Function Analysis Library contains the Libraries implementing the Special Functions and their Analysis.
Document | Link |
---|---|
Technical Specification | Latest Previous |
User Guide | |
API | Javadoc |
- Gamma Function
- Introduction and Background
- Motivation
- Main Definition
- Alternate Definitions: Euler’s Definition as an Infinite Product
- Weierstrass Definition
- In Terms of Generalized Laguerre Polynomials
- General Properties
- Inequalities
- Stirling’s Formula
- Residues
- Minima
- Integral Representations
- Fourier Series Expansion
- Raabe’s Formula
- Pi Function
- Relation to Other Functions
- Particular Values
- The Log-Gamma Function
- The Log-Gamma Function Properties
- Integration Over Log-Gamma
- Approximations
- Applications – Integration Problems
- Calculating Products
- Analytic Number Theory
- References
- Stirling's Approximation
- Introduction and Overview
- Derivation
- An Alternative Derivation
- Speed of Convergence and Error Estimates
- Stirling’s Formula for the Gamma Function
- Error Bounds
- A Convergent Version of the Sterling’s Formula
- Versions Suitable for Calculators
- References
- Lanczos Approximation
- Introduction
- Coefficients
- References
- Incomplete Gamma Function
- Introduction and Overview
- Definition
- Properties
- Continuation to Complex Values
- Lower Incomplete Gamma FUnction - Holomorphic Extensions
- Multi-Valuedness
- Sectors
- Branches
- Relationshiop between Branches
- Behavior near the Branch Point
- Algebraic Relations
- Integral Representation
- Limit for z→±∞ - Real Values
- Limit for z→±∞ - Complex Values
- Sector-wise Convergence
- Lower Incomplete Gamma Function – Overview
- Upper Incomplete Gamma Function
- Special Values
- Asymptotic Behavior
- Evaluation Formulas
- Connection with Kummer’s Confluent Hyper-geometric Function
- Multiplication Theorem
- Software Implementation
- Regularized Gamma Functions and Poisson Random Variables
- Derivatives
- Indefinite and Definite Integrals
- References
- Digamma Function
- Introduction and Overview
- Relation to the Harmonic Series
- Integral Representations
- Infinite Product Representation
- Series Formula
- Evaluation of Sums of Rational Functions
- Taylor Series
- Newton Series
- Series with Gregory’s Coefficients, Cauchy Numbers, and Bernoulli Polynomials of the Second Kind
- Reflection Formula
- Recurrence Formula and Characterization
- Some Finite Sums involving the Digamma Function
- Gauss Digamma Theorem
- Asymptotic Expansion
- Inequalities
- Computation and Approximation
- Special Values
- Roots of the Digamma Function
- Regularization
- References
- Beta Function
- Introduction and Overview
- Properties
- Relationship between Gamma Function and Beta Function
- Derivatives
- Integrals
- Approximation
- Incomplete Beta Function
- Incomplete Beta Function - Properties
- Multi-variate Beta Function
- Software Implementation
- References
- Hypergeometric Function
- Introduction and Overview
- The Hypergeometric Series
- Differentiation Formulas
- Special Cases
- The Hypergeometric Differential Equation
- Solutions at the Singular Points
- Kummer’s 24 Solutions
- Q-Form
- Schwarz Triangle Maps
- Monodromy Group
- Integral Formulas – Euler Type
- Barnes Integral
- John Transform
- Gauss’ Contiguous Relation
- Gauss’ Continued Fraction
- Transformation Formula
- Fractional Linear Transformations
- Quadratic Transformation
- Higher Order Transformations
- Values at Special Points
- Special Values at 𝒛 = 𝟏
- Kummer’s Theorem
- Special Values at 𝒛 = 0.5
- Other Points
- References
- Bessel Function
- Introduction and Overview
- Applications of Bessel Functions
- Definitions
- Bessel Functions of the First Kind J_α
- Bessel’s Integrals
- Relation to the Hypergeometric Series
- Relation to the Laguerre Polynomials
- Bessel Function of the Second Kind Y_α
- Hankel Functions 〖H_α〗^((1) ) and 〖H_α〗^((2) )
- Modified Bessel Functions I_α, K_α
- Spherical Bessel Functions j_n and y_n
- Generating Function
- Differential Relations
- Spherical Hankel Functions
- Riccati-Bessel Functions - S_n, C_n, ξ_n, ζ_n
- Asymptotic Forms
- Full Domain Approximations with Elementary Functions
- Properties
- Recurrence Relations
- Multiplication Theorem
- Zeros of the Bessel Function – Bourget’s Hypothesis
- Numerical Approaches
- References
- Stretched Exponential Function
- Introduction and Overview
- Mathematical Properties
- Mathematical Properties – Distribution Function
- Fourier Transform
- Further Applications
- Use in Probability
- Modified Stretched Exponential
- References
- Error Function
- Introduction and Overview
- Name
- Applications
- Properties
- Taylor Series
- Derivative and Integral
- Burmann Series
- Inverse Functions
- Asymptotic Expansion
- Continued Fraction Expansion
- Integral of Error Function with Gaussian Density Function
- Factorial Series
- Numerical Approximations – Approximation with Elementary Functions
- Polynomial
- Table of Values
- Related Functions – Complementary Error Function
- Imaginary Error Function
- Cumulative Distribution Function
- Generalized Error Functions
- Iterated Integrals of the Complementary Error Function
- References
- Main => https://lakshmidrip.github.io/DROP/
- Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- GitHub => https://github.com/lakshmiDRIP/DROP
- Repo Layout Taxonomy => https://lakshmidrip.github.io/DROP/Taxonomy.md
- Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- Release Versions => https://lakshmidrip.github.io/DROP/version.html
- Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues