLycjg4OGDEiBHYsEH435a2SCQSLP5go9LzVxv+XXNOBLDGVNC3XOSciPmqT/mqirbeb1sTIecJ1D3/k/RxNORyOfznLVYrRm3MifTpfbfvv/8+Vq9ejYsXL8JSg/Nq9cXXz57gvKgq1hnVMTWFXOS8iPmqT/mqSmPPiyb1dUCb9rYImL8EvfoPRHl5OU7+9APi10qxaP1GOPXrr2ibfSwdn6xYjA+Sj6CVmbliX5p8Lqm5vX6Wn5+PESNGoLy8HCkpKejWrZvYIYni8ePHmDt3LrZs2YINGzYgNDRU7JC0ivPPJzj/rIr1XHVMTSEXOf9kvupTvqoi9nm5CtXPt/HzAapdvXoVI0aMwOXLl3Ho0CH07dtX1Hjqg/OnJzh/qor1SHVMTSEXOX9ivupTvqrSGN8j9KD0Hqa/0gu7fs9X+766dA5PV+ZP6pDL5dixYwfefPNNGBgYICoqClOmTIFEIhE7NJ3A+dsTnL9VxXqoOqamkIucvzFf9SlfVRH7/Fdt70tL3haLHevWoOzxIwBAixaGmLR4GUbPUP81tKZ0/osaRk5ODpKSknDo0CFkZWXBxsYGPj4+8PX1xfDhw2Fubi52iKQFjx8/hpeXF7Kzs7Fv3z4MHjxY7JC0QiKR1Pie2Zq2q2pb222TJ09Gr169sHTp0irbt27dipMnTyImJqZKH0ePHtX42EokEuzZswcBAQFVtkdHRyM7Oxvx8fGC9jV58mT069cPYWFhSv38/vvv2LFjBwAgMDAQw4cPx5QpUxRt8vLy4OjoqDgWQh+/hYUFLly4ABsbG0Wbv/76C3Z2doq+hLQRGntdhOwL0F6e1HafCiUlJejatSuuX7+u2CbkORDal7aOXcXjYS5q73iWlZWhY8eO+O677+Do6AgAiI+PxxdffIEvv1Q9DxWSV6dOnYKzszMAoGXLlvj4448xc+ZMwbHpsrKyMvznP//B2rVrsWHDBsydO1fskJq1c+fOYcCAAejSpQsOHDiA9u3bix2SVnAeobwvjt2cRzyN8wjx5xF15cfdu3fx3HPP4c6dO1W2C5kjREdHIyIiAo8ePTn3ZGhoiLVr12LJkiWC49N1ly5dwpgxY3Dx4kX89NNP6Nq1a4Pub8OGDQgLC8OKFSsglUphYGDQoPtrDKyVyvvi+MRa+TTWSt2olTWpK2fqyitLS0usX78eY8eOhUQiwZEjRzBv3jzs2LEDQ4cOFRyfLjty5Ahef/119OnTB9988w0MDQ0bdH88P81a2ZzGJ9bKSqyV+lUrLSws8MILL+Dtt9/G0KFDUV5ejm+//RaLFi3C3r17MWjQIEXbpl4rG+v8NOsj62NzGpNYHyuxPupXfax+P1VtjI2NcffuXRhV+87fR48ewdzcHA8ePBAcn65qzNdvK16btLOzw4EDBxr1+gUNiTVSeV8cl1gjn8YaqRs1Usj3l6pT95r6a5KHDx9GQEAAPDw8kJyc3GCvD3L9yNrYnMYj1sZKrI26URtrUt/XImuyatUqyOVyrFy5Uq376SKuH+uPNVJ5XxyXWCOfxhqpGzVSm+tHdV6n1FdcP9YPa6PyvjgesTY+jbVRN2pjTYTUy6tXr6JHjx4oLCyElZVVvdvpEzE+P3r69GkMHDgQPXr0wBdffIG2bds2+D4bA2ul8r44PrFWPo21UtxcNDU1xY0bN2BsbCyovSrVz6E2h7Xk1atXMW7cOOTl5SE9PR09evRo0P3FxsYiNDQUb775JlavXt3gnzFpLKyTyvvi2MQ6+TTWSd1YU9b2fKr6LoHqanq9sam/bwcAvv76a0yYMAEDBgzAoUOHGvSz/Tz/ylrZnMYn1spKrJW6UStrUtNzrM5asanXSX4+sn5YH5X3xTGJ9fFprI+6WR9ffPFF7N69G7169ar1fkJew9TkfbD6gN9vS0RUu8TERAQEBKh9DUNeN4nXnAN4Da8K+paLvOYc81Wf8lUVMa4Z7N+zE3b/kY8WhlU/J1H2+BEC+3TF3j8vVNl+8dwZLPQdAgAwMjbG7P+sxdDXJ6odZ32vO7duQQg6WJggMTFRo/uT9t2/fx/JyclISEjAN998g1atWmH06NHw8/PD8OHDm8x7d4iIiLQkSf+v+EFERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERNSM3LlzByUlJSgpKUFhYSEKCwuRl5eHrKwsZGVlIT09HWlpaUhLS8O+ffu2FBoAAAAgAElEQVSQlJSE3bt3Iy4uDnFxcYiJiUFUVBSioqKwfPlyREREIDw8HCEhIQgJCcGMGTPg7+8Pf39/+Pr6wsvLC15eXnB3d4erqytcXV1hb28Pe3t7dOrUCTY2NrCxsYGpqSkkEonin6mpqeK2Dh06KO7Ts2dPuLq6YuDAgYq+R40aBX9/f8ycORMLFixAREQEoqKi8OGHH2Lr1q1ISkrCoUOHkJGRgdOnT6OwsBD//PMP7t+/DwCwsrKCra0tHBwc4OLiAg8PD/j4+CAoKAjBwcFYuHAhpFIpIiMj8emnn2L37t34/PPPkZqaitTUVPzwww/IzMxEZmYmTp8+jYKCAhQUFKC4uBgymQwlJSWQy+VV/pWWlkImk6GoqEjRPicnR9FPRkaGov/k5GQkJiYiISEBsbGxiI2NRUxMDCIjIxEZGQmpVIrw8HCEh4cjLCwMwcHBCAoKgp+fH/z8/ODr6wtPT094enrCw8MDLi4ucHFxgZOTE+zs7GBnZwdbW1tYW1ujZcuWImcoEREREREREREREREREREREREREREREREREREREVHzdPDgQVy+fBlr1qwRO5RGkZaWhoCAAKXtPj4+SE1NVdru5uam0X6OHDmCoUOHVtnWvXt3yOVyjfqr0LdvX8XP7dq1U9pma2uL4uLiGu/r6emptG3s2LH49ttvlbZr8rg1iU3d5+PVV1+t8nvnzp1x+fJltWN9mrW1NWQyWY23afr8NyRra2u89dZbiI+Px927d2tsY2xsDENDw0aOjIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBrDw4cPkZSUhKCgILFDaRJ6vTJQadvLXsNx8qcflLZ37dWnxj6yj6XDzdO7xn6yj6Urfj914ic496+6P9su9th3pqhKXwNGjFLqq+/goTh57EfF7917u2Bt6FT8nn4UZWWPAQDPPt+xSl9C2giNvS5C9tXYzC2fwZ2bN6psE/IcCO1LW8euAnNR+PF8eP8+Du/ajj4DX6vxONSF+VqJ+Sru2Ckvl9f7s8e6rmuvPjgYH4fSu3fEDoWIqEY7duzAe++9h48++gju7u5ih0OkFZyrcZ3LdcMT+pSLXOcyX/UpX2ujjXWuPqyTudalxtKvXz/89ddfKr9XrrFwjOT8kvX6CX3KRc4vma/6lK+10cb88rcfj+DZ5zuig11XxbZXvH2Rm/kzblz7p159V0hL3In+3r4ws7TU6P7NcX4ZGBgIKysrxMXFiR2KYPy75pyINeYJfcpFzomYr/qUr7XR1XNu/nMWYeualTj29UHcvlGCOzdv4NjhZOxaH4WWJq3U7q+5zYkMDAwwb948xMfH4+bNm2KHIxj/rjknYo15Qp9ykXMi5qs+5WtttPV+231niqr8E0qd8z/nz5zGd/v2wHdasNrxNbc5UUhICORyOTZv3ix2KGrj3zbnRawzT+hTLnJexHzVp3ytTWPPix4+uI/ABRF4xdsX5s9YwdLaBgNHjsW0ZVLs/fC/inb3793Fp/+3BKHvvI9WZub1jq+5zYu6du2KH3/8EdbW1njllVeQkZEhdkiiMDQ0xMaNG7FixQrMnTsXy5YtQ3l5udhh6QSOoZx/sp4/oU+5yPkn81Wf8rU2Yp+XA+p3vk2opjT/fO6553D06FH07NkTgwYNQkpKitghiYJjAOdPrEdP6FMucv7EfNWnfK1NY3yPkKb98xxe/UkkEgQFBSE3Nxe+vr6YPn06vLy8kJubK3Zoeo9jEOdvrIdP6FMucv7GfNWnfK2N2Oe/VL0v7aeUgzi8ezuWfrQZCb+cwfZfcrH0oy04vGs7fko5qHZ8zXHuRupxcnKCVCpFZmYmzp49i/DwcOTn52PChAlo164dxo8fjx07duD69etih0r1EBUVhV9++QU//PADBg8eLHY4eiMtLQ0BAQFK2318fJCamqq03c3NrV778/T0VNo2duxYfPvtt4L3lZaWhjFjxtTYT1pamuL3I0eOYOjQoVXadO/evUptFPr4+/fvj1GjRuHw4cN4/PhJ/e7SpUuVvoS0ERp7XYTsq7FZW1tDJpNV2SbkORDal7aOXQXmovaOZ0pKCrp06QJHR0fFNj8/P6Snp+PKlStq9VVdz549IZfL8c8//2DXrl145513kJiYWK8+dUWLFi2wevVqrF69GosXL8bp06fFDqnZksvlmDp1Kjp37oyjR4+iffv2YoekNziP0M+xm/OISpxHiD+PqIuq57uuOcLevXvxySefYP/+/SgpKYFMJsP+/fvxySefYO/evVqNUUwdOnTA999/jxdeeAFTp05t0L/jU6dO4c0338SaNWuwatUqGBgYNNi+mhLWSv0cn1grK7FW6katlMvlVf5pw61btzBjxgxYW1vDysoK48aNw/r16yGVSrXSvy4YMmQIfvjhB5w4cQLvv/9+g++P56c1w1qpn+MTa2Ul1kr9qpWlpaVYvXo1/Pz8YGNjgzZt2iAwMBDR0dFYuXJllbZNvVY21vlp1kfNsD7q55jE+liJ9VG/6iNVaqz6KJfLMW3aNHTq1AlHjhxBu3btGmQ/TRFrpH6OS6yRlVgjdaNGalNzeE3S29sb3333Hb777jt89NFHDbYfrh81w9qon+MRa2Ml1kbdqI2NsX48efIktm7dioULFzZI/42N60fdxxqpn+MSa2Ql1kjdqJHapM7rlPqK60fdxtqon+MRa2Ml1kbdqI2arh83bdoEPz8/WFlZaaWdPmnsz4+WlZUhKCgIPXr0QFpaGtq2bdug+2tKWCv1c3xirazEWil+raxv3tV0DrU5rCWfe+45pKWloVu3bggKCmrQa/bk5eVh4cKFkEqliIqKgqGhYYPtq6lhndTPsYl1shLrpPh1si5C8rKmWtkc3rcDAMOHD8eRI0dw5MgRxMTENOi+eP5VM6yV+jk+sVZWYq3UjVqp7c9HNoc6yc9H6jbWR/0ck1gfK7E+6lZ9LC8vx9WrVxEZGYlJkybh0KFDavfVXPD7bYmIGg6vm8RrzvEaXk/oUy7ymnPMV33K19ro8jWDK3R0cMS+M0XYduxPLFj3CZI++QDHvuZ155qrx48f4/DhwwgKCkLbtm0xadIkAMCOHTtw5coVJCQkwNfXl+/dISIiqgGrIxERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER0f/3+PFj3L59GwBQWlqK+/fvAwBu3bqFsrIylJeX4+bNmwCABw8e4N69ewCAO3fu4NGjR5DL5bhx4wYA4OHDh7h79y4A4O7du3j48CEA4MaNG5DL5RrvSxMSiQRWVlYAAGNjY5iZmQEAzMzMYGxsDACwsrKCRCJBixYtYGlpqdhmamqq1PaZZ56BgYEBDAwM8Mwzzyj1a2pqipYtWwIALC0t0aJFiyoxGBkZwdzcHADQqlUrmJiYaPzYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIdMFPP/2Efv36wdbWVuxQGsX169fRuXPnGm9r1aqV0raKz66r69q1a2jTpo1G962NhYWF4mcDA4Mat8nl8hrv27p1a6Vt7du3R3FxsdJ2TR63JrGp+3xYW1tX+b1ly5YqH29NiouLsWzZMhw+fBhXrlxBWVlZre01ff4b2pgxY/Dvf/8bJ0+exCuvvCJ2OERERERERERERERERERERERERERERERERNSIkpOTUVJSgsDAQLFDaRIsrKyVtlm3fQ63ZNeVtrc0Uf7MEwDcuiGDVZtna+zndomsSjtLa5ta47l9owRvDHGr8Tbjp66juiQmDokfR2PTqrdwS3YdXV7sCXevEfAOnIoWhkaC2wiNvS5C9tWQbsmu47PoNfg9/ShuXCtGuYrPjgl5DtTpSxvHrgJzUVjsf+XmYMlYLzj27YdlGxNqfQyqMF8rMV/FHTvX7k0W3FZfzVz+DlZMHovEj9Zh+rK3MXLqbLFDIiJSyMrKQkhICJYuXYqZM2eKHQ6R1nCuxnVuffriuoHrXE0wX9WLSZ/ztS71Xee2ad8BsquX8dwLnerVT3UWVta4ffMGrFq3rbL99s0bsLCq/bmoCde61Fj69esHAPjtt9/wr3/9S7Q4OEZyflmfvlivOb/UBPNVvZj0OV/roo3XUdKSdmLo61XfW9GylSn6e4/E0f2JGBs8r179l5U9xrd7d2B53Gca99Ec55ctW7bEjBkzsHHjRkRERMDY2FjskOrEv2vOierTF2sM50SaYL6qF5M+52tdGvucm9Bzab1eGYiw9zYg6ZMP8NGyhYBEAqd+7pi35gNs/M9SteNsjnOiWbNmQSqVYuvWrVi4cKHY4QjCv2vOierTF2sM50SaYL6qF5M+52tdGur9tvvOFNXZRp3zP+fPnMY7Mydizup1aGVuUWf76prbnMjS0hLTp0/HBx98gPnz58PIqOHHFW3h3zbnRfXpi3WG8yJNMF/Vi0mf87UujT0vMjE1Q8+XByhtf2nAIHy6Yoni94T334Vzfw+8NGCQVuJpbvMiAGjXrh2+//57TJw4EZ6enti+fTsCAgLEDqvRSSQSSKVSdOnSBSEhIcjOzsbOnTthZWUldmii4hjK+Wd9+mI95/xTE8xX9WLS53yti5jn5QDV59v4+YDaWVpaIiUlBfPmzcOoUaMQExODuXPnih1Wo+IYwPlTffpiPeL8SRPMV/Vi0ud8rUtjfI/Q//LPol1H9T9/yXN42mNjY4O4uDjMmDEDc+bMwUsvvYSQkBBIpVK0bt1a7PD0Escgzt/q0xfrIedvmmC+qheTPudrXXT1fWmJn0Rj3poP0MP1ZcU219e80MrcHJvefgsDRoxSK57mPHcj9Tk4OGDp0qVYunQprl27hpSUFCQlJWH27Nl49OgR+vTpg5EjR8LX1xd9+/aFRCIRO2QSaPv27Vi8eDF69uwpdih65fr16+jcuXONt7VqpVxjTU1N67W/mtaV7du3R3FxseB9Xbt2De3atauxn2vXrlVp16ZNm1rjEfr4k5KS8Pbbb2Pu3LkoLi5Gnz59MG7cOMyZM0fx/mAhbYTGXhch+2pIxcXFWLZsGQ4fPowrV66gTMUcUchzoE5f2jh2FZiL2juemzdvVvquWzMzM7z++uuIj49HRESEWv3VpG3bthg3bhysrKywYMEC+Pv717tPXREeHo6EhATs2rUL7777rtjhNEtnzpzB8ePH8csvv9S7zjU3nEfo59jNeUQlziPEn0fU5fTp07C3t1d5u6o5wqpVq7Bt2zYMHDhQ0dbX1xeWlpaYO3duk3oPu5mZGT7++GO4u7sjLy8Pjo6ODbKf3bt3w87ODkuXqv89G80Za6V+jk+slZVYK3WzVsrl8nr3UZOhQ4di2rRpDdK3WJydnbFo0SLEx8dj2bJlDbovnp/WDGulfo5PrJWVWCv1q1aam5vjtddeU9o+bNgwzJ5d93sMmmKtbOjz06yPmmF91M8xifWxEuujftVHoVq3bg2ZTIbnnnuuynaZTNbkPl/Q0PXx3LlzOHbsGE6cOMHXJtXEGqmf4xJrZCXWSN2skTURWveay2uSrq6umDNnDrZt24Z///vfDbIPrh81w9qon+MRa2Ml1kbdrI3afi3y5MmT+Ne//oUtW7bA0tJSq32LjetH3cUaqZ/jEmtkJdZI3ayRNRG6fqzv65T6gutH3cXaqJ/jEWtjJdZG3ayNQtaPjx8/RmxsLFJSUrTSTl811udH//zzT2RlZSE7OxsmT30HDtWNtVI/xyfWykqsleLmYseOHXHp0iXY2dkJvs/TVJ1DbS5ryVatWuHTTz9F79698eeff+Kll15qkP3s3bsXtra2WL58eYP035SxTurn2MQ6WYl1UjfXlE+r67sEVNXK5vK+HQBwcXHBvHnzsG3bNixcuLDB9sPzr5phrdTP8Ym1shJrpW7Wyvp+PrI51Ul+PlI3sT7q55jE+liJ9VG36qNEIsGzzz4LX19ftG3bFsHBwRg5cqTG/TUH/H5bIiLt43WTeM25+vTFa3jxmnOaYL6qF5M+52tdxLhmsIWVNW7fvAGr1m2rtLt98wYsrFQfZ0ub1nD3GgEzC0tsW7MSrwzndeeai7KyMhw9ehSJiYnYv38/rl+/Dnd3d0RGRiIgIKDOcxhERET0hIHYARARERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERUfNSWlqKkpISlJSUoKioCIWFhcjJyUFWVhaysrKQkZGBtLQ0pKWlITk5GUlJSUhKSkJCQgLi4uIQExODqKgoREVFQSqVIiIiAhEREQgLC0NISAiCgoLg7+8Pf39/+Pr6wsvLC15eXvDw8ICrqytcXV3h5OQEe3t72NrawsbGBjY2NjA0NISRkZHi9w4dOsDe3h729vbo06cPXF1d4ebmpuhv5MiRiv3MmDEDYWFhWLZsGaKiohATE4P4+HgkJSUhOTkZx48fR05ODgoLCyGTyVBaWgpDQ0NYW1ujffv2cHJywoABA+Dp6Ylx48ZhypQpeOONNxAeHo6VK1figw8+QGxsLLZv347ExEQcPHgQqampSE1NRXp6OjIzM5GZmYlTp06hoKAAly5dgkwmg0wmw8OHD1FeXq74/cqVKygoKEBBQQGys7MV901LS0NqaioOHz6MxMREJCYmYseOHYiNjUVsbCyio6MRGRmJyMhILFu2DOHh4XjzzTcRHByM4OBgTJs2DX5+fvDz84OPjw88PT3h6ekJNzc3uLi4oG/fvrCzs4OdnR1eeOEFWFtbw9raGiYmJmKnJBERERERERERERERERERERERERERERERERERERERUb3JZDK0bt1a7DAUJBIJHjx4UGWbTCbTWv9t2rSBTCaDXC5X+nfv3j2t7ad169a4du1ane0a+vE+7erVq0rbLl++jLZt2zbI/oRorOejwpQpU2BmZoaMjAzcv39fsS9906ZNGwANlytERERERERERERERERERERERERERERERESku3bs2IGhQ4fihRdeEDuUJuHG9WKlbSXFV2FpI/xzd5ZWNigpVv78VknxVVhY2yh+t7Cyxq2S2j8TZGFtg+2/5GLfmSKlf7v/KFS0M7WwxLQIKT5JPY5P0k7Ae+I0ZHz1JaIXzVGrjdDY6yJkX5qQSCR49PBhlW13bt5QahezdD5MWpli9a4vsSf7L8Uxq07IcyC0L20duwrMRWGxd+nhhN1/FMLN0xsfv7VQ2IGphvlaifkq7tjZHMRKwzF6xhv4LOssRk6dLXY4REQKly9fxujRo/Hqq69izZo1YodDpFWcq3Gdq2lfXDc8wXVuJeYr87Wx17l9Br6Gk8d+1Hq/nbo54kJertL2C3m56NS9h9r9ca1LjaVNmzbo1KkTMjMzRY2DYyTnl5r2xXr9BOeXlZivzNfGnl/euPYPfvvhCD5+ayHGO9pW+ZeauBPf7dtd7338knYYz73QCZ26qT+vrNBc55ehoaEoLi7G/v37xQ5FEP5dc06kaV+sMU9wTlSJ+cp81fVzbuqcS3Pu74FVO/Zh1x8F2PV7PpbHfYbHjx6ih+vLasfZHOdEFhYWCAoKwocffoiysjKxwxGEf9ecE2naF2vME5wTVWK+Ml/16f22Qs//HPv6IN6eEQD/+YvhMthTo301xznRggULcOXKFXz++edih6IW/m1zXqRpX6wzT3BeVIn5ynzV9XlRB7uuePzoodJ2iUQCSCSK37/dk4DvPt+t9JocgCo/C9Uc50UAYGZmhi+++AIzZsxAYGAgYmJixA5JNFOnTsWxY8eQk5ODfv364dSpU2KHJCqOoZx/atoX6/kTnH9WYr4yX3V9/vm02s638fMBdTM0NMTGjRuxbt06zJ8/H2FhYSgvLxc7rEbDMYDzJ037Yj16gvOnSsxX5qsuzp++3bsDbp7D1b8fz+Fpnbu7OzIzM7F582Z8/vnncHBwQFRUFB48eCB2aHqHYxDnb5r2xXr4BOdvlZivzFddnL+pUtv70q5c+At2Ts5K2+2deuHKxb/U3hfnbqSpNm3aICgoCMnJyZDJZDhw4ABcXFywefNmuLq6on379ggKCkJSUhJu374tdrhUi/Lycly8eBHdu3cXOxStk0gkSuswmaz2uqWONm3aQCaTQS6XK/27d++e1vZT4epV5fp2+fJltG3bVnAfbdq0weXLl2vsp02bNorfW7dujWvXrtXZl5DH/8wzzyA6OhoFBQUoLCzEnDlzsGfPHkycOFGtNkJjr4uQfWlCaL5NmTIFZmZmyMjIwP379xXHrDohz4HQvrR17CowF7VzPK9cuYKUlBTMmDEDEomkyr9NmzZh69atgvsSws3NDefOndNqn2IzMDBAt27dcP78ebFDabYqjj3nEerjPEI/x27OIypxHiFuLgoRGxuLMWPG1Nmu+hwhPz8fffv2VWrn4uKC/Px8rcaoC3r0eHL+rSHnExcuXICDgwMMDAwabB9iYK1UxvGJtfJprJW6Xyu1ramN8wDg6OiIixcvNuh7jHl+WnOslfo5PrFWVmKt1K9a6ejoiIfV3nMDQHFOW4imVisb8vw066PmWB/1c0xifazE+qhf9VEoZ2dnZGdnK23Pzs5Gr169RIio4TT067d8bVJzrJH6OS6xRlZijdSfGim07jWn1yQdHR0brDZy/ag51kb9HI9YGyuxNupPbdRUYmIivLy8IJVK4ePjI3Y4Wsf1o+ZYI5VxXGKNfBprpP7USKHrR228TqkvuH7UDGujMo5HrI1PY23Un9pY3YEDB2BnZwdnZ+XvFdGknb5qrM+Pnj9/HgYGBnBwcGjQ/YiBtVIZxyfWyqexVoqbi97e3khNTRXc/mm1nUNtTmvJ7t27w8DAoEFr5fnz5+Hg4IAWLVo02D7EwjqpjGMT6+TTWCd1f01Z23cJ1FYrm9P7dgDgxRdfbNBayfOvmmOt1M/xibWyEmul7tfKpwldKzanOsnPR2qG9VEZxyTWx6exPupufXR2dsbZs2e10ldTxu+3JSLSPl43idec07QvXsPrCV5zrhLzlfmqi9ecq37N4E7dHHEhL1ep3YW8XHTqrnz9ueocevVB0YXCOttVx+vO6Zfy8nJkZGQgLCwMzz//PLy8vPDTTz9h3rx5OHv2LI4fP465c+fq3GdeiYiIdFnT+qZbIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJCaWkpSkpKUFRUhMLCQhQWFiInJwdZWVnIyspCRkYG0tLSkJycjKSkJCQlJSEhIQFxcXGIi4tDTEwMoqKiIJVKERERgYiICISFhSEkJAQhISEICgqCv78//P394evrCy8vL3h4eMDV1RWurq5wcnKCvb097O3tYWtrCxsbG7Rq1QoSiQQSiQSmpqawsbGBjY0NOnToAHt7e/Ts2VNx/4EDB8LLywteXl4YNWqUYl8hISGIiIhAVFSUItakpCSkpaUhLS0NWVlZKCwsxOXLl1FaWgoAsLa2hp2dHezs7ODi4gJPT094enrCz88PwcHBCA8PR2RkJCIjI7F161YkJiYiMTERBw8eRGpqKtLT05GZmYnMzEycOnUKBQUFKCgowKVLlyCTySCTySCXyyGXy1FaWqrYVlRUpGibk5ODzMxMZGRkIDU1FampqUhOTlbsKyEhAbGxsYiJiVHEIpVKER4ejvDwcISFhSE4OBjBwcEICgqCn58ffH19FY/Fw8MDLi4ucHFxgZOTE+zs7GBrawtra2tYW1vDyMhI5IwkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJq+jp16vT/2Lv/+Jrr///j97MNG6YU8qO3dyExURiy+c3Y/ArTRqn8Cnknv6m9KSr9wPIrld74VEvlzCjJholhW0JFiUSiSKIYtmHb+f7ha1mbOefsnL3OObtdL5cuHef1Oq/X47z2OM/H4/k657yO9u/fb3QYuapWraqjR4/muW/Lli0Frmsyma67nest69KlizZv3pzv/q1bt6pp06bWB3oD7dq1U2JiYp77du/erYCAgDz32fJ8i2rdunX57lu1apU6d+7slP1Zw1l/j+v9/VNSUjR9+nTdcccd8vHxkaTcaz24k3379km68voFAAAAAAAAAAAAAAAAAAAAAABAyXH69GnFx8frkUceMToUj/HN1s357tu+IV73Bre1ehuNglpr+/q1BW6nUVDr3H83aB6kPSl5vz/28/7vNbrb3/u6r1U77d2ekm9b+3Zu18Q+XXL/HV6vuk6f+E2SVKHiLQru2lP/fTtGu5OTbFrH2thvxJp9XU9h3xW8uVIVnfrtWJ77vt/xRb71fvh6pyJHTVSVGv+St/eV745dyszMt541fwNrt+WoY3cVuWj98Szt66vQ/o9pd7J938ckX/9Gvho7djpbeL3qRoegn/buUY+Bw+RXrrzRoQBAroyMDPXq1Uv+/v5avny5vL29jQ4JcCh6Nea5zBuucKdcZJ5LvrpTvjpTz0HDlbDsHV1ISytw+Rcb1mrawAibt9siJExJn6zId3/SJyt0f+duNm+PuS6KU2BgoHbu3GloDIyR9JfU6yvcKRfpL8lXd8pXZ9q0KlYdwvspbv/xAv/z9vEpMAdtEb/sHYU9PKhI2yip/WXNmjXVs2dPLViwwOhQrMLrmp6IGnOFO+UiPRH56k756ky2nnOz9lxaeL3qOv7zT/nWS4z9QF36PWpznCW1J3rqqad09OhRrVmzxuhQrMLrmp6IGnOFO+UiPRH56k75aqTCPm97o/M/ly9e1KLnJuvD+bP07JKP7OqFriqJPdEdd9yhPn36KDo62uhQbMJrm76IOnOFO+UifRH56k75aqR/9kWB7b4JVCoAACAASURBVDrp662b8q23O3mL6jS8L/ffK/YdK/D9OEl5blurJPZFV3l7e+uNN97QK6+8orFjx2rUqFHKzs42OixDNGnSRDt37tS//vUvtWzZUitW5D9vWVIwhtJ/Us+vcKdcpP8kX90pX41U0Hk5a8638f0A640ePVofffSR3n77bUVERLjl73fbgzGA/ol6dIU75SL9E/nqTvlqpHUfvqtvU7ep58BhNj+Wc3jO4eXlpUcffVQHDx7UU089penTp6thw4aKjY01OjS3whhE/0Y9vMKdcpH+jXx1p3w1kr2fS7u5UhX9tPfbfPcf2rtHN1eqYnMc9G5whLJly6pHjx5atGiRfv31V3333XcaO3asfvrpJ/Xr109VqlRRSEiI5s2bp6NHjxodLv7By8tLTZo00cqVK40OxeGqVq2aL+e2bCm4Rymsj7jesi5dumjz5s357t+6dauaNm1qfaBWWrduXb77Vq1apc6dO1u9jU6dOhX4t161apU6deqU++927dopMTExzzq7d+9WQEBA7r+tff4mk0m//vqrJKlSpUqKjIzUZ599pvXr19u0jrWx34g1+yrssddjbb6lpKRo+vTpuuOOO+Tjc6VHLOg9Gmv+BtZuy1HH7ipy0THH891339XgwYNlsVgK/M/Hx+e6Y1ZhTCaT9u/fn+/+PXv26LbbbrN5e67s5MmT2rp1q5o3b250KCVWYGCgvLy86CPoI0rM2E0f8Tf6CGNz8UbefPNNbdy4UePGjcsTnzU9QtWqVfXVV1/lW2/Xrl2qWrWqw2J0FXFxcfLy8lJgYKDT9hEYGKht27bpjz/+cNo+jECtzI/xiVp5LWqla9fKwvLtRo87cOBAvvvXrVunFi1aFDUslxMXF6emTZvKy8vLafvg/PQV1MqSMz5RK/9GrXSvWtm9e3clJCTkW2/Dhg1q1qxZnseVlFrpzPPT1McrqI8lZ0yiPv6N+uhe9dFavXv3VkxMTL77Y2JiFB4eXtSwXIqz379t0qSJvLy8tGrVKqds30jUyPwYl6iR16JGuk+NtLbulaT3JFeuXOm02sj88QpqY8kZj6iNf6M2uk9ttFVmZqZGjBihZ599VuvXr9eIESMcFpcrYf5oP2pkfoxL1MhrUSPdp0ZaO3+09n1KT8D80T7UxvwYj6iN16I2uk9t/KeFCxfqySefvOE2rF3PXRXX90cDAwNlsVj08ccfO3U/RqBW5sf4RK28FrXS2FwcN26cFi5cqDNnzhS4fOXKlerYsWOe+6w5h1rS5pIWi8Wp341s1qyZUlNT9dtvvzltH0ahTubH2ESdvBZ10rXnlAVdS0CyrlaWpM/tSNKKFSucOq/k/OsV1MqSMz5RK/9GrXTtWmnv9yNLUp3k+5H2oT7mx5hEfbwW9dF166MnXovWGbi+LQA4Hr+bxG/O8RteV7hTLvKbc+SrO+WrkQr6zeAWIWFK+mRFvnWTPlmh+zt3y/13eL3qOvbTwXzrHflhn26+tbLNsfC7c64vJydH27Zt0+jRo3X77berdevWSkxM1PDhw7V//37t3btX06ZN01133WV0qAAAuCUfowMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwJxkZGcrMzMxzu6D77F3X3uVpaWnKzs62+3n5+vrKz8/vurevt7xixYqFLrdlWwUtL1++vEqVKmX38wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoDj06tVLL774opKSktS2bVujw1FISIiioqI0Z84c3XzzzUpOTtZbb71V4Lo1atRQamqqAgMDtWnTJg0dOlRHjx4tdNm0adPUs2dPZWdnq3379ipdurSSkpI0YsQIvf766w57HlOmTFHv3r1VvXp1tWzZUocOHdLgwYM1atQou59vUS1atEg+Pj7q0qWLcnJytHr1as2bN09JSUlO2Z81nPX3uN7fPygoSJMmTVJUVJSqV6+uo0eP6oUXXnDgMyoeixcvVp06dXTPPfcYHQoAAAAAAAAAAAAAAAAAAAAAAACK0YcffqhSpUqpd+/eRofiMdYvj5G3j4/ua9VOlpwc7fh8vda8t1gvvL/S6m1EPDlezz4aLr/y/mrWobNMJpN2fL5eq99ZpBdi/t5O3ydGa+aTQ3RLlaq6u3FTnTh6RAujxqrrgMG560SOGq9XnhionJxs3dMiWD6lSmnvjlQtem6yHp/6Up79vjFlvAY+/Zyq1rxTF86d1WfvLlajoNY2rWNt7NawJp6C3HJbVf3wzS7VuaeRvtueojemjNeiTTslSfcGt9Gy117WoGemq1yFCtr/1Q6t++i9fNu4u3GgYma/oD7Dn9ItVarq1G/HFPvGnHzrWfM3sHZbjjx2Erlo6/Es41dWFzPSrT42/0S+kq+uMHZG9e8pk8mkGR98YvVj3M3lS5dUxq+s0WEAQC6LxaIhQ4bo4MGD2r59u2666SajQwIcjl6NeS7zBvfMRea5tm2LfP2bK42dRZ3nVqpWQw+Ne1rTB0Wo78ixatCspUr7+ur0ieNKXvuJEj58V1P+t8zm7XYI76+ED97VyrcXqEu/xyRJ6z56Vz/v36uRL0bbvD3muihOgYGBWrhwoaExMEbSX1Kv3TMX6S9t2xb5+jdXGjuL2l9+HvehRs+6/nVNO/V9SIkrPlBAs/vt2v4vB3/Qb0d+UouQMLsef1VJ7i+ffPJJdejQQdu3b1eLFi2MDqdQvK7piagx7pmL9ES2bYt8/ZsrjZ3Ffc7NlnNpb0wZryeen6Xb/vVv/XH8V336f4v0r7vu1r/vrm9znCW1J7rrrrsUFhamefPm6YEHHjA6nBvidU1PRI1xz1ykJ7JtW+Tr31xp7DTq87Y3Ov/z66Ef9drYEbozoKFmr1yXp58Jr1ddcfuP27S/ktoTTZw4Uc2aNdPmzZvVrl07o8OxCq9t+iLqjHvmIn2RbdsiX//mSmNncfdFXQcM1rOPhsvLy0v3tW4vk8mk3clb9M4r0zTutTedtt+S2hdda+LEiapVq5YeffRRHThwQGazuUR+96FSpUpav369pkyZooiICE2aNEkzZsyQt7e30aEVK8ZQ+k/quXvmIv2nbdsiX//mSmNncfef1p5v4/sBtomIiFDlypXVp08fdejQQatXr1blypWNDsupGAPon6hH7pmL9E+2bYt8/ZsrjZ2O7p8uX7yov06d1IFvvlLiimU688cfeu7/lqusfwWHbL9IsXl4D2WrcuXKadq0aRo6dKiioqIUGRmpN998U6+99pruu+8+o8NzeYxB9G/UQ/fMRfo327ZFvv7NlcZOV/1cWtdHBmv+06M1ZMoLqt/kynfu9n21XUtemKKujwwu8DGFoXeDMzRo0EANGjTQ5MmT9ccffyg+Pl5r1qzRc889pzFjxqhWrVrq3r27evToobZt26pUqVJGh1zivfjiiwoJCVF0dLTGjx9vdDgOExISoqioKM2ZM0c333yzkpOT9dZbbxW4bo0aNZSamqrAwEBt2rRJQ4cO1dGjRwtdNm3aNPXs2VPZ2dlq3769SpcuraSkJI0YMUKvv37977Dba9GiRfLx8VGXLl2Uk5Oj1atXa968eUpKSrJ6G88995zat2+vChUqqGfPK7Vu9erVeu2117R58+bc9aZMmaLevXurevXqatmypQ4dOqTBgwdr1KhRuevY8vyHDh2q6Oho1alTR2fOnNG8efPUqVMnm9axNnZrWBNPQQrLE2vzLSgoSJMmTVJUVJSqV6+uo0eP6oUXXsi3njV/A2u35chjJ5GLjjqeS5cu1fvvv3/d5UOHDtXixYvVpk0bq7d51UMPPaQ5c+aoSZMmslgs2rZtm0aNGuVRY/y5c+fUr18/3XLLLRoyZIjR4ZRYlStX1pgxYzR27FjVr1/f5a8LYgv6iPwYu62PpyD0EVeQi449nldlZmbqxIkT+uKLL7R48WKdOHFCGzZsyPf5cmt6hFGjRumxxx7T/Pnz1apVK0nKXe/aY+cJvvjiC40dO1bjx49XpUqVnLafoUOHasGCBerfv79WrVolf39/p+2rOFEr82N8sj6eglArryAXnVMrHal///6aO3eumjRpooyMDK1fv14TJ05UbGys0aE51KxZs/TJJ59o48aNTt8X56eplSVtfKJWUitdJRdtMWrUKLVr105eXl4KDQ2VyWTShg0bNG7cOH300Ud51i0JtbI4zk9TH6mPJW1Moj5SH10lF51h8ODBeuONN/Tyyy/riSeekCS9+eab2r17txYvXmxwdI5THPWxUqVKGjt2rMaNG6cGDRqoefPmTtmPEaiR+TEuWR9PQaiRV5CLxV8jra17JeU9yenTp2vjxo3atm2b0/bB/JHaWNLGI2ojtdFVctEZ9u3bp8jISDVp0kS7du1SuXLlcpeZTCZZLBYDo3Mc5o9FQ43Mj3HJ+ngKQo28glx07fmjte9TujPmj/ajNubHeGR9PAWhNl5BLho7f9y7d69+/PFH9e7d2yHruavi/P7o7bffrieeeEJPPvmk6tatqyZNmjh1f8WJWpkf45P18RSEWnkFueiY41mzZk299NJL6tSpk6ZOnaq2bdvKz89Pv/zyi5YvX64333xT8fHxuetbew61pMwld+3apVGjRunJJ59UjRo1nLafxx57TPPmzVO/fv20evVqj/pNJOpkfoxN1sdTEOrkFeSicdcSsKVWloTP7UjS888/r/Xr12vr1q1O3Q/nX6mVJW18olZSK10lF21h7VyxpNRJvh9pP+pjfoxJ1sdTEOrjFeSic+qjxWLRqVOn9MUXX2j8+PEaMWKE3dsqCbi+LQA4B7+bxG/O8Rte7pmL/OacbdsiX//mSmOnEb8Z3CG8vxI+eFcr316gLv0ekySt++hd/bx/r0a+GJ1ne3MmjNSgZ6arVkBDyWLRvl1favGLU9RzsO1zN353znXt3btXsbGxiomJ0U8//aSAgAANGzZM/fr1U7169YwODwAAj2GyeMqVGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEfIyMhQZmZm7v+vvc+Ry21ZNz09XRcvXizS8/L19ZWfn1/u/6+9z5bljt5WxYoVi/S8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAFWFhYfrll1+0fft2lStXztBYTp06pdGjR2vDhg1KT09Xhw4dtHDhQtWsWVOSZLFYcteNjY3V5MmTdezYMdWsWVPR0dHq2bPnDZf9+OOPeuaZZ5SYmKisrCwFBATomWeeUe/evXO3bTKZ8sR17X6tlZqaqokTJ2rXrl2qXLmyRo4cqaefftqu53ttPLbed/X+w4cPa9SoUUpKSlJOTo7atGmj6Oho1a9f3+rnXZQ4rhebrX+Pfz6vgu6/3t//5MmTmjBhgtatW6czZ86obt26mjp1qiIjI68ba0HHwUjJyclq27atFi9erIEDBxodDgAAAAAAAAAAAAAAAAAAAAAAAIpRixYtVK9ePb377rtGh+JSIiIidOxcpsbPXWTT48LrVdebG7dryQtTtHdHqnJyctSg2f16bPJzur32XXnWu1bc/uP5tnXkwD7FzHpR3+/cLkkKCGyhRyZO0b/r1s+z3g/f7NJ7M5/Xob17dNMttyq0/0D1HvZknnV+O3JY70e/pD2pW5WdlaV/1amrPsNGqUVIWO4636Zu09plS7Vv53ZlXDivW26rphadQhU5aoL8ypW3eh1bYi+MNfu69jheewxTEj5VzOwZ+vP331SpWg0NfHqamnXoLElK++tPLZ0xVbtTtuhiRoYa3h+sx599WcPbB+bZztnTp/TuzOf1zbbNupB2VtXvqK0HR45R9NgR+fZ3o7+BLdtyxLG7emzIRduPZ3i96gUegxshX8lXVxk7n4nsIZOXSS99uNrqx1zrn8e4INce94LWL+jvYu161rD3dXpVSvxqRY8d4VLf9QXg3l544QU9//zzWrdunTp06GB0OMB1Mc81vldj3sC8gXku+Uq+Fv8896pfDx7QirfmaU/qVqWfS1PFyrfp3uA26jX0P6pa844861o7hz1z6qSWvvSsvtqySZLUtG0HDYp6XjffWtnm+Io61726jeXLlysiIqJI24HnS0xMVEhIiI4fP65q1arZvR36S+PHSOo19Zr+knwlX4u3v7z2+E5+famadwrNs/zrrZv04uMP5/776vG35T2St6c/o4qVq+jBkWNtju+fsZbk/rJ169by9/fX2rVrnb4vs9msyMhIm483r2vbYi8MNYYaQ09EvpKv7nHOzZpzaV9t+Vyr/+8tHfh6l7y8vVUroKG6P/Z4vr7LWo7oiaLHDFcNf1+ZzeYibae4ff755+rYsaO2bNmi1q1bF8s+TSaTxs95S0FhPa1+DK9r22IvDDWGGkNPRL6Sr67/edurbnT+56H7autiZoZN2yyMI3oid/3cbbt27SRJmzdvLrZ98v6Z8a9t6gx1hr6IfCVf3aMvOvnrUb3z6nTtSdmq7Ows1b7nXvUfPUkNmrW0aT+2vPZK+vtn1/rmm2/Us2dP3XTTTfr00091xx13GB2SYd5//30NGzZMbdu21QcffKCKFSsaHZJN6D+NH0Op59Rz+k/ylXx1/f7TlvNtfD/Adnv37lW3bt1UpkwZrVmzRnfdddeNH2Qg+ifjxwDqEfWI/ol8JV+N759KlS4t/5sr6s6Ahrq/cze17t5bpUqXvuHjpBufjzP6HJ479E9F8eWXX2rcuHFKTU3Vww8/rJkzZ6pq1apGh+VU9G/Gj0HUQ+oh/Rv5Sr4a378VxJ7PpUnSlk9Xam3MEh3/+ZAkqfodtdX1kSFq06OPXXGWhPNfcA1ZWVn64osvtGbNGq1evVr79u3TLbfcoo4dO6p79+7q0aOH273X60nmzZuncePG6fHHH9esWbPk7+9vdEhFdurUKY0ePVobNmxQenq6OnTooIULF6pmzZqSlOfztLGxsZo8ebKOHTummjVrKjo6Wj179rzhsh9//FHPPPOMEhMTlZWVpYCAAD3zzDPq3bt37rZNJlOeuOz5HK/JZNLhw4c1atQoJSUlKScnR23atFF0dLTq16+fZ70b7evbb7/VpEmTtHXrVklXvss9c+ZMNWzYMM96qampmjhxonbt2qXKlStr5MiRevrpp/OsY83z37hxo15//XVt3bpV586dU40aNdSrVy9Nnz49N8+sWceW2Atjzb6uPY7W5om1+Xby5ElNmDBB69at05kzZ1S3bl1NnTpVkZGR+fZ3o7+BLdtyxLG7emzIxaIfz2uPz6pVq9SrV688yxMSEhQW9nevfPX4/fO4Xrvsqi1btmjRokVKSkrSyZMnValSJdWvX1+jR4/OzVd39+233+qRRx7RyZMnFR8fr3vvvdfokEq0zMxMRUREaOPGjVqwYIEGDRpUYK66G/oIxu6C0EfQR7hKLv7zGJUpU0a33nqrGjdurPDwcD300EMqU6ZMnnVs6RGWLVum+fPn68CBA5KkunXr6qmnntLDDz8sT2CxWLR48WKNHj1anTt31vLly/MdL0f75ptvFBYWpqpVqyomJkb33HOPU/dXHKiVjE8FoVZSK10lF62Zk/zzuFkz5962bZsWLVqkTZs26ffff9dNN92k4OBgTZ06VYGBgVbH58rS0tI0YcIELVmyRHPnztWoUaOKZb+cn6ZWlpTxiVpJrXSVXLSnVh4+fFjjx4/PfZ6BgYF64YUX1LZt29x1SkKtLM7z09RH6mNJGZOoj9RHV8lFZ80lJenEiRMaM2aM4uPjJUldu3bV3Llzddttt1kdnysrzvqYmZmpBx98UJ9//rlef/11DRw4kPcmqZEeOy5RI6mRrpKLttZIa+ueJ78neebMGY0ePVrLli3TG2+8oWHDhjl1f8wfqY0lZTyiNlIbXSUXnTV/LFeunNLT063epjti/lh01EjGpYJQI6mRrpKLzpo/WvM+pbti/lh01EbGo4JQG6mNrpKL9swfJWnkyJGqVq2apk6dWuhjrV3PHRnx/dH09HT16dNHycnJevPNNzVgwACn77M4UCsZnwpCraRWukouXvX9999rxowZSkxM1NmzZ1WtWjWFhIRo8uTJql27du56tpxD9eS5pMViUUxMjEaOHKk2bdooLi5Ofn5+Tt3nd999p9DQUFWsWFExMTG67777nLq/4kKdZGwqCHWSOukquWjPtQRsqZWe/LkdSfrrr780ZsyYYjv3KnH+lVpZcsYnaiW10lVy0Vnfj5Q8v07y/ciioT4yJhWE+kh9dJVcLKg+li9fXgEBARo0aJCGDx+ebx1rvx9p7XruiuvbAkDhzGazIiMjbf49G343ybbYC8NvePEbXvzmHPlKvhr/m3PW/mbwmVMntfSlZ/XVlk2SpKZtO2hQ1PO6+dbKuet8v+MLrV8eo707UnX29GlVqHiLbq99l7o9OjQ3522NtSi/Oxc9Zrhq+PvKbDbbvQ38be/evYqNjdX777+vQ4cO6c4771SPHj302GOPqUmTJkaHBwCAJ4o1WTzpjDUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChURkaGMjMz89wu6D5717V3eVpamrKzs+1+Xr6+vvLz87vubWcvv966/v7+8vHxsft5AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA50tPT9fFixd1+fJlnT9/XpL0119/SZLOnz+vy5cv6+LFi0pPT1dOTo7Onj0r6e/rJVy9hsKff/6pmJgYNWnSRJ9//rnKlClj2HOCc5hMJlksFqPDQBHt379fbdq0UVBQkFatWiWTyWR0SAAAAAAAAAAAAAAAAAAAAAAAACgmBw4c0N13360NGzaoU6dORofjUiIiInTsXKbGz11k0+PC61VX3P7jTooKsB65aJ9+996pd7d/rzK+fkaHUqKQr7DWpcxMPXZ/gD785ie7t5ESv1rRY0fwPWkADvHxxx8rPDxcr7/+up544gmjwwEKxTwX7o5ctA/zXGOQr7CFI+a60pW8W758uSIiIhwUGTzV2bNnVbFiRa1evVrdu3e3ezv0l3B35KJ96C+NQb7CFvSX0vr169WlSxdt3bpVrVq1cuq+zGazIiMjbX6N8rqGqyAX7UNPZAzyFbZwVE8UPWa4avj7ymw2Oyiy4tOxY0ddunRJW7duLZb9mUwmjZ/zloLCelr9GF7XcBXkon3oiYxBvsIWjuqJ3PVzt9u3b1fLli31ySefqEePHsWyT94/g7sjF+1DX2QM8hW24P2z/I4fP66ePXvqyJEjWrlypVq3bm10SIbZvn27wsPDVbZsWS1fvlyNGzc2OiSr0X/C3ZGL9qH/NAb5CluUtP7zt99+0wMPPKCDBw/KbDa79LWL6J/g7shF+9A/GYN8ha0c0UO5S/9UFBaLRcuWLVNUVJTOnDmjp59+WqNHj1a5cuWMDs0p6N/g7shF+9C/GYN8hS1K2vkvuJ79+/drzZo1Wrt2be73JYKCgtStWzeFhoaqYcOGMplMBkdZsqxcuVLDhw9XmTJlNHPmTEVGRsrb29vosKAr3/Vxt8//wjORizDSqVOnNHPmTM2dO1eBgYH66KOPVLNmTaPDgqTs7Gw988wzeu211xQUFKTZs2erefPmRoeF/4+xG66CXIQr2L59uyZMmKAvvvhCEyZM0Isvvlhs896ff/5Z/fr101dffaWxY8dq0qRJuvXWW4tl3ygc4xNcBbkII2VnZ+ujjz7S5MmTdenSJb399tvq1atXscbA+WnXxfgEV0EuwkhGnZ+mProuxiS4CnIRRjKqPmZnZ+vpp5/WnDlz1Lp1a82ePVtNmzZ1+n5hHcYluApyEUbIysrSsmXL9PTTT8tisWjp0qXq2rVrseyb+aPrYjyCqyAXYSTmjygI4xJcBbkIIzB/REEYj+AqyEUYyejvj2ZlZWnChAlasGCB2rdvr9mzZ+u+++4rtv2jcIxPcBXkIoz09ddfa8KECdq8ebNGjx6tmTNnysfHp1j2/euvv6p///764osv9J///EdRUVGqUqVKsewbN8bYBFdBLsJoly9fVkxMjKKiomQymbR06VKFhYUV2/45/+q6GJ/gKshFGInvR+KfGJPgKshFGMno9ycBwF2YzWZFRkba/BtI/G4SXAW5aB9+c84Y5Cts5YjfnYseM1w1/H1lNpsdGFnJYbFY9OWXX2rlypUym836+eefdddddykiIkIRERFq1KiR0SECAODpYovnk7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAGRkZyszMtOq2s5dfezs9PV0XL14s0nPz9fWVn59f7v+vve96yytWrGj1uvYsv7oOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwPxaLRWfOnJEknTt3TllZWbnXVMjOzlZaWpok6ezZs8rJycm9fsLly5d1/vx5SdJff/0lSTp//rwuX76sixcvKj09XTk5OTp79qwkKS0tTdnZ2bnXYcjKytK5c+fybNtWFStWlCSVL19epUqVUpkyZVS2bFl5eXmpUaNG2r17t0JDQxUXF6dbbrmlaAcKgENt2bJFffr0Ub169fTBBx/IZDIZHRIAAAAAAAAAAAAAAAAAAAAAAACK0bvvvqsaNWqoffv2RocCAC7h9lp1lPzZJ2rdo49KlS5tdDgArpGddVkpCZ+q+h21jA4FACRJu3fv1iOPPKKBAwfqiSeeMDocAAAKxDwXcG3MdWGEm266SbVr19bOnTvVvXt3o8MB4GboLwHXRn95RefOndWmTRu98MILWrdundHhAPBA9ESAa6MnuuKVV15RixYtFB8fr7CwMKPDAeCB6IkA10ZPJLVo0ULh4eGaOHGiwsLC5OPjY3RIADwUVRbp3AAAIABJREFUfRHg2uiLCla9enVt3rxZAwYMUEhIiBYvXqwBAwYYHZYhWrRooZ07d6p///5q2bKlXnnlFY0ePZrfcwTgsug/AddWEvvPatWqaevWrXr88ccVGhqqGTNmaPLkyUaHBQC56J8A11cSeyh7mUwmDRgwQH369NHs2bP18ssva8GCBYqKitKwYcNUpkwZo0MEgCKjfwNcG70bXEG9evVUr149TZgwQWfOnNH69eu1Zs0azZ49W5MnT1a1atUUEhKizp07KyQkRFWqVDE6ZI/Xp08ftWnTRpMnT9ajjz6qadOmafLkyXrooYfk5+dndHgAgBLqyJEjmj9/vhYtWiQ/Pz/Nnz9fw4YNk5eXl9Gh4f/z9vbWzJkz1b9/f/3nP/9RixYtFBISokmTJqljx458hg8AYKicnBwlJiZq5syZ2rhxo4KDg7Vjxw7dd999xRrHHXfcoZSUFC1atEhTp07VG2+8oREjRmjUqFGqWbNmscYCAMBV6enpWrZsmWbOnKnDhw9r4MCBevXVV3XrrbcWeyycnwYAuCKjz09THwEArsjo+ujt7a1Zs2apX79+GjlypAIDAxUaGqpJkyapXbt2vDcJACh2Fy5cUExMjGbNmqWjR49qyJAhevnll1WxYsVii4H5IwDAFTF/BAAgL+aPAAAUzOj541U+Pj6aO3du7nckmzRpoq5du2rSpElq06ZNscYCAMBVFotFSUlJmjlzphISEhQYGKjU1FQ1b968WOO4/fbbtWXLFi1dulT//e9/9b///U9DhgzR6NGjVbt27WKNBQCAfzp37pzee+89zZo1S8ePH9fjjz+uGTNm6Oabby7WODj/CgBwRUaff6U+AgBckdH1EQAAwB3wm3OA6+N354xz6dIlbd68WatWrdLq1at1/Phx1a5dW/369VNERIQaN25sdIgAAJQoJovFYjE6CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArJGRkaHMzMw8twu6z5bljtjW2bNnlZOTY/fz8vX1lZ+f33VvO3v59db19/eXj4+P3c8LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4psKupWDLMnsfn56erosXL9ocd2HXUnDUssLWKVu2rMqUKXPDOL/77jt169ZNOTk5euedd9SxY0ebnytcj8lkyr1tsVgMjAT2yMrK0osvvqgZM2aoZ8+eev/993Nf6wAAAAAAAAAAAAAAAAAAAAAAACgZLBaLatWqpcjISL3yyitGh+NyIiIidOxcpsbPXWT1Y8LrVc+9Hbf/uDPCAqxCLtpvd8oWLZ0xVb/9fFgT5r2t5p1CjQ7J45GvsMaJoz9rVFhrVf3XvzX4vy+ocev2dm8rJX61oseO4DvSAIrk9OnTat68uWrUqKHExESVLl3a6JCAG2KeC3dGLtqPeW7xI19hLUfOdaUrubd8+XJFREQ4KEJ4soceekhpaWlas2aN3dugv4Q7IxftR39Z/MhXWIv+Mq+NGzeqU6dOSkpKUps2bZy2H7PZrMjISJten7yu4SrIRfvRExU/8hXWcnRPFD1muGr4+8psNjsowuL1wAMP6Oeff9bXX38tLy8vp+7LZDJp/Jy3FBTW06r1eV3DVZCL9qMnKn7kK6zl6J7InT93+9NPPykgIEDz58/XsGHDnL4/3j+DOyMX7UdfVPzIV1iL989uzGKxaPr06Xr++ec1adIkvfzyy3l+n7IksVgsmj9/viZOnKi2bdvqvffeU7Vq1YwOq1D0n3Bn5KL96D+LH/kKa5X0/tNisWjmzJmKiorSkCFDtHDhQpUqVcrosPKgf4I7IxftR/9U/MhX2MKRPZS79U+OcOrUKc2ePVvz589XpUqVNGXKFA0ePFg+Pj5Gh+YQ9G9wZ+Si/ejfih/5CmuV9PNfcA979+7VmjVrlJiYqK1bt+rixYuqVauWunfvrh49eqhVq1by9fU1OkyPdvDgQb3yyiuKiYmRn5+fHnroIQ0aNEjNmjUzOrQS59rPf7jjZ4DhOchFFKfMzEytXr1aS5YsUWJioqpVq6bx48dr2LBhKleunNHh4QYSExP10ksvadOmTapVq5YGDRqkRx99VDVr1jQ6tBKHsRuuglyEEY4cOaJ3331X77zzjg4fPqyOHTsqKipKHTp0MDo0nT9/XosWLVJ0dLR+//13de7cWUOGDFH37t0531HMGJ/gKshFFLcvv/xSS5cu1YcffqiLFy/q0Ucf1eTJk1W7dm2jQ5PE+WlXwvgEV0Euoji56vlp6qPrYEyCqyAXUZxctT5KUkJCgmbMmKFt27apbt26GjJkiB555BGXv8aIJ2JcgqsgF1Fctm/fnnue9dKlSxo4cKAmT56sO++809C4mD+6DsYjuApyEcWJ+SOswbgEV0Euorgwf8SNMB7BVZCLKE6uPH+UrrwG4uPjNWPGDKWkpOjuu+/WkCFDNGDAAOaRBmB8gqsgF1Gcjh8/rpiYGC1dulQHDhxQq1atFBUVpbCwMKNDU0ZGhhYvXqzZs2frl19+Ufv27TV48GD17t1bZcuWNTq8EoexCa6CXERxs1gsSk5O1tKlS2U2m5WTk6PBgwdr4sSJ+ve//210eJx/dSGMT3AV5CKKk6uef6U+ug7GJLgKchHFyVXrIwC4A7PZrMjISJt+/4jfTYKrIBftx2/OFT/yFbZw5O/ORY8Zrhr+vjKbzQ6M0POkp6dr48aNio2N1aeffqozZ84oICBAPXr0UPfu3RUcHJznXAcAACg2sSYL7zIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRlZGQoMzPTqtvOXn7t7QsXLujSpUtFem6+vr7y8/PL/f+199my3JHburoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOf557YXCrstgyzrWLktLS1N2drbNcf/zegqFXWvBmmW2Pr5ChQry9vYuwpEvfmfPntV//vMfLVu2TN27d9ecOXNUp04do8NyKSaTqdDlFoulmCKBp0tMTNS4ceP0448/atq0aZo4caK8vLyMDgsAAAAAAAAAAAAAAAAAAAAAAADFbNOmTerQoYP27Nmjhg0bGh2Oy4mIiNCxc5kaP3eR0aF4pPB61QtdHrf/eDFF4n44dnAn5CtcUUr8akWPHcH3twHY7fLlywoJCdGRI0f05ZdfqnLlykaHBFiFea5z0fvaj2MHd0K+wpWF16uu5cuXKyIiwuhQ4Aaio6P16quv6uTJk3Zvg/7Suag59uPYwZ2Qr3BlntBftm/fXl5eXtq4caPT9mE2mxUZGcnr1UkYJ+3HsYM7IV/hyqLHDFcNf1+ZzWajQ7HLd999p3vvvVcfffSRHnzwQafuy2QyafyctxQU1tOp+ymJGCftx7GDOyFf4crc/XO3o0eP1kcffaSDBw/K39/fqfvi/TPnYqy0H8cO7oR8hSvzhPfPrmfRokV68skn1bdvX/3vf/9T+fLljQ7JMDt27FD//v117tw5/d///Z+6du1qdEjXRf/pXNQk+3Hs4E7IV7gyd+0/165dq/79+6tRo0aKi4tTlSpVjA4pF/2TczGm2o9jB3dCvsKVuWv/5Ai//vqrZs2apUWLFqlatWp65plnNGTIEHl7exsdWpHQvzkXY7r9OHZwJ+QrXFlJ7t9QPNLT05WSkqLExEQlJiZq165d8vPzU3BwsDp16qROnTqpSZMmMplMRofqkU6ePKmYmBgtWbJE+/btU61atRQeHq6+ffuqWbNmHPciutHxc9fP/BqF42k/jp1jcTztk56errVr1youLk6fffaZ0tPTFRoaqqFDh6pbt24qVaqU0SHCRnv37tWSJUsUExOj06dPq3nz5goPD1d4eLhq1apldHhuj7HGsTie9uPYORbHs2gOHTqkuLg4xcXFaceOHapcubIGDBigIUOGKCAgwOjw8rl8+bI+/fRTLVmyROvWrVPZsmXVvXt39e3bV6GhoSpbtqzRIbo1Xk+OxfG0H8fOsTie9rFYLNq+fXtunTx8+LACAgI0ZMgQPfLIIy77Gz2cn3YuXk+OxfG0H8fOsTie9nGn89PUR+fiNeRYHE/7cewci+NpH3eqj5L0zTffaMmSJVq2bJnOnj2r4OBg9e3bV3369NHtt99udHhuj9eRY3E87cexcyyOp22unmddsWKF4uLi9PPPP6tBgwYaOnSoBgwYoEqVKhkdYh7MH52L149jcTztx7FzLI6nfZg/4lq8jhyL42k/jp1jcTxtw/wR1+L141gcT/tx7ByL42kfd5s/XvX111/nziPT0tLUqlUrhYeHM490EF5PjsXxtB/HzrE4nvb55ZdftHLlSq1YsUIpKSm66aabcr8bee+99xodXj7Z2dlau3atli5dqs8++0ylSpVSWFiYwsPD1a1bN1WoUMHoEN0eryXH4njaj2PnWBxP+2VnZ2vbtm2Ki4vTqlWr9Ouvv6px48YaPHiwHn74YVWsWNHoEPPh/Ktz8XpyLI6n/Th2jsXxtI87nX+lPjoXryHH4njaj2PnWBxP+7hTfQQAV2Y2mxUZGcnvITkJv0NlP44d3An5ClcWPWa4avj7ymw2Gx2Kyzl16pTWrl2r2NhYbdiwQVlZWbr//vvVo0cP9enTR3fddZfRIQIAACnWZOEsOQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUi4yMDGVmZua5XdB9tix3xLbOnj2rnJwcu5+Xr6+v/Pz88twu6D5717V3WxUqVJC3t7fdzwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHiGwq694Khlha2Tnp6uixcv2hx3YddWKOy6DI5advU2iiYxMVHjx4/Xvn37NGjQID3//PO67bbbjA4LKBF27typiRMnKikpSX379tXLL7+s2rVrGx0WAAAAAAAAAAAAAAAAAAAAAAAADDJo0CB9++232rlzp9GhuKSIiAgdO5ep8XMXGR0KAABwoJT41YoeO0IWi8XoUAC4qeHDh+vDDz9USkqK7rnnHqPDAazGPBcAAM8WXq+6li9froiICKNDgRvYsmWL2rZtq6NHj+pf//qXXdugvwQAwLN5Qn95tedJSEhQly5dnLIPs9msyMhIxe0/7pTtAwAAY0WPGa4a/r4ym81Gh2K3hx9+WLt27dK3336rUqVKOW0/JpNJ4+e8paCwnk7bBwAAMIa7f+721KlTqlOnjsaMGaNp06Y5dV+8fwYAgGfzhPfPCrNx40Y99NBDuvXWWxUbG6sGDRoYHZJh0tLSNHLkSH3wwQcaNWqUZs2apdKlSxsdVj70nwAAeDZ37j+//fZb9ezZU15eXlq9erXL9Jb0TwAAeDZ37p8c5ciRI3rppZe0ZMkS3X333Zo2bZr69u0rk8lkdGh2oX8DAMCz0b+huJ04cUJbt27Vp59+qs8++0x//vmnbrvtNrVp00adOnVS9+7dVb16daPD9Eg7duxQXFycVqxYoUOHDqlq1arq0qWLQkNDFRISoltvvdXoEAEAbmbfvn1KSEhQQkKCtmzZosuXL6tNmzYKDw9Xnz59VK1aNaNDhANcunRJGzZs0MqVK/XJJ5/o9OnTqlevnsLCwtSlSxe1adNGfn5+RocJAHBDGRkZSkpKyu0nfvjhB1WqVEkPPPCAwsPD1bFjR5f87HhBjh8/rpUrVyouLk5bt25VqVKl1LZtW4WGhio0NFT16tUzOkQAgJs5ffq01q9fr4SEBK1bt06///676tSpo759+yo8PFyBgYFGh2gTzk8DABzNE85PUx8BAI7mCfUxMzNTCQkJWrFihdasWaO0tDQ1atQo91xrcHCwU6/nCwDwLKdPn9aGDRsUHx+fe571rrvuyj3P2rRpU6NDtArzRwCAozF/BAAgL+aPAAAUzBPmj1dlZGQoISFBcXFxzCMBAA5x6dIlJScn59bKPXv26KabblKPHj0UHh6u0NBQ+fr6Gh2mVU6ePKmPP/5YcXFx2rRpk0wmk4KDg3PnlI0aNXLb66gCAIx14sSJ3Fq5YcMG/fnnn2rQoIHCw8PVt29fNWzY0OgQrcb5VwCAo3nC+VfqIwDA0TyhPgKAqzGbzYqMjFTc/uNGhwIAAJwgesxw1fD3ldlsNjoUl3D48GGtXr1aa9as0ebNm1WqVCl17NhRPXr00AMPPKDbbrvN6BABAEBesSaLxWIxOgoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKKqMjAxlZmZaddvZy6+9feHCBV26dKlIz83X11d+fn65/7/2Pkcut2Xdq+sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABczz+v1VDYdRxsWcfaZWlpacrOzrY57n9ef6GwazNYs8zWx/v7+8vHx6cIRx6uJjs7W0uXLtVzzz2n8+fP69FHH9XIkSMVEBBgdGiAx8nOztZnn32mN954Q+vXr1erVq00e/ZsNW/e3OjQAAAAAAAAAAAAAAAAAAAAAAAAYKALFy6oWrVqmjFjhkaNGmV0OC4pIiJCx85lavzcRUaHAgAAHCglfrWix46QxWIxOhQAbmjOnDmaMGGCPv74Y/Xo0cPocACbMM8FAMCzhderruXLlysiIsLoUOAGzp8/r5tvvllms1l9+vSxaxv0lwAAeDZP6S/79u2r3bt369tvv5Wvr6/Dt282mxUZGam4/ccdvm0AAGC86DHDVcPfV2az2ehQ7Hb48GHdc889ioqK0n//+1+n7cdkMmn8nLcUFNbTafsAAADG8ITP3c6ePVtTp07V7t27VbduXafth/fPAADwbJ7y/llhjh07pn79+mnnzp1asGCBhg4danRIhlq6dKmeeuopBQQE6IMPPlCdOnWMDikP+k8AADybu/efp06d0oMPPqidO3dq8eLFioyMNDok+icAADycu/dPjrRv3z4999xzWrFihZo1a6YpU6a45fVR6N8AAPBs9G8wUk5Ojr7++mslJiYqMTFRW7ZsUVZWlho3bqxOnTqpU6dOat26tcqUKWN0qB5n9+7dio+PV0JCgpKTk2WxWNSgQQO1atVKQUFBCg4O1h133GF0mAAAF5KVlaWvv/5aKSkpSk5OVnJyso4fP65bbrlFISEhCg0NVbdu3VS5cmWjQ4UTZWVlacuWLUpISNC6deu0Z88e+fr6KjAwMLeHaNmyJXkAACjQH3/8oZSUlNx+YteuXcrMzFSjRo0UGhqq0NBQtW7dWj4+PkaHWiQnT57UZ599poSEBCUmJurPP/9UjRo1FBwcnFsv77vvPrd/ngAAxzp8+LCSk5Nz6+R3330nb29vBQUFKTQ0VF27dlWjRo2MDtMhOD8NALBVSTg/TX0EANiqJNTHixcvatOmTYqPj1d8fLx+/PFHlS9fXi1atMg939qyZUtVqFDB6FABAC7iyJEj2rZtm1JSUrRt2zbt3btXXl5eHnWelfkjAMBWzB+ZPwIA8mP+yPwRAJBfSZg/XnXtPDIhIUEHDhxQ+fLl1bx58zzzyJtuusnoUAEALuTs2bNKSUlRamqqtm3bpi+//FIXLlzQ3XffrdDQUIWFhal9+/YqXbq00aEWyZ9//qmEhITcawmcPHlSVapUUcuWLXPrZGBgINeCAgDkY7FYtH//fqWmpio5OVmpqanav3+/ypQpozZt2qhLly7q1q2b7r77bqNDLTLOvwIAbFUSzr9SHwEAtioJ9REAXIHZbFZkZKTi9h83OhQAAOAE0WOGq4a/r8xms9GhGGbv3r2KjY3VmjVrtGvXLt1yyy3q1q2bevToobCwMJUvX97oEAEAwPXFmiwWi8XoKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4voyMDGVmZua5XdB9jlxuzbpnz55VTk6O3c/L19dXfn5+eW4XdJ+969q7vEKFCvL29rb7eQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJKpsOs2FHYdB1uWWft4WxR2XYbCrtPgqGVXbwPOdP78ef3vf//Tm2++qYMHD6pdu3YaOXKkevXqJR8fH6PDA9zaH3/8oSVLluitt97SL7/8opCQED311FPq2rWr0aEBAAAAAAAAAAAAAAAAAAAAAADABbzzzjsaPny4jh07pkqVKhkdjkuKiIjQsXOZGj93kdGhAAAAB0qJX63osSNksViMDgWAm9mwYYO6du2ql156SRMnTjQ6HMBmzHMBAPBs4fWqa/ny5YqIiDA6FLiJBg0aqFevXpoxY4Zdj6e/BADAs3lKf/nrr7+qfv36mjx5sqZMmeLw7ZvNZkVGRipu/3GHbxsAABgvesxw1fD3ldlsNjqUIpk5c6aeffZZff3116pfv75T9mEymTR+zlsKCuvplO0DAADjeMLnbrOystSiRQv5+/tr06ZNMplMTtkP758BAODZPOX9sxvJyspSVFSUZs+erYEDB2ru3LmqUKGC0WEZ5ocfflD//v21f/9+Pffcc5owYYK8vb2NDksS/ScAAJ7OE/rPrKwsTZkyRa+++qqGDRumBQsWqHTp0obFQ/8EAIBn84T+ydF27dqlqVOnKj4+Xq1bt9bTTz+tsLAwp71f6mj0bwAAeDb6N7iStLQ0bdq0SevXr9f69et18OBBlS9fXm3atFG7du3Url07NWnSxGXeK/YUaWlp+vzzz7V161alpqZq165dunTpkqpXr66goCAFBwcrKChIjRs3VqlSpYwOFwBQTP766y+lpqYqJSVF27Zt044dO5Senq5bb71VQUFBCgoKUtu2bdW8eXNqcwl27NgxJSYmKiUlRcnJydq3b59ycnJ09913q2XLlrl9RP369d3mfCgAwDFycnK0b9++3BqRmpqqAwcOyMvLSwEBAbnzzU6dOql69epGh+s02dnZ+vLLL7V582alpKQoNTVVp0+fVrly5dSsWTO1atVKLVu2VFBQkG6++WajwwUAFJPLly/rq6++UmpqqpKTk5WcnKzffvtNpUuXVtOmTRUUFKTWrVurffv2Hv9dMs5PAwAKUtLPT1MfAQAFKen1UZIOHTqkjRs3Kjk5WSkpKTp48KC8vb11zz335J5rbdWqlf79738bHSoAoBhkZWXpm2++ya0LycnJOnbsmEqVKpXnPGuHDh089jwr80cAQEGYPzJ/BADkxfyR+SMAoGDMH//2008/5ZlH/vjjj/Ly8lKDBg1y62RwcLBq1apldKgAgGJ06NCh3HlkcnKyvv/+e+Xk5Khu3bq5taFjx4668847jQ7VaSwWi7766islJSXl1skTJ06oTJkyatq0ae651pYtW+q2224zOlwAQDHLyMjQjh07cmvE1e/Qly1bVs2aNVNwcLBatWqltm3bqmzZskaH6zScfwUAFKSkn3+lPgIAClLS6yMAGMVsNisyMlJx+48bHQoAAHCC6DHDVcPfV2az2ehQik1aWpoSExMVHx+v+Ph4HTt2THfeeaceeOAB9erVS61atWJeCQCA+4g1WSwWi9FRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVdRkaGMjMzr3v7RsttWdeW5RcuXNClS5eK9Nx8fX3l5+eX+/9r73PkclvWLVu2rMqUKVOk5wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCtf167obDrOlizzNbHnzt3TllZWTbH/c/rNRR2LYeiLitoHX9/f/n4+BThyAPuJycnRxs2bNDChQu1du1aValSRQ8++KD69u2r4OBgeXl5GR0i4BbS0tK0Zs0axcbGKj4+XmXLltWgQYP0xBNPqE6dOkaHBwAAAAAAAAAAAAAAAAAAAAAAABfSrl07Va5cWbGxsUaH4rIiIiJ07Fymxs9dZHQoAADAgVLiVyt67AhZLBajQwHgRn744Qfdf//96tGjh9577z2jwwHswjwXAADPFl6vupYvX66IiAijQ4GbeOyxx3TixAmtW7fOrsfTXwIA4Nk8qb989dVXNX36dO3du1d33nmnQ7dtNpsVGRmpuP3HHbpdAADgGqLHDFcNf1+ZzWajQymSrKwstWjRQuXLl9fmzZtlMpkcvg+TyaTxc95SUFhPh28bAAAYy1M+d7tr1y61aNFCCxcu1PDhw52yD94/AwDAs3nS+2fW+PTTTzV06FD5+flp6dKl6tChg9EhGebSpUuaMWOGXnnlFTVp0kSLFy9WgwYNjA6L/hMAAA/nSf3nBx98oGHDhqlx48Zavny5qlevbkgc9E8AAHg2T+qfHC05OVkzZsxQQkKCGjVqpMmTJysiIkLe3t5Gh1Yo+jcAADwb/Rtc2U8//aQNGzbo888/V1JSkn7//XdVqFBBrVu3Vrt27dS2bVs1adLE5Xtqd5OZmakdO3YoJSVFycnJSk1N1alTp1S2bFk1atRI9957r+699141atRIDRs2VIUKFYwOGQBQRL/88ov27NmjPXv26JtvvtGePXt04MAB5eTkqF69emrZsqVatWqlli1bql69ek75XiQ8w5kzZ5SamprbR3z55Ze6cOGCKlasqMaNG6vh/2PvzoPjqM/8j39GlkYzukaja3RZkmVb8iXJxgZsybUJIEIgQEKR2Dk2VBFIgKQCBmoD5Nqllvptwq4XyDrkgl2SbA6LwAJOhU3h2FnwQTiMJWxjyUaHrVuyNDpnNCNpfn+kpqORZFuyZbU0er+quqane7r1fMdyP8/324eKiox6YvXq1bLZbGaHDACYAV6vV0ePHlVlZaVRU7z33ntyu92Ki4vTFVdcobKyMm3atEmbNm1SYmKi2SGbJhAI6Pjx4zpw4ID27dungwcPqrq6WhERESosLJzQ787OzjY7ZAAV1ZbHAAAgAElEQVTARert7TXyY2VlpSorK/X+++9rcHBQKSkpKi0tVVlZmUpLS7Vhw4YF309ifBoAFh7Gp8+P/AgACw/5cWpaW1t18OBB7du3TwcOHNC7774rv9+vzMxMrV27VsXFxcZrQUEB15gBwDzW39+v999/PyQ3VlZWamBgQMnJydq0aZPKyspUVlamDRs2yG63mx2yKeg/AsDCQ/9xaug/AsDCQf9xaug/AsDCQ/9xetrb2408GexHDg0NKT09XWvXrjXyZHFxsVasWKHIyEizQwYAXAS/36/q6uqQez4OHz6strY2RUdHa8OGDcZ9H5s2bVJaWprZIZuqtrbWyJH79+/X0aNHNTo6qiVLlhjjrMG+ZX5+/oKvKwAgXHR2dhp5Mti/PHLkiPx+v7Kysoz7I0tLS7V27VpFRUWZHbJpGH8FgIWH8dfzIz8CwMJDfgSAuaOiokJbt27VC8ebzQ4FAABcAtu33aWseJsqKirMDuWSev/99/Xqq6/q1Vdf1f79+zU6OqorrrhCN9xwg2688UatXbvW7BABAMCFed4SCAQCZkcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXGoej0derzdkfrJlM7l+Kp91u90KBAIX3C6bzSa73R4yP9myC/3sha5PSEjQokWLLrhdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU3Gu5zyc67kPM7Vu7Gem41zPcZjKuovdXpKcTueFfu0AZlB9fb2ee+45Pf/88zp27JgyMjJ066236tOf/rQ2b97Mc1yAcXp6erRr1y797ne/0x//+EeNjIzommuu0datW7VlyxbFxMSYHSIAAAAAAAAAAAAAAAAAAAAAAADmmLq6Oi1dulS7du3SJz7xCbPDmbO2bNmipj6vHnzyJ2aHAgAAZtCBV1/R9vvvViAQMDsUAPNEb2+vNm3aJLvdrjfeeMN4Xg0w39DPBQAgvN26IlM7d+7Uli1bzA4F88R//Md/6J/+6Z/U2dkpi8Uy7e2pLwEACG/hVF/6fD6tXbtWy5cv18svvzyj+66oqNDWrVv1wvHmGd0vAACYG7Zvu0tZ8TZVVFSYHcpFq6ys1IYNG/SjH/1Id95554zv32Kx6MEnfqzS62+e8X0DAABzhdN1t4888oh27NihQ4cOafny5TO+f86fAQAQ3sLp/NlUdXR06J577tGLL76oL3/5y9q+fbvi4uLMDss0R44c0Z133qlDhw7pgQce0KOPPqro6GjT4qH+BAAgvIVb/Xn8+HHdeuut6ujo0K9+9Stde+21sx4D9RMAAOEt3OqnS6Gqqkr/9m//pt/85jfKzs7Wtm3b9JWvfGXOPkOF+g0AgPBG/Yb5pLa2Vrt379a+ffu0d+9eNTY2Ki4uThs3blR5ebnKysp05ZVXKioqyuxQw0ogEFB1dbUOHjyoQ4cOqaqqSlVVVXK73bJYLFqyZIlKSkpUXFys4uJilZSUKD8//4KenwIAuLS8Xq+OHj2qyspK43heWVmprq4uSVJeXp5xLN+wYYNKS0uVkpJictSYz4aHh1VZWamDBw+qqqpKhw8f1tGjRzU4OKjIyEgVFBSoqKhIa9euNWqJ7Oxss8MGAJzD6dOnQ+qIqqoq1dTUaGRkRDExMVqzZo1KSkpUUlKiTZs2qbi4WJGRkWaHPad1dHTo4MGDevvtt43vtr6+XpKUlJQUkieLi4u1Zs0aU6+dBwBMLhAIqLa21siPwde6ujoFAgElJiYa46jr1q1TaWmpCgsLzQ57zmN8GgDCB+PTM4f8CADhg/w4szwej9555x29+eabOnz4sKqqqnT8+HENDw/Lbrdr9erVxnhrMFcmJiaaHTYAYJy6ujojLwavNamtrdXo6KgcDoeKiopUUlJijLOuWLGC/s5Z0H8EgPBB/3Fm0X8EgPBA/3Hm0H8EgPBB//HS8Hq9evfdd/Xmm28a3+2xY8fk9/sVHR2t1atXh/QhS0pKlJycbHbYAIBJnDlzxhgTDE5HjhyRz+eT1WrVqlWrjGP5lVdeqQ0bNnAf33n09vaG3BtZWVmpkydPanR0VHFxcSoqKgrJk0VFRUpISDA7bADAWfj9flVXV094lkBzc7MkyeVyqbi4WGvXrtW6detUVlamnJwck6Oe2xh/BYDwwfjrzCE/AkD4ID8CwKXj8/k0MDCg/v5++Xw+ud1uDQ0NaXBwUH19ffL5fOrp6ZHX65XH41Fvb698Pp96e3vl8Xjk9XrV19en22+/XVu3btULx5vNbhIAALgEtm+7S1nxNlVUVJgdyowaHBzUgQMHtGvXLr300ks6deqUUlJSdNVVV6m8vFw333yz0tPTzQ4TAABcvOctgUAgYHYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmL+8Xq88Ho8kqbe3VyMjIxodHVVPT48kaWhoSIODg5Kk/v5++f1+SVJ3d7ckyefzaWBgQJI0MDAgn88nSXK73QoEAhoeHlZfX58kyePxyOv1TvtnXQir1arY2FhJUmxsrKxWqyQpMTFRFotFUVFRiouLkyTFxMQoOjpakuRwOBQREaFFixYpISFBkmSz2WS32yVJ8fHxioyMlMViUWJi4pR+VmRkpOLj4yVJdrtdNpvtgtsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwE4LPgRj/eqHrprt9X1+fhoeHpx138DkQ418vxbrJPhMXF6eoqKiL+OYBhLNjx47p+eef1+9+9zsdOXJEaWlpuvbaa3XttdeqvLxcWVlZZocIzLrR0VEdPnxYr732ml577TXt27dPo6OjKi8v12c+8xl98pOfVFJSktlhAgAAAAAAAAAAAAAAAAAAAAAAYA77x3/8R/3kJz9RY2OjIiMjzQ5nztqyZYua+rx68MmfmB0KAACYQQdefUXb779bgUDA7FAAzAMjIyO6+eabdfjwYb311ls86wLzGv1cAADC260rMrVz505t2bLF7FAwTxw8eFClpaU6efKkli5dOu3tqS8BAAhv4VZf7tmzR9dcc41eeeUV3XTTTTO234qKCm3dulUvHG+esX0CAIC5Y/u2u5QVb1NFRYXZocyIBx98UM8++6yOHj064+e+LRaLHnzixyq9/uYZ3S8AADBfOF136/f7VVZWptHRUR08eHDG/3Ye588AAAhv4Xb+bDp+/etf6+tf/7qSkpK0Y8cOXXfddWaHZJrR0VE988wzevDBB5WXl6dnnnlGV155pSmxUH8CABDewrH+7O3t1R133KGXXnpJjz32mL7xjW/IYrHM2s+nfgIAILyFY/10qdTV1enJJ5/Uz372M8XHx+uee+7RfffdJ6fTaXZoIajfAAAIb9RvmM9qa2u1e/du7du3T3v37lVjY6Pi4uK0ceNGlZeXq6ysTFdeeeWMX6OIv6qvr1dVVZUxHT58WB9++KFGR0cVHx+vwsJCLV++XAUFBca0fPlyORwOs0MHgLDX2NiompoanThxQidOnFB1dbVqampUW1ur4eFhxcTEaM2aNSopKVFxcbGKi4tVUlLCMRqzYmRkRCdPnlRVVZUqKyuNWqKhoUGSlJSUNKF+CL7GxsaaHD0ALAwDAwMhtURNTY1qampUXV2t7u5uSVJeXp5RRwRriWXLlikiIsLk6MOD2+2e0Oc+evSoBgcHFRkZqfz8fBUWFk7IldnZ2WaHDgBhr6enx8iT1dXVIbmyr69PERERWrZsmUpKSkL63bm5uWaHHlYYnwaAuYvxafOQHwFg7iI/mmdoaEhHjx4NOTd5+PBhdXV1SZJycnJCxlmD+TIvL0+RkZEmRw8A4au/v9/IjcHx1eD5yJ6eHlksFuXn52vt2rUhuXHJkiVmhx4W6D8CwNxF/9E89B8BYG6i/2gu+o8AMHfRfzSf3+/XsWPHjDxZWVmpyspKtbe3S5IyMjK0YsUKLV++PKQvuWTJElmtVpOjB4Dw5vP5VFtba9zvEexTVldXq6WlRZLkcrlUXFwc0p9cuXIlzyeaIYODgzpy5EjIcwSqqqrkdrtlsViUm5s7IUcuX75cubm5jLcCwCxpa2szxlvHP0/A5/PJarVq5cqVIX3K4uJiuVwus0MPG4y/AsDcxfireciPADB3kR8BINTo6Kh6enrk9Xrl8XjU29srn8+n3t5eeTweeb1e9fT0yOfzqa+vT4ODgxoaGpLb7ZbP51N/f78GBgbk8/nU3d0tn8+ngYGBkGVT4XQ6ZbVaFRsbq7i4OFmtViUmJio6OloxMTGKj4/Xxz72MX32s5/VC8ebL/G3AgAAzLB9213KirepoqLC7FAuWm1trXbt2qXf//73euONN+T3+7Vu3TqVl5frxhtvVGlpKc89BwAg/DxvCQQCAbOjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwPl5PB55vV7jdeyyS73+bNv09PRodHT0gttks9lkt9tD5idbNp31M7Evh8OhiIiIC24XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApXCu50JMZd3Fbi9J3d3d0477XM99uNh1U90+MTFRFovlgr53ADDDBx98oJdfflmvvfaa9u/fr6GhIa1atUrl5eW69tpr9dGPflRxcXFmhwlcEg0NDXrttde0e/du/elPf1JnZ6fS0tJUXl6u6667TjfddJOcTqfZYQIAAAAAAAAAAAAAAAAAAAAAAGAeCAQCWrZsmW699VY9/vjjZoczp23ZskVNfV49+ORPzA4FAADMoAOvvqLt99+tQCBgdigA5oH77rtPP/vZz/R///d/uvzyy80OB7go9HMBAAhvt67I1M6dO7VlyxazQ8E84fV6lZCQoF/+8pfaunXrtLenvgQAILyFY31522236bXXXlNlZaXS0tJmZJ8VFRXaunWrXjjePCP7AwAAc8v2bXcpK96miooKs0OZEQMDAyoqKtKqVau0a9euGf2bNRaLRQ8+8WOVXn/zjO0TAADMDeF23e0HH3ygDRs26N5779W//Mu/zOi+OX8GAEB4C8fzZ9PR0tKir3/963rhhRf0yU9+Uv/+7/+u/Px8s8MyTV1dnb7yla9oz549uvPOO7V9+/ZZ/1uq1J8AAIS3cK0/A4GAnnjiCT300EO6+uqr9V//9V/KzMyclZ9N/QQAQHgL1/rpUmpvb9fTTz+tp556SiMjI7r99tv10EMPzVp9dj7UbwAAhDfqN4ST2tpa7d69W/v27dOePXvU1NSkuLg4bdy4UeXl5SorK9OVV16pqKgos0MNWwMDAzpy5IiqqqpUU1OjmpoaVVdXq66uTj6fT5LkcrlUUFCggoICLV++3JhfunSpbDabyS0AgPnjzJkzOnHihHG8ramp0YkTJ3TixAkNDAxIkhwOh3G8LSws1MqVK1VcXKxly5Zp0aJFJrcACOV2u1VVVaUjR46ourra+J1uaGjQ8PCwJCk7O1vLly83aojg73ZeXp6io6NNbgEAzC9DQ0Oqq6tTdXW1UUMEa4umpiZJUmRkpPLy8ozjbmFhodasWaPi4mI5HA6TW7DwjIyM6OTJk6qsrNQHH3wQUgP29PRIkmJjY40cOfbfbdmyZUpOTja5BQAwf3i9Xp08eTKkrx0c62xvb5ckWa1W5efnG+ObBQUFKikp0Zo1axQTE2NyCxYmxqcBYPYwPj1/kB8BYPaQH+eXxsZG49zk2H5/W1ubpL/2+5csWaLCwsKQHLl8+XJlZWWZHD0AzA8+n091dXUhuTE4NTf/9e/JREZGasmSJUZuLCwsVFFRkYqKihQfH29yCxYW+o8AMHvoP84v9B8B4NKj/zi/0H8EgNlD/3F+am1tVVVVld5//33j3+/EiRNqbGyUNPE+nbE5c/HixYqIiDC5BQAwP4yOjur06dPGcTbYN5nsvvSxfZM1a9aopKRELpfL5BYsTA0NDaqqqtLRo0dD6pyx9+kEx1vHjrUGx1tn8m9+A8BC4Ha7Q+6NHJs3e3t7Jf31vvSxx9yVK1eqqKhIK1eu5Dl9JmD8FQBmD+Ov8wf5EQBmD/kRQDjxeDzyer0hr93d3TO2rLu7e0px2Gw2OZ1O2e122Ww243XssvOtP9uyxMTEKZ07qaio0NatW/XC8eaL/VoBAMActH3bXcqKt6miosLsUKZtcHBQBw4c0K5du/Tyyy+roaFBycnJuvrqq1VeXq6bbrpJGRkZZocJAAAurectgUAgYHYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZuvr69Pw8LBGR0fV09MjSfJ6vfJ4PJKk3t5ejYyMaGRkRL29vZIkj8cjr9crSerp6dHo6KiGh4fV19cnSRocHNTQ0JAkye12KxAIyO/3q7+/X5I0MDAgn88nSeru7pYkDQ0NaXBwMCSmCxUfH6/IyEhFRETI4XBIkmw2m+x2uyQpISFBixYt0qJFi5SQkCBJstvtstlskiSHw6GIiAhFRkYqPj5ekhQTE6Po6GhJUmJioiwWi6KiohQXFydJio2NldVqlSQ5nU5JClk/dnsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID5IvicifGvl2LdZJ/p7++X3++fdtzBZ02MfebE+GXT+cx018XFxSkqKuoivnkAgPTXfLB//37t3r1bu3fv1nvvvSeLxaLCwkKtX79emzdvVllZmVatWiWLxWJ2uMC0DA8Pq7q6Wvv379e+ffv07rvv6tixY7Lb7SorK1N5ebnKy8u1bt06RUREmB0uAAAAAAAAAAAAAAAAAAAAAAAA5pk9e/bommuuUVVVlYqKiswOZ07bsmWLmvq8evDJn5gdCgAAmEEHXn1F2++/W4FAwOxQAMxxzz33nL70pS/pV7/6lT73uc+ZHQ5w0ejnAgAQ3m5dkamdO3dqy5YtZoeCeWTt2rX62Mc+pscff3za21JfAgAQ3sKxvuzp6dG6detUWFioP/zhDzPy3OKKigpt3bpVLxxvnoEIAQDAXLN9213KirepoqLC7FBmzFtvvaXNmzfr+9//vu6///4Z26/FYtGDT/xYpdffPGP7BAAAc0M4Xnf7q1/9Sl/84hf1/PPP69Zbb52x/XL+DACA8BaO588uxN69e3XvvfeqpqZGd999tx577DHFx8ebHZYpAoGAnn32Wf3DP/yDHA6Hvv/972vLli2z9vdTqT8BAAhv4V5/vv322/r7v/97tbe36+mnn56Ve3ipnwAACG/hXj9dSm63W08//bSeeuop9fX16Qtf+IK++tWvat26dabGRf0GAEB4o35DuAoEAjp69Kj27t2rP//5z3r99dfV2dmpxMREbd68WZs2bVJZWZk2bNig2NhYs8NdEJqbm3Xs2DHV1taqtrZWR48e1bFjx9TQ0KCRkRFJktPpVH5+vjIyMpSZman8/HxjWrp0qRITE01uBQDMnu7ubuOY2dzcrJaWFuP9yZMn1dPTI0mKiIhQXFyckpOTlZ2draVLl2rp0qVasWKFVq9erZSUFCUlJWnRokUmtwi4MH6/X6dPn55QQ9TW1qq+vl6jo6OS/lZHTFZLLFu2TA6Hw+SWAMDs8nq9am5uPms9MVlfbNWqVVq9erVx/Fy1apXsdrvJLcFUjK0dx+bK48ePa2BgQJJks9km9LXH5sy8vDxFRESY3BIAmB3j8+T4XDm+rzFZjiwsLFRkZKTJLcFUMT4NANMz1fFpq9Wq7OzsSfuUS5YsmbV7fHFhyI8AMD3kx4VhaGhIJ0+enJAj33//ffX29kr627/xZPkxPz9fOTk5jBkAWBCGhobU1NQ0aW7kfGR4of8IANND/3FhoP8IAFNH/3HhoP8IANND/3FhCdZEY+/3CObLlpYWSVJUVJRSUlIm7UNmZGRoyZIliomJMbklADA7/H6/Ojo6JvQhg3mzvr5eg4ODkkLvLx+bLwsKChbs3+6Zb7xerz788MMJOfLIkSMTaqLJ+pPkSQALVbBfOdm4a21trbq7uyX9ta+xePHiCbmSe8vnF8ZfAWB6GH9dGMiPADA95EcAc4HH45HX61Vvb6+Gh4fldrvl9/vV398/6Tqfz6eBgQENDg5qaGhIvb298vv96unpkdfrlcfjUW9vr3w+n3p7e419nI/NZpPdbldCQoKsVqsSEhJkt9tls9nkcDhktVoVHx+vmJgYRUdHKzExUVarVXFxcYqNjZXVapXT6ZTValVsbKzi4uJktVqVmJio6OjoOXXOoqKiQlu3btULx5vNDgUAAFwC27fdpax4myoqKswO5bz8fr/eeust7dmzR3v27NGBAwc0PDys9evX6/rrr9cNN9ygyy+/nPOXAAAsLM9zpz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJg1Ho9HXq/3rPOXYv10trkQNptNdrv9rPOTLXM6nedcf77tz7c+uBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA+O9ezIqay7mK3lyS3261AIDCtuM/1jIizPYvibOumsv1k6xITE2WxWC74uwcAzC12u13l5eUqLy+XJLW1ten111/XwYMH9eabb6qiokJDQ0NKSUnRxo0btXHjRl1++eUqKSmRy+UyOXrgb0ZGRnTy5EkdPnxYf/nLX/Tmm2/q0KFDIb+/n//851VWVqaNGzfyPC0AAAAAAAAAAAAAAAAAAAAAAABctOeee05XXHGFioqKzA4FAAAAAOas/fv36+6779a3v/1tfe5znzM7HAAAAAC4JDZs2KC3337b7DAAAABmhcPh0M6dO1VWVqYf/OAHuu+++8wOCQAAYNZdccUVevTRR/Xwww9r8+bNuvzyy80OCQAAYNZ94Qtf0Ouvv6477rhDRUVFKigoMDskAACAeeOqq67SoUOHtGPHDj366KN68cUX9c1vflN33HGHrFar2eHNKovFojvvvFOf+MQn9Mgjj+jzn/+8fvCDH+iJJ57QFVdcYXZ4AAAAc9rll1+uw4cP6+GHH9bnP/95vfrqq3r66acVFxdndmgAAAALTmJior75zW/q/vvv13PPPacdO3bomWeeUWlpqb72ta/p05/+9IIb+wMAAAAulMVi0Zo1a7RmzRp9/etfVyAQ0JEjR7R3717t27dPTz/9tL71rW8pMjJSJSUlKi0t1aZNm1RaWqrc3Fyzww9LmZmZyszMnLDc4/HoxIkTqqurU319verr69XQ0KB33nlHL774ojo7O43POp1O5ebmGlNeXp4WL16sjIwMZWVlKT09XTabbTabBQAXxO12q7m5WS0tLWpublZ9fb1OnTqlhoYGYxoaGpIkLVq0SFlZWcZx7/rrr9fixYu1d+9eBQIB+Xw+dXd3q6urS7W1tXrnnXfk8Xgm/EyHw6Hk5GQlJycrKSnJeA1OZ3tvsVhm++sBQkRFRSk/P1/5+fkT1vX39xt1RENDg1FHvP766zp16pS6urqMzyYnJysnJ2dCHZGenk4dAWDe8Xq9am1tVVNTk1paWtTY2GgcA4PT2GNgUlKScfxbvXq1PvGJTygnJ0f5+flavny5YmNjTWwNZoLT6dT69eu1fv16feYznzGWj46OqqGhQSdPngypOY8dO6ZXX31Vzc3NGhkZkSTZbLaQXBmcMjMzjX63w+Ewq4kAMGVer9fob7e0tOj06dMT8mR3d7fx+ZSUFOOYV1RUpBtvvFF5eXlGnqSfEB4YnwaAv7nY8engcXD58uXKyclRRESEyS3ChSI/AsDfjM2PNTU1OnLkiNxut9rb2408SX5cGKKjo7V69WqtXr16wrrW1lbV1NSE5MeGhga99957OnXqlHw+n6S/nt8M/o7k5uZqyZIlys3NVUZGhrKzs+VyuZSamjrbTQOAafH7/Wpra1NTU5Oqq6vV0dGhlpaWkL5je3u78XmHw2Ec91atWmXkx+A4K88tmN/oPwLA3zC+iqBL2X90Op1KSkrSypUr6T8CmPPG9h9bW1sn5EX6jwvLTPcfc3JylJycrNjYWK1atUqrVq2i/whg3qD/iPGio6ONeyRvuummkHWdnZ06ceKEamtrjd+PU6dO6ZVXXlF9fb1xv3BERIQyMjKUl5cXMt6alZVl3Pfhcrn4fQEw542Ojqqtrc3Ik01NTSE5sr6+Xi0tLRodHZUk2e1249i3dOlSXX311cZ4WkFBgZKTk01uES6WzWY763hrW1ubMd469vfkpZdeUkNDg7xer6S/1lST5cnMzEzjfCR5EsB80tPTY4y7BnPl+H5l8BgYERGhzMxMo1953XXXKScnR3l5eVq2bJlyc3MVGRlpcotwsbh+BwD+hvFXBJEfAeBvyI8ALlZ/f7/8fr+6u7s1PDysvr4+eb1eeTwe9fX1aXh4OGSdx+OR1+sNWef3+9Xf3x+yzu/3y+12G+umIi4uTlFRUUpMTFRkZKQSEhJks9lkt9uNdfn5+bJarYqNjVVcXJysVqsSExMVHR2tmJgYxcfHy2q1yuFwGNsmJCTIarUqISHhEn+bAAAAkKSRkRG999572rt3r/bs2aM33nhDAwMDys7O1tVXX60vfelLuu6665SWlmZ2qAAAwESWQCAQMDsIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwczwej7xer/E6dtmlXn+2bXp6ejQ6OnrBbbLZbLLb7cbr2GWXev3ZtnE4HIqIiLjgNgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMxVU3m+xHQ+M93t+/v75ff7px33VJ4hMZV1F7p9bGysrFbrRXzzAABcGJ/Pp0OHDunNN9/UwYMH9eabb+rUqVOSJJfLpeLiYq1du1bFxcUqLi7WypUrFRUVZXLUCHdut5mAaRIAACAASURBVFtVVVXGdPjwYR09elSDg4OKjIxUUVGRNm3apI0bN2rjxo1avny52SEDAAAAAAAAAAAAAAAAAAAAAAAgzPT39ysjI0OPP/647rnnHrPDmfO2bNmipj6vHnzyJ2aHAgAAZtCBV1/R9vvvViAQMDsUAHNUQ0ODrrjiCpWVlel3v/udIiIizA4JmBH0cwEACG+3rsjUzp07tWXLFrNDwTzy4x//WN/4xjfkdrun3fehvgQAILyFc3352GOP6bHHHtPBgwe1bt26i9pXRUWFtm7dqheON89QdAAAYC7Zvu0uZcXbVFFRYXYoM2p0dFQ33HCDjh07prffflsul+ui92mxWPTgEz9W6fU3z0CEAABgLgnX626Hhob0kY98RF1dXTpw4IBSUlIuep+cPwMAILyF8/mzC9XW1qZ//ud/1jPPPCOXy6WHH35Yd9xxx4L9W9aHDh3SAw88oNdff12f/vSn9fjjjysvL++S/TzqTwAAwttCqj//93//V7fffrtsNpt++ctfavPmzZfk51A/AQAQ3hZS/TQb3n33XT311FP67W9/K6fTqdtvv1133333JR3vGo/6DQCA8Eb9hoWsublZ7777rvbv3699+/bpnXfe0dDQkNLT07VhwwatX79emzdv1ubNm2Wz2cwOd8EaGBhQfX296uvr1dDQoFOnTqmhoUENDQ2qr69Xa2tryLW1ycnJysjIUGZmpjIyMpSVlaX09HTjNTs7Wy6XS9HR0Sa2CkC46u3tVVNTk1pbW9XU1KSWlhY1NzerpaUlZLnH4zG2iY6O1uLFi5Wbm2tMeXl5xnx2drYiIyOnFYfH41FXV5fOnDmjrq4uYz74fvzy4PzQ0NCEfSUnJyspKcmYxr9PSkqS0+mcMC3Ua9cwt/T19Rk1Q7B+GFtLtLS0hHx+fB0x/jVYT1BHALhUhoaGzlo/BF/r6+s1MDAQsl1ycrKys7O1dOlSLVu2TDk5OcrNzdWSJUuUk5Oj+Ph4k1qEuc7v96upqcnIjXV1dSH58tSpU/L5fMbn7Xa7srKyztvv5ncOwKUwNDQ0IS9OljfPnDljbGOxWORwOJSenq6cnBwtXbpUK1eu1NKlS43+d2xsrImtwlzH+DSA+WQq49Pja/xFixbJ4XDI5XIpOztbS5Ys0cqVK7VmzRotW7bsgsanEf7IjwDmkws5fxsVFSW/32+8t9vtxjnRnJwc5efnKzs7O+TY5nQ6lZGRIYvFYkYzMQcEAgG1tLQYY6zjp/r6+gnXCQTz4fj8GPzdyszMlNPpNLFVAMLRyMiI2traQvLhZOcl29raJjzzdNGiRUpISJDT6VR6erqWLVumoqIibdiwQZdddpkSEhJMahXmKvqPAOaTuXL9L8JfIBBQQ0OD3n77bb333nv64IMPVF9fr/b2dvX09GhwcDAkP9J/BGCWC+0/pqamhuTG8fkxMTHRxFZhrvB4POru7jZqrvr6eh0/fly1tbVqbGyU2+2W2+3WwMDApH+Thf4jADPRf4QZTp06pcrKSh05ckQnT55UQ0ODGhsb1dnZqd7e3pDz25GRkUpLS5u0Hzn21eVycX4bwIwLBAJqa2ub9L6Pse/b29s1PDxsbOdwOCbNkcEpLS3NxFZhrmtpaTHOQ9bV1am6ulq1tbVqaGhQW1tbSF1msViUkpKivLy8c/YryZMALqWenh6jH3mu5wmMPX5ZrdZJ+5XB5wksXrxYUVFRJrYKc9lk1+/U1NSorq5Op0+fVldXV8g4rNVqVXZ2tpYtW8b4K4BZx/grZsu5rm+tq6ubcB48JiZGMTExcrlc2rBhA/kRwKwiPwLweDzyer2TvnZ3d8/Iut7eXo2MjJw3FpvNJrvdPumr0+mckXXx8fEco2ZYRUWFtm7dqheON5sdCgAAuAS2b7tLWfE2VVRUmB2KJKm2tla7d+/W7t279ac//UldXV1KTU3VRz/6UZWVlWnz5s267LLLuC4DAAAEPc9IEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0+TxeOT1ekPmJ1t2qdePXdbf3y+/33/BbbLZbLLb7SHzky0bO+90Os+5/nzbn29ZXFycoqKiLrhNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA88m5ni9xseumur3b7VYgEJh27OOfHXGu50sEn1lxrmdPTGXd2M84HA5FRERc6FcPAMC8Z7VatXHjRm3cuFHbtm2TJJ05c0aHDx9WVVWVqqqqtHv3bj311FPy+XyyWq1auXKlCgsLVVBQYLwWFBQoMTHR5NZgPgkEAmpsbFRNTY1qampUXV2t6upqHT9+XPX19ZKkpKQklZSUqLS0VPfcc4+Ki4u1evVq2Ww2c4MHAAAAAAAAAAAAAAAAAAAAAABA2Pvtb3+r4eFhffaznzU7FAAAAACYk/r7+3XzzTcrIyNDv/zlL3mWEwAAAICwtmHDBvX19ammpkYrVqwwOxwAAIBZ8c1vflN79+7V1q1bdejQIcXFxZkdEgAAwKyKiIjQb37zG1155ZW65ZZbtHfvXkVHR5sdFgAAwKyKjo7W73//e23atEm33HKLXnvtNf52EAAAwDS5XC7t2LFDDz/8sL73ve/p/vvv1/e+9z098sgjuv322xfcmNNll12mP//5z9q1a5fuv/9+rVq1Svfee6++9a1vKT4+3uzwAAAA5qyPf/zjqqys1B133KGrrrpKX/3qV/XYY49RQwEAAJho/fr1+sUvfqHHH39cP//5z/XDH/5Q//qv/6qrr75a9957r2688UZZLBazwwQAAADmpczMTGVmZuqmm26SJPn9flVVVWnfvn3av3+/fvSjH+nRRx9VZGSkSkpKVFZWpvXr1+sjH/mIcnNzTY5+4YiNjdXq1au1evXqSdf7/X61tbWpsbFx0tdDhw6pra1N7e3tIdulpqYqPT1dqampcrlcSk1NVUpKivE+OJ+SkqKUlJTZaCqAOcjn86mzs1OdnZ1qa2tTR0eHOjo61NnZqfb2drW3txvzjY2NGhwcNLa1Wq1yuVzKzs6Wy+XS2rVrjffp6enKysoyjkMzzW63KysrS1lZWdPabmBgQGfOnFFXV5e6urp05swZ4/3Y5fX19cb77u5u+Xy+CfuKjY2V0+m8oMlqtc7UV4EFLj4+XmvWrNGaNWsmXX++OuK9995TW1ub2traQrZLSUmZtI5ISUmZ8D41NZUxXGABCwQCRu3Q2dmpjo4OtbW1GfNja4yWlhadOXPG2NZisSgtLc2oH7KysnTllVfq8OHD+vDDDzUwMKCenh653W4jZ1dWVio6OlqpqanGtqmpqUb/Jy0tzThWBdcttOvMESoqKkp5eXnKy8s762c6OjrU2to6ab78y1/+otOnT6u9vT2kJoyJiVF2drbxO5eWlqa0tDQjRwbfB3NlVFTULLQWwFw0Nid2dnaqtbV1Qp5sb2838uVYwXw2Nk+mpKRo165d8nq9Ghwc1JkzZ9TR0aHjx4/r+PHjxrYJCQnKyMgw8mRwPi0tzciZwfzpcDhm+2vBHML4NAAzXYrx6YiICB0/flx+v199fX3q6elRe3u7Tp8+rQ8++CDk5zudTuNYlZGRIZfLpbS0NGVmZhrHsWDeZEx3YSE/AjDTbJy/TUhIUH19vdrb29XS0qLW1la1tbWpublZ7e3t2rdvn3EcGxkZMfZvt9uVnp6ujIwMpaWlKSsry8idLpcrZB25M/xYLBbjWrSysrJJP+N2u9Xc3Kzm5ma1tLQY883NzXr33XeN5V6v19jGZrMpMzNT6enpRi4Mzo/Nk8EcyZg/sDD19fUZeXHsOcnx74M5bXR01Ng2MTHROH5lZGRozZo1Ie8zMzPl9Xr14Ycfqr6+XvX19WpoaFB9fb3+8Ic/6Be/+IWxr9TUVOO8U15ennJzc435JUuWKCYmxoyvByai/wjATPP1+l+Eh8HBQdXV1U2on4LT2HPfKSkpysvLU2lpqVE/paamyul0KiIigv4jgBl1qfuPGRkZ/G2JBWx4eFjt7e1qbW1VS0tLyLh6c3OzWltbjXVja6+IiAjjmufMzEytX7/eyGnBcfWkpCTZ7XbjOjL6jwBmEv1HmMXr9aqjo8PIl8Hz08F82traatxr1NPTE7JtXFycMjMztXLlSuOaZ6vVqssvv1yLFi0KyZNHjx7V3r17dfr0aQ0MDBj7iIqKksvlMs5hj783Mpgjg+9jY2Nn+ysCMEcMDAwYx6nx/cfg/Njjmd/vN7aNi4sz8mR2draWL18e8j6YLznG4Fz6+/vV0tJi/K4F7/vv6Ogw8mZw3fj7jqKiopSRkSGHw6GEhARZrVatX7/eyJcffPCB/vznP6uxsVH9/f3GdpGRkZPmyfH3RAb7l3FxcbP9tQCYQ4aGhiYdbx3bzwzONzc3T7lfOfY1LS3NxBZiPgiO/wfHMYLPBhh/n24wXw4PD4ds73Q65XA4FBMTI6vVqssuu0yBQIDxVwAXjfFXzBVdXV3GWMbYfmVwDHZsn9Ptdodsa7VaFR0draioKEVFRamjo4P8COCikB+B+c/r9crj8WhwcFBDQ0Pq7+83nt8xPDysnp4ejY6Oqru7W6Ojo+rp6dHw8LD6+vrk8/k0MDBg7GNgYEA+n089PT3y+/3q7e3V0NCQBgcHjXXnY7FYlJiYKKvVqtjYWMXExCg6OloJCQmKioqSw+GQ1WqV0+k867qx2zkcDkVGRoasi42N5b5oAAAATKq2ttb4+15/+MMf1NjYqLi4OG3cuFHf+MY3VF5ernXr1ikiIsLsUAEAwBwVaXYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACM5/F45PV6zzpvxvqxyy6EzWaT3W4/6/zZ1judznOuP9/251ofXA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCQTeWZE9P5zHTXDQwMyOfzTTvucz1XYvyr3W6f8ByL6Ww/2brY2FhZrdaL+/IBAMAlk5ycrGuuuUbXXHONsczv96u6ulqVlZV6//33VVNToxdffFEffvihhoaGJElpaWlasWKFCgoKVFBQoLy8POXm5io3N1cul8us5sBEfr9fjY2NamhoUENDg06ePKmamhpjGhwclPTX56YVFBSosLBQf/d3f6fi4mKVlJQoOzvb5BYAAAAAAAAAAAAAAAAAAAAAAABgoXruuef0qU99Sk6n0+xQAAAAAGDOCQQCuuOOO9TU1KS33npLsbGxZocEAAAAAJdUcXGxoqOj9c4772jFihVmhwMAADArIiIi9POf/1xr167Vl7/8Zf3617+WxWIxOywAAIBZ5XQ69dJLL2njxo368pe/rJ///OfURAAAYMFJSUnRyy+/rLKyMn3hC1/Qzp07FRkZaXZYAAAA8052drZ27Nih73znO3riiSf0wAMP6JFHHtFtt92mbdu2acmSJWaHOKtuuukmfexjH9NTTz2l//f//p/++7//W//8z/+s2267TYsWLTI7PAAAgDkpLS1Nr7zyip599lk99NBD+p//+R899dRTuuWWW8wODQAAYEFLT0/XQw89pAceeEAvvviifvjDH+rmm29WYWGhvvrVr+qLX/wiz7UEAAAXrLa2VidOnFBCQoISEhJkt9vNDgkwRVRUlNavX6/169frvvvukyTV1NTo4MGDOnjwoPbu3asdO3ZodHRU+fn5Ki0t1caNG7Vx40YVFRXJarWa3IKFKSoqStnZ2crOzj7n53w+n9ra2tTY2Bjy2tbWpo6ODr377rvq7OxUe3u7uru7Q7aNjIxUSkqKUlJSlJqaKpfLpdTUVGOZ0+lUUlKSnE5nyMS1CcDc4vF41N3dHTJ1dXWpu7tbnZ2dxvGgs7NTHR0dam9vl9vtDtlHZGSk8f8/eDxYt26dUlNTlZ2dLZfLpcWLFystLU0ul8ukll642NhYxcbGKicnZ1rbDQwMTPhuJ5va29tVXV0dsszn800ax9jj6WTH2PFTYmKiHA6HbDbbTH0dWACmWkf4/f5J64j29na1t7frvffeU2dnpzGNFRERYRwzUlJSlJaWprS0tJA6YvyUlJSkqKioS9l0ABfA5/OdNceNrR86OjqMmqKzs1Ojo6Mh+xl7TEhJSVFhYaE2b94sl8tl1BPB16keC7q7u9Xc3Kzu7m61tLQY88H3b775prq7u9XU1KSenp6QbW02m5xOpzIzM5WRkTFhfux7l8tFP2cBSk1NVWpqqoqKis75uWAfe2y+DP5fOHnypA4ePGj8XxkeHg7ZNjExUS6Xa9K+99nqP8YwgbllZGRkQl97fJ7s7OxUa2urkSM7Ojo0MjISsp+kpCTjuJOSkqJly5aptLQ0JD8G+91nG4+99957JywLjglMliebm5t16tQp/eUvf1Fzc7Pa29tD4oqOjjb6pWfLkcH5xYsXU8svMIxPA5iq+TA+7fV61dXVFZIvx84fO3ZMu3fvNpaPZbPZztqvDM5nZmYqOzubc6oLAPkRwFTN5fxYWFiowsLC835usrHZ4Gt1dbX27t2r7u5utba2KhAIGNuNzZ1ny5sZGRlKT09XRETE1L9UzGmJiYlKTEzUqlWrzvm5M2fOqLW1VU1NTWppaVFTU5Pa29vV2dmpU6dO6e233zbGV8afb09ISJiQF9PT0ycdaw3mSsZagbmlp6fnvOOsHR0dIXnS6/WG7CMuLi7k2oSMjAyVlJQYuSUrK8vIN1M9BqxcuXLS5V6vV83NzaqtrQ2ZDhw4oBdeeEF1dXVGDnQ6ncrPzzd+dn5+vjEtX75cCQkJF/flYd6h/whgquZy/xEL09DQkJqamkLqn+CYQG1t7YQaKFj/rFu3TrfeeqtRAy1btkwOh+OC46D/CCxsc7X/iPDj8XgmPYc8ftmpU6dCrg0df33y6tWrVV5ePmEsPCcnZ8p/jyQ/P/+c6+k/AqD/CLMNDQ3pzJkzE667mix/TnYOeWyezMvLU2lp6YRzytnZ2Rfcl+zv75+QJ5ubm437oI4dO6a2tjZ1dnZqcHAwZFu73a7U1NQJ90a6XK4JOTL4nnF/YO4J9iXHT2fOnDHGlYLHhODxwOPxhOwjJibGGEsK5suVK1cqMzNzwn0fsbGxJrUUc9357ocNvp/K/bA5OTnauHHjRd8POzAwcNY82dnZqerqaqOeHBgYmBDT2PpxbP/ybM8S4LmxwNw09tk548dex+bHseOvfX19IfuwWq3GcSBYP+fm5ob0K4OvaWlpJrUUc13w/p7z5cru7m41Njaqt7c3ZPvx+TIjI0OrVq2a9P7Yqd4Ty/grAMZfMZecbSx2srHZxsbGCdfNjL8fdtWqVWd9hkRGRoYsFsukcZAfAZAfgbmht7dXIyMjcrvdGh0dldvt1sjIiHp7ezU8PKy+vj75fD4NDAzI6/XK4/FocHBQQ0ND6u/vl9/vD9lHIBBQd3e3RkdH1dPTM2EfU+VwOBQRESGn06mIiAg5HA5FRkYqPj5eVqtVsbGxSklJkc1mU3x8vKKiopSYmKioqCjFxcXJbrfLZrMpISFBkZGRIetiYmIUHR2thIQE6gMAAADMqg8//FBvvPGG9u7dqz179qixsVFxcXHavHmz7r33Xl111VVat24ddSoAAJgyS2DsnRUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAXD4/HI6/Uar2OXmbW+t7dXIyMjF9wmm80mu91uvI5dZtb6hIQELVq06ILbBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEK7GP3/iXM+rmM66qW7f09Oj0dHRacc9/hkT53omxUytG/sZh8OhiIiIi/jmAQAAQo2MjKihoUE1NTU6fvy4ampqjKmpqcmomex2u3Jzc40pJydHubm5ysvLU3p6ujIzMxUTE2NyazBdnZ2dam1tVWNjo06dOqWGhgZjqq+vV0tLi/GMOJvNpvz8fBUWFqqgoMCYCgsLlZqaanJLAAAAAAAAAAAAAAAAAAAAAAAAgL85ceKECgsL9eqrr+q6664zO5x5YcuWLWrq8+rBJ39idigAAGAGHXj1FW2//24FAgGzQwEwx3z729/W448/rtdee00f+chHzA4HmHH0cwEACG+3rsjUzp07tWXLFrNDwTxzxRVXqLS0VE8++eS0tqO+BAAgvC2E+vL111/Xtddeq+985zv69re/fUH7qKio0NatW/XC8eYZjg4AAMwF27fdpax4myoqKswO5ZL54x//qJtuuknbtm3T448/fsH7sVgsevCJH6v0+ptnMDoAADAXLITrbt944w19/OMf1y233KJf/OIXF/x3MTl/BgBAeFsI589mSktLi37605/qpz/9qdra2nTDDTfoa1/7mq699toF9zfI29vb9d3vflfPPvus8vPz9d3vflef/exntWjRooveN/UnAADhbSHXn11dXXrkkUf0s5/9TDfccIN27NihvLy8i94v9RMAAOFtIddPs626ulpPP/20/vM//1N+v1/XXnutbrvtNn3qU59SVFTUjP0c6jcAAMLbrSsyJ11us9nkdDqNyW63T1h2rnVJSUmy2Wyz3Brg0uvv79fhw4e1f/9+7du3TwcOHFBXV5ciIyNVUFCg9evXG9Nll12mmJgYs0PGBfD7/ers7FRnZ6fa29vV3t6ujo4OdXZ2qqOjQ21tbcZ8Z2enuru7NTIyMmE/CQkJIcfFyY6hY9fHxcUpPj5e8fHxSkhIMKHlwNw2MjKi3t5eud1u9fX1qa+vT93d3eecurq6jHmv1zthn3a7XU6nUykpKXK5XEpNTVVqaqpSUlKUlpamtLQ0paSkGO+TkpJMaHl483g85/13PNu/7dDQ0KT7PFvdOpX6NjU1dUbH1rDwDA8PG3VEZ2en2traQuqIYF0xto7w+/0T9hMXF3fe3+OxU7CGiI+PV2JioiwWiwmtB+a2QCAgt9ut3t5e9ff3n7OWGFtDBKeBgYEJ+7RarUYtMVn9kJqaKpfLFfJ+Jq5dvhj9/f1qbW01jkft7e1qbW01jlMtLS3GcaqjoyPkXsbIyEijXnK5XEpLS1NqaqrS0tKUnp4eUkelpKTQr8FZnTlzxsiFY/NlcFmwLx7MlR6PZ8I+bDbblPra43Olw+FQQkKC6f8Xgbmot7fX6G9PN0/29vZO2N+iRYuUlJRk5MGUlBSlp6cbOXFsXzy4fi70x/x+v3FMGpsXW1pajPw5Npf6fD5jW4vFYuTKtLQ0ZWRkGO/HzicnJys1NVWJiYkmthRzFePTwNzE+HSogYEBtba2qq2tTe3t7WpubjaOWcGc2draqtbWVg0ODoZsG2yPy+VSRkaGMR+sE5KTk43POBwOk1qIuYb8CMxN5Mep83g8amlpMfJkU1OTkTeDOTWYT8eeN4qOjlZaWpoyMzPlcrmMabJ+Z2pqqokthFncbvc58+LY993d3RNqM2ni+fWz5cjg8rFjrQ6HY8E9uwY4H6/XG5IXx+bHycZWxy8bHR2dsM/ExERjTHF8XpwsT9rtdhNaPjmv16vm5mbV1taGTM3NzWppaVFdXZ1xPtLpdCo/P18ZGRnKzMxUfn6+MS1fvpyaHFNC/xGYm+g/Yr4ZGhpSU1PTpPVLbW3thBpmsvolPz9fy5YtmzPj3PQfgbmH/iPMNDg4aJzPDV4XFbyOs7m5WW1tbcb49djrNxctWmSc383MzFRaWpqysrKM870ZGRnGutjYWBNbeH70H4G5if4j5qKurq6Qex/GXkfc1tZmzLe0tKinpydk27i4OCNnBs/7pqamKj093bgHJ5g/51ptNjg4aOTEse0fe/9R8F6Q7u7uCW2X/lo7nO8+j/H3R47tT/K8GmAij8cTcl/k+Fw5WX9y7DRZTetwOJSUlBTSd5zsnshgHuUZOhhvZGREZ86cMaZgfgjmkGDOHHvP6lhWq3XCParBfDl2Pvg7Gh0dbVJL/8bj8Ux6T+TY/mTw/ZkzZ9Td3T3pfqaSH4NT4v9n715j5Lrv+/5/Zmbnft8buUuKl6UkUmQlyqJ8kUU5tuPASmpHBVKTtd26MdBYLpBaUpyiSJu2D9ymNhxRVh60ko2mcYMmJRWjUBLbtRsoRSRaDmwqkmpRlmQtSZHaXe6SO/f77Oz/gf6/4zNn57q3IZfvF3Aw5z6/md1zvr/rmURCsVjMKldGIpFN/tTA9aFSqSifzyuTySiTyfRUrrRP9nGCRjgctp5F0yo+OsdKXittQ7i2FItFK1Y646K9nGXG6DifaxEKhazxufZ+w/bxuubZD6OjowMvT1H/ClybqH/Ftaxer2txcXFFHayJG/b4OTc3p1wu13R8KBSy6ltNbLSXJU2Z02wbGhra9M9IfASuTcRHYGOUSiWVy+W+Xs011e+xmUymZV+6VgKBgPUc4l5f7c8u7ueV58HiWnLq1CkdP35c3/rpzKCTAgAANsCjDz+oHdGATp06te7nrtVqevnll/Xcc8/p9OnT+pu/+RtdvnxZQ0NDOnz4sD7ykY/oIx/5iO67775roj8HAAC4Lj21+S13AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCDKJVKKpfLTfOt1m3m9kKhoGq1uurPFAgEFAwGm+ZbrbPPJ5PJjtu7Hd9tezgcls/nW/VnAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuJF0ek5FP9tWe/xqn3/R6VkUzlf7My/6Oa7TPqFQSH6/f21fPgAAwDXK4/FoampKU1NTuv/++5u21Wo1Xbx4URcuXLCm8+fP64033tBf/dVf6dKlS035u2g0qh07dmjbtm0rXicnJzU2NqaRkRENDw8rEAhs9ke9YWSzWS0uLmphYUGXL1/W5cuX9fbbb1uv8/PzunTpkubn51WpVKzjYrGYdu/e4dZjGgAAIABJREFUrd27d+vOO+/UAw88YC3v2rVL27dvH+CnAgAAAAAAAAAAAAAAAAAAAAAAAHr3zW9+U5OTk/rIRz4y6KQAAAAAwDXnz/7sz/R7v/d7evLJJ/ULv/ALg04OAAAAAGyau+++Wz/+8Y8HnQwAAIBN94EPfECPPfaYfvM3f1P79+/XJz7xiUEnCQAAYNN99KMf1R/+4R/qM5/5jLZt26YvfvGLg04SAADAprvvvvv09NNP6+Mf/7j8fr++8Y1vyO12DzpZAAAA162JiQn9+3//7/Wv//W/1tNPP63//J//s+6//37dfPPN+vVf/3UdP35cN99886CTuSnGx8f1xBNP6Ld/+7f1pS99Sf/0n/5T/cf/+B/1b//tv9WxY8fk8XgGnUQAAIBrzvDwsJ588kl98pOf1D//5/9chw4d0m//9m/rkUceUSKRGHTyAADANWxmZkZzc3OKx+MKBoODTs6WtX//fj3++OP6D//hP+ipp57SH/3RH+n48ePavn27/sk/+Sf6zGc+o0OHDg06mQAA4DrwB3/wB7rvvvuUy+WUzWatKZ1OK5PJNK17++23dfbsWaXTaWtdpVJped5AIKBYLKZYLKZ4PK5EImEtmykajSqZTK5YH4lElEwmFQqF5Pf7N/kbAdqLRCI6evSojh49qn/1r/6VGo2GXnvtNb3wwgs6c+aMXnjhBT399NPKZrPyer06ePCg7rrrLh05ckR33XWXDh8+rFAoNOiPgS68Xq8mJiY0MTHR8zHZbFapVGrFtLi42LT81ltv6aWXXmpa12g0Wp4zkUgoGo02Ta3WJZPJpuVIJKJIJCKfz6dEIiG/38//HQYmnU6rWq0qn8+rUCioUqlY+YhcLmdNmUxGmUzGWs7n8yvWFYvFlu8RCASUTCZXTHv37rXmh4eHW+4TCAQ2+RuBUzAYVDAY1OTkZN/H5vN5615q8q7m1UzpdFrpdFpzc3N67bXXmvYpl8stz2vyrvF43Jrsy2Y+mUyuWBeLxbjn3uCGhoa0fft2bd++vedj7P/Lnaa5uTm9+uqrTetqtVrLc0YikZ7yEM79ksmklXeIRqPyer30D8BA2fMSxWJR5XJZ6XS6KR+Ry+Xarstms8rn81b+ohWv19syn7Bz586m5Vb5iXA4vMnfyNpFIhHdfPPNPfchL5VKmp2d1czMjFKp1Ir5H/3oR9Y9aXZ2dsXxyWRSExMTLb/jycnJFdu2bdtGv+4bwMjIiEZGRnrev1wuty1nO8vgb775ZtN+7eouTayLRqNWns5ernaui0ajisViVjk7HA43lb2BQSgUCqpWq03x0l6uzuVySqVSbWOkfb90Ot3yPdxud8t7+IEDB1qut0+xWGyTv5H14fV6NTk5qcnJSR0+fLjr/s5Y6YyXr7zyijU/Nzen5eXlpuMDgUDLmNguVm7fvp2x91sc9dPA+qF+euOEw2Ht27dP+/bt67pvoVDQzMyM5ufnNT8/r5mZGS0sLGhubk5zc3P627/9W83Ozmp+fn7F9+z1ejU6OqqRkRGNjo5qbGxMY2NjTetGR0c1Pj5uraPP6tZEfATWD/FxMILBoKampjQ1NdV1XxMzZ2dnNTc3p8uXL1uxdHp6Ws8//7wWFha0sLDQdL8aGhqyYuXExITGx8c1Njam7du3N81v27ZNY2Nj8vl8G/mRsUkSiYQSiYRuvfXWnvavVCod61nNentdq5nata93qmu116u2ipf2dkmfz6d4PL6eXw/Qk3q9bsU1ExcrlUrLeGj6Wbdqm0ylUsrn823b8KPR6Ir4t3PnTt1+++1t46KJmS6Xa5O/lfUTCAQ6xsB8Pq/z58/r3LlzOn/+vDWdOXNG3/rWt3T16lVr3/Hxce3Zs0d79uzR7t27rfm9e/dqamqK/uaQRPkRWE+UH7GVVSoVTU9Pr8iDXLhwQefPn9f8/Ly178jIiJXvuOOOO/Srv/qrVh5kz549ikQiA/wkvaP8CKwd5Udc6wqFglWnbOqYnW20ly9f1uzsrAqFQtOxpk+SqV++++67tX37dk1OTmp8fFw7duzQ+Pi4xsfHt0y/JcqPwPqh/IjrSbVa1ZUrV6xpfn6+aXlhYWHFunq93nSOaDRqtceOj4/rjjvusNpi7fF027Zt13U/plAopN27d2v37t097b+0tNR1bKSJmWfPnm1an8vlWp7T6/W2jY3m2TX22GhfFwgElEgk5PP5rLEfXq93Pb8ioCe1Ws2KkdVq1Rrn1KrcmM/nO5Ylc7ncinuSYfKM9phoypLtypBmfqvk8bE+SqVS2/u4c9yMmebn57W0tNR0HpN/M2Nidu3apfe9733W+Bj7WJnrcYxMMBjUTTfdpJtuuqnnYzqVI+3Tz372s6blduO9XC6XFfvszwrotM5enrQ/Q4AyJQbJxMpO9a72MZP2cqRZb19XrVZbvk84HF4RD8fHx7V///6uYyTpawmnVvGyXZw021Kp1Irz2J/BMDk5qfe85z1tx5Wu5plMg0T9K7B+qH/F9ahcLncs97SKm+3KlvaY+Pf+3t9rWa68XmIl8RFYP8RHoDemLJrJZNRoNJTNZrW0tGT1XTNtF6VSSeVyWZVKRcViUdVqVYVCweov12g0lMlktLy8bNVXptNpLS8vW+dOp9PWa6/M706YdrxYLCaPx6NEIiG3261EIiGPx6PJyUl5vV4rDoXDYQUCAQWDwZ7O4Xa76XMKAAAA9GhmZkZnzpzR6dOn9dxzz+nHP/6xKpWKtm/frrvvvluf//zndfToUd17773Xdf9IAABwbXEtO5/WDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXiVKppHK53HZ+UNtTqdSaPlcgEFAwGLReu63bjO3JZHJNnwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBG53xmRadnWKzXNvs+mUxGjUaj73Q7n0vR6ZkV/ezT67ZYLCaPx7OGbx4AAAAbqdFoaHZ21prm5uY0MzOjy5cv6+2339b8/LwuXbqk+fl5VavVpmPD4bCGh4c1MjKikZERjY6ONi1Ho1HFYjHF43FFo1FFIhFFIhElEglFo1ENDQ0N6FNvvGKxqHw+r3w+r1QqZc3ncjlls1ktLi7q6tWrbV9rtVrT+SKRiHbu3Knx8XHt2LFD27Zt0+TkpLZv366JiQlNTExocnKS584BAAAAAAAAAAAAAAAAAAAAAABgS2g0Gtq7d68+/elP6/d+7/cGnZzrxrFjx/R2rqwvfu3JQScFAACsox9898/16COf1/Ly8qCTAuAa8Xd/93c6evSoHnzwQZ04cWLQyQE2DOVcAAC2tl87MKmTJ0/q2LFjg04KrjP/9b/+V33hC19QJpPp63l25C8BANjabqT85UMPPaQnn3xS3/nOd/ThD3+4r2NPnTql48eP61s/ndmg1AEAgEF69OEHtSMa0KlTpwadlA332GOP6Ytf/KJOnDihhx9+uO/jXS6XvvjYE3r/L//qBqQOAAAM0o3U7/bb3/62/uE//Id64IEH9N//+3+Xz+fr63jazwAA2Np+7cCk3v3ud+uOO+7Q6OioRkdHrd+YdE5ut3vQyb3mnD17Vk888YROnjyp+fl53X333Tp+/LiOHTumXbt2DTp5m+bcuXP68pe/rD/8wz/UTTfdpIceeki/8Ru/oVAo1Pe5yH8CALC1/dqBSX3oQx/Su971LiUSiZZTPB5XIpFQLBYbdHI3TLVa1aOPPqqvfvWrWl5e1kMPPaSHH35YiUSi73ORfwIAYGv7tQOTK9YFAgElk8kVUzAYbLvNvn379u3U9fXo4sWL+pM/+RN9/etf1/T0tA4ePKhPfOIT+vSnP61bbrllVeck/wYAwNa2XuMXS6WSUqlU01Qul3tev7i4qEql0vb8Jt/ozEPalzttsy+Pjo723ScN6NfMzIzOnDljTX/7t3+rhYUFeTwe7d+/X0eOHNGhQ4d08OBB3XvvvRoeHh50kjFA6XRa6XRauVzOmrLZrNLptPL5/Ip19v1yuZy1rlardXyfSCQin8+nRCIhv9+vUCikaDQqn8+neDyuQCCgYDDYcp3X61UkEpEkJRIJuVwuhcNh+Xy+pm3JZFKSrG24tuTzedVqNVWrVRUKBS0vLyudTjdtq1QqKhaLTdsymYyq1apyuZyKxaIqlUrLdel0WtVqVfl83lrXSTgcVjQaVSQSUTweVzweVzQataZYLKZEImHt41wXjUatGA+sVqv8aq/52itXrrS997bLo/a7ztxzgXby+bxSqZRyuZzy+fyK/EKv60qlUsf3secdvF5v2/xEq3XSz/MPoVBIfr9fQ0NDikajkqR4PC63221dBx6PZ0v3v7ieZbNZLS0tWffFRqOhTCYjScrlcqrX6y23pdNp1Wq1FfmGVuv6yUuEQiErj2D67djzDfZ1Zr1zXSKRsPKyWLtSqaSFhQVdvnxZV69ebTktLCzoypUr1rLz/uPxeKyxAGacwPDwsIaHh60Y2W6emIlWisViU8xLp9PKZrNN5epMJtNyXSaTsZaLxWLH9zExsNeydywWk9frXRErW5W1O23DtaNTWbvTtlKppHK5vKqydyder7cpHpr42CpGRqNRq1xu3y+ZTFr/o1gfpVJJV65c0ZUrV5pioj02zs/PNy2Xy+Wmc/h8vqY4aWKliYv2efsreWy0Q/00Ngv10+hFuVzW4uJiUz3s7OysZmZmWq67evWqqtVq0zla9UmdnJzUxMREy3VjY2Pyer0D+sS4VhEfsVmIj1irUqnUFCvbzb/99ttWnb1hYqY9Trabn5iYoP4VPde12utVW8XQbnWt9jpUn8+nWCxmtSPG43H5fD5Fo1Gr3TGRSFh1YW6326rPikajGhoass5n3xaLxeTxeKxtuLZkMhk1Gg2r7rReryuXyzVtM3HNbDNtkyZu5nI5VatVZTIZq/0ym82qWq0qm8021cs2Go2O6THtia3ioX1KJpMr1pm62EQi0dfv0OHnyuWyZmZmND093TTNzMxodnZW586ds57NmkwmNTU1tWI6dOiQJiYmBvxJsFVRfsRmofwI9C+VSq3IQ5jpwoULWlpakiSr3Ds5ObkiH3HzzTfTZr4KlB+xWSg/4kZgxrF0qweenZ1VKpVqOjYQCPRU/7tr1y6rXz82DuVHbBbKj7iR5HI5LS4uanFx0ep3u7i4aL3a569cuaLLly8rm802ncPj8Vi/cWGm8fHxpuWxsbGmdX6/f0CfeOuq1+vW+Ej7OEkTB806+9hI5zoTLztxuVx9jYm0lzs9Hk/fYz1MzMS1o9+xHiZmmjJlp7EfrWJkOp3u+huDncqNzrEdrcqSZhtlSTjV6/Wm2Oicd8ZOMzn75JqxnsPDw03jV5zjP+3rea7X+jL3p17iYbd19Xq943ut5hkCZl2r5wb08kwBXFvszwbo5ZkCzljZ7RkCrdZ1i5WtypH9rksmk9yX0FI2m7Wef2l/FqZ5tZct7ZOzPsTr9a6IjZ1+T3Hbtm20Qa4z6l+xWah/xY3GxMpUKmWVS1pN5tkJJlYWCoUV52r3G8POuGnqZMfGxhjDskbER2wW4iPQnvnfN9eHqUNZWlpSNpttuiZMPYnpp2bqXwqFgqrVqvX/b+pqzLlrtZry+bx1TnsdTq/M/dvce019nr0vpbkXm/u1aT+LRCLyer3WciKRkNvtViKRsJ4nas5r3of+mMDmO3XqlI4fP65v/XRm0EkBAAAb4NGHH9SOaECnTp3q67h6va7XXntNp0+f1nPPPafTp09renra+j2to0eP6t5779WRI0d08OBB6usAAMBGecq13K0XGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAbWqlUUrlctl7t6wa1PZvNamlpadWfKRAIKBgMWq/2dYPaHovF5PF4Vv2ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsFKnZ1v0s221xxeLRVUqlb7T3en5Feu1rdM+oVBIfr9/Dd88AAAAsNLCwoKuXLmixcVFXb16ten1ypUrunr1atP6XC6nbDbb9nyBQECRSESxWEzxeFxut9t6rls4HJbP57PyuF6vV5FIRG63W/F43DqHx+NRLBZreX5zDqdCoaBqtbpi/dLSUlN66/W6crmclpeXlU6nJUmZTEaNRkP5fF61Ws0qO5TLZeXzeWWzWWufVkx6k8mkRkZGNDIyouHh4ZavZtq+fbtCoVDb7xEAAAAAAAAAAAAAAAAAAAAAAADYar7//e/rox/9qF599VUdOHBg0Mm5bhw7dkwvvT6tj3/2c4NOCgAAWEevv3hGf/FHX9fy8vKgkwLgGjA3N6d3v/vduu222/Sd73xHQ0NDg04SsGEo5wIAsLU9+vCDOnnypI4dOzbopOA68/LLL+vw4cN6+eWXdfvtt/d8HPlLANezxtKS3B7PoJMBXNNupPxlo9HQpz/9aX3nO9/RM888oyNHjvR87KlTp3T8+HF98WtPbmAKAQDXqnKxqGIuq8TYuNxu96CTgw3wF//t6zp865ROnTo16KRsikcffVT/8l/+S/2n//Sf9PnPf77pNwy6cblc+vivf0633tl7XgoAALxj5vy0QpGoIvGEhrzeQSdnhRut3+1f//Vf64EHHtDRo0f11FNPKRwO93ws7WcAAGxtjz78oO69916Fw2EtLCxYvzNZKBRW7Gv/3UTnNDY2tuJ3FoeHh63fVd/qlpaW9Mwzz+jkyZP6X//rfymVSun973+/jh07po9//OPau3fvoJO4KX72s5/p93//9/XNb35T8XhcX/jCF/TP/tk/0/j4eM/nIP8JAMDW9ujDD+rw4cMKBoNKp9PWVC6XV+zrdruVSCSUSCSUTCaVSCQUj8etdfYpFospGo0qHo8rHo8rGo0qGo1e87/1nc1m9fjjj+uxxx7T8vKyHn74YT344IPavn17z+cg/wQAwNb26MMP6qtf/are+973KpPJKJvNWq+pVKppXavtrXg8HsViMSWTSSv/FIvFml5NvsvkrcLhsCKRiBKJhMLhsMLhsKLR6CZ/G4PTaDT07LPP6n/+z/+pP/uzP9PVq1f13ve+V5/85Cf1wAMPaPfu3T2fi/wbAABb27U0frFQKCibzSqbzSqfzyudTqtQKKhYLFrrC4WCCoWCMpmM8vm8tZxKpax9c7mcMpmMGo1G2/cKh8MKhUJWHZ1ZtucnQ6GQksmklZ+MRCKKx+MKBAJW/jIQCFj7+3y+Tfy2cD1688039cILL+jMmTN64YUX9MILL+jq1atyu9269dZbdeTIEd111106fPiwbrvtNk1OTg46ybjOlMtl5XI55XI5FQoFVatVpVIpVatVFQoF5fN5VatVpdNpVSoV655ZqVSUzWZVKpVULpeVyWRUrVaVy+VULBZVqVSs/fvl9XoViUQkSclkUpJW3DMTiYRcLpe1bPZrtexyuZRIJKxlt9vdcdyV89yddDuXXb1eVy6X62lfSR2/P+e5arWa8vl822Xz92x37nw+r1qtZu23vLysdDrdc1rtzPcXjUbl8/msOBgMBhWLxeTz+RSLxRQMBhUIBJRIJOTz+RSJRKy/czKZlM/ns2Kp3++36nIYC4qtwNRzZjIZpdNp6z5s6jzNssnfmryuWW+OqdfrLc9v7qPJZFLRaFSRSMRqW04mk03L0WhUiURCXq/Xqgs113EkEpHX65Xf71coFLLqXAFjaWlJ2WzWyid0yjtUq1VlMhmVy2WVSiVls1lVq9W2+Ym1xCITL0yscf7vmv9pw8QpwxzXbjkUCsnv97d8bxO/euV8707M99Qrk7drxZkXMH+Xdu/lXDb5PSObzWppack6j/nfWA1zD2qVb4jH4/L5fIpGoy3Xmb+NM39h1sViMXl4btmWUCwWrfEACwsLunLlirVsn1KplFKplBYXF5VKpVrW+yQSCQ0PDyuZTFqvznnTvmj+J+35W6/X29dzHXBjaTQaVr6vUqlYdZOm7L2WWGnOvRrOsra9HC6tjHXOMrnJJxrRaLTp90E63W87xdFWnOfupFv9rl23vIbzXOl0ummctr2fgvNczuVWZW1TDu+X+f5MfiYajcrv97eNl+1io7PsbcoG9jwPrm/5fL4pTtpjpZk3MdLEyVbXxNDQUFNcbBUrh4eHFYvFWva3If+FbqifXon6aeqnsTnS6bTm5+et2Gji4/z8fNPylStXtLCw0LKf6sjIiEZHRzU6OmrNj42NaWxsTKOjo4rH41Z/AXvfAmd+GnAiPq5EfCQ+YnDy+bxmZ2c1Pz+vhYUFzc3NrZg30+LiYtOxgUBA4+Pj2r59u8bHxzU2NtY0Pzo62lS2HB4eHtCnxPWgVbtkr/Wq6XRa1Wp1Rf2sucf2Gw8MexukqQNxtis66zed981O8dMZL536uQdvZHx0tjPa9Rv/urVZmjZJs361bZL278MZ43w+nxKJhFUH263N0tTBJpNJ+f1+q04M17ZcLqfp6Wm9+eab1quZ3nrrLas/zvDwsPbt29c0TU1Nad++fdqxY0fPeVRgo1B+XInyI+VHoJvl5WW9/fbbK/IAZjJl26GhIe3atWtFXmDfvn3au3fvDfXsgesN5ceVKD9SfsT1r1qtrugfOzs7q4WFBV2+fNman5ub09zc3Iq86MjIiLZt26axsTFNTk5qfHxc4+PjmpiY0Pj4uLZt22bV3TLeeWui/LgS5UfKj7i+2Z8vYp5DZ573a/r8LC4uWq/2eec4K7fb3fL3JszvUdjbNu0TthYzprdSqfQUI3stYy4vL3ccB9xJq7Ee9tg3NDTUVD/hHBPiHOPYbTylnfPc3Wzk+MhO31+38Y7OsZXOMRzOc5s+gs6Y2S/z/Zk8RKcY2c+4yEAgoEgkQlkSXWUyGetZWplMxsq/ZzIZq0xpYqOZN/Gz1Ti1SCRixcixsbGmONlqfnR0tGNdFa4/pVLJeu5Fq9i4lni52jLlaupcneObnMvOskinskm/z4zrZ2xVP+MjJbV9FrO0MtaZetN2y873ti/b61idzxTol8m3rFesNGVM6l3Rjb2Oq1arNd2PzDN9zDhL+7MJnK+t8qfm92VMn9hOv3toypX8r24d1L+uRP0r9a+4/pj/aXMfy2azqtfrSqfT1vVifguk22TPYxrmuXf2yf57wK2m4eFh/l+vY8THlYiPxEdcH+x1IKZuxf6/bepizL3NbDPXhzne/lwwc4ypazF1K+YaMefqtw1F+nm9k6kLM//v5low14n53zdtGKZ+zX4vM/c4c02Yc5rnIpi6mX7ahQBc306dOqXjx4/ri197ctBJAQAAG+Av/tvXdfjWKZ06darjfufOndOLL76o559/Xs8//7zOnDmjUqmkkZER3XPPPXrf+96ne++9V+9+97v7eiY/AADAGj3lWrb/WgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATVcqlVQul5vmW63bzO2FQkHVanXVnykQCCgYDDbNt1q3mdvD4bB8Pt+qPxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB653zORadnYPSzT6/bstmslpaW+k6381kWnZ5z0cu2fo+PxWLyeDxr+OYBAACArSedTiufz1tTOp1WNpu1lnO5nFKplLXv8vKycrmc6vW6isWiKpWKKpWKisWi6vW6crmcdW5Tpmj3vsvLyyvW+/1+hUKhlsfE43G53W5JktvtVjwelyQlEgm5XC5Fo1ENDQ0pFArJ7/db5/L5fIpGo4rH44rFYopEIopEIopGo0omk9Zyu/cFAAAAAAAAAAAAAAAAAAAAAAAA8HOf+tSndOHCBZ0+fXrQSbmu/NZv/ZYee+yxQScDAABsgB07d+rSxYuDTgaAASuXy/rQhz6kVCqlH/7wh0okEoNOErChKOcCALC1DQ0N6ZlnntF999036KTgOlOv15VIJHTixAl97nOf6/k48pcAAGxtN1r+slqt6oEHHtAPf/hDPf300/rABz7Q03HPPvusPvzhD6ter29wCgEAwKA88sgjOnHixKCTsWkee+wx/c7v/I4qlYomJyd14MAB7d+/X3v37rWmPXv2aGRkpOm4nTfdpLcvXRpQqgEAwEa70frd/uhHP9Lf//t/X2NjYzp16pQOHTrU03G0nwEAsLW1az8rl8u6evWqNV25ckVXrlxpWmefFhYWlMlkVpw/GAxqZGREw8PD1jQyMmJN9nX2ffx+/2Z9BeuuWq3q//yf/6OTJ0/q6aefVjab1a233qqPfvSj+uhHP6oPfvCDCofDg07mhrp8+bIef/xx/Zf/8l9UKBT0sY99TJ/61Kd0//33KxKJdDyW/CcAAFtbp/xnOp1WOp1WJpOx5s2USqXabkun0yqXyy3fz+PxKBaLKZFIWL8hHo1GrXVm2UzJZFLRaLRpX7NuaGhow76XTCajxx9/XF/72teUzWb1i7/4i/rkJz+pj33sYxodHe14LPknAAC2trX2f89kMspms8pkMk3z2WxWqVSqp+2NRqPt+WOxmMLhsMLhsOLxuKLRqLVs8mBmOZlMWvORSETxeNxajsViisVi8ng8q/2qNk2tVtNf/dVf6U//9E+t+r9Dhw7pl3/5l/WRj3xE99xzj2KxWNvjyb8BALC1beXxi6VSSYVCQdlsVrlcToVCQYVCQel0Wvl8XsViUfl8Xul02tqWy+WUzWat5Uwmo1wup2KxqEKh0PH93G634vG4QqGQ/H6/ksmkAoGAgsGg4vG4AoGAlZf0+/1WvZ7f7297XCKRkN/v3/LttTey8+fP64UXXtALL7ygM2fO6IUXXtD8/LwkKR6P68CBAzp48KAOHDig2267Tbfddpv27t17XZRFsDU1Gg2rv00ul1O9XlelUlGxWOx7m/N8krS0tKRsNmst1+t15XK5tsu1Wk3Vh1d1AAAgAElEQVT5fL5lWs1796pYLKpSqfS8f79tMYlEQi6Xa8V6l8vV9PxVE0/aLZu2JGNoaEjRaNRaNvHEvj4ej8vtdve9DcDmKZVKyuVyyufzSqVS1nwul1Mul1MqlWpazuVySqfTTftls1ml02ktLy/39d7mPhAOh+Xz+eTz+az8p/Pe5bz3mXuHYfKxhtfrbep/57yHSVIymWyZnlac+9rZ091KJBKR1+ttuc15r8XGyefzqtVqqlarVhkrlUpJkgqFgqrVasdtzthv1rdbNu/XbtmeL3HKZrNaWlrq+bP1c/054383ra4dwxm7nded89pwLvv9foVCIWvZXCv2/cy112mbuYc43x/YKJlMRqlUSouLi0qlUk3zrdaZqdX4AScTz2KxmLxer1WvEwwGFQwGFQgEJDXHFhMz7THFfj3YY6T9OBP3nPcFc00Zne4D2FrWWtZ2loWdsc4Z35zt68541i6+LS8vK51O9/y5nOX5bpzxqRtnvtTOmQ905mmd7f7O/Kh9eT3K2p3yu8B6aTQaXeNku9dSqdT2vKadw/S3CYVCLfvXJBIJhUIhBQKBFdeDyUvaY6a5Djtdy4BE/bQd9dPA6tXrdWvsuRmHPj8/v2LdwsKCNd/pejaxzcQ/0yfA9E01+VoT7+zXnb2OxR4HzbVhv+Za5ZFb1ZdSfrzxbGZ8rNfrqtVqTfFwaWmpKR7WarUV/WsajYaWl5dVrVbbjqdrpVQqNdX3dhMKhTQ0NNSxH7ldJBJpio/Ly8tWGdheh+pyuZquPxO77Mv29/V4PE35WlNv6na7rXqlYDAol8sln8+nSqUil8tlHRMIBORyueT1ejU0NCS32902n2zq0Pvl/Dv3o1MeaLPTMgir/c4Hod92Q3usWV5etq75Wq2mer1uLbda3+p9hoaG5PF4rFczud1uK84515n/ebM9EAisa5tDp7bGdlZTVl1t22On9kyjXd5e6p4P6Fbn1u2zdho/063tq1tb7kYwdZ+mvGUv05nrw2yz39vMNme7o/36d9aP9lu+tLO3jfZio8uP7a6TfsuH3doszf+7+b+0/w+ZNJtt9vc225x9E4BWarWaLl68qOnp6RXT66+/bl2XPp9PO3fu1NTU1Irptttu66u9AriWUb/6c9FoVG63W8ViUeFwuG3+yqB+FRicTvH8tddes+4jfr9fO3bsaBnPDx48SN4RHVF+fAflR6A/Ztyyed5NKpVqet714uJiy2djt8oDj46Oanx8XOPj45qcnNTY2Ji2bdumiYkJjY2Nafv27dq+fbvGxsaa+pUCG4Xy48/RPwf4uXK5bI1/rNfrSqVS1vVprq1MJqNaraZsNmvtb+KlfTLP581kMm3HbcXj8RW/CdHqtyHsr6tpCwRWY61jPZyx0RnPzPVjlEqlpv42znjmLJfaOcdSdtPt+Y12/baLdxpz2G28o7NsZx/bJa1s617rWA/6tKMbc53a87bOuiJTl2Pqh0zcTKfT1jOsTGw0y/bnX3XqnzU0NNQUA53zo6OjLbfzf43NYK8T7eWZAvYyn3Ob4ewH5+zD16lOttMYSGf5tJt++072Oz7SGd/snLHJOf7Yuezsh2ZftpdRe3luQKdt2Nqc+VDn9WTPl9rHLZtr0n6N2fO89uPsdUjmWjfHmToik45MJqNqtdrTOOVgMKhkMqnh4eGOr63WMfYXG43615+j/hXXK3uMdF5T9rypvV7GXt/jvE7t+V17Xth+DZr3MevMfiYGp1Kpvp7nEYvFrFjYbUokEk3LG/kbaLhxER9/jviI652JayZe2q+/Vs/GctYH2a9H02Zh4qj92m5V7+R8736ZdgxzPdivI1MnYv63zbVq6lbM/7ppzzD1Quac5hqwX3vmnJ3GCgLAenn22Wf14Q9/uO1zdwEAwPXvkUce0YkTJyS9M/7o7NmzevHFF/Xiiy/qpZde0osvvqh0Oi23262DBw/qnnvu0fvf/369733v0/79+ymXAACAQXrKtdzvL2wBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA16FSqaRyuWy9dlu3GdtTqdSaPlMgEFAwGLReu63bjO3JZHJNnwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACr18szNta6rdM+xWJRlUql73R3er5FL8/YWOs2Mw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK5vmUxGk5OT+trXvqbf+I3fGHRyAOCa5XK5dPLkSR07dmzQSQEAAJvkH//jf6y/+Iu/0PPPP6+DBw8OOjkAAHT12GOP6Xd/93d1/vx5jY2NDTo5AIAt5P7779fw8LD+5E/+ZNBJAYANVygU9OSTT+oP/uAPdOnSJf2Df/AP9Mgjj+jee+8ddNIADFilUtFnPvMZPf300/rjP/5jfeITnxh0kgAA17harabXX39dZ8+e1SuvvGK9vvrqq1peXlYsFtMtt9yigwcP6tChQzp48KDuvvtuTUxMDDrpQEf5fF7PPvuszp49q5/+9Kd6/fXXde7cOb399ttqNBqSpFgspr1792rPnj3au3evNe3Zs0c7d+5UMpkc8KcAAOD6sLy8rLm5OV26dEmzs7N66623NDs7q0uXLjWtKxQK1jHBYFA7duzQ5OSkbrrpJk1OTmrHjh3auXOnJiYmtGvXLm3btk1er3eAn+z6d+nSJX3qU5/Sj370I335y1/WQw89NOgkAQCALaZUKimVSimVSml2dlYzMzPWcrvp8uXLVv2MEQgElEwmu06Tk5OamJhQMpnU6OiofD7fgD55a9VqVadPn9b3vvc9fe9739NLL70kn8+no0eP6pd+6Zd033336ciRI/L7/YNO6oYoFov61re+pW9+85v6v//3/8rr9epDH/qQPvzhD+vo0aM6cuQIeXwAALBu7HnRcrnctNxpvX3d1atXVa1W276HM58aDAZ7WmdfPz4+rqGhobaf4S//8i/1P/7H/9B3v/td1et1vfvd79av/Mqv6Jd+6Zd09913k38CAAAD0Smv1Wm51bZ0Oq3l5eW272XPSznzVvblTtvMcjwel9vt3rDvpVqt6tlnn9V3v/tdffe739XZs2fl8Xh0++236+jRo3rPe96jO+64Q7fddts1V3cJAABwLSiVSlaesV0+stt8q3Xd6vmkd/KdJg/ZLp/Zbb7Vumux3fpGl0qlND093TRG6uzZszp//rwajYa8Xq9uuummpnFShw4d0m233aZQKDTo5AMAgAFrNBrKZDKS3vl9nEajoUKhoGq1qkqlomKxqKWlJWWzWUmy6j/z+bxqtZqVR7Wfx3DWlWazWS0tLVnL5n0Mcy6jWq02jcuxp+NaZvLS7cRiMXk8npbbPB6PYrFY22NDoVDH/piJREIul6vlNq/Xq0gk0vbYcDjcNq/vcrmUSCTaHutkyg/98Pl8CofDfR3T7ftqpd/PYqymPj4SifTdB6Lb3xjA5svlcqpWq8pkMlasymazqlarymazVv1Nq3X2WGfi7PLystLptCSpXq8rl8tJao6Dzhi5HqLRaFOfrlZxwRmjWt2bnbGmVdxzPrPCGRfcbrfi8XjTPs441Ooe77yvrvYzAADWT61WUz6fVzqdVqFQUKFQUC6XUyaTUaFQULFYVCaTUS6Xs7an02nl83lrOZVKWbEvlUr1nQYTD+x5fRMPTAyyxwx7PHGWD/x+f1O9uT1+OuOXMwbaY5AzjrUrI3UqwwEArl8mPraLh8Vi0Yp/xWLRip3FYtEqF5qYaC83mrKm9E5ZtV6vb9hnaFeW6qXer1P9Zy861VNuhGKxqEqlsmnv10mrevb1ZP8f6se19B1tFa3qRnrVra6/E2d+tx+rqfc3VlNX3s1aPstmu57qp4aGhhSNRrvu52zz61elUlG5XLYmc38y85VKRZVKRdVqtWmqVCqq1WpdY6DP55Pb7ZbP55PH45HH41mxbmhoSF6vt+066Z04PDQ0ZJ3D6/XK5XK1/X9e7X18NfXB9jzCavdxts1e61rVGbdr92tV3m6VR2mV72h1v2t1z2l1vbS7vzvrzO3pc57H2VZob6NcTdsogPVj+uq2ms6dO2f1j0kmk5qamrL66k5NTWlqako333zzqvOAAAbvypUrGh8f13e+8x3df//9g04OcEMrl8uamZmx4rAZPzM9Pa0LFy5Y5VUTk1tNe/bs2dCx+QCArSGfz1t9Q+3zhUJBpVJJmUxG6XRamUxG2WzWejXzZns2m21Zp+n1ejU8PKyRkZEV0+joaNOyfb92z/YDAMDeJ8Dezm9vizLjAc2YPfvYBtMXxYwntLd9mfZB075kH+NnxklkMhnVarWex/7F43F5vV7FYjGrP2YsFlMsFlM8HrfmY7GYkslk07J9P/phAsDW1a4fhrM/hLP/g71/pT3WSbLinGFio2Efz+Ac495qnKCJuabfaKvY2q9EIiGv16toNKpYLKZwOKxwOKx4PK5IJGItJ5NJhcNhhUIhRaNRxeNxazkejysajVrLAICN4ez71+p5KM5Y06pfXy/7OOOKiT12zr6dzlgm/TyGGc7YKK18TkyrvoarGQPYib0voL1Pnb3vnr2/n70/YDKZtPru2cuXPp9PsVjM6hNoL4fa19FuCOBG1anM0mn8Uav4YnR7Nlin321YTXqcZb5O79Pq/K3GS7WKja3ibrsya7ffplgNe190+7h3+zh3e/w0cdGMZTFxzxybTCatfukm1po4G4vFNDQ0ZJVNVzt+CQBw7XI+K7/Xdavd1mrdWsYsO5+332pdp2397t9q22aPgwcAAACA9ZLNZvXyyy9bv2l15swZnTlzRuVyWV6vV7fccouOHDmiI0eO6NChQ7rrrrs0PDw86GQDAADYPeVaXu8WWQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANyQSqWSyuVy03yv6zZqezab1dLS0qo/UyAQUDAYbJrvdd1GbY/FYvJ4PKv+TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFh/zmdfdHouRj/79Lpttc/ZcD7fotOzL3rZ1u/x0WhUQ0NDa/jmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfu7rX/+6Hn74Yc3Ozioejw86OQBwzXK5XDp58qSOHTs26KQAAIBN8OUvf1m/+7u/qz//8z/Xr/zKrww6OQAAdFWpVLRv3z4dO3ZMJ06cGHRyAABbzFe+8hWdOHFCc3Nzcrlcg04OAGyKRqOhb3/72/rKV76i06dP66677tJDDz2kT33qU/xeAHADW1pa0r/4F/9CX//61/XVr35VjzzyyKCTBAC4DmWzWb3xxht65ZVXdPbsWb3yyiv68Y9/rLm5OUlSMpnUwYMHdejQIev1zjvv1Ojo6IBTDnRWq9V08eJFTU9Pa2ZmRrOzs5qenram8+fPq9FoSHrnN9kmJyc1MTGhyclJTU1NaWpqylret2+fEonEgD8RAADXj1KppNnZ2aYYbObN64ULF5p+wzWZTDbFYjNvX5dMJgf4qa599Xpd/+7f/Tt95Stf0Sc+8QmdOHFCk5OTg04WAAC4wdnzhqlUqqdpbm5Oy8vLTecJBAJKJpNtJ5N3tK8bGxuT1+vdlM85Nzen733ve/re976nZ555RpcvX5bf79fdd9+t97///Tp69KjuuecejY2NbUp6NtPVq1f1l3/5l/r2t7+tv/mbv9Hly5cVDof13ve+V/fdd58+8IEP6L3vfa/C4fCgkwoAAG5wpVJJ5XJZpVKpKf/Z77rLly9b7YxOJt8aDAZX5GHNulAopPn5eU1PT+v//b//p6tXryoQCOjw4cO69957de+99+qDH/yghoeHN/kbAgAAWDuTh3Lmpzott9u2sLCger3e9r1a5b2c+bBel7vVJV6+fFmnT5/Wc889p9OnT+vFF19UtVqV1+vVgQMHdMcdd1jT7bffrh07dmzE1wsAAID/X6u8ZKv5bttbzXfTKR/aLm/abT4YDNI/ch1VKhX97Gc/s8ZInT17VtPT0/rJT36iSqUi6Z0+q2bciHPas2eP3G73gD8FAABAe8vLy0qn0y231Wo15fP5tscWCgVVq9W+zyu9k88qFottt+dyubZ1uo1GQ5lMpu2xJv/eTiaTadtOX6/Xlcvl2h5bLBatfGArqVSq7bZqtapCodB2ez/naqfTZ0Nnfr9foVCor2OGhoYUjUb7Osbtdq/5t7N8Pt+a+9GuJu1O6/FZXC7Xuoy5TyQSa36GZDweX3P5LRqNrvn5bZFIZM191kOhkPx+/5rOsV5/G6/Xq0gksubzmDqP1cpms9b4U3N/dd7z7ftIrWNVOp1uGptg6oLsnPdvZ+xoFcecMXVpaUnZbLZpH2dsbBWnnZ9ho7W79tr9vTr9X4XDYfl8vhXrO92v2l1zne6T7dJs6tacOt3rVpPmWCwmj8ezYn2nOLQe9zgANyYTO0y8ssc+E9Py+bxqtZq1jz0GmX1MnLLHRnvZwxlTnbHPHj+7lTPXS7uY0+6+3u7e3S4v02/5YbV5otXkL1eb128X1zpZbZlgPfKr15p2MR5YK+p6No+JT/V63SrnVSoV1Wo1a5+lpaWWdZq1Wq1lnWG5XG463jAxtx0Td1draWlpRVl1M3g8HgWDQXm93mvinhgKhVrGUZfL1bL814/V1onFYrGe9vP5fFZcdrvdPR9n5/F4mvIf4XC4p7/LauseV1O/atDHBRgMU5ZLp9PK5/MqFovK5XJWmS6TyahWqymbzVptb9lsVrVaTZlMxipH5nI51Wo1pdNpqy3MlDW7MfWI0WhUXq/XKseZ+4J5NfVjph7fvJp8uCk7mVdTz27KOeZ1EGWRbt+Fs87ZrlubaLe2x1btmq3qvVuV1VvVUUut2y9b5VlbtfW2Sk+rOvZWn6tbG+5aOOuz7WVxZ/2CM046y9L2ulxn+dxZB21vlzL/y/b3s9cl2P93W+0LbBXlclkzMzNNfXXNZH/WLH12gevbrbfequPHj+tLX/rSoJMCbHmpVKopntqnc+fOWWURZ2w1vx/Eb6kAwNZl6mnMq+kX0u3V1HWZV1N3WCgUlM1mVS6Xlc/nlcvlVC6Xu9bnDA0NKRaLKZFIKB6PKx6PKxaLKRaLWfPxeFyJRKJpnZlPJpOrakMBcP1bzVgbqft4oEHrNg7rWmCv1zd9Cw1nnwpn3wV7fwyzbB/7Zfox2pftfy9nX4pqtdrU/9700ajVamo0GlZaGo2G9b5LS0vWe9jPX6vV2o6P65Wp0w8EAvJ6vRoaGrLaBUx7QTAYlMfjkdfrVSAQkMvlstodQqGQ1e/C3t7l9/ub1g0NDSkYDMrv92/abyVgMNbSDwNr02nM7I1sNX0Z27U7d9OqHbkXncYkt7Pa+NvvWGGjXRrbjQdr9723yg9tZl6iW3u4vV+1x+NpKrvZ2+hN+7xZZ9/XtKmbdnnTXm9vK3cevx5jZgHcmDr1TWp37+4UC9r1CWsX4zrdw9vlTTrF2dWkuV3M2aw0b4RW/aucfQhbjYty9glzxjJp5bMAWsUg55iwVmPLnGORWvXjtu9jj6P2dK7HMxKAa0mnvrXdrOVZCxtdpuinL2y3ZzLZ9VPv2c9n7PXv0K2/s10/44v7KRv2U5bv539ktXXRg9TpuSydykytYkmrZ9+0eiZHq/jV6r3a9X3u5b3t7+GM3/ZYaY/16/WsGwDA4NhjvMmb2PNU9mdNmnKtvexpz0+YfJC9bGxivclP2c9t8gzmHGupfzXlN3t8NPHPxG57fDNx0B7/zHglE+vsZVUTC+1tS2ZMXqv3BgAAAAD0JpvN6qc//ak1vfrqq3rppZd07tw5SdLY2JgOHz6sd73rXTp8+LDuvPNO7d+/f83PJQcAANgET7mWV9szAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJuqVCqpXC63ne913XpuLxQKqlarq/5MgUBAwWCw7Xyv69Zzezgcls/nW/VnAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwObo9LyMXp7JsZ7H96PTMzF62bbW4808AAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAVvO+971Pt9xyi/74j/940EkBgGuay+XSyZMndezYsUEnBQAAbLD//b//tz72sY/pxIkT+sIXvjDo5AAA0JMnnnhCDz/8sN58803t2LFj0MkBAGwxP/rRj/Se97xHP/nJT3To0KFBJwcANt2ZM2f0+OOP60//9E81Njamz33uc3rooYeUTCYHnTQAA/LVr35Vv/M7v6N/9I/+kb7xjW9Yv3sCAMBapFIpvfLKKzp79qxeeeUVnTlzRi+//LJyuZwkaWJiQocOHdLBgwet17vuukuhUGjAKQd6UyqVdP78eV26dEmXLl3SW2+9pYsXL+rSpUu6ePGi3nrrLeXzeWv/RCKhnTt3ateuXdq5c6d27typ3bt3W/M33XQT+TAAAPpQq9W0sLCg2dlZzczMaHZ2VtPT09b8zMyMLl68aOU/pXd+43VyclITExOanJzU1NSUNW9ed+/eLY/HM8BPNnjf//739eCDD+rKlSv6N//m3+iRRx6R3+8fdLIAAAB6Vi6Xtbi4qFQq1fM0MzOjdDq94lyBQEDJZHLFZPKQrbaNj49raGhoTZ/hjTfe0A9+8AOdPn1aP/jBD/Tqq6+q0Who//79uueee3TXXXfpXe96l+68805FIpE1vde1Znp6Ws8995xOnz6t5557TmfPnpX0Tp3ykSNHdOTIEatO+eDBg3K5XANOMQAAQH+Wl5eVTqeVzWaVy+WsKZPJKJPJNK3LZrMt16XTaeVyOdVqtbbv4/F4FAwGFYvFNDw8rPHxcY2MjCgejysSiSgcDisaja5YTiQSCofDTcvkuQAAwPUqm82qUCioUChY+SqznE6nlc/nreVUKmXN5/N5ZTIZazmbzSqbzWppaante5k8VTgcVjKZtOYjkciKPFYkElEmk7HavC9cuKBz587p8uXLkqTh4WHdeeedOnjwoG655Rbt27dP+/bt0969e2m7BQAAuIbVajXl83nlcjlVKhUrP1oul5XJZFQqlVQul5VKpVQul1UqlZTJZFQul1UoFJTL5VQul5XL5ZTP51WpVJTJZFQsFlWpVDq+t8fjUSwWUzgclt/vVyKRUDAYtNq8/X6/QqGQ4vG4/H6/IpGIotGo/H6/YrGYtT0Sicjr9SqZTGpoaEjRaNQ6z42uWq3q9ddf12uvvabp6WlNT0/r3Llzmp6e1oULF1StViVJwWBQU1NTmpqa0t69e1fMM24KAAAAg5bP5zv2N2jFlGf6UalUVCwW+zqmXq83jQXrRaPRUCaT6esYSUqn01peXu7rmFwup3q93tcxhULBKi+sViqVWtPxkpTJZNRoNNZ0jm5tJb1Yzf+f03p8p6v5n3YyZXtc28LhsHw+35rPE4/H5Xa713QOl8ulRCKx5rR4vd62YwgajcaK69R53zL7+P1+q+3ReU0tLS2tuGcsLy+3vH79fr8ajUbLe0yj0Wh733TWd/l8PrlcLtXr9ZbHLC8vt60jq9VqWlpaWjE2uNFotD2mUqk0pdn0kVtaWupaFzcofr9fXq+3aZ3L5ZLL5VIkEmnbz8/r9bZ8lonb7ZbL5VI4HG47Bsbj8bT8f3O73VYfxU5t2PF4fEW6XC6X/H6/fD6fwuFw22Oj0WjHdMVisbbHhkKhjunq9MxNU1faTiwWazsO3dSpAmjPmZez53Wr1aoKhULbfaV37tPZbHbFeU0bjZPznEa7vFy7Npl+86CryTu3+wzdrKac0u577GY98uIAAODa1anOoZNO5Tfea3Dv1a3sLHUuH0vd68S6pbtb+TwQCPD81S0mlUpZZRtTfkin06rVasrlclbdfCaTUa1WUzabtdp5zKsZf2vOZ381bTv9tnmY/m/m1cybeiDzauqrzPVlXk2dj7muzKvb7bbqv8w4XFMHzG++rC9ne6CzHdLe/mT/H5K61zfY2wydbZXO9iR7eX8taVpNO6WdPQbY+3fa78vmf7Cffe31m/Z7tLke7Pua68UcY64HYL1UKhWdP39eb7755oppenraqsMLh8Pat2+fpqamdPPNN+vWW2/VLbfcoltvvVWTk5MD/hQAJOmzn/2sLly4oGeeeWbQSQG2hJmZGb3++ut644039MYbb+hnP/uZFSNNvtfv91vjWG6++WZrjPq+ffu0Z88exqkDwCq06vvqXGevV9joeXv/gl7me+WsRzOvpg4tGo0qEAhYz0wJBoMt5wOBgGKxWNP8evXlxMbo9v/SrZ9JL/35u/WH71Zn1q1euN/+M+36FHWzmrq91fQ5d9Yp9mo1fXtWM4ZDWl3/qNWMMQEAANeXbn1F2lnNs69XO35jtc/Q6TSWpN/3avc9tSs72dtse0lTuz4/9r4Mzr5HzjTxPHKgs27ltm5lwU7l3G7l9E7jtLuV0a/VdHUb873adF3LY2Da9b/sNOay3b25XbzpNKa5XczpFF/XK82txm8692vVv9TZJ6/XmL7WZwqstT5jtfVQxmrrbozVjiEzVltPZbfWZ2Ws5TkZa7kP9PLsx3bW8hyKtfzPrOX/ZS3/K+vxf4Le+x73Mk7A6DaW366fslK7Mkor/Tyn43r4DjqNgegUR7s9a6TT90Q7GwBgPdjL5vZyjr08b/Lu9rK2PV9s2svt+U57mcu0Ibd7L9Oub88/rrXMJK0c5yL9PH7a47OpTzXx3B6fTf7GXm9qyqomj2DPg5gysr2My1gyAAAAALg+XLx4Ua+99pp++tOf6tVXX9Vrr72mV199VTMzM5Leac/cv3+/Dhw4oDvuuEN33nmn7rzzTu3YsWPAKQcAAFi1p1zLa3naFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE2MveYAACAASURBVAAAAAAAAAAAwBaSTqe1vLysarWqQqEgScrlcqrX61paWlI2m5UkFYtFVSoVSVIqlZIkVSoVFYvFpmMajYYymYwkqVwuq1QqSZKy2ayWlpaazlkqlVQulyVJmUxGjUZD9XpduVxu1Z9naGhI0WhUkhQKheT3+yVJiURCLpdLXq9XkUhEkhQOh+Xz+SRJyWRSkuTz+RQOhyVJkUhEXq9Xbrdb8XhckhQIBBQMBiVJsVhMHo9HHo9HsVhMkhQMBhUIBCRJ8Xhcbre7KU0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4PplnZThfV7ut3+PN8z36ZZ6X4XzdiG2t9olGoxoaGlrDNw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB2fvKTn+j222/XX//1X+uDH/zgoJMDANc0l8ulkydP6tixY4NOCgAA2EA/+clP9P73v1/Hjx/XN77xjUEnBwCAniwtLenAgQP6xV/8RT3xxBODTg4AYAtaWlrS6OiovvSlL+k3f/M3B50cABiYc+fO6cknn9STTz6ppaUlffazn9Vv/dZvaffu3YNOGoAB+P73v69PfvKT2r17t06dOqWbb7550EkCAGxRMzMzOnv2rF555RWdOXNGZ8+e1dmzZ1UqlTQ0NKRdu3bp4MGDOnTokA4ePKgjR47owIED8ng8g0460LdSqaTZ2VlNT09rZmZmxfzrr7+uXC5n7Z9MJjUxMaHJyUlNTU2tmN+zZ4/C4fAAPxEAANefVvHYGZfn5ua0vLwsSfJ6vRodHdXk5KQVi50xedeuXYpGowP+ZBurXC7r93//9/XlL39Z27dv16OPPqoHHnhg0MkCAADYUKVSSalUqqfJ5CsXFxdVqVRWnCsQCCiZTDZNJm/pXG+mbdu2ta0HTaVSev755/WDH/xAP/zhD/V3f/d3WlxclNvt1i233KJ3vetduuuuu6zX4eHhjf66Ns3bb7+tH/7wh3rppZf08ssv66WXXtL58+clScPDwzp8+LDuuOMOHTp0SLfccotuvfVWTU5ODjbRAAAAm6RcLiuXyymXyymVSimfz2tubk4vv/yyXn75Zb355pu6ePGi8vm8pHfqP4PBoAKBgDwej5aXl1Uul62pnVAopHA4rGg0qkQioXA4vKZll8u1WV8RAADAurPXI5bLZWvZPt/rciaTUaPR6Ph+LpfLas+WJL/fr1AopGg0qpGREY2MjGh0dFR79uxRIvH/sXensXHtd/3HP7OPZ5/EsT127OQ6N8lNTEtp2HlaAS2oIKABFSSqCqjE1lIqtj7gAahVpRbUCxJI/VdQBEKXC1RF9EGBgoRAoqAI3dLsN068xHYWe/Z9Of8HV7/TM+Mz4/ESj528X9LoHP/O9jtnznh+y/d3JmW3TZpyn9s8ZTIAAIDjx7Is5XI5u1xp5iuVigqFgmq1mkqlkkqlkmq1mgqFgsrlsur1unK5nKrVqmq1mrLZrOr1uiqVivL5vOr1ut1+uJN4PK5AIKBUKqVgMKhoNKpIJKJQKKRkMqlAIKBEImGXWWOxmAKBgNLptPx+v+LxuF02HbSv46jT6Wh1dVX379/X4uKiPTXzGxsb9rpTU1N66aWXNDMzo9OnT2tubk4zMzOamZnR3NycMpmM/H7/CM8GAAAAAHBYGo2GyuXyvvbRbDaHrtsPUiwW1Wq19r2fbDa77320220VCoV97+cgrq8kVSoV1zEDu3VQ1ziXy3X1H+7F83iNTZvXXgx7Pfpd93w+v+/3BMMzfd3H8Zr7fD55vd6+y/u1C3q9Xvl8voHPXgoEAq5xAOaYwWCw77Zer1eBQMDeT28efT6fvdwtz5FIZGDewuGwnTe/39+VF6/Xq3A4PHDbZDLZd3kwGOzKm9frVSwWs/+ORCJ9r7nH41EsFuu7f3NuvZLJ5MD3sVc8Ht9Vm280Gh34fgHHTafTUT6fH3U29u2gyk/AXu32+wc4DK1Wq+sZikdRqVRSs9kcdTb6elbfL3ttLyoUCmq32xzrOTmWiTE6zkxMUT8mHqmXx+NRKpXalu71el3rgP3SfT6fEonE0On98hMIBLrqqjul9zvvfukmVsvJxG0Z/c7xeWDi4g5rWi6X1Wg0dpXHcDhsx80dxrT3/cfR13ufOdP6zR/Gunu534393sd72cdxjkHF7liWpdXVVd27d6/r9eabb+ru3bt2PSUWi+n8+fP268KFC7pw4YLOnz+vkydPjvgsgBfH//t//08f+chHlM1mKaMAQ9ra2tLdu3d1584d3blzx56/e/eu3YYQi8V04cIFvfzyyzp37lzXa2ZmhvZk4Dk3KNZqUAzVoHZ9M3axn0Exa4Pi4vaa137tpm511YNOe5Z9C852usOc761D96tfHzVu8QZubd/9ntviFs/a717vl94v5qFfer++n36fv37p/T4D/dJ3iuU8qFjPUdrpPnW2Kw0rkUjs+vcQ3drkh7GX5/zs5bPp1h/Qbrdd/685nzsZjUbl9/tVr9e3fZ5arda27S3LUrPZ3Ja/Wq3mur3zf63Zxu2erNVq2/q/ms2mWq3Wtveq97NgWZbr56NUKnWVj93WsyxrZH3fsVhMXq+36/6Ix+Pb7pd4PL6tnD9MWiQS6YpfjMViXdey9+/e7U1eTCxmMpnsypvzfvN4PF1/e73erj41n8/3zH7jaad+xWHtpb8X2K3noS//edavH/9FxLUADt5OcfU7xZE5+/Pd7DR2cVD7zk6xjDuN29tpbOCgctZO7VI7XZedvlsHPe91p33vJ25ilHrrAZZl2e+9z+cbWK8NhULb+vQsy7Kv4aBydyAQcI3baLfbarfbCofDffsvBo0vM8ceNDarX5uAGY/ndo/0O57f7+86VqfTseuw/cZ7uY3Hk946L7/fP/AeH8Z+xxQP89zjQfY7Nnq/ba4HNcYbe7fXNjFjv/X2fvG5w+gXUzysdDq95233Mw5ot2NSnfYzPnU/MXh7aaM19nOP7Of+6BcTvpPdXOO9tEMDAIDjp7d9w9TjnG0uzjYMU89ybufs13e2SZjYB2c7hrOeZOp8/Y613/4vZznPlFOd5WxnfcE5nsmUpZ1tzc7ypikvO8tkzj5yU45y9oH3OxYAAAAAAL3q9brefPNN3bp1S7dv39bNmzfteRMzfPLkSV26dEmvvPKKLl68aM+fPXuWtn0AAPC8ed1jHcen+QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGMrn8+r0+mo2WyqVCpJkkqlkprNpjqdjvL5vCSpWq2qVqvteZtcLifLstRoNFQulyVJxWJRrVZL7XZbhUJBklSpVFSv1/d8PslkUl6vV36/X/F4XJIUiUQUCoUkSalUSh6PR4FAQLFYTJIUjUYVDAbl8XiUSqUkSaFQSJFIRJIUj8fl9/vl9XqVTCYlSeFwWGNjY5KkRCIhn88nn8+nRCIhSRobG1M4HO7KEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4fzmdrmPl+00Hr7HWZc53dcD43w8z3Tgct2+/2kpROp/d62QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBM/Nqv/Zq+9KUv6d69e/J4PKPODgAcaR6PR6+99pquXr066qwAAIBn5OnTp/rO7/xOzc7O6p//+Z8VDAZHnSUAAIbyF3/xF/rgBz+oW7du6eWXXx51dgAAz6n3vve9CgQC+ru/+7tRZwUARq5QKOjP/uzP9Ad/8AdaXV3Ve97zHv32b/+2vvd7v3fUWQNwyBYXF/W+971Pd+/e1auvvqoPfOADo84SAOAF0Wq1tLy8rOvXr+vGjRu6fv26rl27ptu3b6vdbisQCOj8+fNaWFjQ5cuXdeXKFS0sLOill14iXhTHXjab1dramtbX17W4uLhtfmlpSeVy2V4/nU4rk8loenpa8/Pzmp+f7/p7bm5Ofr9/hGcEAMDxU6/Xtbm5ue372Pm9vLKyomazaW8TDoft71/zXez8Ts5kMspkMse+vLq2tqbf+q3f0l/+5V/q7W9/uz760Y/qp3/6p+Xz+UadNQAAgCOjWq0qm80OfJnypfl7c3NTjUZj277C4bDS6XTflyl3ptNpVSoVraysaHFxUW+88Yb+93//V2tra5KkM2fO6PLly/qWb/kWe3rp0iVFo9HDvjzPRD6f19e//nV9/etf1xtvvKE33nhDt27dUqFQkCTFYjFduHBB58+f1/nz53Xx4kWdP39eFy5cUDqdHnHuAQAADt/GxkZXf7yZ39rakiSNj49rYWFBFy5c0JkzZzQ9Pa2JiQlFIhGVSiXVarWucu8wf+dyOVmW1TdPzrLv2NjYnv8eHx9n/DQAADjWqtVqV3nKbX5jY0MPHz60p1tbW8pmsyoUCqpWq3a5y+fzyev1qt1uq9PpDDxuOBzuKlcdxPypU6cUCAQO47IBAADgGehXNh2UtptlxWJRrVZrx3w4y6q9U2f5c5hl/dZPpVKHGt9ZqVR0//59LS4uanFxUQ8ePNDq6qoePnyo5eVlbWxsqN1uS5K8Xq+mpqY0OzurmZkZzc7O6vTp013z09PTtIsCAAAAAAA8B0qlUtfY5d0w7W970W637fEXe7FTfOAgh3HOzn50o9VqqVQqqd1uu47nMer1umt/e6FQkGVZqtfrfbdttVqubaC1Ws0+br/r1ul0XK9Lq9VSs9lUq9Xqu61lWa7bmn1almW3P7oxMQb91mu3232PvVN8gmVZXcvd9rPXewlv8fl8ruP++7WBe71eBYPBgW3kXq+3az4UCnXtd9BzBrxer2KxWN/lfr9/27Gd6w9q+/Z4PAoEAorFYl15NHw+n+szl6LRqAKBgAKBwFDPSIhEIl3nPEg0Gt2xvT4UCikSiQxcx+fzKZFI7Hi8ZDLpeu6jzBMAAACOp0aj0fWM016tVkvFYrHvcsuylMvlBh5jp/aDQqEwsL5aLpcH1uFNfFKvZrOpUqm0Lb3fOfdLr9frqlQq29L7tU/0S++Xz37ph8XEUTklEomuepNbvcCtztQbi2Xqbk6xWKxrrIHH41Eqlepax62uMkyeTFyYW3568zJMnWkn5h4znxPT1mamnU5H+Xze/pw4Py/ZbFaSutIty1I+n1en0+naT7vdtmPudtumFgwG7fqwufZuU7OemZr3wEx74+56Y/Gc6w5bl8bxY+5Pc29L3/yfZ/6Hms+Dcx1zv5v72dzHlUpF9Xp9V/sYltfrVTKZlCT7+UKmPSUej8vv99v3vLmP4/G4gsGgksmkfX8nEgkFg0ElEgnXtN7/OzhastmsHa9rnqmwuLioW7du2d/56XTafq77/Py8Ll++rIWFBZ0/f542MeCA3bp1S5cuXdL//M//6Nu//dtHnR3gyKjX63r48GHXd5XzJb1Vn5mdnd32fTU/P89v9ODY6Y1TcWs3civ/m/qIk1ubktuYNbe2JVMfcXJr03FrF+rX5jSoHW2nNjS38zOGHYd3FLi1Mxlu7USGsw7nxu25sW7tR27HH0Wa83z6zQ+rt83SeT84683S9nZGt/vO7Z7uvcd69+u2b2n7fev2GXD7/PV+xt3aZUd93/e2RRr9YjX6pfcbu9ov3e1ed2s/HZQ+zH2207OYdxpzu1PMiml76ae3jbjXoLZbt3u43/9Yt/voRd/+MLm1m/WLQXL7zO1me7d78jimAQAADDIotmandod+bRnGTuNz8vn8wNghExfhVK/X7TEmg7Y1/cYmH2556xcj4YzV6Kf3vJ3jcTqdzsDzbjabfccVSW/VZ93K3Gb/tVrt2I6R2ekZov3qfJ1ORx6PZ2BZ1+v12ssty9p2DXcqJ+80LmpQfdbj8Rzr9+V5sVO7wU52alfYyX5jm/YbJzLMGJ5BTGzXXvn9fsXj8T1vv9/xRf3atHZjv78ztt86+Yt+DwMAAACHyRmr0G9+2PX2Mz/sejuNjxuGMwaldxzPs1o+zLqH/exuAAAAAAB2wzmevPe1tLRk19czmYw9Js85Pm9+fn7EZwAAAHBoXvdYRFECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBcqlarqtVqXfPDpj2LbSqViur1+p7PJxwOa2xsrGt+2LRnsU0kElEoFNrz+QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB46H2mxqDnbQyzbLfbF4tFtVqtXee799kZg56rsd9lbuvEYjEFAoF9XHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgOI1GQ6dPn9aHP/xhffzjHx91dgDgyPN4PHrttdd09erVUWcFAAA8A81mUz/wAz+g+/fv62tf+5omJiZGnSUAAIbS6XT09re/XVeuXNEXvvCFUWcHAPAc+8M//EP9/u//vp48eSKv1zvq7ADAkdDpdPTlL39Zn/jEJ/Rf//VfunLlin71V39V73//++X3+0edPQCHpNFo6OMf/7j+4A/+QD/xEz+hP/3TP1U6nR51tgAAL6hGo6G7d+/qxo0bun79uq5du6YbN27o/v37sixLiURC58+f1+XLl7WwsKDLly/rO77jOzQ1NTXqrAMHxrIsbWxsaGVlRaurq1pZWdHy8rJWV1e1urqqpaUlbWxsqN1uS5J8Pp+mpqY0Nzen6elpzczM6PTp08pkMpqbm1Mmk9Hp06ft3x0EAADDy2azWltb0/r6uhYXF+15M713755yuZy9figU0okTJzQ9Pa35+XllMhlNT0/b0/n5ec3Ozh6L3/69du2aPvnJT+qLX/yizp8/r9/4jd/Qz/zMzygYDI46awAAAMdWPp/X1taWNjc3tbm5qa2tLWWz2a6pW1qtVtu2r1gsphMnTigej8vn86nT6ahWq6lYLGpzc1OtVksej0eTk5M6f/68FhYW9G3f9m26cuWKLly4oHg8PoIrcPA2NjZ0+/Zt3b17V3fv3tWdO3d0584d3bt3T/V6XZJ08uRJnT17VmfPntWZM2d05swZvfTSS/Z8Mpkc8VkAAAAcnvX1dV2/ft3uk79+/bpu3bqlzc1NSZLX69Xp06c1Pz+v+fl5nTt3rmv+5MmTfffdarVULBaVz+dVLpdVKpX29bdbOdiIRCKKxWKKxWJKpVKKRqPb/o5EIkokEorFYvb6iURCkUhEkUhEqVRKkUhEY2NjSqVSB36tAQAAnpVGo6GlpSXdu3dP9+7d0+Lioh4+fKjV1VUtLy9rfX1drVZL0lvPnUun0zpx4oQSiYSSyaRisZj8fr/GxsYUCATUbDbVbDZVrVaVzWZVq9W65nO5nCzLGpincDisdDqtsbGxA5tPpVLyeDyHcUkBAADwjPWWNXunu13Wm1YoFOzxFYOEw2G73Nk7dZZJB6XttGzYcmyr1dKjR4+0tLSkhw8f6uHDh1peXu4q229sbHSV7aempnT69Gl73MjExIQymYympqY0OTmp6elpTUxMKBQK7fs9AwAAAAAAAIBRKJVKajabfZf3xjBUKhV7/U6no0Kh0HfbZrOpbDarRqPhurxarW5b1mq17PFJ5XJ5YFt0sVhUp9Ox13dqt9uqVCrb0i3LUr1eV7PZ7JsvSarVavax3dZz27dhYkL6abfbXfu0LKvrGjebzYHnXa/Xd4wrOap8Pp8k9c2/We5krsWgvoBOp3Nsr8kwYrFY32Uej0cej0fhcNj1mRpmufTWsznC4XDXcp/P13VtvV6vPQ7S5/P1fab8MP0zsVhsx+d8hEIhRSKRgev4fD4lEomB6xxknkwf1HHLEwAAAIZXqVRc65L90svl8ra6YW99udlsqlQqDdzOsqyu5+dJb9XxeuuYxWLRjmGS3qrz5PP5rnVMHJdTPp9Xp9Ox/zbjT3c6l2w2q2fF4/F0jSXtrQPE43H791l6y9kmRsxIJpN2HSUQCHTVlaLRaNez+py/9zDomF6vt+v5J+FwWJZl2XX7cDisWq1m18U7nY597Xtj7Mx7aab94vN60/rdd/2Yc+2dmrqFmZrzNNNEImFfY5/PZ19PMzX1FzM115DfznhxmP8h5n+Q+X9h7tVGo6FyuWz/b3H+bzL/R/rtI5/Pq9FoqFgs2vvr/Z/VTzKZVDAYVDwet/8vONMikYhCoZBSqZT9WXBLM5+VdDptf3Z6/3dg/zqdjpaWlrY9l+ru3bt68OCB3dY3PT2tCxcu6Pz587p48aIuXbqkixcv6uzZs65thAAGsyxLk5OT+p3f+R195CMfGXV2gEPV6XT04MED3b59Wzdv3rSfj3jnzh09fPhQ0lt1jTNnzuj8+fO6cOGC/R104cIFzc3N8d0Dm7Pe7qw/O+ttzvp/bz3fWZ931tt72wyc9XDnNqauKG2v0zu3cfbxO7d51nrr6ZJ7X58pbzv11uMl9/623nq606B+N2ddv5epH7gZ1Afnludh8rmfvB7VOkq73e6KDXG2i5m6ouG8p3vbtHrbs5z1wt7PifMz2PtZ621Pc45z7P3s9La7PMt2MLd72u3+670/3O613j7k3jY2yf3zZ9p9BuXJ7bM8TJ763Z/97ulB9/oouLWx9t4fo17Hra3YrU1Z2t6GfBDbHya3+7BfHEbvfc32AADgWeut57jJ5/N9Y/Cd8e+WZW2LtXeLvW82m3bs+qAY9UKhMHC5iZHv11ZQrVbt+lyz2ewqE1qW5bpdo9GQZVlqt9t9xxxYlqVKpTIw/t0cr1//oDOOoXc/lmW5ll/NvjqdzsB+x+c9zvw4C4VCfWPV3dpWvF6vwuGwvF7vwPjs3vj53jjtQfVVZ7yEG6/Xuy3PoVDIbmPy+/19z8lpt2V9E/+xG4PaxfrZT4zIoPa0YezlHJ12arPbiVv7y27t91muztgoAAAAAMDR1Rv/4IxbcPbbOmMhnLEXvf24zjgM576cbZDOYzrjhfZyjP3orX872xKc9VpnzIAz3sDZV+qMe3C2K+zlGGYdZ9zSUY3DAQAAAADgKGk2m1peXtbi4qL926zOedPWEAgENDc3p3Pnzml+ft5+vfzyy7p48eK22GgAAIAX0Osei4hlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2rFqtqlardc0Pm/ast9mLcDissbGxrvlh057FNiYdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5ZBz9YYZtl+t5ekbDa763wPeq7GfpcNu30qlZLH49nTdQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOo7/927/VT/7kT+rBgweanZ0ddXYA4MjzeDx67bXXdPXq1VFnBQAAPAMf+tCH9Nd//df6z//8T73tbW8bdXYAABiaaef7+te/roWFhVFnBwDwHHvjjTf0jne8Q9euXdM73/nOUWcHAI6c//iP/9Crr76qv//7v9fc3Jw+9KEP6UMf+pBSqdSoswbgkPzLv/yLfvZnf1adTkd//Md/rB//8R8fdZYAALDl83m9+eabun79uq5du6YbN27o//7v//To0SNJUjqd1uXLl7WwsKDLly/rypUresc73qFYLDbinAPPRqvV0vr6upaXl7W6uqrV1VWtrKzo4cOHWltb08rKijY2NtRsNu1tTp48qUwmo7m5OWUyGZ0+fVozMzOanp6208bHx0d4VgAAHE/ValXr6+taW1vT+vq6FhcX7XkzXVpaUrvdtrdJp9PKZDKanp7W/Py8PW+m586dOzJts7dv39anPvUp/dVf/ZUmJib0oQ99SB/84Ac1PT096qwBAAC8MKrVqrLZ7K5eT58+1ebmZlc51Mnr9SoYDCoWi+nEiROamprSSy+9pIWFBU1OTiqdTne9xsfHFQwGD/nM967dbmt5eVl37tzRm2++qQcPHmhpacmePn782F43lUrpzJkzOnPmjM6ePauzZ89qZmZGMzMzOn36tDKZzLE6dwAAgL3I5/NaXFzUvXv3tLi4aL/u3bun5eVltVotSVIymdT8/Lzm5+d19uxZzc7O2v2Oc3NzmpqaktfrPZA8tVotFYtF5fN5lctllUqlof8ulUqqVqtd88ViceDxIpGIIpGIEomEYrGYIpGIYrGYEomEvSyVSmlsbMye791mbGxM8XhciURCY2NjikajB3ItAAAAdiubzbr2XZu0paUllctle/1wOKx0Ot3Vb53JZJROpzU1NaVEIqFgMKgTJ06o0+moVCqpVqupUCh0lbeGmS8Wi6rVajuWz3w+nxKJhKLRqMbGxpRIJBQOh+35QCCgZDJpp8XjcQWDQSWTSYVCIUUiEcXjcQUCAaVSKdc0AAAAPF9M33qtVlO1Wt02dVu2m/ULhULfPvhepow9NjZml1l3Ow0Gg2o0GioUCioWi8rlctra2tLW1paePn2qra0tPX78WIVCoevYJ0+e1OTkpKamppTJZDQxMaHp6eltaRMTE8/ibQAAAAAAAAAAwJVpbx/F8lEe2215q9Wy+xxqtZrrtpZlqdVqqVarqV6v9913qVRSo9Hou7xer6tarfZd5tzWsqxty00c+XHh8/nk8/m2pVuWJa/X2zfW3aT3XgOzzCxvt9vqdDqS3vpNUI/H43qsVqvlusxp0Pt63Pn9fsXj8R3XS6VSA69TPB6X3+/f0zGi0WjfcaFer1fJZLLvtqbPrp9B+TZxav0kEgnXe1SSAoHAwOcmxmIxBQIB12Um3q6fSCSiUCjkuszj8RBPBwAAjqxGo9E19kGSisWiXVfpdDrK5/P2MhPvZThjvtrtdlesVaVS6SqX53I5u07QbDZVKpXsZaVSyX6+r2VZyuVy9rJ6va5KpTLUMXeqP+6Fs5zoLG8mk0m7LmPKsM6yn7Nc7CxPBgIBhUIhtVotWZalUCiker0un88ny7LsepHX61WlUpHP51Oj0VC73bbrmKVSST6fT8ViUZ1OR5VKxb5ubtNsNjv0+ZpzMPkPBoOKRqN2mTeRSMjv9yuVbQgo8AAAIABJREFUStn1BhOTZ66VWZZIJOwyvKlDJJNJ+f3+gXUGPJ/MuHbzvyGfz6vRaHSl5XI5NZvNbWmNRkOlUmnHNLd2h17pdNq+r2OxmILBoD0uKhqNKpVKKRaL2a9kMql4PK5YLKZoNKpkMmmPxzLj5LFdo9HQ4uKi7ty5ozt37uju3bu6e/eubt68qY2NDUlv1fEvXLigV155RRcvXtSlS5d08eJFXbx4kd89AHbw3ve+V6FQSK+//vqoswI8E+VyWbdv39bt27d18+ZNe/727dt2eX9yclKXLl3S+fPndeHCBXt67tw5nml4DJi6nCkjmjqiqaOaeqCpg5oyn7MOaOqGzjqjqfuUy2U1Gg17/871e+u1e+XsJzHlS2l7H4mz7ujsS3Bu09uP4Kx7OvtUnP0cvdu49fm4pbn1hQzq48DBcNZXzH3qbP9w3tvO+9bZbuO81533sbP9xdz7Unf7jrMtJZ/P2/2xbnk5KM57XOq+93o/J6ZdwXB+bnr795yfvd7PQW8/ovOz1NvX13vfp9Ppvnnv3ddxsJt2ud51e/92uz9GuU5ve6XbOs+SW391b//2MOv063923v+GW//6s9re7V7f7/YAAIxCb5mnV2//Y6+d6o7DlD+GLaM4y+hGs9ns+m3UVqtln0+z2ewbd2r6V9y0Wi17u3K53NWn4oy5NUwdut1uuz4DxKSbfkynTqez7ZxMm47bMmc+nOftZFmWned2u92Vf+ey3jy+SHaKqR0U42u277dOb7rP5+s6ntfrdS0Hmnpgv9hjsywUCvWNZTXrRKNR13P0+/2u2waDQQUCAfn9/r5xoWZ7s9ztGIFAoO/2kUhkYL93MBjc1lYZi8Xs/I6Nje1Yft4pdrVfvnbb1uOsFw9jp1heAAAAAADwYnKO5+gd2zHo76O4rnOMy0Fwxkb0mx92vYOaH7SMvl8AAAAAAI6fZrOphw8famVlRQ8ePNDKyoqWlpa0uLioxcVFLS8v2zFkqVRK8/PzOnfunObn5+3XuXPnNDs7OzCWBwAAAHrdYw3zlCMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEaoWq2qVqt1zbul7bT8ILfJZrN7Pp9wOKyxsbGuebe0nZYf5DbpdHrP5wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDnR+9zNwY9k2O/y9zWKZVKajabu873MM/c2M06u10Wi8UUCAT2ceUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7NW73/1ueb1effnLXx51VgDgWPB4PHrttdd09erVUWcFAAAcsD/8wz/Uxz72MX3xi1/Ue9/73lFnBwCAXXnnO9+pc+fO6fXXXx91VgAAzznLsjQxMaHf/M3f1Mc+9rFRZwcAjqx79+7p1Vdf1ec//3n5fD594AMf0K//+q9rbm5u1FkDcAjy+bx+4zd+Q5/73Of0Qz/0Q/qTP/kTnT59etTZAgCgr2w2q+vXr+vatWu6ceOGrl+/rjfeeEOlUkmSlMlktLCwoMuXL+vKlSv2vPltOuB5l81mtba2pvX1dS0uLtrzzrRsNmuvHwqFdOLECU1PT2t+fl6ZTEbT09P2dH5+XrOzs/yGIwAAu9RoNPT06dNt38PO7+bl5WW7HCu99TvKvd/Dvd/NZ86ckc/nO5RzWFlZ0Wc/+1n9+Z//ufL5vN7znvfo53/+5/Xud7/70PIAAACA3atWq8pms8pms3r69Klu3rypO3fu6P79+1pdXdWjR4+0tbWlcrlsb+PxeGRZ1rZ9hcNhpdPpXb+mpqbk9XoP87R3VK1Wdf/+fS0tLWlpaUkPHjzomn/06JE6nY69/uTkpKanpzUzM6OZmRlNT09rdnZWmUxGs7Ozmp6eVjqdHuEZAQAAPDutVkvLy8taXFzU4uKi7t27p8XFRS0vL2tlZUUbGxt2+dHv9yuTyWhubk6nT5/WzMyMZmdn7fm5uTlNTU2NrE2xWq2qVqvZ5eRh5ndaL5fLuZafjXA4rLGxMbs83W9+0LLeecqeAABgvyzL0sbGhlZXV7W+vq5Hjx5pY2NDjx8/tv9+8uSJHj582NWPLUmpVEpTU1OamJhQJpPR5OSkTp06pUwmo/HxcZ08edKenjx5cmDbYLFYVK1WU7FY3DZfrVZVKpW65iuViur1unK5nJrNporFop2Wz+fVaDTs9Wu12o7XIRQKKRKJKBaLKRgMKpVKKRgMKhqNKhaLKRAIKJ1O22nRaFTBYLBvWiAQUCwWs9NSqZQ8Hs++3y8AAAAcHYVCQc1m0y5/lstllctlNRoN5fN5tVot5fN5dTod5fN5tdttFQoFtVotFYtFNZtNlUole1szrdfrqlQqdvvjsGVaIxKJyOfzKRQKSZJ8Pp/a7bYkqdlsqtFoqF6vd/WDe71exWIxJRIJnThxQolEQuPj40omk5qcnFQ6ndbMzIwmJiZ0+vRpJRIJu+wcjUYP9sICAAAAAAAAAIAjz/Rr9GPiePopFAp2/4Ub53OwdrNtv+1MP42bQecyqJ+mVCqp2Wy6LjN9RL0sy1Iul3PdxvQhuanVaqpUKq7LKpWKGo2G67KjIhAI9H1OWSgUks/nc71e4XDYjrnqfc/D4bA932637e09Ho+CwWDXus1mU5Zlyev1yu/3dy1rt9tqtVry+Xyu8W31el0ej8c19qvT6fS9BzwejxqNhlqt1rZ0s22/9/QoM2Mi+ukXJ2fi8w5qm2Qy6fp+Deq/3Ms2iUTCdczLXrYxMYVu4vH4tntzp20AAMDzxzk+1cSWGSa+TNperygWi3a501lfcu7P1JVMLJvUXU9y1kecdSQTyyZ11492qvMNy1kWNGNlPR6PUqmU2u22vF6vXf60LEtjY2NqNpt2md/j8cjr9cqyLHk8HvvcW62WXV7vdDp22bzRaNivSqUysK7Yy5QBI5GIQqGQEomE/H6/UqmUXW4z439N+S6dTsvv9ysej9tlaTM+JZVKye/3K5FI2GVfM/4ELwbzOTef71wup0aj0ZWWzWa3rZfNZu3PaTabtZeVSiXlcrmB7RXSW3UjM1YqHo8rmUwqFovZr1QqZY+HisViSqfT9rxzeSwW61tne57k83m9+eabWlxc1PXr13Xjxg0tLi7qxo0bqlarkt76/3X58mUtLCxofn7enj979uyRe84WMAqf+tSn9Ed/9EdaXV0ddVaAfTG/g2O+C8z8gwcP1Ol05Pf7NTc31/VdMD8/r7e97W2anJwcdfafS6Y8b+on2WzWrsMUCgXV63UVi0V7nE4ul7PH6Zh6lKlDmX4dU4/KZrNd9adhmDqDKfubuo0ku6zvbPM1bdZmfa/Xq2QyKUl2vcG5vqk/mXqH1N2O7vP5lEgk7Pz0axPH0eCsh5v7ztzLzmXm3jR1cmc91ty/bsv61eGd7Qv92hP2ynkPOu9dZ5+K85513sumri198/6XuvtPnP0vbu0Jvev0fiacx+jdx3HS23/t/Huvy0a17k711/3q7dd06+d8Xtfp118JAHg+9YuX2ykWzbRv9nKWGXv1i4nbaZ/S4Di8nY4rdZcd3PqoTD2wV6fTUavVUqlU6sq7ZVldZWBzrTqdzrbnyVqWpVKp1Pc5s+12u++5WZZl91Xh2TD1h97yvcfj2RaPZfoW3eIIDb/fr2Aw6FqnDgQCXeUsZ0ykM9bRyVnfd1tmynKBQKArTz6frytG0ohEIgoGg131GyfnM4979W4XiUS6jhmJRFzjPE3dKpFI9G1rCIfDymQyrssAAAAAAABwNLnF0vf24x7mOr1jFJxt0r1t3r1tzs64h95j7dR+vVe9cQm97XLOftvedsLefl5nfIQz5kjaPs7WGVchdcdN9I57dY5PMOMa3PLD754BAAAAAICDtrW1pZWVFS0vL2tpacn+zfuVlRU9ePBA6+vrdttPKBTS6dOndebMGc3Pz9uvc+fOaX5+XidOnBjx2QAAABxrr3usfqMhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvlGq1qlqt1jXvlrbT8oPcJpfLaa8/wxsOhzU2NtY175a20/KD3CaVSsnj8ezpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPD8GvRMjmGW7Xd7aW/P+hj07I39Lht2e57pAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALzYVldXdfbsWf3N3/yNfuzHfmzU2QGAY8Hj8ei1117T1atXR50VAABwgL7yla/oh3/4h/XJT35SH/vYx0adHQAAduWf//mf9f3f//26du2a3vnOd446OwCAF8BP/dRPaWtrS//0T/806qwAwJGXz+f153/+5/rMZz6jtbU1vfvd79bHP/5xffd3f/eoswbgEHz1q1/VL/zCL2hra0u/+7u/q1/6pV9SIBAYdbYAABja2tqabty4oevXr+vatWv2fK1Wk9/v19zcnC5fvqwrV65oYWFBly9f1iuvvCKfzzfqrAOHrlqtan19XWtra1pfX9fi4qI9b6ZLS0tqt9v2Nul0WplMRtPT05qfn7fnnWnpdHqEZwUAwPGUzWa3fQ/3fjdvbGzYv0cdCAQ0Pj6+7XvY+d08NzeneDx+YHms1+v64he/qM997nP6t3/7N83MzOiDH/yg3v/+9+vixYsHdhwAAAAcrlqtprt379qvW7du6datW1pcXNSTJ0/sMmgkElEymVQ0GlUoFJLX61Wn01G9XlepVNKTJ0+62pGMcDisdDrd9TJl1t508xofH1cwGDzsSyFJarVa2tjY0MrKitbX17W6uqqHDx9qbW1Nq6urWl9f18rKiiqVir3N2NiYpqamlMlkdOrUKU1PT2tiYkKTk5Oanp7WqVOnlMlkNDk5qUgkMpLzAgAAeBaazabW1ta0srKilZUVPXz4cNv8o0eP1Ol0JEl+v19TU1OanZ3VxMSEXUYyZamJiQnNzMxoYmJC4XB4xGe3s3a7rUKhoFKppEqlolKppEKhoEqlokqlolwup0qlomq1qlwup3K5rGq1qkKhoGKxqGq1qlKppHw+r2q1qkqlomw2O/CYfr9f8Xhc8XhckUhE0WhUyWRS4XBY0WhUiURCoVBI8XjcLrunUimFw2GNjY0plUopFAopGo0qHo8rFAopkUgoGo2OrAwOAACOrmq1qkePHml9fV1PnjzR+vq6Hj16pMePH2ttbU2PHz/W48ePtbGxoWKx2LWtx+PRyZMnNT4+vm166tQp1/QTJ04caN5rtVrXNJvNbksbtGxQWqFQcG0P7WXKYaad1MwfRNqJEyeORbkZAAAAe2PKoZVKRfV6XeVyWY1GQ6VSSc1mU8ViUa1Wy56aMmo+n1en01Eul5NlWXab4+PHj1Wv17W1taVGo6Fisahms6laraZOp6NWqzV03rxer4LBoAKBgMLhsMLhsCKRiGKxmOLxuN1OGYlE7PbIYDCoWCymQCCgeDwuv9+vRCIhn89nT5PJpLxer1KplDwej/232Q8AAAAAAAAAAACGY/qaDmPZYR7rOORD0o7jAg5LMBhUKBSyxwm7pTuXBQKBrnEFJkbO7/dvG29gWZY8Ho/8fr/rsd2e62jGJfeu5/P51Gw2u/osTXqn0+m6zl6vV16vV9Jbz8Ex23i9Xnk8Hjtv5XJZ0luxjCZdeut9M9s40zudzrY4yKPE9LH2MmNM3Jj+2V6mL3eYY3i9XiWTyW3rmljGXqaPd5g89usHNv3FToFAQLFYbNu6bufo8XiUSqW2rdvvvAEAwO6YODZJduyapK4xFiaGTfpm2diyLOVyOUnfHJsryY6Bk94as1wqlSS9VdYzz3UxMXONRsMu55n9mvw4t90Nr9drlzPC4bC8Xq98Pp8CgYAsy1IoFFKn07HLm51ORx6PR61WSx6PR+12W81mU5ZlqV6v28/haTabajabQ+UhkUjI7/crlUrZ5R4zbsSU0dLpdNc4YROz1zu+OBwO23F8Zns8/8yzn/L5vIrFokqlksrlsvL5vD0Ovlwuq1AoKJ/Pq1wuq1QqqVgs2uPfS6WSSqWSHXvqxpS14/G4YrGYPcbdjFOPxWJKJBL286ni8biSyaSSyaRSqZRSqZT993H77ZtWq6XFxUXdvHlTt2/f1u3bt+35ra0tSW/VTy5evKiLFy/av3mwsLCgl19+uW/dGXgemd+o3tjY0OTk5KizAwzUbre1uLiob3zjG7p586b9/MXbt2/b5dVUKqWLFy/q0qVLXf/n5+fnj9332WEyz+AplUrKZrPbyhvFYtFOM+WTer2uXC5nj+fO5/N2OcdZ9+jHjE0x7Y7pdNpuE9xpTItp10yn03aZx7SNmv2ads5+bZU4eky90lkf7a1fDlomDa57DlpmytVmTNhumXvX2d5t7l+3ZcFgUNFoVFJ3+72pW0rdbfLOtnVn34Czjd/ZVm9+e6hfn8FR0699wfx/kdT13gzT1uGsKzn7AZ37792+0+kon8/by5zH791/77oHyfnbUc57Req+F3r7V3r7VXazrvO+2s26vfdYb39Ub/4BAIfH+X3p1O/5S27tjM6yV69BMTiD6gP92jOd/RC9er+/nfqdp9Td9+HU6XTsNsJetVrNLlv2blOv17uO5YzhqVarQz3XapScMUO98UdmeW/sh+F2HSUdqXP2+/196/3mGQtuxsbG7L4mJ4/H01UGcm7v8/m6yjwej8deHggEtsXnmOXhcNg17sbUb/vl0dRx3Z5b1u93R03d2M2gMpqzTtKrX1yTySO/KQwAAAAAAIC9cBvX6YwDcOrXJuy2DxNTYLi1Qx/1dZ4lt7bA3vbG3nV20yfd2w7Z+/tazmP1xvb0ruuMh+gd99g73tFtrCQAAAAAAMCLpl6v279bv7S0pOXlZS0vL3f97XzOw6lTpzQ7O6vZ2VmdOXNGZ86c0ezsrObm5jQ3N6epqam+8YUAAADYt9c9Vr8nBwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADly1WlWtVus7P2zaXrbpt59cLqe9/tRtOBzW2NhY3/lh0w5ym2QyKa/Xu6fzAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwItlmOd17Gad3S4rlUpqNpu7zvcwz+oYZtlet49GowoGg/u48gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwMH7v935Pr776qlZXVxUKhUadHQA4Fjwej1577TVdvXp11FkBAAAH5NatW/qe7/kevfe979UXvvCFUWcHAIBd+4Ef+AG1Wi199atfHXVWAAAviD/7sz/TL/7iL2pzc1ORSGTU2QGAY6HRaOhLX/qSPv3pT+u///u/9X3f93368Ic/rB/7sR+Tz+cbdfYAPEOVSkWf+MQn9JnPfEbz8/P67Gc/q3e9612jzhYAAHvWarW0vLys69ev69q1a7px44auX7+uW7duqdPpKBgM6uWXX9bCwoIuX76sK1euaGFhQS+99JI8Hs+osw+MVLPZ1JMnT7S+vq61tbWu6eLiotbW1rSysqJisWhvEw6HNT09rUwmo+npac3Pz9vzZnrmzBnqlgAA7FK9Xtfm5mbX93Dvd/Py8rJarZa9jfledvs+NmmZTGbX5d4333xTn//85/WFL3xB6+vrevvb366rV6/qfe97ny5cuHDQpw4AAIARqdfrevDgge7fv6/FxUXdv3+/65XNZiVJXq9XU1NTmp2d1cTEhE6ePKlkMqloNKpQKCSfz6dms6lsNmuXYbPZrLLZrLa2tlSv17cdOxwOK51O7/q1l/LtXuRyOT18+FCrq6taX1/X+vq6Hj16pMePH2ttbU2PHz/Wo0ePtLW11bVdLBbT9PS0JiYmNDU1pUwmo/HxcY2Pj2tyclKnTp2y/z516hRt1AAA4NhrNpt2n+LKyooePnyohw8f6vHjx/Z0Y2PDLlsa6XRaU1NTmpiY0MzMjCYmJpTJZDQ1NaXJyUm7TDU+Pv7c9TtWq1VVKhXl83mVy2VVKhUVi0UVi0VVKhWVy2Xl83lVKhVVq1Vls1nVajVVq1XlcjnV63WVy2UVi0XV63UVCgWVy2U1Go2Bx/V4PEqlUgqHwxobG1MymVQ4HFY0GlU8HlcoFFIikVAkElE4HN62bigUUiwWUywWUzgcttcNhUJKp9OHdPUAAMCoNBoNPX36VJubm3r69KmePHnS9beZmmWbm5sql8td+/D5fBofH9fJkyd18uRJ1/a/EydOuKYHg8FDP+disahGo6F8Pq96vW6X25rNpl0uq1QqKpVKajQayuVyajQaKpfLfdNMO6pJ24nP51MikdDY2JjC4bBisZgCgYASiYR8Pp9SqZS8Xq9SqZS9biAQUCwWUzAYVDQatct0puzWu49kMimv10uZDgAA4AVRrVa1ubmp1dVVra2t6dGjR3r06JGePHmiJ0+eaGtrS7lcTrlcTvl83m6HdPJ6vQqFQgoGgwoEAvL5fPJ4PPJ4POp0Oup0Omq1Wmq1Wl1jUYZhyq/O+Z2mw6w77DqmfAwAAAAAAAAAAADsxMT59+oX318sFrueGWPk83l1Op2uNMuylMvltq3bbrdVKBS2pfeLSTuoPOZyOVmWdah5HAWv16tEImH/bc7Z5/MpGo12pVuWpWAwqHA43LWPVqtl96c6tdttBYNB+f1+1+O69VMGg8Ft74fX61U4HFalUtmWHgwG1Wg0urbx+Xzy+/3brn0gEFCr1VKtVrPTTN6q1aq9DzOmp9PpqFgsyuPxdOW1VqupVqttGy9dKBTUbre3ndNhi8fj26651+tVMpnctq7pP+7l1o/s9/sVj8e3rWtiNXulUqlt18jEee6Uh2g0uu1+cjuv3mOYcUQ75dstHwAAHGWmbFqpVFSv19VsNlUqlVyXOWPYTLm7Wq2qVqt1lVsHLTPlGlNu7XQ6yufze8q7+Z433+0m9k56q7zl8XjUbDbV6XTUbrddn9fTa2xsTKFQSPF4XJFIRJFIRMlkUolEwh4rbMoY6XTajpczY4jN+ma8sdkuFovt6Rxx9JkxTuVyWdls1p4vlUrK5XIqFov23yaO1KyTz+dVKBRUKpXsdDfmvup9pdNp13TzSqVS9uuoePLkiW7cuKHbt2/r9u3bunnzpm7fvq0HDx7Yv31w4cIFXb58uet14cIFBQKBUWcfOHCbm5saHx/XV77yFX3/93//qLMDSHqrPe7evXv6xje+oZs3b+r69eu6efOmbt26pXq9Lo/HozNnzujixYu6dOmSXnnlFV28eFGvvPKKpqamRp39Q9PpdOyxIma8iHPciPnuN8+wKZVKKhQK9rNxzPe/W1uxYdrd4vG4/XyaRCKhWCymUCikZDJpl01TqZRCoZD9zJtgMDhwuVu7Ko4OUwczfQ+mr8HUp0ydK5vN2n0Lpt5l6m2mD8GM3zf1s3773i1zbznbSE3br1lmxupLssfhD1pm6lfONmdzvw5adhSZz7az78dZ/3XWr531cPN+SbLfM+mb94TU3SflfP+c/WO7Of5+ONvwzTMXpO73xtknYJ7b4La91N0u37tub9u+81kOu1m3tw3frc8AAF40zu+cndJ3s+5RS9/PPsz3qkmv1+vbyvGlUulI9Ok7mfgGSdvy6/V65fP5tsXXSOr7fHdzHXqXt9tte//OZc1ms29957CZMmWvYDCoUChkj+s3xsbG7LKNM64jGo3a19QZm5JIJLriIPx+v/0sq17OsnBvXtxiDZzj9p36lWP6lZPdYjXc4iD2kkcAAAAAAABgv5x9om4GxVfs9Gz6Qf3ig+KY3cZy9Rvn1288n9s++h3T2V+8U/77jUPstw/zLP9R6n1ev9uYrxdlHQAAAAAAABxP2WxWa2trWl9f3zZdXFy0f6/IxGYGg0GdPHlS09PTmp+ft1+ZTEbT09M6f/68a6weAAAADs3rHuuojHwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgANSrVZVq9X6zg+bdpDb5PN5dTqdPZ1POBzW2NhY3/lh0w5ym2QyKa/Xu6fzAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwItt0LM69rts2O1zuZwsy9p13nufxTHM8zz2u4znfgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAO8uydP78ef3oj/6oPv3pT486OwBwbHg8Hr322mu6evXqqLMCAAAOwNbWlr7ru75LExMT+td//VeFQqFRZwkAgF35xje+obe//e36x3/8R73nPe8ZdXYAAC+IjY0NTU9P68tf/rLe/e53jzo7AHDs/Md//IdeffVV/f3f/73Onj2rX/mVX9HP/dzPKRqNjjprAJ6he/fu6aMf/aj+4R/+QT/yIz+iT37yk7p06dKoswUAwIFpNBq6e/eurl27phs3buj69eu6ceOG7t+/L8uylEwm9fLLL+vy5cu6cuWKFhYW9La3vU2Tk5Ojzjpw5FSrVa2vr2txcVFra2taX1+3pyZtY2PD/l3RQCCg8fFxTU9PK5PJaHp6WvPz8/Z8JpPR3Nyc4vH4iM8MAIDjJ5vNbvsedn4337t3T7lczl4/FArpxIkTrt/HJm12dlaBQGDbsTqdjv793/9dr7/+uv7u7/5Ojx490jve8Q69733v00/8xE/owoULh3nqAAAAOGS5XE7379/X/fv3tbS0pKWlJa2srNivjY0Ne91wOKy5uTnNzs5qdnZWZ86c0ezsrDKZjE6dOmWPjdna2tLW1pay2WzXtDd9a2tLhUJhW56CwaBOnDihdDrtOjXzbq9gMHjg16her+vJkydaW1vTo0eP9PjxY62trenJkydaX1/XxsaGnj59qidPnmhzc7NrW6/Xq/Hxcft16tQpTU5OdqVNTk7q1KlT9rmNjY0d+DkAAAAchnq9rs3NTWWz2a72TOc0m81qdXXfKq1eAAAgAElEQVR1WzkwHA4rnU7b7ZqmfNf7dzqd1unTp5VMJkd0lqNlWZZyuZxqtZqq1ary+bzq9bpKpZKKxaLq9boKhYIqlYrq9bqy2azruqVSSbVabdu6OwmFQopEIkomkwqFQorFYorFYgqFQkomk4pEIgqFQkqn0/a6iURCoVBI8XhcsVhMgUBA6XRagUBAsVhMY2NjCofDSiQS8vl8h3AVAQDAQapWq9rc3NTTp0+72siePn1qtwWal/PvRqOxbV/RaLSrLdDt5VyWTCaVSCSUTCaP9NiocrmsRqOhbDarZrOpUqlkp+VyOTUaDZVKJbtcVigU1G63lcvl1Ol0lMvl1G63VSgU7O3r9boqlYpd1jPbDsPr9SqZTMrv9ysejysYDCoajdrlN1M+i0ajCgaDisfj8vv9SiaT8nq9SqVS9tTn8ymRSNhlO7OPcDissbExu3wIAACAo69Wq9nl+kePHtnzppxvyvhbW1va3NzU1taWKpXKtv1Eo1GlUinFYjG7zTAej9tlxVAopEAgoHA4LEmKRCKq1+vyer0qFotqtVqqVquq1WpqtVoqFouSZLdf9q5jysi7Zcq7Jl+mbCtJqVRKHo/Hbs8cZh1TBh5mHVMWBwAAAAAAAAAAAPBNpg9wP+kHsY9nnf6sj5nP59XpdLalP2umP1R6a+xLKBTqGi9tWVZXX7Hh8/m2xRkGAoFt40uCwaC8Xm/XuQUCAQWDwa7rYNJarZaazaYkye/3289cqtVqarfb8vv98vv9dt4qlYp8Pp+dJkntdlutVmtbfqvVqtrttp3m9Xolye7fNmkej8c1vrNUKtl5M0bxvjnfM8P0pTuZOFInE1NqeDwepVKprnWc/eeGiVndKR9u8afD5EOS0un0jvkwca9ObucOAID0zZg1M36j0+kon893LTNjPMwYYLNO71iQRqOhcrlsr2/KdGZ8SLFYtNd1ljcG8Xg88vv98ng8dnnJ4/HIsiy1Wq2hyhiBQMAeVxIOhxWLxey/x8fHNTY2png8rhMnTiiZTNpjws34E7d5t+9uHF/VarVrjJh5mc+F2zLnOv3GsJt7ZrevqampbeXAZ8H89oHzdw+uX7+u27dv2/WKubk5Xb58WQsLC/b00qVLikQizzx/wLM0OzurX/7lX9Zv/uZvjjoreMG0Wi0tLy93/d+9ceOGbty4oWq1KknKZDJd/3cvX76sb/3Wb30uYvTL5bLy+bzy+bxyuVzXvHm5LTPzzvYpp2g0qkQioVgspkQiYc/HYjHF43Elk0n771gsZo8JMeXCdDpt/8133NHQb7y5qWOYceymLdKMXTftkNlsdlv9xYzh6bfvYbmNR+8d277TuHTn+CPTjmfG6JhlzrE5bu2Eh81ce2ed0Vx/59gn8x6Y62reB0ld46hM/VGS/V44jyOpq/3Z2e5s6qrO4+2H831wtvE623ZNnVDqbms1Y6okdT1byvmemTZdZzuzs13X+V47j2/uld7jA8BR4vwfbjj/xw9Kcxs76/yuGJRm2iWdnN9Rg9Kc302D0iS5tvnkcjn7d+0GpY2qX7uXx+NxfQ64x+Pp6q+0LEuWZcnn89nfbZ1Oxz4Hv98vn8/XlSa99Z1mWZbrufa2Abfb7W3XqdVqqdVqyePx2Gm1Wm3beofBtB8782LSzTV0lsnc+oF3m34Q+xhVer916ZcGADwLu3kGoZNbuXFYzvaH3XArIw9rmOdmj9pen4Fz3O31HjzK+pXnRu0oP7PItOEeFW5xrc/SYd8zh9ku7hb7CwCHabf9lYP0G4fzrPe1m3PYTdlqN+Xy3bTJDlv2dmtj7mensrLp43bTr43a2KmeYfrL3eynXjQq/Z737lYe61d+7LcPtzKG25gcqX8frdtvDvXbR78ylFsMsok76OXsN95pH/QrAwAAAAAA4DgpFotaXV3V2tqa1tbW9PDhQ3u6vr6ulZUVPXr0qOsZRolEQqdPn9b09LSmp6c1MzOjTCZjp83NzWlqaupI9e0CAABgm9c91ihGDgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4LlSrVdVqNXu6U9pettnNfgqFgtrt9p7PJxwOa2xszJ7ulLaXbXazn0QiIZ/Pt+fzAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJyGec7HbtbZ7bJyuaxGo7HrfA/zPI9hlu11+2g0qmAwuI8rDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4Fr761a/qXe96l77xjW9oYWFh1NkBgGPD4/Hotdde09WrV0edFQAAsE/NZlM/+IM/qHv37ulrX/uaJicn/z97dxpjWV7Xf/xz13P3pWu91d0z0OMgUzX7ICLwwH+QBAEhYhwf+EDBFcSACowSNTwgRogPBEQTF0gIibRExBgSDVEJzAQCNgzDVNOMTGNPd9+qurXcfd/+Dzq/35x76tbaVX17eb+Sk7Ofe86p5XzP97fcSZ8SAAAH9qu/+qv6xje+ofPnz8vv90/6dAAAd5CHHnpI/+///T/95V/+5aRPBQBuWT/84Q/1iU98Qn//93+vUCikX/mVX9H73/9+nTp1atKnBuAY/cd//Ic+8IEPaHl5WW9/+9v1oQ99SCdPnpz0aQEAcGxKpZKeffZZnT9/XsvLyzp//ryeeeYZFQoFSVI2m9Xi4qIee+wxLS0taXFxUY888oji8fiEzxy4uTWbTV2+fFkrKyu6fPmy8vm8rl69qitXriifz+vy5ctaW1tTr9ez+8zMzGhhYUGnT59WLpfTyZMndfLkSeVyOZ0+fVrz8/OanZ2d4FUBAHBrajabWllZUT6f18rKii5evGinzfjSpUvq9/t2n2w2q1wup4WFBZ05c8ZOm/FLX/pSnT9/Xp///Of1T//0T1pdXdWZM2f0Mz/zM3rzm9+s17/+9YpEIhO8agAAANxorVZLly9ftsOlS5fs9AsvvKAXXnhB9Xrdbh+JRHTy5EmbD5qfn9fp06e1sLAwkhdyHEeS1O/3tbW1pWKxqK2trZHp3ZYVi0V1Op1t5xuPx5XNZg80nDhxQtlsVqFQ6EjumTtWLxaLKhaLO85vbGyo2+2O7B+JRA58DdlsVrOzswoGg0dyDQAAAMetVCppZWVFhUJBGxsbWltb08bGhh0KhYLW19ftvDf2SyQSmpmZ0ezsrKanp+0wOzurqakpnThxYtsQjUYndLW3lmazqWKxqFarpWazacfuZTtN77a+UqmM5Kt3EolEFI1Gx46z2ey+lu21LpPJyOfz3YC7CQAAdmLihIMOm5ubY/OC0s55NXdssNMQjUaVzWZv8F04erVaTd1u18ZepVJJw+FQxWJRg8FA5XJZvV5P1WpVnU5H9Xrdxm0mnqvX6+p0OqpWq+r1eiqXyxoMBiPH6Pf7qlQq+z6vRCKhUCikVCqlQCCgTCYjv99vx+l0WsFgUMlkUuFwWPF43MZusVhMjuMoHo8rHA7becdxFIvFFAgElEqlJMn+DM3nAAAA4Hi1Wi1bpu8dNjc3R8buwV3HwEgmk7bsPpPJHGhIp9MaDocqlUqSZGNZE+N2u13VarWRbUzMvJ9tGo2G2u32vrY5KBPDmpjZxMEmPnav8/l8ymQykmTjYXPvgsGgja2lF/Os0ovxsTt2Nu9JkpROp+X3+0c+EwAAAAAAAAAAAMDtw5SLHsWyozzWpJaN2+ZGcJfjHmTZYDBQOBwe6fNpMBjYMmaj3+8rEAiMLPP7/SP1KXu9nvx+v8LhsF1m2rm7l5m6uu62951OR4PBYKQte6fTUb/fH1nWarXsubiXdbtd+/1mrVZL7XZ7ZJv9/jxNnYAbxfvz2M/P7HrnJ3VM6t8CwM1nt7Yhpl2Hqddm2oi02201Gg37HK1Wq2o0GiqXy2q327Y9Sa1WU7/ft3XiGo3GkZ+/4zgKBoO2TUgkElEsFlMqlVIqlVIymVQqlVI2m9X09LSy2azS6bQymYwSiYTi8bjtR8i0KcGtqd1uq1wu28G0EzN9SLkH77Jx7ZeCweC2fqOy2aympqa2DaYPgqmpqSP77oFWq6ULFy7o+9//vpaXl+34+eefV6/XUzAY1D333KOlpSXdd999uv/++/Xyl79ci4uL/B7jlvGWt7xF8Xhc//iP/zjpU8Ftqtvt6rnnnhv5Hpnz58/rueeeU7fbVSAQ0Etf+lL7v9R8l8zLX/5yW4/+ZnaQNtSmP8Ktra0d2yTs1kZ6rzbUU1NTts9H3Fg79cNzkH58xu03ru/K3ezWj89++u45yPhG9ufjbttj3pnMO5S5V+5tTPt5085eevGdy7xHSVKxWJQk207I3abe5CbN+5f7sw/KtKeXZO+bu12Quw1QKBRSIpHYtp87v+duJ+R+fzJtkqTR/J/7Z2XaNu30+QCwX6a/E8P9/1Ua/d99o/cxzwG3cW1C91teZZ41ey27Ucxzwv1MisfjGg6HI8tisZiGw6EGg4FdFolEti1zHEeDwWCkz8BwOKx+v7+tH0H3fuYcvGV5/X5/27Jer7ctpjHljDfaYcrVbsVl+93P9OsDALiz7NRfxk71rHaKfbyxmeF+l3YzZZ1eO/VxZ8pKd7NX38f76T9vP/XL9soJ7HRtbt7Y1mtcbItbh+nL5U5yu+SUTI7wZrPX/wzgdmH60rpV8B59OO7+024Xk8wPHtZO8ftRuBXvx63IXY64l3G5wJ0c5H+buzxyL7v1/e4uBx1nt+eDu5xzHHdZ6ji7xe573ePd6ra6+40cZ6//hbTvAAAAAAAAAG4/g8FAhUJBhUJB+XxehUJBq6urWllZ0fr6uq5evarV1VVdvnx5pK6N4zjK5XI6efKkFhYWtLCwoFOnTml+fl6nT5+249ut/AUAAOAO9Xnf8DAtlwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcMM1mU61Wy473Wnbc+1SrVfV6vUNfTyQSUTQateO9lh33PslkUsFg8NDXAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOzF24/Hfvr62M+6/e5fLpc1GAwOfN7e/jr206fH9a5zb5NOp+X3+6/jzgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbme//Mu/rIsXL+rrX//6pE8FAG4pPp9PZ8+e1eOPPz7pUwEAANfpne98pz772c/qqaee0oMPPjjp0wEA4MDW1tb0kpe8RH/1V3+lX/u1X5v06QAA7jBPPPGE/vVf/1UXLlyY9KkAwC1vfX1dn/rUp/SJT3xC6+vreutb36r3ve99euUrXznpUwNwTAaDgT772c/qT//0T1UoFPSud71L73vf+zQ/Pz/pUwMA4IYpFotaXl7WuXPndP78eS0vL+vpp59WvV6XJOVyOT322GNaWlrS4uKilpaWtLS0pEgkMuEzB24d/X5fa2trunLlivL5vC5fvqx8Pq+rV6/qypUrWl1d1eXLl1Wr1ew+juMol8vp5MmTWlhY0MLCgk6dOqX5+XmdPn1auVxOp06dUiwWm+CVAQBw6+l0OtrY2NDKyory+bxWVlZ08eJFO53P5/XCCy+MPJcjkYgWFhY0Pz+vcDisVqulS5cuaWVlRZFIRK997Wv1tre9TW9605t01113TfDqAAAAcLMol8u6evWqrl69qnw+rytXrmhlZWUkL7S2tqbBYGD3mZ2d1ezsrObn5zU/P6+ZmRnlcjnNzc1pZmZGCwsLmp2d1czMjILB4NjPbTabKhaLBx62trbUbre3HS8SiSibzR54mJqakuM4h75/Gxsb2tjY0Obmpj2/ra2tPafd91OS/H6/stmsTpw4YQf3/G7T4XD40OcPAABwI5TLZRUKBa2vr9v4aX19XYVCwc5vbGyoUChoa2tLlUpl2zGi0ahOnDihqampkZjJvWzcumg0OoErvj1VKhV1Oh1VKhW12201Gg3V63V1Oh2VSiX1ej1VKhW1Wi01m03VajV1u10Vi0X1ej1Vq1U1m021Wi1Vq1V1u12VSiV1u13VajU1Go2xsf442WxWoVBIiURC0WhUkUhEqVRKwWBQmUxG4XBY8XhcsVhMjuMonU4rGAwqnU7LcRzFYjHF43GFw2Gl02mFQiGlUim7XyQS4XcHAIBjUq1WVSwWValUVC6Xtw3FYtFO77TNOOa5boZsNqtUKqVEIqFEIqFkMqlsNjsyn0qllE6n7XwikVAmk7nBd2SyTHx2kHGxWDzwPq1WS6VSScPh8EDnZ+Iy73i3ddezrXufdDotv99/tDccAADgNtBqtWz5t3coFosqlUo7Do1GY9vxfD6fMpmMstmsMpnMvod0Oq1UKnWkMXyn01G9XtdwOFSpVJJ0LS/a7/dt/tJsMxgM7PvJTttI1/Ljg8HA5kgljeRCTZxs8qSSbN71sExeVJIymYx8Pp/Np0qyuVHpWq5Vks2NSlIikVAoFLI/G0k2rypJyWRSwWBQfr9f6XRakkZi6VQqpUAgoEAgoFQqJUk23gYAAAAAAAAAAACAozKubNW0ZXEzZbpu3jqN7nJiw10ubLjLfg13GbFh6k+6mfqUe11DtVpVr9c7kmu4Eca1wfGWEbvLjw1Thm2YMmvDcRyFQiF7L4LBoKLRqHq9nnq9nvx+v92n1WppOBwqFovJ5/Op3W6r3+/LcRwFAgF1u111Oh0Fg0GFQiFbxh8IBBQKhTQcDm2ZvSlPr1arGg6HCgaD8vl8ajQa6nQ6CgQC8vv9237G3t+NcT8PU4fgOHl/Hu76ApJGyvoNb51ZU2/A8P48D3rMYDCoZDJp17nrLbjrJow7f/dxvJ8LABhlYpd+v69KpWLrpJlYxTy7TEyysbGhWq1m2/HU63U7Nu2ATX24RqNhn8GH5ff7FQwG5TiOHMdROBxWLBaz7YSTyaSSyaRtE5RMJjU1NaW5uTlls1nNzc3Z9aZeHG5+/X7f1i/19h/lnd/c3LTD1tbWtt83x3E0NTU1MszMzNhp09eAe52pI7kf3W5Xly9f1vLysv3uAzNutVoKBoO66667tLi4OPIdCPfddx/tj3DT+eAHP6gvfelL+u53vzvpU8FtYNx3w3z7299Ws9lUIBDQ3XffrTNnztjvhVlcXNQjjzyy7T1/UqrVqlZXV7W+vq719fWR54155pjnkJn25nQk2f4KvX3buKez2axt42zaPLjfh3G0TLxbq9XUarVUqVTUaDRse2Z32+ZWq6VGo2H7xPHuV6/X1W63R/bbjcmFmJxJNpu1OY10Oq1IJKJ4PK5kMinHcZRKpRSPx+U4jjKZjM2VmZyJac9h2m3cyPYXB20rfph9djvWQeyn3fi4dUexvXuZaVMD4Pbi7fvM9K9mjMv5e8ukbvV9jos3r+84zsj/Ub/fv61PZXcZhXStLCEQCNh5U2ZmjjMcDtXpdGz+SZJ91ph92+22LaPx+Xzq9/sj92gwGGzr/67X6+27T7yjNO5ZY9psunlzZN4yF2l8GZ233EYabV9q7KcMUBot97lR1wAAuHN43yHHxTHj3jOLxeLEthlXZ2in+iLj6gNJ4+sOSdffD8Vx2KksZqfyvL36ddtPX8Dj4gq3cfGOl7tPjp3sVSY5Loby8tbB2clByrTcxsVi+7Gfe7STve7/Ttx9lgC4eXhzBjcDU+/lRjlIn/hHwRs7HKcb/fPdKba52dzon/ntYlycezvab/x2MzlsTLiXo7wXR3msoyyr2289xHF5y52QzwQAAAAAAACAW8/m5qbW1ta0tramlZUVFQoFrays2DZpV69etd/H7i4Pi0Qimp2d1cLCgmZnZ5XL5ZTL5XTq1KmR8czMzASvDgAAADfY533Dg35rNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAbajabarVadrzXsuPep1arqdvtHvp6IpGIotGoHbuX7bV+v8sOsk8ikVAoFDr09QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHtZ++Pvaz7rD71+t1dTqdA5/3fvr0uN51u20Ti8XkOM513HkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI5fuVzWwsKCPvaxj+nXf/3XJ306AHBL8fl8Onv2rB5//PFJnwoAALgOH//4x/V7v/d7+sIXvqC3vvWtkz4dAAAO5YMf/KD+4R/+QZcuXVIkEpn06QAA7jD/9V//pde97nV6/vnndebMmUmfDgDcFjqdjj73uc/pL/7iL/S9731Pr3nNa/Se97xHb3vb2xQIBCZ9egCOQbvd1l//9V/rox/9qEqlkt7xjnfo/e9/v17ykpdM+tQAAJiYfD6vc+fO6fz581peXtb58+f17LPPqt1uKxQK6fTp01pcXNRjjz2mpaUlLS4u6r777pPf75/0qQO3rGazqZWVFeXz+bHjixcv6vLly+p2u3afSCSihYUF5XK5kfGZM2fs9F133aVgMDjBKwMA4NZTLBbHPovdy1ZXVzUcDkf2cxxHMzMzeulLX6rXvva1evnLX26f0XfffbcSicSErggAAAA3m16vp7W1NV2+fFkrKyu6cuWK1tfXtbKyorW1Na2vryufz6tQKKjVatn9fD6fZmZmNDs7q7m5Oc3Pz2t2dlbz8/Oam5vT7OyscrmcZmdnNTs7u++8ULPZVLFYPPCwtbWldru97XiRSETZbPbAw/T0tMLh8KHuaalU0tbWlra2tuy5eafHrWs2m9uOlUgkdOLECWWzWZ04cWLbdDqdVjqdViqVUiqVstPpdFqZTEY+n+9Q1wAAAHBcer2etra2tLm5ORIbjRs2NzftdpVKZduxotGojY8ymcy+Bve21CuYDBPzt1otNZtNOx637DDrKpWK+v3+vs4lEokoGo3ua5zNZve97bhxKpWi/jcAAPtQLBZVLpdVLpdVqVTstHsoFouqVquqVquq1WqqVqsqlUp2vtFo7Hj8ZDKpZDKpRCKhZDKpTCZj5xOJhM23mXmzTTweVywWUzKZVCqVUiwWUywWu4F35uZXq9XU7XZtXNbpdFSv1zUYDFQulyVdy50Oh0NVq1X1er1t2/b7fRv7F4tFSbLbNhoNtdtttdttNRqNsdseRCKRUCgUsjFbOBxWPB6X3+9XOp2WJJtjTSaTCgaDisVichzHbhsIBJRKpSRJ2WxWkuy2Jg6UpHQ6Lb/fr1AoZOtrmM8HAAC4nRy2vL/Vau0Y03lzc96y/Z2Wu9fNzc3dlLk5c80mHpZejKuHw6FKpZIk2RhYejE+dsfZJj+6n/Umf+qOp01cLl37rorBYHDoazKxbzAYVDKZlCQbR0tSPB63dTHcMbN7e5/Pp0wmY4/pzq0e5f6O4/BeBwAAAAAAAAAAAOCW5S73NXq9nqrV6sgyd5m04S5HNkw9Tbd6va5OpzOyzJRL73R8d3m1YeqPGqZs3HCXW0tSt9tVrVbb9ZjXW769H95yZXfZtGHqjxqmHmm/39dgMFAsFlM4HNZgMFC/37d1VweDgXq9nvx+v+LxuCTZe5BIJOTz+ey8OQfz8zFl8KZ+genHwdQXcPcv4P6Z+v1+NZtNe98CgYCazebIz8L7u7HXz8Jdp+EouevZuuv2SrL1QQx3nwqmju9RH8f8XCWN1B+WRutFSKO/E9RNAHCrKZfLarVaqtfrqlararVaqlarqtfrarfbWl9fV6VSUa1WU6FQUKVSUb1eV6VSUaPRsPt0Oh01m011Oh31er2RZ81++Hw+Ww8tHA7b/6eO4ygSiSiVSo3te8f0f72wsKCpqSn63bmJeeubmn5Vd6pnms/nbZ1Kt2w2q1wuZ+uNmv5WvdNmO+/vQ7fb1XPPPadnn31WzzzzjJ599ll973vf0//93/9pOBwqmUzq/vvv1wMPPDAynDhx4kbdKmCbz3zmM/qt3/ot1Wq1m7J+NG5O1WrV/o8z/++eeeYZW5/91KlTuv/++/Xggw/qgQce0P3336/77rtv5F3nRmi329rc3Bz7fPA+K65evbotV7BXf4PeZ0M2m9XMzAztPK+TyRWUy2XVajU7mLbgZt60Ga/Vamq1WiqVSjYPYaYbjca++owx7/SZTEaRSESxWEypVEqRSMS2DzdxYywWG9k2Go0qk8nIcRzF43GlUik5jmPbmh/H74PJfZmcmLnGYrFo75/JwZhci8nVmX1MLsy9j/RiuxSTfztInzuGyWWY9iAmD2LuhzsWj0ajNm9icmXunIv3WKY9hzmWO+dCvA7cfLy5+t3mj2vbo/wcb1nEcQmHw4pEIhoOhxoOhzaXYXLxoVBIoVBopEzD7/dvi+e9fTa7/0f2+30Nh0O7j7uMwWi32yPzrVZLg8HALut0OiP3o9frjdyv42KeCYa7fZ90uLIYb19u3jy9N8fvbW8obS8z2OmzvceSRts1Gt4yh3HXCgDAfnnL5b1xjrtfBm8Zv7suhbc+h7u+h7d+ibt+iPfzvfVJvOfj7hfhINscJ2+84O7366i32emZPy4+kMbHEtLO9QvGxSM7nYs0PqaRttd1MMbFSgAAAAAAAAAAAAAAAMDNaDAYaGNjQ+vr69rY2NDa2poKhYIKhYLy+bzW1ta0tramlZUVFQqFkT5zgsGgZmdnNTc3p1wup9nZWS0sLNhlZjqXy22rZwwAAABI+rxv6O5NEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADhGzWZTrVbLjt3L9lp/HPvUajV1u91DX08kElE0GrVj97K91h/HPolEQqFQ6NDXAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwFb/8f++kj5HrXubcpl8saDAYHPm9vPx+79QFykG32uy6VSikQCFzHnQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4M7xyU9+Uk888YTy+bxSqdSkTwcAbik+n09nz57V448/PulTAQAAh/TlL39Zb7b/TQoAACAASURBVHzjG/XhD39YTzzxxKRPBwCAQ2k0Grrrrrv03ve+V3/8x3886dMBANyBOp2Opqen9ZGPfETvfOc7J306AHDbefLJJ/WRj3xEX/rSl3TPPffo3e9+t37jN35DsVhs0qcG4Bh0Oh197nOf04c//GE9//zz+oVf+AV96EMf0uLi4qRPDQCAm0K329Vzzz2n8+fPa3l52Y4vXLigwWCgcDisH/uxH9Njjz2mpaUlLS4uamlpSWfOnJn0qQO3lWKxqHw+r5WVlW3jixcvKp/Pa21tbeR7cbPZrHK5nBYWFuz4zJkzI8tyuZx8Pt8ErwwAgFtLq9VSPp9XPp/XCy+8oCeffFLf+c539Pzzz2tjY0PD4VA+n0/D4dDuwzMZAAAAh1GpVLSysqJCoaC1tTWtrq6qUChodXVVa2trKhQKdn2z2RzZd3Z2VjMzM5qbm1Mul9PMzIzm5+c1Pz+vmZkZ5XI5zc3NaWpqSo7jHOr8ms2misXigYfNzU11Op1tx4tEIspmswcepqenFQ6HD33+W1tb2traGpn2zpvpcrmsSqWibrc79pipVMoO6XTaTmez2ZF593Qmk1Emk7HLD3MtAAAAR63X643ERt44qVQq7ThUKpWxx3THPrsNJi4y02agDu/Nq1qtqtfrqVgsqtvtqlarqdVqqdlsqtFoqN1uq16vq9PpqFarqdvtqlKpqN/vq1wuazAYqFQqaTgcqlgsajAYqFwuq9/vq1KpqNfrqVqtqtPpqF6v7/u84vG4wuGwEomEQqGQUqmUAoGA0um0/H6/MpnMyDidTisQCCiVSikYDCqZTCocDisej8txHMViMTs2630+nzKZjCTZ4wIAcCcyuTYTA7jzgftZZuYLhYL6/f6OnxOJRBSNRkdyie75naZ3Wjc7O6tgMHgD79Ttp9ls2p/fuPF+tjnMtu59DsP9uxSNRvdcdph9DnIcYkkAAHCjtVotm9M15eBmulqtqlKp2KFcLtttvMM4Jmfmzu+mUiklk0llMhlbXp5MJpVIJOz6eDyueDxu18fjcRsv3e5MDlSSzalKsnlTk3eVZHOt0rV2RpJGcqcmByvJ5mG9x22322o0GpJk87CGOeZu+18vk1+VNJJjlWTzuNKLOV5JNjfr3V+6Vk/7evY3OeT9zruPCwAAAAAAAAAAAAB3InfZtSRbt9Nwl4NL0nA4VKlUGjmGu0xa2l4u7S7blraXb0ujZdzSi22cDG99U2/bJNOGyXCXz4/b/yglk8mReszusm9vuba7zqn0Yjl2t9vVcDhUOp2WdO36AoGAEomEut2u+v2+wuGwHMex1xGJRGxdBEmKxWJqNpsaDofy+/0KhUL2ZxkIBNTv9+22wWBw5P4Nh0N7XJ/Pp0ajYftC9d5Ld30G730/rvvsrkPgvafusn9v3QXv/XYfx73OXRfBtEHzfpZpqybJtl8b95nunz/1igEcBfNsLpfLarVaqtfrWltbU7FY1Pr6uorFosrlsjY3N1WtVlWv11Uul227YPNc7nQ66vV66na7I/1d78Tv9ysYDCoYDCocDtv/m7FYTMlk0rYfN219TH9Ic3Nzmp+f18mTJ+3/SkxWo9HQ5uamNjc3VSgUtL6+bofV1VVtbGyMzLuf+9K1Z+bMzIxmZ2dtP1imLywzLCwsaHZ2VtFoVP/7v/878t0H3/rWt7S2tibp2nNycXFx5PsPHn30UfoewA3xzW9+Uz/5kz+pH/7wh7rnnnsmfTq4yfR6Pb3wwgtaXl7WuXPntn1/SzKZ1Mte9jL7vS2Li4t65Stfqbm5uWM7p06no9XVVV25ckWrq6u6evWq1tfXtba2prW1Nfv/e3V1dds7tvnfPTc3N/K/2/Rb6F132L4L70Smr5VSqaRqtapqtaparaZqtapSqWSna7WabbtRq9Xs8mKxaOfduRIv00YjmUza9huJREKRSETpdHqknbV5p02n03Icx+7nOI5tz+E4zsi76/WoVqtqt9uqVCo2D2DyOKVSyfY74+1fxmxrclEmn1QqlWyfNWYfby5pN+Z9PRQK2Xtk4lbHcWzexryjm/d2M2/Wm/yC2c8cx+QJTI7AnRMAcDDu3KH779ydg/bmn735a9M+S9qet/TmpU1fWNL2nLQ3D+7OR3tznt7/Se786FEKhUL23Wg4HCoajSoYDGo4HGo4HCqRSNjz8/v9ikQi9tpCoZDNUXc6HUUiEfl8Pg0GA/X7ffusN+dtcqTtdluBQMB+n0aj0bDHGQwGarVaNr/Z7XbVbrftfLPZVK/Xs/tWKpWR7/I4Ku68rDSay5W2tw3zrvfuL43mcKXtOX7zLDDcOWNJY58FmUxm5HtJvG3YvLlq89wyvHlmAAAmwR0TuWMpU5bvjpPcMZy77H6v8mN3vQBvnOX+TG99APe5eesweGPGo+CNIXYrkzbv6IY7LvDGJt64Qhotw74ZtgEAAAAAAAAAAAAAAABw8xsMBrZ92cbGhgqFgm1DPG5+fX19pL63z+ezbYdzuZxtd3by5EnNzs5qfn5e8/Pztm0xAAAAcB0+7xseR+tDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATEyz2VSr1bJj97K91h/HPvV6XZ1O59DXE4lEFI1GR6avZ9n17hOPxxUOhw99PQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBx2E8fIftZd9j9G42G2u32gc97P32BXO+63baJxWJyHOc67jwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJiERx99VA8//LA+9alPTfpUAOCW4/P5dPbsWT3++OOTPhUAAHAIP/jBD/SqV71KP/dzP6fPfOYzkz4dAAAO7eMf/7j+6I/+SJcuXdL09PSkTwcAcId661vfKp/Ppy9+8YuTPhUAuG0999xz+uQnP6m/+7u/UyKR0Dve8Q797u/+rk6ePDnpUwNwDAaDgf75n/9ZH/rQh3ThwgW98Y1v1J/8yZ/ola985aRPDQCAm1K1WtVzzz2n5eVlnT9/3o4vXrwoScpkMlpaWtLS0pIWFxe1tLSkhx56SDMzMxM+c+D21W63tbm5qZWVFeXz+ZHxxYsXlc/ndeXKFVUqFbuP4zg6ceKEFhYWdObMGeVyOS0sLIyM77rrLiWTyQleGQAAt4Z6va6vf/3revLJJ/WVr3xFTz31lHq9ntLptE6ePKlMJqNAIKBGo6Ef/vCHKpfLdt+9nslnzpzRXXfdpWAwOMErBAAAwM2q2WyqWCzafJB72r0sn8+rVCqN7BuJRJTNZkcGE4t6l2ezWRvbHsX5HnTY3NxUp9PZdrxx17CfYXp6WuFw+MivodVq7bjerFtbW9NgMBh77J2uJxqN7nqtZv3c3JwCgcChrgsAAOAo7DfeGxc3HSRO2ik+2mn5iRMnFIlEbvDdwHFoNpv29+egY/fv3n7G1WpVvV7vQOcXiUTs7+G48X62Ocw+sVhMjuMc+f0GAOBGKhaLajQaajQaqlQqqlarajQaqtfrKpVKdl25XFatVlOj0VCtVlO5XLbrSqWS6vW6Go2GqtXqrp+XTCYVi8UUj8eVTCYVDoeVTqft8zWVSikcDiuVStnn7rhl6XRa4XDYHs9xHGUyGfl8vht05+5MpVJJw+FQjUZD7XZb0rXfIelafcpGoyFJKpfLGgwG6na7qtVqkqRaraZut6vBYGDrb5gY0H3sTqejer0uSTY27PV69nerXq+r0+loOBxuy78fhOM4isVikqRUKqVAIKBQKKREIiFJSiQSCoVC8vv9SqfTkmR//ySN/L6l02n5/X5J137HTV2TeDxuc+LuODMcDisej0uSAoGAUqmUpGv9frrLA/idBgAAXqVSSZVKxQ7ValWVSkXFYnHs8lKppHK5bJfV6/WRurReJvZJpVKKx+OKx+NKp9NKJpNKJBIHmo/H4zbewvVxx9r9fn+kjZKJxyWN5FbdMfv17u+O0Q+z/1Fzx9nj5r15273m3XH+fubdsf1+5t3vHvuZH3eOAAAAAAAAAAAAAHAn8rYxcpdRu+uWSrJtkwxTb9Uw9VSl7WXf7nJ16cW6qoapFytppB6sNFqmLm0vL69UKur3+5J03XVfd+OumyqN1kF1l0EHg8GRfk7T6bT6/b6Gw6EikYjC4bC63a78fr+SyaQ6nY4Gg4Hi8bh8Pp/a7bZCoZAcx1Gn01G/37dl3vV6XY7jKBAIqNfrqdvt2vL8er2uUCgk6do9bDabtn+GVqs10r7R/XN23093vWP3z9v787sepk6xNFon2NQr9t5Pd50Cd30Bd10A98/Gff/ddYjd9ZW99Ymz2ayddtdZdp8rgNtbuVzW5cuXdfXqVW1sbKhYLKpQKGhjY0Obm5uqVquq1WqqVCqq1Wpqt9tqtVpqtVrqdDrq9Xo7tiM3fD6f/H6/AoGAwuGwbT9rxul0WidOnFAqlVIqldLs7Kzts3N6etq2Mb+efoVwMK1WS+vr6yoUCioUClpfX9f6+rrW1tbs9Pr6ulZXV1UoFOwzVLr2PDI/w/n5ec3NzWlhYUHhcFjtdltbW1u2b/ULFy6o0+koGAzqZS97mR588EE9/PDDeuSRR/Twww9rdnZ2gncBt6NKpaJMJqN/+7d/05ve9KZJnw4mqFwu6+mnn7bDd7/7XZ0/f17tdlvBYFD33nuvHnjgAT344IO6//779eCDD+olL3nJkbXF6/V6Wltb09WrV7W6uqorV67Y8drami5fvqy1tTUVCoWR/ebm5jQzM6PZ2Vk7PTMzo7m5Oc3Oztr5+fl5voNiDG9/ON4+csb1mTNuG/d7pZeJW7z95IzrN2e3bWZmZux74mGvdT99s3ivcT/r99tny0H7YPHeu/2O6XsIdyp3Lss9vdu6g04f5bG8xz0KjuMoGo1qOBzKcRw5jqPhcDgyPxgMNBgMFA6HFQwG7XQ4HFa/31e/37ft/c3/Np/PZ5/5Jj9mcsHD4dC+A3e7XfX7fZtPM/lMn8+nTqejbrdrc54mH+zz+VSr1WxO96jt1gbpoO2VboZ9vW2uAAC4FbnLf91l0O5yYHfZpLv80l0m7S4Xdpcvm3fUo/qcw3KXTUqj5cnesmZ3OaS7LyZptNzUe0x3Oaq3zNMbU7g/39vOer+fDwAAAAAAAAAAAAAAAAA3Ur/f1+bmpjY2Nkba+Hrn19fXtbGxoY2NjZE23j6fT9PT05qZmdH09LRmZ2dtmzMzPzc3p+npabudqQ8PAAAAHLPP+4amlz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsW7PZVKvVGpne77Lj2KfRaKjdbh/6eiKRiKLR6Mj0fpcdxz6xWEyO4xz6egAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAbxdsvyG59hhxkm/2uq1Qq6vf7Bz5vb/8fu/UNsp91B90/lUopEAhcx50HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3qmeeeUYPPfSQvva1r+m1r33tpE8HAG45Pp9PZ8+e1eOPPz7pUwEAAAe0tbWlV73qVUqn0/rqV79q+30FAOBW0+/39bKXvUxveMMb9MlPfnLSpwMAuIP9zd/8jZ544gltbGwoHA5P+nQA4LZWKBT06U9/Wh//+Me1sbGhX/qlX9L73/9+PfDAA5M+NQDHYDAY6F/+5V/0Z3/2Z/r2t7+tn/3Zn9V73/tevf71r5fP55v06QEAcNMrFotaXl7W+fPn7fjpp5/WxsaGJCmXy2lpaUmLi4t2/Mgjjygej0/4zIE7R7PZ1MrKivL5vFZWVnTx4kU7bcYvvPCCer2e3ScSiWhhYUFnzpxRLpfTwsLCtvHdd9/Nd/4CAOBSLpf1ta99Td/4xjf01FNP6Vvf+pbq9brS6bRe9apX6RWveIXuvfdezc/Pq1KpjH0mX7p0Sf1+3x4zm83aZ++45/I999yjTCYzwasGAADAza5Wq2llZUWFQkEbGxva3NzU5uam1tfXR+bdw2AwGDlGPB7X1NSUpqenNTMzo6mpqW3DzMyMpqen7XwsFjuS8282myoWiwceNjc31el0th0vEokom80eeJiZmVEoFDr0dfR6PVUqFZVKJZVKJVUqFVUqFZXL5ZHpYrG447pSqTT22H6/X+l0WqlUSvF4XPF4XOl0WslkUrFYTPF4XNls1q5LJBLKZDKKx+OKxWJKpVLb9gUAALhRBoOBjXVM7FOtVu20Oz5yD9592u322ONHIhGlUiklEglls1kbHyWTSaXTaTufTqeVSCRsTDQuXorFYkcW5+Lm1mw21Wq17LjT6aher6vf76tSqUi6Vl9GkiqVivr9vur1ujqdjt3vMPt0u13VarUDnat5H5CkTCYjn8+nVCqlQCCgeDyucDisSCSiaDQ6sm0ikVAoFFIwGFQymZQkJZNJBYNBhcNhW68nnU7L7/fLcRz7+5/NZiVJ0WhUkUhEPp+PsgoAwE2lUqmo2WyqXq+rVCqp0Wio0WioXC6rVqup0WioVqupVqup0+moVCqp3W6r0WioWq2q0+moXC7bZ3SlUlGn07HP9N2EQiEbV4bDYWWzWftsTSQSCofDymQy9tk6blkymVQ4HFY6nbbP8VQqpXA4rFQqdQPuIA7K/K5I1+qODAaDkdiuVqup2+3a9x9JajQa9j3GxInm91B6MWbs9XqqVquSZOPH4XBo88XuaUkqlUoaDoeSpGq1OlIv9HqYWFGS/f2WXowJJY3Eke440xsvmrhVko1ddzuuOxZ1H9e7j/RinGu4jw8AAG4e1WpVtVpN9Xpd5XJZ1WpV9XpdtVpt13kT43vnd2LyYe6y83Q6rWg0qlgsNjKdyWQUjUYVjUZHprPZrI3Ls9nsSJyCW4PJ1RomZt/vvInN9zvvjcP3mjfvC/udN+8FO80fF28sbrjje8Mbp0svvi97mXzzXvu73zf22t/7XiCNvlcYO+W23e8/Xru9Y+yVK9/pGgAAwGR446yj5s4HHxd3bvq4eOPjo3aYehJ3knGx8Z1w7IPEzuadHQAAAAAAAAfnzc+ZdlSGu3zbW191t329+VF3PtZbhm/q0Eqj5d/e47vrx7rr4Lrr2R4V05ZKGq3PGggERupyu8uPTZ5qMBhoMBgolUppOByq0+kokUjI7/er3W4rFAopEonYe5VIJGzdYcdx7HUFAgH1ej0Nh0MFAgF1u131+30FAgF1Oh31ej0FAgG12211u10FAgHbBk4a/Xm4c8nuusren8X1cJezu8vsd6ob7M7rucvz3blB976mboB7W3P/3fUZYrGYHMfZcR8Ak1Wr1ZTP53XlyhWtra1pfX3d9oVULBZtHzumfmGz2VS73bb/6/r9vn0W7Mbv9yscDtu//3g8rlQqpUwmoxMnTmhqakpzc3Oam5tTLpfT9PS0MpmM0um0HXD0isWiVldXtba2pnw+r0KhoHw+v21ZoVAY2S+RSGh6etq2ZW61Wtra2rKxxtzcnB555BE7PPzww7rnnnvssxw4jJMnT+oP/uAP9Pu///uTPhXcIFeuXNHTTz9th+985zv60Y9+pOFwqKmpKfv/5YEHHtD999+vpaUlG3cextbWli5fvqzLly8rn8/bYWVlRVevXrX/G931NU6cOKFcLqeTJ0/a8fz8vE6dOmXHc3Nzd+x323a7XZXLZdsPjYkt3Mt2mjZ92rjrg7uZd0HTJ00ymbR9+JnpZDKpZDKpTCajRCJhl5l+Ad3LDqLRaKher9s+eMx8qVRSvV63baLN+3SxWLTvfaYfnmq1at+j3ev3kkwm5TiOUqmUfZ/LZDIKh8P2ehzHGWkHnU6n5TiObWPtOI4ymYxdb97zaPOJW4k79+TOSZlclXu9++/LvdybK3Pnudz/f9y5MXdux53DcR93t/bl1yuVSsnv92s4HCoWiykYDGowGCgSiSgUCqnf7yscDtvpYDCoSCSiTqcjn8+naDSqXq+nfr9vc2bdblfhcNjG9cFgUH6/37abDwQC6vf7arfb9n9Eo9Gw7VU6nY69P8PhcCR3WKvVjqw9vTSau3L31SSN5r689dzc7VvcuS1vexp3Oxx3PsvbbsdbN87bVsZ9HG/ukpwYAADbmXJJE2u54zQTi7njLVNW6o7HTPsKd+znPa40Wj7qjvlMzOaN5Q7LXf7mjj/cZXfusk8Tr7hjHHcM4o5b3PHEYT+H/ikBAAAAAAAAAAAAAAAAYGfFYlH5fF7FYnHbsLKysm1doVDY1gYqEoloYWFBuVxO2WxW2Wx2x/mZmZlt398AAAAA3CQ+7xseVStZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAI9TpdFSv1yVJlUpF/X5f3W5XtVpNklSr1dTtdtXv91WpVCRJjUZD7XZbw+FQpVJJktRsNtVqtSRJpVJJw+Fw5NjValW9Xm/scaRrX44uSe12W41G49DXk0gkFAqF5Pf7lU6nJUnRaFSRSESSlMlk5PP5FA6HFY/HJUnJZFLBYFCBQECpVOrQ+8RiMTmOI0nKZrOSJMdxFIvFDn09AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCSZfkXc/Yt4l13vut22cfdRchCRSETRaHRkeqfxbtscdp27/xIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBb1bvf/W59+ctf1oULF+Tz+SZ9OgBwy/H5fDp79qwef/zxSZ8KAAA4gF6vpze84Q36/ve/r29+85s6efLkpE8JAIBD+8IXvqBf/MVf1IULF3TvvfdO+nQAAHewH/3oRzpz5oz++7//Wz/90z896dMBgDtCu93W2bNn9dGPflTLy8t6zWteoyeeeEJvfvObqQMA3Kb+/d//XR/5yEf0la98Rffee69++7d/W29/+9uVzWYnfWoAANxy8vm8zp8/r+XlZTv+zne+o0ajIUnK5XJ67LHHtLS0pMXFRS0tLen++++X4zgTPnPgzlUsFpXP57WysqKLFy/aafd4dXVVw+HQ7pPNZnXmzBnlcjktLCzsOAYA4E7U7/d14cIFnTt3Tk899ZSefPJJff/739dwOLTxsBl+6qd+StPT0+p0OtrY2Bh5Bnufyy+88IJqtZr9nEgkMvLcHfdsvvvuuxUIBCZ4NwAAAHCrGA6H2tzc3DZsbGzYwcy71/f7/ZHjxGIxTU1NaWpqStPT03aYmprSiRMnlM1mlclklM1mR6ZjsdiRXUuz2VSxWDzwsLGxoW63u+14kUjEnu9BhpmZGYVCoSO5pnK5rEqlYsdmulwuq1qtql6vq16vq1QqqVar2flisahGo6F6va5qtapyuazBYLDj5ySTScXjccViMWWzWcXjccXjcSUSCWUyGTufTCaVSqXsfDqdtvvG43G7bTgcPpLrBwAA2Em73Va1WlWlUlGxWLSxkhlqtZpKpZKNj8y29XpdjUbDxk+NRmMk/+rl8/lG4qFEIqF0Om1jJxMPxWIxxeNxG+PuFDslEokjixVx+xgMBiqXy5KkUqmk4XCoarWqXq+nRqOhdrutdrutRqOhbrerWq22r33MtpJUqVTU7/fV6XRUr9dH9mu1Wmo2m4c6dxP/BwIBpVIpSbK/56FQSIlEQpKUSqUUCAQUDocVj8clSZlMRj6fT5FIRNFoVJJs/d1YLCbHcezfoCQFg0Elk0lJGjlONBpVJBIZOR8AAI5Ks9lUq9VSuVxWp9NRtVq1z9pSqaROp2Pzcp1OR8Vi0T5va7WaOp2OSqWSfZZXq1V1Oh2Vy+V9P4PNsy6dTiscDtv403GcscsymYzC4bASiYR9NmazWfv83GmM24v5nZQ08rvmjgd7vZ6q1aqka2UFpVLJ7m9iRUk2zvQe1/x97HZcd9zqPa6JUb3HPUrpdFp+v9/OmxhU0kisKUl+v1/pdNrOu+NPSSPxraRtfzvuuFYajVOl7bGq9/0wmUwqGAzueO7j9hn3uQAA3AnGlZWbuNyb+61UKmo2m6rX6yqXy2o2mzZH3Gq17LS73YyXiRui0aii0agymYxisZii0ajS6fTIdDweVzQatbnhcDisTCajUCikZDJpY4RkMqlQKDQSjwCH4Y2lzTvrfuel0djcGPfO2u/3ValUtp3DuP3d7wt77T+uTsu483S/a7iN+xset//NxrzH72TcO4HhfX/x2utdf69c+kFz7Xudzzjed6b9cL/T7YfjOAeum2bKM24U77vgjXKjr/NmMu5/1nFy51WOmsk5Hgdvruio1Wq1sXU2j4I7T3U99ooR93K9v2vXmy8b9yw+iOu9jzs9t/fruH8HAdwZ9oq53Q4Sl+0Wq7t5yyG8dorJ3HVwvHaLo3c6L295h9tu92in+NtbXuK207vEuPIN+vgDAAAAAABHxZsTd8/vNH0U2x3FMY6qbNtdl3Q/047j2HyY4zg2rxQOh21OKBwO27KScDhsy7xCoZB6vZ6Gw6FCoZC63a4Gg4GCwaA6nY76/b6d7na7CgaDarfb6nQ6CoVCajab9prddRNMuZq7bsH1lneYHJw7R+bOiZkclbts2ezjztPttY/JLx5kHwD7Y+r9lctlXblyRWtra1pfX7fD1taWyuWySqWSbVtu/rd2Op1d+9lxC4fDikQiisViSiQSSqVSymQyOnHihKampjQ/P69cLqe5ubltfQztlDPH/nS7XRUKBa2srGh1dVVra2vK5/MqFAq6evWqVlZWdPnyZa2trY3UvwgGg+r3+/Z5NDMzo7vvvlsPPvigXv3qV+t1r3udTp48OcErw63k1a9+tX7iJ35CH/vYxyZ9Kjhi/X5fly5d0vLyss6dO6dz587pf/7nf7S6uipJI/1Em+9OWVxcPPB3FBaLRV28eNEO7r6ln3/++ZE6MN7+pMeNT58+vWOZ8e1iOByqWCxqa2trbJ+A5XLZjs2z3j29U725ZDKpTCajdDptdivriAAAIABJREFUB/e86ffQ9P1iBvNMN/X998O0SyiXyyN9/5nzq9frqlQqtk2yWWf6vDHrzHyxWNz18xKJhI1VEomEbadg3vVSqZQcx7H9AZp2xeY9JJVKKRwOK5VK2fcVd7tj4EYz7/x75VZu5PqjqPMbiURs3R7HcRSJRDQYDOQ4js21hMNhhUIh+75ichfStXr5Jk/j8/nGPpOGw6HN2QwGA3sck1eRrtUx7vV68vv99v3I5/PZ/ot8Pp+q1eqR1Kn2tnHeT27qKLY7imMcpH4ZAADYnWkD425LYuIrd1+Ipi2pu02UeR8ysZm7n5rrOe5BjetP0ZQBuetPmzrb7nKfnfpBdNdRd9f1NmVH7naZO/WxSPkSAAAAAAAAAAAAAAAAANxcms2mNjc3tbm5qY2NDa2vr9t572DWjeunOZvNanp6WlNTU9uG6elpzczM2Gkz3Kn9ygMAAOC283nf8Hq+DQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANzyGo2G2u22hsOhSqWSpGtfJN5qtSRJpVJJw+FQ7XZbjUZDklQulzUYDNTtdlWr1SRJ1WpVvV5PvV7Pfql4vV5Xp9PRYDBQuVwe+TxJKhaLkqRWq6VmsznyeYcRiUQUjUYlSZlMRj6fT47jKBaLSZJSqZQCgYCCwaCSyaQkKR6PKxwOy+fzKZPJbDtOOp2W3+9XKBRSIpGQJCUSCYVCoQPtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwOTN8k3vFu6/azzX7XVSoV9fv9A5+36R/EOz7suoPun0wmFQwGr+POAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJJarZYWFhb0h3/4h/rABz4w6dMBgFuSz+fT2bNn9fjjj0/6VAAAwAH8zu/8jj796U/rq1/9ql7xildM+nQAALgur33tazU9Pa0vfvGLkz4VAAD04z/+4/r5n/95/fmf//mkTwUA7ijD4VD/+Z//qY997GP60pe+pHvvvVfvete79Ju/+Zv2O6AA3F5+8IMf6NOf/rT+9m//Vo1GQ295y1v0nve8R695zWsmfWoAANzS+v2+Ll26pOXlZZ0/f17Ly8s6d+6cfvCDH6jf7ysUCunee+/V0tKSFhcX7fi+++6T3++f9OkDkNRoNHTlyhWtrKyMjPP5vPL5vK5evaqVlRW12227TyKR0OnTp5XL5XTy5EktLCxoYWFBp06d0vz8vE6fPq25uTmFw+EJXhkAADfG6uqqvvnNb+rcuXP69re/rXPnzmllZUU+n0/33HOPHn30UT322GN69NFH9dBDD2lmZmbscYrFovL5vFZWVuz44sWLI8tWV1c1HA4lSeFwWFNTU1pYWFAul9PCwoLOnDljp3O5nO6++24lEokbeTsAAABwG9na2tLGxoY2Nze3Devr6yPrtra2VCwW1Wq1th3HcRxlMhlls1k73mnauyyTyRzZ9TSbTRWLxQMPGxsb6na7244XiUTsuR5kmJmZUSgUOrLr8l5jvV5XpVJRpVJRo9FQvV5XqVRSrVZTvV5XvV5XsVhUvV5Xo9FQtVpVuVy268y+9XpdzWZzx88KhUJKJBLKZDKKx+OKx+NKJpNKp9OKxWKKx+N22nEcZbNZRSIRRaNRpdNpOY6jRCKhRCKhSCSiVCpltwUAADgOpVLJxkDj4iUTD9VqNZVKJbuuUqmoWq3a9WbbTqez42eFw2HF43EbK8ViMaVSKRvzuNfF43ElEgml02m7bTqdVjKZtNsmEoljiyFx5ykWi5Ku1RVot9saDAYql8uSZH+3e72eqtWqJKlararX66nb7apWq0mSKpWK+v2+2u22Go2GpGt/Y8PhUK1WS81mU8PhUKVSacfPqtVqY9+1DiKVSikQCEiSstmsJMnv9yudTkt68b1FuvZuGovFJGnk3SOZTCoYDEqS0um0/H6/fD6ffR8NBAJKpVKSXvzblqRoNKpIJLLteO7PdB8HAACTnzTPSvf09S4zz+H9MDm6GzV2P68Bw/zuShqJKaUXY02jXC5rMBjYeRPPShqJOSWNxJuSRuJaSSMx7bjPNn9X485T0rZ3QW9M6z334+SOO42d4s9xf4fxeHxbHV93zGy442G3TCYjn883sswdWxvuuHk/52rs9h487jyP4rjueB8AcPvaLS4/zPRO9STGccfK2Wx2xzj6oOvMsnHPd+BO4435jZ3em73vEF7edwavvcqLvO8zbv1+X5VK5dCfvVeOfbdcwV7XPY7J8x+E+/1tP7zvZPux2z0GsLed3vuPynHmBk08dD3G5VcO4ijunynjPCxTvnlY11sX4XrrfB7Fz9HruOtXuMujj8tOObWjNC6/d5Su9+/rduXNOd9JxzZ1T/ZjvzGet4xgN3vF326dTkf1en1f2+4Ww+4Wd++2305lDbtdw24/oxtZdrGXYDCoZDI5smzc/zxvDDHuf++4nP643Ij3/9245/e459G4Mg/vc9v7v857Tu7rGHftAAAAAADgzuLOCbmn3bkdd7mse9pdNu2edpcbu3Nw7ml3fside3NPu8uXD1rOO467Lqc7t+OedudpTO6k2+0qEAgoFoup2+0q9P/Zu/cYuc76/uOfuc/OfbzrXe/6ss7aie11QkLsAClRf4qEhEDQC1WtkjZQqqqtKgEq/1CBhFpVlfiPCnERVUEqRRQLIQESFa34o4QkpJDFScxuEide3/fq9dzvt98f0XPyzOzM3u3x5f2Sjs6Zc9szs3PO+T7f5znP+Hzyer1qNpvyer1Onsfj8ajVajmvzbR5n41Gw3lv5jNsNBrO51YsFtVqtdpygeYzs/N6282NmhyT/V7tuhWTb7LzSuttY/Jd3bYx7WvN52n/H2jTj7uZ6UPHDIuLi5qfn9fCwoKWlpZ0/fp13bhxQ+l02ulLx1xjN5o/d7vdCgaDzrPiiURCu3bt0u7duzUyMqLR0VENDw+39S20a9cuJZPJnu3esVqj0dDi4qLTJ/qVK1d0+fJlzczM6Pz581pcXFQ2m22rR3K73YpEItq9e7cOHTqkRx55RA888IAOHDig8fFxHThw4KbXveLO8NGPflSlUonfrr7Dlctlvfzyy3rppZd05swZvfTSSzp79qyKxaJ8Pp+OHz+uRx55pG3YSBuPXC6ny5cv69KlS7p8+bIzmNdzc3NOfO33+7V3717nOjM+Pq79+/frwIEDzry77dqfTqed/gW7Db2WdavPd7vdzr0yHo8743g8rkQi0XXavDbrrtVWysTzmUzG6VMml8spm80683O5XFu/e8ViUcVi0emjr1gsKp/Pr9t2IRQKrepHJhQKOfd/0x9ftz5mQqFQW199oVCIPimwaaYsb7c5N3kCu02Nvbxb2Xe95XYOY73l222jEolEnPJ/NBpVq9WS3+932oL4/X6nbGvKyS6Xy5nncrnkcrnacgaSnHPZ5XK1tb+vVCpyu92q1+vOdLVadaZLpZIqlYpcLteW2tJ3Y7dtsds62tN2mxW7PG9P29dDu22MPW3yDnZ+YLM5GwAAcHswbYjtOM/Eg6bsYmI1U49k4hcTr5k6Efv5S7OtHROaeiJTR7KV5xANu52tiWXsvkJM7GLaEtuxiomb7NjExEn2fk1cZO/XxEHd9gsAAAAAAAAAAAAAAAAAuLdkMpm2Z6BWVlbaXt+4caNt2qzT+fsAbrdbg4ODXYfdu3draGio6zKe8QcAAMA97Puu1kZ/ZRsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGxbqVRSuVx2xva89ZZvZ16v5el0Wlv9acNgMKiBgYG26Z2et5lt4vG43G73lt4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcDtbqx+RjfRFst1l9jqbsVafIRtZtt3tzTQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuHt/97nf18Y9/XJcvX9bo6Gi/DwcA7kgul0unT5/WqVOn+n0oAABgg7761a/qk5/8pL73ve9xDwcA3PGmpqZ08uRJ/e///q/+3//7f/0+HAAA9OlPf1o///nP9dJLL/X7UADgnvXyyy/ra1/7mr797W8rFovpE5/4hD71qU9pbGys34cG4CbI5/P67ne/q6997Wt6+eWXdeLECf3VX/2V/vRP/1ThcLjfhwcAwF2jVqvp3LlzmpmZ0fT0tDN+9dVX1Wq1FI1G9cADD2hyclLHjx/X5OSkTp48Sftc4DaWSqU0Nzen+fn5nuNLly6p0Wg42ySTSY2OjmpsbKzn+MCBA/J6vX18ZwAA7Ly5uTlNTU05cbCZlt66P05OTurEiRNOLPzoo48qFAqtu99yuay5ublV9+DZ2Vln+vLly6rX68423e7HExMTbfNGR0flcrlu2ucBAACAe0upVFIqldr0sLS01JZbMoLBoJLJ5KaHoaEh+f3+vr6n69evq1ar7dh72r17t3w+3468p41otVpKp9PK5/MqFAoqFApKpVLOdD6fVyaTcV5ns1lls1nndSaTUalUUrlcViqVUqVSUbFYXPfvJpNJBQIBhUIhxeNxBQIBRSIRRSIRBQIBxeNxDQwMOJ+jWTcWiykQCCgajXZdN5FIUPYBAAA7ysSJ5XK5LWa0X6+1zH69srKiarW65t8LBoNObGPHQzs1j3gJ/dBoNJTNZiVJ1WpVhUJBkpyyhCQVCgXn/Mhms07ZMZ1Oq9VqqdlsKpPJSHqrzVI+n5ektjJIsVhUpVKR9FZbYlNWy2QyajabTvlnrWParmg06rSPMOedJHk8HsViMWe9eDwut9stSQqFQgoEApIkn8+nSCQi6a0+vBKJxI7tu9trU9YyvF6votHodj8GAMBNYO6FJrbsNV5rWblcdu6XnWNzL+4cb1Q4HJbf7+85jkQizn3OHpv7W69xLBZz7nXdxkC/mVjTMPGrpLb402avY9jxq2HHy4YdCxu9/o4dVxvdzu1ueX07Xl7v2HO5XFs7JmMn4+xboTP+7mSuW+vZbEy90f1Kq2P/9Zhr8Eas9/634mbs07DLR0DntbhfUqlUvw+h5/X7dnI7fE5b1Wg0nKHZbKrRaKhara6aZ4ZyuaxyuewsM0Oj0VC9Xnemzfxarbbh77Lb7ZbH45Hb7ZbX63WmzbDWMp/Pt2o9M+31ep3t1ssj307X4s6c12Zt9h7bzXY+j43+/Y2Ug+y8YS8bvUdvJE4x5b61UH7DrXaryyLdykm3wp18T71ZbnYdh13/stNMfS4AAMBOWitX1K0OwuiVb+uc323/pl7S1q0eoTOe7Vb/YbcDMjrrPuz2REa3eo9u9SM3O5a3y9Vut1vxeNxZ1pnLSCaTznRn2d6OQzvL4XY+ojMetusIOv9+Z/y50b8PAAAAAADuPiZPY7dFtXMu9rSdD6rX68rlcqum7TyPPW3X49r5G3vazi2ZnNJ220PZz02Z9gt2HsXO0ySTSTUaDXm9Xvn9ftXrdUWjUeeZtHA4rFqt5rSBqNVqCofDqlarTp6pWq0qEAioVqupVqvJ7/c77YdqtZrK5bL8fv+qNv6Suk53y5FtRLdnVE3Op9eynVqXfBJuN936ElpZWdG1a9e0sLCg5eVlLS8v68aNG0qn08rlcioUCj1z6N14PB6nP5xEIqHBwUENDw9rdHRU+/bt09DQkAYHB7Vr1y4NDg46w+3S/u52lE6ndebMGT3zzDM6c+aMXn31VV29etW5Z7hcrrYc//DwsA4ePKgDBw7owIEDGh8f1/j4uDO9a9eufr0V3EJ///d/r//+7//WmTNn+n0o2KB6va7XX39dU1NTbUO5XFY0GtU73vEOpz/nEydO6MSJEz3byDabTV2+fFnnz5/Xm2++6YxnZ2d1+fLltvrJZDKp/fv3t10r9u/frwMHDujgwYPas2fPHRvPFItFraysaGVlRTdu3NDy8nLbazNtv06lUl3rTbv1jbdr166e/eaZZXa9pM2UOTKZjHK5nNOPXS6Xc+ab12ZZJpNZNb+zXtkwdaKJRELRaFShUEiRSETxeFzhcNjp5y4SiSgcDiscDiuRSCgUCikcDisWiznbhcPhtjpU3JvWKrf1Gm9knc3ubyuCwaDTJsDv97f1ZRIIBOTxeOT3+9VqteR2u50ysMfjkc/nU7PZlNfrVaPRUKvVktfrVbValcvlksvlcsrGlUpFjUZDHo9HhUJBbrfbKfu6XC4VCgXnmRmTN9iKbmV7+xkMe9ou89t9t9jTdtsLe9/2dLfyrtTe3sLOKWz3mRYAAHB7MG1NTTxmYjNTx2HqQ0zdhV23Ytqkmra2pp7D7NPk+zv32a397HpMTGLiFBPfmFjIjo9MW1Y7HjIxlR3/mL4pzb7tZ1BNe1R7v7fT88UAAAAAAAAAAAAAAAAAgDtftVpVKpXSjRs3nLE9vda8zt/mkqRdu3Y5zzvZYzNtP+9rDwAAAAA25fuuVj9+sQkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJusVCqpXC47463M26n9FItFVSqVLb+XYDCogYEBZ7zevK1ss9F5Zj4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwL+jsV2StPkc2smyz2+dyOdXr9U0fd2cfImv1L7LdZd3WiUaj8nq92/jkAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO7e9773KRKJ6Ic//GG/DwUA7lgul0unT5/WqVOn+n0oAABgA372s5/pAx/4gP7xH/9Rn/vc5/p9OAAAbNtTTz2l1157Tb/5zW/6fSgAAEiS/uu//ksf+tCHdPXqVY2NjfX7cADgnjY3N6evfOUr+sY3vqFSqaSnn35af/d3f6ejR4/2+9AA3CTPPvusvva1r+kHP/iBIpGIPv7xj+tjH/uYHnnkkX4fGgAAd61sNqs33nhD09PTmpmZ0fT0tKampjQ/Py9JSiaTmpyc1PHjx53xI488oqGhoT4fOYCNqFarWlhY0NWrV7WwsKBr165pbm5u1ZBOp51tPB6PRkZGtHfvXo2Ojjrjffv2aWRkRPv379fIyIiGh4f7+M4AANi+hYUFnT17Vq+88orOnj2rs2fPanp6WpVKRV6vVw888IAeeughveMd79DRo0d17NgxHT58WD6fb9N/K5VKaXZ2VnNzc5qfn181fvPNN5XJZJz1g8GgxsbGNDo62nU8MTGhAwcOyOv17uRHAgAAAKxSKpWUSqU2PaysrKhara7aXzAY1MDAgILBoJLJZNvQa37nsuHh4W3Fwlt9T9evX1etVuv6nrod83rDdt/HTspmsyqXy8rn88rn86pUKspkMiqVSiqXy0qlUqpUKioWiz3XLRaLqlQqbetmMhk1m801/3YgEFAoFFIsFlMgEFA0GlU4HFYgEFAikXD+94lEQoFAQOFwWNFoVMFg0FnX7/crFovJ6/UqkUjI6/U66wwMDNyiTxEAANyNisWiCoWCcrmcE/OUSiVls1nVajVlMhmVy+Utz9uIZDIpv9+vcDisSCQin8+3oXl+v1+JRGLdeVvJeQO3C3NeSVKhUHDKoblcTvV6fdU6jUZD2WzW2d4us5gyjfRWW4tCoSBJarVabW0qdnLfO83lcimRSLTNi8fjcrvdzuvO896UuQxzfTA8Ho9isVjbPpPJZNvrWCwmj8fjvDblNKOzbObz+RSJRJzXbrdb8Xi8bZ+JREIul8t5HY1G28rQoVBIgUCg8yMAgHueuR/m83nVarWeY3M/6xxns1nnntZtbO5vneONMvelzrG5l5h7hn1v6Fxm35s2sszc67rd0wBsXCqV6rnMXFu6WS/+XWu/doy/k/u1rXXsnTpj/vWsdfydOssd6zH1NzspnU6r1Wrt6D6lzX0OuHd0lkX75XbJjXWWq29Ht8tndat05lN6abVaqlarajQaqtfrqtfrajabqlQqajabqtVqqtfrajQaqtVqajabbevb8+xl9vomp7Qer9crj8cjn88nt9stv98vj8cjl8slt9stt9vtLDP/SzM2eRyfzyeXyyWv1+uM3W63PB6PPB6PM+12u7fc1sGUP7bDlE+2yrRn2KqN3Ic3GzfcCTpzfkavdhmdOUCjWy7Q6MwJGp25QaNXjtC0Q+nUef/plk/t3OdG1un2nnp9XgAAAACAndEtx9BZZu98befBO/MDdr7B1Ksadl1CZ5nfzoF35vq3+vd3it0GyC4r2+VjO+9n5ylN2yC7zGue0Vhrf3Z52N6fKfP32h8AAAAAALj72M9SmTaddttP037dzrfY+RSTS+m2jWnHvpFtTG7H3mYr7FyLacdg5zo6cyTSW89k+f1+NZtN+Xw+eTwe1et1hUIhlUolhcNhlctl+Xw+51k18zl5vV4VCgX5/X5ls1l5PB4Vi0WnPVGlUnHep/0ZbrT9rM3kdEwbENPmw24zYdpT3ax1ge1qNptaWVnRjRs3tLKy4kwvLS3p2rVrWlhY0NLSklZWVpRKpZTL5ZTP59vOPcPlcnVtUx0IBBSLxZRIJDQ4OKjdu3c7/XXv2rVLg4ODzvzdu3draGjotmgr20/z8/OamprSiy++qOeff15TU1O6ceOG3G63ksmkIpGIWq2W8vm8bty44WwXiUQ0Pj6u8fFxTUxM6NChQ21j+hG6O3z961/X5z//+bb/PW4fjUZDr732ml588UVneOmll1QulxWJRPToo4/q5MmTOnnypB577DEdOnRoVfvPWq2mixcv6s0339T58+f15ptvOsOFCxecOrZ4PK5Dhw7p8OHDmpiY0Pj4uPbv36+DBw/qwIEDd0x9Ui6X0+LiopaXl1fdk1ZWVnT9+vW21zdu3HD6KDBcLpdzPzGDfY8ZHBxc1Yfdrl27Vj33X6vVlEqllE6nnXEmk3HGuVxO2WxW2WxWuVyu63y7vtRmYuB4PK5YLKZYLKZoNKpYLKZ4PK5EIuG87jU/Fou19WWAO5ddzjLPGps6dFMnbpdXTJnNlNNMXx12/b8p05jynynzrbXOZni9XqeNeywWU6vVcp5N9vl8znMZpu26z+dTq9WS1+tVs9mUx+NRo9FwynfSW2W/crksr9erSqXiLM/lcnK73arVaiqVSs4888zIdp6rsNvwm3KVXQdvymN2+cvextTnd9tGervNgN02oNs2drv6zmsRAAC4N5jYzsSDJuYzbSJNzGbiRBPfmVjQ5LlNvGfiR7s9ptmn+RubjQPtmMi0ZTSxjcn3m1jI5PpN7GTqBkwMZMpEm9knAAAAAAAAAAAAAAAAAAC3o3w+7zx7ZA/d5qXTad24cUOpVEo3btzo+uxRMBjUrl27nOed7PF68wAAAADcEt93tW7GL5UCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO4JpVJJ5XK5bbrbvPWWb2eePZ3P51Wr1bb8foLBoAYGBpzxzZy33vJwOCy/37/l9wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcqdbqe2Qj/ZNsd5m9zmas1bfIRpZtd3tJSiaTW/3YAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNvexYsXdejQIf3whz/Uhz/84X4fDgDcsVwul06fPq1Tp071+1AAAMA6Zmdn9e53v1tPPvmkTp8+LZfL1e9DAgBgW65du6b77rtP3/zmN/X000/3+3AAAJD01u/YDA4O6qtf/ao+8YlP9PtwAACSCoWC/v3f/13/8i//ovPnz+uDH/ygPvOZz+jJJ5/s96EBuEkWFxf1zW9+U9/61rd0/vx5PfTQQ3r66af11FNPae/evf0+PAAA7gmpVErT09OamZnR9PS0pqam9MorryiXy0mSRkdHdfz4cU1OTjrjRx99VKFQqM9HDmArKpWKVlZWND8/r7m5ubbx7Oys5ubmNDc3p3Q67Wzj9/s1ODiosbExjY6O9hyPjo7SxgUAcMeo1+t64403dPbsWb3yyis6e/asfvvb3+rixYtqNpvy+Xw6dOiQJicndeTIER07dkzHjh3T0aNHFYlEtvW3S6VS13uwPc8ch5FMJp377sTExKp78eHDhxWPx7f7sQAAAABbks1mlUqllEqllE6nlUqllMlklM1mlc1mlcvllE6n2+bZQyqV6rnvRCKhWCy2akgkEorH44rFYopGo878eDy+aput5LNLpZLznjYzLC8vq16vr9pfMBhUMpnc9DA8PCyv17vp4++XUqmkcrnsfH7rTW903Vwu1/Vz7SYYDGpgYMD5zM10r/FW1olGo3fU/wUAAPSfiW+y2axqtZoymcyOz1uPy+VSIpGQ3+9XOBxWJBKR3+/vOc/j8SgWizljr9frxEHRaFQ+n0+RSMQZm32YMYC3tVqttnYYnWWcztfFYlGVSsV5XalUVCwWndf1et1p29Vt/5KUyWTa6pry+bxqtZrz2pTJjGq1qkKh4LxuNBrKZrNt++wsv2ezWTUaDed1oVBQtVrt9hHsmEAg0FbON9ckw1zrbKFQSIFAYNW+4vG43G532zy32921zq3Xta3Xvs3181btu9v7luRcowFgp5j7Szqddu4/3cbmntE5NsvNva5Wqymfz2942WaZa73J7ZnYttsy+55ilplr8UaXJRIJuVwuZxnXYQAAAGyGiYFN3sbO/5rcjcm/ZDIZ1Wo1ZbNZJ19s8j+pVMrJHzWbTWUymbb80WbjaxNH27mNZDIp6e342OQrTM7YxMSmjt3kdEyMbPZp5zQ693k31ct35tG6Mf/HtZj/53o6c4GduuUTjc684nr77MwzGp35RqNb3tHo1X6o1+fXKx/Zeayd+dSbqVsO0NSdGHbZ1DDnzmbWsfOHnevb63aWTe28qDlHDXMerrd/AAAAAMD22fWhUnt5trP8bLcl6izX22Vze9ren122NuVvO89gl53tdkr2/naiXZDdRsbhDGZ+AAAgAElEQVTU00rtZWc7J2TqX+0ckl0/a+/PLuOa/dnlWZO/MuvZZfi7KQ8FAAAAAADeZuc2THsIOydj8id2nsRuv7HWNnaOpts2pt2Eve+NtB/pZOcwOtux+/3+tvxKs9nUwMCAWq2W/H6/Wq1WW87D4/Go2WzK5XI5bUPM82wmj2TnmZrNptOu3+SM7LzVWv3E9GLaM5gcjWnTYN6neW2WmzyPye0kk0kn52NyQybPZPYdj8fl8Xi6PmeFe1exWNSNGze0srLiDNevX9eNGzd07do1zc3NaXl5WTdu3HD6TrKf75Teen7P7Xar2Wyuan9nvrvxeFxjY2Pav3+/RkZGlEwmnf5CTT9Ce/fuvSe+n3Nzc5qamnKG//u//9Py8rI8Ho/uu+8+HTx4UENDQwoGg6pWq7p06ZLOnz+vhYUFZx9jY2M6dOiQJiYmdOjQobbp3bt39/HdYTN+/OMf6/d///dVLBbb2qqhPzrPzeeee06pVEo+n0/333+/Tpw4oRMnTuiJJ57QI4884jzLXK1WdfXqVc3OzrYN09PTOnfunBNTJJNJTUxMdB3uu+++2/K3C+x+5kyf0L1eX716dVUb2PX6leu8D3T2KbeRfu7svtjsYWFhoWubcPuY7P7T7GG9+SMjI6ueZUf/me+Cqbs1fVSk02nnuV9T92vKJKZcZLYxdc/dyiymPNO5zmZFo1Gnbtbn88nr9TplF3Mv8Pl8crvdcrlcznets98HU25pNBpqtVpqNBqq1+tOWUV6qx671WqpXC6rVqs573GzTHnCPPdg1zWbZXb5zK7vNmU1u812t23sOu1u25jyT69+IwAAADrZfTqv1cfzeuP11t1sbnutvp3t8WbWXW9sx2cAAAAAAAAAAAAAAAAAANxNyuWy0um00um08wxs52Dmd1tu/z6qEQwGlUgklEwmlUgk2oZdu3YpmUy2je1pnhMEAAAAbnvfd7W28uvPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBbqlQqqVwut01vZ95295PNZtVoNLb0XoLBoPMj2GZ6o/O2ss1686LRqLxe75beCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA36exrZK1+SDaybLPb53I51ev1TR93Z78ia/U5st1l3daJRCLy+Xzb+OQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbMQXvvAF/eu//quuXLlCH2AAsA0ul0unT5/WqVOn+n0oAABgDdlsVo8//rgGBgb0zDPPKBQK9fuQAADYts9+9rP6zne+owsXLsjv9/f7cAAAcLz//e9XIpHQ6dOn+30oAABLs9nUT37yE335y1/Wz372Mz388MP627/9W33sYx9TMBjs9+EBuEmmpqb07W9/W//5n/+plZUVPf744/rYxz6mj370o4pGo/0+PAAA7jlzc3OamZnR9PS0pqamNDMzo5mZGZVKJXm9Xh04cECTk5M6fvy4JicndeLECR09elQej6ffhw5gB5RKJc3Pz2tubq7n+MqVK8rlcs42wWBQyWRSY2NjGh0d1djYmCYmJpzp0dFR7du3T/F4vI/vDACAtZVKJb3++ut67bXXNDMzo9dee02vvvqqzp07p2q1Kkk6cOCAHnjgAd1///06fPiwM33fffftWLuYarWq69evt91/Z2dn2+7Fly9fVj6fd7YJBoNr3ofHxsY0Pj5OzA4AAIDbUjabXTVkMhml0+m2eblcTtlsVqlUatX6dnxs83q9isViSiQSisfjisViikajCofDisfjikQiCofDCofDSiaTznQkElEikXBeR6NRxeNxud3uNd9LqVRSKpXa9LC8vKx6vb5qfybvttlheHhYXq93R/4/t4NcLqd6va50Oq16va5sNqtqtapCoaBisahKpeKsk0ql1Gg0lM1mValUVCwWN7XORkQiEfl8PsXjcXm9XsXjcfl8PkUiEQWDQQ0MDKy5zsDAgILBYNd1XC6XEomEMwYAANiIcrmsUqmkbDarWq2mTCbTNq9arSqbzW54Xq1WUz6fd8Ym9toov9+vcDisQCCgUCjkjE2sZMb2dDAYbFs3EAgoHA47+/L7/U78ZMbRaFRer9cZA7h9mGuLYa4nRrPZVCaTadsmnU6r1Wo5r00Zzugst5nynFGv19vaskhSJpNRs9lsm9ftb0vqea3rVV7MZrNqNBpt81qtltLp9Ib33Q/mGtspFoutqkvsVTY11+Ju3G73mu2DTJm3G3N978bcK7rZzvGsle8x959uzP1rs8dDeR/YukKhoGq12nZPSaVSG15mX4s3sszEw2ZZr2v8Rphrn7kG29cJs8xcc7ots6/d5nptX99MDC21X0vN9iZmlta+ngIAAODeYfIaJv9iYuNSqaRyuezkXUw8bPIudl7FxM4mp2P2aWJpk1Pp3OdmmPjWxMSmPG7yxiZ+9ng8isVibeVuEw+bsr/JI5vYu9c+7W1xd+rMO3bmLje6Tmd+sFsOcCPrdOYwu50rnevYx9d5bPa6nXnanWCXOzvzYHaurTN/lkwmnWm7nGvO3277t89Luzxr1wuZ/dplX/tvr5XjAwAAAABsjcn3bHZ6q9ttdn8m17VZdnmys63jrVpGORYAAAAAgLubaU9j6vrtNuqmLYDJc3RrG2/WMbkR+1kq04bHtN0x7Q9MvxpS9+es1mPX65s2NaZu3+v1OnX54XBYjUbDyXd4PB55vV7V63UFg0FVKhUFg0FVq1VnvsvlUrPZVKPRUK1WU6PRULlcVqPRaGvD32g0lMlkurbf6MW0IzBt7bv18eHxeJRIJFata9o1mPYJiURCHo+na78i5HPuTpVKRcvLy7p+/boWFhZ0/fp1Xb9+XcvLy7py5Yrm5ua0tLSklZUVpVKpVe1zXC6X3G63ms1m2/OS0lvPfyQSCQ0ODmp4eFh79+7V2NiYRkZGNDw8rJGREY2Ojmp4eFi7d+9et5+jO8X58+f14osvOsNvfvMbZbNZ+f1+veMd79Bjjz2md77zndqzZ4/q9bouXLig8+fPa3Z2VufPn9elS5ecvG80GtWhQ4c0MTHh9Ad79OhRHT16VIODg31+p7C98MILevzxx3X58mXt37+/34dzT1leXtYLL7ygF154Qb/61a/04osvKp1Oy+fz6cEHH9TJkyf12GOP6eTJk3rwwQfl8/mUzWb1xhtvaHZ2VtPT085vlLz22mtO/JBMJjUxMdE2TE5O6sEHH7wtnputVqtaXl7W/Py8FhYWtLy8rLm5Oeca3nld73x2PBqNanh4WMPDwxoaGtLQ0JBGRka0e/du7d69W0NDQ87ywcFBhUKhLfc3t7Ky0rU+q7O/ORPDbKTPuZGREfqcvoVMbGpi884+7jKZjBqNhhPP2n3mmW1Mvabdv16z2ey6zUa43W7n+dNQKCS/3+88s+r1ep0YvdVqyefzqdFoOG12m82m3G636vW6M5be6r+h0Wio2WyqXC7L5XKpWCw6r2u1mmq12pb6UTBxt2kvbD8za78P+5lc+3kBE6+b88RuS2zaF5t1TPxur8MzAwAAYKfYeUw7hjO5XhP3mefMUqmU85zmZuLKbn1r9WLiJpPfNTFXZ17TxF3dcqC98qVmm85nPwEAAAAAAAAAAAAAAAAAwNtM+8J0Oq1MJqNsNqtMJrNqOpVKOa/T6bRSqZSznelbz2aefTZDMplsG3cOnfP53TIAAADgrvZ9V6uztxsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuIeVSiWVy2VnbM9bb/lOz5OkdDqtrf7sXDAY1MDAQNv0Ts/bzDbxeFxut3tL7wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4W63VH8lGlm13e0lKpVKbPu61+hvZ7rKNbp9IJORyubb0uQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4szSbTd1333366Ec/qi9+8Yv9PhwAuKO5XC6dPn1ap06d6vehAACAHhqNhn7v935PL730kn71q19p7969/T4kAAC2rVgs6sCBA/rMZz6jz33uc/0+HAAA2nzpS1/SP/3TP2lpaUler7ffhwMA6OLMmTP60pe+pO9973saHBzUX//1X+tTn/qUdu3a1e9DA3CTVCoV/c///I/+4z/+Qz/60Y/k8Xj0oQ99SE8//bQ+8IEPELcBANBH9Xpdly9f1vT0tGZmZjQ9Pa2pqSm9/vrrajQa8vl8uv/++3X8+HFNTk7qxIkTOn78uO677z5+jxi4S5VKJc3Pz2tubk7z8/OanZ11ps34ypUrqtVqzjbBYFBjY2MaHR3tOR4fH1ckEunjOwMAoF29XteFCxc0MzOj1157TefOndObb76pc+fOaWFhQZLk9Xo1Pj6uw4cP6/7779cDDzyg+++/X/fdd5/Gx8cVDAZ3/LhSqdSqe2/n/XhhYUGtVkuS5Pf7NTg42HbvnZiY4D4MAACAu0Kz2VQmk1E6nVY2m101pNNpZTIZ5XI55XI5FQoFpdNp5fN5FQoFFQoFpVIpFYtFVSqVnn8nGAwqHA4rHo8rGo0qHA4rHA4rkUgoEok4r5PJpDMdiUSUSCQUCoUUDocVi8UUi8UUDoc1MDDg7LtUKimVSm16WF5eVr1e73qsyWRy08PIyIg8Hs9N+T/dKcz/olwuq1Qq9RxvZ51MJqNms7mh4wkGg853xUzf7HEsFrvnvwcAAGC1arWqQqGgSqXixM7FYnFVvNMrPrK3qVQqKhQKzj6r1ary+bxqtZozzuVyXWPdXkwMY8bxeFxut9sZJxIJuVyuVeNkMilJSiaTq5ab7c1rSYpEIvL5fAoEAgqFQjflswZwb+iVh8hms2o0Gm3zWq2W0un0qnXNdfNW7ttc17sx1/lu6vW6crlc12XSW/WfvXQ7bmOtfM5ax3M7Wqs8vt59x9zPugmFQgoEAl2XmXtdL+a+143P51uzftncg7ux8x3dbPX9mFigG5P76BQOh+X3+1fNX+u9495m4lUTy9rXUbPMXH/sZSa+3cgyk/O29ym9fa3sdY3eDHPNsa8Dfr9f4XBYUvu5YWJkr9eraDQqqf08jkaj8nq9bXGzvS/7vDXXBvt8tffFuQcAAHD365VDXmvZVsf2PtPptNOueqPWqq9fb95Wtllv3lplbWAtnTlAO6fWaDSUzWadZXb9TGf5027vYs61W7F/u2y8Veb86VUOtnNHppwrvZ2n6lUmtsvP2/0bAAAAAICdYZc3TU7IlFXXWma3bTFlVJNbssu3ph2LKbva9buddb+bZdejmjpdUw61y5umXGnak3Rr42iXSU3Zs7OdZa8xAAAAAAC4e5nnObu1XTc5EZMv6dZm3uRGTN7EzreY9u4mR2LyJybv0usZpl5MXb15fsXkO8zznSY/4vF45HK5nPbxJr/hdrvVbDbldrud55LMcdVqNTUaDVWrVSefU61W29oerfWsUyfTx8tG+/XYyrq9nn9B/5l+QU1fQKYv0MXFRS0sLOjatWtaWFhw+kGy27G53W65XC41m81V8+PxuAYHBzU6OqoDBw5o37592rNnj4aHhzU6OqqRkRGNjIxocHCwH297y5rNps6dO6cXX3xRL774on7961/rN7/5jcrlsgYHB/We97xH73nPe/T444/rXe96l0KhkK5cuaLz589rdnZW58+fd4bXX3/dycUODg7q6NGjOnr0qI4cOaIjR47o6NGjmpiY4HeO+uD8+fM6fPiwpqam9Oijj/b7cO5ajUZDv/3tb/X888/rhRde0C9/+Uu98cYbcrlcOnr0qN71rnfp5MmTOnnypB555BEVi0XNzMy0Da+++qquXr0q6a1nwI4ePapjx47p+PHjOnLkiA4fPqzDhw/3pV+FZrOppaUlLS0taW5uTktLS1pcXNT8/LyWlpY0Pz+vxcVFLS4u6vr1623bhsNhjY6Oavfu3dq9e7eGhoY0MjLiTO/evdt5HYlEVCwWu/bvZq7pnfPt/p5tW+33bXBwsOdzs9iYzbQz30jfcb22MfH0RgUCAcViMfn9fvl8Pvl8Pnk8Hvl8Prndbuce5fF41Gw2FQgEVK/X5fF4VKlU5PF4VCqV5Ha7nXueeT61UCio0Whs6llTU79oPyNu6hJNHaSJRe22s+YZU1MXadax6zfNOiZuNX/LruekPTwAALgVTFsv+7nCer2ubDbr5DxNnGfiO5P3TKfTajQaymQyTu7T5FJN3tQ857SZfoVNHGXaZyWTSSeWMrGZibFMPGXis0Qi4fSpZ2I0E2uZvjzM/om3AAAAAAAAAAAAAAAAAADYHvPsdSqVUiaTUTabVSaTWTWdTqed6c5lvX6rMRAIKB6PKxaLKR6PK5lMOq+TyaQSiUTXwSxb6/cCAQAAANzzvu9qbfbX2QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgB5RKJZXLZWe8U/O2sk2xWFSlUtnyewkGgxoYGHDG683byjYbnWfmAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhbZ58ka/VXst1l3dbJ5/Oq1WqbPu6N9EmymXU2uywSicjn823jkwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzfvpT3+qD3zgA3r11Vd19OjRfh8OANzRXC6XTp8+rVOnTvX7UAAAQA+f/OQn9c1vflM///nP9dhjj/X7cAAA2BFf+cpX9NnPflaXLl3S0NBQvw8HAIA2r776qiYnJ/Xcc8/pd37nd/p9OACANczPz+sb3/iGvvzlL6tWq+mpp57SZz7zGR05cqTfhwbgJlpZWdH3vvc9fec739ELL7ygvXv36o/+6I/0kY98RE888YQ8Hk+/DxEAAEiqVqt64403NDMzo+npaU1NTWlmZkYXLlxQq9VSLBbT/fffr8nJSR0/flyTk5N67LHHtGfPnn4fOoBbJJVKaW5uTvPz8z3Hly5dUqPRcLYJBoMaGxvTxMSERkdHNTY2tmq8f/9+fnsdANB3lUpF165d0/T0tGZmZjQ7O+sMJiaWpGQyqYmJCWcw97OJiQkdOXJEkUjkphxfuVzW3Nzcqnvv7OysM3358mXV63Vnm2Qyueq+23lPHh0dlcvluinHDAAAAPRbvV5XLpdTJpNRoVBQoVBQNptVNpt1XmcyGeVyORUKBRWLRaVSKWdZPp9XOp12XudyuZ5/y+12Kx6PKxqNKhwOKxwOK5FIKBKJOK9jsZgCgYCi0agikYiCwaBisZjC4bCCwaDi8bjcbrfK5bIkqVgsOse03rC0tNSWlzOCwaCSyeSmh5GREeryNyGbzarRaCiVSjnfu0aj4cy3x81mU5lMxhm3Wi2l0+lVY+mtnGy3sVlvoyKRiHw+n8LhsPx+/6pxKBRSIBBwxgMDAwoGg6vG3eYNDAw423o8HsViMUlSIpGgvAkAALoqlUoql8tbGqdSqU1tUywWValUNn2MveKetZZtZJ2NLjPxGwBgY0yZu5e1ytG5XK6tjtVm7ifdVKtVFQqFrstMmb+XfD6vWq3WdVmtVlM+n++5rckpdFOpVFQsFntua/IK3ax1z1zv813rM1zv/fRbNBqV1+tdNT8Wi3XNjZn8XadeeZBkMrlqnsvlUiKRWDXf5Bc7eb1eRaPRVfN9Pl/X9gkm59PJ5G862bGI0fk+Tcxi2Dkg7Cz7umNyivY1xT7PC4WCqtWqpLevcyY32bkvc57auUf7Ombvy1xn7HPfxNjbYc4H+7tr8pHS2+edfS7Y31s7Rjb7ss8Pe7rzfLLPRfv8tvdpHwsAAADuDCbONeVsU7Y18asd/9rxsSkf23GuiantmNvExnbsbOJ0u7y7Vrl4PXaZzJQtu82zY2NTZrPLfybOteNtU+a1Y2UTA9vlOtNuoFe5FLjZ7POz2/R6y7e67ka2M+f8Vu1k3dFWt6f9DgAAAADsvF7tFW/VMmntNiDdrFe+3Olxr/YVAAAAAADg7mPau5v256ZNu2lfY8amDY5pn2PyHb2eCTVt3M0+TBudzdblm3pz06bcbjMjyalfDwQCarVacrlcarVa8ng8zrNIrVZLzWbTaWffaDTa2i1Vq1VVq1Wn7dJm2hOZPmFMbsWe7jZvo+uSn7k1qtWqrl+/rqWlJc3NzTnjxcVFXblyRZcvX9bS0pKWl5dXPaNmnmdqNBptz715vV4lEgmNjIw4fXbv3btXo6Oj2rdvn0ZHR7V3716NjIzctv/jer2u119/Xc8995yeffZZ53cOPB6Pjhw5ohMnTuiJJ57Qe9/7Xh07dsx5H61WS5cvX9a5c+f0+uuv69VXX3Wmr1y5IumtZ1IOHTqko0eP6siRIzpy5IgmJyc1OTnZ9fkr7IxsNqt4PK6f/vSnev/739/vw7lrZLNZ/epXv3LOk+eee06pVEqRSEQPP/xw23mysLDg9JNs95ksvXUPO3TokPO7IWZ89OjRW9J/WK1Wc6578/Pzunr1qtNn8vLysq5du+ZcCzt/t2B4eFhjY2MaHh7Wnj17tGfPnrZ58Xhcfr9fhUJBy8vLWllZaRuuX7+ulZWVtmWdz/263W4NDg46w9DQkDO9e/duDQ4OOn2uJRIJZ0yb2t5yuZwqlYqy2awTu6VSKSfes5ebGC+dTjsxXi6XU7VaVSaTcZbb/bdtVCgUktfrVSQSUavVcsYDAwNqtVry+/2S5MR1brdbrVara2xXq9VUr9dVrVZVq9VUqVSc2G6jTJts017btOU27bxNfGbGdpxqnjs2y01bbzM27cFNW/FezxEDAAD0S2ffcN36idvKPDO9EWu1Z+qWR1tv3GubXv3RAAAAAAAAAAAAAAAAAACAnWN+YyCbzSqXy7WN0+m0crlc25BKpZTNZpXJZJxxJpPp+dt5wWBQ8XhcsVhM8XhciURCiUTCeW0vM4N55sgss3/PDQAAAAB22PddrV6/xA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgjlcqlVQul9umu81bb/l25tnT+XxetVpty+8nGAxqYGDAGd/MeestD4fD8vv9W34vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwL1orX5LNrJsu9tLUjqdVqvV2tRxr9UvyXaXbXT7RCIhl8u15c8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO5kf/zHf6zFxUU988wz/T4UALjjuVwunT59WqdOner3oQAAgC6+9a1v6S//8i/13e9+V3/yJ3/S78MBAGBHtFotHTt2TE8++aS+/vWv9/twAADo6uDBg/rzP/9z/cM//EO/DwUAsAG5XE7f+ta39KUvfUlXrlzRBz/4QX3605/W+973vn4fGoCb7Ny5c/rud7+rH/zgB/rtb3+rkZER/cEf/IE+8pGP6Mknn5TP5+v3IQIAgA6ZTEZvvvmmpqenNTU1pZmZGZ09e1aLi4uSpGQyqcnJSR0/flyTk5M6ceKEHnnkEUUikT4fOYB+SaVSmp2d1dzcnObn57uOFxcX1Ww2nW2SyaRGR0c1NjbWczw+Pi6Px9PHdwYAuFel02lduHBBFy9e1KVLl5xp8zqTyTjrjo6O6uDBgzp48KDGx8fbxgcPHlQwGLypx9rrPmzmXbt2re14g8Fg1/vuxMSEM33gwAF5vd6betwAAADAnSKTyahQKKhQKCibzSqbzapYLKpQKCidTiufzzvLU6mUM53P55XL5VQul5XL5ZTP51Uul5XNZtf9m4lEQsFgUKFQSPF4XMFgUOFwWLFYTIFAQNFoVJFIRF6v14ndG42GJKlWq6lcLqter6tQKKhYLKpYLCqbzSqTySiVSmlpaclZ3xYMBpVMJjc9jIyMkMe7hUqlksrl8i0bZ7PZrt+XtQSDQQ0MDKwar7VsI+tsdPtkMrmDnzgAALjTNBoNZbNZ1et15XI557UkJ7YxsY69LJPJqNlsqlgsqlKpONtLb9UbtFotZ1mtVlM+n5f0Vp5ekgqFgqrVqqrVqgqFwqaP2+fzOW1vTDwTDofl9/vl9/sVDoflcrmUSCQkSZFIRD6fT4FAQKFQqG1ZNBqV1+t1YiS32614PC5JisVi8ng8zjKPx6NYLNa2DACAm8Xcb7sx+YhueuUneu3P3Ls7mfu2rdVqKZ1Or5rfbDbb6toNO36w2bGDrVdsUKlUVCwWV83v9TmY+KWTiU9utc64wc7NSGqLPwwToxgmjjHseMYwMY9h4iJbZy7IxFDb2caOzYxEIiGXy6V7TS6XU71ebztX7HjY/g6ac9I+T+zvej6fV61Wk/T2+Wjvy/6em/PePhftfW017u7G/v7a3xev16toNCpp9Xfa/g7F43G53W5J7d/zUCikQCBwU/8GAAAA+scuB5q42Z5n4l87PjZ5ZDvONTG1HXPbsbGJne3yoin32jHyWmXu9ZjY1S6X2eUiO261c8r2tB3Pdpbv7NjWnrbLWXbMa0/b5U9iYdwK9nlsn3d2mdacg/a5bMqp9rlsrg1mP2vVS3Wre7L/5mZ01hPZ56o5v8x5361+ajN1UGbfZp1u+R0AAAAAwM651c+T9Gp/0ct6z3vs9NjOIwEAAAAAgLtftxxGKpW6KXkRU+e/EcFgUMFgUIFAwOkXxuPxKBAIOHX0JofhdrvVbDbl9XrVarVUrVbVarVUq9VUr9fVaDRULBZVrVZVq9WUzWZ7Pn/SKZFIKBAIKBwOKxqNKhgMKhqNKhwOKxAIOH3ZDAwMKJlMKhQKOTmWSCSiUCikSCSieDyuUCikUChEG4BtKJVKWlhY0Pz8vJaWlnTt2jUtLS1pfn5ely5dcpalUqm275rL5ZLX63WezTDcbreSyaT27t2rffv26dChQ9qzZ4/27dunsbExjY2Nad++fU4bkX5bWFjQr3/9a01NTem5557Tc889p1KppOGyK5AAACAASURBVFgspoceekhPPPGE3vve9+q9732vdu3atWr7SqWiN998UzMzM5qdndX09LRmZmb0+uuvO21sRkdH234j4fjx43rwwQed5ziwPcFgUP/2b/+mP/uzP+v3odyxZmdn9eyzz+q5557Ts88+q9dee03NZlOjo6N64okn9Pjjj2toaEjNZlOvvPKKzpw5o1deeUUrKyuS3rquT05OanJyUseOHdPx48d17NgxHThw4KYd88rKiubn53XlyhUtLCzoypUrmp+f17Vr13Tt2jXndwbsuoORkRGnL+Ph4WFnPDIy4rQ/k95qT3f9+nWtrKw4w/Lyctu8zucqPR6PhoaGNDg42Dbs3r2763wz715k+sUrFotKpVIqlUoqFovKZDLK5/MqlUrK5XJOW+ZUKuXEGCbeyOVyTptGe/l6QqGQ/H6/0/bQ7/c7fVzYfeSZ50TNfa+zzzwTD2WzWdVqNRUKhQ3HY9Lb/efdijoq+uUAAAC3KxPD5XI5VatVZTIZJ9+VyWRUrVbb4r50Oq1qter0q2xiRfOMTD6fV6VSUSaTWbNPGJsdM/n9fsViMecZlkQi4cSOpo+PZDLp9L8QiUTk9/udPFcoFFI0GpXP51MikWh7xg0AAAAAAAAAAAAAAAAAAPSfeSY3l8splUopm806r3O5nDKZjDKZTNu8bDarVCrVNs88N9hNIpFQNBp1hlgspkQioVgspng8rng8vmo6mUy2vea5QwAAAAC3ue+7WpvpBRoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAV6VSSeVyuW16O/O2u59sNqtGo7Gl9xIMBjUwMNA2vdF5W9lmvXnRaFRer3dL7wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAWzbSd8lm1tnssnw+r1qttunj3kg/JRtZttXtw+Gw/H7/Nj55AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB2raysaO/evfrGN76hj3/84/0+HAC447lcLp0+fVqnTp3q96EAAIAOv/jFL/S+971Pn//85/WFL3yh34cDAMCO+dGPfqQ//MM/1PT0tI4dO9bvwwEAoKu/+Iu/0BtvvKFf/OIX/T4UAMAmNJtN/eQnP9EXv/hFPf/88zpx4oQ+9alP6amnnpLX6+334QG4yS5cuKAf//jH+v73v6/nn39eiURCH/rQh/ThD39YH/zgBxUOh/t9iAAAYA2pVErT09OamprSzMyMpqen9fLLLyufz0uSRkdHdfz4cU1OTurEiRPOtPk9agD3tkqlopWVFc3Pz2tubq7reHZ2VqlUqm27ZDKpiYkJjY6OamxsrOt4dHRULperT+8MAHAvSqVSunjxoi5duqSLFy/q4sWLunDhgvM6k8k4646Ojmp8fFwHDx7UwYMHNT4+rvHxce3fv1979uzR0NDQTT/eUqm06p7beR++ePGims2ms8169+DDhw8rHo/f9GMHAAAA7kbFYlHlclnpdFqlUknlclmpVErlclmlUknpdFrlclnFYlGZTEblclmFQkHZbFblcln5fF65XE7lclm5XE75fF7lclnZbHbdvx2PxxUMBhUMBjUwMCCv1yufzyev16tGoyGPx6N6va5Go6FaraZqtapKpaJSqaRisahSqbRqnx6PR4lEQvF4XIODg0omk0okEkomk6um7ddm7Ha7b8bHjB1ULBZVqVScsfne1mo15fN5tVotpdNpSVIul1O9Xl+1jiQn/7uVdTYrHo/L7XYrFAopEAjI7/crHA7L7XY75dlYLCaPx7NqHZfLpUQi0XUdn8+nSCTS9jcCgYBCoZAkKZFIyOVytc0DAAD3NhPPdI5vxrJu6+TzedVqtS0duyk3mLE971Yut6fD4bD8fv+W3g8AAPeSQqGgarW6an5nbGDndXqtU61WVSgU2tbpbOfX+ffsfI+RTqfVarWc1ybXZNTrdeVyuW1vk8lk2to/3CwmX2R4vV5Fo9G2dUyuSGqPbez8U+e+PB6PYrGYsywSicjn80lSW25Kejs/JWlVPiqZTDrTJuaS1JYfk3RXxFf296DZbLa127G/q/Z3w+Qfpfbvrx1Tm5zozfwb22X//+z/s/19sL+bnf9/+3tif5+i0ajzvG/n985e1vl9tb/Lnd9z+xyQ2s8PAAAA7By7DJfNZp32H6aMZuJUO8Y15cBGo+G0PbHjYXva3r+9X3t/9rS9z85YejvsspI9bcfIdnxqT9uxsx2n2nG0PW3aEkjt8bE9bcfddpzcGYMDW7XVeqKbUQe1UZ31QDd7bNr4AAAAAAB2lqm3v9XjjTL1l2acSCTk9XoVi8WcMqPJHyWTSWddU6aMRqPy+XxKJBJOHsjkkuLxuLxeL/kdAAAAAADuUeb5BdMW3IxNW5tUKuXMz+fzqlarSqfTTlubbvNyuZyq1arTl0y3Plw6mXYs4XBYXq9XkUhEXq9Xfr9fPp/P6fOi2WzK4/HI7XarXq/L4/GoWq2q0Wg476fZbKparSqXyzl9h6zXV43Jl0SjUcViMYVCIYVCISUSCWc6Ho8rEokoFAopEokoHo+3rRcOh526fbs9Ot6ysrKixcVFLS4uam5uTktLS5qbm9Pc3JwuXryoubk5LSwstLXdcLvd8ng8ajQabc/QBAIB7dmzR2NjY5qYmNDevXu1f/9+jY+P68CBA9q/f7927dp1y99jrVbTmTNn9MILL+iFF17Q888/r0uXLsntduv48eP63d/9XWfYs2dPz/20Wi1dvHhRZ8+e1dmzZ/XKK6/o7NmzeuONN1Sv1xUIBDQ5OamHHnpIDz74oB5++GE9+OCDGhsbu4Xv9u4wODiof/7nf9bf/M3f9PtQ7gjValW//vWv9fOf/1zPPPOMfvnLXyqbzSoSieixxx7Tu9/9bu3Zs0etVkvnzp3TmTNn9Morr6hYLMrv9+vBBx/UO9/5Tj388MOanJzU5OSkRkdHd/QYl5aWdOXKFV25ckWXL1/WpUuXND8/r6tXr2pubk7Xrl1ru86EQiHt27dPo6Oj2r9/v0ZHR7V3715FIhEFAgF5vV5Vq1XduHFDi4uLWlhY0NLSkhYWFrS4uKilpaW2ZxS9Xq+GhoY0ODiowcFBDQ0NOYN5bZaZ1/ZzT3cL08Y2m82qWCyqWCwqnU4705lMRvl8XqVSadV6qVTK6Qeuc721DAwMyO/3O/UlXq/XaUfr9/vldrvVarXk8/lUq9XkcrnUbDZVr9fVarVULpfVaDRUqVRULpdVr9c33B7Y1L9EIhGnjW8ymXTqZCKRiPz+/8/encf4cdf3H3997/me8/3u6a/t9bFJSNhNyOEQmzgncYBylLaRglAlKKoo/EMLVKJItEhIVFVTKpWqVU8a9Q+QrKiIAoEmcRAkDo0SnKSJd8lB1sfau3a8u9/7vn5/+DeT+X73u6d3/Y3t50Mazcxnjv18d2d23p9jPl9/WzuNM82Kg6y8W3GE1V/Q+T4cAADApaDbuxrOsYidy2tNm5+f7zrGSKdu72QkEomuy2tNGxgYuOTHrgAAAAAAAAAAAAAAAAAA4HJmvRebTqdVKBRUKBSUy+WUyWRULBZVKBSUyWSUy+Xs9VQqZe9nve+STqeVy+WW/I5Uv9+vaDQq0zRlmqb9fqk1JRKJtvVoNKp4PC7TNNvSnN+JBAAAAACXsUdcrbWMyAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0WKlUUrlctufOtJW2b3SaJKXTaa33K8EMw1AwGGxb3ui0tRxjmqbcbve6PgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAxZYby+RCt632+PWOkdI5RslqxjG50G2MhwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Obv/u7v9Bd/8ReanZ1VJBLpdXYA4JLncrl08OBBPfjgg73OCgAAcDh27Jhuu+023X333XrkkUfkcrl6nSUAADbMPffco3A4rEcffbTXWQEAYEnf/e539ZnPfEYLCwu0SQHAJerIkSP69re/re9973vasWOHPve5z+lzn/uc4vF4r7MG4CI4fvy4/uu//kvf//739eyzzyocDusjH/mIHnjgAX3wgx9UNBrtdRYBAMAqzczMaHJyUhMTEzpy5Ii9XC6X5fV6tWPHDo2NjWl8fFxjY2Pas2ePrrvuOnk8nl5nHcA7UKlU0uzsrGZmZpacnzp1Stls1j4mEAior69PW7duVTKZ7DofHR1VIpHo4ScDAFxJrOfZ1NRU1ymVStn7LvccGx0dVTKZ1Pbt22Wa5qbmuVqtam5uru25OzU11fYMPnHihAqFgn2MYRhd8+tM27Vrl9xu96bmHQAAAMDbCoWCyuWyMpmMSqWSyuWyUqmUyuWySqWS0um0yuWyisWiMpmMyuWyCoWCstmsarWaMpmMKpWKisWiCoWCqtWq0um06vV6W53ccrxer9xut9xut1qtliSp0WioXq933T8QCCgUCikcDiscDss0TUWjUSUSCXsaGhpSX1+ftm3bpv7+fm3btk2JREKBQGDDfnd457OuaefyUvPN2CeXyy15Ha/EMAwFg0F73ss00zQpqwMAcIWp1+vK5XKSpHQ6rVarpWKxqEqlolqtpnw+L0l2+0W1WrXbA6xygfNY5zHWeSQpk8mo2Wy2/TxnXGVtbzQaqy5fLCUej8vlcsnr9dp9jkOhkF1GsGIe53YrLpKkWCwmj8cjj8ejWCwmSW0xk7Xd7XbbbTTO7dFoVF6vVy6Xy37/wefz8Y4bAADvQM54RFLXWCSbzarRaNjrVv2QpdlsKpPJtB3TWVdk1ataWq2W0um0ve6Mqzrz4DyXMxaT3o6huuXL2f9kIzhjJ0l2n0tnzOOMn5z7O2Mhv9+vcDgsqT2GcsZjztgtHA7L7/dLejvOkt6OyaT2Oq3LqS+o87pxxtmd14jzb+28JpzXjvMac173q/kZnderFftLi68758/fKM5rRmq/DjqvS+f14ozXpfZrTGq/Vqy2CIvz+uqM5SORiHw+n6T2a15qv3Y7f4bzegcAAMDynDFoZzzqjH+dsalz2RmXOst0zhjZuZzP51Wr1SS1x87OZWd9tzOm7oyJ16szfrXquaXFMbEzJu08rjPudJaXOmNbZ/zsLNtJy8fInXH4cnEwrixLtTNZZUxrbrUVWdutuVXvYZVVrbl1n3X223Hel6th3TvW3CpfWte3NbfuG+s+tOaJRKJtPR6P2/eg8/hYLLboPgEAAAAAbCyrDLrWeSqVssuhVrnS+c6UVTa16oVW2/7pfPfJ7/crHo/bZU6rvsYqjyYSCbt8arVhWmXJeDxu1wVZdS6macrr9W76eBIAAAAAAOCdKZfL2fUUVpt5NptVtVpVNpu129AzmYxqtdqitGq1qlwuZ9eFpNNp1Wq1trSVBINBBQIBRaNReTweBYNBu89JMBiUy+WSy+VSq9Wy+6k0Gg21Wi01Gg2VSiU1Gg3751pj1yzHMAx7TBmrDsU5zsxq0oLBYFsfnMtd55jd1lihx48f1/T0tGZnZ3X27Fm7j5V0vj+8y+Vqe/8lEAhoy5YtGhkZ0dVXX63R0VHt3LlTIyMj9nQxxvOZnZ3Vs88+q2eeeUZPP/20XnjhBdXrdV177bW68847dffdd+vuu+/WyMjIiueqVCqanJzUK6+8oqNHj+r//u//9Morr2h2dlaS1N/frxtvvFF79uzRrbfeqve+973avXv3Zn/ES9rIyIi+/OUv60tf+lKvs/KOVC6X9dxzz+nnP/+5fvGLX+jZZ59VsVjUtm3btH//fo2MjCgUCimdTuuFF17QkSNHVC6XFYlEdO2119rf1WFdk853YdajVCrp5MmTmp6e1vT0tE6ePKkTJ060rTv7QQ4PD2tkZERbt27VyMiIBgYGFIlE5PF4FAgEVKvVlEql7P851vKpU6fsPpeWRCKhZDKpRCKxaFxlZ9rw8PAl+70k2WxW+XxeuVxO+XxeqVRK+XzenjKZjLLZrL19qX2cfVa7cbvdCofDCgQC8vl8CgQC8vv99nPY+v01Gg25XC41m822d8nq9brdDuJ8V3Ip0WhUfr9fpmnabR2xWEx+v1+xWMx+7pqmKZ/PtyjN7/crGo3a7R1WG0gkElnU7xQAAOBSkk6n7fcbUqlU27i+Vno6nbbfhbCWS6WSMplMWx1NpVJRoVBoe69pOZFIxO6XYvVVWSpGWy4es/q3WGP2hkKhtvf3AQAAAAAAAAAAAAAAAADApcHqp1goFJTNZpXNZu31dDptj7WVz+eVTqdVKBRULBbtfa11a9/l+jMGg0GFw2HFYjFFo1GFw2GFw2HF43GFw2FFo1FFo1HFYjHF43F72UqPx+P2Ou+VAAAAAMCaPOJqOUeMAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6/UqmkcrlszzcqbT3HFItFVSqVdX8WwzAUDAbt+Upp6zlmtWlWOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDNs5oxTtayz1q3FQoFVavVNed7NeOZrGbbeo8Ph8Py+/0X8JsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDj3XTTTbrtttv0r//6r73OCgBcFlwulw4ePKgHH3yw11kBAAD/Xy6X0+233y6/36+nn35aoVCo11kCAGDDvPjii7rlllv0xBNP6MCBA73ODgAASzp79qySyaR+8pOf6EMf+lCvswMAuABTU1P69re/re985zvyeDz6gz/4A/3pn/6pduzY0eusAbhI5ubm9JOf/ESPPPKIHnvsMTWbTe3bt08f+9jHdODAAe3Zs6fXWQQAAGtUr9d18uRJTUxM6MiRI5qcnNTExIReffVVNZtN+f1+XX311RofH9fY2Jj27Nmj8fFx7d69Wy6Xq9fZB3AJKJVKmp2d1czMTNf51NSUpqenVavV7GMMw9DWrVuVTCaXnO/YsUPRaLSHnwwAcCXIZDI6ffq0Tp8+rdnZWZ06dcqenzlzRtPT0zp79qzq9bp9TDwe17Zt27Rt2zYlk0lt375dW7Zs0cjIiJLJpLZt26YtW7bI4/Fsat5TqVTX564z7cyZM2q1WpIkv9+v/v7+tmfu6Oho2/N3586dikQim5pvAAAAABujXC6rVCopn8+rVqsplUqpXq8rl8upVCqpXC4rl8upXq8rlUqpVqspn8/b21KplIrFohYWFlQsFlUoFFQsFlWpVFQsFtVoNFStVledH5fLJbfbLbfbLY/HI6/XK8Mw5PP5FIlE5Pf7ZZqmDMNQIpFQOBxWf3+/YrGYksmkAoGAwuGwAoGAQqGQDMNQMBhUMBiUYRgKhUL2Pn6/fxN/s7hUWPdAq9VSOp2WJPv6XinNuta7pTWbTWUymSXTCoWCqtVq17T1sK5tl8uleDzeluZ2u2Wa5oppzmO9Xq9dt+73+xUOhyXJvqcktd1H0WhUXq9XkmSaptxud9v5AADAlcWKnZZa3uztS+2bzWbVaDQu6LM546HNWN7IczljNAAAcOmx6pQkqdFoKJvN2tus+lxJdp2txRnzWPW0ktrqoaw64M7jq9WqCoWCpLfrzaT2OMuZL2d9llWPfCGc9UnO+iuPx6NYLCape12WMwaKx+NyuVxtdVqxWMyub7bqvCKRiHw+X9d6MklKJBKLzn0lcF4DUvvf1XndSO1/f2cdqdR+zUhSOp22+x45r0up/Zrt/BnOa915DUvt16J0vg+UxXn9biSr7lNqrzeV2uNv5zUrtV9bq1m32jQ2an25Mke3dQAAgCuJM3Z0xqrO2Ni57CxDOePXzni1MybNZDJqNpuLziEtH1uvJX7eKGuJdTtjT6tMJsnu62OxymFSe5lPWhyTOmNvZ1lO0qI+P1aZb6k8dR6PdwbrurfmVvnPKodac+uat+4ha26VM62yYCqVsu8f536ZTGZRvcpKrGvXmltlNtM05fP5FIvF7Gs2Go3K5/MpHo/b9451jcbjcfl8PkWjUfu6jMVi8vl8bdc/AAAAAGBzdPYhLJVKSqVSi9LWu81KWw2rHGm9C2Utd87Xus1K4x0pAAAAAACuPOl02m5vt9reU6mU3RbfLS2fz6tarSqdTtt9UjKZjD1OTCaTWfG9AL/fb7eXBwIB+Xw+BQIB+f1+u6+HNW80GvaYM7VaTeVy2f65uVzO7kvTyWqvTyQSikajikQiikajikajisfj9nokEpFpmorFYjJNc9F0ufQXqVQq9jin09PTmp2d1fT0tE6ePKnjx49renpaCwsLbb9Pj8ejVqvVlpZIJLRt2zaNjo5qdHRUu3bt0u7du+31UCi04XkvFAp68cUX9cwzz+jQoUM6fPiwyuWyksmk7rjjDh04cED79+/X2NjYqr/DYH5+Xi+//LJeeeUVvfTSS/rVr36lyclJNRoN9ff3a8+ePbr11lvtaWRkZMM/16XqXe96lz796U/ra1/7Wq+z8o5QLBb1wgsvLLo+t2zZomuvvVb9/f0qFouamprSb37zGzWbTfX19emWW27RzTffrJtvvlm33HKLrrnmGvv/3lrkcjkdO3ZMU1NTOnbsmI4fP66TJ09qenpa09PTeuutt+x9Q6GQdu7cqe3bt2tgYEDhcFjBYFCtVku1Wk2FQkELCwuanZ3V2bNnde7cubYx/L1er4aGhjQ0NKRkMqmhoSENDw8rmUxqcHBQyWRSw8PDGhwc1NDQ0Ib8fjdDqVRSJpNRJpNRNptVJpNROp1WPp9XLpdTPp+3t+XzeTs9lUrZ69Y+S7Gec1ZdvPXumfVemnS+v6g1VSoVVatVVatVlctl5fN5+/2pbkKhkMLhsKLRqGKxmP23TCQSdv8zq+9aZ5rVJ80aVy0ajdpjsVlpAAAAlzLrPQJrHNx8Pq9sNmvHWdlsVqVSSYVCQZlMRuVy2V4ulUoqFotKp9Mql8v2cqlUWvF9cyv2i8fj9ri1iUTCTncux2IxBQIBRaNR+z0D612CSCRi999wxnIAAAAAAAAAAAAAAAAAAODSZo035RyHqnN5pXVr+a233lr2ezQ7x5rqXF5p3bnc39/f9j04AAAAAICL6hFXa7nRBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCpSqWSyuVy23K3tJW2X0iaczmfz6tWq6378xiGYX+JcTAY3NS0lbaHw2H5/f51fxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa9c51slqxkNZzbbVHp/JZNRsNtec786xTJYb52Qt+6z2eNM05Xa7L+A3DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA5em5557T3r179eyzz2rv3r29zg4AXBZcLpcOHjyoBx98sNdZAQAAkhqNhn7nd35HR44c0XPPPaft27f3OksAAGyoT33qU3rxxRf18ssvy+Vy9To7AAAsa3x8XB/+8If1N3/zN73OCgBgA2SzWT388MP627/9W83MzOi3fuu39LWvfU379u3rddYAXERzc3N67LHH9Oijj+qxxx7TwsKCrrrqKn34wx/WRz7yEd19990yDKPX2QQAAOtUrVb1xhtv6MiRI5qcnNTExIQmJyd17NgxtVotmaapq6++WmNjY9qzZ4/Gx8d1ww03aHh4uNdZB3CJSqVSmpmZ0ezs7JLzkydPql6v28cYhqGtW7cqmUy2zUdHR+3lkZER+Xy+Hn4yAMDlrtls6uzZs5qZmdHMzIxOnz6t2dlZTU9P68yZM/Z8bm7OPsbj8Wh4eFhbt261n2FDQ0MaHBzU0NCQtmzZosHBQQ0MDGhwcHDT+gaVy2U7385n7tTU1JLP30QiseyzN5lMKplM0p8JAAAAuEJUq1UVCgUVCgVVq1VlMhnl83nNzMxoYWFBc3NzmpubUy6X09zcnIrFor1vLpdTpVJRsVhUpVJRtVpVpVLZkHyFQiH5fD7FYjF77vF4ZJqm3G634vG4XC6XEomEXC6X4vG43G63TNOUx+NRLBaT1+tVNBqVz+dTJBKR3+9XOBy2063jJNnnBZbTaDSUzWYlyb4PnGn5fF61Wm3VafV6Xblcbsm0XC6ner3elmbds5JUKpVULpcv6DNZ94sk+16RztffB4NBSefvx0AgIEmKRCJ2nb3zvkkkEpJk34ed5wsEAgqFQpKkYDBo90lyns+6z5c6HwAAuLw5Yx6rjCFJmUxGzWazbbtVDpHa4yPnPs74q9lsKpPJ2D8rlUrZy+l0Wq1WS9L59ywajYakt2Mx6e1YrTNvF8oq10jtsZUzLnLGS+FwWH6/X1J7TOWM3ZxxlzMes8pB0uIYy5kP57k6tznPDQAALk3OeMeKs6S3Y6JWq6V0Oi2pPYZyxla1Wk35fF5SeyzWrR7Mip2c5y2XyyqVSm0/13me9bBiKasOWJKi0ai8Xm9bHGTFU854yIqrnGnW+ax6Meu83faxzkmstD7O69B5bUntMbnzupLerp+V1HZ9Se3XmNQe83dea86fsZp1Z9lgNesbrTNe71zvvA4vdN15T23EurOM0m3d2W4DAABwOXK28Xe29y+3vt5tm3WejawnX8pKsW/n+sU6ZrN+rlWGvVJZ7TvW3CofWnOrLOfsp1YsFu19UqmUva+1PZPJqFarKZvN2uXEzjLeUqy/j9XvLB6P2+Ubqx4gHo/L5/MpGo3adQtWPzfTNO3yldXOk0gk7DKQsx8OAAAAAGBzWO2LVpnQWYa0yp9WfUc2m1W9Xlc6nbbLoM7yZb1eVyaTscujVlulsx1yOc4yYiAQkGmaCoVCMgxD8XjcLlcmEgm7TBqPx2UYhkKhkEzTlGEYCofDikajMgxD0Wi0rW8hAAAAAAC4cpRKJaVSKbveI5VKLVpfbptzfX5+3u6T3U0gEFAgEJDP51MoFJLX67X77Xu9qTYPdQAAIABJREFUXvsdhFarpVqtZo+XUa1WVSwWVSwW7b7iTlaf4Xg8LtM0u06xWGzZfZx9lN/Jms2mzpw5o1OnTmlmZkbT09Oanp7Wa6+9pjfffFOnT59u6wvv9Xrlcrna+qQnEgmNjIzo2muv1XXXXafR0VHt3r1bo6Oj2rZt24aMlVOr1fTyyy/r0KFDOnz4sJ566ills1lt2bJFd955p/bv36877rhDt9xyy5rGKC0Wi3rxxRf1q1/9yp5ef/11NZtNDQ8P69Zbb7WnvXv3anBw8II/y6Xopptu0kc/+lF985vf7HVWeqJQKOh///d/dfjwYT3zzDN6+umnValUNDg4qN27dysSiejMmTN69dVX1Ww2lUwmNT4+bn+3xp49ezQ2Nrbqa7PRaOjUqVOamprSsWPHNDU11TadO3dO0vn/VclkUiMjI+rr61M4HFYgELD/52WzWc3NzWlmZkZnz55t+383NDRkj+87NDSk4eFhbdmyxU4fHh62xy7uNauu3Pmc6JyW276wsLBkf0K/328/M6y6cJfLpVarJa/XK4/Ho2azqUqlomazqWazqWKxqFqtpkKhsGwdvFWv7qxj71xfbptzfWBgwH5/HwAA4FLXrW7gQped4zR1Y/V16BaHrXe5v7+fPvcAAAAAAAAAAAAAAAAAAFxGVuqzuJb3Jpd7n8WymndKVvs+Ct95DwAAAACXlUdcrdWMKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAJazQaymazkqRCoaBqtdo1rdlsKpPJLJlWLBZVqVTUarWUTqeXTCuVSiqXy13TJCmdTmu9XyFlffGwJCUSCUlSIBBQKBSSJPtLiP1+v8LhsCQpGo3K6/XK6/UqGo1KksLhsPx+v9xut0zTlCSFQiEFAoG2cxuGoWAwKEmKx+NyuVxt547FYvJ4POv6LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2hjW+iXOck8601Wxb7/HWeC1rZY1v4hznpDPtQrctt49zzBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDO9LnPfU7PPPOMjh492uusAMBlw+Vy6eDBg3rwwQd7nRUAACDpi1/8ov7lX/5Fv/jFL3Tbbbf1OjsAAGyomZkZ7d69W//8z/+sz3zmM73ODgAAK/rjP/5jHT58WC+88EKvswIA2EDValX//d//rW9961t67rnntH//fv3Jn/yJfu/3fk8ej6fX2QNwETUaDb300kv60Y9+pB//+Md64YUXZBiG9u/fr49+9KP63d/9Xe3YsaPX2QQAABsgnU7rzTff1MTEhI4cOaLJyUm9/PLLeuuttyRJiURCY2Nj2rNnj8bHxzU2NqabbrpJkUikxzkHcLlIpVKamZnR7OysPZ+ammpLO3v2rJrNpn1MIpFQMpnU1q1bl5zv3LmT+gwAwKYql8uanZ3V6dOndfr0ac3OzurUqVM6c+aMZmZmdO7cOXtyPsc8Ho8GBwc1ODiooaEhbdmyRQMDAxocHFQymbS3DQ8Pa2hoSOFweMPznkqlFj1vnc/g06dPK5PJ2PsbhtH1eTs6Omov79ixQ16vd8PzCgAAAODSVyqVlEqllpzOnTun+fl5zc/PK5VKKZ1OK5PJKJVKqdFoLDqfz+eTYRgyDENer1c+n09er1cej0cul0uS1Gq11Gq1VK/XVa/XVa1WVavVlM/nVavV1pR/wzAUDAaXnK9mn/UcEwqFFAgELvC3jytZqVRSuVy+oOWNOMdSy8ViUZVK5YI/53L31VLb17p8IecwTVNut/uCPycAALh0bGYMtZ7l5bal02m1Wq0N++zOOKhz/WJvu5DzJBKJ9f4KAADABstms2o0GqrX68rlcpJk1/M2m027f4uzrimVSkmSXb8lvR33VKtVFQqFFc/tTLPOl8vlVK/X15R/j8ejWCwmSYrH43K5XIpEInY9dzAYlNfrVTQalfR2HLKafaLRqLxer11/5fP5FIlE5HK5FI/HJUmxWIy+tO9Ay8Xrl8P6eu6VteqM4bulbdQ+m3nu9e7DvQ0AAN6JKpWKisWivW6VuSxW2crS2Yen83hnmW+pc3bGoo1GQ9lstu2YTCbT9j5HZ18Fqz+R01rzulkCgYBCoZC97izvWayyoaUzfnSWSy1+v3/ReyrOcudyx7rdbpmm2ZbWLV9S97r2bn0ousW3nZ9LerusvJFarZbS6bRdX1AoFFStVpVOp1Wr1ZTL5ezrLJPJqFarKZvN2nUOuVxOtVptxXOshmma8vl8isVi9t8xGo3K7/fLNE37erB+D4lEwq4LsPqZOc8RCoVkGIbi8Tj90AAAAADgIrHamZ3lxnq9rlQqZddBWOXMbDarSqWiXC6nfD5vpxUKBbscatVjpFKptvbvpVhl+XA4LMMwZJpmW/nQaltOJBJ2OdM0TRmGoXA4bJdJI5GIotGoDMNQNBrdlDI5AAAAAAB4ZyoUCioWi8rlcnb9RKFQUCaTUT6ft9vF0+m0vW82m7XrNYrFor2tUCgs6pPh5HK5FA6HFQgEFAgE5PP55PF45Ha75XK51Gw27TFjKpWKSqWSisVi1/chPR6PTNNUPB5XPB6XaZr2eiKRWHHy+/2b+Wtdk0qlotOnT2tqasoeG3R6elq//vWvdezYMZ09e9b+HTjH2JHO9/8YHBzU7t27dc011+iGG27Q7t27ddVVV+ld73rXoj7Jq1WtVvX888/rqaee0tNPP63Dhw8rl8tpaGhI9913n+6//3594AMf0LZt29Z87nw+r5deeklHjhyxp1dffVXNZlOjo6Pav3+/7rjjDu3fv1/j4+Pryv+lZu/evbrzzjv1rW99q9dZuSgajYaef/55Pf7443rsscf03HPPqV6va9u2bRocHFS1WtXJkyeVz+cViUS0Z88e7du3T/v27dPevXuVTCZX/BnFYlGvv/663nzzTU1NTenYsWP2PXbixAlVq1VJUjgc1sjIiIaHhxWJROw+TZVKRW+99ZampqYWjdObSCQWjc3rnO/cufOifp/HcuN8pdPptrG9stmsPcaXtb7UuFyhUEh+v19+v19er9f+X22N79VoNFStVlWpVNr69HWTSCQUDocVCoUUjUbtuuxwOCzTNBWJRBQOhxUOhxWPx+3laDRq14GHQiHF43HqrwEAwGXBOeajs3/AhSzPz8/bce5SnGMsJhKJC1q21ru9BwAAAAAAAAAAAAAAAAAAAC491ji7uVxOlUrFfoewUqkonU7b/R/T6bQqlYoKhULbmErOcZSc+1rfZb0Ua4zkzvdNotGo/U6J9W5KOBxWJBKRaZr2eiwWs/e13k0BAAAAAGAZj7ha3UazAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWKdMJqNms2l/UfBSadlsVo1GQ7VaTfl8fsm0XC6ner3eNa1eryuXy0mS8vm8arVa17T1MAxDwWBQkpRIJBalxeNxuVyurmmBQEChUEiSZJqm3G63/H6/wuGwJCkWi8nj8cjn8ykSiUiSIpGIfD6fPB6PYrGYJCkcDsvv98vlcvGFxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA7UKlUUrlcXnK+3D7r3ebcxxrbZa2scVM658ttW80+q91mjcECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwnFKppK1bt+rrX/+6vvSlL/U6OwBw2XC5XDp48KAefPDBXmcFAIAr3sMPP6w//MM/1He/+1198pOf7HV2AADYcF/72tf07//+7zpx4oQMw+h1dgAAWNEPfvADPfDAAzp79qwGBgZ6nR0AwCY4fPiw/vqv/1qPPvqoRkdH9YUvfEGf/exnFQqFep01AD0wPT2tn/70p3r00Uf15JNPqlAo6IYbbtB9992n++67T3fffbei0WivswkAADZQKpXSxMSEjhw5osnJSU1MTOill15SoVCQJCWTSY2Pj2tsbEx79uzR+Pi4xsfHaecAsCmq1arm5uY0OzurmZmZZedOiURCyWRSW7du1ejoqL3snG/ZskVut7tHnwwAcCVoNps6d+6cPZ05c8ZePnv2rN566y2dO3dOb731ls6cOaN8Pt92fCgU0tDQkLZs2aKBgQENDg5qy5YtGhoa0uDgoAYHB9Xf36/+/n719fUpFottSL5LpZJmZ2c1NTW16HlrpZ09e1bNZtM+JpFIdH3mWmnbt2+XaZobkj8AAAAAV4ZSqaRUKrXmaWFhQZVKZdH5DMNQPB6XaZqKxWKKRqPy+/1yu932cjQalcvlUiQSsY9xuVwKBAKqVCoqlUqq1WrK5/NqNpvKZDKSpHQ6rVarpVwup3q9rmKxqEqlonK53HbMWrjdbrscFY/H5XK5FI1G5fV6FQqFFAgE5Pf7FQ6HJZ0vl0myt3k8HrucaB3n3N86ZzAYlGEYbT8vEonI5/O17Q9shnw+r1qtJknKZrNqNBqSzrdXSmq7z+r1unK5nCSpUqmoWCxKOv+/olwuS5IKhYKq1eqi81n3aKvVUjqdXnS+arVqt4Va923n+dbL5/O1/U8JBoOS3r5XpbfvOUkyTdNuu7Dua+f96TxfIBCw+3Va93Ln+TrvY+uckhQOh+X3+xedFwAAXDmcZRVn7CXJLtdIaoujVtrmjM+W2ya9HfdJ7XHYStus+E5qjw03irM8JbXHTcttc8ZtUnvMJ0mxWEwej+cdsw4AANbHimmcsU1n2mbt0xlPrZZVL3Wx5s46LlyZOq/VldY7Y35n/a3FWZ8sSY1GQ9lstm0fZ1lFWlwm6fazpfbyh9S9nJHJZNr6yznrlS3OeunN1q0NpzPm71bv66w/lhaXcaT2co50fozueDy+KA/O+maL1f60Ulq3/xPdyizd0qx2r5XSAAAALoZuMafVf8jSGe92i2U7483O2LZb3yNnXbm0uI9Dt5i1WzzcmT+pe0zc7XzdYveLpbMOXmrvO2Fx9tWwOPtbWLrFz16vd9F4Ot1i6M72Aak9jq7VaqrVaqpWq/J4PKrX66pWq3ZaPp+Xz+dTtVpVtVpVpVJRPp9XtVpVq9Wy06wpl8upVqvZ69lstu1a6MZZdk8kEhuy3N/fv+hvAAAAAADYPM5241Qq1XV5pe3dllfTxrVR5crOtG7tSAAAAAAA4PKRTqdVLBZVKBSUzWaVy+VUKBRULBaVSqWUz+eVzWbtbZlMRul02k5zbuvG5XIpFAopGAzK5/PJ4/HI7XbL5XKp1Wqp0WioWq3a9SHO/hyWcDisRCKx7NTX19c13dkn92Iol8s6fvy4jh8/rhMnTuj48eN6/fXX9Zvf/EbT09NtfaLdbrc9xob1Oa+66irddNNNGhsb0+joqMbGxnTdddet6Z3Der2uF198UT//+c/1xBNP6PDhwyqVShobG9P999+v+++/X/fcc8+6x6pJpVL65S9/qaefflqHDx/W888/r2q1qu3bt+uuu+7SHXfcobvuuktjY2OXZb3Se9/7Xt1777166KGHep2VTXP8+HE9/vjjevzxx/Wzn/1MqVRK/f39Gh4eVi6X0+nTp9VqtXTddddp37592rt3r/bt26frr79+2Wt1ZmZGk5OTmpqa0tTUlCYmJjQ5Oanjx4/b/bJisZgGBwftvufNZlPFYlHz8/M6d+6cfS7DMLRjxw6NjIxoZGREO3fu1MjIiLZv367t27dr27ZtXfvXbwTr/+NqpnQ63bbe7X0jn88nwzDk9/vl9XrtPvzNZlONRsPug7TUu0pWHyjneF2xWEyxWEymaSoej9vrkUhEkUhEpmkqHA4rHA7bx4TDYb73EAAAXPIKhYIKhYLy+bzS6bS9bpVnrXWrLGuVh9PptPL5vIrFol0OLpfLK45NavV5j8fjCgaDdhu7tZxIJOx2eKsNvnOfeDyuUChkj8ParQ8+AAAAAAAAAAAAAAAAAAC49GQyGXv82nw+b48jZI1p7BxnyLlvLpezx7ItFosql8tKp9Nt+zrHSO7GGkMoHo/LMAyFQiHFYjEZhmG/XxIIBGSapt130er3GA6HZZqmIpGI/f5JIpGgjyMAAAAAoBcecbVW+qYXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwjlUqlVQul9uWe5VmfbnwehmGYX95cDAY7GmaaZpyu93r/iwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANs9qxkZZzbb1Hr/esVZWM/7JhW5bbp9QKKRAIHABv3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDN88QTT+jhhx/WZz/7Wd17772SpP/8z//UH/3RH+nUqVMaHBzscQ4B4PLhcrl08OBBPfjgg73OCgAAV4RWqyWXy7Uo/fDhw7rvvvv01a9+Vd/4xjd6kDMAADZOKpXSP/3TP+kTn/iErrrqKklSsVjUzp079YUvfEFf//rXe5xDAABWJ51Oa2BgQAcPHtQDDzyg6elpHTlyRK+99po+//nPyzTNXmcRALBB3njjDf3DP/yD/u3f/k1+v1+f/vSn9ZWvfEXbtm3rddYA9Ei5XNYvfvEL/c///I+efPJJHT16VB6PR3v37tV9992n++67T/v27ZPf7+91VgEAwCaYmZnRkSNHNDk5qYmJCU1OTuro0aOqVCryer3asWOHxsbGtGfPHo2Pj2tsbEzvfve75Xa7e511AFeAcrmshYUFzc7OampqSjMzM5qdnW2bnz59WplMxj4mEAior69PW7duVTKZXHYOAMDFYD3PUqmU/fxKpVKL1mdnZ3Xq1ClVq9VF5zAMQ4lEwn6OJRKJFadkMtm1H+9yqtWq5ubm2p63nc/gEydOqFAotOXN+XwdHR1d9MzdtWsXZQgAAAAAF6xUKtnlqZWmcrnctv+ZM2fUarUWndMqb611GhoaktfrlSQ1m027jjKdTqvVaimXy6ler6tYLKpSqahSqahYLKperyuXy6nVaimdTkuSMpmMms2m8vm8arWaSqWSyuVy23mtbbVaTfl8vu0467OuRzwel8vlUjAYlGEYcrvddp/hSCQin88nn8+nSCQiSTJNU263W4ZhKBgMyuVyKR6PS5LC4bD8fn/b/tFo1P49JRIJSZLX61U0GrV//8FgsO3nARebdc+tdXm9x6313IVCoWt90Xo577vO9aWWN2K/jThHKBRSIBDYiF8DAAC4xFhlLUl2+cpilY2k821dznas5bZls1k1Gg1JaitrrbTNKu9ZUqlUW17Xur7RYrGYPB7PZbPeWVZ0likBALjcWLGLVR9kxT2NRkPZbFbS4jro1c6t+Gap+WpZdb5rnVvP+JXmpmnK6/XKNE35/X6Fw+HN+nUD69ZZRpDebsexOO9bS2ddr7MdyOKsG7Z0liG6tQs5y0zS4vKPpEX3u/U/wqlbWrfP0i3vF0u39iSrjWqltG51zFYb2UppnfXY0vn3FkKh0Ipp3f6fdUtztrE5dZaTLFY7n5OzrQ8AAGAjrTYudPaJcuqMWaX2OnxLt3JqZ728tDgGl2T303LqFmN3i6k72x6k7rH/amPmXrNi5larZf/enfNu/eicXC6X3G63fD6fPB6PPB6PvF6v3G63PB6PDMOQz+eT1+uV1+u1t0ciEQUCAbvPmbXdNE2FQqFFMXq32Hu59G5x+XLp3eLzlY6Rlo7NJdn1GAAAAABwKchkMiqXyyoUCsrlciqXy8rlcsrn8yqXy8pmsyoUCiqXy8pkMnY52vleVjqdVrlcVrFYbDvfcqz2ilAoJMMwFI/H7bJeIpGwy2SmacowDIXDYcViMYVCIYVCISUSCYXDYYVCIUWjUZmmqXA43LWsCAAAAAAALm2pVErZbLZtyuVySqfTymQyi7Zls1l7mzXvNhaDx+NRMBiU3++327ul830d6vW6qtWqSqVS1770kUhEiURC/f39Ghwc1MDAgPr7++3JWnduW6pteiOUy2WdOHFCx48f14kTJ/TGG2/opZde0htvvKHTp0/bfSpcLpfdH8Dr9SqZTOqaa67RTTfdpBtuuEHXXnut3vWud6m/v3/Fn1kqlfTMM8/o0KFDOnTokF588UW53W7deOONOnDggA4cOKB77rnHHk9mrUqlkp5//nk99dRTOnz4sH75y18ql8upv79f+/fv11133aX7779f73nPe9Z1/neaW265RR/84Af1V3/1V73OyoYpFov65S9/aV8jR44ckd/vV39/v13H6PV6tWfPHt1xxx268847tX//fg0MDCw618LCgl5//XW9+uqrev3119smqy+QaZoaGBiw77Visaj5+fm2fkrJZFI7d+7UyMiIRkZGtGPHDnt9+/btGh4evuDP3Wq1ND8/r/n5ec3NzdnL8/PzOnfu3KK0+fl5pVKpRf2cpPP9U6x+NlZf8VarZf+PKpfLXfv4BINBxeNxxeNxmaapWCwm0zTt5c4pkUgoFospGo3aabyjCwAALmWpVEqFQkGFQkH5fF7pdNpez+VyymQyKhQKdht3Lpezt6fTaeXzeXt9pfFfrLZqq007FovZ66ZpKhqNKhQK2duDwaC9LRgMKhQKtS13ex8QAAAAAAAAAAAAAAAAAABcWqzvSnd+73Bn2lLLy21fzXfHWOP2WOP4WMvd0lazbM0HBgYWjRkLAAAAAMAl6hFXa6VvZAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPaX7i61fLHT0um01vsVRM4v7A0Gg5uattL2SCQin8+3rs8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4OLqHAtluXFS1rLPardls1k1Go0157tzDJTlxkdZzba1Hh+LxeTxeC7gNw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHD5++pXv6qHHnpIrVZL11xzjb74xS/qe9/7npLJpB555JFeZw8ALln/+I//qH/+539uS3v99deVTCYVjUbttN27d+uHP/zhxc4eAACXvVwup9HRUf3+7/++HnroIfn9fknS8ePHddttt+nOO+/UI488Irfb3eOcAgBwYX74wx/q4x//uFwulz7ykY/oy1/+sl577TV98Ytf1IkTJzQ8PNzrLAIAsKLTp0/ryJEj+sIXvqBgMKhz585pYWHB3v7MM8/o9ttv72EOAQCb4dy5c/qP//gP/f3f/73m5ub0iU98Ql/5yld0/fXX9zprAHrs3Llz+vnPf65Dhw7piSee0LFjxxQKhXT77bfrwIEDOnDggG6++Wbq+AEAuIzVajW9/vrrmpyc1MTEhD1/9dVX1Ww25ff7dfXVV2vPnj0aHx/X2NiYxsfHNTo62uusA7hClUolzc7OamZmZsn5yZMnlc/n7WMMw9DWrVuVTCaXnI+MjCgWi/XwkwEArkSZTEZzc3NaWFjQ/Py8FhYWVrXcyTAM9fX1qb+/X319fW3LAwMDbWnxeFymadrzlaRSqUXP26mpqUVpFr/fr/7+/rZn7ejoaNtzd9euXQqHwxv6uwQAAAAAp1KppFQqtebprbfeUqPRWHQ+wzCUSCTWPPX39ysQCGzq5yyXy4vm3bZt1v7FYlGVSuWCPodhGAoGg0sur7R9M/c1TZN+M7jostms/b/Ied81Gg1ls9mu+1n3qCS1Wi2l02l7v3w+r1qtJkmqVqsqFAr2tlQqZS8XCgVVq1VJ59uRnW0tmUxGzWZzTXnaCM770e12t9VnRaNReb1eSVIgEFAoFJIkuVwuxeNxe79wOGy/++7z+RSJROxt8XhcLpdLkhQKhez/2V6vt228Guf/gvXkCQAAwOKMpa6E9c3ijMm6rV/O+8RiMXk8HgEAcCGWqvvdrLmzDmolzvrbRCLRVpfbbb7cPktto94X2DjdygCkXbyy0Uq6lSl6lf5Oysta061nCAAAwFI6+1hY6vW6crncovTOvhYrpTebTWUymUXpnf1DlkovlUqq1Wqq1+s6e/as6vW66vW6yuWyGo2GarWa0um0Go2G6vW6KpWKvVwsFlWv1+39Go2GvdxqtZb9vXg8HrlcrrY6bbfbLbfbLZfLJbfbbZ/H5XLZ/TdcLpcqlYrq9fqy5++lzr4pnZz9UTo5+5Z0cvZx6bRcXLpcH5XOvjJOnf1eOiUSiSW3LVe/stxn9Pv9K75TtlH7LPfZAQAAAKxeLpdTuVxWLpdTPp9XuVxWNptVoVBQuVxWJpNpaxu22orT6bT93lEmk1GlUlE+n1cul1OxWGx7r6GTVV6JRqMKhUIKh8NKJBL2cjQalWma9rppmopEIgqHw133pc8VAAAAAACXB2ssGav+YS3jySwsLHQdG8Xr9cowDHm9Xnk8HrVaLbtdvFwu22MsWAKBgPr6+jQ8PKyBgQF76u/vb5uGhobU39+vgYGBDRtzIJVK2d8hMDk5qaNHj+rNN9/UqVOn7DZ2l8tlt+cHg0Ht3LlTN9xwg26//Xbdeuutuv7665dt73Z+f9FPf/pTTU9Pq7+/X+9///t14MABfeADH9CuXbvW/RkajYZeeuklHT58WE899ZSefvppnTt3Tlu3btWHPvQhffCDH9SBAwfU19e37p/RSzfeeKM+9rGP6Zvf/Gavs7JuzWZTL774og4dOqRDhw7pqaeeUrVatcffyOVyCoVCet/73qc777xTd9xxh/bt29fWhp/JZDQxMaFXXnlFR48etae5uTlJ59vz+/v7ZRiG6vW68vl8W1+X/v5+7dq1S7t379bu3bvtZWu+1n69jUZD8/PzbdPc3Jw9OdPPnTunubk5pVKpRX1jfD6fDMOw+3ZYfXCW6+ey3jGr+vr66L8MAAAuOUuV2dazvtJYdp3vEFtx1FrWreXh4WHakwEAAAAAAAAAAAAAAAAAuIRY47da381rfa+21f8wlUrZY8I6x8KpVCoqFApt4+kUCgVVKhWl02l7DJ1bXnkOAAAgAElEQVR0Or3imKvO7z4xDMMe58YwDEWjUYXDYQUCAcXjcbvPYjwel2EYCoVCisViCgQCikajikQiCgQC9ng6m/k96AAAAAAAXEYecbVWKsEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCRWV+Ua817mZbL5VSv19f1Oawv8XUu9yqNL/4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALk2rGSvlQrctt0+xWFSlUllzvpcbG2U146dc6DZrGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJeGz3/+8/rOd76jer0ul8slt9str9erj33sY/r617+uG264oddZBIBL0l/+5V/qz//8z1fc793vfrcmJycvQo4AALiyHDx4UJ/85Cfldrt144036vvf/776+vq0f/9+eb1ePf300wqHw73OJgAAF+zhhx/WZz/7WTUaDXm9XtXrdYXDYd1888164okn+C4ZAMA7Vjqd1qc+9Sk9++yzOnfunCQpGAyqUqmo2Wy27TszM6NkMtmLbAIALoJKpaKDBw/qoYce0sTEhPbv368/+7M/00c/+lG5XK5eZw/AO8Cbb76pJ598Uk8++aR+9rOfaW5uTgMDA7r33nt111136e6779b4+LjcbnevswoAADZZpVLRb37zGx05ckSTk5OamJjQ5OSkpqamJEnxeFzj4+MaHx/X2NiYxsfH9Z73vEdDQ0M9zjkAnJdKpTQzM6PZ2dkl5ydPnlS9XrePMQxDW7duVTKZXHK+a9cu+kIBAHquVCoplUrZk/V8c6Z1TmfPnl3UPiydf/4lEom2KRgMdk3vnPr6+mQYhsrlsmZmZhY9a6emppZ87iYSiUXP2tHR0ba0ZDJJ+wUAAACAi66zzLXaaX5+XtVqddH5VipfLVcGu9TKRaVSSeVyuW25W9pqljd630wm07VcvBaGYdh/r2Aw2Ja21PJm7etcDoVCCgQCF/TZgM1g3Z+S1Gw2lclk7G35fF61Wk2SVK1WVSgU7G2pVMpeLhQK9v/WWq2mfD5vb0un02q1WpLa7/dGo6FsNmvvl81m1Wg0VsxTLpez668683ShXC6X4vG4vR6JROTz+SRJPp9PkUjE3haPx+3//c772+v1KhqN2vuZpmn347P+h1hisZg8Hk/XfaXzdXMWt9st0zTt9c6f4/f729rGnP+HAAAAluOM61az3lluq1QqKhaLbfs4Y0CpPb5byz6dP3s1+zhjzrXss1kCgYBCoVBbmjOWlLrHbp37SO3x6XLn74xrLdFoVF6vty2t28/2eDyKxWKLju+MX6XFMa60OFa1dMa7kigrA8A7kPWMtuapVEr1el25XM5+Flt1QZlMRvV6XZlMxq6nsZ6zVh2O83grbnDWJa3ENE15PB7F43G7fsZ6/ljPxng8Lq/Xq1gsZj8brWdMLBaT1+ttO956/kUiEfn9/q7PTQBXnm7lhG5lEOt/ZCfrf12npeqxu51bkorFoiqVyqJ0Z32901Jta53lIGlxfft6875UmWot/98321Llms66fku3spXUvcwjdS+fSd3LTVL3Mt5SZbelylSd7QCWpdoDlipvrTXvzrYKAABw6bL62llx6FLLK213Ls/NzXWNUZ0CgYDi8biCwaBdTo9GozIMw143TVOGYajVaikSidjb/X6/vX+z2ZTX6+06jtJSsbW0fL+SpeJgaem439LZxuHk7P/Saam4Xlq+7aJbW4yls5+OU2ffnEvZUrH8ZuyzVEzeq32WKt9sxj6d/ZN6vc9S5SYAAABcfJ1lxs6y4nLlyG7burVjODnf33K+z9X5btdy69by0NDQoj5TAAAAAADgnS2fzyudTrdNCwsL9pRKpdrWFxYWND8/37XOwe12yzAM+Xw+ud1uNZtNVatVVavVRW27Vhv39u3blUwmlUgk7PE2O5fXM85MvV7X8ePH9cYbb+i1117TCy+8oImJCR0/flypVGpRO3QkEtHIyIhuuOEG7d+/X/v379fY2FjXPoNHjx7V448/rieeeEJPPfWUisWi3v3ud+u3f/u39fGPf1x79+694O8umpiY0I9//GMdOnRITz31lBqNhm666SYdOHBABw4c0D333HPJ1MNcf/31euCBB/SNb3yj11lZk1KppMcff1w/+MEP9KMf/Ujz8/MKhULy+XzKZDLy+Xx63/vep/e///269957tW/fPvn9flUqFf3617/W0aNHdfToUb3yyis6evSoTp48Ken8tW+9+1coFOz+FF6vVzt27NA111yjq6++WldffbV2796tXbt2affu3Su2QUvn+zxY96dzPF5reWFhQdPT05qdndXCwsKi+9Lj8bT1GWk0GqrVaovuF6sNemBgQAMDA+rr67PH4u2c4vF428S4HAAA4J1suf69611fzmrbY1fTXtvtfSoAAAAAAAAAAAAAAAAAANB76XRajUaj7XtGrPHxV/M9I5lMRo1GQ+l02h4T0+rzaI27udy4nU7WOyHWGOzWd45Eo1FFIhH7vRdnP0VrTHnTNBUIBBSJROzvIYnFYgqFQjIMg7EMAQAAAAB4Z3jE1VpNLQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/D/27j3Gjru+//9rzv1+sdeXXduJvbEhXpM4xgRCE25JUCklBCRCyk2iIC4VbYAKAa0qpCIkWtTqS1JBaYEWGkIK4VbuEUkJkJCY2KEJsYmT2Ilje9drxz73++33h38zzJmdc9lde8/aeT6ko5n5zGfOfubs7ufM+/P5zGdwXjIffmtfH1Wa+SDfhQiFQgqHwz3XlzotlUrJMIwFnQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5cE5X0q/uVTmk2fYffl8Xq1Wa97lds6J0m++lGH2zff4eDwun8+3iE8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAz0Vvfetb9d///d/qdDpd6X6/X81mU1deeaU+9KEP6Q1veIO8Xu+ISgkA556DBw9q8+bNc+pXO7/fr0996lP66Ec/uoQlAwDgueGGG27Q9773PTWbTfn9fgUCAW3dulVHjhzRb37zG23YsGHURQQA4Iz4zGc+o0984hOq1WpWmmEY8ng8isViev/736+//Mu/1Pr160dYSgAA5spms7rwwguVz+f75guFQiqXyzIMY4lKBgAYlU6no7vvvls333yzfvSjH+mSSy7RBz7wAb3jHe+wnuEJAO12W4888ojuuusu/fznP9e9996rfD6vdDqtq666Si972cv0spe9TDt37pTf7x91cQEAwBLJZDLau3ev9u3bZy0ffvhhnThxQpKUTqc1NTWlnTt3atu2bZqamtKOHTsUjUZHXHIAmKvVaml2dlbT09Oanp7W0aNHdezYMR05cqRrefz48a7j1qxZo7Vr12r9+vVau3at1q1bp/Hxca1bt04TExOamJjQ6tWruS8EALCsNBoNnTp1StlsVrlcTrlcTtlsVplMpmu737qbcDisZDKpVCqlZDJprZsvczsej0uSisWiqtWqCoWC9fOPHDmi6elpHTlypKtfOxQKaWJiQuPj413LyclJa/2CCy6Qz+dbks8QAAAAAAapVCrKZDLzflWrVWUyGdf3DIVCSqfT836tXr2aeMmhXq+rVCpJksrlsnV/UD6fV6vVUqfTUTablXQ6ji4Wi5KkarWqSqUi6XRc22g0JJ0eo93pdNRqtax4tlarqVwuS5JKpZLq9bokKZfLqd1u9/wZlUpF1Wp1UecXj8et33k6nZYkeTweJZNJK08ikbDarkOhkDVe0Ov1KpFIWPmSyaQ8Ho8kKRKJKBgMSpJ8Pp8V40tSKpWyxp5Ho1EFAgFJUiAQ6OofNMsjSbFYzBprFAwGFYlEFnXewFKw19H2/237/7H0h3pB6q5n7PWE9Id6R+quY9rtdlc7XKFQULPZlNRdv/Qrk3Ofvd45G8LhsEKhkLVtrwuk7rpJ6q5fpO76wTAMpVIpa9tZN/n9fsViMWvbWYc4y2Kvv6Tu+kfqrhOl7jrNWRYAAICFcLsWs18nDpvHeZ04bB7ndaJbHqn7OrbX+0tzr39Nbm0a9vjZZI/LR8F5PWmyXweanNe10txYV+p93ei89pTcY2Bn3G5yXkdL3XG8yXnNbHJed0tzr5eluXG+ye0zAYBzjdleb7a9OJf99g2Tx9w3DLOd36yLzeWgtGGOsbetAMBzjb0N3c7sl3Nyi12c7femXvGPs63e1KuvzxmXmez9BHZu8Vmvdv75lt3eH2HnFv+NSq8YqVfs4hanmfrFNf32ucVTJme/wrD73GI8k1v8OMw+t7jV5OwfGXafW9wIAMColEolVatV5XI5lctlVSoV5XI5lUollUolFYtFZbNZa7tQKHTtz+fzyufz1nave6JM6XRa0WhU0WhUsVhMqVTK2o7H40omk9Z2IpFQIpGwtpPJpOLxuLX9XB9rMGicilv/wSjz9LpmPxt5hrn2Xso8w4xZPFN5zkXDjB0adnzRMG14ZyqP1D9WctOrv6mXhYyr6hdruekXD7npF+u4me/Y1V79jL30im/7oX8OAIAzx9nXa793a5h99u2TJ0/2vdbv19c7aNttH9cEAAAAAAAsT51OR6dOnVImk9GpU6f6vjKZjE6cOKHjx4+79lUHg0FrrFmr1ZrTrxcIBJROpzUxMaG1a9dqfHxc4+PjWr16tVatWqWJiQlrOUyfTa1W05NPPqknnnhCDz74oB566CHt379f09PTc57JnEgktHHjRl1yySW6+uqrde2112rDhg1d73XffffpRz/6kf7nf/5HBw4c0Jo1a3Tdddfp9a9/va699tpFP/Msm83qrrvu0p133qmf/vSnOnLkiMbGxvTqV79a119/vV73utct62cdbN68We9617v0t3/7t6MuykAnT57UD3/4Q333u9/VnXfeqVqtplgsZt3/d/nll+tVr3qVrr76al155ZXK5/PavXu3fvvb3+p3v/udHnnkET355JNqtVryer2Kx+PqdDrK5/PWWFjzeRXbtm3T5OSk9ZqamnL9W6lUKpqentbs7KxOnDihmZkZHT9+XCdOnNDhw4e7tp33KXq9Xvn9fhmGoVarNaddz+znHBsb0+rVq7Vy5UqtWLGi65VOp611c/98+/0AAADOlmKxqEKhYL2y2ayKxaI1rnbQONpCoWBtD5qPbLHjaJ1jcukDBQAAAAAAAAAAAAAAAABgtM7E8zkG5ek1N7ybXs/i6PecjvnkWbFiBXNtAwAAAABw/rvD6Dif9gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOOPMh9ja1xeTttj3yWazWujja5wPxB1lWjwel8/nW9B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFh++s2dMsz8KovdZ88zH/3mShlm32KPN9cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAc9VrXvMa3XnnnT33ezwetdtt3XbbbXrrW9+6hCUDgHPfzp079dvf/ladTsd1v2EYOnjwoDZu3Li0BQMA4DxXq9WUTqdVqVSsNDO2ueGGG3TbbbfJ7/ePsIQAAJw5H//4x/XZz35WtVrNdb/f71en09EXvvAFvfvd717i0gEA0N/nPvc53XTTTWq32z3zXHzxxfr973+/hKUCACwHDz/8sD7/+c/rv/7rv5RMJvX+979ff/VXf6WVK1eOumgAlplWq6XHHntM9913n+69917dc889Onz4sCKRiHbs2KGrrrpKV155pV7xilcokUiMurgAAGCJTU9Pa9++fdq7d6+1/O1vf6tyuSxJGh8f186dO7Vt2zZNTU1p27ZtesELXqBgMDjikgPAYPV6Xc8++6xmZmY0PT3dc3ns2LGusczpdFrj4+OamJjoubzgggvk8/lGeHYAAAwvk8kol8spm80ql8v1Xc9kMl3b+Xxe1Wq153vH43FFo1FFo1GFw2H5fD4ZhqF2u61Wq6VGo6FCoaBisahCodD1nZtIJHTBBRdoYmJCGzZs0Pr16zUxMaHJyUmNj49r/fr1SiaTS/ERAQAAAMCiVCoVZTKZeb+OHz+uVqs15/1CoZDS6fS8X2NjYwoEAiP4BCBJhUJBzWZT0ulYXJKazaYKhYIkqVqtWvf0FotFNRoNSVIul1O73Va73VYul5MkNRoNFYtF672z2awVU5dKJdXrdUmn28FLpZIkqdPpKJvNWsfYf0atVrP6/+w/50zweDxd8Xs8Hrfaz0OhkMLhsCTJ6/V2jU1KJpPyeDySpHA4rFAoJEny+XyKx+NWvlQqJcMwJEnRaNT6G/f7/YrFYla+dDptrcdiMese6WAwqEgkIun0/CWpVMq1rMBy12q1lM/nrW1nPWH/P5dOfzfZ2/XK5XLX/ZX2OkKS8vl813eSvd5x1i/OstjrOqm7bpK6679hynImOeseZx0TCAQUjUatbXu9JUmRSKRrfIS9fpHm1iP2uk3qrpuc9eWgstjrL6m7rnQrGwAAwFJyXiOa7LGxyXmtKvWOTZ3XpdLca1tp7jWpyYyx7ZzXn9Lca1iT/TrYZI/DTc5rXpPZHmB3Nq93h+F23eiMqU3261eTPRY3Oa9dpbkxt8kt9nZe60pzr5cHlaHfz5TmXtvb2dsa7NzOq995ADh3md8j5neU+V2Rz+dVr9eVz+ettGw2q1qtplKppGKxqFqtplwuZ7V3mO9TKBSsY9y+D5zMNgsz3k8mkwoGg4rFYopGowoGg0qlUladmUgkFAgElEgkrLrd3B+NRhWLxRQIBJRKpfrWgQCA81+vGMQt3pLc46BeMVuvWKpXjOTsHzC5xWn93n/Qvl4xotS/b7Tfvl5xr2mY7/vloN91Qb99bnGbqV/s1G9fr1hUmttnMuw+Zz+QXb84s9++frGm5B47m3rFm4P2AQD6M9uI7WP07Nv99jm3T5061XNuaukP34/m+D37+ny3V6xY0dXHD5yL3PponHpd95+NPG59TqPM0ysWmm8eU6+4rZf59kEN8/u0m0/Zpf5xG/4gkUjI6/UOnb9XP1kvzjFmg/SL49z0i8PcDIqx3DjH4A2ymH68+f4s00LOyzTfz9Buvr8vu8X0Hcz379Buvn/zAHAmlUolq583l8upVCqpXC4rl8upUChY25lMxlovFAquecvlct9rI7N+N+feiEQiSqfT1jwcsVhMyWTS2pdMJhWPxxWLxRSLxZRIJJRKpay0Xu2zAAAAAABgaTSbTT377LPW6/jx4zpx4oS1ffLkSc3Ozmp2dlYnTpxQJpOZ02/j9Xqte9Lr9XrX/U6BQECrVq3S+Pi4LrjgAmsOTnPO68nJSW3YsKHrnna72dlZ/e53v9Mvf/lL7dq1S/v379fMzEzX/U+BQEATExO65JJL9MpXvlLXX3+9LrroIknSwYMH9YMf/EB33HGH7r//fgWDQV1zzTW67rrrdN1112l8fHzRn+Gjjz6qO++8Uz/5yU/0i1/8QoFAQK973et044036k/+5E+W3Xj3FStW6NOf/rTe9773jboorg4dOqQ777xT3/72t3X33Xer3W7L5/Op0WhozZo1+tM//VP98R//sS677DIdOHBAu3fv1gMPPKDf/OY3evbZZyWd7kfqdDpWn2E4HNbWrVu1detWTU1N6eKLL9bWrVs1OTnZdS9aJpOZM5/74cOH9fTTT+vAgQOanZ2dMxbV4/HIMAx1Op059/r5/X4lk0mtXLlSa9eu1bp16zQ2Nma91qxZ07U9Nja2oP4cAACAxXLOLekcnzpM2smTJ+fMU2B3Jsarmutr1qxhjAYAAAAAAAAAAAAAAAAAAGeZOf+buczlcmo2m8rlcla6Oeeb+QynbDarZrPZ8/kY9jyFQmGoeflM5vxQyWRSXq9XqVTKmgfaHGNoPnszlUrJ5/NZz70w50EJBoPWXFHpdNqaD9qct2oxc1ABAAAAAAC4uMPoOJ+YBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnOPPBtuZylGn5fF6tVmtB52E+2Na+Pqo08wG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM5PzvlT+s2tMsy++R5fKBTUbDbnXW7nvCn95lRZ7D63PPF4XD6fbxGfPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJevGLX6wHH3yw536/36/LL79cd999t0Kh0BKWDADOfTfffLM+8pGPuM4FbRiGXvKSl+j+++8fQckAADi/ff/739f111/vus/r9erSSy/Vd77zHW3cuHFpCwYAwFnwnve8R1/5yld6PofIMAx5vV797Gc/0ytf+cqlLRwAAAO0Wi1ddtlleuyxx3q2o15//fX67ne/O4LSAQCWg2PHjukLX/iC/uVf/kWlUklvfvOb9Td/8zfaunXrwGO/+tWv6tJLL9WOHTuWoKQAlpPHHntM9957r375y1/qV7/6lZ5++mlrDNRVV12ll770pbriiiu0du3aURcVAACMQKvV0qFDh7R3717t27fPWj766KOq1Wry+/3asmWLtm3bpqmpKWu5detWeTyeURcfAOatUqno6NGjmpmZ0dGjR3Xs2DEdOXJEs7OzOnLkiLVdLBatY3w+n9asWaN169Zp7dq1Wr9+vdasWaP169d3ba9Zs2aEZwYAwJnRbDZVKBSUzWZVKpVULBZVLBaVyWSs9WKxqFwup3w+b+XJ5/PK5XJdeTKZTN+fZRiGOp2Ote3xeBQKhRSPx5VIJJRIJJRKpbR69WqtXbtWa9eu1bp16xQOh5VIJBSJRBQKhZRKpRQKhRQOh5VMJolVAAAAACxblUpFmUxm3q9nn31WjUZjzvuFQiGl0+mhXuFwuCv/+Pi4DMMYwaeAUcrn82q1WpKkarWqSqUi6XSfYT6ft/Llcjm1221Jp/9uq9WqpD+0G5iy2awV25dKJdXrdUlSvV5XqVSy8tnbCIrFovX3XKvVVC6XJUmdTkfZbNbKVygUrDH19rKeCWY7gnT6PutEImHtSyQS8nq9kqRgMKhIJGLti0QiCgaD1nY8HpfP57O2U6mU9X/lfN9AIKBoNGptm/+TplgsJr/fb23b2zgMw1AqlbL2+Xw+xeNxa9tZTuBcZK9rnNv99i319nyPtdeNZ4O9PuuVtpA8y/197XU1AADAcmePfU3OGNhkj4VNbjFxu91WLpebc7w97jc5r1GlufG9yd4eYCqXy6rVal1pjUaja3ydyd5OYHK7Jna2Gwwqw3LhjMftotGoAoHAnHRnTG/nbBuws7cx2DnbF+x6XSf3K7ezPcLk8XiUTCbnXe50Ou2a3q/tole5/X6/YrGY6zHAcmPWa4VCQfV6Xblczqp/c7mcarWaisWiVSdmMhnr+6FQKKhWqymfz1vHZLNZ1et1awyWW/+AUyKRUDAYVDwet9ox0+m0VW8kk0mFw2FFIhGlUimFw2GFw+GudbMvwUx3tocCAIC5+o2VdouRTP1in3773OI+k1tMOcy+ftcb/fo53OLFYfa5xammfv3C/fa5xd7LVb+x7v36P/rt6xcrSv3jQmlu37ZTv9jW1CseNA0a4+/se3fqFb+aBl279otlpcF97oM+YwDLV7VaValUUi6XU6FQUKlUUqlUUjabtWL1UqmkTCZjrReLRWWzWZXLZZVKJeXzeev+qX7jl4LBoKLRqFKplGKxmKLRqKLRqNLptLUei8WUSqWs7Xg8rnQ6rXg83vUaVO8CwLmmV99YP/PtM+oX97jpF7e4me841l79ab306v/rZ9D9u079Yko3w7ZPm/rFe2769Rm66dXHOYzFjEM+22MAcVqv/tFB+vVrDjIoXu5nMWO3B8Wo/QyKj/tZzP33i/mspMFx+yAL/fuQFt/v3GsswDCGaVPpZ7H3CAxqb8Fg5neb/V6wftvD5O3Ffr+X8/6vYdNWrFjB89UBAAAAAFgi+Xxes7OzevbZZ63XzMyMZmdnNTs7q0OHDml2dlbHjx+f0xbu9XplGEZXv4ZhGEomk1q9erXWrVunLVu26MILL9T69es1MTGhdevWaePGjV33Wh8/fly7d+/Wz372M+3atUuPP/64Tp06ZY1Z83q9WrFihZ73vOfppS99qa677jpt3bpVP/nJT/TDH/5QP/7xj1WpVLRjxw697nWv04033jjUs88GOXXqlH74wx/qjjvu0E9/+lP5/X5dc801uuGGG/SmN71p5PNitNtt+f1+3X777Xrzm9880rLY7d271/rcHnroIXk8HrXbbRmGoUsvvVSvec1rtHnzZhUKBd13333atWuXjhw5ok6nI5/Pp1arpU6no0gkoi1btujSSy/Vtm3bNDk5qampKW3evFlHjx7V0aNHdfjwYc3MzOjAgQM6ePCgDh8+rNnZWWWz2a6+JLNN2dlnF4vFtGrVKq1Zs0YXXnihNU/s+Pi4xsbGNDY2plWrVmn16tXcFwQAAM4a8/7LbDarfD6vQqGgYrFozaufz+etbTPNXDfzZjKZvmOOzP5m5zhPZ1osFusaD2pum2mL6XcGAAAAAAAAAAAAAAAAAACn2ecBWYrlfOZBM5+xaF/a5waZz75eeZhLBgAAAAAAnKPuMDq9nuAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOYD5y1r48qrVQqqV6vL+g8zAfV2tcXk7bY90mlUjIMY0HnAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODc0W9+lWHmYFnsPnue+eg3h8ow+xZ7vCSl0+mFfuwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlqHNmzfrwIEDrvv8fr82bdqkBx54gLlJAWABjh8/rvHxcbXb7Tn7fD6fbrnlFv3FX2K+5ioAACAASURBVPzFCEoGAMD57Z3vfKe+/vWvq9FouO73+/2KRCL69re/rWuuuWaJSwcAwJl1/fXX6/vf/37P/R6PR7fffrve/OY3L2GpAAAY3q9//WtdddVV6nQ6c/YFg0F98IMf1D/+4z+OoGQAgOWkWCzq61//uv7f//t/evzxx/Xa175WH/zgB3Xttde65j906JAuuugiBQIB/fSnP9XLX/7yJS4xgOXkyJEj+sUvfqF7771X9957r/bt26d2u60LL7xQL33pS3XFFVfoiiuu0I4dOxQIBEZdXAAAMCKNRkOPP/649u3bp71791rLxx57TO12W/F4XM973vM0NTWlbdu2WcvJyclRFx0AzohqtapTp05pZmZGBw8e1PT0tGZmZrqW09PTymazXcel02lNTk5qfHxcExMTrsu1a9fK4/GM6MwAAFhapVJJxWJRxWJR2WxWhULB2s7n8zp27JhmZ2d18uRJzc7OKp/PW/kqlYpqtVrPMdC9BAIBRaNRxeNxhUIhxeNxRaNRBYNBpVIphcNhhUIhpVIpBYNBK6/P51MymZTH41E6nZbX61UikZDf71csFlMwGFQkElEkElEwGDxLnxgAAAAAuKtUKspkMgt6VatV1/cMhUJKp9Pzfq1Zs0Zer3eJPwHgtFarpXw+b23n83m1Wi1Jp/9PzL/3ZrOpQqFg5ctms9YY/XK5rFqtJul0v2ixWLTyZTIZa92eT5IKhYKazabre7bbbeVyOWtfvV5XqVSytu1lk06PA51vm8ewnG0XZruHyT5vltn+YTLbVUxmO4opFovJ7/db22ZbiiQZhqFUKmXt8/l8isfj1rbZtnImygmca2q1msrlsrXtrBOc9Y2zjnDWP873k7rrL7f3dNaLUncdKp3uI61UKtZ2p9OZ0x/qLJuzHpW668ezyVmvOOshSYpGo11jYc32Xjt7XSadvkYKh8PWtsfjUTKZ7DrGWR86609JSqVSMgzD2nbWe251WyKR6LrOGuYcAQAAnguccbad83rZ5GxDsCuVSqrX63PS3a6BTc7rZbte18ALKbfbtftiyu2MP4Ypt1vMsZw4r8dNbtfupn5jPXrNMe68HrdzxhEmt5jDzhkn2PUr/zDv7WzHcer1uZl6nZM0OBZxtgPhzDL/x816KJ/Pq16vK5/PW/F/NptVrVazxmrVajXlcjnrmEwmY9UH5nqlUulZd5jMv8tIJKJwOKxkMqloNKpwOKxEIqFYLKZwOKx4PN41VisejyscDisWiymRSCgcDisajSqZTCocDvf83wIAADjT+sVl/fa59X+Y+sVt/fb1i1Od/c3D7pN6x4omZ5+RU794VxocI/b7rKT+n4k0+PzOBYNiokHx3jD9P/3iSal/TCfN7Y93cvapOQ26h8LZv+bUL8aWBse8g8YMDPqMpd7xv4l+OAzDrLMKhYJKpZJKpZKy2ayKxaK1nclkrHXzXipzu1AoKJfLWfv61Y+JRELxeLxrmUqlrLjbfKXT6TlpqVTKOo77nwAAGJ1e/YHDWOgYvH79hoMMit/6WUz/Yr/+zEEWMx7bOX5yPpzjNYfVr21gkEHxdz+DYv9BFvNZLebvShrcroGzY5g4u59B7QSDOMfSzsdi+q7dxgIPMt/Pqtlsql6vy+fzqdFoqNlsqtlsqlqtWq9Wq6VGo2Ft12o1NZtNtVotVatVlcvlvv+TPp9P4XBY4XBYgUDAmk/DnCfD7/dbzyo00+1pkUhE69atm/dcxIPGJLgZ1GbkZqF/nwv5uxo0DgMAAAAAgGHUajWdPHlSmUyma17rw4cPa3Z2Vs8884xmZmZ08uTJrnZWwzBkGIba7baVFolEtHbtWk1OTur5z3++LrnkEk1MTGhiYkJbt25VJBLR/v379e1vf1v33HOPHnvsMc3Ozlpjizwej9asWaPt27frla98pVasWKFf/epX+vGPf6yTJ09q27ZtuuGGG3TjjTfq4osvXvS5Hzt2TN/61rf0zW9+U/fdd5/i8bje8IY36O1vf7uuvvrqkczNffLkSY2NjelnP/tZz2e8LZWHH35Yt912m2699VYdO3ZMPp9PzWZTyWRSr3jFKzQ+Pq5nnnlGDz74oJ599llJp3+H7XZbhmFoYmJCL3rRi/TiF79Yl156qTZu3KharaaDBw9q//792rt3rx5//HEdPnxYJ0+e7PpbMgyjqx/C5/MpGo1q1apV1hzqGzdu7JpPPZ1O64ILLuDeEQAAsCjmvY72+x7tcyUOm9av396cW9Hs67HPnziftEHjtwEAAAAAAAAAAAAAAAAAeK7J5XLWnIz9luZ8NWdqOSxzbtVhl+Zcq8Muzbld0+k0z1YFAAAAAAAYzh1GZyEzbQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYUpVKRdVqtWt9VGmSlMlkFnwuoVBI4XDYWo4yLZFIyOv1LvhcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJybnHOs9Jt/ZZh98z2+UCio2WzOu9zDzK0ynzzzPT4Wi8nv9y/ikwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd6tXr9aJEyfmpPt8Pq1cuVIPPvigNmzYMIKSAcD54VWvepV+9atfqdVqdaV7vV5NT09r9erVIyoZAADnp2azqZUrVyqfzw/M+573vEf//u//vgSlAgDg7Lniiiu0a9cu132GYejf/u3f9J73vGeJSwUAwPy84x3v0De+8Q01Go2udJ/Pp8997nN673vfO6KSAQCWm3a7rR/96Ee65ZZbdNddd2nHjh360Ic+pLe85S1dz3790Ic+pM9//vNqtVry+/36wQ9+oFe/+tUjLDmA5aRYLOr//u//tGfPHt1333265557dOLECfl8Pm3fvl1XXnmldu7cqZ07d2rbtm2jLi4AABixfD6vJ554Qnv37tW+ffu0d+9e7dmzRzMzM5KkdDqtqakpbdu2zVpedtllGhsbG3HJAeDsqFQqmpmZ0fT0dM/l0aNHlcvlrGMCgYBWrlypiYkJjY+P91yuXbtWHo9nhGcHAMDyUK1WNT09bX2/HjlyRIcOHdKBAwc0MzOjY8eO6dixY133KkUiEcXjccViMYVCIQWDQYXDYUmnx5FJp7/Hq9WqKpWKcrmc2u22MpnM0OWKxWLy+/1KJBLyer1Kp9PyeDxKJpPy+/2KxWIKBoOKRCIKh8MKhUJzjkmlUvJ6vUomk5KkVColwzCsfKFQSOFwWD6fT/F4/Ax+qgAAAACeS+zxTyaTmddrdnZW7XZ7znuGQiGl0+l5v8bGxhQIBEbwKQDnBvP/1bm+2O0z+V7zfe9CoaBmszmfj2FezPaTXtvD5DnXjkkmk/Qh4ZzirBdardac+S+cdUWtVlO5XO7K42y/LZfLqtVq1naz2VShUOjKk8/nu9qOzWsiU6fTUTab7TqmWCx23dPVaDRULBa78mSzWXU6nXmd49kSjUbnXF+51RNm+7NdOp3u2jYMQ6lUamCa2RZu5/V6lUgkutLc2rbd0sw2dbtAIKBoNNqVZra5D0pzqzsBAABwZjivsU1u1+Mm5zW2qd1ud42ttHNeY9v1GtvhFkcMKrfb9f5iyu2MU+z6fUbS3HjFqVQqqV6v99y/nA26RneLa+zMcTa9OGMbu0FjbtxiCrtIJKJgMNhzfzwel8/n67nfLRYzucVRdm5xkZ05HqkXc/zRMGWrVqvKZrOqVquqVqvK5/Pyer1Wv4K9j8HZ39BrX6//YZP5d2H2N5yJ9dWrV/f9fQAAAOD80C9mZP/i9y/Fz+gVp5+LhumXIs/5l2dQW8Z89Iq3e6W5pZ86dapnm5R5TvYxfPaYetg0Ym4AAACci5xjPeejX1/yMBbbvzufOQ+c6vW6SqXSgo9fzPj/fv3pwxjUbz7IYtoczPkm5qPfGIFeFvL7cRvv3Ol01G631Wq11G631el01Ol0rO12u61araZWq2XtM1/243FmuY2JHka/cQ+9DBoTYDdofMF8yjHsOO1h7nsZNC7CNGjciDR4fIhpmM9t0HgO06AxJZL7WHw3w/6OAAAAAJzfstmsjh49qmeeeUbT09M6fPiwnnzyST399NM6fPiwTpw40bPtxDAMxeNxjY+Pa9OmTdq6dasuvfRSTU5Oyufz6d5779X//u//6pFHHumaRyYcDmvTpk2anJyU1+vVrl27dOzYMW3fvl033nij/uzP/kybNm1a9LkdOXJE3/rWt/SNb3xDDzzwgCYnJ/Xud79b73znOzUxMbHo9x/Wk08+qS1btmj37t3auXPnkv1c0xNPPKHbbrtN//mf/6lnnnlGXq9XrVZLa9eu1eTkpLLZrJ5++mmVy2UZhqFOpyO/36/Nmzdr+/btuvDCCxWLxZTNZvXEE0/o4MGDmp6eVjab7dnWEwqFNDY2pvXr12vTpk3asmWLLrjgAq1bt04bNmzQ+vXr59wzDgAAYDffcY690vr1x7ndM7iQ8Y482wUAAAAAAAAAAAAAAAAA8Fxhf0bxUiznO4+L/TkES7EcZl4CAAAAAAAALLk7jM5CZwcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzlPOh8eOMi2fz6vVai3oPMyHy9rXR5UWjUYVCAQWdB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg/95lsZZt9ij5ekTCYz73L3m2dlsfuGPT6VSskwjAV97gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwLohEIqpUKl1pXq9XsVhM999/v7Zu3TqikgHA+eE//uM/9N73vletVstK83q9uuaaa3TnnXeOsGQAAJyf7rrrLr361a/uud/v98swDH3yk5/URz7yEXm93iUsHQAAZ97mzZt14MCBOemGYegf/uEf9NGPfnQEpQIAYH5mZ2d10UUXqVQqzdl311136ZprrhlBqQAAy92ePXt088036/bbb9eqVav03ve+Vx/84AclSevWrbPGQng8Hnk8Hn3zm9/UG9/4xlEWGcAy9vjjj+uBBx7Qrl279Otf/1qPPvqoms2mJiYmdMUVV+jyyy/Xzp079aIXvUjpdHrUxQUAAMtAJpPR3r17tW/fPu3du1d79uzRI488okKhIEkaHx/Xtm3bNDU1ZS1f+MIXKhKJjLjkALA0KpWKZmZmND093XN55MgR5fN565hgMKgVK1ZoYmJC4+PjPZfj4+MyDGOEZwcAwPKQyWR08ODBOd+zZprzuzYUCrl+v27cuFGJREJjY2NKpVJqNpsql8sql8uq1WoqFotqNBrK5/NqtVrKZDJqt9vK5XJqNpsqFAqq1Woql8uqVCqqVqsqlUqq1+vWMdlsVu12W9lsdt7nabbJxuNx+Xw+hcNhhUIh+f1+xWIxGYahVColSUokEvJ6vYpEIgoGgwoEAopGo33zSFIqlZJhGPL5fIrH45Jk/Rz7MQAAAACeGyqVijKZzLxfzz77rBqNxpz3C4VCSqfT836Fw2HGqQDnMLNtxVQoFNRsNq3tbDarTqcjSWq1Wl3tOPV6fc79FZlMpmvbbH9ZzDGNRkPFYrErj71cbudhtgfZ5XI5tdttnW3RaFSBQMDaNtuH7Mx2HpO9DUhSV/uPKZlMyuPxWNv2diHp9DxBiUSi6xhne1EoFFI4HF7UMR6PR8lksusYs00MOBc5671h6qlh6hyz3dlktlfbOevVXmlu7+9WN7qV3S3NbCu3q1arc+Z5XArOuqxXmrOelObWt5IUi8Xk9/sHprnVW25t7M66t1eas16XNOca2d4H0C/NrZ4FAADA+cMcszLffaPev5zLNmj/Yt/bGTeea5xtO5LU6XSsl7nt9/vl9/vVbrfVbrfV6XSsZafTUavVksfjkWEYajab1j77ej9er9d6BQIB+f1++Xw++Xw+a93r9VrlCIVCVixozxsMBq28buc2zPkvNN+5mMctngYAAACG5ey7dxoUT7n1Sdm59WPN9z2GzTPMz1rKPG59fcs9z7lqmPtsznaedrutRqOhZrNp9Vu2Wi01Gg3V63XV63U1Gg21Wi21Wi0rf61WU6vVUrPZVKVS6Rl7+3w+hUIhK3YOhUIKBoOKx+NWDB4Oh62XGWeHw2GtXLlSiURC0Wh0Tp+qya2/dZR53PqJF5IHAAAAAJYzs93Fee/YfNOOHz/eNZ7ZLhgMKhwOKxgMKpVKWS+v16tgMKhEIqFkMqlkMmnFms60QCCgsbExVavVvu1IboZpQ3HqdDoLmgvEOa57GIPavty4jfnux3lfjJth2r6k4c5x2DagYcZJuI15dzOojfF84TaW3CkYDA41v6fbWHUnt/uU3Ay616ffmIJ+7TT92sr6fRa97kHtN37e7f4qkzlXj5t+n7fb/QoAAADAYpXLZR06dEjT09M6evSo9u/fr8cff1yHDh3SkSNHdOLECddYy+PxaNWqVZqcnNTznvc8jY2N6ZlnntFjjz2mJ5980rrv17wXNZFI6OTJkyoWi3rJS16it7/97XrLW96ilStXLvoc9u3bpy9+8Yu69dZblcvldP311+vDH/6wrrzyykW/9yA///nPdfXVV+vYsWNas2bNWf95knTq1Cndeuut+td//Vft379fHo9H7XZbyWRSfr9fmUzGirUNw9CqVau0adMmjY2NqVAo6NixYzpy5Ihr3O7xeJRKpaw5VDdv3qxLL71U69ev1/r167Vhw4ah4joAAHD+KZVKyufzKhQKKhQKymQyKhaL1nahUFA2m7XWi8Wi8vm8a1ovsVhM8XhcsVhMiURCqVTK2o7H41aauW2mJZNJazsWizHvCQAAAAAAAAAAAAAAAADgnGKfp8GcK8CZtpA8832/YZlzzC/Vcpj72AEAAAAAAPCccYfRGTQbJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAWmA+D7XQ6ymazkqRyuaxaraZ2u61cLidJKpVKqtfrrmmtVkv5fF6SVCwW1Wg0Bqa5HWumLUQwGFQkEpEk6+GxbmmBQEDRaLRnWiKRkNfrld/vVywW65kWj8fl8/lc03w+n+Lx+ILOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD5y5zvxbk8G/vc8phzwcxXKBRSOBy2lm5p88kz332xWEx+v38RnzwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBitVkt+v1+dTsdKMwxDfr9fd999t6666qoRlg4Azg/5fF5jY2Nd84Z7PB595Stf0Tve8Y4RlgwAgPPTBz7wAX3pS19SvV6fs8/j8Wjnzp269dZb9fznP38EpQMA4MxbsWKFMplMV5phGPrYxz6mT3/60yMqFQAA8/dP//RP+tjHPqZ2u92V/vTTT+vCCy8cUakAAOeCp556Srfccou+/OUvyzAMveAFL9BvfvMbNZtNK49hGDIMQ1/96lf19re/fYSlBXCuKJVK2r17t+6//37t2rVLu3fv1pEjRyRJF110kXbu3KkXvehF2rlzp3bu3KlkMjniEgMAgOVienpa+/bt0969e63lQw89pEqlIp/PpwsuuEBTU1Patm2bpqamtHPnTl188cXyer2jLjoAjESlUtHMzIymp6d7Lg8fPqxCoWAdEwwGtWLFCk1MTGh8fLzncnx8XIZhjPDsAAAYPfO79uDBg3O+Z8202dnZrr76dDqtycnJOd+vZtqGDRuUSCQWXKZms6lCoaB2u61cLidJyuVyarfbKpVKqtfrqtfrKpVKffPUajWVy2W1Wi3l83lJUjabVafTUbFYVKPRULVaVaVSsX6mpDnj7ebD4/FY7cGhUEjhcFiSFI/H5fP5ZBiGUqmUJCkQCCgajUqSotGoAoGAJCmVSskwDPl8PsXjceu90+m0te73+xWLxaxt+/H295A0530ikYiCwaC1nUwm5fF4FnzOAAAAAOanUqkok8ks6FWtVl3fMxQKKZ1Oz/u1Zs0a+qAAjESlUumq0+ztNyazrWc+x+TzebVaLWvbbPsx2duSTIVCoWtMsdmmZOp0Ospms13HmG1LiznmbAkGg4pEIta2vT3KFIvF5Pf7rW17O5XJ3hYlzW1/WsgxzjYtqbsdS5rbduVs25Lmtmc5jwHOJ866j7TTnPX9UrG3+y+3tFGVw1nXAwAAAGeTOSaol36xglt7jZ197JAbZ/uPm2HGHDnbvNwM045ULpdVq9UknT63er2uZrOpVquler2uRqOhSqWiUqmkZrNpvRqNhpWv0WhY47BarZaVbr56MQxDHo9HXq/XWnq9XrVaLWufx+Ox1g3DkNfrlWEY1mdotgeZ9/fbOdvrzifhcFihUKhvHmf7nhu3djYn+zi2fpxtem6GGV/mbHN0M0w7nlvs6TTM+Xu93oFjGN3aTt0Mc/7m+MB+aMcEAADAQg2KWZdjHrcxHaPM4zZeZD55Go2GFUvncrmu+LnVaqndbndt12o1tdtttdttdTodtVotdTqdruf/OZkxsv21FONMRmGYPsYzlWeYWGy55Rmm/WCYPM4xOU5uY3+cEolE3zGmw8Tow8TMAAAAwPkqk8moUCioUCioWCyqUChYaea2mWbfLhQKymaz1rr9nginVCqleDyueDyuWCymRCKhVCqlRCKhRCKhZDLZtZ5Op7vSk8nkwP5JnL+GaTOR3Mdzuxlm3ITzPp9ehhlfYc47M8gwY8+HafOShhvTMUx7Vb/z6/U59vt99fuZjUZDxWKxb3mWA7dxB25jKHqNh3Brx3BrQ3G7T0lyb0txa39ya1PpNf7ArV3EbVyE2xgH5+fBuH0AAIDFMefVfOqpp/Twww9r3759evLJJzUzM6NisdjVl2sYhpLJpMbHxxWLxVQqlXTs2DGdOnXKyuPz+axjXvGKV+imm27Sa1/72oFjaQep1Wr6zne+o1tuuUUPPPCAXvziF+uv//qv9aY3vemszQ3z5S9/WTfddJOKxeJZnaO71Wrpzjvv1D//8z/rF7/4hdWfHggE1Gw2rRjJ7/crHo/L7/erWq1ac5LaRaNRrVmzRpOTk5qamtL27du1efNmTU5Oat26dcw1DgDAecg5b5/Z1txrnj7nvlOnTln34rlxzuFnti3OJ21sbIw2PAAAAAAAAAAAAAAAAADAkjHvtbbPv2/eV23OYW/msd+nfKbyDHM/uJP9Pl9zbnTzflzzHtx+ecxxe255zHuNBy0BAAAAAACAEbvD6PR7agUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOC6VSSfV6Xa1WS/l8XpJULBbVaDTUbDZVKBQkSYVCQc1mU41GQ8ViUdIfHjBrPlhW+sMDZd3SarWayuWyJCmbzarT6aharapSqUiSMpnMgs/DfICs+XBZwzCUSqUkSZFIRMFgsCvNLZ+Z5vZ+9jTzIbeSlEqlZBiGaxoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuKlUKqpWq13rzmW/fYs9XvrDHDDzYZ9nxVx3Lhe6b9jjmd8FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ5bTp06pZUrV3aleTwefetb39Ib3/jGEZUKAM4/119/vX784x+r2WxKkgKBgE6cOKFEIjHikgEAcH5pt9tau3atTpw40ZXu9/tlGIY++clP6iMf+Yi8Xu+ISggAwJnV6XTk9/vVarWsNK/Xq7e97W36yle+wjOpAADnlGazqUsuuURPPPGE9d3m9/tVqVSI4wAAQ8nlcvr85z+vT3ziE1a/nJPH49GXvvQl/fmf//kSlw7A+SCbzerRRx/Vnj17dN999+nee+/VzMyMJGl8fFw7d+60XldeeaVWrFgx4hIDAIDlotls6plnntHevXu1b98+7d27V3v27NH+/fvVarXk9/u1ZcsWbdu2TVNTU9ZyamqK/h4A+P9VKhXNzMxoenq65/LQoUMqlUrWMaFQSOl0WhMTExofH3ddTk5OKp1Oj/DMAAAYvVqtppMnT2pmZkYHDx6c8z178OBBHT58WI1GwzomFApZ36Vu36/j4+Nau3atPB7PCM+sv2KxqEajoU6no2w2K0mq1+vW9YS5X5IymYwkqdFoqFgsSpLK5bJqtZqk0/1U7XZbrVZL+XxeklStVlWpVCRJhUJBzWZT7XZbuVxO0unPvVwuS1LXcc5jzySfz6d4PG5th8NhhUIhazuZTFq/M6/X23XvWygUUjgctrYTiYQ1nsPj8SiZTPbMG4/H5fP5JEmGYSiVSln7gsGgIpFIVznt+U3O4/odL0mxWEx+v9/tYwAAAACWrXK5rEwmo2w2q0wmM9S6uTRjFTuv16t0Oq1UKtW1dEtzWzqvywEA81epVFStVvumDdo+144plUqq1+s625xtUG5pg7aX0zHD5IlGowoEAgKeK5xt573Sms2mCoVCV5q9Pd9k7wPol2Zvvze5tdu7pbnVk/b+BJNbXemWZu+rMJl9DkvN3i/QL83e12BKpVJzxsG5jdUYNs3t/dzK4tbf4NZ/EIlEFAwGu9KcfSiSe90dCAQUjUbnlBEAAABY7sz4pVKpWH0P89m2r586dWpO3GNnXkubY7vt627bXq9XXq9XqVRKqVRKoVBIoVDIWk8mk6rVagPHV7nFfE5ucaaTfXxZP9lsVp1Op2+eYWK6YdrX3OJPp2HO3y2mdrKPeetnmPPP5/Nd8+W5War2xVFwiyudhokznWP73PQab+fkFmM7ucXX5DnzeQAAAHB+sMfRbrF1v3Qz7fjx4z1jp2AwaMXL5svr9SoYDCqRSCiZTFovczuRSKherysQCGjlypWu93oNG/ua91edS3mGiVeXMo95D9pi85wrnPeyuRk0HsZ535obtz5fu2HiZLc+YqdBcxL0us/Nzq1P3W6YtgG3/nE7v9+vWCzW9z36xar9fifcswcAMqtHaAAAIABJREFUAHDmmX2W2WxWhUJBhUJBxWKxK61YLKpQKHSl5XI55fP5rqUbn89nxYqpVKorXrQvU6mUa0xprgM497iNizf1G3fgNv7d5Da+3dRvTIBbu4nb+AC3sQ692q7cxmC4jfHvNTbErQ3G7dzd7k0425ztFM7xBs42CGdbgLNNxtm+4tZW4hw/4GzDcLZHONsI7O0J9p/Xax0AAGCp1Go1Pf3009q/f7/uv/9+PfTQQ3r88cd17NixOdfEoVBIPp9P1WpVzWZThmFY17GBQEB/9Ed/pA9/+MO67rrrFv3cgD179ujmm2/W7bffrg0bNujjH/+43vWud53xsYZ/93d/p+9///t65JFHzuj7mp5++ml95jOf0de+9jVrTLL9c/N4PPJ4PGq1Wl0xgd/v1+rVq3XRRRdpx44duuKKK3TJJZdocnJy4FhbAACwfJRKJeXzeeuVy+WUzWa7+i+c+5zpvdre/H6/1VeRTqetPgt734Xbvng8rng8rnQ6zb0cAAAAAAAAAAAAAAAAAIB5s9+fa96Lat5/at5zar/31by/dj55zPtp++WZL/M+UfP+T/PeVPs9p+YcWmcqjzlOb5h5twEAAAAAAIDniDuMzqCnFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDeKpWKqtWqtRxlWjab1UIfUWE+DNb+UFhnWr99ZyotGo0qEAgs6BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPLcMMzfLfPLMd1+xWFSj0Zh3uRc738tij2eeFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAqDz11FOanJy0tg3D0Be/+EW9+93vHmGpAOD8c8cdd+jGG29Up9ORz+fTG97wBt1xxx2jLhYAAOedX//617ryyiu70jwej3bu3Klbb71Vz3/+80dUMgAAzo5cLqdUKmVt+3w+vfa1r9V3vvMdeb3eEZYMAICFufvuu3Xttdda25s2bdLBgwdHWCIAwLnmS1/6kt73vvep3W73zGMYhj772c/qpptuWsKSAThfHT16VHv27NHu3bu1e/du7dmzR8ePH5fH49GWLVu0fft27dixQ9u3b9dll12m8fHxURcZAAAsI/V6XU888YT27dunvXv3as+ePdq3b5+eeuopdTodJRIJbdmyRVNTU9q2bZumpqZ0+eWXa+3atWetTF/96ldlGIbe9ra30d8E4JyUyWQ0PT2tmZmZnsvDhw+r0WhYx4RCIU1MTGh8fLznct26dV398wAAPBfZv2cPHjzY87vWFAwGtWLFCk1MTGhyctL1O3bjxo2KRqMjPKtzQz6fV6vVkiS1223lcjlrX61WU7lctrYLhYKazaYkqdPpKJvN9sxbLBa7rosymYy1Xq/XVSqVrO1SqaR6ve6at9FoqFgsWtvlclm1Ws3azmaz6nQ6kqRms6lCoTCf0z9jDMNwvaYLBAKuf4fRaFSBQGBOejqdnpPm9/sVi8WGfo9UKiXDMLrSfD6f4vF433Pwer1KJBJ983g8HiWTyb55en0Ww5TTKZlMyuPx9M2TSCQGtjMMc/4AAADordFoKJvNKpPJKJPJDFx3ppnX7HaxWEzpdFqpVKrnstc+t+tjAMBzi7MdS+puu5KkarWqSqUyr2OcbVzONrCFHuNsK1vIMc42tbMlFAopHA5b27FYTH6/39q2t+k424qcbWGRSETBYNDajsfj8vl81ra9LczZfuMsh7MtzN5u5CyHsz0tHA4rFAoN+xEAcLD3I/RLy+Vyc+63cYsH7H0AvdLc6kW3etwtrdVqKZ/Pd6W59R+4pbkd61aWXuexFNz6DNza993a83u137u117u1z7u1xzu/JyT3/gu3uthZ10un+wAjkUhXmts5u7X7D9OHAQAAgHNTpVJRqVRSPp9XoVBQqVRSqVRSNptVsVjs2jbXC4WCcrmcSqWSyuWycrmcday9XcbJvNZMJpOKRqOKxWKKx+NW/0Q8HlcsFlMikVAqlepKSyaTSiaTisVi1gvnnkqlomq12jePs33PzTBj2dziWjfDxKBusbqTs83RjXN8npthzt857s+NWxzuNMxntJR5zlXOtlk3w4zDWy553NoPTIPaB/p9Fm5tFaZB4yv7jXV0tpXb9RofanIbUwoAALAYZt+XGWPncjnl83nlcjnlcjlls1lls9k56fbtXjGKz+ezYuN0Oq1EImFtmy8zzRwf6EzvdZ2H0RoUKw8TS/MeS/8ew+QZpq1gOeoXv7Fv6fYRswIA8NxTqVSs+8XMsfrmtvPltv/kyZNdc0rYhUIhpdNppdNpa7yhue18ue0fGxtznXcBAM5Vbm1wbnG8W/+9c1y/czyB832cc/44xw04789y/kzn+ADneAnn2AC38flnemy+vd/Yvm7v913Mun0s+3zX7X3ExNYAAJzfstms9u/fr3vuuUe7du3S3r17dfTo0a57xT0ej9rttgzDsO7D9Pv9euELX6h3vvOdev3rX6+JiYkFl+HAgQP61Kc+pa997WuanJzU3//93+vGG28cOPffsN72trepVCrpe9/73hl5P+n0WM7vfve7+sQnPqHf//73rvPVmHw+n8bGxrRlyxbt2LFDL3/5y7Vjxw5t2rTpjJ0jAABYGGcfQb9+Bbd9p06d6nlvi9lH0K8/YdC+YeZDBgAAAAAAAAAAAAAAAACc+8w5mOxzMY0qbZj5o92YcwA5l/32nak8PPcNAAAAAAAAWFbuMDr9ZuIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/8fevUe5cdf3/3/prl3d974bexPcxnZsJ4EkEEoJUA6lCRBuASeQFlpoMLQQ4oQQLm2/FDgppQ2E/lEKpxxKm1OIA7QNFNrTnl4oUFpiEoPtxAlxGifZm3ZX911ddqXfH/59JiOtpJXWa2u1+3ycM0cznxmNRtqV3vN5fz7zGQAAAAAA0AU2yk1n7eva1ezmsOe6LBgMyuPxrOl9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANiaWh2bZS3rWn1+MplUpVJp+9hrx2NpZcyWM11n3yYSicjpdK71owcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOs99NBDet7znidJcjqd+sM//EP93u/9XoePCgA2n3w+r4GBAeVyOTkcDn3zm9/U61//+k4fFgAAm87tt9+uP/uzP1OxWJTH45HD4dDHP/5xfeADH5DL5er04QEAsO4ef/xx/eIv/qIkyePx6Jd/+Zf1T//0T/L5fB0+MgAA1u66667Tt771LZVKJV199dX67ne/2+lDAgB0iUqlol27dunxxx9XuVxedfu77rpLt9566zk4MgBbzalTp/TAAw/owQcf1JEjR/TQQw/pqaeekiQNDQ3puc99rjVdeuml2rVrF+0YAACgSiqV0s9//nMdO3ZMhw8f1vHjx/Wzn/1M09PTkqRYLKY9e/Zo79692rNnjy6//HJdeumlCoVCZ/za559/vk6dOqVdu3bpT/7kT3Tttdee8T4BYCNKJBKamJjQ5ORkw8ennnpKpVLJeo7f79fY2JhGR0cbPm7fvl3hcLiD7wwAgM7K5/OamJhYEVdPnjxpzT/55JNaXl62nhOLxVbE1R07dqwow+a0sLCgQqFQVZZIJFZsVyqVlM1mV5TncjkVi8UV5clkUpVKpaV91DsG6XT9vLbdcWlpSZlMZsW2i4uLyufzLe1jeXlZ6XS65X20u00+n9fi4mLTbTaLQCAgr9fb8vYOh0PRaLSt1/D7/erp6WnrOZFIRE6ns+XtvV6vAoHAWX0Nn8+n3t7es/IazbZr9jdqdkwul6tp3SoajcrhcNRdFwwG5fF4qsrW8hkDALDVLC4uKpFItDyZ885EIqGpqakV59/S6XOpWCzW9jQwMNDWeR4AABtVpVJRMpmsKstms1VtkMViUblcrmqb2vxY7XNqc2L2HFS5XFYqlbLW1ebEavNLmUxGS0tL1rI9r1abxyoUClpYWLCWG+XV1kMoFJLb7baW7bkAt9tt9ZHxeDwKBoOSqnMNPT098vv9kqrzE/a8QTgctvrv2vcfi8UknR6XMRKJrHhNe55hLTkXAJ1VL2+fTqer2q6klb+PUv02iXq/hfXy9LW/oVL9GFCvHaJeu0Lt771Rr42lXptJq+/5XGiUuze/x3b18tH233OjNo5I9fPVvb29K8bmqNcuUO/3vl7e2R4vjHr5bnuMafQ+6r0HAACArcTkVXK5nHK5nLLZbNVyJpNROp1WNptVNptVJpNRMplUJpOxltPptFKplDKZTN3+RdKz56OhUEihUEjBYFChUEixWMyaDwaDCofDikajCgaDVnkkElE4HLa2MTkKAJ3VqM58NrZp1BeQbVbmte3q5UmMenl1u07lL9aqXl82o1l+ebW+js3yBs36PNpz6qsdZ738hVQ/nyLVz+U0OpZ6OZ5Wci1r6QMKAMBWZu8TaO/v10qfwEQioXg83vDcq1HfQNNW36x/YE9PT9PrAQA010qdbbU+PavVveq1qxv12p+Neu3Vq71es/p3s/fa6Bq/1dY1ur5Qqt+GbzSry3bLtXz16nP12ril+vU2e38so1HdsV69tV49uFE9r177fm2dtt5r18aX2nb42vpvvfcEAACerU82q0uuVs9sNB6CqTM2qz82W9fX10f8BoANojZ/YO+fbq+bN5q319HbnbfX4dudXytTVzZ1S1PPNm2ipt5q+o7b67zmuaa+bOq95rmmrdTU0+3PJZcKAEBnpFIpff/739e3vvUt/fd//7cee+yxpm0Be/bs0etf/3q9+tWv1pVXXrmmew/9/Oc/1yc+8Qndc889+qVf+iXdfffduuKKK87kbUiSXvCCF+jFL36xPvOZz5zxvlKplN7//vfrnnvuWXFtonT6OroLLrhAz3/+8/WqV71Kr3zlKzU8PHzGrwsAAKqZcWPWksM362ZmZurGc6l+37B28vqDg4MN+9ADAAAAAAAAAAAAAAAAADrDPn6OGUNotTJzHeHZLGuXfQwac82efQyds1Vmxs6x33+G6/8AAAAAAAAA1HGfo9JoFHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6FhcXlc/nrcczKTuTfSwsLKhQKKzpPfj9fvX09FTNd6rM3JQWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANainbFe1joeTLN1uVxOxWKx7eNuZayWVtat9fmBQEBer/cMPnkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALBe/vM//1Mve9nL5HA4dODAAX3+85/v9CEBwKb1tre9TX/zN3+jYDCoeDwuv9/f6UMCAGDTGR8f11NPPSWn06kXvOAF+uu//mtdeOGFnT4sAADOmh//+Md6wQteIKfTqcsuu0z/8R//oUAg0OnDAgDgjJw6dUo7d+5UoVDQzTffrM997nOdPiQAQJf41re+pde+9rVtPeeTn/ykPvrRj56lIwKAZ83Pz+vBBx/UkSNHdOTIET300EN6+OGHVSqV1NPTo3379um5z32unvvc5+riiy/Wvn37FIvFOn3YAABgg0kkEjp27JiOHz+uY8eO6fDhwzpy5Iiy2awkaXR0VHv37tWePXt0+eWXW/M9PT0t7b9QKKi3t1flcllOp1PlcllXXnmlPvOZz+hFL3rR2XxrALBhJRIJTUxMaHJysuHjqVOntLS0ZD3H7/drbGxMo6OjDR/Hx8cVCoU6+M4AAOisRCKhkydProirpuzpp59WOp22tm8UX3fs2GHNj4+Py+12d/BdAd2jUChoYWGh6TbFYlG5XK7pNktLS8pkMk23WV5ervo+N5LNZlUqlVbdrt392i0uLiqfz7f1nEQi0db2rXy2tdLptJaXl1vevpW/Ta1UKqVyudzy9q2+j9X+DslkUpVKpeXXPVfs7XC9vb3y+XySJJfLpXA4bK0LhUJWbPF6vVX9tNvdh3m+2daUx2Ixud1uhUIh+f3+lnN5AABsNIuLi0okEm1Ps7Ozdc8D/X6/YrFY3amnp6fp+pGRETmdzg58CgAAbG32HEelUlEymbTWlUolq3+LJOXzeS0uLlrLtbkhe06hXC4rlUpZ6+y5Eft+7LmfXC6nYrEoScpkMlZ7rj1HYl6j9ljXypyjSFIgEJDX65UkBYNBeTweSVI4HJbL5ZIkRaNRORwOOZ1ORSIRORwORaPRqnWRSEROp9PKI5h9mfyCeU2TU6jNXwDAmaqXu19YWFChUKgqq5d/r/2tl+rnt2tjhFQ/91wbD6SV8caol5uulye3xwij3nu2xxVjLW0OZ8IeT6TqvLRUHYckrcg318YIj8ejYDBoLdfmtk18MuxxyjDxyjBxy7Dn2O3PbzQPAABwttnbMsz5qr3NopWyfD7ftC+Jab+o15bRSplZHh4etnIIAIDW1MtFGKv1c2vWv65eLsSol9ewaxYzmvWZbNZ/b7Wcdr18h9Eon1Evl9Kon2K9/o6t9CU9W2rzEbU5lNqcSW2OxPTdM+rlKuyvYfIh9u3seRT7/uz5F5/Pp97eXknVeZva4wMAYKNZrS5dO9VuE4/HG56bNOoDuFr/QLMNY3MB6AbN2pWbrWtWF63Xfm00q2vWq8/Vq0vXa5tvtO9Gdcd69eF6x92oXl2vnn4u2ujtdTdpZbt6bTu6VH19mb3Oad/XWvuV2fffqO5ZWw8GAGAjaVaHbFbHNOump6cb5u7Xet2ZWce1ZwCwddnbYlebt9eRTV3X1K9NPdnU4c1zTF3X3kZtnmvqu83adBsx9UZTrzQxLRQKyefzKRwOW/3LY7GYVS8Nh8PW+CaBQEA+n0/RaNRqs4xGowoGg1ZdFQAANDY1NaVvfvOb+sd//Ef9z//8j+bm5qrWu1wuLS8vq7+/X6985Sv1xje+Ua961auq8s6tOHz4sG655Rb98Ic/1E033aRPf/rTVdd8taNUKikcDuuLX/yifuM3fmNN+5BO3zP7mmuuWfGevV6vLr74Yl177bW6/vrrtXv37jW/BgAAW0Ur1zI1Wzc/P9+wP0Gza5pazaHXXjsOAAAAAAAAAAAAAAAAAGidfXwU+3Vk5hoz+9id9mva7OOymPFB7evXo2wtzP1G7GOwdLoMAAAAAAAAADa4+xyVtWZlAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzqH/+7//049//ONOHwYAWEZGRnTVVVd1+jAAAACwBZib0NY+1lt3NsvsN7Vtl9/vV09PT9X8epStZR/hcFgul2tN7wMAAAAAAAAAAAAAAAAAAAAAAAAAAGwNpVJJ2WxWiUTCusay9lpLU2YXCATk9XqtZa/Xa5UFg0FFo1EFg0F5PJ5z9l4AAAAAnF2NxodpNq7Lma6zb5NKpVQul9s+7nbGcjnTsWDqbROJROR0Os/gkwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbCb5fF7f+c53tLy83OlDQQc98MAD+vSnP63nP//5uu222xjLuEs8//nP1wUXXNDpwwC6Tu19sMxY9IZ9XHq7bDarUqnU8uuUy2WlUqkV5Q899JDuvPNO/cqv/Ire8573rFhvxphvRywWW1HmcrkUDoetZbfbrVAoZC17PB4Fg8G2XgcAsHmtFg8XFhZUKBRWPC+TyWhpaanl12kUH1fTTnw8efKkDhw4II/Ho5tvvlnXX3+9VcdxOp2KRCLWtrXLtfETALC1dVN8/PGPf6yPfOQj2r59u/7sz/6sYX0vGo3K4XBUlREfAQBrlU6nq9oYa+/zmUwmValUqp5TqVSUTCZbfo2//du/1Ze//GX91m/9lq655pq2jq/d+3c2ypn6fD719vZay/Z7hEpry+kCAM6uG264Qffee6/cbrdcLpfK5fKq7XwOh0Mf+tCHdOedd57Ra5+L+CitrLO2ivgIbEzFYlFHjx7VkSNHdOTIET300EM6cuSI9duwbds27d27V5dccon27dunffv2ac+ePXzP0HWWl5eVTqcbLi8tLSmTyax4XqFQ0MLCQluvVRuTW1Hbt6YVvb298vl8K8pDoZDcbre1HA6H5XK5rOV2YzIAtGpiYkLHjx/XsWPHdPjwYWs+n8/L7XZrfHxce/bs0d69e7Vnzx5dfvnl2r17d9VvlCT97Gc/0yWXXFJV5nK5tLy8rF/5lV/RZz/7WV166aXn8q1tWsRH4iM2n0QioYmJCU1OTjZ8fPLJJ6u+j36/X2NjYxodHW34eP7559P3G1tSN/XfaRX9d4D2LS4uanJyUidPnlwRV03Z9PR0VZtMLBbTjh07VsRVU7Z9+3a+V+haxMfTiI+bR7Nrd5u1jTfKmxiJRGJFmf37Uvs/bj+O2uuQ7W39zfZh/5412kc7eZ1AIKCenh5Fo1FFIhHFYjFrPhqNVs3HYjENDg5qcHBQQ0ND1CGxpdF/5zT676AbLS4uKpFItDyZ72EikdDU1NSK77Z0+rsRi8XangYGBuT1ejvwKQDAucf502mcP8HO3n+jVCopm81Kqq7v2/+n7Tm5XC6nYrEoqTpXYP9umbyF/btkch3mte3rzPa138/VBAIB+f1+RSIR9fb2qqenZ9V5v9+vaDSqUCikcDiscDisSCRiPQLYWBhPeGMqlUpWLLCX1bbfLC8vrxjz0p5XNsv2c7GFhYWq5cXFxarYkM/nq9qDCoVC1XKxWKzKyReLxapjXVpaqjrO2mNcXl6uOqerVCpt92VsRSAQsObt53b2cjMfCAQ0Njam/v5+OZ1ORaNRq13J9IE054iBQMB6jMVi1rx9vwDQTez1j3rLjdpi2+1XXtvHvVVrqWvX9jE3asddti87HA5Fo9G2jw84U8ViUdlsVslkUul0WtlsVplMRtlsVolEwprPZDLKZDJKJpNV26RSKaVSKWWz2bp9faRn/79DoZCCwaBCoZBCodCKMlNvN+tNnd70KwiHw/J4POf4EwJwtpHfP438/sZX77y0UR/VevcIqe1zV9t3sN7/de33ofYYavvatvMa9mNv1J5wJiKRiHw+n5W38Hq9isVi8nq9Vm7D6/UqGo1a349QKCSv12udD5j+hWbiO4KtiOu3uX4bG08ikVA6nbbqw2YyZclkUslkckW5fbken89n1YtNn3szby83/e77+vqqJvu5JrCVkF8+jfxy96uti9Wrb9ZeY9ZunbE2N1L7mrX/52fSr6xePqcd9vqjqVNGo1F5vV4Fg0HrnDISicjr9SoUClnft3A4rEAgYMXIWCymvr4++tRjyyL/ehr5V2wES0tLSqfTVr3R1Bftj+l0WolEYkW5/bEet9tdVWes7TdtHu3Xc9vrlPXuIQ1sZsTH04iPWG+m7mj+9821S/WuLzLfM1OvNHXNVCqlYrGoTCajXC6nQqGgZDJp7dO+vhlTVzRx0PRPCgaDisVidfsw2fsomfZJ+3cG2Cpon6R9EltXuVzWoUOH9NnPflYPPviglW92OBwKhULK5XLy+/16zWteo/379+uaa65pOVZWKhV97Wtf0/vf/3719PToL//yL/Wrv/qrbR/j4cOHdcUVV+jhhx/W7t27237+61//et1///1V5/uRSETve9/79MEPfrDt3xeg29W2PdmXG9WD19Juutb6caN200YajelZW282bVCNloGtYnl52cpX2yd7vrq2T5QpN2WN+ht7PJ6qvLQ9V20f+2O1dbVj+wLnEvVj6scAAAAAAAAAAAAAAABnk33MD/vYlfaxQ8w1WPa+K/b+KfaxQEwflHr3j5Kq+3PaX8NcX2kf56T2HtZrYb+e0fRPsffp7FQZAAAAAAAAAKBt9zkqZzLSNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDnylre8RV/72tc6fRgAYHG73dZNwwAAALA52G9Ea+Y7VWa/SW277DefNfO1j/XWnY2ySCQip9O5pvcBAAAAAAAAAAAAAAAAAAAAAAAAAACwXqampnTq1ClNTU0pHo9renpa8Xhcs7Ozmp2d1dTUlNLptBKJhHK5nIrF4lk9Hq/Xq0AgoFgspnA4rJGREQ0MDGhgYECDg4MaHh7W4OCgRkZGND4+rpGRkbN6PAAAAEC3aWU8l1bWrfX5a603tDJuy5mua7ZNb2+vfD7fGXzyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcHd/85jd13XXXdfowAKzBDTfcoK9+9audPgygqaWlJWUyGWus+UQioWKxqFwup0KhoIWFBVUqFSWTSUlSNptVqVSytpGkRCKx6jr7WPbmNY1SqaRsNnvO3nO3Mvf4Mnw+n3p7e63lWCwmSQoEAvJ6vVXb167zeDwKBoNN15nHYDAor9eraDS64jUBYLMy92NJp9MqFArKZDJaWFiwYmOhUKiKZ6lUSuVy2bqHy/LystLptCQpnU5reXm56TpJ1r6N2mXU53a7FQqFrGV7jJOkSCQip9Np3avG5XIpHA5LksLhsFwul3UPG6fTqUgkIkkKhUJyu91W7HM4HIpGo9ajeU44HJbP56s6BgDYrIiP3YP4CACdkU6nVSwWlU6nrRiXTCat/GqlUllzzDRxuFwuK5VKWa9pcrJGJpPR0tLSuX3jXaj2HqYmNyqpKi6uV8w0j+FwWF6vV+Fw2NonAGx2jeLj7OysHnzwQSUSCcXjcSUSCSUSCc3NzSmbzSqbzTaMaTt37tT4+DjxcZ0RH4G1mZiY0PHjx3Xs2DHr8cEHH7RyWKOjo7r88su1d+9e7dmzR3v37tW+ffuqvm/nwuTkpEZHR8/pa2J1JoaZGJlKpVQsFq3YZeqN61WnlFTVB8h+DFidiYGGyY1KajsuthIzQ6GQvF6vIpGItV3tMQDYPEqlkk6cOKFjx47ppz/9qY4dO6aq8QngAAAgAElEQVSjR4/qiSeeULlcVm9vr/bs2aN9+/Zp7969etGLXqRnnnlG119/vSqVyor9ud1uLS8v67rrrtOnP/1pPec5z+nAu1ob4mN3IT5is0skEpqYmNDk5OSKx5MnT2piYkIzMzNWHwdJ8vv9Ghsb0+joaNXjjh07rPnt27fL4/F08J21L5fLyefzye12d/pQtjz673QP+u8AKxUKBc3NzVXF0tr4+tRTT1W185jYao+ltfF1ZGRkQ50TFotFvetd79I111yjN73pTXK5XJ0+pE2P+Ng9iI/oNua6aPP9TyQS1u+J+d6bKZlMKpVKKZFIWPPJZLJqPp/PV+3f7/drYGBAAwMDGh4e1sDAgAYHBzUwMKChoSFr3pT39/d36JM4c8vLy/rSl76ka665Rtu3b+/04Ww59G/tHvTfwVawuLho9RdsZ5qdna36XTH8fr9isVjdyfw/N1q/0eqTADYOzp+6B+dP2MjM9958n02ewfx+mN+DbDarxcVFZTIZZbNZ5fN5pdNp5XI5q+/MwsKC9Vu0uLioxcXFqr4utaLRqCKRiMLhsMLhcNV8LBZruC4ajSoajSocDtM2DKwjxhMGTnvRi16k3t5e67zanBOb8+ba8UlrmXYfMzZmIBBQNBpVKBRSIBBQMBhUJBJRKBSy1ps4Z9abmBcMBjmHAzYp045nr9Ob+no79fZWx2CWZJ3jN1pGfeZ33bDXx6X6YyebfgCmjm7vg9BK3T8UCsnn81XV5+mLjnYUi0Vls1klk0ml02lls1mrPp9IJKqW0+m0kslkVVkqlVIqlVI2m234O2H6t9jr8fZle33e1OFrJ/t3C9hqyO93D/L72Ajs5/j2603Nb4FUfW8V+/fdfi+XbDarYrGoZDJp9SusV5bJZFQsFhteu+r3+xWNRhWLxax8fb3JrI/FYurv71dfX1/VuXS3+frXv66vfvWruuWWW3TVVVd1+nA2Na7f7i5cv41ulkgkrDqwmdLpdNWy2aa2PJVK1W0r8Pv96uvrW3UysdFM9utVus309LTe/OY3601vepPe+c53Vt2rDGcH+eXuQX4ZG4X9+27/XbCfQ9u//+l0WqVSSalUqqr+WCqVlEgkrHt4mt+CVCqlUqmkdDpt/cY0yj0FAgH19fUpFotZcdDM28tqy7u5PilJ8Xhc+/fv15vf/Gb95m/+JvfVPMvIv3YP8q/oZolEwqorptPpqnlzzba9zL6dqWuWy+WqfTocjob1yNo4WVvezf2pb7rpJnm9Xt166636hV/4hU4fzqZFfOwexEd0m1wup0KhYI1Tsri4aPU7Mn2R2unDVG/cYp/PZ/VBMo+mHdK+bOZr42W3jql1zz336POf/7wOHjyoN7zhDV37ProB7ZPdhfZJbDVHjx7VW9/6Vh09etSKkz09Pdq+fbsef/xx9fT06Nprr9WNN96oq6++uqV4EY/H9d73vlf33Xefbr/9dt15551txZm/+Iu/0Ac/+EElk8mWvwvJZFKXXnqpTp06ZZV5vV59+MMf1sc+9rGWXxs4Eybe2s9b68V8E9fr1XfNtqb9ZLU2V/v+jEbnvahm6quNlmOxmKT221wbxX/zaI/3Xq+XsUDPknK5rH/4h3/QZz/7Wb373e/WW9/61k4f0hlJp9Oan5/X/Py85ubmrBxx7fie9Zaz2WzdfYZCoRVjbNRen7Paup6ennP8SaDbUT/uLtSPAQAAAAAAAAAAAABAN7CPl2jm65W1Mr/e29rv/b5Wph+FebSXtTJ/traVqvuTAAAAAAAAAAC63n2OCiMVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALrB//349k8nrtru/0OlDAQD98Lv3666D7xbDuwIAAKxdqzePXY+y1bY/kxvSNrtJ7Lku48azAAAAAAAAAAAAAAAAAAAAAAAAAABgq8pms3r00Ud14sQJPfbYY3ryySd16tQpazLXlUpSKBTS8PCwBgcHNTAwoMHBQQ0PDysSiSgWiykQCCgQCCgYDCoajaq3t1d+v7/quk5JcrlcCofDVceRSqVULpet5YWFBRUKBeXzeeVyOaVSKWWzWeVyOeVyOSUSCaVSKU1PTysej2t2dlYzMzOamZlRJpOx9uP3+zU+Pq7zzz9f4+PjGh8f14UXXqhdu3Zp165dCgQCZ/HTBQAAAJ7VaGyXtY7/0so6+za159ytqh2vpdlYLu1s0+q6cDgsl8t1Bp88AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACb26FDh3T99dfrG49MdPpQALThrlsO6LyQX4cOHer0oWCTKJVKymazSiQSymQyymQyymazymQyVlk+n1cmk7HuEZVMJlUoFJTL5ZTNZlUoFJRKpazx7tsZ5z4SicjpdKq3t1c+n09ut1uhUKhqnRmXvtk6SXI4HIpGo9a+nU6nIpGItVx7HyyPx6NgMGgte73euvenqnf/rNWY99OqSqWiZDLZ1mvY7y1gVywWlcvlrOVCoaCFhQVr2fydGu3H/J0lqVwuK5VKSZLS6bSWl5et59vXZTIZLS0tNV3XinA4LK/Xq3A4bH2G0WhUPp/PuteZ1+tVNBq17k8QjUYVDAYVCoUUCoUUDoerynp7e1v9SAHAsrCwYMXDZDKpdDptLZu4aY97xWKxKlYmEgnr99geK1thj1+hUEhut1s+n0+9vb1VsS4YDMrj8Vjxq946aWUcs8dTafV4aF67Vu1+WhEIBOT1elvefi3xsTbuGUtLS1X3rDTnQEa78TORSEiScrmcisVi1f6SyaQqlYr1/2B/7dp1rWg1JtrjaCAQUCgUUjAYVCQSUSQSsZZDoVDVORIAtIr4SHwkPgJAc6lUqirHmkqllEqlrHiZy+WUTqdVLBaVTqer8q3FYlHZbFbZbFbFYtHKwdb7/a7H/O6tNWZKUiwWs/Znz7tKK/OdtfHLHmftr12r3bypJEWjUTkcjpa3r41frWiUw6yNTSbGGdlsVqVSqeF+TE619rjWGjPbyb1Ho1F5vV4Fg0EFAoGquNnb26tQKCSfz6dwOGz9vWOxWFWuNRQKKRqNWvPm3rEA0I6NGB+dTqccDodcLpeKxaJcLpfy+bzOP/98bd++nfj4/yM+Eh+x8SwvL+vnP/+5fvazn+no0aM6evSofvazn+nxxx/X8vKyfD6fdu/erd27d2vPnj266KKLdNFFF2nnzp1t5Z9a9eCDD+qyyy7TK17xCv3RH/2RrrjiinV/jc3O/J4lEomqXGs6nVYymbT67KTTaatvRyqVUqFQUDabtX4zE4mEFSPb6aPRrN7Ybp1SerYvj1Ebr+xxtbaPT+2yXe1+V1Ob321Fbfxajb1fTC0TtwwT46SV+d3a5dr9NouL7cbM1Zj8tjmnicVi1t84FArJ6/UqEolY51iRSEQ+n8+KjeFwuCpmmnhZ7/wHQOcVi0U99thjOnz4sI4fP65jx47p+PHjuvLKK3XRRRfpk5/8ZNV5fi2Px6NKpaJ3vOMd+sQnPqGhoaF1OzbiI/GR+AicViwWNTs7q8nJSU1MTDR8nJ6ersqNxGIxjY6OamxsrOHj9u3bq/JWnfSSl7xEjz32mD70oQ/pt3/7t+v25Uc1+u/Qf4f+O8DaJRIJK46ePHlyRWw9efJk1bmqz+dTX1+fxsbGtGPHjhUxdceOHec0rj788MPas2ePJGl8fFy///u/r7e97W1nJf/bbYiPxEfiI7a6xcVFJRIJazLxrdFybV1SOt3HwsS5WCymWCy2YtmUbdu2bcPEn5/+9Ke69NJL5XK59Na3vlV33HGH9u7d2+nD2nA2Yv8d+re2hv479N/BuVEbS1uZzDnn5ORk3X2a/912p4GBgQ0TZ4GtjPMnzp84f8JWZ/rkNDtParY+n89X5dvtzO9co/OlVtaNjo629XsCbFaMJwxI1+0e07333qv9+/evum0ul7PaAxOJhDWfy+WsPqumLJlMWuf1uVzO6r9q1jdrSzTtfZFIxGonMu095pzOnJ+Z9WZ70+/QjKdJXyqgfY36oJuyhYWFuv0G1qNOb2+vN3VzU++2t/Wb+nGzMZhr91dv2ZxbN1quzQkYa+lX3m7/AUkN6wSNNMoDLC8vK51ON1yu7V+wWn8DU+c3f1t7XweTH2i17r+aZn3RG/Uj8Pv9CgaDisViVf0G7HX7jdIHGBuTyVmm02klEgml02mlUimrrHZd7ZRKpVZc/2EXiUQUDoerzl/MFIvFqpbtZeaxnetggLUgv09+n/w+tjrTl7p2SiQSdctrt6nldrvV19envr4+9ff3W/O1y/39/dZyf39/23WOs+Gmm27Sl770JVUqFV166aX6yEc+oje+8Y1b+tpOrt/m+m2u3wZW73dfb4rH43V/68z5W70+942m4eFhuVyuDrzzZ/37v/+7Xv7yl8vpdCoQCOjmm2/We9/7Xo2MjHT0uDYC8svkl8kvY6vL5/Oan59vu1/9arGy2VQbR/v7+9vOXZ0N3/ve9/TSl75UTqdToVBIt9xyi373d39Xg4ODnT60jiL/Sv6V/Cu2unavPzN1znr3mm73urOxsTGNjY3VPU8/1yKRiDKZjBwOh173utfpjjvu0JVXXtnpw+oY4iPxkfiIrc60T5o+R2ayL5t502ZpX1evvSQajVa1PdrbKBu1W/b393fg3Vd7z3veoy984QuSpG3btumOO+7Qb/3Wb9UdB2qroH2S9knaJ7HVffnLX9Ztt91mfU8cDofOO+88nXfeefrf//1fbdu2Te94xzv0zne+U9u3b191f1/5ylf07ne/W1dddZW++tWvthz/3vnOd+qJJ57Qv/3bv6267Xe/+11dd911VeP3XXDBBXrkkUc2RO4WG5Op35r4bq8nm/OA2phvrxefacxvVt9tt83Vvj+j9ve+djkcDlf1A2gU29fSbmo/v2jFWurHjc4TasfyNH+7RsvN6tP2c4AzbXNthX0sUFNPtrex1qsnm+VgMLgi9ps22K1ocXFRX/nKV/THf/zHevLJJyVJBw4c0Oc///kOH9lpmUxGc3Nzmp+ftx5r5+2TKa/3+2K/Dqb2Whn7cu06M3GtDJqhfkz9mPoxAAAAAAAAAAAAAABbi73Pm72/nb1vnv1aQnu/OXs/APs4KbX9Dex9Fez9GOzXo9mvdbP3m7Afn32btTL9Rez3Y7ePdWPvQ2n6Xdr7kdj7gdivc7T36TR9VOyvYe/XYr+O0d63c6v2/wMAAAAAAAAAdNx9jkqjuwACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsIPv379czmbxuu/sLnT4UANAPv3u/7jr4bjG8KwAA6Bb2m9ea+WZl7W7fTpn9xrbt8vv91o1le3p6zklZvXX2m9sCAAAAAAAAAAAAAAAAAAAAAAAAAADg3FlcXNSRI0f04IMP6tixYzpx4oQeffRRnTp1SpLk8Xj0nOc8R+eff77Gx8c1Pj6uCy64wJofGxvrmutE8/m8JiYmdOrUKZ06dUr/93//Z80/+eSTeuKJJ1QqlSRJ4+Pj2rVrl3bt2qW9e/fqec97ni655BLrOlkAAAB0tzMdM+ZMn7+wsKBCodD2ca91fJd21jXbpre3Vz6f7ww+eQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcK4cOnRI119/vb7xyESnDwVAG+665YDOC/l16NChTh8KNoBCoaBEIqH5+XklEglrmp+fVyaTUSaTUTKZVDqdVjabrSoz82bc/FoOh0PRaFShUEg9PT0KBoMKBALyer2KxWLyer0KBAIKBoPyer2KRqPW2PXhcFher1fhcNga0z4Sicjn8ykYDMrtdisUCp3jTwudVigUrPsxLCwsKJPJqFgsKpVKWfdsSKVSKhaLymQy1rbJZFLFYlHZbFbZbFbFYlHJZNLaTyqVsvZVj8vlUjgcViQSUSgUUigUUjAYVCQSscqCwaDC4bBisZhisZj6+vqs+Vgsxv8r0GUymUzd+JhIJJROp5XJZJTNZpVKpZRKpapiZCqVUjqd1vLyct19ezwehUIhRaPRqhjn9XoVCoWs+7c0ipU+n0+9vb0KhULyer2KRCJ17wuDrWNpaUmZTEbLy8tKp9PWPYxSqZQKhYKy2axyuZyKxaISiYSKxaJyuVzdmGiPrWY5l8s1fO1wOFwVG6PRqMLhsILBoFVuyurFx1gsJqfTeQ4/LQBngviIbkJ8BHCulcvlqtxqbZxMJBJWbMxms0qn01aO1ZSn0+mG+w8EAlZMrBcjo9GovF7vihxssxgZDoflcrkUCoXkdrvP4aeFjaD2PrhryavWy8+a/+tSqVT3dU2uNRqNVsVGe/61NtdaGy/JtQLdg/iIbkN8xFaWz+d1/PhxHT16VMePH9cjjzyi48eP6+TJk1peXpbb7dZznvMc7d27V7t379ZFF12kPXv2aPfu3QoGg2t+3XvuuUdvf/vb5XQ6tby8rNe85jW68847tW/fvnV8dxtXPp9fkWs1MbNe/xwTI+3rG/XZkaRYLKZgMCi/369wOLxqjGyWe7X343E6nYpEIufwk8JGkUqlVC6XV42RjXKvhUKhKkam02nl83nr/7oR0+8sFApZca8232rma/OtZtnn853DTwrY2kqlkt7+9rfr0KFDDdsG7Twej9xut26++WZ99KMflcfjIT6iqxAfsRkUi0XNzs5qcnJSExMTDR+npqZUqVSs58ViMY2OjmpsbKzh4/j4+FnPs42MjGh6eloul0vBYFAHDx7Ue9/7XvX395/V1+0U+u+gm9B/B1vV4uJi3Xh68uRJa/7JJ5+s+j22x9UdO3Y0jK1n6l/+5V/0yle+UtLp6/7MtX/ve9/7dPDgwa6t1xAf0U2Ij9gsTF1ydnZW8XhcMzMzK5bj8bhVNjs7q3K5XLWPvr4+DQ4OamBgQIODgxodHdXQ0JCGhoZWzJ9Jm+Rq/vmf/1lXX321pNO/+0tLS7r66qv14Q9/WFddddVZe91zhf476Db038FWtbi4uKI+08o0Oztb9//a7/evOJezT6ZOUm/dyMgI533Y0jh/Qrfh/Ambmfm/NL+1JsebTqeVTqet+VQqZa2vXdfoN9ntdltjh5mcmPn/tT/GYrG668wEdDvGEwak63aP6d5779X+/fvP+WubekQul7Nil2kXMnHMrDfxzaw3bZ3mHC+bzdZ9Dft5m4lpps3IHuvMspm3x0AzHiyw0ZVKpbo5NDO2svme2evw9n7ppqyRYDCoYDCo3t7eqvr7mfRHN3V56vRbVzKZVKVSWXNf9Hp1/Hw+b/WlacTn89Wtx4dCIavuY+r6jcZY7u3tPYefFLqRyZXap3r192QyaU2JRMKaT6VSdfdrzm3MFIvFqpablYXD4XP8KZwb73jHO7Rt2zb9zu/8jkZGRjp9OB1Dfh/dhvw+NisT02dnZzU/P29Nc3NzDZfn5uaqrlmTTl8/OTAwoOHhYQ0NDVl9DUdGRjQ4OGhNIyMjGhgYOCu5i2uvvVbf/va3JUlOp1OVSkVjY2N63/vepwMHDigaja77a55NjG+CbsP129hsmvURNNeftdo/0FyHZv73zLVn9ZbPRn/Ar371q7rxxhut+O3xeFSpVHTDDTfoQx/6kPbu3buur3cukF9GNyK/jM1mLf3pJycn6/6/2vvJN4uTsVhM27ZtOyt1jnvvvVdvectb6sbLj370o9q9e/e6v+bZRP4V3Yb8KzabtV53VjtemNR6nBwbG9N555237nmOUqkkn89XFSNLpZIuvfRS3XrrrbrxxhvlcrnW9TXPFuIjug3xEZvVwsJC3XbIubm5pm2UhUKhaj8ul8sa+8S0U9rHQzHjnwwMDFhlDodjXd/L6173Ot1///2STo8N5nQ65ff79c53vlMf/OAHdd55563r651ttE+i29A+iY1sampKr33ta/XAAw9Y9ane3l5dcskleuKJJzQ7O6tf+7Vf04EDB/Sa17ymafvg4cOH9cY3vlGhUEj/+q//2lK/0wsvvFBvfvObdeeddzbc5tSpU7r44outeo7D4dAb3vAGfeMb32jz3aLbLCwsNBwH1MR002/cXie2t8HWnpsZZqzUUCgkv9/fUr241fFAzb6x9ZRKJWWzWWtM0DNtY7WPBdrsOk9JDeO8Kasd46Be3O+WnM7s7Ky+9KUv6U//9E+VSCRULpetGPa6171Of//3f7/ur7m0tKS5ubmG42OaMvv4mLW/P06nU319fdbU399ftVyvvL+/n98TNEX9GN2G+jEAAAAAAAAAAAAAYDPJZDJaWlqSJGWzWesaKNPuLT173ZUkq71bktVXTHq275n07D2pJVn3pZZktbcb9nZyM0aI9GzbfLPjOxO1/T5isZg1H41GrethIpGI1e/YXHsonR4nx+PxSJLV70SS1S9FUtX92O3bm33aj8H0V5Fk3TdREtc5AgAAAAAAAADQ3H2OSu1okgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvQ/v379Uwmr9vu/kKnDwUA9MPv3q+7Dr5bDO8KAADqMTeytd/QtlNl9hvetsvcXNZ+k9lWytrdfrUy+w1vAQAAAAAAAAAAAAAAAAAAAAAAAAAAsHUUi0U98MADOnz4sA4fPqyf/OQnevjhh7W0tKRoNKo9e/Zo9+7d2rVrl3bv3q3du3drx44dcrvdnT70c6JUKumJJ57Qww8/rBMnTujEiRN6+OGHdfz4caVSKbndbu3Zs0eXXXaZLrvsMl1xxRW6/PLL5fV6O33oAAAAXaN2TJdm4720s02r69LptJaXl9s+7nbGhGllXbvPD4fDcrlcZ/DJAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArebQoUO6/vrr9Y1HJjp9KADacNctB3ReyK9Dhw51+lCwjnK5nGZnZzU1NaVEIqFEIqH5+fm68/blhYWFFfvy+/3q6+tTOBxWMBhUNBpVOBxWKBRSMBhUKBSyysyyKTPzZlugmxQKBWWzWaVSKaVSKWUyGWWzWWUyGavMLNcrS6fTSiQSSqfTK/bt8XgUi8Wsqa+vr+68WR4YGNDg4KD6+/s78EkAm0OlUtHs7Kw1NYqF9ZaXlpZW7C8cDisWi1kxMRQKKRwOKxKJVMXISCSiSCRiLdfGUp/P14FPA1i7crmsVCqldDptxcBsNqtkMmmVmViYTCatbUy5iY2JRKLuvZ2i0WhVHGwWJ018HBgY4D6fwBoRH4H1QXwENq9isah4PN5yrDRlqVRqxb5cLpcVJ2OxWFVsrM2nBoNBhcNhq8xsZ+Kq0+nswKcBrF0+n1c2m1U6nVYymazKq6bTaSv/amJjO7lWt9u9IqdaL89qz7WaeAlgbYiPwPogPqIbFQoFnThxQo888oiOHz+uhx9+WI888ohOnDihQqEgSRofH9fu3bu1e/du7dq1Szt37tTOnTu1fft2ORyOpvv/2Mc+pk996lPWvtxut5aXl/WGN7xBf/RHf6SdO3ee9fe4HrLZrGZmZjQzM9NSrtVM9frs9PT0WLHSnkddrX9OvbgKdBt7HMxkMkokElXLpsws2+OqPVbm8/kV++7t7V01Ptrnh4aGNDg4SP83YI0uvvhiHT16tO3nOZ1OlcvlFeXER2xlxEdsJIVCQXNzc5qcnNTExETDx6mpKVUqFet5sVhMo6OjGhsba/g4Pj4ut9vd9jGVy2V5vd6qdne32y232613vetd+sAHPqDt27evy/tfT/TfAdYH/XfQ7RKJhE6ePLkinpqyp556SplMxtre7/fXjaM7duyw5s8//3y5XK6Gr/lXf/VX+u3f/u0V//Mul0uBQEAHDx7UzTffrL6+vrP2vhshPgLrg/iIjcr8ztv7n0xPT1vz8XhcExMTisfjmp6e1tzcXNXze3t7NTQ0pNHRUQ0ODmpkZEQjIyPW/PDwsLU+HA63dWxf/vKXddNNN1X9z7tcLi0vL+uSSy7RbbfdphtvvLFpjD0X6L8DrA/672AzWlxcXBEDVpvy+bwWFxc1OTlZd59+v3/F/20rE+d+2Eg4fwLWB+dP2Azs50vmPGi18yR72dzcnIrFYt19t3re1NPTs2LbkZER4gI6jvGEAem63WO69957tX///k4fyhkxbUSmnchMZrxMe1uRfb3pk2iW613nIp0+dzN1HdPmGg6HrXZVU24vM/WgaDRqTZ3OtaM7LCwsWG1JzcZUrq3TZ7PZFfsyY8Ca/8dG/QPsZY3q/qtdJwdsRPX6mNvLauvx9v4F5jmJREK5XG7Fvn0+X9O6fL16/dDQkGKxWAc+CXSrdttA7PX62j7thr1+bvrhrVav3+h1eK/Xq6WlJblcLr3lLW/Rrbfequc+97mdPqw1I78PrA/y++g28/Pzmp+f19zcnObm5qx+hVNTU1ZcmJmZ0fT0tOLxuBYXF6ueHwwGNTQ0pOHhYev/zfQxNOeiw8PDbfVrvfzyy/WTn/xkRbnb7ZbH49FNN92k2267TePj4+v2ObSC8U2A9cH12+gWyWRSc3NzVqy0X3s1PT2tmZkZK27OzMwomUxWPd/j8VTFQ/P/NjAwYMVG+3I0Gl31mO6++27dcccdK9rRPR6PlpaW9LKXvUwHDx7Utddeu66fRSvILwPrh/wyusXi4qL1O2+Pl+a6NVOnNPXJ2dlZa9xLIxgManBw0KpTmnplveXBwUH19vauelyf+9zn9MEPfrBhvLz66qv1e7/3e3rRi160rp/Hasi/AuuD/Cu6RbFYtOKjPU7a864mD2vma2NXJBKpyq3W5mFr65oej6fpMT3zzDPatm3binKn06lKpaLt27fr1ltv1U033dRSzF0PxEdgfRAf0W1yuVxV7rV2/BN7PdKU2TmdzqpxdUxMNGX16pWr/bY3ap/0eDyqVCq64YYb9OEPf1h79uxZ189iNbRPAuuD9kmsh2KxqI9//OP67HrshtgAACAASURBVGc/a/3OOhwOXXDBBRodHdWPfvQjXXTRRfrQhz6kG264oeE4z08//bRe8YpXSJL+7d/+TWNjYw1f87HHHtPOnTv1ve99T1dddVXdY9qzZ48ef/xx63j+5E/+RLfddtuZvl2cY/Pz89b5T6P21XrltTl3SQoEAlUx39R/7W2rtW2wZlxQc11aMBjkdwpdqVKpVI3xaY/9jeK8vW5srg9NJBIqlUor9h8KhRq2q9YrM/WSc5VrO3nypO6++2598Ytf1PLyct2xgq+44gr9+Mc/XnVfuVzO6jsaj8etvqW1Y1iaqXbsSklWncxeNzN1t4GBAfX396u/v199fX3q7++nTRpNUT8G1gf1YwAAAAAAAAAAAADoHgsLC1Y/weXl5arrfjKZjNU/qFAoVPWRSCQSbe+jWCxa41MsLS1Z93O3P8f0z6r3Oslk0hqDNp1O170Xc7vcbrfVP8Plcln3yHU6nYpEItZ29n5H9nFm7NcJhkIhq29vMBi0rsUMBALWmHjmnjbS6bFze3p6JJ0eo8P0AfN6vQoEAk2PDwAAAAAAAAAAbAr3OSr17sAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwwezfv1/PZPK67e4vdPpQAEA//O79uuvgu8XwrgAAdJb9hrfmxrOLi4vK5/Mql8tKpVKSpFwup2KxWHVDW3PTW/sNb80+8vm8FhcXq250a26ga78RbjabValUqtpvu+w3jzU3p/V4PAoGg5KkcDgsl8tVdcNZc0Nb+w1pzQ1v65XZb2JrbpJrbnLrcDgUjUYlSb29vfL5fGt6HwAAAAAAAAAAAAAAAAAAAAAAAAAAAMCZWlhY0E9+8hP94Ac/0L/+67/qBz/4gRYXFxUOh3XxxRfr8ssvt6aLLrpITqez04e8YU1MTOjw4cPW9D//8z+Kx+Pq6enRZZddphe/+MX65V/+Zb3kJS9RJBLp9OECAABUMWPImMd6ZWe6rtk2ZqyZdtnHeTHzjR6bbbPWdWYeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgGx06dEjXX3+9vvHIRKcPBUAb7rrlgM4L+XXo0KFOHwqaWFxcVCKRUCKR0OTkpCYmJhouT0xMKJlMrtiH3+9XLBZrexobG+vAOwY2F/t3uJ1pcnJyxb5isZhGR0ervqP2ZXvZ0NCQ3G53B94xcG4sLi6uGhfN8uzsrEqlUtXz1xobBwYG5PV6O/Sugc1jrfExHo9raWmpal/m+9wsLprlbdu2cR9QbGrER6C7ER+Bsyufz2t+fr7lXOv09LTK5XLVPtYaK4eHh+VyuTr0zoHNY62xcmpqSpVKpWpffr9/RUxstEyuFZsZ8RHofsRHdNry8rJOnjyp48eP65FHHtHDDz+sRx55RI8++qgSiYQkqbe3Vzt37rSmXbt2adeuXdq5c6eVk/j1X/91fe1rX9Py8nLV/j0ej5aWlnTdddfpU5/6lH7hF37hnL6/dvrsPPPMM0qlUiv2QZ8doHPWGifn5+dVKBSq9lX7XV4tZo6MjMjpdHbonQNnVzvx8fjx40335XA4rPNSj8ejwcFBbd++XXv37tVLX/pS4iNwFhAfcS6Z/KOJD80e7Ux/afM/VO/x/PPPr8ovTk5ONowTHo9H5XJZb3nLW/SRj3xEF1100Vl93/TfAbob/XewUc3OzmpyclKnTp3S5OSknn76aT399NNVZXNzc9b2Ho9HIyMj2r59u8bGxnTeeedp27ZtGh0d1fj4uP7u7/5Of/7nf77iHM9wu91yu91617vepdtvv13btm07o+MnPgLdjfiITkskElbMqK1T2stmZmaq2ht9Pp/6+vpW/H/Vmx8ZGdGnPvUpffzjH68bH10ul8rlssbHx3Xw4EEdOHBAfr9/Xd4f/XeA7kf/HWwWa/1frlePk1aPTz09PQ23oU0BzXD+BHQ/zp/QzXK5nFKplNLptNLptJLJpDUlEomq5XpTPp9fsU+3261oNFo1xWKxFWWNpt7e3g58EthsGE8YkK7bPaZ7771X+/fv7/ShbBi15235fL7uuVyz8mQyueIcTqqulzXLEdSb+vv75fP5OvCJnHvvf//7df/99+uWW27Rb/7mb3Z921k7/dAnJyeVSCRW7GOtdXryTcD6abdeb77f9epDps9wozo99Xqsh2KxuKL+Pj8/b01zc3NVy/by2tyy2+1Wf3+/+vr6Vky15f39/VZZKBQ66+8zlUopGo1WHevS0pKuvPJK3XbbbXrjG9/Y8fw2+X2g+5Hfx0aUzWY1MzOjmZkZxeNxxeNxTU9Pa2ZmRrOzs4rH45qamlI8Htfs7KyKxWLV82OxmIaGhjQ4OKiBgQGNjIxocHDQml7ykpfoBS94gZ555pmGx2CuXXv961+v22+/XVdeeeWa3gvjmwDdjeu3sdEUi0UrFk5PT1ux0L5syqanp1fEFa/Xq4GBAQ0MDGh4eFhDQ0Mrlr/+9a/rvvvua3p92tLSkvbt26fbb79db33rW9d8Xkd+GdgcyC9jo8lkMivipL1+OTs7a9U5Z2dntbi4WPX83t5eKzaaeuXAwICGhoas2Pn1r39d9957b8N46fF4VCqVdOmll+rWW2/VjTfeuKZcJvlXoPuRf8VGk0qlquLkzMyMpqenq2Kmfbl2TIG+vj4rHg4ODlrx0sTMTCajAwcONHx9h8Mhp9OpUCik97///Xrve9+rgYGBtt4D8RHofsRHbETLy8tW/DP51Xr519nZWavM/v/ocDis+GiPk/aym2++WfF4vOExmPs2vOxlL9PBgwd17bXXrum90D4JdDfaJ2EcOXJEN910kx544AEr5vT29mr37t366U9/qvHxcd1xxx16+9vfXvdanKmpKb385S9Xb2+v/uu//ks9PT11X+dzn/uc/t//+3+Kx+PyeDxV6/78z/9cv/u7v2stv+lNb9K9997L/8kG0co4oKbs6aefXtG/aq3xfitd/wWcbWuN+3Nzc6t+p1eL+6Ojo3I4HC0f6+HDh/WZz3xGX/va1+RyueqOSWUMDw/r85//vNU+Nzs7q7m5OSsfacpq2+j8fn9Vu5yZt/drsS/39/eTq0NT1I+B7kb9GAAAAAAAAAAAAMBGtbCwYLVLLi0tKZPJWOvS6bR1z9VCoaCFhQVrnX3MFPs+lpeXlU6nO7KP9eDz+aruqxKLxaz53t5eq8+h2+22xnB1OBxV46zanxONRq2+TeFw2OojFAqFrOuCgsGg1e81EAhY9zc3Y+JLp9uKTf9Z+zF6PB4Fg8H1evsAAAAAAAAAAABrdZ+jUu+OwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvM/v379Uwmr9vu/kKnDwUA9MPv3q+7Dr5bDO8KANhqUqmUyuWy8vm8FhcXValUlEwmJT17o1v7TW6z2axKpZJKpZKy2WzVPuw3vDU3uzX7KJfLSqVSVfuw38TXfuPcdthvaGtuSGu/4a25ea3X61UgEJD07I1uzY1q7fswN851Op2KRCJV+3W5XAqHww3L7DfHBQAAAAAAAAAAAAAAAAAAAAAAAAAAALaqo0eP6tvf/ra+853v6Ec/+pFKpZJ27Nihq666Si996Uv14he/WBdeeGGnD3NTePTRR/X9739f3/ve9/S9731PTzzxhDwej174whfq1a9+tV796ldr3759nT5MAADQQYuLi9bYMvbHZuta2abVdWsdV8aMDVP7uNZ17T7fjFsDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAtTt06JCuv/56feORiU4fCoA23HXLAZ0X8uvQoUOdPpQtKR6Pa2pqSk8//bSmp6f11FNPaXp6Wk8//bSmpqY0MTGheDxu3R/ACAQCGhgY0MjIiAYGBjQwMKDBwUENDw9rcHDQKhsZGVFfX59CoVCH3iGAM5HP5zU/P6/Z2VnNzMxoZmZGs7Ozisfjisfjmp6e1uzsrLV+fn6+6vkul0sDAwMaGhrStm3bNDw8rO3bt2t4eFjbtm3TyMiItm3bpqGhIXk8ng69S6BaoVDQ5OSknnnmGU1NTemZZ57R5OSkJiYmrCkej2t2dlaVSsV6nsPhqIqJjeKkmY/FYvL5fB18pwDWqlKpWPGxUVy0L8fjcRWLxap9BINBjYyMaGRkRGNjYxodHbUezzvvPOsxHA536F0C1YiPAFZDfMRWl0qlmsbJqakpTU9PK5vNVj3P5/NZcdGeWx0cHNTQ0JCGhoas9QMDA+rr65PD4ejQuwRwJgqFghUrG8VIc05tpnrn1kNDQ03j5MjICOfU2DCIjwBWQ3zEuRCPx3XixAmdOHFCjz76qB599FGdOHFCjz/+uJWbGB4e1q5du/Tzn/9cExON+x56PB6Vy2W94x3v0Mc+9jGNjY2t+bjK5bJmZmasvKuJk/Z4OTU1pdnZWRUKharnBoPBqpg4ODhYlWu15177+voUDAbXfJwAOiubzWp+fr4qJsbj8ao+PPY+PY3OrU3O1R4nR0ZGrHg5PDzMOTU2hLMRH71erz75yU9KOt2XrVKpqFwuy+l0anx8XFdccYUuu+wyXXLJJbrkkku0ffv2Trx1AG0gPuJsyeVy1jUV9a6tMI+5XM56jsfjsfpEDw8Py+fzrXpdjMfj0dLSkq6++mr9wR/8gV74whe2fIz03wGwGvrvYCMoFAqam5vT5OSkTp48WVWvM2VPPfWUSqWSHA6H3G63SqVS0316PB5VKhXdcMMN+v3f/33t3Lmz6vWIjwCaIT7iXFtaWrJyFSYOTU9Pa2pqSjMzM1Xz8Xhc5XLZeq7P5/v/2Lvz6Ljq+/7/rxnNSKN9QZa1WIsXSV4l4w1bEt6NjYGwBTmBkjQpDRAgMRC6kHzb03KS09NTN5SmC2mbkITmYFFCgTYUCITFEgQTbMkLSMK2JFuybNke7TPSbL8/OHN/Gm2WZElXy/Nxzj3SXfW+sjzvez/3fT8f2e129fT0DJsfLRaLLBaLEhIS9NBDD2nv3r1KSEgYdFvqdwBcDvU7mElcLpecTueoJrfbLZfLpbNnzw56TIfDocTExFFPycnJCg8Pn+TfgHn8fr/uuusurV27Vl/72teUmJhodkhjxvUTgMvh+gkzxViunZxOpy5dujSgditorNdOSUlJcjgck/wbwFREf8KAdPvidO3fv1+lpaVmhzKjeDwetbe3q62tTa2trcbUd364da2trYMeNyoqSgkJCYqPj1dCQoIx9Z1PTEwMme/7/XTJfzt27NBvfvMbhYWFyW6362tf+5oeeughLVmyxOzQDIFAQOfOnQupT+h/f9/c3KyWlpYB1zLR0dED3ssarIYgJSVFV111Fc8EgWkueC8UfKYbrCHo3+dy8D7/4sWLIftbrVbjcyF4Hz9YPTr39RhPw93DB3Nf/+UXLlwYtO4geO8e/LsdyX17amqqrFbriGI9ceKEFi1aNGC5zWaTz+fTvHnz9MADD+jee+8dss5hrGjfB3A5tO9jKgnm9/65vO988PsLFy7oueee0x/8wR/I5XJd9th2u10ej0fXXHONvvvd7+rGG29UIBCgfxMAl8X725gqnE7nkPmx//y5c+cUCARktVrl8/mGPW5YWJj8fr8yMjL0ne98R/fcc4+io6NpXwYwYrQvY6ro22Y8WBvxYLnTYrEoLCxMXq932GNbrVYFAgFlZmbqkUce0Te+8Q1FRkbS/grgsmh/xVQx2rbXy/V10pfNZpPFYtGePXv03e9+V2lpaeRHAMMiP2KqCb5LPZL215aWFgUCgcu2u0qf50iv16vly5frscce05133imr1crzSQCXxfPJmam9vV1/+7d/q3379sntdkv6vN1x/vz5ampqUnp6up566int3r17wL4nTpzQunXrtHv3bv3iF78Y9Pi7du1SXFzcgL6fc3Nz9dlnn0mS5s+fr8OHD/NsbhL09PQMuC/u/7w1+P+7bz9rkkLufYP3xMG8378v0MTEREVGRpp0lgDGQ1tbmy5evDjgmepQ/YH2HQNA+vw9iOTkZKWlpYXk+b55PyUlRR999JG+//3v68MPPzRqKS8nLCxMPp8vpJ+E/u9bDPb+RVpaGtcYuCzGJwQwEtwfAwAAAAAAAAAAAFNHV1dXyDi2ra2txrsePp9P7e3txrrgmGdBnZ2dIfUqfff1er3q6Ogw1rW3txv1+j09Peru7jbWOZ3OQeMZ6zHGg8PhMOr4guOnBkVHRxtjtNlsNsXGxhrr4uLiFBYWJunzZ5tRUVHjdgxJIeOjjfQYAAAAAAAAAAAAGJPnLYG+vaQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMUaWlpWrscOvRJ582OxQAUMWrL2vfw/eJ7l0BABPN5XLJ7XaHfD/cstFuP9Jl3d3d6unpGdM59B1EN/h9/6+DrRvpspFu33egXAAAAAAAAAAAAAAAAAAAAAAAAAAAAADm8Hq9evPNN/XKK6/of//3f1VXV6eUlBTt3r1bO3bs0KZNm5SRkWF2mLPCmTNn9M477+iNN97Qr3/9a7W0tCgnJ0c33HCDvvCFL2jr1q2y2WxmhwkAwIw3kv5kxtrnzGiPPRpj7RPmSvuUCX4Nfg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICZoaysTHv27NELnzaZHQqAUdi3915lxDpUVlZmdigzSm9vrxoaGlRfX6/GxkY1NjaqublZjY2NOnv2rDHf09Nj7BMVFaWMjAylpqZq3rx5Sk1NVUZGhubMmaPk5GTNmTNHc+fOVXJysqKiokw8OwBTldfrVUtLiy5cuKCWlhadO3dOFy5c0Llz53TmzBnjc6i5uVkXLlww9rNYLJo7d67xuZOWlmZ8TU9PV05OjrKzsxUXF2fi2WEmuHDhgurr63X69Gnjb3Ikf5tz584NyY0pKSkheTGYJ61Wq4lnB2Aqa29vNz5jgtPZs2d17tw54/Mn+HnU29tr7DfUNXpqaqqysrKUnZ2tjIwMhYWFmXh2mO7IjwDMQn7EdOD1etXU1KT6+no1NDQYf5f92zq6u7uNfSIiIgbkyblz5yotLS0kR86dO5e2DgBD8vl8Rn5saWnR+fPndf78ebW0tAzIk+fPn1cgEDD2TU5OHjRPzps3T5mZmcrOzlZycrKJZ4fpjvwIwCzkR4wnn8+nuro61dTU6NNPP1VNTY1++tOfhtTRDMVut8tqteree+/V448/rrlz54asd7lcOnXqlBoaGtTU1DTg77OxsVHnzp2T1+s19omNjQ35+0xLSzPy5Jw5c5SSkqKUlBQlJyfL4XCM++8DwMzgdrvV0tISUrNz4cIFNTU1Dfgc6ujoMPaz2WzG9Xrf6/Z58+YpLS1N2dnZysnJUWRkpIlnh+nOrPxYV1en4uJiZWdna/Xq1SooKNDKlSu1bNky6mCBWYL8iPHW0dExaB5rbm7WkSNHdOzYsREdx2azyev1atOmTfre976nlStXUr8DwBTU78AMfr9f586d0549e/Tee++NeD+LxSJJysjIUEJCAvkRwIQhP2Ky+Hw+o90i+De2b98+VVVVhTzvHo7VapXdbteWLVu0ePFi6ncATDjqdzCTuVwuOZ3OUU8XLlyQx+MZcDyHw6HExMQhp8jIyCG3SU1NnVb3rRcvXlRycrIsFovCw8N155136sEHH9SqVavMDs1A/TMAs3D9hJmoq6tLra2tw05Op3PIeb/fP+CYkZGRSkhIGHZKTExUUlLSgGun+Ph4E34LmAj0JwxIty9O1/79+1VaWmp2KOhnqHYDt9t92TaFodoOpMu3HwzXnpCWlmY8R59IK1euVGVlpTEfHh6u3t5eXXPNNXr00Ud16623ymazTdjP7+7uVl1dnerr63X27NkBdXWD1aHHxMSE1H3OnTtX6enpRt/KfevQqQMFMByv1xtyXx+sRz9//nxI++K5c+d07ty5kH373tf3b2cM3tfPmTPHpDPDbOB0OnXx4kVdunQpZBpsWd/l/esV7Ha7rrrqKiUlJQ2Y+i6/6qqr1NTUpK985StDxmSxWGS1WhUREaF77rlHjzzyiLKzs4c9D9r3AZiF9n1MFYFAQB0dHWNuC4+JiZHb7aZ/EwDjjve3MRX09PTo+uuv129/+9tR7xsREaHk5GTalwFMGNqXMVW4XC7t3r1bb7/99qj3tdvtstvttL8CGHe0v2IqCAQC+qd/+ift3btXPp/vio5FfgQwHsiPmEo6OzsVGxs7pn15PglgovB8cnoJBAJ6/fXXdc899+jMmTOSPq8hjYuLU1tbm2699Vb98Ic/HFBD+uqrr2r37t36n//5H91www0h69rb2zV37lz98z//s772ta9JklpbW5WcnGzc1/3jP/6jHnzwwUk4w5nv/PnzamhoMPrJ7l+3278fUEmaO3fugOvROXPmDOgHNDk5eULfQwIw/blcLuPeOJj/++f94OdSZ2fnFf88p9OphISEcYgcswnjEwIwC/fHAAAAAAAAAAAAMFNHR0fIs3Cn02l87/F4Qmo5XC6X3G73oPsGAgG1trYOuW93d7d6enqM+fb2dqNW0O/3q62tzVjX29urrq4uY76rqytkfNm2tjZjbIz++/b09IS8Rz2e4uLijDFrLRZLSH1KdHS0wsPDJX3+PndMTIyxLj4+3hizzOFwGM/whjuGzWYLeQdgPI7RN34AAAAAAAAAAADMes9bAv1HtgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJiCSktL1djh1qNPPm12KACgildf1r6H7xPduwLAzBMcvLfvIL4jWTba7S93jL4D/45WcODb/l8HW3clyy63fd/BeAEAAAAAAAAAAAAAAAAAAAAAAAAAAADMbseOHdMvfvEL/exnP1Nzc7OWLl2qm266Sdu3b9fmzZtls9nMDnFW8/v9OnTokH7zm9/olVdeUUVFhRITE/XFL35Rd999t4qLi2WxWMwOEwCAcTWaPmRGsm60+3d0dMjr9Y467tH0A3Ol6wbbJjY2lms3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjLuysjLt2bNHL3zaZHYoAEZh3957lRHrUFlZmdmhTCs9PT1qbGzUyZMndfLkSTU1Nens2bPGfH19vXw+nyQpIiJCSUlJSk9PV1pa2pBf09LSGGcIwKTp6enRxYsXdfbsWeMzbLCvzc3NCgQCkj4f/yQ9PV0LFiwImYKfZfPnz+dzbJZzOp1D5sba2lq1t7cb2wb/nvrnxL5/U5mZmbLb7SaeEYDZyOVyGZ9fQ+XI06dPy+PxGPskJiYOmR/z8/MVExNj4hnBbORHADMB+RETpbe3V2fOnBmQI4NTQ0NDyNixiYmJw+bJtLQ0paamymq1mnhWAGYjp9MZ8lk2WL48d+6c/H6/pM+fHWVkZAzIkcH57OxshYWFmXxWMAv5EcBMQX7EaFy6dElXXXXVqPcLDw/Xzp075XA4jL+turo64+/K4XAoMTFx2HbXjIwMJSQkjPcpAcCw3G63Ll26NGyebGpqUmtrq7FP32v/odpeMXv1bcfvO5EfAUwn5EdcqaeffloPPvhgSPvpWFC/A2Cqon4H423p0qX65JNPRrWP3W5XZmambrzxRvIjgCmB/Ijxtm7dOh08eHDU+9ntduXm5lK/A2DKoX4Hs4XL5ZLT6RzV5Ha7jevJwQSfq452Sk5OVnh4+KSe/8mTJ7Vw4UJj3m63y+PxqLCwUN/85jd19913KzIyckJjoP4ZwEzB9RNmg/b2drW2to56unTpktra2gYcz2q1GtdCSUlJw14r9V8fGxtrwm8AQ6E/YUC6fXG69u/fr9LSUrNDwTjr33YQbBcYSRvCpUuX1NPTM+hxR9p+EBkZOWDbuXPnjuhaMSsrS6dPnx6w3Gazyefzac6cObr//vv10EMPjendrP7XwP3r0E+dOhXSF+nl6tDT09OVmJg46jgAYDwE+/sbro/loe7rB6tJz8rKks1mM/msMNsMdY0S/BsebF1LS8uoa+jtdrt8Pp9uueUW3XXXXUpJSaF9H8C0Rvs+JorL5dJHH32kjRs3jngfi8WipKQkLViwQEVFRVq6dCnvbwMwFe9vY6I4nU6tX79eNTU1I94nIiJCqampWrp0qdatW0f7MoApg/ZlTIRgffV1112nEydOjHi/iIgIzZs3T4WFhdq5cyftrwBMR/srxlPf94/+9V//Vc8995wx7vtQLBaLAoGAwsPDtWDBAq1evVq33nqrcnJyyI8ATEN+xERxuVz63e9+py1btox4H6vVqjlz5mjhwoVav3698vPzeT4JwFQ8n5xaTp48qQceeECvvfaa8W5IRESErFar9u3bp/vvvz9k+y9/+cv66KOPdOzYsZB+M3784x/r29/+tpqampSYmKjq6motWbJEgUBAkZGRqqurU0pKyqSe23TWd5z7/mPdM849gOnE7XarqalJhw4d0ksvvaSPPvpIn332mTwej6xWq3FfPJw/+ZM/0Zo1a4zPtbS0NFkslkmIHlMZ4y8BmAm4PwYAAAAAAAAAAJgcHo9HnZ2dxrzP5wupwQoEAiHPZCSpra0tpK6ho6MjpM/Frq4u9fb2GvPBvqyHWt/a2mrU6PX/+f337ezsDBlXte++Xq9XHR0dQ+47nuLj4413ssLCwhQXF2esi4iIUFRUlDEfHR0dUlOYkJBg1Hf039fhcISMkRUTExNS39a3XxGbzRYyVkX/fWNjY0Pe2e+7r91uDxlzNtj/NwAAAAAAAAAAADADPW8JBJ8qAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATGGlpaVq7HDr0SefNjsUAFDFqy9r38P3ie5dAeDKuFwuud3ukO+HWzba7Ud6jO7ubvX09IzpHPoOnBv8vv/XwdaNdNlIt+8/UDAAHJdwRQAAIABJREFUAAAAAAAAAAAAAAAAAAAAAAAAAAAAmO3cuXN6+umn9fOf/1wnTpzQ0qVLdeedd+rOO+/U/PnzzQ4Pwzh16pT+8z//U7/85S/1ySefaNGiRfrKV76ie++9VykpKWaHBwCYxkbSN8xY+6AZ7bFHY6x9xFxpHzN91yUmJo711w4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMeWVlZdqzZ49e+LTJ7FAAjMK+vfcqI9ahsrIys0OZcpqbm1VdXa2amhrV1tbq5MmTqq+vV319vVpaWoztEhISlJ2drezsbOXk5Cg7O1tZWVnGMsYMAjCddXV1qa6uzvj8q6+vV0NDg+rr61VXV6ezZ88qEAhIkqKioozPwZycHOXm5io/P195eXnKycmRzWYz+WxwpVwul2pra43cWFtba/xdnD59Wr29vZIku92ujIyMkPzYNzdmZWUpIiLC5LMBgLHz+/1qbm7WqVOnjLzYNz/W19erq6vL2D4tLc34DFywYIHy8vKUn5+v3NxcJScnm3gmGA/kRwD4HPkRQ7lw4YJqampUXV09oJ317NmzxnbR0dFGu0Lf/BjMm2lpabJYLCaeCQBcmZ6enpD8GJzq6urU0NCgM2fOyOv1SpLCw8OVmZlpfAYuWrRIeXl5ys3NVV5enhwOh8lngytFfgSAz5EfEfThhx/qmmuuGfV+drtdWVlZuvrqq0NyZDBvJiQkTEC0ADB5nE7ngHbWvrnz/PnzxrZxcXHG52BOTo7y8vKMXJmdnS2r1WrimeBK+f1+1dfXG88ka2pqdOrUKeNvor293dh27ty5Rl4kPwKYiciPGIzL5dLDDz+s//iP/zDaEoZjsViUnJysJUuWaM2aNdq1a5dRy0P9DoDpjPod9DXS+tb+wsLC5PP5JEmpqanaunWrNm3apOLiYi1btmwyTwEAxgX5EUMZrH7nxRdfHDJHWq1W+f1+WSwWZWVl6dprr9X27dt188030+4KYFqjfgf4/B7a6XSOerpw4YI8Hs+A4zkcDiUmJg45RUZGDrlNamrqqJ9fHDp0SKtWrRqwPHicqKgoff3rX9fevXs1f/78sf2SRP0zAARx/YTZbqzXTufOnZPf7x9wvMtdOw01cU0x/uhPGJBuX5yu/fv3q7S01OxQMMV0dnaqra1Nra2tam1tDfm+77zT6Rywvq2tTT09PQOOGRYWpvj4eCUkJCgxMVEJCQnGfHCKj4/X448/HvIsazA2m00Wi0V79uzRY489poKCAmOd1+tVXV2dcU//2WefGc/I6urqBjwn61uHnpWVFXKPHx8fP36/VAAwSU9PjxoaGkLqB4Kfiw0NDTp9+rTR7mu32zVv3jzjczA3N9eY8vLyFB0dbfLZAJ8LBAK6dOmSfvKTn+jP/uzPBr3/Hgna9wHMdLTvYzCjeX+7P5vNJq/XK6vVqiVLlujGG2/U9u3bVVJSwt8IgGmJ97fR32jal/sKCwuT3+9XIBBQSkqKtmzZoq1bt+r6669XZmbmJJ8FAIwf2pcxmJHWV/dntVoVCAQUCASUlJSkrVu3aseOHdqxY8cV1XsDgFlof0VfI82PdrtdXq/XGAdZ+jxHWiwW+Xw+xcfHq7i4WBs3btT27du1atUqnlcCmFbIjxjMWJ9PWiwWWa1W+Xw+RUREaO3atcbzyauvvpp2eQDTEs8nJ1dnZ6cee+wx/fjHPzbqTC0Wi+644w4988wzioyMlCQ1NDRo4cKF+uUvf6k77rjD2H/9+vVatGiRnn32Wb355pvavn27JCkjI0MNDQ38G/TT2dk5ZD+gjY2NxvOE8PBw43lC33d4gvW7mZmZ9JMNYNrx+Xw6fPiwDhw4oHfffVevv/66Ojs7B20PlKSrrrpKFy9eNOZjYmJCxtfJzc01+gLNycmRzWab7FPCBGD8JQD4/3F/DAAAAAAAAAAAxktvb29IPxBer1cdHR3GvN/vV1tbW8g+ra2tIc/y29vbjbGMpc9rofqOy+RyueR2u435np4edXd3G/Mej0ednZ3D/kyn0xky39bWFtJ/Yv+f2d3dHdK3s9vtlsvlGuxXMG4cDodRVyd9/h5UTEzMkOtjY2NDahoSExOH3Dc4ZlVQXFycwsLCJH1e19f3OXj/faOiokJqyvrua7VaQ/qODg8PD3mnPTo6WuHh4SP9FQAAAAAAAAAAAACYOp63BPq/pQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAFlZaWqrHDrUeffNrsUABAFa++rH0P3ye6dwUw3QQHEe47mPBIlo12+8sdo/9gx6MRHAC4/9fB1o102ViOkZCQIIvFMqZzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICZ7OOPP9ZTTz2l5557TrGxsfrqV7+qu+66S1dffbXZoWEMPv74Yz377LP6+c9/rs7OTn35y1/Wt771Lf49AWCaGU2fMle6brBtOjo65PV6Rx33aPqPGWsfM8NtExMTI7vdfgW/eQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjUVZWpj179uiFT5vMDgXAKOzbe68yYh0qKyszOxRTtLe3q7a2VjU1NaqpqVF1dbUx397eLkmKiYlRXl6eFi5cqOzsbGVlZSknJ0c5OTnKyspSfHy8yWcBAObp6enR6dOnVV9fb0x1dXWqq6tTTU2NmpubJUl2u10LFixQfn6+8vLylJubq7y8POXl5Sk9Pd3ks0BfXq9X9fX1Rm4MTrW1tWpoaFAgEJDValV2drZyc3ONfJidna2cnBxlZ2crPT1dYWFhZp8KAJjqwoULamhoCMmP9fX1OnnypGpqaoyx4pKSkpSbm2vkyGCezM3NVXR0tMlngSDyIwCMD/LjzNXV1WW0q9bW1qq6utrIl06nU5IUGRmp3NxcLVy4UFlZWZo/f76RL7Ozs3XVVVeZfBYAYC6fz6empqaQHBn8Pnjv4ff7ZbFYlJWVFdLOmp+fb9yLcN8xdZAfAeDKkR9ntvPnzxv58aWXXtIrr7wy5LY2m02pqalavHixVq1apY0bN2rz5s20EwCY9Vwul+rq6kLaXRsaGnTixAnV1NTo4sWLkqSIiAgjR/at2cnLy1NKSorJZ4G++ubHvrWtn332mXp6eiRJycnJxr1ksKY1eB+ZnZ2tyMhIk88CAMxFfpy5RlK/05fFYpHFYpHf71dkZKTWrVunnTt3atOmTVqzZo3Cw8NNOhMAMBf1OzPLWOtbMzIy9PWvf12SFBYWJq/XK7vdrlWrVmnLli0qLi5WcXGxEhMTTT5DAJgc5MeZa7T1Oy+//LJ8Pp8sFouRIx0OhzZs2KCtW7dq06ZNWrdunSIiIkw+MwCYPNTvAMNrbW1Va2urnE7noF+HW+dyuQYcz263KyEhQYmJiUpISAj5vu/Xvus7Ojq0bdu2YeMMDw+Xx+PR5s2bdf/99+u2224b9P8l9c8AcOW4fgKG5nK55HQ6Rz01NzcPqAmQJIfDYVwbjWaaDf2dPfHEE1qwYIHuuOOOEddH0J8wIN2+OF379+9XaWmp2aFghnG5XEY7QVtb24Dvg20FfdcF54fKg4Ox2Wzyer3KyMhQTk6OWlpadOrUKXk8HknS3LlzlZ+fH9KfcrAePSsrSw6HYyJ/DQAwLfj9fp09ezbknr6hocG4r6+vr5fX65UkZWRkhNzXB+sJ5s+fT50yJl1XV5f+4i/+Qk899ZTxNzoYi8UiSQoEAkpKStK6deu0fft23X333bxHAWDWo31/ZruS97fr6up03333GffdVqtVhYWF2rlzp7Zs2aKSkhJFRUWZfIYAMPF4f3vmOnPmjJEj+9aMXa59OSsrS7t375bf71cgEFAgEFBWVpZ27dqlzZs3a/PmzUpLSzP57ABg8tC+PHNdSX11VlaW1q9fb7yv5vf7lZGRoeuuu05btmzR5s2blZmZafIZAsDEo/115hmP94++/e1v65e//KXxPnd8fLw2b96sbdu2acuWLVq2bJnxfBMAZiLy48x2Jc8na2tr9dBDDxnPJ6OionTttddqx44d2rx5s1auXMm/O4BZgeeTE6Orq0tf/epX9cILL0j6vK60oKBAb731lpKSkiRJN910k3w+n379619Lko4dO6bly5frrbfeUmxsrNauXStJWrdunX73u9+ZcyJTQG9vr9FHXd+cX1tbq8bGRkmfv+eTk5MzYJz7rKws5eTkKC0tTVar1eQzAYCJ5fV69dFHH+ntt9/Wm2++qfLycrlcLoWHh6u3t1cvvviidu3aZeT6vs9Z6+rqVF1drfPnz0v6vF+mBQsWhOT7YF+g8+bNM/lMMRjGXwKAK8f9MQAAAAAAAAAAlxcIBNTa2hqyzOVyGWNPBgXfeQlyu90Dxg1qa2uT3+835nt7e9XV1RWyTXt7u3w+nzHv8XjU2dkZsk1HR0dIn4A+n0/t7e3Dxtz/Z/c/RldXl3p7e4c9x/HmcDhCntuGh4eHjNdps9kUGxtrzFssFiUkJIQcIyEhIeQdobi4uJB66Ojo6JD3qyMjI0P6SI6IiAjp38lutysmJsaYt1qtio+PD/mZ/cdhjo+PD6nViomJkd1uN+ajoqIYlxIAAAAAAAAAAADAVPW8JTDSEW0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMVFpaqsYOtx598mmzQwEAVbz6svY9fJ/o3hXAcPoOEhz8frhlo91+pMfo7u5WT0/PmM6h7yDEwe/7fx1s3UiXjXT7/gMVAwAAAAAAAAAAAAAAAAAAAAAAAAAAAACmnnfffVd/8Rd/oXfeeUcrVqzQt771Ld11113GO+SY3lwul5599lk99dRTOnr0qDZv3qwnnnhCJSUlZocGAFPWWPubudL+avquczqdo457rH3GjGTdSPdPSEiQxWIZ0+8dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwPRTVlamPXv26IVPm8wOBcAo7Nt7rzJiHSorKzM7lAnlcrl09OhRVVZWqrKyUkePHtWnn36q5uZmSZLdbteCBQuUl5en/Px85ebmKi8vT3l5eUpPTzc5egCYvtrb21VTU6Pa2lpVV1erpqbGmG9vb5ckxcbGKjc3V8uXL1dBQYEKCwtVWFioOXPmmBz9zBYIBHTq1ClVVlaqqqpKVVVVOn78uE6ePKne3l5JUkpKivLz85WXlxeSGxctWqSIiAiTzwAApq9AIKCGhgbV1tYauTE41dfXy+v1SpIyMzOVl5engoICY1q2bBmfwROI/AgA5iE/Tg89PT06duyYkSuPHDmi6upqnTlzRpJks9mUk5Oj3NzcAfkyMzOTsW4B4Ar09PQYebK2ttb4vrq6WufPn5ckhYeHa8GCBVq2bJlWrFhhtLfOnz+fz+AJRH4EAPOQH6eHixcvhrS5Hj16VDU1NWpra5MkRUdHKz4+Xk1Nn9cdRkREaMmSJSopKVFRUZFWr16tRYsWyWq1mnkaADAtXbp0KaRmp2/e7OrqkiQlJCQoNzfXyJPBXJmUlGRy9DPbSPJj8P6x7/1kXl6eEhMTTY4eAKY38uPUN9b6nSeffFLvvvuuJCk5OVnbtm3Ttddeq40bN2rZsmXcVwLACFC/M3WNd32r2+3W2rVrlZmZqU2bNqm4uFhr167l3xAABkF+nB7Go37H4/EoJiZG4eHhuvbaa7VlyxZt3LhRq1evls1mM/kMAWDqon4HuDIul0tOp3PU04ULF+TxeGS1WvWrX/1Kt9xyy4h+ns1mk9frVWZmpu644w4tXrxYx48fp/4ZACYR10/A6PX29g57bXTp0qUh13V3dw84nsPhUGJiYsiUlJSkpKSkkO8Hm6aDQCAgu90un8+n5ORk7d27V9/4xjcu258b/QkD0u2L07V//36VlpaaHQogSero6FBcXNyo97NYLFq5cqVuvvlmo3YgNzd3TMcCAITq7e3VqVOnVF1dPeD+vn/76uLFi7VixQoVFhaqoKBAeXl5CgsLM/kMMN1drj6iP4vFIqvVKp/Pp4SEBG3btk3XXXeddu7cqezs7EmOHgCmN9r3p4eJeH/70KFDeuCBB7RhwwajrpB7bAAYiPe3p76mpiZVVVUZufL48eMh/z7x8fED3ksbrn05EAjo5ptvVmpqqjZv3qzNmzczxh8ADIP25alvIvqXDgQCuuGGG5SWlmbky8zMzMk+NQCY8mh/nbomcvyFJ598Ur/97W+1bds2bd68WStWrODfEgD6ID9ODxPxfPLYsWP6y7/8S61bt06bN2/W6tWraRcAgEHwfPLKNDc3a926dTp9+rQkKScnR0eOHFFMTIyeeeYZffOb31RHR4fCwsL0yCOP6KWXXtI777xjtG9u27ZNv/nNb8w8hUnj9XpVU1OjI0eO6PDhwzpy5Ig+/fTTkP7n5s2bF5Lz8/LylJ+fr/nz58tut5t8BgAwtXi9Xn344Yd6++239eGHH+qJJ57QihUrht2nra1twL1xcL7//dfSpUuNnL9ixQpqWSYJ4y8BgHm4PwYAAAAAAACA2cnn86m9vT1kWVdXlzGurST5/X7jmV1Qd3e3enp6QpY5nc6QebfbLZfLFbKstbVVgUDAmO/p6RnQ93tbW5v8fr8x7/F41NnZGbJNR0eHUXMjff4MuaOjI2Sbzs5OeTyeYc91sPOYKGFhYQP6W4iOjlZ4eLgxb7FYlJCQELJNZGSkHA5HyLL+z0fj4+NltVqN+ZiYmJB6o6ioqJAxMB0OhyIjI415u92umJiYIWMdLK7+PzM2NjZkfMb+5wYAAAAAAAAAAAAAMN3zlkDfp/YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTVGlpqRo73Hr0yafNDgUAVPHqy9r38H2ie1dganG5XMYgym63e9Blw627kmV917W3t8vn843pHIIDDff/Oti6kS4byzESEhJksVjGdA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNmlsrJSjz/+uH79619r27Ztevzxx7V161azw8IECQQCevPNN/WDH/xAv/3tb3XjjTfqBz/4gVasWGF2aABgGE2/M1e6brBtOjs75fF4Rh33aPqTGWufM8Oti4mJkd1uv4LfPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMTVlZmfbs2aMXPm0yOxQAo7Bv773KiHWorKzM7FDGzenTp1VVVaWqqiodPnxYVVVVqq2tlc/nU0xMjJYvX67CwkLl5+crPz9feXl5ysnJkc1mMzt0AJhVmpubVV1drZqaGtXW1hqf3WfPnpUkpaWlqaCgQIWFhSosLFRBQYEWL17M5/UYdHR06OjRoyG58ciRI+ro6JDVatXChQtVWFiopUuXKj8/X7m5ucrLy1N8fLzZoQPArNPb26uTJ0+qurpatbW1+vTTT1VZWaljx47J5XLJZrMpPz9/QI5MT083O/Rph/wIANMH+dEcjY2Nxr16ZWWlqqqqVF1dLa/Xq8jIyJB21ry8POXn52v+/PkKDw83O3QAmHXa2tqMdtbq6modP35chw8f1smTJ+X3+xUXF6cVK1aE5Mrly5crJibG7NCnHfIjAEwf5MfJ5/V6VVNTE5InKysr1djYKElKSUlRQUGBCgoKlJeXZ7S5zps3T42Njfrggw9UWFiohQsXymKxmHw2ADDznTlzJiRXHjlyRJWVlWppaZEkzZs3z/jcXrlypQoKCpSbm0vdzihdSX4EAEw+8uPkG8/6nXfeeUd1dXW69tprtWDBAhPOBgBmNup3Jg/1rQAwfZAfzTGR9TtOp1Px8fGyWq2TcCYAMPNRvwNMrNbWVrW1tendd9/VH/7hH8rv94/6GBEREcb/QeqfAcB8XD8B48/tdsvpdA45Xbp0KeT7vpPX6x1wvKSkpGGnxMTEQZdPZm1Ja2urEhMTjfngz/7Sl76kxx57TAUFBYPuR3/CgHT74nTt379fpaWlZocCyO1266233tINN9ww5DYWi0UWi0V+v19z5szRrl27dNNNN2nnzp2Ki4ubxGgBAJLU1dWl2tpa497++PHjxvNsj8cjh8OhZcuWGbUDwfv7pKQks0PHFDXa+ohnn31W//Vf/yWbzSaPx6OoqCht3rxZO3fu1Pbt27V06VKzTwkAZiza9ycf728DwPTC+9uTy+126/jx40aOPHLkiA4fPqyLFy9KkjIzM1VQUKDly5cbeTI/P18pKSkmRw4Asxfty5OP/qUBYPqg/XXykB8BYPogP04+nk8CwPTC88mR+5u/+Rv9+Z//uSRp0aJFqq2t1eHDh3X11Vfr+PHjSklJ0fz58/Wnf/qn+n//7/8pEAjo6quv1scff2xy5BPj4sWLRq4PTseOHZPb7Zbdbjf6k1u6dKmR83NzcxUdHW126AAwa50/f17V1dVG7g/253z69GlJUnJycshz1oKCAi1btkwREREmRz49cX8MANML98cAAAAAAAAAphuXyyW32z2i5eO9bLr8nO7ubvX09Aw45kRwOByKjIwc9bLpuM1gy2JiYmS32wUAAAAAAAAAAAAAgMmetwQCgYDZUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFxOaWmpGjvcevTJp80OBQBU8erL2vfwfaJ7V8xmfQdJDn4/3LLRbj/SY1zJwMzBgYf7DkA8nstGuj0DHgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAApqPW1lY98sgj+tnPfqZVq1bpBz/4gXbs2GF2WJhEr732mh5//HEdPnxYX//61/V3f/d3io+PNzssACYZa/8zV9p/Td91ra2to+4baqx9yIxk3Uj3T0hIkMViGfPvHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmu7KyMu3Zs0cvfNpkdigARmHf3nuVEetQWVmZ2aGMSXt7uyoqKlRRUaHy8nIdPnxYly5dkiTNnz9fBQUFxrRy5UotWLBAVqvV5KgBAMNpaWlRZWWlMVVVVemTTz5Rb2+vIiIitGzZMq1fv15FRUUqKSlRdna22SFPKT6fT5WVlSovL1dFRYUOHjyokydPKhAIKD4+XitWrFBBQYEKCwtVWFio5cuXKzo62uywAQCX4fP5VFtbq6qqKh0+fFhVVVWqqqrS6dOnJUnJyclatWqVioqKVFRUpPXr1ys2NtbkqKcO8iMAzEzkx/HT0dGh999/32hr/fjjj3Xx4kVJUlZWltHGWlhYqIKCAuXm5iosLMzkqAEAl9PZ2amjR4+qqqrKaGutqqpSe3u7rFarFixYoLVr16qoqEjFxcUqKCjg870P8iMAzEzkx/HT0NCgAwcO6P3339f777+vY8eOye12y263a/HixSH1OgUFBUpNTTU7ZADACJw9e9bIk8FcWV1dLY/HI4fDoeXLl2vDhg3asGGDSkpKlJmZaXbIUwr5EQBmJvLj+KB+BwBmJup3rgz5EQBmJvLj+KF+BwBmJup3gPH1ox/9SI8++qh6e3svu21YWJhycnK0detW3XXXXSopKeH/FwBMA1w/AeZwuVxyOp2jmpqamtTa2jrgWA6HQ4mJiSOe0tPTlZ6eLofDMeq4T5w4oUWLFg1Ybrfb5fF4dM011+jRRx/VrbfeKpvNZqynP2FAun1xuvbv36/S0lKzQ8EsEwgE9Mknnxj9Kn/44YeqqamR1+sdsK3NZpPX65XD4VBRUZG+8IUv6Oabb1ZOTs7kBw4AGJHe3l4dO3bMuJ8P3t+3tLRIkubNm6err75axcXFKioq0po1axQZGWly1Jhs41Ef8cMf/lAvvfSSduzYoW3btmnNmjUh930AgMlH+/744f1tAJiZeH/7yg3XvhwZGally5Zp5cqVIe+oJSYmmh02AGCEaF8eH7yfBgAzE+2vV4b8CAAzE/lx/PB8EgBmJp5PDq68vFzXXnutAoGAHnjgAf3VX/2VkpOT9dZbb+mNN97Qv/3bv8npdMrn82nBggU6ceKE2SGPC5fLpY8++kjl5eUqLy/XoUOH1NjYKElKSUkJuS9esWKFli1bpvDwcJOjBgCM1KVLlwY8Zz127JhcLpdsNpvy8/O1du1alZSUaMOGDVqyZIksFovZYU853B8DwMzE/TEAAAAAAAAwcVpbWxUIBEKWdXZ2yuPxhCxzuVxyu90hyzwejzo7O0OWBQKBQfu6bmtrk9/vD1nW1dU1YLwSt9stl8sVsszr9aqjo2NEP6e9vV0+ny9kWXd3t3p6ekKW9fT0qLu7O2SZz+dTe3v7gGM6nc4ByyaLw+EY8A6m3W5XTExMyDKLxaKEhIQB+8fHx8tqtYYsi46OHlBTMtjPsdlsg45RONi7/3FxcQNqfKOiohQRETHsvoP93P4xh4eHDxgLd7CfBwAAAAAAAAAAAAAApoznLYH+FSkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTUGlpqRo73Hr0yafNDgUAVPHqy9r38H0DBhweisvl0osvvqhf/OIXeuSRR7Rjx44JjhAzUXDw6r6DWPdfNty6K1nWd91gg1OPVHCg5P5fB1s30mVjOUZCQoIsFsuYzgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEj/93//pz/+4z+Wz+fTk08+qTvuuIN3+WepQCCg5557Tg8//LDCw8P17//+77ruuuvMDguYVUbTh8xY+68Zbl1nZ6c8Hs+o477S/mWudP/o6GiFh4dfwW8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBeysrKtGfPHr3waZPZoQAYhX1771VGrENlZWVmhzIidXV1Ki8vV0VFhQ4cOKCjR4/K7/crLy9PRUVFWr16tQoLC1VQUKD4+HizwwUAjBOPx6Pjx4+rqqpKhw8f1vvvv6/f//736u3tVUZGhoqLi42psLBQNpvFMrIbAAAgAElEQVTN7JAnTXt7uz744ANVVFSovLxcH3zwgTo7O5WYmKgNGzbommuuMXLj/PnzzQ4XADDOLl26pMrKSlVVVen3v/+9ysvLdfLkSYWFhWnFihUqKSnRhg0bVFJSoqysLLPDnTTkRwCY3ciPl9fQ0KADBw4YufLIkSPy+XxauHChiouLtXr1ahUUFKiwsFCJiYlmhwsAGEeBQEB1dXWqrKxUZWWlPvzwQ1VUVKi1tVWxsbFav369ioqKVFxcrPXr1ys2NtbskCcN+REAZi/y4+V5vV5VVVWF1OycOXNGdrtdq1at0oYNG7Ry5UoVFBRo2bJlCg8PNztkAMA46u3t1bFjx1RVVaVDhw7p/fff16FDh+TxeJSZmani4mIVFRWppKREBQUFCgsLMzvkSUF+BIDZjfx4edTvAMDsRv3O4MiPADC7kR8vj/odAJi9qN8BxqahoUHf+c539Ktf/Uo+ny9kncViUSAQ0Lx583T77bfrxhtv1KZNm2S3202KFgAwnrh+AqYul8slp9M56qm5uVmBQCDkWA6HQ4mJiaOa6urqdOONNw4ZX1hYmPx+vzIyMvTggw/qG9/4hhITE+lPGJB0++J07d+/X6WlpWaHghmuu7tbBw8eNOrQKyoq5HQ6FR0drWuuuUbr169XYWGhent7dffdd8tisUiSCgsLdeONN2rnzp1av379rOpvEwBmorNnz6qqqkqVlZU6ePCgKioq1NTUpPDwcK1atcq4ry8qKlJqaqrZ4WKcUR8BALMX7fuXx/vbADC78f728EbavlxYWKhFixbNut8PAMwWtC8Pj/ZXAJi9aH8dGvkRAGYv8uPl8XwSAGY3nk9+7oMPPtCGDRskSU1NTUpPT9crr7yiO++8Uz6fT93d3YqJiVFHR4fJkY5dc3Ozkevff/99/f73v5fH41FGRoaKioq0du1aox/Q2di2DgCzgc/nU21traqqqnT48GF98MEH+vDDD9XV1aWkpCQVFRUZfYGuWbNGUVFRZoc8qbg/BoDZjftjAAAAAAAA9NXa2jqgj2RJamtrk9/vD1nW1dWl3t7ekGVut1sulytkmdfrHbTuwOl0DljW3t4+YNyN7u5u9fT0hCzr6elRd3d3yDKfz6f29vYR/ZyOjg55vd6QZS6XS263O2RZb2+vurq6Qpb5/X61tbUNOOZkiY6OHvC8xuFwKDIyMmSZzWYbtDZ0sPcG4uLiBrT9RUVFKSIiImRZRETEgGdpYWFhiouLG9HPiY2NHdCXamRkpBwOR8iy8PBwRUdHhyyzWq2Kj48fcMyEhASj39agmJgYxmUBAAAAAAAAAAAAAAAzwfOWwGDVPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNMaWmpGjvcevTJp80OBQBU8erL2vfwfYMO1tzXwYMH9ZOf/ETPPvusuru7FQgE9Nd//df63ve+N0mRYqz6Dkgd/H64ZaPdfqTHGGwA7pEKDkzdd4Dq8Vw20u0ZEBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJnD4/Fo7969+pd/+Rd96Utf0o9+9CMlJSWZHRamgAsXLuiBBx7Q888/r/vvv1//8A//IJvNZnZYwIQZa380I1k30v1bW1sv2w/SYIbqS2as/c2MZF3fbeLj42W1Wsf6qwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzEBlZWXas2ePXvi0yexQAIzCvr33KiPWobKyMrNDGVRjY6Nee+01vfHGG3rvvffU2Nio8PBwrV69WkVFRSopKVFRUZFSUlLMDhUAMMlcLpc++ugjHThwQBUVFaqoqNClS5cUExOja665Rtu2bdPOnTt19dVXy2KxmB3uuOnu7tY777yj1157TW+//baOHj0qn8+nhQsXqri42JiWLFnCWFMAMEudPXtWFRUVKi8vV0VFhT7++GN5PB7NmzdP1157rXbs2KFdu3YpLS3N7FDHDfkRAHA5szE/9tXU1BTSznrmzBnZ7XatXr1aGzZsMNpZU1NTzQ4VAGACv9+v48ePq7y83MiVJ06cUFhYmFasWKFNmzZp165d2rRpkzHW/UxAfgQADGe25segQCCgQ4cO6bXXXtObb76p3/3ud+rs7FRiYqKKiopUVFSk4uJirV27VlFRUWaHCwAwQXd3tw4ePBhSt9Pa2qqYmBitX7/eqNtZuXLljKnbIT8CAC5nNubHvqjfAQBczmys3yE/AgAuZzbmx76o3wEADGe21+8Agxns+slqtcrv9xtfo6Ojdf311+uGG27Qrl27uJYCgFmE6ydg+nO5XHI6nTp79qyamprkdDovO50/f14+n29MP89ms8lut+vuu+/W4sWL9cgjj9CfMGa12xena//+/SotLTU7FMwwPT09OnDggF577TW98847OnTokPE8qLi42KhDLywslM1mM/Y7f/68vv/972vDhg3avn27kpOTTTwLAMBkqKurM+7py8vLQ+rNSkpKtHPnTu3YsYOcMA1RHwEAGM5sb9/n/W0AwOXM5ve3x9q+DACYfWZz+zLtrwCA4czW9lfyIwBgOLM1PwbxfBIAcDmz9fnkF7/4Rb3wwgsqKChQVVWV7rnnHj3zzDPyer0KCwtTb2/vtOovs6WlRW+88YZef/11vffeezp58qTCwsK0fPlylZSUGPfH2dnZZocKADCR1+vV4cOHQ/oDDbanrlq1Sps2bdLOnTtVUlKi8PBws8MdV9wfAwAuZ7beHwMAAAAAgKnJ5XLJ7XaPePlY9pmMY023eCeTw+EYtGZxsOXjvWy6/Jzo6OgZ98wKAAAAAAAAAAAAAAAAl/W8JRAIBMyOAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4HJKS0vV2OHWo08+bXYomEL+6ut79Jc/2W92GJiFKl59Wfsevk+Dde/qdDr1/PPP66mnntKxY8dkt9vl8XgkSREREXrsscf0xBNPTHbIU15wMOy+g2L3XzbcuvE6Rltbm/x+/5jOITh4dP+vg60b6bKxHCMhIUEWi2VM5wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCUjo4O3XHHHSovL9dPf/pTffGLXzQ7JExB+/fv1x/90R9p48aNKisrU0xMzKiPUV9fr2eeeUavvvqq/vu//1upqakTECmmq9H0MzPWvmiGW9fV1aXe3t5Rx32l/c1c6f7R0dEKDw+/gt88AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATp6ysTHv27NELnzaZHQqmkL/6+h795U/2T8ljj3T/iTyHqWDf3nuVEetQWVmZ2aFIkgKBgA4ePKhf/epXevXVV1VVVaXIyEht3LhRmzZtUklJidasWWOM8QFMVzt27NAbb7xhdhjAjBIIBPTJJ5+ovLxcBw4c0Ouvv67m5mbNnTtXu3bt0s0336xdu3ZNyxxy5swZvfjii3rllVf03nvvqaenRwUFBdq6datKSkpUVFTEeHGY9siNwMTp7u7WwYMHVV5ernfeeUfvvvuukUuuv/563XbbbVqzZo0sFovZoY4K+RGzAfkRmDgzNT8GDdfOunHjRpWUlGjt2rXT8h4Z6ItcCUyc5uZmlZeXq7y8XG+99ZaqqqoUERGhjRs36qabbtJtt92m9PR0s8McFfIjZgvyIzBxZmJ+7MvlcunVV1/VSy+9pNdee03nzp1TamqqduzYoZKSEhUXF2vJkiWyWq1mhwpcEXIlMDH8fr8++eQTHThwQOXl5XrjjTfU3Nys1NRU7dy5U7fccot27tw57e65yI+YLciPwMSYqfmxL+p3MBuQJ4GJM1Prd8iPmA3Ij8DEman5MYj6HcwW5Epg4sz0+h2gv5FcP1VWVuonP/mJdu/ereuvv14bNmxQWFiY2aEDo8L1EzBxuH4CZj6/369Lly4Z0wsvvKC///u/l9/vH9VxLBaLAoEA/QljVrt9cbr279+v0tJSs0PBDHD+/HmjduDtt99WV1eXFi9erO3bt6uoqEglJSXKzMw0O0zginFPD0ys9vZ2ffDBB6qoqNDbb7+tiooK+Xw+rV69Wrt379Ztt92mgoICs8PEIKiPwGzBtQAwcWZ6+z7vb2O2IFcCE2Omv79N+zJmC/IkMLFmcvsy7a+YLciVwMSZie2v5EfMFuRHYOLMxPzYF88nMVuQK4GJMdOfT/ZlsVhktVoVERGh3t5e+Xw+SVJbW5vi4uJMju7yDh8+bNwbf/zxxwoLC1NxcbE2bdqk4uJirV+/XrGxsWaHCVwR8j0w8RoaGnTgwAG9//77euONN1RdXa3o6Ght2bJFX/jCF3TLLbdozpw5Zoc5JtwfY7YgXwITYzbdHwMAAAAA0Jfb7ZbL5Rqw3O/3q62tbdB92tvbjeetfblcLrnd7gHLfT6f2tvbBz1WW1vboP3LDnUsr9f7/7F33/FRVfn/x9+T3hOwAMGC1EgRENtSLQEBXVEDAQGxAEEsP3BtqLgiiqII4roqAbGgIgSwgCLNgiBFWAUEhIUgItJEID0h5f7+2G9CypQ7yUxmJvN6Ph73oZx77rlnzpycz21zrrKysqyWderUKRmGUSU9NzdXBQUFVdILCwuVnZ3tVFk5OTk6ffp0lfTTp08rJyfHalknT560mu5psbGxVq+Zh4eHKywsrEp6UFCQzXvStsqKiIhQaGholfTg4GBFRUVZLSsuLs7qe8siIyMVEhJSJT0kJESRkZFWy6pXr57V9KioKAUHB5vaR1hYWJVrQrbawtb+AAAAAAAAAAAAAAAAANi0wGJYe1oLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAyyQnJ+uPrHw9ND3V01WBByQlxEuSFu06VCF9wl3JmvBOmieqZJOtutZltj5zUkK8W9rBG9p43ZeLNfXBe8pexl1cXKxvvvlGM2bM0GeffVaWVnn619DQUI0ZM0Yvvvhirde5vPIvMi/9f3tpzuY3W4atl6CbUfoC7PIvwq5uWk3KsPXSbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLrk2LFj6t27tw4fPqwvvvhCl156qUfrY7FYqsztYWYdasfmzZt144036rzzztOyZct09tlnO9wmPz9fH3/8sWbNmqXVq1crMDBQRUVF2rBhg6688spaqDUcsTWnTHXnrjGzrnyejIwMlZSUOF1vZ+abqel8NdbyxMbGKiAgoAYtDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA3ZeWlqaBAwdq0a5Dnq4KqikpIV6SXPodTrgrWRPeSXNZefbKdrb+Zrc3+xnc0X7uKLOyqWNHqXF0mNLS3PM9mbVlyxbNmTNHixYt0oEDB9SsWTPddNNNuv7669W9e/eyd4n4Kt7ZhMoSExO1atWqCmn0BbiSxWIp+3+z/ertt99WSkqKioqKXJLP0wzD0NatW7Vs2TItXbpU33//vSIiItS3b18NHjxYffv2VXBwsKeradOxY8f04YcfasGCBdqwYYNiYmLUp08fXX/99br++uvVqFEjT1exRoiNqIzYCHcrHxttqdzfbG1TOd/q1av1z3/+U5s2bVJISIgSExM1depUXXjhhdWvsBvl5eVp9erVWrZsmZYsWaJ9+/bpwgsvVFJSkm6//XZ16NDB01W0ifjImOhviI+oLenp6XrxxRe1YsUKHT58WOHh4br44ot17bXXauDAgbrkkksq5DdzXnjkyBE9+OCD+vLLLyVJffr00fTp09WgQQO3fpbq8uX4WN5PP/2kOXPm6OOPP+Y6K/wCsRLu5uy5pL38FotFJSUlkqRt27bp/fff1xdffKF9+/YpMjJSTZs21R133KF77rlHQUFBNa+8ix0+fFjLli3T8uXL9eWXXyo7O1tXXXWVBgwYoCFDhuicc87xdBVtIj4yJvob4iNqU15enho1aqT27dtr9erVdvM6Opc0G0e9iS/Hx1KFhYVasmSJ5s2bp6VLlyo/P19du3Ytu+7avn17U8dE3oxYicqIlXC36tyXlKTFixfrlVde0Y8//qjCwkJ16dJFDz30kHr37l2Wx5euuxqGoS1btmj58uVVntu57bbbdMMNN3jtczvER8ZEf0R8RG1x5r6k2bjnS8/t+HJ8LI/ndxgb/Q1xEu7m7HlkSUmJZs6cqbfeekt79+6VJDVv3lwpKSkaMWKEAgICKmzrK7//kHz7+R3iI2OivyE+wt3c9czOjz/+qFmzZmn58uX6448/dO6556p9+/Z68skn9be//a3mFXcDX46P5fH8DuOjvyFWwt2cjZXOPrdq5t6lt6gLz+8A1nD8RMz0Nxw/wd3c+UxXeRkZGWrbtq0OHjzotf2X4yeg7nv11Vf16KOP6vTp0zbzWCwWBQUFqbCwUNHR0erZs6fOOusszZo1i/mE4deSEuI1f/58JScne7oq8FEnT57U3LlztWDBAq1du1ahoaHq3bt32bMD3vhco7M4p0dlnNPD3Sqf04eFhemss85Sx44dlZSUpMGDByskJKRCHmeeDTA716S3yMrK0tdff63ly5dryZIlOnjwoFq0aFH2DEHr1q09XUW/x/V97/zbgftwLAB3c/b6vjPHAb70m22pblzf5/fbjI/+iFgJd3NnrCzP2++F14Xfb3N9mbHRHxEn4W7Vub5cytnfZnt7rJTqxvVlrr96Z9+C+xAr4W7uOqfk/Qu1i/jImOhviI9wN3fNdeLsnGHewJfjYynuTzI++iNiJdzNnfcnfemZ3rpwf9KWoKAgFRcXKzIyUjk5OZKkb7/9Vj169PBwzWzbsWOH3n//fS1cuFDp6em64IILdOONN+r666/Xtddeq6ioKE9XsUaI96iMeA93q+59VjPP5fri9WNJ2r9/v1asWFF2nlxQUKBu3bppwIABuu2221SvXj1PV9Euzo8ZI/0R8RLu5q5ryRLvXwIAAAAAf1BYWKjs7Gyb63NycuzOJXry5Emb606fPl12n8+a7OxsFRYWWl1nGIZOnTplc9uCggLl5ubaXJ+VlWXzdzjFxcXKzMy0uW1eXp7y8/Ntrs/IyKhw/lyerc9kq772Pqe9z+BJERERCg0NrZIeHBxs836orWvXkZGRVq/zh4SEKDIy0qmyoqKirJ77h4aGKiIiokq6xWJRXFyc1bKio6Ot3icICwuz+jx0QECAYmNjrZYVExOjwMBA02UFBgYqJibGalkAAAAAAAAAAAAAAAAA4AUWWAx+IQkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxAcnKy/sjK10PTUz1dFXhIUkK8Fu065OlqmOJLdXUVa5/Zne3g6TZe9+ViTX3wHu3atUsfffSRUlNTdfToUQUGBtp9oXlISIiGDh2qe++9V9KZl6mXf0l9ZmamiouLK7xQvfQl9KUvbi8pKVFGRkaFMoqKipSVlVWhjPIvqD916pSqMx1tUFCQoqOjJZ15aXj5l5fHxsYqICCg7GXf5V86Xvoi9fIv/C4to/zL1EvLKP8i89KXoJeWYe8F5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCfoqIiJSYm6uDBg1q1apWaNGni6SrJYrHYnEvD3jrUnn379ikxMVEXXXSRli9frqCgIKv5duzYoffff1+pqanKyMhQQECAiouLy9avXr1a3bt3r61qe53SOWdK/2stzcy66m6fk5Oj06dPO13v0vloSv9rLa2m6+zlKZ23BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Ia0tDQNHDhQi3Yd8nRVUANJCfE+/R3WtP6e3r62yixv6thRahwdprS0NLftw5bc3FzNmTNHs2fP1ubNm9WiRQslJyerf//+6tChQ63Xx514ZxPMoC/A1ZzpU1OmTNGbb76pX3/91e42ZvN5oyNHjujjjz/WwoULtXr1ap177rm64447dM8993jF+/1KrVixQjNnztSSJUsUHh6um2++Wf3791fPnj3r1Lu9iI0wg74AV3N27DHTB7/77jsNGjRI06ZNU8+ePWUYhpYtW6ZXXnlF33zzjWJiYlxWf3f56aeftHDhQi1YsEB79uxRp06dNGLECA0bNkwRERGerp4k4qOjdfAv9AW42vLly/Xcc8/pySefVOfOnRUSEqLDhw/r888/11NPPaWMjIwKfc7MeWFBQYEuu+wyDRo0SPfee68k6Y033lBaWpo2bdqkkJCQWvlsNeEL8bFUTk6O5syZo7feeks//vijWrZsqQEDBnCdFX6LvgBXc2bssZX37bff1qJFi/TFF1+U5bv44os1ffp0XXHFFQoODtbOnTv12GOP6aKLLtLs2bPd82FcJD8/XytXrtTChQv16aefKj8/X/369VNKSooSExM9XT1JxEcz6+Bf6Atwl/fff18ffPCBtm3bpu+++04tWrSwms/MuaTZOOqtfCE+lpeenq4ZM2Zozpw5On78uK655hr1799ft9xyixo0aODp6rkUsRJm0Bfgas6OPS+99JL27t2rhx9+WE2aNNG+fft0zz33aPXq1WV5ff2665EjR/TJJ59o4cKF+vbbb3XOOeeUPbdz0UUXebp6koiPZtbBv9AX4GrO3Jc0G/d8/bkdX4iP5fH8DmMjzqAvwNWcGXvGjh2rdevWacqUKbr00ksl/e85l4cffljdunXT1KlTy/L68u8/JN94fof4yJiIM+gLcDV3PbPTpk0bTZ8+XZdffrkk6dtvv9UDDzygV155RUlJSW74JK7lC/GxFM/vOF4H/0JfgKs5GyvNPrdq5t6lt/K153eAyjh+crwO/oW+AFdzxzNdld19992KjIzUv//9b5/ovxw/AXXTU089pSlTpqigoKBCemhoqAoKChQYGKi2bduqd+/eSkxMVI8ePRQcHMx8woD+N/fv/PnzlZyc7OmqwMesXr1aqamp+uSTTxQUFKSbbrpJSUlJ6t27t9fdv6kpzulhBn0Brla+T+Xl5enIkSP64YcfNHv2bB0+fFgff/xxhd83O/NsgC/3V8MwtHHjRi1atEgLFizQb7/9ps6dO2v48OEaPHiwwsLCPF1Fv8H1fcfr4F/oC3A1Z5+PMHMc4Ou/2fa16/v8ftvxOvgX+gJczR2xsjJfuxfuS7/f5vqy43XwL/QFuJqz15el6v0229dipS9dX+b6q+N18C/0BbiaO84pef+C+xEfHa+Df6EvwNXcMdeJM3OGeSNfiI/lcX/S8Tr4F/oCXM1d9yd9ua/60v1JR4KCglRcXFz27/Hjx+vZZ5/1YI2sy8/P1wcffKDZs2drw4YNatKkSdm58eWXXy6LxeLpKroM8R5m0Bfgas7eZzX7XK6vXz+WpNzcXC1dulSLFi3SkiVLVFxcrKSkJKWkpKh79+6erl4FnB87Xgf/Ql+Aq7njWjLvX7Ltxx9/1Icffqj9+/dr0aJFLqoxAAAA4HsyMjJUUlJidV1RUZGysrJsbpubm1tlfsryTp06ZfM8p7CwUNnZ2Ta3zc7OVmFhodV1hmHo1KlTNrctKChQbm6uzfVZWVkqKiqyuq6kpEQZGRk2t83Pz1deXp7N9ZmZmRXujZVXXFyszMxMm9vm5eUpPz/f5np77enNoqOjFRQUZHVdQECAYmNjbW4bFham8PBwm+tjYmIUGBhodV1gYKDd897w8HCbv3WxtV979bVVF1v7sVe/2NhYBQQEmC4rKChI0dHRVsuKi4urU/c6AQAAAAAAAAAAAAAAAAAuscBi+OJTiQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwO8kJyfrj6x8PTQ91dNVgYckJcRr0a5Dnq6GKb5UV1ex9pnd2Q6ebuO1X3yqVx66V9L/XnxeUlJiarvg4GDFxsbq+PHjdvOVvmS9/MvWq5tWkzKioqIUHBzsZOsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgLnnwwQc1a9YsbdiwQW3btvV0dSRJFotFhmE4vQ61a9u2bercubPuuecevfzyy2XpJ0+e1IIFC/Taa69p+/btCg4OVmFhodUyVqxYoZ49e9ZWlcvk5eUpPz/f5n/t5anuuvJ5MjIyTM9rU54z88/UdP4aa+tiYmIUGBhYg5YHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+KC0tTQMHDtSiXYc8XRXUQFJCvE9/hzWtv6e3r60yy5s6dpQaR4cpLS3NbfuoLDs7W6+//rqmTZumrKws9e/fXyNGjFC3bt1ksVhqrR61iXc2wQz6AlzNmT7Vtm1brVixQo0bN7a7jdl83m7//v16++239c477+jo0aMaMmSIHn/8cbVs2dIj9TEMQ5999pkmTZqkzZs3q3v37ho+fLj69++viIgIj9TJ3YiNMIO+AFdzduwx0wevvvpqjR49WgMHDqyQPmfOHB08eFBPPPFEzSpdiwzD0Jo1a/TWW29p4cKFio6O1tixY3X//fcrOjraI/UhPppbB/9CX4ArHTx4UDfffLO++eYbq2P9qlWr1LNnzwp9zsx54YwZM7R27Vp98MEHFdKHDh2qHj16aOTIka79IG7kbfGxvMzMTP373//W9OnTlZOTowEDBmjEiBHq2rWrR+vlTsRKmEFfgKs5M/aMHz9ezz33XJV8nTp10nPPPac+ffqUbbdt2za1a9euQr7Dhw+refPmysnJceEncK+cnBwtWLBAs2fP1tq1a3X55ZfrySef1E033eSR+37ER/Pr4F/oC3CXq6++WmPGjNH69esVGBioF154wWo+M+eSZuOoL/C2+FjeL7/8oueff17z5s1T48aNddddd+muu+7SBRdc4NF6uROxEmbQF+Bqzow927Zt04svvqgPP/ywQr69e/eqRYsWZXnr0nXX3377rey5ncOHD2vw4MF6/PHHlZCQ4JH6EB/Nr4N/oaSDUnoAACAASURBVC/AlZy9L2k27tWl53a8LT6W4vkd8+vgX+gLcDVnxp7Y2Fht3bpVTZo0qZBv//796tChg06dOlWWVld+/+Ftz+8QH82vg3+hL8DV3PXMzs8//6y2bdtWyLd8+XL94x//0I4dO1z4CdzL2+JjeTy/Y34d/At9Aa7mzNhj9rlVs/cufYE3P78DVMbxk/l18C/0BbiaO57pKm/ZsmW699579fPPPysqKsrn+i/HT0Ddcf/99+vNN98sG9sMw1DLli11ww03KDExUd27d1dkZGSV7ZhPGPjf3L/z589XcnKyp6sCH/HFF19o0qRJWr9+va666ioNHz5cAwcO9Pi9GnfinB5m0Bfgavb61KxZs/T8889ry5Ytio2NLctv9tmAutJfS0pK9NVXX2n27Nn69NNPVb9+fT388MMaNWqU1eN/uAbX982vg3+hL8DVnH0+wsxxQF36zbY3X9/n99vm18G/0Bfgau6IleX5+r1wb/39NteXza+Df6EvwNWcvb4sOf/bbF+Pld56fZnrr+bXwb/QF+Bq7jin5P0L7kN8NL8O/oW+AFdzx1wnzswZ5u28LT6Wx/1J8+vgX+gLcDV33Z+sK33VW+9PmlFcXKygoKCyfycmJmrlypUerFFVOTk5mjFjhqZOnaqTJ0/qlltu0fDhw3XNNdcoICDA09VzC+I9zKAvwNWcvc9q9rncunT9WPrfNdt58+Zp9uzZ+uGHH9SlSxc98cQT6tu3r0frxfmx+XXwL/QFuJo7riXz/qWK0tPTNXfuXL333ntKT08vO+8rLi52V7UBAAA8Lj8/X3l5eXbzGIZh6jmD7OxsFRYW2s1TWFio7Oxsh2WdOnXK4TlVXl6e8vPz7eYpLi5WZmamw/1lZWWpqKjIbp6CggLl5uY6LOvkyZMO8+Tk5Oj06dN285htq4yMDJWUlNhc76gNzLSjNwoJCbH7+4OoqCgFBwdbXRcQEFDhNx2VhYWFKTw83Ob6mJgYBQYGWl0XGBiomJgYm9uGh4crLCzM5vrY2Fib96CCgoLs/hYwIiJCoaGhNtfHxcXZfNamJu1psVgUFxdnc9vQ0NA6+349AAAAAAAAAAAAAAAAAADqqAV1c0YNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASUkJ8UpKiNfBvf/VsyMGa2inlhrcsbkmjbpdB9P3WM175MB+vfTAcA27IqEsrdSBPbs0KWWohlzaQkMubaFJKUN1YM+uKvvdv2unJt49SIM7NNPQTi313Mgh2rL22wp5DuzZpUmjbi8r69kRg6uUlZuVqXdeeFqjE6/SoEuaaHjXDnpt3Fjt2faTU3mcqbsjm75eoSduu0mDLmmie669Qu+88LTyciq+qL203Y4fPqTJ996pIZe20N1dLtGrj9yvrFNVXxBvpkxrKn8/TreHg/Y34/e9uzUpZagGd2yuoZe10ov3363jh/+wmtcV+zTdT13Qt6y1r710a/nK509KiNcb4x8qW2/2e3e6jR30c7N9xJGA/3uZfHx8vEpKSuy+fL68kpISdevWTenp6UpPT9fhw4d14sQJZWRkyDCMsiUvL08nTpzQoUOHyvLu2LFDmzdv1tq1a7Vy5UqtXLlSS5YsUVpamubMmaPU1FSlpqbq1Vdf1eTJkzVhwgQ99thjGjNmjFJSUpSSkqJhw4ZpwIAB+vvf/67ExEQlJiaqa9eu6tSpk9q0aaOmTZuqadOmio+PV7169Wy++B4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+4auvvtL06dM1e/ZstW3b1m37sVgssvzfnB6O0kv/XbrOYrFoxIgRDtdJ0vbt23XDDTcoOjpa0dHR6t27t7Zv3251n+np6br11ltVr149m/Wz91l++eUXXXXVVYqIiFC3bt20d+9e7dixQ1deeaWioqJ0zTXX6MCBA1W2d6aOv//+u/r166fo6Gg1aNBAQ4cO1V9//VXttnW1Sy65RLNmzdLUqVP19ddfa9WqVRoyZIgaNmyo++67Tzt27JAkFRYW2ixj+/bt+u6777Rq1SotXbpUCxYsUFpammbOnKmZM2dq6tSpevHFF/XMM89o3LhxeuSRRzRq1CiNGjVKt912m5KTk/X3v/9dPXv21DXXXKPLLrtMl112mZo3b65mzZqpYcOGql+/vqKioir0m4iICNWvX1+NGzdWs2bN1LZtW1122WXq1q2bevbsqZ49e+qmm27SsGHDNHbsWD3xxBP617/+pZkzZ2revHn6/PPP9f3332vnzp06cOCA8vPzJUlxcXGKj49Xu3bt1LVrV/Xt21fDhg3TqFGjNGHCBE2ePFmvv/665s2bp8WLF2vlypX6+uuvtXnzZm3evFl79uypMHdNVlaW3blrSuetKT93TeV5a0rnrLE2b03pnDXl562xN2dNYGCgW/sUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAqaSEeCUlxOvg3v/q2RGDNbRTSw3u2FyTRt2ug+l7rOY9cmC/XnpguIZdkVCWVurAnl2alDJUQy5toSGXttCklKE6sGdXlf3u37VTE+8epMEdmmlop5Z6buQQbVn7bYU8B/bs0qRRt5eV9eyIwVXKys3K1DsvPK3RiVdp0CVNNLxrB702bqz2bPvJqTzO1N2RTV+v0BO33aRBlzTRPddeoXdeeFp5OdlV8v2+d7cmpQzV4I7NNfSyVnrx/rt1/PAfVfKVfUfpezRu4I26rUNTjR9ys44c2K/f9+7WuOQbNLhjc/1zWP8q21f+flzZZtbKLnX88B968f67NfSyVg77kyO28pltP8n134lkrn96qyVLlqh169Z67rnnNGjQIKWnp2vOnDnq3r2729/H40p18Z1NO3fuVO/evRUTE6OoqCjdcMMN+uWXX5ze1/bt29W3b9+yOvft27dKnSVp69at6tWrlyIjIxUTE6M+ffpo+fLlFfKY+fwZGRl68MEH1bRpU4WFhalRo0a688479cMPPziVx5m622NmX9XpJ868x2rx4sXq0qWLwsLC1KRJEz344IPKysqqks/Md2C2LFe0HX3Rte3prDVr1ig+3nFsNJvP2zVp0kQTJ07Ub7/9pg8//FAbN25UmzZtNGbMGGVnV43T7rRnzx716tVLt956qxo2bKiNGzdq9erVGjZsmCIiImq1LjVBbGQ8soXYSGz0lr7oiGEY1dpu06ZNSkxMrJLeu3dvLVmypKbVqlUWi0Xdu3fXnDlzdODAAY0ePVpTpkxRy5YtNWfOnFqtC/GR+Fiqro5JxEfio7f0xWnTpmn06NGKjo62uj4xMbFKjDRzXvjxxx/rjjvuqJI+bNgwLVq0yKk6epo3xcfylixZojZt2mjy5Mm67bbblJ6ernfffVddu3b1WJ2qg1jJ+GQLsZJY6S190ZHKcfK5556rkmf9+vXKzMxU7969K2zXrl27KnkzMjLUsGFDl9bR3SIjI3XnnXdqzZo12rJlixISEpSUlKQePXpox44dtVoX4iPxsVRdHZOIj8RHb+mLpfbu3atdu3bpxhtv1PDhw/Xee++pqKjIal4z55Jm46gv8Kb4WCo3N1cTJkxQhw4d9NNPP2n27Nnau3evnn76aV1wwQUeqVN1ESsZn2whVhIrvaUvOlL5XHLGjBlKSUmpkq958+YV8tal664XXnihnnnmGe3fv19z587V5s2b1a5dO40ZM8ZqP3cX4iPxsby6OiYRH4mP3tIXnb0vaTbu1aXndrwlPpbH8zvEyVJ1dWwiThInvaUvOlL5PDIsLMxm3srr6srvPywW73l+h/hIfCxVV8ck4iPx0Vv6oiM1eWanbdu2VfJ26dJF6enpLq2ju3lTfCyP53eIlaXq6vhErCRWektfdKRyrDT73KrZe5e+wBuf3wGs4fiJ46dSdTVmcfzE8ZO39EVHqvtMV6nMzEyNGjVKb731liIjI11at9rC8RNQd8TGxurss8/W4MGD9d577+nQoUPatWuXpk6dqj59+rh0nGI+4Ur7q6X5hGu73UvzJyXEa8cP6yRJa7/4rEK6M/WXzH2HZstyVdsDzti7d6969+6tG2+8UZGRkVq3bp3Wr1+vESNG2HxO0ltxTs95lC2c03NO7y190ZGRI0eqV69eevnll8vS6tKzAWYFBASoZ8+emjdvng4cOKCUlBRNnDjR488Q1GVc3+dYoFRdHX85FuBYwFv6oiPWno8wcxxQl36z7Y3X9/n9NrGyvLo6PhEriZXe0hcdqW6sLFUX7oV72++3ub5MnCyvro5NxEnipLf0RUesXV+WnPttdl2Ild54fZnrr8TKUnV1fCJWEiu9pS86Ut1zSt6/4B7ER+Jjqbo6JhEfiY/e0hcdqe5cJ87MGebtvCk+luL+JLGyvLo6PhEriZXe0hcdqen9ybrA2+5POqN8rIiPj9fKlSs9WJuqlixZotatW2vChAkaMGCA9u7dq7lz5+q6665TQECAp6tnGvGeMdYW4j3x3lv6oiPW7rOafS63Ll0/lqSYmBilpKRo48aN+v7771WvXj3deOONuuaaa7RrV+3/zpnzY+JleXV1jCJeEi+9pS86Ut1rybx/STpx4oRmzpypq666Si1atNDEiRPLriGUlJT43JyoAIC6JTc3VydPnjS97Nu3z/Tyyy+/6D//+Y/p5ZtvvtGqVatMLV9++aUWLFhgennnnXc0c+ZMU8uMGTP04osvOlyeeeYZjRs3zu7y6KOPatSoUQ6XIUOGKDk52e5y8803q2fPng6Xyy+/XJdddpndpXXr1mrWrJndpUmTJqpfv77DJSgoqMJ5ibUlPDzcYTlnnXWWwzo1a9ZM7du3d/j5/va3v5lqqwEDBjhs97vvvtvh9/zkk0/qjTfecNi3Pv74Y4d9e+3atab+vk6fPu3w7zsuLk5Nmza1u7Rq1UrXXnutEhMT7S5Dhw5VSkqKzWX06NF6/vnnNXnyZKvL66+/rrS0NJvL559/rpUrV9pcNm3apM2bN1tdtm7dqvT0dJvLkSNHdOLECZuLYRg2l4KCArvbHjhwwOZ+9+zZY7POmzdv1tq1a+1+5kWLFtlsr48++kipqak2l+nTp9v8LiZPnqzHH39cjz32mNXloYcesvtdDx06VAMGDLC59OzZ02Y/6t69uzp16mRzadWqlc2+etFFF6levXo2F196vx4AAAAAAAAAAAAAAAAAAPg/BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgA8YMGCA0bn3341Fuw45tUgyLmiRYDw49U3j3Q07jLe/32aMfvZl4+xGjY03v9pYJW/7zt2N5z9abHy0ZZ/x5MwPDEnGol2HjNdXrDPOatjIuG/SNOOddT+XlVO/QUPj9RXrysp4bdlaI/6iZsbTb8835m5JN179/Fvj4suuLCuntKy4s881UiZMNt5Z97Px7oYdxpiXXjManH+hMfPb/5Tlu+K6642B9z9kzP5+qzFv237j5Y9XGAmXXl6hLDN5zNbdbHveM/ElY+6WdGP22i3G1TcPMK6+OdlqvvZdehjjZ31ofPjjHiP1m83GlT37GNfcMrBGZTpKM9seZtrf0fL6inXG2Y3iy9r1nfXbjTEvvWa06tCpSr1ctU8z/dRVfctWm5v9Luxtb/Z7d7aNzfRzs5/d0fLQKzOM0uldt2/fbjz99NNGixYtDElGUFCQYbFYDElVloCAAGPw4MEeHlEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc6644grjxhtvrJV9lc7nYSbdVl576/bs2WM0bNjQePPNN41jx44Zx48fN95//32jadOmxu+//16ljJ49exrff/+9kZubayxdutTuPq3VITk52di5c6dx6tQp47777jOuvPJKIykpqSxt9OjRRv/+/WtUx169ehlffvmlkZWVZRw4cMC45ZZbjDvvvNN0mzjzmWqie/fuRnBwcNkcLNbmZqnOEhYWZtSrV89o1KiR0bRpU6N169ZGp06djE6dOhldunQxEhMTjRtvvNEYMGCAcfvttxspKSlGSkqK8f/+3/8zHnvsMePpp582Jk+ebEyfPt1ITU013nvvPSMtLc1IS0szFi9ebKxcudJYs2aNsXnzZmP79u1Genq6kZ6ebvzxxx/GiRMnjKKiolppPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLpu/vz5hiRj0a5DTi2SjAtaJBgPTn3TeHfDDuPt77cZo5992Ti7UWPjza82VsnbvnN34/mPFhsfbdlnPDnzg7J9vr5inXFWw0bGfZOmGe+s+7msnPoNGhqvr1hXVsZry9Ya8Rc1M55+e74xd0u68ern3xoXX3Zlhbq/vmKdEXf2uUbKhMnGO+t+Nt7dsMMY89JrRoPzLzRmfvufsnxXXHe9MfD+h4zZ32815m3bb7z88Qoj4dLLK5RlJo/Zupttz3smvmTM3ZJuzF67xbj65gHG1TcnV8jz+op1xtmN4sv298767caYl14zWnXoZPU7lGR07nOT8eoXq433N+0y+gy5y2jR/lLjql43lKVdf9sdxt+uv9HqtuX/7ao2s1Z2aVqrDp2MMS+9ZryzfrvD/uSovtbSqtN+rvxOzPZPs0vn3n83BgwY4PYxoqCgwLj99tsNi8Vi3H333cbx48fdvk93q2vvbGrbtq3x0UcfGcePHzeOHj1qzJo1y7jggguMX3/91fS+9uzZY5x33nnG7NmzjWPHjpWV07hxY2PPnj1lZezevdto1aqVsXLlSiMnJ8fYsWOH0a1btwp1Nvv5+/XrZ0yYMME4cuSIkZ+fb/z4449Gly5dKpRlJo/ZujtiZl+l7Wjte7DF2f6Wmppq5OTkGIcPHzaGDRtm3HHHHRXymPkOzJblqrYr3R990bXt6Syz29TWO9RqS3FxsfHGG28YcXFxRqtWrYy9e/fWyn7ffvttIyQkxLj88suNzZs318o+3YnYyHhkDbGR2OgtfbG0jcyklV83ZswYo2HDhkZ4eLjRuXNnY+XKlRXyhIeHWz2/OXHihFGvXj2n6ueN/vrrLyMlJcUICAgwBg0aZOTn57t9n8RH58ohPvrmmER8JD56S1+8+OKLjX379pnOX7ltbWnYsKFx5MiRKumHDx82GjVqVK39eRNPxMdSeXl5RnJyshEQEGCMGjXKOHHiRK3t212IlYxP1hAriZXe0hdL28hMmi2DBw82pk2bZnN9YWGhceTIEePjjz82LrnkEmPevHlO1c8bbdq0yejUqZMRGhpqvPvuu27fH/GR+OgvYxLxkfjoLX2x1Lhx44yHH3647N9dunQxPvvsM7vbOHuP0VEc9SW1HR/L++WXX4ymTZsa9evXN2bNmmUUFxfX6v7dgVjJ+GQNsZJY6S19sbSNzKQZhmG0adPGWLdundG3b18jMjLSiIqKMq699lrju+++q5CvLl93LS4uNmbOnGnUr1/faNasmbFr1y6375P4SHz0lzGJ+Eh89Ja+6Ox9SbNxry4/t+OJ+Fgez+84Vw5x0jfHJuIkcdJb+mJpG5lJMwzDmDJlinHllVcaa9asMTIzM43MzExjzZo1xpVXXmlMmTLFdPm+judba474yJhkDfGR+OgtfbG0jcyk2eLMvcZ9+/YZrVq1Ml22t+L5VtciVjI+WUOsJFZ6S18sbSMzaZXZe27V7L1LX+XJ53eAyjh+4vjJX2IWx08cP3lLXyxtIzNphuH8cdHIkSONe+65x2G5vobjJ8C/MJ+w78wnXNvtvmDH70bDC5oY7/3wS4Vy31rzkxEVE2vM/WmvU/U38x06M4+vq9q+dJ/z58/39J8jvNwHH3xghIaGGh06dDDWr1/v6eq4BOf0nEdZwzk95/Te0hdL28ieTZs2Ge3atXNYjrVnAyTHc036qqNHjxp33HGHYbFYjDvvvNMoKCjwdJXqBK7vcyzgL+MvxwIcC3hLXyxtIzNp9lQ+DqjLv9k2DOY3cTViJeOTNcRKYqW39MXSNjKTZo+t5+nr4r1wT/5+m+vLxEl/GZuIk8RJb+mLpW1kj73ry2bGkLoYKw3Dc9eXuf5KrPSX8YlYSaz0lr5Y2kZm0uyx9xtt3r9Qc8RH4qO/jEnER+Kjt/TF0jYyk2aLtblOqjNnmC/h/qRrESsZn6whVhIrvaUvlraRmTR7/OmZXk/PL21WSUmJIcmQZISEhHi6OhUUFBQYt99+e9k162PHjnm6SjVGvGeMtYZ4T7z3lr5Y2kb2VL7PWp3ncuvi9WPDMIx169YZ7du3N8LCwoyPPvqo1vbL+THx0l/GKOIl8dJb+mJpG5lJs8XatWR/ff9Sbm6ukZaWZvTp08cIDAw0AgMDjYCAgLLz1PKLxWLx4KcAUFlmZqZx4sQJp5c///zTSE9Pr9ayfft2Y/PmzdVaVq1aZaxcudLpZenSpUZaWlq1lrfffttITU01vbz88svG5MmTTS2TJk0yHnvsMdPLAw88YKSkpJheBgwYYHr5+9//biQmJppeLr/8cqNTp06mlksuucRo2rSp6eXcc8816tWrZ2qJjY21Gm/8fQkKCjLdhvXq1TPOO+88h99L8+bNTX3fPXr0cNh/+vbta6pfjhw50mE/Hzt2rMO/nSeeeMLU3+Qbb7zh8G/8vffeczhuLFiwwNTYtH79eofj3tatW02NrX/99ZfDsTsvL8/TYQcAAAAAAAAAAAAAAAAAAADwV2kWwzAMAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeLnk5GT9kZWvh6anOrVdUkK8/jFthrr0valC+pJ3UrV/9y96YPL0CnknzlmoNld0rlLOq4/cr+btOuiGYSOqlLPvl+0a89JrkqRXHrpXl3a/Vj369S/Lc+jXdD3Qp5sW7TpUVtaFrVrr5hH3Vijr60XztH/XDt395LOSpCGXtlDqN5sUFRtXlufYwQManXhVWVlm8pite3VkZ2bovp5/03sbd1ZIT0qI12Ovv6Mrrru+Qjs8fUd/zfrup2qXWfqZbKWZbQ8z7e/Iq48+oOZt21dp128+ma9/P/5ghXq5ap+S437qqr5Vuq/KbW4r3WyaLda+d2fb2Ew/N/vZHVn35WJNffAeVZ7edd++fVqyZInmzp2rTZs2KSAgQIZhqKSkpCzPrbfeqkWLFpneFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAJ27ZtU/v27bVmzRp17drV7fuzWCxV5vOwlW4rr711Q4cO1SWXXKJHH320Qvrbb7+trVu36tVXX61QxjfffKOrr766Gp/kf9t/++236tGjhyTp0KFDaty4cYW0gwcPqlOnTjp69Gi16/jpp5+qX79+ZWm7d+/Wtddeqz/++KNKfcy2rTssXrxY/fr1U3R0tLKyshQaGqqCggKH2wUEBGjKlCm67bbbFBYWpqCgIEVHR7u9vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhdaWlpGjhwoBbtOuTUdkkJ8frHtBnq0vemCulL3knV/t2/6IHJ0yvknThnodpc0blKOa8+cr+at+ugG4aNqFLOvl+2a8xLr0mSXnnoXl3a/Vr16Ne/LM+hX9P1QJ9uZXV/9ZH7dWGr1rp5xL0Vyvp60Tzt37VDdz/5rCRpyKUtlPrNJkXFxpXlOXbwgEYnXlVWlpk8ZuteHdmZGbqv59/03sadZWmvPvqAmrdtX2V/33wyX/9+/MEq32FSQrwmvr9IbS7/myTpxLGjGtm9Y4W0v44c1iNJ1+vt77dV2bZ8ea5qM2tll6bd/8IruuaWgRXSbfUna9s7SnO2/Sqr6Xditn+aNXXsKDWODlNaWppT2zmjpKREN9xwg9avX6+0tDT16tXLbfuqTXXtnU3z5s3TwIEV/3amTZumbdu26d133zW1r6FDh+ryyy/XmDFjqpTz008/6f3335ckDR48WH369NHtt99elmf37t1KSEgoawuznz86Olq//fab6tevX5bn119/VdOmTcvKMpPHbN0dMbMvyXX9xMx7rE6ePKnmzZvrr7/+Kksz8x2YLctVbVf6eeiLrm1PZ99zZnab2nqHWm07dOiQbr75Zv3222/6/vvv1bx5c7ft67XXXtOYMWM0fvx4TZgwQQEBAW7bV20hNlbdF+MRsbE8YqN3xEZrbH3HMTExmj59um655RZZLBZ9/fXXuv/++/X+++/ruuuukyR1795d999/v5KTkytsu3DhQg0aNEhFRUWm6+fNvv76a/Xv318dO3bU8uXLFRQU5Jb9EB+Jj/4yJhEfzyA+erYvRkRE6NSpUwoJCTGVvzx7/SokJEQ5OTkKDg6ukF5YWKioqChT78b2BbUVH0sVFRWpZ8+e2rZtmxYtWlTt8dzbECur7ovxiVhZHrHS984lyzt69Kguvvhi7du3T3FxcVXWb9++Xe3atZMkhYaG6vXXX9fw4cNN182bFRcX65///KdeeOEFvfbaa7rvvvvcsh/iI/HRn8Yk4uMZxEfPx8fi4mJdcMEF+uqrr5SQkCBJevfdd/XJJ5/os88+s7mdM/cYHcVRX1Rb8bG8nTt3qlu3brr44ov1ySef6JxzznH7PmsDsbLqvhifiJXlESs9HyudOZeMjo7W+eefr2eeeUbXXXedSkpKtGLFCv3jH//Q/Pnz1aNHD0n+cd316NGjuvXWW7V7926tWbNGF198sVv2Q3wkPvrTmER8PIP46Fv3Jc3GPX94bqe24mN5PL9DnPSXsYk4eQZx0rfOI0v3MW7cOBUWFkqSgoKC9MILL+jhhx+2WX5d/P2HxPOtNUF8rLovxiTiY3nER9+Lj+U5e69x4sSJMgxDTz/9tOn6eTOeb3UNYmXVfTE+ESvLI1b6Zqx09Nyq2XuXvswTz+8AlXH8xPGTP8Usjp/O4PjJt46fnDkuWrVqlUaMGKGff/5Z0dHRZfuqmNcA0gAAIABJREFUK9flOX4C/AfzCf+PL8wnLNV+u3847QXVb9BQfYbcVZbnk5n/1p+HDiplwmSn6m/mOzRblqvbPikhXvPnz6/yPBpQKjU1VaNHj9YjjzyiSZMmuf0eTG3hnL7qvjiP4py+PM7pveOc3t73mZOTowYNGig7O9tuOdaeDTAz16Sv+/LLLzVo0CB16dJFn3/+eZ149s1TuL7PsYA/jb8cC5zBsYB3HAtY48x1+MrHAf7wm23mN3EdYmXVfTE+ESvLI1bWzVgp1f174bX9+22uLxMn/WlsIk6eQZz0jjhZ3evLjrat67FSqt3ry1x/JVb60/hErDyDWOkdsdKamp5TSrx/wRWIj8RHfxqTiI9nEB99Oz7am+vE2TnDfA33J12HWFl1X4xPxMryiJW+HStL+eMzvZ6YX9oZgYGBKikpkeTcd+luJSUl6tu3rzZs2KC0tDT16tXL01VyCeJ91X0xxhLvyyPee0e8d+Y+q7PP5dbl68fS/67tPv7445o6dapSU1M1cuRIt+6P82PipT+NUcTLM4iX3hEvranJtWR/e//SM888o9WrV2vx4sUqLCxUQECAqc+Ynp5ud71hGDp16pRL6ltcXKzMzEyXlFVYWOjwd9BmFRQUKDc31yVl5eXlKT8/3yVl5eTk6PTp0y4pKysryyV9Pj8/X3l5edXaNjMzU8XFxU5vV1RUpKysrGrtMzc3t9q/azt58mS1tjt9+rRycnKqtS0cCwgIUGxsrOn8wcHBioqKMp0/KiqqyrmYq+oSERGh0NBQ0/nr1atnOm9oaKgiIiJM54+JiVFgYKCpvEFBQWXP9ZrhzjYMDw9XWFiY6fxxcXE2jzEqc2cbAgAAAAAAAAAAAAAAAAAAAAC8ygKL4U2zgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANiQnJysP7Ly9dD0VKe2S0qI17sbdig6rl6F9GMHD+iJ2/rprTU/Vcg7d0u6QsPCq5QzvEt7TV7whc6JP69KOY8Pukmz124pyzflkxWqf24Dm3WyVdapv/7U08P669UvVkuSJt49SAX5eeo/eqwu6dxNgYFBVcoyk8ds3asrKSFei3YdqpL23g+/KComtiyt8PRp3db+Ii385Y9ql+korSbtUbn9HbFZzvFjGt61Q4V6uWqfUvX6aXX6Vum+Kre5rXSzaY4+m6l2c6KNK/dzs5/dkXVfLtbUB++Rveldf/vtN33yySdasGCBNmzYIIvFopKSEvXu3VtLly6t1n4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2vLyyy9rypQpOnLkiCwWi9v3Z7FYrM7nYS3dVl576xo2bKiNGzfqwgsvrJB+9OhRXXPNNdq5c2eFMnJychQREVGdjyKLxaLMzExFR0dLkkpKShQYGFglLSgoSCUlJdWu44kTJ1Sv3pn5lQoKChQeHl6hzNK8ZtvWHQzDUIMGDfTYY4/pyiuv1IIFCzR//nwdPXpUISEhOn36tNXtAgMDlZqaquHDh7u9jgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCctLQ0DRw4UIt2HXJqu6SEeL27YYei4+pVSD928ICeuK2f3lrzU4W8c7ekKzQsvEo5w7u01+QFX+ic+POqlPP4oJs0e+2WsnxTPlmh+uc2sFknW2Wd+utPPT2sv179YrUkaeLdg1SQn6f+o8fqks7dFBgYVKUsM3nM1r26khLiK3wvNj/f8WMa3rVDle8wKSFeH/znvwqPjJIkGSUl6t/6vCppA9qcr4W//GF3365qM2tll6bN/n6r4s46p0K6rf5kbXtHac62n5m6O1Om2f5p1tSxo9Q4OkxpaWlObeeM6dOna9y4cVq3bp0uvfRSt+2nttW1dzYdP35cZ511VoX0X3/9VV26dNGhQ4cq5LW1L1t1/vXXX9W5c2cdPny4LN+PP/6o+Ph4m3Uy+/l79eql3NxcjR8/XomJiQoKqjpmmMljtu6OmNmX5Lp+YvY9VpXzmfkOnCnLFW1XWjZ90bXt6ex7zqrbp+qSnJwc9ejRQ+Hh4fruu+/c8h7A7du367LLLtOECRM0btw4l5fvKcRGxiNriI1nEBu9MzY6G9PS0tL02muvac2aNZKkVatWadiwYZo+fbquu+46WSwWffXVV3rqqad06NAhZWZmmi7b2/3888+66qqrNH78eD3++OMuL5/4SHz0pzGJ+HgG8dGzfTEiIkInT55UaGioqfzl2etXISEhysnJUXBwcIX0wsJCRUVFqaCgwOn9eSt3x8fyJk2apOeff14bN25U27Zt3bqv2kSsZHyyhlh5BrHSt88ln3vuOf3+++9KTU21m+/PP//UmjVr9I9//EMvvfSSkpOTTdfP273wwgt65pln9OOPP6p169YuL5/4SHz0pzGJ+HgG8dHz8XHJkiV68cUXtXbt2rK0nJwcnX/++dq5c6caNmxodTtnrseajaO+yN3xsVRxcbGuvPJKhYWFadWqVQoLC3PbvmobsZLxyRpi5RnESs/HSmf6WVBQkBYsWKBbbrmlQvrcuXM1c+ZMffvtt5L857prXl6errvuOhUWFmrjxo0KCAhwafnER/t57a0jPvrmmER8PIP46Fv3Jc3GPX95bsfd8bE8nt8hTvrT2EScPIM46VvnkfPnz9eTTz6p6dOnq2vXrjIMQ2vXrtWYMWP0wgsvaODAgabKr0t4vrV6iI+MSdYQH88gPvpWfKzMmXuNW7duVb9+/bRt2zbFxMSYrp+34/nWmiNWMj5ZQ6w8g1jp27HS1nOrZu9d1gW19fwOYA3HTxw/+VPM4vjpDI6ffOv4yexxUXZ2ttq1a6fU1FT16tXLYbm+jOMnoO5jPmHfmU+4NK022/3wb7/qlX+M1kuLlpXluf/6LnrolVRd1Nr+eY21uXcdfYfOlOXKtk9KiNf8+fPr1G984Tq7d+9Wx44dNW7cOP3zn//0dHVcinN6zqOs4Zz+DM7pvfOcvrzs7Gw1bNhQ2dnZNvM482xA5bkm64L//Oc/6tKli1544QU9+OCDnq6Oz+L6PscC/jT+cixwBscC3nks4Mx1eGvHAf7ym22J+U1cgVjJ+GQNsfIMYmXdjJX+ci+8tn6/zfVl+3ntrSNO+ubYRJw8gzjpnXGyPHvXl+1t6y+xUqq968tcfyVW+tP4RKw8g1jpnbGypueUlfH+heojPhIf/WlMIj6eQXz07fhoa66T6swZ5qu4P1lzxErGJ2uIlWcQK307Vkr+/Uxvbc4v7YxPP/207PfU+fn51XqvsbtMnTpV48eP17p169SxY0dPV8dliPeMsdYQ788g3ntnvC+v8n3W6j6XW5evH0vS008/rSlTpmjLli1q2bKlW/bB+bH9vPbWES99c4wiXp5BvPTOeFnTa8n+9P6lZs2aOdXeqCoqKqrK8Vd1xcTEKDAw0CVlxcXFyWKx1Lgci8WiuLg4F9RIio2NrdZ1mKCgIEVHR1drn5GRkQoJCanWtvXq1XOcyYrQ0NBqH69Utw8EBgZWe07/iIiIal+Hqm4/CwkJUWRkZLX26cq/OQAAAAAAAAAAAAAAAAAAAAAAACcssBh1bdZrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQJyUnJ+uPrHw9ND3Vqe2SEuK1aNehKumFBQUacmkLpe044DCvJA1oc77m/pSu4JAQu+UMaHO+PtqyT0HBwbY/S5sLVFxcZHVdSFiYPtqyT5KUm5WptNen6YevlivzxF+6qHVbXdWzr3oPvkOBQcGm85ituyOZJ/7SB9Oe109rvtGp43+qpLi4bF3ldrPVlpXTa1pm5TQz7WG2/R2x1a7W6uWqfVoruzxX9i17+zLzXdjb3uz37kwbm+3nZj+7I+u+XKypD94js9O7Hjt2TJ999pkWLlyoK664Qs8++6zpfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACekJKSol9//VUrV66slf1ZLBar83lYS7eV19664OBgFRVZn58lPDxcubm5pso3w2ydK6e5oo7OtFdNP6czEhMT1bx5c82YMaMsbceOHVqwYIHmzp2rPXv2KCgoSMXFxWV1Cg4O1vTp03XvvffWSh0BAAAAeJ+MjAyVlJR4uhoAAAA+LSQkRJGRkZ6uBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYlZaWpoEDB2rRrkNObZeUEG91m8KCAg25tIXSdhxwmFeSBrQ5X3N/SldwSIjdcga0OV8fbdmnoOBgm3VKbnOBioutv4MkJCxMH23ZJ0nKzcpU2uvT9MNXy5V54i9d1LqtrurZV70H36HAoGDTeczW3ZHME3/pg2nP66c13+jU8T9VUlxctq58u9nan2S9jV2Z5qo2c6YOkvn+ZCbNmfZzx3ditn+aNXXsKDWODlNaWppT2zmjQ4cOuu666zR16lS37cMT6vo7myQpPz9f0dHRKiwsNLWvoKAg5eTkKDQ01G45QUFBys3NVYiVPl/K7OfPyMjQM888o88++0x//vmnOnbsqFtvvVX33nuvgv9vrDeTx2zdHTGzL8l1/aRy+p9//qnHH39cy5Yt05EjR1Rcbtwpn8/Md+BMWa5oO3ufk77o2vZ0xTa1+Q41T1i/fr06d+6s//73v2rRooXLy3/yySf1ySefaPv27QoICHB5+Z5CbKyK8YjYWB6x0TdjY2V//fWXzj///ApjzldffaVnn31WmzZtksViUffu3TV+/HiNGjVKP//8c432522eeuoppaWlaffu3S4vm/hIfPSnMYn4eAbx0bN9MSEhQUuXLlXTpk1N5S/PXts2atRIW7ZsUYMGDSqkHz16VB07dtShQ87dR/B27oyP5bVs2VKDBg3SxIkT3bqf2kasrIrxiVhZHrHSd88li4qKdNFFF2np0qVq166dqW2+/vprjR07Vtu2bXN6f96qpKREbdq0UVJSkp577jmXl098JD7605hEfDyD+Oj5+NivXz/dfPPNuuuuuyqkp6SkqGnTpho3bpzV7cyOKdWJo77E3fGx1JYtW9SxY0dt27atzrUjsbIqxidiZXnESs/HSmfGhri4OO3fv19xcXEV0o8fP64LL7xQOTk5kvzruuvWrVvVoUMHbdmyRe3bt3dp2cRH+3ntrSM++uaYRHw8g/joW/clnYl7/vLcjjvjY3k8v0Oc9KexiTh5BnHSt84j27RpoxkzZqhbt24V0levXq377rtP27dvr1H5vornW51HfKyKMYn4WB7x0bfiY3nO3GvcunWrrr/+es2ePVs33HCD0/vydjzfWjPEyqoYn4iV5RErfTdWllf5uVWz9y7rgtp6fgewhuMnjp/8KWZx/HQGx0++dfxk9rjo3nvv1enTp/XWW29Ve1++guMnoO5jPmHfmU9Yqv12l6TxQ27WiKeeV5OE1tq5aYPenTxBLy1a5nT9zXyHNZ3H19m2L5WUEK/58+crOTnZqe3gHyZOnKg5c+Zo9+7dCgwM9HR1XIpz+qo4j+KcvjzO6b3/nP6HH37QyJEjtXXrVqvrnX02wNpck3XBww8/rBUrVtSp+UxqG9f3ORbwp/GXY4EzOBbw/mMBe2wdB/jTb7aZ36TmiJVVMT4RK8sjVtbNWOlP98Jr4/fbXF+2n9feOuKkb45NxMkziJPeHyftXV+2t60/xUqpdq4vc/2VWOlP4xOx8gxipffHSnucvQ/L+xecR3wkPvrTmER8PIP46Lvx0d5cJ9WZM8xXcX+y5oiVVTE+ESvLI1b6bqyUeKZXqr35pZ3VsGFDffjhh7ruuus8XZUK2rVrpz59+uill17ydFVcinhfFWMs8b484r33x/vK91lr+lxuXbx+LEnFxcVq2bKl7rzzTj311FNu2Qfnx/bz2ltHvPTNMYp4eQbx0vvjpS2O5s32l/cvrV69WldffbVatmyp//73vwoJCdHp06dNbVvaNvaEhIQoMjLSFVVVWFiYwsPDXVJWRERElf4HAAAAAAAAAAAAAAAAAAAAAAAAAHYsCPJ0DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqIsMw9CpU6dqbX/5+fnKy8urtf1lZGSopKSkVvZ1+vRp5eTk1Mq+JCkrK8vmi5FdraioSFlZWbWyL0nKyckx/aJfb1bbf1+1rbb7fG3Lzs526oXfvubkyZOeroLbFBYWKjs729PVAABIqlevnqer4PMiIyMVEhLi6Wr4lJiYGAUGBnq6GlZZLBbFxcV5uho2BQcHKyoqytPVsCk8PFxhYWGeroZN0dHRCgo6M3XiyZMnpaDwapV16q8/FXfWORXSTv55VDH1zzJdRkxcfZ3886jObXx+lXKi69U/U++4eso8eUL1z21gs6zoevX16tLVioqJtbvPiOgY3Tlugu4cN0GZJ0/o5/Vr9fl7s7Rz80Y98q9ZpvOYrbsjrz76gBpf1EyT5n6msxo2UmDg/76fpIR402W4u0wz7WG2/R2JiauvU8eP6Zz48yqkZ2dUvXbhqn064sq+Jf1vnC08fVrB5WKntc/nLLPfuzNtbLafm/3srnbuuedq5MiRGjlypNv2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAADewFXzspWUlCgjI8MlZdX2HJD21Obcl9XlTe1lT12f4xDeIS4uThaLxdPVqKK25tPav3+/IiMj3b6fUhaLRQUFBQoNDS1LO3HihMvKP/vss7Vz506vntPNXXV0d9uaERYWpuXLl6tPnz6S/hfrS2Pi+eefr/r16+v48eM6evSosrOzZbFYVFRUpFdeeUWLFi2SJBUUFJjaV03nYnYUq0tKSqrEoOLiYrfP3W0YhiSVzc9VWo/amjPcnpKSkrL6uZLFYqnRXHglJSVl7RMQEOCyMb38HGnlGYZhup+W1qm4uNjmuoCAANNlOdtOFovFVPkWi6VG7VZUVOR037DVvs4q//27S0lJic3v0FmBgYG1dtxhtr8UFxc7df5ir9yajBM17Ye2GIZR4/Mza/Uy+/dVHc6UW1JSUqvvsYB1+fn5XhGrYRvfEQAAAIDqCggIUGyse+ee91fe/J4UXxYREVHhXhFcIyQkpFbvqfoLb38nkSeFhoYqIiLC09WwKywsTOHh1XvHUG3xhTHRF961Vvn9Ut4oNjbWbfdtXMVbn08q5Qtjsi8cmwcFBSk6OtrT1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoE479defijvrnAppJ/88qpj6Z5kuIyauvk7+eVTnNj6/SjnR9eqX/Ts6rp4yT55Q/XMb2Cwrul59vbp0taJi7M+LEBEdozvHTdCd4yYo8+QJ/bx+rT5/b5Z2bt6oR/41y3Qes3V35NVHH1Dji5pp0tzPdFbDRgoM/N8cI0kJ8RXyxcTV16njx3RO/HkV0rMzTpneV3W5qs3syc44pajYivNuONuf7HGm/dzxnZjtn97kt99+U6tWrTxdDZera+9sOnr0qBo0qDg2Hj58WOecc46NLao6++yzdfjwYTVp0qRKOWeffXbZv8866ywdP35c8fHxssXs54+NjdW0adM0bdo0HT9+XF/9f/buPG6K4s4f+Ke7557nQpMI6JJEI6LGC1E3HqiJGDzWl4oB7wOIVyCgqHiuRuKxGCKaeGCA/UViIhgwy6p4riiKsl7RxCthV9RIFI3PMc/c092/P9geenp6ZvqamZ5nPu/Xixcw011dU1NT36rq6u5nnsHChQuxbt06/P73v7e8jdW812LlWE5YrW9nnXUWdtttN7zwwgvYaaedivebMt4vycp3YDUtr8pOw7robXmSM2PGjAGw9XmAu+66q+fpf/jhh9h11119f781uxgby7E9YmzUY2wcOrHR2H5/73vfw/e+972S19auXYvDDjuskdlqiDFjxuCjjz6CoiiexzHGR2cYH1uzTWJ83Ibxsbl1ceLEiXjqqadwwQUXWN7Hir322gtvvfUWJkyYUPL6W2+9hb333tvTY/lBPeOjRlEUfPTRR5xndYCxsjXbJ8bKbRgrW3cs+Yc//AE777wz9tprL8v7HHjggfjrX/9ax1w1niiKGD16NDZt2uR52oyPzjE+tmabxPi4DeNjc+vip59+isceewyrV6/G1KlTy97fddddceWVV1pOz4yTONpK6hkf9TZt2gRRFOtyvrPZGCvLsX1irNRjrGytseSYMWOQy+XKXhcEoeQ7b6d519122w2iKGLTpk3YZ599PE2b8dE5xsfWbJMYH7dhfGyt85J24l67rNupZ3zU4/odZxgnW7NtYpzchnGytcaRGzduxNixY8te33///bFx48a6HdfvuL7VPsbHcmyTGB/1GB9bKz7qWT3XuGLFCsyYMQM33ngjjjvuuIbkrdG4vtUdxspybJ8YK/UYK1s3VuoZ161aPXc5FDRq/Q6REftPzrH/1Joxi/2nbdh/aq3+k9V+0b333gtVVbFkyRLTbQFAVdW65bOR2H8iomp4P+HG3k9Y08hyB4Dvnnwq/mvl7zD1mnl4ZuXvMGHKmY7yb+U7tHMfXy/KnsgK7Z6UkiQ1Oyue45i+HMdRHNPrcUzv/zH9okWLcOKJJ5q+53RtwFBbKwYAe+yxB+67775mZ6NlcX7fOfYFWrP9ZV9gG/YF/N8XqKRaP6Cdrtnm/U3cY6wsx/aJsVKPsXJoxsp2OhfeiOu3Ob/sHONka7ZNjJPbME76P05Wm1+upp1iJVD/+WXOvzrHWNma7RNj5TaMlf6PlZU4OQ/L5y/Yw/joHONja7ZJjI/bMD62bnysdq+TdrpnGM9PusdYWY7tE2OlHmNl68ZKrundqlH3l7br008/bXYWTG3atAljxoxpdjY8x3hfjm0s470e473/473xPKvbdblDcf4YACRJwujRo/HBBx/U7RgcHzvHeNmabRTj5TaMl/6Pl5XUum92uzx/6aCDDoIoipg/fz723Xdf/OEPf8CvfvUrvP322wiHw8hmsxX33X///YfcvVGJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCoJNDsDRERERERERERERERERERERERERERERERERERERNTeent7Xe2vqir6+vpcpaEoCvr7+12lIcsyBgYGXKVRKBSQSCRcpZHP5zE4OOgqjVwuh2Qy6SqNbDaLVCrlKo1MJoN0Ou0qjXQ6jUwm4yqNSgYGBiDLcl3SNvLie7VjcHAQ+Xy+Icfy4rdjRyqVqvpgU6JmkCQJXV1dDTteLBYreeB2q+vu7oYois3ORl00um40WjQaRSQSaXY2PKc9VL2rqwuSJDU5N/UhiiK6u7ubnQ0iorbS6LHTUNXIsfxQos3zuJ3Hqxe/j/X9XO+8mFutp0pzYjvvvDOGj97TUZp/XLcWR5z4g5LXNjy1BvsccrjlNPY++DBsePIx/Mt5F5Sls/fBhxX/v+eBB+Ot9c+XHG/Te+/g9jkX4Y5HnwMA7HvoEXh7w3ocNOGYkrTefXUDlt78r7ht1RMAgEljRuK+ta9h++Ej0DVsOxxy7AnY55DxuPC7Bxb3sbKN1bzX8v4br+LSn9+LuG7MmnM5D+t1mlbKw2r517LPoYfjv59+HMedPb3k9bfWP1+2rVfHrMXLugUAPV/5Gr74+ycY8fVvFl9755WXLedHEATT161+73bK2Go9t/rZiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKi1JZNJ5HI5y9vbvRem3Xt4OrmPiN17Pti914Hde1Davdenk/ucenFvVI0X9zfVeHmfCy/v/enk/haqqlZMS1EUL7JF1FCCIDTtXpva76nS76rWfl7moRlpuTm2k329/Kxkj3a/zUYYPnw4PvroI+y6667F155/vvxeI0Dle5tUe+/73/8+1q5di5NOOqnk9XXr1mH27Nl47bXXHOTaW/XKo52yrZc///nP+PDDD7Fp0yZL22u/+40bN2Ljxo11zBkRERHR0FCtj0zV6cuO5eiNoVKOjfwcsixz/oOIiKjOOjo6mp0F2zo6Ohz3SZp1/jcajbbcs+UikYjlZ44piuKLc+uhUAiBQKDZ2bAlGAwiGAyavqeqqq11Po0SCAQq5tmvJEkqOYeeTqd9P9YQRRGhUKjZ2bAll8u1xLMKG72eQpIkV21TNpstrtFSVdXS+rlG1x1RFBv+3es/o1+fI6Xx4lnx9dYKz4Rr9PPMnfByrScR+UcwGPT92DkcDiMWizU7G1VFIhFEo9FmZ6Mqvz/nvpFrFoHGl0czng/e0dHR0PFtM9qTRj9TvhntUaN/G9FoFJFIpGHHa4ffBhEREREREREREREREREREREREREREREREREREdXfH9etxREn/qDktQ1PrcE+hxxuOY29Dz4MG558DP9y3gVl6ex98GHF/+954MF4a/3zJcfb9N47uH3ORbjj0ecAAPseegTe3rAeB004piStd1/dgKU3/ytuW/UEAGDSmJG4b+1r2H74CHQN2w6HHHsC9jlkPC787oHFfaxsYzXvtbz/xqu49Of3It7VVXwtZ/L8un0OPRz//fTjOO7s6SWvv7W+/s9D8arMqnlr/fM4+JgTSl6zW5+qsVN+9fhOrNZPPxk3bhwefvhhnH/++c3OiqeG2jObnnjiCZx99tklrz388MM4+uijLadx1FFHYdWqVbj00kvL0jnqqKOK/z/iiCPw9NNPlxzvzTffxGmnnYZ33nkHgPXPLwgCPv74Y+y00074yle+gilTpmDChAn4xje+UdzHyjZW816LlWNV27cSq/Vt/fr1ePDBB9HT01N8zezZoFa+A6tpeVV2GtZFb8uzEkEQfH/fy2ZatWoVJEnC/vvvX5f0x40bh3nz5uHzzz/HV7/61bocoxkYG8uxPWJs1GNsbK3YKAgC3n//fYwePbpkuyeeeAIHHXRQze0WL16MK664wrP8+cXKlSux//771+We9oyPjI/t1CYxPm7D+NhOcz8eAAAgAElEQVTcunjppZfi+OOPx5QpU0q+Q82qVatw11134ZlnnrGcJgCcdNJJWLZsGSZMmFDy+rJlyzBp0iRbabWCesZHjSiKGDt2LFatWoUzzjijbsdpBsbKcmyfGCv1GCtbayypd9ddd2HGjBkV93v33XcxZsyYktffeust7LDDDp7lzw+2bNmCdevW4YYbbvA8bcbHrRgf26dNYnzchvGxuXXx17/+NaZOnYpFixaZvr/HHnvg+eefx/jx4y2naVQtjg4F9YyPeuPGjYOqqvjDH/6AU089ta7HajTGynJsnxgr9RgrW2ssefzxx+Pxxx8vK/unnnoKBxxwQPH/7TTvumrVKqiqinHjxnmeNuPjVoyP7dMmMT5uw/jYWuclrca9dlq3U8/4qMf1O4yT7dQ2MU5uwzjZWuPI4cOH4/XXX8dhh5Ved/raa69h+PDhnh231XB9q32Mj+XYJjE+6jE+tlZ81Kt1rjGTyWD27NlYu3YtnnzySey7776e5ctvuL7VHcbKcmyfGCv1GCtbK1ZaXbdq9dzlUNCo9TtERuw/bcX+U/vELPaftmH/qbX6T1b7RYqiWEpvKGD/iYiq4f2EG3s/YU0jyx0ADj7mX7Dirp/jlItm4411z2L6dTc5yr+V79BqWl6VPZEVBxxwAK666ir8/e9/x4gRI5qdHU9xTF+O4yiO6fU4pvf3mP6ee+7BM888gzfffLPkdStrA6zea3Ko+P3vf48DD7T2jAcqx/n9rdgXaJ/2l32BbdgX8HdfwGw+3ko/oJ2u2eb9TdxjrCzH9omxUo+xcmjGynY6F96I67c5v7wV42T7tE2Mk9swTvo7TlaaX7ainWIlUP/5Zc6/bsVY2T7tE2PlNoyV/o6VTseUfP6CNxgft2J8bJ82ifFxG8bH1ouPmmr3Ommne4bx/KR7jJXl2D4xVuoxVrZerOSa3lKNur+0HcuXL8eoUaPwne98p9lZKXPAAQdg1apVmDp1arOz4inG+3JsYxnv9Rjv/R3vzc6z2nmmRLvMHwPA5s2bsX79esyfP79ux+D4eCvGy/Zpoxgvt2G89He8dDqX3K7PX9pxxx0xa9YszJo1C2+//TYeeugh/Pu//zs++ugjhEIh5HK5kn1VVa36myYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGkoCzc4AERERERERERERERERERERERERERERERERERGR12RZxsDAgK19crkcksmkrX3S6TQymYytfQYHB5HP523t09fXV/EBdrVkMhnThxna4eRzGqVSKWSzWVdpJJPJsofP2eWk/I0SiQQKhYKrNAYGBiDLctPT6O/vh6IortJwUz+pfmKxGMLhsKs04vE4QqGQqzQ6OjoQDAZdpdHZ2YlAwN1l0V1dXZAkyVUaldL1In9WSZKErq6uhhwL8KYOWCUIQsmDeOstGo0iEok07Hg9PT0Ne1hqOBxGLBZryLGA+v2+zASDQXR0dDTkWIA3bRgREREREREReW/y5Mn4JOHsvMWTy5dBCgSw76FHQFUUvPJfT+KR+xdj3m9WWT/+jDn417MnIdrRiQO+ezQEQcAr//UkVv+/RZi3bFs6p1w0C/NnTMN2XxuO3fbbH59+9CHuuvoSHHvm1OI2U2bOwa0XnQtFkfHtgw5BIBjE26+8hEXXz8UPr7u55Lh3XzsH5155PYaP+iaSiX48+uvF2Pvgw2xtYzXvtey23zgs+9k8nHzBj7Hd14bji79/gofuvt3y/o1Ks1Z52Cn/aqZo5RrvwLgjJ0CUJLy1/nmsXHRn+bYeHbNmnjyuW/scMh4P/PwWnHfVTxDv6sJ7r7+CJx6833J+ttthON7/42v41rf3xp83rMfd187Bomdftfy92yljO/XcymcnIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKixql1j8t8Po/BwcGK7+dyOXzxxRdV7z2qqmrN+9ZmMhkMDAxUvQ9qIpGomtdCoVC81202mzW9/2c6na6ZV+PnzeVyJcfN5/O27huby+VMP5csy6Z5lGXZVvqqqiKVSpW9Vu3+p+l02ta9TTOZjOv7qQ51oijaulemIAiWt9fK3u69+qykXygUSuqCKIq27+VYqS5ZvY+vlbooCEJJvvL5fHE/r+/TWygUWN+JLFJV1fW91Imouv7+fqRSqYbc/3jChAm4+uqrcfvtt6Onpwcvvvgi7r33XtNtd9xxR7z00ksYN24cnn32WUyfPh0fffRR1fduuOEGnHDCCZBlGUceeSRCoRCee+45XHjhhfjlL39Z989nRb3yaKds62FwcBCbN29u2PGIiIj8qFHPrrCbB6vzGsa5kVrp+Pm5Rn7OmxtD9XM1GsvRO4IgOHq2jdX20my7QCBQ8rrTtKzOz0qS1LDn9wBb81lpnt441+4VY5l6SZblsnl8J+cIrKhUNoIgQBRFy+koiuL6eYh2jueVRs+hevEd2j2XSET1JwgC4vF4U36bkUjE1XMjFUVxlG9Jkhr63EO9Zj1HLxgMOi7rSmtQrGpGWRcKBdv9Vq/6f9X6dtXIsoxcLgdFURw/6zkYDDZ0nkJRFGQyGYii2JS+kJ31MRpFUWw/79yMJEkNK2tVVZFIJADUnsfxihe/h/7+/rI22g/zaNV48WxxIj+LRCKIRqMNPWYjn/8MNP4Z0ADQ3d3d0DgYCoUQj8cbdjzAf5+xUCigUCh4eszOzk5P5wPz+XzVPAYCgYZ/j/F4vOQzZrNZz8tRT5Ik158xnU7bymM0GnU1xrRLkiTTudB6cjKONuuXWSEIQsPiRm9vb0OO45SiKOjv7292NqqSZbnmdTXN1IwyHBwcbGjdKhQKxbFbozR6DJPNZsuuL6q3WtelEfnBsGHDWjLteo7X6jmGqGfaXV1ddVsn0NnZWbe+aj3T7ujoqNt5jXqmHY/HEQqF6pJ2LBZDOBxuubSj0ain52tEUUR3d7dn6RERERERERERERERERERERERERERERERERFZ8eTyZZACAex76BFQFQWv/NeTeOT+xZj3m1WW05g8Yw7+9exJiHZ04oDvHg1BEPDKfz2J1f9vEeYt25bOKRfNwvwZ07Dd14Zjt/32x6cffYi7rr4Ex545tbjNlJlzcOtF50JRZHz7oEMQCAbx9isvYdH1c/HD624uOe7d187BuVdej+Gjvolkoh+P/nox9j74MFvbWM17LbvtNw7LfjYPJ1/wY2z3teH44u+f4KG7by/bbop2vHgHxh05AaIk4a31z2PlojstH8sNL8qsGu1z7PWdwxzXp2rslF89vhM79dMvbrzxRhx22GH46U9/imuvvbbZ2fHMUHtm06JFixAIBPD9738fiqJg9erVuOOOO/Dcc89ZTuP666/HkUceia6uLpxwwgkQBAGrV6/Gz3/+c6xdu7a43bXXXouTTjoJI0eOxHe+8x38z//8D6ZOnYqZM2cWt7Hz+adPn44FCxbgW9/6Fvr6+nDHHXfgqKOOsrWN1bxbYSU/ZqrVE6v17eCDD8YVV1yBq6++GiNHjsRHH32EefPmlW1n5TuwmpaXZQewLnpdnmTfyy+/jDlz5mDOnDnYbrvt6nKM6dOn4xe/+AVOO+00PPzww+js7KzLcRqNsbEc2yPr+THD2LgV62LzYuNpp52GhQsXYuzYsUin03jyySdx+eWX46GHHir7DPfddx923nlnfPjhh/j5z3+OPffcE3vvvXdd89dot912G/7jP/4DzzzzTF3SZ3xkfGy3NonxkfHRD3Vx1KhRuPnmm3HUUUfhuuuuw+GHH45oNIqPP/4Yy5cvxz333IM1a9ZYTk8zdepU3H333bjllltw0UUXAQDuuecevPnmm1i8eLHt9Pys3vFR76c//SkmTJiABQsWYM6cOXU/XqMwVpZj+2Q9P2YYK7diXWzuPOvbb7+Nv/71rzjppJMqbnP66afj9ttvx9ixY6GqKl544QXMnDlzSLXxiUQCp556KrbbbjtMmzatLsdgfGR8bLc2ifGR8dEPdXHp0qX4zW9+U/H96dOnY/HixRg/frzlNPWsxNFW1oj4qNlpp51w0UUXYcaMGRg9ejTGjh1b1+M1EmNlObZP1vNjhrFyK9bF5owlZ86ciSOOOAKiKGLixIkQBAFPPfUULr30Ujz44IPF7dpl3vW1117DzJkzMWPGDOy4446ep8/4uBXjY3u1SYyPjI9+qIt2z0vaiXvtsG6n3vFRj+t3GCfbqW2ymh8zjJNbsS42bxx5zjnn4M4778Shhx4KAMVzjfryaCdc3+oM42M5tknW82OG8XEr1kV/r9l59913MWXKFIwdOxavvfYa4vF48T1BEIbUs9a5vtU9xspybJ+s58cMY+VWrIvNi5VW1q1aPXfZ6hq5fofIDPtP7D+1W8xi/4n9J7/URTvapV9kFftPRFQL7yfc2PsJaxpZ7gAQicXx7YMOwcLLZ+CA7x6NaLzDUf6tfIdW0/Kq7ImsOOecc3DHHXfg1FNPxerVq9Hd3d3sLHmGY/pyHEdZz48Zjum3Yl2sz5g+k8ng008/xcsvv4zFixfj008/xVNPPVXSLttZG2D1XpOt7sYbb8STTz6JdevWNTsrLY3z++wLtFv7y74A+wJ+qYt2WO0HtMs127y/iTcYK8uxfbKeHzOMlVuxLvo7VraLRl2/zfnlrRgn26ttYpxknPRLXdSzMr9M5Ro1v8z5V8bKdmufGCsZK/1SF+2wM6bk8xe8wfjI+NhubRLjI+OjX+qiE7XuddIu9wzj+UlvMFaWY/tkPT9mGCu3Yl30/1iyHdb0NvL+0la9+eabOO+88zB79mx85zvfaXZ2ysybNw+HH344brrpJlxzzTXNzo5nGO/LsY21nh8zjPdbsS427zyrnXW57TB/DAB9fX2YMmUKRo4cibPPPrtux+H4eCvGy/ZqoxgvGS/9UhedsPKM3nZ//tKee+6JPffcE9dffz1efvllPPjgg/jtb3+LL774ApIkQZbltlvvTERERERERERERERERERERERERERERERERETtTVB5VRURERERERERERERERERERERERERERERERER/Z/e3l5L2+VyOSSTSUvbJpNJ5HK5ph1/cHAQ+Xze0rbpdBqZTMbStk7S1/T19dl6YJaiKOjv77d1jHw+j8HBQVv7ZDIZpNNpW/vY+X41AwMDkGXZ1j5W6waZ6+rqgiRJrtLo7u6GKIpNT6OnpweCILhKY9iwYa72FwQBPT09rtIQRbHkAb5OSJKErq4uV2kEAgF0dna6SiMYDKKjo8NVGqFQCPF43FUa4XAYsVjMVRqRSATRaNRVGtFoFJFIxFUasVgM4XDYVRpEREREREREREREQ9XkyZPxSSKDOQsX2dpv0piRuOeZDVgy71q8/cpLUBQFex7wzzhn7vXYaZddS7bTW/ne5rK0PvzLu1h220/xzqsbAAB7jDsIZ11+Lb4+eveS7d7/42u4f/6N+J+330L3dttj4mnn4qTzZ5Rs8/cPP8BvFtyMt15aB7lQwD99azROPn8mDppwTHGbP730Ah57YCnefXUD0slBbLfDCBx01ERMmXkZovEOy9vYyXs1/f/4Ar+efyP++MJaJAf6MfIbu+AHF8/GgksuLCkzfVnqy9HsdTdpmr1mtTyslL8VH298H/fPn4e3X3kZgiBgt/3GYepVP8Gs448o+/xeHNNKPfWqbgHAQO+XWHrTdXhz/fPIptPY658PwQ//9RZccOS4kuNX+s7XP/6fWPazm/DlZ3/HV0bsiHOvvAEHfPdoy9+73TK2Us+tfvZa1q9ZjQWXXGhrDQARERERERERERERERERERERERERERERERFRO3Jyb81KCoUCEomEJ2lls1mkUilP0kqlUshms56k5eR+p5X09/dDURRP0vLq/qCyLGNgYMD0PVVVK5ZjoVBAoVAoeS2fz5d8h7Xuk6ooSsWyzeVyyGazkGW5apmpqlrz+0mn0zXzIsty1evTVFVFoVBAPp+vmB9FUWpe46a/D6xZvlVVrZmG8fiqqpq+Vguvx2tfkiS5vi9ttbS1e+9Wqs927merKEpxe1EULd3XV9ve7LdRaXtBEMrSVlXV9N7NZvk3+5xauyEIgml5W/kNOok/+nSN7TQREZHfmMVV/Wv6fxvjqRZjtdf122r9He017W/tdVVVS7YJBAIQBKGk7yBJEgRBKPYpRFEsvi9JUslYRR+zM5lMcT9tPCXLsusxqiAIxfvpi6KIgYEB3HfffTjvvPNcpWvFF198gVmzZuGpp55CKpXCd7/7Xdx1110YNWoUgNL+x0MPPYS5c+fik08+wahRo7BgwQKccMIJNd/761//iquuugpPP/00CoUC9thjD1x11VU46aSTSspAz+6YRr+/tq/V15zkUb9vpdftlG09LF68GBdeeCG+/e1vo6OjA9FotPisAu3ZCdqzHHK5XPF5DN3d3RAEAeFwGNlsFoFAAIFAANFoFMFgEOFwGJIkYXBwsNiP1z93oL+/H9lstqy/m0wmi33wXC5XfD+bzSKZTJb85vL5vOlvS5ZlZDKZis+ISSaTKBQKUBSl5DdfKBSKv2v967Isl8wpaGN/rb+vp+1baY7BmLbG6til3bh9FoqmHec/apVdO5YJEbUOL9p/r2KI1TQrtatu86Gf56yUZrU2vdLxtfGKnt2+iN3PZuX8CVE9WamzVs6b6OchNE7Og2jnJbQ/lVQ6J6I/d6HPj34uRH8cM9U+r5aOdnz9HEit/SoJBAIV3zd+TkVRkM1mq+Zfm7fxSjab9aydqvW9asez+sxRK+nVUigUPFuLQaQXDAaLz6v0MtZHIhEEg0FH+1br18Tjcc/7ipIkIRaL1VzbYpc2x1aLoii2zglr83ZeyOVyxe/d7TNHzYiiaPocUm1u0CltLtOJam1pMBisyzqMUChkOpfqhiiKlspAlmXLzysHvF2LMjg4WOzzeB33NWa/BS/XL9rVrGeFO3kWOpGXvHgOtxkvnqttxu0zriudE9LOzXmtq6urLuehaj3D3Um7IgiC47pgtp5Zo/XXvKSdJ6zH885DoZBpX1h/7tQJu/1AVVUt9QPC4bBn8T+bzRbP/bp9Hr0Z7fy2Xl9fn+t0RVG0PH7JZDJIp9Ouj2lHX19fQ+dm2+EzNqPP6OU1KERuSZJUsy/gRL36hdo6KK/Vq78ZiUTqMs8SjUbrEl/j8ThCoZDn6XZ0dDieH6yms7Ozbv1ur+bc9Hp6euoyJzJs2DDP0/Tyt+bme8pkMshkMgC2tlednZ2e5KkSL6/RtarRczleXjts1cDAgOm1XPVQz75kPftw9SyjeqadSCTqdp2bl9eANzLtev6m65m2l9fv09DgZb/Fy76Vl/1VL/vUXo4ntGs+vKBdN+IV1gt7vOxTe1kvBEFAT0+PJ2kB9RvnEBEREREREREREREREREREREREREREVHjrFixAlOmTMHK9zbb2m/SmJG455kNWDLvWrz9yktQFAV7HvDPOGfu9dhpl11LttMzO86Hf3kXy277Kd55dQMAYI9xB+Gsy6/F10fvXrLd+398DffPvxH/8/Zb6N5ue0w87VycdP6Mkm3+/uEH+M2Cm/HWS+sgFwr4p2+Nxsnnz8RBE44pbvOnl17AYw8sxbuvbkA6OYjtdhiBg46aiCkzL0M03mF5Gzt5r6b/H1/g1/NvxB9fWIvkQD9GfmMX/ODi2VhwyYVlZfbxxvdx//x5ePuVlyEIAnbbbxymXvUTzDr+iJJt9eXuxWtelVm1493xyFosveV6vP/Gq1BVtWZ9svsZ7JRfPb4TwFr9tGrB7AuwY2cEK1assL2vHffeey9mzJiBs88+G7fffrun1yw1y1B5ZpOWxgcffICZM2fiueeeg6IoGD9+PBYsWIDdd9+9ZLtax/rTn/6EK664AuvWrQMAHHbYYZg/fz722muvku1eeuklXH755Xjttdfw1a9+FRdffDGuvPLKkm2sfP5nnnkGv/zlL7Fu3TokEgnsuOOOOPHEE/GTn/ykeD2VlW3s5L0aK8eq9KyqanXBan3bsmULLrvsMjzxxBPo6+vD6NGjcd1112HKlCllx6v1HdhJy4uy08qGddGb8rRyzV61Z10Y37e7XStSVRVLlizBj3/8Y0yYMAErVqyoy30FNX/84x9xzDHHYPjw4Vi2bBm+/e1v1+1YjcLYyPbIDGMjY6Nf6qLd2PjCCy9g0aJFePbZZ/HZZ5+hu7sbhxxyCK677jqMGzeuuN2aNWuwYMECvPTSS5AkCWPHjsXs2bNx4oknWs6b3w0MDOCyyy7DkiVLsHDhQsycObNux2J8ZHxslzaJ8ZHx0S91UfPOO+/gpptuwtNPP43+/n6MGDECEyZMwNy5c7HLLruUbGt1XPjpp59i9uzZWLNmDQDg2GOPxcKFC7HDDjvYzp8fNTI+6t1xxx249NJL8cMf/hC33XZb3e+t2QiMlWyfzDBWMlb6pS7aHUtqLr74YowYMQLXXXed6T7PP/88Fi1ahOeeew5btmzBV77yFey+++6YNWtWsb62uj/96U8466yzsGXLFqxZswb77LNP3Y7F+Mj42C5tEuMj46Mf6qK+fB5++OGyedDHH38cxxyzbe2KVn52zjHWiqOtrJHxUZNKpXDyySfjxRdfxD333IMzzzyz7sdsBMZKtk9mGCsZK/1SF52MJT/44APMmTOn+DnHjRuHefPm4fDDDy/ZbijPu6qqimXLluHiiy/G+PHjsXLlyro8qwtgfAQYH9upTWJ8ZHz0S13U2DkvaSXuDfV1O42Mj3pcv8M42S5tE+Mk46Rf6qKTceQDDzyAO++8E3/5y18AAKNHj8aPf/xjnHHGGTXTHirXfwBc3+oW4yPbJDOMj4yPfqmL9VqzE4/HkUqlbKXZari+1TuMlWyfzDBWMlb6pS7ajZV21q1aPXfZqpqxfofIDPtP7D+1S8xi/4n9J7/UxXqu6ap1nFafb2D/iah98H7CrXU/4WaUOwC8++oGXHvmSbh1xaPYde/9HOe/1ndoJy0vyl4zacxILF++HJMnT7a9L7WHP//5z5g4cSKGDRuGZcuWYd999212ljzBMT3HUWY4pueY3i910VhG4XAY22+/Pfbbbz9MmjQJp59+etl9g62uDbB6r8lW1tvbi9mzZ+OBBx7A3XffjfPPP7/ZWWp5nN9nX6Bd2l/2BdgX8EtdtDu/b2eN4FC+Zhvg/U28xFjJ9skMYyVjpV/qYj1jZa3jtPK58GZcv835ZcbJdmqbGCcZJ/1SF53ML5vtB9RuV4ZarASaM7/M+VfGynZpnxgrGSv9UhfrNabk8xe8xfjI+NgubRLjI+OjX+pive51Ali/Z1ir4vlJ7zBWsn0yw1jJWOmXulivseRQX9PbrPtL15JIJHDggQdihx12wNNPP41AINDsLJm69957MWPGDJx11lm4/fbb0dPT0+wsucZ4zzbWDOM9471f6qLT86xW1uW2w/wxALzxxhs488wzkUgksGbNGuy55551PR7Hx4yX7dRGMV4yXvqlLtZrLpnPXzInyzLWrl2L3/72t3j//fexbt06S98BEREREREREREREREREREREREREREREREREdEQ8JCgtvrdromIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiNqELMsYGBiouo2qqujr66uZVl9fX80Hpw0MDECW5arbDA4OIp/P1zxeOp1GJpOpuR0A9Pf3Q1GUmtsVCgUkEglLaaZSKWSzWUvbWikbAMjn8xgcHGyJ4yeTSeRyOUvbDkXBYBAdHR2WthUEwfYDjgOBQMnDzKwIh8OIxWK29onFYqYP/Kyms7PT9oOle3p6bD3ISxRFdHd32zqGne9EE4lEbD+4u6OjA8Fg0NY+3d3dEEXR8vZ+rjNERERERERERERERERD0eTJk/FJIoM5CxfZ2m/SmJFY+d7mOuWKiNrV+jWrseCSCy2t9SAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIu+5vd+i1XtAmrFyn9BqMpkM0um04/2t3hO0Ejef3c49Qc24/eyJRAKFQsHx/r29vY73dfvZ7dyj1Yybz271vrWV2LkXKvmLIAgIhUIAUPF3b/V1QRAgSRJUVS3+sZOWk/dahSAINe9pKopi1fu+CoJQ8X0tbeNxzO7lXC0d/f7V7gNdKa+yLBe/K1EUq35mfT5yuZzpd6y9XymdSvtVSkf7dyqVqrkPWae/x3G178P4nvF71b9fLR3t+7TaLrhpP1q97SGi9mHn3vFeaqV2UpKkknLS8q71fwRBqPh5jP0r/b6CIJQ9t0NV1ZrP8vCaJEkIhUIlnzEUCpXEaVEUEY1GIUlSyb7xeByiKJa8Hg6Hi/fxFwSh+O/Ozs6y+haNRk2fLRCLxRCLxcqeh6Ddu1+SpOLzFUKhEOLxeFkaZs8TEAQB0Wi0+IyPbDaLXC5X/PzZbBaZTKb4viAIxbFyOp1GNpstfgZtDK4fj2v/NnvN6r+tPlelGv3zF2r92862+n9ns1lIkgRFUZDL5SAIAvL5fLGODwwMFOvzwMAACoUC8vk8+vv7Icsy0uk0+vv7kclkkEwmsXnzZvT09OCDDz5AJBJx9fmpPWUyGey+++4YMWIExo8fX3yej/abzOVySCaTxTk4rW7q57XszmtKkoSurq6SZ4toz2Xp6uqCJEnFtkh7Loz2G9LaLu0ZK07SajXV5r0rlX2luepK88CpVApffvllxWPkcrmyOdDBwUHIsox8Pl/yXjabLXkmVKFQQKFQMJ3HTCQSZfnMZrPF1xRFgaIoKBQKZecdCoWC6WfJZDJl81q5XM51jHCq0pxQpXkXYz71fZ9W6gcCW3/rxj4QsG0+UxRF089k3E/rC1abxxNFsaTPaHxPe12W5ZIyNvt+CoUCZFmu2ldVFMXV+SA/076fWozfkRl9PTeWpX4+U/u/9prdOXMr29qZP6PW4XZc3oxxvfKZ79IAACAASURBVB/qmx/yQEOTV78pN+k43dfqORAr6VtJq9Y2ZvNp+m3N8uE01g2FGFnrPKzVz2Hl+1VVtWljC7JPm09ws3+teYRq6yqs7F+JNgYMhUKu5jJCoVBxbQoA2+OYYDBYsr+ZWuOjYDBo+/m1AIpzDk731wQCgZL9M5mM7XMJgUCg5jOIk8lkxfckSbL9DGNgaxmkUqmK42urjPvr5/KtqrUWBdg2V1Rpfydx2u3aukrqtebO7TpEGjqcPCPbCu38lFcqnStsZBqqqkKSJNvPRzcKh8O208jn8yV9u1Ao5Ek+an1H2rm/StzGfy0fbueUjf0IjZ32MxQKWYrjiqJUTNdqGmby+TxSqRSCwaCjWKynTyObzdZlLaR2js5rbq9vqGRgYKAuazTcXFNQiaIo6O/v9zxdt9cwVFKvOkatyYt4bUa/nsVL8Xi85jjSic7OTtdtuZnu7u6aYx279GsXvKCtjXDDafnJsoxcLgdJklz3b6PRqKU+TiqVqjj/1t3d7SoPZv29fD5v61q6jo4OV3UmEAigUCi4mmOMRCK2vs96xNZ6jdfrFbPdXm9aSb3mF7S1Wl6rVx/D7TWpldSrf+z22udK6tXvJn/xcv3hsGHDPEknHA4jFot5kpZXfSMv+i8aszXtToii6LovofFyjs6P9UBbd+uWl3OkXo0z3I4rvKqPZE09z7nUM+169Y3qlbYX1+BovOwPedkX9LIf7OUYwOvxj5djPy/nfr2sF17+djkHO7S4jfFu52Dd9nu8mE/UrqFyym0Zuu2vuZ2vdvsdatelueG2b+92POa2r+p2vOvlmISIiIiIiIiIiIiIiIiIiIiIiIiIiFrHihUrMGXKFKx8b7Ot/SaNGWl7HyLyzoLZF2DHzghWrFhR92M98sgjmDZtGiRJwq233orTTz+9LveQIfvs3LOZqJ5YF6lZXn31VcyZMwcvvvgi5syZg5tvvtmTey3UsmnTJpx66ql4/fXXcckll+CKK67A9ttvX/fjUm1sj8gvWBepmWRZxoMPPoi5c+cil8vhvvvuw4knnlj34zI++hfbJPIL1kVqpmbFR71Vq1bhggsuQDgcxvz58zFlypSGjGGpNrZP5Besi9RMX3zxBebPn4+FCxdi3LhxePDBBzFq1Ki6H5fx0b/YJpFfsC5SMzUrPmoKhQIuu+wy/OIXv8CRRx6Jn/3sZ9h3330bdnyqju0T+QXrIjXTG2+8gcsuuwxr167FrFmzMH/+/LqvLWV89De2SeQXrIvUTM2Ij3pcv+NfbJvIL1gXqZm4vpWM2CaRX7AuUjNxfStVw/aJ/IJ1kZqp2et3iMyw/+RfjFnkF6yL1EzsPxG1H95PuLWw3Otj0piRWL58OSZPntzsrJCP/e1vf8Npp52Gl19+GT/60Y9w9dVX42tf+1qzs0X/h+Mo8gvWRWq2fD6PZcuW4eqrr4YgCFi6dCmOOeaYZmdryOD8vn+x/SW/YF2kZmr2/D6v3/Y3tk/kF6yL1EzNvH6b88v+xraJ/IJ1kZqt2fPLnH/1L7ZP5Besi9RMfP4CGbFNIr9gXaRm4vlJqobtE/kF6yI1U7PvL12Jqqr4wQ9+gBdeeAGvv/46Ro4c2ewsVfXII49g+vTpEAQBt9xyC84880xflCOxjSX/YF0kP/jss89w880346677sIhhxyC3/3udw2LsRwf+xvbKPIL1kVqJr+Oj4mIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIfO4hQeXVgUREREREREREREREREREREREREREREREvpFIJFAoFKpuMzg4iHw+X3WbVCqFbDZbdZtMJoN0Ol11m2w2i1QqVXWbfD6PwcHBqtvIsoyBgYGq26iqir6+vqrbAEBfX1/NhyUNDAxAluWq23hVjul0GplMpuo2XpVjKxNFEd3d3Za2jUQiiEajlrbt6uqCJEk1t5MkCV1dXS1x/Gg0ikgkYmnb7u5uiKJYc7tAIIDOzk5LacZiMYTD4ZY4fk9PDwRBsLQtEREREREREREREREREQ0NkydPxieJDOYsXGRrv0ljRmLle5vrlCsialfr16zGgksurLmeiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIY+K/cvNLJyX0ijXC6HZDJpa59CoYBEImFrH0VR0N/fb2sfq/eVrMTtfRmdfAd6Vu5lWYmT8tJz8r3quf3s/f39UBTF0b5uP7uVe3ZSfYRCIcTjccf727l/pBmr97Q0Y+c+p2YqfXZZli21A/F4HMFgELIs17yXsFn6HR0dJffTrHbcVCpVcgxRFBGLxSoeu1AoIJPJmF7voqoqZFlGMBgsOXahUKiah1wuV/y3IAjFtKt9/nw+D1VVoShKSfuivWZGy4fxfVVVTY8jCEJxn0rpmTE7hp9Uu9eqVv68nslbkiRBkqSSctXX9UpEUSz5vqptr72nqioEQSgez7hPpd+ulifjNtW2r5UXO/vYTY+IaCizcl/0WvHc7G/jNoIglMUaYGu7q/WjBUFAIBAoxi2zNPXbaq9r6SqKUkxPv6/Wz9L/X5IkCIJQ7Ofp09bypSiK6efR76M/jqIoZWNZ7XjpdNrxGL3e9M8SMMbB7u7usv6vqqoIh8PF8ZO+jywIAqLRaMk+2vvBYLDYd9f31wVBKI5HNFq/WJIkBAIB5PP5svLTvj9NPp9HoVCAKIoQRRG5XM70fb1UKtWw2B8Oh8ueGREOh0vGcmbPlfDyNb+kZfWZGFbp5+C057bo53f080y9vb0ASudvtDk0/ZyjWTr6ffTPddE/K0Y/H6cdy42Ojo7i70Y/7zBs2DAApc8NCQaD6OjoALC1bsViMQCl8x1O09N/j5XS09PKp7e3tzhn3NfXh0wmg1Qqhf7+fmQyGSSTSQwMDCCTyWBwcBCJRALpdLr470wmg0QigcHBQWQymZrPCQK2PvMjEokgFouhu7sbkUgE8XgcXV1diEQi6OjoQGdnJyKRCDo7O1EoFDB//nz84Ac/wOLFi61/OUT/57zzzsODDz6Io48+GsOHD8ewYcPQ3d2Nnp4edHd3l/xb+7va826034/dv93s62Q+XmsXav1tZ1srafG5Pv5h9owzs3NDlc65mD2zzez5a2bHMTv/Vuk4ZueLBgcHkc1mS/qG2Wy25BynLMvI5/NlnyefzyOVSpWkmUqlyvqyjTxPFAgEEAgESl4LhUIQRbGkn24Ws419smAwWDJ/rfWtNfpxlUYb62Wz2eLxjGOrdDpd9tvV+vNuzgc2QiwWMz33IwgC4vG46XgiEAiUnG/SxqrA1u/G+H0BW+tcpXNUoigiHA6bnveQJKnku9WPnYLBoGmbWSgUKraloigiEAggl8uVnEvRjqUvi2w2W9xGG2Ob0b5n4/yxfuyeTqdNx9PAtnFqMpn07bjaLf0ch55+7sE4d2+se2bz7ZXSa0WV5pvMXtP+VCoj45yRfk5J/7rxGFp7Z5wXqpaPTCbj63N4jRIOhy3NA2hzTvr/10rXuL/+u9SnYRYH9dvov9NAIGDpfLBWJyrlU9tHS98YHyvtp6ULoNju6bc35qVW/9iYD6v07YpWrtXybEa/j/HvWiptZ2V/J+1dK7eRRBq353uqbWdnP2P8tDOO18dnjfHcUq1+j/GclBaDzM5PmZ0H0vbV2uJqMUzrD1caM+iPb0abg66k1v6yLJf12+3sD6DmGs9a36FxTEzNoZ/Pd0o7T+BUPB5HKBRyvL/btZ+CIKCnp8f0PX0fvpqOjg7TMXslxnFsOBy2/Px2I23taK3ftV4oFLK83jWXyxXndYxrPa0ey+z7Nc6TGcViMdvHCgQCjuaLotFo1WPlcrmyObtAIFB1rFCL23OBbq9T8FMabtfe+ykNWZYtnZOkxnO7zh9wH6/8lEalc/WtmEZnZ6etGNysNIzrkCqlYXc9TDqdLjln1dHR4XpNTWdnJ5LJpKu5yUp9BjvtbDwet9QX8CIWmXFy7aEVbq+Xq8TJNZlWJJNJy31MOxKJhK1rj6xycz2gGbd9Ni+uEXRzfSdQv7pMzri9/g8oXbPrlNtxvH59oVNu14EGAoGqa6iscNuv8sv36XY9lNt5FcB9f8oP36fZ/FCrxCvA2z6Rl/0Krz6rl30or75XL+cA3N4TQc+L9eeAt/c68KoeuL3vhp7ZWkMnvJhPosZwGyfc7u92bsptn8Ht/mbX9TRyf7f9T7f9Hbf7uz0X53Z/t30t/XVCzdifqBov+wdex3Wv+mWA+/khPa/6QYD5tRp2uS0nt31Nt+Xhti/vtt/t9jfgRb03u7bHDi/rNznjtq/hxRyZ2/lKt3ONbs9ZOu1vV1uvVI3T/pXTfqHT/rDTfrzT8nQ67nL6/XtxjpmIiIiIiIiIiIiIiIiIiIiIiIjIjRUrVmDKlClY+d5mW/tNGjPS9j5E5J0Fsy/Ajp0RrFixoiHH6+3txZVXXomlS5fi61//Oq644gqcccYZru8xQO5YeS4wUSOwLlIjqaqKZ599FvPnz8cTTzyBgw46CHfffTfGjh3b0HwoioJFixbhuuuuQzabxYUXXoiZM2di1KhRDc0HlWJ7RH7BukjNkEql8MADD2D+/Pn44IMPcO655+Lf/u3fsP322zcsD4yP/sQ2ifyCdZGawQ/xUe+LL77A3Llz8etf/xo777wz5s6di9NPP93VvdXIPbZP5Besi9QMH374Ie68804sWrQI0WgU8+bNw/nnn2/6LMR6YXz0J7ZJ5Besi9QMfoiPehs2bMCPfvQjvP766zj22GNxxRVXYPz48U3JC23D9on8gnWRGk1VVTz33HOYP38+Hn/8cYwbNw6//OUvceCBBzY0H4yP/sQ2ifyCdZEazS/xUcP1O/7Eton8gnWRmsEP63cYH/2JbRL5BesiNYMf4qMe1+/4E9sn8gvWRWoGv63fITJi/8mfGLPIL1gXqRnYfyJqX7yfcGthudfHpDEjsXz5ckyePLnZWSGfU1UVS5cuxTXXXINEIoFp06Zh1qxZ2GWXXZqdtbbHcRT5BesiNUsikcD999+P2267DZs3b8YPf/hD3HTTTejp6Wl21oYczu/7E9tf8gvWRWoGv83v8/ptf2L7RH7BukiN5qfrtzm/7F9sm8gvWBepWfw0v8z5V39i+0R+wbpIzeCH+VfGR39im0R+wbpIzeCH+KjH85P+xPaJ/IJ1kRrNT+cnK1mwYAHmzp2Lxx9/HEcddVSzs2NJb28vrrnmGixevBg77rgjLr/8cpx11lno7OxsdtbaGttY8gvWRWqmjRs34o477sCSJUvQ1dWFW265Beeeey4EQWh4Xjg+9ie2UeQXrIvUaK0wPiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8rmHBJVXBxIRERERERERERERERERERERERERERENGel0GplMpinv89jO0h4YGIAsyxXfb1WRSATRaNQ32/gxT624jdXturu7m/ZAeiIiIiIiIiIiIiIiIiIiGtomT56MTxIZzFm4yPI+k8aMLP575Xub65EtImpT69esxoJLLgRv70pEREREREREREREREREREREREREVKrWffi4T/OPxX2c7ZNKpZDNZm3tQ6Ws3vuwHvs389jN3t/NvoVCAYFAAJFIxPL2+Xy+5LVwOFxxf1mWa/4Ww+EwwuEwAEBVVaRSKUt5AYBQKIRcLmd5ewBIJpNQFAUAEAwGEQwGq26fTqdRKBRM3wsEAmX7ZzIZy21JIBCAoii2PnOhUMDg4CACgYCl+4MqioL+/n7L6auqin/84x9lr8uybHqNhSzLSCaTJffgVVXVdFut3DOZTEmZmm2rfy2fz1f8Dsg6QRAsvaeVvSAIxddVVS3ZxmpalfY3+85r1WfjPrXSq3ZNUKX37L7uZDteq0RE1BpqxSVRFIuxyCwuiqIISZKK7xu3CQaDJa9p6Wl/S5JUFlO19CRJgiRJCAQCALb2KQVBKOmvBQIBxGIxSJIEWZaL/TBNKBRCOBwui0ta2vl8HqIoFvuc+n5vPp8vjgnC4XCxrBRFMe2zhcNh5PN50357NptFPp837ZNns9liv1oQhOLnrdTfFkWxZB+9dDqNbDZr+l319vaWveYXlcZ61caAXu8TiURKvjtVVZHL5YrjQFmWS8aI+roPALlcrjhWCAaDUBSlpD6mUqmS+jU4OFiSB2OdyuVyyGazxbqqKErZPsbxlVZntN9XLpcr2UZVVVtjJqckSUJXV1fJaz09PSX1Mh6PIxQKFf8fCoUQj8eL/xcEAT09PSVpdHV1lZR5NBotGaMHAgF0dnZWPW5HR0fJ7zAcDiMWixX/L4oiuru7bR0XADo7O4u/3aGor6+v+JtIJpMAgEQigUKhgEKhgEQiAWDrPEQul4Oqqujr6wOwtV6m02kAQH9/PxRFMU1HlmUMDAwAKJ271Nous3ScCAaD6OjoALCtPui/d/33O2zYsLJ99HUmFosV53n0dUtfZ7Q09Mewkl69pdNp9Pb2FstV/2+z16z8+x//+EfNuSutHY5EIhg2bFjx32av2fm38Xdq1ZNPPoljjz0Wd911Fy644AKnxUlt6Be/+AVmz56Nc845BwMDA+jv70dvby/6+/vR19eH/v7+srllYGtb0NPTU/zT3d1d/LvSv3t6ejBs2LDi617HG6391bfdWruvPY9scHAQ+Xy+2M5rbUU2m0UqlUI+n8fg4GDVtLS2W2v3tbTs0H7rWtzV+hNam6C1qVo7q/VJtH6F8W+tbdb+1rbX/jbrWxDZZXYeV/tdaPR9I432W9Ho+0oas/O9xnGf9jvVMz5rUN+fa0Ta9aSN3/Tl29HRUTJ/HwwGS8YiwWCwOOZTFAWSJJWMGwVBQCgUKvlcWv9N6w9HIpGS+RVtey0WhEKhkveN40X93Id2Xknf3guCgEKhUKxL+rkDwPmzKSu956SNbrRwOFxx7K+9pyhKSV0wO8+rbaPNH5kJBAKm8Ve/jyzLJb9ZYz3TjpXL5Uzf0xi/e30egsEgcrlc2XdjzJ9+7kBftzSpVAq5XM60/6yqKvL5vGm90Jel/hy0qqolc3KKopTMjxnPu2r/TqfTZfN12v+NaZI1ZnOz+teN88D6OqDfRhvb6s+javNgWn3SttfmflVVLbahZvVOO14oFCrO72qMvwetzQwGg8V2Vp9GOBwuq7+hUKhkfYd2HLPfmjYfbeyv67fVjp/JZCq2ocZ5bztrt/ywrdbHb1dePu+20nbGOARUX3OkUVW16tomWZaLcccYv/L5fNkxQ6FQ2W9Bn4Z2vkOSpJprigAUt9H6gZXaa2N8yufzJdtpx9Z+z2bPwtbHPON8vPHYiqIgm81CVdWa5720dk1RFGQymZL4YzwHoNHWBhnPD2mv6cvduKao0hok/XGN71dbN1RpjVKluGonHS+3J/KTamu/6rW/vm9WaX+tH2XG2JaZ9ec0ZmmYnYM327/a8Y35FkWxLA2tHbSyf6U0zNo8s+0qfQ6zWFStvIxpa3HRuH+1713/+bTzZ3b21943W6NsZX8tDltd1whsW69A7hjPPVvhdN07jzV0j6X9HrXzG3Z1d3cjm83amr8LhUJlY4xqY15NZ2dn1c/l9FozpsE0Wi0NP6+5aydO22gn+zXyWE73Yx692a8VjmVc72iX2/N+dq/TM+NFW2w8x26X2Tl5u4zn8O3y4ty52+9Tv57HKf06TqfcrP8E/PF9mq3hsIvX+PuL22vmARTXoTllXEvvhNv17GbXANjlxVpobe21U838Po3XSFjlZB7D6fpGs2shrHCyVtvs2oyhyIv+jsarMajZ2j4n3MZdt/tr65Obtb/bPpzbPoPb/d325932H73of7r9TXBep7ncxgE3+zuNk077ZMbrE61yGped9rmczjM47Wc67VM56RuZXYtqhdN65rSO6a8pJGp3bue63PbD3fZV3fYVvegruZ03dTtH5nZ+y+1co9v+vpv+ttP663T9tvFaLavczsVSKafXsTvp2wDO5sic9m2czgs67ds47Xc7nfdz2u92OtfntN/ttI457Xc7qWNezGMTERERERERERERERERERERERGwYsUKTJkyBSvf22x5n0ljRhb/bWc/IvLOgtkXYMfOCFasWNHQ4/7v//4vbr31Vtx///0Ih8M47bTTMHXqVBx44IENzQfVfqY0UaOwLlKjbN68Gffffz+WLFmCjRs3Yvz48bj66qvx/e9/v6n5GhwcxKJFi7BgwQJ89tlnOProozFt2jQcf/zxjq4fIOfYHpFfsC5So/33f/83li5dit/97nfIZrM4++yzMXfuXOyyyy5NyxPjo3+wTSK/YF2kRvNjfNTbuHEjbr31VixbtgzRaBSnn346zjvvPBxwwAHNzlrbYftEfsG6SI2UyWSwevVqLFmyBE8//TRGjBiBOXPm4Pzzz2/qfTwYH/2DbRL5BesiNZJf46NGVVWsWbMGN910E9avX4/ddtsN06ZNw5lnnokRI0Y0O3tth+0T+QXrIjXS5s2bsWzZMixduhR/+ctfcOihh+Lqq6/GMccc07Q8MT76C9sk8gvWRWokP8ZHPa7f8Q+2TeQXrIvUaH5cv8P46B9sk8gvWBep0fwYH/W4fsc/2D6RX7AuUiP5ff0OkRn2n/yDMYv8gnWRGon9JyICeD/hVsJyr59JY0Zi+fLlmDx5crOzQi0inU5j8eLF+NnPfoaPP/4YRx55JKZOnYqTTjoJsVis2dlrOxxHkV+wLlKjqaqKF198EUuXLsWKFSugKAqmTp2Kyy+/HF//+tebnb0hj/P7/sH2l/yCdZEaye/z+7x+21/YPpFfsC5SI/n5+m3OL/sL2ybyC9ZFajS/zy9z/tU/2D6RX7AuUiP5df6V8dE/2CaRX7AuUiP5NT5qeH7SX9g+kV+wLlIj+fn8pN7LL7+Mww8/HPPmzcMVV1zR7OzYtmnTJtx2221YunQpAoEAJk+ejKlTp+Lggw8u+c1T/bGNJb9gXaRmSCaTWLVqFZYuXYrnnnsOo0aNwuWXX46pU6ciGo02NW8cH/sL2yjyC9ZFaqRWGR8TEREREREREREREREREREREREREREREREREbWAhwSVVwYSERERERERERERERERERERERERERGRTiaTQTqdNn0vkUigUCiYvtfb22v6ej6fx+DgoOl7qVQK2WzW9L3+/n4oilL2uizLGBgYMN2nWt6r7QcA2WwWqVSq4vuDg4PI5/MV3+/r66v44JZax66WbyvH9rOenp6KD4KUJAldXV0V9w2Hw4jFYhXf7+joQDAYrMuxI5FI1QeGuTl2IBBAZ2en42MDQCgUqvnQ71rHAQBRFNHd3V11GwAYNmxYzW2IiIiIiIiIiIiIiIiIiIiIGmHy5Mn4JJHBnIWLmp2VIWnSmJFV31/53uYG5cQfmlEe/A5ay/o1q7Hgkgsrrh8kIiIiIiIiIiIiIiIiIiIiIiKi9jAwMABZli1tW+2efkZ270NX6752Zmrdh89MtXsMVlLrnnxmVFVFX1+frX2A6vcGrMTOd6hxcp/AZDKJXC5na590Oo1MJmNrn0Z9r7SV1fv6GTm5z1+1ex1W0tXVBUmSbO1T656LZmKxGMLhsK19rNx/0cjK/RiNgsEgOjo6bO1T676VZgRBQE9Pj619AHffayaTqXhvVyNJkiy1dZlMptjuRKPRqnXBThtlddt2TrPZx692r2DaSpIkiKJY8X1jH0QUxbLft6qqFfsqqqpCEITiPvrtavVvzN6vto/d7YmIaOiz2ie123fVsxJrGI9qE0WxrE8iCELxNe1vQRBM+/PBYLA4TtTvo20rimLxfW2cJ0lS8bsPBAJl4z9RFBEOhyHLMlRVLb4fDochiiIKhUJxPBIIBErGW4VCAYqilKQZiURQKBRKjqsJBAIIBoMl4xtBEBAOh5HNZpHP5xEIBBAIBBAKhYqfUT9+kiSp+Hn1YyD95wkGgxX70tX62F7u4+fnVFQb01d6rx330c+JqqqKfD6PSCQCYGvdTyaTJfvpn9GSTqeRzWYRCoUQDAbL6oNxTlM/L6ooCvr7+4vvFQoFJBKJ4v+N84fGOmicx6x2LK/F43GEQqHi/zs7OxEIBIr/N851RaPRYpkC5vNAxnk449yX8dkoZvNC3d3dJW2vcS7MeFyzeSLjZ3EyN0bm9HVY+7fZa7Xe9yodt3MsWt3Q1xGzf7t5zc4+xrrrd/rvpre315N/f/nll5a+00gkgmHDhhXL0It/O5nj94KiKNiyZQs+//xzfPbZZ/jss8/w+eefY8uWLfj000/x4osvYuPGjVi8eDHOO++8hufPL2qNjzi+2eZXv/oVLr74Ytxwww245pprKm5n/A3X+mPc9rPPPjN97p3Zb6zWH/22w4cPrzo33GhaOWn9Ou1cr3ZeXt8f1J4tqD0TUFuzoPX5KqWl9SG1NO2e89een6b1k7S/tXN92t9aX0z72xiLtL+Nr+n3CYfDZf1IoqHGOE4zW1Njtm7I+DxQs7UhxvGmWdrG4xvHkcZxpvE4xjbE7BjGsaaTtTx2Gc/VG/texvGjcSxoHNcZ1zNobWGhUEChUIAoimXjzVgsVrKWrLOzE4IgIJfLIZ/PIxaLlY0lFUUpfh+hUKik/TOWmSRJxXGzl/NWjUzP6bH8PLem8XKuysp7kUikrEy01zX5fL7YboTD4ZL3ABTrXzgcNl0nFAqFoChKsd7r09XmZY1thKqqkGW5WNdlWS72QxRFKTnHrigKstlscYwmiiLy+XzJttpn1PKh/8z67bT3tbRVVTX9v/6ze9nHt3K+RRAER2sFWpW2xkK/bkKj/V9rl/XnRTSSJJXVS/12wWAQoVCobJytnXeJRqMl50+M2/X09JS0yZIkQZKkYv3W2mzjPEooFCr2Yyut8Y3FYmXndPTzx1p8MFOrLgWDwZJ5aePa0nA4XJbnfD5fzGs0Gq14DKtzYFbbZKvxv9Iz1PWsjmGsrp21k1JKPwAAIABJREFUukbb6jphO+vJW53VNZ9W58ytjv+szqtZWctrdZ2w1bWqVj+rvv+Zz+cr/o46OjrKfse5XA7JZLJiX9OsniaTSaTT6ZJzJpWOq/Vvc7lcWczXb6+dd9XO4+r7CFqfFyhdl6d/XTuWludKedH6MFq/IZvNlrQnWuyXZdn0t2fsu+g/T7NjrVlcNJunshMn9K+ZzaVVU239YyVe96OGAjdrb+qF39HQ4qSO6fdxsr+xbRJF0Va90u+vrae2My9fqb2r9Vm0dtBszbcxX/r8ma0Zr5Qv7b1q/b9K+1ttQ437G2NmtXLQ3tPGyXYIgmD7mjcqZ1y3YpWTa5F4rMYfy+51cHauN7Rz/Z+dfNi9Ps7JuhIn10IbObnu1q9puFlr5GQu3Om1206uWwacnfNxck064Pz7MJ5Ts8K4LtMqp993PddtthMn10EDzmKGk+uaAWfXdzu9ttlpDHXS9ju9Ft/pWlsn6+6087t2tUK94rqabaycY6jGi36Mk7ij58V9QdyeTzder+CEF/0ot9+n0/6Nntv1LU77FHpO7mOj18zv04vPT1s5jetO+h6As/vlOI1jTmOt8TogK5zcZwZg+ZtpVPk7/VxUP27Hr277Sm73dxvb3e7vdj2Jm36e07w7LXMnfTmn81pO55qc9lW0NRt2edE/pW2cxmencxFOY6bTMbvTaz6dXqvoZB4DcNZvcTKPZPf7dtLvsPtZ7H5HduuQk3sxElHjOZ0z4X7cr977NTqPvMepe3b7qdye2zdqe+N9n4iIiIiIiIiIiIiIiIiIiIjqZcWKFZgyZQpWvre52VkZkiaNGVn1fZY7ObVg9gXYsTOCFStWNOX4n3/+OZYtW4YlS5bgnXfewTe/+U2ccsopmDRpEg488EBf3heylfCZTd5ieTrHsvMWy9O+jz/+GCtXrsTKlSuxfv16dHd348wzz8T06dOx9957Nzt7JfL5PP7zP/8TS5YswRNPPIFYLIbjjz8ep5xyCiZOnOjoukzahr8fb7E8nWPZeYvl6YyqqtiwYUMxRn7wwQfYY489MG3aNJx11ln46le/2uwsFjE+1hd/Q95ieTrHsvMWy9OZVoqPelu2bCnOs7777rvYeeedMWnSJJxyyik44IADOM/qEn9P3mJ5Osey8xbL05lUKoXHHnsMK1euxKOPPopUKoWJEydi+vTpOO644xzdv7VeGB/ri78hb7E8nWPZeYvl6UwrxUe9N954A0uWLMEDDzyAgYEBHHrooZg0aRJOPvlk7LTTTs3OXsvj78lbLE/nWHbeYnk68/HHH2PVqlX4/e9/X7JuZ9q0adhnn32anb0SjI/1xd+Qt1iezrHsvMXydKaV4qOG63fqi78lb7E8nWPZeYvl6Uwrrd9hfKwv/oa8xfJ0jmXnLZanM60UH/W4fqe++HvyFsvTOZadt1iezrTq+h0iI/af6ottrLdYns6x7LzF8nSG/Sei9pZIJNDb24ve3l58+eWX6O3txZ/+9CfccMMNvK9tnfB+wq1h0piRWL58OSZPntzsrFCLkWUZjz32GJYuXYpHH30UwWAQxxxzDCZNmoTjjjsOXV1dzc5iy2O/31ssT+dYdt5ieTonyzJeeOEFrFy5Eg8//DD+9re/Yb/99sPUqVNxxhlnYNiwYc3OYtvh/H59sb3wFsvTOZadt1iezrTq/D6v364v/p68xfJ0jmXnLZanM612/Tbnl+uPvyVvsTydY9l5i+XpXCvOL3P+tb74e/IWy9M5lp23WJ7OtNL8K+NjffE35C2Wp3MsO2+xPJ1ppfiox/OT9cXfk7dYns6x7LzF8nSm1c5PbtmyBWPHjsV+++2H1atXt/T48csvv8RvfvMbLF26FG+++Sb+6Z/+CSeffDImTZqEgw8+GJIkNTuLLY1tgrdYns6x7LzF8nRnYGAAjzzyCFauXIk1a9agUCjg+OOPx7Rp0zBx4kRfxh6Oj+uLvylvsTydY9l5i+XpTKuNj4mIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIWsRDgsor24iIiIiIiIiIiIiIiIiIiIiIiIiIqIlkWcbAwIDpe5lMBul02vS9RCKBQqFQ9rqqqujr6zPdJ5fLIZlMmr6XTCaRy+VM3+vv74eiKL7NeyqVQjab9SzvfhGLxRAOh03f6+7uhiiKZa9LkoSurq6KaVbaDwBEUUR3d3fFfUOhEOLxeMX34/E4QqFQXY4dDocRi8XqcuxaZeb22EREREREREREREREREREREREXpo8eTI+SWQwZ+GiZmeFiAjr16zGgksuBG/vSkRERERERERERERERERERETUfOl0GplMhtty27puW+2+hbRVJBJBNBqt+z6NPBb38fc+jTxWV1cXJEkCUPl+n0bV7idqVOl+pUaFQgGJRMJSmlbbrWr3RDWy02729fVZWmubzWaRSqUspTkwMABZlmtuZ6ecBgcHkc/nq24jyzIURbF8P9dq94sFUFIufr9HbD0JgoBAIFDxfX05iaIIQRCqpqdtX+k+rLVUq6/asVVVLf6pta1++1rpm+XDzlp1rmsnonZmFh/aqV0URdFS7BNFsdifrUSSJAiCUCw/QRDK4pqiKGXH1LZTFKWkn6zfTlVVFAqFsjS1/VVVNe3nadvmcrmKfQFZli31pf0mEokAMK+vkiQV+0nGsYeqqsXvSisTRVFKvjdRFIvlqW2j9Wn1352xHyzLsqX+thcEQSgbl4VCobLnExifDyBJEsLhcFl9DgaDkCSpWDbaMeLxOPL5fLF8AoEA4vE4JElCLpcreT0UCiEQCJSUi/4+/el0GqIoFvcHtn4fqVQKkiSV3LNfVVUMDg4Wv2c9LR097TszjrdCoVDVMVulMZrX+/iBflyuFwwG0dHRYWufas+e8PM+lZ470ah9vGZ8bop+fG4c1+vnTfL5PAYHB4vvGeu0cZxvnEvo7e0t/ltRFPT39xf/bzyucc7C7rG8FI1G/z97dxYjx3WeD/+p3teZaVIUNUNJlGiJpExySEX0wuVvxxEM0TEcOJZB5SYXBhLYSQDHhi4SBAEcJEiQCwswcpHAyIIguSJtJo430Vksx9YMY0uyxBFJkZRMSpY8I5KieqZ7eq3qqu+C3ymfqq7lVLNnepnnBwymu+pUdfVSdbb3nHJcU9z3CikWi4469tTUlON6ODU1Za9LJBIoFov2c/fvwd12djuv5b4nSthr0XAT54B8LkRd1s/9qLY/epF/e+Kx17Kw9f3aT9B9msZVo9FAuVy2v+PbfSyeh8lkMiiVSvZ30Y/H7uvisGo0Grhx4waWlpZw48YN+/H169dx48YNvP322/bjGzduOOoiyWQSW7ZswZYtWzA9PY0tW7ag3W7jxIkT+KM/+iP89V//9QDfGQ27P//zP8eXvvSldfutyNcF95/7uuH+u3nzpm/fmjjv/f7ka4P774477hir+7y58+i1/h+1nO3Oc/v5X/6us9lsVzmdiNaOuw7u7pN33z/WHa/hrvO72wQAZ5sB0B0b4o7rcMdkuNsN3O0K7jYNd9vIerTPuevp7no84KznA862Ivf27uug3OY1qLRe1uI+x3510vW8z7H7NyXr932Og449KO7GfV4Nm6D79RYKBSSTSc914jyR+2dEH0w+n4dpmnb5RfSfpdNpJJNJu78GuPWZx2Ixe7n4DXQ6HViWZZchdV239yf628RjuU1VHEu73baXW5YFXdftfTebTaW4NxXxeNz+jBKJhH2exmIxu54sf4aapiEej9vHGY/H7T5M0Ucl3ptYZlmW3fdlmiZarZZ9TRJ9jPLvT/Q5uvvJ2u12V5kyKLZrLfj1k8r9emKZ23r13/VbMplELpfzfN9A8L3LAf++FLEPdx7mfm2//iMgvG066BoAdOeXsn7eK9zrOj8xMdHVjy/SxWIxR/u/zDAMtNvtwHwzk8nY/Z9hwmIkBdXYWJW4XNXykmr8qGqMr2rcrEosKqDen6SSjwbl3+Mo7NwUVPs7S6VS4Hr5WiPntW7ufld37EU6nUY6nYau612/c8Mw0Ol0kMlk7Gtep9Pp+i2ZpumIhxDp5PMwFoshlUp5nsONRgOWZTny6Xq93nU8zWbTzn+FVqvVdTyGYXRdA3Rd9y0zrrVUKtV1XU8kEl3XvHg83vV9aZqGQqHQda3yykfEtvLnIX937m1FeU3EpMgymUxXDI9XLIy7/yGTyaDRaNjHIL5393ZiX1Ha1lT73rzq1H5Ur8ni9+z3G3LHbjcaDUd9Lei46/X6SMaW9ZOmaV1xTTJ3zH5Yv5ccsx+LxZR+N+5YQnkb93PVcQPiuhYW2y/vVybqdF7bh72+fAyqr+8X6yrXLXtxO9urHjsNt7Dfa6/rVc6D293WnU78JlWOWU4jl2lU32+vv3+/fNXvdYPKkRtRMplU7luLxWJdZbKgcn6hUHC0TwWlTafTgcch1ztisRgmJyeVjhkIbs9wixI7F9be4BYlDjRKn6c79rCfxxElfirqcQS15YyzKOObZaptHLJe+7mijC2WqbY5yaLUZWRRxlTLVMehy6KMi5apttW59RKDGdQ/FaSXeTrW+3dF3cLaz7yEtYH76SUOM2o+LfQavx4lnxfC+ivc3HH7YaLkcWt9LFF+L8N0LDR+es27e9luPV+r1+1G4Rh73Y7H2K2XMijdErV8sB5zXTH9eKfvZZuN2r5B4XrNN3ptT+il7QjorT0H6D1/66Xdo9e2iF7bnXptC+q1fabXNpOgGOIgvf7GemlHYjkoXNR+BiB63hO1fSfqmKyg+TG89NJ2FPU9q8azCVHfc9Q2lF7ec9S5RaK+56hlnqjvmYhGX69lm177Qnst2/Ra7o46PjpquSZq+qjl5CjjwqKWp6OWo6OmjxpnH7V83utvd6MIG/PjFrUcE7V8GzV91LiUqGWYqGXbqH2wUdNHLbNFLddGiQlSPZYov7GofY1ERERERERERERERERERDScTp48iSeeeAKnLi4O+lCIKIKnvvBZbCtmcPLkyUEfCp5//nl8/etfx6lTp/Daa6/hrrvuwrFjx3Ds2DF89KMfxaZNmwZ9iERENCJ0Xcfc3ByefvppnD59GgsLC5iamsInPvEJPP7443jsscdG4l5Wi4uL+Ld/+zecOnUKP/rRj5BMJvHhD3/Yzh9379496EMkIqIRc/PmTfznf/4nTp8+je9973u4du0aHnjgAXz605/G448/joMHDw76EEMxfyQion4bh/xR9txzz+HUqVP4+te/jp/97Ge466678Nhjj9ntrJs3bx70IRIR0Yh55ZVXcPr0aZw+fRo//OEPoes6PvShD+Hxxx/Hpz71KUxPTw/6EEMxfyQion4bh/xRaDQaOH36NE6dOoVvf/vbqFQqmJ2dtdtcjxw5EmluQyIiona7jbm5OTuvXFhYwOTkpB23c+zYsaGP22H+SERE/TYO+aOM8TtERNRv4xC/w/yRiIj6bRzyRxnjd4iIqN/GKX6HyAvLT0RE1G8sPxGNl1arhXfffRflchnlcjn0sbxM1/Wu/R09ehTPPvss5xOmDe3x3TM4ceIEjh8/PuhDoRF2/fp1fOMb38CpU6fwzDPPQNM0HDlyxK7Tz87OQtO0QR8mERGNoLffftuu1//Xf/0X3n33XezZswePP/44Pv3pT2Pfvn2DPkT6/7F9n4iI+m2c2vc5fpuIiPptnMZvs32ZiIjWyji1L7P9lYiI+m0c2l+ZPxIRUb+NQ/4osH+SiIj6bZT7JzudDh577DFcvXoVzz//PEql0qAPqW/Onj2LU6dO4dSpU7hw4QI2b96Mj370ozh27Bgee+wx3HXXXYM+RCIiGkGWZeHs2bP2XKBzc3MAgF/7tV/D448/jk9+8pPYsmXLgI9SDevHRETUb6NcPyYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGiFf0yzLsgZ9FEREREREREREREREREREREREREREw6pSqaDT6TiWWZaF5eXlrrS6rmN1dbVreaPRQLPZ7FperVZhGEbX8nK53LXMMAxUq9Wu5c1mE41Go2t5rVZDu93uWr6ysgLTNB3LTNPEyspKV9p2u41araa8POh1AWB5eRnDHLqaSqWQz+c91+XzeaRSKc91k5OTiMViXcvj8TgmJiY8t8lkMshms57risUiEolE13JN0zA1NRX52HO5HNLp9ECPHYDvzQ2TySQKhYLnOiIiIiIiIiIiIiIiIiIiIiIiIrfjx4/jF9UmnvzKVwd9KEREmH/6m3jqi58b6hhZIiIiIiIiIiIiIiIiIiIiotvR6XRQqVSU0vrNaebFbz63200LeM/l5ifK/Ghe87j58ZrDrh9p/eav87K6ugpd15XSBs0hdztp6/U6Wq2WUlq/Ofs2oomJCcTjcaW0QfO/uRUKBSSTyb6nDZqrzy1objy3bDaLTCajlDZojrzbSZtOp5HL5ZTSBs0J6BZlDr5e5uubmpqCpmmRtvGbm3DctFot1Ov1wDR+83/KVPMmlbxD5Xqtco0MmitUUM3XVfM8v3lYvYj32el0Avdtmiaq1SpM04RlWeh0Or55davVsvMZsU+/fbs/G8uyPPdrGIZyPjeOYrEYNE1TKh+Ja0ZYWvf1SE7v3tbr2uWVPugaFyWulzHARERrJ0p5dCNdj9PptOOz8fqcNE1z1Jssy4KmaV1pE4kEEomEZ34q0pqmiWQy6VnHFOUhkTaTyThewzAMe9+ijCCOzbIs3zJsLBaDZVm+9QvLsuzyViqV6krXbre72kkSiYRdRvGak18+5qB2k9XVVd/fpq7rym0Yw8Rv7ncgvE7rVw80TROJRMLe1jTNrnK2u17d6XTs7y2RSCCbzcIwDMd3KZ5nMhn7dd3fmWmaXcdkGIb9e0smk4jFYtB13fEb1HUdhmE4fuvtdtuRRt6P0Gq10G637d93o9FQbk/rh3Q6bbd9WJaFVCrV1W6SSCQc7S6pVAqpVMrxuYllpmnCMAwkk0lHu474/uQ2pGQyCU3THPUfcV0R9aJ4PO7YxutzjsfjMAzDcf7E43HEYjE0Gg17/7FYzP5ua7UaDMPoOh/92h2jtHOuB7/2OL/lfm19fukTiQSKxWKk1w5qP1qvbfzeZ7+3oV+S24vcbUejsm4t7mHjbv+N8vx2tl3r14rSZk/jQfQfivtSyW3SIm+U22fF+SS3gYt9yG3eYlu5X1c+N8V+5PbmKH2ZbnK+JvqT5Psvyb91UT6V+1tEniTfR0nuaxLlYa/9yPmJOIdisRgmJyd7ei8bmfg9rKysoNFooF6vY3l5GY1GA41GA+Vy2X68vLyMer2ORqOBlZUV1Go1NBoNVCoVrK6uotFooFqthvZ7i99JLpdDNpvF5OQk8vk8stksJiYmUCgUkM1mUSwWUSwWkc1mUSgUMDExgUwmg0KhgGKxiEwmg2KxiEKhgEwm43s/rlEnvoelpSUsLi4GPn777bcd+W8mk0GpVMLMzAymp6dRKpW6novHW7du9Sy//f3f/z1+//d/H5/85Cfxt3/7t9iyZct6vn0actevX8fv/d7v4d///d8Ri8Vw5513YmZmBjt27MCOHTswPT1tPxePh4E4r0ReXC6Xlf5E+mvXrnn2W4pzrlQq2TER4nnQn0g7PT0dORZg3Iiyy1r8l79D+b8qUSZZr/9RYoaIaLS521Dc9TR3G6o7btN9z2N3jJE7VsorFliOy3Vv7379XtP2k9z26L43r7vdZdTSjpOg2LOg+GO/toqgOPaguMGgfgi/NsygGMOgMoRfXJ7fMfh9Dn73Mvf7TKOMB1hPyWSyK45P9DXLy1Xj94PE43H7PBN9YuKx6MNKp9NIJBIwTdPRt59Kpex0ot/OsiwkEgmk02nE43Ekk0m0221736LfT9d1x3airUvsV9M0tFotpFIpRxuw+L7EvjudjuO7jcViME3T/h2YpolOp+MZQ1qpVBz9/yJGU9ZsNrt+a/V6XXncQr+4r3einU8mPhMAdoypaPuTpdNpRz+2pmld+zIMo2u7eDxuf/fi85WXiX1ZlmWf6+6YDtEPK/d9evWNrvfn2y9BYx3k9l8vYf2AYeMHwupBQTEUQf2wQHieGzRmIqztOei4gmL4g95vUN+R35gN1bhvv3zGTXVskeo4KJW+Q9VxayrjAQC1sQUqaVQ+i7D4fJXxCSrfoUp7RpSxaaMim83aZQg3sUyc417jCMRz93nlLnfG43HP71H+PMU57S7fyeMoRL6w3vFq7liyRCLRFTeYyWQc1/lYLNbVvyJileQ0k5OTXTFF8uuJ67D7WjoxMWG/voilco/Nyufz9ndTKBQ88xuvWDl3nuWub/mJ0j+qWq+NMu5W9RoGqF2jhCjtnVHitQb9eUUZ1zRqn9e4SiaTSuM1LctCMpl0lNHEWDMvmUzGUVfwy3dN00Q2m/XtbxGv4Y7DFOTvWtM0x/H5jZkTsdxy3czNsqzAMcWGYdhx4e5jl+s+wK3rsrwvUWd0SyQSXdu6iZhdL2JbTdN8y7S6rnfFo3sdsyDXr/zShI1NBPzfs1dMtJuoa3ptqxLr5rV/1W3F6wc9p+F0u324YWMqg9KqjgX12nfYcfuNwd3I3PH1QRKJhOd12y+tvF9xzfS6vrrHF7iJfEBs6y6/B0mn0ygWi0rzXKTT6a72h0Kh4LttJpMJbPdJp9P2Ma/VvBFrue+1PA7GBqyvXtpNotRhZKrtcG691Ct67SuKMmeQrJdxAlHqd7IocyDJeumrVpnPw0uU31XU31OUum7UY9lIoo5jijLPEhDcT+AWZe4iHstoHIvqeCDV9kui29FLOaLXsk7UPEroZTxx1Pwtavkhapkoajkv6mcVtdwUtSzYy3cetWwVtbzItvVwUeatBKKPV42at0aZPxKIXq+Omh+HxYy4RSkfRjn2KJ+76pyQYbE6siifQ5T5N6PMLUo0TKKWO6Lm8VHz7KjzbgPR5sgGopeDor7nKPEOQG/vOWq5IOp7jlo2i/qegehlJ5aFwkXJD4Wo8y9HLQ9FKSNEmf8gSh4dpeyh2jYSpZwUpYyg+n1EaT9Zi76YXn5rREQqoo5nZ3qmX8/0azUGeJSsRfzIIPfJ9zOYfXIOQSIiIiIiIiIiIiIiIqL+OHnyJJ544gmcurg46EMhogie+sJnsa2YwcmTJwd9KA5nz57Fd7/7XZw+fRrz8/OwLAt79+7F0aNHcfjwYRw5cgTbt28f9GESEdGQqFQqOHPmDObn5zE3N4cf//jHWF1dxc6dO/Gxj30MH/vYx/CRj3wk0viTYXP9+nV85zvfwenTp/Hf//3fePfdd7Ft2zYcOXLEzhsPHDjA+bCIiMjh6tWrmJubs/PIc+fOIR6P4/Dhwzh27Bh+/dd/HbOzs4M+zJ4xfyQiol6Me/4oO3v2LJ5++mmcPn0ac3NzsCwLe/bscbSz3nfffYM+TCIiGiKGYeDFF1+088m5uTksLi5i06ZN+OhHP4pjx47h4x//OLZs2TLoQ+0Z80ciIopqI+SPQqvVwjPPPGPnlZcvX0ahUMD73/9+u9310KFDynPzERHRxrCysoL5+XmcOXMGzz77LH7yk5+gVqth165dOHbs2MjH7TB/JCKiXox7/ihj/A4REfVi3ON3mD8SEVEvxj1/lDF+h4iIotpI8TtEXlh+IiKiqFh+IhodjUYD5XI58t/bb78Ny7Ic+8pkMiiVSpH/7rjjDnzjG9/gfMK04T2+ewYnTpzA8ePHB30oNCbeffddnD59GqdPn8b3vvc9XL9+HXfeeScOHTpkxw8cPHgQ6XR60IdKRERDxrIsXLx4EWfOnMHc3BzOnDmDixcvIp1O40Mf+hAee+wxfPzjH8euXbsGfagUgu37REQU1UZq3+f4bSIi6sVGGb/N9mUiIurVRmpfZvsrERFFtRHaX5k/EhFRVBshfxTYP0lERL0Yp/7JP/3TP8VTTz2Fubk5/Mqv/MqgD2fNXLx4Ed/97ndx+vRp/OhHP0Kr1cLu3btx6NAhHD16FIcOHcKuXbugadqgD5WIiIZMs9nE888/j/n5efvvxo0b2Lp1Kx577DEcO3YMx44dQ6lUGvSh3hbWj4mIqBfjVD8mIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhohX9Ms9x3MiYiIiIiIiIiIiIiIiIiIiIiIiGjktFot1Ov1ruW1Wg3tdrtr+crKCkzTdCwzTRMrKytdaXVdx+rqatfyRqOBZrPZtbxarcIwjK7l5XK5a5lhGKhWq13Lm80mGo1G1/LV1VXout61fHl5Ge6QyE6ng0ql0pXW77Oq1+totVpdywehWCwikUh0Lfe6sU0ikUCxWOxank6nkcvlupbn83nPif8nJycRi8Ucy2KxmOdNZjRNw9TUlOexp1Ip5PN5z3V+rw0AU1NTnjd/83t/AJDJZJDNZj3X+X2GQcdOREREREREREREREREREREREREw+/48eP4RbWJJ7/y1UEfChER5p/+Jp764ue6YpmJiIiIiIiIiIiIiIiIiIjWg9+8XDK/ebdkfnOQuVUqFXQ6ncA0fvOTyfzmH3Pzml+s19cU/OY4u920Kp+z0G63UavVlNL6zQPnRfVzjZp23GWzWWQyGaW0QXOfufnNBeclaP42t2QyiUKh0Pe0QXO+ucXjcUxMTCil9ZvP7nbTRp1TzmsePz9+8+J58ZrDrx9pqXcqeYdKfuY3l6dMJZ9QuY6r5sMq761cLtt5omEYnu+z0WjY763T6djzhxqGYc9Tqut61/ycpmk69tdqtQLfv2VZ6HQ6aDQasCyraw5UWbPZhGVZ9vuTHwvtdtt3HyKt/B7Gkcq1yZ3G6zcjp4ka/8h4SSKi0aFapo2yD5V8YNzziqB6nvi8crkcYrEYNE3z/R7S6TSSySSAW3Uhv7qCu54Wj8e70sbjcc+6n0gnykfpdNpR/xXlxUQi4dinqJ96zTMvlhuGgUKh4Hh/uq58rZCoAAAgAElEQVR3bROLxZDNZqHrum8bliibis/DvU4ul6dSKftY3etklmX5rmu1Wmi1WtA0rWsO82az2VUOFt9Po9HwncNeLmO7ec3NP6zC2j2C1o/itir7lusXlmU52vQSiYTjmqfrul0fE3Pxy7+ZZrPp+L27z5lqtQrTNJFIJJBIJLC8vGyvM03TvudCMplEp9NxtO252xvd7aWWZTn255VmLWma1nX9TKVSiMfjXWlM07Q/92QyaZ+nYrlXO577WptKpRx14lgsZr+WYRjQdR2JRMKxnVcdOh6PO6414rrearUc57zYj9c1ZJD8ft9c3ttytu2NB/na574OjsK6tbh2u3/z8vNRWVcoFDzLkkRRiftWyf2ooj9B9AXL5SrRjyD3A4j7gYnzVW7/F/fzkstuor7g9dpRifs0yf2D4vyQ++DkvlHRJyb3a05MTCAejzv6DsX9puT+Oa/9yH2efveNorXXaDTs/qJeH3utCyKuy5lMBqVSyfdx0Dr3Y5a/bl0jFhcXUS6XsbS05Pv4rbfe6mqXyGQymJmZwfT0NEqlku/jbdu29e1ebt///vfxmc98Bs1mE3/3d3+HT33qU33ZL422r33ta/iDP/gD5HI5/PEf/zHy+TzefPNN+++NN97Am2++6egvLxaLuPfee3HvvffinnvuwT333GM/v/vuu3HPPfcgnU4P8F2pk6+rXn/ua6/898477/i2qcrXVb8/9/VX/G3ZsoXl5x6I8t16/fe7F6wfOS9ej/9RYquIiKJw93e44+Tlfjd3Wne837Cl7SdRdwe6427d7WiDTuuO9ZXbC6LEZNP68WuHHrblok2u2WzaMQzArT4/cS6K/j/xv91uo9ls2n2CnU7HXt9qtew+yk6nY8fL6rpuLzdN046L7XQ6XfGu7mXDLplM2m1+wC/7QlOpFDKZDDRNs2NfgFvtgblcrqtPNZVKddUxRL+3XHcT8b2pVMpe3m63HZ+Vuw8egP168muI71f0rQOwY5WBW/288Xi8a3yPaZpd9SzRLiu3Q62ursI0TfszsSyrq922Xq+HjuW6Hclk0jG+xP08Ho87rqGJRMKxXtM0R996LBZzxBZ1Op2u9fL2rVbLsX+5z9+yLDQaja714rlhGF3rAdjPRfyN3xieoDh/r9gHWVjcflhfW1hdLChvjzKmbNCC8uCgsU1BY46CxgKFjf0JqmPKZQ63oD7CXC7n234U9P6DxoEFjc8KGmN1O+9/0MLKsyr9WipjblTGx4aNpel0OnZslR+V8Zyizy5I2HiksGsVEHy9EuUQOQ5JLmcInU4HtVrNPhavMTimaXa9jtd+hineaRC8Yn1F3KhcVnL3W8llEfFc3o+I9xWxhKKMIr+u2EcymbTLYjJxLUun00gkEo4YWuDWtUnsM5/PO2KTxfsQ+9A0DZOTk4Fx0CpjUVXG4qr0FYeN9QwbbxtlTPAoU21bUB2bCEQbsx6ljKNyDRVUrv2CiMNQofp5qcZmqIxBVf2MVI5N5TNUyfOA8LLtOFCJKVBpf1Idqy5iZ4KojtMPKucKqnMUlEolR7uGl2w261s+FvFNXmMrvORyOUddXJwjcr08kUiEXqMbjQbS6bQdl+33e5VjyeVjltuC2u22cp7QbDYd158o9Tj3cYox0SpEjJkgt2eFEbHvgmmakbaV01qWpXz9lceey/uT9+X3/t1j0cX4cpXPy72tvDxM2Dj2sG1HoU2PyM0vL/Rqa5DrPkFjHsX6oLzK/bqiTqNCrtfI9S43r32KelY8HrfXye3cQbLZLPL5fGhar7JDKpXybS/1I9Jks1lks9nAz1Nu73XvO5PJ2GUQdzuwn2QyiampqdByUCaT6cpDo8wlRBtb1LEta5mex8JjGaUx3GstShyGalruczD7HPT74XggGgdR20hV5huURWkTB6LNaQtEm6sWiNb2D6i3NQtR+iGEqHm06rzDgkobvizqbyJKetVj7+VzHEdR8hnVmIoo9dko8/5G6ZOMMtZdddxklPl2o8wlHGWeZJX+EUGl/0NQnRt4rb5bonEXtawSNf4xalkCiF42iJp3R33PUctbvbznKOWbKO0hquWgKGWPKL+BKDEfG73dJkreFCXPVS0jRSkfrEW7QZSyzCh9VlHKiKrloyj3ZIhSliMiWmtR8nqVGHuZauyoartblNdXbSuM0ibH9xMs6u9jnES5l5Rqm5Jq2S5KeU21DMb3s/7vJ0qbHBERERERERERERER0bg4efIknnjiCZy6uDjoQyGiCJ76wmexrZjByZMnB30ovlZWVvDMM8/ghz/8Ic6cOYMXXngBuq5j27ZtOHr0KA4fPowjR45g//79HINJRLRBvP7665ibm8P8/DyeffZZnD9/Hp1OBw888ACOHDmCI0eO4NFHH8WOHTsGfahrotPp4Cc/+Ql+8IMfYH5+HmfOnMHNmzeRz+fxvve9D0ePHsWhQ4dw+PDhvt0DkYiIhp+u6/jpT3+KM2fOYG5uDnNzc1haWkIqlcIjjzyCw4cP4//9v/+Hj3zkI2M5px3zRyIi8rLR80dZpVLB97//ffzoRz+y21nb7TZmZmbsNtbDhw/j4Ycf5n21iYg2kHK5jDNnzthtrc899xzq9To2b96Mw4cP4/Dhw/jwhz+M97///WM5ZpL5IxERedno+aPsypUr+J//+R+7b/bVV19FLBbDnj177HzyyJEjY9svS0RE3n72s59hfn7ebnO9cOECTNPEzp077bzh0Ucfxf333z/oQ10TzB+JiMjLRs8fBcbvEBGRl40ev8P8kYiIvGz0/FHG+B0iIvLC+B0ifyw/ERGRF5afiAar0WigXC5H/rt+/To6nU7X/jKZDEqlUqS/mZkZlEqlnt8D5xMmAh7fPYMTJ07g+PHjgz4UGkOWZeGnP/0p/vd//9eOQ3/77beRTqfxyCOP4NChQ3b8wNatWwd9uEREtM4ajQaee+45O48QMWa5XA7ve9/7cOTIERw9ehQf/vCHkcvlBn241CO27xMRkRe27/8Sx28TEZEXjt9m+zIREQVj+/ItbH8lIiIvG739lfkjERF52ej5o4z9k0RE5GVc+ye/853v4Dd+4zfw1a9+Fb/zO78z6MNZN/V6HT/4wQ/w7LPPYm5uDs8//zzq9TruuOMOe/7PI0eO4ODBg8hms4M+XCIiWmdvv/22PRfo/Py83YY6PT2NQ4cO4ciRI/jVX/1VPPzww9A0bdCHu2ZYPyYiIi/jWj8mIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhoxX9Msy7IGfRREREREREREREREREREREREREREslarhXq9PlLLms0mGo1G35YBwPLyMtxhfp1OB5VKpSvtICSTSRQKha7l2WwWmUyma3mxWEQikehaXiqVupYlEgkUi8Wu5ZlMxvOGYIVCwfMm2pOTk4jFYo5lsVgMk5OTXWlTqRTy+XzX8lwuh3Q63bV8YmKi68asmqZhamqqK23Uz4qIiIiIiIiIiIiIiIiIiIiIiIiIvB0/fhy/qDbx5Fe+OuhDISLC/NPfxFNf/FxX3DcRERERERERERERERERUa9M08TKykpoukqlgk6nE5im0Wig2WwGpjEMA9VqNfT1vObEcqvVami324Fp2u02arVaYBrLsrC8vBx6TNVqFYZhBKbxm+NLpjq318rKCkzTDExTr9fRarUC0+i6jtXV1dDXK5fLoWlGmdccYW5+c4C5+c0t5sVvrjA/XvOk+ZmamoKmaX1Pq/JZCV7zo/nxmxvOi99cb7ebNp/PI5VKKaVV/T0AnONtI1HJ66KmqdfrnvlLs9lEq9VCu92287tGo+HIj1utVlc+oOs6dF1Hq9WCaZqO7b3ouo5Go4FWqwVd10OPu1arBeZPhmHY70fXdc/3ZhhGV7mi0+mg0+nY+b9pmr5lD9M0YVmWvU0QkS4sTzVNsyuNuywStg8iIiKi25FMJpFOpwPrY+l02q57aJrmmTadTnfNqR2LxbrqhH5zbw9jGlG2BbrfX6PR6Cq3pdNppNNp1Ot1z/Yly7JgGIZn/dCyLLstKZlMOtJ0Op2udiaRRtf1rnnkhXa7DV3XPevErVbLbktKpVKO7ymo3SeoXSyoDSuovcmvPU617WzQ/OZlB279JnK5nOe6oN9eUNtAUBtDUBtIUFuKX/tNUPtSUDuV39z7QO+fV1hb11q1kchtl+42bXebs/u+Du56uvv8cZ8z169ft+ualmXZ542u6zBN09HWKurJgqhji+3lOrllWWg0Go7XajQaa1bXjMVijt9hPB5HLBazX088F8cGwPH7i8fjME3TPl75dysvFzRNQ6fTCW2zX09+v2W/5X7XA7/ftd81wm+533XDr33T71rit9zv+uLX3ut3zfFro47Sdk10O9z9aHIeIJdlVldX7fZMudwk99XJfWTyft3lG7/9uvMYOc9w97+p9KVGJZ/X7vvbyOe2+7omn9/ua5t8LsvXN3ceL1/L3OUN+XoWj8cxMTFhr5OvaUFlEaJBkcuG4nHQsl7XhaVXiQXwIp/T4rH7f9R1vaRnuWA0NRoNlMtl+/fYy2OvdUHk30+pVPJ9HLTO/ThKPMNGJ39vS0tLWFxc9H0s14WBW+WLTZs22d/PzMwMpqenPR/fc889yjEb/VapVPDkk0/iH//xH/HJT34Sf/mXf4mHHnpoIMdCg3X+/Hn8yZ/8Cb71rW/hd3/3d/HlL385sCzabDaxuLiIK1euYHFxEUtLS7hy5Yr9/Oc//7mjvF8qlTA9PY2ZmRns2LEDO3bscDzfvn27cvzUMPO73qv8NZtN3zZm+XrvlQcE/WWzWZY91on4zt3lV1HnFv9F+6r4L+rR4r+oO4v/or4s/ouycNQysajriv/id1EqlRzLp6am7HqsqJeKerOo64r2tampKcTjcc+0RETjwt1P5tV2MSppVcZNROXVBhK27na36ce+o8TO08YiyuRyH8a1a9fQbDZhWZbdT9JqtVAul2EYBmq1mh1nXa1Woes6arWafb6trq7Csiy0223H9qIvpVqt2vHc4nxtNpswDAOWZfnG0qjQNA3pdBqWZSEej9t9pMlk0u4HEXUxuf87Ho/DMAzEYjHHevHZyOnE64jjFOvE/0qlYr+W3Le6Fv1Ctyufz3f1I1uWhUwmY18zLMuy6225XA6apjnK5SK9IH4b8XgcqVSqKybf3d8sxgiI70jXdftzEq8lxxqI9WI/YhyESN9qtULH8d0uORZN07TA6+8oPp+YmEC73fZtyw0a+zJM64bteHpdtxblmbUSFFPX67q12u84rAtbv9H7RtZiLF9Ymlqt5mjrNAzDjkUR4/288ilRjhIxdIZhdMXTNZtNu7wE3Mp/3cfljkMU4wPd+5HH1bXb7a5jNgzDzrvdY/BELLXYRjxfa+7yg/xcLquMurW6Hg56/TAfW9j6sG2jjD2n/unX9XtY98Vjj7YvlfllRpnKuCrVdKO8Lx77LbeT76jOH+RFdb4nN9Fv3Mu2YtxcL8csyt29vl8Rx9CLdrutNBeXexvxP+yY/ea+EG22MsuylPvW6/V66Hwhfvtut9tK83F40XW96xquck0Xc4tEvf6HzQniZ5zzGfKnOteWnDZoG7+xn+5tVV5X9GPI2wellR+LP3k7vzHnsng8jnQ6rTT/l6Zpdl9KIpHwzd/k/hg3eQyr3NcTJJFIIJPJBM7tlkwmPV8zm81GmudNyOfzPcWoJZNJTE5OKpUR3FTLFv3ajvXetaU6j6egMk+lLErfZJRjUe23iDLPgOo+1+I4o+xTZf7Stdqn6hykUfY5joLmQXBTnQdzLfbpHvO53vtU7UNSjY1V2V8/96X6XlU+uyjfLxF1i9LmFKUsEyUvUy3zRCmbRGkPc89TEyRK/IfKPOaCajt5lDJKlO9WtT0fcM7HEKbX8dTjJMpcTFFihFXLAqpzqLvnjfCj+n5U5kFXzcNVPhfV+d9V69YqZRDV+TRU5zfnGDqi9RElf4yS76vmeVHaBqKUvVTLHVHKUyr3dxGilP1Uyz1RynNRyjKqZc8o5a4o5clxFaUco5rnqZYVVPJa1bKOyvtQLQOolCdU20dUylaq5RyVz1/lM1UtZ3IcHBGNm37GV47SPvl++rvPcY+ZlQ3L/Q2G+ZjGNQ1jVYiIiIiIiIiIiIhoXJw8eRJPPPEETl1cHPShEFEET33hs9hWzODkyZODPhRljUYDzz33HObm5jA/P4/5+Xm8++67KBQK2L9/P2ZnZ7F//37s378fe/fu5Xg6IqIR1ul0cPnyZZw9e9b+e+mll7C0tIRUKoVHHnkEhw4dwtGjR3H48GFs3bp10Ic8EJZl4eLFi5ifn8ezzz6LM2fO4NKlS4jFYti1a5cjb5ydncXdd9896EMmIqLbVKlUsLCwgIWFBTuPfPnll1Gv13HHHXfg8OHDOHLkCA4fPoyDBw8qj98eJ8wfiYg2HuaP0TSbTTz33HOYn5/H3Nwczpw5g3feeQe5XK4rn9y3b5/S2GMiIhpub775pp1XvvTSS1hYWMDly5dhmiZ2795tt7UeOnQIu3fvjjRf+bhg/khEtPEwf4zm+vXrdj45Pz+PF154Aa1WC3fddRcOHDhg55Ozs7PYvXu30v02iIhoeOm6jkuXLjnaXF966SVcu3YN6XQaBw8etNtdDx06hDvvvHPQhzwQzB+JiDYW5o/RMH6HiGjjYfxOOOaPREQbD/PHaBi/Q0S08TB+h+j2sPxERLTxeJWfLl68CODWvWMLhQImJyexefNmzMzMoFQqoVQqIZvNIpPJ2M+9lm3atGnDt03QxtVsNvHuu++iXC5H+rt586bnPcrd55vq39atW0Pv7bwWOJ8wEfD47hmcOHECx48fH/Sh0AZx5coVOwZ9bm4O58+fh2mauP/++3HgwAE7Bn3//v3YsWMH28WIiMbEO++8Y8cOiPr9uXPnoOs6tm3bZscPHD58GAcOHEAymRz0IdMaYfs+EdHGw/iIaDh+m4hoY+H47WjYvkxEtDGxfVkd21+JiDYetr+GY/5IRLTxMH+Mhv2TREQby0bqn7x69SoOHjyIT3ziE/jnf/7nQR/OQOm6jhdffBHz8/N2vr+4uIhkMol9+/bZeb2oJ99xxx2DPmQiIuoD0zRx9epVu24s8v+rV68iHo9jz549jr7WHTt2DPqQB4r1YyKijWUj1Y+JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiEbQ1zTLsqxBHwUREREREREREREREREREREREdFG0G63UavVNsyyVquFer3e07L1kEgkUCwWh3YZABQKBSSTya7lU1NTXTcIjcfjnjeMTqfTyOVyXctzuRzS6XTX8omJCcTjcccyTdMwNTXVlZaIiIiIiIiIiIiIiIiIiIiIiIiIaL0dP34cv6g28eRXvjroQyEiwvzT38RTX/wcOL0rERERERERERERERER9aLRaKDZbK5LmvV+vWE8pvV+PdVjWllZgWmaoelGVSaTQTabXZc0fL3hPaZisYhEIhG6Lxpf1WoVhmF0LbcsCysrK45ljUYDrVbLM+2NGzeg67q9rN1uO661rVYLhmHAsqyu+RFN00S5XEan0+nat5gPsdVq2esbjUZXuna77Tl3YqfTgWEYaLfbjjiSdrvtSKfrOizLQqfT6br267puH7ubWG6aJkzT9HwP8vuUP2uvPMY0Tft1LMtyPBbk5TL3dipxM/1KQ0RETmJuWl5DR18sFutaJr5XeQ5i93zEQURaTdN8yw7y/uTyAXmLxWKOz0w8F8vE81gs5vgT4vG4/TwWiyGVSjnmgY7FYo56UzweRz6fd6yX56rWNA2pVMpOo2maY75p+Xk+n0c8Hu+qu6XTafuYstms75zVgvx6fvzmyXbzmmPbLZvNetYNAKBSqQC49R7kY/aqTySTSWSzWdRqta4yuuBXZxGv5XceLS8v+5475XLZc7lpml31IMEwDFSrVc91uq5jdXXVc13QPO/NZtOzfgPcqgv5fcZBn9cwCfotlUolz+WxWAyTk5Oe64J+w8lkEoVCwXOd31zwQHDbSdB5l8/nkUqlPNcFtbV4zTMv9Pvz8ptff6NbXl52XAOazSaazSaq1Sosy0Kz2bTPPcMwUC6XHedbs9l0XHtarZbd5tBoNNBut+32EdFWIa5huq7b60Q7idyWIvYlGIYBwzDQ6XTsNgvxupZlQdd1R9vCKFwXblcmk+k6hxKJhOMcF2WAbDaLVCrlyPMTiYTjnEkkEnbaTCbT9Xp+56XfOem13O9eEn7nr9+1zu+c9lvud11UKTMQbTRyWc5dHpTzDPn6v7q6al/D5XKbXPZT3a/cHxl1v7dLvla4rz/yNW1yctK+nsplHbm85L6uyeWloHXu15XvBeS+xsmvHVT+Ixpl4lojrgHinLcsC8vLy55pxL3JgtLIdVpx3RF1UvkaJV+HopDPSXHNEGUs+RogzmO5TCKuN+KaIp/7og4l6m5y2UpcL+TXVmnToPHSaDRQLpft33Mvj73WBRG/x0wmg1Kp5Hjsfq76WM5rqX8ajQaWlpawuLiIcrkc+NjdXii+n5mZGUxPTwc+vuuuu4b++zNNE1evXsXCwgL+4z/+A9/4xjdQrVbxmc98Bl/60pdwzz33DPoQaR38/Oc/x5/92Z/hX/7lX7Bv3z58+ctfxqOPPtqXfZfLZSwuLmJpaQlXrlzBlStXHM/feOMNuz6VTCZxxx13YGZmBjt27MD09LT9WH6+Ech5kd+fO88Sfzdu3PDtO5HzpaA/dx5WKpVw5513MpZwiIm+L/Ff5F/lctmxXP4vyvvif6fTsesLlUrFriuIeoWIr45SNxBleVHen5qaQjwex+TkpF2+F301t5uW5X0iomjc7clyrIHICwS5rVpun3bvQ64/yfmFHP/Q7333g9y+LMcJuNuo5Tq63AbubpOW29Dldm05PsHdNi7HC8j9k+62cDnPC4pNoPEl9wuJuCm5HVceEyfOL7kNWD7PRNlQlPeAX55fcpuy/JpiG/E6QfFUYcRv2KvdN5lMIp1OQ9M0+1zJ5/N2rJ84l4rFImKxGOLxuB0PIPaVy+WgaRra7bZ9XufzeWiahmQyiWaz6diX4BdX5hWLJn9OMr8+O7+YL68xin6frV+8mV/MWFCc3HoSsZfuY3HHa4rPQcRsyPVbTdO6PiexXlwb1zo+Rvxmxeul02lHfGg2m3U8F3GS4hqfyWQcfaHuGLR0Oo3JyUl7/5lMxs4TstlsV6xb2HN3HIj7uTs+blTbo4PKBkGxlkExmvK10S0oXjTouuh3zRCCztegeNhe33/QOOqg2NaguAR3WW+YBcVQBsVeAv7xYUBwn2RQjKhcbnQLilcNinMNigXzi4nzi2cLOo6gz8uvzKoatz4u3Oe3O/7dfa66z0H3dcfreuIuT7ivDcvLy45z3j3e1jAMxz4ty+o6n93Xokaj4XgfzWZzzfPieDzu+E1pmmb/lsWYWVGOFOvF77bT6UDTNEc7dyKRsM9LXde7yibyedlqtRznsKZp9nMRYyyf/6KMCtz6fOXPX4xfkfcd1Bc9KuMDvATF6gPB1zggfJ6DoOtu2PU8LMYsbB6GsHp50HUfCM5Pwq6TYfG+ftd5ISjfAUa3XEjeVMtoQeOzhKByskylLqoyr49qu4NKe6FqfK3KPEJBdQkhrPwvqFzjg+ogsqB6gxBU1h8XYddAIDyPEMKulyr7CbreA+HX3LC8MCw/Cvs8wvLqsPwyLM8KqmMIYX29YXkqjT7Vud6ibifG8rmJ8YJBDMNwXOtbrRZWV1d921mEdruNdrvt2FYsk4l5iryOWU7jrnf5aTQadl4oxhx6kccfiuci3xPrvOZVchN9D+7xi17EnEvyY3mZvM+g8oO8nepcSF7zM/mljbI87HVpY4talxJ5oF9eF5RHinYOldeU20rE3Bju7YLq1yJtKpUKLB+5txPvKxaLBdb/ZXJ7jRjfq7qdXG7K5XJKn00ikejq61Epe4jxKoJ77oyg7eTyWzKZDCyPCalUqmtOEpU21kKh0PU59Bpr1+t8lCpl9GERpZ9DNXZlLfapWk8cpX2qtEsA0cbPrsU+Vere/RzjO8xUrgmqc5qE1b8B9b4llXgq1XaBsPZrQK3eC6hfC8PaEQD1uYZVrvdh7QKCSpsx56kgGh6q7dNAtPw6SvtyULyKm2qeDajHwkUpg6n2fQD9vY8CoPZ+VMsWKmU01d+GSj/IOFDNu1TKParlC9UygUreqzqnikr5SLVMo1p2UGnXVy3fqZTJALWyj+p3rlI+JaLhECWmSrUcEaV8FKWPS6VNAVCPkwCilc9U23P85uGVqbzvfsZM9DPuZSO026i2x6iUcVTzTpWyi2p7hkrbSD/jQlTKSv38TFXLcCqfqWrZTOUzJSIaN6plnyhlA9V7VKq0q6iUb1TKhaplLpWysMr7UynTqpTJVL4flXKiShtkr3Fpo0Cl7KHSxqFSHlJpn1Ep76mUX1TKoCplKpUynEr7lEq5UrVtTaVcplIOZEwtERERERERERERjbKTJ0/iiSeewKmLi4M+FCKK4KkvfBbbihmcPHly0IfSM8uy8Morr2B+fh4vvvgiFhYWsLCwgEqlglgshve85z3Yv38/9u/fj9nZWczOzuK+++4b9GETEZFLuVzGwsICzp49a/8/d+4cms0mkskkdu/ejdnZWezfvx8f/OAHcfDgQeX5KjaiGzdu4MyZM3juuefsvPH1118HAGzatAkHDhyw88XZ2Vns3btXed4QIiJaP5Zl4cqVK478cWFhAVevXoVlWZiamrLrOg8//DAOHz6MXbt2DfqwhxbzRyKi8cD8cW1YloVLly7hzJkz+OlPf2rnlcvLy9A0Dffff7+jjXX//v3YsWMH7y9MRDSEms0mzp8/b+eRIr989913AQD33XeffS0/ePAgDh8+jDvuuGPARz2cmD8SEdaWnNcAACAASURBVI0P5o9ro9ls4oUXXsD//d//2Z/thQsXoOs60uk09uzZY3+u4v/mzZsHfdhEROTh5s2beOmll+x8cmFhAefOnUO73UYqlcJ73/te+1r+gQ98AAcPHmQ/mg/mj0RE44P549pg/A4R0Xhg/E5/MX8kIhoPzB/XBuN3iIjGB+N3iNYHy09ERONDtfw0OzuLer2O6elp+75p1WoVq6urqFarWF5eRrVadSwLuqdtOp1GoVDA5OQkJicnUSgUUCwWUSgUMDU1hYmJCceyUqnkeD4xMYGpqSkUCoXQe2YRrYVGo4FyuRz5b2lpqWtfmUwGpVIp8t+WLVtC7ys3bDifMBHw+O4ZnDhxAsePHx/0odAGValUHLEDZ8+exWuvvQbTNFEoFLBv3z5HHPq+fftC79NJRESDo+s6Ll265KjTLywsYHHxVpl769atmJ2dxYEDB/Dwww/jyJEjuPfeewd81DRIbN8nIhofjI9YGxy/TUQ0Pjh+u//YvkxENF7Yvtx/bH8lIhofbH/tH+aPRETjg/nj2mD/JBHR+NjI/ZPVahVHjx6FpmmYn59HLpcb9CENnTfeeANzc3N48cUX7Tz/2rVrAICZmZmu/H7Xrl1IJBIDPmoiIvJTqVTw8ssv23Xjs2fP4ty5c1hdXUU8HscDDzxgX9Pf97734YMf/CBjaEKwfkxEND42cv2YiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGhEfU2zLMsa9FEQEREREREREREREREREREREdF4Wl5ehhyiVKvV0G637eftdhu1Ws1+blkWlpeXHftYXV2Fruv281arhXq9bj83TRMrKyuObSqVCjqdjv282Wyi0WjYzzudDiqVimMbXdexurrat2Xu97ZeYrEYJicnQ5fF4/GuG2qM87JEIoFisQgiIiIiIiIiIiIiIiIiIiIiIiIiIhptx48fxy+qTTz5la8O+lCIiDD/9Dfx1Bc/B07vSkRERERERERERES0cXnNZ+RWr9fRarUC03jNY+SlXC6HpnHP2+TFPZeTF6/5nby453zy0mg00Gw2A9MYhoFqtRr6eu65rby457vyojJPlNe8WF6q1SoMwwhNN6ry+TxSqVRgmlQqhXw+H5hG0zRMTU2Fvl6xWEQikQhMk8lkkM1mA9N4zUflZXJyErFYLDBNLpdDOp0OTJNMJlEoFEJfr1QqhaYpFApIJpOBaYbxM6Dho3L9BW7N17e8vKyctt1uo9lshuZvrVbL/gu7Los04i+InM4rz9N1HaZp2o8Nw4Cu63Zav3zSMAw7rWEYvvmbSCdeo9PpONK6t+t0Oo60QXmGaZr29qZpeuZ5Yl+WZTnWi+de24hl7v9egrYnIiInTdO6lsnXTK/1Xuk2Ck3THOVOv89A07TAz05sG+XzldP65ZeCyGtHTdhn5jauv8FkMolkMhn4eaRSKaTTad80lmUhlUohk8l0/V7E70PTNKRSKSQSCXuZaZowTROxWAyaptnPk8mknU7+7crlRLFPwV0eNQwDlmUhHo/b5VF5nXiuaZrjuSjbrpVUKuVoMxCfrfw8k8nY5757fTqdRjqdRjweRzwet5/L6zOZDIBbc0wXCgX7uVgv143T6TQ2b95sf5ZedWf3srDn7jqzXz0r6vJh3degj1elbXOQgtpjNuq69T4OlXYzuj1Rzulergu1Ws2xrlwu2/eR6HQ69rpWq4VqtepoU1ldXbXbjdrttr3OfS8K0WbU6XRgWZbjuqLruqPtSbTFiHxb/MnrZCI/V2ljGYRYLIZ4PA7AWbaIx+Nd544oy4i0Ir9LJBKO/Bu4dV7KeXAikbDLQ+l0GqlUyn69VCrluDdGLBazywSZTAbxeNwuP0S9tqjk7b2knZiYsD83Ihp+cj5zO4/7ua+g/ar0b6uSr2P9eryW+52amorcXkE0zsS1QcQIyTEpIu4kKI2Iz7ndNFGI81qOPRDntqifiTTyPdJE3IccSyJiJUTsgXw/MVEeE/uS40tUYlaIgFt5br1eR71ex8rKClZXV1Gr1VCr1brW1Wo1NBoNVCoVrK6uol6vY3V1FZVKxa67rqysBPYXiN98Pp9HNpvFxMQECoUCstksisUiisUistksCoUCJiYmkM1mkc/nMTk5iWw2i1wuh6mpKWSzWWSzWZRKJWSzWUfdiwajXC5jcXER5XIZS0tLvo/ffPPNrrbMUqmE6elplEollEolzMzM2M/lx/fcc49STNewunHjBhYWFnDu3DmcO3cOCwsLOH/+PGq1GmKxGO6//37s3bsX9957L7797W9jaWkJv/3bv43Pf/7z2Lt376APn9bAyy+/jL/5m7/Bv/7rv2Lbtm34i7/4C/zWb/1WaExiP+m6jhs3bmBpaQlXrlzB4uKi/Vh+LmQyGczMzGDHjh2Ynp62H4vn27dvV4oHHXeNRgPlctn+E22x8rKgP79+okwmY18rxZ/IB93L3X+bNm1ifjmGxO9K/MbC/veSVmV8gSDqJkH/5d9tr2lVYuaJiGh9yOPs3OPp5HFzcvu/exyc3B8g5zvy+DV3O508Hk3u93aPV5TbKeRxiqrjEVWl02nkcjkAcLT3Ac4+VbkNQ27nA5x9A3LbntxW6B5fJueJcl+De0yUHMclb8P+3vEizgv53BHnlzgH5XPEK70YgyvOFzm9OKfl896dXnWcqxfRdi7/5sV5Ic6dsPZ0kV6sE+3qIo18boi2d3EeDGr8Xz9iC9cyBrJf+6jX645YItM0HddleRxYq9VCs9nsGvflHmMnYpuGOW6yH0RMk8gj5BinRCLhiGsSz0VssbxOxCAJIkY7kUggm806+pQSiQTy+bwdWy7nSYVCoSv+uVgs2nHM8nlULBbtfEt+Da84JPZrrb2wfs+gGI2gvp+geQKC2hSCYqWD5nIIKscF5UNhcz8EzUOxFu9fZY6JQfGLN3aXX293G7/2naA5B/zKr0FzNfjNAyCX4d384naC4rT95kDoZZt+cc8J4jW/i/u37/5tun/H7rhj9znpPtfc693nvnsMhHwtcu/L/X5U5wHohTtfkn977nqZ+3eeyWSQSqXsz1HkqUIul7OvKbFYzLGtyMvFZyL2JW/b6XTs76RQKNi/VU3TkM/n7TkMREyzkEqlkEwmQz+3XsayDMP62933sI/HCRI2d8og1w/zsYWtX+vXZpsMhVGZJ01lXjaV+d0Atfm/VOYbA9Tiv1XycZX529xlE7ewYw5ry1I5hrDvKiyWbhzmXgsbsxjW7hZ2zQybmy2o3gF0t9l7CSubh80vFtZ/HdbuERb/GFR/AcLnbgubR011bjuiUaVa3g+6JjcaDbsuVq1WQ9t1LMuyY6uDrvN++Yzo0xGvF5a3inEPq6urge/B77jFOtE3FKTdbtuvIY9Vlol56PyI9WGv5Z5vzmu+G9M0Q/NSy7JGPr8Nsp7jz4ZtXDgNjtxf5cfrtxm2nXt+LZno//Lbzm+d6A+Lup3oS4t6LKJ/ze9YgrbzKzOK/j8/7vmI5OVRtxPzGQRx9wnmcjml2Hd5nqMoseYqcwf3sl2tVvPNH8TcDoZhKMUX1Wo16LqOQqHg+1mo1tFVYnZV5zxXaTtQHTup2iav0qYRVp8XVNoYVOaIB8Lr54B628eoU2mbVJ0jXCWeO6zeLqjMiaQyT7hKHVfluhLWFqDyvsLaA9brWFW/TyIaPSqxJ6oxnSrlBkAtr1fNU1Xax1XLPaplFZUygWqMuUq5TbWspVqmUfnOVcudo06l7R9Qr0+o3GdEJf9XiUUO65MI6xMAwsthKuUmlWMNm/tI5f46Yceq8l1yHgmijUclz1PNP/sVw6Car/czlkOlj0u17KLymfYzLkSl/aefn+moU8nrVPv1VcZlqN6LTaXtJ+zYVV4rrCzWj9cIaxMLKzeux2sQEW1UKuUGlbKfSrlIpa1Mpaym0malWtZRaW9TKX+ptHuptMeplEFV2sVUynBrOSZo0FTKUSp9YyplO5U2nrDyVFi7V1hfU1gbUVh7V9j6sHJU2PsL+4zCPmfe24WIiIiIiIiIiMbJyZMn8cQTT+DUxcVBHwoRRfDUFz6LbcUMTp48OehD6SvLsnD16lWcPXsWCwsLWFhYwEsvvYSrV6/CsixMTU1h586d2LlzJ3bt2oUHH3zQfh4Wv0pERL0zDAOvv/46Ll++jEuXLuHy5ct49dVXcfnyZbz55psAgM2bN+PAgQOYnZ3F/v37MTs7iz179nBe6T5YXl6280WRN54/fx71eh2JRAI7duzArl27sHPnTjtvfPDBB3H33XcP+tCJiMbeysqKnS9eunTJzh8vX76MarWKWCyGBx54APv377fzx9nZWWzfvn3Qhz7ymD8SEQ0v5o/D4fXXX+/KK3/2s5/BNE0Ui8Wu9lWRV6rM10BERLfnrbfesvNKkV9evnwZV65cgWEYyOVy2Lt3ryOf3L9/P6/RfcD8kYhoeDF/HDxd13HhwgU7nzx79izOnj2L69evAwCmp6exe/duPPjgg3Z+uWvXLtx///3sEyYiWmPtdhtXrlyx21tFm+ulS5ewtLQEANi6dStmZ2ft2J3Z2Vk89NBDnBPhNjF/JCIaXswfhwPjd4iIhhfjdwaH+SMR0fBi/jgcGL9DRDS8GL9DNJxYfiIiGl6DKj+J+zo1Gg2Uy2X7z70sLM3NmzcD7zOVyWRQKpVQKpXs+/+I56rLNm3axHtObzDu35zq3/Xr1z3vqev+jfn9zczMYHp6ekP+7jifMBHw+O4ZnDhxAsePHx/0oRDZ6vU6zp0755hbeWFhAcvLy9A0Ddu3b++KQX/wwQexffv20PtcEhFRf1y7ds2OGZDj0S9fvox2u41UKoWHHnrIUaefnZ3F1q1bB33oNCLYvk9ENLwYHzF4HL9NRDS8OH578Ni+TEQ0/Ni+PHhsfyUiGl5sfx0c5o9ERMOL+ePgsX+SiGh4sX+ym2ma+M3f/E3Mz8/jxz/+MXbs2DHoQxoZ165ds+vEL7/8MhYWFnDhwgXouo5UKmXXjeU5QHft2oU777xz0IdORLQhGIaB119/3dG/KvL/N954A5ZlYWpqyq4f79u3DwcOHMCePXuQy+UGffhjgfVjIqLhxfoxEREREREREREREREREREREREREREREREREdFY+ZpmWZY16KMgIiIiIiIiIiIiIiIiIiIiIhpH9XodrVbLfm4YBqrVqiPN8vIy5BCeWq2GdrttP2+326jVao5tyuWy4/nq6ip0Xbeft1ot1Ot1+7lpmlhZWXFsU6lU0Ol07OfNZhONRsN+3ul0UKlUHNusrKzANM1I728tJBIJFItFx7KpqSlommY/z+VySKfT9vNkMolCoeDYplQqOZ7HYrGuGzOO4jIiIiIiIiIiIiIiIiIiIiIiIiIiIqJxdvz4cfyi2sSTX/nqoA+FiAjzT38TT33xc+D0rkREREREREREREQUptFooNls3laaQa8fhmMYhmN0zxM1TjKZDLLZ7G2n6ee+hvH1hvGY+rmvfD6PVCoV+nr0SyrXJjnt8vKyYw63IMvLy8rzu62srGB1dVUpbaVS6Zrjzk+1WnXMbRekVqs55rQLous6Go2GYx49P4ZhoNlsOubPC0rbarWU0nY6HbTbbZimCcuyHHPteaU1DMNO49VPLC8T+7MsK7RPWaRR7XtmHzURUf/Ic5m6bdTrbTweRywWC0yjaRpisZhvOvmzc6dzf67iedBrijzVa3/ArXzavV9xjJZl2eUCrzRyHuz1ncuv7fU+g8oP1H+xWMy3viLO52QyiUQi4bmtkMlkEI/HHdu6f1f5fN5+nEgkuq4X8Xgc2WwWmqYhmUx6HlMqlUI+n3e8llupVPJ9T+L9Tk5OBp4jKnMUi2MJ4p7T2Us+n3fUf1qtlqOdpFarIZfLQdM0mKbpqM+02227vpDJZNBsNmEYBoBb55M8h3a73Ua73ba/S3d7jDyvt3tebHcdTZ6L2z1Xt3su737RNA1TU1P2c/fn7657y/Nru+ffzmazyGQyAG59LoVCwf5NxWIxTExMQNd1GIaBdDptpxXbis9N0zTHflutluP7zmQySCQSaDabaLVayOVyjt9dMpn0rUe65y4X3HOYC7qu+9Zf3XO2C35tckH7cs/lLrjndBe85oMfBvF4HBMTE57r/K4P8u9G5jW/u+Ce513wuzZ4zfseti+/dqegfbnnkhcKhYLn9TdoX0HXQtU2OBpO7vssAN7XB8uysLy83LW913XM61rh1Q7odR8Iv7SA93XO7/oj8jDTNO28rNPpON6DKJOKdjb5fXQ6Hcd+xevquq7UJjfsYrGYo5wlyg2ifCZfH1OplGO9uBbF43Ekk0nHtSkWizmulclkEslkEvF4HKlUyrEv4NY1T74e5XI5JBIJ5HI5AHDsK5fLOa5rIp0oy6VSKfta5Hdd8rvGEhH1QpSZ5XsUyfmSnJ/JZXK5nhW2D7nO5s435XxR3qf8WlH64cLI5eR0Om1fq+VysruOLV93JyYm7LxHLo/2sl85P1DZLxHdPvl6Ih77/V+LNO77xamQy4Tisd//tUhTLBY921qJbpeon9dqNdTrdVSrVVQqFdTrddTrdZTLZftxpVJBtVq103qtq9froe16U1NTyOfzyOVymJiYQKFQsH/nxWIR2WwWhUIBExMTyOVyyOVymJqaQjabRTabRalUsh9PTU0ptafT8Gg0GiiXy1haWsLi4mLg42vXrjnaVzKZDEqlEkqlEmZmZjA9Pe37+M477xy762a73carr76KF154ARcuXMD58+dx4cIFXLlyBcCtc2vPnj3Ys2cP3vve9+KRRx7BgQMHHG207XYb//RP/4SvfOUruHTpEh599FH84R/+IT7+8Y+H9kvTcDNNE9/61rfwV3/1V/jJT36CBx98EE8++SQ+85nPDG0MarPZxOLiIq5cuYLFxUUsLS3hypUr9vOf//znjnblUqmE6elpzMzMYMeOHdixY4fj+fbt2wP7gukWcR0O+xNlaXnZjRs37D5lN/kaHfYnyrzi+datW/ndbWBBdTn5txj2PyytXz+6F7luJv9mw/5HSbtp0ya2NRERbRBe7ZNh63pJ1+9993PMpld75zA8lpexH2h0iPZ9EW8qxx+J363cJyrSi7KhV3o5rkmUG0V6uU9VrPOLeQwi+i1Fn6Uc1yr6J0U8n/hteqUVMYqiH1OkFXF6cj+o6Fv1i+0jNe64aMGv77xarXbVnf3i5Pzi1NzxvuJ3XalUYJqmHacM3GoTKpfLjtfUdd2OP7Ysy3E9d+9b13VYloVms+mIixPr5LRyzJxhGI64O7Gt11iQYRnjIcYoaJrmiPdKJBJ226g8jiGVSiEejzvSJpNJuz9CHuuTTCbtmH3gl7F0uVzOjokTadPptB2HrGka0uk0NE3D5OSk/ZqC1/krx0HI702OlRe8+he94uD8xj/I8RM0PoJif/zWcZvetumlzLBegmL1/daN4jb92Fe9Xrfz2Uwm48hXO50OVldXkUqlkE6nHeO0xLZyfuGOVZHH2LjLHO7xVe46mrwvd1nDHbfvju1fy9+mO++R4/LcY3HceZq731/Oh9zbyq/jHrMib+d+DTn+UP6u3XnpWsUgeI2zkIXVxcPinfzGbQH+5VohbEyf35g0wascLPMbnwb4jwERgsaqAYP9XIddWLxZ0FiIoLJg0Phav3FnfmVWIHisXtDYu6BxaV7lZiEofwg6/4Pmfwr6rFmuplEw6HkKh2Eew1FfDwTnt6MibFzxuK8fhmO43fWcL5EoXD/yvY2eRiWdGNMfti/RnwLcqp969WnIabyIfha57umVJ9fr9cjjmIZRPB4PrOOI9UHzg4XNk+Y175Q8J5nX9u45yUSfkN98ouI1/L538Zp+gvq/xDqvOnfY3Gl++ws6ll63o/HgnuPDj/v3GLad13kolvvFHwSd2wC64nLC0gty+TPsGiS/lth3PB5XGlskz4GXSCSUtxGfRyKRUIrNELEe7nlVWq2W77VFxJSIOeTCiPwvn887PguZYRhd7aoixkRWq9VC8690Oq00Z1ytVrPbkdPptOdxdTod37ZsMc+M2FdYbFtY27MQ1v4NqM2LF9bWLM/9cDvHMkrCYpaC2o0Flbp02JyQQfOfqR6ryrySo3SsKvGSYfMpqcyjSUQbj2peptKerToPqUoMhGq5IKzvWVAZoxbWRy+olGvCPi+VzyqsT1/lM9oofRWysPxw3MoZYW38/Sq/hfWhB8UJqB4r4B+/IATFFRARAeplCJXyiGrZQGVONNVykkqZRbX8oxJDp1IWVP1Mw45dpZ8orB3mdl9jVKiUNcLiDMPy9368Rli+rFIOWY/XCCvbrcdrsE2GiOj2qZSBVPqGVMplYWMhALWyi0o5ym8cs5tK2U6ljed2y1Nh5cewdrOwcnhYe9iwCyvbhK0Pa38Ja0sKaxcLancJK/OElR+DxpeorA9rWwprJwsrb4WV+XiPJSIiIiIiIiLaiE6ePIknnngCpy4uDvpQiCiCp77wWWwrZnDy5MlBH8q6qFarWFhYwMsvv4zLly/j0qVLuHz5Ml5//XW7T2Hbtm3YuXMndu7ciQcffBA7d+7Erl27cN9993EOBSIiRb/4xS9w+fJlvPrqq7h8+bJ9zb169ardx3vXXXdh165d9rV27969mJ2dxbZt2wZ89BtLp9PBa6+9hrNnz+KVV16xv69XX33VjlHI5/N2vijnjQ888AA2b9484HdARDQ6ms0mXnvtNfs6K/LJS5cu4fr16wBuxazs2LHDrpPs3LkT+/fvx969ezn+aR0xfyQiWj/MH0dTrVbDuXPnsLCw0FXvF7HfW7du7Wpn3blzJ97znvfw3oBERBHcvHnT0c4q55liPNPk5KR9vd21axceeughzM7O4oEHHuB9MdYR80ciovXD/HE0vf3223bMjvj+Xn31Vbz11lsAbo0Jve+++xx5pPgO77nnHqW5q4mI6NacFG+++aYjbufSpUt49dVX8cYbb9hxknfffbejbrJ3717s378fW7duHfA72FiYPxIRrQ/mj6OJ8TtEROuH8Tujg/kjEdH6Yf44mhi/Q0S0fhi/QzQeWH4iIlo/415+EvclajQaKJfL9p97WViamzdvBt6fKJPJoFQqoVQqIZvNOp6rLtu0aRPzsHXi/q5V/9555x3P+1C5v1vVv7vuuouxdgo4nzAR8PjuGZw4cQLHjx8f9KEQhXrjjTewsLCA8+fPO8qZcj/W/fff75jrU8QRbNu2LfCehERE1G15edkROyDHpYv7D+fzecc196GHHsK+ffvw0EMPBd6fnqgXbN8nIlo/496+P644fpuIaH1w/PZoYvsyEdH6Yvvy6GH7KxHR+mH76+hg/khEtH6YP44m9k8SEa0P9k9G8/nPfx7/8A//gGeeeQYf+MAHBn04I0/XdVy4cAEvv/wyXnnlFbuM5i6nuecAffDBB/HAAw9gampqwO+AiGi0WJaFt956y3G9FfXkK1eu2HMRuNsl3/ve92J2dhbbt28f8DvYmFg/JiJaH6wfExERERERERERERERERERERERERERERERERFtGF/TLMuyBn0URERERERERERERERERERERDSeLMvC8vKy/bzdbts3YgGAer2OVqtlPzcMA9Vq1bGP5eVlyCEutVrNvtGp1z4BoFwuO56vrq7aNyEAgFarhXq9bj83TRMrKyuObSqVCjqdjv282Wyi0WjYzzudjn0TeWFlZQWmaWKtTUxMOG4qmM1mHTd2TSQSKBaLjm2mpqagaZr9PJfLIZ1O28+TySQKhYJjm1Kp5HheKBSQTCbt5+l0Grlczn6uaVrXTXSKxSISiYT9PJPJIJvN2s/j8TgmJiYivT8iIiIiIiIiIiIiIiIiIiIiIiIiIiLauI4fP45fVJt48itfHfShEBFh/ulv4qkvfg6c3pWIiIiIiIiIiIii8JozR+ae+8bNPb9O1O3d8/64uefncfOae8fNPW+QW7VahWEYvusbjQaazabv+rDP0GtOoajH6J636P9j79x+G0mu+//tC68SRVGjGyXNTTs7u57x2rAncGDvBUHylDgvsZNZIE6e8mDnIYAd/xPJwwJGkBc/JUhgxDuGg8DI2m9BYu9ugDhjG85q9jKzWmlmRIq6URIp8c7+PcyvytXN6m5SEkVK+n4Agt1d1dXVZHedU6dOneq1jmcFb2wiL964Q168MYW86GIbqejiFnlJp9MwTdM3fWRkBNFo9Mh11MVs6rWO3rhJvV5DEPZ/AOH3CwDRaBQjIyOh1ztL9PLO9fp+ivy1Wi2wfQSexSPb3993xUILylsqlQLbEkGpVAps1wSNRgMHBwehZTYaDdnO1uv1wPzNZlPmbTabvnlbrZZLvjQaDa288eYT5erytttttFotV3vcarU64rm12204jqNtt9vttsyv5tHlDUv3lksIIf1Clff0OQgmTDe6iL+fbduBOrrAMAxEIhHfvOK3M00TkUhEq2M6jiP1BMuyOsoTclyUZRgGDMOAbdsuHd5xHClbhVy3LEuWKeS/Vy8wTVOW12w2tfJZlC2eFfWZEWWq6K7jTW80Gq57Evcifg/1fnT3KPZFGeKedXUP6r8HpV10xPOj4m0vLMuSMXHFs+nFtm3Ytu3bn7NtG/F4PLBPmkgkXDF+vXWybRvRaFSbR722Lo8ajzcWi7n2LcvqeG9jsZjs//rVO6yPfFJ5Tuo6Yf3ts4baX/X2XY+SdtL5gtLCbIrHIRqNIh6Pw3EcRCIR17sQjUYRiURkG+uVWWp7oMqpVqsl30GBSGs0GvL9F9i2LWWAKFeke/u04prClmCaput9i0QivraJXo8D4fbgQeH3Dvd6nGXpj3djAyTnE91aDd71HgS6dRF0Yxu6NqbRaKBcLruO+Y2t6MZTdOM8OlmhG3PyG2fStXe6MS/vWhWniaqDqb+J+r6KvoFpmrBtltRyAQAAIABJREFU21V/0XcRuqnoXwjUvP24x0QiIa/vlbnJZBKWZcEwDJduKsZIRJ2F3Bb9vnQ6LcuIx+NyPMUwDJkWiUQwNjYm9VnvuIu6boa3TLU99KYRQsiwoq5vpMpHVX4K+arKX1U+q2Wosk+VjUJ2HqeMo6L6EYjxfLV9V8fHve2+KlfUNY3UNl9dp0gd+1bL9coFtVzVnkDdmpDBo7ZTou0SbZHow4j2UrRdwjdM7SOJc0V7Kvo63eTpFdG2iTZErNOmrrV2UnlE++XNQ8gwUalUUCwW5TsatN1NWthaj8JmFo/HkclkkMlkXPu9pp23sQbyjEqlgnw+j1wuh2Kx6Lu9trbWYfOKx+OYm5tDNpuVz4q6r25ns9lQv4XzQi6Xw/379/HgwQMsLS3h/v37+PDDD9FqtRCNRnHjxg3cvn0bt27dwp07d3D79m0sLi72dI23334bf/u3f4u33noLc3Nz+OpXv4o/+ZM/wSuvvNKnuyL9YGlpCT/4wQ/wT//0T1hZWcGNGzfw8ccfo91uY3FxES+//DK+9KUv4eWXX8bt27cDx9uHkWKxiFwuh3w+j+XlZSwvL7v2V1dXZb86EolgcnISc3NzWFxcRDabldti/yK1I/2iWCxid3cXe3t72Nvbk9t+x8RHpOns7cKukMlkkE6nMT4+jnQ67dr2HlM/6XTaNd5MSBBe3Tjs+yh5exk/U/Vtv29Vtz5qXu965oQQQki3qONrXv8W1bdE9WdRj4tt1d9GtVOrfiuqfVm9ljp/Wd1W/WDUsbjjoI5lqdvqeJwqV1VblzrvVh0rU7czmQwA95idOs6m2qvVsTh1O2yOMDk9hC4onlf12RbvhBh7EXnFM6w++yKvGE8R7514xtW83rGdXhD6oRjzVZ898ZyK51v4D4m86rMpnmPx/Iu8YkzF75sQFa9MqVarsi332g+q1Sp2dnbkM1+r1VCv19Fut1EsFl15a7UaKpWKzKP6b5bLZddYZaPRQKPRkPnUvI1GQ+ZV53wL/3b1/fPOCT/pudCqLcswDN+53aeF8FlUsSwLo6Oj0l8F+I3PondMSPVBEfjFfdDFtFD9G8PO18WJ0J3vJ1tFe6ei83vxiyOhO58QwUnOceE5/mmD9HMP4yTnuxz3nHq97or5YRiGbKvb7bbrNzRN09W212o1tNttOb9MnavgOA4qlYqcg91sNl3/k3desdB9gWeyRY33IvyOxPziUqkkZW69XpflGoahnetxHFRdGHD3D70ySO0jeuWDKte8/4sqM1RZGeTL77222lf1yrawOFHk6ITFfQuLyRbmTxcWby3I58dv7pNAN19KEBQrLuiedXOjBEG/RZBdJ+g3CppjG/bbDQtB76efPhkUe83bZqkExVsLio0W1K8PkjM63VsQ5E8eNKYV5HcWFCfuKL8lIeeBMN/QsNijYfp0mBwLi58aJDeAcDkbJuuA8NimYXbWMHkSFu8hbOwiTFcIktdnhSDZBHTXFofFAg3zSw6L3Roks4DwOCxhMUbDYp52M083zM4UlB50/0H3FvbfEUKOT5gc6UYOhMm6k7hGmE4RphOcxjW6ict+Gtc4ibnCw4AaM82PsHjeo6OjUj7r4gP6xX9TUceTdHprIpFw6QDeeFSRSCRQhzAMA5ZlaZ8LMeYXjUY7+u21Wk2+d94xLzX2s4hv4jiO9tlS66fG2BL7Qc+rsNM6jiN1djXmdTdzthqNBmq1Ws/P7OHhYU/joY7jyN+s2zFO9ffo9hxd3G1CAH18TIFfGyFiwfql+R3X2bvUuKm6NG87IuocZNPXXUeNNatrQ7wxMJvNZmA/ScSm9dZDvbYutn00GnXZ9ur1eqD/uhgrUvN4/7NKpdJxPyJmrrjfRqMR2OaL9i6oLn42CnFOvV4PjfkofML8/r9Wq+VrBxD1Pzw8HNrxzaMQ1ifvpk+s8zPxEmY76GZ9kLD5FmF1DbNxhPl9ht1nWP2CbANhtokw20fY/0gIIb0QNjYAhNvmu1n7rJu5BWG2gm7qGjaW0s1YRjd1DbM5dGN/6caPKizWctjYD3B+7COCsDGIbmzpYeMQQPg4wEnoM2F1DdNXwu4jSCcbZNmMd0cI6RcnMW4QpgecxjW60a3C/EtO4xphekg3etdxr3GWCNMtwvr63egeYdcIk8HdzJE9jWuE2ZXC9JSwa4TNqwy6x270SEIIISdHmN9IP9MHee3zkB6m5w07x11v8CKnD7putDsRQgghhBBCCCG/4d69e3j99dfxww9yg64KIaQH3vjm1zGfiuPevXuDrspAaTQaePLkiVwHZ2lpCQ8ePMDy8jJWVlakr2kmk5Fr3njXwXn++ec5L58QcmEoFouyzfSuIfbhhx9KH/xYLIbnnntOrqe3uLiIW7du4aWXXgqdT0YGj/o/q7Lxgw8+kHMkxZqTfvLx2rVrjH9JCLkwVKtV5HI5rXzU9S1u3brVISNfeOEFris35FA+EkJIb1A+XjxyuZyUj6q8VNcbF3ZW7zrji4uLeO655xgnnBByoVD7GKqMXF5exqNHj+S83Gg0ioWFBSkfVXl5/fr1wPmRZPBQPhJCSG9QPl4sarUa1tbWXPZWIS/z+TyAZ/EcJicnO2SkkJ3Xr1/nOtmEkAtDo9HA5uamSz6qcnNlZUXGTvL6Owp5efPmzdD1JchgoXwkhJDeoHy8eNB/hxBCeoP+OxcDykdCCOkNyseLB/13CCGkN+i/Qwih/kQIIb1B/enkEOvSVCoVFItF+fEeC8uzvb0duG5zPB5HJpNBJpNBIpFw7Xd7bGJiAvF4/BR/ncHg/Z2DPvl8HrlcTv4fXry/abefqampwLUWyfFhPGFCgK++OIc333wTd+/eHXRVCDky1WoVH3/8cUef/r333uvQSXX9efqhE0IuKqJf7+3T/+d//idKpZLs31iWhZmZGVy9ehU3btzA5z73Obz00kv0vSJDBe37hBDSG7TvXyw4f5sQQnqD87cvFrQvE0LI0fCzL4tPsVgE8Kyvcfny5Q5ZSfvy2YL2V0II6Q3aXy8GlI+EENIblI8XC45PEkJIb3B88mRwHAff/va38Xd/93f4/ve/jz/+4z8edJXOPULH88r8Bw8eoFKpAGAcUEII8eIn90Vf2RtLeXFxsSMW6EsvvYR0Oj3gOyHdwP4xIYT0BvvHhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC/j8/MBzHcQZdC0IIIYQQQgghhBBCCCGEEEIIIYSQi06lUkG1Wj3Sfr/yHvdcsfh6v4jH40gkEoHHet0f9nMymQwIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkInP37l2slar49ne+O+iqEEII3v3Jj/DGt74BhnclhBBCCCGEEEIIIYPEG/ell3SeOxznngV08XCGKX0Y6nAW6phIJBCPxzuOt9tt7O3t+Z6n0svzvLu725UNvV6v4+DgAADQbDYDyy+VSmi1WnAcR56jo91uo1wuAwCq1SparZZv3lqthnq9jmaziUajEVjXWq0mP2E0m02USqWufoNGoxF4PwLHcUJ/I/X6juOg0Wig3W775mu323AcB47joNVq+eZ1HMeVJvL75Q06lwwHhmFoj4v/T6RzLIycZfye82GC79j5xLZt2LYdmi8SiSASiQTmMQwDhmEgEokgGo0G5jNNU5tPlcWmacKyrI58zWbTdY6aLxaLafUE0zRhmqa8Z7HtRZRVq9UC78MwDFkPwzBgWVZHnnq9jnq97tJD1N+71Wrh4ODAV/cQ7UKlUnEdV+9P3EetVkO73fYtq9Fo+OqPQscSupjaHnl1o3q9Lo/r2gRRjh+ivIukb4nfU9fOi3dBoG5708SxSCQS+PxGIhHt82hZljxu27Yrj2VZHe1ANBqV74OujbBtG+l0WlsP27ZlPb39Pm9bEo1GEYvFZJrunUun0xgZGdFeS5w/NjbW8RuPjIzI+7QsC2NjY9oyBLFYDMlkMjDPyMhIYPtGLjYHBweynWw0GrKvD7jtDqq9Yn9/H/v7+zJfqVRCs9lEpVJBvV6XMsBxHBSLRdnGVioVKYcqlYqrn35wcCD75LVaTZ7TbrdxeHgo2+BqtSq3m82mrPtJId4Vx3FcctgwDJcsNE3T1VaapillnbdddBxH1lN95w3DQKVSGUp9NZVKadtRvzbHNE3f9tWvLD87W1DbNzY2ppUXfja5oLLS6bRWNvmVZds2UqmUtqzx8XGtzEwmk1JeqEQiEYyOjmrLIuSo6OzK3R477vnDdh2/a3drT+8HQesoqP0M0T8E3P2aaDTqav+azabUQ5vNpquvpdocG42G1I1Vm3uz2ZT5Go0Gms0mTNN0yax2u41KpSLlnFceB40J9IJlWUilUrI+aps6Ojoq9XD1N/S272o+b3sdlKbKKG/brMqcaDTq0u2D0ggh5Dzgt46SbruXvCdxHnAyMl2VK2Jbd6zX7ZMow69PQggZfsRacnt7e2i329JmJuxvoi2r1Wo4PDyUPi+qT5FfGYeHh6jVarINFX5AooxeEDqs0I8Nw8D4+DiA39hLhE1Z5FVtP948wl7Uax5CzjKVSgXFYlG+k97tXtPC9Jt4PI5MJiP1BO92UJoun59tlJx/arUatre3USwWkc/nkcvlfLc3Nzc7fBwymQyy2SwymQzm5uZ8txcWFi782GSxWMTS0hIePHiApaUl3L9/H7/61a/k2Fg2m8WdO3dw+/Zt3Lp1C3fu3MGLL76oHQM5Kh9++CH++Z//Gd/73vewsrKCT3/60/ja176Gr3zlK7h58+aJXYecHB999BH+9V//Fd/73vfw3nvv4fr16/ja176GP//zP8fNmzdxcHCAX/7yl3jnnXfw9ttv45133kGxWMTo6Cg++9nP4pVXXsHLL7+M11577czrXI1GA5ubm8jn81heXkYul5PbYn99fV3Kz3g8jrm5OSwuLiKbzXZs37x503ecj5wMqs1H6DxBH2/ejY0N7biDn77TzWdycvLCyyPSH7w2Tu/z75fWa15hG+gG1T6pvi9h373knZiYoN2SEELIwDnOGONpbvcix4M4jbHJ4277+YeS4+OnJwalHSfvccbku9EnT/KbcyPIoPD6pvrNtfCO4apy4aj5dnd3pe1kf39fznET48jAszkOasyFcrnsql9YfIde8M7rFP1Fx3Fg27b0ARX+q6K+6rwswzA65mI2m000m82OuWNifqE6Z61er7vuyTAMGc9iUPjNjwjyIb6o51OHICeF4zjY3d3VpqltpEpQ7B91jp1Kq9VyzaNTKZfL2jY2yKfnKOcIHyIv3rmAKvv7+1rbuxp/yItff0b4Ow0jtm1Lf35Vj3UcxzU/QNyXYRgd8zjEXMFoNNoxl7zdbrvmFIrfVMguQbPZRKvVgmVZrnkZwLPfXNSt1WqduLyKRCKutnZ0dFTKzXg8LueoGIYh50IYhoFkMil1a8uyMDk56SpDyO5e5lqo80G8MiCTychtVa/vJp4YIb1w1DiFZz1tWOoB+MutYSOo/TnptNO81llK85ubTQj5Dd3EJD1ODN/zkD4MdQhL9+sHDjPHicnbj7SzVm6/rukXv4QQMjjCZECQbVHgZ8cTiPFcP7qJd34a1wjrC57GNcLsmEE2ZSDY3jrMBMXEAsLlR1DfLCyeimpH9KLOW9URJi/94owB4bEZvffsHVtMp9O+9yxszn5jj8lk0veeRRxYP6LRaIcv7lHW1fCe470/XX7dmIlYK0CHmAvtRcQo0uG3noAYB9Yh4t7qzvFrt/zuV7Xhe+vs9/v4rRMQdJ8iBq6uzn7n+MXADbpPcZ6XQY6Jk7OH8McQsTB7PUeH7p0RMYNN0/R9R1REjE+/6/ittaHGGBZrqAQhYqr5yZN2u619B0X80Xa7Hah7qO+wiGuuUq/Xz2wMaxFfwi8etV8MTcMwEIvFQtfxUf3/1HivwDMdwG8OvGEYSKfTHbGpBWHxPcPi+QTpNkCw3hSmn4TFjQ7ziwyKDcAYHoSQQdON/cPPl0tFxFzyI8jnSRBmO+imrt3008L87bupa9jYQTe2krC6hv3uQfdxlJhWw0KQzA7TF8Jkcj/LVn2rTrPsMPvPIMsmhJBBcB58HHiN3q4xrAzCJ+E45160OjGOIyGEnC5hNg6/OYGCMDtMWHqYzSnMLycs/kiYrSnIbhbmCxNmYwpLD7OnhdmQzqovjiDIJhPkrxOUFlRmUFqQnSUoLWiM6qj6UNCYW1BakA9TUBptSIQQQgghhBAyGO7du4fXX38dP/wgN+iqEEJ64I1vfh3zqTju3bs36KoMLeVyGR999BGWl5exurqK1dVVrKysyG3VZjo9PY2rV6+6PleuXMHs7CwWFhYwPT0d6H9OCCHDwObmJtbX1/H06VPk8/mOdu/p06dyLCwWi+HKlSsdbd/169dx8+ZNzMzMDPhuSD9ot9tYXV3Fo0ePsLKygsePH2N1dRWffPIJVldXkcvl5HhoPB7XPiNi/cr5+XnOcSKEnAmq1apcrzefz+PJkycu+bi6uury15icnOxo+65du4bFxUU8//zzXM/tHEL5SAi5iFA+kl6oVCp4+PAhPvnkE6ysrLielcePH2Nra0vmzWQyHc/J5cuXpZycnZ3l80IIORPs7u4il8vh5z//OfL5PPb397G5uemSlWLeg2VZmJ+fl+2e2g4+//zzuHLlCuemnUMoHwkhFxEhH0V/UrWlUT4SL1tbW3j48KHLZ0c8LysrKzJuuWmayGazHc/J/Py8tLvOzMzweSGEDD3tdhuFQkHKybW1NZeMXFlZQT6fl3PQE4lER9un+u1cunRpwHdE+gHlIyHkokH5SHrhKP47V65cwfT0NMbHx/HpT38aN2/epP8OIeRMQf8dEgb9WwkhFxHKR9IL9N8hhFxE6L9DCDkO1J8IIRcR6k9nF7EOXaVSQbFYlB/vsbA829vbgWvbxONxZDIZZDIZue6G2O/22MTERF/lovf+uv0UCgXtujne+1E/YlzBe/zSpUu+a4uQwcN4woQAX31xDm+++Sbu3r076KoQ0hcKhQI++uijjnEzoduK9Xsty9L6oc/Nzcn+PP3QCSFnib29PaytrWF9fV36onv79aINNE0Tc3Nzsu377//+bzSbTdRqNZRKJTlnRyWdTmNychKXLl2Sn4mJiY5tNY/fmpOE9BPa9wkhFxHa90kvcP42IeSioc7f/r//+z+Uy2XXHG7O3yYqtC8TQi4qXvvyW2+9hdXVVRwcHGBvbw+FQkH2K1X7smgHr1y5gmvXruHGjRu4evUqbNse8B2RfkH7KyHkIkL7KwmD8pEQchGhfCS9wPFJQshFg/GlTwfHcfCtb30Lf//3f49//Md/xJ/92Z8NukoXmmaziZWVFTx69Airq6t4+PAhPvzwQ6yurmJtbQ3FYhGO4wAAbNvGjRs3XLFAr1y5IvvFjANKCDlLCLkvxlnX1tZc/WMh99VYyKq8F22hkPvT09MDviPST47TP56fn8fo6Cheeukl9o8JIWcG9o8JIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYT0wA8MR0SnIIQQQgghhBBCCCGEEEIIIYQQQggZUorFotxuNBool8tyv1KpoFqtyv39/X0ZqN5xHOzu7sq0er2Og4MDuX94eCgXfgOeLTgugve2Wi3s7+/LtFqthsPDQ7lfLpfRaDTk/u7urlwkpNlsolQq+daxVCqh2Wz28hN0hW3bSKVScj8ejyORSMj9VCrlWgQ9k8nI7UgkgtHRUbmfTCYRi8Xk/tjYGCzLAvAssLu6yEk0GsXIyIjcHxkZQTQalfvj4+MwDAPAswX2xsbGfM81DAPj4+Ou+/LWmxBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsjF5e7du1grVfHt73x30FUhhBC8+5Mf4Y1vfQMM70oIIYQQQgghhJCzhjd2ioo37oqXg4MD1Ov1Ez+33W5jb2+vL+d648yc1Lne+DZevHFnTurcYcUbW8aLNy6NijemzUme642lc1Ln6mLlqCQSCcTj8Z7OdRwHBwcHiMfjvtcFgNHRUTSbTd93IhqNuq69t7fnsmPato1kMtlxnjdGUxCiHanX677tCfDsHdvf30e9Xg+Nu1StVlEul7uKz1QqldBoNELzNptNlMtlGZcqiKC2UcVxHJTLZRmvKoharRZYpuM48hP2zot8rVarq/sReWnDJoQMChF/btjLdBwntNxu2lK2t2cPy7JknMOgZ8C2bdi2DdM0Q8uMxWK+eqvANE1Eo9HAfKZpwrKswHyGYSASiQDo1P9UIpGIvL9YLOabz7ZtqWPo8gndSz2u5gvTC2OxGAzDCMwj9Fu/e67VajJPJBKR969LV+9LzVetVn37eIZhaNObzab8bVqtlrwHP72sVquhUqn46ouVSiWwj+qnQwp9EIBLF9a1P/V6vSt9lXSHeCcBd3uhHhcYhiGPe9MEkUjEt89nWRZisVjHuZFIxBWb1bZtmUf3Pog8yWTS952KRCIYGRnRnhuNRhGLxRCJRFzn69obcT9BbUwqlfLtQ8fjccTjcYyNjbna2qA+OSHnBT9bhBqPW+CNyy3wsyPu7++jVqtJmdNsNlGpVFAqldBut1GpVGTevb09mc97XNRPlS2iDOCZ7Go0GvK70WhI2dRqtaQcFXYKQb1el/na7bYsz3GcMynDRBxwVU7Ytu2KDy7aONFmqm2eZVkYHR2V8kOUY9s2JiYmtNdU436r+LWf3hjk3ZTlZ5f1xhVXUeOeq4yOjvrKHF1ZYfZXQgaFrt31a4u7zXucY6d1nV6ura4Vcdp412bwO9ZL3uMcE8dN05TyrV6vw7ZtxONxVKtV17oaQuevVqtoNpuIRqNSxorjwLM2vVKpyONqnlarJcd6TNN0rZlRLpelLUz971Q9I2wMs1dUuaS2+d4xunQ6LWWjKn9isZgc0/KORaoyR13PQh2jU+WfV7ao62/4XZMQQi4SQjaoMuKo2yddRpDPULeosrqX7aOe12sZXJuJkIuBt43r9vs45x7FDzGo/Trqdzdl+NmPCDnPVCoVFItF+b56t3tNU9fS1BGPx5HJZOS7593uNc3PtkyIQDyf+XweuVwucHt9fd31/KrP3tzcHLLZrO/2zMyM7/j8RaZer+Phw4e4f/8+Hjx4gKWlJdy/fx/5fB7AM/varVu3cPv2bdy6dQt37tzB5z73Od8xoH7gOA7effddfO9738O9e/ewvb2N559/Hl/+8pfx5S9/Ga+99lqoLxbpD/V6Hf/1X/+FH//4x/j3f/93PHr0CJcuXcLrr7+OP/3TP8WXvvSlQBnQarXwwQcf4J133sHbb78tn0PLsvDCCy/glVdewcsvv4zXXnsN165dO70bOyWq1SpyuRyWl5eRy+WQz+dd2x999JHLfp/JZJDNZjE3N4fFxUUsLi669q9cuUK7wQBpt9vY3d3t+Ozt7WmPe9P85qyNjo5ifHxc+0mn0x3HMpmMK53PBBk0e3t7aLVa2N3dRbPZRKlUkvPShD1C+EYdN283iPFH27aRSqXkmJ8YrxQ22PHxcZimifHx8Z7yirFO+jUSQgg5D6gyVvUbUueY12o1HB4eAoC0QwL+47xqPAZ1fFf1lS6VSnIejOpjpm7v7e1JP6swe2c3qD5Kqu+Rui10AsDta6T6Oqn+ROrYh/A/UssLS1d9m1T/JdI94rk67vhZr+d0i3h2xLd4rvr9Tch5wk/eBKUNS76TkF8Cda6eOtdYzEkB3PNnRZ5Wq4V2u+2aFyjmPAJwHVfn2IuyxPwhYX8Sc4/r9bprzqRt22g0GqhWq67j/fBP7zYWTL/ohz/6cc8fxjoBbp9wQoYBv3Y5SMfTze0EguPB9XqOn+3TL/aXXzl+/rV+83p0v4df/D3RX/TmF3EUhgW1T+Ung096vqoap0TdjkajLvmpznFRx3WELBbxAYQsj0QiSCQSMk3I60gkglQqJY+pY+jpdNrVdxU6wuTkpGynxbxVQD/3MyxuICHnmaB5dEHxSYPirfrFAwCCYzwGyaYgGRQUJzVIj1ZtdV5UG50XP9naj99ymAiab+inGwPBMVOCYqsGzS8JsikG+XT6zf8Pms8fJCNUu6qXoDgEQb+l3+8VFNOVEHLyhMUkDpJ1gH//CAiWP0GyMExeBMmuIFl5nHsJkrODuJdhJEgOho1t+MktwD92DRAsZ8LijwfJ2GG7lyA9ws8+x74fIeefoLn4YXFkVB8RHUEyPEy2hc1vDZJ9YbI6LP5AkCw/zj2HrWlynHseZoL6qmFyJqxfFzS+FCZrg+QiECyLw+ILBd1zmG4RdM/9SBt2/+ZefW+Ao8UYOUrcs6C2QsdR7FlqmyNidYZxeHgo77+btViAZ7+Zmq/ZbIae5x2vUuNv62i32x19RuGj4Eez2exoF9XYozp0a9p0c4637mocbx21Wq0jPSi/4zjHjn1DSBBB8zV1z6aa/6yuj2EYhiv+rvc30MV+V/N547V7EfJR1TVM04RpmjAMQys/RVpQLHhRdpAPcDKZ9I0Zb5qm79hCJBJBMpkM1J9EzHiBiCMv6hlUtkjzxpFX04Lq5JfHj2HXUwgh55Mwe3qQr2/YnNbjlB1m6zirZYf1345T9jATZHMIGjMHjmfPCCs7LIZbv8oOW0tgUGUH+TYQQsgwEjYnKUymB/kyhPmDBF07aOwjbNwkqE5hukDQmEqQ3TlsbCxIfwnTBwe5/sZRCJOjQXpJmBwN8rMIGoMZxjoBwXpSkH0jbJwsaLwpTEcihBAyWML0pzDfk7Bx8jD/krD0IN0w6Nyjzk8JSgvSr4LSgnTFo86HGSaC9JogW0hQWpBucdR5KEFpQT49QWlBc1uOMu8lKC1Iv+T6l4QQQgghhJxf7t27h9dffx0//CA36KoQQnrgjW9+HfOpOO7duzfoqpxZdnd3sbq6itVVy0a+AAAgAElEQVTVVaysrGBlZUXur66uYmtrS+Y1DAMzMzOYnZ3F/Pw8stks5ufnXftzc3Nc74sQ0hd2dnaQz+extraG9fV1rK2tyf1f/epX2NzcRKVScdn74/E4rl27huvXr+Pq1auuz7Vr15DNZrlWJumg0WhgbW1NysJPPvkEq6urePz4sfxWx6oSiYRLDnrl4+zsLBYWFuh7SgjpC7VaTcpFVT6KNS0fPnyIp0+fusbKDcNAJpPB5cuXce3aNdy8edMlK69du0YfNNIB5SMh5CwRJh/F8e3tbdd5iUQC4+PjmJqawsLCAq5evYqbN2/iM5/5DD73uc8F+iERcnBw4LKvChkp7K7r6+uu+TWXLl0KlZMzMzOMqUAI6Qv7+/uhcnJtbU3rt26aJuLxOEZGRjA9PY35+XksLi7i5s2bWFhYQDabRSaTwZUrV6jvE8pHQsiZ4ijyMRaL4fLlyx1jkGJ7YWEhMJYdIYVCQSsjV1ZW8PjxY1e8Bdu2pf6lk5Pie2ZmhmPghJATx3EcFAoFrd1V3d/Y2HD57aTTaa2MFJ/p6ekB3hUZVo4rH2dmZjAyMoJr167hxo0blI+EkL5B+Uj6TaVSkfaJYrGIfD6Pp0+f4tGjR1hZWcHW1ha2trZcMfVs23Y9b/TfIYQMkqP47xiGgdnZWa2MpH8r8UP4t3744Yf49a9/jQ8++AArKytYW1vD5uYmdnd3XfFno9Eorly5QvlICBkIlI9kEKj+Ow8fPsSHH36IR48e4enTp8jn89jf36f/DiFkaKD/DiFkGKD/MyHkLEH9ifSCWEukUqmgWCzKj/dYWJ7t7e3A9WXj8TgymQwymQwSiYRrP5VKwTAMOI4D27blehT1eh2VSgX1el2u1bK3tyevv7W1pV1fRC27lw9jjp1PGE+YEOCrL87hzTffxN27dwddFUIGQj6fd/XjHz9+7PJD39/fl3lt28bMzIzsz/v16+mHTgjpJ3t7e7Ifr+vP6/r10WhU26+/cuUKrl69isuXL/uuUSgoFovSP9nvo/ow+/XJRP8qqP8l2tdMJoPJyUnfdRcJOQlo3yeEnCWOYt83TRMjIyNSBs/Pz+PGjRv41Kc+hZdeegmf+cxnQvUAcrFhfBNCyFnhqPO3gWe+94lEAul0WvZLr1+/jhdeeAE3b96Ux7rpP5OLBe3LhJCzxlHty4lEAtVqFY1GwzXvNplMYmFhwWUXE99q+8Z5txcX2l8JIWcJ+leT04LykRBylqB8JIOgl/FJy7KQTqcxOjqKGzdu4IUXXuD4JCHk1GB86eGhXC7jL/7iL/Bv//Zv+Jd/+Rd85StfGXSVLgTtdhsbGxsoFAryWV9bW0OhUEA+n0c+n8f6+jry+TwODw/lebZtY2pqCpcuXUIqlcK1a9fwwgsvSFm/urqKJ0+euOYjJ5PJjnFWXT95bGxsED8FIeQCINq8sHFWr9wfGxvrkPtiHs/Vq1cxOzs7wLsiw0atVsP29racn/X+++9jZWUFy8vLePLkiUw7ODjo8H+j/y4hZJCwf0wIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIaQP/MBw1MiMhBBCCCGEEEIIIYQQQgghhBBCCDnTOI6D3d1dub+/v49WqwXg2QKPYpGKWq0mF7loNpsolUrynGKxKLcPDw9Rq9W05bXbbddCV2qZ3usBwO7urlxAstVqYX9/X6ZVq1XXIm3lchmNRuMoP0EglmW5Ft2Ix+NIJBJyf3R0FJFIRO5nMhm5bdu2awHxRCKBeDwu98fGxmBZFgDAMAyMj4/LtGg0ipGREbmfTCZdC2Om02mYpgkAME0T6XRapsViMSSTSd86jo+PMzA6IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkAvD3bt3sVaq4tvf+e6gq0IIIXj3Jz/CG9/6BhjelRBCCCGEEEIICadSqaBarZ5Y2kmXN0xp/bhWv+K59BNvbJhe0vt1bqvVQiQSccWd8Z4bj8fRbDbRbDY70mOxWMe5jUZD5o1Go664NCqGYcgYNTqi0Sii0SgAoF6v4+DgQMYKsm1bpnkRcYLUmDYqtm0jEomgWq3i8PCw4zmKxWId8W/K5bIrFpEfh4eHrrhDQQQ93yqtVgu1Wq2jno7juOx47XYb9Xpd+z957X3tdhuNRgPtdjswn+M4aLVaHfn88rbbbdoWCSEXlqDYaceJq6Y71ysDgvJ1U66uPNI/TNOEZVmhz4VlWb76jMAwDEQiEdi2HZrPNE2pBwXVCwAikYg2n2VZMo/Ip9PJLMty1UnV6wS2bXfUOxaLuXRHv/qqOmiQXhiLxaQenEwm0Wg0fPsQsVgMpmm64k16qdVqMAzDV78VeYQuqstXrVZd8TC9v02lUnGlq/UTv32YHnnc9JO8htARvTiOg4ODA+29ivzitxT5ve1UtVrV6r5nEcMwAttxb9pZaLd1/SrgWVvj1/8M6puKd0rXh0wkEvL9UNsyAK6Yq8Bv2ifLslxxUQW2bWNkZMS3HslkEolEQtvupNNpGIaBeDzuqoM3bqyKNz6r91p+7Y0aL1bFGzuWENI9OtnWq62zl+PDUHaz2YTjONJGJmRLu92WOosqcxzH6ZDPgmq1qpX5w4gqS1S5odoqTdN0tfVCdliWJfVqQSKRkDqrbduyDG/8biEbo9EoksmkPMcwDIyNjck2X5UjIyMjrrjeojydvdfPBtzrccYGJ+cFdV0CoHPdAqBzHQGgcx0CANjb23O1cd51E4Bn4yLlctl1TNce68a21LUOBKVSqaO/411fAehcRwHoXC9B4P1NThPvOgSAvh2KRCIYHR11HfOucSDQtVepVKrD1qDTq71tNOCvt6vrOgh0+vjIyEhHP0F3j961IYDf9PnEc6A+E+q2+ix2s62uwdHrtvoM+m0fB3VNDHVb/c3U58Hb11H/A/U/Vv9b73+qPjPqM6le0/v/qP+/7vkihJCLjqqLCDmi6kVC91HXglJ1GqGfqOUIWaYrR9VzdOX46UG9oMocVS6odjxV9qgyRazT1GsZqowR8krVgfzKIIQQgeh/9vp9nHO79XtTUXVvsX3U717K0PXXCCG/oVKpoFgsyne7WCx27HebVq1WQ21Q8XgcmUxGvqfe7V7TaNMmJ0WxWEQul0OxWEQ+n/fdfvr0aYcNOR6PY25uDtlsFplMJnBbZ28kelqtFlZXV7G0tIQHDx5gaWkJ9+/fxwcffIB2u41oNIobN27gzp07uH37Nm7duoXf+q3fQjabHXTVXbRaLbz77rt466238NZbb+G9995DKpXC7/zO7+C1117Dq6++ijt37tD22CeazSbu37+Pn/70p/jpT3+K//qv/0KpVMKnP/1pfPnLX8Yf/uEf4otf/KLWB6db8vk8/vd//xfvvPMO3n77bfz85z9HvV5HNpvFK6+8gpdffhl37tzBb//2b4f6g54HRHuaz+exvLyM5eVl1/7q6qoci4hEIpicnMTc3BwWFxeRzWblttjPZrOU9UOMqiPqPl49Uv1sbGzIZ0HFT/fr5jM5Ocn+HzlzBNle1Pco7Dssr9fvIQhvf0zXRztOmrClE0IIIeQ3Y92qT6I6vq6Ogavbqj+kOrYuYjEA7nF41VdS3VbHe9QxeOGzpvOL7AXVf0v1ERP6QFi6OlYelq6OwYel067s5jhjhWIepHh+evnuFvE/+n0LP0PhTyH+a5EnnU7DsiyMj4/LZ074GXrHE/3mahFCnuH1x1d9nFU5osojVZaosszrj+/nL636Lat+/ur1VNnmd+3josoh1X9L9XVW5Y7X/10dH1LlkNruRCIR2V9OJpOIRqNoNBquOe0iflO5XEYkEpH+E5Zlod1uo9VqwTAM6Uutmy+h6hoqqh+5QHe+n4+ezvag8y3RzevwO183f8Lv/NPCb26DTobobCBePUQ3H1g3r0E3B0E3J0LnX6g+vwKdL41uzofuvnS6FMdAyUVhGOcVi/nBgv39falvi/nAwLM+YrlclvK22Wyi1WqhXq+jWq1KGSDmFou5b+r8ITW2hxpjTvh4i2uK496Ydeo85WHBGxdHtG/eGDYiFog33oXw+RYyWi1L5I3H47Bt2zWfydt+Ayc3P7iX4ydVNudbEXI8zkLM3/OeNsi512H0Wz6cxjWG7ThAGzEhZ5l+yIGzVu4w3ovOtjhsHDVm/0nK0It6LfqKEUJ09EueDbLsYa3Xccs+C3IeOF2ZyDT/NM7nv1gcZexe54MQhi4mZBhHabt6tREK34lardb1ter1ulwXq9sYfpVKRa491e05h4eHaLVaaLVaXZ8jxhEdx+nqnHa77fIB7OYcsd5WL+c0m01XzM6wOTHC79X7nwSNT7bb7XOzvgEZLoQNOswWraar/We/9SrUdBEfW0XEPtNhmiYikYjWT9Y0zY5Y3WI83LvWgq4eYs0d27alr5t3PRv1HLHeiuoDJ/CuXSPigQPPxqa9sWqD0PlcDTJ/0DoVJ5Hfz7ftpPITQvrHsNoFWHYnJxWT+zQZhjGG004blnoAHCchhJwPwuaDBtnWdPOCBGExxIPkrjp/TIdu3RdBkLwfxjr5zQMT6Na9GXaC/Pd0c6AEYf1Y3bwogW79G5UgmR0k64PWiQy6pl9dg2wBfuMwQb9L0O/JuWCEEHJ2Gaa5GBc5rZeYfoNkmOwk5zkt6JwgnYwQQgghhBAv9+7dw+uvv44ffpAbdFUIIT3wxje/jvlUHPfu3Rt0Vc4t1WpVrh0m1r0R2+q+GtvSsizMzMxgdnYWMzMzmJycxOTkJKanpzv2p6ene/IHJYScH2q1Gra2trC5uYn19XVsbW1p99fX15HL5Vw243g8LtfYmpubw9OnT7G+vo5qtYpSqdQRCzcej2NqagrZbBbT09OYmprCzMwMZmZmOranpqYYH5uEIp7Tp0+folAodHw/efIEGxsbrrl5yWQSCwsLmJ6edsnBqakp1/7k5CSmpqYuxDp7hBA9Qh6qslA9VigUsLGxgUKhgM3NTde5QqYtLCxgZmYGlmXhvffeQ7PZRLlcxt7eHnZ2djp8C0V7JOTl1NQUpqen5bYqR/3G5gihfCSE9JOTlI/q96NHj5DL5VCpVLC+vi7LyOfzHf7pExMTmJ2dxdTUFObm5qStS8jLbDaLmZkZTE9Ps70iHTQaDa18VOWkeI5Vpqam5HMnbBdCLgpbqzg2OTk5oLsjhAyaer0uZaSQhUJGbmxsYGNjQ24/ffrUNVctGo36ysnZ2VnMz88jFouhVqshl8uhUChgfX0d+XweGxsbWFtbw8bGBvL5vGusCPiN7JyZmZGyc35+XvY3RdrU1NRp/2RkSKB8JIT0kzD5+ODBAxSLRRweHqJQKPQsH0U7REg/OTg4CLW3PnnyxGXDiEQi0l4hbKuTk5Ou8XB1X7eGGyHkYnBwcCD7jEJGbm5uolAoyO3NzU3kcjlsbGy44mqMjo5q5aRXXrKNIf3g4OAAy8vLWFpawq9//Ws8evQIKysrKBQK2NnZweHhYcf8Y8pHQki3UD6SflOr1Tps6+vr6ygUCvK5EsdUv2nLsjA9PY3Z2Vkpz+bm5uScDXHs2rVr2N/fp/8OIaRv9Mt/R8jJmZkZtjHEhfDpEn5d+XxePmdCdgpfL2/MVtHPm56exqVLlxCPxxGNRvH888+j2WxSPhJCTgzKRzJotre3pT2jUCjIZ03IT/W41zc6lUphdnYW4+PjSCQSSCaT+P3f/31sbW3Rf4cQciL027+V/juEkEFA/2dCSD+h/kTOCjs7O3KO2dOnT5HL5bCzs4NisYjNzU35rB4eHuLw8BCVSgW1Wq3ndSVs20YymUQqlUIikUAikcDExISUqyMjI4jH48hkMvIj1iQQ+xMTE1yj4ILAeMKEAF99cQ5vvvkm7t69O+iqEDKUBM3TUr/VOKa2bWv90L0+A6J/H7ROJyHk/KPGWBb9em8/X2zncrmu+/Xq9/T09EDurVKpoFgsuj4iJr33uPisr693rB/t7cNlMhnMzc0hm812HBef2dlZ33WOCekF2vcJIf2kX/b9yclJvP3226jVatjd3ZV+Yevr69jc3HT5Ptu2Ldsm0Yfxi5PJsQKig/FNCCH9pJ/zt6emppDL5VAqleS8IzHXSJ2LVKlUZJmGYUgbn5CRansm4mSKdRoIoX2ZENJvBmFfLhaLrvVHdd9PnjxxyWVh4xV2Xb/vbDYLwzBO7fcjg4f2V0JIP+nF/vrw4UPXGKVt27h06RKuXLmC+fl5+leTU4XykRDSTzj/iJwl6vU6Hj9+jE8++cT1WV5exvLyMra3t2XeZDKJL3zhC2i32xyfJIQcC8aXPns8evQIf/RHf4T19XV8//vfx+/93u8Nukpnnlqthu3tbZfP90mMBYi0K1euwLbt0HqI+Gdh463eOKBinUtdHNDJyUnMzs7K7Vgs1pffkBByNiiVSq6+sLdvLPaFD1Gz2ZTnhsl98U25TyqVinyOhGwTsT7FGhMifX9/33Xu6OioXMdZ+KYJP+/Z2VmMjo4im8264n/Sf5cQclKwf0wIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIWTA/MBwvKsZEkIIIYQQQgghhBBCCCGEEEIIIReYdruNvb09ub+7uysX4SyXyzJIbKVSQbVaBfBsYcRyuaw9f29vD+12u+P8arWKSqXScb7jONjd3dWef3BwIBePUM9vNpsolUon9huk02mYpgkAiMViSCaTMm10dBSRSETuj4+Py4WybdtGKpWSafF4HIlEQu6nUinXQhqZTEZuRyIRjI6Oyv1kMula7GJsbAyWZQEATNNEOp2WadFo1BWId2RkBNFoVHs/hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgg529y9exdrpSq+/Z3vDroqhBCCd3/yI7zxrW+A4V0JIYQQQgghZHDUajUcHh5q09T4IF7UOB5eSqUSms2mNk2NBeKlWCxqj3vjkagExQ2p1+s4ODjQpqmxR7wcHh6iVqtp09T4J1729/fRarW0aWoMFhVvrJRhJRaLIR6Pa9Pi8Tii0Sgcx+m4x2Qy6YqXAjz7P9vtNkZGRnxjmog4Kq1Wq+N5UeOkeMtV47qo17IsS8ZTaTabrufTsiyYpql9LtV7arVarv/Xsix5b41GQz4Xos62bcu4MiqNRsP33VHLNgwD1Wq141k0DMP1u7VaLdRqNTSbTe1/oN5Lu93uuP9u7jfMdiOuTQi52OjavKC8uvyO48AwDPmtK1ttb3RliPO9+b15Rb5e26+g/EdNG2bE73ZW639WME2z45nXPd+mabr0AL98lmW54s4FvZ+2bSMSicj8fliWhVgsFpovHo/76o1qWYlEwhXvTlcv27YRjUZdMfX86h+UT6QDz/RaXb5oNOqqTywWc8UBFKjx/gTemIF++P1fgmq1inq9jmg06vsbVqtV2UfT6dpBfbhu0k+ijGG4xjDU4Swh3iOBt823bRuWZfn2aQ3D6GgbRP9DINovx3F8+826447jyP6L+v60223fvvkgMAwDyWRSq2+o7YZoBwzDcMUeVdN18T9N05T5TdN0tfFjY2OuvJFIBLZtu2KOquWPj49r78EbD1UlqJ3zxlhVUeOtqliW1VFvgTeGq4o3Vioh5HTwk3m6473kHUTZg6hfkD35tFH1YiHXhd4tjonj3r6HkO1CBgk5L+yvoo8t5LmwkRqGgUaj4TsmcJR7iEQiMAzDpcOLezNN06XzizyiDyL0bBGPW9y7av8eGRmRckrtF0xMTEgZpcpGv23KLXLe8I7v6ca31LUCBLr2Udc2esfRdGODunE/Xfm6cUrvGGSr1cL+/r7rmG7MVDdmGDQe2C+8/QTvOgNA5zoFAFxtn0Cnw+vyedcuAPx1eXW9BIG6LoLAu3YCoO8D6Ponfv2ZYVhDQX1O1OdDPHfq86xuq+9RN9tqmUfZ9huv7hX1GepmW5WJvW6rz0w32+qzrHuuCSGEdIeQGar+JWSc6qclfMdU+abqZ6IcVc/SlSP0Q79y/PzJukHVNYTeoOpNQmapeo4qW4Seo/b3RDmqfqKer+pRqjxS5eMw6DCEkLOPaCtP67vX9lhnNzvqdy9l0C5HyMlRqVRQLBZlW1AsFjv2e00LIh6PI5PJyHc6k8l07HebNjExQbsAOVWq1Sp2dnZQLBaRz+eRy+V8tzc2Nlw25lgshomJCflcz83NIZvNarcvX77s66NBuqdYLGJpaQn379/HgwcPsLS0hF/+8pc4PDyEZVm4evUqbt26hdu3b+PWrVu4c+cOPvWpT53JftzKygp+/OMf4z/+4z/ws5/9DBsbGxgdHcUXv/hFvPrqq/jCF76AO3fuYHJyctBVPZNsbm7iF7/4Bf7nf/4HP/vZz/Duu+/i4OAAMzMzePXVV/G7v/u7+IM/+ANcvXq1b3U4ODjAL3/5S7zzzjt4++238e6772JnZwejo6P47Gc/i1deeQUvv/wyXn31VV+/sfNMo9HA5uYm8vk8lpeXkcvl5LbYX19fl+Mn8Xgcc3NzWFxcRDab7di+efOmr48dGX5U3VT38eqv6scrvwV+umk3n8nJSfZfyblmb28PrVYLu7u7ckxAvGdiXKBYLMo0YYMqlUpoNBrY3d2V4xRiTH5vbw/NZhN7e3uB8+K9pNNpRCIRjI2NyXEDYbMfHx9HJBJBKpWS73EqlXKljY6OyrGDsbExRCIRpNNpWRbtUYQQQkh/UP0GdNtHST/JMo9K0DjYoNJ1/p7nDaE/dvstdFHvt0gXz4LQbYWfdbFY1PooBzE+Pg7LspBOp6X/rNA1xX8l9Ffhb5LJZKSvitBZxX8qdNdUKgXbtjE+Pg7TNC+kbYiQQaG2A15fcNWfW52joc6BUGO6qX7qaqw01bdPnccRdG3V78Pv2sdFnVegzi9WZY3Io86JUOcPqP53qrxS/fpUXzy1bHHNbso+Djq/fN3cE90cG0DvE6mL5ecXO897vm5+j04e6eL06a6hi8un04N0dT7J56lbdPNrdHNfdHNudPNZdHPqdXNhdHNzhPxV0fmLeuff6+bL6O5BN9dG91x3G/+EkIuI8GWvVqvY3t6Wcxyr1Sr29vZQr9fRaDSk/bnVamFnZweNRgOO47jaUWHHBp61k6osF22mGm+yXq/Lch3HkW1tu93G4eGhlC21Wg3tdhuO46DRaJzYPEY1TonYF6hzx9X2SeRR54wLRIzMYcGv7evl+EmU0e/j/b4m5zkQcrocNd53UAwTv3jffrq633X8YnL7xfH267/4xQv3s6EFxef2myPtN+9/mGK9CPzaWV1fAvCPWeI3f9qvfffrD/vFG9P1s4Dg2GV+ccb87M9+Mct6veegWGWEkItB0Hy3o8jMoHGeIH+loGv5ybCgdTWC1s4IssH5/R5+tkogWCfxk7NnYU2No8azPErszJOO03nUmKB+OgWgjwsE6O2mgqCYLX4y3k+PIISQoxAU5+2004LW1+pHWlCcsNNOO068l9MkSA4GpQX5TZ12WpB9th9pfrpIv9IIISdHL76svfq99jP/SZddrVZdsrRSqfiuNSloNBpoNpty/pKf/Gs2m7LsZrOJw8ND2e9X07yIcdVardZRl1arpb2eGFMW8b29iLFjtRx1LUE//UXEGNeV67dGl7hWt/FKTyrWOCF+9OL/JNaJ6TavaZpd+xKKeIPdzi8Xcf1TqVSobqSuK+Zne1IRawaJ/GHj+7FYTNahV3+AXucY9Jo/SE8/ifxBdrlB5CfkJAgbAw/qwwet5x1W9mmuZR40/hA0hhM0DtKPddoHsT5BrwTZ/4PGUILGBoLGV4LaaT97QZAPQtC4zGnfW5CMO8q9EULIeSVIHgPB4yJBPhJh/glBMjvILwMIlulhMW2CdC8//0sgWKcBgnWoo+o1wzzWE+QD4dePDZof6Ce3g/ww/Pp3QfqIbp4ZEKwDBOkifj4dQbrNUX6fXvvWhBBChpMgHSdIJwtKC7IdBaUF6SdBaUH6X1BakM4TlBaknwWlHXVezzDhp7cA/nqQ3zn9nq8CnNy8lF7vwc/e5KcT0vZDCCGEkPPCvXv38Prrr+OHH+QGXRVCSA+88c2vYz4Vx7179wZdlQtPpVLB2tqaXIssn88jn89jY2MDW1tb2NraQqFQwMbGRod9JR6PY3JyEtPT05iensbU1BQmJyflt1jLRF3LjPM2CRkuDg8Ptesa7ezsYGtrC+vr69ja2sLm5qbc99p2o9GofPdnZmZkGzAzM4P5+XnMzs5ifn4e2WwWExMToXUqFouBayaK7adPn3bYPsVaXX5rJoptsU+IH4VCAYVCAU+fPpXf4j0oFApye3Nzs8M/Ynx8HDMzM5icnOx4N/zW/WLMVUKGi1ar5ZKJqoz0ykWhM29ubnb4cE1MTGBqakrKRqE3z8zMYGFhATMzM7h8+TKmp6e7XitMrEkYtsZwsVh0rWcJ/GZ9wm5k5ezsLGN5kg4oHwm52AyzfPRSrVaxs7MTKi9zuVyHf7dfv9J77PLly5yXSVzU6/UOOSlk5+bmpnxHNjY2OvzibdvWykhxzGtjFZ/zvj4bIWcN3RryQmbqdOaNjY0OOWTbtmusRejQU1NTHXJyZmbmxOpeq9Wwvb2tlZfqscePH3f48GYyGZes1MnRhYUFjg9dUCgfCSH9kI8ff/wxVldXZdrs7Cyee+453Lp1C5/97Gdx8+ZNPP/881hYWBjELRPSE+VyuUNO5nI513tRKBSwtbXVMbcpkUhgampK2laEjJyZmemQkWK/m7hghJDTZW9vT+u3s729Lf33hO4s2gPvnMVkMonJyUnMzs66fPfm5uY67K4nsfYxIUG0Wi08ffoUy8vL8vPJJ5/I7c3NTZl3bm4Oi4uL8nP9+nUsLi7iueeew97eHuUjIRcYykdymlQqlQ57uM5WXigUXDHHuh1XvnLlyonHSKL/Dv0ALe4AACAASURBVCEXm7Pkv0POH2Jc2c8XK8yHOcx/eW5uDgsLC0d65igfCbnYUD6SYeI05sb26otF/x1CyFn2byWEkEFA/YkQQv2JDDu6Z7Sbj3fcWyDikOjic/l9Ll26hHa7LddhENfw7ndzbHt723f9BG/9xFpJXpt92LGJiQnfNZbI4GE8YUKAr744hzfffBN3794ddFUIOdMcHBwEztNS9Xm/2Mqq/q6Lrez9EEKGj4ODA18fAtX/XJ2f4hdjWfUd8Pbrxff09PSA7rR/CD+xnZ0dbG9vy+2trS25r0v3+mVFo1FcunQJExMTuHTpktwWv633uLCd+q1PR0gYtO8TQs6SfV+dz+Tnj53P5/HkyZOONWZFvK+g+UzZbBYzMzNsp4gLxjchhJzV+dveNRn8ZKjOP9sbJ9PPRzubzWrXHycXB9qXCSHA+bMvizlOfvE0dPLTu56R3zdl58WD9ldCSD/tr5lMBh9++CHK5bJrDq6wjY6Pj+O5557Tfubn57m+HhkYlI+EkLM0PkmIH8Vi0RVDWv2srq7K2DwiHooaR1p8nn/+ee3YIMcnCSFndXySdIfjOPiHf/gH/PVf/zVu3ryJH/7wh7h8+fKgqzXU6GJg68bCg2Jg+32LsfFB2O43NjZ844BubGy43nevL1wqlZLvt3jHhfz3G2flu07IcOIX30D1u/DGA61Wq64yRkZGOvrGOrm/sLDAtuCCU61WpQ0mSLb6xccOiot91HifQbB/TAhh/5gQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsgZ5AeGo87UJYQQQgghhBBCCCGEEEIIIYQQQk6ISqUiA5V3s31a5wSdv7e351pI4jjE43EkEomO7aC0brb7eX4qlYJt2ydy/4QQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIf3g7t27WCtV8e3vfHfQVSGEELz7kx/hjW99AwzvSgghhBBCyMWlVCqh2Wx2HK9Wq6hUKh3HW60W9vf3tWXt7u5q+xcHBweo1+sdx+v1Og4ODjqOO46D3d3dvtS30WjIOpbLZW1ZAFAsFn1jeOzt7cltNU+73dbej7iurn7DRjQahWma2v8xFovBMAy53263Zb5IJOJKU7FtG61Wq6NMwzBknBDxOzqOg1arBcMwYJqmK7/jOHAcR6a1Wq2O/0jUQVxLfOv+Z1192u227zPhpdlssj9NCIFhGL7tny6vt20Tx1VM04Rpmh3HRRuoHhdl6vKq13IcB5ZlwbIs1zHRjvrVAfhNe6+2w7q6NhoN7b2JtlJsq2202o4K+aPKDPVa3jqo+zpUOaVL8+KVHb2m++UnJ4Pfe6Z7J/zyiWfVm8e7b1mW73uonhOPx7XvtHqeZVlIJBLyurr84t2MxWLadIFt27BtG9FoFJFIxDePSItEIohGox15IpGI63zbtl0x3vzONU0To6OjHflisVjHNdLptNyORqPaPAAwNjYG0zSRSCS0dRV0G18umUz6Xgvw738Ims0mSqVS4DXCYv0dHh6iVqsd6xp+/apur9FoNFAul491Db8+XC/XKBaLgenlclkrOwRh/1dQv/GsoT7jfn2xeDzuK78Mw+h4P9vttiv/yMiIbz8KQIeeIGi1Wmi1WjBN0/V+iePeejabzY7jAOR/7W3nms2mTFP7iPV6Xds3a7Va2uemXq+jXq93tNu1Wi3wORsE3tiaZ+n4MNUFABKJBOLxeMdxQsjg0ek8frJbp5fobMA6HahWq+Hw8PDI19bpdjodpd1uu2zCAj99xU+X0t1rkL39tPHTp9PpdIcMtywLY2NjHXljsRiSyWTH8dHRUW0/JpPJwHEc+XuJvvzIyAiazaZ8DprNJizLQjQaRa1Wk/9bpVJBPB6HYRjS/t5qtVCr1aRuIp6ber2OVqsFy7JQrVZl2eIZEmWI/1/NU6vVXPHAj4P6W4yMjMi+kCrX1N8xEolIXc+2baRSKQDP9Cq175XJZOT2+Pi41IvGxsaknnecaxNymnhj8B/n2EmW1e/ydXnC+uf9oNu+QDfHhrWsbstX28qLTC9rZxx1zY2TOO84HGfdjNPc5jNJCCEnz1Hk0nGOhaWHjQGFIeRGmFw5zrFeztHZFAgh5KQR49Kn/d0twj53Ut/CxifsuaLdjUajGBkZcdkQCSGny97eHg4ODnBwcID9/f2O/f39fZTLZdf+wcEBDg8Psbu7K/OWy+VQ/6R4PI5kMonx8XGMjIwgmUwilUphbGxM7uvSkskkkskkMpmM3B4bG3ONJRAyTFQqFeTzeeRyORSLRd9tsa8Sj8eRyWQwNzeHbDYbuD07O8u+S58olUr46KOPsLS0hAcPHmBpaQk///nPUSgUADwb47x16xbu3LmD27dv49atW/j85z+vHXM+L7z//vv46U9/ip/97Gf42c9+hsePHwMArly5gs9//vP4/Oc/jzt37uDWrVu4evVq1/MUzjuO42B1dRVLS0u4f/8+fvGLX+AXv/gFnjx5AuDZ7/faa6/h1VdfxauvvopPfepTA6tru93G+++/j/v37+Odd97B22+/jQcPHsCyLLzwwgt45ZVX8PLLL+PVV1/F9evXB1bPYaJarSKXy2F5eRm5XA75fN61/dFHH7l8gTKZDLLZLObm5rC4uIjFxUXX/pUrV7iu+TmlUqlI2a/7CLurLm1jY0Pr3yx0hkwmI+2bYj/sMzk5ybE7Qv4/4t1Txz/U717TvMf84gp48Y5VqN/qe95Nml9+jn0QQgghw8NJ+Wr0K/0oHMVP4zTSz7IOpNNBe9FXu83brc4KBOut3eiv3Z7jN4+HEDLcqHNIVH9CNbaeOqdRjfmgzlP0zqcU/i7qPEl1HqZapnottQ5qWxc2pt0NqqxR5zWq7Zc6li3myxmGgfHxcQDuuXbCd6YfZZ8X+j3Hqttjw1IP4GSe5V7p9/yo0zh20uVTbyFnjaPOg/Nun3RZ5XJZyu1KpeKS4bpxsl5Q451Fo1E5RmZZljwu4qIJxJhtJBKR261WS+a3LAu2bcM0TaljiGMAXDFh1ZhIjUZDHlfjJKpxAVT82nqdP/AwxX0AoPXr89NR1DgDAl37qmuH/eJG6OwBuvmNqh4m8MZBCLonXewgvxgH3d4nIeTs4GdTHdTxYaxTr8ePOz+xH5xUvLmTLOusHA9KO8u2e0LI6XKS8vA0yzvr19rf3z92f7yfDFKGnfdrdBtDnRBCTprTlI9MO7s6gGAY5fGgyzrp66sxgQkhZFjoxc+5UqlgZ2fHd42XSqXiSqtWq67x6qDzRLx4b6xlvzHfer0e6Kdbq9VcaeqYsjfNW65YV8ebRy1DRcS9V+W9uvafd50eb5rfOnpBaX5rCw0j3co+ruenp9s1MHVrOgbl5e8djHcNvyAMw3D5zXSTPxaLdZ3fNE3E4/HAdfcEYm1FEYOum7Ity0I8Hu8qfzQalWsz+um8Opj/ZPMzDvnR8FuTMWidwyC/saA1GnVrJQmCxu6D1mwMsi2c9L0FrQ2pzinwctR7Gxb8/OWA4LV5gt7hoHVTg/zbgmL/+dkW1DkPXoLuTefnF1aen1+C31iIX7ul8xEkhBDiZhh8Jy7SOb3MCR8EwzouMgznnHR57HcRQsj5JMg+EaQHBKUF2WyC0oLmsfutd+J3jt99+dlq/Ow7fjYh3RrggP863oC/vWqQ+NlU/OwwfrYbP3uG31rdfnYlP3vNIG0yvd6D31xRQgghhByfe/fu4fXXX8cPP8gNuiqEkB5445tfx3wqjnv37g26KqQHKpUKtra2UCgUsLm5ic3NTWxtbWFjYwMbGxvY2tqSx7e3t7V+GKZpIpPJYGJiQrtuifd4KpWS36lUiuPmhHgQfk27u7solUoolUradYZ2dnZ81ybyItbmnJycxOzsLCYnJzE1NYXJyUnMzMxgamrKtT9Im8f29jY2NjawubmJQqEg26eNjQ2sr6/LNimfz3fY7ZLJJGZmZjA7OyvvKZvNdmxfunQJly5dYmwu4sv29raUiWFyslgsam3O8XjcVzbqZKSQi+l0mmvnEuLD/v6+lI1+8tFPRup8hi3LwsTEBCYnJ+XHT06K9EHLjkqlgo2NDeTzeSkfxbaQj0KObm5uus6NxWKYmprC7OysvC9123uv3czfIBcLykdChhPKx07K5bKUiRsbG8jlctjY2EChUJByM5/Po1AouNoqwzAwNTWF6elpzM7Oyr5lNpvF9PS0vF9x/7p5KOTi0mg0pIwUz56QkcLGIbaFrNT5VY2NjfnaVXUyc3R0VMpLv3lThFxkurW1+slMna01kUhIW6vXtjo9Pe2SGdPT05iYmBjAnffG9vY21tfXUSgUpNxcW1uTfU6RtrW15TpvbGwMc3NzmJ6elt9iW/Q5Z2dnMT09zbkJFxTKR0KGk2GVj7u7u/j444+xvLwsP0tLS3jvvfekz34sFsP8/Dxu3bqF27dvY3Fx0fUh5KxxeHgoZaJqe11fX3fJyEKhgGKxqJ2/YllWV7469NkhpHsqlQrK5bKUkV5Z6eevIz46nTadTmNiYgLT09NSRorxOSEj1fE63dwmQvpJtVpFLpdz6WLi8/7778s4YkIf8+phi4uLeOGFF3xjU/UC5SMhwwnlIxkk7XZb+qcUCgXpS6z6FQtb9sbGhivmQCwWw/T0NObn5zE9PY1sNiv9pVT79szMzJlp/+m/Q8hwQv8dMkzs7OzIeYBCXghfKq//lHeeYCqVkjJyZmZGzsHxjgdPT08PlZ8x5SMhwwnlIxlWhIwU8kOdw+rtd25vb7vOjcfj0i9K2DS883LE9vT0tDZW2mlD/x1ChpNh9d8hhBBC/YmQYYX6EzkLVCqV0OdS99nc3NTG/o/H44Hyw++TzWa7Xje5n4g1kdTfxbvfzbHt7e2Otb1V1N9JxJxXf49ujk1MTJwZn4GzAuMJEwJ89cU5vPnmm7h79+6gq0LIhcEvtrLanxf729vbKBb1ayJ1438uPuPj4xgbG5P9+pPwpyfkPFKr1VAul7G3t4e9vb2u+vXqR9cnGBkZQSaT8fU/9/oScF2po6Hr6+bzeeRyOd//a319vWO9tqP2cS9dujRUfmpkuKF9n5DhhPZ9PcI/TRcbU8T8En0b1X4cjUY74nqJOJnCZ41xpYkfnL9NyHDC+dvhiLZJjS+9vr4u5xSLYxsbG661zuPxuGselPD59t6/+I10a2GTiwPty4QML7QvH41KpSJtuX7fjx8/RrlclufEYjFMTExgbm4O2WzW93tYfJPI6UL7KyHDyVm0v+ZyOTx48KAj1uHDhw/l3PJoNIqFhQVtrMMXX3yRawSRoYHykZDh5CzKR0J6ZWtrC5988on2s7q6Ku0h8Xgc165dw/Xr13H9+nXX9vXr1/v+rHJ8kpDhhOOTxI8HDx7gL//yL/HOO+/gr/7qr/A3f/M3F9r3qFgsam3rqi/106dPO2LliTm+fjb2TCaDq1evnquxwd3dXd8+sVf+F4tFHBwcdJQRjUZ78jEXMUDT6TRSqRTXxiTEByHzu+0fez86RP9YlfG6vrHYTyQSp3zXZJjY3t6WsaDV9SS2trZcPl/5fN41dg080zFFTGzhNz01NYVsNiv1SuEXNux9P/aPCRlO2D8mhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBByAfmB4XhXGCSEEEIIIYQQQgghhBBCCCGEEDIUiMW3gGcLOh8eHgJ4FnC80WgAeLY4gOM4rryNRkMGeXYcB7u7u7LMvb09tNttAMDBwYFc2KharaJSqQAAms0mSqWS9vz9/X0ZiFU9X63fcTEMA+Pj43J/bGwMlmUBeLYItViMIBaLyYCutm0jlUrJczKZjPb8ZDIpF95Qz7csy7UIoHp+KpWCbdsd50ejUbmQpvd8QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ0h/u3r2LtVIV3/7OdwddFUIIwbs/+RHe+NY3wPCuhBBCCCFk0HjjQ6iosSKAZzEmarUaqtUqqtVqR/5Wq4VyuYxarSbjSqhlqfpvvV5Ho9FApVKRsTBUms2mTGs2m676itgY3vzlctlVX++1RB1Fnna7rb0P4FmMDhFnw1uWeg3HcWT8Dt19OI6DWq2mvcagMU3TtS/+H8MwYBiG9ri6H4TutyOEnD3UtiAsTzd5TdOEYRgd7Y8O27Zl/iAcx0EkEoFlWb55Rbtlmiai0ahvHdS2yzRNJBIJmKYJx3FcaaocME0Ttm13XL/dbne0hY7jIBqNyjhIwDP5JfKJc0zTlB/btuE4jpQxqkwU1xe/k2EYHXJToN5zo9HQyksh0wzDQLvdRr1e9237HcdBs9mU3+IahmHIctTfTfd7iONq+e12W3ut/8feu8RIkmR1v/94R0bGM9+RXVU9lfXqroIBTQlYdLNhxeZKSJ/Us0As7gK4sABmvj2sEWIGNiC+WdzLgkX38EnofkjsBiS672amR5eRqqqnHtlTVV35isyM9/t1F3WPt7m7mYdHZrwy8/+TXOFuZm7uEeFu59ixY8ecx37kDO1u42N6h3TpkmZ6n9V89Xxd+WAwiEgkYrx+KBSyNvX8QCBgxQgDYMX7ikajrrJynXA4jEgkYl3TeZ1EImE7LxwOIxwOIxaLWe9RPB631RmLxaw2Q1haWsLS0pJ1T+o9J5NJAG9jmUlcMh2ZTAbhcNiKd2YilUphdXXVswwAJJNJ13e+KDSbTaPePir/POdOO3+R721U/qhz1ViDF5l4PG57t8fNn0Qdkq/2ZVX6/T4ikYirPVHLR6NRK7/X67l0hWg0imAwqNUhRLcIh8M2HabT6djKS/va6XS0/71JF1DtB9LWS7qzLx0KhdDpdLR97FarhW6365IlzWbTVl7yi8Wiq455YnoOmH629Gw266t/QghZfJz2aUCvZ6ixkQU1xrIwGAxQLpdd15EYzSrVatUlGxuNhksOzfPak4zpPC6meMpqXGZBje8s6PonS0tLtv6WkMlktP27TCbjKqvGjB51PUAvM5yxqkfdnxp/WqjX61bfT8ZfBoMBms0mlpaWbM+I+gyp/7P6HMhzoo7nqHHAO50O6vU6ALuursYiV9+nSehC6veW31H9X9TfUf1f1N9RjReupqvl1Tjeap3OZ0B99tT/Vff8kauNrj87ybRFrctv/dNGp8OfNW2Sdc2jfpNcIdNHJ2PVtTr8yFU5T9XxVPluOk/W+jCdp9Mtx0V9tlQdSCevI5GIpbOoz6h6nuhi6hogpvNU2a7qcKpsZp+dEEJmj8glVT7p9iedZspX174aF1XuyL4ubVT+pOpRZR8hhMwbZ5s77c9xbYzO9nTan+x7ELLYlEol1Ot11Go11Go167her6NarbqOy+UyarWa7VjOl7ESHTKukMlksLy8jGQyaTtOJBLIZDJIJpNIJBJIJpMj8/z4PxOyqBSLRezt7aFYLGJ/f9+4//r1a9fcqFwuh3w+j1wuh1wuh+3tbetY3b9+/TrX5Z0xvV4Pr169wqNHj/D555/j8ePHePToEb744gsMBgNEo1Hcvn0bDx8+xIMHD3D//n382q/9Gra2tuZ963OnUCjgpz/9qW3b3d0F8Hbt6Xv37uHevXt4//338d577+Hu3bu4ceMGVlZW5nzn0+H09BQvX77Es2fP8MUXX+DJkyf4+c9/jp///OeWb8rOzg6+9a1v2bb19fU537k3BwcH+PGPf4zPPvsMn376KX7yk5+g3W4jn8/j4cOH+PDDD/HBBx/gN37jNy6sn/20Efmxv7+P3d1d7O7u2o5fvXpl83PK5XLY2dnBzs4O8vk8tre3bcf5fJ79tStIs9lEsVg0bmJz0OUVCgWtj3s8Hrd0E7EJyPGobW1tjbZdQsZA/B5KpRK63S6q1aplJ6xWq7a8Wq1m+UFWKhV0u12Uy2XL31V8gEulEnq9HiqVyli+EtlsFpFIBKlUyrIFii9jLpez/BmkXUin04hEIshkMpZfYjKZRDQaRTabtdJSqRSi0ajWL5UQQgghFwvxEVX9NFV9Q+ZVjMpX/UpH5at+MaPyz4I6v0J0H9WnU5ev+oqOyld9YiRfncchY6+JRAKxWMw4n2ieiA4qumu5XEa/30epVLL+C/EPlv9TdFN5ZqRsuVy25uuIHiv/oeoTPApVX41EIshms9bvKj5Hqn7rV4d11kEIudqI/44q10xzDk1zGHXzHaZR91lRZZIqs0QuAfb5D+pcQpFhqtxU5ZipbrWNlTrUORTqtelHMFkWYb7dvNJ0ZXTzymfBRZ+zN400+iOSSXCWeRjT2DflTypW2FnmZXjtS0ws4G3/VtIl9qaky3zK4XBoS4/FYohGo1bczVgsZvMN0M1vMcXn1o1nqP1/FV0MEd1vrIsXYopLoou9opMVulgns0TXjppsCbr2Vdff1cUQMcUb0cWWUPU3QdXvVHTxUnTxRHTf0xSnxO/3JIRcXs4Sz/Oip8/iGrr4XPNm0WIxesU4XbR7MqVTZhJCzotXH8nL/qbrgwHmPhtgjglp6jsC+v4jYLavm3ztVPu9E9NcYJMsNcle02/ptc7VPFHHAFRM/UnAbPM3ySOT/DL1DwF9vxPQ9z0Bc4wyU79WHRNxYorHqOs3A2f7DQkhZFHwkr9eeV4y9ax5Jh3BS4aadAF1nN6JSeab7P9e92yKDWXSE7x+03ljikVtknOAWV6bdAKTXAbM44wmGe/lm2eS5SadxEtmm3QPU0xvYPzfhRBCLjteY+wXMa/T6djkf61W09oNOp0OGo2GS1cZDodGfaBWq2nvQdavduJVV6vVWrixAeCtDI9Go1o7jyn2uE4Wi8+DLq/f79vS1WupPhRCp9Oxpcv6Frrr9/t94/qjgrr2qfN5kfI6AoHAWHG2+/3+pVjrbhr4WWdDXW98lG+ruk6sH984nb2UfE0kEhlLL45Go2OtTRCPx8cqn0gkfJcPBoO+y8t8JD/rNapMu/wsrnHRy6v907OuSTrpvEW5j2nkeZ0zL/9wL66iL8IsvoPJ/kIIIeRrvMYqTGMlXmMSJjnrNSbjJbdNPh1ea4aaxli8xnhM/htn+X28/FoWUQ8RvHwdvOS2aRzGa7zDNN7iNd5jkutnGdfRjbeY/ExM38Pk5zHONQkhhFwNruI8k1l8h0msAz5pFs3GchnsSiadixBCyOXhk08+wbe//W38zy/25n0rhJAx+Os/+0O8k4rjk08+mfetkCkyGAy065Wcnp6OTDfZ1SXmazabRTqdRiqVQiqVQjKZdKXJ2oaZTMZaByGTybjWQyBk1pTLZSuGsoz7yHOvbqVSCZVKxZZWLpdRLpetY9NYl2m9n5WVlZHpl7Uf3W63cXJy4rneo9eaj87fVF3n0bltb2/jnXfeubS/JTkfsn64l0w0yUjTOLGs0eOUfSIjnWmpVArpdNpa40fWBZaY6YTMA3X9q06nY61tXa1Wrf1R8lLKmXxLgsHgWPJR3RZtHYdp4Hdt5K+++so1V8SPnFTTNjY2qIsTG5SPhOihfFwsqtUq9vb2UCgUcHBwgIODAxwdHVn7hULBynfOw1xaWsLa2hrW1tawublp7a+trWFjYwPr6+u2tLW1tTl9S7KoVCqVsWyt6qbzhwbe+u6qclDsrs60XC5nO04mk9q1YwmZB6qMrNfraLfbvuyqtVrt3LZWP3JznLnEl41Op4OjoyPs7e3h8PAQBwcH2N/fx+HhoUueOudnrKysYHNzExsbG8jn89jY2MDm5qZtf2trCxsbG4yTdMWhfCREz1WXj8ViEbu7u9jd3cWjR4/w+PFj7O7u4osvvrBkTi6Xw87OjrXdv38fDx48wJ07d65cX5dcXvr9vm8bq3Pz47Ojk5defjzxeNy2drMprigh00bi8ovtVcYZqtUqKpUKSqWSTTY602STd8UUQ090Rr+2VrUM19El82YwGOCrr77CixcvbJvoWDIfLxgM4tq1a9jZ2cHNmzdt+tXNmzexubk552/ihvKRED2Uj2TRabfb1rjs0dGRZV8+PDxEoVDA4eGhtX90dGSz/YXDYWs8Np/PY319HVtbW5a9eXt727I5r6yszPFbLgb03yFED/13yEWh0Wjg5OTEkoknJyc4Pj7G8fExTk5OcHh46Epz6m7JZBJbW1vWeO329rYlP2WMNp/PY3Nzc+xY0xcVykdC9FA+kotIs9m0zSFV55Tq0o+Pj41zTNX5Mab9fD7va82Qiw79dwjRc9X9dwghhJih/kSIHupP5KKi2hu8bA7ONl9nP/bzjOq2zc1NX2uiXhUkFr363ziP/aSdnJx4rsGr/l9LS0uu/89P2srKCtsXMJ4wIQDw397bxscff4yPPvpo3rdCCPFg3H68bKbxUFnjL51OI5lMunzQdWlqfz6VSiESibBPT+aO+KJLbOVSqWT5okufXfUpUPvxkq6mmfTw5eXlM/WZcrkcY1IsMJ1OBycnJ1asaL9209PTU+26r8lk0lfcbeeWyWQ4n4eMhPZ9QvTQvr84DIdDy49cjY0pMb8kFlihUEChUHD5kadSKW1MTGfczPX1dWxsbGjX7CZXF87fJkQP528vLoPBAEdHR5Z8VOXn0dER9vf3cXR0hOPjYxQKBfT7fdv5IhPlc2try9pfX1/H5uamLf+q/s7ka2hfJkQP7csXi2azaflGmT5fv35t0/FjsRhWVlas+Vamz62tLcrLKw7tr4Toof3VzMHBgStOomyFQgHA13ESb926hVu3buH27du4ffs27ty5g9u3b/PdJgsP5SMheigfCXGzt7dnrcWhbi9evLDZGHM5+9oc6vaNb3zjQvXNOT5JiB6OT5Jpc3p6ir/6q7/C9773PXzzm9/EP/zDP+Bb3/rWvG9rKrRaLZyenhrt4TKf+NWrV7Z3xRmfzPTJecH+kLbsLJtzTUwhFotp4336SYvFYrZ+cSqVQjgcnvGvQshb1DFW6SfLGKqXC7JIbgAAIABJREFUnDelDYdD7XXOOs6ay+Vm/IuQRaPRaFhrSYjvsvgzi7+zrCtRKBRcc4TED2ttbc2Snevr69je3sbGxoYVH3t9ff1K22PYPyZED/vHhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyLn5YWBomolOCCGEEEIIIYQQQgghhBBCCCGXnGaziVar5Wt/1mW9Aqb6JR6PY2lpyXPfb7lZnZ9Op7nIAyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCDHy0Ucf4U21hf/+N/8w71shhBD8P//2f+Ovv/N/gOFdCSGEEDIparUaut3uyHJ+YxJUKhX0+/2R5Uqlki+dplgsjiwzHA5xfHyMTqfjyut0OtZ99/t91Go1AECr1dJev9vtot1uo9Fo2NIHg4Gr/n6/j1arhU6no62r1+uh3++j3++j3W5jMBhYdel+o263i2azqf2OvV7Puka/37fV5bz2cDjEcDhEv9/X3pepvAnqnoRcfAKBgK80XbocO9ODwaDr2HQdNS8QCCAcDrvKBYNBhEIhWx2hUMh1HSkbDodteZFIxNVeBYNBRCIRq5zk664fDocRjUYRDAatdlY9Vy0Xi8WsctKey7nOssDX8kDabmfZUCiE4XCIVqtllVG/l1q22+0a5XY0GrVkU7/fN8bU6ff7CAQC6Ha76PV62t9D/W7D4dB1TTVf6PV6tnKDwcD1fXq9nk2f0JVR69fJuVH3oSujuwa5HJjanmAw6HonA4GAsV0JhUJWG6TmS5sl15F6A4EAotGo9rrJZFL7/knbAbx9X2OxmLXvfA/D4TDS6TQSiYSrnkgkglgshkgkYp0bjUYRCoWwvLxsKxuNRhGPx5FKpZBKpVy/1dbWFuLxuOsaVyEu12AwQLlcNuZ3u12r76BD4rmZqNfr2v6JMKrf5NUP6vf7qFQqxvxOp4N6vW7MV2PP6RjVRyyXy8Z2dTgcolQqGc/t9XqoVqvGfF1fTGXUvS8ykUgEyWTSmO+MledkeXlZ2+4Io97bXC5nzAuFQkin08b8aDTqal9UlpaWtG2JkEwmEYlEXOmDwQCtVgupVMp2761Wy6YvZDIZ9Ho97X9fr9extLRka7s7nY6tbDQaRSQS0b43rVYL3W7XapOFWq1mu4dYLIZAIGB8d+eV7vU+zgPTc2pKNz0bi5aeSqW0OvO80gkhVxedLjTptFldZxrX9jvWMQ1MupwufRZpi3jtTCaj7Y/PinFid5v2J1GHqb5RfUg/nCdet25/0nUkEgmX3k0WC12f3vls6uwlzn6J02bip15dPbrzdNfX2Wh0MsFZv842NMqmMg1isZjLBqh7X3T9fmdfPxwOI5VK2dJ0bbKuj+ZspwOBALLZrK2Mzrahq1/Xt8pmszbbZDAYRCaTsZUZZX8glxv1nVffa7GJqDbRRqOBdrsN4Gu/E7V9kDZArVO1O6q+L2KHVetX2wL1WmdFfafVvr68w6ptTn0PTOfJ+2Q6T7XV6c5T3z++d4QQshiockj0VukzqmNrkifySZV/IhNF11bzRJ6qdYm8VPXi847DiWxTdVzRM1VdUvRFVZapck/qUXVNXT0i53T16PRZQghZZJw2w2l9qtfy45+v4rT5TfvTaUsghFxMms0misWi1RY598c5Pjo68vS3i8fjyOVyVluSy+XOfMw2iFx25B3b39/H3t6e5/7h4aFtfEV9X7a3t5HP5437Gxsb9H1aEPb29vD48WM8evTI+vzpT3+KZrOJcDiMGzdu4P79+3j48CEePHiA+/fv4/3335/rGP9Fo1Qq4cmTJ3jy5Am++OILa/vyyy+tMYnl5WW8++67ePfdd3Hjxg1cv34d165dw9raGtbW1pDP57G2tqadPzAPGo0GCoUCDg4OcHx8jEKhgDdv3uDVq1d4/fo1Xr58iZcvX1pjKuFwGDdv3sT777+P9957D/fu3cP777+P999//1LYaRqNBn7605/i888/x2effYYf/ehHODk5QTKZxK/8yq/gww8/xAcffIAPP/zQ02eb2CkWi9jd3cXu7i729vawv79vOz44OLDmlMXjcWxvb2NnZwf5fN61f/fuXdd4OSFq30K3Ofsf6lYoFLQxFbz6E6O2tbU1zzkhhJCzIeNexWLRGiMTO2ilUkGv10OpVLL8QWSsrVwuo9froVwuW34lUlepVEK320W1WvU9hia2zVQqhWg0ikwmY6Wl02lEo1Gk02ltmrQnmUwG0WgUqVRKm0YIIYSQq81Z5rlMO/88c2G85q74yZtE+VHz4yeN+HEVi0XLZ0x0WPm9VX212+2iUqlYedVq1dJXRb+V/0DVYf2QzWYRiURsumc6nUYkEkEmk7F8wMTXK5fLWb5b4qOVyWQQiURceq7UQQghk2JR5oOa6p7EvBO/czonOSd0VD7ng14OdPMsdfFrdLFrnD6GuvmYuhhYujmgunmbunmhuvdJp3Pq4iLrvoMz3vGouFjTQjeHVKeL6t473VxN51xQXf3zLKObrzbvOANk+qhti/o+SluitiHq3Ba1zVDngJriMKjtmnpNed/V99x0zfOgvpPqvG/1GRefAXUepzr/W50Xo75TarugzgOX66j1qbJblz8N5hmzZt7nj1On35j802LR4tQsYp2AdzxGQsjVwtTGm2LimmLSmHQNr5jHpnldpnVbTDLGFHPNZK8Y9zub4jKbYiLPq9/lhS4WD6CPeyOYZIWub2OK2aGLE2SKSayLOWq6b10/0RRPWBdfyPS9dX1SztUmhMwLk9wzyTeTjPaSxaZ43qYxcJOs9FonwCTXTfLbtN6Bl13DpFOY1pZb1Nj+JvuhKZ65zk4JeMfY180ZNck6k8w2+RjoZPmk6tbpFOPWTQghFxGTPmCSl179UZPs9Yo9a5KxJl3Ba10jk95hkste+sW4v4uXPjTPOO5eeMkzUwwIk3+DqW8NmNf1MdmVvewIprVETLqM6do6e4RJvzHZI0z3P2qdI0IIuap4yfBJ6gMmG4HJ1uFlCxhXt5hkXZPUU+aNSbYPh0Mkk0mtbI/FYjY5K2vvBoNBo86xvLxs1eVc79g0j0Hqcq71u7S0ZFx7ORQKaXU7U8xxWX9ZV5dOZ2i328Y1EWXdVKHVaqHVaiEcDnvGHGq329a6zX7sVRI7t91u+/LZ7Xa7aLVavv17Ze1nv/Nj5F786tSyPqJfdOtZX2V06xTr2lXn+sOCbi1sr/hyw+GQv/8InOuFjorXl0gkrDWi/cT2k/bTr9+pzO0fRTgcRiAQMK5RaWLc8uP2wcYtr/aDTWvbdzod9Ho9BAIBl5ySuOVOer2e9nt2Oh1X+yj/p66dbbfbtvLhcBiRSMTYLqvpItck3SQjpF11PiPj+Pp5pS+i3WQcX7qzpM/iGot4r1wjlhBCzo7X2IyXPcBkJzH5ZQBmu4OXPcbkN+FlKzHZfbzGW7zmlprsS+OOd3l9z1kz7riFaQzHJIN1Y0HjXtPkf2HS63XXNNmOTONYJl3DdE3OsyOEEGIaozHpMCY9ZVLzQ84y92VS38GkG01y/s688JqPYfKBMfmUmPQKk75l0k9M+oxJt9L5sujsmSYfHZ3eo9PXTDofbTeEkEXkk08+wbe//W38zy/25n0rhJAx+Os/+0NkAj389m//Nq5fv4533nkH169fx9bWFtenIwDe9jWKxSKq1ar1Wa1WUavVXGmylUolVCoVW9qofonYHv2uUSA6v/QhREeWuXWqLVPypO5pxyEiZ8PPOvVqnoyrVKtVdDodlMtlqy8t8YydaZ1OB5VKxddc0kQigVQqhVQqhUwmg0wmg2Qy6UqT41QqhXQ6jWw2ax3Lmj3k7AyHQxQKBRwfH+Pk5MT6LBQKODk5saWpm5NUKoXV1VWsr69jdXUVq6uryOVyyGaz2rWTJJ3rnxATjUYDpVJppOzTpZXLZevYNA4sqDHQo9EostmslWZa90eNfS5yUuxWqg3MK48sDmIPVsfMxYfPK09kXblcRqfTsZ43ie3vTJOY/qPG3yVmfzabRTqdtslGSVNlo06G5nI56mIT5PT01CUrC4WClabKzqOjI9c4QjAYtNaJXV1dxdraGlZWVrCysmLJTDlWt0VZS5YsFpSPZFZQPpJxqNfrOD4+xuHhoSUbj4+PcXR0ZJOXUsZpwwqFQpasdMpJ57H6yfUriI5SqWSTldVqFZVKBaVSybK3qmk6u6usy+WFXxmpS/MrF8VngrE6FhM/clF8qNS8s8hIP2sRLS8vI5VKIZlMjrSrinykrXU+tFotnJ6eYn9/H3t7eygWi577KvF4HNvb28jn88jlctr97e1tXLt2je0GsUH5SGYF5eNiUSwW8ejRIzx+/Bi7u7vY3d3Fo0eP8PTpU8vXOpfLYWdnB/fv38eDBw+ws7ODnZ0dvP/++7RPkiuDzmdHlY9On51arWb04/FCfPt1MnKU7TUUCo1ta+V6SIvHuLZWkZnix+Nle9XJSNNcahVV5qmyT5WNapq6ybm5XI5zLsjC0+l08OWXX+LFixe27fnz5/jyyy8tvTKZTOLWrVu4deuWpRft7Ozg5s2b+MY3vnGl+iCUj2RWUD6Sq0Kz2RxpC5b9w8ND29zpeDxu+d2Osg9vbm4aY7aSyUL/HTIr6L9DrhLNZtMmE2XTpenGUoG3Or/IR538VLdr167xWZwwlI9kVlA+kqtGpVLB6ekpTk9PUSwWXfvy6ZwH6vTxWFpasvxy19fXbXNcdOlra2v0050w9N8hs4L+O4QQQi4L1J/IrKD+RK4aMn497nZwcKD1udDZ5kdta2trbA8XELGhqs+I89hP2snJiec6rKofhMQ9VJ8PP2krKyvGNXgXHcYTJgT4b+9t4+OPP8ZHH30071shhEwB6Tf58TcflaZbb0YllUohEomM5Y8uaeq6JrKWicRf1uWZ1qIj80VdH0jWlxTdVM2T58npi6723bvdrq+0Ub7oun78uGm5XI59JuLirP15Ux9NbJzO/teoTc7J5/NcV4EYoX2fzAra98k4qHGl1ZiY6rHElD4+Pnb5M8diMVdcaWdcTN0n14smTjh/m8wKzt8m50E3x8t0XCgUXHY8Z7xM3fwuOd7Y2OB/SixoXyazhPZlMilUuWn6fP36NarVr9cvisViWFlZscWR1n1ubW2xX0lc0P5KZgXtrxeHSqXiiq+4u7uL58+f4/Xr11Ycq3feeQd37tzB7du3cfv2bds+40+Tiw7lI5kVlI+EzIZKpYLd3V1Lr1H3X758adn+MpmMFT9a/bx58yauX7+OSCQy52+yGHB8kswKjk+Sy0SpVML3v/99/O3f/i3C4TD+4i/+An/8x398IeM9e9mw1XFf5/xhdd6wly2b7fHiIG2jGttTlfnjpHmhk/l+x13D4bCvcVVdHlksvMZVvfLOMsYqaV7IM5PL5WwyfpTsd6aJ/kmIUCwWjf5TOl8qFT/rSsgx+7Czgf1jMivYPyaEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIuJD8MDEfN2COEEEIIIYQQQgghhBBCCCGEkDMgAUf97M+6bLlcthY7PAsSYNfP/qzLStBfQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQi4jH330Ef7r6S7+t//9D+Z9K4QQgqf/7+f4X//X/wDDuxJCCFFR57Zf9nLzvrfBYIBms2ks12q10Gq10O12PWMMSLnBYIB+v2/LGw6H1tbpdNDr9QBAW5+k9Xo9bT1Oer0e9QhCFoBAIOAr3085dRtVJhgMuso5rxUMBm2bIPtSVygUQigUQjAYNMYdkfRQKIRwOGx9ehEOhxGPx7Xl+v2+VWc4HEYkErE+hV6vZ7WbQiQSwdLSkq1ct9t1tZvhcNiqT8p2u110u13tfap1djoddDod7XcKBAIIh8Po9/vauuS+gbcxXXq9HtrttraM3HM0GkW73bZdUycLnGX6/b5Wnqj3PxgMjDJMynnJOPnNRsmbbrfr+q9U5Hw/dZHJI23GqDKBQMD6f9S2aDgcatsm538pZZzPlNSr1i0MBgNbPVLW+fzPC4nLBNjvOx6PW+2wM11tn+S3j8ViiEajAGBrv6PRKJaXl11tbzgcRiKRsB1LO51Op133GQ6Hsb6+rv0OpphSyWTSdq/qd47H4670WCxmuyf12qlUypUeDAaRyWS095TL5bTp82JUP+I8+dOse9r5F/neFh017tu4+ec5d975i3xvg8HA1Vb2ej3UajUAb9tGaccrlYpLTnU6HdTrdVe9pVLJJS91z+9wOESpVHKdX6/XXXppv99HpVJxla1Wqy59zHRfuliKEnvRSbFYdKU1Gg2tjjtLUqmUq58hctWJSbaZ0hOJBGKx2MKnLy8vW8/lNNIJIcQvOtlm0tf8lp102ryvrdMJZoVOB5p02kW+DuWgG3leu92upQ/XajXLrid6a7vdRqPRAPC1jqzqqqrO6FUn8LV+qtav1mXSa8dBtVNEIhEkk0kA9udC1btUfTObzVo2oGw2C8BuD1H1UFXHVG0vqn1G7CKhUMiy86j3RM6Hrs/k7C/pnilnW+1s0weDAcrlsu0c9TkGYHvGp12vs19n6tNNg0wmY7M3+21fneep75Sgexd09etsm/KuCjr7pK7fqOsb6vqcTpum+g4TMg/U915kca/XQ7VaBaCXxWr7p5Pvk6rzrIi8VN8v9R2V91xtK9T2Rs43yWx1nEOV+6PktGl8hBBCyGIhsknGVlQ9WsY6JE/klyoHRY5Jf1fNkz6FyEpVjxeZeVadXPRdVX8V2SRyUJVLogur5VV5KbJMlV9SnypDdfWYxiMIIeSi41yLUPdZLBZHlvFbxzg41xKc9qfTfkIIudw427disXjmY52/lEo8Hkcul0Mul7PaHd2xV54cL5p/KSHzoNlsYn9/H3t7eygWi8b9N2/euMaZ5J3a3t5GPp/33M/n89QNFphKpYJnz57h0aNH+Pzzz/H48WP87Gc/w9HREYC3NoD79+/j4cOHePDggbXv5UdLzken08GXX36JV69eWdsvfvELvH79Gq9evcLe3p7LPpRIJLCxsYHV1VWkUiksLy9jeXkZ2WwWyWTSOgbc46nqsXMcXLVP1et11Ot11Go1lEol67hareL4+BiFQsHy71DvK5/P48aNG7hx4wbeffdda//GjRu4efPmlfOn2d3dxaefforPPvsMn376KZ48eYJgMIh79+7hww8/xAcffGC9b+RstFot7O3tYXd3F3t7e9jf37ftP3361BqXBGDJqu3tbezs7GBnZ8d2fOPGjZFzWwkRxOZfLBZRKpVQLpdRKpWMmzPfqXMJyWQS2WwW2WwWuVxOu2/KM825I4TMBr924rOm6eZt6XDaTHR2lLOm6XzgCCGEEEL8IH5YOl8p8bFSfbOkvBrTz1le9Td2lldtX+KndZ55RGJX0/llic+U6kcl4+iiT6nlRadS5yFIefG1Un27pPykfY8npbea8vzOfTyLfjpOeaeNlBBC5o06D9DZnp41fxJ1+bU7mFDn6jnb7Gnl+ylL3zYyCXTzi9W5cYJO31TnzQu62BG6WFC6OXU6fyun3qWLN+WM6TSpMtNEN2/XqdtdpTJkPpxXLp9n309ZXdsxDtOW1ZTf/plVnKPznj/vOnXxEGfJosU2mvf5pjqv4jtMCJkcuhi1gNluYZINJj3J1KcxzeU2jSvo+oSAOaav7rqmWMEm2aj7bUz3Pc/YhIIpJq9ubs84MsU0VqIbCzD1rXQx9U1x2nR+MqaY+bq4VaY4UroYWl4x9wkhZBHQxSwEzDIN0NszAbNMNsleXUxFwaQnmPQBnc0WMMtx0/c2yWydfmL6jUx1zwNTXBid3NTFeQTMsndR6jbJ2nHr1ukdlOOEkKuGlx+eqW9vks1e8tDUvzXJYZM8B8x6ialv7aV/mOwRJj0DGM/m4aVfzQPT2nS6Pr6pHzzuWj+mde9MvoCLci8mXcZkSyCEEDIe44wte6WzLn36IqwZqOO849/TrGNR667Vapa+mslkPMfvvfReHePGR/br5zHOffh9VsfRq73eJScm3d6J87caDAbG36JcLrv6Pro1tzudjvH3Hw6Htr5FvV73jO0n63/3ej3f/2mz2VyYdcBnjaxfYUL9/4LBoK85TLq1bU0Eg0Hfv71c28+aHtI+9Hq9K/vfqiQSCdfYsKkN1a0Trys7HA6RSCRsz4SsOa/7zVOplLGt6PV61rMWCASsvm2v19OOk8hab7LmvTPdVN45jj0YDLQ2nUAgYHzOWq2W9r2QOaVO2u22dU/q7yhrASwS8Xjc9nvK/UajUa0vQygUsmwC6jPjNa5giplqsouY4n+YxjlM+oTJZqLzbzDZXXR2lHF8LAghhEyXSdgdJmW7uKjXPO8cnkkyTfuDKf0yXpNzHwghhAgm26/J38S0ru6056x42b5NfjaT+g66dNN9jlp/Ztro5p2YfDp0NgrT/BKd7qCzwZjsITofHJ2eYrId6exAJpuOzsaks/OYvish5Hx88skn+Pa3v43//jf/MO9bIYSMwf/6P/8H1pNxPH/+HIeHh1Z6NBpFPp/H9evXcf36dVy7dg3Xrl2z1ueSdSEymQySyeREY4WSy0u5XEa1WkW73UapVLL80KvVKjqdDsrlstWPKJfL6HQ6qFarll5eKpXQ6XRQq9VQr9etNKn7LLEERV8VHdU5JujUXZ2+107d2Kl/eo0Pmvy4TYyzRsI4v8coHyZnv0vtSzrPdc5tcPafdHGTz/rfye8hv3kul7P6CslkErFYDJlMxvoP0+k0otEo0um09dtnMhnEYjFrvbNYLIZsNmucS0AuBoPBACcnJzg+PsbJyYm1yZpzJycnOD09tdaUlXWXdHN8wuGwtR6syD/1WLZ0Oo1cLodEIoHl5WWkUilkMhksLy+P9Z6Tq4e0o+VyGe1225JxnU4HxWLRU1ZWKhV0Oh1UKhXbmj4iP8f1lVURG4u0sU5byrjyzynDvNpZk++PiWnJx1H+uM66vOSlsy7nsdhL1XSTHXMU8vuJrTCVSiEWi7nkXzQaRSqVsspns1lEo1FLJjplayqVQiqVYpt2Ceh0Ojg+Prbk5OHhoSUnJe309NSSn6enp9q2JB6PY3V1FSsrK65tdXUVq6ur1tqCmUwG6XQaqVQK6XSatlkyEspHN5SPlI9kdqiy8vj4GIeHh0Y5KZtu7DiZTNpk49ramu1Y9tW1ebPZLOflE1+0Wi1Uq1VUq1WbjJS2s1arodPpuGyw7XbbKCPFBusVO8QLVS46Zabg9D1wju+rx05fh1ExrsbxiRwnXpbJP8SE1+/nrMsZc8Z57PStcdbtXL/uPPFa5PdLpVKIRqMj7aqjZKRqn+W6aZeXer2Og4MDHB4e4ujoCPv7+7b9o6MjHB4e4uDgwOUntrq6is3NTayvr2N7exsbGxvY2NhAPp+3ycxcLoeVlRWX3w8hOigf3VA+Uj5eRLrdLl6/fo3d3V3s7u7i0aNHePz4MXZ3d/GLX/zCsjvk83k8ePAAOzs71nb//n289957HOclxEClUrFknx8Z6cf2Kva/s66lpLO1qrLP6ZvutMk6/cmdvvSmeXW6ukfhVZeTcWL5AN4xipx1Oec2OOd9Om2ozrrFRqtbE30c5PcTHWKUb84o26ukxeNxJJNJbTwHQi4y7XYbb9680eo4L1++tOYh5XI5m36jbjdv3uSc4ClA+WiH8pHykVx8BoMBisWizUdWfGePjo5wcHBg7e/v76NQKLjezdXVVWxsbGB9fR1bW1uWLVfd39zcxObmJtecvuTQf8cN/Xfov0MuPtVqFaVSybadnp5a8rJQKNj8hAqFAk5PT131rKysYH193fIJkm1jY0ObRl3u8kD56IbykfKRXEyk7SqVSuh2u6hWq7a2qV6vW31Lr09djCXx91E/RT6qn+vr65a8ZIyCywP9d9zQf4f+O4QQQogX1J/cUH+i/kQuPtVq1TZm7RzDNtkadM99KBSy2RjG2ffr00KuHiI/m82m9Vw6j/2knZyceK7dEo/HrWdS2l01XpmftJWVlZnaeRlPmBDgr//sD/Hxxx/jo48+mvetEEIWnGaziWq1ilqtpu2/n8cf/ax9ejWWsozzO2Mej/IHcB47+4JefUPdWiBejBPzd9yYxV5rrzt9yZ1ryziPnddWj9W4ynKeaW2eUYhNZlK+6NLHj8ViVuw/QhaRSqVi63eVy2WUSiXPT7EjlMtlrd9CJBKx4l86Y3tJmnyKjSwQCFg+VPKuiY3MtH41udrQvu+G9n3a98nsaDQatvliatxMiS8t8TLlU6ejim+fxMXUfYovqsjNRCKBdDptzXkkxATnb9vh/G3O3ybzYTAYWDJT4kuL7CwUCjg8PLTNJysUCrbzQ6GQzedd4mSqc8hknSKxv9AOQ/xA+7Ib2pdpXybzpdlsYn9/H3t7e8bPr776yrYmZTQaxerqKra3t5HP542fW1tbtEuQsaH91Q3tr7S/XkY6nQ6++uqrsWIz3r9/34pFfffuXa7rQ64UlI9uKB8pHwmZFsVi0dJRnNuXX35pxSvyiiG9s7Mz529x9eD4pB2OT3J8klw+CoUC/u7v/g5/8zd/g2AwiO9+97v4kz/5k4XsGxeLRU97c7FYxKtXr2y6sNicc7mcp935+vXrtniJ5OpRLpdRq9UmKvNlDO+ssSRFJujGXAF3n9R57PRVd8rxUXLd2df2Ypz+sTqe6QcvueuMs+o8dl7LeezsX8v/qRtzHRfR2SY1xqr2k1OpFOMdEE/k2S6VSlZs41qtZltXQnycDg8PbWkqkUjE8nHa2tqy1pfY2Niw1pSQNSbW19cZ9/OSw/6xHfaP2T8mhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCLgE/DAwl+hUhhBBCCCGEEEIIIYQQQggh5MKgBh3V7Y90A78UAAAgAElEQVTKn2ZZrwWc/aAGctXtj8qfZtlxFjcjhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhEye7373u/j+978/79sghBCLd65dw1evX8/7Nggh50CdK81y07tmrVbDYDDwLNdqtdBoNEaWazQaaDQa8AqvPRgM0G630W63tfnD4dA6v9vtotPpuPKddDqdkfdGCDkbfmI5jCoj+cFgcOR5gUAAoVDIludVLhgMWvU66xdCoZBVNhKJGO8zGAwiGo0iEokgFot5fqdYLIZIJIJwOOxZZygUQiKRQCwWQygUQq/XM5aNx+Po9/sIhUIj6wwGg+j1eohEIohGo55lR5Vrt9sYDAZWfiQS0V6/0+mg3W4jHo8jEAggHA5r62w2m642PhaL2f4fp5waDodaudBqtaxyJrkhedVq1Zgv9y+bjl6vh+FwiE6ng26368rv9/uu+tRyJjnU7Xatuk10u11X/WTxCIfDCAaDnm2etB2BQEBbLhgMIhwOW8eBQADBYNCm/0SjUVeatHkAbO+rinq9UCiEcDiMwWDgejalbmdbC7x9zqV8MBhEPB5Hr9fTPp/SnqnfR9LVdyMUCqHf72vrkPfI2Y63223buxoIBNBqtbTv5qxRYx6dNf0q15HJZIzyGvDux4zq48wzf5HvbVT+eeuu1WoL8W6eBdNzugj5i3xvo/Knfe10Om3JxGkzHA5RKpVc6dVq1aXXd7td1Go1V9lyueySxRI30IkuTmCj0XDpwf1+H5VKxVVW9z6a7qtSqbhkc7vdRqPR8HVfurZhMBigXC67ys6SSCSCZDLpStc9N7FYDIlEwlU2l8u50iQeokowGEQmk3GVXV5edulq4XAYqVTK131Fo1EsLy+7yupiLerel0AggGw26+u+QqEQ0um0qywhhEwanex0yheTHCmVSi6biq4+nczUybZer+eyIZlkvk6O6+TtNK49K3SySCczdDJHJ3dN8lEnX2d1bZ0MTaVSLnuG2HBHXZssNqr+K++r+p6p76boxKp+req50v6ct05dGzEO8l6oep6qy8q7pOp2qv6qPu9il1HrUnVVVRdV61DfTfXd1b3blx1dX8iZdpYy06p3Uteepf3H2fb6sUlO4px51qvrcxJyVfC73sZ51+gY5xxdP2AcvNbWOO96HGfJ1+m5hBBCLg5+ZJmfvPOePy5ecmpWebMcUySEkEVBbDhip5T+TbFYtMZhZKyi0+mgXq9b7b3YMZ11lEolDAYDlEoly+5p8kMwIW1yNptFMBhENpu17Jli7xebp7TrYpMU+6bYNv1+EkKIk2aziWKxaLV7xWLxzMej7EfxeBy5XA65XM5q185yvLKyQtsxIT5ot9s4OTlBsVjE/v4+9vb2jPuFQsHlb5LL5ZDP55HL5bC9vW3cv3btmufcLbKY9Ho9vHr1Co8ePcLnn3+Ox48f49GjR3jy5AmGwyHS6TTu3LmD+/fv4+HDh3jw4AG++c1vYmNjY963TjTU63UUCgUcHh6iUCjg+PgYhUIBJycnqFarqNVqqNfrKJfLqFarqNfr1lx3p3+W03fN6f8g/kaJRALLy8tIpVLIZDJIJpPW8erqKtbX17G2tob19XVsbm5ifX1d6wNM7BwcHODHP/4xPvvsM3z66af4yU9+gna7jXw+j4cPH+LDDz/EBx98gF//9V9n2ztBisUi9vb2sL+/j93dXezu7tqOX716ZZOTuVwOOzs72NnZQT6fx/b2tu04n8/7mntOyCiknS4WiyiVSiiXyyiVSrZN8pz7pVJJa6cS/zjpa2WzWWtTj0159BslZPHRjWuqtpzzpunm0ukQO45z7PIsac58jncSQgghZFaM4082rfL1et0YD2wU4/iZTau8bk6kSrFYtHwtxD+jVCqh2+2iWq1av4P4ZJTLZWu+mvhx6Oool8uWj4cfMpkMIpEI0uk0lpeXEYvFkM1mre+RzWYRi8UsG2gsFjOWzWQyln+Hbq4mIYRcZNSYQBLTwDSnWJ13KfYE1b9OlXEyZ1mNN6DOPxZ/FHV+snovujhB46DOYdTNS1ZlnLTt6tx99XwZW5tUGiGXiUWaPz7rMuedlzkOs5r/vYhlqH97M6v5yePkn6fPC+jnaKn788rXxfIhs0cXl0v3zMn8ERVTrC+d3qmLm2OaV6IbZ9PFCtPF4tTF5gL8f09dvK95x8Y0xcXUxevRtfE6WWCKHal7L3V2K138TV2duniYOj1edw3dWKfzOzMGJiFkHphiLuv6Mzr5CehlpUku6mSgSd7p4nuZYk/r5KBJ5unkuCn2pSmugF8/mmmii51jir1ssjvp5K8pzqROrppiWOvmtJriSvuNvan7Dro6dbGuTfE4CSHkomGSSzr5apJtJhltqlsn58et2xR7dpy6TXrIJOqeBya5aPK10MlWk3wzyedFqdvU9x1Hr2AMQUIIMWOS6dNMv4zXPK8/yiQx9dMnkT7NuhfpmgDH8QghZJLoxqoBcx/dNAYAmH2rTOt/6Gzzk7B1mMYTTGMopvvT/Tam73/WuMbTQDdWYFpX0jTeoLP1T8q+oJPjk7g/05jKuHYb6hnnx+/7MM57wzoXo87BYKCVGVJWlRvD4VArE9rttnZsV0e9Xl+Yvtw8CIVCWl9a5+8VDAaN8RqGw6GtvFfZwWBg/WfBYNAz5nG/37fKBgIBz3bTWdaLbrc7Mz/tRSYUCiEYDBrfDWE4HLr+K+d/Lph+V6/3elbonvVwOIxIJOIqGw6HXWUjkYh2jCESiWh9FXW6RSQScV1P5tTqyjp1iEQiodVlotGoq2wymTSOqzi/RyqV0uo3qVTK9Y6abChOOM+JEELGx+TfMI7PB6C3M5hsGOPaR0y2DZ2tZtxr6uZEAHofT9M1F8m/A9DbTky+Dya7gkmmmubE6ewNJlvLuNdMJpNa3Wkc/xHTnBDdNU22IEIIIUSHXx+RafmYXKTz5+3bcl5fkXmfP8tr0b5CVP7zP/8Tv/Vbv6XtBxJCFpvvfOc7+N73vod2u403b97gzZs3ePnypXb/4ODAWI/ICpEPMjdClSFOu4PaZ1flitN3QrUnqD4Oun68zvagk1km3wrO6bjYiJ+X6tck9kjJU+1/XnmA2/bntD86baBOXdYrPtc4c7m9/NR0+B0vE7zi6zrtfE5fJaftTbU5Ot8zsaep6WLT0+XJtSWP86nJNJE40LLJOknOTZfuFSNaZJ/Eel5eXkYmk0EqlbKOs9mstT6eHMu+rJ8Xi8Ws90VnwybEC5FX4jusjpGNk+esTxgl/5xjgyZ/7XHH0caVj+OO63jphc4xqXHlpXqs6r6SLtceN4+QadDv93F6eorT01OcnJxY+85N8uTTFAdQdLpsNot0Oo1UKmXJynQ6jVwuZ+2redlsFplMxkrnWoPkvFA+voXykZDz0+12tbJQ9mVzltH5oYVCobHW4HWW47gdmRRnlYu6PGd9gDveplN+OY9NPp2AeZ6sCdNcYRPjrg1gmo/ptJU6bZ3OY+d4inPc5KxyUZdHyLSp1+s4ODjAwcEBCoUC9vb2cHR0hKOjI+zv7+Po6AiHh4fY39/Xvs/JZBIrKyvI5XJYWVlBJpOx7KnZbNaytSaTSavfKMfpdNrSeTkGSM4L5ePXUD6SeSA+LY8ePcLjx4+xu7tr24C3PiTXr1/Hzs4O7t+/jwcPHmBnZwc7Ozu4efMm42YQMmXOa2t1ykanPHPO63P6oTvlmde6Yab5h076/T76/T6azabvuA/j+rZ4+QA459U57blO/yCnj5xTBz6vrZU6NSFmisWiSz+R7csvv7TGgHK5nKWfqDrL7du36Rd3SbmM8lEYZ/1aykdC9Ih9R2J4yDteLBbRaDTQaDRQqVRQqVSsY2fe6empzb/VSSQSwfr6OtbX15HP57G+vo6NjQ1rX9I3Njawvr6ujdNAyDSh/85b6L9DiD8ajQZKpZI1p0P2TZuzjC52QSKRwNraGtbW1rCxsYHV1VXreHV1FZubm660ccZICDkLlI9voXwks8AU28YUC8c0Tu/1Pox7DdV+o8Z8dNqJ1HrVupz3WCwWrfszxZB0srS0ZPnpqD47fj45JkumDf13vob+O4QQQgjxA/Wnr6H+RIh/ms2mbSy6WCzajr3ydHFI0+m0y4agsys49+lPRRYdscs1m03rHXAe+0k7OTkx+nQBb/2h5L0QXyg59pu2srIycg464wkT8lZX+9GPfoTf/M3fnPetEEKIbQxS/LzV8T6JZyzji2qf25knOMf/nTGR1WPnGKjXmKjTPjAKL/uAjnH9B7zWzXD6FjhjMTuPnf4G6rEurrLq6y6xmaVOrzxCyNmoVqsol8solUrGT3Vz5vld815wzmdRfYC88pztmJqnWyNB144515jUxZ73U8Zp99S1sfRtWgxo3/8a2vcJOT/NZtMVC/P4+FgbH1P9HGUrTCaTiMViyGQyNl1blSWqzqvKJnUOqfP91Mkir7bAy4fYqz/h9R6a1jHyukcyWzh/+y2cv03I5Oj3+ygUCjg+PkahUMDBwYG1XygUcHh4aOUfHR3h9PTUWJfEx0wkEpa8TCQS1nsj8lHmsmSzWQSDQWSzWZseKjYn9V1X3z15X7h+EXFC+/LX0L5MyORoNpvY39/H3t6e8fPNmzc2PTsajWJ1dRXb29vI5/PGz83NTdv8TkKmDe2vX0P7K1lEOp0OvvrqKyuOoxqH+uXLl9bcajWmoxqD+u7du/z/CTkDlI9fQ/lIyOWm2+3iyy+/xPPnz/H8+XO8ePECL168sOJHy3jQ0tISdnZ2cOvWLdunrHfBMYyrB8cn38LxSUJmx3A4xI9+9CP84Ac/wL/8y78gkUjgO9/5Dv70T//UpjfOApkHOcpGfHR0ZIu1Fo/HLTtwLpcz2oi3trboh0MWBhlXPc+Yqzq26uzfOo+dcQGdOoJXH9ipP4xi3P6xc7xzFF4+dc6+s/PY6QevHjv716JDjDvmquolzuuRq4eqM4+7LzFAReeXPGkP5F0TnV7eVXmfy+Uy6vW653yW1dVVbGxsWLGyt7a2sLa2hvX1dWxtbdnyVldXp/lTEeKC/eO3sH9MCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkBnxw8BQjRBPCCGEEEIIIYQQQgghhBBCCHEhQUzVYKaTTPNb3itYql/UYKSyr0ubdVmvRZ8JIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggBgOFwiFKpNLJcpVJBv9/3LNNoNNButz3LdDod1Ot1zzKDwQDlcnnkPZXLZQwGA88yfucT+6kLAEqlEkaFH/b7m3a7XRSLRV/lKpWKr3K1Wm1kuU6ng2azqc0bDofW9+v1eueei33RCAQCxjz5XbzKOMsxVDWZBqOeQWc5r/KBQACBQADBYNCzfikTCoVs+XK+uh8IBBCJRBCJRFz1hEIh61pSXzQaRSwWs8oEg0EEg0EEAgGEQiHrnGg0img0iuXlZUSjUVfdUkcoFEIqlbLV6aTb7aLf7yMejyMej2vLdjod9Hq9kXV2Oh1bWynxHtR7bLfbLvkYCoUQj8et799sNj1laDweRygUssXOMDGpMpOqq9frodFoGMsMBgNLBrdaLdfvMBgMbO2p8/dUZZdaRv1fTO1xo9G4Em21+q7qGCXj/OhIi0wkEkEoFLKlqd81EokgHA67zpPfLRwOe7YpgUAAiUTCdQ2VUCiEdDo98j6Xl5e19yIsLS0hHA5bm+5e1OsEg0HXM+5sn+X7N5tN679OJBIIh8Not9tWWyj0ej20220sLy9baYPBwKXjh8NhdLtd1/PTarWs9zMajSIYDKLb7aLRaNjKDYdDVKtV1/1WKhVbncFg0Fan0G63XXUCQK1WQ7fbdV3Lj/4+C9LptOtZMj0/pvhCmUzGJtsXqQ7A/QwCsORxtVq1padSKauOWq2Gfr+PUCiERCJhK9fpdNDv97U6wqj+pVdfd1T/dZQM1D1vKl790FHPZa/Xc/1eKtO+90VGjcelw6RPCrr3UCWXyxnzRrX3kUgEyWTSmL/I9y66uIlRMc+SyaT2/RdMbQZxo3t/Fyltntf2Y7+cJqZ3WJc+y7KLel+Ad7tECCGzxo+8maTsWtS6/Iz1TYvzyLZZydB5XnuUTk2IH/zG7D5v/jjnnFeP9xu3+yz5Z61zkfTcScmRSZwzy3pnadtyttmjjmdZZlr1JhIJz3ETQshkuSxrekxS1k5KfqdSKc+xWUIIIRcLP/LurDLRb54fH3MdTjnlJcPOm6crQ7sTIYTYGSVH/HwWi0VfZcexj45q270+c7ncWOfQj4cQclacbWCxWDzz8ai5ntK+qW3cWY5XVla43ishE0Le4/39fezt7XnuHxwc2PrQ6ju6vb2NfD5v3N/c3PT0lyYXi729PTx+/BiPHj3C559/bu23Wi2Ew2HcuHED9+/fx8OHD/HgwQPcv38f77//PvXVK8xHH30EAPjkk0/mfCek2+3iZz/7GT799FN89tln+Pd//3ccHx9jeXkZv/qrv4oPP/wQH3zwAT744AOsrKzM+3YvNcViEbu7u9jd3cXe3h729/dtx6rcjcVieOedd5DP57G9vY2dnR3s7OxYx3fu3Bk5D5aQSaH2A8fZTk9Pjb7Oql45zra2tuY5Z48QcjGQ+eRia6pUKuh0OqhUKja7vDOtXC6j0+mgWq1q02SOhd/x4Ewmg0gkgnQ6bdmhMpkMotEoUqmU5YOZzWYRiURcadFoFMlkEsvLy1Ya7feEEEIIWXTO6qM+yfLnmUs0ji/eJMtL/7bX6yEajaJWq1kxs+T7FItFK8ZstVpFu91GpVKxYvqVSiXrNymXy2i321ZZZ9wwJxJnJpFIIB6Pu3TPeDyO5eVlK/6iV9lYLIZkMmkrSwgh5GvUOHhqfERpr9V4c2rsOHU+l8QvV2OPq7EhxHahxqaT89Xr69LOgsylVuOOeaXp5mFPOo0Qcn6mFUPgIpQ57xzacZhn/IF5l1FlxEVhEeO0TGPOt7o/r/xsNut77QVyNdH5l+vipenW6zHFeNbZUHRywxQDWjeGqLNT6eKk9/t97fpDfr+nrk7dvU8bXZxlnUzQxVPWxXtwtgXBYBCZTMZWJhwOI5VK2dJisZgrXrkuPo7ums5x2EAggGw2O/KaujjNF1HWEUKuJn5jlc667CLf2yz7jU789LfGSZtGnfO8H8aQIoRcJWYtV+dR9zzub9bMU25epPMZE4sQQvxh8hXU2a9NviI6uzoAa4zKiamPbIqltUj3Iv43KiZ7/bzQjZnpbOWAeS1EkxzW1a2z3+vs3zrbOaDvl+uub1obUTdXSmffN31X+g0RQshs0clYk1w3raVskt86ncE0Vm/q4+t0I5O/wCTuz6RHmHQXP/M8ZoFu/Bsw6xA6eW/SDUzrHZvWYB5n3fRJ3J9JpzCtv6O7P/oFkGkzjh1zGmVZ53zqHAwGvtcOHWeN0VqtNtf1vedNOBxGKBQaGSckFAohFAphMBgYy0p6MBhEMBjEcDg0xssdDocIBAKWDBkMBiPLSn/ddA+mtFH363X+VUP+O9U2YtoPBoOIRCJWmrOcehwOhxGLxbSxYNTnAHiri8TjcW0sVbk/QXwiTWXV9Hg8jlQq5SsejUmnWsSy877+uGU5tkUIUVl034yLfM1ZcxF8KOd5j4yJRwghZBzOqwvM+/xZXmscG+C0WES/0nmfb0rnnBZCyEVD/DyKxSLK5TJKpRJqtRparZYlg8R3QuImqL4UTn8L1S9TjbOgxkJw+pbMw3/C5Iugs+2a/Cq86hFG+RR49aW9rguYfRsEPzFbFsGevghlCSFER6lUQr1eR71eR7VaRblcto4rlQoqlQpqtZrtWPLL5TKq1ap1rPNZdCK+dqZPGTM2fZpiXcunM83k20cIIYSYED98kXMi/yqVitWfdKZXKhUUi0VbujNOniDremUyGWSzWaTTaaTTaaRSKWs/l8vZ1jwQuZbNZhGLxbC8vIxkMolYLKade0cIIYRME1krSN2KxaJnmrqvs5GKnMtms0gmk8hms0ilUpbMy2QySKVSSCaTSCaTlsyU9S5Ftop8JIQQQmZNs9nE6emptfa8fKr7Ynut1WrWWKXYXv3YVsVPI5vNIhQKWWtHJ5NJyyYqttZ0Oo1QKIRcLmeN84mtVPqYMl6YyWQQCoWsMTfdHGVCCCHT4eTkBM+ePcPTp0/x9OlTa//Zs2eWj0oqlcLdu3dx584d3LlzB/fu3cOdO3dw9+5dttmEECN//ud/jn/+53/G48eP530rhJAF4OjoCM+fP8fTp0/x/PlzPHv2DM+ePcOLFy+sGGLRaBQ3b97ErVu3rO327du4desWbt68SbsrIYQsMBIn0jkXQuYuSAxNWRtSPuW8YrFo+cqo+eVy2Yo3KXExTbGznUgs6VQqhUQigeXlZeRyOWs/lUohl8thZWUFuVxOu+81d4EQQgiZBTJvolarGedRyFifOq+iVqtZx+Iro4v1HI1GLV8Z55bL5Yx5sjE2MCGXh3HijZnWoXFiipuvwxRPXoffOdKmuPg6dOvTm1Dnco9CtzaPDr/9HMD/er6m38n0X5vuYZzfcZb4WSfIOW9cnQeuxuuX+YKAe10i8X3JZrOIRqNIJpPWHMNsNotIJGL1O2VeBWPCEUIIIYQQQgghl4Nms4lisThy29/fx97ennWss73E43FrLHqcbW1tTbvmICHEjtg91ffWeewn7eTkxNP+qr7LMjdOfWf9pK2srHCMjRBCCCGEEHJpED8i8aeRNRbEF0f1R3H6rKh+NWqe01fFK0/mGKg4fXv8lJkmunjU4o8yThmdr4xznR7dGgu6dQN06zhMOk23nsOoNR4IIeSyITKsVCpZaxGVy2W0223UajVUq1W0Wi1rDkCn03HJOtVnV/UfVf1enbLO6bu6qH6gJrzWph+1FlEulzvzdc8b82zUOkqjGLVW0ihMfrV+UX1pJ8F5/gsdTv/eSXDe30zHpH9HYHI6lNe75Ydp/F7kaiPySebLqWsqSHqj0UCj0bBkqshCmSshc9JLpZI1F32cuRk65F1R5YLar5L5Amq7LXMT1HPU9kD6d+o56rutzkFQ31VV7nGtI0IIuTo0m03LH830+ebNG9u8zWg0itXVVeRyOWxvbyOfz2s/3333XZvNkRBCyNWj1WrhxYsXePbsmRUL8vnz53j+/Dlev36N4XAIALh27ZoVg/ru3bu4d+8e7t69i5s3b9rGpgghV4e//Mu/xN///d/jF7/4xbxvhRAyAzqdDnZ3d136wvPnz/Hq1Ssrls3GxoYVO3pnZwc7OzvW/vb29py/BSGEkKvKwcEB/vEf/xE/+MEP8OLFCzx8+BB/8Ad/gN/93d+d+HibH3vu/v6+y5cnl8vZ7Lc62+61a9e4RjwhhFxinPFEZZ0GAJYPjOCMk6rOhVDnWshcjrPsq/fjZ/88iG+M+NuID434yYifjvjeiM+M+K8515OX9eNlm7TvIiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIeRC88PAUGZzE0IIIYQQQgghhBBCCCGEELIAVCoV9Pt9K0hwp9NBvV4H8HWwYgk+LIuAA18HCVaDGMtC3+qi3uVyGYPBwBbcWALmS72DwcC2KOo4qAtty8Lc6gLgEiRYgg8Hg0Er8L4EKFYX+pbFv9V6JYCxeo1QKIR0Og3Avni4WpYQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghZFGRuaVeqPNOTfidJypzTr2Q+ateqHNWTajzX72QubRe1Go1dLtdY36v10Oj0UCz2fSsp9Pp+LqnYrFovKfBYIDhcIhGo4Fer+d57+12G91uF8Ph0Fiu3++P/L0vOoFAQJuu/iamMrqyhJyHUc/aKORZlHrm/WwGg0HXdwqFQggGg66ykUjElh4IBBAIBBCNRm11BAIBRCIRa86+zO0PBoMIh8MIh8O2suFwGNFoFIlEwsobDofo9XpIJBJW3eFwGMFgENFo1IotoMrASCSCSCSCQCCAeDyOcDhsxSLQ/c6JRMKKSRAMBtFoNBAMBq24A87vHo/HUalUbHIwHo8jFArZykoMBi96vR6q1apnGcCf3PVzPb8ydVbXE7lWrVbR7/e1+UK73R55vYtOLBZzpTmf2XA4bHvPdLqBvGvAW33D9F+Gw2H0+33P/3o4HHrmi35yUYlGo55xRaLRqBXfREcsFrP9b852IBaLIR6P29KCwaBVXzwed+UL0tapcVd0XMb8Wq1mtQnyGzWbTVd/p9vtIhAI2P4fU39G167p+iu6/ompLdP1P3T9jVar5epfmNp/ieOjIjGAVPy0wdNEYvao6OL0qHF8BDXOj0o2m3XpIhJPaDgcWv+V7r3p9XpWbCHn9UOhkOt/TiaTCAaDGAwG1n+jk/2NRsPSI5wEg0HXfx0IBLC0tIRer2fFawJg6SGCl5z16turcaB0ePWJvfrno2wFuudSGNXHXjRGtUkS30qH6dkV1BhXOpaWloxtPvD1825C994JgUAA2WzWeK4ak0uH7l1VkXhfJlKplO0Zd6J7vwU1hpiOSCSCZDJpzCcXB13bJzHzVHRyT9fW6No1XRuqk5k62azTAXTto64t1sl1nf6g01PUWICzRtcm6toDXfumezd1bY2u7dS996Z2TNcu69oUiTeoomt3TW2OTo8Z1XYSQsiiopNzOlnq7D/oZJdOPupk8CTrcuoMOvmpk9F+6po2Ojmjk6M6/dqp75+nLqdc1MlZnSz3U5fuXgF9f2ZUH4iQy4Iz3rfabknbpPYZpB+k9i2knVb7B2q7Keeo7ava15F7GGU7GoXaH5D3X9Xp1fda9HK1PRG9Wm13JlXnKHR9P2faWcoser26PvS0cPYhRx1Pqsw86x1lEyOEXGyk76TKX7EvqnzcbBgAACAASURBVDJX5LROnqt9E+l/qH0yGV+RekfpCeOiylmRo9KWqfJY2jNVBvtd00Ps/2ofRW0vpX9AWxohhFwN1D6J7Ds/p52nG1/0g8gvVY4508YpM24e+xeEEOIfkzzQfRaLRd9ldZ9+5qAJo+RGPB5HLpcbWWbU58rKCsdXCCFTw9l2FovFMx+PakOlXVTbxrMcr66uUpcmZIYUi0Xs7e2hWCxif39fu18sFvH69WuXbTsej2N7exv5fB65XM5z38tnn1wOyuUynj9/jkePHuHzzz/H48eP8V//9V8oFAoAgHw+jwcPHuD+/ft4+PChte8114NcTT766CMAwCeffDLnOyE6dnd38emnn+Kzzz7Dp59+iidPniAYDOLevXt4+PAhPvzwQ3zwwQd48ODBvG/1StFut/HmzRvs7e1hf38fu7u72N3dtY6fPn1qk+O5XA75fB7b29vY2dmx7e/s7ODGjRuec8YImQVefdRRW6FQ0PrYqf1Q5+bspzq3zc1Nl381IeTyMmpc4jxpp6enI+MFAjCORejGJUz5urJra2u+/LQJIYQQQhYV1e9ffAvVOXlOf37dnAApr84r0Pn6O+cLqOXPGntJ9e8XX351joCMp8j8Op3vv3P+QLfbtWJfSaxj4O38CYlVKPMYZW6DbhzZqbseHx/7+o6T1lklzSvmEiGEkLPh5cc/67TzxDH08uGfdRrnDBByMdHFAHTGdPBTBnDHbL2IZaaJM4aRLvbRLMs446dOq8yoGLbj4iVT55V/3pjEZ52vN+k0xsoilw0/cYvOkzbt+id9zVnGaBL8xDY6T9q065/0NUfFLieEkIvAeWTRec+fdNo06pzneiWTloHTqHOe90M5TAgh5rXsTGto62Ldm+rQxcPSyUpTzEldDH3dmjummNM6O69OLuti+pvWyZlHP1pFF+tet4aOad0ZnezTyUiT/Vbnp6IbCzTF39StpaOLr61bb8C0Zo/f34QQQsjZMa3haepXm9YDNcXK1Mls09q4496LTvab6p6V7jFLzqs7+F3zbpayf1b6DCGEkPkyjv3elD6JOqZZ9zTvz2vd91lyUccOZnU/nA9EyPwZZz1Dv7bhcdZY8ttnNPVjdZj65E5Mdn0dfuXKOOvPm+SaDr8+3eLD6wc/cdeHw6GtTlN5mZtar9dnui7wouHs/wPm32yWOO9LjgOBgOv+1LK67zPqGlKn8zkw1TUYDK70MyOY9KeLXnbe12fZr9HZKAm5yJj0uHHHT3T6rU7v0+lYumvpdFaTfqjTxXT3o9Ntdd9Hdz/nWfv0vOjGJ0xjHjrbgG4cRDe2omsLdeMtujEc0/3o2kzdWJHufnTjR7oxKa7nSggh5DzodBOTzuHXVxTQ2590utE4vq46vcWky+l0IZ0Pr+m76vSmcWyf00Kn6+h0mHH8XZ26ie5cnQ6i01+cuo9OT/EzB0WnW+n0MvqmEEL84JR1pjEinewwtf06v02TTNT12b3GX0aNzXitrz5q/GvUWJJO/gp+7QLjrNN7mVkEO+60ygJnl8E872qeR6ZHrVZDvV5HvV5HsVi0+jyj1lX3u/a69OHO4jenPi/Sj1H7GmofQ+1bSFnVJmwqK/0Ptazanqk+/2pfSte3IIQQcrHp9XqoVCoolUqoVCqurVwuo1wua/NKpRKq1Sra7bYv3z+RNZlMBtFoFKlUypJPuVzOklupVAqxWAzpdNoa88tms4jFYlheXkYymUQsFkMmk7HVSR9oQgghk6RWq6FUKllbsVi0HUt+rVaz+pgiG+XYSz7KOFA2m7XkWzKZRC6Xs46Xl5eRyWQQiURscjGdTiMSidhkYSqVQjQa1Y5xEUIIIZPEKetknM+5llG5XEav10O5XLbGDcWGKn4llUoFvV4PpVLJGk8zxZgzIbZM1XYpawh65Ul/1CtPXb/CK4/zAwghV5lisYjd3V08evQIjx8/xu7uLnZ3d/HkyROrPc/lctjZ2cH9+/fx4MEDa/+9995zzQsghFwtfud3fgexWAwff/zxvG+FEDIjjo+P8fz5czx79sy2PX/+3LKnxuNx3L59G3fu3MHt27dx+/Zt3Lp1C7du3cL169epPxBCiAeqz7rY4NS5Y6o/vMxdU/3vxR9e9e2XeQJq3WIDVOtWfSV1dftF5kjJp8zbEr8QscXJZy6Xs47Fz1I+xT9S6hObXiaTwfLyMtc/JYQQMjNEdhaLRWvcTGSnjKVVKhVLVlcqFbTbbVSrVZTLZWveg/h0qscmRB6mUimbD4ruOJvNurZcLodsNsu1dS4IfsdY/c5v8ZqDqeInHqffmKWm+aVO/H4Hv3Fa/V4X8B9TFfA/T3SceFTjzE/ymuuqMk5M2cuKLuaDCb++Aao/wSjGmXPo11/etBaKE11sLsB8/6b4YIB5zdV5XoMQQgghhBBCCCHED81mE8Vicezt8PBQa4OLx+PI5XKubXt7G/l8Xpu3srJC+wYhFwg1zpi0Cc5jP2knJyee4w5qeyJ2ULXt8JPG9oUQQgghhBBCJoPOz8rpT6Zb98fp86Vb28dPGd3aCE7/Pd38Dacfm87XULeGkt+0WaDzr/KbpvMNm3SaGr97lmkmXypCCJkGXn7JXvLBa20fLx/uUf7NXj7sXn7w4/iC6zivLPTr327Cr3+4ifOug+Rn7oBf/M5XGAeu83Q5OG8sv/P6lZvWrBwHne42DudZB8bv3IRxvudVqLPVall9slarhU6ng1arhUAggEgkYuU3m02rnLqvponcc65bNE7+qLXxxkFde8jP/lnOmWRdXNOLEEImS7PZxP7+Pvb29oyfe3t7LltkLpdDPp+3/N10n++++y5jgBFCyBWk1Wrh+fPntjiST58+xc9//nMcHBwAeDt/fGdnB/fu3cPdu3et7d69e9ja2przNyCETJM/+qM/wpMnT/Af//Ef874VMidkHKZUKqHb7aJardrGfFR/BXXMRcYfdPF3JE6Xk3HXB5/E+LrT9qv6D6i2adXGK/EvAXcsFdUert7fODFwpk2n08FXX31lrTmhrkPx8uVLa6xH1p9Qt/v37+OXf/mXuYYeIYSQhaHRaODf/u3f8E//9E/413/9VySTSfze7/0efv/3fx+/9Eu/NFZdnU4Hx8fHKBaLnjbY169f2/xMYrEYVlZWXDZXdf7x9vY2bty4Qd9AQgjxidPHYpzjRT33vH6GJiblD6Lbn1R9jClKCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIImQM/DAy52gkhhBBCCCGEEEIIIYQQQgj5//FacNr06aes3zKymM+4eAUM9kobt/yotEksFEQIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYRcdtS5hecpM8m6ZllGytVqNfR6PWOZVquFVquFfr9vLNdut9FutwEA/X4f/X7f2h8MBgCATqeDTqdjnTMYDKw8db/T6aDb7drKSX1y3Ov1XPcyGAyghjfVlRGknHp/hBAgEAicq5wuXdLUT2e54XCIYDBoy/e6l2AwaG1yvrM+AAiHwwiFQggEAhgOh65y6vXC4bBVX7/ft8oGAgEEg0GrjQmFQgiFQla5wWBgu9/hcGilSTm1rEqv10O/37d95263a2sDgbftolc7PW2i0Sji8bgrLRaL2X7XaDSKaDTqOj8cDrvmv+vKqv+pEIlEEIlErGNp253pcp1IJGKTI7prS5oql0KhkHaOfrfbtckguU/1v221Wuh2u657dzJrGV8qlbTP/GVB/m9B913V/9/UBgBv/395z02Mah+ljTA9B6p+JO2KirQHpmvqnsWLhrMtcf6msVgMsVjMOg7+f+ydy48j2XXmPwaDrySZJKv06MxWVatT6i4pU7DH6Blvqj2DmdnMalZCL7wwYK+99W6A+Tu0mn0bAgYwbMArG0a1Fx70eCypsrtKUrbUUmX2q4rvJIMMBmdROLdvXJ4IBplkPiq/H0CQcePGZZDJvOeec+45x/NifUqlksmvYSP/j3b+DQ2ev9j5nZ2d2N/nsnHntCiK0O12l/YDgMFgsCBbJdeMTRiG6Pf7C2NqeWj6/f6CbNbm5+l0isFgsPUx5/M5Op3OwpiXhfb/mc/nUa/XzbGskXZ3dxf+/8vl8sK8KHOCPX/m83ns7OzE+oVhuLBOAYBKpWJ0R8FeP8j6yvM89bfteV5Mf5V7yuVyCILAnLPXkMBL3Xg6ncbWCsDLOS8Mw1QZnibj1z0HAN1u90bpvWnz0UXmsus27k37LFctB8jtQJPPrnzUZJ4mG8/Pz42tUnDnw9lshl6vF+szmUwwHA6Xjq+tG7TxtDVLktzW1gdXpdcVi0VUq9VYW6FQQK1Wi7X5vh+T98BLeb27uxtr8zwPjUYj1pbL5dBsNhfeu9VqLbQ1m82F9UOj0VhYP+zu7i7IYC0nX61WW7ApVKvVBTuFNvdJ7j9CCHkVceWOJptdeeXqI5qcc+WyJh+Hw2FMB9Pkqqvfa/JYu2fNLuB+1iSbwDbR1t+ajHLloCZrNzlWqVRa0L01OenK4k2ORQjZPvY8K3qXrQ/JPCnzvD13y7xq60q9Xg+z2QxBEOD8/BzA1zJD5MCy91wVmefs+cder8ucZ+syMgfZ+og9V4n+MJlMzDXlctn4ecW2GQSB0RUqlQpGoxGiKDLXyPchXPaxK1c1Oedesy00+eDqaZoO6uqGrn627riuLHR1PE1/dWWqph8vG5cQQjZJWs2NTbct638RH9S2a3VkrQui2RQJIYS82ogsEx1WdFPRnUQHtm2doieLLiV6rehfMqbISlsHFnmZdd+ni8guWw8Se5qcs312op+IHmXrMHJO9GNbbxI9THQgOZfk0yOEELI6Ije63S7CMES32zVySOSEyJh2u21kk8gXsbWKjVbkUqfTQRRF6HQ6qo8tDZn3RTdqNpvwPA/NZtPIHpElYksV+SPyROxyIp/SxiCEkKtiNBqh3W6j3W6beVU7Tjsnx8tq3JbLZbRaLbRaLTNnrnP8jW98Q43RI4RcDePxGC9evEC73cbZ2RlOT08TX3/xxRcLvthWq4W9vT20Wi3s7+8nvr53797Cfh9yO5hOp3j69CmOj4/x+PFjfPjhhzg+PsYnn3yC+XyORqOB73//+zg8PMQ777yDo6Mj/OEf/iG++c1vXvWtkxvCe++9BwB4//33r/hOSBY+//xz/Mu//As+/PBDfPDBB3j06BHG4zH29vbwzjvv4N1338XDhw/xx3/8x1wzXjHtdhunp6c4OzvDyckJTk5OYseffvppLCaq1Wrh4OAABwcH2Nvbw/7+fux4b28vc74XQq4CW0fO8rD16s8++0yNkbP14lUed+7c4R49QkgM2QPQ7/cRBAF6vZ7xrbTbbXO+1+shCAL0+30Mh0MEQYBOp2PmrG63a/wxg8EAQRCoeU1cZE9ao9FAqVRCrVYz/pVGo2Fsf81mE6VSCdVqFfV6HaVSCbu7u0vPE0IIIYTcJuy4RXcPphbnmBYXmTWOUouBXOYb1pB9mrKfRvZyynqxUCigUqlgPp+jVCohiiJUKhUTryi2pPl8jjAMTZ7uIAhMnsrBYID5fI7hcIjxeIzJZIJ+v6/m2dFotVpmH5C7fi2Xy9jd3UW1WsXOzg7q9Trq9ToqlQpqtZpZ2+7s7KDZbMZeE0IIuR7YslL2rV6HtnWQGAc7FjBLmx17Iftjs5yzY8zdc4QQsi5aPJnb9qr2cfOebAttrnbbbtKxxDBKnm7J4eN5HsIwjMU82jl+NJ1XdGq7n6s32+NpurGWuy0rIk/tvD6iN8tntmMXRYe2ZbLErdjxk6Jz23EqEs+S9l6EkO2xKdlxGW2X8Z5XkUd6may56j7bHJs58wkhrzpafi9tna75ibT8zFruTy02PamGgibntJyWmk6oyU1bXxG0ehBJtsZ1/HmbQqujoOVW1nJDazUTsuSL1nJrarJQy6nm3q9WWyJrDml3fOalIYSQ1dBkdFKuGE3OajI1qb6CJrs1Ob1KfUVtLaLJ9CT5rdVnXOU7uSy0/NSALme1HNSarAX09YImz5Py9GhrEG29obVp9+6uQbTPrX0WbV1CCCFk+1zEdn3R67cx5rauv6z6G0msaze/Dtdf5j1p9hFCCCFXT5KNIEkWa3I3ySaQ1b+xDd+Bdp/a/WT1ZVxFrUtB8x8AF/NbaLYNzWeg2SuSbCha7WnNNqH5IbT70WwRms2CPgtCyG1glXonWftuY8xNv7/UTB2NRmb9MJ1OF3wO0i75ZIQwDNW+YRji/Px8oUa2ZluQWjQ2UtvUJQiCBX+MxAu710+n0wV/jtZX2uy+8/ncPGy0ttuM53nI5/Ox70TL9ZfP5816Jen7830/tsbK5XLqb8AeS/rlcrmFNajcm4b8hjzPW5qbcDKZmPdIYz6fZ4rzyOVypi7xbWeVeIRVatdqa+EktHV8EqvUYtTW7RpZfYNZa5Fsul+Sb3bb/ZL0s3X7kevLdfOvXEbbKn2v0i9z3Xwil9G2Sl/W5yWEEHJRtD2o2npglT2w2n7RpPgVzZejxcQAi/4hbUzN36T5qtw4Hs0npfmPto3r99F0Dc2/o+mUrl9J0780HdddX2h+Ik2H1HRgVyfVdDHuNyGE3FRWyTXAvqv31WJuN9F33RiWV/06ksy6eS7WvW4VX4HNujairD4Em3X37axrR1+3Rrq7bp5MJiZvVxiGJv+zHIuvulgsYjabGT1HdJMwDI2eNJlMjB4zGo0QRRHy+bzRH8IwNDrRZDIxfrvz83MzrrZ/bx2q1apZO3ueF/uuKpVKbI3eaDRM31KpFFuH7+7uGl2kUCjE1vu1Ws2s4139wNUpXD3EPdb0Gff3m9WHQwghZBGx67n1uCaTyUK9Lql3YNfz0up92fXAliFzuMz3tvyXdYesd8QmZM/7IjfENiRyRtYD9jpE5IesuxgPTQghJIler4fhcIjBYIBer4der2dkZL/fR7fbxWAwwHA4RL/fR6fTMf3lmul0im63q/rANEQW1mo1FItFNJtNI6vEn9JqtYyMkzaRlyLnRCbKeZGNIkcp/wghhGwT0Qclj1in00EYhmafiPgj5FjkZNo5e29G2jktd1kWRGbadmWRr6I/pp2zddS0c7K3I+0cIYRcNWEY4re//S2ePn2Kjz76CE+ePMGTJ0/w0Ucf4YsvvgDwct/W22+/jQcPHuDBgwf44Q9/aF6v458jhNw8vve97+HP//zP8T/+x/+46lshhGyQdruNk5OThcfjx49xdnYG4OXekHv37uHg4MA8Dg8PcXR0hDfeeIOxaoSQa48d9yT7k+0YILE92TFGYnOy7VeSw9+OT7LHlr0S9tiyb1kbex1se5X4hmx7k9i87L179r49re632KhsX5K7F0NsWzL+uvtXCSGEkFWxfUIix0V2i2wWeSyxxpIXVo6lX6fTwXQ6Rb/fN9fY+zyyxgjL3kR7b0e5XEaj0UC9Xjd7O7IeFwqF1PiptPiqZXtT0vZypuX4S4rxFrQ4bCEpJ7CQVtM+S5xT1v04ae9jkyU/zrLvQ7jKnMRXgZbv2CVrbNAq+5qy+lhXiTVZJUdc1pispLzMGqvks8saU79KPJcWu5PEKrpAlt8IwDpXhBBCCCGEEEIIIbeN0WiEdru98uPLL79Ufe3lchmtVmvlx97e3sp5lAghtxvxr9nzmHucpe358+epfix7XhMfhj1/ZWm7c+dOZt8HIYQQQgghhJDbxXWqh3id2rQ6SJfBdaqBeJ3aGLdECCFkFZbFsazDNuJDNlXbMKlW4yqsUgtKIy2uKAubqJN0kVhtYDPfY5Yc/BpZ45SA9PivbY8JrP8ZXwWy1pDyPC8Wv2THqdm10ebzucl7OZ/PzTn3daFQMHsZ7N+4vC4WiwjD0Fwzm80Sx7J1nCAIzLhBEFxoDrAplUrI5/PI5XIoFoum3lE+nzf+SsmdLe9v56vb2dmB7/soFoumvoR8znK5jHw+j0qlYq7J5XKo1+smt2ej0YiNK/m5q9Wq+fvZcVOsbUQIuemMRiOcnZ3h9PQ09dmV4bJfbn9/P/H5/v37rAdNCCG3hCAI8Ktf/QrHx8exvJM///nPjb5eKpXwve99D0dHR7Hck3/wB3+wVm1ZQsj14r/9t/+Gvb09/K//9b+u+lZIRvr9PtrtNvr9vqml1uv10Ol0zGv7XLvdvlB+LRvbTiY5d5Jy6mh5ZlbJKbMJO7pm+7XzS9k5qVaxlS5D/N7yvCyHp+QPku9U8inJs9S+abVaJofQbDbDYDDA7373O3z22WdGhh8fH+O3v/2t+YytVkvNH/3WW29RjhNCCLm29Pt9/O3f/i1++tOf4u/+7u8QBAH+43/8j/iLv/gL/PjHP16Ik7Ntpe12O9Fe+vnnn8d8duVyecE+2mq1FtoYf0wIuQpcHSXteJW+V3mt1GfYNO7e41WOr+u1WfPcEkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsgt5q9z801l2SeEEEIIIYQQQgghhBBCCCFrIwXKpbi8XVxbimlKgmIpFiOFaezi5lJofTAYYDqdYjweYzQaxQrMy3hS0HydgjNS/AX4OhmwFJWR4jp2QR4pICMFZ6Q4cj6fN8VfpLiMFKORpMN28WR5r1UK+BBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCLk8ssSsXbc+y/qFYYjJZILRaIQgCBLHkJi+tD6z2QyDwQCTyWShfTabmePJZGIeNlEUIYoi8/r8/BzT6VR9ryiKMJ/PEQQBptMpktJPzudzTKdTzGazxD7SLwxD8/5pn5GpLsltJJfLXei853lLr/c8b2Ec+9juIw/7nDtGLpeD7/uxfp7nLbQBgO/78H3fHFcqFfUzFQoFFItF5HI5lEol5PN59bPl83lUq9WlMcPVahX1eh3FYjGxT7lcxnw+R7VaRaFQAABMp1MzP+ZyOVSrVYxGI3ieZ+KZAZg4bd/3US6XzTxdKpUQRRGm0ymCIMB4PEaxWDTfwXA4NO8RhiGAl/Hb7hw5Go0wGo0W5nhX5kRRZOLNbQaDQWxOnc/nJsbcxpUZ8/kcURStHEe+SXzfRz6fj92T53mxNuDl30f+HiK75HqXfD6P+Xwe+/xJ/xcit2zc36LIPxd7vMlkkihrXxXk/zaJ+XyOQqFg/k7uOfs36vt+rJ/9N7X7yN93Npupa4t8Pg/f9xfWSEn3l4SMnzbHhmGI2WyWOE/b/+dan9FodKPXPqVSCZVKBYD++ST3QxKv+vnrcA/LzktOD3IxNJ3QbcvSZ9Ntlz2+rDVcXfSy0GSSK1vsdnddYfcV/Tmfz6vXa3Ne0lrDfh+RG+57e56HMAxj6wZ7nWKv19y1unvevc/BYLCwrrnOXGRe28Y5jvs1kuOJkNvIdDrFYDCItZ2fny/YciXXm2DneBMk/5uN5H2zkXxvgp0LTtDkda/Xi8kiyU1nM5lMMBwOY22Sn85G8tKl3cO2kdxzNu58ZOejE+w8doKd/86m1WottGlznrZ2rtfrCzYI23aU9jkk955NpVJBuVyOtWnzs+TiI4SQ24oro8TPauPKUk2HlbytgivfNTnqykxN3ruyXZOhktNV0OSzu7bQ1hHbQpM1rnzUZJQrV13ZpsnjQqGAWq2Weh2gy133/ewctGn3ue5YhJDbhy0/5LX7rJ3L2pa1v6Y3ZkV8OZLXW9rEnloqlVAqleB5HubzuWkTHx8AFItFYy8tFosoFApmL5HYVYMgMDqT7/vGvy620PF4HJNrrpxbduzqu+7xpnH1uG0fa7LXlU3uNZqskhzsq4yr6aeEEPKqsIo8Xldmp527iAwXXcbWadZtu8gYmm2TEELI7cStfyV6mcg7sa+KHBR7pvhaxU5q211lTLH5umNqPsxliB1T9CPx3YlME5kn+pLUsLJtl3KN9LF9j2JbFFlpn3N1MkIIIdtB/HMia0RedLtdhGGIbrdrfG8il8Q31263jUwS/U3kTqfTQRiGsbGzIDKm0WjA9300Gg0jX0ReiA1OZIzIjGazCc/z0Gw2zf4X8Z0ljUEIIdeVXq+Hfr+PwWCAfr+PTqeDfr8fa2u32xgMBhgMBhgOh+h0Oub1YDAwx2k2tVqtZuJKW63WwnG1WjVtScfSpu0dJIRcb0ajEc7OznB6eop2u534Wo5tyuUyWq0W9vf3sbe3l/r6tddeY7wdiXF6eorj42M8fvwYH374IY6Pj/GLX/wCQRCgUCjgrbfewtHREQ4PD/HOO+/g6OgIb775JmNwyIV47733AADvv//+Fd8JWYfpdIqf/exnePToET744AP8wz/8A7766itUq1X8u3/37/Duu+/i4cOHePjwIe7cuXPVt0sc2u02Tk5OcHJygtPTU5ydncWOP/vsM7OXvVQq4fXXX8fe3h729/dxcHCAg4MDc/zWW28txDwRcpMYjUZmjb3K4/nz56qfz96j0mq1Vnp885vfVGP+CSEkDZnH3D1/dlvS67TzblxYEjLf2XOfu7dvnfNaXBQhhBBCCImzLHZklTiTVa7Nula0KZVKZm+rxG9KjrxCoYAwDOF5HjzPM7lRJded5M2VnKeSr3gymaTmuAdexhVWKhU0Gg3UajWz1qzX69jZ2UG1WkWj0TB7l2Q9WqlU0Gw2Ua1WUalUsLu7i1qthp2dnYWcAYQQQm4uEiNix4Bsuk32ANs5/iS+RPpr+f+ykDUORM6lxY/IubS4k7RzhBByE3Hzt2XJ8eb2cXOquXO6m5fNzfem5Yhzc88ty03j7kt24xWz1iO7CG4OU9fG7+YudWP73Vxsbj41V97Y+dzks9dqNUwmE4RhiDAMTWyKyOFisWi+lyAI4Ps+giCIfVeibwZBgGKxaOrvjMdjhGFoXgN6joeL5Anadj6FrG30zxDy6qPJOy3WXZvTXLmo5THVxndlmZaT1LU5rd0yggAAIABJREFUarlN3fvU3l/LpZ5F5m8TN7+ppke58fta7lJ3jtZylbsyVsuLquVAdWOPtHt05b3EhqbdI3OdEkLI17jyENDrdmiyTJNdmjzV8odreiewqHtqbdp42vtq96z5E7PUJNk2mozVcnprNThcWajVCNHkY9b841nqkmjja/kZtNxAzElOCCHbRZP1moxM8gtqslnT1zVZnCTvtbWGlmtI068B3Tag2ZuTZLr2nWht20aTxVr+2SzyWdOzs8psbc2hyXHtPtx1SNb7yLr2IYQQcvm4OjJw9bJ7G+sRzT6g2Tk0GwRwNWsHG62Wpya/NZmr6d2a7T3resDV67OuQda1S2h2D+1zEkIIuVloa4OLtG1jzKu8n4vU3Lkomr6ete2i12+6bRtjspYQIYS8miTZODR7hGY7CIIAL168WLA9TCaTmD1lMpmg3+8v+GxGo1HsfabTKbrd7oJ9ZTAYGJtJGIaYzWYLtpX5fB6zl8xmM4RhuGADCcNwoZb8dDpV7S+rxnBflFwuZ+StfN5cLrdgQ8jn82Y/QhRFmM/nJjbc7ed5HmazmflOtRpH+XweuVzOxAAAUPMkS9t0OsV0OlVz4EqbxOrdBgqFwtJ8dYVCIVN9KanVnBYP4fu++U1I7L9GPp+P/Xbm87n6N7F/T4L8Xwh2nWiXyWRi7Ie5XC4xx/ZkMjGfK5fLJeZQDoIAs9lsaY7lIAgu/X/0KtFskRqaTfEy+mm+08voByzabS+rn2vPvax+ms38Iv0uE80vo/kgNL/GVe7p1O5HWytpdg7tfjQfUdL9XAZJ/2/ab0jzbWj2As2uoPlPND9O0v24/yPaeFniQdx9qVniQQghhJBNsq4P5bKv2/ZY2vpu22Txh6zrR9mkT2bb1zGHASGEkE2StO/0VbkuyY+2revWvc91Y4Q121UW1s0Tsu4acN29ROvmn9JshMu4SvseSce1cWq+LM0PJv7TtOuKxWJsba35dTUfbrFYRLlcXvAJeJ6nrtV930cul8POzo65T9uv7N63+1kk77fWN83HuU7t7ax+JZd1Y+01O3EW1o3r02IOsqDlS1gGdTfyqiFxWbJ3qNfrmbVBp9NBEAQYDofGhiQx4LaMFdku18laxl57ie9R8+Utw57DxE8mPiM7Dsmee1w/kz132v/H9vyxyesJIYTcPPr9PiaTCbrdrtGv7TZbZk6nUyMnk9oGgwEmk4mRl9renDRkLS4yyd6zIfs0RC6KbBL5aMsn6WOv7e3zMpa9j0M7n4VV7QTr6Ozr2D5WtUOsY8/Zhn/tMnKlu1xF3Nhlx8mvax/cBtd5H9Qq+0Rd1tG1gYutp1eZq9L0+mWfe9k9LvubrnKfrzIyl9v/j7IXVORo2jlbfqSdkzkt7dyqSF4KW66KrE075+qwWfTctD6EEKLR6XTw61//GicnJ3j8+DGOj49xcnKC4+Njs4ZutVo4PDzE0dERDg4OzOvvfve71y6+gRCyHv1+H41GA//7f/9v/Pf//t+v+nYIISsyHo/x61//2shx9wG8jMe6d+8eDg4OzENk+htvvJEpVpoQQoCv9+LZdnfxZYh9Wqs1be+lFBuLbVcXe42dX1762deKXf2i+/vEp2Hb9uz9R2KTs/cWSKyr7RsRu6G9V0BsMfbYdt5S2Udgj30d48cJIYTcXDRfquzNExk9m80wHA4xGAxifuvRaBTbvyB9pc94PDb7+GRfoL0ukNxkg8EAs9nMrANE9ou8l3Or4HkeCoUC5vM5CoWC2dMge61930cURWavt7TL3gbJu+R5HnK5nDknubxk76Lml1sWp3HVed7XIc3/uSxPula3TVjmG1227snqc86ayz3rHvOs/rS0zy5k/QxZ99trefc1su6L5552QgghhBBCCCGEEELIMkajEdrt9sqP58+fq/b/crmMVqu18uPb3/429zURQm4kg8EAg8EA/X4fvV4P3W7XHA8GA3Q6HfR6vVhbu902r/v9Pvr9fmretGKxiHq9jkajgd3dXdTrddRqNdTrdTSbTdTr9Vhbq9Uyr2u1GnZ3d9FsNlGr1Rh3RgghhBBCCCHkVqHp25fRpuWS22SbFmt1kbbLQsurtOk2LR/3Jtu0WolZagppe46z7hsmhBBCCLlMVslxmzWH8m0cc1ntqmV5k7Ua7ELSmj6KIsznc5PDwY6BtF+PRiOz38PWZeT1aDRaud7TdSCXyxn9QOJKpV3iUO3aQ9Iu/lN7/V4oFEx+Cjtvru/7qFQqJsZV9rn4vo9yuYxSqQTf981Y+XwelUoF1WoV+XzevJe0u7pF1lrwgB77qMVN2rkvBOoihNwsRqMRzs7OcHp6ap7b7fZC29nZWey6VquFvb097O/vJz7fv3+fMciEEPIK0263F/JPy7HoPq1WK5an0s5buU59SELI5fPgwQP86Z/+Kf7n//yfV30rt5LBYIBnz57hiy++wFdffYUXL17g+fPnsdfPnz83r1+8eJGYh6vVaqFer2N3d9fsF9/d3UWr1TJ5hnZ3d1EoFNBoNEzeJ7EHNBoNFAoFY28QP2fWvE2vEnb+MDsHqmtXs339tj1OcqpKHjY5lnyp0lfqnEk+Mhmv3W6v7JeX2tblchk7Ozsm1kpiAarVKsrlMhqNRuz1zs4OKpWKeV0ul9FsNlGpVFCpVNauJ0UIIYSsSqfTwd/8zd/gpz/9Kf7+7/8eYRji4cOH+E//6T/hRz/6kYljdu2az549W6gTmWTbbLVa5vX9+/cz5XUkhFxf7LrBbk1gWYMDi+t419e+qXHsPMNuDVs3R7Fbj3hbOYrdHLbuXlW3DqztV77Ma+19tqteSwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHk1vLXuflNzIhPCCGEEEIIIYQQQgghhBCyJaSwsl1g2W3b9LObcDkLknjYTkDstiU9Z+mb1keK+BBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCbg92zNW2+2zz/c7Pz9U+doxXGIaYTqex4zAMEQRBrJ8bFxaGIUajkbl2NpuZa22m0ymCIICkApR+dmpAuW4+n5t2t49cO5vNYv1ms1msTxRFiKIIAEwfu78cSx8btw/TFxKSjOd5qefz+TxyuVzqeQDI5XKxseSaQqEQ65/L5WLXFIvFxPsqFAooFovwPM9c41IoFFCr1WL34/YtFosoFouxe8nn8/B93xxXq1XkcjnkcjmUy2XT7vs+CoUCPM+LvQ8A7OzsxN6jUqks9LHHBmBiX9Oo1+uxewOA8Xgcm7+bzebCdePx2MiOfD6v3stVyLNOp7MwV7ty7fz8HL1eL9bmyrUgCDAcDhfkhS2bptMpJpMJJpNJrE8URTG5JjLNva/pdBqTSyLrbObzubkHkVVRFKmyLovMInHkfy6Xyy18p/a8UigUEEWR+b9NGse+VuYo++8l84MQRdHCb6xQKJj/Sfs3aSNzpXutzXQ6jc2BLpPJBFEUwfM8dW6eTCZmfK3PZDJZuD/7cwdBoN6/fH/a/85No9lspsqsZecbjUaqXNzd3U38+2U5r83vNrVabUFurnK+Wq0mylUAS3MuLDu/TIbZeR/WOV8qlWKyldxuoihCt9uNtU2nUwwGg1ibth4ZDAYL8123243J4fl8jk6no44/nU6N/LfXV8DL9Um/31+YL/v9PsIwNPP0fD5Hv99fev+2ni2yaTweL6w/RqPRpa8jRB67bcDXenYul1uY16TdxvM80yZrLLtNcNdsQFxOpcnZ68ZF5sR1z3HcbOeXyWtCyNXjyndN3q/bdtnXXWSsXq93qbJPmzvXbbvs6zY5VhbbHSGE3EaGw2FMFw6CYMHO3263Y8eufNN0cTenqWYPcN97Npst+BNcW4Do7zaiuwuanu7aD7TPuS0025hrz9RkWavVih27siyXyy34lFw7oOd5aDQasT6urTGfz2N3dzfWx7VXuj47YFEHKxaLqFarsT7L7LKEEHJZZMnvrbWt0v/8/Byz2cz4/8/Pz83+L7EVDwaDtezB4kOdz+fGV2rvn/B93/hWXbuu9LP3anmeF7PnAjD2cxnH9S/2er2t7tFapvvd9GPaLgkh5GLYeqfogCKDbV1SdD/RSW39UHRb0TNFXtv6qthuRcbbOmin01lZFtp6m+wrERlh62KiO4lOZ+tgohuKniY6pq3viZ5njynvp+lzhBBCiEvWWlar9F1lzKxsovbVqs/Aoq2WEELI5TMajdBut5fKlrQ+Wc5lQZMZrVZrqVxJ6+OeWxabQAgh151ut4vBYIDBYIB+v49Op4N+v49+v2/a2u22eT0YDNDr9dDpdGJt7j4TG5kva7UaWq0W6vU6qtUqqtUqms3mwnGtVkOtVosdV6tV1Go1NZ6XEHLzabfbOD09RbvdxtnZWeLr3//+9wuxZOVyGfv7+9jb20Or1Up8/Z3vfGdhbxYhGp1OB7/4xS9wfHyMx48f48MPP8TPfvYz44fa29vD0dERDg8P8c477+Do6AhHR0fc+062wnvvvQcAeP/996/4TsimODk5waNHj/DBBx/g0aNH+OijjzCfz3FwcICHDx/i3XffxcOHD3F4eJiai4FcPUEQ4NmzZzg9PcXZ2RlOTk5wcnJijn/5y1/G9tq3Wi3s7e1hf38fBwcHsdcHBwe4f/8+bUzklURsuu7DtvcmPb744gs1rlPstGkP255rP1577TXGTBBCNo7r29L8XOuczxrf7vqvkl6vep5xZoQQQgghF2eTe3xXucbNHZEFiYMFvs7pK/kJ7XoE0+kUURQtzZcrecyLxSJ2d3dRLpdRLpfRbDZRrVaxs7ODu3fvolwuo9Fo4M6dO0vXtVyjEkIIEdaRl9s6tyrrxNhs8tyynOeEEEK+Zln+2oseX8Z7LDt28wpuAzenT6lUMnvtZrMZSqUSisWi0T09z0OpVMJsNkMURbHc/GEYIp/Pw/M8k8dwNpshn89jNpthOp3C8zxT50hqLHmeh9FoBODrnE3z+XztvIa+75ucEHZeCcnpJ/qrnc9Q4l5FLtu5LbT8E5L7SPprOS0Yz0QIuUzcPD6TyQTD4TDWx/Vxa7lo3Xy1Wk5b176p5c8V3SztHrUctu49arlws9zjNnHzz2o5arW87W6OBS1nrmtj1XLSuvn3fN9HvV6P9XHz87r37I6r5eJ15Rhz0RNCSDY0+abpdq7MS6sNZ6PJ2Cy15y5S287NVQ8synVNHmvrkW2j5a3X6lS6MleThVq+QU1+a3Uy3fG19YIm5zV5q+mWrqzX8uEvq89JCCFk81yHOm+bbrvIWNoaYttsspbbRdquy31QlyeEkOuJtodY09GBxfp2gG4H0OwRmi0A0Ou9arJcG1O7d208976z2g3W2V99UTR5mUXXv4gtQdPZXdu/Nr7mD9BsIdr+M82+4PotNPsCIYSQm4vrJwB0XV2Tv5ovQluvJPnqtTWMdj/auibrukS7n6T1j1YXKWuOgG2grTU0+Z1lT4G2PtDWGq7c19YQ7npBWxtoayfXZ6GtidzPrK11CCGE3B5umr/jKu7tMigWiwtyvVgsxtYk8/ncxKKn9fM8b2F94143n8/NeGn9ZH3o9pO6kcL5+Tk8z1uwd/i+b9pmsxmCIFiod+z7fqxNanYui4/PUm8zyc7nkjVORFtbu1zF/pyrQOqRLkP7zWqUSqWluWQLhQI8z0utl14oFOD7vomv0bB/l2EYqrpIPp+P/Z6n0+lCP8/zFn7PEpOT1gd4+TsRfVByVGhMJhNMp1NTgz0JqWe77Ds8Pz+/dJ/xVaPpcux3Nf2GwyFKpVKs33A4XPhfHY/HJsZMCIJgYZ6eTCaYzWaxOWY2my3MwVEUYTQaLcgyd3+ovLcrWzR7iWa/yWov0ew3l7n+0GwAlxlrkcVOkWX/5SY/ByGEELINLts+ch3G0vpoa6lts839o9dhD2vW65h7kBBCCCHXiXXtXzfxOjc/VxRFC3ZDsf0HQWDsjJptUdvHNZ/PjY9hNpst2E2DIFiIlR+Px5jNZqZd83m4nzsMQ4RhiCiKjA1Xjm3kflyS/C+XjeajyeVypl18ptKe5mex19f29yLXJmGfu+x9+a8Kq9h12Zd91+3r+hOuI+KLsn1Nsm9CbDCy39jOYSb7HGTPspY3GojvdXD3/9r7M2x7zyZ9XK5/KIuPJ2ub5kO6SJu2x3hZ3mrNR+aSJR/Jst9qlvch5DqixTasSlLswqqss/dr1ZyLq8Rsavmv0tBiT9JY5bvPuhdPWMVHkPb3k1zIs9nMPIsMiqII8/l84Vn0EXkWXUmO5TO7zzKGvF62P5Gsj5b7axNosTnb5irqV1xFbm03Vuky2YSc2Dbr5qvX8g9nZd3v5ar2ym8aLYbPJi2/jzZXXIbOkVWX0No0fWFZfoRl39E6yFrJXqOIzLfXUaKLpp2T/xvtnKvD2uuQLPv5XWRvoy1/xKcu32NaH/mbrNJH9DPqaYTcPKbTKT755BN89NFHePLkCZ48eWJev3jxAsDLvc8PHjzAgwcP8MMf/hAPHjzA22+/jQcPHjC/HCE3jH/+53/Gw4cPcXJygjfffPOqb4cQojCZTPDrX/8aH3/8MZ4+fYqnT5/i448/xi9/+Ut8+eWXAF76R7773e/i+9//Pt56663Y4/79+6xRRsgNROwFtg9GbAJiL7DtE+J7sf0NYnuwxxBbhW1rkJxXto1CbG9azGhWtHqLYj+wbQtim7DbpJ99rW2XEnutHc8pdiHbFiG2CeazJISQ60vSnoAkf45mI0+SV5ovKWlPhJsDcjab4fz8PLZHQGoen5+fm70A4oeXHA+2v0x8+9JX8pzIfje3tpa9d1mYz+cLNTmBlz7+67JPWfYXiy/V8zwUi0WzL9l9VCoVk1dBfDr5fB65XM7UdfY8zzzsvdBp8YLL9kum7TtL86sty0+Z5i9fti8gbb/csvWLljtU2IaPjBBCCCGEEEIIIYQQQsjNYjQaod1uLzzOzs5wenqqnmu326p/plwuo9Vqrfz45je/mWjLJoQQshzxm9tzunucpe358+epsZ/uPC/+07Q29/ju3buXHmdMCCGEEEIIIYSQ7XNdaitft7bLzgd2U2oLbbsm0VXknSOEEEIIIcksy0eeliM8KTd5EAQYDoexOODhcGjyY0jdIeDrmkd2vk/gZfzteDw2fe31/Hg8Njk4JpOJWddLDg6J8ZW4YKlFZL+nYMcDS+7wTWDnPb6qvOC+78fy1Up8cKPRMPcnbVrsrhYLrMXEavG5WfQFLYbWvQ9Xf3DjiN0cqVossVuLnpCbxHg8xosXL8x+wbRnm1arhb29Pezv7yc+M58ZIYS8WkgOask//ctf/hJPnz7FkydPjJwoFAp48803cXh4iB/84Af4wQ9+YHJRb6PWCiFkPebzOXZ2dvCTn/wEf/Znf3bVt/NK8eLFC/zud7/D73//e3zxxRd49uwZvvjiC5yenuKzzz7D559/jtPT04UcaPV6HXfv3sU3vvEN3L17F3fv3sWdO3diz3fv3kWr1UK9Xsfu7q55kJvLs2fPTO5okalPnz7FJ598YnLQiW51//59vPbaa9jf30er1cK3vvWtWF2bXq+H8XiMwWCAfr+P8XiMfr9v7GS9Xi/2OkvNKDsOwH4t9pdWq4VarYZ6vY5arYbd3V00m81YW6PRQKPRQK1WYwwBIYTccoIgwPPnz/H73/8e//iP/4hHjx7h//2//4dnz54BeOkv8H0f7XbbyEHg61i2JDuknKMtkpBFpKYhsOivdX2wdv5mN2+znYPZrSG6qXHs9ambe/oidQ/SsH2Sbj5g1+do+zRd36Hr27Tr17q5gt1xt3UtIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDyCvPXuflVZWUnhBBCCCGEEEIIIYQQQghJQAqISIFeSeAshXQlSbM8S7skaJb+o9HIFNodjUYmSbOML8V53UTPWZDExtVqFcVi0RSKlaIkkgi5VCphZ2fHJGSWwrCSOFmSOtvFXaVQrCRLlsTObsFYQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQi7KfD5Hp9NJ7SPxOklIrE8aEgOUhMT6pCHxRO51Mu5oNEr8LGEYmseyzxuGIbrdLkajEdJStZ2fn2M8Hi/ck81sNjN9oihK7BcEAebzOaIoSnxPe4ykPlEUxd5H6zefz1M/FyHrksvl1Hb795bUZ11u+m/Z8zzk83nz2sX3/YW4Qs/zzPdYKBRQKBRi53O5HHK5HDzPQ6lUQrlcTnx/iY/M5/Pq+5dKJZRKJXMvxWLR3C8AE0+ZdM8Sa5nEJs57npcoX+Tzj8djtY/9/Zyfny/0KRaL5vMDwHA4RBiG5rharS78pvv9fqyPhibP1unT7XZTZQsAdDqdpf8n7XY79XzWPlnea9maAoCJ+3XHco97vd6NnwPSkN/WVXxGz/MW5gRps3/z9hwGwMw9dj+7j/xePc+D7/uxa+V6m3w+j3K5jCiKMJvNFt5PxtKuk/sPwxCz2Qy+78fmy3w+jyiKMJlMYmO5//NJ4wdBkDj3hGGI0WiUKPPsdbPbR2LhbwoSQ5+ExM1rSJz+OuNKDH8SxWIR1Wo18fyy8Zedl5wBSUgugXXPSw6CJOzcBOucB9L/NoRcRyR/iEa/38d4PMZwOIy193o9dLtdcxwEgVmHyFx9fn6+sOZ6/vx5bI6Pogij0cjcx3w+RxiGsfl6Pp+j1+strAMnkwlmsxmm06mR6e7nkHuxiaLI3IPc32w2U20i7lohzfZyGxE9RnDXMjs7O6ou5HkeqtWqWXvIOkcQWeRem8/nUSgUUud5ySOjIXlrkj5LmvyRPDUakhdHY5ncSxs3TZ4vk8eURYSQTRJFUUzuA4s2Gsk7ZuPaOySHmaDlJnPtMe46Jcu9SC60tHvRfCaaXSWLfWiTaPO7JmdceafpQZrtT3K72bgyQ5Ndmgzd3d2N2RE0XUvTLzX55srDZXKZEEJINlw5uurxJsbYxpha22XJbE2+um3Xvc+647qynxBCbhPz+RyfffYZxuMx+v0+ZrMZ2u222a8n+uTz588BwOT9lvOig0pf4GtdNggCzGazmI1dbOViA5/P50v3ASTh+paBl/ZY2d8m57Zt+15VPt20Y8pJQgi5OYg+aeuVbttFz6X1ybK/T0Nkjy2D3LaLnkvrk+YPJYQQQjSWyclVn7OMmSXOwGWZXMz6vMpYms+WEELI1aPJl3a7vVROpfVxz2WJZRPK5TJarVaiTEk7l6XPnTt3UmMiCSHkpuPOx/JYte3LL79M1TNkvpWHPQcntbnHd+/epe2NkFuIzDtnZ2c4PT1deG0ff/7557G9caVSCXfu3EGr1cL+/j729vYSX3/rW99ijW6yNtPpFE+fPsXx8TEeP36MDz/8EMfHx/jkk08wn8/RbDZxdHSEo6MjHB4e4ujoCH/0R3+Eu3fvXvWtk1vEe++9BwB4//33r/hOyLbodrv4P//n/+DRo0f44IMP8OjRI4zHY7z22mv49//+3+Pdd9/Fw4cP8R/+w3/guvoG0m63cXp6irOzM5ycnMRen5yc4NNPP43pZK1WCwcHBzg4OMDe3h729/djr998882N514j5Lrj2jSyPsbjcWK+M9e2kfVBGwch5Cro9XoIggD9fh/D4RBBEKDT6Rgbb7fbRRAEGAwGGAwGCILA5EEej8fodDoIggDD4RD9fh9BEKDX62Xe69lsNlEqlVCtVlGv11EqlbC7u4tqtYpyuYxGo4GdnR1UKhXzulwuo9lsolKpoFKpmNcy/y7LDUoIIYQQQjbHKvuU19nbPBwOTT7O8/NzjEYjs84cDodbyYedz+fNo1wuo1AomPz4tVrN5LqXdevOzg5arRZqtRpqtRp2d3fN41vf+haazSbu3btHnyMhhJC1kHxQIhvtmluyrzrtnMjVtHN2Xsq0c6sieRElZ6Kdm1HOSdxtlnN2jkbpU6/X4fu+6Ss5G5mDkRBCri/XIY/jZR9vA7uO0nw+NzWS3HxYAGJ1JKWm0jr5JqWWkjzncjkUi0UUi0X4vm/0ZcmVXC6XsbOzY/qIXi011gqFgvENiX9od3fXjNNqtVAsFo3fR+Q+IYTcFtw6BFodZ03muLUZtToDbu5hrc6Am3dCq4Pg3qOmQ2r36O65Eh00bZxtoOmObo5/tw6AW/tAq73myiy3LsG23tfN45jlfQkhhKxPFv01a9smx7qK8dfNC3kRtlU/4CprF2Tpwzp6hBByNWh6qqYna3UHNVnq6tPAoh4OLOr4mm3A9gOn3YerewO6DNfuQ6thlBRPtU20Wn2a3djVsTUdWqtRqNU71OSxm1taqzXo3qv2fm4uTU1vdz/fslq+hBBCrjc3Sde/ivEvg3X084u0XefxWRuKEEJeTTSbgyZ3NduBZuvQbBHAos0C0G0KWfY9aHsa3Nzj2r1pdg3XXqF9zm2SReZq+r9Wx8r1B2h2C9duoNko3H0DANBoNEwNTkC3N7i2Dc2+wjUGIYQQDU1GS/1pG63WiLvGuIh/JqtfZN1709Y1We/tMnDlPbC4vtDWDtpaZV3/CbC4XtHWFK6/RHs/uffz83OEYYhqtbpwzc7ODoCXf5tut7vw2Vy0dahGlhpumr9OI6tNTPPNuWi/Nw1t7b7O+22qT5Y6Q5vqcxMpFAqx37KG7/ux/z+JIXL7uHqAxBMJkkfDJYoi0y+fzyfmxJzNZpjNZsjn8ws+XLdfFEVLc2vOZrOlOXBlXnPnbZtcLodCoYDJZLKgH9t9ZG4KgkDtl8vlYrpNEATq/jh3rtX6aZ/LzplyG8iaDzBLvyx9JI5NsH/Xdpvv++a3Kb9pG/c3Hoah2icMQxNvp/WbTqdmLPldhWEY+y3LscQHAi/XEbYMmkwm5ppcLgfP8xZ+63afy6BUKsXmEu3vUyqVYm3gH08FAAAgAElEQVSe55nckWnXXac9oUlt3M9JCCFk27h+Dy0GVLN3uDqTZmPR9GLNTuLqlZo+qum7rj6t2VI0u4nm68qib24SzTah7V917S/aPlFtDZFlX6i7znCvccddJ15V8jMJmq2IEEIIIYRcPZqvJ8kHqfm1kvxYSXHhWrxYkl8tzY+WFnee5qdL84G5eoVrr+31eom6w3A4NPqO+30GQXAl+9rXQfKz2tifxz1nk+arKRaLMb/IfD43328+n4/5Zl08z1vqj5Q8dWEYpvpe7fdx7ehCPp9f8M+49nTpp2Hb0d1xXIIgwHQ6zVTHcTQaXap9/rqySo0obW/jJvpqexdcsujAWT7Lsv2Sy95HfKSVSgXz+Ty2z+X8/Nz8b/m+b17bvqEwDBEEATzPQ6lUUvfOyO/S9334vo/RaLTw/yJ7MSSvJPBy3tT6aXuH7fk4l8thMBgsXJtl78V1RrMNrcI2fEqu7Yckk3VfzzKy7jVahmYDJZsnizywWeX/1LWtLmOV/fWr5ghcZX7S9u5tsj8Q/26CIMBsNovJuOl0an7/cr5SqZj1uMg2AKYuQhRF5n9vOp1iOp2iWCzG5JzUZxAGg4GRWVKzIZfLIQzDWL9NzA0ajUYjNkcXCgU1FsSWvdrfft2YDldGZIlF0XwcWeJcktZM2h5WQm4Ly/LoLltTaD5bm7RcP5o/2WZZnsA0v6y2htHatPvP2qbpDVrbZe4htve5u3OlPU+7c7Srx9rzpzt32nOmO2fb6wjXr5z13ty9+hepH7jJPlmR7+uynqlrEbJ52u02Tk5O8PjxYxwfH5vXT548MfP53t4ejo6OcHh4aJ7/8A//kDnUCbmm/OQnP8Ff/dVfodvtUm4ScsWcnp7iyZMnePr0KZ4+fYqPP/4YT548wW9+8xtjE7t37x7efvttPHjwAG+//TbeeustfP/738d3v/vdVD8wIWQ91tGTN6FrL7MpJWHbKVwd+SJt64xBuzIhhHyNtkfUteG7OXW0uC3XL6Dtn7BlyGQywXg8XnjvXq8X28+n5VNot9tqDL7sS7LR9tpJXxdtb+BVoOm/y/ZNboJisRjzKdtr+HK5bPIN2HkOcrkc6vW6ua5QKBjftO3T9zzP1Be28wVIDeKdnR1Uq1Xk83nkcjnUajWUSiXUajUzhvRtNpuo1+uxvRGr7CUkhBBCCCGEEEIIIYQQQshmGI1GaLfbKz8+++wz1fdRLpfRarWwv7+Pvb09tFqtpY+7d++uFNtJCCHkejIYDDAYDNDv99Hr9dDtdtHv99Hv9zEYDNDtdk2b9JM2OZa2JHZ2dlCv11Gv19FoNLC7u2uOa7Uams2maavVaqjX66ZNjqWNEEIIIYQQQggh5CaQtUbQunWK3NgTLY5Eq/G8ydpC6977Nlm3jpCW9y9rLSM3h5GWZ1DLtezmrdTyGmu5MN0cU9pnZgwnIYQQQsj1xF5X26/tdbOdf8Re09s6hv1a1u/z+RyDwcCs5cMwNDrIbDYza/UoiowOEEVRrN2uHZSW73YVpGaGvJZ1ql3zXY4BmDrvorfY7bPZDFEUmZhr+ZwS9+55nsl5Lmt0O9/5NnFze7v6hLbed9fty+qOamt/Vx9x9YW0fLnu+Flz4pLbw3g8xosXL3B2dobT09PEZ3dPYqvVwt7entmLqD3fu3ePvylCCLnh9Pv9WF5MeTx58sSsbff39/GDH/wADx48wOHhoXl97969K757Qm4fp6eneP311/FP//RP+JM/+ZOrvp0bw3w+x9nZGX7zm9/g008/xW9/+1vzLG22Lr2zs4P9/X289tpreO2117C3t4dvf/vbeP311/Gtb30Lr7/+Or797W/j7t27XA+/wgRBgF/96lemRoPUafj5z39u/LmlUgnf+973cHR0hIODAxwcHFxKrQapr3R+fo7xeIxOp4PRaITRaGRej8djtNttY5fqdDoYj8c4Pz9Hp9OJxRRI7EFS3aNisRiLFZC4gFqthlarZV7XajXs7u6i2WzG+jQaDTQaDZMTjxBCyPVgNBot2Ajb7Xas7dNPP8VXX30VsxtKnlPRFd94440F26HEOBNyFbi1KDudjvkN2/v+bF+evc/O3b9nX2/v2bP9grbPz73e3ptn13BMun6TpNVqdPfi2f4ld9/cKuPYfjPXT7WpcQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEHIj+evc3M5kQgghhBBCCCGEEEIIIYQQkoAkkdae7WIcqz6719oFabMgyZQ39ZxlTLdgKiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyKvAYDDAdDpNPB+GIfr9fuL58/NzvHjxArPZLLHPdDrF8+fPEYZhYp/nz59jMplgPB4jiqKF85PJBEEQIAxDhGGIyWSy8J7D4RAAMJvNzDnpG0URptNp7B5msxkkJVcYhgiCYOG7iKIodj/T6VSNg5nP5+Yh47r3J+ejKDLv6z7La+07cPunpRNjqjGSRC6Xu7Qx1ulnv7Z/5+5YuVxO/V+x+6XNSzeBYrGIUqkUa7M/X7lcXjhvU6lUsLOzk3i+VCqhXC7D9331b2XH32lc1vnz8/PE+5frh8Phwrwnn08YDAbmtfbdzudz06dQKKjfbRRF6Pf7KBaLKBaL6n1FUYTxeAzf9xM/22w2Q6/XSzwPLJe/wEuZZH+udftMJhMjQ5MIgiDxbyFI3OhF+0js6auG/Kbd36p9XCqVUCqVFuY2+7hUKsH3/YU+9pxXLBbh+/7CusZen/i+D9/3Y+smIQxDRFEE3/dNbG0QBAv3NJ1O4XmemZPDMFwYS9Zh9jxz2X/fXC638D/reR4KhULsvmQ+dP8m0kfWcIVCITZWPp9HsViMfZf5fD4WlxyGofmu7PvyfR+TycSsUXO53EI8s7uGlfsHXv5dZG3qzuXj8Xjh73bdSZMN657juJu5ttVqJZ4j5FUhbZ3S7/cTbRrtdlttT1uHpa13er2eqstEUYRut7vwHmL3kLWa2E3se7ffy5bXw+EQURRhNpst2D7c9aH0mc1mRr7bMjOKItNut0mf6XSq2ipkzOuOppMCiMn3XC4X65fP5xf0ApH1uVzOrCk8z1uQ/5VKZeFaz/PMukPGzufzsT6lUgnVajXWJus+AKjVamYN4q5p6vV67Frf980aqlAooFqtmrWoS5qcqNVqC+9l32+S3prL5dBsNhPHrdfrqXoXIYS86ri+Hc2+465Tzs/PY3qiZn9y1yLuGklbk2zrXrrdbmxtkcWutAk0GeTKs0KhgFqtFuvTbDZja4GdnZ2YjTGfz2N3dzd2ze7ubkyee56HRqMR61MsFhfke7VaXbB1uO/v+z7q9Xqsj6b7uTJ1mQwmhBCyPpoc7XQ6MX3Zlauu/HPtDfP5HJ1OJzamK89duev6fDS/lXtfrm3EtW2496V91m3gyltXz9TkryszXVkoOUgFV+5r8trNVerKalcGa3LavQ9tvcGcqIQQshxXRm3rWPYuDgYDDAYDzOdzBEGAIAiMfjudTjEejzEej81+wtFoFPP/yn5F2QNl2/hl36Jta0/aU7gp8vm80VNzuZyxSQMvZaDv+yiVSkYelctlY7P2PC9mo/Z93+xdEhnXaDRiMtGVkds+piwlhBDiYuvVoguLDiy1M2z5PxwOjT07y7Wi18u1tr6ctg8hDZFnohPb+qP4bcWmLXqyrcuKXVr0X1tHFZ1Z9FqxT9t2Y/ppCSGEXIRl9ayy9Fn1GUje45fERWpbXaRelmu/JoQQcn1ZVr8xS23HtD4vXrzIHA+kyZhWq5Uof9LOJfVx9zgRQshtwp275bFq25dffplqD5T5Vx72nJzU5h7fvXs3Ne8AIeR2MhqNcHZ2htPTU7Tb7cTXz549W9jzJ3PM/v4+9vb2Ul/v7e3RrkE2zunpKT788EMcHx/j8ePHOD4+xi9+8QsEQYBCoYC33noLR0dHODw8xDvvvIOjoyO8+eab/C2SK+e9994DALz//vtXfCfksgjDEP/2b/+GR48e4YMPPsA//uM/4ssvv8TOzg7+6I/+CO+88w7effdd/Jf/8l9w9+7dq75dsgHa7TZOTk5wcnKC09NTnJ2dxV5/8sknZt9nqVTC66+/jr29Pezv7+Pg4AAHBwfm+K233lqIeSDkNjMej9HpdNBut9HpdBZea+fsY22vdbVaRbPZRLPZRKvVir2WY9sGYx+7cT2EEHIdaLfbJka01+uZOJbhcIggCNDpdIxtutvtIggCDAYDk4Oq3+9jMBhgPB6j1+vFXi+j1WrF9rmUy2Xs7OzEXjcaDZTLZVSrVezu7qJSqZjX5XIZtVoN9XodlUrFvOa+VEIIIYSQ68Uq+7Tlda/XQ7vdxmAwwHA4RLfbxWg0wvn5OYbDoYm3ltypUnNmOp2afN52zZisSP5PiYEuFAomn3qxWESlUjH53qvVKmq1GnZ2dszatdlsolar4c6dO6hUKpn3jLu5TgghhJB1kDhjka9aDLLYgdLO2fHOaeckt5mcy1ILx8WON5Y95hKTLHJS4p7t2GaJmRJbkMhSiYOWWGd7fImnlpjpZTUUCCGE3C4uK8/Yqsei3w6HQyPfZ7NZrL/kGpN8ZVKfcTqdmjyk8/kck8nkUmqQ2jU27Nxjcix1vKRGRqFQMHU1pP6f5C0rl8soFArmOjv/mO/7RjcHXuYnq9VqaLVasXxmm8w3BrDOEiGELGNVmXdZ12zrfd26F9tiHZm1Cbl3Ve/LHJ+EELI9tHyVbv0IrcaEVjPKrV2h1Sd3x3ZlqVZ7QvJuClnqYGn3t+y9t8k69SGy6KBZalZd5Xun1ZUkhBBytWjyXauNrdVzdOtTAYt1sABdR3ZzdibVz3bvQ1tXaLJcuw93naCNn1Tfexu4clertezmDM0im906WFqNyHXk97q1r9ycclqNTEIIITcTbS2gyVJX7me1L2jjZ7FfaOsKbfysawh3LZN13bJtNNmsrSe0vehazld3TZFlfeDK9Sy1ubW1gPvebk3OLPW8CSGE3B7W8fFv8rrrMPZl7UcQNrEf4Dpct+7Y7tqEEELI7eUivhLNZuLaNOzYPCGrHWXb96btz7isNck6dgLXHrLONZrtxfXtuD4ZzZ6yzjW3vV5PFn9dlrq8m+qj/d9sq4+7N+qq+2jzyLb6XOb+rcvE87zY/7gWuyXx0Dbu/Kr1ARD7/eZyucR8pvZvL6mPxKkBWLAz28jfMi0GezqdIoqi1DwpEu+2LJfKeDxGPp9PtQfL+y3j/Px8qV1ZctQkkcvlTC3xtD7A+jXEbxKFQiH2nSb9xt0+bj/t73dZezcAmPhEt83+fBKzaCNt0i55iGykzfd9M6a7l7JQKKBYLCKXy5mYSdcWYbdJbXipAy9I/KXcm50HSesDvFx3LIvRyJJ3QfMREUIIIS6anUOzaWj6k7v3RNunkWUfi7bnQ9uXqulMrr3EvXfNfuJek0UX2wSufHftHln2e7j7Q12bhmY7cfd/uHtG3HVFFluKaxty793OOUUIIYQQQoiQtrdb0wts3HW8TZrdN80foukdQlqeVs2HbJPms13mm8ri783iv8maZzbtexWy+JRuMpIXz8X9XjSfkCB/M7ETp5HL5Zb6YXK5HKrVKqbTaerfR3L/AUjMVyj5+m20v2fSPdk6ttjMXezciVIjQBtHbAG5XG6hTxRFC3suXF+U5Gy0cf0dg8FA/R+SPrPZbOUczNcd2WeR9FuRXI9RFCX2qVQqKBaLqX6ger2O+Xye2Mf3fZTLZcxms8R5rFQqwff91DklzScKvPwbLsuPUSwWl+7vsG0h9u9T0HxQ2vuk+XKy/L+Ln+oi73MVbCo/+KbynWwilkmzia2DFkO2Duvsk16l/t+mPi8hSdh2d3dvpe1bcNfH7rHmw9DWp66/QlvrZ8lp4b6/pqdo6/Es6+ptoPkEhLR5JClHc9oclrR/Mm0+SavnlDR3p+W8SJMby2pHLZsj0/JWL5szmaeDvIpoe4a1Ns2OYc+J7nxs93flg23fce0a9vzsygZbLrg2G3fOduXFRbD9ofb6WOZLe4625yiZb+y5Q+aopDHFV2uPac/zMp9Op1P4vm985vL9y7O0u7UHpY/Ib3mW713+NvK8ag4omfPls7daLeMLl88szzLnymeVZ4k7kO9N/OSNRgPFYhH1ep11BMmtJwgCPH36FB9//DE++ugjHB8f4+OPP8bHH39s5sn79+/jBz/4AY6OjvDDH/4QP/zhD3F4eIg7d+5c8d0Tcrv5y7/8S/zrv/4rPvjgg6u+FUJuBUEQ4Fe/+hWOj49xcnKCk5MTPH78GD//+c+NrlEqlfC9730PR0dHODg4wOHhIY6OjvDgwYPE+C9CXmXa7bbRC0WfdHVG0S3lvOiXcp2ts4vtQPRLGUv01LS9HEmInujWw7V1bdFL3bq4ok+KLi66p1ZTV/R+W69nzj1CyLoss1dm2f+lxf64uPEyQRDE/GHD4TBmu7XttrPZDOPx2OzrCcNwYSyxFc5mM3S7XWMfns/nsXuLogjn5+cx26LrcwvDcOHz2H7BKIoWYtfn8znCMFzIw3IVvrvrRC6XW9jX4XkeKpVKbA+K1Jy1/YBSN96uZ2vHRIs9u1wuGzu153lGrrp5aJrN5oKfToufdv11WkyV5rdzfZy2bN7UHg5CCCGEEEIIIYQQQgghhNxcRqMR2u32yo8vvvhC3TdfLpfRarVWfuzv71/BpyeEEPIqYseG2bJr1bYkWQd8Hdvmyr1V27797W/f6touhBBCCCGEEEIIIVeNljPPbcvSZ5PXXcU9rJov6SK4uVq13K3L+mzimst6X+Z8IoQQQgjZDHYeVzv2317L2q/t/K12vlY7t4Cdq9VeJ9uv7XwFdr4XO1+sPWaWWjppSF2Y+XyOUqlk4tIlHjyXy5n8TvP53NTmlH5RFKFSqSCXy8XqVUi+1vF4jEKhYPzU0+k0Fncuucgl9n0ymZjvzvd9TKfTWL4FLTe5+x0sqz+0Dm5MvbvutuPy3TW6HccveVwFOz+3+x5ujls7zt99Dzue383Lbb9HWu50shrj8RgvXrzA2dkZTk9PE58/++yzWK6NVquFvb097O/vJz7fu3dvI7VCCCGEXC6np6cmn+bjx49xfHyMx48f4+zsDEByPs3Dw8ON1JoihCzywQcf4N1338Wnn36Ke/fuXfXtXDu++OILPHnyBE+fPjWPJ0+e4Ne//rXROX3fx+uvv4779+/ju9/9Lt544w3cv3/fPO7du8ecwLeIMAzx6aefxnJHi+z75JNPMJ/P4fs+7t+/j4ODg5i8Ozg4wJtvvvlK5YkdDocYDAbo9/vodrvo9Xro9/umrdPpoN/vx9ra7bZ5PRgM0Ov1Um07xWIRtVoNzWYTu7u7qNVqqNfrqNVqaLVa5nW9Xke9Xkez2Yz1aTQaaDQaqNVq9B8SQkgC7XZbteu1223z+ne/+91CLmKJ1yoUCphMJnj+/Dl6vR4qlQreeecd/Nf/+l/x4x//GD/60Y+u6JORy8TOZ237i2y/kO3zcfNb29fbvifbH2T7j+zr3dqA9trC9pfY12u1Yi+C7SOx66ravhQ7F7Htq3D9H/b1tp/E9ou4vo40f4qbA9kenz4TQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEXGP+Oje3MxsTQgghhBBCCCGEEEIIIeRGIEmkpUhpv9/HdDpFp9Mx56Q4qSSPloTWklhaklV3Oh1EUYROp4PZbIZer7dwbRYkebMUzJSimpLEuVKpoFwum4TPUgBTCnG2Wi14nodGo2GSO0vRTEkgLUmpa7UaCzESQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIVtAYhVsxuPx0rbxeIzJZLIwXq/XQ7/fRxAE6nkAJo5hOBxiOp0m3luv1zOxE2n3PxqNMJlMMJvNFs7PZjPMZjNEUYTpdIowDBFFUey8HEdRFOsvRFEEO3XTfD5HFEXmMZ/P4aZ2kmM5547h9tXGSBovDaaYenXJ5XIbuz5tLDknz/KbyuVy6nW5XG6hj91Pznmep76//PblOruffd7G7iP/X0mfRf6fkz7zZDK50f83Eod1Hc9fdGzf9+H7fuL5UqmEfD6fKCNKpRJKpRImk4kqa4rFIsrlMgCoMqtYLKJUKpljV+4VCgUUi0VzHAQBgiCI3b99Hngps6RPsVhEPp9fuC9NLt+WPhIL+aqx7Ld+G/vImgx4+b9aqVQwmUwwGo1M+3Q6Nb+HYrGI2Wy2EP8qfcIwNPO8/Ruyz4s8cOd8+/8SWFwbBkGw8Lu014tRFCEMw9hcZH8+Ydnvf1N4nrcg8zzPg+d5MZnqymv5btxrc7ncwvr5JiCxzhrbkl0cd/k5iT0nhMRJWydt+txNfq/RaIThcBhrE1k8Ho+NPHdlln1OEHl4fn5+rfVBVy/fNp7nLehghUIhpqvn8/mYHuN53oLMLRQKKBQKpp/neTHdyvd9VKvVmG7v+z5KpRJ83ze5RXZ2dmJrk2q1ilqtZo5zuZzJZyLjVyqV2GeoVqu4c+dO7P7K5bLRB0Uu1Wq12HWtVmvp90UIIeRq0dYMbtuy4031ucx76XQ6l7I2cHU7TdfbRJ/LuiZLH1lXEEIIuRy63W5Mh3dlXLvdNq/n8zk6nY45jqII3W7XHEs+zaT+2vsNh8OY3y8IApyfn5tjye9pY98TAPT7/ZgvQHJ/CrIvZttIbk/BlWmuvVzyftq4erDkDRVc267kDBUkp2jafbn5RF1Z7N6X5Dq12d3dVf2rhBBC0rHlrCvjXN1TclcDizLXlZfuHg9bVk6nUwwGA3PsyklXNrtyNu1Yk/WbxpY34keX73Ad33k+nzeyNZ/PGzu67I0qlUooFovGRi72celXq9VQLpfNXqXd3V0jR4vFIprNJiqVitkrdefOHezs7Bj5/frrr8fksCvrCSGEkKtC1ib2ukPWLrIuER1e1i2ib8u19tpg1WtXQfRWWwduNpvI5XJGXxWdXPRo0Z9tnVeukb7Sx9aDRVaL7ix1QAghhJCLIrJQdHypTyWyUo6ln+j3Yoe35a7o6qLji81c7AViC1ilBpYgslDsylK3SmSj2L1FZxZZactpsXuLrVrktTumyO20veeEEEJuBm59x263i8lkgn6/b+RSp9PBZDLBYDAwOqPW1u12EYahGWM4HC7YudPY3d2F7/toNptGXonMETnXarWMvigyTnRFqefYaDSM3iiyyx6bEEKIjsiC0WiEdrttHqu2ffnll6l5bsrlMlqtlnnIXJ/W5h7fvXs3Fm9DCCHLCIIAz58/R7vdxtnZGU5PTxdey/Gnn366MI+1Wi3s7e2h1Wphf38/8fV3vvMd7q0nl0a73cbjx49xfHyMx48f48MPP8S//du/mb1He3t7eOedd3B0dITDw0McHR3hRz/6EWUouba89957AID333//iu+EXCUnJyd49OgRPvzwQ3zwwQf4v//3/2I+n+Pg4AAPHz7Eu+++i4cPH+Lw8PDCeQXJ9SMIAjx79gynp6c4OzvDyckJTk5OzPEvf/nLWAyMrNH29/dxcHAQe31wcID79+9zzychGen1emi32+h0OuZhH7uv5bjdbqsxYGLPl0ez2Uw81s4RQshNRGzmtv38oq/tWKUkxGcqNvRNvP7GN75BGxchhBBCyA1D9rmHYYivvvoK5+fnePbsGYIgwJdffonBYIB2u43z83N0u12zP3A4HJp8tRJLNplMMB6PMZvN1FzxF0XiwyS2zPM8NJtN5PN5fOMb3wDw9Z72LM8SW7bsmRBCCNkW9t7LLM+rXJPWd536RLYtSXKvuG1Jz6v01a5hDjRCCCFXxSq5zoMgQLfbRa/Xw2QyQRAE6Pf7mEwmpo6j6NRS1204HJrrp9OpGU/0ahlHfD7SPp1OTQ03rfZvVuwcb9vCrlWZy+VMnLnUb6tUKguyX7jI8TavZS45QghZDzdm3M2dCizmQ3X1Vzc3q5u7FcDCfonLel831+sqMfIXYVlOdC1/uatnSzx90pjX7ZgQQsjloeUjd2uNaDlGXXms1Q5xa6S4Ove67+3WMdnUe28LyY9j49Ya0fK0uTVOXHmu5VJ1a5Zs673d2ifueoR+eEIIudlsqx7pZfZZd9wsMRqb4rLqh26qz6bGddcVhBBCXg20POmujg8s2tk1/VyzBbg2/KTxNVnu+gfcuqxJ4y/zCWj36V6zLZbp6cDXdVtWuca1Gbj1VTVbhOuPcGV/Fh9GlmvowyeEEKKtN1zZq8lnbc3grg+0tYC7rtDWENqeAdc/ofkw3P0K2v6ELJ9327jrCbfWOrDol9DkuGYvcNcdmj/D3Ueg+R6y+Djc93LXFe46SbtfQgghJImr9GlsY9ws17h7NrbFZfkyrtM1tH+QNLT/z3X6bHIs9rmcPpetC24biTlLo1gspvqUS6USisViarycjJEks6TeOYDEmL1CoWD6RFG0ELNfKBRiOjHw0g4gY2nngZf2C7FV+L4fm/tns5n5XOfn5zF9VoiiyLyHvJ97//P5PNY2mUwW/Cf2dblcTs0fNJ/PMZvNTIxgFEWYTCYL330URTEbwnQ6XeijHW875vGq8X3f+EPcPPly7HkeSqWS+Y5tbF9KpVJZ+D256wY7hlM7L9e7thONLHs7NL+RRpY1jmZ30nDtPC5Z9q5qdiiXLPahLDEwzJ9BCCFxNhG/6fpdtH0nru3CXXdr/qRlsaeu30bzG7n3rvmotoErb9y9Hprsc9cDrrx2ZWGWfSmubFxmG3Hvc9VjQgghhBBCbgNa7hwNd8+aRhYdRdvrpuHqUBpZcuFmeb+s+QCyvJ+2T9BF01U1svjNtT2A677fZcY8XgXlclnV+ezfted5qm3X9TfUarWYHVnzo5TL5ZjNXfMV5fP5mB4reSBdZP/ibDZL9Uvl83mEYUf6hDoAACAASURBVJj4d8zn8/B9H2EYJv6W8/k85vN56m/d8zzjz0kiDMOlv1/Jg5mG5N5MYjweX0perssgzW+wjXN8z+XnmKuMkNuJtn5010lZY0rS1mFp+3mS9vGkrd2T1qppa920tWTS2lD77EJavsws6/vryDK/gRvr4pK2/0CLi7FZtu8gbey0PRRp8i1NLqbtudB8PMKyPRauL8gmbT8E5fTtxp2/7HnTncft+Uxe23OZPXfJXGWPIbq5Pafbc7i8tz3mRX248j9szxP2fCT//xLvJv+f8izzhzzL/6jsw5Ln6XSKUqmEyWSCYrGIIAgQhuFK9Y6yPmetZ6TVGrJrWy+rfZ3WdvfuXeYhIjeS09NTHB8f4/Hjx+b5Zz/7mZlzWq0WDg8PcXR0hIODA/P6zTffTJSxhJDN8Z//83/G22+/jZ/85CdXfSuEvFKI/Ds5OcHJyYmRg7/5zW8QRRF838f9+/dxcHAQk38HBweUgeTGYOtN7XY7Uada99x4PM7k4xe2UTc2y7WMdya3naQ9LUn2Jc3WnuQ7WFbjKm2OWLaPZtk+FC0OIss9C8v2+izbK2PX8XRjYKMowmg0QhiGC3tB5LXU/HzV0eJM7TbXByF7Tuzzdn+pJ2pf5/u+6ZPP51EqlRbs/sVi0dQelWvsPrlcDo1GI9ZWLBbN+xQKBVSr1QXbn7yX2Fh931/wK6T5edL8Ist8H2njav6dNF8JIYQQQgghhBBCCCGEEELITUf2OKz6+Oqrr9Q96LJffNXHa6+9lppjlBBCCLlpuPsIbTm6SlvaPiItjkseq7Qty/VNCCGEEEIIIYQQQsgytJgzLQ7PtXetU3tonbpBbjyfFkPnxge695/lXreBFiu1rLaQVlPQtQO6tQmz1DRy47LcGK9t3SshhBBCyG3Czhdh11Wx16ey3rXXwkl9ZQ2e1NfORar1tdffWfOWJmGvF+21pL02lZysdr5Xu6/U+5C+Ul+kXq+bzyzrTc/zjP7h+z6m0yny+TzK5TKCIDA5GQqFgsn1CizmJbePN3Xuot+lhpZL6DJfZ+l7k2uQBkGA58+f4+zsDKenp4nPn3/+eUwfbbVa2Nvbw/7+fuLzd77zHebxJoSQG0C73Y7l3pTXT548wWw2+//svVuPHNd1/v1UVXd1T5+bpCnN+KSMdaBmKNsB40CyhCD5X+QbRBcJkE+QyyCX+QYBchcgXyCAfJNr+8qGCCcOCFu2Z0hKyjiS7BlJFFl9Plf1e8F3lXetrkP3TPccyOcHNKp27V2H7q6qtfZae68VicFpxt9844038MILL1z05RNypfmP//gP/P3f/z1Go1FibpTngU8++QQffPABfvOb3+DBgwf48MMP8eGHH4a+inK5jFdffTX8vPLKK/iTP/kTfOtb38LOzg7jij6HfPXVVzg8PMSDBw/w0Ucf4eHDh3j48CF+97vfhX3S7e1tvPbaa+F989prr+G1117DSy+9lJrricTT7/fR6/XQ7XbRbrfR6XTQ7XbDba1WC91uN7LN87xwvdfrodPppM4hcF0XlUoFjUYDtVoNlUoF1WoVlUoFzWYzXK9Wq6hWq+G2Wq0WfmQ7IYRcdkajEZ48eZJoi/M8DycnJ/j0008j40pk7lScLa5UKuHRo0c4OjrCBx98gHv37mEwGKDRaODNN9/EW2+9hf/3//4f3nzzTepPa8IcsyO56cwxN+Z4nLi2pt/EbBvnN0nysZg2evMYWTG6V8Uc72KOsTHt5Ob4HJ0j04x/bO5v2tZNn4kec2Pub47XMf0wkk8vbn9CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQsnZ+ZM2TokoRQgghhBBCCCGEEEIIIeRUSODpuKXneUttW6b9MuhkjmnLZrO5dNu4JRNNEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyGaZTCbo9/uZ7cbjMQaDQWY7Gaee1abT6WA8HofXMJlMFtrMZjOMRiP0+31Mp9PYa5pMJpjNZuj1euHxdBuz7WQygRkeZz6fh8f2fR+z2QxBECy0830fvu8jCAIEQRDWzWazsE0QBJHyfD4P2/m+H24LgiByjXHt5HhxmO3jQv3o77cMDBn07GJZ1krbzbq4NuY227YTj6HrLMuK7KuPbVlWuI+0lXtdyubHtu3Is6CPIfVJ39O2bQRBENlHM5lMYNt22MY81nw+j8zF0W3m83niO1PO3ev1YuuvArZto16vn7recRzUarXE+lwuh2q1mlifz+dRqVSWrp/NZpH3q+u6KJVKkX1ms1n4DnddF1tbWwvHnU6nmM1mcF0XhUIh9tzT6RS2bcN13cTry8J1XQRBECvXAKBQKCCXy2E0GsW2cV0XjuMAeCpP9bwx13Uj973MM0vjKrZpt9uJsvQqI3Pv2OZ0bdZ5Htu2E5/T8XgMy7JQLBYX6sxnN+59op/tYrGIXC4HIP3e13XT6TSiQ3c6nYjeL+80ud7xeBx5FwJP342DwSA8jn6fyvWa5xWdWc4xmUwiz6Lo06JfyzZTpotebeq8ul5vu8r6rOM4cBwnVj/K5XLI5XILuhSweP9ovaZQKETuZdu2w/pCoYBCoRCe22xTLpfDezeXy0XqgfRn5LR1l/G4pVIpUd4TQtJZRV6dte4qn2sT195qtS61TMzn88jn8wvXOJ/PQ5kHLNrEdJ8c+KMNTeSb6BiCZVkRvUb2kTaWZSEIglib4yZwXRf5fD4si8w1v9fW1hYcxwm/Uy6XW5BT9Xo9chyR6QDC31D3x0ulEmq1WniuuD53tVoNf3+53nK5HGnTaDQWrtfUd+NsAZVKJXK9hBBCrh6dTidiC+h2uxEZ2+v1IvK03+9HfH66PBgMInYPrdtoP6P2T2q/5nQ6jdjaZ7MZut1uWPZ9H51OJyzP53O0Wq3Id9TfYVPEyeB6vR7pyy8jX7XcLhQKC/ZuHberXC5HbNZxNvasa4mz62ddi2VZaDQaIIQQcnnwPC9c13IxCAK02+2wrOWolrNaDms5reW4lvNaD9BlrTdoma31Eq23rBstX7Xs1PJW25/jdAF9zFqtFrHJazu17q/HyWfdf9d9cy3jtV5A+U0IIZtByzVzTIuWuVpmmjJPy28tf3U/3PQbaFmuZa8pS1c9z7rI5XKhXJrP5ygWi6FfYT6fY2trKzJusFgshuMPTH8B8MfxgzLOwbKscIzwbDaD4zjhuInpdArf9zEej0+lT7iui2KxiGKxGNrtxe8ucrdSqaBUKiXG4AayY37HtaEdnhBCyFUgKcdGWl3Wcpl9T6OznEVWn2VfbVcghBBC1sVpZW1W3qt1yN5NyN1ljqnt6IQQQp4NxK4tfuput4vJZIJ2ux3Kq7htnU4Hk8kEnU4nlGlx25adq1qr1eC6Lmq1Wih7zG0in2TcVbPZDH3Juo9Yr9fDseHiK+ZcJ0IIOT26vyOfVbc9evRoYb6SieTvlY+Z0zdpmy5fv36d73tCyFqRd9rJyQmOj49T1z///PPI/E/z/bSzs4Pt7e3E9RdeeGEhLgEh58lkMsFHH32Ee/fu4fDwEAcHBzg8PMTR0RGAp+N29/b2sL+/j729Pdy5cwff//73U2NYEXIZeffddwEA77333gVfCblMdDod/OIXv8D777+Pu3fv4u7duxgOh3jhhRfwgx/8AO+88w7efvtt/OAHP2B/4znB8zwcHx/j5OQER0dHkfWjoyN8+umnkf5ts9nE7u4udnd3sb29jZ2dncj6Sy+9lBp3lBCyHNrmtOznyy+/jB3nru1Oy35u3LjB8WqEkGeOpHFPSevLtl0mppu8j017/1nXdSwPQgghhBByNYgbn2KWh8Mhnjx5gna7jS+++AKj0Qi9Xg/tdhutVivMTdDtdjNj40lcedu24TgOcrlcmJtH5t5Lzq2kPApxSNwZiX+36lJi4Sy7zMpJQwghhKyLs8xzX6Vt3D6nyZ21zrl3q+wDLMbGI4QQQi4jIl9lfrvEyTPj6kpcPZHJEkN3Op3iq6++AoAw/3W/3w9z93W7Xfi+j16vF+ainUwmmE6nGI1GmM/nS+X+1jiOE8aLE599Pp9HEARhP9/Mu5vL5TCdTiN5e0ejUSTHr+gdlmVhOp2uZANYBT2v0Yydq2PY6r6+js2r4+aZc/91jF0dg3eT10EIIWR96Lj1QDQuPrAYa17HstdxeoHF3NQ6zu8y59Ux7NddXjdaXl22sh7fctYyIYSQy0Vcvtys/DKn2WddbdZ13PPKY6f7qRdd3sQxKesJIeTqo/vrABbmWOjcOsBif1zLW50jD1jMfxNnG9ByWuffARbz2cXZC3R/fpnvuUl0jNw4Oa39+Mvku9Ux7+Py3Om+ftx4Pp1PT8t4fQx9Xm3b19dOCCHk+eEy2wg2tY/WTTbFOvr5V20f+vwJIYTEsSl94zIeO27bpvILm1yEv+EizslcEIQQQlblMtkjzmufixpfEbftMtswTrMP8xoTkk2cH/g0beJ8zho9Zl0T5//WZL0zl7mOrHHrMrcujSw/eJz/X6PHA2jO4/e6SmS905eJuVOpVBZigk+n03BuRT6fR7FYXLg/ZrMZgiBAEAQolUrhNhPf9zGbzWDbNvL5PObz+UKb2WyG2WwW2uTn8/nC/+P7fnhvyVLbKORazHtQ4iIJ+vxBEGz8XpD/R67D9D1YlhUpyzxQqdPtgaf/qfyulmUt5O6R8nQ6DX9783xx/7X8ljKv1MSyLPR6vY3Oa7kI4nSmVdus4xjn2eYyXcu62ixzDPr8CHn+0HprnH6odV9tk1hmHqker6F13TgdXOvL2u+ix5rGXbueA7tp3432Z6xa1vrqquXznp9KCCGEEEIIIVks4+uIm7cYxzIxheJ865pl/EDAYp8yjiw/zCrnW2b+5DLnW8YnB2T7mIDl5l+sq81VpFAohPMyk/4713XDvn/S/eS6bti/T7rH8/l8GBczDt/3w7wYGtPfY8beFPQ9ZR5nMpnEXrfjOKl+I6lLyrMr9ijbthd8LaPRKHK/mPWbjO25btL8jpJDRJM0VjbtWHo+dNax8vk8KpXKhR0ryV+bdqykuOwcz0PI80ua3pQ1DiZLV8rSX7P8DGk663w+R6vVStw3S2+Mi8FhkqYrpuncWdeVphen6XnnMZ9mXSTF24jzscfFCAHifShx+8fFIQHiffWFQiEcYyToWN9CnFzUMcSFONkat3+SfE6S82Q9SF/NfOblWTPfcWb/V55T8x0nz6D5jMs+Oo+PnEuWy4x91Mh9JUu5T2Sp8+lJ3Bx5dmQpz0KlUsF8Pg/HfjmOg9FoBNu2MZvNMJ1Ow+8m193tdjGZTNBut8Pv1ul0MJlM0Ol0InmKJpPJUn11eY4qlQpc10Wj0Qif7VqtBtd1UavVwvdIvV6H67qoVquhHt1oNFAoFBaOE/eME7JJPM/DwcEBDg8Pw+Vvf/tbfP755wCe9lVffvll7O3tYX9/H7u7u9jb28Prr7+e2L8nhKzOt771LfzDP/wD/umf/umiL4WQK0e/38eDBw9w//593L9/Hw8fPsSHH36IDz/8MOwP37hxA7du3cJrr72GV199Fa+++ipu3bqF3d1d2hLJ2pE+mPQ1pO/WarUwm83Q6XTC/or00drtNnzfR6vVStzf87zQTpRlDzKRvn29Xkculwv7J+VyOeyzSN+r2WyGfTHp40h/LG5/6d8w5gfZBHreorY5avuk6efWts0kO2jS3Mg4n3mSDTnJ/hpnP026jiT7c5ydNctuexGkvQPm8znK5XJkvqP8LvP5PKy3LCuy3fztisViaPv3fT+skzmQhUIBlmXB9/3QDi/rMsfP3G7+puZcS5mbCTz9v9c9BzCfz0f0DhkPINdojg8wxxMAT39j01btum6kXCgUIvZpc8yCrDuOg0KhgEKhELFPm2XTpiXE5dgWONeMEEIIIYQQQgghhBBCCCGEnIbhcAjP83BycoLj42N4npf5efLkSaxvtlgsotlsrvy5efMm42URQgghG0DkvOd54bgoU6avsi0JU/7LOEhTzuttSW2SYhUQQgghhBBCCCGEEPI8kJUnKG4+pJ43qedXLpOfSMeg0zGt4uZQbuJaN4WebxkXr03bJvU8PR0jLi6+nI5tp+f+6fPqmFb6OvXxzNi4+vxJ8fYIIYQQQi4zZpxWM+aq3nbebc+qp4oeqJdxdWdtDzzVBSUGyHg8Dut934/4+c0Y4WacJFP/N9fNNua6qfub60m/q/l7rqsPYOrOZoxmc93U6c11U8821yXurrlu6vDS1sxBkbbttIzHYzx+/Dgcy5m0/OKLLyL9q2azie3tbezs7GB7exvNZjNcl+W3v/3txNwShBBCLo7RaISHDx/iwYMHYfzOhw8f4uHDh6Gc3d7exuuvvx7GoZbl9evXL/jqCbka/Mu//Av+9V//FZ999tlFX8q5MBwO8dvf/hYffPABfv3rX4fLVqsFy7LwJ3/yJwuxgF999VV84xvfuOhLJxfAfD7HJ598gocPH+Lw8DASS/qrr74C8LSf8+qrr+KVV17Ba6+9Frl3knL0kYun3++j2+2i1+uh3W6j0+mE5W63i1arhW63G9nmeV643uv10Ol0UnOO1Wq18FOtVlGr1dBoNFCv18OyfOr1Our1+sI+cfmgCCEki+FwmGk/k/nSJmJDi7OdyfLrX/966Iv/3e9+F9GnfvnLX+Lo6Ai2bePWrVt488038cMf/hBvvfUWbt26dSXzBJlxwGUsiZmX0bT1muNEpK05JiWurTneJKmt5JBMantaTLuw5GMzbbmm3d2068r4EbOtOb5D5yk2x5uYdmbTXm2ey9w/KbchIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCH/Pz+y5kmRoAghhBBCCCGEEEIIIYSQZwwJYO15XhisWhIgttttTKdTdDqdMLmiBNqOa9/pdDCdTtFutxfaZyFJDCVpYq1WQz6fR71eD4NWSyDsZrMZBp+WJJNp7RuNBhzHYbIGQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIuKTKu+aq0m0wm4Thpc73b7aLf7wMAptMpfN8P95lOp5jNZpjNZhgOh5hMJvB9H7PZLGwTBAHG4zGCIAAAzGYzjEajsCxtptNpZNtkMlk4jnwkjMp8PsdsNovdLvuY28xrl23y0e3j2pnluDZJdVkwLMzVxrKspdtktbVtG7ZtZx7PcZzYdvP5HJZlwbIsOI4Dx3EidWa9XE8+n4dt25Hnz7btyLValoVcLhcez7Ks8PxBEITPluu6KBQK4TEARJ5jwXVdlEolTKfTxPs/CAIUi0XkcrmFOt/3w/dXLpdDPp+P1Pf7/cj3kWu3bTt8V8Xh+z4Gg0Hi/9TpdMLj6jYyD+WqIHNekmg2m4l1xWIRW1tbifUyL8bEvE9KpRJc113Yz/d9BEGAra2thf/UbJPP5xPrAaTWyfWJ3Emqt207Igt1vfz/k8lk4X4qFouR+2M8HkfuDf3bAMBoNArbyDOU1Cbt+y2jA6yjzbrOc1XJegay6tnm8reZTCYYDAZhuVqthjIw7d7udruxcg8AWq1WrMwLggDtdjvx+jzPS6zr9/uJMk3mSSaRdD2bPO5gMMBoNFrQq4MgwGw2C39zvf98Pkev17tSOrPIgfO6Ztu24ThORP7INsF13UjZ1O1ET3IcJyJnHMeB67rhtnw+v6CbVSqViOzK5XKhnHddF1tbWxG577pueC3y7Jk6pJznxo0boT6p67e2tiL1JjJPN4l6vb6Uvk0IOTtpMnPddTxXlHa7HekTXzbSdLRl67QNL5/PR+SN9EELhQIKhQJ834/YBX3fD+Uc8NR2YdabthOz3nGcUBbOZrNIn1H0GmE6nYb1tm0vtJc+p5xrPB5HdLB+v38uuoT+zeP+g3W0uWzHpU5ACCHPFtqWoe31WncajUYYDodhWWJKCZPJJPSNAov2kNlshm63G5Z930en00ksa/vPfD5Hq9WKfAdtA9I2lk3reBLbSnBdF+VyOSxrn4LufzuOg1qtFpZt247ExbIsC41GI3JO7YfQ8lnLcH1M4KndzrRV6OuOO0+5XI71URBCCLmcaDn+rJXT/EBnZdU+9VUrp41pIIQQsn5WkXGbarvO8ywbV3pVziLf0up83w/HSU6nU+RyuXDM53g8Ri6XC30nw+EQuVwu/H69Xg+5XA7j8Rjz+Ryj0QiWZWEwGGA2m2E8HsP3/XBc5XQ6xWg0gu/7EfvHskgMbumjm/156ftL33yZNmKzMG0PjUYDlmWFMbrlt8oaL0AIIYRcNmTMadJSdBa9FN1G/Buyj+mPEJtDp9OB7/sL+66CzA0QuSw+A1OGSz+9VqvBcZxQTut9RV6b+4psT9qXEEII2SQiI0X+iuwUH7347j3PC339InNlbIDIYpHXMuZAliKz9ViFLEQmil9cZKX0nWUpsrTZbIa+eamX/rTIYJHj0icXGR3nayeEEPJ8IP1Ec+l53tq2pc01NCkWi2g2m2FfUJbr2CYylBBCyPrQ7375rLrt0aNHifPygT/KB/mY7/ikbbp8/fr1xPgdhBCyCTzPw/HxMTzPw8nJSey653n47LPPFsZlFItF7OzsYHt7G81mM3FdyoRcRo6Pj3Hv3j0cHh7i4OAA9+7dw8OHD+H7PlzXxcsvv4w7d+5gf38fe3t72N/fx+7u7kVfNiFr4d133wUAvPfeexd8JeQyM5vN8MEHH+D999/H3bt38dOf/hRffvkl8vk8vvvd7+Ltt9/GO++8g7/6q7/CjRs3LvpyyQXheR6Ojo5wdHSE4+NjnJycRNZ/97vfhXbXQqGAr3/969je3sbOzg52d3exu7sbll955ZXI3F9CyPrRtq9lP1999VXsnAZt/1r2c+3aNY63I4Q8dyT5qtexnobpl47zWZ92nTHRCCGEEEKuDsPhEP1+H51OB51OB/1+H/1+H+12O8zv1u/30Wq10Ov1wrLneej3++E2KSflgwCe2gCLxWL4kRwBspS8UqJLSmxkyeUmsZCn0ynG4zFGo1HmOTVxOvAml4wTSAgh5LyJm1ehYxYtuzztPqtA2UwIIYRkI7ECJFeBzPs3cwNIXAGRyWbeAYnbI7EIRHabuQdk7qT0syWmQFY+yjgkx18+n0ehUIDjOOHcf8mZWy6X4ft+mCNX8kBLHkDXdTGZTEKbgWVZYczCXC4X5pi3bRv5fB7D4TAxB4L+DjpHg9Zj0vJ2nhWJpQAs5kHQMRIkBqJgzi3VORJ0zgUdB1JiPcRdh97XbKuv0bymuDwNhBBCzpeLzkew6fKysR1Oy0XnJNh02ZT3hBBCLi86LyCw2C/NykWocw/G9eWzcgmKXUHQOQ+0X17LbX2NWfkRN0FWvkId73+ZfIRanuq4T7q/rX0QOg7xJq6REELIs0VcnF8tx7UcjssjrHMfx+kHWt7HyWutl2gZDyzqEVpXARbzFmvdIe47rBvdb74MuY61rqHn4WjdQ+c5ztJFCCGEPH/EyWGtS+g+fpx813YDrVvE6Q1a3p9mH63nxNlNtO6xap6E0xKXR1DLbm0H0PoCsCjftY6idYrT7qP1Bq37aF1H60K6PSGEEJJG3DyC8x5fcB7n0PrNJtByPm7bpsvncQ7mcSSEEHIaNmVbWIc9Is4PkzX24zT7bIp12TCy7BHad6LPmzUnQvtB9PlMv4u+vjjbDiGEZLHMmLesOWhxdnuNlmeaZezg2hegyerTLjN/MCu2z2X5vZaRn1m/11XCHDMwn89j51+IL0PiN2W1Xxe2bUfmQjqOE9EvbNuOyHLXdZHL5cJYU47jLOgW8n2DIAiPae5v2hv0XIpcLhfRTeTYck/q/eVaZGyNxMwy6x3HwXg8xng8huu6ibFXs2JwWJYF3/cz22XF81gm3se62mQ9i1eRODvZJtqc13nW1eYyXcsybZY5BsdYkecBrbvp8aKrlrUet2pZ21ZWLWu5s2k5pG0O2k6yalmPL1m1rMearlo2x65yTgohhBBCCCGEXCznacdlm8vTRttargr5fD7Wlir+pXw+H/FVmfYayTsCIGLnMesty4q18TiOk2j7mU6nsG17wSdjxiU164IgiNjJLMsK7Saj0SjiK5PtkgPlsuG6buw8H8uyFuYuC9rOBSSPodHzlYH4MUVAvJ09biwRkDxmOO6ak2z8cXHUkuY9adscsDgmiRBCNkWaXpA2JiZtzE3WmJ60WJ3a3yLE6SZJ1xc3xiZuDFHcPOWk64sbx5T0G1z02AQdF1zLH11v+ni0bFxnzHEtX7XMN+Wslv3L+NSfB1bNvbOOPD6rxtZNyxWdlUtaxm3J+Cbf9+E4Dmzbxmg0gu/7Yb7ByWSCVqsVXmun08FkMkGn0wmvvd1uYzKZoNvtLj2/rlqtolAooFaroVqtolQqoVwuo16vo1QqoVQqodFooFwuo1QqoVqtolarhXXNZjNcr9VqsfoqIWl88cUXODw8xIMHD3BwcID79+/j/v37ODk5AfC0D3Tr1i3cvn0be3t7eOONN7C3t4dvfetbF3zlhFw9ptMptra28B//8R/4m7/5m4u+HEIuLY8fP8bh4SHu37+PBw8ehHLq008/xXw+h+u6eOWVV3Dr1i28+uqrePXVV8P1a9euXfTlk0uG6Oqe54W6vOj1g8EA7XYbw+EwXJd836Lny/poNEKv10O328V0Ol06Fqj0U6UPIv3SRqOBXC6HWq0W9qHFnlyv1+E4DhqNRuL+zWYz7Mcy9tWzibYBaZuSnhOWFfNF27myxh+bti5td9Nzy7OuTc/323Q8mlX8KnH+oaTxw9pmJSTNuYjz2ST5nrQNazQaIQgCVKvV0E8XBAGGwyFs20ahUAj/78lkgslkEslPCDz9z+fzOfL5fGjPnM1m6Pf7oe9RjtHv90PfYq/XC+8F075p2kVPk58xDf276WjY/gAAIABJREFUmP+haecw33faN2faG017omkv1P+t+f+b94g+tvlfmv93ks+PEEIIIYQQQgghhBBCCCGEkGeJ4XAIz/NW/sg4VBMZy73q58aNG4yFRwghhDzDaH1DxpwlleO2PXnyJHVcmqmHmHPMVtl2/fr1yDxHQgghhBBCCCGEEELI5Scu5puOF6djxek4c/P5fGFuuc4zpOfSxuV51nN59XzbuGvVsbj0tZ7nHF49zzYrf7KOd7pK/mQ9f17Pw9UxtnTeInOe6qp5oAkhhBBCNompR4peasZpkW2i15nxZyRWTFp7Uw+Vc5n6reiXy+SLSEJ0LYntYepbEsfD1B1FDzRjwIouKHrdqu2T4uib+rK5bsbdSVo3/xtz3YzRY66b+r25burw5nrc/70qpt4sv0XcNvM/WXZbuVyGZVkYDAaYTqd4/Pgxer0ePM/D48eP4XkevvzySzx69AiPHj2K9G2KxSJ2dnawvb2duPz2t7/N3AeEEHIJCIIAn3zyCR4+fBiJRX14eBjav27evInbt2/j9ddfD5f7+/u4cePGBV89IZeLf/zHf8TPfvYz/OIXv7joS1k7vu/j4OAAP//5z/Hzn/8c//3f/42PPvoIvu+jUqng9u3b+N73vofvfe97+O53v4s33ngjNl8XefaZTqf47LPPQllydHSEg4MDfPDBB6G/o9lsYnd3F3t7e9jf3w+XL7300kJOPfJ80e120el00Ol0wnXP8xa2dTodtFqtcN2sT4sN3Wg0UKvVwvwvst5sNhe21Wq1SHv5sB9LyLOB53k4Pj7GyclJ7NLzPHz66acRX32hUMC1a9dC21az2Yy1e33zm99MzA3V6/Vw//59/OpXv8Kvf/1rfPDBB/j1r3+NdrsNy7Kwu7uL73//+/je976HH/zgB3jzzTdj42FrzPELYgM1xxqYdlGxT5p2Y9M+adpH49qa4xHi2pr2az124TSI39+0CZtjB8wxCdLWtHEmtRWbc1Jbc/xBXFuOKSCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghzxg/suZmJhRCCCGEEEIIIYQQQggh5IKR5Irm0vO8ldbjtj1+/DiSDDwJCUZtLpvN5sK2tLq09tevX0ehUDiHX5IQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGErAMZn/qst5tOp5hOp+h2u+j3+6ntut0uer1e4vjc8XiM0WiEIAgwnU4xm80i9fP5HJPJBLPZDEEQAABms1mkne/78H0/rNfb5/M55vM5giBAXOgMaSfn08cRZP+k8BuyPa2NbkueLSzLWkt9XDvLsiLbdRkAbNuOHMMsS31cnW3b4cfc33GccB8AcBwHrutGzpnL5ZDP5wE8va/j2jiOg1wuFx43n8/DcZxwP328QqEQntdsI8ewbTs8h7xb8vl85FoKhQIsy8J4PI60KZVK4XFGoxHG43HsNfi+n/oenM1mmE6nsXVp79Cs9+tp9806bqvVulLvnUKhgK2trYXt8/kchUIhda5FPp9PrHddF47jJNa5rosgCEKZoI8r991sNou0yefzC/ezyKq4OkHuTbknNXIvatkIRJ+r4XC40MZxnMh3HQwGYRv9bAv9fh9BEMTWmW3ifh+TdrudKEtXaXMVqdVqifeYUK/XU3/jZds0Go1MudJsNlPrLctCo9E4cxvbtlGv11PbOI6DWq125ja5XA7VajW1TT6fR6VSSW3jui7K5fKZ2xQKBZRKpdQ258km5Mhp6p7X67gK7zaRd4LWD7RuZ9Zr2SJ9LUF0TGE2m4X1tm0vyA+Rg/Iu07pVnJ62CUqlUuR9WigU4LpuuC2Xy6FYLIb1ce+8ra2t8HdzHCecJypYloVarYZcLhfK73K5HNERqtVq5P0Wdx4tZ/R54t6jWqbI/FVCyB8ZDAax75zpdIperxe7T9I73/d9dDqd2H3G4zEGg0FsXa/XS+xjep4Xu302m6Hb7cbWpcmrbrcb28eYz+dotVqx+6T9Fkm/H5D8OwVBgHa7HbvPZUG/Y00qlUpiPy9JB0/TUdPezUl9jDQ9PU2PLZVKC33m8XgM3/dRq9Vg2zbG43HkfpxOp5Hr07YWABHb73g8xng8RrFYhOM4of3XrDeZTCbhs2HbNoIgiDwrk8kkYoPWZX1/6nLas7IutLzVZf0/6nK1Wo3YBrLK+h7U5XK5HNH5dDlOV9H3k95nmb4YIYSQZw+tV553+TzO0el0Mm3eZ0HL3azyafa56HKafkwIIeTyou1YaTJS23IkXqNg2pt0W20T03YwbavSslnbl/TYB9N2lmbfWge6b6ztPdomo/2IWTJV24i0HUf31bUM1vYDbZ/Q/mXTjrWMT5gQQsj5Y8rntP7tZa5L8nOdlTS5ukq/9ix94tO0lTGrlmVhPp9jOp2i3++jUCiE4/u63W6oq5m6lfyWog+JniT6k+hV/X4/9L2Mx+Ol5w6YiJ4g+oP4NUTfED1E9BPRW+R7ip5k6hhyDNF50toQQgghVxGR1VpmZy1FpictRdYnLZdF5LUsZV1ksjleUXQBkc0i+0WOn2ZfQggh5LyQ/rD0k1utFoIgCJftdjuUpdIPlzGHMjZRfBviD5G+tRxb+t6yXBax20t/u9lshv1ikacyH0CW4psQuSu+CJHH0hcXOS2yXvsUCCGEPN8sk68xqz5p27LzKVfJ3bjqNu0rJ4QQsjm0TJDPqtsePXoUO79RkPe8fMx3f9I2XWYOYELIZWI0GuHJkyfwPA8nJyc4Pj5OXP/yyy8XfEDNZhPb29toNpvY2dlJXP/mN79Jvwy5Unieh4ODA9y7dw+Hh4c4ODjAr371q3AO+fb2Nu7cuYP9/X3s7e3hzp07uHXrFscXkWead999FwDw3nvvXfCVkKvG8fEx7t69i/fffx93797FL3/5SwRBgN3dXbz99tt455138Pbbb2Nvby8zbiF5PhiPx/jDH/6A4+NjnJyc4OjoCEdHR2H5o48+isw7KxaL2NnZwe7uLnZ3d7G9vR0pf+tb36KdlpALQtvglv08efIkNmaY9suYNrmsz4svvpgZQ5cQQp4XZHxZp9PBaDRCr9eLrHe7XYxGozB/y3A4DNdHoxE6nQ76/X7olzfX05DxaFtbWyiVSqjX6yiXyyiVSmG821KphHK5jHq9HraTd3/SPtT1CCGEEEKuBnFjQ09bzpq/KHaDWq2Ger0e5mQSfbNYLCKXy2E+n4fxqfP5fCSHYC6Xw3A4XJjLkbVcFpl/kTQPQ+ZfyBxImcshczwajUY4t0PmdMgxxHYix6feTAgh5KKRuR0S51HG/IqclTmVZqzGpPgISXEOZM6mnGPV+ZUiT2XOpMhZmVspSzMWkY6BZLazbTsxJpKOjUQIIYRcdcz5POtcph37NLkbzPmf61jath2OG5bc5JZloVgshjI+l8uFYxVOGz9zk/vqclqOt7OwbIzMdcXa3NQ5lsnNTAgh5HzQuSAuW1nHuz5red1k5bM080Po3Bc6V4Xpg9C5JHSeDJ3XwozzrHNj6xwa2o5iyuW4HNmEEEKuHnE5xLVM1DJX2wd0vintK9B9Yu3nz8ozvYlr3AS6/6pzK2TlltbyXstlnftK6wtargOLedRXvUY97iEpLzshhJDng4vOYX0RObPXzUXnlz6PHNnML0UIISSO08jhq7zPpsYAmFykHrHpc3EeBiGEkNNwEXaDizjnpsc1AM+GfWKZc3JcIiGEkLNgzscU9LgEmcNpomX5afbRYzL0mAtgcQyFtlXofXRZ5pAknXOd6LEReryjHsdgjrvUYyf1mEY9zkKPy9DjNrSPwxwjocdk6HGaWt/Q34MQQsjpyPLjx40t1GTJMT1eMQ6Jp5BEnDzWZOX0NMdVzmazyPmkLN/V9/3I+MjZbAbf9zEejzGZTOD7fuRc0n4+n2M4HC7UB0EQlqfTKabTaaR+Pp+H5fl8jslkEtE1JGaUeT1mWdrErV81bNtGPp9fsClIWWJtmfWWZYX6S7FYXKi3bTusl3gb5jwTqZc4GubcWRPRT4IgiB0vu7W1Feon+h4DnupGpn9mPB5H7oNKpbLwvYfDIebzOWzbjuhdQhAEGAwGyOVyET3MZDqdwvf9zJxaWTkNB4NB7Pe2LCv83lnP4TLvlGWed61Px7HMuOas643rlzwL6LlWmrjx0hqtr8cRZzPU6P5IHFnXq/s8Gj0eXKP7Pae5hqzvoftKGt230iwzv4xj0J8/ztOH8qyNNd3U+I2LGidCGwkhhBBCCCGEkMuMxNdOIs3PlGVTTptXkmXfzbI/pI0lzbJR6zElJln5PtLs1ln7psUwjRsvs+y+lxXHcSJjUvRv7rouLMtK/C/0HF3xx+nts9ks4osCnt6bcdtNH5/4fIIg2NiYoFXQfiog2X5erVYX4son+Q7ibFNJdvc4W3mcfTzumHHzoLRdPM6WHudDiDs+520TQi4rcTpLkn4VJ8/j9JYkHUuP3dHn1vWmvqTHBp1l32XGA5wW7ddNi/mZFS/U9CFrOWnWibwyj2/6283zmLLSvNarKqd0np2kfDudTgfj8RjdbjfU8T3PC/XfbreL8XiMTqcTqc/ScQXJeSf5o4vFIur1epg3L66+0WjAdd2wfjqdYmtrC/P5HL7vo1gsotfrwXEc9Pt99Ho9jMdjtNtt9Ho9DAYD9Ho9tNttDAaDMDfhYDDAYDBAp9PJHC8n90m9XkepVEKpVEKj0Yjkuq7VaiiXy6hUKmEew2q1ikqlgmq1inq9jlqthkqlkjpmgTy7eJ6H+/fv4/DwEPfv38dvf/tbHBwc4A9/+AOAp++rvb093L59G/v7+9jf38ft27fx4osvXvCVE3J5+fjjj/HKK6/gf/7nf/Bnf/ZnF305hFw4nufh4OAAh4eH4fLo6AhHR0cAnuq73/nOd7C/v4+9vT3s7+9jd3cX+/v71E+eQcQu3+v10O/30e/34XleuN7r9dBqtdDv9zEcDkN9eTQaodVqRdalX7lM3Id6vR7mtq7VaigWi6FOXCwWQx25WCyGOrTrumg0GsjlcqjVamHfTGyHMqcga3wxOX/Ej2LaD0xfkzmHwLSVmP4X048j95jpVzJtJ6YdxrRhmH1S03+zSbtG1txdbffQ9gQd+yNtbq/2H+i5A9puoq8taw6zvrassfom8r+a/5n535j/h+lLNO8H+d/N/zdpP7P/HrefeS+sIyae+duZvpE4G5PpY0nazxxvrP9X854w7yfzuPreMP+7rDkShBBCCCGEEEIIIYQQQgghhJD1IeORV/188cUXsfMVi8Uims3mSp+dnR3GOSOEEELIxtF6j4zLW2XbV199lRqPWOtCMhZqlW03btxYmI9PCCGEEEIIIYQQQgghm+Ki8gltOhfRMvEETst55Qs672OvMi+bEEIIIc8+ZpwciZFixkKRODuih5ntJU6PmTtYx/Yx47tIjJ+09qdB9BvRe8z49hIPxYyZIrFP0tpLncTIkaXEVJFYOlk5brOQ72/GrZFt5v+w7DaJjxO3zfzd07adhkKhEMagsW07zM8uMX4E27axtbWFra0t1Gq1ME5uvV5Hs9nE1772NXzta1/D9evXwxg55v8jsW7kP5QYOTqOEiGEkNMRFxv0N7/5Db744gsAT+OYSUxQWe7v72N7e/uCr5yQi+Fv//ZvMRgM8J//+Z8XfSlnxvM8/PznP8d//dd/4ec//zn++7//G91uF9VqFX/+53+Ot956C9/73vfw/e9/H7u7u7QvPoeMx2N8/PHHC/GjDw4OQpv99vZ2GDda5ATzFZDzoN1uo9PphPlbOp0O2u02Wq1WZJt8PM9b2GbmOzKRPqnkbJH8LpLXpdFoRLbJp9FoRMo69x0h5OzI/J+TkxMcHx8nLr/88suIzatYLGJnZwfb29vhvOft7e2F5YsvvhjReeJ84MPhEIPBAMfHx/joo4/wv//7v/jkk0/w2Wef4fj4GE+ePAHw1Hb2wgsvhHavmzdvolKpIAiCxOOaS7MuLWfvMsT5oZN80+fZlvY9QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELOlR9ZczNyMCGEEEIIIYQQQgghhBCyBJ7nhUG0W60WxuMx+v0+Op0ORqMRer0eer0eRqMROp0O+v0+xuMxWq1WGGzb87wwcV+73Q4DcGfRbDbDhIL1eh2FQgGVSgXVahWFQgG1Wg3lchnFYhH1ej0Mlq33y+fzqNVqYZBsSYZHCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSQq4+MV1xHu3Ue67zazefzhW2j0Whh23g8xmw2w2w2i2wbj8dheTqdwvf9SBvZPplMwnVdb7aTet/3MZ/PERfmYDabYTKZhG2S0NerkeNnHUfaBkGQ2oY8n1iWtVKduc2yrKXa2La90E72Nev18cx6x3Fg2/bCeS3LQj6fD+sdx4mcVygWi3AcB47jRMZS27Yd7lcul5HP52PHWst227ZRqVTgum5sm3w+DwCoVCrY2tqKvItc1w33830fvu+j0WhEvrPrunAcB4PBAABQKpWQz+dRKpXCNr7vL5wbAPr9fviu0nQ6ncT9Wq1W7DtkPp+j1WrF7uP7PjqdTmzdZDJJHC8vY/PjkDH3caRdCwB0u93E92XacS8jtm2jWq1Gtpn/T7lcjtzbZpt8Ph97bwJPn4lCoZB43lKpFMoUjdzbcTLStu3IcUUGCq7rRu7x2WyG6XQKAMjlcuEzayKyVJ4nzWQyQRAEie8v27YjsttE3g2j0SiiA5j7WpaF4XAYW2+eM+2+u4rInBO2udzXss425XI58Z3xPJDWB1l33Xme66pcY5L+cZlIe46S6k6zT1yd6IpSl8vlIvJ1NpshCAK4rotCoRDKRkH0AsHUv3K5XER+BUEQ1udyOViWFfnfZrMZxuNxqDNPJpOIjJW+tugnw+EwlPWWZWEwGESuvdfrJeqlZyWXy0X0qHw+j0qlEpZlzqUg8zGFUqkU0WsqlUrkd9TzMuv1ekQvazabkevR7fX5bdtGvV6P7FOr1SL6kb5Gx3FQq9WSfgJCLhWrypx1yq+LPMd5XW+73b60tr51ycNl6q7yuTZx7aadSd8/cfdTVpvLXk6zd60D/VtftfIybbRtkhBCyPOB9uMMBoOIPdzUNYMgQLvdDuu0z0X7pkybz2w2Q7fbDeu0j0jb2D3PC9en0yl6vV5YztIL0vxP60LLTV3WdgLdx9d2Am130PZabafQNoIsOa/tEK7rolwuh2VtN9F2FUIIIc8GWnab8lePw9Bte71eaO8HorJa6xNpOoGW61r3SNMftMzflE1My11TzmsZqWVulq9By3itE2idQesUWucwfRGWZaHRaIRl7XegT4EQQq4GWv6ZMviq1q0DLedMGXvRdbqPreV9mi6xLkRPOu3yNMdYdbykqTfJ+qaXWjcjhBBCriJnlfNn0Q+W5bxkuyy1/YQQQgg5b5aRp2Zeq9O2XaXvfd7ymGMNCSGEJJEk29axbdn5AqbcajabC7LsNNtk/Xmfh00IIZcBLSPks+q2R48epfa55P0vH1MmJG3T5evXr6fG9SGEkMvEcDjEyckJjo+P4XleZF2XT05OIvvKu29nZwfb29up6y+++GJsrDRCrhKTyQQfffQR7t27h8PDQxwcHODevXvhs9FsNrG3t4f9/X3s7e3hzp07+NM//dPIGDNCnhfeffddAMB77713wVdCrjqdTge/+MUv8P777+Pu3bu4e/cuhsMhbt68iT//8z/HnTt38M477+Cdd97huFGSiOi8R0dHODo6wvHxcaT86aefRmwFzWYTu7u72N3dxfb2NnZ2diLrL730EnVbQi4Z2haoP3H2Qvl8/vnnsbFQtU1w2c/Nmzdj49kTQghZZDAYYDQaodVqYTgcYjgchuuj0Sh8hw8GA7RaLQwGAwwGA3Q6HfR6PQwGA/R6PXQ6nbAuK8a1zAes1+solUrY2toKfT2lUgn1eh3lchmlUgnVahXVahWlUil2H1nXsYQJIYQQQsjlw/M89Pt99Ho99Pt9eJ6HbreLbreLXq+Hbrebuk3KabE0RH+sVCqoVqtoNpuJ26RcLBZRLBZRKBRgWVaYCy9rLoqsS6wvifkh421brRaCIECr1QpzyunYX1lI7KtmsxnGspKYGaJX69gOMtZW4mqtcgxCCCHksnARsR3M2J7LcF5zSc1zcV4pIYSQZ4HziNGolzr29jKcRWafdqljaJ/l99XrWeXzrstqu4mcuml5RE5bt67jrFKnY6kTQgi5nGg7w1nKOn+JLosPQsjKb7KuPGbrRMs7nT/MzAWiY4vr2NemrNQxzHVeMK1/mTlJdI4RnXMsLf4585EQQsjzwaZzg5/HObLKp7GprMK6+tzneaystuy3E0LI843uswOLfWlt/9Y5QHW8T9031/18natUy++sPOPajqBzoWrbgbZDbIKz5hE/a95w3a/XNgJtbwCitgsgO7e6LhNCCCFxaL1By3kt17P69Vpv0HqF1kO0nqKvJ82XEQQB2u12WNY6xarzKlZl1Zzm2i+xyZzmWvfQuonWXbRuw7kfhBBCzoqW6dr2oHUGrXNo24G2FcTZRy7inFqX2QRaR9A6hdZBtFzXekDcWINVxkuY16OPlebPyBofQQghhGyC0847OGv5PI+9bjY1hiKrvMlja32GEEIIWZUsWd1qtSL+itFoFPGdtNvtiP9iPB6H9RJLyrRZmPWz2QyDwWChXsq+72M0GkXqJ5NJ6JsJggDj8Tjiq5lOp5HyeDxeKmfsaXEcJ+IPsW0bjuNgPp9jPp+HZbPetm0EQYAgCGBZVsQ2InVyzZZlRfwplmVhNpuFdiEdN8OyLIxGo41+502S5cPZZP0mjh0EQXj/Snw2zWw2w3Q6RaFQSNXrzPtI47oufN9PtOW5rgvXdRNjzuXz+fAYpg1RyOVyoV9wNBpF3hH5fH5hzK+2VcaRlc85zl6p0f7TOLQ/V5PVB9F2Vc15jAM7D7RvV5OV+zrr+dB2XI22r8aRFSsoa/x5VvyBLJuuti1r4sbDabLGu2n7uCar/6f95M86ekxFVlk/r/odot8HaXNC9XgNva/5jtPvM/1e0eNSNuWb0c/hOueTmu8Q/Tzr+1K/T9L8MqvMRSWEEEIIIYQQQsjFkDWvRdtYTLJsvGn23SzbbJqdWtuNlt036XpW3Z70m5jbTftQt9uN2JrM418mf1A+n1+wf87nc+RyuQUbThAEC9t938d8PofjOOF20/chx57NZpHfwbKsjcZzSULbvB3HQalUivwGruuGNjixn21tbUVsXLlcDrVaLbKfZVm4efNm5PhxNuo4u3acPV/7AOLs2XHHj7P96+MvY98nhJBNkhYfNCu2qJb5po9G6wtZ/p0035DWl8TnZF7fuuYKi+/EfD+b73jTb2O+5+X9bvpqxHck8saUH9Le9CGJz0d8UJdFRnS7XYzHY3Q6ndCn12q1MB6Pw9x/4/EY7XY7Ui9jnuLq2+02xuPxUv9ZpVJBoVAIc0pXKhVUKhU0Go0w51+lUkGtVkO9Xg/L8nEcB7PZLBxv1G63E/Nee54XyY/d7XbD79hut1P9kPJfNpvNMA+hXFej0Qivp1qtol6vo1arRa7fzGHIudtXn3a7jY8//hgHBwc4PDwMl0dHRwCevmu+853vYG9vD3fu3MH+/j5u376NF1988YKvnJCL5yc/+Qn++q//Go8fP8a1a9cu+nIIORdmsxk+/fRTHB0dRWTHr3/969D212w2sbu7i729Pezv74fLl156ifHjLjHSD5K82aJbtlqtsNztdtFut8Nyp9NBp9MJyzLPoN/vR/pjGtFHG40GyuUySqUSarVamBu6Xq+jVCqhWCyi0WiE/Y5msxnJRyl5qBuNBorFIuf5nwPSz5C4FmZ/WvrsZp930+1Pizl+1xxLadpWzfGKErvC7Cub/WCzf232y81+9KqxtbJiaV0kq+THO4/2pyVpPnBaPr3z2g9YjNNKCCGEEEIIIYQQQgghhBBCCHm2GA6H8Dxv5c+jR49i56rJ2IpVPy+++CLH9BBCCCHkmccce2bqVqtuS9LFgOi4MVPfWnXbzZs3U+OsEkIIIYQQQgghhBBCyLOMjummY8vp+HBivxV0rDmdL82MW6djz+mYuTqOnZ7frGPi6ZhfZs6jTec7M/MA6XntOi+Qnseu45DqGKQ6vqk5Dz9rzryeI28ey6zT15yVN40QQgghVwNTtxM9zdS5RFcz9S7RoSQOsKlHSUz/VdvrmMJZiP4kuo6pq0g8GNGJRA8TPUdiGUl8I9FrZCm5IGWMgOhim4otZMZqkt9j2W3mfyWxfrvdLh49ehTGKjPj5c5mMwyHQ0wmk4WcApZlrZynU34j+W0klpP8P+b/Iv+H/A/y+8vvLb+z/Beit5r6rPy3WblnCSHkquN53kIM6t/85jf44osvACTHEt3d3b3gKydks/zVX/0Vbt26hX/7t3+76EtZmX6/j5/97Gf48Y9/jJ/85Cc4PDzEfD7HK6+8grfeegtvvvkmfvjDH+L27dsROx959vE8byF+9OHhIf7v//4PQRAgn8/jm9/85sI7/9atWxEbMiFXEc/zwrjZ3W43XG+1WmH8bNnW6XTC3C7mNtMfZSL9UsnzIjldzPwzksfFzFFTrVZRrVbDXDDVavXSxBkmZFN4nofj42N4noff//73+N3vfofPP/8cn332Gb788kucnJzg0aNHC3lNy+Vy+EyVSiVsbW2FtjbHcVAoFGDbNoIgSI1tHmefPA1bW1uhzalUKkV8omKPMu17YmcS21RcbjDTZyu2rbj8X7LN3JcQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIMfmTNzYjAhBBCCCGEEEIIIYQQQp4pRqMRBoMBWq0W+v0+BoN8peBxAAAgAElEQVRBGHBfynF1g8EAg8EAnudhMBhgOByi3W4vldhPksZVq1UUCgXUajWUy2UUCgU0Go0wgHaj0UCxWESpVEK9XkehUFhqP0IIIYQQQgghhBBCCCGEEEIIIYQQQgghzxatVgtZU55HoxGGw2HmsTzPy2wzHA4xGo1S28znc7RarXM91jJj9IIgQLvdjq2bzWbwfR8AMJ1O0e/3F9pMp1NMJpNIWV//bDbDbDaLbJtMJpH9fN9HEAQLx59MJuG+QRAk/q+TySS81rT/fjqdxp6HkE1iWVZqWdfJJ63etu3Yetu24ThO2Fa3cxwHtm2H26WNlHO5XGSbeTwAcF134Xj5fD48rq6XNsViEa7rxtbLeWWsbxJbW1u4du0aCoVCYptr166FY4fjkDHHN27ciP0NbdtGvV6P3Xc2m6Hb7cbWTSaT2HckkC5v0t7TvV4P0+k0tq7dbie+y5LkVtb7/jTfLU1m9fv9yHvepNvtLsgF4TTf7TJRKBSQz+cBLMqjYrGIXC4Xlk25ViwWI8+a1AdBgK2trdhzWZaFfD4f+3tZloVCoRCR5WadPIvT6XShXt4Dwmw2C+9F/U4AorJa1+k2Se+2yWSSeL/LNfd6vYVrvaoUi8XE/3XZNmet5zE2c4xGo5Eq58lmSZJLaTIwSd5Op1P0er3YfZJkVZLMT+u/JcnLNNmcJn/T9IekfnLa75P2Oyzbp75IXNdN1C/T5pVVKpVQnmvq9frKeqTMjYsj7d1SLpcT9eek67AsC41GI3afXC6HarUaW1coFFAqlSLbxuMxxuMxSqUSXNfFaDSK3K+j0Qi5XC68jtFoFNFtHceJ3Kv63j1L+azHSntW1oH+X81yWt1lK+u6UqmU2h8jzx9J/cU02ZfUH0ySb2kyMUm2JcnXdV5vkhz0fR+dTif2WEk6RJJtIE0OXyRpcq3ZbMZuT5KtcfIHSJertVottu+ZJNvT5F+S/p4kg5N0izT5exp57jgOarVa7D5XCf1cm8+AflbO0rbT6YT2At1WP6tpbbVerMvL+mXOgn5Wssr6/tJlLbt1WT83upylN+hnWJf1M5OmnxNCCHk+0Tqv1o1N2a1ls9bvdT8gTZ/QOoK2E5j+KN0n0bqI2WfYpL6g5XS1Wg19Tlof1Tq71gFMnVrr3lnyXB9b69tal9XHj9Odk/oRhBBCnl1Oa++/DG11OW1szFlYp23/MrRN870RQgi5vOj+tNlPN+Wh7jub/ezLVLcuzH627udexbqrgNxvZ12ucizzfl+GOF1o00vG1CaEEPKssC5Zv+xymfm2Jhch55PGFBFCCCHnTavVQhAEaLVaod1lPB6H+aZGo1Fof5FxGp7nhXYlGdshslj8KjLWotVqwff9xDlNcTQaDdi2jUajEY5ZkLEOIk/FLyEytdlshuMZZByEyF0ZdyljKWRsMccyEEIIWYVWqxX2OTudTigjRXZ2Op1Qdrbb7VAeSh81blur1cJkMllqXpHIRLH/1+t1uK4b2dZoNOC6LiqVSij/4rY1m81QXopMpVwkhJDLS7/fR6fTQbfbRbfbhed56HQ6oRzq9XrwPC9c7/V66HQ6aLVakTZp/bJSqRTmAm40GqhWq2E5blutVkO9Xo9sq9frifNCCSHkKuJ5Ho6Pj+F5Hk5OThLXf//73y+MMy4Wi9jZ2cH29jaazWbi+je+8Y3EufaEXHV838cnn3yCg4MDHB4e4uDgAPfu3cODBw8QBAFc18XLL7+MO3fuYH9/H3t7e/izP/szbG9vX/SlE3JpePfddwEA77333gVfCXnWmM1m+OCDD/D+++/j3r17+OlPf4pPP/0U+Xwe3/3ud/H222/jnXfewV/+5V/ia1/72kVfLrlCeJ6Ho6MjHB0d4fj4GCcnJ5H1//u//wvjAhQKBXz961/H9vY2dnZ2sLu7i93d3bD88ssvU1cm5IoxHA7hed7Kny+//DJ2XkexWESz2Vz5c+PGjcRYcIQQQlZD3u0yNlDe3WZ5mXUpp+UsEcz3v4wVXHY9ro5j9gkhhBBCLidJeuOq29Ly1ybpjKtuS4ptv8xcV/PaT7uUYyxL2rxW83uuutT7psXjJ4QQQi4K0Q1kHqzElpKl2KdkvqzMhZWlzPURWazlssy7lX1Ok2dIdAuxW8nYa4lBLnN8ZCkyV+YNaRkt61Iv7eV4HNtNCCHkWUFkupnHRPKMaNkvsl7Ldi3LJbaGHNPMP6L1imWReBdmXFCZuyvyX8t9keMi1yWuhugEMrfYzAUixxTd4jLm1tb5XHTsd9OuI/+NYMYITYs9q/Pa6JhjZi4anbfG/G91PhzTr5mWV/MsmHHcdd6XtBizOh68+d/rfDOmr9SMaarPZ+qM5vF1/hkzb05SPkpCCCFXj8uYF+Ys+64ag3QVNpW//qLy1dDXQwghzw+6/wxE+8wAFmwgZr9d57LR/fi0vLJZOWm17NZjjdPyzOq+/jrR+dfM/rfuL+v+eFou2aw8tGk5bIFoHljdv9d9dS3rOaaaEEJIGll972XaXPbypvLQCpcxp+xZ9tV6CCGEELIMFy3v1+VriCtvIk+uyVnkeFZ5k8depky9ghBCyDrQ/gPdz9c+A+2P0L4OPb4RWPSVrPuc2r+i9Qvtu1kX2udh+hq0j0P7Fkz/iIxlFbQ/xPRDaB+G1g9M34n2u2h/h6lLaD8LIYQQskkus53iLOfapI3jqto3stpqfYoQQgg5LZfJj7KJ8qZ9Ka7rhuMrXddFoVAIbTmu60ZsGq7rIp/Pw/f9hbp8Pg/XdTGbzeD7PvL5fCjrpQ54asuxbTusy+VyEZ1gNBpF/B+5XC5iwzB/m1wuF4n5YVlWxI6kyZoXkxXXNy0mm7ZZabSN6yqhbVKarDmx2t6lyfJ5peWBzro2bafTpOmkWn810eOUJ5NJ+JxKvBuT8Xgc2kBlrryuH4/HKJfLsXFs5L5PmquU9Y6IG7O2apvLXr+OYywT2/uyk3bfLtvmstdfhms4yzUGQYButxvGtpK4XILE7KhUKrBtO+JjWdU/YsqtrDkjafNNdBww/SyZ8SvWSZZPJM1Po30v5nwS7RMx5ZT2rZj+HX095vn1+dLqCCGEEEIIIYQQQs5Ckp3zMm3f9Dn7/f5CPJQgCCJ+oPl8HonHOplMIttk+yZ9cKti23bEfzCfz2FZVjiGOAiCcJsg284L0/9nWVasL9GM6+K6Lra2tsLvUCgUUCgU4DgOHMcJy8Af/X5iOwUQyREgrFo+zT6cr0UIWTemT8eUV6Zvx/S3iI/HjC9m+nrM8QemvDTn5ojvx/TzyHFln6xxDmnIu9L0yYuvRnwvpo9E5sXIO1fqTrvcJL1eD5PJBK1WK/SptdttjMdj9Ho99Pt9jMdjtFot9Pt99Ho99Ho9tFotdLvdsNzpdNBut9Hr9VLHqtRqNVQqFVQqFVSrVTQajbBcqVTQaDRQrVbDcq1WQ71ej7TZ2trCdDpFt9tdOj+hLj958iT1OnXewaR8hEn1L7zwAvP6XEI8z8PBwQEODw/D5W9+8xt88cUXAJ4+13t7e9jf3w+X3/3ud3Hz5s0LvnJCzo9///d/xz/+4z+eWmYScpkZjUZ48OABHjx4gMPDQ9y/fx8PHjzAhx9+iMlkAsuy8O1vfxuvvfYa9vf3cevWLbz++ut4/fXXcf369Yu+/OcKnXv5NLmpl8nZbOp2Wtdbpby1tZU69pdkY+YFjVtKf1EvJc6DXgJ/HBOol7r9qsT1DyWOgvQPzbF362hvjgc0x/9d1bwQ8l/If2zaEaRO7AlmX17sCmbfX+4HeQ+Y94DYDUwbQ9w5V0XiW5hzCrSNYNl7QP5bcyyn+b+KfcEcB2qO619mfC8hhBBCCCGEEEIIIYQQQgghhKxC3BiMZT6PHz+OzemYNvY27XPz5k3OdSGEEEIIOSdEB1x2nG7SNp2ry8Qcd5s2Rjdr24svvhjO4yaEEEIIIYQQQgghhBBy+bgquZtX3XcTOb6WzYN8mnbrOEZau6sa64AQQgh5FjHjda1jucwx08YHxCF6xLLL0+yjl+uOue55Ho6Pj3FychJZHh8f47PPPsPnn3+O3//+95Hclq7r4vr166jX62g2m2Ec3q2tLWxtbaFQKCCfz8O2bfR6vTDWkhlDSeJkSdwkicGUlac6DvlNJN+kxEqS30ziI0ksZDMmksRXknhIjUYDjuOgXq+H+8nvL+eRGEuEEHJRHB8f4/DwMBKH+uDgIIx1d+PGDdy+fRuvv/46bt++jTfeeANvvPFGJO8vIVeZ1157DX/3d3+Hf/7nf77oS8kkCAL86le/wo9//GP85Cc/wd27dzGZTHD79m389V//Nf7iL/4Cb731Fr72ta9d9KWSc6LdbuPjjz/GwcEB7t27h8PDQ/z2t7/F559/DuCpXvryyy9jd3c3klPg1q1bzA1BSAoSz7nVaqHT6aDb7aLT6YQfnX+m3W6H7WSb53mpPhPpS9ZqtUjOmWazGZuDRraVy2U0Gg1sbW2hVCqh0WjQF0FSMWNWi44v96bYTST+tBmbWsfFltyQ8mz0+310Oh2Mx2N0Oh1Mp1MMh0P4vn+m3I9m7imxs0iMa7nXxUZjxrUuFosYDoeYTCaYTCZot9sYDAZ48uQJnjx5gsePH0dyW167dg3b29v4+te/jldeeQXf+c538MYbb+CVV17BzZs3GceaEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBByFfiRNZ/P5xd9FYQQQgghhBBCCCGEEEKeJrWTAN7dbheDwQD9fh+tVguDwQCDwQDtdhu9Xg+DwSAMdC/t4urSkuAVi8UwYH2lUkGpVEKlUkG9XkepVIoEs9/a2kKtVkO5XEahUAgD3heLRTQajfBYknyNEEIIIYQQQgghhBBCCCGEEEIIIYQQ8vwRBAHa7XZmu36/j8lkktrG9310Op1zPVav18N0Ok1tM5vN0O12M4/V7XYxm81S20ynU/R6vcxjdTodTCYT+L6feqxut7swZiwIgsg2aWNum8/nkfJsNsNwOISegqzLg8Egs81sNsv8HZ4FLMs60/6c7n11kP866T+3LCv86H0AwHGchWOY7XO53MKxAMC2bViWhXw+HzmfbdvhuE3HcVAoFBauSdo4joNisRg7zlPq5PyO40SuBUA4hlTI5XKRNuVyGa7rRq4xl8shn8/DsixUq1UAgOu6cF03bLO1tQXXdVGpVMJttVotcm7XdVEulxeu2zxGsVhMrK9UKgu/3aYYDocYjUYr1Z1mn6tSt+w+QRBE3oXD4RDj8TjSXuTVeDxeqJP6Xq+XOn76MqCfnbi6+Xy+IBscx4HjOAAWZbdZJ/i+jyAIwudf4/s+5vN54vvMtm0EQbAgx81303Q6jdTHHStOp7iqFItFbG1tnbqex7i8x2g2m6n15NklqQ+Y1ldLmqszGo0wHA4Xts/nc7RardhjJfVn0/qdnU4ntm84Ho8xGAxi9/E8L3b7YDCIlalpfeikvu5kMkG/34/dp9VqXUpZkMvlQh1VU6vVYuVnoVBAqVSK3SfpXZJ2nrR3lOjXq1xf2nU4jrOgZwtp36tUKsX2MwCgWq0m6jWNRiNWN0i7jk2g72fzuUur08+utnnp51Q/A/qZ1Hqxfv70+0g/6/rdk/RcrwN9P+j7VN8T+l7V94Web2jeG5ZlodFohHW2baNer4dl/fzovqG+Vt031Nd6nn1DshxJcjVpe5JMiXsmkmRwmmxOeraSdIYk+ZtmJ0+S5Un95zS9IOn3WMZmfhEkybYku49+R5gkyaAk2Zomf5LmRSfJwHw+H7FjmSTJ4aT3T5IMXuf1kvWiny/zOdT9CC3vT9tWvwd0W/OdeZa268R8FvQzrt8Fp20LLOqcuqyfF13WerUu63dNmv5LCCGEmGj9Pq28qbbr3DfJjrgOtA5vltPq1rnvOs9D2wMhhDy/mD407TMw+/l6rIxpRzTtkLrfbtoVtV3SPLc+pm5rnkPbStP8fWdB2/61TcyUn9omqG0FWtaatgJtt9N2BdNuoNtq25ppQ9C+iqxxaoQQQq4uy/arN9nutMfOij28KqftR1+murRxN88DMpZN7hWx74g+KDqk6Jmis3qeF+qUpr4ovnS512Q/Oc4yc7FMxB9q6n+i24neJjqZ+G9EF5T/VnQ40c/k/xcdUnQ+0efOe8wSIYQQsmlkDKyMQRE7kMh/GeMi8lrkuCnvxQYldiHRIfQybZx6HCJ/tRxOWor9KGkpOkPSEuCcEEIIIZeXONnqeV6i3D1t21Xmbkkf2lw2m82FbUnLZdsmzSsihBBCliFJHiatL9t2GZ/KsvIva1tc/bVr1zjmgBBCriBa1pifZbc/fvw4dd6vyA75mPIkaZsuX79+nXNMCSHPBfJ+PTk5wfHx8cK6Wf7iiy8ifYBCoYBr166h2WxiZ2cH29vbies3b97knGLy3OF5Hg4ODnDv3j0cHh7i4OAAv/zlLzEYDOA4Dr797W9jb28P+/v72Nvbw507d/D666/Hxr8ghPyRd999FwDw3nvvXfCVkOeB4+Nj3L17F++//z7u3r2LX/7ylwiCALu7u3j77bfxzjvv4O2338be3h59eeTUjMdj/OEPf8Dx8TFOTk5wdHSEo6OjsPzxxx9H5jgWi0Xs7Oxgd3cXu7u72N7ejpS/+c1vcn4+Ic8IcbbSZT5fffVV7JwUbSNd9kOfHCGEbJ5lx2osM+ZD1rPGQaaNz0gar5G2TnlBCCGEEHK5SNIhT7MtibSxV8tuO4semTW3V8cFMeOBBEGAVqu19NziVWKASGwOiQ0n31lie8h84Xq9Dsdx0Gg0wvnDoqdLW7ONHFfaMFYrIYSQq8Ay837N5Wn20cukHFZJrDon+LRzhp/3GG6EEEKeXc4qu09zjFVjda5Dxq+yfB5jg5g5CHVMfx3v18xrqnOWm/PWdXx/M2+AzjeQljPZPL+uM++ldecT0LkBTFuOzhNgxnsz9cZl2+n8AOY9aOYK0LkBzLwBZp4AxpolhJBnF53vV8tp066iZbqWlToHsSnHxf8ipOX4AdLzDGt9wdQJgOSc6WclLYeelpVmnZa3Zq5eLdtNWaxzDpny3LwWrWOYsl7nMaI9ihBCiMm6cvCu81jr3HednFe+33Xum3UsjjEhhBCShe6P6769thNoe3tWDl9tR0izBaxir1glr/A6Scvpm5WnV3LKAKvlJAbS8wzr3MGnvSZCCCHkNGiZrG37Wr7LXA9B6wraj6DHheqY+Ho+tek70DqB1nO0LqJ9KeseS6DRMlzrGVof0HLb9DUAWBizYuoP2k9hHkvrFqZ/I61O6xm0QRBCCDkP1uV7OC8fR1bbVXLkrcK6fBLn5fvIavs8js0lhBBy/mg5rW0W2kZh2iC0zUHbGLS9RB9bj400dQTtH9H2DG2b0baXVefgrIKW2dq2oW0ZpkzXfhJtg9B+E21HMW0UQNROom0W5nWYx9VjMjnukhBCyKbQ/gYtv1ctm/Jd6wpa7zB1GK2zpNkptD6j9ZdNzeUwfRtaHzDlv9YltF5iyn+tG6SNsdA6idYP4q5vNBphPB6jUqlErk/mnWhdT5NmH9L/rybLl5U13jZLVzzLtel7aN3XlnYPpv3mWl++zGTN9TXvR03aeKA0vVc/Syb6WTLRurVG+zVN0nyMepyTifZ/mvi+n6rbVyqVyHvVpFwuw7bt2Pu7WCyGx83K5Z51D2c9A1nPt36nx5H1rs6K0aTf/RotczRZ74Gs9wiwORv6eZJ2HwOL8k6T9uwB2c9f1v7mM2i+H4MgQBAEoVycTqeR+2UymcB1XeTzeczn88j9PJvNMJvNwvfJeDyO7DscDuE4DhzHQRAEkftoOp1iMpmE1zQajcJ3ehAE6Pf7sG0btm1jMBiEdb7vh8+1ZVno9XorxSBbhrSxFOZ7dx3zSIHoe968j047x5QxJAghhBBCCCGEEPIskmQr1eNrTrs9yc4ZZx+N80HE2VlNP0YQBJhOp+h2u5G51L7vo9vtRmK6BUGwMBd8Pp+H1zefzzGfzxEEQWgrM8cfbSpGSxpJY383bfd1HCfiJ7BtO2J7sywr9AcI5XI54q/Y2tqK7FMoFCL7mHmHgKe22FqtFtrqtB1P2xRN22yW79O0MerjEEKIyBVzbIn4CUUOmXJO/JzirzR9dnIs01cpxxI5J3V6uSziu1r3Ut6P4jeRPG9pfrJlEF3A8zz0er3w02630el0wnK320Wr1Yq0abVa6Ha7YTnNv1soFFCpVFCv11H7/9i71x9JrrN+4N/uqr7fqmZnLzO+4Cx2wDO7zjorzAtvEIhfACniDURG8JZIvEbiDf9EJF4ikBAvcSIhoaCIKK+IjRRgY6+9M3EubBwnnrG9O9N1mb7ffi9W5+Sp01XV3TM99+9HanV11enqmp7uPuc8deo89Tqq1Sqq1SpqtRocx9GPq9UqHMdBrVZDrVZDo9GA4zgoFAqwLAuZTEYfaxiGCMMQQRDA8zx4nocgCPSxy3vP81LPgbuuq48t7t513cg6x3Hguq6+TzsfSsu1s7ODra0tPHz4UN9vb2/r34DnnnsOGxsbuH37NjY2NvDKK69gc3OTecjpQvrbv/1bfPvb38a777572odCdGjD4RAfffQRtra2sL29ja2tLdy/fx8/+tGPMBqNYNs2nn/+eWxsbGBzcxM3b97ExsYG7ty5w77jEfV6Pd1GkvdBECAIAt3OCsMQzWYz8jgMQ10+KQZSqVRQq9VQr9dRq9Xgum7kcb1e1+2qWq2GarWKSqWi24aVSgWVSiV1HClF+b6v81nLPJeDwQC+7+t4XxiGGAwG8DxP97PUeNBms6n7CKqfZd4vQv3/1L0aS2beq9iQea/GrKl71UeS49fUPlRf6aKOITtq3rSj5FtblJnfLG5d2rZllJ81rpWIiIiIiIiIiIiIiIiI6CzpdDpoNptz33Z3d7GzsxN7XrdYLMJ13YVvq6urnKuWiIiI6JKR7VA1djDpcdq6tDlBVftUjeuTbdBF1jGfExEREREREREREREtypw/Vcaz5TZzLgWZ60rOyzqZTOB5ni4n83aZ87rK+Tjktfvm/LJy7lYzh+Oy8yfKvD/mvAyHyYVszhsq5xSV1/ubc5HKOU7N3EdyjhF5vLPyUhEREVE61eZQ7Rc1165qE6n2imr7qHaJmo/XnJNKtWnUfL/qXraXFm3LqPaDmj9ItUlUe0G1PVS7QM5LVa/XdZtDtl/Mea/Mea0mkwl2d3f1uNy4+48++iiSM7hYLGJ9fR1ra2uJ988++2yk/aOo99d8X9X7Kd8/1Z5UbVP1v1P/M3Nf6n8j52BuNptTbdg06r1U77lqj6n2m+u6uoz6/6j2Yb1eh23bcBxH/4/U/1KVaTQasCwrNR8pEZFpd3dXz1Wqbg8fPtT1zHPPPYfbt2/j9u3beOWVV3Dr1i28/PLLifnDic6qer2Or3/96/ja17522ocSq9Pp4D/+4z/wzW9+E9/5znfw+PFj3LhxA//v//0//MEf/AG+/OUv48aNG6d9mHTMWq0Wtre38f777+v7ra0tfPzxxwCexgdv3bqFzc1NnR/g5Zdfxtra2ikfORF1u12dSyYu34yZk0bmrVFzkvu+j4ODg6m8dZLqM9ZqNd1nbDQaKJfLKJfLcBxHL6typVJJ57Apl8solUo694sqR8t10nNbx+U2nEcul4NlWfrck8p3qM7NKZZl6TiGmvfedV2srKyg0Wjg6tWruH79Om7cuBHJ1Zc097U8FwY8Pae4t7eHvb09PHnyBJ988gk++eQTfPzxx/jss8/wy1/+Ut/Lc4WWZWFtbQ0vvPACXnjhBTz//PP4tV/7NX174YUXOHc2ERERERERERERERERERERERERERERERERERERERERERERXQTfyExUZgYiIiIiIiIiIiIiWkin04lMEh+GoX4chiE8z9Pr2u02ms0m2u022u02giBAGIZot9totVqRRLpxzIni1YTychL5RqOBarWKSqWSuK1cLusJ5tVE4kRERERERERERERERERERERE8+h0Ouh2u0cuw31NlxmNRhiNRonlut0u2u02xuNxaplOpxMZhzQej6fGJXW7XfR6vUgZU7/fx2AwAIDUcU3dbjd1+0WQyWSOvI+L/h7RfLLZbGTcnvnZsiwLlmVF1skytm3Dtu2p7WqflmUhn89P7TeTycCyLNi2jVwuN3UcqkyxWEQ+n489llwuh1KphFwuF/l71PEUCgUUCgXkcrmpv6FYLKJYLKJUKgEA8vn81N8ht8c5yvaj7rtSqej35SxKqmvG4zF83499zsHBgf6Nl4bDIcIwjH1OEASx9VSv10O73Y59TrPZXPiY9/b2Yl+n1WphMBhgNBpF6q3BYDD1+uPxGKPRCAcHB7G/v71eD51OJ/bY5N8vnzuZTBL/zrPEtu2p77f6OyzLiq3TJpNJ6phi27an3ndFPS9uu/lasu1x3hUKhcTfDfV7mva7Ahz9t4n7WP5rlEolFIvF1H0QHbekOjKtb7noc5a5r/N6zLOu3zkth2nTLvM5l+X1q9VqpF9DyeT3yPxOnZdtx/F9Nz9bZ/nxos896/3fk5bUR05aPxgMcHBwMLW+3++j1WpNrU/qTyetV7FfU1Kd1263Y/thSetbrRb6/f7U+qQYQtL6MAwxHA6n1ifFFU5LvV6fimEBQK1Wm4pbAcn1imVZqNfrsa+RdA1vuVxGoVCYWp/L5VCtVmP35bpu7Pqkeq1QKKBcLk+tz2azaDQasftKek+S+kq2baNWq8Xuy3GcpcTV6fybtw4/D2WTfveO6rjq9tMqy+8/EREtQvZPRqMRgiDQ22Tda/a3fN/X56XMvpI8P5m2f7MPJGMIZlnzNcx2QdI50aMy2/Vm+1/2E8z2udmOl32dTCYDx3H0NrMvYvZZZN/G7FOYx2jGFmTbIF0oY0AAACAASURBVK3/REREl9e8dbeMO5oxV1mPy/78ZDKB53m6nKz/zTivjF+aMdp5j3EZZB1u1ruyLTCr/pZ1sNlOSKvrzfrabFPIGKJ5fGaMICnWSkREF49Zr8q6Wda/sg4362nZ15Z1sTkWWtbZst5POwZZf5sxhmX26c3+tqy7Zf/ZrENl/SrrXrMOl3W2rM/NdoGMFyQdg3msHDt5/NRnVH0G1edcxZ3U51l9Z9R3QrWDVTzM87zIve/7ul2q9p00RiGJ+pyoz6L6rKnPkmpbqu2qnaeep+JB6nOpPk/qM5fP51GpVPRnNe08MxER0Xmn6nizbjfr9Gazqety1U5QdbhqH6h2rGoXqLawbA/MS9XXqh6X9b1qn6o6WtXdZh2edK+eZ94TERGddaq+jrtvNpuH2maWWWTcqTrPknbvuu7MMrPK8vwNEREtW1I9ueiyuW6e60KT6r5Fl811vCaCiOhiUXmEVc7gIAjg+z5834+sUzmHgyCYWp82tqBWq+m8wrVaDY1GA47jRNbX63U0Gg00Go2p9Y7jJF7bS0R02XQ6Hezu7mJnZwfNZjNxeWdnZ+pcmWrTr6+vY21tLXV5bW2NbX4iPL1G48c//jG2trawvb2Nra0t/M///A8+/fRTAE/HIm5sbODu3bvY3NzExsYGvvjFL8bOY0JEs73xxhsAgDfffPOUj4QuozAM8f3vfx9vvfUW3n77bfzXf/0X2u026vU6XnvtNbz++uu4d+8e7t27xzHltFSqjf/o0SM8evQIOzs7kce/+MUvIufUXdfFzZs3sba2hvX1ddy8eTPy+IUXXkidP52Izj91vnDR2/7+fuzcmipeIG/y3GDajfEDIqLTc9gxKEnb9vb2YudalhYZbzJPuatXr3L+eyIiIqJTpK7pCYJAjx8Lw3CudQcHB3rsWNp45mKxGBkD1mg0UK/X9Vgxtay2yXVy20mIuz7ZnKdkkeuj1XPVddHqeuik/CRxHMfR85uo65lVe1pd++Q4DmzbRr1e12XUvCaqjOu6et48NceJKsNxeUREdB4d9trnw9wvktNvnuuaj3JNtLxnHU5ERBeZ6kurOcdUH1vNz6vuzXlGzblM1X6S5jRVffWknKRJ1Lxk6jpr13X13LVqnjLVD1fzjKl5yFTfXfXPVd2u6nk1p5mau4xznxyfefMxnsVyy84POW8OxmWXW8Y+mFOaiOjyMHMmmPnmZU4GM1+DOQ+92f6TOR7NsnKbmZ9Jxo1k3kYzr4Q8VvPYlsHMnSTbkGZeBhlTUm1TReZ2MOtimc9B5mkwczjInBDmcck8EOZ8vGz3EhFRnFl1elp7wKyPzbaE2e82x3LIOZTMHE9mmyCtbTHrb1imtPyJafW+mWNZzi3INgEREZ0388bgF318WmVl+2aZ0mLw5uPjKrvM15HtCyIioqMw+/wy9g9MxyLMmIB5Lt+MN5h1u4whANF4hBnbMGMMaqyMYrYj5L7Mv2MZzP6+PHdv5qCWcYJZuaGTYg/mNrM9IOMZZqxDxkHMGAnH4hIR0Uk6rvjCUZ57lLLLHseoXLS4Bc99EBHRaVlW22LW45PctxmbWYbTug5iGa9lxk6IiIiOiznuUcYEzPMX5jkJeW5k1rkNeX2GOebTPCcjz4Mc5fiWxay/5fkHc5ykPG8CRM9xpI29lDEG81yIPIci92G+tjwuuQ/z/M1lYX4GT3Mbj+d42vvHyfzen+a2i3w8ar4Jtc3sA3U6HfR6PZRKpdhrzc0xACbzOgGTed4+jnne3zQrlj7ruzjr+oNZ35203NKz6sW0Obdmvbez3pezyLbtyOdI/u2TyQT5fB7ZbBaTyURvm0wmGI/HyGazsG0b4/E4sk21gyzLwng81u+J3AY8bSct+/3K5/O63s9ms5H2R6FQ0MdsWVZkW7FYRDab1evltnK5rNsttVot8p2sVCqRNo1sx8jlQqGAlZUVZLNZZDKZyLZisYhqtYpyuYx8Ph+b/5PjPIiIiIiIiIiI5mOebwPi43pxccK4uGPcnL1xOXfMa6e63W4kTjkej/H48ePIc1ReH0XNJSyPWx7jaDSKxE0nkwm63W4kxtbv94/l+myTzOE8bw6DReRyOR0Py2QyOrantqm4JfB0LJFt28hkMrBtG8ViUV97XSqVUCgU9HY1N3I2m0WxWEShUNDx+UajAdu2USgUpq7Dktdzm9ePmWOZ5HlQcz9EdD4tK+/LvPeLXLMyK99L3LZ51125ciVyvmTe90jljJ6VRzpu3f7+fuI5QJknOi5fdNotk8lgPB7rulW+ftqxmdvnPa55bteuXeM1N0vw4YcfYnt7Gw8fPsTW1ha2trawvb2NTqcDy7Lw0ksv4ZVXXsErr7yC27dv4/bt2/jc5z532odNdCR/9md/hn6/j3/913897UMhmmk8HuNnP/sZ3n//fWxvb+P999/H1tYWfvSjH6Hf78O2bbz44ou4ffs2Njc3sbm5iVu3buHXf/3XOadWirQ2S9rNjFVIZptwnjaXuX51dZV5UwwqThUEAdrtNtrtNprNpo5VqfxSnufp8XKqP9BsNvXzVXzK8zwMBgOEYTj32FMVm1Bz4ziOo3NCqbHXjUYDuVwO9Xpdxz3MezXm2rwHfjWeW47rvihUzE/FA9X/R/1P1P9B9YlUv0L9j9X/Vf0vzTxkasy/HLOZNvYxjvouqv6cGiuv/vcqT4MaX2/+T4Ff/e/U/1b979XnRo7NV+PYzHH9RERERERERERERERERESX0WHHcXz66aex863MGpe6vr6OtbW1yLqVlRXOz0pEREREp2KR68aS1qVdTwZE28jzjnU217HNTERERERERERERETnWVKe43nzIR82J/My9mHO03pUJ5kz+Tj2oeZyICIiugxOei7fRfPBxs3hK+dyymQyyOfzGI1G6Pf76Pf76HQ66HQ6CMMQYRgiCILI3OzVahXXrl3D9evX8cwzz2BtbQ03b97E+vq6HgO8vr6emgd12dLeNzmOY5FtZpm4OfyTzDt38lHKqHmziOji2dnZwfb2tp5/emtrCz/4wQ/Q6XRg2zaef/55bGxs4O7du9jc3MTGxgY2NjYiOTWIzoqDgwPUajV861vfwle+8pXTPhyt0+ng29/+Nr75zW/iW9/6FlqtFr70pS/hj//4j/HlL38Zt2/f5nfqghoMBvjxj3889Tv7wQcfYDweI5/P48UXX9S/r+q39nOf+xw/E0SXgJpX2fd9Pce253l6OQgCPV92q9WC53nodDq6XKvV0nNxB0GATqcTyb8WR82dXa1WdT9P5RVrNBp6XmS5Tc2vvci2k+b7PobDIXzf1+/rcd/Py7IsPe/0Ue8ty9Lzq+/t7WE4HGJvbw/NZhN7e3t4/PgxPvnkEwRBEDkG13V1/CTu3nVdPP/883qe7DT9fh++7yMIAniep5d934fnedjb29O3J0+e4MmTJ/qxmdMwn8/j2rVrePbZZ3Xc5/r161hfX8eNGzf0/fXr13W+PSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqIL7BuZiZyZl4iIiIiIiIiIiOiC6/V6esJ23/cRhiEODg4QhqGeBFslNzs4OIDneQiCQJcJwxCe5yEMQwyHw9jXsG0btVoNruuiVquhUqmgXC7DdV29XKvVUK/XUS6X9Ta1XK/XUavV9GTsruue8LtEREREREREREREREREREREF12n00G32z1yGe5rdpnRaITRaKQfd7vdqXLmOJRut4ter6cfTyYTjMfjqX33ej1dLm67KtPv9/V+4vT7fQwGg9htF0kmk0Emk9GPk96Pecqk4WWbi5Pvedr2yWQys+yikr47Z5Vt27BtG0D8+5bL5ZDP5yPrstms3pbL5ZDNZqeeWyqVUCgU9GPLsiJl8vk8qtVqZJ1t28hkMigWiygWi7HHq8bJJSkWiyiVSgtvO8pzj2u/pVIp8X24yHzfj/0edbtddDqdqfWTyQSe58Xuq9Vqod/vo9frReql0WiEMAz1436/r+u2VqsVqWflvuRzpDAMMRgMpupfuV/gaf08Go0wmUzQbren9jMajdBut2NffzQaodfrYTweT70/aj3w9P1Q9cZoNIqtjyeTSaRdcNao3xggWgfG/Uadt9/cNPL3Nu5vzefzKBQKkfdHSvv9zGQysCwLhUJhartlWZF9HuU3bVn7OInXOKl9lMvlSH1IdBkl1e1BEMTWeUnrk665SFp/cHAQWw8mrVfthqOub7fbsfVsUh9/PB7D9/2p9WnHOhgMcHBwEPuc05bUhs1ms2g0GrHPqVaryOVyU+tzuRyq1WrscxqNRmydmPS7nMlk4DhO7L4qlcpUn2fW69frdViWdayvr64lWuT16fwbjUYIgkA/lr8153Xbssjr4czv2nnZlvTbddYk1VkXcf1xv2ZSu+C0JNVTXH+49eflO02Xi/zdMfsNzWZTL8u62+yT9Hq9SOxS9rkWKWvGbc2ysr8zq+yyWJaFer2uH5v9F9nONsuavwWHLWv2jcyytVpNn7NZpCwREdFhmHWwbCMMh8PIuVFZz/f7fbRaLb3N8zx9Tk+e003bvxk/SNu/jDGn7X8ZzJigrMcLhUJkrEJaDMCsp2VZ8zXS2iRmeyCfz6NSqejHZmxR9lPMNgoREVEaGeM0452H2baMfSyy/6Rz0odl1u3y8TK2Hfc+OFaFiOhyk/10OQ5L9r1lH13Wq/OeW5B9d7N/Ll9H9uPNWICsv+e9Dmtesi40++GO4+gxurJfLfvc5jgf2c+Xda7Z95Z9etnfN8cAzXMMdL6oz/Bx3Debzci6RcchqM/sPPeu685dNu6eY9qIiOgymKe+Xkadn3StQpJl1OXz7IP1PRERnScqhqX60kEQYDgcwvM8HQdTda+KaTWbTT1mJm2bqreTrv0zqXiTilWp+lXFnVzX1TEkVe+mbVPxL1XGcRxks9nEa9eIiIiWyezHxvWLk7bPWp7F7LsmLc/aLpdXVlYu5dxORESXjapvzPpH3uLWy3WPHz9OzDMcV9fI2zzrr169GjvvChERPdXr9bC3t4dms4nd3V3s7OxMLavHv/jFL6bidq7rYm1tDa7rYn19PXbZdV08//zzifM9EdHT604/+ugjbG1t4f79+9je3sbW1hY++OADjMdj1Go1fP7zn8fGxgY2NzexsbGB1157DdevXz/tQye6UN544w0AwJtvvnnKR0L0tG740Y9+hLfffhtvvfUW/vM//xM///nPYds2vvCFL+D111/HvXv38Lu/+7u4evXqaR8uXXDNZhOPHj3Czs4Odnd38ejRo8jjDz/8UF/HUigU8Mwzz2BtbQ3r6+u4efMmbt68qR+/+OKLifPnEtHF12q1IrFiz/Nil+Mex+VRyefzcF0XjuPoGIRclreVlZXIMq81IyI6ezqdDtrtNnzf1+NUwzBEGIZot9totVrwfV+XU/XDrOekqVarKJfLqFarOmdbuVyG4zioVCool8uo1+uo1+v6seM4qFarqFQqqFQqcF0X5XIZlUqFcXAiIiKiU3JwcICDgwOEYYggCOB5nn6s1jWbTfi+jyAI9E099jwvdb49x3F0u7Ber6PRaOh7uU2tl9vUurjcWafpMNdoL1pm3rHswHxzuKRdqz3PteAc305EROfVScy/dpQ5WZY93xrrcSIiusyW1V+f5z4pv32Sk6r3OR/b+SHnBpJ5Mc35tGU5M2dW0vzc5jzeck5wOXewmf8raU5uc+7uRT//s8j5us25smWuKzmndtrc23J/cr5uORe4fL4537ecn1vO/S3n6jbzeRER0eV2WvmxlrVN5u9YlmXnwTqObcytRURER2Xm55H9ZbN/b/bVZc4sAFNzCCfl4Qai8QB5DOPxGL7v621pObrl65nxgWVIy71t5r+SfX8zL7fso8u+uNmXl3W3mWdb9ufNeEK1WtXzapkxCTPvNxER0WHJfrfZRjDj/ua4E1nvm+0Jsy0iY/xm3W+2J45yTLKdskxm3F22Ecw63OzTy3rbbCeYbQ9ZVrY9zOfJdsK85Zjnk4iITspJn0c4rtc4jnbFvOcBFil70tt4joKIiE5SWr/fPH9g1uWHjUWY5zPk+Ekgeg7jrMQt5LkGIHr+wjwnYtblaTEOMx4iz6fI9oH5PLlPeWwyNmHGMDi2mIiIzprDxBOWEZNYxj7MczTLsOwxkMveR1o5s61ERER0UuSYTTM2kXZOwhx/kTZWw4xFpMU40q4Dla+fdt3mMsi6Oe1aTVmfp42FMGMfSdd7mmM308ZTJI0NNWMgdH6lzb1jxgOltDHNZqzQlDYHojlOWzJ/LyTz90IyfwNMabHKtOu40vobae/drN8T+dt21qWdLzXHmkvmb55k/s6Z5G+bKa3PY/aVpKS/I+1Y0vYnfzultDFrSXHhtPdK/n7PI+07lLbtqNvP+nNHo1GknTIej9HtdtHr9TAej/W28Xisf7t6vZ7errap35F+v49+v68fTyaTyG/MYDCIjAmVhsNh4u/jWZbNZmFZVuRzL5dzuVxk3KjalslkkM/nkc/nkclk9Hc7m83qMvl8HqVSKXL+RrZv1HfKsqyp71Da9zRt20V8LvA0BzMRERERERER0XEzz73FxejN8wTmuQozxh4XV1exfRWna7Va6PV6ej+9Xg8HBwf6dYbDYeTchXlcw+EwMsesivPJx3KOmmWPRzouuVwuEneTc72ouF0mk4FlWSiVSjpOl8/n9XlB27ZRqVR0DLBcLus4VKFQ0HH0XC6H1dVVAE/jdTdu3NDHIWNTMoYuY+PymvJF499EdHTq91v9Bh8cHKDf78PzPL1N/V43m019flat8zwPg8FA51Tu9XrwfR/9fh9hGM48b6OocQ/qvJ/jOMjlcqjVaqjVajqHsuM4KJVKU3mYa7Ua6vW6PofgOA7K5XLqnNSdTge+78P3fZ3Tz/d9nftP3uR2WS5OPp/X+fxc113oVq/X0el04Hkems2mvk9aNtfFnY/OZDJwXTdyPEnLV65cidw4L8dsOzs7uH//Pu7fv4/t7W1sbW3hgw8+wHg8Rr1ex0svvYSNjQ3cvXsXm5ubuHPnjq43ic661157Dffu3cPXv/710z4Uoohms4mtra3Ib++DBw/0GLK1tTVsbm5iY2ND33/xi19MHM90kfm+j729Pezv7+ub53n6ptoQqr2jbr7vx7bhstksHMfR7QeVv1iti3us1qn19JSZj0m16eJyNc3a1u125xp7mJR3adG8yXHrrly5cuHmX1FjZdV7rca4ep6H4XCIIAh0P0r1j3zfx3A41H2iVqul+0lBEETiVCrGlTauNo4an6nGJKq+lBpvqMZ5qzHjciykitOoGI0ak6niNCpGo+Izqn/G+XWIiIiIiIiIiIiIiIiIiJZDjgNY5Pb48ePYeZDUefxFb2tra7Hz4xARERERXQZmu9wcszvPur29vcS5XIHptrochzvvutXVVeYUICIiIiIiIiIiIiJakJzDQc6BZ85DKvOSmfOgyjk8ZI4yM2ebfC11HiHutebNmbjs/MuHzVUo55gwc2fJeUTl/mTeMPl8mfcwKe+yzHOWlt+LiIjoLFH1vczbqtoQnudhPB7ruarCMNTtDTkf1Wg0QrPZ1HOwm3NWqfZKWq7VWSzLQqFQQLFYRKVSQaVSgeu6qFaruHbtGlzXxY0bN1CtVvV8vvl8Xtf5ruvq9oCq45PydJ6UpPdJvpdp77c5t5icP2w0Gul5lpNy45pUW6ZWq6FYLKJWq+n3M265WCyiXq9HliuVCkql0tQyEZ0tw+EQH3300dRcqD/84Q8xmUw4DzWdWf/3f/+HF198Ef/7v/+Lu3fvnuqx9Ho9/Pu//zu+8Y1v4Fvf+hY6nQ6+9KUv4atf/Sr+9E//NJLjhM6/0WiEn//859ja2tK/mdvb23j48CF6vR5s28bzzz8f+d3c2NjAb/7mb8bmeCciOgrP83Q/0fd9HBwcoNPpIAxDBEGgt8k+puo/qnMNcpvqN86biwd4GodXfWzbtnV/PZvNwrIs5HI5jEYjFItFjEYjjMdjZDIZDIdD2LaN4XCIyWSC8XiszzkcHBxgNBphMBig3+/re5m3bZa4OcmP836eea57vR729vawu7uLnZ0dfd9sNiPrPvroo8i11+pajPX1daytrWF9fR03btyA67q4fv06isUiVlZWcOPGDd3vVzGZIAj0/9P3fZ3/TuZqUjEJlc8oCAIEQZD4GSiXy2g0GpH8P6urq1hdXZ3KCyRvRERERERERERERERERERERERERERERERERERERERERERERKR9IzM57Oy8RERERERERERERCdEJTVrNpsIwxBhGOLg4ABhGKLZbOpldfM8L1IuCAJ4noeDgwP0+/3Y11AJShuNBqrVKmq1Gmq1GhqNBur1un5crVbhOI5OlKXWO46jl1WSUSIiIiIiIiIiIiIiIiIiopMwTzLweROGn8V9nedjV+VarVZqmXa7jU6nk1pmMpmg2+0mjn2YTCaYTCbo9Xo6UftFls1mkclkZpZLK6Pes6OWmTfpPR1dJpNJ/V8kbVeXUcZtl/8/c/tkMpnaLo1Go8X+gFOWz+eRy+Vi36NsNotKpQIg/n2qVCqwLEtvz2azkf2WSqXIvtT2TCaDRqMR2Zdt23p7pVJBPp+PPd5cLodqtZr49ziOk/h5KJVKieO4LMtCvV5P3G+9Xtd/q6lYLEb+VimTycBxnMT9VqtV5HK52G35fF6//zSt2WwmbptMJvA8DwDQ7XbR6/Ui28fjMYIgQK/Xi61DW62Wfr6p1+uh3W5P1ff9fl/vazgcRl5zMBhE6mH1eDAYYDgcTr1Gu92eOmb53G63O1XPDIdD/fszHA4j20ejUeTxcDjUv2Vx9dVoNMJoNELc5ebqOeY2VTdeRplMBrZt6+U4+Xw+8hspn6t+P+XvnvmbCgCFQkH/lsb9Htm2Hfv7KMuXy+XIcy3L0seu9lEqlWDbdmS95DhO7G9pPp+HZVlz/XY1Go3Y90MpFAool8up+0j7vQfSf5sV13VTt6fVG0R0NgwGAxwcHEytHw6HCMNw7vWj0QhBEMy9Xl3LMO962TaZZz2Q3NZZdL3nebF1dNJ63/fPVH826fc8aX1SHZK0PqneSlpv2zZqtVrssSb1GdLqtaS6qFwuo1AoTK1P67fUarXY+jutbp5VnxKdNBlbNeOs52Vb0u/rUcjfPPP377xsk32ApPqy2+3GxsODIJiKtyXV6Un96bj/S1I74uDgYCqWnlRnJ+2j3+/Hxv9VTGHe9UnvybznIU5KUt8pqT5LWp8UE0yKnyXVfUnrk+rqpD5qUj2ZtD6uXk+KDarrVuddT0SLSaqr563TT6tcq9VKPOd7WIety89iWcbqiIjoOBxn3X4S+192PPe4YwTHvX+2F4iI6DBk/DgMQz2WS8abZaxWxoXNeLfcl3y+ed5Zvo4ZZ5b1u3xdM059HHEEGeOUcVzzHKWMwZrnImX8VNbNZuxTxoPNc7Aylmuea533GImIiKR5+uDLWj7q82U74aiOs+9+nPtOOp9Ml4/6bsj7ZrM5tW4Z92nXppjU5/Uo967rzlU27XojIiKii2RZ9fysfSzS3j6Jul7dz7rOjoiI6KyaVf/OU7+nldnf30+cb8G0aF2cViZpG6/DIyKik2bWlfMsz9q+t7c313gTs05cdDlu3erqauJ8YkREdLGp+kjdZB2Vtk6u/+yzzxLn91R1jlkvpa0z11+7di1xvjUiIkqnfr93d3exs7OTuvzJJ59E5n6Rv8/r6+tYW1tLXL5+/XrifMBElGxnZwfb29vY2trS9z/4wQ/Q6XRg2zaef/55bGxs4O7du9jc3MTGxgZefvllnsMmOgFvvPEGAODNN9885SMhirezs4O3334bb731Ft5++2288847GI/HuHnzJl5//XXcvXsX9+7dw6uvvsp6g05Ur9fDxx9/jJ2dHezu7uLRo0d49OiRfvzTn/40ct1vsVjE+vo6bt68iZs3b2JtbS3y+LnnnuOYfSKa0uv1dJza87xI3HrW47h5cvP5vI6BrKysRGLVsx5zHh0iovPF932dc7TZbKLT6aDdbsP3fbRaLbTbbYRhiDAM0W630Wq19LZWq4UgCBCGoX6clMNEaTQaKJfLqFQqaDQaqNVqqFQqKJfLcF0XlUoFlUoF1WoVjuPosvV6HfV6XT92HIfXsxIRERGdMHPsd9LYubhtantabqS4MXNp4+nMbedxnIaaF1LlCjKvL/c8D8PhEEEQ6DJqvkhVptls6nkjVQ4hVUblTZp3jho1N6Kaq1HNqaTmcXRdV5dR8y2qMmouRtd19TyNqoxqu7uuOzOvNxER0Vmn6mTV9lH1t5pzWdXRqh5W7Z9ms6nrfpXHUM3vrOpwtU9Vly8yj7OaQ1nV1arOVfWxun5O1d1qjmVVz6u63HEcWJaFRqOh96HaXKpO5/XrRER0mSxzPrlZ94vO73wcc8sl3Sfl06WLT+YdMXOcyM+szG1t5ieRubbnLWfm1pbxrXlysyTl5j4MmXdE5icx85jIfCRynkZ5XlvOYS7nNpe5U2T+EjOvtGyLy9wrMocK86AREVGStLxjKpYFROtrIJrXTNa3QLSOlrlLzHaDjHOZ+dBkG0DFzeKOa5n1u5KWX0zWqWadLOthWU7W6WZbIal9INsE8jya+Zry+bLuJyIiOozjzm9+HNvMcsvMlaacZB7zw25LK8eYABERLZvZTzfrY9lvN2MBZnxB9v+BaEzBjFOY42VkbGLWMSXlZzeftwwyjiD76ma+9KRy5nhaeQ5Ank+Yt5yZY13GEmQ7wSxHRER0Es5qvGGRbQDmvjZnEacZc1jWfnjegoiIToMZT5BxAODpXDrj8RjA9DiFo8Q45PkJcwykOa7BjHHItoQ83mWPh5BxADOuIOMUSWMX5BhGIHm8goyBmGMc5Ljj7tIs/gAAIABJREFUwxwPERHRWTLvOIZljIVY9j7M8zPLcJjxDMsYE7GMfbC9QUREp03GFdKun5RxAzOukXbth9yHjEukXachrxExYx1yH2YsZhnkdRlpYy3k2AgzbiFjEGnXh8iYhjluQu5Dvpbcn4xpmNeKEJ118jtvSpvXyLyGTEr7TTB/S0wydmtK68OYfR8pLcZq/o6a0ubFTBuvnvR3pL03xzH+fVnSftvkb6NJ/tZKZt9MkjFnyawLJFlnSGlj4ZLOY6f9rWnj8ZP+VrP+kZL+1uOci3PWWEn5PRuNRpHPaxiG+vs7Go0i3yuVl2AwGKDf70euFW2325hMJuh0OpHndDod/fuj5lYDnp6Lkd/ndrsdmYtCfbcGgwGGwyEmkwlGo5F+zclkEjkndFTZbDYyl4r6rE0mk8j/z7IsPXYzk8lgPB5jPB4jk8lEymWzWYzHY/T7/cgcbXK51+sl/jafVWY7zJQ2dmRW+ynpOw4kf4/Mc1PzHmva9y/t+5z2+5D2t5/k30ZERERERERE589RrnEyH+/v7+u4vsorqgRBEDknGIahjrfJ2J16rorXqVienHNWxrn7/b6Oc00mEwwGg8SY+0myLEvH/Gzbhm3byGQyyOVykeV8Po9sNot8Ph97TXcul9OxGJVrSe1zdXU1sqziPGtra/q1k+aLlXF3zhNDNJvK1xYEgT6HqX7HfN/XYydU3hfP8/T5QzNHs8rnFgTBzPGVKrat8rTUajWdR1nlXC6XyyiVSrqcys+mcjWXSiVdrlwuR+K7vu/D8zz4vj91U3n+PM+Lzf8Xd/5T5Yub57aysoIrV67o+2KxqHPbqdeUr20eR9w289xpoVCIvIa6lze5Ti1f9jGeYRjixz/+Mba2tnD//n1sb2/jwYMHePz4MYCn9czm5iY2NjZw9+5dbG5u4vbt27y+l86cZ555Bn/zN3+Dv/7rvz7tQ6FLqtlsYmtrC9vb2/r+vffew2effQbg6RiQjY2NyG/qnTt3Llxe1clkgv39/UPdzLpd5bNTN9d14TgOGo1GZL35WK27rOe51dg1z/MQBIG+hWGIIAjQbDYRhqHOTWy2WcMw1GN20sa5Ab8a86ByE5XL5YXaqbVaDeVyGZVKBY1GA4VC4cJ9J1QfQOaGVv0JNZZS5ZWUuaVlTmiVW1qNEzTzTM07J42ZE1LmiVZj4tQYPHUtlBpnosY9q+eo7Sr2oOIOat9pY/mIiIiIiIiIiIiIiIiIiOjkqPGsi9729vZi5wcqFotzjx2Vt+vXr0fm2CAiIiIiopOlxp+afYRF1z1+/Dhxbks1flT2G8zH86y7evXqpb/ei4iIiIiIiIiIiIjoPJk33+EiuQplji45D+p4PIbv+7rcvPkZ5THJ5ywr97KcU1TmtZLLMu+LzKdj5oqRuarksuM4OgeRzDsjcyHKZTk3qcypnJbrhoiIaFnkOIWk+2azif39fXz66ad48uQJnjx5ouecDcMQBwcHes4tOReayt2XyWTmzs9pjmlQy/OuS9su69nTpN5X1b6Rc5uZ85f5vo9ut6vnlFd5INU8zAcHBwjDUO9vnlyolUoFxWIRjUYjsiznUS6XyygWi3AcJ3G5VCqhVCrpZc6jTrRcQRDgJz/5SWQe6nfffRdPnjwBED8P9ebmJr+LdGL++7//G7/927+Nn/3sZ3jhhRdO5Rh++tOf4h/+4R/wT//0T9jf38fv/M7v4Ktf/Sr+5E/+BDdu3DiVY6Ll2t3dxYMHD/DgwQM8fPhQzyPd6/WQzWZx8+ZN3L59G5ubm7h16xY2NzfxG7/xG2eizUdEpPp+Mp+OOZ+1nLNaxe9VrF7Nia1y7sg5r/v9PrrdbiRn2CyWZSGbzcKyLEwmE1iWhfF4jEwmg/F4jMlkonOLHUYmk0Gj0dCxcSUpZ31S/nUZq5fS8s2PRiPdd97f30ev10O/30ev18NgMNDLvV5v6thyuZy+qffEsizYtq3zm1mWpc9jmPng5qFiFI1GA/l8HrVaDZVKBYVCAY7joFAooFKpRObrr9frkWW1rdFo6PMJRERERERERERERERERERERERERERERERERERERERERERERHRo38hM5Ey6RERERERERERERMdAJQBTN5kULOkmy3z22Wc6uacpLnmXui2yTibcJCIiIiIiIiIiIiIiIiI6DfMmDZ6nHPd1tvc1mUx0gu9ZZQ6bbPu8UIm0zUuczMfZbHYqcXgcs0zSflW5uO2yTNylV6qMuS9FJUunkzPr85HNZpHNZhP/L+aYkbh9mevU49FohEwmE9kutyXtYzgcxr7GZDI5F9/7XC6HUqk0tT6TySCfz6NYLE5ty2azKBQKKJfLsfvMZrNYWVlJfM1KpYJ8Ph+7zbZt1Gq1xOemjQ1S44mSjqnRaCTut1arwbbt2G1pfysAuK6buC3tb83lcqhWq4nPvczjoA4ODlK/P0EQJI5DAwDf9zEejxO3e56X+DsymUzgeV7ic8fjMZ48eTJ1fP1+H8PhEMPhEK1WS68fDAaR34nhcIh2u63LmjqdDtrt9tT64XCI0WiEwWAQee3RaBR5L4bDIQaDAcbjcex70Ov1Yt/byWSC8XiM4XAYeZ6sJ9X+49bL47kokuqQTCaT+N20LCt2WzabhWVZsCwrcZu6l/syH9u2re/jXrtYLMZus20btm2jXC5P/V22bSOXywF4+rukfrNyuZxeL9VqtUg5KZfLoV6vo1AoRNbn8/nIOvl7XK1Wp96zcrk8tQ9p1m86kP77S0Q0j6SYANcfbn2r1UK/359af5qKxWJsX4jrD7c+rU9FRL8yGo0QBIF+3Gw29bLsy4ZhqPtf8jdU/s6a+5LlTmLbssi4ivkbc5Rtqt9dLBYj8aJCoaD7s4VCAYVCAaPRCN1uF/V6XZfL5/O6nwwgEsPpdDqR/kalUkGv14vtz8v/pTIej+H7/lRZdQ2eKS7OMRwOEYbhVNmk8xXys6b0+/1IDEOZFZc5KdVqdapfmslk4DjOVNmk+qler0/1xZP2kdTXTFpvWVbkM6MkxTeTYoFJ6/P5PCqVytT6pFjlonU3EZ1/g8EABwcH+rGMe8s63Cwn6wRZzqwXZDlZN8hyZjxdlpN1o1kurn48ChkLlL+f5m++rFvk76lZTvZvZDmzTpDl5O+tWU7WR+bvsuM4c507JyIiOiyzDyrbDPK8u6zHzfaD7Jea/V/ZZpB9UvN10/YvjyNt/8tg9tlkPW32w2Q9LcejmG0H2RYx9y/bC2n7l22EtP0n9UWJiIgWJc83yL5+2nkMWWcnnbs46r5knFy2GZLi6ocl6+GkOAAQPRchxzOZdfKy6/y0Nsus8axERESSrKeTluctd9zLQPoY/0XIOteMyydtO8ll8zHPFdBxUd+xee7l3NGHuZ91DY+kPv/HcS/nqi6VSrymgIiILhV1Ps7zPAyHQwRBoM+9qRic7/sYDofwfV/H8tQ5viAIMBwO4Xmejs2pul49f5ExPypOpuplFV9T43dUzMtxHGSzWTiOo+NualylioWp+l3V7Soep67BTrvGm4iI6DxQ14fIfraqe+ddp/rpqk3QbDb1fpOuVYmj6lnXdXWdrOpiuU2dz1J1varjHcdBLpdL3GbbNse+EBHRqZoVGzdzLc67PM81mWnx7Li8jfMu8xp/IiJSVPzX9314nocgCBCGob5X68MwjKz3PA++7+t1SX1I1Rd0XRe1Wg31el3f1+t1OI6j16n1jUYDjUYjUjZt7k0iIjq8ZrOJnZ0dNJtN7O7u6mXz8S9/+cup+YOKxSLW19extrYG13UTl9VjIlqOIAjwk5/8BFtbW7h//z62t7fx3nvv4bPPPgPw9JqWjY0N3L17F5ubm3qZ8wgRnZ433ngDAPDmm2+e8pEQzScMQ3z/+9/HW2+9hfv37+N73/sefN9HvV7Ha6+9htdffx337t3D66+/zvqFTl2n08Hu7i4ePXqER48eYWdnJ/L4F7/4ReRcjOu6uHnzJtbW1rC+vo6bN29GHr/wwguXNscLER2OOv+76G13d3dqX+p87qK31dVVXgdFRHSByLpFjjWa9Thu26xreOPGFc16nLTt2rVrHItEREREdMzi4hBmOzBtW1weZSWtPShvSduuXLmSmj/2vDvs3DvzzMujyiySpzHp2oJ5rztIW7eyspKY252IiOg8Oo6589L2NY9F5sNbtIzaxnn0iIjoslF1sZobT/Wz1bX8ah48ledCnUdTc1o3m02dL1PltlDz76i59dT8e0n5p5OoelnNo6Ou8Vfz6ak58dQ8067r6lwUKqelmsvHnJOn0WjoefWSchsTHdVR544/ifnp5eNF5rqe5STmmF/mfjm3JhERzSMtt6zM+SLrVzO3fFreWXnOS7Wp415bzruVlHfOfF2Zt+6oZD0q872ZeeFk7jcZc5N54Mx8cbJOls+XOezk8818dkn58WROXCIioqOS9arMIQvM314w562W+WZlWyKtvWDmrJVtBLMtIXNdmPntl8HMI6vidsB0Dth5c8zK+l/F+pSkNoNsc8j6Xx5fWvuFiIjouB3mPMBZKTfPPOCLOEz8/6yUU+cbiYiITorZz5f1shkfkLEDM64gz1Gknb8wt5ltBBnHMGMcMv5hxkaWOSZBkfEDs59vnhuQ8YS0MQMy1iDrfbm/pHMdZgxDxkGSYhhERERnxTLHMi67XNpzljkeAji+sYzH+RyAYyCJiOjsOqm2w3HsQ461WIZ56/m0bae5D+ZtJSKis+A8tCHSyh3XdR0ncT3mMp7P+AXR2ZU091PanFCn/ZyzcAzLfs5ZYP52z7Ptoj1nnv21Wi1dp3e7XQwGAxQKBWSzWT2GYjKZIAgC5PN5FAoFBEGgx0y02230+30Ui0UMh0N9TYo5zkOOs5DjQeR4jMM8Zxmq1aoeA1EoFPTYCtu29XiKTCaDcrmsj6dcLuvrTIrFInK5HHq9Hmzbjlw7op4/GAyQy+X0uItSqaSXy+Wyvi6mWCxGrlHJZDLo9/t6/Io6RlXGHBcjmeNwpLRrcczxM5Ick2NKG5u77HNgxyFtrh7zWiIp7XrftDE1afEpeR2TlHbdkHl9snTe/zYiIiIiIiKiy0Zez2TGcWScLGm+ttFohE8++QTA0/jRp59+qvf35MkTHacJgkDvS82xrParYr/D4TASv5Mxw16vh8lkgslkguFwuPTrrBaVzWZ1TMKyLB2PsywL+Xwe2WwWlmXpGGAmk0GlUtHPaTQaOk64srKCbDaLXC6HlZUVAE+vpapUKshkMjpPq4y/qriHvDZLxVAY+6CLLC5/8rx5luPKzRrrmJRHeVY+Pbn+2rVrGAwGsTn+Zt0+++yzqXh3Um4/eVtfX8fa2pp+fPXq1cgcD/v7+9jb25u6N9c9efJEL8vrdJVarYYrV65EbisrK5H7K1euYHV1FdevX8fq6mpijPgi2dnZwfb2Nra2tnD//n1sb2/j4cOH6PV6yOVyeOmll3D37l1sbm5iY2MDv/Vbv4UbN26c9mHTJTWZTFAoFPDP//zP+PM///PTPhy64NrtNra2tvDuu+/i4cOH2Nrawvvvv4/PPvsMwNN28e3bt7GxsYHbt29jc3MTt27d0m3k8yQIAnz66aeRunTWTc5DoeTzeaysrOib67qRx+ZN1cFyzobLQI3/8DwPYRgiCAIEQYAwDPV69VhtC4Jgar2cF1VS/S7XdXVfrVwuw3EcVCoVlEol1Ot11Go1lMtlVCoVOI6DcrmMUqmky5XLZdRqtcjcGeeRGjvS6XTQ6XTgeR7a7Ta63S48z9PjbNSYjyAIMBwO4XmejieocWCqPd5sNvXcMGnjSExqvIDruvr/ZOZVchxH52hSYxZU/1nmXFJzrqp5WOr1OmzbZv+aiIiIiIiIiIiIiIiIiOick2NH4267u7vY2dmZWh83v8k8YzjjbuY4TiIiIiIiupzmuR5unnVx15wpaiyt2X9ZdN3169fP9ZhnIiIiIiIiIiIiIiI6OTJ3jJzDVOabScpNKOcZkbmB+v2+ngtGzn8ql9VcJUA0X47MRSRz7KTl21mUmp/EXJY5V+T8oTJPi5rjxFyWeV5kebl/mZvFcRw9B6rKHSP3l5b/hYiILo9ms4mdnR09Zlref/TRR/jkk0/wy1/+MjIOIZ/P6znX6vU6SqWSnlc7n8/Dtm2Mx2OMx2OEYajrfM/z0O/3cXBwEGkTpFHzgbmuq+uxarWKfD4Px3F0nVir1fS8YaqOrdfryOfz+hiLxSIajQYKhQKq1eqZme9NtVnUHGthGOq52NRyt9vVc+F1Oh293O124ft+ZLndbqPT6URyLyYxx4eo9y5p2XEclEolvVwsFvWce+VyGdVqVc+FTkRPffjhh3j//ffx8OFDPHjwAO+//z5+/OMfYzgcIp/P49atW7hz5w5effVV3LlzB1/4whf4PaJj8Z3vfAd/+Id/iGazeaJzaA4GA/zbv/0b/v7v/x7f/e538eyzz+JrX/sa/vIv/xLPPPPMiR0HLddwOMQHH3yABw8e4MGDB3j33Xfx4MEDPYf0c889h1u3buHWrVt6/uiNjY3EHNdERPNKyzEz77q47Xt7e3P1UYHp8fhqOek+rUzStsP0V1U/W8bCVWxexsrVfN9JeeRl7F2S8XkpLobfbrf13O7dbhf9fl+Xa7fbkfw/2WwWxWJR9+/V3OBq+erVq3pu97j3RMXBTSpnl4ylq7IyNu+6LgCgWq2iUChcurn7iYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiM6Jb2Qmk8nktI+CiIiIiIiIiIiIzq4wDOH7fuzN8zx4nje1PgiCSJk4KjGWurmuq5fr9XpkmyxTq9X0TSWhJCIiIiIiIiIiIiIiIjqrZFLcJDJJ7lHKJCXWlZKS7C5aJikpryQT9CZRyZCPWqbdbqPX66WWUYmKj1pGJTdOM8//6yJQCY4BIOnyFNu2Yds2JpOJvsXJ5XIzy2Sz2cRtADAejzGZTFLLjcdjjMdjAIhN4KzKjEajxDJyH0lksmk6PdlsNjWpuWVZke3qc6P+7/L58rOZyWSQzWaRzWaRyWRiP29qfSaTiT0GtT+1H2k0GmE8HkdeR26Tn0+5fTAY6G3yOLLZrE7KHqfX60097yySSdSPe9tJvtZ52qaS3F80s9oa53l72rbxeIwgCKa2j8dj3dbp9Xq6jTUej6d+R3q9HrrdbuxvyHg8RqfTmWo3qfoaeNruVNvj2gCDwSCx3TWZTNDv91PbBpeZbdux7RjbtgE8rR/U9kwmg1wuFymn6pd8Pj+1j0wmg1KpNFW/ZTIZFAoFANE61rKsqf3Yto1CoYBisTi1f8uyUK1Wp45JPQd4Ov5Q7tMcS5jP5/X+zf0AT3/rrl69OrUeeNrGrVarU8eWy+VQqVRQKpVij5uI6LzwfX+qT5sUU4qLk0wmk9jx4UmxoiAIptoKSXGTpPhOs9mcWpcUvwrDcKrNkhSfS2orJcV+5okJnaRcLhc7nt62bdRqtbnXW5aFer1+5PXZbBaNRmPu9ZlMBo7jzL0eAFzXXWi94zixbaKk9Re1z0NET5l1mOd5uk8p6ytZ/8m6QtZ1su6U9Uzaa8g6atHXOKpcLheJ59frdd0PLxQKuq81Ho9RqVR0OdX3UvFKuU3FHRW1TdWVsi9WKpXQ7/fR7/f1OQPgaX0uf49VX1LFI+Q+LMtCv9+fqruT6vNF1s9zbugkLBKrXDSueRb2cZyvV6vV9OeKiOi4ybrErFeStp2VcrJtsgzydzlp+SyWq1QqsbFvIiKi4zJPXX2Y+v0oy2nb4uL6R3HUuvuw25a1/6T4MxER0VGcdPvgqM+f53qORcxTfy8zTnDUfTEGTUREhyGvq5Tj4uQYNDmOQI7rSxpfIPcj9z/PeIbxeAzf9/XxyTF5cWMKD0OOKzPHgMn+tRyjVa/X9ZhzOX68XC7rsQxy7HahUNDjH+T4OTk2zhyvJl9bjhuTr0101qk2ubxvNptT6+bZllQmbvxtGtVmLhaLcF1XLy/7fmVlhddvEBHRpaPa8qqtr/oFvu9jOBzC9319TY3qJwRBgOFwCM/zdL/ArOebzaa+nmeeuWAUFR9zXVe3vVV9rdrxjuPAtm3U63Xdblf1uRqro/aj+gSu6+r2e9L1LkREROeVqs9Vfez7PgaDwdS6fr+PMAwPtW6emF6tVtN5oVQdLdfl83lUKhUdj6vX68jlconbbNuG4zg6Nsd5F4iI6CxRfV5V37ZaLXieh06ng3a7Dc/z0G630W63EQQBDg4O0O12EQQB2u02ut2uLq+Wu93uzPlW1TmySqWCQqEAx3Ei8XNVBzcaDd1PVn1rlX+xWCyiXq+jXC6jWCxG9kFERJTGPPfbbDanbrO2pV13quozdZN13LzrOZcPEdHJ6na72N/fR7PZxO7uLnZ2dhKXHz9+PDVeyHVdrK2twXVdrK+vJy4/++yzvF6f6JgNh0N89NFH2Nrawv3797G9vY2trS388Ic/xGQyQb1ex0svvYSNjQ3cvXsXm5ubeOWVV3Dt2rXTPnQiMrzxxhsAgDfffPOUj4TocEajET744AO8/fbbeOutt/C9730PH374IWzbxhe+8AW8/vrruHv3Ln7v934Pzz333GkfLtGUZrOJR48eYWdnB7u7u3j06FHk8YcffqjHYBQKBTzzzDNYW1vD+vo6bt68GVl+8cUXY+fYJiJalIzhLHLb39+PzeEQF6Of53bt2jXOo0BEdMHFnVM2zyHP+3hvby91Hv+k646TziunPS6VSon5ZIiIiIjo8IIgQBAE8H1fLwdBgGazGbve9314nhdZnzQnZblcRr1e1zfHceA4TmRdo9GIbJO3RqMRm3P4MlHzB6hrGoIgwGAwgO/7et4BNX9Zs9nUcwqouQjUPAPyOsQgCNDv9/X/bp75BdQ1EqqNX6vV9HwC6ppDNX+A67r6WkN1HaL6X8p9yOsW5RxiREREF80i8/4ddt7ARfJtxs3rN8+cgWllzG1yDlEiIqLLRNXRqr5W8wGqulr14dUcgCoXmJozSF3X2Ww2dR50NX+4mrdIzZ8g5x6fRdXTcfMDmnMJyfkFVTxA9dvlfEOWZUXmIGTfns469d0BoL9firymWubok3kDZG6eeeb+B5Ln+5fzfSflF1BxwWVImr8/bc5+eR24zMsjcwTI3L+yDyDLy/3I8/3qtWTOAvN4iIiIDuO0c/sd5jmyPbAMJ53rbxnP57hAIiI6DrKPb/azZT/dHDsj+/OyzjbjCbION3MAynN3ZrxAxhtkXMHcR9occIuap58v6+d54wdJOQaT8grKvCNmHkPZHmCOYCIiOi2H6eMvo9wy9rHI2KF5HKbvf9htyy4nz18QERGdNDMGIeMTMg4wa5scVyDHOwDR2IIZd5BtAjPWIGMe84yNOCoZH1Djk4BofMCMO8j4gIw7yPp9nv3OG3eQ+zXbGkRERGfJccYUjvM5sk2zDMc1huE4nwNwTAQREZ1dMj4gr5Ewx0fIeIMZp0gaf2HuI2msBBAdHyHbEmZsQ7Ytlnm9hSLHVsj63IwzJI2PkM+RMQs5BkPGL9Q1W3GvIcdmJMVLOLaCiIjOInkuIukaStnumPeaz6Pua55rO49q3rGS84znPMy+ZBvlMPsiIlo22eeUzH6lJPuOktk/lNJ+y2W9JKXNvSnrDCmtH5oUC0/7W5PG+6X9rWnn85P+1rNA9pFNsp8ryTrLlDSvWTabRb1ej3yG1HKxWEQ2m9X/2+FwqD+flUol8hnq9XqYTCbI5XKYTCb6OYPBQO8vn89H/heqPZLP59HpdCLXsQwGA1iWhdFoFImbtFotZDIZTCaTxM/JomTb4CwvJ/3fTWmf+WVvO8nXOulth93fssclH5e08T6H2bbs/Z2lbcfxWpxrkoiIiIiIiGY5yvm8VquFdruNfr+PTqeDXq+n4xlqe7/fx3g81vHl8XiMdrutl3u9ni6jYnxq/Xg8xng8Rr/fx2QywWg0io1rH6dsNgvbtpHJZJDL5WBZFrLZLAqFAizLQj6fh23bsG0b5XIZ2WwWxWIRhUIBuVwOlUoFlmXpXFHqOi21fXV1FZlMBo1GQ8dcVX9eXtMlx0DJWB7RWeD7PjqdDtrtNprNJtrtNjqdDnzfj+TNC8NQ59RLWp9E5c2r1+uo1Wo6l55ar9aZ6yuVCobDIYbDIfr9Pvb397G3txe5f/LkydS6uPnkXdfFlStXcOXKFaysrOjl1dVVrK6u4vr163pZ3cxrFDqdDnZ3d7Gzs6PzTSfddnd38fHHH0+dZ5M5pF3Xxfr6OtbW1hIfr62tXYhrJbrdLra2tvDee+/h/fffx3vvvYf33nsPjx8/BgCsra3hlVdewauvvoo7d+7g1VdfxYsvvsjfSzp2e3t7WF1dxXe/+138/u///mkfDl0gH3/8Md577z08ePAA7777Lh48eICf/OQnGI1GqFar2NjYwO3bt7G5uYlbt27h1q1bWFtbO+3DThRXB8bVifPWf/Pebty4cSnqgiAI4Hmefh/NZTO/sdkWk9eOSOp6CpnTWLa7XNeNPFbLrutGHp/n3DhmbsJlLCeNfZKOmpNwnjLzjg0hIiIiIiIiIiIiIiIiIqLzT523XvT2ySefxObonDWWMe525coVPd8SERERERHRaYsb66tui6yT8/KazDG8so+0yDpeU0pERERERERERERERGeRzMMkz5nIuVXkssyTJfNIyVxYMgeLXJa5r2QOF5nfSs6tKssk5dpahMz5oXIXy/lCZT5kmTtEPk+d85F5CZOeV6lUkM/nAfwqf5B8nswZJfMfEhHR6Wk2m3j06BF2dnb0HHvm/aeffhqZf0zNGavGYsfdr66u6rx6cXObzZr7LG3d/v7+XHmC48Y/HHX5LM2BdhxzzSXlB1WSxpQsOsbk2rVrOtcy0UXS7/extbWFhw8f4t0p516oAAAgAElEQVR338W7776Ld955B81mE5lMBi+++KKef/rOnTu4c+fOmZ6Plc6Hf/mXf8Ff/MVfYDAYnMh4vb29Pfzd3/0d/vEf/xGffvop/uiP/gh/9Vd/ha985Stnpo6k+QRBgPfeew/b29vY2trC/fv38c4776DdbsO2bXz+85/H5uYmNjY2cPfuXbz22mu4fv36aR82EZ0C3/fR6/VwcHCAVquFXq8Hz/N0XDMIAvT7fQRBoOOhzWYT/X4frVYLYRii3+/r3DBqnmu1z1lU/LHRaCCfz6NWq+k4pOu6Os5Yq9VQKBT0vOKFQgGO46BQKKBSqaBarSKfz8NxHB2nTMunfNF1u13s7+8nxgLUvPs///nPI/1E1c9Liwmsra1dmjn2iYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOhIvpGZJGXXJSIiIiIiIiIiogtBJUgyb/v7+3rZ8zz4vq9vQRCg2WxGkkpKlmWh0WjAcRw4joNGozF1q9frqWUu6yTlRERERERERERERER0canEsWlU8tk0rVYL/X7/yGUODg4wGAxSy4RhiOFweOQyQRBEErDGSTr3JHmeh1lD3Ocp02w2U7dPJhN4nnfkMuPxGL7vp5Y5ryqVSuSx+Z5nMpnIOb/JZBJbplgsYjKZYDweJ/7/8/k8AGA0GkX2ofaZyWRg2/bUPuRyJpOBZVkYjUZ6vfl6mUwG2WxWl0k65slkMnUspvF4nPqZl8dBp8+2bViWlbg9m80il8vpx5lMRn8W1GewUCjo7eqzIRNI5/N5ZDIZ/dnKZrPIZDJ6ey6Xi/28qc+kZVlTxyg/o9lsFrZt622qDlCvk8lkkMvlMBwOI7/Z8jgymUxsvZDNZtHv9/Xfaup2uxiNRvp1pHa7rb8L5vaDg4Mz/z3IZDJwHCd2WzabRaPRiN1mWRbq9XrsNpXAPU4+n5/6fVVUsvg4acngVUL5OCoZfZxqtRr53Ev1ej3xO9NoNBKTpzuOE/sZAgDXdWPXp73PZ82sth63J28/6r7b7TY6nc7UetXG6PV6kTa2+XvbbrdntmfPsmw2i2w2m9o2Mb+Xqj4CEPleyvVngW3bsb9Far1Zt+RyucjvmqpLzfVK0u9nPp9HoVCAZVmR+lWtl8dh2zYKhQKKxeLUfiqVSmx9UCgUUCqVUC6XI8efdDzLWp/2O0xEdF4lxWe63W5s+yAuRjUcDhGG4VTZpPhaXFyp1+uh3W5PrY+Lm41GIwRBMFU2qc0TF+vq9/totVpTZePifUnxqaT36KQl9Vni+ghJfaZarRaps4HkvkSpVIqtt+PqyVwuh2q1OlV20To4qT+XtD7p70xan3ScRESnSdZr8ywnbRsMBgiCQPfrVf3V6/XQ7Xb1+l6vp+tzGQcYjUbodru6Tu/3++j1ephMJuj3+3p9p9NZWqxS9iXVuQm1Xp2nUH154Fd9drVe1keyHaH6wOPxONJGUeX7/f7M834nIaluj6trk+q2uNhkUqw2qf6Ni2EmxW2X0T6Ii7UmHXNSGyCuTUNEdNnIvupRlpPaHGZ/WvbxZZ9aljNjD7JcUjzgsMy6UfaNZf0oy5n1jSwn6xyznKx3ZDmzPy3LyXrXLJd2/pCIiOi4ydi/rKvleFzZVpB1vYzZm/W+jM8f5TXkeYh5xp3OS/Zzzbpe9mllPS3bCrIPL+t52fdd5mucpzFARER0vsn6Vp4vl3Wyed5exghkvS/HDci6fjAY4ODgYOo1gGgbQo4ZSGo3yH0dlVnfyvpa9vFlHS3jAnKMs1n3y/HBsr6XMXYZszjMvoiIiJZh0fEKccvL2Efa8jzXv85iniuXj09rOW1b2rVGRBdVs9nU/RD126L6GL7vYzgcwvd9HUtUfQbVj5j3+fNQbXXVflf9A9d1ddtdfWfVGJhGowHbttFoNPTzVf9B7Uf1LdRzOPaFiIjoV/keZN8i7j6tzDzb5qHqd3nvuu7UukXKmNs4ZoiIiC6qWXXzMtbNI6luXsY61uNERHSW+b6PTqeDdruNZrOpl33f1zH1MAwRhiHa7TZarRZ839fzkDWbTb3s+/7MeXfVmJtKpYJyuYxarYZarYZCoYB6vY5KpYJisYhGo6Fj467r6jrWcRwdL6/X6ygWi6hWqxwXQ0REh9bv9xEEgc4XrJaDINB5hOO2yTJp41NU3uB6vR65qbzC8nHStqQ5bomI6OR1Oh3s7u5iZ2cHzWYzsmw+3t3djTxXxQzX19extrY2tSwf37hxg+MAiU7Jzs4Otre3sbW1hfv37+vlbrcL27bx/PPPY2NjA3fv3sXm5iY2Njbw8ssv8ztLdE688cYbAIA333zzlI+EaHl2dnbw9ttv46233sLbb7+Nd955B+PxGGtra7h37x5ef/113Lt3D6+++irrKzrzer0ePv74Y+zs7GB3dxePHj2KLP/0pz+NXNtRLBaxvr6Omzdv4ubNm1hbW9OP19bW8LnPfS4x7xQR0TKoc+aL3p48eRJ7Xl3Fjxa9MZZERHR5ybpIjp82H6dtU49n5Tc3x0ureihuLHXcNvn46tWrHOtFREREtARqXpwgCOB5nl6WYx/lNnO9WhenUqno8Y+O40SW1b3ruoll4vJSUbyjXkOZtm1/fz+SXz7NItdNLnqd5ZUrVzgWloiILrRlzneUVCYuX3uSZc5/xHmQiIiIkh21fp+njMzlMstxzoHINgBdRml5EOfJtSjzJMg8zDJnUlouJ3kOX/YH5OvJMsvIxSDzJ8ocSDLHosy5JPMiyFxKMkeTmksdiOZLknOry98WmfdJ5ZeWOZiYl5GIiJZN1tkyJ3JansSkOl/W82b7QdbbSXka09ofSXkej0rW+cCv6l8gWkcn5WCU7Qfz+bK+n6cdIPMszWoTEBERnZSknIhp246yvOx9HcVx5Wxc5r7M/co2BBER0UlSOVGBaP8eiMYE5i0n63TzXIKMEcxbTsYfzJjHImOS5iFjCGbcQfb9ZTm5LM83HGX5MG0JIiKis+QsxhrS9jtrnoJFnIcYhHws2zhERERnSVJMQo6NMMcmyDiBrOvNOIYc6yjHUMixkmas4jDHc1Ry7CMQHdMgxzHIut0cByHPPcjxkPl8HpVKBcD0uEY5FkLGK9KOJ2ksBRER0Vkmx1XK+j3tnIVsLwDRdoUcG2m2P5Ku25CvK9sv8tyIbG/IcZ5HJdsTSec6ZDtDjr2U7QJ5PkW2Rcwxk7LtINsoMjaRNG5TtmOIiIjOEtk2SLueQsYVktoCR91X0vWgafs6KlmPy7pbtidkG+Io13Yuep1n0vUdREQ0m9n3lZLOraf1V5PG+Jn9bynp+sO0uiztWoSkeQzS/takuVLS/lZZN0tmnECRff6zIJfLIZfL6fdK3du2Dcuy9OPxeIzJZKLrYLl+PB4jm81iMpnoz4paDzx9L446p4Q6JtUeUMvZbBa5XE63GWzbRj6f1/dqfS6XQ6FQ0OvkuZNisYhisYh8Pj91PWqxWEShUIi0c6rVqm7LyHhKvV5HuVy+9DGNtDmHkr6Xad/ztN+NtO+mjLWZZJvclPSdBs7O35b2O5b2t50lMm4omec9JfO8pST7HaakcVJJ39WkfaUdW1L/Q/ZjpKTx4OY4dinpPZP9I0n2uYiIiIiIiOj4yFiCig/I2KCMYarYQrfbxd7enn5Op9PBcDhEEAQYDAbo9/sIwxDj8VjHONTzBoMBhsMhut0uRqORLqPicYPBQB/Dsq6ZmiWbzeq+aS6Xg2VZyGazKBaL/5+9O/lx5DzvB/4lWcWdLNb0sHvYo8UaW4o1LWtGbiUOMIM4f8APyE1AzoERZLkECJDlECBAgCSHIAGcHAwkh8A3Gcghp5wCBJiBgXjaHluatiTYbSGS2HtzK27F7XcYvK+eIt8i2d3sdb4fgOhiVbG4NFnv+z7vW++j43eJRAKxWAypVAqJREKPY45EIshkMkilUohGoygWiwCe9wFmMhnYto2lpSXEYjEdG5BjoFW7X7XBeQ02LUpYLuWwnMqm9fv7+6HzIcg8ydNumUxGx7bUb7xWq+Hw8BBHR0eBvwcHB9jb2wuMbwSej+m7efNm4LaysjJ1nSmu5Hke9vf3sbu7i4ODAxwcHATu7+/v4+DgADs7Ozg4OJiIYaZSKdy8eRPLy8tYXl7GzZs3USwWUSwWA8+t7ofFyS6rnZ0dfPDBB/jpT3+Kn/70p3j69Ck++ugj9Pt9ZLNZ3Lt3D/fv38f9+/fxzjvv4K233mJOPFqozc1NrK2t4YMPPsBbb7110S+HrqB+v4+PP/4Ym5ubePbsGTY2NvDkyRPs7OwAAEqlEtbW1nD37l2sr69jfX0db7755oVeq95sNnX5p8omdZPllSqnjo6OAo8fLyOXlpawvLyMYrEYWC/XXfe65mg00vWaarUaqOfI+2HbTH2p2Ww2kDc4l8shn8/rvMHqfj6fRy6X0+vVfdU2uArCcvecZnmefL5huXpOs8z8vUREREREREREREREREREFMY0fnKe297ennFswbxjKsdvpVKJcwsREREREREJsr1muv7tOOvCyDacHId8nHU3btzgvEhERERERERERERERPRCU3OXDodD1Go1AMH8JDLXipzzVOWPkjlQ5Pyn8nEyB5TMs6LmKpSPk/lPFpHvROYjlPkFVb4NmfcjHo/r+YXk42QODpULRM5FKh8n83Kox8nnkMcNy/lBRPQi8X0fBwcH2N7eRrlcDv27u7sbmN9ajeFeXV0N/fvyyy8b8zTNospBVX5VKhVdPlWrVXQ6nZnL7XYb7XZ7YnlW3rxCoYBUKoVUKgXXdfW8bqY52lKpVGD/8WWV765QKBz7MzgrtVoN7XYbrVYLtVoNrVYLnuehXq+jWq3C8zw0Gg14nodarYZ6va7vNxoNVKtVNBoNNBqNqWNK1DyD2WxWzymYz+f1fTUnoVrOZrPI5/MoFAqBfVRZT3SZlctlbGxsBOZv/fnPf47RaATXdQPztl6GuVvpavne976Hv/iLv5iYQ3fRDg8P8Q//8A/453/+ZyQSCfz+7/8+vvOd7+DVV1890+elxZh2HnIcB2+99RbW19f1XNLvvvsux20SXUGtVgutVkvX0dvttq63t1otPQZc7ud5XqDOr7ZVKpWp+d+lbDaLeDyOQqGg20eO4yAejyOXy+kcwK7r6ry/uVwOiUQC+Xxet6MKhQISiQQymQyy2SwSiQTr+yfQbrdntt8rlQq2t7cDj1NteNd1Q9vxt2/fvlTtVyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiK68n4QGc2aDZaIiIiIiIiIiIgunEoSValUcHR0pJflLWy9SpYoqYRPN27cgOu6KBQKcBxH3/L5PFzXDayTt2w2ewGfAhERERERERERERHR5TVPElLuc732mTfx7FVk2zbi8fjEejn03LZt2LYd2DY+NN2yrMA+w+EwsI9lWbAsS98fDAYYDoeBY8RiMb3PaDRCv9/HYDCY2CcajWI4HGIwGExsB4BIJIJIJKKfZ3yf0WgU2Gf8edTrVvvI7aYh+ZFIBL7vG7ddRfKzUcbfm9pu+i5cFfI7Of5+1Xb1nTZ9JkDw9xOJRBCNRvW24XAIy7L09mg0ilgshtFopL9P8Xh84rcln8e2bSQSCf09VseQr3Gc2kd9b8d/m9FoFL1ez/g+O53OxO9FPUe32514LvUY+b4V3/fh+z6i0Whg+2g0gud5gX3VZ9dut+H7/sSxhsMhms2m8fkbjYbxPHDRIpFIaHJqlYR8nGVZyOVyxsfkcjnj/zsWiyGfzxsfY9t2aH9/PB5HJpMxblOJ0U1UUnWTdDqNRCJh3Bb2noHnSdvld1TK5/OB77zkOI7xuwcAhULB+Js9K9PqCaetY3D7ybfPemyr1Qo9t10F4/UzRZXL6vweVlaPn5/VY1X9LBaL6d+fqd4mn0tSZZYsF011OgCXrv4Uj8cRj8cnyv14PB44v6ntiUQCyWRy4jipVMp4Hk0mk0gmk7BtO3D8sHPrWa4/6+ecViYQEV1nYfUP0/rj7LuIY1z256tWq5eiXnDacvO8y+nL8nzT2nVERNdRt9tFq9UKrBsOh6jVahP71mo13abudrvodrtot9toNBo6FqqOp64H8n0fvV4Po9EIlUpFx3N7vR56vZ6Oo/b7fb2+3W5jMBig1+vpNrjv+7rclW1ztazuDwYD9Pt9HRdQr1etu6pU/FO2wVOpVCCmL9v3MlZi2zYcx5k4pikmaWoDh8V6w9rLrutOrAuL4ZrK3Wg0any9YWW3Ke46LT5NRESXg+/7us90UcuyXrOo5U6nY7zO+bhkWRi2PN5XKsvqVCqlY/jj5ZzcT5bP4/vJPke533g/rNxvWr8oERHReZMx+fH4fNi2RS2f5DGe5wXGtZ2GbBPPs3ySx5xmefz+tHFQREREZ+Ws6wNq+TTHaDQauj/kNM6q3D/LY00bQ01ERHRSso9AxvNl+dtsNvV4BlkWy/EPlUoFwPPrCarVKoDnYw/q9TqA5+MY1LVjYX0I8noOGROo1+unvk5MxvHlNVKyrJVxf9kPL8tgGf9X/fqyf172K8j+C/mcsr9C9iFwzB3R4rTbbVQqlUD7w/R32j6zHj/vOGd1njH9dV03dNs8+6htvF6HiIhoMva4iDJ/fNtxYpOLLOtN227cuGG8lpmIiOg6UNdjqTK4Xq/D933U6/WFrJNxzWlyuRxs20ahUNDxvUWvIyIiuirG28kqJ6KpDT1tWd2fp/9PtY1l+3ja8qz9OC6XiIgWKayck7dZ26b1OcvyTd7Gy76wbcvLy8a5iomI6HKpVCool8uoVCrY3t4OXf78888n5udPJpNYXV1FqVSC67qhyy+99JJx/iEiuji1Wg2/+MUv8OzZM2xsbGBzcxNPnz7FwcEBAKBUKmFtbQ13797F+vo61tbWsLa2xjECRFfce++9BwB4//33L/iVEJ0dz/Pw9OlTPH78GI8ePcKjR49QrVaRy+XwrW99Cw8ePMDDhw/x4MGD0NxGRJdZu93G9vY2tra2sLW1hXK5rO+Xy2V8+umngTmJXdfFnTt3UCqVsLq6ijt37gTuf+UrX2HfFRFdiLC+i1m3vb09Yz9/WL/FrNvq6uoFvHsiIrqM1PwUnueh1WrB8zxUq1U0m000m000Gg3U63V9v1arwfM8fb9SqaDZbKLVaqHRaMwcK57NZpHJZJDJZOC6LtLpNDKZDHK5HBzH0fcdx0Eul0Mmk0E6nYbruvpx2WwWhUIB2WyW800TERERncK0OMW0MZiVSgUHBwehc5YfN14hx1/eunWLsdsFUXPOqfnrqtUqer0eGo1G4PrPXq+HWq2m/+eNRgO9Xg/ValXPjyeP4fu+bj+o+eqmUXPPqfmZHMeBbdvI5/N6/oZ8Pq/z0qnvg+M4SCQSyGazuu5fKBT0YxzHQTweZ143IiJ6Iahyt16vo9/vo1qtot/vo9Fo6DJclde1Wg39fh+1Wk3XB8bnblKPV3NBqPjePGU78HweCMuyUCgUYFkW8vm8nr9BlflqDlnXdfUcsaocV3PAOo4Dy7J0/SCbzeq6AOeBJyIiem4R8zvP2mfeuaCAxczvOGsfzktBdDqXNc/VWeTEPGkuqvPMicm2DRERnRWZc0rFChWVuwoI5pqSMUD5eJnXavzxcj54WZ7LPFtq/lpFzucj2xvz5paZRuamksuxWAz5fB5AMGeVzJMVlr9Klt0yl5XMPxOW10rFSseXWQcgIqKLdhbxgbM81iLqCcpVyInN2AEREV02Mp/1eDtfxgZkPEHmzAaCsf959zvusszpLZdPY56yXMYRFrUs4xTHXSYiIrqsLkvcYd7jzpOvZ14XGXc4yXFlnwYREdFlddq6wqL3m/cxi4pZAGc/vpHjJImI6EUlx1zK8ZPjfRpyLKUc1yBjCrIfRfZpyPGasq4g+2Rkf4q6Hnza6zstOT4yrB9E9kfIsZhyjKYcuwk8nwNeKRQKiEQiABC4PkwtRyIRFAqFiWPKsZ7jsQ4iIqLLSF4nIesAYddcyPJ9vM4xz7HksqxnyDiEfKysoyyqP0SV+bI8n+eajou6voOIiGg8rn8d1rfb7UCcQJX9nU5HxxUABMZ8qjgEAF0n8H0/MNecqov0+/3AHBAqFtLv9+eek+Y8RCKRwJw0kUhEr5N1ARWLiMViuh4hH5tIJPT6WCymYxqq3hGJRHQ9IxqNIpPJIJFIwLIs3S9i2zbS6bQxlhEW4zCtP86+i1wv61I0n2lzpUyre4ddNzXePpCmxQZlPHGcjDuOmzbXZNh7m/Y6wt5X2LFkfFQav05eknHay0K2bSTZXhoX1qcq2zpS2Njx8fisFDZnl2xDSbItJsn23TgZA5bCzidh5x/ZVhwnY85ERERERESXherTk9dgyza4bAtXKhX4vo92uw3P83R+p263q3NDdbtd+L6PVquFfr+vH9/pdNDr9dDr9XQbut1uYzgcwvd9DAYDDIfDhczlOo9YLAbLshCJRGBZFuLxOCzLQjKZhG3bSCaTSCaTuh2bSCT0+nQ6rXNOqDxUhUIBmUxm6hyx43ksiGq1ms6lXK/X0Wg0UK1Wdf48tRz2V8XMpXQ6jUKhANd1jX8dx0EsFkM0GtW/OZnT7eDgALu7uzg4ONC38d9lNptFsVjE8vIyisUiisUiSqWSvi+Xi8WiMebSarWwv7+vn2t/f18/t1re39/H3t4e9vb29BgFJZFIYHl5Gbdv38by8jJu3bqFW7duTawrlUqXdsxer9fDJ598go2NDX17+vQpms0mLMvCG2+8gbW1Ndy9exfr6+v4zd/8TRSLxYt+2XRF/c///A9++7d/Gzs7O1hZWbnol0OXXLVaxYcffoiNjQ1sbm7i2bNn+PGPf4x2uw3btvH6669jfX1dn6O+9a1vYXl5+VxeW6fTwdHREba3t1Eul1GpVIzLX3zxRWB+IeB52XHjxo1AftnV1VWUSiXjumKxeG37G1We3sPDw4l6x7Tl8c9UkfWNeZfV/cv6GXueh0ajAc/zUK/XUa1WA+tqtRrq9brOqafy5JqW2+12aB+novq2VB7bRS4TEREREREREREREREREREdV7vd1uMFjnMzjTkEno+plWMG5r2trKxwTmAiIiIiIqJLaLzdqK5PO866w8PDqblvZFtSXZ8p24zzrFtaWjLOf0RERERERERERERERESLEZaL0LR8nH0X/biTMM0tKpfnXXeSx4QdJyyfBhHRReh2uzg8PNTz/4X93dnZCeR/cl0XpVJJz/ln+vvKK6+cW95WVWZUq1W02209rkGOcQhbVmVN2PI0Ki+c4zjIZrPIZDLIZDJwXReZTEavU/fVOjUHdjabDdy/LOMj5FiR8bEjxxlfIvMgj5Pl5XHHksj713m+Sbp8arUaPvjgAz0H9ebmJj788EN0u11ks1n82q/9mp6DWt0u65zadLH+/u//Ht/73vewtbV1Jsc/PDzEd7/7XfzTP/0TLMvCH//xH+NP/uRPQvMK0sUan+N+c3MTT58+xcHBAQCgVCrpc4qaR/ru3btsVxKdM5UHyPM8nQ+kXq+j1Wqh1WqhWq2i1Wrpdkmz2USr1UKj0UCj0UCr1UKz2dRtFvWYaVSOnUKhoNsequ2QSqWQz+eRy+WQSqWQzWZ1zp10Oo1cLodEIoF8Pq/rz4VCAfF43JjjlhbP930cHBwE5tw3/f38888D4/HVHPxy3n1Tm/vll19mW4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiILsIPIiM5Uy0RERERERERERGdqfHEQPPexpNOKePJgcJucrLsGzduIJlMXsC7JyIiIiIiIiIiIroe2u02Op3OldnnMr2Wq7qP53no9XpT97mK4vE44vH4xHrZJzG+z2g0wnA4DOxv27beZzAYGPs0LMuCbduh2wEgFouFbpPPHYvFjNuHwyF6vR6i0Sii0ejEsQaDQeD/GI1GA9t7vd7E65OJp9V29Vqmbb8OLMvS7280Gk18npFIRP/Pwv5vkUjE+J2R2/v9/mJf+DmIRCJIpVLG9UD4bwt4/r2blpBYJUEOk06nkU6nQ19XLpeDZVnG30kqlUIikQDwPOnuYDAIfP6O4yASiaDX6038XyzLQiaTge/7xvOhZVnG74Hv++j3+8bX3O124fs+4vE4LMuaWK8kk0n92XY6HXS7Xb0tGo0iHo+j0+kYz+W9Xi/0/B12/p9WLpzkMdVqdeq57aIkk0nj93jatkU+5qKf/7xecyaTmTgf+L6PZrNpPI5Kvh6mXq9PLWtmfd8qlUrottFoNDVR+2AwQL1eD93e7/fRaDRCt09738Dz336r1QrdPqvO1mq1AueHcc1mM3BuGddoNKaWSbM++8ssEomgUCiEbo9Go3Acx1hej0YjRCKRibJLfhaWZSGVSmE0GoV+Rqr8UYbDof68bdvWCd57vd7E6wirI3a7XYxGI1iWpet1g8Fg4v9sWZbeV+r3+/B9H9FoNFCna7VagX2j0Sj6/T7a7fbEa2g2mxd+js9ms/rzU2KxGPL5/Fz7WpaFXC53bvuquso8+9q2baw3hdWXwtYnEgljXWTaeZ2IiMLrprVabaK8NsXOOp3ORPnZ6/XgeV5gXVg91PQ8pjqd6XlMddOw5zHV8+Z9nrDXeREKhUKgTgOEl42mslvVCcelUinjmGPHcSZia2Flt6ldFFZHDSuf8/n8RKwjrA6RTqcn6p8A4LruxLqwegIREZljMfOuO+3jj3tMz/N0ee77vo4Xq/rJcDhEq9WC7/sYjUaBGFCr1dL31d9erxeoC6g4xngfUr/fv9B6gCz75XIsFtPldCQSQSQSQTQaDcRQIpEI4vG43leVsyrOo/ZRdYbxcj4ejyORSCAej8O2bf34TCaj91N9g4lEAtlsdqJ8NpX7p1kXtt4UiyAiIppG1rdLlwcAACAASURBVDku8/Ki+qFl+XmZl02xDyIioosm+xjUmBw5vkb2i8h+BtkPIY+hynfZRyOPIZfl84z3gch6wiLHu8jyWMbtZT+A7FeQMXgZW5BjGsb7C87iOYiIiC6KbMfLMa6yLiDHrprqBcCX9QxZRwirc8ixunJcbthrWcS1UrI8l2MPZJ++LKdl+S3b/rKvX5b9coyDrB/IcQtqPMB43UKOEzCNOyAiIjorskyWZf9xyvWwslweT5blprqEjBnI55x1/c+8wspp1b6fp54gxznKuoFs/8u6gRwDMKs+wPgA0eWizmXyb6VSmVg3z7awfWZdHyipuZzV+Sbs77R9Zj2efZxERERf1gFqtRp830ej0dAxymq1Ct/34XmebutUKhXdplJtnmq1in6/j3q9rttKav95r+tS7QMVn1TtDMdxYFkWHMfR7RMVq8zn87AsC4VCQcc4VVmv2iau6+o2Dq9ZJiKiF8msdnrY8jzb5x0jHdY2X8Q6XotERERX1Xh5O0/5PL4s7x8dHU2d1w+YLJOnLc+zX7FYnJgPhYiIaJFMeYTHy8Jp2w4ODkLH3oaVeeO3sG3ML0xEdLWp8mJ7exvlclmXHfK+Wt7b2wtc95lIJHDjxo2J3PNyWd1/5ZVXGL8kugJ6vR4++eQTbG5u4tmzZ9jY2MDm5iZ+9atfYTQawXEcfO1rX8Pdu3exvr6OtbU13Lt3D8Vi8aJfOhGdgffeew8A8P7771/wKyE6P4PBAB999BEeP36MR48e4dGjR/jVr34Fy7Lwxhtv4OHDh3jw4AG+/e1v49VXX73ol0u0EJVKBVtbWyiXy9je3sbW1lbg/qeffqrHvMbjcbz00ksolUpYXV3FnTt3Astf/epXp+aYIiK6CGF9KbNuOzs7E2MCw/pQZt2WlpaMOUiIiIjGzTOGbt77s+bznDZWwDQ+IGyf5eVl9gERERERHcN4rGLaWNDx27RrJeaNW5jqeisrK5zz9JzVajX0ej3U63X9HWg0GnouCjU/hZq7olKp6Ln+5LwXvV4PjUYjMO+FnAdwmkwmg0QigUKhoOezUHNb5HI5PX+F67p6ey6X03NaqO+SerzK/5dIJIy5hYmIiK67k85DeZx5LI8zp8VZzGeh1sn584mIiF50l6kOAHDeaqIXgcoZEpbLQ+YPkXk9wvKCyRyl8+QrkzlG5Lz6co7dReQsl7k6wvKIyVwhMqeYzBUyT04xdV6TzyOPoXKZyJwl8vmIiIjOkyyvz2v5uI+TdYfTkPPmX8TyPPvKugYREdFFkG1/GR8Agu1zeW2BLKtlXEDGDmR8QcYggGAMQMYJZCxBxh5kftPx13gaYTnAZfs9LB+5bPeH5TNd9PGIiIguo4uIM5x2+bQuOt4w7zLrEUREdJlNixXIcQQyViBjEDJWIGMQwJdjIsaPe9oYhDzuacmxU7LMlmMSZKxAjm2Q4xLGYxvyuGpZjp2QsQjZP2GKZ8jnISIiukpkmS/L+fE6g+wDkcuyzDcty3pM2LKsR4Qtj7+ek5J9ELLcD1uWZXzYsuzLCFuW9ZOwZVn34HhJIiK6Ds6j/2JRx5LxlZO6iPGUx1mWsRMiIqLLLuy6yVnXec5zzafs21jU9Z+nIfsc5LLjOIhGowCC/RmqX0L2eYTFO457jeg8/SJERERXhSznpbB5YzudDvb29nS9w/M8jEYjdDodHB4e6v3k+lqtpvdvtVoYjUbodru63iHX+76vl9XzjUYj9Ho9XdcYDAa6z8b3fR2r6PV6um7k+/5C5pQYjUaIRCK6vgE8r18MBgNEIpHA/Daj0ejUcZNFCutDkfEQKSwmEnadqhyLIsnrVqSwupKsz0lh8weZ5hgcH+eimD4DWSec9foYJ7o4YeOzj7t+kce6yOdY5HMvqo22aGHnpuOuX+SxLvI5FvncYedrIiIiIiK6nFSfn2q/yT471QeoxjSr2J7v+zg4OECv10OtVkO/30er1dLb1JwuzWYTvV4P3W4X3W4Xg8FAx986nQ6GwyH6/f7U3LKLEIvFYFmWnmPVtm3Yto1kMgnbtpFKpXRcJ5FIIJvNIhqNIpvNIpVKIZ/PI51Oo1AoIJ1OTx1DNP6XbaTrwfM8VCoVVKvVY/9VvycpGo3CdV0UCgW4roulpSUsLS3pHGe2bSMajepYdbvdhud5ODo6wvb2Nvb397G/vx+ID8diMSwvL6NYLOLWrVtYWVnRy8vLy1heXtbLxWIx9HvZbrdxcHCAvb097O3t4eDgALu7uyiXy9jb28P29jZ2dnawu7sbiNEDQC6Xw+rqKpaXl1EqlfTzmdZdhlzP5XIZGxsb+vbkyRPs7OwAAEqlEtbX17G+vo61tTXcvXsXd+/e5Rz0NNN//ud/4nd+53fQ6XQ4JycFyHPO5uYmnj17hp///OcYjUZwXRd3794NnHPefffdhfcZdbtd7O/vo1wuY3d3F3t7eyiXy9jf39fn9/39fXzxxRcT5deNGzdw69YtFItF3L59W5cxpVIJN2/exM2bN1EsFrG8vKzHQV03Mq/u9vY2yuWyMa+u2qbqy+Pmza07frss5SfwvG7UaDTgeR7q9bqu86h1tVoNtVotsK5araJer8PzPL1+2nwHKm9sPp+H4zhIpVJIp9PHXi4UCkgmk3qZZTkREREREREREREREREREZ0FOa5g1tgCdTs6OtJz5UgnHVtQLBaN11sTERERERERAZNtVzW363HWhY2TV8bbtOpay+OsY/uWiIiIiIiIiIiIiIjoapI5KVSeQzm/qZrXVOYylPkt1NyoMqeRymUscx7KXIVqDiOZ70jNhypzI56EzJujctbIfDS5XA6WZQXyEs56jMpRI/MXqjlLZQ4cOdepyq8j8xwSEZl0u10cHh7qsexhf3d2dgI51lzXRalUwurqaujfV1555dLMg2dSqVTQbrfRbrdRrVZDl5vNJprNpp5nWN6X26eVH+oc7jgOMpkMMpmMni9P3s/n8/q+4zjI5XLIZrOB+5lMxpjr7TypMrZWq+l5A8fnDlTrK5VK6DyEnucZcxIq6jNTt0KhELjvum7g/vi+qtwkOolOp4MPPvgAP/nJT/D06VM8ffoUP/vZz9BsNmHbNt58803cv38f77zzjr6p+h29uP7yL/8S//Vf/4Uf//jHCz1uo9HA3/3d3+G73/0ukskk/vRP/xR/+Id/yLr+JeJ5Hn7yk5/gyZMnePLkCX7yk5/gk08+wWAwQCaTwTe+8Q3cu3cP9+/fx7179/CNb3yD/z+iE+p2u3ou63q9HqiPViqVwH1VN221Wvp+q9VCq9XS7YGwvKuKyjWTSqVQKBSQyWR0LppcLodUKoVsNgvHcfR+ruvqZcdxdP4aNW+2KVcyXTw19n1W+3hvby+QKymZTE60iV3XnVh369YtYz5sIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqJL4geRkZyBloiIiIiIiIiIiOZWqVRQLpdRqVQmbmqSa7lud3cXw+Fw4jjJZBKu6x77ViqVEIlELuCdExERERERERERvRjmSX7Ifa7fPrVazRjLveoSiQSSyeTEejmMNB6PI5FIBLaPfxbxeBzxeFzfl4keFdu29T79ft/4emzbhmVZ6PV6oa85Go1OjYOrY1uWZdzu+z6GwyGi0agxqWin09Hvf3yf0WiEdruN0WiE0WiESCQSSE45GAwCjweASCSiX2+/3w/9rkUiEfi+P/W9X2aRSAS2bev740ORI5FI4LMc/w7Jz3I0Ghm3q89xMBhMHF/tAzz/H181kUgEmUwmdHvYb1XJZrOwLMv427BtG+l0GoD5d6EeCwCxWCzwf4pGo3AcJ/R5U6nU1NflOE5oAlfbtqcm9pbnFKnT6WA4HCKXywXWt9ttfe5JJBL68a1Wa+KclMlk0Gw2jeeqVqtlfO5qtapfl/qMRqORXi8Nh0PUarWJ9YPBAPV6fe79gecJ003nhV6vB8/zjI8JK7M6nQ7a7bbxMRctk8kYP3fLsib+10pYcuhEIqG/8+Nc1zWuD/suT/sNZLPZwHlPmfbdDvtNJJNJpFKpifWRSASFQsF4rHQ6PVE+A89/x/l8fmJ9p9OBZVnG88CsutC07Wex7UV6zkqlErrtMgv7zi5i+1kcu9/v63N+MpnUv/d+vz9RLx0vC5Ver4d+vx+o9/Z6vYlztDovjK9X9TzLsvQ+3W53ot5iWRYGg8HE+k6nA9/3J15fp9NBt9vV96PRKHzfD6xT2u32xOsK+442Go3QOvt5Cftfm9Zz3+fCyiYiIjILa6OZ6mimsrHVak2Uub7vo9lszvU81Wp1Ir5heh5TeW16nrC2pel5TG1N0/NMa3ueB1MbytR+NJWLpvZkWBvL1L40PY+pvRnWbg1r55rapWHtWNPrCmvzhbURiYhouvFy31SemspyUxlpKp9NMVlTmdtsNidiAabyul6vT8S1TfHg8fcVFss2Hc9UxzlP8Xg80NcxGo0Qi8UQiUR0nUb24w2HQ31ffQ6DwWAh/boqnhqJRAIxHcuykEwm9XpV5kejUSSTSX3ftm3dXyFjSvF4HI7jIBKJBPph8/m87itS/UKWZaFQKATi1+l0GsViEUCwHhQWMyciIrqMZJ3oMi+b6ksnIcvsy7w8bYwHERHRRet2u2i1WgCC5bWMoag4iYyFyNiOjN+EHUOW/yrGMs8xTPGd45LlsuxnkG1+1c8g+wvk8nhfSKFQ0LGWXC6nx47J48uxc7LPQo6Dm/YcREREl8Wstv5liDUsYtzwWcYHFnU8We8gIiI6b6etE5zV9kVco35eZflJ6w8cx0h0fYyf0+TfSqUSum2efdS248RUx885aq7m8XXzbAvbh+0YIiKiL6mx8qq8rlQqup/U8zz4vo9qtar7cBuNBnzfR61W02V+vV6H7/uo1+u6LiDXzaL6J1V57TgO4vE4crmcbnvk83k91lr1bar9Vdnuuq6+9kuV++pabNmXSkRE9KJoNpvodruoVqu63K7Vauh2u/A8D57nodvtolar6TJclfvNZhONRgOdTgeNRsN4rFny+TwSiQRyuRwymYwu51UZXigUkEgkkMlkkMvldJmvyn/XdfX4pmw2i3g8rh8TNt8YERHRVRIWa5+2PGs/05wzUljsXOVBDNsWtnzjxo2p89MSEREtWliZOH6btc1kvJyUt7D149tWVlY4DwgR0TXUbrcDuenDlsvl8sS8X6qMWF1dRalUmrrM3PREV1u5XMbm5iaePXuGjY0NbG5u4sMPP0S324Vt23j99dextraGu3fvYn19HWtra3jttdf4uyd6gbz33nsAgPfff/+CXwnRxSqXy3j8+DEePXqEjY0N/O///i96vR5KpRIePnyIBw8e4OHDh3jnnXc4PxpdS77v4/PPP0e5XMb29ja2trYCy7/85S8DbctkMonV1VXcuXMHd+7cQalU0vdLpRJee+01jqMhoitD9t3IuNq029HRkXH+/LB+m1m3YrHIXG9ERHRilUoFrVZLj7Wv1Wp6XL7neahUKoH7tVoN9Xpd3280GqhWq/qavTCO4yCbzeqb67p6OZPJoFAoIJfL6XX5fD70MSz3iIiIiKYLu25j3tu0Malh8YlpY1IZv7jcpl3zM+uaoGnbTTmtTcLm2gq77mfe7UtLS5xPkIiIXliVSgX9fh+NRkPPr6Xm4apWq/B9H57n6ZzPJ1k3SzQaheM4unzO5/OwbTuwLpfL6ZzIJ1nHeTeJiIiCqtUqBoMBarWanndTtd9VO71Sqeg8hqqeoMp6lfNwWl3iOHmRC4UCLMtCPp9HPB5HJpPRc3DJeTbVnJ1q/i21j+M4sG07dD5Pma+QiK42lQdN5m0dDoeo1WoAgvlX1fkJ+HLeYSCYH1bOJyjzrKjzHRDM1yrzv8q4pjrnyddyUjLfqppHWM0zDARzsKp8r6pdBUCfR497LHW+lTlbw45FRER0EUxlLxDMjybnIFxEvUEuy9zu89QnTkOOfZTxTZnr3XEcfe2hzD2gcsDLMl3WFcJyw8s6gsztLusDci5ktrOIiOgykvnTZX1Btu1leS3Ld1kfkHWGsJiCPI6MF8jnVa8n7Hinocp8Wc7LMlyW2zLXqqxnyLrFWR2PiIjospuVr/04+5318qzcC/O6iDzwJ1nmmC8iIroqZCxAxghkOS5jCmExCCBY3s8T25jnuIuOS8jyWo4jUP0WYbEF2a8g4wmqj0P2Wci+CRmHkPUDFXuQ/RvM6UhERNeBHMsQNq4hbDlsvEPY2IewcRBhy3J8xLy5nGeR5XdYjEDWOVRfhBwTIesD8nGyznGcuoqsc8jxGERERNfBrP6Is+zrmGffeeeemWbRfRaLPh7HXhIR0VV0GcZMzLMsx5Ce1GnrA2e1r+wvISIielEsMnZxmse1222MRiO02209/4TneaeOYcTjcd3/Ydv2xHIsFtP9FbZt6z6PaDSq+y5s254YZ2lZll5nWRaGwyF6vV7geLFYDP1+H77vIxaL6fkqer0eOp2OnnPC9L+Qjrtejn+5KLKuNW3dcfY9r2Oe52tifpfLS/Yhjwsbay7HtElhfb6yD3pcWLsrLLYbdj4IG8cm5wQYFzaXmZwfSJL94dK0eYHknAWXhewPHxd2/V7YOPyw+LTsO5dkv/w8r8l07pDjAiXTHEayP3+e1216/2HnOvb9ExEREdGLQLYZVftGtZlkW69araLX6+k86Y1GA61WC+12G/V6Xbenut0ums2mbsMNBgM0m0193NFohE6ng9FoBN/3F3L9c5hIJIJEIoFIJIJUKoVoNIp0Oo14PI50Oq3bAtlsFslkEoVCAfF4HDdv3oRt21hZWdFtmfH5rNXYZDnnNV0uvV4P1WoVlUol9O/h4SEODw9xcHCglw8PDydiCalUCjdv3sTS0hJu3ryJbDaLVCoF27YRiUQwHA7R7/fRbDbRbDZRq9Wwt7eH/f39iTjK0tISlpeXsbKygtu3b2N5eRkvvfSSvr+ysoLV1VVjW1fxfR97e3sol8vY3d3F7u4utre3jevG4xzLy8tYXl5GqVTCrVu3sLy8jNXVVZRKJbz88stYXV3F7du3z72fuVwuY3NzE8+ePcPGxgY2Njbw0UcfYTgcolAoYG1tDevr6/r29a9/Xc9VRAQA3//+9/Gd73xnIfN50tXU6/XwwQcf4MmTJ9jY2MDTp0/x4YcfotVqwbIsvPHGG7h37x7u3buH+/fv4+2330apVDrVc7ZaLfzf//0fyuUyPv/8c5TLZezs7GB/fx9ffPEF9vf3sbOzg6Ojo8DjstksVldXsby8jFu3bgXOx6qMWF1dRbFYvHbjfmq1Gvb39wNlr1oOWz/ejyDL5WKxqJdVOa3+FotFLC0twXVdYyz7vIznYJU5fOW6WfscHBwY+20UmdvXlOt3nnU3btzgeHUiIiIiIiIiIiIiIiIiIjp34/3l8952dnaM41Bd10WpVAr0kc+6LS0tXbtxGkRERERERHS9zDs2fda6vb0941w8QHDO0+OOR5frlpeXmUuWiIiIiIiIiIiIiIiIdK4ZmUtC5rpQc6DKHBQqR4bMDSFzV6jcGjKnhMp5IedXlbkoVK6MbreLVqt14vejcirI3Agqd4LM26DyG6j5S2WOBsdxEI1Gdd+anM9UzXOq5j+VOR/Uc8fjcWQymRO/ByK6OJ1OB0dHR9je3ka5XJ76V1Lj49Xcsaa/r7766rWZo7VWq8HzPDSbTTQaDdRqNT3fb71eR71e19vVfTkfcKPRQLPZhOd5oTmGgC/z6mSzWWQyGWSz2cD9TCYD13X1tlwuB8dxUCgUkMvlkM/n9d9pcwifB1Vm1ut1NBoNeJ4Hz/NQqVT0Zyhv1WpVL1cqFb1syh+lyjzXdeE4ztRboVDQ+7muq+9fl+8mLU65XNbzT29sbODJkyfY2dkBAJRKJayvr+Phw4d48OABvvnNbyKdTl/wK6bz9Ad/8Af4+OOP8d///d8LOd5oNML3v/99/Pmf/zm63S7+7M/+DH/0R3/EOvUFa7fbePr0KZ48eaJvH3/8MQaDAYrFItbX1/HNb34T9+/fx7179/C1r30N0Wj0ol820YVqt9u6rlepVOB5nr5fr9d1PVqtq1araDQa+n6j0dDrwua4VnXkXC6HXC6HTCaj670qp4vjOEin00ilUnBdVy87jqPzd6h6ssrtQldfpVJBuVxGpVIJbcuWy+WJXLJh7VnXdQP5UZjrh4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiuiR9ERqPR6KJfBRERERERERER0UXq9Xo4ODjA4eGhvu3t7ellue3g4AD7+/s6+Zzkui6KxSKWlpb07ebNm1haWkKxWMSNGzfgui5c19XLKlkcERERERERERFdjEajYUySrHQ6HbTb7dDtg8HAGCuSarUahsPhqY7R7/fRaDSm7tPr9eB53tR9fN9Hs9k89T7dbhetVmvqPrM+u3n3abfb6HQ6U/dptVrodrun3ucqSqVSSCaTJ9pnNBpBDSFMpVJIJBKB7cPhMPDdTafTsG07sH0wGEw8l9pnMBhMbFf7WJaFfr9v3K72GQ6HU3+flmWF/rZ6vR56vR4SiQQikUjodgCIx+MT+/i+H0ikKd+32u77/sTrUbrd7sR2ADp5etj3OhKJoNvtTv2uttvt0CSfV0EsFoNlWTANX41Go4jFYqH/12g0anycMm3bYDDAaDQyfh/CvquXkWVZxt9zJBKBZVmhSVkjkQjy+XxowuV4PB7aZxGLxZDP5yd+B0o0GoXjOKGvedZ5ynGc0Ndl2zay2WzoY7PZ7Jm/rk6nM/GbtG0bkUjE+DtvNpuwbTtwTgDC6xz1et34/QurP1Sr1Ynv+mg0mkjQCjw/T9dqtYn1YXWPsPpGWB0jrM4QVk+Yp0w/T5lMBvF4fGJ92Pcqn8/r87gU9h0uFArGc07Y/slkEqlUyvhaXdc1rk+n0xPlN/Dl79Ykl8tNfD+B5+eBTCYDYLKscRxHvxff9/X/MR6PB35Hg8EAjUYDkUjEeE4xfX8Vz/NCy7dpdcZZdemzeM5ZdfNKpRK6bVr74zTPedlM+z5bljW1nzzs+w6Ef3+B6ef1aeWJSpJ+mZ4znU5PlD39fh/tdhvJZFL/7nu93sT5NhaLTXyve72ePl8nk0m9z/i5/TKtC/ttT/vdnpew/7vpu2vaN+z/f1b7msqKs9o3rP4VVl4REdHpmNpYp1l3Fse86OeZFZs/S6Y6cVg9ed59T7PuMj7PtLo2ERHNz9RWNsWgTOXieOzMFGs2xZlNsSpT+94UKzbFwEz9uM1mcyIGb3pfphj7tJjgWTHFvGTMVUkkErovR71uFa8Bnv8P+v2+Xqf26ff7SCQSiMVi+rNS/V7RaBSDwUB/NpFIRD+u0+lgNBoFHtfv9+H7PiKRCHq9nn5cu93GYDBAJBKZOe5gns9DxcYSiYT+HGT8XcXKZTxBfmYynqDi8zJOIeNvsq4hn0PF6WXMfFZsjoiI6LKTdTFZj1J1oJNul/VF1d8p64fHXT4t2e+yiGVZB1jU8qxxKURERJeR7FMxLc/aftzl4z5uEX07Mk5gWp61/ayPETaukIiI6KLJPiHZn6P6Z856O2COScxz3eU85LhL2Qch+xXkOAZ57YAsv1WsQcYFZD+E7L+Q/R6yPjDPayEiIrpIsiyW1w/KsRyq3JbjRWb1S8gYgBrvIct6Ux1BvpZ55jaYRpbfcvyGqgPIPgBZjstrEFVdQJb5sjxX9QY5jkSW/aY6BscxENE07XYblUpFnyPl8mnXzTvObjwuKv+6rhu6bZ591DZee0ZERGQ23u+6yLrB0dHRXHOxzVu+n3TdtLkliIiIrrt5yu7jbFfL887NM142zyq7590eNk8bERHRVTWr/J1VNo8v7+/vT51rGzCX02Hl8jz7sXwmIqKLVq1WUavV9K1erwfuV6tVVKvVifVyXxM1HqhQKCCfz8NxHOTzeX2T2+S68W2cB42I6MXR7XZxeHiISqWC7e1tlMtl3baT97e3t/HZZ59NxFpd10WpVILrulhdXTUuu66LV155hbnqia6harWKDz/8EJubm3j27Bk2Njbws5/9TI+XL5VKWFtbw927d7G+vo61tTW89dZbHB9JRHjvvfcAAO+///4FvxKiy8XzPDx9+hSPHz/Go0eP8PjxY1QqFeRyOXzrW9/CgwcPsL6+jt/6rd/iXG/0wmi329je3sbW1ha2trZQLpf1/XK5jE8//TRwjaXrurhz5w5KpRJWV1dx586dwP2vfOUroblBiYiuAjk24zi3g4MD4zhKObbiOLeVlRWOuyAiooUKG39ouj9tn1njEcPGFZruT9uHZSERERHRJDV/kxwHq5YrlYpxvVxWc/uNU+Nb1d/x5UKhEBrDUPPi0dVzmmuLp60Li5ONO+11xWHbb9y4oedgJCIielEteg7Rk84tcpZziDEHExER0SSVW0HlaFDluMrzUKvVMBgMUK1WdZ4HtY8q42u1Gvr9Pmq1ms4VoeoEKoeDyhUxi+M4iMfjyOVyeh5w07pCoQDbtudaF4/Hkc1mOa84ERktMtftWR3rpE6b13aROXLlOpl3j4iI6KIdN5f9RS3Pm7NpmvMs74+z3XEcXlNGRESX3kna/vMsL+p488Zfp1lkveAsjsc6AxERXRUyn71cVv2op11WfbaLXD4Nmec+bNmyLD3fqaoHAF+W77FYDPl8fmK7yleh5vQGYOxvkNsTiQTS6XRgOxER0VV2HjGHRTzHSZ1lLOG0fR0ca0ZERNeJKruB+cr7VquFbrc7dVmNNQegx4sDX/ZZDAYD1Ot1AMEYiTxGvV7HYDDQ49lPQ8YX4vE4MpkMgGCZLnNjuq4LIBi3kHGFTCaDeDweeJyMd9i2redLkHWIbDYL27YBfBn7kLELIiKi60CW3ep6NCDYnyHrH7L8l/WGEPYi5QAAIABJREFUWq2G4XAIwFyHkH0Zsj4h6y3y+nVVtwAWM+ZS1gdkn8Oi+jdk3ULWQ2R9QtVZZP1Gvi4iIqKrKCxOIesMsoxX5bqsd8hjnNW+J2WKI8yKVRxnX1nHOOm+REREL4rhcIharQYgGGcIqx+oWMWiHxcWy5CxkZNSc+qF9ZOoOITcLusNKvYgYxOyjqJiFOl0WscjEokEer0eksmkPk4ymUSr1YJt2zoGApivdTHNR2iqh8k4kSRjQIppDEvYOFlT3Ej2eykyHqXI/7EkY14XQfaBKTJepch+Mck0N6MpBmWqU8q6rGQawytjZIr8bkqma4hMY3lkn52kvtuSjLvR9WP6HQPm3zIQfo4BwuPLYfOphrUlZXtzXNi1gGHnk7CxemHnurDXZHpvYZ/RIsqp05Llk2Q674WdD0zno7Dzoek8EXaeMp2Tws6JpnMyYD5Xmc6VgPm8GNbWN30+RERERESKquurv6qdoP6q9kqlUkGv18P+/j6GwyH29vYwHA5xeHioH6faVv1+H61WC/1+H+12G/1+H91uF4PBwNhWW4RoNArbtvUtmUwiHo8jnU7Dtm04jgPbtlEoFJBKpZDNZvXy8vIyYrEYXNfVdX5Vv1b1d9WWYE6Ls3d0dISDgwMcHh5O3Pb3943bxtvnyWQSS0tLcF0XmUxGt9kikQhGoxF830er1UKj0dDPJ4+RSqWwurqKW7duoVQq6eXV1VWsrKzg9u3bWFlZwfLy8tT30mw2US6Xsbu7i93dXZTLZezv7+t1Ozs72N7exu7ubqD9XywWsbq6ipdffhmrq6u4ffs2XnrppcA6UxtykRqNBn76059ic3MTz549w8bGBjY2NtDpdJDJZHD//n2sr6/r25tvvsk5gF5g//Iv/4K//uu/xt7e3kW/FDoHvV4Pz549w5MnT/S54Wc/+xm63S6y2Szu37+Pd955B2+//Tbu37+Pt95669g5INW58rPPPkO5XMYXX3yhlz///HN88cUXgWuOEokESqUSSqUSlpeXUSqVsLKygpWVFb3u1q1buHXrljG+eFV5noft7W3s7e1hb29PlzO7u7vY29ubKDPHy8tUKoWlpSUsLS3h5s2bKBaLenl8vVp3Xp+fyqM7fvM8L7DcaDTgeR6q1Srq9Xpg3bQ5+BKJBHK5HPL5PBzHQS6XQzabRS6Xg+M4yOfzgXWFQiFwX65jXxMREREREREREREREREREV20druNSqVy7Nve3t7E9bnA8zF4ruse+7a6unoB756IiIiIiIjoalHteDUXjGyrH2fdtHlgVNteXR8p2+/zrFP3b926xWvGiIiIiIiIiIiIiIiIaOFUjhmZu0HllpC5kWV+BfUYmYtBrVP7yfwxKo+EzKms5qVSzxWW12Eeaj5IlcdF5kVQ85aqfjeZ20DlDFD5B2ROQTXvqcrHIPMcTHseIlqcTqeDo6MjbG9vo1wuB/5ubW3p5fF57lzX1fPXjv+9c+eOnh/xRcsZ0mg00Gw20Ww2Ua1W4Xkems2mnj9Q3W82m6hUKnp5fHu9XjfmB1Pk/IHqb6FQ0PMMym2FQgH5fH5i/7Oe53cWlYNonutDTPvt7+8bcxud9PqQpaWlifw7dH198cUXePLkCX70ox/hyZMnePLkCQ4PD2FZFtbW1vDuu+/i3Xffxa//+q/j7bff5hyc19jv/u7votvt4j/+4z9OfaxPPvkEv/d7v4cf/vCH+M53voO/+Zu/wdLS0gJeJR1Hv9/Hxx9/rOeQ3tjYwJMnT9DtdpHP5/GNb3wjMM/83bt32caga8NUvzrJ2N2joyN0u93Q5zGNvz3JmN0Xsb3wIut2uzg8PNRtzkqlYmyHfvbZZ4F55dV3Z7ztOb7ulVdemcjTSURERERERERERERERERERERERERERERERERERERERERERER0zf0gMhqNRhf9KoiIiIiIiIiIiBapUqlgZ2cH+/v7ODg4wN7eHg4PD3FwcIDDw0N9Ozg4wP7+Pur1+sQxXNdFsVjE0tKSvt28eRNLS0soFot6Wa7nxOlERERERERE149K7naafU67/Tye4zK8hvN6jmq1iusyZCqZTCKVSp3bPolEAoPBIHQf27YRj8dDtw8GA8RiMSSTyYlt/X5fHzsej08cp9/vBxJRj+/T6/UmElVblqX38X3fmMjasizYtg3f9+H7vvF1W5aF4XAYur3b7er3Fra92+0iFoshGo1ObO90Ojr5YzQandin3W4HkkOatod970ejEWq12pX9zluWNTXBoGVZiMVioe8vEokYP3MAGA6HoduHwyFGo5Fx22AwwGAwMD5Wfo/V88ttpu/gZZVIJIy/VbUtnU6Hbstms8Zt0841Z7HtIp7zrN5HoVCYK3ly2PngMq2/TK9l2vpGo3GpfrNh35GzXH+Wx+71eohGo8b9w87NiUQCkUhkImFyIpFAIpEAECxT4/G4Xg98WZ6mUqljlaWnqX+e97bTPLbZbIbWdS6j61JuXKfnTKfTgd+cie/7aDab13Jdr9eD53kLW3ceIpEICoXCpV0HPB+3MS7se3jafVOplLH+a9qXiIjOlqk9VqlUAvf7/T4ajUZgXbfbRavVCqwz1XNrtRqGw6G+PxwOUavVAvuYyvtWqzXRHqnX64FY0Gg0QrVaDexjKutNdXPP89Dr9QLrOp0O2u02LkJY+ZzP5yfioJlMZiKea4ofWZaFXC43cUxTeWt6HlOd0/Q8sVgM+Xx+rufJ5XIT8UfT88TjcWQymbmeh4iIzsZ4+Tlv/Pk6rDPtY6qbnId5Y8mLXHfSx8k4tOwLljHobrcL3/cRj8cxGo3g+77u27VtG8PhUH/OnU4Hg8EAlmWh0+nom+o3lP8n07Jct4j/n3y/puVZ20+67zyPM9XliIiIrhIZz5HxJTXuUG6X5fp5bT8pFQeJRqNwHAdAsAyXcRLHcXSdaZ5lOa5lUctERERXyay4wDzLZ3kMUz/UcS06frDo45n6fIiIiC4bOUZFjglR408uavtpr52Q40bU2AzbtvW1RcfZLvsYZJxAPU7GNeS4DTkmRY7xmHb9ExER0UVbZNxgkdtPG0c4z/EMx9mezWZh2/aJ3xcR0TjVl1utVuH7PjzP0/3LlUpFX5PgeR5830e1WtXXPJjWNRoN+L6PWq0293UE6jyXz+dh2zYcxwmsi8fjyOfz+pzoOA7i8ThyuZweM+84DizL0tsymYzen3FXIiKi6cbbVO12G5VKZWHr5h0vlkwm4bpuoB00z7p5HiPHiBEREb2IGo0G2u02PM+bWO50Omg0Gmg2mzpGoMryWq2GbrcLz/PgeR663S5qtdqxynnVTs/lckgkEsjn87o977qu7gvN5/NIJBLI5XLIZrO6va/K9EKhgEQiMXEsIiKi66jZbOrYfLVahed5OgZfr9fRbrfRbDZRrVbRbrfRarVQrVbRarXQarVQr9f1YzzPm5hXaJwas6Ti7plMBo7jIJ1OI5VKwXVdvew4DrLZLFKpFHK5nI7fZzIZFAoFpFIppNNp41w/REREF61Wq6FWq6Fer+tleatUKsZtat34vHyK6ud2HAeFQgGFQgGO4yCfz+v18r7rusjn84FbWC4EIiJ6saj+1u3tbZTL5anLu7u7gfloVT+p67pYXV1FqVQKXV5ZWeG8WkQviF6vh08++QSbm5t49uwZNjY2sLm5ia2tLQDPr3tbW1vD2toa7t69i/X1ddy7d8845zIREQC89957AID333//gl8J0eU2GAzw0Ucf4fHjx3j06BEeP36Mra0tWJaFN954Aw8fPsSDBw/w7W9/G6+++upFv1yiC1OpVLC1tYVyuYzt7W1sbW0F7n/66ae67RuPx7G0tITV1VXcuXMHd+7cQalU0ve/+tWvso+SiK4tFTc87m1vb884XkTGEo9zK5VKnGeXiIjO1Pg1iuo2vm7WfbUujOn6xHnuj69bWlqamfeaiIiI6EXQ6/X0OFvTTW6Ty6ruNp5vG3g+NtcUnygUCjNjGBzzcH3Ja5u73a6+9mr82ufxa6PVHGny2mnf9yeurZ5FzUGdyWSQSCRQKBT0nCZqOZ1O6/nTMpkM8vk8kskkstkscrkcUqmUXlZzo3FuSSIioi8teu4zuW7eearH54I+6bxoYeuY25KIiGi6s5oTtd1u4+joSOfUnob1ASK6SlQ+CQB6Xsh+v49GowEgmNNH5fYbjUY6JqpyUMxzLFOewHmOdRIyn58pz28kEtFjx2WOPzXHJQA9F/VxjmXKRSjzDMrjExERXTYqZxQQLLdlfUDlpwKC5XWlUgHwvP/f87yJfWu1GobDYWg9w5RjWL6e0+YYPk59YFa+YVN9QeYPVu034Mt8xLI+IHMKMxcWERFdJbJsl32ncs5qVSeQZbqsH8jyPex4qt5wmuOdlCzzZZkty385VkvmsVL1BhlHWMTxZD2FdQciIrqqZDzgNMuDwQD1en1iWfYvyHqFKV5h6suQ209CxhhkmS/LeVPZPisGIberPuKTxiiIiIiuOtmnMGv5rPYNe9xpxzcAwX4M0/Ks7Wf5OF63RkRE103YmEZZpqu+irD+CVkXkLEIFWsIi1vIvgw5DkLFMOTjTkrGHmRsQPYxqDiD7NMI68dQ4x6AL+MXpnEP8ljyedVzyddFRER0ncj6gqxnyDpAWBxB1gdU/eM412ocZ7zmSc3qn1Dbw/onZl2TMe8Yy7DxnkRERFeZKaYQFrcwjYU4j31PyhRbkOV92PWcx9lX1UNk3UHVPWTdRdUnZH2FiIjoRXPc/o7j9JOofeV2dSz5ePkYVe+Q14OchKmPQtYXTP0aqr4h6wZqrKaMP8j4xbQ6Rthznzf5+R533WkffxbHPKvXJK9Xugjye3XcdRf9+PN8TbJ/kl5spz1nLOIYV21f4Mty9iKd9pzxIu4LfFl3ISIiIqLjU7Ep9VeNuVF/VRxK/fU8D/V6HfV6Ha1WC/V6HZ1OB41GQ+/T6XTQ6XTQ7XbR6XTQ6/XQ7XbR6/WMOd5PIxKJIJlMIhaLIZlMIpFIIJFI6LiV4zg6B5vKYZXL5ZBOp3VMSsWrCoUCYrGYfozKbZVIJHQci2Ybz2m8vb2NcrkcWCe3ffHFFxPz3ajP3HEcZLNZRCIRRKNR9Pt9/T0cn+fctm2srKzg9u3bWFlZwcsvv4zV1VW89NJLuH37NlZXV/HKK6/MNXaqUqmgXC5je3sbW1tbeln9/cUvfqHjt+r13r59G6VSCaurq/rvnTt39PIrr7yy0DlvfN/Hhx9+iB//+Md48uQJnjx5gg8++AC+78NxHHzzm9/Eu+++q2937txZ2HPT5fa3f/u3+Nd//Vf88pe/vOiXQgs2GAzw0UcfYWNjQ99+/OMfo91uw7ZtvP7661hfX8fDhw/x4MEDfP3rX58ZL65UKsbznFr32WefBcbBJJPJ0POc+vuVr3xFzwF21TUaDZTLZezv72N3dxfb29vY39/Hzs4OdnZ2sL+/j+3tbezu7urxRMrNmzexvLyM5eVlrKys4ObNm1haWsLS0pJeLhaLevmsxvY2m03UarWJ23iO27BbWF5RVYdS5bXKA5rL5eA4jq5zqXWFQiFwX67jNdhERERERERERERERERERHTZjI+Dm/d2cHCgrzeWkskkXNc99u3WrVvXZhwGERERERER0XUn4wlq3lIZN5hnXafTmTr3iYoxqDnMZRzhOOvUfKREREREREREREREREREl5HKSajmQpV5Aev1OgaDge5rk7l9VI5jNTeqzG+s5l2VeY6nPc9J87OoeU5lXh+Vt0f138lcPSq/iMoNJHP/ZLNZ2Lat8xDK3ISqz0/Np6rmYA2bx5/oOmu324G5FE1/y+VyYF69eDyOpaWlwDyKpr8c0x9OjXcwjYeYd33YNRjAl3lJTNdjzLv+5s2biMfj5/zJPFepVFCr1fT7rlargc9h/L5cZ/pMMpkMCoXCxHuW627cuKFvS0tLepljRK6+crkcmIv2hz/8IQ4PD2FZFt544w2sr6/r22/8xm9c2PeeFuv//b//h6WlJfz7v//7iY8xGAzwj//4j/irv/orfP3rX8e//du/4Z133lngq6Qw/X4fH3/8ceC3u7GxgU6ng1wuh7fffjvw233zzTdZ56BLy/M8PVd1vV6fmN962tzWar/RaGQ8djweRzab1fNUh81nnc1m4TiOzluhbq7r6n3YFqZxpraizJ2i/u7u7gZiQOPz8Mu/ruvq5VKpxLo2EREREREREREREREREREREREREREREREREREREREREREREZHZDyKjsBmoiIiIiIiIiIiILhE5obWcyHp8+bPPPtMJzhSZKEdOZj1+U9uKxSJs276gd0pERERERESXjUrGHUYlgA0zGAxQr9enPsesJN0qsXeYXq8Hz/OmPkelUpm6vdlswvf90O0y4biJTFIe5ip8llfFrATpMsl6GJW0PYxKQBxGJocfNxgMMBgM4DiOMYnYYDBAv99HOp02xmH6/T76/T5s2za+z16vp79L2WzWuF0lHk6lUoEklL7vB5IS27YdeA2+7wd+C5FIJPA5dLvdie9QIpHQ77PT6UxstyxLf9adTgedTmfiNdu2jUgkgna7bdwOYOq2RWyf9Ru9zMb/j+PD4izLgm3bGI1GxqSNlmUhEomEJnQEYPy9jEYj9Pt9RKPRie2j0Uh/16LR6MRvQX3PIpHIxLZutxt4LXK77/sYDAahr/MySSaToeeReDyOTCZjPEfYtm38bQOzz2+u64ZucxwnNCltNpsNjQun02kkEgnjtmnn42nvIxaLIZ/Ph77Wk76PXC4Hy7KM26a9j/NWr9cnvsemekBY/cLzvIkE82H1IVOyVtP5MKyeYTo3drtdtFqtiX1N9a2w1xVWtwo79qx60nnLZDLGBO1hv6Ww72ZYfSTse276bQwGA+NvLRqNIpVKTfz/otGorsPIeoFlWUin03o/tS0Wi038zn3fx3A4NP6mhsOhsTxRZVW73Q7UFWzb1p/NSesBp6kDnNVzzmp/XCaz6tbTtp/FthflOWe9nmnl3WVl+l1wnbksPg+m7xjXzY4FEBHR2TO1E01lqKk9Ol6umtqypnalKf4/HksfDoeo1WqBfUxtV1OMfbydb2rPz/u+z5qp3VooFAIxKlPcJpFIBNqMgLltPF6PjUQiKBQKgX1MMSNTuW3az3Q80/OGvT7T80yL9RMR0fkaj6mZ4sLj9YF59jHVD8brAvPsY6objNcDTGX++D79fn9ivP88Yx7OgqnvxFRfMMW4TeXveL3CVHab+rpM5bGpLmCqk5jKd9P7MtUNTO9rntiBrMepZdO6Rex73MedNhYlP8/jLJ/VvnL5MvX1ERERLcK8Zfx5bjeNZzmOk5T9Z7191jhQIiKiq0DGk1S/l+zbkv1XKsYm42YqXiDjW6rcl8dWY1NlH5w6tuz/mnVtzTxkf5QaUw0Ey3MZz5ExGzWOUsaZZCwp7BgyFqTiWPMcg4iI6Kq5jDGH016zd9HxhbDt0659IiIiuixUXECOjVHrZPxAxRRkGT6+TsYHVMzAFKOQ60yxjJNS8QHZnpdjSVTbX45XkXEHGSdQ5biMB8hxCSp2IMe0yD4H9VpmXStNRHRRZNusUqkE2mnzrJu23TTPgYlsU7muG2hfnXbdzZs3jdf5ExER0XOqDViv13X5rdpnlUpF9/l6ngff91GtVvVjGo0GfN9HrVbT9YB6vQ7f91Gv1+e+JlKV3fl8HvF4HPl8XpfljuMgHo8jl8vptlihUEA8Hkc2mzWuU20613UDbT0iIiIKjwNMW5613zx9vMdp04ctm9YtLS3xGjIiInohTCvDj3v/8PBwam6FecvoecpvtcyxU0REdBWElbOmm2mfg4OD0P5xWX7K23jZGrbP+Bw9REREUqVSMearH7//+eefT8zJm0wmA3nrx3PYj28johdbuVzGxsYGNjc38ezZM2xsbODjjz/GYDCAbdt4/fXXsba2hrt372J9fR1ra2t47bXXWJclomN57733AADvv//+Bb8SoqtHldWPHz/Go0eP8KMf/Qi+76NUKuHhw4d48OABHj58iHfeeefK5TgjOiu+7+Pg4ADb29vY2trC1tYWyuWyvv/LX/4ykEdGtaPv3LmDO3fuoFQq6fulUgmvvfbaxHzoRETX2XA4RKVSwdHRkY5JyuVp901zEyYSCdy4cWOiv+zGjRuBm2kd4w9ERHQRjjOOc9o+e3t7U+f6Dxu3GbYu7P7KygpzMxMREdELa9bY4LDb7u5uIDepMmv8b9iNdbIXm5zfpdvtotFo6Dk5K5VKYC6XbreLer0e2K6uL5PtiWq1ik6nM5FXd5yaBzOTyej5XTKZjJ7XJZ1OI5lMolAo6Pxdall939U1Z4VCAclkEul0muPciYiIxqjyularodfrBeZhm3edaQ43uW4WNde2mnstm80iHo+HrlNlvOM4SCaTyGQyyOVySCQSus6g5nhjjk8iIqL5nHa+92nrZs0Zo4zn0Fr0vO+MCRDRZXOSnInH2fekx1pULsZ58ySe5TqZI5qIiOiyu4j6wDzPpXI8ntS8+ZSPs+9ptwPM00xERFfTceoJcvmkjzvu8VTesNNYRGxgkcdhnYGIiK6Li44xhG2v1WrGax/mdRFxhVnbOV6NiIium7Mam7CIx512fANw8n6G83gcxzwQEdF1o65JB4J9CvV6HYPBAKPRSM+l2+/30Wg0AEDXBwDA8zydZ03FFYbDIWq1GgCg1+vB8zwA4fWGarWK0WiEwWCgr3uT+55ENpuFbduIRqNwHAdAsFx3HAfRaBSWZSGXywEAMpn/z96d/EZypOfjf2ov1l5ciqxqkt1N9Ugz3TOSbEoayWx9x7APvvhmQIANH3wzDMOGARuGL2P46oNhHwzYwFwMnwzNwX/AeEdT0ozEkcZ290geidNssqvY3Grft9+hf292ZFZk1sKdfD5AgpWRWVlFsioj8o3IeMPw+/3GfXXA83ktZX5gaQvI/fYAEAqFjFzoMjZe7r0DgGg0Cq/Xa3ofREREV5Vaf0t7Qq3f1TaEtAXUdoPaNpE2htoeabVaxjzUahtExlSq7Q61bSNtjUlJuwJ4MWbB5/MhEokAeNGGAF60B9TtantB1wZR+zF07Q05vlqmviciIqLLzi7OIHX8KDGJ09hXbadMQupwNSagtgukXaGLV6ixBWkfqO0HaQvoYhRqXENtZ/CefiIioudGHQNxUuMyhz3nuPd8nNV9HKM+R/pFyEzX72XXFzbqvqfx/PN+TydxD9RxqJ9l3fqoZRfxeaMeW65JiEalXlur1OtwYXedLfPmq9S+AZXdeUY394La56DS3S+h9j+opK9DpfZFqHRjJ9U+EtV5n+8AmGIKKrXPQ9iNd1DjHCrd/Z+6cw6gj1eo4zRUunOU7ri630HXRrEeT42pCLu/ExEREdFZsctH0Wq1THmqCoUCarUaCoWCUS65qyqVCiqVivGcTqeDZrOJZrPpmPNWSJtJ2m2jPAd4PrZG8lIEg0HEYjFMTU0hFAohmUwiFoshEokgEokMzFdt93hqaurazzdSLpdxcHCA3d1d7O/v49mzZ9rHu7u7A9dK8veU/4vb7Ua/30e9XkelUsHR0ZHpWi4Wi2FxcRGLi4tIp9NYXl5GJpPBjRs3sLi4iEwmg/n5+aHvuVAo4OnTp9jZ2UE2m8X29jay2aypbG9vz9jf4/FgYWEBS0tLxuvevn0bN2/exPLyMm7evImZmZlj/R07nQ6++OILbGxsGMsnn3yCZrOJWCyGb33rW1hdXTWWu3fvsq/1CvrzP/9z/PM//zP+53/+57zfCh1Dt9vF559/bvo+f/rpp6jVavD5fPja175m+j6/9dZbA3GDQqGAx48fY2trC48fP8bPf/5zbG1tIZvNYmdnB7u7u0Y8yeVyYX5+Hjdu3EAmk8HS0pLxUy2T8aOXmeS2yOVyyGazxk+1LJ/P4+nTpwNxv2AwiEwmg3Q6jWQyaTy2li0uLg78PybVbrdt88cWCgXT42KxiEKhYCzFYlF7X7TEi5LJJOLxuO2SSCQQj8e1+3GeEyIiIiIiIiIiIiIiIiIiuugajQaOjo5s+93tlqOjo4F7goAXY9XGXVKpFO9PJSIiIiIiIqKxyL0P+XzemO9LjV+MUmYX4xBqrEO973Gcsunpad5fQERERERERERERERERFeeU86es9o2SQ6AUfLxjPpznOfazfNPdN7q9frAHITWn9Y5CP1+P2ZmZgbmHbT+XFhYYE6cCZVKJZTLZdPPfD4/UFYqlVAoFAb2lzkY7fK7RyIRRKNRxGIxY37FRCJhzMcoj9VytUyXX+S0VSoV7ZyTunW1zG6syMzMDKanp41l2Prs7OxAfhO6eLLZLDY2NrC+vo4HDx6Y5qx99dVXsba2ZsxZ+41vfIPnqEvo137t17C8vIzvfe97Ez0/l8vht3/7t7G+vo7vfve7+NM//VP4fL4TfpcE6OeR/vGPf4x6vY5wOIzXX3/dNI80v5N0liQHiLrk8/mBMuuizm+ty+Ehed/UeatjsZh2jutkMmm0ySKRiLFfJBLhtSNNJJ/P284tLz93dnYGciwmk0nH67pkMombN29eiXn4iYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjO2fddfbvZQomIiIiIiIiIiE5Rt9vF/v4+9vb2kMvlsLe3h/39fWSzWW15p9Mxnuv1epFKpZBKpZBOpzE3N2c8tpbPzc3B4/Gc429KRERERERXnZrgeNJ9jrv9LF7jIryHs3oNp+Srl4ma8Po0tp/Ua/j9ftN1v6rf78PlciEYDGq3NxoNBAIBbaK1ZrOJXq8Hv98Pv99v2tZut9FutwEAPp/PtL3b7Q58Rnw+n5FkslarodfrmbZ7vV5juzUpl2z3er3o9Xool8va38Xr9aLf76NSqWi3+3w+NJtbNJ9fAAAgAElEQVRN1Ot17XZ5b7qEuaJcLtv+rQHnz36/30ehULB97kUXCoXg9XqN9X6/b/pdw+GwkbzS+v+V7f1+X7vN5XLB7/drt8lr6ZKU9vt9tNtteDwe03sDnn8O5X/l9XpNiTVbrZbptTweD1wuF/r9vvb85vF40Ol00Gq1tO+91WrZfi6q1aq2/KIIh8MD32+RSCTgcrkGyr1eL6LRqPY5oVDINnFjPB63TXBq91oAEIvFbOOTTu9/amrK9twXCARsk3k7/X6S3NJOMpm03eb0e0QikWuXiFd3vu12u9o6oFQqDSQbbTabqNVqpjK782y1Wh34/rbbbW19USwWB85FurZPr9dDsVgceL6unmi1WtpzQT6fHyjT/V06nY5t3XdWdJ9Rv9+PcDg8sG8ikRioI4LBoOnc0Ov14HK5tAk1A4GA9nwQjUbR6XRMf1+32228h3a7bWxzu90D7ad2u41ut6s9L3S7Xe1rejwe9Pv9gf+Jx+OBz+dDo9EwbfN6vabveaPRQKPRGKiHAOc29aTbhm3XfZcuMqd28Gls42sO33Yd66uTpjunVyoV49pq1H10deYo+1jrxEn30dXDxyk7Cx6PB7FY7FKV6dqeZ1FGREQXj66dP0rZpM877WMd5/jncV1jbSPr2swnWXZRj+UUayMiovNljUtPGluYJG6gi5Vb49yj7KOL7+vaAta4+ihjF06Krv/IGi/TXd9b+7JG2Ud3va7rg7P2S+mep3s9n883EJ/Xxfx1bYTL1CaQ74b6nZDvgvr5ls+1+lmVz6j62VQ/b/JZbDQaxvgDGSug9gupn/XjtmVdLhcSiQQA8/9Q/T+pn0npf1U/A2ofqfq5k35cu9dQ/+/RaNTom5fPoFP/KhER0WWm1v+6x6e93W7f47Yr1PaDPNaVneV2pzFnREREl40uXqCOl5G6XB3HKnEMXcxiWHxCPbaMgVXjE8Puf3CixowkJqDGASQWocal1HpdYgdq/a+LWaivo8Yh1PiFOg7babw2ERHRZaDW1dJekDaEWver7QppQ6jthdPYPim1j0LqarWOV+v189hORER0WehiA2qZjHtQx0LoxkdImRp/kPpebYvoyiS+cJz7f9R6WMYkqGMWJD6gixmoZVKvq/EC2U8d16DGI+T11NjDZRrvQkQ0KrUvOZ/Pm/qVj1t2dHTkOO+OsPYHB4NBJJPJEymbnp7muZuIiGhE1jrd7vGw7erjSdoDJ9UOkJ+zs7O284oRERFdZ6PW5+M81s2HaGWts0/isdP8o0RERFdVpVJBpVJBtVpFoVAwHlcqFcf1arWKfD4/sG5H7hmPRCIIh8MIh8NIJpND18PhsFEm61JGRER0GemuhXWL3faDgwPTnE0qucZVF/Xa126RfRYWFmxzdhAREek0Gg0cHR0hn88jl8shm83aPrbmrweej8tNp9NIJpPIZDK2jxcXF9lXS0Ra+XweDx8+xKNHj/Dw4UNsbGzgJz/5iXHPQjqdxurqKu7du4e7d+/i3r17+OY3v8k5hYjoRLz33nsAgPfff/+c3wnR5VetVvHpp59ifX0dDx48wPr6OvL5PCKRCF577TXcv38fa2trePfdd405ioloUL1eRy6Xw+bmJjY3N5HNZo31bDaLx48fm+7RTSaTWFlZQTqdRiaTwcrKimn91q1bjBkTEeH5vEz5fN6IhVof67bJouvXSyaTmJ6etl3stjNfLxERXRQyllSWQqGAcrlsrJdKJRSLRdM++XzeGIuqPsdubmJ1zKks8XgcsVjMWI9GowP7JBIJRKNRRCIRxGIxYx8iIiKi68JpbLLTsre3p50DetgYZLtlfn7eyN9ApDPKnDOT3J8u85Y6GfXe83HuU5+bm2P8joiISEPq9FKphFarhVKppC2TOn1YmeRjV9sBwyQSCQSDQYRCIcRiMQQCASOGGAgEEI/HjXnEk8mk0Q6Ix+MIBoMIh8OIRqMIBAKIxWIIh8MIBAKMOxIREY3hNOetPzw8RKvVGvoeTnPe+qmpKeYwJaIrwy6XpC4HlS5XlZTpcloNy30lZb1eD8Vi0VQ2CV3uKTVHlS5vlVOZmvNK8ljrytS8VboyIiKiy0StiyXHtZp/UmK2wIsck8NyU6t1vZqPUtoMAIw5TdUclrr3Mik1z/QkuSfVdoauvpfn6PJeyrHdbjfi8TgAc95tIiKiy0wduyX1uV3bQOpztb7XxR+kDdDv91EoFAC8iDmrx1HbFdLuUI8zCamj1XpbbSdI/a6LI6htAzmO2p6Q48i9M4C5jaGLR0SjUXi93ol/HyIiootIrdd1j4dtH2ffcbY73fs6CrVe1z0+r+3SxiAiIrpKjtuGmPR5o+wrMYpJnVQ74KTKGJsgIqLrYNR6f5K2wnGfM4mTajuc5HNknAUREdFVdxr9F8fdfpz7M4DR2gNnEa9Qx24QERFdNWcdmzjN8RMXoZ9Dfcz7NoiI6LpT78lQ7+2Q+0DU+0blXk/1XlDdfRy6+0HUe0jk/tNhrz0Jr9eLaDQK4MX9our9GVKmu+9T2g66ezzVezjk3lPZX70nRMZQqPvT5aPe1yzU+5OE+l1Q6cYG6fr31O+X0MXq5F4soX7H7N6z+v1y+h2sbXvd7zTq3J4nRb0fS1j7EtXvnZDvpMo6Rlo9RwhdXFG+50I3N4x6T7qwzjWmOxdYr0HUc5TQ/Q2ITpPd+UydM0Lozi+A/blCN/+D7nwE6NsAunMeoD/X2t03qjuvq20Tle48bPf30R33tOnOR2q8Q+jObboYiO5eEuu5THfO1b0P3blr1PehGzNifR9qG03ozutERER0uVj7oYbNO12r1VAsFlGr1XBwcIBarWYskrei2Wyi1Wqh1WqNdD3rcrngcrnQ7/eHzl0mMaRAIAC/32/kqwiFQpiZmUEikTBy5MZiMYRCIYRCISSTSYTDYYRCIWObrF/VnBatVgt7e3vY3d3Fs2fPsL+/b3qcy+Wwt7eHvb097O/vm/720t6cmpqCx+NBr9dDs9lEtVo1/U8DgQDS6TQWFxexuLiIdDqN5eVlLC0tGT8XFhaGvtdms4lsNounT59ie3sbuVwO29vbePr0KZ48eYKtrS3s7u4a+0ciEdy8eRO3bt3CzZs3B5Z0Oj3236vdbuP//u//sLGxgfX1dTx48ABffPEFut0uEokE7t27h9XVVayuruLdd9/F7du3x34Nulj+7M/+DD/4wQ+wsbFx3m+FxrC5uYkHDx5gY2MDGxsb+Oyzz1CtVuHz+fC1r33N+J6urq7izTffRCAQQLFYxOPHj20XNc6ysLBgnEtu3LiB5eXlgfOcNSZ52RSLRTx9+hQ7OzvIZrPY3t42zsF7e3vIZrPY3983xdNdLhdSqRTm5uYwPz+PhYUFpFIpLCwsYH5+HqlUCul0GqlUCqlUauJ7XRuNBvL5PAqFgm0+V7ttuviVz+dDIpEw5W9NJBKIx+NIJBLGEo/HtYs1HkNERERERERERERERERERHSRyVi/cZdcLjdwrGAwaOpvH3WZnZ299GMriIiIiIiIiOh6ssZW1HsrRy07ODhwnAPDGnORuXrGKWP8hYiIiIiIiIiIiIiIiGg4p/x/o/487nNHNUoO4nFyE4/zXGtOEKJx1Ot15HI5ZLNZ2587OzumfBSBQADT09PIZDJIp9O2P9PpND+bp6RSqaBUKqFcLqNcLqNQKKBYLKJcLqNUKqFUKhllhULBmP9RHheLRW3+VL/fPzDHo8wFqSu3LmedH6hareLw8BBHR0c4OjrC4eGhsa6WW9et40Lcbjemp6cxMzOD6elpY5H12dlZpFIpzM7OYnZ2FjMzM5idnZ14zk46vk6ng4cPH+KTTz7BJ598go8//hj//d//jXa7jXg8jtXVVbzxxht466238M477yCTyZz3W6YhfvVXfxUvv/wy/u7v/m7s5/7rv/4rfuu3fgvxeBz/9E//hF/8xV88hXd4fT179gwffvghPvjgA3z44Yf48Y9/jFqthqmpKbz22mt44403jOXrX//6QM4kolH1+30cHR0Z7RVpsxSLRZRKJeOxLNZ9isXiQH44YTdvtSzD5rdmTi86aY1GA0dHRwPXXnK/uJQ9efLE1G6XccjDrsXm5+d5PiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOjvfd/X7/f55vwsiIiIiIiIiIro6arUatre3jeRBuVwOuVwO+/v72N3dxbNnz7C/v4+9vT2ooalAIIC5uTksLCxgfn4eqVTKeDw3N4d0Oo1UKoVUKoW5ublz/A2JiIiIiIYbllz2uNv5Gmf7HiqVykAiyctITSg86T6nvf2kXsNJq9WC1+vV7tdut9FqtRAIBBAIBEzbut2u8Tnx+/3w+/2m7ZVKxbTu8/mMfWq12kAiVtneaDS0Scwk6Wi1WtX+Hh6PZ+A1VaVSCd1uV7utVqvZJk5rNpuo1Wrabd1u15Qk2KpQKMBuGMpl+x4lk0nTujWGoX4G+/0+er2esR4KheDz+dDr9bR/j3A4DACm56impqa027rdLnq9nvbz3+120el04PF4Bj6bnU7H+Cx4PB7js9XpdAb+J16vFx6PB+12W/v/8nq96HQ6aLVaA9tarZbt79RqtdBqteB2uwe2NZtN43hqMmm778ZF4nQ+sts2yXN4PDPr95OOR9cOsmsbjbrvcZ9/lq81zvOr1ar2/HeW/H6/qQ3T6/Xg9/sH2i39fh9er3egTvD5fPB4PKb6yefzwefzAYDp9/P5fEad0ev1jHpG9hXdbtd0/hYej2fg7+XxeIxklbVazag33G63KYlls9lEp9MZqDdcLhe63e5AW8XtdsPlcqHX6xltFd17KhaLtnXVReN2uxGPx223x+Nxbb0KPG9rWP/3IhAIIBQKXZjX9Hg8iMVitq+ZSCS0/0sAiEQiA5/H83xNurqs11atVmvgOs26T7vdHrheG2WfcrlsunY8qX06nQ7K5fLY+5zldZyu/Wdt9026j/V7rTsPXPQyIiK6XPL5vGndWqdaY7D9fh+FQsH0HGtdbX1Or9dDsVg0Pcfa3mg0GqjX68a6Lr5rvU6yXg/rXkfXHnKKOZ+WaDRqXLcKa9vA6/UiGo2aynTtBV1b33oNpLtm8vv9RrxXhEKhgev0WCxmuu51uVxIJBKmfXw+HyKRiKlsampqoC9jlN+biIguh1Fi1ld1H2CwzXSarPW/rj1wFfbRlenaDmQmbW81PiZteLUNLf1EahtZ2sFqm179vMvnXG2bSxtcbVdLW14X6xuHtAvVz4HExtS4ubR11fastFnVNrR6HLXNLMdU28jqsdQ2sbUtTEREdNVIG0Gtx2UcpbQL1DaF1PtqW0DaHmqbQrcdeNG+GLZ9UtJOUPur1BjVcbdL22DS7URERFeNGkeQxyddNs5zjjPGUo0jyOPjlB33OIxJEBHRVXOSbYXjHMM6pmkcJ9UOOMntjDsQEdFldxaxhVHLjnMP0knHFRhTICI6Ht11ZD6fP7GyUfu1g8EgksnkwLldLRu23a7M6Z55IiIiMiuVSsZ1X6VSQaPRQKlUQrVaRbPZRKFQMNXzci9ssVhEo9FAtVpFuVw2YszqMYaJRqMIBoOIRqOIRCIIBAKIx+PGePVkMmnU74lEAoFAAOFwGLFYDMFgEJFIBJFIBMFgELFYzGgPsC1ARETkzO66/jiPDw4OhsaQR7n+H/fx3Nwc54wjIqJrzVqvW+vqcdaH1ee6OnnSdV67ExHRVaCrh3WL3T6Hh4e2+RDUutOuTnXavrCwwLqWiIhORL1eRy6XQzabNeowdV19vLu7a8qRI/VSJpNBOp0eeKyus+4ionG0Wi387Gc/w8bGBh49eoSHDx/i0aNH2NzcBPB8vsa7d+/i3r17uHv3LlZXV/H6668PzAtORHSS3nvvPQDA+++/f87vhOjq6Xa7+Pzzz7GxsYH19XU8ePAAjx49gsfjwSuvvIL79+9jbW0N7777Lm7fvn3eb5foUsnn89jc3EQ2m0Uul8Pm5qZp/fHjx8Z8ZX6/HzMzM8hkMlhZWcHKygrS6bSx/tJLLw3k5yEiIrNh/Yp2Sy6XGziWU7+h05LJZM7hNyciIhqd03jXccbE7u3tmfK9qqz3towyPsdaPjMzM5DHlIiIiOgqmTSOYdcOmzSWkUqlmKOVjuU07qkfdZ69k7yfXh4zbzEREZGzYXPtjlrXW8uOjo7QbDaHvv648+mOuq/kmCciIqLRjNIWmLRs1Hwtupwqk861by2bnp5mLjYiIpx/Dq+TzhN+VnnAncoikQjndiUiokur0+mgXC4DAGq1mhHTlXq62+0auVOkLgdg5O/u9XooFosAYORiAWC6DpR+4larhWq1CgCoVqvGPHKFQgH9ft90/FFzuFl5vV5Eo1EAL3JuBgIBhEIhADDixlKvu1wu496+cDgMv98Pj8eDWCwGAEZfs8/nM+bdkDlh1XZBMpkEACNXjNvtRjwen+h3ICIiusiOExOY5DnDyo6TKxw4mbjASR5H2hRERERXhRpXUOvwUqmEbrdrG3eQ7WrcQReX6Pf7KBQKAPRxCXW7Gpc4qTYE8CJ2oMYC1FiEbFdjENIe0MUg1OdK20BiFrr4hByLiIjoKmu326hUKgBgGxeQvga79of0O6htCnmO2o6Qdoj6mtL2UPtUjtOeUOt0aQOo/RsyBkFtK0j/g65NAbxoN6jtFGkv+P1+hMNhAC/6TnTvgYiI6Do4zT6NSZ9zEuMo1cfjlp3EMRifICKi60hiDWoMQRdXkDK1n0Lqf12ZGqfQlenGW0rZJGRMpW6cpW48g65MF6PQjdHUxTc45pKIiK4LXb+D2qch91eo4ySG9XPo2hROfRrqsdV7R8Y1rP9CbS/o2hrW8Q7q8az3gKjHlf4Ttd+DYy6JiIheUNsbuvpfbVtILEHXjlDbKBLXUGMT0i6R9ova7pD2idpmGZf1Pk2n+0V194aq+1vvA9W1LTguk86S+j20Kxtln0mfd5rHHvV5cq45K+r1iV3ZKPuc9fNO8ticD4cug0nPM6OWnfbxT/p9qPNwnKWTOheddNl5vQ/OZ01ERNeRxJIktlMqldBqtVAqlVCpVFCtVlGtVlEoFFCr1VCtVrG/v49SqYRyuYxyuYxisYhqtYpGo4FarYZareY4psXtdsPtdhv1br/fH3rdGAgEMDU1hVAohGg0ikgkgkgkgunpaSQSCYRCIUQiEeNxKBRCPB5HNBo1bYvFYohGo5cyp24+n0c2m0U+n0cul7N9vL29bbr3yev1IhwOw+PxAHhx37X8jwKBAG7evImlpSUsLy9jeXl5YH2UuFmr1cLOzg42NzeRzWaRy+WwublpLE+ePDH+z36/H4uLi0in08hkMlhZWTEty8vLI93zVKlU8OMf/xiffPKJsXz55Zfo9/u4ceMG3njjDbzxxhtYXV3Fm2++idnZ2Un+9HRO/viP/xjr6+v46KOPzvutkI2nT5/io48+wgcffIAf/ehH+Oyzz1CpVBAIBPDqq68a379vfetbSCaT2NraMp0X1POFSCaTxrnAeo54+eWXjb6Ay6jX6+HZs2fY2dlBLpfDkydPkM1m8fTpU1OZ9OEAz8dkLi4uIpPJYGlpCalUCul0GqlUCqlUCplMBnNzc0ilUsZ5fhSNRgOHh4c4OjoylsPDQ2NRy+RxPp/X9gMFAgEkk0kkEgnbvKp226SvhoiIiIiIiIiIiIiIiIiI6LKo1+vI5/NjL8+ePdPOPRkMBm37261LJpNBOp3G9PQ074UkIiIiIiIiIppQpVIx7o0sl8vI5/MDZYVCwXhcqVRQKpWMMtlX5uvSCYfDiEajiEajiMVixr2OdmWRSATxeFy7HxERERERERERERERERGdPMnfI/l5ZI54mT9e5u2U3Dz9fh+FQgHAixw9koND8gLKvK6SR0jNAyQ5f+S545CcPZKfR3LrSE4/ydcjuXkkR7DkCJTtsr/k/pE52uV4ki9IXoeuj3q9bsxta/dze3vbyFMFPJ+DcHp62rjPwe5nOp3mvP/nQL33Rc5No97/cnR0ZJvrdJx7YJLJpHF+SSaTWFhYgNvtPvXfvVwuG/NoWufXtM6xKdsPDg4GjpNMJjE3N4fZ2VnMzs5iZmbGmPtzZmbGKJ+dnUUqleIYj1PWbDbxk5/8xJh/+uOPP8ZPf/pTdLtdLC8vY21tDW+//TbeeecdvP7668zXdMF85zvfwbe+9S387d/+7VjP+/u//3v8wR/8AX7jN34D3/ve9y71nMQXQbfbxf/+7/9ifX0dH374IT788EN89dVXcLvduHv3Lt555x18+9vfxhtvvIF79+6NND88XT+T3l+7v7+vzUMh7QS1zTBKu0KWubk5nvPpzDhdN6n5QnZ3d015WoLB4NDrJrmHnIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiILpzvu/rqzEJEREREREREREQOdnd3kcvlsLOzg6dPnxqJf9QySYQFAH6/30jyk0qlkEqlkE6nMTc3h/n5eSwsLCCVSmF+fh7JZPIcfzMiIiKi0yWJRI+zz3G3n8VrXIT3cFavIUljLztJ/Hpa26/Ka1i3t1ottNtt0z6BQABTU1NoNptotVoDxwgEAnC5XLbJNId9nhqNBvr9vjYhb71eR7PZRDAYHEiq6fR5Ps534ay3DdsuSZgvC6fPnG5bv99Hv983Pmei1+sZiaQDgQCCwaCxv/XvEQgEEAgEtJ/PYYmePR7PQFm73Ybb7R5ItNZut9Fut+H1ek0JA7vdrunz7/F44PV60ev1UK/XTcdwu93weDyoVCoDr+t2u1Gr1bTfmXq9jm63q32v8hrWJMTVanXg+3yR+Hw+RCIR7TZJ1q0Tj8e1SXYlEbiOJNPTkQTkVpJgXMfpcx6NRrUJJSVxuY4kLdeJRCK2Sf/sYk6SDF2HCdAvp1arhWq1airT1R2VSmXge18sFo3zKfD8PKrGOQGg0+mYEqADzxMS12o1U1mtVhuo73X1lLU9qXtN3XsDYCT0VvV6PRSLxYHn637fs+R2u7XnlqmpKbhcLtPv5vV6je9yv983tlmf3+l04PV6B85zbrd74G8FPD+Xdrtd0//A7XYbz282m+j1enC5XKZzXb/fR61Wg9vtHqg/Op2Otl3ndrtRrVa19dFF4XR+tjvfO52fJznfA871jlP953K5kEgktNsA+98BcK47neoFp9//tF6T6CLQ1aPWsuu0z2mynkt159aruo/dtQsREV1e1mtg6zWs7vq1VCqZrqOsz+l2uyiVSqbnWK+XrfW37jreei1uvYZvt9sDMUnrc6rVqinGqotHnAZdXC+RSJiuV63XH7prK2uszBoH012nWOtr3TWS7nm66yHr9ZPuGk/3vp2uIYmI6HLStQny+bxp3VrfW9sZ1nrZ2h6wxvCtdb21jaGL01vbAtZ2izUGr4spWH+v02TtM9P15Vnr/1H20dX/1rpeV6+Pso+unre2WUbZZ5SxJXT+pK2vngPku61+Z+V7I99z9fsr30v1ukHK1GPIOURts8t3WNf2H4e0xdU+bGk3q21jaf+qbVzpO1Hb+PLdVb+P8j1Uv3/ynVK/S2wrExHRdaO246VulzaA2qaXtrraFpA2g8QF1RiitB3Gba+MS+p9tS2gtpulTaFuV+v7095ORER0VUncTo3fjVt2Usc57rgkiYOp8TDd45Mus9tu7bMkIiK6CiSGIPW2GieQmIPa12CNKwAvYgcSh1BjGhJr0MUt5Bh29xiNQu2/kD41iT+ofRESp1D7MSR2IPW92ichfRdqXEH6PdT+EWkf8H4JIiK6iqRvQtoJaptA6n9pL0i9rrYDpN2gGw8hx9aNc1DLdPccj0o3tkHK1DaE1Oe6GIBaJm0Nta/BWqa2J6RNMux+TSIiciZ1TKFQQKPRQK1WQ7FYRKPRQLVaRalUQqPRQKVSQblcRqPRQLlcRqVSQaPRQKlUMuqyYrGIVquFcrk8cvxazvHxeBx+vx/RaNQ4xycSCfj9fkQiEeM6UleWTCaN+igSiRj7Oc0rQ0RERPbU/uh8Pq99PGy77rH1HhodtR85mUxqHw/brnvsNGcRERERvZhPo1QqoVaroVaroVAoGI+LxSJqtRrq9frIj6337OqEw2FMTU0hFoud6GPO/UpERPSc9Rreer0+zvrBwYHjfNS6a/JJ1zmfJBERXTWtVgvFYhGFQsH4mc/nUSwWbZdSqWTaxy53UjKZRDweN5ZYLGZaj8fjxj66bXZ5ZoiIiE5KPp9HNptFPp9HLpezfbyzszMQUw4Gg8hkMkin00gmk7aPb9y44ZhvhohoVNlsFhsbG3j06BEePnyIjY0NfPHFF+h2u/D7/bhz5w5WV1dx79493L17F/fu3cPKysp5v20iuobee+89AMD7779/zu+E6HrI5XL45JNPsL6+jgcPHuDjjz9Gq9VCOp3G/fv3sba2htXVVXz729+2zX9MRMO1Wi0cHBwgl8thc3MTm5ubyGazxvpXX31lmjdF4gYrKytIp9PGY1m/desW5yghIppAo9HA0dGRMXZo1OXZs2cD81aoY4LGWRYWFjh2iIiILp18Pm/MySFLPp9HqVQylcnYIbWsVCqhUCg43oMr98lGo1EkEglj3I8ssVgMiUQCsVjMVG7dl/NvEBER0VXS6/WGxixk3LauXGecGMbMzAymp6cxPT3NMdl0qmQeAHXev2q1asz7V6vV0Gg0UCgUjPsJ8/m86bHdXIPD5qKNxWIIBoOIRCKIRqMIBoOIRqOIRCIIhUKIRCKIxWIIhUIIhULG/YGhUAjxeBzhcBihUMh0TcL+GyIiotGcxLx/uueN0gY46bkA5efc3BzHVxEREU1glHbBpGWSC2eYSecCHtaGYN5aIqLJqPlNrflK1bJms4larWZbJteIujJdbrNhOdDGpeYbk3lk1TKZUxi5seIAACAASURBVF7qEDVnqsxTJ3ltJFeNmtdsnOcTERFdNWreOPV6UP2p23acMt02ycE+CfU6UvKcnmTZqPtLrnYiIqKrRM2LLvV1v983xlaqcQZdXKBcLqPT6ZiOI7lp7I4jsQndcWSM3KR0cQVdXnQ1r20sFoPH44HP50MkEgEAo95Xj6PGDnTHkTi3vAc1vzsREdFVlc/nAcBUr6t56qTeb7fbqFQqAGCKEch2tQ2gbpf2h66toR5T9lNjEuPQ9Umo9bzU/VLPe71e494R6WeQNofuWGq7YJRjERERXRfD4hJq3S7tjmGxChnDoLYVdHEHaVP0ej0Ui0XTe5iEWqfr4hMSV1DHMsh+akxC4gvStlDHN0gMQ9op6rEklqEei4iI6LpQ2wzSPlDbAsP6LaSdIW0BtY0iY+zV40l7Qx1vKceYNDYBDNb1wGDbQNeWUNshuliExBtk7IN6DGmjqG0OOQYREdF1o2sf6GITUqa2LXRxDSnTxR7UMmmr6PpCJqGLS0iZWudLLEFXpuvXkG3SVhn1fg8iIqKrbNgYSTV24NR/MWz8pa5Nohs7Ia87Ll1/hXUshK6/Qur+ccdJ6PpFeG8nERGRvePeE3oS+486J5HOpPdy8r5QInu6e690456s1wjq9YPQxSLlukPo5pKxnhfUaxihXhMJuQ4SaqxUqNdXwpq/6bj3n41LF/NU71cT1rHgal+u0F3/WOdesx572Lr1mNZ1uR4bdZ3nTboqrHMu685ValxG6M57unOT7txrPc/p3gcweK7VvQ/deVt3btW9D137zSkX3mlR22ZCdx7UjVXR3V8jcSahOz/rxtGO+j50579R3ocaH3N6H7xniIiIJtFoNFCtVlEsFlGpVFCtVlGtVlEoFFCtVlGr1VAqlVAqlVCr1YxtUlYsFlEul1Gr1VCv1wfaElZer9eor1wul3F/sFMflM/nM/LkJhIJRCIRhMNhzM7OGnnd1DmodWUXNWdFPp9HNptFLpczfm5ubhqPnz59imfPnpn+PoFAAIFAAL1eD41Gw9Q+nJ6exq1bt3Dr1i0sLy/j5s2bWF5exvLyMpaWljA/Pz/0PXU6Hezs7GBrawtbW1t4/Pgxtra28OTJE+OntA+9Xi9u3LiBmzdv4tatW7hz5w7u3LmDl156CXfu3MH09LTt65TLZfzkJz/BxsaGsfz0pz9Fv99HOp3G/fv3sba2htXVVbz55pvs67vA/vAP/xCfffYZ/uu//uu83wrh+TXnp59+io8++ggffvghPvzwQzx58gQejwff/OY38eqrr2J+fh5TU1Oo1WrY3Nw0vudHR0fGcebn53Hr1i3j+y3LzZs3cfv27YFroMui2Wzi8PBw4HyrnoO3t7dN17zBYBCZTAYrKytIp9PIZDLGTylLp9OOuQ9arRaOjo5wdHSEw8ND47Gsy2LdR1evxmIxzMzMGIvkNZXHyWQSiURiIAcq88sTEREREREREREREREREdFlU6/Xkc/nx1729/cHxt0DGBhjNuqysLDAcdpERERERERERJeYxJlkXgc1ljRKmaw/e/ZsYG4HIbGnYfc6DiuzzjVAREREREREREREREREROdH5mKX3Doyh7vkslBzYUjuDpmrXfJ0yHNlbnp5rvyUcjm2br56JzLvuczDLvn/ZL5yyVORTCbhcrmQSCSMudcl14XMdy55ASWnsMy9Lv2bzAN4OdTrddMci7qfW1tbplwJ0n+tzrVo95MuDqfxEMOWo6OjgfwTwvp5GOXem/n5eXg8nlP9fbvdLg4ODnB4eIiDgwMcHBxgb2/PeCzl+/v72N/fx8HBwcCcnn6/HzMzM5idncXs7CxSqZTxeHZ2FvPz85ifn8fc3Bzm5+cd51am0VQqFXz22WdYX1/HgwcP8NFHH+Hg4AA+nw+vvvoq1tbWcP/+ffy///f/Rpo7m07P/fv38cYbb+Bv/uZvRtq/3+/jT/7kT/DXf/3X+Iu/+At897vfdZybl/Rknnb5jqyvryOfzyMSieC1114z5mn/pV/6JczMzJz326Uz1Gw2jTpbrb+tj3VlunygsVjMmLs6mUwaj60/ZZGcEPF4/NTreKJR6HJ6qD/z+Ty2t7dNeSel7TfsWmdpaelC5jEhIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqKRfd/V7/f75/0uiIiIiIiIiIjofLVaLRwcHJgmst7c3ByauEeduHplZWVgMuubN29y0nYiIqIhJHmjnWKxiF6vp93W7XZRKpVsnyuJHid9bUk0OclrD0suKQkv7eTzedttktBy0tce9t4B5787ANRqNduEdpeJJOC043a7EY/HHY8hiUDtSFJPO5Ic1IkkF7UTDofh9/ttt0vCUTuSsNSJJD61c9y/Za/Xg8vl0v4tJTlsIBAYSIxar9eNz6LX6zW9B7vPsZpQ1srpvOF0zrB7Lafvm9NrSUJbHUlmq+P0uzm9T2D4OfGicfpeSMJeHUm4qzPs+5hMJo3H7XbbVEdEIhF4vV602+2Bv3EwGITH40Gn0xk4ptvt1n7ue70eWq3WwPeq3+8b5/ipqSnT30D9XPj9fuO4tVoN3W7X9Ht6vV40Go2BusjlcqHX62nP8e12W/sZ6fV6KJfLcLvdA/8Tu/pMkjhbDasfz4Pdedzu3Gr3OXI610oyaSu7c69domi7z7fTOdjp/G33XXL6XZzqHKf6Sv1+EdnRnSOsdVu/30ehUDDto2s/6+phXRtXEsqrrNcJuvq33W6jUqmg2+0a57tms2mcw3u9Hnq9Hmq12sDvpHtNef/9fh/9ft947lkLBoOm393lcpm+19Kms567dHW2x+OB2+02/Y2sdWK32zWOqep0Otp6xOVyodlsarddFE5tkUm28XijbbOra4lIz3rdOe66tZ4dtq6LZVmvJSbdx1pvj7LPabK2sT0eD2Kx2KnsY21/n9Q+uuuLUfaxu44hIqKryRrj1sW8h+1z2Z5zVm0K67XPsPWL/JxRjuEU7ycioqvDGuu3xsmtfdnWutgaa5AYvbD22+v6Eqx1ubU/09pHYe1TsMYcrPGSYWN9ToK1n87ab6m7Xrf20Vljqda62Hp9b627fT4fIpGI6ZjWPs9R9tH1uVrfyyjjbYiAF+cYOXeo5wQ538h5RD0/yPde/T5LTFLOS+r5xul17MZIDCPjFdS4nYxVU7/zUqZ+v+R7pX5X5HukHk9ie+o5Qr7r6tgAp34YIiKi60DqePV6xFrmtG3c/XXbJh1fqdbj8tipbNJtw/YfNh6eiIjoqhmlrj+pfXTbjnuP0KT1/7CySZ7DcUdERHTVjRtT0JWdxP7HmTvgJGIHJ3GMYff8ExERXVYytkmu92Wcg3p/s4xNkDpdHdMg4x1knIS0B9SxDaO8xjhkXIM69kDGMujGQ+jGNEiZOvZBjqEbI6GW6cZXEBHR2ZF6pFgsGjHrUqlk9H2Xy2U0Gg2Uy2VUKhU0Gg2USiVUq1U0Gg0Ui0XUajU0Gg0UCgXj2tVpXj4RiUQQDAYRi8UQDocRDAYRj8cRCoUQDAaRSCSMuXai0Sj8fj/i8bi2TK45Y7EY/H7/wP23RERENDo1Pp3P58d67LR92Ly5gDmunEwmJ35sLeN8RkRERKOT+nvUdsCw/YbFCE6q/lcfz83Nce4LIiIiC+t1+7A63Wl9f39fm8NB6OrpSdd5TU9ERFddrVZDoVBAsVjU/szn847b7fJfxONxJBIJxGIxxOPxgSWRSGjL4/G48RwiIqKzJtegkpderkfVdXm8t7dnmisuEAhgenoayWTSyFNvfSzrS0tLjCET0anJ5/N4+PAhNjY28OjRIzx8+BCfffaZMUdmOp3G6uoq7t27h7t372J1dRVf//rXea8lEV0Y7733HgDg/fffP+d3QnQ9VatVfPrpp1hfX8eDBw/wwQcf4OjoCJFIBK+99hru37+PtbU1vPvuu7Y5qoloMvV6HblcDpubm8hms8ZjWd/a2jLlskgmk1hZWUE6nUYmk8HKyopp/ebNm2znExGdIHUMky6OrFvsxjip45N0cWTdwrHJRER0VVjrVN14YbsyKXfKA+w0LtipXC1LpVKm3HhEREREl5GuLTXKMiyeMUocQ5aFhQXek0XnSvIKq3MajjK/YaVSQb1eR7lcRqlUQr1eR7VaNeY4VHOR68g8hlNTU0gmk8bjeDyOSCSCqakpRKNRxGIxTE1NIRwOI5FIGLl2EokEQqEQQqEQYrHYQG5uIiIicmY3F+Fx5zU8PDwcKb/fpPMUDts3mUyewV+PiIjo6pF8PIVCAa1WC5VKxcixUygU0Gw2jfhBs9l0zIOg5j6QNoITt9s9kO9Areulnpf8BuFwGLFYDMFgEJFIBNFoFMFgENFodCB/AnP1EhGdPcn1puZ405VJvjddWafTQblcBgBjrnypqySm3e/3USgUTM/T5Y4bh5qjTa4vJfYseXek3gJgzLsndc64z5c8cFLvqbnkiIiIrqrTyCU/yXGlfTKJ08ghP8lxOQcwERFddcep/yd5zrDjVCoVtNvtiX4Xu3p+0rbAuM9PJBJwuVwTvXciIqLLapx4w3FiDKcRfzhuG0G3bdz95TEREdF1o45FUOt1mbuj2WwaeYdkPIOMYwD04yMkpqCOZZD95Hjq68r+6jHGJbEAGc/g8XgQi8UAvBirIPW+y+Uy5kuVMQ5+vx/hcFh7LHVsg/VY6pgI3utHRETXVa/XQ7FYBPCiXlfHRFrbAcCLtoa0P9S2gYzpV48hYybVdogcQ+IT6jHGpY6FlLEJahxBxkdK+0DXBlCPIW0G61hLtR0SjUbh9Xo5npKIiOj/p8YRdG0KXZnTPRq6+zt0MQ1pS6htmkn7O6QdoavfJd4QDofh9/tNsYhR7sWQtoO0UdTYh/V1iYiIrpvTHgsxyjaJZ4zrJMc9HGd8BecuIiIiMnPq5xjWpyFjK3T9F7rxEdY+EzVGIXGOcTn1e+jmfpD+DIlJqDENaSfIvhLbGGVfIjo9Mh+NypqrSTcWS3ftks/nTetqHFVY7zHT9c2q/cHCeh5Tz3F2x7auW48x6blxVNYxYNZ1idWOum49Jw5bt95Lb1233jM3bN16vcfrPyLzWNnjlp3ksc7rfZz2edVKjUmdxPppHPMkXpNtYiKii8MpB4Vd7on9/X0cHBygVquhUqmgUCigVCqh1WoZY0x03G630X7v9/uOY0+CwSBCoZAxx/T09DTi8ThmZmYQj8eRSCQGfqpLPB4/l3y69XodOzs7yOVy2N7eRi6Xw87ODrLZLLLZLLa2tvDs2TPTdZ3csyMxM7l29fl8SKVSWFlZwTe+8Q2srKwYy0svvWSMt3XS7/eRy+WwtbVlLE+ePMHPf/5zfPXVV/j5z39uvJfp6WncuXNHu8zNzQ0c++DgAD/60Y/wwx/+EB999BF++MMfolgsIhQKYXV1FW+//TbeeecdvP3220in0yf0F6bj+r3f+z188cUX+Ld/+7fzfivX0u7uLj7++GNsbGxgfX0d6+vrqNfrCIfDuH37NmZnZ9Hr9VAul/HVV18Z4wUjkQhefvll3LlzB7du3cKtW7dw8+ZN3Lp1C7dv3x5oj18GjUYDT548MZbt7W08ffoU2WwWT548QS6Xw8HBgbG/1+vFwsIClpeXkU6nsbi4iMXFRaTTaSwvLyOTyeDGjRva8YFqvZbL5ZDNZk15R61lz549G6jLdLndrYs1P+ns7Cz8fv+p/y2JiIiIiIiIiIiIiIiIiIhOitrHPs5yeHionUtglP523ZJKpc5l/BcREREREREREV0dModLsVhEuVw2llKppC0rFAqmsnK5jHw+7zjfgN/vRzQaRTweRzweRzQaNZZYLIZEImEqi0ajSCaTxn2TahkRERERERERERERERERXW52efxG+anO+TrKT2u+imHs8vXpfiaTyZH31f205qKgk1Gv15HL5bC5uYlsNmvMoaj+3N7eNn0u5P+ZyWSwsrKCdDptzJkoP2/cuDHS/LZ0/mq1GgqFgmnJ5/M4OjoyLboy6xzQbrcb09PTtksymbTdpuaGOY3f8fDwEPv7+9jb28Ph4SEODg6MZW9vDwcHB8Y++/v7phxEfr8fc3NzmJubQzqd1j5eWFhAKpXC3Nwc5wsd0ebmJh48eGDMpfvpp5+i1+shnU7j/v37WFtbw+rqKt566y3+Tc/Q22+/jbW1NfzVX/3V0H17vR5+93d/F//4j/+If/iHf8Bv/uZvnsE7vBpG/fx/+9vfNuXuostL7peV+lTuodU9VsusueyA520xqVelblV/OpUxlw9dRI1GA0dHR9prEfXn3t6eqf0ZDAZNc7dbr0nk58LCwqm2NYmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI6ML4vquvzihJRERERERERERXTrfbxdOnT7G1tYXHjx/j8ePH2NnZwdOnT7Gzs4NsNov9/X1jf4/Hg4WFBSwuLiKTyWBxcRE3btxAJpPB0tIS0uk0lpaWEAqFzvG3IiK63oYlzysUCrAL/3c6HZTLZdvnSpI+O+VyGZ1Ox3Z7Pp+33dZut1GpVGy3S3JAO6VSaSAJmOj3+ygUChO/dq1WQ7PZnOi1e70eisWi7XNbrZY2ocplEA6HHZNhxeNx2wQXHo8HsVjM9rmBQMCxPTHstROJBFwul3ab2+1GPB63fS4AxGIxx8Q0khTSjtfrRTQadXwNp/cIDP8d/X4/wuGw7XaXyzU0+WEkEtEmdHI6FzidB5zOP3bff6fXcvreO51v7F7L6bvu9Fp233Gnc4vTazmdU5zOJxeB0/fH6TPp9Hm2O1c4vZbTd8zus99ut9HtdhGNRk3fb/XzPDU1ZbzPer2OXq9nbPP5fJiamkKj0Rj4H7lcLvh8PrRaLe3rulyuge97t9tFrVaD3+83vZ9+v49SqQTg+blS/Y4Wi0WjDne5XMZ7tfs+2H3W7L7Hdp/bbrdrvCcrp7r9vNidw+0+h3bndLvPtN3nz+m8a/c5t0ssHAqFEAgEBsrt6kefz4dIJDJQ7vQ9SiaT2vJx/35E50FXb1vLRtmnUqmgXq8PnCvz+fzAeVISlavn22aziWaziW63i3a7jVarZaoL+v2+tn3UarVQq9UGyjqdDrrdrnGub7fbxuv1+330+310Oh3Te5D67axJ3abWSyp5vxeV3+8fOKfJ7xQOh+F2uwfqb7mGsZ7P3W43pqamMDU1pX0tu/Oq0zWRJKAf53hO5/yLfjwiuvys8a9x163XHOOuW2MLw9at1z7jrp806zXGsHVg8FpCd00wyT6jvNak+1jjUKPEz4iI6OqzxjCtsc5isWjEaa0xeWsdb+1z08UB1Gt0azxejXXq4v/W92aNs+r6BM8q5m+tZ61xRN01mbX+tl7r6Z5jveazxlZ117rW2Kg19qlrE1j70KzPsYuHEhHR9TGsT+C462fxGqO8B6cxXidBF+u1lp31+mkc025sDNF5kusPuWaQc4Aa+5Rtcu2hXnPI9Umz2UStVjNdw1SrVbRaLVNcU84ncg02bJyoE2mvSztdbdNL+1++h+p1hVyDyPWKOsZCvqfqOA0Z0+D0OkRERNeZeg0hj53KJt02bP9Jr1ukvaC2361lTtvG3V+3jdcKRER0HUlsQI0bSJxC+lOlvlfjFNJvK8+Xvlk1JiHxCnm+Gn+QNoPELcYlsQCJE6j9hRJDkNiD1PVq36U8X+6JUGMQsk0tk35RNR7BtgMREV03Um9L3S7tB7W/Qup4aQdIW0H6L9T2gPR7yDbgRTtEYg3qsYfNl2FH7X+Qul+t06XNoNb90vchMQS1f0PaAOoxpK2gjtGy9msMm0eBiIjoKrHrRxilr+G4fRvD5qKyc1L9DpPuYzfHBBERXTz1eh35fN6od9THurJRHh8dHTnOZyiCwSCSyaRRn5zEY9ZBREREx1MsFlGv11Gr1VAoFFCr1VCv11EoFFCtVlGv11EqlVCtVtFsNlEoFIx2Qz6fN2LkxWIRjUYD1Wp1pPuQ1TpdYtPxeBzBYBDhcBjRaBTBYBDRaBSRSASBQADxeByhUAjBYBCJRMK4JpXHoVBo6Jy7RERENMgpJjBqjEBdPzw8HDqmTnedP2o8QLdt2Jz4RERE15m1rh9W3zut7+/vO+ZtGqXuHnWd9TsREV03at2rq4+dFqc+e7WO1S3Welhd5ubmeO8ZERFdGPV6HblcDtlsFvl83vZxNpsdmH9b6rpMJoN0Ou34OJ1O83qUiM5Uq9XCz372M2xsbODRo0d4+PAhPvnkE+zu7gJ4fp/n3bt3sbq6inv37uHu3bv4hV/4Bcd8z0REF8F7770HAHj//ffP+Z0Qkdjc3MSDBw+wvr6OBw8e4NGjR/B4PHjllVdw//59rK2t4d1338Xt27fP+60SXXn5fB6bm5vIZrPI5XLY3Nw0rW9tbRnj8f1+P2ZmZpDJZLCysoKVlRWk02nTuswPQ0REp2eUvls1Vp3P523HVA/rw7XGrZPJJGZmZky5DomIiK6KUcZM2Y2jGmV8s93YZqdxU9Zy1sNERER0WR0dHQ0sh4eH2nJ16fV6puP4fD5MT0+blpmZmYEyKZdtMu850UU27N7LcedZGGU+xnHmWRxlP973QUREND7JQaTW48ViEc1mE5VKBeVyGc1m03b+xUKhgGazacy52Gw2US6XR8pHJDl/wuEwAoEAEonEQB0vcy2EQiFjbsVIJGLMwRyNRo28xfF4HFNTU0aOISIiIpqM3VyMk+ZskMeSA9GJmgNolFjAqPtKPmMiIrr4TjP33SjbRsknoHNaefFGfT7rOiIiuuqk7gae348IvIhv93o9FItFADBi0+12G5VKBQCM+l1yCQFAoVBAv9832gD9ft+Yo6laraLVaqHT6aBcLgOAcU3barVQrVYn+h1CoRACgQDcbjfi8TgAIBKJwOfzwefzIRKJwOVyIZFIAHhRv8s+UvfLvupxZM5i2VfaCn6/H+Fw2LQvERHRdaG2EaTdoNb5Ur9LO6Pb7aJUKgF4nsOw1+sZz5M2wKTPH5fU6ZLHUK3LJR+h1Pder9cYoyptgnA4DL/fb7QF1DaG5DqWtoX02wMv2h/SbiEiIrqOjtsvodt2nGON66T6II5zLGnLEBERXVfSByFxATVmIH0WUuersQbp41D7IqzHUvsurMfS9ZeMS2IJAIz5HCVOoMYgJIYg9b8au5DYg+5YErOQmId6TNlHnk9ERHRd6doQ0iehjoWQvoiTHk8hx5i0PSF1unWsg9ofYe3P0PWHWPssdH0e1j4TGU9BREREz51kf8Vx7+UYx2n0cYz7fN6fQURE140uDiHxgmF9GRJL0N2HIfELaRc49ZmocYxxSYxAYgxq/EBiFLp+C3mexChGuWdD+jEkZiGvSURERHpOYyCc2iDAYL+H2s6QY8nzpL0hr6e2LWTfcdiNb9D1U0yyr7Q7nPYlouvDGku9yOvHPdZJU+O6V3Fd6g0icqbGr4TadhS6uULUcTd2x7K2J63zaUpczO6Y1tdV28F2rylxNbvXnPTe5XFI/5lQ42sATGOAAZjatEJiasI6Rth6nrOeB62vqY4/Etb89dZ+Pus9Ttb7pxnfI6LrROqgQqGAUqlkLOVyGaVSCfl83lR2eHiIfD5v7F+pVAbqPZXb7TYWeT27OT2DwaCRUyKRSBj53RKJhFGWTCYRj8eNdfXnaZ678/k8stkscrmc6efTp0/xxRdfIJfL4ejoyGgfuFwuuN1u0+8aDoeRyWRw584d3L17Fy+99BJu376N27dv49atWyPP5ZHNZvHo0SNsbm6als8//9xoXwSDQaysrODevXtYWVkxLbdu3TL+H5ubm3jw4AE2Njawvr6Ozz77DN1uF+l0Gqurq7h//z7W1tawurpqqo/p7Pz+7/8+Hj58iP/4j/8477dy5XU6HXzxxRdYX1/Hf/3Xf+GHP/whvvzyS7jdbiQSCQQCAbTbbRweHqLf78Pn82Fpacn4bt29e9f4zqnfs8sin8/jyZMnePLkCR4/foytrS1j/cmTJ8jlcsa+oVAIy8vLyGQyWFxcxI0bN5DJZLC8vIx0Oo3FxUXMz8/D7Xaj3W7j4ODAWJ49e4aDgwMcHh4OlEm5tU4Jh8OYnZ1FKpXC7OysaZEya75Qzo9ERERERERERERERERERESXSb1eRz6fH7rIuCVZ192bEQwGkUwmx15mZ2d5rwIREREREREREV0Z1pib3O8/rEwt39/fN93Pr1LnrlbjbLoyu/KpqSnOd01ERERERERERERERER0TUg/pORpkPnEZU5XyQMo845LLj+Zl7xQKJh+FotFY05ZmXu93W6jUqlo5113IvNzy9zgMn93NBqFz+dDIpEw8vfJvrFYDD6fD/F43JjPW56fSCTg9XoRi8WMvlXrnOD0nN18t+rP7e1ttNtt4znBYBCZTAbpdNr25+LiopFnkS6fUe8zUu81Ojo60uYoGPU+I/nsJJNJzMzMnMqcnt1uF/v7+9jf38fu7i729vawv7+PZ8+eYXd3F/v7+9jb2zMeW++bSiaTmJ+fx9zcHObn543HqVQKmUwGqVQKN27cwPz8POckVZTLZfzkJz/B+vo6Hjx4gA8++ABHR0cIh8N4/fXXjTmof/mXfxlzc3Pn/XavrDfffBO/8iu/gr/8y7903K/f7+N3fud38P777+P73/8+fv3Xf/2M3uHlU61W8emnnxpzq//7v/87Dg4O4PP58Oqrr2JtbQ3379/Hd77zHaRSqfN+uzSCRqOBo6Mjx3tq1bKDgwNTG0lMeo9tJpM5h9+aaHz1et3x+kG+M+qc8sDztpR6zaC2AXkdQUREREREREREREREREREREREREREREREREREREREREREREREDr7v6vf7/fN+F0RERERERERENLlWq4WdnR08fvwYW1tb2NrawuPHj431nZ0ddDodhDVO5gAAIABJREFUAEAgEMDS0hKWlpawuLiIGzduIJPJYGlpCel0GktLS5ifn4fH4znn34qITpokQ7OTz+dtt0kCNTuStM2OJG3TkaRtdoYlbRv22pIobpLXbjabqNVqttslSZ2dQqEAuxC8JKmzI4nxLqNhSe0SiQRcLpd2m9frRTQatX2uJM6zE41G4fV6bbcnk0nbbZLMz87U1BSCweBEr+1yuZBIJCZ+bUkwaCcWi9nW3W632zFZhd/vRzgctt1+WiTp46jlk2476eNd9tdyOh9fFHbfc6fv/0lvO6/XarVapqRNgUAAbrfbtq7RnUubzSb6/b7pnNFoNNBsNuH3++H3+43yer1u1KHBYBBut3vsz5yu/LT2tSuXZLEXxUl+5k67/CK+J6f36tSGILoMnK4/dnd3Tee3druNer2OarWKTqeDXq9nuiZrtVo4OjoyXevIeV2O0263jTqk3++jUqkMXDvJNY0cp9VqGW2FTqeDZrNpajv0ej00Go2BMjkPS3m32x3Yp9vtDlwfXaTz92nwer3weDwD5y6v12uqk4Hn9brX6zVdc7hcLrjdbgAw2uxut9vU9g+FQvD7/cZ+IhqNDlxDBAIBBAIB4zzrcrmMfTweD2KxmPb3sLuOcjpn212jOL3OSR+PiOgsWa9VznP9tF/rpFnP/1dtfVhcj4iIrjdr/621X9RaD1tjodaYv9rfa+2LtPb3Wvsirf2e5XLZGGcCmPs9rTEO67GH9bEeh/U60NrPZe3PC4fDpmtw6/VlPB43XVNb625d36U1Tml9DV2/n/Xa2voc6+8xrG+RiIiuL2s9bK3T1Tq83++jUCgY26xtDWv9r7YlrPW7dXyWOh7L2u6wtmGsbRbrWC5ru+M0WOt86xgfa91sbVMEAgGEQiFj3VrfW9sourrc2oawtkus462s7RJrzMHafhg25oroOpLz0bCfp7nvONTvuTy2/hx327j7M55JREQ0WNfrypy2jbu/btuk42JPsl1wnPYHx3oSEdF1dtx2wHGf73QvrRO7+v647YVRn+90zycREdFVJf23an+r9NlKH6v06UrdL/24ar+xjOuSflfp25UxXE7HH4f0qUodLn2mat+o9HmqfZfSL6r2uUrdL/0San+rHEPtk5X+3mHzTBAREV01Ur9Lm0DqeWlHqOPDpH6XGIE6Tl3aANL/oGsnSEzB+hrjkvpdrcul7pcxW1Knq20A6VuQNoeMjVLnTJJ2hcQVdK8xbM4rIiK6vOr1OvL5/ECcXC0b9/HR0ZHj/JUiGAwimUwaddBJPB42VyIRERENV6vVUK/XUSwWUalUUK/XUS6XUS6XUavVUK1WUSwWjf3y+Tzq9TpqtRqKxSKq1SpqtZrxnHq97jjvNvA8Vh4KhRCNRhGJRBAIBBCPxxEKhRAMBpFIJIzrXnkcCoUQi8UQDAYRiUQQiUQQDAYRi8UQDocRCAR4PzEREdExDIsDjBovkPVh/enq+DfrNf+osQF1fWZmhvfzERERDdFut1Eul1EoFIzreFkKhQJKpRLK5TIqlQoqlQoKhQKq1Sqq1aqxj7puR8a9JRIJhMNhhMNh7Xo8HkckEnFcD4fDjnmNiIiIrgP1mtu6WK/JrcvBwYHtvfbq9fWwxXo9vrCwMJDPg4iI6KJoNps4PDxEPp9HLpdDNps16kZ1PZfLYXt7e6CuTCaTSKfTSCaTyGQyxmPr+tLSEnM8EdGF0Ol08OTJEzx8+BAbGxt49OgRHj58iM8//xy9Xg9+vx937tzB6uoq7t27h7t37+KNN95AOp0+77dORDSR9957DwDw/vvvn/M7ISI7u7u7+Pjjj7G+vo4HDx7gk08+QbPZRDqdxurqKu7fv4+1tTW89dZbA3mIieh0tVotHBwcIJfLYXNzE5ubm8hms6Z1Nc9KMBhEJpPBysoK0um08VjWb926ZcrxQUREZ8epn9hpyeVyA8cap+9YXTKZzDn85kRERGfL7t4pp/Fb1rLDw0NTfksrXV1sHa9lVyblzGlCREREl4FTPMM61m/YeHhpF1nH+DktHANPV8FJzQkhj/f399HpdBxf8zhzQOgeS54EIiIiGo/kVpLcB2qdXiwW0Ww2UalUUC6X0Ww2USqVUK1WjVyM1WoV9XodpVIJlUoFtVoNlUplpJxLiUQCU1NTmJqaQjKZRCgUMur1cDiMqakpxGIxRCIRhEIhRCIRxGIxTE1NIRwOIx6PY2pqCqFQyNQ+ICIiouPR5WQ+Tq4JeSz5mJw4zSNpzbM8Ts4JyaVERERXhy4HoOQMllyCkgNQzSvslEPQ+nxdDkLJVyj13Lisuf/UPMNOuQMlBu6Ue1DqOzmO5AmU5/C6mYiIriPJ/6vW3XKfo8TF1baCXLu2220jN5K0H3T5heVYso+1HaK2NcYh43elXpd6XNoQajvBmodY6v5AIIBQKKTdV9oN1n1l3mciIqLrSuIF6mPrT6dtJ/n8cUgsQX1s/em07bjPZ8yBiIiuM2vsQRdnkP4GYDAuocYOJL4w6rGkX0OONS41ZiCxAqnf1f4L6W9Q+yYkdiGxBd2xJN6gO5Y11kFERHTdTRpTGHf/YcdS54oc1WnFIkbZV9oWREREdHLthEn3GeVeQp2TaC847eO0TeIaRERENNjnoI6hlHiB9FXI+Ein+yzUcZaj3MMxaV+H9f4M4MU4SWufhPRbSH+H2+1GPB43PUfu27DeiyHtB3mu2i9CRER0XTmNiZD7KtQ2hbXedxovobtnQ9ob8nxpk4xD7pdQxzFY6/9R7t2QcRHSFrG2FdR2hvXeECIiIhruJPowJt1X2izjOK0xEaPsy3mYiegkqWPXR1lXr91GWbfecz9sXb2mHGVdvT7VrU9yHTkO67j4YesSsx51Xa0HRlm33u83bN3af66uq9e5RHR81vuIh61P8pzjrp/EMSRGeJqGnQtH2eek10/jmBzjRESTaLfbKJfLKBQKKBaLKJVKKJVKKJfLKJVKKBQKpuXw8BBHR0fI5/MoFouoVCq253Gfz2fM79zr9dDpdNDr9bT7+v1+pFIppNNpzM7OYnZ2dmgOuPn5+ROZP7per+Pp06fIZrN4/PgxHj9+jM3NTXzxxRd48uQJ9vb2jJxaLpcLLpfL9Hskk0ksLi7izp07uHfvHl5++WXcuXMHd+7cwdzc3NDX7/V62N7expdffqldpN6MRCK4c+cOXnrpJeP4r7zyCu7evYtAIIDPPvsMGxsbWF9fx3/+539ib28PXq8XL7/8Mu7fv4+1tTWsrq7i3r17x/6b0XB/9Ed/hI8//hjr6+vn/VaunN3dXfzLv/wLfvCDH+BHP/oRvvzyS3Q6HbjdbvT7fSNue+PGDbzyyit4+eWX8fLLL+OVV17B1772Ndy+fftS9cf+f+zd6Y8cx3k/8O/cs3PP3jPcg15ZF5c6LFqUZfJH2hZjB0aCwC8SIAiQfyDvHAQw8ionECQIkAR5k3dBkBdBDAQBjEAOIiemRVqSZUmU5F2KkrjiOXvNbs997Mzs/F4QT7O6pnt2Zjl7cPf7AQbdXd3TPXtM1dNV1VX5fB5ffPGF+VpaWsLt27dx69Yt3Llzx1KnMj4+jpmZGfN18uRJzMzMYHZ2FjMzM4hEImYers7Vabe+trbW0ec/GAzaztVpl3bixAmzrZ2IiIiIiIiIiIiIiIiIiOgwq1arMAyj79fq6qptf6hgMGjb38mufV1ew8PDnMeHiIiIiIiIiIhogKTeT8aNUuv2+knrNj+XWhcoY3Oo9X69pI2OjsLv9+/jb4aIiIiIiIiIiIiIiIiIDjuZK0HaMWVMb5mTT8b0lrkBZc4+md8vl8uZ23IuOTaXy5nvsRtv3EkymTTn3ZN2z1gsBq/Xi0QiYc6vIGNkx+NxeL1exONxcy4FmfsvkUjA5/MhGo2aY2wf1Xn7DMNAJpMxx3m0W965c8cc9xawjvvotJyenuY8yUfIbp9tWl5e7jiX2iehl/FDJycnBz6flfw8O417avd8Vi///+l02pwn9DjZ3t7GwsIC3nrrLfz85z/H22+/jRs3bsDlcuHpp5/G1772NZw7dw7/7//9Pzz99NMH/XGPjK985Sv47ne/i7/8y7/setwf/uEf4h//8R/xox/9CN/+9rf36dM9HjY2NvDmm2/ipz/9KX72s5/h448/RrPZxPT0NL7+9a/j1VdfxauvvoqvfOUr8Pl8B/1xj73t7W1ks1lks1lsbGwgm81ibW3NTFNfkq7P8eXz+cx5BkZGRjA+Po6xsTGMjIyY6bJveHgYyWSSc13RY2trawvZbNYS49gt7927Z5nPIxAIYHh42BKb2cU809PTzBuJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGi3fuhqt9vtg/4URERERERERETUXa1WQyaTwdLSEpaWlrCwsIDFxUUsLS1ZJrYJBAI4ceIE5ubmMDc3Zw5oLduzs7PweDwH/NPQUdRtoqudJsHa7Xt5zZ2vmcvl8DhWAcukZf3u2+v9R/Xaj3rux31yOafv0aDS9+MaB3ntbvvy+bxl8rHDyOn/e7ffmf0630Feq9FooFqtmunBYBAAUC6X0Wq1zPf4/X74fD4Ui8WO87ndbjQajY50wzA60mSiTZ1MyqlqNpu215OJPQ/yeu12G7lcruPY/SaTjerC4TD8fr8lzeVyIZFIdBzr9L8Sj8c7Jjx0up5MWqpyu922k1TJxKi6RCIBl8tlSZMJU3u5HgBzYlWdTK6qc/p5iB5nMimyTiZBVjnlZVtbWyiXyx3pTnmqU/5ZqVQs56/X62YsUS6XUavVLJ9pe3sbxWLRLFPa7baZ/zabTdTrdTQaDcs9UaPRsHym7e1t8xq1Wg3tdrsjv1c/h1yn3W6b75Vtdf9hjIFcLldHvulyueB2u838Wz3G7XbD6/Xa5u1qnupyucz7gUAgYJ5TrX8KBALw+/0ddVLhcLgjH5Zj1bxfyh2Xy4VIJAKPx9NRNiSTyY7yye/3m5Nt65zKM6e83qlcBOzLQCKi46zRaKBUKpnb6v2UHjfo90+lUslyv9jvth7D9Lut3/vttD1oej3bTtuxWMxSvva7rZdh/W7r92U7bR/HCeeJiOjRqW0QenvEILf38tz6dqVSQb1e7+fX0Bf1nle//x3k9l6eW992qsslIiKyo5fD6v389vY28vm8uU9vJ1HrCvR2Eb1eQ6+XUNuf9foRvfxX+1Po7SbdPv8g6WWvWm+gt93q7adq+6tef6632ept0XrbrV7O659LP5/X60U0GjW37dqZWQdBdHDUvFPyOqkHljxX8shejpU8Uj1W8kWnY/sl9Z6SP0k+JO2Gaj6z07FqnijHSj4oeal6jFN/FiIiouNM7on6Xe7mvep7dvvsjcQDdnWnvezr93i7fYwpiIiInOOAbvsGdQywu+d4HzUeeNRj2AZLRETH3W7qFPo5ttt77J7b28luYoDdHGv3Hj43RUREx91u2y4eJbbYzXg9+1mvYLdPf26NiIiOH7U8MwxjoOs7CQaD5pgjj7ouy7GxMbbFExERDchu4wCnfRsbG7Zji6r6iQN6OY6xARER0aOp1+solUrI5/MoFouoVCool8vI5XKoVqvmWLTlchmVSgXFYhGFQgHVatU8rlKpoFKpIJ/PdzzjrfN4PIjFYohGowiFQgiHw0gkEgiFQhgaGkIikUA4HEYoFEI0GkUsFkMoFEIoFDKPC4VCiMfjiEQiCIVCHI+aiIioT4VCAcVi0Xzl83kzFpBXoVBALpezpBWLRRiGYa47tRPIGADxeBzRaBThcBiRSASJRAKRSMSyLevdttm3noiIyEqtq+/20uv1DcPA2tqa7ZhpTnX0vbyGhoY4rhgRET12pIxcXl5GJpPpur66umrpP66Wlel0GqlUynF9fHz8sZ5HmIiOPsMwsLCwgPfeew+Li4tYWFjABx98gEqlAo/Hg9nZWZw6dQrz8/M4deoUzpw5g2effZbPtRLRkfI7v/M7AIB///d/P+BPQkS9qlQqeP/99/Hee+/h6tWr+N///V9sbGwgHA7jxRdfxPnz53Hu3DmcP3+edZdEh0C1WsXy8jKWlpaQyWTMddm+ffu2ZZ6ZZDKJubk5pFIppNPpjvXZ2Vk+N09EdIjUajVsbm721IatvvS6dwB9t1XLa3JykvVVRER07OjjyHTrM+aUXqvVLHN76pye9db7jnVLZ5s5ERERHUbd+uOrfQfVVzabtX1+XmIhtf8g6zLouCsUCub4EzIWRbVaNcesqFar5jOu1WrVHOtCxrYwDMNcz+fz5tzYTmQO6nA4bI7BHI1Gzfkj4/G4OQ9UMpk0x7iIRqOIx+MIh8MIh8OIxWKIxWLmeYiIiOjRDHqMy83NTdTr9a7XVMeu3s2YlnbriUQCLpdrn35rRERER9ujzovxKONgd5vzYrdxQjQaZVsoEdEx18tch932DfL9vdrLOZadlqFQiGNJEhHRsTeIOZR3c2ylUtmxbt3OXsQMvRzLuIGIiI67fD6P7e1tswxvNBoolUoAYD7/I/NBSZnfarVQKBT6fn+9XkelUsH29jby+TyAB33/7Mas3om0q4fDYfj9fvj9foTDYbNvHwCzTl3KfZm3CgDi8TjcbrcZC/h8PnMOKhkzJhKJwOfzIRAIIBQKmfNgqO8nIiI6zrrVF9il7XbfTsdLPNKPQbRN7Oa9wMNYg4iIiB4YRNtEL8fYHbubeondxAS9HNPLsVIPQkRERLBts8jlcmi32+Y4AXbtEnq7xtbWFsrlMtrtNnK5HICHbRcSM9i1fRSLRTSbzb4+s10bhpT10s7h9XoRjUbNNg31PdI2Im0Ucg6JEaTNQ2IHad9Q20CIiIjooV76N6gxgpT/dnGIxA8Sh0gcIedpNpsoFouWuKTbmKx21LjAKR6QOECPLexiilgsBo/HY75X4hKJIeS9al8JIiIi6u35zkG0Z+xVu8aj9nlg/wgiIqLBkvoGvd3Crv2jl2P1doxeju2HXgchbRB29RZOx8pS6h70pbSRyJJ1E0R0lOhj9hy17d306++V3b3pYdvX7Ti5ZyaivSVtckJt6xMSXwu9D5A+P4nU1QmJrYUaYws91tbzR2mTFPoYLdLGKNR2TQCWNse9osb4Qn+uWh8XVR+7Rc8X5X4AQEecrx8r9wQAzHsFp+uo9ZDSTtrLNYno8Ok2r5v6Wl9fRzabNeenKhQKMAzDkr8DD773Ho8HLpcL7XYbzWaz4xiXy2XOIZVMJjE6OoqJiQmMjo5ieHgYyWQSw8PDGB4eNveNjY1Z8ppeGYaBpaUl83Xr1i3cvHkTS0tLuHfvnuN4XYFAAJOTk5iZmcFTTz2Fs2fPYn5+Hk8++STGx8f7vvbCwgIWFxextLSEzz77zCzHkskkTp06hfn5eczNzeHUqVMIh8O4f/8+3nnnHbz11lv46KOP0Gw2kUql8LWvfQ2vvvoqvva1r+GrX/0q59vaA3/0R3+Ey5cv4xe/+MVBf5THmmEYeOONN/Bf//VfePfdd3Hr1i1LrOX3+5FOp/HMM8/ghRdeML8HTz31lCUGOcy2trZw584dLC0t4YsvvsAXX3xhWd/Y2ADwIM9Lp9OYm5vDyZMnMTs7i5mZGQwPD5t9znK5HFZWVrC+vo7V1VVzfW1tDSsrK5a4FHgQE6ZSKYyNjWF8fNx2fWRkBKOjoxgdHeX8O0REREREREREREREREREdGj12n9Jf62trdk+/y1z0ff7SqVSbF8nIiIiIiIiIiI6YvT6R3mGvZ+0bDZreUZdpY4FqdY39ps2MTFhPuNNRERERERERERERERERNQPadt0mo/Pbl8/x/c6f1+3ufXU9tFuaTvtkzmBDxPDMJDJZLC8vOy4vHPnjmU89mAwiHQ6jVQq5bicmZl5bMbmpP7VajVsbm52vFZXV5HNZs2XjEuazWYtY/QDD8ZOlnFHx8fHMTY2Zo5Bqo71rL4G2TehXq9jdXUV9+/fx9raGu7du4fV1VVkMhmsrKyYS/0ZsHA4jKmpKYyPj+PEiROYnJxEKpXqeA0PDw/ssx5GGxsbeOutt/D222/j6tWrePfdd1Eul5FKpfCNb3wDFy9exMWLF/HMM88c9Ed9bD333HP43ve+hz/7sz9zPObv//7v8f3vfx//+q//it/93d/dx093OK2vr+NnP/sZLl++jJ/+9Kf41a9+BZfLheeffx4XL17E17/+dXz961/H1NTUQX/UY0Hv0yaxhVPa+vq6Jd4ArM/bSoyh9l/T0yYnJy3zohA9jqrVquW74RSnr66uWuYzsovR1e+JLPk8OhERERERERERERERERERERERERERERERERERERERERERERER7YMfutrtdvugPwUREREREREREQHFYhGffvopbty4gRs3buDmzZvma319HQDgdrsxNTWFJ554wvI6efIkZmdnMT4+fsA/xe6Vy2VsbW3Z7tva2uqYUEVsb28jn887njefz1sGC+/1mvV6HZVK5dBcs9VqoVAoHKprHjaBQAChUMh2n9vtRjwed3xvPB53nEQhHA7D7/f3fU2Px4NYLHaortltYq5u1wSAZDLpuM/r9XadBEsmB6NOzWYTxWLRdp9hGLbpTpO9VSoV1Ov1jnSnPLRbXpbL5WDXfFAqldBoNDrSZTI6ndPP1263kcvlbK89qJ/vsOZhoVAIgUCgI93v9yMcDnekd8u/nL7TkUgEPp+vI10m6dM5fYddLhcSiYTttWOxmO1EZU4/X7dz+Xw+RCIR231O5+v2Gbr9zuz+L+z+TxuNBkqlkiXN7n/NLs3uvYD998fpeyiTO+rsvptO34FisdgxydAgrrffnMo2p/8Nu/LKqeyMRqPwer37dj27/1mn759duez0PXL6bneLNYged0751iDSD8M5Wq0WyuWymba9vW3e79VqNdTrdWxvb1vy6Gq1aomV2u026vW65V5Qjt/a2uooI446j8djyYPdbjc8Hg9cLpe5ru/3+/2WcsLj8SAQCJjH+Xw+c7/X60UwGOyIwXw+H0KhkJnu8/nM/N3n8yEcDlvKF7/fj0gkYqb5/X5zPRAImC/1/ioWi1nKh3A4bF7vME7OTEREztSYQI8PHod9TrHOIOj3PUdtm/dvRES0W3qdr1ovrLcDq+1OavuxXqet1gvr5btez622UettP3rdu16XvdO5B0kve/X6Xr2uWL2f1tsc9DpdvT5YP7feZqOW+3qdr14/rbcd6W2uO7XvEhER7aTbPb++3c+xj/LeRzl2r+KJR7nvP4zHMoYgOvqkn53kk9K3T+4TZSn3aXJfKPdx0r9K7jnV+z25D5Q8V87t1F9qJ3L/JfdOct8j90PqPZnTsdL3bLfHEhER0QMSA9iV/VL3LLGEHgOo/bOlLlqPG+S9EovIe3d6PsuOXbkvfXTlnkePK6RuV62XlfdKHbHU76r1wFKnK/dWjCOIiIjsSZnvtJQ26p2Wat2F3VLikG7PZHYj7btqmS7lvcQC6nNu8syQxAsSE6htu/J+iUMk/lDjDnk/n7MlIiJ6SNoxdloO+lin8Qp2InFAr8t+3tPtWKcxA4iIiI4TGYdI2iv0+gan/hFO/SLs+kNI+4b0pe82lpsdqU+QNgapO5A6CLWeQOobpE5B2jik/kDKf73NQ+IDtR2Dz5ETEVG/1PtkwzAGur6TYDCIZDJplm2Psi7LsbEx3jcTERENULdYYTcxQi9xglq2J5PJXcUI6vbIyIjj+LVERETUH6c4YLfb3exUxvezb2hoiPXnREREj0Atw+3K9V7Sstms4/gvdnUBdmX9TmmTk5Mcw5WIiMiBU519L69areY4V5leLncrs/XX6Ogoxz0jIqIjwTAMZDIZs+xcXl42t9X1e/fudcyVGgwGkU6nkUqlkEwmLev6djqdPqCfkIho94rFIj799FMsLCxgcXERCwsLePfdd7G6ugrgwfM0p06dwpkzZzA/P49Tp07hpZdesp3zl4jocbawsIDf//3ft8whvLy8DABIpVJmmt/vx7/8y79gfn5+3z8jEe3O0tISrly5gqtXr+LKlSu4fv063G43nn76aZw/fx7nzp0zYx0iOnwMw8DS0hIymQyWl5c71m/fvo1WqwXgQTk9MjKCdDqNubk5zM3NIZVKmduyTkREh5/eZq7W5Tu91tfXzblgVXq7uF7Pb/caHx+3zI9KRER0HG1tbaFYLCKfzyOfz6NQKKBYLJovwzA60vL5PHK5nCWt23j0iUQCsVgMsVgM8Xjcskwmkx1p6jKZTJrjwBEREREdtG79/53qNZye5ZO6jF7qMOTFZ/boOJNxq4vFIiqVCsrlMvL5PCqVivndrFQqqFQqKBQKKJVKqFQqKJVKKBQK5r5cLme+X+9LrJKxqiORCMLhMMLhMJLJpLkeiUSQSCQQCoUQDofNex7ZH4/HEY1GEQ6HEQqFzPGuiYiI6NHtZrzNbsdtbGxY+pTaGcSYnOr68PAw58okIiIaoEqlYo7FIWW8rFcqFeTzedRqNZTLZRSLRdRqNRSLRZRKJdRqNRQKBZTLZdTrdeRyOXMMcJkrq5toNIpgMIhoNIpIJIJgMGjWEQSDQcTjcUscIHFFIpFAMBhEKBRCPB5HMBhEOBw26xsYKxARUb96nVN6t0u7a/Q7j+SjzCm92yUA1tETEREBXcv0fsr/3Rwr81r3YzfxwqCOlXmqiYiIjrt+yvtu+3b7/t3EEMDe1zXoy2g0yueUiYiINJVKBfV6Ha1Wy+yzXygU0Gq1zDJeyv2trS2Uy2XLsdJWL+0QpVIJjUbDjBPq9ToqlYr5jEG73UYulwMAxzk8uonH43C73YhEIvD5fAiFQggEAggEAgiFQvB6vYhGo3C73YjH4wBgzsEpsYDUJ0iM4PP5EIlE4PF4EIvFADxsr5BnpuV6RERE9JCU9xIjbG9vI5/PA+iMDSSeaDQaKJVKlphAjz33o/IJAAAgAElEQVQkfrCLOYrFIprNpqWeold28YGU8RIfyFJiDKlXkLhBYg45VuIIiUEknpBryXOPRERE1EniA6kzAB7WFUgMYRcXSJzhVG8h8Ya8R4079HqMXullPPCw7kDqKvQ6BD2e0OMIvQ5DjRskVuFYbkRERDsbxLMWuznHbto4HuU5i92+V9aJiIjoYf+Ibv0YnPo+dOsv4dTHQuoo1PaTfuj9I6Rcl7oFuz4OUqcgSzlHr0vWRRAREfVH+jDocUa3/g69HCvxhX6sLCU26ZVe7qvxgrRNSDyhL3eKLyR+0Jd8doOIaHfkftRpW8oTu2217V3fJ/eoveyTcghAR5nTbZ/aDi9l1iBJXz2h3sPKvXIv+6QM22mftPELKQsBWOre1XOo9+p630H13ER0uOhjmKp5HdCZF+t9mPU8T8+P7eoH9bZG/Zr6M9tqHqufXz9W/Xn2Ij8GrGPMANY8TvpECelDJdTx5fR8WL2PUPtp9XtNfRyaXq9JdFxtbW1hc3MThmF0XWazWayvr2Nzc9OcE1fNu4TP54PH40G73Uaj0ejoq+nz+RCNRpFIJDAyMoLp6WlMTU05zm8/MTGxY9vFysoKbt++jVu3buH27dv49NNPsbi4iNu3b2N9fd12Hjqp15iZmcH8/DxeeOEFvPTSS3jiiSfwpS99yYz9ujEMAwsLC1hcXDSXH3/8MVZXVwE8iCGfeOIJnDp1Cs888wyGhoZgGAZu3bqFN998E7du3YLX68ULL7yAc+fO4fz583jttdcwPDy847Wpuz/+4z/G66+/jg8++OCgP8pjodFoYGFhAe+//z5+8pOf4Je//CXu3Lljxjxyf/PEE0/g7Nmz+PVf/3WcPXsWExMTB/zJe1OpVPD555+br88++wyff/45lpaWcP/+fTMvi8fjmJubw5e+9CVMT09jeHjYfG691WphfX0dmUzGnPfy7t27HXOCB4NBSx7mtD41NWWJdYiIiIiIiIiIiIiIiIiIiA5atVqFYRh9v7LZrG3/HJkXvt9XL/2FiIiIiIiIiIiIiPqlji+t1nHapTml12q1rmNSS72ojEmh1n3apdmlDw8PcyxpIiIiIiIiIiIiIiIiIhq4QqGAZrOJXC5nzjEg8+Dk83k0m03k83lzTGsZlzuXy6HRaKBYLJrtqDLPgWEY5jwHcq6dyPiWMu+AjF8dj8fh8/kQi8UQDocRDAYRj8cRCoUQDAaRSCQs62pbq4xdrc4lsBcMw7CMSWm3vH37tmW8XnWMSqfl7OysZQ4GOrpqtZo53rNhGOb/jto3QU1bW1vrGP9Z/u/VMU7ttpPJJE6cOGGZL+NROP3/q59ZH6c1EAjgxIkTHf/3c3Nz5vrs7OyReZas1Wrh2rVruHLlCq5evYr/+Z//QS6Xw/j4OM6ePYvz58/j0qVLeOmll/Y0rzpK5ufn8du//dv4kz/5E9v9b775Jr71rW/hz//8z/GDH/xgfz/cIbG2toaf/vSnuHz5Mi5fvozFxUW43W68+OKLuHjxIr7xjW/g/PnzlrkaaPcajQbW19extraG5eVl2/WVlRVks1lks9mO2CgYDGJ0dBSjo6MYHx8310dGRjA6OoqxsTGMjY1Z0n0+3wH9tESDJ/GEGj/oy0wmY84vLpLJpG0crcZA09PT5pxhREREREREREREREREREREREREREREREREREREREREREREREREh8APXW2nmS+JiIiIiIiIiI6QarWKWq1mu08mudG12+2OAamFTKxjp9sEOblcDuvr61hdXcXKygpWVlbMAeTlWh6PB8PDwxgdHcXw8LA5OU4ymUQ8HrdMoNHtc2xvbyOfz9vuA4B8Po/t7e2+f4a9uuZh43a7EY/HHffHYjHHyUxksiM7fr8f4XB4V9eMx+Nwu92H5prhcBh+v//QXJMGyynfzOVy0KuVZYIwnUwwpnLKJ2TiMV2z2bRMNqQyDMM23Slfd8rbnPK1bnmaU35m9zMDzj/fQXP6vjl912QiNp3X60U0GrW9htOENNFoFF6vtyPdKT9zyle65SlOP18kErGdbGWQP1+3cmIv2X13mfZggkR9orX94PQ/ZZfez7GDOMdhvx4ns6LHnVPZbxenON17OsUo5XIZW1tbHel2cZpTLOUU69nll/3Gb3v5M+43t9ttxgzq79bj8cDlclnS2u12R9whv0tJ138vrVZrz++RXS6Xmc/K5JShUMjyWUOhkCUu8/v9GBoaMo/xeDxmHObz+eByuSwTcblcLiSTSUt8FQwGLXGdTA6svkefxFSPn/S4UI8H7eLAbveTRER0dOgxhFpPIxPfCzVG0uMXtW5JjY/02EWtU9JjIzVuabVaKBQK5j61nkiPy5zqrx6FWpbq5aZaRgYCAYRCIXNfIpEw4wT9Hk29NxsaGkIwGATQWZar5bZeRqv1THodi349p3tEIiKiQVPLcL2dS40t1BhBL+vVehQ1BtFjCTUm0OMYNVZRYw49dlA/06DbnPSyW22/0eMGNR4AOttb1JhDjxc8Ho+lPkGPV/Rz621Ver2BGqfoP4NeD0FERDQoehmt1i2o9/pqed3tPWqc0O09aszg9B793HqMs1dtL3q5q9ftq/GBXi+gl/9qea+X73qdgRqz6HGHHmfocYUaR+z0+YmIdkvu/yQ/lrxd7i2lrlnuIdV7ScnPJV3uCeU+VMocKRNk2W9eL/my3K9J3qvmq5JnSj2y5L+Sh0ueq97z7XTsTn2IiYiIjjsp8we9lBhCYga5p+z2jJgTPQZQ4we5D5RYQO6z5L5O7sPU+EFiDnmv1D3Le6WumnW/REREO5N6BH3Zb8yw01Kvl+iV1BM4LbvtGxoaMuMQNf6QumU5Tq2LljjD6VlCIiKi407aIgzDMNsqJIaQGEFiACn7pS5B+sxJHYP0tZOlHKf2u3MaG6IbvY5B6gmkzLerl5Cyv5/2DKfzExER0UN6eb9XS/VaduMndLNT3YLaD63XY3dast6BiIj2SrVahWEYMAzDLCu7rfeybyfBYBDJZNIs6x5lXZZjY2MsK4mIiAZMvZfuNVbYKW7Yacx4tXzvNS7Y6Th1vBsiIiJ6NMViEaVSCeVyGfl8HsViEeVyGeVyGblcztxXLpdhGEbHtqyXSqUd6+YTiQTC4TDC4TCi0Sji8bi5HYvFOrZjsZi5HY/HEY1GEQ6HEQqFGA8QERENiNP9f79p3fr4Od3v95M2OjrK+caIiIh6UK1WkcvlYBgGcrmc+VK3DcNAPp/vWM/n87bP+3m9XsTjcSQSCSQSCXM+3EQi0bF0SiMiIjqKarUaNjc3YRgGlpeXkclkHNfX19c75pdJJpNIpVJIJpNIp9OO61NTU7wnJqIjo9ls4s6dO1hYWMB7772HxcVFLCws4JNPPsH29jai0SieeuopnDp1CvPz8zh16hTOnj2LiYmJg/7oRET74saNG3jmmWd6OvaTTz7B008/vcefiIj2yurqKn7xi1/g6tWruHLlCn75y1+iXq8jlUrhzJkzOH/+PM6dO4ezZ8/ynpDoMbC1tYVsNovl5WUsLS1haWkJmUzGsq32qwgGg0in05ibm0MqlTLXZfvkyZOWOXOIiOjxovevs3upbQmGYWBjY8N2viC9X53dS21XSCaTGBkZ4fxpREREGhkzt1AooFgsolgsolAooFAoIJfLoVgsIp/PI5/Pm+n5fB6GYZjrhULBcfydSCRiPhsnS+k/p6fLUvrYSRrLbyIiIjooUjexublp+3Lap4815PP5MDw8bHmNjIxgZGQEY2NjGB0dxcjIiLmUl8xFT0Sd9LHC+hkXbDdjinZ7Frif7aGhIXPOLyIiIhqMRxlb3G7dqX1SNYixxtVttmMSERHtjW5l/qOMQd5LPUI/Y4nvdBznJCEior2yF3Nj7rQsFosd44vsZFBzYvYz36bM4U1ERHTcNZtNFItFADCfAy0UCmi1WiiXy9ja2kK9XkelUjGPlb7JdsdKXNBoNFAqlSzHyvxepVIJjUbDPLYfHo8HsVgMLpfLnKsjkUjA7XYjHo+b+71eL6LRKHw+HyKRCPx+P8LhMAKBAEKhUEdsIOuhUAiBQADhcBh+v59zbhMRETnY3t5GPp8H8DAekLoBiQOAh/GFzOelLyU+0JdyTn3Zb72DU72BU32BxAr6UmIJfSmxhr4kIiIiZ1KeO9UlSNkPdNZVSJ2CxB1bW1sol8u2dRYSV8j1KpUK6vV6X59V4oSdyn6npdRP9LskIiIie1L2q/USTm0Pdu0Uev2CLOW9Ep9I3CAxx27aM+T5QmnLkD4KsVjMbMvweDxmDCAxhNQ7SL2EXpeh11XocQcRERE508t+vcyXvhESR0i8oMYeeruHHl9IPPEocYTEB3pcIPGAHgfo/SiAh7GIxCB6zKHHGrIkIiIiZ3pfST2G6BY76O0cEofo8YddG4nUffRD6iP0+gdZ6vUTEjPIUu2b6XK5zNhCXep9OImIiKiT1B9IvYEeP3TrH+HUp0JiDb0/pnoOdX6wXuixwU7L3fSDUOsl+IwGERHR7g1q7IjdjDXRq70aN8JpydiCiOhw0ssQu/GLDvs+uTcfBLtxkHba1+/6oM/FORaIHn/q89hqGybQmf+pbZLqM+JAZ36o1j9KXafdNdX6z0e5ploHOkjSPiqk/hOA2bcKgNlXC0BH26jTe9Rnzbu9R+2z1e09Useqv4dovxUKBRiGgc3NzY6lzO+2traGlZUVrK+vI5fLmW0aKrfbDbfbjXa7jVarZdkn7RDJZBKjo6NIp9PmnPXpdBqTk5NIpVJIpVIYHx+3nfMtm83i9u3b+OKLL/Dhhx9icXERn3/+OZaXl7G5udlxTa/Xi+HhYUxPT+PZZ5/Fyy+/jK9//es4deoUQqHQjr8XwzCwsLCAxcVFc7m0tISlpSUAD773Tz75JCYnJxEIBFAsFnHz5k188cUXcLvdeP7553HhwgVcuHAB58+fx/j4eL9/mmPvT//0T/Fv//ZvuH79+kF/lEMnn8/jww8/xLVr1/D+++/jrbfews2bNy3fg0AggC9/+cs4d+4cfuu3fgvf+c53Dv18iuVyGZ9//jk+++wzfP7555bX/fv3ATzIa1KpFKampjAyMoJwOGzmPeVyGYZh4N69e1hdXbU8ez40NGTmM5L/yPrExARSqRTGxsYwNjZmls9EREREREREREREREREREQHReZg11/Ly8vIZDK2+zY3N23HaVfnXe/nxfnYiYiIiIiIiIiI6ChT62FlTCa1zrWXtI2Nja7jV+j1s/I8cT9p4+PjfN6JiIiIiIiIiIiIiIiIiPZVoVBAo9FAPp/H1tYWyuWyObZ0Pp9Ho9FAoVAw21BlPl/DMMwxqYvFImq1GorFIkqlEmq1GgqFQk/zBAQCAYRCIcTjcQSDQYTDYcRiMQSDQUQiEct6NBpFMBhENBpFJBJBMBhELBZDOBxGMBhEPB5HKBRCMBjsa35ewzCQyWTMZ3nU5dLSEjKZDNbW1izjgAaDQct4u/pybm4OU1NT8Pv9u/7b0OOn1Wohm82ar/X1daytrVnS1tbWsL6+bm7r35FwOIzR0VFMTExgbGwM4+PjSKfTGB8fN8d1lrRoNPrIn3ljYwMrKyu4f/8+MpkM7ty5g/v37+P+/fu4e/cuMpkMstmsebzP50M6ncbU1BSmpqaQTqcxMzODdDqNEydOYHp6GqlU6rF8Vq3VauHatWu4cuUKrl69ijfeeAOGYWB8fBxnz57F+fPncenSJbz00ktwuVwH/XEPpRdeeAG/+Zu/ib/4i7/o2Le+vo4XXngBr7zyCv7jP/7j2PwOK5UKfv7zn+ONN97AG2+8gQ8++AAulwsvvvgizp07Z/5fcW6Z3tVqNayurmJ5ednMZ53W1fwLeFB+j42NIZ1Om3ns5OQkRkdHzdfIyAgmJiYwOjpqzm9BdJTU63VsbGxYnmO3i4Pv3r2LRqNhvk/6OTrFwLJvZmaG/SCJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOhx9ENXu91uH/SnICIiIiIiIjpq6vU6KpWK7T6ZBMVOLpeD3a16s9lEsVi0fU+1WkWtVrPdVywW0Ww2O9Lb7TZyuZzte2QiFzuVSgX1et12Xz6fx/b2dkf69vY28vm87Xv28/d0GLndbrjdbng8HrjdbkSjUQQCAXi9XsvkBm63G/F43PYcLper64Q1sVgMHo/Hdt/Q0BCCwaDtPp/Ph0gkMvBrhkIhBAKBQ3NNv9/PAfqPKLu80Sm/fNRjH8frOaX3MvnWfggGgxgaGupr36DS9+MaB/3zPa4TxvT6f39U0/r53u81u/8vpnWPR4geR3b3hnb3XE73fIZhdKTZ3Tfa3bfaxSR2eZ5MNrrT5wbs7yOd7iGd8tdCoWCZ3BPofs+73yKRCHw+n+XnbLfbiMVi5rb8/r1eL4LBoOXv0Wq1zHvSdrtt+Vn18zYaDbjdbvj9fjSbTcuxrVYLbrfbXJd7e4/Hg0ajYTm2Wq2axzabTfPv7nK5UKlUbO/9H4XL5UIsFjPvuQOBgJmfy723fB6v12uZOFO/t9TvJ+3u3dXzAQ8m7VQne9XLE/2aQGfsFo1GLZNl6ff23e6tiYiI1Din233nQe7r5xyDoJfH6vZh3acfp8cHREREe22vy/hHPUe34/aiLazXMnu/juvnHHrdBRER0V7S+yyq7S5qed1oNFAqlWzfo7YrDfI9gLVty+k9g6C2K6ttD2r9vt5XTn2P2i6gtwmox+ntFt3qE/Tr6W0g0gYlHtd+J0R0PEmeLuWO9B2QpfRjkP1yvPRjl/tIWUpfeikfpN+C9Inv1g/fSSKRgMvlMu/RZCn5uuTZkh9Lu7OUI7KUMkLyfNkn+bqUG2xTJiIi6o3EB/u97JVarveylBhCYgaJEaTPmnpvKPGJxCHy3m7PKBAREZGV1B3stOzn2J2WTs/eO5Gyfb+W7OdGRETUnWEYZhuGPLModQbyHKS0c0t7hLRPSDwg7RjSriHtHXp7idP4QHak7cLj8SAWi5l1CVLvIHUMaptFKBSyrXOQNhCpr9DrKdR2bqmfICIiok6GYZjxgsQHEhdIPCBxgJT/du+RGENiDnXcBOlP1299g1NfBYklpLxXYwTpjyblf6/9JSSWkGsSEREdlFwuZ5bD+XwepVIJ1WoVxWIRhULB3GcYhrleKBRQKpVQqVRQKpWQz+fNfU7jBItQKIRQKIRYLIZIJIJQKIRIJIJ4PG7uSyQSCIfDGBoaQiwWQzQaxdDQECKRCKLRKILBIKLRKCKRCILBoGVsIiIiIhosiQHK5TKKxSLy+TzK5TLK5TIKhQKKxSKq1aoZE1SrVTN2qFarqFaryOVyKJfLqFarKBQKXa83NDSEUCiEeDyOcDiMUCiEaDRqiQfi8bh5XCKRQCgUwtDQUEcMocYaRERENFhq/z/DMGAYxq63s9ms45w+wIO+gslk0qxXTyaTO2477ZuYmOD460RERAOklu125X0vaevr67ZzEwLWZwakXLcr653SJJ1j1REREfVne3sbuVwOhmHYLrut53I52zHvfD4fkskkEokEEokEkskk4vF4x7os1fV4PM66fiIiOlaq1SqWl5eRyWTMe2l1W11fWVmx9JeXe+N0Oo1UKmXeH6vbss46cyI6DjKZDBYXF7GwsGAu33//fVSrVXi9XszMzODUqVM4c+YM5ufncerUKTz77LOsTySiY++FF17Axx9/7PhspsvlwnPPPYcPP/xwnz8ZEe2lRqOBjz76CFeuXMHVq1fxf//3f8hmswiHw3jxxRdx/vx5nDt3DufOncPw8PBBf1wi2gWpd1paWkImkzHXZfv27duWOSqSySTm5uaQSqWQTqc71mdnZ1m/RER0xBSLRWxubvb0MgzDXK9Wqx3nikajGB4exvDwMJLJJIaHhzEyMmKmqenqPpnXjoiIiJzp/fO79d2327+6uuo4pq9dn/yd+uyr+1KpFMfiJSIion1jGAY2NjYc6y82NjbM1/r6OrLZLIrFYsd5hoeHMTo6ipGREYyMjFjWx8bGLNuyn/XjRLvnNA7JbsYs2Wnu1EGOVzI+Ps55y4iIiAZM5iyTMU4rlQqKxaJljNNCoYBqtYpyuWyOgS4xgTreqXqubmRekEQiYTumqTzTHA6HEQ6HzTFOw+EwotGoZZzUeDzOuU2JiIj2kMx1ahcPyJwo6twpxWLRHEddP67XsdHV8dBjsZhl7hRZ18dN73aczFlGRER0EKReXeYH1ef+lDk/ZR5y4OGcnzJnuNTDy5yiMte4jE3udI1+7DS3p2xLuSpzhCYSCbjdbiQSCXP+cZl7VMYxlXPK/TvHJSUiInIm5bg6L7jEBBILSAwg9+wyl7gsJc6Qc8lxEitI7KDOc2I3dqkTKdMlHpCllPEyp3gymTTnHJc5yNXjY7GYGT/InOUSR0gMIvEEERERdaeX63u9LBaLjvOa2FHnOtmLpd01ksnkXv26iYiIjgy9XUGtjzAMAwDMOge9bULe2+9S6il6JXUHg17qdRT6koiIiLrTy3a9L4S0Wdj1iZA4Q5ZOfSSk/kHvK9ErKdeljULaLACY9QaylLYNaeuQuEDiB+krIX0r7PpOSNsIERER7Wyndohejul3CTyMP3q1m3YLdVyEfpZ85oGIiKh3Umcg7Q9S5ut9Krs9oyFLSZelWm+hpst5eiF1ETv1m9T7T+r9KPX+lHq/SlnKOhERETnbyzoHp6XEEb3a636W+lLiEyIiIuqPU58Hp7oHvS+E3idCX0ofid32lZD6A71+QZZ6PUSvfSz1+g55v1yPiIiOB7VcUu+11WcEpLwD0FG/LuUiALOsA2DW9wMP+yYCsIyfpD7rAMBy363Oj6B+RrlPHwS1zJPyEnjYJiCkLyEAyzjJUh4DD+sA9PNKW4D+Xjmnei0pi/XzqdchoqNPzTMBWJ79VvNjwJpvA9Z8VB+vTu1jpZ5TzVflPsbuPWoe3+09/dahdqPmi2qfccCap6ptq+p7AFj6gTu9Ry0Dur3H7vl3wJrXs7/Y8aTO87S8vIxMJmNuZ7NZrKys4N69e1heXkahUDCfyVBJrKF+f1wuF6LRKBKJBFKpFNLpNGZnZzE3N4epqSlMTEwglUohlUpZ+hesrKzgs88+wy9/+Uu8//77uHHjBu7evYuNjQ3zeyyGhoYwNjaGL33pS3j++efx6quv4sKFCzhx4sSOP3c2m8XCwgI++eQTLCws4Pr161hcXEQmkwHw4LuRTqcxNDSEUqmEu3fvotlsYm5uDufOncP58+dx6dIlzM3N7fp3f1z83d/9Hf76r//a/N0eV4VCAe+99x7effddvPvuu3j//fextLQE4EEM3mq10Gw2EY/H8eKLL+I73/kOvv3tb+MrX/nKoRwjtdVq4datW7hx4wauX7+OTz/9FDdu3MCnn36K5eVlAA/uTUZGRpBMJhEMBuFyuVCv15HL5bC5uWmpYxwaGsKJEycwOTmJdDpt5hvqMpVK8RkpIiIiIiIiIiIiIiIiIiLad2r/mn5eKysrtv3RZEwwaQ9PJpM7vkZGRsx+XkREREREREREREQ0eOq4jWpdb79pa2tr5lgTOn3OCLUeuJ80dQwJIiIiIiIiIiIiIiIiIqKDpLe1DmK9VqtZxpZ2YtcGu5t1j8eDarWKfD6PWq2GtbU1ZDIZc5xeWa6urlrG5E0mk7ZjZ6rL6elpjvd8jBUKBayuriKbzZqv9fV1rK2tmctMJoO1tTWsra1Z/r+GhoYwOTmJVCqF8fFxnDhxAuPj45icnMTk5KQl7VGeO6vVarh37x7u37+Pu3fv4v79++Z6JpPBvXv3sLKyYn42l8uFyclJTE1NYXp6GrOzs5idncXJkyfN9cdh7NhWq4Vr167hypUruHr1Kt544w0YhoGxsTG88sor5tjTh3Vc4IPwyiuv4MKFC/ibv/mbjn2/93u/hzfffBMff/yxZZ6Uo6bZbOKdd97BT37yE7zxxht4++230Ww2cfr0aVy6dAmvvfYaLl68aJlngB6oVquW8e/1MlaW+nO5ds/jOq2nUin2qaIjS/0Odfsu6fFqMBh0jFXV7xC/P0REREREREREREREREREREREREREREREREREREREREREREREdMT90NVWRzojIiIiIiKiI0EmuOg1fbf7Bn2+x/1a+XzeMhjyYRMMBjE0NLQv+w77+QZ9rVqthps3b+LGjRtYXFzE9evXcf36deTzeQDA1NQUTp8+jeeeew6nT5/GM888g6eeegqJRML2OnT89Jsf2aXv1bGH5RxOxxaLRTSbzY70/WaXP/SbzxyGc+z39WTCLHqo2WyiWCxa0nK5nGXSknK5jK2tLXN7a2sL5XLZ3G6328jlcpZz6N8V/Tu1m+vanRd4MDlVq9XaMc0udtKvuV8SiUTH5BT6ZFMul6uj7LZLc7vdHRMVeTwexGIxS5rX60U0Gt0xzefzdUz64/f7EQ6Hd0wLBAIIhUKWtF6/t/x+0lFkNwmkXV5kl7fZ5YF28YlMOqnS82nAPt/d3t427yEOw+feL6FQqGPCQbt8yS6fs8s37fJhAIhEIraTZ0ajUfP31mw20Ww24fV6EQ6H0Wg0LL9Tj8djrjcaDTQaDfNnULe3trbQarXMn6ter5t/B6/Xi1arZW7XajVsbW3B5/PB5XKhVquhXq+b12k2m+Z2tVpFvV6Hy+WCy+Wy/C0rlYrlfYOi/y3U7W77+jl2v85jV94TERH1Qy1v1XK4Xq+jUqkAsMZ+jUYDpVIJgDX+a7VaKBQKADrv4dXYT71HVuM/9R67VCqZMYh6Pf24QYnH4+Zkxvo9p1rW6uWweo+t3m/q99VqbKjHdeFwGH6/H0DnfbYa6+kxYjQahdfrBWB/j01ERLRf1LK6l3W9/kgt29W6HL1OSa0j0uul1FhDrTfS4wg19ujWR2I39HI8FglFAYIAACAASURBVIuZdS5qfKHHCWp5r9cTqXGIGk/ocYF6LTVe0eMONX7QYx697YCIiGi/qWWzXk477dvNcYN+zyDrKXptK9jNcXv5Hqe2KiKi40bKh36WhmH0/Z5ardZ3+SP59n4tAd5nEhER9ULqwaXeXOq+pdyX+m6pH5cY4FGXvZL7vf1eEhERUW92UxcxiGU/9rtOQu0HSERERPb2O3awe4bUyX7EDMlkEkNDQ3zWnIiIqEfStmAYhtmuIX305dlDKfflecBe3iPPM+rv6YX0q5d2BakPSCaTZp9+6Uev9t2XvvlyvPTBlz72cj551k/ihW7j9hERER0mep9Efb3bPrvjdiqf7e63ZV3f7uW40dFR83l7IiIiGjy5N8/lciiXyyiXyygWi8jn8+Z2oVBAoVAwt/P5PIrFormdy+VQKpXMbSfyHHwsFsPQ0BDC4TASiYRZP59MJhEKhcx2/kgkgqGhIUSjUUSjUYRCIYTDYcTjcfM4Pp9ARES0d3qpR+i1nmFtbW3H+oSd6hF63WZ/QSIiosFzigv6SZN0J93K+G7pahrbFIiIiB6NU/ltl66/nO797cp0u5ddOZ9KpTjXDhERHWuGYSCTycAwDCwvLzuu37t3r2O+xmAwiHQ6jVQqhWQy6bh+4sQJzjFPRMdWoVDAZ599hoWFBbz33ntYXFzERx99hLW1NQBAKpXC/Pw8Tp06ZS7PnDnDZ4mIiBz87d/+LX7wgx90zC8ufD4f/uqv/grf//739/mTEdF+W1pawpUrV3D16lVcuXIF169fh9vtxtNPP40zZ87g/PnzOHfuHObn5w/6oxLRgBiGgaWlJWQyGSwvL3es375922xH8vv9GBkZQTqdxtzcHObm5pBKpcxtWScioqOvl74Idq/V1VVzzmGxU98EtW1EXuPj4+bcvURERNSbfvsY6vvW19cd65B7fX7Aaf/ExAQ8Hs8+/0aIiIjoOFH7dOovtV9nr3UYdvUV+j4+L0m0d/T54x9lbJWNjY2OvtwqfXzWfsZo1bdHRkYQCAT28TdFRER0fJRKJVSrVRSLRRSLRVSrVZRKJRQKBXMe+Vwuh2q1asYEsq6O5Spju1Yqla5jrAQCAXM81nA4jHA4jEgkYtmWsVtlOx6PW8ZlTSaTlvcSERHR3tHrEgY170s3O83n0u8cMOwvRUREh12z2USxWDTnN22328jlcgCAXC6HdruNfD6P7e1tc+40meu0XC5ja2vLLLNlW47L5XLY3t5GLpdDq9VCoVDA1tZW13lVdMlk0pwD1efzIRKJIBAImHOmBINBc55TmQc1kUjA7XYjkUiY86j6/X6Ew2Gz/cBp7lUiIiLamXq/3u9SvVfvZSnxRa/UvgKPulTv7+2WEoMQERFRd48SO+xmWalUUK/X+/qMg4whellKHQYRERF1J20K+73slbRB7Ha5m3YPIiIi6t1e1T10O7f0r+jFfrZpSN8IIiIi6o30nXTqMylLSS8Wi2g2m+bxEhPIeQzDMPtmSl9N6VMpfTh7JeW7lPXSF1LqE6Tcj0aj8Hq9Zv2C9JFMJBJwuVxIJpNwuVxmvUM8HjfrLLxeL6LRqFl3QURERP3Z734SEov0ar/7SCSTyT38bRMRET3+pB7BaSn1Df0uJUZwWvZK6h6cljvFA3Kc1FWofSCkDkLOJ8cSERHR7u13vcQgnv/cqc/Dbo6V9hAiIqJ+qM8TyD22MAzDXFf7CUq/AQCW5xrr9ToqlQoAWPoFyD2/kH4FACz37GoZq/ZdVK/XT39FJ+pzjlKfL30HAJjjNQEwy1oAlj6J0h9B+iAAsPQ3kPIZgGV8hn6uTUQk1DxR3+5l/aDe02+9rBM1T93t+iDO0W2d92P7r91uY2NjAxsbG8hms8hms1hdXcXq6ioymQzu3LmDTCaDbDaLXC6HUqm04zkDgQASiQSGh4eRSqXw5S9/GU8//TTm5+cxMzODkydPYmhoCBsbG/j000/xzjvv4Nq1a1hcXMSdO3ewublpxiwA4HK5EI1GceLECTzxxBM4c+YMvvnNb+Lll19GKBTq+llyuRyuX7+OhYUFXL9+HR9++CE+/PBDZLNZAA9iEb/fD8Mw0Gw2MT4+josXL+LcuXM4f/48XnrpJf5Pav75n/8Zf/AHf9DXs7SPu3q9jmvXruHdd981Xzdu3MD29rY5P4lhGKhUKhgZGcFrr72Gb33rW/jmN7+Jp5566qA/vkWhUMCNGzfwySef4JNPPsGNGzewsLCAmzdvmt87mUPF7XabfYtarRaAB9/HyclJTE9P48SJE5iensbU1BRSqZQ5d2M6nUY8Hj/IH5OIiIiIiIiIiIiIiIiIiI44dY7xfl5ra2tmG7hKnWO8n1c6nT6An56IiIiIiIiIiIiI9pPUScu4SXrds126U5oTtZ5aHStJfdmlq2ljY2OcW4qIiIiIiIiIiIiIiIiIDiUZa79UKqFWq6FQKKBcLqNWqyGfz6NSqaBWqyGXy5njMqttr7lcDrVaDZVKBfl83pzvRubb6yYSiSAYDCIWiyEcDiMYDCIejyMYDMLlcsHn86HRaGBrawutVgvVahWlUgnFYhG5XA65XM4ynn8ymewYg1NfzszMwOv17vWvlQ45wzCQyWRgGAaWl5eRyWTMpZq2srJizjcBPOhDIP9P8gyb+j8mabv9P2s0GlhZWcHdu3dx//593L9/H3fv3sWdO3dw584d3L59G6urq+bxsVgMs7OzmJ2dxcmTJ8312dlZzMzMYHJyciC/r0FqtVp4//33cfnyZVy+fBlvvvkm8vk8xsbGcOHCBVy8eBHf/OY3cfr06YP+qAfmwoULePHFF/EP//APlvTXX38d3/3ud/GjH/0Iv/Ebv3FAn27vfP755/jxj3+M//7v/8bly5dRLBYxPT2NS5cu4dKlS3jttdcwMTFx0B/zwOTzedy7dw/379/HysqKmW/JuixlLh0A8Hq9GB8fN/MoeU1OTiKdTmN8fBypVArj4+PmXARER5WU/d3K/Xv37lnmswJ2ji+TySRmZ2fNeZyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOuR+62upIjkRERERERHtEJk94XNMP42cqlUpoNBq2n/UwCAaDjgNqD3rf43ytvfjsiUQCLpfLdh89ulqthmvXruG9994zX4uLi2g2m0gkEnjuuecwPz+P559/HqdPn8bp06eRTCYP+mPvi3K5jK2tLUuaXV5VLBbRbDYtaXYT59il5fN5y+Q3AJDL5aBXcRmG0fH59LR2u41cLmdJ297eRj6ft6S1Wq2OQdEB+5/N7v1A9/JlP4VCIQQCgY50u/9Rv9+PcDjckR6NRjsmefF4PIjFYh3HDg0NIRgMdqTb5VM+n892EPlIJAKfz2dJc7vdiMfjHcc65Y3xeBxut9uS5vV6EY1GO44Nh8Pw+/2WNJfLhUQi0XEs7Q39+yITdqn0772e/2xtbaFcLpvbdt93PS86LNfdK/r3X//O2f2f6993u++Y3ffcLq+x+27Zpdl95+3ynVgsBo/Hs2Oa3fefsRIdJXqe0mg0UCqVLMfU63XLJElAZ34F2Od7TrGNXaxlF6fZxX12MaNdXrgXn3s/2MUYTrGLXQxml2/Z5YN2eahd/muXd9vFef187qGhIfNvWK/XsbW1hWg0ikajYf4dJU72eDxotVrm38jv91v+R9X/JfV/SI219fJUJuW0e5/+/6D+v9mVy4Og/+7Uv41evgYCAYRCIXNbLbv08+h/T/X/RT+P+j+ix+bdzqP/L9j9rxEREe0Ftb5NjfvUcl5NV+NANeZVz6PGgHq5r8Yc6r29Gkeosasai9jFr7uhxwVqmazep6rxoFo2q/fLaryhlvV6/KYep8cI6vn0OgI1RnGqIyQiIjos1Hqlw7xuV3e2G3pdj7rd675BH9fPOVg/T0REh41aHyD1B071FmodgZTtah2EWmehxgHqNZzqJdRzq9ccdJuXWjbrdQVqOa3WG6htEt3eo9ZDdHuPWvexm/cQEdFgSTkl5ZJhGGb5JmWilHFSRkldfqVSQb1eN8uxXs7VKykjpJ5c6q0TiQTcbre5jMfjZlu71GdLmSL92uRcUr7JuWTJdnIiIqL+SRkv/fWkTV+PE+ziA6cYQ+6lpb1enieye17IiZT7evm/10siIiLqncQHalwgsYQeD+TzeTOWkNjBaSlxib7slfTvU/v5SR+/nZbq+7otpa5bXxIREdHOJE7Yj6VhGH099y/t8HuxTCaTljSnsUKIiIjInl0Zv5u4YKdj+3lWoJ+yfzfxgizZF4KIiI4KKZPVcrnb+k7H2Y2ZpdLL127rveyzGxOPiIiIBs8pFuh3u594YafYoJdYgc/dExER7a1qtYpSqYRisYhcLodisYhSqYRSqYR8Po98Pm9u2x1TKBRQKBTM/o1O5BnGeDyOaDSKcDiMcDiMRCKBSCSCSCRi2Zb9yWTSXI9EIuZ+faxpIiIiGhy1TsCunqBbuqStra11zKMm9PZ89WWX7pTGOgMiIqLBsSvre3ltbm6iXq/bntOurO/lNTY2xrEJiIiIFGo5vby8jEwm47iu348HAgEMDw8jmUwinU4jlUqZZa66nU6nMT09zTKYiEjRbDZx48YNLC4uYmFhwVxev34d7XYbsVgMTz75JE6dOoUzZ85gfn4ezz//PMbHxw/6oxMRPVYymQymp6cdnz11uVy4c+cOpqam9vmTEdFBW11dxS9+8Qu89957uHr1Kq5cuYJarYbJyUl89atfxfnz53Hu3Dm8/PLLHGOG6Ija2tpCNpvF8vIylpaWsLS0hEwmY27LuggGg0in05ibm0MqlTLXZXt2dtYyFzURER0vjUYDm5ub5mtjY8OyzGaz2NjY6Ei3e0ZiZGQEw8PDGBkZsazry9HRUXObZRAREdGj6TYOQi/POWxsbJhzIOt6eX6h2z72eSQiIqJBMwzD7B+qv9S+o/JaXV3taHPXYxa9D6mePjo6yvEbiA7Io4wDp+/baS7bbuPA9TJWHJ/vJiIi2j/9jinfbTubzaLRaDhey24MmH7HjJXt4eFhBIPBffxNERERHU+POheNflyhUHAcLw7ojBd2My+Nuj4yMsJnAIiI6EgYxNyuvby3VCp1vbdXDXJu+J2WbC8gIiLq3W5igkedU75XjxI/9LtkOwIREVFvWq2WWXdfKBSwvb2NfD5vLtvtttlfUF0CMOeX1Zd2x7fbbct5ncYAsxMOh+H3+81lKBRCIBDoWEYiEfh8PsTjcXg8HiQSCXi9XkSjUfM4OTYajcLr9SKRSMDj8SAej8Pn8/EZbSIioj5tbW2hXC6by0ajYbY1DHJZr9dRqVT6qovweDyIxWJmHCH1Bnaxg9vtRjKZhNvtRjwe74ghpL5B4hE1lnC73UgkEnv8myYiIjqaisUims2mWTeRy+Wwvb1tLvP5PJrNJorFomNcUKlUUK/XzdhBzin1D4ZhWOozeiFlvx43SAygxg8ul8usX4jFYmYcoccgejwh54zFYvB4PHv4WyYiIjp6JC6Q+giJD6Qfgx4nSN2FHi9IDCJxg7RnqPGDxCS9khhA6hT0WEDiCz0mkDhDYgOJN9R2DDm33tZBRERE/dH7P0rMoMcOegyhxxJ6TKEvd9tHQp6dSCaTHW0dElNIDGHX50HiD7s+FPoxRERE1Bu9/JflbvtB6PGGHnf0Ez+obRc79ZvspY+lHm+oxxIREdGj02MDiS30vhB6XGAYhlnvIPGD1G9ILCExSi6XM+smemUXH+j1EdK2IW0Zap9Lvc5Bb8tgTEFERIeF2pdQymEAZlkMwGwvAB7WCQAPn5lU+xFIuQzA8qyDOn6TlOf9Xnu3pOwGYN7fAzD7IUifRwBmua8eu1OalO/qs5gSH0j8oF5P6hyIiPql1pPKfY++rubT6vGSZ6t5r9xTAQ/vzQBrPiz3WYA1T1bzdXU83Z3m6+mFmk+qebjcgwHW/Fztey5ty2reLm3MAGzzZTXNLv+WND5z/5A6r9vy8jLu3r2Le/fu4f79+7h//z5WVlZQKBSQz+cd566V5xGHh4eRTqdx8uRJPPnkk5ifn8fZs2cRCATw1ltv4c0338SHH36ImzdvYmVlBeVy2fI/FgqFMDExgSeffBIvv/wyvvWtb+HChQs79iO8f/8+rl27ho8++gjXrl3DBx98gJs3b2J7e9t8b7PZRCwWw0svvYTvfOc7OH/+PF555ZVjP2fuf/7nf+J73/searXakR3bemVlBVevXsWVK1dw9epVXLt2DY1GA/F4HNPT03C73chkMshms4hEIrhw4QJee+01vPbaa3j++ecPxfigGxsb+NWvfoWPPvoIb7/9NhYWFnDr1i0zbne5XPB6vWi1WmZZ4XK5MDExgZmZGZw4cQLT09OYnp62rKfT6WP/HSAiIiIiIiIiIiIiIiIiosFQ5/Xu55XNZm3nFFXn9e7nNTk5CbfbfQC/ASIiIiIiIiIiIiI6bvS6cXmOt5+09fV181linYx1pNeZ95om6fIMLhERERERERERERERERHRYSfjKheLRdRqNRSLRZRKJdRqNRQKBXMum3w+j0qlglqthlwuZ46hr7bJ5nI5lMtllEolc6xmO263Gz6fDx6PB+12G81ms+N5p2AwiFgshmQyiZGREYyNjSGdTuPEiROYmprCyZMn8eyzzyKRSJhjLtPxVKvVsLq6ikwmg7W1NWQyGayurmJ1dRXLy8uWNJn3AXgw7vb4+DjGx8dx4sQJjI2NIZVKYXJyEhMTE0in00ilUpiamup7ruZqtYpbt27hzp07uH37tuV169YtLC8vm2OSB4NBnDx5ErOzs5iZmcHs7CxmZ2cxNzeHJ554AhMTEwP9fe1Gq9XCJ598gqtXr+KNN97AT37yE2xubmJ8fBwXL17EpUuX8N3vfhdTU1MH/VH3za/92q9hbm4O//RP/2SmtVotPPfcc5ifn8cPf/jDA/x0g1OtVnH58mW8/vrreP311/HZZ58hFovhtddew6VLl3Dp0iU89dRTB/0x94WMK7+8vIylpSVzXZY3b9405y8AHswVIOPHp1Ipc5lMJi1pMzMzO44HT/Q4q9Vq2NzctHxf1KXM1XDnzh1Lvz7pm6d/h/TlxMSEOc8GERERERERERERERERERERERERERERERERERERERERERERERER9eSHrna73T7oT0FEREREtF/a7bZlAGFVLpeDXXicz+exvb3dkV4sFm0nSC+VSh0D7gNApVJBvV7vSJfB/nX1eh2VSqUjfWtrC+VyuSO92WyiWCx2pLdaLRQKhY70br8LwzBs0/v9XRykZDJpm55IJOByuTrSY7GY7QC3kUgEPp+vIz0cDttOjiAT3uuCwaDtQPd+vx/hcLgj3efzIRKJdKR7PB7EYrGOdJfLhUQi0ZHe7RoAEAqFEAgEbPfF43G43e6ePwPRUXXv3j38+Mc/xttvv4133nkHn3zyCZrNJqLRKE6fPo3Tp0+bkxPE43HLe7e3t5HP5y1pdvmyXR4uk8jslGZXLtiVITKhzE5pduWSXRlWLpextbWF/WaXL9ulRaPRjsH/7fJ6u7zOLs2u/HDK2+3e75Sv25UnTnl6IBBAKBTqSLf7ubxeL6LRaMex9HjRv487be/Xe/bquoVCwZzEZy/p392dtnfznkGcY1DXdYrpiI6CQeRPj+sxTvfte6mXfMop7VHff5jSnNL7zW/V+wL9vkH9+6p1MWr9ixqPq/G6GuOr9wrqPYd6Pb1+SK0fU8tmp/qu3VBjazWWVeN6vX5F/f3qsbX6Prfbbbkv0/9W3c6jxuZ6TK6fx6keiYiI6LBQY0i79f/P3r1Ht3HW+eN/S7IkW5eZkeM0sRLHiXtJa6ebNmkXaFJYeiOlhQKHlgO03GHbpgvLWc7C8s9u/9k9y3cX6JaWXuhyXQ4cOBTa9N4sBZIWFtJr4pYmcRo7viV25iLJtm7W74/+nodHo5EtObYVJ+/XOXM082g0mrrRPJ/5PM88z2zvz8fnqr0/X21Kav280Osn+nnGDkREtJSouQW13hb5CrW9Us1JiByGmvNQ2yzV3II4lpqjqHf9RKj3/fO1ruYk5mt9pn4gREREJzs1plDbNETMoNbrantGtRyCiB/U9g411pjtO9QYplqf3XqobROi3UPtV6n28VH7aKo5ArVvk5pHcPf5UfvCqt8702fUtphqfWCJiOjkJOovUT+Ke2/HcVAoFGBZlqzXvN4T9+ViH1FfirpZfKaePgCijhP1jXg2QdRFon1ftLmLOk7Ue4ZhwO/3wzCMmo9FRERE9XO31dfyaprmnD9TK1HPq6+JRKKibLbX2T7j9QwRERER1cY0TZl/F7kEkUMQuXqRd7BtW+YdRIwg8gy2baNYLMKyrKrHq4XIq4v63TCMslyD16toa5/tVbTDu1+JiIiofqKdXrRdpFIpGR+ItgrbtmU8IGIG0zQr2jpEO79pmvJ5x3r7C4o2B9Fe7257EDGGaM8Qbenudg0RO4hYIZFIyJjB3c5BRERE9Znvtopq+9QzftF8tFHU8hn24yMiolNdtbraNM2K7Vr2Gx8fn3WcU3edm0gkKrZrfa+lpaXqWNVEREQ0v9xxw2yxw4nEDO579dnig5nihba2Ns/5KIiIiGh+TUxMIJVKIZ1Ow7IspFIpuZ1KpWRZOp1GOp2GbduwbVtuq/tUG+tQtP3ruo5YLIZ4PI5YLAbDMBCPx+V2PB6HruuIRqOIRqPQNA2apiEajSIWi8ltji9IRES0sGzbhuM4ckmlUjIGELFCKpWC4zhl8YNYTNOcMTYQ4yPoug5d12U8EI/HoWlaWYwglkQiUVHG5xKIiIgWhto+MNPibkswTRMjIyOec5Or7QL1LK2trRwXiYiIaBaTk5MYHh7G0NAQTNOsuj40NFQ2ZyLwlzo6mUyivb19xvWVK1dybl4iohoMDQ2ht7cX+/btw549e+T61NQUmpqasGbNGnR3d2Pz5s3o6elBd3c3uru72aeaiGiebN26Fc8995ycj1zw+/1429vehl27djXozIjoZJLP5/Hyyy9j165d2L17N379619jbGwMkUgEF154IbZu3YotW7bgkksuwbJlyxp9ukS0SKampjA0NIS+vj4MDQ1heHgYfX19cru/v1/OwQW8Oa9Ve3s7kskkurq60NXVVbbd2dnJ/q5ERFSmlv4YatuOaZoYGxvznOdK1EOz9bsQbT3Lli2T8zkSERHRias2jlMt/SxN08Tx48erzh9RbQwn91Ltfdb7REREdKLc/VJnyl2YpomjR49WjEntjlPU/qhe+YvVq1dznCmik0yxWJTPmWcyGWQyGfmcuRhvxnGcsvFn0um0fMbcvY+7L4+gjkcjxp5Rx6MR27XuQ0RERAuvnnHxaxkb37Isz2fThbmMg19t3xUrVrA/DxER0SKY73l0ZmpfFarNh1PrvDnu/TjuLRERncpEHSvmt0+n08jn83IuWtM05fz2hUIBqVQK2WwWExMTsp7PZDLI5XJy3FnbtlEsFmFZlmxjyOfzZc/hzCaRSMDv90PXdTmHfTgcRiQSkfV1NBqV49k2NTVB13UEAgEYhiHbHILBIGKxmJw3JxKJIBwOy3ltE4nEAv51iYiITj0iLhB1vIgPRF2fy+WQyWRkvOCe816si9hDxBEiBhHxhIhFxGstfD6fnAvXMAyEQiFEo1FZ/+u6jmAwCE3TZGwQj8cRDAbL9hcxhmEYCAaDiMfjZfs3NTUt8F+ZiIjo1CT6DrrrefEq4gD3q4gT3K9q7kIcR8QiIuaohajnRQwg2gQSiYTML4g4QeQkRF5BzUW48xciBhHxg4hTiIiIqH7udgjLsjA9Pe3ZDjGXdo+5xBC1tkOosUW97R6ivUPX9QX+CxMREZ2a3G0Zos53t1m42ypE3CByGWr84I493MeslcgTqDFCtfhC7d8g4gj3eyI3oWmajDFEbEFERERzo/Z1WOhX8bxELUQcMNOr+lxEPe+JV84XTEREdOLEmAni1TRNAIBpmmXlos3Dtu2Ktg6RsxD5DcuyKp7pEO0htVD7RYh2CHebxUx9J2bqDyHyEqJ/BREREdVvLrmEuewr2kNqcaJ5iFr35VgORERE82ehYwnxKvpz1mK+Y4pqnxF9KIiIiJYitW4VbQii/QBA2bhNan9F0ZYAQPZ9FO0PAGS7AgDZtqDuK/pAAn95/lPdb6b5JGaj6zr8fr9sXwD+0ndS1N8A5NhPol4XY0UAkG0SXmWi7yXwlzYQ0aYBQMYGoi2EiGg+ifZf9VqtXnPV66t63VafXVOv4Wo9oF57xfeo13bRnx0orx/UY4vPzYVoBxZ92tUy9ZrqVSauvV7XY7XM67otytTru7jmn6xs28bQ0BBGRkbw+uuv489//jMOHjyIwcFBjI6OwrZtZDKZirrU5/PJNvcVK1ZgzZo1OO+88/BXf/VX0HUdfX19eOGFF9Db24v+/n4cP368bOylSCSClStXYv369bj44otx+eWXY+vWrfD7/VXPNZPJ4JVXXsFLL72EPXv24He/+x3279+PYrEIn8+HUqmEYDCI9evXY9u2bfjQhz6EzZs3n3ZjIzzzzDN45zvfidHRUZxxxhmNPp0TViqV8Nprr2H37t3YtWsXdu/ejQMHDiAQCGDDhg0466yzUCwWceDAAfT29iIQCOCSSy7BZZddhssvvxxvectbGjrO1sjICH7961/jD3/4A15++WUcOnQIIyMjnv1tI5EI2tvbceaZZ+Kcc85BZ2cnVq1ahY6ODnR0dCCZTDJvREREREREREREREREREREdZucnMTw8DCGhobkvNqzLdXm21bnyK5nOeOMMzhPFhERERERERERERGdNtxjHqk5+HrKZnrWVs3Zq2MZ1VO2bNmyk/oZWCIiIiIiIiIiIiIiIiKimbjnpfFqfxXbY2NjGB0dM29RsQAAIABJREFUhWVZsG0bx48fh+M4yGazyGazyOVyKJVKVb9LjFUfDofR3NwMXdexbNkyGIaB1tZWtLa2erbLem2LMe3p1ON+lk+su8v6+/vL5ktqbm5GMplEe3s7kskkurq65Lp47ezsrHmOxHw+j2PHjmF4eBh9fX1ly9DQEA4fPizHHg+Hw1i1ahW6urrKlu7ubqxfv74hzwUWi0U8//zzeOqpp/Dkk0/iueeeQz6fx8aNG3HllVfiyiuvxKWXXorm5uZFP7fFct1110HXdfzgBz+QZQ888ABuueUW9Pb24qyzzmrg2Z2Yvr4+PP3003j66afx+OOPI5VKoaurC9deey3e85734O1vfztCoVCjT3PeFItFjIyM4I033kB/fz+OHDmCwcFBHDlyBENDQxgYGMDIyEjZNaGtrQ3JZFKOSS3GqG5vb5dlra2tDfyvIlp4ap1arT4V8yuoMVwikUB7ezsSiURZPep+ZTxGRERERERERERERERERERERERERERERERERERERERERERERES0YH7mK800yicRERERNdT09DRs264oT6fTyOfzZWW5XE4OaK2yLKtiYHcxcLyqWCzCcZyKz6dSqbJBeWf6Lq9JvicmJpDNZivKxcD0btlsFhMTExXl+Xwe6XS6orxQKCCVSlWUV/vbNVIoFEI0Gq0ob2pqQjwerygPBALQNK2i3OfzwTAMz++oNpirruvw+/0V5ZqmeQ6qHovFEAwGK8qj0ajnwNRioH+35uZmtLS0VJRX+1sEg0HEYrGK8mp/C7/fD13XK8qJqH7u66/7+loqlWBZVtlnbNvG9PS03PaqX7zKvOqGTCaDXC5XVuZV33mVedVVjuOgWCzOeL7VyrzqzsXgvoZ7Xe+9rnteZV7XTa/6xuu663WN9ioLh8OIRCJlZV7Xfa8yr3ojEokgHA6XlVWrd4iAyutLPdsLte98fs9CqeV3Otv2XD7TqO+tFqcSLTVe977uGMjrvtkdE9Wyj9c9vztm8rp3r2Ufd5zllRtw5xaq5Q8Wgld8476f9trHMAz4fD657XX9csd6tezjvoZ5xYfuGMprH684sNr99Kk0SUy1eladUHGm9xdyX6/7kLlS/y0t5vpcPhOPxxsy0R4REdF8EzGrWr+LMjV+FfGvGhuL+FvNt6rxvvp5NRcqjqW256mxe7X2uHqobUYiLlRjSbVeV9uRRDysxphqPlGNWcV3qHGr+h3q59Tyau1ERERES41a76uxhMj1qTGCWterbalecYEaQ8x2LDVuEDmKan2G6qHGByKWUNsi1ZhAzbmpuTV1Xc1Tzcf6TH1tiIiIlqLFbPuo93Mn2vdqru0XC7Wvus4+CEREpy9RD4rcvWVZKBQKcBxHtgPM9J64t7dtG4VCAbZty/t19b1a+hKInLmon8Q9uWEY8Pv9MAxD7iPuzUX+XXxG3KeLfrqiPV/cs6vHIiIiohPjvqeenJyEaZoVZXN9T5TVyn1v3NzcjEQiUVE22+tsn2F/QSIiohMj8gWWZSGXyyGdTsv2ftu2kc/n4TiOzC+I+EDNTxSLRblvOp2W8YM4ttdz2NWIvn+JRELmHcTzNSLPIOp/kZvQdV3mJkSMIHIRuq4jEAjAMAzZV9DreR0iIiKqn+gPKOr+VCol4wN324RpmjJW8Io1ZjpGLRKJhIwHRMwgYgS1rcOrncLn8yGRSMi+f+J5BRGLiBii2lhVREREVJ9a2yNqed9d5jU+XDXz2VYx02e8xjojIiI6XcxUt7vXa3lvtvaGavV3IpGo2K5lv2XLlrEeJyIiWkS1xAi1btcSN8wWL9QaT6xYscJz7g0iIiKaf+62Aa9YoJay8fHxirlqVPXEBzOVVZu7i4iIiOafu+6vFhNUe29sbKxijjqhWh6h3rJTaV4OIiKik1W1un+2pVos4K7Tq9X1XgvbD4iIiOqTzWYxPj4u6+fh4WEMDQ15rg8MDFTU3YlEAu3t7UgkEkgmk3Ldvd3R0cH5iIjolNTX14dgMIiOjo4F/R7btnHgwAHs27cPe/bsQW9vL1588UWMjY0BANrb29HT04Pu7m5s3rwZPT096Onp4TjrREQL7N5778Wtt95aMd54IBDA3Xffjc997nMNOjMiOtn19fVh165d2L17N3bt2oVXX30VpVIJXV1d2LJlC7Zu3YotW7agu7tbzvU3F7fffjv27t2LO+64A8lkch7/C4hoMZimiaGhIQwPD6Ovrw99fX1l24cPH5bP8ASDQbS1tSGZTKKrqwtdXV1ob2+X22KdiIhoNl59QNQ2I69ldHS04t54pj4e7jYl9vkgIiJaeJOTk7BtG47jwLZt2LYNy7LKytRXy7JgWVZZ2eTkpOexI5EIdF2HpmnyNZFIVJSJV8MwYBgGEomEXOfzoERERFSPycnJGfMV7veOHj1aMSaWO3dRLV8h3lu1ahXHxyRaYmYbE6eWcXOmpqZgmmbV73CPxTvXMXPa2toQCoUW8a9DRER0epvrOP1e2zONmwN4xwu1jt/v3ua4/URERIur3phhtv1s267oY6Wa7zl/mG8gIqLTmTqefi3z8db66v5sOp2eMS+gmm1+3hMpY71PRER04sR9u2VZKJVKME0TpVIJlmVhenoatm2jWCzCcRwUCgWkUikZF4iYwDRN5PN5pNNpTExMIJvNwrZt5PN5OI4j95+Nz+eDYRgIhUKIRqOIRqMIhUIwDAPBYBDxeFzGAZqmIRgMQtf1uvcnIiKiEyfiABErWJYlY4VsNouJiQkZF6RSKRQKBViWhWKxKOOEdDot44RMJoNcLifnAzZNU8YgtfD7/dB1HU1NTYjH4wiHw4hEIohEIgiHw4jH42hqaoJhGAgEAtB1HcFgELFYzDNeEJ+Px+MIBoNlMQoRERGdmPlqw5jtMyIGqcVs7RFzfU+UiZwFERERzZ3IM4gcgqjrRS5BtGuo7RsiVyHyEO6cheM4Mr+Ry+WQyWTke7UQuQi1rULkImZ6T9M0madw5ydEDiORSMg8BxEREZ0Y0QeiWp8HETeoMYE7vyA+7ziOZ0wh9qmFuy1D5A28YgSRZ4jFYrK9QrRzuGMMxhFEREQLp9a2jBPZR+Q4alFr20U97Rxs2yAiIpofom6fqU+kO/9Qy77V+lrWQuQVdF2H3+9HIpFAIBCApmkyvyBiAbGvpmkIBAIz7qv2rxR5DiIiIpof7jEdxDOgtcQJXs9vuJ/1mMuYESIGUNs1RLwgnucQOQavOCEWi8lnP93PgyYSCdk2QkREdLoR9TMAOd6DOjaDmCdC1N+iDwTwl36VXmWiHyUAGSeoz2uKOEDECQDqegbDTfRZUOt0USb6NYhYQcQCIucgxpgAIPMXc/ksEdFiUq/VXtdvUeZ1nVfLxP2eV5m47wMgc8JeZaKv/FyI+zkA8pqrXlu9ykQeWdwnivs+0WdNPaZhGPD5fPIeUtwHuq/rc5VOp3Ho0CHs3bsX+/btw6FDh/DGG29gdHQUx44dQyaTqcili3vTZDKJM888E52dnchkMhgaGsLAwACGhoZw/PjxsjqxpaUF7e3tWL9+PS6++GJcddVVuOSSS+Dz+TzPK5fL4aWXXsKf/vQnPP300/jDH/6A4eFhOS5zOBzGOeecg8svvxyf+MQnsHHjxjn/DZaKffv2YcOGDdi7dy96enoafTpzsn//fuzcuRM7d+7EM888g7GxMUQiEfz1X/81Nm3ahJaWFhw8eBBPPPEETNPEunXrcOWVV+KKK67AVVddtahjXk1PT2NgYACvvvoqnn32Wbz44ovYv38/RkZGkEqlyn4Xok9qe3s7zj77bFxwwQW48MILsXbtWqxduxaapi3aeRMRERERERERERERERER0dKizmFdzzI8PFxxLHVe6noWzmFJRERERERERERERLT41DYCdcxldfEqV8vGxsZmHPvIq+1AHT+5lrIVK1YgEAgs4l+GiIiIiIiIiIiIiIiIiGh+WZaFsbExHDp0CIcPH8ahQ4cwOjqKkZERjI2N4dixY3AcB7Ztl7XB+nw+NDU1IRAIoFQqYXp6esY2WjG+vGEYiMViiEajc97WNA1NTU2L8eeheTQ9PY2jR49icHAQQ0NDOHLkCIaHh9Hf34/h4WEMDg5icHBQzokAvDnW88qVK9HR0YFkMolkMonVq1dj9erV6OjoQGdnJ9rb22tqu5+ensbg4CAOHjzouYjvDQaD6OzsxJlnnum5tLS0LNjfSJVOp/Gb3/wGTz31FJ588km8+uqraGlpwaWXXopt27bhmmuuwTnnnLMo57JYPv7xj8M0TTz00EMA3vx/ds455+CKK67APffc0+Czq8/09DT+8Ic/4Je//CV+9atf4c9//jM0TcMVV1yBq6++Gtu2bcPq1asbfZpzlslkcPjwYRw+fBgDAwPo7+9Hf38/Dh8+jP7+fgwODso6oampCStXrsSaNWuQTCaxatUqrF69GslkUv62V61ahebm5gb/VxEtHNM0MTQ0hOHhYc9X0zTR399fNh9EKBTCsmXLkEgkkEwm0d7e7vna0dGBYDDYwP86IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiAvAzX6lUKjX6LIiIiOjUZZpmRdnExASy2WxZWbFYhOM4Ffs6joNisVhWls1mMTExUdN3ZTIZ5HK5srJCoYBUKlXTd4mJp1WlUqlsUOqZviufz5cN3inYto3p6emyssnJSUxNTVXsu5gMw4DP5ysrE5NiqwKBADRNq/h8PB6vGIw9FAohGo1W7NvU1IR4PF5RXu3YPp8PhmF4nncikfAs13Udfr+/pvMEgFgs5jloaiQSQTgcrij3+tsAQDgcRiQS8TwnIloavK7J7rL53m7UMVOpFAqFgtefYd41NzdXTJxQS9lcP1drWT6fx/DwMA4ePIgXX3wRo6OjCIVC6OzsRHd3N84991ycd955iEQi834u1eokovmmxqq5XA6ZTAZAZWyrXhPUWNgdr6vxrBrfu+NfNUZ3X3/U+Ht6ehq2bcv33DG/V6w9H9wxqTu+U3+j7njUHedGo1GEQiG5rcbW9XwPUBl/igmUVO4Y2H0Mr2sO0anEff1yX3/cuQf1uuW+prnv/dPpdNmkZuq1bLbvcV+vvPId7uN75SkWM0ZzX7+87str2cd9T+113+++VtWyj9c1UNO0ssm/vHIPtexTLW9As1P/3Yo6Xa2/LctCqVSS9b9a14vfgPo7Vn9basyg/hbEb1H9XanfOR/xgvg34ff7oes6gPJ/O2odLf6NqTGC+u9Vre/V34eIEdyxhRo7qP9+1c+6f4tERESnOhELqLGCKFPjERFfqHGCV5mIF9TYRMT0XmVqvHIi7XhqjKDW5/XEHmqcLHICajyt5gHU+KGe7yAiIjoVqXW4WF/Msmp5jrlQ6/vZ1k/0/Xr2rdZ3hoiIaKkTeYT5aBNRcxtqXwnR9qF+h9p2qbYrevU7roeaG6jWnuGVf1DbBdW+sV45jlraTNTvEG0j1foNExER1WpychKmaXrek8/He/X0R1DvpxOJRNm99Xy819rayvtwIiKieWLbNvL5PBzHkfW/uBc3TVPez4v4wHEc5PN52LYtcwMiTrAsC/l8HqlUSh6r1nYBcQ8t2u81TUMwGISu6/JeXPQDMAwDwWAQ8XhcxgfiXtswDPj9fhiGIfsTiP4BfLaAiIhoftWaY6g3JyHKao0jvHIH9eQZat2Xz94QERHNr/mOHbzKajGX9op69vcax4yIiIjqJ55xFG0TqVQKuVwOtm3LGMBxHORyOTiOI2MD27aRy+WQSqXk85KWZSGXyyGdTss2Dq/xW70kEgnZ7hCLxRAKhWAYhmzLEO0Suq7LeEDTNIRCIWiaJvcT7SGi7UPkHaqNJUpERHS6E2Ml2LaNTCaDdDqNVCoFy7LkdjqdhmVZcj2TycA0zbJtsf9MfSFFv37RhyEWi0HXdVmHG4aBaDQq6/l4PI5IJIJoNArDMOR+uq4jGo3KGIGIiIgWj6j7RTwg1kW8ILZTqRQcx5Hbtm0jlUrJbRFbqGOmuok4IB6Py/o/Go1C0zRomia3dV1HPB6X24ZhIBaLye1EIsHxFYmIiBrA3ddALO6y2fYZHx+fMd8g+hOofQrEtldZtX3YB4GIiGhxpdNp2LYNx3HkYlkWLMsqKxP72LYt3xNl7nlfhebmZui6LnMIiUQCmqaVlYltwzAqykUugoiIiBaPaHcwTRPHjx8vyxO4FxEziHWv5xvEuAmJRAKGYXiuz/Qe53wlIiI6MSLHPzw8jKGhoRnXR0dHy8ZCVnP4yWQS7e3tVdfPOOMM1ttEdNoaHx/H7bffjrvvvhvbtm3Djh075uW4+Xwer7/+Onp7e7Fv3z7s2bMHvb29OHToEEqlEnRdx1lnnYXu7m5s3rwZPT09uOCCC9DW1jYv309ERPUxTRNnnHFGxVhigUAAo6OjWLZsWYPOjIiWGtu28cc//hG7du3C7t27sWvXLkxNTWHlypW46KKLsHXrVmzZsgUXX3xxXfMSd3Z2YmBgAJFIBF/72tdw8803c7xBolNIPp/HsWPHMDw8jL6+PvT19WFoaEhui3WhubkZyWQSXV1daG9vl+tiu7OzU85DdjL49re/jY0bN+KSSy5p9KkQEVENJicny9qgZlqGh4cxODiIbDZbcZxqbVUzLclksgH/xURERKcn97OoMz2n6vXe0aNH5VzfqtmeS51paWtr41gWRERENKNisYixsTGMj4+XLUePHpXr6vtjY2M4fvx4xXHi8Tja2tqwfPlytLW1yWXFihWybPny5Vi+fDlWrFhxUuXciejEzDROTz1j+1S7JxLmOmaPex/OBUBERLS4ZhonWMw7kMlk5Fg+ExMTZeMCq58V8w5V09zcLOcS8Br3V8wZ4B5D2D1mcDweRywWQ0tLyyL+pYiIiMhrnGCveYtny0GI9bGxsRnnGADqzzdU216+fDmCweAi/aWIiIiWDjH/sLinF3MAOY6DfD4P27bnNEexOIYom43X3MKiHtd1HaFQSM5FGA6HYRgGgsFgRVkoFJI5h1AoVDa/MREREc0f9z2+131/Le9V29+yLJRKpVnPQ8QQIhcg1t2vXu/Vsn88Huc4hURERPMkl8shk8nI+l7kIGzbRrFYhGVZKBQKSKVSMhdRz76ZTAa5XK7mOELNHQSDQcRiMZlj0HUdwWCwLD+haRqCwSB0XUc4HJb9G8RcBiL/II7LuQyJiIjmj6jnU6kUCoWCZ0wg8gpiH9M0kc/nkU6nZRuIV9tHvTGEyB+InIFXLOEVN6gxgmjfUI8lYgpxLCIiIpo/c2m/qOc9EU/U4kTaNWp5j89mEhERzQ93vkFtpxC5CXe7h5qTKBaLcBynon+m4zgoFAplOY1auPMLmqahqampLJcgYoFYLCbzDIFAALquz9o/MxwOMx9BREQ0j7xiB9FmIeILkU+Yqc1D7OM4DorFIkzTrOgrUQsRC6ixhGjHqPU5jtme7WD/CCIiohPj1Q4xl7aL2fYVcUot6nkOo94ykb8gIiKi+WXbNqanp8vaKkR7hjvfINo1LMtCsViUeYxUKiXbNbzGjBB5itl49Zmc7XkNkZtQ+1aGQqGqz3AQERHRzETbBABZ96tlol4X8QLwl3hCbYcQz1qIY4hYQcQX4pgi/gAA0zTLjlcPXdfh9/vlMxsihhAxgniOMxAIQNM0+Hw+GRvMx2eJiE4G4ho927VclKl90UQe2KtMvVaL7xDvifs+US/U079NmOn6KvLC4tos7vNE/ze/3w9d1wFA9ofXNA2BQADRaBRTU1N44403sH//fhw8eBCDg4MYHR2V97VuPp8Py5YtQzKZRFNTk+wHaFkWMpmMrJ/Eua5duxYXXnghrrjiClxzzTXQNM3zv3FqagovvPACHnzwQTz99NP485//LOvMYDCIdevW4R3veAduuukmXHLJJQgEAnX9DU92tm3DMAw89thj2LZtW6NPpyYjIyPYuXOnXPr7+xGLxfD2t78dl112GVpbW/H666/jkUcewSuvvIKWlhb8zd/8Dd71rndh27ZtWL9+/YKfo2ma6Ovrw759+/DHP/4RL7/8Mg4ePIjR0VEUCgW5n8/nQzweR3t7O84880xs3LgRl1xyCTZt2oRkMrng50lERERERERERERERERERCcvdd7oepbR0VHPfn7uOaRrWZLJJMdBJCIiIiIiIiIiIiI6DbnHPxRLrWWifKbxCdzjG6ptFLWWtba2orm5eZH/OkRERERERERERERERERE9clkMjhy5AhGR0cxMDCA0dHRsu2RkREMDg6WzWcbDAbR2tqK1tZWxGIxRCIRRCIRNDc3w+fzoVAoIBAIIJ/PV7TfHjt2rGz8U5V7/jmvZab32U578pqYmMDAwACGh4dx5MgRDA4OYmhoCEeOHMHw8DD6+/sxMjIix35uampCMpnEmjVrsGbNGnR0dGD16tXo7OxER0cHOjo6sGzZslm/d3x8HAcPHqxYDhw4gOHhYblfMpnEmWeeifXr12P9+vU499xzce6552LdunULOubzkSNH8NRTT+HJJ5/Ek08+iePHj+Oss87Cu9/9blxzzTV4xzvegXA4vGDfvxi+8IUv4IUXXsBvf/tbAMCjjz6Ka665Bnv37kVPT0+Dz2522WwWO3fuxK9+9Ss89NBDGBkZwZlnnonrrrsO73nPe7Bly5YlM0emZVk4dOiQXPr7+/HGG2+gv78fAwMDGB8fl/vquo6Ojg6sXbtW/gbF77GzsxPJZPKUGw+dCPjLM/TDw8MYGhqq+nr06NGy+Qqam5uRTCbR3t4un4Nvb2+veF25ciXnqSEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlo6fuYrlUqlRp8FERHRUjExMYFsNiu3S6USLMsq20dMTKwyTXPWfbwmIvbab3p6GrZtV5xbOp1GPp8vK8vlcshkMhX7WpYFdwjg9V3FYhGO41R8PpVKVQzEXe27FpOmaRWDyobDYUQikYp9E4lERVk0GkUoFCora2pqQjwer+m7xCDkKp/PB8MwavquYDCIWCxWsa+u6xUDfnp9l9/vh67rFZ+PxWIVgwxX+y4iIsC7fnMcp2zQ4kwmg1wuJ7fFZA1CPp9HOp2W2171l7vuc9dl7rrJXdd41VPuOtddZ7nr8mw2WzZRxULwuj4bhgGfzye34/E4mpqa5LaYtEIIhUKIRqNyOxAIQNO0smO66zZ3XeWue9x1pLvO86rD3HWSu45ZSvXL0aNH8dOf/hQ7duzAb3/7W+RyOWzatAlXX301rr76alx88cVl/0+I1Gujev1Rr3fqNUW9hqnXHvf1Ub1uqddB9Vjua6h6TVa/p1AoIJVKyf284v65cl8T1OuWGpu6r0/qdcN9LXNfl9Rro/ua5L4uqt/vPrd6vofoVKdeL9zXEnds5Y7v1GuI+/rijtPUmMsdS9bzPe74zh1jeuUj5oM7holEImUTKqlxlTu2c8dUXvfr7jjNfU2rZR+v2Mx9nl5xZy370NIg4gn1dyJ+E+rvTNxnid+P+psUv7/ZjiF+l+K37nWMuRD/ztV/36JeVv9tqnW5+m9Y/BbV34P6+1WPq8YK4nvV+EL97Xrl6YiIiE5nIj4QsYDIZagxgbjXEDGKyGOocYaIKUS+wytmUcvEMd25k3qocYIaG3jFIaJMjeFFbOJVpsYPIt+hxi1eZV7tiURERKcyNV4Q9b3IJYhchVdsIWIKNYfplccQcYWarxSxixpDuNu26yHqdLXu94oR3PGFGoeIfIaa7xD5h2o5EDU/Ib6vWp8lIiKiU5Wow0VOQo0NvOIAsb/av0L0wZiPdpV6qfGDiBVEXKD2pVDrfRF7VIsR5qPtw6sPMhER0WIRdbe4zzdNU9bdqVQK2WwWjuPI+t+yLGSzWWQyGaTTaWSzWdi2Letq27aRzWaRTqcr+oTPxDAMNDU1QdM0WWeK+lLXdTQ1NUHXdVkPizp8pvc0TUNTUxMMw1hS/aeJiIiWCjVWEPW+Gks4joNsNlsRa4j4Q8QXjuOgUCjAsiyZE6i1H6S4nxfxg3iGKpFIyPpf3LtrmoZgMFgWN4h4Q41FRFuDuM/3es6ZiIiI5k7EAiJ+sCwL+Xy+LD6wbRv5fB6O48icg+M4yOfzMvcwMTGBdDqNXC43pzhCjR9EPOCOEdSYQs1FhEIhxOPxsjgjFAp5xhJEREQ0v0S8MDk5CdM05br71eu9Wspq7dso6nz1NZFI1FRWy/5eY5ERERHRiXHX/XONF7zKah0/qpaYodaYwl3GsZqIiJa2UqnE6/gisyxL9oNMp9MwTbNs27IsuZ7JZGBZFlKplNy2bRuO4yCTyZSNv+Ym2h1isRgSiQRisZjcNgwD8Xhcbuu6LvtAxuNxaJqGSCSCSCSCRCJRMU4ZERGRwFhi4bnzAu4cQ61l4+PjM/ZpcN/7u3MG9Wy3tbVx7EYiIqoJY4n5lU6n4TgOUqkUUqkULMuC4zgyz5BKpWCaplwX+9u2LbdFbqKa5uZmxGIxaJoGwzAQi8UQi8UQj8eh6zo0TZPbak5CbGuaBl3XEY/HGS8QEdEJKRQK7DM/R7XkFGZ6b6Ycw0x5A3Wp9l5ra2vFHC1EREQLIZ/Ps8+8i1c8cPz4cc8YwV3uFRuIvIB7MQwDhmHMuK7OLUlERHQysSwL9913H3bu3ImHH354SeW5TdPE0NCQrL+Hh4fltrp+5MiRsnligTfv95PJJNrb22Wdrm6r6+3t7Wz7ISKaQTabxZ133onbb78d2WwW+XweyWQSg4ODdR9raGgIvb292LdvH/bs2YPe3l7s3bsX2WwWwWAQZ599Nnp6etDd3Y3Nmzejp6cH69at43WaiOgk8+53vxtPPvmkHGskEAjgXe96Fx555JEGnxkRLWWFQgEvvfQSdu3ahd27d+OZZ57BsWPRXgJQAAAgAElEQVTHEIlEcOGFF2Lz5s3YunUrLrvsMixbtszzGKOjo1i5cqXc9vv92LBhA7773e9i06ZNi/WfQkQNNjU1haGhIfT19WFoaAjDw8Po6+uT2/39/WXzy4scYTKZRFdXF7q6usq2Ozs7F2UO92w2i5aWFpRKJbz97W/Hv/zLv+Cd73zngn8vEREtrmp9X73aw8Ry7NgxFAqFsuNU6+vqXtQ2seXLl7PvERERUYPMFgPM9JzM0aNHPcf+rvVZGK9l2bJlHJeLiIiIKhSLRYyPj8tlbGxMvh47dgxjY2NyGR0dxbFjx5DJZMqOIcbxWr58OVasWIG2tray7eXLl8uyFStWQNf1Bv3XEtFiMk2zbIwgMW6Q2BZjHHuNLeTep5pQKFQ2brEYW0gdM0iUqftomoZ4PA7DMDi20ALhWF1ERFQrr/mRqs2XVC2vKrbHxsaQz+erflc9YxbPVKbrOvx+/yL+lU4v09PT/PsSEZGnTCaDiYkJpFIpOI6DyclJOUeS1xxKokydYymTych8xExxgzvPoGmanC9J5B3EthjjWMyxJHIO4v1YLLaIf6XTW7FYhN/vZ06CiGiJU+c8OtnnU55rmaZpi/LMEhER0emi1vih3jhCvM42l6Kqntig3liipaUFhmHwvvckxfYNIqKlqVAoIJVKybrftm3k83k4jiNjgVQqhXw+D8uykM1mMTExIdsZTNNEPp+XbRC5XA6WZSGfz5cddzbBYBCxWAyRSAThcBi6riMYDELTNBkLaJqGYDAIXdcRDocRiUQQj8cRDAZhGAZCoRCi0Sii0ShCoRAMw0A4HEY0GmUu4iTHOIKIaOkRMYRXvCBig4mJCWSzWdi2jUKhANu2K2IJr7hBPVYt1PihqampLFaIxWIyVggGg4jH44hGowiHwzAMQ+YbdF1HKBSq+j4RERHNr1rbJ+ba5lFv34ha2yvq7RvB5y6WBuYliIiWDlHXi7yCmnPI5XLIZDJl+YVCoQDTNFEsFuE4jsxLiJyF4zgoFAqwLEvmOsR7sxFtEYlEQrZPxGIxmaMQsYGmaQiFQmXtHSJ3IZ6/8DoOx88lIiKaf6Ke94oTRCzh3kdtxxDvWZaFXC5X1k/CNE15jNmI/hHV4gC1v4PoFxEKhcpiDK8yNe4gIiKi+SFyEaLOF3GDGOdhamqqrEzs7ziOzF2o/SpyuVxZ3wkRc8xG7Rch+jaoeQavvpbufIRapsYPok8mERERLZyFHjvCtm1MT0/Peh7zPV6E+7nPRCKxCH9NIiKiU5/IF4h2CVHvi+c0RNtGqVSSz1yIeGA+PluPeDwun+EIBALyuY1YLCZjBNEH4kT3ISJaCtTrq+jLLq6vIs9c7doMQM5JJK7Nop+cuP8TuWXR1216ehq2bZd9Xz1CoRCKxSKmp6flZwOBAPx+P0qlUlm9EA6HZXk+ny+bWzYUCqG1tRVnnXUWNm3ahKuvvhrnn38+IpGIbBcXBgcH8f3vfx+PPfYYXnnlFXn+gUAAnZ2duOyyy/CRj3wEb3vb29Dc3Fzv/4KTjqZp+PrXv47PfOYzjT4VT8ViEb///e/x8MMP45FHHsHevXsRCoXwlre8BZdffjkuvfRSpNNpPPLII3j44YcxPDyMtWvX4r3vfS+uueYavP3tb1+Q/0+jo6PYv3+/XF5//XXs27cPhw4dkv07fT6f/Hcbj8exbt06bNy4EZdeeim2bt2Kc845h2NLEBERERERERERERERERGdwkTf+nqXY8eOefaVE33l611WrlzJMeyIiIiIiIiIiIiIiKgh1PYSdWyiesqOHz8+47wM7jYUdQyiWsuWL1/OeReIiIiIiIiIiIiIiIiIqKEmJycxPDyMoaGhqq/9/f1Ip9PyM6LNM5lMoqurC+3t7Ugmk9B1HYZhIB6PIx6Py/lubduGbdtwHEe+mqZZVibW1e9RiTnpNE2T36PrellZtfdFOcd0b4xCoYDh4WH09/ejv78fAwMDOHLkCA4fPoyBgQEMDAxgbGxM7h+JRNDZ2YmOjg50dHRgzZo1WLt2LdatW4e1a9di1apVMz67ODExgYMHD5Ytr7/+Ol577TUMDg4CeHNM6XPOOQfr16/Hueeei/POO0+uR6PRef3vLxaLePHFF/Hwww9jx44deP7559Hc3IwtW7bg2muvxfvf/36sWbNmXr9zMfzzP/8zHnzwQbz88ssAgPe9731Ip9N4+umnG3xm1TmOgx07duCXv/wlHn/8caTTaWzevBnve9/7cN1112HDhg2NPkVP2WwWhw8fRl9fHw4dOlS29PX1yfHb/X4/kskkOjs70dnZiTVr1pT9hjo6OjgvJ51yaoljhoeH5e9ESCQSMn5pb2+XcY1atnr1av5miIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiITk0/85VKpVKjz4KIiE5+k5OTmJqamrGsln3m+rlG72NZFhazymxubq4YSLrWssX8/MnwXfF4HE1NTRX7Egn5fB4PP/wwvv3tb8O2bfzf//1fo0+JThGlUgmWZcltMTG8oNYduVwOmUxGvuc4DorFIoA3B7BPpVLyvXQ6jXw+DwCYnp6GbdvyPXcdpQ44nM1mMTExIbdt28b09DSAN38H6uQH7n3d57BQDMOAz+eT27FYrGxiezHpvRAKhcoGzA8EAtA0reyYiUSibNtdL0QiEYTDYbkdDocRiUTkdlNTE+LxuNz2+XwwDKPsmLqul00KEI1GEQqF5La7fgoGg4jFYl5/AmqwyclJPPTQQ/jhD3+IJ554ApFIBFdffTXe/e53Y9u2bTjjjDMafYqnJXEtU6+jExMTyGazAMqvi+r1U1xn1etxsViE4zgAyq9t6nV4rt9zItTrhPtapl5j1GuW+1qiXu/U66d6XfP7/WWDymuahkAgAKD8Guu+9qnXZ/Ua574On+wGBgbw4x//GDfddBOSyWSjT4eWIPX3rl4H1OtDJpNBLpcDMHNs5o6/3Puqx3fHfO5YTf1+93m64zivnMZ8cMdI7uuDO+ZSr23u6547dnLHb+r1zn0trOd73HGfO/Z0x5FLTT6fx89//nN861vfwoc//GHcdtttjT6lU574raqxh/jdi9+luA8Tv/FUKoVCoSB/x+IaImIQ8ZsV8Yn4/auxi3uimVqpv1NR14vfn/qbFnW/Gh+IGMLrGCKmUOMO8fvyOob7t0hERCeHZ599Fvfeey8efPBB/P73v0d3d3ejT4lQfm8g4goRP4g4Qb0HEHGCiDlEbCHuR9S4pdrx1FzKXHIgIr4QsbsaZ4h4QMTxaqwg4gc1jvcqE7GKGnuI43mVERHRwpuamsLPf/5z3HXXXZiYmMBLL73U6FOi/99Mdb/IPYhYopZ9a4kp3PvWy52zAP6StxM5CDW+8IoDRLzgFVeo8YfIQ6o5R68cCBERLazBwUF85zvfwb333ovPf/7z+MpXvtLoUyKF2tYo1ut9nctngbn3zRBxhBpPzLXsRPZX+2cQEdHC+d3vfodvf/vb+NWvfoU//elPOO+88xp9SkueaC9wHAe5XA6O48g+DZZlIZvNIpPJIJVKIZfLwbZtWYfbto1sNot0Oo10Oo1cLgfLsmQ9r/aPqkbc94t6VdM0hMNhxONxmQdIJBLy3j0ejyMcDkPTNPkZkQcwDANNTU3yGJFIpKLPNxERnb4ymQx+8pOf4Fvf+hamp6fZvjEPMpmMjBlE/a/GB+r71eKHbDZbFl+o8cdsYrEYwuEwdF2X9+mapiEYDELXdRkPqLFCMBhEPB6X+8fjcfmeiDdEDOJ+loyIiE5v/f39uP/++3HvvffiH/7hH/DlL3+50ae05E1OTsI0TRlHVFuf7X2v9Vo0NzcjkUhU5P1PpEy8trW1MR9BRERSqVTCb37zG9x9993YsWMHXnzxRZxzzjmNPq0lSfR/TKfTmJqaguM4yGQyMucwMTEh8wsijlBjBcdxkM/nZX5iYmJCPvdZ6zOcot3BK8+g6zqCwWBZG4ZX7mGmY7DvARERuYn2jTvvvBN+vx/PP/98o09pSXIcB5OTk8hkMrAsS8YNtm0jl8shlUqV9ZXI5XKyrSOXy8E0TTn+g9o/wj02TDWizSIejyMUCkHX9bJ+EqFQCJqmlcUVoVCorO+EiCdisZiMJ9T+FERERF4OHTqE++67D/fddx/+6Z/+CV/60pcafUonLXebhLv9oZ7to0ePzth3UrQzqG0Nc9lmewQRES2kUqmEX//617jrrrvw2GOPYe/evejq6mr0aZ1U0um0bLdwHAe2bcvtVCoF27bhOE5ZmWVZSKVSFWXVnqsMh8OIxWLQdR26riMWiyEejyMWi8EwDMTjcbkdj8eRSCQQi8UQi8UQiUSQSCRk2wTHyiciosWUyWTwP//zP7jjjjsQj8fx+9//vtGn1HBeuYdqOYZq5ePj43JcfC9qDsErr1BL7qG1tbVsriAiIqJG2L9/P+6++2488MAD+Ld/+zds37690ae0aMR4DmIxTbNs23EcuYj33WXVns0U/RU0TYNhGHJd07SydfGeWib2UefCIiIiOhlNT0/jiSeewNe//nXs2rULAwMDaGtra/RpzTuvPEK1ZXh4GENDQ1WfvXTnDmpdli1bxjkhiIjolHL48GF885vfxH333YepqSlMT0/j4MGDDe0rMTU1hePHj1fU6V7rx44dQ6FQKPt8IpFAe3s7EokEkslk1fXVq1ezLyIR0Tx5+OGHcdttt2FwcLCsP7nP54NlWWVzbassy8LevXvR29uLffv2Yc+ePXjppZfk/D/t7e3o6elBd3c3Nm/ejJ6eHmzYsIH3ZURES8SPf/xj3HjjjbK/sN/vx49+9CN8+MMfbvCZEdGppq+vD7t27cKePXuwe/duPP/88yiVSujq6sKWLVuwdetWbNmyBd3d3fD5fPjFL36BD37wg2XPMzQ1NWF6ehq33XYb/vVf/5XjGBARAMA0TQwNDWF4eBh9fX3o6+sr2z58+LC8Dw4Gg2hra0MymURXVxfa29vlurp9og4cOICzzz4bABAIBFAsFnHxxRfj9ttvx9VXX33CxycioqVN7Vujtq3NtIyMjFQ861utX43a3uZeVq5cueTnN7n++uvx4osv4ktf+hJuuukmRCKRRp8SERFRXWbrZ1vtmV7TND374AAzjxnGPrd/8aUvfQk7duzA3//93+Omm25ifpGIiMhF7Rvslbdwb3vlK9T+wV55CnV7xYoVS2rek02bNiESieAf//Efce211y75HAvRyaCWsZZrGW95tnkhaxnzaLZywzDg8/kW8a9z8rnjjjtw++2347Of/Sz+9m//lmN/EhHRokqlUshkMpiYmIBpmjOOuZxOp2FZFhzHkdupVEp+Lp/Pe36H3++X4xmp4yuLsZTFthjnaLYxmKncRRddhMnJSXz+85/HRz/6UY5DTUREC2o+5nUyTRPHjx9HNput+j1ijsfZ2mtrmedJ13XmHKu44YYb8Nxzz2H79u349Kc/jeXLlzf6lIiI6CRUKpXK5m9OpVJyDGVRv3uVOY6DXC4n55N2zyGtlk1PT896HnOZ+9mrTNM0RCIRRCIRGIaBSCTCuRnmIJPJoL29HW9961uxfft2XHvttUuqjZqIiBaeiB1E+4FpmigUCmVxgOM4yOfzsG3bc/98Po90Oo2JiQlks1nYto1CoVC2/2x8Pp+MBaLRqIwP1DgiFouhubkZmqYhGo3KOEPECYZhlOUcRN6C/R3m7mc/+xk++clP4sYbb8Qtt9yCjRs3NvqUiIjoJKP2gXS/qm0Ocy3LZDIzzgcpuNsrZluvdd94PI6mpqZF+Euemj7wgQ/ghRdewPbt2/GJT3zilJyPhIiI5iaXy8n+kCKXkM/n4ThOzbmKQqEAy7LksVKpFLLZLBzHkcedja7rCIfDiMViiMViMhchYgLDMBAOhxGNRhGPxxEOh2X7RTgcRiKRQDgcRiQSgaZpCIfDiMfjiEajnFPiBKVSKSSTSWzZsgW33norrrnmGrZvEBGRpLZNiPgglUqhUCiUvZfJZJDNZsv6Uoh4I5VKyZjBNM2ymMJrTBs3NU5Q4wiRd1DbN0RsoMYOXrGFekw6MT/96U/xmc98BjfeeCNuvvlmtm8QEZE0l/aMWts2Znv2QlDbKebSnjFTWVtbG3MS8+D9738/XnnlFdx222342Mc+htbW1kafEhERnSTmqy+E1/u1Pq9xovHCTGWapjEXP08+9KEP4dVXX8Vtt92Gj3zkIxxXgojoNLVQ/SrnEj/MZ8yglp1O4/ovhgcffBDbt2/HJz/5SXz2s5/F2rVrG31KRETUYNXGfBD9LdXxIsTzn+q4Evl8vqzPhNovU/STmI0Ym1LEAPF4HMFgUPZxiEQiiMViCIVCZc+Hqn0lgsFgxZgSwWBQjlvJZzbmx/ve9z7s3buX7RtERORJ9JcUsYLoZ1ksFuE4jhy3CoDMOajPcoh4QhzHcRwUi0WYpimP4d6nFiJm0HUdgUBAxgliXImWlpY579PU1FQ21hXN7qc//Sl+97vfYfv27TjvvPMafTpEpBDXXfHcvbiei3s7r+u5ZVkYGxvDgQMHMDIygoGBARw9ehS5XA5+vx8tLS1oamqCz+dDNptFPp+vqR+9KhqNyrZmcY8YjUbh9/vhOA4GBwcxPj4uj+vz+bBs2TJs2LABF1xwATZt2iTHExJ5Z3GfqN5Pnmy6u7txww034F/+5V8afSqS4zh44oknsGPHDjz66KMYGxvD2WefjWuvvRZXXXUVNmzYgJ07d+Khhx7CE088gYmJCWzatAnXXXcd3vve985bf/tSqYQ33ngDvb292Ldvn1z2798Px3EAAE1NTWhpacHU1BTy+Tz8fj/WrFmD888/H5s2bcLmzZtx8cUXY+XKlfNyTkREREREREREREREREREtLjUeZHrWcbHxz3nI3DPi1zrcsYZZ7CvOhERERERERERERERnda82m3UsQ1rKTt69CiKxaLn8d1jFaqLV3m1MsMw4PP5FvmvQ0RERERERERERERERESni8nJSQwPD6Ovrw9DQ0MYHh6ueO3v7y8bm7e5uRnJZBLt7e2er11dXVi9enXFXPK1ttNWe3+2NlqvZ+mqtdu631+5ciX8fv+C/q1PR5OTkzh8+DCOHDmCgYEB9Pf3o7+/X64fPnwYU1NTAIBQKISOjg6sXbu2bFm3bh3Wrl2LZDJZtf08m83iwIEDctzf3t5e9PX1obe3F5OTkwCARCKB7u5u9PT0oKurS66vW7duXtrljx49iscffxw7duzAE088Acdx0N3djfe85z249tprsWXLliXR/v/1r38d3/jGNzAwMIB0Oo3ly5fjnnvuwcc//vFGn1qZqakpPPXUU/jZz36GX/ziF5iamsJb3/pWXH/99fjABz6Ajo6ORp8igDfHQt+/f79c+vr6cOjQIRw6dAhDQ0Nyrs1EIoGuri6sW7dOLmK7s7OT80nQKSGXy2FsbAymaXrGG+J1YGAA+Xxefi4cDqO1tbUi5kgkEmVla9as4fPzREREREREREREREREREREREREREREREREREREREREREREREREp7ef+UqlUqnRZ0E0k7GxMdx///247777cOedd+Laa69t9CnRaaJUKsGyLLmdz+eRTqfl9uTkpBwoFoAcGFhlmmbZttc+lmVBvRRns1lMTEzUvY9t23LgTuDNQQ0zmUzZPo7jlA1YXMs+C0kMdqxKJBJl22Ky23r3cU9uGw6HEYlE6t5H1/WygZhDoRCi0Wjd+2iahkAgILeDwSBisRiIaOH09fXhO9/5Du6//36Mj4/D5/MhGAyWXbupsSYmJpDNZgGU16tqfanWeWq9VSgUkEqlAADFYhGO4wAApqenYds2gMq6XK2X1XrTXcen02k54K96bPc5zxefzwfDMOS2u35U6yt3XaXWL+66JRaLIRgMAgACgQA0TZPvNTU1IR6PVz0H97EBIBqNlk2m4K5/3d/v9/uh63qtfwaiBTU0NISvfe1r+N73vodMJoN3vetduPHGG3HddddVxJGnA/WaK9bdr17vnUiZ13uZTAa5XO6E/lvUa9Fc1+fjGDOtu+87aP4988wzuOOOO/DQQw9henoaDzzwAD71qU81+rROa2oMl0qlUCgUyuIqdb3WmE0cB0DZ9UONz9Q4spbY0f3dJ0qNn9yxkDuOc8dW6rXCHau540P1e9xxnDsnUc/3uOO7eDzOCS1OQqOjo7j33ntx55134vjx4yiVSvjoRz+KH/7wh40+tUUl7v3E7z6VSiGfz8OyLPn7F9cKcZ0QMYj4jLhWif3FvaG4Zojrhfu+sBbifkz8BiORCMLhsPw9i9+buDaI3664r1J/nyL3KD6j/u7FcdV7Pv52iYioGsuy8KMf/Qh33XUXXnvtNYRCIeRyOTz22GPYtm1bo0/vpCPiAHFfItprTdOU9xLiVcQmIm4Q8YSIL0S8IeIPd87Eq822FiJOEDGHiC3U2EDcA4j4RMQjIu5QYwtxryFijFqOR0REp4/XXnsN9913Hx544AHZttrS0lLWzkpvmi0GELkKkbsQ7dMiB+oVfwB/yZeKz4njqfnPelSLE0SeQs1xin1F3mG+9iUiotPD9PQ0Hn/8cdxzzz145JFH0NTUhEKhgE996lO4//77G316Jx2Rk1BjAXfuwR1vuHMMatuGiCXEcUXsIXITc8lLiLyCVwwg8gsiXyHaN0QsoOYZRH9w8RkRl6htq+K4IqZgLEFEdPqxLAs/+MEPcNddd+H1119HMBhEPp/Hk08+iSuvvLLRp7fgxH1/KpXCxMQEMpkMUqkUstksHMeRdbroL5FOp5FOp5HNZsv6Vdi2jVwuh1QqJXML7mfevIj+C6JuTyQSsq6Ox+MIh8PQNE22LRiGgXA4jGg0ilgshnA4DF3XZV2u6zrC4TBisVhFvyYiIqKFsG/fPtxzzz343ve+h8nJSUxPTyMWi9XdJ3CpmpychGmaFf0U1LJ63hfr6rN3M2lubkYikSh7bsNdVm19pvfZT5KIiBZDsVjEY489hrvvvhtPPPGEzEl89rOfxT333NPo01twpmnK/g62bSObzSKdTpflJUSfCMuyynIUU1NTmJiYgOM4MnZIp9OYmpqqKQ5z5xyam5thGIaMEdT8g6ZpCIfDMn8h8g9iX03TEAwGZU7CPZ4MERHRQjFNEz/4wQ/wrW99CwcOHJB9JXbu3InLLrus0ae3YET/BtFnUo0T1ByDGjOI9oxMJlMWP6RSKUxNTcl2EvGMeTVqrNDc3IxIJCLjAtFuEQwGkUgkZL8H0b6h6zqCwSA0TZPHicfjCAaDMAzDczw5IiKihdTb24t77rkH3/3ud2X7hqZp8zo+yslqtnaK2dow3OvHjh2rOY6opa2i3rK2tjb2jSAiokVVLBbx6KOPyvaNpqYmFItF3HzzzbjrrrsafXrzqlp8UO/2+Pj4jONhevVdmMt2a2trxTj8REREJxvLsvD973+/on3jt7/9LS699NJGn94Jc/eTrDV2mGv84BUT1FrG2IGIiJai1157DXfffTf++7//G1NTU5ienkZbWxuOHj3a6FObs1QqBcdx5KvjODBN07PcsqyKMlFebYrYeDyOeDwOTdPkYhgGNE2T5fF4HLquwzCMsn1FuXtOISIioqVoenoajz76KL75zW/if//3fxEMBlEsFvHFL34R/+///b9Gn17NTNOEbduwLAu2bVddxH7ufd3zGwtqva9pmlxPJBIVZWJJJBJlZcwzEBHRqcxxHHzve9/DN77xDbzxxhuyfePll1/G+eef3+jT8+Ruh6h1GRkZ8cwzuNsd3EsymUR7e3tZGdsiiIiIgBdeeAH/+Z//iZ/85Cfw+Xxlzx4899xzeOtb3zqv3ydigOHhYQwNDc247q73RX3vrtfVbbG+YsUKth0QES2iP/7xj/jCF76A5557Dn6/X87Brnr22Wdx0UUX4fXXX0dvby/27duHPXv2oLe3F319fQDeHIu/p6cHPT096O7uxubNm7Fx48ayOceJiGjpmZiYwLJlyzA1NQXgzdj+2LFjiMViDT4zIjrVjY2N4dlnn8Xu3bvx7LPP4k9/+hOmpqawcuVKXHLJJQCAHTt2eD4bEQgEsGrVKnznO985LeYCIaITk8/ncezYMQwPD6Ovrw9DQ0NyXd0WmpubkUwm0dXVhfb2drkutjs7O2eNlXbu3IkrrriirCwQCKBYLKK7uxtf/vKX8dGPfpR5UiIiqtnU1BSOHz8+a98dtT2v2rPGoq5z99Wp1qcnmUyeVH14enp60NvbC7/fj2g0iu3bt2P79u1YvXp1o0+NiIhoUczWx9drPBKxVBv7tNoYZrUsS6m/75VXXomnn34afr8fLS0t+NznPoft27fjzDPPbPSpERERLUnZbBbj4+NVcxPu7dHR0Yq+a4lEoiJHUa0v8hlnnNHQuWGbm5uRy+VQKpWwdu1afPnLX8bHPvYxzjVHdBLxuheqZVxHtXymcZjmMl6ju3wpP0vxxS9+Ef/1X/8Fv9+PYrGIq666Cn/3d3+Hq6++Gn6/v9GnR0REVJd6xnieaWxo0zSrfketc0fMVtboe6H50traCtM04ff70dzcjE9+8pO45ZZb0NPT0+hTIyIimtVSm3tKzJnt8/kW8a+0cC666CLs2bMHgUAAPp8PH/zgB7F9+3Zs3bq10adGRESnIfecUmJ9PspmixWAynmt3bFALevq9qk+l/Xhw4exdu1a+P1+lEolrFixArfeeis+/elPI5lMNvr0iIjoNJJOp5HP52GaJvL5PNLpNCYmJpDNZmHbNvL5PBzHkXFBKpVCoVCAaZrI5XLIZDLy/XQ6jVQqhampKaRSKXnsmYTDYUQiEei6jubmZkSjUTkvRCwWQzweR3NzM+LxOGKxGJqbm6FpGqLRKJqbm6HrOiKRCJqbm2EYRllscQWCVcAAACAASURBVCr7j//4D3zlK1+RY4BedNFF+PznP4/rr79+yfSfJyKipU+ND3K5HGzblmViPZPJIJVKIZvNwnEcZDIZZLNZWJYlcw+WZSGbzcq4IpvNIpVKzfr9mqYhHA4jHo+XxQZqPKDGGuFwGLFYrCymUOMIkds4ldoxqtm4cSNefvllBAIB+P1+XH/99bjlllvYvkFERItGbYPwap+otl7L+zM9dyG42zTE+mxtGbW8f6rnJA4dOoSurq6y9o1bbrkFn/70p7Fq1apGnx4REZ3ipqen5bzVU1NTsG0b2WwW6XS6LOcgYgM1zyDaPtT2DTWnIY45m1gshnA4LNs1WlpaoOs6QqGQzFGEQqGyvISmaQiFQjIXEQ6HZZuGiB9EPHGq+9rXvoavfvWrZe0bt912G2644Qa0tLQ0+vSIiOgUls1mMTEx4dmm4TgOcrkcHMeRMYNlWcjlcjLOyOVyVeMIcZzZiPpejR1EbJBIJBAKhRCNRhGLxRAKhcraLhKJRNm6iCPUfhKng/PPPx979+6V7Rsf+tCHcMstt8h5Q4iIiBaKbdvI5XJlOYbZ4oV0Oo1cLif7RFSLRUSfzNnE43GEQqGynISac1DbLarFEO544nToa+km4gm/349wOIyPfexjuPnmm3HBBRc0+tSIiOgUo8YKavyQz+fLYgo1zlDbP8RzHKJMzV/UmosIBoOIxWKy7ULkGtzPb1R7lqPacx3xePyUGG+qHv/+7/+Or371qwgEAigUCrjqqqtw66234pprrlmyY3cSEdHScKJjRJzo+BFA9f6WJ7K+bNkyhMPhRfgLnhw2bNiAffv2sX2DiIhOKrPFD7XEGLPt4zgOisXirOcyH2NWqetLab7CWt1www34/9i78ygpynN/4N/e9232GdlkQGCAQUTRGE000eCCqBAQBe4NLohKvFFPjDkmudnMjTEGo4ao0SuugAQEQ4xrrhpjDAYXQAYEBhhg9pneqqu36e7fH/7eSnVPd0/3wDA4fD/n1Kmlq6ur50C9T7/Pu6xduxYajQZf+9rXcMcdd+Ciiy4a8v1giU4kyWQSO3fuxPvvv4+///3vePPNN3HgwAE4HA6cf/75uOKKK3DGGWegs7MTjY2N+Oyzz7Br1y7s2LED+/fvz/r7TqPRwGg0orS0FCNGjMDo0aNRWlqa1t6+q6sLhw4dQmdnJyKRSJ998jIV8wwv5LUj7eM/Y8YMDBs2DE888US/r3E0dHd3Y926dVi7di3efvttJBIJnHPOOZg5cyYuu+wyVFVVYePGjVi7di1ee+01JJNJnHnmmZg7dy5mz56N4cOHH9HnHzhwAA0NDdi+fTt27NiB7du3o6GhAZIkAfh8PgaHw4Genh50dXUhEonAYDCgvr4e06ZNw7Rp03D66adj0qRJQ3ocSCIiIiIiIiIiIiIiIiKiLyr1fMSFLC0tLWhubs46zp46d1/MMtTnFiQiIiIiIiIiIiIiIvoiyDafo1iyHct3bi65+onmO5Z5nLklIiIiIiIiIiIiIiIiIjoSXq8Xzc3NSl859bqxsRHNzc1ob29PGxPd4/GguroaNTU1OdcjRowoeC62VCoFn88Hv98Pv9+PQCDQa7uQ17PR6XRwuVxwu91wu91wOp1wuVzKWrzm8XiUtXpxuVxH5e98Impubsb+/fuzLgcOHFDGfTaZTBgxYgRGjRqFUaNGoba2FmPGjEFtbS1qa2vhcDh6XbunpwdNTU1obGzEp59+ih07dqCxsRHbtm1DW1sbAMDlcmHSpEmYOHEi6urqMG3aNJx66qmw2+39/k7RaBRvv/02NmzYgI0bN6K5uRm1tbW44oorcMUVV+Dss8+GVqvt9/UH0jPPPIMbbrgB4XAYL7zwAhYuXIjW1laUlpYO9q0hGo3itddew9q1a7FhwwbIsoyzzjoLc+fOxTXXXIPy8vJBuS9ZlrF79+605bPPPsNnn32Gjo4OAIDRaMTJJ5+M0aNH4+STT+617Xa7B+XeiY6GcDisxAXqfvWZ67a2NiSTSeV9ZrO5V2zg8Xh6HauuruacIERERERERERERERERERERERERERERERERERERERERERERERERFSItZpUKpUa7Lsgyuajjz7Cgw8+iOeffx6pVAqJRAL33HMP7rrrrsG+NVJJJBIIBALKvtfrVbYDgYAy+G5PTw+CwaDympikVJAkCfF4XNn3+XwQj6fMz4hGo5BlWdkPhULKgKwA4Pf7lcH8kskk/H6/8losFkMoFFL2ZVlGNBrNes8DQa/X9xoU1uFwpA04nO0cu90Og8Gg7Ot0OjidzqLPsdlsaRO1arXaXgMFF3KO1WqFyWRS9jUaTa/BQgs5h4joaEskEvi///s/rFixAhs3boROp0srXzQaDXp6eo7bAa+PFlGOqsu9YDCInp6etDJZlKFiQHsgvYwWZar6dSC9vFeX2eoyWF2mis9Wf+aRUpdPmWWMx+NRtt1utzJYr9PphE6nA5BebmaWdZllmPp6ZrMZFotF2Xe5XMq/J6PRCJvNprymLuMzy+XM8paIBsbBgwdx77334oknnkBZWRluu+02LFiwAJWVlYN6X+L5LH7biGdvOBxWtiORiPJ7RTw7xe8m8VwVa/HMFc9hsa/+7aR+XhdD/ftEPNfUzzvxnBXPR/UzWTzr1M/AbNcQz1L1MZPJBKvVCgCwWCwwm81p1ySSZRnPPfccli9fjoaGBhgMBsTjcRiNRvziF7/AHXfcMdi3OODU/8dFfKY+Jp4R6noV8XwBsseM4jmjrk/JFh9miynV93EkcsVs6hhN/VxQPy8MBoMyeY76+ZUZ76njO3U8p47fcn22Oh7MjP+IBtKWLVvw6KOP4qmnnlL+HwoXXXQR/vKXvwzi3fWmjmu8Xm9ajHOkxyKRSMHPG/F/9kjXxVxL/VwhIiI6Hog44plnnlHifXUdwR//+EfMmTNnEO+wbyIG8Pv9iMfjSt1HIBBQfp/E43FIktRnvYuob+mr3qVQom7E4/Eo9SLiN4ioExG/T8RvFvFbQvyeUdediN8r4veJiDPEe5lzJSKiYykWi2Hjxo1YsWIF3n77bej1+rT8u1arHdB2VkeDqOsUMUOhsUJmbJCZi/F6vUoeXXxGZhu3vohyXtQ/ihyIqJsUdaWirkEcF+8TMYW6/lPEJoWcS0RENNBaW1vx1FNP4eGHH8ahQ4eg1+uV39wajQbz58/H888/P8h3mV9mrJBZj5AtRsiMDTLrLPq6ZiEy6xxEWS+Oq+sPcsUSol5CXEP9HhFTiPoJEa9ktp0jIiIaSH3lN9avX48rr7xyEO+wt8x2Dkdju5D2EWazGR6Pp1cbhr6O9fV6SUmJ0kaLiIjoiyQajeKll15S8hsGgyGtL5tOpyuqXcCx0N94IddrXV1dBfXfOxoxQ7bXy8vL0/q7ExERfZGI/MZDDz2Ew4cPp+U3tFotrr76ajz77LODfJf/5vV6IcsyZFlGIBCAJEmQZRmSJCEQCCiveb1ehMNhyLIMv98PSZIQDocRDAaV/IXf70/re5aLyEeIdpBut1uJA9xut9IWwul0wmQyweFwwG63w2QyweVyKXkHj8ej5CtcLhdMJpPSL4yIiOiLSp3fEH281fmNjRs3YtasWYN4h58TbRvUsYPf71diB5/Ph1AoBFmWEQwGEQwGEYlEEAwGIUkSIpEIAoEAQqEQwuGwst1XfYSoP1DHDC6XC2azGTabDU6nE2azGXa7HQ6HA2azWYklzGYznE4nrFarEneo6yeIiIi+6DL7b2TmNzL3B1u+egd1HBEIBBAOhxEKheDz+SDLMsLhsBJviFiir36doo2jzWaDxWKB0+mEw+GA1WqFzWZT6hwsFgs8Ho+y7XK5YLfbYbVaYbfblXjCarX2GgeYiIjoi6ytrQ0rV67M2n9Dq9Vi4cKFeOqppwb1Hgtp95BtP9c5uWS2b8hs45DrWLZ9jiNFREQnig8//BCPPPJIzv4bmzZtwqWXXjoo95Y5LmV/Y4i+2lUWGztkO8Y+GEREdCJKJpP485//jN/85jdZ8xsWiyVtjsFjJVc9RDH1D52dnTnHf8hW/5Avbsh2nP0uiIiIPp/7ZuXKlfj1r3/dK7+h1+uxePFiPPbYY8fkXvqKH/qKJzo6OnK2e8gWGxQaQ5SVlXGOLiIiohz27NmDxx9/HCtWrIAsy73yG2+99Ra++tWvDtjnFxIzZFva2tqU+Z7VCokZsi3V1dXKXM1ERETUt1QqhTfffBP3338/XnnlFWUO5EwbNmzA5Zdf3uf1vF4vmpub4fV60dLSknP70KFDvdotmM1m1NTUoLq6Gh6PJ+f2SSedxHmqiIiOQwcPHsT3v/99PP/883nHNtTr9Rg+fDiampqQSCRgNptRV1eHyZMnY9KkSaivr8fkyZNRXV19jL8BEREdK/Pnz8f69euRSqXwzW9+E6tWrRrsWyKiE1A0GsWWLVvw3nvv4d1338Unn3yC/fv35zxfp9MhkUhgzpw5+P3vf4/y8vJjd7NENOREIhE0NzejsbERzc3NaGlpQWNjo7Lf1NQESZKU80UetKamBqNHj8bo0aPT9t966y3ccMMNWfOuOp0OyWQSY8eOxd13341rrrmGY8sQEdGAydV+SJ0rzFza29uRSCTSrtNXuyF17lAsFRUVA1LGVVZWor29Xdk3GAzo6enBRRddhLvvvhtf/vKXj/pnEhERDSX52hf31WcpV7/mfH2a+1qO5TgoU6dOxccff6zsizjivPPOw2233YaZM2eyzTMREdEAU7drzlZHod7PVUeRWQ+Ra/9ojpkSDAbhdDqVfY1GA61WC7PZjOuuuw533nknTjrppKPyWUQ0+Poa86mQMaNy9dEE+jemZObxgap/zefaa6/F008/rTybxdgbFRUVuOmmm3DLLbew7QYREZ2Q+jN/RbZzfD5f2lgUarnqYIud22Iwx5Y0mUxp/VeNRiNisRimTJmCm2++GYsWLYLFYhmUeyMiIjqWss1p0d/9fGNLAv+ugzjS+bEGe26LsWPHYs+ePcq+GH+jtrYWN9xwA5YsWcL5womIaMiIRqOQZRk+n0+Zf1vMsS3LMgKBACRJgizLkCQJfr9fOS/fnN35WCwWWK1WuFwu2Gw2ZR5t9VzcbrdbOc/tdivzbYs5uy0WC+x2O1wul3Le8WD79u2YPHly2jG9Xo9kMomvfvWrbDNGRERDRjKZhN/vhyzLSs5B1EGo6xJ8Ph8ikYgSL0SjUUiShGAwiEgkgmAwCEmSEIlEEAgEEAqF8s6pCfw7h+F2u2E2m5W4wmw2w2azwel0wmw2K7GCiCPcbnda7OF0OtNeOx7K5x/96Ef41a9+hWg0CgDKvOEWiwULFizArbfeiokTJw7mLRIRER2xUCiESCSi1DGIWELEDIFAANFoVIkTotFo2rler1epzwgEAohEIpAkCZIk5ZxbUzAajUq8YDKZ4HA4YLfbYbVaYbfbe8UHVqtViTty1WG4XC6lzB5sJ598ctrYWaKdxOjRo7FkyRLccMMNKCkpGbwbJCIiOkKZ7R/EdrZjubbzvd6XbG0iit1W75eWlsJkMh2Dv1zftm7diilTpqQd0+v1SCQSOO+883DTTTdh9uzZ0Ol0g3SHRERER0YdB/QnXsj3nmAwmLddJdC7f0YhsUJf206n87gpm3/4wx/ivvvuS8tvaDQamM1mLFiwAMuWLevVloKIiOiLIhAIIBaLIRAIpOU1YrEYJElS2jl4vV7EYjGEQqG0/IaIHdTXUbe1yEej0aTlK0SbS7PZrGyLuMBut8NsNivbFotFyWmI9pbq7ePJqFGjcODAAWU/s/8G8xtERPRFJdpZZosHRFzh9/sRi8UQDAYhyzKi0WivWEOcJ8sywuGwsi1+h+dyJPmMzG3RdkIcP97kiifEuBILFiyAzWYbxDskIiIqXCAQQDweT4sjgsEgYrGY0idD9OEUx3L15QiHw736deSj1+uVdpWinkFd/6Cul1DXV1itVpjNZiVeyIwdjtdxGTLzG6KdRGlpKa677jrcdNNNGDly5CDfJRERUfFEvCBJEmKxmFLXEAqFlBgjFAql9cfI1d9zIPp+WiyWXv1AHQ4HzGazEouIPIc6LjnejBw5Ek1NTco+8xtERHQiEe0mvV4vEomE0idUxCCiPiMYDCIcDkOSJKW9hHqcK9EWU12HkY/BYOg13lS2MapEnUWu9hOizYWo7xgsX/nKV/C3v/0NwL/n3xgxYgRuv/12XHfddcdd+w4iOjp2796NN954A6+++ipeffVVpFIpzJgxAzfeeCMuvvjitLFvDh06hJ07d2Lnzp3YsmUL3nvvPTQ1NWXtB2e1WjFy5Eh84xvfwJIlS1BXVwcAiEQiePfdd7Fu3Tps3LgRLS0t0Ol0SCQSMBgMOPXUU3HWWWehrq4Ow4YNU57N6vEExW9C8QzPHJNQ5LVz0el0ytiBor++x+NJ67sv6ppF33273Q6bzQabzYbHHnsMjY2N2LRpk1IGHCvBYBAbN27E6tWr8dprr0Gv12PmzJm44oorcNFFF8FgMOCll17CmjVr8NprrwEAvvGNb2DevHmYNWtWv37PdnR04KOPPsKnn36KHTt2YPv27dixYwcCgQAAoLKyElVVVTAajQgEAjh48CBkWYbBYMDkyZNx+umnY9q0aZg2bRomT54Mo9F4VP8mRERERERERERERERERESUm3r+32KWtrY2JJPJXtfLnP83c6mpqUF1dXXascGeB5iIiIiIiIiIiIiIiIiOH5n5K/WcS4Ue6+joyDkvU+Z8TNnmXirkWFVV1XEzLzQRERERERERERERERERHT9isRg6OzvR0tKC5ubmnOvW1lakUinlfR6PB9XV1UofvJqaGowePTrt2NHMU/r9fmUJBAJpa5/PB5/P1+t4IBBQcrRi3Fk1rVar5FbdbnfevobZXqfskskkWlpasG/fPuzbtw/79+9Xlr179+LgwYNKf8/KykrU1tZi7NixqK2tRW1tLcaMGYPa2lqUlpb2unZbWxsaGhqwY8cObN26FVu3bsW2bdsgSRK0Wi1Gjx6NKVOmoL6+HpMnT8aUKVNw8sknp41JXYhUKoXNmzfjxRdfxIYNG7Br1y5UVFRg1qxZuPLKK3HhhRfCYDAclb/X0fDmm2/iggsuQGdnJ77//e+joaFBGZ9/MKRSKbz99ttYuXIlNmzYgGAwiHPOOQfz58/HnDlzUFFRcczu48CBA8q/md27dyvLoUOHkEqloNVqMXLkSIwdOxZjx47FKaecglNOOQVjx47FyJEjodfrj8m9Eh0tXq83rfz2er29yvTDhw/D7/envS9buS762IvtESNGwOFwDNI3IyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioiFqrSalHvGSaJAlEgm8/PLL+M1vfoO33noLBoMB8XgcAGAymfBf//VfuPfeewf5LgdGNBqFLMsAgEAggEQigXg8DkmSAHw+kG0oFALw+d9JPeCr1+tVtsV7ASAUCiEWiwGAMokngLTrJpPJtEHy/H6/MnipJEnK3z8cDiMSifS6l6NFTP4pOByOtIEp1QPS6vX6tAH6xMSjgt1uTxu81O12KwOk6nQ6OJ1O5TWTyQSr1ars22w2GI1GZd/lcimD/Gq1WrhcLuU1o9EIm82m7BsMBtjt9rTvlfk9iIhoYOzZswePP/44/vCHP8Dr9UKr1SrlYSZJktKe30eDKCdFeSvWonwXa1GGqsty8Trw7zI9W1zQ09ODYDCofId4PJ5WjqvL6v4Q5aW6fFOXY+ryVF0+Op1O6HQ6AOllsLpMtVqtMJlMANLLfHUZri6T1WWqutzPLMeJ6OhKpVJ4/fXXYbfbcfbZZw/27RyRRCKB5cuX40c/+hHKy8tx11134dprr1WeRfmEw2HIsgy/349QKARZlhEMBhEMBiHLMkKhEPx+P2RZRjgchtfrRSqVgs/nU57L4jkvnt1irf4tVgjxnBTPTvE8Fc9YsRbPX/HcFvvqZ6h4Xquft+LZLq6v0WjgdrsB9P5tRHS8OHz4MP7whz/ggQceUGIjUY8BfB5TfPe738XPfvazAb8X8X9aHZOJeE7Ur4hngKijETGbiPeO5Br9oX4GiOeCOsZSx23Z4kPxfFHXkahjOhEnqp8/4nmifsaot9WfRUTpYrEYNm7ciIcffhjvvPMOjEajUt+rdvrpp+ODDz7o92dIkgSfz4dgMIhQKARJkpQJyCRJgiRJCAaD8Pl8kCRJOcfr9Sq/af1+P+LxeNaJyjKJZ4B4vojnhNvtVmIaEZ+4XC4YDAY4nU7leeNwOGAwGHJeQ8RHREREJ7JAIIDVq1fjoYcewvbt29Py7mo6nQ7/+7//i//4j/84os9T14t7vd5edeX9OSa21Tnrvoh44VitOakqERENVcXk38PhcFqbr/7IFQccjRjD5/Oh0CayRxIbeDyeot7DNmVERDRUJZNJ/PWvf8UjjzyCDRs2QKPRoKenJ+u5l156KTZt2tTvzxJtMUSuwufzIRqNKnmMWCwGn8+nxAaBQACxWAyBQKDP9xTbVl6U7SJf6na7lbXIx4ocqshtiNxtZpuQzDYg4poej6dXnpWIiGioCQaDWLVqFR588EF8+umnOfMbWq0WK1euxKJFi4r+DFHO+/1+pb2oz+dDOBxW6hbEts/nU9qKijalIq6QJAnhcFhpX5or5hFcLhcsFgusVivcbrfSNlTUKVgsFrjdbiU+cLlcsNlssFgscDqdsNvtSp2CiCUYFxAREaUT+Y3HHnsMPp8vb34jEokU1L9ETbT3zuxnEg6HlXaX6vhCxBFiW5blfsURIl6wWq1ZYwSr1Qq73Q6n0wmLxQKbzQaXywWz2QybzQaHwwGTyQSn06nUP7C9AxERUbpUKoU333yzoPzGzJkz8ac//anozyik36qooxDxhLouIjPuELFGPi6XC1arVamPENuZcYTdbofZbO4VL4g2DpmxBds7EBERpYtEInjhhRdw33335e2/odVq8fTTT2PBggVFXV+0jxDtHWRZVvp2ivqGzJhCbOd6LV8/ddGHPLPewWw2w263w+FwwGw2w+FwpMURNptN6RNqtVphNpuVnIhoZ0lERES9iXF0HnrooT77b0Sj0X6NB5Wvz4bX6837WrbzCslviPJf3dei0O1sr6nHPSQiIqJ/27JlCx555BE89dRTSKVSOcvoWbNmYePGjUVdO7PfZra4odD9vvp5quOAvmKDfPsVFRXMYxARERUoGo3ipZdeUsa5zJffePbZZ3H11VcXfO3+xhGZxzo7O/OOO5UvPij0WElJyRGPl0FERHQiam1txVNPPYXf/va3aG1tzZnf0Gg0iMfjynxGfcmVn8gXPxQTQ+TKS+SLHzKPl5eXp82LSERERMX78MMP8cgjj+Dpp59W5mXM5pvf/CbWrl1b0DWzxQiFxBFerxddXV1Z5/8Aeucw+oob1AvrHYiIiI4+0Rd0xYoV2LhxI/R6fc5yfP369bjyyivzXq+vGCLX0t7enrUupK/4INdSVVXFNpJEREQDLBaLYfXq1bjnnnvw2WefQa/X56yT0Ov1uPPOO3HmmWeira0Nra2t6OjoQHt7e9p2Z2dn2vtMJhPKy8tRVVWFiooKZamqqkJ5eXmv7ULzJ0REdHzx+Xz45S9/ieXLlyOVSvU5t6LRaMS5556LG2+8EfX19RgzZgzLACKiE8yf/vQnXH755QCAjRs34rLLLhvkOyKiE104HIbT6exzzAgAMBgMMJvN+PWvf40bbrgBGo3mGNwhEZ2IWltbcejQIRw8eBBNTU1oamrCwYMHcejQIRw4cACtra1IJpMAPs/LplIpRKPRnNfTarVIpVIYNmwYfvCDH2Dx4sVsA05ERMcN0WappaUFzc3NfbZVam5uhs/n63WdzLZKNTU1qK6uzttOqbq6Om9cbzKZsrbHEv3Q6+vrcccdd+Dqq69m2UpERDQAcrVtztcvSiyF9K8udimmb9TIkSPR1NTU67hopzVixAjcfPPNWLJkCceqJyIiOk6Ew+Fe9RO59js6OnrlF0WMkVknkW1/2LBhOcfW37t3L8aMGZP1NYPBgFQqhfnz5+N73/seJk2adNT/DkT0xdTXmJaFjHWZ7dkm5BunqtCxq8rKygqeV2T27Nl48cUXs74mxtq+/PLLsXTpUlxwwQX9+6MRERGd4IqZWyPfObnGmgCgzAF+pGNml5aWwmQyFfS94vF4zphDtKFyu91YsmQJli5dilGjRvX3T0hERHTCyTbfRn/388UQQP45N4rZLyaOAICqqiq0tbX1Oq7RaKDVamE0GrFw4ULccsstmDJlSr/+jkRERENdZsxQzNzguc4rZM7PYuYD7+u8YmMIAPjHP/6Bs88+O+trmW3GrrvuOpSVlRV1fSIiohNBMpmE3++HLMtKDCBiC5/Ph0gkAlmW4ff7EYlEEAqFEAgEEIlEIEkSgsEgIpEIgsEgAoEAZFmGLMvwer15P9discBqtcLlcsFut8NqtcJut8PlcsFqtcJqtcLtdsNms8FqtcLhcMDpdCqveTweZdvpdMLhcBQ9j/htt92GFStW5O3HduaZZ+KOO+7AFVdcwX5sREREGRKJhFL+R6PRtPoFv9+PaDSqxAvRaBSBQAChUAiyLCMYDCIYDEKWZYRCISUekWU5a392NVEnIeIBi8XSK6ZQxw1ut1s5LzO+cDgcsFqtsNlsRX//iooKdHR09Dou8htarRaXX345vvOd7+DLX/5y0dcnIiIaynp6ehAMBhEKhRCNRpU6CBFHiDoIESOI/EU4HEY4HIbP51Nih0AgAEmSEA6HEQwG836uOo6wWCxp8YHFYoHT6YTdbofFYlHqIiwWC2w2m1Jnke39xfr73/+Oc845J+trIr9RWVmJpUuX4uabb0ZFRUXRn0FERDSUSZKEmEruFAAAIABJREFUWCymxAQihgiFQgiHw0odhNhWxwrBYBDhcBiSJCEQCCAcDitxhxhrNhe3263EAJnxgLqOIlds4XA4YLFYlLoLEWcUq5D8xpQpU3DzzTdj0aJFsFgsRX8GERHRUFZMO8ti2l/mk6+9ZX+3ixlHQq28vLzXvKcA8xtERESF6E+/jb62u7q6sv7GVzueYgkgdzyh1Wqh0WhgNpuxYMEC3HLLLaivr+/XZxAREQ0VxcYPhZ7bV99PIPs4lke63Z9+G0K+/IZer0cikcB5552Hm266CbNnz4ZOp+vX5xAREQ01A1EfUUhuAxiYeMLpdParnC8rK0NXV1ev45n5jRtvvJFjZhMRERUhX1tLdd/PcDis9P1Ub+dqw5mLVquFy+WC2+1WxohwOp3KIo6LRbzu8XiU1z0eT7/qJyZMmICdO3emHROxhMlkwvXXX4/bbruNY2YTDWF+vx8bNmzAc889hzfeeAOTJ0/Gj3/8Y1x55ZV9vm/Xrl3YvHkzXn75ZWzduhXt7e1pc7VqNBrYbDaccsopuPTSS7Fs2TJUVFRgz5492LRpE9atW4f3338fiUQCer0e8XgcHo8HM2bMwIwZM3DJJZcU1X9MjBWkfl77fD6lH38gEOg1BpC6j39mv35JknLOPWsymeByuZTnt8vlgsfjSdvPfK20tBSlpaUoKSnpc6yeRCKBv/zlL3j66aexadMm9PT04Bvf+AauvvpqXH755TAajfjzn/+MZ555Bn/5y1+QSCRwwQUXYN68ebjiiiuK6tvn8/mwfft2bNmyRVkaGhqU+RPq6upQVVUFrVYLr9eLxsZG7Nu3DxqNBuPHj8dZZ52FM888E9OmTUN9fX2/c+5ERERERERERERERERERPRv6rFcilk6OjrQ09PT63rqefGKWaqrq6HRaAbhL0BERERERERERERERESULnPMIfWS7XiuY/nGLFTn1dRjBBVzrLS0FCaT6Rj/dYiIiIiIiIiIiIiIiIhosEUiEXR3d6OlpQXNzc1oaWlBY2Ojst3c3IzDhw/D7/cr7zEajSgtLUVNTQ2qq6vzrgdaIpGAz+frsx9jtnN8Pl/Wa2b2WXS73SgpKUkbpzfbur/zwQ0V0WgU+/btw969e7F7927s3bsXe/bswd69e7F//35lzGSPx4Pa2lqMGTMGY8aMwYQJEzBu3DiMGzcOdrtduV4qlUJjYyM++eQTbNu2DVu3bsUnn3yCffv2IZlMwuFwYNKkSaivr8eUKVMwefJknHrqqWnX6EtDQwM2bNiADRs24IMPPoDH48Hs2bNx1VVX4fzzzx/0ufd27NiBiRMnYuvWrViwYAEuvvhi3Hvvvcf8Pg4ePIinnnoKK1euxN69e3H66adjwYIFmDt3Lk466aQB+9xkMon9+/djx44dyvLpp59i586dkCQJAFBdXY1TTjkFY8eOxdixY5XtMWPGsB0EHfei0Si6urqU8tbr9aaVx2Ld1NSU1hdftPnJVf6K10aMGHHCl01EREREREREREREREREREREREREREREREREREREREREREREREQ0aNZqUhmz70UiEbz88stIJBKDdVN0AtDpdLjkkktgNpsBAO3t7XjyySfxwAMPoK2tDVqttte/Qb1ej8WLF+Oxxx7r8/qF/DtOJBKIRCKIxWKIxWKIRCJIJBKQZRmpVEo5DkA5Fo/H044lk0nlOuJzE4kEkskkZFkGAMRiMcTjcaRSqbRjmdc+EhaLBVqtFsDng+GJQe4MBgOMRiOAz//m4u+t1WphtVqV91utVmg0ml7XMplMMBgMAD7/+4tBJNXX0mg0sNlsWe/FZDIp95J5nvoaRERE/XHqqafi448/xooVK/D2229Dr9crg2zn84c//AFarRY9PT0IBoPo6emBJEmIx+PKur29HW1tbYhEIujp6UE0Gu21FnFBIZ8pqMs/MVC3urwWZbJer1fOM5vN0Ol00Gg0SvltNBp7vSfzOlqtFlqtFhaLBcC/y2V1max+DxENPZm/u3KJRqN4/vnnce+992LXrl0499xz8c477xyjuzxysVhMmejC5/Ohra0NP//5z/HRRx9hxowZ+NKXvoRgMIhQKIRwOIxAIIBgMIhwOAxJkuD3+yFJknJOPuI5brVaYTQaYTKZlOewzWZLW2ceF89mi8UCnU6nrMVvOPGcVu8TnejUz7F3330XDzzwADZs2ACtVpszBjMYDFiyZAkefvhhAIDP50MkEoEsywgEAohEIsr/eUmS8N577yEcDiMWi0GWZSW+C4VCSv2NLMuIx+OIRqMIh8OIx+MIh8NFfRej0QiDwQCDwQCTyaT8/1fHeCI+FM8PUccingvqaxiNxrSYUbxHHW+q64jUdTJEdPwSzz2/34+VK1di+fLlaG9vz1pfrnbSSSfhd7/7HSRJgiRJ8Pl8ynNOkiQEAgEEAgE0Nzcrz8JQKKT85s3FarXCbDbDZDLBYrHAZrPBbDYri3hdr9fDarUqzyXxm1XEOyJ2MhqNym9cIiIiOvqqqqpgtVrx6KOP4tlnn0UsFkMymcybizYYDJg/fz7OPvts+P1+RCIRpf4kFoshEAggHA5DlmU0NTUhHo8jEokodeSF5rptNptSHyJ+29hsNiV+EPUi6mPqOEP8lhKxRLZ6GCIiIjoy/c2/33///dBqtYhGo/D5fIjFYpAkSalj9Xq9CAQC6OzsVOoiQqGQknfvi6gPFXUP6nhCfSxbPCGO2e32Xrka5mSIiIiOHp1Oh9NPPx2rVq3CihUr0NTUBL1enzcHAQDTpk3DkiVLEAgEEI1GEQwGIcuyEldEo1GEQiG0tLRAlmUlnxuLxRAOh5FMJvNeX5T/6noFUdcg8hbq/IZoN68+lhkziDhEnMu8BxER0ZHrb37jqquuwrRp0xAOh+H3+9PaiEqSpBxva2tDNBpVciB9xRA2m02JFWw2mxIDWK1WZdtisSjtIywWi1JfIfIbYlvd1pSIiIgGxmmnnYZ9+/bh/vvvx6uvvlpwfuO+++5DIpFI61sSCASUOgifz4dAIACfz6fkPPq6rshXiH4mIqaw2+1pdRG54gixbTKZ0mISIiIiGhg6nQ5nn302XnrpJdx3333Ys2dPQfmNiRMn4sYbb4Qsy/B6vUobS9FPNRwOIxgMoq2tTcl79NXWUrSNKDRuUNdTqOsvxHkiJiEiIqKBU1VVhfLycjz55JNYsWKFMrZgvjyEXq/HVVddhfr6eqUOQsQQsiwrY1+EQiF0dnYiFAop4xzlkm38CxEfiH6h6jgiM/ch2kuo3yfGHCQiIqKBM23aNDQ2NuL3v/89NmzYAJ1OV1B+41e/+hWSyWRaTiOzfsLn88Hv9yMcDvfZTkL0r8jMcWSrd1DXVWSLP9RtLYiIiGjg6HQ6nHPOOdiwYQOWL1+OnTt3FpzfWLx4sdL30+/3K+0tQ6EQAoEA/H4/vF4vZFnOO8ae6GeRaywq9b5obynaRWSOZ6WeF4GIiIgGXlVVFaqrq/H444/j0UcfRSAQgEajyTvOpcFgwNy5c1FfX582hrcY81LEFKLNpSRJea8l4gR17CDiAhE7iLXNZst5jP06iYiIjr0zzjgDXV1dWL58OVavXg2NRtNnnQQA3HPPPYjH48r8ICKXEQwG044FAoGc1xCxgnoRcYG6zkHEGbnOJyIiosGh0+lwwQUX4NVXX8WKFSvw1ltvwWAw9NlWYuLEiZg/fz78fr/SJkLEEuolV15DxAlisdlsefczFzHvIxEREQ2uqqoqnHrqqVi1alXBfUH1ej0WLlyIqqoqeL3eXkt3dze8Xm/W99psNtjtdtjtdthsNmU/21q9zbkyiIiIjk/jx4/HX//6V/ziF79AZ2cnUqlUn/Nsib4VXq8XZrMZHo8HNTU1qK6u7rXd1dWFVCoFu90Ot9vNNpFEREPc66+/jueeew6RSKTP8Y3Vxo8fj5/+9KcDeGc0EM444wyMGjVqwK7/t7/9Da2trQN2fSI6fiQSCVx33XVIpVJ44oknoNfrB/uWiOgYqKqqwrnnnjtg19+/fz8++OCDfr23oaEB//3f/130+yZNmoSbb74ZZWVl/fpcIjpyOp0Ol1xyCcxm84Bc/3j+nZJIJNDd3Y3Ozk6sW7cOn376ad4+cWoajQYlJSWYN28ezj///AG+UyIiooERjUYhSZLSz1v09VZvq18X68zcqMlkQklJCUpLS5W1WJxOJ+6+++6896HVapFKpVBaWopbbrkF3/72txEMBvv9+4SIiIiOLlmWEQqFlPFqQ6GQsp9tnbmdrV2V2WyG2+1WFpfLlbbv8Xjgdrtx++23K+P0Z6PRaKDVamE0GrFo0SLceuutsNlsjCOIiIi+IFKplDJGjBgvxufzZR07RpyTWY/vdrtRWVmJsrIylJWVoby8HJWVlQA+H5smH9Ev/cwzz8Tdd9+NmTNn4t133z1u8xpE9MURCoUQiUSUeT3C4bDyW6mQ4+L3V65+KhaLBW63G06nEw6HQ9kW+2K9atUqfPLJJ3nvVTwLJ02ahG9/+9uYM2cO3n777YLzpkRERHR0pFIpZS6PcDiMSCSCSCSCUCiUti/iBLGf7Zx884GYTCal36rb7YbD4YDdbofD4VDiCrvdDq1Wix/84Ad93rfRaEQ8Hsd5552Hm266Caeddho+/PDDo/mnISIioj6IeohIJIJoNJq2L+KHzH0RO0SjUSW+iEajiMViOT9HzEdaWloKj8eTNp6WiCHEsR//+MeIRCJ579toNCIWi2HKlCm4+eabsWjRImg0Grz88suslyAiIhogiURCqTuIRqNKLCDigFAopGyLGCIWiykxRCwWU+KNWCymvCcfg8EAo9EIu90Oo9GIkpISlJeXw263w2q1wm63w+l0KuN2t7S04Le//W2f30Wv10Oj0WDWrFlYunQpLrjggiPqH0tERESFyYwVREyRLY6IRqO9Yo9s5+WrB9Dr9TCZTLDZbDCZTKioqIDH40mLJVwulxJLvPTSS/jnP/+Zd3xxnU6HZDKJkpISXH/99Vi6dClGjRp1XPeHJyIiGgqKqXNQ11lEo9G0vEZmfUY+VqsVJpMJRqMRbrcbFRUVsFgscLlcWesm7rrrLkSj0bzXFG0uJ0+ejGXLlmHBggXQ6XTMbxAREQ2gcDjcK3YQOYrM2EHEG4XEHvmIGELMaS7G0nE6nco85qJOwmKxoLm5GQ8++GCf30WMGzxr1izcdNNN+PrXv44DBw4wv0FERDRA4vG4EhPkavOQbbuv2KKvOgCr1Qqj0ajkOCorK2Gz2eDxeGCxWJT+oWK7kPyGGKfP7XZjyZIlWLJkCUaPHs38BhER0QAR7S1lWUY8HlfaP4g6BrEt6iXybWfGGvkYjUYYjUbYbDZlPWzYMNhsNpjNZrhcLthsNlgsFjidTtjtdtxxxx1F5zeuueYa6PV65jeIiIgGSDQaRTwez1rfII7nOidfvUU8Hs/7uSaTCQaDQYklxPh8It/hdruzbt9666199gcV8YS6P+i//vUv1ksQEREdJWLsqWwxgjoWyBc7xONxpU5CXZ+RTCbzfrbFYoHBYIDFYoHZbIbRaERFRQXKy8thNpvhdDp71U2YzWasWrUK77zzTt78hl6vR09PDyoqKrB48WIsW7YMw4YNY36DiIhoAKjHkojH40o/jHg8ntb2IdtxdZyRLRbpi9VqhcFggNlsVtpYVldXw+FwwGKxKGNdms1mZezLYvIbY8eOxXXXXYclS5bAYrEwv0FERDQIMttMZM6pIca/VI+tLca4VB/LVf6bzWZlHMuqqipUVVXB4/Eoi5jPUGyPHz8edXV1aG9vz3nPBoMBPT09uOiii3D77bfjggsuAADWSxB9QVVVVeHcc8/N+frWrVvxy1/+EqtXr8Z1112HBx98EBaLpajPCAQCePnll/Hss8/iww8/REdHR1r9p1arhdvtRl1dHebMmYOFCxfiH//4BzZt2oQNGzagvb0dFosFsVgMqVQK06dPx2WXXYaZM2eivr6+39+9v+LxOCRJwiuvvIJrrrkGL774IvR6PXw+H/x+P/x+v7Lt9XrT9sV2tjyy0+lEaWkpysrKlHnrS0pKYDKZsHPnTrz//vvo6urCGWecgYULF2LBggUoKSnB1q1b8eSTT+K5555DV1cXvva1r2H+/Pm48sorUVJS0uf3aW5uxocffogtW7Zgy5Yt+PDDD3H48GEAwMknn4zTTjsNY8aMwYEDB7B69WrodDpotVrE43G4XC6cddZZaYvb7QYARCIR/s6kE55Op8Mll1wCs9k82LdCREREREREREREREREx4lwOAyv11v00tXVlXVsFbPZnNYeqNClsrISOp1uEP4CRERERERERERERERERMcndS5P9PtX5+yyHcs8niuvJ2Tm98Q4hZn5vGzHxbGKigplzkYiIiIiIiIiIiIiIiIiGhrC4TBaWlrQ3Nycc93U1ARJkpT3iJxiTU0NRo8ejerqatTU1KSthw8fDqfTOSjfKZVKKXlVn89XUD/Krq4udHd3p31PQT12b0lJiTJ2b651WVmZMk7uUNfT04Ompibs2bMHe/fuVdafffYZ9u7dq+Sxhw0bhnHjxmHcuHGYMGGCsj18+HBoNBoAQCwWw+7du5Wxinfs2IFPPvkEHR0d0Ol0GDduHKZNm6YsZ5xxBkwmU5/3ePDgQaxfvx5r167Fe++9B4/Hg0svvRRz587FxRdfPCh5cJ/PB4/Hg5deeglXXnkl1qxZgzlz5hyTz47FYnj11VfxzDPP4MUXX4TD4cDcuXOxdOlSTJ069ah/3oEDB/DJJ59gx44dytLQ0ABZlgEAw4cPx4QJEzBx4sS0tcfjOer3QnSkspWZXq+317HW1lakUinlfWazuVc5mbkW5SoRERERERERERERERERERERERERERERERERERERERERERERERHRcW6tJqUebQvA+vXrj9mgenRiW7duHUaNGoVHHnkETz31FJLJJHp6enKer9FoMGPGDFxzzTUIh8MIhUKIxWIIBAJIJBLwer1IJBIIBALYv38/Pvjgg2P4bYiIiOhYMxqNiMVi0Gq1SCaTRb3XZrPBaDQqa6vVCpPJpKwbGhpw+PDhAbpzIqJjZ926dZg9e3bW17q7u/Hoo4/iN7/5Dbq7uwEAyWQSY8aMwe7du4/lbSIQCCiTUajX2Y5lrkOhUNZrOhwOOBwOWK1WuFwu2Gw2WCwWOJ1OOBwOWCwW2O12OJ1O/PGPf8RHH310TL8zERVm6dKleOutt7Bz507o9fq8dUcAoNVqMWbMGDQ1NSESifR5brFxJBHRQDvnnHPw/vvvQ6vVKpNF9cVkMiEajQL492RkHo8HFoslbf+5557jc4+IiGgI02g0SKVS0Ol0SCQSBb3HZDLBYrFAo9HA4/Eo9eZ2ux1GoxFutxsmkwltbW14/fXXB/gbEBER0WDqb/7d4/HAbDYrORij0Qin06nUS7hcLrz99tvHPPdEREREx5ZOp0MymURG15S8Ro0aBb/fD5fLBZPJBLvdrrTnU9dTPP7448xvEBERDWH9zW/Y7XZYLBalTkLsi7ajFosFzc3NePHFFwf4GxAREdFgEu0ni4klAKCkpARut1vpc2Kz2eByuWCxWGC1WuF2u/Hyyy9j+/btA3j3RERENNj6k99wuVywWq1KzCC2M/ut3nfffcxvEBERDWH9yW8YjUbodDpUVVUpMYTL5Uqrn3C73Thw4ADWrFkzwN+AiIiIBpPZbEYkEiloHB21iooK2O12pX7CYrHA4/Eo2y6XCy+//DK2bds2gHdPREREg81gMKCnpwcajabgXITL5YLb7VbGknA6ncr4nHa7HQ6HAy6XCz/44Q+RLKL9BREREX2xaDQaAJ+3lyi0TsJoNMJgMKCyslLJa6jjB9FeYt++fVi5cuUA3j0RERENNofDgWAwWHR+o7q6Gh6PR4kb3G53WhzhdDqxevVqzjVJREQ0xNntdsiyDI1GU3C7S4/Hg4qKCrhcLiXXIWIJ9XLttdcW1b+UiIiIvli0Wi0sFgui0SgSiURB/UGNRiNOOeUUGAwGeDwelJSUKHN3qZcdO3bgJz/5yTH4FkRERDRYis1rAJ/HEosWLcLDDz8Ms9mc91zRppOIiIiGnvnz52PVqlUDdn3GEUREREObXq9HPB4fsOtfffXVWL169YBdn4iOX+vWrcPs2bMH5Nr8nUJERDR0XXjhhfjOd76D7u5udHV1KWux3dnZiba2Nhw+fLjga+r1euh0OgwbNgx79+4dwLsnIiKiwaLT6fDkk0/C5/Mpi9/vT9v3er3w+Xzo7u4u+LqiDqKiogJtbW0D+A2IiIhosD344IOYOnUqOjo60N7ejo6ODnR0dKCzsxPt7e1ob2+H2WzG5s2bC7qeaBteV1eHXbt2sX85ER33tFotli9fjmAwiEAgAJ/Ph0AgoOyr1x0dHQVdU4wpajKZEIlEBvL2iYiIaJBNmzYNc+fOhdfrRTAYhCRJkCRJiSskSYLP50Nra2vB1xTzrlqtVsiyPIB3T0RERINt4cKFGD58OCRJQigUQjAYhM/nQygUUuKKffv2FTSeF/B5PUcymYTb7cbixYuxfPnyAf4GRERENJjGjx+Pr3zlK5AkCeFwWMlphMNhhEIhtLe3Q5Kkgq8n6iQmTJiA2tpabNq0aQDvnoiIiAbbFVdcgYqKCoRCIciyrMQSsixDlmUcPnwYsVisqHoJALjqqquwdu1a9ocnIiIawrRaLZYtWwZZluH3+9PiiWAwqMQSxeY37HY7Fi9ejIceemiAvwERERENJpHfCAaDCIfDkCQJfr8f4XAYsiz3O78xduxYjBs3jvkNIiKiIW7mzJmoqamBz+dDOBxGOByG1+tVtpubm4vOb6RSKVx55ZV46aWXmN8gIiIawrRaLa6//nrIsoxwOAy/35+2LdpdFpvfsNls+Na3voXf/e53A/wNiIiIaDBNmDAB5557rlIHIeomIpGIUjcRiUTg8/mKjidcLhckSeJ4fURERENUbW0tzjrrLEQikV71EbIsK8cBFBVHaLVaLFy4EM8++yzzG0REREOYyG8Eg0FEIhFlvMtIJIJAIFB0fkOj0SCVSsFisWDx4sVYsWLFAH8DIiIiGkxjx47F9OnT4fV6lUXMZxiNRgEAa9euxaJFiwqaT8NgMCAej2PixIn47ne/i+uvv571EkRfQHq9HvF4vM/zNm3ahP/8z//EOeecg/Xr10On0x3R50YiETz77LNYvXo1tm7diu7u7rQcqU6nQ2lpKSZOnIipU6fCYDBg/fr12L17N8xmMzQaDcLhMEaMGIGZM2fisssuw/nnnw+TyXRE91WM9vZ2VFZW4o033sDXv/71ot4bjUbh9XqVeerVc9V3dnaiq6sLn332GXbt2oWuri5lzqNkMqlcw2g0QqfTIRwOw2q1oq6uDhdeeCHq6upQU1ODqqoqnHTSSXC5XMp7wuEw/vnPf+Kdd97B5s2b8eGHH6KlpQXA5/XXU6dOxciRI+FwOCDLMnbs2IF//etfaG1tVe4hlUpBq9XCZrPh7rvvxrJly2Cz2Xp9x/Xr12POnDlF/12Jhpp169Zh9uzZg30bREREREREREREREREdJSJ8c5yLS0tLWhubu51PFu7HLPZDI/HU/RSXl4Og8EwCN+eiIiIiIiIiIiIiIiIiHIR4xJn5hSLPdbW1pbWr1RN5BgtFkuvfGMxxzwezzH+6xARERERERERERERERHRkQiHw2hpaUFjYyOam5uVvozqdVNTU9pY4WazGTU1Naiurs66Hj16NIYPH35c9VeMRqPo7u5WxuxVj+GrHss3cx2LxdKuo9PpUFJSgtLSUmVdVlaGsrIyVFZWKttlZWWoqKhAeXk57Hb7IH3rgdHT04N9+/ahoaEBu3btwq5du7Bz507s3LkTXV1dAACbzYZx48Zh3LhxmDBhAurq6lBfX4/Ro0cr41Dv378f//rXv7B582Zs3rwZW7ZsgSRJsFgsOO2003DGGWdg+vTpmD59Ompra/Pe0549e7BmzRqsWbMG27Ztw0knnYR58+bhW9/6Furr6wf8b6Jmt9tx11134Yc//CG2b9+OiRMnDujnHTx4EL/73e/w+OOPw+fz4aKLLsLixYtx2WWXwWg0HvH1E4kEDhw4gE8//RRbtmzBli1bsHnzZrS3twMAqqurMXHiRIwePRp1dXWYOHEipkyZgvLy8iP+bKIj5fV6s5Zt6r77hw4dQiAQSHufx+PJWcaJ9bBhw47K/zEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKi48RaTSqVSqmPvPDCC7jqqquwbmfzYN0UnQDmjK9BbW0t9u7dC6PR2Gsw0FzGjx+PAwcOwGw2w263w2AwwOVyQafTwe12Q6/Xw+FwoLW1FX/729/475iIiGiI+sm189G6Zye6u7uRTCah1+sLjie2bduGSZMm5T1n3rx5OByM4I4HHj0at0tENCjmjK/BmjVrMG/evLTj+/btwwMPPIDHHnsMPT09aZNSAIDL5YLP5+vXZyYSCXR2dqKrqwudnZ3o7OxER0cHOjo60o51dXXB6/XC6/XC5/MhkUj0upbNZoPb7YbH4ylo7Xa7cc8992DTpk144403cPbZZxd833zuEx2f5oyv6df7pk+fjmXLlsFsNsPj8cBkMsFqtcLlcsFkMsFut8PhcGD9+vWsByWi44r6uafVapFMJgt6n16vhyzLfU4cptFocMfyR3D2xbOO6D6JiIjo+PP2xrV48Hv/BY/HA6/XC5PJhGg02uf7TCYTvve97+EnP/lJ3vPYjoSIiGho+8niq9Ciyr8bDAbm34mIiKhgc8bXoKqqCq2trTAYDEgkEgXlOEaPHo29e/f2eR7zG0REREOXyG+4XC74/X7mN4iIiKgoP1l8FZp3N8Dr9SKVShXVv3DdZedeAAAgAElEQVTr1q2YPHly3nOY3yAiIhra5oyvQUVFBdrb25nfICIioqK8teEFPHTXd2Cz2RAKhYrKb9x555346U9/mvc85jeIiIiGth9/ax4O7foUfr8fwOfjSmSO/5UL8xtEREQ0Z3wN3G43fD4fjEYj4vE4MqYYyerkk09GY2Njn+cxv0FERDR0/d+La/Dw929T5oYqdI4ok8mE7373u/jZz36W9zzmN4iIiIa2Hy2agwMN2yBJEnQ6HQBknVskm08++QT19fV5z2F+g4iIaGibM76m6DoJABg5ciT279/f53nMbxAREQ1db7zwLH7/ozsBfD43VyqVKqhOwmQy4Y477sA999yT9zzmN4iIiIa2+79zI1L+TtTV1eG1117DwYMHodPpoNVqEY/Hc75Po9Hgm9/8Jl544YU+P4P1EkREJx5ZCuJw4x4c3L0Lh/buxoHPGtC0eye629uAVApanQ46vR49sVhaW/8n3v0Y7rKKQbxzKsb937kRJznMBcUD/cU4goiIaOh67y8v4f7blhbU97O/jqTd5f/c9C1seet1aDSatPE3zVYbPOUVqBw+EuU1J6GkogplNcNQWlmF0spqlFbXwGKzH82vQURFmjO+BmvWrMG8efMG5PpflN8pN1/4JbQdPJD1NcP/73+PVApOTwkmTj8bE6ZNx+iJ9ThlylTo9IZjfLdERESDr9D6zo8//hhTp04t+Lp6vV4ZP692Yj1+te6VI7pPIiIiOr4UU88pSRIcDkfB1zYYDIjH49BoNBhxynj8ZuObR3KrREREdJwqNK/xxBNPYOnSpQWP06/RaJQY5apld2DesjuO+F6JiAZCMb+rTj755ILG1gCgjNlhtVohyzL7xxIREQ1RheZ5t27diilTphR0TZ1Oh1QqhVQqBafTieHjJ+EnT609GrdLREREx5lC6meLyfNqtVpoNBokEgmMHTsWs2bNwv333896CSIioiGqkHqJlStX4vrrry9obFC9Xo9EIgG9Xo/zzjsPJpMJ3T0azktCREQ0RBVSL3HRRRfh1VdfLeh6og9bWVkZFi9ejPvuu+8L0R+eiIiIildIu8tQKAS7vbAxsNTtJKZMmYIZM2bg3nvvZX6DiIhoiBqI/EZPTw9MJhMuvPBCAGB+g4iIaAgrJL9x8cUX45VX+h5rT6PRQKfToaenBzU1Nbj22mvx85//nPkNIiKiIWog8xtTp07FjBkz8D//8z/MbxAREQ1RhY4rIcsybDZbQdfU6XQAgEQigfHjx2Pnzp2slyAiIhqCCo0jCs1vAP+eO8DlcmHRokV4+OGHGUcQERENUYXkN4qtjxDXmjZtGi688EL84he/YH6DiIhoiOqrXkKWZXi9XlgsFpSWlvb7c1gvQfTFUsz8PADwwQcf4Pzzz8c111yDxx577KjfjyRJePTRR7F+/Xo0NDTA7/cjmUwqr2u1WpjNZphMJvT09CAYDMJiscDpdKK9vR0ulwuXXXYZ5s6dixkzZsBoNB71e8xUVVWFO++8E7fffvtRu+Ybb7yBH/zgB/jnP/+JadOmYcmSJVi4cCGsVitef/11PPTQQ3jllVeg1WoxYcIEjB49GolEAu3t7Th06BDa2toQi8WU6xmNRthsNiQSCUiShGQyCZfLhWHDhqGiogJOpxPxeBx79uxBY2Mjenp6oNFoUFtbi9NPP11ZVq1ahSeffDLt2nq9Hna7HXfddRduvfVWWCwW5bUXXngBV111FX9n0gmt0PkgiYiIiIiIiIiIiIiIaHCEw2F4vd6il9bW1qy5drPZDI/Hoyw1NTWorq5OO5a5lJaWwmQyDcK3JyIiIiIiIiIiIiIiIqLjnTqnGYlEeuU4CznW3d2NaDSa8zMy85wWi6XoY+Xl5TAYDMfwL0NERERERERERERERERE+Xi9XjQ3N6OlpaXXurGxEc3NzWhvb0cikVDe4/F4UF1drfSNzLYeMWIE9Hr9IH6z/ILBILq7u9HV1YXOzk5lW73u7OxEe3s7Ojo60NHRgXA4nHYNs9mMsrIylJWVobKyUtkuKytDeXk5Kioq0o6VlZVBo9EM0jc+Ml1dXdi5cyd27tyJXbt2YdeuXWhoaEBjYyMSiQQsFgvq6uowefJkTJo0SVnX1NQgkUigoaEBH3zwATZv3ozNmzdj27ZtiMfjKCsrwxlnnIHp06dj+vTp+NKXvgSPx5P1Hnbs2IE1a9bg2WefRWNjI6ZOnYpvfetbuOaaa1BWVjbgf4PJkyejrq4OL7zwAoLBIOx2+4B8zrvvvosHH3wQL774IioqKnDTTTfh2muvRU1NTb+vGQ6HsXXrVnz88cf46KOP8NFHH2Hbtm0Ih8MwGo2YOHEipk6dilNPPRVTp05FfX09nE7nUfxWRH2LRCLo7u7OWh41NzfD6/WipaUFTU1N6OnpUd4n2qTkK5Oqq6tRWVmpzAlORERERERERERERERERERERERERERERERERERERERERERE9P/Yu/PwqOq7//+vWZLMAFmGhCQzWYCBCCUISMISkltUghCSsIlKraLUiorbXZdaLa2KeovVm7q0Wry1LnWpeBmXAJoQDK0guEC1AlULQQiZIQuZLMCEJJP5/tFf5kdM2ASZpDwf1/W5zsxnzjnzOucyh/G8z/kcAADOIG9039Eh8R9vx44dMhgMHQaROxaTyaSDBw8ec77ly5frww8/PJl4AACgG+sTEamJEyfqhRde0Jo1a1RYWKg333xTtbW1Cg0NVXNz8xGXPZ7fEgDwn2jTpk363e9+p7/85S8yGo1qaWnpcr6Ghga1trbKbDarvr5eVVVVqqmpCTy8Yd++fYG+9nb4Z9/V/vD6mJgYRUdHy2636+yzzw485D4qKiowPfx1aGjoCW3frbfeqnfeeUeFhYWaMGHC99pHALqfnJwcff311yorKws86OZY55JaW1t1xRVXnI54AHDKPfHEEwoLC1NRUZHef/99HTx4UGFhYTp06NARl2ltbVVzc7NCQkJOY1IAANCdhISGSZJqamr097//XYWFhSooKNCWLVtkNBrl9/vV1tbWaTm/368DBw6c7rgAAKCb6RMZpfPOO0/PP/+8Pvjgg8BviX379h3zvMT+/ftPY1IAANBdPf744xozZoxWr16tt99+W6tXr5bP55PZbD7i9SmckwAAAO31jX379unzzz8P3BOwZcsWmUwm6hsAAOCo+kRG6fzzz+9Q33jrrbdUU1NzzPsLqW8AAABJevLJJ5Wenq6SkhLqGwAA4LiFhlkkSfX19dqwYYNWrFihlStXHld9g3MSAAAgPMqm7OxsPf300/rggw/07rvv6p133lFjYyP3bwAAgOOybNkypaenB66TWLdundra2o5a3+B3BAAACLNYJUl1dXVav369SkpK9MYbb6isrEwhISHy+XxHrG80Njae7rgAAKCbiYyOUU5Ojn7729+quLi4w7jZISEhRzwnIf37uScAAAAvvviiUlJSAvWNL7/8Ukaj8ajPsuZ3BAAA6BUeIUnasWOHSkpKVFRUpKKiIh04cOCo11y2tbWptrb2dEYFAADdVGJiop599llJktvt1rp167R69WqtWrVKFRUVMplMnc5P+P1+uVyuYEUGAHRzvfqEK2XEOUoZcU6H/qaDB7Rnx79Uvv1rlW//l3Z9vU27v/lKtdWVkt+vGrdLUTGxQUoNAAAA/P8mzfmxBg8foX4Jieoba1ffuHj1cyQozNor2NEA4Lh4qiolSUaTSQYZ5PO1KiQ0VM5hZ2vY2AwNGZWuIaPSFNE3OshJAQDoWWpqao76+eG11ejoaJ1//vmaPHmyCgsLVdtqOE0pAQBAd3Ss67YNBoOMRqN8Pp+io6M1bdo05efn65VXXlH1oc5j3QAAgDNLVVWVTCbTEe83NxgMgc/79OkTOCdx8803K3FQymlOCwA/jKONrXH4s9BSUlI0e/ZsZWdnq7q6WpdddtlpTAkAALqjY43R1T4uh8Vi0QUXXKAZM2Zo2rRpuvXWW1XR2HSaUgIAgO7oWL8jQkND1dzcrNDQUGVmZmrGjBmaOXOm+vfvr+XLl5+mlAAAoLtqbGyUyWSSz+fr9JnBYAg8U9VmsykvL0/5+fmaMmWKIiIidMkll0iclwAA4Izm8XiO+Fn7dRJ+v19nn322cnJylJeXp8zMTBkMBj3yyCOnMSkAAOhujvV89fbrJMLCwjRp0iTNmDFDubm5SkhIoL4BAACOu77hcDiUl5en7Oxs5eTkqE+fPtQ3AADAcdU3JGn48OGaNWuW8vPzNXr0aBkMBj3wwAOnKyYAAOiG9u/ff9TPu6pv5OXlyeFwUN8AAACSjn29REhIiFpbW2U2m5WZmamZM2dq1qxZSk5OlsHA8wMAADiT1dfXH/Gzw58dkJSUFKhvTJw4USEhIfr9739/GpMCAIDu5njv3zh8nMvp06crPj6e+gYAAGe4Xr16qVevXqqoqDjmvIffyxEeHq7JkydrypQpuvbaa09DUgDBNGbMGL366quaPXu2kpOTtWjRolO6/j59+ui2227TbbfdFujzeDx64YUXtHLlSm3dulW1tbXyer2B68C9Xq+8Xq+kf59bfe211/TnP/9ZvXr1Un5+vubNm6fJkycrJCTklGZtN378eG3YsOGk19PW1qa33npLDzzwgL744gtNnz5dn376qdLT09Xa2qqCggI98cQTWr9+vUaMGKGnnnpKc+fOVZ8+fTqs5+uvv9bq1atVXFysL774QuXl5Wpubg7sr/ZpfX296uvrtXXrVkn/Hs/YZrNpxIgRSklJ0fDhwzVo0CAlJyerf//+stvteuihh9Tc3Nzh+1pbW1VXV6dFixbp4Ycf1p133qmbb75ZVqv1pPcJAAAAAAAAAAAAABwPr9crj8dzwq2qqqrLcU4tFotsNlun5nQ6u+xvb3a7nfuDAQAAAAAAAAAAAJxSVqtVVqtVDofjpNf13dpqU1NTl/XWw/vLyso69FVXV6u1tbXL9VssFlmt1k411676jtRvtVoVFRVF7RUAAAAAAAAAAAA4Se01uNTU1CPO09zcrJqaGrndbrlcrk7Tbdu2yeVyae/evYExbdvXbbfb5XA4AlOn09mhLz4+Xkaj8XRsagfh4eEKDw9X//79j3uZgwcPqrq6WlVVVaqurlZNTU2gVVZWqqamRjt37lRNTY2qqqpUV1fXYXmj0aiYmJhAi4uLU3x8vGJjY2W32xUbG6vY2Fg5HA7FxsYqLCzsVG/29xYdHa3MzExlZmZ26Pd6vdq6dau+/PJLbd26Vf/4xz9UVFQkt9stSerbt69GjBih1NRUnX322brqqqu0dOlSmc1mffPNN1q/fr3WrVunN954Q4sXL5bBYNDQoUOVlZWl7OxsTZo0SX379pUkDRs2TPfdd5/uu+8+bdq0Sc8884wWLVqkW2+9Veeff74WLFigGTNmKDQ09AfZBykpKSorK1NUVFSnsZ5PVnNzs1577TU98cQT2rx5s8aNG6eXXnpJc+bM+V7jZbtcrsC+3bRpkz777DMdOnRI4eHhGjFihEaNGqXLLrtMaWlpSk9Pl8ViOaXbAxzO6/Ue8d+P9qnH4znivyE2my3w78fh/57Y7XYlJCQoKioqiFsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdH/mYAfAmeuJJ55QWFiYioqK9P777+vgwYMKCwvToUOHjrhMbW3taUwIAAC6u169eik/P1/5+fl6+umn9fnnn6uwsFCvvPKKtm/frpCQEPl8PrW1tQWWOXDgQBATA8Dp5ff7VVhYqKVLl2rt2rWB46LP5zvqMomJiaqtrVVLS0uHz3r16hV4oEJsbKyio6M1cOBAxcTEKDo6WnFxcYqOjg68j4mJkdn8w596ePHFF/XYY4/p1Vdf1YUXXviDfx+A0+eqq67SJZdcor1796q4uFiFhYUqKipSY2PjEc8jcf4IQE8WFxenSy65RAsWLFBTU5PWrVunkpISrVy5Ulu3bpUkmUwmtba2dljO4/God+/ewYgMAAC6EaPRqLS0NKWlpenee+/Vrl27VFRUpLffflslJSVqbW2V2WwOnPPx+/2cMwcAAAG9e/cO1N//+Mc/6u9//7sKCwv15ptvasuWLTKZTPL7/dTfAQBAlwYOHKgFCxZowYIFOnDggD744AMVFhbqrbfeUk1NjUJDQ9Xc3ByY/+DBg0FMCwAAuhOTydShvvHtt9+quLj4iPWNtrY27d+/P8ipAQBAd3Gk+kZBQYG2bNkio9EoSR3uo+G3BAAAaOd0Ok+ovsF1EgAAoJ3JZFJWVpaysrK0ZMkS7dy5U6tXrz5qfaOxsTHIqQEAQHcRHR2tiy++WBdffLF8Pl9g/MQ333xTW7duldFo7HT/Br8lAABAO6fTqVtuuUW33HKLamtrtWbNGq1evfqI9Q2ukwAAAO2sVquys7OVnZ2tJUuWqKysTIWFhXrnnXf04Ycfyufzdahv+Hw+NTQ0BDk1AADoLgYMGBC45rK1tVUbN27UihUrtHLlyiOOT1VfXx/ExAAAoLv47pjZLpdLRUVFeu+991RUVKSGhoZOzx+ivgEAANodfh9oS0uLPvroIxUXF2vVqlX64osvZDAYZDabA9dKtLa28gxDAADQid1uD9zHIUllZWUqLS1VaWmpiouLVV1dLbPZrLa2Nrnd7iCnBQD0NJZevTX47FEafPaoDv2HvAdV7apQ4qCUICUDAAAAOho7aYrGTpoS7BgA8L34fK0ymoyKiolV6tjxGnLOGA0ZlaaBP0qVyRwS7HgAAPRoNTU1MhgM8vv9kiSDwaCQkBA1NzfLarUqIyNDF154obKzs5WWlhZYrqSkRGpsClZsAADQDXg8nk597feJhYaGasKECZo6dWqn3xFvvPGGdIjfEQAAnOmqqqoC5yOkjuckwsLClJGRoalTpyozM1Pjxo1TSMi/6wE333xzsCIDwCn33WejhoSEqKWlRVarVeeff75mzJih3NxcJSQkBOZZvnz56Y4JAAC6oe+OG24wGGQ0GuXz+ZSYmKjZs2crPz9f5557rkJDQ4OUEgAAdEdH+x2RlJSkWbNmadq0aZo4caIsFkuQUgIAgO6qsbFRBoMh8L79GSV+v19nn322Zs2apfz8fI0ePbrDfAAAAFLn8xLt155bLBZdcMEFmjFjhvLy8uRwOIKUEAAAdFeNjY0d3hsMBplMJrW2tiohIUG5ubnKy8vThRdeqLCwsCClBAAA3dX+/fu7rG9I0vDhw6lvAACAo/rueYnQ0FA1NzerT58+mjJlii688EJNnz5d8fHxQUoIAAC6q67qG2azWS0tLXI4HMrLy6O+AQAAjmr//v2d+trHqLLZbMrLy1N+fr6mTp2q8PDwICQEAADd1Xfv3wgJCVFra6vMZrMyMzM1depUzZo1S2eddVaQEgIAgO7qu+cjDq9vHH7/xpQpUxjnEgAAdGnfvn1d9rePL2EymTR8+PDAsw0nTpwYeB7RtddeezqjAgiS6dOn64knntBNN92kMWPGaMqUKT/o99lsNv385z/Xz3/+8w79tbW1KigoUElJib788ktVVFSosbFRra2tkqSDBw/q9ddf1+uvvy5JslgsSk5OVk5Ojq666iqNGjXqlOTLyMjQY489dlLrKC0t1c0336xt27bpoosu0osvvqgRI0bI4/HooYce0lNPPSW3262cnBwtW7ZMMTEx2rNnjxYvXqzy8nJt2bJF5eXlamho6PA8udDQUCUmJuqss87SoEGDlJSUpOTkZCUnJyspKUmRkZGqrKzUt99+q/Lycu3evVvl5eXatWuXNm7cKJfLpZaWFkmS2Ww+6jjHra2t8ng8uvvuu/W73/1Od911l2JiYk5qvwAAAAAAAAAAAAA4c3i9Xnk8nhNuNTU1gbrm4SwWi2w2W6fmdDq77G9vcXFxMplMQdgDAAAAAAAAAAAAAPDDslqtslqtcjgcJ7We9vpuU1NTp1rvkfo8Ho/Kyso69R/J4TVfq9XaqQZ8PH0xMTGMsQQAAAAAAAAAAAAcRWhoqBwOhxwOh9LS0o4438GDB1VRUaG9e/eqvLxclZWVKi8v1969e/Xtt99q48aNqqio0MGDBwPLhIWFyW63KyEhIfAd7S0hIUF2u11JSUnq3bv36djUo+rVq5f69++v/v37H9f8LS0tqqmpCbTKysoO791ut/7+97+rqqpKLper03NkoqKiFB8fr9jYWMXHxysuLk6xsbFyOByKjY1VbGys7Ha7YmNjFRYW9kNs8jFZrValp6crPT29Q39dXZ22bNmibdu2aevWrdq2bZtef/111dTUyGQyaciQIUpLS1NaWpoWLFigc845R01NTfrwww+1du1arV27Vs8++6wkadSoUZo4caLOP/98/dd//ZeioqKUlpamZcuWaenSpXrzzTf14osvau7cuerXr5+uvvpqXXfddUpKSjql25qSkqJPPvlEffr0OWXrbGlp0WuvvabFixdr9+7dmjlzph5++GFlZ2cf9zoaGxv12Wef6aOPPtLHH3+sjRs3qrq6WqGhoRo9erTGjRunG2+8UWPGjJHT6ZTBYDhl+XFm83g8crlccrvdXU49Ho92797d4dgWFhamvn37yuFwyG63y263Ky0tTXa7PdDncDiUlJQUeK4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJNjDnYAnLni4uJ0ySWXaMGCBWptbdXGjRu1YsUKvffee/ryyy8lSSaTSa2trYFlGhoaghUXAAB0cyaTKTC49b333quvvvpKhYWFKigo0CeffCJJamtr04EDB4KcFABOn5tuuknV1dUyGo2S/j0A/vG48sorNWLECMXExCg2NlYxMTGKjo5Wr169fsi438s//vEPLVy4UL/4xS80d+7cYMcB8AOJj4/XvHnzNG/ePLW2turjjz9WUVGRVqxYoS+++EKSZDab1dzcrPr6+iCnBYBTw2KxKDs7W9nZ2VqyZIkqKipUXFysoqIiFRUVqa6uTmazWa2traqtrVViYmKwIwMAgG6mf//+WrBggRYsWKDGxkYVFxfr3Xff1bvvvqu6ujq1tLR0ekgmAACAJBmNxg7197KyMq1YsUJvvfWW1q1bJ5/PJ7/fz28JAADQpd69eys/P1/5+fl6+umntXHjxsC1fP/6179kMBjk9XqDHRMAAHRTAwYM6FTfWLFihd555x15PB61traqsbEx2DEBAEA39N36xu7du7Vy5Uq98847Ki0tVXNzsyTxWwIAAHTp8PrGH//4R33yyScqLCzU22+/rW3btkkS9Q0AAHBEAwcODNQ39u/fr+Li4sB5iX379lHfAAAAR/Td8RN37typVatW6Z133tHatWsDY4YxHjMAAOhK3759dfHFF+viiy/W008/rU8++UQrV64M1Df8fr+amprU1tYWGJMUAACgndPp1C233KJbbrlF9fX1Wr16tVatWqV3331X+/btk8/nY4xfAADQJbPZrKysLGVlZWnJkiXasWOH3nvvPRUWFmrt2rWB+zeobwAAgK44HA7Nnz9f8+fPl8/n08cff6z33ntP7777rr788kv5/X61tLTI6/XKarUGOy4AAOhGQkJCNHHiRE2cOFEPPvigampqVFJSEriHo6qqSn6/XzU1NcGOCgAAujmn0ymn06mrr75akvT1119r7dq1+uCDD9S7d+8gpwMA/KcIs/ZS4qCUYMcAAAAAAOA/gslk1suffSMD98wDAHDK1dbWyu/3S/r3fWNjx45VTk6OsrOzNWbMGJlMpiAnBAAA3VVdXZ0kyWAwSJKGDBmi/Px8TZkyRVlZWQoLCwtmPAAA0M1VV1cHxuAPDQ1VRkaGJk+erAsuuEBjxoyR2WwOckIA+GG1trbq0KFDkv79/1XDhg3TjBkzlJOTo4yMDM7NAgCAozr8uaihoaE6//zzNX36dE2bNk0DBgwIXjAAANDtHf47IiQkRFlZWcrPz1dubq7OOuusICYDAAA9QWNjY6C+ER4erpycHOXn52vq1KmKiYkJcjoAANDdHThwIPB60KBBmjVrlnJzc5WVlcX1YgAA4Kj2798feG02m5WZmakZM2YoLy9PKSmM+woAAI5u//79Heobubm5gfpG3759g5wOAAB0d4fXNwYPHqzZs2crNzdXEyZMoL4BAACO6vDfESaTSRkZGYH6xtChQ4OYDAAA9BTt10u0j/s7cuTIwLmJc845J9APAADwXQcOHJDBYJDf71e/fv00c+ZM5ebmKjs7W7179w52PAAA0I11Vd+YOXOm8vLyNGTIkCAmAwAAPcW+ffsk/fu3hN/vV1tbm8466yzl5uZq8uTJOvfcczk/AUALFy7Uhg0bdMUVV+jzzz+Xw+E47Rn69u2rn/3sZ/rZz37W6bOSkhI98sgj+uijj7R//34ZDAY1NTXpm2++0TfffKPHH39cktS7d28NGTJEl112ma6//nr16tXrhHNMmDBBv/zlL/Xtt9+e8PMFKisrdfvtt+uVV15RXl6eXn/9df3oRz/Sli1bdOWVV2r58uXy+Xyy2WwKDw/XihUrtGLFChkMBoWHh0v6d126ra1NDodDWVlZyszMVHZ2toYOHRqY52hiYmKUmpra5Wc+n09ut1u7du3Srl27dOWVVx5zfW1tbaqsrNStt96qyMjI/289rTKZuHYfAAAAAAAAAAAAOBN4vV55PJ5Ac7vdcrlcHfq+22prawNjjh7OYrHIZrN1ak6ns8v+9tavXz+FhIQEYesBAAAAAAAAAAAA4D+f1WqV1Wo9Jev6bo25qanpmH1lZWUd+mpqatTS0tLl+i0Wi6xWa6f684n2xcXFyWQynZJtBgAAAAAAAAAAAHqaXr16KSUlRSkpKUedr76+XhUVFXK5XIHmdrtVUVGhTz/9VHv27NHevXvV3NwcWCYiIkKJiYmy2+1KSEhQQkKC7Ha7kpKSFNd1C0wAACAASURBVB8fr6SkJMXFxcls7j5j24aEhMhut8tutx/X/F6vV5WVlXK73aqqqtLevXtVWVmpqqoqud1ubd68OfC6/Rm47aKiomS329WvXz8lJCQE9kl8fHyH/XaqarjHEhUVpaysLGVlZQX6/H6/tm/frs2bN2vz5s3atGmTVqxYIY/HI5PJpKFDh2r06NFKS0vTRRddpP79+2vTpk1au3atSkpK9Nhjj8loNGrkyJE677zzdN5552nixImaN2+e5s2bp127dum5557T//3f/+nhhx9Wfn6+brjhBk2aNOmUPBM4JSVF1dXVJzy2dFdaWlr00ksv6YEHHpDL5dLVV1+tu+66S0lJScdctqGhQX/961+1Zs0alZaWauvWrfL5fEpKStL48eN11113afz48Ro9erTCwsJOOivOLO3XWLTf+3+kaVVVlXw+X2A5i8Uih8Mhu90um82m1NRU2e32QF/7ND4+XkajMYhbCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJx5us9IjTijmc3mwGCVS5YskdvtVnFxsd5//329//77qqurk9Fo1MGDB+Xz+XgoIAAAOKahQ4dq6NChuuOOO1RTU6NVq1aptLRUw4cPD3Y0ADhtwsPDVVtbK5/PJ6vVKq/Xe1zLZWdna/LkyT9wupNXX1+v2bNna+zYsXrggQeCHQfAaWI2m5WZmanMzEwtXrxY+/btU0lJid5//32tXLmShx4A+I+VkJCg+fPna/78+Wpra9OmTZtUVFSkzz777LgfggUAAM5c4eHhuuiii3TRRRepra1NH3/8sQoLCzVmzJhgRwMAAD2A0+nUzTffrJtvvlkNDQ0qLi5WaWmpzjnnnGBHAwAA3ZzJZArUd5csWaKdO3dqxYoVcrlcwY4GAAB6gO/WNz799FOtWLFCaWlpwY4GAAB6gOTkZF1//fW6/vrrdfDgQa1Zs0Zr165Venp6sKMBAIBuzmg0avz48Ro/frwefPBBlZeXa+XKldQ3AADAcenTp49mz56t2bNn69lnn9WmTZu0atUqjRw5MtjRAABADzBw4EDdcMMNuuGGGwL1jdLSUu4FBQAAx2QymZSRkaGMjAw98MADqqio0KpVq7Rnzx7G5gMAAMcUGRmpOXPmaM6cOfL7/dq8ebPee+89paamBjsaAADoAQYNGqQbb7xRN954o7xer9auXavS0lKNHz8+2NEAAEA3ZzKZNGHCBE2YMEH333+/qqurVVRUpO3bt8tisQQ7HgAA6OZiYmI0d+5czZ07V5K0detWrV69WklJSUFOBgAAepohQ4ZoyJAhuvbaa4MdBQAAAAAAAABwBAbumQcA4Adx3nnn6a677lJWVpYmTpyo3r17BzsSAADoIYYOHaoFCxYoIyNDU6ZMkd1uD3YkAADQg1x66aUaNGiQzj//fGVkZCgsLCzYkQDgtDKbzfr1r3+tAQMGKCcnh/+nAgAAJ2T8+PG6/fbbdcEFF+i8886T1WoNdiQAANBDDBkyRHfeeafGjx+v7Oxs9enTJ9iRAABAD5KXlyeDwaCpU6dqwoQJMpvNwY4EAAB6kF/84heSpGnTpsnpdAY5DQAA6EkGDx6s22+/XePGjdOFF16oiIiIYEcCAAA9SG5urvx+v6ZOnarMzEyZTKZgRwIAAD3IHXfcoba2NuXm5lLfAAAAJ8TpdOrnP/+5xo4dq6lTpyoqKirYkQAAQA8zYMAAXXPNNRo/frxyc3MVFxcX7EgAAKCHWLBggVpaWpSbm6vRo0fLYDAEOxIAAOghBg4cSH0DAACclL59+2rQoEHKyMjQhRdeqMmTJys+Pj7YsQB0Q0899ZTS09N1+eWXa82aNd3qPGZ2drays7MlSZ988oleeuklvfrqq2poaFB0dLRqa2vl8/nk9Xq1efNmbd68WbfffrsiIiKUnZ2tRx99VAMHDjyu70pPT1doaKjWr1+vAQMGHNcyfr9ff/zjH3X33XcrIiJC99xzj/x+vxYuXKgNGzaoublZkhQZGamMjAylpqYqJCREu3bt0meffaZ//etfCgkJ0eTJkzV16lRNnTr1B6lHm0wmJSYmKjExUf3791dra+txL9vW1iaPxyNJevHhxfrp3YtPeT4AAAAAAAAAAAAAPwyv1yuPx3PCbe/evfL7/Z3WZ7PZZLfbZbPZAs3pdHZ4/90WHR2tsLCwIGw9AAAAAAAAAAAAAOB0sVqtslqtcjgcJ7Uer9erpqamTvXurvra+z0ej8rKyjr01dXVdVn3liSLxSKbzSar1Rp4fXjrqv+7fX379pXFYjmpbQUAAAAAAAAAAAC6q8jISEVGRmrYsGFHnc/j8cjlcsntdnea/u1vf5Pb7da3336rtra2wDLt96o6HI7A1Ol0duiz2+3daozkdlarVQMGDDiusYsPHjyoyspK7d27V1VVVXK73aqsrFR1dbX27Nmjjz76SHv27FFlZWWHsYJtNpscDocSEhJkt9uVmJio+Ph4JSUlKT4+XomJiYqLi5PZbD7l22cwGJSSkqKUlBRdeumlgX6Xy6VNmzYF2kMPPaTKykqZTCYNGTJEWVlZuv322zV06FA1NDSopKREJSUleuyxx2QwGDRq1Cjl5eUpPz9f9913nxYtWqSCggI99dRTmjx5soYMGaKFCxfqqquuUkRExPfOP2TIEDU3N6ulpeV7r8Pv9+vPf/6z7rvvPpWXl2v+/Pn61a9+peTk5CMuc+jQIW3YsEFr1qzRmjVr9Omnn8rn82nEiBGaNGmSfvOb32j8+PFKSEj43rnwn6/9eOrxeLo8prpcLrlcLtXV1XVY7rvHVKfT2eH42n4ciYyMDNKWAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADiWUz/CIHAK2O12XXnllbryyivV1tamzZs3q7i4WOXl5TIajcGOBwAAepiYmBjNmzdP8+bNC3YUADitHnroIeXm5mrDhg0qKSnRBx98oM2bN8vn88lsNnd4WEE7o9GoqqqqIKQ9cXfeeacaGxv1l7/85Qd5iAKAniE6OlqXXnpp4GEnXq83yIkA4IdnNBo1ZswYjRkzJthRAABAD2Q0GpWRkaGMjIxgRwEAAD1QRESE5syZozlz5gQ7CgAA6IEGDhyom266KdgxAABAD2Q0GjVu3DiNGzcu2FEAAEAP1KtXL+Xn5ys/Pz/YUQAAQA+UlJSk6667LtgxAABAD2QwGJSenq709PRgRwEAAD0Q9Q0AAHAyEhISdM011wQ7BgAA6IEMBoPS0tKUlpYW7CgAAKAHslqtysnJUU5OTrCjAACAHqhfv366/PLLgx0DAAD0UKmpqUpNTQ12DAAAAAAAAAAAAAAAAADoMYYNG6b/+Z//CXYMAADQA8XFxWnZsmXBjgEAAHooxt8HAGnx4sXBjgAAAHqo/v3765FHHgl2DAAA0ANFRERoyZIlwY4BAAB6qMzMTGVmZgY7BgAA6KFuvPHGYEcAAAA9VHh4ONdJAACA723ChAmaMGFCsGMAAIAe6oYbbgh2BAAA0EOFh4dr6dKlwY4BAAB6sMjISD3zzDPBjgEAAHqgu+66K9gRAABAD0V9AwAAnKyRI0dq+/btwY4BoAcIDw/Xq6++qnHjxumFF17Q/Pnzgx2pS2PHjtXYsWP16KOP6u2339YLL7yg1atXKzw8XFFRUdqzZ4+ioqJkNBpVW1urgoICFRQUyGaz6b//+7+1aNEiGY3GI67farVq/PjxKi4u1k9+8pNj5qmurtZll12m0tJSJSUlac+ePbr33nsVHR2t/fv3y2Qy6Wc/+5nuvfdeHTx4UC+//LJefvlllZWVKSkpSTNnztSyZct07rnnymQyncpddVQ7duw46ucmk0kGg0Gtra0ymUw666yz5HA4tGbNGs26hmv6AQAAAAAAAAAAgNPN6/XK4/GccKuqqpLP5+u0PovFIpvN1qk5nc4u+9ubw+EIwtYDAAAAAAAAAAAAAM4kVqtVVqv1lNSpD6+3NzU1daq/d9Xndrs79O3bt0/Nzc1H/I7v1uCtVutx9R3eHxsbK7PZfFLbCgAAAAAAAAAAAARDe+0rNTX1iPM0NzerpqZGbrdbLperw7SsrEybNm1SRUWF6uvrA8uEhYWpb9++cjgcstvtcjgccjqdgdd2u13JyckKDw8/HZv5vfTq1UsDBw7UwIEDjzpfW1ubKisr5XK55HK5VFFRIbfbrfLycu3du1ebN2+W2+1WTU1NYBmj0ai4uDg5HA45HA4lJSUpOTk50AYMGCC73X7UsZhPRPv35OfnB/p27dqljz/+WB999JHWr1+vP/3pT2ptbVViYqKysrI0b948LVmyRHv37tX777+vP/zhD7rvvvs0YMAATZs2TTNnztQHH3ygHTt26KmnntKvfvUrLVq0SPPnz9cvf/lL2e32E845cuRIGQwGNTQ0fK/t/OKLL7Rw4UJ9/PHHuuqqq7Ro0SINGDCgy3m//vprvfvuu1qzZo0+/PBDHTx4UE6nU5MmTdItt9yiCy64QP369fteOfCf49ChQ9q3b1/geoTvHgPbp+Xl5WppaQks991joNPpVGZmZuBaivZjYXJyMtcbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP8BGFUM3Z7RaFR6errS09ODHQUAAAAAepzevXsrOztb2dnZkiSPx6O//e1vKi0tVXFxsb766itJUmhoqA4dOiSDwaCqqqpgRj4uf/3rX/XMM8/otddeU1xcXLDjAOhGrFZrsCMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcEdLS0rRw4ULdcccdmj59uqKjo4Md6YgsFovmzp2ruXPnqry8XC+++KJeeOEF+f1+RUREqLq6Wr1799a5556rr776SmVlZbrnnnt033336YorrtBzzz0nk8nU5bpzc3P1yCOPyOfzHXEeSXrppZd03XXXqampSSEhIRo9erSuuuoqvf7669q5c6duv/12XXfddVq5cqUuvvhibdiwQXa7XZdddpkuvfRSpaeny2Aw/FC76KjKyspkMBjk9/tlMBhkNpvV0tIio9Eop9OpCRMmaMyYMRozZoxGjhwpi8Wi5cuXa82aNbL1iwtKZgAAAAAAAAAAAKCn83q98ng8J9xqamrU0tLSaX0Wi0U2m61TczqdXfa3t/j4eBmNxiDsAQAAAAAAAAAAAAAATi+r1Sqr1SqHw3FS6/F6vWpqaupU+z9WX1lZWYe+qqoq+Xy+Lr+j/ToAq9Xa6ZqAE+mz2Wwnta0AAAAAAAAAAADAqRYaGiqHwyGHw6G0tLQjzuf1euV2u+VyuTpMy8rKtHXrVpWUlGj37t1qbW0NLGOxWORwOOR0OmW32+VwODpN+/fvf9RxhoPNaDTKbrfLbrcfdf8cOnRILpdLLpdLFRUVcrvd2rNnj9xut7788kutXLlSFRUVgf0TEhKixMREJScnq3///urfv7+Sk5MDrX///rJard87d/s6L7nkEknSgQMH9Omnn2rdunXasGGD7rnnHtXV1al3796aMGGCbrvtNjkcDn3zzTdatWqVnnrqKfXt21czZszQRRddpF//+td65ZVX9PDDD2vZsmW65JJL9Jvf/EaDBw8+7kwRERGKiYlRY2PjCW3LgQMHdP/99+t///d/NXLkSH300UcaO3Zsp/k+//xzFRQUqKCgQFu3blW/fv00adIkPf7445o0aZIGDhx4Qt+Lnuvw45XH4+ny2OVyuVRZWam2trbAcu3HrPbjU1paWuC9zWYLvLbb7UEbvxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA6WcOdgAAAAAAAHD62Gw2zZgxQzNmzJAkVVdX669//atKS0tVVFSkHTt2qKmpKcgpj66pqUnXXHON8vLydOmllwY7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcse6//34tX75cixcv1uOPPx7sOMclKSlJixYt0t13360PPvhAzzzzjAoKCtS7d2+tX79eDQ0NmjFjhnr37q3ly5frxRdf1Msvv6yFCxfqiSee6LS+vLw83Xnnnfrkk0+UkZHR6fOdO3fqiiuu0Pr16xUREaGlS5cqNzdXjz76qBYvXqyJEyfqscce0/vvv6/hw4erublZs2fP1m9+8xtNnjxZJpPpdOyWo2psbJTf71dycrImTJigMWPGKD09XaNHj1afPn2CHQ8AAAAAAAAAAADotpqamlRbWyuPx3NCrba2VocOHeq0PovFIpvN1qk5nc4u+9tbbGyszGZzEPYAAAAAAAAAAAAAAABnHqvVKqvVKpvNJofD8b3X4/f7VVdXp4aGBjU2NgZafX296uvrO/Q1NDSorq5ONTU1Hfo9Ho8aGxvV2tra5XeEhoYqPDxckZGRioyMVJ8+fRQeHh7oi4qKCrxvbzabTRERER36IiMjv/d2AgAAAAAAAAAAAN+H1WqV0+mU0+k86nwej0cul0tut1tlZWWB1y6XS9u2bZPL5dLevXvl9/sDy7Tfv2u32+VwODpN2+/t7c7CwsI0cOBADRw48Ijz+Hw+uVwu7dq1S7t27dLu3bu1e/dulZeXa9OmTdq9e7caGxsD88fGxio5OTnQBg0apEGDBmnw4MEaMGCAQkJCjjtf7969dd555+m8886TJLW1temf//yn1q9fr9LSUi1dulTV1dXq16+fLrjgAl166aVqaGhQaWmp8vPzFRERodmzZ+tPf/qTvvnmGy1dulTDhg3Tj3/8Y91zzz3H/O+i3VlnnaX169ersbFR4eHhx5y/sLBQ1157rVpaWrRs2TLNnz9fBoMh8PnWrVv1xhtv6C9/+Yu+/vprJSUlKScnRw899JCmTp16QvsI3d/hxxeXyyWPxxN43T6tqKhQfX19h+VsNluH40pqamqH9zabTcnJycf13yQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAM4852AEAAAAAAEDw9OvXT3PmzNGcOXMkSdXV1YqKigpyqqN75plntGfPHq1ZsybYUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgjBYZGal77rlHt956q+6++27FxcUFO9JxMxqNys7OVnZ2tv71r3/pqaee0vPPPy+z2ax169aptrZWs2fPVmRkpF566SU9+eSTeumll1RaWqpzzjknsJ5hw4Zp0KBBWrlypTIyMjp8x1tvvaUrrrhCXq9X5557rlavXq21a9cqPT1dJpNJS5Ys0caNG5WTk6OkpCTdfffduvrqqxUdHX26d8dR3XDDDfrpT3+qPn36BDsKAAAAAAAAAAAAEBRer1cej+eEm9vt7rQui8Uim83WqTmdzi7721tMTIxCQ0ODsPUAAAAAAAAAAAAAACAYDAZD4LqBk+X1erV//341NjbK4/GosbGxQ6urq1NDQ0OHvrKyMtXX16uxsbHDZ0cSFRWl8PDwDs1msykiIqJDX2Rk5FHnNZlMJ729AAAAAAAAAAAAQLv2mltqauoR52lqalJtba3cbrfKysrkcrnkdrvlcrlUVlamdevWaffu3dq/f39gGYvFIofDIbvd3uXU6XQqKSlJISEhp2MzvxeTyaSkpCQlJSUpKyury3k8Ho92796t3bt369tvvw283rhxo1555RVVV1dLksxms5KTkzV48OBAGzRokFJSUuR0OhUWFnbULEajUampqUpNTdWCBQvk9/v1xRdfaPXq1SopKdF9990nr9ers846S/PmzZPFYtFnn32m559/XklJSfrxj38sm82mF154QT/60Y90/fXXa9GiRYqJiTnq944ePVrr169XeXm5hg0bdsT5fD6fFi1apIcffljz5s3T0qVL1bdvX0lSRUWFXn75ZS1btkw7d+7UgAEDNH36dD377LPKzMyUwWA4agZ0L4cOHdK+ffsCx4D2afv4Ae19u3fvVmtra2C59nEE2o8DTqdTmZmZgfftn/Xv35+6OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICTYg52AAAAAAAA0H3069cv2BGOyuv16uGHH9bChQuVlJQU7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcMabP3++7r//fj3xxBN68MEHgx3ne0lJSdHvfvc73X///XrppZf06KOPyuPxaM2aNaqvr9fcuXO1e/durVu3TqNHj9aPf/xjvfrqq4Hlp02bpoKCAj3wwAOBvuXLl+uyyy5TWFiYcnJyVFBQoAcffFAPPPCApk2bJrPZrF/+8pcaMWKEli9frpkzZ8pkMgVj84/JZDKpT58+wY4BAAAAAAAAAAAAnBSv1yuPx3PCrbKyUm1tbZ3WZ7FYZLPZOjWn09nhvcPhkN1ul81mU9++fWWxWIKw9QAAAAAAAAAAAAAA4ExmtVpltVrVr1+/k15X+zUYTU1NXV6P8d3+yspK7dq1q0Pfvn371NzcfMTv6Oq6DKvV2qm/q772/qioKBkMhpPeXgAAAAAAAAAAAPzns1gscjgccjgcSktLO+J8Ho9HLpdLbre703TTpk1asWKFdu3aJZ/PF1jGZrPJbrcH7jk+fOp0OmW32xUfHy+j0Xg6NvWEtdfgRo4c2eXn9fX12r59u7Zv364dO3Zo+/bt+vLLL/XWW2/J7XZLkoxGoxITEzV48GANHjxYgwYNUkpKis4++2wNHDiwy3GZDQaDRo0apVGjRumOO+5QU1OT1q9fr5KSEq1evVqbN29WZGSkpk+frl69eumNN97Qzp07lZaWpquuukrLly/Xc889p9tuu0133nmnrFZrl/kvvPBCPfnkk/r44481bNiwLueprq7WT37yE3344YdatmyZrrnmGvn9fr333nt67LHHVFJSotjYWF1xxRW6/PLLNWLEiO+5t/FD8nq9Xf7tulwueTyewOu9e/fK7/cHlms/PrT/3aalpXX6e24fVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATgdzsAMAAAAAAAAcr9///vdqaGjQnXfeGewoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJFotFN910k377299q0aJFslqtwY70vfXp00cLFy7UggUL9Oqrr+qhhx5SXV2dVq1apcbGRl166aVasWKFXnvtNX300Uf66quvZLFYdPnll+vJJ5/UJ598orFjx+qbb77RT3/6UyUkJMhqteqFF17QT3/6Uy1fvlzTpk1TcXGxhgwZojfeeEOzZs2SwWAI9qYDAAAAAAAAAAAAPYLX65XH4znhVl1drdbW1k7rs1gsstlsnZrT6eyyv73Fx8fLaDQGYQ8AAAAAAAAAAAAAAAAEl9VqPSX3lHu9XjU1NXW6HqSrvvZ+j8ejsrKyTn1Hcvi1IVartctrRbrqP7wvNjZWZrP5pLcXAAAAAAAAAAAAPV97PSk1NfWI8zQ3N6umpkZut1sul6vDtKysTJs2bVJFRYXq6+sDy4SFhalv375yOByy2+1yOBxyOp2B13a7XUlJSYqIiDgdm3lCIiMjlZaWprS0tE6fHTp0SBUVFSorK9PWrVu1bds2lZWVqaSkRLt27ZLP51NoaKgGDx6s1NRUDRs2LDD90Y9+1OF+bovFokmTJmnSpEl66KGHVF5eroKCAq1YsUKrVq1SSEiIxo0bp+bmZj333HPq16+f0tPT9eijj+pPf/qTHn/8cc2aNatTxkmTJslgMGjVqlWaP39+p8+3bNmiqVOnymq1asOGDRo+fLief/55Pfroo/rnP/+pyZMnq6CgQNOmTVNISMip3bk4Lh6Pp9PfmsvlksfjCbwuLy9XY2NjYJnQ0FBFR0fLZrMF/sZSU1M7/M05HA4lJiYqNDQ0iFsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ3xVC0AAAAAANAjtLW16Q9/+IOuvfZa9evXL9hxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4f+zdeXhU5dnH8V9ICBn2AAKZGMAAlRJQbABlE7FQFQttZbEqQqWCS6mpG4v6KosLoIgoRaGKGioKSG1J64aKStwQhCqrCrJlAioMoJKw5v0jnck2kzln5iRzzuT7ua5cTA4nzzxz5n7uuec5GwAAAAAAAAAAAAAAAAAAAAAA+J/rr79e9957r1577TVdccUV0e5OxBISEjRy5EiNGDFC//nPfzR16lStW7dOr7zyipo0aaIWLVpox44daty4sT777DN1795dnTt31vPPP6/u3bvr3nvvVbNmzbRnzx69//77Gjt2rN588021bNlS7777rmbMmKE///nPio+Pj/ZLBQAAAAAAAAAAAKpdQUGBvF6v6Z8DBw7o+PHjFdpLSkpScnJyhZ/09PSAcS3KHwAAIABJREFUy30/zZs3V0JCQhS2AAAAAAAAAAAAAAAAAFwul1wul5KTk+V2uyNqq/zxKIWFhSGX7dixo8zyb7/9VqdOnQrYvu/4FJfLVeFYlUDLAi1v2rSp6tSpE9HrBAAAAAAAAAAAgP0lJibK7XbL7XYrMzMz6HqHDx9WXl6e8vLy5PF4tHfvXu3bt0979uzRhg0b9O9//1v79+8vsw+radOmSklJUVpamlq2bKm0tDSlpKQoNTXV/5wtW7ZUXFxcdbzUkOrUqaP09HSlp6erf//+Zf7vp59+0ubNm/XFF1/4/3366aeVl5cnSWrYsKEyMjLUqVMnderUSRkZGercubOaN28uSUpLS1NWVpaysrL0/fff69VXX9WyZcv0xhtvKCEhQc2aNdP69ev9bV1xxRUaPny4nnjiCX8bUvF+yyZNmmjdunUV+r9+/XoNGDBAGRkZeuWVV/T6669r+PDh2rlzp0aMGKElS5aoU6dOVbX5arTCwkIdPHhQ+fn58ng8Ff71er3Kz8/Xrl27yowR3z5at9utlJQUpaenq1evXv7fff+2aNGC64MDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcKyEaHcAAAAAAADAiDfeeEO7du3SH//4x2h3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQyhlnnKE+ffpo6dKluuKKK6LdHcvUqlVLgwYN0q9//Wu9/PLLuvPOO5WXl6eTJ0+qVatW2r17tzp37qxPP/1UI0aM0PTp0zVlyhT94x//0Jlnnqnhw4fr+eef16uvvqpatWopPT1dixYtUlpaWrRfGgAAAAAAAAAAABCxgoICeb3ekD/5+fnyeDz+3wsLCyu0lZSUpOTk5Ao/6enpAZf7fpo1a6bExMQovHoAAAAAAAAAAAAAAADYhcvlksvlktvtjqgd3/EwhYWFAY+NCbQ8Pz+/zLIDBw7o+PHjQZ8j0HEyLperwvJAy3zLGzdurLi4uIheKwAAAAAAAAAAAKKrUaNGatSokTp27Fjpel6vVx6PR/n5+dqxY4f/scfj0eeffy6Px6N9+/apqKhIklS7dm01a9ZMbrdbKSkpcrvdSk9PL/M4LS1NtWvXro6XGVS9evXUrVs3devWrczyw4cP6+uvv9amTZu0efNmbdq0STk5Odq3b58kKSUlRZmZmf6f888/X82bN9fIkSM1cuRIff/993rhhRc0f/58HT58WGlpadq7d68SExP1+uuv6+yzz9aMGTM0duxY/3N26tRJH3zwQZl+7NmzR5dffrm6dOmiWbNmaejQoXrvvfc0ZMgQvfrqq2rXrl3Vb6QYVFBQ4I/fYP/69sOWlpycrJSUFCUnJ/vjuHSMp6SkKDU1VY0bN47SKwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA6pMQ7Q4AAAAAAAAY8fTTT6tv3776+c9/Hu2uAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKGTp0qCZMmKCTJ08qISEh2t2xVFxcnIYNG6bBgwfr8ccf19SpU+XxeJSYmKjjx4+ra9euWr58uX744Qc98cQTOnHihL755huNGDFC999/vyRpzJgxmjt3rmrXrh3lVwMAAAAAAAAAAACUKCgokNfrNf2zb98+FRUVVWgvKSlJycnJZX5SUlKUmZmplJSUCv+XnJysJk2aKCkpKQqvHgAAAAAAAAAAAAAAACjhcrnkcrkibqegoECFhYUVjs0JtMy33Ov1aseOHWWWHTp0KOAxOlLZ43RcLlfA43YCLS+9rHnz5jF3bQAAAAAAAAAAAIBY49vPk5GREXSdo0ePKi8vT/n5+dq9e7fy8vKUl5enPXv2aP369crJydH+/ft1+vRpSVKtWrXUsmVLnXnmmUpNTVVaWppSU1PldrvVqlUrpaamKjU1NSrngDdq1EiZmZnKzMwss3zfvn36/PPPtXbtWq1du1bPPvuspkyZIklq3769evXqpd69e6tnz5665ZZblJWVpffff1/z58/X8uXLFR8frxMnTqioqEg33nijVq1apWeeeUZ169bVb3/7W7333nt677331LdvX508eVJDhw5V06ZN1a9fP3Xv3l1dunTRZ599pnPPPbfat4kTeL1eeTwe5efnB/137969On78uP9v6tSpoyZNmsjtdislJaXMdQl8y9xut9LS0riuNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUwp2nAETVlNFX6r6FS6LdDcAQ4hUAai4+A4DoO3bsmF5//XU99thj0e4K4Fh8ngGhMU4ARBt5CE5CvAKA/ZCb4STEKwDYD7kZTkK8AoC9kJfhJMQrANgPuRlOQrwCgP2Qm+EkxCsA2At5GU5CvAKA/ZCb4STEKwDYD7kZTkK8AoC9kJfhJMQrANgPuRlOQrwCgP2Qm+EkxCsA2At5GU5CvAKA/ZCb4STEKwDYD7kZTkK8AoC9kJfhJMQrACAW8HkGhMY4gZMQrwBgL+RlOAnxCgD2Ql6GkxCvAAAnq4rPMT4bgehjHMJJiFcAsB9yM5yEeAUA+yE3w0mIVwCwH3IznIR4BQB7IS/DSYhXALAfcjOchHgFAPshN8NJiFcAsBfyMpyEeAUA+yE3w0mIVwCwH3IznIR4BQB7IS/DSYhXALAfcjOchHgFgJqtKj8HIm3b6N/zWWbOhRdeqB9//FFffPGFzjvvvGh3p0rUqVNHd955p6677jrdc889WrBggSSpqKhIQ4YM0cUXX6xFixZJkurXr68nn3xStWrVUlZWlmbNmhXNrgMAAAAAAAAAACCGFRQUyOv1mv759ttvderUqQrtJSUlKTk5ucJPenp6wOW+n5SUFMXFxUVhCwAAAAAAAAAAAAAAAAD24XK55HK5lJycLLfbHVFb5Y8NKiwsDLlsx44dZZZ/9913OnnyZMD2fccKuVyuCscNBVoWaHnTpk1Vp06diF4nAAAAAAAAAAAAwle3bl21b99e7du3r3Q9374kj8ej/Px8/+PNmzfr3//+t/bs2aMTJ0741/edQ+52u/3/pqen+x+3bdtWjRs3ruqXJ0lq2bKlWrZsqV/96lf+Zd9++63Wrl2rjz76SLm5uVq6dKmOHj2qZs2a6aKLLlL//v01bdo0PfbYY3ruuec0d+5c5eXlKS4uTsuWLdN///tfvfHGGxozZoxuu+02zZs3T3379tUjjzyiL774QhdddJEmT56sBx54QHfccYdq1apVLa/VLnz7IPPz8/0xE+jf8tctSEpKKhMzmZmZ/n2npeOpZcuWNW6bAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAVuJIbgKgqKiqqsGxIh8hu2oea67P33tYtAy/U8IxWWvPW6xX+v3RshRNnxCusEGkcGm3jeGGhru3WQf937RUh23tn+UsalpFm+PmP/nBEYy/KDPjcwfq2b/dODctI059+1VNrV600/FxAdapsTAb6DKiJhnRw89lnEbajebm5uTp69KgGDBgQ7a4Ahuz5epvuGzVM1/yivW3yJ59nQIlg49KO48QuOaQ6BXvNVbUdauI2hn0xBwkrMWcOJ6iOOfN9u3fqqXvv1I0Xd9eVnVvr2m4dNOnKQVo8e7p2bdviX2/H5i+0YPJE3dT/Al3ZubXGXpSpB28cqW0b1lVo89D332r27Tfp2m4ddG23Dpp9+006dOA7w31jzhxVhdwMK1FLwAmqspbwzRf4fn5/7lka0/cXeujGUVr1yhKdLHXTZh+j9UT5tkv/DP15qqH+UU+gKpCbYSVqCTiBU2sJM3MY1BKoLuRlWIk6Ak5QnXVEoJ/SqCEQC8jNsBK1BJzATrVEZX9THsdKwK7IzbAStQScwMnXKvj0nTd178ihGtH1bF3VJV1TRl+p9atXGeobtQSqAnkZVqKOgBPYbU5Coo6As5GbYSVqCTiBneYkOBcUsYDcDCtRS8AJ7DgvEWq+geMuYVfkZViJOgJO4NTzQCVp06cf6f+uvUJXdUnXtd066OFbxug7z17D/aOWQFUgN8NK1BJwAjvNSXBtKsQCcjOsRC0BJ7DTsRLlBbuHJPs3YFfkZViJOgJOYMc6ItT5G9QRsDNyM6xELQEnsNP+jfKCzUmwfwN2Rm6Glagl4ATVVUsYYeT8zl3btih75jRlXd5Xvz+njUad31Hjh16m1154VqdOnTTUL+oIVBXyMqxEHQEnqO45iVHnd9TDf75e3u/2B23P6PWpfILNXVTWN2oJwD4CfZ4BKIu6D1biewqcwGnzneXbrew5+I6C6kZehpWoI+AETqwjuE4N7Iq8DCtRR8AJ7Lbf1GgtIRnbv0otAYTHzHeAcIW7v7SyfrEPFog+alRYie9UcAI7nh8b6p4knNcCOyM3w0rUEnCC6qwlrL4vCfdLhR2Rm2Elagk4gR3nJYyeI8u+XtgRuRlWopaAE9jpuDHmJOB05GVYiToCTmDHOYlQx0qYWY86AtWN3AwrUUvACexUSxSdPq03XsrW+CGX+ucaxg+5VCuX/l1Fp0+XWZc5CdgVuRlWopaAE9iplqhsvUD3LjMyz0EtgepEXoaVqCPgBFVZR5Rm5L7rRo+T4FxQ2Bm5GVailoATVEctsW/3Tj1175268eLuurJza13brYMmXTlIi2dP165tW/zrmakR2L8BuyI3w0rUEnCC6tq/YZSR8zupI2BX5GVYiToCTmCn4ySYk0AsIDfDStQScAI71RI+oeYlOFYCTmR2fs6IqrzvTvm2zfbf6N8bfQ1Vsf2qos2q1rFjRzVs2FBr1qyJdleqXLNmzfTUU08pNzdXKSkpiouLU1FRkVatWqWdO3dKkurXr6+DBw+qX79+evjhh6PbYQAAAAAAAAAAANheQUGBPB6PNm3apNzcXOXk5Cg7O1tz5szR5MmTlZWVpZEjR2rQoEHq3bu3MjIy5Ha7lZiYqLp16yo1NVWdOnVSnz59NHjwYN1www2aMWOGli1bpnXr1snr9So5OVmZmZkaNmyYJkyYoIULF2rFihVavXq1Nm7cqLy8PJ08eTLsvsTFxUV7MwIAAAAAAAAAAAAAAAAxxeVyye12KyMjQ71791b//v01aNAgjRw5UllZWZo8ebKmT5+uOXPmKDs7Wzk5OcrNzdWmTZu0fft2eTwenThxQkePHlVeXp62b9+ujRs3avXq1VqxYoXmz5+vCRMmaOzYsRo2bJgyMzOVnJwsr9erHTt2aN26dVq2bJlmzJihMWPGaPDgwRowYID69OmjTp06KTU1VUlJSYqLi6vQ10GDBmn48OFl+jpnzhwtWLCgQl89Ho+8Xm+VXqsCAAAAAAAAAACgpvOdbz5o0CCNHTtW06dPV3Z2tlauXKnt27fr+PHjOnjwoDZu3KiVK1dq+vTpGjZsmNLT05Wfn6+cnBzdeeedGjx4sLp27ark5GS5XC61bdtWvXv31vDhwzVx4kTNmTPHf567x+Opsn1AzZs318CBAzVt2jStWrVKhw4d0scff6xJkybp6NGjuv3229W2bVv16NFDu3fv1tNPP625c+cqJSVFRUVF2rp1qzp27Kj169erZcuWWrVqlY4cOaKZM2eqTZs2+vDDD7Vy5UqNHz9etWrVqpLXEA1er9d/LYFly5Zpzpw5mjhxokaOHKkBAwYoIyNDycnJ/usYdO3aVYMHD9bEiRO1bNky7dixQ8nJyerVq5eysrK0cOFCrVy5Uhs3btThw4dVUFCg7du3Kzc3V0uXLvVfp2Ds2LEaNGiQMjMz5Xa7Y2qbAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB1Soh2BwDUbJOfXRrtLiCGPD9zqobdfKsu+NXlqp2YaHn7xCuc5KM3/q3255ynXdu2KH/XN0ppfVbA9f71zDy9/mK2Tp86ZbjtZx+6T91/ealee+FZw3/TslUbvfTfHfpk5Wta9Mj96tpvgOG/BeyAz4Biy7d6NKSDO9rdQA21cuVKnX322WrTpk20uwIY8sTEv+i319+se/72gras/URTRl8Z7S7xeQaUEqyuseM4qYk1WHW/5pq4jWFfdsxDcC7mzAFpQ+67evnJxzTkxiyNGn+vEmonyvvdfq199y29OGemls9/XMu3eiRJd15xidLana2bpj6sdp3PlSRtXPORHr31Bl03aYou+NXlkqQTx49rynW/V+/Lf6Mx902XJL2x+DlNHf17zXz5dSXUrh2yX8yZo6qQm2ElagnUdL75Al+tcLywUIe+/1Zffb5Bb7+8WCsWztf4uc+U2RdvtJ7wtV/eO8tf0kdv/sdQ/6gnUBXIzbAStQRquqqsJczUHMFQS8Bq5GVYiToCNV35OqK88sc3UEMgFpCbYSVqCdR0ZmuJ0n9XGY6VgJ2Rm2ElagmghNXXKvjn0/O0b/c3unHqTDVPTdP+Pbs0/74Jun/MNSFrEYlaAlWDvAwrUUegpgtnToI6Ak5HboaVqCWAEkbmJDgXFLGA3AwrUUugpgtnXsLIfAPHXcKuyMuwEnUEarqqPA9086cfa/ZtN+sPEydr/BPPqKioSBtWr9LMcX/U1OyX5arfIGT/qCVQFcjNsBK1BGq6qjoX1Nd2eVybCnZAboaVqCWAEkbP3ygt2D0k2b8BuyIvw0rUEUAJK88DpY6AnZGbYSVqCdR04V6fyifYnISv7fLYvwE7IDfDStQSqOlC1RKlGT2/87bf/FJntm2v0XdNVbvO5ymhdoL2fP2lFj3ygHZs/kJ/euDRkM9FHYGqQl6GlagjUNOVryNOHD+ufbu/0d8feVB/m3qXxj/xTIW/MXp9qtIqm7sIhloCsA8+z4DQGCewEt9TUNNVxXxn6bbDxXcUVBXyMqxEHYGarirqCK5TAzsjL8NK1BGo6czuNzUzJxHO/tXSqCWAyvnGb1Wqis8xPhuB6GMcwkp8p0JNV1X3JOG8FtgZuRlWopZATVeV9yXhfqmwK3IzrEQtgZounHkJo/tw2dcLuyI3w0rUEqjpzB43xpwEnI68DCtRR6Cmq6pjJcysFwx1BKoKuRlWopZATWe2lnh2+mRtW79Woybep/SOnSVJ32zeqOdnTlXeN9v1hwn3SWJOAvZGboaVqCVQ04UzL2Hm3mVcqw92Q16GlagjgBJG7rtu9DgJzgWFnZGbYSVqCUDakPuuXn7yMQ25MUujxt+rhNqJ8n63X2vffUsvzpmp5fMfN329CPZvwM7IzbAStQRqOjP3D5CMnd9JHQE7Iy/DStQRqOnMHifBnARiAbkZVqKWQE1XVden4lgJOFFV3NunKj8Hyrdttv9G/97oa6iK7Vcd91uyWq1atXTuuedqw4YN0e5KtenZs6e2bdumsWPH6qWXXtLp06dVq1YtFRUVyev1qqioSHPnzlWtWrWi3VUAAAAAAAAAAABUk4KCAnm93go/+fn58ng8Af/v4MGDOnbsWIW2kpKSlJycXOEnPT094HLfzxlnnKHaBo51BAAAAAAAAAAAAAAAAFAzuFwuuVyuiNspKChQYWFhheOkAi3zLfd6vdqxY0eZZYcOHVJRUVHA5yh93JTL5Qp4HFWg5aWXNW/eXAkJCRG/XgAAAAAAAAAAgJrGt+8lIyMj6DoFBQXKz8/Xjh075PF4yjx+6623/PuGfOrUqaPU1FSlpKTI7Xb7/01PT/c/bt26teLj4yPqe+3atXX++efr/PPP12233abjx4/rww8/1MqVK5WTk6O5c+fqjDPO0ODBgxUfH6/nnntOP/74o/r27av+/fvrzTff1JNPPqmffvpJO3fu1MqVK9WrV6+I+lRdjh07pgMHDpS5roHvcel/9+zZoxMnTvj/zrd/zfe+pKenq1evXmWWud1utWrViv1vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGATXB0OABAz8nftVI9Lfq2E2rWj3RUg6t5++UVdPvJ6bduwTm8vf1Ejbrsr4HqrXlmmBxb/S2MuPM9Qu+tXr9LGNR/psZx39NoLz5rqU3xCbXXvf5nmjP+zqb8DAECS1q1bp549e0a7G4BhO7ds0gUDBqpWfLzO6dlHy7d6ot0lAAAA1DDMmaOmO7AvX4tnT9eU7Jflqlffv7z5ma00cMRonZneXlNGX1nmb26b/aRate/g/737Ly9RYp06enb6ZF3wq8slSe/84yW16dBRQ27M8q835MYs7d3+lVa9slQDhl9jqH/MmQOwO2oJoKzEpCQ1P7OVmp/ZSr0GDtbKpS9o6ujfa9Y/V6pug4b+9YzUE6XriNJee+FZXfWXCYb7RD0BwM6oJYCyrKwlzKxXGWoJAHZFHQGYRw0BACWoJYCqwbESAGoKagmghJXXKti1bYt2bt2kvzzyV/+y1PR2uvmBWfrTr4yfM0otAcDOqCMA86gjAKAEtQRQwuicBOeCAkAJagnAHDPzDRx3CSDWUUcAZVl5HuhLjz+s6yZNUa+Bg/3rXTh4iE6fPq1XX3hWQ264xVCfqCUA2Bm1BGAe16YCgBLUEkAJo8dK+IS6hyT7NwDEOuoIoITV96ymjgBQE1BLAOGrbE6C/RsAagpqCcA4M+d33jb7KbX+2c/9v7fr3EV/eWSu/jSgp/70wKOGno86AoDdUUcAZdVOTFRau7N10/0PK2tg34DrGN2/4RPqeIrKUEsAAICaiO8pgHFWXc/OKL6jALA76gjAOKN1BNepAVBTUEcAZYXab2pmTsLs/tVAqCUAAADsje9UgDnm7knCeS0AYh+1BFCWlfcl4X6pAGoCagnAPKP7cNnXC6AmoJYAyjJyvQ3mJACgGHUEYI7RYyXMHFNRGeoIAHZHLQGY884/lujRf72l5qlp/mUdu12g2x+br9t/O0B/mHDf/9ZjTgJAzUAtAZhj1b3LjKKWAGBn1BFACaP3XTd6P3XOBQVQE1BLoKY7sC9fi2dP15Tsl+WqV9+/vPmZrTRwxGidmd5eU0ZfWeZvjNQI7N8AUFNQSwDmGDm/kzoCQE1BHQGYx5wEAJSglgDMM3rdKY6VAFBTpaWlKT8/P9rdqFYNGjTQiy++qEGDBmnEiBE6ffq0JOnYsWNq06aNzj777Cj3EAAAAAAAAAAAAGYVFBTI6/Wa/tm3b5+KiooqtJeUlKTk5GS53W6lpKQoOTlZ6enpSk5ODvrTtGlT1alTJwqvHgAAAAAAAAAAAAAAAAACc7lccrlc/uOhIlH+OK3CwsKQy3bs2FFm+XfffaeTJ08GbN933JbL5fI/9v0EWhZoOcdxAQAAAAAAAAAAVORyuZSenq709PSg6xQUFCg/P18ej0f5+fnasWOH//EHH3wgj8ej/fv3+6/nnJiYqKZNm/rPyXe73UpPTy/zOC0tTbVN3FsjMTFRF110kS666CI98MAD+vLLL7V8+XItXbpUGzZs0Nlnn62jR49qz549WrlypSRp3rx5OnnypGbOnKlevXpFtqEsUH47ejweeb3eCstKb0upeF9Z6W2ZmZlZ5noHvscpKSmKi4uL4isEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJiVYEUjQzoU34Rqzr/f1bPTJ2vb+rU6ffq0Mrr30Kjx9+rMtu0rrPvXNz9U9sPTtPGTD/TTkSOSpOVbPZKk3V9t1aKH79fmtZ9Ikjp2PV/X3nmPWrXvUOZ5d27drOyZU7X1s09VKz5eHX7RTb8eNUZdel/kX2f3V1u16JEHtPnTjyVJHX7RTaMm3FumraM/HNGSubO05u035P12n+o1bKwuvS/SpVePUvtzzjO8jpm+V+f2/PSdN/XK3+Zqx6bP1bhZc50/4DL9/pY75apXv0I75dVOTNRLn++07LXZGXFsbRwbeS7fdvRts9LLSsfkL4depZvvnxVw/WDtSMZiXzL2Hhhty445oCbF4qmTJ5Rg4qKzZvpMvAZGvFqbO62yb/dO5e34Wl379Vdau5/p3pFDdVXWeMXHVyz97l/8T9Vv2MhQuwU//qCn7h2vcQ/NVh1X3bD6llC7tk6eOBHW39od46FqauKQ2yjE65LM1cNGcnrpdaZmv6yM7j2V+59/afbtN/mXm6nFJfvld0na8/U2Zc+cpk2ffqxa8fHqfEEv/fHuaQHXNfpeVCYaY8jMcxpt00xdESjeJOPvdU2zZcsWXXLJJdHuhh953/o6yPBrMzq2//Oe5t51q3Zt26y2Gedo3EOP6cTxY/rrXbdp91fb1K5zF90yY46apaSW6YeVn2PDMtIkSb8b8yeNuP1uU98TfMvmr1qrp6fdpS8+/kB1XC6d2/NCjb57mho0Tja1/YI9t5ltarQvsZzHGPvWj30ztVpVx2CgcWJqe0RYD0nRq8EirbvDnVupbHmwvkZaQ5nexhbUf05FzmPO3C7fUYlF5syJ15oRr1Uh57n5uuSqUUHrwHN69ikTe8HqkQ6/6Kb9u3f6f//kzVf1m+tvrrDeRb8dphXPzteA4dcY7iNz5mXXZTwER24mN1NLEK/Eq/2OUxsw/Bpt3/hf/WvhU7oqa7wk4/XE1X+ZUGGdbRvW6eiPP+i8Pv1M9SNW6wnGA7UEudn5sUgtYa4t4tV+ubOqRVJLGF3PiFisJRgL1BHkZefHInWEubaIV/vlzqpWPu6oIazFeKCWIDc7PxapJcy1RbzaL3dWtVDHagbDsRLGMB6oJcjNzo9FaglzbRGv9sudVrH6WgVvvJStAVeOqLC8Zas2puuTWK0lGAvUEeRl58cidYS5tohX++XOqhboM586wjqMB2pUCHm8AAAgAElEQVQJcrPzY5FawlxbxKv9cqdVjM5JcC6otRgP1BLkZufHIrWEubaIV/vlzqpWPu6Mzjdw3GVojAXqCPKy82OROsJcW8Sr/XJnVYvkPNCvv9igO594usJ65/Xpp+k3X6chN9xiuB/UEowHI8jN5GZqCeKVeLVfLRHuuaBcm8oYxgO1BLnZ+bFILWGuLeLVfrnTKmbO35BC30OS/RuhMRaoI8jLzo9F6ghzbRGv9sudVrH6PFDqCGMYD9QS5GbnxyK1hLm2iFf75c6qFqwmCDUnwf4NYxgP1BLkZufHIrWEubaIV/vlzupk9PzOYPXH0R9+UOMzmpt6TuqIsusyFoIjL5OXqSOIV+LVXnVEkYoCLjeyf8Mn1NyFEbFcS0iMCavHhNXb00h+LJ3TS6udmKiXPt9p2WvztxPiPfH1Z/6qtXp62l364uMPVMfl0rk9L9Tou6epQePkCv2emv2yMrr3VO5//qXZt9/kX758qyfo55BVrylULBp9PT6mPtNCbEunIq/wPYW6z/mxyPcUc20Rr/bLndXJyuvZGRXL31EYC9QR5GXnxyJ1hLm2iFf75c7qZLSO4Do1xjAWqCPIy86PReoIc20Rr/bLnVUp0H5TM3MSZvavViZWawnGAvtLzdjz9TZlz5ymTZ9+rFrx8ep8QS/98e5pAde16v0L9Plj5u+MftYZeT8qY3h8GNhHanQfrpHP6lD9ipXPikiRC/lORY3q/FjkO5W5tohX++XOqmb1PUk4r6UsxgO1BLnZ+bFILWGuLeLVfrmzqkVyXxLulxoa44Fagtzs/FikljDXFvFqv9xZ1QLVDUb34bKvNzTGA7UEudn5sUgtYa4t4tV+ubMqBTpujDkJ6zAWqCPIy86PReoIc20Rr/bLnVUt3GMljK5nRKzWERLjgVqC3BwLsUgtYa4t4tV+ubOqlY+7xDp1gq6bmFjyf8xJGMN4oJYgNzs/FqklzLVFvNovd1a18nFn5b3LjIrVWoKxQB1BXnZ+LFJHmGuLeLVf7rSK0fuuGz1OgnNBjWE8UEuQm50fi9QS5toiXu2XOyOV89x8XXLVqArvtc85PfuEdb0I9m8Yw3igliA3Oz8WqSXMtUW82i93Vjcj53dSRxjDWKCOIC87PxapI8y1RbzaL3dWtfJxx5yEtRgP1BLkZufHIrWEubaIV/vlzqoW7vWpOFbCGMaD9ePBaD4zem8f/3v0n/c0965btWvbZrXNOEfjHnpMJ44f01/vuk27v9qmdp276JYZc9QsJbXC35YeD1Zts2CfDZL0fX6ennng//TFxx/o9KlTlcZTqHOzg61n5t5IVr8nkrH4jKaUlBStXr062t2IiquvvlpnnnmmLrroIhUVFV+bqGHDhlHulbPw2RCdz4bq3u6lvw9MzX5ZGd17Kvc//9Ls22/yL/e15dS6HwAAAAAAAABgDwUFBfJ6vaZ/vv32W506dapCe0lJSUpOTq7wk56eHnC578ftdgfoHQAAAAAAAAAAAAAAAADUbC6XSy6XK+JjrHzHihUWFgY8bizQ8vz8/DLLDh48qGPHjgV9jkDHj7lcrgrLAy3zLW/UqJFq1aoV0WsFAAAAAAAAAABwCpfLpfT0dKWnpwddp6CgQHv37pXH49Hu3buVl5fnf7x+/Xrl5ORo3759/us916pVSy1btlRaWprcbrfS0tLUunVrtWrVyv9vixYtgj7fz372M02aNEmTJk3S2rVrNX/+fL300kuqV6+efvrpJ0nS3r17VbduXY0bN87aDVKO1+uVx+NRfn6+PB6Pfx9W6WV79+7Vkf9d+9cnOTlZKSkpcrvdSklJUUZGRpnfk5OT1apVKzVo0KBK+w8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiB5L7oS0fKtHkjTr1hvV73dX6sm3P9GTb32s8/tfpmnXX61v8/ZUWHfB5In6zeib9PT7G3T3gr/7/3/f7p26f8w16nHJr/XkWx9r3sqPdP6AgZp2/dXat3unfz3Pzh2adesN+u31f9KzH2/U9CX/VmHBUU27/uoybU257vfq2m+AnnzrYz31zhr1HTxE02++Tgf25fvXe2Jiluo1aKiHluRo0dovdc+Cv2vf7m80cfjlptYx2vfq3J6SNP3mP6jf74br+TVbNH3pv/Xj4UN6eto9AZ/X97Pki11q2+lcXXfXVEtfm50Rx+b6HoqR5/Jtx0DvQ+l4vPn+WUHXr2y5kdg38h4YbcuOOYBYDLxtyz8mXonX6ozXYHFoRqg23np5sfr+ZqjiE2rLfVZbtUhrpc/eeydgW/UbNjL8vM/PnKrMvr9U5wt6h923WMZ4MNd3o9uzsm1k5HVJxvKimZy+bNMetWzVRs+v2aKM7j0lSb0v/42eXr1e9Rs20uL1X5t6bjvm99LtPPX2J5q38iP1+NXlevTWGwOua/S9qEw0xpCZ5zTappm6IlC8Sca/w9UkP/zwgzwejzp06BDtrviR9831PRSjr83M2F4yd5bGPThbz6zeoDYdMvTYneP00uOPaNxDj+np9z/TmW3b67npU8r0w+rPMd8YH3H73WWWB1s/0LJ599yuS64apWdyN2jmy6/rWGGBnp8x1fT2C/QcZrepkb5IsZ3HGPvm+m6EmVqtqmMw0Dgxuj2sqIeiWYNFWneHO7dS2fJg60VSQ5ndxlbVf05FzjPX91CYg2QO0i6xGGjbln9MvBKvsTJnvn71KnW+oFdYbZZ25OABnZGa5v9915db1frsn1dYr/XZP9eubVsM9a0mYDyY63so5GZys11iMdC2Lf+YeCVeY6WWMGLA8Gv06dtvhFyvfD0RyGt/X6hLr/6D4uLiLOufkzEezPU9FHIzudkusRho25Z/TLwSr9QSFRmpJYKtVxNrCcaCub6HQl4mL9slFgNt2/KPiVfiNdbriCEd3Kbap4YID+PBXN9DITeTm+0Si4G2bfnHxCvxWtNriYUP3qs/9u6iq7qk666rBuvzD1eX+X+OlTCG8WCu76GQm8nNdonFQNu2/GPilXiNtVrC6msVbP70YyXUTtQDN1yrq89rp2t+0V6T/zBcW9Z+YrpvsYqxYK7voZCXyct2icVA27b8Y+KVeI21OqK8yuYkqCOsw3gw1/dQyM3kZrvEYqBtW/4x8Uq8xlotYWZOIhDOBQ0P48Fc30MhN5Ob7RKLgbZt+cfEK/Eaa7VEecHmJczMNwTCcZclGAvm+h4KeZm8bJdYDLRtyz8mXonXWK8jSgv3PNAiFQVcL752bXm++brMMmoJxgO1BLk5lmIx0LYt/5h4JV5jvZaoinNBuTZVRYwHc30PhdxMbrZLLAbatuUfE6/Ea6zVEmaPlTByD8lA2L9RgrFgru+hkJfJy3aJxUDbtvxj4pV4rcl1hJl7VpdHHVEW48Fc30MhN5Ob7RKLgbZt+cfEK/Eaa7VEeaH2b4QzJ8H+jYoYD+b6Hgq5mdxsl1gMtG3LPyZeiddYryUCMXN+p8+pUyd16MB3+mTla5p16w265tZJlvfLqRgL5voeCnmZvGyXWAy0bcs/Jl6J11itI04cP649X2/Tk/fcqZ6XDgq4jpn9G0bmLmpyLSExJsz2vTq3p2QsP/ra8v0s+WKX2nY6V9fdNdXS12b0PfG9rnn33K5LrhqlZ3I3aObLr+tYYYGenzHVv96yTXvUslUbPb9mizK695Qk9b78N3p69XrVb9hIi9d/Xaa98n2x4jUZiUWjr8fH6GeakW3pVOQVc30PhbrPHjmZWAy8bcs/Jl6J11j9nlIZs/Odoe7/Y1W/nIqxYK7voZCXyct2icVA27b8Y+KVeKWOKFG+juA6NcYwFsz1PRTyMnnZLrEYaNuWf0y8Eq+xWkeE2m9qZk7C6P7VmlpLMBbM9b06t6dkv/2lvnaeevsTzVv5kXr86nI9euuNAde16v0LNB7N/J3Rzzoj70dljIwPI9vEzD7cYH0w069o1TZ2Qy401/dQqFHt8TlCLAbetuUfE6/Ea6x+p/Kx8p4knNcSHOPBXN9DITeTm+0Si4G2bfnHxCvxGuu1RGnh3peE+6WGxngw1/dQyM3kZrvEYqBtW/4x8Uq8xnotUdl1u4zuw2Vfb2iMB3N9D4XcTG62SywG2rblHxOvxGus1hJGrrcRCHMS5jEWzPU9FPIyedkusRho25Z/TLwSr7FaR/hEeqyEmWMqamodITEezPY9FHIzudkusRho25Z/TLwSrzW1lvjNH2/So7fdpC3r1qjgpx9V8NOP2rJujR697SYN/mPJeTXMSRjDeDDX91DIzeRmu8RioG1b/jHxSrzW1FoikGD3LpO4Vl9lGAvm+h4KeZm8bJdYDLRtyz8mXonXWKsjzNx3PZBA91P34VzQ4BgP5voeCrmZ3GyXWAy0bcs/Jl6J11ipJdavXqXOF/QKq83KagT2bxjDeDDX91DIzeRmu8RioG1b/jHxSrzGSi1hlpHzO6kjjGEsmOt7KORl8rJdYjHQti3/mHglXmO9jjBynARzEpFjPJjreyjkZnKzXWIx0LYt/5h4JV5rci1h9LpTPhwrERzjwVzfjTCbz0Ld28e33ZfMnaVxD87WM6s3qE2HDD125zi99PgjGvfQY3r6/c90Ztv2em76lIB/W5pV26yysfLorTeqx68u17yVH4WMp1ACrWdm+0nWvydG4zOamjZtKq/XG+1uRM2FF16ozZs3+38v/Rih8dlgru9GGMlD1b3dl23ao5at2uj5NVuU0b2nJKn35b/R06vXq37DRlq8vuQ+0E6t+wEAAAAAAAAA1ikoKJDH49GmTZuUm5urnJwcZWdna86cOZo8ebKysrI0cuRIDRo0SL1791ZGRobcbrcSExNVt25dpaamqlOnTurTp48GDx6sG264QTNmzNCyZcu0bt06eb1eJScnKzMzU8OGDdOECRO0cOFCrVixQqtXr9bGjRuVl5enU6dOhd0XAAAAAAAAAAAAAAAAAEDVcblccrvdSk9PV0ZGhnr37q1BgwZp5MiRysrK0oQJEzR58mTNmTNH2dnZysnJ0cqVK5Wbm6tNmzbJ4/GosLBQR48e1cGDB5WXl6eNGzdq9erVWrFihZYuXar58+drwoQJGjZsmDIzM5WcnCxJ8nq9WrdunZYtW6YZM2Zo4sSJ+sMf/qDBgwerT58+6tSpk1JTU9WkSRPFx8f7+5qRkaGuXbtW6OvkyZM1Y8aMMn3Nzc3VunXr/H09efJklLc4AAAAAAAAAACANVwul9q3b6++ffvq2muv1cSJE/X444/rn//8p9asWSOPx6Njx45p165dys3N1eLFi3XHHXeoR48eSkhI0Nq1azVr1iwNHz5c3bt3V8uWLeVyudShQwddcsklGjNmjKZNm6ZFixbp/fff186dO/37Wrp27aq//e1v2rlzp8aNG6fatWtLkk6fPq2UlBTFx8ebfj2FhYXyeDxat26dcnJytGDBAv+1CIYPH67evXurbdu2ql27tpo0aaJOnTppwIAB/usgvPXWW/J6vUpPT9ewYcP08MMPa8WKFVq7dq3y8vJ08uRJHTx4UJs2bdLKlSuVnZ2t6dOnKysrS8OGDfNf56BBgwaWvk8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHuJKyoqKiq9YOnSpbryyiu1fKvHVENDOrh126NPqdfAwWWW5zw7Xzu3bdGfpz9WZt2p2S8ro3vPCu3MuXOc2nXuostHXl+hnR1bNipr5hOSpNm336xfXHix+v5mqH8dzzfb9efL+vj7PufOcWp9dkf99vqby7T1zvKXtHPrJo2+e5ok6ZpftNf8VZ+qfqPG/nW+3btbN/W/wN+WkXWM9t0Iq7ZnID8eOaw/Deih5z/ZHHSdBVMm6acjh3XrrHmSrH1tvj4vWbJEw4cPN/V3RhHHxaIZx0aeSyrejuXfp0DLQv1fZX/jEyj2jbwHRtuyYw6oSbFY8OMPGtM3U39f92WF7RAK8VqCeI1u7rzrqsGKi4vTA4v/ZWj9QE6fOqUb+nXV5OeWKTW9nSRp1StL9MnK1zRx3nNB/y5UXH7+4WrNu+d2zc55R6569Q39TTBXd2mrZ3I3yFU//Asgz/rLDUptkKSlS5eG3UZlhg8frrwfCnX7Y/NN/R3jwfr8Utk2MvK6AglWD5vJ6S88+pCatGipy665zr/slQVz9Z1nr8ZOnm7que2Y3+eM/7PadTq3QjurXlmiuZNuLdOvSN6L8qp7DJl5TqNtRlJXBGPkO1wgVf29qzp99dVX+tnPfqb169erS5culrdP3i8Wzbxv9LWZGdtTFy1XRrcekqSD3+7XmAvPK7PswL583TnkEi384HP/31n9OWbm+0Cw7xsT/vqsuv/yEv8yzzfbdd+oofrb++v9y4x+lpR/DrPb1EhfArFrHmP+qFi0a77yKqvVrI5BI9/zjW4PK+qhaNZgkdbdkdZARudcIq2hzG5jK+s/I6o678XFxen22U+p52WDQ69cqk/kPObMo/0d1fd6iEXmzInXwH2KhXgNJtI586u6pGvRp9uU8L8bC4Zr2V8fVVFRkYaPu12SNLxTa7244WvFJ5Rt99TJE7r6vHZa8sUuU+1bMWf+4WsrNOvWG1Xu8A/L8P2pGLVEWeTm4H2KhVikliBenRSvwVix/z1UfB0rOKrrep6jxeu/rrSd8vVEeYcOfKesyy7UvLc+Ub2GDU33M9J6gv3vsT8eyM0lyM3UEkaXl0a8Bu9TLMRrME6qJcyuV16ktQT7N2J7LJCXS5CXqSOMLi+NeA3ep1iI12CsqiMCMTNPb/caQmL/Rk0YD+TmEuRmagmjy0sjXoP3KRbiNZho1BIjMn+m0XdNVfcBlylOcfrik1w9PfVuZc18Qp179JZkz2Ml2L8R++OB3FyC3EwtYXR5acRr8D7FQrwGY9drFVzzi/ZqluLWlX++Q+f06KPTp0/rvx+8p+cemqzbHnvKf76fUVbUEuzfiO2xQF4uQV6mjjC6vDTiNXifYiFeg4nm/g2n1RHs34j98UBuLkFuppYwurw04jV4n2IhXoOJ5pxEaU44F5T9G7E/HsjNJcjN1BJGl5dGvAbvUyzEazDVPS8R6XxDNI+7ZP9GbI8F8nIJ8jJ1hNHlpRGvwfsUC/EajJ3PA71nxO808JrrKnyufvTGv/XobTdp2aY9pvoZaS3B/o3YHw/k5hLkZmoJo8tLI16D9ykW4jUYp5wLGu1rU0ns36gJ44HcXILcTC1hdHlpxGvwPsVCvAYTjWMlIrmHJPs3KvaJsUAdQV4u5rRYpI4gXp0Ur8HY9TzQYLg+VUWMB2oJidzs47RYpJYgXp0Ur8FEY/9GOHMSNWH/hsS8hEQtUR65OXifYiEWqSWIVyfFazDVcdylj9nzO3d/tVW3DrpYklQ7MVFj7n1Ivxx6len+UUeUrMtYCI68XIK8TB1hdHlpxGvwPsVCvAZTVXMSZ7b7mW6b9aRan/3zSv+usjiK5HiK8pywf0PiuEufaI4J3zayYnsGEig/lrdgyiT9dOSwbp01T5J1r83oe+J7XRP++qy6//IS/zLPN9t136ih+tv76/3LXnj0ITVp0VKXXXOdf9krC+bqO89ejZ08vUx7pceuVa/J6OeU0dcTSLDPNKPb0giOw4rtvELdV4K6j+8pRpeXRrwG71MsxGswdp3vNHL/H6OcMN/J95Ni1BFlkZeD9ykWYpE6gnh1UrwGY8c6oqZdp0aijvChjiiLvBy8T7EQi9QRxKuT4jWY6t5vGs419sPdV1oa55czFoyI2f2l4/+sdp3OrdDOqleWaO6kWyvsz7Tq/ZMqjt9IPv8q+z+z70egNisbH0a2iZl9uEY/qyvrV3WPD4nzY2tCLqRGLUGNyncqo8tLI16D9ykW4jUYu9+TpCad18L8bDFqibLIzcH7FAuxSC1BvDopXoOx831J7Ha/1Kqen2Veohi1RFnk5uB9ioVYpJYgXp0Ur8FE874kRvfh2mVfL/MSsT8eyM0lyM3UEkaXl0a8Bu9TLMRrMNG83kZpdp+TkDhuTIrtsUBeLkFepo4wurw04jV4n2IhXoOx67ESZo+pCMUJ1+1i/0YxaomyyM3B+xQLsUgtQbw6KV6Dicb+jZxn52vRrAd16uQJSVJ8fIKuuX2SfjP6Jv86dpyTYP9G7I8HcnMJcjO1hNHlpRGvwfsUC/EaTDSPlZAqv3eZ3a7Vx/6N2B4L5OUS5GXqCKPLSyNeg/cpFuI1mGjed720YPdTt9O5oOzfiP3xQG4uQW6mljC6vDTiNXifYiFeg4m0lriqS7oWfbpNCbVrh165lFA1Qk3cvyExLyFRS5RHbg7ep1iIRWoJ4tVJ8RpMdd4/wOjfUEdQR1BHFCMvB+9TLMQidQTx6qR4DSZax0k4cU6C/RuxPx7IzSXIzdQSRpeXRrwG71MsxGswdr8+lZ2OlWBeIvbHQyAB85mJe/tI/9vui5b7z2E++O1+jbnwvDLLDuzL151DLtHCDz6v8Lel27NqmwVq27ds3EOz1e93V5ZZHiyejHxGlV9mdvuVF+l7YjQ+jaqK7xkPPPCAFi1apK1bt1rWphO9+uqruvzyyyVJq1evVu/e5o63jwV8zyzmhM8Gqfq3+wuPPqQmLVrqsmuu86/zyoK5+s6zV2MnTzfVf7vW/VLVn/cCAAAAAAAAAE5SUFCg/Px8eTweeb1eQz8HDx7UsWPHKrSVlJSk5ORk0z/NmzdXQkJCFF49AAAAAAAAAAAAAAAAAKAmKSgoKHM8XGFhoaFlpZd/9913OnnyZMD2fcfRuVyuCsfUBVoWaHnTpk1Vp06dat4yAAAAAAAAAAAA1jt+/Lj27Nmj3bt3a/fu3dq5c6d27drl/3337t3+axfEx8fL7XardevWatOmjdLT09W+fXu5XC6NHj1aR44cUXx8fJn9NKWvl1D+X6/X63+8b9++Mtf7TkpKktvtVkpKStB/k5OT5XYHvl8CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLKtlZWvn9OxTYdn5Ay7Tfz94r8LyduecF7CNzz9cre79Lw3Yzucfrvb/vvHjD9S5R9nnc5/VVsu3esq01Wvg4Apt/eKiX+q/H77v//3sLpl66KZRWr96lU6dKr6IYPMzW5Vpy8g6RvtulBXbM5D6DRvpx8OHgv5/7n/+qY2ffKCbpj3sX2b1a7Mz4tia99rIc1W3QLFv5D0w2pYdc0BNicXjhYV6ffHzOq9Pv4DbIRTitQTxGt3cWXS6qMyFicPx2fvvqPmZrZSa3s6/rOelg7Rl7Sc69P23YbVZePQnPfl/d+imaQ/LVa9+RP2TimNgxXMLVPDTjxG3ZUeMB2vzS2XbyMjrCiRUPWzExUN+r1X/WFJm2dvLX9SA4SNMP7cd8/vnH7wfsJ1An7WRvBeBVOcYMvOcRtusirrCiph1up9++kmSVK9evSj3pCLyvjV5x+hrM/Nc6R07+x8nNzujwrImzVvoyMEDZf7GjvMfHbtdUOb3M1LT5P2ubF0X7meJ2ddrpC+BxGIeY+xX3VipLF6iEYNGt4cV9VA0a7BI626nzK2Y3cbRqv/shpzHnHm0v6P6EIvMmROvgfvk9HitjBVz5pH+/c6tm/X28pc06A9jI2qnMsyZl2A8BEduLkFuppYIB/EavE9Oj9fKWFFLhHwOA+0bqSfeWvqCelw6SPUaNgyrH7FcTzAeqCXIzcWcFIvUEsSrk+K1Mk6qJcysF0is1hKMBeoI8nIxJ8UidQTx6qR4rYxVdcTyrZ4yP2ZQQ0SO8UAtQW4u5qRYpJYgXp0Ur5WJRi3x93Vf6uIhv1f9ho1Ur2FDXTBgoEbfNUVL5j4ScT+CoZYowXgIjtxcgtxMLREO4jV4n5wer5Wx67UKjh8r1NV/maielw5S/UaN1TC5ifr8+nf6w6TJWvK4+ZojlmsJxgJ1BHm5mJNikTqCeHVSvFbGDvs3AqGOMIfxQC1Bbi7mpFikliBenRSvlbHDnATngkaO8UAtQW4u5qRYpJYgXp0Ur5Wp7nmJSOYbOO4yMMYCdQR5uZiTYpE6gnh1UrxWxs7ngQ6/+TYtfPA+ffjaCv1wyKsfDx/Sh6/naPFjM1QnyWW6H9QSxRgPwZGbS5CbqSXCQbwG75PT47UydjhWgmtTRY7xQC1Bbi7mpFikliBenRSvlanuYyUiuYck+zcCYyxQR5CXizkpFqkjiFcnxWtl7HDMpVHUEcExHqglyM3FnBSL1BLEq5PitTLVvX8j3DkJ9m9UjvFALUFuLuakWKSWIF6dFK+VqY7jLsPVqn0HLd/q0bMffqG/zJqnZfNm68PXVphuhzqiBGMhOPJyCfIydUQ4iNfgfXJ6vFbG6jmJl7fkaeEHn+va2+/WY3f8SWvfXRlWe5EcTxFIrNcSEmPCjjkmkED5sbTc//xTGz/5QDdNe9i/zKrXZvQ98enY7YIyv5+Rmibvd2X3WV485Pda9Y8lZZa9vfxFDRg+ImRfrHhNZj6njLyeQIJ9ppnZlk5FXuF7CnVfMSfFIt9TiFcnxWtl7DrfaeX9f2L9OwpjgTqCvFzMSbFIHUG8OileK2PHOoLr1JjDWKCOIC8Xc1IsUkcQr06K18rYdb+p1WK5lmAs2C+3BBLV/aUfvB+wnUCfYVa+f4FU5eefmffDzN8b3SbhfmaG269ojA87IxfynYoatZiTYpHvVMSrk+K1Mna/JwnntRjDeKCWIDcXc1IsUksQr06K18rY+b4kVovleoLxQC1Bbi7mpFikliBenRSvlbHDfUmqQyzXERLjgVqC3OzjpFikliBenRSvlbHDcWPMSUSGsUAdQV4u5qRYpI4gXp0Ur5Wx67ESZo+pCCWW6wiJ8UAtQW72cVIsUksQr06K18pUdy3xwasr9PqLz2v83KeVvWarnl+zRePnPqPXFz+vD141fzylUdQSJRgPwZGbS5CbqdexWHEAACAASURBVCXCQbwG75PT47Uy0T5WorJ7l3GtPmMYC9QR5OViTopF6gji1UnxWhk73He9suMkOBfUGMYDtQS5uZiTYpFagnh1UrxWxopaIpy/t6pGMIpaogTjIThycwlyM7VEOIjX4H1yerxWxo73D7AadUQJxkJw5OUS5GXqiHAQr8H75PR4rUy0jpNgTsJajAdqCXJzMSfFIrUE8eqkeK1MtI+5DIVjJYxhPFTd/VYC5jMT9/bxSe/Y2f84udkZFZY1ad5CRw4eCNkfq7ZZZc678OIKy4LFUzjC2X6lRfqeGI3PaDp16pTi4+Oj3Y2oGzhwoLp16yZJ6tcvvJqrJuOzoXo/G3yqc7tfPOT3WvWPJWXWeXv5ixowfITp/tu57gcAAAAAAACAWFNQUCCPx6NNmzYpNzdXOTk5ys7O1pw5czR58mRlZWVp5MiRGjRokHr37q2MjAy53W7FxcWpbt26atu2rfr06aPBgwfrhhtu0IwZM7Rs2TKtW7dOXq9XycnJyszM1LBhwzRhwgQtWLBAK1as0OrVq7Vx40bl5eXp2LFjYfcjISEh2psQAAAAAAAAAAAAAAAAAFADuFwuud1uZWRkqHfv3urfv78GDRqkkSNHKisrS5MnT9b06dM1Z84cZWdnKycnR7m5udq0aZO2b98uj8ejEydOyOv1avfu3dq4caM++ugjvfnmm1q6dKnmzp2r8ePHa9SoURo4cKAyMjJUt25dff/999q8ebPeffddZWdna8qUKRo9erQGDx6sAQMGqE+fPurUqZNSU1OVlJSkunXrqkWLFmrXrp26du2qiy++WL/97W917bXX6uabb9bEiRM1ffp0zZs3T4sWLdI///lPvf3221q3bp2++uor7d+/X0ePHo325gYAAAAAAAAAADVcYmKi2rZtq379+mnUqFG67777tHDhQr311lv68ssv/dco+Oijj7R48WLdcsst6tKliw4fPqxly5bp+uuv19ChQ3XkyBFJxdfZ7tmzp1q3bu3fp+K7XsKIESM0a9Ysvffeezp8+LDS0tI0aNAgTZ48Wf/617+0Zs0a7d27V8ePH1dBQYG2b9+u3NxcLV26VHPmzNGECRM0cuRI9e/f338tBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzEiwsrEGjZMrLEs+o4WOHDxQYXmdJFfANo4cOqjGzZoHbOcH78Ey6zVMblJpf3445NWNF3cP+H+JSUn+x3fMWaClf31Uf5t6l44cPKCzOnbSBQMG6tKrRyk+obbhdYz23ShLtufBA/r7ow9q/epVOvT9dzp96lSlz5m342stfPBeTX5uqZLq1itpx+LXZmfEsTXvtZHnqkpGY9/Ie2CmLdvlgBoQi99s2aQ7fjdAHX7RTZOeyq70NQRDvJYgXqObOx9akmN43WDeWvaCfjn06jLL6rjqqselv9aqfyzV78aOM91m9sP3q3OP3jq3V9+I+ydJf7x7mu4Z8TstnTtL102aol+PGmNJu3bBeLA2vwTbRkZfl9l62KiU1mcpMSlJO7duVpsOHbX5049Vt34DndWxk+nntmN+D9ZOoGVG3wujqnMMmXlOo21GWldUVcw6ne+mx3Xr1o1yTyoi71uXd0LmQpPP5apX3/84rlatgMuKiooieo7qUL9hozK/105MDNjvUNsvELOv11BfakgeY+xbNPZNxks0YtDI9rCqHopmDRZp3e2kuRWj27i66j8nIOcxZx5JW8xBMmceDuLVXJ+cHK+hRDpn3iwlVQf356tFWuuw/n7n1s2a9serdPMDs+Sq38C/vEHjZP1w+JAaNz2jzPo/HD6kBo3NfzdjzrwE4yE4cnMJcjO1RCjEq7k+OTleQ7Fi/3soe77+Ui1bBa81gtUTpZ06dVJvLlmkuxf8Pex+xHI9wXigloikLXIztUQ4iFdzfXJyvIbilFrCzHrBxGotwVigjoikLfIydUQ4iFdzfXJyvIZSVXXE8q0eQ+tRQ1iD8UAtEUlb5GZqiXAQr+b65OR4DSXatYRP5x599MSkv/h/51gJcxgP1BKRtEVuppYIB/Fqrk9OjtdQ7HqtgqS69dTp/F4Vlp/bq6+evOcO0+3Fci3BWKCOiKQt8jJ1RDiIV3N9cnK8hmKXOYnyqCPMYTxQS0TSFrmZWiIcxKu5Pjk5XkOJ9pwE54Jag/FALRFJW+RmaolwEK/m+uTkeA2luuclwp1v4LjL4BgL1BGRtEVepo4IB/Fqrk9OjtdQ7Hwe6Dk9+yhr5hNaNm+25k66VYqLU0a3CzTuwdl66t7xpvtBLVGM8RAcubkEuZlaIhTi1VyfnByvoUT7WAmuTWUNxgO1RCRtkZupJcJBvJrrk5PjNZTqPlYi3HtIsn8jOMYCdUQkbZGXqSPCQbya65OT4zWUaB9zaRR1ROUYD9QSkbRFbqaWCAfxaq5PTo7XUKp7/0Y4cxLs3wiN8UAtEUlb5GZqiXAQr+b65OR4DaU6jrv0Cff8zoZNmuqCAQNVr0FDPfvgfep52WBTz0sdUYKxEBx5uQR5mToiFOLVXJ+cHK+hWF1HxMXFqVHTZurab4AaNmmip/5vvLpeNMB0O+EeTxFMrNcSEmPCljnGYH70ydvxtRY+eK8mP7dUSXXrlbRj0Wsz+p741G/YqMzvtRMTVVRUVGZZSuuzlJiUpJ1bN6tNh47a/OnHqlu/gc7q2KnSvlj1mozEoo+R12P0PTO7LZ2KvML3lEjasl1OrgGxyPeU8NsiXu2XO50w3+lT/v4/RsX6dxTGAnVEJG2Rl6kjwkG8muuTk+M1FDvWEVynxhzGAnVEJG2Rl6kjwkG8muuTk+M1lOreb2r1NfaNiuVagrFgw9xis/2lwdoJtMzK9y+Qqvz8C/Z+RPr3RreJmX24VvQrGuPDzsiFfKeKpC3bfY7UgFjkO1X4bRGv9sudTrknCee1VI7xQC0RSVvkZmqJcBCv5vrk5HgNxc73JeF+qcYxHqglImmL3EwtEQ7i1VyfnByvoUT7viTVJZbrCInxQC0RWVvkZmqJcBCv5vrk5HgNJdrX22BOInKMBeqISNoiL1NHhIN4NdcnJ8drKHY9ViLcYyqCieU6QmI8UEtE1ha5mVoiHMSruT45OV5Dqe5aYum8RzXuwdn6edfz/cu69hsgV/36+tuUu9RrYPHxlMxJmMN4oJaIpC1yM7VEOIhXc31ycryGEs1jJcK5dxnX6quIsUAdEUlb5GXqiHAQr+b65OR4DSXa9103ej91zgWtHOOBWiKStsjN1BLhIF7N9cnJ8RpKpLVEs5RUHdyfrxZpwc/1rEywGoH9G+YwHqglImmL3EwtEQ7i1VyfnByvoVTn/QOMoo4wh7FAHRFJW+Rl6ohwEK/m+uTkeA0l2teUYE7CGowHaolI2iI3U0uEg3g11ycnx2so0a4ljOJYicoxHiy6Z0+E+SzQMh9Xvfr+x3G1agVcVlRUFLKPVm2zypSv4aXg8RQOM9uvKt4To/EZTT/99JPq1q0b7W7Ywpo1a9SjRw999NFH0e6K4/DZUL2fDT7Vud1TWp+lxKQk7dy6WW06dNTmTz9W3foNdFbHTqb7b+e6HwAAAAAAAADsqKCgQF6v1/TP/v37dfr06QrtJSUlKTk5ucJPenp6wOVut1tut1tJNtm/BQAAAAAAAAAAAAAAAACAXTVu3FiNGze2pK1Axw8WFhZWWO5btmfPngrLDx06FPQaI6WPJ3S5XAGPLwy1vEWLFoqPj7fk9QIAAAAAAAD4f/buPUqusswb9t0hhC4wh06AkEZGbBTBIMobFEcTB12gIiYzAiGIEoFPDTpoRAbDCDPGEcXw6mhQZ0A+RcOnCCG6CCoq4IFEECWjMgkHRyOKCaeQygHpzgHy/dHT6e50dbL37qrau6qva61akN3VTz+1637u+tXedQCgR0tLS0yaNCkmTZoUr371qwf8/Lnnnos///nP8fvf/z6uuuqqOPLII+Ppp5+O9vb2OOigg3b+7sSJE2P//ffP4RYAAAAAAAAAAAAAAAAAAAAAAAAAQK+R1Rxsw1NPxrgJB/TbVn7y8RgzfkLiMcaMGx/lJx+PAw8+ZMA4o9vG7/z36HFtsam8PsYfOHHQsUa3jY+F3/9ZPG/M2N3+zX1Hj4mzL54fZ188PzaV18d/3708vvv1a+L+e++Ji668JvF1ks49qWrsz4Uf+UAc/MLD4pPfvDkmHDQp9tqr+y4/9Yj2Adfd0vlMXPHBd8dZ/3RJ/M2Lj+j3s2rftiJTx9W5r5P8rSxaWlpi29atsfeoUTu3Pb1xw4DrJa39JPdB0rGK2AOGQy2+8MjJcf1vVset37w2vvTRC2LeF7+abOeknHMW6lW91vtxcsO6J+K/fvbj+NWPfxRf+ugFA34+6QUvjLe99/zU4/7oW4tix44dccdN1w/4WU9tLXlwbeLxrp4/L/7+3PPi5NnvjtJ+z0s9n6KzHuqzHpLerjR5OK03nHJG/HjJ9XHuJZ+IO5ZcHyfOememv13E/j5m3PjYsO6JOKD9+f22V3ocS3pfJFXPNZTmbyYdc6i5opY128hGjBgRERHPPvtszjMZSN+vTt9Jctvq8RhTj7+R9HlCGkn2XyW1uL3DpY9Z+9WpnVrUS7XHTLI/qpWH8sxgg6lmbUXUpgdGpMvLSfdxvfJfI9DzHDPPOpZjkN0cM++lXtVrvY+ZHzPt9fHbu+6MN846K/Xv3nXr0rjmE5fEGR+8KKYcf0K/n73g8CPiTw89EONe0/8+/tNDD8QLXnJk6r/lmPmeWQ96c196syyhXpMZDvVaBD+64bp41QknVfzZ7vJEX7+8/Qcx8ZAXxAsOT58jejRznrAeZImsY+nN3WSJXupVvTZrlkh6vd1p1ixhLcgRWcfSl7vJEb3Uq3otYo4YjAxRPdaDLJF1LL25myzRS72q10bKErtqaRmx8/+9ViId60GWyDqW3txNluilXtVrvbNErT6r4OCOF8X2bVsHbG9paYloaUk9XjNnCWtBjsg6lr7cTY7opV7VayMfk+hLjkjHepAlso6lN3eTJXqpV/XaSMckvBe0eqwHWSLrWHpzN1mil3pVr0U/LpHleIPXXe6etSBHZB1LX+4mR/RSr+q1iDliKO8DfdnfTo2X/e3UfttW/fKuOPLY41LPQ5bYPetBb+5Lb5Yl1Gsyw6Fei8xnU1WP9SBLZB1Lb+4mS/RSr+q16K+VyPIdks5v7J61IEdkHUtf7iZH9FKv6rXoOSILOWLPrAdZIutYenM3WaKXelWvRT+/keWYhPMbe2Y9yBJZx9Kbu8kSvdSrei1ylhjq+ztffPQxsfZPq1P/XTliz6wFfbkvfVmOUK/JDId6zdMLDj8y1j78h0y/m+XYxe40e5aIsCaK2GOS9seIiC2dz8QVH3x3nPVPl8TfvPiIfj+r1m1Lep+k9YZTzogfL7k+zr3kE3HHkuvjxFnv3OPvVO02JajFNBI/PtZoXxaNvuJ5StaxitiTh0Mtep6SbSz12q1ovbOeqvF5dn2//yepZn+OYi3IEVnH0pe7yRG91Kt6bZYc4XNqkrMW5IisY+nL3eSIXupVvRYpR1Q6b1rtz9hPqpmzhLVQvN5StPOlY8aNjw3rnogD2p/fb3ulx4dq3n/V/L08Jd0nSc/hJn2s3pNmeayoFr3Qc6qsYxXxcWQ41KLnVNnGUq/ditY7622o34HqfS2VWQ+yRNax9OZuskQv9apei5glsn4vie9LTc56kCWyjqU3d5MleqlX9VrELFEEzZwjIqwHWWIgvfl/r1PQWpQlso2lXrsVrXfW0p4+b8MxieqwFuSIrGPpy93kiF7qVb0WKUdUkvS1EkN9TcWumjlHRFgPssRAevP/XqegtShLZBtLvXYrWu+st8f+9MfomPyyAdsPm3x0PPbnP+78t2MS6VgPskTWsfTmbrJEL/WqXoueJfrK+t1lPquvP2tBjsg6lr7cTY7opV7Va71zxFC+dz3L96l7L2hl1oMskXUsvbmbLNFLvarXemeJY6a9Pn57153xxllnDWmcXTOC8xvpWA+yRNax9OZuskQv9apeG+n8xmDkiHSsBTki61j6cjc5opd6Va+NmiMckxga60GWyDqW3txNluilXtVro2aJpLxWojLroTrrIU0/S/rdPtVWrX22O09v3BDPGzuu37a09bQ7afZfLe6TpPWZpz//+c9xyCGH7PmKw8Tdd9+d9xQakseG+j429Kjnfo+IeMMpZ8SPl1wf517yibhjyfVx4qx3Zpp/kXM/AAAAAECtdHZ2RrlcTn158sknY/v27QPGa21tjba2tgGXjo6Oitt7LgcddFCMGJH+s4cAAAAAAAAAAACA+iqVSlEqlaK9vfL7zZPYtm1bbN68OTZs2BCbNm2KzZs39/tvuVwesO3RRx+NBx54oN/2p59+uuL4LS0tMW7cuBg7dmyMHj06xowZs/O/48aNizFjxvTbNnr06Ghraxtw3TFjxmS+jQAAAAAAwPAzYsSIOPTQQ+PQQw+NE044Ie/pAAAAAAAAAAAAAAAAAAAAAAAAAMBujajmYL9Z9tMB2+657dZ4+Wv/LvEYR79mWtzzo+9XHOfo10zb+e/Jr3pN3HfXnf2u8/CD98fck3v/1iumHh+r7rlrwFgP3HtPXHTKm3b++9Qj2uOpxx6NiIgxbePjtW+ZEZd8+br47c9/luo6SeeeVDX250O/vjdmfeCiOPDgQ2KvvUZGRMTWrq6K173qY/Pi8KOPide/bdbObace0f1FVdW+bUWmjqtzXyf5W4NpaWkZ9Gfj9j8w1j26pt+2+3/1iwHXS1r7Se6DpGMVsQcMl1oc1doab377u+K3P79zwPWTUK+91GsxMkBWP/nO4njDqWfEkgfXVrzsNXJkxRrck5seWFNxvIjo9/9JrV51X0w/+71R2u95qefSCKyH+qyHpLcrTR7eXU+v5DUnTY9f3vHD2LT+qfj1sp/E1JP/od/PG7m/v3zq38Uvb//BgO27zjMi+X2RVD3XUJq/mXTMpLlisHpLU7PDSVtbW0REbNiwIeeZDKTvV6fvJLlt9XiMqcffSPo8IY0k+6+SWtze4dLHrP3q1E4t6qXaYybZH9XKQ3lmsMFUs7Yiht4Dh5qh0uzjaue/RqbnOWae93PUHmrRMfNdqddujV6vtTTjnDnxg298Lf66aVPFn//itu/H/LNP77dt25YtcfXH5sX1V/7f+NevfCvedMbsAb933Iknxc9uvmnA9p/dfFO8+o0np56nY+Z7Zj3ozX3pzbJEX+p1cMOlXvP0w+u/Hv999/KYcfZ7+21Pkif6uvUbX4uT3nHOkObSzHnCepAl9OZujVSLsoR6baR6zdNQs0TazLE7zZolrAU5Ql/u1ki1KEeo10aq1zz1vNevLxmi+qwHWUJv7tZItShLqNdGqtc87ZolTj2iPdY+vHrA9X6z/Kdx+Mv/z85/e61EOtaDLKE3d2ukWpQl1Gsj1Wst1eqzCo49/oT49bKfDNj+25/fGS962StSj9fMWcJakCP05W6NVItyhHptpHrNU6XzG0nIEelYD7KE3tytkWpRllCvjVSvtZTlmIT3glaf9SBL6M3dGqkWZQn12kj1mqddj0ukOd7gdZfJWAtyhL7crZFqUY5Qr41Ur3kayvtAB3t95u2Lv5kpU8gSu2c96M196c2yRF/qdXDDpV7zNJT3gvbw2VR7Zj3IEnpzt0aqRVlCvTZSvdZS2tdKpPkOSec3krEW5Ah9uVsj1aIcoV4bqV5rqVbvA42QI9KwHmQJvblbI9WiLKFeG6le87Tr+Y00xyR6OL+xZ9aDLKE3d2ukWpQl1Gsj1Wue+maJpO/vPPWI9liz+vcDrvenhx6IcRMOSD0HOWLPrAV9uS99WY7oS70ObrjUa14efuiBGJvhcT8i27GL3Wn2LBFhTRSxxyTtjxERV31sXhx+9DHx+rfN2rmtJ4dX67YlvU/Ses1J0+OXd/wwNq1/Kn697Ccx9eR/2OPvVOs2JanFNJLeZ7Xal0Wjr3ieIvd1a6Ra9DxFvTZSveYp6/HOJN//k1SzP0exFuQIfblbI9WiHKFeG6le81TNHOFzaiqzFuQIfblbI9WiHKFeG6le81LpvGm1P2M/qWbOEtZC8XpL0c6Xvnzq38Uvb//BgO273pcR1b3/Kkn6e7t7rKu3pPsk6TncpI/Ve9IsjxXVohd6TiWjdmukWvScSr02Ur3mKet3knhfSzrWgyyhN3drpFqUJdRrI9VrnobyvSS+LzU560GW0Ju7NVItyhLqtZHqNU+VvpckD82cIyKsB1lCb+7RSLUoS6jXRqrXvAz2eRuOSVSXtSBH6MvdGqkW5Qj12kj1mqesr5VIer2kmjlHRFgPsoTe3KORalGWUK+NVK952jVLjNv/wFi96r8HXO8Pq+6LcfsfuPPfjkmkYz3IEnpzt0aqRVlCvTZSveZpd6+V2N13l/msvuSsBTlCX+7WSLUoR6jXRqrXWsryvetJXifhvaDpWA+yhN7crZFqUZZQr41Ur7U045w58YNvfC3+umlTxZ//4rbvx/yzT9/576QZwfmNdKwHWUJv7tZItShLqNdGqtc8ZXkvqByRjrUgR+jL3RqpFuUI9dpI9ZqnXXOEYxK1YT3IEnpzt0aqRVlCvTZSveYp6+dTea1EOtZDddZD0n6W5rt9qq1a+2x3Kt2OtPW0O2n2Xy3uk6T1madHHnkkDjnkkLynURhPPPFELFy4MO9pNByPDfV9bOhRz/0eEfGak6bHL+/4YWxa/1T8etlPYurJ/5Bp/kXO/QAAAAAAu9PZ2Rlr166NVatWxfLly+OWW26JRYsWxcKFC2P+/Pkxd+7cmD17dkyfPj2mTp0akydPjvb29thnn31i3333jYMPPjiOOuqomDZtWsyYMSPmzJkTCxYsiMWLF8eKFSuiXC5HW1tbTJkyJWbOnBnz5s2Lr3zlK7F06dJYtmxZrFy5MtasWRPbtm3LPJcRI0bkvRsBAAAAAAAAAACAOtl7771j/Pjx0dHREa94xSti2rRpcfLJJ8cZZ5wR733ve2PevHlx2WWXxZVXXhnXXnttLFmyJG677bb41a9+FQ8++GCsXbs2Nm/eHDt27Ihnnnkm1qxZEytXrox77703li1bFjfffHN8/vOfjw996ENxyimnxNSpU+Pwww+PffbZJ9auXRt333133HzzzXHNNdfEpZdeGmeeeWaceOKJ8epXvzpe+tKXxiGHHBJjx46NlpaWKJVK0d7eHocddlhMnjw5pk6dGtOnT4/Zs2fH3Llz4+KLL4758+fHwoULY9GiRXHLLbfE8uXLY8WKFbFq1apYu3ZtbNu2Le9dDgAAAAAA1FlnZ2d8+ctfjmeeeSbvqQAAAAAAAAAAAAAAAAAAAAAAAABARSOqOdiPbrguln33O7F5Qzk2rX8q7rjp+vjuov83Zn3gwsRjnH7+hbH0a1fH7Yu/GRufWrdznKVfuzpmnd87zmnvmxuL/+Nzcd9dy2JL5zPxp4ceiC999IJ4yzvP3XmdWR+4MG74wmfi7h9+NzZvKEfnX5+Oe396W/z7he+Lme+/oN/f/Y9LL4xHfv9QbNu6NTY89WTc/JX/jKNfMy3VdZLOPalq7M+XHHNsXPeZT8QTax6J7du2xWN/fjiunj+v4t96+IFV8Z5/vbziONW+bUWmjqt3XyeZTyXjJx4UD/1mRTy7fVv89uc/izmvP3bnz17+2tfFN/798njqsUej65m/xm+W/zR++K1FA8ZIWvtJ7oOkYxWxBwynWtyntG9s6cz+QbDqVb0WoXd+9O0z4pIz/z7x9Xf14yXXxwkzzxz05yecdmbcftM3M49fLdu2bo19SvvmPY2asR7qkxuT3q6kfTFi9z29ktZ994ujjnttfP6i8+OVb3hjlPZ7Xr+fN3J/n3X+hbH02qvix0u+FZvWPxVPb9wQd926NJZcfeXA66aosSTquYbS/M00YyZZS4PVW5qaHU7Gjx8fERHlcjnnmQyk71en7yS5bfV4jKnH30j6PCGNJPuvklrc3uHSx6z96tROLeqlFmPuaX9UKw/lmcEGnVOVa2uoPXCoGSrNPq52/mtkep5j5nk/R+2hFh0z35V6Tb4fil6vgxnqMfP9Jx0cZ3744vj4OafHL+/4Yfx106bYtnVrPPbnh2PJVQvjK5ddGud89OM7r/+XP/xPzJv5lti6ZUt85ts/jBceOXnnz049on3n/7/h1LfHH+9fGd/+8hfir5s2xV83bYpvf/kL8fCDq+L1bzs99TwdM98z6yH5fCrRm7upRVliV+o1+X4oer0OZqhZYlfbtmyJJ9Y8Esu/d3PMP+f0uPUbX4uPXXtD7Dt6zM7rJM0TPR75/UPx6J9Wx3EnnjS0uTVxnrAeZAm9uTFrUZZIN5Z67VWk3lnkLJE2c+xxbk2aJawFOUJfbsxalCPSjaVeexWpd1Y7R+yJDFEb1oMsoTc3Zi3KEunGUq+9itQ7650lIiI+9+H3xQP33hNbOp+JTeX1sey734lFV/xbvH3uR3Zex2sl0rEeZAm9uTFrUZZIN5Z67VWk3lnUzyp4yzvPje9+/ctx59Ilsam8PjZvKMfy790cX/v0/DjjA/+UerxmzhLWghyhLzdmLcoR6cZSr72K1DvzOCaRhByRjvUgS+jNjVmLskS6sdRrryL1znofk/Be0NqwHmQJvbkxa1GWSDeWeu1VpN5Z7+MSSY83eN1lctaCHKEvN2YtyhHpxlKvvYrUO4v8PtCI7v2wZvXvY/u2bfHon/4YX55/cRzy4pfEC15yZPq5yRK7ZT0kn08lenM3tShL7Eq9Jt8PRa/XwRT1vaA9fDZVMtaDLKE3N2YtyhLpxlKvvYrUO4v6/g3nN5KzFuQIfbkxa1GOSDeWeu1VpN4pRzQH60GW0JsbsxZliXRjqddeReqdRX0vaA/nN5KxWv8+IQAAIABJREFUHmQJvbkxa1GWSDeWeu1VpN5ZzyyR5v2dn/un98eqX90dnX99Ojqf3hz/9bM7YuFHPhAzzj0v9d+VI/bMWkg+n0r05W5qUY7YlXpNvh+KXq+DqXaO2LFjR2xa/1Tc+5Pb4gvzPhhvevvsqo09FM2eJSKsiSL2mKT98Uc3XBcPP7Aq3vOvl1ccp1q3Lc19kkbrvvvFUce9Nj5/0fnxyje8MUr7PW+Pv1Ot25SkFtNIep/Val8Wjb7ieYrc15i16HlKurHUa68i9c7CHu9M8P0/STX7cxRrQY7QlxuzFuWIdGOp115F6p1FzRE+pyY5a0GO0JcbsxbliHRjqddeReqd9T5vWu3P2E+qmbOEtVC83lK486XnXxhLr70qfrzkW7Fp/VPx9MYNcdetS2PJ1VcOvG6V779Kkvze7h7r6i3pPkl6DjfpY3US9V4fRaYXek4lozZmLXpOlW4s9dqrSL2zqN9JEuF9LWlYD7KE3tyYtShLpBtLvfYqUu8s8veS+L7U5KwHWUJvbsxalCXSjaVeexWpdxb9c7uqpZlzRIT1IEvozY1ai7JEurHUa68i9c56v27MMYnqsxbkCH25MWtRjkg3lnrtVaTeWdTXSqR5TUUSzZwjIqwHWUJvbtRalCXSjaVeexWpd9Y9S5x1blx58dy496e37TzWcO9Pb4svXvyheMtZvfvTMYl0rAdZQm9uzFqUJdKNpV57Fal35vVaiSTfXeaz+pKxFuQIfbkxa1GOSDeWeu1VpN5Z7+9dT/N96t4Lmpz1IEvozY1Zi7JEurHUa68i9c6hZon9Jx0cZ3744vj4OafHL+/4Yfx106bYtnVrPPbnh2PJVQvjK5ddGud89OP9fidJRnB+Ix3rQZbQmxuzFmWJdGOp115F6p1FfC+oHJGOtSBH6MuNWYtyRLqx1GuvIvXOPHKEYxLVZz3IEnpzY9aiLJFuLPXaq0i9s4jHJHp4rURy1kN11kPSfpbmu31qoRr7bHeWXH1l3HXr0iHV0+6k2X+1uE/S1Gdefve730VHR0fe0yiM+++/Py644IK4+eab855KQ/HYUN/Hhh713O8REa377hdHHffa+PxF58cr3/DGKO33vEzzL3LuBwAAAACGh87Ozli7dm2sWrUqli9fHrfcckssWrQoFi5cGPPnz4+5c+fG7NmzY/r06TF16tQ47LDDolQqxb777hsHH3xwHHXUUTFt2rSYMWNGzJkzJxYsWBCLFy+OFStWRLlcjra2tpgyZUrMnDkz5s2bF9dcc00sXbo0li1bFitXrow1a9bEli1bUs9j8uTJ0d7eHiNHjsx7FwIAAAAAAAAAAADDTKlUivb29pg8eXJMmTIlpk6dGtOnT4/Zs2fH3LlzY/78+fHpT386Fi5cGIsWLYpbbrklli9fHvfee2+sWrUq1q5dG9u2bYtnnnkm1qxZE3/4wx9i5cqVsWzZsli6dGlcffXVMW/evHjve98bM2fOjClTpkRbW1uUy+VYsWJF3H777bF48eJYsGBBvPvd744ZM2bEtGnT4thjj42jjjoqDj744Bg1atTOeR522GExefLkfvOcM2fOzrn2neftt98ey5cv3znPrVu35r27AQAAAACAhDZv3hznn39+fPvb3857KgAAAAAAAAAAAAAAAAAAAAAAAABQUcuOHTt29N1w4403xqxZs2LJg2tTDXTqEe3xn3fcE1/5xKWx6ld3x3PPPReTX/nqeNe8j8XzD3txv+v1Venv/Ol3D8R1//eyuP/eeyIi4qXHHhdnXXRpvODwI/td76HfrIhFV/xb/GHVfTF2/IR489vPjre99/x+13n0T3+M/++zn4r77l4Wz27fHoe86PA45b0fiONOPGnndf777uXx/W98NR64957o/OvTMX7ipDjuhDfHrA/8U5T2e17i66SZe73258an1sXXr/i3+M3yn8ZfN22M9kMPi5nv/1B89oLz+l3/jKMPjW2DfEFSz3Wqddt65n3DDTfE6aefnvp3k1DH+ddxkr/Vdz/23Yd3/eCWuO4zn4z1jz8a+086OM6+eH688g1vjIiITeX18dVP/kv89q47Y0tnZ7zs1a+N9/zr5THn9cf2Gydp7Se5D9KMVbQekGZOzVCLpx7RnnrdJ52Peh2ceq3e/vznWdOjZURLfOr6pYl/p0ff/Tvvi1+NV53w5n4///Wyn8Rl73nHzn/37P9d75e+P0vyt5L+zq6/n2Wt9vXZD82Jg0e3xo033jikcQZz+umnx5rNXXHh569O9XvWQ7q572lf7mkfJbldafriYD19sMeAiIgH7r0nLn3n2+LTN34vXnz0Mf1+1uj9/ZHfPxSLrvhErPrVL6KlpSVecsyxce4/fzzmvvX4AX8zyX2RRB5rKOnfTDpm0nUyWL2lua+T7M9aPu+qp2effTZGjx4dV111VcyePbvq4+v7+ff9pLctyd+q1LeTbqvW7dndfZ70ecJg8xts+57231Bub5q5NFIfc/wo/7WftF5qUYNJ+0LS/VGtPFTvDFat3J10Pw21B1YjQ6XZx9XMf0nUuu+1tLTEhZ+7Kl5z0oxUc9LzHDMvwnNUtZhtfzpmrl77Knq9VjKUY+Z9/eX3v4ubrloY9929LJ7ZvCnaDpgYL3/t6+If3v2PcdDfHLrzeme+4rDY0tU56Dh976MN656Ir37qX+O/7vxJRERM+bs3xDkf/bcYN+GA1POrxjHzu25dGp+94LzY5eUfVeP5U/7rQW/Wm2UJ9ape658ldt3He48aFaPHtcULX/qyePUbT45pb31b7D1qVL/rpMkTERFf/vg/R9sBB8bM91+QaY595zqUPOH8e69mXQ96s94sS6hX9dpcWSJt5kgy16FkCec3ujXrWtCX9WU5Qr2q1/xzRCV993ujZogI5zf6atb1oDfrzbKEelWvxc8SD6z4Zfzohuti5T0/j43r1sW+o0fHEf/nlTHz/RfEYUe9vN/vFe21Es5v9GrW9aA3682yhHpVr831WQVP/OXP8bUFH4/77loWzz67PQ476uXx9rkficmv/NtMcx1qlnB+o1uzrgV9WV+WI9Srei3+MYnBfqcRcoTzG72adT3ozXqzLKFe1Wvxj0k08ntBnd/o1azrQW/Wm2UJ9apeG+O4RJLjDUV83aXzG92adS3oy/qyHKFe1Wv+OaKa7wP9rzt/HEuvvSp+9+sVMWKvvaLjpS+Lt77rPQOOfaSZ61CyhPMbvZp1PejNerMsoV7Va/5ZopIs7wXtUZTPpopwfqOvZl0PerPeLEuoV/Va/NdK7G6MvtdzfiP5nKwFOUJfbtxalCPUa19Fr9dKivo+0CLmCOc3ejXretCb9WZZQr2q1+Kf30jy+32vP5zOb0Q4LpH3etCb9WZZQr2q1+JniSTv77z/V7+IH91wXaz61d2x8amnYkzb+Hj+YS+Ok2e/e2etp52jHGEt7Im+rC/LEepVvRYjR7Tuu18c8qLD4/WnzIo3zjorWlpa9vg7e1pHWX5n198v+vmNCK+7LMKaqOb+TNofzzj60Ni2dWvFufRcp1q3Lcl9Mtjjz2DbIyIeuPeeuPSdb4tP3/i9ePHRx/T72WC/V63btKdaTHN70jymJdmXSXkdVrdm7StyXzF6cpo5NUMtep6iXvsqer1WUsTjnWm+/yfpHIt+vNPzk/zXgr6sL8sR6lW9NkeOGG6fUxMhRxRhLejL+rIcoV7VazFyxJ7Omyb9jP2hnivddSzvL+9lLdR2fxbxfOkjv38oFl3xiVj1q19ES0tLvOSYY+Pcf/54zH3r8QNuQ7Xuv0qPY0nv08Ee6yqNmaS+dyfJ7yc9R5pkfSR9rN7TvOq9PiK8P7avZu2FMmoxHkfSzKkZatFzKvXaV9HrtZKififJcHxfi+Oz+a8HvVlvliXUq3rNP0tU83tJIor1fam1Pj7ruET+60Fv1ptlCfWqXvPPEpXsut+TnsMt2rlexyV6Net60Jv1ZllCvarXYmSJ3b1urFGPSfSM4XVjzbsW9GV9WY5Qr+q1GDliV1leK5HmeknnOdQc4XWXvZp1PejNerMsoV7Va2NkiTtv+XZ8/7qvxNqH/xAREe2HHhZvOev/iddNP6Xf9Yp2TML5jV7Nuh70Zr1ZllCv6rUxskTEnr+7rIif1ef8RrdmXQv6sr4sR6hX9Vr8711P+jqJIr4X1PmNXs26HvRmvVmWUK/qtf7HJHr85fe/i5uuWhj33b0sntm8KdoOmBgvf+3r4h/e/Y9x0N8cuvN6aTLCcDu/EeG4RN7rQW/Wm2UJ9apei39+I+n7O+WIZKyFdHPfHX1ZX5Yj1Kt6LX6OaORjEs5v9GrW9aA3682yhHpVr8XPEoP9zq7XKeJrJRyX6NWs6yFNP0v63T6VevlQtlVrn+3u7y387k/jq5d/LB769b2xY8eOPdZT2tuQZv/V4j6JSP7dQklU+3nGH//4x+jo6Ijly5fHa1/72qqM2QzOOuus+NnPfharVq2K0aNH5z2duvE8s7EeG/LY7xERD9x7T1z6zrfFp2/8Xrz46GMyz7+IuT+i9u97AQAAAACqp7OzM8rlcurL448/Hs8999yA8VpbW6OtrW3QS3t7e0yaNKnftvHjx0dra2sOtx4AAAAAAAAAAABgeOt5LWlXV9eA15VW2lZp+1NPPRVbt26tOH5ra2uUSqWKrzGttL3StgkTJsQ+++xT5z0DAAAAAADDzymnnBIbN26MO+64I++pAAAAAAAAAAAAAAAAAAAAAAAAAMCuFrfs2LFjR98tN954Y8yaNSuWPLg21UinHtGe+ncYXLPvz1OPaI8bbrghTj/99JqMr45pdGoxmzNe/sL4+j33xz6tpbynMqyoV9LY2tUV73r1S+P636we0jif/dCcOHh0a9x4441Vmll/p59+eqzZ3BUXfv7qVL9nPcDQ5LGGmnnd1vp5V70de+yxcfzxx8dnPvOZqo+t70MxOX4EDDe17nstLS1x4eeuitecNCPVnPQ8ikAtZuOYeT7UK2lU65j5Xbcujc9ecF7s8vKPqvH8iUanFrORJfKhXkmrGnnC+XfYPbWYjSyRD/VKWtXIEs5vwODUYjZyRD7UK2k4vwH1oRazkSXyoV5Jw/sLoT7UYjayRD7UK2lUK0s4vwGDU4vZyBH5UK+k4fwG1IdazEaWyId6JQ3nN6A+1GI2skQ+1CtpOL8BtacWs5Ej8qFeSasaWcL5Ddg9tZiNLJEP9Uoazm9AfajFbGSJfKhX0nB+A2pPLWYjR+RDvZKG929AfajFbGSJfKhX0miU8xsRjkvQ2NRiNrJEPtQrSckRUB9qMRs5Ih/qlTQa5fxGhNddFoX9Sb15HRYMTi1m43lKPtQrSTXK8U7PT2h0ajEbOSIf6pWkGuFzaiLkCBqfWsxGjsiHeiUN7y8nKfsTds/7Y2H31GI2nlPlQ72ShvO8UB9qMRtZIh/qlbSqkSdqfXzWcQkanVrMRpbIh3olDccloD7UYjayRD7UK2l43RjUnlrMRo7Ih3oljUb53C7nN2h0ajEbWSIf6pU0nN+A+lCL2cgS+VCvpOH8BtSeWsxGjsiHeiUN5zegPtRiNrJEPtQraTTK+Y0IxyVobGoxG1kiH+qVpOQIqA+1mI0ckQ/1ShrOb0B9qMVsZIl8qFfScFwCqKVqP89YvHhxvP3tb4+NGzfGfvvtV5Uxm8G6deviyCOPjLPOOiv+/d//Pe/p1I3nmY3Ffq+NWr/vBQAAAADor7OzM8rlcurLk08+Gdu3bx8wXmtra7S1taW+TJo0KVpaWnLYAwAAAAAAAAAAAADkqbOzM7q6uiq+rjXp9vXr18eWLVsG/RuVXuNaKpUSbx8/fny0trbWca8AAAAAAEBjueWWW+Lv//7v43/+53/isMMOy3s6AAAAAAAAAAAAAAAAAAAAAAAAANDX4pF5zwAAquX5HS+Kn3/v5pg2/ZTYe9SovKcD7OLZ7dvirh/cEu2HduQ9FQAa0NFHHx333Xdf3tMAAABoGI6ZQ7E5Zg4UnSwBxSdPAEUmS0DxyRJAUckRUGwyBFB0sgQUmywBFJ0sAcUmSwBFJkdAsckRQNHJElBssgRQdLIEFJssARSZHAHFJ0sARSZLQLHJEUDRyRJQbLIEUGRyBBSbHAEUnSwBxSZLAEUnS0BxyRFA0ckRUGyyBAAwHHmeAsXlOQpQdHIEFJccARSdHAHFJksAABSb51RQbJ5TAUUnS0DxyRNAkckSUGxyBFB0sgQUmywBFJkcAcUmRwBFJ0tAsckSQNHJElBssgRQZHIEFJscARSdLAHFJksARSdLQHHJEUDRyRFQbLIEUHSyBBSbLAE0mjvvvDOOPvro2G+//fKeSqHsv//+8elPfzrmzJkTZ511VhxzzDF5TwkAAAAAAAqrs7MzyuVy6stTTz0VW7duHTBea2trtLW1Dbh0dHRU3N5zmThxYuy111457AEAAAAAAAAAAAAAGlWpVIpSqRRtbW3R3t4+pLEqva62q6tr0O3lcjlWr149YPtgdn2dbalUqvja291tHzduXLS0tAzpdgIAAAAAQNGcdNJJMXHixLj++uvj0ksvzXs6AAAAAAAAAAAAAAAAAAAAAAAAANDPiGoMcuoR7f3+y9DYn/mw3ykKtZjdWRf9S9z81f+Mdxzzovjl7T/IezrDgnolqcf+/HCc8fKOWHLVwnjnhZfkPZ2asB5gaPJYQ9ZtY3nlK18Z99xzT2zbti3vqUSE+oHhytoHhhM9j6JQi9k5Zl5/6pWkHDOH+lGL2ckS9adeSaPZ84T1QFGoxexkifpTr6TRzFnCWqAo1GJ2ckT9qVeSauYM0cN6oCjUYnayRP2pV5KSJaB+1GJ2skT9qVeSavYsYS1QFGoxOzmi/tQrSTV7joiwHigOtZidLFF/6pWkZAmoH7WYnSxRf+qVpJo9S1gLFIVazE6OqD/1ShqyBNSHWsxOlqg/9UpSzZ4jIqwHikMtZidL1J96JalmzxLWAkWhFrOTI+pPvZJUs+eICOuB4lCL2ckS9adeSUqWgPpRi9nJEvWnXklCjoD6UYvZyRH1p15JajhkiQhrotrsT7AOKA61mJ3nKfWnXkliODxHsRYoCrWYnRxRf+qVJOQIqB+1mJ0cUX/qlaSaPUtYC9Vlf0JjsnYpCrWYnedU9adeSarZn1NFWA8Uh1rMTpaoP/VKGs2eJ6wHikItZidL1J96JalmzxER1gPFoRazkyXqT72SVLNnCWuBolCL2ckR9adeSarZc0SE9UBxqMXsZIn6U68kJUtA/ajF7GSJ+lOvJNXsWcJaoCjUYnZyRP2pV5Jq9hwRYT1QHGoxO1mi/tQrSckSUD9qMTtZov7UK0nIEVA/ajE7OaL+1CtJyRJQP2oxO1mi/tQrSckSQCO69dZb4y1veUve0yikc889N171qlfFBRdckPdUCs1jQz7sdwAAAACgFjo7O2Pt2rWxatWqWL58edxyyy2xaNGiWLhwYcyfPz/mzJkT06dPj6lTp8bkyZOjvb09SqVS7LvvvnHwwQfHUUcdFdOmTYsZM2bEnDlzYsGCBbF48eJYsWJFlMvlaGtriylTpsTMmTNj3rx5cc0118TSpUtj2bJlsXLlylizZk1s3bp1j/OYO3duzJ49e8Bc9tprr7x3IQAAAAAAAAAAAADDWKlUivb29pg8eXJMnTo1pk+fHjNnzozZs2fH3LlzY/78+bFw4cJYtGhR3HjjjXHLLbfE8uXLY9WqVbF27dro7OyMHTt2xDPPPBNr1qyJlStXxrJly+K2226LpUuXxtVXXx3z5s2LmTNnxpQpU6KjoyPa2tqiXC7HihUrYvHixbFgwYK4+OKL4+yzz44ZM2bEtGnT4qijjoqDDz44xo8fHyNGjBgwzxNPPDGmT5/eb54LFizYOde+81y9enWsXbs2nnvuubx3NwAAAAAA7DRy5Mh461vfGrfeemveUwEAAAAAAAAAAAAAAAAAAAAAAACAAUZWY5AlD66txjDDwqlHtO/250seXGt/5sR+Ty5JHVOZHlBbL3/N62Lh936W9zSahnqlmg76m0Nj8apH8p5GTVkPyckS+cpj/xf1MUWtNZY3v/nN8f73vz9+/vOfx/HHH5/3dNRPCs3W95vt9pCO+zc5a6W/omYw2B01kpz1ll1Rny82C8fMq0u9Uk2OmdOXLJGd3lxbskR1qVeqrdnzhPWQnCyRnd5cW7JEdalXqq2Zs4S1kJwckZ2+XFtyRHWpV6qpmTNED+shOVkiO725tmSJ6lKvVJMsQV+yRHZ6c23JEtWlXqmmZs8S1kJyckR2+nJtyRHVpV6ppmbPEREe/9KQJbLTm2tLlqgu9Uo1yRL0JUtkpzfXlixRXeqVamr2LGEtJCdHZKcv15YcUV3qlWqTJeghS2SnN9eWLFFd6pVqavYcEeHxLw1ZIju9ubZkiepSr1RTs2cJayE5OSI7fbm25IjqUq9UU7PniAiPf2nIEtnpzbUlS1SXeqWaZAn6kiWy05trS5aoLvVKtcgR9CVHZKcv15YcUV3qlWoaDlkiwmNgGs3cY5oxKzXjbWoU9m1y6jS7Zu7JReB5SnWpV6plODxHsRaSkyOy05drS46oLvVKtcgR9CVHZKcv15YcUV3qlWpq9ixhLSTXzL1FRto9+6f5uQ+Tsx6ya+bHkSLwnKq61CvV1OzPqSI8/qUhS2SnN9eWLFFd6pVqa/Y8YT0kJ0tkpzfXlixRXeqVamr2HBHh8S8NWSI7vbm2ZInqUq9UU7NnCWshOTkiO325tuSI6lKvVFOz54gIj39pyBLZ6c21JUtUl3qlmmQJ+pIlstOba0uWqC71SjU1e5awFpKTI7LTl2tLjqgu9Uo1NXuOiPD4l4YskZ3eXFuyRHWpV6pJlqAvWSI7vbm2ZInqUq9UixxBX3JEdvpybckR1aVeqSZZgr5kiez05tqSJapLvVJNsgR9yRI0goceeij+8Ic/xEknnZT3VAqppaUlvvCFL8SrXvWqWLJkSZx66ql5T6mQ9LPkqvnYYL8DAAAAAIPp7OyMcrmc+vLYY4/Fjh07BozX2toabW1tOy/t7e3R0dHRb9uulwkTJsQ+++yTw60HAAAAAAAAAAAAgMZXKpWiVCpFe/vuP6dgT3Z9bXFXV1fF1xv33b569ep+2x5//PF47rnnKo7f97XGpVJpwGuPk2yfOHFi7LXXXkO6nQAAAAAAEBHxpje9Ka699tpYv359jB8/Pu/pAAAAAAAAAAAAAAAAAAAAAAAAAMBOI/OewHCz5MG1eU8BhkwdZ2ff0UjUK1Ar+ku+8tj/7nOq4YUvfGEceeSR8f3vfz+OP/74vKdDCs3WA5rt9kCtWCv9yWDQ3Ky37Ow7Gol6BWpFf8nOvqORqFegVvSX7Ow7Gol6BWpBb8nOvqORqFegVvSX7Ow7Gol6BWpFf8nOvqORqFegFvSW7Ow7Gol6BWpFf8nOvqORqFegVvSX7Ow7Gol6BWpBb8nOvqORqFegVvSX7Ow7Gol6BWpFf8nOvqORqFegFvSW7Ow7Gol6BWpFf8nOvqORqFegVvSX7Ow7Gol6BWpBb8nOvqORqFeglpq5xzTjbWvG20TzUafZ2Xc0EvUK1ILekp19RyNRr0At6C3Z2Xc0EvUK1EIz95Zmvm3VYP9AL+shO/uORqJegVrRX7Kz72gk6hWoFf0lO/uORqJegVrRX7Kz72gk6hWoBb0lO/uORqJegVrRX7Kz72gk6hWoFf0lO/uORqJegVrQW7Kz72gk6hWoFf0lO/uORqJegVrRX7Kz72gk6hWoBb0lO/uORqJegVrRX7Kz72gk6hWoFf2FRvDtb387DjjggDjuuOPynkphTZkyJc4888y46KKL4uSTT47W1ta8p0QD89gAAAAAACTV2dkZ5XI59eWJJ56IZ599dsB4ra2t0dbWNuDS0dFRcXvPZdKkSdHS0pLDHgAAAAAAAAAAAAAAhqpUKkWpVIr29vYhjdP39c1dXV0VX++86/bVq1f32z7Ya50jel/vXCqVKr72Ocn2Aw88MEaOHDmk2wkAAAAAQGM74YQToqWlJX784x/Haaedlvd0AAAAAAAAAAAAAAAAAAAAAAAAAGAn36wCAAAANIQZM2bEt771rbj88stjr732yns6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/K9vfvObMWvWrBg5cmTeUym0yy+/PF7ykpfElVdeGR/5yEfyng4AAAAAAA2is7MzyuVy6su6deti27ZtA8ZrbW2Ntra2AZeOjo6K23suEydOjL322iuHPQAAAAAAAAAAAAAANINSqRSlUina29uHNE7f11h3dXUNeM11pW2rV6/ut/3JJ5+M7du3Vxy/5zXXpVKp4uuvK23fddv+++8fo0aNGtLtBAAAAAAgH+PGjYspU6bEnXfeGaeddlre0wEAAAAAAAAAAAAAAAAAAAAAAACAnUbmPQEAAACAJN7znvfEFVdcET/60Y/ipJNOyns6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARMSKFSti5cqVcc011+Q9lcJ7/vOfHxdeeGEsWLAg5syZE2PHjs17SgAAAAAA1FFnZ2eUy+Uol8vx6KOPxtq1a3f+e7DL+vXrY8uWLQPGam1tjba2tgGXjo6Oitt7LgcccEDsvffeOdx6AAAAAAAAAAAAAIDqKJVKUSqVor29fUjj9LzGu6urq9/rvXsulbY/+uij/batW7cutm3bVnH81tbWKJVKFV//nXT7hAkTYp999hnS7QQAAAAAIL2jjz46Vq5cmfc0AAAAAAAAAAAAAAAAAAAAAAAAAKCfkXlPAAAAACCJww73zVuvAAAgAElEQVQ7LI4//vi4+uqr46STTsp7OgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETEV77ylTj88MPjuOOOy3sqDeHCCy+ML33pS/G5z30u5s+fn/d0AAAAAABIqbOzM8rlcurLY489Fjt27Og3Vmtra7S1tQ24dHR0VNzec5kwYULss88+Oe0BAAAAAAAAAAAAAIDmUCqVolQqDXmczs7O6Orqqvh688G2P/roo/22r1+/PrZs2TLo36j0+vNSqZR4+/jx46O1tXXItxUAAAAAYLiYPHlyfOc738l7GgAAAAAAAAAAAAAAAAAAAAAAAADQz8i8JwAAAACQ1HnnnRdnnnlmPPjgg3HEEUfkPR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBhbcOGDXHdddfFZZddFi0tLXlPpyGMHTs2Lrzwwrj88svjH//xH+OAAw7Ie0oAAAAAAMNOZ2dnlMvl1Jcnnnginn322QHjtba2Rltb24BLR0dHxe09l/b29hxuPQAAAAAAAAAAAAAA1VQqlaJUKg35deKdnZ3R1dU14DXvlbb1bC+Xy7F69eoB2wdT6fXvpVJpwPZK23q2jxs3zmfNAAAAAABN76ijjop169bF448/HhMnTsx7OgAAAAAAAAAAAAAAAAAAAAAAAAAQEREj854AAAAAQFKnnXZaXHbZZfGJT3wivvGNb+Q9HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGHtq1/9arS0tMTZZ5+d91Qaygc/+MFYuHBhfOYzn4kFCxbkPR0AAAAAgIbU2dkZ5XI59WXdunWxbdu2AeO1trZGW1vbgEtHR0fF7T2Xgw46KEaMGJHDHgAAAAAAAAAAAAAAoJmUSqUolUrR1tYW7e3tmcfp6uqKTZs2xebNm2PDhg2xcePG2Lx5885tmzdvjnK5vPPfmzZtinXr1sX9998f5XJ557YtW7ZUHH/UqFExevToGDt2bIwbNy5Gjx4do0ePjjFjxsSYMWNi7NixMXbs2J3/HjNmTL/r9/y7tbU1820EAAAAAKi15z//+RER8fjjj8fEiRNzng0AAAAAAAAAAAAAAAAAAAAAAAAAdBuZ9wQAAAAAkhoxYkRccskl8Y53vCMuvfTSOPLII/OeEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLC0ffv2+OIXvxjvete7YuzYsXlPp6E873nPi4suuig+/vGPx8UXXxxtbW15TwkAAAAAIBddXV2xfv36KJfLqS7r16+PLVu2DBivtbU12traBlw6Ojoqbu+5HHjggTFy5Mgc9gAAAAAAAAAAAAAAAFRXa2trtLa2xoEHHjikcbZu3RqbN2+OjRs3xoYNG2Lz5s2xadOmnf/duHFjbNy4sd+2xx9/PDZs2NBve2dnZ8XxR40aFWPGjIkxY8ZEW1tbjB49eue/e/6/ra1twLYxY8bEuHHjdv7/qFGjhnQ7AQAAAAAq6fnc7Y0bN+Y8EwAAAAAAAAAAAAAAAAAAAAAAAADoNTLvCQAAAACkMXPmzPjUpz4VH/7wh+PWW2/NezoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADD0je/+c34y1/+Eh/+8IfznkpDmjNnTnzyk5+M//iP/4hLLrkk7+kAAAAAAAxJZ2dnlMvl1JdHH310wFitra3R1tY24NLR0VFxe89l//33j1GjRuVw6wEAAAAAAAAAAAAAoPmMGjUqJkyYEBMmTBjyWLu+76Crq6viexF6tj/yyCMVfzaYSu9FKJVKibdPmDAh9tlnnyHfTgAAAACgeYwdOzYiIjZu3JjzTAAAAAAAAAAAAAAAAAAAAAAAAACg18i8JwAAAACQxogRI+JLX/pSvO51r4ubbropTjvttLynBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMKw899xzccUVV8SZZ54ZL3zhC/OeTkMaPXp0vO9974srr7wyPvzhD0epVMp7SgAAAADAMNfZ2Rnlcjn15fHHH4/nnntuwHitra3R1tY24NLR0dHv3+3t7TFp0qRoa2uL8ePHR2traw63HgAAAAAAAAAAAAAAqJVSqRSlUina29uHNE6l9z50dXUNur1cLsfq1asHbB/MYO+FKJVKFX+26/b9998/Ro0aNaTbCAAAAAAUw9577x0REdu2bct5JgAAAAAAAAAAAAAAAAAAAAAAAADQa2TeEwAAAABIa+rUqXHOOefEhz70oXjTm94Uo0ePzntKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw8aNN94YDzzwQNx00015T6WhzZ07Nz73uc/F17/+9TjvvPPyng4AAAAA0AQ6OzujXC6nvjz55JOxffv2AeO1trZGW1vbgEtHR0fF7T2XSZMmRUtLSw57AAAAAAAAAAAAAAAAaFalUilKpVK0t7cPaZxK77/o6uoadPuu29avXx9btmypOHZra2uUSqWK78lIuv2AAw6Ivffee0i3EQAAAAAYmnK5HBER48aNy3kmAAAAAAAAAAAAAAAAAAAAAAAAANBrZN4TAAAAAMhiwYIFsXTp0vjgBz8Y1157bd7TAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBa2bt0a//Iv/xJnnXVWHHHEEXlPp6FNnDgx3vGOd8QXvvCFOO+88/KeDgAAAABQEM8880yUy+Uol8uxfv36nf9faduuP9++ffuA8caOHRttbW07L+PHj49JkybFS1/60p3/7vvfnsu4ceNyuPUAAAAAAAAAAMD/z969x2k954//f07HudahJumkpaaNDlsklHIuVFvY3dqcik3Lrl3blnVmkT4IrVOyNosPq1WTxJTYsMRWFiUphNjYVKoph2Y6TNfvnx9fVJ9VaV4z0/1+u71ut+b1vvXqcV3S7bqu1/W6LgAAAHasTCYTmUwmGjVqtM1rFBcXR0lJSRQXF29y9mNL8x999NHX5lesWBHr1q3b7Pq5ubmRyWQiNzf3a+c9vhhbuvbV+T333DOqV6++zbcRAAAAAHZmq1atioiIvLy8xCUAAAAAAAAAAAAAAAAAAAAAAAAA8P9USx0AAAAAsC3q1q0b999/f/zoRz+KY489Nk499dTUSQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJXeHXfcER9++GEMHTo0dUql8Jvf/Cb+8pe/xPPPPx+HH3546hwAAAAA4Duybt26WLlyZRQVFX05/tvPX8ytXbt2k/V22WWXyMvL+3LUqVMnGjRoEC1btow6depscu2rP1etWjXBPQAAAAAAAAAAAAAAAFB5ZTKZyGQykZeXF40aNdrmdYqLi6OkpCSKi4s3OWeypfmPPvroa/PLly+P9evXb3b93NzcyMvLi0wm8+Wvvzq+zXy9evWiWrVq23wbAQAAAKAiWrp0aURE1K1bN3EJAAAAAAAAAAAAAAAAAAAAAAAAAPw/vkECAAAAqLC6d+8e5557bvz617+OTp06RZMmTVInAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVFqrVq2K//mf/4nBgwfH3nvvnTqnUjjggAPioIMOirvuuisOP/zw1DkAAAAAwDcUFxdHUVHRVo8lS5ZENpvdZL3c3NzIy8v7cjRq1Cjy8/O/NvfNsccee0TNmjUT3HoAAAAAAAAAAAAAAAB2pEwmE5lM5stzJtvqizMwJSUlmz0Ps7n5hQsXfm3+448/jg0bNmx2/S/OxGQymU3Ox3wxtnTti/n69etH1apVt/k2AgAAAEBZmjNnTtSuXTv22muv1CkAAAAAAAAAAAAAAAAAAAAAAAAA8KVqqQMAAAAAtseNN94Y06ZNi5/85Cfx/PPPxy677JI6CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFK67rrrIicnJy666KLUKZXKOeecE7/+9a/j5ptvjj333DN1DgAAAABUOsXFxVFUVLTVY9myZVFaWrrJerm5uZGXl7fJyM/P3+z8F6Nhw4aRk5OT4B4AAAAAAAAAAAAAAACgMstkMpHJZLZ7nS/O4ZSUlGz2TM7m5hcuXPi1a1s6kxPx9XM5mUxms+d0/tt8gwYNokqVKtt9WwEAAADg/zJnzpzYf//9fV4MAAAAAAAAAAAAAAAAAAAAAAAAAOVKtdQBAAAAANsjk8nEY489Foccckj0798/CgoKfEklAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAd+zDDz+MkSNHxnXXXRe1atVKnVOpnHLKKXH++efHmDFjYtCgQalzAAAAAKBcKi4ujqKioq0ey5cvj/Xr12+yXm5ubuTl5W0y8vPzNzv/xWjQoEFUqVIlwT0AAAAAAAAAAAAAAAAAO1Ymk4lMJrPd63z1LFBJSclmzwZ9c37hwoVfm1+6dGls3Lhxs+t/9WxQJpPZ4lmhLV3LZDJRu3btyMnJ2e7bCgAAAEDlNHPmzOjatWvqDAAAAAAAAAAAAAAAAAAAAAAAAAD4mmpbujD9icKy7IAdwt9jAKicln+0OPbaLX+H/xkeSwBUHE2aNImCgoI49thj48orr4xrrrlmq36/f/dh5+X/fSq7bDbrS5f50oI5syL8fQB2cms++zRq5maiarUtbpVDhbNgzqwy+XM8fwL47z5ZuSJ2q50XOVWqpE6Bb83+O0Aan6xcEbvX2SN1BlQI9jeAnUXphg32L9ip2N8A2NTGjRujij0G+FbsbwCVTjbrdVCoZOxvAEDlZH8DANge9jcAgPLO/gZQ3vgcRfhu2N8A2DxnOODbsb8BEBHZbGQjvE4B5ZT9DSAJZ0Jhh7O/AQBsj7LY34jwugQAVEYeRwAA26Os9je87xLYETxPAYDKx7kwAGBbeJ0TAKgI7GsA5ZnzsQDA9rDPCwBUBB5LAEDl5HUJAKC8874xAKicvO8SANge9jcAgPLO/gYAVE72NwCA7eH7UgGAbeVxBACwPexvAADbw+sSwOZs7fOMSy65JBo0aBDnnHPODiraee2yyy5x0kknxd/+9rcYNGhQ6pzvlOeZAAAAAHxVcXFxFBUVbfVYsWJFrFu3bpP1cnNzIy8vb5ORn5+/2fkvRr169aJatWoJ7gEAAAAAAAAAAAAAAACo/DKZTGQymWjUqNF2rfPV80glJSWbPZ/0zfmFCxd+7dqqVasim81udv1vnk/KZDKbPbP0f83n5eVt120EAAAAoPx59913Y+7cuXHLLbekTgEAAAAAAAAAAAAAAAAAAAAAAACAr6n2zYmGDRtGtWrVYsTvzknRw06iWrVq0bBhwx22vr/HAFD5/eiYI3bY2o0bN46CggKPJYAKbUc/7yqPjjzyyLjzzjvjnHPOiRdffDF++9vfxnHHHRc1atT4P3+ff/ehfPL6EbCz2dH/7u3VuHEU3vfnHbY+AJDWXo0b77C1PX8CgMrP/jsAsK3sbwAA28P+BgCwPexvAADbyv4GALA97G8AANvD/gYAsK3sbwAA28P+BgCwPexvAADbyv4GALA97G8AANtjR+5vRHhdAgAqM48jAIDtsSP3NyK87xJ2Vt6HBQBsK+fCAIBt4XVOAGB72NcAcD4WANg+9nkBgG21o1+f9boEAFR+XpcAALaV940BANvD+y4BgO1hfwMA2Fb2NwCA7WF/AwDYHr4vFQDYVh5HAADbw/4GALA9vC4BbM63fZ7x/PPPx5gxY2Ls2LFRs2bNHVy1czrllFOie/fu8fbbb0fz5s1T52w3zzNhx597AQAAgJSKi4ujqKjo/xwfffRRLF68+GtzJSUlm6yVm5sbeXl5m4z8/PzNzn8x6tatGzVq1Ehw6wEAAAAAAAAAAAAAAICykMlkIpPJRKNGjbZrnW+ehyopKdnsGamvzi9cuPBr86tWrYpsNrvZ9Td3RiqTyXzr+Tp16kRubu523UYAAAAAvjuPPvpo1K5dOw4//PDUKQAAAAAAAAAAAAAAAAAAAAAAAADwNTnZLX17At+J999/P/Lz8+OJJ56I4447LnUOQKXXunXr6N27d1x99dWpUwDYCW3YsCH22WefGDBgQFxzzTWpc2CnNWvWrDj//PPjueeei9q1a8cJJ5wQXbt2jWOOOWa7v8ySyqFVq1bRpUuXuP3221OnAOxQpaWlcfvtt8fVV18du+66awwfPjxOOeWUyMnJSZ0GAMl8+OGH8fjjj0dhYWE8+eSTUbVq1ejatWv06dMnTjzxxKhVq1bqRACgAlu4cGE89dRTUVhYGFOnTo3169dHu3btomvXrtGzZ8/o1KlTVKlSJXUmAJBYaWlpzJgxIyZNmhSPPvpovPnmm1G3bt3o3r179OrVK7p37x677rpr6kwAoAx99tln8eCDD8YDDzwQ06dPj/r168fJJ58c/fr1iwMPPDB1HgBQBlatWhW33npr3H777VFSUhJnn312DBkyJBo3bpw6DQDYwbLZbNx2221x8cUXR/v27eOvf/1rNGnSJHUWAFAGrrnmmhg+fHjMnTs3mjZtmjoHACjnFi1aFM2bN4877rgjBg4cmDoHACiHnn322Tj66KNj0aJF8f3vfz91DgDAdvnggw/ioosuioceeigOO+yw+OMf/xgHHXRQ6iwAoBKZNWtWXH/99TFhwoTYe++9Y/DgwTFgwIDYZZddUqcBAOXMW2+9FVdddVWMGzcuWrduHVdeeWX85Cc/8X0PALCT2rhxY9x8881xxRVXRMuWLeO+++6LNm3apM4CAMpQaWlpdO7cOVasWBEzZsyIunXrpk4CABJp2rRpnHnmmXHllVemTgEAErv22mtj5MiRsXjx4tQpAFRS48aNi759+0Y2m02dAkAl9Pjjj0fPnj1j8eLF0aBBg9Q5AEAiS5cujYYNG8bkyZOje/fuqXMAgASy2Wz069cvJk+eHLNmzfI9OgBUWOvXr4+mTZtG//7949prr02dAwDb5J577olBgwbFp59+mjoFAChnHnvssTjppJPizTffjH333Td1DgBQjj333HNx9NFHx8SJE+OEE05InQMAVABPPvlkdOvWLQoLC6Nnz56pcwCACmTt2rVx1FFHRVFRUcyePTsymUzqJACgghg9enT88pe/jKeffjqOOuqo1DkAQAVSXFwcRxxxRHz++efxyiuveD0CANgqL730Uhx55JFx3nnnxfDhw1PnAAAVzFVXXRXXXnttPPvss9GpU6fUOQBABWJ/AwAoC7fccktcfvnl8f7770fdunVT5wAA5cicOXOic+fO8atf/SpuvPHG1DkAVGKjRo2KK6+8Mj7++OPUKZQDa9eujXbt2kV+fn5MmjQpdU6ltWHDhmjcuHGcd955cdlll6XOoZI7/PDDY++9944HH3wwdQoAAACQUHFxcRQVFW31WLJkSWSz2U3Wy83Njby8vK+NRo0aRcOGDTeZ/2LUqVMncnNzE9x6AAAAAAAAAAAAAAAAgK3zzTNZJSUlmz2ntaX5L65tyebOaGUymW89v8cee0TNmjXL8B4BAAAAqJz233//aN++fdxzzz2pUwAAAAAAAAAAAAAAAAAAAAAAAADgqwpystlsNnVFZdeuXbvo2LFj3HnnnalTACq9Ll26RPPmzeNPf/pT6hQAdkITJkyIPn36xLvvvhtNmjRJnQM7vQ8++CDGjRsXjz76aLz44ouxbt26aNmyZRx55JHRsWPH6NChQ+y3336Rk5OTOpUydtNNN8WwYcPiP//5T+yyyy6pcwB2uJUrV8bVV18dd9xxRxx44IFx2223RceOHVNnAUByK1asiMmTJ0dBQUH8/e9/j9LS0ujYsWP06dMn+vbtGw0aNEidCABUYGvWrInp06dHYWFhTJw4MRYtWhR169aNo48+Onr27Bm9evWKvLy81JkAQDmwcOHCKCwsjIKCgpgxY0bUrFkzunTpEr169YoTTjjBaxQAsJP54IMPYsyYMXHPPffEggULomXLlvGzn/0s+vfvH/n5+anzAIAd7PPPP4+77747RowYEUuWLImTTz45Lr300mjRokXqNABgB5s/f36ceuqp8d5778XIkSOjX79+qZMAgB1s3bp1ceCBB0b9+vXjqaeecuYdAPivfvnLX8YTTzwRCxYsiBo1aqTOAQDKmc8++yxq164dDz30UPTu3Tt1DgDAd+Lll1+O888/P55//vno3bt3DB8+PJo2bZo6CwCoRN5777245ZZb4i9/+UtUrVo1zjzzzLjooouiUaNGqdMAgHJm/vz5cf3118eYMWOiZcuWccEFF8Tpp58eVapUSZ0GACSwcOHCGDBgQEyfPj2GDBkSQ4cO9d5OANiJLF++PDp27BgNGzaMqVOnRm5ubuokACCBgQMHxptvvhkvvPBC6hQAILHu3btHXl5ejBkzJnUKAJXUuHHjom/fvpHNZlOnAFAJffbZZ1GnTp343//93zjllFNS5wAAiTz44IMxYMCAWLFiRey6666pcwCABIYNGxZXX311PP7443HsscemzgGAbTZmzJjo379/vPPOO9GkSZPUOQCwTW6++eYYMWJEfPjhh6lTAIBypnv37pHNZuOJJ55InQIAlGMbNmyI9u3bR6NGjWLKlCmpcwCACmDNmjXRpk2baN++fYwbNy51DgBQwfziF7+IsWPHxowZM6J169apcwCACmLevHlxyCGHxODBg2PYsGGpcwCACiSbzcZpp50WTz75ZMycOTOaN2+eOgkAqEA++uijOOSQQ6Jly5bx+OOPR7Vq1VInAQAVyMMPPxx9+vSJUaNGxS9/+cvUOQBABWJ/AwAoC2vXro1mzZpF3759Y8SIEalzAIByZOXKlXHwwQdHo0aN4umnn44aNWqkTgKgErviiivi0Ucfjddeey11CuXAhRdeGHfddVfMmzcvGjdunDqnUjv33HNjxowZMXv27NQpVHJ33XVXDBkyJJYsWRK77bZb6hwAAABgOxQXF0dRUdFWj2XLlkVpaekm6+Xm5kZeXt5Wj4YNG0ZOTk6CewAAAAAAAAAAAAAAAACgYtncubCSkpJvPb9y5cpYu3btFtff0jmxTCaz2WvfnK9bt67PvAQAAAB2Wk8//XR07do1XnrppTjooINS5wAAAAAAAAAAAAAAAAAAAAAAAADAVxXkZLPZbOqKym7o0KExatSoWLx4cVSpUiV1DkClduqpp0ZxcXE88sgjqVMA2Al169YtcnJyYsqUKalTgG/4/PPP44UXXohnnnkmXnjhhZg1a1aUlJREXl5edOjQIQ4++ODYf//944ADDoj8/PzIyclJncwOtGLFimjcuHGMGjUqfv7zn6fOASgzs2fPjkGDBsU///nPOO200+Kmm26KevXqpc4CgHJh1apVMXXq1CgsLIxHHnkkiouLo2PHjtGnT5/o3bt37LXXXqkTAYAKbuHChVFYWBiTJk2KadOmRWlpaRxwwAHRs2fP6NWrVxx44IFemwYA4uOPP44pU6ZEQUFBTJ06NdavXx/t2rWLnj17xsknnxwtWrRInQgAlKF58+bFAw88EPfee28sX748Dj300OjTp0+cfvrpsccee6TOAwB2oPXr18ff/va3uO6662LBggXRo0ePuOKKK+KQQw5JnQYA7EAlJSVx1VVXxY033hg//elP46677oq8vLzUWQDADvTiiy9G586d4y9/+UucccYZqXMAgHJu0aJF0bx58xg1alScddZZqXMAgHKobdu2cfzxx8eNN96YOgUA4DtVWFgYgwcPjsWLF8dvf/vbuPTSS2P33XdPnQUAVCKrV6+O++67L2644YZYvnx59O3bNy655JJo2bJl6jQAoJyZP39+XH/99TFmzJho2bJl/OEPf4jevXv7LEkA2Alls9kYPXp0DBkyJJo1axb33ntvHHjggamzAIAy8sYbb0SnTp3iuOOOi4ceeshrAwCwExo7dmycfvrpsXz58qhVq1bqHAAgkQ0bNsQee+wR119/ffzqV79KnQNAJTVu3Ljo27dvZLPZ1CkAVFKHH3547LfffnH33XenTgEAEhkwYEC88847MW3atNQpAEACDz/8cPzsZz+L22+/Pc4999zUOQCwXQ499NBo3LhxFBQUpE4BgG121VVXRUFBQcybNy91CgBQjrz77rux7777xoQJE+LEE09MnQMAlGM33nhjXHnllfH6669Hfn5+6hwAoAL4/e9/H3fffXfMmzcv9tprr9Q5AEAFMnLkyBg0aFBMnDgxevXqlToHAKggPv/88zjkkENi9913j2nTpkX16tVTJwEAFcjVV18dw4YNiyeeeCK6dOmSOl0yniAAACAASURBVAcAqEBKSkriyCOPjNWrV8fMmTOjdu3aqZMAgApk9uzZcfjhh8eAAQPitttuS50DAFQw9jcAgLJw5513xuDBg+Pdd991VhQA+FJpaWn86Ec/ijfeeCNefvnl2HPPPVMnAVDJnXXWWfHhhx/Gk08+mTqFxP71r39F586d44477oizzz47dU6lN2XKlOjRo0f8+9//jr333jt1DpVYUVFRNGzYMP785z9H//79U+cAAADATq+4uDiKioq2eixfvjzWr1+/yXq5ubmRl5e31aNBgwZRpUqVBPcAAAAAAAAAAAAAAAAAAFujuLg4Pvnkky/HqlWrvvz1p59++uWvi4qKNpn79NNPv5wvLS3d7Pq77rpr7LbbbrH77rvH7rvvHrVq1YratWt/bW633Xb7cr5WrVpfzn/19wAAAABUNL169YrVq1fHtGnTUqcAAAAAAAAAAAAAAAAAAAAAAAAAwDcV5GSz2Wzqispu7ty50bZt2/jnP/8ZnTp1Sp0DUKkNHjw4Zs6cGTNmzEidAsBOZtGiRZGfnx8FBQXx4x//OHUO8F+sX78+Xn311Zg5c2a8+OKL8fLLL8c777wTpaWlsdtuu0WbNm2ibdu2ccABB0Tbtm2jTZs2seuuu6bO5jt06qmnxnvvvee5A7BTKiwsjPPOOy9Wr14dF198cQwePDhq1KiROgsAyo3i4uJ46qmnoqCgIB577LFYvXp1tGrVKvr06ROnnHJK7LfffqkTAYAK7vPPP49nnnkmJk2aFJMnT47//Oc/Ua9evTj++OOjV69ecdxxx0WtWrVSZwIAia1ZsyaefvrpmDRpUjz66KOxdOnSyM/Pj549e0afPn2iU6dOUaVKldSZAEAZKC0tjX/84x9x//33x8MPPxwbN26Mrl27Rv/+/eOkk06K6tWrp04EAHaQjRs3xuTJk2PYsGHxr3/9Kzp37hwXXXRR9OrVK3UaALADTZ06Nc4444yoUaNGPPDAA3H44YenTgIAdqBBgwbFX//615g/f37Ur18/dQ4AUM6dc8458eSTT8aCBQt8RgAAsIlf/OIX8dZbb8W0adNSpwAAfOfWr18f9957b1x22WUREXH55ZfHr3/966hWrVriMgCgMlm7dm2MHTs2rrvuuliwYEH06NEjLr744ujcuXPqNACgnJk3b14MHz48HnzwwWjdunVcccUV0bt378jJyUmdBgCUsYULF8aAAQNi+vTpMWTIkBg6dKj3eALATuLZZ5+N448/Pi666KIYOnRo6hwAoIytWLEi6tWrFxMmTIgTTzwxdQ4AkMhLL70UhxxySMybNy9atWqVOgeASmrcuHHRt2/fyGazqVMAqKSuuuqquPfee+Pf//536hQAIJGmTZvGmWeeGVdeeWXqFACgjM2aNSuOOOKIOOuss+LWW29NnQMA2+WVV16Jgw46KJ577rk44ogjUucAwDYbPHhwvPjiizF9+vTUKQBAOXLBBRfE2LFj47333ouqVaumzgEAyqkPP/wwWrZsGRdeeGFcccUVqXMAgApgzpw5cfDBB8fIkSPj7LPPTp0DAFQg//znP+OYY46JK664Ii6//PLUOQBABTJgwICYOHFizJ49O/bZZ5/UOQBABTJhwoTo06dPjBw5Mn71q1+lzgEAKpBsNhunn356TJkyJV588cVo3rx56iQAoAJZsmRJHHLIIdGiRYt4/PHHo1q1aqmTAIAKxP4GAFAWSktLo3nz5tGtW7cYNWpU6hwAoBwZPHhw3HXXXTFt2rQ46KCDUucAsBPo0aNH1K9fP+69997UKST06aefxoEHHhj5+fnxxBNPRE5OTuqkSm/t2rVRt27dGDFihM8SY4f7yU9+Ep9//nk8+eSTqVMAAACgUiguLo6ioqKtHitWrIh169Ztsl5ubm7k5eVt9ahXr55zUwAAAAAAAAAAAAAAAAB8K59//nl88skn8emnn8Ynn3wSq1atitWrV3/58xdj9erVsXr16i9//uL66tWrY9WqVZHNZje7fu3atWP33XffZNSuXTtq1aoVtWrV2uK1L37Ozc0t43sFAAAA2FlNmzYtjjzyyJg8eXL06NEjdQ4AAAAAAAAAAAAAAAAAAAAAAAAAfFNBTnZL3xDAd2q//faLE044IW688cbUKQCV2vXXXx9//vOfY+HChalTANjJXHbZZXHPPffEokWLonr16qlzgG2wZs2aeP3112POnDlfjtdeey0++eSTqFKlSuTn58cBBxwQ+++/f7Rt2zbatm0bTZo0SZ3NNnr22Wfj6KOPjtmzZ8cBBxyQOgegzK1ZsyZuuOGGGD58eOyzzz5x8803R/fu3VNnAUC5s3bt2nj++eejsLAwxo4dG0uXLo1WrVpFnz59olevXtG+ffvUiQBAJTBv3ryYNGlSPPXUU/Hss89GRESHDh2iV69e0bVrV485AIAoLS2NGTNmxKRJk2LixInx1ltvxZ577hndunWLXr16RY8ePWKXXXZJnQkAlIHVq1fHo48+Gg888EA8/fTTkZeXF717945+/fpF586dIycnJ3UiALCDvPDCCzF8+PCYNGlSHHjggTFo0KA4/fTTo0qVKqnTAIAd4OOPP44BAwbElClT4ve//31cc801zq4CQCW1Zs2aaNOmTRx00EExduzY1DkAQDm3aNGiaN68eYwaNSrOOuus1DkAQDlz9913x6BBg2L16tVRrVq11DkAADvEypUr44YbbohbbrklmjZtGjfeeGP07NkzdRYAUMls3LgxJk+eHNdff31Mnz492rdvH7/97W/jtNNOi6pVq6bOAwDKkddffz2GDh0a48ePjzZt2sTll18evXv39tkPALCTyWazMXr06BgyZEg0a9Ys7rvvvmjXrl3qLACgDNxzzz0xcODAuPfee+OMM85InQMAlLH27dvHoYceGiNHjkydAgAkMmLEiLj++utj2bJl3isAwA4zbty46Nu3b2Sz2dQpAFRSzz//fBxxxBHxzjvvRLNmzVLnAABl7O2334599903nn/++TjssMNS5wAAZWjx4sXRoUOHaN26dUyaNMln2QJQ4fXr1y9effXVmDt3buoUANguAwYMiI8++iimTJmSOgUAKCfWrl0b3//+92PQoEFx2WWXpc4BAMqx3r17x5w5c2Lu3LmRm5ubOgcAKOdKS0ujQ4cO8b3vfS+ee+45n5sBAHxrH3zwQRx00EHRqVOnmDBhgscRAMC3Nnbs2DjllFPikUceiRNPPDF1DgBQgbz66qtx2GGHxZlnnun7QQCArXbNNdfE0KFD44knnoguXbqkzgEAKpCSkpI4+uijo6ioKGbMmBF5eXmpkwCACsT+BgBQVsaPHx8nn3xyvPXWW76HEAD40l//+tfo379/PPjgg3HKKaekzgFgJ9GuXbvo3r17XHvttalTSOiMM86IKVOmxJw5c6Jhw4apc3YaJ5xwQuTk5MSjjz6aOoVKbuzYsXH66afHRx99FHXr1k2dAwAAAOVGcXFxFBUV/dfx0UcfxeLFi7/8uaSkZJO1cnNzIy8vb6tH3bp1o0aNGgluPQAAAAAAAAAAAAAAAABsvS/O5pWUlGz2nN6W5r96benSpbFx48bNrr+583qZTGaL5/i+eW3PPfeM6tWrl/G9AgAAAFQkGzdujA4dOsTuu+8eTz/9dOocAAAAAAAAAAAAAAAAAAAAAAAAANicgpxsNptNXbEzuPDCC2P8+PGxcOHC1CkAldp9990X5557bqxZsyZ1CgA7kQ0bNsQ+++wTAwYMiGuuuSZ1DvAdW7x4cbzyyisxf/78mDdvXrzyyivx5ptvxsaNG6NmzZrRrFmzaN26dbRq1Spat24d+fn50bp168jNzU2dzn/RqlWr6NKlS9x+++2pUwCS+eCDD+Kyyy6LBx54IHr27Bm33npr5Ofnp84CgHKptLQ0ZsyYEQUFBTF+/PhYvHhx5OfnR8+ePaNPnz7RuXPnyMnJSZ0JAFRwK1asiGeeeSaeeuqpeOyxx2LJkiXRtGnTOPbYY6Nr167RrVu32G233VJnAgCJzZs3LyZNmhSFhYUxffr0yGQyccwxx0SvXr3ixBNPjPr166dOBADKwIcffhgPP/xw3HvvvTFnzpxo0aJF9O3bN/r16xfNmjVLnQcA7CCzZs2KW265JR588MFo1apVXHDBBXHqqadGtWrVUqcBAN+xbDYbo0ePjsGDB0ebNm3ir3/9a/zgBz9InQUA7ADPPPNMdO3aNSZMmBAnnXRS6hwAoJw755xz4sknn4wFCxZEjRo1UucAAOXI3Llzo23btjF79uw44IADUucAAOxQCxYsiMsvvzwKCgqia9euMWLEiGjbtm3qLACgEnrllVfi1ltvjTFjxkSTJk3ivPPOi7PPPjsymUzqNACgHHn99ddj6NChMX78+GjTpk1cfvnl0bt3b59XDQA7mYULF8aAAQNi+vTpMWTIkBg6dKj3egLATuDiiy+OP/7xjzFlypTo0qVL6hwAoAxdcsklMWHChHjrrbdSpwAAiZx44olRrVq1ePjhh1OnAFCJjRs3Lvr27RvZbDZ1CgCV1Lp162KPPfaIESNGxNlnn506BwAoY3/605/iggsuiJUrV0b16tVT5wAAZaS4uDiOPPLI+Oyzz2L69OlRu3bt1EkAsF2WLVsW++yzT4wcOTLOOuus1DkAsF1++tOfRvXq1eOhhx5KnQIAlBP/+7//G7/4xS/i/fffj0aNGqXOAQDKqb///e9x/PHHx+TJk6NHjx6pcwCACuCmm26Kyy67LGbPnh2tWrVKnQMAVBAlJSVxxBFHxGeffRYzZ86M3XffPXUSAFBBvPPOO9G+ffs466yz4o9//GPqHACgAlm6dGkcfPDB0bRp05g6darvBwUAtsojjzwSvXv3jttvvz3OPffc1DkAQAWSzWajX79+UVhYGDNmzPBeSwBgq9jfAADKUufOnaN+/foxYcKE1CkAQDkxe/bsOOyww+I3v/lNDB8+PHUOADuR+vXrx+WXXx7nnXde6hQSKSgoiL59+8bEiRPjhBNOSJ2zU7nzzjvjwgsvjKKioqhWrVrqHCqxzz77LOrVqxcjR46MAQMGpM4BAACA71RxcXEUFRVt9ViyZElks9lN1svNzY28vLxNRqNGjaJhw4abvVanTp3Izc1NcOsBAAAAAAAAAAAAAAAAoGL65vnAkpKSLZ4Z3Ny1lStXxtq1aze79hdnBTOZzBbPDW7p2hfzDRo0iCpVqpTxvQIAAACUhTvvvDPOO++8mD17drRp0yZ1DgAAAAAAAAAAAAAAAAAAAAAAAABsTkFONpvNpq7YGcyYMSM6deoUc+bMibZt26bOAai0pkyZEj169IhPPvkkdtttt9Q5AOwkJkyYEH369Il33303mjRpkjoHKAOffPJJzJ07N+bPnx9vvfVWzJs3L9566614//33I5vNRvXq1eMHP/hBtGzZMlq0aBGtWrWKFi1aRIsWLWKXXXZJnc//76abbophw4bFf/7zH/9dgJ3eM888E4MGDYoFCxbEL3/5yxg2bJjXVgDg/7Bx48aYPXt2FBYWxpgxY+Ltt9+OvffeO0466aTo1atXHHXUUVGtWrXUmQBABffFY46nnnoqCgsLY/r06VGzZs047LDDomvXrnHCCSdEy5YtU2cCAIktW7YsnnjiiSgoKIipU6fGhg0bomPHjtGrV6846aSTYr/99kudCACUgXnz5sUDDzwQ9913XyxdujTat28f/fr1i9NOOy3q1q2bOg8A2AFef/31uOGGG+Jvf/tbNG7cOH73u9/F2WefHZlMJnUaAPAdmz9/fpx66qnx3nvvxciRI6Nfv36pkwCAHaB///7x1FNPxfz586N27dqpcwCAcmzRokXRvHnzGDVqVJx11lmpcwCAcmTjxo2Rl5cXN9xwQ5xzzjmpcwAAysQ//vGPOP/882POnDlx2mmnxQ033BANGjRInQUAVELvvvtu3HbbbTF69OjYdddd49xzz43zzjsv9thjj9RpAEA5Mnfu3Ljmmmti/Pjx0bZt27jsssuid+/ekZOTkzoNACgj2Ww2Ro8eHUOGDIlmzZrFfffdF+3atUudBQDsQNlsNk4//fSYPHlyvPDCC/HDH/4wdRIAUEaeeeaZ6NKlSyxcuDCaNm2aOgcAKGPZbDb23HPPuOKKK2LQoEGpcwCoxMaNGxd9+/aNbDabOgWASqxHjx6x2267xdixY1OnAABlrE+fPlFcXByTJk1KnQIAlJFsNhunnHJKPPXUUzFz5sz4wQ9+kDoJALbb1VdfHbfddlt88MEH8b3vfS91DgBsl65du0azZs3irrvuSp0CAJQTHTt2jKZNm8bf/va31CkAQDm1du3a2H///aNt27Yxbty41DkAQAXw73//O374wx/GBRdcEH/4wx9S5wAAFciAAQNi4sSJ8a9//ct70QGAb23t2rVx6KGHRtWqVeOf//xn1KhRI3USAFBBlJSUxDHHHBNLliyJf/3rX1G3bt3USQBABfLqq6/GYYcdFieffHLcfffdqXMAgArm2muvjT/84Q/x2GOPRY8ePVLnAAAViP0NAKAsvfzyy3HwwQfHc889F0cccUTqHACgHFi6dGkcfPDB0aJFi5gyZUpUrVo1dRIAO4kNGzZEzZo1Y+zYsdG7d+/UOSTwxhtvRIcOHeLnP/953Hrrralzdjrz58+P1q1bx0svvRQHHXRQ6hwquRNPPDE2bNgQkydPTp0CAAAAmyguLo6ioqKtHsuWLYvS0tJN1svNzY28vLytHg0bNoycnJwE9wAAAAAAAAAAAAAAAAAAsLWKi4ujpKRki+cUt3Ttq/NbOqsYsel5xUwms8UzjJu7tscee0TNmjXL+F4BAAAA/i8LFy6M/fffPwYNGhTDhg1LnQMAAAAAAAAAAAAAAAAAAAAAAAAAW1KQk81ms6krdgbZbDb23nvvGDhwYFx55ZWpcwAqrVmzZkX79u3j7bffjh/84AepcwDYSXTr1i1ycnJiypQpqVOAxNasWRNvvfVWvPnmmzF//vx4880344033oi333471q1bFzk5ObH33ntHixYtomXLltGyZcvYb7/9Yt99942GDRumzt/prFixIho3bhyjRo2Kn//856lzAJLbsGFD3HPPPXHppZdGzZo147rrrot+/fpFTk5O6jQAKPfmzZsXBQUFUVBQEPPnz4+6detG9+7do0+fPtGtW7eoXr166kQAoBL4+OOP49lnn43CwsIoLCyMVatWRX5+fnTt2jV69uwZxx13XNSsWTN1JgCQ0Jo1a+Lpp5+OgoKCrz1e6NmzZ/Tp0yc6d+7sdX8AqORKS0vjH//4R9x///0xYcKE2LBhQxx77LHRv3//OPHEE6NGjRqpEwGA79j7778fN998c4wePTp23XXXOPfcc+N3v/td1K5dO3UaAPAdKikpiauuuipuvPHG+OlPfxp33XVX5OXlpc4CAL5DK1asiNatW8dJJ50Uf/rTn1LnAADl3Nlnnx1///vfY8GCBd4LAAB8zdFHHx1NmzaNe+65J3UKAECZyWazMX78+Ljgggti+fLl8fvf/z4uuuiiyGQyqdMAgEpo2bJlMWrUqLj99ttj7dq1cdppp8X5558f++67b+o0AKAcee2112LYsGExfvz46NChQ1x66aXRq1ev1FkAQBlauHBhDBgwIKZPnx5DhgyJoUOHes8nAFRiJSUlccwxx8SSJUti5syZUa9evdRJAEAZWLduXdSpUyduueWWGDhwYOocAKCMvfbaa7H//vvHrFmzol27dqlzAKjExo0bF3379o1sNps6BYBKbMSIEXHdddfFsmXLokqVKqlzAIAysnHjxqhfv35ceumlMXjw4NQ5AEAZueSSS2LEiBHx97//PY466qjUOQCw3davXx9NmzaNfv36xXXXXZc6BwC228EHHxzHHHNMDB8+PHUKAFAOvPrqq9GuXbt47rnn4ogjjkidAwCUU1dffXXccMMNMX/+/Nhnn31S5wAAFUCvXr3i7bffjjlz5kTNmjVT5wAAFcSIESPiwgsvjEmTJkX37t1T5wAAFcivf/3reOCBB+Lll1/2HeAAwFYZOHBgFBQUxPTp06N169apcwCACmTp0qVxyCGHRJMmTWLq1Km+VxwA2CoTJ06Mn/70p3HrrbfGb37zm9Q5AEAFY38DAChLp512Wrzxxhsxa9as1CkAQDmwfv36OPbYY+Pf//53vPTSS1G3bt3USQDsRBYvXhx77bVXPP/883HYYYelzqGMffrpp9GxY8eoVatW/OMf//C5Vglks9moX79+XHLJJb6jmh3u/vvvj1/84hexbNmyqFWrVuocAAAAKqHi4uIoKira6rF8+fJYv379Juvl5uZGXl7eVo/69etH1apVE9wDAAAAAAAAAAAAAAAAAEBF9NUzkiUlJVs8M/nfrm1Obm5uZDKZLZ6b3NK1r847OwkAAADfjfXr18dRRx0Va9asiRdffDFq1KiROgkAAAAAAAAAAAAAAAAAAAAAAAAAtqQgJ5vNZlNX7CzOPffcmD59erz66qupUwAqrf/85z/RuHHjeOGFF6Jz586pcwDYCSxatCjy8/OjoKAgfvzjH6fOAcqpDRs2xKJFi2LhwoUxb968mD9/fsybNy/mzp0bn3zySURE1KxZM/baa69o1apVtG7dOvLz87822DFOPfXUeO+992LGjBmpUwDKjZUrV8bVV18dd9xxR7Rv3z5uu+226NChQ+osAKgwFi5cGIWFhVFQUBDTp0+PvLy8+NGPfhS9evWKHj16xC677JI6EQCoBEpLS+PVV1+NwsLCmDRpUsyaNSsymUx06tQpevbsGT/+8Y9j7733Tp0JACRUWloaM2bMiEmTJsUjjzwSCxYsiD333DO6desWffr0ieOOOy5q1qyZOhMA2IE++eSTmDhxYhQUFMSUKVNi9913jz59+kS/fv2ic+fOkZOTkzoRAPgOffzxx3HHHXfErbfeGqWlpfHzn/88LrroomjUqFHqNADgOzR16tQ444wzokaNGvHAAw/E4YcfnjoJAPgOPfTQQ3HqqafG1KlTo0uXLqlzAIBybNGiRdG8efO48847Y8CAAalzAIBy5OKLL47CwsKYN29e6hQAgDK3Zs2auP322+N//ud/olatWnHFFVfEwIEDo0qVKqnTAIBK6LPPPosxY8bETTfdFO+++2706NEjLr/8cp/jDAB8zWuvvRbDhg2L8ePHR4cOHeLSSy+NXr16pc4CAMpINpuN0aNHx5AhQ6JZs2Zx3333Rbt27VJnAQA7yPLly+PQQw+NvLy8ePbZZ+N73/te6iQAoAx069YtatWqFWPHjk2dAgCUsZEjR8bll18eK1asiKpVq6bOAaASGzduXPTt2zey2WzqFAAqsVdffTXatWsXs2fPjgMOOCB1DgBQRmbNmhXt27ePOXPmRNu2bVPnAABl4P77748zzjgjRo8eHQMHDkydAwDfiTFjxkT//v3jnXfeiSZNmqTOAYDttu+++8aZZ54Zl156aeoUAKAcGDhwYEyfPj3mzZsXOTk5qXMAgHLo3XffjR/+8IdxzTXXxO9///vUOQBABXDffffFWWedFc8991wcdthhqXMAgApi2rRp0aVLl7j22mvjggsuSJ0DAFQgBQUF0bdv33jooYfiZz/7WeocAKACuemmm+Liiy+OyZMnx/HHH586BwCoQNatWxfHHHNMLF26NF588cWoU6dO6iQAoAJ5/fXX49BDD43TTjst/vSnP6XOAQAqGPsbAEBZWrZsWXz/+9+Pu+66K84888zUOQBAOfC73/0u/vKXv8SMGTPihz/8YeocAHYyr732Wuy///7x5ptvxn777Zc6hzKUzWajd+/eMX369Hj55Zdjr732Sp200zrppJOiSpUqMWHChNQpVHIrV66M+vXrx4MPPuj8OAAAAFtUXFwcRUVFWz1WrlwZa9eu3WS93NzcyMvL2+pRr169qFatWoJ7AAAAAAAAAAAAAAAAAABg22zpnGZJScm3uvbxxx/Hhg0bNrv2V89sZjKZLZ7h3NK1OnXqRG5ubhnfIwAAAFC+/Pa3v4177rknZs6c6ftBAAAAAAAAAAAAAAAAAAAAAAAAACjvCnKy2Ww2dcXOYurUqXHcccfFO++88/+xd+dhWZZ5/8c/KOKNO+6QiqBQo1YqaiblBoUauIwijT5SomaTjxpkaampkJihpmOpNVquaeBSgruIJoLlljU4buCSioiCSwkocP/++D11zKTOZIEnN7xfx3Eewn1yXL6v6x+Qy+91q0mTJqZzAKBUys/PV8WKFRUdHa2+ffuazgEAlAETJkzQokWLdPbsWVWoUMF0DgAbdP78eZ04ceKOdfLkSeXl5UmSnJyc5OHhIQ8PD3l6ev7ysYeHh6pXr274DGzbzp071aVLFx06dEgtW7Y0nQMAJcrBgwc1evRoJSUlaeDAgZoxY4bq1q1rOgsAAJty5swZffHFF4qJiVFycrIsFou6du2qwMBA9enTR1WrVjWdCAAASomLFy9q69atiouL05YtW3T9+nW5u7vL399fAQEB6tixoxwcHExnAgAAg1JSUhQXF6fY2FglJSXJ0dFRXbt2VUBAgHr37s09AAAASrlz585pzZo1Wrx4sb799lu5urrq+eef19ChQ9W0aVPTeQAAoAjduHFDn3zyid577z1duXJF/fv319tvv833fAAASpHMzEyFhIRo06ZNGjNmjCIiIphvBQCgFOndu7eOHDmiw4cPy9HR0XQOAAAowV566SVt3bpVx48fZ14AAAD8Yt26derbt6+ysrJUo0YN0zkAAABGXLhwQVOmTNGiRYvUqlUrzZw5Ux07djSdBQAASqnCwkJt2LBB77zzjr755ht5e3tr7Nix8vf3l52dnek8AABQQhw+fFhTp07V6tWr1b59e7355psKCAgwnQUAAB6QtLQ0nirlUgAAIABJREFUhYSEKCkpSWFhYQoPD+f/fgIAUEodPXpUHTp0kK+vr1atWqVy5cqZTgIAAMVs5syZmjZtmi5dusT3fgAAypj+/fvr5s2biouLM50CACjloqOjFRQUJKvVajoFAFCKWa1W1atXT2PHjtVrr71mOgcAADwg7733nmbOnKmLFy8yFw0AQBmwZ88e+fj4KCwsTJGRkaZzAAAoMk8++aQaNGigmJgY0ykAABSJevXq6e2339aIESNMpwAAAMOuXr2qBg0aaPr06fxsAAAA7snf31+nT5/WoUOHVKFCBdM5AACghDt//rweffRRDR48WDNnzjSdAwAAbMSlS5fUunVrtW7dWl9++SWzaAAA4Dc7ceKE2rRpo+DgYM2dO9d0DgAAsCHbt29Xt27d9N577yksLMx0DgAAsDHDhw/XZ599pr1796p58+amcwAAgA3Jzs5Wu3btVLduXSUkJMjBwcF0EgAAsCHc3wAAAA/a9OnT9e677+r8+fOqVKmS6RwAAGBYbGysevXqpSVLlmjQoEGmcwAAZdBXX32lTp066eLFi6pXr57pHDxAEyZMUFRUlBISEtShQwfTOWXajBkzNHPmTKWnp5tOQRnw9NNPq0mTJlq8eLHpFAAAAABAMcvJyVF2dvZvWunp6bpw4YKys7OVm5t7x7EsFoucnJzue9WuXZs5HwAAAAAAAAAAAAAAAAAAAAAAAAAAgPvw84xobm7uPedF/9ve1atXZbVa73r8e82NOjo6/qa9unXryt7e/gFfFQAAAAAA/rhly5bphRde0MqVKxUUFGQ6BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/ybGznqvJ8+jyN2+fVv169fXW2+9pddee810DgCUWrVr11Z4eLheeeUV0ykAgFIuPz9frq6uCgkJUUREhOkcAKVMYWGhzp49qxMnTujEiRM6efKkjh07phMnTuj06dO6ffu2JKlu3bry8PCQp6enPDw85OHhoaZNm6pp06aqUqWK4bOwDc2aNZOPj4/mzp1rOgUAShyr1arVq1drzJgxun79usaNG6fQ0FA5ODiYTgMAwOZkZmZq06ZNiomJ0ZYtW1S+fHn5+voqMDBQPXv2VI0aNUwnAgCAUiI3N1eJiYnavn27YmNjdeTIEVWuXFldunRRQECAnnvuOT300EOmMwEAgEFnz57V5s2bFRsbq61bt6qgoEDt27dXQECA+vTpI09PT9OJAACgGKWkpGjZsmVasmSJLl68KC8vLw0aNEgDBw5U7dq1TecBAIAikpeXp88//1wRERFKS0tT3759NXnyZDVr1sx0GgAAKAJWq1V///vfFRoaqhYtWmjFihVq2rSp6SwAAFAELly4oObNm+vll1/WtGnTTOcAAIAS7OzZs/Lw8ND8+fMVEhJiOgcAAJQQ6enpcnFx0fbt2+Xj42M6BwAAwKgjR47o9ddf18aNG+Xv76/Zs2erSZMmprMAAEAplpiYqOnTp2vDhg1q0aKF/vd//1fBwcGyWCym0wAAQAmxd+9eTZ06VXFxcerQoYPGjRungIAA01kAAOAB+HkuNCwsTE2aNNHixYvVqlUr01kAAKAY7Nq1S88++6xef/11vfPOO6ZzAABAMfv+++/12GOPad++fWrTpo3pHAAA8AC5uLjo1Vdf1RtvvGE6BQBQykVHRysoKEhWq9V0CgCglAsKCtKNGze0ceNG0ykAAOAB8fPzU82aNbVy5UrTKQAAoJidPn1aTzzxhLy9vbV69WqVK1fOdBIAAEXi4MGD8vLy0q5du9SxY0fTOQAAFAmLxaKFCxfqf/7nf0ynAAAAw2bPnq2JEyfq/PnzqlatmukcAABQAq1du1b9+vVTfHy8unTpYjoHAACUcFarVT169NCpU6d06NAhOTo6mk4CAAA2oLCwUN27d9exY8d08OBB1axZ03QSAACwEbm5uerQoYPs7e21e/duVaxY0XQSAACwEadPn1bbtm3l5+en5cuXm84BAAA2ZsGCBXrllVcUHR2tfv36mc4BAAA2pLCwUP7+/jp8+LD27dsnFxcX00kAAMCGcH8DAAA8aFarVQ8//LB69Oih2bNnm84BAACGnTlzRq1bt1b//v01f/580zkAgDJq/fr16tWrl3Jzc5knLEM++eQTDR06VIsWLdLgwYNN55R527Zt07PPPquMjAzVrVvXdA5KuXfffVezZs3SxYsXeW9UAAAAALABOTk5ys7Ovu918eJFWa3WO45nsVjk5OR01+Xi4iJnZ+c7Xq9Zs6YsFouBswcAAAAAAAAAAAAAAAAAAAAAAAAAAMDvdbc51dzc3HvOr/5678qVK7p169Zdj/3zzKqjo+M951f/216NGjVkZ2f3gK8KAAAAAKCsSkhIUPfu3RUaGqpp06aZzgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LeIsbNarVbTFWXJCy+8oNTUVCUmJppOAYBSq3nz5urXr5+mTJliOgUAUMqtXbtWgYGBSk1NVePGjU3nAChD8vPzdfbsWaWlpf3bSklJ0bFjx1RQUCBJcnJykru7+12Xm5sbb/b3f2bOnKmIiAidP39elStXNp0DACXSzZs39d5772n69OlydXXV+++/r+7du5vOAgDAZmVlZSkuLk4xMTHatm2b8vPz1b59ewUGBiooKEj169c3nQgAAEqRtLQ0bd++XbGxsdq+fbtyc3PVrFkzBQQEyNfXV507d5a9vb3pTAAAYMhPP/2kHTt2KCYmRrGxsbp69eovPyv4+/vL29ube8sAAJRSBQUFSkhI0NKlS7Vu3Trdvn1bzzzzjIKDg9WrVy85ODiYTgQAAEWgsLBQa9as0eTJk/XPf/5Tzz33nMaPH6/27dubTgMAAEXgyJEjGjhwoNLS0hQVFaWXXnrJdBIAACgC8+fP16hRo7R37155eXmZzgEAACXYSy+9pK1bt+r48ePc5wcAAL9o2LCh/vrXv+qtt94ynQIAAFAibN++XaGhoTp27JgGDx6sqVOnqnbt2qazAABAKfbdd99pxowZWrVqlWrVqqXhw4dr9OjRcnJyMp0GAABKiOTkZEVGRiouLk7e3t4aO3asAgICTGcBAIAHIDU1VUOGDFFSUpLCwsIUHh7O/wEFAKAU+vTTTxUSEqIFCxZo+PDhpnMAAEAxslqteuihhzRy5Ei9+eabpnMAAMADcuzYMT3yyCNKTk7mOc8AgGIXHR2toKAgWa1W0ykAgFLu448/VmhoqLKyslSxYkXTOQAAoJjdunVLNWvW1OzZszV06FDTOQAAoBjduHFD3t7esre31+7du1W5cmXTSQAAFJng4GAdOnRI3333nezs7EznAADwh+Xl5clisWj9+vU8kwoAgDLOarXqT3/6k7p06aL58+ebzgEAACXQzZs31bx5c3Xs2FFLliwxnQMAAGzAvHnzNHr0aCUmJuqJJ54wnQMAAGzElClTNG3aNO3Zs0deXl6mcwAAgA0JCQnRF198oQMHDsjNzc10DgAAsBE//vijOnTooPLly2vPnj2qVKmS6SQAAGBDkpOT1aVLF40bN06TJ082nQMAAGzMG2+8oblz5+qrr75S27ZtTecAAAAbwv0NAABgwtatW+Xn56d//OMfat68uekcAABgUF5enry9vXX79m3t3btXjo6OppMAAGXU0qVL9fLLL+vmzZumU/CA7Ny5U35+fho7dqzCw8NN50BSZmam6tatq23btsnX19d0Dkq577//Xo899pi+/vprtWvXznQOAAAAAJQJOTk5ys7Ovu916dIlFRQU3HE8i8UiJyen+17Ozs68jzgAAAAAAAAAAAAAAAAAAAAAAAAAAAB+s5/nZHNzc+86M3uv1/91LyMjQ4WFhXc9/t3mZh0dHe85T/vrvTp16qhChQoP+KoAAAAAAGzN999/r44dO6pbt25asWKFypUrZzoJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDfIsbOarVaTVeUJV988YX69u2rc+fOydnZ2XQOAJRKPj4+8vDw0IIFC0ynAABKuW7duqlcuXLauHGj6RQA+EVeXp7S0tKUmpp6xzp9+rTy8vIkSVWqVFGTJk3uWO7u7mrUqJHs7e0Nn8mDc+XKFTVo0EDz5s3T4MGDTecAQImWmpqqN998UzExMfL399ecOXPk7u5uOgsAAJt28+ZNxcfHKyYmRuvWrdPNmzf15JNPKjAwUH379lWDBg1MJwIAgFIkJydHe/bsUWxsrL788kudOXNGtWrVUteuXeXr66uePXuqfv36pjMBAIAhBQUFSk5O/uX3FD/88IPq1q0rPz8/BQYGys/PTw4ODqYzAQBAMcjJyVFcXJyWLl2qzZs3q0qVKgoICFBwcLB8fHxkZ2dnOhEAAPxBVqtVcXFxioyM1N69e+Xt7a2xY8fK39+f7/UAANi43NxcTZ48WVFRUerbt68++ugjOTk5mc4CAAB/QGFhoTp37qzr169r3759qlChgukkAABQQp09e1YeHh6aP3++QkJCTOcAAIASol+/frp9+7a+/PJL0ykAAAAlRn5+vj755BO9/fbbun37tt544w29+uqrqlixouk0AABQil28eFELFizQnDlzVFBQoMGDB2vMmDFq2LCh6TQAAFBCJCcnKzIyUnFxcfL29taUKVPk4+NjOgsAABSzwsJCLVy4UGFhYWrSpIkWL16sVq1amc4CAABFbPz48YqKitLGjRvl6+trOgcAABSjQYMG6fz589qxY4fpFAAA8IB8/PHHCg0NVXZ2Nu/lBAAodtHR0QoKCpLVajWdAgAo5VJTU9W0aVN99dVXevrpp03nAACAYrZz50516dJFaWlpcnNzM50DAACKSUFBgXr37q0DBw7o66+/5pknAIBSJTMzU40aNdIHH3ygIUOGmM4BAKBIXLp0SfXq1dOuXbvUsWNH0zkAAMCg+Ph4+fr66uDBgzyfCgAA3NW4ceM0f/58HT16VM7OzqZzAABACXfq1Ck9/vjjGjlypKZOnWo6BwAA2IiEhAQ988wzmjNnjkaMGGE6BwAA2JBFixZp2LBhWrdunXr16mU6BwAA2Air1arnn39e8fHx2rdvH8/EAQAA9yU9PV1t2rRRmzZttG7dOpUrV850EgAAsCFr1qxRYGCgFi5cqJCQENM5AADAhnB/AwAAmNK3b19dvnxZu3btMp0CAAAMe+WVV7R8+XLt27dPDz/8sOkcAEAZNmfOHE2fPl0XLlwwnYIH4PDhw+rYsaN69uyppUuXys7OznQS/k/9+vX1+uuv67XXXjOdgjLAzc1NwcHBmjJliukUAAAAALAZOTk5ys7Ovu91+fJl3b59+47jWSwWOTk53feqV6+eypcvb+AKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL/Pr2d1c3Nz7zm/e7e9rKws5eXl3fXYP8/tOjo63nWG916v/+te/fr1eT9dAAAAACil/vnPf6pr165q0aKFNmzYIAcHB9NJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8VjF2VqvVarqiLMnJyVGdOnU0c+ZMDR8+3HQOAJRKAwYMUE5OjtatW2c6BQBQip09e1bu7u6KiYlRnz59TOcAwG+WnZ2ttLS0X1ZKSoqOHDmi1NRUXb16VZJUoUIFNWzYUO7u7ncsT09PVa1a1fBZFL0BAwbo1KlTSk5ONp0CADZhx44dGj16tI4fP66XX35Z77zzTqn8/gAAwIOWk5Oj7du3KyYmRuvXr9e1a9fUrFkzBQYG6i9/+Ysefvhh04kAAKCUSUtLU2xsrOLi4vTVV1+poKBALVu2lK+vr/z9/eXt7S07OzvTmQAAwJCUlBTFxcUpNjZWSUlJqlSpkrp06aLAwED17NlTNWrUMJ0IAACKwfnz57V69WotWbJEhw4dUqNGjfSXv/xFQ4YMkYeHh+k8AABQBBITEzV9+nRt2LBBjz/+uEJDQzVw4ECVL1/edBoAAPgDtm3bphdeeEEODg5atmyZnn76adNJAADgDzh+/Lgef/xxTZkyRW+88YbpHAAAUIINGzZMO3bs0NGjR1WhQgXTOQAAoASIiorSjBkzlJGRYToFAACgxPnxxx81Y8YMTZ8+XY0aNdI777yjwMBA01kAAKCUu3Hjhj755JNffmfz/PPP64033lCLFi1MpwEAgBIiKSlJ06ZNU1xcnLy9vRUeHq6uXbuazgIAAMUsNTVVQ4YMUVJSksLCwhQeHi4HBwfTWQAAoIhYrVYNGjRIsbGx2rNnD/cFAAAoxZYuXaphw4YpKytLlStXNp0DAAAegEGDBikjI0Nbt241nQIAKAOio6MVFBQkq9VqOgUAUAa4u7srODhYkydPNp0CAACK2cSJE/XZZ58pNTXVdAoAAChGI0eO1KJFi7Rz5061a9fOdA4AAEUqPDxcs2fP1rlz51SpUiXTOQAAFIkTJ07I09NT3377rR5//HHTOQAAwKB+/fopIyNDu3fvNp0CAABKoOPHj+uxxx7TrFmz9Morr5jOAQAAJVxhYaG6du2qzMxMHThwQBaLxXQSAACwARkZGWrVqpWeeuopRUdHm84BAAA25Pvvv1f79u01evRoRUZGms4BAAA2JCIiQuHh4dq2bZs6d+5sOgcAANiQ3NxcderUSdeuXdPXX3+t6tWrm04CAAA25PDhw+rQoYOGDx+uWbNmmc4BAAA2hvsbAADAhPT0dLm6umrx4sUaMGCA6RwAAGBQdHS0goKCtGLFCn4uAAAYN2XKFH3++ec6cuSI6RQUs2PHjqlTp05q3ry5Nm3aJAcHB9NJ+Be+vr5q3LixFi5caDoFZcArr7yib775Rvv37zedAgAAAAAPVE5OjrKzs+97ZWVlKS8v747jWSwWOTk53feqW7eu7O3tDVwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDbl5OQoNzf3rjPD93r913uXLl1SQUHBXY//69lhR0fHe84T322vVq1aqlix4gO+KgAAAACA/+Tw4cN69tln5enpqY0bN6pq1aqmkwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuB8xdlar1Wq6oqzp27evfvrpJ23evNl0CgCUSqGhodq7d6+Sk5NNpwAASrEJEyZo0aJFOnv2rCpUqGA6BwCKxJUrV5SamnrXdeHChV++ztnZWe7u7nJzc5Obm5saN278y8cNGjSQvb29wbP4fXbu3KkuXbro0KFDatmypekcALAJt2/f1rx58zRp0iRVqVJFkZGRGjRokOzs7EynAQBQKhQUFCg5OVkxMTGKjo7WxYsX1axZMwUGBiogIEBeXl6mEwEAQCnz008/aceOHYqLi9PGjRt17tw51alTR507d5a/v7969uypGjVqmM4EAACGnDlzRlu2bFFsbKy2bt2qgoICtW/fXoGBgfrzn/+shg0bmk4EAADFICUlRcuWLdPSpUuVnp4uLy8vDRo0SAMGDFCdOnVM5wEAgD/o22+/1axZs/TZZ5+pcePGGjlypF5++WVVrFjRdBoAAPidMjMzFRISok2bNmnMmDGKiIhgBhYAABsWGRmp8PBwffvtt3rkkUdM5wAAgBLqzJkz8vT01IIFCzR48GDTOQAAoAT46quv1KlTJ50+fVqurq6mcwAAAEqkH374QePHj9fy5cvVuXNnzZw5U61atTKdBQAASrlbt25p1apVeu+995SSkiJvb2+NHTtWAQEBptMAAEAJsWfPHk2aNEnx8fHy9vZWRESEunTpYjoLAAAUo8LCQi1cuFBhYWFq0qSJFi9ezD0LAABKkdzcXPn4+OjChQvau3ev6tWrZzoJAAAUg4sXL8rFxUUbNmxQ9+7dTecAAIAHwNXVVUOHDtXEiRNNpwAAyoDo6GgFBQXJarWaTgEAlAFDhw7VsWPHtHv3btMpAACgmHXo0EGPPvqoPvroI9MpAACgmCxatEjDhg3TZ599pueff950DgAARer27dtyc3PToEGDNG3aNNM5AAAUmf3796tt27Y6deqUGjdubDoHAAAYkp6eLldXVy1evFgDBgwwnQMAAEogHx8fXb16Vd98843Kly9vOgcAAJRws2bN0tixY7V37155eXmZzgEAADagsLBQfn5+On36tPbv36/q1aubTgIAADbixo0bateunerVq6ft27fL3t7edBIAALARW7Zs0XPPPac5c+ZoxIgRpnMAAICNGTp0qGJiYpScnKxmzZqZzgEAADbkypUrateundzc3LR582bubQAAgPvC/Q0AAGBKRESE5syZo3PnzslisZjOAQAAhpw4cUJt2rTRiy++qDlz5pjOAQBAYWFh2rt3r5KSkkynoBj98MMPevrpp1W/fn1t27ZNVatWNZ2EXxk6dKjOnDmjbdu2mU5BGbBhwwYFBATohx9+0EMPPWQ6BwAAAADuW05OjrKzs3/zSk9P14ULF5Sbm3vHsSwWi5ycnO571a5dWw4ODgbOHgAAAAAAAAAAAAAAAAAAAAAAAAAAAMDv9a+zyrm5ufecXf5ve3djsVjk6Oh4zxnme+396+v16tVT+fLlH/BVAQAAAIDS58CBA/Lz81OLFi0UGxvLc7kBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALYoxs5qtVpNV5Q1y5cvV0hIiDIyMuTk5GQ6BwBKnXfffVcff/yx0tLSTKcAAEqp/Px8ubq6KiQkRBEREaZzAOCByMnJUWpqqlJTU5WWlqZTp07927p586Ykyd7eXg0bNlTjxo3l5uYmNze3f/vY2dlZdnZ2hs/m7po1a6auXbvqgw8+MJ0CADblypUrCg8P14cffigvLy/NnTtX7dq1M50FAECpUlBQoOTkZMXExGjNmjU6f/683NzcFBAQoMDAQHl7e5fYf2sBAADblZKSori4OG3fvl27du1SYWGhWrZsKX9/fwUEBKh169b8DAIAQBmVnZ2t7du3KzY2VuvXr9e1a9fUrFkzBQQEyN/fn99VAABQChUWFiopKUnLli3TZ599plu3bunZZ59VYGCg+vXrp0qVKplOBAAAf0Bqaqr+9re/6aOPPpKTk5NeffVVjRw5ku/xAADYKKvVqr///e8KDQ1VixYttGLFCjVt2tR0FgAA+B3y8/P1xBNPqGrVqkpISOBePAAAuKdhw4YpISFBR48elb29vekcAABg2M2bN1W9enWtWLFC/fv3N50DAABQon3zzTd67bXXtGfPHvXr109RUVFydXU1nQUAAEo5q9Wq+Ph4zZkzR3FxcWrZsqVCQ0M1YMAA7vUAAABJUmJioiZPnqz4+Hh5e3vrnXfeUefOnU1nAQCAYpSamqohQ4YoKSlJYWFhCg8Pl4ODg+ksAABQBK5cuaInn3xS1atX165du3iuEwAApdSjjz6qZ555RrNmzTKdAgAAitmpU6fk7u6uXbt2qWPHjqZzAABlQHR0tIKCgmS1Wk2nAADKgJUrVyo4OFhXrlxRtWrVTOcAAIBicuPGDdWqVUvLly/nWXUAAJRS27ZtU48ePTR58mSNHz/edA4AAEVu5cqVGjRokE6ePKnGjRubzgEAoMjEx8fL19dXWVlZcnJyMp0DAAAMmTx5sj788EOdO3dOFStWNJ0DAABKmBUrVig4OFh79uxR+/btTecAAIAS7ujRo2rdurXefPNNTZw40XQOAACwEePHj9esWbOUlJSkVq1amc4BAAA2JDAwULt379bBgwfl4uJiOgcAANiI48eP64knnlDPnj21ZMkS0zkAAMDGzJkzR2FhYVq/fr2ee+450zkAAMCG5Ofn69lnn1VaWpr27dunOnXqmE4CAAA2hPsbAADAlMLCQrm7uyswMFBRUVGmcwAAgCG5ubnq0KGD7O3ttXv3bp5bCQAoEUJCQpSRkaENGzaYTkExOX/+vDp16qSqVasqISFBNWrUMJ2Eu4iIiNCyZct0/Phx0ykoA3JyclS7dm397W9/05AhQ0znAAAAACijcnJylJ2dfd8rIyNDhYWFdxzPYrHIycnpPy4XFxc5Ozv/8nnNmjVlsVgMnD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAW3aveenc3Ny77v369czMTOXn59/12P86O+3o6HjPWep77TFHDQAAAKCs2717t/z9/fXUU09p9erVcnR0NJ0EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDvEWNntVqtpivKmqtXr6pevXr65JNPNHDgQNM5AFDqfPrppxoxYoRu3rxpOgUAUEqtXbtWgYGBSk1NVePGjU3nAECJkJ2drbS0tF/WhQsXlJ6errS0NB09elQ//fSTJMnBwUENGjSQu7v7L8vZ2VkuLi5yd3eXm5ub7OzsjJzDzJkzFRERofPnz6ty5cpGGgDAlh08eFCjRo1ScnKyBg4cqBkzZqhu3bqmswAAKJVSUlIUExOjlStX6vjx42rUqJF69+6tgIAAde7cWfb29qYTAQBAKZOVlaX4+Hht375dsbGxSk9Pl6urq/z8/OTr6ys/Pz9Vq1bNdCYAADAgPz9fe/fuVUxMjNauXatz586pUaNG6tatm/z9/eXn5ycHBwfTmQAAoAjl5OQoLi5OS5cu1ebNm1WlShUFBAQoODhYPj4+xv7/FwAA+OMuXryo2bNna+7cuapUqZJGjBihUaNGqWbNmqbTAADA73DkyBENHDhQaWlpioqK0ksvvWQ6CQAA/A7ffvut2rVrpw8//FDDhg0znQMAAEqoM2fOyNPTUwsWLNDgwYNN5wAAgBKgZcuW8vHx0cyZM02nAAAA2ITY2Fi9+uqrunjxokaOHKm33nqLZygAAIAH4tChQ3r//fe1cuVKNWjQQK+++qqGDh3Kc/IBAIAkKTExUZMmTdKOHTvk7e2tqVOnqlOnTqazAABAMSksLNTChQsVFhamJk2aaPHixWoBanW9AAAgAElEQVTVqpXpLAAAUASOHj2qDh06yMfHR59//rnKlStnOgkAABSxsLAwbdu2Td9//73pFAAAUMyWLFmi4cOH6+rVq7JYLKZzAABlQHR0tIKCgmS1Wk2nAADKgIyMDDk7OysuLk49evQwnQMAAIpJXFycevbsqYyMDNWpU8d0DgAAKGLHjh3Tk08+qWeeeUarVq3i/eYBAKVShw4d5OLiotWrV5tOAQCgSK1du1b9+vXTrVu3ZG9vbzoHAAAYkJ+fr8aNGys4OFiRkZGmcwAAQAlz7do1PfLII+rVq5cWLFhgOgcAAJRw+fn5euqpp3Tr1i19/fXXqlChgukkAABgA+Lj4+Xn56f58+dr2LBhpnMAAIANmT17tl577TVt2bJFvr6+pnMAAICNuHHjhtq3b69q1app586dqlixoukkAABgQxITE+Xj46PJkyfrzTffNJ0DAABszKhRo7Rw4ULt3r1bXl5epnMAAIAN4f4GAAAwacOGDQoICNCxY8fk4eFhOgcAABgydOhQrVmzRgcPHpSbm5vpHAAAJEl9+/aVg4ODVq5caToFxeDs2bPy8fGRg4ODEhISVLduXdNJuIdly5Zp6NChysnJUbly5UznoAzw9/dXxYoVtWbNGtMpAAAAAGxYTk6OsrOz73tdunRJBQUFdxzPYrHIycnpvpezs7Ps7OwMXAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+H2uXbum69ev/7J+/vzq1at37P28srOz/+3znJycux7bYrGoWrVqqlatmqpXr64aNWqoevXqv3z+649/vV+tWjVVrlz5AV8RAAAAAPjjtm7dqj59+qhHjx5asWKFHBwcTCcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB7xdhZrVar6YqyyM/PT1WrVtXq1atNpwBAqbNp0yb16NFD169fV9WqVU3nAABKoe7du8vOzk4bN240nQIANiM7O1tpaWl3XWfPnlV+fr6k//8meS4uLnJ3d79jNWnSRDVq1Ci2xitXrqhBgwaaN2+eBg8eXGx/DwCUZlarVatXr9aYMWN0/fp1jRs3TqGhobzJDwAAxSglJUUxMTGKiYnRkSNHVLt2bXXv3l2BgYHy8/Pj+zAAAChyhYWFOnTokLZv367Y2FglJyfLwcFBTz31lHx9fRUQEKBmzZqZzgQAAIb8/LuKuLg4HTx4UDVq1JCvr6/8/f3Vq1cvVa9e3XQiAAAoQhcuXFBMTIyWLVumAwcOqGHDhhowYIBCQkLk6elpOg8AAPxOly9f1gcffKC5c+fq1q1bCgkJ0RtvvKGHHnrIdBoAALhPubm5mjx5sqKiotS3b1999NFHcnJyMp0FAADu0+uvv66PP/5YKSkpatCggekcAABQQg0dOlQ7d+7U0aNHZW9vbzoHAAAYNnz4cKWkpCgxMdF0CgAAgM24deuW5s+fr0mTJqly5cqaNGmShgwZovLly5tOAwAAZcCpU6c0e/ZsLVq0SPb29nrhhRc0duxYubi4mE4DAAAlQGJiot5++20lJCTI19dX77zzjp544gnTWQAAoJikpqZqyJAhSkpKUlhYmMLDw3nPCQAASoGvvvpKzz77rEJDQzVt2jTTOQAAoIht2rRJzz33nM6dO8e9fgAASrkhQ4bo5MmT2rVrl+kUAEAZER0draCgIFmtVtMpAIAyokWLFurevbuioqJMpwAAgGISFham+Ph4HT582HQKAAAoYllZWWrfvr3q1Kmj+Ph4WSwW00kAABS5gwcPysvLSzt37lSnTp1M5wAAUKQ+/fRTjRo1Sjdu3DCdAgAADFm9erWCgoJ08uRJubm5mc4BAAAlTGhoqJYvX65jx46pZs2apnMAAEAJFxERocjISO3fv1/Nmzc3nQMAAGzA+fPn1bJlS/n5+Wn58uWmcwAAgA1JTk5Wp06dNHnyZL311lumcwAAgI2wWq3q3bu39u3bp3379umhhx4ynQQAAGzI2bNn1aZNG3Xq1EnR0dGys7MznQQAAGzI0qVL9eKLL2rlypUKCgoynQMAAGwI9zcAAIBpvXr10o8//qj4+HjTKQAAwJDly5crODhY69atU69evUznAADwi65du+qRRx7RvHnzTKegiJ05c0Y+Pj5ycHBQfHy8nJ2dTSfhP0hISFDXrl2VkZGhunXrms5BGfDBBx9o/Pjxunz5sipUqGA6BwAAAIBBOTk5ys7Ovu91+fJl3b59+47jWSwWOTk53feqV6+eypcvb+AKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBtun37tq5du6br168rOztb169fv2Ndu3ZNV69e/eXrfv3n1atX73pse3t7VatWTTVq1FCNGjVUvXp1VatW7Y4/f97/9V716tVVtWrVB3xFAAAAAJRlS5Ys0UsvvaSgoCB9+umnPNcKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDrYuysVqvVdEVZtGDBAr322mvKzMxUpUqVTOcAQKly8OBBeXl56cSJE2ratKnpHABAKXP27Fm5u7srJiZGffr0MZ0DAKXC7du39cMPP+jChQtKT09XWlrav63Tp0+rsLBQkuTk5CR3d3c5OzvLxcVF7u7uv6yHH35YVapU+UMtAwYM0KlTp5ScnFwUpwYAZdbNmzf13nvvafr06XJ1ddXs2bPVrVs301kAAJR6aWlpio2NVUxMjJKSklSjRg35+/srICBAPXr0UOXKlU0nAgCAUigzM1M7d+5UbGys4uLilJ2dLXd3d/n6+srf31/PPPOMLBaL6UwAAGDA6dOntXXrVsXGxmrLli0qLCxU+/btFRgYqL59+6pBgwamEwEAQBFKSUlRTEyMlixZotOnT8vLy0uDBg3SX/7yF9WtW9d0HgAA+B1+/PFHLVq0SFFRUcrMzFRQUJAmTJggT09P02kAAOA+bdu2TS+++KLs7e21fPlyPf3006aTAADAfcjJydFjjz2mRx55RLGxsaZzAABACXXmzBl5enpqwYIFGjx4sOkcAABg2CeffKIRI0bo+vXrqlChgukcAAAAm3LlyhWFh4dr3rx58vT0VFRUlHr06GE6CwAAlBGXL1/WokWLNGfOHGVlZal///5688039ac//cl0GgAAKAESExM1ceJE7dy5U76+vpo6daratWtnOgsAABSDwsJCLVy4UGFhYWrSpIkWL16sVq1amc4CAAB/0KpVqzRgwADNmzdPL7/8sukcAABQhG7evKmaNWvq448/VnBwsOkcAABQjDw8PPT8888rIiLCdAoAoIyIjo5WUFCQrFar6RQAQBkxatQoJSUlaf/+/aZTAABAMWnVqpU6deqk2bNnm04BAABF6Pbt2+rWrZtSU1P19ddfq169eqaTAAAoFi+88IIOHjyo7777TnZ2dqZzAAAoUrNnz9aMGTN07tw50ykAAMAQHx8fVa5cWevXrzedAgAASpgjR46oZcuW+vDDDzVs2DDTOQAAoITbt2+fvL29FRUVpdGjR5vOAQAANqCgoEA+Pj66ePGi9u/frypVqphOAgAANiIzM1OtW7fW448/rvXr16tcuXKmkwAAgI2YOnWqpkyZooSEBHl7e5vOAQAANiQvL08dO3bUTz/9pL1793JfAwAA3JfDhw/rySef1IgRIxQVFWU6BwAA2BjubwAAAJMuXryoRo0aaenSpXr++edN5wAAAAOOHz8uLy8vDRs2TLNmzTKdAwDAv2ndurW6deumyMhI0ykoQidOnJCPj49q1aqlbdu2qXbt2qaT8F8cPnxYLVu21NGjR/Xwww+bzkEZcOrUKbm7uyshIUGdO3c2nQMAAADgD8rJyVF2dvZ9r6ysLOXl5d1xPIvFIicnp/tederUUYUKFQxcAQAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7/WvM+u5ubn/cYb9bvtXrlzRrVu37nrsX8+vOzo6/seZ9l/v161bV/b29g/4igAAAACwJVarVVOmTFF4eLhGjhyp999/X+XKlTOdBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAHxVjZ7VaraYryqKMjAy5uLho7dq16tWrl+kcAChVzp8/rwYNGigxMVHe3t6mcwAApcyECRO0aNEinT17VhUqVDCdAwBlwq1bt3Tu3DmlpaX927pw4YLS09OVlpb2y9c6OTnJ3d39juXs7Cx3d3c5Ojr+x79r586d6tKliw4dOqSWLVsW96kBQKl38uRJvfXWW4qJiZG/v7/+9re/yc3NzXQWAABlwpkzZ/TFF18oJiZGycnJslgs6tq1qwIDA9WnTx9VrVrVdCIAACiFCgoK9O233yo2NlZxcXE6ePCgLBaLvL295e/vr969e8vV1dV0JgAAMCArK0vx8fGKjY3Vl19+qevXr6tZs2YKDAxUQECAWrduLTs7O9OZAACgCBQWFiopKUnLli3TypUrdfPmTXXp0kWDBg1Sv379VKlSJdOJAADgPt26dUurVq3S1KlTdfLkSfXo0UOTJk1SmzZtTKcBAID7kJmZqSFDhmjjxo0aM2aMIiIimJMFAMCG7Ny5U127dlV0dLT69etnOgcAAJRQQ4cO1c6dO3X06FHZ29ubzgEAAAYdOXJEzZs314EDB9S6dWvTOQAAADbp2LFjmjhxomJiYuTr66tZs2bp0UcfNZ0FAADKiLy8PH3++eeaNm2ajh8/rh49emjcuHG8FxcAAJAkJSYmasKECdq1a5d8fX0VGRmptm3bms4CAADFIDU1VUOGDFFSUpLCwsIUHh4uBwcH01kAAOAPmDhxoqZPn64NGzbomWeeMZ0DAACKUNeuXfXQQw9p2bJlplMAAEAxSU9Pl4uLi7Zu3cq/6wEAD0x0dLSCgoJktVpNpwAAyoh169apX79+unz5spycnEznAACAIpaVlaU6depo7dq16tWrl+kcAABQhIYPH66VK1cqMTFRjz32mOkcAACKRWZmpho1aqQPPvhAQ4YMMZ0DAECRmzJliqKjo5WSkmI6BQAAGHD06FE1a9ZMGzZsUPfu3U3nAACAEqZbt266dOmS9u3bp/Lly5vOAQAAJdiPP/6o1q1by93dXZs2bZKdnZ3pJAAAYAMmTZqk6dOnKzk5Wa1atTKdAwAAbERhYaF69Oiho0eP6sCBA6pVq5bpJAAAYCPi4+Pl5+en999/XyNHjjSdAwAAbMzPz9n5+uuv9ac//cl0DgAAsCHZ2dlq27atGjZsqG3btsne3t50EgAAsCHc3wAAAKZNnTpV77//vs6dOyeLxWI6BwAAPGB5eXl68sknVb58ee3Zs0cODg6mkwAA+Dfu7u4aPny4xo4dazoFReTAgQPq0aOHXF1dtXnzZtWsWdN0En6Ds2fPytXVVcnJyWrfvr3pHJQRDz/8sHr37q3p06ebTgEAAADwf3JycpSdnX3fKz09/Y5jWSwWOTk53feqXbs29zMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPfl53n53Nzc/zg7f6/9rKws5eXl3fXY/zo/7+jo+B/n6e+2zxw9AAAAUHrl5eVpyJAh+vzzzzV37ly9/PLLppMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgqMXZWq9VquqKs8vb2loeHhxYvXmw6BQBKlfz8fFWsWFHR0dHq27ev6RwAQCmSn58vV1dXhYSEKCIiwnQOAOD/5Obm6sKFC0pLS7tjnTx5UteuXfvla52cnOTu7n7X5erqqvLly6tZs2bq2rWrPvjgA4NnBQClS3x8vEaPHq20tDSNGjVKEyZMUJUqVUxnAQBQZmRmZmrTpk2KiYnRli1bVL58efn6+iogIEB9+vRRnTp1TCcCAIBSKiMjQ1u2bFFcXJy2bNmi69evy93dXf7+/goICFDHjh3l4OBgOhMAADxgubm5SkxMVGxsrNasWaPz58/L1dVVfn5+8vf3V7du3VShQgXTmQAAoAjk5uYqNjZWS5cu1ebNm1W5cmX17NlTwcHB8vHxkZ2dnelEAABwHwoLC7VhwwaFh4dr//798vX11eTJk+Xt7W06DQAA/EZWq1V///vfFRoaqhYtWmjFihVq2rSp6SwAAPAbDR06VBs2bFBKSopq1qxpOgcAAJRAZ86ckaenpz766CO9+OKLpnMAAIBBhYWFqlmzpiIjI/XKK6+YzgEAALBp8fHxGjNmjP7xj38oJCRE4eHhqlevnuksAABQRvw8y/Huu+8qKSlJXl5eGjVqlAYOHKjy5cubzgMAAIZt375d48eP1zfffCNfX19FRkaqbdu2prMAAEARKyws1MKFCxUWFqYmTZpo8eLFatWqleksAADwO1mtVgUHB2v9+vVKTEzUo48+ajoJAAAUkWnTpmnOnDlKT0/nucsAAJRSq1at0qBBg5SVlaWqVauazgEAlBHR0dEKCgqS1Wo1nQIAKCOysrJUp04drV27Vr169TKdAwAAitjatWvVv39/ZWZmysnJyXQOAAAoIlFRURo3bpy++OILBQQEmM4BAKDYRERE6P3339e5c+dUqVIl0zkAABS5sLAw7d27V0lJSaZTAACAAaNHj9aXX36p1NRUnj0NAAD+zerVq9W/f3/t2rVLTz/9tOkcAABQwg0aNEhbtmzRd999p/r165vOAQAANmDXrl3y8fHR3Llz9de//tV0DgAAsCETJkzQzJkzlZiYKC8vL9M5AADARvzwww9q3bq1fH19tXLlStM5AADAxixfvlzBwcGKjo5Wv379TOcAAAAbYrVa9ec//1l79+7VwYMH5ezsbDoJAADYEO5vAAAA06xWqzw8PNSzZ0/NmjXLdA4AADBgxIgRWrp0qQ4cOCBPT0/TOQAA3KFWrVqKjIzU8OHDTaegCCQkJKh3795q27at1q5dq2rVqplOwm9048YNVatWTRs3blT37t1N56CMePXVV7Vjxw599913plMAAACAUiUnJ0fZ2dn3vTIyMlRYWHjH8SwWi5ycnP7rcnFxkbOzs5ycnFSzZk1ZLBYDZw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAwO+Tk5Oj3Nzc/zi3/1v27+bn2X1HR8f/OMd/r/1atWqpYsWKD/iKAAAAAPhPrly5oj//+c/6/vvvtXr1anXt2tV0EgAAAAAAAAAAAAAAAAD8P/buPCzqcv//+AtFBTfCNVAS0dTIStRKBbfAnTEVkdJc6WgubehJM0xDLdfS9FgWnszliKC5jZqKpaVgJriU5UkBRQVXcAcUZ35/fH95nXMyy1RuRp6P67qvZuZDd8/P5x9olvcAAAAAAAAAAAAAAAAAAAAAd1Ock91ut5uuKKqmTZumiRMn6tSpUypRooTpHAC4r1SqVElRUVEaMmSI6RQAwH1kxYoV6t69u1JSUuTt7W06BwDwJ50+fVppaWk6fPiw0tLS/uv2kSNHlJeXJ0kqVaqUatSoIScnJ6WlpWn06NF6+OGHVaNGDdWoUUOenp4qVqyY4bMBAMd17do1zZkzR2PHjlXZsmX17rvvqnfv3nJycjKdBgBAkZKVlSWr1aq4uDht2rRJ+fn5atKkiUJDQ9WjRw95eHiYTgQAAPep/Px87dixQ1arVfHx8UpKSlKZMmXUunVrWSwWdezYUdWrVzedCQAADNi/f7/i4uJktVqVlJQkd3d3BQUFKTg4WF26dFH58uVNJwIAgLsgMzNTsbGxiouL0/bt2+Xl5aWePXuqf//+qlu3ruk8AABwm+Lj4zVu3Dht375d/v7+GjlypIKDg3lPIAAADuLnn39Wz549lZqaqqlTp2rgwIGmkwAAwJ9w/vx5Pfroo2rbtq3++c9/ms4BAACF1IsvvqgtW7bowIEDcnZ2Np0DAAAMCgoKUrVq1fT555+bTgEAAHB4NptNixYt0qhRo3Tx4kUNHz5co0aNkouLi+k0AABQhGzbtk0ffvihvvjiC3l7e+vll1/WwIED5erqajoNAAAYFh8fr9GjR+v7779XUFCQ3nvvPTVu3Nh0FgAAuMtSUlIUHh6uhIQERUREKCoqSiVLljSdBQAA/oKrV6+qffv2SktL044dO1S1alXTSQAA4C7YtWuXnnzySe3du1ePP/646RwAAHAPDBkyRMnJydqxY4fpFABAERIbG6uwsDDZ7XbTKQCAIqRhw4Zq0aKFZsyYYToFAADcZS+//LISExO1a9cu0ykAAOAuWb9+vSwWi6ZNm6bXXnvNdA4AAPfMtWvX5OPjoxdeeEHvvfee6RwAAO6J8PBwZWRkaP369aZTAABAAbty5YqqV6+uUaNG6Y033jCdAwAACpGcnBz5+vqqRYsWfC8pAAD4Q3FxcQoLC9OqVatksVhM5wAAAAdw+vRpNWjQQE2bNtWyZctM5wAAAAeydu1ade7cWXPnztWLL75oOgcAADiIvLw8NW/eXDk5OdqxY4fKlCljOgkAADiQvXv3qlmzZnrllVeYOQAAAG5bVFSUJkyYoK+++koBAQGmcwAAgAPh9Q0AAFAYbNq0SW3bttWPP/6oRx991HQOAAAoYF988YVCQkK0ePFi9ezZ03QOAAC/YbfbVaJECS1evFhhYWGmc3CHlixZon79+ik0NFSfffaZSpQoYToJt8Fms6l48eKKi4tT9+7dTeegiNiwYYPat2+vI0eO6KGHHjKdAwAAABQqOTk5ys7Ovu116tQpXb9+/Tf7ubi4yN3d/baXh4eHnJycDFwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc061mBuTm5v7h8XPnzslut/9mXxcXF7m6ut5yhsCtjru6usrd3d3AFQEAAADuPz/99JMsFoskyWq16pFHHjFcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAXRfnZL/Z1GwUiLS0NPn4+Cg+Pl6BgYGmcwDgvvLoo4+qe/fueuedd0ynAADuIx06dJCTk5PWrVtnOgUAcJfY7XZlZGQoLS1NaWlpOnz4sA4cOKCYmBhVrFhR586d07Vr1yRJJUqUUPXq1VWjRg099NBD8vb2vnH713+WKlXK8BkBQOF39uxZRUVF6R//+If8/f314Ycf6oknnjCdBQBAkXTlyhVt3rxZcXFxWrlypS5fvqymTZvKYrGoe/fuqlWrlulEAABwH0tLS9OmTZsUHx+v9evX69KlS/L19ZXFYlFQUJBatmypEiVKmM4EAAAFLC0tTatXr5bVatXWrVtVrFgxNW/eXMHBwerevbuqVatmOhEAANwFP/30k2JjY7VgwQKlpaXJ19dXffr0Ub9+/VS1alXTeQAA4DZs27ZNkydP1tq1a/XYY49p+PDh6tmzp5ydnU2nAQCAP5Cbm6tx48Zp6tSpCgkJ0dy5c+Xu7m46CwAA/IE1a9aoc+fO2rBhg9q2bWs6BwAAFEJHjhxRnTp1NHfuXPXr1890DgAAMOitt97S8uXLdeDAAdMpAAAA943Lly9r9uzZmjhxoh544AFNmDBBvXv3lpOTk+k0AABQhBw6dEizZs3Sp59+qnLlymnw4MF6+eWXVbFiRdNpAADAsPj4eI0ePVrff/+9goKCNGnSJDVq1Mh0FgAAuItsNpuio6MVERGhWrVqaf78+fLz8zOdBQAA/oKzZ8+qWbNmKleunLZu3aoyZcqYTgIAAHfIZrPpwQcf1MiRIzV8+HDTOQAA4B6oX7++OnXqpMmTJ5tOAQAUIbGxsQoLC5PdbjedAgAoQoYPH65NmzZp3759plMAAMBdVr9+fXXs2FFTpkwxnQIAAO6C/fv3q1mzZurevbvmzZtnOgcAgHsqJiZGL7zwgg4dOiRvb2/TOQAA3BPdu3eXs7OzYmJiTKcAAIAC9umnn+rll19Wenq6qlSpYjoHAAAUImPHjtUHH3ygAwcOyNPT03QOAAAoxNLS0uTn56e+fftq5syZpnMAAIADsNvtevbZZ7V3717t3r1bFSpUMJ0EAAAcxJEjR9SoUSO1b99eixYtMp0DAAAcyMCBAxUTE6PvvvtOjzzyiOkcAADgQLKzs9W4cWPVqFFDGzdulLOzs+kkAADgQOLj49W+fXvNnDlTQ4cONZ0DAAAcDK9vAACAwqBHjx7KzMzUt99+azoFAAAUsKNHj6pBgwYKDQ3Vxx9/bDoHAICbunDhgtzc3PTll1+qXbt2pnPwF9ntdkVFRemdd97R8OHDNWXKFDk5OZnOwl9QrFgxxcTEqEePHqZTUETk5uaqYsWKmjFjhv72t7+ZzgEAAADuupycHGVnZ9/2OnPmjK5du/ab/VxcXOTu7n7bq2rVqipevLiBKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6Km80syM3NveUsg/88furUKV2/fv2me//e/AJXV9dbzjb49biHhwczBwEAAFCkWa1W9erVS4899phWrFihypUrm04CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBeiHOy2+120xVF2RNPPKHmzZtr9uzZplMA4L4SGBiohx9+WB9//LHpFADAfSI9PV0+Pj5atmyZunTpYjoHAHCP9ezZU2lpaUpMTFR2drZSU1OVmpqqjIwMZWZm3rh/6NAhnT9//sa/5+7uLh8fH3l4eMjT01M+Pj7/tdzd3Q2eFQAULsnJyXrllVeUmJioXr16adq0aapSpYrpLAAAiqycnBzFx8crLi5Oq1ev1vnz5+Xr66vQ0FA999xzqlevnulEAABwH8vJydH27dsVHx+vVatW6cCBA6pQoYICAwMVFBQki8UiDw8P05kAAKCAZWVlafPmzVqzZo1Wrlypixcv3ni+wmKxqFGjRqYTAQDAHbLZbEpISNDChQsVExOjy5cvq3Xr1urdu7dCQkJUpkwZ04kAAOBP2rdvn6ZNm6YlS5bIy8tLr776qgYNGiQXFxfTaQAA4A/Ex8erb9++cnZ21qJFi9S8eXPTSQAA4A+EhIQoOTlZP/zwg2EX5nUAACAASURBVMqWLWs6BwAAFELh4eHaunWrDhw4IGdnZ9M5AADAkNWrV6tLly46e/Ys888AAADusuPHjysqKkrz5s1Tw4YN9f777ysgIMB0FgAAKGJOnTqlOXPmaNasWcrLy1OvXr00fPhw1alTx3QaAAAwLD4+Xm+++aaSkpLUqVMnvfPOO2rYsKHpLAAAcBelpKQoPDxcCQkJioiIUFRUlEqWLGk6CwAA3KaUlBQ1bdpULVq0UGxsrIoVK2Y6CQAA3KGwsDCdP39eX375pekUAABwl505c0ZVqlTR6tWrFRwcbDoHAFCExMbGKiwsTHa73XQKAKAIsVqt6ty5szIzM1W1alXTOQAA4C45deqUHnzwQa1du1YdOnQwnQMAAO7QiRMn9PTTT8vb21ubNm3is0UAgPuev7+/PDw8tGzZMtMpAADcM23atJGPj4/mzp1rOgUAABSwxo0by9fXVwsWLDCdAgAACpH09HQ98sgjeueddzRixAjTOQAAoBDLz89Xy5Ytdf78eX3//fdydXU1nQQAABzA5MmTFRkZqW+++UZNmzY1nQMAABxEXl6e/P39dfXqVe3YsUOlS5c2nQQAABzEwoUL1bdvX8XFxSkkJMR0DgAAcCA2m00Wi0X79u1TUlKSqlSpYjoJAAA4kPT0dDVq1Eht2rTRv/71L9M5AADAwfD6BgAAKAzOnDmj6tWr65NPPlGfPn1M5wAAgAL0n7Mkdu7cyWc4AACFVnp6umrUqKEdO3bo6aefNp2DvyAvL09/+9vftGTJEs2YMUNDhw41nYQ74OzsrIULF+r55583nYIipFOnTipVqpS++OIL0ykAAADA78rOzlZGRoays7P/9MrKylJeXt5v9nJxcZG7u/ttr8qVK6tEiRIGzh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAADiinJyc/5qFkJub+5vHbnX89OnTys/Pv+neN5uf4Orqesu5Cv95vGrVqipevHgBXxEAAADgzs2cOVMRERF6/vnnFR0dLRcXF9NJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcK3FOdrvdbrqiKBs3bpw+/fRTHTt2TE5OTqZzAOC+0bNnT+Xk5GjFihWmUwAA94nIyEjNmzdP6enpKlGihOkcAMA9tmXLFrVu3Vq7d+9WgwYNbvmz2dnZysjIUGZmplJTU2+sXx87fPiwbDabpP/7gjhPT0/5+PjcWB4eHjce8/b2VrFixQriFAGgULDb7Vq2bJlGjBihixcvauzYsRo6dKicnZ1NpwEAUKRdv35diYmJiouLU2xsrE6cOCFfX19ZLBYFBwcrICDAdCIAALjPpaamKj4+XmvWrNGmTZt07do1+fn5KSgoSMHBwWrWrBnPpQIAUMTk5uZq27ZtWrNmjZYtW6aMjAx5e3urc+fOslgsatmyJe/pAQDAweXm5mrTpk1auHChVq5cqdKlS6tz584KDQ1Vx44dVbx4cdOJAADgT0hLS9OMGTP0ySefyM3NTS+99JJef/11ubm5mU4DAAC3cPr0aYWHh2vdunUaMWKExo8fz/PuAAAUYr++x79///6aPn266RwAAFAIHTlyRHXq1NHcuXPVr18/0zkAAMCQU6dOqWrVqtqwYYPatm1rOgcAAOC+lJycrOHDh2vLli0KDg7WzJkz5ePjYzoLAAAUMZcuXdK8efP0wQcf6OjRo+rYsaMiIyP19NNPm04DAACGxcfHa9SoUUpOTlanTp0UFRUlPz8/01kAAOAusdlsio6OVkREhGrVqqX58+fzux4AAAf07bffqk2bNnr11Vc1efJk0zkAAOAORUdH65VXXtHZs2fl6upqOgcAANxFX3zxhUJDQ3X27Fk98MADpnMAAEVIbGyswsLCZLfbTacAAIqQixcvqkKFCvrXv/6l0NBQ0zkAAOAuWbp0qV544QWdPXtW5cuXN50DAADuQG5urlq3bq1Tp07pu+++U6VKlUwnAQBwTyUnJ6tRo0basmWLWrZsaToHAIB75qmnnlKrVq00ZcoU0ykAAKAA7dixQ02bNlVCQoKaNm1qOgcAABQiXbt21f79+/XDDz+oVKlSpnMAAEAhNnbsWE2ZMkXfffedHn/8cdM5AADAAezcuVPNmzfXxIkTNWLECNM5AADAgQwcOFAxMTHauXOn6tWrZzoHAAA4iL1796pp06Z6/fXXNXHiRNM5AADAwYwbN07vvvuuvv76a/n7+5vOAQAADiQ3N1fNmzdXXl6eEhMTVaZMGdNJAADAgfD6BgAAKCymTZumCRMmKCMjQ6VLlzadAwAACtAbb7yhOXPmaOfOnfL19TWdAwDA79q3b5+eeOIJ/fzzz3zu0AEdP35c3bt317///W/FxcUpMDDQdBLukIuLi6Kjo/XCCy+YTkERMnv2bI0ePVpnzpxRyZIlTecAAADgPpaTk6Ps7OzbXpmZmb/Zy8XFRe7u7re9KlWqxN+9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYfznvIbc3Nxbzm+42fEzZ87o2rVrN937f+c3uLq63nKmw/8er1KlipydnQv4igAAAKCoys3N1aBBg7R48WJNnDhRI0eONJ0EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMC9Fudkt9vtpiuKsr1796pBgwZKTExUkyZNTOcAwH3j9ddf144dO5SYmGg6BQBwH8jPz1eNGjU0YMAAjR8/3nQOAKCA+Pr66plnntHs2bPvaJ+8vDwdP35cqampysjIUGZmplJTU2+s9PR05efnS5JKliyp6tWry8PDQ56envLx8bmxPDw8VLNmTZUuXfpunB4AFCqXL1/W1KlTNWnSJNWsWVMzZsxQu3btTGcBAABJ169fV2JiouLi4rR8+XIdP35cNWvWlMViUWhoqPz9/eXk5GQ6EwAA3MeuXLmihIQErVmzRitWrNDRo0dVuXJltWrVSsHBwbJYLHJ3dzedCQAACpDNZtPu3bu1Zs0aWa1WJSUlqUKFCgoMDFRwcLC6dOmi8uXLm84EAAB3ICsrS8uWLdOCBQu0fft2Va9eXd26dVP//v3VoEED03kAAOBPOHnypD766CPNmDFDdrtdgwcP1t///ndVrFjRdBoAALiFBQsWaPDgwapfv74WL16s2rVrm04CAAC/Y968eRo4cKC2bdumpk2bms4BAACFUHh4uLZu3aoDBw7I2dnZdA4AADDE29tb4eHhGjNmjOkUAACA+1p8fLxee+01HTx4UC+99JKioqLk5uZmOgsAABQxNptNa9eu1YQJE7Rz5075+/tr5MiRCg4OZmYkAABFmN1ul9Vq1bhx47R792516tRJUVFR8vPzM50GAADukpSUFIWHhyshIUERERGKiopSyZIlTWcBAIDbEBMTo549e2r27NkaMmSI6RwAAHAH0tPTVaNGDcXHxyswMNB0DgAAuItef/11bd26VcnJyaZTAABFTGxsrMLCwmS3202nAACKmCZNmqhhw4aaM2eO6RQAAHCXvPTSS9q3b58SEhJMpwAAgDtgt9v1wgsv6Msvv1RiYqLq1KljOgkAgHuub9++Sk5O1r59+5inBQC4r9WtW1d9+vTRW2+9ZToFAAAUoL59+2rv3r3as2eP6RQAAFCIxMfHq02bNlq3bp06dOhgOgcAABRi27dvV8uWLTVz5kwNHTrUdA4AAHAA586dU8OGDVWvXj2tXbuW9+UBAIA/bfHixerdu7fi4uIUEhJiOgcAADiI7OxsNW7cWN7e3tq4caOKFy9uOgkAADiQTZs2qUOHDpo1a5YGDx5sOgcAADiYF198UbGxsdq5c6fq1atnOgcAADgQXt8AAACFhd1u1yOPPKLAwED94x//MJ0DAAAK0JdffqlOnTpp3rx56tevn+kcAABuacuWLWrdurVOnjypKlWqmM7Bbdi0aZN69eqlSpUq6YsvvuD9FfcBu90uZ2dnLVmyRD169DCdgyIkNTVVtWrVUnx8vAIDA03nAAAAoJDLyclRdnb2ba+TJ0/KZrP9Zj8XFxe5u7v/qeXp6SkPDw9VqFBBLi4uBs4eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA8fw6LyI3N/eWsyN+73hWVpby8vJuuvd/zo5wdXW95SyJmx2vVKmSSpYsWcBXBAAAAI7m2LFj6tq1q1JSUrR06VK1adPGdBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUhzslut9tNVxR1tWvXVkhIiCZPnmw6BQDuG5MmTdInn3yi1NRU0ykAgPvAihUr1L17d6WkpMjb29t0DgCggEyfPl3jx4/X8ePHVaZMmXv638rOzlZqaup/rYyMDGVmZuqXX37RxYsXb/ysu7u7fHx8biwPDw95enrKx8dHtWvXlpub2z1tBYB76dChQxo9erTi4uIUHBysDz/8UDVr1jSdBQAA/sP+/fsVFxenmJgY/fvf/5aXl5e6du0qi8WiVq1aydnZ2XQiAAC4z6WmpmrNmjWyWq3aunWrbDabGjRooODgYFksFjVs2FBOTk6mMwEAQAH6z78PtmzZImdnZwUEBCg4OFihoaHy9PQ0nQgAAO7Azz//rKVLl2rhwoVKTU2Vr6+v+vTpo759++rBBx80nQcAAP7AhQsX9NFHH2nq1KnKzc1VeHi4RowYIS8vL9NpAADgd/z888/q2bOnUlNTNXXqVA0cONB0EgAAuAm73a527drpxIkT2rVrl0qWLGk6CQAAFDJHjhxRnTp19Mknn6hv376mcwAAgCFhYWG6fPmyrFar6RQAAID73rVr1/TZZ59pzJgxun79usaMGaOhQ4cykwkAABixbds2TZ48WWvXrlX9+vU1bNgw9enTRy4uLqbTAACAIXa7XVarVePGjdOePXvUsWNHjR8/Xg0aNDCdBgAA7gKbzabo6GhFRESoVq1amj9/vvz8/ExnAQCA2zBu3DhNmDBBK1euVHBwsOkcAABwB+rWrauuXbtq0qRJplMAAMBd1LBhQ7Vo0UIzZswwnQIAKGJiY2MVFhYmu91uOgUAUMS8+eabWrlypX7++WfTKQAA4C6pW7euunfvrokTJ5pOAQAAd2DcuHF69913tX79egUGBprOAQDgnjt9+rQeeughzZo1Sy+++KLpHAAA7qkHH3xQkZGRGjZsmOkUAABQQM6ePavq1avrww8/1N/+9jfTOQAAoJDIz8/X448/rjp16mjlypWmcwAAQCGWnZ0tPz8/PfbYY1q9erWcnJxMJwEAgELObrcrJCREO3fu1O7du1W5cmXTSQAAwEH88MMPatKkiYYNG6bJkyebzgEAAA7CZrMpODhYP/74o5KSknguAgAA3JYjR46ocePGatu2rRYvXmw6BwAAOJhPP/1UgwYN0rJly9StWzfTOQAAwIHw+gYAAChMNmzYoPbt22vfvn167LHHTOcAAIACkpGRoQYNGqhdu3ZauHCh6RwAAP7Q0qVL1atXL129elXFihUznYM/wW63a8qUKXrrrbfUuXNnffbZZ3JzczOdhbvg0qVLKleunNauXauOHTuazkER8/jjj6tFixaaPXu26RQAAAAUgJycHGVnZ9/2On36tPLz83+zn4uLi9zd3W97eXh4MJMZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAeTk5Cg3N/eWcyv+zPGb+XV2haur6y3nWPze8YoVK6pUqVIFfEUAAABQUPbs2aPOnTvLxcVFq1evVr169UwnAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQUOKc7Ha73XRFUTdixAitWrVKBw8eNJ0CAPeNzz77TEOHDtWVK1dMpwAA7gMdOnSQk5OT1q1bZzoFAFCAzp49q+rVq2vOnDnq37+/0Zbs7GylpqYqIyNDmZmZSk1NvbF+fexX7u7u8vDwkKenp3x8fG6sXx+rWbOmnJycDJ4NAPyxzZs369VXX1VqaqpeeeUVRUZGqmzZsqazAADA/9i/f7/i4uJktVqVlJSkihUrqmPHjgoNDVW7du1UsmRJ04kAAOA+d+nSJX399deyWq2yWq3KyMhQ1apV1bZtW1ksFrVr107ly5c3nQkAAArQ2bNntXbtWlmtVn355Ze6fPmy/Pz8FBwcLIvFokaNGplOBAAAf5HNZlNCQoLi4uK0ePFinTt3Tq1bt1bv3r3VrVs33lcAAEAhd/nyZUVHR2v69Ok6efKkwsLCNHr0aNWrV890GgAAuIm8vDyNHTtWU6dOVUhIiObOnSt3d3fTWQAA4H8cPnxY9evX16hRoxQZGWk6BwAAFEIDBgzQN998owMHDsjZ2dl0DgAAMOD999/Xu+++q9OnTzN7DAAAoIBkZ2dr8uTJmjFjhry9vTV+/HiFhoaazgIAAEXUvn37NG3aNMXExKhixYoaNGiQXn31Vd4XCgBAEWa322W1WjV27Fjt3btXISEhioqK4vOeAADcJ1JSUhQeHq6EhARFREQoKiqK74wAAMBB2O129e3bVytXrtS2bdv0+OOPm04CAAB/0bBhw5SYmKikpCTTKQAA4C45f/68KlasqNjYWHXr1s10DgCgiImNjVVYWJjsdrvpFABAEbNx40a1a9dOx44dU7Vq1UznAACAO5SRkaFq1app06ZNCgoKMp0DAAD+omXLlqlHjx6aM2eOXnrpJdM5AAAUiPHjx+uDDz7QsWPHVLp0adM5AADcU66urvrkk0/Uu3dv0ykAAKCATJkyRe+++66OHz+uMmXKmM4BAACFxKxZszRixAj9+OOPevjhh03nAACAQsput6tr1676/vvvtWfPHlWuXNl0EgAAcAAffvihIiIitHnzZrVs2dJ0DgAAcBAXL17UU089papVqyo+Pl7Ozs6mkwAAgIMYO3as3nvvPX399dfy9/c3nQMAABxIbm6uAgICdO3aNSUmJjJrAAAA3JY9e/aoWbNmioiI0IQJE0znAAAAB8PrGwAAoDAJDg5WTk6ONm/ebDoFAAAUkOvXryswMFCZmZlKSkpS2bJlTScBAPCHZs6cqUmTJikzM9N0Cv6EM2fOqHfv3oqPj9eECRM0cuRI00m4i06cOCEPDw998803at68uekcFDHjxo1TdHS0jh49KicnJ9M5AAAA+BNycnKUnZ192+vMmTO6du3ab/ZzcXGRu7v7ba+qVauqePHiBq4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM2tZmbk5ub+4fFz587Jbrf/Zl8XFxe5urrecobGrY5XqFBBLi4uBq4IAAAAbmX58uXq06eP/P39FRsbqwceeMB0EgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSnOyX6zycwoUNu3b1dAQIB++OEH1a9f33QOANwX1q9fr44dO+rChQsqV66c6RwAgANLT0+Xj4+Pli1bpi5dupjOAQAUsJ49eyotLU2JiYmmU24pNzdXGRkZSk1NVWpqqjIyMpSZmXnj/pEjR3T9+nVJUqlSpVStWjX5+PjIw8NDnp6e8vHxubEeeughOTs7Gz4jAJCuXbumOXPmaOzYsSpbtqzeffdd9e7dW05OTqbTAADATaSmpmrNmjWKi4tTQkKCHnjgAQUHB8tisahjx44qU6aM6UQAAHCfs9ls2r17t+Lj47VmzRolJiaqWLFievrpp2WxWBQUFKRGjRqZzgQAAAUoJydH27dvv/GcRWZmpmrWrCmLxSKLxaJWrVrx2igAAA4qNzdXmzZt0sKFC7Vy5Uo5OzsrODhYvXv3VocOHfgdDwBAIXb16lXFxMTovffe0y+//KKOHTtqzJgxeuqpp0ynAQCAm4iPj1ffvn3l7OyshQsXqkWLFqaTAADA/5g2bZoiIyOVnJwsX19f0zkAAKCQSUlJUb169RQdHa2+ffuazgEAAAb8Ov8+JSVFPj4+pnMAAACKlPT0dEVGRmrRokV65plnNG3aNDVo0MB0FgAAKKJOnDihjz/+WDNnztT169fVv39/jRgxQl5eXqbTAACAITabTWvXrtXbb7+tffv2KSQkRFFRUapXr57pNAAAcIdsNpuio6MVERGhWrVqaf78+fLz8zOdBQAA/oRr166pffv2+ve//63vvvtO1apVM50EAAD+glWrVqlbt246ceKEKleubDoHAADcBWvXrpXFYtGJEydUpUoV0zkAgCImNjZWYWFhstvtplMAAEXMlStXVKFCBf3zn/9Uz549TecAAIA7tGjRIoWHhysrK0tlypQxnQMAAP6CpKQktWjRQoMGDdL7779vOgcAgAKRn5+vmjVrqlevXpo0aZLpHAAA7qmrV6+qVKlSWrVqlTp37mw6BwAAFAC73a66deuqQ4cOmjlzpukcAABQSGRnZ6tOnTrq37+/pkyZYjoHAAAUYu+//77eeOMNbdy4Uc8884zpHAAA4AB27dqlgIAARUZGKjIy0nQOAABwEHa7XaGhodq2bZuSk5Pl6elpOgkAADiItWvXqnPnzpozZ44GDRpkOgcAADiY8PBwffHFF9q1a5dq1aplOgcAADiQrKwsNW7cWD4+PtqwYYOKFy9uOgkAADgQXt8AAACFSUpKiurUqaPly5erS5cupnMAAEABiYyM1PTp05WQkCA/Pz/TOQAA/CmjR4/WunXrtGfPHtMp+APff/+9evTooevXrys2NlZNmjQxnYS77ODBg6pTp46Sk5P5exIFbu/evWrQoIF27Nihp59+2nQOAABAkZKTk6PMzExlZGQoOzv7T62srCzl5eX9Zi8XFxe5u7vf9qpcubJKlChh4OwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA25OTk3PTmRy5ubm/e+w/j588eVI2m+2me99qfoerq+sfHn/ggQfk5ORUwFcEAADg/jRz5kxFREToxRdf1OzZs5mXBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoiuKc7Ha73XRFUWez2VS9enUNHjxYY8aMMZ0DAPeF5ORkNWrUSAcPHlTt2rVN5wAAHFhkZKTmzZun9PR0BpoDQBG0ZcsWtW7dWrt371aDBg1M5/xleXl5Onr0qNLT03XkyJH/Wunp6Tp69KiuXr0qSSpRooSqVaumhx56SDVq1JCXl9eN9et9Nzc3w2cEoCg5e/asoqKi9I9//EMBAQGaOXOmnnjiCdNZAADgFtLT07VixQpZrVZt2bJFJUqUUGBgoEJDQ9WlSxeVL1/edCIAACgCzpw5o6+//lpr1qyR1WpVdna2atasqTZt2igoKEgdOnRQ2bJlTWcCAIACYrPZtHv3bq1Zs0ZxcXH66aefVLFiRXXs2FEWi0Xt27dXuXLlTGcCAIC/ICsrS8uWLdOCBQuUkJAgT09PhYSEqF+/fvLz8zOdBwAAfofNZtPatWs1YcIE7dy5U/7+/ho5cqQsFovpNAAA8D9Onz6t8PBwrVu3TiNGjND48eP5vC0AAIXI9evX1aRJEzk7O2v79u0qVqyY6SQAAFDIDBgwQN98840OHDggZ2dn0zkAAKCA5eTkyM3NTZ9//rmef/550zkAAABF0nfffaeIiAjt2LFDvXr10uTJk+Xh4WE6CwAAFFEXLlzQZ599pmnTpunUqVMKCwvTG2+8ofr165tOAwAAhthsNi1fvlxvv/22fvnlF4WEhGj8+PGqW7eu6TQAAHCHUlJSFB4eroSEBEVERCgqKkolS5Y0nQUAAP5AVlaWmjZtqnLlymnr1q0qU6aM6SQAAHCbLl68qIoVK2rBggV67rnnTOcAAIC7YOTIkbJardq/f7/pFABAERQbG6uwsDDZ7XbTKQCAIqh58+aqV6+ePv30U9MpAADgDoWHh+vQoUPaunWr6RQAAPAXZGRk6KmnntJjjz0mq9Wq4sWLm04CAKBAxMTE6IUXXtDBgwdVs2ZN0zkAANxTp0+fVpUqVbRlyxa1bNnSdA4AACgA69evV8eOHfXjjz/q0UcfNZ0DAAAKiddff12LFy/WwYMH5ebmZjoHAAAUUjt37lTz5s01btw4vfnmm6ZzAACAAzh37pwaNWqkGjVqaNOmTbwnHQAA/GlTpkzRW2+9pc2bN6tFixamcwAAgIM4cuSIGjVqpA4dOmjhwoWmcwAAgIOZO3euBg8erOXLl6tr166mcwAAgAOx2Wzq1KmT9u/fr6SkJFWuXNl0EgAAcCC8vgEAAAqbiIgILV++XKmpqXwOBACAIuKrr75S27ZtNWfOHA0cONB0DgAAf1p4eLiOHTumDRs2mE7B77Db7frggw80atQotW3bVgsWLFCFChVMZ+Ee2LZtm5o3b66MjAx5eHiYzkERVKtWLYWGhmrSpEmmUwAAABxOTk6OsrOzb3tlZmb+Zi8XFxe5u7vf9qpYsaJKlSpl4OwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAx3KzeSG5ubm3nCPyn8dPnz6t/Pz8m+59q/khrq6utzxeqVIllSxZsoCvBgAAQOFy9epVDRw4UIsWLdLEiRM1cuRI00kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgS52S32+2mKyC99NJL2rlzp5KTk02nAMB94fjx46pevbq2bdsmf39/0zkAAAeVn5+vGjVqaMCAARo/frzpHACAIb6+vnrmmWc0e/Zs0yn3jM1m04kTJ3T48GEdOXJE6enpOnr06H/dzs7OvvHz5cuXl5eXl7y9veXl5XVj1ahRQ15eXqpWrRpfmAbgrktKStIrr7yiHTt2qFevXpo+fboqV65sOgsAAPyBM2fOaN26dYqLi9OGDRtUvHhxBQUFyWKxqEuXLqpSpYrpRAAAUARcv35de/bs0Zo1a2S1WpWcnCwXFxf5+/srKChIzz77rOrVq2c6EwAAFKDU1NQbfxts2bJFzs7OCggIUHBwsHr06CEPDw/TiQAA4C84cOCAYmJitGjRIqWkpMjXELkGwQAAIABJREFU11d9+vRRnz59+P0OAEAhtm3bNk2ePFlWq1UNGzbUqFGj1L17dzk5OZlOAwAA/2HBggUaPHiw6tevr8WLF6t27dqmkwAAwP+3b98+NW7cWDNmzNCQIUNM5wAAgEImJSVF9erVU3R0tPr27Ws6BwAAGNCoUSM1b95cM2bMMJ0CAABQZNntdi1btkwjR47UqVOnNGzYML311lsqV66c6TQAAFBEXb16VTExMZoyZYr2798vf39/jRw5UhaLxXQaAAAwxGazafny5Xr77bf1yy+/KCQkRBMmTFCdOnVMpwEAgDtgs9kUHR2tiIgI1apVS/Pnz5efn5/pLAAA8AdSU1PVpEkTPfXUU1q1apWKFy9uOgkAANymgIAA1a1bV/PmzTOdAgAA7oKmTZuqQYMG+uijj0ynAACKoNjYWIWFhclut5tOAQAUQWPHjr3xfXAAAMCx+fj4qE+fPho3bpzpFAAAcJsuXbqkgIAAXbt2TQkJCXJzczOdBABAgfH395eHh4eWLVtmOgUAgHvu0KFDevjhh7V79241aNDAdA4AACgAnTt31qVLl/TVV1+ZTgEAAIVESkqKfH199eGHH2rQoEGmcwAAQCGVnZ2tRo0aqV69erJarSpWrJjpJAAA4ABCQkK0fft27dmzRw8++KDpHAAA4CC2bt2qoKAgvffeexoxYoTpHAAA4CByc3MVEBCg/Px8JSQkqHTp0qaTAACAA9m5c6datGihN954Q1FRUaZzAACAgxkzZoymTp2qb7/9Vk8++aTpHAAA4EB4fQMAABQ2V65ckZeXl9544w2NHDnSdA4AACgAJ0+eVIMGDdSiRQstXbrUdA4AALclODhYFSpU0IIFC0yn4CYOHz6sAQMG6Ntvv1VUVJRGjRolJycn01m4R5YuXapevXopLy9PxYsXN52DImjEiBFavXq1fvnlF9MpAAAARuTk5Cg7O/u218mTJ2Wz2X6zn4uLi9zd3f/08vT0lKenp1xcXAycPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDbkZ2drQsXLuj8+fM6f/78f90+f/68zp07d2P97+Pnz5/X5cuXb7pv2bJl5ebmJjc3Nz3wwAM3bv96/9f1v4//ertcuXIFfCUAAADunrNnz6pr167au3evli5dqvbt25tOAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApDgnu91uN10BacOGDWrfvr1SUlLk4+NjOgcAHF5+fr5KlSql2NhYhYSEmM4BADioFStWqHv37kpJSZG3t7fpHACAIdOnT9f48eN1/PhxlSlTxnSOMbm5ucrIyFBqaqoyMjKUmZmp1NTUG/fT09N16dKlGz/v7u4uHx8feXh4yNPTUz4+Pv9139vbW8WKFTN4RgAckd1u17JlyzR8+HBdunRJY8eO1dChQ+Xs7Gw6DQAA/AlZWVmyWq2yWq1at26dcnNz1aRJE4WGhqpHjx7y8PAwnQgAAIqIU6dO6csvv5TVatXGjRt1/vx5+fj4KCgoSMHBwWrbtq1KlSplOhMAABSQM2fOaN26dbJarVq/fr2uXLkiPz8/BQcHq0ePHvL19TWdCAAA/oKkpCQtWLBA//rXv5SVlaWmTZuqT58+6tmzp8qWLWs6DwAA3ERycrImTZqkZcuW6dFHH9Xf//539ezZk/cIAgBQiPz888/q2bOnUlJSNG3aNA0cONB0EgAA+P/eeustzZo1S/v375eXl5fpHAAAUMgMGDBA33zzjQ4cOMDz7gAAFEFDhgzR7t27lZiYaDoFAACgyLt69ao++ugjjR07VmXLltXbb7+t8PBwFS9e3HQaAAAooux2uzZv3qyZM2fKarXKz89Pr732Gp/nAACgCLPZbFq+fLnGjBmjgwcPKiQkRBMmTFCdOnVMpwEAgDuQkpKiAQMGKDExUREREYqKilLJkiVNZwEAgFvYtm2bgoKCNGzYME2bNs10DgAAuE3vvPOOoqOjdfToUdMpAADgDl25ckXu7u6aP3++nn/+edM5AIAiKDY2VmFhYbLb7aZTAABF0JYtW9S6dWulpaXJ29vbdA4AAPiL0tPTVaNGDW3ZskUtW7Y0nQMAAG6DzWZTt27dtH37du3YsUO1atUynQQAQIHZvXu3GjZsyP/PAgCKjKSkJDVu3FipqamqWbOm6RwAAHCPpaeny8fHR0uWLFFoaKjpHAAAUEh07txZKSkp2rt3L98VAQAAbsput6tbt27atWuXdu/erUqVKplOAgAADmDmzJmKiIjQxo0bFRgYaDoHAAA4iJMnT6phw4Zq3LixVq5cKScnJ9NJAADAQQwYMEArV67Url275OPjYzoHAAA4kKysLDVu3Fg+Pj7asGGDihcvbjoJAAA4EKvVqmeffVYfffSRBg4caDoHAAA4GF7fAAAAhc3HH3+siIgIHT16VBUrVjSdAwAA7jGbzaa2bdvqyJEjSkpKUvny5U0nAQBwW5588km1atVKU6dONZ2C/7FgwQINGzZMXl5e+vzzz9W4cWPTSbjH3n//fb3//vs6duyY6RQUUdu3b1dAQID2798vX19f0zkAAAB/SU5OjrKzs297nT59Wvn5+b/Zz8XFRe7u7re9PDw8mPkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4JZuNS8lNzf3lsezsrKUl5d3031/b26Kq6vrH85UqVChglxcXAr4SgAAAEjHjh1Tu3btdPnyZVmtVtWvX990EgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApsU52e12u+kKSNeuXVPVqlU1ZswYvf7666ZzAOC+UKlSJUVFRWnIkCGmUwAADmD27Nny8PBQ586dVaJECUlShw4d5OTkpHXr1hmuAwCYdPbsWVWvXl1z5sxR//79JUmnT5/WwoUL9dRTTykgIMBwYeGRnZ2t1NRUZWRkKDMz8ze3jxw5ouvXr0uSSpYsqerVq8vDw0Oenp7y8fGRj4/Pjfu1a9eWm5ub4TMCUFhdvnxZU6dO1aRJk1SzZk3NmDFD7dq1M50FAABuw5UrV7R582bFxcVp5cqVunz5spo2bSqLxaKQkBDVrl3bdCIAACgirl+/rsTERFmtVsXHxyspKUmlS5dWs2bNFBwcrG7dusnLy8t0JgAAKCA5OTmKj4+X1WrV6tWrdeLECfn4+Cg4OFgWi0WtWrWSs7Oz6UwAAHAb8vLytHHjRi1cuFCrVq1S8eLFFRwcrN69e6tDhw78bgcAoBD68ccfNWXKFC1ZskTVq1fXa6+9poEDB8rV1dV0GgAA0P/9v/bYsWM1depUhYSEaO7cuXJ3dzedBQBAkZeXlyc/Pz95e3v/ZkbGxYsXlZeXp0qVKhmqAwAApqWkpKhevXqaN2+e+vTpc+Px7du3KysrSxaLxWAdAAC41z7//HMNGjRI58+fV6lSpXT48GHt3LlTpUqV0rPPPms6DwAAoEg6e/asoqKiNGfOHD3++OOaPn26WrVqZToLAAAUcbt379YHH3ygJUuWyMvLS6+++qpefPFFlSlTxnQaAAAwwGazafny5YqMjNShQ4cUEhKiiRMn6uGHHzadBgAA/iKbzabo6GhFRESoVq1amj9/vvz8/ExnAQCAW4iNjdVzzz2nWbNmaejQoaZzAADAbUhISJC/v78OHDigunXr6sKFC9q8ebN++uknjRw5kpnIAAAUUrm5ufroo49Ut25d+fv7y83NTfHx8WrTpo3S09P5PkMAgBGxsbEKCwuT3W43nQIAKILy8vLk7u6uOXPmqF+/fsrJyVFCQoK+//57DRgwQFWqVDGdCAAA/sepU6f0z3/+U08++aSaNWsmV1dXffbZZxoyZIiys7Pl4uJiOhEAANyGv//975o9e7a++uorNW3a1HQOAAD3THR0tB588EF17NhRxYoVkyT169dPSUlJ2rdvn5ycnAwXAgBw73311VcKDAzU2bNnVaFCBdM5AADgLlq+fLkuXLig5557Tq6urpKk0aNHa/78+Tpy5IhKlChhuBAAABS0hIQE1a9fX+XLl7/x2K/PDWzYsEFt27Y1WAcAAAqzadOm6c0339TXX3+tgIAA0zkAAMAB7Nq1SwEBAYqMjFRkZKTpHAAA4CDy8/MVGBiojIwM7dq1S25ubqaTAADA/2PvzqOirBv//79mg8HEQBQFyYX0W2K3a4uZuaIJN6BZWFqulamZpZlamZVoaWaZlZVbpmUquYI7mncueKvYamYplgsoqOCtyTLDzO+PfvKJANPSuVCej3Ou03C938x5zpzTwbmua97XVeL999/X4MGDlZCQoMjISKNzAADAVcTlcikyMlJ79+5VSkqKqlSpYnQSAAC4ivzyyy+69dZbFRERoXnz5hmdAwAArjKc3wAAAEYqKCjQxIkT1aZNG7Vo0aJwf8OGDXXbbbdp1qxZBtYBAABPefHFF/XGG29o27ZtatKkidE5AABc0JkzZ3T06FGFhISoYsWKkqSaNWtqyJAhGj58uMF1OO/YsWN6/PHHlZiYqEcffVRvvfWWKlSoYHQWPGDYsGHaunWr/vvf/xqdgnLK5XIpJCRETzzxhF544QVJ0u7du7Vy5UpFRETo1ltvNbgQAACUFzk5OcrKyrrk7cSJE3I4HMWez263y9/f/5K3atWqyWKxGPAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBfy8nJUW5u7kWv2fLnuRkZGSooKCjxuS923RYfH59icwMDA2W1Wj38bgAAgKtZamqqOnbsKC8vL61du1Y33HCD0UkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQF8Sa32+02ugK/e/jhh3Xo0CF9+eWXRqcAwDWhQYMGuv/++/XKK68YnQIAuApcd911OnfunAICAtS/f39FRkaqTZs2+vzzz9WlSxej8wAABuvRo4cOHjyo8ePH64MPPtDSpUvldDr1yCOPaObMmUbnXTXy8/N14sQJpaenKzU1VampqUpLSyv8+cCBA8rOzi6cb7fbFRwcrNDQUIWGhiooKKjIzzVr1uSGZkA5t3//fj3//POKj49XVFSUpk6dqjp16hidBQAALlFubq7Wr1+v+Ph4JSQkKDs7W2FhYYqNjdWDDz6om2++2ehEAABQjvzyyy9at26dkpKStGbNGp05c0ahoaGKiopSdHS0WrduLZvNZnQmAADwAJfLpa+++koJCQlatGiR9u7dqypVqigiIkLR0dGKiIhQxYoVjc4EAACXICsrS/Hx8Zo7d662bdumoKAg3X///erdu7eaNm1qdB4AAPiTX375RW+99ZZmzJghX19fDRw4UE8//bT8/PyMTgMAAJKSkpLUu3dvWa1WzZs3T61atTI6CQCAci85OVktW7bUJ598ou7du0uSFi9erAEDBujGG2/U9u3bDS4EAABG6tu3r7Zs2aK9e/dqy5YtGjNmjDZv3qygoCClpaUZnQcAAK6QEydOaMmSJRo5cqQaNmyo7777TllZWZKkOnXqKDU11eBCAACA8u3HH3/Us88+q8TERIWHh2vKlClq0KCB0VkAAKCcO3jwoKZMmaKZM2fKZrOpd+/eGjlypIKDg41OAwAABnC5XFq8eLFGjx6tgwcP6sEHH9SYMWNUt25do9MAAMDfdODAAfXr10/JyckaNmyYxo4dKy8vL6OzAABAKcaOHauxY8dq6dKlio6OLjI2Y8YMBQYGqnPnzgbVAQCA0jgcDgUEBKh169Y6ceKEdu7cqYKCAknS0aNHOQcPAEAZ9cMPPxRe028ymXTzzTerYsWKOnTokFJSUlSjRg2DCwEA5UFMTIwOHjxY+POZM2eUnp6u//f//l+ReY8//rgGDx7s6TwAQDnjcDjUvHlzuVwuXXfdddqxY4ccDockacWKFcXOYQIAAOMlJCQoJiZGkmSz2XT77bfr7NmzslqtSk5Ols1mM7gQAAD82aeffiqTyaQePXoU2T9nzhz169dPc+fO1cMPP2xQHQAAnuHr66uzZ8+qdu3aGjZsmKKiohQWFqZ33nlHjz76qNF5AABcESEhIcrIyJDdblelSpVkNpuVkZGh5s2bKzAwUBUrVtR1112nrl27qm3btkbnAgCAf6BZs2bavXu3fH199eijj+qRRx5R+/btNWDAAL388stG5wEAAA87c+aM/Pz85O/vr0mTJql3795yu91q2rSpatasqYSEBKMTAQCAwfLz81WvXj3FxMRo0qRJstvtkqQdO3bo7rvvVlxcnEaMGGFwJQAAKGt69uwpp9OpDz/8UJUqVZIkZWdnq1mzZqpVq5bWr18vi8VicCUAAChrlixZopdffllz5sxR06ZNC/cPHz5c7733nrZt26YmTZoYWAgAAMqiU6dOqXnz5ho6dKgGDhxYuH/Hjh1q1aqVRo0axfWRAACgVKUdj3j++ef15ptvasuWLbr11lsNLAQAAGVZSddH5OTkqGXLliooKNC2bdtUoUIFgysBAEBZxPkNAABQVv3yyy+qU6eOJOlf//qXhg4dqqCgIEVERGjXrl1q1qyZwYUAAOByKe34xBdffKEOHTpo2rRp6t+/v4GFAABcnMGDB+u9996TJNntdlWvXl2ZmZlq3Lixbr/9doWEhKhatWpq2LCh/vWvfxlcWz7Fx8dr4MCBqlSpkj766CO1bt3a6CR4UEREhAIDA/Xxxx8bnYJyrH///tq0aZM6duyoxYsX69ixY5Kk0aNHKy4uzuA6AABwtcnJyVFWVpbS09OVlpamrKysv9xOnTqlvLy8Ys9lt9vl7+9/yVvVqlVls9kMePUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUPadXyfmj1tubm6J+0vacnNzS3zeP68Z4+Pjc9HryPj4+MjPz08mk8nD7wYAADDC999/r3vuuUc1atTQqlWrVKVKFaOTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoK+JNbrfbbXQFfrd48WJ169ZNR48eVfXq1Y3OAYCrXvv27VWvXj198MEHRqcAAMo4t9sti8Wi8x+PrFarCgoKVLVqVb3zzju69957ZbPZDK4EABglMzNTL7/8subNm6czZ87IZrPJ4XDIZDKpW7duWrBggdGJ15ScnBylp6crNTVVqampSktLK/Lz4cOH5XA4Cuf7+/srNDRUoaGhCgoKUnBwcJGfg4KCuGEZUA4kJSXp6aefVmpqqoYMGaLRo0erYsWKRmcBAIC/oaCgQMnJyYqPj9eiRYt07NgxhYWFKTo6WlFRUWrZsqXRiQAAoBzJzc3Vli1blJSUpBUrVmjv3r2qXLmy2rdvr/DwcEVFRSk4ONjoTAAA4CGpqalKSEhQfHy8kpOT5e3trfbt2ys6OloxMTF8BwAAgKvMr7/+qgULFmjmzJnav3+/wsLCFBsbqz59+qh27dpG5wEAgD/IyMjQtGnT9Pbbb6ugoEB9+/bVqFGjFBQUZHQaAADlXmZmph555BGtWrVKw4cPV1xcHN/HBQDAYAMHDtTnn3+upKQkjR49WomJiTKZTLJYLDp9+rQqVKhgdCIAADDIgQMHdPPNN+umm27Snj17ZLVa5XQ6ZTablZuby2d6AACuITt27NCbb76prVu36siRI5Iku92u/Px8uVyuwnlt27bVxo0bjcoEAADAHyQlJemZZ57R3r171bdvX8XFxSkwMNDoLAAAUM6dOHFCs2bN0ttvv61Tp06pW7dueu6551S/fn2j0wAAgAFcLpcWL16sF154Qb/88osefPBBjRkzRnXr1jU6DQAA/A0ul0szZ87UsGHDdOONN2rOnDlq0qSJ0VkAAKAEbrdbffr00dKlS7V582Y1atRITqdTTzzxhKZPn67g4GAdPnxYZrPZ6FQAAMq99PR0rV27VmvXrtWaNWuUnZ0tb29vORyOIt/n+O2331j7AQCAMurUqVMKCAgoss9ms8npdMrtdisoKEjt2rVTu3bt1Lt3b1ksFoNKAQDXsgYNGuiHH374y3njxo3TCy+84IEiAEB5891332n16tVKSkrS5s2blZubKy8vLzkcDrnd7sJ5ycnJat68uYGlAACgJNu3b9edd95Z+PP5NeqdTqe8vb3VsmVLdezYUREREfrXv/5lYCkAAJCkvLw8VatWTadPn9azzz6rCRMmyGw2a/PmzerQoYOeffZZxcXFGZ0JAMAV5XQ65eXlJbfbLZPJJLPZLJvNppCQEC1dulS33HKL0YkAAFwRt99+u3bu3FnquMViUUFBgUaMGKGJEyd6sAwAAFxudevW1YEDByT9/j0Vh8OhqlWr6tVXX1WfPn1ktVoNLgQAAJ60efNmtWrVStLv13c1atRI99xzjyZPnqyvv/5aDRo0MLgQAAAYLSkpSR06dJDValW9evUUHx+v4OBgNW3aVGFhYUpMTJTJZDI6EwAAlCHZ2dmqUqWKXC6XbrjhBi1ZskTNmjXTfffdp61bt+qrr75SUFCQ0ZkAAKAM6tSpk9atWyer1aq33npLTzzxhFasWKEuXbpo9uzZ6tOnj9GJAACgDJozZ4769esnSbr33ns1e/ZsFRQUqFmzZqpXr55Wr17N2t0AAKBUJR2PSEhIUOfOnTV9+nQ9+uijRicCAIAyqrTrI/r27avly5dr165dCg0NNToTAACUUZzfAAAAZdXXX3+tJk2aSPp9DQqTySQfHx/deOONWrFihWrVqmVwIQAAuFxKOj6Rm5urxo0bq1WrVlq4cKHBhQAAXJx3331XTz31lFwuV5H9ZrO5cJ1lp9OpwMBApaenG5FYbqWlpWnw4MFatmyZnnjiCU2cOFEVKlQwOgseVrNmTQ0aNEijRo0yOgXlzG+//aaNGzdq0aJFWrJkic6dOycvLy/l5+dLkry9vTVmzBg9//zzBpcCAAAj5OTkKCsr65K3kj5X2u12+fv7X/IWEBAgb29vA149AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCvXMw6Nbm5uSXOO3HihBwOR4nP+1dr1vj4+JQ6p0qVKvLy8vLwOwEAAC7Vl19+qZiYGDVt2lTLly+Xr6+v0UkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQl8Sa32+02ugK/O3funKpWraopU6boscceMzoHAK56PXr0UE5OjpYuXWp0CgCgjMvJyVGFChWK7TebzXK73fL399eAAQP06KOPqk6dOgYUAgCM8MUXX+iDDz7Q0qVL5Xa75XQ6i82JjIzUypUrDagr37KyspSamqrU1FSlpaUpPT29yOODBw/q/GFPu92u4OBghYaGKigoqNjjm266SRUrVjT4FQG4HBwOh6ZNm6YxY8aoUqVKGj9+vHr27CmTyWR0GgAA+JtcLpe2bdum+Ph4LVmyREeOHFHt2rUVExOj2NhY3XXXXfytBwAAHpWamqqkpCQlJCRo/fr1cjgcatKkicLDwxUVFaUWLVrIbDYbnQkAADwgMzNTq1evVmJiolatWqWcnBw1adJEUVFReuCBB1S/fn2jEwEAwCVISUnR3LlzNX/+fJ06dUp33nmnevXqpe7du8vX19foPAAA8P87c+aMZs+erYkTJ+rUqVPq1q2bxowZo7p16xqdBgBAuTd37lwNGjRIDRo00Kefflri3+c1a9boww8/1IIFC+Tt7W1AJQAA5cPp06fVoEEDZWVlyeFwyOFwFI5t2rRJrVu3NrAOAAAYZcuWLXruuee0ZcsWWa3WYmuo/PLLL6pVq5ZBdQAA4HJ7//33NWjQoAvOsdls6tu3rz788EMPVQEAAOCvuFwuffLJJxo5cqTy8vI0cuRIPf3001xnAQAADJeXl6eFCxfqtdde008//aTIyEiNGjVKd911l9FpAADAAA6HQ5999pni4uL066+/6sEHH9RLL72kG2+80eg0AADwNxw4cED9+vVTcnKyhg0bpri4ONlstmLzXC6Xpk6dqocfflhVqlQxoBQAgPLN4XAoIiJCe/fuVVJSkp588klt2rRJBQUFkqT169crPDzc4EoAAMq3o0ePqk6dOnK5XDKZTMW+x3mezWZTfn6+h+sAAMCl8Pb2vuDf6/P3KTx48KBq1qzpqSwAQDkyceJEjR49utTPluf9/PPPrNEPALjs3G63fH19lZubK5fLJbfbXercAwcOKDQ01IN1AADgYqSmpl7wez4mk0lms1l2u11nzpyRyWTyYB0AAPiz+Ph4PfDAA3K73TKbzYqOjtarr76qNm3aqFWrVlq0aFHhOUoAAK5VGRkZqlatWrH9NptNTqdTbdq00dChQxUVFcXnWADANeXVV1/Vyy+/XOR+o39mMpm0d+9e3XTTTR4sAwAAl1tgYKAyMzOL7LNYLHK5XAoICNAjjzyiQYMG8T0VAADKibffflvPPvts4TEBi8WigoIC1a1bVxs2bODfBAAAQE8//bTef/995efny2q1ymQyqWnTpkpPT9fu3bsVEBBgdCIAAChjPvnkE/Xu3Vsul6vw3w9RUVFavny51q5dy9rVAACgRGfPnlXlypULz1mYTCa1bdtWu3btUvfu3fXBBx8YXAgAAMqqqKgorVmzRgUFBbLZbKpatapuuOEGHTt2TLt27eJelwAAoFSlHY9ISUlRTEyM5s6da3AhAAAoy0q6PqJz585asmSJEhISFBkZaXQiAAAowzi/AQAAyqqNGzeqffv2xfZ7eXnJ4XCwNjMAANeQko5PBAcHKzs7WykpKapUqZLRiQAAXJRvv/1WjRo1uuAcm82mZ599VuPHj/dQVfnmdDr1zjvv6KWXXlLVqlU1Y8YMtWvXzugsGODs2bOqVKmSli9frujoaKNzUI7ExcVp7NixKigokMVikdPpLDbHy8tLEydO1NNPP21AIQAAuBxycnKUlZV1ydvx48flcrmKPZ/dbpe/v/8lbcHBwfL39zfg1QMAAAAAAAAAAAAAAAAAAACpgb32AAAgAElEQVQAAAAAAAAAAAAAyrI/r5GTm5t7UevmnJ937Ngxud3uYs/7x7VyfHx8LmrtnD/Oq169usxmswHvCAAA5UNCQoK6deummJgYzZs3T15eXkYnAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ1sSb3CWtwAvDdOnSRfn5+Vq1apXRKQBw1Rs6dKi2b9+u5ORko1MAAGVcZmamAgMDLzjHYrHI29tbp0+fltVq9VAZAMAoK1asUOfOnWW1WuV0Okud17JlS23evNmDZbgYeXl5Onr0qNLS0pSenq7U1FSlpqYW/vzTTz/pzJkzhfP9/f0VFBSk4OBghYaGKjQ0tMjPtWrVksViMfAVAbgUx44d00svvaSZM2fq7rvv1tSpU9WwYcMS57pcLg0fPly9evVS48aNPVwKAAAu1Z49exQfH68FCxZo3759uuGGGxQREaGoqChFRERw3A4AAHjUuXPntG3bNiUkJGjZsmU6dOiQqlSporZt2yoqKkrR0dHy9/c3OhMAAHhATk6OkpKSlJiYqOXLl+v48eMKDQ1VVFSUYmNj1aJFC5nNZqMzAQDARcjLy9O6des0b948LV++XGazWdHR0erZsyfnIgAAKEPy8vK0cOFCxcXF6ddff9WDDz6oUaNGKSwszOg0AADKtb1796pHjx46cOCA3njjDfXv379wLD09XQ0aNFBWVpaeeeYZvfHGGwaWAgBw7dq/f7/69eunrVu3yuVyFRnz8vLSiy++qNGjRxtUBwAAjLBhwwYNHz5cX3/99QXXUNm0aZNat27t4ToAAHClOJ1ONWrUSPv27VNBQUGJc7y9vfXKK69o5MiRHq4DAADAX/ntt980adIkvf7666patari4uLUs2dPmUymEuc7nU5Nnz5dvXr1UsWKFT1cCwAAyhOXy6WVK1dqwoQJ2rZtm5o1a6YhQ4booYceYg13AADKIYfDoc8++0xjx47VoUOH9OCDD+rll19WaGjoX/5udna2/Pz8PFAJAAAuhsvl0syZMzVs2DDVrVtXH330kZo0aVJkztSpU/XUU0+pXbt2Wr9+PesrAgBggFOnTum2227T6dOn9b///U8Oh0OSZLVadd9992nBggUGFwIAUL653W5FRERo48aNhX+nS1K5cmWdPHnSg2UAAOBS1axZU4cPHy513Gq1atCgQXr77bc9WAUAKE8OHTqk2rVry+12lzhuMpnUtGlT7dq1y8NlAIDyYsKECRo9enSp69acd+bMGb7bDABAGXT27Fn5+vpecI7ZbNb48eM1atQoD1UBAIDSdOjQQZs2bSpcP95ms8nX11chISFKTk5WhQoVDC4EAODK+/HHH1W/fv1Sx8/fa+XOO+/Utm3bPFgGAMCV9c0336hx48aljlssFrVs2VKbNm3yXBQAALgirrvuOp07d67UcavVKrPZrNTUVNWoUcODZQAAwAh9+vTRp59+Wuw+4zabTWazWaNGjdKoUaNkt9sNKgQAAEarVauWDh06VGSfyWTS3XffrSVLliggIMCgMgAAUFZ17dpVCQkJRY43mEwm1a9fX1u2bJG/v7+BdQAAoKxauHChunfvXmS9M6vVKpvNpjVr1qhVq1YG1gEAgLLq3Llzqly5svLy8gr3Wa1WFRQUaPDgwXr77bdlMpkMLAQAAGUZxyMAAMA/Udr1ETfffLO2bt3K9REAAKBUnN8AAABl2dKlS9W1a9dSx8+vzRwbG6tFixZ5sAwAAFxOFzo+MWTIEL311lscnwAAXDVcLpf8/Px05syZUufYbDYdOnRI1atX92BZ+bRr1y4NHDhQ33zzjQYOHKjx48erYsWKRmfBIFu3blXLli2VmpqqOnXqGJ2DcmTOnDnq27fvBefYbDa98847evzxxz1UBQAASpKTk6OsrKxL3jIzM4utqy9Jdrtd/v7+l7xVr15dZrPZgHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICS/dUaPbm5uaXOOXnypPLz80t83gut1ePj43PB8YCAAHl7e3v4nQAA4OqQmJio++67T3369NG0adNksViMTgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCyKN7ndbrfRFfg/H3/8sR577DFlZGTIz8/P6BwAuKpNmDBB06dPV2pqqtEpAIAy7tdff1Xt2rUvOMdkMum1117TyJEjPRMFADBUbm6u2rRpo927d8vhcJQ6r3Hjxvrqq688WIbL5fjx4zpy5IgOHz6sX3/9VYcOHdLhw4d1+PBhHTp0SMeOHZPL5ZIkeXl5KSQkRDVq1FCtWrUUEhKikJAQ1axZs/Bx1apVDX5FAP4sJSVFQ4YM0fbt2/XQQw9p8uTJxf5fnT17th555BFVrVpVu3fvVkhIiEG1AADgUu3Zs0fx8fFKTExUSkqKAgICFBkZqdjYWN1zzz3y8vIyOhEAAJQzqampSkhIUGJior788ksVFBSocePGioqKUnR0tJo2bSqTyWR0JgAAuMIKCgqUnJysxMRELVu2TPv27VOVKlUUERGh6OhoRUZG6rrrrjM6EwAAXITs7GytWLFC8+bN04YNG1S9enXFxsYqNjZWLVu2NDoPAABIcjgc+uyzzzRx4kTt3btX//73v/XCCy+oefPmF/y9devWad26dZowYYKsVquHagEAKB/y8vL00ksvadKkSerataumT58uPz8/RUREaOPGjXI4HDKZTFq/fr3at29vdC4AANcMh8Oh1157TePGjSv8+c9MJpPatWunpKQkT+cBAAADtWnTRv/5z38uOMdsNuujjz5Sr169PFQFAAA8YcuWLWrVqpVKuwWByWTSggUL1K1bNw+XAQAA4GIdOXJEcXFxmjlzpm677Ta9+eabatGiRbF5H374oQYMGKDw8HCtWrVKNpvNgFoAAFDebNmyRVOnTtWSJUtUu3ZtPfnkk+rfv798fHwu+Htbt27VDz/8oMcee8xDpQAA4Eo7/13PsWPH6vDhw+rTp49efPHFUu/7kJqaqrCwMI0YMUJjx471cC0AALiQAwcOqF+/fkpOTtawYcMUFxcnm82mAwcO6JZbblFubq7MZrNefvllvfjii0bnAgBQ7mzfvl2RkZE6e/Zsse+R2mw2paWlqUqVKgbVAQAAScrIyFD9+vWVnZ1deF/0PwsNDdWBAwc8XAYAAC5FixYtlJycXOKY2WxWtWrVtG/fPvn6+nq4DABQnjRv3lw7d+4s8fOl1WrV5MmTNWTIEAPKAADlgdPp1B133KFvv/1WTqezxDne3t7Kzc31cBkAALhYdrtdeXl5JY5ZrVbVr19fKSkprFECAIDBjhw5olq1ahU7Fmy1WuXn56e1a9eqadOmBtUBAOA527Zt01133XXBOWazWf3799f777/voSoAADwjODhY6enpJY6ZTCYtXLhQsbGxHq4CAACXk8vlktVqLfU+YtLvx4VjYmIUHx8vs9nswToAAGCEsLAw7d27t9Rxi8Wi4OBgrV27VvXr1/dgGQAAKAv27t2rsLCwEsdsNpsqVaqkTz75RJ06dfJwGQAAKKvy8vLk7++vnJycYmNWq1VVq1bV4sWLdeeddxpQBwAAyrIHHnhAS5YsKba+zPnrHMaPH68RI0bIZDIZVAgAAMqixYsXKzY2tsTrIs1msyIjI/Xxxx+rcuXKBtQBAICyjuMRAADg7+L6CAAA8E9wfgMAAJRlH330kR577DEVFBSUOsdkMunjjz9Wz549PVgGAAAuJ45PAACuNf/+97+1Zs2aYvffk35fJ+mRRx7hHkNX2KlTp/TKK6/o3XffVevWrfXee++xfiU0adIkvfHGGzp+/LjRKSiHevTooc8//1wOh6PEcbPZrDlz5nCcEwCAyyAnJ0dZWVmXvJ08eVL5+fnFns9ut8vf3/+St2rVqslisRjwDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUPacXx8oNzf3otYK+vO8jIyMEu9fYrfb5ePjc1HrBZU0LzAwUFar1YB3BACAK2f9+vWKiYlR9+7dNXPmTJnNZqOTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoq+JNbrfbbXQF/k92drYCAwP18ccfq3v37kbnAMBV7aOPPtITTzyhc+fOGZ0CACjj9uzZo1tuuaXUcYvFot69e2vWrFkerAIAGO3kyZO6/fbbdfjwYTkcjhLn1K1bVz///LOHy+AJ+fn5Onr0qA4fPqxff/1Vhw8f1pEjR3T48GEdOnRIR48e1cmTJwvn2+121axZUyEhIQoJCSnyuFatWqpRo4b8/f0NfEVA+eR2uzVv3jyNHDlSeXl5eumll/TEE0/IarXq9OnTCg0NVVZWliwWi2666SYlJyfL19fX6GwAAHCJDh48qBUrVig+Pl7btm3T9ddfrw4dOigqKkpdu3ZVxYoVjU4EAADlzG+//aaNGzcqMTFRK1eu1NGjRxUYGKh77rlH0dHR6tixo66//nqjMwEAgAekpqYqISGh8LiF3W5X+/btFR0drc6dO6tatWpGJwIAgItw6NAhffbZZ5o1a5Z+/vlnhYWFKTY2Vr1791adOnUu+nmys7OVkpKi9u3bX8FaAADKH7fbrcTERL366qvavn277rrrLo0cOVJRUVEymUxF5rpcLtWvX18//fSTunbtqgULFshmsxlUDgDAtSspKUm9e/eW1WpVdHS0pk2bpvNLHJnNZlWpUkV79+5V5cqVDS4FAODaMG/ePPXq1esv5/n4+OjMmTOyWCweqAIAAGVBRkaGWrdurf3798vpdJY4x9vbW6NHj9bo0aM9XAcAAK60hx9+WIsWLSp1DbWdO3fq1ltv9XAVAAAALtWuXbv0zDPPaPPmzbr//vs1ceLEwu8ynDlzRnXq1NGpU6dkNpvVo0cPffzxx8WunwQAALhS9u/fr3feeUczZsyQr6+vBg4cqCFDhpR4jajb7VZYWJh+/PFHPf/88xo/frwBxQAA4EpxOBz67LPP9Morr+jIkSPq06ePxowZoxo1ahSZ17dvX82bN08FBQV67bXXNGrUKIOKAQBASVwul2bOnKlhw4apbt26mjVrlp566int2LGj8BoUk8mktWvXqkOHDgbXAgBQfnz++ed66KGHVFBQoIKCgmLjVqtVb731lgYPHmxAHQAA+KNly5bp3nvvLXX81ltv1c6dOz1YBAAALlWPHj20cOFCuVyuEsdXrFih6OhoD1cBAMqbadOmaciQISUeEzabzTp69KiqV69uQBkAoLz48ccf1bBhw1LXrQkKClJaWpqHqwAAwMUKDg5Wenp6iWM2m027d+/WLbfc4uEqAADwZ2PHjtW4ceNK/PxtsVhks9m0cOFCxcTEGFAHAIDnrFixQp07dy513Gq1KiIiQkuXLuXeawCAa87AgQM1e/Zs5efnFxsLCAhQenq6bDabAWUAAOByOX36tPz8/Eodt9lsuu2227RhwwbZ7XYPlgEAACPk5eXpuuuuK/E7Q+dZrVbZ7XZt3bpVDRs29GAdAAAoCyZPnqxRo0bJ6XSWOG42m+V2u/XKK6/oxRdf9HAdAAAoixITEy+4JpbFYpHJZNLkyZM1ZMgQD5YBAICyLD8/X5UrV9Zvv/1W6hyTyaSoqCh98sknqlSpkgfrAABAWdazZ08tXLiw1DXqrFarqlWrpuXLl6tZs2YergMAAGUZxyMAAMA/wfURAADgn+D8BgAAKMsmT56s559/vsQ1KaXfz59MmDBBI0aM8HAZAAC4nDg+AQC41kyaNEkvvPBCiX/bzGaz9u3bp7p16xpQdnVLS0tTtWrVLnh/JrfbrXnz5umZZ56Rl5eXXnvtNfXq1cuDlSjL7rvvPrlcLi1dutToFJRDZ8+eVaNGjXTo0KFS19H7/PPPdd9993m4DACAsisnJ0dZWVnKyspSenq60tLSCn8ubTt16pTy8vKKPZfdbpe/v/8lb1WrVuUeeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlBF/XJvoj1tubm6pY3+eV5KS1iny8fG5qPWLfHx85O/v7+F3AgCA0n355Zfq1KmTunXrptmzZ8tsNhudBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAWRZvcrvdbqMrUFR4eLgqV66sRYsWGZ0CAFe11atXKzIyUv/73//k6+trdA4AoAzbsWOH7rjjjhLHbDab2rZtq5UrV8pqtXq4DABgtIMHD+rWW2/V6dOnVVBQUGw8KChIaWlpBpShLMjLy9PRo0eVlpam9PR0paamlvj4PLvdruDgYAUFBSk4OFihoaFFHt94443y8/Mz8BUB167ffvtNkyZN0oQJE1SnTh29/fbbWrt2raZOnSqn0ymJf/sDAHCtOHTokJYuXarExERt2rRJNptN7du3V2xsrLp06aJKlSpd9HN98803mjBhgt544w3VqFHjClYDAIBr3Z49e5SYmKikpCRt2rRJbrdbzZs3V3R0tMLDw9WsWbO//dwnTpyQxWKRv7//ZSwGAABXQmZmplavXq34+HitX79eTqez8N8EnTt31s0333zJz/nhhx+qcePGpV77BAAALr+UlBTNnTtXn332mU6ePKk777xTvXr1Uvfu3f/yuyujRo3SxIkT9eSTT+rNN9/k+gQAAK6ALVu2aOLEiVq5cqUaNWqkoUOH6qGHHpLFYpEkLVu2TF27dpXb7ZbFYlF0dLQWLVokm81mcDkAANeezMxMPfDAA/ryyy+LfS/LZrMpMjJSy5YtM6gOAIBri9Pp1HPPPafJkydLki60tGBKSoqaNm3qqTQAAFAGZGZmqk2bNvr555/lcDiKjVutVvXp00czZswwoA4AAFxJx48fV926dXX27NkSx0+cOKGAgAAPVwEAAODvSkhI0LBhw3To0CENGDBAcXFxev311zVx4sTCNRXNZrOee+45jRs3zuBaAABQ3mRkZGjatGl65513lJ+frx49emj48OGqV69e4Zzz9xKTJJPJpKeeekpvvvmmTCaTUdkAAOAKyM/P15w5cxQXF6eMjAz16dNHY8aMUY0aNbR//37ddNNNcrlchfMnTZqk4cOHG1gMAABK8uOPP6pfv37atWuXnE5nke+qmM1m+fn56bvvvlNwcLCBlQAAlA9TpkzRsGHDJJX+/VGTyaSwsDB9//33nkwDAACl6N27t+bPn194bd8fderUSatXrzagCgAAXKxnn31WU6dOVX5+fpH9NptN9913nz777DODygAA5UlmZqaCgoKKrelrsVjUqlUrbdy40aAyAEB5MmHCBL3wwgtFrv09r3Hjxvrqq68MqAIAABejcePG+uabb4rtN5vNevXVVzVy5EgDqgAAwB+5XC7VqlVLR44cKXWOyWSSyWTSzJkz1bdvXw/WAQDgWXPmzNGjjz5a7Pyo9Pv9VFq0aKF169bJ29vbgDoAAK6sxMRERUdHF9tvs9k0YsQI1pkGAOAacPjwYdWsWbPEMZvNpjp16mj79u3y9/f3cBkAADDCrl27dNttt5U6brPZVK1aNa1du1ZhYWEeLAMAAGXF3Xffra1bt5a69qT0+7Vl0dHRWr58uQfLAABAWfXII49o3rx5cjgcpc4xmUwKCAjQ8ePHZTabPVgHAADKqrVr16pTp04XnGM2m+V2u7V+/Xq1b9/eQ2UAAKAsczgcqlKliv73v//95dyBAwdq2rRpHqgCAABXC45HAACAf4LrIwAAwN/F+Q0AAFDWjRkzRq+//rry8vKKjZnNZg0YMEDvvfeeAWUAAOBy4fgEAOBa9N///lfNmzcvtt9ms+nee+/VwoULDai6uq1YsUL333+/XnvtNT3zzDMlzklKStKIESP03XffadCgQRo3bpx8fX09XIqyLCQkRIMHD9aoUaOMTkE5lZKSojvvvLPU67xWrlypyMhID1cBAHBl5eTkKCsr65K39PT0Ys9lt9vl7+9/yVtAQAD3egUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJIufm2k3NzcYnMzMzPldDpLfN6LWSfJx8enxHlVq1aVzWbz8DsBALgW7dmzR3fffbfat2+vBQsWyGKxGJ0EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBZF29yu91uoytQ1HvvvadRo0YpIyNDPj4+RucAwFVr9+7datasmX7++WfVrVvX6BwAQBn2xRdfqF27dsX222w23Xzzzdq2bZsqVqxoQBkAoCzYuXOnWrVqpby8PP35UNr111+v7Oxsg8pwNcjNzVVaWppSU1OVlpam9PT0Io/379+v06dPF8632+0KDg5WaGiogoKCij2uV6+eKlWqZOArAq5u+/bt09ChQ7V69WpZLBYVFBQUGbdYLOrXr5+mT59uUCEAALicTpw4oVWrVik+Pl7r1q2T2WxWy5YtFRUVpe7duyswMPCCvz9w4EB98MEH8vf318KFC9WhQwcPlQMAgGvZyZMntXHjRiUlJWnFihU6duyYateurY4dOyo8PFydOnWSr6/vRT9fq1attGfPHs2bN0+RkZFXsBwAAFxO586d04YNG5SYmKhly5YpIyNDoaGhioqKUmxsrO666y6ZTKYLPsfJkydVrVo1SdL48eM1YsSIv/wdAABw+eTn52vt2rWKj4/X4sWL5XK5FB0drZ49e6pTp06y2WxF5rtcLgUHB+v48eOyWCxq2bKlFi9erICAAINeAQAA17avv/5ab775pubPn6/atWvrySef1IABA9SyZUt99dVXhdcPWq1WhYeHa9myZfL29ja4GgCAa0tubq6aNGmi/fv3y+l0ljhn7ty56tmzp4fLAAC4dq1YsUI9evRQfn6+HA5HsXGbzaY33nhDQ4YMMaAOAAAYKSsrS23bttUPP/xQ4r8T2rVrpw0bNhhQBgAArrSpU6dq6NChcrlcRfb7+Pjo3LlzBlUBAADg78rPz9e7776rcePGydfXV8ePH1deXl6xeVOnTtWTTz5pQCEAACjvzp49q1mzZunNN9/UkSNHFBkZqdGjR+uOO+7Q3Xffre3btxdeV2o2m9WvXz99+OGHMpvNBpcDAIDLLT8/X3PmzNHYsWOVmZmpPn366MSJE0pISChy/YrJZNL777+vxx9/3MBaAABQkv3796tBgwbKz88vNmaz2XTHHXdo06ZNslgsBtQBAFB+vPTSS4qLi5PFYil17YbzUlJS1LRpUw+VAQCA0pw9e1YNGjTQ0aNHi9w32Ww2q0ePHpo3b56BdQAA4K9MmTJFI0eOLHJ83GQyqVKlSvrpp5/+8l7IAABcLh07dtTGjRuLfLa0WCyaMWOG+vbta2AZAKC8KCgo0O23367vvvuu2Pp1ERERWrVqlUFlAADgr0RERGjNmjVF9lmtVtWvX18pKSnF7rUKAAA8b8OGDQoPD7/gHKvVKpfLpTfeeENDhw71UBkAAJ43efJkPf/888W+z2qz2XTLLbfoyy+/VMWKFQ2qAwDgysrJyZG/v3+xNaZNJpNSU1NVu3ZtY8IAAMBls2fPHt1yyy3F9lutVlWuXFk7d+5UzZo1DSgDAABGmDFjhgYOHFjk+0LnWa1WNWrUSCtXrlS1atUMqAMAAEY7ffq0AgICSvy3gvT7vxfcbrdGjx6tMWPGcL8nAACggoICValSRdnZ2aXOMZlMCg8P1+zZsxUSEuLBOgAAUJYNGDBAH330UYn3pZJ+v56/atWqmjt3rtq3b+/hOgAAUFYlJSWpQ4cOpY6fP5cxfPhwxcXFscYNAAAoguMRAADg7+L6CAAA8E9wfgMAAJR1Tz75pKZPn17sHIrFYtH999+v+fPn831SAACuchyfAABci5xOpypVqqScnJxiYykpKWratKkBVVevZcuWKTY2Vk6nU1WqVNHhw4dlt9sLx7/99luNGDFCa9euVVRUlCZOnKiwsDADi1EW7du3TzfffLO2bt2qFi1aGJ2DcmzKlCl65pln5HK5io198cUXatOmjeejAAD4Czk5OcrKyrrk7fjx4yX+zbPb7fL397/kLTg42IBXDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H+ys7N1+vTpwv/+cfvjvqysrBL3l7RmrSRVqlRJfn5+uv7664tsf9zn7+9fuO+P2/XXX19kvVYAQPmUlpamFi1aqGbNmlq3bh1/GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuDjxJrfb7Ta6AkWlpaUpJCREy5cvV3R0tNE5AHDVOnr0qEJCQrRlyxbdddddRucAAMqwhIQExcTEFNlntVpVuXJlpaSkKCQkxKAyAEBZkZCQoC5dusjlchXZ7+Xlpby8PIOqcK3IyclRenq6UlNTlZaWVuzxTz/9pDNnzhTOt9vtCg4OVmhoqEJDQxUUFFT4c1BQkGrVqqWKFSsa+IqAsq9Zs2b67rvv5HA4io2ZTCa9/fbbevLJJw0oAwAAV0pWVpYSEhKUmJioVatWKTc3V82bN1dsbKxiY2MVHBxcZL7L5VJgYKBOnjwpk8kkSRoxYoTGjx8vi8VixEsAAADXIJfLpa+++kpJSUlKSEjQtm3b5O3trZYtWyo8PFwxMTGqX79+qb+fnZ2tKlWqyOVyye1264knntCkSZPk4+PjwVcBAAD+qYKCAiUnJysxMVFLly7VTz/9pKpVq6pTp06KjY1Vx44d5e3tXez35s6dq759+8rlcslsNqtt27aaP3++AgMDDXgVAACUb9nZ2VqxYoXmzZunDRs2yN/fX/fff7969uypli1bSpI2bNig8PDwwt+x2WyqXr26Vq1apVtuucWodAAArnl79+7V66+/rk8//VSVK1fW8ePHi82xWCwKDw/X8uXLS/wMDgAA/p7HH39cs2fPltPpLHHcZDKpQoUK+v7771W7dm3PxgEAcA3bt2+fYmJilJqaWuzvsMViUZcuXfT5558bVEacrGoAACAASURBVAcAAIyUnZ2tdu3a6fvvvy/2PfvatWvr4MGDBpUBAIArqaCgQI0bN9aPP/5Y5FhB/fr19cMPPxhYBgAAgH/i5MmT6tatmzZv3lzimopms1nx8fHq2rWrAXUAAACSw+HQokWLNGnSJH3zzTe6/fbbtWPHjmLzLBaLunXrprlz58pqtRpQCgAArrTc3FxNnz5d48aN04kTJ1TSLbRNJpPmzp2rhx9+2IBCAABQEpfLpVatWmnHjh0lnouQfv9c//zzz2vs2LEergMAoPzZvXu3Bg0aVHisvaTP1zabTf3799e7777r6TwAAFCCLVu2qHXr1nK5XIX7bDabBgwYoKlTpxpYBgAA/kp8fLweeOCBIp+/TSaT5syZo169ehlYBgAob/54j7rzbDabMjIy5OfnZ2AZAKA8+fHHH9WwYcMi1xBZrVb16tVLs2bNMrAMAABcSL9+/TR37lwVFBQU7rPZbNq9ezf3TgUAoIzo3r27Fi9eXOoaYm63W3feeafef/99NWzY0IBCAAA854UXXtDkyZOVl5dXuM9ms6lOnTratm2bAgICDKwDAODK69Spk5KSkgqP6VosFnXo0EGrV682uAwAAFwOycnJatGiRZF9ZrNZdrtd27ZtU6NGjQwqAwAARhg0aJBmzpxZ7Fyx2WxW586d9emnn8rHx8egOgAAYLQFCxaoR48eJa43abFYdOONN2rhwoVq3LixAXUAAKAs+vLLL9W6desSx2w2m2w2m9566y3179/fw2UAAKAsc7lcqlatmk6cOFFszGw2y+Vy6eGHH9a0adPk6+trQCEAACirBg8erBkzZig/P7/YmMViUb169TR//nw1adLEgDoAAFCWcTwCAAD8E1wfAQAA/gnObwAAgLKuZ8+emj9/frH71t51111as2aNvL29DawDAACXA8cnAADXqrZt2+o///lP4XpJVqtVrVu3VlJSksFlV5fFixfrgQcekNvtlsvlksVi0bvvvqsBAwbo6NGjGjt2rGbNmqUmTZro9ddfV9u2bY1ORhk1ZcoUjR07VhkZGbJarUbnoBxzu93q3Lmz1qxZU2z93f/+97+6/fbbDSoDAFzrcnJylJWVdclbZmamnE5nseez2+3y9/e/5K169eoym80GvAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGy8/P1+nTp5WdnV343/OP/7j/j9v5fVlZWTp9+nSR+7icZ7fb5efnV2y7/vrr5efnJ39//1LH/Pz8ZLfbDXg3AACXy7lz59SyZUvl5eVpy5Yt8vf3NzoJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICrRbzJ7Xa7ja5Acc2bN1dYWJhmz55tdAoAXLWcTqe8vb21aNEi3XfffUbnAADKsAULFqhHjx46//HIbDbLbrcrOTlZDRs2NLgOAFBWTJkyRUOHDi2yz2QyyeFwyGKxGFSF8iIrK0tpaWlKT09Xampqsce//vqrfvvtt8L5/v7+CgoKUnBwsEJDQ4s9rlOnjipUqGDgKwKMk5iYqOjo6AvOMZvNWrp0qWJiYjxUBQAAPOncuXPasGGD4uPjtXz5cp09e1ZNmjRRVFSUHnroIdWrV0+bNm1S27Zti/yexWJRixYttGjRIlWvXt2gegAAcC3LzMzUpk2blJCQoISEBGVnZys0NFTh4eGKiopSx44d5e3tXTh/0aJFevDBBwvPc1qtVtWuXVvx8fFq3LixUS8DAAD8Q3v27FFiYqISEhK0bds2+fj4qF27doqOjlaXLl0UGBgoSerSpYtWrlwpp9MpSbLZbKpYsaLmz5+vTp06GfkSAAAo1w4fPqz58+dr9uzZ+umnn1S/fn1169ZN3333nRISEuRwOArnWq1WWa1Wffrpp+ratauB1QAAXPsOHTqk9u3b65dffin8LP1HFotF7du31/Lly2W32w0oBADg2rJ8+XLde++9+qtljWw2m2699VZt3ryZ72cBAHAZnTlzRr1799by5cvlcrmKjAUEBOjEiRMGlQEAAKNlZ2erffv2+vbbb4scL/fy8lJubq5MJpOBdQAA4ErZuXOn7rjjjsLj9iaTSTExMVq2bJnBZQD+P/buPT7yur73+Hvuk8w91032wu4CLcitYKX2yEEX+ihU8dQqaIvaSoWHtCgVLAiCeKCUy2Nt6VFsLa2opUARDxQEF/EU5EGpCg9BRaiPontgL8nuJtm5JzOTZOb8wfn++M1vZpJJNptfJnk9H495zPx+M/PLd2az+Xy+dwAAFusnP/mJTj755JZjMzwejwKBgJ544gm97W1vW+bSAQAA1Hv88cd10UUXaXR0tG6OpeHz+fTe975Xd999twKBgAslBAAAy+H973+//vVf/7VpPiC9vj/EPffcow984APLXDIAANDMF7/4RX3yk59smJfi5PF4tGPHDp111lnLVDIAANauWq2mb37zm/rEJz6hiYmJpusoRSIRHThwgH1KAQBYIa688kr99V//tWZnZyVJoVBIV155pW644QaXSwYAAObyzDPP6LTTTrOO/X6/fvM3f1NPPfUUazIAAJZVPp9XX1+fKpWKpNdj0rve9S7WCQAALLtbbrlF11xzjTWWKBQK6bLLLtPNN9/scskAAEArV111lf7mb/5G5XJZ0uvzdm666SZ9+tOfdrlkAABAen2t+MHBQav9187v96unp0fbt2/Xhz/8YfooAQBrwsUXX6w777zTWo8iEAiot7dXP/zhD7Vp0yaXSwcAwOH3t3/7t7r00kut+Scej0cPP/ywzjnnHJdLBgAAlsJ3vvMdnX322daxx+ORz+fTY489pjPPPNPFkgEAADf8+q//un70ox81nL/00kt12223yev1ulAqAACwUnzoQx/SN77xjbr9HHw+n6rVqj7+8Y9r+/btCoVCLpYQAACsNJdffrm+9KUvNYxN93g82rZtm772ta9p48aNLpUOAACsVP/xH/+ht73tbQ3nA4GAEomE7rzzTr373e92oWQAAGAlq9VqGhoa0v79++vO+/1+VatVXXHFFbrhhhsUDAZdKiEAAFjJaI8AAACHgvERAABgsejfAAAAneCd73ynduzYYR0HAgEdd9xxevrppxWNRl0sGQAAWAq0TwAAVrMbbrhBN954Y916SU888YS2bdvmYqk6yze/+U39/u//vqrVqmq1mqTXx0MMDQ3pox/9qD7/+c+rr69P1157rS688ELWq8Sczj77bCUSCd13331uFwVQOp3W8ccfr/3791t78UjST3/6U51wwgkulgwAsNJNTU0pnU4v+DYxMdF0n/BwOKxUKrXg2+DgoHw+nwvfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqtSVUqldpaq6rVulTS4tem6urqUiqVWuZvAQBgd/755+vxxx/Xc889py1btrhdHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsn9nlqtVnO7FGh06623avv27dq3b5/8fr/bxQGAjtXX16cbbrhBf/qnf+p2UQAAK9hXvvIVfexjH9Ps7Kwkyefz6bHHHtNv/dZvuVwyAMBK88lPflJf/OIXVa1WrXO5XE6xWMzFUgGvS6fTGhkZ0ejoqHbu3KmdO3fWHe/evVvT09PW61OplLZu3aqhoSENDw83PN60aRNtk1h1KpWKjjnmGO3atcvK/5vxeDwKhUL6/ve/r1/7tV9bxhICAIDlNjU1pe985zt64IEH9MgjjyiTyejNb36z+vv79W//9m8NG+EGAgGlUik98MADetvb3uZSqQEAwFowOzurH//4x/rWt76lRx55RM8//7y6urr03/7bf9M555yj3/u939N1112ne+65p67dz7Tp3Xjjjbriiivk9Xrd+ggAAGAJ7N69Ww8//LAeeughPfXUU6pWqzr99NP1rne9S9dee62mpqbqXu/1elWr1fSJT3xCn//85xUIBFwqOQAAkKSXXnpJd911l+68805lMpm6Orzh8XgkSVdeeaVuuukm6vIAABwmzz77rH7jN35jztf4/X6dccYZeuihhxQOh5epZAAArE6//du/re9+97sKBAJN68N2Xq9XN954o66++uplKh0AAGtDrVbTF77wBX3qU5+SpLr5dK+88oqOOuoot4oGAABcls1m9Vu/9Vv6yU9+Uldv379/vwYGBlwsGQAAOJwuuOAC3X333ZqenlYwGLTGnAMAAKAznXHGGfr3f//3Ocdl+Hw+RaNR/eAHP9AxxxyzjKUDAACot3PnTh199NF1a/s7+Xw+nXXWWXrggQcUCoWWsXQAAGA5vPzyyzr++OM11/bZHo9HXq9XDz74oN797ncvY+kAAIDT/v37tXnzZpVKpXlf6/V6lUgk9OKLL2r9+vXLUDoAAFAsFrV9+3bddNNNklQ3dsDr9equu+7S+eef71bxAACATblc1imnnKL/+q//0szMjILBoG655RZddtllbhcNAADM4dVXX9WWLVus41AopJdeeklHHnmki6UCAKxV5557rh5++GFNT0/L6/Xqvvvu07nnnut2sQAAa8zs7KxOPfVUvfjii9baNTfffLMuv/xyt4sGAABa+Ku/+it95jOfUaVSkd/v17HHHqsf/ehH7HUOAMAKcfvtt+uTn/xk3T4ygUBAHo9Hl112ma699lpFo1EXSwgAwPI677zz9L//9/9WrVaT3+9XLBbT97//ff3qr/6q20UDAGBZ7N69W5s2bbKO161bpz179sjn87lYKgAAsFTuv/9+feADH7DWYvR4PLrvvvt03nnnuVwyAACw3GZnZxWNRq11Hr1erzwej770pS/pYx/7mMulAwAAbpudnVVvb6+y2ax1LhAIqK+vT3fffbe2bdvmYukAAMBKtXHjRu3Zs8c6DgQC8nq9uvXWW3XppZfK4/G4WDoAALBSXXnllfpf/+t/qVKpSHq9z6Jarep973uf7rjjDvX09LhcQgAAsBI999xzOvXUU+vO+Xw+HXnkkbrnnnv05je/2aWSAQCATkB7BAAAOBSMjwAAAItF/wYAAOgEp556qp577jlJr7d7DA8P69lnn9XAwIDLJQMAAEuB9gkAwGr2ve99z1oXyefz6YQTTtALL7zgcqk6x/33368/+IM/ULVatdauNjwejyKRiK6//npdcsklCoVCLpUSnaJYLKq/v1+33367/viP/9jt4gCSpKefflrveMc7VK1WrXO/+MUvdOSRR7pYKgDAcpmamlI6nbZuo6OjGhkZqTvnvB08eFDlcrnhWuFwWKlUasG3/v5+BQIBFz49AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3ORcC6tUKjWca3WbmJhQpVJpet3FrovV1dWlVCq1zN8CAKwe27dv19VXX61HHnlEZ599ttvFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg09zvqdVqNbdLgUa/+MUvdPTRR+uJJ57Qtm3b3C4OAHSs4447Tueee66uv/56t4sCAFjBvvCFL+iKK65QpVKRx+PRV7/6Vf3RH/2R28UCAKxA1WpV733ve/Xoo49qZmZGkjQ6Oqp169a5XDJgfrOzs9q3b59ee+017d27V3v27NGuXbu0e/du7d27V7t27dK+fftUrVYlSX6/X0NDQ9q0aZM2bNigDRs2aOPGjdq0aZPWr1+vjRs3at26dfJ4PC5/MqB9t912my6//PK2Xuvz+dTX16fnn39ew8PDh7lkAABgJahUKnryySf1wAMP6Bvf+IYymUzT1/l8PtVqNX32s5/V5z73OXJiAACwLF577TXt2LFD3/72t/XEE0+oWCwqFAqpXC43fb3X69Xb3/523XXXXVq/fv0ylxYAABwOk5OT+rd/+zfdf//9+t73vqfdu3e3fK3P59NJJ52kb37zm9qyZcsylhIAADRz11136Y/+6I8011ROr9ers846S//yL/+ieDy+jKUDAGBtOOecc/T4449renp6ztf5/X694x3v0Le+9S2Fw+FlKh0AAKtPsVjUd77zHX3729/Www8/rLGxMQWDQU1PTzetH/v9fv3whz/UKaec4kJpAQBY3Z566im9973vVT6f1/T0tHw+n/7xH/9RH/nIR9wuGgAAcFGxWNTZZ5+tH/7wh1bb+bPPPqu3vOUtLpcMAAAcLhMTEzryyCOVzWYVCAR022236ZJLLnG7WAAAAFiERx99VOecc05br/X7/Vq3bp2ee+451s4FAACuufjii3XnnXfOO6fD5/PpzDPP1L/+67+qq6trmUoHAACWw3nnnaeHHnpo3nzA4/HI5/Pp4Ycf1u/8zu8sU+kAAIBTsVjUFVdcoR07dujVV1+V1+uVz+drGcsDgYDe/OY36+mnn5bf71/m0gIAsHa98sor+rM/+zPt2LFDXq9X1WpVPp9Pp512mr73ve+5XTwAAPD/vfTSSzr55JNZ7wEAgA5SqVQUDodVq9Xk8/l066236lOf+pTbxQIArFEPPvig3ve+96lWq6mrq0sTExOMtQYAuOLnP/+5TjrpJFUqFXm9Xn3961/Xhz70IbeLBQAAWrjrrrv0kY98RNVqVYFAQM8//7yOP/54t4sFAAD+vxNOOEEvvfSS1Sc5Ozurd77znbr99tu1ZcsWt4sHAMCyO/300/X000/L6/UqHA7r6aefZl9TAMCac+yxx+rnP/+5AoGArrvuOl177bVuFwkAACyRr3zlK7r44os1MzMjj8ejv/7rv9YnP/lJt4sFAABc8PLLL+u4446T9PqeUl1dXXrooYe0bds2l0sGAABWgmeeeUannXaapNf3bKjVanrf+96nO+64Qz09PS6XDgAArEQ//vGPdfLJJ1vHXq9Xp556qu666y4dddRRLpYMAACsdFu2bNGrr74q6fV9p2KxmL7yla/oPe95j7sFAwAAK9o111yj7du3a3p6Wn6/X9VqVVdccYWuv/56hUIht4sHAABWONojAADAYjE+AgAAHAr6NwAAQCc4+uij9Ytf/EJ+v1+pVErPPvusNm/e7HaxAADAEqF9AgCwmpVKJcXjcU1PT8vj8eib3/ym3vve97pdrI7wjW98Q3/wB3+gWq2mWq3W8LzX69XmzZv1yiuvyOv1ulBCdJp7771Xf/iHf6i9e/dqYGDA7eIAlhtvvFGf+9znVK1WJUl79+7V8PCwy6UCALRrampK6XR6wbd9+/Y1zXNTqZSGhoaUSqXavvX29tKOBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGXlXIerVCq1vTbXxMSEKpVK0+uGw+EFrcVlbl1dXUqlUsv8LQDAyvDMM8/o7W9/u2699VZ96lOfcrs4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0ovs9tVqt5nYp0NwJJ5ygbdu26Qtf+ILbRQGAjnXmmWfq6KOP1pe//GW3iwIAWMFuvvlmXXvttarVarr++uv12c9+1u0iAQBWsMnJSZ1++ul64YUXVK1W9corr+ioo45yu1jAkkmn09q5c6d27typkZERjY6O1j1+9dVXVa1WJUmBQEB9fX0aHh7W0NCQhoeHtXXr1rrHmzZtkt/vd/lTAa/72te+pptvvlm//OUvNTs7K7/fL4/Ho+np6aavDwQCOuaYY/T9739fkUhkmUsLAADc8h//8R9629veNu/rvF6vfud3fkd33XUXm8sCAIBlVSqV9A//8A+69NJL53xdIBBQd3e3vv71r+t3f/d3l6l0AABgOVx00UX6p3/6J1UqlZavCQQCCgaD+upXv6rzzjtvGUsHAACczjrrLD3xxBOamZmZ83V+v19HH320Hn30UW3ZsmWZSgcAwOr34osv6qSTTlK7yyr4/X5t27ZNDz/8sMLh8GEuHQAAa8NLL72kRx55RN/+9rf1zDPPqFqtyufzWXVlv9+vI444Qj/96U/V3d3tcmkBAFh9du3apfe85z168cUXNTs7q4985CO688473S4WAABwWT6f11lnnaXnnntOMzMz+sY3vsFYMwAAVrkvf/nLuuSSS1StVvXoo4/qne98p9tFAgAAwCJcffXVuuWWWyS9Po9QUsv1FM1rjjnmGD3zzDOKxWLLUkYAAADjwIED2rhx45xrI9j5/X799//+3/XII48wphQAgFXilVde0a/+6q9KUlvzPL1er4LBoL773e/qtNNOO9zFAwAA89i3b5+efvpp/Z//83+0Y8cO7d69Wz6fTx6Pp249JZ/PpyuuuEI333yzi6UFAGBteuSRR/Txj39ce/bs0ezsrDwej375y1+yniEAACvI5z//eX36059WtVrVgw8+qPe85z1uFwkAAMwjlUopk8noxBNP1PPPPy+fz+d2kQAAa1SpVFJ/f78KhYI+/OEP65/+6Z/cLhIAYA275ZZbdM0116hareqxxx7TWWed5XaRAABAC9/5znd09tlny+v16i//8i911VVXuV0kAADw/73wwgs65ZRTJL0+p/aoo47S3/3d3+mMM85wuWQAALjnTW96k/7zP/9TwWBQjz/+uN7+9re7XSQAAJadWXPa5/Np9+7dGhoacrtIAABgifzN3/yNLr/8cnk8Hl1++eXavn2720UCAAAuueeee/TBD35Qfr9fw8PDevzxx611mwEAAD7zmc/olltukd/vV1dXl/7hH/5B73//+90uFgAAWMGuv/56XX/99fL5fPL7/dq+fbsuueQSeTwet4sGAABWsJdfflnHHXecPB6ParWafv/3f19f+tKX1NPT43bRAADACvcrv/IreuWVV+T3+7V582bdfffdOvXUU90uFgAA6AC0RwAAgEPB+AgAAHAo6N8AAACdYHBwUAcOHFAsFtMzzzyjE044we0iAQCAJUT7BABgtXvrW9+qH/7wh9qyZYt+8YtfyOv1ul2kFe++++7T+eefr1qtplqt1vJ1Ho9HDz74oH73d393GUuHTvWe97xHpVJJjz32mNtFAepUq1WdeeaZeuqpp1Sr1XTw4EGlUim3iwUAa8rU1JTS6fSCb/v371e1Wm24XjgcViqVWvBteHjYhU8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALL98Pq9MJlN3y2azDefM+XQ6XXdudna24ZqhUEjJZNK6JRIJ63EqlWr5nLl1dXW58E0AwKEpFAo6+eSTddRRR+nb3/42+5oDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALA493tqtVrN7VKgueuuu0533nmndu/ezeKLALBI559/vqampvTggw+6XRQAWJNyuVzdRgv5fF4zMzMtj+c7P5dMJqOFVm88Ho+SyaS++tWv6p577tFZZ52lP//zP5/zPX6/X7FYrOF8IBBQNBpt+bpW7wMAuMceO+yxZ3JyUuVyueVrzfEll1yiAwcO6O///u+1devWhuvMJ5FIyOv1zvu6WCwmv99vHZv41ew60WhUgUCgrZ8PLFa5XNaePXu0d+9e7dq1S3v37tXevXv12muvWY/37dtnvd7v92toaEgbN27Uhg0btH79em3atEnr16/X+vXrdcQRR2hwcLDu9xw43KampvTiiy/qhRde0PPPP69nn31WL7/8siqVirxer4LBoEqlkvX6d73rXXrooYfk8/nqrlMulzU5OWkdO2NIoVDQ9PR0w89Pp9MLKm+xWFSlUlnQe4LBoCKRyILek0qlGs456zqhUEjd3d3WcXd3t0Kh0IJ+DgAAK92nPvUp3X777W3FX7/fr4GBAT344IM69dRTl6F083O2y2azWVWrVeu4WVtqrVZTJpNZ0M8plUqamppacPnarQ8bznzEcOYl4XC4bpPerq4uhcPhBZcPAIBOccMNN+jGG29s2vZg5/V6Va1W9aEPfUhf/vKXF9xe4AZn24n9uFXeMjs7q1wut6Cfs9h8Jh6PN7QTzcXn8ykejzecd+Y5zvacxbTvAADWhmq1qoGBAU1MTMz7WpMLXHTRRfriF7+44tr0p6enVSgUrONKpaJisdjy2Jiamqrry2mHs82kHa3i+FxatUlEIhEFg8GWx/T3A8DqdeDAAQ0PD7cdhwKBgLq7u/XAAw/ojDPOOMylewP9C6+jfwEAVqe///u/18UXX2wd+3w++f1+zc7Othz77ff79Y53vEPf+ta3FhwbnG3WzuOZmRnl8/mG9znHJLZjMfXdxcxxajVW0DnW3dmGvtAYDgBYG8bGxrRjxw498sgj2rFjhwqFgnw+n2ZnZ/XRj35U27dvJ34SPwEATRxqfXN6elpf/OIXtWPHDg0ODuqf//mfW/4s4iUAACvbUvbvlkolXX311frZz36mj33sYzr33HPrnqN/FwCA5bFc47empqZ06aWX6tVXX9Vtt92m9evXt/U+4jsAAMDKMz4+rhdffFEvvfSSfvazn+nHP/6xfvazn1nz8YLBoKrVqjVO0uPx6IwzztCOHTuazmNzrnfoPG61ruJC+5UWsy6AtLhcsdW6AM41F+3HzjV/AQDAofvKV76iCy+8UNLr7UZer1czMzNz5hB+v1+/8Ru/occee6xpO1M7nH1dzjUKmu1FIC18r5xqtapsNrvg8i0mv0kmkw17WXq9XiUSiZbHi1kzAQCApZbL5XTTTTfplVde0c9//nO99tprVhuGx+NRMBhsmO/p8XjU1dWl733ve3rLW97S1s8h/r+O+A8AONx27typJ598Uk888YQef/xxjY+PW+s3SNJDDz2k0047zXo980WZ/wIAODTt1ncrlYruvfde3XHHHSqXy/rDP/xDffjDH27751DfBQCsZc618OeLv0arcXXN1Go1XXbZZXrppZf0P//n/9Sb3vSmtsu3mHjbbG9iZzx11pFbzQUBAOBwW6nr419++eUaGRnR7bffrqOPPrrt9zG/EgDWBmf/pn2/1WbjlBay31qz9//d3/2dnnzySV1zzTU66aSTwOQHxQAAIABJREFU6p5z9lvOpdl8K/v7nfun0ucJAJ3F2WbpHCPbaqyNcx/xuczOzuqSSy7RL3/5S916663asmVL2+9daFxpta+3s/7kHNvj3CMUAIDDbTn6G6WFj+/5v//3/+rTn/60jjzySH3pS19quv5GK/Q3AgBWmtU2f/T222/XQw89pO7ubv3pn/6pzjvvPPl8PsbTAgAOC+fYG3ubcKvYNz09rUKhsKCfs9C4K9XXLd///vcrm83q+uuv11vf+taW74lGo03X03TOVWGNSQDAQq2E8aw///nPdd111+nUU0/Vn//5n9c9x34hAAA01yn7K/zzP/+zvv71r2vbtm26+uqrG9ZbsGN/BQAA2tOp/ch33HGH7r//fh1zzDG68cYb6/qEWZcJAIBD06n5gd1HP/pR7dq1SyeddJKuuuoqHXXUUeQHAAAcRqshf7jwwgv12muv6dhjj9VVV12lN73pTeQPAAAcRqshf5Cke++9V3feeadisZiuu+46bdu2re558gcAAJbOaskfJGnPnj264IIL5PF49KEPfUh/8id/Yq33Rv4AAMDhsRLmPc5lIfMeTXtEPB7XZz/72br2COY9AgCw9JxzIp3HMzMzyufzDe9z7sPSjoXO15Qa17SdjxkfccIJJ+gv/uIvtGHDBus5534tzjma7LkCAMDCrdR1942l6t9g3X0AANaOThi/8b73vU/ValXbt2/X8ccfP+97WJ8CALCWdPr4CXv7xLnnnquLLrpIPT09Da9j/AQAYCk59x2y71XUrL7bLJ4206oOfe+99+rBBx/Uxz72MZ155pmSGmNbK83WVXa22dvXYXaOE+hE//Iv/6IPfvCDqtVq837vPp9PJ554op5//vllKh06VS6X0+DgoP72b/9WF1xwgdvFwSpk70e2xwNnHa3VeLKDBw/qwgsvVD6f19133910Dzq77u5uhUKhOV/jrI+ZsWP22EK/L4DVZGpqSul0esG3sbGxpn1e4XBYqVRqwbd169YxNhcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4zJzrj5n19NtZg2xiYkKVSqXpdRe7DtnAwEDHrw0MoDNdcMEFevTRR/XTn/5U69atc7s4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0qvs9tVqt5nYp0NwLL7ygU045Rc8++6ze8pa3uF0cAOhIl112mX7wgx/o+9//vttFAYDDampqSqVSSblcTpVKRblczjpnNjaoVqvKZrOSpEKhoOnpaU1PT6tQKEiSMpmMarWa9b5mr69UKioWi9bPzeVymp2dbXmM1nw+n+LxeMvjSCSiYDCoQCCgaDQqSUokEvJ6vQqHw+rq6pLX61UikZAkRaNRBQKButcnk0l5PB51dXUpHA5b74vH4woGg4rH49ZzAOCmYrGoQqGgQqGgTCajfD6vSqWibDarmZkZ67hYLFpxbXJyUuVy2YpRJgZlMhlVq1VlMhlJqot19ti2Ftj/xgeDQUUiEUlvxJhYLCa/32/Fl2Qyad2buGTiSigUUnd3t3XNZDKpaDSqaDSqSCSiVCrl5kfFClSpVDQ+Pq7R0VHt3LlTIyMjDY9fe+21utwxlUpp69atGhoa0vDwcMPjjRs3KhAIuPipGj3++OMaGRnR+eefr2Aw6HZx1gTz9z+dTqtcLmtyctKKAdlsVtVq1XqNPQak02lJb9RtzHvtsSGbzapYLCqbzapQKKhcLqtcLst0o3R3d8vr9VrXRHOmbmLE43H5fD5Jsuok9vqPiUPd3d0KhUJ1dRoTX8w1TTwydSFzHfPeVCplvQYAgMWq1WrauHGj9u7d2/Z7vF6vfD6fPvOZz+jd73631dZq7k1+Yuq4kqzcxbTHzs7OKpfLSXqjnbVZ2670Rk5j5PN5zczMLNE3sHqZnMEw9WNJTfMTUwe2P2dym2ZttKaebfIRc097LADgcPn1X/91/ehHP2r79X6/X0cccYTuv/9+nXzyyZLeaDc3eUc2m1WlUrHyC2fu0iw/Ma817S0mD5Ja9zOb6xkmb8LcnO0ezmPTltKsr9n0HZs8xe/3KxaLSWqd45h7cz6RSFj9CwAAd/3gBz/Qb/7mby7oPR6PR8cdd5y+9rWvqa+vr2GM2ULbKObKAYrFoiqViiTV5RRSfR8+5mbaGpod28cAOHMAe5xfSDsHY8sA4PD5whe+oD/7sz9b8Pu8Xq8++MEP6q1vfSv9Cy6ifwEAVj4T80x8bNXWvXfvXqXTaY2OjmpiYkKZTEbj4+PK5XJKp9OanJysi5VGT0+PtmzZYsVYSXX1YHsZMD8TMw3Tfi1pwXG0nRgbi8UUDAYb2rvtZQCAtajd+LlUY+Ak4uehIH4CgDuIl52FeAkAOJyarenF/LGVif5dAEC7iO+dg/gOAABWq3w+r3K5XJeTmnxzIXlns7n9+XxeBw8etNYPMOsymvn8Jr8xOS/m5vF4lEwmrWN7PiktfG5/O7lrLBZTKBSqy0fpiwIArHQmP8nlciqXy8rn81a+kcvl9NJLL2liYkL79u1TPp/XgQMHrPkchUJBpVKp6fpDPT09OumkkxryIUnWWgeG8xjN2XMTSXV5jLR0bW0mjzL39vUMQqEQaxgBwCowV/xvp6+tUChoZGREuVxOY2NjKhQK1h4RlUrFyg18Pp+OOOIIScT/xSL+A8DqthLmvzjXG0RrzH8BgJXvUOu7zeLoXM9J1HcXi/ouAHQuE0vNWvbpdNra06bdfW+c+xM3e4618g+dfS18af49cuZaO7/ZPsXO58x9NBpVMBhUMplkf2IAOAyYX9k5mF8JAHObmprS5OSkNeZocnJShUKhYT82++OpqSmr7mnqkube1BXt8c9Zf3TuwbrWmHgi1c+5MvHFfs7U/cy9aWe175Hq9Xrr5lMFAgElk0lFIhF1d3crFotZzwPASmTqTplMRuVyWcVi0ar/mPuFtnma2NTsOfvPNOztoGjNtD8a7e4J2m6bp4lz5jlzn0qlrLqWc19SAMDi0d/YOehvBIDOxXjazsF4WgBYecx6CZlMpi6mzs7OzhkzF/ucVB9T7a9Ha841JZ0x1Rkn54qh7Txn7k1MTiaTCgaDdXEbANYaxrN2DsazAgDsDuf+Cu2OmWJ/hfawvwIAYKnRj9w56EcGACwX8oPOQX4AAFgpyB86B/kDAGClIH/oHOQPAICVgvyhc5A/AABWIuY9dg7mPQIAVhoT4+3zLiuVihXbTd6wVDmFpLp5mvYyYH7OeY+m7UDSgvOGdnKKWCymYDCoRCJhvY65lwAAO9bd7xysuw8AQHsYv9E5GL8BAGiG8ROdg/ETANAZCoWCisWiisWi0ul03b5GJiaauGliq2m3N+39JoaaOGtfn9keN83za4mJYVJ9PdfELfO8iWUmXpp2eBPvTEw0cTOVSlnt/KlUSpFIRJFIZEn2Gfr617+uP/7jP17w3lJPPfWUTj/99EP++Vi9/vEf/1Ef//jHNTo6avU/Ye1Ip9PK5XLKZrPKZrOanJxsqNdVKhUVCoWWe+yZ9lzpjXrcahuXZq9HOetD9vZK8zp7PLCPAzOxJZFIKJlMKpFIKJFIKBAIuPwJAXSCqakppdPpBd8mJiassT924XBYqVRqwbeBgQH5/X4XvgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAy6FQKCiTyVi3dDrd8Nh5bx6bvQacksmkUqlU3X2zc82eM2sJA8BCPProozrnnHP00EMP6X/8j//hdnEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOhk93tqtVrN7VKgtSOPPFIf+MAHdNNNN7ldFADoSLfccovuuOMO7dy50+2iAIAkKZ1OK5/Pq1AoqFAoKJfLKZvNqlAoKJ/Pq1gsKp/Pq1KpKJvNqlQqaWpqqum5XC6nSqXScjOBZpLJpDwej7q7uxUKheTz+RSPxyVJsVhMfr9foVBI3d3dkqRUKiVJ1uv9fr9isZh1vUgkomAw2PaxuU6rYyMQCCgajbb9uSTVlbtdk5OTKpfLC3pPPp/XzMxMw3nz72KUy2VNTk62PK5UKioWiy2Pc7mcZmdn696XTqclScViUZVKRTMzM8rn83WvN+Wo1WrKZDJtf654PK5gMKh4PK6uri6Fw2ElEgkFg0HFYrGm5yKRiGKxmKLRqBKJhOLxuKLRqKLRqGKxmPX7A2D1KpfLSqfT1s1sdGPiXTabVS6XU6FQULFYrIt75mb+trXi9XqVSCSsGBQMBhWJRBQOh9XV1WXFkmg0qkAgoHg8Lp/PZ8U8e6yTVPe3ybxWqo9Z5tp25u/gfNqNR9PT0yoUCvO+bnZ2tiHW2885/95ns1lVq1VJr29WND09LUmamppSqVSS9EYsM6/NZDLWvbm2KZ+JQ/b3t2JigIkLJkZEo1HF43ElEgkrRphNjOy3ZDJZl2dg9ZuentbY2JhGR0c1MjKi0dFR7dy5s+7xrl276nKvVCqlrVu3amhoSMPDw9a9Obd582ZFIpFl+wxnnHGGnnzySa1bt05XX321LrzwwgXnpKuVyVVNTLDfMpmMcrmcpqamrDpQuVxWLpezcvR0Om39DcrlciqXy1buOx/zd9weAxKJhLxerxU37HUOExtMLLH/La/VaqpWq9qzZ482b96snp4eJRIJ62c560jOONAqfjSLNXNxxrN2mDpCu1r9rXfWdZz1KGcdyR6LJNXFelOXMfUfexwzccv8vGq1qmw2W/dZ2olHRjweVygUsuouwWBQqVTK+jdyPt/V1aV4PG7FI/stlUpZdWYAQOfKZrNWPlIoFJTNZhvaZnO5nEZGRvS1r31NHo9HHo9HtVpNhzqswsR+U8eVGttjPR6PksmkpDfyElMHlurrs84cw9nO6myXNdczWsW1Vu21czH173Y520Hb0apN1pmXmFzDsNeLm13Hni/Zy+Vsh7XX4TOZjGq1mvWz7W20zjxoLslkUsFgUNFoVJFIRKFQSMlk0vp9iMViCoVCde21qVTKqlebmz13YZNgAFjdKpWKtUF9Pp/Xnj179O53v3vOPMXkM4aJUx6PR4lEQoVCoWmMbWau/MTkHvb2Fme/tLMNZb78xHlsb8+X3mjrcXLmQe1YaJ/mYvIZZ15iONtdnG0fzuO58h97W4rJe0z7WrM2mLnyn3aYf1t7XhONRhUMBlvmNeY4Go0qmUxa/cvmHP3LAPAG03/SrA2jUCjovvvu05NPPmnFQ9OGIanhfqHabaNolgOYGG1vu7BfT1Jd+0izY2efyFx9JAuNHfbP0a6FxEej1TgIZ9+N89jZtmDaIZodN+tPaScHaNbO0Q5nW4az38WM50gkElZbWDKZrGvLMOMGTOxfzn5dADgU7fYvmDHdpu6WyWSs+vy+ffs0MTGhmZkZVavVttuSPR6PAoGAYrEY/Qv0L0iifwFA57OPK7TXc3O5nNX+XSqVrPGFpVJJ2WxW5XLZGo9eqVTqxhe2+nvfzFxx1DxnYp1pmy0Wi+rr69OJJ57YUK90tlU745s9Djvrx85ju1Zt4K0sZg5Wq3brVuz1Tydn/dJeL3aOdXceO687VxxdaIydj+m7sNdzzb9xs3puIpGwxhw627jt8ZVxhgCWWifEz3brqFJ78XNmZkZ+v5/42eKY+AkAjdZivDSIl82PiZcAsHYtRf9uoVBQpVJRJpNpWC9qLswfewP9u6+jfxcAlgbxnfhOfAcAAG5r1Qdlzk1OTiqbzapSqVjHS5WTNlsnfqFz+00fUbVatdYA3rBhg/r6+hrWTXSuj+g8brWu4mL6lRazLsB86xc7tcpjnev8Oo+dfUPOY+d6woc6t7/d9Ymlufui7HP9zb9dPB5XOBy25vKbuX3O3NRe9wAArH6Tk5NWLmPWiLbnO+l02prL3izPSafTVmwza9i3Gv/hNF9bW1dXlyqVirxer2ZmZlSpVJRIJHTsscc2tMNJjWsRONc4cuYpznE6rfYTcF6nHQvNbxa6l4zUuN+NMV++4syLnNdxroG02LY253PtsK9hFAqF5sxrzF46zj1y7GsY2OfjAgDesJLjf6u+tlqtJq/Xq0wmo0AgoOOPP14S8d8g/hP/AXSmtTL/xcwF6enpsZ5j/kvzY+a/AMCh6cT6brPnJOq7BvVd6rsAVh7zt9O+J7GJt+ZcqVRqGDtXLpcbYqw9Lrc7ht+5B3GzsXFmXNtcz0nzr5XvjMfzxd9W72vHQueBLCbettr3d6HxdK49c5rtNzzX2vlzPdcOexxtN/Y2Wyfffo79xwGsdMyvZH4l8ysBrEYmpmUymbp7czMxbXJyUul02nqcy+Ws+mexWGxr3y3zN8rEJ1PXM/emLmnuTR3PHv+c9Ud7jHLWHe37rTZrt52rn9TJ+XPn4pwbNZdW85ia7YsmNdZJ7bHLHlNMGcy9qfuZe/t1TNwy9wv5t0ylUuru7lZ3d7fi8bhVt4tEIkomk3WPE4mEUqmU9djcL3ROG4DVwYyzyefzVryx17cymYzVFtaqTmX+PtrrYe1o1na52DZPqTHGzDcXeL76V6v3tWOh9auF1EsN516fxkLqT9Lce4Q2a7tcbJvnfEy+Yb5vMyanVV2r2Txhe5+iOceYHQArFf2N9DfS3wgAhx/jaRlPy3haAFi8YrFo1VdzuVzdWB1zrtW8znK5XDcX1N623I65YuZCn5Ma64rzjb2x921Krdt7F9r+uJi4u5C6ndQYKw1nPJ5vjUlnjHXGVGcsnCuGzjUntB3N4qXp23TOAzW/A4lEoq7OauKoOdesHQIAFovxrIxnZTwrAHSm1bK/gvN6zY7ZX+F17K8AADDoR6YfmX5kAIAT+QH5AfkBAGChyB/IH8gfAAALRf5A/kD+AABYKPIH8gfyBwDAoWDeI/MemfcIAFgs8/e+1RxMs1aufW2hbDarcrmsQqHQcj2idtfPmStvWGhOIdXPxZQa47k973CuWTTX/inO685nMfM1nfF9PnOtBe/c88Q+r9PZ/uE8dl53rrxhoTnFfOaaexmLxRQMBpVIJOrWJAqFQlbuEI/Hm869ZM16ADh8WHefdfdZdx8AsNowfoPxG4zfAIDOxvgJxk8wfgIADq9sNqtMJqN0Oq1MJlP32MRas96zGVNgjk1duZ36XiqVsuKmia2mnmvqpSaGmr+r9vWX7fHOHmudbf/2sQDN6q7t7m+/kL6AVnvTOznro1J9ndXZt2+PUfZ4aX+PadM3Mc7EURM/TdnMtTKZjHU/n1QqpUgkYtVdTVu7/djUWZPJpFKplHX/3e9+V1deeaU1zsHr9Vp7SM3MzFjnPR6PUqmUhoaGtHnzZm3dulVXXnmlNmzYMG/5sHadeuqpOvroo3X33Xe7XRQsQrlc1sTERN1tbGzMikGZTEbZbNbaa8/5uBV7u5s9Z3fuh2YfryTV17tMPcneXmqPRc46mXOfgGac9bpmnOPCnJqN1TLvsa/hb48z9nqVqSs1qy/bxwoupB3cjPMyt3g8rlQqVXecTCbV29ur3t5e9fX1qb+/X729vQsegwfAfVNTU0qn03W30dFRjYyMNJy335qNYTFtJQu99ff3s2cHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMOi2Zpr7dwOHjzYcs+axa69NjAwwJ69wBpULpd14okn6pRTTtG9997rdnEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOh093tqtVrN7VKgtcsvv1yPPPKI/uu//svtogBAR/rqV7+qSy65RJOTk24XBUCHm5ycVDqdViaTaViQP5/Pq1AoKJ1Oq1AoWMe5XE7ZbFaFQsG6tRKJRBSNRhWJRBSPxxUIBJRIJBQOh9XV1dX0XCwWUzAYVCKRUCgUUnd3d9NzwWBQkUhkGb8trDTFYlGVSkWTk5Mql8vKZDKanp5WPp+3zmWzWVUqFeXzeU1NTalUKrU8Nz09rVwup2KxqEKhoGKx2PJnR6NR65ZIJBSPxxWLxaxzqVRK0WhUsVis5QYVXV1dy/htAWvTzMyMxsbGND4+rgMHDmj//v0aHx/XwYMHW8a/TCbTNM8OBoNKpVKKxWLW/3sT5+LxuBKJhHUci8WUTCat42g0qmQyqWg0al0HK0uxWLRiiclvisWiMpmMlQMVi0Vls9m6WGHyomKxqFwuZ73fye/3N8SBZDJpPe7p6VFfX5/6+vo0MDCgwcFB9ff3EytWuXQ6rZ07d2pkZESjo6MNj3ft2qWZmRnr9alUSkNDQxoeHtbWrVsbHh9xxBGKRqNLUrYjjzxSO3fulCT5fD7FYjFdccUVuuSSS5RIJJbkZ7ihVqtZMcB+f/DgQeXzeWUyGWWzWeXzeetm/m+b46mpqabX9nq9SiQSSiQS6urqsuoxoVBI8Xhc3d3dCoVCSqVSVl3G/nxXV5fC4bCSyaRCoZD1vN/vt+6x+s3MzCifz2t6etqKPSY+lUolTU1NKZfLqVwuK5/P1z1fLpc1OTlZ9/zk5KSmpqaUzWaVzWZVrVab/lxTFzc5jKnf2O/NeRO3nPcej2eZvy0A6HzVarVuc1R73TSXyzVtl7XXUUyu0orJJ7q7u5VIJOT3+5XL5RQOh+X3+9Xd3a3u7m6Fw2GFw2GrbSsQCKi3t1fd3d0KBAIaHh5WLBbTEUccoXg8buWH5Cdrj2lLbdbOam+jrVQqVt26UqnU5Sr5fF6VSkXZbNa6lvm9np6ebvpzfT6flY+YdheToyQSCet31+Qq9rq2eRyLxZb52wKAtcH0NTtzGdPXbPIV095ichjTzprP51tuEC9JHo9HXq9XXq9XgUBAgUDA6lMOh8Pq7u5WJBJRd3e3ent7lUqldOKJJ1pt8aadxdnf7PF4lEwml/Gbwkph2lxMG0yzHMb0QafTaVUqFas/YK68ZnJyct6xEyZnsbfB2M+Z3MaZ09jzGnJwAG5r1r9u8gAT+028b9Wu0WqKRzAYtNobSqWSFfeDwaAV+7u6uqw++O7ubiWTSXV1damnp0eJRELDw8MaHBy0Yr55j8kHsPaYWN9uzG83DzD5baVSafpzTb+hfTyZPf63astwjicAgFaWu3/BxGkz7iGZTCoYDFrjw814uGZ1cPt4cfoX1i76FwCsdKVSad76rn0MoX2ulTkulUotr2/mloTD4bqxhK1iqhlf2KytOx6PKxgMKh6PW3UPrD1mLOB8MbVVPdfMtbKPSSyVStbvdStdXV1186RatXvHYrG6eGqPr6FQaBm/KQCHE/ETnYb4CcANxEt0GuIlABwe9O+i09C/CwDzI76j0xDfAQBYfaanpxv6oUx+6pzLb3JQe7+UOdeKWUPXzOEz+eeh9EexpiLM/NLF9kU1y1FLpZI1n7WVUCjUNA+1ry1tctVmOWkqlWJ+KgAsE/M3vdk6Rvbcxqyva3Iae/4zOzvb9NqBQMAag2DWLmjW9tZOTuNsezP3WFvM2kWzs7PK5XJ1bW/lcvmQ1jAy6023Ys9fzN4X8Xi8YbyNcw1p+83r9S7jtwUArRH/0UmI/wBWM+a/oNMw/wXASkd9F52E+i6ATlUul5vGWzOGztRlc7lcXay1129b1WXNXjaxWMyqB8xXb7XP3TD1VnusDoVCikaj1hg6rC32NfJbzc9YzDyP+dbJN3M6zLg5E3PNntvN5nQ44y2/rwCaYX4lOg3zKwEsVLFY1MTEhMbHxzU2Nqbx8XFNTEwok8kok8kom83W3afTaau9d2ZmpuF6fr/faucy/aXd3d3WfBXTD2rmbpm83TyXTCbrXsc+bJ0pk8loZmbGaqsw+56a9tTJyUllMhnrselPmJycVLFYtJ4zj7PZbNOf09XVpWQyqUQi0XCfSqWs+4GBAfX29qq3t1d9fX3q7e1VIBBY5m8FgPRG32KrOpazb9G5L7gZQ9GMqU+ZuGLqVKFQaM5+xFAo1NDG6aybmXusLfl83upfdNaRcrmcKpWKcrncvON4FjpPOBwO180Dttex7GN25qpf8fsKwIn+RnQS+hsBdCrG06KTMJ4WwErTqu3YXm81Y3BMbu8816rt2L4uXyQSqWs7nqud2NRNm9VxzZicaDRKn9MaMz09rUKhYN23agtutx5bLpdVLBatfLFcLjf9uWZ+cSKRqIuZznPUWYHVjfGs6DSMZwWA17G/AjoR+ysAwNKhHxmdhH5kAFge5AfoJOQHALAykD+gk5A/AMDKQP6ATkL+AAArA/kDOgn5AwCsLMx7RKdh3iMArCylUqnp3Mt0Ot10XVyTQ9ifb7VWriRrbe9wOGztm7LYeZf29XPNOjBYe8w6V4ude1kulxvWuS+VStbvdStmvWczt9I+99K+Zn0sFmtojzDHrFkPYDVi3X10EtbdBwC0g/Eb6CSM3wCAeoyfQKdh/ASATjc2Nqbx8XHrtn//fh08eFCZTEaZTEbpdNq6N48zmUzTfY1MvSIWiykSiVh/oyKRiCKRiFKplPU4Go02HCeTSWsvpEQiQX1jhTJ9/abOatrXi8WiisWiMpmMVZctFotKp9PW40KhoEwmo2KxaPU1FQqFpj/H7/crHA4rEokokUiop6dHAwMDGhoa0vr169Xf36/BwUH19fWpr69P/f396uvrW+ZvA53iJz/5iX7t135NTz31lE4//XS3iwNJlUpFBw4c0N69e7V//36NjIxYMWliYsK6jY2NaWJiouneAr29vUomk9bNrLtu+u/sx6lUqu6cqRvi8CiVSpqcnLTyBtPubtrk7cfpdLruXCaT0fj4eENdKBQKqbe3V729vdbf/r6+Put43bp1Gh4e1uDgoNavX69IJOLSpwdWl6mpqab7w8x327dvn2q1WsP1wuGwhoeHNTQ01NDf0OrW29vLuE0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq4pzrTezRn07670dOHCg6d5K4XC47XXe7Leuri6lUikXvgUAh+pzn/ucbrvYBolMAAAgAElEQVTtNv3nf/6n1q9f73ZxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADodPd7arVaze1SoLWnn35ap59+ul5++WUde+yxbhcHADrOjh079M53vlO5XE6xWMzt4gBwWbVa1fj4uHWzL4qfyWTmXDS/XC43XM8sfB+LxRSLxZRMJhWLxRSNRhWNRhWPx5VIJOrO2V9jf5/H43HhGwGWRq1WUyaTUT6fVz6fV6FQUD6fVyaTsR4XCgVls1nlcjkVCgXrfDqdrns8NTXVcP1wOKxkMjnvZhTJZFI9PT3q6+uzbvzfwlpWKBS0e/du7d+/X/v379fY2JjGxsY0Pj6uffv2WY8PHDigiYmJuvf6/X719/fP+f+t1blIJOLSJ0anmZ6ebsi55srJMpmMDh48qLGxsYZ4EYlENDAwoMHBQfX19am/v18DAwMaGBhQf3+/+vr6NDw8rHXr1mlwcNClT4zDKZ1Oa+fOnRoZGdHo6GjD4927d2t6etp6fSqV0tDQkIaHh7V169aGx5s2bWqrHaG7u7vh99Hv9ysQCOiiiy7SVVddpaGhoSX/vAth/t6PjY3p4MGDSqfTOnjwYN1j+/3ExIQymUzDdfx+v3p6eqx6jqnrmFs8HrfqO85z8XjcOkecQCcoFotW/SaXyymdTlvH5pbJZJTL5erOZbNZ65ZOpzUzM9Nw7VQqpZ6enob7ZudMDOvv73fhWwCApVepVKzcZHx83Mo/zM15bM5ls9mGa/l8PqVSKcXjcauN1tnmah6btlpn26zJa7xerwvfBrB4pVJJhUJBuVyurg3W5C7ZbLaurdbkJ+Z1Jr/J5XIN1zZ5v7Pdp9U50w5LvgJgrTDtk81ymblymmZ9zZFIxMpn7PmKyVWi0ajVBmPPcxKJhNXW4vV6NTAw4MI3ARyaVv3L9r5je75jf43Jd0xOY2/3NWKxWNP+rVY5jelb6O7uduHbALBSzczM1LVjtIrzzXKAZtMzzN8dez9KNBqds13D2YYRi8UUDAZd+DaAQ1OpVOr6Uezx3vS32M+ZfhlnW0azPkyv1zvneDJn/DftGH19ffL7/S58GwAWg/4FYGnQvwDAKBQKOnDggA4cONAynjaLr5OTkw3XMvOqTFu3GS/YKr7OVR8GOk2zNm778Xzt3ia2lkqlhmt3d3fPG0/tj82Y+Wg06sI3AawNxE9gaRA/gdWNeAksDeIlgE5H/y6wNOjfBbCSEN+BpUF8BwBg8SYnJzU+Pq79+/fX5Z/zzfcrFAoN1woEAlZO6pzL36xfaq45gKx5jU7UrI/JuX78XHMATV5aLBYbrh0KhebMRZvlpQMDA0qlUi58EwDgrlqtVrdnznxtbvbjZuvcmvY2+/rPzn1yzLpFrfKfWCymUCjkwrcBLF61WrXWIbK3rdnXjLbvm2NfQ9qsa2Dym9nZ2YbrN9uLwzm+ptk6BqwLAqAZ4j+wNIj/AJYC81+ApcH8FwAS9V1gqVDfBTCfYrFo7UXfLK62irnN6rLhcNjak9gZQ01sbbd+C3SScrlcN0bOHl+d4+aanZtrTocZmzpfnLWPnevv71dvb68L3wSAhWJ+JbA0mF8JrHymD3X//v1W7JuYmKi7t5+fmpqqe38gEFBfX5+SyaSSyaQSiUTdfSqVstp2mz0fiURc+uRY7dLptLLZrDKZTFv36fTre6SZvM4pkUhoYGBAvb296u3tVV9fn3Vvzvf19WlwcFDDw8P8bgMOExMTTfcEn6uudfDgwUX1LTr3BW91jv4QdBp7fapZ/6Hz3ELH7DRr02x2bPYC7+/vZy9woAPQ3wgcOvobAcyF8bTA0mA8LbB2HTx4UGNjYxobG2u7zppOpzU9Pd1wrXg8XldvNXG02Ricuc4FAgEXvglgcSqVSkPMbBZHW51rt87aKm7aH/f397O+JHCYMJ4VWBqMZwWw3NhfAVg67K8AoNPQjwwsDfqRAawm5AfA0iA/ALCWkD8AS4P8AcBaQv4ALA3yBwBrCfkDsDTIHwCsVcx7BJYG8x4BrFWFQsHaI6Wdtghza7ZWbldXl5VLNJtv2Wpd3GZ5B9Bp7HlCPp9XOp2uOzbnms3RbGfN+vnyB/vjgYEB9ff3s+40gGXBuvvAoWPdfQBYORi/ASwNxm8AcAvjJ4ClwfgJAAuVy+W0d+9e7d+/X/v376+Lx2Y8gr2+7czze3p6rL8DJt+35/3JZLLhvDnHnkZYjOnpaWUyGaXTaR04cECTk5NKp9PWOXNvHpvjiYkJpdPpumv5fL66eGX66825gYEBDQwMaHBwUOvXr1c8HnfpU2O5XXzxxXrqqaf08ssvsw79YTYzM6ORkRHt2rVLIyMj2rdvn0ZHRzU6Oqp9+/Zp7969VjyyS6VSGhwcVG9vb93N/B92nu/r66N+t8rlcrm6nGViYqLuZnKciYkJK8+x5zWRSEQbNmzQwMCA1q9fr8HBQQ0PD2vdunUaGhrShg0btHnzZnV1dbn4KYHlMTU11XIPmLlu+/fvV7VabbheOByec8+KVrfh4WEXPj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArC7VarXpGr5z3dsfVyqVhmuGw+GWa0+3Wq/a3BKJhAvfAoBXX31Vxx57rP7yL/9Sl19+udvFAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNbjfU6vVam6XAq1Vq1WtX79eH//4x3XNNde4XRwA6DjPP/+83vzmN+uVV17RUUcd5XZxACyxcrmsiYkJpdNp6zY6OqqRkZGm58bGxjQzM1N3jXA43LAgfTu3np4ehcNhlz45sLpNTU3V/R9u97Zv3z45q7jhcFjDw8MaGhqq+z/c7NzGjRsVj8dd+tRA+yqVisbHx6341ux+586dSqfTde9r9v/Bfmx/PDg4KJ/P59InBOZnjxXO/M95vGfPHuVyOeu9wWBQvb291u/8XPdYXdLpdN3fSefj1157TcVi0Xp9KpVq+J3YunWr9XhgYECbNm1q+fMCgYBqtZouuOACXXvttXO+diHM7/98v/ujo6PavXu3pqen696/2DrQunXr5PV6l+QzAGvFUtZtzN+kVnUa+zH/XwEsl1KppIMHD7adm+/fv1/VarXuGovNTai3AkvjcLfFtjoeGBiQ3+936VMDwBumpqbmzWHMuT179jRslL7YXKa3t1ehUMilTw2sLovNZyYmJub9Pz1fbjM0NCSPx+PSJwewUO2MM7MfHzhwQLOzs3XXWGzspw4ELJ3Fxv65/k/PF/MZVwYsPfoXgM5H/wKwsixkTO3evXuVzWYbrrHY2MpYW+DQLTauHjx4UOVyue5aC23nZqwh1jLiJ9DZiJ/A8iBeAp2NeAlgqdC/C3Q++ncBOBHfgc5HfAcAdLqF9EONjo4qnU43XIP1FAH3LTQvNf+/S6VSw7VSqbnXWSQvBdAJ2lnHyByPj48v2XrRfX19CgaDLn1qYPVYbJvbXHtgtbNHzoYNG5RIJFz61AAOFfEf6GzEf2D1YP4L0NmY/wKsPNR3gc5GfRfoDAupy46MjCiTyTRcg7os4J7FxtvR0dGGazF2Dlh+zK8EOh/zK4H2mf3a7PHNPLbft9qjtVl+2ipvpd8Fq1WzfpNWuWOz/NHZzmr//2M/t2nTJuIMOtJC9gTfvXs3fYvACsJe4EBno78R6Gz0NwKdgfG0QGdjPC3gLvN/sJ1Y2qqvkjgKuGM566z2Y8bWYS1iPCvQ+RjPCqxN7K8ArA7srwBgsehHBjob/cgADgfyA6CzkR8AcAP5A9DZyB8AuIH8Aehs5A8A3ED+AHQ28gcAbmLeI9D5mPcIwE0LmX+5d+9eZbPZhmuwVi7gnsXmEQcPHlS5XK671kLXrGcONQCJdfeBTse6+wDQiPEbQGdj/AawtjF+Auh8jJ8AOpu9Tt3qvtm4g3b+v5pzGzZsoP6MjmP6yZzt7M1yVWf91Fk3nesenWt8fFxHHHGEbrnlFn3iE59wuzgdr1QqaWRkRDt37rRi0M6dO63brl276v6fmT4ue+xx/h/buHGj4vG4i58Kq4WJCc4cyR4Ldu/erXw+b73H/ju6detW62bObd68mTFcWBGWsn1eYm8YAAAAAAAAAAAAAADw/9i7s9i20vP+4z/tkrXYkrVvpGyRkrWQ8m7JTiaTmaSZAZqLYIAi6UXRNEjQBmjQAi1a9KLTAt0LBGmKtMnFPzdFEcDdkWIyzTgJElvyeBmL1E7JEkltFLVZi61d/F8Y54S05G0s+4jU9wMc0JRJzft6yPM87w4AAAAAAAAAAAAAAAAAAAAAOKge3d9udXX1mfe8C4fD2tra2vE72eMOePW+8pWv6Gc/+5n6+vqUlpZmdXEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgEl5MikUjE6lLgyb761a/qo48+0q1bt6wuCgDEnfHxcVVWVurq1au6ePGi1cUB8IxmZmYUCoU0MTGhUCik8fFx8/nk5KRCoZDC4bCWlpZi3peWlqbCwkLzKikpiXleVFSk4uJi83l+fr4yMjIsqiWAvba2tqb5+XnNzMxoZmZG4XBY09PT5vPp6WmFw2Hz+czMjDY2NmJ+R25urkpKSlRSUqKysjKVl5ebj6WlpeZjYWGhRbXEQbC0tCS/3y+/36+RkRHzz36/X2NjY5qenjZfm5SUpJKSEpWXl6u8vFwVFRUqKytTZWWlSktLVVVVpZKSEhUVFXFgCg60xcVFM7ccGxvTxMSEJiYmND4+rsnJSY2NjSkUCmltbc18T3Z2tqqqqmSz2WS323dcpaWlFtYIL0MkEtHU1JTGxsY0Pj6uYDCo8fFxjY+PKxAImH+O/pw8i/T0dG1tbemLX/yi/uRP/kT19fW7vm5mZkaTk5MaHR01P6uTk5MaHx8320IzMzNaX1+Ped+RI0fMtk9RUZFKSkrMdk9RUZFKS0tVVFSkwsJCFRQUKD09/WP/GwF4NdbX1zU3N2e2a6ampsy2zdTUVExbJxQKaWFhIeb96enpKioqUllZ2Y7csLS0VJWVlSorK6NdA+CxFhYWzD5ZI2c2cmgjr56amtLy8nLM+zIyMmL6Zo0cxOiXje6bNXKTpKQki2oJ4EWsra2Z+cr09LSmpqZi+mGj8xfjip6elJSUpMLCQhUXF8f0wZaVlZn9WxUVFSotLWUcB8BzW1tb25HHGH0sxs+Ne9T29nbMe3cbWy4qKorJa4x+mPz8fGVlZVlUSwB7YWFhQbOzszFjyI/LbWZmZnT//v2Y92dmZqqwsFBlZWUqLS3dkccYjyUlJbR9gJdocXHxiXF/ampKoVBo13lmu8X43Z4b/RgpKSkW1RLAi9ra2jL7Mh6N8Ub7IBwOx+QFu80rM2K7Efej+zOM+J+Xl2dRLQHrMb4A4GkYXwCe3fb2tsLhsNnOjW73RsfWmZmZHXMac3JyYmKo0c+9W9u3oKBAOTk5FtUSwItaXl7W3NxcTAw11k5Ft3GN54/LxY31Uru1c8vKyujnRtwgfgJ4FsRPHHTESwDPgngJHAyM7wJ4GsZ3gfhDfAfwNMR3AMDLZOzj+Lh1fsae8tPT0zvGobKzs3dd02fs/xydnx49epS1O0CcW1lZ0fz8vDn+ND09/dg1ftPT05qdnY15f3JysnlfeNI6P/JSAHthbW1t17wmut/NuIft1oY27le75TbRe0lzZg4QvyKRyI59DJ60f9H09PSO/eVzcnJUWlpqzrV5XL8bbSHg1SD+A3ga4j/warD+BcCzYP0L8Oxo7wJ4Gtq7wN6Ynp42zyGemprS6OioeT5yKBQyY+7q6mrM+7Kzsx8bZ40YbPx9QUGBcnNzLaohgBexuroac0ax0XbdLe6Gw2HNzc3FvD8lJcVc01FZWamSkhJVVVWppKTEPK+4srJSxcXFSktLs6iWgHVYXwngaVhfiUSztram0dFR8/L7/THPx8fHtbCwEPMeI96VlpaaYyAVFRXm57qkpMSMfQA+nvX1dc3MzCgUCmlyclJTU1OamJgw116GQiHz7x48eGC+LyUlxfwuVlVVyWazqbq6WlVVVebz0tJSclG8EhsbG2a/5m79nGNjY2betLW1FfPeo0ePPrFdZbS7jLHFzMxMi2oJ4EUsLS1pdnZ2xzmgxpy+R9tZ0TFPkrKyslRYWKiKiood/ZvRz4uKiiyqIWAdxhsBPAnjjcCLYz4tgKdhPi3weFtbW+a4R/S6TyOujo2NmXvKbW5uxrz3yJEjMbHy0fWexcXF5vOCggL6joE4ZLRZd1vfOTU1teP5vXv3Yt6fmppqji0ZbdTouGnE05KSEqWkpFhUS+DZMJ8VwNMwnxXYfzhfAcCz4nwFIDExjgzgaRhHBg4e8gMAT0N+AOBR5A8Anob8AcCjyB8APA35A4BHkT8AeBryBwBPwrpHAE/DukcAj7O9va1wOByz35CxDjM6l5iZmdmx/jInJycmZ9ht3yHjeUFBgXJyciyqJYAXtby8rLm5uZicYbd9iIznj2t7GH0Su627NM5Yos0BxB/23QfwJOy7DyDeMH8DwNMwfwPY35g/AeBpmD8BvHxbW1uamJhQIBDQyMiIAoGAeQWDQY2Njen+/fvm69PS0sz+vujH6H5Ao02dnJxsYc2A/WV7e9s8H2i3cbrox42NDfN92dnZqqqqUlVVlex2u2w2m2w2m+x2u+x2u8rKyjgzaB9799139e1vf1uBQIC5WM9obm5Og4ODGhoa0sDAgIaGhjQ4OKiRkZGYvcUPHz6s6upq8ztRXV1tXna7XcXFxUpNTbWwJsDuZmdnNTY2pmAwKL/fr2AwaF6BQEChUMhs02RlZclut6u2tlYOhyPmqqqqoq8Dz8U4z+F5r9nZ2R195pKUmZmp/Pz85764PwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPo7t7e3H7p03Nzf3xJ8vLS3t+H1paWmP3TuvoKDgiT8/dOiQBf8CwP7g9/tVV1en733ve/qN3/gNq4sDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECiuJwUiUQiVpcCT/bee+/p7bff1vDwsGpqaqwuDgDElY2NDWVmZury5cv6whe+YHVxgANvZWVFfr9fwWBQk5OTGhsb09TUlMbHxzU1NWU+X1tbM9+TmZmpsrIylZeXm48lJSUqLS1VYWGheRUVFSk/P9/C2gGIR/Pz8wqHw5qZmTGvUCikcDis8fFxhUIhTUxMaHJyUqurq+b7MjIyVFpaqoqKCpWUlJiPlZWVKisrU3V1tex2u7KysiysHfarzc1NjYyMyOfzaWRkRH6/P+aanZ01X1tcXCy73W5elZWVqqqqUmlpqSorK1VSUqK0tDQLawMklnA4rFAopLGxMTNfjf5+jo2NaXNzU9LDPLWmpibmO2q321VbWyun06mcnByLa4OXxWjD/PCHP9Sf/umfPvP7UlNTtbW1paamJl24cEELCwsaHx/XxMSEJiYmYtpBhw4dMu/3xmN5ebmKiopUVFRktoeKioqUnp7+MqoJII6sr69renpaMzMzmpyc1MzMjKanp822zNjYmEKhkEZHR/XgwQPzfRkZGSovL1d5ebkqKipUVla2o01TXl6ulJQUC2sHYC9tbm5qYmJCgUBAwWDQzH2NvtlQKKTx8fEd9wqjzyO6L6SsrCymb7akpER5eXkW1g7Afra1tWX2v05PTyscDiscDmt6etrshzXuQ+FwWNFTmQoLC82+MOM+ZDyvqqqSzWZTYWGhhbUD8CqFw2EFg0GNjo7umseEQiHNzMzEvMcYW46+fxh9LCUlJTFjzqmpqRbVDEA8WFlZMXOZ6elpsz9mYmJiR/tqeXnZfF9qaqo5phw9xmf0w9hsNtntdh06dMjC2gH7z+bmpsbHx81+jN3i/qP9GOnp6TH9GJWVlSouLt7Rj1FcXKwjR45YWDsA8eDReWXT09MKhUIxc12Nx/X1dfN9hw4d2jXul5aWqrq6WtXV1aqoqKD9gbjC+AIAqzC+gES1srKikZERBYNBTUxM7Pg8G2usjPmqkpSbmxvzeS4rKzPjqtHWLS4uVmFhoTIzMy2sHYD9bHV11ezfnpqaMuNsdD+3cR9aWloy32f0cz/azn20n5s1VHiZiJ8ArEL8RDwhXgKwCvES2F8Y3wVgFcZ3gZeH+A7AKsR3AIDhwYMH8vv9CgQCMXuaRa/ze3QcKicnJ6bft6SkxNxLsbCwMGYcin5gAE+yubkZk5ca41HhcHjHOr+pqamY90bnpY+2k428tKioyKKaAbDazMyMAoGAuY/Ro+Pbj+5jlJSUpJKSkh33k+Li4h37GBUVFSk5OdnC2gHYzxYXF817jHFNTk6a+95H34+etI9BdL9bdXW1bDabKioq2EcaeALiPwCrEP+BWKx/AWAV1r8gUdHeBWAV2rs4SNbX1xUMBhUIBDQ+Ph4zd25yctJ8/uh5xLt91o05dNFxlzMqAOxmc3PTPBMnui37tLO6jJw/ui/NeCwvL5fdbpfNZmNNGeIG6ysBWIX1lbDa8vKyhoaGNDw8rNHRUfn9fo2OjprX5OSk+drMzExVV1erqqrK/IwZY6rG2YnFxcVKT0+3sEYAHrW0tKTx8XGFw2FNTExoamoq5nseCAQUCoW0vb0t6eH5jEYsMfpSje/88ePHZbfbOQ8NT7WwsKBAIKBAIKCJiQmzfzO6n3NqauqJuY1xNqjxc6ONxZngAB7nwYMHmpmZMfsyjfk7u83ZebSP53H9nJWVlWYsJM9FPGC8EYAVGG/EQcN8WgBWYT4tEkH0XpPGms/o/mNjHGNra8t8z5EjR1ReXm5exvycR9d7FhUVKS0tzcLaAdiP1tfXzbg5NTWlcDhs9iNPTEzEXPfu3TPfl5KSYu5tG91eraioUHl5uWw2m2pqaljriZeC+awArMJ8VuDFcL4CACtxvgJgPcaRAViFcWRg/yI/AGAV8gMgfpE/ALAK+QMQv8gfAFiF/AGIX+QPAKxC/gDEP9Y9ArAK6x6BxLCysqKRkREFg0Fzz6FH+yUeXX+Zm5sb8/01zkQxcojo9ZeZmZkW1g7Afra6umruU2+su5yZmdl1z/qlpSXzfampqWZ7JrpdU1lZqbKyMtlsNtntdtZ/A68I++4DsAL77gN4mZi/AcAqzN8AXhzzJwBYhfkTwO5CoZAGBgbk9/vNKxAImO3ujY0NSVJ6err5eTeuqqqqmBhdXFyspKQki2sEJK5IJKJwOBwTs8bGxszvrPG9NdqjaWlpMd9bu91uXnV1dSotLbW4RgfXgwcPZLPZ9PWvf13vvvuu1cXZVzY2NtTX16e+vj4NDg7K5/NpcHBQg4ODmp2dlfQwJh07dkxOp1MOh0PHjh1TdXW17Ha7qquraRciYa2trWlsbEzBYFDBYFDDw8MaHBzU0NCQBgcHzXPjMjMz5XA4VFtbK4fDIYfDofr6ejU1NenIkSMW1wIv08rKiubn53dcxtmmu/3d/Py8VldXd/yuzMxM5efnP/fFOagAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHjzuP38nnaFQqGYPe0Nz7qnX3l5ucrKypSfn6+CggLOGEfc+/KXv6yrV6+qt7dXqampVhcHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBEcTkpstsumNhXNjY2VFxcrHfffVff+MY3rC4OAMSdwsJC/fmf/7l+53d+x+qiAAlvfn5eExMTmpyc1PDwsHkZPxsZGTE3YTc2Xjc2Vn/cY1lZmZKSkiyuGQA8PIBicnLSvKft9jg+Pq6FhQXzPfn5+eY97dixY+Zl/Mxutys5OdnCWuFlmp+fN2NhT0+Pent7NTw8rN7eXq2srEh6+BmJ/kxEf04cDofy8vIsrgWAR0V/tx+9gsGgNjc3JT38fjc0NKixsdH8Xjc0NKi+vl4pKSkW1wJ74f/9v/+nr371q9ra2nqu9yUlJcnpdMrhcDyxPQQAL8PT2jXDw8MaHR3VxsaGJCktLU2FhYU7clXjqq6u5lAxYB9ZX1/X2NjYrn20j+arUmy/RXS7NPpnpaWl9F0AeOUeHW/aLXeZmprS9va2JCkjI0MVFRU7+l+N5zabjbY4ECce7XuLvhcMDg5qcXHRfG1mZuaufSrR94GqqiqlpaVZWCMAB9Xq6qomJiaeOLY8MTGhe/fume953NiycV9j/gwSzdramsbHx3fE/BfpxygpKSH3B2AJY/zlcf0Yk5OTMeMv0i/nDO3Wn+F0OpWbm2thjXDQML4AIFEwvoD9Ijo/3K3P2+/3m5/DJ62tMj6XFRUVOnLkiMW1AnDQrK6uam5u7olx9Xn7uZkfjSchfgJIBMRPvGzESwCJgHgJvDjGdwEkCsZ3gV8ivgNIFMR3AIhfe7WnfPT9PD8/3+JaATiojH1LnrTO/3F56W5jUuy1CMSv6H2MHs112McIQLzYi30Mou9ldXV1ysnJsbBGwMtF/AeQCIj/SASsfwGQCFj/gv2E9i6AREB7F/td9H75u8XcQCBgnlmckZGhgoKCJ55DzLkSAF61tbU1zc7OPvGc4omJCYVCoZg5wU9qw9bU1HAfwyvB+koAiYL1lfg4Hj23NfqKXs9l9JM8+jkxntvtdmIfkKA2NjY0PT0dkyvvFm8kKTU1VdXV1TvaeceOHVN9fb2ys7Mtrg1ehcetF3708yI9fmwx+rG6uppz9AC8Usa44pP6OUdHR7W0tGS+J3pc8dGc2eFwKC8vz8Ia4aBgvBFAvGO8EfGA+bQAEgHzaWGVp635fNxek4/OyTEeKysrdfjwYYtrBeCgeFKb1biXPc9az2PHjrFfLnbFfFYAiYL5rDhoOF8BQCLhfAXg+TGODCARMI4M7C3yAwCJgPwAeLXIHwAkAvIH4NUifwCQCMgfgFeL/AFAIiB/AKzBukcAiYJ1j4A1nrbnkN/vN6+0PrUAACAASURBVL93z7L+sqKiQkeOHLG4VgAOmtXVVc3NzT0xj3ievYeMnwN4OvbdBxDv2HcfwKOYvwEgETB/AwcV8ycAJArmTyCR3Lt3T3fv3o2JyT09Perq6jLb2E/bM5XPMBA/ovvWHu1f8/l85jnzGRkZOn78uBobG2O+783NzSopKbG4FontW9/6lv74j/9Yfr9fxcXFVhfHMhMTE+rt7VVPT49u375t/nl1dVWSVFZWtuPz2dDQoPr6emISsItH7/89PT3q7e2Nufcb36uGhgbz8fTp08rKyrK49A/HjD/44AN9+tOf3hflscrKyorm5+ef+4oeS4/26Jzj/Pz8p15Hjx5VRkaGBbUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACC+fJx9BCcnJzU/P7/jdxl7CD7vxT6C2A9CoZCqq6v13e9+V7/5m79pdXEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgkl5MikUjE6lLg6b70pS9pYmJCP/vZz6wuCgDEncbGRr3zzjv6sz/7M6uLAsS91dVVDQ4OmtfQ0JACgYBGR0fl9/u1uroqSUpKSlJZWZlsNpuqq6tVVVWl6upq2e12VVdXq7q6Wvn5+RbXBgBejvn5eQWDQQWDQfn9fvPPwWBQgUBAoVBIRlM8KyvLvFfabDbV1tbK4XDI4XCotrZWmZmZFtcGz2J6eloej0ednZ3q7u5Wf3+/fD6feYBIdna2nE6nnE6n6urqVFdXZz7Py8uzuPQA9tLGxoZGRkbU39+vgYEB+Xw++Xw+9ff3KxwOS5IyMjJUW1ururo6NTQ0yO12q6WlRceOHVNycrLFNcDjrK2tmf8/BwYGNDg4qJ/97GcKBALarYs9OTlZkUhEkUhEubm5OnPmjD71qU/p7bff1unTp5WUlGRBLQDg2Wxvb2tyclJ+v19+v1+BQGDH49ramiQpNTVVlZWVstvtstvtZp5rXByCB+y9mZmZmJxkeHhYgUBAgUBAk5OT5uuys7Nlt9tls9nMy+h/sNvtKisrIycBENfW1tYUCATMflfjMvpkx8bGtLm5KUlKT09XVVWVeQ+sra2V0+mUw+GQ0+mkHxZ4hZaXlzU4OCifz2eOORvf3/HxcW1sbEh6+L2trKw0cxgjrzHymaqqKtobABLCvXv3zHzGyGOic5xQKGS+Nicnx8xnbDabHA6H6urq5HA4ZLfblZqaamFNgN1NTU2ZY2bR/RjBYFBTU1Pm63Jzc83PtxHvjUebzUY/BoCEEIlEzPGXR2O+8bOlpSXz9SUlJeZ98NixY+acsrq6OpWUlFhYE8QrxhcA4CHGF7AXtre3FQgEzPauz+fTyMiI+XlaXFw0X1tSUrKjrRsda48cOWJhTQDgxRlrqKLnF0bHWmMOvSTl5eWZ98Ho+YYOh0M2m4259AmO+AkAv0T8xOMQLwHgl4iXOOgY3wWAhxjfRSIhvgPAQ8R3ALDG5uam/H6/mZMODQ3F7Cl2//5987VlZWUx41DRa/1tNpsOHz5sYU0AYG+sra3F7Bdv7CNv/Hl0dNTc/yQtLc3c/8RY429cTqdT2dnZFtcGOLhWVlYeu4/R6Oio1tfXJT38HldUVJjf4+g9DYych32MAMSz7e1thUIhjYyM7LqPQSAQ2NHui97HwDg/xeFwqLCw0MKaAE9H/AeAh4j/sBrrXwDgl1j/gr1AexcAHqK9i5ctFArtul9+IBDQ9PS0+bojR47ExNtH98svLi62sBYA8GLu378f0359NN5OTk6aZ7QfOnTIvA/a7XZzf3yn08n5OHhurK8EgIdYX3kwbW1taXh4WF1dXert7VVvb6/u3r2roaEhzc3NSXrY/2uz2VRbW6vjx4+rtrbWvGpqauj7BfBE9+7d09DQkHkZ95ihoSHzHNTk5GRVVVXp+PHjcjgcamhoUFNTk5qamujvijObm5saGRmJaWMZOcXIyIhWVlYkSUlJSSorK4tpYz06d4d1cQDiWTgc3tHPacxjDAaDunfvnvna4uJi8x5ojCsaY4ucB4rnwXgjADDeiJeL+bQA8BDzafFxRCIRjY6OyufzmbH07t27ZixdWFgwX1tcXLyj37impoa9JgHEvXv37pkxM3rd+25rPaP78Iz4aczJqaqqYp5iAmM+KwA8xHxWxBPOVwCAWJyvgIOGcWQAeIhxZOCXyA8A4CHyA+DZkT8AwEPkD8CzI38AgIfIH4BnR/4AAA+RPwAfD+seAeAh1j0Cz297e1uBQMDsk/D5fDH7bSwuLpqvLSkpiVl/Gb1nrs1m05EjRyysCQC8uPn5+R39EI/beygvL8+8D9rtdnPPeofDIZvNpuTkZAtrArxa7LsPAOy7DyQS5m8AwEPM30C8Yv4EADzE/AnsNzMzM/J4PPJ6verp6THHFYzxt/T0dB07dszMIY3Pn8PhUEVFhcWlB/CqjI+Px/TNGWeoDQ8Pm/1yxcXFZpuzqalJzc3Namlp0dGjRy0uffy7f/++amtr9eu//uv6+7//e6uL80psbW2pr69PH374oW7evCmv16vu7m4tLS1Jkmw2m/k5a25uVlNTk+rr65Wenm5xyYHE4ff71d3dre7ubjNX7O/v1/r6ulJTU+V0OtXc3KwzZ87o3LlzOn369CvbE39iYkL/9E//pO985zuam5vT5cuX9c4777yS//bLsrKyovn5+ee+wuGwtra2dvy+zMxM5efnP/dVXl5uQe0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDTPG7vwrm5uaf+3NhHOFpOTo65H2FBQUHMdfTo0V3/XFBQoKysLAtqj0T0F3/xF/rmN7+psbExzl4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBvXU6KRCIRq0uBp7t8+bK++MUvanJyUkVFRVYXBwDiyhtvvCGHw6F//ud/trooQFxYX1/XyMiIBgcH5fP5NDg4aF6jo6OKRCJKTk5WVVWVamtrZbPZVF1dLbvdrurqalVXV6uqqkrp6elWVwUA9qW1tTWNjY0pGAwqGAzK7/crGAwqEAjE3GuTkpJUVVUlh8MRczmdTtXU1HCftcDW1pZ8Pp88Ho88Ho86Ozvl9Xo1MTEhSSovL1dzc7NOnDghp9NpXlVVVRaXHMB+cO/ePfl8Pvl8PvX398vn86m7u1s+n09bW1vKyclRc3Oz3G63Wlpa5Ha71dzcrOzsbKuLfqCMjo7G/H8aGBiQz+dTIBDQ9va2kpOTZbPZ5HQ6FQwG1d/fL0lKSUnR5uamUlJS5HK59Prrr+vSpUtqa2tTSUmJxbUCgL03OTkpv98vv9+vQCBg/nm3e2ZdXZ15kSMDz+b+/fsx/bNGTuLz+TQ/Py9JysrKksPh0PHjx1VdXa2amhpVV1fLZrPJZrPp6NGjFtcCAKy1tbWliYkJM1cJBALmnwcHBxUMBrW9va2kpCRVV1fL6XSa/a91dXVyOByy2+1KSUmxuipA3FlfX9fw8LCZv0TnNePj45Kk1NRU2e1287tm5DHGuHNZWZmSk5MtrgkAWG91dVWBQMAcTzbGl/1+vwYGBhQOhyVJaWlpOnbsWMwYpTG+XFlZaXEtkOgWFhZiYn50DrC4uChJysnJienHsNlsMTlAfn6+xbUAgP1hbm7OjPtGP0YwGNTdu3c1ODio+/fvS5IOHz4cM5fM6MtwOBw6fPiwxbWAlRhfAIAXx/gCooXDYTOeRrd7h4aGtLa2JkkqLCw0Y6vRz23EVZvNpqysLItrAQDWWllZiVk3ZfR13717Vz6fT7Ozs5KkjIwMM6Yaj8ZVXFxscS3wPIifAPDiiJ+Jj3gJAC+OeIlEwPguALw4xnex3xDfAeDFEd8B4MWMjY3F7Cdv5KQjIyPa2NiQJJWUlKiurk52u33HOv/q6mplZmZaXAsAsN729ra512L0WJSRlwYCAW1ubkqSKioqYvJSh8Ohuro69o8H9sjm5qYCgUDMPgZGvhMMBs1zc2w22459jOx2u2w2m8rLy2knAjjwZmZmduxjEAgEzL3iVldXJUkFBQVmPvPoHkaclYBXhfgPAHuD+I+9wPoXAHhxrH+BgfYuAOwN2rt4msXFxZg27MDAgPk8er98p9MZ05aNnk/H3s4ADrK1tTWNjo6asfbRc4pDoZCkX56PY8Ta6LZseXm5xbWAVVhfCQAvjvWV8c/v96u3t1fd3d3q7u5WT0+Pent7tbq6quTkZNntdjU0NJjxsLa2VrW1tbLZbEpNTbW6+AAS0PLysoaGhnT37l0NDQ1paGhIg4OD6u7uNscqi4qK1NzcrIaGBjU1NampqUmNjY06cuSIxaU/2CYmJmL6N43+zuj1wqWlpTHrhY22lbFemLVtAA6yhYWFHWOKgUDAPA90eXlZ0i/PAzX6N422ldPpVG5ursW1gBUYbwSAF8N4I56G+bQAsDeYT3twzc3N7dpm9fl8WllZkfTL/+9GuzX6stvtrPkEcGCtrKxoZGTEXOMZ3W8cPc/x0KFDO9Z4Gn3HBQUFFtcCz4L5rADw4pjPCitwvgIA7A3OV0A8YhwZAPYG48hIJOQHALA3yA9wkJA/AMDeIH/AQUL+AAB7g/wBBwn5AwDsDfIHHFSsewSAF8e6Rxxk4XDYzB+i9xsaGhrS2tqaJKmwsDBmz6HoPMJms7HnEIADb2VlRX6/P6ZfIhgMmnsPGWe3ZGRkxKy5jN6DqLi42OJaAB8P++4DwIth331gf2H+BgDsDeZvwCrMnwCAF8f8CbwsGxsb6uvrU1dXl7xerzwej7xeryYnJyU93Bfa5XLFjJ/xeQLwNEZ/ntEOMNoAXq9X4XBYklReXq7m5ma53W65XC65XC7V19crLS3N4tLHj7/8y7/UX/3VX+nu3bsJO7dhYmJCH374oXndvn1bS0tLOnTokE6dOiW3263m5mY1NzersbGRMW7AIhsbGxoYGFB3d7e8Xq+6urp069YthUIhpaSkqKmpSefOndP58+d1/vx5nThxYk9zyWvXrulb3/qW/uM//kPJycna2NhQamqq/vEf/1Ff+9rX9uy/83GtrKxofn7+ua/p6WnzXIFomZmZys/Pf+6rtLRUycnJFvwLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/ej+/fvmPohzc3M79kacm5szr9nZWc3Ozmpubs48EzVaVlaWCgoKYq6jR4/GPO72d5zBjmjb29s6fvy43nnnHf3d3/2d1cUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDRXE6KRCIRq0uBp1teXlZxcbG+/e1v67d+67esLg4AxJUvfelLWllZ0X/+539aXRRgX9nY2FB/f7+6u7vl8XjU1dWlgYEBBQIBbW5uSpLKy8vlcDh2XLW1tcrMzLS4BgCQmFZXVzU4OLjj8vl8CoVCkqTU1FTZbDbV1dWpublZLpdLzc3Nqq+vV1pamsU1SBzBYFDXrl1TR0eHPvzwQ3V1dWllZUVpaWmqr6+X2+2W2+1WS0uL3G63ioqKrC4ygDi0srKi7u5udXZ2yuPxyOPxyOv1anFxUcnJyaqtrdWZM2fU2tqqixcvqrm5WampqVYXO+7NzMzE/Jt3d3fL5/Pp/v37kqSCggI5nU7V1dWprq7O/LPD4VBGRoYk6Wtf+5r+9V//VRcvXtQnPvEJXbp0SefOneMAJgAH3tramnw+n3kNDAyov79fPp9P8/PzkqTs7GzV1dWpsbHRzKlbWlp09OhRi0sPvFpra2vq6ekxc0Cjj3ZsbEzSw/a/3W6Xw+EwcxKHwyGn06mqqiolJSVZXAMAiF9ra2tmv2t0H+zAwIDC4bAkKT09XceOHVNjY6PZD+t2u1VTU8M9GJC0ubkpn8+nrq4udXZ2qqurS/39/THjzZWVlWYOY+QxdXV1qqmpYTwDAPbAwsLCjlzGeL6wsCDpYT+M0+lUQ0ODmc80NzervLzc4tIj3iwvL6urq0ter1cej0c9PT3q7+/fkT87nc4d8b+iosLi0gNAYhgbG4uJ/cY1MjKi9fV1SVJJSYnq6urU1NQkt9stl8ulpqYm5eTkWFx67CXGFwDAOowvJKbZ2Vkzrnq9XnM+4aP9K0Zb14ivTqdT+fn5FpceAOLb3NycBgcHNTAwYMZX49GY133kyBE5HA4zrhqxtaCgwOLSH2zETwCwDvEzfhAvAcA6xEvsJ4zvAoB1GN/Fy0J8BwDrEN8B4KGJiQlznZ/X61Vvb29M/+fhw4dj8tDoNX95eXkWlx4A4t/6+rpGRkbMtf3R+emj/QP19fVqbm421/o5nU6lpKRYXANg/4lEIhoZGYmZa9Pb26vh4WFz/WxxcfGO/jan06na2lpzr2gAwPOLRCIKBoM79jDw+Xwx+8lVVVXJ6XSa82xcLpcaGxu5B+NjI/4DgHWI/3gU618AwDqsf0k8tHcBwDq0dw8W4wzo6LOI+/v7FQqFJElpaWnmfvnGGcRGzOV8BgD4+BYXF812q9GWNZ4vLi5KknJzc+VwONTU1GS2Yd1ut4qKiiwuPfYK6ysBwDqsr9w/IpGIBgYGdPPmTd24cUO3b99WT0+PmRNVVlaqoaFBzc3NamxsVFNTkxoaGpSdnW1xyQHgl0KhkLq7u9Xd3a2enh51dXWpt7dXS0tLkh7ey1wul86ePauzZ8/q3LlztO1egnA4bPZzer1e9fT0yOfzaXl5WZKUl5dntqui5+ywXhgAXsz4+HhM/6bRthoZGdHGxoYkqaysTPX19WZfZ0tLixobG5WVlWVx6bEXGG8EAGsw3nhwMJ8WAKzDfNrEsLS0pK6uLnm9XnV2dqq7u1sDAwOamZmRJGVkZOyIoUZcLSwstLj0ABCfZmZmNDAwELO/pNFmXVtbkyQVFhaqrq5OTU1NamlpkcvlUnNzs3Jzcy0u/cHEfFYAsA7zWfEiOF8BAKzF+QqwEuPIAGAdxpGxX5EfAIB1yA8Qr8gfAMA65A+IV+QPAGAd8gfEK/IHALAO+QMSAeseAcA6rHtEIpidnY3pk+ju7pbP59PCwoIkKTs728wfHt2zPj8/3+LSA0B8m5ubi9krNzqvMNbBHzlyRA6Hw8wjjFyioKDA4tIDD7HvPgBYg333gZeD+RsAYB3mb2AvMH8CAKzD/Ak8i+3tbfX29ur69evq6OjQ7du31dfXp/X1daWnp8d8NoyrpKTE6mIDSDBTU1Mxe9V3dXWpt7fXvBc1NDTo9OnTam1t1YULF3TixAklJydbXex9Z35+XsePH9fv/u7v6t1337W6OHvm7t27unLlin7yk5/o2rVrGhsbU3Jysk6cOKFz587p/PnzOn/+vJqampSammp1cQE8RTAY1PXr13Xjxg3duHFDt2/f1oMHD5Sbm6uzZ8/q9ddf1xtvvKGzZ88+93d6bW1N//M//6O//du/1a1bt5SWlqaNjQ3z7zMyMvTuu+/qj/7oj/akLisrK5qfn3/ua3Z21hzjipaZman8/PznvoqLi7n/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAy0Xv1Tg5OamJiYmn7tMYDoe1tbUV83s+7h6NnMeamP73f/9Xv/qrv6qBgQE5HA6riwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKK5nBSJRCJWlwLP5vOf/7y2t7f1wx/+0OqiAEBc+b3f+z1dv35dHR0dVhcFsMzExIS6urrk8XjU1dWlrq4u9fX1aX19Xenp6Tpx4oSamprU0NCg2tpaORwOORwO5eTkWF10AECUpaUlDQ4OmldfX5+6urrU39+vjY0N857e3Nwsl8sll8ul5uZmDnR4BhsbG/roo4/U0dGh9vZ2tbe3a3x8XGlpaTp58qQuXLiglpYWud1uNTU1KT093eoiA0hgkUhEIyMj6uzslNfr1Y0bN9TR0aF79+4pJydH586dU1tbm1pbW9Xa2qr8/Hyri7xvbW9va2hoSB6PR52dnfJ4PPJ4PBobG5MklZWVye12y+Vyyel0qq6uTnV1dSoqKrK45ACQmKanpzUwMKCBgQH5fD7zvhwKhSRJlZWVcrvdZu7d0tKi48ePKzk52eKSAy9ufHxcXq9XXq9XHo9HXq9XAwMD2tzcVFZWlpqamuR2u1VXV2fmJTU1NbQ/AcACCwsL8vl8Ghwc1MDAgHp7e9XZ2anh4WFtb28rLy/P7IN1u91mnyHjakhks7OzZg5jXD09PVpdXVVaWprq6urkcrnU0NAgp9NpjjdnZ2dbXXQAOLDC4bDZBzM4OKju7m55vV6Njo5KkgoLC83+ceNqbGxURkaGxSWH1SKRiIaHh2Pivsfj0fDwsCKRiPLy8sy5CMa4isPhkM1mU2pqqtXFB4ADaXNzU4FAQD6fTz6fTwMDA/J6verq6tLi4qKSk5N17NgxM/Y3NzfL7XarpqZGSUlJVhcfT8H4AgDED8YX9r/NzU35fL6YuOrxeDQ+Pi5JKi4uNvtJjL5up9OpyspKi0sOAAfT2NhYTGw11sdOT09Lejjf0Lhvt7S0yOVyyeFw0E+5x4ifABBfiJ/WIF4CQHwhXuJlYnwXAOIH47t4VsR3AIgfxHcAiWh1dVW9vb1mLtrV1aXOzk7Nzs5KkqqqquRyudTU1GSOQ9XV1am4uNjikgPAwXX//n0NDg6auWlvb6/Zn7CxsaHMzEw1NjbGrPN3u90qKCiwuujAK7O0tGTuf2Hsvd3V1aWlpSUlJyfr+PHjcrvdamhoMPcycDqdOnz4sNVFB4ADZ319XcPDwxoYGNDg4KD6+/vl8XjU09OjlZUVpaammvvPGX1uLpeLs3GwA/EfAOIH8T+xsf4FAOIL61/2P9q7ABA/aO/Gt9HRUXNdhxFzBwcHtbW1pZycnJh1HcbaDrvdTl4EAK9YKBSKOR/HuHdPTk5Kenh+/KOxtr6+nvv1Psf6SgCIH6yvfLnGx8d18+ZN3bhxQzdu3NCtW7e0sLCgjIwMud1unTlzxjz/r6mpSUeOHLG6yADwsfn9fvX09Ki7u1sej0c3b97U0NCQJMlut+vcuXM6d+6czp49q9OnT3Nm9TPa2NhQf3//jr7OUCgkSSovLzfPlXM6nWYbq6SkxOKSA8DBsrm5qZGREfMs0IGBAXk8HnV3d+v+/ftKSUmRw+GI6ed0u93Ms9znGG8EgPjAeGP8Yj4tAMQP5tPuTyMjIzHrPT0ej4aHhxWJRHT48GG53W41NzfrxIkTZhytrq5WcnKy1UUHgANhe3tbgUDA3F+yr69PXV1d8nq9WlhYUFJSko4dO2au8TTiZ01NjdVFTyjMZwWA+MF8Vhg4XwEA4g/nK2AvMY4MAPGDcWS8KuQHABA/yA+wX5A/AED8IH/AfkH+AADxg/wB+wX5AwDED/IH7EesewSA+MG6R+w3m5ub8vl8MXmEx+PR+Pi4JKm4uNhcu2Osv3Q6nex/DAAWGRsbi8klurq65PF4ND09LUmqrKw079vGHkQOh4P9cvFSse8+AMQH9t0Hng3zNwAgfjB/A7th/gQAxA/mTxxcc3Nzun79uj788EN1dHToww8/1OLiorKzs3X27FmdP3/eHO+qq6tTWlqa1UUGcEBtbGyov7/fHJf/8MMPdevWLd2/f1+HDx/W+fPndeHCBfPKz8+3usiW+/3f/339y7/8i4aGhpSXl2d1cT62qakpXblyRT/5yU905coV+f1+ZWdn65Of/KQ+8YlP6Pz58zpz5kxc1xHAL21ubqq7u1sffvih2tvbdeXKFY2PjysvL0+vvfaa3njjDb3xxhtqbGxUUlLSrr9jcnJS3/3ud/UP//AP5hlyW1tbO16XkZGhb3zjG/qbv/mbmJ+vrKxofn5+12tyclITExO7/t3q6uqO/0ZmZqby8/Of+yosLKSPDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHEjRe0M+aS/I6CscDu/Yf/Lj7gvJeTr725e//GX19/ervb3d6qIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCILidFIpGI1aXAs/n+97+v3/7t31Y4HFZeXp7VxQGAuPHXf/3X+t73vqfh4WGriwK8EvPz8+ro6DCvzs5Ozc7OSpIqKyvV3Nwsl8sll8ul5uZm1dfXKy0tzeJSAwBexPr6uvr6+tTV1aWuri55vV51dXVpfHxcknT06FGdPHlSra2t5nXkyBGLS22tSCQij8ej9957T++//75u3LihlZUVFRYWqrW1VW1tbWpra9PZs2eVlZVldXEBQNvb2+rr61N7e7va29vV0dGhgYEBJScnq76+Xp/5zGf01ltv6bXXXlNmZqbVxbXMzMyM2tvb9Ytf/ELt7e3yer1aXl5WamqqnE6n3G63Wlpa1NLSIrfbrZKSEquLDACQNDU1JY/Hozt37sjj8cjj8WhgYEBbW1vKycmR2+1WW1ubLl26pIsXL+ro0aNWFxl4oqWlJXV0dJi520cffWT20VZXV5v9s263Wy6XSw6HQykpKRaXGgDwNMvLy+ru7pbX65XH45HX65XX69Xi4qKSk5N17NgxnT17Vm1tbbp48aJcLhf3d8SllZUV3bp1S9euXdO1a9d0584dc7yhuLg4Jo9pbm5WY2Oj0tPTLS41AOBZzc3NmXmMkdf09PRoZWVFqampqqur09mzZ3Xp0iW1trbqxIkTSkpKsrrYeImmpqbU0dGhq1ev6vr16/J6vVpaWlJycrKOHz9uxn3jqqmpsbrIAIBnFIlE5Pf7zX6Mrq4udXZ2anh4WNvb28rNzZXL5VJra6suXryotrY2FRcXW13sA43xBQBITIwvWCcYDOrq1avm+qqenh6trq4qLS1N9fX1ZmxtaWmRy+VSaWmp1UUGADyDyclJM64asXVgYEAbGxvKzMxUU1OTuXbq0qVLqqqqsrrIcYX4CQCJifi5t4iXAJCYiJd4tiswHQAAIABJREFUXozvAkBiYnz3YCO+A0BiIr4DiBeRSMTca/LatWu6ceOGfD6fNjc3lZWVpcbGRrW0tJh7y7vdbuXn51tdbADAM1pfX1dPT8+Odf7T09OSHp4fcvLkSXOd35kzZ9gTHQlha2tLHo9H165dU3t7u27evKnh4WFFIhEdPnw4Jrdxu91qampSdna21cUGADzF1taWBgcH5fV61dnZaeY3o6OjkqTCwkKdOnXKPO/lwoULys3NtbjUeFWI/wCQmIj/8Yn1LwCQmFj/Yg3auwCQmGjv7j+Li4vmmo5r166ps7NTc3NzkqSampqYvfJbWlp07NgxJScnW1xqAMCTTE9Pm21Yox3b19en9fV1ZWRkqLGxURcuXDDPKrbZbFYX+cBifSUAJCbWV348w8PD+uCDD/TBBx+ovb1d4+PjSk5OVn19vc6ePauzZ8/q3LlzcrvdnOEK4ECYm5vTjRs3dPPmTd28eVM3btzQ1NSUUlJS1NDQoE996lN688039alPfUp5eXlWF3df8Pv9unr1qtrb23X9+nX19PRofX1d6enpamhoiGljud1uFRUVWV1kAMATbG9v6+7duzH9nF6vV36/X5JUUFAQs0a4tbWVmGgRxhsBIPEw3ri/MJ8WABIT82lfnbm5ObPN2t7eLo/Ho4WFBXPs1ljracRTu91udZEBAE8wMjISMyens7Mzpo3U0tJizslpa2tjD+FnxHxWAEhMzGdNbJyvAACJjfMV8DSMIwNAYmIcGS+C/AAAEhP5AV4m8gcASEzkD3iZyB8AIDGRP+BlIn8AgMRE/oBXhXWPAJCYWPeIVyUYDOrq1avq6OhQR0eHenp6tLq6qrS0NNXX18fsk+tyuVRaWmp1kQEAz2ByctLMI4xcYmBgQBsbG8rMzFRTU5NaW1vV2tqqS5cuqaqqyuoiI06x7z4AJB723cdBxvwNAEhMzN84OJg/AQCJifkTiWd5eVlXrlzR+++/r5/+9KcaGBhQJBKRw+HQhQsXzL6npqYmpaamWl1cAHiizc1Neb1edXR06Pr167p+/bqGhoaUlJSk+vp6vf766/rc5z6n119/XTk5OVYX95Xq6+uT2+3Wd77zHX3lK1+xujjPzev16vLly/rv//5vdXd3KzU1VefPn9cbb7yhN954Q+fPn1d6errVxQTwigwMDOjKlSu6cuWKfvrTn2p+fl4lJSV6++239c477+jNN99Uenq6bt++rW9+85v6wQ9+oOTkZG1sbDzx96ampqqoqEiFhYWan5/X/Py87t+/v+N1mZmZys/Pj7kKCgqe6Tn3KgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJdva2tLs7Ozmpube+JlvMZ4XFhY2PG7MjMzVVBQoKNHj6qwsFCFhYUqKioyn+/2c85TezW2trZUWlqqP/iDP9Af/uEfWl0cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS0eWkSCQSsboUeDazs7MqLS3Vv/zLv+jXfu3XrC4OAMSN73//+/r617+uBw8eWF0UYM9FIhH19/ero6ND7e3t6ujoUF9fnyKRiOrq6tTa2qpTp06publZLpdLBQUFVhcZAPAKzc3NyePxqLu7W7dv31ZHR4d8Pp+Sk5NVX1+vtrY2tbW1qbW1VXV1dUpKSrK6yC/VwsKCfvzjH+tHP/qR3nvvPU1MTKi0tFSf+9zn9Nprr5n/DgAQL2ZmZtTR0aGrV6/q/fffl8fj0aFDh/T666/rrbfe0ltvvaVjx45ZXcyXamRkRFevXtUvfvELXbt2TX19fUpKSlJDQ4MuXbqkU6dO6eTJk2psbFRWVpbVxQUAPIeVlRV1d3ers7NTt2/f1rVr19TT0yNJOnHihC5dumReNTU1FpcWB10wGNTVq1fV3t6ua9euqaurS1tbWzp+/LguXryo06dPy+Vyye12Kz8/3+riAgD2UCQSkd/vl8fjkcfj0Y0bN9Te3q579+4pNzdXFy5cUFtbmy5evKgLFy4oNzfX6iIDO4RCIbW3t+vq1avq6OjQ7du3tbGxoYqKCrW1tens2bNyu91yuVwqLS21urgAgJdga2tLg4OD8nq96uzs1PXr13Xjxg3dv39fBQUF5pjypUuXdObMGR06dMjqIuNj2t7eVm9vr9mH0d7erqGhISUnJ6upqUltbW06deqUXC6XmpqalJ2dbXWRAQAvwfLysnp6euTxePTRRx+pvb1dPT092t7elsPhMPsy2tradOLECSUnJ1td5ITF+AIAHFyML+y9zc1Neb1es7179epVjY2NKS0tTadOnVJra6taWlrkcrnU2Nio9PR0q4sMANhD6+vr6unpkdfr1Z07d9TR0aE7d+5oY2NDVVVVZjv30qVLcrlcSklJsbrI+wLxEwAONuLnsyFeAsDBRrxENMZ3AeDgYnw3cRHfAeDgIr4D2A8ePHigmzdvmuNQ7e3tmp+fV3Z2ts6fP68LFy7I7XbL7XartraW/kcASFCTk5Pyer3yeDy6efOm2tvbNTExofT0dJ06dSpmrR97viAeLC4u6vr162af2/Xr17W8vKz8/Hy1trbq/Pnz5j5G7CEKAInHOBvH6/Wae0kPDw8rJSVFzc3NunTpkrmHUXV1tdXFxR4h/gPAwUb83z9Y/wIABxvrX/Ye7V0AONho7746fr8/pi3b3d2t7e1tOZ1OtbW16fTp02bMPXz4sNXFBQDskY2NDfX29prn4xjnpa2vr6uiokIXL140L7fbrdTUVKuLnJBYXwkABxfrK3eamZnRT37yE33wwQe6cuWKhoeHlZ2drU9+8pN67bXXdO7cOZ0+fVp5eXlWFxUA9o1gMKgbN27o+vXr+ulPf6rOzk4lJyfr7NmzevPNN/Xmm2/qwoULB2KOyubmpjo7O2P6Oo31YadPn1Zra6tOnjwpl8ulEydOKC0tzeoiAwD2yL179+T1euX1enXr1i21t7drcHBQKSkpamxs1Cc+8QlzXNFms1ld3ITEeCMAHEyMN746zKcFgION+bQvbmhoSNeuXTOvvr4+SdKJEyfU1tamM2fOyOVyqbm5WTk5ORaXFgCwF5aWltTV1RXTb9zf3y9JamhoiGmzHj9+3OLS7g/MZwWAg4v5rPGL8xUAABLnKxxkjCMDwMHGODJ2Q34AAAcb+QE+DvIHADjYyB/wcZA/AMDBRv6Aj4P8AQAONvIHvCjWPQLAwcW6R7yozc1Neb3emL1yx8bGlJaWplOnTqm1tVUtLS1yuVxqbGw8EHv4A8BBsr6+rp6eHnm9Xt25c0cdHR26c+eONjY2VFVVZa65vHTpklwuF+vwsSv23QeAg4l995GomL8BAAcb8zfiH/MnAODgYv5EfIlEIvJ4PHr//ff1/vvv69q1a9rc3NTJkyf1mc98Rm1tbbpw4YKKioqsLioA7Inp6Wldv35d165d049//GPduXNHaWlpunjxoj73uc/pV37lV+RyuZSUlGR1UV+qt956S1NTU7p582bczD/o7OzUv/3bv+ny5cvy+XyqqqrSF77wBX32s5/VJz/5Sc7wAyBJ2tra0p07d/TBBx/ov/7rv3Tjxg0dOXJEaWlpCofDSkpKUiQSeebfV1tbqy9+8YvKz883r4KCgpjnhw4deok1AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFW2trY0Nzenubk5zc7Omn82ns/OziocDmt2dlYzMzPm48bGRszvycrK0tGjR3X06FEVFRWpqKhIR48eVWFh4a4/P3r0qLKysiyqdfz6+c9/rtdee039/f2qq6uzujgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSiy0mRSCRidSnw7D796U+ruLhYP/jBD6wuCgDEjffee09vv/22FhcXlZuba3VxgBfW09Oj//u//9OVK1fU0dGhubk5HTp0SGfOnNHFixfV2tqq1tZWFRYWWl1UAMA+ND09revXr6u9vV3t7e26deuWHjx4oKNHj6q1tVWf/vSn9dnPflaNjY1WF3VPhEIhXb58Wf/+7/+ua9euKRKJ6Pz583r77bf11ltv6eTJk0pKSrK6mACwJ8bHx/Xee+/pRz/6kX784x9rcXFRdXV1+vznP68vfvGLOnnypNVFfGGhUEg/+tGP9P777+vnP/+5JiYmlJGRoTNnzujSpUu6dOmSLl68qPz8fKuLCgB4Cebm5tTe3q6rV6/q6tWrunXr/7N352FRXOn78O92YRGXARfAPTHGfcngxiLugkvcNRqNGmNckpmvmYy/mWiSGeMYTcaJJjNO1LjFNRhwxaiAJi6giRh3xCiiUREUxLggIMt5/5i3G7Cbpgq6u6q67s915Zqxuuh+ujic5zl1TlWdRG5uLho0aIDg4GCEhIQgNDQU3t7eSodKTu727duIiopCTEwMjh49ilu3bqFq1arw8/ODv78/goKCEBAQAB8fH6VDJSIiBRQWFuLixYuIi4tDXFwcjh07hqtXr6Jy5cpo164devTogdDQUPTo0YMPuyVFpKenIyYmBtHR0Th69CiSk5NRuXJltG3bFkFBQaZ6pkmTJkqHSkRECsrPz8eZM2dw7NgxU01jHP/+/ve/R48ePRASEoKgoCC4uLgoHS5ZkZCQgKioKBw8eBDHjh3Db7/9hurVq6Nr164IDAxEQEAA/P39UbNmTaVDJSIiBT148ADHjx835f4TJ07g8ePH8PT0hL+/P/r27YuQkBC0bt1a6VA1jfMLRERkDecX5BFC4PTp06Yx708//WSqXwICAhAQEIDAwEB07twZ1apVUzpcIiJSwJMnTxAfH4/Y2FjTNVTG86PdunVDnz59EBISgo4dO+rmuiLmTyIiKgvzJ/MlERGVjflSPzi/S0RE1nB+V5uY34mIyBrmdyKyt9zcXMTGxiIqKgqHDx/G6dOnkZeXh4YNG5qu8wsMDESHDh1QpUoVpcMlIiIFXb9+3VSTxsXF4cKFCygoKECzZs0QFBSEkJAQ9OvXj88hIVV48uQJDh8+jKioKBw6dKhEew0MDDT916pVK1SqVEnpcImISAGpqakl7l906tQp03i4e/fu6NevH0JDQ+Hr66t0qCQR8z8REZWF+d8xeP0LERGVhde/yMPxLhERlYXjXdtISUkpcV1HSkoKXFxc4Ofnh4CAANN1HfXq1VM6VCIicrDs7GycPHmyxDg2MzPT9FwV4zj2pZde4ji2nHh9JRERWaPH6ytPnTqF7du3Y9++fThz5gwqVaqELl26oE+fPujbty+6devG5/IREcmQkZGBH374AQcOHMCBAweQnJwMDw8PBAcHY+jQoRg2bBi8vb2VDtMmjOt29u/fb1q3k5WVBS8vL9OaHeO6HTc3N6XDJSIiB7tz5w6OHTtmOtf5888/Iy8vDw0aNED37t3Rv39/hISEoH79+kqHqkmcbyQiotJwvtE2uJ6WiIjKwvW01t24cQP79+9HTEwMYmNjkZaWBjc3N3Tq1MmURwMCAlC7dm2lQyUiIge6d++eKX/GxcUhPj4eubm58PHxQVBQEPr374/Q0FA0atRI6VAdgutZiYjIGj2uZ9UCPl+BiIik4vMVnBPnkYmIqCycR9Yf1gdERFQW1gf0LNYPRERUFtYP9CzWD0REVBbWD/Qs1g9ERFQW1g9kDa97JCIia3jdI1ljvF99VFSU6X71jx8/hqenJwICAkzXX3bu3BnVqlVTOlwiIlLAkydPEB8fX+J+ub/99huqV6+Obt26me6X27FjR94vV6d4330iIioN77tPWsT1G0REVBau31A3rp8gIiJruH5CXfLz83HgwAGEh4dj7969SEtLQ7169UzPvejXrx/nFohIN+7evYvo6GjTc+Pu3r0LX19fDBw4EKNHj0afPn2c7t75O3fuxIgRI3DkyBEEBQUpHY5VKSkpWL16NTZv3owrV66gcePGGDlyJEaPHo1u3bpxjoOIynTjxg1ERERg2bJluHbtmml71apVkZeXV+bPd+/eHUeOHLFniERERERERERERERERERERERERERERERERERERERERERERERERERERETkZLKzs3H//n3Tf6mpqbh9+3aJbcW3Z2RkmN0r083NDZ6eniX+q1+/Pnx9fS1ub9CgAVxdXRX6xurw17/+Fbt27cKlS5eUDoWIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMhZhRuEEELpKEi6//znP5g7dy7S09Ph5uamdDhERJpw6tQp+Pn54cqVK3jhhReUDodItuzsbERHR2PXrl2Ijo5GSkoKvLy80KdPHwQFBcHf3x8dO3ZE1apVlQ6VSBP69euHmJgYpcMgUo28vDycOXMGx48fR2xsLA4ePIjMzEw0aNAAISEhGDp0KPr376+pMWhubi4iIiLw9ddf44cffoCHhweGDBmCQYMGoX///vDy8lI6RCJyIL3m/ry8PMTFxWHfvn2IiIhAcnIyWrZsiQkTJmDKlCnw9fVVOkTJLly4gPDwcOzZswenT5+Gq6srgoOD0bNnTwQFBaFz586aylNEStNrv0jOKScnB/Hx8Th69CgOHTqEI0eO4OnTp/j973+PwYMHY/To0WjTpo3SYZITEEIgPj4e27dvx759+3Du3Dm4u7sjODgYwcHBpprE3d1d6VCJKoR1ApH9pKWlIS4uDnFxcfj+++9x7tw50/j25ZdfxogRI1C/fn2lwyQndubMGVMtc+rUKVSuXBmBgYHo0aMHAgMD0a1bN9SoUUPpMIkqhLUMkf3duHEDsbGxOH78OGJiYvDLL7/Aw8MDvXr1wpAhQzBs2DDUrVtX6TB1Lzc3FwcOHMDOnTsRFRWFmzdvonbt2ujTpw+6d++OwMBAtG/fHpUrV1Y6VKIKYe4nsq/8/HycO3cOcXFxiI2NxYEDB5CZmYlGjRohNDQUw4YNQ9++feHi4qJ0qKrG+QXSC+ZlIvvh/EJJ2dnZ2LdvH3bt2oWoqCjcuXMHPj4+6NevH4KCghAYGIhWrVqhUqVKSodKVCHMrUT2UVhYiMTERMTGxiIuLg4xMTFIS0uDj48PQkJCMGzYMISEhDjdGI35k/SC+ZPIPvSSP5kvSS+YL4nsQy/5Ug84v0t6wZqAyH44v6s+zO+kF8zvRPbD/E5EFXX37l3s2LEDkZGROHToELKystCyZUv07dsXAQEBCAoKQqNGjZQOk6jCWJMS2dfDhw/x448/4tixYzh06BCOHTuGgoIC+Pn5YeDAgRgxYgTat2+vdJikI7du3TLVOEePHkVubi7at2+P3r17IygoCAEBAfDx8VE6TKIKYX1DZD9PnjxBfHw84uLicPjwYRw5csSUSwYMGIARI0agU6dOMBgMSodKxTD/kx4w/xPZD/O/7fD6F9IL5mUi++D1L+Y43iU9YF4lsh+Od6Wxdl1Hjx49EBQUhE6dOumqBiHnxJxLZHtCCCQmJprukR8dHY20tDR4e3sjNDQUQ4cORWhoKHOIFby+kvSCeZjIfpzx+soLFy5g/fr12LZtG65du4YmTZpgyJAh6Nu3L3r27ImaNWsqHSIR2RlrB8e5du0aDhw4gOjoaOzbtw/Z2dkIDAzEK6+8gnHjxsHLy0vpEGUxrtvZuXMnoqOjcefOHfj6+pqt29H7OWHSPvaTRLaXnZ1tNq+YnZ2NDh06YMCAARg5ciQ6deqkdJiqxflG0gvmYCLb43yjdFxPS3rAXEtkP3pfTyuEwPHjx03j1osXL8LDwwM9e/ZEjx49EBgYCD8/P7i6uiodKhE5kD1qD9YzziU3NxcnT5405c9Dhw7hyZMnaNOmjenekl27dnWa/Mn1rKQX7KuJ7McZ17NqAZ+vQHrBHE5kX3y+gnZxHpn0gHUAkf3ofR7ZWbE+ID1gfUBkP6wP9In1A+kB6wci+2H9oE+sH0gPWD8Q2Q/rB31i/UB6wPqByH5YP+gbr3skvWAtQWQ/vO5R34z3q9+1axeioqJw584d+Pj4mN2vvlKlSkqHSlQhrCWI7KOwsBCJiYmIjY1FXFwcYmJikJaWBh8fH4SEhGDYsGEICQnhmNSJ8b77pBesJYhsj/fdJ7Xi+g3SA9Y2RPbD9RvK4voJ0gvmciL74foJxztx4gTWrl2LiIgI3Lt3D126dMHQoUMREhKCl156iWsViKywZ01Q0feW+vOsa8pWWFiI06dPY//+/di1axfi4+NRp04djB49GlOmTHGKZ8g/ePAArVu3Rr9+/fD1118rHU6pDh8+jKVLl2LPnj2oXbs2JkyYgNGjRzvV85iIyPFu3ryJLVu2YPXq1UhKSoKrqytyc3NRuXJlCCFQWFho9jOtW7dGQkKCAtESERERERERERERERERERERERERERERERERERERERERERERERERERERkZ5kZmYiIyMDGRkZuHfvnul/09PTLW6/d+8ehBAl3qNGjRqoW7cu6tSpgzp16qB27dqm//X29oa3tzfq1q0LX19f1KtXz+meKxMYGIj27dtj+fLlSodCRERERERERERERERERERERERERERERERERERERERERERERERERETkrMIN4tk7IpKqpaSkoFGjRoiMjMSgQYOUDoeISBNSUlLQsGFDxMbGIjAwUOlwiCR5+vQpIiMjsXXrVuzduxfZ2dno1q0bBgwYgP79+8PPzw+VK1dWOswKMRgMZjfnlvIakRTW2lDfvn1x4MABB0ekPgaDAQD4t2YDztZnFRQU4OTJk4iOjsbevXtx4sQJVKtWDQMGDMDYsWMxePBguLi4KB2mRSkpKfjiiy+wbt06PHjwAIMGDcL48eMxaNAgTT3QgTmStCwhIQF//OMfER8fj8ePHwNQPtcw9//Pjz/+iG+++QZbtmzBgwcPMGTIELzzzjsICgpSOjSLrl27hvXr1+Pbb79FYmIiGjZsiCFDhmDAgAHo3bs3qlWrpnSIFcK+nhyhtJpfjf2iHscnpX1ne/UBejnGWVlZ+P7777Fv3z7s3r0bKSkpaN26NcaMGYPJkyejSZMmSodIGnP69Gls2LAB27dvx40bN9CsWTMMGTIEISEhCA4O1tRY0xLWJPQsS3UC2wLZw9WrV/Hpp58iOjoaqampcHd3R6tWrdC7d2+88soraN++PQDg1KlTWLVqFaKiopCSkoJ69eqhQ4cOeP/99+Hv71/iPdPS0vCnP/0J+/btAwAMGDAAn3/+Oby9vR3+/aRITU3F/v37ERUVhX379uHx48fo1q0bRo8ejfHjx6Nu3bpKh0hOICEhARs3bkRERASuXr2Kxo0bY/DgwQgJCUHv3r1RvXp1pUOsENYy9CzWMmRvxvMrRm5ubqhduzZeeukljBw5Eq+++qrZPKrUeubZ9372cwsLC237ZWzk+vXriI6ONtU1ubm56N69O0aPHo1x48bB09NT6RB1o6CgAPv27UNYWBj27NmDhw8fokuXLhg0aBBCQkK41oycEnM/2Zs9c7+ccx5qYVxTFhUVhe+++w7x8fGoWbMmXn75ZYwbNw4hISGazzW2xPkF9sV6w7xM9mZt3GxUvL05c07W4/xCXl4eIiMjERYWhr179yInJwdBQUEYMGAAQkJC0KFDB0ltRM2YW+lZzK1kb3Jzq7WfeXY/Lc3dCyFw5swZREVFYe/evYiLi0O1atUwcOBAjBs3DoMGDULVqlWVDrNcmD/ZZ+oR8yc5UnZ2Nnx9fdGhQwccPnzY6r5r167FtGnTkJ+fb3W/3bt3Y+nSpTh16hTy8vIQGBiIP//5zwgNDbVl6BXmTPmT+ZJ9pB4xX5K9lWe8CTBfkvI4v8s8oDesCciRpIyhef0Y2QPzO/t0vWF+J3sr75i/rLE8128RkbO6f/8+tmzZgvDwcMTGxsLV1RWhoaEICQlBSEiIU9wDizUpPYs1KdmbPa/1A4DDhw/jb3/7G+Lj4+Hi4oK+ffvis88+U22f/ejRI3z//feIiopCZGQkbt26hebNm2PkyJF47bXX0Lp1a6VDJCd09+5dbN68GeHh4fjxxx9Rs2ZN0zqbkJAQ+Pr6Kh1ihbC+oWexviF7s9c1k1q8h1F2djYOHz6M/fv3IzIyEsnJyWjSpImptunYsaPSIeoW8z/7fL1h/idHknNditGDBw/Qtm1b3Lp1q1x1gpow/8vD61/YF+sR8zI5ki2vF9VaXtbr9S8c77Iv1RvmVbK38q4xNSptvMvz3dp35swZbNiwAdu2beN1HaQLzLlkb8Vzo5R2JeVazHPnzmHjxo347rvvkJycDA8PDzz//POYNGkSZsyYgSpVqtj+i1SAEAJnz57F/v37zcaxr776KgYOHOiU49jy4PWV7Hv1hnmY7M3SGNXLyws9e/bEsmXLSj2nKPWeSkaljZHVRKvXV2ZlZWHDhg1Yu3YtTp48ieeffx6vvPIKRowYgU6dOikdnmzMhUQVY6l2IPvLzs7G/v37sX37duzYsQP5+fkYMmQIpk+fjj59+igdXqny8vKwZ88efPPNN2brdkJDQ9G+fXuu2yGnwzEW2Zs9znU++77FqbHtWppXbNq0KUaOHImJEyeiffv2SoeoCpxvVF/bJftiDiZ7s1cO1tK9OjjfWBLX07J/1RvmWrK38swpyrnXuty5RyXpZT3tzz//bFqfc+vWLbz44oumcWv37t3h6uqqdIgVwlxKzszYZ9uzHZd3TtLa3xfnOZ1bTk4Ojh49asqfV65cQaNGjUznjV966SWlQywXrmdlvtQbjj3J3uz1vBCtXVsCaHc9qxbw+Qrst/WIOZzszd7PV9Dacz35fAV14zwy+369YR1A9lbesbzU+WHOI5MjsD5gTtAb1gdkb3LXmTnzOQLWB86L9QNzht6wfiB7s9daAbn7qQHrB+fF+oE5Q29YP5C9ya0fCgsL8dVXX2H16tVISkoCALzwwguYNm0apk6dikqVKpn25fkHUgvWD8wZesMLnH2vAAAgAElEQVT6gexNbv0g53lSWro3HMD6QS943aM6//7IflhLkCNJeTa01LUQvO6R1CgvLw+RkZEICwszu199SEgIOnTowPvVk9NhLUGOcvXqVXz66aeIjo5Gamoq3N3d0apVK/Tu3RuvvPKK6Z7tcmoELc1rCCFw5swZREVFmd0vd9y4cRg0aJCu7pfrzHjffeYPvWEtQfYm9777gLTrMrVWR/C++6QUrt9gPtMb1jZkb3LXbzjreRKA6zcchesn2H/rDXM52Zu97jXF9RNklJOTg6+//horV67EmTNn0LZtW0yYMAFjxozBc889p3R4sjBPk1T2eLaQPZ/78+x7y41f6s9L/Q72OH6OeN6TPSQnJ2Pr1q3YvHkzEhIS8NJLL2HGjBmYOHEi3NzclA6vXKZNm4YdO3bg4sWLqsyt+/fvx/z583H8+HEEBwfjrbfewvDhw83uwa02zFFE2nPixAmsXLkSmzZtgru7O+rXr4/r168jOzsbrq6uyM3NBQD4+vri9u3bCkdLRERERERERERERERERERERERERERERERERERERERERERERERERERERFRSYWEh7t27h4yMDNy7d8/0/9PT05GRkWG2PS0tDY8ePSrxHtWrV0f9+vVRr1491K1bF/Xr10fdunVRr149+Pr6om7duvD29oavry88PDwU+qbS5OXloVatWvjyyy8xefJkpcMhIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyVuEGIYRQOgqSp0uXLmjfvj1Wr16tdChERJqQl5cHNzc3hIeHY8SIEUqHQ2RVYmIiVq5cic2bN+P+/fvo1asXRo4ciaFDh8LX11fp8GzKYDCgtFLU2mtEUrANScPjZBvOfhxv376NnTt3Yvv27Th06BA8PT0xYcIETJ8+HS1btlQ6PADAzZs38fHHH+Prr79GnTp1MH36dLzxxhuoX7++0qGVC3MkaVnnzp3xl7/8BUOGDMHRo0fRr18/tlmVyc3NRUREBL788kscO3YMPXr0wLx589CzZ0+lQ0NhYSF27dqFlStXIiYmBj4+PhgzZgxGjx4Nf39/GAwGpUO0Gfb15Chaak9aitVWLH1nex4HvR3jwsJCHDt2DOHh4QgPD8edO3fQv39/zJgxAy+//DIqVaqkdIikUllZWdiwYQNWr16NU6dO4cUXX8To0aMxatQodOzYUenwbIo1CUnBtkC2FhUVhQULFuD9999HQEAAXFxckJqaij179uDDDz/EgwcPTG3OYDCgTZs2+Pzzz9G5c2cAwKFDh/DHP/4RS5cuxciRIwH8b6zbqVMnjB07Fm+99RYA4Msvv8S3336L+Ph4uLi4KPNlJcrJyUFMTAwiIiKwc+dO5OTkYOjQoZg2bRr69u2rdHikMTk5Odi0aRPWrFmDH3/8EU2bNjXVMp07d+b5FdIdtgWyteJtKjs7G2lpaThx4gTWrFmD1NRUbN++Hc2bNy+xv5R6prS2unbtWmzbtg3fffedA75dxTx58gR79+7Ftm3bEBkZiYKCAowcORLTpk1DcHCw0uE5rRs3bmDlypVYv349bt++jaCgIIwaNQojRoxAw4YNlQ7Pppj7SQq2BbI1e+Z+Kfup2c2bN7F9+3ZEREQgLi4ODRo0wOTJkzFt2jQ0atRI6fAUwfmFsl8jfWFbIFuT0/foJSc7+/zC1atXsWLFCmzYsAEZGRno1asXRo0aheHDh8Pb21vp8GyKuZWkYFsgW5Pb90hpg1qfu09LS8OOHTsQERGBQ4cOoW7dupg0aRJmzJiB5557TunwJGH+LPs10he2BbKXjRs3YtOmTTh37hyOHDlS4jxxcYsXL8by5ctx7do1q23xn//8J5KSkjB79mw0bdoUycnJmDFjBg4fPqz6NqzF/Ml8WfZrpC9sC2Rrcvse5kt15ks94Pxu2a+RvrAtkL1IGUPz+jHnmN9VA+b3sl8jfWFbIFuT2/dIGctz/RYROZvDhw9j5cqV2LFjB6pUqYIhQ4Zg5MiRCA0NRbVq1ZQOz6ZYk5IUbAtka/a61u/IkSMYO3YslixZYrqH8v79+7F06VL88MMPqFmzpuO/rAxCCPz000/Ytm0bwsPD8euvvyIgIABvvPEGXn31Vbi5uSkdImlcdHQ0vvrqK0RGRsLd3R3Dhg3DqFGj0K9fP7i6uiodns2wviEp2BbI1ux1zaTW72F0+vRpREREIDw8HFeuXIGfnx+mTp2KiRMnOt34Wq2Y/9nnUxG2BbIXqdelFDdlyhR4eHhg2bJl5aoT1Iz53zJe/1L2a6QvbAtkL7a8XlTrednZr3/heJd9KRVhWyBbq0jfY228y/Pd2vPkyRNs2LABa9aswcmTJ9G8eXOMGTOG13WQbrEtkK1JbVNSr8U0GAxo1aoVPv/8c3Tp0gVVq1bFxYsX8de//hXPPfcc1qxZY9fvU1FpaWmme+QfPnwY9erVM41jmzZtqnR4DsfrK8t+jfSFbYFsrXibys3NRVJSEt577z1UrVoV27dvN9tf6j2ViittjKxWWri+Mj09HUuXLsXKlSuRnZ2NMWPGYPLkyejRo4emn+fKXEhEWvfo0SNERERg7dq1iI2NRceOHTF79myMGzcOlSpVUjo8AMC1a9ewYsUKrF+/Hunp6ejZsydGjx7NdTukW2wLZGu2Ptcp5z3V6NSpU4iIiMC3336Lq1evonPnzpg6dSpee+01uLu7Kx2eQ3G+sezXSF/YFsjWbJ2DtX6vDr3ON3I9LftXKsK2QLYmZ05Rzpi3PHOPauJM62mzsrKwfv16rF69GqdPn0aLFi1M49b27dsrHZ5NMZeSs1NrO1ZrXOR4Z8+eNZ03vnz5Mvz8/PDmm2/itddeU33+5HrWsl8jfWFbIFuz1/NCtHxtiRbWs2oBn69Q9mukL2wLZGv2er6C1p/ryecrqAfnkdn3UxG2BbI1uX2P1PlhziOTvbE+YE6gImwLZGty1pnp5RwBwPrAGbB+YM6gImwLZGv2WCsgZz+1Yv2gfawfmDOoCNsC2Zqcvuedd97BsWPHsHjxYvz+978H8L88O3v2bHTv3h2fffYZAJ5/IHVg/cCcQUXYFsjW5PQ9cp4npfW2yvrBefC6x7JfI31hWyB7kfJsaKlrIXjdI6nJ1atXsWLFCmzYsAEZGRno1asXRo0axfvVk26xLZCtRUVFYcGCBXj//fcREBAAFxcXpKamYs+ePfjwww/x4MED2fdG0Pq8RlpaGnbs2IGIiAgcOnQIdevWNd0v97nnnlM6PJKJ990v+zXSF7YFsjU5bUrKdZnOUEfo8b775Fhcv8F8RkXYFsjW5K7f0MN5EoDrN2yJ6yfKfo30hW2BbM0e95ri+gl68uQJ/vOf/2Dp0qV48OABxo4di2nTpsHf31/p0MqNeZrk0HqbqGj8Sv+8o97TkeLi4rBq1SqEhYXB09MT7777Lt5++21NjS8PHTqE3r1745tvvsErr7yidDglJCQk4N1330V0dDQGDx6MuXPnaipnMUcRadft27exdOlSLF++HHXq1MHkyZPx9OlTREZGIiEhAbVr10Z6errSYRIRERERERERERERERERERERERERERERERERERERERERERERERERERERVVhubi7u3buH+/fvIzU1Fbdv3y71/9+5cweFhYWmn3Vzc4Onpyc8PT1Rv359+Pr6mv63+DZPT0/4+PigUqVKDv1u8fHx6NKlCxITE9GyZUuHfjYREREREREREREREREREREREREREREREREREREREREREREREREREZGOhBuEEELpKEieRYsWYcmSJUhNTUWVKlWUDoeISBPq1KmD+fPn46233lI6FCKLTpw4gUWLFmH37t1o1qwZJk+ejEmTJqFBgwZKh2Y3BoMBpZWi1l4jkoJtSBoeJ9vQ03G8desW1q9fj3Xr1uHatWsYOnQo5syZg86dOysSz9OnT7FkyRIsWLAA9erVw3vvvYfJkyfDxcVFkXhshTmStKxq1arIyclB5cqVlQ6FJDhy5AgWLFiAmJgYjB49GkuWLEHDhg0dHkdhYSG2bt2KBQsW4NKlSwgNDcW0adMwaNAgpz3/yb6eHEVL7UlLsdqKpe9sz+Ogx2NslJ+fj8jISKxatQpRUVFo3bo1PvjgA4wePdrhD2gj9Xr48CGWLVuGzz//HFlZWRg9ejSmTp2KoKAgpUOzG9YkJAXbAtnSrVu3MGzYMPzwww+oUaOG2esHDhxAv379TG3OYDDg/PnzaNu2bYn9oqKi8O677yIhIQEAsGLFCsTGxmLTpk0l9pswYQJ69OiBN998007fyPaysrIQHh6ONWvWIDY2Fp07d8b777+PIUOGwGAwKB0eqVhWVhZWrFiBzz77DPfv38fw4cPxxhtvoFevXk5b87KWISnYFsjWrLWpVatWYeHChThz5gxq1apl2l9KPfPBBx9gwYIFZu/p5+eHBQsWYMCAATb+Jvb18OFDhIWFYc2aNThx4gQCAwMxd+5cDBw4UOnQnEZSUhIWLVqETZs2oU6dOpg8eTKmTJmCZs2aKR2a3TD3kxRsC2Rr9sr9UvfTiitXrmDt2rVYv3497t27h4kTJ+K9995z6rxUHOcXpL9G+sK2QLYmp+/RY052pvmFxMRELFy4EGFhYWjQoAFef/11vP7662jcuLHSodkNcytJwbZAtia375HSBp1p7v7XX3/F2rVrsW7dOqSmpuLVV1/FnDlz0LJlS6VDs4j5U/prpC9sC2QvPXv2xKxZs3D8+HFUrlwZixYtsrhf27ZtER0djQYNGpTaFs+dO4dPP/0UmzdvLrE9KSkJzZs311QbVnv+ZL6U/hrpC9sC2Zrcvof5Ul35Ug84vyv9NdIXtgWyFyljaF4/pu35XTVgfpf+GukL2wLZmpy+R+pYnuu3iMhZfPfdd/j4449x/PhxdOvWDW+88QZeeeUVi/fUcBasSUkKtgWyNXtd69ezZ0/MnDkTr7zySon9NmzYgFu3bmHu3Ll2+Db2UVhYiIMHD2LNmjXYuXMnvLy8MHv2bEyfPh0eHh5Kh0caIoTArl278PHHH+PkyZMIDg7GG2+8gVGjRqFatWpKh2cXrG9ICrYFsjV7XDPpTPcwEkLg6NGjWL16NSIiIlCjRg288847+MMf/uDUY26lMP9Lf430hW2B7EXqdSlG+/fvx1tvvYXz58+jevXq5aoTtID5/394/Yv010hf2BbIXmx5vagz5WVnuf6F413pr5G+sC2QrZW377E23uX5bm15/Pgx/vvf/2LJkiV49OgRRo0ahalTp6J79+5Ou46WOZekYFsgW5PapqRei2kwGHDu3Dm0a9euxH6pqal44YUXkJWVZbvg7ez69eumceydO3cwfvx4zJkzBy+++KLSodkdr6+U/hrpC9sC2ZqlNpWWlobWrVsjMzPTbH8p55SLszZG1gK1XV+Zk5ODL774AosWLYKbmxvefvttzJw5E3Xq1HF4LPbAXEhEzuTnn3/GZ599hvDwcLRu3Rr/+te/0K9fP8Xi+eWXX7Bo0SJs3rwZvr6+mDJlCl5//XU0adJEsZjsjXmFpGBbIFuz9blOOe+pZkIIHD58GGvWrEFERARq1aqFP//5z5g5cyaqV6+udHh2xflG6a+RvrAtkK3ZOgc70706nH2+ketppb9G+sK2QLYmZ05RzphX7tyjWml5Pe2jR4+wbNkyLF26lOtzyniNSCvU2o7VGhcpy5g/w8PDUaNGDbz77rt46623VJc/uZ5V+mukL2wLZGv2el6Is1xborb1rFrA5ytIf430hW2BbM1ez1dwpud68vkKjsd5ZOmvkb6wLZCtye17pM4Pcx6Z7IH1gfTXSF/YFsjW5Kwz0+M5AtYH2sL6QfprpC9sC2Rr9lgrIHU/LWD9oC2sH6S/RvrCtkC2JqfvqVWrFs6ePYumTZuW2O/69evo2LEjfvvtNwA8/0DKYf0g/TXSF7YFsjU5fY+c50k5S1tl/aBdvO5R+mukL2wLZC9Sng0tdS0Er3skNUhMTMTChQsRFhaGBg0a4PXXX8frr7+Oxo0bKx2a3bCWICnYFsiWbt26hWHDhuGHH36wOMY+cOAA+vXrJ/veCM40r/Hrr7+a7pebmpqKV199FXPmzEHLli2VDo3KwPvuS3+N9IVtgWxNTpuScl2mM9URzn7ffXIsrt+Q/hrpC9sC2ZqcvkeP50m4fqP8uH5C+mukL2wLZGv2uNcU10/o29atW/H//t//w4MHDzBz5ky888478PHxUTqsCmOeJjm03iYqGr/SP++o91RCamoqli5dihUrVsDT0xOLFy/GmDFjlA6rTA8fPkSHDh3QoUMH7Ny5U+lwTAoLC7F06VJ88MEHaNu2LT777DMEBwcrHZZszFFE2peSkoIPPvgA69evx4gRI7BixQoUFhYiIyMDrVu3Vjo8IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKHevr0KdLT05GWloa0tDTT/79z5w7S09ORmppq+v/p6ekl7sPr6uqKevXqwdfXF/Xq1UPdunXRsGFD1K9fHw0bNjT9/3r16tks3uXLl2Pu3LnIzMzkcwyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsJ7yS0hGQfKNGjUJGRgbi4uKUDoWISDO8vb1x584dpcMgMpOWloaJEyeiW7duuH79OtatW4fExETMnTsXDRo0UDo8WQwGg8WbSlvabvy38TWDwYCpU6eW+RoAXLhwAYMGDUKNGjVQo0YNhIaG4sKFCxY/8+rVqxgxYgQ8PT1Ljc/ad7l48SJCQ0NRs2ZNVK9eHYMGDUJiYqLsz7pw4QIGDhxoinngwIFmMQPA2bNn0b9/f3h4eKBmzZoYMGAAoqKiSuwj5fs/ePAAf/rTn/D888/Dzc0Nvr6+mDx5Mk6cOCFrHzmxSzmeZR2jsr4XAOzevRuBgYFwc3ND06ZN8ac//QmPHj0y+7zin/ts+yr+ucX3OXToEAAgLCysxHY5nw1I+z1KfS9bHH8ASEhIwMCBA1G9enXUqlULw4cPx40bNyzuK/V3YY0Sf0NyPlPqe0r5Oymrz5L6u9aKhg0b4v3338fly5exc+dOpKamokuXLhgzZozDa62bN2+iR48emD9/PmbPno3ExERMmzYNLi4uDo1DCuZI5khrpH43qf1gYmIiunXrhmrVqqF79+5ISkpCQkICunbtiurVq6NXr14Wc4Ctcn5+fj6qVKkCg8GA9957r0Rslva39DdgMBhw8+ZNDB06FDVq1IC3tzcmTJiAe/fuyT5+pX22nGMqNRYt9vnBwcGIjo7GwYMHceHCBbRp0wbbtm1zaAznz59HUFAQJkyYgDZt2uDChQv47rvvMHToUFSpUsWhsVQE+3r29dZIHcc4os+x1BbkHI+KjhUA5cYnFR2TSh0fSO0LSou1+P7lHV/IPca2GBupXZUqVTB8+HDs3bsX58+fx0svvYQJEyage/fu5WrH5HwiIyPRpk0bfPLJJxg3bhyuXr2Kr7/+GkFBQUqHJgtrEtYkpSlvHpNzrtXa+wDaPb/Ktmjb47lkyRLMnDkTNWrUsPh63759SzxMVQiBtm3bmu0XGBiIq1evmv69fft2TJo0yWy/iRMnOnycW1EeHh6YPHkyjh49ijNnzqBly5YYOXIkevTogYSEBKXDI5WKjIxE69atMW/ePIwePRpJSUnYsmUL+vTpg0qVtLM8kLUM80dpWMuwllFLWyzLm2++if79++Nf//qXaZvUembBggVm+xw/fhwPHz5EaGioTeN0hJo1a2LatGn46aefEBcXB09PTwwePBi9evXCpUuXlA5P07KzszFv3jy0bdsWP/zwA/75z38iOTkZH3/8MZo1a6Z0eLIw97O/LQ1zP3O/WtpiWSqS+6XupxXNmzfHokWL8Ouvv2LVqlU4evQoWrVqhVmzZuHx48dKh2dXnF9gXjZy1r6QeZl5WS1tsSzF5xaM/9ZbTnaG+YUnT55g3rx56NixI06fPo01a9YgKSkJf//739G4cWOlw5OFuZX9WWmYW5lb1dIWy/JsbpXKmebumzRpgo8++gjXr1/Hli1bcPLkSbRr1w6zZs1S1TUCzJ/Mn8U5a5/F/Mn8qZa2aJSUlIRLly5h8ODBeOONN7B+/Xrk5+db3Pfo0aOoX7++1fdbsWIFpk2bZrb9hRdeKHdOVopa8yfzJfNlcc7aRzFfMl+qpS2WxVJuY75UR77UC87vsiYwctZ+mDUBawK1tEUjqWNoXj+mzfldtWB+Z343ctY+lfmd+V0tbbEsz47PpY7luX6LiLQuKSkJoaGhGDx4MDw8PHDs2DEcP34cU6dORY0alu+poVasSVkHlIY1KWtStbTFslTkWr/4+Hj07dvXbL/Q0FBERkbaNE57q1SpEvr164ewsDDcuHED06ZNw/z58/Hiiy9iw4YNSodHGnHlyhX0798fI0aMgI+PD3766SccPnwYEydORLVq1ZQOTzLWN8wppWF9w/pGLW2xLOW9ZtKZ7mFkMBgQHByMDRs24MaNG5g5cyYWL17M2sYOmP+Z/42ctc9l/mf+V0tbNJJzXQoAPHz4ENOnT8fq1avh4eFh9rozzbnpPf/z+hfm5eKctS9kXmZeVktbNLL19aLOlJed4foXjneZV42ctS9jXmVeVUtbLEtp14CWNd7l+W7tMD4rZ8GCBRg7diyuXr2KDRs2IDg4WHKOUAPmXPZzpWHOZc5VS1uUQ+q1mEIItGvXzmy/Bw8ewMfHx27x2UPTpk0xf/58/Prrr9i8eTN++ukntGnTxunvkc/rK5mHjZy172MeZh5WS1u0prRxr5RzykZljZG1QE3XVyYkJKBbt26YP38+ZsyYgcuXL+PDDz9EnTp1HBqHHMyF7H8cdTyl5KLi7af4f25ubjb9bsb3kdomb968iaFDh6JGjRrw9vbGhAkTcO/ePYtxHzp0CAAQFhZWYnvx/SzFYovvVFZblPp9jOTUD2UdS7Xy8/PDli1bkJCQgBYtWqB///6YOHGiw8dyxnU77du3R2xsLP773/8iOTkZ8+bNQ5MmTRwaS0UxrzCvlIZjLPXkZL23RTmc6b5zUhgMBvTs2RMbN27EjRs3MGPGDCxcuNBp5hVLw/lG5mAjZ+33mIOZg9XSFuWQmoOd6V4dTZ14vpHraZlrjZy1f2OuZa5VS1u0xtKcopwxr5y5RzUzGLS5nta4PmfhwoVcn1PGawBzqRb7L1sfT7XNSSYkJGDgwIGoXr06atWqheHDh+PGjRsW97XV789Se5b6c88eH2v1ia3+lsr6+5AyDyl1nrS0GOTEpZb87kjdu3fH+vXrTfnzk08+QYsWLVSVP7melfnSyFnzJcee6qk19N4Wy1KR54U4y7UlalrPqnZ8vgJzeHHO2m8yhzOHq6UtlqUiz1dwpvVVfL6CY3EemXWAkbP2vawDWAeopS2WxdJcstT5Yc4jk62xPmB9YOSsfTLrA9YHammL1liqDfR4joD1gXawfmD9YOSsfTbrB9YPammLZSnvWgGp+2kB6wftYP3A+sHIWfts1g+sH9TSFsvybK4vfi3Hs4q/xvMPpATWD6wfjJy1z2b9wPpBLW2xLM/WD870PCmpWD9oE697ZC1h5Kz9N2sJ1hJqaYtGUp8NLXUtBK97JCUZ71ffsWNHnD59GmvWrEFSUhL+/ve/o3HjxkqHJwtrCfbfpWEtwVpCLW1xyZIlmDlzJmrUsHx9e9++fct1bwRnmtdo0qQJPvroI1y/fh1btmzByZMn0a5dO8yaNctiOyd14H33WUsYOWv/zVqCtYRa2qJcUq7LdKY6omlT573vPjkW12+wtjFy1nzC2oa1jVraYlmeXb+hx/MkBgPXb5QH108wlxs5a//JXM5crpa2WJby3muK6yf06dGjRxg3bhzGjRuHnj174vLly/jkk09U+ztnnmbfaI3U3Cb12ULGY5yYmIhu3bqhWrVq6N69O5KSkpCQkICuXbuievXq6NWrl9nPW2oLtjpm1trZjRs3MHz4cNSqVavM9lSW0vaT82wmW/9OAOnPNlITX19f/POf/8S1a9cwbNgwjBs3DiNGjMBvv/2mdGhW/fGPf0RWVhZWrFihdCgmubm5GD9+PN577z389a9/xY8//ojg4GClwwLAHMUcZZ2c5+w56rgXb2OHDh0CAISFhZXYLid+QH1jUXtr0KAB1q1bZxp3dO7cGZmZmWjdurXSoREREREREREREREREREREREREREREREREREREREREREREREREREREREROZyLiwsaNGgAPz8/DBo0CJMnT8Z7772HpUuXYtOmTTh48CAuXLiAO3fu4OnTp7h9+zbOnj2Lffv24auvvsKsWbMQFBQET09PpKSkYPv27ZgzZw5efvllvPTSS/D29oa7uzteeOEFBAcHY8KECfjLX/6Cf//739i5cyfOnj0r6xnMV65cQYsWLSTfu5eIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjKSZAmtWrVSsyaNUvpMIiINKN3795i+vTpSodBVMLBgweFl5eXaNq0qdixY4fS4dhEaeWlpe3WStHSXrty5Yrw8fERy5cvF3fv3hUZGRli48aN4vnnnxc3b940e49+/fqJuLg48eTJE7F3716rn2kphrZt24pvvvlGZGRkiDt37ohVq1aJxo0bi2vXrkn+rCtXroiGDRuKNWvWiLt375rep0GDBuLKlSum9/jll19EixYtRExMjMjKyhIJCQmie/fuJWKW+v2HDh0q5s2bJ9LS0kROTo44deqUCAwMLPFeUvaRGrvU42ntGMn5va5cuVJkZWWJ1NRUMXHiRDFp0iSLn2ctFqP8/HzRrFkzkZmZWWKf27dvC09PT/H48WNZn4MKHsQAACAASURBVC3l9yj1vWx1/JOSkkSjRo1M75Oeni42btwo/P39zeKS87soi6P/huR8ptT3lPJ3Yvxca8dBSpvVsu3bt4vGjRsLLy8v8f333zvkMxMSEkSdOnVE+/btxeXLlx3ymRXFHMkcaYnU7yanHxwzZoy4ePGi+O2338Tbb78tunbtKkaOHGnaNnPmTDFq1KgSP2frnF/R7QBE//79xb59+8SjR4/EjRs3xPDhw8XkyZNL7Ccn7xYn95hKicW4r5b7/OzsbDF16lRhMBjEf//7X4d85urVq0XVqlWFv7+/OHfunEM+057Y17Ovt3Y8pY5jbN3nSGl/Uo+HLcYKSo5PKjomrej4QGpfUNHxhdxjbMuxkdacPXtWdOvWTbi4uIh169YpHQ4pJDs7W4wZM0ZUqlRJTJ8+3ewckRaxJmFNYklF8lh52klp76PF86vGz2NbtM3xbNWqlUhOTpa8f2mSk5NFixYtTP/28fERaWlpZvulpqYKX1/fCn+e0uLj44Wfn59wdXUVX3/9tdLhkIrk5uaK1157TRgMBjF58mRx9+5dpUOqMNYyzB+WsJZhLaOWtmg8RtbEx8eLdu3alfk+z9Yzlrz66qtiyZIlsuJTs2PHjokOHToINzc38c033ygdjiZduXJFvPjii+J3v/udWLZsmcjPz1c6pApj7md/awlzP3O/Wtqi8RhZY8vcL2c/tcvPzxf/+c9/RK1atUTLli3F1atXlQ7J5ji/wLysl76QeZl5WS1t0XiMpGyzRm85WUvzC4mJieL5558XXl5eYtWqVaKgoEDpkCqMuZX9mSXMrcytammLxmMkZVvx12bNmiV8fHyEu7u7CAgIEDExMSX2cea5+4KCAvHVV18JLy8v0axZM3Hp0iWlQ2L+ZP7UTZ/F/Mn8qZa2aPTee++J2bNnm/4dGBgodu3aZfVnrLXFNm3aiGPHjomBAwcKDw8PUb16ddG7d29x5MgR2bGpjRryJ/Ml86Ve+ijmS+ZLtbRF4zGSsk3OPsyXVFGc32VNoJd+mDUBawK1tEWj8oyhi+P1Y2QN8zvzu176VOZ35ne1tEXjMZKyTYiKj+W5fouItGDTpk3C1dVVdOzYURw/flzpcGyCNSnrAEtYk7ImVUtbNB4ja8p7rZ+7u7vIyMgw2y8zM1N4enrKilGN7ty5IyZNmmS6N01ubq7SIZGKrV27Vri4uIjOnTuLkydPKh1OhbG+YU6xhPUN6xu1tEXjMZKyzRq93cPo3r17Ytq0aaJSpUpi7NixIicnR+mQNI/5X977MP9rs89l/mf+V0tbNJK7pubNN98UM2bMKHGcpXCWOTe95H9e/8K8rJe+kHmZeVktbdHI1teLlsYZ8rLWrn/heFfe+zCvarMvY15lXlVLWzQeIynbiivPeJfnu9Wl+LNypkyZYnHthdYw57Kfs4Q5lzlXLW3ReIykKM+1mHl5eSItLU1s375dtG/fXoSFhcmKTW0KCgrEl19+KX73u9+JFi1aiKSkJKVDsileX8k8rJe+j3mYeVgtbdF4jIxycnLEhQsXxODBg8Wbb74p+edKU945YbVT4vrKyMhI4erqKoKDg8X169cd8pm2wlzI/sfex9P4elm56NnfdW5urujUqZNYvny5Tb+b3DbZv39/sW/fPvHo0SNx48YNMXz4cDF58mTTPvn5+aJZs2ZmtfHt27eFp6enePz4canf0VbfSU5NUNb3Kb6vlPpB6rHUgl27dom6deuKNm3aWBzb2sOVK1dE8+bNhaenp1i+fDnX7Uh4jXlFm3mFYyx15GS2xaJjJIWcc51A2c9S0aL09HTx+uuvC4PBICZNmuRU1whzvpE5WC/9HnMwc7Ba2qLxGEkhNQc78706nGW+ketp5b0Pc602+zfmWuZatbRF4zEyKmtOsTzre5xlHrE4Na+nzc3NFRMmTBAGg0G88cYbHLdKeI25VNv9lzPOSSYlJYlGjRqZ3ic9PV1s3LhR+Pv7W5wztNXvz9J3rEjNYu01W/wtWfv7kHJM5NQ5tvheSlyHqjYZGRliypQpwmAwiIkTJyp63pjrWZkv9ZIvOfZUR63Btlh0jKRsE6J8zwtxtmtLhODzQizh8xWYw/XSbzKHM4erpS0aj5E15X2+grM/15PPV7APziPLex/WAdrse1kHsA5QS1s0HiMp28qzj5z9tETN88jOivWBvPdhfaDNPpn1AesDtbRF4zEyknPviuL0do6A9YH6sH6Q9z6sH7TZZ7N+YP2glrZoPEZStgkhfa1AedYUaAnrB/Vh/SDvfVg/aLPPZv3A+kEtbdF4jKRsE0KIxYsXi65du4qjR4+Khw8fiocPH4qjR4+Krl27isWLF5v24/kHcjTWD/Leh/WDNvts1g+sH9TSFo3HSMq20pT2PCnAOe8NJwTrBzXjdY+sJfTSf7OWYC2hlrZoVJ5nQxdn7ZnPvO6RHCkxMVE8//zzwsvLS6xatYr3q5fwGmsJbfbfrCVYS6ilLbZq1UokJydL3r84azWCM89rFBQUiK+++kp4eXmJZs2aiUuXLikdEhXD++6zltBL/81agrWEWtqi8RjJZe1nnL2OcIb77pNjcf2GvPdhbaPNfMLahrWNWtqi8RhJ2fYsvZ4nEYLrN6zh+gnmcr30n8zlzOVqaYvGYyRlW3n2EYLrJ/Ti7t27olWrVsLHx0ccPHhQ6XAkY55m32jteJaV2+Q8W8j4nmPGjBEXL14Uv/32m3j77bdF165dxciRI03bZs6cKUaNGmXxZ4uz1TGz9N7Gbf7+/mLjxo0iPT29zPZUVryWtpXn+NnydyLn71PNYmJihLe3t2jTpo1IT09XOhyLtm3bJgwGg9i9e7fSoZgUFBSIQYMGCU9PT3H48GGlw7GIOYo5ytrxLKs/dPRxz8/PF82aNTM7j3P79m3h6ekpHj9+LCt+tY5FHSUjI0P4+/uLunXrmv2uiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIio/LKyskRiYqI4ePCgWL9+vVi4cKH4wx/+IIYMGSI6deokfH19hcFgEAAEAFG3bl3RtWtXMW7cOPH++++L1atXi7i4uBL3XBVCiGHDhomxY8cq9K2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIh041soHQGVz/vvvy8aNmwoCgsLlQ6FiEgTxo0bJ4YNG6Z0GEQmu3fvFlWrVhXjx48XWVlZSodjM4Dl8tLS9tL2tfba+PHjxaeffmq2fc2aNeL//u//zN7jhx9+sBKtdQBEWFiY2fbPPvtMTJo0SfJnjR8/Xnz++ecW32fChAmmf48bN05s2LChxD6XLl0qcSykfv/q1auLe/fuldgnOTm5xHtJ2Udq7FKUdYyk/l6flZmZKby8vCx+nrVYipszZ45YtmxZiW2LFi0SM2bMkP3ZUn6PUt/LVsd/woQJFt9n3bp1ZnFV5HfxLEf/Dcn5TKnvKeXvxPi5UpXWZrXu8ePHYuzYscLFxUVERkba9bMyMzNFw4YNRXBwsKZyKHOkOeZI6d9NTj946NAh079TUlLMtt28eVPUq1evxM/ZOudXdDsAsXPnzhLbLl26JOrXr19im9S8aynfyTmmUmKxRKt9/qJFi0SlSpXEnj177Po5y5YtEwaDQfztb38TBQUFdv0sR2Ffb459vWXWxjG27nOktD+px8MWYwUlxycVHZNWdHwgtS+o6PhC7jG25dhIiwoKCsQHH3wgDAaD+PLLL5UOhxwsLy9P9OzZU3h5eVUob6oNaxJzrEkqlsfK006k5AitnF8Vgm1RTuxlcXd3F7m5uZL3L81HH30k5s2bZ/p31apVxdOnT832e/r0qXBxcanw56lBfn6+mDt3rjAYDGZzGqRPBQUFIiQkRNSqVUtERUUpHY7NsJYxx/zBWqY41jLKn+sr6/f5+PFj4eHhUeb7PFvPPCstLU14enqK+/fvy4pP7fLy8sTs2bOFwWAQX331ldLhaMrly5dF3bp1RZcuXcTt27eVDsdmmPvNsb9l7i+OuV8/uV/uflpx69Yt0alTJ1GvXj1x5coVpcOxGc4vMC/rqS9kXi7CvKyOvGzpPzn0mJO1ML+QkJAgvLy8RGBgoLh7967S4dgMc6s59mfMrcUxt2ovt9aoUUOsWbNGZGZmivv374tt27YJX19fceDAAdM+epi7T0tLEwEBAaJ27dri4sWLisXB/Mn8qac+i/mzCPOn8vkzPz9f1K9fXyQmJpq2rVu3TgwZMsTqz1lrB9WrVxetWrUS3377rbh3755IT08XmzdvFt7e3iWuCdQypfIn8yXzpZ76KObLIsyXyufL8p7LZb5Ux3jTGXF+lzWBnvph1gRFWBMoXxOUdwxdHK8fU+f8rhowvzO/66lPZX4vwvyufH6XM+av6Fie67eISO1WrFghDAaD+Mtf/iLy8vKUDsdmWJOaYx3AmrQ41qTqqEmtKe+1ft27dxdbt2412y88PFxUrlxZVoxqtnfvXlGzZk0xYMAAp7kHMNnWv//9b2EwGMSHH37oNG2E9Y055hTWN8WxvlFHfVOedTbF6fUeRgcPHhSenp6id+/eTjU2dzTmf+Z/vfS5zP9FmP+Vz/9y19TExMSIJk2aiIcPH5q2Sa0XnGnOTQjnzv+8/oV5WU99IfNyEeZl7eVlI7ljdyGcKy9r4foXjneZV/XSlzGvFmFeVT6vyj3fXZ7xLs93q0tBQYEIDQ3ls3Jkvg9zrjb7OebcIsy56si5Usi9FvP8+fOm/O3q6ipWr14tKy41S0lJEZ07d3aqe+Tz+krmYT31fczDRZiH1ZGHn/2vdevW4uzZs2X+nDUVmRPWAkdeXxkbGytcXV3F9OnTRX5+vl0/yx6YC82x//kfWx1PSyzlomfNnDlTjBs3zvRvW303uW1y586dJbZdunRJ1K9fv8S2OXPmmPU1ixYtEjNmzDB7v2djscV3kloTSP0+lpRWP0g9llpx69Yt0aJFC9G2bVvx5MkTu36W8dmgXbt2FampqXb9LEdiXjHHvMIxVnEcY6mjxpFCzrlOKc9S0bJ9+/aJmjVrioEDBzrFehjONzIH66nfYw4uwhzsfDlYD/fq0PJ8I9fTMtfqpX9jri3CXKuOXCt1TrE891p3pnnEZ6ltPW3xcWt0dLTS4dgMc6k59l//46xzkhMmTLD4PuvWrbM4Z2ir358Q5n8nFalZrL1mi78la38fUo6JnHnS0mKQE5ej/z7UbP/+/YreW5LrWZkv9ZQvOfYswrGnOmo3S/9ZIvd5Ic58bQmfF1KEz1dgDtdTv8kcXoQ5XB053JryPl9BD8/1FILPV7AlziOzDtBL38s6oAjrAHXUAVLH8s/+nNT3d1Zqm0d2VqwPWB/opU9mfVCE9YE66wMp964oTq/nCFgfqAPrB9YPeumzWT8UYf2gzvqhomsF5K4p0CrWD+rA+oH1g176bNYPRVg/aKt+MH5G1apVTftVqVJFLF68uMQ+PP9AjsT6gfWDXvps1g9FWD9or34oztrzpJz93nBCsH5QG173yFpCT/03a4kirCWUryXK+2zo4kp75jOveyRHSkhIEF5eXiIwMFDcvXtX6XBshrWEOfbfrCWKYy2hbFt0d3cXubm5kvc3KqtG0MO8RlpamggICBC1a9cWFy9eVDocErzvvrV9rb3GWkKb/TdriSKsJZQ/LyF1PkPqz+ihjtDyfffJsbh+g7WNXvIJa5sirG3UUdvIXb/B8yT/w/UbJXH9BHO5nvpP5vIizOXazOXGnysL10/oQ15enujUqZN44YUXREpKitLhyMI8bY59o2WWcpucZwsJ8b/jXvx6+JSUFLNtN2/eFPXq1bP4s8XZ6phZem/jtnXr1pltL609lRWvpW1yj9+zKvo7kfP3qXa3bt0SzZo1E126dFHd2PL69evCy8tLzJgxQ+lQSvj444+Fm5ubOHHihNKhlIo5yhxzlGWlPWfP0cd9zpw5ZnXxokWLyvz719JY1JEeP34sOnbsKPz8/JxmvouIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISAuys7PFxYsXxZ49e8S///1v8c4774ghQ4aItm3bimrVqgkAonLlyqJNmzbitddeE1988YVo3bq1mDNnjtKhExERERERERERERERERERERERERERERERERERERERERERERERERERObtvoXQEVD4nT54UAMTJkyeVDoWISBPeeecd0a1bN6XDIBJCCJGWlibq1Kkjpk6dKgoLC5UOx6YAy+Wlpe2l7WvtNW9vb3H9+nWz7WlpaaJVq1Zm75GVlWUtXKsAiIyMDLPtycnJwtfXV/JnlRZzcnKy8PHxKbFfSkqK1Zikfv9+/fqJwMBAsW/fPpGXl2fxvaTsIzV2KcpzjCz9Xkt7bynbSnvt8uXLws/Pr8S25s2bi1OnTsn+bCm/RznvZYvjX9r7pKamSv5Mqb+L4hz9NyTnM6W+p5S/E+PnyiF3f60oLCwUU6ZMEXXq1BF37tyx2+fMnj1b+Pj4iPv379vtM+yBOVJ6zHrKkRX5bqX1gw8fPjT9u6CgwOI2g8FQ7s8oi5y2Xtp2ACIzM7PEtpycHItxS8m7FcmxUmOR+tlaMX78eNG8eXOr+a8iLl26JNzc3MQ//vEPu7y/UtjXS49ZT319aSrS/8l9z7K2VeR4yB0rKDk+qeiYtKLjg/L+fsoi9bjJOcblHRtp2UcffSTc3d3FL7/8onQo5EALFiwQ1apVE+fPn1c6FJtiTSI9Zj3VJBXJY+VpJ1LzmRbOrxrfm23RNsfT3d1d5OTkSN7fkjNnzogmTZqIBw8emLZVrVpVPH361Gzfp0+fChcXlwp9ntosXLhQuLq6ioSEBKVDIYX961//Em5ubpLms7SEtYz0mPWUP1jLFGEtY06JtQ/WPHr0SHh4eFjdx1I986x//OMfYtq0abJi05K//e1vPBcjQ2FhofD39xedO3euUG5SI+Z+6THrqb9l7i/C3G/OWXO/nP205vHjx8LPz08EBAQ4zZppzi8wL+upL2ReLsK8bE4NeVnOGgu952S1zi/k5+cLPz8/ERgYKLKzs5UOx6aYW6XHrKf+jLm1CHOrOa3lViGE2Lp1qwgKCjL9Wy9z90+ePBH+/v6iU6dOoqCgwOGfz/xpfV9rrzF/arPPYv4swvxpztH5c/fu3SIwMLDEtsePHwtPT0+Rmppa6s9Za1eVK1cW27dvN9u+efNm0aNHD1nxqZmj8yfzpfV9rb3GfKnNPor5sgjzpTmtjDeZL5Ufbzorzu+yJtBTP8yaoAhrAnNaGUMb8foxdc7vqgXzO/O7nvpU5vcizO/m1Dzmr8hYnuu3iEjtLl26JNzd3cVHH32kdCg2x5pUesx6qgNYkxZhTWpODTVpceW91i8mJkb4+vqKrVu3ioyMDHHv3j3x7bffihYtWogaNWrIilHtTp48KVxdXcWSJUuUDoVU5vz588LV1VUsWrRI6VBsivWN9Jj1lFNY3xRhfWNODfWNra+ZdOZ7GJ07d05Uq1ZNLFy4UOlQNIn5n/lfT30u838R5n9zal5T8+jRI9G0aVMRFRVVYruUNuasc27OmP95/Yv1fa29xryszb6QebkI87I5Nefl4uSM3YVwzrys5utfON5lXtVTX8a8WoR51Zyaz3eXd7zL893qsnTpUuHq6ip+/vlnpUOxKeZc6THrqZ9jzi3CnGtODTnXkvJei3n37l2xbds20aRJE7F161ZZsamZ8R75QUFBTnGPfF5fyTysp76PebgI87A5JfNwYWGhuHPnjti9e7do27atiIyMlPRzz6rInLDW2Pv6yvz8fNGuXTsxaNAgzeZ75kLpMeux/7HF8bT2/qXZsmWLaNmypXj06JFpm62+m9w2mZmZWWJbTk6OMBgMJbZdvnxZ+Pn5ldjWvHlzs+c92yv/Sq0JpH4faz//7OdKPZZacvPmTVGrVi0xf/58u31GYWGhCAgIEJ06deKzQWW+D/OKNvMKx1hFOMYy52znOo2efZaK1sXHxwtXV1fxxRdfKB1KhXG+kTlYT/0ec3AR5mBzWs/BerlXhxbnG7melrlWT/0bc20R5lpzap5TLM+Y1xnnEYtT03pajluZS/XYf+lpTjI1NbXcc27lrT0qUrNYe80Wf0ty/z6ePSZy5kmlbrcWl6P/PtROyfPGXM/KfKmnfMmxZxGOPc2p4TxvaW2mvM8LcdZrS4Tg80L4fAXr+1p7jTlcm/0mc3gR5nBzasjhxZX3+Qp6eq4nn69QcZxHZh2gp76XdUAR1gHm1FAHSGkz5W1XzkZN88jOiPUB6wM99cmsD4qwPjCn5nVmluj9HAHrA2WxfmD9oKc+m/VDEdYP5tR8fkHqWoHyrinQItYPymL9wPpBT30264cirB/Mqbl+CAsLE82aNRORkZHi/v37IjMzU+zevVs899xzIiwszLQfzz+Qo7B+YP2gpz6b9UMR1g/m1Fw/PEvu86Sc7d5wQrB+UBNe98haQk/9N2uJIqwlzGnl2dBGUp75zOseyd7y8/OFn5+fCAwMFNnZ2UqHY1OsJaTHrKf+m7VEEdYS5hzZFt3d3UVOTo7k/Z9VWo2gl3mNJ0+eCH9/f9GpUydRUFCgdDi6x/sXspbQU//NWqIIawlzapjjqMjP6KWO0OJ998mxuH6DtY2e8glrmyKsbcypobaR2mb0fp5ECK7fKI7rJ5jL9dR/MpcXYS43p5VcLuf8BtdPOLcvv/xSuLm5iStXrigdimzM09Jj1lvfaInU3Gbp2ULGn3/48KHp3wUFBRa3GQyGMj/bVsfM0nsbt6WlpZltL609SX3P4uQeP0sq8p5y/j614JdffhGurq5ixYoVSodikpOTIzp37izatWtXof7N1h48eCB+97vfqX4czhwlPWbmqNLbhSOP++XLl4Wfn1+JfZo3by5OnTolO361jkUd7eLFi6Jy5coiIiJC6VCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOj/d/XqVREeHi7mzJkjQkJChJeXl6hcubKYO3eu0qERERERERERERERERH9f+zdd3xUZdr/8W8KUhUUUJAOQuigAVSKroAkNAWDsiAiEETWZ10XxbI8Pr+V1RVF9HHdRxeFRFlUpCSACISi0hKKIJ0ogoAgJfTeQu7fHy4JpDEzOTPnnJnP+/Xy9ZLJZOaaO/dc13XOfQoAAAAAAAAAAAAAAAAAAAAAAAAAAMFuiuyOAL6rVauW+e///m+7wwAAVxg1apSpVauW3WEAxhhjPvroI1OuXDlz+vRpu0OxnJR/e5nf4wU9t7CfRUZGGkn5/leyZEmPX98TBf3+2bNnTWRkpMfvFRERYc6dO3fN14mIiDDnz58vNCZPP/+xY8fMsGHDTO3atc31119v7rnnHvPuu++aCxcuePUcT2P3RGFj5OnnysjIMPHx8aZKlSomIiLiqud58375/axt27Zm3bp1xhhjFi9ebKKjo6/6uafv7cnf0ZvXsmL8C3odY/KOhTffsWsJ9HfIm/f09DU9+Z4U9r7ezNlgcerUKVO2bFkzfvx4v71HnTp1zN/+9je/vb6/UCPzokZ69tmKmgc9eSwQNd+K74Avdbeg3ytqbcn9eLDl/C1bthhJ5vvvv/fL67/66qumdu3aJjMz0y+vbxdyfV7kemu2Y4qSczx5zJPxsGpbwWnbJ968T1G3D3z9+1xW1G3J/F7b6m0jN8vMzDS1atUyr732mt2hIIDq1q1r/ud//sfuMCxHT5IXPUnR6pgv88TX/sWJ+1fz+zyFvRZzsXBRUVFm+/btHj8/t3Xr1plbbrnFfPXVV1c9XqlSJbN///48z9+/f7+pXLmyz+/nRJcuXTL169fneCGYxo0bm+eff97uMCxHL5MX9YNe5kr0Ms4+9sEYY1auXGmaNm1a4M8L6meudPHiRVO1alWzYcMGr2Jzk8zMTFO7dm1Xrvva4fK6zapVq+wOxXLU/rzIt9T+K1H7Q6P2e/M8t1qxYoWRZNLT0+0OxRKsL1CXQykXUpdzUJedX5cLQ0127vrC2rVrjaSg3A9Cbc2LfEZtvRK11d219bJDhw5d9TlDae1+3bp1RlL2+YiBRP0s/LmF/Yz66c6cRf3MQf20v34+8MADJjExMc/jTzzxhBk1alSBv1fY2JYtW9YcPXo0z+MHDx40pUqV8io+pwtk/aReFv7cwn5GvXRnjqJe5qBe2l8vfc0N1Mvf2Lm9GaxY36UnCKU8TE+Qg57A/p7A121oYzh/zBjnru86BfWd+h5KOZX6noP6bn999yY3+Lotz/FbANxg5MiRpk6dOkF3DUVj6EnzQx9AT3olelLn96RFOddv4cKF5t577zWlSpUypUuXNp07dzapqammcePGXsXoBs8995xp0qSJ3WHAYUaMGGEaNGhgLl26ZHcolqK/yYuaQn9zJfob5/c3heEaRr95+eWXTb169ewOw5Wo/9T/UMq51P8c1H/76783x9T84Q9/MPHx8Xmee638EsxrbsYEX/3n/JfCn1vYz6jL7syF1OUc1GV31eUreZNTgrkuO/X8F7Z3qauhlMuoqzmoq/bXVW9ygy/bu+zvdp5mzZqZZ5991u4wLEfNzYs8R829EjXXPTW3qOdifv3110F3jFlaWpqRZLZu3Wp3KEXG+ZXU4VDKfdThHNRh59bh5cuXF1o3CxtbX9eE3cjf51du3LjRkfusvUEtzIv88xurxtPTWnRZenq6ufnmm83GjRuvetyqz2bFnMzv8bZt22bngsWLF5vo6Ohr/p5Vn8mTuZjf+xf0uKd/M2/G0m3+8pe/mEaNGvnt9X/88UcjyaxYscJv72EX6kpe1BW2sa7ENpZze5zcirqvM/e9VILBsGHDTPPmze0Oo8hY1j9UDQAAIABJREFUb6QGh1LeowbnoAYHZw0OlWt1uG29keNpqbWhlN+otTmotc6ttfmtKfqyzVvU3OMGTjmelu1Wain5q+DXKmw8nbYmWdDr5Pc5rPz75ff6RelZCvuZv75Lxng+Jlavk14rrkB/P9zArv3GHM9KvQylesm2Zw62PZ3bu+WnqPf+DMZzS0L9fiHcX6Hw5xb2M2q4O/MmNTwHNdz5NdzX+yuE0n09jeH+CkXFOjJ9QCjlXvqAHPQBzu8Divp7Rc09buCUdeRgRH9AfxBKOZn+IAf9gXP7g2tdu8IY9hFcRn9gH/oH+odQytn0DznoH5zbP+TH02MFinpMgdvQP9iH/oH+IZRyNv1DDvoHd/UPDRs2NEuWLMnz+KJFi666/hf7HxAo9A/0D6GUs+kfctA/uKt/uJIv95MKxmvDGUP/4BSc90gvEUr5m14iB72E/b2Er/eGNsb7ez5z3iP8Ze3atUZSUN4rlV4iL/I3vcSV6CXsnYtRUVFm+/btHj+/ILl7hFBa11i3bp2R3H3PrmDB9QvpJUIpf9NL5KCXsH+/hC+5obDfCaU+wm3X3UdgcfwGvU0o1RN6mxz0Nu7sbXIL5f0kxnD8xmUcP0EtD6X8SS3PQS13by335fc4fiI4dezY0QwcONDuMHxCnc6L3Fj02maM53PI18esGjNvYjDG8/nkyWPejJ8//ibefD/dYsCAAeb++++3O4xsQ4cONddff71JT0+3O5SrpKSkGEnm8OHDdodSKGpUXtQo7+6zF+hxN8aYtm3bZh8LtHjxYhMdHe1T/E7dFrVD+/btzeDBg+0OAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEABLly4YA4dOmT27t1rdygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS7KeGCaz3wwAOaPn263WEAgCvccsst2r9/v91hAJKkXbt2qXr16ipVqpTdoVguLCxM58+fv+qxI0eOWPb6FSpU0JEjR2SMyfPfmTNnLHufyw4cOJDnsX379qlixYoev0aFChW0b9++fF+nQoUK2f8uX768Dh06dM3X8uTzly1bVu+88462b9+un3/+WU899ZS++OIL9enTx6vneBp7UXn6uR577DGVLl1ay5Yt07lz57KfY4WBAwcqMTFRkpSQkKAhQ4Zc9XNP39uTv6Onr2XV+FeoUCHfGpjfd9Pq71ggv0PevKenr+nJ96Qw/pyzTlW6dGnVqFFDO3bs8Nt77Nu3T9WrV/fb6/sLNTIvaqTnn83f9TgQ7+GP74An45cff3zeYMv5NWrUkCTt3bvXL6+/a9cu1alTRxEREX55fbuQ6/Mi1/snP1j9mp6OhxXzz87tk8JismpuSf7LBd5sS3ozxoHYNnKDiIgI1alTRzt37rQ7FARIVlaWfvnlF0VFRdkdiuXoSfKiJ/FfLvd0vrl5/+plzEVrxjM2NlYLFizw+PlXmjJliu6//3698sor6tq161U/a9KkiTZs2JDndzZs2KCmTZv69H5OFR4ernr16tG3QDt37lT9+vXtDsNy9DJ5UT/oZa5EL+PsYx8k6cMPP1SPHj3y/Vlh/cyVZsyYodq1a6tJkyaWxuYkERERqlevnl/XlYPJ5d6P/Rjeo/a7M99S+3NQ+0Oj9nv6PDdr0KCBJAXF/gzWF3xHXXZnLqQu56AuO78uF4Sa/Bunri/s3LlT4eHhqlu3rt2hWI7amhf5jNp6JWqre2trbuHhOZcrCaW1+6ioKIWHh9tSW6mfvqN+ujNnUT9zUD/tnYv79+/XnDlzNGjQIIWFhV3137hx47LPUfdW/fr1deHChTyPX37tYBLI+km99B310p05inqZg3oZPNubV6Jewles7/qOnsCdeZieIAc9gXu3oTl/7DdOXd91Auq776jv7syp1Pcc1Hd3bfP7si3P8VsA3GLnzp2qW7du0F1DUaInzQ99AD3plehJnd+TFuVcvw4dOmjRokU6ffq0Tp06pTlz5ujChQtq166dpTE6QcOGDelLkceuXbtUt27dq44LDgb0N3lRU+hvrkR/4/z+piBcwyhH/fr19csvvygrK8vuUFyH+u8b6r87cy71Pwf1313H1IwdO1YJCQl5nisVvO4W7GtuUvDVf85/8R112Z25kLqcg7rsrrrsi2Cvy049/4XtXd9QV92Zy6irOair7trf7cv2Lvu7nWfXrl2c1+EDaq478xw1Nwc11z01t6jnYrZq1Uo//fSTP0KzzeV7vDltO9ZbnF/pO+qwO3MfdTgHddi5dbhJkybaunWrT7/ryzayW/n7/Mo9e/ZIkmrVquWX1w8EamFe5J8cVoynp7VIkk6fPq24uDi9+eabaty48VU/s+qz+WtODhw4MHutLyEhQUOGDPEoFis+kydz0Rve9A+B/H4HUu3atbV7926/vT73BvUddcWddYVtrBxsYzmjx/GEFdedC7ZjSOrXr+/6/ZwS642+oga7M+9Rg3NQg4OzBofKtTrctt7I8bS+oda6M79Ra3NQa51ba/NbUwyla617wynH07Ld6htqqbvzV7CuSe7fvz/P4/nNeyv/fvnxV8/iT56OiafrpFblIKfUdyexY78xx7P6jnrpznrJtmcOtj2d0bt5qqj3/gzGc0tC/X4h3F/Bd9Rwd+ZNangOarjza7iv91cItX3N3F+haFhH9g19gDtzL31ADvoA5/cBuDanrCMHI/oD39AfuDMn0x/koD9wbn9wrWtXsI8gB/2BfegffEP/4M6cTf+Qg/7Buf1Dfjw9VqCoxxS4Df2DfegffEP/4M6cTf+Qg/7BXf3Dtm3bdMcdd+R5PDo6Wtu2bcv+N/sfECj0D76hf3BnzqZ/yEH/4K7+4Uq+3k8q2PK8RP/gBJz36Dt6CXfmb3qJHPQS7r03tC/3fOa8R/jLzp07FR4errp169odiuXoJfIif9NLXIlewt65GBsbqwULFnj8/ILk7hFCaV0jKipK4eHh9BIOwPULfUMv4c78TS+Rg17CvWscBQmlPsJt191HYHH8hm/obdxZT+htctDbBEdvE8r7SSSO35A4fqIoqOXuzJ/U8hzU8uCo5Z7i+IngtHfvXlWvXt3uMHxCnc6L3OhdbfP03kJWs2rMCpPf5/B2PhXGm/Hzx98k0N/PQKhRo4Z+/fVXu8OQJH366af68MMP9cknn2Tv13eKjIwMlShRQjfeeKPdoRSKGpUXNcq7++xJgR13SRo4cGD2MdgJCQkaMmSIT/E7eVs00G699dZ8/44AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnKFYsWIqX768KleubHcoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEvXC7A4DvevbsqS1btuiHH36wOxQAcLxKlSrp7NmzOnnypN2hAGrZsqXS09OVnp5udyiWq1Spkn755ZerHluyZEm+zw0LCyvwdQr6WUxMjBYtWpTn8aVLlyo6OtrzQD00b968PI9Nnz5dnTp18vg1OnbsqOTk5Hxfp2PHjtn//t3vfqeFCxde9Zz169erYcOG2f/29POHhYVpz549kqQKFSqod+/emj17tubPn+/VczyNvag8/VxpaWkaOXKkatasqcjISEnS2bNn833NwuZXfh555BHNnDlTBw8eVEpKivr06XPVzz19b0/+jp6+llXj36lTJ82YMSPP47njlKz/jgXyO+TNe3r6mp58Ty4/Lz/ezNlgsXnzZm3ZskWtWrXy23s0atSowNriZNTIvKiRnn22QNTjQLyHN98BT3kyfvnxx+cNtpy/ePFiSVLjxo398vrR0dFauXKl9u/f75fXtwu5Pi9yvX/yg9Wv6cl4WDX/7Nw+KYiVc0sqes0r6vaFN2Ns9baRm+3bt08rV65Uy5Yt7Q4FARIeHq477rgj3++A29GT5EVPUrRcXtg88XS+uXn/6mXMRWvG89lnn9X777+vY8eO5fvz5ORkdejQ4arHzp07p6FDh+r//b//p/nz52vo0KF5fq9nz56aOHFinscnTpyouLg4j+Nzg4yMDC1dutSv+2DhDi1btqSXoZcJmfpBL5ODXsbZxz7861//0tdff61nn332qsc96Weu9P777+uPf/yjZXE50d69e5WWlqY777zT7lBcoUWLFgoPD6f2U/tDJt9S+3NQ+4O79nvbI7hZUlKSwsPD1aJFC7tDKTLWF35DXQ6dXEhdzkFddnZdzm++UZOv5tT1hRYtWsgYk++xLm5Hbc2LfEZtvRK11V21NSwsTFu3bs3zvHnz5l21nzeU1u6Tk5NljLFlW5f6+RvqZ+jkLOpnDuqnvXNxwoQJGjRokIwx+f4XGRnp07ly3bp1U0pKSp7HFyxYEHTHtgeyflIvf0O9DJ0cRb3MQb101/amp6iX8BXru7+hJwidPExPkIOewH3b0Jw/djWnru86AfX9N9T30Mmp1Pcc1Hd3bfN7sy3P8VsA3KZly5Zavny59u3bZ3colqMnzYs+gJ70SvSkzu5Ji3KuX0HHSI4fPz4o+9Np06bRlyKPFi1aaNmyZTp48KDdoViK/iYvagr9zZXob5zd3xTlnMnLQuEaRklJSYqOjlZ4OLfi9Rb1n/ofSjmX+p+D+u+uY2qysrLyfZ6kq/5fCp01Nyn46j/nv/yGuhw6uZC6nIO67K667I1QqctOPf+F7V3qaijlMupqDuqqu/Z3e7O9exn7u52nRYsWmj59ut1hWI6amxd5jpp7JWque2qup+dihoWF6YcffsjzvA0bNuiWW26xLDYnSE5OVkREhF/ybSBxfuVvqMOhk/uowzmow86tw0Wpm75sI7uVv8+vbNq0qcLCwrRgwQK/vH4gUAvzIv/ksGI8Pa1FkjR06FDdeeedGjBgQPZjl+eWVZ/NX3PykUce0cyZM3Xw4EGlpKSoT58+1/wdqz6TJ3PRG57+zQL9/Q6k+fPnq3nz5n57/TvuuEPh4eHs66SuhExdYRsrB9tYzuhxCuLrvk5P7qUSDJKTk4PiHGHWG6nBoZT3qME5qMGhU4OD8Vodbltv5Hhaam0o5TdqbQ5qrXNrbX5riqF0rXVvOOV4WrZbqaWhmL+CcU2yU6dO+Z6/nftvKVn798uPp7/n6329/MHTMfF0ndSbHFQYp9R3J7FjvzHHs/6Gehk69ZJtzxxsezqjdyuIr/cLCaVzS0L9fiHcX+E31PDQyZvU8BzUcGfX8KLcXyHU9jVzf4WiYR2ZPiCUci99QA76AGf3AU5aF3Ayp6wjByP6A/qDUMrJ9Ac56A+c2x8UtF+efQR50R/Yh/6B/iGUcjb9Qw76B+f2D5djuZKnxwp4+rxgQf9gH/oH+odQytn0DznoH9zVP1SqVEnff/99nuetWbNGlSpVyv43+x8QKPQP9A+hlLPpH3LQP7irf7hSYfeTCqVrw0n0D07AeY+/oZcInfxNL5GDXsJ994b25FgIzntEoLVo0ULGmHyvU+J29BJ5kb/pJa5EL2HvXHz22Wf1/vvv69ixY/n+PDk5WR06dLgqNk96hFBa10hOTpYxRi1atLA7lJDH9QvpJUIpf9NL5KCXcO8aR0FCrY9w03X3EVgcv0FvE0r1hN4mB72Nu3ob9pPkj+M3OH7iMmp56ORPankOarm7ark3v8fxE6GjcePGWrx4sd1h+IQ6nRe50fPa5s29haxm1ZgVJr/P4e18Kow34+ePv0mgv5+B8O2336pJkyZ2h6FVq1ZpyJAhGj58uB566CG7w8mjXr16OnfunDZt2mR3KIWiRuVFjfLuPntSYMddkh555BHNnDlTBw8eVEpKivr06eNT/E7eFg0kY4xWr16tqKgou0MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUIDz589rypQpOnDggN2hAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ/AxcKzMz01SsWNGMGjXK7lAAwPHWrFljJJmffvrJ7lAAk5mZadq0aWMaNWpk9uzZY3c4lurfv7/p1auX2b17tzl58qRJSUkxMTExJr+2s2rVqiYtLc1cuHDBzJs3z1SrVu2aP9uxY4dp0qSJmTp1qjl06JA5ceKEmTVrlqlSpYqZPn36Va9f1FZXkmndurX57LPPzKFDh0xGRoYZP368qV69utmxY4fH77V161ZTpUoVM27cOHPgwIHs16lSpcpVOWnDhg2mTp06ZsGCBebUqVNm/fr15o477jAffPBB9nM8/fySTExMjNm0aZM5d+6c2b9/v/nLX/5ievbs6dVzPI3d0/EsiKefKyYmxjzxxBNmx44d5vz58+ann34y/fv393p+FRTLgAEDTKdOnczgwYPz/MzT9/bk7+jpa1k1/tu3bzfVqlUzCQkJJiMjwxw+fNhMnjzZNGvWLM97evMdu5ZAf4e8eU9PX9OT74kxBc83b+ZsMNi9e7dp2LChadeuncnMzPTb+3z66acmMjLSLFu2zG/v4Q/UyLyokZ59Nm/zYG6ePBaImu/Nd6Cg1/Cl7ub3e0Ud0/weD6acf+zYMdOwYcM89c5Kp0+fNnXr1jX33XefOXnypN/eJ9DI9XmR673LD/7IOZ485sl4WLWtYOf2SUGsnFvGFL3mFXX7wpsxtnrbyK1OnDhh7r33XlOvXj1z5swZu8NBAH399dcmPDzcjBkzxu5QLEVPkhc9iee53Nt54ul8c/P+1cvjwly0bjxnzZploqOjzYwZM8zRo0fNuXPnzE8//WRee+01U6VKFbNhw4bs527ZssU0adLEPP744+bUqVMFjvW5c+dM48aNzeuvv26OHj1qjh49al5//XXTtGlTc/78ea/ic7ITJ06Y++67z9SpUyfPeCD0LFu2zERERJjXXnvN7lAsRS+TF/WDXoZexjlzMfcYnT171uzYscNMmjTJdOjQwTRq1Mhs3br1qud72s9ctmnTJlOlShVz8eJFr+Jyk6NHj5q2bdua+vXrsy/GC88++6wpV66cWbFihd2hWIranxf5ltpP7XfOXMw9RlbWfm97BDdbvny5KVu2rHn++eftDsUyrC9Ql0MpF1KXqctOmYvXGqPcP6MmX83p6wtPPfWUKV++vFmzZo3doViK2poX+YzaSm11zly81hjld5zpHXfcYZYsWWJOnTplDh48aD777DNz6623mtTU1Oznhcra/erVq81NN91knn76adtioH5SP0MpZ1E/qZ9OmYv16tUzq1atKvDnb7/9tnnsscfy/VlhY3vs2DHTvHlzM3HiRHPw4EFz6NAhM2nSJFO5cmWzePFij+NzOjvqJ/WSehlKOYp6Sb10yly81hj5+jPqJYqC9V16glDKw/QE9AROmYvebkNz/tjVnL6+6wTUd+p7KOVU6jv13Slz8VpjlPtnnm7Lc/wWADc6ffq0iYqKMvfcc485duyY3eFYip40L/oAelJ6UufMxdxjZOW5fpJMu3btTHp6ujl//rzZunWrGTp0qHn99de9is8NRo4caSIiIkxaWprdocBhTp48aWrXrm06dOhgTpw4YXc4lqG/yYuaQn9Df+OcuXitMfL1nMnLQuEaRqNHjzbh4eHm22+/tTsUV6L+U/9DKedS/6n/TpmLRTkv5UpF7RPcLFjrP+e/UJdDKRdSl6nLTpmL/jpfNFTqspPPf2F7l7oaSrmMukpddcpcvNYYeZo3Cnoe+7udKS0tzURERJhXX33V7lAsRc3NizxHzaXmOmcuXmuMfDkXU5K5/fbbzaJFi8yJEyfM8ePHzezZs03t2rXNe++951VsTnb5GvkvvPCC3aFYgvMrqcOhlPuow9Rhp8zF3GOUlZVlMjIyzJdffmnq1q1b6HHnvuSUYNqfbEzgzq987LHHTI0aNcyvv/7qt/fwJ2phXuQfa8fT01o0duxY07hx4zz3lrz8PKs+mxVzsqDHBwwYYDp16mQGDx7s0e9Z9Zk8mYvefB5P/2bejKWbTJ061YSFhZnZs2f79X2ee+45U65cObNy5Uq/vk+gUVfyoq6wjeWUmsxcvPYY+bqv05N7qbjdK6+8YiIjI4PintasN1KDQynvUYOpwU6Zi9caI19rcChcq8ON640cT0utDaX8Rq2l1jplLuYeo2utKfpyrfVgW0fMzUnH07LdSi0NxfwVjGuS27dvN9WqVTMJCQkmIyPDHD582EyePNk0a9bM5zU3X3sPT3+vsO9efmNvxXepIJ6OiafrpN7koGttvwby++F0l68tacd+Y45npV6GUr1k29MZvQZz8dpjlPtnnt4vJFTOLeF+Idxf4TJqeOjkTWo4NdwpczH3GFl5f4VQua+nMdxfwQqsI9MHhFLupQ+gD3DKXLzWGPn6M1+e51ZOWkcORvQH9AehlJPpD+gPnDIXc4/RtY4zYx9BXvQH9qJ/oH8IpZxN/0D/4JS5eK0x8vVYAU+fFwzoH+xF/0D/EEo5m/6B/sEpc/FaY5T7Z2+99ZapVauWmTVrVvZ+hVmzZpmaNWtedaw4+x8QKPQP9A+hlLPpH+gfnDIXrzVGBf3sWveTkkLj2nDG0D84Cec90kuEUv6ml6CXcMpc9Pbe0J4eC8F5j7DDU089ZcqXL2/WrFljdyiWopfIi/xNL0Ev4Zy5aIwxs2bNMtHR0WbGjBnm6NGj5ty5c+ann34yr732mqlSpYrZsGHDVbF50iOEyrrG6tWrzU033WSefvppu0OB4fqFxtBLhFL+ppegl3DKXLzWGBX0s8J+J1T6CDdedx+BxfEb9DahVE/obehtnDIXrzVGuX/GfpK8OH4jB8dPUMtDKX9Sy6nlTpmL1xqjovyM4ydCR1pamgkLCzMTJkywOxSvUafzIjd6Xtu8ubdQQePu62NWjVlh79esWTMzefJkn+aTJ495M37++Jt48/10g48//tiEhYXZfu/4vXv3mqpVq5qYmBiTmZlpaywFycrKMo0bNzY9evQwWVlZdodTIGpUXtQoz/OhHeN+2YABA0ynTp3M4MGDfY7fqduigTZx4kQTHh5uNm3aZHcoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPKxb98+061bN1OuXDmTkZFhdzgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS7KbI7AhRNfHy8adWqld1hAIDj7dmzx0gyy5YtszsUwBhjzC+//GIaNWpkqlSpYhYsWGB3OJY5ePCg6du3r6lYsaIpXbq06d69u/nll1+MJCNd3XpOmTLF1KpVy1x33XXmtttuMzNnzvToZ1u3bjVxcXGmbNmypnTp0qZly5YmOTn5qte+/H75va+nJJkdO3aYbt26meuvv96ULl3adO7c2WzZssXr99qwYYOJjY01pUuXNqVLlzaxsbFmw4YNeZ6XlpZm2rRpY0qUKGGqVatmRo0alec5nnz+hQsXmh49epjy5cub6667ztSqVcsMGzbMnDhxwqvneBN7YTwZI08+14EDB8xjjz1mbr75ZnPdddeZxo0bm8mTJ3s1vwqLY8mSJUaSWblyZZ6fefPe1/o7evNaVoy/McZs2rTJdO7c2ZQuXdqUKVPGdOrUyWzevDnf9/Tkb+EJO75Dnr6np6/p6fekoPnmzd/a7ebPn29uvfVW07hxY7N7926/vtelS5dMXFycufHGG01qaqpf38tK1EhqZEE8+WyevFd+Y+3pY1Z9nsL+5p5+Bwr6/YIev9b4FeXzehNLsOT8Q4cOmbZt25qqVauaXbt2+fW91q1bZypVqmTuuOMOk56e7tf3ChRyPbk+P57mB3/kHE/rgKfjYdW2QqC3T6zaJvV0nIpa86zYvvBmjK3cNnKjzZs3m+bNm5vKlSv71MvB/d59910THh5unnzyyaCY08bQk9CT5M+T9/K2Nhnj+Xxz+/5V5qJ3sXti8+bNpm/fvubmm282xYsXNzVr1jRPPPGE2bZt21XPK1WqVJ5xLWiM9+3bZ3r37m1uuOEGc8MNN5jf//73Zv/+/T7F50QbNmwwzZo1M5UrVzbr1q2zOxw4xL/+9S8TERFhBgwYYI4ePWp3OJagl6F+5Idehl7GKXMx9xgVL17c3HrrraZr164mMTHRnDt3Ls/veNPPGGPMH/7wB/O3v/3Nq7jc5PvvvzcNGzY01apVM5s2bbI7HFc5e/as6d69uylVqpRJSEgwWVlZdodkCWo/+TY/1H5qv1Pmoj9rv7c9ghtlZWWZjz76yJQsWdI8+OCD+Y6Xm7G+QF3OLVhzIXWZuuyUuVhY3cxv3KjJOdywvnD69GkTExNjypQpYyZOnGh3OJahtpLP8kNtpbY6ZS56W1uXLl1q+vXrZ6pUqWIiIyNN+fLlzQMPPGC+++67PK8dzGv3WVlZZsKECdlz78yZM7bFQv2kfoZSzqJ+Uj+dMBevHJvp06fn+fncuXPzHT9PtzV//vln07NnT3P99debkiVLmnbt2plFixZ5HJ+T2Vk/qZfUy1DJUZ6+F/WyYMxF72IvjLfbmwX9Tn6olygK1nfpCXIL1jxMT0BP4IS56Ms2NOeP5XDD+q5TUN+p77kFY0719L2o7wVjLnoXe2F82eb3ZFue47cAuNXGjRtNlSpVTOPGjc3atWvtDscy9KT0AfmhJ6UndcpczD1GVp7rN2fOHNOhQwdTqlQpc/3115t77703331bbnbkyBHTv39/ExERYT788EO7w4FDrV271lSqVMk0b97cbNy40e5wLEF/Q03JD/0N/Y1T5qK3+9y4hlGO48ePmyeeeMKEh4eb9957z+5wXI36T/3PLVhzLvWf+u+EuXjl2HhzXkpBr3Hl80JhzS3Y6z/nv1CXQyUXevpe1OWCMRe9i72wcfSlLntSZ4O9Lrvl/Be2d6mruQVjLvP0vairBWMuehd7Ybzd3+3J71+J/d3OdfleOQMHDjTHjh2zOxxLUHPJc/mh5lJznTIXva25npyLuXjxYtO3b19TpUrevQgJAAAgAElEQVQVU6xYMVO5cmXTvn37q+aqm2VlZZlx48aZkiVLmgceeCCorpHP+ZXU4dyCNfdRh6nDTpmL+dXdMmXKmFatWpl//etf+d5DzJd9xMG4XzmQ51cePHjQNGrUyNSrV8+kp6f79b38gVpI/imIVePpaS0qXrz4Nbc5rPps3s5JTx43xpglS5YYSWblypV5flbQ71n1ma41F735PN70D56MpZt88sknplixYuZPf/qT39/r7Nmzplu3bqZUqVImMTGRe4NSV4wxwVtX2MZyRk32JqZgnYv+2Nfpzb1U3Ojo0aNBeY4w643U4NyCNe9Rg6nBTpmL/qjBwX6tDrevN3I8LbU2t2DNb9Raaq1T5mJ+tfVaa4qeXmv9WnXb7Zx6PC3brdTS3II1f10ep2Bdk9y0aZPp3LmzKV26tClTpozp1KmT2bx5c76fwaq/X36fx9O/aUHfr/xes6jfJU9+39N1SE++H57moGvFFejvh1MdPXrUPP7447bvN+Z4VuplbsFaL9n2dEav4U1MwToXvd3Pa4xn9wsJ9nNLjOF+IVfi/grU8FDKm9RwarhT5mLuMbLy/grGBP99Pbm/grVYR6YPyC1Ycy99AH2AU+aiL9vynjzHm+e5lVPXkYMR/QH9QW7BmpPpD+gPnDIX86vhhR1nxj6CHPQHzkH/QP+QW7DmbPoH+genzEVf9i94cqyAN89zK/oH56B/oH/ILVhzNv0D/YNT5qIv/cOnn35qWrVqZcqVK2fKlStnWrVqZT799NM8z2P/AwKF/oH+Ibdgzdn0D/QPTpmLvvQPxlz7flLBfm04Y+gfnIrzHuklcgvW/E0vQS/hhLl45dh4em9oT4+F4LxH2OH06dMmJibGlClTxkycONHucCxDL0H+zg+9BL2EU+biZZs3bzZ9+/Y1N998sylevLipWbOmeeKJJ8y2bduuep43PUIwr2tkZWWZCRMmZM+9M2fO2B0S/oPrF9JL5Bas+Ztegl7CKXPR2zUOT9dAgr2PcPN19xFYHL9Bb5NbsNYTeht6G6fMRW97G/aT5OD4jfxx/AS1PLdgzZ/Ucmq5U+ait7W8oN/JjeMnQs9LL71kihUrlu95PU5GnSY35seb2ubpvYXyG/OiPGbVmBX2fps3bzadOnUyZcqU8Wg+efuYN+Pnj7+JMZ7f28jpJkyYYCIjI82IESNsjePMmTOmVatWpn79+ubo0aO2xnIt33zzjYmMjDQjR460O5QCUaOoUfnxJh/aMe7GGLNkyRIjyaxcubJI8TtxWzSQVqxYYUqXLm2eeeYZu0MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcIWsrCyTmppqhg4dakqXLm1q1Khh0tLS7A4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBQMCXMGGME15o9e7a6d++uXbt2qVq1anaHAwCOdfHiRZUoUUJTp07VQw89ZHc4gCTp+PHjio+PV1JSknr37q1XX31VdevWtTss/EdYWJholQHf2fEd4nsbeFu3btXLL7+sqVOn6uGHH9b48eN1ww03+P19z58/r969e2vOnDkaNWqU/vznPysiIsLv74vf8F0DgtPSpUvVr18/hYWFac6cOWrYsKHf33PHjh165JFHtHHjRr3wwgsaPnx4QOoIro1cDyDYHT9+XGPGjNHo0aPVvHlzTZ48WTVr1rQ7LNgkOTlZTz75pIoXL67Ro0erd+/ebGM6BD0JnIK5CDsdOnRIo0eP1rvvvqsWLVroiy++UPXq1e0OCw7y1VdfafDgwQoLC9OoUaPUr18/RUZG2h0WRP2AczAX4QQHDhzQ66+/rvfff19t2rTRpEmTdOutt9odlutcunRJf/nLX/TOO++odevWGjNmjFq1amV3WPgP8i2cgrkIJ1i5cqWGDx+uFStWaPjw4XrttdeCcr876wvORS6EUzAXYSe3rS9kZmZq+PDh+uc//6n77rtPY8aMUfPmze0OC/9BPoNTMBdhp7Vr12r48OFatGiRnnnmGY0ePdr2dVnqp7ORs+AUzEXYyQn1k3rpbOQoOAVzEXZyQr0MFazvOhd5GE7BXISd3La+6xTUd+cip8IpmIuwE/UdCH579uxRnz59tGLFCv3Xf/2XRowYoZtvvtnusPAf9AFwCuYi7Hbx4kVNnDhRI0aMUFhYmBITE9W5c2e7w4KD7dy5U7///e/1/fffa9iwYXrhhRdUvnx5u8OCqClwDuYi7HTp0iV98cUXevHFF3XhwgV99NFH6tGjh91huR7137nIuXAK5iLsFEr1n/NfnI1cCKdgLsJObjv/he1d5yKXwSmYi7BTMG3vfvXVV4qPj1dERITeeOMN9e3b19E9Qighz8EpmIuwy+rVq/Xcc88pNTVVzz33nF5//fWgO/eQ8yudi9wHp2Auwk52nV954MABPfjgg9q4caPefPNNDR06lO1UG5B/rMV4IpQcOHBAw4YNy95/+vrrryssLMzv73vp0iW99NJL+t///V+1a9dOY8aMUXR0tN/fF54hD8IpmIuwQ2Zmpj777DO99NJLMsYoMTFRXbp0sTssS7He6FzkPTgFcxF2CZb1Ro6ndS7yG5yCuQg7ueF42lmzZmnw4MGKjIzUm2++qT59+riyJwhG5C9rMZ6Ae2RmZmrSpEl68cUXdenSJSUmJqpr1662xsTxrM5FfodTMBdhJ+4Xkj/ur+Bs5E04BXMRduP+Cv7DOrJzkXvhFMxF2MkN68jBiP7AucjJcArmIuxEf+BM9A/ORc6GUzAXYSf6B2eif3AucjacgrkIO9E/OBP9g3ORs+EUzEXYif7B+Tjv0bnI33AK5iLsxHmPzpaZmanhw4frn//8p+677z6NGTNGzZs3tzss/Af5G07BXISd1q5dq+HDh2vRokV65plnNHr0aK7p7jBcd9+5yN9wCuYi7BIs191HYHH8hnNRT+AUzEXYieM3ro3jJ5yL/AmnYC7CThw/kT9jjF544QW9/fbbeuKJJ/TWW2/phhtusDuskEJuBELP8ePH9fzzz2v8+PF64YUX9MYbb9gWy6VLl9SrVy8tXbpUK1euVJ06dWyLxVNjx47Vf/3Xf+mPf/yjxowZo2LFitkdUtCiRtmDcXevmTNn6tFHH9Xvfvc7TZ8+nfwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2OzUqVNasmSJvv76a3355Zfatm2bmjRpovj4eA0ZMkQlS5a0O0QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAELB1HC7I0DRdOzYUddff71mzJhhdygA4GjFihXTjTfeqP3799sdCpCtbNmymjZtmr766iutXbtWDRo0UO/evbVq1Sq7QwMAoFArVqzQww8/rAYNGmjDhg2aM2eOpkyZohtuuCEg71+8eHFNnz5df/vb3zRixAhFR0dr8eLFAXlvAAg2e/bsUf/+/XXvvfeqadOmWrNmjRo2bBiQ965Vq5ZWrFihUaNG6b333lPNmjU1cuRIZWRkBOT9AQCh58CBA/rrX/+qmjVr6v/+7/80evRopaWlqWbNmnaHBhs99NBDSk9PV0xMjPr3768GDRooISFBZ8+etTs0AEAI27Vrl5577jnVrFlTH3/8sd577z0tW7ZM1atXtzs0OEy3bt2Unp6unj17asiQIapbt64++OADnTx50u7QAADQtm3b9PTTT6tWrVqaPHmyxo0bp0WLFunWW2+1OzRXioiI0OjRo/Xdd98pMzNTd955pzp16qSFCxfKGGN3eACAEJeVlaX58+erY8eOuuuuu2SM0XfffadRo0YpIiLC7vD8gvUFAIATuXV9ITIyUu+++67S0tJ07Ngx3XHHHerWrZuWLFlid2gAgBBmjNGiRYvUpUsXRUdH6+TJk1q+fLneeecdRUZG2h0e9RMA4EhOq5/USwCAEzmtXoYK1ncBAE7k1vVdp6C+AwCciPoOhI6qVatqyZIlGjt2rL744gvVqlVLf/rTn7R9+3a7QwMAQCdPntT777+vunXraujQoYqLi1N6ero6d+5sd2hwuJo1ayotLU3/+Mc/lJCQoJo1a+r555/XL7/8YndoAIAQdubMGY0bN07169fX448/rtjYWKWnp6tHjx52hxYUqP8AACcKxfrP+S8AACdy8/kvbO8CAJwoGLd3u3Xrph9++EHdu3dXfHy86tevr48++kinT5+2OzQAQAgyxuibb75RbGysWrZsqfPnz2vVqlV68803g/Ia+ZxfCQBwIrvPr7zlllu0bNkyPfvss3ruuefUrFkzffnll9zXDQAc7sSJE3r11Vd12223aenSpUpJSdGoUaMUFhYWkPePiIjQW2+9pZUrV+rMmTNq0aKFOnfurG+//ZYaAgCwxenTpzV27FhFRUVp8ODBevDBB5Wenq4uXbrYHZrlWG8EADhJMK43cjwtAMCJ3HQ8bffu3bO3yQcMGKD69etr/PjxHJ8DAAi4M2fO6KOPPlL9+vU1aNAgde/eXT/88IO6du1qd2gczwoAcCS7j2d1Ou6vAABwMu6v4H+sIwMAnMhN68jBiP4AAOBE9AfORv8AAHAi+gdno38AADgR/YOz0T8AAJyI/sE9OO8RAOBEnPfoDpGRkXr33XeVlpamY8eO6Y477lC3bt20ZMkSu0MDAIQwY4wWLVqkLl26KDo6WidPntTy5cv1zjvvKDIy0u7wkAvX3QcAOEkwXncfgcXxGwAAJ+L4Dc9x/AQAwIk4fqJwYWFheuuttzRt2jQlJSWpXr16SkxMVGZmpt2hAUDQyczM1Pjx4xUVFaXp06crKSlJb7zxhq0xDRs2TCkpKZoxY4bq1KljayyeGjp0qCZNmqSEhATddddd2rRpk90hAQhxx48f15AhQ9SjRw/16dNHM2bMULFixewOCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg5O3fuVFJSkv7yl7+oXbt2uummm9StWzctWLBAPXr00Lp167RhwwY988wzKlmypN3hAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMsKMMcbuIFA0v//975WRkaFvvvnG7lAAwNEaNWqkXr16aeTIkXaHAuRx6dIlJSUl6c0339T333+vxo0ba+DAgerbt68qVapkd3ghJywsLPv/aZcB79nxHeJ763/79+/XZ599psTERG3ZskXR0dF68cUXFRcXp/DwcNvi2rp1q/70pz9p3rx5uvfee/Xyyy+rY8eOtsUT7PiuAcHj559/1ujRo/XJJ5+ocuXKevvtt/XQQw/ZFs+xY8f03nvv6R//+IdOnTqlHj166IknnlD79u1trTOhiFwPINhcunRJ33zzjcaNG6eZM2fq+uuv15///Gc9/fTTKlu2rN3hwWG2bdumN954QxMnTlTJkiXVt29fDRw4UC1btrQ7tJBDTwKnYC4ikM6dO6cvv/xSCQkJWrhwoSpXrqznnntOQ4YMUenSpe0ODy6wc+dOvfXWW0pMTFRkZKQeeeQRDRo0SK1bt74qn8H/qB9wCuYi7HD69GklJycrMTFRixcvVvXq1fX8889r0KBB3LzeYgsXLtTrr7+ub7/9VrVr19bAgQPVv39/Va9e3e7QQg75Fk7BXIQddu3apQkTJuiTTz7Rjh071KFDB40YMULt27e3O7SAYn3BOciFcArmIgIp2NYXjDGaO3eu/v73vystLU1RUVGKj49Xv379VLlyZbvDCznkMzgFcxGBtHfvXk2cOFGJiYnaunWr2rZtqxEjRqhz5852h1Yg6qezkLPgFMxFBJIb6if10lnIUXAK5iICyQ31MlSwvusc5GE4BXMRgRRs67tOQX13DnIqnIK5iECivgM4e/asxo8frzFjxmj37t267777NGjQIPXs2VOlSpWyO7yQQx8Ap2AuItCMMUpNTVViYqKmTJmirKwsDRo0SM8//7xq1Khhd3hwoVOnTunDDz/U22+/rQMHDqhTp06Kj49Xt27dVKJECbvDCynUFDgFcxGBtmrVKiUmJmrSpEk6f/68+vfvrxdffFF16tSxO7SgRf13DnIunIK5iECj/v+G81+chVwIp2AuIpCC7fwXtnedg1wGp2AuItBCZXv3559/1htvvKF///vfKl68uPr06aNBgwapVatWdocWcshzcArmIgJl7969+ve//62EhARt27ZN99xzj0aMGKGYmBi7QwsYzq90DnIfnIK5iEBy6vmV27Zt00svvaTk5GTVr19fw4YNU79+/bh/np+Rf6zFeCLY7dy5U//85z81fvx4SdKLL76oP//5z7afl5uSkqK///3vWrZsmerVq6f4+Hg99thjHLdjA/IgnIK5iEBZuXJl9rrihQsXNGDAAL344ouqVauW3aEFBOuNzkHeg1MwFxEoobLeyPG0zkF+g1MwFxFobj+eNvfxOY8++qgGDRqk6Ohou0MLOeQvazGegLOtXr1aCQkJmjRpks6ePavHH3/c0fWT41mdg/wOp2AuIpCcejyr03F/BWchb8IpmIsINO6vYB/WkZ2D3AunYC4i0Ny+jhyM6A+cg5wMp2AuItDoD9yH/sE5yNlwCuYiAo3+wX3oH5yDnA2nYC4i0Ogf3If+wTnI2XAK5iICjf7B3Tjv0TnI33AK5iICifMe3c0Yo7lz5+rvf/+70tLSFBUVpfj4ePXr14/r1duA/A2nYC4ikPbu3auJEycqMTFRW7duVdu2bTVixAh17tzZ7tDgIa677xzkbzgFcxGBEirX3UdgcfyGc1BP4BTMRQQax28UDcdPOAf5E07BXEQgcfyEb44cOaK//vWvGjt2rKpVq6bhw4drwIABXDPaj8iNQGg4c+aMPv74Y40ZM0a//vqrhg4dqpEjR+rGG2+0Na5XX31VI0eO1OTJkxUXF2drLL746aef1L9/f61evVqDBw/WK6+8oltuucXusIIGNcoejLu7XLx4UePHj9df//pXSdIHH3ygXr162RwVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPzOnj2r9PR0bdmyRZs3b9batWu1Zs0aHTp0SBEREWrQoIHuvPNOdejQQe3bt+f6xQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2GtqmDHG2B0Fimby5Ml69NFHtX//flWoUMHucADAsdq3b6969epp7NixdocCFGrlypX6+OOP9cUXX+jkyZNq06aNevbsqZ49e6pmzZp2h+d6YWFhhf6c9tg7jKe97Bh//uahZefOnZo+fbqSk5OVlpamG264QX369NHAgQPVsmVLu8O7ypIlS/Taa69pwYIFatCggZ588kk9/vjjKleunN2huQbfb2sF23gG2+cJVZcuXdKcOXM0duxYpaSkqGbNmnrxxRc1YMAAXXfddXaHJ+m3m99MmTJF48aNU2pqqipVqqS4uDg9/PDDatu2rSIiIuwO0dX4LluL8bwa2ydwkkuXLmnp0qWaOnWqkpKSdODAAbVt21ZDhgxRr169VLJkSbtDhMNlZGRo4sSJSkhIUHp6umrXrq24uDj16tVLLVu2vGb+QeHI39ZiPH3H2FmL8fTNmTNnNGfOHCUlJWn27Nk6c+aMYmNjNXjwYHXt2lXFihWzO0S40JEjR/Tpp58qMTFR69evV7Vq1fTQQw8pLi5OrVu3Zv9KEZHvrMV4+o6xsxbjWTQnTpzQV199paSkJM2dO1eZmZnq1q2b4uPjFRsbS+3xs82bNyshIUETJ07U4cOH1apVK8XFxSkuLk61a9e2OzzXIz9Yi/H0HWNnLcazaLZv366kpCQlJSXpu+++U8WKFdWvXz/Fx8erYcOGdodnK9YX/IvvrrUYT98xdtZiPH0TKusLa9euVUJCgj777DOdOHFCbdu2VVxcnB566CFVrVrV7vBcj++ftRhP3zF21mI8fbN7924lJydr2rRpSktLU9myZbO3dZs1a2Z3eF6hfvoX3zFrMZ6+Y+ysxXj6xs31k3rpX3ynrMV4+o6xsxbj6Rs318tQwPquf5E3rMV4+o6xsxbj6ZtQWd91Auq7f5EDrMV4+o6xsxbj6RvqO4D8XL7OY2JiombPnq1ixYqpc+fOiouLU9euXXXDDTfYHaLrUbesxXj6jrGzFuPpu0uXLmnZsmVKSkrS9OnTtWfPHt1+++0aNGiQHn30Ud144412h4ggcPHiRc2aNUsJCQmaN2+eSpUqpW7duqlXr16KjY1VqVKl7A7R1ciB1mI8fcfYWYvx9I0xRitXrsy+jsGOHTvUsGFDxcfH67HHHlPFihXtDjFkUP/9ixxhLcbTd4ydtRhP31D/r43zX/yL7661GE/fMXbWYjx9Ewrnv7C9619896zFePqOsbMW4+mbUN/ePXjwYPZ5HVu2bFGtWrXUq1cvxcXFqVWrVpzXUUR8L63FePqOsbMW4+m93bt3Z9faK7djBw8erKZNm9odnm04v9K/+K5ai/H0HWNnLcbTN246v3LTpk1655139Pnnn6tEiRLq3bu3BgwYoLvvvtvu0FyH74u1gnk8g/GzBeNnssuZM2eUnJysCRMm6JtvvtGtt96qp59+Wk8++aTKli1rd3hXWbduXfZxO8ePH1ebNm3Uq1cvjtuxCN8razGevmPsrMV4eufyuuK0adOUlJSknTt3qlGjRho8eLD69eunChUq2B2iLVhv9C++p9ZiPH3H2FmL8fReKK83cjytf/F9tBbj6TvGzlqMp2+C9XjajIwMTZgwQQkJCfrxxx912223qVevXurVq5eio6PtDs/1+L5ZK5jHM5g/mxUYH/cyxmj16tWaNm2apk2bpp9//lkNGjRQfHy8+vfv75r6yfGs/sV33FqMp+8YO2sxnr5x0/GsTsf9FfyP77m1GE/fMXbWYjx9x/0VnIV1ZP8iV1iL8fQdY2ctxtM3wbqOHIzoD/yLHGItxtN3jJ21GE/f0B8ED/oH/yLHWIvx9B1jZy3G0zf0D8GD/sG/yDHWYjx9x9hZi/H0Df1D8KB/8C9yjLUYT98xdtZiPH1D/xCcOO/Rv8g31mI8fcfYWYvx9A3nPQantWvXZl+v/sSJE2rbtq3i4uK4Xr1FyDfWYjx9x9hZi/H0ze7du5WcnKxp06Zddb3c+Ph4NWvWzO7w4COuu+9f5BtrMZ6+Y+ysxXh6L5Svu4/A4vgN/yL/WYvx9B1jZy3G0zccv+EfHD/hX3zfrcV4+o6xsxbj6RuOn7DOjh079NZbb+njjz9WiRIl1K9fPw0ZMkRNmjSxOzRX4btsLcYTbrR+/XqNGzdOn376qS5cuKCBAwfq+eefV82aNe0OTePHj9eQIUP0wQcfaOjQoXaH47OsrCz9+9//1ssvv6wjR44oPj5ew4cPV40aNewOzdHIqdZiPEPPmTNnlJCQoLffflv79u3TH//4R7388stc4x4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwkDFGv/76q7Zv365t27Zp27Zt2rJlizZv3qwdO3YoKytL1113naKiotSsWTO1aNFC0dHRuv3221W6dGm7wwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmmhhljjN1RoGhOnTqlihUr6oMPPtDAgQPtDgcAHKtv3746e/aspk+fbncogEfOnj2rlJQUJScn66uvvtKxY8fUoEEDxcbGqlOnTrr33ntVsmRJu8MEAASRs2fPavHixZo3b57mzZun9PR03Xjjjerevbt69uypmJgYx9eetWvXauzYsfr888+VmZmpLl26qG/fvuratatKlChhd3gAYItVq1bp888/15QpU3TgwAF17NhRTz75pB544AFFRkbaHV6BfvzxR02ZMkVTp07Vxo0bVaFCBXXq1Eldu3ZVp06dVKFCBbtDBAA4yKFDhzRv3jzNnj1b8+fP1+HDh9W0aVM98sgjeuSRR1S3bl27Q4RLfffdd0pKStK0adO0fft2VapUSTExMYqNjdX999+v8uXL2x0iAMBl0tPTlZKSopSUFC1ZskQXL17UPffco7i4OD300EOqXLmy3SEiiKxfv15JSUlKSkrSli1bVL58ed1///2KjY1VTEyMKlWqZHeIAAAXMsZo/fr1SklJ0bx585SamipJat++veLi4tSjRw9VrFjR5ihDz4ULF7RgwQIlJydr5syZOnz4sOrXr6/OnTsrJiZG99xzj+PX+wEAznT5mLLL+zN+/PFHVahQQQ8++KDi4uLUoUMHXXfddXaH6TisLwAArBbK6wuXz69KSkrSV199pRMnTqhp06aKjY1VbGys2rRpo2LFitkdJgDARS5cuKDU1NTs2rphwwaVLVtW3bt3V1xcnGJjY11/DhL1EwBgtWCsn9RLAIDVgrFehgrWdwEAVgvl9V2noL4DAKxGfQfgjYyMDM2YMUNJSUn69ttvFRYWpjZt2mT3pE2bNlVYWJjdYQIAXGj//v3ZfemCBQt05MgRNWrUSHFxcerVq5eaNGlid4gIYnv37lVycrKSkpK0dOlSFStWTPfee2/2sTb169e3O0QAgMscPnxY8+fPz76G0YEDB3TbbbepV69eiouLU4sWLewOMeRR/wEAVqP++4bzXwAAVgv181/Y3gUAWI3t3fytXr1a06ZNU1JSkrZt26ZKlSpl19v7779fN910k90hAgBc4uLFi0pNTdXcuXOzt2PLlSuXvR0bExMT1NuxvuD8SgCA1dx+fmVGRoY+++wzffzxx9q4caNq1qypuLg4xcXF6a677uI8LwDwo9OnT2v27NlKSkrS7NmzdeHCBXXp0kUDBgxQ165dHX/My7lz55SSkqJp06Zx3A4AoMgOHz6sBQsWaO7cudnrinXr1s1eV4yOjrY7REdhvREAYBXWG/PH8bQAAKuF0vG0xhitWrUqe7t1x44dqlKlSnYd7dixo8qVK2d3mFki6YIAACAASURBVAAAFzh27JgWLFiglJQUzZ07V/v27VPt2rWz62erVq3sDrFIOJ4VAGA1tx/P6gbcXwEA4C/cX8EdWEcGAFgtlNaRgxX9AQDAavQHwY/+AQBgNfqH4Ef/AACwGv1D8KN/AABYjf4htHDeIwDAapz3GDrOnj2rlJQUJSUlcb16AIAlLly4oNTU1OxeYsOGDSpbtmz29XJjY2ND8nq5wYzr7gMArMJ19+EEHL8BALAax28EFsdPAACsxvET/pWRkaFPPvlE48eP108//aRmzZqpd+/e6t27t2rXrm13eADgSD///LO++OILffHFF9q4caPq1aunJ554Qo8//rgqVqxod3iSpEmTJumxxx7Tyy+/rFdeecXucCxx5swZJSYmasyYMdqzZ4+6deumoUOHqlOnTgoPD7c7PABB4scff9SHH36oTz75ROfPn9egQYM0fPhw1ahRw+7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFc6efKkfvnlF+3YsUO//PKLfv75Z23fvl3btm3T9u3bdfbsWUlSqVKlVLduXdWvX1+NGjVSw4YN1ahRI912222KjIy0+VMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBrmBpmjDF2R4Gi69atm8LDw/Xll1/aHQoAONawYcO0cuVKpaWl2R0K4LULFy5o8eLFmjdvnubPn6+NGzeqePHiio6O1t133602bdrorrvuUuXKle0OFQDgIvv27dPy5cuVlpam5cuXa82aNTp//ryaNm2qmJgYxcTE6J577lGxYsXsDtVrJ06c0LRp0/T5559r0aJFKlWqlDp27KjY2Fh17txZ1apVsztEAPCb06dP6+uvv9bcuXM1d+5c7dq1S1FRUerbt68effRR1alTx+4Qvfbjjz9q1qxZmjt3rpYuXapLly6pSZMmateunVq3bq127dqpatWqdocJAAigPXv2aOnSpUpNTdXSpUu1adMmRUZGql27durcubO6d++uevXq2R0mgsz69es1d+5cpaSkKDU1VcYYNWrUSG3btlXr1q3Vpk0b1axZ0+4wAQAOkpmZqbVr1yotLU2pqalKTU3V3r17ddNNN+n+++9XbGysunbtqooVK9odKkLADz/8oDlz5iglJUVLly7V+fPnVb9+fd19991q27at7r77bkVFRSksLMzuUAEADnPu3DmtXr1aaWlp2f8dPHhQt9xyi2JiYhQbG6vY2FjdeOONdoeK/8jMzNSSJUuUkpKiefPmacOGDSpRooRatGiRvQ/j7rvvpg8FAOTr4MGD2TU/NTVVa9as0blz59S0adPsut+uXTtFRkbaHaprsL4AAPAW6wsFO3/+vL799tvs2rp161aVKVNGrVq1Ups2bdS6dWvdfffdKlu2rN2hAgAc5Pjx49nnTi1btkyrVq3S6dOnFRUVlX2e0X333afrrrvO7lD9gvoJAPBFqNVP6iUAwBehVi9DBeu7AABvsb7rfNR3AIC3qO8ArHTkyBGlpKRkn+uXkZGhm2++Ofua8q1bt1aLFi1UvHhxu0MFADiMMUY//PCDli9frtTUVC1fvlw//PCDihcvrnvuuUcxMTHq2rWroqKi7A4VISgjI0OzZ89WSkqKFi5cqCNHjqhKlSrZ/U2bNm3UvHlzzkMFAFxlx44dSk1Nzd7vtmnTJkVERKh169aKjY1Vly5d1LRpU7vDRAGo/wAAX1D/rcf5LwAAX3D+S8HY3gUA+ILtXe+tX78++145aWlpMsaocePGV53XUaNGDbvDBAA4xIkTJ7R8+fLsWrty5UqdOnVK9erVU+fOnUN6O9YXnF8JAPBWsJ9fuXbtWk2dOlVJSUnaunWrKlWqpPbt26tjx47q0KGDqlevbneIAOBqly5d0vfff6+vv/5aCxcuVGpqqi5evKjf/e53iouLU1xcnG6++Wa7w/TJlcftzJ07Vz/99JPKlCmjO++886rjdm644Qa7QwUAOMSuXbu0bNkypaWladmyZdq8ebPCw8NZV/QB640AAG+w3ug9jqcFAPiC42lzrFmzJnvf8cqVKxUWFqZmzZpl19K2bduqSpUqdocJAHCAPXv2ZNfPZcuWacOGDTLG6K677lLnzp3VpUsX3X777XaH6RcczwoA8FawH8/qBtxfAQDgK+6vEBxYRwYA+IJ15OBGfwAA8AX9QWijfwAA+IL+IbTRPwAAfEH/ENroHwAAvqB/wGWc9wgA8BbnPeKyK69Xn5KSoq1bt6pMmTJq1arVVderL1u2rN2hAgAc5Pjx40pLS9Py5cu1bNkyrVq1SqdPn1ZUVJRiY2O5Xm6I4br7AABvcN19OB3HbwAAfMHxG87B8RMAAG9x/IR9jDFaunSpJk2apGnTpunQoUNq2rSpYmJiFBMTo7Zt23KtaAAh6/z581q6dKnmzZunefPmaePGjapYsaJ69eqlPn36qG3btgoLC7M7zGwzZ87Uww8/rKeeekrvvvuu3eFY7uLFi0pOTtbYsWO1ePFiVa1aVXFxcerVq5fuvvtuhYeH2x0iAJfZuXOnkpKSNHXqVK1atUo1atTQ/2fvzmIjvdL6j/+870t5qyq7vbb38tbpJV56NJk4TEiQGAQDI4G4GLgAzQhuEEJccAES0iAQ0ozEopFgkBAjoeTijxCTBKUnmaRt9xJ3vHeX961sl7fyvpVd9b+I3heX7e50d7r92q7vR3pVb5XL7vPa1e95zjnPOecP/uAP9Pu///u0PQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAn2Nra0szMjGZnZzUzM6OZmRlNTExofHxck5OTmpiY0PLysvn+zMxMFRcX6/LlyyotLQ15zM3NtfBKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAV/RORDAYDFpdCnx1//Iv/6Lvf//7WlhYUEpKitXFAYAz6Qc/+IF+/OMfa3R01OqiAF/ZzMyMbt26pY6ODrW1tam/v18HBwcqLi5Wc3OzGhsb1dzcrLq6OkVHR1tdXADAGbC/v6/u7m51dHSoo6ND7e3tGh8fV1RUlGpqatTc3Kympia98cYbcjqdVhf3hZqdndX/+3//T++9955+/vOfa3NzUzU1NXrrrbf01ltv6ebNm4qJibG6mADwlQwMDOi9997T+++/r08//VR+v19Xr17VW2+9pV/91V/V1atXrS7iC7O2tqaf//zn+uSTT9TW1qYHDx5of39fhYWF+trXvqaWlhbdvHlT1dXVioyMtLq4AIAXIBAIaGBgQJ9++qna2tr06aefanJyUjExMXrllVfU3Nysr3/963r99dcZJ8OpMWKSTz/9VB0dHers7NTe3p5yc3PV3NyslpYWNTc368qVK7Q5ASCM+Hw+s//19u3bun//vra2tpSZmanm5mYzbrlx44aioqKsLi7C2NbWlj7++GPdvn1bbW1t+uyzz7S1taWsrCw1NTWZ8cy1a9eUkJBgdXEBAKdsbm7OzElqb28327xOp1NNTU1qaWnRa6+9pitXrigiIsLq4uIpeDweffjhh2pvb1dbW5sePnyoQCCgiooK82/a3Nysqqoq/qYAEGYCgYAePnxo1hEdHR0aHBxUZGSkqqurzfbhG2+8odzcXKuLeyEwvgAAOAnjC89vdHRUt27dMvsxhoaGFBkZKZfLZdarLS0tKikpsbqoAIBTNDIyYrZ129raNDAwoEAgoPLycrNuaG1tVXFxsdVFtQT1JwDgJNSfoagvAQAnob4MP4zvAgBOwvju+Ub9DgA4CfU7gNMSDAb14MED/eIXvzDHoebm5hQXF6erV6+qqalJN2/eVFNTk+x2u9XFBQCcsu3tbd2/f9+sIzo6OrS0tKTExERdv37dXGv361//uhITE60uLmA6ODjQvXv39PHHH4d8dpOSknT9+nUzvmlublZ6errVxQUAnBK/368HDx6Yaxi1tbVpdnZWsbGxunr1qpqbm/W1r31N3/jGN5Sammp1cfGMqP8BACeh/rcG818AACdh/svzob0LADgJ7d0Xb3V1VR999JE++eQTc16H3+9XXl6ebt68acYr9fX1io6Otrq4AIBTMD4+bvZx3r59W/39/To4OFBpaalaWlrMdiz9nF8d8ysBACcJ5/mVvb29eu+99/Thhx/q9u3b2t7eVnl5uVpbW9Xa2qpvfOMbysjIsLqYAHDmud1u3bp1S7du3dJHH30kn88np9Op1tZWvfHGG/qVX/kVZWVlWV3MF25kZCQkb2d4eFhRUVGqqakxxxZv3rypwsJCq4sKADgF+/v76urqMuuFtrY2eTwexcTEhIwrvv7664wrfkWMNwIAjmK88cUinxYAcBLyaZ/e8vKymZ/T3t6urq4u7e/vq7Cw0Gy33rx5Uy6X68KNvwIAQh0cHKivr0+3b982+40nJiYUHR2thoYGc23J1tZW2Ww2q4t7qshnBQCcJJzzWc8D9lcAADwJ+ytcfIwjAwBOwjhyeCM+AACchPgAT0L8AAA4CfEDnoT4AQBwEuIHPAnxAwDgJMQPeFrMewQAnIR5j3hao6OjIevVDw0NKTIyUi6Xy4wjWlpaWA8RAMLMyMiIue5QW1ubBgYGFAgEVF5ebtYNra2tKi4utrqosBjr7gMAjmLdfZxn5G8AAE5C/sb5Qf4EAOAk5E+cTfv7+/r5z3+un/3sZ3r//ffldruVlJSk1157Tb/8y7+sN998U2VlZVYXEwBeqsHBQX3wwQd6//339Ytf/EKbm5uqrKzUm2++qbfffluvv/76mRxj/eCDD/Stb31L3/3ud/WP//iPioiIsLpIL9WjR4/0H//xH3r33Xf16NEj5eXl6Td+4zf07W9/Wy0tLYqMjLS6iADOqLGxMb3zzjt699139dlnnyk9PV3f+ta39J3vfEff/OY3uX8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgrG1vb8vj8Whubi7kcXZ2VjMzM+bj6uqq+T2RkZGy2+0qKipSYWGhCgoKVFhYqMLCQvO15ORkC68KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8RO9EBIPBoNWlwFe3uLgop9Opn/70p/rN3/xNq4sDAGfST37yE33/+9/X1taW1UUBXrj19XXdvXtX7e3tunPnjjo6OrSysqKkpCTV1dWZR21trerq6pSWlmZ1kQEAL9HKyop6enrU29sb8ri5uSmbzabGxkY1NTWpublZN27cUEpKitVFPjW7u7v65JNP9P777+tnP/uZHj16pJSUFDU3N5u/k8bGxrD6nQA4f/b399XT06P29nZ1dHTo008/1dTUlDIzM/XNb35Tb7/9tr75zW8qJyfH6qKeis3NTd29e1e3b99WW1ubOjo6tL6+rvT0dF29elX19fWqr69XQ0ODqqqqFBMTY3WRAQBP4Pf7NTAwoO7ubnV1dam7u1sPHjzQysqKGbu3tLTo5s2bevXVV5WYmGh1kQFJ0s7Oju7fv6/29nYzJllcXFRiYqLq6urMmMTop01NTbW6yACAr2hqako9PT3q6elRV1eXenp6NDg4qEAgoMrKSjU1NenmzZtqampSZWWlIiIirC4y8Fh+v1+ff/652tvbzXhmZmZGMTEx5hizcdTX1ysrK8vqIgMAXoBAIKCxsTEzlunp6VF3d7fGxsYUFRUll8ullpYWNTc3q7m5WSUlJVYXGS/IysqKOjo6zHr/3r17Zj7BlStXzPq/vr5eLpdL8fHxVhcZAPAC7OzsqL+/X93d3Wbd//nnn2tlZUXJycm6ceOGWlpa1NTUpKamJqWnp1td5LDA+AIAhB/GF16u+fl5s15tb29XZ2endnd35XA41NDQYNardXV1qqysVHR0tNVFBgB8BX6/X2632+zfNvIOvV6v4uLidO3aNTPnsKmpKWzy658V9ScAhBfqz+dDfQkA4YX6Eo/D+C4AhB/Gdy8+6ncACD9TU1P67LPP9PHHH2tkZESDg4MaGRmhfgdgmdHRUXMMqq2tTf39/QoEAiouLlZDQ0PIHP+SkhLuSwBwQSwuLprjUEb/U19fn/x+v/Ly8kLm+Dc0NLCOLs6VYDCoR48eqb29Xbdv31ZHR4fcbrciIyNVUVFxrN/t0qVLVhcZAPAVra2thaxd1N3drd7eXm1tbSkrK8vMs2lubta1a9dYx+YCov4HgPBD/X92Mf8FAMIL819eLtq7ABB+aO9aY3t7W/fv3zfbsu3t7VpeXlZycrJZzxp1bk1NjZKTk60uMgDgOR0cHGhwcNCsZ4127OzsrGJjY3X16lVzTkdzc7PsdrvVRb7wmF8JAOGH9RMeb2dnR+3t7bp165Y+/PBDdXZ2SpJqamp048YN86iurmacFUBYW1tbU2dnp+7du6d79+7p7t278ng8Sk1N1de//nW98cYbam1tlcvlsrqop25ubk4dHR26ffu2mbfj9/uVm5trzhc2HsvLyxUVFWV1kQEAz2ljY0O9vb0hbavu7m5tbm4qMzNTTU1NamlpUUtLi65du6aEhASri3yhMd4IAOGD8UZrkE8LAOGHfNoXa3NzU3fv3jX7jjs6OrS2tqbU1FRduXLlWLuV3ycAnE/b29vq7+8P6TPu6urS2tqa0tLS1NzcbLZZb9y4oaSkJKuLfKaQzwoA4Yd81ouB/RUAIDyxvwIkxpEBIBwxjowvQ3wAAOGH+ABfFfEDAIQf4gd8VcQPABB+iB/wVRE/AED4IX7Ai8S8RwAIP8x7xIs0Pz9vxhHGevW7u7tyOBxqaGgw44i6ujpVVlay/wkAnHN+v19utzukT6Krq0ter1dxcXG6du2a2S/R1NSknJwcq4uMM4519wEgfLDuPsIB+RsAEH7I37hYyJ8AgPBD/sT5NT4+rg8++EAffPCBbt26pbW1NRUWFqqlpUWNjY1qampSfX09a4QCOLf8fr+6urrU0dGhO3fuqK2tTZOTk0pLS1Nra6vefPNNvfnmmyosLLS6qE/03//93/qt3/otfec739G//uu/KjIy0uoinare3l69++67evfddzUwMCCHw6Ff+qVfUmtrq1pbW+kjBsLcxsaGPvnkE926dUu3bt1Sd3e3MjMz9Wu/9mv69re/rdbWVuJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXGh+v1+Li4taXFzUwsKCvF6v5ufn5fF4NDc3F/K4urpqfl9kZKTsdrucTqdyc3Mf+2i32xUVFWXhFQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAu9ExEMBoNWlwIvxmuvvabc3Fz99Kc/tbooAHAmvffee3r77be1tramlJQUq4sDvFSBQEAPHz7UnTt31NXVpd7eXvX09Mjn80mSCgsLVVtbq9raWtXX16u2tlbl5eWKjo62uOQAgGexv78vt9ut3t5edXd3q7e3V729vZqcnJQk2Ww21dXVqba2VleuXFFjY6OqqqoUERFhccnPjrGxMX3wwQdqa2tTe3u7RkdHFRUVJZfLpZs3b6qpqUnNzc0qKSmxuqgAwpjP51NHR4c6OjrU1tam+/fva2NjQzabTU1NTWpqatIbb7yh69evsxGNpIODA3V3d6u9vV2ff/65uru71dfXp93dXcXGxqqmpkb19fWqr69XQ0OD6uvrlZ6ebnWxASAsraysqKurS93d3eZjf3+/9vb2FB8fL5fLpYaGBjU0NKilpUV1dXXUdTg3gsGg3G63Ojo69ODBA/X09Kinp0crKyuKiIhQcXGx6uvrVVdXp7q6OtXX16ukpIQ2OwCcQTs7O+rv71d3d7d5P+/u7tby8rIkqaioyLyXX7t2Tc3NzcrKyrK41MBXNzExoba2NrN/paenR16vV5KUm5trfu6Nx4qKCsabAeAMW1tbM/OHuru7zb7zjY0NRUVFqbS01LynX79+XY2NjUpNTbW62Dgl+/v76u7uVkdHh3p6etTV1aX+/n5tbW0pOjpa5eXlqq2tVUNDg9mXcenSJauLDQB4gqmpqZB+jJ6eHg0ODurg4ECJiYkh4+ZNTU2qq6ujTXdGML4AABcH4wtnw87Ojjo7O3Xnzh3zbzEwMCC/36+4uDi5XK5j/d2ZmZlWFxsAcIKlpSV1dXWZ9WpPT4/6+vq0t7en2NhYVVdXm/fyV199VdeuXVNcXJzVxT6XqD8B4OKg/nx5qC8B4OKgvsRXwfguAFwcjO/CQP0OABfHl9XvJ4mPj5fNZpPNZlNCQkLI85Nee9x70tLSFBkZeYpXC+AiWVtbU0dHh+7fv2/eu4aHhxUIBJScnKza2tqQcaja2lrmggLAGeb3++V2u4/N9ZuZmZEk2e121dXVqaGhQVeuXFFLS4sKCgosLjXw4i0sLITEOD09PRofH5ckZWRkhKxjUFdXp5qaGsZlAeAMCgaDGh0dNWMa43FsbEzBYFDp6elme/XKlStqbm5WRUWF1cWGRaj/AeBioP4//5j/AgAXB/NfzgbauwBwMdDePduCwaAePnxo7kVs1Llra2uKjIzU5cuXzTWVjTq3qKjI6mIDAI7w+Xwh9ayxP87Ozo5iYmJUWVlptmMbGxt17do1JSQkWF3ssMf8SgC4OFg/4atbWVnRRx99pLa2Nt27d08PHjzQ5uamkpKSdOXKFd24cUPXr1/XjRs3VFJSYnVxAeCl2NvbU3d3t+7fv6979+7p/v37evTokQKBgHJzc3Xjxg3duHFDX//613Xjxg32Pjtie3tbn332me7cuWOO9T569Ej7+/tKSEiQy+UyxxeNtlZ6errVxQYAHDE2NhaSr9PV1aXR0VEFAgGlpaWptrZW9fX15rhiZWUl/WUWY7wRAC4GxhvPNvJpAeBiIJ/WGgcHB+rv7zfbrUacs7m5qejoaJWXl5txjnHk5uZaXWwAwCEej8esO41jcHBQBwcHSkpKOtZv7HK5WKv8GZHPCgAXB/ms4YX9FQDgYmF/BTwrxpEB4GJgHBkvEvEBAFwMxAc4TcQPAHAxED/gNBE/AMDFQPyA00T8AAAXA/EDrMC8RwC4OJj3CCvs7Oyos7NTd+7cMT97AwMD8vv9iouLk8vlCpl/WV9fr8zMTKuLDQA4wdLSkrn3iHH09fVpb29PsbGxqq6uNu/lr776qq5du0Y/M74y1t0HgIuBdfeB/0P+BgBcDORvhCfyJwDg4iB/4mLb399Xe3u7PvroI925c0d37tzRysqKEhMTdfXqVTU1NampqUmNjY1yOBxWFxcATjQ7O6s7d+6oo6NDHR0d6uzs1Pb2tmw2mxobG9XY2KjXX39djY2Nio6Otrq4T+U///M/9bu/+7v67ne/q3/6p38K+72M+vv79V//9V+6deuW2tvbtbOzo4qKCrW2tqq1tVWvvfaaMjIyrC4mgJfI7/fr7t27unXrlj788EPdvXtX+/v7crlcam1t1dtvv63XX3/93NznAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKO2t7e1uLio+fl5zc/Pa3Fx0Ty8Xq95vrCwoIWFBfl8vpDvj4qKUk5OjpxOp3Jzcx/7aLfbFRUVZdFVAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAc+KdiGAwGLS6FHgxfvjDH+ov/uIvtLCwoLi4OKuLAwBnzoMHD3T16lUNDQ2ptLTU6uIAlpiamlJvb696enrU09Oj3t5eud1u+f1+xcXFqby8XGVlZSorK1NpaanKyspUXl4up9NpddEBIKx5PB4NDQ1paGhIw8PDGhoa0uDgoIaGhrS3t6eYmBiVl5errq7OPGpra5Wfn2910c+dubk5tbe3q62tTR0dHXrw4IF2d3dlt9tVX1+vhoYG1dfXq76+XhUVFYqOjra6yAAumOnpaXV3d6unp0ddXV3q7u7W4OCggsGgKioq1NTUpObmZjU3N6uqqkqRkZFWF/lc2N/f18OHD9Xd3a3u7m51dXWpq6tLi4uLkqTCwkKVl5ervLxclZWV5nlBQQG/YwD4igKBgCYnJzU4OCi3261Hjx5pcHBQg4ODmpyclCRlZ2ervr5eV65cMePtyspK4m1cSOPj42b/rBHzjYyMKBAIKCUlRRUVFWa/rHGUlZUpLS3N6qIDwIU3PT1t9rsODQ3J7XZrcHBQo6Oj2t/fV2JiompqalRfX2/2w9bX13OPRljxer1mDGOMOw8MDMjv9ys2NtaMZYx4pqysTBUVFcrJybG66AAQFvb39zU+Pm6OJx+ObSYmJhQMBpWenm7GM7W1tWpoaJDL5VJiYqLVxccZc3BwoOHhYfX09JhjVz09PZqYmJAkZWRkHOu/MB6TkpIsLj0AhIfNzc2Q+t6o/91ut3w+nySpqKgoJKesvr5epaWljIOfQ4wvAMDZxfjC+eP3+zUwMGDWq0Ze4fz8vCTJ6XSqsrIypL+7oqJCxcXFio2Ntbj0AHCx7e3taXR0VG63O6S963a7NTs7K0my2+2qq6tTQ0ODWbdWVVUpJibG4tJfbNSfAHB2UX+eHdSXAHB2UV/itDG+CwBnF+O7eF7U7wBwdj1P/V5RUaGVlRVtbGzI5/NpY2PDPFZXV7W2tqb19XXztce95+Dg4MQyRUVFKTU1VWlpaUpOTjYPm82m5ORkpaSkKDk5+anfAwBbW1vq6+sLmefX09OjlZUVRUREqLCw8NgYVFlZmQoLC1nDCwBOidfrPTa/33i+t7en2NhYVVVVhfQ51dXVyW63W110wDIrKyvH+tz6+/u1tbWl6OholZSUqKKi4thaBpcuXbK66ABw4a2urppxjZFvY8Q26+vrioyMVGlpqbmGtBHjFBYWWl10nHHU/wBwdlH/hxfmvwDA2cX8l/OJ9i4AnF20dy+OYDCosbGxkBy6rq4ujY2NmXsvGHM5js7vYL18AHh5jP1xjLarUe8ODg5qampKkpSZmWm2YY36Pti7xwAAIABJREFU1uVy0dd4zjC/EgDOLtZPOD0HBwfq7+/X/fv3de/ePd27d099fX3a399XZmam6urqVF1drZqaGrlcLtXU1Mhms1ldbAB4KsFgUOPj4+rv71d/f7/6+vrU39+vgYEB7e7uKi0tTdeuXdONGzd0/fp13bhxQ3l5eVYX+1za3d1Vf39/yN6gXV1dWl5eliQVFBSEjCsa7a2ioiLmCwPAS7SxsRHSv3l4P9DV1VVFRESopKQkJF+nvr5excXFVhcdT4nxRgA4mxhvvFjIpwWAs4t82rMvEAhoeHjYnOtptF8nJyclSVlZWaqoqDjWZi0rK1NcXJzFpQeAi2lnZ8esMw/XnY8ePdLS0pIkqbCwMKS92tDQoMuXLysyMtLi0l9c5LMCwNlFPiseh/0VAODsY38FvEyMIwPA2cU4MqxCfAAAZxfxAc4q4gcAOLuIH3BWET8AwNlF/ICzivgBAM4u4gecB8x7BICzi3mPOOv8fr8GBgbMOMJYd2h+fl6S5HQ6VVlZeWwOZnFxMWsxAsBLtre3p9HRUbM/wuiTcLvdmp2dlSTZ7XZzzSEjlqiqqlJMTIzFpUe4YN19ADibWHcfeH7kbwDA2UX+Bp4G+RMAcHaRPwHpi3GFhw8f6u7du2pvb9edO3c0MDCgQCBg7rlx+CgrK1NUVJTVxQYQJg4ODjQ4OKje3l51d3ebj5OTk4qMjJTL5VJjY6OamprU2NioyspKRUREWF3sZ/bv//7v+r3f+z394R/+oX70ox+dy2t4mba3t9XW1qZbt27p1q1bevDggSTJ5XLp1Vdf1auvvqobN26ourqaOgo4xzwej+7du6e7d+/q7t27+uyzz7SxsaHCwkK1traqtbVVr7/+uhwOh9VFBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI7Z2dnR8vKyfD6f+bi0tKSFhQXNz89rcXHRPLxerxYWFrS5uRnyM+Li4pSVlaWsrCzZ7XZlZWUpOzvbfMzJyTG/brwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwgrwTEQwGg1aXAi/G9PS0CgoK9D//8z966623rC4OAJw5Ho9Hly5d0u3bt9XS0mJ1cYAzY29vTwMDA+rt7ZXb7dbQ0JB5bGxsSJKSk5NVVlZmHqWlpaqoqNDly5eVk5Nj8RUAwMUwPz+v4eFhDQ4OhtyLh4aGzI0OjPtxaWmpysrKVFlZqZqaGrlcLsXGxlp8BRfTzs6OOjs7dffuXXV3d6u7u1sDAwPy+/2Kj4+Xy+VSfX29edTV1clms1ldbADngBGHG/eWnp4edXV1aWlpSZJUVFRk3luuXbumpqYmZWVlWVzqi8fj8ai7u1u9vb0aHByU2+2W2+3W4uKiJCk+Pl7l5eXmUVFRoYqKCpWXl3O/B4AjlpeXNTQ0JLfbrXfeeUdLS0vyer2anp7W3t6eJCk7OzvkXlpTU6P6+nrl5eVZXHrAWpubm+rr61NPT48GBwfNuGRsbMz8/2O3282YpKyszDy/fPmy4uPjLb4CADg/lpaWNDQ0pMHBQfX19en999/XysqK5ufntbu7K0lKSUlRaWmpqqqqVFFRoaqqKtXV1am0tFRRUVEWXwFw9vj9fnO8+eHDhyeOb6SlpZljzUYfizHekZ6ebvEVAMD5EgwGNT09HXK/NdqSo6Oj8vv9ko63I6urq1VXV6fCwkKLrwDn3crKinp6etTX1ye3223mOExMTGh/f1+SdOnSpZC6v6ysTBUVFSoqKlJcXJzFVwAA58vu7q7GxsaO5fcODg7K4/FIkqKjo1VUVBTS5qqpqVFdXZ3S0tIsvgK8TIwvAMDpOTy+YBwn9YMebgMxvnD+zM3NqaenR729vebfe2hoSNPT05KOx12H69j8/HxFRkZafAUAcD4EAgFNTU2Z91mjLXNSP+PhtoyRb2i32y2+AhxG/QkAp4P683yjvgSA00F9ibOO8V0AOD2M7+K0UL8DwOk5y/X79va2fD6feezs7IS8dvT5496zsrKix20XEh8fr4SEBMXHx8tms5nH0de+7D2ZmZnM6wEumImJCfX09Ki/vz/kPjk/Py9Jio2NVXFxsTm337hPlpWVKS8vTxERERZfAQCcLysrK8fm9w8NDWlgYEBbW1uSpKioKKWmpiozM1MOh0OFhYWqqKiQy+VSVlaWbDab0tPTZbPZlJycbPEVAWfPwcGBhoeH1d3drYcPH4b8X1tdXZUkJSUlhcQ1xrza0tJSZWZmWnwFAHB+7OzsHNsbxxjrONyuLCkpCcltrK+vV01NjRITEy2+AlwU1P8AcHqo//FlmP8CAKeD+S/hgfYuAJwe2rvhbX193WzLGn/3wcFBjY+Pm3FVXl7esXkdxnr5sbGxFl8BAJwPHo8npB17eB6dsT+Ow+EIyVk21shnn+KLi/mVAHB6zvL8ynC3tbWlzz//XJ2dnerr61NfX5/6+/u1trYm6Ys2qcvlUk1Njaqrq1VbW6uqqiqlpKRYXHIA4czj8WhgYMC8Zxn7UK+vr0uS8vPzzXtWbW2trl+/roqKCvJCXrLp6Wlzb9DD/dxer1dS6Hzhw20sY74wAODL7e3taWxsLKRtZRwzMzOSvsiTLC4uNttWFRUVZp1IHH8xMd4IAKeD8cbwRT4tAJwe8mkvJp/Pp+7ubvX19enRo0fm33VyclKBQECRkZEqKCgw69LKykqzPi0oKGCsGAC+xMHBgSYnJ0Paqk+61xrtFWOup81ms/oSIPJZAeA0kc+KF4n9FQDgdD1uf4XBwUFz/kNSUlLIPbeqqsqcAxETE2PxFeAiYRwZAE4P48g4L4gPAOD0EB/goiB+AIDTQ/yAi4L4AQBOD/EDLgriBwA4PcQPuIiY9wgAp4d5j7iI5ubmzLVyjc/30NCQpqenJX2xfnJRUVFIDGF8xvPz89lPAACeUiAQ0NTUVMh8S2P9oYmJCXN98kuXLoW03Yy1h+x2u8VXAJyMdfcB4HSw7j5wOg4ODvTw4UN1dHSY4y5jY2PyeDza2tqSJMXExMjpdKqxsZH8DQD4CsjfwMtA/gQAnB7yJ/A81tbWdPfuXXV2dqq7u9uss/f395WQkKDq6mrV19ertrZWdXV1qqurU1ZWltXFBnDOLS4uqru7W729verp6THXqd/Z2VF0dLS5l3x9fb2uXbumGzduKDU11epif2X/8A//oD/+4z/Wn/7pn+oHP/iB1cU5F3w+n37xi1/o9u3bunfvnh48eKDNzU0lJyfr6tWrevXVV/Xqq6/q+vXrys/Pt7q4AE6wvr6uzz77TPfu3dPdu3d17949eTweRUZGqqqqSq+++qoaGxv1jW98Q6WlpVYXFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGFke3tbPp/vmY/Z2dljPys+Pl42m808cnNz5XQ6H/vc4XCwFz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDKOxHBYDBodSnw4ly7dk2vvPKKfvzjH1tdFAA4c/x+v+Lj4/XOO+/o13/9160uDnAu+Hw+jY6OanR0VP39/RoYGNDo6Kjcbrc2NjYkSXFxccrLy1NJSYmcTqdyc3NVUlJiHvn5+YqJibH4SgDAeofvqaOjo5qZmdHs7KxGR0c1NDSktbU1SVJsbKwuXbqkkpISVVdXy+VymffUoqIiNjg4A/b39+V2uzUwMKD+/n51dnbq/v378nq9kiSbzXbi38/lcik+Pt7i0gM4bcb9/3A83d/fL7fbrYODA8XExKisrExXr16Vy+VSdXW1GhsblZ2dbXXRw9rKyopGRkaO/e0ePXqkzc1NSV9sVHS0/WMcRtsIAC6S7e1tsw1z9BgZGdHKyoqkL9o0+/v7CgQCx35GdHS0MjIyzE3cjPOjjye9FhcXd9qXDJwJMzMzZixyODaZmJjQwcGBpP9rh57UP3v58mWlp6dbfBUAcHoO98Me7oMdHR3V8PCwVldXJX0RszgcDi0sLCgQCGh3d/fEn5eenh6ySa1xPO71w1+Lioo6zUsHzqST+sZGR0c1MDCg7e1tSSf3sRyOaxgbARBu/H6/5ufnNTY2FhLLGLHN0X5qYxzSuIdWV1ertrZWaWlpFl8Jwo3f79fU1NSJuWbj4+Nmf6HRj3FSX0ZpaSmfXQBhZ2dnRzMzM4/tzzipL/hoTlJ1dbUSEhIsvhKcNYwvAMCzeZbxhcfleRcXFysiIsLiK8HLsLu7K4/Hc6yvu7+/X7Ozs5KkmJgYZWVlnZhT6HQ6VVxcrMTERIuvBABOh9/v18LCwon5hjMzMxofH9fW1pak0P7Cw/VreXm5UlJSLL4SfBXUnwDwbKg/wxP1JQA8m6P15d27d9Xb26vl5WX5fD7NzMyYuanUlzhvGN8FgGfD+C7OA+p3AHg21O9f2N7els/nk8/n087OzhOfP+k98/PzZn1zkvj4eHNefEJCgvn88PmXPTfOc3JyFB0dfYq/JQBPY2dnRyMjI8di0r6+vmP31JPiUcahAIQrIy49GpMah8/nk/TFWH5+fr5538zIyNDs7KwiIyN1cHCglZUVM0Yzzo31AQ6LiYl5qvWMTno9NTX1tH89gOUet2/Ol60VzTpGAMLV0XUMPvnkE42Ojmpra0sLCwuam5sLWQvmpDUMKioq6PuBpaj/AeDZHK3/j/ZzHF0LjvofT4v5LwDwbJgvii9DexcAng3tXTyP51kv/2h9W1ZWRn4GgLBxuJ1ytL51u93a2NiQJMXFxeny5cvsj4MvxfxKAHg2zK+8eIy60KgD+/v71dXVZfYBH22PGn/Tmpoa6kAAL8TjxqOGhoa0trYmKbQ/1Xisr69Xdna2xaXHYbu7uxoeHj7Wxurt7TX/lk+aL1xSUqKCggL6yAGEBSPX8XHzhNkPFM+C8UYAeDaMN+J5kE8LAM+GfFoctre3p+np6WP1qHEYThqXZM4ngHDypLmeo6Ojmpyc1P7+vqTQe+bherSyslJJSUkWXwmeF/msAPBsyGfFWcD+CgDwfJ53f4XDdTljbzgLnmYcOS4uThkZGcrOzlZ6errefvttxpEBhC3GkREOTooPhoaGNDg4aK7pGRMTo7S0NKWmpio5OVm//du/TXwAIGwRHwDS8vKyurq61NfXp56eHrndbk1PT2tmZkZ7e3uSpKioKNntdlVXV5OnDiDsET8A0uLioj7//HNzPRe32y2Px0P8AACPQfwA/N/4xcOHD9XZ2an+/n5NTExoYmJCu7u7kqTo6GglJCTI6XTqtddeI34AENaIH4BQMzMz6uvrU29vrx49eqSHDx9qZGRE8/Pz5v+FuLg4JSYmHvv/wLxHAOGIeY/A/zHWXu7t7VVnZ6fcbrfGxsY0MjKi5eVlSVJkZKTi4+MVHx+v1tZW5l8CCGtPWntoZmZG4+PjZk760fXajHiivLxcKSkpFl8J8GIY6+739fWpv7/fzLH0eDxaWFhQMBiU9EVsnZOTo6amJtbdBxDWWHcfeLG2t7fl8/nMY2VlJeT5k14z1po4LCYmRunp6UpISFBcXJxyc3OVk5PDPgcA8ATkb+CsYd1oAHg25E/gtPj9fg0ODmpgYED9/f3q7OxUZ2enZmdnJTGuBuDpGHurHd1Xrb+/P+R+Ul1dratXr8rlcqm6ulqvvPLKhcxt+pu/+Rv9+Z//uf72b/9Wf/Inf2J1cc6tg4MDPXr0yKyb2tra1NXVpYODA6Wnp8vlcpmfJZfLpYaGBmVlZVldbCAs7O/va3Jy0owfjVjy0aNHCgQCcjqdunr1qnm0tLQoIyPD6mIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgHNve3tbq6qpWV1e1tram1dXVY/uhLS8va3l5OeS5z+cz1/c/LDo6WhkZGbLZbLLZbOb5Sa8d/XpcXJwFvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDn8k5EMBgMWl0KvDh//dd/rR/96EeamZlRVFSU1cUBgDMnKytLf/VXf6Xvfe97VhcFONeCwaCmpqY0PDysiYkJ85icnNTk5KSmpqa0u7srSYqKilJubq4KCwtVWFiogoICFRQUKC8vT7m5uXI6nbLb7cQuAM6t/f19zc/Pa2ZmRrOzs/J4POb90Lg/zszM6ODgQJIUFxen/Px8FRQUmPdG47h8+bLy8/MVERFh8VXheXg8HvX29srtdsvtdmtwcFBut1vT09OSpJiYGBUXF6uyslIVFRUqLy9XSUmJWT/GxMRYfAUAntfs7KwmJiY0Pj6uoaEhPXr0yLwHrK+vS5LS0tJUXl6uiooKVVZWqry8XC6XS+Xl5YqOjrb4CvC0AoGAJiYmNDQ0pLGxMfPvbhyzs7Pme1NTU1VUVKTCwkIVFxerqKhI+fn5ys3NVV5enpxOp2JjYy28GgD4P3t7e2Z7ZmZmRlNTUxofH9fY2JjGx8c1MTGhtbU1SVJERIQcDoeKi4tVWFiooqIi8ygrK1NhYaEiIyMlfbHBnLFx3NMes7Oz8vl8x8oYHx9vbhz3LEdOTg51LS6k7e1tMyYxYpHD/bSLi4vme202W0j/gxGXOJ1O5eXlyeFwKD4+3sKrAYCns7KyYvbDzszMaHx8PKQfdmJiImR8Ki8vz7zvHb4PlpWVqaCgwIxZDM8Tu/h8Pi0uLsrv9x8r7/PGL5mZmWyOiwtvf39f4+Pjx8abjb6W2dlZBQIBSV/8XyoqKgoZVzHGmx0Oh/Ly8pSWlmbxFQHA0wkEAvJ6vZqbm5PH4zHHlo/eA42xZUmKjo5WfHy8kpKSlJ6erqysLDmdTrMvxul0hsQS5ODgLNrY2Dg2tnK4H2N5edl8b2ZmZki9b/RjGPU+/RgAzpOdnR2z3p+dndX//u//amFhQaurq1pYWJDH4wkZE8nIyDjWl1tQUKCSkhKVlZUpKSnJwqvBRcH4AoBw9LLHFxDeFhcXNTQ0pNHR0ZA61Wj/bm9vS5IiIyPNPp3Dn6ujc6v4fAE464x+bqNe9Xg8TxzrS0hIOHbvM3Kry8vLlZmZafEVwQrUnwDCDfUnngf1JYBw8zz1ZUpKiubn54/9rJSUFGVnZysrK0uZmZnKzMxURkaGeW4ch7/OWCzOKsZ3AYSjZxnflb7ItU5MTFRqaqo5rzw3N1dVVVVyuVzKyMgw86wdDgftI1iO+h1AOCJ/yxo+n08bGxvmsbq6qrW1NW1sbGhzc1Nra2taX1/X5uamtra25PP5zPP19XWtrq6az1dXV5/4b6WlpSkpKUmJiYlKS0tTSkqK+dxms5nnKSkpSktLU2JiopKSkpSWlqbk5GQlJSUpKSlJNptNiYmJzLMHXjKv16vBwcGQWPTwWNTOzo6kL+7JJ41DGesoOhwOxqEAnCurq6vyeDzmfL/D9z7jMO6BkZGR5r4axn2woKBARUVFKi0tVWFh4TOvbbi3txeyXtHKysqJ6xid9LqxrvFhUVFRSk9PP3HtopNeN15LS0tTeno66xHgQjHWih4eHg5pcxprGxzeHyI+Pv7EvSGMPBvWMQJwXuzs7Jj9bbOzs+Y60odjm8PrGGRlZSk2Nlbz8/Pa398/9vOM3JrD+TTGcTQPxzjYVwVWov4HEI6eVP/39fVpcnIyZG3klJQUORwOc+2iiooKlZaWmusYkW+AF4X5LwDCzdH5Lw8fPlR7e7s2Nja0tLSkubk5eb1e5oviudDeBRCOvqy/e3h4WBsbG+b7ExISlJmZKYfDofz8fJWWlqqqqkoNDQ2qqqqivYunsrGxocHBwZC27OHP3eG82ZycnGP1bUFBgRwOhy5duqScnBzGTACceQsLC5qbm9P09LQGBgbU399vrpE/NTWl6elpcxw5Li7uxLaG0Y612+0WXw3OO+ZXAghHzK+EIRAIaHR0VA8fPtTw8LB5jIyMaGJiwozJsrKyVFpaah6XL19WYWGh8vPzlZeXRzsUgKQv+rgmJyfNOuXofcXI10hKSjp2TykrK1NNTY2ysrIsvgp8VXNzc+Z84ZPmDO/t7UmSYmJizBjDaOcXFhbK6XTq0qVLstvtys7OtvhqAODJ/H6/vF6vOU/4aLtqYmIiZH3atLS0Y/e9wsJCM482OTnZwqvBefc8441Op1MZGRlKSUlRa2sr440AzpXD442zs7PH7nuMN+JFM/JpOzs7NTAwoJGREY2Pj8vj8WhhYUHr6+sKBoOSvliTuKSkhHxaAOfe86wfcfTeV1RUxPxRSPpiLdqj7VbjGBsbO3HOZ0FBgbKzs5WamqqKigrV1NSYa01GRERYfEUAcLJgMCiv12uuLenxeELqz5P2OjvcX2zUn0ab1WazWXxFOE0vKp/VaH8SfwE4D8hnxXm2vb2t2dlZ9fX1aWBgQGNjY5qenpbH49H8/LzW19e1tbVlxn7srwDgorF6fwXgZdjc3NTS0pIWFxe1uLiopaWlE4/DXz+89oghOjpaTqeTdZkAXEiMIyMc7OzsaHl5WUtLSyGPRv1/0teWlpZC1uCWvoiDExISFB0drWAwqLS0NOIDABcS8QHC0ebm5olxwuHY4KR4wcg3N8THxyszM1PJycmKj49XVFSU6uvrtb+/z7rPAC404geEo8NxwZedG8fhueEGYx305ORkxcXFET8ACBvEDwhX29vbIbHC0Xjh6OvGuZF7e5jNZlNiYqJiY2MVGRmp9PR0JSQkED8AuLCIHwA9dV/E4Rjjcf0RqampZg6EJOXl5Wl9fZ19PABcWMx7BL5YK+hoH8SXjW+srKwc+znx8fFKSUlRfHy8GUuUl5drcnJS4+PjJ645dPj/UV5entkvwfxLAOdBIBCQ1+s14whj7uWT1h46eu87vF5uZmamxVcEPLutra1j8cLh+RgnzclYXl4+NicjKipKGRkZSkpKUnx8vCIjI5WZman09HT2+QZwYbHuPvB8tre35fP5nusw1kU5Kj4+Xjab7ZkPh8Px2P4LY5+D4eHhkD5H8j8BXGTkb+AiMdaNdrvdGhgY0NDQkMbHxzUzM6P5+Xltbm6a742JiZHL5SJ/AsC5R/4EziJjbajDn8vu7m6NjIzI4/FocXFRm5ub2tvbM78nPz9fZWVlKi8vV1lZmbkGamFhodLT0y28GgAvw8rKillPDQ8Pa2hoSIODgxoaGtLU1JSkL+qtoqIilZWVqaKiQuXl5SovL1dtbW1Y9K8Hg0H92Z/9mf7u7/5OP/zhD/VHf/RHVhfpwllfX1dnZ6d6enrU19ennp4e9ff3a2NjQxERESoqKlJNTY1qa2tVW1ur0tJSlZWV0e8LPKe9vT2NjY1paGhIAwMD6u3tNfcP2dvbU3R0tMrKysz/c7W1tbp69aouXbpkddEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwxnzZvmg7OztPfM9p7o0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwgbwTEQwGg1aXAi/OwMCAXC6XPvnkE33ta1+zujgAcOa4XC59+9vf1l/+5V9aXRTgQgsGg5qdndXExIQmJyfNY2JiwnxtZWXFfH9kZKTsdrscDodyc3PlcDiUl5cnu91uPl66dEk5OTmKjY218MoAhJO9vT3Nz89renpaXq9XHo9HXq9Xd+/elcfj0ebmptbW1uTz+RQIBMzvS09PV0FBgQoLC1VYWGieG48Oh0MREREWXhlO28bGhgYHBzU4OKhHjx7J7Xabzzc2NiRJUVFRys3NVVFR0YlHfn6+YmJiLL4SIHwZse34+Lh5fPzxx+bmOX6/X5IUHR2t4uJiVVRUmEd5ebkqKytlt9stvgqchp2dHfOzcvgzMzExobGxMc3Nzelwl3xOTo4cDofy8/PlcDh06dIlOZ1O5ebmKi8vT06nU3a7nc2UADy3QCAgr9ermZmZkMPj8Wh2dlbT09Oam5vT/Py8+T0RERFyOBwqLi5WUVGRCgsLzbjUOI+Li3up5TY2rVteXjbrW+P8cY/G+eH2mSEjI0M2m00ZGRlKS0uTzWZTenr6sSMtLe3Ya0lJSS/1WoGXZXNzMyQWOdw/Oz4+fiwuyczMNOMQp9OpvLw8s5/WiFPsdvtL//8PIDytra3J4/Fobm7OjFNmZmY0Ozsb8vr29rb5PXFxccrPzzf7YY04xTi/dOmSoqOjT+0aVldXQzbaXVlZeewmvEe/tr+/f+znJScnm5vspqWlmYcRsxyNW46+JyEh4dSuHXgZ9vb2ND09bcYvRgxjxDRTU1Pa29sz35+YmGjGMUcfD8c1qampFl4VgIssEAhofn7+sXGM8Tg/Px9S96emph6LZQoKCpSTkyOPx6NAIKClpSXzWFhY0OLiYshru7u7IWWJjo5WZmamMjMzlZWVFXJ++PnRgzFsWGl9fT1kfOVoX8bs7GzI+4/2Yzyu/qcfA8DLsru7+6X1/tzcnJaWlkK+LyoqSgcHByGvxcfHm/c1u91u1tk5OTnKzs42n2dlZclut9OuwUvH+AKA8+R5xhciIyOVmJgom82mrKwsORwOlZSUqLKyUuXl5XrllVeUlZVl4VXhovF6vSfWqUaf9+rqqvne6Oho5eTkmLmDR+tV49Fut9OXA+CFCwaD8nq9x9q3h+vV/v5+bW9vh7QJjHG6goIClZeXq7S0NGQcPycnx8KrwnlF/QngvHhS/Tk1NaW7d+9qZ2dHW1tbITnuKSkpIXNHD9ed1J94WtSXAM6Lp2lvnpRXlZaWdmKO+NH6cm9vT0tLS1peXg7JqTqaY3X4WF5efuy4bWZmpjIyMk7MtcrIyDj2nPsmrMb4LoDz5EXOH3M4HHr48KGCwaB8Pp9Z/x/Ntd7Z2QkpQ2xsbEiOdVZWlrKzs0/MuzZyt5KTk0/7V4UwR/0O4Dy5CPPD8fS2t7e1s7Njrgl0+PzLnp/0tdXV1RPXCDLEx8fLZrMpISHBPD/6/Gm/lpWVxVqymGNQAAAgAElEQVTWwDOYnZ09to784XGotbU1873R0dGy2+1PnN/POBSAl211ddWMQ5803+9wXBobG3tiXGqsH38W1wE/HE89y7GwsHDi2kaPi6Oe5khISJDNZrPgtwA8H7/fL4/HY8Y3Y2NjIX1vk5OTIesYJSQkmHk2T+p3S0lJsfCqAFxUu7u7J+bZHI1zDq9jYKwjfVKOjRHnHF5b2ci3OZxns7CwcCzHxhh3W1hYCMlJNKSmpppjaietZXT4axkZGcrIyGB9RJwa6n8A58mLqP8laWhoSHt7e9rZ2dHa2pqWlpaO9QmkpKQoOzv7xDWNDj9nnSO8SMx/AXBePO/8l6SkJG1ubob8rMjISNlsNuXk5Cg3N1d2u92sgx0Oh3lut9tlt9vZEwlPjfYugPPkRfV3x8TEaGBgQPv7+9rd3dXCwoLm5+e1sLBwbG3+zMxMcy3fnJyckDrY6XSG1MdpaWmn/SvBObKysnKsDXt435zFxUXzvREREbLb7Wb9erS+Nephu92uqKgoC68KwEW0vLx8rN16Uv7c4TozJiZGfr/ffB4dHa2MjAw5HA4VFBTI5XId2/ujoKCAeR44NcyvBHCeML8SL5Lf79f4+LiGh4c1MjKi4eFhDQ0NaWRkRGNjY2bfb2RkpBwOhznvIT8/XwUFBSooKDCfs5YlcP75/X7NzMxoampK4+Pjmp6e1tTUlCYnJzU5OampqSn5fD7z/enp6bp8+bJKS0tVWlpqnpeVlcnhcFh4JbBSMBjU7OysOaZ49BgfHz8Wp3xZP2dubi5zygC8cAcHB/J6vSHtqZP6Ob1eb0i/UHZ29onzZ4zz9PR0C68K4WRnZ8fsrzc+xw8fPtTw8LCmpqbk9Xq1vLwcktNzGOONAKz0POONCQkJKi4ufuxcVqfTSa4/Hmt7e1sLCwuam5vTwsKCFhYW5PV65fV6zbyww187nLMdERERMicqLS1NMTExZp4Y+bQAzqrTWD8CeBxjzTLjM2ecj4yMyOPxmPWwz+fT1tZWSN+LwahvL126FJKLk5+fL7vdbr6enZ1twRUCuMiMtsP09LS8Xq/Z1zY9PW2+Pj8/H5ITm5qaataV7A2Kr8Ln82lkZMTs6x0aGtLk5KS5Rtf6+vqxPl/yWQFYiXxWnDfr6+tmP/Di4mLImpfz8/Pm88NfO8rYX+7wfrM5OTmKi4tTRESEqqqq2F8BwLkQLvsr4GILBoNaXl4+tq/80TWujXrdeN/RPWajo6NPXN/aWOP66J7yxmHkVLEuE4DzhHFkXER7e3vy+XxaXl4295k36v3Dj4uLiyHPj67jKUlpaWkh9b0RBzzu0cgnO4r4AMB5QnyAcLC1tXVsf83DsYLRh3A0hjjahxARERESC5wUHxgxwuHXn+b/A/EDgPOE+AEXXSAQOBY7nNTXcNL50bz42NjYkH00j54fjikOf/1p9tskfgBwnhA/IFxsbGx8aR/ESXHE4fwcw+Exi6NxxElxhXH+pJxD4gcA5wnxA8LNwcHBif0RX9YXsby8fKw/Ii4u7okxgzGOcfTrX9YfwT4eAM4T5j0i3BhjGysrK88URywvLysQCIT8rNjY2CfGEo/rr0hMTHxiGb1e74kxhDH/cnV11XxvdHS0cnJyTlwnl/mXAF62YDAor9d7Yr/E4efz8/Mha5ampaWdGEOw9hDOg83NzceObxhzMU7KmThpfMNmsz02F+JxORNPs8c7+3wDOC9Ydx94vP39fa2urmp1dVU+n888N46VlZVjrx1+n8/nC4nBDUlJSbLZbOaRnp4e8vyk14znT5Or+TKQvwHgPCF/AxfFzs6OOY90aWlJ8/PzIc+Nc2ONyqWlJW1tbYX8DGONKpvNpuTkZMXExCgyMlLNzc2ampoifwLAmUT+BM6avb09LSwsaHZ2VnNzc5qfn9fMzIzm5+ePvbaxsRHyvZmZmbLb7eZ6zjk5OXI6ncrMzNSNGzfMPR0GBwc1NDQkt9utubk58/sZzwPOH6/XG5JrZMTcxvnhfCOn06ny8nKVl5errKxM5eXlqqioUElJiWJjYy28Cuvs7+/re9/7nn7yk5/o3/7t3/Q7v/M7VhcpbASDQXV1demjjz7S/fv35Xa7NTU1FbIWQU5OjvlZLSsrU2lpqcrKylRWVka/CcLe/v6+JiYmNDQ0FBLfDQ8Pa2JiwhwvysvLU01Njerq6lRTU6Pa2lpVV1fTxwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCB7e3taWNjQysrK1pfX9fGxoY2Nja0tram1dVVra2tmedP2ift8D5hh6WlpSk1NVVpaWnmYTxPT09Xenr6E99js9lO+TcCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw7rwTEQwGg1aXAi9WVVWV3nrrLf393/+91UUBgDPn9ddfV3l5uf75n//Z6qIAYW9ra0szMzOam5vTzMyMZmdnNTs7G/La3NyclpaWQr4vJydHdrtd2dnZstvtysrKMo+cnBxlZ2eHvBYVFWXRFQI4aw4ODrS4uGgeCwsLmp+fP/Z8YWFBXq9X8/PzId+fmZkph8OhjY0Nzc3NaXd3N+TrsbGx5r3J4XAoOztb2dnZcjqdysrKMs+N12NjY0/z8nFGLSwsaHx8POSYmJjQ2NiYxsfHtbW1JUmKiopSbm6uCgoKlJubq9zcXOXl5cnpdCo/P18Oh0OXLl1SUlKSxVcEnC9+v19zc3Oanp7W7OysPB6PZmZmQh7Hx8e1s7MjSYqOjtalS5f+P3tnEuNItp3nPwfOQ0SQTJLJzKpqNbqfAMs2ILQeDLl7J2gjSAstvPHqeW1YgBYSoKW00k5re6OFFnrAWxiCFtoZttEtQ08qWZAATy3V6xqSyTFj4JjJHLwonNs3LiM4ZFUmmZn/B1xE3Bskk2QG7zn3nHPPwYsXL/CP//iPCIIAw+EQYmLd3d1Vv0f5zR4dHeHo6Ej9fo+Pj5FKpTb5sckG0e+5qHtP7jvf99Vz9vf3UavVcHR0pPQIWReJjlGr1dR6iPcXIY+f6XSKXq+n1i3dbhe9Xg+tVgvdbletbZrNJtrtNi4vL9VzbdtW+qSuUx4fHysZVq/XkUgkNvgJPwzf93F2dgbXdSOPvu/DdV14njfXZrPZ3OslEolQ8TzbtuE4TqiYnn5Nb5ZlIZ/Pb+BbIGQ5s9kM7XYb7969izy+ffs20j5ycHCg7B5ip9V1EjkX+ywh5GlycXGh7K7tdlvpKL1eD51OR9llO50O3r17p2xgwHs7a61Ww/Hx8dyxXq/j6OhIzUOPhcFgANd1lY4i59LiigKLDhMV+pVMJlWhX1M/0cej+o7jwLIs7O7ubuDbIGR1Op3OQn1Gjnrx7Gw2i6OjI1SrVeVfNn3M9XpdndPOQsjTZjAYhHQXU5eR/unp6ZwNJp/PR+oz5vFj+PaGwyH6/b56T/1+P7J1u111PhqNQq+xs7ODcrmMcrmMUqmEUqkEx3HmzqPG9vf3P/gzELKMZXYMObbb7dDzRLabdoxKpTLXPzg4wM7OzoY+ISFk09zc3CjbhcSRtdttda7bOE5PT0NxrTs7O8p/u0z+JxIJBEGgXjtOx5Cxbrc7J7eTyeRczKw+n1WrVSXXRban0+n7/krJI4b+BULIXXJX/oWf/exnmEwmmE6nGAwGSsZLnIX+OgCQy+VQq9VC85MeG67vaalUKg86xoJsntFotFCudjodvH37NqQXJhIJ1Go1HB4eKnu3vtaVe1P6jC8n5OkyGo2UDBWZaq55u90ums0mOp1OKH4uys79P//n/8RgMMD5+bmSqcPhMPQ3M5nM3P6per2u1rDValX54w4ODmhjJreC8pMQcpd8LPlZrVbx8uVLXF5eYjQaYTAYhGJYAITsvLq8rNfroVwKtVqN8xJZG8pLQshd8rHXm1Hx4nc9x0wmk1C8tuQ7MuO49euu6869TjqdhuM4a7fDw0PGqZB7gf5dQshd8hD2j0mctR4bJvHUeqyYPmau31OpFMrlMiqVioqjlrgsPfbabJlM5oPeOyFxUL4TQu6ShyDfyePh5uYGnudhOBxiPB5jOBzC8zyMx2OMRiMEQYAgCFTf8zyMRiOMRiMMh0P4vq/6QRBgMBiE9veZZDIZ5HI5FItFFAoFZLNZ1devpdNp5PN5FAoFpNNpFAqF0Hk+n0c6nUaxWEQul2NOWfIkWeSH0o96XJHkUjT9ULLXX/RR0U+Zs4uQp835+XnI/6TbdvR+u91Gs9lcWS/Vj9VqdYOf8H65ubkJ5TTS8xfpx7ixuNxG6XQ6lK8oLg+jeV3OOdeTbUP2GS2LtzHzGB0fH8fmMTJ1He4/IuTpoucskPzRZh4DyafW7XZDz5U40kV2N8ljcNdMJpOFMTbmtW63O2evuW2sTaPRuPPPR54elP+EkLtkW+S/xMtGyfC4MROJezVlsz4mfc595DZw/wsh5C65z/0v5rrZlLV6v9VqhWzv+no5Ts7K+fHxMWMVyEK43iWE3CXbst4Vota9cTK40+ng6upKPTeVSqk8+1Eyl/KXLGI6nap7q9lshs71vud56jl7e3uo1Woqn4geQ2f2q9UqCoXCBj8hIWRT6LFzImej+q1WC81mE9PpVD03nU7j8PBQ1SjWz/W+bdtwXVfNV69evQrNXXI0165iK9ZfS46ffvopDg8PUa/XWe+O3DncX0kIuUu4v5JsKzc3N2i1Wnjz5g3evn2Lt2/f4vXr16G+XrMtnU7j+fPnIZuL6Gv1eh2NRkOtPwkh98vFxQU6nQ5OTk7Q6XTU+kv2SIlOe3p6iuvrawDvYySOj49xfHyMTz75BM+ePVPtxYsXePbsGSzL2vAnIw8Vz/OW2jlPT0/nbBCNRiNUZ0CvAW6uu1gTnJCnyWAwCO0HNvcLS1/koMg9ALBte6md8/DwkHU5yb3gum6sHX0Ve7rYz83717ZtpQPS30gI+Zjcl7+REJ27iKGOiqd+9uzZWrFljKclhNwl2xZPS54OV1dXyo/dbrfVPdbpdFR99k6ng9PTU3S73ZC+B7xfs4r9VurJyn5Mve5spVJRf+Pdu3dzMrXVauHk5CTkM0+lUqjX6+p1ZH+nuf9T+rTtEPL0mE6noTlMZKcek9PtdnF6eopWq4Xz83P13Gw2q2JvzFgckaXPnj3jfnISy2AwULLSlKOyfpTzbrcbWrvu7+/P1WYX2Sb124vFIuNZCSEfFcazkoeE1Hw7OztT5/pYVL04XdcD3tcQ0f2dci714kRGSr9SqWBvb+9W75f1FQghdw3rK5CHzrq13m+bf9r0CYv9+rYyflXoRyaE3CX0I5PHgqkPrNrM2DBg9ZoUum5QqVTuNdcX9QNCyF1C/YA8VpbpC3H2BDOeDbidDaFarWJ/f38Dn/w91B8IIXcJ9QfyGLmtrcHMJS4squkR1w4PD7Gzs7OBT/8e6g+EkLuE+gN5rNxWh+j3+yGZKqziszB1i03KWOoPhJC7hPoDeQo8ZXsE63gQQu4S7nskT4Vt0CU2VQNu0f5LsUe8ffsWo9FIPSeRSETuvxSdQs9DdHBwwLwghDxhRqOR0hnMPPVy3u12Ve3p2WymnpvP5xfuuxR9gnMM2TS31SPOzs7mcjAAt4ux3KQPgHW+CSF3BfPuE/I9vu/PNc/zQn3XdWMfo6/pdXK5HGzbhmVZc81xHHVu2/acTmLb9r3uCb1PGL9BCLlLGL9BHjoSs3l2dhZqZl5K/b42dZHd3V2VY1LyTJbLZSU39TGxETiOs9L7Y/wEIeQuYfwE2UZ83w/plLpfTta3ol/2er3Qc/P5PBqNhrLNi/+/0Wgo3VPGbmMDmEwm+O677/D69eu59t133+H09FTVs85kMvjkk08ibXh6n/WOCPlwTN9elI/vu+++w2QyAfBefz88PMQnn3yCFy9ezLVPPvkEmUxmw59qu/A8D//m3/wb/I//8T/wp3/6p/iN3/iNTb+lR8XFxQXevXs3J1dev36NN2/e4O3bt8p2m0gkcHx8jBcvXuDZs2ewbRvlchmWZeHbb7/FP/7jP+Lbb7/FmzdvVAzg0dERfu7nfg6ffPIJnj9/rprc84xRIQ+d2WyGk5MTvHnzRv2G3rx5gzdv3uBnP/sZfvazn6n4rYODA3z22Wf4wQ9+gM8//xyfffYZPv/8c3z++eeM4yCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIeSD4vo/hcKia53lz/cFgoPpBEKjnjEYjDAYD9Ry9bpeJZVkoFouq9pl+bts2bNsOjZmPWbU2CSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII+SB+snNzc3Oz6XdBPi6/93u/hx//+Md49eoVdnZ2Nv12CCFkq/i3//bfYjKZ4D//5/+86bdCCFmR6XSKdruNk5MTtNttvHv3Dp1OR7VerxdqJpVKBQcHB6hUKqhUKqhWq6rvOA4cx4Ft2+rccRxks9kNfFJCyDqMx2O4rhtqnufBdV30er2V5wh9ftDniFqthqOjI3Ws1+tIpVKh585mM3S7XXS7XbRaLXQ6HXS7XbTbbbTbbfR6PXXe7XYxnU5Dzy+VSurvVatVVKtVVCoVlMtl9X4ODg5wcHCAcrnMuemJ0ul08N1336n27t07nJyc4PT0FO/evUOr1cJsNlOPLxaLODo6QqPRUMdGo4FKpYJ6vR6Si/v7+xv8ZITcLa7rqnlZ5uNWq4Vms4lms6l+R+12G7p5tFaroV6v4/j4GIeHhzg6OsLP/dzP4cWLF/jkk09wfHw899uZzWZotVp4+/Yt3r17h2aziTdv3uDk5AQnJyd4+/YtTk9PQ7/VarWKRqOh/k6j0UC9Xlcyp9FooFar8Xf6hBmPx2qel+PJyQl6vZ7SN0TXMXWMQqGAer2u9IiDgwMlA0qlEhzHmTsmk8kNfVJCyMXFBc7OzuC67tzR/L3L2mMwGIReI51Oh9YV8tsX+fLs2TMlZ7iuWMx4PIbneXPN9/1QX9ag5rWo4n77+/uqeJ80x3FCRf30ViwWUSgUUCwWYds2CoUCEonEBr4NQt5zcXGh7LL6UewdonN3Oh24rht67v7+fsjGUavVQrYYXR/R297e3oY+LSEkislkMmeLFX1F1twyF3S7XXQ6HXieF3qN/f199fuX+UDOj4+PUavV8OzZM1SrVdRqtQ190oeL7/uhJjqK3kR/iXrceDyOfN1CoQDbtkPFh/W+qcPk83mlx1iWhUKhwPUm2Qo6nc6cPqPrMPqaS7fhAd/bWXSdRtZepg4jLZfLbeiTEkIWYeoz0mQ+kNZqtdS5aXvN5XJzukylUlE2fdFrjo+Pt34umE6n6Pf7qsn30O/3lb4XZbM6Pz+fe61isThnd9Zb1DXHcZDP5zfwycljZzabRdoxROabv3md3d3d0G9bj+PQ48z0ViqVaLsjZAu5uLiIlf26/UK3b/Z6PVxfX4dex4w9FfumKfdrtdqdzgXT6VTJY2mnp6doNpuR/U6ng6urq9BrpNPp2DVMo9HA4eHh3HitVqOtlnwQ9C8QQh6Sf0F/r4vkrMTumrEBuqyNk636eLVaZWwgWZvhcDgnV5vNZuh3JHsYTN9PJpOZ27MgOq4pU6VfLBY39EkJIXGI39ds/X4/5O/S54PJZBJ6jWw2G7m3xLRzP3v2bGU793Q6DcU6ilxvtVrq/Zyenqpz0x9n7usS25y5v0rGtt3+TrYLyk9CyLbJzyAIQnLx9PRUyU9zPAiCufdRq9XU2jgqb4I+VxUKhY/+fZLHCeUlIWTb5OU2Mx6P0e/3cXZ2puKu4vYF6sfhcDj3WqlUKna/77IjfWLkLqB/lxDykPy7d81gMFCfs9/vqxhrXf6LPiDn5joeeK8jmXHVpVIJ5XI5dDRbJpPZwKcmjxHKd0II5Tt5ipyfn6s8taPRCOPxGIPBAL7vq77v+xgMBphMJhgOh3Pn0+kUg8EgdL6Ivb09FItF5HI5pNNpWJaFbDaLdDoN27ZD55lMRsUbptNpZDKZ0Llt20in08hms7Btm/VFyINnNBot9EPp8mg0GoWem06n5+SPbn+O2yNDCNk+RqPRnD6q7/MX/5PunzblbzKZDMVJiH9a10vlWK1WN/RJHzd6riI996J5jMvfaMaOAu/1KMljJHVCJKdRsVhU+Rglx5Gen1EadSayCcTGFpXHyFxrX15ehp5r2/acbiO2tzj9hjZjQraLq6urWN1Gfvtm/qJutzu3979UKqnc0bqOY8bZVKvVB53H7/r6es7HZvrZosZ93597rUwmE+lbE79bnO+NebjJx4Dyn5CnzVOT/+vmOYqa+8QXEpV3IW6MkFXg/hdCyGPa/6LL3NvmOjLlqt7Xz+v1OnZ3d+/ss5CHC9e7hDxtntp6V3BdNyRn42TwycnJnK06ar0bd858vkSYTCaqbnaz2cTp6anKM6LH0HU6ndgYOr0uaVQMnb6utSxrQ5+UEBKFxLVH7evQ5awud+Ni58z9XbVaDUdHR6o+8eHhIUql0kd9/+fn5+j3+6E5TI6vXr1Cs9lEs9kM7UNJJpMol8tKLi46EnLXcH8lIYT7K8lTYzqd4u3bt6q9fv0arVYLzWYTnU4HJycnaLfbofqDiUQC1WoVjUYD9Xod9Xodh4eHoT0bkh+6XC4jnU5v8BMSsr0MBgOlY0rcbK/XQ7PZRLvdDtmEut1u6LmWZaHRaKBareLo6AjVahXHx8d49uwZnj17hhcvXtDfR7aCfr+PVqul7J0nJyfKzin1wsXmafq3i8Xi3LqqXq9H+hZlrUXfIiHbhcTsLPIrSryO9M1a4Pl8fm5/cLVaxeHhYcjO2Wg0OAeQe0F8x1E2cDm+fv065CN3HGep7fv58+cftSYd/Y2EPG0eur+RPFzi4pyj4q3evn07l0/EjHOOO9+WPUWMpyXkafNU42nJdrGK7JXzKHkk69Vlcc7Hx8cf/f7zfX9u3Sr1a+W3I+e6nxIACoXCnL3IlKNmfA7zhxCyPehrVlOGmr4j6Zu1u1KplJKfekyOxC7o61barUgUd7lHSO9/6B4hxrMSQhjPSh4Kso9Izx0pOp1Zu1V/zPX1deh10um0ijuVJrGo+lFsKJVKZStr27K+AiEEYH0F8nARu3NUk/s5Kj90VH0uqasVlxM6Lkf0Nsr3daAfmZCnDf3I5DEwnU5D9/A6R3Otv7OzE7JHr3N8TDKO+gEhTxvqB+SxMZvNIvcqRN3j5riZ+x/43gcft2d40XgqldrAN3A/UH8g5GlD/YE8Nnzfj9UTlukTUSzSFRbpE489npT6AyFPG+oP5DHied6crhA1FnXdvLeB9/vRFukOtm3HXkskEhv4Bu4e6g+EPG2oP5DHTNRenFV0C8/z5uL7gfc5uBfpDIvGHqs9gvseCSHc90geM3J/r6o/6P0oXWJ/fz9Wb1jUL5VKj1aXGA6HC/df6vuuzFiTTCaj8lLLPivJj2nqENIvFosb+qSEkDgkZ73Z+v2+ypstawuZDyaTSeg1stmsqlmh78NuNBpzdomHvleNPCw8z1voz1h0Lcq/kc/nb+XbcBzn0drjmHefkKcN8+6Tp8rFxQWGwyE8z0MQBBgOhxgMBhgOh3BdF77vRzbP89R5XExmMpmEZVmqifzTm23bc2P64z5mjZ2nCOM3CHnaMH6DPHTErheVqypuPCovRSKRiMxDJfezmZdSzjcN4ycIIYyfINvKaDRStnJ9jan3pR5Qt9udqyVvWVbID1er1VTO00ajgWq1qmqCbLoO0MXFBd6+fYvXr1+rJn6Ek5MTtFottNtt3NzcqOeUSiVVz0SvayK6h65bP9b9JIREMZvN5uRWr9cL+eXk93V2dqaet7Ozg1qtFqrPfXR0hBcvXqj27NkzrkfX4NWrV/j1X/91+L6PP/uzP8Mv/dIvbfotPSjkXj49PcWrV6/U/auf6zXnk8kkjo+P8emnn6r7+NNPP1Vt1VrzFxcXePXqFf7f//t/+Pbbb/Hdd98p2fTmzZuQHlgul/H8+XM8f/5c/U7EjiPylr5qsimm0yna7TZOTk7Q6XRwcnKCd+/e4c2bN+qePj09Vb+hVCql7ufnz5/jk08+weeff47PPvsMn3/+OWzb3vAnIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh5Wpyfn2M8HsPzPIzHY0wmk9C57/sYjUYYjUaqPtpwOFTN8zxVJ204HCIIgti/lUqlkM/nYVkWisUicrkc8vk8isUiLMtCPp9XzXGcUN+yLBQKBdVnLXJCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEkAfDT3Zubm5uNv0uyMflpz/9Kf7Vv/pX+Nu//Vv84i/+4qbfDiGEbBW//du/jb/6q7/CX/7lX276rRBC7oCrqyv0ej3Vut0uOp1OaKzdbqPb7aLf78N1XUwmk7nXSaVSsG0bjuOEWtxYoVBQSdwLhQIymcwGPj0hD4vxeIzhcIjBYKCKK7iuC9d14XmeOo/qu66Li4uLudfMZDJwHAeVSgUHBweoVquoVCqqVatVHBwchMb29vbu7TMHQYBWq4Vut4tut4tWq4VOp6Pmqk6ng36/r+ar2WwWen42mw19lnK5rPrlchm1Wm1ubH9//94+H9kMNzc3aLfbOD09xcnJCZrNJprNJk5OTnB6eop3796h1Wqh1+vh6uoq9Fz5reTzedzc3ODzzz/H559/rsbr9XpI5hUKhQ19SvLUmU6nIRnQ6/XQ6XTQbreVztftdkN9cw61LAuNRgP1eh3Hx8doNBpoNBo4OjrC4eEhjo+PUa/XkUwm7+QzXF9fo91u4927dzg5OcHbt2/x7t079ZtttZrBKSEAACAASURBVFpoNpvwPE89Z2dnB7VaDbVaDcfHx6jVajg6Ogr1j4+PUa1W7+x9k4fBYDBQOob++5B+u91WOofruphOp3OvIYWpSqXSSsdCoYBisYhCoYBcLreBT03IdjEajRAEAQaDAQaDAc7OzuC67krH0Wg093rpdBqO4+Dg4AC1Wk2tbURHk3VNtVpFrVajnrZFTCYTTKdTTCaTuXXsKi1qjhbkvpCWyWTmxpaNW5aF3d3de/xGyFNjNpspu4bYOkQnMXX2Xq8H13Xn1qoAUCwW1b0r+kdcK5VKyi4rOgohJMzV1RWCIFB2WN0WG9dEX4mTT7ottlar4eDgIKSj6LbZarWKUqm0gU9O1mGZ/rJIx+n3+5E2e2GZHhOlv5hj5XIZqVTqHr8R8lTxPC9Wh5EmNnfXdSPXdMlkcqH+YrZCoQDLslSRcNr6CIlGfMur6jNmi0L0GWniYzZ1GekzFuS9HUz0xShbl3kufd/3514rmUzO2Z5t21Zzopw7jhPqy3k6nd7AN0AeE5eXl5ExZXrMmfghRfabPkjgex/LOrJfmm3b2NnZ2cCnJ2S7ubm5ged5CIJA6QCr2DCkLdLTo2S86AG1Wi3Uv8+4so/J1dUV+v0+zs7O0O/3VZN+r9eLHD8/Pw+9zt7eHsrlMsrlMkqlkjqXfqVSiYypdRxnQ5+cPGToXyBkO6F/IZ6zs7O5uUr2qOjyVsYHg0Ho+Ts7OyrmWz/K96GPyZxVKpUYF05WZjweKxkq96lu39ZjC+NsN3t7e7EyNG69q697abshZJ7JZBJa55qyNWqNq7coHdiyLJRKpdB+qag1rsjdbDa7gU8eRpejnU5HzU0iP+WayFRzvZrJZJSsNPeNlctl9V3oa1j6mskqUH4Ssp08Zfk5nU7n9iHLub7ulGvj8Tj0/FQqNecLj9tvLXKT606yDMpLQraTpywvHwqz2Wzl/YbmWFSsisRU2batYqoWHfVmWRZlPvlg6N8lZDuhf3eziLxf1vR4rbOzMwRBMPdamUxG+Yj1+VGX6XH9fD6/gU9PHgOU74RsJ5TvhGwXss9e33P/oee+7+P6+nrh35X99vre+2Xny64fHBwgkUjc0zdHyGpMJpPQHr+4vf56TvkoVvE/6eusYrGo9FKuqQiJ5vz8HMPhEL7vw/f9tff5R+WjyeVycBwn1v8k56K3Wpa1gU9OPibj8Rie58H3fXieFzr3fR+u66pz3/dVXs8gCNTj4krriV1B8uOKfULvy7mMm9ds277nb4Q8FSTGy8xnoOePlngw142umZNOp1eytZm5DCzLQrFYfLB7pQm5S/T80evmMYjy7ezt7am999Lq9fqcTqPXyOG6fDl6zsPT01M0m82lumen04n0X0TlaF6l1Wo1zqNkbSj/CdlOKP/vjuvr61AeN5n7FtUQNfeMSj0+8VXKvlBpel8/J2QR3P9CyHbC/S+3x/O80Pri9PQ0NJeZaw+dRCKhYoQODw9DuRjMmrfSOIcRE653CdlOuN69W6Q2rMxvZv15vTZ9t9sNPVfkr3xPopvoOZP065VKhfs+SWwMnS5n9ZyXet1rYXd3d+Ha1RznWpaQxay6pyNuPRu1pyObzao9HXFy9qHFzk0mE+XTjTu+efMGw+FQPSedTqPRaODw8DD2+Pz5c9ZoJvcG91cSsp1wfyUhd8PZ2RlarRba7TaazSY6nQ5OTk7QbrdxenqqbCD9fn9u72M+n1e1FEz/gq7b6nmvHIf1i8jD4eLiIrTfRa85oueANcfMvVOSC7Zer+Pw8BC1Wg2NRgPVahVHR0eo1Wo4PDxEvV5nXVTyKFlUE1xsnNJ3XXcunzIwH/+9zOap+xYty8Lu7u4GPjkh28t0Og2tq/T1VZR90xyLyolh23aozpa+ropaZ1Hmkftimc361atXePv2bSjX7yo26xcvXmx9Pgr6GwnZPuhvJNuC67qhGFCRD3FjZk34fD6PWq2mdL1arRa63yQ+WdrOzs6GPundw3haQrYTxtOSbSMIAuVv0/0J/X4f7XZbyVzZDxQlew8PDyNlr35erVZRLpc39CnXR2Kzzf2eUfs/z87OVrIdR61V4+QobceEhLm+vg7llhQZasrLOBuymS8A+D6/pCk7zfyS0meMKNE5Pz8PyU7dnmnWcu10Ojg7Ows9P5VKKfkYt2bV17bbWuOc8ayEbCeMZyUPjSAIQvdhXH1UOYoMNtenwPvYADMXheSA0uNH9f5DzenxIbC+AiHbC+srkIeMnpd51SY1sVqt1lxNh9vmZm40Ghv6Bh4O9CMTsp3Qj0weA7fRB0QniFp73lYfqFarzI21JtQPCNlOqB+Qx4SpJ+h1sm9rOwBoP9gk1B8I2U6oP5DHxKp2hii9otfrhfZlC7Q1bBbqD4RsJ9QfyGNCdIJV7A5Rj+l2u7i8vJx73dvqEJVKBclkcgPfxOOB+gMh2wn1B/IYWUWPWKZjRO3FAW6vS9Trde4z/wC475GQ7YT7HsljhbrE42M8HiudISrPkF6b3XVd+L4/9xp7e3tL7RB6Y65cQpYzmUwwHA4jc9bH2SL0FqXzW5aFUqkUylEftw/z4ODgSe5JJ3fPuvGV5vWPHSNB/8aHw7z7hGwfzLtPnhKXl5fqHhf9eTgchn4DMh4EgcprImO+7yt/YFT+TgDY2dmBbdsqb67ezHHHcSIfw3pQDwvGbxCynTB+gzx0PM9b2iTv5NnZWaiZ9SkTiQRKpdJckzyU5piMP4Vc44yfIGQ7YfwEeQhMp1OV/1lksti1pS/yRdaJ5nowl8uF6iyIjqnfn4eHh0rnfGz+idlshk6ng3fv3qHdbuPdu3dotVqhvshiU/7ath363Ubp45VKBY7zPt+z4zhcO5Ot4OrqCq7rwvM85cvU85zrec/FzmTG3ezt7al7/vj4GPV6HcfHx6H+0dERarUa935/RP7yL/8Sv/mbv4nDw0P8+Z//OZ49e7bpt7RVTCYTNJtNNJtNvH37FicnJ3j37h3evHmjzvXcSPv7+6jX63j+/DmOjo5wdHSEFy9e4OjoCM+fP8eLFy9Qr9fv5b0HQYA3b97gu+++w+vXr/HmzRvVvvvuO3Q6ndCeykwmg8PDQxweHqJer6PRaKBWq+Ho6AjValXZi8rlMnK53L18BvJwEbuE6I4nJyfodDo4OTlBu91Gs9lEq9VCq9Waq+lVqVTUb+aTTz7B8+fP1e/n+fPnODw83NCnIoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgh52Jyfn2M8HsPzPEwmE1UjVc49z8N4PMZ4PEYQBBgOh5hMJiq3vtQYDoIAk8kEo9EIvu/P1RPR2dvbQ7FYRD6fRzabRT6fh+M4yOfzqkm9qnw+j1wuh2KxCMuyQo+R57BuDiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIk+QnOzc3Nzebfhfk43Jzc4MXL17gRz/6Ef7gD/5g02+HEEK2ij/8wz/Ef/pP/wmvXr3a9FshhGwJ0+kUruvC8zy4rhtq5pjZHw6Hka8pyeRt21aJ4QuFgkogXygU1Jht2ygUCqGxXC6HZDIJ27aRTCaRz+fv+VshZJ7BYIDZbAbP83BxcYHRaKSKLgyHQwwGA3ieF+oHQQDf90Njvu8jCAJcXV1F/h35XTiOo5rZjxqzbRvpdPqev5W7RYpfuK6L09NTNJvNuXlKH+90OnPfazqdnvvulrWjoyPYtr2hT03uipubG/R6Pbx79w5ff/01fvrTn+Lv//7v8U//9E8YjUbY3d3FZ599hkQigV6vh263O1c4ZX9/f617qVAowHEc5HI5VTyFPE1Eboj+NBwO5+Yz13VxdnYWOT6ZTOZes1gsol6vo1Kp4ODgAAcHB6jVajg4OFBjej+ZTG7gk6/P+fk5+v2+mt/jju12O/Qblfm+0Wjg8PBw4Xm9Xsfu7u4GPyXZNOPxeO43J+fLjlHuhN3dXViWFVrbyLrHtm0Ui0XVl2siJ9LpNAqFArLZLFKpFBzH2cA3Qp4qruuqAnSDwQDT6RRBEMDzPARBoNY0ctTH9fVOXMG5nZ0dOI6DUqm09jGTyWzgGyHbwGQyUfeZ7/tqna3fd+a9GPXYKP0JCNus9Plan7P18ajH5vN5FItF7O3t3fO3Qx4rQRCstT7QW1zBT10v0e9xc0x0Et0+m8/nlW02lUohm83e8zdCyHvEDjscDjEajXB+fh4rA8QGK3ZYc2w8Hkf+jVVsh6KjmO2x2WLJhyM+A/Me1H0Dvu+rvu4v0O9fz/Ni/4YUcNZ1F+nH+dxkrhf7pGVZyg9HyMfg4uJiqc4S10ajUeRrplIpVZzcsqzQfb1sLJVKhfSYQqGA/f39e/5WCHnPeDxWOozoNSIHhsOhWuPquo3uczbH4kKd1/WF6o3cH1dXV5F2Z3PM8zylN8i567qRrylznsyDtm2rJn39GHVOyLrE+TlXabPZLPI1dZ12kQ3DfJzjOCGZn0gkeF+TjaLL/PF4jOl0upasD4IgpCtEkUgkVpLxUfYMxqwsZzgcot/vo9/vo9frod/v4+zsTI1F9ePW8cvi/xbFA3INQ1aF/gVCoqF/YXtxXXdpLLg5bnKbuHDGDJJVuLq6Wio/42TsYDCIfM1EIhErS/UYFZGl+lg6nVb7qSQOPZFI3PO3Qggwm82UTBWf0Pn5eSiOS5elcXZv+a1cXl5G/h3RMRfJ0Dg5+xTmd31vVZzs1Me63e7cd31bGdpoNDb0qclDgPKTkGgoPzfHdDoNzTvLZOZt9iPr+9OkHRwccL4hsVBeEhIN5SVZh+FwGLvf1/M8FWMVdYybS3O5XGyMlR6DFRd/RT8YuQ307xISDf275PLyUsVU601itUy5LzkQPc/DdDqde739/X0Vh6XLdD1GSx8z+9xvRdaB8p2QaCjfCSHr4rrv8yxKbuzpdIrJZALP8zCZTNT5dDrFeDyG7/uYTCbqfDqdYjQahc4X5fsVcrkc0uk0LMtCJpNRueBkf5LY0iU3nGVZ2N/fh2VZStbqubP39/dRLBaRTqeRyWS4v5ncC+vqodLi9sLs7OzE5rGIG9P1Uf03RJ2UbBLxRel7/cUXFZf7JS5HzGAwwMXFReTfyeVyt4rLow2C3BbxnZp5GvV8odLEl6o/XsbjkLwtev5c8ZPpeRmLxaIay+VyKp+R5NXlXlbyIci6YB39Rh53fn4e+ZqSi6BQKKyUy0jPQZpKpVSMjej+hGwCibHRbW9mjRyZ+6NyGJi1dKLY3d1dy86mt2KxeM/fCIlD8hvpvja9xljcuetG1x4z7wvT77bomm3bzNtMVoLyn5BoKP8fN4PBAJ1OB91uF71eT7VOp4NerxcZP2PaqHZ3d1EqlVAqlVAul9W52ZfzSqWCUqnE/x2JhftfCImG+18eJpeXl+h2u+h2u2i320rudjodtFotJXv1fIImuVwO5XIZ5XIZlUpFnUe1g4MDlMtlFAqFDXxasq1wvUtINFzvPl5E/vZ6PbRaLbXGlfWuuQbu9XpzNRdKpZKquyytWq1GjlUqFfqmCa6vr9dav+rjq6xlF61bo2SyxKQyjpRsGt/3cXFxofZknJ+fL5Wvcfs81t3TESdv9fFUKnXP38j24Lrvc/JK/qOo45s3b0L2g3Q6rfIdNRoNfPrpp+pcjs+ePaPtjGwE7q8kJJrb7K88PT3F69evsb+/j9lspuqhcn8lIZvl5uYmVLtIP+90OnNjch6FntdqlXPbtpHP59X6slgsMh6PLEXfjzsajTAajUL52CRuVO+b51GyJ5lMhvxlur3O9KdVq1WUy2Xk8/kNfAOEPFzEfrOKbdNsUfmXgO99i5lMBnt7e7i5ucG/+Bf/Ys6PGLXe0uuCJpNJWJZ1z98IIe99T7qNM2qfsL7GWhSzMxwOY2voFgqFleyaUdd2dnbu+VshT53z83P0+/2QTfnVq1chO/PJyQl831fPSaVSKJVKIZuyaW8+Ojp6snEk9DcSEg39jWTbmc1moRikdrs9F5ekxy71er05fTCfz+Pg4EDFIZmxStIODw9xcHCATCazoU/78GE8LSHRMJ6WPCR831dxwPo+HFP+6tdM2ZtOp5VPoVqtolarKVlcr9fnzil73yO6+CJZGjcWJ0dzudxKduKo+B3J2WpZFpLJJPdRkY0QBAEuLi4QBIHKY7xoP+eidexoNIr8G1Fr1ij5GTXGNSsRLi4uQjElvV4P3W53Ls5Ej0GJsjmKf/7g4AC1Wk3J0IODAyU35fwp+/QYz0pINKwXQh46k8kkck6POjfHoupT6HkS5b408zVJ0/uM3bw71pXb0lhfgTx2WF+BPCYkri+q/uiiMdd1EQRB5Gua+y4cJ1yH1JT5euM+3O2BfmRCoqEfmTw2xuPx3P41c0+bqQfoj42a8/f29tReTFMPMPUE0Qt0OwB9OdsL9QNCoqF+QB4ruj/KbLIX3myiK0iLQmpOi24gOoOcm8227dC9zv3xDwvqD4REQ/2BPEaurq7m8uNE6Qf6uKlTxPnMTF1B1yP0Jo8z73fmG3hYUH8gJBrqD+SxIvaHIAjmdAVdjzCv648x62gA730VZv7IYrEYa3uIqvnMOmMPB+oPhERD/YE8Zm5ubpQuEASB0hX0o8Q4muO6LhGlR0i8u64/mEfzuqlHcA/+w4L7HgmJhvseyWNG92mIjqDrC/oei6hri3QJ4Hu/RrFYDOkRsm6UNaX0RYeQ+5u6xMPh6upqZRuE2VbJlRulTyzKn5tOp2HbNpLJpLJNcI8O2QSy91JsE2KHi8pPPxwOF+asHwwGoTqROqJTr2qL0B9D+y/5EM7Pz+dsDFE2CFlvRtkmhsNh5GtLvZEovcHUL/S9Gvq9zvv74cC8+4REw7z75CkxHo8xmUzg+76qiavb18RXNxwO1T2v+/x0PTquLhoQtlnn83mla0geH90Hro9F5f0hZBGM3yAkGsZvkMeG3IvrNMlX4bpu5GvmcrlQ/gkz92RUv1wuM/f+R4bxE4REw/gJ8pDxfX+u1oK0s7OzUD0j6UfVBTHzQUsNQb3+gtRnYB2j9dBrSXW7XXS73bmajlL3sdvtRq6f9fgTPQYlbkxfU+dyOc4jBMB7u85oNArlTRYdXtfno8bifFfpdFrNF7Vaba4GqVmXtFKpbOCTP21+/OMf49/9u3+HX/u1X8Of/MmfPCmdezKZhGrON5tNuK47N9ZqtUJxgo7jqBrzer15OX/+/PmD8bHe3Nyg0+mg3W7j5OQEnU4HJycnaLfbOD09xenpKVqtFprN5pwem8lklF4gtZoqlUpIV5Bzfe8Fc6U/TPTYF8/z0O/3VZ1MXdfUdRozX3kikUC1WkWj0UC9Xke9Xkej0UCtVlPHo6MjVKtV+mMJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ8qQZDoeq1s10OsVkMkEQBLi4uEAQBKq+n5lHXx43HA4xHo9VzeDJZKLyD8fVlgCAnZ0d2LaNbDaLTCaj8lhnMhlVyyyTyag6aJlMBrlcDpZlqedIffZMJqNei7kmCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIR+AnOzc3Nzebfhfk4/Mf/sN/wH/9r/8V//AP/7Dpt0IIIVvFH//xH+Pf//t/j/F4vOm3Qgh5BMxmM3ieh8FgoI7D4RCDwQBBEMD3fdUfDofwPE8lv5cx13UxGAxweXm58G9JknrLspBIJFRy+3Q6jWKxiEQiAcuykE6nkclkUCgUkEgkYNs2AKBYLGJvb09d393dhWVZAIB8Po9EIoFkMolcLgcAsG0bOzs7d/sFkltxc3MDz/MAAKPRCBcXF5jNZhgOhwAAz/Nwc3ODyWSC6XSKq6srBEGgrs1mMwwGA1Wkwfd9zGYzVYhhOp0iCALMZjP4vo/z8/OlcjORSCCfz8NxHOTzeRQKBVWEwbbt0JhlWbAsC/l8Xo3bto1CoQDHcbC/v3+3X+Aj5urqCr1eD71eD/1+H71eD2dnZ7HNdV2cnZ2pe0cnk8mgVCqFmuM4KJVKsG0blmWhWCyq/6c0x3HUfEO2g2aziZcvX+Kbb77B119/jb/5m7/B+fk56vU6fumXfglffPEFvvrqK3z55ZfIZDLqeTc3N+j1enBdd+02GAxi34/jOMjlcsjn88jlcmreyOVykX2Rf4VCAfv7+7AsC7u7u3AcR8my/f19FAqF+/g6HzUy34ssGA6HSj5cXV3B8zxcX18rWSJ6zGg0UoV+4voXFxeRfzOVSsFxnJWbzEWVSgXJZPKev6Ht4vz8HK1WCycnJ+h0Omi1Wuh0Ouh2u2i322i32+h2u+h0Ouj3+6HnplIpHBwcoFqtol6v4+DgAAcHByiXy6hUKiiVSiiXy6FjOp3e0Ccl24Y+18u6ZzAYwPd9+L6v+tJc1w2NBUGgdNM4ZF1SKBSQTCZhWZZa+1iWhWQyiUKhgFwuh2QyCcdxkEqlkM1mlV4KvJc5wPfrHXnM3t4eisUiACi5QjbP9fU1fN8HAFUYTtYs+nrHdV0AUOtoeYzruri4uMBoNMJgMMDFxQV831dyTdY2IqPiZJNQLBZVkblCoYBisQjHcUL9QqGg9GB9TNY2cg8Ssikmk4mat6V4o6m7R43rY91ud6HNKp1Oq0KLH+ucczNZB8/zlF1W1zc8z1M2WH1Mf5xu053NZgv/Tj6fRzKZhG3bSqfQdRXdJmuO6fqJ2FxFj4nSXeQa2S5kjSz6hm6jlWuyrtav+b6Pi4uLOXusOaYX0pWxRYi+rNtbRQ8RvURsrmKD1cdEX9FtQYRsE6LHL9JTVhnrdDq4urqK/TsyV39MnYZ2FLIOIgN024quw6wztggpsK7rMeJHjtJt9LH9/X1lp9dt8aK3y70fdY1sFzI36jYYsa8suqbrK6afednYIuSe0f3Lup6i6zGLxhjX8HTwfR+e56l5UM7NMWnmtel0Gvm6juMo37fEMEhffJriF5fr+XxexUHofUKWoceJDYfDOXvFqmOTyWTh37mNzJcx4Hv7xSo6gO5zIduF+PnX1QHWkfnr2DKy2WwoTkx8KlFjMm6OydxLtguxhZn+h1XGPM+LXLfrup4c5V4QG5fuy5OjxK0VCgWkUqkNfBvkIUH/Arkv6F8gH8JkMkG/35+L+zaP5vUoe2EikQjFguvx4LIOljWyPqbfJ4TEcXl5qda7+rpXjyHU5ai+Pjbl6yKibN2L1rgiU2VvQ5QcXUXGku0hSo6uImMvLy+VTUViCVeRqbI3axG6jFzFxq037qO6O66urlbaUyVN5G1UfLP4gM2my1H9XPoiV+kzI3FQfpL7gvKTLELfj2zKTb2vr03Pzs4ifVW2bc/tRRN5aNt2ZJNrtGmROCgvyX1BeUkeM5IXICqmatFRb9fX13OvKzmPzLgrPSbQjMWS+9fMS0OfA1kF+nfJfUH/LnloTKdTFZOly2+zr8dt6WNRsVvZbDYUr6X7j/VYLTOmy8zHQF2ULIPyndwXlO+EkKeM5OwKgkDllRwMBphOp0qmyrnk4/I8D5eXl+o5k8lEzZeu687ZRVfBcRwlO/Uc2vv7+8pXpOcc1XNui/yWHHK2bSORSKBQKITkOPVPsi76Xphl/qZlY8vyyd9mj5+MRe3rW2XPH9ku9L17q+z5M31Rt9nrv8wXFaWHrjvmOA7XQOTBInmK1snNeJv8jHpeIjNP0bK+fs4c3GRVxuNxyJYmNXF0PSYqb7Tk5JD+snokup6+iu1Nr6EDLLa1LbpGtodFtrZF1xbF2CyzvS1C1oniu9Bja8x8Bbrvw4zBkXuUPG2idIBVWpxuEKUTmG3RdeY0JMug/Cf3BeU/2QYGg0Fon4vsddH3vJj7X/r9/lx8zP7+vtojKjJ3nXNCouD+F3JfcP8LuUv0NfHp6SmazWbkGliu9fv9yLpfjuPg8PAwdh3caDRC16vVKv//ZA6ud8l9wfUu2TSTySRS7kaNnZyczOUXjLItm7JW71PuEp2otay+no1bt0bJ30VIzXldniaTSRSLxcjaxBIfJ7JUYkRFRsvrAVDX5LX1a2R7ELkpa1Ngvk6xfk3WooPB97WIJWYnCALMZrO5sYuLCwRBsFJ8s+h6cbJ02T4P7um4H1zXRbPZVDLx9PQUr169Co212+1QHgRZj4rsizq+ePECe3t7G/xkhHwP91eS++Kh7K/0fR8//elPMR6Psbu7i0ajgR/84Af4hV/4BfziL/4i/vk//+eheiSUxYRsL9fX1+j3+6FcVq7rhvJaLTqPyg0tyD5E27aRzWaRyWRg2zZyuZxac0o+K5lndnd3laySo8g1OcrjmEf6bpF1nMgd8yiySo76/o3xeIzxeIwgCJTMkb2zcm2Rb3Nvb28uZ7iZEzXuvFwuqz18hJDtRPct9vt9/PVf/zX+7u/+Dv/rf/0vfPvtt3BdFzs7O3AcB7/6q7+KyWQSuQZb5lu8jY1TfD+r2jUlxkeuke1C7Jrr2DxlD7HIuzi7p2njlNdbhNTzjLNjLovZkcfTd0S2Bdd15+zA5rHVaoV0vii78Keffhoaq9fr1PPvCPobyX1BfyN5Cpj7Ws3YIbNv+kqB92sWM24oKpbIcRwcHx9zvnsgMJ6W3BeMpyVPiY+xd2ZR7ogo2Svr152dnQ196qfJeDwOrU1N+bgoLsd13VAe10Xo69BkMol8Pq/knuTpy+VykXJWzyUpMlNeb5E8JdvDKvE4UbkmxS/quq56jeFwqHICL7IpL0LiwJbJzEVrVvHHEyLIvarncFjU73a76PV6ylajUy6XUalUUC6XVatUKqhUKjg4OAiNyTntu3cP41nJffFQ4lmjZCTrhZDbEgRBqDZo1HlUbVE5j9L/ygFeiAAAIABJREFUstmsyk+oH+PO9THK1ccD6yuQ+4T1FchTJi4/8ap1DXq9XuRaaZU8xXHt4OAAiURiA98G2SboRyb3Bf3I5Clzm3pG5tjZ2VmsjWpVPSBKZ6jVasyZQeagfkDuC+oH5Kmjy3pT9q/Tj8vnDMTrCavYEjKZDPPJk5Wh/kDuC+oP5KmzSD9YRYeQsbjcA+v4HKIexzzVZB2oP5D7gvoDeeos8lHcpf1hnXrLzONCVoX6A7kvqD8QsroPYxV9QuKFo/hQPYIxD2QduO+R3Bfc90ieOqIXr6MvLHrsonzKt4mJoC5BbkNUrlxdf1hlD6boE4uQWier7rvUbRN7e3tr2yIYF7R9rGuLMPdeLrJNROkQq+y9XJSf3rQ9ROWsl2v0I5NVidILbmubmE6nsff5KvERy3QKzqNkVZh3n9wXzLtPyHsW2SZuex6X50EQncHUH6L0iUVjtFWQhwLjN8h9wfgN8pSROVTWjjLX6rZp068ttmm95ndUvEY6nVb1leOa4ziho96Yq+rhw/gJcl8wfoI8NS4vL0N5oUUem2Pm9bOzM/T7/blcvqlUCqVSKVR/way3EHWdezO2h8FggH6/r/xY+j2xbCxuTtvb20OxWESxWEQul0Mul1PzWTabRS6Xg+M46lo+n1fyVfwCIjfF9i8xByJzyYcjuZWvrq4QBIGyzYtMFPkn69fhcIjRaITRaATXddX5cDiE7/uqHwTBwrhs8fuI3dHU7ePOy+WyyulNto+bmxv8/u//Pn7/938fv/Vbv4U/+qM/ehRzfa/XU3WIut0u2u226rdaLZyenqLVaqHZbIbsiIlEAtVqFUdHR6jVaqqun7R6vY6jo6MnvV9xOByi1Wqh1+uh3++j3++rc/mO9bEoPQSAsrlalqX0Ytu2VV+OIotEtsTV2KM9IRp9XRNVZ05qHYrNXWw/0jePUdi2rep36bqkXtdLH69Wq9QJCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEPLgkRzBei2b8/NzlRP44uICruuqPJBRNf2i8uS7rqvyDS8jrrZkNpuFZVnI5XLqej6fVzUc5HGS+1OeY9s2MpkMc+YTQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJBt5ic7Nzc3N5t+F+Tj81/+y3/Br/zKr+D//J//g5//+Z/f9NshhJCt4S/+4i/wa7/2awiCAIVCYdNvhxBCFNPpFMPhEEEQqIT7UUn49TE9wf9sNgsl/Q+CABcXFwiCAADguu6t3lc2m0UqlcL+/r6aN4vFIvb29gAAOzs7sG079BzHcRb2bdvGzs5ObD/q769KJpNBOp1e6bFS7GBVpGBCFDc3N/A8L7YPzP8PFvWliAMABEGAq6urhX9/GfI/0Asy6EUaEokELMtSY4VCAclkMnYslUohm82qAg6rfudkO7m4uMDZ2Rlc18XZ2ZlqZl/GPM+D7/tqzokin8/DsizVisUiLMuCbduwbTs0XigU1OOz2awq+pHL5ZBMJu/523jYzGYz/P3f/z2+/vprvHz5Ev/9v/93vH79Gvv7+/jBD36Ar776Cl9++SW++OIL/MIv/MKdvY/Ly0u4rovBYADXdTEajVQRGtd1MRwOVd/zPAwGA/UY3/cxGAwwHA4xmUwwGAxweXm50t+VuUlkgX4P6ecyrwFAIpFAPp8HAOzu7sKyLPV6pvwCgL29PRSLxaXvJZ/PI5FILHyM53lYZpaLk1XD4RCz2QwAlOwHECrUo8sS4Hs5IzJKrs9mMwyHw6WfSbBtG4lEAoVCAZZlIZ/PI5fLoVAoqN9uPp9HPp+H4ziqn8vl4DhO6Fo2m13575LbM5vN0O120e12cXp6qs7b7Tba7bbq9/t99Pt9+L4/9xq5XA6lUgnlchmlUgmVSkWdy9FxHDXfW5al+qI3EqIj87+sXWS943kezs/PMRqNQoXKZK7Trw+HQ7VGkuu31Zll3aHLBV0OiIwRzHWHqbeY9/6iNY9lWdjd3V3pfSaTSeRyuZUeK8XfVuH6+jrytw/Mr20uLy8xGAxU3ywSZ8ou832IPBJZ9qH/M/lfyDpF5EwymYRt20ruW5aFZDKJQqGAXC6HVCoF27ZDa5t0Oq3kGSHke2TONttkMlG2rMlkgtFoFDqX+Xk8HsPzPEwmE0wmk6V6sNiapBCkbdvIZrNIp9PqXH7XuVxOzQEyFzuOo+xY8huXa9RNSBzT6VTd23oBVZFzw+EQFxcXSheRoqrn5+dzhVhNe+5tZV2UXmLqHKaOscgua9pxzTWwySL9xWTZa+mYusQyFn1/5muZ61uzb+ot5muLfiKPi7Lxrop8f1F2VrNorsxvyWRSrZ9lPhP9L5/PI5VKqfXWqvojIQTKHilzvO/7GI/Hao2p6ygyn7uuGzqXdY5+vgj57co6I5/Po1AoqDWHfi4+lmKxGPr9ix1SXkvmi1XsjuRp4vu+spWsoseYxeF137Ku21xfX4fs0esg961uV9d1clOHMPumPV73V0f1TaJs/HGso8+YtvdlmDqIjmmTMfvm3zL7pj4k/88oX/O6yJy0SIfR7S1iq1lFrykUCspPQ8h9IfOa+Lrl3HVd5fs2/Zfi0wyCAL7vYzQaKZ9cFGJ7FN+3xFPIfS9+Nd1XJr8nx3FCtkzxdRIShczzps/kQ2S+2DM+ZC0s69UoHQCY97Xofntg3vdi9hfFkK3jP4n624vQ/fGrsMg/Y9oizPWF+bfMvtibBJHzUTrAuogtY5nMX0cPkDHaZckigiCA67oqJk3O9b7I5iAIVCySnOu/CZ1UKqXi0iR2oVAohI76uMhniV/LZDIqrmWd+FXy9KB/YR76F+hfIJvn6upKxYDrseDmmL5GFpksNkET+b2aMeBmrLjjOLAsK7RGljhS6ROyCF3P+1i2bolTWScmXUfm17jYQtNWrT8OmF+zLlsf6yyzg5vc5Xp30fe3bP1qrpVNv4P52maM4SI7+yLk+5M57EPt3TImPrtV9hSQh8Xl5eXSPVXSTFtznO4pMam6zNT7ssfKtm3lSzZtzNyzR5ZB+RmG8pPyk9w94/E4JBf7/b46yrnIUpGV0qLIZrNze4/1c8dxVF/ko9h5bdtW+0cIWQTlZRjKS8pLQtZhMBiE4q7kOBgMQnvOJF7b8zx1LrkjFsUxSnyJHlsl62ndl6vL/mw2OxeTrZ8TEgf9u/PQv0v/LnnaSCyqNInV8jxPraPEFq7Hb+kxXHEyXn4HEkOt5xnT1/Vm/Jb8ZnK5HCzLQiaTYW4ishDK93ko3ynfCSHkPhkMBpjNZvA8T83Deu7sy8tL+L6v5m6R157n4fLyEkEQKFu8zOeu6ypZsKrNWeSlyGGxx+q5lmVulvnasiwkEolQbmZ5njxGjrK/v1AoYH9//x6+WfKQkJy5sh/V1D8/xB91W500am+/uVfPvJ/N/V9m39RlFuk26+aSXmfvWVyscxyL8vGbviRznWv2zb+t96P29q+b916Quexj+aJER02lUmpNTgj5OIg9QvITSK4Cyb8u+o/Y2eRaEAQIgkDpTvLcRXldJJei2NtErxH7mvTFnyZ9PW+BmQeJeg2JQ3LfiC4v97bY3j4kl8Gi3MfLMG1tZiyNuR/Y1EnMvF3L9CGddfcar/MbW0e/WWb3Ml/LzPuq60bL6upE2dpum4NKvj+Jb5I8sR+aw0iPFSBkGzBzJeh7N/Wj7/vK16aPx63/JBeRvp9TYmxlTI6SWyEq5mZV3wF5mlD+z0P5T/lPHg++74f2u/T7/chcR+Z53NzlOI7a57Lo3NxXKnGyhCyD+1/CcP8L97+Q7SYIAvT7ffR6PSVvzdbr9ULXzfXvzs4OyuVyZCuVSjg4OFB1EfW2atwbedpwvTsP17tc75KHzXA4RLfbRafTUTK21+uh0+mg2+3OjZnz1N7enqo/XKlUcHBwgGq1ikqlMtdEHnMtS1ZB9h3pdYjjZGzU3g2JQRVZLWPy2uvEiwkiD2UdZObKX5Ybf115rGO+1jLuSt4u01cWyddlNXPMPSGiL+mPu+3/Tr6PZfszlq1xpaYx8+Q/Xs7Pz9Hv93F6eopmsxl5fPXqVejeTiaTKJfLaDQaODw8jD0eHh7Sv0oeDNxfOQ/3Vz7s/ZXNZhMvX77Ey5cv8c033+Cbb77BZDJBoVDAv/yX/xJfffUVvvzyS/zyL/8yKpXKrT4jIWS7ub6+VjkvJN5ecl2Mx2MVfy/nUrtV9nfpj3Nd91a2XJmvZA2hryX09aK51tTXd6bdN24OXHUPluljjcNc68URZyM190Lp+rTuAzXXibq/U/QLOa67v0p8nCJLbNtWNaRs20Yul1P2WT0/iTxOcpvKPlPJY0YIeZyI/vjNN9/g66+/xsuXLzGdTmFZFn74wx/iyy+/xBdffIEvv/wSpVJp4WtF1QVdJzZHt3Gaa7N11xPCbfYKmzJn0frLXG+ZrJMj5S7XV4tkybrrp2U1Q2V/cJTNcx3078NcIyWTSdi2reT7qnE83CdMHiqu68bacOX4+vXr0J7+dDqNRqOBTz/9NNaW+/z5c+6RfUTQ3xiG/kb6G8nD5uLiYi6WttvtzsX2tNttdW7GtGcyGRXDU6vVQvE+1WoVBwcHc7E+9G+SRTCedh7G0zKeljx8ptOpqo0mTfaP9no9dLvdyP0u5t6wTCaj5KweQ6vH0pbLZSV/y+VyaJ8cefzI+sV13bXsxIvWuPKc2+4Z1Pdrijw15eIiW7C5xl22P1THfO4yVvVzAvN7MpexSOYu27+5jozV7dAybu4XXRWRf8tswVE25UXrWMkzQ3sZiePm5iaUT0GvSxJVq1sf1/0wQiaTQalUUvs+5bxUKim5acrTSqXC3PyPHMazzsN41ocdz0qI5A2WuU1iSsTOptfyNM9F3kbF8sn9rNfs1mt469dEzkp+hVKptJZNi5BVYH2FeVhfgfUVyMPGdd25OgEyx4l81+txy5jkBZbanXF5xiTPv9QF0HMDm02X8XqjPCfbAv3I89CPTD8yebjInBW173A4HIbW9rLW1+ty6/0ou7gg+9T0Jn4avel1uk2dgLmcyDZD/WAe6gfUD8jDZTQaqflJz0UgfsjhcKh0A/FnSu0gmf/EXjAcDhfGtJi1gaS2oNQIFB1A7mnHcZDP5+fqF3A/PHmIUH+Yh/oD9QfyMJE5R48L1nNOmPqD7nuQOsTS5DFxvgaJQYrSIaSfz+eVziCP0+0Lcs64UfIQof4wD/UH6g/kYSL3r8xRi/QHXVcQ+4PYI9axP4i9QeIUpK/rEnL/ir6h2x4knoGQhwb1h3moP1B/IA8T2cOj70HWc2pNJhOVS1nPx+z7vupL7ON4PFYxkouQ+1Vy9sq56AnZbBa5XE75KeQ3IbYH0TPk90HIQ4T7HufhvkfueyQPE32+0tc85+fnynch+ygkllJiH2QOjNI1FiHxD5LzX/QFiX2Qc9nvo5/rey0kryMhDxH5DZ2fn6+kQ6yay/7m5mahT3ERUbYIXTdYlkdIz1sEzOcGMnPt6pivvYxFr2Vi5olfxqLvz3wtM6eRmTdoWZ4iWXuZOsW6yPf3sfZeylg6nVa2YkKiEDtolA4xHo/V3CS6hPgz9PpQw+FQ+T7EVrHoNyv3ua4/6LWGxGch9YUcxwnpEnrOBcuymAuaPFiYdz8M8+4z7z55eIjuK/ey6NKSl0RfJwVBgOl0qmIh5HwwGGAymahz3Wa7bE2Uy+XU/Xybc7nvJS6TOUsI+TAYvzEP4zcYv0EeLov0FT1eQ+I7RX+RGFA9N8Wi35/c2/l8XuneopfouSgcx5nLUSWN9zL5WDB+Yh7GTzB+gjxcxIchOSQlRkLySEoNhkUtLsdUnEyWptcw0uswMKfU00b3qemxv2I3M/OYyL6i0WikfAkSz7NuHRzHcZQM1G3+puzS51Z9PavHEMTJu1VrFK0SI7BqbICZU1nQ17j6d6XLPNN2rz9HXlfWxstisXVk/Srx2KLnm/HZ0hefqPTFfyrPW7WOE3k4DIdD/OhHP8Kf//mf4z/+x/+IH/3oR5t+S5FIDQW9SZ1dqbXbarVCdXdNe75ey69Wq6HRaKBWq+Ho6Ch0rFarrK97B3ieh7OzM5VfW/ao6kfRecxrIoui5lidqPimvb290DpO9/+K7VNfl0XVv1tUE0//u3EskyNRcV36mC47RD7ockOXJ7pde9WaerIGktgXve6Ivj9Hjo7jqHPRNZlDhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHbhOTEl7yQkvPe8zxcXV3B9/2VHrOoNsIq+TIBzNXii6pbY+bOj6t/k0qlVK7hZDIZqnVACCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELIE+InOzc3Nzebfhfk43N1dYV6vY7f+Z3fwe/+7u9u+u0QQsjW8Ld/+7f44osv8O233+Kzzz7b9NshhJB7Zzwe4/z8HJeXlxgMBgCgigZMp1NMJhNcX1/D930AUAUIpOgAAHieB1lG6K8DvNdDgyCI7euvHdXXubm5ged5a30+13XXerzjOGs93rZt7OzsRF6zLAu7u7ux/WKxiL29vdh+oVDA/v4+AGBnZ0cVUpACDYlEAvl8PvQ+MpkM0uk09vb2UCwWQ6+TSqWQzWbX+nyErMvFxQV831fN87xQ3/d9BEEQuu55XmhsOp3Gvv7+/j4KhQKKxSKy2Syy2Swcx1HnxWJRFSXJ5XKwbVtdsywL+Xwe2WwW+XwelmUhm80ik8nc4zd0tzSbTbx8+RLffPMNvv76a/zN3/wNzs/PUavV8MMf/hBffPEFvvrqK/zrf/2vH/x84Ps+rq+v4bqukh0ig0RGSfGc0WiEi4sLDAYDXF5eAkCoQI5cB6BkH/B9oR4gXj6JHF3EqvJLiuksYnd3F5ZlzY3L/A8gNN/LbwYIyxIgLJds28bu7i5s21YyROSMvJ78jXw+j0QiMSe3yOPl8vISZ2dn6Pf7scderzc3Jr8lk3w+j2KxCMuy1NGyLNi2PTcWdz2ZTN7zt0AeOvo8LjJA5IQ+38v6QdY9UljNXMeY8788XjALselrpkVrHn2dtQq6bFuGLhNWQdYdUegyxJQv+loEQGjdAkAVlDNfS+Sg/nhZn4nskefqf8NcZxFCHiaih7uui8lkgslkAs/zMB6PMZlM4Pt+6Fz0/SAIVOHMwWAQOl91jpR5TOYfmWtk7rEsC/v7+6oQZi6XU7qx2Fxs28b+/j6KxaLSn2VeE715XZsTefzoOoHcr6J7rHvNfD1g3g5r2m3Nvq4TmcjfXpVV1so6uh10FeJssqZeYq6hzb6pt5j6kvyO9XFTd1n1GiHk8eN5HqbTKcbjcejc931MJhN1LvZK/TwIAlUEXD9fZ81nWRb29vaUXlIoFGLteoseK3OYrufs7e3Bsqy59R0hYsfQbeBRvmSxt4gtXtc7dJuJqY+YfdNuYuooi3QW3fa/CuvqM/L7WpVF9gxT1zH75tpC75v6kKxh9HF5r3JNf40oPzTXMoQsRtZWnudhOBxiNBphOBzCdV0Mh0PVfN9XtguR+WLjELmvz4lxFAoFZZPI5XJIp9OwLEvJe8dxlG3Dsiyk02nkcrmVnkfIMlaR86vqAPp4XN/0vZj9Rfqy6adZxiq/P8GUt8sw7Q86pu3A1Ll1eR3VN2PBFsn5dXUAQh4q5+fnGAwGCIIArusiCALV18fNsSAIVAxbEAQL1wPyu14Uo5bL5ZDNZleKcxOfBCGrQv/C99C/QMj9IPLSjAWXGHAzNlzvu66r4n3jcBwHuVwOuVwO+Xx+7b5t28jn86pPyLrcVo5GXdNfTzDt0xK3KJjyz1wf65hr42Us+/3pxMWox7FoDbls/WrGEOpx8MB8TP1t5ah5jZD7ZDabhfZNiUyM22slfZGvnufF/n7lPhcZKM22bRQKBdWXOHz9MY7jhPrr/O4J0aH8fA/lJyEfjr62XPXcdV3Vj/MHpVIpJessy1IyslAoqDHpixwVm62Mi2xdx/5EiA7l5XsoLwkhcUwmExU3FRVrJf5cGZPHyJjYoYfD4VL/kh47ZZ6Lv/Y259QTyCrQv/s99O8S8jQYj8dzMVl6rJbETEtstX5Nj+taNr/Yto1MJoNMJgPHcdS5HsdVLBaRz+eRyWTmZH+xWEQmk0Eul1Mx1Q89Fxe5Pyjfv4fynRBCyKYIggCXl5fwPE/tZRI5JjlJfd9XslDs4J7nYTabYTAYKDu7yGXXdZVcNW3uyxCZKDmGRLbIUWSg7ONxHEfJP/1xkgOgWCwqeSRHsZ+btnLyNPmQvf3mNcHcX2fmc9f7Zn7dRfl2Tf12GYv02yjWzbVu+o90TN+PmYfR7Jv5BfT+unv7F10jhDxdZG53XRej0UjlJZD8jJKzKAgCdV3sbqIfmc9dhOgdkouxWCyG8hJks1mk02llmzNzG9i2jXQ6rfZYSp4D5i8nq/KhtjbTFmbmIjDzD5jxL6Y+FJd/YN1aOaY9bxnr6jeL4ldMfcW055m/z0V1dT6GrY35owlZD7Fv6HtOJF5GP0bV+pHzRfOP7MeU2FrxrYk+IPtPpK/vUdHjbxlDQz4Eyv/3UP4T8jCQ+mj6vhbXdVXT+1HnUftfxKdg27aqxbSoOY4T6kv8CyEfCve/vIf7XwjZDJPJBP1+X9U87Ha7qh/Vut1uZM233d1dOI4Dx3Fg27Y6j2vmYwj5mHC9+x6udwnZPmazGXq9Hnq9HrrdLjqdjurHjZm5v1OpFMrlcqgdHBzMjemtVCpt6BOTx4ysJXX5JDJPrkXVxIm6BizPjb+uPNYxY/EWsa68NdeXy1gUk7aufF1UI0f0gKg4uqhr8rfl2rprdELWYTKZ4PT0FM1mM/b45s2b0BwhcVKNRgOffvopDg8P0Wg0Qsdnz57F1qIg5LHB/ZXfw/2V98/l5SX+7//9v/jmm2/w9ddf4+XLl/jf//t/4+bmBoeHh/jqq6/w5Zdf4osvvsAPf/hD2sYJIbGI/BE7qW4vlXWcedQfJzZXXaaZNVb1taLuM42zza5js121LtuifVQ6cb5Pc1xfG5prUn2dqNt7Za0nR/GlylH+hnncZnlECNkOhsMh/u7v/g4vX77EN998g//23/4bOp0O9vf38YMf/CCkG/6zf/bPInXxbUDkxW1tnqZtc9Fe4HXXXzqmnFvGXa+v4vz8666fltUMva1dU66ta8P9/+zdS49keXrX8V9mZFwyzr0u05NFT7dcM57BbZgZlHIDU2WQWLKxhFC3xMJILNkg3oAlWFh+CZZ5AUY1SJZg6Q2YqjGmnR5jJMa9oGF6erL6UlXnFvfIyGTRPP86ERmXE1lVmXX5fqTQ/1wjomOm8nnO/wq8yjbVvX7yySf6xS9+Mdf+0ul0ztW1Lpbvvvsua5HhhaC98Wu0NwLb6ff7rj+r9a158uTJyv6ujx8/XvpvMkkS3bx5Uzdu3HCvt956a26/eoy5pvCqoj/t1+hPC9Q3Ho/nxmxWX0+ePFl5Lk3TubFrptvtzvV1vXHjxlz/VtuvnmN+crwMls0zuS5mWltk9Vw1Tm6qC16s/900PrRq3VjQZV7keM91MXfT+M1tYmy13tliob1/NU5aPyH7rGp99Ko+RMA2bM4hm89g2WvVuWXjMyW5+QyuXbvmxoLYvr2W7dMWgqtCf9an6M8KLGf/jm0trOprcd0sWyvL5vNbvHYVm5vP5g9atm1zGyw7x3Mo3kSsr/AU6ysA8ywnt/n1+/2+W/+yum/rW1f3q3P32/66Po+2nnUYhi42h2HoXjZPbxzH546HYagkSZh3H7gg2pG/Rjsy8JStq2PP5oPBwK2zY9tFUajX67l1CPM8d+eyLDv3HuvG3bXb7bk8wNa5tleSJG67mhdEUTR3HXNLAM8P+cHXyA+Ar+V5ruFw6OL8cDjUcDhUmqauD4v1FxsOh24dv9Fo5LaHw6HyPFe/39dwONxYx9dut+V5nssNfN+fW5+nuq5PHMfyfd8dszV97MU4BuBykD98jfwBb7osyzQej9Xv91WWpcbjsatbsH7p9u+9KAqNx2PX5jAej5Vlmcsv8jzXeDx2bRCb1kJpt9su9tuaf4v5gr2qOYbVK1SvYdwYcDnIH75G/oA33bI8YTEPGI1G53KKas4wGo3O5R91xtasq39YzCdsvWB7JUni6iIsvwDw4pE/fI38AW8y+7dta65uUxdRp65i05zCNiY1jmN1u115nudyB9u3OoZut+uu9TxP3W7XXWv75BDA5WHc41OMe8SbLM9zTSaTc20T1XxgMpnM5QuL+cZkMpnLR6r1GJtYvmD9HT3Pk+d5rt7B9pflD9Vcw65jTljg8jxrXcRi7rBpHiH7G2MW4/26+s86batVL3LeoVVrrUjn55xfrO9YnJd30zxFz1oXsa7+BJDm2zNs/HWv19NkMpnr61DNJ5blC/bvt/o+i/WUqyzWRwRB4HKGJEmW5hpW/1Ctq7A+mHXWTALwfDDv/teYdx9vEvt3mGWZZrOZ8jx3/5Ytb7B/y9tca/+e0zTdau4Vy4F939f+/v7S7U6n4/pKbLMN4M1E/42v0X8DeFq3WR13anUl1h/UxqZW+3tWt60exbZHo9HGdpfq/BTVOSes7sOOVfuAWnuMXWtjT5irCm8a+k88Rf8J4Clrs6jOGVUUxbl5p6rzSdlcUxbbq3NNrsrRjc0xdZHXqjWzgatg9fMWG+35NcuyuTLPcxcjq7FvMS5W6+ir8bbah2BV7KwbB+v0Eahb773qubgaY6ttA4sxqvrvuXqPPSNbvm6xLkkSF3ftO9p7ruufAEhfP7/+4R/+oX7nd35H4/FY/+E//Af9g3/wD17oZ+Z5vna0FkyaAAAgAElEQVRdv3WvZf9Or127pm984xtz6+na/s2bN/WNb3xjbn+bXBcvJ4sTdcfHWA5WfZaqti3b+epz27L17zaNzd30rFbnmWQxp6veU40d1fhg91Sv9X1f7XZbURS5+6IocnOPeJ6ndrutOI63bq8GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4Fja35OJaZDZncZZl59Yrs3mP615jcyPXYfPk29zCNr+9zQWcJImb99HOxXGsVqsl3/fl+75arZbiOHbvEQSBe4/FtYcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDc/3jk7Ozu76m+BF+Nf/It/oZ/97Gf60z/906v+KgDw0vjlL3+pt99+W/fv39edO3eu+usAAC7BBx98IEm6d+/eFX8TAMvYQixFUWgwGGgwGChNUw0GA/X7/ZXnBoOBiqJQWZbu2izLNBgMNBqNVn7ezs6O4jiW53lukZQwDN2iK0mSuO0wDN2CK57nKY5jdy6KIvm+r/39fQVB8MJ/p+l0qr/6q7/S/fv3dXR0pP/6X/+r/u///b9qNBr63ve+p7t37+rOnTs6PDzUe++9p52dnRf+nQBg0XA4VJqm5162SNayc9XzX3zxhU5PT5e+d6fTUZIkS1+2yNW683Ec87cRAIA3wHA4dLnFYlnNO57lmidPnmg8Htf6Pp1Ox+Uqi2U1j9nm3OI1nuep1Wq94F8WAABclnV5yDY5y6Zri6LQbDar9Z0umq9se22SJC/41wUA4OWzGK+Xxe5V59fdl6bpxs9eFacX2142bS8eo00GAPAq2hRn68Zj29/03L0u9taNxdX9Gzdu0FYAAHiprIqh2+4/fvxYk8lk5ecsxtRNcXXd/ltvvaVGo3GJvxIAAPMW+9tvipmrrsmyTKumkFkWOy8SP69fv652u33JvxAA4E232IZ60Zj56NEjTafTlZ+zKU7WOUadLQAAL85sNlNRFOr1ehoOhyrLcuV2WZYajUZuezgcqtfrrdxep9lsyvd9BUGg/f39C237vq9Wq6U4jt0zehRF2t3dvaRfDwCAl9dF+kzX6ce1zkX6T2+6jtgOAADwaqszdv9Zxv1Xy36/v7Z/5KI6Y/qfZ8m4fwAAXn2bcpaL1sHVmbPoec1jUN2m7yoAAJvVmSehzrGvvvpKJycnKz9n2zEpy45du3ZNnU7nEn8dAAAuz6qYvGm9JttfF4ufZd0mnq0BAK+qOvF02WtVTF0XL9e9bt68qWazeQW/AAAAl2Mx5j58+FDHx8crY+3x8bGyLDv3PhZrb926pYODg5Wx1c4zNwMA4KoNh0M9fPhQn3zyiY6Pj10MrJaffvrp3DNmp9Nxsaxa3r59221/61vf4jkSAJ6zPM/10Ucf6f79+zo6OtJPfvITPXnyRM1mU9///vd1584dHR4e6jd/8zf1K7/yK1f9dQHghbh3754+/PDDlXNPA8Crbjab6a//+q91dHSko6MjPXjwQD/96U91enqqg4MDHR4e6vDwUHfv3tWdO3e0v79/1V8ZAF4b4/FYjx8/nqsbXaw3/eUvf6k8z9097XZb165dW1pfauW3v/1txXF8hf9lAIA3HX1iAAB4cS463uPzzz9f2tax7XiPW7du6datW8xbAAB4qW0790D1tWq9zVVraNR58bwKAHjZLIuPdefNs+N5nuv09HTp+287P96y48wzAABA/flu6+yvi93S+vi9zT7z3gIAcHHr1rWps4704rlV9d1VddeMrnMdeQAAAM9P3fXuXvT6dxfZru6THwAA8GKtywG2WS938dimNgVJK9fK3ZQvbDpP/gAAwItjMb8oCk2nU+V5rvF4rMFgoKIoNB6PVZaler2exuOx8jx3uUKapnPXjkYj9Xq9uWs38X1fnU5HYRiq2+2q3W4rSRKXI0RRpE6nI8/zFASBOp2OgiCQ53nqdDqKosjlDHEcq9PpqNvtKgxDNRqNS/gFAQB4s5ydnSnLMpcDlGWp8Xisoig0GAw0Ho/P5QiWT/T7fY3HY2VZ5nIQyz0sh9jUn2FnZ8fFfMsV2u22fN+X53lqt9srz/u+r3a7fS5/aLfbLtfY29u7pF8SAIA306q2iou0aVyk/4O0vg/Es7RxMG8AAAAv1rPmEetyizp1EtLz7ROxeIx2DQAAnl015q8ql+UH215Ttw5Cms8f1uUEq8q61yZJ8oJ/XQAA8LLbdrxIne0nT55oPB6v/dw6dSPbbjN+BADwpsvzXJPJRGVZun6ZWZap3++7fpnWJ3MwGChNU7ddlqXyPNdgMFC/31ee5xvbQdrttrrdrpIkked56na7CoJAURSp2+3K8zxFUeT6aXqepziO3XYQBArD0N3LOrkAgMsyHo/1n//zf9Z//I//Uf/+3/979Xo9/fN//s/1u7/7u7px48bae09OTpRlmfI8V5Zlbttei/vV67IsU5qmS+ddiKKo9lpFcRzP7dNnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALiYVWuO2Vzfi2W/39dkMjlX2rzei2VZljo5OVFRFG5u0zoajYbCMFSr1ZLneW5tjiAItLe3pziOtbe3N3dNt9tVu91219jcpWEYunnFl10DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4JX1452zs7Ozq/4WeDH+03/6T/qt3/otffrpp3r77bev+usAwEthOp2q0+noxz/+sf7JP/knV/11AACX4IMPPpAk3bt374q/CYDLNBwOlaapW1Bm3Xadc3me6/T0dO1ndjodJUniFopZLJedW3Ws1+vpf//v/63/+T//p/7iL/5Cf/VXf6XxeKwoivQbv/EbunPnju7evasf/ehH6na7l/SrAsCLZYt1ZVmmLMtUFIXyPFee52572flqWRTF0vdutVoKw1BRFCmOY8Vx7PY9z5Pv+2672+0qiiIFQaButyvP85QkidsOguCSfxkAAPCysUVHbQFTW4A0yzLNZjPlee4WLLXFTG1x0jRNNZvNVBSFW+zUrqkuXHpycqKyLGt9n8UFR8MwVKPRUJIk2tvbUxAE7rnT8zy1Wi1FUaRGo6E4jtVsNuX7/rnnU3s/K+1eAADwerAcJs9zzWazuRxkMU+xXKaa71hOZHXqtlh7URSazWZzeU8dOzs7buH1IAhWLqoex7EajYaiKNLu7u5WpS3YbiUAAK8ri+n9ft+1d1tcr7aJ53mu0Wikfr/v6irKsnQxvigKDQYDjUYjZVnm7lvH4m61/dvqG6IoUqfTce0tnU5HQRDI8zx1Op25+8IwVLPZVBRFLi/wfV/NZvOSfkUAAJ5NlmXu2TrPc/V6PQ0GA/V6PRdjB4OB0jR120VRqCxLDQYD9ft99x7D4VBZlq39PHuGDsNwrr9DHMfuXBRFrj0gCAKFYejOxXHs2gbCMFSn05Hv+5f0awEAsJrFz16vpyzL1O/31e/3VZblhfbXDamP49j1J/R9v/a+PfPadhiGPMMCAK6MteOmaepiaK/Xc/3tbd9iY/WaLMtcHbE9v65iz43WJ9/io+/7SpJkbt/OWz1vFEVzz6P0SwMAXDaLiRb30jRVWZZuvyxLF0vtuMXO6nXrYqW1iVpdrI1V833fjVXzPO/cuDbP81w9r+3HcXyJvw4AAG8uGye2zVwlm7afPHmi8Xi88bNXzUGyzRwlq87HcaydnZ1L+AUBAHj5PI+4vuzcOnVi9OL2putsbBQAAABeP9U6qcsoN/WjXLRpjt3nWdpcAgAA4OW3bbta3WsvsgbANm1nq7avX7+udrt9Sb8eAACvhsUYvqzdbNWx6v6jR480nU5Xfs6q9rJtjtE/BgDwOqoTgxdf1Wu++OKLpc/Yi8/Pq16rrrl58yZzKAAAXimb4ueq16rn2U0xdNXrxo0bzKcAAHgtrYu1Dx8+1PHx8bnjy55Zl8XYW7du6eDgYGlsvXXrlpIkuaL/agDAmypNUx0fH7sY9/DhQ33yySdzxxbjXJIkOjg4cHFtWfnuu++q0Whc4X8ZALzaPvnkE92/f19HR0d68OCB/vIv/1Kz2UwHBwc6PDzU4eGh7t69qx/96EfqdrtX/XUB4Jndu3dPH3744VZjBAHgZZbnuT766COX0/3kJz/RkydP5HmefvjDH7qc7jd/8zf1K7/yK1f9dQHglVWt31ys17Ty888/n8szl9Vv3r59e+7YN7/5TeZGAwBcKuursqpfyuK5Zf1BN/UFXdZn5a233qJNDwDw2rrouIt1YxgvMu7i4OCA+QIAAC+ti8bLdWtWXTRmXrt2TZ1O55J/AQAA5q1a22ndHDmLxzet7VhnPrpN89TRngkAeJPVWYux7v6mNW7WzSu7zT7PvAAAXMyzrs28eK4oCs1ms5Wft25dmIus2cwcfQAAPB/b5AR1t+use1snD9hmm9wAAIAX46Jry266tixLnZycbPz8urnAtuejKKJfAAAAL0CdfOCix/r9viaTycbvcJHcoM52EATa29u7hF8RAIA3QzXeXzRP2HSubnvFResXNl0bxzFj4AEAeM7Ozs6UZZmm06l6vZ6L+0VR6OTkZOk5a5NI01QnJycqy9LlDNVzdl/dOogoitRut+X7vjzPU7vdVhzHarfb6na7CsNQ7XZbQRCo2+2q3W4rSRK1Wi15nqcgCNRqtRRFkcsh4jhWq9WS7/uX8GsCAPBmWZVH9Ho9TadTZVmmk5MTFUWhyWSifr+vwWCg8XjsxkosyxnSNHXX1+0LEYahWq2WwjBcmgd4nqdWq6UkSVxuUc0drO4hiiK1Wq25fIP6CAAAtjMej13MHwwGK9si6paLxyzXyPNcs9lMWZbV/m5xHKvRaCiKIjWbTfm+7/IAyxesL0Oda8MwVKPRUJIkajQaLifxPO8F/sIAAOBVtU0/jhc19vR5jDu1bcuFAAB40zzPMR6L5/M8X7ruUNWmOL3NOeabBAC8SqbTqf78z/9cf/zHf6z/8l/+i/7bf/tvGgwG+s53vqO/9/f+nv7u3/272t3dVZ7nyvNcaZoqz3NlWeaO2avf7y/9DN/3FUWR4jhWFEVzrziO3WvV+kXMtQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA3ma1PauueL5Z2frG0NUwXy7protVl65DZfN2Lpa1juljaumW+76vZbM6tcWbrltl7VNdBYy1UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADX8eOfs7Ozsqr8FXozxeKybN2/q937v9/Qv/+W/vOqvAwAvjRs3bujf/tt/y99GAHhDfPDBB5Kke/fuXfE3AfCqS9NUg8FA/X5fZVmqKAoNBgMNBgO3IE6apm5hHFv8Js9zTSYTlWXpFr4pikLT6VR5nrsFcjbZ3d1VFEVu0ZsgCNyCNraQjS12kySJms2mfN93C+FEUaRms6kwDN17hGGoZrOpKIrcojkA8Co7OztTlmXK89y9iqKYK6vni6KY+7ve7/c1GAyUZdnazwnDUJ7nqdvtKo5j9/fW933FcaxutyvP8xSGoYIgcNcmSeK2gyBQFEXqdrva39+/pF8IAAC8ipYtppqm6cqFVtedW3WNLQBb17KFWbctkySpda091wIAgFeXLRxvuYfVqed5rtlspizLNJvNVBRFrWtXLWRvZV2NRkNhGD63cm9vzy00v64EAOBVt6keonqszraVjx490nQ63fj529YzLDu37vobN26o1Wpdwi8JAMD2LI6ui7F1Y7Htb7IYO+tsbzp//fp16v4BAFdmVczcdv/Jkycaj8drP+sicXTd9rVr19TpdC7plwIAQMrzXL1ez73SNFWv11NZlur1eq6P/rJrer2e+v2+sixTv9/XZDJZ+TnWlhqGobrdrut7b9vWL9/66Vuf/W63qyiK5vrz00cfAHCZsixzsdHGp+V57mJlWZZuHJvt9/v9c+OV8zzX6enpys+x8cMW62y/OnbNYmT12sVxbtVYCwAALofNJ2L9pG2ekvF4rDRNXd/psiw1Ho9VFIXrU5VlmSaTiXvOtvlLrK56Uw4hSTs7O4rj2LXjRlGkVqvlcoh2u604jt18I2EYqtVqubyh3W4rSRL37G7vY3ObRFGk3d3dS/o1AQC4eha78zzXcDh0c9RUtweDgYvVNkaqKAr1ej0Nh0NXhzAcDt17bYrp1na8v78/V0cehqF833fzkfm+r1artXFOMjsWx7F2dnYu6dcDAADAy2LbeYqepbyKOY3qjiVkTiMAAF4+z2POgmXnsyzTpiUan9fYyeo28xYAAHA+vtcdy7l47PHjx2vHpVgcXozLy/bXHaMvDADgdTCbzdzaTIvrNy17pWl67tiqOYnCMFQURStfSZKcO2bjWcIwVJIkl/xrAABwMYvPqHVfq55fF59B676Yrw8A8DoaDod6+PChjo+Pl8bTxXNfffXVuT5o62LrrVu3dHBwcO74N7/5Tep/AQAv1GQy0aNHj1wsW1eaVqul69evu/i1qjw4OGAcIADU0Ov19Jd/+Zc6OjrSgwcP9Cd/8if64osvtLe3p+9+97s6PDzU3bt3defOHb333nv8bQXwyrl3754+/PDDjX3jAeBldHJyoo8//lgPHjzQ/fv3dXR0pJ/97Gc6OzvTwcGBy9MODw/1/vvvMx4HAGpI03RjXeTPf/5zzWYzd0+n09GtW7d0+/btlXWS77zzjvb29q7wvwwA8LobjUZ68uTJyr6Yy/qVfPnll3MxTVrdf2RV35EkSWh3AwC8li46/mFZfJUuPv6BfpoAgJfVtrGyOt/N559/vrSNftt4WZ3nhmdTAMBV2TTnW5254JaN9TOL87XWmfNt8di1a9fU6XQu+ZcBAODqLZtX/aL7m+Zi32bu1nX7zIkDAMD26sT8uue2ift11lepcy4MQzUajUv8xQAAeP1ssybbNmu3rbPtemt1tm/evKlms3lJvxoAAK+n2Wymoig0mUzU7/fdGm+9Xk/T6VR5nms2mynLMp2cnKgsS43HYw0GA/X7fY3HY2VZ5vKCPM81Ho/V6/XU6/U0Ho+V5/nG72HxPY5jtdtteZ6nIAjUbrcVhqFb+z1JErXbbXW7XYVhqHa7rSAI5HmeOp2Ooiha+l4AAOD5GAwGLtZPp1MVRaGTkxNlWebyCTuXpqmm06l6vZ76/b4mk4myLNN0OlVZli7vyPPcvZflFJvs7e0pCAIX96MoUrPZVBiGrg4iDEM1m01FUeTyhyAI1Gw2FcexWq2WPM+T53lqtVpKkkTNZlO+78v3feocAAB4Dqw+oRrny7LUycnJXK5geUFRFK4+wnILyyOW5QyWd2xiuYPlCUEQaG9vby7+W91DNYdYzBcsr/B9X57nqd1uK45j974AAOD5qLZDWH2C5RSL5/I818nJyVz+YPUX684VRbF0rptFjUbDtUd0u925vGBvb28uZ7B8olpPsazNwvd9dx15BAAAz1e13cLqHRbrEbIs02w2W5ojVOstlvWRsPzj9PS01vdJkuRcvUQ1n1jMGSy3sH4Q1n5h+Ybv+2q1WtRHAACwgeUBi6XF/m1Lywc2lXVZbK9bWr2E1T1YO0ccx2o0Gq6ewvpcLrsWAABglWV9OavHJpOJyrKca39ZPGZ9SHu93tJj61hbTHVMSHW72+1qf3/fbVu7y6rt/f197e/vK47jS/oFAQC4emma6uzsTFmW6fT0VHmeu/YRGzu6KcZXY3e1v0adeC7J9cXc1L5RHdtR7Ze5eKw6LsTzPNpEAACvrDRN1ev1VJaler2eiqJQnudzx7IsU1mWKsvSrZ/75ZdfqigKDQaDjWMmOp2OgiBQFEWKokhJkiiOY7dffVWPx3Hs9pnXEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK86m4t7VVnnmovcY2ul1WXzcF9WyVpmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF5SP945Ozs7u+pvgRfngw8+UJqm+uM//uOr/ioA8NL49V//df3Tf/pP9W/+zb+56q8CALgEH3zwgSTp3r17V/xNAOBrx8fHOjo60oMHD3T//n0dHR1pNBopDEP9nb/zd/SDH/xAf/Nv/k392q/9mnZ3dzWZTJRlmabTqcqy1GAw0Hg8Vp7nmk6nKorCLeZTlqUmk4nyPNd4PNZgMHCL+6RpWuv7+b6vZrOpJEnUarXked65RXm63a7a7fa50vM8d8+y0t57sQSAl1F1sbQ0Tee2F/fXnbP9oig0m81Wfl6n01GSJO5v7eL2NueuXbumTqdzib8WAAB4HfT7fU0mE1fa82RZljo5OXGl5TVW5nmu09NTZVmms7MzV9pzaJqm7vjp6am7Ps/z2t9tb29PQRCce6ZcfPa0Z9TFhWVXPdeuem5lIVoAAF591bqdyygth6prMV950aXlOwAAvAoW218Wy2Xn6h4bjUau7mKTajyttsWsO7bN9WEYqtFoXMIvCgDAatYukOe5e74ty1Kj0UhlWarf72s0GinPc9dvrRpjsyzTeDxWv99XURQaj8cqy9K1Maxj9fNhGKrdbisIAvm+r06nozAMXX1/HMcufsZx7Or3F+9rt9uKosi1AQAAcFmW9SOs299w2fajR482xtFN/Q3rbFf36XMIALgszytu2r71RVtlsY72ov31bfsb3/gG/coAAC/Us4xdW7z2q6++0snJycrP2hQnt4mV169fp14WAIArtG5M/Lb9rBbPX6Sv1TZ9qra9JkmSS/hFAQC4fDZXWJZlGg6HLi4PBgMNh0Plea5+v6/hcKiiKNTr9dx8YzYnmfXhmkwmc3OSbWJjuK3fVRRFarVaCoLAxeEwDNVqtRSGoYvLQRCo1WopiiI3vtvGgsdx7PqHMccYAAAApMsZ+79Yt1XXqrqodecY+w8AwKvF5j0cDAauDcxyhsXxkqPRSIPBYG7MZVEUGg6Hbns0GqnX67m5Gdepjo20ORCjKFKn05HneXP1bJYvWJ2b7/tuvsXqOMvq2EoAAN4kg8HAzWWQZZlrK7O4bMd6vZ56vZ7yPFee526/es2qGL67u6soihRFkYvFvu8rjmN5nufi9+J+FEVuPwxDhWHo5k4AAOBVVR23suy1OLal+nry5InG4/HS9101vrP62nQujmPt7Oxc8i8CAEA9m2Loqtfjx4+XznG/KiZuejGfEADgdXF2dqbHjx/ryZMnevz48bnXo0eP9OjRo3PHF+Nqs9nU9evXz71u3Lix9Pi1a9d0/fp15pAHADx3o9FIx8fHOj4+1sOHD5eWv/jFL1SWpbvHng1v3bqlg4MD3bp1S7dv33bbBwcHevvttxVF0RX+lwHAy+n4+FhHR0d68OCB7t+/r6OjI41GI4VhqPfff1937tzR4eGhfvSjH+n69etX/XUBYK179+7pww8/rDUfFABctcU87C/+4i80HA4VhqH+9t/+27p7967u3Lmjv//3/75u3Lhx1V8XAF4qw+FwZd2hlT//+c/V7/fdPZ1OZ67+cFn57rvvyvf9K/wvAwC8joqicP03lvXrqPbvsO1qDDPL+m5U+3Ys69/B3D0AgNfJRcchrFqb6qLjEN566y36TQIAXiqr1nCsO/79yy+/1Gw2O/e+62LlunHuxEsAwGU6OTlx86bZPGrV+ddsvygKN9eazcuW5/ncPG2r1i5qNBoKw1BxHCsIAgVBoDAM3Txrtm3HF6+143EcX/KvAwDA1ak+e/b7ffV6PfX7fbdvxxb3LaZX9/v9/sq52iS5OU6rc6IuzpG6zZypu7u7l/hLAQDw6lq1Htqyeug659bNz2pWzdNa3V+1vewcc7YCAHBxdXOBbbZXzTdbVV3rdNvYv2o7DEPatwEA2ILlAb1eT9PpVHmeazabKcsy14Y/Ho81GAw0GAw0Ho/dOmhZlmk2mynPc02nU/V6PZcL9Pt9TSYTFUWh2WymNE1rf6c4jtVoNBRFkZrNpnzfdzE/jmO1223XFtButxWGobrdrtrttpIkUbvdVrfbnVv71PM8t14qAAC4uMXn/4uWm96jztrpZrGOYLFcdq7uMda/AQDg4qweweocrI6gWp9gdQ+TyUT9ft/lA4t1EHme6/T0VGma6vT0VHmeu/oKq4PYxMYRWL2B7/tqNptKkkR7e3sKgsDlAEEQqNlsKo5jtVoteZ7n6h6iKNLe3p6iKHLv5XmeWq0W/RYAAHhOluUPZ2dnc7mA5RGL7RN2b5qm7prFc9YGUhRFre9TzRH29vbm8gerR1h3zvKOOI61t7c3l5OQRwAA8HxZXUJRFK5fw6p8oVpHYXUTi3US1Zxi27oISa4/47IcwfKAal3DYh8JyzGW5RFWV0GfSQAAvmYx3uK5xW6L5RctLZdYVdZluUDd0vKCbUtr17ASAACgLsufrB9HtW9G9ZjVsRRF4cagVI/ZOBLrD1o9tsnu7q6iKJprf7H6EzsWhqFarZbCMFx6zPd9dTodhWEoz/PcecuRAAB43TyvMR51yrpjRC8yrqPuGI/r16+r3W6/4F8VAIDLs25tojrHbH/VGkWS1G631Wq11Gg0tLe3p9PTUw0GA41GI0lf95E8ODjQ22+/rXfeeUd/62/9Lb333nvn5n4iDgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCq2XzZtl6ZrXkuPV3LzNYYq56zddJt3XRbm9Tm4bZ1TW39srOzM2VZJknK81ynp6dufbNt2BpjNtenrUlq65XZWh2S3Drntp6ZrbVhc3Xb2mSNRkNhGLp7F0s7DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwfrxzdnZ2dtXfAi/OH/7hH+q3f/u39fDhQ924ceOqvw4AvBT+0T/6R/rud7+r3//937/qrwIAuAQffPCBJOnevXtX/E0AvIlOTk708ccf68GDB7p//74ePHigTz75RI1GQ+TbbX0AACAASURBVN/73vd0eHiou3fv6s6dO3rvvfe0s7PzQr+PLWJkCx1lWabpdKqyLN2iRUVRaDqdKs9zjUYjDYdDt7CRLYa0qrTFjLZd1MgWJ1pVhmHoFiBaVi5bsGh3d9ctfrSqBIDLZn9rh8Oh0jRVmqZz++vOLbvWFqJbxRZ763Q6SpLEbS87tun84jH7GwwAAPAsZrOZiqKYe5Ysy/LcM6ctsDsej90z7WAwcPlRNc8ajUZz14zH43PPtXWtei5d9dyZJIkkKUkSd7y6SK+dt/ttgd9ut6t2u+0W+AUAAK8my1med7mYAy2WdTWbTZd/+L7v8hvLW6TzeYrVCbVaLXme5+6RnuY2liN5nqdWq+XqkpbdAwDAy+Ds7ExZlrlYa3F3U/u5xV6rX0jT9FwbfJ7nmk6nKoqi1ncJw1DNZlNRFLl6AYvDSZK4uG11B1EUqdVqKQgCF3PtnNVjWDxPkoQ4DAC4UtYGYPX5WZa5unzbHgwGKopCo9FIvV5PvV7PxWB7Js6yzMXmNE1rPw8nSeLiZRzHarfb8jxPYRi62On7vouxFlOr962L1QAAvEj9fl/D4VBFUajX62k4HKosS5VlqcFgoH6/rzzPNRwONRgMXLy0/oWDwUDD4VB5ns+91zpWpxtFkXvejONY+/v72t/fV5Ik6na72t/fVxRF8jzPxUuLo9WYGwSB2u02z6UAgBfK6nv7/b4Gg4HKsnTPooPBwMVFe/6sxtIsy9y5PM9dXW+v11v7mfYMabHS8zx1u10FQeDqbpc9c3Y6HRdbbbvT6ajb7bp6XQAAnrfnPZYtTdO1n7duvNpFt4mTAABcrdPTU+V57vpaWT8pGweWpqlrG7a23IteU4f1e7Z+Vda2a/2YoyhSo9F4LteQgwAAXieLdQHL6gcueqzu2O3q3DUXnetm3XtYX2oAAABAelqvZeWmOY5s366z+6xviiRXh2XzP9r7F0Wh2Wy29Ty8Vjdlc+/aWECbq6g6B4CN67c5jqz+ysb5Wz5s4x2snsv6d1r+bLk0AAB4fiyPWBwbORqNlOf53PjK6jhJq2eztriyLN28B9uMo6yOi7RxIdXxHNV+q61WS77vy/d9tVot15fVxobYuEvLJSwHAQDgdTQajdyYzSzL1Ov1XEzP89yN7bTjNu6k3++7fZu3aN3YTXveD8NQnue5MZwWc33fn9v3PE9xHMv3fbefJMncPgAArwqLkxZbi6JQmqZuu/rK81xZlp07Xpbl0ve2dQPiOFYURS7eVrcXz1VfSZKw5hIA4KVUHd+5zevJkycaj8fn3s/6WW77srmGAAB4la2Kqw8fPtTx8fHSc59//vm5tYFXxdNbt27p4OBg6bm33nqLZ04AwDMbDocubj18+FCffPKJ27by008/neu/3Ol0XIxaVt6+fVvf+ta3mF8dwBvt5OREH3/8sR48eKD79+/r6OhIP/vZz3R2dqbbt2/rzp07Ojw81OHhod5//321Wq2r/soA4Ny7d08ffvjhufoLALhq/X5fP/3pT3V0dKSjoyP9yZ/8iX7+85+r0Wjoe9/7ng4PD3X37l3duXNHv/Zrv8b8bgDeWOPxWI8fP56r41us/zs+PnbzG0hfryV1/fr1jfV+9PMAADyruv0Xq/0uHj9+rMlkcu69qm1Wdfpc3Lx5k/YrAMBr4aLjAR49erR0bueLjgegDyMA4GVxcnKiPM+V57nSNFWWZW7fxpZX9+1YmqZuf9kcr7u7u4rj2L2iKHKvZfv2SpLEbdNeBQB4Ufr9vpu7LMsyN69Zr9dz86vYfq/XU5qmc/vV+c9Go9HKzwnD0M0tGgSBm7csCAIFQeDmXanu23W2HYahut3uJf46AABcvlVr8C1u1z23an4Xs7iuXnXdvWX7687duHGDMS0AAGxQXR9k3VohtiZIr9fTYDBwz+B2Lk1TDQYDDQaDtXONS5Lv++p2u25e8W63q263qziO5Xmeut2ue+7e3993843bdVEUnXsP6qwBALiYus/929QH1FmLdNlz/bNu2/qkAABgucVYvqmsc+3iNb1eb2mf7mWq7QGLZTXWbyo3XUuOAABAPWdnZ8qyTLPZTEVRaDqdqtfruXXBLd7bmuH2/J/nuU5PT5WmqU5PT13/9bIsNZlMXHvDcDjUYDDQeDzeKmdoNpvyfV/tdlvdbtfFeVszPAgC7e3tubaCJEm0u7urKIq0t7enIAjcOuWWH9ga5r7vq9lsKo5jNZtNBUHwgn9lAABeL4t5QZZlOj09rZVTWD5QFIVms9nSexdziTrq5gHLcgjLOyzfCMNQe3t7iuPYvY/lIPRTAADg4lblB4v1BsvqHhbrL1bVQSzWY9RheUSj0VAYhi7+W/5gOUYURefOVfOGdTmFnQMAABd30f4NFyktD6lj2z4P665ZdS4MQ+bFAwC8URZj87Jjq8ptrl12zzZ5gLS+P+SLKK1OAgAA4Flsql95lmOr1uBZVLdu5KLHGE8CAHhVWX8ISUrTVJKUZZnOzs7mxm4s9p9Y7JOx2I/C+mYs9v+0vpx1LPavsL4Q1pfCxn4s1mNY/0sbx2H9OK39w+J2kiTuvexaAABeRxbH+/2+hsPh0m1rs6hul2Xp1mwoy3JuDYfBYLDy82ydhep6DLZvcznaugu+72s2m6nf7+vx48f68ssvdXx8rM8++0z/5//8H7defKvV0u3bt/X9739fP/zhD/WDH/xAP/jBD/Q3/sbfuKyfEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK+YdWuNLTu27fV138Pm7b6Ii64/dpF7q/dEUaTd3d0L/vIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOfoxztnZ2dnV/0t8OKUZambN2/qD/7gD/Tbv/3bV/11AOCl8M/+2T/TcDjUH/3RH131VwEAXIIPPvhAknTv3r0r/iYA3gQPHz7Un//5n+vo6EgPHjzQgwcPNBwOFYah3n//fd25c0eHh4e6e/eukiS56q/7wpVlqZOTE1cWRaHZbHauzPNcp6enK8ssy3R2dnauTNNUks6Vddn/BtVyZ2dHcRyfK6vXBUGgvb09tyjT3t6egiCQJHeP7/tqNptqt9vqdrtqNBoKw1CSWMQJwHNjf2PzPNdgMFC/31ee5+r1ehoOhyrL0i12l6apJpOJ+v2+yrLUZDJRnudukbw8zzWZTFSWpfr9viaTycbPj6JIrVZLQRCo2+2q3W4rSRK1Wi15niff99VqtRTHsfubGYahWq2WwjB098RxrFarJd/35+4BAAB4kVYtHFynTNN0q3vq5ldVz2NB4YvcazkaAAB4dYzHY1cHtE1pdUVWXy89rWe3+nvLYyy3mU6n6vV6rg5/W1bPHoahGo2GPM9Tq9VyuUiz2ZTv+9rd3VUURZKe1rtb3bzlKxe5BwCAy2TxsyxLTadTZVnm4q/F2CzLNJ1OVZalq0coikLT6VR5nru43ev1NJ1Olaapi8cW1+uweGnt1xYbrV3bYnOSJC6mLt5j9QeL98RxrEajoSiK5trOAQB40TbV32+7beWjR480nU43fv6yevYkSVbWwS87t+6YxVwAAJ4ne57s9XoqikLD4dD1OxwOhxoMBsqyTIPBQMPhcG47z3P1+30Nh0MVReGeZXu93sbPrfYvtOfMIAjUbrfn+hJWzy/ra7h4vt1u8xwKAHghrH++xcZ+v6/BYKCyLFUUhTuXpqnbLopCvV7P1fP2+32NRiMXZ0ej0drPtD74QRCo0+koCAL5vq9Op6MwDOV5nut7X32GtGfKKIrU6XTkeZ7CMHT1uTxfAgCeJ2urtGfEfr/vnhGrY9vsGXPVdpZlGo1GbnvTFHjVmLdue1nd67Lt/f19xq4BAPCSetbxXNtcU0ed8Vjr2onrXvMmzD8DAHj9bYrFy87VPfbkyZPa/aYv0ler7jEbBwUAAABs8izzGtUpl31GnXa3qhc5f9Gq0sb+AwCA7dQZF3mR8zaHwSar6s821a/VqX+jnQwA8LpYjLuLsXeb/cePH6+dw3gxti7G3232v/GNb/CsDgB46a2Ln9XXpnPLLIur1Vedc2+99ZYajcYl/yoAAJzX7/fn4l+WZUvj4rLzy2LlqhiYJIniOFYcx4qiaK5MksRtEx8BAK+i0Wikx48f68mTJ3OlvarHq9uLdbq7u7u6fv26rl275srqdrW017Vr1+T7/hX9lwMAXmVpmur4+FgPHz48V37yySc6Pj7WF198odPTU3dPkiQ6ODjQrVu3Vpbvvvsuz3YA3hiff/65PvroIx0dHeno6EgPHjxQmqbyPE8//OEPdXh4qMPDQ/3Df/gP9e6771711wXwBrt3754+/PDDrcaQAcCL8Mknn+j+/fsuf/roo480mUx0cHDgcqe7d+/qRz/6kbrd7lV/XQC4FNV6OquXW6yz+/zzz+dyuWX1dLdv35479s1vflO7u7tX+F8GAHjVTCaTc/0aNvWBePz48dJ+hHX6Pdi5Gzdu6Pr16wrD8Ar+qwEAeD5OTk6UZZmyLFOe567fvb3W9c9/8uTJXN8ME0WR64d/7dq1lX30l10DAMBVqzvGe9WY78W+i2bZXGWbXtVrGdsNAHjels3XuSr+rbumztxhq2LgpjnDqsdu3rzJWvUAgNfO6emp8jxXr9fTYDBQr9dTURQaDAYaDAZK09RtF0Whsiw1HA7V6/WU57k7l2WZ+v2+hsOhiqJY+5m+76vb7cr3fUVRpG636+bL7na76na7CsNQQRCo2+3K8zzFcaz9/X11u13FcSzf9+V5nnzfVxzHl/RrAQDwarF5u6vP0VmWaTQaufht23meazQaqd/vqygKt55GdbssS41GI5VlufZzG42GwjCU53na398/F9ct/ltc9zxP3W5XQRAoDEN3znKD/f19RVF0Sb8aAACvh36/r/F47OK9Pa+Px2OVZbn0fJ7nGo/H6vV66vV6Go/HyvN8LqeoruW5yv7+vvb39xXH8Vwsr+YG1W3f9906m0EQaH9/X77vz22HYUhbNQAA/1+dtbeXraW57TV5ni/tg7bMurUy15V1rrVrut2u2u32C/51AQB4PdTJF7bJG9aVaZrW/l7PmhfUvdfzPLVarRf4CwMA8PqwWL6pzLJMZ2dnG8s0TV2fxOl06tobBoNBrTYGY/0Oms2mfN9Xu912fQna7bZ831ez2XTtB3Eca3d3V3Eca29vT0EQqNVqyfM8lyOsupdx5QAAbM/iv/R1vmD7s9lMRVG4PGAymajf77u6BMsH+v2+JpOJyrLUycmJiqLQbDZbmlOcnJxs7LNYZfUCQRBob29PURS5PKFaRlF0Lm+wnMPqGVblD/ae5BEAAGzP+iJUcwiL+5ZLWPxfzCmsjmExtxgMBhqPxy7H6PV6mk6nLteoK0kS7ezszOULi3UUi3mD1Tss5g+Wk1geYXUWYRi69wAA4HVk8dfis8Vti+sW96WnbQ+L91jMv8g927D4bnFfkuI41s7OjqtXsNhuMf953FO9FwAA4Hmx/Mjaa6r9Niwns7oTa5dJ09TVx1g+ZflVlmWunqV6rM46vlEUubYay42WHYvj2NWfLDtm9StJkriciv6hAICXXbWfZN0xGc/rWov1dV1k7MZFx3rYPgAAb5LF+RttHufFbZvXsbrd6/U0HA7d9mg0UlEUrj/EOr7vq9PpuDmdbNv2gyCQ7/tKkmRuPwxDRVE0d2xxrufhcKhPP/1Un332mT777LNz259++qmbj7rdbuvb3/62fvVXf1Xf/va39Z3vfMe93nnnHeaRAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeMnVmSe77rFneY9t1yatWjWP9rJzdY9d5D1YCx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P/9eOfs7Ozsqr8FXqx//I//sdrttv7oj/7oqr8KALwU/vW//tf6sz/7M/3kJz+56q8CALgEH3zwgSTp3r17V/xNALxuTk5O9PHHH+vBgwe6f/++jo6O9L/+1/9So9HQ9773PR0eHuru3bu6c+eO3nvvPe3s7Fz1V35jpGmqs7MzZVm2sjw9PVWe5+fK2WymoijOlXZekrt+MBhoPB5rMpmo3+9v/T273a7a7bZarZY8z9Pu7q6iKJIkhWGoRqPhFqBqNpvyfV87OzuK41iSFASB9vb23AJVe3t7CoJA0tOFqnzfV7PZdNc0Gg2FYShJiuOY/18CWCtNU/c3rixLTSYT5XnuFvrL81yTyURlWarf72symWx1zybtdlvdbldBEKjdbisMQ/d3MYoitdtt+b4vz/PUarWUJIm7x/7G2t9B+7sax7F2d3cVx/Hc30QAAIDLUGfB5U3ls95bV50FlTeVF7nXtgEAwKvD6t7LstTJyYmrO7c8ZDqdqtfrzdWzr7pnPB5rMBjo5OREZVm6On3pad384j3bsLojq0+v1rlHUaTd3V1Xn2T1S9vcYzlNtb7f6vLtfQAAeBGqdQBpmm5db1D3HovHdayrA0iS5EJ1DcvutTgMAMDzZM+cWZZpOp2qLEsXD4ui0HQ6VZ7n7jm21+tpMpkoyzLXZ8L6Uax6j9lstvF7WMwLw1DNZtP1leh2uy4GJkni+pbZs2wcx2o2mwqCoNZ7AADwPCw+Xy571rzIeasT3mTxmXHZs+dFzhMvAQDPU524uE0Mte06z5l1YuJFYqW1mQIA8CwstmVZpuFwuDTmWWxctr14b5ZltfoWWd/lOI5rbVsdbJIkblxwEARqtVqKomhu3BvxEQCAl5vNI2JtvpY72DN2mqbP7Zo6rH+ytf0u9o2Kokh7e3uKomjtNTaGfmdnx+3bGHvr02wlAACvGhufZPG2On9Nta/zdDpVURSuXqHa38uOlWWp6XSqLMvm+oBNp9ON38Ni8LL+WHbO6hBsPhyLv8vmvrExSBanLdYzDgkAAAAXddF5iZ5lPqO69WDmonMZPcucRpaPAwCA857nGJDq+SdPntSaG2jTPATb9G+lnysA4HWxLuZuu78pJi/G0MXYu83+jRs31Gq1LvGXAgCgHutDYq80Tef27ZXnubIsm9uvbi9jfUDjOFYYhudecRwriqK5Y0EQKIoiRVGkIAjcWkwAAFyV6jNl9ZVl2crjWZYpz/OV6xBavLNYaPFy8ViSJEuPt9vtS/4VAAC4uFWx1F4PHz7U8fHx3LFHjx4tHcOQJIkODg5c/eu6161bt3Tr1i3WegMAbDSZTPTo0SMXk9aVVUmS6Pbt2zo4ONCtW7eWlgcHB9rZ2bmi/zIAeDFms5n++q//WkdHRzo6OtKDBw/005/+VKenpzo4ONDh4aHu3r2rO3fu6PDwkHYeAJfm3r17+vDDD3V2dnbVXwXAG6QoCv33//7fdf/+fR0dHelP//RP9fjxYzWbTX3/+993OdHh4aF+/dd//aq/LgA8d2mabqxT+/TTT+fWVep0OnP1aMvq2N555x3mhAQAbLTYH2FZ/4PF1xdffHFu7fnqOLBV/Q8W+yrcvHmTdfsAAK8cm3/Y+rtbf/hq//fqucXjvV5v6ftW+76ve127du3cMeY8AQBcpU393JfNV7Kpv7u0+TlzcU6S6ot5SQAAz8u6+be2maPryy+/XLsm/GJM2zQX16prbE05AABeF3Xmyaw7n+ZoNFKWZWv7SG+aM3PV9qpztIcCAHDetutR1Nl+/PixJpPJ2s+tsyZFne3FYzyLAwCwmcV8W9+93++rLEuNx2MVReHWkE/T1K3/vul8URQaj8cr5ymtsvht8496nqcgCNRutxWGoVsfPkkSt857HMfqdDpue39/X/v7+y4HsDwAAIA3gcVyew63eDyZTNTv9zWdTtXr9XRycqKyLDWbzVQUhU5PT5Xnuc7OzpRlmaSna1JbfX2e5zo9PVVRFO6+2Wy21drVcRyr0WgoiiI1m035vu+e4T3PU6vVcutMJ0miRqOhMAzVarXkeZ7LFXzfV7PZVBRFajQaiuNYe3t7Lm/odrsv5PcFAOB1YbFfehrzF2N8lmU6PT1VlmXuuOUUlmtY7tHr9TSdTtfeW1cQBNrb23PrTttYrCiKXLy33MDyCKsvsBzB8ok4jrW7u+tykDAMXQ5CzgAAwGaWM2wqrT5h21J6mosslnVZ3N9UVnOLVXmB1TtYHYXlJdWcAgAA1Fftc3iZZV3VPobblsv6Ka4rLScBAADrWV+GZX0YrE7B2iLKstTJyYn6/b4mk4nru7jYhmHH7Tpr07D77f3qsPYKq1uwdgurY7D2C6trsFzA8gJrz7C6B2vXsDqIxXoMxj8AAF51FtsluXYFi9HrzlX7Gaw7Z3Hczln/yGqfiE3zFSxjMdlitsV0i/mWE0hfr+u77T0W41fdAwAA8CJZrmS5k9WlWN1JdZzIYt/RxT6jeZ67PqOW39kYFquTqaPOOJFqm4uNO1l2zN7LxqxUjwEAcBUsNkpP6yks7loctjhabRexOpHFa5fVf9i1FqMX60q2taq+w9o/LD7v7Oy4fpXWtrGqbmTZtcv6dwIAgKeedb7HZdvWV2Kd5zUH5POa7/nLL7/Ul19+qYcPH+rzzz/XZ599ps8++0y/+MUv9Omnn+qXv/ylHj165K7f39/Xt771Lb399tt6++239e677+pb3/qWvv3tb+s73/mO3n77bdYOBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2MKyNcTXrS/+Iq6XLrYmmaS59cEW1x5fdmzb6+u+h83jDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAS+jHO2cXmQUYr5R/9+/+nf7Vv/pX+uqrr+R53lV/HQC4cr/3e7+nP/iDP9Ann3xy1V8FAHAJPvjgA0nSvXv3rvibAHjVff755/roo490dHSkBw8e6MGDBxoOhwrDUO+//77u3Lmjw8ND3b17V0mSXPXXxRU4OztTlmWSpKIoNJvN3IJc0+lUvV5PkpSmqSSpLEudnJy4hbtOTk5UlqWkp4t39Xo9TadTjcdjDQYDzWYzFUUhScrzXKenp+r3+5pMJppMJur3+1t/b1toq91uq9vtand3V1EUSZLCMFSj0VC321W73Var1ZLnedrZ2VEcx5KkIAi0t7fnFvKqnqsu7BVFkXZ3d917VO/d29tTEAQX+t0BvLrs71eapu5vWFmWmkwmyvPc/Q3N81yTyURlWda+x/5+1mF/l+xvlv3N831fzWbT/S2M41i7u7uK49j93ap7b5Ikc39fAQAAroI9a9ozq+VMlkPZs6c9n56enirP86X3Wl5m91putu7ebcRxrJ2dHZdP2bOrPXvaM6zlZdVcy+61e6rPoVZns+6c5XIAAODVYTmJlcuObSoves9Fch3paf35YnlZ5yTRngUAuBCrG8iyTKenp8qyzNUHWP2AxUurP7C28eo91va9eM9gMNB4PHb31LGqncbaqJMkUaPRUBiGajab8n3f1QlYaccXS6t7WCwBAHhWVo9udfO9Xk+TyURZlrn4aLE0yzJNp1OVZemeSYui0HQ63fgedSRJ4mKfxdM4jtVsNhUEgXuetFgaRZGrp1/XP8Les/osCgDARfR6PY3H47k+glmWaTweq9/vbzy/rI9h9fwmnue5+GhxLYoitVotBUEwd34xRlZjqt1rz5fVGAwAwLPKskyj0UiDwcA9K/Z6PZVlqdFopLIs1ev13DNlv9/XeDxWlmUuPqZp6upqq++3jo0hqsa5VqulKIrWHqs+Y2461mg0LulXBAC8bmzM72AwcM+Cg8FAw+FQeZ7PbVubpW0Ph0MXM6vbds0m9rxnbZPVeBmGodrttoIgcHWySZK4Z8ogCNRutxWGoaufjeNYrVbLvSd9nQEAeLWs65NcfR5/HtdsY1Xf4xdV2jYAAC+z6nw21f5bk8lEvV7P9XVe1qfLztn4besPbfOEpWk6N0dZHav6SVu7s/WXrs6JY/2mF+fGsboHi8mr3hMAAAC4CBtzb/mvjUO0vNjy5MU5i6y0bRsfsTiXkY1HtLEY2+bWklwObDmx5duWK1sb37J5jCxftvdYnPuoOg/vqnsAAHgTbZpv2urTqmMjLS8oisLNO2B1b4vzUdeZj8DGenieJ9/31W635/qq2nhJ3/eXjg8Jw1CtVkthGM71jbUxIwAAvApsHqCiKFyf2H6/rzzP3XiT6r6dz7LMnev1em5/3foPnue5uJskydx+HMduPwgCRVGkbrerbrfrzllf2jAM3TkAAF4Wi3060zQ999p0bt0ctp1OR0mSKEkSV5dt+6uOLR6/efMmY04AAJduVeyrEx8fPXq08jlzWdxb96rGxG9+85va3d295F8CAIDtLIuPDx8+1PHx8cq4+uWXX2o2m829T92YeevWLR0cHChJEt24cUOtVuuK/ssBAC+r0Wik4+NjHR8fu5i0WH722WcqisLd0263de3aNRdnbt26pdu3b7vtg4MDvf3226znDuCVV5al/sf/+B968OCB7t+/rz/7sz/TV199pb29PX33u9/V3bt3defOHR0eHuq9997Tzs7OVX9lAK+he/fu6cMPP7zQuqkAUMfJyYk+/vhjHR0dubznZz/7mc7OznRwcDCX8/zGb/wG4yYBvNKGw+HKOjArP/30U/V6PXdPp9OZqwdbVr7zzjusdQsAOGddH7tV/QS++uqrc+Oot+lTZ7Hp+vXr5O4AgFfKpr7p6/qqf/HFFzo9PT33nqti6KqxWtUXY7UAAFeh1+u5+UHslaap8jyfO2b7WZa57TzP3Txey0RRNPeK4/jcvr2WXcccIACAi0rTVP1+X4PBQGVZurms7JVlmZsLy2Jhnudz16RpunH+qyRJ3Hqvvu8riiKFYej2gyBQHMdz18RxrCAI3H4Yhm4dGAAAXnWr1kNdNhdInXNPnjzReDxe+5lW71qtg12sj93mHHEZAICn6sb2sjHvhAAAIABJREFUi2xvsinGX2Q7DEM1Go1L+OUAAHh1LcbuTbG97vnHjx9rMpls/PzFOL4pztc9zxxoAIDXxap1mKfTqXq9nluPedk6zGmaStp+LWhbz7EuW5+5uuZykiSSnq69bHXxtgaz7/tqNpvyPE+tVsvtR1GkRqOhOI7dWs621qOt22zvAQAAnqo+k1ud/OKxuuU2926bN1Sf3S9aLqsHWFbSRgAAwHlWJ2Ax3OoZrF5Bkqs/sPoCi/1WBzGbzdz7LCvtvRbLbVh9Qt3S6h0uWpI3AACwmeUPi3UDddsxFnMFa8+o065Rl9UJWLtCq9WS53lqNpvyfd+1OzQaDYVhuLZ9Y1U7RxzHrrT3AQAAqy32Q7DcYTFnWMwVpKe5wWJfB6uzWMxPFvORbVjfBWtnWMwnbN/yDbvO+jEs9n2wfg1W52C5RJIkc7kHAAAvO4vV0tPndYvBFz1ndQWbzlkOsG2/BGPxuxp7LVavO2fxv/rcb/UEFtst9ltuYHUPy+4BAAC4Csv6fC4bA7qqrHNt3TkkTN3+n3X7iC671nI6AACel3VjLOoeex7vIT3t/7mtumM1nve11oYCAADWK4pCJycnyrLM9XewtpGiKDSdTpX/P/bu5Tey/K7//8t22eWu6yn31c4wgxqUECJmGJwoEJuAWHw3sIpQt8SfAH8A68AWiRWCHQt2ngU7xBZhjyJmzCVCmY4QnWRC7J5Ot8+lbi5Xleu3yO/98adOn7rabrvbz4dkneNzc2WUrvf78/58zucTx+6cjcOI41jdbldJkrjxEjaeIooitdtttdtt1xczTqVS0erqqls7wfbL5bJrb4/bX11dVblcfmX/dc0HYWvHP3v2TF988YV+9rOf6fnz50PHDg4O9Pz586G1J/L5vDY2NvTOO+/ovffe0zvvvKN33nlH7777rtu/e/fua/nfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcB62JqikoTU9/bmube5K6Wz9MH8NUX/tMZsnO32frS3mr0vurz3m32fX+sdmZeuG2dpi0tma4zYvtq1TLp2tRWZrmfvPsLXLpLM1xmw+7axn2NpkktyapAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCofLQwGg8FVfwpcrufPn2tjY0M7Ozv6zne+c9UfBwCu3N///d/rz/7sz9Rqta76owAAXoNHjx5JknZ2dq74kwB4k/R6Pf3whz/U3t6ednd3tb+/rx/84AeSpIcPH2pra0vb29va2trSV7/6VRZOwrXiL3qWJIn6/b5arZY6nY5bBM1f4Kxer6vX67nF1PwFz8IwlHS2SJotduYvyGaLrTWbTZ2cnAydm0exWNTKyooWFhYUBIEkucXQpLMF0vwFz2wRNH9hNFvozF/8zBZEk84WSfOfYwuh+Yujlctl5XK5uf/3ALh67XZbYRi677BZt9Pea9+501hdXXXfbZO2tVpt6mvT27W1Nff9CQAAcNUsX7L2o+VRttC3tUf9Nqu1Oa3tOsu9ds+8C3fbYt1++9TamuPOWTtz2nPW7rRzfjuWNikAAG+GdC3er7PHcazT01OXv/g1dLvP8hW/vp/OZfxzVrPvdDpqtVpDOdCs0rnIuNxHOqutWy3fr6db/d5q8X7N3urvVrdaWlpSpVKRdFbjBwAgi8XSMAxdHLV+b4uFFoMtRvr3WAxN35Pu67Hj07JYNmpr7fv01mJteiudxdlRW7seAIBZWF09iiJ1u13V6/WhcQ4WOy0WWjwNw9DV4Cc9Y9qxEtZetLZoEARaXFxUEASuDWntU2s/WtvU4mytVnPx1tqkNk7C2qrU1gEAs6rX6+p0OkqSxMW4KIrU6XTUbDaHzlsb1I+VWfcnSaJerzd17dZiX6VScXHSarMW46rVqouLFjMtVgZBoOXlZZXLZRcbLSbWarWhWi4AALOydmOj0VC9Xtfx8bHq9boajYaLexYj4zjWycmJ6vX62GN+G3MSawdajKtUKlpZWTn3MT/+0l8JAJjHqPfOJh2b9vwkk94/m3Rs3HniIwAAby7LMfz9y95aP/Ms5nlv/jxbq7UDAHCdXEQsnnZOHHtPaVrnne9m2jl0/PnAAAAAgHnZvLk2T5G9X2jvO1g+bHUse0fCxrFY3mzvVWTNY2TPtGf4dbhp2dhPe3/Cf7fQ3kG0sZ+WK09zj40lneYeAADeRhc5bid9zHKASaadR3raMT7pc7wzCQC4buzdyjAM3XwEjUZDURSp0WgM/W7n6/W64jh25+z3Vqs1cc7gIAhUKBRUKBRUrVZVKpXc+5XVatWd86+rVCoql8sqFAoqFouvPAMAgKtkbU/78duj0x77+c9/PnIsSLpt6f9kHR91zOa/AwDgsqVj3qhYmPVzdHSkTqeT+dysWDhNbKzVarp37x51WQDAtdTr9XR0dKSXL18Obf39Fy9evHI8a+71arWq27dvu5+1tTWtra25/fSxWq2mtbU15kgHAKjdbuvw8FAHBwdD26dPn7r9n/70p0Pvn6+urmpjY0Pr6+sjt7/8y7/s1scCgDfBwcGB9vb2tLu7q/39fX366afqdDqqVqv6xje+oa2tLW1ubmp7e5t+FwAXYmdnR48fP9ZgMLjqjwLgLXFwcKD9/X3t7+9rb29PH3/8sVqtlsrlst5//32Xy/z+7/++7t69e9UfFwCm0ul09PLly7H1q4ODg6G1hFZWVnT79u2J9auNjY0r/F8GALgOms2mjo6O3Ni1ly9fDv2M6sdPz9m7tLT0St98uo8+qz+ffhQAwJtgmjHgo8aNP3v2LLMGPm5c+Kjx4PZz9+5dLS8vX8F/CQDATXR6eqo4jhVFkeI4VpIk7sd+D8Mw87h/rt/vZz6/Wq2qUqmoUqkM7QdB4H6vVqvud/8nCALGrwAAZuK370bN6zjt7+PimzTc7ku386aZI8N+v3//PuuvAgDeWN1u183R2G631Wg0FMex2u22Wq2WwjBUq9VSq9VSkiSq1+tqtVpqNptuTsdWq+Xmf2y1WqrX62P/5rxzOtqaY0EQqFgsqlAoqFwusxY6AAD/v3nXSJi0b2syjZNe9+A8+7alzxUAgPFmje3Tnn/58qVOTk4m/v1R6x9NivGTzt+5c0crKyuv4b8gAAAXw4+j02znuSe9tXWSZ5G1TuFlbm2NYwAAbjKL3Z1OR61WS71eT/V63Y39luRq8DbWrdls6uTkxN1razbavYPBwM1ZYfdabmD3Wt4wC4vhKysrKhaLWlpaUqVSkSQ3FrxarWpxcVGlUknLy8su3ufzeRUKBS0vL6tUKmlxcdGt1Wj3Wr++3Wtb+vsBADddv99XkiSSXo3tlg/YGD8/D7DcodVqqdPpuHwj63mNRkPdbtflCFl5xSys/W95g8X+hYUFBUEwciud5Qazbu05AABgmMV1SQrDUNJsecKovMOvXcRxrNPTU3et5RZWh5hWLpdTuVx2NYd0DiG9GvutFmFbqyOUy2XlcjlXXygWi1pZWXG1CstXrN4BAABelZVHWNy3fMLivuUV6X6PdB+G5RBZfRn2zFnHO/i5QjpHsJwgnQtYDpDuv0jnIdKr+Ue6PwMAgOvC4q501va3drwkF2P9GG+x3L/X4r616/1njDtnMX3WeoCx+OzHYYu7Wecszo87Z7F+3Dk/l7BzAAAA14XlWOmt5WX+Nn2d9ftYrmd1G8sB4zhWv99XFEVDOeIkVj+xMSHW52K1kmq1qlwup2q16moulrNZjcbyvFqtNvF5AACM48cw/x0Ji3f+eauN+PUMq6H4tRHrC7G+DuksJvt/w+Kwxdh5x1tKw30d1pfh1zMshvrvcFiszDpm4y+ks3qHxWXprOYyaqwnAAA4nziO1ev1FMexyyms/8Ta4UmSuNzCcpcoitTtdlWv1905y2HCMHR5jD8nxSS1Ws3lBhb7y+WylpeXFQSByxEsB6lUKq4Nn9639rq/f900m029fPlSX3zxhV68eDH0kz52eHjoxsyau3fv6t69e1pfX9eDBw90//59bWxs6N69e9rY2HDHbt++fUX/CwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJvCnxPbn+PaX+fL5sX257n259f258v277M5tqWzObP99cn9+2y9UUlD64Xa/NvnYet8+vNl27zXktx8mJKG1qGw+/y5sf25tG1+bf9Zdo+tgeHP721zeftzdAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDfSRwuD886gjDfCt7/9bb333nv6h3/4h6v+KABw5f7pn/5Jf/iHf6h6ve4m7gcAvL0ePXokSdrZ2bniTwLgOnv27Jk++eQT7e/va29vTx9//LFarZbK5bLef/99bW9va2trS1tbW1pbW7vqjwu8MWxhN3/xOH+hOVvg7eTkRM1mU9LZAnD+InO2sNzp6aniOJYktdttHR8fDz3HX1TOFqDzF7lrNBrqdrtz/W/xF5ArFArK5/NDC7zZom/S2UJw/uJwtmCcvwCcLQrnLzLnL0hn5yWpUqloaWlp6Pn+fQCuB/uese+gKIrU7/cVx7H7XrPvPPs+tO/K9L1hGLrvvVH3TsO+K+z7x//usu8T+46x7x37Lsrn8yoUCm4BTP97p1arSZKq1aoWFxfdIpr2Hel/LwIAAFwn1p5Mb+c9N+v987ZN/fzK9tPbyzjnX+O3TQEAwPVkuYZfdw/DUNJZrd2vm1t93WpUfm0+jmOdnp66PKbf7ytJEklnNXjLefz6vdX5Z2V5h1+Pt9q6nRtVT7daVVat3mpc0lkty+pd/t/w6/dW6wIA3EyTagAXvbU4PItJ7fiL3lITAABMMk8cDMNw5mtniZvzxL1arTbztTZOAgCAcaaNgfOeOzo6mitGZsW+cfFwmnPUVwEAs7K2XhRF6na7qtfrQ8dOTk7UaDTOdWwS66O0uFapVLSysjJ0rFqtanl5eeIx63+s1Wruuf77RQAATMPG9zSbTRfX7P3ZJEnU6XSGYmYYhm68kL2DFsexazvGcezeX5t2LHO1WtXKyorK5XJmnLPxN378zOVyCoLAnbP6aaVS0fLysntmsViktgoAwFvovOOo5nmGjWme1qz9yPPcw9grAMB1ZfHT3i/KmiNnMBgMzXdj7xJZrWLUnDn2THunaJYYbXUEqxlYDLV4anPhWF3CYqu9N1Sr1dz7RlaXt2eOmzcHAAAAuCgXUeea9x7L42dxmbWxcfcwvhQA8KbKGqMax7GrrVl8rtfr6na77vpms+nqZv4YWb+fq9vtuvl6JrFY6o/bsfE3/nhWi73lclnLy8sKgsDV3qzWZuN7/HFB9GkBAK5a+l1K/33Kcfujzr148WLieFl7L9J/bzK9P+6cv7+2tubmxAMA4HUZFRtnOWbHR/FjYlacnObYvXv3lMvlXuN/GQDATTMuJk76OT4+dvO3p6Xj27jYl/65c+eOW38UAIDr4Pj4WEdHR1PFx8PDQx0cHIyc225SHEz/bGxsaGNjgxoqANxAYRjq4ODAxZas7U9+8pOh99BqtZrW19e1sbExcvvuu+9ScwRwLXW7XX3/+9/X7u6u9vf3tb+/rx/84AdaWlrSV77yFW1ubmpzc1Pb29v68MMPtbi4eNUfGcAbZmdnR48fP575XSIAkF7NVXZ3d/WjH/2IXAXAG8WvNz19+jSz5vTFF1/o9PTU3TOu3vTw4UOtr6/rwYMHfO8BwA0z7Tgziy9hGM7ch24xJ+vc/fv3eacXAHBtzToe2x/H/ezZs8wa9rgxZ5PGZvNeEgDgdRoXB8e9t2Tn0vVJX1a8GxcH0+fu3r3LXI4AgJHCMHRzHzYaDcVx7H5PkkRJkqjVaqnZbCqKIrdGqv1u+/V6XXEcj4xn0i/mRLR5DYMgcPvlclnValWFQkHFYlHValXlctmtWVqr1dy1pVJJQRC4NUoAAHiTpOdMvMj9cfw5/2eZI3HUOdqZAABkz1t13v1p1u9Mx/WL2L99+7by+fxr+i8HAMCbZZq2/DznR40tTpsm9s9znvgPALhOer2e6vW6pLP1dW3tPlvLbzAYKIoiSXJzQdu11k9t7epGo6Fut+ueYesGWly2eNzpdNRqtWb6rEEQaGFhQdVqVYuLi27dvnK5rFwu59YJtLX+bI1Ai8EWm/P5vAqFglsb0NYUXFpaUqVS0eLioqrVqhYWFhQEwcX+BwcA4A3kt6/HbWe5dpp7p6nbp/lt8XHbWa6d5h7LRwAAuInOkxuc9xqrP8zqInOFWZ9n9QwAACAX1/2+CuuHsLqA9TNYn0W/31eSJJLO+irq9bp6vZ7LEbrdrhqNhk5PTxXHsSS5/gzLH+xvz8LvN7CYbn0S1vdgfQ3SL+bSlOTqBrP2X6T7MQAAwJlp6gbjzp33GhsbMYvL7MMYtbV9AABeJ7/tbjHTP2Ztc7/dbu1/f6yiH4utXuC3560ukHXMH584aS6ecawN77f3bfyixVn/nNULxp2zOD3rOQAAgOvM8jnL9Wxr+WB6a3076a31D6W3ltOlt9OyHM7eSQmCwP2ey+VULpddP43lgNa/EwSBlpaWVK1WXZ+N5W3Wn2M5m/UNAQBulnH9CqP2z3t+mmstvs5rlv6Laa+f55jFWwAAcLmsb8W2lmdYWz4MQ9eGt5yjXq+r2+0qiiLX7rdnJEmibrerOI5drcDOTWJtdxtDaW31SqWi5eVlVatVd85yBWu3VyoV18a3uSeCINDy8rLK5bLLMezcm6zVauno6Gjo5+XLl3r+/LlevHjhfp4/f66f//znevHixSvjZvP5vO7cuaM7d+7o3r17unv3rvv9wYMHevDgge7fv6+NjQ3du3ePvAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDfELHNdj9q/zPtsPYrzmHau62n2571v1DPehrkvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAtfTRwmAwGFz1p8Dl++u//mt997vf1fPnz7WysnLVHwcArtS///u/a3NzU//zP/+jX/3VX73qjwMAuGSPHj2SJO3s7FzxJwFwXfT7fT158kR7e3va3d3V/v6+PvvsMw0GAz18+FBbW1va3NzU9va2PvzwQy0uLl71RwZwScYtmDfPwnrnfU4Yhuf+33RZi+td1POq1Srfq8AFarVa6nQ6qtfr6vV6iuNYp6enCsNQp6eniuNYvV5P9XpdJycnajab6vf7SpJEg8FAURRJkqIo0mAwcIuDNptNnZycuO+oTqejVqvlnjWL5eVllUolLS0tqVKpaGFhQUEQSJKCINDCwoLK5bJyuZyKxaJWVlbcd83KyoqKxaJyuZzK5bIWFxdVrVYlSbVaTZJUqVS0tLTkFv4sFArK5/PK5/MqFAoX+F8bAADg4vh5leVwlntlnbO8zz9nOdw057rdrhqNRua5WVmuZvmddNbWyzpnOZ6fy1nO5ueGdm/WMeks//PbmJZPAgCA68lqSn4dqtFoqNvtulqVdFYbt5rUuNzFz3nsWVbvks7qZf7f9Ovws5qU10ybr/i1KsudrG4mydXHrA4mydW7sj4DAODtY/HM+nfSW4tt6a10FkvT26zr/a09f1oWh9LbdN+MxTO/jW/9OXaPxUuLh/61FistFvrxFgAASa7daO3OrLET/X5fURS9MmbC2ojWprRxEv44C3u+jfOahsU0i4cWHy2eVatVLS0tKQgC18477xYAgDSLdxYbbfxgHMcublod1uJkkiQu5ll8DMPQxVCLnfV6Xd1u17VFJ7G2XKVSUS6XUxAEri1pbcKseLm4uKharebqsNbGnHQvAADTaLfbCsNw6L2eizpmbdJp+O/m1Gq1ofd0srbzXEOMBABMYv2GFtOSJHF1VmtXhmHo2prWnrQaql0/qa05DWv/VatVV2O1fsVqtarl5WVVKhV3zuJcEATK5XKqVCqvxMBarebalP5YHgAA8HayfMTyGNtaG95yEztnOY5trY/YauOjxnJljdmaltW1021627dcJz0+yx+3bP3Fdq8/7tjGLNu9dr8/LgsAgKsyqsZ+3m36mRbfZzGu9j7Ndp5nWF4AAAAAXKRpc+lZrp3mHht7OouLyKvnvYe5igAA19mkMavnHfdq71JOMu1Y1nHjW8ddz9w5AIDXaVRsTO+PO+fvHx0dTZzHNx0L0/uznmNtFwDA62DvSNbrdYVh6PbtJ4oiJUmier0+tI2i6JVrR6lWqyqXy+6nUqkoCAJVKhV3rFQqqVarqVQquZ9qtapKpaJSqeSuAQDgMvhtxEk/6TblF198kTm366j23jQ/a2trzMMKALgWGo2GXr58qaOjIx0dHblaqf/jH7N9W4fEVygUXJxbW1sbue//1Go1934dAODtdHJyohcvXujw8FAHBwcjt8+ePdNgMHD31Wo1ra+va2NjQw8fPnT7/nZ9fZ1xowCu3OHhoT799FPt7+9rb29PH3/8sVqtlkqlkj744ANtbm5qe3tbv/d7v6d79+5d9ccFcM3t7Ozo8ePHQ3kRAIxycHCgvb097e7uan9/X59++qk6nY4ePHigr3/969rc3HS5iK3DCwBXpd1u6/DwUE+fPh1ZI/r888+H1gFYXV0dqgdl1Yjeffdd5XK5K/xfBgC4TJ1OZ2y/9bhzablcbmw/9qj927dv894PAODamWVcdHp8dLpv3kwaBz1urPS9e/domwEALt2ouSMmvRNkP+Pmkhg1N8S0sfDWrVvMgQgAeMU08x5N+/ukOQbPOweS//vdu3dZKxsA8Eao1+tDcyrZfqPRcPHT3282mzo+PlYcx2q1Wmq3227/+PhYURQNzdk/is3DGwSBbt265fZXV1dVKBSG9qvVqlZXV1UsFof2K5WKm7+3Wq2qUCiwJjcA4EaKokidTkfNZlONRkMnJyeKosi1jZMk0cnJiZIkcWtYR1Gkk5MTNRoNNZtNd8zWsq7X6+p0OkqSZOLfHxXPx8Xw1dVVN2firVu33P7q6qqbR5F2NQAAr5pmLYHznJ9k1Fo7k9bpmXSe+SQBAK/LPOvVjrtm1nPzrGcrzb4W7Xm3kninHgBw4/T7fVcTr9fr6vV6Ojk5cfNGR1GkwWDg4nqv11O9Xtfp6aniOB66xsapNZtNnZycuHvseXbvYDBQFEVD987C1usrl8vK5XIqFArK5/Mupi8vL6tUKmlpaUmVSkXSWYy3e60eb/fm83kVCgV37+Liopvv2u6tVCpaWlo6539xAADeTOepI5y3LjFpLHwWv60/S13gIq6xfQAAIBfHLc779QTrO/DrEGEYSpKrLXS7XTUaDUlnNQS7z3IFu8avN8RxrNPTU/ecWeRyOZXLZS0sLCgIAklnNYF0HSGr9mD1CssJVlZWVCwWh2oN6fqE5RH2twEAuOn8uG59F+nYL53lDnaN5RzWHyG9mkPYNX7/iF1juYO9WzCrdGz3cwWbU8auyconLEcoFotaWVkZm0dYzpHu7wAA4DL47Xm/jm+x2OKrdBZX/Xiadcza7n5dwOoIfry3OO/H93nHI0rD/QcWny0uS2ex1uKwdFYXsPEE0ln732/LZx2zWO3HfIv1fowHAAB4E007TuSitrOOH3nd76MwpzAAvHn8GoRfexi179dArGYhndVI/Gv9Gopd6/d/+H/bv9binX/tvPw6iNUtpLPxDX4Nwx/3aNf64yb8uoh/rdVN/Gv9uor1X/h1EKuNAACAq/e62/az9PFktb+z5nE6z7mb1pafdb1CWys+a24uf20KWx/eX38pfWx9ff1G/bcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBW/nzV/jzW/hpi0tn6X9Lwel7+/f7aYP79/r7/N/w5uP01we1v+fNm+/Nxz8ufI9tfQ8yfw9rmwJbO5tb21wLz7/PX8/Tn5La5J/37/Hm0/Tm3bb0x/z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAb7KOFwWAwuOpPgcv34x//WA8fPtQ///M/6//9v/931R8HAK7Uz372M73zzjva3d3V1tbWVX8cAMAle/TokSRpZ2fnij8JgKsSx7E++eQT7e7uam9vTx9//LFarZbK5bLef/99bW9va2trS9/61rd0+/btq/64AG44f6HBJEnU7/clSVEUaTAYDC1W6C866C9u6C966D+vXq+r1+sNPW/UIob+80YthDgvf7HB1dVV3bp1S9LoBQur1aoWFxe1sLCgIAgkDS96uLy8rFKpNPZ5/kKG9rz03/Gv9xdSBPAq/7soDENJZ99Ztghrq9VSp9Nx3yG2wGq/31eSJEPfP7awqn1P2XeNfZ/Zd9I8i63ad4T/vWELqNr3gX0X2IKr9l1i31f+949d4y/aas+x+/zr/e8fAACA68jyNOmsrWj5mH/O8r5pzvltSssT/est7/PzO8sj5+G34Sw389uelUpFS0tLQ+1HywH9vM5yt6xjfj5pOeHi4qKq1aqkszalnwsCAIDrx/IWv+5tOdB5chi/XmZ1Mb/+5dftsz7DrPyc49atW1pdXZV0Vvfya+VBEGhhYWEoZ5o1P/JzIf/Zfo3d/jYA4M1j/TS2tTiY3losTG8tHqb7dexe6Sz+2T0WL2dhcctvj1ucs5hkcdHqAln9Q3atteUtRmZdazHTagEAgJvJ4pbFsSiKdHp6qiiKXEzsdDpqtVouHlp8tDgahqGLjdbWHLWdlsWu824ttk67BQDA2n0WI+M4Vq/XUxzHLiZa37HFyyRJXE3U7rP4Z+3RMAxd+3TWsYIW24Ig0OLiooIgcLHO2pPW/rO2o7X1rJ1o8a5Wq7m4Z/VSa2f69VEAANIs/vmx0dp6Fgf9+Nfv9xVF0SvX+M+xayw2ztLHaHHL+vyq1aqLlxYf7RqLi/41FgfT11QqFeVyuaFrAAAYxWKfxTw/ntm5MAxdrLNv14QXAAAgAElEQVQaq9VjwzB0sdLOJUniarWz1FWt/Ver1VwstDZiuVzW8vLyUJy0/sRp2o3pNicAALg5bBzyqDFY6TFW1u63rdXMLdexXMm2fr08/d7XrCyvsba+P17Kch3LgfwxxjaWymoMlvv4fchWp7d8yK8Z2BgvxmABAF4Hi7Pp8Vz2u9USsubNGTX3jcXl9Nw3Wc+Ylv9ekMVKi6cWcy2uWuxNz5/jP2PU/DnpZ1DXBwAAwGUY9z6h1cnS+XV6XspZ7jlPLi69+s5get7JcXWvrLrZuLpbujbmz4cEAMBVabfbCsPwlX6prGPjzo26ftr4bLFzdXVVtVrN7Y87Nsv1/hz0AABcJOt3CsNQrVZLrVZLSZKoXq+7dyvjOHbnoihy72PW63UlSTJ0rtVqufnpslifULFYVKFQULlcVqVSUaFQUKFQUK1Wc2NYq9WqGwNbKpVUrVZ169YtFQoFBUGg1dVVt7+wsPAa/6sBAG6SMAxVr9fdT5IkiuNYcRy/cjyKoqFj9XpdURSp0WiMHSdZq9VUKpXcT7VaVaVSUalUUrlcVqlUmvoaAAAugs0JEMexwjB0+/523LFRdVVr6wVBoCAI3H61WlWtVhs6lj5fqVQYLwgAuHLWr3h4eKiDgwOFYTjx58WLF5nrl1mfYNbPxsaG1tfXXzl+584d3mcDgLfI8fGxjo6OdHh4qKdPn+rg4MDFGNv+3//9nxuXKv1ibcu1tTUXK/ztw4cPtb6+ri996UusOQngter3+3ry5In29/e1t7en3d1dPXnyRKenp1pfX9fm5qa2t7e1tbWlr3/968xnBWDIzs6OHj9+rMFgcNUfBcA1U6/X9V//9V8uv/je976nFy9eKJfL6ctf/rLLLzY3N/Xrv/7rjCEE8Nq02+1Xajjp7eeffz40t/Dq6mpmPcffvvvuu/SJA8BbxPqWZ/159uzZK23kcX3L434ePHjAO6kAgGtj3tg4br6HSTHSn7ch/XPv3j3lcrnX/F8BAHAT2DyE9q6pzdtg75omSTJ0LEmSoXdY7bw/ZsyXy+VUqVSG3rWxrf3YufRxO8bcDAAASa/Mv+fPwTfN7/7+0dGROp3OyL81am69Ue23SdcSywAA111WvDzvvq07Nc64mDvvPu+0AgBuEpubt16v6+TkRHEcu/ZzHMc6OTlx8/R2Oh2FYejWtWk0Gup0Oorj2MXxJEnU6XSG7pmkVCppZWXFzbd769YtVSoVraysqFKpuBgdBIFWVlZUKpVULBaVz+cVBIFu3brl2s5+bLdnAQCAs5jfaDTU7XYVRZG63a7q9bqL/UmSqNfrKYoiF+9t3Tn/ej8vsOfaOnXj2FpyfmzP5/MqFosql8vK5/OvxP6s84VCQfl8XrVaza3vbGvTAQAwK38tVYtnFht7vZ7q9bokKYoiDQYDFxstVg4GA0VRJEmupm1tZH9t1ziOdXp66uKoreUqzbeGq619I41ff9XWfbP4mbV+a6lU0vLysour49Z/zeVy7n1Q+rABADeB5QX+/rhjl3W9tedn5dfJs9aRnWY7z73SWa4BAMDbzuoBflvfjvm1BYvnWfUGu95ivz3LrztY3cJqC1af9+sPs7B6gMVvv81vcdxqDlZXWFlZUbFYHKodWO2hWCxqZWXF1RfGPc/yBgAAbjI/d7A+BMsF/PhuOYDVDPx+DcsvrM9COutzsP4M/+9Y7pH1d2ZlOYDFdb9vwvoWLIew/MC/xvoY0vmB9WNk5Rvp/AUAgJvKagN+LLfagp8XWI5heYRfZ7BcYdwzssZTZI15mIXVD7JqDOkcwvICf3xEegxD1hiI9BiKrBoFAADnkdWn7++f9/y8z5p3XIGUPbbA33/dx6wWAAAA8LbwazDWl2P1FqvTWG5ntRm7Z9TWxp+kt1a3mbV+Y3UW21r9Jr21fp/0dtR40lFjTe1eAMDVmKU+cd79895v/R3nMU/t43VdyzuaAAC8WWwcprXvs7Y2PmPU1sZjjNqmawDTsjEYtrUxm6O2Np5i1HZUrcDa9PTnjNZqtRRFkaIoUhzHmfthGL5yLIoiHR0dZfb5ra2tzfXDfFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOum0+mo1WpJkltrQdLQmpvS2boO0tkanJLc+l2T7vfnuB51v7+2w7j7z7NGWJrN8ShpaM1vaXjNTZvD2l/307/X5sKW5OaQlM7WAPPv89f+9OfJtvUo/Pv8NUQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw7X20MBgMBlf9KfB6/NZv/Za++c1v6m//9m+v+qMAwJXqdrtaXV3VRx99pO985ztX/XEAAJfs0aNHkqSdnZ0r/iQAXod+v68nT55of39fe3t72t3d1WeffabBYKCHDx9qa2tLm5ub2t7e1ocffqjFxcWr/sgA8EZrt9s6Pj6eeX/e+2Z9nr8Y5Xn5iznOun/e++d5lr9QJfC2OT09VRzHkqQoijQYDNxCtraIrH0X2EK4tghtv99XkiSSpDAMJZ0tQluv19Xr9dRqtdTpdNz3i3+PXTMrf3FYWwTWFpf1F5G1f7v+9bZIbdb15XJZuVxuaNFau75QKCifzw8tgGvXAwAAXHfj2nuv+9i8OaCU3WZ7HcdGnbdcEQAAXD+z5ivz3DPPsXlNm6vMcu1FPKtSqWhpaelc/9sAABfH+nF6vZ7q9bqks/4b6/uxPl+LUXbtYDBQFEWSzvp60tda/5Dft2TXWp/SLPL5vAqFgnK5nMrlshYWFhQEgaSz/p9isaiVlRUXf6zPx+/fsWutX8hil/X3+Nem+30AADdDun122dtZx1il216XvbV9AMDNc3Jyomaz6eKWje2zNp21HaMo0unpqaIocuP9rE1obc903LN+YGsnWnt0GtZGs3ad1R2DINDi4qKCIHBtR2vrWVyb5l4b82fPAAAgzeJZkiTq9XqKosjVTi32+df0+32FYfjKNRZbLS6GYehiqcXhaVjt1OqjFt9qtZqLZ1Yrtdho96TbfhYr7VkWM20cPP19AIAsFtOsPRjHsYtldi6OY9cOTMfLOI5dOzPr3KztRotjFr+q1apr+1mbz2KjxUSLhdO0F9NtTQAAcHONGwc8zVjh856bd8zxuLG/07xDdd5z9EEDAC7TvGO4znvvLLULabZ4fJ54nd5a3QQAAAC4SKPeRcx6v9DmrrTxMqPeX/SvtXGr1peY9b7iLPz3B61f0PJmfw7KWq0m6Wx+Ssur/bkl0+81Wl+i/+7juL8BAMBlyKpjhWE41bFprp9lnoDV1VXVarWJtavzXGPxGACA80jHPD8WpvfHnbP9n//85xPn0U3Ht4vYJy4CAC7SqNg36tioa8bVcdPtvnR8G3Us/fva2hrjEgEA55KOYaNiW9bP0dGROp1O5nMnxbRJ5+7cucOYPwDAazdN/PN/Dg8PdXBwkPme26i4N+lnfX2d9b0A4A3VbrddbPC3T58+dfs//elPh8aerK6uamNjQ+vr6yO37733HmMvAVyaJEn0/e9/X3t7e9rd3dX3vvc9vXjxQsvLy3r//fe1tbWlzc1NbW5u6mtf+9pVf1wAV2hnZ0ePHz/WYDC46o8C4Ar1+309efJE+/v7Ln948uSJTk9Ptb6+rs3NTW1vb2tra0tf//rXGc8A4FJ0Oh29fPkysw5j2//93/9164xK0srKim7fvj2xDrOxsXGF/8sAAOcxqq/X4kPWuZcvX2aunzlLX6/FEMbzAgCuWqvVUpIkiuPYbcMwfOWYbeM4VhRFQ8eyxkDZWiVBEKhWqykIAlWrVXfMfrKOBUHg5ikCAOCiHB8fq16vq16vu1hnvydJoiRJFEXR0LF6va4oitx+kiRqtVqZz7d5+qrVqsrlssrlsiqVisrlsmq12tCxSqXiYmC1WnXHKpWKisXia/4vAwC4au12W+12W1EUqdlsqt1uu9jTbrfVaDQUx7Ha7bZarZbCMHT7cRy7NS8thtnvo9hazdVq1a3nbPGrWCyqUCioVqupWCyqWCyqVCopCAJ3rR+z7F4AAK6jUXPFnmd/VD+hb9R8sLPup4/ZvO8AALztxsXiaY9lnR8315Fv0tzuk46NO18ul5XL5V7Df0UAAK6nfr+vJElcfLZ12MIwdOu1tVotdTodxXGsXq+nOI7d2mu23ot/vcX7JEnU7Xbd2myT2LpqQRBoeXlZ5XLZxe5KpaLl5WVVq9WhtV3y+bxKpZJKpZLy+fzY88vLy5f8XxMA8KZJr3OWdWyac/Peb+ueziq93lnWsfOeG3dNoVBQPp8/x395AACur3nj+kVc7x+z9vk8ZonrF3F91jHyBQDA28jitiRFUaTBYJB5zOrnktxad1nHTk5O1Gw2Jf1iHtl+v595zGrvo47NamFhQUEQSJIqlYqWlpZc7M7n8yoUClpaWnLvEwdBoIWFBVdnt3i/vLysUqk09nkrKysqFovu/S7/eQAA3DSWA/hx3PrbT09PXb+6n1/YPVYvsP596SwvsOsHg4Gbq9Ge6+cWYRhK0tx9Exb7pbN4bjHf3ouT5NaitzqBnwfYWD3LOfw8wnINyx8m/R0AAG4Si+OWE/i5g8V9P8fIqkfYM2wsoJ9XjHuGn5vYM2aVFd+tvuDnA8ViUSsrK0Mxf1RdIqt2YfdbruHnIZajAAAwicU7Py76bWnrC+j1eqrX65KGxxlYe31UW9/GAvjteL/9PulvzcvipR9nre0uncVKP8b6YwKsTe/Hbj/G+2P17d17i8n+8/17rE8BAADgJrCc0XI/q834eaHVY6xWY3Ucq/FYXujnmpYzWp5p+aTloPOML7Gc0XK/UVurvaS3llOmt/bc9NbvgwIATM/vA/Bjg3RWn5CG6xZ+jcG/x49H0nB/gL9vcSe9bzEsve9/Dn//PPx6hV978Pf9+oO/78ccf9+vl/j7fp3E73Pw9/1ayai6CQAAeLtY29vyMX/8heVO1k63XMza51l1gPTW8qxR22mNa9MvLCy4/pys7aSawKjaAC6Gzdnlr0lov9s6TbZOYRRFCsNw6Pc4jjPHCedyuaH1CEetW7i2tuZ+arWa2+c9IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAmj8P9jT789xzWc+6CP682dPsz3PPRd9vc1ACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF+SjhcFgMLjqT4HX4y//8i/1N3/zNzo4ONDi4uJVfxwAuFJ37tzRX/zFX+hP//RPr/qjAAAu2aNHjyRJOzs7V/xJAFyGOI71ySefaHd3V/v7+9rd3VUURSqVSvrggw+0vb2tra0tfetb39Lt27ev+uMCAK5IHMc6PT2VJIVhmHm80Wio2+1KklqtljqdjiSp0+mo1WpJknq9nur1uiTp9PRUcRy7Z0VRJCu31+t19Xo9SVKz2dTJyYkk6fj4WO12W5LU7XbVaDQyn+V/xvOqVquuHlwqlbS8vCxJKhQKyufzkqR8Pq9CoSBJyuVyKpfLkqTFxUVVq1X3rCAItLCwIEkql8vK5XKvPMtfiHN5eVmlUinzWZVKRUtLS6/8/fTfAa4r/7vB/s3ad4f/XZEkifr9fub19v2Qdb19XwwGA0VRNHS9//3hf4/NYmVlRcViUdLZgrn2b3lpaUmVSkXS2b9V/9+pXV8sFrWysjL0vZG+fmFhQUEQjLze//4AAAC47trtto6Pj0fuv+5jljvOw2+7Tdo/7/lZrrVrAADA9WD5hl+P8uvnVpvq9/tKkkTScN3Mr7tbDd2vhfk1c6ur+/WwUX/3PHmQNFy79utTVtvy69l+Hc3qW9JZHduvpfn5jV+Pt3qaXxfz8x6rt/u1NADA65Vud49rk1/0tfP09Uzb5r7Mc7ThAeDtY20wa7e9ru20rK1mW78NZcetfWVtPRu7YO1Av71n7TprC1qbz2KdtQf9dh8A4GaYtm3nb8MwnPme4+PjobHHk4xqs826neVZjOcFAEhn/XTWlouiSL1eT0mS6OTkRM1m08U2/5p+v684jt011o9osdDusef7795Mw9qCtVrNtRGt3WdtOeufs3ahtfWsvZiud1p70tqI1s70338BANxs9h6o1Tctvllcs3hmMdH6AsMwdONrrBY76l4bFzNLm9FimI1XsdhVq9VcfLS4aPHQ4mA67vkx1u61WOqPuQEAAEg7z7iqee/3z807vvg89fR57/fPUXcAAFwkq0VYbcLqDRYvrR5htQ1/ziubCyf9DKvjWwy2un/WM6ZldXx/DNik8Vz+2C+rY2TNbWM1DP99IHu21VD893sAAACAi/Q6a2Ovo0Z23jrYNNfwniIAYF5+/Ot2u4rj2NW/bL6brPGsdt801/hzzE9i41aDIHD1p/T4nGmusXGwQRC4sTrpawAAmFaSJGq322o2m4rj2I1XjeNY7XZbrVZr5H4URe6dj/T+pPGttVrNxa959q2tmN4HAOA80nMChGHoftLHxl3z4sULN8dqFotb6Tg26tioa/y1xgAAmEaz2VQURYqiSHEcK0kSxXGsOI4VRZGSJHHH/H3/+lHv+pdKJVUqFVUqFVWrVVUqFQVB4PZta/vValVBEAwds35DAAAuU7otN+3P8+fPM8fcWHttY2ND6+vrQ223UT93795161MAAK63MAx1cHCgw8PDkduf/OQnQzGiVqtpfX3dxYas7bvvvqtcLneF/8sAvC2ePn2q3d1d7e/va39/X5988olOTk60vr6uzc1N9/O7v/u7rHcG3CA7Ozt6/Pjx1PPTAXg7HB4e6tNPP3V5we7urqIoUqlU0gcffKDNzU1tb2/r29/+tu7fv3/VHxfAWyCrbvL06dOhY1988cXQ2pvj6iYPHz7U+vq6Hjx4wJgoAHgDXEa/6yx9rrVaTffu3aPWDgB47dJjbW1r43OzziVJojAM3e+j3jfxx9v6Wxtz6x8LgsD9+GNyAQC4COk1mMe9ZznqmB0fZdI7ldO8f3n//n3WbgCAt5ytbdBsNtVqtVSv11Wv19Vqtdy7kv4cOK1WS61WS0mSqNFouLnmkiRx5ybNiWPrFgRBoFu3bqlQKCgIAhUKBRUKBVUqFZVKJRUKBfdOZaFQcPeUSiUVi0X3u62LDADAdWDrCoVh6OZVtfWWbS664+Pjofnk/Hnp/PnqkiRxc7ZOMydroVBwc+UUCgWtrq66eHvr1i23b23ArLnngiDQ6uqqi8+2DwDA2yxdr02vQ5Ku0Y47nz427Zol6Xlfs+aCHTU/7KR7mEMWAHCTjVtrbNq4Ps3105glxs9zztYVBgC8nWyNe6s7S3Jtzm63q0ajIUmultzv95UkiaRfzJF7cnIytO691bIHg4GiKJJ0FjcluT5fi3n+8+yzzMrWtLc1v6zfeGFhwc3VYvHMYt3S0pIbu2vzxBcKBeXzebeWmCTX9i2VSlpeXlY+n1ehUNDi4qKq1aqkX4whZhwUAOBtNM3a21nHLvr6eXOEcWttZx27rOstjwAA4G0yb9y/jGPz5grS+Bg+6fxFH2MtcwDATTAuvk86fxn3WJ/GvM5bP7iIWgT9+QCAm8LGJ0hn4w78MQ1+XLdaQa/XU71el3Q2DqLT6ajVag09x3IDf+xDo9FQt9ud+IxZWZ+BPy7Bxiz4sd7GKtg4Bn+Mg8X/cc/wx0uMewYA4Gbz4+uofYuJ4/b999RH7fvvwWXt+3HYj7X+35mHjfeTNNR3b7HWj6cWM6Wz2JrL5VQulyXJtc2lszGD/jjCrL/lx2Qb1yiJPgEAAICUce9qTjvedJ57pp2vwTeq/2aaPp7z3EMOCeAm8b+707+P2p/2utf57POaNK7xuuxLYv4hAABuOH9eCWtr2zgOm8PCn1PCxmtYP5C11f0xGmEYSjrrb0o/z+9bmuedEuvX8cdS2JwVNqYivbX+oUlb62catcXrZ3Wger2uKIrcGoT1en1oLcNJx0f1W9p4Xn8dwiAIVKvVRq5T6O9bfyUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Or4cydKr847bfMpSnLzIxp/rS1/nU1//sT0M/x7/L/lP3vc/f4aYRc5R7a/bpe/Bpd0tnaXNLwOlz9v9bj7/bkZR93vrys27n5/TbL0vNkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJEkfLQxshnO89f77v/9bv/Ebv6Hd3V1tbW1d9ccBgCv1ta99TX/8x3+s7373u1f9UQAAl+zRo0eSpJ2dnSv+JADOq9/v68mTJ9rf39fe3p52d3f12WefaTAY6OHDh9ra2tLm5qa2t7f14YcfukXNAAB40/mLkqYXKB11btb9i3zWRS6iavyFSdOLlM5z7iKeMcs5f5FV4LJk/TtMb7POXfT1cRzr9PR0rv8NWf+mJv07vozz/PsFAABvik6no1arJeksDzs5OVGz2ZQkJUmifr+vbrerRqMhSWo2mzo5OZEkRVGkwWCgfr+vJEkkyeV3klSv19Xr9SRJYRhK0tCzWq2WOp3O0N86PT1VHMfn+t9VLBa1srIiSQqCQAsLC1paWlKlUpE0nNeVy2XlcjktLCwoCAJJ0vLyskqlkiSpUCgon89LkqrVqhYXF7W4uKhqtSpJyufzKhQKkoZzP/u7uVxO5XJZklyuCAAArgc/7/BzID/fsRxpVL7TaDTU7XYlneU7vV5P9Xpd0nDNzXKjwWCgKIokjc6NzlMjk6SVlRUVi0VJ2fmMJNVqNUkaym38nMnPY/z8yH+2n1f5uY7/N/3czM+XLA8DAJyfxS6LURaL/JhjMcuPeRa77H4/Llmb3+KTH9+sDW9/7zxt+UqloqWlJRdT/LhkscLa3n7b3eKLH6OsLW5xyI9lFgMtXvkxj5gEAG82i1Gzbv12nsVEa4tZ3LQ2ndXSs2LsLKwdZnHJ2kgWuyzmWQzz46LFOYtbFgsthlpM9GNc+u8BAN5OURTp9PRUURS5+GbtO2sD2u/p7aj4mN5au2+e9p/FIWv/pbcW29Jbi5O2tdiX3locTW8BADeXxTqLcRbTLJb5sdNim8U8i4npWGrtQquJWnvR79+bhsVFa+PVajVX97Q2oMVJi4sWDy3+WTvQap3pGGjn/TFNAICbbdQ7XOO2YRjOfM/x8bHrY5xG+h2sy97641cAAABGsbzGHytlOY6NsbJ6gd9vbHUIy438/mirSVgdwR+jZX3VVs/w3/OaheU9/ngpq8P7x6zm7vdFW03BH5vljw+2OoY/fnjcs/0+awAAZmVx12r7FiMtjlqstXhqMdePy+lnZI2Ftvhssd+P3bMaN0Z5mnHSfoy18V7zjpMGAAAALsp555o87zX+fEWzGNVXOO7cRV0jneXtAACkXdR4nUnXzDp2p1arTRx3c55rqFsBAMZJx7aL2J9m3rZ07LqIfWIeAGBWSZKo0Wio0WioXq8riiK332g0FMfx1Nf0+/3Mv2FjFCqVikqlkorFoiqViiqViorFoorFoqrVqsrlsjtvv9v5IAjcORvbAADAJNZOS//4bbhx554/fz4yvllbzP/x22iTzt29e5c15AAAl2ZUnAvDUIeHhzo4OHjl+MuXL916GL5RsW3cz5e+9CX3bhgA4HoJw1BPnz7VwcGBiwnp7bNnz4bGfNRqNa2vr2tjY8NtHz58OHTswYMH9FEBmEmz2dR//Md/aH9/X/v7+/rXf/1X/fjHP9bS0pK+8pWvaHNzU9vb29ra2tJXv/pVvmOAt9TOzo4eP3489XhTAG+ebrer73//+9rd3XVx/wc/+IEk6eHDh9ra2nJx/zd/8ze1tLR0xZ8YwJuk3W7r8PBwbK3j888/H3o/dHV1dWyNY2NjQ7/0S79EXy4AXEPj+kDH9Yna3AG+efpArVbO+/sAgNchHfemHfdqPy9evFC32818djoOjhv7yvhXAMBlsHmbkyRRkiSq1+uq1+tKksQdt2P2LmMcx0PHkiRxaypkKZVKKpfL7qdWq6lSqbjf7d3GIAiGjpXLZQVB4PZZhxgA3l5+O2qaeWQmXTdpvrVRc6Rltb2m2V9bW9Pq6upr/C8GAMCwRqOhTqejOI5dXIzjWJ1OR41GQ81mU51OR1EUufNJkqjT6aher7u198IwdGvkJUmik5OTqdbqyefzKhQKqlQqWl1dde3A1dVV186z/VKppNXVVTfnje0Xi0Wtrq6qWq0O7QMA8LYaNZ/4qDbvtMdGjc9JmzSPeNac4tMeow8TAHCTzRLD5zk3zRzr0uRYP81aI+Out/V0AQBvBhvXYzFFOlvf/eTkRM1mU5LcfOa2Lrwkt16kv+671ZRPT08Vx7EkufXh/TXk/fUn7TNYDXoeCwsLbi49i03S2Xrv/nqRtj6Ivy68rSNvx/zn2Try9gx//Xl7lq0Z768nDwDAm8qP9xbbpbMcwY/9FucluXZpv993fcl+zLd8wr/fjvl5gOUG9mz/ebOyGO3Hb4vtfi5g60lbHmHrtUi/GOu8vLw8FOctB7D8wM8dxv1NAADeFuma9UUdm+eeRqMx8h3dSfx6QboW/rqP+fUMAADeRhedA5z3Hr/mMY/zxP3LuIdcAgDwNruo/OAiz0saO4/KNLLG5Z231jDPM6yPBADwdvL7//3xgKP2/b77Ufv+WEN/f5r46Y8xGLV/HtZfP27fH+s+at/GCUhnsdIfM+A/z8YP+GME/Fhr4wX8cQgAAAAYzXJMf+yojTUdd87yTv+c1W/sGhtjYtdaLmzjWv13XmZh763YeymWW1odxsarWs7ojzm1fNJyULvH5mvK5XIql8tD91iOythUANeZP+er//6ANFwrkM7eUZT0ynexX7eQhmsI/vuL0tn3ffpv+PURabi+748/9Osf6Wefl183kM6+/6XhOkP63USLMdJwvcLihKRXag4Wj6Th9ywtphi/f8Cvi4x7NgAAwCymGeM5zzXTXI1PP/IAACAASURBVDtv39OocRjTjNU47zW086+/WdfDGHfu6Oho7P9Hs9YnHLVuYdbx27dvs34TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBspPQ/2qPW0Zjl3Fc+Rzr9mZpZJa2fPct3reJbEmpsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAW+ajhcFgMLjqT4HX59d+7df0R3/0R/qrv/qrq/4oAHCl/uAP/kBf/vKX9Xd/93dX/VEAAJfs0aNHkqSdnZ0r/iQAZpUkif7t3/5Nu7u72t/f1+7urqIoUqlU0gcffKDt7W1tbW3pd37nd3Tnzp2r/rgAACDl+PhY7XZbktTtdtVoNNw5f6FYfxHZ09NTxXHszjWbTZ2cnEiS+v2+kiRx5xqNhrrdbubzkyRRv9+XJJ2cnKjZbLpzURTJukb8zzjuc12UYrGolZUVSVIul1O5XHbnyuWycrmcJGl5eVmlUsmdq1QqWlpakiTl83kVCgV3zl9sNr0Qba1Wc/uFQkH5fF6StLi4qGq1mvm5FhYWFASBO5f+nOm/AWRptVrqdDpD/27r9bp6vd7Qv0n7dzwYDBRFkSSp0+mo1WoN3TPpvP/d4f+7zjo/L/v3tLKyomKxKEkqlUpaXl4e+nfj/xuddN7+3fv/Jied9/8N+t8bAAAA15Gfu/ltOGuX9Xo91et1ScNtsKw80M8jLd+UpDiOdXp6OpR7+jmh/3etzZduQ87D2ml+rufnin47q1qtanFxUUtLS6pUKpKG8zrLG6WzvNO/1m+X+e1F/+/5z7t165ZWV1fP9b8PAABcDL8u5edGfu3bcqNZ8hn/Wj+n8vMcP3/yn+fnXX5edR6W70jDNWvLbfycya91+TnPqDzHr5eNynn8+refW/n1M7/ODgAYzdrkFrf8trnFJD/GWByzmOLHJWuzW+zx45f151qMyvo7s7KY4ccdiwt+bLH4ZG13v91tMc2PPxZD/FhlMca/1/6WH98AANefxTKLgRbTLEZZO8uPY9Y2s3hmsctinsVKi4t+nLP4aH9vFhZrrD1k8crikR8DrW1mMcvaTdausrjmt9EsRtrfyYqtAIC3g9UtLUalt9JZvLNt1nWDwcDFtvTW4mR6Oy2Ld+lt1rFbt265uGXbrFg3Kj6mYyoA4GayNt24bRiGE6+ZZjtrXBwV//y+s0nXzLpl/BEA3FxhGLr2ndU4re/worfp9z4nsXbb694CAADMyh8/bHUAqwv446us1m7jirPGZfnjj+1Z/nhh66/2+7Qt5/Lr/vOwOrrfZ+zXI6zu7o/NyhprlTWuatpnZ43jAgBgknRdPuvYZZzzj83aF2Cmqf1f9jn//WgAAABgXlbXyqqVWf3Kr3PZeFV718Jybb/uNaqeNq4eNyvrJ7R82a9p2Tm/ZmXvYVi9y+9jtHqW5dp+Lczybr+OZu82Mt8rANxsFzWeddI1/vzs40wz7rRWq537Gn+uGgDAzWXjHNrtttrt9iv7rVbLxbH0frvdVhzHI/fHsfZaoVDQ6urqxP1bt26pWq0O7VtcC4JA+XxexWKR9QMAAFNpt9tqNBqq1+uKosjtNxoNxXGsJEnUbDbVbDYzf6/X6+73SeMFa7WaisWiSqWSisWi+92OBUHgfi+Xy6pWq+6c/3uxWGSONQDAWFajtB+/bpn+yTr38uVLN293WrreWKvVMn9GnV9bW+MdegDAhRoV4yb9PHv27JX+unGxbdzP/fv3eecKAK7Y8fGxjo6OdHh4qIODAx0eHurp06du/+DgQD/72c+G+q3y+bzW1ta0sbGh9fX1zO2v/MqvMCc0gLEODg60v7+v/f197e3taW9vT+12W+VyWe+//762t7e1tbWl3/7t39bdu3ev+uMCuAA7Ozt6/PjxVGNAAbwZLJ7v7e1pd3dX+/v7Oj4+VrVa1Te+8Q1tbW1pc3NTW1tbWltbu+qPC+CaarfbQ3WJrO3nn3/u3ueUzmrSGxsbevjwYWZ94pd+6ZcYJwQA14D1Sdp3+jT9kT//+c8z10cc1ydp3//p43fu3GE+KgDApcoafzNu7Gn6/PPnz0fO+5gV+2YZg8q4HADAefixLB3bsmLdqGu++OILnZ6eZv6NSe9YZB1PH6PdBwBvl/T8Y+P2p7nuxYsX6na7Y//mqHiUNf/YNNexLg0A4CpMO6fnqJg57rzNtz3JqHk7R8XSac/T7gMAvE1sbQt/jbher6coity6FbYORhzH6vV6iuPYnbM1LuI4VrfbVZIkQ/N1n5ycDI21HMXWqiiXy1pZWRmak7RarWplZUXlctmtR1Gr1dx6r/49FrP9e2zNCwAAbppZ2uSztuFnWVt21nU2Zj3HPHgAcPVmXZ982mPz3GPt1HlNs275RR2bdJ610AEAbxo/Dtt6jr1eT/V6XZJcrVmS4jjW6enp0NrKfmy3Nqe/rrKt5yydrdFs63JJcnVrSWo0Gm6Mlq3rPC9bK8tfO9nq05JUKpW0vLysxcVFVavVoWPj1lbOWos5a+3mrLWeAQB4E/lx34/bfg7gx3DLF/x4b/UA6Szf8HOErGP2nKxj/ueY1dLSkptDyGK5nw9YP3XWMT8PsLpA1jHpLP5nHfPrCeQJAIC32UX3JZz3novqi/D3L6pvYZ57/DwDAIC3yXnygXmvnXTe7yuZ13ni/mWdt34RAMCbbZaYeJX7VuM/r0mx7rL3p7mWNjsAAMD52FgRfyyqjT+1Ws6052xc67znZmX1Fhuv6o8rsfGodo3ljTbe1Mai+vcEQaCFhQU3JtbGsFj+aeNd/XEuADAPf244f+yfpFfG66Vr5n6b3x9vKA2/SyANjzWUht8ZsHl0jF9XkIa/m/3v7Ky/c97xAaP44w+l4XqANDwe0K/B++8WpL+z/Tln/ZqC/46CdBYTJA29v+i/I+HHEOnsnYqszwoAAHCZLmsei3mOzdPGH9dHNM1Y0PNcKw3nfnjz2fvaSZK4+UGjKHLzgTYaDcVxrFarpWazqTiO1Wg01Gq11Gg0FEWRWq2WWq2WOzdurQxrI9RqNRUKBTfnZ6VScb8HQaBisahisahSqaRqtTp0XbVaVbVaVaVSYWwRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNciPS/1qLWwZjl3HZ5zUdLzTI9aP+s8117UcyZda2s3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA18NHCYDAYXPWnwOvz53/+59rZ2dGPfvSjq/4oAHCl/uRP/kTtdlv/+I//eNUfBQBwyR49eiRJ2tnZueJPAmCcfr+vJ0+eaH9/X3t7e9rd3dVnn32mwWCg9fV1bW9va2trS5ubm/rmN7+p5eXlq/7IAADgBpp2Yd/LWGT4Is5d1uLD0vyL/076/arulaRarTbLfwK8IY6Pj9VutyVJSZKo3+/r9PRUcRyPPN/v95UkiaThf0eTzsdxrNPTU/V6PdXr9anOz2NxcVHValXS8P+PK5WKlpaWtLCwoCAIXrl2aWlJlUpFkpTL5VQulyVJy8vLKpVKkqSVlRUVi0VJUj6fV6FQkCTdunVLq6urkqRCoaB8Pi9JKhaLWllZkSSVSiXXdiuXy8rlcnP/bwQAALgsWfmdnx92Oh21Wi1JUrPZ1MnJiSQpiiINBoOhXM7PJev1unq9ngaDgaIokiR1u101Gg1JUqvVUqfTkXSWF/p/17/2PKbJ1SxvlKRqtarFxUVJUhAEWlhYkHTWPvJzy8vIJwEAwNXxc51Go6FutyvpLK+RzvIW6SwfkqQwDCVpKPfxcxs/Z/LznJOTEzWbTUnDeZefV/n5mv8Zz2NSznOeGpq/71/vP9P/W+nP49fR/PwNAG4iP05YrLFY4McTi0kWM/x+G2vrW2zx45PFOItBfhzz44/97XlYm9dvT/ttYosHfv+OxSY/pljb3Y8/FjP8eGPtfT/uZH0GAMD1YnFn1Haaa+a5Z942lsWtrDE6F3Vu3DV+LAUAvHmsLWZbq0Wmtxan0lvrZ7XtqDhn18wzNs9vP1ntztpbFoeszebXD62NZ204q+9ZDLM2nd9mszagtfHoOwWAm8NiWzoGpmOcxTSLh3at1UH9mqfVMq1mavVRi7uztgP9mGgxy2KjxS6LkRb3LFZa/LOYaXHQYqfFw3F/AwBwc2S1/17HdlrWH5feWlzLakfadem2ocVGe0ZWLEy3KwEAAC7KuP7kScfmuWfSMX+88jym6V++qGOTzlPfBwBkyRqjbPHvdY+TnpXfr211DntH2K9nWD+BP+7ZahwWH/2xzlY7sZjq/x1/XFjWeGoAAABgHn5+bbm35eWWS/t5tuXg0+TnWTm4n+vb9f4cQ7Pw82XLvf33Cy1vzsqvLY/3c2ob52q5uj8G1voo/bmB7Hr6LQHg7RWGoXvnwupIFgOt9jTpml6vpyiK3DUWX9PPmUYQBFpcXFQQBC5OWeyzmJbum7E4ZbHP6k/TPAsAcPO0222FYeji1UXsTzMnjT/eoFarZe5POp917Z07d2ivAQBe4Y/VC8NwbCyb9PvR0dHY2mY6hqVj16Tf/X3iGgAgLSum+T/jztl5f+7sND8++T/p2DXq3P37993aHgAAzMti2eHhoQ4ODkbGNf/nxYsXme9jjYpf9rOxsaH19fWhY7TFAOD1a7fb7ns/a/v06VP99Kc/HfquX11ddd/jo7bvvfeeG1sI4Gbr9Xr64Q9/qL29Pe3u7mp/f1+fffaZBoOB1tfXtb29ra2tLW1ubuob3/gG78cDb6CdnR09fvx4ZO0TwPXWaDT0n//5n9rf39fe3p7+5V/+Rc+fP1cul9P/x969/EZynXcf//HSzWbfW6ORTCKSkkHgIDaiCCAsxCZje5NVdvGLmWUW2QTxKkCAbJOssshfkE329CarAAGyCAxSdqwwkleWkGAAyzBHt5m+N9lNsvkujKf01GF1d/WFbJLz/QBE162rai6s5zznnDrn61//eixWf+Mb34jm1gTw8hoMBvryyy8n1if4/qzZbFYPHjyYWJ+wvb29xD8ZALx8xvVzGffz6aefXskBJ7UNjvqhvwsA4DpM6ss5qR9oUqwz42LeuP6ett/GZQEAIK1ut6tOp6NOp6NGo6F2ux2tt1otNRqNaH3SMePmCaxWqyoWiyoWiyqVSqpUKiqXy7FtdkypVFKxWFSlUlGlUlGpVFKpVFK5XI7G+gUA3D0+L2o0Gjo9PVWv11Oz2dTp6am63a5arZZOT0/V6XSisb0s7pyenqrVaqnb7erk5EStVisaD3MUG4erWCwqn8+rWCyqXC4rn88rn8+rWq0qn89H+VShUNDm5mYUczY3N6OYZMfZeJUAANyEcO6zceODTbs/7ZiZ84whNm7bw4cPlclkbuBvEQCA6xOOW23jVbdarWifzQ/RaDR0dnYWG8va8lo/FrbF7Xa7HX0vDYuzNl51rVaL5k+z+FsqlZTJZFStVqO5GcrlsrLZrMrlcnRctVpVNptVsViMxsEmHwYAvGwm5eTjtqU5fpq5zafJt6fNz+lvBACLYXmhJDWbTQ2Hw9ic3n4+QIsLkmLtnfaunJ+P287l5we071geKX01N6Gfk9Df07T8fNw2h6Cf989yxVFzc1sOabFG+mreQT9XoM215OcntLw26R4AALgrfLwP88Vl7Ze+Km/MKswn/bZRy9e935dBAAC4zXxM9vXDSfUIPuf39QS9Xi+aT8vXKdjcJMPhUM1mU1K8LsLKClK8vsD3H5u3nCB9lfv7eZPL5bLW1tYSc/9J9QHj6gh8PcW4ugsAAO4LX5ZIapPw5Qfb78sXvjxgZYBJ3/HlkHHfmVVSG4HF8JWVFVWrVUnx+gD7ji8fTPqOlUcmfce3XwAAcF+kaTtYRjvGNH3nkiy7bWLUfit3AADujmli5TKXJ42rktY0bf3LXLb8HwAAANdrXB3OTe1LO/ZRaFw9zU3t451M4OUwKlefdv2mvjvp2Fmfu5P45+O069d17Dzf5R0FAABwG/n3Raz/ZtK2pPEm/LakcSlsW9L4FX6btVn591WmlfQuSNI7I0nvlkx6L8X6bdg7LX4sDGt/sv6j9BmF9Jt3qWwsF/t9qdfr6vV66vV60RwY3W5XvV7vyr5WqxWt1+v1iX2r7f91uVxWoVCI5sgoFAoqFAqxuTAKhYIqlUo0FmihUIjm0ygUCtEcGuvr6zf4NwYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgJtic1aPWw/Gm/bqfn1qKz2sdnsuPOSjF56sOz+Pnug6vGZ6n1+up3+9H6/V6fdq/gon8+IaSlM/ntbGxEa3XarVo2cYpNH4st/A84RjVfl6C8Dw2hqKk2BiISefx83L5sRTD8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArtWPVi4vLy+XfRe4OT/96U/17W9/Wx9++KH+8A//cNm3AwBL89d//df6r//6L7333nvLvhUAwDV7/PixJGl/f3/JdwLAa7Va+tnPfqaDgwMdHR3p8PBQ9XpdhUJB77zzjnZ2drS3t6fvf//7evjw4bJvFwAA4F45OztTp9OJ1v3kzBcXF2q1WtG+cCJnP+mzFJ8gejgcqtlsRvsGg4G63W60fnJyotPT02i93W7r/Pw8WvcTP4eTRIcTU4+7j0VaWVlRtVqN1sPJmMOJm/1k0VJ8Yulw8uiNjQ3l8/lovVAoKJvNRut+EuhwwuhwcunwXOH+8L7De8Ht4SdEt//X/vfB7280Grq8vIz9Tift97/X/lz+e/731f+++d/bcLL2WZXLZa2trUmKT5puvy/+987/3/f/b9fX11UqlSTF/7/734VcLqfNzU1J8d9VPwG8/73zk6v7ewQAALgtfNnMlpO2LXPZyqDz8OW4ZS+P2u/LlAAAYDk6nY7Ozs4kxeuafX23rze2csrl5aUajYakeJ32ourQ/HJYvz4PX7/l68B83a+vPwvrtn19s6/H9vVj817D1/VRvwbgvkqbm0/KoRe1zce9aaXNg6fJl+c5j49VAICbYzmPz48svljM8fmS5Vm2z+dPts/6Fvh9lpPZPp9rzVqvbLHD6mt9PwLLT2yfz2tsn+VDfp/1W7B9vj/CuH0AgLsjzK0mfS7qO2F/2TTS5FOTPmf9jq/rAwDcP5abWZyyNi1rC7N8zvJB375m73xYLmc5pMU6e8/DrmHxcJZ2M2vTsj7eluNZ3LJ8zrdZWRuVHWu5m2/jsjhn57UY6PNK/x4IAOD+stg366fVcybFTKsvtRgZxsZpWOyzvhwWs/w7Vxa7LBZanAu/a/Ez6btW5xrGXgAAgOvk26OtrOXLVUnvLPl6Bqub8G3QVgab99yzsHoH3w/Xymi+bdrKXL7OwtqifV2H79tr5/bn8XX7/j15K9uFfX0BAJilbTxp3zznmuc95NvW/9nHXwAAACCtZZXL/bZZ+rVK05elr+v4cMxXAMDtZu0z1j/V4pO13zSbTV1cXKjRaETtO9b2Y2039h3rg2NjzlhMs746fmzzSSyuWB8Za6uxOGPtLbVaLWpzsbYda6+xfqppzwUAuH8svnW7XfX7fTUajShuNZvNKG612231+321Wq0ontXr9SjWtVotnZ6eqtPpRDHQz/cxiuVN1Wo1ikGlUkkbGxsql8sqFAra2NhQtVqN4lWlUtHGxoaKxaKKxaJyuZzK5XIUx2q12pU5LwAALy/L31qtllqtlrrdrrrdrprNZhQDO51ObL3b7arRaKjT6UTr9Xr9yhxToUKhoEKhoGKxqGq1Gq2XSiVVKpVovVwuR3GuUCioUqmoWCwqn8+rWCyqUqkon89H9YoAgJeX1R02m001Gg21Wi01m80ortl6vV6/ss2WR9U5Wp1hpVJRpVKJ4pMtVyoVVavV2DZ/TK1WY+xmAMDMTk5OVK/XU/88e/ZMx8fHsTmETS6XU61Wm/pna2uLMcoA4BrV63UdHx9Hz/Ckz1/+8pex+QlyuZy2t7f16NEjbW1taXt7+8rnm2++Sd874CXUbDb1/vvv6+DgQEdHR3rvvff04sULZTIZvf3229rd3dXOzo7++I//WL/zO7+z7NsFMMH+/r6ePHky93zBAK7fxcWFPvroIx0dHeno6EiHh4f64IMPNBwOtbW1pZ2dHe3s7Ghvb0+7u7u0cQMvoaT8/+nTp7Ftn332WTQXr6SofjYp77fPt956i3ZIALhG49rq7Pkdbn/+/Hli/8lp2+q2t7e1vb0djU0IAMA8/Jgko2Jbmv1JLMbZu29JcW3cvldeeYV4BwBIbVRMC7dNOmZU7mZ83ArjWFJcG3XM66+/Tv0dANwRzWZTp6en0XvWNiaIjaHVbrfV6XR0enoavYN9enqqZrMZjZnVaDSiWFWv12PjQo5iY1pVKhXlcrno3epcLqdisahSqaRcLqdSqaRisRiNzVgul7W5ualCoaBqtRqNh1WtVpmHDgBwI8L8LBwvOczDxu0Pt9lYk5Mk1U2G4x7Psp9xkAEAd92kmDvrPts2aWwxb1TcHbdtmn02JjQAAPfZqHmKxn2Oi/OjPl+8eKF+v5/qnhYRx8dtY7w2AFA0l4+kaG4DSbGczOpSh8NhNMfBYDBQt9uV9FUMkRSbv87G3LQ5FyRF8UBSND+Q9NV81KPuZ1Y+n7P5fWxeIElRPa3NGeS/s7q6qkqlIklR26iNFyrF59yrVqtaWVmJzcNg17O2WknEHgDAnTFuvtqb3O+Xp6kzTpI0d+2o5ZvcXywWlclkZv5zAQBwE6aJ2dMcu4jvSV/VQcwjbRxPs7zoc9BeDQC4q+aJ7ze1nOadrEmusz5hlu/wvhcA4D5ZdjvFqP2tVis2p8+0rqPtYRHnsr4PAIDbw8cf37dOivfV833tLi8v1Wg0ouN8W/uo2Nbr9aL+3aOW/XlGLfs+gfPw9eK+TX3Usn9fe9Sy77s3atn6/I1b9vGS2AkAAHA7+DJwUn+SpG3+3RZ7nyVpm5W1/TWs3Gvv1STtm5a17/j3Xay8OW6flZ3T7qvVapI0dh+A2yVs0x6V20+7fl3HTvruouoOkoyq+560Ps2xN3kd6h0AAMB9lNT3wufVfgwL305lx44a78KOTaoj8NuSjvPXmZb1wfBjUCRts9w+afwKvy1pnAvbljQeht/Ge6qY1rTjgk67zerXxgnHBZs0Z9OkfeRRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOzmGY/6JtYXcY4046TNatYxqhc11vUix8xm7gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIx+tHJ5XTMD4Fa6vLzUm2++qb/4i7/Q3/3d3y37dgBgaf7xH/9R//zP/6ynT58u+1YAANfs8ePHkqT9/f0l3wnw8rq4uNBHH32ko6MjHR4e6uDgQB999JGGw6G2tra0t7en3d1d7ezs6N1331U2m132LQMAAOAemGeC7WV9d9K5Op2Ozs7OpvlrmEo4eXbStru+LjEp+CJ0u10NBgNJ8f+X7XZb5+fnkqRms6nhcCgpPmF9vV6X9Jt2y0ajIUkaDodqNpuSfpNDtlotSdLZ2Zk6nY4kaTAYqNvtSpL6/b56vZ4k6fT0VCcnJ5LivzO9Xk/9fn/uP2ulUtHq6qokqVqtamVlRdJX/49WVlZUrVYlSaurq6pUKpKk9fV1lUolSVImk1GxWLxyTHj+QqEQ5cT+/64/l7+2JJVKJa2vr0uS8vm8NjY25v4zAwAAzMOX1UaVz66zPHl+fq52uy0pXXlyHsViUZlMRlK8XOa3+zLaxsaG8vm8pHgZcW1tTeVyWVK8fCnFy4v+GqPKjtlsVoVCQVK8HBmWQwEAwM3y5RJf/+XLNFK83OPLRr785MtYvlwzyzVarZYuLi4kxctli6pbk0aXjUaVYcaVjXz9XLlc1tra2tzXkOLlLF9OA4C7Iql9cVSb47j9i9rmY9i0/LN70vK8+6c51o4BAFwfy3t8bmP1wbbP1/PaPstlbJ/PgWyf5U5+n8Ur2+frmadlbfiWm1j+4XOacJ/0Vf1v0jZfn2y5UNI2H7foDwMAt5vFHGvP9HHJ2kYtdlmOZfHN1/dZDLS6PYuTlptZLPWxzdcJpmV1ZhZrfHuj1c3ZPl/flmaf5Vhp9wEA7g+LbRYPLcb5uGixzuKjxTyLkxb7LLb6OGkxL4ypPtechsUna3+y/M3HRcvjrC+PxUDfb8fyNYuvFu/SnA8AcD+F+Z6PhRbPrA7TYl+YK1o8Tcr/wvhp352l/6zFNutPYfmar/+0+GWxzuKY74Nh8TBpn9V3Wsz1cdT3owUAALhpy+qLNWq/f9dqVrP0rbqp7/m+wQCA+83qO/z7wLbN15P4OGj1Hr4PmdWf+LaCpPP4cWksniadZxa+bdu/z2J1Ib7Pl9Vz+HoR61fm2wp8v+Wk81jM9HUoVufCu8QAAABIy5eJrbxtZXBfxrbyctL7HPY+uj/e2iqT3uNIygVmrfPyZWQrNye1N1r52Y737ZxWjk5qn0zqP2vld58H+HfcAQC3R9jOMstnvV5Pdew0dUthu8k8n7VabewxxCgAuD/CuJQUo2bZ78ceG2VSDEqKR6P2h8fyXjwAvJzsPb9Go6FOp6Nutxutd7tddbtdtdttNZvNaL3VaqnVakXH23q32436AiSxusBCoaB8Pq9SqaRyuRytJ+3L5/PK5/Oq1WrRcrlcVqlUUj6fj8aGAQC8XJLyqvBn3D7bP4rlTP7H51Jptr3++uv0wwYATNTr9VSv1/XixQu9ePFi5LL/qdfriWN0ZrNZvfLKK6rVanrllVcSl2u1mqrVaix2VatVxncGgAWq1+t6+vSpjo+P9ezZs8TPTz/9NDYOZa1W09bWlra3t6PPR48exbZ97WtfY5wP4J57+vSpDg4OdHR0pMPDQ3344Ye6uLjQ1taWdnZ2XkCV/gAAIABJREFUtLOzo729PX3nO9+J+usCuB329/f15MmTqceZBnD9ms2m3n///ViMrdfrKhQKeuedd6IY+93vfle//du/vezbBXCNTk5O9OzZs7E5+yeffBJ7DyGXy8Vy9aSc/Y033uAdAQBYkEajoXq9Hn36n0ajMVO72aS2M1v26zY3NwAA02g2m2q329FPq9VSo9GIlm17o9GIrVs/fItpo8b5qNVqKpfLqlQqVz4rlYqq1WrivnK5HO2jrREAMM7JycmVd8S63W4U4zqdjjqdjlqtlprNpjqdTrTdYp4/ZhQbd6NUKqlarapYLEY/1WpV5XI5Wp90DP0eAeB2GzfmxqzL047HkWacjTTLDx48iMY3BwBgkSaNrThpzKpJ4zPauMbjLHIsq3Ab810BAO6qWWNv2n02p3kak8Y6nncf4yQDAO4zm6eg2Wzq4uJCjUYjmsPH5vmxWG1z9lg9tB3bbDajeXxsrh/7jsX0NHXXxubuKZVKWl9fV6VS0dramqrVajTfTjabVaFQiGK3zd9j36lWq1pfX1e5XI6OsX21Wi02FycA3Ad+7uSk5Un7F/G9UfvnmW/ZhDmb35Zm+bqO9XM3AwCwbLPG+5teniY/TDJvLL+u/byPAgC4zZZVV5DmHFbvPI+bqC+Y5xz0DwMA3CU+Nvv+W76u3+f2fuwH3ye7Xq9Lki4vL9VoNCQpaoeWFLUvS1/NCykpaqOWFLU9S4rKEFK8fDEPaz+W4vHa5/jVajUaY8nmL15dXVWlUpGkqP1aktbX11UqlSQp1h5tbduStLGxEY2V7csL1j/Nn5s2CADAXeTjt4/rftnHfl8m8GUFvzwcDqMxFH3ZQvqqzCHFyyJ+Oam84u9hFjbXtBSP9daHTfqq7ODLBX6/lTN8GcL6zUlflUn8fl8+sPKLL4/48gUA4Pr5eCXFc2cfE6V4zPK5dxiTfNzy+W/aa4Wxcty10rxbPQ0fp0blwqPy4jTL/vx+2cfPUcs+BvtlAAAA3F7WHuXLsVYO9nVKSdusjcuXo61snLTN1z/1ej31+/3EbbPwZWOrz/H1RdZe5bdZvZCVaX39kNUppdnnz+nbvAAk87m7pCvjnYS5vn9OmLCffPj8SKqbXsR1wzkbwuv6/UnfX5Qw5/bPHl+XLV2tz/bt974OXtKV98F9zi/F2/jD6/i6CElXxo6xunwp3uYv0WYPAAAwii+zWnuTz8t9f0/fpmVlX3/sqDEp7Fhfhk461reNzdsXRIqXF5P6dfhyrO33ZU7blnSc32bl0KRtvhzqy6vAdbDxxVqtVvS767fZ713StmazqcFgoHa7nbgtbZ2a/R7YeGJ+rDC/zX43krZVKpVo3DG/LZ/P05cKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt5afX0q6Or50uB7O6Txp3Y8PmLQejoE9ad3PSZm0Ho4LuIhxAicJx+EP1/0Y1mnW/RzXSet+PO2k9XAc7Enr4dje4Xp4fwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJL0o5XLy8vLZd8FbtYPf/hDHRwc6Oc///mybwUAluZf/uVf9MMf/jA2uRAA4H56/PixJGl/f3/JdwK8PNrttn7+85/r8PBQBwcHeu+99/TixQsVCgW988472tnZ0d7enr7//e/r4cOHy75dAAAA4M4JJ2KfNJF7ODH7pInVz8/P1W63o/XhcKhmsxmtX15eqtFoxO6pXq/H1pvNpobDYbTearV0cXERrbfbbZ2fn0frkyarvw6TJnOfNPl6OJn65uamcrlctJ7L5bS5uRmtb2xsKJ/PR+uZTEbFYjFaX19fV6lUit1jeM21tTWVy+XYMeF9rK6uqlKpxI4J7+1l4/9/+f97/v+l/z/baDRkzej2f9v/v7+4uFCr1ZIU/33xv0v+96zf70ftEf6Y8Hcp/D2ZRzabVaFQkHT1/4T/v+7///j/s+H/x1qtFi373w3/f2vR1wQAALgJPl/yeYgvQ3Y6HZ2dnUkaXZ70ZUhftvTf9ef31/VlRF/WDMuL/hrz8vlQuVzW2tqapHgO4st6Pp/xuUyYo/hyoy8D+jLkqPKgL0/6suHKyoqq1epC/twAAGB2vt75OpYXea5F1y+Hdb1+fRH7rvv80tX6cAC4bj7XtdzY57yWd/t2SP8st5zb7/ftLT7ftrYcf00fCyxP99eflc9vLQf2eXI+n9fGxoakr/Jinzv757Ody+e9Pjee5VwAgMWwemCrx/XxyGKU7fPxxfZZTPP7LB75umGLYT4GJm2blo8RFq+svtfHnaRtFn98m3/SNqvn9bEpaVvY7wUAsFwW4yxnsjzL+sD59kmLXXasz7ms3XLcPsv7kvZNy3Iii12+LTHNPotlafdZXVrSPgDA3eZjneVwFs+s77fP5Sx2WX2k5XS+/7jlcaPO53PK8B2LNKzPjs+1LNezekGLg1ZX6fM86xdkOZuPa/Z9X8dpx/u6StqZAOD+sVzNx6kwpln8C3NI+66PmfZdi3Xj6ljDdwrTsnjnY6LFLasT9XWYFucslvr4aPWWPt5ZfLWY6eNjmCcCAAAs26x9bBfRTzfNsbPUgYSsjJem723S8nV+z7+HBQC4n8bFvVni47zfmefd4lni3TzbJu2nfgUAAADjjCsbT1vWnuf4eeq3FlGuXtQ2+vwAwM2x/jXW38b631hMqdfrUf8Z63NjfXCsT47FozTnSiusk7E+M9avxt6rqNVqUd8a65tjfWes782kc/GuOwDcTa1WS6enp+p0OlFcajabUY7UaDTU7/fV7XbVarXU7/fVbrfV7XbV7/fVaDSiGNZsNnV6eqput5uqr6jFHIsttVotijvlclm5XE7FYjGKR5VKJdpfKpWUzWZVqVSiGGXxy28DALwcfB1fvV5XvV6PrU+7b9J8Mb4urlarqVarxdbT7rPl1157jXwKAF4CFmNarZaazaYajYZarZba7Xb0k7St2Wyq2WxG6zYWZ5JaraZSqRT7qVarKpfLsW2VSkWVSiW2rVwuq1qtqlQqMV4YAOCKi4sLvXjxQvV6XS9evEi1bHmWn5fWbG5uRjlTtVqNlkdt8+v2XjgAIL1+v6/nz5/r2bNnOj4+jn0+ffpUx8fH+vWvfx2brzybzerBgwfa3t7W1tbW2E8A90On09GHH36oo6MjHR4e6sc//rE+++wzra+v6+tf/7p2dna0t7en3d1dfeMb36B/KrBE+/v7evLkycLmswUwm/Pzc3388cc6PDzUwcGBjo6O9Itf/EKXl5d69OiRdnd3tbOzo52dHb377rvR3M0A7rbT01MdHx9fya/9569+9atozGpJUT+R7e1tPXr0KDG/fuONN2LzwgMAJrN3rOr1uhqNRrScdltSTlWpVKJ2qVdeeUWvvPKKarWaHjx4ENtm222Z9isAQBrn5+dqtVoT+wn6ffV6PXac9T8cZVT/Qd+HsFwuq1arqVKpqFwuJ34CABDqdDrqdrvqdruq1+vqdrvRNlu3bY1GI1q3OGf7bH3cuE7lclmFQiEWz+xd42KxGPV5L5VKKhaLY4/hfS0AuF2S3uuddznNuBbhO8GLWLb+8AAAzMvGIOx2uxoMBmo0Gjo7O1O73Y7G0bAxC5vNZnS8jVFYr9ej8QzHHZ9GrVaLxh608aAqlYoymUw0FtTm5mb0HnK1Wo3mALXjq9WqNjY2orzOxoeyGAoAwF0S5qLh57z7ppnXOykvHZXvptkXbqM+FQBwX00bp2eJ7WnGrvSS4nWamD7td4jvAG4Tn/+MWra5em0eF0mx+k2rQ5W+mlPM5n6RpMFgoG63K+mreWMkRc/oy8tLNRoNSYrqVCVFz/N52Jwt0lfzhNnY+5KiMfUlqVAoRO+a2jwxq6urUd9Nq3OVFJvzt1wua21tLZpPRlJUnyvF5xFOuh8AAJbF50u+/6jFfkmxedhs2cduH/N9WcEvn5+fR+92+1jvywh+2ZczFlEekOKx28d8v+zjtM/bLNaHy1ZekOJx3fot+XKEL3PYdXzZwZczAABYJh/npXi5wJcdrH+UFM/1fez28d2XB0aVJUbVCfh6B38P08wXO4rFcB+3R+X0vtzgywQW+319g4/tvm+WL29YWcKXCWy+WSlefgAA4C6w9tnbtjxq/zx8GWEZy2mO9WUXAABuK19HENZJ+Lzf10/49gy/7OsMfH8HX4fhl319g6/bGFV2WFR7ha8HkBR7F9q3Nfg2CL/s6yR8W4avc7BjfH2HLyfY9/y9JLVjAADmF+ah43LUNLnuIo6b5hw+Bi/CqBx21n2LPm7cPt/nAAAAAHdT2nakm942i3FtRje9zddXAbed78NmwtzX1x1LujI+mO/vZsJ3mMPf8TTX9fXX13nd6xD2g/d10yZ8VoTjnfl+cyZ87y5sAw/714V1277+PTx/eH1/f+H9088fAABgsXwfjVH9NZLGrkgzzsWkMTF8uTvp2EX0DZk0RsWk8SwmjX2RZpyMpDE1wjYxYNnsd9Dmq200GlHua7+Xltfa+2b2npr9rrbbbQ0GAzWbzWibH/M77e+0/S4Vi0Vls9lo7O58Ph8buztpmx9LLNxWLpeVyWSYaxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSro6B7cfDM+F41UljTfs5HNOsh+NZh+t+7sek9fCeJq2Hf85FC8eNzmQyKhaLI9fDMarDdT92X5r1cBzrcD2crzJcl+JjaKdZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL6UfrVxeXl4u+y5ws/7jP/5Df/Inf6KPP/5YX//615d9OwCwFP/2b/+mP/3TP1W73Y5NSAQAuH8eP34sSdrf31/ynQD319OnT3VwcKCjoyMdHh7qgw8+0HA41NbWlvb29rS7u6udnR29++67ymazy75dAAAAAHfYycmJTk9Pr239Jq4xab3T6ejs7GzcX8NC5XI5bW5ujlyf9ZjrPPeijtnc3FQul9Nt1Ov11O/3JUn9fl+9Xk+SdHFxoVarFR3XaDRkTf7+/87p6alOTk4kSWdnZ+p0OpKky8tLNRqN6PutVksXFxdXrjkYDNTtdme+5iLUarVouVQqaX19XVL83y2bzapQKEiSVldXValUou9UKhWtrq5KkgqFQlQnsbGxoXw+L0laX19XqVSKvlOtVrWysiLp6v8Xv8+fY9I+AACA69But3V+fi5J6na7GgwGkuL5hS9Hnp+fq91uS5KGw6GazWZ0rnq9Hi378qEv6/my4qiypi83huXOZrOp4XC4kD+7L3uVy2Wtra1JkorFojKZjKR4mdGXzzKZTNRPaG1tTeVyOTqvL3/6sqQ/V/gdf31/nZWVFVWr1eg4f28AAODmjCon+bovKV7f5cs6YZnGl4nCMpUvO/mylxQvY4XX9uWksH7Nl9MWISzL+DKKLydJo8s50ug6tLAMlM/ntbGxMde1ff1feG0AmIfPmf0z3J69Pt/1z397bvsc2D+/fb4+77lm4Z/F/hnq20nsWerbSPzz3LfJWK7sz+uf6f4c/nnuY4c/t48NAIB0fF5icSRpm89RLBdK2ubjjsXApG0+r7H4FuY60/Axw/IBv83ij48nSdssX/BxLmmb1fGOioe+PhgAcPMsLvl8yXIo2+fr0dLssxiWZl9Y7zcNy6ksv/FxKs0+i0e+r1vabXbesJ8cAODusZhm9YE+37L4ZbmYtXFZHPO5ntUx2vms3tPneeH5wraqafi6PsurrF+Nr0O0OObrEsflgkn5nK9jtDhq1w/bpAAAd5fvy2HL4ed17/N9S6bh46Ith59J+6Y9ftw+2t4AAMBdMK4slmb5Or+3iHed0pb90iwv+nu+HxgA4O7zMczegfH9oe29Fd/mYPUevo086Ty+7SCpr1jSeebt82ztAb7927ex+5jm3z+x7/m2glHf8/3Fkr43qi+1/x4AAABeXvauhi8bW7nb939d9DYrkydtm8Wi+60uYhsAYDFG9YuZ5rNer6c6dtpYNKr/y3V9+vHiAAC3h73XYPlVvV6P2jZarZZOT0/V6XTU6XTU7/fVbDaj2NNoNNTv99XtdtVqtdTv99Vut6P9adv7y+WystmsyuVyFDsqlYoymcyVbdlsVqVSKcpdqtWqMpnMlW3ZbFbFYpH2BAC458LcyedP4fK4fbb8xRdfjM2rfJ5Tq9Viy+F6mn2vvfYafccA4B4bFYOm2fb8+fOx79T5WJMUf0ZtIx4BAEJhTAp/kuKW/Xz66afRvAFeUvxJ8/P6669H494DAK46OTnRs2fPdHx8PPLzl7/8ZWzsqlwup+3tbW1tbY38fPPNN2NzBQO4O46Pj3V0dKTDw0MdHBzo6OhIp6enKpfLevfdd7W7u6udnR195zvf0YMHD5Z9u8BLY39/X0+ePEnMlwBcn3Fx8Q/+4A+0t7en3d1dffvb39arr7667NsFMKXBYKAvv/xyYl787Nmz6DvZbFYPHjyYmBdvbW0x5yYAjDGpLWnUz+effx7ND+3N2o708OHDaGwbAAC8pH7l4/o7jDrWxntLMqpveNq+esQyAEBo0ntR06x/+eWXOjs7G3mt8J2oSe8+jVun/zkALNe4d2QnvUM7br/NJT3OuHdsk5bTHmtzXwIAMItpx+2bFBvDz0nv+XppYmGafaOOJ2YCAG47m1MpnIPaxsptNpu6uLhQo9GIxj+08d1t7EMbD9HyVBsbvtFo6Pz8PBrv0OaAmqRSqWh9fV2VSkUbGxvK5/PR2ITValXr6+sql8tRvLV5l/z4hrbP5hms1WrRPEoWqwEAuE8WOWb+uGPT1EubacbCH5eHTzqWMYwBLNKs87zf9LLlbvOaZc73m5hXnjm4AADLsui4fRfKAbdt2W+jLhcAsCz+fUVr+5QUqx+1NlJJUdyXvmp/lRSbr/vy8lKNRuNarzGvTCajYrEoSVpbW1O5XJYkraysqFqtRsf5/lC1Wu3K8dlsVoVCQVI8nlu7rqRoblR/bmvPlRS1E0vxubqt/RcAgNtqOByq2WxG6z7O+2U/V6wvF9Tr9SvnsT5bUjz2Wx8uKV4+8P20fBnC1y/4csY8yuVyNDeFn/vcygg+1q+urqpSqUiKlx18GcCXR3yZwpcNRtUd+DKDL3dQfgAA3BWLakdY5LlGLftyzTzmaVeY9/vTLlOmAID05o1Rizhu1nNM0086jbSxa9y+RR83zTl8rg8AAID7y5eDra3Kt0P5diVr4/LtV749ysYn8P1kfDuW7wM77lphP5tpWRuWb2+ybb49yup8fHtV0jZre/JtXEnb7D1H3y7G+zFYtHF5bdpjFvGdm7ruonP1UcblzmmPuY5zXNd1qfMGAAC4HW7DuBVplhfV53TeMSgY2wK4ql6vR3Vp1v/c6u6s37nVv1k9nfU1t3q9cAxSy8Wtrs/6ivn+75NY/ZjVnVldm9XXWT1arVaLtll9W7jNxh9N2gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDrt4jxpu/qMX7e6es071jUt33dxh8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4Sfxo5fImZr3ArXJ+fq6trS397d/+rf7mb/5m2bcDAEvxP//zP9rZ2dH//u//6nd/93eXfTsAgGv0+PFjSdL+/v6S7wS4H9rttn7+85/r8PBQBwcHeu+99/TixQsVCgW988472tnZ0d7enr73ve/ptddeW/btAgAAAMC9cHJyotPT05Hrsx5znede5D3W63XdlFwup83NzbHb7uIxab9XrVa1srKieZ2fn6vdbkuSLi8v1Wg0on2tVksXFxeSpF6vp36/L0kaDAbqdruSpOFwqGazGX2n0WjIujZ0Oh2dnZ1Jkk5PT3VycnIt11wU/3e6sbGhfD4f7atUKlpdXZ24L5vNqlAozL2vXC5rbW1trn0AAADzarfbOj8/lyR1u10NBgNJ8VzAl9N8OW9cOdGX+XyZ0Zf/+v2+er2eJOns7EydTkeSdHFxoVarFZ3X5yD+XIsQlrV8eTGfz2tjY0OStL6+rlKpFB3ny3m+LL+6uqpKpRIdVyqVtL6+LulqGbNWq0XLhUJB2WxWkpTJZFQsFhPvaXNzU7lcTpK0tramcrk8718BAACYgy8zjatvneW469gXHufLbIviy0bj6kDT7lvEOabZ58tvAOBZ/uzbPHy+7PPdZrOp4XAYy299G8qkc/n83HJtn4P73Nzn0/Pweal/Fvo2CZ+fWk7r82Cfp/o82ufePjf2Oa7PwYvFojKZzJV78bk4AOAqK+8n5QA3vc1i4SzS5Aa2fJP7aacHgJthbYGWI/m8yfZZG2PafZaD2T6fX9k+n2f59tNpWW7jc6Xr2raysqJqtTpxGwDgbrnunC3t8b6+c1pp8680++bdtqi++ACA5Zgmjl33vmlNE+8WGTuJgwAA4K7zfah8eczX3Sf1pxr1Pf8O0iK/Nyvfv8q/O+T7WvljfPuAbwOQ4u8k+bKfb9v2fa98nyzfV8y3J/j+XEnjHgAA7gbru+XjnMVS37fZtwXYO7y+7dz3ffZ9m+09FN8u77/n3xtO+t48LM75uOjjqO+n7OOdj48WQ0d9z8fGpO/5WD3qewAAAHh5LOv9jVH75xkj9Cb68qTdxnuEADCZ1e1Ym4bVvVjdkLVvLPozLatXuelPAMBy+TylXq9f6ZM5z7YXL16keschqV9lrVZb2DbfVg8AuNtGxZ56vX5lPc2+L774YuL76WFsWcQysQkA7o8wNiXFnTTbPv/885H9tJLiif1Ms434AwAvrzD+pP357LPPEsemDONM2p+HDx9G78gAwMuuXq/r+PhYz549G/n5ySefxOqucrmctre3tbW1pe3tbT169Chats8333yT+TqAW+78/Fwff/yxDg8PdXBwoKOjI/3iF7/Q5eWlHj16pN3dXe3s7GhnZ0fvvvtu9J4VgMXa39/XkydPpupfB2A63W5XH3zwgY6OjnR4eKgf//jH+uyzz7S2tqbf+73f087Ojvb29rS7u6vf//3f510E4JYbl8c+ffpUx8fHV+oTa7Xalbw1/HzrrbfoTw4AGt33IM3Pp59+mpjbzNqe89prr1HHCACIjOqXPU0/uefPn0fjmSVJilnT9pX72te+Rt0CACDV+0Rp3z0a17dbGt2/e5Z1xlwAgJvT6XTU7/fVbDajOrlmsxmNBeT3W0zw+7vdrvr9vhqNRmz/YDCIxncex+JAtVpVNptVsVhUsVjUxsaGKpVKNDZCpVLRxsZGtD+bzaparcbiiB1r25mXAAAwi2nGEJp2zKHT09PUY+BNGkdo2nGHwn1+/h8AAG4TmyPIYqfNE2TzFDUajWicWpuz6OzsTJ1OJ4q5o8a4rdfr0bx9fl6iNKrVqlZXV1WtVqNxY23OPou1Ns+Pza1XLpe1vr4e5byFQiE6xr5fqVSifX5eIgAA7rqk/HmavDrtd/ycgpMk5cmTPsfl2KM+X3nllWgOXQAvJz+/ql/284hPu+znWU2zLMXnfEqzPA9f3zhq7vFpl32OlGbZz72aNH9rOI86AADXweokpfg86mF9pI/BVvcpxed0tHpP6Wqct/m8JMXaH/2yXcN/d1RZYx5+PnWrM5UU1XtK8fnS/bKf59FyKml0XPex35cbRpVFfF9U5pEEACzDpLmbpzlunuW0x/lyybyS5nhOuzzv92e5RrVa1crKykL+7AAAzGuR8T3tcYv4jq+vmMd1lwOSlqf9Hv28AAC33XXXNSxqeZq+X5MsowwxyzLlCAD4StiO7tvYpXj7uxRvD/fHhm3f/nuDwUDdbjfa59vq7d2jpHvxOe64ay2yXl2Kt7NL8bpr33bu2+mleNu4jzurq6uqVCrRcb6dPbyWn893EdcCAAAApPg7Nb5eyN7992VsG2NAipfrrRzv+9X68ryV3/21fDneyu2+P62/1iz8+ym+bO3rfqw878vUvq+sla19WTqpL4vvd5u0zfrHhmV83A/+/70J82cp/jthknLWsE03zJvDPutJ5wmv73/3Rl0nrAue5brXJexj7nNiKd4/XlLi+2nhOF5hPzUbn2Sa64a/09d1XQAAANx9Psf1y77c7Zd9nuGXfXuZX55n7IxxY2HMY57xKUa9u+pzdr88qv9HmndmGfMXL5tpxg5bxOc04+XMMu7YrOOU+WcIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAXROOMZ00rrufS0pKHjs7HCsqnAc5aYy6cLztcL6otMeE42InjaUdzo8VzmF1ncI5oaSr49elOSYcQ1uKzy8lXR3vWro6VrUfU8/4ubOkq2NgS/E5ryRdGYcraWxtP4YgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7q0frVz6GU7w0vjzP/9z/d///Z8ODw+XfSsAsBS//vWv9Vu/9Vs6ODjQ7u7usm8HAHCNHj9+LEna399f8p0Ad9PTp091cHCgo6MjHR4e6oMPPtBwONTW1pb29va0u7urnZ0dvfvuu8pms8u+XQAAAADAS+Dk5ESnp6djt922YxZ57mazqeFwqJuQy+W0ubk5dttNHnOT1z85OVE2m9Xa2pqGw6GazWa0r9frqd/vS5IuLy/VaDTm3uf/rWfdJ0n1en3kvkXIZDIqFovRerlc1traWuK+Uqmk9fX1ufatr6+rVCql2lcoFGL1U/7eJKlWq0XL4XcBAADSGAwG6na70Xqj0ZB1wfVlvfPzc7Xb7ei4Vquli4sLSdLp6alOTk4k6Uo5s91u6/z8PPFavpzX7XY1GAwkSWdnZ+p0OtE+ny/48uDFxYVarda8fwUxvrzly9MrKyuqVqvRccViUZlMRpKUzWZVKBSifb6Mls/ntbGxIelqea1SqWh1dfXKtVZXV1WpVKLjfHlxY2ND+Xx+4rWcn/1BAAAgAElEQVQAAMByjKsLXcS+6z6/FC8PLsK4Osvr3reo81erVa2srMzz1wDgDvG5q893/fPS57CdTkdnZ2eS4rmyz2Ut//XtIT6n9Tm3z4n7/b56vd6Ve/H5+jz8883yS5+Trq2tqVwuS4q3e/g82D8zNzc3lcvlJMXbN3wO7fNunxf7e/HH+JwYAF5G/vlv8cRvs9jj62UXud/qd0ftn4WPKT5eWCzw+32d503tBwAsls93LK4sapvlY7Nsm5ZvK7T4Mcs2y5tm2ebbCcmVAODusfrFpDaacdumPX7SNl+fOS2rC0xqU7nJbb4eEgBwd1jbmcUk31Zm9ZQWv3x9pOWD1m7m29ssrvn2PatHtfY83/Y2a38Ia+vybWTWtmZ1nL7e0eoaLS/0fUetfczimW+Ps+uQCwIAgJeFL6v5egxff2HlSF9G9N/z7de+r5UvI/r2AV8O9ecM33P37zstql+tL9v5sqUvL/ryoe/HFb7T5N8l8m3dvj+W74Pl+2/5dnrfZu7rXJLGMAAA3E6T3j1J827KdX3P97eeVZp3Rca1LVzn93ifFwAA4H5bdL/Vabf5eqx5+vssut+qr7/y9UlJ72sktX9S7wQAXxnVX/S6Pn3bRxph3cl1f/JuHwDcLB8n6vX6ldgxyzZbTts+kBQTarXa2G2T9tvnK6+8wjsHAHCHtdtt9Xo9dbtdNRqNaLnVaqnT6ej09HSm5XGsD1exWFQul1O5XF7YMgDg7krKe/xP0vZw24sXL8aOGWl5jf34XCfttocPH0b9hAEA919STErz88UXX0RzBnlhjEn78+DBA/rRAngp1et1HR8f69mzZ3r69Gm07D8/++yz2JzMtVpNW1tb2t7evvL56NEjbW1t6Wtf+1r0XiCA5fv000/1/vvv6+joSEdHRzo8PFS9XlehUNA777yjnZ0d7ezs6Hvf+57eeuutZd8ucC/s7+/ryZMnC50rC3jZPX36VAcHB1E8e//99zUYDLS1tRXFsr29PX3nO9+JzYsLYLlOTk5ieWZS7vnJJ5/E6vpyudzYnHN7e1tvvPEG7UkAXjqztqlY23+SWdtVqP8DAEzqZ5amT9rnn38ezZMcSnr/Zlz/s6Tt9AMAgJeXjXGT9D5Pr9dTs9lUp9NRr9dTp9NRs9mM9jUaDXW7XfV6PbXbbbVaLXW73bFzHW9sbKhQKKharapYLKpYLMbWC4WCCoWCarVatFwsFlWtVqNlv078AoDrNWpMgUljDkzab2O8TbKIMQiS9r/66qvROP0AAIxiY+jY/Ir1ej3KoWw+nHCO4GazqfPzczWbzWheHYuDdj7b12q1YvPtjGNjeto8NzbnTLVaVSaTUalUiuJcuVzW+vr6VMdnMplobhwAAG6TceOsJuWgaT/D704zt848Y68m5aiM0woAuK9s/o1FfVouHubZdsw0883aHBo272utVovm4LC5NsI56myujkqlorW1NVWr1eg7ln/bdywPt+8AuNtmnc/zppetHnNes87pedPLfl5uAADm5ecKlBTLL/zcgb5tz885KCk2J5TvF+PjtbUfStJwOFSz2Yy+02w2ozGrfH1lv99Xr9ebeJ/z8nMV+jkKJcXqKS2fkhTLecrlstbW1iQpyrXCZX+eWq0mSbG5Df3y6upq1H7p78fGkQcA4CaMysHH7VvU8izfmWfO49C0efos31nkNXyZAwCAm+Zz9zDf93X3vV4vmrfG1xFIo+sVfF3EuHoBX5dg7aqT7icse8zL1xn4OB3WM/i4bW2xkqI2VyleRyDF6yCsb5V0tZ5gVB1GmvoMAACWycfly8tLNRqNaJ+P82HbhI/tvkwixcsXvhwSlil82cNfy3/HL/t7TftO1CRh7Lc2BCke3/2yL1P4mO5jvV/25QHf38CXR/yyL3P4so1vTwGA+25cnfW068v6brjuY9oizVJfvojjFnEOH/MAAACAtHxbl6+X8vVFvvxt7Vq+fivpfRjftuXP6/vEWL2Xvwd/Ld8fdxa+jGx1UL69y5enrf7J12/5Ni9fD2V1W759y1/L6rh8/9mka2HxktpN02yb9Xu3/Zrz/g7NYlwOm2Z9WeeY5Tvk4QAAADDj+of6crkvt4f9RtL0Iw37ofgcO23/V38PYf+UWfn81y+Pet9UivcnSdO3ZFQ/k1F9TtL0PwFwVVL7/qjPNMdMe75p3rWfZwzRaccY9X3RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPD9+nPFjxRk/z6BJGkc6aTwmP5ehdHXMuaT7CMfGS7qvcFy8pPsM522W4mPcSfFx865bJpNRsViMbQvnNPZjzBs/dp2UPI+hH/dOSh7L2o+fJ10dqzoce0/SlbGs/Lh9xo+FL12dQ1qKz+EIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvAR+tHIZzuaCl8K//uu/6gc/+IF+9atfaXt7e9m3AwA37uzsTLlcTj/60Y/0Z3/2Z8u+HQDANXr8+LEkaX9/f8l3Atx+nU5HH374oQ4PD3VwcKCf/OQnev78uTKZjN5++23t7u5qb29P3/3ud/X6668v+3YBAAAAAHipnZyc6PT0NLatXq/H1vv9vnq9Xmxbs9nUcDiM1geDgbrdbuyYdrut8/PzaP38/Fztdjt2TKfT0dnZWbQ+HA7VbDZjx/R6PfX7/Wj98vJSjUZj4p+j0WjId2VI8+e4ThsbG8rn87Ft5XJZa2tr0Xomk1GxWIwdUyqVtL6+Hq2vra2pXC7HjknaJkm1Wu3KtvCaklQoFJTNZife7/r6ukqlkvr9fuzfLZfLaTAYSPrN33O/31exWNTq6qpOT09j/34XFxfR8snJiYbDoTKZzJV/Q79+HfvC/1eLlMvltLm5mWp9mmOXea6k/yMAAABS+vLYIsp013GtMP+Z16LKa8s+z+bmpnK53Kx/DQAAYEoXFxdqtVrRuq83PTs7U6fTifa1Wq2oji2s8/R1or7cE9ap+rqx67j2IqyurqpSqUTrvn7K6ilNWJcZlmWKxaIymUy0HtaRVqtVraysSJJWVlZUrVajfWHda1iHO+naYb1aWN8L4G5Kk48uenna74VtcLNKm1de93La45LawQDgPrF+GL5vhcWJUft92T3tfp9DTLN/Fr58n8/ntbGxIemrcrovk2ezWRUKBUnx578vd/syt53D5xf+er4876/tc4hKpaLV1dWZ/3wAgK+kzXVuYtu8OZPFoUl5yk3up94JAG6/NPHqJuJg2Md/GuNi1CK2pT3e53AAgLvhOuLgtPvmiYHS9eZ6s57T93cAAAC4rxbVD2uR57ruPlvS8vppzdKvK2k8AwDA8ti7Hb6PmB8TaFTsSvqef6dk1Pds3J5R3/P92xYRK33frqT+Yf6dD99XbNSy7582atmfP81y+F4KAAAA7ib//rWVZWfZ1u12NRgMJm7zZW4rn/uy9bzlaXvvbtI7HP69DSt/+/Kurxuy9y38Of37HVZv5N/dsP6u4XvkAHAf2fN81k8bG23az7TsOT7vpz3bLW5YfLGYYbElabxlAMBiWD7RbDZ1dnamVqsV2zYYDNRut6MxpxqNhs7Ozq5sGwwG6nQ6Uc5Sr9evjD81iuUFFgcqlYrW19dVqVSiWDBun+USfp/lEn4f73wDwN1ycnKier0etRsvYjnNeIe5XE61Wi3qi7+IZfruA8DdcXJyona7rXa7rUajoVarFa232201m001m83YtlarpUajEdsWzq/mlctllUql6KdSqahSqcS2lctlVatVlUolFYtFFYvF6JhisahCoUBbCQDcc5bLTPvz/PnzaC5Iz3KUaX82Nzd57wPAvdbv9/X8+XM9e/ZMx8fHsc+nT5/q+PhYx8fHsXk6stmsHjx4oO3tbW1tbY39BHDzLi4u9NFHH+no6EhHR0c6PDzUBx98oOFwqK2tLe3s7Ghvb0+7u7va2dmJve8KIJ39/X09efJkoXNMAS+TVquln/3sZzo4ONDR0ZF+8pOf6Pnz58pkMnr77bejGLWzs6NvfvOby75d4KV0enoa5YNJ+eLx8bF+9atfxdqDrP7N54SPHj2K5YlvvPFGbC5DALhvZm3bePHiRTQvrjdN24bvr2XPYwDAy6XZbKrT6UT9uUb16arX69ExSX3Cktrbpd+0D03q6xX2C/Pb/CcA4OVh8/TW63X1ej31er0oBvV6PXW7XTUajWifxbNer6dOp6NWqxXts3Mk5U/Gxj+0dzULhYKq1ary+bzy+bwqlYqKxaLy+XzUN9nezyyXyyqXy9G6xTvmNASAxbCxwux9x1arpbOzMzWbzShetFotDQaD6Pnf7/dVr9ej/e12W/1+/8p+P2bwOPbOfa1Wi97DL5fL2tjYiL3nH+7PZrMql8uJ+0ulkjY2Nsh1AAAjNZtNnZ+fR2PadDqdKB7a+DStVksXFxeq1+tRzLT4Fs4jP+58aVgMs7hmeU+tVotyKhvLxtqfSqWSMpmMqtXqlXFuqtWqMpmMSqVSNGYauRQA4DYZNUdvOC7PtJ/hdy2upzFqLvo0n76PSJpPxvsBANxFlhun/Tw/P1e73Z77M620447bGLNhnm05tc17Ua1Wtba2FvuO5e/2HQA3Z5FzOd/kd9KMMZrGbZjfOc2yn4cTAIBZ3ZVYH37f5r9ehFGxdty+2/AdxgQEACyKn6/Qv6swHA7VbDajfX4O3LA+0eoYJV3pz+rjdti/J+21fTtkeG2rJ10E365odZdSPAf38/b6uXX9vIrW/0iSVlZWVK1Wp7qGrxNNcw0AAJbluuoErvPc4XfmdZvrEsbto40BALAsvn4hnON6VB3C5eVlbG6ItPUE9k6uGVUPYf2vzLh6jkX1SzDWT8r4ugJfJyDF2wV8/YSvR/Dx3n/f+m6Fy76uwd+Lr3ewfmDhMgDcNeFYPT5mhLEmjC9h3baPZ1I8PoRxJYwl13kfi2R9gaWrz38fP6R4LJJ05d1aH8PCuu0w3ln/4kXfR3gsAAAAsEjz9IkN399f1PnC5UX0uw3f3/fbRi1f935J93IcgaQ2zVm3LfJcy7oPX2d7U8J215vYtoxrpr2PMF8HAAAAphW2g/lyvu/fEb5L4tvSfL4QtqP5vNe3x4V9U3zfEd/W5u9h3L0ugm/D8uXvsB3Nt5P5fiJhXxOfF/uye5r+IaOW/b3w7gqwWPZMsWeaPaf8s8eeffY8s34H/hlpzz3rS2fPMd9nwfoy2PNu1n701uZvzy+rt7Nni393zvq/2XPLnkW+vd+eb/b8qtVq0TnsOJ49AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcnKQxisJ5lqTk+ZKSxmvz48iZpLHS/fhw0tWx4KSrY9RJV+eIkq6OPSddnTtKujq/oXR1Xigp+c9/E/xchiYciz1pHGk/R5R0dS4nP16U8ePcScnzFIbjUyeNERXOkRyOmSddndMqzTEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXho/Wrm8vLxc9l3g5p2cnOjhw4f6p3/6J/3lX/7lsm8HAJbi1Vdf1T/8wz/or/7qr5Z9KwCAa/T48WNJ0v7+/pLvBLh9nj59qoODAx0dHenw8FAffPCBhsOhtra2tLOzo729Pe3u7upb3/pWbDJWAAAAAACA2+bs7EydTie2rd1u6/z8PFo/Pz9Xu92OHdPtdjUYDKL14XCoZrMZO6bX66nf78e21ev12Prp6alOTk5i2xqNhnyXjH6/r16vFzsmaVvSfV5eXqrRaCjUarV0cXEx9s90kzKZjIrFYmzb6uqqKpXKlWMrlYpWV1dj24rFojKZTGzb5uamcrlcbFs2m1Uul4v9+15cXKhQKETrp6enkqRSqaTLy8vYv2Emk4n9vQ0GA62urmp9fV3Sb/pUDIdDra2tKZvNxv49Li8vY9c9OzvTycmJstls9F37+19fX1en04ldq9Vqxe7Zrw8GA3W73St/V4uQzWZjfz/h32v4d1+tVrWysiLp6r9h+O886Vz+33rSuXK5nDY3N0eee2NjQ/l8fuSfCwAAvFzCPMCXwU9OTqIyYVju6nQ6Ojs7k3Q1B/Dfk+Jl/7D87svjYTnel8vD8nyYPzSbTQ2Hw1n+CkZaX19XqVSK1guFQlRmXVlZUbVajfaFZTBffgvLa76sF5btwrKbL1OG5bZSqRSVv6e5VwAAcL18OSUsw/h60nHlq7Bc5MtMYf1XWPfqzyNdLSf5sllYjguve511bdLV+s1arRYth+WksLwT1nGF5ShfHpLiZad5rx2Wy8KyYD6fp68gcEv4HNeef+Gzzz8X/TPTt5H5Z6t/7vpnvs93fa7tn/dhXBh17XmEzzD/fPPPvnK5rLW1NUnxPNU/w/zzzT93fZ67tramcrks6Wr+Oera/pmc1K4FAHeVxQ7/vPfxweLJNPt9TPFxx9ed+phlsc+fI6n/xLT8M94/+33Z2McNXx73McfqO3288nHFxxsfk3zssJji7yksswMAJvO5isUVv83nPpav+Jji91v8mbTfx7VJ+2fhY5SPSxaL/H5flzRpv8WeefcDAG4PH7Msp/JtIhb7fM5m8cpyM593WVzzdY9J8dWu5WNeUj/2tCzH8nmVj0E+l7K6Oh+vfA7m8ziLXaNyt0nXIEcDgNvLx6C0uZ7/jq+XtHYuH0OtjtPHRF+vaXHPx8ewv+m0kvIvH4t8jLNY5es1ra3K1zf6GGmxzsdFn3MmXZM+AwAA4GXn+0H5uo9R/bF8OdOXD0f1zfJlUF9e9WVbX+b05dOw/1Y4jsGsfBnSlzd9nYovM/o6mrC/l29j92VP/53wOF8uDutmfDuFL6tShwMAy2Xxctq+Yknf8zHQx8xRyz6Wjlqet/3e+DqXcf2MRy3792tHLftYN2rZx81Ry+E7JwAAALjdrB7J1yclLafdtshzzsLXAyUtp922yO9QRgZwV1mflpv6nLatwer7fV2J1XVYXYU9g63fiz2jrT3C2h+srt+3NVjditWN2Ll4nxsA5mN19fV6PapP73Q6GgwGajQasW1nZ2eq1+tR/b3lDNZm7vdZLhHOATCKxRGLCRYrqtWq1tfXY/vs2e/3WZnf78tkMiqVSlf2AQBuL18nVa/XF7L85ZdfxsYuTOLrkGq12kKWHz58SNwBgFssKXbYT9K2cceOEsaXMGakWbdtjO0BAPdHUoxJ+zMq7oSxI+3P1772NeILgHvh5OREz5490/Hx8cjPTz75JPYeQS6X0/b2tra2tkZ+vvHGG7F33gBcj3a7rZ///Oc6OjrS4eGh/vM//1NffPGF1tfX9fWvf117e3va3d3Vzs6OvvGNb0Tv3ABItr+/rydPnizkHXPgvjs/P9fHH38cxaCDgwP94he/0OXlpba2tmIx6Fvf+hbjbgHXbDAY6Msvv5yY3z179iz2vVqtpkePHo3N77a2tihHArgXZm1jGNV/atb2hQcPHlA2AoCXgI87afpYjVr/4osvRr5TktS/alQfqnF9q/yYTgCA+2tU3BkXkyYdN07S+yJp3ytJ2ufHFwQATCd8loefSfum3ZbGuOf/pPgwbj/vvwMAvKRYNy6WzXqsn3NlklGxbNRnmmPCY/08fAAALIPFxlGfjUZDFxcXajab0RhrNjabxVgby83GXLPv1uv1aK6xaedJqVarWltbU6VSicbntLnDLKZaHLWxOW1cglqtFo3rZmN82hhuFostJ/XzmgAAcFekyY8X+dnr9dTv91PfX5q8eJGffq5PAHH+99fPY+jnAZbicxOn/Y6vZ/NzMfo5FWf5jp+veBH8M8LPQRzOu+hzAz838Czf8fMej5rrOM0yAADTsHl2pPicyVJ87p1xcdcf5+dX8PO3+Xo+P/eyNH+ZYl4+Bvu5fqT4HMi+fc7qDaWrcdj3ffR9XPw8cD7WS/E5m/0ccb5MMu4+AQCYhc2nJClqzzM+PvuYLMXjcFh+8GULH9fDWD7u2r48Mc21F8HH+zDG+xjt834pnuv7coIULxv42B7WF/hyg68v8Ofz1/X3F54LAIDrFMb1MCb7ckRYh+DLB+PqCnx5wJ8/LDf4OgnffpC2bWMRRuX0vh4gLFeMqm/wuf+4tgVfphhXx+DLF75MQb0CAGCZfNtBuD5q+Tr2zXoOX6exKL7c4JfH7Ut73HWfQxJjGAG4lcY9y8P1aY69znNNOtbnyos2a0yYdv0mv8v8pQAAAFg233bly/O+rcq3dVmfG9+25dvafNuabwvzbWk+j/DX93Va/vqL6Ivr+7L4ti5fRvdtW75tzLdl+bYwX563uiffdubb3nxb2ajr+za8RQrztpvYtoxrpr0P/3/uJk3KD29i2zKumbSN92UBAABwG/n3UqV4Xhr2CfV5RdivNOyr6nPacIw6nweHfUh9P9ZZ+qQuwri+oqP6oYb9PtP2KfXvs4waC0Oi7ylwF/hnlj3nfP2hPbf8c8+eef6Zatvs2eaPt2ernd+evf7a/t3BtOx55p9R9tyx5549y+z55J+P9syz55g9R/1zyZ539gxLuiYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPfBbR27epnbZhkfaV63ZWzqRW+b51x+HHoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeAn9aOXy8vJy2XeB5fjBD36gTqejf//3f1/2rQDAUnzzm9/U//t//09///d/v+xbAQBco8ePH0uS9vf3l3wnwHJ1Oh19+OGHOjw81MHBgX7605/qyy+/VCaT0dtvv63d3V3t7Ozoe9/7nt56661l3y4AAAAAAACuycnJiU5PT691212+Tq/XU7/fv3Kdm5LL5bS5uRnbtrGxoVwuF61fXl4qk8kol8tpOBzKuv5ks1llMhkNh8Po2LW1Na2vr0frFxcXuri4UCaTUSaT0cXFhc7PzyVJKysrWllZiY49OzuLziFJ5+fnOjs709ramtbW1nR2dhYds7q6Gu03g8FA5+fnWllZUb/f12AwiK5zcnISXfc6hH+PSX+vk465betJ26rVauzfDAAA3H1nZ2fqdDrReqfTicpYw+FQzWYz2heWZxuNRlQ2HAwG6na70b5Wq6WLiwtJvynXtdvtaF+3243KapeXl2o0GtG+09NTnZycROvNZjMqb05zr4sSlocqlYpWV1clSZlMRsViMdpXLBaVyWSi9VKpFCsbl8vlqKwbnku6Wtaq1WrR8srKiqrVarS+urqqSqUSra+tralcLkfr6+vrKpVK0Xp4r9lsVoVCIc1fAQAAmFNYhppmfZ7vLno93Hfd9Zrj6q6WXW82z72EZUQA82u321H9v883/XPK55o+f/X56sXFhVqtlqSruarPf32+O+ra/pk56trzyufz2tjYkBR/1oT5os9Vw9zQ56X+HGEOWigUlM1mJV3NN32uu7GxoXw+H+3zea2/3zCHBYDbqt/vq9frSYo/2329pK+/rNfrkuIxxT/7fUzwccPHFos5vr7Txyt/T4sok/t6ws3NzaifgH/2+2e9Pdt9vPHxxccTHxd8/AhjlY8XPjb5srO/HwDAVT4mWCzx7Wo+7sy73+LdpP3z5j8+dvgY5eODjxu+nS0pXvk8xJ/bx0Ifu3xMGxUjw7ZBAMDN8XHG8jKfc1k8slzO1/eNys3sPD4f89fx8dbXC9q1wr4xs/CxyMcci3k+to3K53ystJjoY5+PcbNeAwBweyS16afddl37fX3nLJLa49Nuu679Yd9PAAAAxNvKR/Wn8m3ro/p1peln5dskwjoY36/LXyNsp7A6nEXx7RK+jiXsn+Xbw/1xvt4l7Kvl2x98fVHY1u7rgcb1H/PlWep4AODmTKpPuS3LPnbPY1Jdy21ZluLxGQAAAMtl5VHfX8eXV60OKqnPqu8P5N+zsHP69zr8OZP6yVo9VvhO4bR8Hx3/Lp2VQX2dkNUB+bocX3a1vjz+nL5+Kemc/ppJfYEA4LYJ+51M+znLOXxbQlphX5JRn9McO+mT+nwASGfcc79ery9kX9o+keOe7bVabSH76MsIALdPGDsWsez7Q40SxolFLDP3BADcLhYbwlgx7frz58/H1oclxYVZ1+mTAwB3k48ho2LLqJ9PP/00MX/xMWKan9dee40xuwHcOScnJ3r27JmePn2q4+NjPXv27MrnJ598Euuzn8vltL29ra2trdjno0ePouU33niD8e2ABTs+Ptbh4aEODg50dHSk//7v/1a/31elUtG3vvUt7e7uamdnR7u7u3rllVeWfbvArbK/v68nT55MbL8AXkbHx8c6OjrS0dGRDg8PdXh4qJOTE5VKJb399tva29vT7u6u/uiP/kgPHz5c9u0C90q9Xh+Zh1mO9tlnn0Xjoki/eQ8jzMXCz7feeos+WgDunDR1+kk/n3/+eWIf2Vnr+V999VXmFAKAe8Te0242m+p2u+p0Omq322o0Gup0OtG2er2uTqcTbWs0Gmq329G2Vqs18b2MWq2mYrGoYrGoQqGgarWqUqkUbSuXyyqXy9F6qVRSpVJRqVSKfsrlMn1hAeCesrFlm82mTk5O/j979xJi25UXfvx33u/XzaNTl4T8+9KkxUDaptIgVHULIjgQRBwkIOLAiQOdiEOnCg6cCo0goji6oXHmxEm3VDWtSRkN2KYRbttGqzrJTc77/foPwtr927+z93nuc07Vre8HinP24+yzq5K7fmv91tprSa/Xk0ajIYPBwHvf7/e9tpE7p9lsSqfTkV6vJ51OR5rNpvR6Pe8zy+Tzecnn81Iul6VUKkk+n/dilDtWqVSkWCxKPp+XYrEolUrFO1atVqVQKEg+n/fiFDknAFhPFM+ML9un50tfJornxZftY/1TAMCmMW+Tc+y569hkfqxlMXHVObSPAADHsuu8l5u+rjN3jLPLvJXrxGX9Sn8aAOCuOHTs1mtqriOq+aeZp8CsNeYAACAASURBVBr33Tpr66173qE+s2l5scq66+1ts0bfvj6j10MBACDMNjH3th1za6ZFZddYfaz6AXOMAgC2cci4vY/rrzvWdBPbxOhtj+3j+ox7BQDs07oxepNzo7rOpuduMmZoXbchP7DNeYwZBgAc0l3INyw7b931ktd1F3IPy85jXAKAY2i32771ZGxZ7ea+cWazmTSbTd81dJtwPp/75raZTCbSbre9bTeG1bF5aX0t+132XuyYNh1X7H1EKZFISLlc9rYzmYzk83lvu1Ao+OYmrVQqEo/HRUQkFotJtVr1jqVSKSkWi962HTdbKpV865npfux93gcAAABwF4zHY+l0OiLys7mkRRbbA7qdodsNuj2i2xe63aLbIbp9o9/r+xgOh9Lr9RauE9UzOe55eV2nj8fjUqlUREQkmUxKqVQSEX89X7cXwvJRug2RyWS8v1mpVJJEIiHD4VCy2az3vL77zuFw6I2tSSQSUigUFtqWTtD+dfft69wovmsffaWr2Dxj0L51zjnEvkN8J3NJAAAA4Flm+8h0/57tT1s2tnPZdXS7WmSxHVuv1733uu0r4m9r277BZdeJiu3n0s+A6DazyGJfnG5L6Laz/ZweF6rbJLa/TvfH6Ta3vUfd52f79ADcXrqs7Ha7MhqNfOWwK/N0flKXy64M1HlDV07rstU956/LbVfW6lykHe+xCV2WubLQ7dM5RldeubELrhx15ZrOU7oy0JVrrlzVZaX7Lp7XAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoYWsNufl+NDvnmRM0L4+dg80Jmlc6aA7qoLWaRBbXXBLxz1e+7PcKuqadDy7semG/z74Fra8XNI9a0PxCQWv86nnbHDvPtF1fSWRxnjiRxTnhRPzztTvpdFoKhYJvn13vSSR4Dmw7j50I88gBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbyTmxuV07CvfF3f/d38ru/+7vy8ccfS61WO/btAMDB/fIv/7K89tpr8u1vf/vYtwIA2KO33npLREQeP3585DsBDuv6+louLy/l4uJCLi8v5f3335fZbCYnJydyenoq5+fncnZ2Jt/4xjcWFgkGAAAAAAAAINLr9WQ4HPr2DYdD6fV6vn2TyUTa7fbC5+v1+sK+Vqsl0+nUt6/b7cpoNPLtGwwG0u/3ffvG47F0Oh3fvvl8Lo1GY+F7ms2mzGYz375OpyPj8di3r9/vy2AwWPk9s9lMms3mwvc0Gg051tCjTCYjqVTK9/3JZFJSqVTguSJf/L3c3yWbzcp8PpfJZOKdl0qlfNsiX/zusVjM23Z/w3g8LiIio9HIu2Y8HpfRaOT7bzyZTBb+7lErFAqSTCa9+ywUCt7fIRaLSaFQ8OWBs9ms5HI5bzuTyUg+n/e2U6mUFItFbzuZTEqpVPK24/G4VCoV3z3YsUfVatX3dyuXy5JIJLztYrHo+2+VTqelUCj4rlEqlSSZTIbeBwAAuDtsvVPXI0ejkXS7Xe9Yu9326mTT6VRarZZ3TNfRbV3Y1qFtndjWXXV93V7L1n/tfYS1AaJi62e2/pbL5SSbzXrb+XzeV98rFAqSTqe9bVv3svUsW1erVCpefVdksW6n636xWEyq1aq3beuKiURCyuWyt02dDgCAw7D1ryi393ntTb87arbetcn2Lp/d93fb+iGARbqdp9uEtr2o25a6z0f3weh+H9vnotuquh1rv0dfw7ZB9fcG9VvtSrcZbe5etw9129S2BXU71PY56DanLq9s+1KXXbYtqduxtg3Ns9IAbgMdF1zZr8t6nW/U+VFd39WxQJf9Lq+p45WONzo26HyqvnaU8UOX5Tpu6LLbxgldVusyXccPnfNc5ztsHNExK+w7AOC+0jHGxRUdj1Yd13FOt5HcuWExT7dtwmJX0Ji5beh2jW6D6Pjg4pGOU7pfS8cZHX90G0THKN1G0u0ZHXvC7gsAsH9hfQ2r3u/rXP0+aLz6psL6DNz7Vcej+FzYcTtGBQBweLoNtm6bT7ftdLvNje/U7T0d31w+VLcBdaxz7cig55Y2odtprt2lc4S67eZikW7/6Vjl8oe6Hajzk64tqfu81mkbAgAAYH3rjhu9jecFzRuwi3XHhh7qvHU/Q10YAKKln30Ne6/768Pe63HLYe91LAt7r5/5DXu/i3XikM7H6Pf2+VU9LkD33S/7jO6/15/ROSg7Bo4+fwAAgMPbZuzOruN9Vu0LmtdxE4cex7PJuXYeGgDYp3XK3V1fg665TY7flp/bvm5yLcZhAoBfq9WSyWQijUbDG//oxim2Wi0Zj8fSbDY3OtZsNmUymfiOraNUKkkqlZJqteqNMXRleLlclmQy6Tvmxia6sr1arUoikZBKpeKd48p/l68mDgDA8em2RL1ej+T906dPV+aVdNugVqtF8v75559nLjoAuAVcXHA/OlZssv3pp58uHbvj4oCNC5tuP/fcc6x5DwB3hI0x6/588skngX0mOjZs8vPCCy8w1x+AW61er8v19bXc3Nx4r0+ePPHt+/jjj33rXdVqNTk5OZGHDx+Gvr766quMtwG2NB6P5YMPPpCLiwu5urqSq6sr+eEPfygiIo8ePZKzszM5PT2V8/Nz+frXv87zHLjXHj9+LG+//fbR1hAHbotutyvvv/++FzcuLi7kxz/+sSQSCfnqV78qp6enxA4gAv1+f2nb6ebmRj766CNf/3c2m13adnr06JG88sor5I8A3Grb5tttTsnZNt/+4osvMoYUAO4wO/40aBzQumOF9HxClh1vustYoS996Uv0dQDAM6LX60m/35dms+l73+12pd/vS6vVkk6nI/1+X9rttu99u92Wfr8vnU5HWq2W9Pt96Xa7az2X7eJKLpeTarUq+Xxe8vm8lMtl7/m6YrEolUrFO1atVqVQKEg+n5dSqSTlctk7xtrUABAu7Jm3TfeFHVvWDtHCnoHbdF/YMT2/KADg2efWS5vNZt48IO1221vnzM0H4tZSc7HLrgfq5gd0c2e79oyeW2STtdPcmmZufms7d0itVvPmu3bzWbt45tZVq1QqkkgkpFqtrrweAACH4OLjoV/X5eLioV6ZgxcAcBdEPVfzqle9Fvk6opqzed1X1kzEsbiclaPXb1t2zOajlh3T9edlx+z8uesec//Wo7Lr2m/rrjG3zbp0+jMuVyeyuD4rAADbxtVNYvy69QZ7TK+N5XJt6xyLio6nOu6uOqbjva4XrDqmc3XLjrk5/R3d16aPxWIxqVaru/4ZAADPMBtD3bgUp9vtymg08rb1mvBujMu6n9VjM237XK9Zr3Nz9jt0/Lf1hm3WYltFj+nXOTkbY3Vb3bbPw+K0iL9eYOsTUX83AAC7srHX9qfpeG7zCTqGu/Gyjq1D6DyBravodVlF/HWTVfen6yKbjKPdhI31OjdvY7iN/Tpu234Fm9fXOQI3Bshx43Idnb+w96frESL++oe9PwAAomDrATZ+23yBzS3Ytr+uf9h6g62P2HrEsj4NXcfQ92Tv395fFHTs1vkAWz/Q9Yxl+QZdj1iWU7B1Cl3fWJaz0HUPm5cAgCjY8nvT7Siucahrrju/wS50XLBtzU22d/lslNdiLC0AAACeVTrvpXNVOqelc1O6jaH73nTeS+fPbJ5Lt0d0Dk738em+N50zs319u8hkMl6uKZVK+XJXuu6vx9AUCgWZTqcym828tkI8HpdsNiuDwUASiYQvf+X+Lslk0tc35/6WyWTSO284HHp/l2QyKbFYTMbjsQyHw4V54YLadEFtPzsWytF/62MJmvvU9j2KhOcBg8Yp2bHQTtDcekFtPJsXdXR+1LF5UpHgPs+g3ynoejrP6jA/LAAAALAeO/7Dto/seAvd3hXxt4VF/O1k266y40Xsd+tr2fEhui1mr2vveR99ebZ9Zdsry8Z0LhtHqseD2LEitu9Nt32WjTHd5DoAnj16LJ7LE+ocoy4zXZmty2NXhupcoiuf9bVdblKX1y5G6LGGu+TSdHnqyi6dw3Llqy4TXd5Ll7cun6TLcldu6pyWK9t1OarzYOSbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACB6YWvW2nnORBbnLxNZnMfbCVq3zq7F59g190QW19Zz9jHH9a5/g0Nbd95pkeC5z+z8aCKLc6g5ei43J2jebDtHUND1gubRtvPDhf0uQXN4B82rzRpNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABE7p3Y3K4ehXuj2WzKiy++KH/1V38lv/3bv33s2wGAg/ut3/ot6ff78vd///fHvhUAwB699dZbIiLy+PHjI98JsD+dTkf+7d/+Ta6uruTy8lK++93vyqeffiqpVEreeOMNOTs7k9PTU/nWt74l/+///b9j3y4AAAAAAACAe6Df78tgMFhrf9T7DvU9u3z3fD6XTqcjk8lk4fOHlkgkJJlMih1GFovFJB6Pe9vuuNs3m828fbFYTObzucxmM+/86XTq296nVColqVTKuxcRkXQ6Lel02jsnnU5LNpv1fS6dTksul/N+p0wmI5lMRkS++LskEgnfPhGRZDIphULBd61isSilUsl37Ww2K7lcLnR723OC9hUKBd/vCgAAjsPW+e7S9qpze72eDIfDdf4MW1lVL7rN26vOzefzvvokAADY3Ww2k2az6W1PJhNpt9ve9mg0km63620PBgPp9/vetq3bdDodGY/H3nar1ZLpdOptNxoNLw82n8+l0Wgc7LujlE6npVAoeNur6i3FYtHLuYmIlEolSSaT3nYmk5F8Pu9tx2IxqVarvu/c5jP2e+19i4jUajXfts2PpVIpKRaL9k8A3Avrtv22bSPu+/rtdjvyvpOwNty2bb2or7HsGG1KAIeyTnm+a5kf5XfoOvoutinvN30f5bWICwDum33HlE3ehx2Pqg8t6hi0j5hm8zwAgOhtG4+i/FzY8SjydrvGrH3GxWq16o0/BgAc3jbxax/H9T7bl7+NfbTN9vG+Uqn4nh0CAADA5nQftu47GI/H0ul0vPPq9br3vtvtymg0EpHFsaf6PF03HQ6H0uv1RGRxPKvO3+jz7JhbPU7VjnHdlR4jGo/HpVKpeMfK5bIkEgkR8ddHE4mElMvlwPNcbkfki2e79XPcut/CXsP2resxp3Yc67LrAADWp+NV2Hsd+8Le6zga9l7ncHQMtbFRx7xl8XlXOu7oZx+WxUL9Gf3sg32+IiwuLvuMjm3LYql9JgMAAADb0bkXnWvRuRqX69F10aBxObpOq8/V9VlXz9Xn6nqxPrfZbO40B6Cud+q6paun6rqoPlfXd925un6s6836XNdvqc/VuRz9HDFjfQBExeUlXLns8uuubHVzSejy3pXrrpx1ZbPLg7iy2MUFd01Xtk+nU2m1WhvdpysPXXmry2BX1rpy0p2rc94uD+DyBq78dWWyLntdGevmfNAxAADuExcjms2mTCYTaTabXpmuj43HY2m1WgvHGo2GTCYT3zEXK5rNpkynU19Oe5VqtSqJREIqlYoXD1y/q4sBLibsei4A4DC63a70+31ptVqRvnd9r2FyuZzkcjmpVqsL77PZrFQqFclkMlIsFr24UavVvPZDsViUTCYjlUrFiy/lctmLLwCAw9LPRNXrdanX6yu3w85Z1a+QzWalVqtJrVbz4kbY9rJzXnjhBd9cowCA43O5Kh0rVm3rfUHzAVYqFalWq77YUKvVFvZVq9WFH7tGGwAcw3A4lM8++0xubm7k+vo68PXJkye+Z8DS6bQ899xz8vDhQzk5OQl9PTk5YdwLsIabmxt577335OrqSi4vL+X73/++9Ho9KRaL8rWvfU1OT0/l/PxcfumXfklefPHFY98ucDCPHz+Wt99+O5J5uYG75Pr6Wi4vL+Xi4kKurq7k3XffldFoJC+99JK8+eabcnp66sUGnpsDVhsMBnJ9fR3a3rm+vpaPPvrItx5bJpORBw8e+No4jx498rV3Xn75Zd9ztQBwLM1mUxqNxsLPOnnvoHl4MpnM0jz3sly4fr4fAHD7RTEGp9/vy6effrp0Pv9NxuEs237++ed96/cCAO4eOw40ivefffbZyucK9Douq+LNuu+Z5x4AvpgXaDKZSKPR8OaXcOWze8a40WjIdDqVZrPpzWvh5qhwcxDV63Vvrgv3+Xa77T3bvI5yuSypVMp7Viyfz0uxWJR0Oi3VatV7Vsw9P1atViWVSkmpVPLmo3DPHpfLZS92lEolSafT9AcAwD3g5rlz8y65OZNcjHJxzM2n4WKWa+e4+OaefXax0M3V5J5lc+s76DG5q7i5MVw8c7HOxSsXy1ycc/MoubmXarWaNzeTu4Zr47hzK5WKNycHAAD7ZtfQ3PfrpnPV2nWh9/1KrhEAcFu5Nq6Lq0HzDNs5i1172M577NrX7rOrXtfl5is+9CuwjF43wa6nqefNW3bM/ltYdkyvlbbsmPt3uOmxqOg1F+waZ/qYXVdz22Mu7yXiXydi2Vpp667JBgC4f2zc1usvifjX4152zK6nrdcFX3ZMr9e96pjOhS07FpVlMV7H1mXHbHzWa4UsOybiX5t02TG9priIfw0oewwAAN22F/GvFW7XEbfrhdu6gF7XUcRfN7DtcVsfsO3zXT6r6w9RsuuG27iq1xu3a8PoPjK9bqNIeIzfJKew7XcDALAtWw9Ytn3bz7XHomLrCsu2j3HuJtfRuQ0AALZl8wq2fW/X5luWo7C5AttHYPMdNmehcwd27IF7nsaxdQWbh9hHf4Sj+/hF/DkEmxuwbf5l/RZ6jMGyPIKuD9g+DJ2nsDkTfd/kIgCsY5P2XdB2FNc41DX3lb/WNmnvbfuZ23JNGysBAACA+8Lmx3SOSufGdN5M5+d0Tmw0GsnTp0991xqPxzKZTLxn60S+yLG56w4GAy+Xp/N8k8lEBoOBzOdzmUwm3v75fO7L3+0iHo97ua1YLCbJZFLm87nEYjHfWuqJRML7mySTSYnFYjKdTr1z3bVms5lMJhOJxWLe/lgsJpPJxMsDuv2j0Sjy5482tU5baZ/nHvK7orgv5jUAAAAADkuP9RDx943ZsR92vIYdV2LHgthxJnZsiB3PsexeRPzPrNhnam27244liZrt89LPg4r4x4vYcR56DIgdH2KfQdXX1fNLiPifSbFjUuwYUn0/dlyIvg4AiISP27fzZ65z7j6ut8v4v6Cx+WHj9Zcdj2ofYygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3AV2HjGRxfnAHDvHmMjivGVO0Hwydg4zkcV50Ry7jp7I4rxkjp3rTGRx/jQnaL2ioHWNNvkbHJqef8wJWufWzmPm6DnTHDuvmhM0r3TQHNR2XT1Hr6/n2HX2nKB5e8LW3dv1bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBA78TmdgUt3Cu/+qu/KsViUb7zne8c+1YA4OD+8A//UP75n/9Zvv/97x/7VgAAe/TWW2+JiMjjx4+PfCdAdK6vr+Xy8lIuLi7k6upK/uVf/kXG47GcnJzI6empnJ+fy9nZmbz55puSzWaPfbsAAAAAAAAAgBWazabMZjPfvk6nI+Px2LdvMBhIv99f+Hy325XRaLSwv9VqyXQ6Xdhfr9cX9s1mM2k2mwv7x+OxdDqdhf1h99Lr9WQ4HPr2jUYj6XQ6MplMRES8V32PehjbbDaTVqvlu8Z8PpfJZOL7TveZyWQS+PsfSywW894fenheJpPxbadSKUkmk7592WxWEomEt51IJCSdTks8Hvf2ZzIZ730ikZBkMin5fN53nWKxuPB9pVJJMpmMxONx7/tdX0WhUPA+547H43EplUpSKpV816lUKlIul73teDwulUrFd04ul1voB6lWq76/PwAA2I9+vy+DweCZ3LbHopbNZiWXyz2T20H1MwAAsJtGo+Hll+bzuTQaDe/YdDr15dBsHm84HEqv1/O2bT3H5hTb7bYvb2dzljanaD8flEfU9y+ymDucTCbSbreX/QkiY/NGhUJB0um0t51KpaRYLC79TD6f9+XDkslkYF7L5b5EFutIiUTCl/cSESmXy7583TafsfW0oHwacNds0nYLO3bMawT18+xK/1tf1j7b5rx9X0NEpFar7fonAIAF65Tfm77f53WD+uq3sU0Zvsv7XT9v698A8CzaR+xY9X7Tz4WNMdvUtjFh3/FKv7c5GgDA7nS/xGg0km63KyL+3L8eE+z6NHRfgB57rPNnrj9h2+8IG+u8CR1HisWipFIpEflZX4HOu+v+AZuP1zkwHY9KpZI3nle3kXSfQCaT8cbq6n4L209Ang0ADkPHGt3/ruOSbmfp9zrO6b54/YyPfq/753U/u84nuvf6vsKeA9qUjm06Bun36XTaeyZEx6ywdpmOcbqvXcdB/V7HXx03dd+47ScHAABAdOyYVF1f1X0NdtynrsvqurLN1+h6rq472/N0HVjXq3WuyF7PHouKHTOqczK6Tizir8PaXM4m19F1XjtGNarrAAAWRTmO7JCfCZqnZlu7jhU71md0DAYAAMBy24w9PcS5UTyDt8041UOcq/tAAcDS4z9cztu19d1YE5dPd+WmG7+ic/rus+4z7lyXO9djS9z1tyl73RiSWCwm1WpVRH42RtKN/3BloM5Lu1y2y1u7XLfLa+ucuhuv6dr7rlwNmgcCAJ4ltp4c9Fqv11ees+rcsDnKg9j6bTablVqttrAv7HXdc5lDGgCi59oL3W5X+v3+Ru9Ho5HU63Wv7dFut2U0Gkmz2Qxdj8Jy5Xy1WpV0Oi3FYtFrM9RqNa8tUCqVJJ1OS6VS8eJCuVyWTCYjpVLJazsEXQcAsD+2TVGv17feXjbHkm0/6DbEpttf+tKXeNYIAI5Mx4BNfj777LPQeZB0mb/Jz4MHD1gnA8BB9ft9ubm5kevr69DXjz76yPcslivjHj58KI8ePZKTkxN5+PCh7/WVV15ZmI8euO+m06l8+OGHcnV1JZeXl3JxcSEffvihzGYzOTk5kdPTUzk/P5ezszN58803qRPgmfX48WN5++23D74+MnBIrVZLPvjgA6+8/8EPfiBPnz6VZDIpr732mlfen56eyuuvv37s2wVuldFoJE+fPl3ZTrm5ufF9rlarhbZP3OvJyQnjfAAcTFDe2fZJhv08ffo0cKz8qryz7Y/UP5SBAHB7bTvWxe77/PPPfevrWnaM/C7jXZhbHgDuHjfHph5r32q1ZDgcSrvdlm63K4PBQJrNpm+MfqfT8Z7p6nQ60u/3pd1uS7vdln6/v3JtFTcffLlcllwuJ4VCQSqViuRyOcnn81KtViWXy3nxxb3X+6vVquTzecnlclKpVBiTD+BecuW4m4+hXq97cyu7ct09V9VsNmU6nUqj0fDmS3bP6LrPNxoNmUwmXizo9Xq++ZhXcfMu1Go1b14GN77eldOVSkWSyaRUKhUvHujns9z8C+75q0qlIqlUyosZjJkAgGfTOnNNRPXq8mfrWmcOik1fw+asoF0DANinQ8Zbl1PcZI2BfcTcZa+sFwkAuG3s/Lsut+viq8vr6jl73dwnbh5GNx+vnefX5Y2D5grW61Gvy81LbufgdfndeDwulUrFm+M3qlc8O9Zd0+o2H4ti7QFr3TWvbvMx1i0AgPtjWZxctb3LZ/d5LRH/etNR2Xf8PcR3EOMBAMeK1/usN+yjbe9EFddvy2cZuwkAWJcdK3LbtnW73/WjObrPTK+LKSJrr2WzKRt/9VgWvfalyGI81mui2TUw7VhU/ey3e4bD0W1+18cXxf0BALCt25I3iPJamzyfuald2vt2O8pr7Xptt5Y4gPsl6r7fu3TNfdi07N3mM7flmsQNAAAAPItsf1XU+/v9vnz22Wci8sX6H2691fl8Lp999pk3pmY8Hst4PPaeSdPPoLlj7tk1d8y9dzmxyWQi0+nUe+/63abTqdeXN5/PZTQaedvu2Hw+953njt0lyWTS67vT6wCUSiVvOxaLSSwWk2w2K5lMxtfGcXO1iYhvLG+pVJJkMun7LtsX6Oi+RSeof8/2FzpBc+HYPkon6Pn9oLadiATOYe2eVwQAAABwt+m5TRz7DMdoNJJut+s7xz7f6eZdcdy8K5qbOyXoGrZdrOdrCbqeHVtq+/bs/WwzX8u63Lzejm2HuXleHNvOs20524607TfddrRzvNgxo6vuxbYDbVuP51UB7EKPx9OxxT07oGOQLvd13AmbP8jN4SXys3iir6Hjhn7GQMeHKGKDLjd1+e3Kal1O63ihy2N9DV3uujEW+hq6nNdluPs+fV3GaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3R9g6O3dh/226F5H9zlu2rnXWAdrnuYf8rijuK2i+bQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwJ78Tm8/n82HeB4/n2t78tf/RHfySffPKJFAqFY98OABzUn/3Zn8lf/uVfypMnT459KwCAPXrrrbdEROTx48dHvhNgO91uV95//325urqSy8tL+e53vyuffvqpJJNJ+drXviZnZ2dyenoq3/zmN+XLX/7ysW8XAAAAAAAAAIBbqd/vy2Aw2Gl/FNfQ+8fjsUwmE29/u92WbrfrO3cymUi325XRaORtT6dTGQ6H3r7pdCqz2UxEREajkYxGI5nNZt4+EZHBYOCd78xmM989zOdzccMJ3ffY4YX2GndFLBaTeDzu2xePxyWRSEgsFgvc594nEgnf8VQqJclk0tuXSCQkk8ks7EulUpJIJCSZTEoqlZJUKuUdTyaTksvlJJ1O++4pn8/7xvGl02kpFou+89LptGQyGe/V/TiZTEbK5bJks1lvXzablUqlIrlcbuFvU6lUFv42AADgi7pRo9HwtmezmTSbTW97Op1Kq9XyLJqAoAAAIABJREFUtieTibTbbW97PB5Lp9Pxtkejka+uNxwOpdfreduDwUD6/b63beuSvV5PhsOht63riCIinU5HxuOxt91ut311zVarJdPp1NtuNpu++mKUYrGYVKtVbzsej0ulUvG2E4mElMtlbzuZTEqpVPK2U6mUFItFbzudTvvqSJlMRvL5vLedzWZ99ZxcLuerC9nri4iUy2VfPc9+h4hItVr11RXt94iI1Gq1oD8BAACIgK0PrdqO6pxjfqbRaCzk4/bB1muC6jmrzrlrnyEHhmOyOX7ddtRtNdtOrNfr3nvdJrTtUd3+s21PXa7ocse2cXWbctk1omDbfPrfp/73a9uWhULBy5Xbdp5u49nP2XNtm9K2IYvFoi+fb8sP3Q607VsAWJcu83UeUZfxNj+py2Nd9us4o8v6sO+wMUDHG50zDPuOXelyNp/Pe/2cOgboXJ0ua20Zr/N3Ohbo79DlvI4BOh4t+w4bJwDgWaHLfB1jXFzQcUjHJ92m0fFFxx3d56Vjk44nug2iY07YfW1Ltwd0fNExQccgXe7rNoiOLfq9vo7tD9OxSV/XtlF0PNOxEQCwPR2LdMxxsUXHNh3DdA7O5e10TNSxT+fQdHzcps21K52/KpVK3lhWHct2bRut0/5ap40XNH4DABA93RaL+n1U14sq56hjzm19T44RAADgeMLqo5scuw3XiTKXpIXVZTc5dhuuY8d7AcB9Y8cV6752nYPRfSL2M7oPI+wztg9Ef0b3seg+FPsZPW7aPi+7K91fovtIdD+F7dfX/Sp2fLPuD7HPnurvsuOSlx3T/S02nvGcKgAAwBd27aOM8tyo+zcP1T+5yzXIswD307JycdXrrufa+bLWsazsW1YWRnEuY0AAPAtc32Oj0ZDpdCrNZtMbD+9ywi5/u+u566rVat5YdpePdWWvy/e6nO2m57px8TY/DADYXlCdv16vb7wv6Pjnn3++Vh9iUJ29VqsFvt903/PPP7+wZgAAYHuuzLcxYNPtVTHClu9hcWHdY8xbCQCHo8v+oHiw7Oezzz4L7cfVZfsmPw8ePKAvAMBe9Pt9ubm5kSdPnsj19bXc3NwsvP7P//yP7/mhbDYrDx8+lJOTE9/ro0ePvPevvPIKYz1wr7VaLfnggw/k8vJSLi4u5Ac/+IE8ffpUUqmUvPHGG3J2dianp6dyenoqr7/++rFvF4jE48eP5e233z7IeibAIUynU/nwww/l6urKK88//PBDmc1mcnJyIqenp3J+fi5nZ2fy5ptv0mbDvVav10PbE+71Jz/5iW+d0lqtttCmsK+vvvqqby1PAIjCsn5Acr8AcH+58eetVktarZa3Xa/XpdvtSq/Xk3a7Lc1m0zvWaDSk0+lIt9uVTqcjjUZD2u22d36YfD4vxWJRisWi1Go1KRaLUigUpFgsSrValVKp5O2rVCpSLpe980ulklQqFW9bz0UCALid3HNOrVbLe86p2+3KcDiURqPhtUuazaYMh0PpdDrS6XRkOBxKs9n0xrQ3Gg0ZDofS7Xa956f0PF1h7JjEXC4n1WpV8vm8NyaxUChILpeTcrnse18sFiWXy0mpVJJSqSS5XE6KxaJv/isAeFat+4zSJufYY5vMZ7DqmaN1nktadYzyHQCeDW6uXffq5vh1czG4dQ7d/LyuzeLik5ujwc1r5uKVm7PBzd3rvkOvgbiKWx/QzcXg5sW1c+e4tQbdHA1u7jEXq9yzVW4e3aC5G1iLEACwD/uY/26dz+q589ex7tx2Ub3SngQA3BZRxORtPmPXclvXtrF3m8/qzzBnyeEcYi3BQ37PpvXSdUSxtuCxj/FvCgCeLa4/xdFrJIosrmto46PuN7HrMK66ll0TeNm19DqM61xLrxsZNb3uoZuX27FrK9p1FPQajfZadr7uVdeya9noay1b49EeI9cFAPfLfD6XRqPh22fjpl4X2Z7vxmA4y9rSm352Wd3A1llcjsrZZq2ldel1je3YDNtmXhafbb3Brq28y2f1etEi/ti/qo4BAICl6wL3YTtqNqbvuq3juq2LuLGnjq4/pFIp3/PYtr6g6zi2bqHzF6wvBgDYVVRjAVZtH/Ja+8xDLOu7X7W9y2f3eS0Rf90DwN1l21M2byuy2I8rspiDtrliEfGe69PsM3y2z1hksUy29xSUE7d93va7bT930O+5D7Yv2bb5bG7X5o1F/O3CoGvaPmd7zaA2oL2mbbfaa9r2aNA1GX8GAACAQwur12+6345tve375/O5byzOaDTyfq/ZbOa11abTqe/3dW2/2WwmvV7P16abz+cyn8+3eq7smGKxmNe2icVikkgkfON3dR+bG1Mbi8W8NlUymZR0Ou37jNsXj8d9/XC67y2ZTHrXcHNa6vPS6bTkcjlJpVLeNeLxuLz44ovefblr2Zybu8dqtbrw+9q+QXcvQXPSMI4YAAAAgMhiH1lQP5vtmwvqv7N9fLYvLqiv0PYn2j7HoHa67bu0YzvcvKSafWbF/s77EtRfZvvxbNvM9tHpcRf2era9Z/sAbXvS9kPaNqS9N9u3t+xeAGDfdFzRzxfqmGTzpjo26TEjOq7pOKKvpWOQjY0ufun9+vwo4owu43X5rsdq6HEcusx25bUeX6KvoeODjgU6Jrl4pMt7PS4kKGcJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFHYOqp2Hi6R4HnARMLnpA6bUztorjCR8LlR7HxeTtB6RCLha7nZOb+cKP4GQXOMHVPYHCx2PR8naO5okcX1gJyw+aPD1v4JWisubB7roLWPRMLnsrZznC27l13n0wYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuoXdic7uyG+6Vjz/+WB4+fCjf+c535Dd+4zeOfTsAcFB//dd/Lb//+78fuOgqAODZ8dZbb4mIyOPHj498J8B6rq+v5fLyUi4uLuTq6kreffddGY1GcnJyIqenp3J+fi5nZ2fy5ptvBi5sDgAAAAAAAAAAcAiNRkPs8MPZbCbNZnPh3MlkIu12e2H/cDiURqMho9HIt//p06cyGAy87el0KoPBQHq9nkwmE++z0+lURES63a5Mp1MZDofeZ+bzuTSbTe98p9/v+649m81kMpnIdDqV8XgsIiLj8dj73SaTiXfc3vtsNvN933Q69Z03n8+967j99m92m4ZwxuNxERGJxWK+/clk0jumz02n0759iURCRETS6bTEYjGJx+PePveZfD7vu34sFpNUKiXZbNb7jkQiIclk0nufzWYlFotJJpPxfV8ul5Nisbhwv9lsVqrV6sLvkE6nJZ/Pe/cdj8cll8t57yuVSuDfJZ/PL3y3u3f7PfrewvryarVa4H4AAI7J1u3q9br3fj6fS6PR8LZtnW86nUqr1fK2bd1vPB5Lp9PxtkejkXS7XW97OBz6xvIOBgPp9/vetq2/9Xo9X72v2+366pOdTser1wVdb59svSGojlEsFiWVSnnbyWRSSqWS75xSqeTVh0S+qF8VCgXfOZVKxVdHy2azXt3GsfWOde6vUCj46nnb3h8AANidrQfZ7XXOuWufabVaC3m4fbB1p6C61KpztvnMvq67zmdsHQ7Yhv53a9uGui1m24HNZtPLp+s2mm1v6vadbVvq8sG2I3Ub1n7OnmvblFFKpVJSLBa9bfvv0La37L/LarXq5btte822zTKZjOTzeW/b5qRt29O2IXV7MZFISLlc9rZtGy+ojAEAHRP28T7Ka0Vd9i+ri+3j2L6+o1wu+/pyAeA2c3V+3Q7R/VO6HaDbI7o9oNsiOk7odohu17TbbW/MkW7T6Pc6xth20K5s+0LX4XV9X7cNbDtCl/W6zWDbALq9oPuSorgHAMB69tUe2lf7y47L2EVYu2Wd97t+fpvv0zk8AMDudP9PWNtLj2107UPdx6Tfr9NuDGtD6nGNuj1p+5q2pdtluu2l+490W0u/131Kuq2n23P6vT5fxzLbHtRxTd8H4wEBAABuJ913YZ/jsf3iejyVfYZn2+vYunFU14mKrtPaZ3+X9ZfbcVmbXGeTMVmrxpbZ530Y8wngPtGxyo4t1vkj3Veh8zr2MzpG6c/YMcY672SfQdWxy/arLDsWBZ1HsrFIxwvbP69jmI1Dy47pPJSNizoe2Vim46nNJ9kYCQAA8Kxw/Zg6F6JzHXpMjatvbtqfGdaHGTYOVudh7Nwr29L1Od2n6HIfui6q65e6Pqnrj7q+qMec6vyIrgeH9aGG9ZsCuNtcuafLS1feunLNlYG6vHTtc5c7cOWhK5d1OevKZJczcOWozZ+vy5WNroxy5Zkr+3R73pWprk2vy8pdjwHAXeDK3KDXer0eemzTczeZq8aV2/t4rdVqvn1hcxkDAJZbFQP0vlXH7b51Y0ZQub7tPnucOj0AbKff70un05F2uy2NRkO63a50Oh3pdDrSaDSk1+tJr9eTZrMpnU5Hut2udLvdhWPtdlt6vd7KvFCtVpNCoSD5fF5KpZKUy2XJ5/NSKBSkWq0uHHPb9lilUpF8Ps8cbgCwJ66+r390O2DZz9OnTwPnTLB1+01+nnvuOfJBAHZSr9fl+vpabm5uFl6fPHki19fX8vHHH/vWTKzVanJyciIPHz4MfX311VcZZ4F74/r6Wi4vL+Xi4kKurq7k3XffldFoJC+99JK8+eabcnp6Kqenp/LNb34zdO1J4DZ7/PixvP3227dq7VtgEzc3N/Lee+/J1dWVXF1dycXFhTQaDSkWi/K1r31NTk9P5fz8XL71rW/Jl770pWPfLnAQ/X5/aRvg5uZGPvroI18eI5vNLm0DPHr0SF555RXfWiUAsAk75mKTn88//zx0XZBt8q61Wk0ePHjgW48JALB/w+HQG3fR7Xal1+tJu92WZrPpjbtwYzR6vV7g+A09RkPP0xGkWCxKPp+XYrEolUrFG3tRqVSkWCx6P5VKRUqlkrddLpe984vFopRKJeYPB4Bbatvx4KvOXdYG0dYZ673puPBsNivPP/+8b21aALjL3Jwp7tmbRqMhs9lMGo2G9+y+mxvAPdPvymT3HH+9XvfOdee4OQOazaZ33XW45+tdueue7a9Wq5JIJKRSqXjzmbhnOd28JLVabeHzbi6TSqUiyWRSKpXKwtx6AIC7Z525CqJ83XR99EPMacDcBgCAqLi2nWvH2bna3Bxwer44N7+ba0vaz7q2ofusno/TfnYTbi5K11Z0cdDNdenae3quTDeXppvvwX523VcAAI4prL267Niq13U+u82c17bdGrRv3ddNPqvnuL7P9BznIovr6ug6mK6jiSyuLafnXBfxr9dzqO+xaw1FSc95btcHsuvw6HnTRfxzt9u1fuzadJt8z7K1gFgnCADuBxtTN9ne5bOHvFaUbNzdZfs2XYsx0QDw7IoyxgZtH+I7Vm1vOr5iU4eKyYf8LLEfAGAdO57ve9uNG9mXKNv4t3GbPgEAQBDbLy/ys3WBHTsGRK+VLhLcP2/nC3HjTR0b5+1Ygm3uy44psOsOH7LfwY4V0HHY9v/bsQN6DXcRWRiLqscSiPxsrKuIf714kcUxAnaMjF7/fdV9ArhdgvKpts1ky1aRxbJTZLHMDlq33Y7T0s8HOLYcFlks/4PKdxtXRGTheQG93ryzz3I9iC3rRRbLZFsOB30uqHzV47tEFuOIjQ02doj440HQNW08sdcMund7TQAAACCsHs7+7fbve6zMNpLJpK+d49qZiURCksmkzGazhf461/aYTqfesVgs5svl6bbhdDr1HYvinl2OKx6P+9pguVxO4vG4xGIxyWQyXlsrHo9LPp+XeDwuiURC8vm877mbfD4vyWTSe7bcqVQq3vXdM+ru/QsvvOCd555XL5VK3rNr7nsrlYp3nm1XAgAAAMAq+3g25DZ9JmjfNnONbSOoP3DTcZq36TPrnGP7JQHgNrBjUvS4QT0ORedX9ZgVPZ7RjlPRY2vCrqXHseixN/ZaerxNlLFKj+nT4/30WEA9bsSOQ9FjAHX+0T2HqHOU+jp6HIkeY6Kv4a7N2EIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsW9B6No5da8cJmws6aJ0dJ2ye6KA1dpyg9X9EgtfXEQle400keI0gkeA1gEQ2n+varjfk2PWEjilsLpOgdXREgtfsEVlcq80Jmp9LZHEtNydsbi671ptj1wdywtaODVoLaN9/AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIyDux+Xw+P/Zd4LjOzs7kK1/5ivzN3/zNsW8FAA7qH/7hH+TXfu3XpN1uS7FYPPbtAAD25K233hIRkcePHx/5ToBF3W5X3n//fbm6upLLy0v53ve+J5988okkk0l57bXX5Pz8XM7OzuT09FRef/31Y98uAAAAAAAAAAAADuCzzz6TVqvlbU8mE+l0OjIcDmU4HIrIF/1Mk8lERET6/b6MRiPpdDq+69TrdRkMBr59nU5Her2euKGjk8lEhsOhzOdz79x+vy+z2UxERObzufT7fe97ncFgIKPRyNuez+feddx9TadT772IyGw2k9FoJHrY6mw2k+l06ts3nU69779PEomEpFKpwGP5fN63HYvFJBaLSSqVknQ67buG/kwsFpNkMimxWMzbn0wmpVAo+M4VEYnH41KtViUej/u+J51OSyqVkkKh4O3PZDLeNUulkiSTyYV7TiaTUiqVAn+fYrEY+LsmEgkpl8uBnykUCr7fVd93pVIJ/Ew+n5dMJrPRZwAA90u/3/fVl+x2VOfs67rbntNut331tH3KZrOSy+VCtw95ziG/O6y+AwAA1jMYDKTf73vb0+nUly8TEWm1WjKdTkM/M5vNpNls+j5j60HD4VB6vZ63PZ/PpdFo+D7T6XRkPB5726PRSLrd7k6fEfkid6d1u11fvm1fMpmML9cUi8WkWq36zgmq7wTlZsrl8kKOqVar+baD8j3pdNqXaxIRyeVyks1mffuC6lSVSmUhf2XvPygvZX/vsO/E/bWsbbVpm2+T7X1eW2SxrInSsrbSpu2zXbajvna1WvXl1AE8O3q9ntfnqeuO4/HY62e19U5dr7PHdP3N1j2Xlce23tpoNLy+Uls/bTabXr9pUJ0yCrrcs3UmXfdKpVK++Rh0H6Gtf+l6nK0P6nql7bOz9TNdt1xWXgfV9QDgNli37n+o87a99q7Wrc9vc94+ry1C+wAA1rGvWLWv2Gb7FnaxaazaVwxc5z35cACIhs7t6fiic4/6vc4h6lyj7rfW73Wc0rlBnUPU713e0fZZ63N2ZftjdR+xji82R6jbUzpfqHN5Nj+or62fA7C5SZ031NfWsW/ZcwkAAAC4XXQ92PbL6/q1iL/v3fav6+tMJhNpt9uRX8eO89TXCRrnGiXdf2/r6bb+a8do2vyTHQ9qnxHW9Xn7Xbbub/vrbR7KjgO1407tmFMAeBZsO244imNRXT/K/hRnm76R23aMuAUAAO6afY/X2eR92HGbt9nWPsbbBL3f5Rph86cBOD79XJgbr+HGebgyzOWL9RgN1352uWOXb9b5YpdHdtdzz4fp69h5CdblyiWdt3W55H0e0zlp+9w/AByTG4vXaDRkOp1Ks9n0ymRXjrvniV157MpuV0d19VNXtrsy2l3blf2bjNFzZaobB+f68lw/m6szunLW1RtdP5vry3P9bK7sdXMHu9dKpcK4OQDYQL/f9+but+/X3bfs+Co215DNZqVWqy3dt+q4e33++efJQQDAmmwZHlbOr3ts1XgLW4aHlfNBx4LOZS4EANidLsv1jy3ng34+/fTTwHUewsr1dX6ozwNYx2g0kqdPn8rNzY1cX18vfdVqtZo8evRITk5O5OHDh4GvJycn1DHxzOl2u/L+++/L1dWVXF1dycXFhfz4xz+WRCIhX/3qV+X09FROT0/l/Pxcvv71r9MHjlvv8ePH8vbbb0c2pwiwT+PxWD744AO5uLjwyuEf/vCHIiLy6NEjOTs7owzGM20wGMjnn38uNzc38uTJk8B6+//+7//6nk/PZDLy4MEDX13d1uNffvll1mEGsJZVOc5lP2FjHzbNeepcKXkHANivbcc6BB37/PPPVz7zt83Yh7BjL7zwAmt/A8AtsO046nXPXWXbMdSrjj/33HPeHNcAcNc0Gg2ZzWbeM5OtVst7RtI+G+meiXTPQrpn5uv1uvcsvXvO0j1f6crqTeb9cM8wuucl3XOS7rlI95xjtVr1znFlsntWslqtes9Mus+7NQnK5bJ3DgDgbnBxxM4z5d67mOXij4tlLi65VxfrXNzS87K4uVvcM/56LZ91uPaCizvueX/36mKWmxfAxTv3DL+en9vNSepeeeYfABA1G1NXvW7zmaDPbrPeXdCcCeu87vpZnq0FAByLm0/CzU3n4qhr8wbNWerasK4N7NrRLia7drKeE9W1g+33bcK1e10MdW1g3WZ1bVs3r52b987la1072rWX9bqzLh67ufHs990F7m/vuP+Ojs2d63yEXaPMrn1m/5vp9c3s9y77Hv3/xabfEyW7Fplee8yuR2zXMbPzceu6nF0Dbdn32PXT7Npsu3wPAOD2W7bm2jrbUVxj39tRrdcRZNnabJtu36ZrkSMCgLvNrhVu28Aii+1cO1bA5Vsc20628dXlYxybC7Btdtv+1zkfx/av2PlI7T3ug42Jds1wu6a4bUPbdrJt27sxFY4dE2FzAyKL673aNW3sGur2HvX5jMEAgPstqI5gY76N4SKL9Ya7th01G2uf9W0AAGwOwNYXgtr4tk1v8wo2jxBUT7F5Altvsfdl8yMii/kQm1tYdV/7YvMNbmyJY/vwg/IFNj9gcxS2H8D29dscgf1Oe082/6BzKPb+bP4DwGFE0c971z+3zRj+Xazqg1133z4/t+97Yg12AACA2yFszGRQ3saxuRUtrK8lqB/JCXtWJyjv4wTV652w5znscyBOWF5n3/uPxT4Tsun++Xzu/TeuVCoynU699tR8PpfJZOLljiaTie//B52DmkwmXh4wn8/7/ntOp1OZTCZejmkwGHjfYdcnHgwG3nfE43Hf/5vD4VAmk4nE43GZz+cLzy6NRqPwP9SW9FgdO/ZHt4NsHkzn0Gz+Tefv7DGdL9RtL5t32+Y8AAAAAPfHIZ4TvU2fETlc/2AU/XS3+TNB+2hbAngW6byzjSv6mM2fLzumY5E+pp+ltLl6nYPXuXV9TzoXHjQ2cls2l6jHAer8ps5n6hihc6L2WjqvquNI2LX0mEWbM9XXYmwKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA7RI2t/SyObHD5tFeNod1t9sNnH/YrpOuhc2VvWwOj7A105fNyW3XaHOWzWUdNvd32LzbIodfi2cTYfOC2DmdNbt2vGPXbxcJn287bH32sHXT7NpsTtB8XCKL69M7do04J2z917C5vML+bkF/AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnfFObH5bVyDEwfz5n/+5/Omf/ql8/PHHgYsgAsCz6l//9V/l9PRU/uu//ku+8pWvHPt2AAB78tZbb4mIyOPHj498J4DI9fW1XF5eysXFhVxdXcm7774ro9FITk5O5PT0VE5PT+X8/FzOzs4CF7UHAAAAAAAAAAAA7rt+vy+DwSCyfXb/aDSS8Xgs/X5fhsOh77xWqyXdbte3bzAYSLfblclk4ts/HA5lNBrJZDKR6XTq2yciMp1OZTabyWg08vbpa9p97r7m87noob/j8Vgmk4lv32g0ktlstvB7HkIsFpNYLLb2ue5vcxulUilJp9OBv08mk5FsNuvbF4vFJJvN+vbH43GJx+MLn0mlUt452Ww2tH847Nht/sy216tWq2v/vwMAiNY69aZjnrPP7240GnKox6psHFy1fdvO2fa6lUrFqw8BAID1jcdj6XQ6vn227tLr9Xz5q8lkIu12e+fPdDodGY/Hvn3NZtOXb5rP59JoNHznBF1rOBxKr9fz7bP3sO53HkKxWPTlbUQW6zOxWEyq1arvnGQyKaVSybcvk8lIPp/37cvn85LJZHz7SqWSJJNJ3z6bJ4nH41KpVHznpFIpKRaLvn1B9bEovxN326Ztr02293ntVd/V7XYX8ulR2bSdtMv2Ia8dVC4AuJuiKquPfazdbi/0te4qqjL32MeC6m0AcGhhZfi6Zf0250Vx7ajjS1h5vW65fqzzgnIdAHDf2fy2zqO3Wi1vTKPOW+u89mAwkH6/LyJfjNV0Y0p1jnw2m0mz2fS+o16ve+917lvHK53n0jEtKM++rVwu541h1DlsnW+2OXCdS7J540Kh4M1dmkgkpFwue8d0DFp2zObXdTvI5sHL5bIkEold/wwAcC/tqy12yLbhrrZpbx3qM8uO6XgLAACAu+eujNHa9LP76Od37uoYrVXfRd0ewF2k+1B0/4iIv+/DxomwY7aPRve/2L4V3W8ynU6l1Wp5x3Qfjn2GQceooOcbdrWsX8P2h9hYoPs5bJ+LffbA9vXXajXvve0/seOC9fMP9n51X5G9JwAAgGPbtA9xn+/Djgc9G7uNTfsdt32/yzXIZQDHsaxMOtSxbfO/y8qeQx2jnQvg0Or1upf3dDlOl890+Uk33tyNCXflryt3XR3T5URdOezGtbux55vMlefygi6XmE6npVAoeGWmKz9dbtHV/Vxe0uU9Xa7RzUVSq9W8seYux8m8JAAQTNe56/X6Qj1c71t13O5bt86ezWalVqst1J+32WePM78oAISzZXdYmb/usVVzMS4rs2u12sbHWCcCADajy237Y8t1+/Ppp58G1u11OR1Udi/7ef755+njA+AZDAZyfX0t19fXcnNzE/j60Ucf+cbauvLm4cOHcnJyIg8fPpRHjx55709OTuTll18mL4w77/r6Wq6uruTq6kouLy/l8vJS+v0p5f8/AAAgAElEQVS+lEoleeONN+T8/FzOzs7kF3/xF+WFF1449u0CPo8fP5a33377YOtsAZu4vr6Wy8tLubi4kKurK3nvvfdkOBxKpVKRb3zjG3J2dianp6dydnYmDx48OPbtAlsbjUby9OnT0Hq2e/3pT3/qK69rtVpoPdu9npyckKMF4FmWX1z1EzZ327q5xqDc5EsvvcRYAQCIyLIxZNuMNdDzOwTZdTyB3n7uuedY8wwAjiTK8cn2+DrPrOwy9njZ8QcPHvjmwgGA2yzsOe1lr0Fl8jqvmzxPGPbs9aqye9NXymwAuN22iVOr5iJZ9arXeVvHunFnk3NXvbIeNABgU8eIqSKysr8nyK5xcptr2LmtAQA4hEPPx7nsnE0cIjYHfTaKeYE2XcNqn9tRX1uvgRK1ZWtY2e19nRvl99j1UgAAx2VjmF0vwdVbHDcHrjMej6XT6Xjbdk0vu26YXWNMZDF/YefGsv0Gen2xoN/Bxmn7O+yD7TewazHYNcBsfLTri7n5fh27Tphdy8zN6avpNcnsHL92jbJV8Zo5IgHgbjt0+/sY37nPdrmzSzs6aHsf14zinnQdAgDwbNtHjL/t1z1EnUHk+DF939us4wYAELkd+YMorrHONTd9vmEb+8gbRHGNfd0X65YA2wvq+3TrmWq2TzWon9b2/YrIwvp1tr837B5sWenWXNWCylzbN2z7m0UW+7BFZKNnpaNg20G2/1ZEAsfD235W208rstiXLLJYTtr+Y5HFPmmRxfyu7YcWWewLDuprDiq7eZYOAAAgnB1Hqdm6uRNU13aC6sBO2POiQfV7Jyy3EVT/dsL6VILaFs6yZ2TC6vBB7RknbH3toPbGbRJUn3bCxmIGtRWcsOcv7LjQfe0fj8e+/4fH47Hv9xuNRjIejyUWi0mpVJLBYOA7v9/v+9pK3W5XptOpxGIxyefz0m63F8YMuzbSeDz2/v+IxWIyHA69/yfs/wf6/1n7/6n9f3MfbUrb/tL/re1/X/3f1I4H1m1E216z/2/ptqNtN+p2rG3D6vak/e/Ps94AAADA3RDUZg7KQRxin21j2bxGUP7B9hHadltQ29/mNw7xzKhIcLvZ9pvZNmFQ/5tt3wf1/9m+PtsfGJQ/sP2Ktu8xqF/T5idsezMsVwAA95XOPdrc/rJjOiYuO2bzmcuO6Zi57bGo2Likc5L6mI2LOg7p+KhjmI6tOpbZa+k4qONz2LWW5eIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADumrD5qpfNfx029/SyeZ/D5tleNsd12PzSy+bzDptLe9k81nZOK2fZnN1h8xMvm9sq7G99G4TNex20Zo0Ttn7Ysvm1w9Y8D5vTOGg+LidorR6R5XNgBa3TIxI815YTNr/3snlIwtZqDZo7DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALHgnNg9aORL3yn//93/Ll7/8ZfnHf/xH+ZVf+ZVj3w4AHMz//d//ycsvvywXFxdydnZ27NsBAETgP/7jP+R3fud3ZDQaeftubm5EROTk5MTbl06n5W//9m/l9ddfP/g94v4Yj8fywQcfyMXFhVxeXso//dM/yccffyzJZFJee+01OT8/l7OzMzk9PeX/RQAAAAAAAAAAAAB71e/3ZTAYrNy3yblRX3MymUin01k4bzAYSLvdXtg3HA5lNpvJdDr19g+HQ2/MwHQ6lfl8LqPRyDeOYD6f+85zRqORjMfjhXs/lEQiIfF43LcvHo97++bzucznc4nFYgvnTadTicViEovFfPtns5mEDRW3v/9tks/nJZVKLfw+iURCKpVK6GcymczC/lgsJtVqNfAzuVxOstls4LFarRZ6f+VyWRKJxEb3ISKSyWQkn88HHkskElIul0O/c9n9lEolSSaTG99POp2WQqGw1f0AwLOm2+36YuN0OpVWq+U7p9Pp+OoK4/FYOp2O75xWq7VQN+n1er5zGo2GLz4PBgPp9/ve9nw+l0aj4ftMr9eT4XAY+f2NRiPpdrtyCDbuBsVoG7eC4lGxWJRUKuVtp1IpKRaLvnNsrA6KwdVq1VfXyGazksvllt7PJvsKhYKk0+mV+wAAwHbWyTVFneO6S995CLb+FFSf2ve+2/Kd1PNuB9u+sf82bLvPto/q9br3fjabSbPZ9LZt+8q29Wybrd1uy2Qy8babzabMZjMRWWzzTSYTX/571e8RJduesm0n29ax7bFKpeLlqm0bz7bngtpuNudpr2/vJ6gdaXOj9t9oPB4PzSkDuL102bes7nObjtltm6uLwqp6id6+zceW9WsBwD7ofhndLrB1b90m0OW4rv/btoJuV+g4YOv5+h50+8G2NcLuIQq6/NVls60z6z4W3beTTCalVCp55+l+Ft0uttdbFgdsHd+OYbDtbdu3AwD3kY4detyAzTnp2KPjlY4vOibpcQs2julcl41d+trLju1jbIKNGzqG2WM6j2VzTjq+2Lil81fLjumYaeObzrHZOLlsbB8AYFFYrm7dnN6un9n22na84C7WzcNtc94+r03MAwAAeHbZ+q/t39DjpkT8fSH2uRibX7LP2uwyRst+l81X2e+yY82iZHNXto5t+0fs8zE6n2XzTbY/x47ZsmO6gsZj2f4Y+/12jJet7weNsQSA22LdPg8bJ3SMsWOIde7Hfs7GE32u/X4b5/R32jhm41ZUbFyxfSo2Bui+EhtzbHzQ8cXGK/vcqY49u9zTsnkUAAAAorBp3+E+34cdt/XMbW3a37jt+12uwTOeQLR0G9fldV07dx/HdDvZHtuUK090PtS1NZcdc2WKPubGvut2rxuPqNuort3rrr9s3kMA2JWtA+7ztV6vbzTPga3XLavnRfWqx4kDwH3SbrdlNBpJs9n0yu1WqyXD4VDa7baXE2g0GjIajaTT6Uin05HRaCSNRsPr89LXcTHAjvUIU61WJZVKSalU8spl13dTrVYlmUxKuVz26s6u/6hcLksymfQ+XywWvbLd1cFrtRrzYgOAYuvprq6u6+2bHFtV1mezWanVal75bN9veow5AgAgnC6jw35sWe5+PvnkE99cmo4uk4PK5mU/L7zwgm88FoD7od/vy83NjVxfX8vNzY08efLEe+9eP/roI9+zItlsVh4+fCgnJyeBr48ePZJXXnmFMgV3xmQykR/96EdyeXkpFxcXcnV1Jf/5n/8p8/lcTk5O5Pz8XM7OzuT09FS+8Y1v8Nw8DurXf/3X5cc//rG33W635ebmRl577TXfeb/3e78nf/AHf3Do28M91m635d///d/l6upKLi8v5Xvf+5588sknkkwm5bXXXvOVnT//8z9Pfgh3Rr1eX6gP29ef/OQnvjZ5rVYLrRu711dffTV03VsAz6518n9h+cCf/vSngfOWrZPnC8sJvvTSS4y1AoAtRN1nv2puyk377Jed++DBA99z/ACA/Vr2XIZ9v+nxdcb3Bj13ERYnVh235zIGDMBt5OYMc2Wke3V1bvdar9e9424dFvfMsytv3TMYbi5Nd+1Go+Fdc11u3gP3fIR7/q1Wq3nzabk5uNwcWa68dc9duGcz3DPQ1WpV4vG4VKtV71mLoLWBAQDHo+eLdDHIzX3p4ox7ps/FIz13sotjLha5+TbcZ92ray+4GGbnxlyHm6/R1fNdrHJxx8Uw9+rikotxLl65NoOLY+45Qvfq4hwxCwCwio6jLia62OfmpdJx08VYFw/X+bzIz+a1cvHWxVG7RvU6XNtMzzPlYqqLoS4uuljpYuM6n3VxN+yzAADs27L5I10sXeeYjuE2Bq97bFOu3eviqV6rYJ1jrh3sjsViMUmn0zKfz7127mQy8T6fy+Wk0+lIPp+XeDwuhULBd+/2d7F1D7sGhV1P3K5nYbft2hg2V2DXtFi2Lus+2LmC7boSrv4Ttm3XS7Jzztl+TL1Ohd22c4TaNTBsXWuTNTEAAIcVVFewY2vs2oZ2XUU7d7+NiTam2phrY7aN6UH5Br12o8jiWud63ayg3yFq66xdaGOvjdWr1jK061HZtQ3tulKr1lu08VtkMSavWn8RAHD7BLVN12m/RnHOMb9bZLF+ELWgdYXtvmNvR3ENW0cBANx9ts1s42hQu9u2o21bPui6Nj9g2/dB1w0as2dj+jrXtXmAbcYCbsu2lW1sDcoZ2Hx/0LhAm0dY57o2t7DOdW2+IShfYK/L2oYAcL8Exd6gdrmNx0Gfs33uQfUQ20dh+yTsNWwfg8hifcLWQez927rONuMgt2H7AWyePygu21hu47Ltm3fPMmi2L8DmAmz9wNYpguohm94XgJ9ZJx96qH237X72PRYryDo516B9UZ1zGz5n4xMAAMBtt0nddpdjt/kzh7wHmwO6bYLqvMv2R/2Z23AP+7xvN3eHPqZzdbaPzv6/ZPv93PNWjs3j2f/fbO5Q5wFXPW+06vmioP7QKK16Hkj3OdrxvrqdZnNz9r+bztPZfKPOA9q8ob4/m5e0+UKe/wEAAACiFTRP+i77gtruh9gX9Pxm1PsOYd0+NjvWwo6LWGeMp223iSy2ubYZb2rbcUFzbK0a+woAWI/NS9pxkzbvaMc/2pypjn82p6nHUi47Zu9h2TGdow0a8xkFPVeBjZfLjun4tu0xG2uXHdOxcdkxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwf0Q9XzTHtjt2rDmp1nXs+aWP/ZlDfT/r6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFvsndh8Pp8f+y5wfL/wC78gZ2dn8hd/8RfHvhUAOJjxeCzZbFbeeecd+c3f/M1j3w4AIAI/+tGP5Od+7ufWOvfDDz+Ur371q3u+I9wn19fXcnV1JZeXl3JxcSHvvfeeDIdDeemll+TNN9+U09NTOT8/l7OzM8nlcse+XQAAAAAAAAAAAABAiF6vJ8Ph0LdvNBpJt9v17ZvNZtJsNhc+32w2ZTab+fZ1Oh0Zj8e+fYPBQPr9vm/fZDKRdru9cM16vb6wr91uy2Qy8e3r9/syGAy2vvdGoyHT6dS3r9vtyng8Fj3sfDQaLdz7IWWzWYnFYt72fD6XVColiUTCd148Hpd4PL7w+XQ6vfB7iogkk0kRkYW/q9s/n89lNBot7HeGw6HM5/PA7xyNRgv/XziTycR33duuWq36/v5aqVRa+Ls4uVxOstls4LF0Oi2FQiHwWDwel0qlstX9FItFSaVSG99PKpWSYrG41f1UKpXA/wdW3U82mw0dU7LsfmKxmFSr1dD7AYBt2DpFUB0jinP2dd1tzwmqsx1CUAxgn0ihUJB0Oi0AAGA93W53Ib/QarUWciA2zzSdTqXVavn2BeWTgupTx/jOoDqbzcfN53NpNBpyaDYnENRmTyaTUiqVfPsymYzk83nfvqC8RVBeIcrvzOfzkslkVn5nWB4nKEcTdE1sz/6bs//e9L81mwMej8fS6XS8bZuftnlxm3/W/87svzGb17b/nu2/5aAyICivvg/lctmXR7b/1hKJhJTLZd9n7L8z+/91UO7O/nuw7Zugf0e1Ws23bf/92X+3Qf/ebX52Wc4RwOHocnBZzurQxzY5N6jeFwVbTj1r27ZsB4BtDIdD6fV6IrJYz9dtAl1u2zq3rm/rur9tJ+g2hW5/63uw7QHddrDXCxp/EwXbzrX1el2Ht3V8W1brOrStY9t6u63X63q/bRfYdsMm9wQA98Ftahtte2wf4wuWtTHWPRbFNXY5ZvNvAIDFfpRGo+GNyw9rey1r/23TrtP9Quu2GYP6b3ehY4Zt1+n2lW2L6f4S226zfSe6jWfHe9uYpdtp9n5sm25Z+w8AAADPPjuOStfpdx1HFeV4MN2mEFkcH2bvJexZ5ijZ+r3tIwka/2THXdl8kx1TZevvtu5v78HW/4OeFbV9/ZveAwAcko5TNi7Zst/GHR1nVvX36xySzS/ZmLPsnmy8sv0tQXNqRGFZf/+qMQg6Dti4sSw/tcsYhFX3ROwBAACbChsPc4z3YcejGnO6zpiaqN9v+jnm0QDWp9urrs3o2rfrHnM53U2PubZw0FyR63L/3nVu1OUX9fgD1/bUbUfXTnTlh25nunahbqe66+o2pWunLpvfDwCWcfk910/lcoOun8m+uuP21X3evbrr6vyhK8s3zRG68s+9urLXvrqy073qelw2m12o27lX/Zl8Pk+ZCuBecOW6a6s3Gg0ZDofS7Xal0+nIaDSSRqPh9UW581yMaDQaXt3atf1dn1Cj0ZDJZLIw50wYV/668rxSqUgymZRKpeKVya6cdvXfWq3m1Ytdee7iRLValWQyKeVyeeHzAHCf9Pt9qdfrXt7Dvt/0mB5TF0TXs2u1mu+93V73/bI1AADgvtBl87IfW47X63X5+OOPA+d91OWz/rFld9DPiy++GLpGDYC7r16vy/X1tdzc3Cy8PnnyRK6vrxfKllqtJicnJ/Lw4cPQ11dffZX5KXArNZtNeffdd+Xi4kKurq7k+9//vnz++eeSSqXkjTfekLOzMzk9PZXz83N59OjRsW8Xz7DXX39dfvjDH64870/+5E/kj//4jw9wR7iPptP/z96dhMiW5Yf9/8UcmTFXVQ/5ut1dPIsqKFmDnVTT7kz3wgsLrI0X8sLGG22EZIPAAoEWQsh4Iy20FbK9MBhjML2wMNgLLQRuZ6ptdaVb3QK1isZPLlX3e1U9VEyZMQ//Rf1P9Ilf/M69NyJjynzfDySRce4YmXHPPEzlL//yL+Xm5kZubm7k+vpavvGNb8hsNpOzs7NFfOjiRuZUxDHq9/uRedkXL17I+++/vzTGqVgsRuZlz87O5PXXX6cPAfCIJa1/s+rhPvjgA7PtJK6OLaoe7lOf+hRlaACI4Poqdbvdpd+73a70+325vb2VTqcj/X5f7u7upN1uS7/fl16vJ61WS3q9nvR6PWm324u+U1HzMLr+/eVyWU5PT6VcLkutVlv0R6rValIul6VUKkmpVJJ6vb7YVq1WpVKpLN43Gg36MAHAjvn9WMfjsXS73UUe3o2JaDabiz60rv+r34e22+0u+su6vrPNZnNlHpWQSqUihUJBqtXqIt5vNBqLvrLVanXRH7ZUKkmhUJB6vb7oe1Wr1aRQKEi5XJZyuSyFQkFqtZq51ikA7JueR2DXr3H9VjXdF3XT17hz6DVkAQD748Ywu7y/SzPc+Dd/7kQ3jtmVBVz+3uXtXbnAHwMdd/51+HNEuDklXBqix0CHxjy7cXFufLUbS+fmtXDXcK/W3L8AALg00JrDyaV5Ln3058Z3c4m49NCf517P5eTSSj9ddWnwpnM6ufTSn7vJzSfvxpO7tNOf88mljVHHu33cedy+7nysVwUA2LWoOVv3tW3d+lfHpZkunS0UCot+EG6ORfeTyWQWfeFyudzi93w+L9lsVlKplIzHY8lms5LL5WQ2m8lsNpNsNivZbFYGg4HMZjPJZDKSzWZlNBrJdDpdzD2g12LQ6yDo9Yf0GkH6/bbp9Xj8tXF0GV6viaDf6/V/9NoGOv+i50/T7/WaC3rtH902ydoJAHA4eg08/T7JPpscs6vzJjlGp/G7oNO+dd9v4xy7fk9fIwA4PD33tl6jRa9XK7KaDlpr0OryrtWe7a9BKLK67uCm96fL3tb97bq87dNlb53+WW3oev0YXeYWkZX+YVa7gZ4fUZe1rftbdy1efV3rXgEAD9tjK/cn2Wdb69YlsY3yfZJ99nVMkn2oDwCAxy1J2ps07CEfp+tGdu0Y2xR2dQ63vibwWFh1p1adplUXKmKvr2jVf+p6UxG77GPV01r36I+Ncvw+2j6rD1jSe7Ti2H2x+h5ZdaxW3axVTxoaT6XraEVW639F7HXHrfJV0nvUfb9E7HhYx7vUAQMAgDj++EAtlK91osYPRJW1o+r1o+bjsvLeTih/6+g+Dz4rbxt3XNTfLXS+qL/nPts6NhEq3+sxCD4rTywSzmuL2Hlcx8qLi6z2i/CF5vKJyidHjWvwx28kve/QWplR403dGNVjtm674CHfr3vsrvsc77Pv7777GVMXCAAAgJfdNvtgPKawqLqXXUrSp+FlDBMJ13EAADan2xP8PkK6fUC3Mei2Ed1moNPSqGvpPkL6Wrqvkb6Wbt+Jal+5L78+Xrcd+H1sNt0mspzmRW3TaWbUNr+9Iqp9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAl521RgvbjmvbMYmal5lt9rbQfMBR83aH5sy21s8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADF9Jzefz+aHvAof3r/7Vv5I/+IM/kO9973vmoqkA8Fi99tpr8q//9b+WX/mVXzn0rQAAtuRnfuZn5M///M8lVNRJpVLyUz/1U/LNb35zz3eGx2Q8Hsu3vvUtubq6kpubG/nqV78q7733nmSzWXnjjTfk8vJSLi4u5Pz8XH7yJ3/y0LcLAAAAAAAAAAAAAMDOTSYT6Xa7K+HNZnMlrNvtymQyWQrr9/syGAyWwsbjsdze3i6FzedzabVaK+dst9sym82Wwu7u7mQ0GiU6fjabSbvdXgmfTqfS6XRWwkOf17pnEZHRaCR3d3cr4cPhUHq93kr4oRQKBcnlcmZ4NptdCc/n82b/80KhICKy8j8pFouSSqVkOp0ubSsUCpJKpUTk47/tdDpdnN+FO+Px2Lym2288Hq+EZzIZGY1GS9tSqdTiPKPRaPFdSaVSS9ccDodL27Rut7vyOY9VsViUk5OTtbfd59hdbHtM91Mul81nDsDxsPIohInc3t6upLn7YMWphIlUKhUzrwYAAGxJ8jy7zlMdIh9n7dPr9WQ4HMqhJM3vrLPvoY/f1bVe1jzfJs/OQz7GOseu6O/Zuu8f2jHValUymYz+MwBYk5930G1uOg5rtVqLsd66PUznQXSbnq570u91W6N+3+l0Fm1NIqvtiPq9f6+7UK/Xl9qYGo3G4vdUKiX1ej34Pp1OS61WC77PZDJSrVYX77PZrFQqleD7XC4n5XI5+D6fz0upVFq8LxQKcnp6Gnwf134CANp98sjHsK9+b/VL2RY/jl0nT7yrfe9z7Onp6aIfCQA8Nn55RfcpjNrml2N0n0O/TKP7Hfrlmahtuhzml3sGg4H0+/3FNquP53355SCdRvhlopOTEykWiyKyWh6K2uanLbqcVCqVJJ/Pi8hqmSlqm+7HRX0SAPyYrgv00zE/XdH97v30xy8/+WmYPrdOp/x0Uaenup7Rv55OX3dVfvPTFp1e6bo0v71Pp19R7Rq6jk+Xsfx0V9f3+fcnspwOR90fAAAAXl676AO1jT5U2z7nLtt4nEP0z9r2+yT7UI8GYNd21d5/qH1137Zt2lcfgEO8r9VqrKkIAMBLJJS/OsTvoe3bGpeZNI+W5Pd9HU+fULzsouKHqLB1948Ls+ZxTMo909Zzvm7Yfc7B3GsAori+YPrV9Zd2r66+zb26+FG/un7d7tW1FbnXdfN3bhym66+lX12fL/fq+i27V9d/TL+6Pmh+XzS3nXgTwGNk5ZubzaaZl9502zptM8ViURqNhpnnjduWZJ9XX32VMjWAR8nlybvdrvR6Pbm7u5Nmsym9Xk/6/b602225u7uTfr8vnU5Hbm9vpd/vS7fblW63u6jr6Ha70u/35fb2NlH87ce57veTkxOp1+tyenoqJycnUqvVpFQqycnJiVSr1aXfy+WynJycSKVSkUqlsqivAICXhctHJ/nx893NZlM+/PBDc20WFydbP36cbf188pOfZGwb8MCNRiP54Q9/KC9evJDnz59HvvoajYY8ffpUzs7O5MmTJ+br2dmZuVYUsE/Pnj2Tq6srubm5kZubG/nTP/1TGY/HcnZ2Jufn53J+fi6Xl5fypS99aWn8NnAfv/u7vyu/+Zu/Gds/4Dvf+Y78xE/8xJ7uCo9dq9WSd955ZxHnXV9fS7PZlFKpJD/7sz+7iPO+/OUvy+uvv37o28VLbjAYyEcffSQvXryQZ8+emfnP7373u0tz4RQKBXnllVfMvKfLl37mM59Zmj8GwMOUtP5L131R/wUAu9XpdKTf78vd3Z20223p9/vS6/Wk1WpJv99fxMmu74/7vd/vS6vVCrZDR3F9Pmu1mpycnMjp6anU6/WlNuZSqSSnp6dSrValWq3K6empnJ6eSqPRWGyrVCpL7c4AgPvrdDoymUyk1Wot+ve7vv2dTkfG47G02+3FNtf/v91uy2QykXa7vZiH3W1rtVoymUyk0+mszG8bpVarSTablVqttpirtVqtSqFQkEqlIqVSSQqFgtTr9UXfULdvuVyWcrkshUJhkd4Ui0Wp1+tSKBSW1oACgF0KjWvd1eu641yj+uHv4lWvGQgA2J115laIe13nGJHN1ltKmpZse1/mawEAOPdJB7dxvF7TPan7pIPbOJ55aQEAu3DftLbb7S7WSRwMBos2reFwuNhvOp3KcDiU0Wgk/X5fhsPh4r3Ix+umuHUX15HNZiWbzUomk1msFZLJZCSdTksqlVr87rjf0+m0zOdzmU6nkk6nJZ1Oy2QykfF4LKlUStLptIxGo8X7VColvV5v43kPkzr0HPi7fk+dNQDcj+sf4ug1kEVW1yLT6xmLLK93LLK6loxej1lEVtpF9b2IrNZV63vR6zCLrJbP9b24OTf3Qa95rNdEFlktl7tyu6PXZxZZXR9Zr58ssry+snUvei1n6170PJ26Pl7fq3UfAID90OmdFRb3/tj2SXLMttY1SWKTdUg3OWaf+yQ5hvZ4AHhYkqSfScO2ea5jOf+uHFPavc/z6roHAMDDte/0/FiPW2ftlW3YVtp+DMfd51zkKfAQ7Lr8Ego75LXXuUfdVrxP24y3dhF2yGtTtwsAwPGKyj9FzTUS1T5u9b1zrD52jtVf0Bc1Vs6tX22JqqN3811ZrH6GvpiWQokAACAASURBVKix71Hlet3v0LfOPFqHZvUl9EX1q9d9Dn1ReceoPoFRx4XK+6F8s0h4jKPV79IJrUUe9bfS/R6T3Dd9I7fDGkNkbXto73fdLnnoMTvWeOVtnTv0DAMAAAAPxTG12x1T2Lrz6W7LMbUTHlMY7YYAcHys9hDdfqTbYXR7hm7/0W1FOo3W59PtKn4bjJ6LQc8toa+l27Ci2pDuS9fX6zp/XedYrVYXc0eJLLcD6LYE3R6hr6XTVH0t3c7hXyuTyUi1Wg1eK6r9BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS9ycqFFzYUfNEy0SPY+QnpfgWO4rbn7ruPuKmv96F9uOSdQcsWw7jm0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHoSvpOahFXzxUvnWt74lP/MzPyNf+9rX5Itf/OKhbwcA9uYnf/In5R//438sv/3bv33oWwEAbMnv/d7vyW/8xm/IZDIxt+dyOfmd3/kd+bVf+7U93xkesufPn8vNzY1cX1/L1dWVvPPOOzIcDuVTn/qUvP3223J+fi6Xl5fypS99SU5PTw99uwAAAAAAAAAAAAAA4BHp9/syGAweZPgx3YuIyO3trYzH45XwQykUClIsFkVExB/akc/npVAoLN7P53OZz+eSz+cln88vnWM+n0smk1kJF/m4r1QqlTLDc7mcjEajpevmcjnJZrMiIottmUxmEeZMJpPFNovVdyudTks6nZa7uzszXOTj/4+7n1QqtQgXEen1ejIejyWdTq98pn6/L6PRyLyX8Xgst7e35rZjVKlUVv7ezunp6dL3wlcoFIL9ljKZjFSr1eA1G43GRvcTd95cLiflcjm4PZ/PS6lUCm4vFotycnIS3H5ycrJ4fiylUsl8LpxyuSy5XC64Peqzi4jUarWl7yiA5HmBly2s0+nIdDqVfbPiUcJEqtVqMA8DAMDLrtvtrpTp2+22zGazpTArzzOdTqXT6ayc08oLDQYD6ff7S2Gz2Uza7XaiexqNRiv1CyIizWZzJezu7m6lziBUV9BqtURPvdHr9WQ4HC6FTSYT6Xa7K8fvk5WnsfI+6XRaarXayvFWmThUTrfqDawyd6geoF6vr9TlWGX6UD3DfT9rXPn+IdDPXNz7h37Mvupwk5Qh1n1/7MdE1QMCsPlx1Lpx3rG/t/JZ23TfOPWY38e1TwB4uUXFv+vE1feJ57e5r1UvsA1R8ex94uhD7UvbA4DHKGl6ccht65xjW46pbLLtc5OeAXgZbav8dKgym//eahfdhmMsg226b1y/YQAAALycdH9C3RdyPp9Lq9VaOka3n+j2d50/13n54XAovV7vXveg+zvqvpq6D9au6st8ul+hblvX4x+z2axUKpWlc+j+Tfqc1jF6jJ8uF6RSKanX60vH6PKB1f9R933UnyfUZxEAkvLjbt2XXqcVOl7XaY9Om3Q64fez19fS6Y7uK6/77ut702MDrP7326TjfR1f+2mJjqt1f3Wdruj+9Drt0mmMHvev0y2d3ui2mLjPAgAAHga/HsDPp/n5PT+/5ufV/P39fJSf59L5NT9vFzrez8NFHX9ffn7IzzvpfJefR/PzRJsc748VvO/xwGPg1y26eMePA1yc45fdXDzg4g2/nOjKn37Z0MU1/nldvObHV5vGL/4z68pRfnnNxRt+mc2Vn/xymnvW/fjAPfN++dA/xp3bvwfGDAEQ+XG7yr5eN6lTc/GZfo3ato1jRBivDuDh6vf70mw2g3Fy1LYk+7htSVjxbKPRiI2Lo/bR2ygDA3gsdPy7jd+tueZ8ofj1Pr+/9tprkfOkA8BDMx6Ppd1uS6vVWvw0m82l91E/fv8jx/X3bDQaUq/XpV6vS61WW/rRYY1GYymcsWPAwzAYDOSjjz6SFy9eyLNnz+T58+fy4sWLpdfvfve7S23dhUJBXnnlFXny5ImcnZ3JkydP5OnTp4vfz87O5LOf/Sz9u7FXt7e38md/9mdyc3Mj19fX8tWvflU+/PBDyWaz8sYbb8j5+blcXl7KxcWFvPXWW/QRxUb++q//Wl5//fVgOTaVSsnf+Tt/R95555093xkei8lkIu+++65cX1/L1dWV3NzcyLe//W2Zz+fy9OlTubi4kPPzczk/P5cvfOEL1G9gr5rNZjC/6F4/+OCDpTiy0WgE84vu9ezsjHQZeAD6/b602+2lH1cHZYXruipr3RyRj/sNuron68fVNekfV2dF/AHgZRLqM5P0d2tbkrUxttFO679/5ZVX6B8OABu4b1/KJNuSrvO9rX6VUdv03A8AcB9u7LmL79zYTDdu0x/T6fozulc3TtN/9be3Wq3F8fo1KTeeUr+6cZ3u1c3Lpl/dWE/96sZ2uldrTBIAYPtcvtrltf05Rlw64dImt4+bo8Cf59Tt6+Yb0OmYf16XTiXN0/tcWuHSC5fu+HOGuvy5S2dcWuLSIn/uAFd379KwJOcHALycXBuFNVdPVDrq5oLwj3NpoUs33fw7fvnMndulqXqe16RcmctPy1y659JIf94cl466NNGfc9vNE+HKeOseDwBAlCTr7HU6nUXYj370I+n3+zKZTGQwGMhgMFikvy5sNBot6lSn06nc3t4uts1ms0U9rMjH82+Ox+PFj8jHc3pOp9PFz3w+X2ybTCaRY80PzZWHXX81f269dDq99hq1Sfa57/tNjtHzuQMAVlnrVem1QkRW1y6xjtPzHVplVV3vq9chsc6r11HRa5uIrK6dou9Fz59t3cuu6PVJRFbXDNFrkui5r0VW1yHZ19pZ1r3oucf0mivUmQPAbllrRW4ats1zHcv5d2WTcuo+99nltRnzBgDHRZelRVbXtxZZXXfUKnPrda5D59dlc+v8Vn9jqwxvpd/WmEBd1rfK9tb5d02XgUVWy/Uiq+V4kdW1F6y1s6202Krr1mNUrLK4VQ+gz2XtE7d+N+tsA8DjsO+y/rEeFzeP/LZtq/z+kI9j7T7sk1XWsMoWIuG6RiueCJVFjvl6VrnOWs/OaiveFysOscosVvtlqH3Sqtu0ymtWucuKr6wyYdJ7FLHX5LPmILDWgqIfFAAAm4lqUz6mbcd2P7u61yRzBB6LqHlM4uY42fTYXWw7tvu5z70yf9fjY7Uv6vKr1RfZjb+1zqHLxfp43T6qy8G6rVTHabpdVt+vjud0m+o26bKnbnvU5VVdpo2rt9PlUN0nWZdd9TOqy+R+mVi3N8Z9FgAAAGCbQvPzWH0nRcL1GX7ZxLH6ZIrY7XIi9vjG0NyvoXY8q/+oiN3uaH12q30xadi+WHUChwqz2hr3EWa1H1phAICHbZN+kPd9f6hzhPIw27TNeY92PafSOteiDxEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbE/cXMxRc4uG5hxyrHVCnNBcQ0nvK2rNpWO9r7h1J+9zX8cqbo7VqDkEQuuwONb6KT5rLqOk96XnoX2ZtgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtuIrqXloxWO8dN588035R//oH8nv/u7vHvpWAGBv/v7f//vyxhtvyB/8wR8c+lYAAFvy/Plz+Rt/42/IbDYzt6dSKfnrv/5r+exnP7vnO8NDMR6P5Vvf+pZcXV3Jzc2N/M//+T/l//2//yeZTEbefPNNuby8lIuLCzk/P5e33npLUqnUoW8ZAAAAAAAAAAAAAAAAaxoMBtLv91fC+/2+DAaDlfBeryfD4XAl/O7uTkaj0Ur47e2tjMfjlfBOpyPT6XQlvN1um32eWq2WWMM+ms3mSth8PpdWq7USPpvNpN1ur4RPp1PpdDor4ZPJRLrd7kr4eDyW29vblfDhcCi9Xm8l/FBOTk6kWCyuhJ+enkqhUFgKm81mcnp6Kvl8fmX/QqEg2Wx2JbxUKi2O9ZXLZUmn0zKZTJb+x+Vyeel67vvih4t8/P8bDAZSLBYlnU6vXHcwGKzcvzOZTMxwkY/7zFnf0VQqJalUyvzfZTIZSaVS5vcmm81KKpUKPitO6JlxQs+I0+12Iz/XsavX68G+ZalUSur1evDYdDottVotuD2bzUqlUgluz+VyK98vX6FQkNPT0+D2YrEoJycnwe3Ws+QrlUrmM+VUKhXz2XKq1apkMpng9qi/rYhIo9EIbov722cyGalWq8HtwH1Y6bGVFm87zErX9xFm5RuShu2D9bxvO8yKr0PxUCjurdVqK/mCUDxfLpcll8sthYXSlFB+yYpj8/n8Iv8DAADihcrLVnjSsF3te6zH75OVDwvlzZLu+1iPjyuvb5tVztB1qLr+ySpf6PpVXZ87Go3k7u5u8d6qY9X1WLo+1Crv6botXR9tld9Cdcfbputm9P/cKt/osolV3rHqnKx6JKtuSJdFrLKMVRayvq9W3VSSawIvK50e6/c6rtXvdbyq3+s4VMeP+r2OC3Xcr9/reF6/t9rTtsmvj9b1Pjou0+91fKvjVv1ex4P6va7D0fGyfm/Ftbp+Ka49AsDLw49fdV5dpw1+XK3zvTpf7KcDOi+u8+o6jfHjeF0WWOeetskvN+l4VsfDOs7VbZw6v6rztDrfq/PGOl3QcbrVXrHuNQHgIdBphF/m0GmNLm/4aY2u/9HpoT6XTvN02qTLSros5Ke9Oo3cZVomshrf6/RA1xP5aZhO/3T6o9MnnX7puiSdXuo6Sj/t0mmbLnPF9acCgMdCp0F+GqPTEF0X6KeFOg2NKpPpdNBP53Q6dp/72xbdb8pP23R6odNFP93T6ZqfbsWlS7t+DwAAAMTR/Z90GUDnz60+Vbp9Xtdx6TowXUemywdWfzF9Tn3f1n3p8ss+x6zoujRrLIZuE9J1YlY7va4X0+1OVruPLs9Y9WO6rk/X1yXpV8B4EwBx4vqTxfUXi2oz0e03Ov3SaYCux9LpSlzfOf1ZdjkOPq4vWlw7SFxfMl1HptMj/V6f30p7dDqor2GlcVHjwQEAwH5EjSdY9/d9HR+a62tTfnl43d8PcXzcnD/Aobnn1S+zuefWL7e5MpVfdnNlRL+85sqF7rx+2dCV2/zz+vFFaE6/pFz9mV8m8uvdXJnGL4O5+jO/3OSXyVzZyS/X+eUnd02/DOU/94yJBB4v107i4jT36sd7Ll5zdWwuznP1Xn586Pp3uXO5ONO1z7j4NzRHaRwXX7l4z8VlLk704zkXX7r2DheXujyOi2f9OjAX37l408WFcfMnAsAxcPGz/9psNlfC1tlHb1unjcLFt8ViURqNxuJ3/brptpOTE/KpAB4kHc/6ce2mvyepi9DxatTvSfZ79dVXqS8E8CCNRiNptVrmT7PZlFarJe12e/Hq/7RaLXMNFZGP61Nrtdrip16vL17d7364tS+A49Hv9+XFixfy/Pnzpddnz54tfn///feX+iQWi0V58uSJnJ2dBV9ff/11+j9jZ54/fy43NzdyfX0tV1dXcnNzI4PBQKrVqvzUT/2UXF5eysXFhXzpS1+SV1999dC3iwfii1/8onz96183y5zZbFZ+7/d+T371V3/1AHeGh4h4Cseg2Wyu5PH063vvvbc01qTRaETm8Z48eSKf+9znItfDA7A/rr9Ls9k063Z0mF8f5H5Ca582Gg2zTsevA9I/jUZj8bu1NiwAPHShPib3aQel7RMAjte2+iFG7Z90PM42+yKGttE/EcAm3HhGF6+58Ypu7I4/lsaNv9FjdkLjcKLG+2wyD40ba+Ne3Xgd/eriQ/3qxuw0Gg1zu6sP8c8HANgOnY+2wna9bZP1OXWe2woLva6zr3XMvtfDBgAcVpJ0bR9h91nzZpM0cdNt1j56fk8AwPGw5uvR81hb6ydY6ZJe60HPly2yOpeanmNbZHWO77u7u0Wd5mw2k/l8Lu12WyaTicxmM5nNZjIcDhfrRMxmMxmNRjIajRbXms1mi/t19xjq17UrqVRq8eP6fqXTaclkMpJKpRblzEKhsNiezWalUChINpuVdDot6XRaSqWSpFKpRb+Ecrks+XxeMpmM5HI5yefziznj8vn84r2bb65UKq3Mxa3XeNDrN+i5ufV84aw3BwBhUXMVrxP2kI/T63nsWtRcydb7be2zr2OsMMrdALA+a20AXR61ysPWuoR67cJtn98qX+/6/Ltmzcer1ygUWV3rUGR1bShr/Sjr/NZ6CJue30qf49ZyTLJ+IgDgsLZVNk4adqznElmt79+HTcrD9wk75vPrOnsAwPHZdT5hnbBjvJ9N+oXfx7bS4WPIV2x6nFWvAsSxxg/6a4X5dF8ix3rerb5A27qeVVY5luvtm+7L41hj2f01K31W/WRo3OY617PiLd3XSMSuew1d37qOVb9rfSbWygUAHKOocpO/JrYlbmxR3DwRL+O149a3jaoT32TejUOJWhfXyns5/nrllqg666g271AeUsTOHzpx/dJ127wvaux3VNnZysM6ofy0SDj/6jDXFI7JJu2Lh9xnW+e1+lht27p9hY/5vd4WFZcDAADgcQnVn4TGGoTy2lY9izWGQcQehyFi18dYYyNEwnVKofY/PeZCZLef/RBC9S6hNjOr7idU5xGqfwrVEVn1OEnDrHqVfYQBAB43K/+h50Gy8hd6rgQr/6DzGTo/ovscWefQ+Ql9XX3/Vj5Lt8fto63LaofS6bueCyFuHiMrP6LzLbrtR+dVrDande9LtxPFtasBAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDZYc+X44ubbDM3v48TNBx1a28MXtz7RfT+DHnPvi5tzOm4+az3XgC/ub3Of+zpWUfNXi8Sv+RE1Z3TUvNki0XNKx91X3HpNx3hfcfMW3Oe+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4SX0lNZ/P54e+CxyHX//1X5c//MM/lO985zuHvhUA2Jt/+k//qfT7ffkv/+W/HPpWAABbdHl5KV/72tdkNpsthafTafm7f/fvytXV1YHuDMfo+fPncnNzI9fX13J1dSU3NzcyGAykVqvJ22+/LRcXF3J+fi5f/vKXpVarHfp2AQAAAAAAAAAAAAAAgAdhMBhIv99fCe/3+zIYDFbCe72eDIfDlfC7uzsZjUYr4be3tzIej1fCu92uTCaTlfBOpyPT6XQlvN1ur/Q1ExFpNpsrYfP5XFqt1kr4bDaTdru9Ej6dTqXT6ayETyYT6Xa7ic8jEv57HotsNiuVSsXcdnp6KoVCwdxWr9cllUqthOdyOSmXy+YxpVJJ8vn8Uth0OpXpdCq1Ws08XyqVCt5DLpczjxERqVQqMh6PV75ruVxOisWiiIiMRqOl72ixWJRsNrt4PxwOF9tPT09XrjEcDmU6na58Jmc2m5nfdfeZQs+Uc8jt9z33sSsWi3JycsL2I7t2ku2VSmXpOcVxGY/Hcnt7Gxs2Go3k7u5up2HD4VB6vd7WwqzPIWLna0L5gmOJO63nKJPJSLVaXdk3lBdoNBorYYVCwUwvq9WqZDKZpbBQ/sPKK6RSKanX6yv7huKLfV8PAICXnZV3CtXDWHknKy8nYtfvWHVQoboaq97Iyo+F6oCs+iirjmcbn3WfrPqcUJ7P2jeUV0qn0+b4vVA+LFR/FMpThvJioXsvl8uSy+VWwkNlylqtJul0eiV8nb+BT3/XrO+p/o7q77dVBtHPha5/1d8x6/tpfY+telyrrrbVaok/1ZFV9gmVnXbJ+v5Z3zHre2SVCawyhS4DWWWofD4vpVJpKezk5GRRF+lY389dXxN4LHT8+tjeh9rJtk3Hh1b8eEz7bOu8UW1eAB4mnbf141GdF9ZlV11m8/PaOk+r8+p+Xl6XKa08ss5H6/Kmzo/voy1Bx5E6X6nLclY5SJeXdHlL57V1PnUb19T56LhrAsCx2mVZ49DlHJ0ObtO6ZYmo99s8133fk34BeIz8cpRuM9FlIr98pts9/LJcXLnPL3vpsptOr6LuT9/Drtv7dFvAY38PAAAArEv3udL5e6utRrcLWfl6XY+l24esfoa6jd/qSxnX38vqV6bbkvY5NlW3xei6KitPr9uIrD6Auh+Ubr+3+hnqdiBdp2a1Jel+WVYfMt1X0Op/BeDlo+Nend748bmul9Jpj47bdR8EnQ7peF6nbTpN0umaTo/0+32lIzoO1vG2lYbodEe3+es0xeovrON1ncboeN46h05z9Dl0epKkLzkAAIiXtL9Lkt/3dXxoHq1NhfquJPn9EMfTpwWH5J5F6/mMe353td0aA70O93xZz1zcM7mL7TzjwMOn463Q6zr7JjlmkzxSVNwU93rfY6zx3ACwby7ubLfbMp1OpdVqLdoTXPzq6vubzeai7cHFv/7xk8lE2u32ov3BtSuE5nDWXJ23qwt38aer96/X65LJZKRWqy3q+l37rquDd/X5Lq519eyu3t+dizgYwDFz7cC9Xk8Gg8Hi936/L+12W+7u7qTf70un01nE191uV7rdrvT7fbm9vV36vdPpLOLsKC4Ordfri/K5/3uj0VgKd/Gt28f9XiwW5fT0VKrV6iIeB4Bj1u/3pdlsrvy4PK+1Te9nKRaL0mg0ln5cfKnDrf1Ca24A2J1msynPnz+XFy9eBF/fe++9pTJuo9GQs7MzefLkSfD1c5/7HOtY4N4mk4m8++67cn19LVdXV3JzcyPf/va3ZT6fy9OnT+Xi4kLOz8/l/PxcvvCFLwTXK8LL7fd///flV3/1V826unQ6Ld/73vfk05/+9AHuDMfu9vZW/uzP/kxubm7k+vpavvrVr8qHH34o2WxW3njjDTk/P5fLy0u5uLiQt956i3ws7q3f70fmyZ49eybvv//+0liGYrEYmSc7OzuTz3/+89RVAXvm6lbWqWfx9/v+979v5l38vhhJ6ln0fp/85CcppwF4sFyfDL8NsN1uS7/fl16vJ61WS/r9/iI+dX0/3O/9ft9sf4zrd+f6cVQqFalUKnJyciLlclmq1aqcnJxIqVSSWq0mxWJx8bvrtxHV5ggAWGX1k/bzy9vYlnR+Zqs/tJ/P3sY2aw1iAPDtcnxK1DmsNUfj7GNMinUO+pgAwHr8Obfc+Gw3j5abv9Gf18uNqXHb/Dm+3HgZl574c0S6bS5t8ecC2ySdEfnx/FYuLfDnTHTb3Dgaf54ql1a4sTX+Npcnd+Nt3Pgcf14rt43x3wDwuLn00E+zXDroz2Hp0jh/3mNX3+TPNenSWZcW+umrG3vqp6uuvcKaGzkpP41zY0j9+R9deunPK+nSSVfO8tNAl676c0a69NSfz9KllVYaCwBYZs2tr+c61nMti9hrKus5t6w5j3WbiDVvvy6jWWsG6PmVrfRKz9FsfdZtzx0YJZ1OL83NPJ/PF32m/L9JKpWS2Wy2CJvP5zKfz2U6nW5UdhX5eI5/d233e6FQWIxzyGazcnp6Kvl8fhHm+hK4sGw2u5g/Ip/PL8Y0FwqFRfrs2p8KhcJiPPPp6elKHSrpMoDHTKeHVjpmpT9JjtNp276Ps/IESa+3S1Y9qZ7HyFoDwTpOr2nwUI6z1gACAPyYVT610jCr3KjXEwqdz0rfdfnWSkut8uwhzr9reu57kdX1h0RW03Br7R9rHTsrLTyG84usloGt8wMAdsNaJ0LXLYus1omLJM8riKzWe4vYZWOrXt3Ka1hpuojdv8nKI1j17laewFrTd9escq+Vzur1AUU2T2d3nU9Ims/RZXnWOASA45I07Q+l01Z+wFoDIGkewUrPrXzDOvdo5SWsvJGVv7DucV+sOnJrnXkrnbbWJRax26t1Wi2yuv6yiJ1PsfID1j1a++k8iHXP1nGVSoU5WrDEek5Dz+59931M17PiwUOwnnMrbN3wXe17LNezyl4AgJdD3BiXuPbQuDxA1BrEcdeOKz9x7Ycnat6IuLbfUN7Gscqd+7p21DqBUfmsqPP6Y7i0UBndifqsUWVgq5wOYJUVj+v6S6uOVNd76jTWqovU9YtWHaZOF6y6T12fadWZ6rRLp0f7bA+14sAkfX11XaWuD7XiTx1PW2mCjuet+kod9+o43mrP1OdlfiUAAIDjsu82uMd47qg6sn3ad9vdLs9xiHNTZwQAiJI0L6HDtrXPMZx707l3N6HT6rj3mxyzi3Nscs64tj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA2xU3b3JoDR+fteaQL25uZWsNRJ81n6bPmpPTl2RuzV1/hrg5v/fxGR6CuPUz4uaMtuYO9Vnzmvqi5nG21o/0xc3ZY631lPS+oubCPtb7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeMC+kpo/9JXDsTV/8id/IhcXF/Lnf/7n8rf+1t869O0AwF78y3/5L+V//+//LX/yJ39y6FsBAGzRv/k3/0b++T//5zKbzZbCM5mM/P7v/7780i/90oHuDIc2mUzkm9/8plxdXcnNzY1cXV3JX/3VX0kmk5E333xTzs/P5fLyUi4uLuStt96SVCp16FsGAAAAAAAAAAAAAAAAgMT6/b4MBoO1tm1yDOf7sbu7OxmNRuYxx6BYLMrJycnWtu3yfPP5XIbD4dK2YrG4eD+bzRbbC4XC0jYRkel0KvP5XAqFgnkP6XRaQkPp8vm8iMjS9UVEcrncYttgMFj6X2ez2cU2EZFer7fYXiwWV/ogdrtdmUwm5vVFRDqdjkyn0+D2VqsVvH8RkWazGdw2m82k3W4Ht0+nU+l0OsHt4/FYbm9vg9tHo5Hc3d0Ftx+7k5OTle+Tr1QqLf2vtXK5LLlcLri9Wq1KJpMJbj89PQ1+b51GoxG5PZ/PS6lUitynUqlINpsNbk+n01Kr1SLPEfWcO7VaTdLpdHB7NpuVSqUSeY59/U0eo3XTPyv8GPY9xPXi4tl9WDf9tcJ3te++r7fuvdXrdfr/AwBealaZ0KqzCJXvrLyQlW8KBrBPPAAAIABJREFUlR+tMu1kMpFut7uyb+gehsOh9Hq9lfDBYCD9fn8lvNfrrZTjRcJ1NaFyeVx5fJ9C5bJQOSqXy0m5XF4JLxQKcnp6uhIeykuFymCh8nCofBkq/4byala5LvQ3yGQyUq1WZTAYLP3fc7mcZDIZ87uqr5m03KDDNj1uH9eMq2/ahaT5903DHtr54+p9gEPR6aR+b9XpttvtpfkZrLRZ5zl03DSfz6XVakXei5WfuL29lfF4vHhv5Rd0mp3kM+ySTsd0PbOVpum01aVvPp3OWum9jnustF+nvzoOS6VSUq/Xl47ReQLrM8TVhwM4bnH5zk3yqtt+v41z7KMNPy6fuUnedNvvt3GOuHZSANgnvzyi+8HoukhdXtB1jLqcosskus5FlzV2eS/bpPP0up5R96vQ6YAuI+iyh1Vm0OUVXVay6jp1+UWnP/o+rfJMXJ8YAHgI9l3+2vf7XZfV9l3m2vf7JH0qAQAAgE3soi1nV+fd1r3o+sBdemh9oXZ9fsZ9AI/LLtr793XMJufYV/pxiL4BhzqHSPw4YQAAHrOo/Me6v+/r+G23+fn5g3V/P8TxcXPTAJuynrm4Z3IX2/2w+5aBrOco7jnbxXY/jPEwwPGLipviXu97zCbzDei4Jioeintd5xjyJAD2yY0bd+MkXDzq8otuW6fTWYxLd2XHTqcjk8lk6Xg3ftzt684XmhcwxM11Wa/Xl15rtdpi7LYbu+DGI7jxEC4+df0y3fgFl190YyL8a9DGCeDQ2u229Pt96fV60mq1FnFns9lcxKXNZnMR3mq1pNfrSb/fl3a7LXd3d9Lv96XT6cjt7e0iDxynXC5LsViUarW6iEPr9foiT1qv16VYLMrp6alUq1UpFotSLpeDx7k4mLgVwLFw8WfUjx/P+j8//OEPg3WoxWJRGo1G8MfFo9a21157jfkdgB0YjUbywx/+UF68eCHPnz8Pvn7wwQdLc7I2Gg05OzuTJ0+eyNOnTxe/+69nZ2fkbbCWDz74QL7+9a/Lzc2N3NzcyPX1tTSbTSmVSvKzP/uzcn5+Lufn5/LlL39ZXn/99UPfLo7AD37wAzk7O1tpx8hkMvLlL39Z/viP//hAd4Zj8+zZM7m6ulrEL3/6p38q4/FYzs7OFnHL5eWlfOlLXzLnrAZCBoOBfPTRR0t5p2fPni3lo773ve8tzb9UKBTklVdeWck7+fmqz3zmMyvzBwHYjqg6j1Bdh/v56KOPgvOhheozouo63M8rr7xCXwcAD4LVBhf3e9z2qLjV8fuI6bh1098/8YlP0G8WwEvPxdOuT5uba7jZbC76svl9iV1/N7fNzRfc6XRkPB5Lu91ezDHstiVdG8WtN+L6rVWrVcnlclKr1RZ93Ny2Wq0m2WxWarXaot+b6+dWq9UW/dzcNtf3jf4YAHy7HIsRdY5N1oxad/zFfcZu+McSbwJAPH+NDRfHuzTAX5/Djc1z6YG/PqE7zm3z1/Fw6ye7/LW/ZqHbtun8Bi5/7a/95+Y5cvlrlxf3171w+WuX3/a3ubUwXHrir9PhxqK4bda6hACAxyFJecratoswva5wUpvM17GrMNaaAvAQ7Gu+9kPvY4Ud2zzu8/lc8vm8nJycyGw2k9lsJrlcbtE27sIymcwifZlOp5JOpyWdTi/WpPT7ZbvfZ7OZzOdzmUwmi888nU5lNpvJaDSS8XgsqVRKJpOJjEajRdimCoWCnJycLF5TqdTSnDL7TJf1mpMAcF9J0x1rDV8rzKojTBpmpWVWmC5f6fWHQ+ff9LhdstJUHddb9Zf7Ps6aR22XxwHAyyppurzOvtsOO+S11537bluSlIHvE/bQzk8fHgC4P78/js9qT7Tm4LbK41YZ1+8T5HP9fHxW+dtKe/3+Qo6bB1ez+qha5W43360v9DfaF2t9BCtd9Ps6OX7/JZ+bM9fn+kX5XD8on5uvV7PWkdNptd9nynH9sHxWGd5qH2btOgA4POoEou/Ryuvsy67L+OuEHdv9sF7LwxcqX4TKAyJ2mUBEFmOHtVA7Xeh5t8oSIna5RUSWxlRoof6d1mcI/S2sslro3KF737fQs2nVAVrlCBG73BBq/9vV9axyzyGuBwDYn6h03QnlOZyo8R1x9ZNurEhIXH/ex3rt+/zNj1lc3yarTtcXtx5vVPtr3LVD5UGuzRrIwMvgmMb87PPahxw3tK1+Svs676b7MIYWAAAgWlQdUqh+KNR+J2L3kRSx+0RGhYfa6tZp7wu14YXy4VZ9V+jvE2rzjKtT25dQfUyoHiZU/2L1L7T6WYqE2/KscfShfpmhNj6rb6aI3Y8z9NlD9X7rfHYAAO4r6fiL+44dsdoB9bWtfmLWcTr/ZeUF9T1Y7b9W/mmf/UOtPIKbM9en8wBWHkLnb6zxITr/YuV/rLyZzt9YeS+df7H6Pll5MyvvBAAAAAAAAAAAAAAAAAAAAAAAAAAAAOxaaI4ZX2iMtZZkTuTQuhq+JHNBJllvN+48ceeIW+cibo7pqPVFnLi/R9ycOaG5gJxjWavjPpKsVxG37m/c3JfW+HZf3BzNoXl/nG18BmuuIF9oHiDnvp8hbh5rkfh5geI+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAEvpKaz+fzQ98FjsNsNpPPfvaz8su//MvyW7/1W4e+HQDYi9/5nd+Rf/tv/608e/bs0LcCANiiZrMpn/zkJ2UymSyFZzIZ+fDDD+XVV1890J1h354/fy43NzdyfX0tV1dXcnNzI4PBQGq1mrz99ttycXEh5+fn8vf+3t+Ter1+6NsFAAAAAAAAAAAAAAAAADxwrVZLrOFa4/FYbm9vzWPu7u5kNBqZ25rNphk+Go3k7u7O3HZ7eyvj8Xjn55vP59JqtcxjhsOh9Ho9c1u3213p47mL8x2Lk5MTKRaL5rZarSbpdHolPJvNSqVSMY85PT2VQqFgbqvX65JKpVbCc7mclMtl85hSqST5fH6n5xuPxzIajaRSqUgmk1k5ZjgcisjHfyvLYDAI/g1FRCaTifl3FBFJpVIym80ivyPtdltms1lwe+i5Fon+3op8PGav3W4Ht8edXyT6+XSinvsk9yny8d+53+9H7tPpdGQ6nUbu85CUy2XJ5XLB7el0Wmq1WuQ5isVi8LvrhJ51J+qZd6KefafRaERuz+fzUiqVIvfZ19+kWq2a8YGzr7+JJfS8hJ4RKw4JpfvWsxqKJ/r9vgwGg5VwK84IxRNWGjmdTqXT6azs2+v1FvGxz8o7hNLlY4gjUqmUOTYg9L20vouh75+Vxq17PSs+CKWr1vMYegZD+Q0rLQ/FBZlMRqrV6ko4AACw82ah/NrLFL7uOUJ5zkMJ5dkOEX7fc8znc+n3+1IoFBbh0+l0UYYpFApSLBZlPB4v/Q/y+bzM5/OVcsp4PF7Jt3Y6Hclms4s88Xw+X5RlisWipFIpmUwm0u12l46zyg/Wd8Eqv+jyj1V+sspfSeo4ts3K11v/P6tcYZVLdF7eKgts+5pWGdoKs84XKtfE1YkA+5IkHdvVPoe8tkh8/fO2JEnfjn2fTc8bV9cJ4HB0XtHKT+o6cF3Prev1dVyr87u7uKbOP8ddcxd0vbmVP9V5WB0/6jpvXa9dKBTk9PR0rWvq/GrcNa18q87fhur9AWBfdDqg0wk/j6/btnVbsE4jdBqi0zXdh03X1+g0yUqDdDqnP09UH7Bt0nl3qy1Upxs6bbLajXV6p9MR3RZrpSuVSkWy2exa96rrWHR/iai+XABwbHQ/p8f+ftt0OnFs70VW0y2d1lnpo05Tk/QfBAAAAO7L6uukx4fofkhW28+mfaGssR1WmcLqC7Dr8++aNf7BGj+xaR+qYzm/Lh8lPT+Ah2EbfcmO5RxJ9okbw7wtu+jjdazniJp/AACAY+fnDfyys9+XRPdr8cvcfh+VbR7vl/X18ducB8FP1/1ynW4H88uFfrnRP16XFf12s6htup3OP3/UNtrhsAlXPvDLCdbvu9geOiZurqg47jn0n0fr9022b3rO0DxfAPZLxz9RcVPc66bHrEPHLaHXdfZNckzcHGUAcB9J4sxms7lW/Bp6XSdfuW48uslro9GQk5OTRPMrAsC26Hg19Hvcduv3OH7cZ8WHSX/XYcx1A2BfXJznfvx4MOrH7ffBBx+YcwK5OE3He1E//n6f/vSniQeBDQ0GA/noo4/kxYsX8uzZM3n+/Lm8ePFi6fW73/3uUv/cQqEgr7zyijx58kTOzs6WXp8+fSpnZ2fymc98hnlMEDSdTuUv//Iv5ebmRm5ubuT6+lq+8Y1vyGw2k7OzMzk/P5fLy0u5uLiQ8/Pz2LUf8Dj9g3/wD+SP//iPl/o9ZDIZ+Xf/7t/JL/7iLx7wznAo7XZbvv71r8vV1ZXc3NzI1772NfnRj34kuVxOfvqnf3oRZ1xeXsrTp08Pfbs4Ys1mM5jvca+67NJoNFbyOzovRLkE2Jxft5C0rsHf98MPPzTbv6w61nXqGz71qU8x7y6Ag3P9w13bVavVksFgIL1eTzqdjgwGA7m9vZXb21sZDAbS6XSk1+st7dvv96XVaslwOJS7uzvpdDoyHA5XxptbKpWKFItFqVQqUi6XpVAoSK1WW7TxNxqNRdtVrVaTYrEopVJp5biTkxOpVCpSqVQWfbEA4GVx3/5e6/QdW2eN81Cfhaj+DOtse/XVV+kPBryE9jH+wDp2kzFXm/Z9ve+xm6w1DgCP3X3G3m4jzN+26dj8JOlE1Lb7Hi/CupkA8ND588i49MifW9Wf/9XNwerPV+PPSePWT/LnYXVz5vhzy7o00J+rxl3HmoM2KX+OF7dOkT9PjVszyV/nyKVj/lp+bi4Kl+b589u4dgp/jho3P40//wxjwwGsY1traT/EffY176pIsjlNrbBd7TMejyWTycjJyYkMBgOZzWaSz+cXZcPpdCqDwUDy+fwi/RX5OJ3NZDIyn88X6fFsNlu00/R6PZnP55LJZKTdbst8PpfpdCr9fl9SqdTS/8Gl7X5+4D5rsrv0z0+TXZiVTvphVnrqwvx010qLXZiVZgN4uKw1H6x1Lqwwa73XpGHWuhJJw6w1Y60wP95dN2zTebPuS69/LrJ52iqyurastZ6EdZxeC3ffx1lrBwLAYxOqn7PKClb7ll6nXcROv6y01Er/9XzXjtVfwypjWutbWemzlS9Y52+xLzptElldk1bEXpNDr/8uYqdt1rq3InaboFUPapXHrLyEtXaUlUaLrM4fbN0jc4ADwGastNsqa4v8uC3QZ+UHrPQ3adovYqe1Vjpv5THWSdOt/IT197DK5/tkzaNvpcFW+m+lt+uk9VY+w0rXQ+mw1W9V1wmI2PkHK++SNK8AANieUJ20lY6G8hBW+ipi5y2sPIOIvZZ0KI0Ppd3r3LOVnwnds/U3suoe9iVpGfy+dQJWmn6fOgorPxFK+608xn3qLXA4UX0FQ3VwoT73of4noec5FFdYZQqRcPklVH+5zc8QiotDcU3oMxxSaB350HMuEh4HFxq7YMVLInbcJGKXI6z4KXTuULthaL3kXV0PAB6ruP4xSfrPHMM5uMaPhcqGD4XVryjp9vscy7U32x7KkwHAIVj1H1aYVcdghek01aqz0PWpVl2Bri+16hl0faiuZ7E+h67fCNXB7oJVN6rrF3QaYdVN6HpFq+5S9+Gyyvi6LkCnXVZ9rK6/tOoDdL1BqN4FAADgIYiqUwpt45jNjllnvuB9CtXxrBO+jXM81HNTDwYA2JdQH6mk40ms+sf7jiex+n+tMxbGyh8lHQe7zhiVfbHqCa06U123adV/6v5WVl2mlTfR/bqse9L1r1YdrZXH0fWtVp1sqP8YAAAAAAAAAAAAAAAAAAAAAAAAAAAAtiu03oIvyXzESdaGS7L2QtS6Fz5r3LG2z88WWqPHFxqXre3zsyWZr/qhSrImhDWO2xe3rm5obSBfaE0OJ25sddzaPPv4DHHrCu76MzBXJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAj8pXUfD6fH/oucDx+5Vd+Rf7X//pf8o1vfOPQtwIAe/Hv//2/l3/xL/6F9Hq9Q98KAGDL/uE//IfyR3/0RzKdTkVEJJPJyM/93M/Jf/tv/+3Ad4ZdmUwm8u6778r19bVcXV3J9fW1PHv2TDKZjLz55ptyfn4ul5eXcnFxIW+99ZakUqlD3zIAAAAAAAAAAAAAAAAAANiTfr8vg8Egcfim2zjfj3U6nUVf3oeiWCzKycnJVrc9xGO3ed7hcCjD4XBpe7FYXLwfDAYyGo1ERCSfzy9t8/cZDAZSqVTMPsBR38Nt7vOQrrOve+31ekv/34cu7ru/rX0e0nW2ea/pdFrG4/HKtuFwKKlUaun513GHiEihUJD5fL4SPhgMFmH5fF7y+byIfPz91fvm83kZj8cr3+t10rl108T7nuPYnrPQ/3vX4Y/92iIijUbDDAcA4DEaj8dye3u7Ej4ajeTu7m4lfDAYSL/fXwkP5avu7u4WZU3f7e2tmScN1WG0222ZzWYr4c1mcyVsPp9Lq9VaCZ9Op9LpdFbCJ5OJdLvdlfDQ32A4HJrzYiQp2+1TtVqVTCazEl6r1SSdTq+EW3mgVCol9Xo9cbiIyMnJiVmnoK8xmUxkMpmIyI/rKMbj8SLMP5/+rozHY0mn04syh8jH/y/3XSuXyzIcDle+e/P5fOV75Mo8uo7E5f2z2axkMplFnYhvOp0uhSUtc1hhh66/s/LHScN2te+xHh96toCkdBpopUPdbncpPrTSJJ02WumTTid1/GOlmTrtttJP/Rms/ISO10Lp6i5Yz69O505PT6VQKCzep9NpqdVqS/uUSqWltEbk4zQml8vFhlUqFclms0thVvxhpcv1en2l/t0K05/JSp+tzwVg/5LkCXf9/lDX3JVN83Tb2ucYzk2+FMAuHSLdOeR1Q3WP2xYXv2+SJuziHNs6hrQKwLHad9lo3+9DbXO7cKh06JDnjWoHAwAAAHbpPv2SNqlXe2jn37X79DfaZRvSoc5v9WEAcDjH0uayr3PovnW78lDadbZxDuq8AACH5Ldt+WPW/D72us+730/dP97vT7/J8bpPvJ/v0Nt2MQbI73+ezWalUqmY23K5nJTL5cU2v39G1LZ8Pi+lUinRNr+Pe6FQkNPT00TbKC++vPzn1z0f/lgUP1/v+mr5z6k/j4cbB+OPQXFjWPzn2X/m3fM6m82k3W6v3NMm/Hyy+977z6Y/JsV99/1n0I0z8cd5+M+Me679MR9+Xt09o5lMRqrV6so9Adi9Vqsl8/l8Ece4uMrFPy4e8+MmF8e5eMvFfy5O8+NGF9+5eNPlSzaJv1z848cpLm5y8Y2LQ/x9XFzlx18uztt0fwC4Lxd3+q/NZnMlbBuvLq5PwuXVtvnaaDTMbdbYZgC4r1C8muT3qO1J6slCcZ8VD4a2W/t+4hOfWJnjAQDuw8VvoR8/DtQ/P/rRj4JjeVw8pn/8OC708+qrry7NjQNgVb/flxcvXsjz58/N12fPnsn777+/NFdWsViUJ0+eyNnZWfD185///FK7G15e3W5XvvnNb8rNzY1cX1/L//gf/0O+//3vSzablTfeeEMuLy/l4uJCzs/P5a233qK99CXwH/7Df5Bf/MVfXJqfIpfLyfe///3g/Kx4PCaTibz77rtyfX0tV1dXcnNzI9/+9rdlPp/L2dnZUpzw9ttvk5eDiHzcLhjKq7jX9957b6mOxeVXnj59GsyzfO5zn1uZ6xLAsriyflR5/4c//KE5d75IuKyfpMz/2muv0Q4EYK/WafdZp70oSXv7pm1Acftac34DwEPn+qq6fqitVmvptd1uL/qtuj6prj+ri6ddP1fXh1Wfs9lsBtdxCnHxs+s77/qRurjY9SGt1+tLr7VabdH33o1XcX3pXbzu+kjVajXJ5XKLPvMAHqd1+3ducox17CbzTW/aL/S+x7JuLoCXmT+G2/VL9ceXuvjcH1Pq6iZcnO/ndV3e2B9v6sZt+WO7XN7ZH+t6nzltXP7YH0fqxndZcb41dsvlk/1xpS4f7o9vdXlyf3y4O6+1hhoA4HitM3/COnM2uLTST2dderjONTcRmh8h6ZwN66al/nwO7nxWWgrgYdjlPMgPYZ99zbMp8jDW8tzVPsPhULLZrGQymaX5x1z66aev/vwf7v/jp6V+WuunxS6t9tNVP92Nu+6m/HTPpZn+/CB+2uzmNvLLpX450233j7fCXBnVCtPzqAFIbtdz/D/UsF3M/5jErtcPeKhhzDsJ4CEK1X2F1r9xcwX6QvMEWn1r/XKAz0rT/PYxx2/bckJ9wKw+ElY50y+7RN2nnod5n/xyis/qW2GtmW3N32XNk6jnYhZZrt90/DpInz8/s2P1c/brQR09n7PI6pzSIuG/BekwAEQLpe1Jy5/Hfo5dXm+f9dSW+5RT73v8Ia+zzr6MqwKAzVll91D512/Pc0Jl8lD530pXrbK+SDhttsr769yziF2/sc4937cv0baEysihtRGscnuo/TI0F7hVF2GV6UXsNPq+dQ9W+d+qC7H6R7FmxO5tI19+yPBjvCer7vLQ1sm/b3rMocIPeW3WYACwqSRzJbjxYiFJ2sDi5tSJS7OS9AWMG/8clYaLJMunx9X1hcoFzrH8vR+KUFnBCeX7fXFjH6wyhhY3Xj0uHU7S79Mqb/niyiNWuUizyj6+qDyOSPznjGpvTXJ/AIB49227fMxhh+gPvY2xOMc+Vsg6Ji5PAQAAELLNNrZjPubQ1xc53HjBJPbR/sYxH2N8BADg2Gy7TnAX59zXdULhh8zHHeM4j2O7jgh5LAAAAAAAAAAAAAAAAAAAAAAAAAAAsHtx8ygf4z7HeE8P9bPFzU/9kMXNf7zOfg9xn2O8p31/trh5uAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2IKvpObz+fzQd4Hj8Ud/9Efycz/3c/J//+//ladPnx76dgBg5/77f//v8vM///PS7XalXC4f+nYAAFv0n/7Tf5J/9s/+mbgiTzqdlv/4H/+j/JN/8k8OfGfYlhcvXsg777wjNzc3cn19LdfX19Lv96VarcoXvvAFubi4kPPzc7m8vJRGo3Ho2wUAAAAAAAAAAAAAAAAAAMD/r9/vy2AwWHvby3bsoe7p9vZWxuNx8NhjVCwW5eTkZO1tL9uxh7inwWAgmUxGcrlc8Nj7fF/3eY7Hdp1t3Wu73ZbZbBa5z0MT933f5j7rnKtQKMhkMlnZNplMFuNnCoWCFAoFmc/nZlw+mUwkk8lIPp9fCp9Op0v75/N5yefzMpvNZDgcrpxnPp/LYDCQbDa78nz3+/2l70Q2m5VsNivD4dC8//F4LKPRSNLptGQymaV76vf7S/um02lJp9PS7XZXziMicnd3J7PZTFKp1FL4YDCQ0WhkXrvX65nnOqRarSbpdHolvFQqrfzvRMLfoWw2K5VKZSU8lUpJvV43r12tVpf+D87p6akUCoWV8EKhIKenpyvhmUxGqtWqeY3QOJ9KpSLZbDbxtfP5vJRKpbWuXa/XV74fAAA8Rr1ez8zHhcr83W7XzKuF8vutVkv0tFXz+VxardbKvrPZTNrt9kr4ZDIx83Xj8Vhub28Th4uIdDodmU6nOz8m9Hc6BicnJ1IsFs1tofyXO2Y+n6/8n6vVqvn3CZUnptPpUt5zPp8v8uC5XG5xzGg0WrpWqVSSyWSy8r3MZrNmHn40Gq3kV6fTqQwGg5Uyxd3d3eJ76vKZw+Fw6bwub2h9F3u93srfYDgcrpRT9s36f1p55lB5wCpvWN+fdDottVpt5Xgr3x4qF1j3apVrcrmcOe+PlX+37jVUBgiVb/By02nYYDBYea6bzebSe52uWmnb3d3dUvxipXM6HbHSHCt9stJjKy3W922lzaH0etes59QKs+IuK46w6gSsMCt+supRrLjFilutMCteK5fLK3VmVvwZqgsBsBkdD+r404rz9T5W/K3jeCsuHQ6HK3XNOk63zm2V3fTnSHLu6XQqnU5H9sWKc3WcZuUnrfhW5/mseF/Hq0nPrfO+Sc5t1Z9baUeoHh8A1qXTmdFoJHd3d4v3VrqjyxY6jbPSBZ3m6TTIKp/oNEnXLeo0yior6TQrSR+EbdDpglXW0GmQztvr9M5KI3T6Z6UZeh/rPFYaZaVtm54LAA5Bx/lx77e1zyHPq9P1XdJpjpUGxe2zyTGHPG9UWxgAAABwCEnKCUnDtnmuYzn/riUpV9wn7KGdn3ESwH4kaRuJa5NJ0hYU176SpF1Htyfpc1h9GOLahnZFx2G6HV/3AbP6nek2/Lh2n6T9DnQ/VOs4q4+a1X9M96mlTQcAsA1+Gh9VVjvmbbuYq8IvN0WVx455G+W8x8H67oeeh6jtmxwT2n7f8ZGh7+0uf1/3uNCcHADiuToHv87DjWFz8Yer63D1JK6Owa/jcOm760vj10O4eg8XP/nHbdr3xi+vuzK5X+526aqLU3a9PwAk0e/3pdlsLuXXdvHqrpGUzoNt8tpoNBLta9WjAkBSrVZLhsOh3N3dSafTkeFwKN1uV25vb2U4HEq73V7kXf34tt1uy2AwkLu7O+l2uzIYDKTb7crd3Z0MBgNzfiStVCpJsViUWq22FPe5NqNarSaFQkHK5bJUKhUpFApSrValVCpJoVCQer2+OK5er0uxWJTT01PmHQCwEZ2vbDabkT96v+9///vmHGM6fxf1Y+33yU9+kjgNkI/74jx//lxevHgRfH3vvfeWnsNGoyFnZ2fy5MmT4OvnPvc5nrGX0PPnz+X6+lqurq7k5uZG3nnnHRkOh1Kr1eTtt9+Wi4sLOT8/l4uLC3nllVcOfbvYsm63K6+99tqiDj2bzcrP//zPyx8r1Z1NAAAgAElEQVT+4R8e+M6wC8+fP5ebmxu5ubmR6+trub6+ln6/L5VKRX76p39aLi8v5eLiQr74xS/KJz7xiUPfLvas3+9H5i2ePXsm77///lL/32KxGJm3ODs7k89//vP0aQVEzLL1OmVu3R/f0eXmdcvcZ2dn9CUDsFVRbctRv8dt/+ijj8x1MTTdrmy1MYe2Rx1H31sAD919+gate+w64zi20Z8oab8i+hMBD5vrd+767PhzI+s+5H5/dTee3R+D78rYVn90F4e5OM2/jrV+Sxw3/tuNKXdxkVuTxPUJcv3H3Th3fz5gN87d9f9x41pc/ObGubu5kaPWkAWAx8iNSfLjbH/Mo4u//TldXJg/975LH9yx/pgkl/74aYyVjtxnfKVLK/z5S1wa4I9vdGmLy+v68b5LX/yxSi7d8OdSscYvWdcHABy3Xc8bsMlcBfedU2yTuQA22b7OMYzFAMKsupL7hFn9Ig4RZq3nqOu99XyPIuE17HfBmptQz5Vo5e31vIfWWlu6Lt2al1HPu2LNn6jX5LXqrJKsN5nks+7LttLTbe973/m1tjkvzzb3ZX4NHKvQPOnbnp/9oZ/zvvOQbWrXc74/1DCdBwCAY2CthyxizxNnzdMvsjo3v2OV/fw2IZ9VPrXKhSJ23tsqH4rYaaE1Z7+IXae2zt9n36xyoog9R6dVXhRZnUtfxE6vrHNaZQWrDGyVeUP9KaxyplUvqMu6Inbay9oAAF5mVtpqrX0jEk7XrLQ8lOZa6ai1Po9IOI230u1Q/iOUp7DyCaG0P5SH2aR/4i5YaXIo/Q/V4Vnjb0LpY2iebyu/EOrTYvURD6X7Vp1z6HrW38LKD9DXBgA2c9967F2eY9/XW/ccu1h/ZxNJ66jXDd/3OQ5xz1be42UTynOLhPPdIuG+GaH6tF2cL/Rs7uJ8oec9VL4Jlb+i/t6HEqo7FAk/I6H+IqFxo1b+XST8bIby9lZdY9xnCM1LEGq329ZnoG4SeHiS9K9I0jcxSR4xSf1Tkn1Cc2A5ofo5X5K0KVSP5oTq33xxf5eofELS+4z7H4bS7Ycoru9mXJ+/UD2jL66PS6h+z0kyvjpuzokk9X1xefq49Q1D+QvfMfy9AQCPW9KxPlaeygqz8q1WmJV/ssKstmArzGp3tsKs/GXSsH2w0m4rzKqPsMKsfFEor2Tlbawwq77DCrPyMVaYlRfR+8Xl/wAAwPGKqteMah8LzVcRVR8YqqMLtZ1F3V+or6LI+m13IuE6102OiarPjKu3PaRQPVdUXi/U1hZqIxMJ19lF1aOte0xU/WOoXS+qTTFUjxhVtxeq30xS5wgAwGNwjPMqHNt1DlXH6dxnToT7Hr+vc973OnHtyQAAAAAAAAAAAAAAAAAAAAAAAAAAYDei5j1Zd7+HuM8x3tO+P9uxrBO3C1Fzs2x7n31f79j2OcZ7Cs1/AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsGdfSc3n8/mh7wLHYzwey6c+9Sn5zd/8Tfm1X/u1Q98OAOzc//k//0fOz8/lO9/5jvzET/zEoW8HALBFvV5PXn31VRkMBiIiUiwW5Qc/+IGUy+UD39njN5vNJJ1Ob/Wck8lE3n33Xbm+vparqyu5ubmRv/iLv5BMJiNvvvmmnJ+fy+XlpVxcXMhbb70lqVRqq9cHAAAAAAAAAAAAAAAAAAAAXlZ3d3cyGo3MbZPJRLrdbvDYbrcrk8nE3DYajeTu7i54bKvVktAQ2MFgIP1+39w2n8+l1WoFz9vr9WQ4HJrbptOpdDqd4LFRn2c8Hsvt7W3w2Ha7LbPZzNwW9XlERJrNZnBb1Oc5VqVSSfL5vLktm81KpVIJHlutViWTyZjb8vm8lEql4LH1ej3Y1/zk5ESKxaK5LZVKSb1eD5436vNkMhmpVqvBY09PT6VQKAS3x32muHsTif6bbeMetLjvs4hIp9OR6XQa3B73LIok++5HxSPr7JPkWknuWSQ6HnGGw6H0er3Yc0XFDU6Se4+Ly524/5tIsv//Q1cqlSSXy4mIBL872WzWjFPm8/nSMW6c03w+N9OI2Wwm2Wx2cT3fdDpdHJNOpxfPsR+u90+n0ytjfiaTydL/NZ1OSzabFZGP0zbrfz6ZTMzPPh6Pl77fqVRKUqmUjMdjGY/HK/uPRqPY5+EQCoWCFIvFlTSjUCjIycnJUlg6nZZisbgSLiLB8Kht2wrfxzU2uXatVtv6uDMAAI5Nv99fjG9Puo1jtn/MMXD5R513LhQKUigUVsoHIiK5XM7M/2ez2UU+3ZnNZjKbzZaOmU6nizx8LpdbHOOHi8iinkDn92ezmZnXd+UGv37B5edTqdRSHm80Gi3y/65MMBwOl+oXrbBDsPKtScN2te+hjw+Fx9Uv4fGw4tZjCTvUfUS1kezSfZ77xxoWVY8PIGyXcexDOXdUO+0u6PgrSRy3adx4jOcul8tmuQYALFZbtW7D13lyq7+Rbju/vb1dap/UbfCz2Uza7fbSMbo9XKcpm9yrdW9J2+e3ycpLVyqVpfomq/9JLpdbmbtz3+cSEWk0Gjs7FwDsgtWHVacRVnqgyy66H1aS81r9WA913l3S/U902cRKi3RZxUpP4s6bTqelVqtFntc6j3U/Vl9Zq4xl9U+lzh4AAADHTNfNiayWH6xyiFXusMoZVh3cMZzfKucdYnxNoVCQ09PTpbAk5Yqk5ZZNzy+yWjeX9PzWuLck5w/tB2BzOl6zxlPGtZ0kabPR8a4eH6nbiqx4Oa7dx0oX9LjPuLHqu2DFebquyRqzbNUrJWm/scYOW/G6HpttxeFWW42Oh636NSvup98BALy8ovoIPpRtSeaSWFdUv71tbNv1+UUonx0bvx7Dz2+7fk5+ntuv6/G/336+3ZUD/Dy0n9f3yw5+Xty/jl/e2NaYQT8v7fK0fr7Yz5/6eVy/LdnPM/vfaz//6+eh/bys/72PuxcAq6y0NypsV/tbdd5JuXhDv1rbdrV/1LxoAF4eLp/m8mguP+jyZi5f5uJCFwe6vKKr53X5QVf/6vKEzWZz5RpJufjKxWPuvas3dHkzl19z9aN+Xsq1Ebl8lsuHuTpSl0dz9a+MUwWQRL/fl2azuYgb/d+tsCS/DwaDRHOH+vm7RqOxkue7T9hrr71G/hDAChdf6R8/Lov6CdXlubjI//HjqKifk5MTxgHipdJsNuXZs2fy/PlzefHihfn6wQcfLPXJaTQacnZ2Jk+ePFm8Pn36dCns05/+NPP/PmLj8Vi+9a1vydXVldzc3MjNzY38xV/8hYiIPH36VC4uLuT8/FwuLy/lb//tv8134RH4hV/4Bfmv//W/yng8lnQ6Lf/5P/9n+YVf+IVD3xbu6e7uTr7xjW8snuOrqyv5q7/6K8lkMvLmm2/K+fk5z/JLYjgcyo9+9KOlPIDOH3zve99bqn8tFAryyiuvLOUH9Ovf/Jt/k3ZpvDR03V1cWVbv94Mf/CDY7ytpWdba7xOf+AT9ogGsxfW3c/Fap9OR0Wi0FNZutxdtuK5dt9VqyWg0ktvb20Ubrx/ntdttGQwGkWtFOrVaTYrFopRKJalUKvL/sXdnMXZkd/3Av7eq7t5387htt+1xkCMhwkSJkCdkInuIxPIS8RdrEERKXhg2CYUgRPKAhEARCATKCxIQIEJKQCANSoQQ4gmxxB4mTPwyD2QQipVZ3LbTHt99X+r/MDqVc+ue36mq7rt2fz9Sq9u11/Wts/zOUrlcDqVSCcViEblcDpVKZS7dU+27lUoF2WwWe3t7KJVKyGazKJfLKBaLyGazLJcQ0U6R+hye5Lep3VmlzUnmvzf1HTS1D5/097lz59jHhmjLqbREH8uh+j7r4zVUfxVVdtTHlKh+gCpN0vsAqj6Damy4fh6VdkW9v9tG9flTffv0cR1qDIZKl/TxH6pvoD4+WbUvq3WqD7VK09S26hym8c5ERKeBbXzMSdefdJ/jOO74mmUvY/9zIqLto8dT9HmmVP1Hr9vo9RZ9PLt+DFX/0ffTt1Xn0MfM6/mcGmt/kjoSMD/GXdVr9DFUej1I1X/0+o2en6nxVfpcVfrcVqpOZjon8J16lml+KqJNC89zx2XysnUwvRNo1ctMc+CF560zzdUXHndvmvPDVP4Pj20wzfkXnqfvNNHzPH2OGn0OGpUH63mhvp/KS/W8Vo9h6vmy+i7r+a6eL5vOe1z6/7fKO/XvhZ4P6vmoil/q3zM9n9a/j+r7o39vk5yXzh7T+1bD87EC5vf3SfOnhudmBczzO0nv1DM9a6a5WEzzcJvmrAXM+Zap3TQ8fy1gnsN2nUzvOZLmkTLla6a8xpS3Aeb8xTRXq2lOV1NeCCzObwuY56A1LTOd27TMdN9ERJsgtVPEfQ/6WdwWOHk5exlM9S5pObf9jtNcNyWis8dUPwbkeb+lvrhSfmeqV9uWm+rBUj3cVJeVrl2q40rvujLV8aW697Lmdj4pKd8yzVUu1WWlfhumOq5Ux5bmZTXNbSPF50x1YCkmYKqrA+Y6s9SfUfrsiIjOolWXAaT4uC0eLdWfTfk1YC5PAOY2AEAuD0h9U6Qyge3da5tqYw4z1WeXkR8voxxieo+cdM2m9oOk1yyVIZJc8y6zfV+lcjYgpxHLPp4tTVj28Wzvv1328aR0a1vY+nGb6gSAXC8A5Od62cezjVuS5tiUzi+1vUn1HCn9k9JW2/0RnTVRbSRx3msbp09DnG2k8p1OKsfq4vRtlsrJOltep8R5f3ucmFWcbaRytC7O+P2TvItom8V5R1GcdwVH9f+Ik4dI+ZsSNWYrTrk36r2IUjlbifP+uKjPK06fv6h5tm3lFIB5NhERnT5x+zmdtWWbKqPG7bu0iv5Q276M7+EmIiJKzhbjO+46Hvfk59yFeGjS/vOnbZ91nT8qFklERHQaSeUkqZ07aX/TZfbhXPV4Gume4871EKc/wyqZyjKm9lqp/1bcuRaSzN9gaguOO89EkrkrTLHKuJ8HERERERERERERERERERERERERERERERERERHRssWd4z7OPMpK3PkxkrzbOsl7vOK+xzPOfM1xjxfnc4zzucS5zzhzUccdSxrn3qRxs6dB1LzKQLwxn3HfOxI1tzEQPRc0EG9e6mXdW5z5lOPMDQ2s996i5rMGOFc0EREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREe20F1O+7/ubvgraLh//+MfxrW99C1/96lc3fSlERCt3//59XL16Fbdv38bNmzc3fTlERLRkP/uzP4svf/nL8H0fP/3TP42/+7u/2/QlnWr1eh2f/vSn8fd///d44403UKvVjn2shw8f4pVXXsHdu3dx584d3LlzB/1+H+VyGd///d+Pmzdv4saNG7h169aJzkNERERERERERERERERERERERERERER0Ws1mMzSbTXF9p9PBeDw2rhuPx+h0OuK+rVYL0+nUuG44HKLX64n71ut1cV2/38dgMDCui7qfbreL0WhkXDeZTNBut8V9bfczGo3Q7XbFfRuNBqTh2rb7AYBms4nZbCau3wWO46BSqVi3qVQqcBxHXF8oFJDNZsX1mUwGxWJxpddQLBaRyWTE9dlsFoVCYauvwXVdlMvllV7DMvi+j0ajEbmd7ZlWotIqJc6zNhgM0O/3rdtEpUOKLX1VotIWxZbGKFFpDQBMp1O0Wq3I87XbbUwmE+s2ca/dlt4rvV4Pw+EwcrtdlslkkEqlxP9H3/fhOM7Cs2n6zrqui9lsZjyW7/uYTqdIpVJIpVJzy6P+Tzchk8nAdd25ZalUCp7nielQoVBAKpWC4zhz9wjAmE+4rgvXdcU8xHVdFAoFuK4Lz/Pm1nmeh3w+v7B9Op1GJpNZWKdks1nk83nj+nw+v5DfqWvb29tDOp02HrNUKi1cn2JL16Vxd6lUCtVq1biOiIhol0llWVtMgPscb584dZ5NyWQyxvKk7/soFotz5UhVtlZlPLVML4vncjn4vi+Wz8Nl8+l0iul0Cs/zgnLaZDKZizs5jgPXdTGZTBY+e7W/bjweB9vp1z8YDDYeV1Ll37BcLmeMYeRyOXF7Lgeq1epCXYe2iymObIo7mZaZYjzh2IkpbmaKR5mWmWI/prTcFE8zxXpMy0yx/zgxtVXI5/PI5XJzy0xxZlO807TMVC831cfL5fJCPMO0zHQ8KX5ruh4p3pxk26i4O9FZZoqpx1m2rG224di2ttFVMJV/lr1sXedZxTVGtd8R0dlx3LTetGzXj7XuvApYTKOXmQ/s0rFs7ZZEREmYYl3h/mCmWFU4thaOP237ceP2jVu2cB8RUyzK1A/TFEMyxcXC8WtTTCqdTmNvb29umSmOZ8prwvUiU98Wz/NQKpXmlpnysnX0gSQiIiIiOqltjd9ty/HXZV1tU+s816r2Z3sW0aJ19hdY5n6rvoZVW2Vbyra23bCfARHR7rLlnbuybhXzANjyv11Zx/ao9ZK+r+v6O862ceZGiUP6Dpr+TrLtMv/m2Cc6q+KmD3HWnWT7k4ztDacfcdOWZW7PPJTo7FBjW1WfOzVeVaVvKl1TdQ5VnlL/VuvVmFa1vzqeGk+rxtoep9+eSpvUvH6q/5vqp6b64Ol92VQ/PVUmUmNLVZ871TdO9ctT6WH4XER0dqn0q9vtYjgcotFoBGleo9HAaDRCp9MJ0sV6vR6kgSo9bTQaQfrYbrcxGo3QbDZjj/lXaVK5XEYmk0G5XA7Sq0qlgkwmg1KpFKRl1WoVmUwGe3t7KBaLwTKVppVKJWQyGVQqFbG9mYhOv36/j3q9Hvmj0ip92ePHj8W6bi6XQ61WW/hR6ZZpnb7+0qVLbFelU2MwGODJkyd48OABDg8P8eDBA9y7dy/4+/DwEPfv35+bjyibzeLcuXO4fPkyDg4OjL+vX78uzltLu+fBgwf4+te/jrt37+LOnTt46aWX0Ov1sLe3h/e///24ceMGbt26hQ9/+MO4cOHCic/3Qz/0Q/iBH/gBfOYzn1kYP0bL95WvfAU/9VM/Bd/3kc/n8fbbb7P8vQbf+ta38KlPfQrPP/88fuM3fuPExzs8PMSdO3dw+/Zt3L17F6+88gpGoxEuXbqEZ599Fjdu3MCNGzfw/PPPc+7wU6Rery/k2+HfDx8+nJujsFarGfNtfRnLu3Sa6G2kSeqU4fUmpvpjVL1S/Zw7d47lHCJa0Gw2MRqN0G63g/bNZcX44865ZYrNS3H/XC6HYrGIUqmEXC6HUqmEYrEYrNfTRMb5iWgbSX1IVN+UcB8S9W+1XuqzotJr1SdPpcFJ3ieq5nJSbacqTVVtraofiepfosaD1Wq1oD+K6p+i+quoY6o0WR2Tfe+Itssq+w3HXXfc+VqP21d4mf2O+e4EItpV+juC9P56qgypz1Wqypt6H2f9XT8qHdffJ6SP5VTvMdLfGaTeL6e/l+ik8z2oPtD63KL6/KGqDKvPM6rKuXofaz3dV+Vffe5QvTyr+ijo/arVdZjmGyUiovXR8yU939LzKP19pyoP1PM76Rh6nqWPkdRjMSr/0/M6PS9cxjxHep4mzR2g8ip9Hm9T/mfKy6LyVD2v0+tGHLtNulXP+7iryzb17uRlzi12mpYxZn1ym55HJe7f4ffsJrWqOVSWcSzmv8ullxMVaey36R3JgDzPlan9zvTeZsD8rmVAzkdM33HTOE3pfKb3U5vmIDJdl+l91Otkeq+M6f0wgPndNXp5V5FiO6YxK6b31ZjG4UvvfzbNxWnKn0zv55He/Wx6JzXbNIhoFaT8Sop9SHmklL9JbclSnxhTfijl41KeqMeEdFK+L82LIH0G0hx/m3jPaZgprwHM+Yop/wXM+aKUB5ryOylvM+VjUn4v9R81lZuluXNM+bP0+ZjKF0REu0TKsza1fBuv6Tj3cNJY1LJJ+WOS5avadtuPwRgyEZ0FUp1UqsNKeaAUJ5Dq2rbYspSXSjEBKbYgxSKk+rzpPe+AHEewzR1rirtvmvRuKFN9HpDjylJeKsULpNiAVLcH5PYvqR5uuoeksQNTDES69m2MudvKp1JsC7D3YZCexeMcz/a8LPt4Unq0zuNtC9tYa9N3HpC/96s4nqmdblXHk9JAW5/vZR+PaBXi9EeVyjhJt7Gl14otzVTizDkd577ivIMszruX4qTlcbYx9TcJi9MeFGds+DaWNZchzrtM4/STipqP1FYOVaQ2q6Tb2PItJU7eIZW1dVJbli7OeyXizNViyyOTbLON5WoiIqKzxBT7kcr9pjKxFE+R6gWmMrMUJ5bqDaYyddyxPKZjmpaZrj9OXWdVTOVb0zJTWdm0zFTuNi0zxWZMy0wx27jLTHFd0zJTmy3bcYmIaFfY4oa2WKnURq3Y4oi22GlULNjW780WJ7WVl6LGndniprZY8ao+o21ki7VFxSBtcVdbfC4qJmmLw0p9EAB7jDIq5iq1HwL2z8gWg7XFQ6V75HzXREREi47Tl1Iqr0llaKn9P2k/USkGKvV1XWb/0WXd8yZJZbKk/VCl8ptUXkzaPzXJXA+mOKrpfkzlQFNZU+qTYCvPEhERERERERERERERERERERERERERERERERHRO+LMgazEmQ8YiJ6jQhd3bJ9tnGFYnPmYlbjzDq/ic5LGWprE/ZySvO86zpzUStzPaZNzyG2DJHP/Rs3pDMSb/y3OvBxx5lqOM68zEO+644zxXNa9xZkjet33ZpsLhoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIaMe9mPJ939/0VdB2+fKXv4yPfvSjuH//Pi5durTpyyEiWqnxeIxsNot/+Id/wE/+5E9u+nKIiGjJ/umf/gk/9mM/BgD4x3/8R/y///f/NnxFp9ff/M3f4Nd+7dfQbrcxHo/xz//8z/jIRz4Sa9/JZIL//d//xZ07d3D79m3cvXsX//M//wMAuH79Om7evIlbt27h5s2beM973gPHcVZ5K0REREREREREREREREREREREREREREREW6nf72MwGKxs/TrOwWuIfw27IJfLIZ/PH3v9Mo7Ba1jeNVSrVaRSKes2mzCdTtFqtSK3a7VamE6n1m2GwyF6vZ51G9/30Wg0Is/X7XYxGo2s20wmE7Tb7chjNZtNzGYz6zaDwQD9ft+6Tdxr73Q6GI/HGI/HME05MplMMBqNFj6r2Wy28Bl3Oh3jcmU6nWI0GmE8Hi8cSz+37/vo9/vG69G38X0fw+Ew8h7peFKp1Nz4vVQqFaQLqVQKrusa93NdF+l0Wlyn9gsfw/M84zFTqRQKhYJ4vnQ6HazLZrNz63K5nHEMYi6XQ6FQENO5QqEAAMjn83P7O44TrNNls9ngmCau6yKfzwfbha8/vCyTyaBQKBi313meh1KpJK7Xr7tSqURuR0REtEy28q8qg+7SPrPZDM1m07gPANTrdXGdrYzfbrcxmUyM62z1DFssIU59YVt4ngfP84xlf8dx4LquWC8wlQ9VXSS8bjKZBMfRy3fh/2tVPhyNRtb6yLoVi8W5sqsqm+/t7RnLtFKdvlwuG8vq1WoVwDtlU32/Wq22sG0qlQq2j7NcKou6rotyuRx7uVT2lZan02ns7e3FXk6rY0qvTMt6vd5CHd+UDprSaVNaalpmiheZ0uhGo7GQBpiWhdN+KRZj2jdOXGrVpOc2n88v1EWTbAuY0w8pJplkW1P6ls1mjfXxSqWyEBNIsm0mk0GxWFzYtlwuizEKol1nSpvC6akpRm9Kw8Np33g8RqfTmdvGdKwkaakpXTflHaZ8x3Svca9xXUzlIik9NqWPpvRqb29voTxoSstN6aWpHLWKaywWi8hkMse6RiI6/UwxHVMcxFRvCJffT+OxVi1cdjflDaY0u1QqwfO8pRzLtMy0r5QfmfIe1SanM9UHpBiHqT5BRBRXuL4SN5a2zGXbcnxbe8mqmGJQx122zGNt4vhSnI+IiIiIaJNMbVCm9qE4MTbTdoC5bcnUZgSY26tM1yid39Q/wVQ/ktqnTPe+6X5iUszMFBM0te1IcTxTm5bUhm/qc2Bqb5L6DJnie6Y6ktSnyRRzNNXD2J+fzqp1x6y2IUa2DbGvbYhLbUMczNQGREREyxGui+j1Lds6PZ8M9xW0rdPrXuGxPbZ1ep0vXNeKMy9AUnreE64D6PWU8LpwHhau0+j1lvC+4bpOuD4Trp/p/fjC9ZxwvY156XLo3+1l/72s4y2rvKp/l9XfpmWb+pttonSaxU0j4qw7yfYnSU/C6UbcNGWZ25viikR0Okjp2rJ/6+cytSvZSOlUnLTsuL9Z5ic6O/r9Pur1epBm6X+fdJltnhVdLpdDrVYL0iH975MuM7UZE9FuazQaaDabxp9Wq4VGoxFs02q1Fn5L86+6rotKpYJqtYpKpRL8lMvlud/6+vA6U98Rom3W7/fx4MEDHB4eGn/fu3cPb7755txY1Vwuh8uXL+Pg4ED8/a53vYvzN+2g6XSK1157DXfv3sWdO3dw+/ZtvPbaa5jNZjg4OMCNGzdw69Yt3Lx5E88++2yimPq9e/fw7ne/G6lUCteuXcNf/dVf4Yd/+IdXeDc0GAywv7+PTqeDj3/84/jiF7+46Us61cbjMf74j/8Yv/u7v4vRaIT3vve9ePXVVxMdo9Vq4dVXXw2ev5dffhmPHz9GOp3G+973Pty8eRM3btzAjRs38Mwzz6zoTmiV6vW6mOeq36+//vpcf3CV716/fl3Me69du7bQL5tom4Xrafrf9XrdWI9T26n10vstarWasZ6m6nD6+vBPtVplnY7ojFpmXDy8Ps47hYDFGPkyY+WcG5WINkHNf6f6Y6v+3CqNVHO9qrG6asyt6s+t9xVX7Y0qTVXlQdUXLR+x4uMAACAASURBVHyOJKrVKhzHCX5XKpVgLns1XlX1n1bpq+pLoca4qr7Yqj+3fkzVFzvuO6OIaHmO2+d1mf1nj5MuKavsMxt3HcuRRLQL9PF/qryojx/U54aRxkmp/rz62EL93QRqW329fiy1/2g0QrfbBXDy+aDV+D59XKAqf+pzsOjptiqP6mVPffyD6kOnjw9Uab0+hlDvO6yuQ5rLhYiIVmvdY4mT7mdrs4sryfjfZYwhTrof3yuwWZuYg30Xlm3i3SPA6uc939VlHHO8u/SxTupvvW1Cr1vq9UF9DlG9zqnXCfU6pT6/jv63/nzrcUS9nrus513Pz/S/9bllVJ1Rr3Pqc9fo9Ua93qnXW/W6o/63Xg/V65zqWnZh/k1p/iHTGGFpnllpTljT3AvSuxmlOXClWLSpv4L0vnXpfbnS9zDJvZvys00xle+kOWRN6T5gngdXags0jWk07W86l3Rdpnsw5UdJ3qcV9x1dREQSKe+S8h0pz5DyOimfkvIYKW+U8jVpLiSp758pH5Q+A2kOeekz0MuV20Cq85jmlQfkNmbT+4kBc14p5VdS3ijNJy+9w9iUx0nz30vz0ZnuRzof40tEtM2kvHTVyzd57nXcQ9zxA+sk1XG3bfk2XpO0nPPWEtGus/VxlvIyqY4LyDFwqa4vxQwA83vjbNcl1eule5SuVaqTS/ctxQIAc+xg06T6qSlmDcgxYilvlPoYSvV5qS4OyHEEKe4gxS+k/Fqqw0uxfltb1irmNjxOGTRq3aqOe1bOeZJxIetynDK2bR2PF28dY3+7KW779TZvt83Xtqntln3OTfXRWwdbunaat9mma1n3NlKZn4iIiEhiirlKMV0p3moacybFWpO0uybtq5zkGFIMyBTvlWLfq3jn7XFIsVFTLEOKi5pixKZ+WqZlpmPGXWaKKZuWmeK2pmWmWLQtPk1ERBT1frWovmG22KLUJx6wt6ED9neJS2UywN7OD9jvx9ZGJpWHFNvnuKrPaBvZ2pNtcTupTRuwt18D9jnjbPFEqW1fsbWL2cagSX39lW37jIiIiOjkdmnsx64v36SzOIZkHfcs9Z8lIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiorMnydiyZc/Ny2PuxvmTHNM0N9xZEmcO3yTbbfqYmz7/rhxzVefneFAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI6g15M+b7vb/oqaLv0ej1cuHABn/vc5/CLv/iLm74cIqKVO3/+PD772c/iV37lVzZ9KUREhHfKo8PhENPpFK1WCwDQ6XQwHo8BAL7vo9FoiPtPJhO0220AwHQ6xc///M/D93184QtfgOd5AIBSqRT8bVKtVpFKpQAA6XQae3t7AIByuQzXdZHNZlEoFE5+s6fAN7/5TfzSL/0S/vVf/xWpVAq+7yOTyeDTn/40PvvZzxr3efjwIV555RXcvXsXd+7cwUsvvYRer4dSqYT3ve99uHXrFm7evImbN2/i3Llza74jIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKi9avX69b1+vgak8FggH6/L67Xx9wc9xra7TYmk4m4vt/vYzAYbPU1jMdjdDodcX3U2KVlXMOuiBqDlcvlkM/nxfWe56FUKlnPUavVTnQNcc7hOA4qlYp1G2B+TJlEjS+z2dvbQzqdtm6Tz+eRy+Ws28QZw7bu+z8N4j6fm9yu1WqJ6f1oNMJoNMJwOMRwOFxYF95vOBwGy6V0S61Tx9ZNJpOF/cbjMQaDgXi86XSK6XSK8XiM6XRqXBc+x3Q6xWw2w2w2E485mUyM68P7zWYzqKl0fN+HNK3OdDoV13EqnnfSjnB6Z0ojHMeB53lwHMd4nFQqhVQqBc/zFtLzVCq1sJ/neUin08bz6+fM5XLIZDKR15zJZJDNZuG6rpifuK6LQqFgTJfD153L5YLtMpmMNU+IyidP23Zx8jYiItoMWz1Yn9cjLKp+3Gg0xHJTs9kUy3a2OnW3210okyq2MvVwOESv1zOuO+n9h8uvypMnT4z3P5vN0O12F+5f/dtWlt42ruvCcRxjuVqVg6TvgOn/3/d98XuxCWr+mDDP85DJZOA4zlwZ2PO8YHt9nSpzKo7jwHEcZLPZheM7joNisWg8b6FQMNbx8/k8stnsQpmsUCgYj1MsFhfKyoAcr5CWSzEZabl0PRSflM6Zlm/Dtttybbb8aF1M9SapLnXSbdd9vlVtK6VVRLsgbhq1inRvU8uSbNtqtcQy9KrFTZuWvWyT505yjVFtckS0m8L9K0x9Mkx9SUz9T5Z5rHA5/STHMi0z7RunP8oqmcq4pjZ/13VRLpcX9je115vq7KZ0Xuo3YEr7TfV6UxuPPg+vkkqlUK1WF45p6kdhihNkMhkUi8WF/YmITO0Rpti+Kf03tSuY6iVx8jlTW4OaJ11naucI532m9ofRaIRutzu3zFSviuonugqmfMyUvofzFlMeZMpDTPsC5nzJlNclyT9N92LKg6Q+dab7Zn8IIiIiItol62qj2tZzJdl/E/Uv3SranVa17ab3Z72MTotwWrTMtv1d2Q9Yf3+vOGnNMtvot3W/OONiiYjOknBbjl4/CLcj2dbp7Ubh9i3bunAbl96+FW47C+8bbjNbZd0mnH/o7T3hdqJw/hNus6lUKsF44nA7Tbh9KVwHCPef0NuIwu1I4XahcP8F5onfMZvN0Gw2Acw/E/p3Tm/j1NtT9XKe3qaqfx/1Z0D/juvlQdWOG+daTkL/HujfJ729Uv+Oqu+Y3ldG/97q3zv9+6t///RnQv9O68v150jql0O0C/RnVY0rVfmVnq+p/G9V2x83T9SfaZVG6M+k3g9QpRv6PvozrtIS/fnW0yCVvuhpR9Q5iWj3qLLSsn/bjm0b12+iyiR62SS8bNm/GesnOj1UvU1Pg0ajEdrtdlBHbDQaGI1G6HQ6QbmuXq8H9cxOp4PRaIRGoxHUN9vtNkajUVA/tFF1NJXGlMtlZDIZlMvlIL2pVqvIZDLY29sL4hS1Wi2ou+3t7SGTyaBarQblL1U24zg8ot3U7/dRr9dRr9eDspL6d/jHtP7tt98W5zzK5XKo1WrBj0pr9GW2dfv7+5Hz0xKtW71ex+HhIR48eCD+fv311+fG5+RyOVy+fBnXr1/HwcEBLl++vPD72rVr1jmkafNarRZeffVV3LlzB7dv38bLL7+Mx48fI51O433vex9u3ryJGzdu4MaNG3jmmWfE4/zt3/4tPvGJT2A2m8F1XUynU3zkIx/B5z//eVy9enWNd7Td9Pimai8JjzGLmuder/f/2Z/9Gf7t3/4Nv/Vbv4X3v//9AKLniw23l6nyrsqz2Eax6Ktf/SpeeOEFfPOb3wzSQdd10Wq1xNjtdDrFa6+9hrt37wbP12uvvYbZbIaDgwPcuHEDt27dws2bN/Hss88yTrLl+v2+NY88PDzE66+/Pvcsq3xSyiMPDg7wrne9yzj2kmiTTlqXevz4sdhGl6QuZVp/4cIFli2JTiG9nUtPW0zLotaHl0WVrRW9HUtPf06yTP0d5z1FREQnsao+Cba+CeyTQHT26HFN1TfT1JdTpRN6/28VB1V9AUz9PPUYqepbrvob6GM2kqY/ikoT9L6eqv+n6h+gx0VVnwK9b6fq76niq/qx1JgElQbp/cxVeZBzLhLRttHHo+nj2lRaq4/r0dN8vZyo99dX6beeB+jpuz7WSB9TpMYR6el91Pu349Dbw1Q6raf1ev9+le5L/ffV/nrarx9ftbXpab3KZ/Q8gWVUIqLV0ucY1ses6n/rdQo9P9JjyXr+Jo2PVcfR6zd6XqbngVLeeVx6fqLHn/Wx0ipvksa96jEafey3fgxVB9LzMukYer4ovcPutJPmOAvPfQ2Y67Znbdk6mNpnuEx+LyVRXKa2g6R/L+MYtr+XNd+KqU1jWX8v63iO4xjT2G14D+kuHDtuf4J1OOlcnas8xi4cW58bhojOBtN7fxTTu4pWsY9U5jjOPqZ3IgFyrNz0viTbfUh5nlRf24Z3gSvS+/ektlcpr5Di89L7s6W6kzRXnZQXmcamS+9Ekt6/JL3raVmfARHRsknvLrfNHynlkXqbdZhU1wPMcVlAznNt1217D66U9y77uqU8e5vqtYrURiDluVL+JOVzUtlAyl8B+Z3tUv6d9B6kvHcd90BEtM2SxnaPu27Zx9v1a9+mOn3YKmPKy1y+jddkWq76qlQqlYX3NtvKibbvj63sC8jlVZ4z+pzbyNZ3wPZ8SDEsxfQu8dN2Ttt8PLa5w6W6xlmd3ydufyLbM6nY4vK68NxOkrj92KW4QFjc+nucfNwWc9BFpXWKLVaik9olwuL214jz/x9+N89pF54LTBK371fcNvQ4MYeodFiJO24ual40RYrFhMV9z5Atv1Bs8RldnM83zvmiPv+zmkcQERER2WxzH+ltP8a2tC+vu6/yaTpG3HoSEREtR1Tbz0nXr+McvIfda8PTHadNO2rdqo67iXNu6rhxY9JERES0HLb+D7b+IlF9Dmz9UWz9N6RxJ4A9/ib1MZHG2Uj3ZruvZY1HidsfZp2kMpjUh0LqgyGNX5H6fEnjOtcxrmVT90xERERERERERERERERERERERERERERERER0FiWZm2AV257lY276/Js+5mkUd+7hJNvuyjE3ff5dOWaSbePOx01ERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERCf2Ysr3fX/TV0Hb5yd+4icwGAzwL//yL5u+FCKilXvmmWfw0Y9+FL/zO7+z6UshItoZvV4PjUYD9Xod9XodnU4H7XYbrVYL/X4f3W4XzWYTvV4P/X4f9Xod/X4fvV4PzWYT3W4Xo9EI/X4fg8EAvu+j0Whs+raOpVqtIpVKIZfLIZ/PI5PJoFgsolKpoFAoIJ/Po1arIZ/Po1AooFKpoFgsolAooFQqoVQqYW9vD7VaLfjJ5/Obvq1I4/EYn/vc5/Dbv/3b8H0f4/F4bv2HP/xh/Pu//zum0ylee+013LlzB7dv38bdu3fxjW98A77v4/r167h58yZu3LiBW7du4fu+7/vgOM6G7oiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIho9cbjMTqdjrg+zlirVquF6XQqrlfjtjZ5Db1eD8PhUFw/Go3Q7XZPdA1qnJrNYDBAv9+3bhN1LQAwnU7RarWs2+zyOLk4yuUyXNe1brO3t4d0Om3dJp/PI5fLWbfJZrMoFArWbTzPQ6lUsm7jOA4qlYp1G+A74wRt4tx/sVhEJpOxbnOa7/80Gg6H6PV6xnXh9GUwGATpXr/fF9PAJ0+eiMfsdruYTCYA3kmb9LGbnU4Hs9lsYZ/xeIx6vW48nu/7QXo/mUyCYwPAbDYzpo+TyQTj8VjMRyaTCUajEabT6cL1TKfThXR5NpvB9/2F84fvYTqdwjQN0ng8Nt73tgmPj9XvRXq+fN833vNpl8lkrGllKpUKPrNMJoNsNju3XhqLrNJO21hlx3HmxoXHwW03f/6k28YpjxARbbuoer1t/S6vm0wmmE6nGAwGc+vCZU9V9p7NZguxieFwiMFgYCxDDgYDYxxhNpstlL8V3/eD8u+uUGWpbSxruq4Lz/PE5XpZUPE8L9gnlUrNlfc8z5vL9x3Hgeu6SKfTxvKA67rI5XLG8qiaG8hEzSdkOqYqs6bT6bnjZrPZubKsXg7OZrMLZZtisYh8Pi+WeWzlIWldoVBYKE+fVrPZDM1mc2G5KUaZZFsp3ielb6b6eZJtpVhmo9FYeKalmEWSbZvN5sbr3KZYWSqVQrVajbUtANRqtYVl0nNhioMl2Va6Nml7QI6rSbFE6T6lmGE6ncbe3p7xmoi2gSkdXPaydZ1nFde4ybRYSv+SLD/Lx4jTtkJE22OTecoqjrnOa1+XuGnzSdP2XT7mWarnE9G8cL3BFN8y9Qc0xZpM/e3C/QBNMbHJZIJ2uz23zBRzkmL/4X0Bcxyr0+ksxOpN55FifOsixWNMcSpT+7UpnXddF+VyeWH/SqWy0A/CFFdScWydFMsyxatMMalV3CcRERER0TZbRdxtVdtuev+oMWPrsK5Y3TrPtar9TXVLok0zpSPhOJhpPKcp5tVut+fGK5niW6bxo6ZYWThmZYptmdLFcIzNFL8yxblM8bBVMsV7TH2STOMWpViTKY0xxYpM8SdTTEuKk5liUqY4lyl2ZkofTZ9F3LGYRETbLpxXneTf23KsVfZpCOcTJ/n3pvYN/zvOXAa7yvS9kL4rm/h7md/VuN+POH8fZ5/j7M++LbQN9P4Tqp6pnk+9vqjqY/r2qm6n1wX1+quqM+r76HVLNU5Ir4OG66xJlUoleJ43V1/RnztVJ9PrcfqzqPo763Ugvd6k6lp63TDqnGd17hmibafSI5VuqXKJikmptEmlYSqtU3EsPY1U6ZlKR1X6qNK08LmSUOmOSp9UOqbSHhVXUmmVSn/0mJHaV22bZBsi2h39fh/1en2urrWsZVHzZyoq7dB/12q1WMvirHvqqadYhyLaMuH0o16vL/zY1qn1JuE0oVarGX+k9UwzaFPq9Tru3buHw8NDPHjwwPj74cOHc+3stVoNBwcHuHz5cvD7+vXrc8suXbrEvixb5PDwEHfu3MHt27dx9+5dvPLKKxiNRrh06RKeffZZ3LhxAzdu3MDzzz8f9Bv45Cc/ic9//vNz/S7U3Eu/93u/h1/91V/dmRjSZDIJ0vFGo4FWq4VGo4F+vx+k+b1eD/1+H81mE91uF71eD+12G+12G/1+H51OZ66fy0njgpuiYot6HbtWq6FQKCCfz6NSqaBYLKJQKKBUKqFUKqFQKKBYLKJSqSCfz6NUKqFarQZ52C71w3jy5Ak+85nP4Atf+AJc1134P/zP//xPPP/88wCABw8e4Otf/zru3r2LO3fu4KWXXkKv18Pe3h7e//7348aNG7h16xY+/OEP48KFC5u4HTIYDod4++23jXmayu/u378/1+8rm83i3Llzc/maKZ8z9W0iWjVT3SROnUWtPzo6EvMrU70kSX2G5T2i3aLKsqpdSbWnNxoNjMdjtNvtIP1QZd16vR60O6k4bKvVwmQyQaPRCNqmOp0ORqNRrPf3qL7Kqv16b28PmUxmblmpVEImk0GlUgnireVyGZlMBuVyOUiLKpUKMplMUGbNZrOcL4yIlsLWb3FVvwHz/MU2prYp0+8k20b9Zv9BouSO0y/6OOuT7BO3Pd3kOGmNad1JjsX+jUS0bnq/cn0Msd7HXPXF1Ptp6vvp6bA+5lj1XdfboPR+6nofTj39VmVHae6/JPQxwHp5T09vVXxc78+up81633XVZ1Tvp673c9fHQ6l+pcB3+oTqbVhx3vFKRETR9LxHz7/0fEaqU+hzf+j5oJ5f6X/r+Z+eT+l5nT5Ph/73Mt8Tr+dNev6m50P6clOepM+9oeeBev6kH0+ff0Plh/ox9DzONAfHKuz63Fnr3tY0P826LHuO/NOyjPFI2nZ6HhieQ0uf30rva6inP/r+4Xms9Dm69Lxcz5v1fFfPR/W/9eOa5vk6DjUuMPy3Gic4m82QzWaDPDKdTgf5bC73nfeKqneZquUqH3VdN/js8vl80DdF7++Xz+eRSqUwHA6DPFctV5+TyUnziqTLpW3XPR+ZzUnnSUy6fFuOsaxjM15NdDpIdQHbe1KWuY8tjz4r+2wDWzxa6pMm7SPNs2ma+xOQ4wTS8aV5x6Q6lGnOUEDOx6S5jU196aW5S6XPgIgoLtO81Ir0XmjTnNSKNA7Qlm/Z5tuR+vod57pN76JTpPrjsq/bNJf2NpHyMtv80rZ5OqXxYbbygJRvSvk7MN/2oDPNqW27ZqmsIJ3b9rlI9853GxDRNpD6ttrq2rY8zBaHlfJEW75sy2OlfN6WZ9vKDdtw7dvC1rYu5amAXJe35d228oNUFrDlu7ayhVS+AeT8WnrX7GQyQSqVEj+LbDZr/D45joO9vb1g/kqdXqeP6nduGwcT1TZlK8MD0XPV2+b7sO0b1e/Sdk+rOue2sc3paXuOAPn5A+zffZ7zZOdclrjz7i9zu02cc1PbbfO1Jdlu28sPyxR3juNt3m6br23Z223q2qQYEBERERHtNilOa4tpSXElKUYr9aUyHUc6r+k6pfFZUkzdFPOSYvNSbNsUR1xW3/VlMMVdpfizKbYj9ZGS4sCmeoIUT07SR1nqkyXFt03twFIMSup7xvnciOg0imr/iurvHBVLjWoDi8oj44y1jorTRo1birqHqP5kUW1fy7iHqLn/j/M+vW0jtQErtvZoJWqu9KhxT7Z2dyA6Tho1Xj5On/Koe4jq22ZrmwOi3/lta9uP+j/guDIiIqLtYSvj2vpr2srvtn6ZtnK9rd8rYO+fps9REWary9jKz7b6ga1cbftMbXWGqDrRNrGVFW1lYVs5WCrfSnE2qUwplXOlOJ50L1J5V6qPLHOcCmOLRERERERERERERERERERERERERERERERE2802hsokauyUiW3MlEnUXANhSeceSPp+nqRzi8eZbyEs6Vy/Sd+FG3fOYSXpGLEkc03ZxvuFnaU5kMOkOa9MouZU0MUd8xU1l4Qu7rwLUfOv66LmwlDizMuhrOJzss1XERb3c4qai0QXNd+GkuRzIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiolPjxZTv+/6mr4K2zxe/+EW88MILePToEWq12qYvh4hopX7wB38Q3/3d340///M/3/SlEBGt3Wg0wtHREY6OjvDw4UMcHR3h8ePHePLkCer1OhqNBur1+sLfw+HQeLxyuYx8Po9isYhKpYJ8Po9CoYBqtYp8Po98Po9arYZ8Po9cLodsNotCoQAAqFarSKVSyOVyyOfzSKVSqFarAIBCoYBsNhucp1QqwfM88b7UsUx830ej0RD3nUwmaLfbwb+HwyF6vR4AoF6vAwD6/T4Gg8HcsbrdLkajEQaDAfr9Pur1Ovr9Pvr9PhqNBnq9Hvr9PprNJrrdLvr9PlqtlvEastksarUaarUaqtVq8Lf697lz57C/v4/z58/j4OAA58+fx/7+PjKZjHhfy/TVr34VL7zwAr75zW9iOp0at8nlcvjABz6Au3fvotfroVKp4EMf+hCee+654KdSqazleomIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiItkWz2cRsNrNu0263MZlMrNv0ej1xrJ+ixrvZjEYjdLtd6zbT6VQcD6dEjd1TeP/R97+risVi5DhHNb7URh97KvE8D6VSybqN4zixxjHaxqQq5XIZrutatznN96/G/kaJc+3L1Gq1xHGujUYD0rRKarxw2Gw2Q7PZNK6zpQPj8RidTse4Th+nHPc6B4NBcFxb+tRoNDAej8X16l4mk8nCOSaTyUL6OJ1Og+0Gg4GYDs9mM/F+1bGj0udtlEqlkE6nxfWO4wTpgO/7C5+p53nGZ2k2m8H3fWsakkql4DgOJpOJMY9wHGfh2KPRKLgG2zOcSqWCcfFnXdx5tPR5DqK4rotyuRxr2zhpt5LJZFAsFmNtmyTtjZMPKeE5Hmz29vasz48uaq4IXaVSgeM4sbaNk58Byf5/4+alQLL/XyLafbZ6na0+2+l0xPKbrY5rK28C0XXfbrcrlnP7/T46nc5CuVqVSQEszMOjm81m6Ha74n2NRiOxPDydTjEcDo2fl7qe0Wg091mHy2F6mShc3vF931pePotUmTSVSs3lm6lUaq68qq/3PG8hP3YcB47jiHXgXC4nlg2y2ayxjOG6LjKZjPG42Ww2KD+o7ZRwmSmTycDzPGQyGeN5crmcWMd3XRcXL140liny+Tyy2awxv1dli3Q6PXc9664jL4sUKzPVwZNsK6VlpnQzPAfYcbY1pblS3V7NHRZnW+k+4sQP102qr9jKxFK5WnpupHiYVPeQnot0Oo29vb2V3oNUF1nWPRCdlCk9k+KVpvimqYxqSgultNuUFkrnktLCVR7DFEeNKievi5QmSfEdKY5iil1t+zGkNHQZxyCizTLFGqSytymdN5Xd1Ty+OlNaLrW7m+oZpniKKa+T8lRT/mnKi0ztfZuuA5hi+Ka0VopzS+VdqdxsStuluLhUZpbSfFNbgHTdUt1hGfdDRKeDKW035RdJ8qC4+ZqUV5rqM3HzmyR52Envc12keI8pPzDlHab8TqqXmWJapjxDytNM+YWpLmXK+6T7TJIfJumPQERERES0SaZ4olSfSdJ+ZYo9mupTUpuRqT5mqjtJ9TlT3ctUH5RihaaYZpwxTqskxd1McTRTXUeqf5nqSlLbkNQ3WGrrN9XNpOuQ7k+qX0n1QSkOmaR/N9FJhNM/UzpnSs/C6ZYpfTKlQ6a01bSd6Tqk9N6UBpvibKb7MMXJpLR6XUxplCntNLXfmMbkmdIZKQ2Le25T3MuUlpvSPildNaXZpjQ/yTgVIqJlCZfNk/z7JPsu81jhdXHmTTiucH6U5N+b2jfqWNve70z//9TLW/rferknXHbTy4R6OUr/3uj16XC5TC+P6XVxvZynl++W3Yao///oZZJw/Uyv8+llHL18odfFwmUmvbyil1P074te9gqXe/T2xG3/TtHpoZ5jKU84yfrjHtM2L0cc6pmT0m3b+uPsE2c9+4cRrZdKU1Rao8opqryhYjuqzKKXPVS5R8W2VGxdlYFUuUodS9/XNueQRC+PqLiLKkeodGQd2xDR5rVaLYxGI7RarSAdazabmEwmaDabQZ1N1ePUPF/tdjtI79rtNsbjcbCu0+kE6VbcNErVeVSdpFqtwvM8lMvlID1RaUetMfWntAAAIABJREFUVgvqOKosVC6XkU6nUalUFo5VqVSQTqfZD5FoA/r9Pur1uvFHpSG29VI9Ta8L1Wo1449t/blz59imQysxHA7x9ttv48GDBzg8PJz7fe/ePRweHuLw8HAuBpnJZPDUU0/h8uXLODg4sP6m9et2u7h79y5efvllvPzyy/ja176Gw8NDuK6L9773vXjuuefwH//xH3jttdeM+zuOg2eeeQZ/+Zd/iQ9+8INrvfajoyMcHR3h8ePHePToER49ejSXzjYajYV/S/0RVLqr0tdCoYBKpYJisYh8Po9yuRyUzUql0lwMWvUf0OuGqlwXbrePmsMkaj7IqPm79XxFb09QZV29jUIdS5Vv1fbdbhf9fh+tVgudTicoD7fb7aDcLM3J5jgOqtVqkB/pf6uf/f197O/v4/z587h48SIuXLhg7L+1Kr7v40tf+hI++clPotfrGecsS6fT+Jmf+RkMh0N87Wtfw5tvvgnXdfGe97wHzz33HJ577jl88IMfxPd+7/fGnjuTlqtery/kP+G86eHDh3PlrFqttpDvXL9+fW7ZpUuX+H9KKyHVC+LUGfr9Ph49eiTOhXncOoNaH3duXyJaPVVWU8++6gNSr9eD9hcV34yKV47HYzSbzaAdR5UH474zxRZ/VGVaVeatVqtIp9MolUpBebZarSKTyWBvby84Rq1WC47LNhQiikulXyo9U+mhSjOTtEerY6n0UqW3qp0ofI4kVFqnyl8qzqDSTNXmo+IEKoagxxdU/xfVT071d1N97dQ5VFob931CRGeJeu7151jv46vSCb1Prkoj9Fia3t9OpSl6P1yVnuhpkN5PWF3HSeet0/vUqvKT3rdWTwdU2qHHI/W+siqN0eOTKn3R45oqHdPPo7bj/MxEtCpRfaK35e9lvIf0OP2nj7tt0v2SvC+MiIi+YxvyqDh/L3M863HzoyR/p1IpzGYzZLPZYLnneUH7r4qNAO+Mm1TxZvXeqvF4jOl0uhCHNuXn0nuHpfcNm+YRSrKtaX4l0/xG0hhQ0/+l7X3M6yLNYWGam0La1tRnRpqXwzQ+VJpvyNQmIc1BZJrbQ5qXyDT/rem64i4jOuvijqnX0/KoMfW+76Pf78/t32q1gnif/h7O0WiEfr+PyWQSjHEL7wO8kw6rsSNqDNwypFKpuTRQTyPS6XTQr0O9Bx2Yf9/6eDyeS788zwvuU0+rXNfFeDxeWO44DrrdLnzfn+tDEvUu+3WS+laa0mMp/0j6Pg1TnxopD5HabUx5i5QXSnmOdO9J3vfB+C7R7jHVE2zLuc/x9znp/BurJOUvtv4C3Od4+0jv7SWis8X2nlxbH5Co+JwpJqjY8iHb/AXS+DLb3HLHyQ+leeRt12D7rKT3Fm/6vVpRbHOUS+9LtL1/yjZ+UJpHy5aPSW29Uj0TkN9rvOzrttVHpfzXdt1ERCcR1afTli9LeRggtzcC0eUEW35va+O1lVsAe/nDNk7d9l4V22cgfXa2fvm2ssm2kPI3W15lyy+lPNuW/9rKAFI5RIpBA/PlmsFgMNd+XigU5mLlqt0AQDD2QfF9H91uF67rGvP6yWSC6XQqtok6jiO2sRSLRev3DYiej9D2DEQ9l1HPV9T7h1Z57Zt+p/pJ2foo2r63QPT7XW3PitS2o9jGWNvGQG7jOdPptJh3VCqV4JxqHlGlWCwa05O4afUyt9vEOTe13aauLWrOmtMk7ti7s7TdNl/bsreLe6yoeZ6IiIiIiLbNpvtbbeuxln3+bexTZqrnJO0nddJjrPt8yzoG51kkIkncPktx8oU476qJakcC4sV6bW3USlSbV5wxqVH3HRVvjrrfqHa3qHuI03Zma3vbFVFzdka9Xz5qPFFUu1ZUOx4QPVeJ1LatRMVpT3oP0lgrXVR5IeoeosYMc75AIiKi0+c4caqTrNvEOU/Dum1znDGRJ1m3iXPuyrqouhQREREREREREREREREREREREREREREREZEk6dw0SeeCTfoO8jhzEOhsc8ebHOd9Mqb3h9vo76WNI+mYItu7d0yOMxd40vkN4sxToYszZ4Uuak4HekfSuYmi5h4ISzrvbdJ3zkbNtxAWZw6JsKg5JcKi5sk4zrUkmbMh7vXa3kUVFvf/PWoufR3fbU9EREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREREa/Jiyvd9f9NXQdun0Wjg4sWL+Ou//mt87GMf2/TlEBGt1Mc+9jH0+3185Stf2fSlEBEthe/7ePToEe7fv4/79+/jjTfewLe//W0cHR3h4cOHePz4MY6OjvDo0SM0Go25fbPZLM6fP4+nnnoK1WoVtVot+LH9u1QqYW9vb0N3vNs6nQ7a7Tbq9Xrw02g0rP9+8uQJHj9+jOFwOHesarWKixcvYn9/H/v7+7h48SIuXLiA/f19XLt2DVeuXMGVK1dw8eJFpFKpxNdar9fx6U9/Gl/4whfgui4mk4l1+x//8R/Hj/7oj+K5557De97zHjiOk/icREREREREREREREREREREREREREREREREREREZ1m/38dgMDjxNss81i5us43XFGebXq+3MJ70NMrlcsjn89xui869qu16vR7G47FxG9/3MRwOkcvljOtHoxF6vR4AoFgswnXdufXtdlsc/zybzdBsNsXrGwwG6Pf74vpWq4XpdGpcN51O0Wq1xH2jnvVVHrvZbGI2mxnXTSYTtNvtuWX6dGT9fn8n0x/P85DNZheWq3vLZrML3x0llUohl8uJn5nneUin08G/Z7PZ3LaZTEYcUz+dTuF5nnjdrusG60ej0cI1eJ5nnCNgOBzC933rsR3HgeM46PV6ME05Z/o8Op3O3P42+rYm6rqn0+nCd+4sSqfTsefnyGazKBQKsbZNkrcUCgXjc3LS4wJAqVSyfh91juOgUqnEPnaSzwMA9vb25p5Zm1QqhWq1GvvYmUwGxWIx9vbFYhGZTCb29tVqNfa8IEm+U0Cy/3+i08xUFtINh8Og7GkSVVfTy6bT6XShrNlsNoPyb7h87Ps+2u02ut2u8diDwUAsIw6HQwwGA4xGo4VjqusdjUZz5ebJZDJXHh0MBkGZwXRtw+EQs9nMWIb1fX9u/7DxeCzu5/v+QvlKrQtvt+tMaXwqlUIqlRLLXq7rius8zzPmv47jwHVdpFKphfXpdDq4Dr0smkqlFvIsdXzP84xlR8/zUC6Xjfflui4ymQwKhcLC+nQ6HeTV6XR6ri7oOM5CGWRvby/4DAqFwsLnkU6ng3xOyner1aq1/BEnjy+Xy2KdIopUh9uV5dt4Td1udyHN2zSpDG0rWyfdZ9uWr+McSeoadLZJ6UKj0VgoR4zHY2NcQyrrbfMxpPLtMo6xCbVabWGZVP+V6tzLOIapfr7KY9jq+Kb7AeT4R9I4ChEthyl97XQ6C/VrU7uUlA7X6/WFZaY2MVOZWcpjpDY107mk65La1qS82NRmFdV+t06u66JcLi8sl9JTKd2vVCoL9VUp/iyl+/l83theKpWJTXnNsu7HVAdOej9EtFuSxGZOsmzT+5/0mNsSk0oSX1ll7GZXj812UyIiIiLaBlKMzBTDM/Vn8n1/4f1zgDkuORqNjP2RTHFBUxuTFCs0xf5MdSmpX7x0XCm+Kd3HpkgxN6l+IsX/pDqKFLuT2oikOKLU38UU0wTkfqymNispZij1E5bil57noVQqLSwnirJtcaZdOfe6xI35nGTZLp8n6TgDIjr9wuXdcDoerivo/RTCZe5wHSJcztfHtYbrFuFyeriPQLjOodcLwvUcqWy/DOHyeDhd1cu74XJruI07XFYPl7n1MnK4rBsu45rKyOEydriMHj6fVHdYF/27F/4eSuuWuc9x9l92G56ed8f5+zj7LHt/qY5HFEfUcxZ32TLXn/S5Nj0vUc/TKtbry5KMeyai+OKkVavcxhRnjxIn3VjlNknmMiCi4zOlHfV6XUxXkq5Ty+LQ04JarSamE6Z1cbZnOYdoudQzHv7Rn3/b+kePHolzqKln1/SjP9vSuoODA5Yj6Fj6/T4ePHiAw8ND8ffrr78+FyPP5XK4fPkyDg4OxN/Xrl1jX4M1ePPNN/Hyyy/j5Zdfxn/913/hv//7v8W5M4F3+oBMp1O88MIL+KM/+qNE88yFtVotvPXWW3jrrbdw//593L9/H0dHR3j8+DEePnyIo6Oj4Ee/plQqhf39fZw7dw61Wg3VanUhbQsvq1arKJfLrDMd03A4RLvdRqPRmMufbP9+8uQJjo6OFtqS8vk89vf3cenSJezv7wc/ly5dwsHBAZ5++mlcvXoVly9fPlGb+6uvvopf+IVfwNe//nXrvFaO4+B7vud78O53vxsf/OAH8aEPfQgf+MAHmP6sQb1et+YdDx48wBtvvDHXhqryj+vXr4t5yLVr1ziHDR1bnDK5bb1pPgJgse6etMx+7ty5jbYxE501pyX2F2fdU089xbG4RARAbju1rYuzTdz9be/bkES1nR73t+3YJ5mvlmhXnaS/2Cr2Oek7vjbRryxqPdMWIjoOfWyHPt5EHy+i/62P/dD/1se56ONU9L/1MSdSOq2nz3of4WWNA9DHV+t/62mo3t9e/1tvG9LHUau/9TEi+ngS/W99jIo+HkTvU8M2KCIimT7WUc8/wuMc9XYWPQ/R86vwWEl9TKaeZ4XHY+qxBz3f0q9H3z/qnVZJ6P0q9DGP+vt59DFk6l090+kUmUwmyOtyuRxc18VkMpl7B1Emk8FsNsNkMkE6nQ6We56H2WyG0Wg0984j/R1W4fdqxpkPW1qeZFvb+2jXZRXzDZz2bTm+kSgZ23wwSdJMabl6L2K//847qUej0Vze2el0gm3UvAHj8RjdbjdYpqfF6lhqucorxuMxhsMhptPpwnsQR6NRcOzpdBqsU9uG31c4nU4TtwXskkwmE9QX9fqhPmeCSkeTpMtJl2/LMZIem+NWiDZjmfkV97GvM80fui2ktNm2jvscbx++N4HobLC1j9n6PITngdPZ4pW2OeBs7y2Neq+cbZ4Nqc88MB8PDrPFBdf9uW0bvQ0yzJbnSH1ObHNAS3OkSvNPR12f1E5qe3+8NL+2NKf1ca/b9tkx3klESUTNuWrLN235ny0fk975oNjyY1u+ansHRFT5wJbP2/LrTXx+28iWn0a9I1Z63zlgj63a8kJTvjsajeD7PjKZjPHdHNPpFOl0WjxfuVzGYDBYaAvwPC84Xr/fn1ufyWTm8vhutxt8t/P5/Fx+7fs+2u02HMcx3tdkMsFwOBSvz/d9ax/kqD7KUe3ctucy6vmKek6ivu8n7V+9SVHff9v3GIh+B0BUP23b82Urn47H47nvtkkul0Mul1tol1Py+fzCtY/H4yAN1/uVmOTzeTFO6TjOXHl8MpnM1Y88zxPjVL7vYzAYWNttstksXNcV36ckiTOnY1QeqMSdEz1ufhH3OYrb58WWJihJP79dFzc+KtUZw+L027XVGXVx36Ukvb8qzJbv6+K2kcYdc2JL0xRb2qaL+w77qHRaifvOlrj//0REREREtFpSXydbjFmqC0t1blt7tjT/iNQ3yxZ/k+ryUnuyrb4uxd9tcYqkn8umSe8nBuQ6m61tWKqrSvVEW31UauOV6uG2OrBU15bqubYYg1S/lz6XuPEFIkombrw1TuzW1i6qxJlDwdbfWInTvylOPDyqLUqJE6ePMw9YnFh5nLwuTgzfVv5QbOWKXRc3zh0VM4+KvUbFcKNiwVEx5Tix6agYd1SsPOoeomL3tjINsJx7YJ81IiKisyGqvBxVVo4qJ0fVEeL0vYmqG0TVC2xjJdc9/iWqPmi71+PMg7wJtpgdYC+H2uoKtjK2rQ5hK3vb+gfZ6hW2mJmtrG7r82Mrw0fVtWyfKcv1RERERERERERERERERERERERERERERETxxRl3v87tt/Gatm37bbymbdv+rIo7B+26tt/Ga9q27bfxmla9fdx5oYmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiE6hF1O+7/ubvgraTj/yIz+CarWKF198cdOXQkS0Ur/+67+Or33ta3jppZc2fSlERLF8+9vfxr179/DWW2/h/v37eOONN3B4eIi33noLb775Jh48eIDRaBRsv7+/jwsXLmB/fx8HBwc4f/58sOzixYvY39/H/v4+Ll68iEqlssE7o6SazSYePnyIx48f4+joCI8ePcK3v/1tHB0d4ejoCA8fPgyWP378ONgvk8ng8uXLuHr1Kq5evYorV67g6aefDn5fv34d+/v7wfa+7+NLX/oSPvWpT6HT6WA8Hkdem+d5+JM/+RP88i//8krunYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOgs6vV6GA6H1m0GgwH6/b51m/F4jE6nE3m+ZrOJ2WwWuV2r1cJ0Oo3crt1uYzKZRG4Xd0xrt9udG1stifO5AUC/38dgMIjcLs5nDADD4RC9Xm9p241GI3S73cjt4v7/nib5fB65XC5yu1wuh3w+v7TtstksCoVC5HaZTAbFYjFyu3Q6jb29vcjtPM9DqVSK3M51XZTL5cjtHMeJNd9AKpVCtVqdWzYajYzPq9puOBxan9NsNiuu1/ctFotIpVJz6weDwcKzXSgU4DgOgHeeaenZ933fel1R6YFt/Un2XfWx6/W6uG4XZLPZuWfTNI1eNptFNptdWO77PnzfF9frPM9DOp0W12cyGWQyGQDAdDo15pXpdDrYRhmPx8G26XTaeo7RaATXda3bqOvs9/tifu15HjzPC/4dzkdc151br+t0OvB9H67rwnVd8Tpc14Xv+9Y8ynGc4NkE3vmu6s+g4zgLz7gubpkEeOf/pNVqxdoWiJ+vn0WVSmXu/80mbp6jxM27lXK5bP0e6uLma0rcfF8plUricxNmyjtt4pYZlL29PWs6EVar1WJvG7dcohQKhcj0VVetVq3PvS5u2YfOtkajYSwbAMBsNkOz2ZxbppclJ5NJUIcylV+Hw2Gwvans2+/30e12jetGo5GYj43HY4zH44X64Hg8DurOs9lsrnw3mUzm6t/T6TQ4b3idWjYajcQ6+2g0MtbTZ7MZZrMZptPpwuc6m82CZeH70tcpqhx2FqRSKWvemUql4HmemP6lUimxfKaXlzKZzNwxHMeZyycdx5kri4bXA+/kf+p6THms67ooFovWPK9UKon5ued5yOfzxjxWLysXi8WF8+vlbc/z5vKjfD6/sH2pVILjOGIspNfrGfO0VqsVfDcLhUJw3Ha7vfDddhxHrEdK9TAp3iPFbaRyrO/7aDQaxnuT0j4pVifF0pLewyZJsRip7CKVU23lNFtZ1VYWlMo3tvKprcxluw5bOVAqx9vu2XYdScvLdHqZ0gop/Uiy/CwcI26bx7pJz/eylp/1YyWJZRDRd0jtoVIaK7U/m9pDJpMJ2u32wnIpRiyVn031fFPsAdjM/WxTOV4q00rlWVOZWirTS3UDKU5pSpelMrJUPpbSfOl+pGu0lc2lYyWNHRPRepjyCintN+UfUjxISsulvMkUI0p6bKneYjp20jxVOva29F+Q0n0pH1tGnpIkv5JiS1LeIB3bFDOSji3lYcVicaEfhHRsIiIiIqJNWUabz64vX9ax447DWZdVt23t8vKkx0ja35NOn7hpx0mWres8qzj3Jtv4T/rsL3vZNp6HbfFEuy2c7obbyPV2iXBbR7iNI1xe1fvOhvvehts2wm0a4TYYvV0n3B8g3A847rjvkwinh+H2h3C7uqndItweH05Pw23V4TJj+BrC7RThcT+mNojwmKZw+0KS8Vo24e+Z/u84fx9nn2Xvf1L6/5f0d9zt1rU/83iSqLxBT39Vuq2n93o+ofIXPQ3X036VZ+j5g56v2M4JnKytW0+j9XZZlQbq6af+jOhppJ5+qvRdP65+DD2P0PMPPR3Xz5N03C8RfYfKz8O/beuWtc1xY7nq+Q//tq1b1jZMb4iWQ5VnVJqgykH1ej0oy6g0otVqYTweo9lsBmUnVcZpNBoYj8fiseJQz3W5XEY6nUalUgnKHKrfWaVSQTqdRrlcDtIDtU7VCWq1WlCGUeUlVUddVr2R6Czo9/uo1+tzP+r5Di83rTs6OhLniszlcqjVanM/Kg0ILzetv3jxImMAJKrX6zg8PMSDBw/E32+88cbc9zOXy+Hy5cs4ODjA5cuXcf369eBv9fvatWvMQ5bkzp07uHXrVqxtPc9DpVLB5z73OXziE59YWN/tdnHv3j28/vrruH//Pg4PD/H666/j8PAQ9+/fx5tvvjkX2y8UCrhy5QouXLiA8+fP4+LFi7hw4QL29/exv7+PS5cuBX+fP3+eac0OGQwGODo6wsOHD3F0dBT86P9+9OhR8KOnAZcuXcKVK1dw5coVPP3007hy5QquXr2Kq1ev4ru+67vw9NNPLzz/vV4Pf/iHf4jf//3fB4BY8yOfP38eR0dHy73xM6zf71vTepUe6G1w4fTe9PvatWucp45EekzNVCaOKjOr9SaqrJukXKz/PPXUU+zPR7QE6hlWMa9Wq4XJZBLEvqRYmer3ofZrNpsYj8dotVpBHE31KbTNdalTcS3VF6NarSKdTgdz9uXz+SDWVavVgnY8PcbmeR6q1WoQY1MxskqlEpS1ieh00/s8qH4Oqkyj92dQcXyVVqm0S99f9YdT6aBtf5WeJp3fXVHplt6PQaV5Kg3U+zKofg+qvSDO/qqvmt4/QvVNSzLXNdGuiOp3eJz1J93npGMubP0KopatYh+A6QcRmel9R/VxA+ExBvr4A70vl20fffyDtE94XITeh0P9rW8jzYWYlF5e08cJ6H9LfVL1v/V+slL6q/cj0//WxzPo8x3pfyd9RwsR0WkUrr9LeVJ4PJyep+jj+/RxF9PpFE+ePAnWtVqt4NidTifYTr1rR73XRm/n7/V6GI/HwfgMVadQcYplUe9lUfFb/T0u+vtdHMcJ2o9ns9ncuDbXdTGbzTCZTObesZdKpYLxJ2rshrpv9dnodQn1WWzSKsZ2n/ZtWSeks0bqHy6NTZHmnwXk94pKY2ZtsWfpHUvSHLq29zhJ8SvbmPDHjx/PHVtdy2AwwGAwmGsnVPmeui59ne/76Pf7O/2eNj3PC7/vTP2dSqXm+jq4rhvkn7lcbm47VXfzPG9unluVZ7uui729vWAf/b27pVJpYVxyKpUK2lXVPuqdwLb3qErjEZYx/27S97cS0SLbfAu2/MOWH0jHXPY+Uh66q/tsA2nuCdv79aR9bO/34D6c54PotJDeD6JIdTcgeu4s6R1agPzeFMA+l63tem3v25Le/wvY6662NrSoPNHWb1SqxwL2z23b2GJjtnzC1lYn1acA+7w2tndE2vIzWxnBVl+zvV8YWJwvTWd7N8sqPjciOv2i5g6K6rMXlffY8i3AnucB9jnXbNdmy/ej+irbrslWDrGVb6L61tg+p2XPFblqtnzFlq/a3q0JmPM5FTPP5/PGMXLT6RSO4xjjsPr1St/hQqEA3/eN61X/c+Cd8qL+XXQcZ65sMRqN5tbn8/mFctBoNMJoNEImkzHm58PhEJPJRMzPh8Oh9VnKZDJBu4Mkznctapt1HWMXZLPZue+B/v+TzWat4zrT6bR1fSaTCdZHfT916nuYTqet5T/1PTPV50z7jkajIA3zPM/at242m1m/q3pbjRqnonNd19jmMh6P0e/34bquWCZWbU/hPib6scNl7aR9I5PMFWqrM4ftUl1v1ZL030zyTpS428adhyxOf5CovE8Jz7stifvO6bjzMMb9rOPGem11XSVu26etPq6z1feJiIiIiIiSssWtbPHh47YpH6dPshSbkGLbu9hXe9OkGIKt/i618Up1dFt7ctI+ybb4gxTPt9W7pZjHcT4XKabA+jydBstoL1nmNtt4Tdu2zTKPFdVGvsvipNHr3GYbr2nbtlnmsdj3m4iI6HSL6vMSVc6N6msaVZa2jecA7HEsIF4fn6j+qlH3aOs/CkTfY9QYmqh7jBMzizt/+TaL6q8S1e9FipMBJxvHYesLZBvjYetrZLtXW18m22dgu39b3yJbHI9zGRARERERERERERERERERERERERERERHtlqhxHpLjzn2aZH5V3XHGQRx3TpKk88sqUeM9JLb3m9hEjbExiRrzEhb1jpmwpPdynM866XeB8/RGizuXrRJ3jlydbUyNSZI5hYH48+cqceflVY4zZibO3Lq6pGP0k743Juk8PXHn81WixmOZJH1Hd9y5nomIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhop72Y8n3f3/RV0Hb60z/9U/zmb/4mjo6OUCgUNn05REQr8wd/8Af4i7/4C9y7d2/Tl0JEBAAYjUZ46623cO/evYWf//u//0Or1Qq2rdVqODg4wOXLl3H9+vWFv69du4ZSqbTBu6FtMRwO8fbbb+PBgwe4d+8eDg8PF/5+4403MJlMAADZbBZXrlzBtWvX8I1vfAOPHj1KdD7P8/BzP/dz+OIXv7iK2yEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiohOaTCZot9uR202n07lx7pLZbIZmsxm5ne/7aDQasa6xXq/H2q7RaCDOdFrNZhOz2Sxyu1arhel0Grldu90OxmgvY7tOp4PxeBy5XbfbxWg0ityu1+thOBxGbtfv9zEYDCK3GwwG6Pf7kdudJqVSCZ7nRW63t7eHdDoduV2xWEQmk4ncLpPJoFgsxrrGdDqNvb29WNt6nhfMQ+H7fuT3KJfLietGo1HwPDmOs3ANo9HI+Byan9WaAAAgAElEQVSlUikUi0X4vh/5fRqPx9bP1fd99Hq94N/5fH5hm8FgYHyu1L35vo9Op2O9jslkYn2Gp9NpcAzp+9Lr9Rauw3EcpFKp4BhRaW3Usx83vd4VlUoFjuOI67PZbOQcecs4RrVaDf6fgHe+l3qek81mjd894DvPWblcnjuG6TpyuRwmk4mYD5jmkBkOh8FzlslkkM1mxXP4vm+9BuCd9ESlUePx2PiMSmmT+o57nheZHubz+dh5vLqWqOc0fC1x8j8lbvkAiF9+UuLmsUrcMghw+p75Zcrn89Y8LCwqrdC5rotyuRz72LlcTkwjTOKWPYB38pFKpRL72HHSvLCk1w8k//wBoFAoWNOwZe0Ttyymi1vO0yX5f1TK5TJc1020z2kRlVa22228/fbbxnWDwSCop4TLa4PBIMgPZrPZXLlRrdfLVoPBIEiDh8PhQrlrNpsF+0j59Wg0Qr/ft67vdrvGdaocMJ1OjfmSWuf7/sK9TqfTuWWz2Swor0ynU2Peos4xm82M5/N9PzgfxeN5njE/UWWwVCo1lwalUqmF8lk6nQ7SglQqtXA8x3GQzWbhOI6YZhQKBWta53memJe5rgvP85DP5xfSMc/zgmXhe1HrXdcNnrtCoRBsn8lkFp5z13VRLBbFZ6Lf7yOdTi9ch17HcxwnyHNMzy3wzrNl+o5PJpO5c2cymeD/o91uG58b13XF8petnDgcDhfSIMVWdo0bT9okW94q5W2pVArVatW4jx63CLOVZWzlAlu+XKvVjMttZT5bzMZWDrJdR7jeqdjKe0niQbRdpLKPlB7Y6sRSXFyKIUllEVvMXkqLpFixrZ1AqvNKn4ktbZXuPWlMYF2k9MGW7klpg5Tm2dIFKb2T6jtSmmtLw6V0TqpX2tJaqZ4u3bvtcyQiMyntNS1Psu02HXvV54zbPr1uUrqbdDmPZV5+nNgnESUj1QOk9Fiqs5jaIqX6VZJjS/Un6dhSHcVUP5KOLdXlkhx7E6Qyv1TfkJYfp+4gxaxO+zmIiIiIiNZlE3G9XV+e9BibsqzYG5e/Q2qjo91iihGZ4jKm/kGmWJcUAzL1ZzeNMTOlG6b4kdTP3BQ3M8WTTP0OTP0EkvbzXyap/doUazG1jUtt7KZtpXNJz7+p35TUri21g5vSEKnfkqm9Xup3xLYOovUJp9lxyonr/vcyjrGOvq7h9Pak/17FMZdxTdVqFaPRKChThMsSej6uf+562UQvF4T78un9HPRyhv5/quft4XKLXl7Rywq2ftLHoeeB4XxSXxf+DPUyQDjP1PPKcJ6st8eE889wvqmfP9xeo5+ffXzPDv2ZU8+l/uzpZWhV7tbL6vrzp54x/TnUnzX9GVbpgf6c6sdNOgZWoj8fejlZL+/q3331jOjlZ72dVH/+9OdUf570505PA/Tz6890knGhRKedniaoNEeVE1R6tY5tklJ95tVzrvJ4Pf1Qz72edqjnX22vpz0q/dLTHdMx1LlZVyaKpsoo6llvtVoYj8doNptBnUCVXRqNBv4/e/cWI8lV3w/8V/funr4uBu+uvRiWBBuMI7zm7l2I/JAAlogUiSghr4kUlAekSJESJVIi5QEJKSQKL4CU8IYSgYQUBYhAUfj7EsDECyHYhuBszBrv2l6ve3p6+lbX/8PqFKdO17lUX6a7Z74faTQzXacuXd3nfuqcOI7p4OAgLw+xslK/3587FttWZWx2t9slx3Go0+nk5W+WHrA0oNPpkOM41O128/SAlTtYOYOlDb1eL093WDqBtAHgVp2l3+9Tv9/P4zP7X/wp2/7KK69I51yo1WrU6/Wo1+vl8Y39r3udbZM9ewcnQ7/fp2vXrtH169fpypUr+d/875deeqnQ/9br9ejMmTN09uzZud/nz5+nM2fO0OnTp3einnnjxg26efMm3XPPPUd+7k9/+tP0J3/yJ0ZzZfLe9ra30W/8xm/QjRs36MqVK3TlyhV67rnn8s+oVqsVPouyz+fMmTOI90BEt9KAsrjPXnv++efz9jHP8+jcuXN0/vx5On/+PKVpSl/+8peN58LlXb16lc6dO7fqt6MUhiF9//vfp3e/+91Het5FzWYzunnz5lyazH8+165dK9x/3/fpNa95TWn6LP6Gk6usLCoro5a9/uqrr0rbrkzKpqrtt912W+U57QBOGhYnWfyU/TYJIwtrOp870S/6mll8Zn+Lv6tuY68tMtclAGwfvj9fly6pwiy6v+n6EyIxzSp7rUqYqvsvMg8vwCbwY3748W98vOTjIV/W4Mfe82PqqoznkZ2fP2eVuftFfH873+fF2tX58W2sr57vc+fjNxsnxPe/82N62Hghvi+epQX8eDz0vQGcTPwYSvE5J9m4Zj5dVO0jG8ss7mMy/lkcc11lzRIdca4Zvo+Trz/y4yjFffhxkrLxm/zf/Dn4sc9lYzz5tLrqehcAANti0XkAwjAsbH/llVfy/+M4zv+eTqeFvCGKonxMLVuThGHj6lg49rcYjh07SZLCmmPseYIsyyhN00LbAL/Ogmwdk0WxfGMb5lZl667xYwNqtVpeB+HX+avX63PzsFWZC+A4hEVdC44L1bwrq5oHZtPH2vT5t3XdBqJbY3v4uR1YfsTWRmL/Z1mW/+04DlmWVdiWpinZtk22bRfW2WLrbrH8I47jfFuapit/PppfP4noVn2PtZXZtl1Iy/l1pWzbLuRrbHw8EeXP2hDdyiv5uh5fj+t2u/kxarVaoV2Qte2JdT++DrnI+nwAu0A3v9ci6e0uHncbr2mb8ydmlWsbYB/1NtRvALbHNuZFu3pd63xPi44t2qRF8ofjsm3brgf1P4DjZZ35zaa3b/O1rWL7LqxVLsO3P5YJgoDq9XrpullBEOT7pmla6KNkfYU8/h75vj/3rAbrO/U8T/ocB9tehr0uW+PLdV1yHGduLma2jY2bDsOw8EwLG3fJXwMbN+o4Tuk675PJhKIoIsdxSp91Z8eQPQdv2zaNx2NlOVE2VzVvF8uaMp7nSde5Z9+9RqOhnFvAcRxt2YnNfSXry3ddd+4YYlixn5zH4oFunL7v+xTHsfT5KvG7x49r4K+1DPuO8332MmwshIxlWYVjzGazufCycwwGg60Y27ANdHUQhF0u7LZcxzaExbOSAAAAAABwUq1jrNU2bdu261nmfWyLVa15ueljbfr8qmNhTZLjw3SuMNP4X7Z+ZxnTNXxka4yWMZ1T37Rv0LSfhn+GX8V0fVGTPiTGdC4U0+f1Tb4PVa5v18jWRhWZpIEm8z6ZtPmatCHL1lLlydZs5ZnOb2AyD33ZurEik3FTsjVleeKadWVM1q4T55UAAAAAMGVSX9r0GMl1b9+GaziK97gLlnmWYhu2b8M1bMN7RNsbAAAAAAAAAAAAAAAAAAAAAAAAAAAAiEyf4xbxa4ZXseg4+0XXPzJ97l206LzSi66XbvpMO6/KM/M8cY13U6bP8ouO+3cMypk8z11m0flRTZ7DL1P1WQvTZ+d5Js/R86q+l6r3uurcvSbP1POO4h5VXYul6pppJnMNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbKkvWVmWZZu+CthOL774It1xxx30la98hT7ykY9s+nIAANbmC1/4Av3hH/4hjcfjTV8KAJwwN27coKeeeop+/OMf09NPP01PP/00/eQnP6EXXniBWDH9tttuo/Pnz5f+nD17ljzP2/C7gOMkiiJ64YUX6MqVK/nPU089Rf/+7/9Oo9GI0jQthLdtm4ho7nXmrrvuoueee27dlw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbZDabGc3lEoYhjUYjbbgoiujw8FAbLo5jGg6H2nBJktDBwYE2XJqmNBgMVhYuyzLa39/XhiMiOjg4oCRJjMIOh0OK49go7OHhIUVRZBR2NBpRGIZGYcfjMc1mM6Owk8mEptOpUdjpdEqTycQo7HHXbDaN5xnZ29sj3/dLt4lzRNTrdQqCIP8/yzLpd69Wq1EQBJQkiXSuCXYMx3Gk10B0K76y+VVc1y1cA7vOsu+q67r5ccMwVF6HbdvK7ewYSZKQbdul9zdJkrnvtmVZhbCTyUR6zyzLysOosGOwuTxEcRzPHYMdmzk8PDRON7ZdvV6nWq2mDNPr9ZY6hmVZ1O12l76OdrtNjuMowwRBQI1GQxnG5HqI1PGb8TyPms3m3OtRFBXS9Xa7Lf3OEd1K2z3Pm4ufItu2qdlsavPWRqOR36swDEvjheu6pfe8Sv5FRNTv943DmpYzmCr5IxHR/v4+mU77alqWYarkv0REg8FAmy6KqtzLRfepUkaCok6no4zHZbrd7lweso59dOm0yDQd5Nm2TZ1Op9I+juNQu92utI/rutRqtda+jyz9VvF9n/b29irtY5IviWq1GtXrdWV5YzabFdKkIAjyPCRJEmX6NhwOKU1TCoJgrkwm1gnCMMzzBNlxwzDM09SydC+KIhqNRtI0lNXxZO91PB5Ly6JhGOb5RJqmhTBpmhbqQuL22Ww2d8wsyyjLMorjuLTex7ZXyZu2QVmacpynSXddN/9uy9JTz/PI8zyybVuZ5rK4JcvTWX2lrMzI7rFlWeT7fiFMmqZ5nYTlLSxMFEX5+WzbLpR/wzAsvD/+XHwcY++PqLyeRXTrPmVZJi33zWYzSpKEHMeZK4OPx+PCPWHXmWWZtKyXZZm0rhaGYeEa+c9kPB5XKptuAku3y6jaF2RlC1U+rcrzVNehqtuo6lmyMobqOlR5n67epyrT6PLURcpqsD6qup+sDiOri8rav1XtxLI2XFn7p6oNW1a3k9URVXVNWZ1VVveVtelvc71OVp+RpUOqMrYsTVClk6p6i6p+okrXVHUH1fWrtqnSNFV6rkpHG42Gtl0J4Liomp4uki8tcizZdS2SZ8jyH1m/3yqPZdq3uwmysqss7VTlC6s8VqvVItd1516XpfeqvExWh5DlK6s8FlH1dkYAKCerr8jK+LJ8pywNlx1bVneSHVv2uuw4qvyhat68ynNskqqOIWunkNWNZHmGKv85qecAAAAAAFgVWf1KVjeRtcHJ2gxldUBZnUjWjyVrx5O1O8rqYrK+OFm/muz5Cll747bV28rauWRtabI6i6zeJ+tXkvUpLdK2J+sTOqp9iORthSbjveFoydKzsnhZFufL0pOyNKksvatybll6VhZWlraWpWWy/nNZulrl+bF1Kutbl6UjZe39srgt6+co6xeRpWeyvueydEGWxpX1ncjSVVm6UuUeAZxkYvpa9f9VHOMoruEo0m8xDV33/6s4hud5hfJ5GIZ5mnp4eEiO41AQBDSZTCgMw7zdndVVxLycz2vFuhFfZhDzXzHf5fN3sW7Ef5ZVnzEzxedDYv7D9z+I+amYJ/F5kdgHwuetYv7E593i+fl8Vjy/+Pku8mwRbA8+HWN/l712lH/Lti+D/94u+vcqjqH6G2PM4bhjeS2fP7P8luXfJmH4fJm1AbK0g9+PhefLClXmX+Hx7XIsj+brqiy/5fNhVjdl6Qd/DJYH83kzSwP4dIEdg+XLizwDC3CciGWFst/9fn/pMFXmXeDLCb1er1BmKPu9SJgqcwoB7JKDgwM6ODigwWBQ+L2/v59v438Gg8HcNtk8dp7nUbvdpk6nQ91ul9rtduGn1WpRr9ebe13cp2zcPRwPs9mMbt68SdevX6dr164Vfl+5coWuXbtG165dK7Qr+b5Pr3nNa+js2bN05swZ5e9N+vjHP06f+9zn6IMf/CD92Z/9GT344INHdu6PfvSj9JWvfEU535plWXP5rGVZdNddd9Hb3vY2On/+fOHnjW98Y+U5UAB0Xn75ZXruuefoypUrhZ/Lly/P9Smz7y2bv6WMZVn0T//0T/TRj370KC6fhsMhff7zn6dPfepT9PLLL9OVK1fojW9845GcW6bf78+lo2Ia+9JLLxXif6/Xk6aj58+fpzNnztDp06fRXnZMsTYcVgYUf2RlQnEfWdtxrVajVqtF7Xabut0udTqd0rKfWCZk4ViZEOCkYW2vrJ2EjfFkbbT9fj9vb2Vtuaw9hfXfsnYVk7AmWHssa4Pt9Xp5OykbC8TaUVgbSqfTIcdxqNvtasN2u11yXRftrgBbjqVH/NgR9hrfD8Re48fSs3EhbJuqL4qlU6r9q2LpF0t/+L4h1g/E0iTWz8T3KbH9WV+Ryf58fxL6oGFbsPly+LjHx18+3vFjuPhnWvjxI3yc5MsW/Hgvvr+nyvmXwY/34seF8eO3+HFWLB7z8Z6Pw3ycLxtfwvdZ8+dmx+X7r2VzzQDAbjMZk2cablP7LEs2Fk+1bRv2QTkN4OSq+nz2pp7DLpvzUvZsJL9mAztHkiSFsZ5sfnui+WczsiyjNE3zdbf4Pjk2H30URXN9dbJ1GbYN629kf7P0n/3N/md/u647N8+/bdt5PsLPv8/WgmJc1yXHcciyrEIdwHXd/LidTqcwFo2tAdVsNgtrvvm+n49dE5U9/yl7drMsz5PN+4XnUmCbqNb7WmRuXFk6LMsXVPO5y/IA1Xqvq5zLeJVzBm/Lc/SiRebAlc1DqHrWvCyNTJKEfN/P1wHl87osy/LnCcV80Pf9/HOJoijfxvIC9j9bz8myLAqCoLC+E/vbdV2yLKuwttJsNqM4jvPr5defYs94MLJ1oJaxSJ1s27Yhnzt+dGtvqPrFdWt0q9Z3VPVZreu4uuerVfM4qfJUXdu86rkOVRvTNs9XL6Nqw1etEaJb01H1LIpuXUPVvO+q+Xd186yo0kPV2iW69R5V7W2y+6u6VvSrACxHt4aySVqtqi/o8hBVvqbLw2X1NEaVP+nyTFX5QLWmGZG+f0WVz8vmkmS2tW6ms8y6gar1D3V5jiof1K2drJsTUZVP6vJuVd6lezZdt36Y6l6r1ixbZB1lAFg/3XwbJuOodGPBdXmPLl/TlSV04zl171GX9+nmK1blu7qyhq4cpLv/65oD7agEQaDMC9k4W9n9r9fr+Tx2ZWWyer2e54dJksyFYWN0Gb5/k+1flheztlpZnsfCyMoXRL/oG5TFHdu2yfO8QputuD97b3zbrXh89p7Z/D388fn3lmUZTafTPIyq7ZKFU4UZDodbNc/3Mljfqoh/f47jKNsN+H7hMuKa62XfV7HPmA/L1pbXtTnL4gp/newYfN+CGEY0nU5X3g+wq1Tl4W0Muy3XgbCLhUdfEwAAAAAAwPGjag9X9V2r2opV7dC6NmxVf7iq7V3Vbq/qE1CNd1O1l+v611Xt/Ko+gipz4Wyaqo9X1d6gGi+l6lfWjVNbZOwWkbr/fdG+aFWfv+59qNpfZOMMqrYHHRem63+argVgOp+LblwPoxtPy5iON9WlnzzTOc1N0xxd3ymj66NlTPsbdWktT9V/ytvVMUrLMF0/1XSMjW5cE6NL73imbc+m42p145AY0/TTdP1H1XgwxmSOf5Pr141NIzK7bqw3AgAAAFWYltFN6hqmdSaTsr5JncV0fj+T+pRJvXAb75Wu3qt7X6bXsc10z1oQqZ9bINKX+3Vlfl0dTVfW19XJTN6jrg6me4+q9jQi/XvU1T9177FKfRMAAAAAAAAAAAAAAAAAAAAAAAAAAGCXLbruMvbDftt4rmX2M50LAMwsOkcF9tvd/XbhGjexH9YFAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANg6X7KyLMs2fRWwvd773vfSPffcQ1/4whc2fSkAAGvzta99jR5++GEaDofUbDY3fTkAcAy9+uqrdPnyZXrqqafomWeeoWeeeYaeeuopunnzJhERdTodestb3kL33nsv3X333fSmN72Jzp8/T+fPn6d2u73hqwf4hVdffZWeeOIJevLJJ+mpp56iZ599lq5evUqvvvoqRVFUus8///M/04MPPkinTp064qsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJNiNpvReDw2ChuGIY1GI6OwURTR4eGhUdg4jmk4HBqFTZKEDg4OVh42TVMaDAZGYbMso/39faOwRET9ft847P7+PplOczgYDChNU6OwBwcHlCSJUdjhcEhxHBuFPTw8lM6dIRqNRhSGoVHY467ZbJJt24XXsiwr/ez39vbItm3pdp7v+3PH5aVpmn9ngiAoDVv22XueR47j5MdQfT9c16UkSZTXmmVZ/l1wHEd6zWEYzn3Hbdsmy7IK16v6DlqWRZZlGaVzYRgaf/d3VbfbnXuNv59ERI1Gg4IgUB7HdV1qtVra87Xb7fy7I1Or1aheryvDWJZVeu2iZrNJnucpw3ieZzRvXrfbnbs3onq9TrVaTRnGcRyj+bBarRa5rqsMEwQBNRoN7bF6vZ42zN7eHvm+X3htMpnQdDrV7ot9jn6fbb2ubd8HZY/FmKTLJ2WfMAylZZokSQrlhiAI8jwhyzKazWbS47Myju/7c3luFEXS8kiappQkyVz6zUwmk/x6+e++67qUZVmhzJQkSaGcJZaDWJmLhYmiqLTMxa6J3Q9Vua7snrCyWpqmhesX8fdUFqZqGrFtLMvKy/267bJ6IF92SdPUuG65izzP05b7bNsuxEui+bJvlmUUBEH+XeS38/fa931yXTf/jvN1K8ZxHKrVanPxi5ckCTmOM3cdcRwX6uz8uaIoKq3Ps7gjSzNYelIWL8U4za4nDEPjOv620KXzqu3Y9+iO3el0lO0VUE7WRidrz1W1b8raBmXlbFV7raxNcjwel+b3qnZiVXuzqt16Op3SZDIp3aaqO6i2ya5/25TV5xlVu4iq3UHVfqPaporbqnYVWbuFqv3Htm3qdDql21RtL6o2LFUbkWqb7/u0t7dXug1gV8nSx0XSVByr/FhV+vSO2qLlvF3fti3XQWTW1wBwEsja9GV1A9V4EFm6i3NsF1nfp6r8L6uHyOpKqjqBKm1W1b1k16Cq06jqGKrrUNXzZNehun+mfeUAAAAAAGXKxsPLxtTL+q1k9RNZ35Ssn0nWxySrF8n6lqq29cn6k1R9XrJ+uirPWmyCrD9HVYdZZB9Zn9JR7aMal7vIPrK62iL7wPKqxPFV9Akcp/NtS79GWbyu0u5ftY9gG46xivOp2rYAtonY1i2mSWLZTiw/iWXLsrKpmJ6J47GO4hqqPCu6iLK2abEcI47/EduexefIxLSlrK1dHItU1v7c6XTmnvvjr2M2m+VjeGezGYVhSJ7nURAENJ1O87K34ziFcjg/jl/8zFT/r2rbqvD3Wbznqv+PepsuLMqz20X23V3n31X3q/JMuorse8n+1m1f998YCwLHgWmcN9m2zDGWGeOtShOqvrZMeJNn7QF2zWAwoDiOaTAY5HUlFo9ZXYu1j/f7/bz+xOpZLG6zetr+/j4lSVJ6PBMszrF2kU6nQ47jULfbzes0rJ2W1YFYvYaFabfb+bMCLB6z47GwKP/CLppMJtTv9/MfFrf411Svs20ytVqNer3e3A+LR7rXX/va12qfFYbtNZlM6Pr163Tt2jXp76tXrxba1Gq1Gp09e5bOnDkj/X3u3DmjeXoW8aEPfYj+9V//lTzPoyiK6D3veQ/9+Z//OX34wx/WzjG0jDAM6c4776RXXnmFiObnS7AsizqdDp09e5bOnz9P9957L7397W+n97znPfSGN7xhbdcFUFUYhvSjH/2InnjiCfrhD39IzzzzDP3f//0f3bhxo3S8Bpsf4/d+7/fo85///Fqv7caNG/SZz3yG/vZv/5Ymk0nejvzII4/QpUuX1nLOfr+vTAOvX79OV69eLfRNiOng+fPn59LC17/+9dp5yGB7sTLVouWuyWRCL7/8snTOULGMZVruYj+nTp1C2yUcO3z7Ih+XdL9NwrIwVdopZW2FZb/5+Fo1jMm8lQCwHqvsG1n2tWXGpejSKVWYVexvMmcuwDJO+hiKTY+b4F/DGAqA3bTIGMtt2GeV43ZNx1IuMlZznftgnArA0VjV/HSbeH2broVodeXiVXEchxzHKc1P2Lghft0oNj84H950XbAq+HWo+DnX2Ta25pPjOIU8gq2BwPIGfh7Ver1eeO612WySZVnkui41Go3COZrNJgVBQL7vk+d5hf1OnTqV/++6bv5sSbPZzMdksW0m6xsB8FTP9GDbdmzbBlWfy11kn20+VhAEc89ATqfTfO2c2Ww292wePxZ2OBzmz2B6nlcYuxtFEY1Go3yNQ3Fsr/h8pji3Bj9HifgspjhHh/g9W8ez7nz/mvg8JF+XUm0T5yXnxxartonzTai28c+Hip+9yVp6x90y6dW60kEc95ZtmaPClCo91m1fdBuOa7bdZA1SgOPIpNy9TBp/3I6xK9dJtP45R9ZtE/nIOvc9rteF5x4B1mdb8pNtOc9JO8Yu8H2ffN+XljfYdtm6xp7n5X054tq8WZaR4ziFOhpbu5pxXTdvc2N9aFmW5c9Ssf6rMqxtUTXGIY7jufWZeZZlURzHpW0SfN9e2VrA4rrFbN1f2ZrHRLfaObepb3OVWD+hiL+3lmUpPy8W1qRcYtqOpPqMT6IgCPL5AnVtxboyJBFJ27dVqvT7qtbNKVNlfHmVMnCV8VRV2qbE+RtVTD4PZl2fh2qtV5Fq7SUAAAAAAACAXaDrp5WtJcaI61mIdM9ByNabZnRzmOjasFXHV+0rW9eNSL2OmmwdOqZsTTtGNa5s254nUVGtAaRq+1G19ajadnTtM6rxpKr2MNX7UD0Prlp3TfU+dG2EqjZB1fsoa8eTrX8oU2U8R5XvqiqeiXRxS6RLu3hV+sKqrqOoivMi02s2vcem78v0czD93lT9rI4L0/mtTNdJM20rN20nr9LubdoHYdr/YCFVIDAAACAASURBVNqfYNqXoEpneWXrQpWp0kdjem9M+1uwbh4AAACsgkkdwbQuY1L/M5lvVnxGVsakHiQ+q1umbD3UMib3SnyeV2ZV98q0rrWqe7XrTOohpmPBTOoBJvUZ03qZSX1CVy/S1XNM6n6669DdY9090b0HXZ3OtC4HAAAAAAAAAAAAAAAAAAAAAAAAAADLr3uy7P7Lzilf5Tlckek48nXtv+zztKbj7mWqPi++yv0XnafYZIx9mUXnWtDNhSGza+sJbbtF1wRYZN2xRecGrTofLLPoWqNV5lHlmT5jLVLNj6FSZR5Z3qLrKJk+ry86zt8xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHfQlK8uybNNXAdvrU5/6FH3qU5+iF198kVzX3fTlAACsxeXLl+mBBx6gn/70p/RLv/RLm74cANhx/X6fnnrqKXryySfzn2eeeYayLKNer0fnz5+nt771rXTvvffmv9/4xjeSZVmbvnSApbDv/ve//3367ne/S08//TRdu3aNXnrpJSIiOnPmDD3wwAP5zzve8Q46c+bMhq8aAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgPcbjMc1mM6Owk8mEptOpUdjpdEqTyWTlYWezGY3HY6OwYRjSaDQyChtFER0eHhqFjeOYhsOhUdgkSejg4MAobJqmNBgMjMJmWUb7+/tGYYmqXXPVa1nkeohuzQUDcpZlUa1WI9PpWLMsoyAIlGHSNC0cz/d9bRie4zj5PFRxHGuvSXUsJsuywrFk81yZplO7ynEcqtfryjCWZVGr1dLOBRYEQf5dcBynNIxt29RqteZeF+d0bTabynlefd8n3/dpb29PeU1ERN1uV3vtjUZD+z12HIfa7bb2fM1mkzzP04bzPI+azaY2HBFRp9Mh27a14er1OtVqNW0427ap0+kYnbvVah27OXerlCuwD/Y56n2O6rrgliAICummSfnB8zxpnpGmaenrnueR7/vaMkqappSmKbmuW5qXsO1lHMch27YpSRLl8eM4pizLKMsychynkGenaUpRFOXvtWz/JEnyPIkdhxeGofT8RPqyVRRFxuXQbWRZVmm+yb8nWb7Kfy4yaZoqyzWWZeXfA9l3he0fRZE0zHHiOE7hnqvqHI7jaOOobduln1GWZYX4Z9t2ofzG4p7IpJ4Tx/FOflaysrplWeT7vrL8vbe3l6drIs/zCmm3GK7ZbJZ+RrZtUxAEyjL43t7e3PH5/VVlaF2dotfrSbfVajVlvUxVp9HVi9rttjRdcV23tH52Uo1GI2k+dnh4mOeRouFwKI3DBwcH0rx5MBhI4/b+/r40PZK1a6nayFTbVG1xqvZFVZufqr1T1W5apf11k4IgoEajUbpNFZ9VdXZVGrK3t1falkakboNQ1edV23Rpg67tQZXu6NJS1b0l0re5qNJagKMmy1dUaaQs/Zf1p6nSYlXeddTbVHnlUW/bJovmC0e9TZUPbdM2VR6x6DaA40RW/5DlV7KyuaqOsKpzqOoosnOo2shV+YIs71W9T1WdpsoYmE1R5T+qNFHWNqEq46vaLFTXoaqvyK5D1Y+rug5VHqi6DlndQ3UduvoOAAAAAJxssnqNqr6z6X224RoW2UfVlrlpqn4m2Tbss9g+pmNtT5KyfmhZ+01Ze4usPUUWF8vaZWR9KGXxVtYHLns+qKzvXtbPImvjqXKPjprsu17WdyvrD5a1k5S1g8jaOcraU2TtJbJ4WNb+IxtzX9aeZVkWdbvdubCye4Q2G1gXMd0R0zIxrRHTL7EtWkyzytrSxXRKbFMX02+x/b4sTROPKabrizzTt6iy9mix/7AszRHTprI0hU8v2ThdljaEYUhpmlK73aYsy/LPzfd9siwrv6dZlhXGMbJ7y9IplsfV63UKwzC/j57n0Xg8zj+rJEkKnwvbz7KsufyW/wzFz2Jdzxfw+YKYtvLPPYlt8/znIOZF/Ocofs5ifsGfX0zDxXxPfA6Lz2Nk+QWsHiv38d9RPg3j0ze+PMinSXwayaeffBzg0zg+DebLnSxN489f5RlsFb4sxccNPs0Rv3f8d5SPB/z+Ynzh4wD/nefPz8cNMV3k9z+OzwvC8cDiKovvfDxlZSo+vWBlHpZW8OlN2TFYesGXt1haUXaMqvg4yOIcy8/4fI7VZ/h0gqULZcfg4znL0/j8lh2PPwfaP2AXsXLsZDKhfr+f/y37bRJGDFuljZjly6v43ev1lGEwlhG2BYsv/A8fj3Tbbt68KX02S4wLvV6v8CN7nd92++23K5+/hc2aTCZ0/fp1unLlCl27do2uX78+9/vq1auFNqparUZnz56lM2fOFH6fP38+//vcuXOV08i3vvWt9Mwzz+T/O45DSZLQPffcQ3/6p39KH/vYx5auE4VhSD/96U/pySefLPxMp1NyHIdOnz5Nb37zm+mee+6hd73rXXTffffRvffeizIa7LzZbEbPPvss/eAHP6Bvf/vb9MMf/pCeffZZevHFFynLMmq323TffffRAw88kP/cc889S6ffP/vZz+jTn/40fe5znyvMiUF0q93li1/8Iv32b/92pWOydEuWZl27do2uXr1a6MOUpVv879e//vV4dnvLLVvmeeWVV6T1Cl2Zx6Q8dPr0aaN5xgA2hbXPsbZ8FkdYexxrv2dtcazdnrXl9fv9vA2Otd2x/gLWbseOXaXPi9WxWVsaawfvdrvkOA51Op28PY6FZe3zrM291+vlbeus/Y3FTVZ3N50LEADM8XFdbNs76tdU887o8P18YvvfUb+meh4bQEbsI+P73vm4wccdvg+fb3/n9+XHMLG+QP5cfF8eP4aA78/jxxCsakwMP46E9cnxfW18fzvfp8f35fHxj+/P4+Mg3zfP9/NXOT8AbAd+fJKYZopjPsUyBT+GSRwPKqZrqvPwx+XPKY4p5dNePq2usmaGCT69U41Zko2T4vcRxw7K9uHHSqj24dNl1T4Au0Y2f4oqfled00xWL5KNt5Bdk2wOTtn1lD2zIxvHJZuXRvackOx5pVWni8tidTzx/gRBUKjjsTS+Xq+T4ziFZwbSNM3HqhHdKm+z49VqtcJnxdZoCYKALMua638R5ziPooiSJMnLt7PZLD+3ZVlzzxmwsb9szP065uNptVp5GdvzvDy9tyyLOp1OYRv/DAE/TkfMtxYd2y6OrefL/OLYer5uUGWdEqhGNRfwNs2LuOi2bZpnctFt20Q1P9VRb1OlC7uyTTZHmGxs8yraQcTn4sSyjhif+DKJWLYQywhivU38XvN1MLH8IpZPdNcppl3rXFuP/5zEPE/8fMV8TmyDFp/p4vNI8fMVnwfj82XxGRrVNr7djY0NU1HN9U6kT69061vq1mZUzUOvavPUPfekyu9U16xbG1KVB6merdc9i7Er+QKjK6up1o1QzW+om/td1Setek5El56q5oxXzdmha09RPaOmeo5f94ynany96XqFANvE5Hk13Xy2Js/D6tJak/WEVfkLkVmbiirvIzJbO1pXFtLdL5O1kHVjBEzu167MhW9C99yxSTuGbmyVyRwvuvVmdc9NmswjoFtbyqSeonsWzOR+qfJnIv06Vqr7jfwSoJyufkikXkuGZzIXvck4F901mcxxpst7Td6TLk8zyRd1ZRGT/Fl3X3XlKtZHse3rBFTB+nJE7HsjrkNbxvO80vVmGXHdVbZWLc9xnLnryLKs0DYmy5fY2ru2befHKLse1feYhWf7q9bz5c+hCsfj+9XgZPA8L//eq8qfjOM42rKsZVn5sWRlQXFtWxaWvwbZ2q1Et9pn2XXL1tPlw+7t7Rm9vyrzk1SZu7FKf2iV9VSrjgGqsqZhlWdGqszfhPHdAAAAAAAAAEdP136u6x/XtZ3r2sV1fdK6NnFdP4Ou713Xv6/rP9D1DejGMej6BUzGUqxzHOVR0LWP6fqmVW1xqvY0XfuZqr2s0WhI28v39vYK/eRpmubf4Xq9Lm3/8n2farUajcfjuWO7rlv6HqfTKSVJouz3Zvc2iqK5/rRGo1HazsfWmTBtA9SlE7wqz8Cb9L3xTPo5mSpzZlRZb8mkr4+3rnt3ElRph6/aXq4bq8Kr0negG+PCmPYbVHlfpn0Apu/ddH5o0/tj+nma9pNUWWNFNw4LAAAAYBlVnhMzrd+bjt8kMhvDyejaiIjM6kem6xiZ1MtM36tJfdCkTmW6PptJXW6V92qXmdSDTMvvJvUQ0+cDTOoBuucpiMzrKCZ1LZN7ZVoPXOW9MqlPrvJeAQAAAAAAAAAAAAAAAAAAAAAAAMDqVX1ec9X7VxkDXWbZNfSqPCe6jv1N5ppXWfb50irjytexf5Vnesssu37LsvsvO79+lWeJYfVMn+1d1/5VnkMuYzJWW2WZ+T2rzE/KVHm+l7foumyLjlNfdG2CKs+38xb9Hiz6+Zs+By6qMncsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJxYX7KyLMs2fRWwvZ599ln65V/+Zfq3f/s3euihhzZ9OQAAa/HCCy/QnXfeSY899hg9+OCDm74cANghk8mEnnjiCXrkkUfoiSeeoMuXL9O1a9eIiOgNb3gDXbhwofBz++23b/iKAY7eiy++SJcvX6bvf//7dPnyZbp8+TI999xzRER09uxZunDhAr373e+m97///fTOd76T6vX6Zi8YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4ATZ39+nKlOTHhwcUJIkxuGHwyHFcWwc/vDwkKIoMg4/Ho9pNpsZh59MJjSdTo3DT6dTmkwmxuFnsxmNx2Pj8FEU0eHhoXH4OI5pOBwah0+ShA4ODozDp2lKg8Fg7jXVd4R9h9I01R4/yzLt9WRZVjjfaDSq9B09iRzHUW4X759t22RZVuE11efMh60S/48Tx3HI932jsI1GY+7+lvF9nzzPI6Jb99i27dJwtm2Xzs9lWRa5rlt4rV6va78PnudREARUq9W010hE1Gq1yPM87XHr9XrhHsnumeu61Gw2pcdpNBr53+12W3teIqIgCAr7yViWRd1uVxuOiGhvb8/oM3ddl1qtltExO52O9HOGxYxGIwrDcO37VC2fEFUvAxFVL2cREQ0GA6M8mFe1/EdE1O/3K4VfZJ8sy2h/f7/SPmVlF52q5SOi6mUwourlPCKiMAxpNBpV2gdupe8sT1V9t/lypizvFcuiItu2teVjIn0ZeleV3TdW7tHdWybLMrIsK/9RnUt1D9m+lmVp0052LNM0tmr6fRyUlbnK7r9t29p4otu+rVzXnStfE/3iu+a6bp7WlLFtmzzPU5YhXdfVllt93yff98l13dI44vs+BUFQOCb/+Ynb+XDs/anqA47jUKvV0s4RHAQB7e3tScPVajXlMXTbV3WMXq+n3L4tVO1PqrYs1TZVm5mqTKwq+6rKuKqyrKrMqiqbqsqTsm26MqWuLXGR8vU20NVN6/W6sh1AVf+2bZs6nY50X12dvNlsKtNPVTw9qe8LYFGqtHibtqnS2qPepsqH1rFtm6jSMdU2x3Go3W5Lj6tLm1VtpLr0sdFolJZ1GVXa6/s+7e3tSber3rOuXVmXZ7RardK6BpE+PzIp8wJsA1VdQVZ2V7XTqvrcVWV6Vf4juw5V26/qOlT1Ktl1qOorqutQ1RkX6fM4aqr0W1Vml6Xruvyi2+1K2x11++rSXVWarssvdHmRLp9T5aG6/HnZ+g0AAAAAHA+yfqVF+qKwj3qfbW4jVNV7ZNuwz2L7nJS6VllcqBJvqsaxXTuf7PVtatOp+r0/iri166/r+krgeDBJHxYJs67jrjLMImPKF1EWx8TX+P/ZuF02Ni5NU0rTlIIgIM/zCu32juMU2npt287bX+M4pjiO87GAURRRHMfkui5lWVYYV8WPFQ7DkJIkydu8wzCkMAzJtm2KoihP9y3LojAM874O27ZpOp3m/49Go8rPLZhS3b9t+7/qvqbP/5xk/LMN/DMLfD8UH+f58go/ppB/ne9LE/u6+LSC7zvj+/r4/cW+w1WmNXwfDN9fI/av8H1MfJ8Qn7fz+4v9/fz+fH2A39/zvPyZOnF/vi/opNQnYPNYnObjMIuzfFrB2jpYOsE/y8XSiLJj8PGcxWuWDpQdY1Es/vBxjOUNfD8u32/K+qr5PmQ+vWD91Xy8Z2kDH3/5OF52HQCbwPJ3FsfZuB42lrLf7+djWFgezMoKLN6yY7A4y+Ipi9/8sUyxMhyLayy/Y/GRxaFer5fHMxZHWbxi8ZjFPRbXxWOpxo4ALIvlh5PJhPr9/tyPbBv/+o0bN6Tj7Wq1GvV6Per1evl3nf3P/8i21et1xIEN6/f7dO3aNbp+/Xr++8qVK4XXXnrppcL49l6vR2fOnKGzZ89Kf9911115u0Ov1ysdi8ie/Tx79iz98R//Mf3+7/++0RwcWZbR008/TY888gh9+9vfpieffJJ+8pOfUJIk1O126cKFC3T//ffThQsX6MKFC/TmN78Zc2bAiTMej+m//uu/6PLly/nPU089RVEUUbPZpLe//e30jne8gy5evEgXL16k22+/3ei4zz77LP3d3/0dffaznyUiKq0b+b5Pn/zkJ+mP/uiPiOhWm8rNmzcL6Yz4+3//938L6YTv+/Sa17xGmc6w37A5YhnCpFxRtq0MK4/Lyg8mZY7Xve510nHUAOvC6q+sLYm1QenqsaxOrKrPinXjqvMKiXVS1nbE6rfdbrfwW1XPZXVldoxut5vXldHWBGCOxXW+X4y1jeleK9u3rL287DWWtpS9tgiWFvDxn7V7lb3Gt2OXvcbSJdPX+LZ0zJkIZfh+ZZO/F9ln2f3F/xeZ27GMbFzDOv+uuh/6mgHWR0xn+LRFfH5cnE9UHDfMP28g1kU2dZ5VEZ+1Fp+tFsd58eUNPj0Tnwfnnznn0zrVPrKxPPw+qvFDANv63NJxO/82PoO1qecQPM8rlOXiOKYkSfKx0WEYFuqaWZblaWqWZTSdTvPxz2zsFo+/z9PpNB8f7boujcfjwrHH43HeN5mmaV5XdhyH0jQt5D+z2YzCMMzTT34stGVZKyuPlxHzFXH+Ej7/EMdsiu1uurHJqmOL+Qm/r5g3is+b8MfZ1nmmFp0LFdtWu22bnkXTWeQZM2xb/baTULYVxx+LcUicO0ysF5XNBSa27YrzqvFlF3FtDHE9CnHOMDEeq+p7i6yHYcpxnEIe6Hle/j1i5Qt+Dqx6vZ73E6dpSvV6vbAuAH+sLMsK5Rk2xzrDxjYxtVqt0Abtum7h+Ss+z2Rt3+wZLHEeed/3ybZtbX132e2rOIZu+y6l+TLrSNdw3NXsuytz9cPxsg1p73E6xrZc53HIr5ijWi9l2WPsynVu0zGQ78FxYNqnt8pwOKdZuDRN83Z8olvtAGV5I7++t+6cLBybn0TWf8Jen0wmW9fHsipl62zzVGse8usnqrD1E3V0a/Dx6zby4fi/+fPs6pp+J4njONq1s/nPVJzDSAxX9j0T27Z033k2ptS2baN1vT3PU86Dzx+XnVe23iE7r4gPb7LO+d7ennaNLnHt86p9Z+sOv63XZLreOwAAAAAAAADAuvursX394wGOal74dWHPRqi2+74vbUcPgmCuHTPLsry/RtbOyWNjDWXnYM9k8NI0zceris99yPZnc+6KWHuvKEkSmk6nc+3HZfuzsZZlfVNlbdZJkuTPgOjawG3bpsPDQ+n9cRyn0GZcZfyI+Cykimq93zKqdZRPoipz9evW1uXp1ukVqdb8FVVZ20W3FrGoyrj6bbl3Vdr+d/HeAQAAACxj1eMN1xV20+evEhbnX8/8O7vAdKzSKsb/43zbfSx+nSYAAAAAAAAAAAAAAAAAAAAAAAA4ftja7ctga8Yvatn5rMW1Sapa9jnEZfdfdv2uZdbIXsX+y64xt8wz0lWfOV31/uK6NFWtIv7Bcpadr3HZ/ZddG37Z9aeWnad9mf2rPl8rEtccrEpcV/Co96/6XK9IXGPxqPev8ix1mSAIqNFoLLw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArNSXrCzLsk1fBWy3++67j371V3+VPvOZz2z6UgAA1iKKIgqCgL785S/Tb/7mb276cgBgi+3v79Pjjz9Ojz76KD366KP0n//5nxSGIZ07d44efPBBuv/+++nChQt04cIFOnXq1KYvF2Brvfrqq3T58uX85/HHH6ef//zn5Ps+vfOd76RLly7RxYsX6eLFi9TpdDZ9uQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsCOGwyHFcWwc/vDwkKIoMg4/Go0oDEPj8OPxmGazmXH46XRKk8nEOPxsNqPxeGwcPgxDGo1GxuGjKKLDw0Pj8EmS0MHBAUVRRGmaasPHcUz9ft/o2GEYUpZlNBwOleHSNJ0792g0Kr2eJEmkx5nNZvl3KU1TMpnGOUkSmk6n2nBEVDie6T5wMti2TY7jkGVZ2rCe5+V/W5ZFtm2XhnNdV7mNP7fv+9rzOo5DjUZDG45do+u65DhO4Vwiy7KoXq/PvRYEwVzYer1OjuNIjxUEAdm2Ta7rUq1WM7rOU6dOGb13z/Py63QcZ+6aRa1Wa+7et1qt0rC1Wk16vY1Go/B5ExH1ej3t9TL1et34XsBuqZq3E1UvPxBVL6MQEU0mk8p5XNWyE1H18tmi+1QtNxKpy6ZxHJeWRYbDYf56kiTaMlUcx5SmKYVhKL3fSZIoyzLj8ZiiKNKWd8QyUZqmc9+LLMuMjhPHsbLcrjqGaVkTjo5JuUUXxrKsPIzq8+ePk2VZYT8+DH8M2fHE/UyXbjEJZ3osfJePlqwMyb5HqjI1C1dWPuW/S6zszX5Etm3Plescxylcm+/7yusIgkBZtuPL1q7rzp2PnUMsn3uel4d1HEd5Dt/3qdfrKeO27/sUBEH+W2TbNjWbTeV7azQa0npErVajVqtFe3t70mtgms1m6X2oIk1TGgwG0u26MpauLKFqH9G1z+jKUIPBQJrenNT3tc109bd2uy1Nz2zbVs7rHgSBsj6viyuqeqjrutL6LtFy78tkf931Ed1KN3T1+G63q0zbVnEMOLn29/el5UTVNlVaetTbdO0DBwcH0nb3OI6V7fu6dF91j3R5iq4dwLSfYtuo0k7Hcajdbkv3bTQapWU0RpWWeZ43V47j7e3tKdtaVem17/vK8p0qr7Isi7rdrnRfXT7YarWkZU/d/dTlU51OR1nGB1gHWXk5yzLa398v3UeVnqryAFW9QHYdqjK76jpU7c66/EDXZq3Kx3R1DF1b/SJt0ttiU/UAXbquyzN0+ZEqbdal+7p6wTJ1K10+u2zdCgAAAACOlqzNS1U3k9VdjmofInl72SL7qOqTi+wjaydcZGzTUVH13+j6dlT1B1W9RtXWpaovqeocqvY1VV1GVcfS1f1U7ZTreP+bIItXZd91WduHrG1G1h4hS5tk8UjWZyy7Hll/gKx9RZVWyeK8rM2p6rMkR0EWj2Xfb1ndXva9ln2nZf0AsnYNWRyXtcHI2oVkcV4V32X3SBbP0f6xHcS0pyxNENtcy9pRxfhclhaJZQYx7SxLR8S0jj3rpHoPZemXmK4sMm57UUEQ5PGVpYUsfrF7xsZm8fe52WwWrtnzvLlxl3x6kiRJ/gwL0S/G6LI2ziiKKI7jfFzcbDajJEnIsixyHIcmk0l+PY7j0Gg0yq/XsqzC98LkmbBliGmWmOaJZR0xrRTbdsW0V0yXxLScT8/Ecp6YPorlp6rXftKI8Z7/v+rfR7X/qvuG+O9E1b83sT9RtWeeAHgsLunimulry+6zyHNOvLJ4ootH694H41hglVh9n5WnWd2AtSewuMTyRlYOZ/WF/f19StM0/80fi5W/WVyt8qwiq4eychmrx7JyF4sTLK6w+jUrA7J4wo7BH4v9ZufQtXEBlNnf36eDg4O5n/39fRoMBvn/w+GQDg4OaDAYzO0je86DfZc7nQ51u11qt9tzP91ulzqdDrXbbWq1Wvnr/D6qOQFgOdPplK5fv07Xrl2jF154ga5fv57//vnPf04vvvgiPf/884U2CN/36fTp03THHXfQd77zHe3zl7ZtU6vVok984hP0iU98olA+j+OYnnzySXrsscfokUceoccff5xu3rxJrVaL3vve99IDDzxAFy5coAsXLtD58+fXei8AdtlsNqMf/ehH9OSTT9Lly5fpiSeeoB/+8IeUJAndfffddPHiRXr/+99PFy9enItLly9fpr/+67+mf/zHfyTHcZTP5vm+T/fddx/NZjO6fv063bx5M99m2zbdfvvtdMcdd9CZM2fy33feeSedPn2azp07R6dPn6bXvva1a7sPUJ6vD4dD6vf7pfn9OvP1sm3I12HV+DaVfr9faF9Z5W92bFNie0iV371er9I+qjEJAMfZIu2vi4atcqxVteEu0+6qes00/EnvDzwJ+DEU/PeWH4cgjq/ix07xYxz4sRXiWAd+jAU/5sH0nPw4jlX2eYp95nx/O99Xz8cPvl9dbIflxw/xff9837vYb29yTn4Mlcm8EgAwTzXGQvx/XWFXeZ5F5p40ZTpOY5mwR3kezLWzGrLyrWq+Ftnz8ap5w2TPcsjy/0XOLxubrho7vsj5ZePKFzn/psnGc6v6pGVjyVVzAMjGYsvKP6s+v2zcCn9+cUyy53mF79lkMqEoivI5CmezWSH9FufNTZKEhsMhua6bX68YD8Tvp3+YRQAAIABJREFUkpgHiPFTjGPiWGqxrC3+X3XdhyrEsrA4ZlX8rMXPUfyO8Gl8lWMnSUKO4xSO3Wq18mNPp9PCd571cTLj8bhQVw6CIC/7LzuPlWr+Qt2xdeNXFp1jbJu2bRPVHFmLblO1wxyHbar67Dq2wWaJ+cn+/v5cWWcwGOTxfTqd0v7+fuGZk8lkkpfBWBrIp3NJkuR5HpuLXnyuhn+OZDabFZ4zYa+xfDVJEoqiqFDu49f3YXPbi2W56XS69nSLPTfDziPOK+26LlmWla+FJK4lw/K4LMsojuPCvuL86WI+Jdan2LM7u8xkbKXuOUHdXIm6eQV1c0gR6euzunmkdGmkbi6po7hPunm6dM+6E6HeD/NMx3Wryt6MrgzOmPYLmpR1TetkJn0lJs+c6u6DyVwZujlzdZ+JyVztuvdr+lntApM8Qjc+RJfGE+nTcF1eRrT8XOkmeY0uLzG5X7o8UzdnJZH+funyNCLkWbA5pm3PpuvFmfRRbfM5wzDMnxFTGY1GhfqiLLw4TwQLz9eboiiS5qesHpdlGY1GI2V9i4Ubj8fK9ddY3U/MO8vCh2F4YtalWuVzq+IcGSbrjlVtO9iFNtJtxN9zk7XobNsuXVtOFl5cv0t3bF14sY1Htpau6jiO4xTW8tJdH1u3l/3o1Ot1o3W3+PXHfN+XzqPGrz3G8P0sYtiy44hrh8nWHRP3OXXqlPE466ptz4u0VeOZegAAAAAAAAA4aUz68xFmtWHiOJaum1E2zoH1W6jC8MSx8mWm0+nOro3I8O2fPHZvde2tbLusv8l13dK2Xf7z4OfnLsPah2WfmWz/OI4pjuO8XVuGtWezviqRav/ZbKbtm+Pb6tM0XdvzDMeRbkyEyGSMhKjKPCZV576scuwqbfEm40l4VdrsdWNZeCbjSZhdvXcYDwMAAABHrcr6bybj1BnT8YxE1eb60I21Z6o8211lXjOT5yaIytfNkqkyF7/p57VLn9VxVaX+UmWdTdM6Q5X6apU58UzXEjR5ho0xedaCqVJvN11DyeR5EaZKHda0blyl3ohnwAEAAAAAAAAAAAAAAAAAAAAAgKja2MOjOhaOc3THwnGO7ljbdpxVrjcLi1t2PCf2x/7Yf/H9MecoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWl6wsy7JNXwVst7/4i7+gv//7v6fnn3+eLMva9OUAAKzFbbfdRn/1V39FH//4xzd9KQCwReI4pscee4y+9rWv0Te+8Q367//+b8qyjN7ylrfQxYsX6dKlS3Tp0iW66667Nn2pADvvZz/7GT3yyCP02GOP0aOPPko//vGPybIs+pVf+RX6tV/7Nfrwhz9MDz74ILmuu+lLBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANiow8NDiqKo0j6z2YzG43GlfdI0pcFgUGkfIqKDgwNKkqTSPpPJhKbTaaV94jim4XA493oURcr7MxgMKMsyiqKI4jg2OtdgMDC6vjiO82NGUUSz2UwaruweZVk29zklSaK9n9PplKIoojRNtddIdOuzDcNQ+/7TNC0ck923snCq6c75fUynRY/j2DgsrJ9lWdI5ystet22bbNs2OqZt2+Q4jvG12LZNQRAYh+WP7bqu9Locx5HOeWhZFvm+Pxfe8zztNXieR0EQGIXlr9P3farX60bHF49dq9Wk99T3/bn3wjiOUzin7/vG97rRaFCj0TAOz47tui41m01t+Ha7Pfdda7VaC81T6Xme0TnhZFmkLLLMfmX7pmlKh4eHyn2yLKPDw0OaTqfSckaaptJy33Q6pTAMKU1TmkwmynMlSVIIE4bhXDkgSRLpdfBhDg8PleWOOI4pDMPS11k5KEkSbRmYL4vJylBJkmjLQLrypOz4WZbNlV9MyptZlhmXSwFg9UzW4uHLkLpysazszF7nt8nKzeJrlmWR4ziFMp7jOMprcV03/1FxXZdqtVrpNbDzWZZFnueRbdulYRnf9/Nr9TyvtDzr+35pWbXZbJLruuR5Xl4elmk0GuT7PjUajcJrZfey0WhQs9kslFPDMNTm36r6jNhWEgRBfr1xHNNoNJLuy/JoWf1gMBhI6/a6dhpd24+uPanf70u3RVGkLKeMx2NlmWCZ90W0WFvTtgqCoPDdLdPpdJTfwVUcw/d92tvbUx6j3W4r6+smdatVHENX93Ndl1qt1tqP0Ww2lXV7x3Go3W4rjwG7T1cHVG1fZt91Hntbr2vZYw+Hw52tZ9VqNWW74LLbcYzNXKcubwZg1pl26rYf13Ov+33t7+/vZJ/mOtPPdafNmzr3Jt9XvV5XtskAAAAAgJyszD6dTqXjJmT7qPpiFtlHtU3VN5MkCR0cHJRuy7KM9vf3S7eprpNI3R+j6mdS9ROp7vO2UZW7VX0zqr4OVd+BZVnU7Xal19PtdqX9war+F1V/hmp8n6pOoupXUvWx2LZNnU6ndBsRUa/Xk25Tvf9lyOr5u/L6Nl7TIs81rJvs+7wrr2/jNS06XvckEeNIWZzZpjCrOu5oNCod+7lO/Fh4Vq7xfZ9c1y2Uc8RnA8TnCuI4Jtu28zBRFFGWZfkYrTAM8+PZtj33TEwYhnlelaYpzWaz/H+TsbXLqNfreZ5uWdZc/i/GWbGfSsxn+TxZzL/F8oxY9hHLCWK5SSxjieUR8dr39vaU48Z2DR9H+LIx/zycWIbny+X8/nz9QXyejh/3xe/Pl9X5/cU6Bb//Kvva+e+D+F3iv3f8d1bMi/jvq/j94r/b4neRP6ZYZuW/d+J18d9BXXkWThY2BpKvr7M4ysdjPq6x+MjHWT5esrgXhmE+7pTFQX5cJZ//ll3HIvi4xuISH1f4uMDiKx8HWb2Uj0N8Gs/iLh+P+DyEPz9/Lt14QwCGxQv+d7/fn3tt0d/sWLrx0SL+u83+Xvdv1NdONvZ9ZT/8d9jkdbZNplarUa/XK/yw75/uNfb6utr5joPPfOYzdOXKFfqDP/gDuvvuu+e2Hx4e0vPPP08vvvgivfDCC3Tt2jX6yU9+Qv/wD/9gfA7HcSgIAvrd3/1duuuuu+j//b//R//xH/9Bo9GIXve619HFixfp0qVLdOnSJXr729+OfBhgSQcHB/T444/TY489Ro8++ih973vfo+l0SnfccQc99NBD9IY3vIG++c1v0ne+8x3yPM+obd22bbr//vvpQx/6EJ0+fZrOnTtHp0+fpjvuuINuv/32uXJAGIb0la98hb785S/T3/zN39Cdd965rre78/i8sUoeyr9248YNaTsKnzfK8krko7CoVdR7yn6rjq16PlS0jvoPH1/438etTRlOJj4OsvZBvs2Rbz/k+w1YvOTb/Pm+CL4vn7VF8u2KfLsHa8vk2yUXma9QxPIyvh2Rbz9h7Rr8GBq+HZFvc2TtmHybI99mydr++e0sjeDPj3RjN4l9Y/wYOP67zscn/vuu6o8z7U+TndO0D3BZfL8rH0/EMWh8/xn/fVf12/HlTr690fScfNs+H29N5kMAOEnEMTdif5+4nU+rxDlZ+PIB0fz4HT7NEtPQdZ1nlcRxA3zaJKZB4lgBMa/n0zgx/dvUeXbJUYxlPap9tvn8VercR2mVY1wX2Wdbj7Xq86vGSZQ9NyLODyZ+f8Rx3WKft1jXE/OjsnnAxPRefO5EzB/E77uYn4h506rLzjLtdrswT+je3l5hXGW9XifLsgrjUvmxjZ7nzc0dyI+NZONPeeyYRLfuPX88y7IKYyknk0lhOz8Gls2Lyl8vq08T3fqcVXnyMvPK6cYJ7+o8C7q5s1Xt87p5ylRtD8dhm+rerWMbrJ7JHNqbnHtmkWssW2ek3+8X8kB+rmqiW2knnyey5wMYMf9i5+HTvOl0Wsh3WXstH75sDm/+b/G6+XydrfkhprO7mO6qsPlyxXSX/c/WXrBtuxCGn9fX932q1Wpzc3uxvDkIAqrVanP96+y82zA/2S7MoabbjvR8t8jWeBKZjqM1KReajn83fVZNVc5lytLzMibPyJrWXUz72Eye3TFdK8z0WX6TeZ1VcxgcNybzQprMU0ykfl6eSD93mMnzS7p+zlXMy2wyP/Qq5ste9n7p5mggQr8wrMZkMqHDw0Nt/jWdTufqMGw9IPE1Xb76yiuvGOW9/PHjOJbuM5vNpPnqbDajJElK1x8qE4ahdl0H9qx1WV2Iz/fYmkO6tQ5ns1lhP1lbOr+eUZZleTj+2GxcjAzbT3dN/DkBjoJqvUgxjO55EHYcvk9Ulq+zdW7Euji/bg1/PNm5+XUibdvW5s+sbdx03tV6vW40NoXNRUFEpW0I/PWKdVu27iTPsizpPEy2bRe2NZtN7We4t7dHzWbTqPzieR51u11tO4Bt23m/tUn5CQAAAAAAAAAAtpNJH65J37Jpn7esL571ExDdGr+sa0tnYcIwlLapD4dDadt9GIaUJAmNRiNtP/d4PM7D8HPI8iaTibJtP4oimk6n2vZ/se+i7NpM+l7E45SJ43jr5vteFdb+XDY+jilbq10Mb9KGbvqsBj+3MPqBzHU6HeVnIG5b5Bkr3RgD0SLru637HIu001cdj7fI3LlHcY6q4zcWWQ9ct8a4yHQ8EAAAAMCiTJ6LWib8UZwD72E7znEU72FXnxFetSr1VdOw6zjmLp2/Stjjen6stwEAAAAAAAAAAAAAAAAAAAAAPNM5Zk2sauyXyXy8JhYZv1bGdB5hHdxrPdxrvW2713C0VrX+5iqfZav6HKTMqsY3rmruZ9xrvW2618vem2X2X3ZOzUWekQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Jr5kZVmWbfoqYLv94Ac/oPvvv5+++93v0rve9a5NXw4AwFrce++99NGPfpT+8i//ctOXAgAb9vLLL9PXv/51+trXvkbf+MY3aH9/n+6++2760Ic+RB/4wAfo4sWLdNttt236MgGOvRs3btDjjz9O3/rWt+jrX/86/c///A91u1369V//dXr44Yfpgx/8IL32ta/d9GUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCWCMOQRqNRpX2yLKP9/X2jsIeHh5QkSf53HMfSsHEc02QyKbw2m81oOp2Whh+NRlQ2ZXySJHPvKYoiCsNQea2j0YjSNCUiovF4rAzLX99kMlG+L16WZTQajWg2mxmFj+M4v39pmirfQ5qmFEVR6bYoivL3xh9bfK3seuM4zn+bSpIk308ny7LCdWRZptwvTVPp9rLXsazA5jmOU/q6ZVlkWZZ0P8uy8n11YUW1Ws04vG3bZNt2fq2e5ynDu65rfE7btqXh+eP5vp//7ziOdh+m0WiQZVnk+37+Hkx4nkfdbrfSPbUsi2q1GrXbbeP9+PcWBAHV63XtPkEQzL3/Xq9nfJ28Wq1mdM4yi56TabVaxp9jGc/zqNlsLnUNcItpWWc6nc6VQ8qMx2OjfPzw8FCaL/MODg4oSRJK01R5flXZKwzDPF8fDofac8ZxnN+T2WwmzSujKJKWw/hyx2w205aziG7dY1a2UZVBptNpXv4R8a9PJhNtWYboF+U6XfnCtHx2HOjyVXavVOH4+2lZllGZqyzcMmU1lPNgEablShZGFb5sG1+25I8j29e2bXIcx6gsx8L6vi89rm3bhW1i+dbzvLycnWXZXHrrum4e3nVdSpKEsiyTlms9z9OWeaIoyt9jWXhVXZZdfxRFyvMkSUJhGCrL0mX5j+u6eZ1DlxdblqWsj7Jz8OUO8fvgOA5NJhPp+7Vtm7Iso8FgID0H0a32C137gO4Yu6TZbCrraY7jULvdVh5jb2+vUO8S2bZNnU5n7cdoNBoUBIEyTBAE1Gg0lGGIyKhOZ1onWuWxTOpS9XqdarWaMoxlWdTtdrXHgvUaDofSNkFdWqOrY7G6UJkkSejg4EC672QykdZVTK6NSJ+W6q6BSH1/iG7lgYeHh8pjDAYDZb1mNptp26r7/b5yu+5+7RJd+mGSdujSc5N8RZc3mbTrtNttabspkVl+oEu/V3G/TNJs03Yskzxi2TY12E26fkddeqprr1Oltbr0XpcO69oAVWl0HMfKtjxd+q3KS3X3VNdmqssndfnXtnJdl1qtlnS7Ls1TpVG6NNX3fdrb25Nu1+VPnU5H2nagy7t0ZXldvqZLv03yAZP6ksm5iNT3AgAAAOAkUtUdjsO2bbse1TbT8STbQFVPWHTbuo67TdvWddwgCEq/O7L6u6xNQdbOoWonkLVdyOr+svYIWRuJrI1BFpdkfQuyeyFrN9K1u2yCrM1X1magqm/L2igW2UfVXiJrM1hkH1X7haxdZJF9TNsgtokYD8viR1kcK4un4rHK0oWy+FR2zrL4W5YGLHrOsviua5dcBzbOmR8Lwo8lYc81sPE2/HMPnudRmqaFz8G27cI9EseZsPGTrH8nDMO1trX6vp+3ebJzBkFAQRDkY4z48d22bVO9Xp/Ls8R8TPf/uvYxCaNraz0KfLmQ//6L8WN/fz//fvB9z3yc5PcX+8H5/fn4I+b9Yhzn460YF/ljrgo/VkZsSxfb5fk2YvGz5ftGxXyV73sV80M+DxTzMD7fEvMd/ru0i/kL6LH8lY8zfJxg+R5ftuTjN4tLfH8ii8t8fOfjIItjfDm27DqWweIR/33n4wwfJ/n4weIY/33ny6p8fOXjDuu34eO37NzbkEbD0WHxgH3fWVxiv9l29pvlcywu8HGCxTf2m9/Oxtyy/auUrdj3mv3m/67X6/n3l/1mcYL9ZnkO+82+++w3y1tYvEJ+crxMp1M6ODigg4MDGgwGtL+/TwcHBzQcDmk4HOavDwaD/H+2rd/v56/J2hM9z6NWq0Xdbpc6nQ61Wi1qtVrUbrep1WpRr9cr/N9qtajT6VC32y2EPY7PJr73ve+l73znO2RZFl26dIk+8YlP0Ec+8hHlmLNvf/vb9L73vc/4HPyzT41Ggz7ykY/QQw89RJcuXaJ77rln6fcAAGqz2Yy+973v0SOPPELf/OY36Vvf+la+zfQZRiKi973vffT4448rw1y9epU+//nP02c/+1l69dVXKcsy+pd/+Rd6+OGHl3kLWycMQxoOh3mexedXw+Ewz8fY/+w3n2cNh0PpmENWzmF5Fp8/9Xq9/H/+d7fbpXa7XfhRje2D44HVu1ldmrV9ifUGWT2BaL5ewOoBrH7B6h2svl213VlWnufrvazuzerSrLzP2qhYvYDVF1g9gr3OwrH9l53TAmAd+Hbksr/59i++TY1v62Zh+bYwvn2Nn2ODtX3zbW18/xiL86voB2ZxkY/XfLsy337G4jfffsy3d/HtZGXtcnybGov7svY3tJ1tB7FPhf9fta1K2E2cY1l8n42qr87k70X2WWR/k2e5AXZNWdyukm7s2jFUz80tq8p4hnWFXWZfNicJw/owiNR5gOo5SFUfi2yMoeq5TNWzi6prVNXhVN8J2TWq5htQPbOqmiNhHeMqVkE1dlD2LJ7sWUpVn5ZsfKDq2UnZs/CLnF82DnKV51eNW9y2Z+DLvsdl49nFOF4Wf9n3PgzDPK0Q544Ow5Bu3rxZ2I+fyzCOY4rjmKbT6Vx6w9Igfl5l/tntJElK5zFkcxHy4/DEZ77ZvutkWdbcd5/9z8YYsromw+b2YvdenBPMtm1K07SQtolxlY1b4a+DYfNO7qJ1jeXHsVd/bN3z57tON2cQkdlzQibzApm0a5mOHzMZH2MyD65J+4HJPL4m8zMR6edGIjKrB5i0+6veG8tPptPpsZiLSZy3SCyrlvWvHtU8IY7jFOaUF+eHZNvZPI2u685tZ2P42eviHJbsf1au8zyv0M7KnhWo1Wr5HJj8dt/3Cz/sNb5difX1sPKmuJ2NM9ONC9PNkYE24s0xbU9dZTicc7PHWvU5jwOTOUZN5yFdZTicc7PHIsIcTyLT9SZ4i84NbbpWRhRFhXDD4VBa3suyrLRNNEmS0tdVa0Sw7axsHsex8fic4XBYKX1la1qo9mFrYoltKVEUldb7WHuT7P3x9UDWvqP77Nnx2HWYtiObPl/KwrDjqj5nGd0aYLr9AVbFcRzjNSL4dle2T9l+ruvmbbBl21n9lNVNxfZakW3b1Gw2lfMFM2wckWrNCKJb+S9/PM/zSo8v1jsZtlYYf42qeS2JbtVZbdumVqtldL97vZ72mES3xk+x96MKr5v3Uzy3iW3rqwEAAAAAAAAAOAkWXZemyrhrNoZVt3ZnHMelfShif0eWZUbrl8dxTK+88orRdbI+C7afbFyZqt8kiqK8z6HK2tmmz1eI/Q5RFJV+dmyONBk2Hxp7plOHzammu0ZZ/wx/jWXr6pZZ1/MmcDTEtZUZXVu2OP6rDJtHjxcEwVzbskkfgG5tQXZN4nHFZzt0Y3GbzSY1Gg2jtnx2vKpzSpm8F55ufa1NnaPqOAbT9YB5Juv5LnsOAAAAAJVF1mlYZKxi1fp+1esyed6Kt43vweS5Kt5RvIeqa2IdxXtY57wQx0nVOlPVeXOq1rFM1rIXrfs9VK3vHsV70K1tLar6Hqo8w2s6xq7KNWB+JgAAAAAAAAAAAAAAAAAAgJNpkTn1dNYxjmjR59pU1rHWiMm821WYzlNexaJzIqqYzktexSrWJxSp1qVZVNWxeTqr+l6uKm6vaj7eVd8nOBqrelaqyhx0Oqta67fqGEKZVY29w73Ww73WW9W9xhoJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc75kZVmWbfoqYPu96U1vot/6rd+iT37yk5u+FACAtXjooYfozW9+M332s5/d9KUAwAbcvHmTvvjFL9IXv/hFeuKJJ8jzPPrABz5ADz/8MD388MP0pje9adOXCHDiPfvss/TVr36VvvrVr9IjjzxCURTRe97zHvrYxz5Gv/M7v0OnTp3a9CUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbIX9/X0yXYZgOp3SZDLRhpnNZvmxTQ0GAxoOh0Zh0zQthA3DkKIokoafTCal26Momns9TVMaj8faa4iiiOI4pul0SnEcV7ruJEmMwk+nU0rTNP8/SRLpvkmSUBiG0vPyxyEims1mRp97mqYUx7HxeyS69XmI5zPZB+AouK5Lrusah7csa25/z/Ok4W3b1h7T8zzyfT//33Ec4+shIvJ9nxqNRqV9LMsqnCcIAgqCQLmP4zjSa5Pt7/v+3D2TqdVq+c8iarUa1ev1hfZdxf4n6RriOKbRaKQ8Rq1WozAMjfLQyWSSlxWIiOr1emm8Ojw8VObvzMHBgVHealLmSdOUBoOB9lhxHBuVW8IwVN47xqSMRUQ0Go2M8swoiujw8FAbjg+bZZn2/kRRNPd+ZPtEUWT0fTgJ+HxHd4/FdLcsPHvNtu25NJf/HPl9LctShuVZllV6DBVZuKrLnWF5NFiGrgzCf7fFfcriSBnbtvNjiOEty8rLgnw8LQsri3uO4+RxW1WnYu+FP47runNpiK5eJl6Hbdtz5dmyuiB/v/j6Zlm6RER5fq4qK8dxrLy37Fy6soFlWRSG4bFPT0zK87ZtU6vV0h6rXq8X6if8/vx3uN1ua4+1t7eXl+tc1y39zB3HMT5W2XUtcqxms6msxxHdul6T+9VqtbR1Ss/zqNlsao/Vbre19cFVHgv0JpMJTafThbev4hhHcY7jdAyTc5jWGXeRSZ3+KMMc9/Nt4zU1Gg1tmQA2Y53p27rTzk2de5PvazweF9orj4tdTdt2Mcw2XpNJPQgAAABgHVR92qpy+Ww2k/Yvq/q/VX33uv7/fr8v3TYYDKT9LMPhUDqW7qjff5IkdHBwULoty7JK4zc3ybIs6na70u3dblfal9fpdKR9ULq2/3q9rhy3pGp7t22bOp2OdN8gCJTju3Rl9l6vJ92m6zsQ31eapoXvUKvVIsdxKMuyufhjWRa1Wi0aDAal/W3T6bT0umXxQjb2R1YXl8UT1fdZFbdk8XyRfVRje6qMwz5qsjZE1XdYto8qrsri0yL7EMnjgKpOvMg+svRFFYcX2aeqsr4N8btZls+V5Rll392y/KosHovf7WXOWRbvDw4OCmlEmqZ0cHBQGLckpmFHxfO8/HNm18P6ifnxGiyfYJ8XG0+RJMncvTuK/irLsqjRaBS+o41GI79O27bnxhu4rjvX795utwv99UEQFMYDlMVtMW/zfZ/29vYK11Z1H6L5uC2OJTDtU6+KzyvEfMN026qOs+i2dbV98+mqmMZucluVsCZjUmBz2PdY9l2v8veq9zMd264i+56W/V0l7Cr2I1LXRWD7id/hdf+uGifE76jq+7uq3xhXt70mkwn1+/38h323+Ndkr7PXXnrpJWkbXq1Wo16vR71eL/9OsP9lr4mv/3/27j3mlqq+G/hv7vv+PMfjDURqGxKr2DTE6h8gqZcirxotakSt90sqsVilLVK1hgPGRo02sZK2qA1SjTWCVGjUJqaAILUt0kQDx8RSo3ghVctz25e5z/vHyRrXrFkzs2b2zN77ec73kxCes/daa2bPrFmzbrPmMY95zMaMuT71qU+l733ve0R0qh0SxzE96lGPore+9a309re/nc4+++xcnJtvvpkuvfTSwj4L0zQzbZetrS16xjOeQa985SvpjW98Y63nLwGgfQ8//DB96lOfoltvvZXuv//+tC+H9YcXlX9nn302/ehHP8p9Hscx3X777fR3f/c5dxc5AAAgAElEQVR39OUvf5l0XU/v45qm0ec//3l61ate1dGvqU/1nlB2rygbB1K5L1TdKx73uMehnnHI1K3vNokj/r9sXFFmFXVk8f/oJ4EutdG/s4q/V9Hn02bfTp208LxBe/i6hTjHgx/bE+ex8ONy4ri3OKbGz1URx+D4fCqO2YljBfwYX1k6beL7FcVxU75/RpzHwd+HxLEksZ+fnx8ijg/xY07iWDi/ff6a4MelquaAAKyLOGYvXsNiOSKbSye2jdpIQ6zntpGGynOibRD7jMV7pW3bmbks4vP1YRjSaDTKpNHr9cg0zfT3mKaZKb/iOM7dj4fDYbomQhiG5DhOpj+O9d2x+4KmaZk0F4tFbqyd9Rvu7+9L5+OUzUMsm79YNu5c1uYpmk9VNg9MdS2ndSuas1g2T6psLmPZnKOy+VVlcxDL5lUWjQeWrdtQtK2yORtF+1A0l6vsfryOZ6RU5uBW1a2q1h2r2sZ0OqXpdJpeZ2zNU95sNsvNI14sFpnrb39/P3cdh2GY7vt8PqckSSgIgtz8pvl8npvfxf87DEPyfT8Xj4Vh/0+SJBcmiqJcGSLOuWLzx04njuMUljG6rqdlAr/GESOu42cYRmYe2WQyydxv+DVlDMOg7e3twj7PqucZl5lzXZV22Rovy87nLku7an57m3NG26Ky3mHZ8we8sj52RmUdD5U1E1XWX1RZU1F1/UiVed8qfbsq8/PK6lmMSh1I9dmQTZ7TvqyqZz+ITtW5xDmoYh41DCNX5sjW6xa3JQsjlh9JkuTyjWzdOfGakK0FKa4XztYF58nuwSprmbbFsqzcsRwMBmSaZvq7DcPI1RdZvyVva2src6xGo1HuXIpltqz+KusPFeu/svJbvI+J9VzZ/absOaemVMuxwxhWpTwkUit/Vberur6vyv1M9f6p2r9R9twio9pGPqprpYhkzxnIqLQfq+p5jGp9T2VNQtU+aNW1TVTmRaquz9jmNlXXcVS5rxOV92/U3aaqpv2UTeKtclt14y0WC4rjmBaLRWUZI3vHi+u60nhxHJem53le5nuVd6j4vp/2s6o+t8XeQSPr14njOLdNVn+TvadFDC+Lz++buGZ42f1AfB+NSh8J61up0y5g4Y9qWwKONnHN5Cqyd67I1r/m2zSy+x9bP1z2/hqxXsDH5/fXsqzMGHfRPU/XdTIMI30vjcrvtG2b+v1+rWcuHcdJx7xU+uMdx0nrELZtV9aHVOscdcNuYng8wwIAAAAAAAAAy1pm/scy44d13nkqc9T2O0kSpXctsfENld/Oz9MMw7BwTFs2v1I0nU6l80mK8PNV2NhK0bbLxiTYeI/q/E5x/mjZXDKVsXvZWEzZttl+YhxkNcr6sPnvit5xKYujsu6J+J52ovzcLpX0+O/5dSjLsLGBque0Zd9blpXZH8dxKrfJ+vPL+vKL5iL3+/30OPV6vcrx+F6vR4Zh0HA4LJ1fXHRMJ5NJuu5lnWcBmqx/1vTZwKZzDlTnsQAAAAAwmzxfcNl4h2EfEW9z4h3ld0p3YdPmRWGfugm/ifvU5DdgPXMAAAAAAAAAAAAAAAAAgMOv7nvWVHQxX0RlLce6uljPV2Vt5zrqrP+pSnWdzTq6eNfEss+Pyais412X6rqrdaiuq1pHF++F6WJdVJV1zeHoaXt9UaLy96k01cWzRV2886DJXLAqquvJqlBdN1dFW3PY2lpDrq33RraVL9q8to7qsQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIiuklLkiRZ917A5vvTP/1T+ud//mf6/ve/v+5dAQDoxB/8wR/QYrGgf/qnf1r3rgDAigRBQF/96lfpxhtvpK985SvkOA69/OUvp0suuYR+7/d+j4bD4bp3EQAKTKdT+vrXv05f/vKX6ZZbbqEgCOhFL3oRveENb6AXvOAFZFnWuncRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqCMOQDg4OasVxXZcWi0WtOLPZjHzfrxVnb2+P4jhWDh/HMe3t7WU+832fgiAojOP7Ps3n89znSZIU/sbFYlH6W4IgoDAMM5/NZjOKoqhs91NRFFEQBDSdTpXC8/HYbyn7zTzf96W/JY7jwmPveV7lb0mSJBPGdV2q85qWsuNfhB03UKdpGmmaVhmOP3cq4WXqXMvQHU3TaDAY1I7D6/f7ZJqmUjxZfjEMo3I9esMwSr8fDofSfVDZLyIiy7Iy+2BZVu28PZlMKvezjG3bS6/Lv729ndvvKIqU77d1fncUReS6bu7zyWSiHFbGMIxa90fxnq1pGvX7faWwRXRdV97fKIpy92dd16VrtIdhqHwv1zRNOWyduhsfNkmS0nsx21+V+3UYhjSbzZT24agzDIN0XU//XXb8NE1Lw8rCyT7TdV35HhrHcek1zaevWi87ne/fquUjC7fKVxLi9YfQRNN6vJiGSv47HfKoruuldUF2vE3TzB17WT3ZsiyluqWu62Tbdno/4e8tIsdxCs+7ZVlp3dkwDHIcp3LbRKfaApqmkWmapXVv0zSp1+uVpmWaJlmWRYPBoPA3iPvMp2lZFtm2LQ07HA6VjudgMKBjx45VhiMiGo/Huf20bTv3O23bVm5zTSYTOn78uFLYTeV5XmW9e3d3t7JcUOk3VNmWrG9QRqXPcT6fk+d5pWF836+sFydJQru7u5X7dHBwkOtPFC0Wi8q2i2p7YWdnpzLMdDqt7Gtr0k98mPR6PWmbk2eaJo3H48q0ZG140Wg0qnwHmOM4SuWMZVk0Go0qwxGdKjeLylSRyu/ocvuq5fa6t99Gv89RoTLWoXIfUCkDVcpllXJS9X6iUpaq3HNU7gEqx0ilTN7EY3RYbW1tVdZjx+NxZZ+1Shmkcj9SKXdU7lm6rtPW1lZpGCK18rCtYzQYDCrbLJt4jAAAAOD0UtYHtr+/XzgmXtb/UtY/VVb/L6v3l9X3oyii/f196XdE1e2yst9Z1Yao6vur6qcqa3s0mYO3Kar6isrq5VV9I1X17LL6vGEY0rkiTFX9vKwdoGkabW9vF8Zl9fqiOaGDwYCSJJG2oT3PKxw7YfMhxf12XTe9Dm3bzrTfFotF5hrt9Xqk63rptVL03SbHIdrs9n1RfivLh6dLnCbpua5LmqZlxr9c1yXXddP5erK80vVnKmF830/3lejUfS1JkvQ6TpIk7afzPI88z8v023meR77vp/fzqrnnXVOZ27uqOT18ftA0jWzbTsdi2dixGEbsX+n3+5kwhmHQYDAgwzDSe8JoNMqMRff7/bTcZf/m7222bdPx48cz9yvZPUo2riK7D4rzQavuSXweLMuzVfm5jXSafqcyHtqEWMbU+fcycdv+t/idSj8lNMPqGnx7hW8j8HmVH1Nh7TC+vcHX//n8zrcp2NgNP5ZftO0mz0CJ+LzD14XZuCvf58yXPWI5xNf/+TFbvu7O/82Xa/x2+b/5NkedMVPoFsu7bf+/LG2VuT08Vkau6v8og1dnsVjQzs4O7ezspHmE/bvoM/HzX/7yl4V1af7cHjt2LPOf6ufHjx+vlR9+/vOfk+d59MQnPjH97KyzzqKf/vSnubCmaVIURfT//t//oz/5kz+h5z3veWl5+4lPfIKuuOKKtP/LsiwKgiAty+M4pqc85Sn0+te/nl796lfT2WefXefQA8AKxXFM//7v/06f/vSn6dZbb6VHHnkkfbaNzftm5ZjjOJk21e7uLn3xi1+kj3zkI/Q///M/ZJpmbs6PZVl03XXX0R/+4R+mn/3v//4vPe5xj6u1n/z9uqzcLfv8kUceKW33qZbHZWW06nxC6EaTut+y/1eZWyxadf1R7IsCEPH9B0V/82Ou/N98v0HR3/xYLv93Ub9dUZ9dW/13fJuK/5vvC+D/5vsLiv4u6mvg+yOK/mb9F3zfB+Zd54lt9Tb/Lc4p4PvcxHkDYj7kxw3FcX5+zkBVOm3h+8PEMXI+z4rzPsV7BV+nEfMjn8fFcQixz4Lvw1smHYC2yeblyOYeya5VsTwR+83FtGXzj8Q0xDqluC/LppEkSa11PpbhOA5ZlpXumzh2miRJbmy+1+tlxq/5Z30Z8dlYlmYQBBRFUW6dGNM0KY7j9Jjoup5Jkx8L5+MQ/WqsnN2fGc/zcnV/VuaWzTFp0mZYtbbnYHTx3absRxf7yOafVD2TVPWsVdWcQ5Xnnpbdhsqzw+vaRhzHad3M931aLBbS9QTZZ2XrErF1AMVt8OHCMFx6XPWoENd+0HVd+m+xrGefsfJZFsZxnNyYLh+HzY/kPyM6VeY7jpO5R7F1Hhi2PgL/mWVZmXagpmnS9R36/X5uvYThcJjeV5aZr1r1nFfTfiDV8VGV5z5V2jsqaySoPNOpumaByjOtKvfstp7prZqjzqjMVS2br8609SzuYaX67KNK/35bz36qrI2g8lxn1Zw+puq51iAI0ro84/t+7noX68gsHH/tmKZJuq7n8hyrZ7N0er1e5jM+HCtDxLm7Ytkizntl4cTrNAiCXFzV+bsq5V7bHMdJ645JkpDjOLk8Jd7H2D2RLw9k8diaQGEYUhRFuecBWBg+XtGaULJ4/HML/H1TFs913bQ9J/42Mb+qlL8Im6VyfzjqVJ6zbzvcYdimbG14hi9/ZNhzRrLypSg9VlYtFgtpnhTLHJnpdJrW4auI6cnqirZtV65jpLp2iIxqXU9mmWf+qurYrOyXEe+fURQpP5vB6v+qZU4QBGna8/m8dDusz5DvOyQiab2VhZOlQSRfn1+lDSTrRwSAPP6ZKpV5U2xOGgtbFUf2DGzRtnRdl9Yp+e/FtKvuMax/Sdf1wvX/ZWzbpu3tbaX1P9mzY5PJpPJ4sH4sXddLn2smytbL66w/R6Rez2DqjvGqtLF5deblYR0kAAAAAAAAgO7UfX9ukTbW71qmP5/X1pp8KvNhqjR5dzKv7hoJvGWecdjE/Wbzp8vw7xpka3OpYGMXBwcHyu+qEsPJ5kzw4cvUeQ8mtIP1SdfJI6cbwzBya5XJFL3XlMeOt+pcSPF9ZUX98vw6cUXbZc8yqKw3xN4Ty96ZVkb2DjI2psHr9XqVfeemadJoNFI6Prqup2MDsnlCvKIxCvH9zKPRSKl///jx40rvK6o7fgEAAACbadk28bLxVZ7j6DJ+076Fpu3ppttr+jubxmt6Xps+31JnrjWvaZ9I03VZD8Mzx4dJ02fpmq5n0XSNWpX3sMrUnWO1bDxxLXJVKu/jk2m6VpvqO1N5qs9gieqec9X36TJV7zeRaXq8AQAAAAAAAAAAAAAAAEBN12P7Xa9v2PUadMs8A6KijWeOiqiuYdtUW886FVlmfTMVbT1jVWTZeVpVulhXt+mcpDJdvKemjXdMizDP6fTUxTMeXbx/q+4cHRV119tS0cU7A7t4l1MX725vOmeuTNN5cWWazpkr08X8rrbfi9p0Pl2ZLtZ9azK/DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA22k1akiTJuvcCNt83v/lNuvDCC+mBBx6gpz71qeveHQCA1l1xxRX0H//xH/Rv//Zv694VAOjYj370I/rrv/5r+uxnP0v/93//R895znPoDW94A73sZS+j4XC47t0DgJqm0yndcsstdOONN9Kdd95Jx48fp9e//vX0x3/8x3T22Weve/cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASs3nc/I8r1ac/f19iqJIOXySJLS7u1trG0EQ0HQ6rRVnsViQ67q14kynUwqCoFac3d1dqvPKnSiKaH9/v9Y2ZHFUz1PRsY6iiOI4Low3nU4rz6vsWLmuq3wM4zhO98H3ffJ9Xykez/f92ueZbXuxWNSOB+UMwyBd12vHaxKHiEjTtDRuHMe1rkXZNsMwVNpmkTAMS68rWB3TNGkwGCiHl53X0WiknDd1Xc+lYdu2dB+SJJHmE8Mwcp+Nx2PlPJUkSS4PO45DjuNIw6qU1Zqm0WAwqFWui2Ft2ybTNKXhfd+v/H26rlOv10vDq1ynTBiGFAQBWZaldC6jKJLeXzVNI8uycp/HcUzz+VyallgmmaZJmqbl6jNF+YFZLBZpOiycpmmFZZHruhRFkXJ5WPeYnq5k16eIP+Zl+U12vovOZ9172+mAv/eXYcdNVj6X4dOuOvZ10mXh65xPPnxVXpDtS1X5UgR1GTgs6l6DVXHL7q8iwzDSsGVxitLUdT2TBktTBYtr23bl/rI6mKwsNAwjrd8YhiHdvq7ruTLXNM00bK/Xk5bJfL2J344sHKvn8fr9ftnPyhkMBjSZTJTDm6ZJtm1LvxuPx7ljwerEdfR6vdLfUVaP5M3ncxqNRqVhFotFZX09CALSNK00n8VxTAcHB5X7tFgsCs8pM5/PK/t4VNoCqn2Iqn2Tqv1+dfouPc9TOpddbf+oGg6Hhdep6NixY0rhbNtWfjfkaDSqzOdEp8qH7e3tQ7F9x3GUy7J1b388Hhf2I/B0Xaetra3Wt78J9vb2KsvIg4ODyva8yniP67qV/eS+79NsNisNE4Zh5X0kjmPa29srDUNEtLOzUxnmdD9Gh5VKmb21tVXZ7lcpJwaDgbRflFdVZyNSK79N06TxeFwaRrXMUvn9ddIjOlXvrqpTMv1+X1pHl1G9XxARbW9vK7W36vwuAAAA6E5VPbmsPl41J6qqfl1Wj6/qM6mql89ms9I+q6P6uzZVVd2vqi1f1X9UVgetqsNX1Ysnk0lhX2scx4X7HQQB6bqea4f4vp/2Gw4Gg0x7h/+OiNK6vWyenWEY1Ov1yPM86TWcJElhP6rruhTHce53ua6bzsvTdT3TBiiam1k2Z7PNOJue98vanEftuyAIMvnUcRwyDCN3fnzfJ03TMteX53lpONu207a867qZ+JZlUZIkubzN5sjweZPPt47jkKZpFIYhTafT9PMoiigMw/R6iaIovT7YZ/zcVv4z/vd4npcZx0+SJDMPh30nhjuqDMPIlGFsnJAvj03TzM3jMk0zzTeMZVlkWVZmHNOyLLJtO92ObdvpvcA0zTQdlo/YthzHSfMdi+c4TiZ/DwYD6vf7mXxNRGm86XRKSZKQ4zik63rmvu/7fvq7gyCg2WxGg8EgnSfGXx/imBY//1ysE4j1D3EevThGJZaXYp2uyfx4VeK9VeyPEu/r4r1WvK+L/X9inxnfzyjWKQzDyIwdt70vkMXnada3z+ddvi7L51E+P7LrgO8f5/vT+b/5tPnw/N/itaQy5qCCzxt8/zOfh/i/+Xsln+/4v/n+Zz6v8n/z1xefv/m8z/9dZ/wOqrF2Ivs/y/Osjcf+z/I0+z+rq7L/szKZ/Z9dD+z//N91nm9h5579n51/Ph+wMpP9n/9e07RMfF3X0/YOy/Msz/J5UXWMHrL29vbo4OCADg4OaH9/nw4ODmhnZyf32d7eHu3t7aX/Zt/t7u6Wzo/p9/s0mUxoPB7T1tYWbW1tpf8ej8c0mUxoe3ubJpMJfe5zn6Nvfetb9Nu//dv0ile8gi655BI6//zzS8cpTdOkMAzpSU96El122WX01re+lT7xiU/QNddcQ5Zl0ROe8ASaz+f085//nH7jN36D3vjGN9LrXvc6etKTntTREQWAriRJQnfddRfdeOON9MUvfpFc16UzzjiD5vM5PfLII0R0qr1x8uRJuv766+kf/uEf0nZ2Ecdx6M///M/poosuoptvvpluueUW+vGPf0zXXnstDYfDTJm3s7OT/pv/f9nzu6PRKC3rxuNxWt6xf7P/Hzt2LPNvVmZub2/TeDxWHv+GcqwexNfT2fkrqleJ9Six3sTqSaxOxbbB6mAqc3JErL3H5j6w+g+r77P6Pavbs3oR+z+rz7P6O6svsXq7WEcjQj3qqBPbo/zYEN8mFvMrX77x7WW+70fsJ+LHtPg+IL4dzsfh/y5qcy+Dby/wfxe1dfn2cNHfRW1pvr1d9HdRW11lPtlhI45viv8W75+H/d9t4/v+xH5FMb/wZbjYx8iPHYp9pXyfkthvI47D8P2gy6QDwJONtbbxGT+OzeppjO/7NJ1OM5+5rkue51EYhun9kR8nZGazWa5/jI2N82vjiOPocRyT53m5cRB+HJOVJ67rrmzcjj0DKH7GPzcsPi+t63rmuWDx2UR2HMT5EJqmURAEtdZ9WpcmY9SbOlau+l0b6YlzQVh7hceuT9u2pfNeXNetfFarap2uZb/HNn5l0+e91MHG63l8WcvG+IvWPZCtHcHP2SA6VT7K1lrg+6Q0TcvM/1gVdp2ystkwjFzbw7btdP4E+639fj93DxiNRrm5E/z1bBhG5jkO9ntHo1Fm+71eL/McDJu3xuZZsPjD4TCzPU3TaDQaZY69ZVm5cqrf76fzbpjhcCidr6e6/t+6wh2GfeziN7c1jr6pVNtJKuEOY5hN3KeufxvrT2ZYXy3ri2ZtEiJK+6hFnuel4fh7tGwdTlbv4tsmsjYOX4dj7aEgCHLzIIMgyFy/URRJ19WUrZkZRZF0nrls7QPV9RDaxs8r5NeCkrWX+DoFux/J1v4Q6x6y+3/R2hpxHOfGtWTPc+q6TkEQZM5r2To10+kU6zVRvb4q27aVw/JzPsvmxLOwRc8CiGs0Fq3PKKO6hiERZea3Ep3Ko0XzN8WwoiAI0n0uWytHtr+y/C7D5tvyFouFNK6s/i+az+cURVHhWkZF+8DK7qpryTRN6bkQ6ziyNTllkiRJ7w1V+UvExjybrBPI7j11sd/V1Zxg+JVl1jbj47fRH3k6PItwOuPLVZV8J5avVety8uvFsfhl22LPTIj7VrQtNm5WVD7z2HN14jNqZfvO5myocBwnnbOhYjKZKK8Fpes6Pfaxj1W+txHVmycijldWqbOGCFH9McU6a38BAAAAAADA6aPJOwC7SAPpHK50NmlfkE41lbWeYf3E9X2I1McS2Hh9nfOcJAklSaL8nqii8TbZO1vqjM+x+dIYN8ni3+nHKxoH6PV6lWO+7Fxpmqbcj87S5scZqrYhWwewaJxZZXyfHxOps+5Kr9crXVeQ3zfVvnzVdbhV1/ZW7edXWSOdUR3HwNpLAACwSZZt+yA+4iN+8/hdrmUKxZquI4B4690W4rUfD21TAAAAAAAAAAAAAAA4yrpem7Tr8d6yd3W3oexdXW3oeg59l+s+Vr0LfVn8+2a6UPWe+GWJ731tW9W75pclvqe2bXXflVhXW8+5FDlK6zrD6onvP25b3XWE6qrz3EAT/HuDuiC+66VtXaybpPrsRx1dzIdReTamLvFd4m1QfeamjrbfCdfFO6G7KHu6Lm8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWnaTliRJsu69gM0XxzE94QlPoMsvv5ze9773rXt3AABa96EPfYg++clP0g9+8IN17woAdOTkyZN07bXX0pe+9CU644wz6LLLLqPXve519MQnPnHduwYALXnooYfos5/9LF1//fX08MMP06WXXkrvf//76Td/8zfXvWsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCBxWJBrusiXkvx1rHNTY8XxzFFUUSu65LnebW3N5/PabFY1I5HROR5XqPfOJ1OKY7jRtuE9hiGQaZpZj6r+8o4XdfJMIxM/DppiPHjOK6dN3RdJ13X039HUVQ7DU3TSNO0xvFZGozv+7WPJWwuy7LIsqz03yrnls8PYnjDMDLpycRxnEmjiGmaZJomhWEo/b5oX6MokoYVr0lGTL/qWmffs2tTJTy/T7Kw/HXKh697rRUdK1hOUX5FWZhnGIbS9S3GkSm6Vojy90cxjnhdsnjitvjwRWlpmka6rufCFF37SZJkrmlRHMeleYf/Xfz+Nbl/q8YT97VqHwFgvUzTlJaBRMX3LBld16nX6xV+L0urqHzr9/u5zzVNq31fcByH+v1+Jn4VTdOkddLhcJirl7I6lkq6URRRFEU0GAxybUteGIbS+qfIsiwyDEO5vhaGoTSspmk0GAzSfwdBoJxmEAQUBEH6b9u2C/OSGLYszSiKSo8R4/s++b5fGoadM8/zKsOWpSnLq6ppEhEdHByc1vfCXq+XXotthe0iTWz/8Gx/MBiQ4zhKacrs7OxUhtnb26us+06n08qybT6fV/ZDu65b2efs+z7NZrPSMGEY0sHBQWmYOI5pb2+vNAyR2jHa39+vvGet8hgFQUDT6bQ0DLPMmMtRYds2DYdDpbB1rrnxeKx0HyciOnbsmFI4wzBoMpkohXUcJ1O3KVPnd00mE+W65Pb2tlKapmnSeDxWClunLB0Oh2TbtlLYra2twvobr87vsiyLRqORUlgAAIDDpqoe2eX3SLv+9yptjU1XVQ9c9ns+TFHbzbKswvol6xuzbTvTNyz2cdq2nabheV6un8y2bdI0rbBfku2bbN5AEATk+346F0D2HVF+zo/v+7n8YRgGGYZBvu9L85VhGBQEQWGeC4KgMM+5rkuu60r7t1XavJugrG22yu983yfDMDLtqSAI0n4cwzBoNBoV9omL+ShJEnJdl3Rdz1wvruum8wyTJCHHccj3/TRdtj32fRiGad6O45hc16UwDDP5bj6fp/mZjVksFovc9Sfrp+fzM8tHcRxn8hzbfhAER6Y/mp+Xw4/Rs7YsG3u3LCtzfRmGkSv/dF3P9YWwMkNLM7YAACAASURBVI7PF47jpHOV2LYHg0G6zV6vl26THWe2n6wsZPlqOBzSYDCgOI7T65yNXfFliWma5Pt+Gl8ce1gsFuR5Xvq92Ocm9tPt7u5m5gbs7u6m30VRRPv7++m/xT41lX7IZYh9Edvb2+m5E/sfxHJA7HMQ+7dk/Rej0Sh3fvm+I1kcsX9LjKPrOm1tbZXGqdOXc5jw/cZ8PuP70/m/+bx5cHCQlm3833x+ns1maf7n63L833z9j7+H8n97nkfz+byV38z3YfJ/83mXz9f833yfIp9H+H5JPl+L+ZGP0+/30zJA7Ffk96tO/+xRx/JK1//nt6UytiJi5UXR/1XC1AnLh1HtHz6KFosF7ezsZP5j57Xs81/84hf08MMP02KxyNXXZHNNZFj9xTRN+v3f/31KkoRuv/12ms1m9JrXvIbe9KY30fnnn197ziQAbKb5fE633HILfepTn6K77rqLfuu3foue/OQn0/e+9z164IEHyLZtpblHlmXRcDjM1O2JTtWJt7e3aTQaUa/Xo2PHjmX+Y/eAss8e/ehHK48tni7q3P/bDqMyx0KkWleo+/+ytE/nesSmEtv/fHuMz3Pi3CK+DsvnP76NJfYl8O1Bvh3H9ymI85P4/eHbeHXm+qjg205iPwLfduL7C/g8L/ZFsDh8e43/m+8jKPqbT5P/u86ckVURx1Vk88zEOXWH/d9tE9vlR/3fsB5Vc0D5vjeR67o0m81yZW8YhjSbzTL3CHHcazqdkuu6ubqK67qZ8Q+iU/1zrNxnYyau6+bazeJYb5IkmW2yMRmxzhzHMfm+n+kXj+M487vZsxviNc8+4/fldH3mjY2FyPogxHEz1p/B9Ho96XNImqZRv9/PzMvkx3rYOJ5pmrlxHXafLJqnyd/nZb/Ftu3C8ziZTEjXdVosFrkwjuNk9td13TRvWZYl7etfLBak63rh/NNer5cZ2+PxY07z+TwTRvYclcp8Z5U+cZXxH5W6mcpcdbH+2DRM1Tz1ozIXvGhcnM+r4/GYDMMoLK8sy8rlR34NEn6clB/X5rdlWVbummZlKdsGqwfI8nYcx9J2ou/76X7w175sjgQry8X9Y2P3/HNd/PgrT/XZta7Zti2tNxU9Lynrm7FtW7qujKws1HU9TSOKIgrDMB3T5vFlN5tvIG5b07TcOiFsToWYlhhvsVhk7r2yZzl1XafpdKr07KLq3K82xwYPizpz+/lxzTKq9X3VZzBUx8xVnz2QjdMXUX1ORfUZkbLnM5IkSfNfr9crfb6aieO48ljrup72G8RxXHj/LepbWCwWaXk9HA4r84Dqs2a8uvMzu9oGP0csjuO0jsHKQx5/b2NYnUJW75C1KYIgkNaritbeCsMwV2cpWitMnAvGyNYgEdtAYnhZ2kC5tkjRugcsrK7ruWfL+TVjGFZXkt3n+c/iOJbWE9h2RIPBIC2nquYEOo5T2G8v1t/4eXFlWF5VHQ/g65RRFJVev2VrW4h9ErJjWySKIuXn/sXjXtbGKDpH7Pqcz+fpNVm1r+I1PZvNcI2ugEqe5/HnqM6YWJM+pqb9UqvcFmwOsZ+O/7yMbF21orJNDMOv8aMSxzTNzDVXtEajiJ+7rXrdsX7MqvUpibLt77JnZBjZ2jm2bUvbQ6Zplu4DH0/sey3C+i35/sQqtm3TeDxuNH+5ybznpnOlm8bDPAUAAAAAANhUbc1fQDqnXzqbtC9Ipxo/hx42nzgvUBU/jlPUH1gWR0bWH9lk3irre607riSOT6u880c2ti4S1/BRXUudx+aK1R3Hka0lU9R/zqiutc6P8TaZi8bPoYY8x3Go1+spj//y7xUQiee7bt9zV2tqI+3N3xfVuWUAAJtM5XkMVW21dfhnjZfR1rzwNo9RW8+kbtoxajKvt0hbx6iNtWPF5+2baLJ+VJvx0QexXnWeW+gifp1nRYosW+ddNr7qMyxdxV92jtGy8VWfU+kq/rJrAYjrdq46fp33qwAAAAAAAAAAAADA4dT2WtRVmqz33lSb47AqVr0W4yrHMrt+d5qobB3ftrU5p0HFqt/juuyYeR2rXn+wan3UNqms+9qmtua1lDkq68fCerQxn6LMsvM9qpS9q7cNXb/vQnxPaNvE94O2ret3iZatmd4G1fVfm1p2rkeVrt9rsexcmypdr3fU5fMNXZedAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsBY3aUmSJOveCzgc3va2t9F9991H3/72t9e9KwAArbvhhhvo8ssvp9lstu5dAYCW/exnP6P3vve99LnPfY7OPfdcuuqqq+gVr3gFWZa17l2T0jSNiqroZd+drnBMQCYIAvriF79IH/7wh+nkyZP0+te/nj74wQ/SGWecse5dAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFib2WxGvu83jh8EAU2n06X2YTqdUhAEjeNHUUT7+/tL7cOyxyGOY9rb21tqHxaLBbmuu1QaOzs7S8V3XZcWi8VSaezt7VEcx43j+76/9DuD9vf3KYqi9N9JktTapyAICvdBNa35fE5hGFaGK3rHRhRFeHfSBtF1nWzbVgpbdE4tyyJd12tvm+VlTdOWfr+OrutLv9eF34cgCGqnp+s6aZqW+zyOY6Vrhoik8UW+75deqypp8Pu2zD0CNpOmaUrXpGoel+WpJtfbMtco3tsEy2hyj9I0LZf3i8pXPn8W3QuqiPHK8ry4vSRJKEkS5e3yv43FFbdXlpb4XRzHyvXRovKEbb/ptR5FkfLvL9oGypnDT7yGmlyLYpyyfFE3fZZWk/3iLdMmhfXRNI16vV7h93xeq7rfVLW/+HtDGV3XybKsXF9A2faL8p/YpoyiSDmv8veRsvtoFEWZ/hDVNKt4nqcU7nRgWZZy/wBj2zY5jlOrbLNtu3A7pmmWbkeVYRjU7/dLrzsZx3Fy2zFNkwzDKIzT6/VqbUfTNNra2qJ+v19r33q93kbGWSwWZJqm0jGYTqdp2eQ4TmGcKIqk/fKyfBAEAc3n88Jt9nq9NF/N53Pla/7g4EC5L0e137pOX7/neaW/i1en/1/sWy6SJAnt7u4qpRmGIR0cHCiFrdNHv+y4xlFQpxwbjUbK/avb29tK5bau67S1taWUpm3bNBwOlcLW+V3j8bjw3iA6duyYUjjDMGgymSiFdRyHBoOBUtjBYKB8r5pMJqX3Fp7q72K2trZq9YPUOc8AAHC0Vc2PqapPV82l2N3dLe2rqEpfpd5ZtQ9V81ZU6uxVdeqqOq/K/Juq9khVe6FOfX7TVdWxDMOg0Wgk/Y71ZY3H41z9iO/nchwn008h9ivpup7WCeM4lp7/fr9PSZIUnrey+lkURRSGofR3hmGYzjmzbTtTjw+CIDMfTdf1tO7s+36uPaVpGpmmSb7vF15rURQVfsfiydoSnuctPSdsFcraArqu03g8znzG8omYz/g8oOs6DYdD6blPkiRt+7B8xfpNNU0j27YpjmNKkiQ9lyzvWZaVhhXzpKzvNYoi8n2fdF1P8xubpyLmWX577N+sfA7DMNe3XNTXqtpvsklk8yh0XSfDMDJ5m30m9lcbhkGGYWTaqSwsC8/Gp1gbncVnfYzsfLDvkyRJ09M0jZIkSdNLkoR83yfTNNNxAf4a1XWdoihK25dBEFAYhmRZFhmGkSkL2PbE+XriPWs+n2fyRxvzZ1XI2qZi21nst5Rd02IcsQ9CFkdsR4txTNPMlQ9iHPF+JYsj9sfU6UfoEj+flf+bP/d8PYz/m6878XUc/m+xXsL3pfJ/83VFfs41X7dqYy41j89T4jnjzxff78b3FYn5iY8zHA7T+gUfR8zrfF7i8wTf1ybGqdOvtInYuWZ1XlZHZ/mPzz8sLMsTLCzLn3xY1hZgYVneYWGb1pHZ+Wf5xbIsGo1GpGkabW9vE9GvziM77ywsn69YHx87f+x8s/zB5ycWtk7f6Kb4nd/5HbrvvvuWTofdE4lOXavvfve76Y/+6I/osY997NJpd4Xf5zrfna5wTEDm3nvvpQ9+8IN06623EtGpe2CdOVKy8MePH6dHHnmEvvSlL9FLX/rSVvd31cR7HF8vE++ZsjCs7sXuwSphxHtvXezeKLvfsboTu9eqhJHdY1kYdo9l9886Y6cgJ/Zjin2rfB1efE6O70MV+3X5eQBiHa1sG3yfqLhvfL8w38/cxvN7PL7OzuqFRJSpGxJl63FttztU2hDi/rTVhhDPj6y//aiGqRrfaIPY73HU/l13HsM6VZUdVeNZZeNIVW3TZcbqoiiiX/7yl7lt+75PURRRkiSZfhXP8zL5ms3Bkz0HH4ahtE+GPXfpeV66XXGshPVdy+YfJ0kiHVNjYVl/Nf85UzRec1jInlOSzZ/WNC3Xf83/m31vmmbazmLHyTTNTP8jGydi58EwDLIsK9f3wPq8+boU67NmBoOB9FkNy7Ko3++n13sQBGnfOUtHnHPs+z4FQVA6R4vVHYruZ6w/XTZWpWlaehx838+NsYpz8lXqDyrj1ip9mSrjxqp9WsuuvbCpZH3tIpW5b2L9qEjRPD2+bNva2qqce9nr9TJ5XGYwGKTjxGJ5FoYhxXFMg8Egsy3W38mw/Csru9kYEX8ts3EnHisX5vN5rr7j+35ubC2OY1osFmlZwr4Pw1A6dui6bi7dOI5z+6xpWjrOJdqUZz3EMoiVg7I6Dv/cJrsPy55T5cM3Wc/gsFN9ZoFvf5WpMxdWdR61anuKHxcqw//mouuG6FQbT3ZfFOtOsnkOPHafJSLledNEas89sj4aNsZTxLbtXFkku4+apll4DBeLRVoW6LpeOcbaZEyo7lpI69wGm2ciM5/PlZ6/4OvndcdfF4vFaf+MRx2sDKm7nkedZ+A35f5RdK8r6g/gx4r4No4sDf4zPqysrSmun1BWpvHXU9Fz5bLv2d+yuhx0i58bR1Qv/7O6m8pz12I8VbJ+jLrxV7WGz6aUHfArKmWgjFhfVUmH9f+UpSNjmmbmGhT7rWTYXFk+jsq2+P4pfn50Fcdx0rJC9Vl5XdfTejrfpq/Cnsfv9Xq1+r8Hg0E6B0mVruu0vb1d+3n5fr9Px48frxWHiOjMM8+sPdZa53lNXpNn4AEAAAAADqs21uVHuqtPt413GSDdYnXW11pnum2l11Y+XfZ9J4zqOmSwGdqah1l3HSuG78Nm8/ZVsbkTIsuyKtf1UlnPlPXTidgcHFX8mhNBEDRe83eZedtBEKTXZd2+R34uJ0+lX7EoLiP29TJ15+qzOTJ1yx7P8zLj1OKYkYzv+5Vlrtinzp5PrWvZ9zedzlTmCIpU5wOKmjxXoToniNek3xvH4ZQmx6Hu+ESd31J3bcZNWTsCYJN0sV5NnbWPVbW9jklXabbx3khRm+vUtdV30OY5buuZwLba4W0dozbz16Ydo676iqBbTeeMyKjO86/SpA4rU2dN8jJtHqM2+oiW/V3Lxq+zhr2M6jMmXcVv0nZpM/6y+anN/AgAAAAAAAAAALBp6rx3tgurWLOySBfjiXWs6n0mRbqa66xqHe/b7Wr+fJFV5u+21xKussqyo4v5BGXqvLu7DatcD3HV48tV70QEWIdlxz7rWuWa/6t+v3ad96u3oa35ESqWHaOva5XvWFr1+Pcq5gp3vY2ur+Ouz3/X72vreg39ps90AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLKbtCRJknXvBRwO//Iv/0IveMEL6Ac/+AH9+q//+rp3BwCgVV/96lfpRS96ER0cHNBoNFr37gBAC5Ikob/5m7+h9773vfToRz+aPvCBD9CrXvUq0nV93btWStM0Kqqil313usIxgTJxHNPnP/95ev/73087Ozv0oQ99iN72treRpmnr3jUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWzGYz8n2/cfw4jmlvb2+pfVgsFuS67lJp7OzsLBXfdV1aLBZLpbG3t0dxHDeO7/s+zWazpfZhf3+foihqHD8IAppOp0vtw3Q6pSAIGsePooj29/eX2odl83WSJLS7u7vUPmxCvob2aJpGg8Gg8HuVdyHZtk2maVaGS5KkML1+v18ZnxfHcem+2badeTdXVRkWRZE0DNtnTdPIsizlfQvDsPLY6bpOhmFI46vsmyyeruul7yKK4zgtS9n+lZ0Xtp8MHy5JEoqiSCmPiPGKwlT9zjrv5qrKIwDQXNN3njWJt2nbEssVTdNI13Xl8qZuucTvU924svD8Z+Lv5e95qum2sU9wetI0Lf2Pp5pH2LUny6+qacjqYbK0ZOmx7avi6yVsn5v8/rL9qYonhovjuLDuVacMVa0PAhxWpmnWrlcYhlHZNhNZllUaXpaebdu1942PYxiGUlkotq+L8On1er3a+9br9XLbMU2ztC0ui1PGsiyaTCZpnDAMKQzDyniDwYCiKJKGtW07t49BEJBpmpX7FgRBpq/RcRxyHIds286F9X1f2ifoOE5uO57nZcJalpXZRz6O67rkeV7pfjIsrGmapf1Arusq9x2ysLLfLKrTJ6katos0iZbvRz7qer1erb7AuuGPWpxN3a9VxdnU/SIi2traqnUfAgA4bKrqNCpzAKrGhKvGvlXG+Hd3d0v7JubzeWmdNwxDOjg4KN1G1XyJqrqiyjyBqvkQVfM+VOa3HBwcKLWBNp1pmjQcDkvP+3A4LPwuSRLSdZ16vV7uO74fzzAMchwn8514jli7VfYdr6iNzNqasja62GbVdT3TnpVdn2y8oiw/ep5XmJ/DMFRuI24Ksc0r5oter5f+XrF/lY3Xi8eD/Zs/JyxvsPisr6ZqnoGYbhzHufwg5h1N0wrHujexL5b/PbL+b/5vdkz548j6GPjfVtSvIn4eRVHaF2cYRtpfLetLY/36QRCQpmnpvsj6yqMoysR3XTeTpuu6aRxN01Z27ViWRaPRKPPZ9vZ2Zl+Hw2Gmn8W27VyZOJlMMvlb0zTa3t6u3Fa/38+VnePxONdPdOzYscy/TdOk8Xic+UzWBhP3nSjf7tJ1nba2tkgVX0/g6zae59F8Piei/H2av+/zdRW+7iPed/n7OF/34OOIc/b4OHxdoo05jrzBYJDez/jzKp53/lyK55o/p47jZOaZ8fHE8yOmw59PMV/w+yluU5aPV4Gdl6L/q4RpGraqjivDrivx/2XfNQkrCyMrC2Q+9rGP0Z/92Z/V+l08y7LS+lG/36cgCOi1r30tfexjH8uVPZtI07TC81r23ekKxwTK/Od//iddfvnldO+999JkMqH9/X2yLEt5rq0Mq4c31aTsbzPMMvcO/u9V3k9Otz52vj4q1ifF/iu+T42vuxJl65Fi3bFsG2L/FZ9nyrYh9p0t+yyLjFg3FdsLfF4R64Z8PUSsY/L1g9FolPYf8OkbhkGTyUS6Lb6NwrYbRRHN5/NMnMFgkOsnlfUHqn4mHmNZGLHvVtbHqRJG7C+UtUdUwnRF1p4U654qYWRtXLFtrBJG1jYRyzKxzcTCeJ6Xno/RaJTZv+FwSIvFIr0PDYfDzPdVfb/iNSyqum7L+r+rtl01TlDVP1+2bd/3pc++sfwYBEH6u2XPobA5LrL7YxzHNJ/Pc3H452uWfQ5znTapLm0YRqafkBH7BFnfm2wuW9H8PdM0M+mL/bp8evyzW+xa1HVdOmeP7Rvfb8tfkyxdXdcz91b2Ob9PURRlrgHWzy/2PR8cHJTOtVN9FvSoPqvJyvqyfG0YRuZ+IOtj13U9d8+QhZWFYdhzdOI9Q2Y4HFbOH+v3++l9pKjM6vV6uWvD9/1MHrVtu3AuKOu/tiwr0y8uG9cyDENaPhL96tlGPg+7rpt+zsfhx7TY9+JcSfHa5cVxTIvFovDZFvGc8ddi2TOSbD/E78vCL/M8+1FT9PyH+D3Dym9ZePFzVh6Xje/w6crKU1l4Nt7L0hXzG59XiU7V08TPkiShMAwz2xsMBul+Vs19Vek3Fech8+NQYlpl2/N9n4IgIF3XM/3t/G8R64W9Xo+iKKqs+7D0+PhJkuTaBlXz7sMwJNd102OqirWJWDlcxff9wnpoUXzVNTBYGSSWayrK6u2QVXSNE8nL+qK6ZBE2bl+37szf31Se/yq6Hsqe54LDpazMU32ehuXDsueIq7YjPjNc5/lM2faaapLOMtvelLbv6azp8/9E2T6DOttj/6nWJcT6ncq2NU0rrccVPeem8lwU64/g06pTLzIMg/r9fq37HotnWZa0jVlE07TcPCGVuRuytYv6/X7pMZXtl6ZppW10y7Kk9V7btgufCzFNs/A7sd+W3w9+TED8TpxzpULWjwwAAABwuujquaau0u1qvQCk2226XcxvQrq/UjUXBOnC6Ur2TFQbxGdtTvd0oyhaehyfnwvA1nlqQlbGVvWDydKQjRkNh0OlfkNx/ogsnbK4KvUnTdNyfWqe59Wue7FxbNd1G9//Pc+jKIqU1wXnua6bOWeq664RnSrzi/a5qr+5LC5PNl9imXv5uuKCurrPyR7muE3Wc5LN667StM++yXMtTe77TY6DbJ58laN4HI6yrp/NaOMdS1W6mru87PuIZLroP+qib6OLe3EXaXbRLm7j3UeiNt7RtYo0q54LaqKNd4OtIk04HJrUS4qorktRpa16RZu/ra31LvhnYZexicdIXCOpqU07RuJzysvYtGOEeU4AAAAAAAAA3VB5J8IqddFPXce65+Ot+70NTdaQbMsqxhTLrHI9OxnkfeT9dVl33u9izLMOzFGD09k6xl5WPWdrlWtNN5lruIy2xuBULDPfswnZO2i61Na4qIpVv+OkrXkRKtocq1bR1fMiRVb53pGjXFYCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxk1akiTJuvcCDocgCOixj30sXX311fSud71r3bsDANCq//qv/6KnP/3p9N///d90zjnnrHt3AGBJe3t79MY3vpG+8pWv0JVXXkl/8Rd/Qf1+f927pUTTNCqqopd9d7rCMQEV8/mcrrnmGvqrv/oreslLXkI33HADTSaTde8WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAp13VpsVgslcbe3h7Fcdw4vu/7NJvNltqH/f19iqKocfwwDOng4GCpfZhOpxQEQeP4URTR/v7+Uvswm83I9/2l0uDN53PyPK+19IiWzy+iOI5pb2+vtfSIiDzPo/l83mqabZ8bovaPZRt5EA4fx3FI0zSlsKrvdLNtuzBeWRrid+zfmqaRrutK2+aJ1wefvqZp0t/d5L11SZJQHMeV+9jkehXfpZckSeN36yVJkv5mlkZVWsu8x6/LdwDi/YIAzaiW94cNygSA9rD6TBvlRVF9i6j6uhXrLPy+FalTFoj7xdc7+c9U01Q5XsvU44q02R4kQnl6utF1vfa1LgvPPtM0jQzDqIxfZ5uWZWXC8/usml/5a8+yrFx7tSisjNg2TZKETNNU/k2GYVRuwzAMMk0z81kYhkR06verto35Pkr2mw3DKC2X2XaKsONvmiYZhkFRFFXGEeOHYZjrw2VpFvE8L21zqx5r13Vzx6os/0VRRK7rVu4/LwiCyjiy/apzzOBU/h0Oh7Xi9Pt96vV6teKMx+PSfCizvb1dq0wzDKP2e++b/P7BYECO49SK0+T3Hzt2rFb4Jr+fGY1GZFlWo7hNjiGv7u/krXO/AWD9qsYakySh3d3d0jSqxp5Vxth3dnZKv68aCw6CgKbTaWkaKmOgKuPoBwcHlXUllTAq8wZUxlhVwuzu7h7JtnSv15O2Pfjf2uv1MnUh2bFiY5BxHBceS8dxSs9pFEWFbc0kSdJ8JQsTBEFh31Icx9J8y8blPM87dOdWPAZV46Li7+Pb22Jc2edlaW2yojo8/3nZ3+y38vmpKgzL//x5iOM4Hbtln/HXAktn1W1I0zSp3+9nflOv1yPLskjX9TSfjcfjTJ7TdZ0e9ahH5dIaj8eZz3q9HvX7/cxnsnqz2N6StSccx6HBYJD5bDgc5vp+JpNJuq/7+/ukaRptbW3RbDZL7xesfW/bNkVRlLn38fcv/n7Gz7cT59rw9wf+PimGE+/DfDzxHtzFnCOi7PHXNI22t7fT78TzxR9L8ZyIbVH+HFqWRaPRKP2OP0/iNsXzyrdXdV2nra2t9Dux/b+1tVXYd8bqEIvFglzXTetR/Jwzdu9n55mdY3Yu+PobC8vOCwvL5h/yYZvMaWTHnl1H/HFi5+GOO+5oPFdS0zQ699xz6SlPeQp9+ctfpt/93d+lv/3bv6VzzjmnUXrrIM6lUf3udIVjAiq+9KUv0Tve8Q4yTZOe+9zn0r/+67/ST37yk8bpveY1r6EwDCmO4/SeV1b+NrnX8eUju2ew+wO7/8jKUJUw7N7G+unKwmwKdp9b1b/Xsc2u6kR8vUesAy3znWVZaZ2+1+tRr9ejIAjIMIxMPYYfg7Rtm3q9XnrN2Lad5jPXdSlJkrQuxeqvrE7J6vIq52qdn7U9912F4ziZ85MkCTmOk7mGHcdJzwurZ/HHn4VxHIeiKCoMY9s2WZaVqevbtp1pq1iWRUmSZOpzlmVl2kaapuXqe6ZpZsIsFotcf4Bpmmkdem9vj0zTlNaTXi/4ywAAIABJREFUq54ZqOrfrLoed3d3C+urZc/tJEmS1rEPo6Ixfb6voGxukjgfoaj/pugaYvPZN0FRn57s+PD9I/zvlvVpsc+iKCo8Pjyxj/AoY3WWMpqm5fpTZEzTJNu2K/OTbduZceaicQCxP4iJoijdhsozLaZpVvaXiXON2JwTMZ2iPoQwDMn3/dI5NoxhGBTHcekzmWK5ICt7Wb4W93M+nyu3/T3Pa/3Zv8OMr1+pPL8kO9ebUp6W4fOX+DvFe47Y38riiPHK5sKJ96mi73j8udB1PXOvEvvMebJrkF3/4v2Bv4Zk+x6GYaY/vmwOJL8vsnuNGFb2XRRFjdotrB4E7Ws6lx1Wo8nzoirxy65f2VhoUTyx/r4M1X1SjdsGXAennzpzXovaYypxZGGrnjPgifNZVZ5T4MOK8evM4zQMI7Mt2dz+Mmxsnanz/D4Lz6dVZ991Xc/EV2n/8fjtOY5Te15xv99P63FN5r+y+QWsb7UO0zRpMBiQruu5eQoqWL/fcDhsNO93NBpRv9/PjIsDAACs0qrXilrleF9XY8Qybax/p0rlWYI2qczBb4tsjLgrbawXWMcqnx1YZd7vYp09Ztk1IVedblfXyiqvQTgc+DnZp3O6TZ5rRrrq2HMCSZK0em8eDAatlWlJkqT3oMFg0Pg4LBaLwvppr9dTStf3/Vr33l6vl7suoihauj7pOE4rddLZbJY5T5Zl1b6OPc+rXKNa7A8VtdVWaaMe1kb9qo16U1vrJq9jHiaUW2ZNCsRVIz6DtkzcOnM72LOITbcrxq16Zp+P23R9Fllc9oycStwmYy1JktDBwUHjsRKV8aWuy76u225drO/Pa+P9EmVU1pxYxir6OKvW3VhW13l02fdeVOk6j3bZBwVHR9lz4k110a/RRZpd9A8ss/ZZEdlaDpuYZhfPfTZZ17CKbO2NTUxTtq7HsrpYX6+LNMV1MgAAAAAAoL5VzidThX1St4n7hX1Ss4n7RLSZ+4V9UreJ+4V9UrOJ+0R0dNd1B1hWF339h2Hb2D62j7yP7WP7p9e2ibqZLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArc5OWJEmy7r2Aw+M1r3kN/eQnP6FvfOMb694VAIBW/fSnP6WzzjqLvvnNb9IFF1yw7t0BgCXs7OzQ85//fHrooYfoH//xH+m5z33uWvdH0zQiIhKr3bLP2We8t7zlLfTpT3+69Dsiovvvv5+uuuoquuuuu4iI6IILLqCPfvSj9LSnPS2X/oMPPkhXXnkl3XHHHbS7uyvdv7LfcvLkSXrTm95E3/3ud+npT3863XDDDeR5Hr35zW+mBx54gJ7xjGfQjTfeSGeffXYm/m233UYf/vCH6b777qPHP/7x9NKXvpSuvfZaGo/HuW089NBDdPnll9Ptt99Og8GALrroIvr4xz9Ox48fVzpeqzomRETf+c536Morr6R77rmHDMOgCy64gN71rnfRxRdfnIa5//776d3vfjfdfffdRER04YUX0kc+8hHpvlT9dv5333HHHfTsZz+bvvCFL9CrX/3q9HO2720cg729PTpx4gTdeuut9LOf/YyOHTtGF198Mb397W+nZz7zmWk6Kud33e6++2565StfSY973OPo61//Oj360Y9e9y4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArIXneTSfz1tNczabke/7raa5u7ur/F4xFVEU0f7+fmvpERG5rkuLxaLVNKfTKQVB0GqabR/LMAzp4OCgtfSIDs+x3NnZaTW9w3IsDw4OKAzDVtNs+1jC5rMsq5V0qsozwzCU01imbNR1vXSfVNOu815R1fBNfleSJKRp2lLHpM17zSrTBgAAgHKyd4rDKaijAHRL1/VM20tVVRtKJd2i67uoTEyShJIkqbXPSZJQHMeF3/Pb0jSNdF2nOI5L44jiOK7d7oyiqNY2YHmWZS3Vb2LbNjmO03jbtm1Lv9N1vbQesMx2dV2nfr/fOL5t29Tr9XKfG4ZR2TfkOI40bhXTNMk0Ter1eo3is233+/3MZ7Ztk2malXF7vV4ubh3LxF9X3GXjj8djpWMLsFgsyHVdhDnEYVhdjH3veV7ue57rurkwR0nZ/ZA/FuK9vqgOyMKI34vHtazeyc4R2tGbq83+n3WfZ3YN8L/JMAyyLCv9TNM00jSNTNMky7Iy7Thd18m27bSezOoTlmVRv99Pw7L4rG7KrrsoishxHHIch8IwpCiKyDTNdL9YuCAIKAxDGo1G5DgOBUGQzm9g/2ftBN/3089M06Q4jtM5Or7vp9sgOlXGse8Mw6AgCNIyz3VdCoIg/Q18mel5XqZ87WK+BVG+fsf/u+y7OmFV0/E8Lz0nnudRFEXp+WPzOHzfJ8MwyHXdtI29WCwoiiLyfZ80TUvnPvz93/89RVG09DG66qqr6C//8i8b9Ym0iV0v4jUt+1xWhrzlLW+hT3/606XfERHdf//9dNVVV9Fdd91FREQXXHABffSjH6WnPe1pufQffPBBuvLKK+mOO+6g3d1d6f6V/ZaTJ0/Sm970Jvrud79LT3/60+mGG24gz/PozW9+Mz3wwAP0jGc8g2688UY6++yzM/Fvu+02+vCHP0z33XcfPf7xj6eXvvSldO2119J4PM5t46GHHqLLL7+cbr/9dhoMBnTRRRfRxz/+cTp+/LjS8VrVMSEi+s53vkNXXnkl3XPPPWQYBl1wwQX0rne9iy6++OI0zP3330/vfve76e677yYiogsvvJA+8pGPSPel6rfzv/uOO+6gZz/72fSFL3yBXv3qV6efs31v4xjs7e3RiRMn6NZbb6Wf/exndOzYMbr44ovp7W9/Oz3zmc9M01E5v+v0y1/+kl74whfSvffeu3RaF1xwAT3mMY8hy7LSstA0zfS3Hjt2jIh+1Z7u9/vU6/WUwliWRaPRSLpdce7i3t5epm4pzksT70Hz+TxTfxfbBOJ8WN/3aTabpf8W5+eJ80iTJEnzDiPOaxP3eX9/P1Pmd3Xf5G1tbWX+PR6PM8d1OBySYRiUJAlFUUSDwSDTLrBtO3Md2rZNlmVRHMcUBEGuj1K8D+m6ntZvPM9L60w8/jyyfj9WF2F1lSiKSNd1CsOQ5vN5rk/d8zyaTqe53+/7fjonkrUtgiDItQ+DIGh97qQKTdOkfYay/k8WjvX3a5qWO5bsM35etqZpuX7kMAyldQZWZ4zjOL1+ZP1khmGkdRtGTM/3/cy5lbUF256Tvi6aplX2L7PrTIbNv5PVl9jfsnoA314Wx7hkdbGyNramaRjjaYHqeB/f9iwbQ+TbozxxLJBdu0X7xIfj0xfbISwvF/0G/r4qtp9lgiBQrndrmkZRFJX28cm2t1gs1t6fcFiojCmK7bWy/Fw0nl5nDrR4TmXln6goTpfzsZf9HuB01Ea/8SbNPSzq72qqLJ2yukHX2wY46vh2V9H3/P95VXOh+HoTq0fx6ZXVq8T2JP9vNk5VRGyz67qexuf/JsrXB03TzO0X62eQ9SWw73VdL4xrmqa0v4Kl2e/3ybZtaRt6OBwW9pOw/S/6jvUzlun1etL90nVdqU93NBpJz+NwOKzctqZpuT46olPndzKZVG4bANon699fF3EsY13WdUxU5ny1JQgC6ThCV1a5FsIqxpuYLtabKdLFGi9lxHG9Lq3y2l9l3l91WdLFOiZFuliHBWAZo9GotTVYqjiOQ4PBYCXbWnU7aWtra2Vz7QaDQePnoOoqm4uzrO3t7U76bttOl82z3dra6mR/J5MJ6bre+j12PB5L514suzbfaDTKHQff95euj7D+HKL8XOJlDAYD8jyv1frSfD6v7Kero+01E9uu07ddTxLnvC2r7bp32+m1veYi1so7vNg82GWw+bJ1iXl6OBwutR9ElHmmpWy7ZdfTss+0E53ql5f199ct95d59pjhn91pij0/XlcYhum9pGhspS5xvq9MHMeZudIi2RhQXWwsSTSdTmsd62WvP5ZXV9kHyetinVhVq+zn4m1KfzcAM5lMlNaWbWo4HLZSfhdhz9x0xbbtVuoYRfjnibqgaRptb293lj5Rd/0gTNdrmnSdR5ddD6ZK13m0677ILvNoF3mz6/wOAADdWPVcmK6tqz3bxGFqA6+zj6KJtvvou3SY8sFhKy8OUz7o4l1rXTls+eAwjbEdpnwgrqmy6ZAPAKCuVc7TU9XlfL5lsLXANskmrgXedV94E5v6TOIq5+Sq2sQyoevxjyZWMe7WxCaVCeu+7tadb7oeu66yymcnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5TN2lJkiTr3gs4PG6++WZ65StfST/96U/p8Y9//Lp3BwCgNUEQkOM4dPPNN9PLXvayde8OADQUBAFdeOGF9POf/5zuuOMO+rVf+7V17xIREWmaRrJqt+zzorBl3z344IN04YUX0tVXX00vf/nLSdd1+trXvkZXX301feMb36Czzjork8ZFF11EJ06coPPOO4/uvPNOeuELX1i4Tdk+XHrppXTixAk688wz6X3vex99+9vfprPOOos+8IEP0Jlnnknvec976Be/+AXddNNNubjXX389vfa1r6X9/X266qqrSNM0+sxnPpML9/znP5+uuOIKetaznkU7Ozv0zne+k7a2tuiGG27YqGPy/e9/n17ykpfQddddR+effz798Ic/pMsuu4zuvvvuNP6DDz5Iz3nOc+iaa66hF7/4xZQkCd1222104sQJuvPOO+mcc86p9dujKKInP/nJdO+999KxY8fSuA8//DCde+659OMf/5iGw2Frx+CSSy6h8847jy677DLa3t6mkydP0jve8Q665557MsdI9fyu2w9/+EN69rOfTWeccQbdddddZFnWuncJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWhAEAU2n01bTXCwW5Lpuq2keHBxQGIatpZckCe3u7raWHtHhOZaiLva7yM7Ozkq2M51OKQiCzrfjeR7N5/POtxPHMe3t7XW+HSKi/f19iqKoUdw4jpXf97pYLMjzvMJ0mu4DL4oiCsNwqWsoSRLl37SKvAAgo2ma9HPVvNtkO22nDQAAAABHm1hnFeuTRXXaulBPBdgsuq6TYRhLp2MYRmE6ddIvS6eMruuk63rmM9M0yTTN2mnJ9smyrDTNZcpDy7Iq90nTNLJtuzIdtk9Nsd9l23bl9lSwtES2bdc6D7Ztk+M4tbc/GAxy58a2ber1erXTKtonwzBoOBwulZbjOJX7pLLfvV6v1m9bLBbk+37ms8FgQJPJJD3es9ksF0akEkal719lPCmKItrf3y8NQ6Q+fqI6VjCfzwv7xXmqYxxF/fliH/v+/n6mnhTHMcVxnItzcHBAROX94lEU0Ww2q6x3BUGg9FuPCln5LTtGLBzqrUeXpmm5/MB/xn8nfs7+03U9zSPse8MwMvknSRLSNI0sy8qkya5tTdPIMIxMXtN1PS0fdV3PhCWi9Jpl2+fLIc/zWhm7E41GIzJNk/b29hpfF/1+nzzPo09+8pP0lre8peU9bE7TtMJyQNYmLvr9Rd89+OCDdOGFF9LVV19NL3/5y0nXdfra175GV199NX3jG9+gs846K5PGRRddRCdOnKDzzjuP7rzzTnrhC1+ofMw1TaNLL72UTpw4QWeeeSa9733vo29/+9t01lln0Qc+8AE688wz6T3veQ/94he/oJtuuikX9/rrr6fXvva1tL+/T1dddRVpmkaf+cxncuGe//zn0xVXXEHPetazaGdnh975znfS1tYW3XDDDRt1TL7//e/TS17yErruuuvo/PPPpx/+8Id02WWX0d13353Gf/DBB+k5z3kOXXPNNfTiF7+YkiSh2267jU6cOEF33nknnXPOObV+exRF9OQnP5nuvfdeOnbsWBr34YcfpnPPPZd+/OMf03A4bO0YXHLJJXTeeefRZZddRtvb23Ty5El6xzveQffcc0/mGKme33UKgoCe97zn0be+9S0yDKNx/eRtb3sb2badie+6Li0Wi/TfYp2Q1SVZ+RmGYaZuGYZhWv8iOlW+q9RRl8G3QYlOlfmsrRVFUXpvEeOw/UuShCzLoiRJ0t/F36Nk9UzWng6CIM0/7LM4jikMw9w4dBzH6X1I/K6qzbBqYn8B0a/u61X1waoyRzyWh5WsfkRU3kdcduyKvleBeng9bfXbt7H9Zc4dzvtyiq7hTdTWuUaeAQA4fGT18iqy+5uu65X3vbK+P/4z2Zhk2T2G9QuK4crGwYrSE7edJEmm7VaWHt8OkcVhaau0V1h6srFW/hhFUaR0/5Vtkz9ufLiqvkxd1ymKoky4ovMfhmHhuBO/bRau6jj7vn9k2ntlY6/su6Lrsyyu4zilY7rse9l8BJW44jhoHMfk+35l3GX2uWqMlqU9m81y+cOyrMb71ev1Gs1r8H2fZrNZ7XhdWOb5pjZt0jHZ29vbiHJkVc/Tqdjd3d2ItpzYZ7xOOCZ5q3qmtcoqnhUG2CTb29sr618cDoetzFVUYdv20nP9VGmaRtvb2yvZFhHRZDJpZd6vin6/38ocTBWmadJ4PF7JtohWm/dHo1HlnN+25v3Ytk2DwUD6XRzHrdYPdV2XnjPXdVtdb4QZDoeZvpku191wHIcsyyLXdTufY2mapnLdIwiCxmtzeJ5HrutSv99vFF8Vm2PmeV5n9d0gCFrLy2xOhMx0Ou28bReG/5+9+w+uqr7zx/86+R1I+NHSyg/XoiK1inX54doqilJ0W2Nr6Y7tUlFbq07VWq2zdUfEEW13h85gprS6OqPYFXY6/sCu3QpUilMFWn8Cta2oK1vEqkBBFAjJDUnu/fzhl3wJJCG/bk6Cj8cMc+P7/T7v9/O8z7k3577vubGxw/vS0TW61tTV1eXlebm//V9j8jlvPf0a09qc5nK5PvM+ib6vuLi4S5+BHGjfudjd7ywd6MB7mA/Umb8/FNH+ZyKdse/etp6+ru1If525t60nju0+jY2NPb6O2pFzJZvNWufgsFRYWBiDBg1KZezBgwf36OtDRw0YMKBL37nsruLi4qioqOj1cSN69737/npzDWt/vbmedaD9v//QmzqyZpIPpaWlba6fdFZdXV2H3wMVFBSk9tpVUVHRpWuvxsbGbr0/6sj3qbsjSZJurynu2rWr3WNYWVnZb+7RbU1f+iwwH/Lxt4r7mo5+572/6ujfEujPevpvdPc1vfl3stPSV+4Dype+dH9RvvSV+1Hy5XD/XdGbf+s9Lb319/mBD7e01jW7Iq210K7o7fuduiutNdeu6E/nQZrr6F3Rn86DtNbru6K/nQdpfS7QEX0xW1qfZ7SnJz/r6CkFBQUxePDgtGMcpD9dBwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG16JMnlcrm0U9B/1NbWxsc+9rGYP39+XH755WnHAehRw4YNix/84Adx1VVXpR0F6KLbbrst5s2bF2vWrImxY8emHadZkiTR2mV3a+VttW2vbubMmfHpT386brzxxhbl999/f7z00ksxf/78Fn389re/jbPOOqsLe/LB9k899VRMmTIlIiLeeeedGDVqVIuyt956KyZOnBhbt25tt6/33nsvxowZE+++++5BYzz22GNxwQUXNJe99tprMXXq1Hj77bcPapvmnHz961+PL3zhC3HxxRe3yHr88cc355o5c2accsopcd1117XYtrq6OtatWxeLFi3q9L7PmjUrRo0aFddcc01z2dy5c2PTpk1x99139+gcVFZWxqZNm+IjH/lIc9nGjRvjmGOOafNcjWj7+PYFr776akyaNCn+9V//NW655Za04wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAh05NTU00NDTkfZz6+vqora3N+zjZbDZ27tyZ93EiInbt2hVNTU15H6euri4ymUzex2lsbIzdu3fnfZyIiPfff7/d/y9vT9mzZ0/s3bs37+O0dX5ns9lOP7+y2Ww0Nja2Wbd79+7I5XJdet42NTUdct4bGxsjl8tFXV1dh8/vXC53yLbZbLZDx7yurq5Fu45sl81mO5Rzf7lcrt1+c7lcl593Hem7M9o7J7rbd0ft67ejxxEAAABoXZIkeW2f77EObNORbQoKCjqVozWFhYXtZtpXv/+6RXvZWlvfSJLkoG32tSsoKOiR+cxms1FQUHDQnBxY1pH1rlwu1267wsLC5gzZbDaSJGmxHwfOwYFrhwfW75uffe321e+/n/sfp/r6+naz53K55v4OrGsr3/7jHVi///rVoRxq/Q5uueWWuP3229OO0UKSJG2+drX2fG3rHG+rbubMmfHpT386brzxxhbl999/f7z00ksxf/78Fn389re/jbPOOqsLe/LB9k899VRMmTIlIiLeeeedGDVqVIuyt956KyZOnBhbt25tt6/33nsvxowZE+++++5BYzz22GNxwQUXNJe99tprMXXq1Hj77bcPapvmnHz961+PL3zhC3HxxRe3yHr88cc355o5c2accsopcd1117XYtrq6OtatWxeLFi3q9L7PmjUrRo0aFddcc01z2dy5c2PTpk1x99139+gcVFZWxqZNm+IjH/lIc9nGjRvjmGOOaff1uK3jm7bGxsb41Kc+FRs2bOhyH21dcwAA9GfdWcfqbH9dHau1dZnW+m3v+uzAsQsKClqsw/SEJEmiuLi4x/qL+GCfioqKemStbp9989mTWff1uW8dLaLr9yvtWwPa/7gXFRUdcruOjLd/n4WFhdHQ0HDI9br2NDY2Nq/fHdh/ew51P+D+fe7LGvHB2l1H70fb377927dW2NHzqb37Hfet7+6/lnlgtmw22+o64oFlba3JduS4tDZGW+0O1d++c6Gr50N/1dHzob31/o72t+/cb21dvy1ptmtoaOjScw7Ij7KysigvL087RkREDB06tMvb9uTnXWVlZVFWVtYjfXVHkiQxaNCgDrfP5+/b8vLyKCkpyUvfnZEkSVRWVrZZ39TU1CvfaYqIKC0t7ZVxDqWgoCAGDhzY/N/19fW98n2r1pSWlrZ5bdPQ0NBr14P7v386lL179+b1M4mSkpIOX+/t053v7uzT1NTU4j1HQUFBh97/dabPriouLu7R9+JtXVvun3ffWkVvSJIkioqKIpPJpP4eqLXv8KX1+tCebDbbI991bGxs7NE5b2pqytv7lu70u2/NJZ/2rUXk+36i7sxDW/dJtdYu7eciAPlVUlLS45/JdVRnxi0sLGzxvrozv596Y//2H6O993Zd6benPzPc11+SJK2uae27jultXXn/1xMOPLfy6cBr0bTWz3r6fWVHFRYW9vhn1vvU19e3uaaVJElq63JpznV31zH2qa2t7fB7j3zcl9BRRUVFqfw+Kyws7PJrV2/9ba7DWW/97ay05HK5eP/999OOkVe99Te80tKbf3cN4HBXWloaAwYMSDtGXg0ZMiS1NZreUF5e3ifuI8mXgoKCGDx4cNox8mrgwIF94r6XfCkqKmr3fprDwaBBg1JZf+stJSUlLe7/ORwd7r8r+tJ9mPmQJEkMGTIk7Rg9or+9Zg4ePDiVddquGDBgQJ+5r/JQ+tt5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQjz2S5HK5XNop6F8uuOCCaGxsjCVLlqQdBaBHnXjiiXHhhRfGnDlz0o4CdEFdXV383d/9XXzve9+Lm2++Oe04LSRJEq1ddrdW3lbb9uqGDx8ezz33XHziE59oUb5169Y4++yzY/369S362LNnTwwYMKAruxJJksSuXbuisrIyIiKy2WwUFhYeVFZUVBTZbLZD/bU2Bzt27IihQ4c2l9XX10d5eflBfaY9J8OHD4+1a9fGyJEj223TWpaNGzfGaaedFps3b26RpSP7/vrrr8eMGTPixRdfbC4bO3ZsPPTQQzF+/Ph2x+3sHJx77rlRW1sbs2fPjmnTpkVRUdGhpqVFv331LecPfvCD+MlPfhJ//etfo6ysLO04AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9HG7du2KpqamtGNELpeL999/P+0YERHR0NAQNTU1aceIiIhMJhN1dXV563/v3r2xd+/eDrWtqamJxsbGHhm3sbExMplMl7ffvn17l87bbDbbrXEP3DabzUZtbe0ht8vlch2e565u29jYeFC77oybzWa7/NrQ0NDQ5XnOZrPN/3K5XKe3b2pqarFdQ0NDu/3kcrnI5XJdHu/Afjpbn81mm3/u6jl9YL/d2Y+O2jdnB2bJxzgdKetun/nYpielPT4AAEBXJEkSmUwmSkpK0o7SQpIkrb7Paq28rbbt1Q0fPjyee+65+MQnPtGifOvWrXH22WfH+vXrW/SxZ8+eGDBgQFd2JZIkiV27dkVlZWVEfPDevLCw8KCyoqKiDr1vb2sOduzYEUOHDm0uq6+vj/Ly8oP6THtOhg8fHmvXro2RI0e226a1LBs3bozTTjstNm/e3CJLR/b99ddfjxkzZsSLL77YXDZ27Nh46KGHYvz48e2O29k5OPfcc6O2tjZmz54d06ZNi6KiokNNS4t+++Iaw8qVK2PKlClpxwAAoBdTXbbEAAAgAElEQVQkSZJ2hHZ15nq5J/alL16f0zV9+dzuaLae3oe0+kvrublv3P237cvnRX/XkWOU9mts2uN3V0+dv2nc49MX9Yf96A8ZAYB0fJje2xxqX/NxrzwAQHeUlpZ2+d5D2mdu86ekpCQGDhyYdozDkrnNn+Li4qioqEg7xmHJ3HbPh2H+Bg8eHAUFBWnHyJsPwzXH/t/FOBwNGDAgSktL046RNwUFBTF48OC0Y+RVRUVFFBcXpx0jbz4MvysGDRoUhYWFaccAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBnPZLkcrlc2inoX/7zP/8zvv3tb8ff/va3GDRoUNpxAHrM1KlTY+zYsXHPPfekHQXogmeffTY++9nPxsaNG2P06NFpx2khSZJo7bK7tfK22rZXV1xcHI2Nja1uU15eHrW1tR3qvyM6mvnAsm3btsVNN90Uv/71r2PLli3R1NTUXNfROejMfPXWnBQVFUVtbW2UlJS022bPnj1RWlraojyTyURlZWU0NDQcMktr5WeccUbceeedcfLJJ8fKlSvjhhtuiBdffLG5vqfmYOfOnXHbbbfFL3/5y9i2bVuMHz8+vvKVr8TVV18dxcXFEdG549tXbNy4MY455ph49tln49RTT007DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHHZyuVy8//77vT5uTU1NNDY2drufTCYTmUymBxK1be/evXkb47333ova2toe6y+Xy0VNTU2P9RcR0dDQEA0NDW3W19XVRVNTU5v12Ww26uvrW62rr69vd9uO2rt3b2Sz2Q61zWazsXfv3k6P0dTU1O48dFVTU1Pzc6G1eWpoaOjwvnVHLpdrc//ysd8RHxyLnjj+3bF3795DZujJnL29v9lstlvnz6G2zeVy0dTUFLlcLi/jt2dfv62N3RvPmbZks9nmTAdma2ue2uurp3U2Q2/11RfH7sgYac5Bf3A4zc8JJ5wQL7/8ctoxDpIkSavz3Fp5W23bqysuLm7zmr28vLzFdWx7/XdERzMfWLZt27a46aab4te//nVs2bKlxe/ajs5BZ+art+akqKgoamtro6SkpN02e/bsidLS0hblmUwmKisrW1zDdWbfzzjjjLjzzjvj5JNPjpUrV8YNN9wQL774YnN9T83Bzp0747bbbotf/vKXsW3bthg/fnx85StfiauvvjqKi4sjonPHt68oKCjos9kAAIAPhyRJIkmStGNwmCgoKEg7Qp/Ql+bhUM/vfGYtLCzMW9/9SU/NQ186rzorSZI28xcWFqb+e6i9fD2poKCgTz8veitbYWFhqudzcXFxq+dckiRRVFTU5X4LCgq6tX2+FBYWdurYtvc5Q08qLi7uk69rJSUlB32O0h1JkkRFRUW3++jJTB1RWlp6yNfmoqKi5s9n+pKSkpI+/Vqbb8XFxd0+56AzBgwY0OuvUfQMxy5/ysvLo6ysLO0YhyVzmz9lZWVRXl6edozDkrkFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgEx4pSjsB/c8Xv/jFuOKKK2Lp0qXxz//8z2nHAegxRxxxRGzdujXtGEAXbd++PSIiPv7xj6ec5GBJkkR9fX2UlpY2l+3YsaPH+h82bFisX78+hg4d2mN99rSLL744PvnJT8bq1avjyCOPjKKiD96KJEmSl/F6a04++tGPxvbt22PkyJHtZtm8eXOMHj26RfnmzZtj2LBhXR77m9/8Ztx///0xf/78WLBgQVx55ZUHjdsTczB48OCorq6O6urq2L59ezz55JPx4x//OFatWhWLFy+OiN4/vj3hiCOOiIj//7UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoWUmSxNChQ3t93DTGBADgw6usrCzq6+s73L6goCAuu+yy+PnPfx433nhjHpN1XZIkUV9fH6Wlpc1lO3bs6LH+hw0bFuvXr+/T1+4XX3xxfPKTn4zVq1fHkUceGUVFRRHxwdzkQ2/NyUc/+tHYvn17jBw5st0smzdvjtGjR7co37x5cwwbNqzLY3/zm9+M+++/P+bPnx8LFiyIK6+88qBxe2IOBg8eHNXV1VFdXR3bt2+PJ598Mn784x/HqlWrYvHixRHR+8e3J0ydOjW2bNkSGzZs6NRrTkTEwoULY8SIEXlK1r7a2tpO5823PXv2xN69e9OO0UJNTU00NDSkHYM+JJPJRF1dXd7HKS8vj7KysryPk7YBAwa0uK45XPXEfjY1NUUmk+mhRF2XJEkMHjw4b/2Xlpbm9dyvrKyMwsLCvPRdVFQUFRUVeek74oPzqKSkJG/9f1iVlpbGgAED0o4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9HNJLpfLpR2C/udzn/tcDBs2LB566KG0owD0mO9973vx3HPPxe9///u0owBd8Morr8QJJ5wQzz77bJx66qlpx2lh5MiR8fTTT8dxxx3XXPbYY4/F9OnT48DL8YKCgshms63201bdN77xjbjgggti+vTpLcpXrVoV119/faxZs6a5LEmSg8bsjNa270jZoEGD4s0334whQ4Y0l9XV1cWAAQM61F9b5WnPyde+9rWoqqqKSy65pLnspZdeihkzZsT69esjImLmzJkxYcKEuOGGG1psW11dHevWrYtFixYdMktr5TU1NTFu3Lh44YUXYty4cbFhw4aorKxsru+pOUiSJP7617/GkUce2Vy2Y8eOGD16dOzatSsiOnd8+4pnnnkmTjvttHjllVfi+OOPTzsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9UFlZWdTX17fbJkmS+NznPhePP/54lJaWRkTESSedFOeee27ccccdvRGzU0aOHBlPP/10HHfccc1ljz32WEyfPj1yuVyLtgUFBZHNZlvtp626b3zjG3HBBRfE9OnTW5SvWrUqrr/++lizZk1zWZIkB43ZGa1t35GyQYMGxZtvvhlDhgxpLqurq4sBAwZ0qL+2ytOek6997WtRVVUVl1xySXPZSy+9FDNmzIj169dHRMTMmTNjwoQJccMNN7TYtrq6OtatWxeLFi06ZJbWymtqamLcuHHxwgsvxLhx42LDhg1RWVnZXN9Tc5AkSfz1r3+NI488srlsx44dMXr06Ni1a1dEdO749gXZbDaOPvrouOKKK2L27Nmxfv36mDdvXixatCgaGxsPuf2GDRvi2GOP7YWkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5MkjBWknoH+aPn16LF26NDKZTNpRAHrMEUccEVu3bk07BtBFn/rUp+Lkk0+OO+64I+0oBznnnHNi1qxZ8dZbb0VNTU088cQTcc8997TadtSoUfHMM89EQ0NDLF++PI466qhD1s2ZMyduvfXWWLx4cbz77ruxe/fuePzxx2PGjBlxyy239Mo+Hsppp50WN954Y7zxxhuxd+/e2LBhQ3z729/udr9pz8ns2bPj9ttvjxUrVsSePXvij3/8Y1x22WVx7bXXNre59dZbo7q6Ou67777429/+Ftu2bYsFCxZEdXV13HrrrV0eu6KiIs4+++yYOXNmfOlLX4rKysoW9T05B5dffnm8/PLLUV9fH1u3bo158+bFtGnTmuvzdXzz6Y477ojx48fH8ccfn3YUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOM0mSxOTJk2P37t2RzWbjN7/5TZSWljbXz5gxIx544IHYvn17iilbd84558SsWbPirbfeipqamnjiiSfinnvuabXtqFGj4plnnomGhoZYvnx5HHXUUYesmzNnTtx6662xePHiePfdd2P37t3x+OOPx4wZM+KWW27plX08lNNOOy1uvPHGeOONN2Lv3r2xYcOG+Pa3v93tftOek9mzZ8ftt98eK1asiD179sQf//jHuOyyy+Laa69tbnPrrbdGdXV13HffffG3v/0ttm3bFgsWLIjq6uq49dZbuzx2RUVFnH322TFz5sz40pe+FJWVlS3qe3IOLr/88nj55Zejvr4+tm7dGvPmzYtp06Y11+fr+ObLww8/HG+99VZ87Wtfi4iIE044Ie6///5oaGiIF198MaZOnRpJkrS5fS6X662oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5ElB2gHon6ZPnx579uyJFStWpB0FoMccccQRsWXLlrRjAN0wd+7cWLx4cdx///1pR2nhjjvuiJKSkpgwYUIMHz487rrrrrj33nsjIiJJkhZtq6ur46KLLoqKioq45ppr4s477zxk3ejRo+PRRx+NBx98MI499tgYMWJE3H777fHTn/40vvzlLzdvv2+sJEkOGrcj9t++s2ULFy6MTCYTp556alRWVsb06dOjqqqqQ9u2V572nJx00kmxaNGimDNnTgwbNizOP//8uPDCC+Oqq65qbnPcccfFsmXL4tFHH41jjjkmjj766Fi8eHEsW7YsxowZ0+V9j4i47LLLYvny5XHFFVccVNdTc7BixYooLy+PKVOmxKBBg+Kzn/1sZDKZeOCBB5rbdPT49hX33Xdf/OIXv4i5c+emHQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH6suLi4+eckSeL444+Pd955J7LZbKxatSoqKipa3e7qq6+OgQMHxje/+c1obGzsrbgdcscdd0RJSUlMmDAhhg8fHnfddVfce++9EfHBPu6vuro6LrrooqioqIhrrrkm7rzzzkPWjR49Oh599NF48MEH49hjj40RI0bE7bffHj/96U/jy1/+cvP2+8ZKkuSgcTti/+07W7Zw4cLIZDJx6qmnRmVlZUyfPj2qqqo6tG175WnPyUknnRSLFi2KOXPmxLBhw+L888+PCy+8MK666qrmNscdd1wsW7YsHn300TjmmGPi6KOPjsWLF8eyZctizJgxXd73iIjLLrssli9fHldcccVBdT01BytWrIjy8vKYMmVKDBo0KD772c9GJpOJBx54oLlNR49vX/CXv/wlvvOd78Tll18exx133EH1EydOjCeffDLq6+vj8ccfj3Hjxh3UprCwsDeiAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkEdJLpfLpR2C/unUU0+NcePGxYIFC9KOAtAjli5dGlVVVbF79+6oqKhIOw7QRbNnz465c+fGggUL4tJLL007DtDH/OxnP4srrrgibr755rjtttvSjgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD+2adOmuOiii+Luu++Ok046qcPbZbPZWLFiRUyfPj3+8R//MX7+859HWVlZHpMC/c1rr70W55xzThxxxBHx1FNPxcCBAzu03Z49e2Lx4sVx8803R11dXWzbti0KCgrynBYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA8eiTJ5XK5tFPQP82dOzfmzZsXW7ZsiaKiorTjAHTb2rVrY+LEifH666/HmDFj0o4DdMOsWbNi7ty58d3vfjd+9KMfRWlpadqRgJRlMpn4/ve/H3fddVfMmjUrfvjDH6YdCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlNTV1UUmk2nzMZ9t9uzZE3v37m3OUlZWFuPGjYuHH344jj766N6fDKDPWbx4cXzrW9+KE044IZYuXRpDhw5NOxIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpeSTJ5XK5tFPQP73++usxduzY+O1vfxtnnXVW2nEAuu3tt9+OI488MlavXh2nn3562nGAbnrwwQfjyiuvjJEjR8bdd98dZ599dtqRgJQ8+eSTcdVVV8XWrVvjvvvuiwsvvDDtSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzq7d++OxsbGyGQyUVdXF42NjbF79+6IiHjvvfciIqKmpiYaGhq63Ob999+PXC53UJumpqbYtWtXpzOXl5dHWVlZFBcXR0VFRSRJEkOGDImIiMrKyigqKjqoTUTE0KFDW21TVFQUlZWVLdqUlpbGtddeG6+//nrMmTMnrr/++iguLu7SHAP929tvvx3f/e534xe/+EVcffXVUV1dHaWlpWnHAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIF2PJLlcLpd2CvqvE088MaZNmxbz589POwpAtzU0NERpaWksXrw4vvKVr6QdB+gB77zzTlx33XWxePHimDZtWvzoRz+KCRMmpB2rT0qSpN36D+PbBnPS/7388stx2223xSOPPBLnn39+3HXXXXHUUUelHQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoNfV1dVFJpNpfmytLJ9t3n///cjlcp3KXFZWFuXl5S1+busxH20GDRoUhYWF3Zz5jmloaIj/+I//iJtvvjmGDRsWs2bNim9961u9Nn5/kyRJu/WdPdcOB+akf9uxY0f85Cc/ierq6vjYxz4Wd999d5x77rlpxwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBveCTJ5XK5tFPQf82ePTseeOCBePPNNyNJkrTjAHTbsGHD4gc/+EFcddVVaUcBetATTzwRN998c6xduzaqqqriX/7lX2LKlClpxwLy5Kmnnop58+bF0qVLY9KkSfHv//7vMW3atLRjAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfQnV1dZHJZFr83NZjPtrs2rUrmpqaOpW5rKwsysvLW/zc1mN327RWV1lZGUVFRd2c+f7pjTfeiDlz5sR//dd/xZgxY+KGG26ISy65JMrKytKOBuTBm2++GfPnz4977703ysrK4qabboqrrrrKcx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID9PZLkcrlc2inov9asWROTJk2KF154ISZNmpR2HIBuO/HEE+PCCy+MOXPmpB0F6GG5XC5+9atfxbx582LVqlXx6U9/Oi699NL4+te/HsOHD087HtBNmzdvjp///OfxwAMPxJ/+9Kc488wz4/vf/35UVVVFkiRpxwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAelldXV1kMpkWP7f1mI82u3fvjsbGxk7nLisri/Ly8jYf89lm4MCBUVJS0r2Jp0e8+uqrcccdd8SiRYuisrIyZsyYEZdccklMmjQp7WhAN9XX18evfvWrWLhwYSxbtixGjBgR1113XVx55ZVRWVmZdjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6nkeSXC6XSzsF/dsxxxwTM2bMiH/7t39LOwpAt02dOjXGjh0b99xzT9pRgDx6/vnnY8GCBfHwww9HTU1NnHvuuXHJJZfEBRdcEGVlZWnHAzqorq4uHnvssVi0aFEsX748Bg0aFF/96lfjW9/6VpxyyilpxwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAD626urrIZDJtPuazzZ49e2Lv3r2dzlxWVhbl5eUHPbZX11Nt9v0MB9qyZUv87Gc/i4ULF8arr74aJ5xwQlx66aVx0UUXxahRo9KOB3TCM888EwsXLoyHHnoodu3aFeecc05ceuml8U//9E9RXFycdjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6rkeSXC6XSzsF/dv1118fy5Yti9deey3tKADdNmPGjMhkMvHf//3faUcBekEmk4n/+Z//iYULF8YTTzwRAwcOjM9//vNRVVUVX/jCF2LYsGFpRwQOsG3btli2bFksWbIkfv3rX0dtbW18/vOfj0suuSS++MUvRllZWdoRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1dXV1kclkDnpsr66n2tTW1kZ9fX2nM5eVlUV5eXnzY2tl+WwzZMiQSJKkexMPveC5556LhQsXxoMPPhg7d+6M008/PaqqqqKqqipOPPHEtOMBB6ivr4+VK1fGkiVL4le/+lX85S9/iXHjxsWll14aF110UYwYMSLtiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPQPjyS5XC6Xdgr6t6effjrOOuuseOWVV+L4449POw5At3zve9+L5557Ln7/+9+nHQXoZVu2bImHH344Hn/88Xj66aejqakp/uEf/iGqqqrivPPOi7//+7+PJEnSjgkfOrlcLv7whz/EkiVLYsmSJfH8889HcXFxTJkyJb74xS/GhRdeGEcccUTaMQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4kKurq4tMJtP82FpZPtu89957nc5cVlYW5eXlzY+tlXWmTWe3Hzx4cBQUFHRj1uHDqb6+PpYuXRqPPfZYLFu2LLZt2xajR4+O8847L84///w466yzmp9vQO/avHlzLFmyJJYuXRq/+c1voqamJk466aSoqqqKr371qzF+/Pi0IwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAND/PJLkcrlc2ino37LZbIwaNSq++93vxk033ZR2HIBumTt3btx7773xf//3f2lHAVJUU1MTy5cvj6VLl8bSpUtj8+bNMWLEiDjzzDNj8uTJceaZZ8a4ceOioKAg7ahw2Mlms/GnP/0pVq1aFatXr46VK1fG5s2bY+TIkXHeeedFVVVVTJs2LSoqKtKOCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAfUFdXF5lMpvmxtbJ8ttm5c2dks9lOZS4rK4vy8vIWP7f1mI82lZWVUVRU1M2ZB/qCbDYbzz//fCxZsiSWLFkSf/jDH6K8vDw+85nPxBlnnBFnnHFGfOYzn4mBAwemHRUOS2+//XasWrUqVq9eHStXrow///nPUVZWFlOnTo3zzz8/zjvvvDjqqKPSjgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED/9kiSy+Vyaaeg/7viiivipZdeiueffz7tKADd8rOf/Sy+853vxJ49e9KOAvQRuVwu1q5dG8uXL4/Vq1fH7373u9i5c2cMGTIkTj/99DjjjDNi8uTJMWnSpCgtLU07LvQ79fX18cILL8Tq1aub/+3/HJs8eXKce+65MX78+EiSJO24AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPx/6urqIpPJtPi5rcd8tNm9e3c0NjZ2OndZWVmUl5e3+ZjPNhUVFVFcXNy9iQdoxzvvvBPLli2LlStXxqpVq2Ljxo1RVFQUEydOjMmTJ8eZZ54Zp512WgwbNiztqNDv5HK5eO2112L16tWxatWqWL16dfzlL39p8RybOnVqnH322c3XAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANADHklyuVwu7RT0f0uXLo3zzz8/3njjjTjqqKPSjgPQZUuXLo2qqqrYvXt3VFRUpB0H6IOy2Wy88sor8bvf/S5Wr14dK1eujE2bNkVRUVGMHTs2Jk6c2PxvwoQJMWDAgLQjQ5/R0NAQ//u//xtr1qxp8S+TycTw4cNj0qRJMXny5Jg2bVqMHz8+CgoK0o4MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0CfV1dVFJpNp8zGfbWpqaqKhoaHTmcvKyqK8vPygx/bqeqrNgAEDorS0tNvzDtDfbNmyJV544YX43e9+FytWrIh169ZFNpuNESNGxMSJE5v/nXLKKTF8+PC040Kf8s4778SaNWua/z377LOxffv2GDBgQA5rXRYAACAASURBVIwfPz4mT54cp59+epx55pkxePDgtOMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw+HokyeVyubRT0P/V19fHxz/+8fjhD38Y1157bdpxALps7dq1MXHixHj99ddjzJgxaccB+okNGzbEc889F2vXro21a9fGunXrYufOnVFUVBSf+tSnYsKECTFhwoQYN25cnHDCCTF8+PC0I0PebdmyJdavXx9//vOfY82aNbF27dp49dVXo7GxMQYPHtz8vJgwYUKceuqpceyxx6YdGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCQ6urqIpPJHPTYXl1PtamtrY36+vpOZy4rK4vy8vKDHtur60ibjm4/dOjQ7k06AD3mvffei2eeeSbWrl3b/G/Tpk0REXHkkUfGhAkTYsKECXHyySfHiSeeGEcffXQUFRWlnBryq6amJl599dV4+eWXY926dbF27dr4wx/+ELt3747i4uI48cQTm58bkyZNigkTJkRxcXHasQEAAAAAAAAAAP4f+/UTW1d21wH86z+x331+dvzSvDzHTjLTBBo7o25SxAZppLIAKhWhgLooElQsoWxYdQESSF2wQ0IgYAWsZsEgBVXqlhUgdcGwix1EXIgTx46TPv959ntjO3msYsWNndiT8dyO5/ORrn7H5/zu8fccWdENAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXxwf9vV6vV7ZKTgdvv3tb2d5eTn/+q//WnYUgE/s4cOHuXTpUv7t3/4tv/RLv1R2HOBzqtfr5d69e/noo4/2PU+fPk2S1Ov1zMzM5MaNG5mens57772X6enpvPPOO+nr6ys5PRxdr9fL//7v/2Zubi537tzZq7Ozs2m1WkmSL33pS7l58+a+59q1a/7WAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGPpdDrpdruv1NetfVo9SdJqtY6duVKppCiKvXrQ3En2nD17Nv39/W9x6wB8ETx9+jQfffRRPvroo/znf/5nPvroo8zPz6fX62VoaCjXr1/PzMxMZmZmcuPGjUxPT+f69esZHh4uOzocy09+8pPcuXMns7OzmZ2dzZ07dzI3N5f79++n1+tleHg4X/3qV3Pz5s187Wtfy82bN/PVr37V3zoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABl+7Cv1+v1yk7B6fBP//RP+e3f/u08evQojUaj7DgAn8jOzk6Gh4fzz//8z/nN3/zNsuMAp8zS0lLu3LmTubm53LlzJ7Ozs5mdnc2jR4+SJCMjI7l+/XquXr2677l27VquXLmSwcHBkk/AF9HOzk7u37+f+fn5fc+9e/dy9+7dbG1tJUkuXryYGzduZHp6Ou+9916mp6dz48aNNJvNkk8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvI1Op5Nut7tXD5o7yZ61tbU8f/78WJkrlUqKotg3PqyeRM/Y2FgGBgbe8uYBoDybm5uZm5vLnTt3Mjs7m9nZ2dy5cyfz8/PZ3d3NwMBAvvzlL+fnf/7nc/Xq1VeeWq1W9hH4glpaWsr8/Pwrz927d/P48eMkSa1Wy/T0dG7cuJGZmZnMzMzkxo0buXr1qm84AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfhZ92Nfr9Xplp+B0aLfbaTQa+Zu/+Zv83u/9XtlxAD6x8+fP5/vf/35+//d/v+wowBdEq9XK7Oxs7ty5k//+7//OvXv38uMf/zjz8/NZW1tLkgwODubKlSu5evXq3nPp0qVcuXIlk5OTmZqaSqVSKfkkfB51u908fPgwi4uLuX//fh48eJB79+5lfn4+8/PzWVhYyO7ubpLk7Nmz+/4Gr1+/nhs3bmRmZibj4+MlnwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOl06nk263u298WD2JnvX19Tx79uzYuSuVSoqiOLSeZE+tVsuZM2fe7uIBgENtb2/n7t27mZuby9zcXP7nf/4n8/PzmZ+fz+Li4l7fhQsXcvXq1Vy9ejXXrl3Lu+++m8nJyVy+fDlTU1MZHx8v8RR8Xj1//jxLS0t58OBBFhcXs7CwkB//+Md7f4Pz8/PZ3NxMkgwNDeXdd9/d+zv8uZ/7udy4cSPT09N55513Sj4JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHMuHfb1er1d2Ck6PX//1X09fX19+8IMflB0F4BN777338q1vfSt/9md/VnYUgDx9+jTz8/MHPg8fPszOzs5eb6PRyOTkZC5fvpypqalMTk7mypUrmZyczMWLF9NoNNJoNDIwMFDiifis7O7u5smTJ1lZWcni4mIWFxezsLCQhw8f5uHDh1lYWMijR4+ysrKy987Q0FCmpqby5S9/OVevXn3l+dKXvlTiiQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCz0+l00u12D60n2dNut7Ozs3PszJVKJUVRHFrftud1a9VqNcPDw2997wDA51e32838/PyBz//93/+l3W7v9Var1Vy5ciWTk5O5dOlSLl26lMnJyVy+fDkTExOZmJhIo9HY+wbh9Gu1WlleXs7KykoWFhby6NGjLCws5OHDh1lcXMz9+/eztLSU3d3dvXcmJibyzjvv5OrVq688ly5dSn9/f4knAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgE/Nh329Xq9XdgpOj7//+7/PH/zBH2RlZSWjo6NlxwH4RH75l385X/nKV/J3f/d3ZUcBeK1er5elpaU8fPgwi4uLuX//fhYXF/PgwYM8ePAgi4uLWVhYyNbW1t47fX19OX/+fBqNRhqNRiYmJnLhwoU0Go1cuHAhzWYzjUYj586dy/j4eOr1eiqVSomn5IVut5tWq5XV1dX85Cc/ycrKSpaXl7O8vJwnT57k8ePHWVpaysrKyt7zsmq1msuXL2dycjKXLl3KpUuXMjU1lcuXL2dqaipTU1NpNpvp6+sr6YQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQdDqddLvdQ+tJ9mxubmZ7e/vYmSuVSoqieKW+bu3T6nkxBgD4Wbe+vp6FhYU8ePAgi4uLWVhYyMOHD/Pw4cMsLCxkcXExT5482fdOrVbLxMRELly4kPPnz6fZbKbZbKbRaKTRaGRiYiLnzp1LvV7P+Ph4xsbGSjodL3v27FlWV1fTarXSarWysrKSlZWVPH78OEtLS1lZWcmTJ0/y6NGjvbWXv8MHBwczMTGRK1euZHJyMlNTU7l8+XImJydz+fLlTE1NZWpqKkNDQyWeEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4zH/b1er1e2Sk4PZ4+fZqJiYl88MEH+da3vlV2HIBP5Nvf/na63W5u375ddhSAT0Wr1crS0lJWVlby+PHjLC8vZ2VlJSsrK3n06FFWVlby5MmTLC0tZXV19ZX3K5VK6vV66vV6xsfHXxmPj4+nVqulXq+nKIoURZHx8fFUq9VUq9WMjY2lVqvlzJkzJZy+fDs7O2m321lbW0un08nW1lZWV1f3jdvtdlZXV9NqtdJqtfbGL891u91X9q7X62k2mzl//nwuXLiQiYmJNBqNNBqNNJvNXLhwIY1GIxMTE6nX6yWcHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM+LTqeTbrf7Sn3d2kn0HEelUklRFHv1oLmT7BkfH09fX9/bXTwAAHu63W4ePXqU5eXlrKysZGVlJUtLS3n8+HGePHmS5eXlfWvPnj3b9/7AwEDGx8dTr9dTr9cPHY+MjKQoioyNjaVWq6VaraZWq2VsbCxFUWRkZKSkGyhfq9VKp9NJp9PJ6upqtra2srW1lfX19bTb7WxubqbVamV1dTWtVmvf+EVdX19/Zd+iKNJoNHLx4sU0Go00Go00m81cuHBh7+eLFy/m/PnzmZiYSH9/fwmnBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ9JH/b1er1e2Sk4Xb7+9a/n4sWL+eCDD8qOAvCJ/NEf/VF+9KMf5T/+4z/KjgLwmdve3s7KykparVZarVZWV1cPrD891263s7q6mtf992JwcDCjo6MZHR1NURSp1WpJknq9niQpiiKVSiX9/f05e/ZskmRkZCRDQ0MZGBjI2NjYvv1qtVrOnDlz4O8aHh5OtVo9cG1raysff/zxgWs7Oztpt9v75tbX1/Ps2bNsb29nc3MzSbK2tpbnz5+n2+2m0+kkSVqtVpKk3W6n0+lkY2MjGxsb2d3dPfRO+vr6Mj4+nlqtlnq9nvHx8dfWl8eNRiNDQ0OH7g0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDnQ6fTSbfb3asHzZ1kz+rqanq93rEyVyqVFEWxb3xYPYmesbGxDAwMvOXNAwDwebeyspJWq7X3rK6uvra+eDY3N7O9vf3avc+ePZtqtZqiKFKv15MkIyMjGRoayuDgYEZHR5Mko6OjGRwczJkzZ1Kr1fbe7e/v39treHg41Wr1wN/T19eX8fHxA9d2dnbSbrcPzfjT3/IvvvWTpNVqJUm2trby8ccf5/nz51lbW0uSvfNvb29nc3Mza2tr2dra2nv3MLVaLSMjI6nX66nX6xkfH39jPXfuXM6fP793NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCxfThYdgJOn1u3buVP/uRP0u12U6lUyo4DcGzNZjPLy8tlxwAoxdDQUKampjI1NfWJ3u90Oul0OlldXc3m5mY6nU7W19ezsbGRTqeTdrudtbW1dDqdbG1t5fnz51lbW0uStNvt7OzsZHt7O/Pz80mSjY2N7O7uZmdnJ+12e9/varVaB2Z4/vx5Njc3s7u7e+gZR0ZGDj1DvV7f93OtVsuZM2cyODiY0dHRJMno6OjezxcvXkySnD17Nv39/alWqymKImfPnk2tVku1Wk2tVsvY2Fiq1Wqq1WrGx8dTrVZ9LwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSo0+mk2+3uGx9WT6JnfX09z549O1bmSqWSoij2jQ+rSVKv1w9dO8r7Pz03OjqawcHBt7x5AAD4dDQajTQajU/07rNnz7K+vp6NjY10Op202+2sra2l0+lka2srrVZrb7y2tpYke9/w29vb2dzcTJI8ePAgz58/3/vuT5JWq7Xvd7Xb7ezs7ByY4+W9DlKv1w9dGxkZydDQ0N7PQ0NDGRkZSZKcPXs2/f39e9/y/f39uXr1apLsfeMPDg5mdHQ0Y2NjKYoiIyMjGR8fT1EUqVarGR8fT7VaTbVazdjY2JuuFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADghfb1er1d2CE6XBw8e5MqVK/nhD3+Yb3zjG2XHATi2f/iHf8gf/uEfZnNzs+woAHwCf/3Xf50//dM/zdOnT8uOAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAE6nU663e6+8WH1JHo2Njayu7t77NyVSiVFURxaT7JnZGQkQ0NDb3fxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOfNh4NlJ+D0uXTpUr72ta/l9u3b+cY3vlF2HIBjazab2draSrvdTq1WKzsOAMc0NzeX6enpsmMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8TOp0Oul2u4fWk+zZ3NzM9vb2sTNXKpUURfFKPWitXq+/seco+7yoL8YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZRgsOwCn061bt/KXf/mX+du//dsMDAyUHQfgWJrNZpJkeXk5tVqt5DQAHNfc3FxmZmbKjgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALBPp9NJt9t9pb5u7dPq2drayscff3zszJVKJUVR7NWD5l7Uer3+xp6j7PNyz/j4ePr6+t7u4gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+xwbLDsDpdOvWrfzxH/9x/v3f/z3vv/9+2XEAjmViYiJJsrS0lGvXrpWcBoDjmpuby6/+6q+WHQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgZ0el00u129+pBcyfZs7q6ml6vd6zMlUolRVHs1YPmXtR6vf7GntetHdRz9uzZ9Pf3v+XNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC2BssOwOk0MzOT6enp3L59O++//37ZcQCO5cKFC+nr68vy8nLZUQA4po2NjSwuLmZ6errsKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8IXX6XTS7Xb36kFzn3bPy2tra2t5/vz5sTJXKpUURbFvfFhNknq9/saeo+zzYjw6OprBwcG3vHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATovBsgNwet26dSsffPBB/uIv/iJ9fX1lxwE4sjNnzuTcuXNZXl4uOwoAxzQ3N5der5eZmZmyowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGk6nU663e6+8WH1JHo2Njayu7t77NyVSiVFURxaX+6p1+tv7DnKPi/qyMhIhoaG3u7iAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBTNlh2AE6vW7du5c///M/zX//1X7l582bZcQCOpdlsZnl5uewYABzT7OxshoaG8u6775YdBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAL6hOp5Nut3toPcmedrudnZ2dY2euVCopiuKVetBavV5/Y89R9nlRq9VqhoeH3/reAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOA0Giw7AKfXL/zCL+TKlSu5fft2bt68WXYcgGNpNptZWloqOwYAx3T37t185StfyeCg/+oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzRdDqddLvdV+rr1j6tnq2trXz88cfHzlypVFIUxSv1oLV6vf7GnqOsvdxTr9ff7tIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBM1WHYATq++vr78xm/8Rm7fvp3vf//7ZccBOJZms5nl5eWyYwBwTHNzc5meni47BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAF0qn00m3232lvm7t0+pJklardezMlUolRVHs1YPmXtR6vf7GnqPs83LP2bNn09/f/xa3DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8EQyWHYDT7datW/mrv/qr3L17N9evXy87DsCRTUxM5Ec/+lHZMQA4ptnZ2fzWb/1W2TEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4TnU4n3W53rx40d5I9a2tref78+bEyVyqVFEWxb3xYLYoi9Xr9tT1H2eflnrGxsQwMDLz95QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfAYGyw7A6fb++++n0WjkX/7lX/K9732v7DgAR9ZsNrO8vFx2DACOYXd3N/fu3cv09HTZUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAU67T6aTb7e4bH1ZPomd9fT3Pnj07du5KpZKiKA6tL/fU6/U39hxlnxe1VqvlzJkzb3fxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfMINlB+B0GxgYyDe/+c3cvn073/ve98qOA3BkzWYzS0tLZccA4Bju3buX7e3tTE9Plx0FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADhBnU4n3W730HqSPe12Ozs7O8fOXKlUUhTFofXlnnq9fujaUd7/6VqtVjM8PPzW9w4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGdvsOwAnH63bt3KP/7jP2ZhYSGXL18uOw7AkTSbzWxtbaXdbqdWq5UdB4AjmJubS19fX65fv152FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4lTqdTrrd7qH1JHs2Nzezvb197MyVSiVFUbxSD1qr1+tv7DnKPi/qizEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxSg2UH4PT7lV/5ldRqtfzgBz/Id7/73bLjABxJs9lMkiwvL6dWq5WcBoCjmJuby6VLl/y7DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCp0+l00u12X6mvWzuJnuOoVCopimKvHjT3otbr9Tf2HGWfl3vGx8fT19f3dhcPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGyw7AKff8PBwfu3Xfi23b9/Od7/73bLjABzJxMREkmRpaSnXrl0rOQ0ARzE3N5eZmZmyYwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwinQ6nXS73b160NxJ9qyurqbX6x0rc6VSSVEU+8aH1aIoUq/XX9tzlH1e7hkbG8vAwMDbXz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJDBsgPwxXDr1q387u/+bp48eZLz58+XHQfgjS5cuJC+vr4sLy+XHQWAI5qbm8sv/uIvlh0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgE9Bp9NJt9vdNz6snkTP+vp6nj17dqzMlUolRVHsGx9Wk6Rerx+6dpT3f3quVqvlzJkzb3nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAz5LBsgPwxfDNb34zg4OD+eEPf5jvfOc7ZccBeKMzZ87k3LlzWV5eLjsKAEd09+7d/M7v/E7ZMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+1zqdTrrd7r7xYfVtew5a29jYyO7u7rFzVyqVFEVxaH25p16vv7HnKPu8qCMjIxkaGnq7iwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHD7iWAAAIABJREFUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjAYNkB+GIYHR3N17/+9dy+fTvf+c53yo4DcCTNZjPLy8tlxwDgCJaWltJqtTI9PV12FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/p+9uwmt9Kr/AP67yb3JeZJMkgd1bmopLgaTDEJTR3QzI7UgdCM6obpoF4KICxciFFwKBXEhduHCymwKFawggqGK0oIvuKrDrASh6QgKKpiLyLxl8jx5vS7+Jv/E3Jvc20zmmZn7+Wy+Z875PWe+nMUwuwsAAAAAvGdFUURZll3zNGfu3r0bGxsbfXdOKUWWZYey01me58fO9HLPbu6uAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHlX1qgswOBYXF+PrX/963L17N8bHx6uuA3CsZrMZKysrVdcAoAfvvPNOREScP3++4iYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAw6goiijL8lAedXYaM/1IKUWWZXvZaW838zw/dqaXe/bPTE9PR61WO9nDAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcKR61QUYHJ/73Ofiq1/9arz55pvx3HPPVV0H4FjNZjNarVbVNQDowfLyckxOTsZjjz1WdRUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgD0VRRFmWe9lp7zRnbt68Ge12u6/OKaXIsmwvO+3tZp7nx84cddZpZmpqKoaGhk748gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwM6lUXYHCcPXs2Ll68GEtLS/Hcc89VXQfgWDMzM3H16tWqawDQg3fffTfOnz9fdQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4aBRFEWVZ7mWnvXs9s//s1q1bsbOz01fnlFJkWXZg3S0jIvI8P3aml3t212fOnIl6vX7ClwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDe1asuwGBZXFyMl156KTY2NmJkZKTqOgBHajab0Wq1qq4BQA/eeeedmJ+fr7oGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHKsoiijL8sC6W57GzJ07d2Jra6vv3imlyLKsa+6fyfP82Jle7tnN8fHxGBkZOdnDAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEOoXnUBBsvi4mK8+OKL8bvf/S6effbZqusAHKnZbMbKykrVNQDowfLycjzzzDNV1wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOABVxRFlGXZNU9zZnV1NTY3N/vunFKKLMsOZaezPM+Pnenlnt0cGxuL0dHRE787AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8N7Uqy7AYPnQhz4UH/3oR2NpaSmeffbZqusAHKnZbMba2lqsrq7GxMRE1XUA6OLu3bvx97//Pebn56uuAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQBdFUURZlofyqLN7NbO2thbr6+t9d04pRZZlh7LTWZ7nXc96+b7TTJ7nJ3t0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4KFXr7oAg2dxcTG+//3vxyuvvBLDw8NV1wHoqtlsRkREq9WKiYmJitsA0M27774b7XY75ufnq64CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwwCmKIsqyPJRHnd2rmYiIGzdu9N05pRRZlu1lp73dzPP82Jle7tk/MzU1FUNDQyd4dQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB7o151AQbP4uJifPOb34w//OEPcfHixarrAHQ1MzMTERErKytx7ty5itsA0M3y8nI0Gg3/VgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UoiiiLMu97LR3mjO3bt2KnZ2dvjqnlCLLsgPrbpllWeR5fuRML/fsn5mcnIzh4eGTPz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAI6JedQEGz0c+8pGYm5uLpaWluHjxYtV1ALo6e/Zs1Gq1aLVaVVcB4AjLy8tx7ty5aDQaVVcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeAEVRRFmWB9bd8jRmbt++Hdvb2333TilFlmVdc/9MnufHzvRyz25OTEz4rWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAB1C96gIMpsuXL8dPfvKTePnll6uuAtBVo9GIPM+j1WpVXQWAIywvL8f58+errgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEREURRRlmXXPM2Z1dXV2Nzc7LtzSimyLOua+2fyPO961sv3/5tjY2MxOjp64ncHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4NFUr7oAg2lxcTG+853vxB//+MdYWFioug5AVzMzM9FqtaquAcARlpeX4zOf+UzVNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFJFUURZll3zpDNHna2trcX6+nrfnVNKkWXZoex0luf5sTO93LObu2sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeJDVqy7AYPrEJz4RTzzxRCwtLcXCwkLVdQC6ajab0Wq1qq4BQBfb29vx5z//Oebm5qquAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAgCqKIsqyPJRHnZ3GTD9SSpFl2V522tvNPM+Pnenlnv0z09PTUavVTvbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAA6lUXYDDVarX47Gc/Gz/72c/ipZdeqroOQFfNZjNWVlaqrgFAF3/961+jLMs4f/581VUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALjPiqKIsiz3stPeac7cvHkz2u12X51TSpFl2YF1t8yyLPI8P3Kml3v2z0xOTsbw8PDJHx8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuC/qVRdgcC0uLsYrr7wS169fj9nZ2arrAHQ0MzMTV69erboGAF0sLy9HRMTc3FzFTQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkdRFFGW5YF1tzyNmdu3b8f29nZfnVNKkWXZgXW3jIjI87zrWS/f/+/exMRENBqNE748AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBo6lUXYHA9/fTT8f73vz/eeOON+MY3vhH/+te/4uc//3n88pe/jBdffDEuXbpUdUWAaDab0Wq1qq4BQESsr6/Hm2++GU888UTMzc3F+Ph4LC8vxwc/+MGYmpqquh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKkriiLKsjyw7pYnnel0dufOndja2uq7d0opsizrmvtn8jw/dqaXe3ZzfHw8RkZGTvbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVqVddgMFVr9fj6aefjh/84AfxxhtvxNtvvx21Wi12dnbiU5/6VFy6dKnqigDRbDZjZWWl6hoARMS1a9fi8uXLERFRq9ViZmYmxsbGIsuyuHLlSszNzcX8/Hw89thjFTcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5FRVFEWZZd8zRn7t69GxsbG313TilFlmWHstNZnufHzvRyz27urgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeO/qVRdg8PzlL3+JX/ziF/HjH/84rl27FrVaLf72t7/Fzs5ORETU6/VIKVXcEuD/NJvNWFtbi9XV1ZiYmKi6DsBAm5ub21u32+345z//GRERIyMj8bWvfS22trYiImJycjKuXbsWs7OzlfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO6toiiiLMtDedTZacz0I6UUWZbtZae93czz/NiZXu7ZPzM9PR21Wu1kDw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOXqVRdgsHzpS1+K1157LRqNRmxubkZERLvdPjDTbrdjdHS0inoAhzSbzYiIaLVaMTExUXEbgMH2gQ98IN73vvfFv//97wP7GxsbB/7caDTi8ccfv5/VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCRVBRFlGW5l532TnPm5s2b0W63++qcUoosy/ay095uZlkWeZ53POvl+04zU1NTMTQ0dPLHBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiKhXXYDB8swzz8Rrr70Wm5ubXWd2dnYipXQfWwF0NzMzExERKysrce7cuYrbAHDhwoX49a9/He12u+P50NBQfOtb34rx8fH73AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7p2iKKIsy73stNfPTL/f37p1K3Z2dvrqnFKKLMsOrLtlRESe58fO9HLP7vrMmTNRr9dP+PIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBgqVddgMHyxS9+MX7729/G66+/HltbWx1n2u12pJTuczOAzs6ePRu1Wi1arVbVVQCIiAsXLsTvf//72NjYOHQ2NDQUjz/+eHz5y1+uoBkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj4KiKKIsywPrbnkaM3fu3On6O/BHSSlFlmVdc/9MnufHzvRyz26Oj4/HyMjIyR4eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoqF51AQbPlStX4tq1a3H9+vXY2trqODM6OnqfWwF01mg0Is/zaLVaVVcBICIWFhZic3Oz41m73Y6XX345RkZG7nMrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO6FoiiiLMuueZozq6urXX838ygppciy7FB2Osvz/NiZXu7ZzbGxMb8LDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj7h61QUYPCmlWFpaiqeeeiq2tra6zgA8KGZmZqLValVdA4CIePLJJ6Pdbh/aHx4ejvn5+fj85z9fQSsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAh1tRFFGW5aE86uxezaytrcX6+nrfnVNKkWXZoex0lud517Nevu80k+f5yR4dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgB/WqCzCYZmdn49VXX40XXnih43lK6T43Auiu2WxGq9WqugYAETE3NxcjIyOxsbFxYH97ezu+973vxdDQUEXNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPpXFEWUZXkojzrrZabX72/cuNF355RSZFm2l532djPP82Nnerln/8zU1JTfsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGveoCDK7nn38+3nrrrXj99ddja2vrwNno6GhFrQAOazabsbKyUnUNACKiXq/H7Oxs/OlPf9rbazQacenSpfj0pz9dYTMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgYVIURZRluZed9k5z5tatW7Gzs9NX55RSZFl2YN0tIyLyPD92ppd7dtdnzpyJer1+wpcHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgH/WqCzDYrly5EteuXYvr16/H1tbW3n5KqcJWAAfNzMzE1atXq64BwH99/OMfj+Xl5b3/P25tbcV3v/vdilsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvSiKIsqyPLDulqcxc/v27dje3u67d0opsizrmvtn8jw/dqaXe3ZzYmIiGo3GyR4eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAh1K96gIMtpRSLC0txVNPPRVbW1sH9gEeFM1mM1qtVtU1APivhYWF+NGPfhQREY1GIy5fvhwf+9jHKm4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD76iKKIsy655mjOrq6uxubnZd+eUUmRZdig7neV5fuxML/fs5tjYWIyOjp743QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC9qlddAGZnZ+PVV1+NF154YW9vdHS0wkYABzWbzVhZWam6BgD/tbCwEJubmxERsbOzE9/+9rcrbgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHK4oiyrLsmiedOepsbW0t1tfX++6cUoosyw5lp7M8z4+d6eWe3dxdAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKCrV10AIiKef/75eOutt+KHP/xhRESMjo5W3Ajg/zWbzVhbW4vV1dWYmJioug7AwHvyyScjIqJWq8VXvvKV+PCHP1xxIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5URVFEWZaH8qiz05jpR0opsizby057u5nn+bEzvdyzf2Z6ejpqtdrJHh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4J+pVF+DRt7a2Fuvr67G5uRmrq6sREXHjxo1D51/4whfiN7/5TfzjH/+It99+O1JKB77pZHR0NMbGxjqe1Wq1mJ6e3vvz+Ph4jIyMxMjISIyPjx86B+im2WxGRESr1YqJiYmK2wDcH2VZxq9+9avY3t6uukpHU1NTsba2FhcuXIif/vSnlXSYmZmJT37yk5X83QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+6oiiiLMu97LR3mjM3b96MdrvdV+eUUmRZdmDdLbMsizzPj5zp5Z79M5OTkzE8PHzyxwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+w96dB9lZ1vkC/3ank5yT7k76ZOnuBDAYw5IFMMbEKwEk97KUoywDaLgWOJQyMxHlCjqICPeyzXBHLuKCM1WIpXG4JRSIS2oYdKqYsARKwAwXIQE1LJKyk87eSTrnkK3vH1PpSk+6k26S5gT4fKpO/d73eX7vc77Pk07V+e8FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4x6jp6urqqnYIDg1dXV1Zv3591q9fnw0bNmTTpk3ZsGFDOjs709nZmS1btmTjxo3d95s3b05HR0f3/aZNm7Jz585s2rQpSdLR0ZFdu3ZVeVf909jYmLq6uhQKhRSLxRSLxdTX12fkyJFpbGxMfX196uvr09TUlIaGhu77UqnU3Td69Ojuz7Bhw6q9JeAg+tOf/pTDDz88ixcvzpw5c6odB+At8dOf/jTnn39+tWMc0urq6rJ9+/ZqxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOihXC6nUqn0uO6rDkbP7ncdD8Tudwvvef2f677mDrSnoaEhQ4cOPcCTBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjo7q+rdgIGz7p169Le3p7Vq1enra0ta9asybp167J+/fruz4YNG3rc96a+vj719fVpaGhIU1NTRowYkfr6+owcOTJHHHFE6uvrM2LEiDQ1NaWmpiZNTU1JksbGxtTV1aVQKKRYLGbIkCEZOXJkkmTUqFGpra1NkgwdOjQNDQ197qNUKvU519nZmW3btvU6t23btnR2dnbfb968OTt27EilUkm5XM6OHTuyefPmJMnGjRvT1dXVvd7WrVvT2dmZzZs3p6OjIx0dHWlra0tHR0c2b96czs7ObN26NRs2bOj1uxsaGlIqlTJ69Oi9PmPGjElzc3PGjRuX8ePHp6WlJc3Nzamr898RDlXNzc2pqalJe3t7taMAvGV27NiRJHngpbYqJzk0PfnQwnzjyvnVjgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxCyuVyKpVKj+u+6r563uzzu9/hO1C730HcV92zp1Qq7benP+vsrvX19Rk2bNiBHTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAO1hdtQMwcKtXr86KFSuyYsWKvP7662lvb8/KlSuzevXqrFq1KqtWrcqaNWuybdu27mfq6uoybty4jBkzJqNHj87o0aNz2GGH5bjjjuu+Hz16dMaMGZNSqZTRo0dn1KhRaWpqquJO96++vj719fVVzdDZ2ZlNmzZl/fr1vX42bNiQ9evX57XXXsuSJUuybt26rF69OuVyucc6zc3NGTduXFpaWjJ+/Pg0NzentbU1hx12WCZOnJj3vOc9mTBhQurq/LeFt9rQoUNTKpXS3t5e7SgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9KJcLqdSqfRZB7Ons7Ozx/uE+6tQKKRYLO5Ve5srlUr77enPOrvr7msAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADm111Q5ATzt37szrr7+el19+OStWrMjrr7+eP/7xj1mxYkUIqiIdAAAgAElEQVT3fblc7u5vaWlJS0tLJkyYkObm5kyZMiUTJkzIuHHj0tramtbW1jQ3N2fcuHGpqamp4s7euerr61NfX5/x48cP6LktW7akra0tq1evTnt7e1auXJnVq1dn1apVaW9vz8svv5y2trasXLky27dvT5IMGTIk48ePz8SJE/Oe97wnRxxxRI444ohMnDgxEydOzFFHHZVisTgY24R3vdbW1rS3t1c7BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAhpVwup1Kp7FX3NTcYPQNRKBRSLBa7a29ju2upVNpvT3/W2bOnqanJ+4YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Je6agd4t2pra8uyZcvyyiuv9Pi8+OKL2bp1a5Jk+PDhOeywwzJ+/PhMmDAhM2fOzKRJk7rvjz766DQ2NlZ5J7xZDQ0NOfroo3P00Ufvt3fDhg155ZVX0tbWlpUrV3b/vTzxxBNZuXJlXnvttezatStJUiqVMmnSpEyaNClTp07NtGnTMmnSJH8vcIBaWlrS3t5e7RgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASZJyuZxKpdJdexsbzJ6NGzemq6trQJkLhUKKxWJ37W1sdy0WiymVSr3O9ef53npGjhyZIUOGHPjhAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBbpK7aAd7Jdu7cmeXLl+f555/P888/n6VLl+b555/Pq6++mu3btydJxowZk8mTJ2fy5Mk566yzcuWVV+aoo47KpEmTMnbs2CrvgENFqVTKzJkzM3PmzF7ny+VyXnnllfzhD3/I8uXLuz8LFizIihUrsmvXriTJYYcdlilTpmT69OmZPn16jj/++EydOjX19fVv5XbgbamlpSWrVq2qdgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgysrlciqVSnftbWwgPQN9vqOjo/t9pf1VKBRSLBZ7XPdVk/94n+r+evqzzu7rxsbG1NV5nTIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFRdtQO8U6xbty6/+c1v8txzz+WFF17I0qVLs2zZslQqlQwZMiSTJk3K8ccfnwsvvDDHHHNMJk+enMmTJ2f06NHVjs47QLFYzLRp0zJt2rS95t54440sX748y5cvzx/+8IcsXbo0ixcvzve+971s3bo1tbW1ee9735vp06dn+vTpOe644/KBD3wgRx11VBV2Aoeu1tbWPPXUU9WOAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO9a5XI5lUqlx3VfdTB6Nm/enB07dgw4d6FQSLFY7LPu2VMqlfbb0591dtf6+voMGzbswA4eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiaumoHeDvavn17fvvb32bx4sVZsmRJlixZkhdffDFdXV0plUqZOnVqTjrppPz1X/91pk6dmhkzZqS+vr7asXmXGj58eKZNm5Zp06btNdfW1pYlS5Zk2bJlWbp0aX75y1/mtttuyxtvvJGRI0fmuOOOy8yZM3PSSSfl5JNPTmtraxV2AIeGlpaWtLe3VzsGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVEW5XE6lUumzDmZPZ2dntm3bNuDMhUIhxWJxr9rbXKlU2m9Pf9bZXUeMGJHhw4cf8LkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO9uddUO8HbQ1taWRYsW5dFHH81TTz2VZcuWZceOHWlubs6sWbPyyU9+MrNmzcqsWbMybty4aseFfpswYUImTJiQs846q3usUqnk2WefzTPPPJNnnnkmv/rVr3LHHXekq6srRxxxRGbPnp2TTz45c+fOzXHHHZeampoq7gDeOi0tLVm1alW1YwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAuUy6XU6lU9qr7mjtYPVu3bs0bb7wx4MyFQiHFYrG79ja2u5ZKpf329GedPXtKpdKBHToAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCGirtoBDkVr1qzJI488kkWLFmXRokV56aWXMmzYsMyePTtnnHFGrrvuusyaNStHHnlktaPCQVcoFPLhD384H/7wh7vHNm7cmN/85jd5+umn8/TTT+emm27KFVdckbFjx+bUU0/N3LlzM3fu3EyZMqWKyWFwtbS0ZOvWrdmyZUsaGhqqHQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBBVi6XU6lU9qr7mutPT3+f37Bhw4AzFwqFFIvF7trb2O5aKpX229OfdfbsGTVqVGpraw/g1AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2FNdtQMcCrq6uvL000/n5z//eR588MG88MILGTJkSGbOnJlzzz03c+fOzUknnZQRI0ZUOypURVNTU0477bScdtppSZJdu3blueeey6JFi7Jo0aJcc8012bRpU8aPH58zzjgj55xzTs4880z/Z3hHaWlpSZK0t7enoaGhymkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeucrlciqVSnftbWwwezo6OrJr164BZS4UCikWiz2u+6pJUiqV9tvTn3V2Xzc2NqauzqtqAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeaeqqHaBatm3blkceeSQ/+9nPsnDhwrS1tWXSpEk5++yzc8stt+SUU07JyJEjqx0TDkm1tbWZMWNGZsyYkS996UvZsWNHlixZkkWLFuXBBx/MBRdckEKhkDPOOCPnnHNOzjrrrIwZM6baseGAtLa2JklWrVqV973vfVVOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcPCVy+VUKpUe133VwejZtGlTdu7cOeDchUIhxWKxz7pnT6lU2m9Pf9bZXRsaGjJ06NADO3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOhDXbUDvNWefPLJ3HXXXfnZz36Wjo6OfOADH8j8+fNzzjnn5Pjjj692PHhbqqury4c+9KF86EMfyle/+tWsXr06CxcuzM9//vN87nOfy6WXXppTTz01n/nMZ3LeeeelUChUOzIMWHNzc2pqatLe3l7tKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDtQuVxOpVLpsw5mz5YtW7J9+/YBZy4UCikWi3vV3uZKpdJ+e/qzzu46YsSIDB8+/IDPHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmV11Q7wVli/fn3uvvvu3HXXXVm6dGlmzJiRG2+8Meeee24mTpxY7XjwjtPc3JxLL700l156abZs2ZKHHnoo99xzTy655JJcfvnl+fSnP52//Mu/zNSpU6sdFfpt6NChKZVKaW9vr3YUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICqXy6lUKn3WffUc6PNbt27NG2+8MeDMhUIhxWJxr9rbXKlU2m9Pf9bZXXdfAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg6+u2gEG09KlS3Prrbfmvvvuy9ChQ3PhhRdmwYIF+eAHP1jtaPCu0dDQkE984hP5xCc+kZUrV2bBggX5/ve/n29961uZM2dOvvzlL+ecc85JbW1ttaPCfrW2tqa9vb3aMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4B2hXC6nUqnsVfc1Nxg9A1EoFFIsFrtrb2O7a6lU2m9Pf9bZs2fUqFHe/wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO8iddUOMBhefPHFXHvttfnFL36RKVOm5Dvf+U4uvPDCNDY2VjsavKuNHz8+11xzTa6++uo8/PDD+cd//MdccMEFmTp1am688cacd9551Y4I+9TS0pL29vZqxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgANSLpdTqVS6a29jg9mzcePGdHV1DShzoVBIsVjscd1XLRaLKZVK++zpzzp79owcOTJDhgw58MMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYgLpqBziYNm7cmGuvvTbf+973Mn369DzwwAM5++yzU1tbW+1oe6mpqUlXV9eA5+CdoLa2NqeffnpOP/30LF26NH/7t3+bCy64ICeddFLuuOOOnHDCCdWOCL1qaWnJqlWrqh0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC3qXK5nEql0uO6rzoYPZs2bcrOnTsHlLlQKKRYLPa4/s91z7lSqbTfnv6ss7s2NDRk6NChB3jyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb0911Q5wsPzqV7/KpZdemu3bt+fOO+/MJZdcktra2mrHAvZj2rRpueeee3LllVfmiiuuyKxZs3Ldddfl2muvzZAhQ6odD3poaWnJ008/Xe0YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMULlcTqVS6XHdV91Xz5t9fsuWLdm+ffuAcxcKhRSLxT7rnj2lUmm/Pf1ZZ3etr6/PsGHDDuzgAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCB11Q5wMHz961/P1772tcybNy933HFHxowZU+1IwADNnj07ixcvzne+85187Wtfy5NPPpl77703TU1N1Y4G3VpaWtLe3l7tGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbyvlcjmVSqXPOpg9nZ2d2bZt24AzFwqFFIvFvWpvc6VSab89/Vlnd919DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHXVDnCgvvrVr+a2227LLbfckquvvrpqOWpqapIkXV1d+x3fPba7JslnP/vZfP/739/nXJK88MILufrqq/PYY48lSebMmZPbbrst06dP32v95cuX56qrrsqiRYuycePGXvPtay9Lly7Nl770pTz55JPZtWtXPvKRj+S2227LlClTBvRdL7zwQr7yla/k8ccfT5KcfPLJufXWW3tkTpLnnnsuV111VZ544okMGTIkc+bMyRVXXJEzzzyzu6c/++/o6MgNN9yQX/ziF2lra0upVMqZZ56Zyy67LLNnz+53z0Cyv5XnuXDhwnz961/PkiVL0tramj//8z/PTTfdlMbGxr3W+c+GDx+eSqVy0PZ2sNXW1uaKK67IqaeemnPOOSennnpqHnnkkTQ1NVUtE+yptbU17e3t1Y4BcMg6/9gJSZI7F/0m37/5a3n+109keLGYE048JZ+59uY0NpV69L/+h5dy921/l2XP/DpJcuwHZuUvrv5fec9Rx/boW7H8d/mnW2/O0md+ndra2hz9/pn5zDU35osfPzVJ8sBLbd29z/zbv+Znd303ryz9bZrGNudDp380F/6Pq1Ksb9gr5z/865P5p/9zc1546ol0btq011oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwdlcul1OpVPaq+5objJ6BKBQKKRaL3bW3sd21VCrtt6c/6+zZ09TU1Of74AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCtVtPV1dVV7RBv1l133ZX58+dnwYIFufjii6sdJzU1NentOHsb76t3X3PLly/PySefnOuvvz7nn39+amtr89BDD+X666/Po48+msMPP7zHGqeffnpuuOGGzJgxI4888kj+7M/+rM/v7C3D9OnTc+211+b000/Pzp07s3Dhwtx888159NFHc+SRR/bru5YvX565c+fmxhtvzFlnnZWurq4sXLgwN9xwQx555JFMnjw5SfL73/8+Z599dr773e/mxBNPzGuvvZb58+fn8ccf787c3/2fe+65mTFjRubPn5+mpqYsW7Ysl19+eZ544onutfrT09/sb+V57p6/8847c9FFF2XTpk25+uqrU1NTkwULFvRYY89/623btmXOnDn57Gc/m/nz5x/UvQ2Wl19+Oaecckre//7355//+Z9TU1NT7UiQf/mXf8nHPvaxbN68OQ0NDdWOAzCo7rvvvsybNy8PvNQ2oOfOP3ZCTpjzkZx1yV9lyszZ2dLRkR/c8j8zomFkvvC/v9ndt+r113Ltp87NJ7/wpXz4jI+lprY2zz72b7n3jtty890/zZjW8d191//FBZn3hb/JB+eenpra2jz3xGP56Z3fyR9//+Je+c4/dkLm33RrTjn7/JS3bM7dt/1dkppc/vff2jvniadk3uV/k/dOmZ4Xnn4yf/dXF/V7v08+tDDfuHJ+v39fAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8O5SLpdTqVS6a29jg9mzcePGAb9bo1AopFgs9rjuqw5Gz8iRIzNkyJADPHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4R7m/pqurq6vaKd6MVatW5ZhjjsnnP//53HLLLdWOkySpqalJb8fZ23hfvfuau+iii3L88cfnK1/5So/xH/zgB3nuuefy7W9/u8caixYtyqmnnvomdvIfz997772ZN29ej/Hbb789v/3tb7NgwYJ+fddFF12UWbNm5Ytf/OJe6zz77LO5++67kySf+tSn8tGPfjQXX3xxd8/vfve7HHvssd1n0d/9NzY25o9//GNGjx7d3fPqq69m0qRJ3Wv1p6e/2fvjYJ1nbzZs2JDJkydn3bp1ffZcdtll2bhxY3784x8nObh7G0y//vWvc9JJJ+WHP/xhj78NqJYlS5bkgx/8YJYvX573ve991Y4DMKjuu+++zJs3Lw+81Dag584/dkKu/ocfZvZ/O7N7rO3Vl3P9X1yQux57tnvs21d9IROPmZpzL72sx/P/9sC9ee2lpfnMtTf/R99XLs/k6SfkY5++tEff4gd/kW9++XP7zbdlU0c+f/qH86Onlu2V86Z/+kmmzT5xQPvb7cmHFuYbV87v8zc9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1VEul1OpVLprb2MD6Rno8x0dHdm1a9eAMhcKhRSLxR7XfdXB6GlsbExdXd0BnjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCO6v6erq6qp2ijfjlltuyTe/+c2sWLEihUKh2nGSJDU1NentOHsb76t3X3Otra156qmnMnHixB7j7e3tmTt3bpYtW9Zjjc7OzowYMeLNbCU1NTVZu3ZtxowZ02P81VdfzZw5c9LW1tav7+or86uvvpoTTzwxK1eu7O7793//90yYMKHPTP3d/xlnnJGtW7fmuuuuy2mnnZa6urq91upPT3+z98fBOs99rd/X39M999yTm266Kc8880waGhqSHNy9DbZLLrkkzz//fJYsWVLtKJA//elPOfzww7N48eLMmTOn2nEABtV9992XefPm5YGX2vbfvIfzj52QHz39YhpGjuoe275tW/77Ce/NT178U/fYZ+eckL+//8GMm3B4j+c3rluT6z99Qb794KP77Nu8cUMu+S/T+pXv/GMn7NV3/rET8uP/93KGF4oD2t9uTz60MN+4cn6fv8EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADebcrlciqVSo/rvupg9GzevDk7duwYcO5CoZBisdhnHcye+vr6DBs27MAOHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHgnu7+u2gnerMceeywf//jHUygUqh3lLbNu3boceeSRvc4Vi8W9xkaMGHFA3zdmzJi9xsaPH581a9b0+7vWrl2b1tbWXtdZu3Ztj76xY8fuM09/93///ffnxhtvzOc///msWbMmM2bMyHnnnZfLLrssQ4cO7XdPf7P318E4zzVr1uSaa67JL3/5y6xatSo7d+7c53e+9NJLueKKK/Lwww+noaGhe/xg720wXXDBBfnRj36ULVu29NgDVENzc3NqamrS3t5e7SgAh7SGkaN63A8dNixdXV09xjZv3JD5/3V2r88P2+M3/qaN69M0tnmvnsam0l5jm9avy/+9/ZY8+/iibFy7Jrv281tpeGHv39AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvR+VyOZVKpc86mD2dnZ3Ztm3bgDMXCoUUi8W9am9zpVJpvz39WWd3HTFiRIYPH37A5w4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw2OqqHeDNWr9+fY477rhqx+ihpqYmb7zxRoYPH949tn79+oO2/tixY7Ns2bKUSqWDtua+tLe3p6WlpcfYypUrM27cuH6vMXbs2KxcuTJHHnnkXuuMHTu2+37MmDFZu3ZtJkyYsM+1+rP/UaNG5fbbb8/tt9+etWvX5uGHH863vvWtPP744/nJT37S757+Zu+vg3GeF198cY455pgsXrw4/5+9ew+ys6zzBP49fUmfk74kJ4F0JyThlkiEJGJxG3EUGoMs7BSXYTDlOEMhAw464qCOFyjEcXTUuBsUS3di6ew4K2Up3nFHxjUjYBAkGRQIiJqoRYKQE5B0ku6ck2vvH7Pdm0zSSXeS5uTy+VSd+r3neb/n6e/7QKf6r+6pU6emqek/voULhcJu2b6+vlx55ZVZsGBBZs+evcu9g/1so2ngfH7/+9+nra2tzm042jU3N6dcLqdSqdS7CsBhr708IXd87/60dYzba65j/IT0vLA2x06Zust6zwtrd8ve8d4bc9yJJ+fvv/ydTOyanMbG//hZ6cpZQ/+MCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCCq1Wpqtdpuc2/3DlZm06ZN2bx584g7F4vFlEqlwbmntYFZLpf3mRnOPjtnXqq/xQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwJGiqd4H9dcIJJ+Spp56qd41ddHV1ZdWqVZk5c+bg2o9+9KM9ZguFwpD7DHXvoosuyn333Zcrrrhil/UlS5bkpptuyiOPPLIfrYf2/e9/P1dfffUua9/61rfy+te/fth7zJs3L9/85jfzrne9a7d95s2bN/j+/PPPz+LFi3f5eo899lje+MY35uc//3mS4T9/oVDI6tWrM3Xq1BxzzDGZP39+LrzwwpxwwgmDnxlOZrjdh+tgnOeDDz6Yr3zlKxk/fvzgWrVa3WP2hhtuyDnnnJNrrrlmcK1QKKS/v/+gP9toevLJJ9PS0pLjjjuu3lUgyX/8W1+pVOpdA+Cwd/ofnp8nH1SJpv0AACAASURBVH4w51x48S7rT/37w/mfH70t/+2b30+SvOIPz8vSxf+a/3r1dbvkHn3gvt32/OXP/j3vun1RWjs6Bte21GoHvzwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB31Wo1tVptt7m/90aaWbdu3Yg7F4vFlEqlwbmntYFZLpf3mRnOPjtnxo0bl4aGhgM4dQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABeak31LrC/rrzyyvzZn/1ZVq5cmRkzZtS7TpLkwgsvzC233JJPfvKTGT9+fH784x9n0aJFe8wed9xxeeihh3LmmWfm3nvvzXXXXZdVq1bt9d7f/u3f5tJLL8327dvT3d2dMWPG5P77788NN9yQz3zmMwf9eT73uc+lqakpF110UXbs2JG77747d9xxR+6///5h7/HBD34w3d3d6ejoyKWXXppCoZC77747t99+e+67777B3K233porrrgiU6ZMyate9ar8+te/zrXXXpsbb7xxMDOS57/uuuuycOHCzJgxIz09Pbnjjjsyb968EWWG2324DsZ5nnvuuXnve9+bW265JVOmTMmqVavy4Q9/eI9f69FHH83SpUv3uM/BfrbRsmPHjixatCiXXnppmpoO23+uOMJ0dnamUqnUuwbAYW/+je/Ox996TXbs2J7Z57w6Tc3NeXLZQ/ncB9+X6z/w0f+fe/u7c9vVV6bU2pYzuy9MoaEhj/34/vyfr965256nvPLMfOm/fzh//JfvyIRJXXnhud/la//jky/lYwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBGvWq2mVqsNzj2tjWZm/fr12bFjx4g6F4vFlEqlXa6HmklSLpf3mRnOPgPX7e3t/g4TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPul0N/f31/vEvtj69atOeuss9LR0ZHFixdnzJgx9a6UF154IX/913+dH/zgB9m0aVMuuOCCfPazn8306dOTJDsf9de+9rW8733vy+9+97tMnz49CxcuzKWXXrrPeytWrMjNN9+cxYsXZ9u2bTn11FNz880354orrhjcu1Ao7NJrf/4TFwqF/Pa3v82NN96Y+++/Pzt27MhrX/vaLFy4MC9/+ctH9LWWL1+e9773vVmyZEmS5DWveU0+8YlPZM6cObvkHnroobznPe/JI488kmOPPTZve9vb8v73v3+XzHCe/9/+7d/ymc98JkuWLMnGjRtz3HHH5fLLL8+HPvShtLe3Dzszku4v1XmuXbs2f/M3f5Pvf//76enpycte9rJ84AMfyPz583fJF4vFbN68eY9dBjIH69lG04IFC3Lbbbdl2bJlmTt3br3rQJLkjW98Y2q1Wr71rW/VuwrAqLrrrrsyf/78fOMXzw77M1fOmjJ4vfPnhlp/7unf5s6FH83jDy3J9m3bMm3Gy/LHb7kx51x48S77rl75y/yvT3w4Ty77SRoaGnLaWa/Km2/5UN7+X/4wX//5M4O59b9/If/8ib/Low/cl74N6zPlhJNz1dtuysJ33rDL1965z3/uNFwP3nN3Fr7zhv36WRsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZHtVpNrVbb5XqoORqZDRs2ZPv27SPuXSwWUyqVhpyjmWlra0tzc/OBHTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1M/XCv39/f31brG/Hn/88bzmNa/JhRdemC9/+csZM2ZMvSsdMQqFQg7j/zUOOc5z5L74xS/mL/7iL7Jw4cLcdNNN9a4Dg2666aYsXbo0Dz74YL2rAIyqu+66K/Pnz883fvFsvavs0eqVv8zfv+XPs+iHS+vy9R+85+4sfOcNfsYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAADhKVKvV1Gq1IedoZnp7e7N169YRdy4WiymVSrvNvd07WJmxY8empaXlgM8dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI5yX2uqd4MDMXfu3Hz3u9/NH/3RH2XevHn5+te/nkmTJtW7FnAAtm/fnttuuy0f+9jHcuutt+amm26qdyXYRWdnZyqVSr1rABxVrpw1Jdfe8nc57/Kr0lIs5Zlfr8gXPnxLLn7TNfWuBgAAAAAAAAAAAAAAAAAAAAAAAAAAAADAKKtWq6nVakPOvWUO9PObNm3K5s2bR9y5WCymVCrtNvd0r1wu7zMznH0G5sA1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBkaKp3gQP12te+Ng8++GAuu+yyzJ49O5/97Gdz1VVX1bvWYa1QKAzO/v7+Orc5/DnP4fvFL36RN7/5zfnZz36WL3zhC7n22mvrXQl209XVlUqlUu8aAEeVmxf9c/73Fz+fL39qQQoNDZly/Im55M+vzfmXv6He1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjljVajW1Wm23ubd7o5EZiWKxmFKpNDj3tDYwy+XyPjPD2WfnzLhx49LQ0HBgBw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsJOmehc4GGbPnp3ly5fn5ptvzvz587No0aIsXLgwp59+er2rHXIKhcJe7/f396e/v/8lanP4c54Hx7p167JgwYJ86lOfyimnnJKf/OQnvn85ZHV2dqavry+9vb1pa2urdx2Ao8KZ51+YM8+/sN41AAAAAAAAAAAAAAAAAAAAAAAAAAAAAABeEtVqNbVabXDuaW00Mz09PSP+uzvFYjGlUmmX66FmqVRKuVzea2Y4++yc6ejoSGNj44EfPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAIaap3gUOlrFjx+aOO+7In/7pn+bd7353zjjjjFxyySX54Ac/mDPPPLPe9Q4Z/f399a5wRHGeB2bDhg35h3/4hyxYsCANDQ1ZsGBB/uqv/ipNTUfMP00cgTo7O5MklUolbW1tdW4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAwVKtVlOr1Xa5HmqORmbDhg3Zvn37iHsXi8WUSqUh586Zcrm8z8xw9hmYbW1taW5uPrCDBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgSE31LnCwnXPOOVmyZEm+8Y1v5CMf+UjOPvvsXHDBBbn++utz+eWXp6Wlpd4V4aj38MMP5/Of/3y++tWvpqWlJe9617vyjne8Ix0dHfWuBvvU1dWVJFmzZk1OPvnkOrcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4/FWr1dRqtV2uh5p7y+zv53t7e7N169YR9y4WiymVSkPOnTPlcnmfmeHsMzBbW1szZsyYAzt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOeU31LjAaCoVC/uRP/iRXXnll7rnnnixatChvetObUi6Xc/XVV+f666/PrFmz6l0Tjio9PT2588478/nPfz6PP/545syZk49+9KO55ppr0t7eXu96MGyTJk1KoVBIpVKpdxUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIADVq1WU6vVhpyjmenr68uWLVtG3LlYLKZUKu0293SvXC7vMzOcfQbmwDUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALwUmupdYDQVCoVccsklueSSS/K73/0u//RP/5R//Md/zO23355zzjknV1xxRS6//PKccsop9a4KR6QXX3wx//Iv/5Jvf/vbueeee9LY2Jj58+fnc5/7XP7gD/6g3vVgvzQ3N6dcLqdSqdS7CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcBirVqup1Wq7zb3dG43MSBSLxZRKpcG5p7WBWS6X95kZzj47Z8aPH59CoXBgBw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIeRpnoXeKkcd9xxufXWW3PLLbfkBz/4Qe66664sXLgw73//+/Pyl788l19+ea644oqceeaZKRQK9a4Lh63Vq1fnO9/5Tr797W/n/vvvT2NjYy644IJ8+tOfzhve8IZ0dHTUuyIcsK6urlQqlXrXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9kO1Wk2tVhuce1obzUxPT0/6+/tH1LlYLKZUKu1yPdQslUopl8t7zQxnn50zHR0daWxsPPDDBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARqSp3gVeag0NDbnoooty0UUXZfv27XnggQfyne98J1/5ylfysY99LJMnT87rXve6dHd3p7u7OyeeeGK9K8Mhbf369fnRj36UH/7wh7n33nvz+OOPp729PRdffHHuvPPOXHzxxeno6Kh3TTioOjs7U6lU6l0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOK9VqNbVabXDuaW049/Y3s379+uzYsWNEnYvFYkql0i7XQ80kKZfL+8wMZ5+B6/b29jQ1HXV/ZggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPh/mupdoJ4aGxtz3nnn5bzzzsvtt9+eRx99NN/73vdy77335u1vf3uq1WpOOOGEdHd3D76mTp1a79pQV729vVmyZEnuu+++3HvvvfnpT3+a/v7+zJkzJ93d3fn4xz+e7u7utLS01LsqjJrOzs6sWbOm3jUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBYqtVqarXaLtdDzdHIbNy4Mdu2bRtx72KxmFKpNOTcOVMul/eZGc4+A7O1tTVjxow5sIMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4QE31LnAoOf3003P66afnlltuybZt2/LYY49l8eLFWbx4cd7ylrekVqtl8uTJOeOMMwZf5557biZOnFjv6jAqtm3bll/+8pd55JFHBl/Lli3Lli1bctJJJ2XevHl5z3vek+7u7hxzzDH1rgsvmc7OzixdurTeNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAxUq9XUarUh52hm+vr6smXLlhF3LhaLKZVKu8093SuXy/vMDGefgTl27Ni0tLQc8LkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCZrqXeBQ1dTUlDPOOCNnnHFG3ve+96VareYnP/lJHn744SxdujRf+MIX8qEPfSgNDQ055ZRTctZZZ+Wss87KK17xisyZMyfjx4+v9yPAiGzZsiVPPfVUnnjiiSxbtizLli3Lz372s1Sr1bS3t+eMM87Iueeem3e+85159atfna6urnpXhrrp7OxMpVKpdw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPaiWq2mVqvtNvd272BlNm3alM2bN4+4c7FYTKlUGpx7WhuY5XJ5n5nh7LNzZvz48SkUCgd28AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw0TfUucLgolUrp7u5Od3f34Nqzzz6bZcuWZenSpVm6dGk+8IEPpKenJ0kyderUnHbaaZk7d25OO+20zJ49O6eeempKpVK9HgGSJDt27MhvfvObLF++PE8++WSWL1+eJ554Ir/61a+ybdu2NDc3Z+7cuTn77LNz3XXX5eyzz86sWbPS2NhY7+pwyOjq6kqlUql3DQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQ1K1Wk2tVttt7u+9kWbWrVs34s7FYjGlUmlw7mltYJbL5X1mhrPPzvfGjRuXhoaGAzh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjkRN9S5wOJsyZUouu+yyXHbZZYNrTz/9dJ588sksX748TzzxRBYvXpxPf/rT2bx5cxobG3PSSSfllFNOycyZMzNjxozMmDEjM2fOzPTp09PY2FjHp+FI8/zzz2flypX51a9+lZUrV2bFihVZuXJlnnrqqWzatCmFQiEnnnhiZs+encsuuyxz587NaaedllmzZqW5ubne9eGQ1tnZmb6+vvT29qatra3edQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkiTVajW1Wm1w7mltNDPr16/Pjh07RtS5WCymVCrtcj3UTJJyubzPzHD2Gbhub29PU5M/4QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMChqaneBY40xx9/fI4//vhccsklg2vbtm3LypUrs3z58jz55JNZsWJFHnjggXzxi1/MunXrkiRjxozJiSeemJkzZ2bmzJk5+eSTM3369EyfPj3Tpk3LhAkT6vVIHKKq1WpWrVqV1atX55lnnsmvf/3rrFy5MitWrMjKlSuzfv36JElLS0tOPvnkzJw5M+eff37e+ta3Zs6cOTn11FPT1tZW56eAw1NnZ2eSpFKp+D4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKtVlOr1Xa5HmqORmbjxo3Ztm3biHsXi8WUSqUh586Zcrm8z8xw9hmYbW1taW5uPrCDBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCNcU70LHA2ampoya9aszJo1K1ddddUu937/+99n5cqVWblyZVasWJEVK1bkxz/+cb70pS/lhRdeGMyNHTs2xx9/fKZNmzb4Gng/efLkdHZ2ZuLEiS/1ozFKNm3alOeeey5r1qzJ6tWr88wzz2T16tV5+umns3r16qxevTrPP//8YL5UKuWkk07KjBkzcv755+f666/PjBkzMmPGjEybNi0NDQ11fBo48nR2diZJKpVKTj755Dq3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAICjW7VaTa1WG3KOZqa3tzdbt24dcedisZhSqbTb3NO9crm8z8xw9hmYY8eOTUtLywGfOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADD6mupd4Gg3ceLETJw4Meecc85u96rVap5++umsXr06q1evzqpVq7Jq1ao8/fTTeeCBB7Jq1apUq9XB/JgxYzJp0qRMnjw5nZ2dmTRpUqZMmZJJkyalq6srXV1dmThxYsrlciZMmJCWlpaX8lGPav39/XnxxRcHX2vXrk2lUslzzz2XtWvX5rnnnkulUkmlUsmzzz6bvr6+wc82NjZm8uTJOf744zN9+vS87nWvy7Rp0wbfT506Ncccc0wdnw6OPp2dnSkUClmzZk29qwAAAAAAAAAAAAAAAAAAAAAAAAAAAABA3VSr1dRqtd3m3u4drMymTZuyefPmEXcuFosplUq7zT3dK5fL+8wMZ5+d75XL5QM7dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCo0lTvAgytVCpl1qxZmTVr1pCZ559/PpVKJWvWrMmaNWuydu3aPPvss1m7dm2eeeaZLFu2LGvXrs3atWvT39+/y2dbW1szYcKElMvlTJgwYfC18/v29va0trZm7NixKZfLaW1tTWtra9ra2jJ+/PgUCoXRPoZDwsaNG7Np06b09fVl3bp16evrS19fX3p7e9PT05ONGzdm3bp1efHFFwdfO79ft27dbnu2t7dnypQpmTRpUrq6uvLKV74ykyZNGlzr7OzM5MmT09XVlaYm36pwKGlubk65XE6lUql3FQAAAAAAAAAAAAAAAAAAAAAAAAAAAACOQtVqNbVabbe5t3ujkRmJYrGYUqk0OPe0NjDL5fI+M8PZZ+fMuHHj0tDQcGAHDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPASa6p3AQ7Msccem2OPPTazZ8/ea2779u1Zu3ZtXnzxxcHXunXrdrtetWpVHn300cH3vb292bp165D7jh07Nq2trWlvb8+4cePS0NCQtra2NDc3p6WlJWPHjk1DQ0PGjRuXJOno6EhjY2NKpVKKxeLgPmPGjElra+sev0axWEypVNrjM23YsGGPn9m6dWt6e3sH3+/YsSPr169PkmzYsCHbt2/Ppk2bsnnz5l2y69atG8z09fWlr69v8HNDGT9+fNrb21MulzNhwoRMmDAh06ZNyyte8YrB9wOvgcykSZP2+EzA4aOrqyuVSqXeNQBG3YP/+t16Vzgk/eqxn9a7AgAAAAAAAAAAAAAAAAAAAAAAAAAAUAfVajW1Wm1w7mltNDM9PT3p7+8fUeedf+f/wPVQs1QqpVwu7zUznH12zgz8nQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARq6p3gV4aTQ2Nmby5MmZPHnyiD+7efPm9PX1paenJ729venr60tfX1/WrVs3eN3b25uenp709/dnw4YN2b59e6rVamq1WrZs2ZLf/OY3STKY6evry5YtWwa/xn9+v7ONGzdm27Zte7w3bty4NDQ0pL+/P7VaLS0tLWloaEihUMj48eN3yZbL5SRJW1tbmpub09LSkrFjx6alpSWTJk1KknR0dKSxsTFtbW1pbW1Na2tryuXybu8Hrtva2kZ8nsCRobOzM5VKpd41AEbN5MmT09TUlIU3/WW9qxyyjps6td4VAAAAAAAAAAAAAAAAAAAAAAAAAADgqDHw++93vh5qjkZm4Pfwj1SxWEypVBpy7pwpl8v7zAxnn4E58Lv5AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADh8NdW7AIe+lpaWtLS0ZMKECfWuMqQdO3bkhBNOyNVXX52PfOQj9a4DHAU6O/8vO/fz2kde/wH89Uk/aWeaNMmInclBUah4WL1Y9CLIFkGLB0FRVuiyhRVc99CKoOJFWFyWxR/IiqunXfDQPSl48eRRvPWu/4CXzOTQX0lnmqbp9/JNSMyPz+ezySfv7fTxuDyHeT9582T+gKliZWUl9QyAqfnKV74Sjx8/Tj0j/vznP8eNGzdifX099RQAAAAAAAAAAAAAAAAAAAAAAAAAAHgutW0bXdftef7fPOrsuJ21tbUP9a/ULMsiz/NDc3enKIqRnXHu2c65ubk4e/bs8T48AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjcFRAAAIABJREFUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETEMPUAOAkzMzNx7dq1+OCDD+LNN9+MmZmZ1JOAnquqKm7fvp16BkDvNU0TVVWlngEAAAAAAAAAAAAAAAAAAAAAAAAAAEm0bRtd1x2a0+ysr6/HxsbGxJuzLIs8z/flQWdFUYzsjHPPdm4/AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBfDFMPgJNy/fr1+PWvfx3/+te/4sUXX0w9B+i5qqqiruvUMwB6b3V1NcqyTD0DAAAAAAAAAAAAAAAAAAAAAAAAAIDnTNu20XXdvjzqbBqdSWRZFnme7+RB77azKIqRnXHu2d1ZWlqKwWBwvA8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOwxTD0ATsoLL7wQly9fjlu3bsWLL76Yeg7Qc8vLy1HXdeoZAL3XNE2UZZl6BgAAAAAAAAAAAAAAAAAAAAAAAAAAp6Rt2+i6bicPejfNzt27d+Pp06cTbc6yLPI83/N8WOZ5HkVRHNkZ557dnYWFhThz5szxPz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8JEzTD0ATtIrr7wSb7zxRrz77ruR53nqOUCPVVUV6+vrsba2FvPz86nnAPRW0zTxiU98IvUMAAAAAAAAAAAAAAAAAAAAAAAAAIDea9s2uq7byYPejXP2YTv379+PJ0+eTLQ5y7Kdf5JvPx+WERFFUYzsTHJ24cKFGA798h8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmJ5h6gFwkq5duxY/+9nP4u9//3u89NJLqecAPVZVVURE1HUd8/PzidcA9FfTNHH58uXUMwAAAAAAAAAAAAAAAAAAAAAAAAAApqZt2+i6bs/zYTmNzoMHD2Jzc3Pi3VmWRZ7nh+buTlEUIzvj3LOdc3Nzcfbs2eN9eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZ8Aw9QA4SWVZxte+9rW4detWvPTSS6nnAD1WVVVERNR1HZcuXUq8BqC/mqaJixcvpp4BAAAAAAAAAAAAAAAAAAAAAAAAAPRU27bRdd2hOc3O+vp6bGxsTLw5y7LI83xfHnRWFMXIzjj3bOf2MwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAp2OYegCctFdeeSWuX78edV1HVVWp5wA9VVVVDAaDWFlZST0FoLeePn0aq6urUZZl6ikAAAAAAAAAAAAAAAAAAAAAAAAAwAlr2za6rtuXR52dVOfhw4fx6NGjiTdnWRZ5nu/kQe+2syiKkZ1x7tndWVpaisFgcLwPDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAM2WYegCctG9961sxNzcXf/nLX+LmzZup5wA9NTs7G0VRRF3XqacA9Nbdu3djY2MjyrJMPQUAAAAAAAAAAAAAAAAAAAAAAAAAeqNt2+i6bicPejfNzp07dybenGVZ5Hm+kwe9286iKEZ2xrln99ni4mLMzMwc46sDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCHM0w9AE5anufx7W9/O27duhU3b95MPQfoseXl5ajrOvUMgN5qmiYiIsqyTLwEAAAAAAAAAAAAAAAAAAAAAAAAAI6vbdvoum4nD3o3zc69e/dia2tros1ZlkWe53ueD8uIiKIoRnbGuWf7+cKFCzEc+p06AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPr2HqATAN169fj69+9avx73//Oz73uc+lngP0VFVVUdd16hkAvdU0TURElGWZeAkAAAAAAAAAAAAAAAAAAAAAAAAAz7K2baPruj3Ph+U0Og8ePIjNzc2Jd2dZFnmeH5q7O0VRjOyMc892zs/Px+zs7PE+PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcGzD1ANgGq5cuRKf+cxn4v3334933nkn9Rygp6qqipWVldQzAHqraZoYDAbx8Y9/PPUUAAAAAAAAAAAAAAAAAAAAAAAAAD6ktm2j67pDc5qdtbW1ePz48cSbsyyLPM/35UFnRVGM7Ixzz3aeP38+zp07d+zvDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9MMw9QCYhsFgEN///vfjN7/5Tbz99tuR53nqSUAPVVUVt2/fTj0DoLeapomPfexjMTs7m3oKAAAAAAAAAAAAAAAAAAAAAAAAwDOnbdvoum5fHnV2Up2HDx/Go0ePJt6cZVnkeb4vDzorimJkZ5x7dp8VRXG8jw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHDChqkHwLS8+uqr8cYbb8Tf/va3ePnll1PPAXqoqqqo6zr1DIDeapomyrJMPQMAAAAAAAAAAAAAAAAAAAAAAABgIm3bRtd1+/Kos2l0JpFlWeR5vpMHvdvOoihGdsa5Z3dncXExZmZmjvfhAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAemiYegBMy/Lycnzzm9+M9957L15++eXUc4AeWl5ejrquU88A6K3V1dUoyzL1DAAAAAAAAAAAAAAAAAAAAAAAAOAZ0bZtdF23kwe9m2bn3r17sbW1NdHmLMsiz/M9z4dlnudRFMWRnXHu2d1ZWFiIM2fOHP/jAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBXD1ANgmn7wgx/EN77xjfjPf/4TL7zwQuo5QM9UVRXr6+uxtrYW8/PzqecA9E7TNFGWZeoZAAAAAAAAAAAAAAAAAAAAAAAAwAht20bXdXueD8tpdO7fvx9PnjyZeHeWZZHn+aG5u1MUxcjOOPds5/z8fMzOzh7vwwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANB7w9QDYJq+/vWvx6c//el477334p133kk9B+iZqqoiIqKu65ifn0+8BqB/mqaJz3/+86lnAAAAAAAAAAAAAAAAAAAAAAAAwEdW27bRdd2e5//No86O21lbW4vHjx9PvDvLssjz/NDc3SmKYmRnkrPz58/HuXPnjvfhAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4JQMUw+AaZqZmYnXX389fvWrX8Vbb70Vc3NzqScBPVJVVURE1HUdly5dSrwGoH+apomLFy+mngEAAAAAAAAAAAAAAAAAAAAAAAAHats2uq47NKfZWV9fj42NjYk3Z1kWeZ7vy4POiqIY2Rnnnu3cfgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGN0w9AKbttddeizfffDM++OCD+OEPf5h6DtAjVVXFYDCIlZWV1FMAeqlpmijLMvUMAAAAAAAAAAAAAAAAAAAAAAAAPmLato2u6/blUWfT6Ewiy7LI83wnD3q3nUVRjOyMc8/uztLSUgwGg+N9eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODUDVMPgGkriiK+973vxbvvvhuvvfZaDAaD1JOAnpidnY2iKKKu69RTAHpnc3Mz7ty5E2VZpp4CAAAAAAAAAAAAAAAAAAAAAADA/2vbNrqu28mD3k2zc/fu3Xj69OlEm7MsizzP9zwflnmeR1EUR3bGuWd3Z2FhIc6cOXP8jw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8l4apB8BpuHnzZly+fDn++c9/xpUrV1LPAXqkqqqo6zr1DIDeWV1dja2trSjLMvUUAAAAAAAAAAAAAAAAAAAAAACA5Nq2ja7r9jwfltPo3L9/P548eTLR5izLIs/zPc+HZUREURQjO5OcXbhwIYZDv98FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnm3D1APgNHzhC1+IL3/5y/GnP/0prly5knoO0CPLy8tR13XqGQC90zRNRESUZZl4CQAAAAAAAAAAAAAAAAAAAAAA8Dxr2za6rtvzfFhOo/PgwYPY3NyceHeWZZHn+aG5u1MUxcjOOPds59zcXJw9e/Z4Hx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiIgYph4Ap+XGjRtx/fr1+O9//xuf/OQnU88BeqKqqqjrOvUMgN5pmiYiIsqyTLwEAAAAAAAAAAAAAAAAAAAAAABIpW3b6Lru0JxmZ319PTY2NibenGVZ5Hm+Lw86K4piZGece7Zz+xkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/himHgCn5bvf/W78/Oc/jz/84Q/x29/+NvUcoCeqqorbt2+nngHQO03TxOzsbCwtLaWeAgAAAAAAAAAAAAAAAAAAAAAAz522baPrun151NlJdR4+fBiPHj2aeHOWZZHn+U4e9G47i6IY2Rnnnt2dpaWlGAwGx/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/hqkHwGmZnZ2NGzduxFtvvRW/+MUvYnFxMfUkoAeqqoq6rlPPAOidpmmiLMsYDAappwAAAAAAAAAAAAAAAAAAAAAAwKlp2za6rtvJg95Ns3Pnzp2JN2dZFnme7+RB77azKIqRnXHu2X22uLgYMzMzx/jqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDRNUw9AE7T66+/Hm+//Xa8//778ZOf/CT1HKAHlpeXo67r1DMAemd1dTXKskw9AwAAAAAAAAAAAAAAAAAAAACA50TbttF13U4e9G6anXv37sXW1tZEm7MsizzP9zwflhERRVGM7Ixzz/bzhQsXYjj0a1MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmKZh6gFwmhYWFuLVV1+N3//+9/GjH/0oZmdnU08CnnFVVcX6+nqsra3F/Px86jkAvdE0TZRlmXoGAAAAAAAAAAAAAAAAAAAAAABT1rZtdF235/mwnEbnwYMHsbm5OfHuLMsiz/NDc3enKIqRnXHu2c75+Xn/UwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA58Qw9QA4bT/+8Y/jj3/8Y/z1r3+Na9eupZ4DPOOqqoqIiLquY35+PvEagP5omibKskw9AwAAAAAAAAAAAAAAAAAAAACg19q2ja7rDs1pdtbW1uLx48cTb86yLPI835cHnRVFMbIzzj3bef78+Th37tyxvzsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLiGqQfAafvUpz4V3/nOd+J3v/tdXLt2LfUc4BlXVVVERNR1HZcuXUq8BqA/mqaJz372s6lnAAAAAAAAAAAAAAAAAAAAAABMRdu20XXdvjzq7KQ6Dx8+jEePHk28OcuyyPN8Xx50VhTFyM44Z7s7RVEc76MDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyDhqkHQAo//elP40tf+lL84x//iKtXr6aeAzzDqqqKwWAQKysrqacA9Epd13Hx4sXUMwAAAAAAAAAAAAAAAAAAAACAnmnbNrqu25dHnU2jM4ksyyLP85086N12FkUxsjPOPbs7i4uLMTMzc7wPDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhzJMPQBS+OIXvxhXr16NX/7yl3H16tXUc4Bn2OzsbBRFEXVdp54C0CtN00RZlqlnAAAAAAAAAAAAAAAAAAAAAAAnpG3b6LpuJw96N83OvXv3Ymtra6LNWZZFnud7ng/LPM+jKIojO+Pcs7uzsLAQZ86cOf7HBwAAAP6PnXuLjfS86wf+HR9nfBh7Nl57DyTrnDZho5Q2ERI5NCvSbenmoohKUQUICQmohBCiQqpQVdEKCQQVF9yUa7hABGklKCo0ghSkpo2QQrslpd2ErNjuLnuy17XHh/WMx4f5X1Se/zq73qy7ccZOPh/p1e95nvc373zfZ+3X3gsPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOxaXe0OAO3yxS9+MU8++WS+8Y1v5OjRo+2OA+xiY2NjmZiYaHcMgPeMhYWFLC4uZnR0tN1RAAAAAAAAAAAAAAAAAAAAAGDXq9VqqdfrG8ab1e3omZuby+rq6pZzF4vFlEqlTev1PZVK5W17buc663VgYCDd3d13tvEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAO6Gp3AGiXJ554IkePHs2f/Mmf5OjRo+2OA+xi+/bty/nz5/P6669ncnIyly5dSrVazS//8i9neHi43fEAdrxqtZqlpaXs3bs3HR0dmZycTJKMjo62ORkAAAAAAAAAAAAAAAAAAAAA3JlarZZ6vb5p3c6ehYWFLC8vbzlzsVhMqVTatF7fU6lU3rZnK+f6+vrS29t7x/sOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvFYVms9lsdwhol5deeikf+9jH8sorr+TJJ59sdxxgF7h69Wo+//nP58KFC7lw4UImJiYyNTWVtbW1G3pfeumlHDt2rA0pAXaXRx99NN///vdTKBQyPDycwcHBTE5O5tixYxkfH8/evXuzd+/eHD16NEeOHGl3XAAAAAAAAAAAAAAAAAAAAAB2gVqtlnq9vmndzp5r166l0WhsOXOxWEypVLqh3urcO9WzPgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHaUE4Vms9lsdwpop6eeeip79uzJV7/61XZHAXaB06dP56GHHsrb/fjs6OjI9PR0hoaG3qVkALvX888/n7//+7/P2trahvVCoZDu7u4UCoU0Go186lOfygsvvNCmlAAAAAAAAAAAAAAAAAAAAADcjlqtlnq9fkO91bnt6NmKYrGYUqnUqjdb286e4eHhFAqFO9t4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgvehEV7sTQLt97nOfyyc+8YmcPHkyjz32WLvjADvcgw8+mOPHj+ell17K8vLypn2PPvpohoaG3sVkALvXRz7ykfzDP/zDDevNZjONRqM1/83f/M13MxYAAAAAAAAAAAAAAAAAAADArlKr1VKv11v1Zmvb2VOtVtNsNreUuVgsplQqbRhvVkulUiqVyi17buc61/eUy+V0dnbe+eYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsk0Kz2Wy2OwS028/93M/lrrvuyj//8z+3OwqwC7z88ss5evTopud7enrymc98Jl/60pfexVQAu9ebb76Zhx56aNPzHR0dOXz4cE6dOpVCofAuJgMAAAAAAAAAAAAAAAAAAAB4e7VaLfV6fcN4s7odPXNzc1ldXd1S5mKxmFKptGG8Wb1Vz0/6+sHBwXR1dd3hzgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALznnehqdwLYCf7oj/4oH//4x/Pyyy/nmWeeaXccYId75pln8vjjj+e//uu/srq6esP5RqORo0ePtiEZwO50+PDhjI6OZnJyctOez33ucykUCu9iKgAAAAAAAAAAAAAAAAAAAGCnq9VqqdfrG8ab1e3omZ+fz8rKypZzF4vFlEqlTev1PZVK5W17buc667W/vz89PT13tvEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8awrNZrPZ7hCwE/z8z/98VldX8/LLL7c7CrALnDhxIp/61KcBGi7PAAAgAElEQVRysx+jnZ2dmZ6eTrlcbkMygN3p137t1/J3f/d3WVlZueHc3r17c+HChfT09LQhGQAAAAAAAAAAAAAAAAAAAHAztVot9Xp907qdPdeuXUuj0dhy5mKxmFKpdEO91bl3qmd9DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFtwoqvdCWCn+OM//uM8/fTT+frXv55jx461Ow6ww33yk5/MPffck/Pnz6fZbG449+ijj6ZcLrcpGcDu9Oyzz+Zv//Zvb1jv6urK7//+76enp6cNqQAAAAAAAAAAAAAAAAAAAGDnqdVqqdfrN9RbnXunehYXF7O0tLTlzMViMaVSqVVvtrZeK5XK2/bcznWu7xkeHk6hULizjQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2KDSbzWa7Q8BOcfz48UxNTeXVV19NoVBodxxgh/vLv/zL/N7v/V5WV1dbaz09PfnMZz6TL33pS21MBrD7nD9/PocOHbphvbe3NxcvXsxdd93VhlQAAAAAAAAAAAAAAAAAAADw/9VqtdTr9Va92dp29lSr1Wz1Y8OKxWJKpVKr3mxtKz1bff3Q0FA6OjrucOcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgfetEodlsNtudAnaK73znO/nZn/3ZfOUrX8knPvGJdscBdrjFxcUcOHAgs7OzG9a/9rWv5fjx421KBbB73XPPPfm///u/1ry7uzuf/vSn8+Uvf7mNqQAAAAAAAAAAAAAAAAAAAGi3Wq2Wer3eqjdbe6d7rj83OzubtbW1LWUuFosplUobxpvV7egZHBxMV1fXHe48AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GYnCs1ms9nuFLCTPP/88zl16lRee+21dHV1tTsOsMN94QtfyJ/+6Z9mZWUlSdLZ2Znp6emUy+U2JwPYfT796U/nr//6r7O8vJwkKRQKefPNN/PAAw+0ORkAAAAAAAAAAAAAAAAAAMD7U61WS71e3zDerG5Hz/z8fOtzPbaiWCymVCptWrezp7+/Pz09PXe28QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/dqLQbDab7U4BO8mZM2dy5MiR/MVf/EV++7d/u91xgB1ucnIyd999dxqNRpLkQx/6UE6ePNnmVAC70wsvvJBf/dVfTbPZTHd3d5577rl85StfaXcsAAAAAAAAAAAAAAAAAACAtqjVaqnX65vW7exZWFjI8vLyljMXi8WUSqUb6q3OvVM9fX196e3tveN9BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhBTnS1OwHsNPfdd19+53d+J1/84hfzK7/yKxkaGmp3JGAHGx0dza//+q/nr/7qr1IoFPLRj3603ZEAdq2PfOQjrfHy8nI++9nPtjENAAAAAAAAAAAAAAAAAADwflWr1VKv12+otzr3TvUsLi5maWlpy5mLxWJKpdIN9WbnKpXK2/bczrnreyqVyp1tOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3VWg2m812h4Cdplqt5sEHH8xv/MZv5M/+7M/aHQfY4d588808/PDDaTabefHFF/Pxj3+83ZEAdq3Dhw/n9OnT+dCHPpSTJ0+2Ow4AAAAAAAAAAAAAAAAAAPAuqtVqqdfrN9RbnXunepJkZmZmy5mLxWJKpVKr3mxtO3uGhobS0dFxB7sOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwA52oqvdCWAnGh4ezh/+4R/ms5/9bH7rt34r999/f7sjAbdpbm4uq6urrfns7GzW1tZa82q1mmazueE1zWYz1Wp1S+9Tr9dTq9Va88ceeyzf/e53Mzk5mRMnTmz6uqGhoXR0dNz2+3R3d2dgYOCG9d7e3vT19bXmxWIxpVKpNS+VSikWi7f9PgDvpMXFxSwtLaVarabRaGRhYSHJjc/kJKnVaqnX6635/fffn9OnT+f48eP5+te/vqH3+mddpVJJT09P+vv7MzAwkO7u7m2+KwAAAAAAAAAAAAAAAAAAeO9a/7vf6//+961r29lzs79FfjvX//3x+nizWiqVUqlUbtlzO9e5vqdcLqezs/PONx8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbqHQbDab7Q4BO9HKykp+5md+Jh/4wAfywgsvtDsO7Ehzc3NpNBqZm5tLrVZLvV5PtVpNs9ls1cXFxSwtLWVlZSXz8/NJktnZ2aytrbVes7q6mrm5udY1V1dXU6/XU6vVsra2ltnZ2dZ7LiwsZHl5uTWfn5/PysrKu3vju1BfX196e3tb8/7+/vT09CRJOjs7Uy6XkyRDQ0Pp6OhIqVRKsVjccK5cLqezszPFYjGlUikdHR0ZGhpKkgwODqarqyu9vb2t9+rr60u5XE5PT0/K5XLrmsDOt7KykomJiVy+fDlXr17N9PR0ZmZmbnpMT09ncXEx1Wo1jUYjCwsLbclcKBQyPDzcev4MDw+nUqlkz549qVQqG449e/bkrrvuyujoaPbt25e77rqrLZkBAAAAAAAAAAAAAAAAAGD9sxeuH29Wt6Nn/XMetmr9swc2q9vZMzAwkO7u7jvbeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYHU4Ums1ms90pYKf6x3/8x/zSL/1SXnnllTzxxBPtjgM/sdnZ2czPz2d+fj4LCwuZnZ3N7OxsFhYWMj8/n2vXrmVubi6NRiNzc3NZXFzM0tJSqtVqGo1GFhYWsrCwkEajkWq1mqWlpSwuLt7WexeLxZRKpXR0dGRoaChJMjg4mK6urvT29qavry+FQiHDw8NJkoGBgXR3d6enpyf9/f1Jkkql0rpeqVRKsVhszfv6+tLb29ua9/f3p6enpzVfv9669fd+q7de53YMDw+nUCjcdn+j0ci1a9e29B7z8/NZWVm5YX3932jdtWvX0mg0WvOFhYUsLy9vep25ubmsrq7ekGtmZmbD9ZaXl7OwsJAkqVaraTabrfdeWVnJ/Px8kh9/ja2trd3WPQ0PD6enpycDAwPp7+9Pb29vhoeHW18Pg4OD6e3tTblcbv17VyqVDAwMZHBwsHUMDw+3xqVS6bbeG/jx9/fZs2fzwx/+MGfPns3ly5dz8eLFTE5O5sKFC5mcnMzk5GSu/29Cd3d3KpVK9uzZk0ql0jrW5319fRu+t9efqcPDw+nu7s7g4GCSG5/R69ceGBi4Ief68+h668+2tbW1zM7Otn4ezc/PZ3l5ecPPqGq1mpmZmUxPT2dmZmbDuFqtbrhub29vxsbGcvDgwYyOjubgwYMZGxvL3XffnfHx8YyPj+fuu+++6c8PAAAAAAAAAAAAAAAAAAB2r1qtlnq9vmndzp63fi7A7Vr/HIfN6q167vT1P8lnMwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd+REodlsNtudAnayj370o/nRj36U//zP/0xnZ2e74/A+s7a2lpmZmczMzGR6ero1npmZydzcXGZmZrKwsJD5+fksLCxkbm4u1Wq1NZ+fn8/c3Nym1+/v78/g4GD6+voyNDSUnp6e1ry3tzfDw8Pp6enJwMBA+vv709PTk0qlkt7e3vT19WVwcDA9PT0ZGhpKsVhMqVRKuVxOZ2dnBgcH09XV9S7uFjtBrVZLvV5v1dnZ2TQajczPz2dxcTFLS0upVqtpNBpZWFjIwsJCGo1GqtVqlpaWsri4mPn5+TQajczOzrautf51vby8fNP37ezsTLlczvDwcAYGBjI4OJjBwcGUy+UMDQ1lcHAwAwMDKZfLqVQqrWPPnj2t8eDg4Lu8W7B9Jicnc+rUqbzxxhv53//935w9ezbnzp3L2bNnc/Xq1VbfyMhIDhw4kIMHD2ZsbCwHDhxo1X379mX//v0ZGxvLwMBAG+/mnddsNjM1NZXJyclcvnw5ly9fzpUrV3Lp0qVMTEzk4sWLmZiYyPnz51Or1ZIkXV1dOXjwYMbHxzM+Pp577703hw8fzsMPP5yHHnoofX19bb4rAAAAAAAAAAAAAAAAAIDd461/m/7Wup09165dS6PR2HLm9c9VeGu91bl3qmd9DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC875woNJvNZrtTwE52+vTpPProo/nzP//z/O7v/m6747BLNRqNXL16NVNTU5mamsr09HRmZmZax1vn62uzs7M3XKuzszOVSiXlcjmVSiWDg4MZGBjI4OBgBgcHMzw83BoPDAykXC631tb7yuVyhoaG0tHR0YbdgJ9cvV7PwsJC5ubmUq1Ws7CwkPn5+czPz2dubi6zs7Ot+cLCQmZnZzM7O9vqm5uby8zMTObm5m64dldXV/bs2ZNKpbLh2GxtZGQkIyMj2bt3bxt2An7s0qVLee2113Lq1Km88cYbef311/P6669neno6STI8PJz7778/hw4dyvj4eMbHx3Pvvfe2xgMDA22+g53vypUrOXv27Ibj3Llz+eEPf5gzZ85keXk5hUIh4+Pjefjhh3PkyJFW/cAHPmCPAQAAAAAAAAAAAAAAAIAdpVarpV6v31BvdW47eraiWCymVCq16s3WtrNneHg4hULhzjYeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAnc6LQbDab7U4BO93nP//5fPnLX87rr7+eAwcOtDsOO0C9Xs/09HRmZmYyMzOTy5cv59KlS5vOJyYmsra2tuEaxWIxlUply8fY2Fg6OzvbdOfw3lGr1Vrfo1s5rly5krf++lQsFnPgwIHs37+/9b262Xx0dDRdXV1tumt2s0uXLuU73/nOhuPy5ctJkkqlkiNHjuSRRx7Jfffd1xrfe++9KRQKbU7+3rWyspLz58/nzJkz+cEPfpBTp07lBz/4Qb73ve9lfn4+SbJ///48/vjjreOJJ57IyMhIm5MDAAAAAAAAAAAAAAAAAO+2Wq2Wer3eqjdb286earV6w99Jv51isZhSqbRhvFndjp5yuezzFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA97sThWaz2Wx3CtjparVaHnnkkTz55JP5m7/5m3bHYRvNzs7m4sWLuXLlSi5evJjLly/n0qVLrePKlSuZmJjIwsLChtf19vZmZGQkIyMjGRsby969ezMyMpK9e/dmdHQ0o6OjrfMjIyPZs2dPCoVCm+4SuBNLS0uZnp7O1NRUrl69momJiUxNTW2YX716tbU2NTWV63/dKhQKGRkZyejoaA4cOJD9+/e36sGDB1t137596e3tbeOd0k6NRiPf/va3881vfjPf/OY38x//8R+Znp5OR0dHDh8+nMcee6x1fPCDH0ylUml3ZK7TbDZz9uzZfPe7383Jkydbx8TERAqFQh544IE89dRTeeaZZ/L000/nwQcfbHdkAAAAAAAAAAAAAAAAAHjPqtVqqdfrG8ab1e3omZuby+rq6pYyF4vFlEqlDePN6q16ftLXDwwMpLu7+w53HgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAd8CJQrPZbLY7BewGL774Yp577rn827/9W5599tl2x2GLVlZWcunSpZw7dy7nz5/PlStXcuHChUxMTOTChQu5cuVKLl68mMXFxdZrent7MzY2lp/6qZ/Kvn37cvDgwYyNjWX//v0ZGRnJyMhI9u7dm7GxsZTL5TbeHbCTra6uZmpqKlNTU7l69WomJyczOTmZq1ev5uLFi63n0ZUrVzI5OZnrfzUbGRnJvn37NjyH1ud33313Dh06lJGRkTbeHe+URqORb33rW/nGN76Rl19+Oa+++moWFxezb9++fPjDH85TTz2Vxx9/PB/84AczMDDQ7rj8hC5cuJCTJ0/m29/+duvfuVarZf/+/fnwhz+cp59+OseOHctP//RPtzsqAAAAAAAAAAAAAAAAANyxWq2Wer2+YbxZvdOem52bn5/PysrKlnMXi8WUSqVN63b29Pf3p6en5842HgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA95IThWaz2Wx3CtgtfvEXfzFvvPFGvve976W3t7fdcbhOo9HIhQsXcunSpVy+fDlnzpzZcJw/fz4rKyut/kqlkv379+fAgQOtet99921Y27dvXzo6Otp4V8D70czMzIZn2fr4+joxMZG1tbUkSW9vbw4ePJj77rtvw3NsfX7o0KF0dna2+a64mYmJifzLv/xL/umf/in/+q//mtnZ2ezfvz9PP/10jh07lqeeeipHjhxJoVBod1S2ycrKSl577bV861vfyiuvvJJ///d/z49+9KOMj4/nYx/7WI4dO5Zf+IVfSLlcbndUAAAAAAAAAAAAAAAAAHaZWq2Wer2+ad3OnmvXrqXRaGw5c7FYTKlUuqHe6tw71bM+BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHeZEodlsNtudAnaLs2fP5pFHHskf/MEf5Atf+EK747zvTE1N5c0338z//M//5PTp0zlz5kzOnTuXc+fO5fLly62+/v7+jI+P59ChQ63jnnvuyaFDhzI+Pp79+/enUCi08U4A7szS0lLOnTuX8+fPt56D586dy9mzZ3P+/PlcuHAhKysrSZKenp7cfffdrWfgAw88kMOHD+fBBx/M4cOHUywW23w37y/f//7388ILL+SrX/1q/vu//zt9fX159tln89xzz+X48eMZHx9vd0TaaHV1Na+++mq+9rWv5cUXX8zJkyfT29ubZ555Jp/85Cfz/PPPZ8+ePe2OCQAAAAAAAAAAAAAAAMAt1Gq11Ov1G+qtzm1Hz1YUi8WUSqVWvdnadvYMDw/7DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPh/7Nx7tJVlnQfw74aD7I0eFbMRb3gLrOSipTMKiOICKWcJaDlWai4vkdE4lo6YaRNqk5NEamlFGWm6GtfgeKFVauIFECxTGw5KAV6SikhtBBH2JuHs+WMWZ0mcc9hHDmwun88/z+vz/N7n+b7Pfva7+ecIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQuqmFarVarXcK2JZcf/31GT9+fJ588skcccQR9Y6z3Vm5cmUWLVqUhQsXZtGiRVmwYEEWLlyYhQsX5vXXX0+SlEql9OnTJ4ccckh69+6dgw46KL17984BBxyQAw44IO9617vq/BQA9bV27dosWbIkL7/8cn73u9/l5ZdfbrletGhRFi9enObm5hQKhfTu3Tt9+/ZNnz590rdv3xx66KHp06dPDjzwwHTt2rXej7JdePnll3PnnXfmxz/+cZqamrL//vvnlFNOyUknnZTjjjsuxWKx3hHZSi1dujT3339/fvazn+WnP/1p1q5dm5EjR+bjH/94Ro8enR49etQ7IgAAAAAAAAAAAAAAAMBWo1wup1KptLSt9W3OmmXLlqWj/wuPYrGYUqnU0rbW15Gajt6/2267pUuXLpu48wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGY0tVCtVqv1TgHbkubm5hx//PFZsWJFnnzyyXTr1q3ekbZJq1evznPPPZe5c+emqakp8+bNy4IFC/KHP/whSdLQ0JADDzwwffr0yaGHHpq+ffumT58+6du3b/bff/8UCoU6PwHAtmv16tVZtGhRFi5cmEWLFrVcL1iwIK+88kqSZKeddsrBBx+cww47LP3798+AAQMycODAHHTQQd7BNXjrrbdy99135+abb87jjz+ePfbYI6eddlo+/vGPZ8iQIenSpUu9I7KNWbFiRe69997853/+Zx566KEUi8V89KMfzYUXXpgPfOAD9Y4HAAAAAAAAAAAAAAAA7MDK5XIqlUpL21pfZ9e8fWz58uVpbm7uUOZisZhSqbTedVvt5qhpbGxMQ0PDJu48AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwA5haqFar1XqngG3NwoULc/jhh+fKK6/MF7/4xXrH2er98Y9/TFNTU5qamjJ37tw0NTVlwYIFWbNmTUqlUvr165eBAwfm0EMPTd++fXPooYfmoIMOyk477VTv6AA7nOXLl2fhwoVZtGhRFixYkPnz5+d//ud/8uKLL6a5uTm77rpr+vfvnwEDBmTgwIEZOHBg+vXrl1122aXe0bcKr732Wr73ve/l29/+dpYuXZrRo0fnnHPOyciRI9OtW7d6x2M78eqrr+a//uu/Mnny5MybNy/HHnts/uVf/iVjxoxJQ0NDveMBAAAAAAAAAAAAAAAAW0i5XE6lUlnvuq12c9SsWLEia9as6XDuYrGYUqnUZrs5a3beeWd/xw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGxLphaq1Wq13ilgWzRx4sR86UtfylNPPZV+/frVO85WY8WKFXniiScyZ86czJkzJ88880z+8pe/JEl69+6dAQMGZMCAARk4cGAGDBiQPn36pGvXrnVODcDGvPnmm3n22WfT1NSUuXPnpqmpKU1NTXnjjTfSpUuXHHzwwTnqqKMyaNCgDB48OAMGDNih3u9//vOfc/XVV2fKlCkplUo5//zz89nPfjYHHHBAvaOxnXvkkUfyzW9+Mz/5yU+y33775Yorrsi5556bhoaGekcDAAAAAAAAAAAAAACA7Vq5XE6lUmmz3Zw1b775Zt56660OZy4WiymVShu07Y11Vk2PHj3SvXv3Td53AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHczUQrVardY7BWyLmpubM3To0JTL5fziF79It27d6h2pLhYvXpzHH388c+bMyezZszNv3rysXbs2hxxySAYPHpwPfvCDGTBgQAYOHJiePXvWOy4AnahareZ3v/td5s6dm7lz5+bJJ5/MnGT4wcAAACAASURBVDlzsmzZsjQ2Nuboo4/OoEGDMnjw4Bx99NFpbGysd+ROt3LlykyaNCkTJ07MbrvtliuuuCJnn312evToUe9o7GBefPHFXH/99fne976XQw45JNdee21Gjx5d71gAAAAAAAAAAAAAAADQ6crlciqVygZte2OdVbNq1aqsXr26w5mLxWJKpdIG7Tsd62iNv/MGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYZk0tVKvVar1TwLbqN7/5TT7wgQ9kwoQJueyyy+odZ4tYsmRJHnzwwTz00EOZNWtW/vCHP6Rbt2754Ac/mGOOOSZDhgzJoEGD0qtXr3pHBaAOmpubM3/+/MyePTuzZ8/OnDlz8sILL6Rr167p379/jjvuuHzoQx/Kcccdl1KpVO+4m+TOO+/MxRdfnFWrVmX8+PH53Oc+lx49etQ7Fju4559/PldccUWmTp2aY489Nt///vfTt2/fescCAAAAAAAAAAAAAABgO1Aul1OpVDZo2xvrrJokef311zucuVgsplQqtbSt9W3Omt122y1dunTZhF0HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgBze1UK1Wq/VOAduyiRMn5sorr8zs2bNz5JFH1jtOp6tWq/nVr36Vu+++O/fff3+amppSKpUydOjQDB06NEOGDMlRRx2VUqlU76iwSUaMGJGHHnqo3jFgu7R06dLMnj07s2fPziOPPJKmpqZ07949Q4cOzcknn5xTTz01++yzT71j1mzFihX553/+59x+++359Kc/nWuuuSZ77rlnvWOxFarnb8uTTz6Zz372s/ntb3+bG264Ieedd15dcgAAAAAAAAAAAAAAALDpyuVyKpVKS9ta3+asWb58eZqbmzuUuVgstvz98brrttrNUbPrrruma9eum7jzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUHdTC9VqtVrvFLAta25uzoc+9KG8+OKLeeaZZ7LrrrvWO1Kn+PWvf50f/ehHufvuu7N48eIccsghGTVqVEaOHJmhQ4emVCrVO+ImKRQKaev1194Y26/hw4dn+vTp6/U5C2wu5XI5e++9dwYOHJgZM2a0WztlypSMHTs2a9asqWnu5cuXp1+/fvnDH/6w1Z7fP/3pT3nggQfy4IMP5v7778+bb76Zo48+OqeddlrOOOOMvPvd7653xDY9/fTTOf3007NixYpMmTIl//iP/1jvSEm2zd+1QqGQJFtlto5q61la+23Zkt5666186UtfysSJE3PqqadmypQpaWxsrFseAAAAAAAAAAAAAACAbU25XE6lUlnvuq12c9S88cYbWbt2bYdzF4vFlEqlNtvNWbPLLrukW7dum7bxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDpTC9VqtVrvFLCte+WVVzJw4MCceOKJue222+od5x1buXJlfvSjH+WWW27JM888k759++a0007LRz/60Rx++OH1jtepCoVC2nr9tTfGjsVZYHO5/fbbc8cdd6SpqSkzZ85Mnz59Wq2bOHFivvOd7+Sll16q+Syee+652XnnnXPTTTdtE+e3UqnkoYceyl133ZV77703lUolo0ePztixYzN8+PB6x1vPww8/nDFjxuToo4/OHXfckb322qvekVpsq79rW3O2jtqan+WRRx7JGWeckf322y/3339/9txzz3pHAgAAAAAAAAAAAAAA2KhyuZxKpdJmuzlr3nzzzbz11lsdzlwsFlMqldps26vZ1Pt79OiR7t27b/K+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFuVqYVqtVqtdwrYHjzwwAM56aST8qMf/ShnnnlmveN0yBtvvJGbbropN9xwQ1auXJnTTjst559/foYMGVLvaJtNoVBIW6+/9sbYsTgLbC7HH398LrroojzxxBPp2rVrrr322lbr+vXrl5///OfZd999azqLDzzwQMaNG5d58+Zll1122ebO78qVKzN16tT84Ac/yOOPP56jjjoqV1xxRUaNGpVCoVDXbL/61a8ybNiwjB49Orfeemu6detW1zx/a1v9Xduas3XU1v4sL7zwQoYPH56/+7u/y6OPPpoePXrUOxIAAAAAAAAAAAAAALCVKpfLqVQqbbabWtPe2KpVq7J69eoOZy4WiymVShu07Y11Vs26awAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDNYGqhWq1W650Cthef//znc8stt+Tpp59O37596x2nJj/5yU8ybty4LF++POecc04uv/zy9OrVq96xOqxQKCRJ/vaV1lr/ur63O++883LLLbe0O5Ykzz77bC677LLMnDkzSTJ48OB8/etfT79+/TaY//nnn8+ll16aRx99NMuWLWs1X3vP8txzz+Xiiy/OnDlz0tzcnOOOOy5f//rX8773va9Daz377LMZP358Zs2alSQ59thjc911162XOUnmzp2bSy+9NLNnz07Xrl0zePDgfO5zn8vIkSNbamp5/uXLl2fChAm57777smTJkvTs2TMjR47MuHHj8vd///c113Qke3tqWeudnpNazluSTJs2LV/72tfy9NNPp1evXjnllFNy9dVXp7Gxcb26Wj6DWufqjL1zFjv3LK7z/PPPZ8iQIfn973+fF198McOGDcvixYvT0NCwQe3rr7+enj17plAobPT98cYbb6R///754Q9/mBNOOKGme7Zmc+fOzaRJk/LjH/84gwYNyne+850cdthhdcny+uuvp3///hkwYECmTZvW6mfV2ban37Xk/98jl156aWbOnJmuXbvmhBNOyI033pgDDjhggzk66/vdkXdYret25Fna+6w2ZS83xcKFCzNo0KCMGjUqU6ZM2ezrAQAAAAAAAAAAAAAAHVMul1OpVDZo2xvbHDUdUSwWUyqVWtrW+jZnze67797q39AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbCemFqrVarXeKWB7sXr16hxzzDFpaGjI7Nmz061bt3pHalOlUsnZZ5+du+66K5/61Kdy7bXXpmfPnvWOtUkKhUJae6W11t9WbXtjzz//fI499th8+ctfzkc+8pF06dIl999/f7785S9nxowZ2W+//dabY8SIEZkwYUKOOOKIPPbYYznppJPaXLO1DP369csVV1yRESNGZO3atZk2bVquueaazJgxIwceeGBNaz3//PMZNmxYrrrqqpx88smpVquZNm1aJkyYkMceeyzvec97kiQLFy7MqFGjctNNN2XQoEH53e9+lwsuuCCzZs1qyVzr848ZMyZHHHFELrjgguy+++6ZP39+LrzwwsyePbtlrlpqas2+MbWs1dbn/k7OSVvzTJ48OWeeeWbeeOONXHbZZSkUCrn11ltbamr5DGqdq7P2bt16zmLn7WeSXH755VmzZk0mTpyYJBkyZEjGjx+fUaNGtfs5bOz9MXbs2HTt2jXf+c53ar5nW/DUU0/lggsuyLPPPpvJkyfn7LPP3uIZxo4dm5/+9KeZN29e9thjjy227vbyu/bCCy9k2LBhmTBhQk4++eQUCoU88MAD+fa3v50nnnhivTk68/u9Lnct77Ba1+3Is7T3WW3KvxE21X333ZcxY8bk4YcfzgknnLBF1gQAAAAAAAAAAAAAgK1duVxOpVJpaVvr25w1y5Yt6/DfFhSLxZRKpfWu22o3R82uu+6arl27buLOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALARUwvVarVa7xSwPVmwYEGOPPLIfPKTn8zNN99c7zitWrNmTUaMGJGmpqb893//d44//vh6R+oUhUIhrb3SWutvq7a9sTPPPDMDBgzI+PHj1+ufMmVK5s6dmxtvvHG9OR599NF3vLeFQiF33nlnTj/99PX6v/GNb6SpqSm33nprTWudeeaZOeqoo3LRRRdtMM+vf/3r3H777UmST3ziE/nwhz+cs846q6VmwYIFee9739uyF7U+f2NjY15++eXsscceLTUvvfRSDj744Ja5aqmpNfvG1LJW0nnnpL171nn99dfznve8J3/5y19a+mr5DGqdq7P2bt3zOIudt59r165N79698/DDD+e9731vkuTWW2/NPffck/vuu6/N+zZ2rqZPn57zzz8/8+bNS2NjY033bEvWrl2bf/u3f8u1116bb33rW/nsZz+7xdZesmRJDjrooHz3u9/NOeecs8XWTbaf37WzzjorRx555AbfoVtvvTXnnHPOetk68/u9Lnct77Ba1+3Is6xbv7W+Tfk3QmcYOXJk1qxZk4cffrhuGQAAAAAAAAAAAAAAIEnK5XIqlcp61221m6PmjTfeyNq1azuUuVgsplQqrXfdVttezTu9f5dddkm3bt02cecBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2EZMLVSr1Wq9U8D25t57782pp56ayZMn51Of+lS942zg3//93/PVr341v/zlL9OvX796x+k0hUIhrb3SWutvq7a9sV69euWXv/xlDjjggPX6//znP2fYsGGZP3/+enOsXLkyPXr0eCePkkKhkNdeey3vete71ut/6aWXMnjw4CxZsqSmtdrK/NJLL2XQoEH505/+1FL3zDPPZJ999mkzU63Pf+KJJ2bVqlW58sorM3z48DQ0NGwwVy01tWbfmFrWSjrvnLR3T3t1tXwGHZmrM/Zu3dzOYuft509+8pN87Wtfy+OPP97St3Llyuy///6ZP39+evXq1ep97Z2rN998M/3798/kyZNz4okn1nTPturaa6/NVVddlWeeeSbvf//7t8ia3/3udzN+/Pi8+uqr6d69+xZZc53t5XetrXWWLl2avffeu6b31zv5fq/LXcs7rNZ1O/Is69ZvrW9T/o3QGe65556cdtppWbp0afbcc8+65QAAAAAAAAAAAAAAoH7K5XIqlcp61221m1rT2tiKFSuyZs2aDucuFosplUpttpuzZuedd85OO+20aRsPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0ztVCtVqv1TgHboyuvvDLXXXddHnnkkQwZMqTecdbTt2/ffOxjH8vVV19d7yidqlAopLVXWmv9bdW2N9atW7esWbOm1XtKpVJWrVpV0/y1aOv+SqWSxsbGvPXWWzWt1dDQkJUrV6Z79+7tztPQ0JBVq1Zlp512ajNTrc+/fPnyXHXVVbnvvvvy6quv5ogjjsipp56acePGpVu3bjXX1Jp9Y2pZK+m8c/K3/a+++mouv/zyPPDAA1m6dGnWrl3bMvb2ulo+g47M1Rl7195zOovvbD9Hjx6dMWPG5Jxzzlmvf+zYsTn44IPzhS98odX72tvbcePG5a9//WtuueWWmu/ZVjU3N+ewww7LRz7ykXzlK1/ZImt+5jOfyW9/+9s8+uijW2S9t9teftfa+g61Nm9nfr/by/23399a1+3Is3Skb0t75ZVXstdee+WRRx7JsGHD6poFAAAAAAAAAAAAAGBHVC6XU6lU2mw3Z83KlSvz17/+tcOZi8ViSqXSBm17Y51Vs+4aAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZAUwvVarVa7xSwPWpubs7o0aPz1FNP5amnnsq+++5b70hJ/j9Xjx498oMf/CBnnHFGveN0qi5duqRcLqd79+4tff/7v/+bd73rXfnbV12hUNigb2Nje++9d+bPn5+ePXtuNEt789eiUChk6dKl2Wuvvdbrf+mllzJ48OAsWbKkprV69eqVX/ziFznwwAM3mGfQoEH505/+lCTZa6+98utf/zr77LNPm5k68vzrvPbaa3n44Ydzww03ZN99981dd91Vc02t2TuivTyt7WN7e1vrefvQhz6UQw89NJ///Oez3377paGhodW5a/kMap2rM/fOWey8/Vy6dGn233//rFmzptXxPn36ZOHCha2Obewsbux9sz39c2/06NFpbGzMHXfcsUXWO/PMM7NixYrcd999W2S9t9teftd69eqVX/7ylznggAPW62/tWTr7+13rO6zWdTvyLOvW78hntaWsXr06xWIx9957b0aPHl3XLAAAAAAAAAAAAAAAW1K5XE6lUtmgbW9sc9R0RLFYTKlUamlb69ucNbvvvnsKhcKmbTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8E5Nbah3AthedenSJT/+8Y/zD//wDznttNPy6KOPpnv37vWOlS5duuQDH/hA7r777pxxxhn1jtOpevXqlcWLF6dPnz4tfTNnzmy1tlAotDlPW2MjR47MY489llNOOWW9/lmzZuVzn/tcnn766XeQum0PPvhgPvnJT67Xd8899+TEE0+seY7hw4fn7rvvzsUXX7zBPMOHD2/57+OPPz7Tp09fb725c+fm4x//eObPn5+k9ucvFAr5/e9/n/322y977rlnTj/99IwYMSIHHnhgyz211NSafWNqWau9e9tS63mbM2dO7rzzzuy+++4tfeVyeYO6Wj6DWufqrL1bx1nsnP287bbbcu6552by5Mmtjr///e/PzJkzM3To0JrnTJLm5uZW+wuFQqrVaofm2tq98sormTVrViZMmLDF1uzVq1d+85vfbLH1/nbt7eF37cQTT8y9996biy66aL3+6dOnv+NMHXm31/IOq3XdjjzL1mzx4sVJkr333rvOSQAAAAAAAAAAAACAHUW5XE6lUmlpW+vbnDXLli3r8N9ZFIvFlEqllra1vnVtqVRKz549Wx2r5f7Wanbbbbd06dJl0zcfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANimNdQ7AGzPGhsbc9ddd+Xoo4/ORRddlO9+97v1jpQk+cpXvpIRI0Zk0qRJueSSS+odp9OMGDEiX/ziF3P99ddn9913z+zZs9vc83333TdPPPFEjjzyyDz66KM5//zzs3jx4nbHJkyYkFGjRmXt2rUZNmxYdtppp8yYMSMXXHBBbrrppk5/nsmTJ6ehoSEjR45Mc3Nzpk2blhtvvDEzZsyoeY4vf/nLGTZsWHbdddeMGjUqhUIh06ZNyze+8Y089thjLXVXXnllTjnllOyzzz455phj8sILL+Tcc8/NhRde2FLTkec///zzM2nSpLznPe/JsmXLcuONN2b48OEdqqk1ey1qydOa9s5Jredt0KBBGT9+fL74xS9mn332yeLFi3PNNddsUFfLZ1DrXJ25d4mz2Fn7OWXKlNxxxx1tjp9//vm55ZZbMnTo0Jrn3JGsWLEiH/vYx7LHHnvkvPPO22LrDh06NNdff32WLFmSffbZZ4utm2w/v2sTJkzI8ccfn8bGxpx88snp2rVrpk+fnq9+9aut1nbm9zup7R1W67odeZat2c9+9rPsuuuuOfzww+sdBQAAAAAAAAAAAADYzMrlciqVSkvbWl9n17x9bPny5Wlubu5Q5mKxmFKptN51W22S9OzZc6M1tcyz7rqxsTENDf78FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYOhSq1Wq13iFge3fPPffkox/9aK677rpccskl9Y6TJLnxxhtz8cUX51Of+lQmTpyYxsbGekfaZK+99louuuiiPPTQQ1m1alVOOOGE3Hzzzendu3eS5O2vu6lTp+ayyy7LH//4x/Tu3TuTJk3KqFGjNjq2aNGiXH755Zk+fXrWrFmT97///bn88stzyimntMxdKBTWy/VOXrOFQiEvvfRSLrzwwsyYMSPNzc0ZOnRoJk2alPe9730dWmvevHkZP358Zs2alSQ59thjc91116V///7r1T3xxBO59NJL8/TTT+fd7353xo0bly984Qvr1dTy/A8//HBuuummzJo1KytWrMi+++6bMWPG5Kqrrmo5Z7XUdCR7e2pZ6+37WOs5qfW8vfLKK/nXf/3XPPjgg1m2bFn69u2bL33pSzn99NM3WG9jn0FH5uqMvVu3N87ipu/n2/fnnnvuyZgxY9Ybf+CBB/LhD394g/372319+1gta9V6z9Zu3rx5Oeuss/LKK6/k/vvvz8CBA7fY2qtXr87BBx+cf/qnf8r111+/xdZNtq/fteeeey6XXnppZs6cmUKhkEGDBuX666/PYYcdtsGcnfX9Xpe9lndYret25Fla+23pjL3cVJVKJe973/ty0kkn5eabb97i6wMAAAAAAAAAAADAjqJcLqdSqax33Va7OWpWrFiRNWvWdDh3sVhMqVRqs92cNTvvvHN22mmnTdt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDty9RCtVqt1jsF7AgmTZqUSy+9NLfddlvOOuusesdJktx999359Kc/ne7du+e6667L6aefnq5du9Y7FkkKhUK8ntkaOIvU02uvvZbrrrsuN9xwQ4488sjceeed6d279xbP8f3vfz/jxo3LzJkzc8wxx2zx9XnnvMM2dMkll+SWW27Jc889l/3226/ecQAAAAAAAAAAAABgsyiXy6lUKm22m7PmzTffzFtvvdXhzMViMaVSaYO2vbHOqunRo0e6d+++yfsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECnm1qoVqvVeqeAHcUll1ySb33rW/npT3+aESNG1DtOkuS1117LZZddlttuuy0HH3xwLrvssnziE59IqVSqd7QdWqFQiNczWwNnkXp4+eWX881vfjOTJ09OqVTKNddck7Fjx6ZLly51yVOtVnPyySfn6aefzpw5c3LQQQfVJQcd5x22vh/+8Ic577zzcuutt+aTn/xkveMAAAAAAAAAAAAAsB0ql8upVCobtO2NdVbNqlWrsnr16g5nLhaLKZVKG7TvdKyjNT179ty0TQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYHs2tVCtVqv1TgE7imq1mrPPPjv33XdfZsyYkcMPP7zekVo8//zz+Y//+I/cfvvtKZVK+cQnPpFzzjknRx11VL2j7XAKhULLtVc09eQssiVVKpVMmzYtP/jBDzJ9+vTsvffeueSSSzJ27NjsvPPO9Y6XFStW5Pjjj8+rr76an//853nve99b70hshHfY+r7//e/nM5/5TC6//PJcc8019Y4DAAAAAAAAAAAAQCcrl8upVCobtO2N1VJT6/2vv/56hzMXi8WUSqWWtrW+zVmz2267pUuXLpuw6wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfblFnQAAIABJREFUAAAAAAAAAAAAAP/Hvr3H1lnf9wN/O4ntcxLf48RJCBDCJVxKUrKuEgmwZRMdjHTrxlaVDjahVdqmqkNjGynSLlKDVtptYmqRNnVl/AHrtKWdKrGlqEs3iUAyiZGVlJCQALmQq+P6bp9jO/b5/THFP0IuJQRzQvJ6SY8+3+f7fJ7H7+cbn6//OQEAAAAAAAAAgCm3rqZSqVSqnQIuJqOjo1m9enW2bduWTZs25fLLL692pBN0dnbmqaeeyhNPPJHt27dn8eLFufvuu/Nrv/Zr+emf/unU1NRUO+KH2k9aP1vy2bGe7521e39Zz/dmeHg469evz3e+8538+7//e4aHh3PHHXfkc5/7XO66667U1tZWO+IJent7s3r16vzoRz/K448/nvvuu6/akarO7/75r1Qq5Ytf/GK+9rWvZc2aNXn00UerHQkAAAAAAAAAAADgglIqlVIulyfrqeamsqevry8TExNnlblQKKRYLJ4wPl2dip7GxsbMmDHjHFceAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuCutqKpVKpdop4GLT19eX2267LceOHctzzz2X2bNnVzvSKb344ov5zne+k29/+9t54403Mm/evPzCL/xC7rjjjtx+++3nbW4Azl/bt2/Ps88+m2effTbPPfdcxsbGctttt+Xuu+/Or/7qr2b+/PnVjnhGIyMj+fM///P85V/+Ze6+++584xvfSEtLS7VjwSlt27Yt99xzT/bt25e/+7u/y2c+85lqRwIAAAAAAAAAAAB435RKpZTL5RPGp6tT0dPf35/x8fGzzl0oFFIsFk9bp7KnoaEhtbW157bwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAB2ldTaVSqVQ7BVyMDhw4kFtuuSUtLS3ZsGFDZs+eXe1IZ/Tyyy/ne9/7Xp599tm88MILqVQqueGGG3LLLbdkxYoVWblyZRYtWlTtmACcR44dO5b//d//zaZNm/LCCy/khRdeyMGDB9PW1pbbb789d9xxR+66667MmTOn2lHP2vr163P//fenUCjkkUceyW/8xm9k2rRp1Y4FSZLu7u78xV/8RR5//PHcfPPNeeqpp7Jw4cJqxwIAAAAAAAAAAAAuIKVSKeVy+bR1KnsGBwczNjZ21pkLhUKKxeJp65l6zvX+mTNnpr6+/pzXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuOisq6lUKpVqp4CL1b59+7Jq1ao0NjZmw4YNaW9vr3akd6W/vz//+Z//mY0bN2bz5s156aWXMjo6mgULFmTFihVZuXJlVqxYkZtuuim1tbXVjgvAB6SnpyebN2/Opk2b8vzzz+fFF1/M8PBwZs+enRUrVmTFihX5mZ/5mXz84x/P9OnTqx33nB05ciR/8id/kieffDI33nhjvvKVr+QTn/hEtWNxESuVSvn617+eL3/5y6mrq8uf/dmf5Xd/93cviM8bAAAAAAAAAAAA8H9KpVLK5fJp67n2nOna8PBwRkZGzjpzoVBIsVg8qZ7p2vvVc3wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwIbWuplKpVKqdAi5m+/bty8/93M+loaEhGzZsSHt7e7UjnbVyuZwXX3wxmzZtygsvvJDNmzenq6srM2fOzNKlS7Ns2bIsW7YsS5cuzY033pimpqZqRwbgHL311lvZunVrtm7dmh/+8IfZunVrdu7cmYmJiVx77bW5+eabc8stt+Tmm2/Otddem5qammpHnjKvvvpqvvjFL+aZZ57JbbfdlgceeCC//Mu/nOnTp1c7GheJH//4x/n7v//7PP744+nt7c2DDz6YP/7jP05jY2O1owEAAAAAAAAAAMAFo1QqpVwun1TPdG0qes5GoVBIsVicrKeam8qelpaWC/p7xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+AdTWVSqVS7RRwsXvrrbeyatWqNDQ0ZMOGDWlvb692pHNSqVTy2muvZfPmzdmyZUu2bt2arVu3pre3NzU1NbniiiuybNmyLF26NEuXLs2yZcuyePHi1NTUVDs6AO9QLpezbdu2vPzyy5P7+csvv5zu7u4kyaJFiyb38o997GNZsWLFh/7v2Hu1cePGfPWrX8369etz2WWX5fOf/3w+97nPpaWlpdrRuEC98sor+drXvpann3469fX1+e3f/u384R/+YebPn1/taAAAAAAAAAAAAPC+KZVKKZfLk/VUc1PZ09vbm7P971eFQiHFYvGE8enqVPQ0NTVl+vTp57jyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnAfW1VQqlUq1UwDJW2+9lVWrVmXWrFn5wQ9+kPb29mpHet/t2bMnW7dunTx++MMf5o033sjExEQaGxuzZMmSXH311bnmmmsmj6uvvjrNzc3Vjg5wwdu/f3927tyZXbt2ZdeuXXnttdeyc+fOvPnmmzl27FhmzpyZj3zkI1m2bFmWLl2apUuXZtmyZfboU3j99dfz+OOP58knn8z4+Hg+9alP5bOf/Wxuv/321NbWVjseH3JdXV1Zt25dvvWtb+WFF17INddck9///d/Pb/7mb6ahoaHa8QAAAAAAAAAAALiAlEqllMvlE8anq1PR09/fn/Hx8bPKXCgUUiwWTxi/s57p2rn2NDQ0+L4oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA76d1NZVKpVLtFMD/2bdvX1atWpVisZj169fnsssuq3akKTc0NJRXXnklW7duzc6dO7Nz58689tpr2b17d0ZHR5MkHR0dueaaa3LNNdfk6quvnhxfeeWVKRQKVX4DgA+PH//4x9m1a9fkfrtz587s2rUru3btytDQUJKkubl5cr9dsmRJrrvuuixdujRXXXVVpk+fXuU3+HDp7+/P008/nX/8x3/M5s2bM3v27Pz6r/967rnnnqxcuTLTpk2rdkQ+JAYHB/Pd7343//RP/5T/+I//SF1dXX7pl34pv/Vbv5VPfOITqampqXZEAAAAAAAAAAAA3kelUinlcvmE8enqmXre6/0DAwM5duzYWecuFAopFounrVPZM2vWrNTV1Z3bwgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD5Z11NpVKpVDsF8P/t378/d911V7q6uvJv//Zvuemmm6odqWoOHjyYV199NW+++WbefPPNbNu2La+++mr27t2b8fHxJElra2sWL16c+fPnZ8GCBVm8ePHkceWVV6alpaXKbwHwwenp6ZncMw8ePJhDhw5Nnr/++uvp6+tLktTV1WXhwoVZvHhxrr/++txwww2Te+cVV1yRmpqaKr/Jheett97Kv/7rv+app57KSy+9lPb29qxatSqrV6/OJz/5ybS2tlY7IueZN998Mxs2bMgzzzyTDRs2ZGxsLKtWrcp9992XX/mVX0ljY2O1IwIAAAAAAAAAAFyQSqVSyuXyaetU9gwNDWV0dPSsMxcKhRSLxZPqma69Xz3HxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCUWFdTqVQq1U4BnGhwcDCf/vSn89xzz+Wf//mfc9ddd1U70nmlVCpl165d2b17d/bs2ZM9e/Zk79692bt3b/bt25eurq7J3tbW1lx++eWTx6JFi3LppZdm/vz5ueSSSzJv3rwUCoUqvg3Au9Pb25uDBw/m0KFDOXjwYPbs2ZN9+/ZN7n979+7NyMhIkmT69Om55JJLJve9t++DV199dS677LJMmzatym908XrllVfyzDPPZP369dm8eXNqamqycuXK3Hnnnfn5n//5fPSjH82MGTOqHZMPWH9/f55//vl8//vfz/r167Nr1660tLTk9ttvzy/+4i/mk5/8ZGbPnl3tmAAAAAAAAAAAAFOmVCqlXC6fVM90bSp6zkahUEixWJysp5qbyp6WlpbU1NSc28IDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA57N1NZVKpVLtFMDJjh07ls9//vN54okn8vWvfz2/93u/V+1IHxpDQ0PZs2dP9uzZk71792bfvn3Zu3dv9u7dmz179uTw4cN5+9Y3e/bszJ8/PwsWLMj8+fNzySWXZN68eZN14cKF6ejoSH19fRXfCrhQ9ff358CBAzl8+HAOHDiQQ4cO5eDBgzl06NAJ86VSafKe+vr6XHrppbn88ssnj0WLFk2OFy5cmBkzZlTxrXi3uru78/3vfz/f+9738uyzz6azszMNDQ1ZsWJFbrnlltx22235+Mc/nmKxWO2ovM8OHTqU559/Phs3bszGjRvzox/9KOPj41m6dGnuvPPO3HnnnVm5cqXPMgAAAAAAAAAAMOVKpVLK5fJkPdXcVPb09vbmbP9rS6FQSLFYnKynmns3195rT1NTU6ZPn36OKw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwE62rqVQqlWqnAE7vK1/5Sh5++OF84QtfyGOPPZZp06ZVO9KH3tjYWI4cOZL9+/efsr711ls5cuRIOjs7T7hvzpw5mTdvXubMmZOOjo7MmTMn7e3tk+fHx+3t7Wlvb6/S2wHVNjo6mq6urnR1deXIkSM5evRojh49mq6urnR2dqazs3NyvH///gwPD0/eW1dXl46OjixcuPCkOm/evFxyySWT+xAXnkqlku3bt2fjxo15/vnn89xzz2Xfvn2pq6vL8uXLs3z58vzUT/1Uli9fnhtuuCG1tbXVjsy71Nvbmy1btkweL774Yl5//fVMnz49H/3oR3Prrbfm1ltvzS233JK5c+dWOy4AAAAAAAAAAPABKZVKKZfLk/VUc2fTc7b39/X1ZWJi4qwyFwqFFIvFE8anq1PR09jYmBkzZpzjygMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8aKyrqVQqlWqnAM7sySefzO/8zu/kU5/6VL75zW+mqamp2pEuCqOjozly5Ej2799/Qj1y5EiOHj2ao0ePpqurK52dnenp6Tnh3hkzZqS9vT3t7e2ZM2dOOjo6MmfOnMm51tbWtLW1pbW19YRj+vTpVXpb4FRKpVJ6enpOOLq7u9PT05Ourq7J/aCrqytHjx5NZ2dnent7T3jGjBkzJj//x/eD4+OFCxemo6Mjl156aebOnZuOjo4qvSnnq3379uW5557Lf//3f2fLli15+eWXMzw8nPr6+tx4441Zvnx5brrpplx77bW5/vrrM3fu3GpHvqiNj49n9+7d2b59e7Zt25YtW7Zky5YteeONN5Ik8+bNy/Lly/Oxj30sK1asyIoVK9LY2Fjl1AAAAAAAAAAAcPEplUopl8snjE9Xp6JnYGAgx44dO+vchUIhxWLxtHUqe2bNmpW6urpzW3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzta6mkqlUql2CuAn+6//+q/cc889aWpqyrp167Js2bJqR+JtxsbG0tXVla6urnR2dqazszNHjx5NV1dXjh49miNHjkyOu7q60tPTk/Hx8ZOe09TUlNbW1rS2tqatrW1yfKqjra0tDQ0NaWxsTGNjY5qamqrw5nB+Gx8fT39/f3p7ezMwMJCBgYH09PSc8eju7p4cl8vlk55ZLBbT2tqa9vb2dHR0ZM6cOZkzZ07a29szd+7czJ07N+3t7ZPnbW1tVXhzLlTj4+PZsWNHXnrppWzZsiVbtmzJ1q1b09fXlyRpa2vLddddl+uuuy5LlizJ9ddfnyuvvDKLFi1KfX19ldNfOLq7u7Nnz57s3Lkzr776anbs2JEdO3Zk586dGRkZSZJcdtlluemmm7J8+fLJY8GCBVVODgAAAAAAAAAA1VcqlVIul09bp7JnaGgoo6OjZ525UCikWCyeVM907f3qmTlzpu9/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFy81tVUKpVKtVMA705nZ2fuvffebNy4MY8++mgeeOCBakfiHPT396enp+eko7u7+5Tzbz8mJiZO+cyWlpY0NjaecJxqrrW19YTzhoaGNDQ0pK6uLi0tLamvr8/MmTM/4BWB/9Pb25vR0dEMDg5maGgoIyMj6e3tTX9/fwYGBiaPvr6+9PX1TZ4PDg6eNDc8PHzKn1EoFNLa2nrGo62t7ZTzhULhA14R+MkOHjyY7du3Z8eOHXn11Vfz2muvZfv27Tl48GCSpKamJvPnz88VV1yRRYsWZcGCBVmyZMnkeMGCBWlubq7yW5wfJiYm0tnZmcOHD2ffvn3ZvXt3du/enT179mTPnj3ZvXt3+vv7kyS1tbVZvHhxrr/++lx77bW57rrrct1112XJkiVpbGys8psAAAAAAAAAAMCJSqVSyuXySfVM196vnuHh4YyMjJx15kKhkGKxOFlPNTeVPa2tree26AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwbtbVVCqVSrVTAO/e+Ph41q5dm7Vr1+azn/1s/vZv/zYNDQ3VjsUHrLe3N729vRkYGJg8+vv709vbm8HBwZPm3t43MDAwOTc2NnbGn9PQ0JC6urq0tLSkvr4+M2fOTGNjY+rq6tLc3JxCoZBisXjKudra2snfzZaWltTU1GTWrFmpq6s74Vpra2uSTF7j/DI4OJixsbGMjo5maGgolUolvb29J1wbGRnJ8PDwCdf6+voyOjqagYGBDA8PZ2Rk5JRzvb29GR0dzeDg4OTcmcyaNSuNjY1paGhIc3Nzmpub09jYOHk0NTWlpaVlsuedc42NjWltbU2xWJzytYPzQV9fX958883s2bMnu3fvzs6dO/ODH/wgu3fvTl1dXUql0mRvsVjM/PnzM3/+/HR0dGTBggWZO3du5s2bl7a2trS2tqa1tXVy3NTUVMU3e/fGx8fT09OT7u7u9PT0TI67u7vT2dmZ/fv3p7OzMwcPHszhw4fT2dmZ8fHxyfs7OjqyaNGiXHHFFVm0aNEJ4yuuuCK1tbVVfDsAAAAAAAAAAD4MSqVSyuXySfVM195Nz7u9v6en56wzH/8+6PF6qrmp7Glubs60adPOYdUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4IKwrqZSqVSqnQI4e88++2zuu+++zJkzJ//yL/+Sj3zkI9WOxIdQuVzOwMBABgYGMjQ0lNHR0fT09GR0dDRDQ0MZHBzM6Ohoent7MzIykuHh4QwMDGRkZCT9/f0plUopl8vp6+vL6OhoBgYGMjw8nJGRkcn+s1VbW5uGhoYkSWtra5Jk1qxZqaurm+xpaWlJTU3N5PnxvlOd19TUpKWlZfJ82rRpaW5uPu3Pf+ezz+QnPevtjh07loGBgXfVm+SM6/fOZ42NjWVwcPC058f/PY/r7e3NwMDA5DoPDg5mbGxssq9SqaS3t/ddZ3274+vX2NiYurq6NDc3p1AopFgspqmpKXV1dWlqakqxWEyhUEhLS0vq6urS0NAw+e/c2tqaurq6zJo1Kw0NDamvr09zc3Oam5szbdq095QLLnYTExN5+umns2bNmoyMjGTNmjV54IEH0t/fn8OHD+fAgQPp7OzMwYMHc/jw4Rw+fDiHDh3KkSNHcuTIkfT19Z30zOnTp6etrS2tra1pbGxMQ0NDamtrT/gMv/1zfdyp9tl3zr1z30pO3Bff/ndqbGzshL9dQ0NDKZfL6enpSXd3d/r7+0/KPmPGjLS1tWXu3LlZsGBB5s2bl3nz5mX+/Pnp6OjIJZdckrlz5+ayyy7LzJkzz2ntAQAAAAAAAAConuPfczxeTzU3lT19fX2ZmJg4q8zHv3P39vHp6lT0NDY2ZsaMGee48gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA+2RdTaVSqVQ7BfDe7N+/P5/5zGfy4osv5uGHH87DDz+c+vr6aseCE0xMTKSvry9JMjAwkGPHjmVkZCTDw8Nnfe2dz0uS8fHx9Pf3T54fO3YsAwMDpz0fGxvL4ODgKbMe/9nv1vDwcEZGRt51f2NjY2bMmPGu+1taWlJTU3PSfE1NTVpaWibPp02blubm5tOeT58+PU1NTZPnW7Zsyf/8z/9kyZIl+dmf/dksWLAg9fX1mTFjRhobG5Mkzc3NmTZtWmbOnHlW14Dzz4YNG/Lggw9mx44duf/++7N27drMnTv3rJ4xMTGRnp6edHd3p6enZ/I4fj4wMJChoaGMjo6mp6cno6OjGRoayuDgYEZHR9Pb25vk5D37dHPv3LfeOVdbW5uGhobMmjUrdXV1aW1tTV1dXWbNmpWGhobU19entbU1ra2taWtrO2lszwIAAAAAAAAAmFqlUinlcvmE8enqVPT09/dnfHz8rHMXCoUUi8XT1qnsaWhoSG1t7bktPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwoVlXU6lUKtVOAbx3ExMT+eY3v5k/+qM/SkdHR77xjW9k1apV1Y4FnOc2bNiQBx98MDt27Mj999+fRx55JHPmzKl2LOB9tG3btjz00ENZv359Vq9encceeyxXXXVVtWMBAAAAAAAAADDFSqVSyuXyaetU9gwODmZsbOysMxcKhRSLxZPqma69Xz0zZ85MfX39Oa87AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAUWFdTqVQq1U4BnLsDBw7kC1/4Qr773e/m3nvvzd/8zd+kra2t2rGA89jExESefvrprFmzJiMjI1mzZk0eeOCBFAqFakcDzsGBAwfypS99KU888USWL1+ev/qrv8ptt91W7VgAAAAAAAAAABe8UqmUcrl82nqmnnO9f3h4OCMjI2eduVAopFgsnlTPdO396jk+BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgtNbVVCqVSrVTAO+fb33rW/mDP/iDzJgxI1/+8pdz7733ZtpwSyfhAAAgAElEQVS0adWOBZzHhoaG8vjjj+eRRx5JW1tb1q5dm/vuuy81NTXVjgachbd/lltbW/PII4/4LAMAAAAAAAAAF4VSqZRyuXxSPdO1qeg5G4VCIcVicbKeam4qe1paWnyvBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/LeuplKpVKqdAnh/dXd35+GHH84//MM/5Prrr8+jjz6aO++8s9qxgPPcgQMH8qUvfSlPPPFEli9fnr/+67/OrbfeWu1YwE8wMTGRp59+OmvWrMnIyEjWrFmTBx54IIVCodrRAAAAAAAAAIALXKlUSrlcnqynmpvKnt7e3pztV6ELhUKKxeIJ49PVqehpamrK9OnTz3HlAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4SKyrqVQqlWqnAKbGa6+9lj/90z/Nt7/97dx888356le/mpUrV1Y7FnCe27ZtWx566KGsX78+q1evzmOPPZarrrqq2rGAU9iwYUMefPDB7NixI/fff3/Wrl2buXPnVjsWAAAAAAAAADDFSqVSyuXyCePT1ano6e/vz/j4+FllLhQKKRaLJ4zfWc907Vx7GhoaUltbe44rDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH6h1NZVKpVLtFMDU2rRpUx566KFs2rQpn/70p7N27dpcffXV1Y4FnOc2bNiQBx98MDt27Mj999+fRx55JHPmzKl2LCDJtm3b8tBDD2X9+vVZvXp1HnvssVx11VXVjgUAAAAAAAAAF7xSqZRyuXzC+HT1TD3v9f7BwcGMjY2dde5CoZBisXjaOpU9s2bNSl1d3bktPAAAAAAAAAAAAAAAAAAAAAAAAPw/du0uRK67fvz4Z9KkOScPTTdtV6uCtiy0ClYd29CHZNA2xV5sfAADxZLA3njRm4EE9oCXu3OhsLKgQfBiL0rHBxgvtK2rlaG1pE1iFWqlS0LRoti9EIQ0STfnTB7m/G7+DQ3J5u92Mzmb7OsF4XM438/Cmy8ze5MFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFidOrWyLMuqK4Br49e//nV873vfi7fffju+/e1vR5Zl8aUvfanqLGAF6/f70W63I8uy6PV6kWVZNJvNSJKk6jRYlebn52NiYiJmZmaiXq/H1NRUNBqNqrMAAAAAAAAA4JrI8zyKolh0DnJnYWEhzpw5s+TmJEkiTdNL5pXOrtbOB88AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB1q1Mry7KsugK4dvr9fvz2t7+NVqsVr7/+ejzyyCORZVns2rWr6jRgBVtYWIgDBw5Eq9WKrVu3xuTkZOzZsydqtVrVabAqfPg7ODQ0FK1Wy3cQAAAAAAAAgGsmz/MoiuKSeaWzQewsRZIkkabphXm5d4PcufXWW/2/PgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsFydWlmWZdUVQDVeffXV+MEPfhAvvPBC1Ov1aDab8dRTT8VNN91UdRqwQs3Pz8fExETMzMxEvV6PH/7wh7Fjx46qs+CG1e/3o91uR5Zl0ev1IsuyaDabkSRJ1WkAAAAAAAAAXAN5nkdRFBfm5d4Ncue9996Lpf6ZaZIkkabpRc+LzUHs3HLLLf4GDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuFF0amVZllVXANU6fPhwfP/734/nn38+7rnnnnj66adj7969sWXLlqrTgBVqbm4uxsfHY3Z2NkZHR2N6ejpGRkaqzoIbSrfbjX379sWxY8dibGwsJicnY3h4uOosAAAAAAAAgFUhz/MoiuLCvNy7pews9edPnDgR/X5/Sc1JkkSaphc9LzYHsbN58+ZYu3btMm8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAD+nUyrIsq64AVoa5ubn40Y9+FD/72c+iVqvFU089FU8//XTcd999VacBK1S32419+/bFsWPHYmxsLFqtVtxxxx1VZ8F1bW5uLsbHx2N2djZGR0djeno6RkZGqs4CAAAAAAAAuCbyPI+iKC56XmwOYufUqVNx7ty5JXcnSRJpmi46B7mzcePGuPnmm5d38QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKxEnVpZlmXVFcDKcvLkyfjlL38ZP/7xj+Ott96KL3/5y/Hd73439u7dG0mSVJ0HrDD9fj/a7XZkWRa9Xi+yLItms+n3BSzR/Px8TExMxMzMTNTr9ZiamopGo1F1FgAAAAAAALCK5HkeRVEsOge5s7CwEGfOnFlyc5IkkabpJfNKZ1drZ8OGDbF+/fpl3zsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsolMry7KsugJYmcqyjJdeeil+8pOfxHPPPRe33357jI2Nxd69e+Pee++tOg9YYRYWFuLAgQPRarVi69atMTk5GXv27IlarVZ1GqxoH/7uDA0NRavV8t0BAAAAAACAVSbP8yiK4pJ5pbOrtXP69Ono9XpLbk6SJNI0vTAv926QO0NDQ8u7dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFj5OrWyLMuqK4CV7913342f/vSn8cwzz8S///3vePDBB2Pv3r3x5JNPxtDQUNV5wAoyPz8fExMTMTMzE/V6PaampqLRaFSdBStOv9+PdrsdWZZFr9eLLMui2WxGkiRVpwEAAAAAAMCqked5FEVxyfyoZ0vdOX78+JKbkySJNE0vzMu9G+TOli1bYs2aNcu4dQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB/1KmVZVlWXQFcP/r9fhw6dCieffbZ+PnPfx5nz56Nxx9/PPbu3Rvf/OY3Y926dVUnAivE3NxcjI+Px+zsbIyOjsb09HSMjIxUnQUrQrfbjf3798fRo0djbGwsJicnY3h4uOosAAAAAAAAuGbyPI+iKC7My70b5M6JEyei3+8vqTlJkkjT9KLnxeYgdjZv3hxr165d5s0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA15FOrSzLsuoK4Pp06tSp6HQ68cwzz8TBgwfjYx/7WHznO9+JJ598Mh544IGq84AVotvtxr59++LYsWMxNjYWrVYr7rjjjqqzoBJzc3MxPj4es7OzMTo6GtPT0zEyMlJ1FgAAAAAAAKtInudRFMVFz4vNQeycPHkyzp8/v+TuJEkiTdNF5yB3Nm3aFOvWrVvexQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsXadWlmVZdQVw/XvnnXfi2WefjXa7HX//+9/jrrvuit27d8fu3bvj/vvvrzoPqFi/3492ux1ZlkWv14ssy6LZbEaSJFWnwTUxPz8fExMTMTMzE/V6PaampqLRaFSdBQAAAAAAwDWW53kURbHoHOTO+++/H2fPnl1yc5IkkabpJfNKZ1drZ8OGDbF+/fpl3zsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAdapTK8uyrLoCuLHMzc1Fp9OJX/ziF/H222/Hpz/96fjGN74Ru3fvjkceeSRqtVrViUBFFhYW4sCBA9FqtWLr1q0xOTkZe/bs8XuBG9aHP/NDQ0PRarV85gEAAAAAACqQ53kURbHovNLOcn/+9OnT0ev1ltycJEmkaXrJvNLZ1dr54BkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACASnVqZVmWVVcAN64///nP0el0otPpxD//+c8YGRmJ3bt3x7e+9a24//77o1arVZ0IVGB+fj4mJiZiZmYm6vV6TE1NRaPRqDoLrpp+vx/tdjuyLIterxdZlkWz2YwkSapOAwAAAAAAuKbyPI+iKC6ZVzobxM5SJEkSaZpemJd7N8idLVu2xJo1a5Z38QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcCDq1sizLqiuAG19ZlvH6669Hp9OJX/3qV/Gvf/0rPvGJT8SuXbvi61//ejz66KORJEnVmcA1Njc3F+Pj4zE7Oxujo6MxPT0dIyMjVWfBsnS73di/f38cPXo0xsbGYnJyMoaHh6vOAgAAAAAAVpk8z6Moigvzcu8GufPee+/FUv8sKUmSSNP0oufF5iB2brnllrjpppuWefMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcNV0amVZllVXAKvP3NxcvPDCC/H888/HoUOHIkmSeOyxx2LXrl2xa9euuPPOO6tOBK6hbrcb+/bti2PHjsXY2FhMTk7G8PBw1VmwJHNzczE+Ph6zs7MxOjoa09PTMTIyUnUWAAAAAABwjeV5HkVRXPS82BzEzsmTJ+P8+fNL7k6SJNI0XXQOcmfTpk2xbt265V08AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANx4OrWyLMuqK4DV7d13340XXnghfvOb38TLL78c586di4cffjh27doVTzzxRHz+85+vOhG4Bvr9frTb7ciyLHq9XmRZFs1mM5IkqToNrmh+fj4mJiZiZmYm6vV6TE1NRaPRqDoLAAAAAABWnTzPoyiKi54Xm1fa+ag///7778fZs2eX3J0kSaRpuugc5M7GjRvj5ptvXt7FAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACD0qmVZVlWXQHwgVOnTsWLL74Yzz33XPzud7+L//73v/HJT34yvva1r8UTTzwRO3fujKGhoaozgQFaWFiIAwcORKvViq1bt8bk5GTs2bMnarVa1WlwkQ9/VoeGhqLVavmsAgAAAACwauV5HkVRLDoHubOwsBBnzpxZcnOSJJGm6SXzSmdXa+eDZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAK+jUyrIsq64AuJx+vx9vvPFGdLvd6Ha78corr0S/348vfvGLsXPnzti5c2d85StfibVr11adCgzA/Px8TExMxMzMTNTr9ZiamopGo1F1FkS/3492ux1ZlkWv14ssy6LZbEaSJFWnAQAAAACwCuV5HkVRXDKvdDaInaVIkiTSNL0wL/dukDu33npr1Gq15V08AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDgdWplWZZVVwD8L44fPx7dbjdefPHFePHFF+Pdd9+N22+/PR5//PF47LHH4qtf/WrcfffdVWcCV9nc3FyMj4/H7OxsjI6OxvT0dIyMjFSdxSrV7XZj//79cfTo0RgbG4vJyckYHh6uOgsAAAAAgArkeR5FUVyYl3s3yJ333nsvlvonH0mSRJqmFz0vNgexc8stt8RNN920zJsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFg1OrWyLMuqKwA+irfeeit+//vfxx/+8Id47bXX4vTp0/GZz3wmHn300Qv/7rzzzqozgauk2+3Gvn374tixYzE2NhaTk5MxPDxcdRarxNzcXIyPj8fs7GyMjo7G9PR0jIyMVJ0FAAAAALAq5XkeRVFcmJd797+cfdSdEydORL/fX1JzkiSRpulFz4vNQexs3rw51q5du8ybBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgGuvUyrIsq64AWK5z587Fm2++Gd1uN7rdbhw8eDB6vV7cfffdsXPnzti5c2c8+uijcdttt1WdCixDv9+PdrsdWZZFr9eLLMui2WxGkiRVp3GDmp+fj4mJiZiZmYl6vR5TU1PRaDSqzgIAAAAAqESe51EUxUXPi81B7Jw6dSrOnTu35O4kSSJN00XnIHc2btwYN9988/IuHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1apTK8uyrLoC4GpbWFiIgwcPxksvvRQvv/xyvPHGG1GWZdx3333RaDRix44dsX379vj4xz9edSrwESwsLMSBAwei1WrF0NBQtFqt2LNnT9RqtarTuEH4jAEAAAAAK02e51EUxaJzkDsLCwtx5syZJTcnSRJpml4yr3R2tXY2bNgQ69evX/a9AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAhTq1sizLqisABu348ePxyiuvxB//+Mc4ePBgvPnmm3H+/Pm45557Yvv27dFoNGLHjh1x1113VZ0KLMH8/HxMTEzEzMxM1Ov1mJqaikajUXUW17F+vx/tdjuyLIterxdZlkWz2YwkSapOAwAAAAAqkud5FEVxybzS2dXaOX36dPR6vSU3J0kSaZpemJd7N8idW2+9NWq12vIuHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6NTKsiyrrgC41k6ePBmHDh2KgwcPxsGDB+P111+PXq8Xn/rUp6LRaMT27dtjx44d8bnPfS7WrFlTdS7w/zE3Nxfj4+MxOzsbo6OjMT09HSMjI1VncZ3pdruxf//+OHr0aIyNjcXk5GQMDw9XnQUAAAAAq1ae51EUxSXzo54tdef48eNLbk6SJNI0vTAv926QO1u2bPF/WwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcOPo1MqyLKuuAKjauXPn4s0334xutxuvvvpqvPbaa3H8+PHYtGlTfOELX4jt27fHI488Eg8//HDcdtttVecCi+h2u7F///44evRojI2NxeTkZAwPD1edxQo3NzcX4+PjMTs7G6OjozE9PR0jIyNVZwEAAABAZfI8j6IoLszLvRvkzokTJ6Lf7y+pOUmSSNP0oufF5iB2Nm/eHGvXrl3mzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFykUyvLsqy6AmClOX/+fPztb3+LQ4cOxZEjR+Lw4cPxj3/8I9asWROf/exn46GHHoqHH344Hnzwwbj33nujVqtVnQz8P/1+P9rtdmRZFr1eL7Isi2azGUmSVJ3GCjM/Px8TExMxMzMT9Xo9pqamotFoVJ0FAAAAwCqW53kURXHR82JzEDunTp2Kc+fOLbk7SZJI03TROcidTZs2xbp165Z38QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtTp1aWZVl1BcD14D//+U8cOXIkDh06FIcPH46//OUvked5DA0NxUMPPRTbtm2LBx54ILZt2xa333571bmw6i0sLMSBAwei1WrF0NBQtFqt2LNnT9RqtarTqJjPBgAAAACXk+d5FEWx6Bzkzvvvvx9nz55dcnOSJJGm6SXzSmdXa2fDhg2xfv36Zd87AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAi+rUyrIsq64AuB6dPXs2/vrXv8bhw4fjyJEj8ac//SneeeediIi46667Ytu2bfHAAw/Etm3bol6vx8aNGysuhtVpfn4+JiYmYmZmJur1ekxNTUWj0ag6iwr0+/1ot9uRZVn0er3IsiyazWYkSVJ1GgAAAMCqlud5FEVxybzS2dXaOX36dPR6vSU3J0kSaZpeMq90drV2IiKGhoaWd+kAAAAAAAAAAAAAAAAAAAAA/B979h/b9X3fCfz59S++3/AjuGtN+OEAnotTG9IExNpuK1q7rr1u7JTpsmi6KeshtadqP0R1nLB2S6UK6E3bsbFd88eqE3/sjmZ3sqbdtoabNLReu3RamzLSgm3IgkNwcEIzAgHM92uM/bk/drFGwTSOMV8Ij4f01uv9fb9fX3+f77f5iq9tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmb38gAACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA7QV+pKIqi3ikA3inOnDmTb3/723n22WenxunTp9PY2Jju7u5s3LgxP/ZjP5aNGzdm7dq1aWlpqXdkuGv09/dn+/bt2b9/fzZv3pw9e/aks7Oz3rG4RQ4cOJBt27ZlcHAwW7Zsyc6dO9PW1lbvWAAAAAB1Va1WU6vVrqk32puLnpkol8upVCpT9Xprc9lz7733pqGhYXYXDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG9NX6koiqLeKQDeyUZGRnLw4MGp8Xd/93d5/fXX09TUlDVr1mTDhg3p6elJd3d3PvShD+Xd7353vSPDO9qBAweybdu2DA4OZsuWLdm5c2fa2trqHYs50t/fn+3bt2f//v3ZvHlz9uzZk87OznrHAgAAAO5y1Wo1tVptql5vbS57zp07l5n+ibBcLqdSqVw1n67ORc+iRYvS2Ng4y5sHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAO0pfqSiKot4pAO4mk5OTOXbsWA4dOpTnnnsuhw4dyqFDh3LmzJmUSqV0dHTk4YcfzsMPP5yHHnooDz/8cJYuXVrv2PCOMjk5mX379qW3tzdjY2Pp7e3N1q1bUy6X6x2Nm+TUqVPZsWNH9u7dm/Xr12f37t3ZtGlTvWMBAAAAdVatVlOr1a6aT1fnouf8+fOZmJiYce5yuZxKpTJtncueBQsWpLm5eXYXDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALwdfaWiKIp6pwAgGRkZycDAQPr7+3Pw4MEcPHgwg4ODKYoira2t6e7uzoYNG6bG+973vjQ0NNQ7NtzRRkdH8+STT2bXrl1pbW3Nrl278vjjj6dUKtU7Gm+T7ykAAADcnqrVamq12lXzH6w32pttz8WLFzM+Pj7j3OVyOZVKZdo6lz3z589PS0vL7C4eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuJP1lYqiKOqdAoDrO3/+fL73ve/l4MGDGRgYSH9/f77zne9kbGwsCxYsSFdXV7q7u7Nhw4apUalU6h0b7jinTp3Kjh07snfv3qxfvz67d+/Opk2b6h2LGZicnMy+ffvS29ubsbGx9Pb2ZuvWrSmXy/WOBgAAAHVXrVZTq9WmrXPZMzo6msuXL884c7lcTqVSuabeaO9m9bw5BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKizvlJRFEW9UwDw1tVqtRw+fDiHDh3Kc889l0OHDuXw4cMZHR1Nc3Nzuru789BDD+XBBx/M2rVr09PTk+XLl9c7NtwR+vv7s3379uzfvz+bN2/Onj170tnZWe9Y/BAHDhzItm3bMjg4mC1btmTnzp1pa2urdywAAABItVpNrVa7pt5oby56ZqJcLqdSqUzV663NZc/ixYtTKpVmd/EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7wx9paIoinqnAGB2JiYm8vzzz+e5557Lc889l0OHDuXw4cN59dVXkySLFy9OT09P1q5dm56enql5W1tbnZPD7enAgQPZtm1bBgcHs2XLluzcudP75TbU39+f7du3Z//+/dm8eXP27NmTzs7OescCAADgNlCtVlOr1abq9dbmsufcuXOZ6Z9fyuVyKpXKVfPp6lz0LFq0KI2NjbO8eQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuor5SURRFvVMAMDfOnTuX48ePp7+/PwcPHszAwECOHDmSV199NUnS2tqa7u7u9PT0TNV169ZlyZIldU4O9Tc5OZl9+/alt7c3Y2Nj6e3tzdatW1Mul+sd7a536tSp7NixI3v37s369euze/fubNq0qd6xAAAASFKtVlOr1abq9dbeyt7b7Tl//nwmJiZmlLlcLqdSqVw1n67Otud6ewsXLkxTU9Msbx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAd6C+UlEURb1TAHBrnT17Nv39/RkYGJiq3/3ud/Paa68lSVpbW9Pd3Z2enp6p+v73vz/vec976pwcbr3R0dE8+eST2bVrV1pbW7Nr1648/vjjKZVK9Y521/G9AAAAmF61Wk2tVrtqPl2di54LFy7kypUrM85dLpdTqVSmrXPZM3/+/LS0tMzu4gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABg7vSViqIo6p0CgNvDyZMnMzAwkCNHjqS/vz9HjhzJ4OBgRkdHkyQrV65Md3d31q5dm+7u7vT09KSrqyuLFi2qc3KYe6dOncqOHTuyd+/erF+/Prt3786mTZtu+JyvfvWr+chHPpL58+ffopR3nmPHjqWxsTGdnZ3T9kxOTmbfvn3p7e3N2NhYent7s3Xr1pTL5VuYFAAAYHrVajW1Wm3aOpc9o6OjuXz58owzl8vlVCqVa+qN9m5Wz5tzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCG+kpFURT1TgHA7W1kZCQDAwPp7++fqocOHcqlS5eSJK2treno6Eh3d3d6enqm5l1dXWlqaqpzeri5+vv7s3379uzfvz+bN2/Onj170tnZeU3fgQMH8jM/8zP5xCc+ka9+9aveC9dx9OjRfPCDH8y73/3uHD169Lp3dODAgWzbti2Dg4PZsmVLdu7cmba2tjqkBQAAbkfVajW1Wu2aeqO9m9Vz6dKljI2NzThzuVxOpVKZqtdbm8uexYsXp1Qqze7iAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBboa9UFEVR7xQA3HkmJiYyNDSUY8eOTY3nn38+R48ezenTp5MkLS0t6ezsTFdXV7q6urJmzZo88MAD6erqyrve9a46nwBm58CBA9m2bVsGBwezZcuW7Ny5M21tbUmSycnJrFu3LkePHk2pVMqv/MqvZO/evSmVSnVOfft45ZVXsnHjxpw+fTqTk5P50pe+lF/91V+d2u/v78/27duzf//+bN68OXv27ElnZ2cdEwMAAP9StVpNrVabqtdbm8ues2fPzjhzuVxOpVKZqtdbu9k9/3Lv3nvvTUNDwyxuHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4y/SViqIo6p0CgHeWN954Iy+88EKGhoYyNDSU/v7+DAwM5OjRoxkdHU2StLa2pqOjIx0dHenu7k5PT8/UvFKp1PkE8NZMTk5m37596e3tzdjYWHp7e7N169Y89dRT+fSnP503P2Y1NDTk85//fL7whS/csmyXL1/O6dOn8/3vfz/nzp1LURQ5f/58JiYmUqlUUi6XM2/evCxevDhtbW1ZsmTJLct24cKF/MRP/ESOHj2a8fHxJMnixYtz4sSJXLx4MTt27MjevXuzfv367N69O5s2bbpl2QAA4HZXrVZTq9Wm6vXW5rLnjTfeyOTk5Iwyl8vlqZ/135xPV+eiZ+HChWlqaprlzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3HJ9paIoinqnAODuMDk5mZMnT+bYsWNT4/nnn8+xY8cyPDycJGlqasrq1avT1dWVBx54IGvWrMl73/ve/OiP/mhWrFiRUqlU51PAtS5cuJDf+Z3fyZ49e9LW1paLFy/mzJkz+cGPWU8++WR+7dd+7aa+9sjISJ599tkMDAyk/8iRDH73uxk+dSqvnTs3o6/T3NiYJT/yI3nvmjV5YN26rF27Nj09Pdm4cWPuueeem5Z3fHw8n/zkJ/P1r389V65cmVpvamrKxz72sXzjG9/IkiVL8tu//dt57LHHvOcBALhtVKvV1Gq1q+bT1bnouXDhwlWfod+qcrmcSqUybZ3LngULFqS5uXl2Fw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcPfqKxVFUdQ7BQCMjY3lhRdeyMDAQIaGhjI0NJT+/v4cPnw458+fT5K0tLRkxYoV6ejouGZ0d3enUqnU+RTc7V5++eU89thj+fa3v52JiYlr9hsaGvKnf/qneeSRR972a/zTP/1Tnn766Xztb/4mz3ztazk+PJxSklXz5uV9V66kZ2IiK5OsSNKWZEmS1v//3IVJmpJcSjKW5HKSs0lOJ3k5yatJnk8y0NycgSSvj4+nubExGx56KD/5kY/k4x//eH7qp34qzc3Nbyt7URT51Kc+lT/5kz/JlStXrtlvampKb29vPv/5z2fevHlv6zUAAHhnqlarqdVq09a57Ll48WLGx8dnnLlcLqdSqVxTb7R3s3ruuecen6kBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO58faWiKIp6pwCAGzl79myGhoamHW9aunRpenp60tHRcdVYs2ZNFi5cWMcTcLf4/ve/n9WrV+fSpUvX3S+VSmlubs7Xvva1/PiP//iMvu5XvvKV/O++vnzzW99KU5IPNTRk05Ur+ckkH0qy4Kac4GrDSf42yTNJvtHSkv7Ll3Pv/Pn55M/9XB77pV/K5s2b09zc/Ja/3m/+5m/md3/3dzM5OXnd/ebm5jz66KN56qmnbkp+AABmr1qtplarXVNvtHezei5dupSxsbEZZy6Xy6lUKtfUG+3drJ4kaW1tnd2lAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAP+srFUVR1DsFALxdtVotx48fz8DAQIaGhq4aJ06cyOTkZJKktbU1HR0d0w64GT7zmc/kj//4jzM+Pj5tT2NjYxYuXJi///u/T1dX17R9RVHkr//6r/Pf/uiP8hd/+Ze5J8nPT0zkXxdF/lWSBTc//g/1YpK/SPLnTU35+sRE3tPamk99+tP5zGc+k87Ozhs+98tf/nI++9nP/tDXKJVK+da3vpWNGzfenNAAAHeoarWaWq12Tb3R3lz0zES5XE6lUpmq11uby5577703DQ0Ns7t4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4ffSViqIo6p0CAOZCrVbL8ePH88ILL+T48eNXjZdeeinj4+NJktbW1nR2dmb16tVZtWrVNaNSqdT5JNwJ+vv78+CDD2ZycvKH9jY1NWXZsmV59tln09bWdtXe5ORknn766ex44ol853vfy4ampvz7K1fyy0nmz1H2t2Mkyf9I8uWWlrw0Pp6f/eQn84UdO7Jhw4Zrev/sz/4sjz766Fu+mw984AN55plnbn5oAIC3oFqtplarTdXrrc1lz7lz5zLTX9eVy+Wpn1venE9X56Jn0aJFaWxsnOXNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6CvVBRFUe8UAHCrXblyJS+99FKOHz8+NV588cWcOHEiJ06cyOuvvz7Ve99992XVqlXTjnnz5tXxJNwuvvjFL+aJJ55IqVRKS0tLLl++nBt9zGpubk5PT0+eeeaZzJ8/P0nyV3/1V/kPv/EbOXb8eH6xVMp/mpzMg7fqAG/TRJK+JP+5uTlHrlzJo7/wC/kvv//7WblyZZLkm9/8Zj760Y9mfHz8hvfR0NCQpqamXL58OaVSKSdPnsyKFStuzSEAgNtCtVpNrVa7aj5dnYue8+fPZ2JiYsa5y+VyKpXKtHUuexYsWJDm5ubZXTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHC76isVRVHUOwUA3G5qtVpGRkYyNDR03XH27Nmp3tbW1nR0dFw1li5dmmXLluWBBx7I/Pnz63gSbpXJyckMDg6mv78/hw8fzuHDh3Po0KEMDw+nKIo0Njamubk5Y2NjefPjV6lUysc//vE8+eST2fa5z+Uvnn46/6axMV+cmEhXnc8zU0WSP0/S29SUlxsa0vtbv5VHHnkkH/7wh3Px4sVMTk4m+eczNzc3Z3x8fOpeOjo6sn79+jz44IPp6enJ+9///qxataqexwGAu0q1Wk2tVrtq/oP1Rnuz7bl48WLGx8dnnLtcLqdSqUxbZ9tzo7358+enpaVldhcPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwY32loiiKeqcAgDvNuXPn8uKLL+bEiRNT418+vnDhQpKkoaEhy5Yty6pVq7J69eqsWrUq7e3taW9vz/3335/7778/CxYsqPNpmEuXLl3KwMBAjhw5kv7+/vzDP/xDDh8+nNdee22qp6WpKZ2lUv7r+Hh+uo5Zb4bLSf4gya6mpoyVSrk8Pp4kKZVKWb58edavX59169Zl3bp16enpSVdXV5qbm+uaGQDqqVqtplarTVvnsmd0dDSXL1+eceZyuZxKpXJNvdHezep5cw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAX6CsVRVHUOwUAvNOcOXMmJ06cuO4YHh7OG2+8MdXb2tqaFStWZOXKlbn//vuzYsWKtLe3Z+XKlWlvb8/y5cvT3Nxcx9MwF15++eU8/su/nK//7d/m3ybZWxSZV+9QN9GLST7W0JDhUin/cfv2PPHEE7nnnnvqHQsAplSr1dRqtWvqjfbmomcmyuVyKpXKVL3e2lz2LF68OKVSaXYXDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFvVVyqKoqh3CgC429RqtYyMjGRoaCgjIyN55ZVXMjQ0NPX4pZdeyujo6FR/a2trOjo6snTp0ixbtiwdHR1XPV61alUaGhrqeCJmYmRkJJs/8YmMHDuWp8bH89F6B5ojE0l2JtmR5HOf+1x2/97v+XcKQKrVamq12lS93tpc9pw7dy4z/VVIuVxOpVK5aj5dnYueRYsWpbGxcZY3DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwB2mr1QURVHvFADA1YqiyCuvvJKTJ09meHg4w8PDOXny5FWPT58+PdVfLpdz//33p729PStWrEh7e3uWLl2a9vb2LF++PMuWLcuSJUtSKpXqeCqS5B//8R/z05s2ZcGZM3l6fDyr6x3oFvhfSf5dY2N+7ud/Pv+zry9NTU31jgRwV6pWq6nValfNp6tz0XP+/PlMTEzMKHO5XE6lUrlqPl2dbc/19hYuXOj/LQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOqlr1QURVHvFADAzNVqtQwPD0+Nl156KcPDwzl16tRUPXv27FR/S0tL7rvvvrS3t2fZsmVZvnx52tvbs3Tp0qvW5s2bV8dTvbMNDw/nwx/8YO577bX8n/HxtNY70C30jSQ/29iYR37xF/Pfv/KVNDQ01DsSwC1TrVZTq9Wumk9X56LnwoULuXLlyoxzl8vlVCqVaetc9syfPz8tLS2zu3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4s/WViqIo6p0CAJgb1Wo1w8PDeeWVVzI8PJyRkZGcOnXqqrXTp0/nypUrU89pa2vL0qVL097enmXLlmX58uVZsWJFli1blvb29ixdujTvete76niqO9Mbb7yRD6xfn5bh4fzf8fHcjTd4IMnmhoZ89td/PX/wh39Y7zjAXaJaraZWq01b57JndHQ0ly9fnnHmcrmcSqVyTb3R3s3qeXMOAAAA/D926z/G77q+A/jz++vu+z16aytc71orYp34h6h0Go3aKkU0jcokEGC4GCOK8+eyoY3ZdGbEH4nZxowzjDJnFGSNHIKGBROdRocCmkCdUxI3wKD9cefZXKE/vt/2e9fP/hhcqNwdd/RbPkf7eCTN633v9+v1eT+/n6TJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHSjlaIoirJTAADlmpyczK5du7J79+48+OCDM+vH6v3335+HH354pr+/vz/PetazsmbNmqxevXrOOjw8nFqtVuIvWzouvuii3Hnbbbmn281I2WFKdFOSP0nytZtuysUXX1x2HOA4arfb6XQ6T6jznfWq5+DBgzl06NCiMzebzbRarZk6297x7FmxYkUqlcqxvXgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ4wPIAAAH4FJREFUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgRDFaKYqiKDsFALD07d27Nzt37szOnTszNjaWXbt2Zffu3Uf927VrV9rt9sxMX19fVq1alec85zlZtWpV1q5dm+Hh4Tz72c+eqSMjIxkeHk6lUinx1z25Cy+8MDt27MiWLVty4YUXplarLXh269at+cD73pfvFEU2HceMzxQfqFRy48BAfvrzn+eMM84oOw6ccNrtdjqdzkydbe949kxOTi46c7PZTKvVmqmz7fW65/Fny5cvT7VaPYa3DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBzo5WiKIqyUwAAJ469e/dm165dGRsbm6k7d+7M+Ph4du7cOfP3gQMHZmbq9XqGh4czPDyckZGRDA0NzbkeGhpKrVZ72n/XGWeckV//+tdJktWrV+fDH/5w3vWud2X58uXzzu3ZsycveN7zcsW+ffns0xH0GaCTZH2jkbPe8paM3nJL2XGgZ9rtdjqdzkydbe949jz88MM5cuTIojI3m820Wq2j1nPV49EzODiYer1+jG8eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4IQ0WimKoig7BQBw8tm/f3927NiR3/72t9mxY0fGx8czNjaW8fHxTExMHLU+fPjwzFy1Ws3Q0FCGhoYyPDyckZGRedf9/f09yTs4OJj9+/fP/F2v19NoNPL2t789V155ZV74whfOOvehD34wN193Xf6n283gMdxfWUDP4z/qHutfleTnSYbmeV4xy16SNJOcmmR9kouSvC1J30LCLsC/Jzk/yR133JENGzYseO6BBx7Il7/85dx99925/fbb02g0epSIZ7J2u51Op3PUeq56PHr27duXqampReduNptptVpz1uPZs2zZMv9/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJa20UpRFEXZKQAA5tNut7N79+7s2rUrk5OT864nJyePmm02m1m5cmXWrFmT1atXP+l6Nt1uN/39/Znts6ler2d6ejqbN2/OlVdemfPOO2/mbM+ePVm7enX+sdvNe3vwHipJ5vpwm+2skmRLkvEkX1nEzGN77SRjSX6S5F+T7E5yS5IXLDb4HM6p1zP4hjfktttvn7fv4MGD+frXv57rrrsuP/rRj1KtVjM9PZ2xsbEMDw/3KA1PVbvdTqfTmbMez579+/en2+0uOnOz2Uyr1XpCne+sVz0DAwPp7+8/5vcOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAlvtFIURVF2CgCAXjlw4EDGxsYyPj6eiYmJedd79+49anZgYCDDw8MZGRnJ0NDQzLq/vz8f//jH57230Wik2+3mxS9+cT7ykY/ksssuyxe+8IV8YsuW7JqezmAPflslyVwfbrOdVZIcSPLiJF9MsmmBM3Pd8S9JPpPkp0mWLyzyvEaTXFat5oEHH8xzn/vcJ5zfc889+cpXvpLrr78+jzzySKrVaqanp2fOH3rooZx++uk9SPLM1G630+l0nlDnO+tVz8GDB3Po0KFFZ242m2m1Wk+o850tpGeh8ytXrjy2lw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT5/RSlEURdkpAADKcOjQoUxMTGRsbCzj4+Nzrnfv3p09e/Ys6JnVajVFUWTVqlVpVKt5w9hYvtSjz61KksU86bH+byf58yQ/S9L3JM97sjv+LMmqJJ9cRI65HE6yttHIlk9/Olu2bEmSTE5OZnR0NJ///Ofzi1/8Io1GI91ud9b5X/7ylznzzDN7kGRx2u12Op3OE+p8Z8ejZzGazWZardZMnW3vePYsX7481Wr12F48AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJxcRutlJwAAKEt/f3/Wrl2btWvXztv3/e9/P5s2bVrQM48cOZJqtZrx8fEkybJjTjm/SpLiSXremORlST6b5G+O8b4rklye5JPH+Jwk6UtyzvR0fvC972X9+vW59tpr881vfjNJMj09nSTpdrtzzm/fvj379u3L/v370+120+l00m63MzU1lX379iVJJicnk2Tenr1796Yoiif0TE9P55FHHjmqZzEajUaWLVuWSqWSFStWJEkGBwdTr9fTarXSbDZnepJkzZo1s/bU6/UMDg4mSVauXHlUT7PZTKvVmrVn2bJlaTQai8oMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwdlaIoirJDAAAsZaOjo7n00ksz12dTpVJJvV5Pt9vNKaeckk2bNuX000/PNddck7Ekwz3KUZljf66PucrjziaSnJ3kB0n+cJbz2WZmcyD//3v2P1nYBfqLJJ+vVFIURWq1Wqanp3v05KTZbKbVas1Zj2fPsmXL0mg0evZbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICTzmi97AQAAEvdxMRE6vV6ut3uzF5/f38OHTqUWq2Ws846K5s3b855552X173udWk0Gtm6dWtW1usZnprqaZbi9/6uLHBuKMmnkrw/ybd7eP+xekmSoijSaDQyNTWVvr6+HD58eEGz27Ztyyte8YoMDAykv78/fX19OeWUU3qcEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgHPWyAwAALHW/+93vMjU1lUqlkkqlkpe85CXZvHlzXv/61+c1r3lNWq3WrDOn1WrJ1NRxzVYsovedSW5I8m9J3vYU77svyfOf4uxszn603nvvvfnVr36Vm266KbfeemsOHDiQer2eqXne32mnnZZ169b1MA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNJRLzsAAMBSd+6552bv3r157Wtfm3POOScrVqx40pl2u53W05Btsa5N8sYkb3qK81uTXNC7ODnl0To9PZ3zzz8/559/fqanp3PXXXdldHQ027Zty8TERBqNRrrd7lGznU6nh0kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJaWetkBAACWug0bNmTDhg2Lmlm5cmUmi+I4JXqiSpKF3HZmkncn+auncMc/J/lukv96CrNz2fNoPfXUU2f2arXazDu/+uqrc+edd+bWW2/NzTffnN/85jfp6+vL4cOH0+l0epgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBpqZcdAADgRHTaaafld9PTKZJUyg7zez6a5GUL6OskGUtyd5IvPrr+TpLlPcwy8Wg99dRTZz2v1WrZuHFjNm7cmKuvvjrbt2/PN77xjXzrW9/KunXrepgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBpqRRFUZQdAgDgRHPPPffk5S9/eX6e5EU9eF5lAT2P/6irzLH/mDuTbEhyZJ47+pOcmmR9kouSvO3RvV76RJJtp5+e/33ooR4/GQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgGW20XnYCAIAT0dlnn50/GBjIfx48mBf14HlFj/tfneTIMd7RCz+s17Nh06YSbgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWNqqZQcAADgR1Wq1bDr33NxSr5cdZckaT/LDI0fyhje+sewoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLTrXsAAAAJ6rLr7gi352ayv1lB1mivpTklIGBXHDBBWVHAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYcqplBwAAOFG9+c1vztqRkVxdqZQdZck5mOSaRiOXv+c9GRgYKDsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCSUy07AADAiapWq+Wqz3wm1yX577LDLDF/n+Thej1btmwpOwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJJULTsAAMCJ7B3veEdeetZZ+VC9numywywR9yf5u3o9f/2JT2RkZKTsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS1KlKIqi7BAAACey7du359WvfGU+2u3mb8sOU7JOklfX66m96EX54Y9/nP7+/rIjAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsRaPVshMAAJzo1q9fn3/43OfyqUolt5UdpkRFkvdWKvlVs5mv3XJL+vv7y44EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALBkVcsOAABwMnj/+9+fd15+eS6p1fL9ssOU5Mok22q1bBsdzbp168qOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwpFXLDgAAcLK4duvWvPXCC/PH9Xr+o+wwT6MjSa5M8k/Vam648cZs3ry57EgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEtetewAAAAni1qtlhtuvDFvvfTSvKlazZfKDvQ0aCe5pFrNNY1GbvjqV3PJJZeUHQkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4BmhXnYAAICTSaPRyPU33JB1z39+3v3JT+YnSa4uigyUHew4uC/JnzYa+c3AQL5z223ZuHFj2ZEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4xqmUHAAA42VQqlVx11VUZHR3N6OBg/qivLz8pO1QPHUnyhSQvr9XSfOlL85N7783GjRvLjgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8IxSLTsAAMDJ6qKLLsrP7rsva1/1qryqUskV1Womyg51jO5K8spGI39ZrWbLxz6WO+66K+vWrSs7FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxf+/Pz2nUdwHH89f3s+x2jLRNZLB2kF43UiHkJHeJpBUHibrGDp907lyBIVwk6CB7qlJ2+ZKFBUPkDmxFEmMQWEoiwNTMKa1MY3+93vrsZUkiF+MH2ePwDr+cLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB45Vd0BAABr2ejoaD47dy7vnTiRT4aHs63ZzJtJfqs77F/6LsmrVZXxJE/s2ZNLly/nyJEjaTabdacBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADySqroDAADWukajkampqVy5ejWvHTqUt4aGsrnZzBtJ5uuOu4+S5EKSA1WV55PMbduWD06ezOfnz2fnzp011wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPNoapZRSdwQAAH9aWlrKsWPH8vbRo/nl5s28WFWZXl3Ny0kG6o5Lspjk/STvtlq50u3mhV278vrhw9m/f38ajUbdeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/wftRiml1F0BAMBfdTqdnD59Ou8cP55Pz5zJY1WVl0rJgTt3MpFk5CF1lCSzST5O8lGrla97vawbHMzUwYOZnp7O2NjYQyoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgz2o1SSqm7AgCA+1tcXMypU6fyYbud8xcupNPr5Zn+/ox3Otmd5LkkzyZZ9wC25pN8n+TbJDN9ffmyqvJrt5sn16/PK5OTOTA5mYmJiQwMDDyANQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ka7UUopdVcAAPDPLS8vZ2ZmJhcvXswXZ8/mm0uXcntlJUnydH9/NifZ1OnkqSQjSdYlaSUZTNKf5FaSbpLbSZaSXE+yWFW53mrlh9XV/N7rJUk2DQ9n99692btvX8bHxzM2Npa+vr6HfRcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYC1qN0oppe4KAAD+u1JKrl27lrm5uczOzmZhYSE/Lizkp/n5/HzjRpZv3Uqn283tlZV0er0MDgykv9nM0OBgHh8aysjGjRndsiUjIyPZunVrtm/fnh07dmTDhg11XwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWKvajVJKqbsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALirXdVdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcq6o7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4V1V3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwr2aSdt0RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBdX/0BGGM8B8L4LPsAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1258]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1259]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1260]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1261]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1262]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1263]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1264]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1265]\u001b[A\n", + "Processed actions: 1255it [00:07, 173.23it/s, # examples=1266]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1266]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1267]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1268]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1269]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1270]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1271]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1272]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1273]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1274]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1275]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1276]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1277]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1278]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1279]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1280]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1281]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1282]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1283]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1284]\u001b[A\n", + "Processed actions: 1274it [00:07, 176.91it/s, # examples=1285]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1285]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1286]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1287]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1288]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1289]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1290]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1291]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1292]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1293]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1294]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1295]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1296]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1297]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1298]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1299]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1300]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1301]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1302]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1303]\u001b[A\n", + "Processed actions: 1293it [00:07, 179.85it/s, # examples=1304]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1304]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1305]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1306]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1307]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1308]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1309]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1310]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1311]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1312]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1313]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1314]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1315]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1316]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1317]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1318]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1319]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1320]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1321]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1322]\u001b[A\n", + "Processed actions: 1312it [00:07, 182.62it/s, # examples=1323]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1323]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1324]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1325]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1326]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1327]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1328]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1329]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1330]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1331]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1332]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1333]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1334]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1335]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1336]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1337]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1338]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1339]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1340]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1341]\u001b[A\n", + "Processed actions: 1331it [00:07, 182.17it/s, # examples=1342]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1342]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1343]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1344]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1345]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1346]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1347]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1348]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1349]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1350]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1351]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1352]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1353]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1354]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1355]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1356]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1357]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1358]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1359]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1360]\u001b[A\n", + "Processed actions: 1350it [00:07, 179.82it/s, # examples=1361]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1361]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1362]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1363]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1364]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1365]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1366]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1367]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1368]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1369]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1370]\u001b[A\n", + "Processed actions: 1369it [00:07, 176.05it/s, # examples=1371]\u001b[A\n", + "Processed actions: 1369it [00:08, 176.05it/s, # examples=1372]\u001b[A\n", + "Processed actions: 1369it [00:08, 176.05it/s, # examples=1373]\u001b[A\n", + "Processed actions: 1369it [00:08, 176.05it/s, # examples=1374]\u001b[A\n", + "Processed actions: 1369it [00:08, 176.05it/s, # examples=1375]\u001b[A\n" + ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Imagens salvas\n" + "Processed actions: 1369it [00:08, 176.05it/s, # examples=1376]\u001b[A\n", + "Processed actions: 1369it [00:08, 176.05it/s, # examples=1377]\u001b[A\n", + "Processed actions: 1369it [00:08, 176.05it/s, # examples=1378]\u001b[A\n", + "Processed actions: 1369it [00:08, 176.05it/s, # examples=1379]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1379]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1380]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1381]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1382]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1383]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1384]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1385]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1386]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1387]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1388]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1389]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1390]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1391]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1392]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1393]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1394]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1395]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1396]\u001b[A\n", + "Processed actions: 1387it [00:08, 176.25it/s, # examples=1397]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1397]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1398]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1399]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1400]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1401]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1402]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1403]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1404]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1405]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1406]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1407]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1408]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1409]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1410]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1411]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1412]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1413]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1414]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1415]\u001b[A\n", + "Processed actions: 1405it [00:08, 171.86it/s, # examples=1416]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1416]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1417]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1418]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1419]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1420]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1421]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1422]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1423]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1424]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1425]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1426]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1427]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1428]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1429]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1430]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1431]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1432]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1433]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1434]\u001b[A\n", + "Processed actions: 1424it [00:08, 174.52it/s, # examples=1435]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1435]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1436]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1437]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1438]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1439]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1440]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1441]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1442]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1443]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1444]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1445]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1446]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1447]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1446]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1447]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1448]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1449]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1450]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1451]\u001b[A\n", + "Processed actions: 1443it [00:08, 177.55it/s, # examples=1452]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1452]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1453]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1454]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1455]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1456]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1457]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1458]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1459]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1460]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1461]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1462]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1463]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1464]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1465]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1466]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1467]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1468]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1469]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1470]\u001b[A\n", + "Processed actions: 1462it [00:08, 180.64it/s, # examples=1471]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1471]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1472]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1473]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1474]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1475]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1476]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1477]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1478]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1479]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1480]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1481]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1482]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1483]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1484]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1485]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1486]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1487]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1488]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1489]\u001b[A\n", + "Processed actions: 1481it [00:08, 182.05it/s, # examples=1490]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1490]\u001b[A\n" ] - } - ], - "source": [ - "from IPython.display import Image\n", - "from rasa_core.agent import Agent\n", - "\n", - "from os import listdir\n", - "from os.path import isfile, join\n", - "\n", - "\n", - "agent = Agent('../../bot/domain.yml')\n", - "\n", - "# Adds all stories files in a list\n", - "stories_files = [f for f in listdir(\"../../bot/data/stories\") if isfile(join(\"../../bot/data/stories\", f))]\n", - "\n", - "# Generate the image for each file\n", - "for file in stories_files:\n", - " \n", - " new_img_file = './img/story_graph_' + file[:-3] + '.png'\n", - " \n", - " agent.visualize('../../bot/data/stories/' + file,\n", - " new_img_file,\n", - " max_history = 2)\n", - " \n", - " print(file[:-3])\n", - " display(Image('./img/story_graph_' + file[:-3] + '.png'))\n", - "\n", - "print(\"Imagens salvas\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Treinando as stories e gerando o gráfico\n", - "\n", - "Na celula abaixo é feito o treinamento das stories e é gerado o gráfico da matriz de confusão para a avaliação das stories. Para melhor visualização, após rodar o código, abra o arquivo `story_eval.pdf` que será gerado e salvado na pasta `img` deste notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ + }, { "name": "stderr", "output_type": "stream", "text": [ - "Processed Story Blocks: 100%|██████████| 182/182 [00:00<00:00, 438.20it/s, # trackers=1]\n", - "Processed Story Blocks: 100%|██████████| 182/182 [00:01<00:00, 102.13it/s, # trackers=20]\n", - "Processed Story Blocks: 100%|██████████| 182/182 [00:01<00:00, 102.07it/s, # trackers=19]\n", - "Processed Story Blocks: 100%|██████████| 182/182 [00:01<00:00, 101.32it/s, # trackers=20]\n", - "Processed actions: 21011it [00:41, 506.21it/s, # examples=20665]\n", - "INFO:rasa_core.policies.keras_policy:Fitting model with 21011 total samples and a validation split of 0.0\n" + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1491]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1492]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1493]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1494]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1495]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1496]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1497]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1498]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1499]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1500]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1501]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1502]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1503]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1504]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1505]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1506]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1507]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1508]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1509]\u001b[A\n", + "Processed actions: 1500it [00:08, 181.52it/s, # examples=1510]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1510]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1511]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1512]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1513]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1514]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1515]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1516]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1517]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1518]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1519]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1520]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1521]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1522]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1523]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1524]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1525]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1526]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1527]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1528]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1529]\u001b[A\n", + "Processed actions: 1520it [00:08, 184.87it/s, # examples=1530]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1530]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1531]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1532]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1533]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1534]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1535]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1536]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1537]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1538]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1539]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1540]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1541]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1542]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1543]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1544]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1545]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1546]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1547]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1548]\u001b[A\n", + "Processed actions: 1540it [00:08, 188.13it/s, # examples=1549]\u001b[A\n", + "Processed actions: 1559it [00:08, 186.45it/s, # examples=1549]\u001b[A\n", + "Processed actions: 1559it [00:08, 186.45it/s, # examples=1550]\u001b[A\n", + "Processed actions: 1559it [00:08, 186.45it/s, # examples=1551]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1552]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1553]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1554]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1555]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1556]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1557]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1558]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1559]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1560]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1561]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1562]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1563]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1564]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1565]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1566]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1567]\u001b[A\n", + "Processed actions: 1559it [00:09, 186.45it/s, # examples=1568]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1568]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1569]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1570]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1571]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1572]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1573]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1574]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1575]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1576]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1577]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1578]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1579]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1580]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1581]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1582]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1583]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1582]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1581]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1582]\u001b[A\n", + "Processed actions: 1578it [00:09, 184.38it/s, # examples=1583]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1583]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1584]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1585]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1586]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1587]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1588]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1589]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1590]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1591]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1592]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1593]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1594]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1595]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1596]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1597]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1598]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1599]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1600]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1601]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1602]\u001b[A\n", + "Processed actions: 1597it [00:09, 182.63it/s, # examples=1603]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1603]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1604]\u001b[A\n" ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "masking (Masking) (None, 5, 281) 0 \n", - "_________________________________________________________________\n", - "lstm (LSTM) (None, 32) 40192 \n", - "_________________________________________________________________\n", - "dense (Dense) (None, 141) 4653 \n", - "_________________________________________________________________\n", - "activation (Activation) (None, 141) 0 \n", - "=================================================================\n", - "Total params: 44,845\n", - "Trainable params: 44,845\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n", - "Epoch 1/10\n", - "21011/21011 [==============================] - 4s 200us/step - loss: 3.0890 - acc: 0.3796\n", - "Epoch 2/10\n", - "21011/21011 [==============================] - 6s 263us/step - loss: 2.2263 - acc: 0.5261\n", - "Epoch 3/10\n", - "21011/21011 [==============================] - 5s 218us/step - loss: 1.7859 - acc: 0.5975\n", - "Epoch 4/10\n", - "21011/21011 [==============================] - 4s 187us/step - loss: 1.4424 - acc: 0.7161\n", - "Epoch 5/10\n", - "21011/21011 [==============================] - 4s 179us/step - loss: 1.0926 - acc: 0.8249\n", - "Epoch 6/10\n", - "21011/21011 [==============================] - 4s 203us/step - loss: 0.8001 - acc: 0.8907\n", - "Epoch 7/10\n", - "21011/21011 [==============================] - 4s 192us/step - loss: 0.5793 - acc: 0.9287\n", - "Epoch 8/10\n", - "21011/21011 [==============================] - 4s 183us/step - loss: 0.4315 - acc: 0.9457\n", - "Epoch 9/10\n", - "21011/21011 [==============================] - 5s 227us/step - loss: 0.3330 - acc: 0.9556\n", - "Epoch 10/10\n", - "21011/21011 [==============================] - 4s 197us/step - loss: 0.2572 - acc: 0.9625\n" + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1605]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1606]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1607]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1608]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1609]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1610]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1611]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1612]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1613]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1614]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1615]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1616]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1617]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1618]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1619]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1620]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1621]\u001b[A\n", + "Processed actions: 1617it [00:09, 186.26it/s, # examples=1622]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1622]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1623]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1624]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1625]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1626]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1627]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1628]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1629]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1630]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1631]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1632]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1633]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1634]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1635]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1636]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1637]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1638]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1639]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1640]\u001b[A\n", + "Processed actions: 1636it [00:09, 182.28it/s, # examples=1641]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1641]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1642]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1643]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1644]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1645]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1646]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1647]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1648]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1649]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1650]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1651]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1652]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1653]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1654]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1655]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1656]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1657]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1658]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1659]\u001b[A\n", + "Processed actions: 1655it [00:09, 181.95it/s, # examples=1660]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1660]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1661]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1662]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1663]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1664]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1665]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1666]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1667]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1668]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1669]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1670]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1669]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1670]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1671]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1672]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1673]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1674]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1675]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1676]\u001b[A\n", + "Processed actions: 1674it [00:09, 183.26it/s, # examples=1677]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1677]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1678]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1679]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1680]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1681]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1682]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1683]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1684]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1685]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1686]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1687]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1688]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1689]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1690]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1691]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1692]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1693]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1694]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1695]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1696]\u001b[A\n", + "Processed actions: 1693it [00:09, 184.83it/s, # examples=1697]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1697]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1698]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1699]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1700]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1701]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1702]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1703]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1704]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1705]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1706]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1707]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1708]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1709]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1710]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1711]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1712]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1713]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1714]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1715]\u001b[A\n", + "Processed actions: 1713it [00:09, 187.67it/s, # examples=1716]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1716]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1717]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1718]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1719]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1720]\u001b[A\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "INFO:rasa_core.policies.keras_policy:Done fitting keras policy model\n", - "INFO:rasa_core.agent:Model directory models/dialogue exists and contains old model files. All files will be overwritten.\n", - "INFO:rasa_core.agent:Persisted model to '/work/notebooks/stories/models/dialogue'\n" + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1721]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1722]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1723]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1724]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1725]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1726]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1727]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1728]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1729]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1730]\u001b[A\n", + "Processed actions: 1732it [00:09, 185.07it/s, # examples=1731]\u001b[A\n", + "Processed actions: 1732it [00:10, 185.07it/s, # examples=1732]\u001b[A\n", + "Processed actions: 1732it [00:10, 185.07it/s, # examples=1733]\u001b[A\n", + "Processed actions: 1732it [00:10, 185.07it/s, # examples=1734]\u001b[A\n", + "Processed actions: 1732it [00:10, 185.07it/s, # examples=1735]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1735]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1736]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1737]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1738]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1739]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1740]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1741]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1742]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1743]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1744]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1745]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1746]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1747]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1748]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1749]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1750]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1751]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1752]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1753]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1754]\u001b[A\n", + "Processed actions: 1751it [00:10, 184.92it/s, # examples=1755]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1755]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1756]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1757]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1758]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1759]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1760]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1761]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1762]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1763]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1764]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1765]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1766]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1767]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1768]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1769]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1770]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1771]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1772]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1773]\u001b[A\n", + "Processed actions: 1771it [00:10, 189.10it/s, # examples=1774]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1774]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1775]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1776]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1777]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1778]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1779]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1780]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1781]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1782]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1783]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1784]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1785]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1786]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1787]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1788]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1789]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1790]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1791]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1792]\u001b[A\n", + "Processed actions: 1790it [00:10, 186.76it/s, # examples=1793]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1793]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1794]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1795]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1796]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1797]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1798]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1799]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1800]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1801]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1802]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1803]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1804]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1805]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1806]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1807]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1808]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1809]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1810]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1811]\u001b[A\n", + "Processed actions: 1809it [00:10, 186.28it/s, # examples=1812]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1812]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1813]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1814]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1815]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1816]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1817]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1818]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1819]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1820]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1821]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1822]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1823]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1824]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1825]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1826]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1827]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1828]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1829]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1830]\u001b[A\n", + "Processed actions: 1828it [00:10, 178.39it/s, # examples=1831]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1831]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1832]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1833]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1834]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1835]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1836]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1837]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1838]\u001b[A\n" ] - } - ], - "source": [ - "from rasa_core.evaluate import run_story_evaluation\n", - "from rasa_core.policies import FallbackPolicy, KerasPolicy, MemoizationPolicy\n", - "from rasa_core.agent import Agent\n", - "\n", - "\n", - "## Treinando modelo de diálogo\n", - "agent = Agent('../../bot/domain.yml', policies=[MemoizationPolicy(), KerasPolicy()])\n", - "\n", - "# loading our neatly defined training dialogues\n", - "training_data = agent.load_data('../../bot/data/stories')\n", - "\n", - "agent.train(\n", - " training_data,\n", - " validation_split=0.0,\n", - " epochs=10\n", - ")\n", - "\n", - "## salvando em models/dialogue\n", - "agent.persist('models/dialogue')" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "/usr/local/lib/python3.6/site-packages/pykwalify/core.py:99: UnsafeLoaderWarning: \n", - "The default 'Loader' for 'load(stream)' without further arguments can be unsafe.\n", - "Use 'load(stream, Loader=ruamel.yaml.Loader)' explicitly if that is OK.\n", - "Alternatively include the following in your code:\n", - "\n", - " import warnings\n", - " warnings.simplefilter('ignore', ruamel.yaml.error.UnsafeLoaderWarning)\n", - "\n", - "In most other cases you should consider using 'safe_load(stream)'\n", - " data = yaml.load(stream)\n", - "2018-12-08 14:30:37.744197: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", - "Processed Story Blocks: 100%|█| 182/182 [00:00<00:00, 2286.37it/s, # trackers=1]\n", - "INFO:__main__:Evaluating 176 stories\n", - "Progress:\n", - "100%|████████████████████████████████████████| 176/176 [00:01<00:00, 103.55it/s]\n", - "INFO:__main__:Finished collecting predictions.\n", - "INFO:__main__:Evaluation Results on CONVERSATION level:\n", - "INFO:__main__:\tCorrect: 164 / 176\n", - "INFO:__main__:\tF1-Score: 0.965\n", - "INFO:__main__:\tPrecision: 1.000\n", - "INFO:__main__:\tAccuracy: 0.932\n", - "INFO:__main__:Evaluation Results on ACTION level:\n", - "INFO:__main__:\tCorrect: 876 / 888\n", - "INFO:__main__:\tF1-Score: 0.987\n", - "INFO:__main__:\tPrecision: 0.987\n", - "INFO:__main__:\tAccuracy: 0.986\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1839]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1840]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1841]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1842]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1843]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1844]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1845]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1846]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1847]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1848]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1849]\u001b[A\n", + "Processed actions: 1847it [00:10, 179.59it/s, # examples=1850]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1850]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1851]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1852]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1853]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1854]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1855]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1856]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1857]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1858]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1859]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1860]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1861]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1862]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1863]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1864]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1865]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1866]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1867]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1868]\u001b[A\n", + "Processed actions: 1866it [00:10, 179.66it/s, # examples=1869]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1869]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1870]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1871]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1872]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1873]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1874]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1875]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1876]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1877]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1878]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1879]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1880]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1881]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1882]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1883]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1884]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1885]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1886]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1887]\u001b[A\n", + "Processed actions: 1885it [00:10, 181.18it/s, # examples=1888]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1888]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1889]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1890]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1891]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1892]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1893]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1894]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1895]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1896]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1897]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1898]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1899]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1900]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1901]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1902]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1903]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1904]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1905]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1906]\u001b[A\n", + "Processed actions: 1904it [00:10, 180.85it/s, # examples=1907]\u001b[A\n", + "Processed actions: 1923it [00:10, 178.68it/s, # examples=1907]\u001b[A\n", + "Processed actions: 1923it [00:10, 178.68it/s, # examples=1908]\u001b[A\n", + "Processed actions: 1923it [00:10, 178.68it/s, # examples=1909]\u001b[A\n", + "Processed actions: 1923it [00:10, 178.68it/s, # examples=1910]\u001b[A\n", + "Processed actions: 1923it [00:10, 178.68it/s, # examples=1911]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1912]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1913]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1914]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1915]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1916]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1917]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1918]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1919]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1920]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1921]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1922]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1923]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1924]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1925]\u001b[A\n", + "Processed actions: 1923it [00:11, 178.68it/s, # examples=1926]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1926]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1927]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1928]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1929]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1928]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1929]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1930]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1931]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1932]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1933]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1934]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1935]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1936]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1937]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1938]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1939]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1940]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1941]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1942]\u001b[A\n", + "Processed actions: 1942it [00:11, 181.08it/s, # examples=1943]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1943]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1942]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1943]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1944]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1945]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1946]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1947]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1948]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1949]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1950]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1951]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1952]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1953]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1954]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1955]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1956]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1957]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1958]\u001b[A\n", + "Processed actions: 1961it [00:11, 178.55it/s, # examples=1957]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1957]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1958]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1959]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1960]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1961]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1962]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1963]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1964]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1965]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1966]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1967]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1968]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1969]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1970]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1971]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1972]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1973]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1974]\u001b[A\n", + "Processed actions: 1979it [00:11, 175.93it/s, # examples=1975]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1975]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1976]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1977]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1978]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1979]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1980]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1981]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1982]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1983]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1984]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1985]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1986]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1987]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1988]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1989]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1990]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1991]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1992]\u001b[A\n", + "Processed actions: 1997it [00:11, 171.33it/s, # examples=1993]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=1993]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=1994]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=1995]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=1996]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=1997]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=1998]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=1999]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2000]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2001]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2002]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2003]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2004]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2005]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2006]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2007]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2008]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2009]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2010]\u001b[A\n", + "Processed actions: 2015it [00:11, 169.74it/s, # examples=2011]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2011]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2012]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2013]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2014]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2015]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2016]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2017]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2018]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2019]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2020]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2021]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2022]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2023]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2024]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2025]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2026]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2027]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2028]\u001b[A\n", + "Processed actions: 2033it [00:11, 170.09it/s, # examples=2029]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2029]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2030]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2031]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2032]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2033]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2034]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2035]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2036]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2037]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2038]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2039]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2040]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2041]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2042]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2043]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2044]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2045]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2046]\u001b[A\n", + "Processed actions: 2051it [00:11, 168.26it/s, # examples=2047]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2047]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2048]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2049]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2050]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2051]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2052]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2053]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2054]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2055]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2056]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2057]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2058]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2059]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2058]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2059]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2060]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2061]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2062]\u001b[A\n", + "Processed actions: 2069it [00:11, 171.19it/s, # examples=2063]\u001b[A\n", + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2063]\u001b[A\n", + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2064]\u001b[A\n", + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2065]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2066]\u001b[A\n", + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2067]\u001b[A\n", + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2068]\u001b[A\n", + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2069]\u001b[A\n", + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2070]\u001b[A\n", + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2071]\u001b[A\n", + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2072]\u001b[A\n", + "Processed actions: 2087it [00:11, 172.26it/s, # examples=2073]\u001b[A\n", + "\n", + "Processed actions: 2162it [00:12, 180.60it/s, # examples=2156]\u001b[A\n", + "Processed actions: 2162it [00:12, 180.60it/s, # examples=2157]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2157]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2158]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2159]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2160]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2161]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2162]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2163]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2164]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2165]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2166]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2167]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2168]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2169]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2170]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2171]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2172]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2173]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2174]\u001b[A\n", + "Processed actions: 2181it [00:12, 174.41it/s, # examples=2175]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2175]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2176]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2177]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2178]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2179]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2180]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2181]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2182]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2183]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2184]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2185]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2186]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2187]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2188]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2189]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2190]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2189]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2190]\u001b[A\n", + "Processed actions: 2199it [00:12, 174.35it/s, # examples=2191]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2191]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2192]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2193]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2194]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2195]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2196]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2197]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2198]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2199]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2200]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2201]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2202]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2203]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2204]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2205]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2206]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2207]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2208]\u001b[A\n", + "Processed actions: 2217it [00:12, 172.74it/s, # examples=2209]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2209]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2210]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2211]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2212]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2213]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2214]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2215]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2216]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2217]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2218]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2219]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2220]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2221]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2222]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2223]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2224]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2225]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2226]\u001b[A\n", + "Processed actions: 2235it [00:12, 173.89it/s, # examples=2227]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2227]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2226]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2227]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2228]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2229]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2230]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2231]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2232]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2233]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2234]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2235]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2236]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2237]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2238]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2239]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2240]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2241]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2242]\u001b[A\n", + "Processed actions: 2253it [00:12, 175.15it/s, # examples=2243]\u001b[A\n", + "Processed actions: 2271it [00:12, 174.82it/s, # examples=2243]\u001b[A\n", + "Processed actions: 2271it [00:12, 174.82it/s, # examples=2244]\u001b[A\n", + "Processed actions: 2271it [00:12, 174.82it/s, # examples=2245]\u001b[A\n", + "Processed actions: 2271it [00:12, 174.82it/s, # examples=2246]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2247]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2248]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2249]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2250]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2251]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2252]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2253]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2254]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2255]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2256]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2257]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2258]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2259]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2260]\u001b[A\n", + "Processed actions: 2271it [00:13, 174.82it/s, # examples=2261]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2261]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2262]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2263]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2264]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2265]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2266]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2267]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2268]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2269]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2270]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2271]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2272]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2273]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2274]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2275]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2276]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2277]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2278]\u001b[A\n", + "Processed actions: 2289it [00:13, 175.16it/s, # examples=2279]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2279]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2280]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2281]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2282]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2283]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2284]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2285]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2286]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2287]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2288]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2289]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2290]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2291]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2292]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2293]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2294]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2295]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2296]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2297]\u001b[A\n", + "Processed actions: 2307it [00:13, 174.93it/s, # examples=2298]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2298]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2299]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2300]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2301]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2302]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2303]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2304]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2305]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2306]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2307]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2308]\u001b[A\n", + "Processed actions: 2326it [00:13, 176.84it/s, # examples=2309]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2410]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2411]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2412]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2413]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2414]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2415]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2416]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2417]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2418]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2419]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2420]\u001b[A\n", + "Processed actions: 2434it [00:13, 174.77it/s, # examples=2421]\u001b[A\n", + "Processed actions: 2434it [00:14, 174.77it/s, # examples=2422]\u001b[A\n", + "Processed actions: 2434it [00:14, 174.77it/s, # examples=2423]\u001b[A\n", + "Processed actions: 2434it [00:14, 174.77it/s, # examples=2424]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2424]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2425]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2426]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2427]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2428]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2429]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2430]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2431]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2432]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2433]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2434]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2435]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2436]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2437]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2438]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2439]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2440]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2441]\u001b[A\n", + "Processed actions: 2452it [00:14, 175.15it/s, # examples=2440]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2440]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2441]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2442]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2443]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2444]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2445]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2446]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2447]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2448]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2449]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2450]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2451]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2452]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2453]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2454]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2455]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2456]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2457]\u001b[A\n", + "Processed actions: 2470it [00:14, 176.32it/s, # examples=2456]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2456]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2457]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2458]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2459]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2460]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2461]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2462]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2463]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2464]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2465]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2466]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2467]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2468]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2469]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2470]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2471]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2472]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2473]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2474]\u001b[A\n", + "Processed actions: 2488it [00:14, 175.87it/s, # examples=2475]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2475]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2476]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2477]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2478]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2479]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2480]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2481]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2482]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2483]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2484]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2485]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2486]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2487]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2488]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2489]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2490]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2491]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2492]\u001b[A\n", + "Processed actions: 2507it [00:14, 178.14it/s, # examples=2493]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2493]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2494]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2495]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2496]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2497]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2498]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2499]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2500]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2501]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2502]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2503]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2504]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2505]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2506]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2507]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2508]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2509]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2510]\u001b[A\n", + "Processed actions: 2525it [00:14, 175.38it/s, # examples=2511]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2511]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2512]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2513]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2514]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2515]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2516]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2517]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2518]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2519]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2520]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2521]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2522]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2523]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2524]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2525]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2526]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2527]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2528]\u001b[A\n", + "Processed actions: 2543it [00:14, 166.10it/s, # examples=2529]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2529]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2530]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2531]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2532]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2533]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2534]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2535]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2536]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2537]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2536]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2537]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2538]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2539]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2540]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2541]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2542]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2543]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2544]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2545]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2546]\u001b[A\n", + "Processed actions: 2561it [00:14, 170.01it/s, # examples=2547]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2547]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2548]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2549]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2550]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2551]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2552]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2553]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2554]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2555]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2556]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2557]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2558]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2559]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2560]\u001b[A\n", + "Processed actions: 2581it [00:14, 176.79it/s, # examples=2561]\u001b[A\n", + "Processed actions: 2699it [00:15, 192.11it/s, # examples=2677]\u001b[A\n", + "Processed actions: 2699it [00:15, 192.11it/s, # examples=2678]\u001b[A\n", + "Processed actions: 2699it [00:15, 192.11it/s, # examples=2679]\u001b[A\n", + "Processed actions: 2699it [00:15, 192.11it/s, # examples=2680]\u001b[A\n", + "Processed actions: 2699it [00:15, 192.11it/s, # examples=2681]\u001b[A\n", + "Processed actions: 2699it [00:15, 192.11it/s, # examples=2682]\u001b[A\n", + "Processed actions: 2699it [00:15, 192.11it/s, # examples=2683]\u001b[A\n", + "Processed actions: 2699it [00:15, 192.11it/s, # examples=2684]\u001b[A\n", + "Processed actions: 2699it [00:15, 192.11it/s, # examples=2685]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2685]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2686]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2687]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2688]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2689]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2690]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2691]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2692]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2693]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2694]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2695]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2696]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2697]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2698]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2699]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2700]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2701]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2702]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2703]\u001b[A\n", + "Processed actions: 2719it [00:15, 185.57it/s, # examples=2704]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2704]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2705]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2706]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2707]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2708]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2709]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2710]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2711]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2710]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2711]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2712]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2713]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2714]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2715]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2716]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2717]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2718]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2719]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2720]\u001b[A\n", + "Processed actions: 2738it [00:15, 183.29it/s, # examples=2721]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2721]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2722]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2723]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2724]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2725]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2726]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2727]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2728]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2729]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2730]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2731]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2732]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2733]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2734]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2735]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2736]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2737]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2738]\u001b[A\n", + "Processed actions: 2757it [00:15, 173.65it/s, # examples=2739]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2739]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2740]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2741]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2742]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2743]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2744]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2745]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2746]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2747]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2748]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2749]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2750]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2751]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2750]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2751]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2752]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2753]\u001b[A\n", + "Processed actions: 2775it [00:15, 168.30it/s, # examples=2754]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2754]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2755]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2756]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2757]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2758]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2759]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2758]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2759]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2760]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2761]\u001b[A\n", + "Processed actions: 2792it [00:15, 166.68it/s, # examples=2762]\u001b[A\n", + "Processed actions: 2792it [00:16, 166.68it/s, # examples=2763]\u001b[A\n", + "Processed actions: 2792it [00:16, 166.68it/s, # examples=2764]\u001b[A\n", + "Processed actions: 2792it [00:16, 166.68it/s, # examples=2765]\u001b[A\n", + "Processed actions: 2792it [00:16, 166.68it/s, # examples=2766]\u001b[A\n", + "Processed actions: 2792it [00:16, 166.68it/s, # examples=2767]\u001b[A\n", + "Processed actions: 2792it [00:16, 166.68it/s, # examples=2768]\u001b[A\n", + "Processed actions: 2792it [00:16, 166.68it/s, # examples=2769]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2769]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2770]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2771]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2772]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2773]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2774]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2775]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2776]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2777]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2778]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2779]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2780]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2781]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2782]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2783]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2784]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2785]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2786]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2787]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2788]\u001b[A\n", + "Processed actions: 2809it [00:16, 165.44it/s, # examples=2789]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2789]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2790]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2791]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2792]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2793]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2794]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2795]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2796]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2797]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2798]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2799]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2800]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2801]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2802]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2803]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2804]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2805]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2806]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2807]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2808]\u001b[A\n", + "Processed actions: 2829it [00:16, 172.35it/s, # examples=2809]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2809]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2810]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2811]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2812]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2813]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2814]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2815]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2816]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2817]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2818]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2819]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2820]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2821]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2822]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2823]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2824]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2825]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2826]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2827]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2828]\u001b[A\n", + "Processed actions: 2849it [00:16, 178.34it/s, # examples=2829]\u001b[A\n", + "Processed actions: 2961it [00:16, 164.79it/s, # examples=2922]\u001b[A\n", + "Processed actions: 2961it [00:16, 164.79it/s, # examples=2923]\u001b[A\n", + "Processed actions: 2961it [00:16, 164.79it/s, # examples=2924]\u001b[A\n", + "Processed actions: 2961it [00:16, 164.79it/s, # examples=2925]\u001b[A\n", + "Processed actions: 2961it [00:16, 164.79it/s, # examples=2926]\u001b[A\n", + "Processed actions: 2961it [00:16, 164.79it/s, # examples=2927]\u001b[A\n", + "Processed actions: 2961it [00:17, 164.79it/s, # examples=2928]\u001b[A\n", + "Processed actions: 2961it [00:17, 164.79it/s, # examples=2929]\u001b[A\n", + "Processed actions: 2961it [00:17, 164.79it/s, # examples=2930]\u001b[A\n", + "Processed actions: 2961it [00:17, 164.79it/s, # examples=2931]\u001b[A\n", + "Processed actions: 2961it [00:17, 164.79it/s, # examples=2932]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2932]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2933]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2934]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2935]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2936]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2937]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2938]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2939]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2940]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2941]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2942]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2943]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2944]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2945]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2946]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2947]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2948]\u001b[A\n", + "Processed actions: 2978it [00:17, 162.51it/s, # examples=2949]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2949]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2950]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2951]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2952]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2953]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2954]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2955]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2956]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2957]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2958]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2959]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2960]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2961]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2962]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2963]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2964]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2965]\u001b[A\n", + "Processed actions: 2995it [00:17, 164.50it/s, # examples=2966]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2966]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2967]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2968]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2969]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2970]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2971]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2972]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2973]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2974]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2975]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2976]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2977]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2978]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2979]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2980]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2981]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2982]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2983]\u001b[A\n", + "Processed actions: 3012it [00:17, 165.95it/s, # examples=2984]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2984]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2985]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2986]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2987]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2986]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2987]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2988]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2989]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2990]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2991]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2992]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2993]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2994]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2995]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2996]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2997]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2998]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=2999]\u001b[A\n", + "Processed actions: 3030it [00:17, 168.68it/s, # examples=3000]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3000]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3001]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3002]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3003]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3004]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3005]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3006]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3007]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3008]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3009]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3010]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3011]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3012]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3013]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3014]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3015]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3016]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3017]\u001b[A\n", + "Processed actions: 3048it [00:17, 170.24it/s, # examples=3018]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3018]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3019]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3020]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3021]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3022]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3023]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3024]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3025]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3026]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3027]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3028]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3029]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3030]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3031]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3032]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3033]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3034]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3035]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3036]\u001b[A\n", + "Processed actions: 3066it [00:17, 169.58it/s, # examples=3037]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3037]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3038]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3039]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3040]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3041]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3042]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3043]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3044]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3045]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3046]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3047]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3048]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3049]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3050]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3051]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3052]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3053]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3054]\u001b[A\n", + "Processed actions: 3085it [00:17, 174.83it/s, # examples=3055]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3055]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3056]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3057]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3058]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3059]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3060]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3061]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3062]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3063]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3064]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3065]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3066]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3067]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3068]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3069]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3070]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3071]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3072]\u001b[A\n", + "Processed actions: 3103it [00:17, 174.75it/s, # examples=3073]\u001b[A\n", + "Processed actions: 3121it [00:17, 175.49it/s, # examples=3073]\u001b[A\n", + "Processed actions: 3121it [00:17, 175.49it/s, # examples=3072]\u001b[A\n", + "Processed actions: 3121it [00:17, 175.49it/s, # examples=3073]\u001b[A\n", + "Processed actions: 3121it [00:17, 175.49it/s, # examples=3072]\u001b[A\n", + "Processed actions: 3121it [00:17, 175.49it/s, # examples=3073]\n", + "Processed actions: 3211it [00:18, 173.55it/s, # examples=3165]\u001b[A\n", + "Processed actions: 3211it [00:18, 173.55it/s, # examples=3166]\u001b[A\n", + "Processed actions: 3211it [00:18, 173.55it/s, # examples=3167]\u001b[A\n", + "Processed actions: 3211it [00:18, 173.55it/s, # examples=3168]\u001b[A\n", + "Processed actions: 3211it [00:18, 173.55it/s, # examples=3169]\u001b[A\n", + "Processed actions: 3211it [00:18, 173.55it/s, # examples=3170]\u001b[A\n", + "Processed actions: 3211it [00:18, 173.55it/s, # examples=3171]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3171]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3172]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3173]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3174]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3175]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3176]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3177]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3178]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3179]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3180]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3181]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3182]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3183]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3184]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3185]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3186]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3187]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3188]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3189]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3190]\u001b[A\n", + "Processed actions: 3229it [00:18, 170.30it/s, # examples=3189]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3189]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3190]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3191]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3192]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3193]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3194]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3195]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3196]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3197]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3198]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3199]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3200]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3201]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3202]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3203]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3204]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3205]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3206]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3207]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3208]\u001b[A\n", + "Processed actions: 3249it [00:18, 177.47it/s, # examples=3209]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3209]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3210]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3211]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3212]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3213]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3214]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3215]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3216]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3217]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3218]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3219]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3220]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3221]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3222]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3223]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3224]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3225]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3226]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3227]\u001b[A\n", + "Processed actions: 3269it [00:18, 182.77it/s, # examples=3228]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3228]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3229]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3230]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3231]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3232]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3233]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3234]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3235]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3236]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3237]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3238]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3239]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3240]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3241]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3242]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3243]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3244]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3245]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3246]\u001b[A\n", + "Processed actions: 3288it [00:18, 184.75it/s, # examples=3247]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3247]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3248]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3249]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3250]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3251]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3252]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3253]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3254]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3255]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3256]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3257]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3258]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3259]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3260]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3261]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3262]\u001b[A\n", + "Processed actions: 3307it [00:18, 184.16it/s, # examples=3263]\u001b[A\n", + "Processed actions: 3307it [00:19, 184.16it/s, # examples=3264]\u001b[A\n", + "Processed actions: 3307it [00:19, 184.16it/s, # examples=3265]\u001b[A\n", + "Processed actions: 3307it [00:19, 184.16it/s, # examples=3266]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3266]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3267]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3268]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3269]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3270]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3271]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3272]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3273]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3274]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3275]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3276]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3277]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3278]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3279]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3280]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3281]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3282]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3283]\u001b[A\n", + "Processed actions: 3326it [00:19, 168.76it/s, # examples=3284]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3284]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3285]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3286]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3287]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3288]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3289]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3290]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3291]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3292]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3293]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3294]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3295]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3296]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3297]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3298]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3299]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3300]\u001b[A\n", + "Processed actions: 3344it [00:19, 160.01it/s, # examples=3301]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3301]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3302]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3303]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3304]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3305]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3306]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3307]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3308]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3309]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3310]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3311]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3312]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3313]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3314]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3315]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3316]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3317]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3318]\u001b[A\n", + "Processed actions: 3361it [00:19, 154.75it/s, # examples=3319]\u001b[A\n", + "Processed actions: 3379it [00:19, 161.51it/s, # examples=3319]\u001b[A\n", + "Processed actions: 3379it [00:19, 161.51it/s, # examples=3320]\u001b[A\n", + "Processed actions: 3472it [00:19, 176.38it/s, # examples=3424]\u001b[A\n", + "Processed actions: 3472it [00:19, 176.38it/s, # examples=3425]\u001b[A\n", + "Processed actions: 3472it [00:19, 176.38it/s, # examples=3426]\u001b[A\n", + "Processed actions: 3472it [00:19, 176.38it/s, # examples=3427]\u001b[A\n", + "Processed actions: 3472it [00:19, 176.38it/s, # examples=3428]\u001b[A\n", + "Processed actions: 3472it [00:19, 176.38it/s, # examples=3429]\u001b[A\n", + "Processed actions: 3472it [00:19, 176.38it/s, # examples=3430]\u001b[A\n", + "Processed actions: 3490it [00:19, 176.85it/s, # examples=3430]\u001b[A\n", + "Processed actions: 3490it [00:19, 176.85it/s, # examples=3431]\u001b[A\n", + "Processed actions: 3490it [00:19, 176.85it/s, # examples=3432]\u001b[A\n", + "Processed actions: 3490it [00:19, 176.85it/s, # examples=3433]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3434]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3435]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3436]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3437]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3438]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3439]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3440]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3441]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3442]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3443]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3444]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3445]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3446]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3447]\u001b[A\n", + "Processed actions: 3490it [00:20, 176.85it/s, # examples=3448]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3448]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3449]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3450]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3451]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3452]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3453]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3454]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3455]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3456]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3457]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3458]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3459]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3460]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3461]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3462]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3463]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3464]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3465]\u001b[A\n", + "Processed actions: 3508it [00:20, 176.04it/s, # examples=3466]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3466]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3467]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3468]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3469]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3470]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3471]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3472]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3473]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3474]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3475]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3476]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3477]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3478]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3479]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3480]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3481]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3482]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3483]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3484]\u001b[A\n", + "Processed actions: 3526it [00:20, 171.89it/s, # examples=3485]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3485]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3486]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3485]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3486]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3487]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3488]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3489]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3490]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3491]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3492]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3493]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3494]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3495]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3494]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3495]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3496]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3497]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3498]\u001b[A\n", + "Processed actions: 3545it [00:20, 175.39it/s, # examples=3499]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3499]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3500]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3501]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3502]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3503]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3504]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3505]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3506]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3507]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3508]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3509]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3510]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3511]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3512]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3513]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3514]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3515]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3516]\u001b[A\n", + "Processed actions: 3563it [00:20, 175.88it/s, # examples=3517]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3517]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3518]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3519]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3520]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3521]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3522]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3523]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3524]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3525]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3526]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3527]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3528]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3529]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3530]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3531]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3532]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3533]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3534]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3535]\u001b[A\n", + "Processed actions: 3581it [00:20, 174.50it/s, # examples=3536]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3536]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3537]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3538]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3539]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3540]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3541]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3542]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3543]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3544]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3545]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3546]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3547]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3548]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3549]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3550]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3551]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3552]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3553]\u001b[A\n", + "Processed actions: 3600it [00:20, 176.22it/s, # examples=3554]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3554]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3555]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3556]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3557]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3558]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3559]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3560]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3561]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3562]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3563]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3564]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3565]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3566]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3567]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3568]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3569]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3570]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3571]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3572]\u001b[A\n", + "Processed actions: 3618it [00:20, 175.81it/s, # examples=3573]\u001b[A\n", + "Processed actions: 3637it [00:20, 177.49it/s, # examples=3573]\u001b[A\n", + "Processed actions: 3637it [00:20, 177.49it/s, # examples=3574]\u001b[A\n", + "Processed actions: 3637it [00:20, 177.49it/s, # examples=3575]\u001b[A\n", + "Processed actions: 3637it [00:20, 177.49it/s, # examples=3576]\u001b[A\n", + "\u001b[A\n", + "Processed actions: 3736it [00:21, 186.37it/s, # examples=3681]\u001b[A\n", + "Processed actions: 3736it [00:21, 186.37it/s, # examples=3682]\u001b[A\n", + "Processed actions: 3736it [00:21, 186.37it/s, # examples=3683]\u001b[A\n", + "Processed actions: 3736it [00:21, 186.37it/s, # examples=3684]\u001b[A\n", + "Processed actions: 3736it [00:21, 186.37it/s, # examples=3685]\u001b[A\n", + "Processed actions: 3736it [00:21, 186.37it/s, # examples=3686]\u001b[A\n", + "Processed actions: 3736it [00:21, 186.37it/s, # examples=3687]\u001b[A\n", + "Processed actions: 3736it [00:21, 186.37it/s, # examples=3688]\u001b[A\n", + "Processed actions: 3736it [00:21, 186.37it/s, # examples=3689]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3689]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3690]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3691]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3692]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3693]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3694]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3695]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3696]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3697]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3698]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3699]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3700]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3701]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3702]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3703]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3704]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3705]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3706]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3707]\u001b[A\n", + "Processed actions: 3755it [00:21, 180.51it/s, # examples=3708]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3708]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3709]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3710]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3711]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3712]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3713]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3714]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3715]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3716]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3717]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3718]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3719]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3720]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3721]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3722]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3723]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3724]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3725]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3726]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3727]\u001b[A\n", + "Processed actions: 3774it [00:21, 181.36it/s, # examples=3728]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3728]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3729]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3730]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3731]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3732]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3733]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3734]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3735]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3736]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3737]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3738]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3739]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3740]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3741]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3742]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3743]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3744]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3745]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3746]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3747]\u001b[A\n", + "Processed actions: 3794it [00:21, 185.14it/s, # examples=3748]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3748]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3749]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3750]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3751]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3752]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3753]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3752]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3753]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3754]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3755]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3756]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3757]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3758]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3759]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3760]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3761]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3762]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3763]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3764]\u001b[A\n", + "Processed actions: 3814it [00:21, 187.34it/s, # examples=3765]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3765]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3766]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3767]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3768]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3769]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3770]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3771]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3772]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3773]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3774]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3775]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3776]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3777]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3778]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3779]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3780]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3781]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3780]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3781]\u001b[A\n", + "Processed actions: 3833it [00:21, 184.35it/s, # examples=3782]\u001b[A\n", + "Processed actions: 3852it [00:21, 185.12it/s, # examples=3782]\u001b[A\n", + "Processed actions: 3852it [00:21, 185.12it/s, # examples=3783]\u001b[A\n", + "Processed actions: 3852it [00:21, 185.12it/s, # examples=3784]\u001b[A\n", + "Processed actions: 3852it [00:21, 185.12it/s, # examples=3785]\u001b[A\n", + "Processed actions: 3852it [00:21, 185.12it/s, # examples=3786]\u001b[A\n", + "Processed actions: 3852it [00:21, 185.12it/s, # examples=3787]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3788]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3789]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3790]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3791]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3792]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3793]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3794]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3795]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3796]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3797]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3798]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3799]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3800]\u001b[A\n", + "Processed actions: 3852it [00:22, 185.12it/s, # examples=3801]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3801]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3802]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3803]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3804]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3805]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3806]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3807]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3806]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3807]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3808]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3809]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3810]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3811]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3812]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3813]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3814]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3815]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3816]\u001b[A\n", + "Processed actions: 3871it [00:22, 178.69it/s, # examples=3817]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3817]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3818]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3819]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3820]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3821]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3822]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3823]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3824]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3825]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3826]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3827]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3828]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3829]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3830]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3831]\u001b[A\n", + "Processed actions: 3889it [00:22, 167.13it/s, # examples=3832]\u001b[A\n", + "\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3930]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3931]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3932]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3933]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3934]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3935]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3936]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3937]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3938]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3939]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3940]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3941]\u001b[A\n", + "Processed actions: 3998it [00:22, 176.61it/s, # examples=3942]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3942]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3943]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3944]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3945]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3946]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3947]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3948]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3949]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3950]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3951]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3952]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3953]\u001b[A\n", + "Processed actions: 4016it [00:22, 177.30it/s, # examples=3954]\u001b[A\n", + "Processed actions: 4016it [00:23, 177.30it/s, # examples=3955]\u001b[A\n", + "Processed actions: 4016it [00:23, 177.30it/s, # examples=3956]\u001b[A\n", + "Processed actions: 4016it [00:23, 177.30it/s, # examples=3957]\u001b[A\n", + "Processed actions: 4016it [00:23, 177.30it/s, # examples=3958]\u001b[A\n", + "Processed actions: 4016it [00:23, 177.30it/s, # examples=3959]\u001b[A\n", + "Processed actions: 4016it [00:23, 177.30it/s, # examples=3960]\u001b[A\n", + "Processed actions: 4016it [00:23, 177.30it/s, # examples=3961]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3961]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3962]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3963]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3964]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3965]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3966]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3967]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3968]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3967]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3968]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3969]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3970]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3971]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3972]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3973]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3974]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3975]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3976]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3977]\u001b[A\n", + "Processed actions: 4035it [00:23, 179.80it/s, # examples=3978]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3978]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3979]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3980]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3981]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3982]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3983]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3984]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3985]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3986]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3987]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3988]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3989]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3990]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3991]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3992]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3993]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3994]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3995]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3996]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3997]\u001b[A\n", + "Processed actions: 4054it [00:23, 182.44it/s, # examples=3998]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=3998]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=3999]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4000]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4001]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4002]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4003]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4004]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4005]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4006]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4007]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4008]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4009]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4010]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4011]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4012]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4013]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4014]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4015]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4016]\u001b[A\n", + "Processed actions: 4074it [00:23, 184.67it/s, # examples=4017]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4017]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4018]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4019]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4020]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4021]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4022]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4023]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4024]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4025]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4026]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4027]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4026]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4027]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4028]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4029]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4030]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4031]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4032]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4033]\u001b[A\n", + "Processed actions: 4093it [00:23, 185.06it/s, # examples=4034]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4034]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4035]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4036]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4037]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4038]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4039]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4040]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4041]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4042]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4043]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4044]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4045]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4046]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4047]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4048]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4047]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4048]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4049]\u001b[A\n", + "Processed actions: 4112it [00:23, 169.55it/s, # examples=4050]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4050]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4051]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4052]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4053]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4054]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4055]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4056]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4057]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4058]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4059]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4060]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4061]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4062]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4063]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4064]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4065]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4066]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4067]\u001b[A\n", + "Processed actions: 4130it [00:23, 170.05it/s, # examples=4068]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4068]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4069]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4070]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4071]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4072]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4073]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4074]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4075]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4076]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4077]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4078]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4079]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4080]\u001b[A\n", + "Processed actions: 4148it [00:23, 171.32it/s, # examples=4081]\u001b[A\n", + "\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4170]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4171]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4172]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4173]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4174]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4175]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4176]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4177]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4178]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4179]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4180]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4181]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4182]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4183]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4184]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4185]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4186]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4187]\u001b[A\n", + "Processed actions: 4258it [00:24, 170.43it/s, # examples=4188]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4188]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4189]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4190]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4191]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4192]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4193]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4194]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4195]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4194]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4195]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4196]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4197]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4196]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4197]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4198]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4199]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4200]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4201]\u001b[A\n", + "Processed actions: 4276it [00:24, 169.45it/s, # examples=4202]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4202]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4203]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4202]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4203]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4204]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4205]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4206]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4207]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4208]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4209]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4210]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4211]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4212]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4213]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4214]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4215]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4216]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4217]\u001b[A\n", + "Processed actions: 4294it [00:24, 170.23it/s, # examples=4218]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4218]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4219]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4220]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4221]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4222]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4223]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4224]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4225]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4226]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4227]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4228]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4229]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4230]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4231]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4232]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4233]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4234]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4235]\u001b[A\n", + "Processed actions: 4312it [00:24, 169.57it/s, # examples=4236]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4236]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4237]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4238]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4237]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4238]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4239]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4240]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4241]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4242]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4243]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4244]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4245]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4246]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4247]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4248]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4249]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4250]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4251]\u001b[A\n", + "Processed actions: 4330it [00:24, 171.89it/s, # examples=4252]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4252]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4253]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4254]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4255]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4256]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4257]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4256]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4257]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4258]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4259]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4260]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4261]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4262]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4263]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4264]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4265]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4266]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4267]\u001b[A\n", + "Processed actions: 4348it [00:24, 174.11it/s, # examples=4268]\u001b[A\n", + "Processed actions: 4366it [00:24, 167.08it/s, # examples=4268]\u001b[A\n", + "Processed actions: 4366it [00:24, 167.08it/s, # examples=4269]\u001b[A\n", + "Processed actions: 4366it [00:24, 167.08it/s, # examples=4270]\u001b[A\n", + "Processed actions: 4366it [00:24, 167.08it/s, # examples=4271]\u001b[A\n", + "Processed actions: 4366it [00:24, 167.08it/s, # examples=4272]\u001b[A\n", + "Processed actions: 4366it [00:24, 167.08it/s, # examples=4273]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4274]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4275]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4276]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4277]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4278]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4279]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4280]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4281]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4282]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4283]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4284]\u001b[A\n", + "Processed actions: 4366it [00:25, 167.08it/s, # examples=4285]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4285]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4286]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4287]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4288]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4289]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4290]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4291]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4292]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4293]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4294]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4295]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4296]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4297]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4298]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4299]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4300]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4301]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4302]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4303]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4304]\u001b[A\n", + "Processed actions: 4383it [00:25, 166.02it/s, # examples=4305]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4305]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4306]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4307]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4308]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4309]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4310]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4311]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4312]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4313]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4314]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4315]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4316]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4317]\u001b[A\n", + "Processed actions: 4403it [00:25, 174.59it/s, # examples=4318]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4416]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4417]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4418]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4419]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4420]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4421]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4422]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4423]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4422]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4423]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4424]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4425]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4424]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4425]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4426]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4427]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4428]\u001b[A\n", + "Processed actions: 4514it [00:25, 164.20it/s, # examples=4429]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4429]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4430]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4431]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4432]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4433]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4434]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4435]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4436]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4437]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4438]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4439]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4440]\u001b[A\n", + "Processed actions: 4533it [00:25, 170.54it/s, # examples=4441]\u001b[A\n", + "Processed actions: 4533it [00:26, 170.54it/s, # examples=4440]\u001b[A\n", + "Processed actions: 4533it [00:26, 170.54it/s, # examples=4441]\u001b[A\n", + "Processed actions: 4533it [00:26, 170.54it/s, # examples=4442]\u001b[A\n", + "Processed actions: 4533it [00:26, 170.54it/s, # examples=4443]\u001b[A\n", + "Processed actions: 4533it [00:26, 170.54it/s, # examples=4444]\u001b[A\n", + "Processed actions: 4533it [00:26, 170.54it/s, # examples=4445]\u001b[A\n", + "Processed actions: 4533it [00:26, 170.54it/s, # examples=4446]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4446]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4447]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4448]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4449]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4450]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4451]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4452]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4453]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4454]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4455]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4456]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4457]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4458]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4459]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4460]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4461]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4462]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4463]\u001b[A\n", + "Processed actions: 4552it [00:26, 175.37it/s, # examples=4464]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4464]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4465]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4466]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4467]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4468]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4469]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4470]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4471]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4472]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4473]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4474]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4475]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4476]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4477]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4478]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4479]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4480]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4481]\u001b[A\n", + "Processed actions: 4570it [00:26, 174.97it/s, # examples=4482]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4482]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4483]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4484]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4485]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4486]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4487]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4488]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4489]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4490]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4491]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4492]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4493]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4494]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4495]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4496]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4497]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4498]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4499]\u001b[A\n", + "Processed actions: 4588it [00:26, 175.20it/s, # examples=4500]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4500]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4501]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4502]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4503]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4504]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4505]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4506]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4507]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4508]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4509]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4510]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4511]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4512]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4513]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4514]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4515]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4516]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4517]\u001b[A\n", + "Processed actions: 4606it [00:26, 174.82it/s, # examples=4518]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4518]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4519]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4520]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4521]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4522]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4523]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4524]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4525]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4526]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4527]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4528]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4529]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4530]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4531]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4532]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4533]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4534]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4535]\u001b[A\n", + "Processed actions: 4624it [00:26, 172.73it/s, # examples=4536]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4536]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4537]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4538]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4539]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4540]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4541]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4542]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4543]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4544]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4545]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4546]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4547]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4548]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4549]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4550]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4551]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4552]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4553]\u001b[A\n", + "Processed actions: 4642it [00:26, 174.83it/s, # examples=4554]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4554]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4555]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4554]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4555]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4556]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4557]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4558]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4559]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4560]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4561]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4562]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4563]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4564]\u001b[A\n", + "Processed actions: 4660it [00:26, 170.83it/s, # examples=4565]\u001b[A\n", + "\n", + "Processed actions: 4768it [00:27, 171.55it/s, # examples=4663]\u001b[A\n", + "Processed actions: 4768it [00:27, 171.55it/s, # examples=4664]\u001b[A\n", + "Processed actions: 4768it [00:27, 171.55it/s, # examples=4665]\u001b[A\n", + "Processed actions: 4768it [00:27, 171.55it/s, # examples=4666]\u001b[A\n", + "Processed actions: 4768it [00:27, 171.55it/s, # examples=4667]\u001b[A\n", + "Processed actions: 4768it [00:27, 171.55it/s, # examples=4668]\u001b[A\n", + "Processed actions: 4768it [00:27, 171.55it/s, # examples=4669]\u001b[A\n", + "Processed actions: 4768it [00:27, 171.55it/s, # examples=4670]\u001b[A\n", + "Processed actions: 4768it [00:27, 171.55it/s, # examples=4669]\u001b[A\n", + "Processed actions: 4768it [00:27, 171.55it/s, # examples=4670]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4670]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4671]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4672]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4673]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4674]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4675]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4676]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4677]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4678]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4679]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4680]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4681]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4682]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4681]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4682]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4683]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4684]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4685]\u001b[A\n", + "Processed actions: 4788it [00:27, 177.75it/s, # examples=4686]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4686]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4687]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4686]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4687]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4688]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4689]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4690]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4691]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4692]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4693]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4694]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4695]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4696]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4697]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4698]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4699]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4700]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4701]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4702]\u001b[A\n", + "Processed actions: 4806it [00:27, 177.77it/s, # examples=4703]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4703]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4704]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4705]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4706]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4707]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4708]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4709]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4710]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4711]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4712]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4713]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4714]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4715]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4716]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4717]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4718]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4719]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4720]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4721]\u001b[A\n", + "Processed actions: 4825it [00:27, 180.21it/s, # examples=4722]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4722]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4723]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4722]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4723]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4724]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4725]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4726]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4727]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4728]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4729]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4730]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4731]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4732]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4733]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4734]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4735]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4736]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4737]\u001b[A\n", + "Processed actions: 4844it [00:27, 179.14it/s, # examples=4738]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4738]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4739]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4740]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4741]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4742]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4743]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4744]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4745]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4746]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4747]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4748]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4749]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4750]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4751]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4752]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4753]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4754]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4755]\u001b[A\n", + "Processed actions: 4862it [00:27, 176.88it/s, # examples=4756]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4756]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4757]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4758]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4759]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4760]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4761]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4762]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4763]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4764]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4765]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4766]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4767]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4768]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4769]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4770]\u001b[A\n", + "Processed actions: 4880it [00:27, 174.94it/s, # examples=4771]\u001b[A\n", + "Processed actions: 4880it [00:28, 174.94it/s, # examples=4772]\u001b[A\n", + "Processed actions: 4880it [00:28, 174.94it/s, # examples=4773]\u001b[A\n", + "Processed actions: 4880it [00:28, 174.94it/s, # examples=4774]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4774]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4775]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4776]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4777]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4778]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4779]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4778]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4779]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4780]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4781]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4782]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4783]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4784]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4785]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4786]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4787]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4788]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4789]\u001b[A\n", + "Processed actions: 4898it [00:28, 175.77it/s, # examples=4790]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4790]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4789]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4790]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4791]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4792]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4793]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4794]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4795]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4796]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4797]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4798]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4799]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4800]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4801]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4802]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4803]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4804]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4805]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4806]\u001b[A\n", + "Processed actions: 4916it [00:28, 175.15it/s, # examples=4807]\u001b[A\n", + "Processed actions: 4935it [00:28, 177.36it/s, # examples=4807]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4909]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4910]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4911]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4912]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4913]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4914]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4915]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4916]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4917]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4918]\u001b[A\n", + "Processed actions: 5033it [00:28, 189.93it/s, # examples=4919]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4919]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4920]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4921]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4922]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4923]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4924]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4925]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4926]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4925]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4926]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4927]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4928]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4929]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4930]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4931]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4932]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4933]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4934]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4935]\u001b[A\n", + "Processed actions: 5053it [00:28, 188.86it/s, # examples=4936]\u001b[A\n", + "Processed actions: 5072it [00:28, 186.04it/s, # examples=4936]\u001b[A\n", + "Processed actions: 5072it [00:28, 186.04it/s, # examples=4937]\u001b[A\n", + "Processed actions: 5072it [00:28, 186.04it/s, # examples=4938]\u001b[A\n", + "Processed actions: 5072it [00:28, 186.04it/s, # examples=4939]\u001b[A\n", + "Processed actions: 5072it [00:28, 186.04it/s, # examples=4940]\u001b[A\n", + "Processed actions: 5072it [00:28, 186.04it/s, # examples=4941]\u001b[A\n", + "Processed actions: 5072it [00:28, 186.04it/s, # examples=4942]\u001b[A\n", + "Processed actions: 5072it [00:28, 186.04it/s, # examples=4943]\u001b[A\n", + "Processed actions: 5072it [00:28, 186.04it/s, # examples=4944]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4945]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4946]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4947]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4948]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4949]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4950]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4951]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4952]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4953]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4954]\u001b[A\n", + "Processed actions: 5072it [00:29, 186.04it/s, # examples=4955]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4955]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4956]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4957]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4958]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4959]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4960]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4961]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4962]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4963]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4964]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4965]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4966]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4967]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4968]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4969]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4970]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4971]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4972]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4973]\u001b[A\n", + "Processed actions: 5091it [00:29, 180.05it/s, # examples=4974]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4974]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4975]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4976]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4977]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4978]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4979]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4980]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4981]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4982]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4983]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4982]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4983]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4984]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4985]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4986]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4987]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4988]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4989]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4990]\u001b[A\n", + "Processed actions: 5110it [00:29, 179.92it/s, # examples=4991]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=4991]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=4992]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=4993]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=4994]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=4995]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=4996]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=4997]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=4998]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=4999]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5000]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5001]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5002]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5003]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5004]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5005]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5006]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5007]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5008]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5009]\u001b[A\n", + "Processed actions: 5129it [00:29, 180.56it/s, # examples=5010]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5010]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5011]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5012]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5013]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5014]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5015]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5016]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5015]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5016]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5017]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5018]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5019]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5020]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5021]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5022]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5023]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5024]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5025]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5026]\u001b[A\n", + "Processed actions: 5148it [00:29, 179.31it/s, # examples=5027]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5027]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5028]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5029]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5030]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5031]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5032]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5033]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5034]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5035]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5036]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5035]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5036]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5037]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5038]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5039]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5040]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5041]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5042]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5043]\u001b[A\n", + "Processed actions: 5167it [00:29, 179.90it/s, # examples=5044]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5044]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5045]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5046]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5047]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5048]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5049]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5050]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5051]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5052]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5053]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5054]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5055]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5056]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5057]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5058]\u001b[A\n", + "Processed actions: 5186it [00:29, 177.20it/s, # examples=5059]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5149]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5150]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5151]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5152]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5153]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5154]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5155]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5156]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5157]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5158]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5159]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5160]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5161]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5162]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5163]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5164]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5165]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5166]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5167]\u001b[A\n", + "Processed actions: 5297it [00:30, 175.17it/s, # examples=5168]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5168]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5169]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5170]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5171]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5170]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5171]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5172]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5173]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5174]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5175]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5176]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5175]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5176]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5177]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5178]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5179]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5180]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5181]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5182]\u001b[A\n", + "Processed actions: 5316it [00:30, 179.21it/s, # examples=5183]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5183]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5184]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5185]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5186]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5187]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5188]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5189]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5190]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5191]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5192]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5193]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5194]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5195]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5196]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5197]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5198]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5199]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5200]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5201]\u001b[A\n", + "Processed actions: 5335it [00:30, 178.99it/s, # examples=5202]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5202]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5203]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5204]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5205]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5206]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5207]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5208]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5209]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5210]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5211]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5212]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5213]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5214]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5215]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5216]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5217]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5218]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5219]\u001b[A\n", + "Processed actions: 5354it [00:30, 178.80it/s, # examples=5220]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5220]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5221]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5222]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5223]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5224]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5225]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5226]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5227]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5228]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5229]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5230]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5231]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5232]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5233]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5234]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5235]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5236]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5237]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5238]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5239]\u001b[A\n", + "Processed actions: 5372it [00:30, 177.66it/s, # examples=5240]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5240]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5241]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5242]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5243]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5244]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5245]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5246]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5247]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5248]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5249]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5250]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5251]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5252]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5253]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5254]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5255]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5256]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5255]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5256]\u001b[A\n", + "Processed actions: 5392it [00:30, 182.95it/s, # examples=5257]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5257]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5258]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5259]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5260]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5261]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5262]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5263]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5264]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5265]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5266]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5267]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5268]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5269]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5270]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5271]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5272]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5273]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5274]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5275]\u001b[A\n", + "Processed actions: 5411it [00:30, 184.40it/s, # examples=5276]\u001b[A\n", + "Processed actions: 5430it [00:30, 182.33it/s, # examples=5276]\u001b[A\n", + "Processed actions: 5430it [00:30, 182.33it/s, # examples=5277]\u001b[A\n", + "Processed actions: 5430it [00:30, 182.33it/s, # examples=5278]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5279]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5280]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5281]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5282]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5283]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5284]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5285]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5286]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5287]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5288]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5289]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5290]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5291]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5292]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5293]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5294]\u001b[A\n", + "Processed actions: 5430it [00:31, 182.33it/s, # examples=5295]\u001b[A\n", + "Processed actions: 5449it [00:31, 182.86it/s, # examples=5295]\u001b[A\n", + "Processed actions: 5449it [00:31, 182.86it/s, # examples=5296]\u001b[A\n", + "Processed actions: 5449it [00:31, 182.86it/s, # examples=5297]\u001b[A\n", + "Processed actions: 5449it [00:31, 182.86it/s, # examples=5298]\u001b[A\n", + "Processed actions: 5449it [00:31, 182.86it/s, # examples=5299]\u001b[A\n", + "Processed actions: 5449it [00:31, 182.86it/s, # examples=5300]\u001b[A\n", + "Processed actions: 5449it [00:31, 182.86it/s, # examples=5301]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5402]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5403]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5404]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5405]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5406]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5407]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5408]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5409]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5410]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5411]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5412]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5411]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5412]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5413]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5414]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5415]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5416]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5417]\u001b[A\n", + "Processed actions: 5562it [00:31, 179.25it/s, # examples=5418]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5418]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5419]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5420]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5421]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5422]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5423]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5424]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5425]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5426]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5427]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5428]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5429]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5430]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5431]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5432]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5433]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5434]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5435]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5436]\u001b[A\n", + "Processed actions: 5580it [00:31, 177.41it/s, # examples=5437]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5437]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5438]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5439]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5440]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5441]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5442]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5443]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5444]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5445]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5446]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5447]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5448]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5449]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5450]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5451]\u001b[A\n", + "Processed actions: 5599it [00:31, 180.69it/s, # examples=5452]\u001b[A\n", + "Processed actions: 5599it [00:32, 180.69it/s, # examples=5453]\u001b[A\n", + "Processed actions: 5599it [00:32, 180.69it/s, # examples=5454]\u001b[A\n", + "Processed actions: 5599it [00:32, 180.69it/s, # examples=5455]\u001b[A\n", + "Processed actions: 5599it [00:32, 180.69it/s, # examples=5456]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 5599it [00:32, 180.69it/s, # examples=5455]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5455]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5456]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5457]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5458]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5459]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5460]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5461]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5462]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5463]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5464]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5465]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5466]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5467]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5468]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5469]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5470]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5471]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5472]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5473]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5474]\u001b[A\n", + "Processed actions: 5619it [00:32, 184.16it/s, # examples=5475]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5475]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5476]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5477]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5478]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5479]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5480]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5481]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5482]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5483]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5484]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5485]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5486]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5487]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5488]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5489]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5490]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5491]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5492]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5493]\u001b[A\n", + "Processed actions: 5639it [00:32, 186.94it/s, # examples=5494]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5494]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5495]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5496]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5497]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5498]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5499]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5500]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5501]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5502]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5503]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5502]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5503]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5504]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5505]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5506]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5507]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5508]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5509]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5510]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5511]\u001b[A\n", + "Processed actions: 5658it [00:32, 187.37it/s, # examples=5512]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5512]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5513]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5514]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5515]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5516]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5517]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5518]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5519]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5520]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5521]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5522]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5523]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5524]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5525]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5526]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5527]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5528]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5529]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5530]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5531]\u001b[A\n", + "Processed actions: 5678it [00:32, 190.26it/s, # examples=5532]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5532]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5533]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5534]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5535]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5534]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5535]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5536]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5537]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5536]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5537]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5538]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5539]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5540]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5541]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5542]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5543]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5544]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5545]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5546]\u001b[A\n", + "Processed actions: 5698it [00:32, 187.07it/s, # examples=5547]\u001b[A\n", + "Processed actions: 5717it [00:32, 183.20it/s, # examples=5547]\u001b[A\n", + "Processed actions: 5717it [00:32, 183.20it/s, # examples=5548]\u001b[A\n", + "Processed actions: 5717it [00:32, 183.20it/s, # examples=5549]\u001b[A\n", + "\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5654]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5655]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5656]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5657]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5658]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5659]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5660]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5661]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5662]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5663]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5662]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5663]\u001b[A\n", + "Processed actions: 5817it [00:33, 185.37it/s, # examples=5664]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5664]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5665]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5666]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5667]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5668]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5669]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5670]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5671]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5672]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5673]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5674]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5675]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5676]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5677]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5676]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5677]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5678]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5679]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5680]\u001b[A\n", + "Processed actions: 5836it [00:33, 180.04it/s, # examples=5681]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5681]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5682]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5683]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5684]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5685]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5686]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5685]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5686]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5687]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5688]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5689]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5690]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5691]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5692]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5693]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5694]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5695]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5696]\u001b[A\n", + "Processed actions: 5855it [00:33, 178.65it/s, # examples=5697]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5697]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5698]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5699]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5700]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5701]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5702]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5703]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5704]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5705]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5706]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5707]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5708]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5709]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5710]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5709]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5710]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5711]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5712]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5713]\u001b[A\n", + "Processed actions: 5873it [00:33, 178.61it/s, # examples=5714]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5714]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5715]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5716]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5717]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5718]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5719]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5720]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5721]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5722]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5723]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5724]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5725]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5726]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5727]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5728]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5729]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5730]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5731]\u001b[A\n", + "Processed actions: 5892it [00:33, 179.73it/s, # examples=5732]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5732]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5731]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5732]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5733]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5734]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5735]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5736]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5737]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5738]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5739]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5740]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5741]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5742]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5743]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5744]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5745]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5746]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5747]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5748]\u001b[A\n", + "Processed actions: 5910it [00:33, 178.04it/s, # examples=5749]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5749]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5750]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5751]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5752]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5753]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5754]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5755]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5756]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5757]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5758]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5759]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5760]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5761]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5762]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5761]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5762]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5763]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5764]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5765]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5766]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5767]\u001b[A\n", + "Processed actions: 5929it [00:33, 178.57it/s, # examples=5768]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5768]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5769]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5770]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5771]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5772]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5773]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5774]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5775]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5776]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5777]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5778]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5779]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5780]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5781]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5782]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5783]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5784]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5785]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5786]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5787]\u001b[A\n", + "Processed actions: 5950it [00:33, 184.06it/s, # examples=5788]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5788]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5789]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5790]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5791]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5792]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5793]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5794]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5795]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5796]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5795]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5796]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5797]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5798]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5799]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5800]\u001b[A\n", + "Processed actions: 5970it [00:33, 187.83it/s, # examples=5801]\u001b[A\n", + "Processed actions: 5970it [00:34, 187.83it/s, # examples=5802]\u001b[A\n", + "Processed actions: 5970it [00:34, 187.83it/s, # examples=5803]\u001b[A\n", + "Processed actions: 5970it [00:34, 187.83it/s, # examples=5804]\u001b[A\n", + "Processed actions: 5970it [00:34, 187.83it/s, # examples=5805]\u001b[A\n", + "Processed actions: 5970it [00:34, 187.83it/s, # examples=5806]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5806]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5807]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5808]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5809]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5810]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5811]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5812]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5813]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5814]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5815]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5814]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5815]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5816]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5817]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5818]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5819]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5820]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5821]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5822]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5823]\u001b[A\n", + "Processed actions: 5990it [00:34, 190.29it/s, # examples=5824]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5824]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5825]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5826]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5827]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5828]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5829]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5830]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5831]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5832]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5833]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5834]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5835]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5836]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5837]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5838]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5839]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5840]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5841]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5842]\u001b[A\n", + "Processed actions: 6010it [00:34, 187.92it/s, # examples=5843]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5843]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5844]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5843]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5844]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5845]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5846]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5847]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5848]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5849]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5850]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5851]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5852]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5853]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5854]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5855]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5856]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5857]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5858]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5859]\u001b[A\n", + "Processed actions: 6029it [00:34, 185.34it/s, # examples=5860]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5860]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5861]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5862]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5863]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5864]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5865]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5866]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5867]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5868]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5869]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5870]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5871]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5872]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5873]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5874]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5875]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5876]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5877]\u001b[A\n", + "Processed actions: 6048it [00:34, 178.10it/s, # examples=5878]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5878]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5879]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5880]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5881]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5882]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5883]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5884]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5885]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5886]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5887]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5888]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5889]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5890]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5891]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5892]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5893]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5894]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5895]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5896]\u001b[A\n", + "Processed actions: 6066it [00:34, 174.87it/s, # examples=5897]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5897]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5898]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5899]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5900]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5901]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5902]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5903]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5904]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5905]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5906]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5907]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5908]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5909]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5910]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5911]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5912]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5913]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5914]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5915]\u001b[A\n", + "Processed actions: 6085it [00:34, 176.69it/s, # examples=5916]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5916]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5917]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5918]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5919]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5920]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5921]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5922]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5923]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5924]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5925]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5926]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5927]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5928]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5929]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5930]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5931]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5932]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5933]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5934]\u001b[A\n", + "Processed actions: 6104it [00:34, 180.36it/s, # examples=5935]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5935]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5936]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5937]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5938]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5939]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5940]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5941]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5942]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5943]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5944]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5945]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5946]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5947]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5948]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5949]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5950]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5951]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5952]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5953]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5954]\u001b[A\n", + "Processed actions: 6123it [00:34, 181.30it/s, # examples=5955]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5955]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5956]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5957]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5958]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5959]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5960]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5961]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5962]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5963]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5964]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5965]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5966]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5967]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5968]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5969]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5970]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5971]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5972]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5973]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5974]\u001b[A\n", + "Processed actions: 6143it [00:34, 186.28it/s, # examples=5975]\u001b[A\n", + "Processed actions: 6163it [00:34, 188.72it/s, # examples=5975]\u001b[A\n", + "Processed actions: 6163it [00:34, 188.72it/s, # examples=5976]\u001b[A\n", + "Processed actions: 6163it [00:34, 188.72it/s, # examples=5977]\u001b[A\n", + "Processed actions: 6163it [00:34, 188.72it/s, # examples=5978]\u001b[A\n", + "Processed actions: 6163it [00:34, 188.72it/s, # examples=5979]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5980]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5981]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5982]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5983]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5984]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5985]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5986]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5987]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5988]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5987]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5988]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5989]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5990]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5991]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5992]\u001b[A\n", + "Processed actions: 6163it [00:35, 188.72it/s, # examples=5993]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=5993]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=5994]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=5995]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=5996]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=5997]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=5998]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=5999]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6000]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6001]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6002]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6003]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6004]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6005]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6006]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6007]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6008]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6009]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6010]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6011]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6012]\u001b[A\n", + "Processed actions: 6183it [00:35, 191.85it/s, # examples=6013]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6013]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6014]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6015]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6016]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6017]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6018]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6019]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6020]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6021]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6022]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6023]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6024]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6025]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6026]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6027]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6028]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6029]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6030]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6031]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6032]\u001b[A\n", + "Processed actions: 6203it [00:35, 191.87it/s, # examples=6033]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6033]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6034]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6035]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6036]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6037]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6038]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6039]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6040]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6041]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6042]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6043]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6044]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6045]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6044]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6045]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6046]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6047]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6048]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6049]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6050]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6051]\u001b[A\n", + "Processed actions: 6223it [00:35, 192.07it/s, # examples=6052]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6052]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6053]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6054]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6055]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6056]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6057]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6058]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6059]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6060]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6061]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6062]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6063]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6064]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6065]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6066]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6065]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6066]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6067]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6068]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6069]\u001b[A\n", + "Processed actions: 6244it [00:35, 196.33it/s, # examples=6070]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6070]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6071]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6072]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6073]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6074]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6075]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6076]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6077]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6078]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6079]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6080]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6081]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6082]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6083]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6084]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6085]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6086]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6087]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6088]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6089]\u001b[A\n", + "Processed actions: 6264it [00:35, 196.14it/s, # examples=6090]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6090]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6091]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6092]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6093]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6094]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6095]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6096]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6097]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6098]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6099]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6100]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6101]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6102]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6103]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6104]\u001b[A\n", + "Processed actions: 6284it [00:35, 193.94it/s, # examples=6105]\u001b[A\n", + "Processed actions: 6327it [00:35, 200.14it/s, # examples=6146]\u001b[A\n", + "Processed actions: 6327it [00:35, 200.14it/s, # examples=6147]\u001b[A\n", + "Processed actions: 6327it [00:35, 200.14it/s, # examples=6148]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6148]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6149]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6150]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6151]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6152]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6153]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6154]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6155]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6156]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6157]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6158]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6159]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6160]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6161]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6162]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6163]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6164]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6165]\u001b[A\n", + "Processed actions: 6348it [00:35, 197.96it/s, # examples=6166]\u001b[A\n", + "Processed actions: 6348it [00:36, 197.96it/s, # examples=6167]\u001b[A\n", + "Processed actions: 6348it [00:36, 197.96it/s, # examples=6168]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6168]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6169]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6170]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6171]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6172]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6173]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6174]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6175]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6176]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6177]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6178]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6179]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6180]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6181]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6182]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6183]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6184]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6185]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6186]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6187]\u001b[A\n", + "Processed actions: 6368it [00:36, 198.48it/s, # examples=6188]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6188]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6189]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6190]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6191]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6192]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6193]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6194]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6195]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6196]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6197]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6196]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6197]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6198]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6199]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6200]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6201]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6202]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6203]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6204]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6205]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6206]\u001b[A\n", + "Processed actions: 6388it [00:36, 198.80it/s, # examples=6207]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6207]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6208]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6209]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6210]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6211]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6212]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6213]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6214]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6215]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6216]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6217]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6218]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6219]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6220]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6221]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6222]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6223]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6224]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6225]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6226]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6227]\u001b[A\n", + "Processed actions: 6409it [00:36, 200.56it/s, # examples=6228]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6228]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6229]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6230]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6231]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6232]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6233]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6234]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6235]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6236]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6237]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6238]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6239]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6240]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6241]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6240]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6241]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6242]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6243]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6242]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6243]\u001b[A\n", + "Processed actions: 6430it [00:36, 197.04it/s, # examples=6244]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6244]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6245]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6246]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6247]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6248]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6249]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6250]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6251]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6252]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6253]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6254]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6255]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6256]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6257]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6258]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6259]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6260]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6261]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6262]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6263]\u001b[A\n", + "Processed actions: 6450it [00:36, 191.91it/s, # examples=6264]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6264]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6265]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6266]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6267]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6268]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6269]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6270]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6271]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6272]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6273]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6274]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6275]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6276]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6277]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6276]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6277]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6278]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6279]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6280]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6281]\u001b[A\n", + "Processed actions: 6470it [00:36, 190.97it/s, # examples=6282]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6282]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6283]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6284]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6285]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6286]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6287]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6288]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6289]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6290]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6291]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6292]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6293]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6294]\u001b[A\n", + "Processed actions: 6490it [00:36, 187.02it/s, # examples=6295]\u001b[A\n", + "Processed actions: 6591it [00:37, 196.56it/s, # examples=6392]\u001b[A\n", + "Processed actions: 6591it [00:37, 196.56it/s, # examples=6391]\u001b[A\n", + "Processed actions: 6591it [00:37, 196.56it/s, # examples=6392]\u001b[A\n", + "Processed actions: 6591it [00:37, 196.56it/s, # examples=6393]\u001b[A\n", + "Processed actions: 6591it [00:37, 196.56it/s, # examples=6394]\u001b[A\n", + "Processed actions: 6591it [00:37, 196.56it/s, # examples=6395]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6395]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6396]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6397]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6398]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6399]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6400]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6401]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6402]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6403]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6404]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6405]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6406]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6407]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6406]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6407]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6408]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6409]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6410]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6411]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6412]\u001b[A\n", + "Processed actions: 6611it [00:37, 193.05it/s, # examples=6413]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6413]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6414]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6415]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6416]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6417]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6418]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6419]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6420]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6421]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6422]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6423]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6424]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6423]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6424]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6425]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6426]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6427]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6428]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6429]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6430]\u001b[A\n", + "Processed actions: 6631it [00:37, 194.64it/s, # examples=6431]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6431]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6432]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6433]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6434]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6435]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6436]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6437]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6438]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6439]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6440]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6441]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6442]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6443]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6444]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6445]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6446]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6447]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6448]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6447]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6448]\u001b[A\n", + "Processed actions: 6651it [00:37, 195.02it/s, # examples=6449]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6449]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6450]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6451]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6450]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6451]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6452]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6453]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6454]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6455]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6456]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6457]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6458]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6459]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6460]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6461]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6462]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6463]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6464]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6465]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6466]\u001b[A\n", + "Processed actions: 6671it [00:37, 195.78it/s, # examples=6467]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6467]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6468]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6467]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6468]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6469]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6470]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6471]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6472]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6473]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6474]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6475]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6476]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6477]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6478]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6479]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6480]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6481]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6482]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6483]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6484]\u001b[A\n", + "Processed actions: 6691it [00:37, 194.31it/s, # examples=6485]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6485]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6486]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6487]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6488]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6489]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6490]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6491]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6492]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6493]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6494]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6495]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6496]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6497]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6498]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6499]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6498]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6499]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6500]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6501]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6502]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6503]\u001b[A\n", + "Processed actions: 6711it [00:37, 192.95it/s, # examples=6504]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6504]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6505]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6504]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6505]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6506]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6507]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6508]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6509]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6510]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6511]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6512]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6513]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6514]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6515]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6516]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6517]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6518]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6519]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6520]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6521]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6522]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6523]\u001b[A\n", + "Processed actions: 6732it [00:37, 195.22it/s, # examples=6524]\u001b[A\n", + "Processed actions: 6754it [00:37, 199.52it/s, # examples=6524]\u001b[A\n", + "Processed actions: 6754it [00:38, 199.52it/s, # examples=6525]\u001b[A\n", + "Processed actions: 6754it [00:38, 199.52it/s, # examples=6526]\u001b[A\n", + "Processed actions: 6754it [00:38, 199.52it/s, # examples=6527]\u001b[A\n", + "Processed actions: 6754it [00:38, 199.52it/s, # examples=6528]\u001b[A\n", + "Processed actions: 6754it [00:38, 199.52it/s, # examples=6529]\u001b[A\n", + "Processed actions: 6754it [00:38, 199.52it/s, # examples=6530]\u001b[A\n", + "Processed actions: 6754it [00:38, 199.52it/s, # examples=6531]\u001b[A\n", + "Processed actions: 6754it [00:38, 199.52it/s, # examples=6532]\u001b[A\n", + "Processed actions: 6754it [00:38, 199.52it/s, # examples=6533]\u001b[A\n", + "Processed actions: 6754it [00:38, 199.52it/s, # examples=6534]\u001b[A\u001b[A\n", + "Processed actions: 6856it [00:38, 193.50it/s, # examples=6631]\u001b[A\n", + "Processed actions: 6856it [00:38, 193.50it/s, # examples=6632]\u001b[A\n", + "Processed actions: 6856it [00:38, 193.50it/s, # examples=6633]\u001b[A\n", + "Processed actions: 6856it [00:38, 193.50it/s, # examples=6634]\u001b[A\n", + "Processed actions: 6856it [00:38, 193.50it/s, # examples=6635]\u001b[A\n", + "Processed actions: 6856it [00:38, 193.50it/s, # examples=6636]\u001b[A\n", + "Processed actions: 6856it [00:38, 193.50it/s, # examples=6637]\u001b[A\n", + "Processed actions: 6856it [00:38, 193.50it/s, # examples=6638]\u001b[A\n", + "Processed actions: 6856it [00:38, 193.50it/s, # examples=6639]\u001b[A\n", + "Processed actions: 6856it [00:38, 193.50it/s, # examples=6640]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6640]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6641]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6642]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6643]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6644]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6645]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6646]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6647]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6648]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6649]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6650]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6651]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6652]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6653]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6654]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6655]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6656]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6657]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6658]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6659]\u001b[A\n", + "Processed actions: 6876it [00:38, 187.62it/s, # examples=6660]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6660]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6659]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6660]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6661]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6662]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6663]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6664]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6665]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6666]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6667]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6668]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6669]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6670]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6671]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6672]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6673]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6674]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6675]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6676]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6677]\u001b[A\n", + "Processed actions: 6896it [00:38, 190.28it/s, # examples=6678]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6678]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6679]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6680]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6681]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6682]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6683]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6684]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6685]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6686]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6687]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6688]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6689]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6690]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6691]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6692]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6693]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6694]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6695]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6696]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6697]\u001b[A\n", + "Processed actions: 6916it [00:38, 191.56it/s, # examples=6698]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6698]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6699]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6700]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6701]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6702]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6703]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6704]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6705]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6706]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6707]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6708]\u001b[A\n", + "Processed actions: 6936it [00:38, 192.86it/s, # examples=6709]\u001b[A\n", + "Processed actions: 6936it [00:39, 192.86it/s, # examples=6710]\u001b[A\n", + "Processed actions: 6936it [00:39, 192.86it/s, # examples=6711]\u001b[A\n", + "Processed actions: 6936it [00:39, 192.86it/s, # examples=6712]\u001b[A\n", + "Processed actions: 6936it [00:39, 192.86it/s, # examples=6713]\u001b[A\n", + "Processed actions: 6936it [00:39, 192.86it/s, # examples=6714]\u001b[A\n", + "Processed actions: 6936it [00:39, 192.86it/s, # examples=6715]\u001b[A\n", + "Processed actions: 6936it [00:39, 192.86it/s, # examples=6716]\u001b[A\n", + "Processed actions: 6936it [00:39, 192.86it/s, # examples=6717]\u001b[A\n", + "Processed actions: 6936it [00:39, 192.86it/s, # examples=6716]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6716]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6717]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6718]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6719]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6720]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6721]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6722]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6723]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6724]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6725]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6726]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6727]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6728]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6727]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6728]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6729]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6730]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6731]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6732]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6733]\u001b[A\n", + "Processed actions: 6956it [00:39, 194.17it/s, # examples=6734]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6734]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6735]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6736]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6737]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6738]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6739]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6740]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6741]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6742]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6743]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6742]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6743]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6744]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6745]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6746]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6747]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6748]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6749]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6750]\u001b[A\n", + "Processed actions: 6976it [00:39, 188.46it/s, # examples=6751]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6751]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6752]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6753]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6754]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6755]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6756]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6757]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6758]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6759]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6760]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6761]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6762]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6763]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6764]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6765]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6766]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6767]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6768]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6769]\u001b[A\n", + "Processed actions: 6995it [00:39, 184.10it/s, # examples=6770]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6770]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6771]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6772]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6773]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6774]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6775]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6776]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6777]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6778]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6779]\u001b[A\n", + "Processed actions: 7014it [00:39, 183.63it/s, # examples=6780]\u001b[A\n", + "\u001b[A\n", + "Processed actions: 7113it [00:39, 190.40it/s, # examples=6874]\u001b[A\n", + "Processed actions: 7113it [00:39, 190.40it/s, # examples=6875]\u001b[A\n", + "Processed actions: 7113it [00:39, 190.40it/s, # examples=6876]\u001b[A\n", + "Processed actions: 7113it [00:39, 190.40it/s, # examples=6877]\u001b[A\n", + "Processed actions: 7113it [00:39, 190.40it/s, # examples=6878]\u001b[A\n", + "Processed actions: 7113it [00:39, 190.40it/s, # examples=6879]\u001b[A\n", + "Processed actions: 7113it [00:39, 190.40it/s, # examples=6880]\u001b[A\n", + "Processed actions: 7113it [00:39, 190.40it/s, # examples=6879]\u001b[A\n", + "Processed actions: 7113it [00:39, 190.40it/s, # examples=6880]\u001b[A\n", + "Processed actions: 7134it [00:39, 192.96it/s, # examples=6880]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6881]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6882]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6883]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6884]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6885]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6886]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6887]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6888]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6889]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6890]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6891]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6892]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6893]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6892]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6893]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6894]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6895]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6896]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6897]\u001b[A\n", + "Processed actions: 7134it [00:40, 192.96it/s, # examples=6898]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6898]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6899]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6900]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6901]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6902]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6903]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6904]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6905]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6906]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6907]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6908]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6909]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6910]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6911]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6912]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6913]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6914]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6915]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6914]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6915]\u001b[A\n", + "Processed actions: 7154it [00:40, 193.59it/s, # examples=6916]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6916]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6917]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6916]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6917]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6918]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6919]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6920]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6921]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6922]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6923]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6924]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6925]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6926]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6927]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6928]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6929]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6930]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6931]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6932]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6933]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6934]\u001b[A\n", + "Processed actions: 7174it [00:40, 192.60it/s, # examples=6935]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6935]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6936]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6937]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6938]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6939]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6940]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6941]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6942]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6943]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6942]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6943]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6944]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6945]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6946]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6947]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6948]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6949]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6950]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6951]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6952]\u001b[A\n", + "Processed actions: 7195it [00:40, 195.38it/s, # examples=6953]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6953]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6954]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6955]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6956]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6957]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6958]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6959]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6960]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6961]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6962]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6963]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6964]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6965]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6966]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6967]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6968]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6969]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6968]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6969]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6970]\u001b[A\n", + "Processed actions: 7215it [00:40, 196.45it/s, # examples=6969]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6969]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6968]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6969]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6970]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6971]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6972]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6973]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6974]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6975]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6976]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6977]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6978]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6979]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6980]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6981]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6982]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6983]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6984]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6985]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6986]\u001b[A\n", + "Processed actions: 7235it [00:40, 195.78it/s, # examples=6987]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6987]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6988]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6989]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6990]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6991]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6992]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6993]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6994]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6995]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6996]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6997]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6998]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=6999]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=7000]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=7001]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=7002]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=7003]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=7004]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=7005]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=7006]\u001b[A\n", + "Processed actions: 7255it [00:40, 194.16it/s, # examples=7007]\u001b[A\n", + "Processed actions: 7275it [00:40, 192.41it/s, # examples=7007]\u001b[A\n", + "Processed actions: 7275it [00:40, 192.41it/s, # examples=7008]\u001b[A\n", + "Processed actions: 7275it [00:40, 192.41it/s, # examples=7009]\u001b[A\n", + "Processed actions: 7275it [00:40, 192.41it/s, # examples=7010]\u001b[A\n", + "Processed actions: 7275it [00:40, 192.41it/s, # examples=7011]\u001b[A\n", + "Processed actions: 7275it [00:40, 192.41it/s, # examples=7012]\u001b[A\n", + "Processed actions: 7275it [00:40, 192.41it/s, # examples=7013]\u001b[A\n", + "Processed actions: 7275it [00:40, 192.41it/s, # examples=7014]\u001b[A\n", + "Processed actions: 7275it [00:40, 192.41it/s, # examples=7015]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7123]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7124]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7125]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7126]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7127]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7128]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7129]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7130]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7131]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7132]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7133]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7134]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7135]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7136]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7137]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7138]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7139]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7140]\u001b[A\n", + "Processed actions: 7396it [00:41, 197.16it/s, # examples=7141]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7141]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7142]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7143]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7144]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7145]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7146]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7147]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7148]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7149]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7150]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7151]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7152]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7153]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7154]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7153]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7154]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7155]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7156]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7157]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7158]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7159]\u001b[A\n", + "Processed actions: 7417it [00:41, 200.06it/s, # examples=7160]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7160]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7161]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7162]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7163]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7164]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7165]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7166]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7167]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7168]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7169]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7170]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7171]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7172]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7173]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7174]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7175]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7176]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7177]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7178]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7179]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7180]\u001b[A\n", + "Processed actions: 7438it [00:41, 201.89it/s, # examples=7181]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7181]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7182]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7183]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7184]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7185]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7186]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7187]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7188]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7189]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7190]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7191]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7192]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7193]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7194]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7195]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7196]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7197]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7198]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7199]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7200]\u001b[A\n", + "Processed actions: 7459it [00:41, 196.93it/s, # examples=7201]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7201]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7202]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7203]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7204]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7205]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7206]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7207]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7208]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7209]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7210]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7211]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7212]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7213]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7214]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7215]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7216]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7217]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7218]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7219]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7220]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7221]\u001b[A\n", + "Processed actions: 7479it [00:41, 196.93it/s, # examples=7222]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7222]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7223]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7224]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7223]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7224]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7225]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7226]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7227]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7228]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7229]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7230]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7231]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7232]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7233]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7234]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7235]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7236]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7237]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7238]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7239]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7240]\u001b[A\n", + "Processed actions: 7500it [00:41, 200.13it/s, # examples=7241]\u001b[A\n", + "Processed actions: 7521it [00:41, 198.71it/s, # examples=7241]\u001b[A\n", + "Processed actions: 7521it [00:41, 198.71it/s, # examples=7242]\u001b[A\n", + "Processed actions: 7521it [00:41, 198.71it/s, # examples=7243]\u001b[A\n", + "Processed actions: 7521it [00:41, 198.71it/s, # examples=7244]\u001b[A\n", + "Processed actions: 7521it [00:41, 198.71it/s, # examples=7245]\u001b[A\n", + "Processed actions: 7521it [00:41, 198.71it/s, # examples=7246]\u001b[A\n", + "Processed actions: 7521it [00:41, 198.71it/s, # examples=7247]\u001b[A\n", + "Processed actions: 7521it [00:41, 198.71it/s, # examples=7248]\u001b[A\n", + "Processed actions: 7521it [00:41, 198.71it/s, # examples=7249]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7250]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7251]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7252]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7253]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7254]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7255]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7256]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7257]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7258]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7259]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7260]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7261]\u001b[A\n", + "Processed actions: 7521it [00:42, 198.71it/s, # examples=7262]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7262]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7263]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7264]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7265]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7266]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7267]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7268]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7269]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7270]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7271]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7272]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7273]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7274]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7275]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7276]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7277]\u001b[A\n", + "Processed actions: 7542it [00:42, 200.40it/s, # examples=7278]\u001b[A\n", + "Processed actions: 7665it [00:42, 174.66it/s, # examples=7387]\u001b[A\n", + "Processed actions: 7665it [00:42, 174.66it/s, # examples=7388]\u001b[A\n", + "Processed actions: 7665it [00:42, 174.66it/s, # examples=7389]\u001b[A\n", + "Processed actions: 7665it [00:42, 174.66it/s, # examples=7390]\u001b[A\n", + "Processed actions: 7665it [00:42, 174.66it/s, # examples=7391]\u001b[A\n", + "Processed actions: 7665it [00:42, 174.66it/s, # examples=7392]\u001b[A\n", + "Processed actions: 7665it [00:42, 174.66it/s, # examples=7393]\u001b[A\n", + "Processed actions: 7665it [00:42, 174.66it/s, # examples=7392]\u001b[A\n", + "Processed actions: 7665it [00:42, 174.66it/s, # examples=7393]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7393]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7394]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7395]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7396]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7397]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7398]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7399]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7400]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7401]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7402]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7403]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7404]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7405]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7406]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7407]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7408]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7409]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7410]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7411]\u001b[A\n", + "Processed actions: 7683it [00:42, 173.60it/s, # examples=7412]\u001b[A\n", + "Processed actions: 7702it [00:42, 176.48it/s, # examples=7412]\u001b[A\n", + "Processed actions: 7702it [00:42, 176.48it/s, # examples=7413]\u001b[A\n", + "Processed actions: 7702it [00:42, 176.48it/s, # examples=7414]\u001b[A\n", + "Processed actions: 7702it [00:42, 176.48it/s, # examples=7415]\u001b[A\n", + "Processed actions: 7702it [00:42, 176.48it/s, # examples=7416]\u001b[A\n", + "Processed actions: 7702it [00:42, 176.48it/s, # examples=7417]\u001b[A\n", + "Processed actions: 7702it [00:42, 176.48it/s, # examples=7418]\u001b[A\n", + "Processed actions: 7702it [00:42, 176.48it/s, # examples=7419]\u001b[A\n", + "Processed actions: 7702it [00:42, 176.48it/s, # examples=7420]\u001b[A\n", + "Processed actions: 7702it [00:42, 176.48it/s, # examples=7421]\u001b[A\n", + "Processed actions: 7702it [00:43, 176.48it/s, # examples=7422]\u001b[A\n", + "Processed actions: 7702it [00:43, 176.48it/s, # examples=7423]\u001b[A\n", + "Processed actions: 7702it [00:43, 176.48it/s, # examples=7424]\u001b[A\n", + "Processed actions: 7702it [00:43, 176.48it/s, # examples=7425]\u001b[A\n", + "Processed actions: 7702it [00:43, 176.48it/s, # examples=7426]\u001b[A\n", + "Processed actions: 7702it [00:43, 176.48it/s, # examples=7427]\u001b[A\n", + "Processed actions: 7702it [00:43, 176.48it/s, # examples=7428]\u001b[A\n", + "Processed actions: 7702it [00:43, 176.48it/s, # examples=7429]\u001b[A\n", + "Processed actions: 7702it [00:43, 176.48it/s, # examples=7430]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7430]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7431]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7432]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7433]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7434]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7435]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7436]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7437]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7438]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7439]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7440]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7441]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7442]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7443]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7444]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7445]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7446]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7447]\u001b[A\n", + "Processed actions: 7720it [00:43, 174.88it/s, # examples=7448]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7448]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7449]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7450]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7451]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7452]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7453]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7454]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7455]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7456]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7457]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7458]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7459]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7460]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7461]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7462]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7463]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7462]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7463]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7464]\u001b[A\n", + "Processed actions: 7738it [00:43, 173.41it/s, # examples=7465]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7465]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7466]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7467]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7468]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7469]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7470]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7471]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7472]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7473]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7474]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7475]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7476]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7477]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7478]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7479]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7480]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7481]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7482]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7483]\u001b[A\n", + "Processed actions: 7757it [00:43, 177.45it/s, # examples=7484]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7484]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7485]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7486]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7485]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7486]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7487]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7488]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7489]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7490]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7491]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7492]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7493]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7494]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7495]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7496]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7495]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7496]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7497]\u001b[A\n", + "Processed actions: 7776it [00:43, 178.87it/s, # examples=7498]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7498]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7499]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7500]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7501]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7502]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7503]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7504]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7505]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7506]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7507]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7508]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7509]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7510]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7509]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7510]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7511]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7512]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7513]\u001b[A\n", + "Processed actions: 7794it [00:43, 177.75it/s, # examples=7514]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7514]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7515]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7514]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7515]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7516]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7517]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7518]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7519]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7520]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7521]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7522]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7523]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7524]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7525]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7526]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7527]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7528]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7529]\u001b[A\n", + "Processed actions: 7812it [00:43, 175.66it/s, # examples=7530]\u001b[A\n", + "Processed actions: 7830it [00:43, 168.41it/s, # examples=7530]\u001b[A\n", + "Processed actions: 7830it [00:43, 168.41it/s, # examples=7531]\u001b[A\n", + "Processed actions: 7830it [00:43, 168.41it/s, # examples=7532]\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7616]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7617]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7618]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7619]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7620]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7621]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7622]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7623]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7624]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7625]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7626]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7625]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7626]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7627]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7628]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7629]\u001b[A\n", + "Processed actions: 7920it [00:44, 177.74it/s, # examples=7630]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7630]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7631]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7632]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7633]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7634]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7635]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7636]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7637]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7638]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7639]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7640]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7641]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7642]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7643]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7644]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7645]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7646]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7647]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7648]\u001b[A\n", + "Processed actions: 7940it [00:44, 181.52it/s, # examples=7649]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7649]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7650]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7651]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7652]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7653]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7654]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7655]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7656]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7657]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7658]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7659]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7660]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7661]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7660]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7661]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7662]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7663]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7664]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7665]\u001b[A\n", + "Processed actions: 7959it [00:44, 183.37it/s, # examples=7666]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7666]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7667]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7668]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7669]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7670]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7671]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7672]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7673]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7672]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7673]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7674]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7675]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7676]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7677]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7678]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7679]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7680]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7681]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7682]\u001b[A\n", + "Processed actions: 7978it [00:44, 184.77it/s, # examples=7683]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7683]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7684]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7685]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7686]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7687]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7688]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7689]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7690]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7691]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7692]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7693]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7694]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7695]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7696]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7697]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7698]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7699]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7700]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7701]\u001b[A\n", + "Processed actions: 7997it [00:44, 183.15it/s, # examples=7702]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7702]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7703]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7704]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7705]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7706]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7707]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7708]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7709]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7710]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7711]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7712]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7713]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7714]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7715]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7716]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7717]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7718]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7719]\u001b[A\n", + "Processed actions: 8016it [00:44, 173.07it/s, # examples=7720]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7720]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7721]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7722]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7723]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7724]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7725]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7726]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7727]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7728]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7729]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7730]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7731]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7732]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7733]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7734]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7735]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7736]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7737]\u001b[A\n", + "Processed actions: 8034it [00:44, 170.01it/s, # examples=7738]\u001b[A\n", + "Processed actions: 8052it [00:44, 170.15it/s, # examples=7738]\u001b[A\n", + "Processed actions: 8052it [00:44, 170.15it/s, # examples=7739]\u001b[A\n", + "Processed actions: 8052it [00:44, 170.15it/s, # examples=7740]\u001b[A\n", + "Processed actions: 8052it [00:44, 170.15it/s, # examples=7741]\u001b[A\n", + "Processed actions: 8052it [00:44, 170.15it/s, # examples=7742]\u001b[A\n", + "Processed actions: 8052it [00:44, 170.15it/s, # examples=7743]\u001b[A\n", + "Processed actions: 8052it [00:44, 170.15it/s, # examples=7744]\u001b[A\n", + "Processed actions: 8052it [00:44, 170.15it/s, # examples=7745]\u001b[A\n", + "Processed actions: 8052it [00:44, 170.15it/s, # examples=7746]\u001b[A\n", + "Processed actions: 8052it [00:44, 170.15it/s, # examples=7747]\u001b[A\n", + "Processed actions: 8052it [00:45, 170.15it/s, # examples=7748]\u001b[A\n", + "Processed actions: 8052it [00:45, 170.15it/s, # examples=7749]\u001b[A\n", + "Processed actions: 8052it [00:45, 170.15it/s, # examples=7750]\u001b[A\n", + "Processed actions: 8052it [00:45, 170.15it/s, # examples=7751]\u001b[A\n", + "Processed actions: 8052it [00:45, 170.15it/s, # examples=7752]\u001b[A\n", + "Processed actions: 8052it [00:45, 170.15it/s, # examples=7753]\u001b[A\n", + "Processed actions: 8052it [00:45, 170.15it/s, # examples=7754]\u001b[A\n", + "Processed actions: 8052it [00:45, 170.15it/s, # examples=7755]\u001b[A\n", + "Processed actions: 8052it [00:45, 170.15it/s, # examples=7756]\u001b[A\n", + "Processed actions: 8052it [00:45, 170.15it/s, # examples=7757]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7757]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7758]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7759]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7760]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7761]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7762]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7763]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7764]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7765]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7766]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7767]\u001b[A\n", + "Processed actions: 8071it [00:45, 174.03it/s, # examples=7768]\u001b[A\n", + "Processed actions: 8165it [00:45, 181.37it/s, # examples=7865]\u001b[A\n", + "Processed actions: 8165it [00:45, 181.37it/s, # examples=7866]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7866]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7867]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7868]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7869]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7870]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7869]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7870]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7869]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7870]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7871]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7872]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7873]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7874]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7873]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7874]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7875]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7876]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7875]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7876]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7877]\u001b[A\n", + "Processed actions: 8184it [00:45, 181.83it/s, # examples=7878]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7878]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7879]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7880]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7881]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7882]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7883]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7884]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7885]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7886]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7887]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7888]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7889]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7890]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7891]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7892]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7893]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7894]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7895]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7896]\u001b[A\n", + "Processed actions: 8204it [00:45, 184.75it/s, # examples=7897]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7897]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7898]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7899]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7900]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7901]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7902]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7903]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7904]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7905]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7906]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7907]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7908]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7909]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7910]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7911]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7912]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7913]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7914]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7915]\u001b[A\n", + "Processed actions: 8223it [00:45, 186.12it/s, # examples=7916]\u001b[A\n", + "Processed actions: 8242it [00:45, 184.90it/s, # examples=7916]\u001b[A\n", + "Processed actions: 8242it [00:45, 184.90it/s, # examples=7917]\u001b[A\n", + "Processed actions: 8242it [00:45, 184.90it/s, # examples=7918]\u001b[A\n", + "Processed actions: 8242it [00:45, 184.90it/s, # examples=7919]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7920]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7921]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7922]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7923]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7924]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7925]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7926]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7927]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7928]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7929]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7930]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7931]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7932]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7933]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7934]\u001b[A\n", + "Processed actions: 8242it [00:46, 184.90it/s, # examples=7935]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7935]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7936]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7937]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7938]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7939]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7940]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7941]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7942]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7943]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7944]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7945]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7946]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7947]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7948]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7949]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7950]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7951]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7952]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7953]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7954]\u001b[A\n", + "Processed actions: 8261it [00:46, 185.33it/s, # examples=7955]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7955]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7956]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7957]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7958]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7959]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7958]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7959]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7960]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7961]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7962]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7963]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7964]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7965]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7966]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7967]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7966]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7967]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7968]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7969]\u001b[A\n", + "Processed actions: 8281it [00:46, 187.57it/s, # examples=7970]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7970]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7971]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7972]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7973]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7974]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7975]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7976]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7977]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7978]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7979]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7980]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7981]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7982]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7983]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7984]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7985]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7986]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7987]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7988]\u001b[A\n", + "Processed actions: 8300it [00:46, 184.78it/s, # examples=7989]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7989]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7990]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7991]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7992]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7993]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7994]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7995]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7996]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7997]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7998]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=7999]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=8000]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=8001]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=8002]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=8003]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=8004]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=8005]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=8006]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=8007]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=8008]\u001b[A\n", + "Processed actions: 8319it [00:46, 184.51it/s, # examples=8009]\u001b[A\n", + "Processed actions: 8339it [00:46, 188.55it/s, # examples=8009]\u001b[A\n", + "\u001b[A\n", + "Processed actions: 8437it [00:47, 188.43it/s, # examples=8118]\u001b[A\n", + "Processed actions: 8437it [00:47, 188.43it/s, # examples=8119]\u001b[A\n", + "Processed actions: 8437it [00:47, 188.43it/s, # examples=8120]\u001b[A\n", + "Processed actions: 8437it [00:47, 188.43it/s, # examples=8121]\u001b[A\n", + "Processed actions: 8437it [00:47, 188.43it/s, # examples=8122]\u001b[A\n", + "Processed actions: 8437it [00:47, 188.43it/s, # examples=8123]\u001b[A\n", + "Processed actions: 8437it [00:47, 188.43it/s, # examples=8124]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8124]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8125]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8126]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8127]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8128]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8129]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8130]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8131]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8132]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8133]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8134]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8135]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8136]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8137]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8138]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8139]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8140]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8141]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8142]\u001b[A\n", + "Processed actions: 8456it [00:47, 186.20it/s, # examples=8143]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8143]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8144]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8145]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8146]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8147]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8148]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8149]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8150]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8151]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8152]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8153]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8154]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8155]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8156]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8157]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8158]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8159]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8160]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8161]\u001b[A\n", + "Processed actions: 8475it [00:47, 181.88it/s, # examples=8162]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8162]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8163]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8164]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8165]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8166]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8167]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8168]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8169]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8170]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8171]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8172]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8171]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8172]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8173]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8174]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8175]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8174]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8175]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8176]\u001b[A\n", + "Processed actions: 8494it [00:47, 180.99it/s, # examples=8177]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8177]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8178]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8179]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8180]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8181]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8182]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8183]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8184]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8185]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8186]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8187]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8188]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8189]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8190]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8191]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8192]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8193]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8194]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8195]\u001b[A\n", + "Processed actions: 8513it [00:47, 181.02it/s, # examples=8196]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8196]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8197]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8198]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8199]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8200]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8201]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8202]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8203]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8204]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8205]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8206]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8207]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8206]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8207]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8208]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8209]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8210]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8211]\u001b[A\n", + "Processed actions: 8532it [00:47, 179.26it/s, # examples=8212]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8212]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8213]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8214]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8215]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8216]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8217]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8218]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8219]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8220]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8221]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8222]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8223]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8224]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8225]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8226]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8227]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8228]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8229]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8230]\u001b[A\n", + "Processed actions: 8550it [00:47, 175.36it/s, # examples=8231]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8231]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8232]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8233]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8234]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8235]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8236]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8237]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8238]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8239]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8240]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8241]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8242]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8243]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8244]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8245]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8246]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8247]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8248]\u001b[A\n", + "Processed actions: 8569it [00:47, 178.68it/s, # examples=8249]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8249]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8250]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8251]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8252]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8253]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8254]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8255]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8256]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8257]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8258]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8259]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8260]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8261]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8262]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8263]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8264]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8265]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8266]\u001b[A\n", + "Processed actions: 8587it [00:47, 174.98it/s, # examples=8267]\u001b[A\n", + "Processed actions: 8605it [00:47, 175.78it/s, # examples=8267]\u001b[A\n", + "Processed actions: 8605it [00:47, 175.78it/s, # examples=8268]\u001b[A\n", + "\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8367]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8368]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8369]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8370]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8371]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8372]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8373]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8374]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8375]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8376]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8377]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8378]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8379]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8380]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8381]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8382]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8381]\u001b[A\n", + "Processed actions: 8714it [00:48, 175.85it/s, # examples=8382]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8382]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8381]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8382]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8383]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8384]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8385]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8386]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8387]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8388]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8389]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8390]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8391]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8392]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8393]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8394]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8395]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8396]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8397]\u001b[A\n", + "Processed actions: 8732it [00:48, 173.85it/s, # examples=8398]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8398]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8399]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8400]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8401]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8402]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8403]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8404]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8405]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8406]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8407]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8408]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8409]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8410]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8411]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8412]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8413]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8414]\u001b[A\n", + "Processed actions: 8750it [00:48, 165.84it/s, # examples=8415]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8415]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8416]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8417]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8418]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8419]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8420]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8421]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8422]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8423]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8424]\u001b[A\n", + "Processed actions: 8767it [00:48, 160.71it/s, # examples=8425]\u001b[A\n", + "Processed actions: 8767it [00:49, 160.71it/s, # examples=8426]\u001b[A\n", + "Processed actions: 8767it [00:49, 160.71it/s, # examples=8427]\u001b[A\n", + "Processed actions: 8767it [00:49, 160.71it/s, # examples=8428]\u001b[A\n", + "Processed actions: 8767it [00:49, 160.71it/s, # examples=8429]\u001b[A\n", + "Processed actions: 8767it [00:49, 160.71it/s, # examples=8430]\u001b[A\n", + "Processed actions: 8767it [00:49, 160.71it/s, # examples=8431]\u001b[A\n", + "Processed actions: 8767it [00:49, 160.71it/s, # examples=8432]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8432]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8433]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8434]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8435]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8436]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8437]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8438]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8439]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8440]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8441]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8442]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8443]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8444]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8445]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8446]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8447]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8448]\u001b[A\n", + "Processed actions: 8784it [00:49, 159.61it/s, # examples=8449]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8449]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8450]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8451]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8452]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8453]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8454]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8455]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8456]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8457]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8458]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8459]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8460]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8461]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8462]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8463]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8464]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8465]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8466]\u001b[A\n", + "Processed actions: 8801it [00:49, 159.59it/s, # examples=8467]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8467]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8468]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8469]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8470]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8471]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8472]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8473]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8474]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8475]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8476]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8477]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8478]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8479]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8480]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8481]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8482]\u001b[A\n", + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8483]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 8819it [00:49, 163.75it/s, # examples=8484]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8484]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8485]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8486]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8487]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8488]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8489]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8490]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8491]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8492]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8491]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8492]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8493]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8494]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8495]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8496]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8497]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8498]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8499]\u001b[A\n", + "Processed actions: 8836it [00:49, 165.17it/s, # examples=8500]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8500]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8501]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8502]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8503]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8502]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8503]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8504]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8505]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8506]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8507]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8508]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8509]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8510]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8511]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8512]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8513]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8514]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8515]\u001b[A\n", + "Processed actions: 8854it [00:49, 167.27it/s, # examples=8516]\u001b[A\n", + "\u001b[A\n", + "Processed actions: 8959it [00:50, 165.29it/s, # examples=8607]\u001b[A\n", + "Processed actions: 8959it [00:50, 165.29it/s, # examples=8606]\u001b[A\n", + "Processed actions: 8959it [00:50, 165.29it/s, # examples=8607]\u001b[A\n", + "Processed actions: 8959it [00:50, 165.29it/s, # examples=8608]\u001b[A\n", + "Processed actions: 8959it [00:50, 165.29it/s, # examples=8609]\u001b[A\n", + "Processed actions: 8959it [00:50, 165.29it/s, # examples=8610]\u001b[A\n", + "Processed actions: 8959it [00:50, 165.29it/s, # examples=8611]\u001b[A\n", + "Processed actions: 8959it [00:50, 165.29it/s, # examples=8612]\u001b[A\n", + "Processed actions: 8959it [00:50, 165.29it/s, # examples=8613]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8613]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8614]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8615]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8616]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8617]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8618]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8619]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8620]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8621]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8622]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8623]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8624]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8625]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8626]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8627]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8628]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8629]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8630]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8631]\u001b[A\n", + "Processed actions: 8977it [00:50, 168.75it/s, # examples=8632]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8632]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8633]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8634]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8633]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8634]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8635]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8636]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8637]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8638]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8639]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8640]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8641]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8642]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8643]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8644]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8645]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8646]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8647]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8648]\u001b[A\n", + "Processed actions: 8996it [00:50, 174.22it/s, # examples=8649]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8649]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8650]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8651]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8652]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8653]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8654]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8655]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8656]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8657]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8658]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8659]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8660]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8661]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8662]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8663]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8664]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8665]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8666]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8667]\u001b[A\n", + "Processed actions: 9015it [00:50, 177.12it/s, # examples=8668]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8668]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8669]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8670]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8671]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8672]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8671]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8672]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8673]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8674]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8675]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8676]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8677]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8678]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8679]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8680]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8681]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8682]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8683]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8684]\u001b[A\n", + "Processed actions: 9034it [00:50, 180.47it/s, # examples=8685]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8685]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8686]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8687]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8688]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8689]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8690]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8691]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8692]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8693]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8694]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8695]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8696]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8697]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8698]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8699]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8700]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8701]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8702]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8703]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8704]\u001b[A\n", + "Processed actions: 9053it [00:50, 182.80it/s, # examples=8705]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8705]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8706]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8707]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8708]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8709]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8710]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8711]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8712]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8711]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8712]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8713]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8714]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8715]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8716]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8717]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8718]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8719]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8720]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8721]\u001b[A\n", + "Processed actions: 9073it [00:50, 185.60it/s, # examples=8722]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8722]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8723]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8724]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8725]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8726]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8725]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8726]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8727]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8728]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8729]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8730]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8731]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8732]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8731]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8732]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8733]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8734]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8735]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8736]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8737]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8738]\u001b[A\n", + "Processed actions: 9092it [00:50, 184.98it/s, # examples=8739]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8739]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8740]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8741]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8742]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8743]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8744]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8745]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8744]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8745]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8746]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8747]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8748]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8749]\u001b[A\n", + "Processed actions: 9113it [00:50, 189.92it/s, # examples=8750]\u001b[A\n", + "\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8845]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8846]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8847]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8848]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8849]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8850]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8851]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8852]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8853]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8854]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8855]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8856]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8855]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8856]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8857]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8858]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8859]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8860]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8861]\u001b[A\n", + "Processed actions: 9229it [00:51, 183.97it/s, # examples=8862]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8862]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8863]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8864]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8865]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8866]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8867]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8868]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8869]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8870]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8871]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8872]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8873]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8874]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8873]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8874]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8875]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8876]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8877]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8878]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8879]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8880]\u001b[A\n", + "Processed actions: 9248it [00:51, 185.35it/s, # examples=8881]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8881]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8882]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8881]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8882]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8883]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8884]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8885]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8886]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8887]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8888]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8889]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8890]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8891]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8892]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8893]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8894]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8895]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8896]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8897]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8898]\u001b[A\n", + "Processed actions: 9269it [00:51, 189.63it/s, # examples=8899]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8899]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8900]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8901]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8902]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8903]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8904]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8905]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8906]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8907]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8908]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8909]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8910]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8911]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8912]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8913]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8914]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8915]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8916]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8917]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8918]\u001b[A\n", + "Processed actions: 9289it [00:51, 192.27it/s, # examples=8919]\u001b[A\n", + "Processed actions: 9309it [00:51, 193.37it/s, # examples=8919]\u001b[A\n", + "Processed actions: 9309it [00:51, 193.37it/s, # examples=8920]\u001b[A\n", + "Processed actions: 9309it [00:51, 193.37it/s, # examples=8921]\u001b[A\n", + "Processed actions: 9309it [00:51, 193.37it/s, # examples=8922]\u001b[A\n", + "Processed actions: 9309it [00:51, 193.37it/s, # examples=8923]\u001b[A\n", + "Processed actions: 9309it [00:51, 193.37it/s, # examples=8924]\u001b[A\n", + "Processed actions: 9309it [00:51, 193.37it/s, # examples=8925]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8926]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8927]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8928]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8929]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8930]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8931]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8932]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8933]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8934]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8935]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8936]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8937]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8936]\u001b[A\n", + "Processed actions: 9309it [00:52, 193.37it/s, # examples=8937]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8937]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8938]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8939]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8940]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8941]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8942]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8943]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8944]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8945]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8946]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8947]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8948]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8949]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8950]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8951]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8952]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8953]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8954]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8955]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8956]\u001b[A\n", + "Processed actions: 9329it [00:52, 192.13it/s, # examples=8955]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8955]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8956]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8957]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8958]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8959]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8960]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8961]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8962]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8963]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8964]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8965]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8966]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8967]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8968]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8969]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8970]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8971]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8972]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8973]\u001b[A\n", + "Processed actions: 9349it [00:52, 189.51it/s, # examples=8974]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8974]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8975]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8976]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8977]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8978]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8979]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8980]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8981]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8982]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8983]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8984]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8985]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8986]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8987]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8988]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8989]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8990]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8991]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8992]\u001b[A\n", + "Processed actions: 9368it [00:52, 184.44it/s, # examples=8993]\u001b[A\n", + "Processed actions: 9387it [00:52, 184.86it/s, # examples=8993]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 9483it [00:52, 185.31it/s, # examples=9092]\u001b[A\n", + "Processed actions: 9483it [00:52, 185.31it/s, # examples=9093]\u001b[A\n", + "Processed actions: 9483it [00:52, 185.31it/s, # examples=9094]\u001b[A\n", + "Processed actions: 9483it [00:52, 185.31it/s, # examples=9095]\u001b[A\n", + "Processed actions: 9483it [00:52, 185.31it/s, # examples=9096]\u001b[A\n", + "Processed actions: 9483it [00:52, 185.31it/s, # examples=9097]\u001b[A\n", + "Processed actions: 9483it [00:52, 185.31it/s, # examples=9098]\u001b[A\n", + "Processed actions: 9483it [00:53, 185.31it/s, # examples=9099]\u001b[A\n", + "Processed actions: 9483it [00:53, 185.31it/s, # examples=9100]\u001b[A\n", + "Processed actions: 9483it [00:53, 185.31it/s, # examples=9101]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9101]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9102]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9103]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9104]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9105]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9106]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9107]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9108]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9109]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9110]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9111]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9112]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9111]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9112]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9113]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9114]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9115]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9116]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9117]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9118]\u001b[A\n", + "Processed actions: 9503it [00:53, 187.35it/s, # examples=9117]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9117]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9118]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9119]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9120]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9121]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9122]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9123]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9124]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9125]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9126]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9127]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9128]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9129]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9130]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9131]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9132]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9133]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9134]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9135]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9136]\u001b[A\n", + "Processed actions: 9523it [00:53, 190.28it/s, # examples=9137]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9137]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9138]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9139]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9140]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9141]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9142]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9143]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9144]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9145]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9146]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9147]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9148]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9149]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9150]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9151]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9152]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9153]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9154]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9155]\u001b[A\n", + "Processed actions: 9543it [00:53, 189.30it/s, # examples=9156]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9156]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9157]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9158]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9159]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9160]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9161]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9162]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9163]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9164]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9165]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9166]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9167]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9168]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9169]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9170]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9171]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9170]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9171]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9172]\u001b[A\n", + "Processed actions: 9562it [00:53, 187.91it/s, # examples=9173]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9173]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9174]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9175]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9176]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9177]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9178]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9179]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9180]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9181]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9182]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9183]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9184]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9185]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9186]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9187]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9188]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9189]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9190]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9191]\u001b[A\n", + "Processed actions: 9581it [00:53, 186.55it/s, # examples=9192]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9192]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9193]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9194]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9195]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9196]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9197]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9198]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9199]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9200]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9201]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9202]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9203]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9204]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9205]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9206]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9207]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9208]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9209]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9210]\u001b[A\n", + "Processed actions: 9600it [00:53, 185.07it/s, # examples=9211]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9211]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9212]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9213]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9214]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9215]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9216]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9217]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9218]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9219]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9220]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9221]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9222]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9223]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9224]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9225]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9226]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9227]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9228]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9229]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9230]\u001b[A\n", + "Processed actions: 9619it [00:53, 184.83it/s, # examples=9231]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9231]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9232]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9233]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9234]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9235]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9236]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9237]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9238]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9239]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9240]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9241]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9242]\u001b[A\n", + "Processed actions: 9639it [00:53, 187.07it/s, # examples=9243]\u001b[A\n", + "\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9344]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9345]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9346]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9347]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9348]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9349]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9350]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9351]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9352]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9353]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9354]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9355]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9356]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9357]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9358]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9359]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9360]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9361]\u001b[A\n", + "Processed actions: 9759it [00:54, 188.39it/s, # examples=9362]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9362]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9363]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9364]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9365]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9366]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9367]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9368]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9369]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9368]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9369]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9370]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9371]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9372]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9371]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9372]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9373]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9374]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9375]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9376]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9377]\u001b[A\n", + "Processed actions: 9778it [00:54, 184.81it/s, # examples=9378]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9378]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9379]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9380]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9381]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9382]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9383]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9384]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9385]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9386]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9387]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9388]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9389]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9388]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9389]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9390]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9391]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9392]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9393]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9394]\u001b[A\n", + "Processed actions: 9798it [00:54, 186.09it/s, # examples=9395]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9395]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9396]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9397]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9398]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9399]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9400]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9401]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9402]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9403]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9404]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9405]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9406]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9407]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9408]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9409]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9410]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9411]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9412]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9413]\u001b[A\n", + "Processed actions: 9817it [00:54, 179.25it/s, # examples=9414]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9414]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9415]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9416]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9417]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9418]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9419]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9420]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9421]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9422]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9423]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9424]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9425]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9426]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9427]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9428]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9429]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9430]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9431]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9432]\u001b[A\n", + "Processed actions: 9836it [00:54, 180.05it/s, # examples=9431]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9431]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9432]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9433]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9434]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9435]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9436]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9435]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9436]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9437]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9438]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9439]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9440]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9441]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9442]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9443]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9444]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9445]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9446]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9447]\u001b[A\n", + "Processed actions: 9855it [00:54, 180.24it/s, # examples=9448]\u001b[A\n", + "Processed actions: 9855it [00:55, 180.24it/s, # examples=9449]\u001b[A\n", + "Processed actions: 9855it [00:55, 180.24it/s, # examples=9450]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9450]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9451]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9452]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9453]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9454]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9455]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9456]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9457]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9458]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9459]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9460]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9461]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9462]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9463]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9464]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9465]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9466]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9467]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9468]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9469]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9470]\u001b[A\n", + "Processed actions: 9876it [00:55, 186.86it/s, # examples=9471]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9471]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9472]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9473]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9474]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9475]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9476]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9477]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9478]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9479]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9480]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9481]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9482]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9483]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9484]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9485]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9486]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9487]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9488]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9489]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9490]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9491]\u001b[A\n", + "Processed actions: 9897it [00:55, 191.04it/s, # examples=9492]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9596]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9597]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9598]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9599]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9600]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9601]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9602]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9603]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9604]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9605]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9606]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9607]\u001b[A\n", + "Processed actions: 10020it [00:55, 195.42it/s, # examples=9608]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9608]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9607]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9608]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9609]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9610]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9611]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9612]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9613]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9614]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9615]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9616]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9617]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9618]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9619]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9620]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9621]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9622]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9621]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9622]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9623]\u001b[A\n", + "Processed actions: 10040it [00:55, 193.34it/s, # examples=9624]\u001b[A\n", + "Processed actions: 10060it [00:55, 191.58it/s, # examples=9624]\u001b[A\n", + "Processed actions: 10060it [00:55, 191.58it/s, # examples=9625]\u001b[A\n", + "Processed actions: 10060it [00:55, 191.58it/s, # examples=9626]\u001b[A\n", + "Processed actions: 10060it [00:55, 191.58it/s, # examples=9627]\u001b[A\n", + "Processed actions: 10060it [00:55, 191.58it/s, # examples=9628]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 10060it [00:55, 191.58it/s, # examples=9629]\u001b[A\n", + "Processed actions: 10060it [00:55, 191.58it/s, # examples=9630]\u001b[A\n", + "Processed actions: 10060it [00:55, 191.58it/s, # examples=9631]\u001b[A\n", + "Processed actions: 10060it [00:55, 191.58it/s, # examples=9632]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9633]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9634]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9635]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9636]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9637]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9638]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9639]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9640]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9641]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9642]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9643]\u001b[A\n", + "Processed actions: 10060it [00:56, 191.58it/s, # examples=9644]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9644]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9645]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9646]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9647]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9646]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9647]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9648]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9649]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9650]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9651]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9652]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9653]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9654]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9655]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9656]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9657]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9658]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9659]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9660]\u001b[A\n", + "Processed actions: 10080it [00:56, 188.74it/s, # examples=9661]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9661]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9662]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9663]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9664]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9665]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9666]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9667]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9668]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9669]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9670]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9671]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9672]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9673]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9674]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9675]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9676]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9677]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9678]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9679]\u001b[A\n", + "Processed actions: 10099it [00:56, 186.05it/s, # examples=9680]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9680]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9681]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9682]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9683]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9684]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9685]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9686]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9687]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9688]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9687]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9688]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9689]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9690]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9691]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9692]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9693]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9694]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9695]\u001b[A\n", + "Processed actions: 10118it [00:56, 175.71it/s, # examples=9696]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9696]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9697]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9698]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9699]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9700]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9701]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9702]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9703]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9704]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9705]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9706]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9707]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9708]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9709]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9710]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9711]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9712]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9713]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9714]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9715]\u001b[A\n", + "Processed actions: 10136it [00:56, 172.08it/s, # examples=9716]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9716]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9717]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9718]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9719]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9720]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9721]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9722]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9723]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9724]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9725]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9726]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9727]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9728]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9729]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9730]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9731]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9732]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9733]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9734]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9735]\u001b[A\n", + "Processed actions: 10156it [00:56, 178.59it/s, # examples=9736]\u001b[A\n", + "Processed actions: 10176it [00:56, 183.10it/s, # examples=9736]\u001b[A\n", + "Processed actions: 10176it [00:56, 183.10it/s, # examples=9737]\u001b[A\n", + "Processed actions: 10176it [00:56, 183.10it/s, # examples=9738]\u001b[A\n", + "Processed actions: 10176it [00:56, 183.10it/s, # examples=9739]\u001b[A\n", + "Processed actions: 10176it [00:56, 183.10it/s, # examples=9740]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 10176it [00:56, 183.10it/s, # examples=9741]\u001b[A\n", + "Processed actions: 10176it [00:56, 183.10it/s, # examples=9742]\u001b[A\n", + "Processed actions: 10176it [00:56, 183.10it/s, # examples=9743]\u001b[A\n", + "Processed actions: 10176it [00:56, 183.10it/s, # examples=9744]\u001b[A\n", + "Processed actions: 10176it [00:56, 183.10it/s, # examples=9745]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9844]\u001b[A\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9845]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9846]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9847]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9848]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9849]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9850]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9851]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9852]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9853]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9854]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9855]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9856]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9855]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9856]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9857]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9858]\u001b[A\n", + "Processed actions: 10287it [00:57, 170.02it/s, # examples=9859]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9859]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9860]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9861]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9862]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9863]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9864]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9865]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9866]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9867]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9868]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9869]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9870]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9871]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9872]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9873]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9874]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9875]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9876]\u001b[A\n", + "Processed actions: 10305it [00:57, 171.60it/s, # examples=9877]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9877]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9878]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9879]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9880]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9881]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9882]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9883]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9884]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9885]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9886]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9887]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9888]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9889]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9890]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9891]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9892]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9893]\u001b[A\n", + "Processed actions: 10323it [00:57, 166.58it/s, # examples=9894]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9894]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9895]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9896]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9897]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9898]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9899]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9900]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9901]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9902]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9903]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9904]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9905]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9906]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9907]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9908]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9909]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9910]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9911]\u001b[A\n", + "Processed actions: 10340it [00:57, 166.31it/s, # examples=9912]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9912]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9913]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9914]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9915]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9916]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9917]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9918]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9919]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9920]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9921]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9922]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9923]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9924]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9925]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9926]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9927]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9928]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9929]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9930]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9931]\u001b[A\n", + "Processed actions: 10358it [00:57, 169.52it/s, # examples=9932]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9932]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9933]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9934]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9935]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9936]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9937]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9938]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9939]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9940]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9941]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9942]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9943]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9944]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9945]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9946]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9947]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9948]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9949]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9950]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9951]\u001b[A\n", + "Processed actions: 10378it [00:57, 175.19it/s, # examples=9952]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9952]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9953]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9954]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9955]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9956]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9957]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9958]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9959]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9960]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9961]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9962]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9963]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9964]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9965]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9966]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9967]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9968]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9969]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9970]\u001b[A\n", + "Processed actions: 10398it [00:57, 180.02it/s, # examples=9971]\u001b[A\n", + "Processed actions: 10417it [00:57, 181.69it/s, # examples=9971]\u001b[A\n", + "Processed actions: 10417it [00:57, 181.69it/s, # examples=9972]\u001b[A\n", + "Processed actions: 10417it [00:57, 181.69it/s, # examples=9973]\u001b[A\n", + "Processed actions: 10417it [00:57, 181.69it/s, # examples=9974]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9975]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9976]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9977]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9978]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9979]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9980]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9981]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9982]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9983]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9984]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9985]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9986]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9987]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9988]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9989]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9990]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9991]\u001b[A\n", + "Processed actions: 10417it [00:58, 181.69it/s, # examples=9992]\u001b[A\n", + "Processed actions: 10438it [00:58, 187.37it/s, # examples=9992]\u001b[A\n", + "Processed actions: 10438it [00:58, 187.37it/s, # examples=9993]\u001b[A\n", + "Processed actions: 10438it [00:58, 187.37it/s, # examples=9994]\u001b[A\n", + "Processed actions: 10438it [00:58, 187.37it/s, # examples=9995]\u001b[A\n", + "Processed actions: 10438it [00:58, 187.37it/s, # examples=9996]\u001b[A\n", + "Processed actions: 10438it [00:58, 187.37it/s, # examples=9997]\u001b[A\n", + "Processed actions: 10438it [00:58, 187.37it/s, # examples=9998]\u001b[A\n", + "Processed actions: 10438it [00:58, 187.37it/s, # examples=9999]\u001b[A\n", + "Processed actions: 10438it [00:58, 187.37it/s, # examples=10000]\u001b[A\n", + "Processed actions: 10534it [00:58, 185.16it/s, # examples=10095]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10095]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10096]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10097]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10098]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10099]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10100]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10101]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10102]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10103]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10102]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10103]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10104]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10105]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10106]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10107]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10108]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10109]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10110]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10111]\u001b[A\n", + "Processed actions: 10553it [00:58, 184.26it/s, # examples=10112]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10112]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10113]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10114]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10115]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10116]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10117]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10118]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10119]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10120]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10121]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10122]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10123]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10124]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10125]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10126]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10127]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10128]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10129]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10130]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10131]\u001b[A\n", + "Processed actions: 10572it [00:58, 178.99it/s, # examples=10132]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10132]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10133]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10134]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10133]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10134]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10135]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10136]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10137]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10138]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10139]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10140]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10141]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10142]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10143]\u001b[A\n", + "Processed actions: 10592it [00:58, 182.33it/s, # examples=10144]\u001b[A\n", + "Processed actions: 10592it [00:59, 182.33it/s, # examples=10143]\u001b[A\n", + "Processed actions: 10592it [00:59, 182.33it/s, # examples=10144]\u001b[A\n", + "Processed actions: 10592it [00:59, 182.33it/s, # examples=10145]\u001b[A\n", + "Processed actions: 10592it [00:59, 182.33it/s, # examples=10146]\u001b[A\n", + "Processed actions: 10592it [00:59, 182.33it/s, # examples=10147]\u001b[A\n", + "Processed actions: 10592it [00:59, 182.33it/s, # examples=10148]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10148]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10149]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10150]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10151]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10152]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10153]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10154]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10155]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10156]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10157]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10158]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10159]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10160]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10161]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10162]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10163]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10164]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10165]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10166]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10167]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10168]\u001b[A\n", + "Processed actions: 10612it [00:59, 185.66it/s, # examples=10169]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10169]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10170]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10171]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10172]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10173]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10174]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10175]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10176]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10177]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10178]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10179]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10180]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10181]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10182]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10183]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10184]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10185]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10186]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10187]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10188]\u001b[A\n", + "Processed actions: 10633it [00:59, 190.73it/s, # examples=10189]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10189]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10190]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10191]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10192]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10193]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10194]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10195]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10196]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10197]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10198]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10199]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10200]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10201]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10202]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10203]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10204]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10205]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10206]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10207]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10208]\u001b[A\n", + "Processed actions: 10653it [00:59, 181.42it/s, # examples=10209]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10209]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10210]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10211]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10212]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10213]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10214]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10215]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10216]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10217]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10218]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10219]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10220]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10221]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10222]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10223]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10224]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10225]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10226]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10227]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10228]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10229]\u001b[A\n", + "Processed actions: 10673it [00:59, 185.27it/s, # examples=10230]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10230]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10231]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10232]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10233]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10234]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10235]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10236]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10237]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10238]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10239]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10240]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10241]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10242]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10243]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10244]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10245]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10246]\u001b[A\n", + "Processed actions: 10694it [00:59, 189.88it/s, # examples=10247]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10345]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10346]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10347]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10348]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10349]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10350]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10351]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10352]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10353]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10354]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10355]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10356]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10357]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10358]\u001b[A\n", + "Processed actions: 10809it [01:00, 173.47it/s, # examples=10359]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10359]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10360]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10361]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10362]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10363]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10364]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10365]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10366]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10367]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10368]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10369]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10370]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10371]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10372]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10373]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10374]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10375]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10376]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10377]\u001b[A\n", + "Processed actions: 10827it [01:00, 169.68it/s, # examples=10376]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10376]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10377]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10378]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10379]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10380]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10381]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10382]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10383]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10384]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10385]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10386]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10387]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10388]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10389]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10390]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10391]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10392]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10393]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10394]\u001b[A\n", + "Processed actions: 10846it [01:00, 174.75it/s, # examples=10395]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10395]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10396]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10397]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10398]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10399]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10400]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10401]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10402]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10403]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10404]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10405]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10406]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10407]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10408]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10409]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10410]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10411]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10412]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10413]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10414]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10415]\u001b[A\n", + "Processed actions: 10865it [01:00, 178.99it/s, # examples=10416]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10416]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10417]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10418]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10419]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10420]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10421]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10422]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10423]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10424]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10425]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10426]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10427]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10428]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10429]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10430]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10431]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10432]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10433]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10434]\u001b[A\n", + "Processed actions: 10886it [01:00, 185.34it/s, # examples=10435]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10435]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10436]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10437]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10438]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10439]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10440]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10441]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10442]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10443]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10444]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10445]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10444]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10445]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10446]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10447]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10448]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10449]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10450]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10451]\u001b[A\n", + "Processed actions: 10905it [01:00, 185.00it/s, # examples=10452]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10452]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10453]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10454]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10455]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10456]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10457]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10458]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10459]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10460]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10461]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10462]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10463]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10464]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10465]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10466]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10467]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10468]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10469]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10470]\u001b[A\n", + "Processed actions: 10924it [01:00, 183.25it/s, # examples=10471]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10471]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10472]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10473]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10474]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10475]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10476]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10477]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10478]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10479]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10480]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10481]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10482]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10483]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10484]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10485]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10486]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10487]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10488]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10489]\u001b[A\n", + "Processed actions: 10943it [01:00, 179.82it/s, # examples=10490]\u001b[A\n", + "Processed actions: 10962it [01:00, 179.26it/s, # examples=10490]\u001b[A\n", + "Processed actions: 10962it [01:00, 179.26it/s, # examples=10491]\u001b[A\n", + "Processed actions: 10962it [01:00, 179.26it/s, # examples=10492]\u001b[A\n", + "Processed actions: 10962it [01:00, 179.26it/s, # examples=10493]\u001b[A\n", + "Processed actions: 10962it [01:00, 179.26it/s, # examples=10494]\u001b[A\n", + "Processed actions: 10962it [01:00, 179.26it/s, # examples=10495]\u001b[A\n", + "Processed actions: 10962it [01:00, 179.26it/s, # examples=10496]\u001b[A\n", + "Processed actions: 10962it [01:00, 179.26it/s, # examples=10497]\u001b[A\n", + "Processed actions: 10962it [01:01, 179.26it/s, # examples=10498]\u001b[A\n", + "\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10609]\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10610]\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10611]\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10612]\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10611]\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10612]\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10613]\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10612]\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10613]\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10614]\u001b[A\n", + "Processed actions: 11076it [01:01, 181.42it/s, # examples=10615]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10615]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10616]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10617]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10618]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10619]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10620]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10621]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10622]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10623]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10624]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10625]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10626]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10627]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10628]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10629]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10630]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10631]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10632]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10633]\u001b[A\n", + "Processed actions: 11095it [01:01, 182.66it/s, # examples=10634]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10634]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10635]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10636]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10637]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10638]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10639]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10640]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10641]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10642]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10643]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10644]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10645]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10646]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10647]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10648]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10649]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10650]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10651]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10652]\u001b[A\n", + "Processed actions: 11114it [01:01, 183.55it/s, # examples=10653]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10653]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10654]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10655]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10656]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10657]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10658]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10659]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10660]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10661]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10662]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10663]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10664]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10665]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10666]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10667]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10668]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10669]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10670]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10671]\u001b[A\n", + "Processed actions: 11133it [01:01, 183.86it/s, # examples=10672]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10672]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10673]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10674]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10675]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10676]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10677]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10678]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10679]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10680]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10681]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10682]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10683]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10684]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10685]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10686]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10687]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10688]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10689]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10690]\u001b[A\n", + "Processed actions: 11152it [01:02, 183.71it/s, # examples=10691]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10691]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10692]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10693]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10694]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10695]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10696]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10697]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10698]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10699]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10700]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10701]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10702]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10703]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10704]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10705]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10706]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10707]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10708]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10709]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10710]\u001b[A\n", + "Processed actions: 11171it [01:02, 185.43it/s, # examples=10711]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10711]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10712]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10713]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10714]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10715]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10716]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10717]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10718]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10719]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10720]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10721]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10722]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10723]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10724]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10725]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10726]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10727]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10728]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10729]\u001b[A\n", + "Processed actions: 11191it [01:02, 187.56it/s, # examples=10730]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10730]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10731]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10732]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10733]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10734]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10735]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10736]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10737]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10738]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10739]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10740]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10741]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10742]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10743]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10744]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10745]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10746]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10747]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10748]\u001b[A\n", + "Processed actions: 11210it [01:02, 185.31it/s, # examples=10749]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10749]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10750]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10751]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10752]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10753]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10754]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10755]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10756]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10757]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10758]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10759]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10760]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10761]\u001b[A\n", + "Processed actions: 11229it [01:02, 184.50it/s, # examples=10762]\u001b[A\n", + "\n", + "Processed actions: 11330it [01:03, 190.49it/s, # examples=10859]\u001b[A\n", + "Processed actions: 11330it [01:03, 190.49it/s, # examples=10860]\u001b[A\n", + "Processed actions: 11330it [01:03, 190.49it/s, # examples=10861]\u001b[A\n", + "Processed actions: 11330it [01:03, 190.49it/s, # examples=10862]\u001b[A\n", + "Processed actions: 11330it [01:03, 190.49it/s, # examples=10863]\u001b[A\n", + "Processed actions: 11330it [01:03, 190.49it/s, # examples=10864]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10864]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10865]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10866]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10867]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10868]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10869]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10870]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10871]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10872]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10873]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10874]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10875]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10876]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10877]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10878]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10879]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10878]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10879]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10880]\u001b[A\n", + "Processed actions: 11350it [01:03, 188.01it/s, # examples=10881]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10881]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10882]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10883]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10884]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10885]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10886]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10887]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10888]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10889]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10890]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10891]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10892]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10893]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10894]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10895]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10896]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10897]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10898]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10899]\u001b[A\n", + "Processed actions: 11369it [01:03, 187.97it/s, # examples=10900]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10900]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10901]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10902]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10903]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10904]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10905]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10906]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10907]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10908]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10909]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10910]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10911]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10912]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10913]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10914]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10915]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10916]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10915]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10916]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10917]\u001b[A\n", + "Processed actions: 11388it [01:03, 186.01it/s, # examples=10918]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10918]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10919]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10920]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10921]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10922]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10923]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10924]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10925]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10926]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10927]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10928]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10929]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10930]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10931]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10932]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10933]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10934]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10935]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10934]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10935]\u001b[A\n", + "Processed actions: 11408it [01:03, 189.75it/s, # examples=10936]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10936]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10937]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10938]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10939]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10940]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10941]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10942]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10943]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10944]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10945]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10946]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10947]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10948]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10949]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10950]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10951]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10952]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10953]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10954]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10955]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10956]\u001b[A\n", + "Processed actions: 11428it [01:03, 191.74it/s, # examples=10957]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10957]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10958]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10959]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10960]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10961]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10962]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10961]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10962]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10963]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10964]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10965]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10966]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10967]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10968]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10969]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10970]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10971]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10972]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10973]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10974]\u001b[A\n", + "Processed actions: 11449it [01:03, 196.63it/s, # examples=10975]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10975]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10976]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10977]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10978]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10979]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10980]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10981]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10982]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10983]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10984]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10985]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10986]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10987]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10988]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10989]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10990]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10991]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10992]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10993]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10994]\u001b[A\n", + "Processed actions: 11469it [01:03, 196.75it/s, # examples=10995]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=10995]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=10996]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=10997]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=10996]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=10997]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=10998]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=10999]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=11000]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=11001]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=11002]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=11003]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=11004]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=11005]\u001b[A\n", + "Processed actions: 11489it [01:03, 194.55it/s, # examples=11006]\u001b[A\n", + "Processed actions: 11588it [01:04, 190.77it/s, # examples=11097]\u001b[A\n", + "Processed actions: 11588it [01:04, 190.77it/s, # examples=11098]\u001b[A\n", + "Processed actions: 11588it [01:04, 190.77it/s, # examples=11099]\u001b[A\n", + "Processed actions: 11588it [01:04, 190.77it/s, # examples=11098]\u001b[A\n", + "Processed actions: 11588it [01:04, 190.77it/s, # examples=11099]\u001b[A\n", + "Processed actions: 11588it [01:04, 190.77it/s, # examples=11100]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 11588it [01:04, 190.77it/s, # examples=11101]\u001b[A\n", + "Processed actions: 11588it [01:04, 190.77it/s, # examples=11102]\u001b[A\n", + "Processed actions: 11588it [01:04, 190.77it/s, # examples=11103]\u001b[A\n", + "Processed actions: 11588it [01:04, 190.77it/s, # examples=11104]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11104]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11105]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11106]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11107]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11108]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11109]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11110]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11111]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11112]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11113]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11114]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11115]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11116]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11117]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11118]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11119]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11120]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11121]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11122]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11123]\u001b[A\n", + "Processed actions: 11608it [01:04, 191.22it/s, # examples=11124]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11124]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11125]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11126]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11127]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11128]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11129]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11130]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11131]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11132]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11133]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11134]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11135]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11136]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11137]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11138]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11139]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11140]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11141]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11142]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11143]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11144]\u001b[A\n", + "Processed actions: 11628it [01:04, 192.32it/s, # examples=11145]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11145]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11146]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11147]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11148]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11149]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11150]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11151]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11152]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11153]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11154]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11155]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11156]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11157]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11158]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11157]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11158]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11159]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11160]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11161]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11162]\u001b[A\n", + "Processed actions: 11649it [01:04, 194.58it/s, # examples=11163]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11163]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11164]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11165]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11166]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11167]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11168]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11169]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11170]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11171]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11172]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11173]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11174]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11175]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11176]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11177]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11178]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11179]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11180]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11181]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11182]\u001b[A\n", + "Processed actions: 11669it [01:04, 195.73it/s, # examples=11183]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11183]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11184]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11185]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11186]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11187]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11188]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11189]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11190]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11191]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11192]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11193]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11194]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11195]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11196]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11197]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11198]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11199]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11200]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11201]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11202]\u001b[A\n", + "Processed actions: 11689it [01:04, 190.87it/s, # examples=11203]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11203]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11204]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11205]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11206]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11207]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11208]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11209]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11210]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11211]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11212]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11213]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11214]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11215]\u001b[A\n", + "Processed actions: 11709it [01:04, 188.76it/s, # examples=11216]\u001b[A\n", + "Processed actions: 11709it [01:05, 188.76it/s, # examples=11217]\u001b[A\n", + "Processed actions: 11709it [01:05, 188.76it/s, # examples=11218]\u001b[A\n", + "Processed actions: 11709it [01:05, 188.76it/s, # examples=11219]\u001b[A\n", + "Processed actions: 11709it [01:05, 188.76it/s, # examples=11220]\u001b[A\n", + "Processed actions: 11709it [01:05, 188.76it/s, # examples=11221]\u001b[A\n", + "Processed actions: 11709it [01:05, 188.76it/s, # examples=11222]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11222]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11223]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11224]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11225]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11226]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11227]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11228]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11229]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11230]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11231]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11232]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11233]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11234]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11235]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11236]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11237]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11238]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11239]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11240]\u001b[A\n", + "Processed actions: 11728it [01:05, 180.04it/s, # examples=11241]\u001b[A\n", + "Processed actions: 11747it [01:05, 170.59it/s, # examples=11241]\u001b[A\n", + "Processed actions: 11747it [01:05, 170.59it/s, # examples=11242]\u001b[A\n", + "Processed actions: 11747it [01:05, 170.59it/s, # examples=11243]\u001b[A\n", + "Processed actions: 11747it [01:05, 170.59it/s, # examples=11244]\u001b[A\n", + "Processed actions: 11747it [01:05, 170.59it/s, # examples=11245]\u001b[A\n", + "Processed actions: 11747it [01:05, 170.59it/s, # examples=11246]\u001b[A\n", + "Processed actions: 11747it [01:05, 170.59it/s, # examples=11247]\u001b[A\n", + "Processed actions: 11747it [01:05, 170.59it/s, # examples=11248]\u001b[A\n", + "Processed actions: 11747it [01:05, 170.59it/s, # examples=11249]\u001b[A\n", + "Processed actions: 11747it [01:05, 170.59it/s, # examples=11250]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11349]\u001b[A\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11350]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11351]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11352]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11353]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11354]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11355]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11356]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11357]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11358]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11359]\u001b[A\n", + "Processed actions: 11858it [01:05, 178.72it/s, # examples=11360]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11360]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11361]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11362]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11363]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11364]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11365]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11366]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11367]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11368]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11369]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11370]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11371]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11372]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11373]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11374]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11375]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11376]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11377]\u001b[A\n", + "Processed actions: 11876it [01:05, 177.75it/s, # examples=11378]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11378]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11379]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11380]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11381]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11382]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11383]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11384]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11385]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11386]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11387]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11388]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11389]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11390]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11391]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11392]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11393]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11394]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11393]\u001b[A\n", + "Processed actions: 11894it [01:06, 172.60it/s, # examples=11394]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11394]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11395]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11396]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11397]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11398]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11399]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11400]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11401]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11402]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11403]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11404]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11405]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11406]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11407]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11406]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11407]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11408]\u001b[A\n", + "Processed actions: 11912it [01:06, 167.06it/s, # examples=11409]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11409]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11410]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11411]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11412]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11413]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11414]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11415]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11416]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11417]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11418]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11419]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11420]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11421]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11422]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11423]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11424]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11425]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11426]\u001b[A\n", + "Processed actions: 11929it [01:06, 162.50it/s, # examples=11427]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11427]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11428]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11429]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11430]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11431]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11432]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11433]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11434]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11435]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11436]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11437]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11438]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11439]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11440]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11441]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11442]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11443]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11442]\u001b[A\n", + "Processed actions: 11947it [01:06, 165.48it/s, # examples=11443]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11443]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11444]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11445]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11446]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11447]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11446]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11447]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11448]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11449]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11450]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11451]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11452]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11453]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11454]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11455]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11456]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11457]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11458]\u001b[A\n", + "Processed actions: 11965it [01:06, 167.68it/s, # examples=11457]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11457]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11458]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11459]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11460]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11459]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11460]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11461]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11462]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11463]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11464]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11465]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11466]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11467]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11468]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11469]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11470]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11471]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11472]\u001b[A\n", + "Processed actions: 11983it [01:06, 169.72it/s, # examples=11473]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11473]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11474]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11475]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11476]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11477]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11478]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11479]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11480]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11481]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11482]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11483]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11484]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11485]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11486]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11487]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11488]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11489]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11490]\u001b[A\n", + "Processed actions: 12001it [01:06, 172.20it/s, # examples=11491]\u001b[A\n", + "Processed actions: 12019it [01:06, 173.98it/s, # examples=11491]\u001b[A\n", + "Processed actions: 12019it [01:06, 173.98it/s, # examples=11492]\u001b[A\n", + "Processed actions: 12019it [01:06, 173.98it/s, # examples=11493]\u001b[A\n", + "Processed actions: 12019it [01:06, 173.98it/s, # examples=11494]\u001b[A\u001b[A\n", + "Processed actions: 12114it [01:07, 186.26it/s, # examples=11593]\u001b[A\n", + "Processed actions: 12114it [01:07, 186.26it/s, # examples=11594]\u001b[A\n", + "Processed actions: 12114it [01:07, 186.26it/s, # examples=11595]\u001b[A\n", + "Processed actions: 12114it [01:07, 186.26it/s, # examples=11596]\u001b[A\n", + "Processed actions: 12114it [01:07, 186.26it/s, # examples=11597]\u001b[A\n", + "Processed actions: 12114it [01:07, 186.26it/s, # examples=11598]\u001b[A\n", + "Processed actions: 12114it [01:07, 186.26it/s, # examples=11599]\u001b[A\n", + "Processed actions: 12114it [01:07, 186.26it/s, # examples=11600]\u001b[A\n", + "Processed actions: 12114it [01:07, 186.26it/s, # examples=11601]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11601]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11602]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11603]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11604]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11605]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11606]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11607]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11606]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11607]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11608]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11609]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11610]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11611]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11612]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11613]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11614]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11615]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11616]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11617]\u001b[A\n", + "Processed actions: 12133it [01:07, 186.58it/s, # examples=11618]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11618]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11619]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11620]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11621]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11622]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11623]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11624]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11625]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11626]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11627]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11628]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11629]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11630]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11631]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11632]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11633]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11634]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11635]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11636]\u001b[A\n", + "Processed actions: 12152it [01:07, 185.47it/s, # examples=11637]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11637]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11638]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11639]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11640]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11641]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11642]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11643]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11644]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11645]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11646]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11647]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11648]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11649]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11650]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11651]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11652]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11653]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11654]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11655]\u001b[A\n", + "Processed actions: 12171it [01:07, 186.49it/s, # examples=11656]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11656]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11657]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11658]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11659]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11660]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11661]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11662]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11663]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11664]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11665]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11666]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11667]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11668]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11669]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11670]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11671]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11672]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11673]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11674]\u001b[A\n", + "Processed actions: 12190it [01:07, 183.77it/s, # examples=11675]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11675]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11676]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11677]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11678]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11679]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11680]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11681]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11682]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11683]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11684]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11685]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11686]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11687]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11688]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11689]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11690]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11691]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11692]\u001b[A\n", + "Processed actions: 12209it [01:07, 177.77it/s, # examples=11693]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11693]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11694]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11695]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11696]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11697]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11698]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11699]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11700]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11701]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11702]\u001b[A\n", + "Processed actions: 12227it [01:07, 156.03it/s, # examples=11703]\u001b[A\n", + "Processed actions: 12227it [01:08, 156.03it/s, # examples=11704]\u001b[A\n", + "Processed actions: 12227it [01:08, 156.03it/s, # examples=11705]\u001b[A\n", + "Processed actions: 12227it [01:08, 156.03it/s, # examples=11706]\u001b[A\n", + "Processed actions: 12227it [01:08, 156.03it/s, # examples=11707]\u001b[A\n", + "Processed actions: 12227it [01:08, 156.03it/s, # examples=11708]\u001b[A\n", + "Processed actions: 12227it [01:08, 156.03it/s, # examples=11709]\u001b[A\n", + "Processed actions: 12227it [01:08, 156.03it/s, # examples=11710]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11710]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11711]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11712]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11713]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11714]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11715]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11716]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11717]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11718]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11719]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11720]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11721]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11722]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11723]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11724]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11725]\u001b[A\n", + "Processed actions: 12244it [01:08, 151.02it/s, # examples=11726]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11726]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11727]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11728]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11729]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11730]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11731]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11732]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11733]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11734]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11735]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11736]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11737]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11738]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11739]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11740]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11741]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11742]\u001b[A\n", + "Processed actions: 12260it [01:08, 147.73it/s, # examples=11743]\u001b[A\n", + "Processed actions: 12277it [01:08, 152.09it/s, # examples=11743]\u001b[A\n", + "Processed actions: 12277it [01:08, 152.09it/s, # examples=11744]\u001b[A\n", + "Processed actions: 12277it [01:08, 152.09it/s, # examples=11745]\u001b[A\n", + "Processed actions: 12277it [01:08, 152.09it/s, # examples=11746]\u001b[A\n", + "Processed actions: 12277it [01:08, 152.09it/s, # examples=11747]\u001b[A\n", + "\n", + "Processed actions: 12382it [01:08, 155.72it/s, # examples=11846]\u001b[A\n", + "Processed actions: 12382it [01:08, 155.72it/s, # examples=11847]\u001b[A\n", + "Processed actions: 12382it [01:08, 155.72it/s, # examples=11848]\u001b[A\n", + "Processed actions: 12382it [01:08, 155.72it/s, # examples=11849]\u001b[A\n", + "Processed actions: 12382it [01:08, 155.72it/s, # examples=11850]\u001b[A\n", + "Processed actions: 12382it [01:08, 155.72it/s, # examples=11851]\u001b[A\n", + "Processed actions: 12382it [01:08, 155.72it/s, # examples=11852]\u001b[A\n", + "Processed actions: 12382it [01:09, 155.72it/s, # examples=11853]\u001b[A\n", + "Processed actions: 12382it [01:09, 155.72it/s, # examples=11854]\u001b[A\n", + "Processed actions: 12382it [01:09, 155.72it/s, # examples=11855]\u001b[A\n", + "Processed actions: 12382it [01:09, 155.72it/s, # examples=11856]\u001b[A\n", + "Processed actions: 12382it [01:09, 155.72it/s, # examples=11857]\u001b[A\n", + "Processed actions: 12382it [01:09, 155.72it/s, # examples=11858]\u001b[A\n", + "Processed actions: 12382it [01:09, 155.72it/s, # examples=11859]\u001b[A\n", + "Processed actions: 12382it [01:09, 155.72it/s, # examples=11860]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11860]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11861]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11862]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11863]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11864]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11865]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11866]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11867]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11868]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11869]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11870]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11871]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11872]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11873]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11874]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11875]\u001b[A\n", + "Processed actions: 12398it [01:09, 149.54it/s, # examples=11876]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11876]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11877]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11878]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11879]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11880]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11881]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11882]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11883]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11884]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11885]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11886]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11887]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11888]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11889]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11890]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11891]\u001b[A\n", + "Processed actions: 12414it [01:09, 149.21it/s, # examples=11892]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11892]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11893]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11894]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11895]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11896]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11897]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11898]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11899]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11900]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11901]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11902]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11903]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11904]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11905]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11906]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11907]\u001b[A\n", + "Processed actions: 12430it [01:09, 148.63it/s, # examples=11908]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11908]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11909]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11910]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11911]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11912]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11913]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11914]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11915]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11916]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11917]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11918]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11919]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11920]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11921]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11922]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11923]\u001b[A\n", + "Processed actions: 12446it [01:09, 150.56it/s, # examples=11924]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11924]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11925]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11926]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11927]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11928]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11929]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11930]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11931]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11932]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11931]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11932]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11933]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11934]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11935]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11936]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11937]\u001b[A\n", + "Processed actions: 12462it [01:09, 110.52it/s, # examples=11938]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11938]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11939]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11940]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11941]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11942]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11943]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11944]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11945]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11946]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11947]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11948]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11949]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11950]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11951]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11952]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11953]\u001b[A\n", + "Processed actions: 12478it [01:09, 121.55it/s, # examples=11954]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11954]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11955]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11956]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11957]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11958]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11959]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11960]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11961]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11962]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11963]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11964]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11965]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11966]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11967]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11968]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11969]\u001b[A\n", + "Processed actions: 12494it [01:09, 129.06it/s, # examples=11970]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11970]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11971]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11972]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11973]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11974]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11975]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11976]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11977]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11978]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11979]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11980]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11981]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11982]\u001b[A\n", + "Processed actions: 12510it [01:09, 136.34it/s, # examples=11983]\u001b[A\n", + "Processed actions: 12510it [01:10, 136.34it/s, # examples=11984]\u001b[A\n", + "Processed actions: 12510it [01:10, 136.34it/s, # examples=11985]\u001b[A\n", + "Processed actions: 12510it [01:10, 136.34it/s, # examples=11986]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11986]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11987]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11986]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11987]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11988]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11989]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11990]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11991]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11992]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11993]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11994]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11995]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11996]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11997]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11998]\u001b[A\n", + "Processed actions: 12526it [01:10, 141.11it/s, # examples=11999]\n", + "Processed actions: 12644it [01:10, 164.37it/s, # examples=12105]\u001b[A\n", + "Processed actions: 12644it [01:10, 164.37it/s, # examples=12106]\u001b[A\n", + "Processed actions: 12644it [01:10, 164.37it/s, # examples=12107]\u001b[A\n", + "Processed actions: 12644it [01:10, 164.37it/s, # examples=12108]\u001b[A\n", + "Processed actions: 12644it [01:10, 164.37it/s, # examples=12109]\u001b[A\n", + "Processed actions: 12644it [01:10, 164.37it/s, # examples=12110]\u001b[A\n", + "Processed actions: 12644it [01:10, 164.37it/s, # examples=12111]\u001b[A\n", + "Processed actions: 12644it [01:10, 164.37it/s, # examples=12112]\u001b[A\n", + "Processed actions: 12644it [01:10, 164.37it/s, # examples=12113]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12113]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12114]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12115]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12114]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12115]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12116]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12117]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12118]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12119]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12120]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12121]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12122]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12123]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12124]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12125]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12126]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12127]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12128]\u001b[A\n", + "Processed actions: 12661it [01:10, 159.82it/s, # examples=12129]\u001b[A\n", + "Processed actions: 12679it [01:10, 164.32it/s, # examples=12129]\u001b[A\n", + "Processed actions: 12679it [01:10, 164.32it/s, # examples=12130]\u001b[A\n", + "Processed actions: 12679it [01:10, 164.32it/s, # examples=12131]\u001b[A\n", + "Processed actions: 12679it [01:10, 164.32it/s, # examples=12132]\u001b[A\n", + "Processed actions: 12679it [01:10, 164.32it/s, # examples=12133]\u001b[A\n", + "Processed actions: 12679it [01:10, 164.32it/s, # examples=12134]\u001b[A\n", + "Processed actions: 12679it [01:10, 164.32it/s, # examples=12133]\u001b[A\n", + "Processed actions: 12679it [01:10, 164.32it/s, # examples=12134]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12135]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12136]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12137]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12138]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12139]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12140]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12141]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12142]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12143]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12144]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12145]\u001b[A\n", + "Processed actions: 12679it [01:11, 164.32it/s, # examples=12146]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12146]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12145]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12146]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12147]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12148]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12147]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12148]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12149]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12150]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12151]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12152]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12153]\u001b[A\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12154]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12155]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12156]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12157]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12158]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12159]\u001b[A\n", + "Processed actions: 12698it [01:11, 169.64it/s, # examples=12160]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12160]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12161]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12162]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12163]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12164]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12165]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12166]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12167]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12168]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12169]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12170]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12171]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12172]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12173]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12174]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12175]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12176]\u001b[A\n", + "Processed actions: 12716it [01:11, 166.91it/s, # examples=12177]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12177]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12178]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12179]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12178]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12179]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12180]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12181]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12182]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12183]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12182]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12183]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12184]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12185]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12186]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12187]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12188]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12189]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12190]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12191]\u001b[A\n", + "Processed actions: 12733it [01:11, 162.75it/s, # examples=12192]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12192]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12193]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12194]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12195]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12196]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12197]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12198]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12199]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12200]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12201]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12202]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12203]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12204]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12205]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12206]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12207]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12208]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12209]\u001b[A\n", + "Processed actions: 12752it [01:11, 168.85it/s, # examples=12210]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12210]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12211]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12212]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12211]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12212]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12213]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12214]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12215]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12216]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12217]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12218]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12219]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12220]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12221]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12222]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12223]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12224]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12225]\u001b[A\n", + "Processed actions: 12770it [01:11, 169.98it/s, # examples=12226]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12226]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12227]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12228]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12227]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12228]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12229]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12230]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12231]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12232]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12233]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12234]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12235]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12236]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12237]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12238]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12239]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12240]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12241]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12242]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12243]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12244]\u001b[A\n", + "Processed actions: 12788it [01:11, 169.81it/s, # examples=12245]\u001b[A\n", + "Processed actions: 12809it [01:11, 178.57it/s, # examples=12245]\u001b[A\n", + "Processed actions: 12809it [01:11, 178.57it/s, # examples=12246]INFO:rasa_core.policies.keras_policy:Fitting model with 12922 total samples and a validation split of 0.1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "masking (Masking) (None, 5, 178) 0 \n", + "_________________________________________________________________\n", + "lstm (LSTM) (None, 32) 27008 \n", + "_________________________________________________________________\n", + "dense (Dense) (None, 93) 3069 \n", + "_________________________________________________________________\n", + "activation (Activation) (None, 93) 0 \n", + "=================================================================\n", + "Total params: 30,077\n", + "Trainable params: 30,077\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "Epoch 1/100\n", + "12922/12922 [==============================] - 5s 400us/step - loss: 3.3077 - acc: 0.3133\n", + "Epoch 2/100\n", + "12922/12922 [==============================] - 4s 335us/step - loss: 2.7260 - acc: 0.4037\n", + "Epoch 3/100\n", + "12922/12922 [==============================] - 4s 299us/step - loss: 2.1441 - acc: 0.5055\n", + "Epoch 4/100\n", + "12922/12922 [==============================] - 5s 404us/step - loss: 1.7652 - acc: 0.5941\n", + "Epoch 5/100\n", + "12922/12922 [==============================] - 5s 393us/step - loss: 1.4462 - acc: 0.7015\n", + "Epoch 6/100\n", + "12922/12922 [==============================] - 5s 371us/step - loss: 1.1288 - acc: 0.8030\n", + "Epoch 7/100\n", + "12922/12922 [==============================] - 5s 381us/step - loss: 0.8623 - acc: 0.8733\n", + "Epoch 8/100\n", + "12922/12922 [==============================] - 5s 376us/step - loss: 0.6538 - acc: 0.9108\n", + "Epoch 9/100\n", + "12922/12922 [==============================] - 5s 381us/step - loss: 0.4962 - acc: 0.9311\n", + "Epoch 10/100\n", + "12922/12922 [==============================] - 5s 388us/step - loss: 0.3981 - acc: 0.9388\n", + "Epoch 11/100\n", + "12922/12922 [==============================] - 5s 409us/step - loss: 0.3227 - acc: 0.9450\n", + "Epoch 12/100\n", + "12922/12922 [==============================] - 5s 363us/step - loss: 0.2698 - acc: 0.9529\n", + "Epoch 13/100\n", + "12922/12922 [==============================] - 4s 298us/step - loss: 0.2340 - acc: 0.9553\n", + "Epoch 14/100\n", + "12922/12922 [==============================] - 4s 298us/step - loss: 0.2059 - acc: 0.9556\n", + "Epoch 15/100\n", + "12922/12922 [==============================] - 4s 301us/step - loss: 0.1891 - acc: 0.9593\n", + "Epoch 16/100\n", + "12922/12922 [==============================] - 4s 304us/step - loss: 0.1687 - acc: 0.9592\n", + "Epoch 17/100\n", + "12922/12922 [==============================] - 4s 305us/step - loss: 0.1580 - acc: 0.9615\n", + "Epoch 18/100\n", + "12922/12922 [==============================] - 4s 318us/step - loss: 0.1466 - acc: 0.9631\n", + "Epoch 19/100\n", + "12922/12922 [==============================] - 4s 299us/step - loss: 0.1420 - acc: 0.9631\n", + "Epoch 20/100\n", + "12922/12922 [==============================] - 4s 301us/step - loss: 0.1372 - acc: 0.9607\n", + "Epoch 21/100\n", + "12922/12922 [==============================] - 4s 305us/step - loss: 0.1200 - acc: 0.9645\n", + "Epoch 22/100\n", + "12922/12922 [==============================] - 4s 301us/step - loss: 0.1208 - acc: 0.9630\n", + "Epoch 23/100\n", + "12922/12922 [==============================] - 4s 301us/step - loss: 0.1192 - acc: 0.9618\n", + "Epoch 24/100\n", + "12922/12922 [==============================] - 4s 302us/step - loss: 0.1116 - acc: 0.9645\n", + "Epoch 25/100\n", + "12922/12922 [==============================] - 4s 300us/step - loss: 0.1078 - acc: 0.9656\n", + "Epoch 26/100\n", + "12922/12922 [==============================] - 4s 301us/step - loss: 0.1076 - acc: 0.9633\n", + "Epoch 27/100\n", + "12922/12922 [==============================] - 4s 299us/step - loss: 0.1082 - acc: 0.9647\n", + "Epoch 28/100\n", + "12922/12922 [==============================] - 4s 301us/step - loss: 0.1080 - acc: 0.9632\n", + "Epoch 29/100\n", + "12922/12922 [==============================] - 4s 297us/step - loss: 0.1077 - acc: 0.9618\n", + "Epoch 30/100\n", + "12922/12922 [==============================] - 4s 298us/step - loss: 0.1037 - acc: 0.9628\n", + "Epoch 31/100\n", + "12922/12922 [==============================] - 4s 305us/step - loss: 0.1013 - acc: 0.9628\n", + "Epoch 32/100\n", + "12922/12922 [==============================] - 4s 315us/step - loss: 0.1036 - acc: 0.9629\n", + "Epoch 33/100\n", + "12922/12922 [==============================] - 4s 310us/step - loss: 0.0980 - acc: 0.9651\n", + "Epoch 34/100\n", + "12922/12922 [==============================] - 4s 305us/step - loss: 0.0947 - acc: 0.9646\n", + "Epoch 35/100\n", + "12922/12922 [==============================] - 4s 320us/step - loss: 0.0934 - acc: 0.9652\n", + "Epoch 36/100\n", + "12922/12922 [==============================] - 4s 310us/step - loss: 0.0924 - acc: 0.9659\n", + "Epoch 37/100\n", + "12922/12922 [==============================] - 4s 302us/step - loss: 0.0926 - acc: 0.9625\n", + "Epoch 38/100\n", + "12922/12922 [==============================] - 4s 316us/step - loss: 0.0877 - acc: 0.9639\n", + "Epoch 39/100\n", + "12922/12922 [==============================] - 4s 310us/step - loss: 0.0912 - acc: 0.9653\n", + "Epoch 40/100\n", + "12922/12922 [==============================] - 4s 312us/step - loss: 0.0922 - acc: 0.9632\n", + "Epoch 41/100\n", + "12922/12922 [==============================] - 4s 315us/step - loss: 0.0899 - acc: 0.9640\n", + "Epoch 42/100\n", + "12922/12922 [==============================] - 4s 300us/step - loss: 0.0922 - acc: 0.9626\n", + "Epoch 43/100\n", + "12922/12922 [==============================] - 4s 291us/step - loss: 0.0874 - acc: 0.9642\n", + "Epoch 44/100\n", + "12922/12922 [==============================] - 4s 308us/step - loss: 0.0878 - acc: 0.9656\n", + "Epoch 45/100\n", + "12922/12922 [==============================] - 4s 301us/step - loss: 0.0900 - acc: 0.9624\n", + "Epoch 46/100\n", + "12922/12922 [==============================] - 4s 305us/step - loss: 0.0865 - acc: 0.9633\n", + "Epoch 47/100\n", + "12922/12922 [==============================] - 4s 300us/step - loss: 0.0915 - acc: 0.9642\n", + "Epoch 48/100\n", + "12922/12922 [==============================] - 4s 302us/step - loss: 0.0844 - acc: 0.9659\n", + "Epoch 49/100\n", + "12922/12922 [==============================] - 4s 293us/step - loss: 0.0842 - acc: 0.9645\n", + "Epoch 50/100\n", + "12922/12922 [==============================] - 4s 295us/step - loss: 0.0811 - acc: 0.9665\n", + "Epoch 51/100\n", + "12922/12922 [==============================] - 4s 293us/step - loss: 0.0873 - acc: 0.9634\n", + "Epoch 52/100\n", + "12922/12922 [==============================] - 4s 291us/step - loss: 0.0803 - acc: 0.9663\n", + "Epoch 53/100\n", + "12922/12922 [==============================] - 4s 308us/step - loss: 0.0865 - acc: 0.9649\n", + "Epoch 54/100\n", + "12922/12922 [==============================] - 5s 389us/step - loss: 0.0801 - acc: 0.9662\n", + "Epoch 55/100\n", + "12922/12922 [==============================] - 5s 357us/step - loss: 0.0857 - acc: 0.9643\n", + "Epoch 56/100\n", + "12922/12922 [==============================] - 4s 324us/step - loss: 0.0775 - acc: 0.9657\n", + "Epoch 57/100\n", + "12922/12922 [==============================] - 4s 304us/step - loss: 0.0834 - acc: 0.9655\n", + "Epoch 58/100\n", + "12922/12922 [==============================] - 4s 297us/step - loss: 0.0826 - acc: 0.9650\n", + "Epoch 59/100\n", + "12922/12922 [==============================] - 4s 307us/step - loss: 0.0787 - acc: 0.9659\n", + "Epoch 60/100\n", + "12922/12922 [==============================] - 4s 307us/step - loss: 0.0785 - acc: 0.9673\n", + "Epoch 61/100\n", + "12922/12922 [==============================] - 4s 302us/step - loss: 0.0749 - acc: 0.9662\n", + "Epoch 62/100\n", + "12922/12922 [==============================] - 4s 310us/step - loss: 0.0808 - acc: 0.9662\n", + "Epoch 63/100\n", + "12922/12922 [==============================] - 4s 306us/step - loss: 0.0749 - acc: 0.9670\n", + "Epoch 64/100\n", + "12922/12922 [==============================] - 4s 306us/step - loss: 0.0758 - acc: 0.9653\n", + "Epoch 65/100\n", + "12922/12922 [==============================] - 4s 324us/step - loss: 0.0774 - acc: 0.9655\n", + "Epoch 66/100\n", + "12922/12922 [==============================] - 4s 305us/step - loss: 0.0795 - acc: 0.9656\n", + "Epoch 67/100\n", + "12922/12922 [==============================] - 4s 308us/step - loss: 0.0784 - acc: 0.9673\n", + "Epoch 68/100\n", + "12922/12922 [==============================] - 4s 301us/step - loss: 0.0766 - acc: 0.9679\n", + "Epoch 69/100\n", + "12922/12922 [==============================] - 4s 305us/step - loss: 0.0817 - acc: 0.9653\n", + "Epoch 70/100\n", + "12922/12922 [==============================] - 4s 314us/step - loss: 0.0748 - acc: 0.9666\n", + "Epoch 71/100\n", + "12922/12922 [==============================] - 4s 303us/step - loss: 0.0760 - acc: 0.9684\n", + "Epoch 72/100\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "12922/12922 [==============================] - 4s 295us/step - loss: 0.0742 - acc: 0.9660\n", + "Epoch 73/100\n", + "12922/12922 [==============================] - 4s 322us/step - loss: 0.0740 - acc: 0.9672\n", + "Epoch 74/100\n", + "12922/12922 [==============================] - 4s 330us/step - loss: 0.0689 - acc: 0.9683\n", + "Epoch 75/100\n", + "12922/12922 [==============================] - 4s 304us/step - loss: 0.0738 - acc: 0.9677\n", + "Epoch 76/100\n", + "12922/12922 [==============================] - 4s 304us/step - loss: 0.0734 - acc: 0.9678\n", + "Epoch 77/100\n", + "12922/12922 [==============================] - 4s 304us/step - loss: 0.0738 - acc: 0.9670\n", + "Epoch 78/100\n", + "12922/12922 [==============================] - 4s 308us/step - loss: 0.0753 - acc: 0.9677\n", + "Epoch 79/100\n", + "12922/12922 [==============================] - 4s 301us/step - loss: 0.0709 - acc: 0.9689\n", + "Epoch 80/100\n", + "12922/12922 [==============================] - 4s 332us/step - loss: 0.0717 - acc: 0.9691\n", + "Epoch 81/100\n", + "12922/12922 [==============================] - 4s 314us/step - loss: 0.0735 - acc: 0.9678\n", + "Epoch 82/100\n", + "12922/12922 [==============================] - 4s 297us/step - loss: 0.0710 - acc: 0.9673\n", + "Epoch 83/100\n", + "12922/12922 [==============================] - 4s 300us/step - loss: 0.0699 - acc: 0.9673\n", + "Epoch 84/100\n", + "12922/12922 [==============================] - 4s 303us/step - loss: 0.0689 - acc: 0.9689\n", + "Epoch 85/100\n", + "12922/12922 [==============================] - 4s 313us/step - loss: 0.0733 - acc: 0.9666\n", + "Epoch 86/100\n", + "12922/12922 [==============================] - 4s 321us/step - loss: 0.0660 - acc: 0.9694\n", + "Epoch 87/100\n", + "12922/12922 [==============================] - 4s 304us/step - loss: 0.0678 - acc: 0.9685\n", + "Epoch 88/100\n", + "12922/12922 [==============================] - 4s 305us/step - loss: 0.0686 - acc: 0.9697\n", + "Epoch 89/100\n", + "12922/12922 [==============================] - 4s 302us/step - loss: 0.0743 - acc: 0.9680\n", + "Epoch 90/100\n", + "12922/12922 [==============================] - 4s 318us/step - loss: 0.0658 - acc: 0.9691\n", + "Epoch 91/100\n", + "12922/12922 [==============================] - 4s 300us/step - loss: 0.0663 - acc: 0.9697\n", + "Epoch 92/100\n", + "12922/12922 [==============================] - 4s 303us/step - loss: 0.0659 - acc: 0.9702\n", + "Epoch 93/100\n", + "12922/12922 [==============================] - 4s 341us/step - loss: 0.0692 - acc: 0.9688\n", + "Epoch 94/100\n", + "12922/12922 [==============================] - 4s 316us/step - loss: 0.0644 - acc: 0.9694\n", + "Epoch 95/100\n", + "12922/12922 [==============================] - 4s 295us/step - loss: 0.0692 - acc: 0.9697\n", + "Epoch 96/100\n", + "12922/12922 [==============================] - 4s 297us/step - loss: 0.0664 - acc: 0.9694\n", + "Epoch 97/100\n", + "12922/12922 [==============================] - 4s 297us/step - loss: 0.0665 - acc: 0.9691\n", + "Epoch 98/100\n", + "12922/12922 [==============================] - 4s 300us/step - loss: 0.0682 - acc: 0.9691\n", + "Epoch 99/100\n", + "12922/12922 [==============================] - 4s 299us/step - loss: 0.0709 - acc: 0.9675\n", + "Epoch 100/100\n", + "12922/12922 [==============================] - 4s 301us/step - loss: 0.0685 - acc: 0.9691\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:rasa_core.policies.keras_policy:Done fitting keras policy model\n", + "INFO:rasa_core.agent:Persisted model to '/Users/gabibs/Documents/Lappis/tais/notebooks/stories/models/dialogue'\n" + ] + } + ], + "source": [ + "from rasa_core.evaluate import run_story_evaluation\n", + "from rasa_core.policies import FallbackPolicy, KerasPolicy, MemoizationPolicy\n", + "from rasa_core.agent import Agent\n", + "\n", + "\n", + "## Treinando modelo de diálogo\n", + "agent = Agent('../../coach/domain.yml', policies=[MemoizationPolicy(), KerasPolicy()])\n", + "\n", + "# loading our neatly defined training dialogues\n", + "training_data = agent.load_data('../../coach/data/stories')\n", + "\n", + "agent.train(training_data)\n", + "\n", + "## salvando em models/dialogue\n", + "agent.persist('models/dialogue')" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2019-05-06 02:40:17.274937: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA\n", + "WARNING:rasa_core.training.dsl:Skipping line 82. No valid command found. Line Content: 'manter_conversa'\n", + "Processed Story Blocks: 100%|█| 194/194 [00:00<00:00, 3781.88it/s, # trackers=1]\n", + "INFO:__main__:Evaluating 187 stories\n", + "Progress:\n", + "100%|█████████████████████████████████████████| 187/187 [00:03<00:00, 49.75it/s]\n", + "INFO:__main__:Finished collecting predictions.\n", + "/Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages/sklearn/metrics/classification.py:1145: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples.\n", + " 'recall', 'true', average, warn_for)\n", + "/Users/gabibs/.virtualenvs/py3/lib/python3.6/site-packages/sklearn/metrics/classification.py:1145: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no true samples.\n", + " 'recall', 'true', average, warn_for)\n", + "INFO:__main__:Evaluation Results on CONVERSATION level:\n", + "INFO:__main__:\tCorrect: 103 / 187\n", + "INFO:__main__:\tF1-Score: 0.710\n", + "INFO:__main__:\tPrecision: 1.000\n", + "INFO:__main__:\tAccuracy: 0.551\n", + "INFO:__main__:\tIn-data fraction: 0.904\n", + "INFO:__main__:Evaluation Results on ACTION level:\n", + "INFO:__main__:\tCorrect: 993 / 1082\n", + "INFO:__main__:\tF1-Score: 0.944\n", + "INFO:__main__:\tPrecision: 0.981\n", + "INFO:__main__:\tAccuracy: 0.918\n", + "INFO:__main__:\tIn-data fraction: 0.904\n", "INFO:__main__:\tClassification report: \n", " precision recall f1-score support\n", "\n", - " action_listen 0.99 0.97 0.98 313\n", - " utter_cadastro_salic_video 1.00 1.00 1.00 7\n", + " action_listen 1.00 0.82 0.90 415\n", + " utter_cadastro_salic_video 1.00 1.00 1.00 17\n", + " utter_captacao 1.00 1.00 1.00 2\n", " utter_captacao_como_captar 1.00 1.00 1.00 3\n", " utter_captacao_quando_captar 1.00 1.00 1.00 3\n", - " utter_cumprimentar 1.00 1.00 1.00 82\n", + " utter_continuar_conversa 0.94 0.99 0.96 218\n", + " utter_cumprimentar 1.00 1.00 1.00 74\n", " utter_default 1.00 1.00 1.00 1\n", - " utter_definicao_cnic 1.00 1.00 1.00 1\n", - " utter_definicao_minc 1.00 1.00 1.00 2\n", - " utter_definicao_projeto 1.00 1.00 1.00 2\n", - " utter_definicao_proponente 1.00 1.00 1.00 2\n", - " utter_definicao_proposta 1.00 1.00 1.00 2\n", - " utter_definicao_salic 1.00 1.00 1.00 2\n", - " utter_definicao_sefic 1.00 1.00 1.00 2\n", - " utter_definicao_tais 1.00 1.00 1.00 1\n", - " utter_definicao_vinculada 1.00 1.00 1.00 2\n", - " utter_despedir 1.00 1.00 1.00 10\n", + " utter_definicao_cnic 1.00 1.00 1.00 11\n", + " utter_definicao_minc 1.00 1.00 1.00 11\n", + " utter_definicao_projeto 1.00 1.00 1.00 8\n", + " utter_definicao_proponente 1.00 1.00 1.00 4\n", + " utter_definicao_proposta 1.00 1.00 1.00 8\n", + " utter_definicao_salic 1.00 1.00 1.00 12\n", + " utter_definicao_sefic 1.00 1.00 1.00 9\n", + " utter_definicao_tais 1.00 1.00 1.00 8\n", + " utter_definicao_vinculada 1.00 1.00 1.00 9\n", + " utter_despedir 1.00 1.00 1.00 2\n", " utter_diga_mais 1.00 1.00 1.00 1\n", " utter_elogios 1.00 1.00 1.00 1\n", " utter_erro_resposta_utter 1.00 1.00 1.00 1\n", - " utter_lei_rouanet_beneficios_incentivo_projetos_culturais 1.00 1.00 1.00 4\n", - " utter_lei_rouanet_comercializacao_de_ingressos 1.00 1.00 1.00 2\n", + " utter_expressoes_indesejadas 1.00 1.00 1.00 1\n", + " utter_lei_rouanet_analise_de_admissibilidade 1.00 1.00 1.00 2\n", + " utter_lei_rouanet_analise_pela_cnic 1.00 1.00 1.00 2\n", + " utter_lei_rouanet_analise_tecnica 1.00 1.00 1.00 3\n", + " utter_lei_rouanet_apresentacao_de_proposta 1.00 1.00 1.00 2\n", + " utter_lei_rouanet_beneficios_incentivo_projetos_culturais 1.00 1.00 1.00 1\n", + " utter_lei_rouanet_comercializacao_de_ingressos 1.00 1.00 1.00 1\n", + " utter_lei_rouanet_decisao_final 1.00 1.00 1.00 2\n", " utter_lei_rouanet_democratizacao 1.00 1.00 1.00 1\n", - " utter_lei_rouanet_denuncia 1.00 1.00 1.00 6\n", - " utter_lei_rouanet_etapas_aprovacao_projeto 1.00 1.00 1.00 1\n", - " utter_lei_rouanet_o_que_eh 1.00 1.00 1.00 12\n", - " utter_lei_rouanet_origem_do_dinheiro 1.00 1.00 1.00 7\n", - " utter_lei_rouanet_porcentagem_de_deducao_do_imposto 1.00 1.00 1.00 7\n", - " utter_lei_rouanet_promocao_de_marca 1.00 1.00 1.00 2\n", - " utter_lei_rouanet_quantidade_de_projetos 1.00 1.00 1.00 4\n", - " utter_lei_rouanet_quem_pode_incentivar 1.00 1.00 1.00 4\n", - " utter_lei_rouanet_quem_pode_ser_proponente 1.00 1.00 1.00 11\n", - " utter_lei_rouanet_remuneracao_proponente 1.00 1.00 1.00 2\n", - " utter_lei_rouanet_valor_maximo_pessoa_fisica 1.00 1.00 1.00 2\n", - " utter_lei_rouanet_valor_maximo_pessoa_juridica 1.00 1.00 1.00 2\n", - " utter_lei_rouanet_valor_maximo_projeto 1.00 1.00 1.00 3\n", - " utter_lei_rouanet_valor_maximo_regiao 1.00 1.00 1.00 3\n", - " utter_lei_rouanet_valor_minimo 1.00 1.00 1.00 3\n", + " utter_lei_rouanet_denuncia 0.86 1.00 0.92 6\n", + " utter_lei_rouanet_divulgacao_patrocinio 1.00 1.00 1.00 3\n", + " utter_lei_rouanet_etapas_aprovacao_projeto 1.00 1.00 1.00 7\n", + " utter_lei_rouanet_o_que_eh 1.00 1.00 1.00 17\n", + " utter_lei_rouanet_origem_do_dinheiro 1.00 1.00 1.00 1\n", + " utter_lei_rouanet_porcentagem_de_deducao_do_imposto 1.00 1.00 1.00 1\n", + " utter_lei_rouanet_promocao_de_marca 1.00 1.00 1.00 1\n", + " utter_lei_rouanet_quantidade_de_projetos 1.00 1.00 1.00 7\n", + " utter_lei_rouanet_quem_pode_incentivar 1.00 1.00 1.00 9\n", + " utter_lei_rouanet_quem_pode_ser_proponente 1.00 1.00 1.00 7\n", + " utter_lei_rouanet_remuneracao_proponente 1.00 1.00 1.00 1\n", + " utter_lei_rouanet_valor_maximo_pessoa_fisica 1.00 1.00 1.00 3\n", + " utter_lei_rouanet_valor_maximo_pessoa_juridica 1.00 1.00 1.00 3\n", + " utter_lei_rouanet_valor_maximo_projeto 1.00 1.00 1.00 4\n", + " utter_lei_rouanet_valor_maximo_regiao 1.00 1.00 1.00 5\n", + " utter_lei_rouanet_valor_minimo 1.00 1.00 1.00 5\n", " utter_lei_rouanet_valores_pagamento_caches 1.00 1.00 1.00 1\n", - " utter_manter_conversa 0.95 0.98 0.97 179\n", - " utter_menu 1.00 1.00 1.00 83\n", + " utter_menu 0.05 1.00 0.10 4\n", " utter_o_que_sei_falar 1.00 1.00 1.00 2\n", + " utter_objetivo 0.97 0.72 0.82 46\n", " utter_processo_admissibilidade 1.00 1.00 1.00 2\n", " utter_processo_analise_de_resultados 1.00 1.00 1.00 2\n", " utter_processo_aprovacao 1.00 1.00 1.00 2\n", - " utter_processo_como_funciona 1.00 1.00 1.00 11\n", - " utter_processo_prazo 1.00 1.00 1.00 1\n", - " utter_processo_prazo_desistir_recurso 1.00 1.00 1.00 1\n", + " utter_processo_como_funciona 0.96 0.96 0.96 26\n", + " utter_processo_definicao_etapas 1.00 1.00 1.00 2\n", + " utter_processo_execucao 1.00 1.00 1.00 2\n", + " utter_processo_prazo 1.00 1.00 1.00 2\n", + " utter_processo_prazo_analise_proposta 1.00 1.00 1.00 2\n", + " utter_processo_prazo_analise_tecnica 1.00 1.00 1.00 2\n", + " utter_processo_prazo_apresentar_proposta 1.00 1.00 1.00 3\n", + " utter_processo_prazo_desarquivar 1.00 1.00 1.00 2\n", + " utter_processo_prazo_desistir_recurso 1.00 1.00 1.00 2\n", + " utter_processo_prazo_diligencias 1.00 1.00 1.00 2\n", " utter_processo_prazo_envio_cnae 1.00 1.00 1.00 1\n", - " utter_processo_reativacao_de_proposta 1.00 1.00 1.00 2\n", - " utter_processo_situacao_processo_A12 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_A13 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_A14 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_A16 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_A17 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_A20 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_A23 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_A42 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_B01 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_B11 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_B14 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_B20 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_C09 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_C10 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_C20 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_C26 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_C30 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_D03 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_D14 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_D20 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_D22 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_D25 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_D27 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_D28 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_D29 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_D38 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E10 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E11 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E12 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E13 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E15 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E16 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E20 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E22 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E23 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E24 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E25 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E27 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E30 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E36 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E47 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E50 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E59 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E60 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E62 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E63 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E64 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E65 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E66 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E68 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E72 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E73 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E75 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E77 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E78 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E79 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E80 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_E81 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_L03 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_L05 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_L06 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_L08 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_L09 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_L10 1.00 1.00 1.00 1\n", - " utter_processo_situacao_processo_L11 1.00 1.00 1.00 1\n", - " utter_quem_eh_a_tais 1.00 1.00 1.00 2\n", - " utter_salic_cadastro_proponente 1.00 1.00 1.00 2\n", - " utter_salic_cadastro_usuario 1.00 1.00 1.00 3\n", + " utter_processo_prazo_periodo_captacao 1.00 1.00 1.00 2\n", + " utter_processo_prazo_prestacao_contas 1.00 1.00 1.00 2\n", + " utter_processo_prazo_readequacao 1.00 1.00 1.00 2\n", + " utter_processo_preenchimento 1.00 1.00 1.00 2\n", + " utter_processo_reativacao_de_proposta 1.00 1.00 1.00 1\n", + " utter_quem_criou_a_tais 1.00 1.00 1.00 10\n", + " utter_salic_cadastro_proponente 1.00 1.00 1.00 19\n", + " utter_salic_cadastro_usuario 1.00 1.00 1.00 9\n", " utter_salic_erros 1.00 1.00 1.00 1\n", " utter_salic_erros_achar_proposta 1.00 1.00 1.00 1\n", " utter_salic_erros_planilha_desapareceu 1.00 1.00 1.00 1\n", @@ -597,9 +11303,12 @@ " utter_salic_preenchimento_valor_ingresso 1.00 1.00 1.00 1\n", " utter_salic_preenchimento_vinculo_cpf_proposta 1.00 1.00 1.00 1\n", " utter_salic_recuperacao_de_senha 1.00 1.00 1.00 1\n", + " utter_tem_wpp 1.00 1.00 1.00 2\n", " utter_tudo_bem 1.00 1.00 1.00 2\n", "\n", - " avg / total 0.99 0.99 0.99 888\n", + " micro avg 0.92 0.92 0.92 1082\n", + " macro avg 0.99 0.99 0.98 1082\n", + " weighted avg 0.98 0.92 0.94 1082\n", "\n" ] }, @@ -608,12 +11317,12 @@ "output_type": "stream", "text": [ "INFO:rasa_nlu.evaluate:Confusion matrix, without normalization: \n", - "[[304 0 0 ... 0 0 0]\n", - " [ 0 7 0 ... 0 0 0]\n", - " [ 0 0 3 ... 0 0 0]\n", + "[[342 0 0 ... 0 0 0]\n", + " [ 0 17 0 ... 0 0 0]\n", + " [ 0 0 2 ... 0 0 0]\n", " ...\n", " [ 0 0 0 ... 1 0 0]\n", - " [ 0 0 0 ... 0 1 0]\n", + " [ 0 0 0 ... 0 2 0]\n", " [ 0 0 0 ... 0 0 2]]\n", "INFO:__main__:Finished evaluation\n" ] @@ -622,178 +11331,1044 @@ "source": [ "import sys\n", "python = sys.executable\n", - "!{python} -m rasa_core.evaluate -d models/dialogue -s ../../bot/data/stories -o matrix.pdf --failed failed_stories.md" + "!{python} -m rasa_core.evaluate --core models/dialogue -s ../../coach/data/stories -o results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizar matriz de confusão\n", + "A matriz foi gerada em um pdf na pasta 'results/' para visualiza-la rode o comando abaixo" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import webbrowser\n", + "import os\n", + "\n", + "webbrowser.open('file://' + os.path.realpath('./results/story_confmat.pdf'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Análise da matriz de confusão\n", + "\n", + "A matriz de confusão mostra as utters previstas e quais estão sendo acertadas e quais estão errando.\n", + "\n", + "Na lateral da matriz está a utter a ser testada, na parte de baixo estão a utters previstas, os pontos azuis indicam qual utter está sendo prevista para cada utter analisada. A situação ideal para a matriz é uma diagonal, iniciando do canto superior esquerdo até o canto inferior direito. Pontos azuis fora dessa diagonal indicam os erros que estão ocorrendo e que devem ser tratados.\n", + "\n", + "A análise também gera um arquivo `failed_stories.md` que indicam o momento em que cada story está tendo erros de previsão. Veja o arquivo na célula abaixo." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 71, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "## Incentivo Intermediario 3\r\n", + "## me ajuda\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* o_que_sei_falar\r\n", + " - utter_o_que_sei_falar\r\n", + "\r\n", + "\r\n", + "## tem wpp 2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* tem_wpp\r\n", + " - utter_tem_wpp\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## salic 1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* salic_cadastro_usuario\r\n", + " - utter_salic_cadastro_usuario\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## salic 3\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* salic_erros\r\n", + " - utter_salic_erros\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## salic 4\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* salic_erros_salvamento_de_proposta\r\n", + " - utter_salic_erros_salvamento_de_proposta\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## salic 5\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* salic_erros_planilha_desapareceu\r\n", + " - utter_salic_erros_planilha_desapareceu\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## salic 6\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* salic_erros_vinculo_cpf_cnpj\r\n", + " - utter_salic_erros_vinculo_cpf_cnpj\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## salic 7\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* salic_erros_achar_proposta\r\n", + " - utter_salic_erros_achar_proposta\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## salic 8\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_salic\r\n", + " - utter_definicao_salic\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## salic 9\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* salic_preenchimento\r\n", + " - utter_salic_preenchimento\r\n", + "\r\n", + "\r\n", + "## Money 1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_beneficios_incentivo_projetos_culturais\r\n", + " - utter_lei_rouanet_beneficios_incentivo_projetos_culturais\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_origem_do_dinheiro\r\n", + " - utter_lei_rouanet_origem_do_dinheiro\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 3\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", + " - utter_lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 4\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_remuneracao_proponente\r\n", + " - utter_lei_rouanet_remuneracao_proponente\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 5\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_comercializacao_de_ingressos\r\n", + " - utter_lei_rouanet_comercializacao_de_ingressos\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 6\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_promocao_de_marca\r\n", + " - utter_lei_rouanet_promocao_de_marca\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 7\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_valores_pagamento_caches\r\n", + " - utter_lei_rouanet_valores_pagamento_caches\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 8\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* captacao\r\n", + " - utter_captacao\r\n", + "* captacao_quando_captar\r\n", + " - utter_captacao_quando_captar\r\n", + " - utter_continuar_conversa\r\n", + "* captacao_como_captar\r\n", + " - utter_captacao_como_captar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 9\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* captacao\r\n", + " - utter_captacao\r\n", + "* captacao_como_captar\r\n", + " - utter_captacao_como_captar\r\n", + " - utter_continuar_conversa\r\n", + "* captacao_quando_captar\r\n", + " - utter_captacao_quando_captar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 10\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_valor_maximo_projeto\r\n", + " - utter_lei_rouanet_valor_maximo_projeto\r\n", + "* lei_rouanet_valor_maximo_geral\r\n", + " - utter_lei_rouanet_valor_minimo\r\n", + " - utter_lei_rouanet_valor_maximo_pessoa_fisica\r\n", + " - utter_lei_rouanet_valor_maximo_pessoa_juridica\r\n", + " - utter_lei_rouanet_valor_maximo_regiao\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 12\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_valor_maximo_projeto\r\n", + " - utter_lei_rouanet_valor_maximo_projeto\r\n", + "* lei_rouanet_valor_maximo_pessoa_fisica\r\n", + " - utter_lei_rouanet_valor_minimo\r\n", + " - utter_lei_rouanet_valor_maximo_pessoa_fisica\r\n", + " - utter_lei_rouanet_valor_maximo_regiao\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Money 13\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_valor_maximo_projeto\r\n", + " - utter_lei_rouanet_valor_maximo_projeto\r\n", + "* lei_rouanet_valor_maximo_pessoa_juridica\r\n", + " - utter_lei_rouanet_valor_minimo\r\n", + " - utter_lei_rouanet_valor_maximo_pessoa_juridica\r\n", + " - utter_lei_rouanet_valor_maximo_regiao\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_tais\r\n", + " - utter_definicao_tais\r\n", + " - utter_objetivo\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 1.1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_tais\r\n", + " - utter_definicao_tais\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* negar\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 1.2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_tais\r\n", + " - utter_definicao_tais\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* afirmar\r\n", + " - utter_salic_cadastro_usuario\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 1.3\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_tais\r\n", + " - utter_definicao_tais\r\n", + " - utter_objetivo\r\n", + "* negar\r\n", + " - utter_processo_como_funciona \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 1.11\r\n", + "* definicao_cnic\r\n", + " - utter_definicao_cnic\r\n", + " - utter_continuar_conversa \r\n", + "\r\n", + "\r\n", + "## sigla 1.15\r\n", "* processo_como_funciona\r\n", + " - action_listen \r\n", + "* definicao_vinculada\r\n", + " - utter_definicao_vinculada\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_salic\r\n", + " - utter_definicao_salic\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 2.1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_salic\r\n", + " - utter_definicao_salic\r\n", + " - utter_objetivo \r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* negar\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 2.2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_salic\r\n", + " - utter_definicao_salic\r\n", + " - utter_objetivo \r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* afirmar\r\n", + " - utter_salic_cadastro_usuario\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 2.3\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_salic\r\n", + " - utter_definicao_salic\r\n", + " - utter_objetivo \r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 2.4\r\n", + "* definicao_salic\r\n", + " - utter_definicao_salic\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* definicao_cnic\r\n", + " - utter_definicao_cnic\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 2.5\r\n", + "* definicao_salic\r\n", + " - utter_definicao_salic\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* definicao_sefic\r\n", + " - utter_definicao_sefic\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 2.6\r\n", + "* definicao_salic\r\n", + " - utter_definicao_salic\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* definicao_vinculada\r\n", + " - utter_definicao_vinculada\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 2.7\r\n", + "* definicao_salic\r\n", + " - utter_definicao_salic\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* quem_criou_a_tais\r\n", + " - utter_quem_criou_a_tais\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 3\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_vinculada\r\n", + " - utter_definicao_vinculada\r\n", + " - utter_objetivo\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 3.1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_vinculada\r\n", + " - utter_definicao_vinculada\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* negar\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 3.2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_vinculada\r\n", + " - utter_definicao_vinculada\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* afirmar\r\n", + " - utter_salic_cadastro_usuario\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 3.3\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_vinculada\r\n", + " - utter_definicao_vinculada\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* negar\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 4\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_minc\r\n", + " - utter_definicao_minc\r\n", + " - utter_objetivo\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 4.1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_minc\r\n", + " - utter_definicao_minc\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", " - utter_processo_como_funciona\r\n", - " - action_listen \r\n", - "* lei_rouanet_quantidade_de_projetos\r\n", - " - utter_lei_rouanet_quantidade_de_projetos\r\n", - " - utter_manter_conversa\r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* negar\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## Incentivo Intermediario 5\r\n", - "* lei_rouanet_quantidade_de_projetos\r\n", - " - utter_lei_rouanet_quantidade_de_projetos\r\n", - " - utter_manter_conversa\r\n", - "* lei_rouanet_origem_do_dinheiro\r\n", - " - utter_lei_rouanet_origem_do_dinheiro\r\n", - " - utter_manter_conversa \r\n", + "## sigla 4.2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_minc\r\n", + " - utter_definicao_minc\r\n", + " - utter_objetivo\r\n", "\r\n", "\r\n", - "## Incentivo Base 1\r\n", + "## sigla 4.3\r\n", "* cumprimentar\r\n", " - utter_cumprimentar\r\n", - " - utter_menu\r\n", - "* processo_como_funciona\r\n", + " - action_listen \r\n", + "* definicao_minc\r\n", + " - utter_definicao_minc\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", " - utter_processo_como_funciona\r\n", - " - utter_manter_conversa\r\n", - "* lei_rouanet_o_que_eh\r\n", - " - utter_lei_rouanet_o_que_eh\r\n", - " - utter_manter_conversa\r\n", - "* lei_rouanet_origem_do_dinheiro\r\n", - " - utter_lei_rouanet_origem_do_dinheiro\r\n", - "* lei_rouanet_quem_pode_ser_proponente\r\n", - " - utter_lei_rouanet_quem_pode_ser_proponente\r\n", - " - utter_manter_conversa \r\n", - "* lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", - " - utter_lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", - " - utter_manter_conversa\r\n", - "* lei_rouanet_quem_pode_incentivar\r\n", - " - utter_lei_rouanet_quem_pode_incentivar\r\n", - " - utter_manter_conversa\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## Incentivo Base 3\r\n", - "* lei_rouanet_o_que_eh\r\n", - " - utter_lei_rouanet_o_que_eh\r\n", - " - action_listen \r\n", - "* lei_rouanet_origem_do_dinheiro\r\n", - " - utter_lei_rouanet_origem_do_dinheiro\r\n", - " - utter_manter_conversa\r\n", - "* processo_como_funciona\r\n", + "## sigla 4.4\r\n", + "* definicao_minc\r\n", + " - utter_definicao_minc\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* definicao_salic\r\n", + " - utter_definicao_salic\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 4.5\r\n", + "* definicao_minc\r\n", + " - utter_definicao_minc\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* definicao_cnic\r\n", + " - utter_definicao_cnic\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 4.6\r\n", + "* definicao_minc\r\n", + " - utter_definicao_minc\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* definicao_sefic\r\n", + " - utter_definicao_sefic\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 4.7\r\n", + "* definicao_minc\r\n", + " - utter_definicao_minc\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* definicao_vinculada\r\n", + " - utter_definicao_vinculada\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 4.8\r\n", + "* definicao_minc\r\n", + " - utter_definicao_minc\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* quem_criou_a_tais\r\n", + " - utter_quem_criou_a_tais\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 5\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_cnic\r\n", + " - utter_definicao_cnic\r\n", + " - utter_objetivo\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 5.1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_cnic\r\n", + " - utter_definicao_cnic\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", " - utter_processo_como_funciona\r\n", - " - utter_manter_conversa\r\n", - "* lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", - " - utter_lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", - " - utter_manter_conversa\r\n", - "* lei_rouanet_quem_pode_ser_proponente\r\n", - " - utter_lei_rouanet_quem_pode_ser_proponente\r\n", - " - utter_manter_conversa\r\n", - "* lei_rouanet_quem_pode_incentivar\r\n", - " - utter_lei_rouanet_quem_pode_incentivar\r\n", - " - utter_manter_conversa\r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* negar\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## Incentivo Cadastro Salic 2\r\n", - "* processo_como_funciona\r\n", + "## sigla 5.2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_cnic\r\n", + " - utter_definicao_cnic\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", " - utter_processo_como_funciona\r\n", - " - action_listen \r\n", - "* salic_cadastro_usuario\r\n", + "* afirmar\r\n", " - utter_cadastro_salic_video\r\n", "* afirmar\r\n", " - utter_salic_cadastro_usuario\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## Incentivo Intermediario 2\r\n", - "* lei_rouanet_o_que_eh\r\n", - " - utter_lei_rouanet_o_que_eh\r\n", - " - utter_manter_conversa\r\n", - "* lei_rouanet_beneficios_incentivo_projetos_culturais\r\n", - " - utter_lei_rouanet_beneficios_incentivo_projetos_culturais\r\n", - " - action_listen \r\n", - "* lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", - " - utter_lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", - " - utter_manter_conversa\r\n", + "## sigla 5.3\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_cnic\r\n", + " - utter_definicao_cnic\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## LeiRouanet 6\r\n", - "* lei_rouanet_o_que_eh\r\n", - " - utter_lei_rouanet_o_que_eh\r\n", - " - action_listen \r\n", - "* lei_rouanet_denuncia\r\n", - " - utter_lei_rouanet_denuncia\r\n", - " - utter_manter_conversa\r\n", + "## sigla 6\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_sefic\r\n", + " - utter_definicao_sefic\r\n", + " - utter_objetivo\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## Incentivo Base 2\r\n", - "* lei_rouanet_o_que_eh\r\n", - " - utter_lei_rouanet_o_que_eh\r\n", - " - utter_manter_conversa\r\n", - "* processo_como_funciona\r\n", + "## sigla 6.1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_sefic\r\n", + " - utter_definicao_sefic\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", " - utter_processo_como_funciona\r\n", - " - utter_manter_conversa \r\n", - "* lei_rouanet_quem_pode_ser_proponente\r\n", - " - utter_lei_rouanet_quem_pode_ser_proponente\r\n", - " - utter_manter_conversa\r\n", - "* lei_rouanet_origem_do_dinheiro\r\n", - " - utter_lei_rouanet_origem_do_dinheiro\r\n", - "* lei_rouanet_quem_pode_incentivar\r\n", - " - utter_lei_rouanet_quem_pode_incentivar\r\n", - " - utter_manter_conversa\r\n", - "* lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", - " - utter_lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", - " - utter_manter_conversa\r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* negar\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## Incentivo Cadastro Salic 3\r\n", - "* processo_como_funciona\r\n", + "## sigla 6.2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_sefic\r\n", + " - utter_definicao_sefic\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", " - utter_processo_como_funciona\r\n", - " - action_listen \r\n", - "* diga_mais\r\n", + "* afirmar\r\n", " - utter_cadastro_salic_video\r\n", "* afirmar\r\n", " - utter_salic_cadastro_usuario\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## Incentivo Cadastro Salic 4\r\n", - "* processo_como_funciona\r\n", + "## sigla 6.3\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* definicao_sefic\r\n", + " - utter_definicao_sefic\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 7\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* quem_criou_a_tais\r\n", + " - utter_quem_criou_a_tais\r\n", + " - utter_objetivo\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 7.1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* quem_criou_a_tais\r\n", + " - utter_quem_criou_a_tais\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", " - utter_processo_como_funciona\r\n", - " - action_listen \r\n", - "* diga_mais\r\n", + "* afirmar\r\n", " - utter_cadastro_salic_video\r\n", "* negar\r\n", - " - utter_manter_conversa\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## Incentivo Avancado 4\r\n", - "* lei_rouanet_quem_pode_ser_proponente\r\n", - " - utter_lei_rouanet_quem_pode_ser_proponente\r\n", - " - action_listen \r\n", - "* lei_rouanet_denuncia\r\n", - " - utter_lei_rouanet_denuncia\r\n", - " - utter_manter_conversa\r\n", + "## sigla 7.2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* quem_criou_a_tais\r\n", + " - utter_quem_criou_a_tais\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* afirmar\r\n", + " - utter_salic_cadastro_usuario\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 7.3\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* quem_criou_a_tais\r\n", + " - utter_quem_criou_a_tais\r\n", + " - utter_objetivo\r\n", + "* afirmar\r\n", + " - utter_processo_como_funciona\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## Incentivo Intermediario 4\r\n", + "## LeiRouanet 1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", "* lei_rouanet_o_que_eh\r\n", " - utter_lei_rouanet_o_que_eh\r\n", - " - action_listen \r\n", - "* lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", - " - utter_lei_rouanet_porcentagem_de_deducao_do_imposto\r\n", - "* lei_rouanet_quantidade_de_projetos\r\n", - " - utter_lei_rouanet_quantidade_de_projetos\r\n", - " - utter_manter_conversa\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## LeiRouanet 27\r\n", + "* lei_rouanet_denuncia\r\n", + " - utter_continuar_conversa \r\n", + "* lei_rouanet_quem_pode_incentivar\r\n", + " - utter_lei_rouanet_quem_pode_incentivar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## LeiRouanet 36\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_divulgacao_patrocinio\r\n", + " - utter_lei_rouanet_divulgacao_patrocinio\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## LeiRouanet 39\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* lei_rouanet_receber_incetivo_de_parentes\r\n", + " - utter_lei_rouanet_quem_pode_incentivar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 2\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_reativacao_de_proposta\r\n", + " - utter_processo_reativacao_de_proposta\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 6\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo_envio_cnae\r\n", + " - utter_processo_prazo_envio_cnae\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 15\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo_analise_tecnica\r\n", + " - utter_processo_prazo_analise_tecnica\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 16\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo_analise_proposta\r\n", + " - utter_processo_prazo_analise_proposta\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 17\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo_readequacao\r\n", + " - utter_processo_prazo_readequacao\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 18\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo_periodo_captacao\r\n", + " - utter_processo_prazo_periodo_captacao\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 19\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo_prestacao_contas\r\n", + " - utter_processo_prazo_prestacao_contas\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 20\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo_diligencias\r\n", + " - utter_processo_prazo_diligencias\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 21\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo_desarquivar\r\n", + " - utter_processo_prazo_desarquivar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 22\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo_desistir_recurso\r\n", + " - utter_processo_prazo_desistir_recurso\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Processo 23\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo\r\n", + " - utter_processo_prazo\r\n", + "\r\n", + "\r\n", + "## Processo 27\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_preenchimento\r\n", + " - utter_processo_preenchimento\r\n", + "\r\n", + "\r\n", + "## Processo 29\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_admissibilidade\r\n", + " - utter_processo_admissibilidade\r\n", + "\r\n", + "\r\n", + "## Processo 31\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_aprovacao\r\n", + " - utter_processo_aprovacao\r\n", + "\r\n", + "\r\n", + "## Processo 33\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_execucao\r\n", + " - utter_processo_execucao\r\n", + "\r\n", + "\r\n", + "## Processo 35\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_analise_de_resultados\r\n", + " - utter_processo_analise_de_resultados\r\n", + "\r\n", + "\r\n", + "## Processo 39\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_definicao_etapas\r\n", + " - utter_processo_definicao_etapas\r\n", + "\r\n", + "\r\n", + "## Processo 41\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* processo_prazo_apresentar_proposta\r\n", + " - utter_processo_prazo_apresentar_proposta\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## Oi Tudo Bem Story 1\r\n", + "* cumprimentar\r\n", + " - utter_cumprimentar\r\n", + " - action_listen \r\n", + "* tudo_bem\r\n", + " - utter_tudo_bem\r\n", + " - utter_menu\r\n", "\r\n", "\r\n" ] } ], "source": [ - "%cat failed_stories.md" + "%cat results/failed_stories.md" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Na célula abaixo foi gerado um relatório a partir do arquivo `failed_stories.md`, especificando os erros que estão ocorrendo. A melhor forma de corrigilos é tirando as inconsistencias das stories, padronizando comportamentos básicos e difenciando melhor as stories mais específicas." + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Não foi encontrado nenhum erro de confusão entre as stories\n" + ] + } + ], + "source": [ + "errors = []\n", + "try:\n", + " f = open('./results/failed_stories.md', 'r')\n", + " lines = f.readlines()\n", + " for i in range(len(lines)):\n", + " lines[i] = lines[i].strip()\n", + "\n", + " for line in lines:\n", + " if line.startswith('-'):\n", + " l = line.split()\n", + " utter = l[1]\n", + " if len(l) > 2 and l[2].startswith('\r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 1.9\r\n", + "* definicao_minc\r\n", + " - utter_definicao_minc\r\n", " - utter_continuar_conversa \r\n", "\r\n", "\r\n", - "## sigla 1.15\r\n", + "## sigla 1.13\r\n", "* processo_como_funciona\r\n", - " - action_listen \r\n", - "* definicao_vinculada\r\n", - " - utter_definicao_vinculada\r\n", + " - utter_processo_como_funciona \r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* negar\r\n", + " - utter_salic_cadastro_proponente\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 1.14\r\n", + "* processo_como_funciona\r\n", + " - utter_processo_como_funciona \r\n", + "* afirmar\r\n", + " - utter_cadastro_salic_video\r\n", + "* afirmar\r\n", + " - utter_salic_cadastro_usuario\r\n", + " - utter_salic_cadastro_proponente\r\n", " - utter_continuar_conversa\r\n", "\r\n", "\r\n", @@ -11885,61 +1388,6 @@ " - utter_continuar_conversa\r\n", "\r\n", "\r\n", - "## sigla 4.4\r\n", - "* definicao_minc\r\n", - " - utter_definicao_minc\r\n", - " - utter_objetivo \r\n", - "* negar\r\n", - " - utter_continuar_conversa\r\n", - "* definicao_salic\r\n", - " - utter_definicao_salic\r\n", - " - utter_continuar_conversa\r\n", - "\r\n", - "\r\n", - "## sigla 4.5\r\n", - "* definicao_minc\r\n", - " - utter_definicao_minc\r\n", - " - utter_objetivo \r\n", - "* negar\r\n", - " - utter_continuar_conversa\r\n", - "* definicao_cnic\r\n", - " - utter_definicao_cnic\r\n", - " - utter_continuar_conversa\r\n", - "\r\n", - "\r\n", - "## sigla 4.6\r\n", - "* definicao_minc\r\n", - " - utter_definicao_minc\r\n", - " - utter_objetivo \r\n", - "* negar\r\n", - " - utter_continuar_conversa\r\n", - "* definicao_sefic\r\n", - " - utter_definicao_sefic\r\n", - " - utter_continuar_conversa\r\n", - "\r\n", - "\r\n", - "## sigla 4.7\r\n", - "* definicao_minc\r\n", - " - utter_definicao_minc\r\n", - " - utter_objetivo \r\n", - "* negar\r\n", - " - utter_continuar_conversa\r\n", - "* definicao_vinculada\r\n", - " - utter_definicao_vinculada\r\n", - " - utter_continuar_conversa\r\n", - "\r\n", - "\r\n", - "## sigla 4.8\r\n", - "* definicao_minc\r\n", - " - utter_definicao_minc\r\n", - " - utter_objetivo \r\n", - "* negar\r\n", - " - utter_continuar_conversa\r\n", - "* quem_criou_a_tais\r\n", - " - utter_quem_criou_a_tais\r\n", - " - utter_continuar_conversa\r\n", - "\r\n", - "\r\n", "## sigla 5\r\n", "* cumprimentar\r\n", " - utter_cumprimentar\r\n", @@ -11997,6 +1445,39 @@ " - utter_continuar_conversa\r\n", "\r\n", "\r\n", + "## sigla 5.4\r\n", + "* definicao_cnic\r\n", + " - utter_definicao_cnic\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* definicao_sefic\r\n", + " - utter_definicao_sefic\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 5.5\r\n", + "* definicao_cnic\r\n", + " - utter_definicao_cnic\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* definicao_vinculada\r\n", + " - utter_definicao_vinculada\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", + "## sigla 5.6\r\n", + "* definicao_cnic\r\n", + " - utter_definicao_cnic\r\n", + " - utter_objetivo \r\n", + "* negar\r\n", + " - utter_continuar_conversa\r\n", + "* quem_criou_a_tais\r\n", + " - utter_quem_criou_a_tais\r\n", + " - utter_continuar_conversa\r\n", + "\r\n", + "\r\n", "## sigla 6\r\n", "* cumprimentar\r\n", " - utter_cumprimentar\r\n", @@ -12321,19 +1802,36 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Na célula abaixo foi gerado um relatório a partir do arquivo `failed_stories.md`, especificando os erros que estão ocorrendo. A melhor forma de corrigilos é tirando as inconsistencias das stories, padronizando comportamentos básicos e difenciando melhor as stories mais específicas." + "Na célula abaixo foi gerado um relatório a partir do arquivo `failed_stories.md`, especificando os erros que estão ocorrendo. A melhor forma de corrigi-los é tirando as inconsistencias das stories, padronizando comportamentos básicos e difenciando melhor as stories mais específicas." ] }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Não foi encontrado nenhum erro de confusão entre as stories\n" + "Utter com erro de previsão: action_listen\n", + "Utter com qual está sendo confundida: utter_menu\n", + "\n", + "Utter com erro de previsão: utter_processo_como_funciona\n", + "Utter com qual está sendo confundida: utter_continuar_conversa\n", + "\n", + "Utter com erro de previsão: utter_processo_como_funciona\n", + "Utter com qual está sendo confundida: action_listen\n", + "\n", + "Utter com erro de previsão: utter_continuar_conversa\n", + "Utter com qual está sendo confundida: utter_objetivo\n", + "\n", + "Utter com erro de previsão: utter_objetivo\n", + "Utter com qual está sendo confundida: utter_continuar_conversa\n", + "\n", + "Utter com erro de previsão: utter_continuar_conversa\n", + "Utter com qual está sendo confundida: utter_lei_rouanet_denuncia\n", + "\n" ] } ], @@ -12358,6 +1856,7 @@ " print('Utter com erro de previsão: {}'.format(e[0]))\n", " print('Utter com qual está sendo confundida: {}'.format(e[1]))\n", " print()\n", + "\n", "except(FileNotFoundError):\n", " print('Não foi encontrado nenhum erro de confusão entre as stories')" ] @@ -12412,7 +1911,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.8" } }, "nbformat": 4, From d5d1bdd67cbe7366bdffce7aac25bc20dec5eb5f Mon Sep 17 00:00:00 2001 From: Gabriela Barrozo Guedes Date: Mon, 6 May 2019 18:27:14 -0300 Subject: [PATCH 4/5] Finishing changes Signed-off-by: Gabriela Barrozo Guedes --- notebooks/stories/stories-analysis.ipynb | 21 ++------------------- 1 file changed, 2 insertions(+), 19 deletions(-) diff --git a/notebooks/stories/stories-analysis.ipynb b/notebooks/stories/stories-analysis.ipynb index 4ab4e939..28e75716 100644 --- a/notebooks/stories/stories-analysis.ipynb +++ b/notebooks/stories/stories-analysis.ipynb @@ -802,24 +802,7 @@ }, { "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "failed_stories.md story_confmat.pdf\r\n" - ] - } - ], - "source": [ - "!ls results" - ] - }, - { - "cell_type": "code", - "execution_count": 27, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -836,7 +819,7 @@ " " ], "text/plain": [ - "" + "" ] }, "metadata": {}, From 14680ff138a1e4af9d7db00082fc27e106f94c3e Mon Sep 17 00:00:00 2001 From: arthurTemporim Date: Mon, 6 May 2019 18:50:55 -0300 Subject: [PATCH 5/5] Update notebooks environment variables Signed-off-by: arthurTemporim --- docker-compose.yml | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/docker-compose.yml b/docker-compose.yml index 77c417c0..b39baf83 100644 --- a/docker-compose.yml +++ b/docker-compose.yml @@ -173,16 +173,16 @@ services: context: . dockerfile: ./docker/notebooks/notebooks.Dockerfile environment: - - BOT_DIR_PATH=../../bot/ - - BOT_DOMAIN_PATH=../../bot/domain.yml - - BOT_NLU_CONFIG_PATH=../../bot/nlu_config.yml - - BOT_STORIES_PATH=../../bot/data/stories/ - - BOT_INTENTS_PATH=../../bot/data/intents/ - - BOT_MODELS_PATH=../../bot/models/ - - BOT_MODELS_NLU_PATH=../../bot/models/nlu/current/ - - BOT_MODELS_DIALOGUE_PATH=../../bot/models/dialogue + - BOT_DIR_PATH=../../coach/ + - BOT_DOMAIN_PATH=../../coach/domain.yml + - BOT_NLU_CONFIG_PATH=../../coach/nlu_config.yml + - BOT_STORIES_PATH=../../coach/data/stories/ + - BOT_INTENTS_PATH=../../coach/data/intents/ + - BOT_MODELS_PATH=../../coach/models/ + - BOT_MODELS_NLU_PATH=../../coach/models/nlu/current/ + - BOT_MODELS_DIALOGUE_PATH=../../coach/models/dialogue volumes: - - ./coach:/work/bot + - ./coach:/work/coach - ./notebooks:/work/notebooks ports: - 8888:8888